
Technically Co-Sponsored by

 Infocommunications
Journal

A PUBLICATION OF THE SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS (HTE)

March 2016 Volume VIII Number 1 ISSN 2061-2079

SPECIAL ISSUE ON APPLIED CRYPTOGRAPHY

Guest Editorial .. Václav (Vashek) Matyáš, Zdeněk Říha and Pavol Zajac 1

PAPERS OF THE SPECIAL ISSUE

New results on reduced-round Tiny Encryption Algorithm
using genetic programming Karel Kubíček, Jiří Novotný, Petr Švenda and Martin Ukrop 2

Side Channels in SW Implementation of the McEliece PKC Marek Klein 10

Cryptanalysis based on the theory of symmetric
group representations .. Romana Linkeová and Pavel Příhoda 17

PAPERS FROM OPEN CALL

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System Norbert Bátfai, Péter Jeszenszky,
András Mamenyák, Béla Halász, Renátó Besenczi, János Komzsik, Balázs Kóti, Gergely Kövér,
Máté Smajda, Csaba Székelyhídi, Tamás Takács, Géza Róka and Márton Ispány 24

CALL FOR PAPERS / PARTICIPATION

IEEE Wireless Communications and Networking Conference
IEEE WCNC’2017 – 2017, San Francisco, USA .. 39

ADDITIONAL

Guidelines for our Authors .. 40

INFOCOMMUNICATIONS JOURNAL

ÖZGÜR B. AKAN
 Koc University, Istanbul, Turkey
JAVIER ARACIL
 Universidad Autónoma de Madrid, Spain
LUIGI ATZORI
 University of Cagliari, Italy
LÁSZLÓ BACSÁRDI
 University of West Hungary
JÓZSEF BÍRÓ
 Budapest University of Technology and Economics, Hungary
STEFANO BREGNI
 Politecnico di Milano, Italy
VESNA CRNOJEVIÇ-BENGIN
 University of Novi Sad, Serbia
KÁROLY FARKAS
 Budapest University of Technology and Economics, Hungary
VIKTORIA FODOR
 Royal Technical University, Stockholm
EROL GELENBE
 Imperial College London, UK
CHRISTIAN GÜTL
 Graz University of Technology, Austria
ANDRÁS HAJDU
 University of Debrecen, Hungary
LAJOS HANZO
 University of Southampton, UK
THOMAS HEISTRACHER
 Salzburg University of Applied Sciences, Austria
JUKKA HUHTAMÄKI
 Tampere University of Technology, Finland
SÁNDOR IMRE
 Budapest University of Technology and Economics, Hungary
ANDRZEJ JAJSZCZYK
 AGH University of Science and Technology, Krakow, Poland
FRANTISEK JAKAB
 Technical University Kosice, Slovakia
KLIMO MARTIN
 University of Zilina, Slovakia
DUSAN KOCUR
 Technical University Kosice, Slovakia
ANDREY KOUCHERYAVY
 St. Petersburg State University of Telecommunications, Russia

LEVENTE KOVÁCS
 Óbuda University, Budapest, Hungary
MAJA MATIJASEVIC
 University of Zagreb, Croatia
VACLAV MATYAS
 Masaryk University, Brno, Czech Republic
OSCAR MAYORA
 Create-Net, Trento, Italy
MIKLÓS MOLNÁR
 University of Montpellier, France
SZILVIA NAGY
 Széchenyi István University of Gyôr, Hungary
PÉTER ODRY
 VTS Subotica, Serbia
JAUDELICE DE OLIVEIRA
 Drexel University, USA
MICHAL PIORO
 Warsaw University of Technology, Poland
ROBERTO SARACCO
 Trento Rise, Italy
GHEORGHE SEBESTYÉN
 Technical University Cluj-Napoca, Romania
BURKHARD STILLER
 University of Zürich, Switzerland
CSABA A. SZABÓ
 Budapest University of Technology and Economics, Hungary
LÁSZLÓ ZSOLT SZABÓ
 Sapientia University, Tirgu Mures, Romania
TAMÁS SZIRÁNYI
 Institute for Computer Science and Control, Budapest, Hungary
JÁNOS SZTRIK
 University of Debrecen, Hungary
DAMLA TURGUT
 University of Central Florida, USA
ESZTER UDVARY
 Budapest University of Technology and Economics, Hungary
SCOTT VALCOURT
 University of New Hampshire, USA
JINSONG WU
 Bell Labs Shanghai, China
GERGELY ZÁRUBA
 University of Texas at Arlington, USA

Editorial Board
Editor-in-Chief: ROLLAND VIDA, Budapest University of Technology and Economics (BME), Hungary

Indexing information
Infocommunications Journal is covered by Inspec, Compendex and Scopus.

Infocommunications Journal is also included in the Thomson Reuters – Web of ScienceTM Core Collection,
Emerging Sources Citation Index (ESCI)

www.infocommunications.hu

Infocommunications Journal
Technically co-sponsored by IEEE Communications Society and IEEE Hungary Section

Supporters
FERENC VÁGUJHELYI – president, National Council for Telecommunications and Information Technology (NHIT)

GÁBOR MAGYAR – president, Scientic Association for Infocommunications (HTE)

Articles can be sent also to the following address:
Budapest University of Technology and Economics

Department of Telecommunications and Media Informatics
Tel.: +36 1 463 1102, Fax: +36 1 463 1763

E-mail: vida@tmit.bme.hu

Editorial Office (Subscription and Advertisements):
Scientic Association for Infocommunications
H-1051 Budapest, Bajcsy-Zsilinszky str. 12, Room: 502
Phone: +36 1 353 1027, Fax: +36 1 353 0451
E-mail: info@hte.hu • Web: www.hte.hu

Publisher: PÉTER NAGY

HU ISSN 2061-2079 • Layout: PLAZMA DS • Printed by: FOM Media

Subscription rates for foreign subscribers: 4 issues 10.000 HUF + postage

Guest Editorial
INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 1

Special Issue on Applied Cryptography
– Guest Editorial

Václav (Vashek) Matyáš, Zdeněk Říha and Pavol Zajac

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—This special issue brings selected papers from the

SantaCrypt 2015 workshop, held in Prague, December 3-4, 2015.

HIS special issue focuses on the area of applied
cryptography, bringing up selected papers from Santa's

Crypto Get-Together (SantaCrypt), a workshop that runs since
2001 as an annual Czech and Slovak workshop aiming to
facilitate closer cooperation of professionals working in the
field of applied cryptography and related areas of security. All
three papers deal with cryptanalysis, although each of them
approaches this area from a completely different perspective.

The first paper “New results on reduced-round Tiny
Encryption Algorithm using genetic programming” of Karel
Kubíček et al. explores use of evolutionary computing for
cryptanalysis of the Tiny Encryption Algorithm (TEA). The
authors deploy EACirc, a genetically inspired randomness
testing framework based on finding a dynamically constructed
test of statistical properties of TEA outputs. This test works as
a probabilistic distinguisher separating cipher outputs from
truly random data. TEA was chosen as a “benchmark”'
algorithm and the paper provides results of EACirc applied to
the TEA ciphertext created from differently structured
plaintext. A different construction of EACirc tests also allows
the authors to determine which part of the cipher's output is
relevant to the decision of a well-performing randomness
distinguisher.

The second paper “Side Channels in SW Implementation of
the McEliece PKC” of Marek Klein deals with the McEliece
cryptosystem – that is considered secure in the presence of
quantum computers because there is no known quantum
algorithm to solve the problem this cryptosystem is built on.
The author examines a naïve implementation of the
cryptosystem from the point of side channels, which can be
used to gather information about the message or the secret key.
The paper presents results of chosen timing attacks on
straightforward implementation of this cryptosystem, as well
as practical countermeasures and evaluation of their
effectiveness.

The third paper “Cryptanalysis based on the theory of
symmetric group representations” of Romana Linkeová and
Pavel Příhoda focuses on an alternative of the famous key
exchange protocol of Diffie and Hellman, working over a
structure of small matrices over a group ring, as proposed by

D. Kahrobaei et al. 2013. Their modification aimed to address
an issue of the original proposal of Diffie and Hellman, the
issue of performance faced by devices with a limited
computational power. Research of alternative algebraic
structures lead, among others, to the proposal of D. Kahrobaei
et al. Linkeová and Příhoda attack this modification and prove
that it is not secure with the help of the theory of symmetric
group representations.

Václav (Vashek) Matyáš is a Professor at the
Masaryk University, Brno, CZ, and serves as a Vice-
Dean for Foreign Affairs and External Relations,
Faculty of Informatics. His research interests relate
to applied cryptography and security, publishing
over a hundred peer-reviewed papers and articles,
and co-authoring six books. He was a Fulbright
Visiting Scholar with Harvard University, Center for
Research on Computation and Society, and also
worked with Microsoft Research Cambridge,

University College Dublin, Ubilab at UBS AG, and was a Royal Society
Postdoctoral Fellow with the Cambridge University Computer Lab. Vashek
was one of the Editors-in-Chief of the Identity in the Information Society
journal, and he also edited the Computer and Communications Security
Reviews, and worked on the development of Common Criteria and with
ISO/IEC JTC1 SC27. Vashek is a member of the Editorial Board of the
Infocommunications Journal and a Senior Member of the ACM. He received
his PhD degree from Masaryk University, Brno and can be contacted at
matyas AT fi.muni.cz.

Zdeněk Říha is an Assistant Professor at the
Masaryk University, Faculty of Informatics, in Brno,
Czech Republic. He received his PhD degree from
the Faculty of Informatics, Masaryk University. In
1999 he spent 6 months on an internship at Ubilab,
the research lab of the bank UBS, focusing on
security and usability aspects of biometric
authentication systems. Between 2005 and 2008 he
was seconded as a Detached National Expert to the
European Commission’s Joint Research Centre in
Italy, where he worked on various projects related to

privacy protection and electronic passports. He was involved in the ePassport
interoperability group known as the Brussels Interoperability Group. Zdeněk
has been working with the WG 5 (Identity management and privacy
technologies) of ISO/IEC JTC 1/SC 27. Zdeněk’s research interests include
smartcard security, PKI, security of biometric systems and machine readable
travel documents. Zdeněk can be contacted at zriha AT fi.muni.cz.

Pavol Zajac is an Associate Professor at the Slovak
University of Technology in Bratislava. His main
research interests lie in the area of mathematical
cryptography. Nowadays he works mostly with post-
quantum cryptography and related algebraic
problems. Pavol can be contacted at pavol.zajac AT
stuba.sk.

Special Issue on Applied Cryptography – Guest
Editorial

Václav (Vashek) Matyáš, Zdeněk Říha, and Pavol Zajac

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—This special issue brings selected papers from the

SantaCrypt 2015 workshop, held in Prague, December 3-4, 2015.

HIS special issue focuses on the area of applied
cryptography, bringing up selected papers from Santa's

Crypto Get-Together (SantaCrypt), a workshop that runs since
2001 as an annual Czech and Slovak workshop aiming to
facilitate closer cooperation of professionals working in the
field of applied cryptography and related areas of security. All
three papers deal with cryptanalysis, although each of them
approaches this area from a completely different perspective.

The first paper “New results on reduced-round Tiny
Encryption Algorithm using genetic programming” of Karel
Kubíček et al. explores use of evolutionary computing for
cryptanalysis of the Tiny Encryption Algorithm (TEA). The
authors deploy EACirc, a genetically inspired randomness
testing framework based on finding a dynamically constructed
test of statistical properties of TEA outputs. This test works as
a probabilistic distinguisher separating cipher outputs from
truly random data. TEA was chosen as a “benchmark”'
algorithm and the paper provides results of EACirc applied to
the TEA ciphertext created from differently structured
plaintext. A different construction of EACirc tests also allows
the authors to determine which part of the cipher's output is
relevant to the decision of a well-performing randomness
distinguisher.

The second paper “Side Channels in SW Implementation of
the McEliece PKC” of Marek Klein deals with the McEliece
cryptosystem – that is considered secure in the presence of
quantum computers because there is no known quantum
algorithm to solve the problem this cryptosystem is built on.
The author examines a naïve implementation of the
cryptosystem from the point of side channels, which can be
used to gather information about the message or the secret key.
The paper presents results of chosen timing attacks on
straightforward implementation of this cryptosystem, as well
as practical countermeasures and evaluation of their
effectiveness.

The third paper “Cryptanalysis based on the theory of
symmetric group representations” of Romana Linkeová and
Pavel Příhoda focuses on an alternative of the famous key
exchange protocol of Diffie and Hellman, working over a
structure of small matrices over a group ring, as proposed by

D. Kahrobaei et al. 2013. Their modification aimed to address
an issue of the original proposal of Diffie and Hellman, the
issue of performance faced by devices with a limited
computational power. Research of alternative algebraic
structures lead, among others, to the proposal of D. Kahrobaei
et al. Linkeová and Příhoda attack this modification and prove
that it is not secure with the help of the theory of symmetric
group representations.

Václav (Vashek) Matyáš is a Professor at the
Masaryk University, Brno, CZ, and serves as a Vice-
Dean for Foreign Affairs and External Relations,
Faculty of Informatics. His research interests relate
to applied cryptography and security, publishing
over a hundred peer-reviewed papers and articles,
and co-authoring six books. He was a Fulbright
Visiting Scholar with Harvard University, Center for
Research on Computation and Society, and also
worked with Microsoft Research Cambridge,

University College Dublin, Ubilab at UBS AG, and was a Royal Society
Postdoctoral Fellow with the Cambridge University Computer Lab. Vashek
was one of the Editors-in-Chief of the Identity in the Information Society
journal, and he also edited the Computer and Communications Security
Reviews, and worked on the development of Common Criteria and with
ISO/IEC JTC1 SC27. Vashek is a member of the Editorial Board of the
Infocommunications Journal and a Senior Member of the ACM. He received
his PhD degree from Masaryk University, Brno and can be contacted at
matyas AT fi.muni.cz.

Zdeněk Říha is an Assistant Professor at the
Masaryk University, Faculty of Informatics, in Brno,
Czech Republic. He received his PhD degree from
the Faculty of Informatics, Masaryk University. In
1999 he spent 6 months on an internship at Ubilab,
the research lab of the bank UBS, focusing on
security and usability aspects of biometric
authentication systems. Between 2005 and 2008 he
was seconded as a Detached National Expert to the
European Commission’s Joint Research Centre in
Italy, where he worked on various projects related to

privacy protection and electronic passports. He was involved in the ePassport
interoperability group known as the Brussels Interoperability Group. Zdeněk
has been working with the WG 5 (Identity management and privacy
technologies) of ISO/IEC JTC 1/SC 27. Zdeněk’s research interests include
smartcard security, PKI, security of biometric systems and machine readable
travel documents. Zdeněk can be contacted at zriha AT fi.muni.cz.

Pavol Zajac is an Associate Professor at the Slovak
University of Technology in Bratislava. His main
research interests lie in the area of mathematical
cryptography. Nowadays he works mostly with post-
quantum cryptography and related algebraic
problems. Pavol can be contacted at pavol.zajac AT
stuba.sk.

Special Issue on Applied Cryptography – Guest
Editorial

Václav (Vashek) Matyáš, Zdeněk Říha, and Pavol Zajac

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—This special issue brings selected papers from the

SantaCrypt 2015 workshop, held in Prague, December 3-4, 2015.

HIS special issue focuses on the area of applied
cryptography, bringing up selected papers from Santa's

Crypto Get-Together (SantaCrypt), a workshop that runs since
2001 as an annual Czech and Slovak workshop aiming to
facilitate closer cooperation of professionals working in the
field of applied cryptography and related areas of security. All
three papers deal with cryptanalysis, although each of them
approaches this area from a completely different perspective.

The first paper “New results on reduced-round Tiny
Encryption Algorithm using genetic programming” of Karel
Kubíček et al. explores use of evolutionary computing for
cryptanalysis of the Tiny Encryption Algorithm (TEA). The
authors deploy EACirc, a genetically inspired randomness
testing framework based on finding a dynamically constructed
test of statistical properties of TEA outputs. This test works as
a probabilistic distinguisher separating cipher outputs from
truly random data. TEA was chosen as a “benchmark”'
algorithm and the paper provides results of EACirc applied to
the TEA ciphertext created from differently structured
plaintext. A different construction of EACirc tests also allows
the authors to determine which part of the cipher's output is
relevant to the decision of a well-performing randomness
distinguisher.

The second paper “Side Channels in SW Implementation of
the McEliece PKC” of Marek Klein deals with the McEliece
cryptosystem – that is considered secure in the presence of
quantum computers because there is no known quantum
algorithm to solve the problem this cryptosystem is built on.
The author examines a naïve implementation of the
cryptosystem from the point of side channels, which can be
used to gather information about the message or the secret key.
The paper presents results of chosen timing attacks on
straightforward implementation of this cryptosystem, as well
as practical countermeasures and evaluation of their
effectiveness.

The third paper “Cryptanalysis based on the theory of
symmetric group representations” of Romana Linkeová and
Pavel Příhoda focuses on an alternative of the famous key
exchange protocol of Diffie and Hellman, working over a
structure of small matrices over a group ring, as proposed by

D. Kahrobaei et al. 2013. Their modification aimed to address
an issue of the original proposal of Diffie and Hellman, the
issue of performance faced by devices with a limited
computational power. Research of alternative algebraic
structures lead, among others, to the proposal of D. Kahrobaei
et al. Linkeová and Příhoda attack this modification and prove
that it is not secure with the help of the theory of symmetric
group representations.

Václav (Vashek) Matyáš is a Professor at the
Masaryk University, Brno, CZ, and serves as a Vice-
Dean for Foreign Affairs and External Relations,
Faculty of Informatics. His research interests relate
to applied cryptography and security, publishing
over a hundred peer-reviewed papers and articles,
and co-authoring six books. He was a Fulbright
Visiting Scholar with Harvard University, Center for
Research on Computation and Society, and also
worked with Microsoft Research Cambridge,

University College Dublin, Ubilab at UBS AG, and was a Royal Society
Postdoctoral Fellow with the Cambridge University Computer Lab. Vashek
was one of the Editors-in-Chief of the Identity in the Information Society
journal, and he also edited the Computer and Communications Security
Reviews, and worked on the development of Common Criteria and with
ISO/IEC JTC1 SC27. Vashek is a member of the Editorial Board of the
Infocommunications Journal and a Senior Member of the ACM. He received
his PhD degree from Masaryk University, Brno and can be contacted at
matyas AT fi.muni.cz.

Zdeněk Říha is an Assistant Professor at the
Masaryk University, Faculty of Informatics, in Brno,
Czech Republic. He received his PhD degree from
the Faculty of Informatics, Masaryk University. In
1999 he spent 6 months on an internship at Ubilab,
the research lab of the bank UBS, focusing on
security and usability aspects of biometric
authentication systems. Between 2005 and 2008 he
was seconded as a Detached National Expert to the
European Commission’s Joint Research Centre in
Italy, where he worked on various projects related to

privacy protection and electronic passports. He was involved in the ePassport
interoperability group known as the Brussels Interoperability Group. Zdeněk
has been working with the WG 5 (Identity management and privacy
technologies) of ISO/IEC JTC 1/SC 27. Zdeněk’s research interests include
smartcard security, PKI, security of biometric systems and machine readable
travel documents. Zdeněk can be contacted at zriha AT fi.muni.cz.

Pavol Zajac is an Associate Professor at the Slovak
University of Technology in Bratislava. His main
research interests lie in the area of mathematical
cryptography. Nowadays he works mostly with post-
quantum cryptography and related algebraic
problems. Pavol can be contacted at pavol.zajac AT
stuba.sk.

Special Issue on Applied Cryptography – Guest
Editorial

Václav (Vashek) Matyáš, Zdeněk Říha, and Pavol Zajac

T

Václav (Vashek) Matyáš is a Professor at the
Masaryk University, Brno, CZ, and serves as a Vice-
Dean for Foreign Affairs and External Relations,
Faculty of Informatics. His research interests relate
to applied cryptography and security, publishing
over a hundred peer-reviewed papers and articles,
and co-authoring six books. He was a Fulbright
Visiting Scholar with Harvard University, Center
for Research on Computation and Society, and
also worked with Microsoft Research Cambridge,
University College Dublin, Ubilab at UBS AG, and

was a Royal Society Postdoctoral Fellow with the Cambridge University
Computer Lab. Vashek was one of the Editors-in-Chief of the Identity
in the Information Society journal, and he also edited the Computer and
Communications Security Reviews, and worked on the development of
Common Criteria and with ISO/IEC JTC1 SC27. Vashek is a member of the
Editorial Board of the Infocommunications Journal and a Senior Member of
the ACM. He received his PhD degree from Masaryk University, Brno and
can be contacted at matyas AT fi.muni.cz.

Zdeněk Říha is an Assistant Professor at the
Masaryk University, Faculty of Informatics,
in Brno, Czech Republic. He received his PhD
degree from the Faculty of Informatics, Masaryk
University. In 1999 he spent 6 months on an
internship at Ubilab, the research lab of the bank
UBS, focusing on security and usability aspects
of biometric authentication systems. Between
2005 and 2008 he was seconded as a Detached
National Expert to the European Commission’s
Joint Research Centre in Italy, where he worked on

various projects related to privacy protection and electronic passports. He
was involved in the ePassport interoperability group known as the Brussels
Interoperability Group. Zdeněk has been working with the WG 5 (Identity
management and privacy technologies) of ISO/IEC JTC 1/SC 27. Zdeněk’s
research interests include smartcard security, PKI, security of biometric
systems and machine readable travel documents. Zdeněk can be contacted
at zriha AT fi.muni.cz.

Pavol Zajac is an Associate Professor at the Slovak
University of Technology in Bratislava. His main
research interests lie in the area of mathematical
cryptography. Nowadays he works mostly with
post- quantum cryptography and related algebraic
problems. Pavol can be contacted at pavol.zajac
AT stuba.sk.

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

MARCH 2016 • VOLUME VIII • NUMBER 12

INFOCOMMUNICATIONS JOURNAL

1

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

Karel Kubíček, Jiří Novotný, Petr Švenda, Martin Ukrop

Abstract— Analysis of cryptoprimitives usually requires exten-
sive work of a skilled cryptanalyst. Some automation is possible,
e.g. by using randomness testing batteries such as Statistical
Test Suite from NIST (NIST STS) or Dieharder. Such batteries
compare the statistical properties of the function’s output stream
to the theoretical values. A potential drawback is a limitation to
predefined tested patterns. However, there is a new approach –
EACirc is a genetically inspired randomness testing framework
based on finding a dynamically constructed test. This test works
as a probabilistic distinguisher separating cipher outputs from
truly random data.

In this work, we use EACirc to analyze the outputs of Tiny
Encryption Algorithm (TEA). TEA was selected as a frequently
used “benchmark” algorithm for cryptanalytic approaches based
on genetic algorithms. In this paper, we provide results of EACirc
applied to TEA ciphertext created from differently structured
plaintext. We compare the methodology and results with previous
approaches for limited-round TEA. A different construction
of EACirc tests also allows us to determine which part of
cipher’s output is relevant to the decision of a well-performing
randomness distinguisher.1

Index Terms—randomness statistical testing, TEA, genetic
algorithms, randomness distinguisher, software circuit

I. INTRODUCTION

Automatized randomness testing is useful for checking one
of the expected cipher properties – output ciphertext should
be indistinguishable from a stream of truly random data. This
property alone is not sufficient for a cipher to be secure, but the
ability to distinguish ciphertexts from random data constitutes
an important hint on potential cipher weaknesses.

The common way to automate testing of randomness is
using statistical batteries. NIST STS [1] is a standard battery
of tests commonly used for this purpose, together with other
batteries such as Diehard [2], Dieharder [3] or TestU01 [4].
The batteries contain sets of fixed tests (usually parameter-
ized to form multiple different subtests) checking expected
statistical properties of tested output stream (TEA ciphertext
in our case) in comparison to the expected values for truly
random data. Empirical tests of randomness fall under the
standard statistical model – statistical hypothesis testing. Tests
assume the assessed bitstream is random (the null hypothesis)
and try to reject it (to show the bitstream is not random).
Each randomness test is defined by the test statistic S, which

Manuscript submitted on September 29, 2015, revised on February 18,
2016.
All authors are from Masaryk University, Brno, Czech Republic. They
can be contacted by email address {karel.kubicek, jiri.novotny, xsvenda,
mukrop}@mail.muni.cz.

1Paper supplementary material available at http://crcs.cz/papers/
infocomm2016

is a real-valued function of a numeric sequence. Tests are
evaluated by comparing the p-value (computed from the test
statistic) with a chosen significance level α. For the p-value
computation, it is necessary to know an exact distribution of
the statistic S under a valid null hypothesis or, at least, its
close approximation.

The limitation of the standard batteries for randomness
testing is the fact they implement a fixed set of tests and can
detect only a limited set of patterns and statistical irregularities.
If the used set of tests is fixed and known, a sequence of
completely deterministic data can be crafted such that no tests
will detect statistically significant deviances from truly random
data. However, as cryptographic functions have a deterministic
output (dependent only on input data and a key), it is a priori
expected that the function output cannot pass all possible tests
of randomness and so there exist tests that reveal the output
sequence as non-random. However, such a test can be very
difficult to find.

In this work we use EACirc [5], a novel framework for
constructing empirical tests of randomness that can succeed
in finding such a test (at least hypothetically). Our goal is
to find an empirical test of randomness that indicates if a
given sequence is either non-random (with a high probability)
or sufficiently indistinguishable from a truly random data
stream. In this framework, randomness tests are created itera-
tively, adapting to the processed sequence. The construction
is stochastic and uses genetic programming [6]. The tests are
constructed from a predefined pool of operations. A set of
these operations, together with a limit on the total number of
operations, allows us to control the complexity of the con-
structed tests. The framework theoretically enables us to build
an arbitrary randomness test over a set of chosen operations
(in practice, however, the total number of operations used is
limited). Therefore, it can be viewed as a general framework
for the test construction and it could (hypothetically) provide
a better detection ability than standard tests.

TEA has been intensively analyzed, including randomness
testing of cipher output with stochastic genetic algorithms.
Capabilities of EACirc are compared with previous results as
well as conventional statistical batteries.

This paper is organized as follows: section II introduces
TEA as a simple encryption algorithm applied nowadays as
a benchmark for randomness tests. Subsequently, section III
contains information about EACirc with the definition of used
settings. Input data structure is also discussed in this section.
Results and their interpretation are presented in section IV
with analysis of found distinguishers and performance and data
usage of EACirc. In section V, we describe the future work.

1

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

Karel Kubíček, Jiří Novotný, Petr Švenda, Martin Ukrop

Abstract— Analysis of cryptoprimitives usually requires exten-
sive work of a skilled cryptanalyst. Some automation is possible,
e.g. by using randomness testing batteries such as Statistical
Test Suite from NIST (NIST STS) or Dieharder. Such batteries
compare the statistical properties of the function’s output stream
to the theoretical values. A potential drawback is a limitation to
predefined tested patterns. However, there is a new approach –
EACirc is a genetically inspired randomness testing framework
based on finding a dynamically constructed test. This test works
as a probabilistic distinguisher separating cipher outputs from
truly random data.

In this work, we use EACirc to analyze the outputs of Tiny
Encryption Algorithm (TEA). TEA was selected as a frequently
used “benchmark” algorithm for cryptanalytic approaches based
on genetic algorithms. In this paper, we provide results of EACirc
applied to TEA ciphertext created from differently structured
plaintext. We compare the methodology and results with previous
approaches for limited-round TEA. A different construction
of EACirc tests also allows us to determine which part of
cipher’s output is relevant to the decision of a well-performing
randomness distinguisher.1

Index Terms—randomness statistical testing, TEA, genetic
algorithms, randomness distinguisher, software circuit

I. INTRODUCTION

Automatized randomness testing is useful for checking one
of the expected cipher properties – output ciphertext should
be indistinguishable from a stream of truly random data. This
property alone is not sufficient for a cipher to be secure, but the
ability to distinguish ciphertexts from random data constitutes
an important hint on potential cipher weaknesses.

The common way to automate testing of randomness is
using statistical batteries. NIST STS [1] is a standard battery
of tests commonly used for this purpose, together with other
batteries such as Diehard [2], Dieharder [3] or TestU01 [4].
The batteries contain sets of fixed tests (usually parameter-
ized to form multiple different subtests) checking expected
statistical properties of tested output stream (TEA ciphertext
in our case) in comparison to the expected values for truly
random data. Empirical tests of randomness fall under the
standard statistical model – statistical hypothesis testing. Tests
assume the assessed bitstream is random (the null hypothesis)
and try to reject it (to show the bitstream is not random).
Each randomness test is defined by the test statistic S, which

Manuscript submitted on September 29, 2015, revised on February 18,
2016.
All authors are from Masaryk University, Brno, Czech Republic. They
can be contacted by email address {karel.kubicek, jiri.novotny, xsvenda,
mukrop}@mail.muni.cz.

1Paper supplementary material available at http://crcs.cz/papers/
infocomm2016

is a real-valued function of a numeric sequence. Tests are
evaluated by comparing the p-value (computed from the test
statistic) with a chosen significance level α. For the p-value
computation, it is necessary to know an exact distribution of
the statistic S under a valid null hypothesis or, at least, its
close approximation.

The limitation of the standard batteries for randomness
testing is the fact they implement a fixed set of tests and can
detect only a limited set of patterns and statistical irregularities.
If the used set of tests is fixed and known, a sequence of
completely deterministic data can be crafted such that no tests
will detect statistically significant deviances from truly random
data. However, as cryptographic functions have a deterministic
output (dependent only on input data and a key), it is a priori
expected that the function output cannot pass all possible tests
of randomness and so there exist tests that reveal the output
sequence as non-random. However, such a test can be very
difficult to find.

In this work we use EACirc [5], a novel framework for
constructing empirical tests of randomness that can succeed
in finding such a test (at least hypothetically). Our goal is
to find an empirical test of randomness that indicates if a
given sequence is either non-random (with a high probability)
or sufficiently indistinguishable from a truly random data
stream. In this framework, randomness tests are created itera-
tively, adapting to the processed sequence. The construction
is stochastic and uses genetic programming [6]. The tests are
constructed from a predefined pool of operations. A set of
these operations, together with a limit on the total number of
operations, allows us to control the complexity of the con-
structed tests. The framework theoretically enables us to build
an arbitrary randomness test over a set of chosen operations
(in practice, however, the total number of operations used is
limited). Therefore, it can be viewed as a general framework
for the test construction and it could (hypothetically) provide
a better detection ability than standard tests.

TEA has been intensively analyzed, including randomness
testing of cipher output with stochastic genetic algorithms.
Capabilities of EACirc are compared with previous results as
well as conventional statistical batteries.

This paper is organized as follows: section II introduces
TEA as a simple encryption algorithm applied nowadays as
a benchmark for randomness tests. Subsequently, section III
contains information about EACirc with the definition of used
settings. Input data structure is also discussed in this section.
Results and their interpretation are presented in section IV
with analysis of found distinguishers and performance and data
usage of EACirc. In section V, we describe the future work.

1

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

Karel Kubíček, Jiří Novotný, Petr Švenda, Martin Ukrop

Abstract— Analysis of cryptoprimitives usually requires exten-
sive work of a skilled cryptanalyst. Some automation is possible,
e.g. by using randomness testing batteries such as Statistical
Test Suite from NIST (NIST STS) or Dieharder. Such batteries
compare the statistical properties of the function’s output stream
to the theoretical values. A potential drawback is a limitation to
predefined tested patterns. However, there is a new approach –
EACirc is a genetically inspired randomness testing framework
based on finding a dynamically constructed test. This test works
as a probabilistic distinguisher separating cipher outputs from
truly random data.

In this work, we use EACirc to analyze the outputs of Tiny
Encryption Algorithm (TEA). TEA was selected as a frequently
used “benchmark” algorithm for cryptanalytic approaches based
on genetic algorithms. In this paper, we provide results of EACirc
applied to TEA ciphertext created from differently structured
plaintext. We compare the methodology and results with previous
approaches for limited-round TEA. A different construction
of EACirc tests also allows us to determine which part of
cipher’s output is relevant to the decision of a well-performing
randomness distinguisher.1

Index Terms—randomness statistical testing, TEA, genetic
algorithms, randomness distinguisher, software circuit

I. INTRODUCTION

Automatized randomness testing is useful for checking one
of the expected cipher properties – output ciphertext should
be indistinguishable from a stream of truly random data. This
property alone is not sufficient for a cipher to be secure, but the
ability to distinguish ciphertexts from random data constitutes
an important hint on potential cipher weaknesses.

The common way to automate testing of randomness is
using statistical batteries. NIST STS [1] is a standard battery
of tests commonly used for this purpose, together with other
batteries such as Diehard [2], Dieharder [3] or TestU01 [4].
The batteries contain sets of fixed tests (usually parameter-
ized to form multiple different subtests) checking expected
statistical properties of tested output stream (TEA ciphertext
in our case) in comparison to the expected values for truly
random data. Empirical tests of randomness fall under the
standard statistical model – statistical hypothesis testing. Tests
assume the assessed bitstream is random (the null hypothesis)
and try to reject it (to show the bitstream is not random).
Each randomness test is defined by the test statistic S, which

Manuscript submitted on September 29, 2015, revised on February 18,
2016.
All authors are from Masaryk University, Brno, Czech Republic. They
can be contacted by email address {karel.kubicek, jiri.novotny, xsvenda,
mukrop}@mail.muni.cz.

1Paper supplementary material available at http://crcs.cz/papers/
infocomm2016

is a real-valued function of a numeric sequence. Tests are
evaluated by comparing the p-value (computed from the test
statistic) with a chosen significance level α. For the p-value
computation, it is necessary to know an exact distribution of
the statistic S under a valid null hypothesis or, at least, its
close approximation.

The limitation of the standard batteries for randomness
testing is the fact they implement a fixed set of tests and can
detect only a limited set of patterns and statistical irregularities.
If the used set of tests is fixed and known, a sequence of
completely deterministic data can be crafted such that no tests
will detect statistically significant deviances from truly random
data. However, as cryptographic functions have a deterministic
output (dependent only on input data and a key), it is a priori
expected that the function output cannot pass all possible tests
of randomness and so there exist tests that reveal the output
sequence as non-random. However, such a test can be very
difficult to find.

In this work we use EACirc [5], a novel framework for
constructing empirical tests of randomness that can succeed
in finding such a test (at least hypothetically). Our goal is
to find an empirical test of randomness that indicates if a
given sequence is either non-random (with a high probability)
or sufficiently indistinguishable from a truly random data
stream. In this framework, randomness tests are created itera-
tively, adapting to the processed sequence. The construction
is stochastic and uses genetic programming [6]. The tests are
constructed from a predefined pool of operations. A set of
these operations, together with a limit on the total number of
operations, allows us to control the complexity of the con-
structed tests. The framework theoretically enables us to build
an arbitrary randomness test over a set of chosen operations
(in practice, however, the total number of operations used is
limited). Therefore, it can be viewed as a general framework
for the test construction and it could (hypothetically) provide
a better detection ability than standard tests.

TEA has been intensively analyzed, including randomness
testing of cipher output with stochastic genetic algorithms.
Capabilities of EACirc are compared with previous results as
well as conventional statistical batteries.

This paper is organized as follows: section II introduces
TEA as a simple encryption algorithm applied nowadays as
a benchmark for randomness tests. Subsequently, section III
contains information about EACirc with the definition of used
settings. Input data structure is also discussed in this section.
Results and their interpretation are presented in section IV
with analysis of found distinguishers and performance and data
usage of EACirc. In section V, we describe the future work.

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 3

2

II. TINY ENCRYPTION ALGORITHM

Tiny Encryption Algorithm (TEA) is a block cipher de-
signed by David Wheeler and Roger Needham [7]. The
algorithm was designed to have a simple structure based on
the Feistel network with 32 rounds (we count two steps of
Feistel network as 1 TEA round). The cipher uses plaintext
blocks of 64 bits and keys of 128 bits.

A. TEA distinguishers – state of the art

Nowadays, TEA is not considered secure for regular use
as it suffers from multiple weaknesses, most significantly the
related-key attack [8]. However, it is frequently used as a
benchmark for randomness testing using genetic algorithms.
Starting in 2002 with a paper by Julio C. Hernández, José
M. Sierra, Pedro Isasi and Arturo Ribagorda [9], statistically
significant deviances were found for TEA limited to 1 and
2 rounds. Fixed bitmask with high Hamming weight evolved
by genetic algorithms was applied both to the cipher input
data and key. The expected distribution of bit patterns of
10 least significant bits of ciphertexts were then evaluated with
a χ2 test. A similar team published new results with the same
approach but improved settings of genetic algorithms [10],
which also detected deviances for 3 and 4 rounds. Aaron
Garrett, John Hamilton and Gerry Dozier [11] extended this
work in 2007 with new optimizations of the fitness function,
which helped to create masks with a higher weight for 1 and
2 rounds TEA but failed to surpass previous results for 3 and
4 rounds.

Wei Hu et al. [12] in 2010 used quantum inspired genetic
algorithm and a similar approach with bitmasks and succeeded
with TEA limited to 4 and 5 rounds. Eddie Yee-Tak Ma and
Chalie Obimbo [13] realized an attack on TEA limited to
1 round in 2011 utilizing genetic algorithms and harmony
search for the derivation of degenerated keys instead of
detection of statistical deviances of output.

III. OUR APPROACH

A. Randomness testing with genetic programming

As stated in the section I, the common way of automating
randomness testing is the use of statistical batteries with
predefined tests such as NIST STS. The approach based on
genetic algorithms is different, as used tests iteratively evolve
and adapt to the presented data.

Firstly, a set of individuals is created with each representing
a candidate distinguisher function. Secondly, every individual
decides if the provided block of input data is random or non-
random. Thirdly, as the correctness of the decision is known,
better individuals can be selected. Individuals are randomly
mutated or cross-bred to create (hopefully) better descendants.
The process follows the principles of biological evolution.
I.e. if ciphertexts share a common statistical property (e.g.
correlation between ith and jth bit), then an individual capable
of expressing this property can potentially be evolved and
improved in the process of further evolution.

The use of genetic algorithms also induces a couple of
disadvantages. We are affected mainly by these:

• As the representation of the distinguisher functions is
not straightforward, there are many possible candidate
configurations. This induces a search space that may be
artificially and unnecessarily large if the representation is
not properly selected.

• Genetic modifications of candidate solutions from the
previous iteration (mutation, crossover) are done ran-
domly, and configuration space may not be completely
searched. A well-working distinguisher can be missed
even if it exists.

• The process of fine-tuning the parameters of genetic
algorithms can significantly influence the quality of dis-
tinguishers found. E.g. [10] found distinguisher for a
higher number of rounds then [9] although using same
underlying approach and representation.

For more details about possible problems and their solution in
EACirc, refer to the thesis of Martin Ukrop [14], section 3.1.

B. EACirc framework

The constructed distinguisher is a small program that simu-
lates a standard hardware circuit. It consists of logic gates
(nodes) grouped into layers. Every gate in a layer is connected
to several nodes from the layer above using connectors (see
fig. 1). It is crucial that the functionality of the circuit (circuit-
like software) can be simply changed by replacing operations
in gates or by redirection of connectors. This property is used
for an iterative construction of distinguishers. The construction
is controlled by genetic programming that uses a fitness
function (success rate) based on the ability of a distinguisher
to correctly indicate a given bitstream to be non-random with
a high confidence. A well-performing distinguisher is able
to assign non-random inputs, the outputs with a significantly
different distribution than outputs assigned to truly random
inputs. The output distribution difference is formalized using
the Kolmogorov-Smirnov test [15].

The supposed usage of EACirc is similar to the statistical
batteries. The process is fully automatized with statistical
results that are simple to interpret. Additionally, EACirc can be
used as a tool for showing cipher weaknesses for manual crypt-
analysis performed later. For example, skilled cryptologist
can see from fig. 1 what part of TEA is causing statistical
deviations and how the weakness can be exploited as shown
in the result interpretation (section IV-C).

The whole framework is being continuously extended and
enhanced by our team and is accessible online with full
documentation [5].

C. EACirc parametrization

EACirc can be configured on multiple levels: firstly, the
representation of software circuit used to express candidate
distinguishers and, secondly, the parameters of genetic pro-
gramming. General settings are described in the thesis of
Martin Ukrop [14], chapter 4 and project’s documentation [5].
The following settings were relevant for TEA analysis.
Functions in nodes: Circuit nodes can contain an identity

function, constant-producing function, basic logical bin-
ary operators, shifts and rotations, integer comparison

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

MARCH 2016 • VOLUME VIII • NUMBER 14

INFOCOMMUNICATIONS JOURNAL

3

IN

0

IN

1

IN

2

IN

3

IN

4

IN

5

IN

6

IN

7

AND

8

AND

133

CYCR

22

CYCR

106

CYCR

155

CYCR

121

CONS

110

ROTR

46

CYCR

17

NOT

72

ROTL

246

CYCL

66

NAND

61

NOR

216

CYCR

63

ROTL

231

ROTL

39

NOR

226

CYCR

229

NOP

59

BSLC

150

NOP

181

CYCR

60

NAND

202

NOT

252

CYCL

75

NOP

1

NOT

130

XOR

104

XOR

23

CYCL

188

XOR

19

CYCR

252

OUT

0

Figure 1. Software circuit with green input nodes, blue inner nodes (oper-
ations) and a red output node. Inner nodes and connectors are highlighted if
they affect output (dotted edges and lighter nodes are part of evolved circuit,
but they are not affecting the output byte in any way). This circuit was evolved
in the experiment with 4-round TEA.

functions, masks for bit selection and additional input
read operator. The larger diversity of functions means
stronger expression capability (within the limited space).
However, this vastly increases the space of applicable
individuals slowing down the evolution process. Due
to this, the set of used function was restricted (integer
comparison functions and additional input read operator
were not used). All functions are byte-oriented.

Circuit dimensions: In our case, the input layer has the same
size (or multiple of) as the TEA block. Other relevant
settings include providing more TEA ciphertext blocks
as a single input (which would again slow down the
evolution considerably). We used 5 internal layers with 8
nodes per layer. The last layer contains a node with 1-byte
long output used as the circuit’s overall result. See fig. 1
as an example of circuits in our experiments.

Test vectors: Another important setting influencing the suc-
cess rate of EACirc is the number of test vectors used
to evaluate the performance of candidate distinguishers
(circuits). In our scenario, the set of test vectors consists
of 2 subsets: TEA ciphertexts and data from a quantum
random number generator (believed to be completely
random), with both subsets of vectors having the same
size. More test vectors mean more data for each iteration
of evolution to learn from, as well as more precision for
the fitness function. On the other hand, more test vectors
also need more computation time as every candidate
circuit is always evaluated for every separate test vector.
In this work, we used two main configurations: for

CPU-only version, 1 000 test vectors were used. For
nVidia CUDA implementation, 128 000 test vectors were
used (see section III-D).

Generations: The number of evolved generations influences
the length of searching for the cipher properties. In
our case, 30 000 generations were used. The number
increased to 300 000 generations provided no observable
improvement.

Population size: Number of individuals in a population. We
use only one individual for each iteration, which is
mutated into two individuals for next generation – an
approach similar to hill-climbing heuristics. More indi-
viduals may increase the success rate and convergence
speed towards a well-performing distinguisher, but may
also negatively influence the interpretation of results as
different individuals may be correlated. For this reason,
the interpretation of results from more individuals is left
for future.

D. Accelerated computation using GPGPU

The more test vectors are processed, the more computation
time to evaluate a circuit is needed. Since the evaluation on
a set of test vectors is parallel in nature, data parallelism
techniques can be applied. To reduce the runtime and to fully
utilize our hardware, the evaluation is optionally computed on
GPGPU accelerators using nVidia’s CUDA technology. We are
running multiple instances of the evaluated circuit on each test
vector in the set in parallel.

On used hardware (Intel Core2Duo E8400 and nVidia
GeForce GTX 460) the GPU acceleration gives us 229×
speedup for circuit evaluation (see fig. 2 for more detailed
benchmark results). The execution of EACirc with 1 000 test
vectors running only on CPU takes approximately the same
time as the GPU-accelerated version with 128 000 test vectors
(about 3.5 minutes).

E. Statistical uniformity testing

During the process of evolution, distinguishers iteratively
adapt to the set of test vectors with a p-value computed in
each iteration. We use the fact that for independent samples
of truly random data the p-values are uniformly distributed
on the interval [0,1]. To leverage this, we intentionally use
only p-values from iterations just after the test vectors were
regenerated to separate data for training and verification (we
regenerate the set every 100th generation). We can then test
their uniformity using the Kolmogorov-Smirnov (KS) test [15]
with the assumption that p-values are expected to be uniformly
distributed. KS computes its own p-value which is compared
with a significance level α = 5% to draw the conclusion
(p-value below the significance level makes us reject the ran-
domness of the assessed data). Since KS gives a probabilistic
answer, we repeat the whole process 1 000 times to avoid
statistical anomalies. For the random data, it can be expected
that about 5% of all runs fail the testing process (since the
significance level is set to 5%).

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 5

4

1000 2000 4000 8000 16000 32000 64000 128000 256000

60

120

180

240

48

93
118

151
186

213 210
229 223

vector count [1]

sp
ee
d
u
p
[1
]

Figure 2. Speedup of GPU-accelerated circuit evaluation against circuit running on CPU, computed as timeCPU / timeGPU . The performance of a GPU
accelerator is generally dependent on work size, in our case the number of test vectors. The benchmark used machines equipped with Intel Core2Duo E8400
at 3 GHz and nVidia GeForce GTX 460 with 336 CUDA Cores on 1550 MHz.

F. Oneclick

As EACirc is randomized in nature, we need to run many
tests in parallel. To ease the time-consuming monkey-work
of running and post-processing experiments, we use a tool
called Oneclick [16], which distributes computations using the
BOINC infrastructure [17] on the laboratory computers. This
tool reduces both the necessary human work and the running
time of the experiment.

G. TEA customization

For complete automation, the tested ciphers are included
as plugins into EACirc, which then both generates the test
vectors and runs the distinguisher evolution. Since we want
to test TEA with a variable number of rounds (not only the
recommended 32), we use a slightly changed version of the
cipher that is shown below.

Algorithm 1 encrypt(uint32 t *data, const uint32 t *key)
const uint32 t delta = 0x9e3779b9;
uint32 t sum = 0;
for int j = 0; j < numRounds; j++ do

sum += delta;
data[0] += ((data[1]«4) + key[0]) ˆ (data[1] + sum)

ˆ ((data[1]»5) + key[1]);
data[1] += ((data[0]«4) + key[2]) ˆ (data[0] + sum)

ˆ ((data[0]»5) + key[3]);
end for

The function input is a plaintext block (64-bits long), stored
in the array data, and the key array of length 128 bits.
The output is stored in array data. Only changed part of the
algorithm is limiting the rounds count to numRounds.

H. Design of experiments

There are various settings for generation of output data
stream from TEA. The first decision is which cipher mode
should be used. We used the electronic codebook (ECB) mode,
as this was the case of previous papers on the topic since [9].
This also minimizes the influence of the used mode on the
output stream of data (ciphertext) produced by TEA.

An important factor is how the plaintext for TEA is gener-
ated. Even a weak cipher will usually provide a strong output
if completely random input data are supplied as input. Our
framework does not mask the input data with specific bitmask
(as was the case in [9]) but instead generates input with some
redundancy as described below.

The following ways to generate plaintexts for TEA were
implemented:

1) The counter incremented by one for each test vector. This
solutions is simple and does not suffer from the problem
of repeating plaintexts. It also corresponds to potential
usage of the cipher (e.g. if used in the counter mode).
On the other side, it has a low Hamming weight (first
40 bits of the plaintext consist only of zeroes). Therefore,
this type of plaintext is very difficult to compare with the
methodology of previous works.

2) The vectors with 5 randomly placed 0 and other bits set to
1. The number 5 was chosen to create enough unique test
vectors (over 10 million). This input also has an extreme
(and fixed) Hamming weight, but there are no positions
with fixed bits.

3) The vectors with two almost identical parts differing only
in a single bit. We used this plaintext type for testing the
strict avalanche criterion. The first input block of TEA
is fully random and the second is the same with only
a single changed bit. In this case, the circuit uses test
vectors of 128 bits.

A similar reasoning is relevant for the generation of secret
keys used. As we already manipulated input data for the cipher,
we used a fixed (but completely random) value as a key for
the whole test. For more information about the impact of key
reinitialization frequency, please refer to the thesis of Martin
Ukrop [14].

Used settings were chosen to simulate TEA usage. Users
typically do not change encryption keys during a single ses-
sion. Input data usually contain some redundancy, as long as
meaningful text is processed. Other input types were selected
to search for unwanted dependencies inside the cipher.

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

MARCH 2016 • VOLUME VIII • NUMBER 16

INFOCOMMUNICATIONS JOURNAL

5

Table I
COMPARISON OF PREVIOUS RESULTS FOR REDUCED ROUNDS TEA.

Rounds HSIR02 [9] HI04 [10] Wei Hu et al. [12]
χ2 (MW) χ2 (MW) χ2 (MW)

1 8380416 72 522240 153 522.240 1531

2 1900 77 736.05 155 602 171
3 (untested) 393.6 116 530.756 117.8
4 (untested) 294.86 502 742.6321 67.61

5 (untested) (untested) 631.74 76

IV. RESULTS

A. Comparison

Results from previous papers can be difficult to compare
with ours because the approaches are significantly different
(described in section II-A and section III-H). There are no
results of statistical batteries from previous works. Therefore,
we cannot use them as a common basis for the comparison.
Our results can be compared in terms of rounds count, but
tested data are different.

All previous works published weights of constructed masks
(abbreviated as (MW) in the table), which were used on
both the input block and key. This means the mask length
is 64 + 128 = 192 bits, which is a maximum weight for
unchanged input. They also presented the average χ2 statistics
of maximal deviation from a random distribution.

Table II, table III and table IV provide a comparison of
results from statistical testing batteries NIST STS (version
2.1.1) [1] and Dieharder (version 3.31.1) [3] run in default
configuration together with EACirc on the given plaintext
type. The result in the cell for Dieharder is the number of
passed tests (out of the total 57 tests). From NIST STS, we
used all 188 tests. Both batteries used the significance level
α = 1%. Results that fail to reject the null hypothesis (are
unable to show the non-randomness in data) have gray-colored
background. The column for EACirc represents the best results
achieved in our experiments. Values from EACirc represent
the percentages of runs for which the set of p-values failed the
KS test for uniformity with the significance level α = 5%. For
the reference random-random distinguishing experiment, the
value of 5% is expected (and also measured), so we also mark
such results with gray background (data indistinguishable from
random). For more detailed explanation of this method, please
refer to [18], section 3.2.

We tried different settings of EACirc with the goal of finding
the best distinguisher possible. Changes from the default
settings (specified in section III-C) are following (EACircxy ,
where x denotes plaintext type and y stands for EACirc
parameters):

• EACirc1a was tested with plaintexts created as a counter
incremented by one for each vector (type 1). Besides, this
version did not allow shifts and rotations in nodes.

1These results are computed as the average of values from tables of the
original work [12]. Please note that average value is simplified and for more
information refer to the original work.

2For this result, a different approach was used. Apart from that, the output
mask has very low entropy. For more information, please refer to the original
paper [10] (section 2.4).

Table II
COMPARISON OF EACIRC AND STANDARD STATISTICAL BATTERIES WITH

PLAINTEXT CREATED AS A COUNTER STARTING FROM ZERO (TYPE 1).
GRAY-COLORED CELLS INDICATE THE EXPERIMENTS THAT FAILED TO

REJECT THE RANDOMNESS OF TESTED DATA.

Rounds NIST Dieharder EACirc1a EACirc1b EACirc1c
(x/188) (x/57) (%) (%) (%)

1 1 0 100 100 100
2 1 1 100 100 100
3 27 3 100 100 100
4 183 31 5.0 99.8 100
5 188 51 3.0 5.6 5.3

Table III
COMPARISON OF EACIRC AND STANDARD STATISTICAL BATTERIES WITH

PLAINTEXT WITH 5 RANDOMLY PLACED ZEROES (TYPE 2).
GRAY-COLORED CELLS INDICATE THE EXPERIMENTS THAT FAILED TO

REJECT THE RANDOMNESS OF TESTED DATA.

Rounds NIST Dieharder EACirc2
(x/188) (x/57) (%)

1 24 1 100
2 183 8 93.3
3 188 39 5.6
4 187 44 5.6
5 187 48 5.5

• EACirc1b used the same settings as EACirc1a, except
shifts and rotations in nodes were allowed.

• EACirc1c had the same settings as EACirc1b but used
the nVidia CUDA implementation, which allows to use
128 000 test vectors as well as increase the evaluator
precision.

• EACirc2 was tested with plaintexts of all ones (64b for
TEA), with 5 flipped bits to zero on random positions
(type 2).

• EACirc3 was tested with twice the input length. The first
block is random, and the second is identical to the first
but for one bitflip on a random position (plaintext type
3). The total test vector length is 128 bits.

B. Results interpretation

The direct comparison of success with the previous papers
is not straightforward due to the different approaches used.
In previous approaches, to determine which bits of plaintexts
will cause the output of round-reduced TEA to be non-uniform
(tested by χ2 test), the input was changed by applying a
bitmask. In this paper, the goal is to find defects in ciphertexts

Table IV
COMPARISON OF EACIRC AND STANDARD STATISTICAL BATTERIES WITH

PLAINTEXT SUITABLE FOR STRICT AVALANCHE CRITERION TESTING
(TYPE 3). GRAY-COLORED CELLS INDICATE THE EXPERIMENTS THAT

FAILED TO REJECT THE RANDOMNESS OF TESTED DATA.

Rounds NIST Dieharder EACirc3
(x/188) (x/57) (%)

1 29 6 100
2 67 7 100
3 186 24 100
4 187 39 100
5 188 56 4.5

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 7

6

IN

0

IN

1

IN

2

IN

3

IN

4

IN

5

IN

6

IN

7

IN

8

IN

9

IN

10

IN

11

IN

12

IN

13

IN

14

IN

15

OR

108

CONS

124

BSLC

163

NOT

168

CONS

155

BSLC

213

NOT

205

NAND

200

CYCR

170

AND

65

ROTL

241

CYCL

112

NAND

157

OR

161

ROTR

78

XOR

116

NOT

100

AND

251

XOR

194

BSLC

237

NOT

111

OR

183

BSLC

98

ROTL

100

NOT

182

ROTR

146

NAND

204

NAND

33

OR

255

ROTR

127

ROTR

100

XOR

156

NOT

112

OUT

0

Figure 3. This circuit was evolved in the experiment with 4-round TEA on plaintexts suitable for testing the strict avalanche criterion (type 3). It can be seen
that the output byte is mostly dependent on the 4th and the 12th (4th in the second half) byte.

(dependent bits, biased bits, etc.) without directly manipulating
plaintexts for the cipher. If we compare only the resulting
number of rounds, for which output of the round-reduced TEA
can be seen as statistically different from a random bit stream,
the best results are provided by [12].

Comparing our approach with the statistical batteries is
more straightforward, as we can use the same input data
(ciphertext) for EACirc as well for statistical batteries. In all
tested combinations (different structures of plaintext), EACirc
consistently performs better than NIST STS. Dieharder is able
to detect small deviances in one additional round (see table II).

Some information about the cipher can be derived from the
results from different plaintext types. For example, statistical
batteries perform better than EACirc on plaintexts with just
5 zeroes (type 2). Another observation is based on plaintext
types 1 and 3 – EACirc is easily able to detect non-randomness
of 4-rounds TEA, but fails to do so for 5 rounds. The same
issue may be present for both plaintext types (the 5th round
reducing this issue).

The result of each run is single bit fail/pass result (p-value
computed by KS uniformity test is smaller/bigger than the
significance level). This often leads to the loss of interesting
information – what is the quality of the evolved distinguisher
and what dependency of output bits was found? Therefore,
we decided to perform a deeper analysis of the found distin-
guishers.

C. Resulting circuits interpretation
The outcomes presented in the previous subsection are ag-

gregated results over 1 000 different EACirc runs providing the
single p-value for interpretation. Such an approach can provide
superior detection of statistical deviances, but will not sig-
nalize which concrete bit(s) and dependencies between them

cause these deviances – information valuable for the cipher’s
designer. By analysis of a single well-performing circuit,
such an information can be obtained. We analyzed in detail
some successful (fitness over 95%) evolved distinguishers. The
weaker the distinguisher is, the more noise is present (circuit
functionality is not performing as a correct distinguisher for
the increasing number of inputs) and the harder it is to reason
about the exact bits on which distinguisher’s decision is based.

EACirc circuits used in this paper have 4 layers with
8 nodes in each. As a result, the evolved distinguisher can
be rather complex and thus difficult to interpret. To provide
a better comprehension, reductions of the target circuit can
be performed as the distinguisher usually does not use all
available nodes and connectors (they do not contribute to the
output byte).

First of all, we can prune circuits taking into account the
arity of used operations removing the unnecessary connectors.
Manual analysis of pruned circuits is considerably simpler.

In the case of 4-round TEA on counter plaintexts (type 1),
we analyzed several distinguishers with the fitness over 98%.
In all of these circuits (see for example fig. 1) the distinguisher
decision is based on the fourth byte of TEA ciphertext. The
fourth byte is usually almost unchanged (operations affect only
some bits).

We also analyzed 4-round TEA on plaintexts suitable for
strict avalanche criterion testing (type 3). In this case, the input
layer had 16 input nodes, capable of processing two blocks
of TEA ciphertext at once. Analyzed distinguishers (see for
example circuit in fig. 3) commonly combine the fourth byte
of the first ciphertext block with the fourth byte of the second
ciphertext block.

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

MARCH 2016 • VOLUME VIII • NUMBER 18

INFOCOMMUNICATIONS JOURNAL

REFERENCES 7

Σ = 1000
runs

experiment
·

(
30 000 generations

run

100 generations
test set

· 1
2
· 1 000 vectors

test set
· 8 bytes

vector

)
≈ 1, 2GiB per experiment

Figure 4. The amount of data analyzed by EACirc for a single configuration of randomness testing experiment.

D. Performance

The runtime of EACirc with basic settings (1 000 test vec-
tors and 30 000 generations) is around 3.5 minutes on a single
core 3 GHz Intel Core2Duo processor. It includes the creation
of test vectors and is not measurably affected by the number
of TEA rounds executed. Due to the randomized nature of
the framework, we replicate every experiment 1 000 times.
This gives us a combined computation time of approximately
3 500 minutes on single CPU core.

Since the individual runs are independent, execution can
be parallelized and distributed over multiple computers. We
used 12 laboratory computers with the 3 GHz Intel Core2Duo
processors mentioned above, which resulted in the execution
time of about 5 hours for every single tested scenario. Thus,
testing TEA limited to 1-8 rounds can be executed within
2 days of computation. For larger sets of tests, we used the
national grid infrastructure provided by MetaCentrum [19].

Tests with 128 000 test vectors were executed on GPUs
using nVidia CUDA. The running time for each test was
around 3.5 minutes. As more GPU cores are available for
parallelization of circuit evaluation, a higher amount of test
vectors could be evaluated. The runtime was still linearly
dependent on the generation count – tests with 300 thousand
generations and 128 000 test vectors had a running time of
around 105 minutes.

EACirc needs truly random data as a reference stream for
a distinguisher evolution phase. We used a pool of 1920 MiB
of data pre-loaded from the High Bit Rate Quantum Random
Number Generator Service [20].

Regarding the TEA ciphertext, we generated 500 test vec-
tors (half a set) of 64 bits each in 300 test vector sets
in 1 000 runs for statistical interpretation. This amounts to
1.2 GiB of ciphertext data for the whole experiment or 1.2 MiB
for a single run. See fig. 4 to understand, how we figured out
the data usage of EACirc.

V. DISCUSSION AND FUTURE WORK

The EACirc framework is continually developed and ex-
tended with different inner approaches and settings with the
goal of improving the distinguisher success rates. At the
moment, we work on two alternative circuit representations.
One with the possibility of executing more complex Java byte-
code sequences in circuit nodes. The sequences would be
extracted directly from the Java implementation of the tested
ciphers. Another alternative would be based on polynomials,
which should provide better possibilities not only for creating
distinguishers but also for analyzing the importance of isolated
parts of tested function’s output the distinguisher is based on.

Different heuristics like simulated annealing can be used for
the mutation of a single individual, which may provide a better

success rate or faster convergence than the currently used hill-
climbing technique with a stable mutation probability. We are
also working on the interpretation of multi-individual settings
to be able to use the full potential of genetic algorithms for
TEA analysis.

ACKNOWLEDGMENT

We acknowledge the support of Czech Science Foundation,
project GA16-08565S. The access to computing and storage
facilities owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum, provided under the
programme “Projects of Large Infrastructure for Research,
Development, and Innovations” (LM2010005), is greatly ap-
preciated.

REFERENCES

[1] A. Rukhin et al., “A Statistical Test Suite for Random
and Pseudorandom Number Generators for Crypto-
graphic Applications”, NIST Special Publication 800-
22rev1a, 2010. [Online]. Available: http://csrc.nist.gov/
groups/ST/toolkit/rng/documents/SP800- 22rev1a.pdf
(visited on 2015-12-29).

[2] G. Marsaglia. (1995). Diehard battery of tests of ran-
domness, Floridan State University, [Online]. Available:
http://stat.fsu.edu/pub/diehard/ (visited on 2015-12-29).

[3] R. G. Brown. (2004). Dieharder, A Random Number
Test Suite. version Version 3.31.1, Duke University
Physics Department, [Online]. Available: http://www.
phy.duke.edu/~rgb/General/dieharder.php (visited on
2015-12-29).

[4] P. L’Ecuyer and R. Simard, “Testu01: a c library for
empirical testing of random number generators”, ACM
Trans. Math. Softw., vol. 33, no. 4, Aug. 2007, ISSN:
0098-3500. DOI: 10.1145/1268776.1268777. [Online].
Available: http://doi.acm.org/10.1145/1268776.1268777
(visited on 2015-12-29).

[5] P. Švenda, M. Ukrop, M. Sýs, et al. (2012). Eacirc,
Framework for autmatic search for problem solving
circuit via evolutionary algorithms, Centre for Research
on Cryptography and Security, Masaryk University,
[Online]. Available: https : / / github. com / crocs - muni /
EACirc (visited on 2015-12-29).

[6] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Fran-
cone, “Genetic Programming: An Introduction, On the
Automatic Evolution of Computer Programs and Its
Applications”, 1997.

[7] D. J. Wheeler and R. M. Needham, “TEA, a tiny
encryption algorithm”, in Fast Software Encryption,
Springer, 1995, pp. 363–366.

New results on reduced-round Tiny Encryption
Algorithm using genetic programming

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 9

8

[8] J. Kelsey, B. Schneier, and D. Wagner, “Related-key
cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X,
NewDES, RC2, and TEA”, ICICS ’97, pp. 233–246,
1997. [Online]. Available: http: / /dl .acm.org/citation.
cfm?id=646277.687180 (visited on 2015-12-29).

[9] J. C. Hernández, J. M. Sierra, P. Isasi, and A. Rib-
agorda, “Genetic Cryptoanalysis of Two Rounds TEA”,
in Computational Science—ICCS 2002, Springer, 2002,
pp. 1024–1031.

[10] J. C. Hernández and P. Isasi, “Finding Efficient Dis-
tinguishers for Cryptographic Mappings, with an Ap-
plication to the Block Cipher TEA”, Computational
Intelligence, vol. 20, no. 3, pp. 517–525, 2004.

[11] A. Garrett, J. Hamilton, and G. Dozier, “A Comparison
of Genetic Algorithm Techniques for the Cryptanalysis
of TEA”, International journal of intelligent control and
systems, vol. 12, no. 4, pp. 325–330, 2007.

[12] W. Hu et al., “Cryptanalysis of TEA Using Quantum-
Inspired Genetic Algorithms”, Journal of Software En-
gineering and Applications, vol. 3, no. 01, p. 50, 2010.

[13] E. Y.-T. Ma and C. Obimbo, “An evolutionary com-
putation attack on one-round tea”, Procedia Computer
Science, vol. 6, pp. 171–176, 2011.

[14] M. Ukrop, “Usage of evolvable circuit for statistical
testing of randomness”, bachelor thesis, Faculty of
Informatics Masaryk University, 2013. [Online]. Avail-
able: https : / / is .muni . cz / th /374297 /fi_b/ (visited on
2015-12-29).

[15] D. J. Sheskin, Handbook of parametric and nonpara-
metric statistical procedures, 3rd ed. CRC Press, 2003,
ISBN: 9781420036268.

[16] L’. Obrátil, “Automated task management for BOINC
infrastructure and EACirc project”, bachelor thesis, Fac-
ulty of Informatics Masaryk University, 2015. [Online].
Available: https://is.muni.cz/th/410282/fi_b/ (visited on
2015-12-29).

[17] D. P. Anderson et al. (2015). BOINC project, [Online].
Available: https : / / boinc . berkeley . edu/ (visited on
2015-12-29).

[18] M. Sýs, P. Švenda, M. Ukrop, and V. Matyáš, “Con-
structing empirical tests of randomness”, 2014. [On-
line]. Available: http : / / dx . doi . org / 10 . 5220 /
0005023902290237 (visited on 2015-12-29).

[19] Team Czech NGI. (2015). Metacentrum – Virtual Or-
ganization of the Czech National Grid Organization,
[Online]. Available: https : / / metavo . metacentrum . cz/
(visited on 2015-12-29).

[20] Nano-Optics groups (Department of Physics) and Pi-
coQuant GmbH. (2010). High bit rate quantum ran-
dom number generator service, Humboldt University
of Berlin, [Online]. Available: http://qrng.physik.hu-
berlin.de/ (visited on 2015-12-29).

[21] P. Švenda, M. Ukrop, and V. Matyáš, “Towards cryp-
tographic function distinguishers with evolutionary cir-
cuits”, in SECRYPT, Centre for Research on Cryptogra-
phy and Security, Masaryk University, 2013, pp. 135–
146. [Online]. Available: http : / /dx .doi .org /10 .5220/
0004524001350146 (visited on 2015-12-29).

Karel Kubíček Master student at Masaryk Univer-
sity, Brno, Czech Republic in field Security of Infor-
mation Technology. Involved in Center for Research
on Cryptography and Security since 2014.

Jiří Novotný Master student at Masaryk University,
Brno, Czech Republic in the field of Parallel and
Distributed Systems. Involved in Center for Research
on Cryptography and Security since 2015.

Petr Švenda Assistant Professor at the Masaryk
University, Brno, Czech Republic. His research fo-
cuses on the possibilities of using evolution algo-
rithms for an analysis of cryptographic primitives.
He also engages in research in the field of authen-
tication and key establishment protocols for dis-
tributed architectures with multiple communicating
parties or users, e.g. wireless sensor networks. He
also analyses the practical security of cryptographic
smart cards including the development of secure
applications on this platform. He participated in

consultations and development for academic, state and industrial organizations
in the Czech Republic and abroad.

Martin Ukrop Postgraduate student at Masaryk
University, Brno, Czech Republic in the field of
information security. Involved in Center for Re-
search on Cryptography and Security since 2012.
His research focuses on the usage of evolutionary
algorithms in security, particularly in randomness
assessment. He also participates in usable security
research at the aforementioned lab.

8

[8] J. Kelsey, B. Schneier, and D. Wagner, “Related-key
cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X,
NewDES, RC2, and TEA”, ICICS ’97, pp. 233–246,
1997. [Online]. Available: http: / /dl .acm.org/citation.
cfm?id=646277.687180 (visited on 2015-12-29).

[9] J. C. Hernández, J. M. Sierra, P. Isasi, and A. Rib-
agorda, “Genetic Cryptoanalysis of Two Rounds TEA”,
in Computational Science—ICCS 2002, Springer, 2002,
pp. 1024–1031.

[10] J. C. Hernández and P. Isasi, “Finding Efficient Dis-
tinguishers for Cryptographic Mappings, with an Ap-
plication to the Block Cipher TEA”, Computational
Intelligence, vol. 20, no. 3, pp. 517–525, 2004.

[11] A. Garrett, J. Hamilton, and G. Dozier, “A Comparison
of Genetic Algorithm Techniques for the Cryptanalysis
of TEA”, International journal of intelligent control and
systems, vol. 12, no. 4, pp. 325–330, 2007.

[12] W. Hu et al., “Cryptanalysis of TEA Using Quantum-
Inspired Genetic Algorithms”, Journal of Software En-
gineering and Applications, vol. 3, no. 01, p. 50, 2010.

[13] E. Y.-T. Ma and C. Obimbo, “An evolutionary com-
putation attack on one-round tea”, Procedia Computer
Science, vol. 6, pp. 171–176, 2011.

[14] M. Ukrop, “Usage of evolvable circuit for statistical
testing of randomness”, bachelor thesis, Faculty of
Informatics Masaryk University, 2013. [Online]. Avail-
able: https : / / is .muni . cz / th /374297 /fi_b/ (visited on
2015-12-29).

[15] D. J. Sheskin, Handbook of parametric and nonpara-
metric statistical procedures, 3rd ed. CRC Press, 2003,
ISBN: 9781420036268.

[16] L’. Obrátil, “Automated task management for BOINC
infrastructure and EACirc project”, bachelor thesis, Fac-
ulty of Informatics Masaryk University, 2015. [Online].
Available: https://is.muni.cz/th/410282/fi_b/ (visited on
2015-12-29).

[17] D. P. Anderson et al. (2015). BOINC project, [Online].
Available: https : / / boinc . berkeley . edu/ (visited on
2015-12-29).

[18] M. Sýs, P. Švenda, M. Ukrop, and V. Matyáš, “Con-
structing empirical tests of randomness”, 2014. [On-
line]. Available: http : / / dx . doi . org / 10 . 5220 /
0005023902290237 (visited on 2015-12-29).

[19] Team Czech NGI. (2015). Metacentrum – Virtual Or-
ganization of the Czech National Grid Organization,
[Online]. Available: https : / / metavo . metacentrum . cz/
(visited on 2015-12-29).

[20] Nano-Optics groups (Department of Physics) and Pi-
coQuant GmbH. (2010). High bit rate quantum ran-
dom number generator service, Humboldt University
of Berlin, [Online]. Available: http://qrng.physik.hu-
berlin.de/ (visited on 2015-12-29).

[21] P. Švenda, M. Ukrop, and V. Matyáš, “Towards cryp-
tographic function distinguishers with evolutionary cir-
cuits”, in SECRYPT, Centre for Research on Cryptogra-
phy and Security, Masaryk University, 2013, pp. 135–
146. [Online]. Available: http : / /dx .doi .org /10 .5220/
0004524001350146 (visited on 2015-12-29).

Karel Kubíček Master student at Masaryk Univer-
sity, Brno, Czech Republic in field Security of Infor-
mation Technology. Involved in Center for Research
on Cryptography and Security since 2014.

Jiří Novotný Master student at Masaryk University,
Brno, Czech Republic in the field of Parallel and
Distributed Systems. Involved in Center for Research
on Cryptography and Security since 2015.

Petr Švenda Assistant Professor at the Masaryk
University, Brno, Czech Republic. His research fo-
cuses on the possibilities of using evolution algo-
rithms for an analysis of cryptographic primitives.
He also engages in research in the field of authen-
tication and key establishment protocols for dis-
tributed architectures with multiple communicating
parties or users, e.g. wireless sensor networks. He
also analyses the practical security of cryptographic
smart cards including the development of secure
applications on this platform. He participated in

consultations and development for academic, state and industrial organizations
in the Czech Republic and abroad.

Martin Ukrop Postgraduate student at Masaryk
University, Brno, Czech Republic in the field of
information security. Involved in Center for Re-
search on Cryptography and Security since 2012.
His research focuses on the usage of evolutionary
algorithms in security, particularly in randomness
assessment. He also participates in usable security
research at the aforementioned lab.

8

[8] J. Kelsey, B. Schneier, and D. Wagner, “Related-key
cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X,
NewDES, RC2, and TEA”, ICICS ’97, pp. 233–246,
1997. [Online]. Available: http: / /dl .acm.org/citation.
cfm?id=646277.687180 (visited on 2015-12-29).

[9] J. C. Hernández, J. M. Sierra, P. Isasi, and A. Rib-
agorda, “Genetic Cryptoanalysis of Two Rounds TEA”,
in Computational Science—ICCS 2002, Springer, 2002,
pp. 1024–1031.

[10] J. C. Hernández and P. Isasi, “Finding Efficient Dis-
tinguishers for Cryptographic Mappings, with an Ap-
plication to the Block Cipher TEA”, Computational
Intelligence, vol. 20, no. 3, pp. 517–525, 2004.

[11] A. Garrett, J. Hamilton, and G. Dozier, “A Comparison
of Genetic Algorithm Techniques for the Cryptanalysis
of TEA”, International journal of intelligent control and
systems, vol. 12, no. 4, pp. 325–330, 2007.

[12] W. Hu et al., “Cryptanalysis of TEA Using Quantum-
Inspired Genetic Algorithms”, Journal of Software En-
gineering and Applications, vol. 3, no. 01, p. 50, 2010.

[13] E. Y.-T. Ma and C. Obimbo, “An evolutionary com-
putation attack on one-round tea”, Procedia Computer
Science, vol. 6, pp. 171–176, 2011.

[14] M. Ukrop, “Usage of evolvable circuit for statistical
testing of randomness”, bachelor thesis, Faculty of
Informatics Masaryk University, 2013. [Online]. Avail-
able: https : / / is .muni . cz / th /374297 /fi_b/ (visited on
2015-12-29).

[15] D. J. Sheskin, Handbook of parametric and nonpara-
metric statistical procedures, 3rd ed. CRC Press, 2003,
ISBN: 9781420036268.

[16] L’. Obrátil, “Automated task management for BOINC
infrastructure and EACirc project”, bachelor thesis, Fac-
ulty of Informatics Masaryk University, 2015. [Online].
Available: https://is.muni.cz/th/410282/fi_b/ (visited on
2015-12-29).

[17] D. P. Anderson et al. (2015). BOINC project, [Online].
Available: https : / / boinc . berkeley . edu/ (visited on
2015-12-29).

[18] M. Sýs, P. Švenda, M. Ukrop, and V. Matyáš, “Con-
structing empirical tests of randomness”, 2014. [On-
line]. Available: http : / / dx . doi . org / 10 . 5220 /
0005023902290237 (visited on 2015-12-29).

[19] Team Czech NGI. (2015). Metacentrum – Virtual Or-
ganization of the Czech National Grid Organization,
[Online]. Available: https : / / metavo . metacentrum . cz/
(visited on 2015-12-29).

[20] Nano-Optics groups (Department of Physics) and Pi-
coQuant GmbH. (2010). High bit rate quantum ran-
dom number generator service, Humboldt University
of Berlin, [Online]. Available: http://qrng.physik.hu-
berlin.de/ (visited on 2015-12-29).

[21] P. Švenda, M. Ukrop, and V. Matyáš, “Towards cryp-
tographic function distinguishers with evolutionary cir-
cuits”, in SECRYPT, Centre for Research on Cryptogra-
phy and Security, Masaryk University, 2013, pp. 135–
146. [Online]. Available: http : / /dx .doi .org /10 .5220/
0004524001350146 (visited on 2015-12-29).

Karel Kubíček Master student at Masaryk Univer-
sity, Brno, Czech Republic in field Security of Infor-
mation Technology. Involved in Center for Research
on Cryptography and Security since 2014.

Jiří Novotný Master student at Masaryk University,
Brno, Czech Republic in the field of Parallel and
Distributed Systems. Involved in Center for Research
on Cryptography and Security since 2015.

Petr Švenda Assistant Professor at the Masaryk
University, Brno, Czech Republic. His research fo-
cuses on the possibilities of using evolution algo-
rithms for an analysis of cryptographic primitives.
He also engages in research in the field of authen-
tication and key establishment protocols for dis-
tributed architectures with multiple communicating
parties or users, e.g. wireless sensor networks. He
also analyses the practical security of cryptographic
smart cards including the development of secure
applications on this platform. He participated in

consultations and development for academic, state and industrial organizations
in the Czech Republic and abroad.

Martin Ukrop Postgraduate student at Masaryk
University, Brno, Czech Republic in the field of
information security. Involved in Center for Re-
search on Cryptography and Security since 2012.
His research focuses on the usage of evolutionary
algorithms in security, particularly in randomness
assessment. He also participates in usable security
research at the aforementioned lab.

8

[8] J. Kelsey, B. Schneier, and D. Wagner, “Related-key
cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X,
NewDES, RC2, and TEA”, ICICS ’97, pp. 233–246,
1997. [Online]. Available: http: / /dl .acm.org/citation.
cfm?id=646277.687180 (visited on 2015-12-29).

[9] J. C. Hernández, J. M. Sierra, P. Isasi, and A. Rib-
agorda, “Genetic Cryptoanalysis of Two Rounds TEA”,
in Computational Science—ICCS 2002, Springer, 2002,
pp. 1024–1031.

[10] J. C. Hernández and P. Isasi, “Finding Efficient Dis-
tinguishers for Cryptographic Mappings, with an Ap-
plication to the Block Cipher TEA”, Computational
Intelligence, vol. 20, no. 3, pp. 517–525, 2004.

[11] A. Garrett, J. Hamilton, and G. Dozier, “A Comparison
of Genetic Algorithm Techniques for the Cryptanalysis
of TEA”, International journal of intelligent control and
systems, vol. 12, no. 4, pp. 325–330, 2007.

[12] W. Hu et al., “Cryptanalysis of TEA Using Quantum-
Inspired Genetic Algorithms”, Journal of Software En-
gineering and Applications, vol. 3, no. 01, p. 50, 2010.

[13] E. Y.-T. Ma and C. Obimbo, “An evolutionary com-
putation attack on one-round tea”, Procedia Computer
Science, vol. 6, pp. 171–176, 2011.

[14] M. Ukrop, “Usage of evolvable circuit for statistical
testing of randomness”, bachelor thesis, Faculty of
Informatics Masaryk University, 2013. [Online]. Avail-
able: https : / / is .muni . cz / th /374297 /fi_b/ (visited on
2015-12-29).

[15] D. J. Sheskin, Handbook of parametric and nonpara-
metric statistical procedures, 3rd ed. CRC Press, 2003,
ISBN: 9781420036268.

[16] L’. Obrátil, “Automated task management for BOINC
infrastructure and EACirc project”, bachelor thesis, Fac-
ulty of Informatics Masaryk University, 2015. [Online].
Available: https://is.muni.cz/th/410282/fi_b/ (visited on
2015-12-29).

[17] D. P. Anderson et al. (2015). BOINC project, [Online].
Available: https : / / boinc . berkeley . edu/ (visited on
2015-12-29).

[18] M. Sýs, P. Švenda, M. Ukrop, and V. Matyáš, “Con-
structing empirical tests of randomness”, 2014. [On-
line]. Available: http : / / dx . doi . org / 10 . 5220 /
0005023902290237 (visited on 2015-12-29).

[19] Team Czech NGI. (2015). Metacentrum – Virtual Or-
ganization of the Czech National Grid Organization,
[Online]. Available: https : / / metavo . metacentrum . cz/
(visited on 2015-12-29).

[20] Nano-Optics groups (Department of Physics) and Pi-
coQuant GmbH. (2010). High bit rate quantum ran-
dom number generator service, Humboldt University
of Berlin, [Online]. Available: http://qrng.physik.hu-
berlin.de/ (visited on 2015-12-29).

[21] P. Švenda, M. Ukrop, and V. Matyáš, “Towards cryp-
tographic function distinguishers with evolutionary cir-
cuits”, in SECRYPT, Centre for Research on Cryptogra-
phy and Security, Masaryk University, 2013, pp. 135–
146. [Online]. Available: http : / /dx .doi .org /10 .5220/
0004524001350146 (visited on 2015-12-29).

Karel Kubíček Master student at Masaryk Univer-
sity, Brno, Czech Republic in field Security of Infor-
mation Technology. Involved in Center for Research
on Cryptography and Security since 2014.

Jiří Novotný Master student at Masaryk University,
Brno, Czech Republic in the field of Parallel and
Distributed Systems. Involved in Center for Research
on Cryptography and Security since 2015.

Petr Švenda Assistant Professor at the Masaryk
University, Brno, Czech Republic. His research fo-
cuses on the possibilities of using evolution algo-
rithms for an analysis of cryptographic primitives.
He also engages in research in the field of authen-
tication and key establishment protocols for dis-
tributed architectures with multiple communicating
parties or users, e.g. wireless sensor networks. He
also analyses the practical security of cryptographic
smart cards including the development of secure
applications on this platform. He participated in

consultations and development for academic, state and industrial organizations
in the Czech Republic and abroad.

Martin Ukrop Postgraduate student at Masaryk
University, Brno, Czech Republic in the field of
information security. Involved in Center for Re-
search on Cryptography and Security since 2012.
His research focuses on the usage of evolutionary
algorithms in security, particularly in randomness
assessment. He also participates in usable security
research at the aforementioned lab.

8

[8] J. Kelsey, B. Schneier, and D. Wagner, “Related-key
cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X,
NewDES, RC2, and TEA”, ICICS ’97, pp. 233–246,
1997. [Online]. Available: http: / /dl .acm.org/citation.
cfm?id=646277.687180 (visited on 2015-12-29).

[9] J. C. Hernández, J. M. Sierra, P. Isasi, and A. Rib-
agorda, “Genetic Cryptoanalysis of Two Rounds TEA”,
in Computational Science—ICCS 2002, Springer, 2002,
pp. 1024–1031.

[10] J. C. Hernández and P. Isasi, “Finding Efficient Dis-
tinguishers for Cryptographic Mappings, with an Ap-
plication to the Block Cipher TEA”, Computational
Intelligence, vol. 20, no. 3, pp. 517–525, 2004.

[11] A. Garrett, J. Hamilton, and G. Dozier, “A Comparison
of Genetic Algorithm Techniques for the Cryptanalysis
of TEA”, International journal of intelligent control and
systems, vol. 12, no. 4, pp. 325–330, 2007.

[12] W. Hu et al., “Cryptanalysis of TEA Using Quantum-
Inspired Genetic Algorithms”, Journal of Software En-
gineering and Applications, vol. 3, no. 01, p. 50, 2010.

[13] E. Y.-T. Ma and C. Obimbo, “An evolutionary com-
putation attack on one-round tea”, Procedia Computer
Science, vol. 6, pp. 171–176, 2011.

[14] M. Ukrop, “Usage of evolvable circuit for statistical
testing of randomness”, bachelor thesis, Faculty of
Informatics Masaryk University, 2013. [Online]. Avail-
able: https : / / is .muni . cz / th /374297 /fi_b/ (visited on
2015-12-29).

[15] D. J. Sheskin, Handbook of parametric and nonpara-
metric statistical procedures, 3rd ed. CRC Press, 2003,
ISBN: 9781420036268.

[16] L’. Obrátil, “Automated task management for BOINC
infrastructure and EACirc project”, bachelor thesis, Fac-
ulty of Informatics Masaryk University, 2015. [Online].
Available: https://is.muni.cz/th/410282/fi_b/ (visited on
2015-12-29).

[17] D. P. Anderson et al. (2015). BOINC project, [Online].
Available: https : / / boinc . berkeley . edu/ (visited on
2015-12-29).

[18] M. Sýs, P. Švenda, M. Ukrop, and V. Matyáš, “Con-
structing empirical tests of randomness”, 2014. [On-
line]. Available: http : / / dx . doi . org / 10 . 5220 /
0005023902290237 (visited on 2015-12-29).

[19] Team Czech NGI. (2015). Metacentrum – Virtual Or-
ganization of the Czech National Grid Organization,
[Online]. Available: https : / / metavo . metacentrum . cz/
(visited on 2015-12-29).

[20] Nano-Optics groups (Department of Physics) and Pi-
coQuant GmbH. (2010). High bit rate quantum ran-
dom number generator service, Humboldt University
of Berlin, [Online]. Available: http://qrng.physik.hu-
berlin.de/ (visited on 2015-12-29).

[21] P. Švenda, M. Ukrop, and V. Matyáš, “Towards cryp-
tographic function distinguishers with evolutionary cir-
cuits”, in SECRYPT, Centre for Research on Cryptogra-
phy and Security, Masaryk University, 2013, pp. 135–
146. [Online]. Available: http : / /dx .doi .org /10 .5220/
0004524001350146 (visited on 2015-12-29).

Karel Kubíček Master student at Masaryk Univer-
sity, Brno, Czech Republic in field Security of Infor-
mation Technology. Involved in Center for Research
on Cryptography and Security since 2014.

Jiří Novotný Master student at Masaryk University,
Brno, Czech Republic in the field of Parallel and
Distributed Systems. Involved in Center for Research
on Cryptography and Security since 2015.

Petr Švenda Assistant Professor at the Masaryk
University, Brno, Czech Republic. His research fo-
cuses on the possibilities of using evolution algo-
rithms for an analysis of cryptographic primitives.
He also engages in research in the field of authen-
tication and key establishment protocols for dis-
tributed architectures with multiple communicating
parties or users, e.g. wireless sensor networks. He
also analyses the practical security of cryptographic
smart cards including the development of secure
applications on this platform. He participated in

consultations and development for academic, state and industrial organizations
in the Czech Republic and abroad.

Martin Ukrop Postgraduate student at Masaryk
University, Brno, Czech Republic in the field of
information security. Involved in Center for Re-
search on Cryptography and Security since 2012.
His research focuses on the usage of evolutionary
algorithms in security, particularly in randomness
assessment. He also participates in usable security
research at the aforementioned lab.

Side Channels in SW Implementation of the McEliece PKC

MARCH 2016 • VOLUME VIII • NUMBER 110

INFOCOMMUNICATIONS JOURNAL

1

Side Channels in SW Implementation of the
McEliece PKC

Marek Klein

Abstract—The McEliece cryptosystem is considered secure in
the presence of quantum computers because there is no known
quantum algorithm to solve the problem this cryptosystem is
built on. However, naive implementation of the cryptosystem can
open side channels, which can be used to gather information
about the message or the secret key. In this paper we present
results of chosen timing attacks on straightforward implemen-
tation of this cryptosystem. Furthermore, we present practical
countermeasures and evaluate their efficacy.

Index Terms—Side-channel attacks, timing attacks, post-
quantum cryptography, code based cryptography, countermea-
sures.

I. INTRODUCTION

PUBLIC key cryptography, or asymmetric cryptography, is
a set of cryptographic algorithms that require two keys.

One of the keys, public key, is published and everyone can
use it in order to encrypt their secret. Although everybody
knows how the message is encrypted, only the legitimate
receiver, an owner of the second key, is able to decrypt the
message. This property is widely used in the real world to
secure financial transactions, to provide authenticity and in
many other applications.

Security of currently most used cryptosystems, such as RSA
[1], DSA or ECDSA [2], is based on the factorization of large
primes or the calculation of the discrete logarithm. However,
these cryptosystems are insecure in the case of existence
of quantum computers, which are being actively developed
these days. Therefore, several solutions have been proposed
to be used instead of currently used cryptosystems. One of
the candidates for post-quantum cryptography is the McEliece
cryptosystem. It is based on the problem of decoding large
linear codes without a visible structure. This problem belongs
to the category of NP-complete problems and there is no
known algorithm, solving this decoding problem in polynomial
time.

In section II, we describe the McEliece cryptosystem, key
generation, encryption and decryption.

In section III, we describe known attacks against the
McEliece cryptosystem, and in section IV, we show that
BitPunch implementation [3] is vulnerable to chosen timing
side channel attacks and we present results of attacking chosen
implementation.

In section V, we present practical countermeasures against
chosen attacks and their efficiency.

Support by NATOs Public Diplomacy Division in the framework of
”Science for Peace”, Project MD.SFPP 984520, is acknowledged.

Manuscript received September 29, 2015; revised January 25, 2016.

II. THE MCELIECE CRYPTOSYSTEM

The McEliece cryptosystem [5] was introduced by Robert
J. McEliece in 1978. It is a public key cryptosystem based on
linear codes. As one of the first cryptosystems, it used ran-
domization during encryption. This cryptosystem uses error-
correcting codes for which there exist fast decoding algo-
rithms, for example Goppa codes.

In the following text, algorithms for generating keys, en-
cryption and decryption are described.

A. Key Generation

Generation of the private and public key, according to [6],
is described in 1. First, it is necessary to choose domain
parameters m and t, where m defines the size of the finite field
F(2m) and t is the number of errors that can be corrected by
the Patterson algorithm 4. Then monic irreducible polynomial
g (X) ∈ F(2m) of degree t is generated. Based on elements
α0, . . . , αn−1, where αi ∈ F(2m), and the polynomial g (X),
the control matrix H is created. The matrix H is computed
as multiplication of matrices X, Y and Z, which are as follows:

X =

gt 0 · · · 0
gt−1 gt · · · 0

...
...

. . .
...

g1 g2 · · · gt

Y =

1 1 · · · 1
α0 α1 · · · αn−1

...
...

. . .
...

αt−1
0 αt−1

1 · · · αt−1
n−1

Z = diag(g(α0)
−1, . . . , g(αn−1)

−1)

Afterward, a random permutation P is generated and the
control matrix H is permuted by the inverse permutation PT .
This permuted matrix is then transformed from the matrix
over F(2m) into the matrix H2 over F(2) where elements
from F(2m) are transformed into column vectors from F(2) of
length m. From matrix H2, a generator matrix is created for a
linear code and part of this matrix is published as a public key.
Private key consists of permutation P and polynomial g(X).

1

Side Channels in SW Implementation of the
McEliece PKC

Marek Klein

Abstract—The McEliece cryptosystem is considered secure in
the presence of quantum computers because there is no known
quantum algorithm to solve the problem this cryptosystem is
built on. However, naive implementation of the cryptosystem can
open side channels, which can be used to gather information
about the message or the secret key. In this paper we present
results of chosen timing attacks on straightforward implemen-
tation of this cryptosystem. Furthermore, we present practical
countermeasures and evaluate their efficacy.

Index Terms—Side-channel attacks, timing attacks, post-
quantum cryptography, code based cryptography, countermea-
sures.

I. INTRODUCTION

PUBLIC key cryptography, or asymmetric cryptography, is
a set of cryptographic algorithms that require two keys.

One of the keys, public key, is published and everyone can
use it in order to encrypt their secret. Although everybody
knows how the message is encrypted, only the legitimate
receiver, an owner of the second key, is able to decrypt the
message. This property is widely used in the real world to
secure financial transactions, to provide authenticity and in
many other applications.

Security of currently most used cryptosystems, such as RSA
[1], DSA or ECDSA [2], is based on the factorization of large
primes or the calculation of the discrete logarithm. However,
these cryptosystems are insecure in the case of existence
of quantum computers, which are being actively developed
these days. Therefore, several solutions have been proposed
to be used instead of currently used cryptosystems. One of
the candidates for post-quantum cryptography is the McEliece
cryptosystem. It is based on the problem of decoding large
linear codes without a visible structure. This problem belongs
to the category of NP-complete problems and there is no
known algorithm, solving this decoding problem in polynomial
time.

In section II, we describe the McEliece cryptosystem, key
generation, encryption and decryption.

In section III, we describe known attacks against the
McEliece cryptosystem, and in section IV, we show that
BitPunch implementation [3] is vulnerable to chosen timing
side channel attacks and we present results of attacking chosen
implementation.

In section V, we present practical countermeasures against
chosen attacks and their efficiency.

Support by NATOs Public Diplomacy Division in the framework of
”Science for Peace”, Project MD.SFPP 984520, is acknowledged.

Manuscript received September 29, 2015; revised January 25, 2016.

II. THE MCELIECE CRYPTOSYSTEM

The McEliece cryptosystem [5] was introduced by Robert
J. McEliece in 1978. It is a public key cryptosystem based on
linear codes. As one of the first cryptosystems, it used ran-
domization during encryption. This cryptosystem uses error-
correcting codes for which there exist fast decoding algo-
rithms, for example Goppa codes.

In the following text, algorithms for generating keys, en-
cryption and decryption are described.

A. Key Generation

Generation of the private and public key, according to [6],
is described in 1. First, it is necessary to choose domain
parameters m and t, where m defines the size of the finite field
F(2m) and t is the number of errors that can be corrected by
the Patterson algorithm 4. Then monic irreducible polynomial
g (X) ∈ F(2m) of degree t is generated. Based on elements
α0, . . . , αn−1, where αi ∈ F(2m), and the polynomial g (X),
the control matrix H is created. The matrix H is computed
as multiplication of matrices X, Y and Z, which are as follows:

X =

gt 0 · · · 0
gt−1 gt · · · 0

...
...

. . .
...

g1 g2 · · · gt

Y =

1 1 · · · 1
α0 α1 · · · αn−1

...
...

. . .
...

αt−1
0 αt−1

1 · · · αt−1
n−1

Z = diag(g(α0)
−1, . . . , g(αn−1)

−1)

Afterward, a random permutation P is generated and the
control matrix H is permuted by the inverse permutation PT .
This permuted matrix is then transformed from the matrix
over F(2m) into the matrix H2 over F(2) where elements
from F(2m) are transformed into column vectors from F(2) of
length m. From matrix H2, a generator matrix is created for a
linear code and part of this matrix is published as a public key.
Private key consists of permutation P and polynomial g(X).

1

Side Channels in SW Implementation of the
McEliece PKC

Marek Klein

Abstract—The McEliece cryptosystem is considered secure in
the presence of quantum computers because there is no known
quantum algorithm to solve the problem this cryptosystem is
built on. However, naive implementation of the cryptosystem can
open side channels, which can be used to gather information
about the message or the secret key. In this paper we present
results of chosen timing attacks on straightforward implemen-
tation of this cryptosystem. Furthermore, we present practical
countermeasures and evaluate their efficacy.

Index Terms—Side-channel attacks, timing attacks, post-
quantum cryptography, code based cryptography, countermea-
sures.

I. INTRODUCTION

PUBLIC key cryptography, or asymmetric cryptography, is
a set of cryptographic algorithms that require two keys.

One of the keys, public key, is published and everyone can
use it in order to encrypt their secret. Although everybody
knows how the message is encrypted, only the legitimate
receiver, an owner of the second key, is able to decrypt the
message. This property is widely used in the real world to
secure financial transactions, to provide authenticity and in
many other applications.

Security of currently most used cryptosystems, such as RSA
[1], DSA or ECDSA [2], is based on the factorization of large
primes or the calculation of the discrete logarithm. However,
these cryptosystems are insecure in the case of existence
of quantum computers, which are being actively developed
these days. Therefore, several solutions have been proposed
to be used instead of currently used cryptosystems. One of
the candidates for post-quantum cryptography is the McEliece
cryptosystem. It is based on the problem of decoding large
linear codes without a visible structure. This problem belongs
to the category of NP-complete problems and there is no
known algorithm, solving this decoding problem in polynomial
time.

In section II, we describe the McEliece cryptosystem, key
generation, encryption and decryption.

In section III, we describe known attacks against the
McEliece cryptosystem, and in section IV, we show that
BitPunch implementation [3] is vulnerable to chosen timing
side channel attacks and we present results of attacking chosen
implementation.

In section V, we present practical countermeasures against
chosen attacks and their efficiency.

Support by NATOs Public Diplomacy Division in the framework of
”Science for Peace”, Project MD.SFPP 984520, is acknowledged.

Manuscript received September 29, 2015; revised January 25, 2016.

II. THE MCELIECE CRYPTOSYSTEM

The McEliece cryptosystem [5] was introduced by Robert
J. McEliece in 1978. It is a public key cryptosystem based on
linear codes. As one of the first cryptosystems, it used ran-
domization during encryption. This cryptosystem uses error-
correcting codes for which there exist fast decoding algo-
rithms, for example Goppa codes.

In the following text, algorithms for generating keys, en-
cryption and decryption are described.

A. Key Generation

Generation of the private and public key, according to [6],
is described in 1. First, it is necessary to choose domain
parameters m and t, where m defines the size of the finite field
F(2m) and t is the number of errors that can be corrected by
the Patterson algorithm 4. Then monic irreducible polynomial
g (X) ∈ F(2m) of degree t is generated. Based on elements
α0, . . . , αn−1, where αi ∈ F(2m), and the polynomial g (X),
the control matrix H is created. The matrix H is computed
as multiplication of matrices X, Y and Z, which are as follows:

X =

gt 0 · · · 0
gt−1 gt · · · 0

...
...

. . .
...

g1 g2 · · · gt

Y =

1 1 · · · 1
α0 α1 · · · αn−1

...
...

. . .
...

αt−1
0 αt−1

1 · · · αt−1
n−1

Z = diag(g(α0)
−1, . . . , g(αn−1)

−1)

Afterward, a random permutation P is generated and the
control matrix H is permuted by the inverse permutation PT .
This permuted matrix is then transformed from the matrix
over F(2m) into the matrix H2 over F(2) where elements
from F(2m) are transformed into column vectors from F(2) of
length m. From matrix H2, a generator matrix is created for a
linear code and part of this matrix is published as a public key.
Private key consists of permutation P and polynomial g(X).

Side Channels in SW Implementation of the McEliece PKC
INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 11

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

Side Channels in SW Implementation of the McEliece PKC

MARCH 2016 • VOLUME VIII • NUMBER 112

INFOCOMMUNICATIONS JOURNAL

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

Side Channels in SW Implementation of the McEliece PKC
INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 13

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es
experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

Side Channels in SW Implementation of the McEliece PKC

MARCH 2016 • VOLUME VIII • NUMBER 114

INFOCOMMUNICATIONS JOURNAL

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

Side Channels in SW Implementation of the McEliece PKC
INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 15

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

7

Code 9: Countermeasure 7.

1 BPU_T_GF2_16x BPU_gf2xMulModC(BPU_T_GF2_16x
a, BPU_T_GF2_16x b, BPU_T_GF2_16x mod,
BPU_T_GF2_16x mod_deg) {

2 BPU_T_GF2_16x ret=0, i;
3 for(i = 0; i < mod_deg; i++) {
4 b ˆ= ((b >> mod_deg) & 1) * mod;
5 ret ˆ= ((a >> i) & 1) * b;
6 b = b << 1;
7 }
8 return ret;
9 }

In Figure 6, we can see that evaluation times for polynomi-
als σ(X) of degrees 50 and 49 are approximately the same.
However, they are not exactly the same, but oscillate around
the same values; see Table II.

0 100 200 300 400 500 600
8895000

8900000

8905000

8910000

8915000

8920000

8925000

8930000

8935000

t=50
mean=8923571
std=5912
t=49
mean=8923430
std=5797

experiment number

cy
cl

es

Fig. 6: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8923666 8921522 8919976 8919626
deg(σ(X)) = 49 8924178 8920578 8919431 8920110
Difference −512 944 545 −484

TABLE II: Evaluation times of σ(X) of degree 50 and 49.

Similar results were achieved when evaluation of poly-
nomial σ(X) of degree 50 was compared to evaluation of
polynomial σ(X) of degree 1; see Figure 7 and Table III.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000 +8.907e6

t=50
mean=8913037
std=1650
t=1
mean=8913073
std=1638

cy
cl

es

experiment number

Fig. 7: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8916516 8912341 8912524 8913037
deg(σ(X)) = 1 8917032 8911855 8912581 8913073
Difference −516 486 −57 −36

TABLE III: Evaluation times of σ(X) of degree 50 and 1.

VI. CONCLUSION

Proposed countermeasures should avoid the attack described
in subsection III-A in a way in which it is not possible to
distinguish if attacker guessed the correct position of bit in the
error vector or not. On the other side, these countermeasures
slow down the evaluation of polynomial σ(X). This secured
code needs 3 times longer time than naive implementation,
where the biggest difference is caused by multiplication in
finite field. This operation can be easily implemented in hard-
ware; therefore, we suggest to construct a hybrid implemen-
tation of the McEliece cryptosystem. Hybrid implementation
could use hardware implementation of time critical operations
and software implementation of higher logic.

REFERENCES

[1] Rivest R. L., Shamir A., and Adleman L., ”A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
1978, pp. 120-126.

[2] National Institute of Standards and Technology, ”FIPS PUB 186-4 FED-
ERAL INFORMATION PROCESSING STANDARDS PUBLICATION
Digital Signature Standard (DSS),” 2013.

[3] Gulyás A., Klein M., Kudláč J., Machovec F., and Uhrecký F., ”Reálna
implementácia code-based cryptography,” Unpublished master’s project,
Slovak University of Technology in Bratislava, Slovakia, 2014.

[4] Patterson N., ”The algebraic decoding of Goppa codes,” IEEE Transac-
tions on Information Theory 21, 2, 1975, pp. 203-207.

[5] McEliece R. J., ”A public-key cryptosystem based on algebraic coding
theory,” DSN progress report, Vol. 42-44., 1978, pp. 114-116.

[6] Shoufan A., et al., ”A novel processor architecture for McEliece cryp-
tosystem and FPGA platforms,” In Proceedings of the 2009 20th IEEE
International Conference on Application-specific Systems, Architectures
and Processors (ASAP ’09), IEEE Computer Society, 2009, pp. 98-105.

[7] Strenzke F., Tews E., Molter H. G., Overbeck R., and Shoufan A.,
”Side channels in the mceliece PKC,” In Proceedings of the Second
International Workshop, Post-Quantum Cryptography, 2008, pp. 216-229.

[8] Strenzke F., ”A timing attack against the secret permutation in the
mceliece PKC,” In Proceedings of the Third international conference
on Post-Quantum Cryptography (PQCrypto’10), Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 95-107.

7

Code 9: Countermeasure 7.

1 BPU_T_GF2_16x BPU_gf2xMulModC(BPU_T_GF2_16x
a, BPU_T_GF2_16x b, BPU_T_GF2_16x mod,
BPU_T_GF2_16x mod_deg) {

2 BPU_T_GF2_16x ret=0, i;
3 for(i = 0; i < mod_deg; i++) {
4 b ˆ= ((b >> mod_deg) & 1) * mod;
5 ret ˆ= ((a >> i) & 1) * b;
6 b = b << 1;
7 }
8 return ret;
9 }

In Figure 6, we can see that evaluation times for polynomi-
als σ(X) of degrees 50 and 49 are approximately the same.
However, they are not exactly the same, but oscillate around
the same values; see Table II.

0 100 200 300 400 500 600
8895000

8900000

8905000

8910000

8915000

8920000

8925000

8930000

8935000

t=50
mean=8923571
std=5912
t=49
mean=8923430
std=5797

experiment number

cy
cl

es

Fig. 6: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8923666 8921522 8919976 8919626
deg(σ(X)) = 49 8924178 8920578 8919431 8920110
Difference −512 944 545 −484

TABLE II: Evaluation times of σ(X) of degree 50 and 49.

Similar results were achieved when evaluation of poly-
nomial σ(X) of degree 50 was compared to evaluation of
polynomial σ(X) of degree 1; see Figure 7 and Table III.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000 +8.907e6

t=50
mean=8913037
std=1650
t=1
mean=8913073
std=1638

cy
cl

es

experiment number

Fig. 7: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8916516 8912341 8912524 8913037
deg(σ(X)) = 1 8917032 8911855 8912581 8913073
Difference −516 486 −57 −36

TABLE III: Evaluation times of σ(X) of degree 50 and 1.

VI. CONCLUSION

Proposed countermeasures should avoid the attack described
in subsection III-A in a way in which it is not possible to
distinguish if attacker guessed the correct position of bit in the
error vector or not. On the other side, these countermeasures
slow down the evaluation of polynomial σ(X). This secured
code needs 3 times longer time than naive implementation,
where the biggest difference is caused by multiplication in
finite field. This operation can be easily implemented in hard-
ware; therefore, we suggest to construct a hybrid implemen-
tation of the McEliece cryptosystem. Hybrid implementation
could use hardware implementation of time critical operations
and software implementation of higher logic.

REFERENCES

[1] Rivest R. L., Shamir A., and Adleman L., ”A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
1978, pp. 120-126.

[2] National Institute of Standards and Technology, ”FIPS PUB 186-4 FED-
ERAL INFORMATION PROCESSING STANDARDS PUBLICATION
Digital Signature Standard (DSS),” 2013.

[3] Gulyás A., Klein M., Kudláč J., Machovec F., and Uhrecký F., ”Reálna
implementácia code-based cryptography,” Unpublished master’s project,
Slovak University of Technology in Bratislava, Slovakia, 2014.

[4] Patterson N., ”The algebraic decoding of Goppa codes,” IEEE Transac-
tions on Information Theory 21, 2, 1975, pp. 203-207.

[5] McEliece R. J., ”A public-key cryptosystem based on algebraic coding
theory,” DSN progress report, Vol. 42-44., 1978, pp. 114-116.

[6] Shoufan A., et al., ”A novel processor architecture for McEliece cryp-
tosystem and FPGA platforms,” In Proceedings of the 2009 20th IEEE
International Conference on Application-specific Systems, Architectures
and Processors (ASAP ’09), IEEE Computer Society, 2009, pp. 98-105.

[7] Strenzke F., Tews E., Molter H. G., Overbeck R., and Shoufan A.,
”Side channels in the mceliece PKC,” In Proceedings of the Second
International Workshop, Post-Quantum Cryptography, 2008, pp. 216-229.

[8] Strenzke F., ”A timing attack against the secret permutation in the
mceliece PKC,” In Proceedings of the Third international conference
on Post-Quantum Cryptography (PQCrypto’10), Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 95-107.

Side Channels in SW Implementation of the McEliece PKC

MARCH 2016 • VOLUME VIII • NUMBER 116

INFOCOMMUNICATIONS JOURNAL

8

[9] Strenzke F., ”Timing attacks against the syndrome inversion in code-based
cryptosystems,” In Proceedings of the Fifth International Conference on
Post-Quantum Cryptography - PQCrypto 2013, pp. 217-230.

[10] Paoloni G., ”How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” White Paper, 2010.

APPENDIX A
ALGORITHMS

Algorithm 4 Patterson Algorithm.

Require: n-bit word c, Goppa polynomial g (X).
Ensure: n-bit error vector e.

1: Compute syndrome polynomial Sc (X) =

cHT
(
Xt−1, . . . , X, 1

)T
, where H is control matrix

for Goppa code generated by polynomial g (X).
2: Invert S−1

c (X).

3: Let τ (X) =
√
S−1

c (X) +X .
4: Find polynomials a (X) and b (X), so that b (X) τ (X) =

a (X) mod g (X), and deg (a) ≤ � t
2�.

5: Determine error locator polynomial σ (X) = a2 (X) +
xb2 (X), where deg (σ) ≤ t.

6: Reconstruct the error vector e = (σ (α0) , . . . , σ (αn−1))⊕
(1, . . . , 1).

7: return e

Algorithm 5 Extended Euclidean Algorithm.

Require: τ (X) , g (X) , dbreak
Ensure: a (X) , b (X) such that b (X) τ (X) = a (X)

mod g (X) and deg (a) ≤ dbreak
1: r−1 (X) = g (X)
2: r0 (X) = τ (X)
3: b−1 (X) = 0
4: b0 (X) = 1
5: i = 0
6: while deg (ri) > dbreak do
7: i = i+ 1
8: qi (X) = ri−2 (X) /ri−1 (X)
9: ri (X) = ri−2 (X) mod ri−1 (X)

10: bi (X) = bi−2 (X) + qi (X) bi−1 (X)

11: a (X) = ri (X)
12: b (X) = bi (X)
13: return a (X) and b (X)

Marek Klein received his Bc. degree in Modeling
and Simulation of Event Systems and Ing. degree in
Security of Information Technologies from Slovak
University of Technology in Bratislava in 2013 and
2015 respectively. He currently works as developer
at Disig, a.s. in the Department of Experimental
Development.

8

[9] Strenzke F., ”Timing attacks against the syndrome inversion in code-based
cryptosystems,” In Proceedings of the Fifth International Conference on
Post-Quantum Cryptography - PQCrypto 2013, pp. 217-230.

[10] Paoloni G., ”How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” White Paper, 2010.

APPENDIX A
ALGORITHMS

Algorithm 4 Patterson Algorithm.

Require: n-bit word c, Goppa polynomial g (X).
Ensure: n-bit error vector e.

1: Compute syndrome polynomial Sc (X) =

cHT
(
Xt−1, . . . , X, 1

)T
, where H is control matrix

for Goppa code generated by polynomial g (X).
2: Invert S−1

c (X).

3: Let τ (X) =
√
S−1

c (X) +X .
4: Find polynomials a (X) and b (X), so that b (X) τ (X) =

a (X) mod g (X), and deg (a) ≤ � t
2�.

5: Determine error locator polynomial σ (X) = a2 (X) +
xb2 (X), where deg (σ) ≤ t.

6: Reconstruct the error vector e = (σ (α0) , . . . , σ (αn−1))⊕
(1, . . . , 1).

7: return e

Algorithm 5 Extended Euclidean Algorithm.

Require: τ (X) , g (X) , dbreak
Ensure: a (X) , b (X) such that b (X) τ (X) = a (X)

mod g (X) and deg (a) ≤ dbreak
1: r−1 (X) = g (X)
2: r0 (X) = τ (X)
3: b−1 (X) = 0
4: b0 (X) = 1
5: i = 0
6: while deg (ri) > dbreak do
7: i = i+ 1
8: qi (X) = ri−2 (X) /ri−1 (X)
9: ri (X) = ri−2 (X) mod ri−1 (X)

10: bi (X) = bi−2 (X) + qi (X) bi−1 (X)

11: a (X) = ri (X)
12: b (X) = bi (X)
13: return a (X) and b (X)

Marek Klein received his Bc. degree in Modeling
and Simulation of Event Systems and Ing. degree in
Security of Information Technologies from Slovak
University of Technology in Bratislava in 2013 and
2015 respectively. He currently works as developer
at Disig, a.s. in the Department of Experimental
Development.

8

[9] Strenzke F., ”Timing attacks against the syndrome inversion in code-based
cryptosystems,” In Proceedings of the Fifth International Conference on
Post-Quantum Cryptography - PQCrypto 2013, pp. 217-230.

[10] Paoloni G., ”How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” White Paper, 2010.

APPENDIX A
ALGORITHMS

Algorithm 4 Patterson Algorithm.

Require: n-bit word c, Goppa polynomial g (X).
Ensure: n-bit error vector e.

1: Compute syndrome polynomial Sc (X) =

cHT
(
Xt−1, . . . , X, 1

)T
, where H is control matrix

for Goppa code generated by polynomial g (X).
2: Invert S−1

c (X).

3: Let τ (X) =
√
S−1

c (X) +X .
4: Find polynomials a (X) and b (X), so that b (X) τ (X) =

a (X) mod g (X), and deg (a) ≤ � t
2�.

5: Determine error locator polynomial σ (X) = a2 (X) +
xb2 (X), where deg (σ) ≤ t.

6: Reconstruct the error vector e = (σ (α0) , . . . , σ (αn−1))⊕
(1, . . . , 1).

7: return e

Algorithm 5 Extended Euclidean Algorithm.

Require: τ (X) , g (X) , dbreak
Ensure: a (X) , b (X) such that b (X) τ (X) = a (X)

mod g (X) and deg (a) ≤ dbreak
1: r−1 (X) = g (X)
2: r0 (X) = τ (X)
3: b−1 (X) = 0
4: b0 (X) = 1
5: i = 0
6: while deg (ri) > dbreak do
7: i = i+ 1
8: qi (X) = ri−2 (X) /ri−1 (X)
9: ri (X) = ri−2 (X) mod ri−1 (X)

10: bi (X) = bi−2 (X) + qi (X) bi−1 (X)

11: a (X) = ri (X)
12: b (X) = bi (X)
13: return a (X) and b (X)

Marek Klein received his Bc. degree in Modeling
and Simulation of Event Systems and Ing. degree in
Security of Information Technologies from Slovak
University of Technology in Bratislava in 2013 and
2015 respectively. He currently works as developer
at Disig, a.s. in the Department of Experimental
Development.

7

Code 9: Countermeasure 7.

1 BPU_T_GF2_16x BPU_gf2xMulModC(BPU_T_GF2_16x
a, BPU_T_GF2_16x b, BPU_T_GF2_16x mod,
BPU_T_GF2_16x mod_deg) {

2 BPU_T_GF2_16x ret=0, i;
3 for(i = 0; i < mod_deg; i++) {
4 b ˆ= ((b >> mod_deg) & 1) * mod;
5 ret ˆ= ((a >> i) & 1) * b;
6 b = b << 1;
7 }
8 return ret;
9 }

In Figure 6, we can see that evaluation times for polynomi-
als σ(X) of degrees 50 and 49 are approximately the same.
However, they are not exactly the same, but oscillate around
the same values; see Table II.

0 100 200 300 400 500 600
8895000

8900000

8905000

8910000

8915000

8920000

8925000

8930000

8935000

t=50
mean=8923571
std=5912
t=49
mean=8923430
std=5797

experiment number

cy
cl

es

Fig. 6: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8923666 8921522 8919976 8919626
deg(σ(X)) = 49 8924178 8920578 8919431 8920110
Difference −512 944 545 −484

TABLE II: Evaluation times of σ(X) of degree 50 and 49.

Similar results were achieved when evaluation of poly-
nomial σ(X) of degree 50 was compared to evaluation of
polynomial σ(X) of degree 1; see Figure 7 and Table III.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000 +8.907e6

t=50
mean=8913037
std=1650
t=1
mean=8913073
std=1638

cy
cl

es

experiment number

Fig. 7: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8916516 8912341 8912524 8913037
deg(σ(X)) = 1 8917032 8911855 8912581 8913073
Difference −516 486 −57 −36

TABLE III: Evaluation times of σ(X) of degree 50 and 1.

VI. CONCLUSION

Proposed countermeasures should avoid the attack described
in subsection III-A in a way in which it is not possible to
distinguish if attacker guessed the correct position of bit in the
error vector or not. On the other side, these countermeasures
slow down the evaluation of polynomial σ(X). This secured
code needs 3 times longer time than naive implementation,
where the biggest difference is caused by multiplication in
finite field. This operation can be easily implemented in hard-
ware; therefore, we suggest to construct a hybrid implemen-
tation of the McEliece cryptosystem. Hybrid implementation
could use hardware implementation of time critical operations
and software implementation of higher logic.

REFERENCES

[1] Rivest R. L., Shamir A., and Adleman L., ”A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
1978, pp. 120-126.

[2] National Institute of Standards and Technology, ”FIPS PUB 186-4 FED-
ERAL INFORMATION PROCESSING STANDARDS PUBLICATION
Digital Signature Standard (DSS),” 2013.

[3] Gulyás A., Klein M., Kudláč J., Machovec F., and Uhrecký F., ”Reálna
implementácia code-based cryptography,” Unpublished master’s project,
Slovak University of Technology in Bratislava, Slovakia, 2014.

[4] Patterson N., ”The algebraic decoding of Goppa codes,” IEEE Transac-
tions on Information Theory 21, 2, 1975, pp. 203-207.

[5] McEliece R. J., ”A public-key cryptosystem based on algebraic coding
theory,” DSN progress report, Vol. 42-44., 1978, pp. 114-116.

[6] Shoufan A., et al., ”A novel processor architecture for McEliece cryp-
tosystem and FPGA platforms,” In Proceedings of the 2009 20th IEEE
International Conference on Application-specific Systems, Architectures
and Processors (ASAP ’09), IEEE Computer Society, 2009, pp. 98-105.

[7] Strenzke F., Tews E., Molter H. G., Overbeck R., and Shoufan A.,
”Side channels in the mceliece PKC,” In Proceedings of the Second
International Workshop, Post-Quantum Cryptography, 2008, pp. 216-229.

[8] Strenzke F., ”A timing attack against the secret permutation in the
mceliece PKC,” In Proceedings of the Third international conference
on Post-Quantum Cryptography (PQCrypto’10), Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 95-107.

8

[9] Strenzke F., ”Timing attacks against the syndrome inversion in code-based
cryptosystems,” In Proceedings of the Fifth International Conference on
Post-Quantum Cryptography - PQCrypto 2013, pp. 217-230.

[10] Paoloni G., ”How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” White Paper, 2010.

APPENDIX A
ALGORITHMS

Algorithm 4 Patterson Algorithm.

Require: n-bit word c, Goppa polynomial g (X).
Ensure: n-bit error vector e.

1: Compute syndrome polynomial Sc (X) =

cHT
(
Xt−1, . . . , X, 1

)T
, where H is control matrix

for Goppa code generated by polynomial g (X).
2: Invert S−1

c (X).

3: Let τ (X) =
√

S−1
c (X) +X .

4: Find polynomials a (X) and b (X), so that b (X) τ (X) =
a (X) mod g (X), and deg (a) ≤ � t

2�.
5: Determine error locator polynomial σ (X) = a2 (X) +

xb2 (X), where deg (σ) ≤ t.
6: Reconstruct the error vector e = (σ (α0) , . . . , σ (αn−1))⊕

(1, . . . , 1).
7: return e

Algorithm 5 Extended Euclidean Algorithm.

Require: τ (X) , g (X) , dbreak
Ensure: a (X) , b (X) such that b (X) τ (X) = a (X)

mod g (X) and deg (a) ≤ dbreak
1: r−1 (X) = g (X)
2: r0 (X) = τ (X)
3: b−1 (X) = 0
4: b0 (X) = 1
5: i = 0
6: while deg (ri) > dbreak do
7: i = i+ 1
8: qi (X) = ri−2 (X) /ri−1 (X)
9: ri (X) = ri−2 (X) mod ri−1 (X)

10: bi (X) = bi−2 (X) + qi (X) bi−1 (X)

11: a (X) = ri (X)
12: b (X) = bi (X)
13: return a (X) and b (X)

Marek Klein received his Bc. degree in Modeling
and Simulation of Event Systems and Ing. degree in
Security of Information Technologies from Slovak
University of Technology in Bratislava in 2013 and
2015 respectively. He currently works as developer
at Disig, a.s. in the Department of Experimental
Development.

Cryptanalysis based on the theory of symmetric
group representations

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 17

Cryptanalysis based on the theory of symmetric
group representations

Romana Linkeová, Pavel Příhoda

1

Cryptanalysis based on the theory of symmetric
group representations

Romana Linkeová, Pavel Př́ıhoda

Abstract—The key exchange Diffie-Hellman protocol
originally works over the group Z∗

p where p is at least
a 300-digit number. Even though this implementation
is simple and secure, it makes the protocol unsuitable
for devices with limited computational power. This fact
led to a research of other algebraic structures which
could be used as a platform for this protocol in order
to decrease the computational and storage costs. Such
attempt can be found in the work of D. Kahrobaei
et al. posted in 2013. D. Kahrobaei et al. proposed
a structure of small matrices over a group ring as
a platform and claimed that this modification will not
affect the security of the Diffie-Hellman protocol. We
will attack this modification and prove that it is not
secure with the help of the theory of symmetric group
representations.

Index Terms—Diffie-Hellman protocol, public key
cryptography, symmetric group representations.

I. Introduction

ONE of the requirements of symmetric
cryptography is that two communicating parties

are able to establish a secret shared key over a public
channel without anyone else being able to retrieve their
shared key from the communication as well. One of
the cryptographic tools that solves this problem is the
Diffie-Hellman protocol which was introduced by Witfield
Diffie and Martin Hellman in 1976 in [2].
One of the drawbacks of this protocol is that it does not
ensure the authentication of both parties. This fact makes
the protocol vulnerable against the man-in-the-middle
attack.
Another drawback is that using Z∗

p (the multiplicative
group of integers modulo prime p, where p is suggested
to have at least 300 digits), makes the protocol being
unsuitable for devices with limited computational power.
In order to decrease computational costs, we can exchange
Z∗

p for another algebraic structure. One of the approaches
that is trying to do so can be found in [6], where
D. Kahrobaei et al. proposed a semigroup of n × n
matrices over the group ring Fq[Sm] as a platform.
They proposed semigroups M3(Z7[S5]) and M3(Z2[S5])
specifically.

Romana Linkeová is with the Department of Algebra, Fac-
ulty of Mathematics and Physics, Charles University in Prague,
Sokolovská 83, 186 75 Prague, Czech Republic e-mail: linkeovaro-
mana@gmail.com.

Pavel Př́ıhoda is with the Department of Algebra, Faculty of Math-
ematics and Physics, Charles University in Prague, Sokolovská 83,
186 75 Prague, Czech Republic, e-mail: prihoda@karlin.mff.cuni.cz.

Manuscript received September 29, 2015; revised February 17,
2016.

The main advantage of this algebraic structure is that one
can precompute a multiplicative table for elements from
S5, which makes the computations in the semigroup very
time-efficient. Another advantage is that this modification
of the original protocol will not, according to D. Kahrobaei
et al., decrease its security. In this paper, we will show
that such modification will make the protocol insecure
and it will be possible to retrieve the secret shared key
within few hours using a common computer.
The security of the Diffie-Hellman key exchange protocol is
based on the absence of an algorithm capable of solving the
discrete logarithm problem in polynomial time. Nowadays,
we are aware of multiple algorithms that are solving the
discrete logarithm problem in non-polynomial time, such
as baby-step giant-step, Pohlig-Hellman and Pollard’s
Rho (for more details see [5]). The authors of [6] claimed
that those algorithms (together with the Shor’s quantum
algorithm) will not work for their modified protocol. In
this paper, we will concentrate on the baby-step giant-step
algorithm and show that it will be more effective than
D. Kahrobaei et al. claimed.
Firstly, we will describe the necessary algebraic theory.
Secondly, we will focus on the description of the original
and the modified Diffie-Hellman protocol. Then, we will
present the attack itself. After that, we will show that the
baby-step giant-step algorithm will work on the modified
protocol. The next section is focused on implementation
of our attack. Lastly, we will present a list of papers that
also proposed an attack on the modified protocol.

II. Definitions and notations

Definition 1 (Group ring). Let G = (G, ∗,−1 , e) be
a finite group and let R = (R, +,·, −, 0R, 1R) be a ring
with unity. Then a group ring R[G] is the set of all formal
sums ∑

g∈G

rgg,

where rg ∈ R.
For u =

∑
g∈G agg, v =

∑
h∈G bhh, u, v ∈ R[G],

ag, bh ∈ R. The addition u ⊕ v and multiplication u ⊗ v
is defined as follows:

u ⊕ v =
∑
q∈G

(aq + bq)q,

u ⊗ v =
∑
q∈G

 ∑

gh=q

agbh

q.

Cryptanalysis based on the theory of symmetric
group representations

MARCH 2016 • VOLUME VIII • NUMBER 118

INFOCOMMUNICATIONS JOURNAL

2

Definition 2 (Period). Let M be a square matrix. The
least k ∈ N such that M i = M i+k, for some i ∈ N is called
the period of M .

Definition 3 (Pre-period). Let M be a square matrix.
The least r ∈ N such that there exists k ∈ N that ∀i ≥ r,
Mk+i = M i is called the pre-period of M .

Definition 4 (Representation). a representation
of a group G of degree n is a homomorphism
ϕ : G → GL(n, T); ϕ(g) = ϕg for g ∈ G.

Definition 5 (Equivalent representations). Two
representations ϕ : G → GL(n, T) and ψ : G → GL(m, T)
are equivalent if m = n and if F ∈ GL(n,T) such that
ψg = FϕgF −1, ∀g ∈ G exists.

Definition 6 (ϕ-invariant subspace). For a representation
ϕ : G → GL(n,T) a subspace S ≤ T n is ϕ-invariant if
ϕgs ∈ S, ∀g ∈ G, s ∈ S.

Definition 7 (Irreducible representation). a representa-
tion ϕ : G → GL(n,T) is irreducible if and only if
ϕ-invariant subspaces of T n are {0} and T n.

Definition 8 (Partition of number n). Let n ∈ N, then
the partition λ of number n is defined as a non-increasing
sequence of m positive integers λ = (λ1, . . . , λm) such that
λ1 + . . . + λm = n. We denote λ � n.

Theorem 1. For n ∈ N and a field T of characteristics 0
or p, where p is a prime and p > n:

• each λ � n gives representation ϕλ : Sn → GL(nλ, T)
(for more details see [3, Theorem 4.12]),

• ϕλ is irreducible representation for all λ � n,
• λ � n, η � n, η �= λ, then ϕλ and ϕη are not

equivalent,
• each irreducible representation of Sn over T is

equivalent to some representation ϕλ,
• TSn �

∏
λ�n

Mnλ
(T).

III. Diffie-Hellman protocol
A. Discrete logarithm

Let G = 〈g〉 be a finite cyclic group of order n. Then for
all elements b ∈ G exists one and only one x in interval
(0, . . . , n−1) such that b = gx. The number x is called the
discrete logarithm of element b in G. The task to compute
x when G, g and b are given is called the discrete logarithm
problem. We are not aware of any general method that
could solve the discrete logarithm problem on a common
computer in sub-exponential time.

B. Original Diffie-Hellman protocol
The requirement that two parties should be able to

construct a secret shared key over a public channel resulted
in the introduction of the Diffie-Hellman protocol in 1976.
This protocol describes an exchange between two parties A
and B leading to establishment of a secret shared key. Only
A and B possess the key and it can not be retrieved by
anyone who is listening to their conversation. The security

of this protocol is based on the difficulty of the discrete
logarithm problem.
The protocol works as follows:

• A and B decide on a finite cyclic group G and its
generating element g,

• A picks a secret number a ∈ (0, . . . , | G | −1) and
sends u = ga to B,

• B picks a secret number b ∈ (0, . . . , | G | −1) and
sends v = gb to A,

• A computes va = (gb)a = gab,
• B computes ua = (ga)b = gba,
• both A and B are in possession of the secret shared

key gab.
Both A and B are using the algorithm square and multiply
when computing ga, gb and gab.
An eavesdropper E, who is trying to retrieve the secret
shared key gab from the knowledge of G, g, ga, gb, gab,
is trying to solve the so called Diffie-Hellman problem.
The simplest and original implementation of the
Diffie-Hellman protocol uses the class of groups
Z∗

p as a platform. Working over groups from this
class is convenient since we can easily calculate powers
of its elements. Moreover, no fast algorithm that could
solve the discrete logarithm problem in those groups
is known. Nowadays, the protocol is considered secure,
if p is at least a 300-digit number and a and b are at
least 100-digit numbers. Unfortunately, these sizes of the
parameters do not make this protocol suitable for devices
with limited computational power. D. Kahrobaei et al.
proposed a semigroup of small matrices as a platform for
the protocol. Multiplication is fast in this structure hence
the protocol is not that time consuming.

C. Modified Diffie-Hellman protocol
The structure proposed to work with is a semigroup of

small matrices over the group ring Zp [Sm] where Zp is the
ring of integers modulo p and Sm is the symmetric group
of order m!. Parameters proposed in [6] are 3 × 3 matrices
over Z7 [S5] or over Z2 [S5].
The main advantage of this structure is that we can
precompute a multiplicative table for elements from S5;
hence multiplying two elements from Zp [S5] requires only
multiplying elements from Zp and searching in the multi-
plicative table.
The modified protocol works in the case M3(Z7[S5]) as
follows:

• A and B decides on a matrix M ∈ M3(Z7[S5]),
• A picks a secret number a ∈ N and sends Ma to B,
• B picks a secret number b ∈ N and sends M b to A,
• A computes (M b)a = M ba,
• B computes (Ma)b = Mab,
• both A and B are in possession of the secret shared

key Mab.
It is important to note that M has to be chosen properly,
i.e. that it has period larger than 1010. Otherwise the
attacker E could retrieve the secret shared key Mab by

Cryptanalysis based on the theory of symmetric
group representations

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 19

3

means of exhaustive search. The method to construct
a suitable matrix M ∈ M3(Z7[S5]) can be found in [6].

IV. Attack
The goal of our method is to retrieve the secret shared

key Mab with only the knowledge of Mn(Fq[Sm]), M , Ma

and M b. To do so, we do not have to find both a and b.
We can find a′ such that Ma′ = Ma. Then, the secret
shared key will be (Ma′)b = (Ma)b = Mab. Let us denote
N = Ma.
The core idea of our method is that we used the
representation theory of symmetric groups, which allows
us to reduce the work an attacker has to do. We know
that in order to break the Diffie-Hellman problem in
Mn(Zp[Sm]) we would have to solve the discrete logarithm
problem in this semigroup in a reasonable amount of time.
Since the order of M3(Z7[S5]) is approximately 10913, we
see it is not possible. However, the representation theory of
the symmetric groups allows us to transform the problem
onto a structure in which we are able to calculate the
discrete logarithms in feasible time.
Firstly, we will describe our method for the case of
M3(Z7[S5]). Secondly, we will introduce the approach that
solved the challenge given in [6] when using M3(Z2[S5]) as
a platform.

A. Case M3(Z7[S5])
The characteristics of Z7 does not divide the

order of S5, so the theory of symmetric group
representations gives us 7 irreducible representations
ϕi, i ∈ {1, . . . , 7}, i.e. homomorphisms

ϕi : S5 → GL(di,Z7),

where di ∈ {1, 4, 5, 6, 5, 4, 1}.
We can extend the homomorphisms in two steps as follows:

ϕ′
i : Z7[S5] → Mdi(Z7)

and
ψi : M3(Z7[S5]) → M3di(Z7).

Then, according to [11, Theorem 3.9] and
[4, Theorem 2.1.12], we obtain an algebra isomorphism
ψ = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7):

ψ : M3(Z7[S5]) →
M3(Z7) × M12(Z7) × M15(Z7) × M18(Z7) (1)
× M15(Z7) × M12(Z7) × M3(Z7).

We can see that the maximum order of matrices we will
work with is 18 which is very small.
Note that the homomorphisms ϕ′

i, i ∈ {1, . . . , 7} can be
efficiently computed (for more details see [3, Chapter 8]).
Now, we can map matrices M and N using the
isomorphism ψ. We get two 7-tuples

ψ(M) = (M(1), . . . , M(7))
ψ(N) = (N(1), . . . , N(7)).

To construct a′, we need to find numbers ai ∈ Z such that
Mai

(i) = N(i) for all i ∈ {1, . . . , 7}.
To obtain ai, i ∈ {1, . . . , 7} we will use the Menezes-Wu
algorithm which can be found in [8].
To simplify the situation, we assume that 0 is not an
eigen value of any of matrices M(i), i ∈ {1, . . . , 7}. In
fact, large powers of Jordan blocks with eigenvalue 0 are
zero matrices, so the simplification has no essential effect
regarding the attack.
In the following part, we will demonstrate the Menezes-Wu
algorithm. We fix i ∈ {1, . . . , 7} and find one ai, since all
ai, i ∈ {1, . . . , 7} can be obtained in the same manner.
Also, we will show this method for both the cases of
diagonal matrices M(i) and N(i) and non-diagonal matrices
M(i) and N(i).

a) Diagonalizable matrices: Matrices M(i)
and N(i) are diagonalizable if and only if their
characteristic polynomials decompose into the
product of linear factors and algebraic multiplicity
of each eigen value is equal to its geometric
multiplicity. In order to ensure that the characteristic
polynomial will decompose to the product of linear factors
we will work over the splitting field F of that polynomial.
Let us denote k the rank of matrices M(i) and N(i),
λ1, . . . , λk eigen values of M(i) and u1, . . . , uk a basis of
Fk composed of eigen vectors of M(i).
Let U be an invertible matrix that has eigen vectors
u1, . . . , uk as columns. It holds that

U−1M(i)U =

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk

 .

Then

U−1Ma
(i)U =

λa
1 0 . . . 0

0 λa
2 . . . 0

...
...

. . .
...

0 0 . . . λa
k

 = U−1N(i)U.

If we find c ∈ N0 such that λc
j = λa

j for all
j ∈ {1, . . . , k}, it will hold that M c

(i) = N(i) and c will
be the required ai for M(i) and N(i).
To obtain c we have to:

• find the characteristic polynomial q, eigen values
λ1, . . . , λk and eigen vectors u1, . . . , uk of M(i),

• equations

N(i)uj = λa
j uj , ∀j ∈ {1, . . . ,k}

lead to finding cj ∈ N0 such that λ
cj

j = λa
j for all λj ,

j ∈ {1, . . . , k}. In order to find cj , j ∈ {1, . . . , k},
we have to solve the discrete logarithm problem
in groups of order ord(λj), j ∈ {1, . . . , 7} (note
that for every irreducible factor qj of q we work in
Z7 [x] /(qj) where x + (qj) represents the eigen value
λj),

Cryptanalysis based on the theory of symmetric
group representations

MARCH 2016 • VOLUME VIII • NUMBER 120

INFOCOMMUNICATIONS JOURNAL

4

• the fact that ord(λj) | (cj − c) ,∀j ∈ {1, . . . , k} allows
us to put together a system of diophantine equations

c = cj − ord(λj) · hj , ∀j ∈ {1, . . . , k},

where hj ∈ Z. By solving this system of equations
(see [1, Algorithm 2.4.10]) we will get c such that
λc

j = λa
j , for all j ∈ {1, . . . , k}.

So, in order to find c, we need to know the orders of
eigen values λj , j ∈ {1, . . . , k} and we have to be able to
solve the discrete logarithm problem in groups of orders
ord(λj), j ∈ {1, . . . , k}.
For a fixed j ∈ {1, . . . , 7} we find the order of eigen
value λj using the fact that ord(λj) divides | T ∗

r |, where
Tr denotes field Z7(λj) � Z7 [x] /(qj), where qj is the
minimal polynomial of λj in Z7. Computing ord(x) in
(Z7 [x] /(qj))∗ gives us orders of all roots of polynomial
qj .
When computing the discrete logarithm in groups of
orders ord(λj), consider ord(λj) =| T ∗

r | represents the
worst case. Denote

|T ∗
r | = sl1

1 · sl2
2 · . . . · sln

n

the factorization of the order of T ∗
r . Now we can use the

Pohlig-Hellman reduction and reduce the computations
into group orders of which will be at most slm

m for some
m ∈ {1, . . . , n}. Also, for a polynomial q of degree d we
have | T ∗

r |= 7d −1. Since M(i), i ∈ {1, . . . , 7} have degrees
at most 18, then d ≤ 18 and prime factors of 7d − 1
for d ≤ 18 are small enough for us to be able to solve
the discrete logarithm problems in a reasonable amount
of time when using a common computer.

b) Non-diagonalizable matrices: We will outline the
method for non-diagonalizable matrices in this section.
Let us fix i ∈ {1, . . . , 7}. Assume that we have a basis
B such that [H]B is a matrix H expressed in terms of the
basis B which has a Jordan canonical form.
Let us have an invertible matrix U which has vectors of
basis B as columns. Then it holds that

U−1M(i)U =

J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jk

is a block diagonal matrix with Jordan blocks
Jj , j ∈ {1, . . . , k} on diagonal and

U−1N(i)U =

Ja
1 0 . . . 0
0 Ja

2 . . . 0
...

...
. . .

...
0 0 . . . Ja

k

 .

Now, we can find cj ∈ N0 for each Jordan block
Jj , j ∈ {1, . . . , k} such that J

cj

j = Ja
j .

Since for Jordan block

Jj =

λ 1 0 0 0
0 λ 1 . . . 0 0
0 0 λ 0 0

...
. . .

...
...

0 0 0 . . . λ 1
0 0 0 . . . 0 λ

we have

Ja
j =

λa
(

a
1
)
λa−1 (

a
2
)
λa−2 . . .

(
a

k−1
)
λa−k+1

0 λa
(

a
1
)
λa−1 . . .

(
a

k−2
)
λa−k+2

...
...

.
...

0 0 . . . λa
(

a
1
)
λa−1

0 0 . . . 0 λa

,

and cj has to ensure equality of all elements in
upper triangular matrices Ja

j and J
cj

j . Note that if
Ja

j and J
c′

j

j have same values on the diagonal, we may
find cj of the form c′

j + z · ord(λ) for z ∈ (0,1,...,6).
Then, we can compute c ∈ N0 such that
Jc

j = Ja
j , j ∈ {1, . . . , k} and c will be the required

ai for M(i) and N(i).
Before we proceed to the construction of a′, we will show
how to compute the period of M(i) for some i ∈ {1, . . . , 7},
first.

c) Matrix period: Assuming that M(i) is
diagonalizable we have its Jordan canonical form

C =

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk

 .

We can see that all Jordan blocks are of degree 1 and the
Jordan canonical form of an mth power of M(i) is

Cm =

λm
1 0 . . . 0
0 λm

2 . . . 0
...

...
. . .

...
0 0 . . . λm

k

 .

This means that for M(i) it holds that

per(M(i)) = LCM(ord(λ1), . . . , ord(λk)).

Assuming that M(i) is non-diagonalizable, it holds that

per(M(i)) = LCM(per(J1), . . . , per(Jk)),

where Jj , j ∈ {1, . . . , k} are Jordan blocks of non-zero
eigen values of M(i). The periods of the Jordan blocks can
be found using the following method.
Fixing j ∈ {1, . . . , k}, we denote pj the period of the
Jordan block Jj and λj the element on its diagonal. Then,
it has to hold that

pj = k · ord(λj)

for k ∈ N.
Having pj as a multiple of ord(λj) will ensure that the
elements on the diagonal of Jj will be the same as the

Cryptanalysis based on the theory of symmetric
group representations

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 21

5

elements on the diagonal of J
pj+1
j . Finding a fitting k ∈ N

will ensure that all elements above the diagonal of J
pj

j

will be zero and we will get Jj = J
pj+1
j .

Initialize pj = ord(λj) and split the calculation of k in
a few cases. It is important to keep in mind that we are
computing over a field with characteristic 7, so that all
operations with integers are modulo 7.

1) 7 divides pj and the rank of Jj is at most 7:
in this case 7 divides all binomial coefficients in
J

pj

j , hence k = 1 and per(Jj) = pj ;
2) 7 divides pj and the rank of Jj is greater than 7:

denote cj = pj/7. A problem can appear when
working with binomial coefficient

(
pj

7
)
. We know that

7 divides pj , hence
(

pj

7

)
= pj · (pj − 1)(pj − 2) · . . . · (pj − 6)

7 · 6 · 5 · . . . · 1

= cj · (pj − 1)(pj − 2) · . . . · (pj − 6)
6 · 5 · . . . · 1 .

For
(

pj

7
)

= 0, we need 7 | cj . If 7 does not divide cj , we
set k = 7 which will lead to per(Jj) being a multiple
of 7pj .
It is easy to see that 7 |

(7pj

14
)

therefore per(Jj) = kpj .
3) 7 does not divide ord(λj) and the rank of Jj is at least

2:
initialize pj = 7 · ord(λj). This case is described in
cases 1 and 2.

The maximum rank of Jordan blocks is 18, so this method
includes all possibilities.

d) Finding a′: At this point, we have obtained
a1, . . . , a7 such that

(Ma1
(1), . . . , Ma7

(7)) = (N(1), . . . ,N(7)).

We denote pi = per(M(i)), i ∈ {1, . . . , 7}. We may assume
a1, . . . , a7 ≥ pre-period(M). Then there exist constants
li ∈ N0, i ∈ {1, . . . , 7}, such that

a′ = a1 + l1p1 = a2 + l2p2 = . . . = a7 + l7p7. (2)

Equation (2) can be written as a system of diophantine
equations

a1 + l1p1 = a2 + l2p2 = . . . = a7 + l7p7,

where l1, . . . , l7 are calculated. After substituting any
li, i ∈ {1, . . . , 7} in (2), we get a′ as

a′ = x + my,

where x, y, m ∈ Z, and x and y are computed
and m is a parameter. Choosing m such that
a′ ≥ a1 . . . , a7 we find the secret shared key
(M b)a′ = (M b)a = Mab as was required.

B. Case M3(Z2[S5])
In this case, we can again find homomorphisms

ϕi, i ∈ {1, . . . , 7}

ϕi : S5 → GL(di,Z2),

where di ∈ {1, 4, 5, 6, 5, 4, 1}
and extend them as before

ϕ′
i : Z2[S5] → Mdi

(Z2)

and
ψi : M3(Z2[S5]) → M3di

(Z2).

We get

ψ : M3(Z2[S5]) →
M3(Z2) × M12(Z2) × M15(Z2) × M18(Z2) × M15(Z2)
× M12(Z2) × M3(Z2).

However, since char(Z2) | ord(S5), the representations
ϕi, i ∈ {1, . . . , 7} will not be irreducible and ψ will not
be an isomorphism. Because of that we can not use the
method mentioned above.
We will present a method of how to solve the
challenge given in appendix of [6]. In this challenge,
authors presented matrices M , Ma, M b and asked a reader
to find the secret shared key Mab. To do so, we will again
search a′ such that Ma′ = Ma.
The method works as follows:

• we calculate dim(Ker(ψ)) = 78 and denote l = 128,
the smallest power or 2 greater than 78,

• using the method described in [10] we embed
M3(Z2[S5]) into M360(Z2) in order to calculate the
pre-period y of M ; note that we do not need to
compute the period of M ,

• we find b such that ψ(M)y = ψ(M)y+b using the
method mentioned in the previous section,

• this gives us a nilpotent matrix C = My − My+b,
• equation

0 = C128 = M128y − M128y+128b

leads to finding per(M)| 128b of M ,
• since b = 75565 then per(M) = 9672320 which

is period small enough for us to be able to find
a′ = 217183 by means of exhaustive search.

C. Implementation
To support our result, we implemented the attack

in both cases M3(Z7[S5]) and M3(Z2[S5]). We used
Microsoft Visual C++ 2012 with NTL and MPIR
libraries and Wolfram Mathematica 8.
We followed the method presented in [6] and
constructed M ∈ M3(Z7[S5]) as a product
M = M1 · S, where M1 ∈ M3(Z7[S5]) is an invertible
matrix and S is a scalar matrix with an element
s = (3 + g1)(3 + g2)(3 + g3)(3 + g4)(3 + g5)(3 + g6)(5 + h)
on its diagonal. Elements gi ∈ S5, i ∈ {1, . . . , 6} generate
different subgroups of order 5 in S5 and the element

Cryptanalysis based on the theory of symmetric
group representations

MARCH 2016 • VOLUME VIII • NUMBER 122

INFOCOMMUNICATIONS JOURNAL

6

h is a product of two independent cycles of lengths 2
and 3. For our particular choice of the parameters see
[7, Page 15].
We picked a = 3870608589482989250044165641 and
obtained matrices M(i) and N(i) diagonalizable for
i ∈ {1, . . . , 7} therefore we followed the method presented
in IV-A0a and we got

a′ = 3503100657314735678453072487882159
93519556264585853249124127858504

+414872873390037779882720801600m

as a result.

V. Baby-step giant-step
Nowadays, we are aware of multiple algorithms that

speed up solving the discrete logarithm problem. One of
them is the baby-step giant-step algorithm.
In this method, for a cyclic group G = 〈g〉 of order n
and an element b ∈ 〈g〉, we try to find x ∈ N such that
b = gx using the fact that x can be expressed as

x = im + j, (3)

where m = �
√

n �, i, j ∈ {0, . . . , m − 1}.
Equation 3 leads to

b = gim+j ⇔ bg−im = gj .

The algorithm baby-step giant-step then proceeds to so
called baby-steps where it computes and stores values
(j,gj) for j ∈ {0, . . . , m − 1}. Baby-steps are followed
by so called giant-steps which calculate values bg−im for
i ∈ {0, . . . , m−1} and also compare those values to stored
gj . When we hit equality

bx−im = gj

for some i, j ∈ {0, . . . , m − 1}, we have found
x = im + j such that gx = b.
We can transform the situation according to
[6] and work in M3 (Z7[S5]). In this case, we have
M, N ∈ M3 (Z7[S5]), n =| M3 (Z7[S5]) | such that
Mx = N and x ∈ N can again be expressed as in (3).
In [6], the authors used an analogy of the baby-step
giant-step algorithm that is based on equation

N = M im+j ⇔ NM−j = M im,

where M is a regular matrix.
Baby-steps then calculate and store values (J,NM j) for
j ∈ {1, . . . , m − 1} and giant-steps calculate M im for
i ∈ {1, . . . , �n/m�} and compare them to values NM j .
When we hit equality

NM j = M im

for some i ∈ {1, . . . , �n/m�}, j ∈ {1, . . . , m − 1}, we get
x = im − j for which Mx = N holds.
Algorithm 1 shows how the baby-step giant-step works for
the modified Diffie-Hellman protocol according to [6].
The algorithm requires that

Algorithm 1: Baby-step giant-step

Input: M , N ∈ M3 (Z7[S5]), n = |M3 (Z7[S5]) |
Output: x ∈ N, such that Mx = N

m = �
√

n �;
t = �n/m�;
for j = 1, . . . , m − 1 do

Compute NM j ;
Store (j, NM j);

for i = 0, . . . , t do
Compute Mi = M im;
if there exists j such that Mi = NM j then

return im − j.

M im = NM j ⇒ N = M im−j

holds.
Since M does not have to be regular, hence invertible, it
seems that this implication is not obvious. However, if we
consider Jordan canonical forms, we get

(U−1MU)im = U−1NU
(
U−1MU

)j (4)

for basis U . This can be illustrated as

sing 0

0 reg

im

=

sing 0

0 reg

x

sing 0

0 reg

j

,

where reg denotes a section that appertains to nonzero
eigen values and sing denotes a section that appertains to
zero eigen values. We can see that if N = Mx is large
enough power of M and if m is large enough, we can
illustrate (4) as follows:

0

regim

 =

0

regx

?

regj

 .

Then

M im = NM j

�
regim = regxregj

�
regim−j = regx.

This means that if im − j is large enough and
singim−j = 0, then M im−j = N .
According to [6], the baby-step giant-step algorithm is
not usable for the modified Diffie-Hellman protocol. The
main reason is that this algorithm has huge memory
requirements whilst working over M3(Z7[S5]).
It is obvious that the knowledge of a period of M would

Cryptanalysis based on the theory of symmetric
group representations

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 23

7

significantly simplify the situation. Instead of searching
in the whole semigroup M3(Z7[S5]), we could just search
in space of a size per(M). We have shown a method
for computing the period of M in IV-A0c therefore the
baby-step giant-step will be more effective than the
authors of [6] claimed.

VI. Related work
The security of the modified Diffie-Hellman protocol

proposed in [6] was also analysed in [10] and [9].
In [10], A. Myasnikov and A. Ushakov proposed an
embedding of M3(Z7[S5]) into M360(Z7). This embedding,
together with the Menezes-Wu algorithm, allowed the
authors to find the secret shared key using a quantum
computer in polynomial time. This paper proves that the
modified Diffie-Hellman protocol does not belong to the
realm of post-quantum cryptography.
In [9] can be found a method for attacking the
modified protocol which is based on the same core idea as
our method. The authors first constructed an embedding
ψ of M3(Z7[S5]) into M360(Z7) as proposed in [10] and
then they constructed an isomorphism between Im(ψ) and
M3(Z7) × M12(Z7) × M15(Z7) × M18(Z7) × M15(Z7) ×
M12(Z7) × M3(Z7). Having this isomorphism they were
able to retrieve the secret shared by computing the
minimal polynomial of A ∈ Im(ψ). The authors also
worked with M3(Z2[S5]) and solved the challenge given in
appendix of [6]. However, our work is in scope of [7] and
we worked independently from [9].

VII. Conclusion
We have recalled the modified Diffie-Hellman protocol

proposed in [6] which is trying to make the original
Diffie-Hellman protocol suitable for devices with limited
computational power. To do so, the authors of [6] proposed
Mn(Zp[Sm]) as a platform. However, this modification
met the computational costs requirements, it decreased
the security level of the key exchange itself. We have
shown that with help of the theory of symmetric group
representations we can exploit the algebraic properties
of Mn(Zp[Sm]) and construct the secret shared key on
a common computer in feasible time. The same result
was presented in [9]. Consequently, the modified protocol
is not as secure as is claimed in [6] when p > m. Any
improvement of this modification to resist this attack is
not clear. Our brief calculation for m = 5 and p = 2
indicates that choosing the parameters p < m is probably
not sufficient to make the protocol secure.

References
[1] H. Cohen, ”A Course in Computational Algebraic Number The-

ory”, 1st ed., Springer, Berlin, 1996.
[2] W. Diffie, M. E. Hellman, ”New directions in cryptography”, in

IEEE Transaction on Information Theory, vol. IT-22, no. 6, pp
644-654, Nov. 1976.

[3] G. D. James, ”The Representation Theory of the Symmetric
Group”, in Lecture Notes in Mathematics 682, Springer, 1978.

[4] G. D. James, A. Kerber, ”The Representation Theory of Sym-
metric group”, Cambridge University Press, 2009.

[5] A. Joux, A. Odlyzko, C. Pierrot, ”The past, evolving present,
and future of the discrete logarithm”, in Open Problems in
Mathematics and Computational Science, pp 5-36, 2014.

[6] D. Kahrobaei, C. Kouppari, V. Shpilrain, ”Public key exchange
using matrices over group rings”, in Groups, Complexity and
Cryptology, vol. 5, pp 97-115, 2013.

[7] R. Linkeová (2014, May), ”Diffie a Hellman si vyměňuj́ı matice
nad grupovým okruhem”. [Online]. Available: https://is.cuni.cz/
webapps/zzp/detail/141169/

[8] A. J. Menezes, Y. Wu, ”The discrete logarithm problem in
Gln(Fq)” in Ars Combinatoria, vol. 47, pp 23-32, 1997.

[9] Ch. Monico, M. D. Neusel, ”Cryptanalysis of a system using
matrices over group rings”, in Groups, Complexity, Cryptology,
vol. 7, pp 175-182, 2015.

[10] A. Myasnikov, A. Ushakov (2012, Oct.), ”Quantum algorithm
for discrete logarithm problem for matrices over finite group
rings”. [Online]. Available: http://eprint.iacr.org/2012/574

[11] S. H. Weintraub, ”Representation Theory of Finite Groups:
Algebra and Arithmetic (Graduate Studies in Mathematics)”, in
Amer Mathematical Society, vol. 59, 2003.

Romana Linkeová is a master student at
Charles University in Prague. She gradu-
ated her bachelor studies in 2014. Her study
field is Mathematical Methods in Informa-
tion Security. You can contact her: linkeovaro-
mana@gmail.com

Pavel Př́ıhoda is an associate professor at
Department of Algebra, Charles University in
Prague where he also got his PhD in math-
ematics. In 2006 - 2007 he was a PostDoc
researcher at Centre de Reserca Matematica,
Barcelona. His research field is algebra, in par-
ticular module theory. You can contact him:
prihoda@karlin.mff.cuni.cz

7

significantly simplify the situation. Instead of searching
in the whole semigroup M3(Z7[S5]), we could just search
in space of a size per(M). We have shown a method
for computing the period of M in IV-A0c therefore the
baby-step giant-step will be more effective than the
authors of [6] claimed.

VI. Related work
The security of the modified Diffie-Hellman protocol

proposed in [6] was also analysed in [10] and [9].
In [10], A. Myasnikov and A. Ushakov proposed an
embedding of M3(Z7[S5]) into M360(Z7). This embedding,
together with the Menezes-Wu algorithm, allowed the
authors to find the secret shared key using a quantum
computer in polynomial time. This paper proves that the
modified Diffie-Hellman protocol does not belong to the
realm of post-quantum cryptography.
In [9] can be found a method for attacking the
modified protocol which is based on the same core idea as
our method. The authors first constructed an embedding
ψ of M3(Z7[S5]) into M360(Z7) as proposed in [10] and
then they constructed an isomorphism between Im(ψ) and
M3(Z7) × M12(Z7) × M15(Z7) × M18(Z7) × M15(Z7) ×
M12(Z7) × M3(Z7). Having this isomorphism they were
able to retrieve the secret shared by computing the
minimal polynomial of A ∈ Im(ψ). The authors also
worked with M3(Z2[S5]) and solved the challenge given in
appendix of [6]. However, our work is in scope of [7] and
we worked independently from [9].

VII. Conclusion
We have recalled the modified Diffie-Hellman protocol

proposed in [6] which is trying to make the original
Diffie-Hellman protocol suitable for devices with limited
computational power. To do so, the authors of [6] proposed
Mn(Zp[Sm]) as a platform. However, this modification
met the computational costs requirements, it decreased
the security level of the key exchange itself. We have
shown that with help of the theory of symmetric group
representations we can exploit the algebraic properties
of Mn(Zp[Sm]) and construct the secret shared key on
a common computer in feasible time. The same result
was presented in [9]. Consequently, the modified protocol
is not as secure as is claimed in [6] when p > m. Any
improvement of this modification to resist this attack is
not clear. Our brief calculation for m = 5 and p = 2
indicates that choosing the parameters p < m is probably
not sufficient to make the protocol secure.

References
[1] H. Cohen, ”A Course in Computational Algebraic Number The-

ory”, 1st ed., Springer, Berlin, 1996.
[2] W. Diffie, M. E. Hellman, ”New directions in cryptography”, in

IEEE Transaction on Information Theory, vol. IT-22, no. 6, pp
644-654, Nov. 1976.

[3] G. D. James, ”The Representation Theory of the Symmetric
Group”, in Lecture Notes in Mathematics 682, Springer, 1978.

[4] G. D. James, A. Kerber, ”The Representation Theory of Sym-
metric group”, Cambridge University Press, 2009.

[5] A. Joux, A. Odlyzko, C. Pierrot, ”The past, evolving present,
and future of the discrete logarithm”, in Open Problems in
Mathematics and Computational Science, pp 5-36, 2014.

[6] D. Kahrobaei, C. Kouppari, V. Shpilrain, ”Public key exchange
using matrices over group rings”, in Groups, Complexity and
Cryptology, vol. 5, pp 97-115, 2013.

[7] R. Linkeová (2014, May), ”Diffie a Hellman si vyměňuj́ı matice
nad grupovým okruhem”. [Online]. Available: https://is.cuni.cz/
webapps/zzp/detail/141169/

[8] A. J. Menezes, Y. Wu, ”The discrete logarithm problem in
Gln(Fq)” in Ars Combinatoria, vol. 47, pp 23-32, 1997.

[9] Ch. Monico, M. D. Neusel, ”Cryptanalysis of a system using
matrices over group rings”, in Groups, Complexity, Cryptology,
vol. 7, pp 175-182, 2015.

[10] A. Myasnikov, A. Ushakov (2012, Oct.), ”Quantum algorithm
for discrete logarithm problem for matrices over finite group
rings”. [Online]. Available: http://eprint.iacr.org/2012/574

[11] S. H. Weintraub, ”Representation Theory of Finite Groups:
Algebra and Arithmetic (Graduate Studies in Mathematics)”, in
Amer Mathematical Society, vol. 59, 2003.

Romana Linkeová is a master student at
Charles University in Prague. She gradu-
ated her bachelor studies in 2014. Her study
field is Mathematical Methods in Informa-
tion Security. You can contact her: linkeovaro-
mana@gmail.com

Pavel Př́ıhoda is an associate professor at
Department of Algebra, Charles University in
Prague where he also got his PhD in math-
ematics. In 2006 - 2007 he was a PostDoc
researcher at Centre de Reserca Matematica,
Barcelona. His research field is algebra, in par-
ticular module theory. You can contact him:
prihoda@karlin.mff.cuni.cz

7

significantly simplify the situation. Instead of searching
in the whole semigroup M3(Z7[S5]), we could just search
in space of a size per(M). We have shown a method
for computing the period of M in IV-A0c therefore the
baby-step giant-step will be more effective than the
authors of [6] claimed.

VI. Related work
The security of the modified Diffie-Hellman protocol

proposed in [6] was also analysed in [10] and [9].
In [10], A. Myasnikov and A. Ushakov proposed an
embedding of M3(Z7[S5]) into M360(Z7). This embedding,
together with the Menezes-Wu algorithm, allowed the
authors to find the secret shared key using a quantum
computer in polynomial time. This paper proves that the
modified Diffie-Hellman protocol does not belong to the
realm of post-quantum cryptography.
In [9] can be found a method for attacking the
modified protocol which is based on the same core idea as
our method. The authors first constructed an embedding
ψ of M3(Z7[S5]) into M360(Z7) as proposed in [10] and
then they constructed an isomorphism between Im(ψ) and
M3(Z7) × M12(Z7) × M15(Z7) × M18(Z7) × M15(Z7) ×
M12(Z7) × M3(Z7). Having this isomorphism they were
able to retrieve the secret shared by computing the
minimal polynomial of A ∈ Im(ψ). The authors also
worked with M3(Z2[S5]) and solved the challenge given in
appendix of [6]. However, our work is in scope of [7] and
we worked independently from [9].

VII. Conclusion
We have recalled the modified Diffie-Hellman protocol

proposed in [6] which is trying to make the original
Diffie-Hellman protocol suitable for devices with limited
computational power. To do so, the authors of [6] proposed
Mn(Zp[Sm]) as a platform. However, this modification
met the computational costs requirements, it decreased
the security level of the key exchange itself. We have
shown that with help of the theory of symmetric group
representations we can exploit the algebraic properties
of Mn(Zp[Sm]) and construct the secret shared key on
a common computer in feasible time. The same result
was presented in [9]. Consequently, the modified protocol
is not as secure as is claimed in [6] when p > m. Any
improvement of this modification to resist this attack is
not clear. Our brief calculation for m = 5 and p = 2
indicates that choosing the parameters p < m is probably
not sufficient to make the protocol secure.

References
[1] H. Cohen, ”A Course in Computational Algebraic Number The-

ory”, 1st ed., Springer, Berlin, 1996.
[2] W. Diffie, M. E. Hellman, ”New directions in cryptography”, in

IEEE Transaction on Information Theory, vol. IT-22, no. 6, pp
644-654, Nov. 1976.

[3] G. D. James, ”The Representation Theory of the Symmetric
Group”, in Lecture Notes in Mathematics 682, Springer, 1978.

[4] G. D. James, A. Kerber, ”The Representation Theory of Sym-
metric group”, Cambridge University Press, 2009.

[5] A. Joux, A. Odlyzko, C. Pierrot, ”The past, evolving present,
and future of the discrete logarithm”, in Open Problems in
Mathematics and Computational Science, pp 5-36, 2014.

[6] D. Kahrobaei, C. Kouppari, V. Shpilrain, ”Public key exchange
using matrices over group rings”, in Groups, Complexity and
Cryptology, vol. 5, pp 97-115, 2013.

[7] R. Linkeová (2014, May), ”Diffie a Hellman si vyměňuj́ı matice
nad grupovým okruhem”. [Online]. Available: https://is.cuni.cz/
webapps/zzp/detail/141169/

[8] A. J. Menezes, Y. Wu, ”The discrete logarithm problem in
Gln(Fq)” in Ars Combinatoria, vol. 47, pp 23-32, 1997.

[9] Ch. Monico, M. D. Neusel, ”Cryptanalysis of a system using
matrices over group rings”, in Groups, Complexity, Cryptology,
vol. 7, pp 175-182, 2015.

[10] A. Myasnikov, A. Ushakov (2012, Oct.), ”Quantum algorithm
for discrete logarithm problem for matrices over finite group
rings”. [Online]. Available: http://eprint.iacr.org/2012/574

[11] S. H. Weintraub, ”Representation Theory of Finite Groups:
Algebra and Arithmetic (Graduate Studies in Mathematics)”, in
Amer Mathematical Society, vol. 59, 2003.

Romana Linkeová is a master student at
Charles University in Prague. She gradu-
ated her bachelor studies in 2014. Her study
field is Mathematical Methods in Informa-
tion Security. You can contact her: linkeovaro-
mana@gmail.com

Pavel Př́ıhoda is an associate professor at
Department of Algebra, Charles University in
Prague where he also got his PhD in math-
ematics. In 2006 - 2007 he was a PostDoc
researcher at Centre de Reserca Matematica,
Barcelona. His research field is algebra, in par-
ticular module theory. You can contact him:
prihoda@karlin.mff.cuni.cz

7

significantly simplify the situation. Instead of searching
in the whole semigroup M3(Z7[S5]), we could just search
in space of a size per(M). We have shown a method
for computing the period of M in IV-A0c therefore the
baby-step giant-step will be more effective than the
authors of [6] claimed.

VI. Related work
The security of the modified Diffie-Hellman protocol

proposed in [6] was also analysed in [10] and [9].
In [10], A. Myasnikov and A. Ushakov proposed an
embedding of M3(Z7[S5]) into M360(Z7). This embedding,
together with the Menezes-Wu algorithm, allowed the
authors to find the secret shared key using a quantum
computer in polynomial time. This paper proves that the
modified Diffie-Hellman protocol does not belong to the
realm of post-quantum cryptography.
In [9] can be found a method for attacking the
modified protocol which is based on the same core idea as
our method. The authors first constructed an embedding
ψ of M3(Z7[S5]) into M360(Z7) as proposed in [10] and
then they constructed an isomorphism between Im(ψ) and
M3(Z7) × M12(Z7) × M15(Z7) × M18(Z7) × M15(Z7) ×
M12(Z7) × M3(Z7). Having this isomorphism they were
able to retrieve the secret shared by computing the
minimal polynomial of A ∈ Im(ψ). The authors also
worked with M3(Z2[S5]) and solved the challenge given in
appendix of [6]. However, our work is in scope of [7] and
we worked independently from [9].

VII. Conclusion
We have recalled the modified Diffie-Hellman protocol

proposed in [6] which is trying to make the original
Diffie-Hellman protocol suitable for devices with limited
computational power. To do so, the authors of [6] proposed
Mn(Zp[Sm]) as a platform. However, this modification
met the computational costs requirements, it decreased
the security level of the key exchange itself. We have
shown that with help of the theory of symmetric group
representations we can exploit the algebraic properties
of Mn(Zp[Sm]) and construct the secret shared key on
a common computer in feasible time. The same result
was presented in [9]. Consequently, the modified protocol
is not as secure as is claimed in [6] when p > m. Any
improvement of this modification to resist this attack is
not clear. Our brief calculation for m = 5 and p = 2
indicates that choosing the parameters p < m is probably
not sufficient to make the protocol secure.

References
[1] H. Cohen, ”A Course in Computational Algebraic Number The-

ory”, 1st ed., Springer, Berlin, 1996.
[2] W. Diffie, M. E. Hellman, ”New directions in cryptography”, in

IEEE Transaction on Information Theory, vol. IT-22, no. 6, pp
644-654, Nov. 1976.

[3] G. D. James, ”The Representation Theory of the Symmetric
Group”, in Lecture Notes in Mathematics 682, Springer, 1978.

[4] G. D. James, A. Kerber, ”The Representation Theory of Sym-
metric group”, Cambridge University Press, 2009.

[5] A. Joux, A. Odlyzko, C. Pierrot, ”The past, evolving present,
and future of the discrete logarithm”, in Open Problems in
Mathematics and Computational Science, pp 5-36, 2014.

[6] D. Kahrobaei, C. Kouppari, V. Shpilrain, ”Public key exchange
using matrices over group rings”, in Groups, Complexity and
Cryptology, vol. 5, pp 97-115, 2013.

[7] R. Linkeová (2014, May), ”Diffie a Hellman si vyměňuj́ı matice
nad grupovým okruhem”. [Online]. Available: https://is.cuni.cz/
webapps/zzp/detail/141169/

[8] A. J. Menezes, Y. Wu, ”The discrete logarithm problem in
Gln(Fq)” in Ars Combinatoria, vol. 47, pp 23-32, 1997.

[9] Ch. Monico, M. D. Neusel, ”Cryptanalysis of a system using
matrices over group rings”, in Groups, Complexity, Cryptology,
vol. 7, pp 175-182, 2015.

[10] A. Myasnikov, A. Ushakov (2012, Oct.), ”Quantum algorithm
for discrete logarithm problem for matrices over finite group
rings”. [Online]. Available: http://eprint.iacr.org/2012/574

[11] S. H. Weintraub, ”Representation Theory of Finite Groups:
Algebra and Arithmetic (Graduate Studies in Mathematics)”, in
Amer Mathematical Society, vol. 59, 2003.

Romana Linkeová is a master student at
Charles University in Prague. She gradu-
ated her bachelor studies in 2014. Her study
field is Mathematical Methods in Informa-
tion Security. You can contact her: linkeovaro-
mana@gmail.com

Pavel Př́ıhoda is an associate professor at
Department of Algebra, Charles University in
Prague where he also got his PhD in math-
ematics. In 2006 - 2007 he was a PostDoc
researcher at Centre de Reserca Matematica,
Barcelona. His research field is algebra, in par-
ticular module theory. You can contact him:
prihoda@karlin.mff.cuni.cz

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

MARCH 2016 • VOLUME VIII • NUMBER 124

INFOCOMMUNICATIONS JOURNAL

1

Competitive Programming: a Case Study for
Developing a Simulation-based Decision Support

System
Norbert Bátfai, Member, IEEE, Péter Jeszenszky, Member, IEEE, András Mamenyák, Béla Halász,

Renátó Besenczi, János Komzsik, Balázs Kóti, Gergely Kövér, Máté Smajda, Csaba Székelyhı́di, Tamás Takács,
Géza Róka and Márton Ispány, Member, IEEE

Abstract—FootballAvatar is an experimental industrial re-
search and development subproject of the project ’SziMe3D–3D
technological innovation in tourism, education and sport’. Foot-
ballAvatar aims to produce a novel decision support information
system based on simulations for professional football clubs. This
paper establishes the notion of football avatar in the sense of
information technology, though it has a strong mathematical
background. However, we would like to apply it in several analytic
and simulation software tools developed in our project. The main
question is that how this notion could be implemented and used
in several software environments including C++, Java, and R,
or from an architectural viewpoint, on desktops, smart phones,
and tablets, while the kinds of uses and the base definitions
have often changed during the R&D phases. This changing of
the precise interpretation of the notion of “football avatar” has
a direct impact on selecting the software process model. For
this reason, we have developed an own software methodology
called Competitive Programming (CP), which will be presented
in detail, as the main result of the present paper. Our main
goal with CP was to create a methodology that allows us to
work effectively even when the objectives to achieve are changing
rapidly. As an example of the application of the methodology, the
paper discusses the aforementioned FootballAvatar project.

Index Terms—Competitive Programming, Agile Programming,
Software Process Improvement, OSS Policy, Football Avatars

I. INTRODUCTION

FootballAvatar is an experimental research and development
project aimed at producing the next generation of soccer
analysis programs. A major innovation of this project is
the simulation-based decision-making, where simulations are
organized around the notion of “football avatar”. Basically, it is
a mathematical concept introduced in Section III-I. However,
we would like to apply it in various software environments in-
cluding C++, Java, and R, or, from an architectural viewpoint,
on various front-end platforms, i.e., desktops, smart phones,
and tablets. One major challenge was that the precise definition
of “football avatar” had been changed during the R&D phases.

N. Bátfai is with the Faculty of Informatics, University of Debrecen,
P.O. Box 12, 4010 Debrecen, Hungary, and also with SziMe3D Ltd., Deb-
recen, Hungary (e-mail: batfai.norbert@inf.unideb.hu).

P. Jeszenszky, M. Ispány, A. Mamenyák, R. Besenczi, J. Komzsik, B. Kóti,
G. Kövér, M. Smajda, Cs. Székelyhı́di and T. Takács are with the Faculty of
Informatics, University of Debrecen, Hungary, and also with SziMe3D Ltd.,
Debrecen, Hungary.

B. Halász is with SziMe3D Ltd., Debrecen, Hungary.
G. Róka is with DVSC Futball Szervező Zrt., Debrecen, Hungary.
Manuscript received May 12, 2015. Revised: December 8, 2015.

Since refined definitions had to be used in many software
components, we had to develop our own software process
methodology practice called Competitive Programming (or CP
for short). CP is a competition-based methodology that extends
the agile development processes and is based on a combination
of eXtreme Programming and Rapid Application Development
(RAD). At the heart of the methodology are the creation of an
initial rapid prototype and the formation of small (typically,
one or two member) developer teams that work on forks of the
initial prototype in competition. CP incorporates gamification
elements to motivate the competition among teams. The use
of free and open source software is also an important element
of CP, thus it provides support to implement an open source
software policy.

The paper presents the FootbalAvatar project to demonstrate
an application scenario of Competitive Programming. CP will
be introduced in the first part of the paper, then, in the second
part the FootballAvatar system is presented in detail.

A. A Brief History of the FootballAvatar Project and Earlier
Work

The idea of the FootballAvatar project was born in July
2009. Then, with the help of the Silicon Field Regional IT
Cluster we had found investors and won a tender for the
project. Some related works (e.g., [1], [2], and [3]) were
created before the FootballAvatar project started. We do not
use any of the data or software components created from these
works, the FootballAvatar software system has been made
from scratch.

The article [1] introduced the notion of “football avatar”
using an XML-based approach. [2] and [3] investigated the
RoboCup soccer simulation. Since it is an existing and well-
known soccer simulation model, it was necessary to examine
it before the developement process was started.

B. Technological and Methodological Background

In the scientific literature, it is not uncommon that a
company customizes a well-known methodology. For example,
[4] presents a study of Toyota’s software development process
called Toyota Production System. In general, numerous scien-
tific publications can be found about the relationship between
Software Process Improvement (SPI) and agile methodologies.

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 25

2

For example, [5] introduces a mobile development oriented
SPI customization.

We are committed to the Agile Manifesto [6] and we are
familiar with agile software development methodologies, such
as Scrum ([7], [8]) or eXtreme Programming [9]. There are
many examples of customized agile methods, for example, see
[10]. As another customization example, Solo Scrum [11] may
be interesting for us because our SPI uses one-member de-
velopment teams in many competitions (competition plays an
essential role in our SPI). Our methodology also incorporates
gamification [12] elements.

In recent years it has become more and more common to
write programs that run parallel on the GPU, thus outperform-
ing equivalent CPU solutions ([13], [14]). This would not have
been possible without the appearance of easy-to-use APIs,
such as the NVIDIA CUDA toolkit [15]. CUDA is widely
used for research and simulations, such as simulating artificial
neural networks [16]. We believe in this new approach to
programming, and to make use of the computational power
of GPUs, we also implemented our simulations using CUDA.

C. A Review of Existing Soccer Simulation Models

The whole FootballAvatar system is organized around soc-
cer simulations. Thus, soccer simulations with their theoretical
and technical background are the most characteristic feature
of the system to be developed.

In our approach, a soccer simulation is (1) realistic, if
it has the appearance of a real soccer match, that is, for
example, there are players, who have inertia and acceleration;
(2) quasi-realistic, if it can be considered to be similar to a real
soccer match in some way; (3) non-realistic, where the aim
of the simulation is not to reproduce the course of the game
itself. For example, a match between two sophisticated 2D
RoboCup Soccer Simulation (RCSS) teams, such as HELIOS
[17] and WrightEagle [18], is a realistic simulation. On the
other hand, FerSML [1] simulations are quasi-realistic models,
because FerSML does not use any realistic kinematic models
for the motions of the players. In the following, quasi-realistic
simulations are also referred to as FerSML-like simulations.
The Quantum Consciousness Soccer Simulation (QCSS) [19]
is another example for the quasi-realistic model, but it typically
can work as a non-realistic model too. Finally, soccer betting
prediction is typically based on non-realistic models, for exam-
ple, statistical forecasting models. Some of these models focus
on predicting tournament outcomes [20] or league positions
[21] while other ones are concerned with predicting outcomes
of individual matches [22].

In the case of realistic and quasi-realistic simulations, we
usually use the “TV criterion” to characterize the appearance
of simulated matches. It is a subjective criterion introduced
in [23] that checks whether the flow of play looks like a
real soccer match. It should be noted that the TV criterion
is entirely based on subjective opinions of human observers
and therefore it cannot be quantitatively described.

At the beginning of the research process we have inves-
tigated and understood [2] the 2D RCSS model. However,
the possibility of using of the 2D RCSS in FootballAvatar

was rejected which was the conclusion of our previously cited
work. One of the reasons of the rejection was that the project
management has chosen to apply a closed-source license.
The other reason was that RCSS [24] very strongly focuses
on Artificial Intelligence, which is not surprising since robot
soccer is a standard AI task. In this paper, we are interested
only in sport science simulations.

Contrarily, FerSML is already a sport science model but
the usage of this simulation model was abandoned also from
the same license cause. For the same reason, we cannot use
QCSS too. However, in the case of QCSS it is essential to
emphasize that soccer simulation is not a determining factor,
because QCSS is a cognitive model for trying to investigate
the emerging human consciousness.

Finally, it should be noticed that our simulators cannot
be compared with popular products of the game industry
because FootballAvatar as a product is intended for experts
of professional football clubs rather than lay audiences.

II. SOFTWARE PROCESS IMPROVEMENT IN
FOOTBALLAVATAR

A. Project Organization

SziMe3D Ltd. is located in Debrecen, Hungary in Cen-
tral Europe. It is the project company of FootballAvatar.
“Nagyerdei Gerundium” is a SziMe3D working group which
mainly consists of contracted researchers from the Univer-
sity of Debrecen, including 4 PhD doctors, 2 postgraduate
researchers, 1 PhD student, and 8 BSc students. The initial
idea and the essential part of the design were developed by this
group. In addition, the modeling, analyzing, and simulation
parts of FootballAvatar are also developed by the “Nagyerdei
Gerundium”.

There is a representative of SziMe3D Ltd. in the working
group “Nagyerdei Gerundium” who corresponds with the
Product Owner in Scrum terminology, see [7] and [8]. We
are familiar with Scrum, but do not follow it, for example,
“Nagyerdei Gerundium” is not a Scrum team, it is divided
into smaller subgroups that overlap each other during the
development. Our Software Process Improvement (SPI) will
be introduced in Sect. II-B.

B. Competitive Programming

In research projects it is natural that clearly defined devel-
opment targets cannot be established until we have enough ex-
perience in the area to be researched. In our case, this area has
a strong mathematical flavour, simply because football avatar
is a mathematical statistics-based concept (see Section III-I).

It is clear that choosing the software development methodol-
ogy is an essential element for industrial projects. Taking into
consideration that our project is a research project as well,
where the software requirements are not clearly understood, it
therefore seems appropriate to choose an agile methodology
for the development of the FootballAvatar project.

In addition, it is important to note that the quintessence
of the development of FootballAvatar is that it takes place
in a university environment. This gives a unique opportunity
for introducing some innovations in the software development

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

MARCH 2016 • VOLUME VIII • NUMBER 126

INFOCOMMUNICATIONS JOURNAL

3

process. Since FootballAvatar is an industrial project one of the
most fundamental issues is the interest of investors. However,
the project is embedded in the University of Debrecen, since
members of the core developer team (including all but one
of the authors) who are contracted employees or apprentices
of the project company are also with the university as a
researcher or a student. In this environment we deeply believe
in the Agile Manifesto [6], and what is more, the management
of the project company also support it. The choice of this
environment brings several benefits to the development. The
main strength of our project is that we have the possibility to
involve the best students in the software development. It is a
very important aspect from the point of view of cost-efficiency,
and it enables us to introduce a competition-based method for
extending the agile development processes.

Fig. 1 shows the general model of our own software
development process based on a combination of eXtreme
Programming (XP) ([9], [25]) and Rapid Application Devel-
opment (RAD) [26], where the competition among the forked
rapid prototypes of XP programming pairs is focused. The
first step of our approach is the creation of an initial rapid
prototype to identify the major features of the application to
be developed. This proto is based on user’s and developer’s
stories presented in weekly project meetings and is typically
created by a guru programmer (see Subsection II-B3). It is
important to emphasize the role of the developers because
they have no soccer-specific preconceptions. Even the absence
of these preconceptions can allow us to create entirely new
software products and services. Naturally, this has to be
done in close cooperation with soccer and business experts.
This iteration is a usual agile iteration which is shown by a
dotted line in Fig. 1. Our competition-based agile software
development practice presented in this paper is referred to
as Competitive Programming.1 The formal documents of this
method can be found at http://footballavatar.hu/CP. Two of
the most significant developer documents are the competition
form and the OSS policy form that are shown in Table I and
II. We maintain these forms in DocBook XML as part of
our documentation process that is presented in more detail
in Sect. III-J.

Table I shows the layout of our competition form. The lower
part of the form supports the evaluation process that can be
iterated many times depending on the result of the previous
evaluation.

Table II shows the layout of our OSS submission form. The
detailed description of our OSS policy process is presented in
Sect. II-C.

Below we briefly survey the main competing areas, such
as MABSA and FANM. The former acronym stands for
MultiAgent-Based Server Architecture, the latter stands for
FANM is Not MABSA. These will be detailed in sections
III-E and III-F.

1It should be noted that the term competitive programming is also used
broadly in the context of programming contests, where it is used to describe
competitions in which participants compete with each other in solving various
programming tasks [27]. There is also a Wikipedia article with the title
Competitive programming [28] devoted to the topic. In our terminology, this
term is used to denote a software development methodology.

TABLE I: Competition form

TO BE FILLED AT TEAM FORMATION

Date of team formation

Team name

Member #1

Member #2

Supervisor of the team

Short description of the
task

For which part of the sys-
tem is the task related to

Deadline of first iteration

Repository location

Names of competing
teams

Comment

TO BE FILLED AT EVALUATION

Date

OSS policy verdict approve/approve
with limitations (see
comment)/cancel

Meeting verdict approve/cancel/suspend

Comment

TABLE II: Open source software submission form

TO BE FILLED AT SUBMISSION

Name of submitter

Team of submitter

Date of submission

Name of software

URL to obtain the soft-
ware

Type of intended usage use as library/internal de-
veloper tool/runtime envi-
ronment/content

For which parts of the sys-
tem is the software in-
tended to be used?

Will the software be dis-
tributed with the final
product?

yes/no

Name of license(s)

Location where the li-
cense is indicated (e.g.,
LICENSE file included in
package, web page)

TO BE FILLED AT EVALUATION

Person responsible for the
verdict

Verdict (approve or reject
intended use)

approve/approve
with limitations (see
comment)/reject

Comment

• Competing MABSA Implementations: MABSA is our
internal research simulation platform which will be dis-
cussed in detail in Sect. III-E. For the development
of this platform three development teams were allo-
cated, namely: FBA One C++ (FBA is an acronym for

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 27

4

Story Rapid prototype
made by a guru Fork

An XP pair’s
rapid proto

An XP pair’s
rapid proto

An XP pair’s
rapid proto

An XP pair’s
rapid proto

Competition Accept? Possible product
line

Suspended
temporarily

Possible product
line

Rejected
permanently

Product

iterate (costumers)
iterate (developers)

Fig. 1: A general model of the competition based agile software development process. The redundant paths (marked by bold
line) are integrated into the product line.

“FootballAvatar”), Tunneled Footballers, and Hungarian
Phoenix FC (see Fig. 2). At first, the development team
Hungarian Phoenix (MABSA-HPFC) was suspended, and
later it was cancelled. For a possible reason for this, see
Sect. III-F1.

• Competing FANM Implementations: In our terminology,
the term FANM stands for soccer simulation implemen-
tations that are easy to reuse across multiple applica-
tions and platforms. It will be introduced in Sect. III-F.
The competing FANM development teams are shown in
Fig. 3.

• Competing CUDA ports of FANM Implementations: A
part of the FootballAvatar simulations can be computed
on a Linux PC equipped with NVIDIA GPU. Porting
FANM models to CUDA is a very challenging task but
the result can be very effective. The object of the contest
is to maximize the number of parallel threads of soccer
matches in a CUDA block.

Finally, we note that similar competition-based method-
ological approaches are used in our other projects. These
approaches have grown out of the first author’s competition
based teaching techniques. However, the idea of competing
rapid prototypes is unequivocally rooted in the FootballAvatar
project, because the success of the developed soccer simulation
teams can be naturally measured by the results of the matches
between them. In addition, we knew and understood very well
from the beginning that it will be hard to find successful soccer
algorithms that can reproduce the distributions observed in
reality. The reason for introducing competitions into our SPI
was that we wanted to support this search.

1) Incorporating Gamification Elements: Competitions can
be interpreted as games between developers, where the win-
ning itself is the direct reward of competitions. In this sense,
stating the most challenging research problems and develop-

ment tasks as competitions can be regarded as gamification,
or rather, as ludification ([12], [29]).

As a classic gamification element, we have developed a
point system to indicate the difficulty and also the monetary
value of competition tasks. We represent values with quater-
nary (base 4) numbers, where digits are symbolized by balls.
In our notation, a “classic soccer ball” denotes 0, a “silver
ball” denotes 1, a “gold ball” denotes 2, and finally, a “fire
ball” denotes 3.

2) Selection of the Winner: A question that must be an-
swered is how a winner is selected from a set of competing
rapid prototypes. In the case of soccer team simulation algo-
rithms (ie., MABSA and FANM soccer teams) the winner can
be naturally determined by simulating a tournament among
the competing teams. In general, selecting the winner is
straightforward in the case of competing simulation algo-
rithms, ie., the winner is the one that produces results closest
to reality. For this and other reasons our intuition suggests
that developing simulation algorithms is such an area where
the CP methodology can applied very effectively.

In other cases (eg. porting FANM soccer teams to CUDA)
the goal of the competition is to minimize or maximize
a predefined objective function (ie. the number of parallel
threads of soccer matches in a CUDA block). If that is the
case, the selection of the winner is straightforward.

On the other hand, there are cases where the winner is de-
termined by some other mechanism. For example, the logo of
the FootballAvatar project was also selected in a competition
by a voting procedure (see Section III-H).

3) Our Best Practices to Set Up Competing Development
Teams: As shown in Table III, we have organized competitions
in ten different research and development fields that are named
in the first column and will be detailed in Sections III-E,
III-F, III-G and III-H. Starting from the second column, the

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

MARCH 2016 • VOLUME VIII • NUMBER 128

INFOCOMMUNICATIONS JOURNAL

5

MABSA MABSA-FBA1
FC++ Fork MABSA-HPFC

MABSA-FBA1
FC++

MABSA-TF

Competition Accept? Rejected
permanently

Pos-
sible product line

Pos-
sible product
line

Product

Fig. 2: An arrangement of MABSA rapid prototypes in our competition programming flow chart. MABSA acronyms are
explained in detail in Sect. III-E.

FANM FANM-FBA1
C++ Fork FANM-HPFC

FANM-TF

FANM-FBA1
C++

FANM-DH

FANM-DHAM

TV
criterion

Suspended
temporarily

FANM-TF

FANM-FBA1
C++

FANM-DH

FANM-DHAM

Statistical
tests

Accept?

Fig. 3: An arrangement of FANM rapid prototypes in our competition programming flow chart. FANM acronyms are explained
in detail in Sect. III-F.

activities of our researchers and developers are shown. In the
table, an “1” denotes that the person represented by the column
successfully took part in at least one competition in the field.
“0” denotes non-participation, while an underlined “0” stands
for unsuccessful participation.

Our experience shows that the most successful development
teams consist of one or two members. All competing teams
with more than two members were unsuccessful, and their
activities had to be reorganized or, in several cases, had to be
suspended temporarily or cancelled permanently.

In addition, our experience suggests that there is a strong
correlation between taking part in the work of the successful
teams and the number of commits (shown in the last row of
Table III). It is not surprising, as we maintain all source code
and documentation under version control. We also noticed that
the activity of our researchers and developers follows a Pareto-
like distribution in that sense that 80 percent of the commits
were made by 20 percent of the members (see Fig. 4).

We recommend that the whole project team should include
two guru programmers, two mathematicians, about 10 soft-
ware engineering students, and a project owner together with
further technical experts from the target area of the system
to be developed (in our case, they are soccer experts). The
development must be managed by the project leader who
should be one of two programming gurus. The project leader
should continuously monitor the activity of the others. This
monitoring process is based on the number of commits per

month and until it follows the early mentioned Pareto-like
distribution, the project leader makes proposals to include new
members in order to help, reorganize or replace members who
are in the tail of the Pareto-like distribution.

C. Using Open Source Software and Licensing Issues

Open source software have become a key factor in the IT
industry. According to a Gartner survey conducted in 2008
[30], 85% of companies already used open source software,
while the remaining 15% percent expected to do so in the
next 12 months. (A total of 274 companies took part in the
survey from around the world.) In their more recent report
[31] they expect open source software to continue to broaden
its presence.

Open source has also become a business, a number of
companies are specifically set up to develop and distribute
open source software. Even terms such as professional open
source (POS) [32], OSS 2.0 [33], and second-generation open
source (OSSg2) [34] were coined to refer to commercially
developed open source software. Enterprises can also benefit
a lot from using open source software to develop their own
software products (for example, see [35]).

Therefore, to exploit inherent advantages we use a lot of
open source software in the development of the FootballAvatar
system.

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 29

6

TABLE III: Competition in the FootballAvatar project. The rows show different research and development fields, and the
columns represent the activities of our researchers and developers, see text for detailed explanation.

* * * * *

MABSA 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

FANM 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0

FANM+ 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0

FANM (CUDA) 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0

2D 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0

3D 1 0 0 0 0 1 0 1 0 1 0 0 1 1 0

MOBILE 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

ANALY “0” 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0

ANALY “−1” 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0

BRAND 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

commits in [T1, T2] 835 538 270 31 14 27 23 24 16 <10 20 60 93 27 <10

commits in [T3, T4] 250 216 64 31 14 27 23 24 16 <10 20 <10 11 <10 <10

(a) The total number of commits in
our repositories in a given time inter-
val [T1, T2].

(b) The total number of commits in
our repositories in a time interval
[T3, T4], soon after when new de-
velopers joined to the project, where
[T3, T4] ⊂ [T1, T2].

(c) The number of commits in our
source code repository in a given time
interval [T1, T2].

(d) The number of commits in our
source code repository in a time inter-
val [T3, T4], soon after when new de-
velopers joined to the project, where
[T3, T4] ⊂ [T1, T2].

Fig. 4: Anonymized bar charts showing developer activity,
where each bar represents the number of commits by a
developer. Here the shapes of the distributions are significant,
rather than the exact number of commits. In figures 4(b) and
4(d), it is shown that performance shifts slightly towards a
distribution with a heavier tail after new members had been
included. Our project management also uses these charts for
the assessment of the work done by the developers.

1) OSS Policy: It is a common practice among enterprises
to develop and maintain an open source software policy (or
OSS policy in short), in which they specify the accepted uses
of open source components and their license requirements
for third-party open source software (for a comprehensive
treatment of this topic, see [36]). It should be noted that,
according to the Gartner survey conducted in 2008 [30], 69
percent of companies examined had no such a formal policy.
The study also concluded that companies should have an OSS
policy.

To assure that their licensing terms will not interfere with
our closed source business model we maintain a list of all
third-party software used for the development of the system.
Developers have to name each third-party software they would
like to use and our licensing experts decide on a case-by-
case basis if their licensing terms comply with our licensing
policies. If the licensing experts reject the use of a third-party
software they try to suggest appropriate alternatives too.

We call the organizational process described above as Li-
cense Approval Process (LAP). The process also includes legal
consultation with third-party software vendors (see later).

2) An insight into our OSS policy: Since the majority of
the system will be proprietary (non-free) software it limits
the use of free and open source components. For example,
any code released under a copyleft license like the GNU GPL
cannot be incorporated into non-free software. Therefore, we
prefer using free and open source libraries distributed under
commercial friendly open source licenses, such as the Apache
License, the X11 License, or the various BSD licenses. (For a
comprehensive overview of the popular free and open source
licenses see [36].) We use GPL’d code only as a last resort
for standalone components that we make available as free
and open source. The project company allows open source
developments only in certain areas of FootballAvatar, but these
components are independent from the simulation core. Note
that the GNU GPL does not limit the use of the output of
a program distributed under its terms. (See the question “In
what cases is the output of a GPL program covered by the
GPL too?” in [37].) Thus, we can use GPL’d software in the
development of FootballAvatar. For example, we use Blender
and GIMP to create content.

Some free and open source licenses require special attention

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

MARCH 2016 • VOLUME VIII • NUMBER 130

INFOCOMMUNICATIONS JOURNAL

7

in non-free projects, one such license is the GNU LGPL.
Although it is a so-called weak copyleft license that is intended
to be appropriate for non-free applications, it is not without
problems (for example, see [36]). Developers must permit
the modification of any LGPL’d libraries they use and also
the reverse engineering of their own code for debugging
such modifications. Since reverse engineering is undesirable
in closed source projects, we try to avoid GNU LGPL and
use LGPL’d software only as a last resort when there is no
appropriate alternative (an example is the Qt framework). We
use LGPL’d code for free and open source components. If our
non-free code must be linked with LGPL’d code we permit
reverse engineering for parts of our system.

Licensing also requires special care because in one of our
sales model we will distribute the FootballAvatar system in
binary form bundled together with all required third-party soft-
ware, even with a complete Linux operating system. Fedora
has been chosen as our primary free and open source Linux
distro. We consulted with the legal team of the Fedora Project
and they have authorized us to distribute our system together
with Fedora under the name Fedora Remix.

a) Example of Rejection: For example, the use of Ubuntu
Touch as a target platform for our mobile interface was
rejected. Ubuntu Touch is an Ubuntu Linux distribution for
touchscreen mobile devices developed by Canonical Ltd. At
present, it is experimental software for evaluation purposes
only that is available free for non-commercial use. Although
it is a promising mobile platform its current licensing terms
are not appropriate for us since they prohibit any commercial
use.

3) Types of Third-party Software: It is worth noting that
we distinguish the following four category of software in
our list of third-party software maintained within the LAP:
(1) libraries (such as Mesa and Qt), (2) runtime environments
(such as R and WordPress), (3) developer tools (such as
Apache Maven and Blender), (4) and other content (such
as fonts and artwork). These categories represent slightly
different uses of third-party software. For example, developer
tools include build automation software used by our developers
to build the FootballAvatar system from sources and graphics
software used by our artists to create original artwork, such
as product logos. These tools don’t have to be bundled with
the final product.

III. AN OVERVIEW OF THE FOOTBALLAVATAR SYSTEM

The results of the research and development activities of
FootballAvatar can be grouped into following three basic
categories:

(1) Actually, software components in the FBA Core category
constitute the FootballAvatar system. They are distributed
under a closed source proprietary license. (2) The elements of
the category FBA Add-Ons are additional components whose
terms of use are different from than those of the FBA Core.
For example, FBA Add-Ons contains open source software.
(3) The elements classified in category FBA Exper shall not be
included in the FootballAvatar product, for example, because
of licensing problems.

In the following, we review the FootballAvatar Soccer
Simulator Collection that we also refer to as the Multi-speed
Simulator.

A. A Quick Glance at the Multi-speed Simulator

The main functionality of the FootballAvatar system is
organized into successive simulation levels. We refer to this
layered architecture as Simulation Oriented Architecture, or
SimOA for short. The following three main levels (or speeds)
can be distinguished in the FootballAvatar Soccer Simulation
Collection: (1) On the level labeled “−1” simulation algo-
rithms use only publicly available or estimated data based on
objective and/or subjective observations. (2) Level “0” uses
dedicated equipment such as video cameras and sensors to
gather data (this infrastructure is provided and operated by our
partners). (3) Higher (“+”) levels can be built on the lower
ones.

The software elements on each layer can typically operate
in the following three additional modes: standalone mode,
analyzer mode, and avatar simulation mode. (1) Standalone
simulators and analyzers operate independently on both the
data provided professionally and available publicly. One im-
portant use of the standalone elements is to generate test data.
(2) Software in the analyzer mode can be used to examine test
data or real soccer data. This mode uses advanced data mining
and statistical techniques such as bivariate Poisson regression
models, see also [38]. (3) The avatar simulation mode is the
basis of the comparison of real and simulated soccer matches.

The main difference between the standalone and the avatar
simulations is that the former has no input at all or its input
is not decisive. However, in the case of avatar simulations the
representation and behaviour of the players and teams depend
very heavily on the input.

In addition, from an architectural viewpoint, we distin-
guish the following three environments: (1) MABSA (Multi-
Agent-Based Server Architecture) is a multi-agent system
to simulate and analyze soccer matches. This environment
is for research purposes only. (2) FANM (as opposed to
MABSA) software elements neither use networking nor agent
technology. These models purely focus on soccer simulation
algorithms. (3) FANM+ elements supplement FANM with
additional features. For example, FANM+ contains FANM
algorithms ported to Nvidia’s CUDA platform.

Finally, from the aspect of implementations, we have sev-
eral reference implementations, such as FBA One, Tunneled
Footballers, and Hungarian Phoenix, that represent potential
product lines.

In the next paragraphs, we give a detailed insight into the
multi-speed simulator. It is important to emphasize that all
presented models and components have been developed in the
developer competition stage.

B. Speed “−1”

The level “−1” of the FootballAvatar system consists of
simulation algorithms that use only publicly available or esti-
mated data based on objective and/or subjective observations.
Among others, the algorithms on this level make prediction of

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 31

8

the outcomes of various events that occur during matches for
the coaches of a football team. These events are, for example,
the result (win, draw, or lose) of a match, the number of goals,
faults, yellow and red cards. It should be emphasized that we
do not want to compete against betting offices by developing
winning strategies for the gambling market. The main goal
of the level “−1” is to help a football team providing useful
information such as the comparison of the strengths of the
teams who will be playing at the weekend or whether the
next opponent has a taste for more faults than usual.

C. Speed “0”

Several performance metrics are used in professional foot-
ball, of which the best known is the EA SPORTS Player
Performance Index (PPI). According to [39], PPI is used in
the Barclays Premier League to analyze the performance of
players. PPI’s strength is its ability to measure the performance
of players independently of their playing position. It is also
interesting to notice that PPI is based on a published research
paper [40].

In the FootballAvatar project we are working on a concep-
tually similar index but its development is in a very early
stage. We are experimenting with different kinds of indices.
For instance, we have some promising results with the use of
the Similarity Metric [41]. However, the software components
in question are experimental and not part of FBA Core, they
are assigned to FBA Exper. “Decision Processor” is a standard
FBA Core coaching staff’s tool in FootballAvatar that can
help to classify the decisions of players in a discrete time
scale. The output from this tool can be used as a basis for
building performance indices. We experimented with several
FBA Exper solutions based on the data produced by “Decision
Processor”.

D. Higher Speeds

Higher speeds are based on FANM simulations. Typical use
cases for the higher speeds are the following: (1) Simulating
full championships, such as national cups, the Champions
League, or the World Cup, including the creation of match
calendars (match scheduling). (2) Extending simulations by
incorporating additional models, for example, physiological
ones. Currently, the system uses two such extensions, a player
stamina model and a foul model. The above mentioned stamina
and foul models affect simulations by modifying the properties
of players (also referred to as avatar properties) as a function
of time. These models will be discussed in detail in a further
paper that is currently under development. The modifications
of the properties are implemented via AOP (Aspect-Oriented
Programming) [42] aspects.

E. MABSA: MultiAgent-Based Server Architecture

MABSA is an acronym for MultiAgent-Based Server Ar-
chitecture. It is a TCP/IP-based client-server framework de-
veloped in C++ from scratch by the first author. MABSA is
based on the Berkeley Socket API and uses IO multiplexing to
control both the server and the clients. The main feature of this

Soccer
Player
Agents

Simulator Proxy
Simulation

Server
Agents

SensoryInput

ActorRequest ActorRequest

SensoryInput

Fig. 5: The MABSA simulation architecture. Simulation algo-
rithms are also implemented as agents, therefore they can be
easily plugged in or replaced. This flexibility makes the search
for good simulation algorithms easier.

architecture is that simulation algorithms can be connected to
the server in the same way as client agents (see Fig. 5).

MABSA soccer teams and simulation algorithms have been
developed in competition. In the following, we will refer to a
MABSA soccer team and a simulation algorithm together as
a MABSA implementation. Initially, we had three competing
implementations that we refer to as MABSA reference imple-
mentations.

1) The MABSA Communication Protocol, Simulation Algo-
rithms and Soccer Teams: The implementation of the commu-
nication protocol between simulation and analyzer algorithms
and also simulated players is based on Google’s Protocol
Buffers [43]. The protocol was developed in accordance with
our competition based methodology. Originally, MABSA de-
velopment teams used their slightly modified versions of an
initial protocol. Currently, developers use a unified protocol
that represents a consensus among them and is a result of
an iterative development. The protocol is organized around
two communication classes, namely, SensoryInput and Ac-
torRequest: the former encapsulates all inputs available to
clients (i.e., players), while the latter their responses to their
input. The exchange of SensoryInput and ActorRequest objects
between agents (i.e., players and simulation algorithms) is via
a simulator proxy.

a) MABSA-FBA1 FC++: It is the first author’s C++-
based reference implementation which has been developed as a
rapid prototype. Directly or indirectly, the other development
teams used it as a basis for their own MABSA implemen-
tation. MABSA-FBA1 FC++ uses a discrete-time simulation
algorithm that will be detailed in a further paper.

b) Hungarian Phoenix FC (HPFC): Because this de-
velopment team failed to comply with the time-limits for
the development of a working MABSA soccer team, it was
suspended temporarily. Then, after an unsuccessful reorga-
nization it was cancelled. The lack of success of HPFC
may be explained by the “guru problem” in the sense of
[44], since members had not enough experience with network
programming and soccer modeling.

c) Tunneled Footballers: It is the third author’s C++-
based MABSA implementation. It uses a discrete-time al-
gorithm that calculates the motion of the ball based on the
Runge-Kutta method. The players can interact with the ball
and with their environment with the following commands:
stand, move, kick, catch and tackle. They also have attributes
that determine the effectiveness of their actions, namely, speed,
stamina, power, ball-control, dribbling, tackling.

The developer has created an own display program called

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

MARCH 2016 • VOLUME VIII • NUMBER 132

INFOCOMMUNICATIONS JOURNAL

9

(a) This figure shows the
result of 24,200 simulated
matches on a GeForce GTX
560 Ti card, organized into
484 (22 × 22) threads per
CUDA block.

(b) This figure shows the
result of 51,200 simulated
matches on a GeForce GTX
660 Ti card, organized into
1024 (32 × 32) threads per
CUDA block.

Fig. 6: The Hungarian flag notation for visualizing CUDA
simulation results, where a red pixel denotes a win, a white
one a draw, and a green one a defeat (for the home team).

FootballEye, which can be seen in action in Fig. 10. This pro-
gram serves as a testing and debugging tool for the developer.

F. FANM: FANM is Not MABSA

FANM is a recursive acronym for FANM is Not MABSA.
The term denotes the second of our two architectures for
soccer simulation. While the MABSA architecture primarily
serves as an internal research platform, FANM is intended to
be used in the end product. It supports easy embedding of
simulations algorithms to the system. FANM algorithms can
be ported to run in extremely parallel computing environments,
such as CUDA GPUs.

1) FANM Simulation Algorithms and Teams: Similarly to
MABSA, FANM implementations have also been developed in
competition. We have five different competing FANM develop-
ment teams, namely, FANM-FBA1 FC++, FANM-TF, FANM-
HPFC, FANM-Debrecen Handsomes, and FANM-Debrecen
HardAsMuscle.

a) FANM-FBA1 FC++: The name stands for a FANM
reference implementation written in C++ by the first author.
It is a rapid prototype that is easily portable to CUDA. Its
simulation algorithm is developed from scratch and uses a
FerSML-like control in that sense that it has been organized
around the motion of the ball. A skeleton of the CUDA
ported version of this implementation is shown in Listing 1.
Fig. 6 shows our visualization technique called Hungarian flag
notation, where the columns correspond to the line-ups of the
away team and rows correspond to the line-ups of the home
team. In this experiment both teams used the same five line-
ups, but the 3rd and 5th line-ups were detuned to get better
results for the home team. In this figure each pixel represents
the result of a match. The figure itself reflects that the results
are correct.

b) FANM-TF: It is a FANM implementation written in
C++ by the third author. FANM-TF is easily portable to
CUDA. Its simulation algorithm was taken from the MABSA
implementation called Tunneled Footballers, but it uses neither
sockets nor agents.

Listing 1: CUDA skeleton code for the FANM reference
implementation FANM-FBA1 FC++.

dev ice vo id
fanmsimu (/∗ b l o c k I d x . x , b l o c k I d x . y , d c u r a n d i n i t ,

d f a v a t a r s , d l i n e u p s , d p a s s e s , d r e s u l t s ∗ /)
{

/ / GPU
/ / A SOCCER SIMULATION

}
g l o b a l vo id

s e t u p f a n m k e r n e l (/∗ d c u r a n d i n i t ∗ /)
{

/ / GPU
. . .
c u r a n d i n i t (. . .) ;

}

g l o b a l vo id
f a n m k e r n e l (. . .)
{

/ / GPU
. . .
fanmsimu (/∗ b l o c k I d x . x , b l o c k I d x . y , d c u r a n d i n i t ,

d f a v a t a r s , d l i n e u p s , d p a s s e s , d r e s u l t s ∗ /) ;
}

i n t
main (i n t a rgc , c h a r ∗a rg v [])
{

/ / CPU
. . .
dim3 gr id (5 , 10) ;
dim3 t g r i d (32 , 32) ;
. . .
s e t u p f a n m k e r n e l <<< grid , t g r i d >>> (/∗ i n i c . ∗ /) ;

f a n m k e r n e l <<< grid , t g r i d >>> (/∗ d r n d i n i c , d f a v a t a r s ,
d l i n e u p s , d p a s s e s , d r e s u l t s ∗ /) ;

. . .
}

c) FANM-HPFC: Although it was intended to be a
complete FANM implementation, this software works in the
analyzer mode only. The development of the standalone and
avatar simulation modes was cancelled due to problems in-
herited from MABSA-HPFC. Another reason for the failure
was that, unlike other FANM implementations (e.g., FANM-
Debrecen Handsomes) FANM-HPFC does not reuse code from
other implementations, it was intended to be written in Java
from scratch.

d) FANM-Debrecen Handsomes: This FANM implemen-
tation is currently under development by the fifth and ninth
authors. It is written in C++ and extends FANM-FBA1 FC++
with the use of a stamina model mentioned in Sect. III-D.
Several factors affect the stamina of a player, these factors
can be classified into two groups. First, any activity (e.g.,
movement, passing, dribbling) by the player has a direct
impact on the stamina. Second, physiological properties (e.g.,
blood pressure, blood chemistry characteristics) also modify
it.

e) FANM-Debrecen HardAsMuscle: This FANM imple-
mentation is developed by the eighth author. It is written
in C++ and is based on FANM-FBA1 FC++. There are a
few, but significant differences compared to the other FANM
implementations. For example, the simulation algorithm uses
a foul model that assigns the probability of committing a foul
to each player.

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 33

10

G. User Interface

Two main types of users are distinguished in the Foot-
ballAvatar system, end users and a special user called Foot-
ballAvatar Operator, or FAO for short. Every software product
has end users. In our case, they are coaches, managers, and
executives of a football club. The FAO is an expert user with
a deep knowledge and understading of the FootballAvatar
system, whose main task is to provide end users with all
information they require, such as simulation results.

Consistent with the above, we distinguish the following two
user interface levels: (1) The first UI level is specifically for
the FAO. It is a PC-only interface, and its main goal is to
provide functionality to run simulations and to provide infor-
mation for end users. (2) The second UI level is specifically
for end users. It is built on the information provided by the
FAO. UI implementations must be portable and easy to use,
so this interface is only available on portable devices (i.e., on
tablets and smartphones).

The organization of the user interface reflects the SimOA
introduced in Sect. III-A, i.e., the FAO must choose one of
the simulation levels before use.

2D and 3D display applications, mobile solutions, and data
analysis applications are typical elements of the user interface.
Similarly to MABSA and FANM implementations, they are
also being developed in competition with each other. We have
five 3D, four 2D, and four mobile-based competing display
applications, and eight competing data analysis applications.
Only some of them will be presented here.

f) Competing 3D Display Applications: Basically, two
kinds of 3D display applications are being developed to
be used in the FootballAvatar system: an anthropomorphic
that uses 3D animated human models, and a schematic that
uses buttons to represent players. The latter solution is also
referred to as “button soccer display”. For example, 3D Model
Animation (3DMA) is an anthropomorphic display application
developed by the eleventh author. Fig. 7 shows a 3D model
of this application, that was created by Blender [45] and
MakeHuman [46].

We have experimented with several “button soccer” type
displays. For example, an OpenGL-based display application
made by the development team FBA1 is shown in Fig. 8.

g) Competing 2D Display Applications: We have four
different competing solutions for 2D display and match analy-
sis. For example, Multi-Display Player, or MDP for short, was
designed to display multiple visualizations at the same time
using screen splitting. It is intended to be used in tactic rooms
equipped with a big screen or a projector. MDP provides a
flexible layout architecture to which additional visualizations
(e.g., new charts) can be added easily.

As another example, Fig. 10 shows a Qt-based display and
analytic application that works with both the MABSA and
the FANM architecture too and was very successful in the
developer competition phase.

h) Competing Mobile Solutions: Fig. 11 shows a screen-
shot from our four competing mobile solutions. For example,
View 2D Entity (V2DE) is one of the MDP modules designed
to display a football pitch in 2D and to perform basic analytics.

(a)

(b)

Fig. 7: 3D models of a football player used by the 3D Model
Animation (3DMA) display program. The two models differ
only in the shirt logo.

Fig. 8: The OpenGL-based display program of the develop-
ment team FBA1.

Fig. 9: The modular layout of Multi-Display Player (MDP).

V2DE can run detached from MDP as an independent cross-
platform application on Windows, Linux, and also on Android
tablets.

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

MARCH 2016 • VOLUME VIII • NUMBER 134

INFOCOMMUNICATIONS JOURNAL

11

Fig. 10: FootballEye, a QT-based display program of the
development team Tunneled Footballers.

(a) The 2D player called FA-droid. (b) The 2D player called
View2DEntity.

(c) Tactic Design Table. (d) FootballEye with QT5 running
on Ubuntu Touch.

Fig. 11: Our four tablet-based solution proposals in the devel-
oper competition stage.

H. Project Logo

In accordance with our methodological approach, CP, two
competing development teams were formed for the creation
of the FootballAvatar logo. We call the resulting logos the
Minimal FootballAvatar Logo and the Shield FootballAvatar
Logo.

i) The Minimal FootballAvatar Logo: This logo was
created by a one-member team consisting of the sixth author.
The logo depicts a letter “F” and a letter “A” that are merged
together. The design goal of the artist was to create a logo that
is simple and easy to remember.

j) The Shield FootballAvatar Logo: This logo was cre-
ated by a two-member team consisting of the seventh and the
eleventh authors. The design goal was to create a minimalist
logo that looks similar to football club logos. The football
player shown in the logo is based on a 3D model by the
eleventh author.

(a) The minimal Foot-
ballAvatar logo.

(b) The shield Foot-
ballAvatar logo.

Fig. 12: The two competing FootballAvatar logos.

I. Football Avatars and Avatar-based Simulations

In this section a heuristic mathematical definition is given
for the notion of football avatar. The definition is based on
statistical hypothesis testing and goes back to [23]. It should
be noted that the authors of this paper are currently working
on a separate paper devoted to the concept of football avatar.

Let x = (x1, . . . , xp) be a p-dimensional random variable,
where xi, i = 1, . . . , p, are quantities characterizing soccer
matches from particular aspects. There are typically such
quantities that depend on chance, but their values are known
in reality, such as the number of passes of a given player in
a match, or the total number of goals scored by a team or
a player in a season. The coordinates of x are referred to
as probabilistic properties of the soccer. Realizations of this
random vector x (known from real soccer) will be called a-
priori observations. Let A be a soccer simulation algorithm
based on various player, pitch and/or referee features as avatar
features that computes independent simulated observations for
x.

Definition (A Heuristic Definition of Football Avatar). The
pair (x,A) is referred to as football avatar with respect
to a given set of probabilistic properties if the probability
distribution of the a-priori observations and the probability
distribution of the simulated realizations of x are equal.

The equality of these two probability distributions can be
verified by appropriate methods of hypothesis testing.

Statement. The TF-FANM-NB1 algorithm is a football avatar
with respect to the total number of goals scored in a season.

Following the example of [23], in order to verify the state-
ment we have used the Wald–Wolfowitz and Mann–Whitney
tests to determine whether the two distributions are the same
or not. The significance level α for all following tests is chosen
as α = 0.05. In Table IV we have collected the total number
of goals scored during seasons 2004/2005–2012/2013 in the
Hungarian National Championship.

Season 4/5 5/6 6/7 7/8 8/9 9/10 10/11 11/12 12/13

Goals 681 707 677 746 710 707 690 648 639

TABLE IV: The total number of goals scored during seasons
2004/2005–2012/2013 in the Hungarian National Champi-
onship (x = 689.44, s∗n = 33.02).

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 35

12

Then, we have simulated nine seasons for this championship
using the TF-FANM-NB1 algorithm, for which the total num-
ber of goals scored obtained from the simulations are shown
in Table V. We refer to this sequence of simulations as a.

1. 2. 3. 4. 5. 6. 7. 8. 9. test
stat.

a 684 696 735 775 780 709 693 695 705 10/24

b 692 720 703 648 689 712 680 708 697 13/34

TABLE V: The total number of goals scored in our simulations
(xa = 719.11, s∗na = 36.08 and xb = 694.33, s∗nb = 21.28).
The last column shows the values of test statistics in form of
Wald–Wolfowitz/Mann–Whitney. The structure of the table is
the same as the previous one.

Another sequence of simulations, b was run with different
parameters in comparison with a. Finally, it should be noted
that all these simulations have been computed on the level
“−1” in the standalone mode.

1) Simulation-based Decision Making Support: Based on
“avatar simulations” introduced in the previous section, we can
answer many questions that may be of interest to the coaching
staff, such as the following: (1) Which starting eleven should
be chosen? (2) Which line-up should be chosen? (3) What is
the likely impact of given tactical orders? (4) What is the most
likely match result? Details of these topics will be discussed
in further works.

J. Project Documents and the Documentation Process

The FootballAvatar project uses DocBook as its primary
documentation format. DocBook [47] is an XML vocabulary
for writing technical documentation. It is an open standard
that is maintained by the OASIS DocBook Technical Com-
mittee. Docbook is popular and widely used in the industry.
For example, the following projects use DocBook for their
documentation: the Fedora Documentation Project, FreeBSD,
GNOME, KDE, PHP, PostgreSQL, the Linux Documentation
Project. The main advantages of DocBook are the following:
(1) it is a platform and vendor independent plain-text based
format, (2) DocBook documents can be transformed into
various presentation formats, including HTML and PDF.

An important additional advantage comes from its plain-
text nature: DocBook documents can be stored under version
control and developers can work concurrently on the same
document. Therefore, we keep all documentation in our SCM
repository, similar to source code. This allows us to track
changes and also the activity of our developers.

We use dblatex [48] to create high quality PDF documen-
tation from DocBook XML sources. It is a free and open
source tool distributed under the GNU GPL that uses the LATEX
typesetting system to transform DocBook into PostScript or
PDF.

It is mentioned here that weekly team meetings and other
project activities are recorded on video as part of our docu-
mentation process.

Developer’s Guide: We follow the principles of agile doc-
umentation [49]. In order to implement these, we maintain

player
speed

passing
accuracy

shooting
accuracy

. . .

passing probability
matrices, line-up maps

app. dependent internal format

speed
“−1” data

speed
“0” data

XML XML

avatar transformation

new aspects

Physiological aspects

Fig. 13: An avatar is a cross-cutting aspect that can be used
to prepare the input files for the simulation algorithms.

only one document simply called “Developer’s Guide”, which
includes the Conceptual Plan, the Software Requirements
Specification, and the System and Implementation Plan to-
gether. It also documents our competition and open source
policy related activities using the competition and the open
source submission forms shown in Tables I and II.

IV. THE IT MANIFESTATION OF AVATARS

In Sect. III-I we showed that the notion of “football avatar”
is a mathematical definition that can help to evaluate the
goodness of soccer simulation algorithms, where the evalu-
ation is based on the comparison of the simulation results
and real data. Such a comparison was done in the statement
of Sect. III-I where the passing probability matrices and
the line-up maps were used. However, it was necessary to
include additional properties into the simulation in order to
satisfy the TV criterion and statistical requirements. In all
cases, the cause of introducing additional properties is that
we have applied new approaches to the given simulations.
Therefore, an avatar is simply an aspect from an AOP-based
[42] viewpoint. To be more precise, avatars are the results of
applying avatar transformation aspects to the input of simula-
tion algorithms, as is shown in Fig. 13. In our experiments,
the most basic football avatars consist of passing probability
matrices and line-up maps. These properties can be extended
by introducing new aspects, in which case the appropriate
functions of the simulation algorithms must also be overridden
to handle new input data by the newly introduced aspects. A
few examples for such additional aspects are the following:
(1) Physiological aspects: incorporate additional physiological
properties into the simulation that affect the performance of
players, eg., a stamina model. (2) Environmental aspects:
incorporate environmental properties into the simulation, such
as current weather conditions, or the type of playing surface.
(3) Referee aspects: incorporate properties of the referees into
the simulation.

V. VALIDATION OF SIMULATIONS

The following questions naturally arise: (1) How can Foot-
ballAvatar simulations be validated? (2) What kind of results

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

MARCH 2016 • VOLUME VIII • NUMBER 136

INFOCOMMUNICATIONS JOURNAL

13

can be expected from the FootballAvatar system? (3) Who
knows what can be expected from a computer program in the
field of soccer? We are looking for answers to these and similar
questions. To be able to answer them, we have to take into
account that what can be expected at all from a human coach.
Thus, we asked for help from football clubs. At our request,
they provided us with preliminary tactical scenarios prepared
for their matches. We would like to ground our answers to
the above questions on the comparison of the scenarios from
football clubs and the scenarios that occur in our simulations.
This requires further work, that will be presented in a later
publication.

The concept of football avatar, in the strict sense of the
definition, by itself, implies a validation criterion (i.e., a
statistical test). Some examples of the simulations referred in
the definition of football avatar were presented in detail in
Sect. III-I.

VI. CONCLUSION

Finding successful soccer simulations algorithms that can
reproduce the distributions observed in reality have proved
to be a challenging research and development task. We have
known this since the start of the project. To help the search
for suitable simulation algorithms we have developed our own
methodology that we named as Competitive Programming, or
CP for short. We hope that CP can be successfully applied in
R&D projects, in which sufficient number of developers are
available to allocate multiple competing teams to a specific
task. This is often the case when the R&D activity happens
fully or partially in a university environment. In order to
support the adoption of CP we have made our standard project
document templates available at http://footballavatar.hu/CP.

On the basis of the results shown in this paper, it is clear
that our CP-based efforts have been successful, because we
have found simulation algorithms that can fulfill the definition
of football avatar. Thus, in the strict sense the research purpose
has been achieved.

VII. ONGOING AND FUTURE WORK

This section briefly summarizes ongoing and future work
mentioned in the paper. (1) We are working on a performance
measure that is similar to the EA SPORTS Player Performance
Index (PPI) but its development is in a very early stage (see
Sect. III-C). (2) The stamina and foul models mentioned in
Sect. III-D, and also MABSA simulation algorithms men-
tioned in Sect. III-E are discussed in detail in another paper
that is devoted to the concept of football avatar and has
been submitted for publication [38]. (3) We are planning a
paper that will address questions regarding the validation of
FootballAvatar simulations (see Sect. V).

ACKNOWLEDGMENT

The authors would like to thank the members of the research
group “World Football—Modeling and Visualization” at the
University of Debrecen for the meetings and their useful
comments that help them better understand soccer. During the
development of the FootballAvatar system authors worked in

cooperation with other project partner companies (namely, U1
Research Ltd., IQRS Ltd., and Satrax Ltd.) and they would
like to thank them for their contributions that will be important
in the operation of the FootballAvatar system at real football
clubs. We, the authors would like to express our special thanks
to Tamás Sándor, Péter Szakály, Elemér Kondás, Ferenc Frida
and Sándor Szilágyi. Last, but not least, thanks to all members
(especially Prof. György Terdik, Tibor Balla and Piroska Biró)
of the “Nagyerdei Gerundium” working group of SziMe3D
Ltd. for their continued help and support.

The publication was supported by the GOP-1.2.1-11-2012-
0005 (SziMe3D – 3D-s technológiai innovációk a turizmus,
oktatás és sport területén, SziMe3D–3D technological innova-
tion in tourism, education and sport) project. The project has
been supported by the European Union.

REFERENCES

[1] N. Bátfai, “Footballer and Football Simulation Markup Language
and Related Simulation Software Development,” Journal of Computer
Science and Control Systems, vol. 3, no. 1, pp. 13–18, 2010.

[2] N. Bátfai, R. Dóczi, J. Komzsik, A. Mamenyák, Cs. Székelyhı́di,
J. Zákány, M. Ispány, and Gy. Terdik, “Applications of a simplified pro-
tocol of RoboCup 2D soccer simulation,” Infocommunications Journal,
vol. 5, no. 1, pp. 15–20, 2013.

[3] N. Bátfai and Gy. Terdik, “The application of the data of RoboCup
2D soccer simulation league to test several sport science results,”
2012, (in manuscript). [Online]. Available: http://robocup.inf.unideb.hu/
fersml/assr/

[4] K. Furugaki, T. Takagi, A. Sakata, and D. Okayama, “Innovation
in software development process by introducing Toyota Production
System,” FUJITSU Scientific & Technical Journal, vol. 43, no. 1, pp.
139–150, 2007. [Online]. Available: http://www.fujitsu.com/downloads/
MAG/vol43-1/paper16.pdf

[5] O. Salo and P. Abrahamsson, “Integrating agile software develop-
ment and software process improvement: a longitudinal case study,”
in Proceedings of the 2005 International Symposium on Empirical
Software Engineering (ISESE 2005). IEEE, 2005, pp. 193–202.

[6] M. Fowler and J. Highsmith, “The agile manifesto,” Software
Development Magazine, vol. 9, no. 8, pp. 29–30, 2001.

[7] K. Schwaber, “Scrum development process,” in Proceedings of the 10th
Annual ACM OOPSLA, 1995, pp. 117–134.

[8] K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Prentice Hall, 2001.

[9] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change, 2nd ed. Addison-Wesley, 2004.

[10] B. Fitzgerald, G. Hartnett, and C. K., “Customising agile methods to
software practices at Intel Shannon,” European Journal of Information
Systems, vol. 15, no. 2, pp. 200–213, 2006.

[11] P. Bell. (2007, Jun. 17) Solo Scrums. blog post. Accessed: 2015-
12-04. [Online]. Available: http://www.pbell.com/index.cfm/2007/6/17/
Solo-Scrums

[12] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and D. Dixon, “Gami-
fication: Using game design elements in non-gaming contexts,” in CHI
’11 Extended Abstracts on Human Factors in Computing Systems, ser.
CHI EA ’11. ACM, 2011, pp. 2425–2428.

[13] O. Schenk, M. Christen, and H. Burkhart, “Algorithmic performance
studies on graphics processing units,” Journal of Parallel and Distributed
Computing, vol. 68, no. 10, pp. 1360–1369, 2008.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics
processors using CUDA,” Journal of Parallel and Distributed Computing,
vol. 68, no. 10, pp. 1370–1380, 2008.

[15] NVIDIA Corporation. NVIDIA CUDA Toolkit. Accessed: 2015-12-04.
[Online]. Available: https://developer.nvidia.com/cuda-toolkit

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 37

14

[16] J. Pendlebury, H. Xiong, and R. Walshe, “Artificial neural network
simulation on CUDA,” in Proceedings of the 2012 IEEE/ACM 16th
International Symposium on Distributed Simulation and Real Time
Applications, ser. DS-RT ’12. IEEE, 2012, pp. 228–233.

[17] H. Akiyama, H. Shimora, T. Nakashima, Y. Narimoto, and T. Okayama,
“HELIOS2011 team description,” 2011.

[18] A. Bai, G. Lu, H. Zhang, and X. Chen, “WrightEagle 2D
Soccer Simulation Team Description 2011,” 2011. [Online].
Available: http://ai.ustc.edu.cn/en/robocup/2D/tdps/WrightEagle2011
2D Soccer Simulation Team Description Paper.pdf

[19] N. Bátfai, “Quantum consciousness soccer simulator,” CoRR, vol.
abs/1211.2719, 2012. [Online]. Available: http://arxiv.org/abs/1211.2719

[20] R. Koning, M. Koolhaas, G. Renes, and G. Ridder, “A simulation model
for football championships,” European Journal of Operational Research,
vol. 148, no. 2, pp. 268–276, 2003.

[21] R. Koning, “Balance in competition in Dutch soccer,” Journal of the
Royal Statistical Society: Series D (The Statistician), vol. 49, no. 3, pp.
419–431, 2000.

[22] A. C. Constantinou, N. E. Fenton, and M. Neil, “pi-football: A Bayesian
network model for forecasting association football match outcomes,”
Knowledge-Based Systems, vol. 36, pp. 322–339, 2012.

[23] N. Bátfai, “The socceral force,” CoRR, vol. abs/1004.2003, 2010.
[Online]. Available: http://arxiv.org/abs/1004.2003

[24] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “RoboCup:
The robot world cup initiative,” in Proceedings of the first international
conference on Autonomous agents, ser. AGENTS’97. ACM, 1997, pp.
340–347.

[25] D. Wells. XP flow chart. Accessed: 2015-12-04. [Online]. Available:
http://www.extremeprogramming.org/map/project.html

[26] J. Martin, Rapid Application Development. Macmillan Publishing Co.,
1991.

[27] S. Halim and F. Halim, Competitive Programming 3: The New Lower
Bound of Programming Contests, 3rd ed. Lulu, 2013. [Online].
Available: https://sites.google.com/site/stevenhalim/

[28] Wikipedia, “Competitive programming — Wikipedia, the free
encyclopedia,” 2013. [Online]. Available: en.wikipedia.org/wiki/
Competitive programming

[29] M. Bouca, “Mobile communication, gamification and ludification,” in
Proceedings of the 16th International Academic MindTrek Conference,
ser. MindTrek ’12. ACM, 2012, pp. 295–301.

[30] L. F. Wurster, “User survey analysis: Open-source software, worldwide,”
Gartner, Inc., Tech. Rep., 2008. [Online]. Available: http://www.gartner.
com/id=757916

[31] A. Raina and L. F. Wurster, “Market trends: Application development
software, worldwide, 2012–2016,” Gartner, Inc., Tech. Rep., 2012.
[Online]. Available: http://www.gartner.com/id=2098416

[32] R. T. Watson, D. Wynn, and M.-C. Boudreau, “JBOSS: The evolution
of professional open source software,” MIS Quarterly Executive, vol. 4,
no. 3, pp. 329–341, Sep. 2005.

[33] B. Fitzgerald, “The transformation of open source software,” MIS
Quarterly, vol. 30, no. 3, pp. 587–598, Sep. 2006.

[34] R. T. Watson, M.-C. Boudreau, P. T. York, M. E. Greiner, and D. Wynn,
Jr., “The business of open source,” Communications of the ACM,
vol. 51, no. 4, pp. 41–46, Apr. 2008.

[35] M. Ruffin and C. Ebert, “Using open source software in product
development: A primer,” IEEE Software, vol. 21, no. 1, pp. 82–86, Jan.
2004.

[36] H. J. Meeker, The Open Source Alternative: Understanding Risks and
Leveraging Opportunities. John Wiley & Sons, 2008.

[37] Free Software Foundation. (2013) Frequently asked questions about
the GNU licenses. Accessed: 2015-12-04. [Online]. Available: http:
//www.gnu.org/licenses/gpl-faq.html

[38] N. Bátfai, A. Mamenyák, P. Jeszenszky, G. Kövér, M. Smajda, R. Bes-
enczi, B. Halász, Gy. Terdik, and M. Ispány, “Sport Science Soccer
Simulations,” 2014, submitted manuscript.

[39] EA SPORTS Player Performance Index. Football Association Premier
League Limited. Accessed: 2015-12-04. [Online]. Available: http://www.
premierleague.com/en-gb/players/ea-sports-player-performance-index/

[40] I. G. McHale, P. A. Scarf, and D. E. Folker, “On the development
of a soccer player performance rating system for the English Premier
League,” Interfaces, vol. 42, no. 4, pp. 339–351, 2012.

[41] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi, “The similarity
metric,” IEEE Transactions on Information Theory, vol. 50, no. 12, pp.
3250–3264, 2004.

[42] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP’97 –

Object-Oriented Programming, ser. Lecture Notes in Computer Science,
vol. 1241. Springer-Verlag, 1997, pp. 220–242.

[43] Google Inc. Protocol Buffers. Accessed: 2015-12-04. [Online].
Available: https://developers.google.com/protocol-buffers/

[44] A. A. Janes and G. Succi, “The dark side of agile software development,”
in Proceedings of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. ACM,
2012, pp. 215–228.

[45] Blender Foundation. Blender. Accessed: 2015-12-04. [Online].
Available: http://blender.org/

[46] The MakeHuman team. MakeHuman. Accessed: 2015-12-04. [Online].
Available: http://makehuman.org/

[47] N. Walsh and L. Muellner, DocBook: The Definitive Guide. O’Reilly
Media, 1999. [Online]. Available: http://www.docbook.org/tdg/en/html/
docbook.html

[48] B. Guillon. dblatex: DocBook to LaTeX publishing. Accessed:
2015-12-04. [Online]. Available: http://dblatex.sourceforge.net/

[49] A. Rüping, Agile Documentation: A Pattern Guide to Producing
Lightweight Documents for Software Projects. John Wiley & Sons,
Inc., 2003.

Norbert Bátfai is working as an assistant profes-
sor in Faculty of Informatics at the University of
Debrecen, Hungary. He received his M.Sc. (summa
cum laude) in Computer Science in 1998 from
the Kossuth Lajos University (KLTE), Debrecen,
Hungary. In 1999, he won the first prize in the
Java Programming Contest organized by Hungarian
Java Alliance: Sun, IBM, Oracle, Novell and IQSoft.
In 2004, his company won the first prize in the
Hungarian Mobile Java Developer Contest organized
by Sun Hungary and Nokia Hungary. In 2008, the

Hungarian Chief Information Officers’ Association awarded him the IT trainer
of the year title. He received his Ph.D. degree in 2011. He won the Pollák–
Virág award from the Scientific Association for Infocommunications, Hungary
in 2012.

Péter Jeszenszky received his Ph.D. degree in 2012
from the University of Debrecen, Hungary. Cur-
rently, he is an assistant professor at the Depart-
ment of Information Technology at the University of
Debrecen. He won the the Pollák–Virág award from
the Scientific Association for Infocommunications,
Hungary in 2012.

András Mamenyák is majoring in Engineering
Information Technology BSc at the University of
Debrecen, Hungary. In 2013, he won the first prize
in the XDA Tablet Z Development Competition
organized by XDA Developers.

14

[16] J. Pendlebury, H. Xiong, and R. Walshe, “Artificial neural network
simulation on CUDA,” in Proceedings of the 2012 IEEE/ACM 16th
International Symposium on Distributed Simulation and Real Time
Applications, ser. DS-RT ’12. IEEE, 2012, pp. 228–233.

[17] H. Akiyama, H. Shimora, T. Nakashima, Y. Narimoto, and T. Okayama,
“HELIOS2011 team description,” 2011.

[18] A. Bai, G. Lu, H. Zhang, and X. Chen, “WrightEagle 2D
Soccer Simulation Team Description 2011,” 2011. [Online].
Available: http://ai.ustc.edu.cn/en/robocup/2D/tdps/WrightEagle2011
2D Soccer Simulation Team Description Paper.pdf

[19] N. Bátfai, “Quantum consciousness soccer simulator,” CoRR, vol.
abs/1211.2719, 2012. [Online]. Available: http://arxiv.org/abs/1211.2719

[20] R. Koning, M. Koolhaas, G. Renes, and G. Ridder, “A simulation model
for football championships,” European Journal of Operational Research,
vol. 148, no. 2, pp. 268–276, 2003.

[21] R. Koning, “Balance in competition in Dutch soccer,” Journal of the
Royal Statistical Society: Series D (The Statistician), vol. 49, no. 3, pp.
419–431, 2000.

[22] A. C. Constantinou, N. E. Fenton, and M. Neil, “pi-football: A Bayesian
network model for forecasting association football match outcomes,”
Knowledge-Based Systems, vol. 36, pp. 322–339, 2012.

[23] N. Bátfai, “The socceral force,” CoRR, vol. abs/1004.2003, 2010.
[Online]. Available: http://arxiv.org/abs/1004.2003

[24] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “RoboCup:
The robot world cup initiative,” in Proceedings of the first international
conference on Autonomous agents, ser. AGENTS’97. ACM, 1997, pp.
340–347.

[25] D. Wells. XP flow chart. Accessed: 2015-12-04. [Online]. Available:
http://www.extremeprogramming.org/map/project.html

[26] J. Martin, Rapid Application Development. Macmillan Publishing Co.,
1991.

[27] S. Halim and F. Halim, Competitive Programming 3: The New Lower
Bound of Programming Contests, 3rd ed. Lulu, 2013. [Online].
Available: https://sites.google.com/site/stevenhalim/

[28] Wikipedia, “Competitive programming — Wikipedia, the free
encyclopedia,” 2013. [Online]. Available: en.wikipedia.org/wiki/
Competitive programming

[29] M. Bouca, “Mobile communication, gamification and ludification,” in
Proceedings of the 16th International Academic MindTrek Conference,
ser. MindTrek ’12. ACM, 2012, pp. 295–301.

[30] L. F. Wurster, “User survey analysis: Open-source software, worldwide,”
Gartner, Inc., Tech. Rep., 2008. [Online]. Available: http://www.gartner.
com/id=757916

[31] A. Raina and L. F. Wurster, “Market trends: Application development
software, worldwide, 2012–2016,” Gartner, Inc., Tech. Rep., 2012.
[Online]. Available: http://www.gartner.com/id=2098416

[32] R. T. Watson, D. Wynn, and M.-C. Boudreau, “JBOSS: The evolution
of professional open source software,” MIS Quarterly Executive, vol. 4,
no. 3, pp. 329–341, Sep. 2005.

[33] B. Fitzgerald, “The transformation of open source software,” MIS
Quarterly, vol. 30, no. 3, pp. 587–598, Sep. 2006.

[34] R. T. Watson, M.-C. Boudreau, P. T. York, M. E. Greiner, and D. Wynn,
Jr., “The business of open source,” Communications of the ACM,
vol. 51, no. 4, pp. 41–46, Apr. 2008.

[35] M. Ruffin and C. Ebert, “Using open source software in product
development: A primer,” IEEE Software, vol. 21, no. 1, pp. 82–86, Jan.
2004.

[36] H. J. Meeker, The Open Source Alternative: Understanding Risks and
Leveraging Opportunities. John Wiley & Sons, 2008.

[37] Free Software Foundation. (2013) Frequently asked questions about
the GNU licenses. Accessed: 2015-12-04. [Online]. Available: http:
//www.gnu.org/licenses/gpl-faq.html

[38] N. Bátfai, A. Mamenyák, P. Jeszenszky, G. Kövér, M. Smajda, R. Bes-
enczi, B. Halász, Gy. Terdik, and M. Ispány, “Sport Science Soccer
Simulations,” 2014, submitted manuscript.

[39] EA SPORTS Player Performance Index. Football Association Premier
League Limited. Accessed: 2015-12-04. [Online]. Available: http://www.
premierleague.com/en-gb/players/ea-sports-player-performance-index/

[40] I. G. McHale, P. A. Scarf, and D. E. Folker, “On the development
of a soccer player performance rating system for the English Premier
League,” Interfaces, vol. 42, no. 4, pp. 339–351, 2012.

[41] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi, “The similarity
metric,” IEEE Transactions on Information Theory, vol. 50, no. 12, pp.
3250–3264, 2004.

[42] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP’97 –

Object-Oriented Programming, ser. Lecture Notes in Computer Science,
vol. 1241. Springer-Verlag, 1997, pp. 220–242.

[43] Google Inc. Protocol Buffers. Accessed: 2015-12-04. [Online].
Available: https://developers.google.com/protocol-buffers/

[44] A. A. Janes and G. Succi, “The dark side of agile software development,”
in Proceedings of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. ACM,
2012, pp. 215–228.

[45] Blender Foundation. Blender. Accessed: 2015-12-04. [Online].
Available: http://blender.org/

[46] The MakeHuman team. MakeHuman. Accessed: 2015-12-04. [Online].
Available: http://makehuman.org/

[47] N. Walsh and L. Muellner, DocBook: The Definitive Guide. O’Reilly
Media, 1999. [Online]. Available: http://www.docbook.org/tdg/en/html/
docbook.html

[48] B. Guillon. dblatex: DocBook to LaTeX publishing. Accessed:
2015-12-04. [Online]. Available: http://dblatex.sourceforge.net/

[49] A. Rüping, Agile Documentation: A Pattern Guide to Producing
Lightweight Documents for Software Projects. John Wiley & Sons,
Inc., 2003.

Norbert Bátfai is working as an assistant profes-
sor in Faculty of Informatics at the University of
Debrecen, Hungary. He received his M.Sc. (summa
cum laude) in Computer Science in 1998 from
the Kossuth Lajos University (KLTE), Debrecen,
Hungary. In 1999, he won the first prize in the
Java Programming Contest organized by Hungarian
Java Alliance: Sun, IBM, Oracle, Novell and IQSoft.
In 2004, his company won the first prize in the
Hungarian Mobile Java Developer Contest organized
by Sun Hungary and Nokia Hungary. In 2008, the

Hungarian Chief Information Officers’ Association awarded him the IT trainer
of the year title. He received his Ph.D. degree in 2011. He won the Pollák–
Virág award from the Scientific Association for Infocommunications, Hungary
in 2012.

Péter Jeszenszky received his Ph.D. degree in 2012
from the University of Debrecen, Hungary. Cur-
rently, he is an assistant professor at the Depart-
ment of Information Technology at the University of
Debrecen. He won the the Pollák–Virág award from
the Scientific Association for Infocommunications,
Hungary in 2012.

András Mamenyák is majoring in Engineering
Information Technology BSc at the University of
Debrecen, Hungary. In 2013, he won the first prize
in the XDA Tablet Z Development Competition
organized by XDA Developers.

Norbert Bátfai is working as an assistant professor
in Faculty of Informatics at the University of
Debrecen, Hungary. He received his M.Sc.
(summa cum laude) in Computer Science in
1998 from the Kossuth Lajos University (KLTE),
Debrecen, Hungary. In 1999, he won the first
prize in the Java Programming Contest organized
by Hungarian Java Alliance: Sun, IBM, Oracle,
Novell and IQSoft. In 2004, his company won

the first prize in the Hungarian Mobile Java Developer Contest organized
by Sun Hungary and Nokia Hungary. In 2008, the Hungarian Chief
Information Officers’ Association awarded him the IT trainer of the year
title. He received his Ph.D. degree in 2011. He won the Pollák–Virág award
from the Scientific Association for Infocommunications, Hungary in 2012.

Péter Jeszenszky received his Ph.D. degree
in 2012 from the University of Debrecen,
Hungary. Currently, he is an assistant professor
at the Department Technology at the University
of Debrecen. He won the the Pollák–Virág
award from the Scientific Association for
Infocommunications, Hungary in 2012.

András Mamenyák is majoring in Engineering
Information Technology BSc at the University of
Debrecen, Hungary. In 2013, he won the first prize
in the XDA Tablet Z Development Competition
organized by XDA Developers.

Béla Halász is working as the project manager
for the FootballAvatar project at SziMe3D Ltd.
He has extensive working experience in managing
various development projects in different IT fields,
from Health Informatics to Software Licence
Protection.

Renátó Besenczi is majoring in Engineering
Information Technology BSc and working as
a research team member at the University of
Debrecen, Hungary.

Competitive Programming: a Case Study for Developing
a Simulation-based Decision Support System

MARCH 2016 • VOLUME VIII • NUMBER 138

INFOCOMMUNICATIONS JOURNAL

Balázs Kóti is majoring in Software Information
Technology BSc at the University of Debrecen,
Hungary. He started his studies at the University in
2012. He recieved technician degree from
geodesy and geographical information systems
at Vásárhelyi Pál Engineering High School and
Technicum.

Gergely Kövér is majoring in Software
Information Technology BSc at the University of
Debrecen, Hungary. He started his studies at the
University in 2012.

Máté Smajda is majoring in Software Information
Technology BSc at the University of Debrecen,
Hungary. He started his studies at the University in
2012, and he is also an experienced football
player, winner of the Hungarian National Football
Olympiad for Students.

Csaba Székelyhídi is majoring in Software
Information Technology BSc at the University
of Debrecen. He is a member of World Football
Modelling and Visualizing Research Group and
FootballAvatar Project. He started his studies at
the University in 2011.

Tamás Takács is majoring in Software
Information Technology BSc at the University of
Debrecen, Hungary. He started his studies at the
University in 2012.

János Komzsik is majoring in Engineering
Information Technology BSc at the University of
Debrecen, Hungary.

Géza Róka is the club director of DVSC Futball
Szervező Zrt., the football club of Debrecen, which
has won the Hungarian Championship and the
Hungarian National Cup six times, the Hungarian
Super Cup five times, and has participated in the
UEFA Champions League and Europa League
group phases. His main area of expertise is sports
law, particularly international football law. He
is currently working on his Ph.D. thesis, which
examines the impact of the EU legal system to the

international regulation of football.

Márton Ispány received his Ph.D. degree in 1997
from the Kossuth Lajos University, Hungary.
He is an associate professor at the Department
of Information Technology at the University
of Debrecen, Hungary. Dr. Ispány’s research
areas include integer valued time series analysis,
branching processes, and data mining. He won
the Alexits György award from the Hungarian
Academy of Sciences and the Pollák–Virág award

from the Scientific Association for Infocommunications, Hungary in 2012

INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 39

Call for Papers

Guidelines for our Authors

MARCH 2016 • VOLUME VIII • NUMBER 140

INFOCOMMUNICATIONS JOURNALINFOCOMMUNICATIONS JOURNAL

40 JUNE 2015 • VOLUME VII • NUMBER 2

Guidelines for our Authors

Guidelines for our Authors

Format of the manuscripts

Original manuscripts and final versions of papers
should be submitted in IEEE format according to the
formatting instructions available on

http://www.ieee.org/publications_standards/
publications/authors/authors_journals.html#sect2,

“Template and Instructions on How to Create Your
Paper”.

Length of the manuscripts

The length of papers in the aforementioned format
should be 6-8 journal pages.
Wherever appropriate, include 1-2 figures or tables
per journal page.

Paper structure

Papers should follow the standard structure, consist-
ing of Introduction (the part of paper numbered by
“1”), and Conclusion (the last numbered part) and
several Sections in between.
The Introduction should introduce the topic, tell why
the subject of the paper is important, summarize the
state of the art with references to existing works
and underline the main innovative results of the pa-
per. The Introduction should conclude with outlining
the structure of the paper.

Accompanying parts

Papers should be accompanied by an Abstract and a
few index terms (Keywords). For the final version of ac-
cepted papers, please send the short cvs and photos
of the authors as well.

Authors

In the title of the paper, authors are listed in the or-
der given in the submitted manuscript. Their full affili-
ations and e-mail addresses will be given in a foot-
note on the first page as shown in the template. No
degrees or other titles of the authors are given. Mem-
berships of IEEE, HTE and other professional socie-
ties will be indicated so please supply this information.
When submitting the manuscript, one of the authors
should be indicated as corresponding author provid-
ing his/her postal address, fax number and telephone
number for eventual correspondence and communi-
cation with the Editorial Board.

References

References should be listed at the end of the paper
in the IEEE format, see below:

a) Last name of author or authors and first name or
initials, or name of organization

b) Title of article in quotation marks
c) Title of periodical in full and set in italics
d) Volume, number, and, if available, part
e) First and last pages of article
f) Date of issue

[11] Boggs, S.A. and Fujimoto, N., “Techniques and
instrumentation for measurement of transients in
gas-insulated switchgear,” IEEE Transactions on
Electrical Installation, vol. ET-19, no. 2, pp.87–92,
April 1984.

Format of a book reference:

[26] Peck, R.B., Hanson, W.E., and Thornburn,
T.H., Foundation Engineering, 2nd ed. New York:
McGraw-Hill, 1972, pp.230–292.

All references should be referred by the correspond-
ing numbers in the text.

Figures

Figures should be black-and-white, clear, and drawn
by the authors. Do not use figures or pictures down-
loaded from the Internet. Figures and pictures should
be submitted also as separate files. Captions are ob-
ligatory. Within the text, references should be made
by figure numbers, e.g. “see Fig. 2.”
When using figures from other printed materials, ex-
act references and note on copyright should be in-
cluded. Obtaining the copyright is the responsibility
of authors.

Contact address

Authors are requested to send their manuscripts via
electronic mail or on an electronic medium such as a
CD by mail to the Editor-in-Chief:

Csaba A. Szabo
Department of Networked Systems and Services
Budapest University of Technology and Economics
2 Magyar Tudosok krt.
Budapest, 1117 Hungary
szabo@hit.bme.hu

InfocomJ2015_2 2015.06.22 11:04 Page 40

Rolland Vida
Department of Telecommunications and Media
Informatics
Budapest University of Technology and Economics
2 Magyar Tudósok krt.
Budapest, 1117 Hungary
vida@tmit.bme.hu

INFOCOMMUNICATIONS JOURNAL

40 JUNE 2015 • VOLUME VII • NUMBER 2

Guidelines for our Authors

Guidelines for our Authors

Format of the manuscripts

Original manuscripts and final versions of papers
should be submitted in IEEE format according to the
formatting instructions available on

http://www.ieee.org/publications_standards/
publications/authors/authors_journals.html#sect2,

“Template and Instructions on How to Create Your
Paper”.

Length of the manuscripts

The length of papers in the aforementioned format
should be 6-8 journal pages.
Wherever appropriate, include 1-2 figures or tables
per journal page.

Paper structure

Papers should follow the standard structure, consist-
ing of Introduction (the part of paper numbered by
“1”), and Conclusion (the last numbered part) and
several Sections in between.
The Introduction should introduce the topic, tell why
the subject of the paper is important, summarize the
state of the art with references to existing works
and underline the main innovative results of the pa-
per. The Introduction should conclude with outlining
the structure of the paper.

Accompanying parts

Papers should be accompanied by an Abstract and a
few index terms (Keywords). For the final version of ac-
cepted papers, please send the short cvs and photos
of the authors as well.

Authors

In the title of the paper, authors are listed in the or-
der given in the submitted manuscript. Their full affili-
ations and e-mail addresses will be given in a foot-
note on the first page as shown in the template. No
degrees or other titles of the authors are given. Mem-
berships of IEEE, HTE and other professional socie-
ties will be indicated so please supply this information.
When submitting the manuscript, one of the authors
should be indicated as corresponding author provid-
ing his/her postal address, fax number and telephone
number for eventual correspondence and communi-
cation with the Editorial Board.

References

References should be listed at the end of the paper
in the IEEE format, see below:

a) Last name of author or authors and first name or
initials, or name of organization

b) Title of article in quotation marks
c) Title of periodical in full and set in italics
d) Volume, number, and, if available, part
e) First and last pages of article
f) Date of issue

[11] Boggs, S.A. and Fujimoto, N., “Techniques and
instrumentation for measurement of transients in
gas-insulated switchgear,” IEEE Transactions on
Electrical Installation, vol. ET-19, no. 2, pp.87–92,
April 1984.

Format of a book reference:

[26] Peck, R.B., Hanson, W.E., and Thornburn,
T.H., Foundation Engineering, 2nd ed. New York:
McGraw-Hill, 1972, pp.230–292.

All references should be referred by the correspond-
ing numbers in the text.

Figures

Figures should be black-and-white, clear, and drawn
by the authors. Do not use figures or pictures down-
loaded from the Internet. Figures and pictures should
be submitted also as separate files. Captions are ob-
ligatory. Within the text, references should be made
by figure numbers, e.g. “see Fig. 2.”
When using figures from other printed materials, ex-
act references and note on copyright should be in-
cluded. Obtaining the copyright is the responsibility
of authors.

Contact address

Authors are requested to send their manuscripts via
electronic mail or on an electronic medium such as a
CD by mail to the Editor-in-Chief:

Csaba A. Szabo
Department of Networked Systems and Services
Budapest University of Technology and Economics
2 Magyar Tudosok krt.
Budapest, 1117 Hungary
szabo@hit.bme.hu

InfocomJ2015_2 2015.06.22 11:04 Page 40

INFOCOMMUNICATIONS JOURNAL

40 JUNE 2015 • VOLUME VII • NUMBER 2

Guidelines for our Authors

Guidelines for our Authors

Format of the manuscripts

Original manuscripts and final versions of papers
should be submitted in IEEE format according to the
formatting instructions available on

http://www.ieee.org/publications_standards/
publications/authors/authors_journals.html#sect2,

“Template and Instructions on How to Create Your
Paper”.

Length of the manuscripts

The length of papers in the aforementioned format
should be 6-8 journal pages.
Wherever appropriate, include 1-2 figures or tables
per journal page.

Paper structure

Papers should follow the standard structure, consist-
ing of Introduction (the part of paper numbered by
“1”), and Conclusion (the last numbered part) and
several Sections in between.
The Introduction should introduce the topic, tell why
the subject of the paper is important, summarize the
state of the art with references to existing works
and underline the main innovative results of the pa-
per. The Introduction should conclude with outlining
the structure of the paper.

Accompanying parts

Papers should be accompanied by an Abstract and a
few index terms (Keywords). For the final version of ac-
cepted papers, please send the short cvs and photos
of the authors as well.

Authors

In the title of the paper, authors are listed in the or-
der given in the submitted manuscript. Their full affili-
ations and e-mail addresses will be given in a foot-
note on the first page as shown in the template. No
degrees or other titles of the authors are given. Mem-
berships of IEEE, HTE and other professional socie-
ties will be indicated so please supply this information.
When submitting the manuscript, one of the authors
should be indicated as corresponding author provid-
ing his/her postal address, fax number and telephone
number for eventual correspondence and communi-
cation with the Editorial Board.

References

References should be listed at the end of the paper
in the IEEE format, see below:

a) Last name of author or authors and first name or
initials, or name of organization

b) Title of article in quotation marks
c) Title of periodical in full and set in italics
d) Volume, number, and, if available, part
e) First and last pages of article
f) Date of issue

[11] Boggs, S.A. and Fujimoto, N., “Techniques and
instrumentation for measurement of transients in
gas-insulated switchgear,” IEEE Transactions on
Electrical Installation, vol. ET-19, no. 2, pp.87–92,
April 1984.

Format of a book reference:

[26] Peck, R.B., Hanson, W.E., and Thornburn,
T.H., Foundation Engineering, 2nd ed. New York:
McGraw-Hill, 1972, pp.230–292.

All references should be referred by the correspond-
ing numbers in the text.

Figures

Figures should be black-and-white, clear, and drawn
by the authors. Do not use figures or pictures down-
loaded from the Internet. Figures and pictures should
be submitted also as separate files. Captions are ob-
ligatory. Within the text, references should be made
by figure numbers, e.g. “see Fig. 2.”
When using figures from other printed materials, ex-
act references and note on copyright should be in-
cluded. Obtaining the copyright is the responsibility
of authors.

Contact address

Authors are requested to send their manuscripts via
electronic mail or on an electronic medium such as a
CD by mail to the Editor-in-Chief:

Csaba A. Szabo
Department of Networked Systems and Services
Budapest University of Technology and Economics
2 Magyar Tudosok krt.
Budapest, 1117 Hungary
szabo@hit.bme.hu

InfocomJ2015_2 2015.06.22 11:04 Page 40

SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS

Who we are
Founded in 1949, the Scientific Association for Info-
communications (formerly known as Scientific Society
for Telecommunications) is a voluntary and autono-
mous professional society of engineers and econo-
mists, researchers and businessmen, managers and
educational, regulatory and other professionals work-
ing in the fields of telecommunications, broadcast-
ing, electronics, information and media technologies
in Hungary.

Besides its 1000 individual members, the Scientific
Association for Infocommunications (in Hungarian:
HÍRKÖZLÉSI ÉS INFORMATIKAI TUDOMÁNYOS EGYESÜLET, HTE)
has more than 60 corporate members as well. Among
them there are large companies and small-and-medi-
um enterprises with industrial, trade, service-providing,
research and development activities, as well as educa-
tional institutions and research centers.

HTE is a Sister Society of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE) and the IEEE Communi-
cations Society.

What we do
HTE has a broad range of activities that aim to pro-
mote the convergence of information and communi-
cation technologies and the deployment of synergic
applications and services, to broaden the knowledge
and skills of our members, to facilitate the exchange
of ideas and experiences, as well as to integrate and

harmonize the professional opinions and standpoints
derived from various group interests and market dy-
namics.

To achieve these goals, we…

• contribute to the analysis of technical, economic,
and social questions related to our field of compe-
tence, and forward the synthesized opinion of our
experts to scientific, legislative, industrial and edu-
cational organizations and institutions;

• follow the national and international trends and
results related to our field of competence, foster
the professional and business relations between
foreign and Hungarian companies and institutes;

• organize an extensive range of lectures, seminars,
debates, conferences, exhibitions, company pres-
entations, and club events in order to transfer and
deploy scientific, technical and economic knowl-
edge and skills;

• promote professional secondary and higher edu-
cation and take active part in the development of
professional education, teaching and training;

• establish and maintain relations with other domes-
tic and foreign fellow associations, IEEE sister soci-
eties;

• award prizes for outstanding scientific, education-
al, managerial, commercial and/or societal activities
and achievements in the fields of infocommunica-
tion.

Contact information
President: GÁBOR MAGYAR, PhD • elnok@hte.hu

Secretary-General: ISTVÁN BARTOLITS • bartolits@nmhh.hu
Operations Director: PÉTER NAGY • nagy.peter@hte.hu

International Affairs: ROLLAND VIDA, PhD • vida@tmit.bme.hu

Address: H-1051 Budapest, Bajcsy-Zsilinszky str. 12, HUNGARY, Room: 502
Phone: +36 1 353 1027, Fax: +36 1 353 0451

E-mail: info@hte.hu, Web: www.hte.hu

