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Vladimir KOMPIŠ, Department of Mechanics, Fac-
ulty of Mechanical Engineering, University of Žilina,
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Barna SZABÓ, Center for Computational Mechan-
ics, Washington University, Campus Box 1129, St.
LOUIS, MO63130, USA, szabo@ccm.wustl.edu
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PREFACE

The fourth volume contains papers on solid and fluid mechanics selected from those
presented at the ninth International Conference on Numerical Mathematics and Com-
putational Mechanics (NMCM2002) held 15-19 July 2002 at the University of Miskolc,
Hungary.

This conference was the latest in a series of international conferences initiated by
Hungarian mathematicians under the leadership of Professor Pál Rózsa who organized
and chaired the first six conferences.

Initially the conferences focused on the theory and applications of differential equa-
tions and numerical algebra. Their scope gradually widened to include, for the first
time in 1994, computational mechanics. The seventh conference (NMCM96), chaired
by Professor Ivo Babuška, was a satellite conference to the 2nd European Congress
of Mathematics held in Budapest July 21-27, 1996. The conference emphasized the
interdisciplinary nature of numerical methods and computational mechanics and the
importance of mathematical concepts in the development of numerical simulation
methods to achieve quality, reliability and efficiency in numerical simulation.

Selected papers from NMCM96 were published in special editions of three pres-
tigious journals: Computer Methods in Applied Mechanics and Engineering (guest
editor: Ivo Babuška); Computers and Mathematics with Applications (guest editors:
B. Szabó, A. Galántai and G. Szeidl) and Computer Assisted Mechanics and Engi-
neering Sciences (guest editors: B. Szabó, A. Galántai and G. Szeidl).

The goal of NMCM98 was similar to that of NMCM96: Provide a forum to re-
searchers working in the interrelated fields of numerical methods and computational
mechanics to discuss recent developments, current problems and challenges and ex-
plore new approaches to interdisciplinary problem solving in numerical simulation.

Selected papers from NMCM98 were also published in special editions of the Com-
puters and Mathematics with Applications (guest editors: B. Szabó, A. Galántai,
K. Balla and G. Szeidl) and Computer Assisted Mechanics and Engineering Sciences
(guest editors: B. Szabó, A. Galántai and G. Szeidl).

The goal of NMCM2002 is similar to that of the previous conferences with the
additional objective to provide a forum for young researchers from various countries
of the European Community and neighbouring countries.

Our special thanks to Prof. Vladimir Kompiš of the University of Zilina, Slovak
Republic, for including this conference in the series of Euro Conferences that he
organized.
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We are particularly grateful to Professors Olaf Axelson, Ulrich Gabbert, Robert
Haber, Vladimir Kompiš, Herbert Mang, Rosvita März, Anna Sändig, Jan Sladek,
Endre Süli, Wolfgang Wendland, Taifun Tezduyar, Tibor Czibere, Zsolt Gáspár, Imre
Kozák, István Páczelt, Pál Rózsa and Gisbert Stoyan for their service on the Interna-
tional Science Committee and for having provided advice and support in the course
of preparations.

We would like to thank the sponsors. First of all the European Commission for
their generous support provided for young researchers, the keynote speakers and the
members of the International Science Committee. The University of Miskolc, the
Hungarian Academy of Sciences, the Hungarian Committee of Technological Devel-
opment (OMFB), the Foundation for the University of Miskolc and the Hungarian
Credit Bank Foundation for the Hungarian Technological Development.

Barna Szabó Chairman
Katalin Balla

Aurél Galantai
György Szeidl

Editors of the Fourth Volume
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PARALLELIZATION OF AN ALGORITHM FOR SOLVING THE
GRAVITY INVERSE PROBLEM
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Abstract. A parallel algorithm for solving the gravity inverse problem is considered. The
corresponding programme has been implemented on the Massively Parallel Computing Sys-
tem MVS–1000.

Mathematical Subject Classification: 65F05, 86A22
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1. Introduction

The three-dimensional gravity inverse problem of finding the interface between medi-
ums from the gravitational data is investigated. A model of the lower half-space
consists of the three mediums with constant densities which are divided by the sur-
faces S1 and S2. The gravitational anomaly is formed by the deviation of the desired
surface S from the horizontal plane z = H (H1 = 2, H2 = 10 in our case) [1].

2. Main equations and numerical algorithms

The gravity equation with respect to the unknown surface z = z(x, y) is reduced to
the two-dimensional nonlinear equation with integral operator

B[z] ≡ f∆σ

b∫
a

d∫
c

{
1

[(x− x′)2 + (y − y′)2 + z2(x′, y′)]1/2
−

− 1

[(x− x′)2 + (y − y′)2 +H2]1/2

}
dx′dy′ = F (x, y), (2.1)

where f is the gravitation constant, ∆σ is the density jump on the interface, F (x, y)
is the anomalous gravitational field.

For solving the nonlinear integral equation the iterative regularizing Newton method
is used

zk+1 = zk − [B′(zk) + αkI]−1(B(zk) + αkz
k − F ), (2.2)
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where B′(zk) is the Frechet derivative of the operator B in the point zk for (2.1), I
is the identity operator, αk is a sequence of the positive parameters which are chosen
taking into account the right side of equation (2.1).

After discretizing equation (2.1) on the grid n = M × N and approximating the
integral operator B by the quadrature formulas, the problem of the form (2.2) can be
written in the form of the system of linear equations with asymmetric and full n× n
matrix and can be solved by the Gauss or Gauss-Jordan elimination algorithms for
each iteration of the method (2.2).

We consider the system of n linear equations with n unknowns in the form:
a11x1 + a12x2 + ...+ a1nxn = a1n+1

a21x1 + a22x2 + ...+ a2nxn = a2n+1

.......................................................
an1x1 + an2x2 + ...+ annxn = ann+1

. (2.3)

The main idea of the Gaussian elimination method is to reduce the full matrix A of the
system (2.3) to the upper triangular form, that is to obtain the system of equations
in the following form:

x1 + c12x2 + c13x3 + ...+ c1nxn = c1n+1

x2 + c23x3 + ...+ c2nxn = c2n+1

.......................................................
xn = cnn+1

. (2.4)

From the system (2.4) we find the unknowns by the formulas:

xk = ckn+1 − ckk+1xk+1 − ...− cknxn, k = n, n− 1, ..., 1 . (2.5)

In the first step of the Gauss elimination method we choose the pivot element (the
maximum of modulus) in the first equation of the system (2.3). Let a11 6= 0. After
dividing all the coefficients and the constant term of the first equation of the system
by a11 we obtain the following equation:

x1 + c12x2 + c13x3 + ...+ c1nxn = c1n+1, (2.6)

where c1j = a1j/a11, j = 2, 3, ..., n+ 1.

With the help of equation (2.6) we eliminate the unknown x1 from the other equa-
tions of the system, beginning with the second one. We get the following system:


a
(1)
22 x2 + a

(1)
23 x3 + ...+ a

(1)
2n xn = a

(1)
2n+1

a
(1)
32 x2 + a

(1)
33 x3 + ...+ a

(1)
3n xn = a

(1)
3n+1

.......................................................

a
(1)
n2 x2 + a

(1)
n3 x3 + ...+ a

(1)
nnxn = a

(1)
nn+1

(2.7)

where a
(1)
ij = aij − c1jai1, i = 2, 3, ..., n, j = 2, 3, ..., n+ 1.

Continuing the process, in the k-th step we obtain the equation

xk + ckk+1xk+1 + ...+ cknxn = ckn+1, (2.8)
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where ckj = a
(k−1)
kj /a

(k−1)
kk , j = k + 1, ..., n+ 1, and the system of equations
a
(k)
k+1k+1xk+1 + ...+ a

(k)
k+1nxn = a

(k)
k+1k+1

.......................................................

a
(k)
nk+1xk+1 + ...+ a

(k)
nnxn = a

(k)
nn+1

, (2.9)

where a
(k)
ij = a

(k−1)
ij − ckja(k−1)ik , i = k + 1, ..., n, j = k + 1, ..., n+ 1.

In the last step of the elimination we have the equation xn = cnn+1.

The Gauss-Jordan algorithm is one of the variants of the Gaussian elimination
algorithm. In this case the matrix A of system (2.3) is reduced to diagonal form, but
not an upper triangular form. In the (k + 1)-th step the current matrix Ak has the
following form:

Ak =



1 0 . . . 0 a
(k)
1,k+1 . . . a

(k)
1n

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 a
(k)
k,k+1 . . . a

(k)
kn

0 0 . . . 0 a
(k)
k+1,k+1 . . . a

(k)
k+1,n

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 a
(k)
n,k+1 . . . a

(k)
nn


. (2.10)

We divide the (k+ 1)-th row by the coefficient a(k)k+1,k+1 and eliminate all off-diagonal
elements of the (k + 1)-th column. We will make this elimination by multiplying the
(k+1)-th row by a(k)j,k+1 and subtracting the result from the j-th row (j=1, ..., n; j 6=k+1).

To guarantee the numerical stability of the Gauss and Gauss-Jordan algorithms in
the general case, a partial choice of the pivot element is necessary. If we take the
maximum (with respect to the modulus) element in the k-th row as the pivot element
in the k-th step of the elimination, then before the realization of the modification it
is necessary to rearrange the k-th column and the column with the pivot element.

3. Parallel realization

The parallel realization of the Gauss method for m processors is the following. Condi-
tionally, we divide the vectors z and F into m parts so that n = m ·L. The matrix A
is divided by the horizontal lines into the m blocks, respectively (Figure 1). Assume
that the rows of the matrix A with numbers 1, 2, ..., L are stored in the memory of the
first processor (the Host), the rows with numbers (L+ 1), (L+ 2), ..., 2L are stored in
the memory of the second processor, the rows with numbers (2L+ 1), (2L+ 2), ..., 3L
are stored in the memory of the third processor, and so on. The rows with numbers
(m−1)L+ 1, ..., Lm are stored in the memory of the m-th processor. In the first step
the Host processor chooses the pivot element among the elements a11, a12, ..., a1n of
the first row, modifies the first row and sends it to each of the other processors. After
that each processor eliminates the first unknown x1 of every row from its own part of
the L equations. After the first step of the elimination we obtain the matrix with the
first column (1, 0, 0, ..., 0)T . In the second step the Host processor sends the modified
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-

-

-

�

�

�

-

�

Host-proessor

1-proessor

2-proessor

...

m-proessor

Figure 1. The diagram of the data distribution over the processors

second row to each of the other processors. After that each processor eliminates the
second unknown x2 of every row from its own part of the (L − 1) equations, and so
on, up to the L-th step. At the end of the L-th step the second processor sends the
L-th row to the Host processor. The Host chooses the pivot element, modifies the
L-th row and sends it to each of the other processors. After that each processor of the
others eliminates the unknown xL+1 of every row from its own part of the equations.
At the end of the 2L-th step the third processor sends the (2L + 1)-th row to the
Host processor. The Host chooses the pivot element, modifies the (2L+1)-th row and
sends it to each of the other processors, and so on. In the last step the Host processor
sends the modified last row to each of the other processors.

During the elimination process more and more processors become idle in every step,
since the number of the equations is diminished by one. This affects the efficiency
of the algorithm. The Host processor works until the end because it responds to the
transfer of the modified rows and the choice of the pivot element in every step. To
reduce the waiting time the Host processor sends the modified row to other proces-
sors immediately after receiving it and makes the calculations with its own part of
the equations independently. In the Gauss-Jordan method all the processors make
calculations with their own parts until the end. The waiting time decreases and the
efficiency of the algorithm increases.

4. Efficiency

Parallelization of the basic algorithms and their realization on the Massively Parallel
Computing System MVS–1000 [2] are implemented. The analysis of the efficiency of
parallelization of the iterative algorithm with different numbers of processors is carried
out. MVS–1000/16 of the Research Institute is a KVANT computer consisting of 16
Intel Pentium III-800, 256 MByte, 10 GByte disk, two 100 Mbit network controllers
(Digital DS21143 Tulip and Intel PRO/100). The educational computing cluster
consists of 8 Intel Pentium III-700, 128 MByte, 14 GByte disk, 100 Mbit network
controller 3Com 3c905B Cyclone (Figure 2). The first 15 nodes work fast, the other
8 nodes work more slowly.
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Figure 2. MVS–1000/16

For comparison of the execution times of the sequential and parallel algorithms,
we will consider the coefficients of the speed-up and efficiency

Sm = T1/Tm, Em = Sm/m,

where Tm is the execution time of the parallel algorithm on MVS–1000 withm (m > 1)
processors, T1 is the execution time of the sequential algorithm on one processor.

Tm = Tc + To, where Tc is the computing time, To is the exchange time. The
number m of processors corresponds to the division of the vectors z and F into m
parts mentioned so that n = m · L.

Table 1 shows execution times and the coefficients of the speed-up and the efficiency
of the iterative regularizing Newton method with 5 iterations with using the parallel
and sequential (m = 1) Gauss algorithms for problem (2.1)— (2.2) for 111×35 points
of the grid domain.

m Tm, min. Sm Em

1 57.48 — —
2 46.85 1.23 0.61
3 36.18 1.59 0.53
4 29.38 1.96 0.49
5 25.78 2.23 0.45
6 21.83 2.63 0.44
8 17.25 3.33 0.42
10 16.17 3.55 0.36
12 15.32 3.75 0.31
Table 1. Gauss Method

m Tm, min. Sm Em

1 114.1 — —
2 60.50 1.89 0.94
3 42.38 2.69 0.90
4 33.53 3.40 0.85
5 28.48 4.01 0.80
6 23.88 4.78 0.79
8 19.88 5.74 0.72
10 18.45 6.18 0.62
12 17.35 6.58 0.55
Table 2. Gauss-Jordan Method
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Table 2 shows execution times and the coefficients of the speed-up and the efficiency
of the iterative regularizing Newton method with 5 iterations with using the parallel
and sequential (m = 1) Gauss-Jordan algorithms for problem (2.1)–(2.2) for 111× 35
points of the grid domain.

The results of the calculations show that the parallel Gauss and Gauss-Jordan
algorithms have quite a high efficiency of parallelization, and the Gauss-Jordan algo-
rithm efficiency is higher than the efficiency of the Gauss algorithm. In the case of
the parallel Gauss algorithm with the number of processors m ≤ 5, the efficiency is
Em > 0.45. In the case of the parallel Gauss-Jordan algorithm with the number of
processors m ≤ 10, the efficiency is Em > 0.6. When the number of processors m is
small, then the speed-up Sm increases almost linearly as the number m increases. On
the other hand, when m is large, then the exchange time increases, so the efficiency
Em decreases.

5. Concluding remarks

The preliminary gravitational data processing is connected with the selection of the
anomalous field for each interface Si (i = 1, 2) from the common data measured on
a rectangular area in some region in the Urals. This processing was implemented
by the methods from [1]. In Figures 3 and 4 the graph 1 of the boundary profiles
of the interfaces S1 and S2 is obtained by using the methods from [1] (continuous
lines). Graph 2 of the boundary profiles is obtained by solving the problem (2.1) by
the iterative regularizing Newton method (2.2) with the aid of the parallel Gauss or
Gauss-Jordan algorithms (dotted lines).

For approximation of the integral operator (2.2) we used the two-dimensional ana-
log of the rectangle quadrature formulas for 111× 35 points of the grid domain with
grid widths hx = 0.5 and hy = 2 (km). The positive parameters αk were chosen from
numerical experiments taking into account the right side of equation (2.1), namely
αk � F (x, y). In Figure 3 for problem (2.1) H = 2 (km) is the depth of the surface

0.0

0.0 10.0

1

2

20.0 30.0 40.0

3.00

2.00

1.00

50.0 60.0

Figure 3. Boundary profiles for H = 2 (km)
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S, f = 6.67 · 10−5 is the gravitation constant, ∆σ = 0.48 (g/cm3
) is the density jump

on the interface, z0(x, y) = 0.3 (km) is the initial approximation and αk = 2.5 is a
sequence of the positive parameters. In Figure 4 for problem (2.1) H = 10 (km) is the

10.00

20.00

0.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0

1

2

Figure 4. Boundary profiles for H = 10 (km)

depth of the surface S, f = 6.67 ·10−5 is the gravitation constant, ∆σ = 0.23 (g/cm3
)

is the density jump on the interface, z0(x, y) = 0.3 (km) is the initial approximation
and αk = 0.8 is a sequence of the positive parameters.

51.33

0.00.0

0.8

1.19

1.58

1.97

2.36

2.76

26.06

39.08

52.11

65.14

13.03

25.67

38.50

12.83

Figure 5. The reconstructed interface S1
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0.29

11.92

67.00

11.17

0.0 0.0

11.00

22.00

33.00

44.00

55.00

22.33

33.50

44.67

55.83

Figure 6. The reconstructed interface S2

In Figures 5 and 6 the three-dimensional interfaces S1 and S2 for the real gravity
field of some area in the Urals for H = 2 (km) and H = 10 (km) are represented.
They are reconstructed by the iterative regularizing Newton method (2.2) with the
help of the parallel Gauss or Gauss-Jordan algorithms.

The main conclusion is the following. The interfaces S1 and S2 obtained as solutions
of the gravity inverse problem (2.1) by the iterative regularizing Newton method (2.2)
correspond to the real conceptions about the investigated region in the Urals. Paral-
lelization of the algorithms decreases the time of solving the problems.

Acknowledgement. The support provided by the Russian Foundation for Basic Research
(project No. 03-01-00099) is gratefully acknowledged. The author is grateful to V.V. Vasin,
the corresponding member of the Russian Academy of Sciences for the formulation of the
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References

1. Vasin, V.V., Perestoronina, G.Ya., Prutkin, I.L. and Timerkhanova, L.Yu.:
Reconstruction of relief of geological boundaries in the three-layered medium using the
gravitational and magnetic data. In: Proceedings of "Geophysics and Mathematics", 35-
41. Institute of Mines, UrB RAS, Perm, 2001.

2. Baranov, A.V., Latsis, A.O., Sazhin, C.V. and Khramtsov, M.Yu. The MVS–
1000 System User’s Guide. http://parallel.ru/mvs/user.html.



Journal of Computational and Applied Mechanics, Vol. 4., No. 1., (2003), pp. 13–25

COMPUTATION OF UNSTEADY MOMENTUM AND HEAT
TRANSFER FROM A FIXED CIRCULAR CYLINDER IN

LAMINAR FLOW

László Baranyi
Department of Fuid and Heat Engineering, University of Miskolc

3515 Miskolc - Egyetemváros, Hungary
arambl@gold.uni-miskolc.hu

[Received: December 20, 2002]

Abstract. This paper presents a finite difference solution for 2D, low Reynolds number,
unsteady flow around and heat transfer from a stationary circular cylinder placed in a uniform
flow. The fluid is assumed to be incompressible and of constant property. The governing
equations are the Navier-Stokes equations, the continuity equation, a Poisson equation for
pressure and the energy equation. The temperature of the cylinder wall is kept constant
and the viscous energy dissipation term is neglected in the energy equation. The computed
Strouhal numbers, time-mean drag and base pressure coefficients, as well as the average
Nusselt numbers compare well with existing experimental results.

Mathematical Subject Classification: 73A05
Keywords: forced convection, circular cylinder, Navier-Stokes equations, Finite Difference
Method

1. Introduction

Investigating flow around a single circular cylinder has been the objective of a huge
number of researchers, through experimental, theoretical, and numerical approaches
to the problem. Despite the simple geometry, the problem is extremely complex and
remains an intriguing one, and one with many applications. Knowledge of flow pat-
terns around bluff bodies is important in the design of structures such as smokestacks,
skyscrapers, or bridges. Long slender structures in wind are often subjected to large
amplitude oscillation due to alternating vortex shedding, sometimes causing collapse
of the structure. The same vortex shedding causes noisy operation of heat exchang-
ers, as the pipes of the heat exchanger vibrate. These are some of the hydrodynamic
aspects; another aspect of importance is the heat transfer to and from the fluid. Heat
exchangers, hot wire anemometers, and cooling towers are some examples in which
heat transfer is central; heat transfer between structures and the outside air is also
affected by vortex shedding.
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Because of the practical importance of this problem, there are numerous studies
dealing with flow past cylinders that are fixed, oscillating, rotating, or in orbital mo-
tion. Among these, the fixed cylinder is usually the starting point of investigations,
because it is relatively simple to carry out experiments on, and thus also for numerical
studies, comparison with experimental data is possible to confirm validity of the com-
puter method used. Roshko [1], Norberg [2], and Bearman [3] are among those who
have provided invaluable experimental data on flow around a fixed cylinder. Com-
putations on the same problem have been performed by many researchers, including
Kawamura and Kuwahara [4], Braza et al. [5], and Karniadakis and Triantafyllou [6].

Heat transfer has been investigated for fixed heated cylinders in a uniform stream
at low Reynolds numbers with a focus on application to hot wire anemometry by
investigators such as Lange et al. [7]. In their case, computations were carried out at
extremely low Reynolds numbers as well, and they claim to have identified the critical
Reynolds number where vortex shedding starts at Re=45.9.

Mahfouz and Badr [8] carried out a numerical study on a fixed and a rotationally
oscillating cylinder between Re=40 and 200. They attempted to investigate the pos-
sibility of controlling heat transfer using a rotationally oscillating cylinder, and found
that heat transfer was appreciably enhanced in the lock-in range, and the effect of
the oscillation on heat transfer was insignificant for non-lock-in cases.

In the author’s earlier studies, computations were carried out for the flow around
a fixed circular cylinder at different Reynolds numbers, from Re=10 to 1000, and up
to Re=180 for an oscillating cylinder (e.g. Baranyi and Shirakashi, [9]), and good
agreement was obtained with experimental data for the variation of Strouhal number
and time mean drag coefficient with Reynolds number. Here, further features of flow
are investigated for a fixed cylinder and compared with experimental data. The base
pressure coefficient, which influences the near-wake structure, is investigated and com-
pared with the experimental data of Roshko [10]. Also, the author’s computational
results were compared with those of Sherwin’s unpublished computations carried out
by a different method, for the time mean drag coefficient, Strouhal number, and the
root-mean square (rms) values of lift and drag coefficients at several Reynolds num-
bers up to Re=140. These comparisons were used to further validate the computer
method used. Based on the results, the method was extended to investigate the heat
transfer from a heated cylinder in which the temperature is kept constant and the
fluid is assumed to be constant property incompressible fluid.

2. Governing equations

When deriving the basic equations constant property incompressible fluid flow is as-
sumed. The governing equations in non-dimensional forms are the two components
of the Navier-Stokes equations, the equation of continuity, a Poisson equation for
pressure p, and the energy equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
; (2.1)
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∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
; (2.2)

D =
∂u

∂x
+
∂v

∂y
= 0; (2.3)

∇2p =
∂2p

∂x2
+
∂2p

∂y2
= 2

[
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

]
− ∂D

∂t
; (2.4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

RePr

(
∂2T

∂x2
+
∂2T

∂y2

)
+

E

Re
Φ. (2.5)

In these equations quantities are made dimensionless by using a length scale L cho-
sen to be the diameter of the cylinder d, velocity scale U which is the free stream
velocity, density ρ, kinematic viscosity υ, specific heat at constant pressure cp, and
the temperature difference between the cylinder surface (w) and the outer boundary
(∞) of the computational domain

(
T̃w − T̃∞

)
. In these equations x,y are Cartesian

coordinates, u,v are velocities in x,y directions, p is pressure, D is dilation, T is di-
mensionless fluid temperature defined by T =

(
T̃ − T̃∞

)
/
(
T̃w − T̃∞

)
, where T̃ is

the dimensional temperature, Re is the Reynolds number defined by Re = Ud/υ,
Pr is the Prandtl number Pr = ρυcp/k, where k is the thermal conductivity of the
fluid, E is Eckert number defined by E = U2/

[
cp

(
T̃w − T̃∞

)]
. The gravity force is

included in the pressure terms in equations (2.1) and (2.2). Φ in equation (2.5) is the
viscous energy dissipation function

Φ = 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]

+

(
∂u

∂y
+
∂v

∂x

)2

. (2.6)

At low Reynolds numbers, as in this study, the viscous dissipation function can be
neglected. Although the dilation D is zero by continuity (2.3), it is advisable to retain
the term ∂D/∂t to avoid computational instability (Harlow and Welch, [11]).

Boundary conditions:

(R1: cylinder surface)
u = v = 0 ;

∂p

∂n
=

1

Re
∇2vn;

T1 = 1.

(R2: undisturbed domain)
u = upot; v = vpot;

∂p

∂n
=

(
∂p

∂n

)
pot

;

T2 = 0.

Here subscript pot stands for potential flow and n denotes the outer normal along the
cylinder.



16 L. Baranyi

The heat transfer rate per unit area from the cylinder wall to the fluid can be
obtained from the temperature distribution and may be described as

q̇w = −kw

(
∂T̃

∂r̃

)
w

, (2.7)

where T̃ and r̃ are the dimensional temperature and radius, kw is the thermal con-
ductivity of the fluid at cylinder temperature, and the subscript w indicates that the
temperature gradient in the radial direction is evaluated at the cylinder wall. In this
study constant property fluid is considered so the thermal conductivity of the fluid k
is assumed to be constant, hence k ∼= kw. Engineers and technicians working in this
field need an expression based on measurable quantities such as

q̇w = h
(
T̃w−T̃∞

)
, (2.8)

where h is the heat transfer coefficient. By introducing dimensionless quantities the
Nusselt number Nu can be obtained as

Nu =
hd

k
= −

(
∂T

∂R

)
w

, (2.9)

where T and R are the dimensionless temperature and radius. The temperature
gradient in the fluid should be evaluated on the cylinder surface.

3. Transformation from the physical plane to the computational plane

We use a boundary-fitted coordinate system, hence boundary conditions can be im-
posed accurately. In this way interpolation leading to poor solutions can be avoided.

Figure 1. Physical and computational planes

A unique, single-valued relationship between the coordinates on the computational
domain (ξ , η, τ) and the physical coordinates (x, y, t) (see Figure 1) can be written
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as

x (ξ, η) = R (η) cos [g (ξ)] ; y (ξ, η) = −R (η) sin [g (ξ)] ; t = τ , (2.10)

where the dimensionless radius

R (η) = R1 exp [f (η)] . (2.11)

This choice of the structure of the mapping function automatically assures that the
obtained grid is orthogonal on the physical plane for arbitrary functions f (η) and
g (ξ). In this study the following linear mapping functions were used

g (ξ) = 2π
ξ

ξmax
; f (η) =

η

ηmax
log

(
R2

R1

)
, (2.12)

where subscript max refers to maximum value. Using mapping functions (2.12) cylin-
drical coordinates with logarithmically spaced radial cells are obtained on the physical
plane, providing a fine grid scale near the cylinder wall and a coarse grid in the far
field. Transformations (2.10)-(2.12) are single valued since in this case Jacobian J

J = yηxξ − yξxη =
2π log

(
R2

R1

)
ξmaxηmax

R (η) (2.13)

is non-vanishing, positive for an arbitrary value of η in the computational domain.
In equation (2.13) subscripts ξ and η denote differentiation. After having chosen
the transformations between the physical and computational domains, the governing
equations can also be transformed by variables used in the computational domain.

The x and y components of the transformed Navier-Stokes equations are
∂u

∂τ
+

1

J

(
u
∂y

∂η
−v ∂x

∂η

)
∂u

∂ξ
+

1

J

(
v
∂x

∂ξ
− u∂y

∂ξ

)
∂u

∂η
=

− 1

J

(
∂y

∂η

∂p

∂ξ
− ∂y

∂ξ

∂p

∂η

)
+

1

ReJ2

(
g22

∂2u

∂ξ2
+ g11

∂2u

∂η2

)
; (2.14)

∂v

∂τ
+

1

J

(
u
∂y

∂η
− v ∂x

∂η

)
∂v

∂ξ
+

1

J

(
v
∂x

∂ξ
− u∂y

∂ξ

)
∂v

∂η
=

− 1

J

(
∂x

∂ξ

∂p

∂η
− ∂x

∂η

∂p

∂ξ

)
+

1

ReJ2

(
g22

∂2v

∂ξ2
+ g11

∂2v

∂η2

)
. (2.15)

Dilation D transforms as

D =
1

J

(
∂y

∂η

∂u

∂ξ
− ∂y

∂ξ

∂u

∂η
+
∂x

∂ξ

∂v

∂η
− ∂x

∂η

∂v

∂ξ

)
= 0. (2.16)

The Poisson equation for pressure will have the form

g22
∂2p

∂ξ2
+ g11

∂2p

∂η2
= 2J

(
∂u

∂ξ

∂v

∂η
− ∂u

∂η

∂v

∂ξ

)
− J2 ∂D

∂τ
. (2.17)

The energy equation by neglecting the viscous dissipation transforms as
∂T

∂τ
+

1

J

(
u
∂y

∂η
− v ∂x

∂η

)
∂T

∂ξ
+

1

J

(
v
∂x

∂ξ
− u∂y

∂ξ

)
∂T

∂η
=

1

RePrJ2

(
g22

∂2T

∂ξ2
+ g11

∂2T

∂η2

)
.

(2.18)
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Boundary conditions for pressure will be transformed as

R = R1 :
∂p

∂η
=

g11
ReJ2

(
∂x

∂η

∂2u

∂η2
+
∂y

∂η

∂2v

∂η2

)
; (2.19)

R = R2 :
∂p

∂η
∼=
(
∂p

∂n

)
pot

. (2.20)

In these equations the elements of the metric tensor will have the form

g11 =

(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

; g22 =

(
∂x

∂η

)2

+

(
∂y

∂η

)2

. (2.21)

The choice of transformations (2.10)-(2.12) renders the off-diagonal elements of the
metric tensor zero, i.e., g12 = g21 = 0. That is the reason why the mixed second deriva-
tives are missing from the Laplacian terms in equations (2.14), (2.15), (2.17)-(2.19).
The transformation also ensures that the coefficients of the first order derivatives in the
Laplacian terms in the above equations are zero (Fletcher, [12]). Since the mapping is
given by elementary functions, the metric parameters and coordinate derivatives can
be computed from closed forms, hence numerical differentiation leading to numerical
errors can be avoided.

The grid aspect ratio AR [12], i.e., the ratio of the two sides of an elementary
rectangle on the physical plane (see Figure 1), will have the form

AR =

√
g22
g11

=
fη
gξ

=
ξmax log (R2/R1)

2πηmax
. (2.22)

It can be seen from equation (2.22) that the grid aspect ratio is constant over the
whole computational domain. By choosing the number of grid points in the ξ and η
directions properly, this constant can be set to unity resulting in conformal transfor-
mation [12].

4. Numerical method applied and computational results

4.1. Computational method. The author developed a computer code which is ap-
plicable to the computation of flow around a fixed or oscillating cylinder, or a cylinder
in orbital motion. This code calculates the velocity, pressure, and time histories of
lift and drag coefficients. Several other quantities are calculated, including the vor-
ticity distribution, stream function, the location of the front stagnation point, and
the lower and upper separation points changing with time. The code has recently
been extended to compute the heat transfer between a heated cylinder and the fluid
flowing around it.

The transformed governing equations are solved by the finite difference method.
The time derivatives in the transformed Navier-Stokes equations (2.14), (2.15) and
in energy equation (2.18) are approximated by forward differences. Fourth order
central difference scheme is used for the diffusion terms and the pressure derivatives.
The widely used modified third order upwind scheme proposed by Kawamura and
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Kuwahara [4] proved to be successful in handling the convective terms in the Navier-
Stokes and energy equations.

The equations of motion and equation of energy are integrated explicitly giving
the velocity and temperature distributions at every time step. In the knowledge of
the velocity distribution in an arbitrary time step, the pressure is calculated from
equation (2.17) by using the successive over-relaxation method (SOR). Dilation D is
chosen to be zero at every time step. The pressure on the cylinder surface is calculated
by the third order formula at every time step, shear stress on the cylinder surface is
derived from the velocity distribution, and from the pressure and the shear stress
we can derive the time histories of lift and drag coefficients. The non-dimensional
vortex shedding frequency, Strouhal number St can be determined from the location
of the spectrum peak of FFT, when applied to the oscillating lift coefficient or other
oscillating signals.

The dimensionless heat transfer coefficient or local Nusselt number Nu is obtained
at every time step by using the temperature distribution

Nu (ϕ, t) =
hd

k
= −

(
∂T

∂R

)
w

= −
(
∂T

∂η

)
η=0

(
dη

dR

)
η=0

= − 1

R1f ′ (η = 0)

(
∂T

∂η

)
η=0

(2.23)
where f ′ (η) means the first derivative of f with respect to η, and ϕ is the polar angle
measured along the periphery of the cylinder. The average Nusselt number Nu (t) is
obtained as

Nu (t) =
1

2π

2π∫
0

Nu (ϕ, t)dϕ.

The time averaged Nusselt number Nu can also be obtained by taking the average
of Nu (t) over a time period taken after reaching the quasi-steady state and covering
more than one cycle.

The computational grid used is 241x131 O-mesh. The diameter of the outer bound-
ary of computation is 30d, where d = 2R1 is the cylinder diameter. Non-dimensional
time steps used were usually 0.001 and 0.0005.

4.2. Momentum transfer. Previous studies by the author have focused upon the
computation of momentum transfer between a uniform fluid flow and a single circular
cylinder, either fixed or oscillating. Good agreement was obtained for fixed cylinders
against experimental results for Strouhal number and mean drag coefficient versus
Reynolds number [9]. Computations for oscillating cylinders were carried out to
determine the amplitude threshold curve for locked-in vortex shedding due to crossflow
cylinder oscillation [9].

A very important feature of momentum transfer is the base pressure coefficient. In
Figure 2 time-mean values of the base pressure coefficients Cpb, or the non-dimensional
pressure measured at the farthest downstream point of the cylinder are compared with
the experimental results of Roshko [10]. Agreement was good, but note that a dis-
crepancy emerges at Re=180. This is fairly consistent with the findings of Williamson
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[13] that flow becomes unstable and 3-D effects begin to appear above Re=160. This
instability was accurately predicted by the computational code. Also shown in Figure
2 are the computed rms values of the base pressure Cpbrms. Below Re=60, this value
is very small, which is in agreement with experimental findings that vortex shedding
begins between Re=40 and 50 [3] or, as mentioned earlier, the value of 45.9 given in
[7].

Figure 2. Comparison of base pressures

Figure 3. Computational results for fixed cylinder with comparisons

To further determine momentum characteristics of flow, computations of the time-
mean value and root-mean-square (rms) value of drag coefficients ( CDand CDrms)
and rms value of lift coefficient (CLrms) were made for a fixed cylinder at different
Reynolds numbers. These and the non-dimensional vortex shedding frequency St
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are shown in Figure 3, with comparisons with the unpublished computational results
of S. Sherwin (Imperial College of Science, Technology and Medicine, using spectral
element method) for Re=60, 100, and 140. As can be seen, the agreement is quite
good.

4.3. Heat transfer. The cylinder surface is given a constant temperature, and the
temperature of the fluid flowing around it is below the cylinder temperature, meaning
that heat is transferred from the cylinder surface in the fluid. To keep a constant
temperature, the cylinder is heated (as is the case with hot wire anemometer). Here,
it is assumed that the temperature difference is not large enough to influence the
properties of the fluid, and a constant property fluid was assumed in this study.

1

10

10 100 1000

Re

Nu

McAdams [15]
Baranyi

Figure 4. Measured and calculated time-averaged Nusselt number versus Reynolds
number

Computations were carried out for fixed cylinders from Re=50 to 180, bearing in
mind the fact that three-dimensional instability begins to occur at around Re=160,
[13]. Figure 4 shows the author’s computational results for time-averaged Nusselt
numbers for different Reynolds numbers up to Re=180, and experimentally obtained
time-averaged Nusselt number Nu for heating of air flowing across a single circular
cylinder, versus Reynolds number, from Özisik [14] and McAdams [15]. As can be
seen, the agreement is quite good, and possibly better than it appears in Figure 4.
This is because the solid line is only a small part of a regression curve placed on ex-
perimentally measured values over an extremely wide Reynolds number domain, and
the real measured values in the domain under consideration are above the regression
curve itself, as are the computational results.

Computational results for which heat transfer has also been calculated are sum-
marized in Table 1, as a function of Reynolds number. Strouhal number, time-mean
values and rms values of the lift and drag coefficients, base pressure coefficient, and
Nusselt number are given, with the exception of the time-mean value of the lift co-
efficient, which is zero. Note that values starting at Re=160 may be influenced by
three-dimensional instability. It was found that Strouhal number derived from the
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spectrum of the lift coefficient and that from the spectra of any other oscillating sig-
nal (CD, Cpb, Nu) were somewhat different for Re=160 and above, and the averaged
values for St are given in Table 1. This code predicts that the three-dimensional
instability begins around Re=160.

Table 1. Effect of Re on momentum and heat transfer

Re St CD −Cpb Nu CLrms CDrms Cpbrms Nurms
50 0.125 1.451 0.518 3.609 0.032 0.0001 0.0009 0.00004
60 0.137 1.419 0.574 3.950 0.093 0.0007 0.0022 0.0003
75 0.152 1.381 0.636 4.421 0.152 0.0024 0.0069 0.0008
90 0.163 1.357 0.687 4.856 0.199 0.0046 0.0129 0.0012
100 0.163 1.346 0.718 5.132 0.228 0.0064 0.0174 0.0014
110 0.171 1.338 0.747 5.396 0.256 0.0084 0.0226 0.0018
125 0.176 1.331 0.789 5.776 0.297 0.0117 0.0315 0.0027
140 0.179 1.325 0.830 6.136 0.337 0.0153 0.0413 0.0041
150 0.185 1.329 0.857 6.367 0.363 0.0178 0.0481 0.0056
160 0.188 1.330 0.883 6.590 0.388 0.0203 0.0552 0.0074
170 0.192 1.332 0.908 6.807 0.412 0.0229 0.0623 0.0094
180 0.195 1.334 0.933 7.018 0.435 0.0256 0.0696 0.0118

The rms values of the Nusselt number are shown in Figure 5. As can be seen, the
amplitude of oscillation with time in the Nusselt number increases pronouncedly with
increasing Reynolds number. This means that vortex shedding has an increased effect
on heat transfer at larger Reynolds numbers.
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Figure 5. Root-mean-square value of Nusselt number versus Reynolds number

The time-history of the average Nusselt number Nu is shown for Re=150 in Figure
6. In the case of a fixed cylinder, the establishment of a quasi-steady state of vortex
shedding takes a relatively long time. The frequency of oscillation in the Nusselt
number is the same as the frequency of oscillation for the drag coefficient, while the
frequency of oscillation of the lift coefficient is half that of Nu and the drag coefficient.
This can be seen by taking the fast Fourier transform (FFT) of these three signals.
Thus, in the case of the lift coefficient, one cycle consists of two vortices shed (clockwise
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on the upper and counter-clockwise on the lower side), while for the drag coefficient
and heat transfer, the shedding of a single vortex constitutes one cycle.

Figure 6. Time history of average Nusselt number
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Figures 7a and b. Local Nusselt number

Figures 7a and 7b show the local Nusselt number distribution over the cylinder
surface for a complete cycle of vortex shedding at dimensionless times t0; t0 − T

4 ;

t0 − T
2 ; t0 − 3T

4 where t0 = 250 and T is the period of a shedding cycle. As can
be seen, the curves are similar in shape and magnitude, but shift slightly over the
whole periphery, and the shift is largest on the downstream side of the cylinder. At
Re=50 the four curves belonging to the different phases almost completely coincide
(Figure 7a), but the shift among the curves grows pronouncedly larger as the Reynolds
number increases (see Figure 7b for an example). The maximum heat transfer rate is
around ϕ =180o, near the upstream stagnation point. This can be attributed to the
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thin boundary layer present at that point. As the boundary layer thickens, the local
Nusselt number decreases steeply. The function seems to be completely symmetrical
around this point, and minimum heat transfer occurs not at the exactly opposite
downstream point, but around 45o to each side of it. There is a local maximum in
the heat transfer at the downstream point (ϕ = 0o), probably due to periodic vortex
shedding.

The curves in Figures 7a and 7b are very similar to those based on computa-
tional results obtained using the stream function-vorticity method [8]. These re-
searchers showed results for Re=200, a somewhat unfortunate choice as they used a
two-dimensional code.

5. Concluding remarks

The finite difference method was applied for the numerical simulation of unsteady
laminar flow and forced convection from a fixed cylinder placed in a uniform flow.
Primitive variable formulation was used for the fluid flow, and the fluid is assumed to
be incompressible and of constant property. The viscous energy dissipation term was
neglected in the energy equation since its value is small at low Reynolds numbers. By
using boundary-fitted coordinates, interpolation of the boundary conditions becomes
unnecessary. An orthogonal transformation provides a fine grid scale in the vicinity
of the cylinder and a coarse grid in the far field. Time derivatives are approximated
by forward differences, space derivatives by fourth order central differences, except for
convective terms which were approximated by a third order modified upwind scheme.

The code developed was applied to the investigation of both flow around a circu-
lar cylinder and forced convection from the cylinder. The non-dimensional vortex
shedding frequency (Strouhal number), time-mean values of drag and of base pressure
coefficients, further the root-mean- square values of lift, drag, base pressure, and Nus-
selt number were determined for Reynolds numbers from 50 to 180. Where possible,
results were compared with experimental data and excellent agreement was obtained,
except for the vicinity of Re=180, where three-dimensional instability might have had
an influence.

The distribution of the local Nusselt number over the cylinder surface was also
investigated over a complete cycle. It was found that the curves belonging to different
phases are similar in shape and magnitude, but shift slightly over the whole periphery
of the cylinder, and the shift is largest on the downstream side of the cylinder. This
shift increases with increasing Reynolds number.

The good agreement found between experimental and computational values en-
courages the author to extend the investigation in the future to the cases of forced
convection from an oscillating cylinder, and to the three-dimensional case. Another
future plan is to take into account the effect of temperature on the properties of the
fluid.
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Abstract. The structural design problem is solved in case of time-dependent loading. The
state variables are given in function space, where the Fritz-John theorem is not proved.
Approximating the functions by generalized Fourier-series, the coefficients become unknowns.
Transforming the problem into Banach space, where the Fritz-John theorem is proved, the
problem is solvable.
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1. Introduction

The aim of this research is to present some computational models of mechanical
processes in case of structures and, in addition, the energy dissipation effects are
taken into consideration. These models are used for designing the flexibility of the
structure. The reason of this investigation is the fact that it is possible to determine
only the relative weak minimum by means of the finite element method and the
variation calculus [7], but in spite of this fact different variations of finite element
methods are frequently used in the literature and practice [3-5,9,11]. In this paper
elasto-plastic material models are used and the investigated computational models
can be applied if the relative strong minimum of variation calculus is determined in
case of analysis of structures. From these tendencies it follows that one should try
to solve the problem with different types of approximations and numerical methods
and to extend the finite element methods to determine a relative, strong or absolute
minimum in spite of the fact that the results of these methods are valid in some
cases – not to taking into consideration the approximations. Due to these reasons it
is necessary to apply mechanical processes in the structural analysis with the aid of
a mathematical background, which does not contain the problem mentioned above.
The method of this research is based on partially the theoretical thermodynamics in
physics concerning the mechanical processes [10,13-15]. It was necessary to look for a
mathematical field, which patterns to the physical background and to elaborate the



28 A. Vásárhelyi and J. Lógó

mathematical branch, which is conformable for the numerical solution of the analysis
of the mechanical processes by computer as well.

2. Mathematical background

The problem is written in function spaces, as a primal-dual form. It creates difficulties
that the extreme theorems of mathematical programming have not been proved in
function spaces.

The state variables (e.g. stresses, strains, etc.) are given in vector space by vector-
scalar functions in case of equilibrium state. For a discretized structure this vector
space is supposed to be an n-dimensional space in a global coordinate system denoted
by X,Y, Z. Each node of the element is defined by a position vector (see Figure 1). A
state vector is attached to each position vector in the local coordinate system ξ, η, ζ.
The number of the independent components depends on the freedom of the nodes
(6 for the example in Figure 1) and it equals n times the dimension of the state
vector. In case of time-dependent problems, the state functions are given in both
local and global coordinate systems and are vector-vector functions which depend on
time. Within the context of small displacements theory, the position vectors are time
independent.

The state variables are time-functions

The state variables are approximated by generalized Fourier-series. The complemen-
tary problem is transformed from the functions space into the Banach space of the
Fourier coefficients, where the Fritz-John theorem has been proved. From the Banach
space it is easy to switch to the infinite Euclidean space. The latter can be truncated
to a finite space in which the problem becomes solvable [2].

Let us see an arbitrary vector-scalar function by dimension s. All of the components
of this function are elements of the space L2(Ω), Ω[0, 1] [12]. The space L2(Ω) is a
Hilbert-space, it is possible to choose an orthogonal basis Pi(t), (i = 1, ...,∞) on the
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interval Ω = [0, 1] in polynomial form. An element of this Hilbert-space is:

x(t) =

∞∑
i=1

αiPi(t), Pi(t) ∈ L2(Ω), αi ∈ R, i = 1, . . . ,∞, t ∈ [0, 1], (1)

where the set of real numbers is denoted by R. The s dimensional function space con-
tains the state variables, which belong to a node. The Hilbert-spaces of the structure
are defined as a direct multiplication of the s dimensional function spaces powered n

(L2
1 × L2

2 × ...× L2
j × ...× L2

s)n (2)

One element of the space is the projection of the state variables of the jth freedom:

rj(t) =

3∑
k=1

xkj (t)ik =

3∑
k=1

( ∞∑
i=1

αijP
j
i (t)

)
ik (3)

αij ∈ R, P j
i (t) ∈ L2

j ([0, 1]), t ∈ [0, 1], j = 1, ..., s, i = 1, ...,∞,

where ik (k = 1, ..., 3) are the unit vectors of the local coordinate-system, xkj (t) is the
function on the k th axis of the local coordinate-system. P j

i (t) is the i th element of the
approximation polynomial system belonging to the k th axis of the local coordinate
system. αij denotes the i th Fourier-coefficients of the polynomial P j

i (t) at the jth
freedom.

The Fourier coefficients are summarized into a matrix according to nodes:

[α̃] =

 α1
11 . . . α1

∞1 α1
12 . . . α1

∞2 α1
∞s . . . α1

∞s
...

...
...

...
...

...
αn
11 . . . αn

∞1 αn
12 . . . αn

∞2 αn
∞s . . . αn

∞s

 . (4)

The mechanical problem has been formed in the space F` = (R3×L2
1×L2

2× ...×L2
j ×

...× L2
s)n and the computation has been done in the space of Fourier coefficients.

The extreme problem of the transformed Lagrangian function can be divided into
primal and dual problems in mathematical programming. The primal variables are
intensive ones, the dual variables are extensive ones, from a physical point of view. The
objective function contains the sum of complementary strain energy and dissipative
energy, respectively.

It has been proved, that the stationary curve characterized the process and the
changing of state variables in time is solvable in linear and nonlinear cases using the
Fritz-John condition by mathematical programming. The unknowns are the general-
ized Fourier coefficients of the Fourier series used for approximation. The inequalities
can be taken into consideration in discretized time points only [16].

The Fritz-John condition can be written by Stieltjes’ derivative, so the dual problem
can be formed by the Wolfian procedure using Stieltjes’ derivative. In this way the
deductions are easier and clearer concerning the mechanical processes than to work
in the space of the generalized Fourier coefficients.

Mechanically the primal problem is expressed by the equilibrium equations with
boundary conditions as constraints, and by the function of the complementary strain
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energy as objective function, in function space. The Wolfian procedure (for dual
creation) results in the compatibility equations with the boundary conditions as con-
straints, and in the energy theorem of the elasticity as the objective function in
function space.

The basic idea of the deductions are:

• the primal problem is based on extreme theorems of physics,
• using the Wolfian process the dual problem was formed and it was checked

from a mechanical point of view.

The dual problem shows as a result that the analysis of a structure made of non-
linear elastic material with time dependent state variables has time-dependent energy
function as the objective function, and the compatibility equations as constraints.
The compatibility equations are equivalent to the Kuhn-Tucker conditions [6,8].

3. Elasto-plastic models

The structure is divided into finite elements in space. The state variables, ordered
to the FEM nodes, are time-functions (Figure 1).

The use of the elaborated mathematical tools has been presented in different me-
chanical problems [15-18]. The dissipated energies are taken into consideration by
internal variables, which contains the changing of the micro-level material structure
into a macro level one.

The limitation of the presented model are:

1. at least one continuous component has to be assumed,
2. the small displacement theory is valid,
3. stability problems are neglected.

The aim is to design the flexibilities of the members of a structure in case of elasto-
plastic material. The following data are given:

– the external load time-function,
– the geometrical data (transfer matrix between the nodes, boundary conditions),
– plastic yield limit,
– dissipate yield limit,
– limit of flexibility [F̂],
– dissipate matrix [A], which contains dissipate properties of material.

The primal problem can be formulated as follows:

[B]
∗
σ(t) 〈ρ〉+ [B]

∗
r(t) + p(t) = 0 , (5a)

fi(σk(t), k = 1, ..., z) 6 0, i = 1, ..., G, (5b)
ϕi(rk(t), k = 1, ..., z) 6 0 i = 1, ..., G, (5c)
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fi(σk(t), k = 1, ..., z)rik(t) = 0, i = 1, ..., G, k = 1, ..., z, (5d)

[F]−
[
F̂
]
6 0, (5e)

1

2
σ(t)∗ [F]σ(t) 〈ρ〉+

1

2
r(t)∗ [A] r(t)→ min ., ∀t, t ∈ [t1, t2] (5f)

The unknowns involve:
the vector of stress functions σ(t),
the vector of dissipate force functions r(t),
and the flexibility matrix [F],

where n is the number of the nodes, s is the freedom of nodal displacements, G is the
total number of the Gaussian points defined on the elements, z is the freedom of the
stresses defined in the Gaussian points, [B]

∗ is the transfer matrix of the structure (the
dimension is ns ×Gz), r(t) is the force type internal variable (the dimension is ns),
< ρ > is the diagonal matrix of the Gaussian weights (the dimension is Gz,×Gz),
σ(t) is the vector of the stresses (the dimension is Gz), p(t) is the vector of the
external loads acting on the nodes (dimension is n.s), [F] is the flexibility matrix
(the dimension is Gz,×Gz), [F̂] is the prescribed value of the flexibility matrix (the
dimension is Gz,×Gz), [A] is the matrix of the dissipate property of the phenomena
(the dimension is Gz,×Gz).

The mechanical interpretations of the problem (5a-g) are: (5a) is the equilibrium
equation concerning time-functions of stresses and force type internal variables and
external forces in the extended space (the number of the equation is ns). The bound-
ary conditions (5b) are expressed by equality and/or inequality constraints. The
plastic yield conditions in the Gaussian points of the structure are the inequalities
(5b). The inequalities (5c) yield the size of the force type internal variables in the
Gaussian points. The equalities (5d) take a switch role. (5e) contains the limit value
of the flexibility. The objective function (5f) is the sum of the complementary strain
energy and the complementary dissipation energy.

Let’s see how the model (5a-f) works. A point is in the elastic state, if the plastic
yield condition is an inequality in the point. The values of the force-type internal
variables are zero owing to the switch conditions (5d). In the equality equations the
equal sign is valid in the space Fn. If the plastic yield condition becomes an equality
in a given point the force type internal variable can appear in equations (5a). This
comes from equations (5d) for every Gaussian point and every stress freedom. The
force type internal variables are not zero, that is equations (5a) become inequalities
in the space Fn (there are no force type internal variables among the usual state
variables in mechanics). This expresses the fact that a point in plastic state is in
a non-equilibrium state. If the constraint (5c) is an equality the energy dissipation
capacity of the material reaches its maximum in a given Gaussian point. If the
constraint (5c) is an inequality, the given Gaussian point of the structure is either in
the elastic state or in the plastic state and the material is able to dissipate.

The matrix [A] contains material constants, which characterize the energy dissipa-
tion ability of the phenomenon. Handling this type of energy is rather complicated
because of the lack of the material constants.
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Wolfe’s dual problem of (5a-f) is formed as follows (the dual variables u(t), λ(t),
Ψ(t) and x(t) belong to equality (5a), inequalities (5b), (5c) and equalities (5d),
respectively, and the dual vectors have function elements) (5):

[B]u(t) + [F]σ(t) 〈ρ〉+ (λ (t)∗ + x(t)∗r(t ))
∂f(σ(t))

∂σ(t)
= 0, (6a)

[B]u(t) + ψ(t)∗
∂ϕ(r(t))

∂r(t)
+ x(t)∗f(σ(t)) + r(t)∗ [A] = 0, (6b)

Boundary conditions: (6c)
λ(t) > 0, ψ(t) > 0, (6d)
λ(t)ifi(σk(t), k = 1, ..., z) = 0, i = 1, ..., G, (6e)
ψ(t)iϕi(rk(t), k = 1, ..., z) = 0, i = 1, ..., G, (6f)

[F]−
[
F̂
]
6 0, (6g)

− 1

2
〈ρ〉σ(t)∗ [F]σ(t)− 1

2
r(t)∗ [A] r(t) + u(t)∗p(t)→ min (6h)

The objective function expresses the principle of energy conservation in the problem.

Unknowns:
u(t) vector of the displacement functions,
r(t) vector of dissipate force functions,
[F] the flexibility,
λ(t) plastic flow,
ψ(t) dissipate flow

The mechanical interpretations of the problem (5a-h) are: (6a) expresses the com-
patibility between the displacements and the strains (the number of the equations is
Gz). Equations (6b) express the compatibility due to the dissipation (the number
of the equations is Gz). The boundary conditions are saved in original form (6.c).
Inequalities (6d) give the sign constrain of the plastic and the dissipation multiplier,
respectively. They show the direction of the process. (6e) and (6f) are the normality
roles, (6g) gives a limit value for the flexibility, (6h) is the objective function.

Experiments are demanded to determine the coefficients of the material models.
The experimental work has not belonged to this work.

4. Numerical example

As an illustration of the proposed computational methods, consider a three-supported
beam with time-dependent loading. The data of the structure can be seen in Figure
2. The loads act on the nodes. The functions of the external loads are given by

P (t) = 7.650000 + 22.581250t+ 18.300000t2 − 1.09375t3.

The material constant of the dissipation is considered by a diagonal matrix [A] and
〈ai〉 = 〈0.09〉.
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Figure 5. Variation of the dissipative force (internal variable) at node 4
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Figure 6. Variation of member flexibilities with different weight
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The loads are approximated by the Legendre polynomial system up to four members.
The variation of the external load function can be seen in Figure 3. The structure is
divided into by seven nodes into 6 members. The unknowns are the moments and the
shear forces at the Gaussian points of the members. On the basis of the general form,
the statically admissible internal forces are determined by the equilibrium equations
and force boundary conditions. The objective function contains the complementary
potential energy. The displacement boundary conditions are taken into consideration
in the objective function. In our example, the Huber-Mises-Hencky yield condition
is applied. To solve this problem we used a nonlinear mathematical programming
system [1]. The results can be seen in Figures 4-9. In Figures 4-5 the variations of
the middle support reaction force and dissipative force (which is the internal variable)
can be seen, respectively. The flexibilities of the members are described in Figures 6-8
with different yield and dissipative limits and the bending moments of the structure
can be seen in Figure 9.

5. Conclusion

A flexibility design problem is solved in case of time-dependent loading. The function
of the state variables is approximated by generalized Fourier series. Transforming the
problem into Banach space, where the Fritz-John theorem is proved, the problem is
solvable. The elastic and dissipative energies are taken into consideration. The theo-
rem mentioned above and the algorithms of the nonlinear mathematical programming
are used for the numerical solution. The numerical example demonstrates that the
models are suitable for flexibility design.

Acknowledgement. The present study was supported by The Hungarian National Scien-
tific and Research Foundation (OTKA) (Grant No. T029638) and the Hungarian Ministry
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Abstract. Stability analysis of an orthotropic plate is studied using the algebra system
Mathematica. The critical force is computed for given material parameters, geometry and
load type (direct problem). Then the critical force is assumed to be known and the material
and geometric parameters are computed (inverse problem). The inverse problem can be
treated similarly to the direct problem because the numerical solution of both problems can
be reduced to the symbolic-numerical solution of a matrix eigenvalue problem.
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1. Introduction

Bridge construction is one of the most important application fields of orthotropic
plates used as roadway plates. Orthotrophy is achieved by transversal ribs resulting
in different stiffnesses in the directions x and y, respectively. Employing the Huber
equation [1] , Szabó [2] developed a numerical technique based on matrix algebra to
study such plates a load in their plane. Later, it was realized that stability analysis is
also necessary because of the heat dilatation phenomena (Popper [3]). In this paper
we shall consider a slightly modified, more general version of the Huber equation,
namely:

∂x,x (A∂x,xw [x, y] + 2H∂y,yw [x, y]) + ∂y,y (B∂y,yw [x, y] + g (x, P )w [x, y]) = 0 (1)
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Herer w is the displacement function. A and B denote bending stiffnesses in the
directions x, y, respectively, and H is the torsional stiffness. The function g (x, P )
represents the distribution of load on the edges of plate (see Figure 1). The (1) is
associated with linear boundary conditions on the boundary S:

lw (x, y)|S = 0 . (2)

Concerning the stability problem in this model one may consider P , the parameter
of the edge force distribution, to be a critical parameter. This is the classical direct
problem, namely to compute the critical load. The other possibility is to consider
one of the parameters A,B i.e. the stiffnesses of the plate, which is subjected to a
constant load, to be a critical parameter. This is the inverse stability problem.

In this paper we suggest a general method to handle the direct and inverse stability
problems which are of the same form from a mathematical point of view. The method
fully utilizes the symbolic and numerical computation capabilities of the integrated
computer algebra system Mathematica.

2. Mathematical background

In the following some introductory concepts from Functional Analysis and the
Galerkin method, which we shall apply, are presented shortly.

Let Ω be a constrained domain in the plane xy, and let L2(Ω) denote the set of
all square-integrable (real) functions defined over the domain Ω. If u ∈ L2(Ω), then∫
Ω

u2dΩ <∞.

The set L2(Ω) is a vector space in which the scalar product is defined by the formula

(u|v) =

∫
Ω

uv dΩ ,

which induces a norm given by the formula

‖u‖ =
√

(u|u) =

√√√√∫
Ω

u2 dΩ .

The vectors u, v ∈ L2 are said to be orthogonal, if (u | v) = 0. Their distance is de-
fined by the norm ||u−v ||. Any sequence of linearly independent vectors {ϕ1, ϕ2, . . .}
in the function space L2(Ω) form a basis for L2 if every vector u ∈ L2 can be approx-
imated with arbitrary precision by a linear combination of functions {ϕ1, ϕ2, . . .}. In
other terms, if for every function u ∈ L2(Ω) and arbitrary number ε > 0 there exists
a positive integer N and scalar coefficients c1, c2, . . . , cn such, that for every index
n > N it holds that ∥∥∥∥∥u−

n∑
k=1

c
(n)
k ϕk

∥∥∥∥∥ < ε.
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The following theorem is a well-known result from the functional analysis:

If v ∈ L2 is orthogonal to each element of a basis {ϕ1, ϕ2, . . . } in L2, then v is
the null-element of the space L2. In other terms if

(v|ϕk) = 0, k = 1, 2, ...⇒ v = Θ .

Suppose that in the function space L2(Ω) is given the equation

Lu = f ,

where L is a differential operator, which transforms the unknown function u into
the given function f . The solution u is supposed to satisfy the prescribed boundary
conditions on the boundary S of the domain Ω. If we find a function u∗ ∈ L2 which
satisfies the (infinite) set of equations

(Lu∗ − f |ϕk) = 0, k = 1, 2, ...,

then it is a consequence of the previous theorem that Lu∗ − f = Θ. In other terms
u∗ is the solution of the equation Lu = f in the space L2. This simple idea forms the
basis for the Galerkin method : The approximate solution of the equation Lu = f is
searched for in the form:

un =

n∑
k=1

ckϕk,

where n is an arbitrarily chosen, but fixed positive integer. In other terms, the approx-
imate solution un of the exact solution u∗ ∈ L2 is expressed in the n-dimensional
subspace of L2 spanned by the base vectors ϕ1, ϕ2, . . . , ϕn. The unknown coefficients
c1, c2, . . . , cn are computed from the orthogonality condition

(Lun − f |ϕk) = 0, k = 1, 2, ..., n,

which is a system of n equations. If the operator L is linear, then

Lun =

n∑
i=1

ciLϕi,

and hence this equation can be written in the usual form of a set of linear equations
n∑
i=1

ci (Lϕi|ϕk) = (f |ϕk) , k = 1, 2, ..., n,

or in matrix form
Mc = z,

where

M =

 (Lϕ1|ϕ1) · · · (Lϕn|ϕ1)
...

. . .
...

(Lϕ1|ϕn) · · · (Lϕn|ϕn)

 , c =

 c1
...
cn

 , z =

 (f |ϕ1)
...

(f |ϕn)

 .
In our problem the operator L is given by (1). With respect to the relation

H = κ
√
AB,
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and taking into account that there is no load perpendicular to the surface of the plate,
we have

f = 0 .

Hence our problem is reduced to solving the set of homogeneous linear equations

Mc = 0. (3)

It is well known that a non-trivial solution exists if and only if the matrix M is
singular. Consequently, the condition for the lose of stability is given by the equation

det[M(A,B, P )] = 0.

If two variables from among A,B, P are known, then the unknown one can be deter-
mined from the previous equation, which is a polynomial equation of degree n in the
unknown variable. Its smallest root is the critical value sought. The solution c of the
corresponding set of equations Mc = 0 can be normalized to be unique.

3. Application to an orthotropic plate

3.1. A simple problem. To demonstrate the suggested method, a simple problem
was considered using notations of Mathematica. Figure 1 shows the geometry and
boundary conditions as well as the type of load.

hinge

hinge

clamped
edge

 y

x

b

a

clamped
edge

P

Figure 1. The geometry, boundary conditions and the type of load of the plate
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The modified Huber equation is an elliptical PDF of order four associated with a
linear force distribution on the edge

∂x,x (A∂x,xw [x, y] + 2H∂y,yw [x, y]) + ∂y,y

(
B∂y,yw [x, y] +

P

2
(x+ a)w [x, y]

)
= 0.

The homogeneous boundary conditions are the following:

– there is no displacement at the edges

w [a, y] = w [−a, y] = w [x, b] = w [x,−b] = 0,

– edges parallel with the y axes are clamped

∂xw [a, y] = ∂xw [−a, y] = 0,

– there are hinges at the edges parallel with the x axes

∂y,yw [x, b] = ∂y,yw [x,−b] = 0.

The Galerkin method has been used to solve this homogeneous boundary value
problem.

3.2. Trial functions (basis). Let us consider a polynomial of degree n in direction x
and a polynomial of degree m in direction y, respectively, with dimensionless variables
η = x/a and ξ = y/b (mind that the following formulas represent only one term).

X[η_,n_]:=
3∑
i=0

αiη
i+ηn

Y[ξ_,m_]:=
3∑
i=0

βiξ
i + ξm

The trial function of two variables is:
W[ξ_, η_,n_,m_]:=X[ξ,n]*Y[η,m]
W[ξ,η,4,5](
η4 + α0 + ηα1 + η2α2 + η3α3

) (
ξ5 + β0 + ξβ1 + ξ2β2 + ξ3β3

)
The coefficients α[i] and β[i] are defined by the eight boundary conditions.

eq1[n_]:=X[-1,n]=0
eq2[n_]:=X[1,n] =0
eq3[m_]:=Y[-1,m]=0
eq4[m_]:=Y[1,m] =0
eq5[n_]:=(D[X[η,n],η]/.η →-1)=0
eq6[n_]:=(D[X[η,n],η]/.η → 1)=0
eq7[m_]:=(D[Y[ξ,m],ξ, ξ]/.ξ →-1)=0
eq8[m_]:=(D[Y[ξ,m],ξ, ξ]/.ξ → 1)=0

Note, that the chain rule should be used because the dimensionless variables were
introduced, but now, in case of homogeneous boundary conditions, it has no effect.
Solving this set of equations, one obtains the unknown coefficients α[i] and β[i] de-
pending on degrees n and m:



42 G. Popper, B. Paláncz and Z. Gáspár

Let us consider max(n) = 5 and max(m) = 5:

maxn:=5;maxm=5;k=1;
Do[{α0, α1, α2, α3, β0, β1, β2, β3} =
{α0, α1, α2, α3, β0, β1, β2, β3}/.solαβ[i,j]//Flatten;
ϕ[k]=W[η, ξ,i,j];
{α0, α1, α2, α3, β0, β1, β2, β3} = .;
k=k+1,{i,4,maxn},{j,4,maxm}];

The number of the trial functions is:
K=(maxn-3)(maxm-3)
4

For example, the trial function ϕ[4]=W[η,ξ,5,5]:

ϕ[4](
η − 2η3 + η5

) (
7ξ
3 −

10ξ3

3 + ξ5
)

Plot3D[ϕ[4],{η,-1,1},{ξ,-1,1}],PlotPoints→{30,30},
AxesLabel→{"η","ξ",None},
ColorFunction→(RGBColor[#,1-#,1-0.5#] & )];
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Figure 2. Trial function, n = 5, m = 5

4. Computing system matrix

A general element of the system matrix M is:
M[i_,j_]: =
Simplify[∫ 1

−1

∫ 1

−1
(b4AD[ϕ[i],{η,4}]+2a2b2HD [ϕ[i],{η,2},{ξ,2}]+

Ba4D[ϕ[i],{ξ,4}] +
Pa
2
(η+1)a4b2 D[ϕ[i],{ξ,2}])

ϕ[j]dηdξ

Keep in mind that the chain rule should be used for dη and dξ, because the dimen-
sionless variables were introduced, but now, in case of homogeneous equation (see
(3)), it has no effect.
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The matrix can be developed easily

sys=Table[M[i,j],{i,K},{j,K}];

The plate loses stability if the equation system has a nontrivial solution, namely its
determinant is zero:

sysdet=Det[sys]
1

5294745225

(
268435456

(
70Ab4 + 220a4B + 132a22b22H− 11a5b2P

)
(
50Ab4 + 20a4B + 44a2b2H− a5b2P

)(
1031865892864A2b8

3472875
+

4127463571456a4Ab4B
63669375

+

4294967296a8B2

3031875
+

24897925414912a2Ab6H
121550625

146028888064a6b2BH
9095625

+
1241245548544a4b4H2

40516875
17541720178688a5Ab6P

1337056875
− 36507222016a9b2BP

63669375
620622774272a7b4HP

191008125
+

155155693568a10b4P2

2941525125

)
−

1

72765

(
16384a5b2P

(
16906090788683776a5A2b10P

252703749375
+

67624363154735104a9Ab6BP
4632902071875

70368744177664a13b2B2P
220614384375

+
37084328181628928a7Ab8HP

804057384375
+

2392537302040576a11b4BHP
661843153125

+
20336567067344896a9b6H2P

2948210409375
287403543407624192a10Ab8P2

97290943509375
− 598134325510144a14b4BP2

4632902071875
−

101682835336724484a12b6HP2

138987706215625
+

2542070883418112a15b6P3

214040075720625

))

5. Direct stability problem

For a direct stability problem, the geometrical parameters a, b, A, B, H are all known,
and the load parameter P should be computed. Let us consider the following data
taken from [3]:

κ=1.02848; a=5.7; b=11.4;

Then the system matrix M is

sysP=sys/.{A->190,B->230,H->κ
√

190230};
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which can be decomposed as sysP = Z0 +PZ1, where

Z0 = Map[Coefficient[#,P,0] & ,sysP];Z0//MatrixForm
2.3752× 109 0 0 0

0 8.95871× 107 0 0
0 0 1.57284× 109 0
0 0 0 4.62149× 107


Z1=Map[Coefficient[#,P] & ,sysP];Z1//MatrixForm

−1.97549× 107 0 −1.7959× 106 0
0 −1.93675× 106 0 −176068

−1.7959× 106 0 −1.7959× 106 0
0 −176068 0 −176068


Indeed

Simplify[sysP==Z0+PZ1]
True

Considering that Z1 is not a diagonal matrix, the problem Mc = 0 is a generalized
(linear) eigenvalue problem for P as eigenvalue.

Then the critical load parameter is:

solP=Solve[Det[sysP]==0,P]
{{P→ 45.3935} , {P→ 118.547} , {P→ 294.219} , {P→ 977.085}}
Pcrit=Min[P/.solP]
45.3935

6. Inverse stability problem

In this case the critical load parameter is prespecified, and one of the geometrical
parameters can be computed. For example, let us consider Acrit to be determined
when

Pcrit = 55.;

Now, the system matrix, M is

sysA=sys/.{P->Pcrit,B->230,H->κ
√
A230};

which can be decomposed as sysA = S0 +
√
AS1 +AS2, where

S0=Map[Coefficient[#,A,0] & ,sysA];S0//MatrixForm
−1.05621× 109 0 −9.87744× 107 0

0 −9.44947× 107 0 −9.68376× 106

−9.87744× 107 0 −9.60192× 107 0
0 −9.68376× 106 0 −8.59042× 106


S1=Map[Coefficient[#,

√
A ] & ,sysA];S1//MatrixForm
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1.9966× 107 0 0 0

0 1.95745× 106 0 0
0 0 6.65533× 106 0
0 0 0 652483.


S2=Map[Coefficient[#,A] & ,sysA];S2//MatrixForm

1.08931× 107 0 0 0
0 266204. 0 0
0 0 7.78077× 106 0
0 0 0 190146.


Indeed

Simplify[sysA==S0+
√
AS1+AS2]

True

Now, however S1 and S2 are diagonal matrices, the problem Mc = 0 is a nonlinear
(quadratic) eigenvalue problem for

√
A as eigenvalue.

We can solve the equation, but now for A.

solA=Solve[Det[sysA]==0,A]
{{A→ 8.4674} , {A→ 22.6257} , {A→ 81.8672} , {A→ 246.723}}

There arise a problem to determine which solution is acceptable from engineering
point of view. To solve this problem, let us consider the following figure:

P

A

Pcrit

A1 A2

P1(A)

P2(A)

Figure 3. Selecting the proper critical geometrical parameter

It is easy to see that the index of the proper Ai can be computed as:

min
j

(Pj (Ai)) = Pcrit.
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Therefore, we can solve our stability equation symbolically for P with parameter A,
namely Pj(A):

solPA=Solve[sysdet==0,P]/.{B→230,H->κ
√
A230};

solPA=P/.solPA;

Then the matrix mi,j = Pj(Ai) can be computed as:

MPAcrit=Transpose[Map[Chop[N[#/.solA]] & ,solPA]]

{{8.96183, 9.78261, 30.3149, 55.0},
{13.6388, 18.5023, 55.0, 131.104},
{26.0052, 55.0, 144.231, 435.136},
{55.0, 151.326, 370.553, 1259.20}}

. . . .

Select the proper row:

rPAcrit=Select[MPAcrit,Chop[Min[#]-Pcrit=0 & ]
{{55., 151.326, 370.553, 1259.02}}

Select the index of the row:
pAcrit=First[Position[MPAcrit,First[rPAcrit]]]
{4}

Select the proper critical geometrical parameter:

Acrit=A/.solA[[First[pAcrit]]]
246.723

We remark that Z0 is a positive definite diagonal and Z1 is a real symmetric matrix.
Hence the eigenvalue problem can be reduced to a special eigenvalue problem for a
symmetric, i.e., selfadjoint matrix.

7. Computing eigenshapes

Let us return to the direct stability problem. After the critical load is determined, one
may compute the solution of (3), i.e., the values of ci’s. Unfortunately, in both cases
(direct and inverse stability problem) we have a non-standard eigenvalue problem,
therefore the usual techniques cannot be directly applied [5]. One may solve the
problem by definition. One of the rows of M can be left out, and instead of it the
normalization can be considered to be a new equation:

K∑
i=1

ci = 1 .

However, one should carefully select the row to be left out, because of the special
chess table structure of M (see matrix Z). One should leave out a proper row, which
really cancels the singularity of M. Fortunately, Mathematica has a built-in function
to compute the nullspace [6] of M, so one can easily solve this unpleasant problem:

c=NullSpace[sysP/.P→Pcrit][[1]]]//N
{0., 4.78239, 0., 1.}
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Norming:
< < LinearAlgebra’MatrixManipulation’
c / VectorNorm[c,2]
{0., 0.97883, 0., 0.204674}

Here we have to mention that in case of computation with non rational numbers,
NullSpace may result in an empty set because of the ill-conditioned feature of M.
In that case the Jordan decomposition has been proved to be more robust and can
provide acceptable approximation:

c = Transpose[
JordanDecomposition[(sysP//N)/.P→Pcrit][[1]]][[K]]
{0.,−0.97883, 0.,−0.204674}

Now we have the same result because we used rational numbers in the computation. In
the following sections we employ Jordan decomposition in order to reduce computation
time.

Then the first eigenshape:

wcrit =
K∑
i=1

c[[i]]ϕ[i]

0. (1− 2η2 + η4)(5− 6ξ2 + ξ4) + 0. (η − 2η3 + η5)(5− 6ξ2 + ξ4)−

0.978783(1− 2η2 + η4)

(
7ξ

3
− 10ξ3

3
+ ξ5

)
−

0.204674(η − 2η3 + η5)

(
7ξ

3
− 10ξ3

3
+ ξ5

)
Plot3D[wcrit,{η,-1,1},{ξ-1,1},PlotPoints->{30,30},
AxesLabel-> {"

x

a
","

y

b
",None},

ColorFunction->(RGBColor[#,1-#,0] & )];
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Figure 4. The first eigenshape

The contour plot shows clearly the effect antisymmetrical load distribution

ContourPlot[wcrit,{η,-1,1},{ξ-1,1},PlotPoints->50,
AxesLabel->{"a","b",None},
ColorFunction->(RGBColor[#,1-#,0] & ),Contours->15];
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Figure 5. Contour plot of the first eigenshape

The further eigenshapes belonging to the next three roots are:
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Figure 6a. Eigenshape for P = 118.547
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Figure 6b. Eigenshape for P = 294.219
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8. Effect of higher order polynomials

The value of the critical load parameter decreases and converges with an increase in
the polynomial order of the trial functions:

n = m Critical load parameter
4 120.234
5 45.3935
6 38.5191
7 38.5062
Table 1. The critical loads

4 5 6 7
n = m

50

100

120
Pcrit

Figure 7. The critical load parameter as a function of the polynomial order of the
trial functions

The first, critical eigenshapes are different but also converging to the true shape:
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Figure 8a. Critical shape for n = m = 4 Figure 8b. Critical shape for n = m = 5
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Employing higher order polynomials, new roots will emerge. For example, in case
of n = m = 6, we obtain nine roots.

38.5191 45.3934 118.208 164.784 276.89
625.832 922.617 1203.99 4375.02

Table 2. Roots for n = m = 6

The new roots result new eigenshapes. For example, for root 625.832, we obtain
the following eigenshape
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Figure 9. Eigenshape for root 625.832 in case of n = m = 6

A further increase of the order of the trial functions (n,m > 7) results in the appear-
ance of complex and parasitic [7] (extremely big or small) roots.

9. Concluding remarks

A symbolic-numeric method has been developed to handle direct and inverse stabil-
ity problems as a matrix eigenvalue problem. It was demonstrated that the direct
stability problem can be considered to be a general, linear eigenvalue problem for the
critical load parameter, and the inverse stability problem to be a nonlinear (quadratic)
eigenvalue problem for a mechanical (stiffness) parameter. It has been shown that this
method provides a simple, effective and elegant procedure for different boundary-value
problems.
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Abstract. Redundant manipulators are nowadays favoured in several future space mis-
sion scenarios in order to enhance the skill and flexibility of the entire system. DLR, since
many years, has been engaged in the development of light-weight robotic systems in modular
design. Typical tasks for space applied robotics are to define robot kinematics and to calcu-
late joint kinetics very rapidly in order to support the whole space mission design from the
very beginning. Redundant manipulators then require the solution of the inverse kinemat-
ics problem for more than 6 degrees of freedom. Equivalently, the respective joint torques
and forces are to be calculated by forward and backward recursions. Rather than apply-
ing conventional schemes based on pseudo-inverse matrix methods, we favour optimization
with equality constraints, based upon the well-known Lagrange formalism. The optimization
criteria are chosen to represent the underlying physical meaning, such as minimization of
joint velocities, accelerations, torques or power, or even an optimization criterion that main-
tains the entire robot configuration during motion very close to a reference configuration.
Simultaneously, this procedure also takes care that the joint loads and stresses in structural
arm links do not exceed upper bounds. Two examples of light-weight robot design for space
applications are presented that very clearly show the efficiency of the underlying algorithms.

Mathematical Subject Classification: 70B15
Keywords: inverse kinematics and kinetics, redundant manipulators, space robotics, opti-
mization with constraints

1. Introduction

Future robotic-based satellite missions will be unimaginable without the demand for
strong reduction of weight and for enhanced autonomy and intelligence. For many
years DLR has paved the way for these challenging novel technologies. Currently,
DLR is developing very light-weight robotic systems of its 3rd generation in modular
design, which are used as the design baseline for future space robot system scenarios
of various kind [1]. Several studies are presently in progress (Figure 1) in order to
prepare future robotized missions and to benefit from the use of robotic manipulators
in space [2],[3]. It stands to reason that the desire to use light-weight and slender
robotic systems is very strong since it promises very new application scenarios. Espe-
cially, this is more than ever true in all cases where the number of degrees of freedom
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is increased beyond the traditional maximum number of six. Such redundant manip-
ulators are able to enhance the skill and flexibility of the entire robotic system, and
hence are able to increase the operational use and to obtain the maximum use of the
robotic workspace. Moreover, avoiding collision with obstacles, and the avoidance of
and passing through singularities are two more major aspects that make the use of
redundancy in manipulators for space applications very preferable.

One of the prevailing design tasks for a given space mission scenario including
robotics is the definition of the robot kinematics, as well as the number of joints and
the sequence of joint axes orientations. Moreover, the knowledge of the joint kinetics
states, i.e., forces and torques for given motions, is very important in order to rapidly
support the whole space mission design from the very beginning. Modifications in
manipulator design are then feasible at an early stage of the whole mission design in
cases where upper bounds for manipulator loads and stresses are exceeded.

Figure 1. Two examples of near-future robotic-based space missions: MISSISS,
Mobile Inspection and Service System for the International Space Station ISS
(upper two figures), manipulator walk-over system operating on ISS Columbus
external shell. Rescue satellite (lower two figures), manipulator used to capture
a malfunctioning satellite (Rosat, the German Roentgen satellite, in orbit since
1990) followed by a de-orbiting scenario
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However, the problem of solving the inverse kinematics increases according to the
number of joints. Conventional solutions to this problem area are mostly based upon
the use of pseudo-inverse matrix methods, where the physical meaning of the under-
lying method is not apparent at all. We have followed quite a different way for the
inverse kinematics and kinetics problem solving. Currently, in our approach two differ-
ent solutions are provided within our simulation environment, which both have their
specific physical meanings. The first one is an optimization algorithm that minimizes,
for example, the joint speed and acceleration subject to the end effector misalignment.
The second one makes use of the differential equations describing the system of the
robot motion whereby the robot is a passive chain of joints and limbs. For the latter
one, the solution in joint coordinates is solved elegantly by the governing differential
equations, rather than by solving algebraic equations and using minimization proce-
dures, as in the first approach [2]. In this second case the motion is initiated by force
and torque at the end effector and the joint motion can be calculated by solving the
differential equations. Then, the dynamics parameters of the chain (e.g. joint friction,
limb mass) affect the overall robot motion analogously to the optimization goal of the
first method. This method is very appealing because it can be easily implemented in
available multi-body dynamics simulation software. However, in this paper we will
focus on the optimization method with equality constraints using Lagrange formalism
for obtaining an optimal solution.

2. Inverse kinematics and kinetics

2.1. Description of kinematics. Figures 2 and 3 give a representation of the various
coordinate systems and notations used to describe multi-body kinematics. The desired
(index d within the formulas) end effector position in Cartesian coordinates is given
by

rd =
(
rd,x, rd,y, rd,z

)T (1)
and the desired orientation of the end effector by

Ad =

 Ad,xx Ad,xy Ad,xz

Ad,yx Ad,yy Ad,yz

Ad,zx Ad,zy Ad,zz

 . (2)

Then the inverse kinematics problem has to find a set of angular positions for rotary
joints and a set of translational positions for prismatic joints (e.g. telescopic arms),
which can be combined by a vector q,

q =
(
q1, q2, . . . , qn

)T (3)

with n degrees of freedom, and n > 6 for redundant manipulators. Both end effector
position and orientation (hereafter called ’pose’) can be combined by the homogeneous
transformation matrix Bd,

Bd =


Ad,xx Ad,xy Ad,xz rd,x
Ad,yx Ad,yy Ad,yz rd,y
Ad,zx Ad,zy Ad,zz rd,z

0 0 0 1

 , (4)
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leading finally to the problem

q = f (Bd) (5)

to be solved. In the following, we will restrict our problem to rotary joints only.
Unique solutions for the joint angles q exist only for n = 6, disregarding some special
robot configurations like elbow up or down, etc.. For the general case of n > 6 we
have to consider additional constraint equations that
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Figure 2. Kinematic structure and coordinate systems for the entire robot. The
numbers at coordinates axes are in meters

guarantee a unique solution. We will not build upon common approaches used
throughout the many examples for terrestrial applications, such as the well-known
’pseudo inverse method’. Rather, we make use of an optimization procedure with
constraints based upon Lagrange formalism, which accounts for a real physical inter-
pretation of the underlying method used here.

2.2. Optimization based inverse kinematics. The constraint given is that the
solution of the inverse kinematics problem has to guarantee coincidence between the
actual pose B and the desired pose Bd. For mathematical reasons this deviation
can be better represented by a homogenous transformation matrix ∆ (see e.g. [4])
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Figure 3. Coordinate systems for a single link and two adjacent joints with input
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according to

∆ = B−1d ·B =


∆11 ∆12 ∆13 ∆14

∆21 ∆22 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

0 0 0 1

 , (6)
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Should the desired pose be reached, then we will end up with ∆ = E, where E is
the unity matrix. Then the problem to be solved can be transformed from matrix to
vector form,

h =
(

∆14, ∆24, ∆34, ∆12 −∆21, ∆23 −∆32, ∆31 −∆13

)T
= 0 . (7)

The first three elements are translational components whereas the last three represent
rotational ones. This formulation of the inverse kinematics problem is free of singu-
larities and therefore numerically stable. It can be shown [5] that for an incremental
robot motion simulation the upper left 3x3 sub-matrix of ∆ will turn into a skew
symmetric one. In the limit for small angles and positions going to zero, ∆ then goes
to the identity matrix.

Considering the optimization criteria, a physical interpretation of the underlying
method is favoured. Several different approaches can be followed, which may be
distinguished by two kinds of goal functions f to be minimized: the first one is
related to an optimization that focuses on joint drive kinematics and kinetics (joint
drive oriented optimization), the second one takes care of the entire robot system
configuration (configuration oriented optimization).

Joint drive oriented optimization criteria. The following criteria concern minimum
loads and stresses applied to the robotic joints, and hence to the arm structures.
For mathematical reasons, they are usually formulated as quadratic expressions of
kinematic or kinetic states:

(a) Minimization of all the joint angular velocities q̇,

f1 = q̇T · q̇. (8)

Mechanically, this may be interpreted as minimizing some linear damping force
proportional to the joint velocities.

(b) Minimization of all the joint angular accelerations q̈,

f2 = q̈T · q̈. (9)

This optimization criterion may be favoured especially in cases where the robot
is operates in a neighbourhood close to singularities, and where otherwise very
high joint accelerations are required. This criterion will keep critical joints
below their maximum load limits.

(c) Minimization of joint torques t,

f3 = tT · t. (10)

(c) Minimization of power Pi = tiωi consumed in each joint drive with number i,

f4 = PT ·P , (11)

where ωi = q̇i and P = (P1, P2, ..., Pi, ..., Pn)
T has been set. The latter two

criteria require inverse kinetics calculation in order to obtain knowledge of the
torques to be applied according to a given trajectory. Equations (8) to (11)
also allow to weight each joint individually by a special weighting factor, in
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order to be more flexible in assigning each single joint more or less importance
during the optimization run.

Configuration oriented optimization criterion. The motivation for this criterion
is to allow the robot a high degree of manoeuvrability. This means that during
motion, each joint should keep its respective configuration far apart from its joint
angle limits qi,max and qi,min. This can also be defined by a reference angle according
to qref,i = (qi,max + qi,min) /2, whereas the robot will try to stay in a neighbourhood
close to the desired configuration. Moreover, this reference position may also be
defined by restrictions given by the environment where the robot is operating. A
typical example is to prescribe a reference configuration for a collision-free motion
within the robot’s working space, which the robot has to follow very closely. As a
minimization criterion, again a quadratic expression is given

f5 = ∆qT ·∆q , (12)

where ∆q = q−qref and q contains the actual angular positions of the joints. From
a mechanical point of view, this procedure can be interpreted as minimizing stiffness
forces acting in the joints, which originate in virtual springs somehow depending upon
spring displacements ∆q.

Minimization of satellite base forces and torques. For space applications, the reac-
tion forces and torques exerted on the satellite base by the manipulator motion, are
in many cases undesirable or even jeopardize mission requirements. This is the case
where micro-gravity conditions have to be maintained over a longer period. Minimiz-
ing the base torques and forces is therefore a primary goal for manipulator path and
trajectory design.

In order to be be more general, all these criteria can be combined and appropriately
weighted by special factors αj

f =
∑

αj fj . (13)

However, the best suited goal function has to be adapted to the respective application
case, and cannot be generally determined.

Constraint optimization: Lagrange formalism. To solve the inverse kinematics
problem, the well-known Lagrange formalism for constrained optimization is applied

L = f (q) + λT · h (q) = f (q) + g (q, λ) , (14)

where L is the Lagrange function, f is the optimization criterion, h accounts for the
equality constraints, and λ is a vector consisting of six Lagrange multipliers. This
equation contains n+ 6 unknowns, which can be combined by a vector z,

z = (q1, q2, · · · , qn, λ1, · · · , λ6)
T (15)
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giving finally L = L (z). Minimization of L necessitates that the gradient ∇L goes to
zero

∇L = ∇ (f (z) + g (z)) =

=

(
∂f

∂q1
+

∂g

∂q1
,
∂f

∂q2
+

∂g

∂q2
, ...,

∂f

∂qn
+

∂g

∂qn
, h1, h2, ..., h6

)T

(16)

Equation (16) is a strongly non-linear system with n + 6 equations and unknowns.
To solve it, the method based on an iteration according to Newton-Kantorowitsch
(linearization by Taylor series expansion) may be favourably used. Given the Jacobi
matrix

J =
∂L′

∂z
(17)

where L′ = ∇L, a linearized system of n+ 6 equations,

J
(
z(k)

)
·∆z(k+1) + L′

(
z(k)

)
= 0, and z(k+1) = z(k) + ∆z(k+1) , (18)

is to be solved. The iteration will stop as soon as the deviation ∆z(k+1) remains
below a given error limit. As initial value of z, i.e. z(0) = z(t = 0), the current joint
positions of the last, successfully terminated iteration step is taken, together with
λ(0) = 0.

2.3. Inverse kinetics. To solve the inverse kinetics problem, i.e., to obtain the forces
and torques (kinetic states) acting in the joints, the dynamics description of the entire
robot system, i.e., the differential equations of motion, has to be established. Based
upon a multi-body system formulation, e.g. by Newton-Euler formulation, the joint
motion q(t) and its time derivatives can be assigned to the applied forces and torques.
Given the end effector trajectory, the joint kinematic states are found by the inverse
kinematics problem, and the kinetic states are obtained by applying forward and
backward calculations. The forward kinematics calculation gives the respective values
required, i.e., the absolute velocities and accelerations of joints and the center of mass
of each link), beginning from the inertially fixed frame up to the end effector position
and orientation. Then, by backward calculation the actual forces and torques can be
determined, beginning at the end effector level.

3. Basic example of a 7 DOF robot: Simulation results and discussion

The 7 dof (degrees of freedom) robot with fixed base of Figure 2 has been taken as
a basic example to demonstrate the efficiency of the inverse kinematics and kinetics
problem for redundant manipulators. The initial robot configuration is given in Figure
4 achieving a total length of about 1.25 m. The starting configuration is the one
already shown in Figure 2, i.e., all joints have been moved by the same angle of
45o. The end effector trajectory is prescribed: in our example we chose an elliptic
planar path for the position within the three-dimensional working space, where the
angle of the ellipse varies in time with a fifth order polynomial (see Figure 5 for the
kinematic states). The orientation of the end effector is kept constant throughout
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Figure 4. Initial robot configuration: 7 dof, kinematic configuration is (beginning
from the fixed base) roll, pitch, roll, pitch, roll, pitch, roll; the numbers at both axes
are in meters giving an overall length of about 1.25 m measured from the first roll

axis

the elliptical motion. For comparison reasons, we have investigated three different
optimization criteria: joint velocity, joint acceleration and configuration oriented min-
imization according to equations (8), (9) and (12). The two criteria based on kinetics
states minimization, see equations (10) and (11), are still in the implementation phase.
As the reference configuration for equation (12) we chose the starting configuration.
It should be noted that in case of a non-redundant robot with 6 dof, the starting
configuration of all the joints should be achieved again after terminating the elliptical
motion (closed loop trajectory) of the end effector.

Figure 5. Kinematic states of the prescribed elliptical motion of the end effector
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Figure 6. Final robot configuration achieved after one full elliptical loop: joint
velocities optimized (left), reference configuration optimized (right), joint accel-
erations optimized (middle)

Figure 6 gives the comparison of the different final configurations achieved after
one full elliptical loop. In the case of joint velocity and acceleration optimization
we observe a great difference in the final configuration, whereas optimization of the
reference, i.e. starting configuration does not exhibit a great deviation when compared
to joint velocity minimization. Moreover, in the reference configuration case the
final configuration is indeed identical to the initial, i.e., the reference configuration.
The joint velocity optimization shows here some minor deviations from the initial
configuration, whereas in joint acceleration minimization the significant joint angle
deviations are surprising.

These differences in the kinematic states are presented graphically in Figure 7.
Another striking behaviour in joint acceleration is to be noted: The joint velocities
achieved after termination of the full elliptical trajectory are never zero. This is not
surprising since the algorithm minimizes accelerations rather than velocities, although
the joint accelerations achieved after trajectory termination are zero. For reasons of
comparison, for each optimization criterion the respective corresponding kinematic
state is presented graphically as well (Figure 8), together with the quadratic sum of
the respective kinematic states.
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Figure 7. Kinematic states of each joint achieved by optimization

Finally, Figure 9 then shows an example of the calculated joint torque (w.r.t the
joint axis) that is necessary in order to drive the respective joint. For the sake of
compactness within this paper, the inertia parameters of each joint and link, which
are required for the inverse kinetics calculation, are not presented within this paper.

Furthermore, instead of taking from a table the stored trajectory increments, a
more common application in space robotics is to guide the robot by means of an
input device, for example, a so-called 6-dof space ball. We call this mode of op-
erations a tele-operated manipulation. This input device allows the human tele-
operator to guide the robot end effector in 3 translational and in 3 rotational de-
grees of freedom. Again, the commanded trajectory given in some arbitrary manner
by the human operator, is discretized by the space ball inherent software at a time
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Figure 8. Quadratic sum of the respective kinematic joint states. Note, that
in each optimization criterion only the respective quadratic sum at each time
increment is optimal

interval equivalent or close to that of the table stored trajectory. Finally, for both
kinds of robot guidance, i.e., either by a given trajectory stored in a table or by
an input device based commanding via tele-operation, the underlying procedure for
inverse kinematics and kinetics problem solving is highly efficient.

Final remarks have to be given to the optimization algorithm numerically imple-
mented, and to the usefulness of the comparison of the different optimization criteria.
The given trajectory is discretized by a fixed time interval of Ts = 10 ms. This inter-
val is small enough to find a solution of the given inverse problem. Equivalently this
means that the new prescribed end effector position and orientation does not change
substantially from one time increment to the next. Otherwise, the procedure used
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Figure 9. Calculated torques in each joint for the respective drive axis, for the
different optimization criteria

here has to be modified appropriately (see specific example in Section 4), either by
reducing the time interval or by changing the initial guesses for equation (18).

Concerning the comparison of results for different optimization criteria, it is found
useless for two reasons. First, each optimization criterion naturally results in a config-
uration that is optimal in the given sense. The definition of any kind of measure with
physical interpretation would be very helpful here. Second, the optimization based
algorithm only gives an optimal result in terms of a new configuration that refers
only to the configuration achieved in the time interval before. The reason is that
the criterion is optimized only within the given time interval Ts. Therefore, the joint
states are not optimized within the global time T , which covers the entire trajectory.
This means, in general, that for the different optimization criteria used, the achieved
new joint angles, velocities, accelerations (and torques, power, etc.) are different in
nature for each time interval. Therefore, it makes no sense here to compare all criteria
to each other in a sensible way.

However, a comparison may be considered sensible in the case where we let the
optimization process cover the entire trajectory as a total. In that case, the opti-
mization criteria defined in equations (8) to (12) have to be modified. For example,
equations (8) then would read

f =

∫ T

0

q̇T q̇dt (19)

and the optimization has to be accomplished off-line for the whole path.

Finally, all these individual optimization criteria can be combined while providing
different weighting factors to each of them. Obviously, a best suited goal function
cannot be given for optimization; rather it has to be adjusted to the specific applica-
tion scenario. The results we obtained underline the efficiency of the algorithms being
computationally very fast (1-2 ms for a complete inverse calculation within Ts, using
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a personal computer with 1 GHz performance). More than ever, this last aspect is
most important in all cases where need to perform an entire robotic motion simulation
in real-time.

4. Application: Robotics-based mission scenario

To demonstrate the procedure for the inverse kinematics and kinetics calculation of
redundant manipulators for a real scenario, a rescue satellite space mission is envis-
aged, according to Figure 1. Here, a large malfunctioning satellite (Rosat, the German
Roentgen satellite in low earth orbit) is approached by a smaller rescue satellite that
is equipped with a 2 m long manipulator of 7 dof. The very complex and delicate
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Figure 10. Structural diagram for computation of inverse kinematics and kinetics for
fixed satellite base.

scenario comprises final approach, manipulator deployment, and finally grasping of
the defective satellite by the manipulator. Our interest here is directed towards finding
a suitable path for the manipulator’s end effector, while avoiding any collision with
obstacles in between. The approach and grasping strategy distinguishes between
two kinds of operations: the first one assumes a fixed base of the manipulator, i.e.,
the rescue satellite is expected not to move during manipulator motion. This can
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be guaranteed by means of the satellite’s AOCS (attitude and orbit control system)
being active. A second mode of operation supposes the rescue satellite’s AOCS notto
be active, leaving additional 6 degrees of freedom to the entire system, consisting of
satellite and manipulator. Then our problem can be described as follows: the end
effector starting point A is given assigned with an initial robot configuration with
all joint angles given, and represented by the matrix BA equivalent to equation (4).
Also, the end point E to be reached is given, represented by the corresponding matrix
BE , except for the respective joint angles that are not given. The overall task for the
inverse kinematics problem then is to find the appropriate joint angles.

Applying first the procedure for the fixed satellite base, Figure 10 gives an idea
how to solve this problem. Within the ’user interface’ block the user defines whether
to directly proceed from point A to E (direct path) or to define some so-called way-
points, which are appropriately chosen in between both points. The operator, by
his experience or best knowledge about the entire system behaviour, may choose such
points in cases where safety distances have to be maintained between manipulator and
satellite parts, where obstacles have to be avoided or straight ahead of the final point
to be grasped (in order to keep the manipulator in a halting mode before the final
complex grasping operation is carried out). In kinematic description, these waypoints
are equivalent to the final point E, i.e., the end effector position and orientation is
represented by a given matrix Bi, but the respective joint angles are not known.

 

Figure 11. Left: Path and configuration for direct path (red line) or for allowing
for intermediate points (green line). Right: Path and configuration for setting
waypoints in between starting and end points. The 3 dimensional spatial paths
are calculated using Robcad animation software package with built-in joint con-
trol algorithms. Note that although the starting configuration is the same in the
left and right figures, this is not the case of the achieved final configurations,
which are quite different
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In general, the spatial distance between BA and BE , or also between two neighbour-
ing waypoints Bi and Bi+1, is by all means long compared to the very closely spaced
and discretized trajectory points of the basic example of Section 3. Furthermore,
the underlying algorithm is based on linearization that is expected to give solutions
more for local, closely distant points. Therefore, it is supposed that a solution is not
achieved for all cases of two neighbouring waypoints a solution is achieved. This sug-
gestion proved true during simulation runs, and a modified search strategy therefore
has been set up. We decided, between two waypoints, to set so-called intermediate
points Bi,j that guarantee an appropriate solution (Figure 10). The way to find such a
point is to determine a search algorithm, arbitrarily chosen, that takes care of finding
a suitable interpolation ratio fast and avoiding intermediate points near singularities.
Therefore, between the given matrices Bi and Bi+1 a linear interpolation is applied
to find the cartesian coordinates and the Euler angles for the end effector.

Figure 11 presents the final results for the two choices, either to go directly from
BA to BE (red path; or with intermediate points in between, green paths) or to go
via waypoints B1, B2, B3 in order to avoid an obstacle for example (blue path).
The path between two waypoints is not a straight line at all. In fact, it depends
upon the joint control chosen, i.e., upon the specification of the time behaviour of
the kinematic states q(t), q̇(t) and q̈(t). Visualization and animation of the robot
motions were performed by means of the software package Robcad (manufactured by
Tecnomatix), which also provides the joint kinematics time specification (constant
joint acceleration with upper bound as well as an upper bound for joint velocity).

Concerning the inverse kinematics and kinetics problem for a moving satellite base,
the overall dynamics behaviour of the entire system has to be regarded. Figure 12
outlines the approach that will be followed for our further investigations. Since the
manipulator motion causes a corresponding movement of the base, the algorithm for
the fixed base has to be expanded by a part reflecting the influence of these additional
6 dof of the base, while taking the well-known laws for momentum and impulse also
into consideration.

5. Concluding remarks and further activities

The inverse kinematics problem for redundant space manipulators has been solved by
making use of the physical meaning of the underlying optimization criteria. Moreover,
this method also accounts for the joint loads and stresses in structural arm links not
to exceed upper bounds. Two different examples were presented, a more convential
one for basic investigations of the quality of the approach, and a realistic one that
simulates a typical space mission scenario where a robot attached to a rescue satellite
is intended to grasp a second, malfunctioning satellite. The algorithms applied to
both examples proved very efficient and they are computationally extremely fast.
More than ever, the last aspect is most important in all cases where we have the need
to perform an entire robotic motion simulation in real-time.

Should the inverse kinetics computation show that the joint torques and forces
obtained are not below certain limits, then the robot design has to start again. This
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means that especially the mechanical sub-components as motors, gears, and link struc-
tures, have to be changed according to a CAD based data panel, for example. This
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Figure 12. Structural diagram for computation of inverse kinematics and kinetics for
moving satellite base.

starts the inverse kinematics and kinetics problem solving again. However, there are
still more problems to be solved in further investigations. One refers to the moving
satellite base, where we suggested an approach for the inverse problems. Another
important item concerns an optimal trajectory planning, which we have not addressed
here, but mentioned one possible approach as given by equation (19). Moreover,
the addressed optimization criteria based on kinetics states minimization (e.g. joint
torque and power) will be followed further.
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Abstract. We describe how we determine the stabilization parameters and element length
scales used in the stabilized finite element formulations in fluid mechanics. These formu-
lations include the interface-tracking and interface-capturing techniques we developed for
computation of flow problems with moving boundaries and interfaces. The stabilized for-
mulations we focus on are the streamline-upwind/Petrov-Galerkin (SUPG) and pressure-
stabilizing/Petrov-Galerkin (PSPG) methods. The stabilization parameters described here
are designed for the semi-discrete and space-time formulations of the advection-diffusion
equation and the Navier-Stokes equations of incompressible flows.
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1. Introduction

Most finite element techniques and computations reported in recent literature for
computational fluid mechanics are based on stabilized formulations. The interface-
tracking and interface-capturing techniques we have developed in recent years (see [1,
2, 3, 4]) for flows with moving boundaries and interfaces are also based on stabi-
lized formulations. An interface-tracking technique, such as the Deforming-Spatial-
Domain/Stabilized Space-Time (DSD/SST) formulation [1], requires meshes that
“track” the interfaces. The mesh needs to be updated as the flow evolves. In interface-
capturing techniques, such as one designed for two-fluid flows, the computations are
based on spatial domains that are typically not moving or deforming. An interface
function, marking the location of the interface, needs to be computed to “capture”
the interface over the non-moving mesh.

The finite element flow techniques we have developed, including the interface-
tracking and interface-capturing techniques, are based on the streamline-upwind/Pet-
rov-Galerkin (SUPG) [5], Galerkin/least-squares (GLS) [6], and pressure-stabilizing/
Petrov-Galerkin (PSPG) [1] formulations. In the interface-capturing techniques, sta-
bilized semi-discrete formulations are used for both the Navier-Stokes equations of
incompressible flows and the advection equation governing the time-evolution of an
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interface function marking the interface location. These stabilization techniques pre-
vent numerical oscillations and other instabilities in solving problems with advection-
dominated flows and when using equal-order interpolation functions for velocity and
pressure. In these stabilized formulations, judicious selection of the stabilization pa-
rameter, which is almost always known as “τ", plays an important role in determining
the accuracy of the formulation. This stabilization parameter involves a measure of
the local length scale (also known as “element length") and other parameters such
as the local Reynolds and Courant numbers. Various element lengths and τs were
proposed starting with those in [5] and [7], followed by the one introduced in [8], and
those proposed in the subsequently reported SUPG, GLS and PSPG methods. A
number of τs, dependent upon spatial and temporal discretizations, were introduced
and tested in [9]. More recently, τs which are applicable to higher-order elements
were proposed in [10].

Ways to calculate τs from the element-level matrices and vectors were first intro-
duced in [11]. These new definitions are expressed in terms of the ratios of the norms
of the relevant matrices or vectors. They take into account the local length scales,
advection field and the element-level Reynolds number. Based on these definitions, a
τ can be calculated for each element, or even for each element node or degree of free-
dom or element equation. Certain variations and complements of these new τs were
introduced in [12, 4, 13]. In this paper, we describe the element-matrix-based and
element-vector-based τs designed for the semi-discrete and space-time formulations
of the advection-diffusion equation and the Navier-Stokes equations of incompress-
ible flows. We also describe approximate versions of these τs that are based on the
local length scales for the advection- and diffusion-dominated limits. In the test com-
putations reported in Section 13, the performance of the stabilization parameters is
evaluated for the advection-diffusion and Navier-Stokes equations.

2. Governing Equations

Let Ωt ⊂ IRnsd be the spatial fluid mechanics domain with boundary Γt at time t ∈
(0, T ), where the subscript t indicates the time-dependence of the spatial domain. The
Navier-Stokes equations of incompressible flows can be written on Ωt and ∀t ∈ (0, T )
as

ρ(
∂u

∂t
+ u · ∇∇∇u− f)−∇∇∇ · σσσ = 0, (2.1)

∇∇∇ · u = 0, (2.2)

where ρ, u and f are the density, velocity and the external force, and σσσ is the stress
tensor:

σσσ(p,u) = −pI + 2µεεε(u), εεε(u) =
1

2
((∇∇∇u) + (∇∇∇u)T ). (2.3)

Here p is pressure, I is the identity tensor, µ = ρν is viscosity, ν is the kinematic
viscosity, and εεε(u) is the strain-rate tensor. The essential and natural boundary
conditions for equation (2.1) are represented as

u = g on (Γt)g, n · σσσ = h on (Γt)h, (2.4)
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where (Γt)g and (Γt)h are complementary subsets of the boundary Γt, n is the unit
normal vector, and g and h are given functions. A divergence-free velocity field u0(x)
is specified as the initial condition.

If the problem does not involve any moving boundaries or interfaces, the spatial
domain does not need to change with respect to time, and the subscript t can be
dropped from Ωt and Γt. This might be the case even for flows with moving boundaries
and interfaces, if in the formulation used the spatial domain is not defined to be the
part of the space occupied by the fluid(s). For example, we can have a fixed spatial
domain, and model the fluid-fluid interfaces by assuming that the domain is occupied
by two immiscible fluids, A and B, with densities ρA and ρB and viscosities µA and µB .
In modeling a free-surface problem where Fluid B is irrelevant, we assign a sufficiently
low density to Fluid B. An interface function φ serves as a marker identifying Fluid
A and B with the definition φ = {1 for Fluid A and 0 for Fluid B}. The interface
between the two fluids is approximated to be at φ = 0.5. In this context, ρ and µ are
defined as

ρ = φρA + (1− φ)ρB , µ = φµA + (1− φ)µB . (2.5)

The evolution of the interface function φ, and therefore the motion of the interface,
is governed by a time-dependent advection equation, written on Ω and ∀t ∈ (0, T ) as

∂φ

∂t
+ u · ∇∇∇φ = 0. (2.6)

As a generalization of equation (2.6), let us consider over a domain Ω with boundary
Γ the following time-dependent advection-diffusion equation, written on Ω and ∀t ∈
(0, T ) as

∂φ

∂t
+ u · ∇∇∇φ−∇∇∇ · (ν∇∇∇φ) = 0, (2.7)

where φ represents the quantity being transported (e.g., temperature, concentration),
and ν is the diffusivity. The essential and natural boundary conditions associated
with equation (2.7) are represented as

φ = g on Γg, n · ν∇∇∇φ = h on Γh. (2.8)

A function φ0(x) is specified as the initial condition.

3. Stabilized Formulation for Advection-Diffusion Equation

Let us assume that we have constructed some suitably-defined finite-dimensional trial
solution and test function spaces Shφ and Vhφ . The stabilized finite element formulation
of equation (2.7) can then be written as follows: find φh ∈ Shφ such that ∀wh ∈ Vhφ :∫

Ω

wh
(
∂φh

∂t
+ uh · ∇∇∇φh

)
dΩ +

∫
Ω

∇∇∇wh · ν∇∇∇φhdΩ−
∫

Γh

whhhdΓ

+

nel∑
e=1

∫
Ωe

τSUPGu
h · ∇∇∇wh

(
∂φh

∂t
+ uh · ∇∇∇φh −∇∇∇ ·

(
ν∇∇∇φh

))
dΩ = 0. (3.1)
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Here nel is the number of elements, Ωe is the element domain, and τSUPG is the SUPG
stabilization parameter.

4. Element-Matrix-Based Stabilization Parameters for
Advection-Diffusion Equation

Let us use the notation b :
∫

Ωe(. . .)dΩ : bV to denote the element-level matrix
b and element-level vector bV corresponding to the element-level integration term∫

Ωe(. . .)dΩ. We define the following element-level matrices and vectors:

m :

∫
Ωe

wh
∂φh

∂t
dΩ : mV, (4.1)

c :

∫
Ωe

whuh · ∇∇∇φhdΩ : cV, (4.2)

k :

∫
Ωe

∇∇∇wh · ν∇∇∇φhdΩ : kV, (4.3)

k̃ :

∫
Ωe

uh · ∇∇∇wh uh · ∇∇∇φhdΩ : k̃V, (4.4)

c̃ :

∫
Ωe

uh · ∇∇∇wh ∂φ
h

∂t
dΩ : c̃V. (4.5)

We define the element-level Reynolds and Courant numbers as follows:

Re =
‖uh‖2

ν

‖c‖
‖k̃‖

, (4.6)

Cru =
∆t

2

‖c‖
‖m‖

, (4.7)

Crν =
∆t

2

‖k‖
‖m‖

, (4.8)

where ‖b‖ is the norm of matrix b.

The components of element-matrix-based τSUPG are defined as follows:

τS1 =
‖c‖
‖k̃‖

,

τS2 =
∆t

2

‖c‖
‖c̃‖

, (4.9)

τS3 = τS1Re =

(
‖c‖
‖k̃‖

)
Re. (4.10)

To construct τSUPG from its components we proposed in [11] the form

τSUPG =

(
1

τ rS1
+

1

τ rS2
+

1

τ rS3

)− 1
r

. (4.11)
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The components of the element-vector-based τSUPG are defined as follows:

τSV1 =
‖cV‖
‖k̃V‖

, (4.12)

τSV2 =
‖cV‖
‖c̃V‖

, (4.13)

τSV3 = τSV1Re =

(
‖cV‖
‖k̃V‖

)
Re. (4.14)

With these three components,

(τSUPG)V =

(
1

τ rSV1
+

1

τ rSV2
+

1

τ rSV3

)− 1
r

. (4.15)

5. Stabilized Formulation for Navier-Stokes Equations

Let us assume that we have some suitably-defined finite-dimensional trial solution
and test function spaces for velocity and pressure: Shu , Vhu , Shp and Vhp = Shp . The
stabilized finite element formulation of equations (2.1)-(2.2) can then be written as
follows: find uh ∈ Shu and ph ∈ Shp such that ∀wh ∈ Vhu and qh ∈ Vhp :∫

Ω

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − f

)
dΩ +

∫
Ω

εεε(wh) : σσσ(ph,uh)dΩ−
∫

Γh

wh · hhdΓ

+

∫
Ω

qh∇∇∇ · uhdΩ +

nel∑
e=1

∫
Ωe

1

ρ
[τSUPGρu

h · ∇wh + τPSPG∇qh] ·[
ρ

(
∂uh

∂t
+ uh · ∇∇∇uh

)
−∇∇∇ · σσσ(ph,uh)− ρf

]
dΩ

+

nel∑
e=1

∫
Ωe

τLSIC∇∇∇ ·whρ∇∇∇ · uhdΩ = 0. (5.1)

Here τPSPG and τLSIC are the PSPG and LSIC (least-squares on incompressibility
constraint) stabilization parameters.

6. Element-Matrix-Based Stabilization Parameters for Navier-Stokes
Equation

We define the following element-level matrices and vectors:

m :

∫
Ωe

wh · ρ∂u
h

∂t
dΩ : mV, (6.1)

c :

∫
Ωe

wh · ρ(uh · ∇∇∇uh)dΩ : cV, (6.2)
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k :

∫
Ωe

εεε(wh) : 2µεεε(uh)dΩ : kV, (6.3)

g :

∫
Ωe

(∇∇∇ ·wh)phdΩ : gV, (6.4)

gT :

∫
Ωe

qh(∇∇∇ · uh)dΩ : gT
V, (6.5)

k̃ :

∫
Ωe

(uh · ∇∇∇wh) · ρ(uh · ∇∇∇uh)dΩ : k̃V, (6.6)

c̃ :

∫
Ωe

(uh · ∇∇∇wh) · ρ∂u
h

∂t
dΩ : c̃V, (6.7)

γ̃ :

∫
Ωe

(uh · ∇∇∇wh) · ∇∇∇phdΩ : γ̃V, (6.8)

β :

∫
Ωe

∇∇∇qh · ∂u
h

∂t
dΩ : βV, (6.9)

γ :

∫
Ωe

∇∇∇qh · (uh · ∇∇∇uh)dΩ : γV, (6.10)

θ :

∫
Ωe

∇∇∇qh · ∇∇∇phdΩ : θV, (6.11)

e :

∫
Ωe

(∇∇∇ ·wh)ρ(∇∇∇ · uh)dΩ : eV. (6.12)

The element-level Reynolds and Courant numbers are defined the same way as they
were defined before, as given by equations (4.6)-(4.8). The components of the element-
matrix-based τSUPG are defined the same way as they were defined before, as given
by equations (4)-(4.10). τSUPG is constructed from its components the same way as it
was constructed before, as given by equation (4.11). The components of the element-
vector-based τSUPG are defined the same way as they were defined before, as given
by equations (4.12)-(4.14). The construction of (τSUPG)V is also the same as it was
before, given by equation (4.15).
The components of the element-matrix-based τPSPG are defined as follows:

τP1 =
‖gT‖
‖γ‖

, (6.13)

τP2 =
∆t

2

‖gT‖
‖β‖

, (6.14)

τP3 = τP1Re =

(
‖gT‖
‖γ‖

)
Re. (6.15)

τPSPG is constructed from its components as follows:

τPSPG =

(
1

τ rP1
+

1

τ rP2
+

1

τ rP3

)− 1
r

. (6.16)
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The components of the element-vector-based τPSPG are defined as follows:

τPV1 = τP1, (6.17)

τPV2 = τPV1
‖γV‖
‖βV‖

, (6.18)

τPV3 = τPV1Re. (6.19)

With these components,

(τPSPG)V =

(
1

τ rPV1
+

1

τ rPV2
+

1

τ rPV3

)− 1
r

. (6.20)

The element-matrix-based τLSIC is defined as follows:

τLSIC =
‖c‖
‖e‖

. (6.21)

We define the element-vector-based τLSIC as:

(τLSIC)V = τLSIC. (6.22)

7. UGN-Based Stabilization Parameters for Navier-Stokes Equations

For the purpose of comparison, we define here also the stabilization parameters that
are based on an earlier definition of the length scale h [8]:

hUGN = 2 ‖uh‖

(
nen∑
a=1

|uh · ∇∇∇Na|

)−1

, (7.1)

where Na is the interpolation function associated with node a. The stabilization
parameters are defined as follows:

τSUGN1 =
hUGN

2‖uh‖
, (7.2)

τSUGN2 =
∆t

2
, (7.3)

τSUGN3 =
h2

UGN

4ν
, (7.4)

(τSUPG)UGN =

(
1

τ2
SUGN1

+
1

τ2
SUGN2

+
1

τ2
SUGN3

)− 1
2

, (7.5)

(τPSPG)UGN = (τSUPG)UGN, (7.6)

(τLSIC)UGN =
hUGN

2
‖uh‖ z. (7.7)

Here z is given as follows:

z =

{ (
ReUGN

3

)
ReUGN ≤ 3,

1 ReUGN > 3,
(7.8)

where ReUGN = ‖uh‖hUGN
2ν .
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Comparisons between the performances of these earlier stabilization parameters
and the ones proposed here can be found in [11]. These comparisons show that,
especially for special element geometries, the performances are similar.

It was pointed out in [13] that the expression for τSUGN1 can be written more
directly as

τSUGN1 =

(
nen∑
a=1

|uh · ∇∇∇Na|

)−1

, (7.9)

and based on that, the expression for hUGN can be written as

hUGN = 2‖uh‖ τSUGN1. (7.10)

A rationale for τSUGN1 given by equation (7.9) was also provided in [13].

8. Discontinuity-Capturing Directional Dissipation (DCDD)

As a potential alternative or complement to the LSIC stabilization, we proposed
in [12] the Discontinuity-Capturing Directional Dissipation (DCDD) stabilization. In
describing the DCDD stabilization, we first define the unit vectors s and r:

s =
uh

‖uh‖
, r =

∇∇∇‖uh‖
‖ ∇∇∇‖uh‖ ‖

, (8.1)

and the element-level matrices and vectors cr, k̃r, (cr)V, and (k̃r)V:

cr :

∫
Ωe

wh · ρ(r · ∇∇∇uh)dΩ : (cr)V , (8.2)

k̃r :

∫
Ωe

(r · ∇∇∇wh) · ρ(r · ∇∇∇uh)dΩ : (k̃r)V . (8.3)

Then the DCDD stabilization is defined as

SDCDD =

nel∑
e=1

∫
Ωe

ρνDCDD∇∇∇wh :
([
rr− (r · s)2ss

]
· ∇∇∇uh

)
dΩ, (8.4)

where the element-matrix-based and element-vector-based DCDD viscosities are:

νDCDD = |r · uh| ‖cr‖
‖k̃r‖

, (8.5)

(νDCDD)V = |r · uh|
‖(cr)V‖
‖(k̃r)V‖

. (8.6)

An approximate version of the expression given by equation (8.5) can be written as

νDCDD = |r · uh|hRGN

2
, (8.7)

where

hRGN = 2

(
nen∑
a=1

|r · ∇∇∇Na|

)−1

. (8.8)
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A different way of determining νDCDD can be expressed as

νDCDD = τDCDD‖uh‖
2
, (8.9)

where

τDCDD =
hDCDD

2‖U‖
‖ ∇∇∇‖uh‖ ‖ hDCDD

‖U‖
. (8.10)

Here U represents a global velocity scale, and hDCDD can be calculated by using the
expression

hDCDD = 2
‖cr‖
‖k̃r‖

, (8.11)

or the approximation

hDCDD = hRGN . (8.12)

Combining equations (8.9) and (8.10), we obtain

νDCDD =
1

2

(
‖uh‖
‖U‖

)2

(hDCDD)
2 ‖ ∇∇∇‖uh‖ ‖ . (8.13)

9. UGN/RGN-Based Stabilization Parameters for Navier-Stokes
Equations

In [4], we proposed to re-define τPSPG and provided the reason for doing that. We
described how we re-define τPSPG by modifying the definitions of τP3 and τPV3 given by
equations (6.15) and (6.19). We proposed to accomplish that by using the expressions

τP3 = τP1
‖c‖

ν ‖k̃r‖
, τPV3 = τPV1

‖c‖
ν ‖k̃r‖

, (9.1)

or the approximations

τP3 = τP1 Re

(
hRGN

hUGN

)2

, τPV3 = τPV1 Re

(
hRGN

hUGN

)2

. (9.2)

In [4], we further stated that these modifications can also be applied to τS3 and τSV3

given by equations (4.10) and (4.14). In [13], we wrote those expressions explicitly as
follows:

τS3 = τS1
‖c‖

ν ‖k̃r‖
, τSV3 = τSV1

‖c‖
ν ‖k̃r‖

, (9.3)

τS3 = τS1 Re

(
hRGN

hUGN

)2

, τSV3 = τSV1 Re

(
hRGN

hUGN

)2

. (9.4)

We noted in [13] that if we are dealing with just an advection-diffusion equation,
rather than the Navier-Stokes equations of incompressible flows, then the definition
of the unit vector r changes as follows:

r =
∇∇∇|φh|
‖ ∇∇∇|φh| ‖

. (9.5)
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We also proposed in [13] to re-define τSUGN3 given by equation (7.4) as follows:

τSUGN3 =
h2

RGN

4ν
. (9.6)

Furthermore, we proposed in [13] to replace (τLSIC)UGN given by equation (7.7) as
follows:

(τLSIC)UGN = (τSUPG)UGN ‖uh‖
2
. (9.7)

We further commented in [13] that the “element length”s hUGN (given by equa-
tion (7.1)) and hRGN (equation (8.8)) can be viewed as the local length scales corre-
sponding to the advection- and diffusion-dominated limits, respectively.

10. Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST)
Formulation

In the DSD/SST method, the finite element formulation of the governing equations is
written over a sequence of N space-time slabs Qn, where Qn is the slice of the space-
time domain between the time levels tn and tn+1. At each time step, the integrations
involved in the finite element formulation are performed over Qn. The space-time
finite element interpolation functions are continuous within a space-time slab, but
discontinuous from one space-time slab to another. Typically we use first-order poly-
nomials as interpolation functions. The notation (·)−n and (·)+

n denotes the function
values at tn as approached from below and above, respectively. Each Qn is decom-
posed into space-time elements Qen, where e = 1, 2, . . . , (nel)n. The subscript n used
with nel is to account for the general case in which the number of space-time elements
may change from one space-time slab to another. The Dirichlet- and Neumann-type
boundary conditions are enforced over (Pn)g and (Pn)h, the complementary subsets of
the lateral boundary of the space-time slab. The finite element trial function spaces
(Shu)n for velocity and (Shp )n for pressure, and the test function spaces (Vhu)n and
(Vhp )n = (Shp )n are defined by using, over Qn, first-order polynomials in both space
and time.

The DSD/SST formulation is written as follows: given (uh)−n , find uh ∈ (Shu)n and
ph ∈ (Shp )n such that ∀wh ∈ (Vhu)n and qh ∈ (Vhp )n:∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ+

∫
Qn

εεε(wh) : σσσ(ph,uh)dQ

−
∫

(Pn)h

wh · hhdP +

∫
Qn

qh∇∇∇ · uhdQ+

∫
Ωn

(wh)+
n · ρ

(
(uh)+

n − (uh)−n
)
dΩ

+

(nel)n∑
e=1

∫
Qe

n

τLSME

ρ
(qh,wh) ·

[
(ph,uh)− ρfh

]
dQ

+

nel∑
e=1

∫
Qe

n

τLSIC∇∇∇ ·whρ∇∇∇ · uhdQ = 0, (10.1)
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where

(qh,wh) = ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
−∇∇∇ · σσσ(qh,wh), (10.2)

and τLSME and τLSIC are the stabilization parameters (see [14]). This formulation is
applied to all space-time slabs Q0, Q1, Q2, . . . , QN−1, starting with (uh)−0 = u0. For
an earlier, detailed reference on this stabilized formulation see [1].

In [13] we wrote a DSD/SST formulation that was slightly different than the one
given by equation (10.1). We did that by neglecting the (τLSME/ρ) ∇∇∇·(2µεεε(wh)) term
and replacing τLSME with τSUPG and τPSPG:∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ+

∫
Qn

εεε(wh) : σσσ(ph,uh)dQ

−
∫

(Pn)h

wh · hhdP +

∫
Qn

qh∇∇∇ · uhdQ+

∫
Ωn

(wh)+
n · ρ

(
(uh)+

n − (uh)−n
)
dΩ

+

(nel)n∑
e=1

∫
Qe

n

1

ρ

[
τSUPGρ

(
∂wh

∂t
+ uh · ∇wh

)
+ τPSPG∇qh

]
·
[
(ph,uh)− ρfh

]
dQ

+

nel∑
e=1

∫
Qe

n

τLSIC∇∇∇ ·whρ∇∇∇ · uhdQ = 0. (10.3)

11. Element-Matrix-Based Stabilization Parameters for the DSD/SST
Formulation

For extensions of the τ calculations based on matrix norms to the DSD/SST for-
mulation, in [13] we defined the space-time augmented versions of the element-level
matrices and vectors given by equations (6.2), (6.6), and (6.10) as follows:

cA :

∫
Qe

n

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh

)
dQ : (cA)V, (11.1)

k̃A :

∫
Qe

n

(
∂wh

∂t
+ uh · ∇∇∇wh

)
· ρ
(
∂uh

∂t
+ uh · ∇∇∇uh

)
dQ : (k̃A)V, (11.2)

γA :

∫
Qe

n

∇∇∇qh ·
(
∂uh

∂t
+ uh · ∇∇∇uh

)
dQ : (γA)V. (11.3)

The components of element-matrix-based τSUPG were defined in [13] as follows:

τS12 =
‖cA‖
‖k̃A‖

, (11.4)

τS3 = τS12
‖cA‖
ν ‖k̃r‖

, (11.5)
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where k̃r is the space-time version (i.e. integrated over the space-time element domain
Qen) of the element-level matrix given by equation (8.3). To construct τSUPG from its
components we proposed in [13] the form

τSUPG =

(
1

τ rS12
+

1

τ rS3

)− 1
r

. (11.6)

The components of the element-vector-based τSUPG were defined in [13] as

τSV12 =
‖(cA)V‖
‖(k̃A)V‖

, (11.7)

τSV3 = τSV12
‖cA‖
ν ‖k̃r‖

. (11.8)

From these two components,

(τSUPG)V =

(
1

τ rSV12
+

1

τ rSV3

)− 1
r

. (11.9)

The components of element-matrix-based τPSPG were defined in [13] as follows:

τP12 =
‖gT‖
‖γA‖

, (11.10)

τP3 = τP12
‖cA‖
ν ‖k̃r‖

, (11.11)

where gT is the space-time version of the element-level matrix given by equation (6.5).
To construct τPSPG from its components, we proposed in [13] the form

τPSPG =

(
1

τ rP12
+

1

τ rP3

)− 1
r

. (11.12)

The components of the element-vector-based τPSPG were defined in [13] as follows:

τPV12 =
‖gT

V‖
‖(γA)V‖

, (11.13)

τPV3 = τPV12
‖cA‖
ν ‖k̃r‖

. (11.14)

From these components,

(τPSPG)V =

(
1

τ rPV12
+

1

τ rPV3

)− 1
r

. (11.15)

The element-matrix-based τLSIC was defined in [13] as

τLSIC =
‖cA‖
‖e‖

, (11.16)

where e is the space-time version of the element-level matrix given by equation (6.12).
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The element-vector-based τLSIC was defined in [13] as

(τLSIC)V = τLSIC. (11.17)

12. UGN/RGN-Based Stabilization Parameters for the DSD/SST
Formulation

The space-time versions of τSUGN1, τSUGN2, τSUGN3, (τSUPG)UGN, (τPSPG)UGN, and
(τLSIC)UGN, given respectively by Eqs. (7.2), (7.3), (9.6), (7.5), (7.6), and (9.7), were
defined in [13] as follows:

τSUGN12 =

(
nen∑
a=1

∣∣∣∣∂Na∂t + uh · ∇∇∇Na
∣∣∣∣
)−1

, (12.1)

τSUGN3 =
h2

RGN

4ν
, (12.2)

(τSUPG)UGN =

(
1

τ2
SUGN13

+
1

τ2
SUGN3

)− 1
2

, (12.3)

(τPSPG)UGN = (τSUPG)UGN , (12.4)

(τLSIC)UGN = (τSUPG)UGN ‖uh‖
2
. (12.5)

Here, nen is the number of nodes for the space-time element, and Na is the space-time
interpolation function associated with node a.

13. Test Computations

13.1. 1D Advection of a Cosine Wave. In this test, we compute the advection of
a cosine wave with the space-time SUPG formulation at dimensionless wave number,
q = kh = 0.3142 and Courant number, Cru = 1.0 and 0.5. Figure 1 shows the
space-time mesh for Cru = 1.0 and 0.5.

Figure 1. 1D advection of a cosine wave. Meshes for space-time compu-
tations. Courant number, Cru = 1.0 (top) and 0.5 (bottom).

We compare the solutions obtained with the semi-discrete and space-time versions
of τ . For the semi-discrete version of τ , we use the expressions given by equations
(7.9), (7.3) and (7.5), without τSUGN3. For the space-time version of τ , we use the
expression given by equation (12.1). Figure 2 shows that, for both Courant numbers,
the solution obtained with the semi-discrete and space-time versions of τ are very
close.
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Figure 2. 1D advection of a cosine wave. Stabilized space-time compu-
tations with the semi-discrete and space-time versions of τ . Dimensionless
wave number, q = kh = 0.3142. Courant number, Cru = 1.0 (top) and
0.5 (bottom).
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13.2. 2D Incompressible Flow Past a Cylinder at Re = 100. In this test
computation, for meshes containing elements with high aspect ratios, we evaluate the
performance of the SUPG/PSPG formulation with UGN/RGN-based stabilization
parameters. The test problem we use, 2D incompressible flow past a cylinder at Re
= 100, is a well-studied problem, with an easily identifiable Karman vortex shedding
(see Figure 3).

Figure 3. 2D Incompressible Flow Past a Cylinder at Re = 100. Com-
puted with SUPG/PSPG formulation with UGN/RGN-based stabilization
parameters. Vorticity.

Figure 4 (4a,b and c) shows the triangular mesh in the boundary layer, the velocity
vectors near the cylinder, and the velocity vectors in the boundary layer. Although the
aspect ratio of the elements adjacent to the cylinder surface is 100, the SUPG/PSPG
formulation with the UGN/RGN-based stabilization parameters performs very well.

14. Concluding Remarks

We described how we determine the stabilization parameters (“τ"s) and element
length scales used in stabilized finite element formulations of flow problems. These sta-
bilized formulations include the interface-tracking and interface-capturing techniques
we developed for computation of flows with moving boundaries and interfaces. The
interface-tracking techniques are based on the Deforming-Spatial-Domain/Stabilized
Space-Time formulation, where the mesh moves to track the interface. The interface-
capturing techniques, typically used with non-moving meshes, are based on a sta-
bilized semi-discrete formulation of the Navier-Stokes equations, combined with a
stabilized formulation of an advection equation. The advection equation governs
the time-evolution of an interface function marking the interface location. As spe-
cific stabilization methods, we focused on the streamline-upwind/Petrov-Galerkin
(SUPG) and pressure-stabilizing/Petrov-Galerkin (PSPG) methods. For the Navier-
Stokes equations and the advection equation, we described the element-matrix-based
and element-vector-based τs designed for semi-discrete and space-time formulations.
These τ definitions are expressed in terms of the ratios of the norms of the relevant
matrices or vectors. They take into account the local length scales, advection field and
the element-level Reynolds number. Based on these definitions, a τ can be calculated
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Figure 4a

Figure 4b

Figure 4c

Figure 4. 2D Incompressible Flow Past a Cylinder at Re = 100. Com-
puted with SUPG/PSPG formulation with UGN/RGN-based stabilization
parameters. Top: mesh in the boundary layer; Middle: velocity vectors
near the cylinder; Bottom: velocity vectors in the boundary layer.
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for each element, or even for each element node or degree of freedom or element
equation. We also described certain variations and complements of these new τs,
including the approximate versions that are based on the local length scales for the
advection- and diffusion-dominated limits. With test problems for the advection-
diffusion and Navier-Stokes equations, we showed that the stabilization parameters
described perform well, even for elements with high aspect ratios.
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Book Review

László P. Kollár, George S. Springer: Mechanics of Composite Struc-
tures

An increase in the use of composite materials in many areas of engineering has
led to a greater demand for engineers versed in the design of structures made from
such materials. Although numerous books offer introductions to composites, few
demonstrate advanced concepts or emphasize structures.

This book addresses that need by offering students and engineers tools for designing
practical composite structures. The focus is on fiber-reinforced composites composed
of fibers embedded in a matrix. Among the topics of interest to the designer are stress-
strain relationships for a wide range of anisotropic materials; bending, buckling, and
vibration of plates; bending, torsion, buckling, and vibration of solid as well as thin
walled beams; shells; hygrothermal stresses and strains; finite element formulation;
and failure criteria. The emphasis is on analyses that lead to methods applicable to a
variety of structural design problems. The expressions resulting from the analyses are
either readily usable or can be translated into a computer algorithm. More than 300
illustrations, 50 fully worked problems, and material properties data sets are included.
Some knowledge of composites, differential equations, and matrix algebra is helpful
but not necessary, as the book is self-contained.

This book will be of great practical use to graduate students, researchers, and prac-
ticing engineers seeking to acquire advanced knowledge of the mechanics of composites
and of the applications of composite materials.

László P. Kollár is Professor in the Department of Architecture at the Budapest
University of Technology and Economics.

George S. Springer is Paul Pigott Professor of Engineering in the Department
of Aeronautics and Astronautics at Stanford University.

Contents: Preface; List of symbols; 1. Introduction; 2. Displacements, strains,
stresses; 3. Laminated composites; 4. Thin plates; 5. Sandwich plates; 6. Beams;
7. Beams with shear deformation; 8. Shells; 9. Finite element analysis; 10. Failure
criteria; 11. Micromechanics; Appendix A. Cross-sectional properties of thin-walled
composite beams; Appendix B. Buckling loads and natural frequencies of orthotropic
beams with shear deformation; Appendix C. Typical material properties; Index.

Cambridge University Press

February 2003; 496 pages 339 line diagrams 104 tables 50 exercises; ISBN: 0521801656

Fiber reinforced plastics and composites permit improvements in in-service re-
sponse and weight reduction compared with more conventional materials. For this
reason, the past few decades have seen the rapid expansion of composites in structural
applications in many industrial sectors. Examples include applications in automobiles,
trains, ships, wind turbine blades, sporting goods, and civil engineering infrastructure
such as bridges.
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The main advantage of composites over conventional structural materials is that
they afford great freedom, not only in selecting the structural forms and dimensions,
but also in selecting the appropriate material properties.

To utilize the advantages offered by composites in a wide range of structural appli-
cations, empirical and semi-empirical design methods useful in particular cases only
must be replaced by methods that are based on fundamental engineering principles
and are generally applicable.

The authors of this book set themselves the task of writing a comprehensive treatise
that comprised the principles of mechanics and the analysis and design of structural
elements made of fiber reinforced composites.

There are engineers engaged in various applications of composites with different
professional backgrounds and experience. There are also researchers investigating
fundamental aspects of composite materials and composite structures. Hence, it is
difficult for the authors to select the content and proper weighing of the different
topics so as to satisfy all the readers. And it may be an even more difficult task
to find the golden mean between oversimplified and overly theoretical approaches to
problems, and between superficial and oversized treatments of topics.

The authors have overcome the aforementioned difficulties. Similarly, due to the
different backgrounds and outlooks of the two authors, the book is a uniquely success-
ful synthesis of writing. On the one hand the book is written clearly, with practical
users in mind. On the other hand, the text is complete and is based on sound funda-
mental principles. The former is manifested by the fact that the book is self-contained
and by the large number of instructive numerical examples, while the latter is mani-
fested by several new scientific results that have been worked out by the authors for
completeness of certain topics. This synthesis also ensured that this comprehensive
book has not just become either a collection of formulae or lengthy derivations. It
also resulted in numerical examples that not only illustrate solution techniques but
shed light on the underlying principles.

István Hegedűs
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