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László BARANYI, Department of Fluid and Heat En-
gineering, University of Miskolc, 3515 MISKOLC,
Hungary, arambl@gold.uni-miskolc.hu
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Károly JÁRMAI, Department of Materials Han-
dling and Logistics, University of Miskolc, 3515
MISKOLC, Hungary, altjar@gold.uni-miskolc.hu
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Gyula PATKÓ, Department of Machine Tools, Uni-
versity of Miskolc, 3515 MISKOLC, Hungary,
mechpgy@uni-miskolc.hu
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Gábor STÉPÁN, Department of Mechanics, Bu-
dapest University of Technology, and Economics,
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PREFACE

This special issue of the Journal of Computational and
Applied Mechanics is dedicated to Prof. Tibor Czibere
on the occasion of his 70th birthday. The range of topics
covered by the various contributions reflects the scientific
interests of Prof. Czibere. We are also pleased to include
a paper on his newest research in this special issue.

Tibor Czibere was born in Tapolca in Western Hun-
gary in 1930. After graduating from a high school in
Keszthely in 1949 he was admitted to the Faculty of Me-
chanical Engineering of the Technical University for Heavy
Industry in Miskolc (now the University of Miskolc). His
aptitude was acknowledged early. Even as an undergrad-
uate student he was asked to give tutorials for his fellow
students in mathematics. In 1953 he obtained an M.Sc.
degree in Mechanical Engineering with first class honors.

Tibor Czibere

After graduation he started to work as an assistant lecturer at the Department of
Mathematics at the Technical University for Heavy Industry under the guidance of
the famous Hungarian mathematician Professor Samu Borbély. He began to deal with
nonlinear heat conduction problems, and it was this field which constituted his thesis
for which the University of Miskolc awarded him the Ph.D. degree in 1961. In 1956 he
became a research engineer at the Ganz-MÁVAG Locomotive and Railway Carriage
Manufacturers. His first task was the investigation of flow in the bladed space of
torque converters, and he developed a method based on the method of hydrodynamic
singularities for the analysis and design of flow in turbomachines. Even after returning
to the university in 1963, Prof. Czibere continued to do research there on a part-time
basis until 1988.

In 1960 he delivered a well-received lecture at the Tenth International Conference in
Applied Mechanics in Stresa (Italy) on his method for the design of straight and radial
cascades of airfoils. His lecture attracted the attention of the world-famous scientist of
Hungarian origin, Theodore von Kármán. This lecture brought him acclaim. In 1962,
he was awarded the Kossuth Prize in acknowledgment of his scientific contributions.
He was invited to spend three months as a guest lecturer at the Technical University
of Berlin-Charlottenburg for three months in the following year.

In 1963 he defended his thesis entitled A design method for straight cascade of
highly cambered airfoils for the Ph. D. degree conferred by the Hungarian Academy
of Sciences and four years later he defended his thesis for D.Sc. (the highest academic
degree, conferred also by the Hungarian Academy of Sciences) entitled Solution of the
two main problems of the hydrodynamic cascade theory by theory of potentials. He
was appointed full professor in 1968, at the early age of 38. In 1976 Prof. Czibere
became a corresponding member of the Hungarian Academy of Sciences, and in 1985
an ordinary member.

Professor Czibere gave several lecture series about his research at different institu-
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tions. Let us mention just a few of these: in Turboinstitut in Ljubljana in 1978 and
in 1984; at the Technical University of Brno in 1990; at the Technical University of
Braunschweig in 1994; and several times at the Otto von Guericke Technical Univer-
sity in Magdeburg. The Technical University of Brno awarded him its gold medal for
the fruitful scientific cooperation between the two universities.

A more detailed account of Professor Czibere’s scientific contributions can be found
in this special issue, in the paper written by Professor A. Nyíri.

Throughout the greater part of his career, Prof. Czibere has been involved in ad-
ministrative matters in a leadership role. Since his scientific activities and engineering
proficiency had been recognized and awarded by the Kossuth Prize, he was chosen in
1963 to fill the vacancy of the chair of the Department of Machine Operation, which
became the current Department of Fluid and Heat Engineering. He held the post
of Head of Department for 25 years, from 1963 till 1988. As Head of Department,
he modified the research and educational profiles of the department substantially
to meet changing requirements, and the teaching staff was strengthened and broad-
ened by the addition of young researchers who had been educated in the department.
He encouraged staff to investigate research topics directly connected with industrial
problems.

Prof. Czibere also played an important role in the administration of the Faculty
of Mechanical Engineering and that of the University of Miskolc. He was appointed
Vice-dean of the Faculty for the period 1966 to 1968, and in 1968 he was elected
to be the Dean. He held this position till 1974. During this time the structure of
education was changed substantially at the university, and Prof. Czibere contributed
significantly to the introduction of the modular educational system. In recognition of
his scientific contributions and his leadership qualities he was elected to be the Rector
of the University in 1978. As the leader of the University he made efforts to introduce
the training of lawyers and economists at the University. With his support, the
Faculty of Law was established in 1981. During his eight years in this post, he worked
closely with the leaders of the city of Miskolc, and this contribution was recognized by
the prize ’Pro Urbe’ (For the City). In 1988, Prof. Czibere was asked to contribute
his expertise in educational administration as the Minister of Culture and Education
of Hungary, in the difficult period of transition from the socialist system. Ultimately,
his concepts and those of the national leadership differed, and the following year he
returned to the University of Miskolc and resumed teaching at the Department of
Fluid and Heat Engineering.

Prof. Czibere has always put a great deal of effort into educational endeavors, in
the lecture hall as well as in administrative offices. He developed the curriculum of
several courses such as Fluid Mechanics, Turbomachines, Continuum Mechanics of
Fluids, and Heat Transfer. He wrote textbooks for most of the subjects he taught,
and his Fluid Mechanics, among others, has been and still is used by engineering
students across the nation. His teaching materials reflect his view of engineering as
an applied science. He is an excellent lecturer who prepares carefully and composes his
lectures in a very logical way. He has the gift of being able to present very complicated
matters in an elegant and simple fashion and to make his audience understand what at
first seems difficult. By using mathematical means, he derives equations or formulae
describing flow phenomena in a concise manner.
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Prof. Czibere played an active role in establishing the Ph.D. training at the univer-
sity. He personally has supervised several researchers. He was the supervisor of three
persons who defended their D.Sc. dissertations, and supervised altogether twenty
Ph.D. disertations. Of course, the number of researchers directly and indirectly in-
fluenced by Prof. Czibere is much larger, and followers of the ”Czibere School” have
produced results of great merit.

Prof. Czibere has always been supported in his activities by his wife Gabriella.
They have two children, both of whom have gone into technical fields. Prof. Czibere
is also a proud grandfather of five. He continues to be an active researcher, often
working even at home. His current research is on a three-dimensional stochastic
turbulence model.

Recent awards recognizing Prof. Czibere’s many and varied contributions are: the
Albert Szentgyörgyi Prize, 1996, for his influential scientific contributions; honorary
citizenship of Miskolc, 2000, awarded by the City Council; and ’Doctor Honoris causa’
of the University of Miskolc in 2000.

On behalf of his friends, colleagues and his former students, the editors are pleased
to dedicate this special issue to Prof. Czibere in honor of his 70th birthday.

László Baranyi
the Editor of the Present Issue
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THREE DIMENSIONAL STOCHASTIC MODEL OF
TURBULENCE
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Department of Fluid and Heat Engineering, University of Miskolc

3515 Miskolc-Egyetemváros, Hungary
aramczt@gold.uni-miskolc.hu
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Abstract. Mean velocity distributions of fully developed turbulent flows show a similarity
revealed by experiments. The theoretical approach of Kármán’s similarity hypothesis [1]
concerning two-dimensional turbulent velocity fluctuations was based on experiments, but
it was criticized on the basis of the generally accepted view that the turbulence phenomena
was always three-dimensional. This paper intends to reveal that the mechanical similarity
hypothesis is applicable to the 3-D boundary layer flow and a 3-D model of turbulence will
be shown according to which the inner mechanism of the turbulence can be represented by
a stochastic process including 5 independent probability variables.

Keywords : Similarity hypothesis, stochastic, turbulence model, turbulent vortex diffusion,
Reynolds’stress tensor, vector potential of turbulent velocity fluctuation.

1. Governing equations of turbulent motion

In the Eulerian description of the turbulent motion of a fluid, continuum can be com-
posed by the superposition of two velocity fields depending on the space coordinates
and time. The first is the very rapid stochastic velocity fluctuation in time, which
is the turbulence phenomenon. The second one is the time dependent mean velocity
describing the motion of the continuum. All the characteristics of the motion can be
composed of two components: instantaneous value = mean value + fluctuation. The
mean value of a variable in a time interval t0 is

Φ (r, t) =
1

t0

t+t0∫
t

ΦT (r, τ) dτ (1.1)

where Φ can be scalar, vector or tensor field, and the subscript T refers to the turbulent
instantaneous value. Accordingly, the instantaneous value of the velocity field has the
form:

vT (r, t) = v (r, t) + v
′
(r, t) ,

where v (r, t) is the turbulent mean value of the motion taken on a suffi ciently long in-
terval of t0 compared to the periodicity of the fluctuation, and v

′
(r, t) is the turbulent

velocity fluctuation, the mean value of which is zero. Due to the velocity fluctuation
in the turbulent flow, a very intensive change of momentum takes place, increasing the
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resistance against the deformation of the flowing fluid. In other words, the apparent
viscosity of the flowing fluid will be increased due to the change of momentum.

This study will be restricted to isothermal motion of incompressible fluids. The
equation of continuity concerning the instantaneous velocity field vT (r, t) is as follows:

∇ · vT = 0 . (1.2)

The Stokes molecular viscosity law is valid for the instantaneous turbulent motion as
is commonly accepted. Consequently, the turbulent stress tensor can be written for
the instantaneous values:

FT = −pT I + σT = −pT I+η (vT ◦ ∇+∇ ◦ vT ) , (1.3)

where pT is the instantaneous pressure, σT is the deviator of the instantaneous stress
tensor FT , η is the dynamic viscosity and I is the unit tensor. If the force field is
derivable from a potential U, the Navier-Stokes momentum equation for the viscous
turbulent flow with instantaneous quantities takes the form

∂vT
∂t

+ (vT · ∇) vT = −∇ U +
1

ρ
Div [−pT I + σT ] . (1.4)

Here and in the sequal Div [] = []·∇. Introducing the vortex vector ΩT = ∇× vT and
taking the curl of the previous equation, we obtain the Helmholz-Thomson vortex
theorem for the instantaneous velocity field:

∂ΩT

∂t
+ (vT · ∇) ΩT − (ΩT · ∇) vT = ν4ΩT . (1.5)

Let a (r, t) be a given vector field in the velocity field v (r, t). The necessary and
suffi cient condition for the vector lines to satisfy equation a× dr = 0 and to be
constituted by the same fluid particles during the motion, and for the intensity of the
vector tubes a·dA = adAn to remain constant is:

∂a

∂t
+ (v · ∇) a− (a · ∇) v + a (∇ · v) = 0 .

This equation is called Friedman conservation law of vector tubes [2]. Consequently,
according to equation (1.5) the vortex lines (∇× vT )×dr = 0 in an incompressible
fluid flow with potential force field are not conserved but vanish, i.e., diffuse in the
surroundings. The measure of diffusion is determined by the term on the right-hand
side (RHS) of equation (1.5), i.e., by ν∆ ΩT . In case of inviscid fluid for which ν → 0
the vortex lines are conserved.

The equation of continuity for an incompressible fluid can be given in terms of the
velocity field v (r,t):

∇ · v = 0. (1.6)

The time-mean value of equation (1.4) is to be taken to obtain the Reynolds momen-
tum equation for the turbulent motion of fluid particles

∂v

∂t
+ (v · ∇) v =−∇ U +

1

ρ
Div

[
−pI + σ − ρ

(
v′ ◦ v′

)]
, (1.7)
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where the time-mean value is denoted by an overbar, σ is the time-mean value of the
stress tensor given by the Stokes relation

σ =η (v ◦ ∇+∇ ◦ v) . (1.8)

The last expression in the bracket on the RHS of equation (1.7) is the apparent

turbulent stress tensor named after Reynolds: FR = −ρ
(
v′ ◦ v′

)
.

The vortex theorem for the vector Ω = ∇ × v in the mean velocity field v (r,t)
determining the phenomena of the vortex lines (∇× v) × dr = 0 follows from
equation (1.5) by taking its time-mean value:

∂Ω

∂t
+ (v · ∇) Ω− (Ω · ∇) v = ν4Ω +∇×

(
v′ ×Ω′

)
. (1.9)

Here Ω
′

= ∇×v
′
is the vortex field of the velocity fluctuation. Consequently, vortex

lines in the turbulent mean velocity field v (r,t) are not conserved even in the extreme
case when ν → 0, but diffuse. The measure of vortex diffusion is determined by the
viscosity of fluid and dominantly by the velocity fluctuation of turbulence.

2. Vector Potential of Turbulent Velocity Fluctuation

Let P be a fixed arbitrary point, vP the turbulent mean velocity and ΩP = ∇× vP
the vortex vector in the flow. Furthermore let Q be a varying point in the vicinity of
P in which the turbulent instantaneous values are

vT = vQ + v
′

and, ΩT = ∇× vT = ΩQ + Ω
′

where vQ and ΩQ are time-mean values, v
′
and Ω

′
= ∇ × v

′
are the turbulent

fluctuations. Because the order of the change in time of the fluctuations v′ is much
greater than that of the mean velocity, the error will not be significant supposing the
mean value field together with vP and ΩP are constants. The Helmholz-Thomson
vortex theorem (1.5) is obviously valid in a relative coordinate system with its origin
in P and moving with the constant turbulent mean velocity vP . Consequently, it can
be applied to the vortex field ΩT in the velocity field moving with vT − vP , and we
get:

∂ΩT

∂t
+ [(vT − vP ) · ∇] ΩT − (ΩT · ∇) (vT − vP ) = ν4ΩT .

To examine the turbulent motion let us substitute the instantaneous values of vT and
ΩT and take the limit Q → P , vT → vP and ΩT → ΩP to obtain the differential
equation:

∂Ω
′

∂t
+
(
v
′
· ∇
)

Ω
′
−
(
Ω

′
· ∇
)

v
′

= ν4Ω
′
+ (Ω · ∇) v

′
. (2.1)

As P is arbitrary, the subscript at Ω can be omitted without causing any misunder-
standing. Equation (2.1) is a vortex theorem for the turbulent velocity fluctuation field

v
′
meaning that the vector lines determined by the differential equation

(
∇× v

′
)
×

dr = 0 are not conserved even if ν → 0 but scattered and diffused while moving.
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The effect of molecular viscosity will decrease due to the change of momentum
amongst the fluid particles in the turbulent flow; therefore, the term ν4Ω

′
on the

RHS of equation (2.1) becomes negligible. The boundary layer flows where the shear
stress is dominant and v and ∇ × v are not parallel will be examined in a suitable
coordinate system. An orthogonal curvilinear coordinate system q

′

1, q
′

2, q
′

3 will be
attached to the mean velocity field as well, for which the base vectors are determined
by v and ∇× v —see Figure 1 — as follows:

e
′

3 =
∇× v

|∇ × v| ; e
′

2 =
v× ∇× v

|v× ∇× v| ; e
′

1 = e
′

2 × e
′

3 =
1√

1− λ2

(
v

|v| − λ
∇× v

|∇ × v|

)
,

where

λ =
v

|v| ·
∇ × v

|∇ × v| .

This is called the natural coordinate system of the boundary layer flow. The turbulent
mean velocity can be expressed by its components in the q

′

1, q
′

2, q
′

3 system:

v = v1′ · e
′

1 + v3′ · e
′

3 = v
√

1− λ2e
′

1 − λ v e
′

3

Here v =
√
v2
1′

+ v2
3′
is the absolute value of the velocity. The vorticity of the mean

velocity can be written as

Ω = ∇× v = − |∇ × v| e
′

3 = −Ωe
′

3, (2.2)

where Ω is the rate of change of the q
′

1 component of the velocity in the direction
q
′

2. One can see in Figure 1 that Ω = −Ω3′ is the negative component of Ω in the
direction q

′

3:

Ω = −Ω3′ =
1

H
′
1H

′
2

∂
(
v1′H

′

1

)
∂q

′
2

, (2.3)

where H
′

i (i = 1, 2, 3) are the Lamé’s metric coeffi cients in the natural coordinate
system q

′

1, q
′

2, q
′

3 . One can easily see that if v and ∇× v are perpendicular vectors
as is true for two-dimensional flows, then v ·Ω =0, and therefore e

′

1 = v
|v| , i.e., the

streamlines coincide with the coordinate q
′

1.

Making use of equation (2.1) the turbulent fluctuation can be investigated sepa-
rately from the mean flow in a coordinate system moving with the mean velocity v.
The base vectors in thes coordinates sysytem are the same as those we introduced
earlier. In this system the differential operator ∇ and the product ∇ · Ω can be
expressed as follows:

∇ =
e
′

1

H
′
1

∂

∂q
′
1

+
e
′

2

H
′
2

∂

∂q
′
2

+
e
′

3

H
′
3

∂

∂q
′
3

and Ω ·∇ = −Ω
(
e
′

3 · ∇
)

= − Ω
H

′
3

∂

∂q
′
3

.

By applying the vortex theorem (2.1) in the q
′

1, q
′

2, q
′

3 coordinate system moving with
the flow for the velocity fluctuation v

′
we obtain the following differential equation

∂
(
∇× v

′
)

∂t
+
(
v
′
· ∇
)(
∇× v

′
)
−
((
∇× v

′
)
· ∇
)

v
′

= − Ω
H

′
3

∂v
′

∂q
′
3

. (2.4)
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v v' w'

q1
'

q3

q1
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'

q2q2
'
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Y

Figure 1. The boundary layer flow in the natural orthogonal curvilinear coordinate
system

This equation is considered as the momentum equation of turbulence describing the
fluctuation in the moving coordinate system. The sole dependence is obvious from
equation (2.4) relating the turbulent fluctuation v

′
to the vorticity of the turbulent

mean velocity v. Consequently the dependence between FR = −ρ
(
v′ ◦ v′

)
, the

apparent Reynolds’stress tensor and the vorticity of the mean velocity is obvious and
no relation exists between the stress and deformation velocity tensors 1 .

As the turbulent fluctuation velocity v
′
(r, t) is a rotational vector field there exists

a vector potential function Ψ (r, t) from which v′ can be obtained as v′ = ∇ × Ψ.
Supposing that the vector potential is sourceless, as is commonly supposed, we obtain
∇ × v′ = ∇ × (∇×Ψ) = −4Ψ and we arrive at the following differential equation
for the vector potential Ψ by substituting it into equation (2.4):

∂4Ψ

∂t
+ ((∇×Ψ) · ∇)4Ψ− (4Ψ · ∇) (∇×Ψ) = Ω

(
e
′

3 · ∇
)

(∇×Ψ) . (2.5)

The character of this equation is that of a momentum equation such as (2.4) so it
is suitable to investigate the similarity phenomena of turbulent motion. Two pat-
terns of motion are similar to each other if the momentum equations of each can be
transformed by geometrical and dynamic transformations. For the moving q

′

1, q
′

2,
q
′

3 orthogonal curvilinear coordinate system, we introduce the following geometrical
transformation

H
′

1dq
′

1 = ` dξ; H
′

2dq
′

2 = ` dη; H
′

3dq
′

3 = ` dζ ,

1The equation of continuity (1.6) and the Reynolds’ momentum equation (1.7) together with
Equ. (2.4) is a closed differential equation system of seven equations and there are seven unknown
functions, namely the three mean velocity components, the three velocity fluctuation components
and the pressure to be determined.
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which transforms the physical space of the velocity fluctuation v
′
(r, t) to the points

of an orthogonal coordinate system where the fixed point P corresponds to the origin
O(0,0,0) (Figure 1) in the coordinates ξ, η, ζ. Let us introduce the transformations

dt = Tdτ for the time and Ψ
(
q
′

1, q
′

2, q
′

3, t
)

= C· f (ξ, η, ζ, τ) for the vector potential.

Here ` is the length scale, T is the time scale and C is the scale of vector potential.
The last three scales are independent of the q

′

1, q
′

2, q
′

3 and ξ, η, ζ coordinates. These
transformations will be substituted to the (2.5) momentum equation. By this trans-
formation the turbulent motion is transformed into the ξ, η, ζ orthogonal coordinate
system, therefore it is called the map of turbulence.

The turbulent stream patterns in the points of the flow can be considered similar
if the differential equation for the dimensionless vector potential f transformed from
the differential equation (2.5) for Ψ does not depend on the specification of motion
in point P . It is easy to see that the similarity conditions are as follows:

C

`2T
=
C2

`4
=
C Ω

`2

If these conditions are fulfilled, then the transformed equation of motion (2.5) for the
vector potential f takes the form

∂∆f

∂τ
+ ((∇× f) ·∇) ∆f − (∆f ·∇) (∇× f) =

∂

∂ζ
(∇× f) (2.6)

The last equation does obviously not depend on the characteristics of flow in a point P .
Consequently, the turbulent velocity fluctuation v

′
(r, t) in the points of the bound-

ary layer flow mapped to the space of ξ, η, ζ will have the same f (ξ, η, ζ, τ) vector
potential, which is exactly the expression of the mechanical similarity for the three
dimensional turbulence phenomena. From these three conditions of similarity for `,
T and C, only one can be selected freely because of the relationship amongst them.
Selecting one of them, the two remaining are determined. Let us select the length
scale ` we get for the left two scale factors:

T =
1

Ω
; C = `2Ω .

As a consequence of the mechanical similarity hypothesis in the point ξ, η, ζ of the
mapped space of three dimensional turbulence, the vector potential f (ξ, η, ζ, τ) de-
termines the structure of turbulence up to a certain measure of dimensionless size,
and converting it by the length scale `, the result will be the true for the local tur-
bulent motion corresponding to the geometrical circumstances. The length scale `
characterizes the size of the local turbulence.

3. Three Dimensional Stochastic Model of Turbulence

It is clear from previous considerations that the partial differential equation (2.6) for
f (ξ, η, ζ, τ) is equivalent to the creation of the inner mechanism of turbulence models.
The particular solutions of equation (2.6) lead to different models for turbulence.
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Since direct physical tests theoretically cannot be carried out, only the numerical
results computed on the base of the models can justfy them. It is always advisable
to make simplifications when seeking particular solutions. Therefeore we shall make
the following restrictions when seeking the particular solutions of equation (2.6):

∇ · f = 0 and ∆ f = a f + b ∇× f .

Here a and b are scalars. Since the effect of molecular viscosity can be excluded
in the mapped space of turbulence, we suppose that the vector lines satisfying the
equation f×dr = 0 will remain in this space. By introducing the notation w′ = ∇× f
Friedman’s law of conservation of vector tubes becomes:

∂f

∂τ
+ (w′·∇) f − (f ·∇) w′ = 0 . (3.1)

The equation to be solved under these conditions is as follows:

∂

∂τ
(∇× f) = ω

∂

∂ζ
(∇× f) . (3.2)

Here ω = 1/b. One can see that only ∇× f is sought and not the vector potential f
itself and by this the inner mechanism of turbulence can be determined.

A possible particular solution, which characterizes the mechanism by a stochastic
process, for example may be following:

∇× f (ξ, η, ζ, τ) = ε

N∑
n=1

 C1ne
nξ cos [n (ζ + ωτ) + α1n]

C2n cos [n (ζ + ωτ) + α2n]
C3ne

−nη cos [n (ζ + ωτ) + α3n]

−
− ε

N∑
n=1

 C2n sin [n (ζ + ωτ) + α2n]
C3ne

−nη sin [n (ζ + ωτ) + α3n]
C1ne

nξ sin [n (ζ + ωτ) + α1n]

 . (3.3)

The parameters ε and ω are optional. The meaning of ω is the lowest angular fre-
quency of the turbulent fluctuation. The Cin (i = 1, 2, 3) are the random amplitudes
of the wave components, which are probability variables with uniform probability
distributions in the given [0, δi] intervals. The probability variables αin (i = 1, 2, 3)
are the random phase angles determining a certain direction in space therefore the
relation cos2α1n + cos2α2n + cos2α3n = 1 should be satisfied.

According to our conditions the origin of the ξ, η, ζ coordinate system in the
mapped space of turbulence corresponds to an arbitrary point P in the physical
space. Consequently, the fluctuation velocity v′ in the moving q

′

1, q
′

2, q
′

3 coordinate
system can be written as follows:

v′
(
q
′

1, q
′

2, q
′

3, t
)

= `
(
q
′

1, q
′

2, q
′

3

)
Ω
(
q
′

1, q
′

2, q
′

3, t
)
∇× f (0, 0, 0, τ) . (3.4)

Taking equation (3.3) into consideration for the fluctuation velocity we obtain:

v′
(
q
′

1, q
′

2, q
′

3, t
)

= lΩε

N∑
n=1

 C1n cos (nωτ + α1n)− C2n sin (nωτ + α2n)
C2n cos (nωτ + α2n)− C3n sin (nωτ + α3n)
C3n cos (nωτ + α3n)− C1n sin (nωτ + α1n)

.
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The turbulent stress tensor FR can be given in the q
′

1, q
′

2, q
′

3 coordinate system, con-
sidering equation (2.3):

FR = −ρ
(
v′ ◦ v′

)
= −ρ (` Ω)

2 (∇× f ◦ ∇ × f
)

=

= −ρl2
(
∇× f ◦ ∇ × f

)( 1

H ′1H
′
2

∂ (v1′H
′
1)

∂q
′
2

)2
.

Let us introduce the following notations:

α =
(∇× f)

2
ξ

(∇× f)ξ (∇× f)η
; β =

(∇× f)
2
η

(∇× f)ξ (∇× f)η
; γ =

(∇× f)
2
ζ

(∇× f)ξ (∇× f)η

µ =
(∇× f)ξ (∇× f)ζ

(∇× f)ξ (∇× f)η
; ϑ =

(∇× f)η (∇× f)ζ

(∇× f)ξ (∇× f)η
; κ2 = (∇× f)ξ (∇× f)η .

With these notations the so-called similarity tensor assumes the form

H =

 α 1 µ
1 β ϑ
µ ϑ γ

 . (3.5)

We accept the convention that the sign of the dominant shear stress on the surface
with a normal vector perpendicular to the direction of the flow, is the same as that
of the derivative of the velocity in the direction of the normal vector.

The turbulent stress tensor FR in the q
′

1, q
′

2, q
′

3 natural coordinate system is of the
form

FR

(
q
′

1, q
′

2, q
′

3, t
)

= ρ κ2 `2 H

∣∣∣∣ 1

H ′1H
′
2

∂ (v1′H
′
1)

∂q
′
2

∣∣∣∣ 1

H ′1H
′
2

∂ (v1′H
′
1)

∂q
′
2

. (3.6)

The parameter ε in equation (3.3) is to be chosen in such a way that the Kármán
constant has the value κ = 0, 40704. The components of the similarity tensor H in
the q

′

1, q
′

2, q
′

3 natural coordinate system are constants so they express a kind of pro-
portionality, which is the reason for the name of similarity. Furthermore introducing
the notation:

Θ
(
q
′

1, q
′

2, q
′

3, t
)

= ρ κ2 `2 |Ω | Ω = ρ κ2 `2
∣∣∣∣ 1

H ′1H
′
2

∂ (v1′H
′
1)

∂q
′
2

∣∣∣∣ 1

H ′1H
′
2

∂ (v1′H
′
1)

∂q
′
2

, (3.7)

the turbulent stress tensor FR can be written in the natural coordinate system in the
following form:

FR = Θ
(
q
′

1, q
′

2, q
′

3, t
)

H, (3.8)

where Θ is the element in the first row and second column of the stress tensor,
Θ ≡ τ ′12 = τ ′21 is the dominant turbulent stress in the flow.

The first step in determining the components of the similarity tensor H in our
example (3.3), the coeffi cients Cin (i = 1, 2, 3) and the phase angles αin (i = 1, 2, 3)
must be properly chosen. These quantities are probability variables with uniform
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distribution functions in the intervals fixed in advance. The next step is to obtain
the elements of the turbulent stress tensor FR , i.e., the time mean values of the
components (∇× f)j (j = ξ, η, ζ) must be determined. These will have the form:

(∇× f)k (∇× f)l = ε2 Uk,l ; (k, l = ξ, η, ζ) ,

in which Uk,l are the sums of the products as follows:

Uξ,η = Uη,ξ =
1

2

N∑
n=1

{C1nC2n cos (α1n − α2n)}+

+
1

2

N∑
n=1

{C1nC3n sin (α1n − α3n) + C2nC3n cos (α2n − α3n)} ,

Uη,ζ = Uζ,η =
1

2

N∑
n=1

{C2nC3n cos (α2n − α3n)}+

+
1

2

N∑
n=1

{C2nC1n sin (α2n − α1n) + C3nC1n cos (α3n − α1n)} ,

Uζ,ξ = Uξ,ζ =
1

2

N∑
n=1

{C3nC1n cos (α3n − α1n)}+

+
1

2

N∑
n=1

{C3nC2n sin (α3n − α2n) + C1nC2n cos (α1n − α2n)} ,

Uξ,ξ =
1

2

N∑
n=1

{
C21n + C22n + 2C1nC2n sin (α1n − α2n)

}
,

Uη,η =
1

2

N∑
n=1

{
C22n + C23n + 2C2nC3n sin (α2n − α3n)

}

Uζ,ζ =
1

2

N∑
n=1

{
C23n + C21n + 2C3nC3n sin (α3n − α1n)

}
.

The quantities Uk,l (k, l = ξ, η, ζ) strictly determine the components of the similarity
tensor H defined by equation (3.5). It is to be mentioned that numerous turbulence
models can be created by the selection of the coeffi cients Cin. One of them could be:

Cin = kin exp
[
− ((n− 1) /K)

2
]
.

The mean random numbers kin (i = 1, 2, 3) are probability variables having uniform
distribution functions in the intervals [0, δi], K is an integer fixed in advance.
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Figure 2. Components of the curl of the vector potential f within one period

The variation of the three components of the curl of the dimensionless vector po-
tential can be seen in Figure 2. In this example the data are: K = 100; δ1 = 1, 0;
δ2 = 0, 75; δ3 = −0, 093, and the components of tensor H are:

α = 3, 9714; β = 1, 5734; γ = 2, 8203; µ = 0, 9871; ϑ = 0, 0002.

The Kármán-constant κ = 0, 40704 can be obtained by the selection of ε = 0, 20844.
The α, β, γ values are based on the experimental results of Laufer [3] obtained
from tests of fully developed turbulent flow in circular pipes. Our aim was simply
to show that by the selection of a particular solution of the differential equation
(2.6) for the dimensionless vector potential an appropriate stochastic model could be
created. Since many particular solutions of the differential equation (2.6) exist, there
are various possibilities to create stochastic models fitting different tasks.
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The sum of the results is as follows. A natural coordinate system can be attached to
the velocity field of the turbulent fluctuation based on the similarity hypothesis. The
mean velocity v and the ∇× v vector determine the basic directions of this system.
Moreover, a dimensionless vector potential changing periodically can be associated
with this system. The components of the vector potential are composed by a series of
waves of random amplitudes and phase angles. The turbulent velocity fluctuation v′

can be derived from the vector potential. A 3-D turbulence model is obtained in the
way in which the inner mechanism of the turbulence is represented by a stochastic
process including 5 independent variables.

4. Turbulence Model in the 3-D Boundary Layer Flow

Along a solid wall in the boundary layer flow below a certain Reynolds’number the
flow is laminar and it is turbulent above it. The viscosity effect prevails throughout
the full layer in case of laminar flow but in the turbulent case only in a thin layer
called laminar sublayer. Beyond this sublayer, i.e., in the turbulent boundary layer,
the mean characteristic of flow is the turbulent fluctuation causing apparent stress
phenomena or in other words apparent friction. The frictionless potential flow is
outside of the turbulent layer.

The equations describing the potential flow of an incompressible fluid follow from
the equation of continuity and the irrotational velocity field

∇ · v = 0 ; ∇× v = 0.

The velocity field can be calculated as the gradient of a velocity potential Φ. Substi-
tuting it into the continuity equation, we obtain a differential equation for the velocity
potential:

∆Φ = 0. (4.1)

The boundary conditions for this Laplace equation on the solid walls and on the inflow
and outflow surfaces respectively of the domain are:

(n·∇)Φ = 0 and (n·∇)Φ = vB,K .

The unit vector n is directed outward and normal to the surfaces. The velocity vB is
the distribution normal to the inflow surfaces and vK is that to the outflow surfaces.
There are potential theoretical methods to solve equation (4.1).

The equation of continuity and the momentum equation are decisive in determining
the flow of a real fluid. The momentum equation can be replaced by the vortex
theorem obtained by taking the curl of the momentum equation. Doing so will increase
the order of equations, but the number of unknowns will be less by one. Therefore, it
will become easier to set up the closed system of equations for the numerical solution.

We are going to investigate the turbulent flow of incompressible fluid (ρ = const) in
a force field having potential function (g = −∇U). The mean velocity in the q1, q2, q3
orthogonal curvilinear coordinate system is v = v1e1 + v2e2 + v3e3 and the velocity
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fluctuation is v′ = v′1e1 + v′2e1 + v′3e3. The law of mass conservation is expressed by

∇ · v = 0. (4.2)

The Reynolds’momentum equation of the turbulent motion of a fluid described by
equation (1.7) will be reformulated. The gauge pressure pR caused by the turbulent
velocity fluctuation will be defined by the first scalar invariant of the turbulent stress
tensor FR:

pR = 1
3

(
v′1v
′
1 + v′2v

′
2 + v′3v

′
3

)
.

The deviator σR of turbulent stress tensor FR is created as usual:

σR = −ρ

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 ,

where

σ11 = 1
3

(
2v′1v

′
1 − v′2v′2 − v′3v′3

)
,

σ22 = 1
3

(
2v′2v

′
2 − v′3v′3 − v′1v′1

)
,

σ33 = 1
3

(
2v′3v

′
3 − v′1v′1 − v′2v′2

)
,

σ12 = σ21 = v′1v
′
2 = v′2v

′
1,

σ13 = σ31 = v′1v
′
3 = v′3v

′
1,

σ23 = σ32 = v′2v
′
3 = v′3v

′
2.

The Reynolds’momentum equation of the turbulent flow of viscid fluid in a con-
servative force field has the form:

ρ
∂v

∂t
+ ρ (v·∇) v =ρ ∇Π + η 4v+Div σR. (4.3)

Here Π = U + p/ρ+ pR/ρ, the total potential of the incompressible fluid is the sum
of the force field potential and the pressure potential. Let σR be the deviator of
the turbulent stress tensor FR. It follows from equation (3.8) that in the natural
coordinate system q

′

1, q
′

2, q
′

3

σR = Θ
(
q
′

1, q
′

2, q
′

3, t
)

H∗.

Here H∗ is the deviator of the similarity tensor H:

H∗ =

 α∗ 1 µ
1 β∗ ϑ
µ ϑ γ∗

 =

 1
3 (2α− β − γ) 1 µ

1 1
3 (2β − γ − α) ϑ

µ ϑ 1
3 (2γ − α− β)

 .

Working in an arbitrary q1, q2, q3 orthogonal curvilinear system the deviator tensor
σR should be written in its transformed form:

σR = Θ
(
q
′

1, q
′

2, q
′

3, t
)

G∗. (4.4)
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The tensor G∗ is the transformed form of the deviator H∗ in the q1, q2, q3 system:

G∗ = E ·H∗ ·ET .

The elements of the transformation tensor E (and its transposed ET ) are the scalar
products of the base vectors Eij = ei · e′j (i, j = 1, 2, 3). As the base vectors of the

system q
′

1, q
′

2, q
′

3 have previously been given, the elements of E are as follows:

E11 =
1√

1− λ2

(
v1
v
− λΩ1

Ω

)
; E12 =

1√
1− λ2

v2Ω3−v3Ω2
v Ω

; E13 = −Ω1
Ω

;

E21 =
1√

1− λ2

(
v2
v
− λΩ2

Ω

)
; E22 =

1√
1− λ2

v3Ω1−v1Ω3
v Ω

; E23 = −Ω2
Ω

;

E31 =
1√

1− λ2

(
v3
v
− λΩ3

Ω

)
; E32 =

1√
1− λ2

v1Ω2−v2Ω1
v Ω

; E33 = −Ω3
Ω
.

Here Ωi are the scalar components of Ω = ∇× v and λ is determined by the scalar
product of the unit vectors in the direction velocity and the vortex vector:

Ω1 =
1

H3H2

(
∂ (v3H3)

∂q2
− ∂ (v2H2)

∂q3

)
;

Ω2 =
1

H3H1

(
∂ (v1H1)

∂q3
− ∂ (v3H3)

∂q1

)
;

Ω3 =
1

H1H2

(
∂ (v2H2)

∂q1
− ∂ (v1H1)

∂q2

)
;

λ =
v1Ω1 + v2Ω2 + v3Ω3√

v21 + v22 + v23
√
Ω21 + Ω22 + Ω23

.

The elements of G∗ can be calculated easily utilizing the previous relationships, and
therefore they may be omitted here.

The Reynolds’momentum equation (4.3) with the expression (4.4) for the deviator
σR of the turbulent stress tensor takes the form:

ρ
∂v

∂t
+ ρ (v·∇) v =ρ ∇Π + η ∆v+Div (ΘG∗) . (4.5)

The motion of real fluid is described by two differential equations namely the Reynolds’
momentum equation (4.5) and the continuity equation (4.2). Five unknown func-
tions can be found in these four scalar equations [v1 (q1, q2, q3, t), v2 (q1, q2, q3, t),
v3 (q1, q2, q3, t), Π (q1, q2, q3, t) and Θ (q1, q2, q3, t)]. Since this system of equations
is not closed, one more equation is needed to accomplish numerical calculations. The
divergence of equation (4.5) is a possible scalar differential equation for the following
reasons. As the fluid is incompressible∇·v = 0, while the following vector relationship
is valid:

∇ · [(v ·∇) v] = ∇ · [(v ◦ v) ·∇] = (v◦ ∇) : (∇◦ v) .
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Applying these relationships to equation (4.5) for the total potential Π we obtain the
following scalar differential equation:

ρ ∆Π = −ρ (v◦ ∇) : (∇◦ v) +∇ ·Div (ΘG∗) . (4.6)

Here the colon means double scalar products of tensors or dyads. Since in the equation
(4.6) a further unknown function does not occur, it will make the differential equation
system (4.2) and (4.5) closed.

There is another way to determine the flow of a real fluid numerically apart from
the previously mentioned system composed of equations (4.2), (4.5) and (4.6). The
vortex theorem (1.9) can be reshaped utilizing the stochastic turbulence model. The
time mean value of v′×Ω′ can be determined taking into consideration the fact that
∇ · v′ = 0 and the following relationship:

v′ × (∇× v′) = 1
2∇ (v′ · v′)− (v′ · ∇) v′ = 1

2∇ (v′ · v′)−Div (v′ ◦ v′) .

Thus the time average will be:

v′ ×Ω′ = ∇v′2

2
−Div

(
v′ ◦ v′

)
= ∇v′2

2
+

1

ρ
Div FR.

Since Reynolds’stress tensor is FR = −pRI + ΘG∗ and ∇ ×
(
v′ ×Ω′

)
= ∇× Div

(ΘG∗), the vortex theorem (1.9) with the stochastic model of turbulence has the
form:

∂Ω

∂t
+ (v·∇) Ω− (Ω·∇) v = ν∆Ω +

1

ρ
∇×Div (ΘG∗) . (4.7)

This equation consists of three scalar equations, which together with the continuity
equation (4.2) compose a closed differential equation system. Namely, there are four
unknown functions [v1 (q1, q2, q3, t), v2 (q1, q2, q3, t), v3 (q1, q2, q3, t) andΘ (q1, q2, q3, t)]
and because the components of vortex vector Ω can be expressed by the velocity
components, the last quantity is not considered as an unknown function.

The sum of this study is as follows. On the basis of the stochastic model of
turbulence for the Reynolds’stress tensor (and its deviator) a tensor equation can be
established in which in addition to the three velocity components there is only one
unknown scalar function, namely, the dominant turbulent stress component. With
the help of this tensor equation a closed differential equation system can be set up
for numerical determination of the turbulent boundary flow of viscid fluid.
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Abstract. The objective of this study is to closely investigate the interaction between
turbulence and particles in a free jet. The round jet is loaded with heavy but small particles.
The continuous phase is simulated using LES while particles are tracked using a Lagrangian
(LPT) approach. The particle volume fraction is supposed to be small enough to exclude
direct particle-particle interactions. We have also considered the case of one-way interaction
in which the particles have no effect on the continuous phase turbulence. The effect of
the large vortex ring structures on particle dispersion has been studied. Particles with
Stokes numbers in the range 0.03 to 10 have been considered. The computed results have
been compared to our simultaneous double PIV measurements. The computed and the
experimental results show very good agreement for the spatially developing jet both in terms
of mean quantities as well as in terms of the correlation between the fluctuating velocities
of the two phases. For forced jets the phase averaged particle concentration field shows that
particles of different sizes tend to form particle-size dependent regions with high particle
concentrations.

Keywords : Multi-phase flows, turbulent dispersion, LES, jet flows

1. Introduction

Particle dispersion by turbulent shear flows is superficially a simple problem, yet it is
very common, and, therefore, an interesting test-bed for experimental and numerical
tools. In many industrial processes the instantaneous particle concentration contains
more important information than the mean concentration. One such example is the
mixing process of fuel particles/droplets injected into a combustion device. Due to
non-linear effects, the average of the interactions does not equal the averages of the in-
teractions. This difference has to be accounted for in the form of a model. Otherwise,
a more straightforward approach could be handling the non-linearities by computing
the time-dependent problem (using Large Eddy Simulations, LES) and from such
data compute the averaged values that are of interest.

The relative importance of the presence of the particles in the flow can be esti-
mated by considering the different time-scales of the problem. For small particles
one may assume that their shape is spherical and the “slip-velocity” is small. With
these assumptions the particle Reynolds number is so small that the flow is (almost)
Stoksian from the particle point of view. Under such assumptions, the aerodynamic
response time of a particle is given by τA = ρpd

2
p/18µ, where ρp is the particle den-

sity, dp is the particle diameter and µ is the fluid viscosity. This quantity represents
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the time-scale required for a particle to adjust its velocity to the (continuous phase)
flow velocity. The characteristic time-scale of a flow is given by τF = δ/U, where δ
is the characteristic length-scale and U is the characteristic velocity of the flow. For
jets the flow time-scale (of the large scales) can be estimated by τF = D/U0, with D
being the inlet diameter and U0 the inlet center-line velocity of the jet. The extent
of dispersion of particles in such a flow situation is then determined by the Stokes
number, which is defined as the ratio of the two time-scales: γτ = τA/τF . This
non-dimensional number characterizes the ability of the particle to follow the fluid
elements. For particles with Stokes numbers much greater than unity, i.e.. γτ >> 1,
the particles will not respond to the large scale structures of the flow while particles
with Stokes numbers much less than unity, i.e. γτ << 1, will adjust to flow field very
rapidly and will follow the flow field. Particles with Stokes numbers around unity will
only partially respond to the local flow conditions. Such particles also affect largely
the flow itself.

Particle dispersion in turbulent flows has been studied experimentally by several
researchers. Longmire and Eaton [1] studied the interaction of solid particles with a
turbulent flow by examining particle dispersion in jets. In their work, the jet was
forced acoustically to form large vortex-ring structures. They confirmed that local
particle dispersion and concentration are governed by convection due to large-scale
structures. Some particles become clustered in the saddle regions downstream of the
vortex-rings while others are ejected away from the main stream of the flow. The
phase-averaged (during the forcing cycles) results revealed the mechanisms for the
formation of particle clusters and the dispersion of particles. The large-scale structures
and convection mechanisms have been shown to persist for particle-to-air mass loading
ratios up to 0.65. Longmire and Eaton [1] did not examine the effect of different
Stokes numbers on the results. Kiger and Lasheras [2] have also done experiments
to investigate particles dispersion by vortex parings. In their experiment, the shear
layer was forced with a fundamental frequency and sub-harmonic perturbations. Their
results show that the vortex-ring structures play a role in homogenizing the particle
concentration field. However, the amount of homogenization is strongly dependent
on the particle relaxation time, the eddy turn over time as well as the time that
the particles interact with each scale prior to a paring event (i.e. “residence time”).
Small particles will be dispersed homogeneously, but larger ones are dispersed in an
inhomogeneous fashion. The above mentioned papers give a global understanding
of how the particles interact with large vortex-ring structures. These papers lack,
however, information about the effects of the initial conditions on the particles and
on their dispersion. This aspect is addressed here.

Several numerical simulations have been done to investigate particle behavior in
turbulent flow fields. Squires and Eaton [3] have investigated the preferential con-
centration of particles by turbulence. They use Direct Numerical Simulation (DNS)
to simulate an isotropic turbulence and investigated the effect of turbulence on the
concentration field of heavy particles. Their results show that heavy particles gather
in low vorticity and high strain rate regions. This accumulation effect is most pro-
nounced for particles with a Stokes number of around 0.15. Recent development
has shown that particles are greatly dispersed by large-scale structures rather than
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three-dimensional turbulence. Chung and Troutt [4] have simulated particle disper-
sion in an axi-symmetric air jet. They use the discrete vortex method to simulate the
vortex-rings of the jet. In their simulations, particles with different particle Stokes
numbers are released at the jet inlet with the speed of the fluid. The results show
that particles with Stokes numbers around unity might be dispersed beyond the corre-
sponding dispersion of a passive scalar. Numerical simulations have been carried out
by different researchers using both DNS and LES applied to the continuous phase in
different geometries. Uijttewaal and Oliemans [5] have simulated particle dispersion
in a vertical pipe flow based on DNS solver for the continuous phase. They point
out that the interaction between particles and turbulence, neglecting wall effects, can
result in particle segregation. Marcu and Meiburg [6] simulated particle dispersion
by the braid vortices in a plane mixing-layer. An analytical expression for the critical
particle diameter below which accumulation is possible has been derived. Tang et al.
[7] have investigated particle dispersion in a plane wake as well as the effect of parti-
cle dispersion patterns at different particle Stokes numbers. Tang et al. [7] have also
pointed out that particles at Stokes numbers around unity will be mostly dispersed.

This paper is aimed at studying effects of particle initial conditions for the disper-
sion in unforced and forced jets. Further, we consider the effect of Stokes number on
the dispersion. By using LES also the non-linear drag effects can be assessed.

2. Mathematical models

2.1. The flow field of the continuous phase. In our simulations, the turbulence
of the continuous phase is modeled by Large Eddy Simulation (LES). In LES, the
large turbulence scales are resolved directly, while the effect of scales smaller than the
finest grid size are modeled. The dominant force acting on heavy particles is primarily
the drag. Since the drag varies non-linearly with the “slip-velocity”, it is reasonable
to assume that these non-linear effects are neglected if the flow field is computed in
the framework of the Reynolds Averaged Navier Stokes (RANS) equations. One may
compensate for the non-linear drag effects by adding an additional model term to the
mean equations. Currently, there exist no such models in the literature. Therefore,
it is natural to work within the LES framework. By this approach one avoids the
need for temporal averaging. On the other hand, one has to make a series of assump-
tions. First, we assume that the particles are spherical and that the mean distance
between the particles is much larger than the particle diameters. We also assume that
the mean distance among particles is larger than the small resolved scales and hence
the dispersed phase cannot be considered as a continuum. The relatively large dis-
tance among the particles implies that one may neglect interaction among particles.
Thus, with the assumptions made here we take into account only one- and two-way
interactions. Thus, the individual particles are tracked independently of each other,
assuming that the particles displace a negligible amount of fluid. As stated above,
the main force that acts on the heavy spherical particles is the aerodynamic drag. A
disturbing effect arises with the combination of LES with the Lagrangian approach
for Stokes numbers of O(1) (or larger). This is so since LES requires adequate spa-
tial resolution. That resolution should be such that eddies of the size of the Taylor
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micro-scale are resolved, i.e., the spatial resolution if then of O(Re
−1/2
T ). For heavy

particles (ρp/ρf = O(103)) and if the Stokes number is O(1) or larger, then the par-
ticle diameter is not much smaller than the grid size in our calculations. In spite of
this potential inconsistency we do assume in the following that the spherical particles
do not displace fluid.

In LES, the space filtering of a function f(xi, t) is defined as:

f(xi, t) =

∫ ∞
−∞

G(xi − x
′

i)f(x
′

i, t)dx
′

i (2.1)

where G is a filter function.

Filtering the Navier-Stokes equations leads to the equations for the resolved vari-
ables ūi and p. The filtered incompressible equations are as follows:

∂ūi
∂xi

= 0 (2.2)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

∂ūi
∂xj
− ∂τ ij
∂xj

+ F̄i (2.3)

τ ij = uiuj − ūiūj (2.4)

where F̄i is a source term and τ ij is the Sub-Grid-Scale (SGS) stress tensor which
reflects the effect of unresolved scales on the resolved ones. The role of the SGS term
includes dissipation of turbulent kinetic energy. Such dissipation is needed to prevent
a build-up of turbulent kinetic energy on the small scales. Since the (mean) rate of
transfer of energy from the large to the small scales is independent of viscosity in the
inertial sub-range (Kolmogorovs theory), any form of viscosity will be adequate. The
dissipative effects should, however, maintain the inertial sub-range intact (i.e. not too
much dissipation). Hence, any dissipative numerical scheme which provides adequate
amount of dissipation can play the role of the SGS, independent of its functional
form. Of course, explicit SGS models can account for another role of the SGS term,
namely backscatter. The energy cascade is uni-directional only in the average sense.
Instantaneously, there may be localized energy transfer from the smaller eddies to the
larger (resolved) one. Different SGS models can give rise to backscatter. Gullbrand
and Fuchs [8] have studied the effects of several SGS models, including the ”Divergence
Dynamic Model”, the ”Scale Similarity Model”and the ”Exact Differential Model”.
The effect of different SGS on mean quantities is important only for low resolution
situations. The gain by a SGS model is equivalent to a computation on a refined grid
(by a factor two in each direction) without any explicit SGS term. Therefore, in this
paper, no explicit SGS model is applied.

2.2. Particle motion equation. Particles are tracked by a Lagrangian method
assuming that the particles have the properties as stated above. The momentum
equation for the particles satisfies:

m
du

dt
= F (2.5)

Where F is the force on the particle and m is its mass. The forces acting on a
single particle are detailed in the expression by Maxey and Riley [9]. They identified
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different components of the force: drag, added-mass, buoyancy and history term. For
heavy particles in gas the primary component of this force is the drag. This has the
form:

F =
1

8
πd2ρCD |VR|VR (2.6)

where the drag coeffi cient is given by:

CD = 24(1 + 0.15Re0.687)/Re (2.7)

The particle Reynolds number is defined:

Re = ρVRd/µ (2.8)

where, d is the particle diameter, ρ and µ are the density and viscosity of the con-
tinuous phase, VR is the relative velocity of the particle relative to the surrounding
fluid.

3. Numerical methods

The spatial discretization of the governing equations for the continuous flow field is
performed on a uniform Cartesian staggered grid. Locally refined grids can be intro-
duced where required for adequate resolution. The convective terms are discretized
using hybrid scheme and higher (third- and fifth-) order can be achieved by deferred
correction. A proof of this process is given in Gullbrand et al. [10]. The lower or-
der scheme is used only during the relaxation procedure which maintains the global
high order. The time derivatives are discretized using a three level second order im-
plicit scheme. The discretized conservation equations are solved iteratively using a
multi-grid method. The particles are tracked by integrating the equation of motion
for the particles, based upon the instantaneous velocity field, using a second order
Runge-Kutta scheme.

4. Problem description

We simulate a particle-laden turbulent jet. Large Eddy Simulation is used to simulate
the continuous phase, while the individual particles are tracked. In the case of the
forced jet it is excited with a frequency of 364 Hz. The round jet has an inlet diameter
of 2 cm. The fluid (air) has a mean inlet velocity of 14.4 m/s, corresponding to a
Reynolds number of 19000. The particles are released at inlet at each time step
during the simulations. The rigid spherical particles have a density of 2400 kg/m

3.
To assess the effects of different particle sizes we consider three classes of particle-
Stokes numbers (γτ ): 0.03, 1 and 10, respectively. We also want to study the effects
of particle velocity on the particle dispersion. Therefore, we consider three different
inlet particle velocities (relative to the fluid). For each of these particle velocities,
we consider the three particle groups. The computed cases are summarized in the
following table:



26 Z. Wu and L. Fuchs

Case 1 Case 2 Case 3
forced jet forced jet forced jet
Up = Uf Up = 0.75Uf p = 0.5Uf

γτ = 0.03,1,10 γτ = 0.03,1,10 γτ = 0.03,1,10

Here, Up, Uf and γτ are the averaged particle inlet centerline velocity, averaged
fluid inlet centerline velocity and particle Stokes number, respectively. The forced jet
inlet velocity profile (of the fluid phase) as a function of time is as follows:

uf (t) = 14.4 ∗ (1 + 0.15 ∗ sin(2π 364 t)) (4.1)

At each time step, a group of particles is released at the jet inlet. The particles are
randomly distributed at the inlet, which results in a statistically uniform distribution.
Particles are specified with different inlet velocities to examine the influence of initial
slip velocity on particle dispersion. No radial velocity is imposed on the particles,
which may be quite different from the real experimental set-up. This ideal situation
may be advantageous in understanding the interaction between the particles and the
flow structures. Since we are interested in the particle dispersion by the continuous
phase, we use a dilute system, which means that no particle-particle interaction will
be taken into account. Due the low volume fraction, the particles are supposed to
have no effect on the continuous phase. Thus, the results for the forced jet have been
computed using mostly a one-way coupling. Two-way coupling has been used in some
of the cases, such as those displayed in Figures 1-3.

5. Results and discussion

5.1. Model validation. First, we consider the flow of a turbulent jet at a Reynolds
number of 5100. For this low Re we do not use any Sub-Grid-Scale term, since the
fine grid computations are close to DNS. This case has also been studied by us

Figure 1. Fluid mean axial velocity at x/D = 3
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experimentally by using an enhanced PIV system. The system allows one to measure
simultaneously the velocity fields of both phases. This is done by using fluorescing
tracer particles, while the Ni particles (sized around 165 µm) are measured directly.
Figures 1 and 2 depict the mean velocity profiles of the two phases, respectively, at
a distance of three jet diameters downstream of the nozzle. The figures compare the
experimental results with those obtained by LES/LPT on two different grids (about
0.5 and 1.5 Million grid points, respectively). As seen, these quantities are captured
quite well even on the coarser grid.

Figure 2. Mean axial velocity at x/D = 3 —particle phase

Figure 3. Mean axial velocity fluctuations, x/D = 3 —particle phase

The quality of the numerical results can be assessed better if one considers the
fluctuating components. Figure 3. depicts the radial distribution of the axial velocity
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fluctuations of the dispersed phase at a distance of three diameters form the nozzle
exit. The non-smoothness of the results depends on the too low number of samples
in the numerical and in particular in the experimental results.

For further validation, a case with the similar situation to that in [1] has been
chosen. Simulation results are compared with those experiments.

0 1 2 3 4
x/D

St.=0.03

St.=1

St=10

0 1 2 3 4
x/D

St.=0.03

St.=1

St=10

Figure 4. Phase average particle den-
sity map (Case 1)

Figure 5. Phase averaged particle ve-
locity field (Case 1)

First, we examine phase averaged particle and fluid properties qualitatively in the
forced cases. The averages are obtained from a bin of phase angles of 1◦ centered
at phase angle Φ = 0◦. For other phase angles, the pictures may be quite different,
but to understand particle vortex-ring interaction, the results from any phase angle
may be helpful and quite representative. Since large vortex-ring structures are only
dominant in the proximal region of the jet, we present the result from jet inlet up to
around 5 inlet diameters distance downstream.

Figures 4 and 5 correspond to Case 1. The figures show only a half plane due
to the axi-symmetry of the phase averaged data. In this case, particles are released
at each time step with the same velocity as that of the local fluid. Figure 4 is the
phase averaged particle concentration field and Figure 5 is the corresponding phase
averaged particle velocity vector field. Particles with Stokes number of 0.03 adjust
to the fluid very quickly and follow the fluid motion quite well. Thus, the phase
averaged concentration field clearly outlines the large vortex-ring structures. But even
particles with such small Stokes numbers can not follow the fluid motion exactly. As
these particles move downstream, they are thrown outwards slightly by the vortex-
ring structures, which results in a ”source” region in the vector field at about 3.6
inlet diameters downstream (Figure 5). When particle Stokes number is about unity,
the particle responds to the fluid flow so that at the vortex-rings the particles follow
a curved path. However, due to the particles’ own inertia, they cannot follow the
vortex-ring exactly and are thrown away from the center region of the vortex by the
centrifugal force. Particles which are originally located at the outer region of the
large vortex-ring structures may be just ejected away form the main stream, while



Large eddy simulation of dispersion of particles in turbulent jets 29

other particles may be dragged back to the main stream again. In the vortex core
region, there are no particles left. Since some particles are ejected away from the
main stream, they will show up in a region outside of the jet resulting in a wider
particle dispersion than the corresponding single phase jet. This can be seen both
from the concentration field and from the velocity vector field. Particles with a Stokes
number of 10 are only displaced slightly compared to those with Stokes numbers of
0.03 and 1. The phase averaged concentration map of these particles is distorted a
little and the distortion of the particle concentration field does not follow the fluid
vortex paring events. From the above we note that when the particles at the inlet
have the same velocity as the fluid, the particles with Stokes number of 1 exhibit the
strongest dispersion pattern. Particles with

0 1 2 3 4
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Up=Uf

Up=0.75Uf

Up=0.5Uf

0 1 2 3 4
x/D

Up=Uf

Up=0.75Uf

Up=0.5Uf

Figure 6. Phase averaged particle den-
sity map for different particle inlet ve-
locities (γτ = 10)

Figure 7. Phase averaged particle ve-
locity field (γτ = 10)
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Up=0.75Uf

Up=0.5Uf

Figure 8. Phase averaged particle den-
sity map (γτ = 1)

Figure 9. Phase averaged particle ve-
locity field (γτ = 1)

Stokes number of 10 will respond only slightly to the fluid and be hardly dispersed.
Particles with Stokes number of 0.03 will follow the fluid motion quite well and will
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not be dispersed much beyond that of the single phase turbulent jet.

Next, we consider the effects of particle slip velocity at the inlet. Particles of the
same size are released at the inlet with different inlet velocity i.e., particles take 100%,
75%, and 50% of the local fluid velocity. Figures 6, 7 and 8, 9 correspond to particles
of Stokes numbers of 10 and 1, respectively. For particles with Stokes number of 10, it
is quite clear that different initial velocity changes the particle dispersion pattern and
the particle velocity field dramatically. When particles initially take the same velocity
as the fluid, they are only slightly dispersed by the vortex-ring structures. In this case
the particles are clustered in ”pockets” traveling downstream. The interval among
the clusters is quite large compared to that of the vortex-rings. As the particle initial
velocities are reduced, particles are dispersed further and further and the interval
between particle clusters becomes smaller and smaller. As the particles initial velocity
is decreased, the ”tail” of the particle clusters become more and more clear. This
behavior can be explained rather easily. When the particles have small velocities they
have longer time to interact with the vortex-ring structures, leading to a stronger
dispersion than those particles which have a smaller slip velocity. For particles with
Stokes number of 1, different initial velocities do not have that much effect on the
particle dispersion pattern and hence the extent of particle dispersion. Even though
particles are released at the inlet with different velocities, they exhibit clusters at
the same axial positions, with the same spacing (around 1 D) among the clusters.
This is clearly seen in Figures 8 and 9. For particles with Stokes number of 0.03,
different initial velocities have even smaller effect on the particle dispersion pattern.
This behavior is rather obvious since the smaller the Stokes number is, the quicker
the particle will adjust to the surrounding flow conditions. From these results we can
draw the conclusion that as far as these jet cases are concerned, when the particle
Stokes number is larger than unity, the particle nozzle slip-velocity, (Uf − Up), plays
an important role in the particle dispersion. In this case, the larger the nozzle slip-
velocity is, the greater the particle dispersion is.

In order to determine how fast particles are moving in the flow field and also to
determine how the mean of particle concentrations differs under different situations,
time averaged particle velocity and particle concentration fields are presented in quan-
titative terms.

5.2. Statistical results. Mean properties. Consider Cases 1 and 3 where the
forced jet is loaded with particles of different Stokes numbers. Figures 10 to 13 depict
the particle axial velocity and the particle radial velocity at different axial positions.
For particles with Stokes numbers of 0.03 and 1, the particle axial velocity decreases
rather quickly at r = 0.25D, while for particles with Stokes number of 10, particle
axial velocity begins to decrease only after r = 0.5D. The higher momentum of the
larger particles is maintained until r = 0.65D. This is due to the larger inertia of
those particles. It is interesting to note that the radial velocity at this axial station
(Figure 11) is pointing towards the center for r = 0.5D. This is so in particular
for γτ = 1. However, as these particles get closer to the jet axis they gain axial
velocity (from the fluid) and therefore tend to disperse with it. Altogether, these
two counteracting mechanisms lead to an off-axial peak of particle number density
(c.f. Figure 15) for the larger particles. The largest effect is noted for particles with
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γτ = 1. The smallest particles follow the fluid and disperse with it and therefore no
such effects are observed. These effects have also been observed by Longmire and
Eaton [1] experimentally. Their explanation was, however, that the particles gained
negative radial velocity as they passed through the jet nozzle. However, in our current
simulation, no radial velocities are specified for the particles at jet inlet. Combined
with the phase averaged results shown in Figures 4 to 9, we may attribute this negative
velocity to the particle-vortex interaction. When the vortex-rings developed and move
downstream, they drag the particles with themselves. The motion of the individual
particles depends upon the position of the particle relative to the core of the vortex.
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Figure 10. Averaged particle axial ve-
locity at x/D = 2

Figure 11. Averaged particle axial ve-
locity at x/D = 4
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Figure 12. Averaged particle radial ve-
locity at x/D = 2

Figure 13. Averaged particle radial ve-
locity at x/D = 4

Particles with Stokes number 1 gain the largest negative radial velocity in the main
stream region and the largest positive velocity outside the main stream, this is most
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clearly seen at x = 2D (Figure 11). This is reasonable since particles with the medium
Stokes number have moderate inertia to maintain their speed, while they are also light
enough to be responsive to the local flow structure. It is interesting to note that the
mean particle radial-velocity highly depends on the Stokes number. In Figures 11
and 13 we note that the radial velocity component changes sign. This implies that
on average an even particle distribution at the inlet will lead to non-homogenous
distribution later downstream. This is reflected also in the particle number densities.
The fact that particles with Stokes number around unity disperse mostly is seen also in
the radial velocity component. These particles may have positive and negative radial
velocity directions. The smaller particles follow the fluid better and therefore have
also a more monotonous particle number density distribution. The larger particles
(γτ = 10) are heavier and hence inertia dominates. Due to inertia, the particle motion
of the individual particles will be rather complex. This observation supports the idea
that non-linear effects (also in terms of the drag force) make simpler, linear type
models for describing the interaction between the phases highly non-general.
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Figure 14. Averaged particle number
density at x/D = 2

Figure 15. Averaged particle number
density at x/D = 2

To further understand the dispersion process, time averaged particle number den-
sity profiles are presented in Figures 14 and 15. The averaged particle number density
is normalized by the particle number density at the centerline, for the given axial lo-
cation. At both x = 2D and x = 4D, a peak value which is greater than 1 is observed
between centerline and jet edge (r = 0.5D) for particles with Stokes numbers greater
than 1.

5.3. Statistical results. Second moments. The turbulent stresses of the fluid
and particle phases together with fluid-particle correlations play an important role in
understanding the interaction between the phases. We denote by <> the (ensemble)
averaging operator that is related to the particle phase.

Figures 16 and 17 depict the correlation between the fluid- and particle-fluctuations
as well as the corresponding fluid Reynolds stresses at two different axial positions.
For particles with Stokes number of 10 the absolute values of the fluid-particle cor-
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relations are almost always smaller than the corresponding fluid turbulent Reynolds
stresses, while for particles with Stokes number of 1, the absolute value of fluid-particle
correlations may be higher than the corresponding fluid Reynolds stresses (Figure 17).
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Figure 16. Fluid-particle, axial-axial (left) and axial-radial (right), correlations

0 0.2 0.4 0.6 0.8 1
r/D (at x/D=4)

0

2

4

6

8

10

12

14

16

<u
'u

'>

fluidfluid
particleparticle (St.=1)
particleparticle (St.=10)

0 0.2 0.4 0.6 0.8 1
r/D (at x/D=4)

0

1

2

3

4

5

6

7

8

<u
'v

'>

fluidfluid
particleparticle (St.=1)
particleparticle (St.=10)

Figure 17. Particle phase Reynolds-stresses at x/D = 4

Figure 17 depicts the particle phase Reynolds-stresses at axial position of x/D=4.
For both particles with Stokes numbers of 1 and 10, particle Reynolds-stresses may
exceed the corresponding fluid turbulent Reynolds stress at certain radial positions.
This means that particle turbulent properties are not only determined by their re-
sponse to the fluid turbulent properties. We note that in this case the particles are not
released at the fluid velocity at the jet nozzle. The inertia effect of the particles and
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the particle initial conditions also play an important role in the turbulence properties
of the particles. It is worth mentioning that Simonin [11] also found that the absolute
value of particle Reynolds-stresses may be higher than the corresponding fluid turbu-
lent Reynolds-stresses. Simonin [11] considered particle dispersion in turbulent shear
flows. He attributed this to the existence of mean velocity gradients.

6. Concluding remarks

Unforced and forced jets loaded with heavy particles have been studied by Large
Eddy Simulations. The combination with a Lagrangian Particle Tracking approach
allows one to take into account the non-linear interactions between the phases. The
numerical calculations have been compared with experimental data. Thus, the accu-
racy of the simulations in terms of mean and second moments has been established.
The role of particle initial velocity for the dispersion process has been considered.
For particles with Stokes numbers less than one, the initial velocity does not have
much effect on the particle dispersion process. For particles with Stokes number of
10, different initial velocities may have a great effect on the dispersion process. We
note that the larger the lag between the fluid velocity and particle velocity, the fur-
ther downstream the dispersion may be observed. Quantitative analysis shows that
particles are not only ejected away from the centerline of the jet, but also convected
toward the jet axis. Due to this effect the particle number density distribution in the
jet varies non-monotonously especially for particles with Stokes number around unity.
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Abstract. In many cases when the turbine load diverges from the nominal value, the
benefit which should result from nozzle governing may be all lost due to a sharp decrease
in control stage effi ciency. The magnitude of this decrease depends on the aerodynamic
characteristics of the cascade profiles, on the conditions of inlet velocity fields forming in
the nozzle chests and on the effi ciency of the means which cause a decrease in the negative
influence of partiality. Different blade profiles and their loss coeffi cients are presented.

Keywords : Aeroderivative turboengine, coal boiler, combined cycle, cogeneration.

1. Introduction

When analysing the development of large steam turbines we can notice that a long
time passes before proposals of new solutions are applied in the industry. For example,
methods of raising effi ciency proposed 20−30 years ago are only now being applied.
This paper discusses the potential of a design which if adopted would bring about a
considerable increase in the relative internal effi ciency of steam turbines. According
to our experience in the modernisation of steam turbines, it is possible to raise tur-
bine effectiveness to theoretical limits under real conditions and at a relatively low
investment input.

In recent years, practically all large factories producing steam turbines have been
searching intensively for ways of increasing the effi ciency of large steam turbines. It is
worth looking not only at new solutions but also at the so far unrealised methods of
reducing energy losses in blade systems. An overview of known solutions, for example,
for blade cascades of a small relative height can be found in [2], [10] and [11].

Many authors, e.g. [4] and [9], give an assessment of effi ciency increase possibilities
for steam turbines, covering all elements along the entire steam flow path. The
asymptotic character of the energy loss reduction process should be taken into account:
it is impossible to reduce the losses in cases when they are very low. In other words,
attempts at improving effi ciency should be made in cases of turbine elements in which
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energy losses are relatively high.

2. Nozzle governing

Partial steam admission is used in the first stage of turbines with nozzle-group steam
flow control, where steam enters the turbine through one or several nozzle groups,
Figure 1, depending on the turbine load. Such a stage is termed a control stage. In
order to increase the available energy and obtain the proper steam conditions in the

Pk
Pr

Po I II III IV

Figure 1. Scheme of nozzle governing

space after the control stage, the latter is usually of the impulse type, even when
the other stages are of the reaction type. The control stage usually has an increased
diameter and it is sometimes made (for older turbines of relatively moderate output)
as velocity stages.

3. Control stage

The control stage is a necessary part of a steam turbine with nozzle governing. The
operating conditions of this stage differ significantly from those of the other stages:
when the turbine load diverges from the nominal value, two steam jets with different
initial pressures appear in the control stage, [7] and [8].

The process for the control stage and its control valves is shown in Figure 2. Two
steam flows can be seen there. The first steam flow through the fully open valves
enters the segments of the control-stage nozzle row without additional losses. In the
second flow, steam is throttled in the partially open valve to a certain intermediate
pressure. Both steam flows expand in the control stage to steam pressure pr.

This means that one part of the stage, where the non-throttled steam jet flows,
works at an increased drop of enthalpy while the other part operates at a decreased
drop of enthalpy (in comparison with the computational enthalpy drop). Thus in one
stage two different operating regimes are realized - with a decreased value and an
increased value of basic stage parameter

u/c0 ,
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where u is the blade (circumferential) velocity on the pitch diameter of the bucket
wheel and c0 is the velocity that corresponds to the disposable drop of enthalpy:

c0 = (2H01)
0.5

The total blade effi ciency η0B drops significantly when the turbine load decreases.

Internal effi ciency η0i drops even more because when the consecutive control valves
are being closed, the partiality of the stage decreases very sharply. Our experiments
showed that when the partiality of the stage decreases from ε = 0.82 to ε = 0.2
(one control valve open), the relative stage effi ciency η0i decreases by 60%. Since the
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Figure 2. Steam expansion process on h-s axes for steam admission part of turbine
with nozzle-group governing

effi ciency decreases as a result of a change in the value of u/c0 during the closing
of the consecutive control valves, the stage begins operating in the regime of steam
throttling. In other words, the benefit which should stem from nozzle governing may
be all lost due to the sharp decrease in the control stage effi ciency. The magnitude of
this decrease depends on the aerodynamic characteristics of the cascade profiles, on
the conditions of inlet velocity fields forming in the nozzle chests and on the effi ciency
of the means which contribute to a decrease in the negative influence of partiality.

4. Control stage under variable steam flow

A basic operating characteristic of the control stage blade apparatus is a wide
range of velocities: from low subsonic velocities up to high supersonic ones, Figure
3. Therefore profiles cascades of the control stage should be multiregime and they
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should ensure high reliability as regards sharp changes in static and dynamic loads.
The first requirement connected with the low reaction of the control stage applies
to the turbine nozzle cascade, the second one applies to the bucket cascade where a
complex of forces occurs.
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Figure 3. Velocity diagrams for control turbine stage: dashed lines - throttled steam
stream, solid lines - non-throttled steam stream

The aerodynamic problems which arise in the cascades are illustrated by a rela-
tionship between profile loss coeffi cient ζpr and nondimensional velocity at outletM1t

for a converging (line 1 in Figure 4) and diverging (line 2) turbine nozzle cascade.
Accelerating cascades ensure a low level of lossesM1t < 0.8−0.9. The use of divergent
cascades is justifiable for M1t > 1.3− 1.4.
When the turbine load decreases, the most characteristic velocity range for non-

throttling stream seems to be in a range of 0.8 < M1t < 1.4 (then a massive increase
in energy loss occurs in cascades of both types). That is why new profile cascade
designs are needed for the control stage to ensure low losses for both subsonic and
supersonic flows and a smooth transition from the former to the latter.

5. Multiregime blade profile

The above condition is fulfilled by profiles with inverse surface curvature of the noz-
zle blade-suction side at the nozzle exit zone (designed in the 1960s). One of such pro-
files is shown in Figure 5 and its characteristic is shown in Figure 4 (line 3). It is easy
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Figure 4. Dependence of profile loss coeffi cient ζ on Mach number M1t in different
airfoil nozzle cascades: 1 - converging blade cascade, 2 - diverging cascade, 3 - cascade
with inverse surface curvature of nozzle blade suction-side at nozzle exit zone, 4 -
nozzle cascade with longitudinal grooves on convex blade surface

Figure 5. Multiregime blade profile

to see that a nozzle cascade made from such profiles has suffi ciently low profile losses in
the subsonic, transonic and supersonic ranges. The transition through the nozzle exit
zone from the convex to concave surface allows us to avoid stream re-divergence in this
section and at the same time to decrease the longitudinal positive pressure gradient
in the range of subsonic velocities and to suppress the shock waves in the supersonic
range.

6. Multiregime Cascades with Longitudinal Grooves

Cascades built from profiles with longitudinal grooves (rectangular in cross-section)
in the nozzle exit zones are even more effective, [3], [5], [6], [12], [14] and [15]. In this
design an increase in losses in the transonic area is avoided and suffi ciently low level
of profile losses can be maintained for the whole tested range of velocities (line 4 in
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Figure 6. Turbine cascade
with longitudinal grooves

Figure 4). Similar changes can be made in the
shape of bucket cascades designed for the control
stage.

Taking into account the above characteristics of
the new cascade designs, it would be advantageous to
use moving blade profiles with thin leading edges and
decreased surface curvature in the nozzle exit zone.
Such cascades were designed in the 60s (type R −
β1β2B [1]) and their characteristics are compatible
with modern requirements.

The presented relationships ζpr = f(M1t) for the
control-stage blade system should be substantially
corrected because the control stage receives the jet
from the control valves after which the velocity field
is characterised by high non-uniformity and a vortex
flow occurs for several turbine loads.

The control stage always operates in conditions
of a complex inlet velocity field, [16]. As our ex-
periments showed, the losses in the nozzle cascade
installed after the standard control valve when the
latter is fully open increase by 1.5−2.0% (in compar-
ison with a uniform velocity field) and by 3.0− 3.5%
when the valve is half open. If new valve designs
are used, the nozzle cascade losses caused by inlet
non-uniformity will not exceed 0.8− 1.2%, [13].

7. Summary

This analysis of the operation of control stages shows that because of several neg-
ative factors, they operate with relatively low effi ciency and may (when the turbine
load decreases considerably) operate in the steam throttling regime.

If multiregime profiles are used for control-stage cascades, it is possible to increase
the effi ciency of the control stage.
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Abstract. Impeller blade and side wall pressure measurements deliver additional informa-
tion of the energy transfer in a centrifugal pump under two phase flow conditions. This
information is used to improve the phenomenological understanding as well as to calibrate
numerical two phase flow CFD codes. This paper gives an introduction into the measuring
technique based on subminiature pressure transmitters with telemetric data transmission
and gives a choice of results, obtained by using this method.

Keywords : Two phase flow, unsteady pressure measurement, cavitation, blade pressure dis-
tribution.

1. Introduction

Two phase flow phenomena in centrifugal pumps are an important research subject
even today. The present paper is concerned with two phase flows of two different
types:
— with phase transition: cavitation,
— without phase transition, i.e. water plus undissolved air.
The reason to combine both fairly different types in one paper is the fact that

basically the same test technique and the same test pump has been used for the
investigation of two phase flow with and without condensation.

Throughout this paper the following notations and notational conventions are ap-
plied:

Nomenclature Subscripts
d diameter bld blade
f frequency d pressure side
H pump head opt best effi ciency point
M∗
bld local blade pressure mo-

mentum (pbld−ps) ·∆A · r
s suction side

n rotational speed v vapor
ns specific speed 0 in front of inlet
NPSH net positive suction head 1 impeller inlet
p pressure 2 impeller outlet
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Nomenclature
Q flow rate
r radius
t time
z number of blades
β blade angle
η effi ciency
Cavitation causes noise, deterioration of effi ciency and what is most important,

damage by erosion to the impeller and other components of the pump. CFD codes
normally do not have problems to predict the inception of cavitation, but it is much
more diffi cult to predict the NPSH for a head drop of 3%, which is the most common
cavitation criterion for pumps in industrial applications. At a head drop of 3%,
cavities are extended, unsteady cloud cavitation may occur. Pump engineers know
very well that the change in pump head is not a reliable indicator for the actual type
of cavitation and for the pump wear.
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Figure 1. Influence of the gas content
on the performance of the centrifugal
pump

Cavities for example may produce an ex-
tra lift, that means an increase of the pump
head as long as the cavities are attached [1],
other phenomena like fluctuations or rotating
cavitation may cause an extra head drop.
For a better understanding it is necessary

to get a correlation between the type of cav-
itation on the one hand and on the change
of pump head and on erosive attack on the
other hand.
Though the flow with extended and un-

steady cavities is very complex, the de-
velopment of numerical codes showed large
progress in the last few years - but of course
there is a strong demand for detailed exper-
imental results for validation.
In a wide range of pump applications, i.e.

in the chemical industry or in the offshore
oil production the liquid to be pumped con-
tains certain contents of undissolved gas. It
is well known that the performance of stan-
dard centrifugal pumps decreases rapidly in
liquid/gas two phase flow - the deterioration
starts from a gas void fraction of 2-3% - the
total breakdown of pumping can be expected
at gas contents of 8-15% (Figure 1).
For two phase flow applications of cen-

trifugal pumps the influence of the gas void
fraction on the pump performance must be
predictable - best of all with a suitable nu-
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merical code. The main problem is a proper modelling ofthe complicated impeller
flow structures at higher void fractions with typical separation and demixing area.
All attempts to develop a numerical two phase code must be backed up by detailed
experiments.

2. Two phase flow test pumps

This situation is the background for several present experimental and numerical re-
search projects on two phase flow at German Universities with and without phase
transition.

The experimental methods used in the projects are:
— optical observations (CCD, High Speed Photography, laser optical methods)
— measurements of the erosive attack
— pressure measurements in the rotating impeller
In these projects three test pumps of same geometry but different scale are operated

in Braunschweig (see Figure 2.), Darmstadt and Magdeburg - main components of
the Magdeburg pump have been built in Miskolc.

impeller

plexiglas
w indow

pump shaft

telemetric
transmitter

ps

pd

telemetric
receiver

vaneless
diffuser

12 discharge
pipes (2.5")

Figure 2. Two phase flow test pump

The background for the choice of this particular pump design was to have a simple
geometry for easy grid generation, for precise machining and good access for optical
methods. The first impeller has a one circular arc design of the bladings, the second
impeller blading consists of two circular arcs (see Figure 3) in order to obtain a more
steady deceleration of the impeller relative flow. Approximately the impeller flow
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blade pressure taps
(suction/pressure side)
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Nr. 4
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Nr. 5

hub pressure taps

Impeller No. 1
(17205)

No. 2
(19235)

Blade shape 1cir.arc 2cir.arc

Inlet  Diameter d1 260 mm 260 mm

Outlet Diameter d2 648 mm 556 mm

Blade inlet angle β1 17 o 19 o

Blade out let  angle β2 20 o 23 o

Passage width b 46 mm 46 mm

Number of blades z 5 5

Specific speed ns 27 27.5

Rotational speed  n 612 Hz 612 Hz

Imp. 2

Figure 3. Design parameters of test impellers

may be regarded as a 2D-flow. The test pump either can be connected to a closed
variable pressure circuit for cavitation tests or to an open circuit with components to
mix and separate air for the liquid-gas-two phase flow tests.

3. Blade pressure measurements in the rotating impeller

The special task of the Pfleiderer-Institute of the Technical University of Braun-
schweig in the above mentioned projects is the measurement of the impeller blading

hub
tube channel

measuring tap

flat seal

fixing plate

pressure transducer

sealing ring

measuring blade

nut

reinforcing tube

transducer cables

alternative measuring tap
(sealed)

sil icon oil

acrylic glass shroud

Ermeto   tubeR

adjustible screw

Figure 4. Installation of subminiature pressure transducer



Two phase flow phenomena based on unsteady blade pressure measurement 49

and side wall pressure, using subminiature pressure transducers rotating with the
impeller. The objectives are:

a. Cavitation. Investigate the type of cavitation, identify unsteady states of cavitation
like fluctuations or rotating cavitation and find correlations between change of pump
head and type of cavitation.

b. Liquid-gas flow. Improve the understanding of performance drop, deliver calibra-
tion data for the development of numerical codes.

VHF

power suply for primar coil

primary coil/
receiver antenne

secondary coil/
transmitter antenne

sub miniature
pressure
transducers

impeller

rotational
speed meter
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two phase flow

telemetric receiver
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telemetric
transmitter

triger

transient recorder
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time

Figure 5. Telemetric pressure data transmission
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Figure 6. Impeller blade pressure and extension of the cavity
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Figure 8. Influence of the gas fraction on blade pressure distribution

As the pressure measurement is scheduled for areas with high mechanical impact
by cavitation, a robust design has to be developed in order to shelter the sensitive
transducers —Figure 4.

The transducers are installed inside the blade contour, the membrane protected
by silicon oil against direct attack of cavitation. This design needs a suffi cient blade
thickness - this is the reason why the pump used in Braunschweig has double scale
compared with the Darmstadt and Magdeburg pumps.

Eight pressure transducers are installed inside an impeller blade, four transducers
in the impeller hub, the locations of the transducers are shown in Figure 3.
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Figure 9. Pressure fluctuations at transducer Nr. 8 at different gas void fractions

The signals of 8 transducers can be transmitted simultaneously by using a tele-
metric system (Figure 5.), type dt 204/301/612 from Datatel Telemetrie Elektronik.
This system allows to transmit frequencies up to 2,5 kHz, which is suffi cient, as it is
intended only to detect macroscopic flow phenomena but not high frequency cavita-
tional noise.

4. Results

a. Cavitation. In the following a choice of results is presented to demonstrate the
potential of unsteady pressure measurement inside the rotating impeller. The first
investigation using this technique was completed by Dreißin 1997 [1] [2]. Two subse-
quent projects are under way now by the authors of this paper.

Figure 6 shows the result of time averaged impeller blade measurements under
cavitation assembled with a stroboscopic CCD-snapshot of the cavity. The test results
are compared with a numerical calculation by V. Schütte [3].

Figure 7 shows a result from the subsequent project on cavitation. It shows the
FFT of the pressure signals transducer, in impeller 2 under 45% part load.

The frequency analysis shows the impeller rotating frequency as dominating in the
right diagram for NPSH=2.09m (s=1.05). At a slightly lower NPSH (1.75m; s=0.94)
value other strong peaks at different frequencies appear - the head drop curve starts
its “creeping“ descend. This result indicates that the pressure drop is related to the
onset of periodic or rotating cavitation phenomena - this first finding of course needs
further investigation for confirmation.
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b. Liquid-gas flow. The drop of the pump head with increasing gas void fraction
is a result of the change of the impeller blade pressure. Figure 8 shows the drop of
the blade pressure rise with increasing gas void fraction, i.e. at 5% gas no pressure
rise can be observed at the first 40% of the impeller blade length, which is a result
of a demixing of the two phase flow. Consequently there is no blade momentum
transferred in the first 40% of blade length either.

The character of impeller flow changes with increasing gas void fraction (Figure 9).
The pressure fluctuations increase with rising gas percentage, having a maximum at
five percent, then decreasing with further increased gas void fraction.

5. Conclusions

This paper gives a short introduction to the unsteady impeller pressure measure-
ment technique and presents a choice of typical results obtained with this method.
Impeller measurements improve the general understanding of two phase pump flow
phenomena and deliver detailed experimental data for further development of numeri-
cal two phase codes. Investigations will soon be extended to other impeller geometries
with higher specific speeds.
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Abstract. Three difference schemes are compared in the computation of open channel flow
in circular pipes. During operation parts of the pipe may work with full and other parts
with partial depth. Time steps are restricted in characteristics method and explicit finite
difference schemes but they describe the flow properly, while implicit finite volume methods
work with much larger time steps having the shortage of unrealistic minor oscillations.
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1. Introduction

In the last decade, water consumption has drastically been reduced. Pipes originally
dimensioned for higher flow rates often operate as open channels with partial depth.
However, during transient operation they may transfer water at full cross section. In
the latter case the driving force is pressure difference and gravity, while at partial
depth gravity alone. Simulation of transient pipe flow is mainly based on the method
of characteristics. This method defines the time step to a given mesh size through
the celerity of pressure or surface waves. In a completely filled pipe the pressure wave
velocity is about a hundred times as high as that in a water stream with open sur-
face in the same pipe. For a mesh fixed along the pipe the time step gets extremely
small when the water stream completely fills the cross section of the pipe. Explicit
difference schemes such as the Lax-Wendroff scheme have the same disadvantage. Im-
plicit schemes are much faster but produce minor surface waves without any physical
background. In this paper the above listed three schemes are compared.

Nomenclature
B width of water surface
D inner diameter of pipe
Ep elasticity of pipe material
El bulk modulus of liquid
F wetted area
g gravitational acceleration
JR specific frictional resistance given as friction slope
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JS pipe bottom slope
t average liquid velocity
u elasticity of pipe material
x longitudinal coordinate
y water depth above local pipe floor
δ pipe wall thickness
ρ liquid density

2. Basic equations for open channel flow

The basic equations of liquid motion through a pipe of constant (circular) cross section
are the continuity equation, momentum equation and a relation between the wetted
area of the pipe and the water depth:
Continuity:

∂F

∂t
+
∂ (Fu)

∂x
= 0 (2.1)

Momentum equation:

∂ (Fu)

∂t
+

∂

∂x

[
F
(
u2 + gy

)]
= gF (JS − JR) + gy

∂F

∂x
(2.2)

Equation of the cross section:
∂F

∂y
= B (2.3)

Using this last equation, derivatives of F may be rewritten, e.g.

∂F

∂t
=
∂F

∂y

∂y

∂t
= B

∂y

∂t
(2.4)

The area of the wetted cross section depends only on water depth. The pipe being
prismatic, its cross section does not depend explicitly on the location of the section.
The above equations are given in conservation form. This form has the advantage
that - if being discretized for a longitudinal pipe section of the computational grid -
the flow rates at the section borders are properly described.

3. Equations for flow in a completely filled pipe

If the pipe is completely filled, the pressure difference between different sections is
added to the gravitational driving force. In this case the absolute pressure or gage
pressure is normally used together with the average velocity as unknown quantities.
In the present case, as we suppose that parts of the pipe operate with full section,
other parts with partial depth, the piezometric head rather than the pressure is the
appropriate unknown quantity. For a pipe with free liquid surface the water depth is
equal to the piezometric head. For completely filled pipes the piezometric head is the
height of an imaginary water column above pipe floor which could be observed if a
vertical transparent tube would be attached to the pipe.
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By this notation the first two equations will not change. However, if the pipe is
completely filled B will have a different meaning.

For a positive gage pressure the wetted area of the pipe section does not change as
a result of water level rise or fall. It changes because the liquid is compressed and the
pipe wall is expanding under gage pressure in the pipe. As it is well known, applying
Hook’s law for pipe wall expansion and liquid compression and supposing constant
stress over the total thickness of the thin pipe wall, we get (see e.g. [1], [2])

∂F

∂y
= ρgF

(
D

δEp
+

1

E1

)
= Bs . (3.1)

In this formula F means the total pipe cross section, the other parameters are also
constant, so the right hand side of the formula can be calculated and this value has
been denoted by Bs. Bs is the width of an imaginary longitudinal slot being cut at
the top of the tube allowing the pipe cross section to vary under pressure rise even if
the pipe section is completely filled with liquid.

Substituting the continuity equation (2.1) into the momentum equation (2.2) the
latter gets a simpler form. Cross differencing the two equations with respect to
time and space, respectively, and subtracting results in a linear partial differential
equation of second order for liquid velocity u or for liquid level y. These equations
are hyperbolic.

The two sets of real characteristic lines ξ = const and η = const are easily obtained
and the equations can be transformed containing the new independent variables ξ
and η. The slope of the characteristic lines in the natural coordinates x and t is
dx/dt = u+a and dx/dt = u−a, respectively. Here a denotes the celerity of pressure
or surface waves

a =

√
gF

B
. (3.2)

If the pipe is completely filled, the above defined Bs has to be substituted for B.

It is important to understand that information on flow rate or water-level changes
cannot travel faster relative to the liquid than at this speed.

4. Method of characteristics

The method is described in several books, see e.g. Wylie and Streeter [2]. In the
present paper the computational grid is fixed by an equidistant mesh for the pipe.
In every time step the time needed to pass the fixed mesh size ∆x according to the
locally varying slope dx/dt of the characteristics ξ and η has been calculated. The
result is a locally varying pair of time increments. The new overall time level t+ ∆t
is defined by the minimum of these local time increments. The locations of the base
points (on the old time level t) of the two characteristics ending at the same fixed grid
point on the new time level t+ ∆t have been calculated. The physical parameters (y,
u, etc.) on the old time level in the base points have been interpolated. Finally the
two transformed equations for the two characteristics have been integrated over the
actual time step.
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When the pipe is completely filled with liquid, the slope of the characteristics drops
by two orders of magnitude: The simulation is thus extremely slowed down although
a large portion of the pipe operates with open water surface. Here there are only
minor changes both in water level and flow rate, while pressure waves run along the
filled pipe section.

5. Lax-Wendroffmethod

The two step Lax-Wendroff scheme described e.g. by Hirsch [3] has been applied for
the conservative form of the equations. Points i − 1, i, i + 1 are used for the old
time level t. As a first step, values of F , y and u are computed at the mid time level
t + ∆t/2. The points L (left) and R (right) are put to the locations xi −∆x/2 and
xi + ∆x/2. ∆x = xi − xi−1 = xi+1 − xi is the equidistant mesh size. FL and FR are
computed from continuity (2.1), e.g.:

FL =
Fi−1

2
− ∆t

2

uiFi − ui−1Fi−1

∆x
. (5.1)

Liquid surface levels yL and yR are computed from continuity (2.1) combined with
the equation of cross section (2.3) considering the actual liquid surface width

yL =
yi−1 + yi

2
− ∆t

2

uiFi − ui−1Fi−1

∆x

2

Bi−1 +Bi
. (5.2)

Average fluid velocities uL and uR are computed using the momentum equation (2.2)
discretized as for other quantities. Values of F , y and u at the new time level are
computed in a similar way as before but using values at mid time level

Fi (t+ ∆t) = Fi (t)−∆t
uRFR − uLFL

∆x
(5.3)

and

yi (t+ ∆t) = yi (t)−∆t
uRFR − uLFL

∆x

4

Bi−1 + 2Bi +Bi+1
. (5.4)

For computing ui(t + ∆t) the momentum equation (2.2) is used again. However at
the upstream end and downstream end of the pipe the above formulae can not be
used as either point i − 1 or i + 1 is missing. Integration along the characteristics
dx/dt = u − a for the upstream end and dx/dt = u + a for the downstream end is
performed.

6. Implicit scheme

The conservation form of the basic equations has been used. They were integrated
for a pipe segment (1D finite volume) of length ∆x between mesh points i and i+ 1.
Time levels are t and t+ ∆t.
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Integrating the continuity equation (2.1) for the pipe segment xi ≤ x ≤ xi+1

between time levels t and t+ ∆t and using mean values between the ends of the pipe
segment gives:

0 =

xi+1∫
xi

t+∆t∫
t

[
∂F

∂t
+
∂ (uF )

∂x

]
dtdx =

xi+1∫
xi

 t+∆t∫
t

∂F

∂t
dt

 dx

+

t+∆t∫
t

 xi+1∫
xi

∂ (uF )

∂x
dx

dt =

xi+1∫
xi

(F (t+ ∆t)− F (t)) dx+

t+∆t∫
t

((uF )i+1 − (uF )i) dt .

(6.1)

In the first integral applying the equation of the pipe cross section (2.3) we get

F (t+ ∆t)− F (t) = B(y(t+ ∆t)− y(t)) = B∆y

at some inner point of the pipe segment. The overbar denotes a space-averaged value.
Substituting this into the first integral it may be written as

∆x

(
Bi∆yi +Bi+1∆yi+1

2

)
.

In the second integral a mean value for the time increment ∆t has to be substituted:

uiFi ∼=
uiFi + (uiFi + ∆uiFi + ui∆Fi)

2
.

Here again ∆ui, ∆Fi are increments during the time step ∆t. A similar formula can
be written for the time-averaged value in mesh point i+ 1. Finally we have

Bi
2

(∆x− ui∆t) ∆yi +
Bi+1

2
(∆x− ui+1∆t) ∆yi+1 −

Fi∆t

2
∆ui +

Fi+1∆t

2
∆ui+1

= (uiFi − ui+1Fi+1)∆t .

This equation contains four increments, these are the water depth-changes and liquid
velocity variations at both ends of the pipe segment. The discretization of the momen-
tum equation (2.2) takes place in a similar manner coupling the same four increments.
For n pipe segments 2(n+ 1) unknowns must be computed. One has 2n equations of
the above type and two additional equations at the boundaries. The above system of
pairs of equations has a pentadiagonal matrix. Such matrices may easily be factorized
into the product of a lower and an upper triangular matrix resulting in an effi cient
solution procedure.

7. Initial and boundary conditions

Initial condition: For all schemes discussed the initial state is the steady flow at normal
depth (constant velocity and water depth along the pipe) or the steady flow in the
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case of a mild pipe bottom slope (constant flow rate as the product of a decreasing
velocity and increasing depth).

Boundary conditions: Simple boundary conditions have been used such as pre-
scribed water surface levels both in the upstream and downstream reservoirs con-
nected to the pipe. Transient operation occurs if one of the reservoir levels changes
over some time interval.

Two cases have been considered:
1. Linear downstream surface level rise followed by the level being kept constant
2. Flood wave having the form of a half sine wave starting from the upstream
reservoir.

In case 1 if the water reaches the upper tangent of the pipe circular cross section the
width B drops suddenly causing an abrupt rise of the wave velocity a. The time step
reduces, the computation is slowed down extremely but no other problem occurs either
when using the method of characteristics, or if applying the Lax-Wendroff method.
The implicit scheme shows no change in the running time at all. Further increasing
the downstream reservoir water surface level the piezometric head will increase as if
the water surface would rise in the imaginary slot of width Bs above the pipe. All
three schemes operate well and arrive at a new steady state solution if the reservoir
water level comes to rest.

In case 2 the flood wave travels along the pipe and in the meantime changes its
form by the damping effect of friction and by wavefront dispersion because of wave
velocity dependence on water depth. Both in the method of characteristics and in
the Lax-Wendroff scheme, the first rise of the water surface takes place when the
wavefront reaches this downstream point moving with the surface wave velocity.

Figure 1. Results of a flood wave computation by the method of characteristics

Figure 1 shows results computed by the method of characteristics. The graph
received by the Lax-Wendroff method would completely cover these curves.

In the implicit scheme all mesh points are coupled. Because of this coupling the
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Figure 2. Results of the implicite scheme

water surface rise travels faster than the actual flood wavefront in the form of a small-
amplitude high-frequency wave. Figure 2 shows the velocity and depth over the time
at a fixed cross section of the pipe. The superposed small amplitude wave can be
seen on the velocity graph. This superposed wave has no physical meaning. However,
its amplitude is so small that the results are practically satisfactory and again the
computation time resulting from the large time steps is shorter than when using the
other two schemes.

8. Conclusions

All three investigated methods operate well if the water surface is lower than the top
of the pipe. For full depth calculations the implicit scheme may be suggested because
of the much shorter running time, especially if a complete set of pipes connected to
each other through manholes or junction chambers has to be simulated.
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Abstract. The most important parameters of fibrous filters: the separation effi ciency and
pressure drop change during the operation. Theoretical and experimental investigations
have been carried out to develop an adequate model for numerical simulation of the clogging
process. The model and some results of numerical simulations are presented in this paper.
Also basic considerations on the combination of the particle deposition, on fibres inside the
filter, and the formation of dust cake are suggested.
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1. Introduction

Fibrous filter mats play a significant role in the separation of solid particles and drops
suspended in gas. Their wide application in air pollution control and in different
technologies is justified by their reliability of service and relatively low overall cost.
The porous layers are produced either as woven fabrics or as felts. The most significant
disadvantage of filters is the time dependence of their operation parameters. The
temporal change is the consequence of the way of separation of particles in filters: the
particles deposit on the fibres, increasing both the filtration effi ciency and the pressure
drop (at constant flow rate). This characteristic makes the design and in some cases
also the operation of filters diffi cult. The objective of the research presented here is
the investigation on the mechanism of particle deposition with special regard to the
effect of the previously separated particles and the inhomogeneity of filter structure
as well as the development of a model for simulation of the clogging process in fibrous
filters.

2. Dust separation by filter mats

Industrial gases of usual concentrations, cleaned by fibrous filters, are very thin
mixtures of gas and solid particles. Even in case of relatively high concentration,
c = 10 g

m3 , the average distance between particles is about 50 particle diameters which
is in most cases in the range 10−1 < dp[µm] < 10. Fibrous filters consist of cylindrical
fibres of df = 5− 30µm diameter, the average distance between fibres is about 2− 10
fibre diameters. Since the distance between fibres is in general much bigger than the
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particle diameter, the particles should be displaced relative to the gas in order to put
them in contact with the fibres. This transport is caused by inertia of particles, by
gravity and at smaller particles by diffusion. In case of charged particles and/or fibres
the electrostatic attraction plays a role. Particles can contact the fibres also without
displacement if they move along streamlines approaching the surface of the fibres at
most at one particle radius distance (interception). The displacement of particles is
hindered by viscous forces arising when particles move relative to the gas.

The influence of the deposited particle on the separation of further particles and on
pressure drop was investigated and described by [1] - [3], but because of the neglect
of significant influencing factors the results obtained are only qualitatively correct.
Deposited particles form dendrites under certain condition , which act as thin fibres
influencing both the filtration effi ciency and the pressure drop [3] - [5]. The description
of the very complicated processes of particle deposition has been simplified by using
the isolated fibre approach. In [3], [5], [6] the effect of dust load on filter has been
considered by modification of single fibre effi ciency. Most of the authors suggested a
linear relation between the concentration of deposited particles and the increase of
single fibre effi ciency:

ηl/ηf = 1 + λcd, (2.1)

where ηl and ηf is the single fibre effi ciency of loaded and clean fibres, respectively,
cd[ kgm3 ] is the concentration of deposited particles, γ is a factor depending mainly on
the characteristics of fibres. The value of single fibre effi ciency expresses the ratio of
the number of particles deposited on a given fibre and that of approaching the fibre
in a layer of thickness equal to the fibre diameter df .

As a result of the first phase of research reported here, the author suggested a
method for calculating 3D flow field in inhomogeneous filter mats [7], and a simplified
1D model for describing the clogging process in filters [8]. A 3D model for calculation
of dust deposition in real filter mats was published [9] but it doesn’t take the particle
deposition into consideration. In the second phase of research, 3D calculation of flow
in filter mats and the extended dust deposition model have been combined [10], [11].
At high filter load at first continuous layer of dust particles, later a dust cake arises
at the inlet of the filter mat. A model and numerical simulation have been developed
[12] to predict the process of cake formation. Recently measurement results have been
published [14] on the size of dendrites of deposited particles. On the basis of these
results development of a comprehensive model combining the dust deposition inside
the filter mat and the formation of a dust cake in the final period of the lifecycle of
the filter seems to be realistic.

3. Model for dust deposition inside filter mats

3.1. Simulation of particle deposition in filter mat. Because of the complex-
ity of flow in real filter mats due to complex fibre structure and because of the large
number of dust particles (in case of dp = 3mm particle size and 10 g

m3 concentration
the number of particles in 1cm3 is 3.5 · 105) the direct simulation of dust separation
process still seems to be impossible. That is why a simplified model has to be de-
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veloped relying on basic laws of fluid mechanics as well as on assumptions based on
experimental investigations. So since the dominant position of the fibres is parallel to
the surface of the mat and the dominant direction of filtration velocity is perpendic-
ular to it, the fibres are supposed to be perpendicular to filtration velocity. From the
point of view of the flow field the individual fibres are disregarded: the filter mat is
considered as a porous layer of spatially and temporally changing permeability. The
model for calculation of the clogging process can be divided into two interconnected
parts: simulation of particle deposition and calculation of flow field in filter mat. The
model described here is elaborated for monodisperse (dp = const.) dust particles.

As a result of considerable efforts made in this field a number of expressions have
been published for the calculation of the collection effi ciency of clean single fibres.
The expressions proposed in [9] have been used by the author to calculate the single
fibre effi ciency in case of no dust deposition.

The suggested model takes the effect of collected particles in the following way into
consideration. The deposited particles take part in the collection of subsequent parti-
cles by increasing the collecting surface of the filter mat. Not the whole surface area
of the deposited particles should be regarded as additional collecting area, because
the particles and fibres ”shadow”each other (see Figure 1). This effect is considered
by the shadowing factor k = 0.5, i.e. on the basis of simple geometrical considerations
about half of the surface area of deposited particles (which are regarded as spheres)
increases the collecting area of the filter mat.

On the basis of experimental obser-
vations three different models of parti-
cle deposition have been suggested. In
case of low filter loading, at the begin-
ning of the filtration process, the ma-
jority of the deposited particles cover
the surface of the fibres, which can be
taken into consideration as increase of
fibre diameter: thickening model, see
Figure 2.

At higher filter load the ratio of par-
ticles collected by the deposited parti-
cles is increasing, so more and more

df

dp

v

Shadowed area  = 2
d
p

2^
4

Figure 1. Shadowing effect

model. During the filtration process the combination of these two models occurs,
called combined model (Figure 2).

Since the particles deposited according to the thickening model and the dendrite
model influence the separation and pressure drop differently, the share factor b is
suggested expressing the ratio of amount of particles forming dendrites to the amount
of all deposited particles. On the basis of the published evaluation of experimental
results and our own measurements, linear correlation has been found between the
share factor and the concentration of particles collected previously

b = 0.024cd . (3.1)
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Figure 2. Deposition models

The effi ciency (E) of filter mat of ∆x width can
be expressed:

E = 1− c0
ci

= 1− exp
(
−afηl

π
∆x
)
, (3.2)

where c0 and ci [ kgm3 ] is dust concentration at the
inlet and outlet of filter layer, respectively, and af
[m

2

m3 ] is the specific area of fibres.
In equation (3.2) the single fibre effi ciency of

loaded filter ηl includes the effect of collected par-
ticles. According to the suggested model it can
be expressed in the following way [11]:

ηl = ηf +
ηfcd
ρpdpaf

[
3 (1− b) +

+4b

(
ηdend
ηf
− k

)]
, (3.3)

where ρp [ kgm3 ] is the density of dust particle and
ηdend is the single fibre effi ciency of the dendrites.
The comparison of equation (3.3) and equation
(2.1) with experimental results shows that equa-
tion (3.3) based on model considerations describes
much more accurately the influence of deposited
particles on particle collection than equation (2.1)
suggested previously [10].

3.2. Calculation of 3D flow field in filter mats. Because of the small size
of particles and fibres and the relatively low filtration velocity the particle or fibre
Reynolds number is small, so the flow in porous filter mats is laminar. The pressure
drop ∆p [Pa] across the filter mat, needed to reach a given filtration velocity vf [ms ]
through the filter mat can be determined as the aerodynamic force acting on fibres
in filter mat of 1m2 area:

∆p =
4π

Ku
µLvf , (3.4)

where µ [ kgms ] is the dynamic viscosity, Ku is the Kuwabara coeffi cient [13]:

Ku = −0.5 lnα− 0.75 + α− 0.25α2, (3.5)

depending on the packing density α = Vf
Vm of the filter mat (Vf and Vm is the volume

of fibres and filter mat, respectively), and L [m] the overall length of fibres in filter
mat of 1m2 area and h [m] thickness:

L = 4αs/df
2π . (3.6)

Inserting equation (3.6) in equation (3.5) and substituting the thickness of the
layer h [m] by ∆x (x co-ordinate is perpendicular to the surface of the filter mat
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and pointing in the direction of the flow) and considering that the gas is flowing in
the direction of pressure decrease, the x component of the filtration velocity can be
expressed:

vfx = −Kudf
2

16µα

∆p

∆x
. (3.7)

Equation (3.7) shows that by neglecting the inertia of fluid and particles in comparison
with viscous forces and effect of pressure gradient, the generalised form of Darcy
equation can be formulated:

v = −C∇p (3.8)

where C [m
3s
kg ] is the permeability coeffi cient which can be expressed in case of loaded

filters as

C =
Ku

16µ

1

α

d2f
+

bcd
ρpd2p

. (3.9)

Equation (3.9) takes both the thickened fibres and the dendrites into consideration.
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Figure 3. Co-ordinate system and division of filter mat

By neglecting the volume of fibres and particles and the compressibility of gas the
continuity equation (∇ · v = 0) can be transformed by using equation (3.8):

∇ · (C∇p) = 0 . (3.10)

Knowing the actual 3D permeability distribution in filter mat and the boundary
conditions: x = 0 p = pin, x = h p = pin −∆pf , on the periphery (see Figure 3), the
flow field can be calculated.
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3.3. Simulation of particle collection process. The filter mat is divided
into a number of elements (Figure 3) and the initial characteristics of the clean filter
elements (packing density and fibre diameter) are given. Also particle diameter, inlet
dust concentration, pressure drop across the mat (or filtration velocity), gas viscosity
and particle density should be known. After calculating the permeability coeffi cient
distribution by using equation (3.9), the pressure distribution can be determined by
solving equation (3.10). The inlet and outlet velocities at all faces of volume elements
can be determined from p distribution. Also the single fibre effi ciency for clean fibres
can be calculated for all filter elements as well as that of loaded fibres by using equation
(3.3). Using these variables and the dust concentration at the inlet of the filter mat,
a mass balance equation can be formulated for all filter elements: the difference of
particle mass entering and leaving the filter element in a given time interval ∆t [s] is
equal to the increase of the quantity of collected particles. Summarising the mass of
collected particles the filtration effi ciency of the filter mat (E) can be calculated. At
the end of the time interval the collected mass of dust and by using equation (3.9) a
new distribution of permeability coeffi cient can be determined, so the next cycle of
calculation for the next time interval can be started.

4. Considerations on the formation of dust cake

The lifecycle of a filter mat can be divided into two parts: in the first period of
filtration the dust particles are collected by the fibres and already deposited particles
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Figure 4. Variation of concentration of deposited particles across filter mats
(dp = 1µm,df = 20µm,h = 10mm, vm = 0.1ms )
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are situated in the depth of filter mat (depth filtration). Since the particle concen-
tration is the highest at the inlet of the filter mat, and the deposition of particles
increases the subsequent collection, the concentration of the deposited particles in-
creases very rapidly in the vicinity of inlet surface of the mat. Figure 4 shows the
result of a 1D calculation of distribution of deposited particle concentration (cd) across
the filter mats at four different dust loads. If the dendrites created by the deposited
particles near the inlet of the filter mat bridge the distance between fibres, the second
period of the lifecycle of filter mat starts. A continuous and gradually thickening
dust layer (dust cake) arises, assuming the task of collection of subsequent parti-
cles (surface filtration). While the regular removal of individual dust particles from
the surface of the fibres situated inside of the mat is practically impossible because
of the very strong attraction forces, the dust cake on the inlet surface of filter mat
can be removed relatively easily by shaking the filter bags or by using reverse flow.
Therefore those filter mats where the surface filtration dominates can be regenerated
periodically, consequently they are widely used for cleaning gas of relatively high dust
concentration.
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Figure 5. Change of filtration characteristics as function of dust load

The final objective of the research presented here is the combination of the sim-
ulation of filtration process in both periods of the lifecycle of the filter mat. The
simulation of the first filtration period is outlined in this paper, and methods for
calculation of the development of dust cake is also available [12]. The combination of
the two simulation methods necessitates the correct description of the formation of
continuous dust layer on the inlet surface of the filter mat, which is the starting point
of the formation of a dust cake. Recent experimental investigations on the lateral size
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mp= 0.0 (g/m2) mp= 6 (g/m2)

mp= 12 (g/m2) mp= 18 (g/m2)

Figure 6. Computed velocity at filter inlet at different values of mp

statements: the lateral size of the dendrite is much smaller than the average distance
between the fibres. Consequently if the fibres are homogeneously distributed the
formation of a continuous dust layer can arise only at a very high concentration of
deposited mass.

The author suggests explaining the formation of a dust cake at a relatively low dust
load by the inhomogeneity of fibre distribution. In this case first the relatively small
distances between the fibres will be bridged and so ”fibres”of much higher diameter
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mp= 0.0 (g/m 2) mp= 6 (g/m 2)

mp= 12 (g/m 2) mp= 18 (g/m 2)

Figure 7. Computed velocity at filter outlet at different values of mp

occur. The dendrites developing on these thicker formations can bridge much larger
distances. The simulation of this phenomenon is in progress.

5. Simulation results

3D numerical simulation of flow field has been performed for filter mats of different
inhomogeneity of fibre packing density. The model filters have been put together from



70 T. Lajos

filter elements selected randomly from a set of filter elements, the permeability coef-
ficient of which corresponded to the Gaussian normal distribution of given standard
deviation. The calculated increase of the overall permeability of the filter mat with
increasing the inhomogeneity has shown good agreement with experimental result [7].

The results of numerical simulation of the clogging process show acceptable agree-
ment with results published in the literature. Figure 5 shows the calculated and
measured change of pressure drop and filtration effi ciency of filter mat as the function
of a specific dust load (which is proportional to the filtration time).

The dust deposition decreases the inhomogeneity of overall packing density in y and
z directions and increases in x direction (Figure 3). The decrease of inhomogeneity
in y − z planes depends also on the amount of collected particles: it is considerable
close to the inlet plane and much less at the outlet. This is clearly demonstrated by
the calculated velocity distributions at inlet and outlet of clean and loaded filter mats
shown in Figures 6 and 7.

6. Conclusions

A model of dust particle collection relying on experimental investigations has been
developed. It regards a part of surface of the deposited particles as additional col-
lecting surface. The shadowing effect and the share factor have been suggested to
simulate the real processes more accurately. A numerical method has been devel-
oped for calculation of 3D flow field in filter mat based on the generalized form of
Darcy equation and continuity equation. The results of simulation of the filtration
process show acceptable agreement with experiments. The numerical simulation of
combination of the two phases of lifecycle of a filter mat needs further investigations
concerning the formation of continuous dust layer on the surface of the filter mat. A
significant influence of inhomogeneity of fibre structure on the formation of the dust
cake is suggested.
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Abstract. Vortex dynamics, as an extension of surface vorticity modelling, provides a pow-
erful method for simulating flow through turbomachinery blade rows. Examples here include
compressor rotating stall, flow through a turbine stage and new extensions of methodology
to simulate radial turbomachines.

Keywords : Vortex dynamics, turbomachine, turbomachinery cascade, computational fluid
dynamics.

1. Introduction

The main aim of this paper is to present solutions for the simulation of turboma-
chinery blade row flows derived recently by vortex dynamics modelling. It was felt
appropriate to precede this by a brief review of vortex methods as a reminder of the
depth of fundamental research that was required to give birth to these valuable nu-
merical Computational Fluid Dynamics (CFD) tools, which today are almost taken
for granted.

Vortex methods for modelling aerofoil and turbomachinery blade flows were among
the very first forms of CFD which originated in the 1950s, stemming initially from
thin aerofoil theory [1,2,3,4]. A number of exact solutions for cascade flows were
already available at that time by classical mathematical methods, notably conformal
transformation, such as those by Merchant and Collar [5] which were re-examined and
programmed for early electronic computers by Gostelow [6] and Pollard &Wordsworth
[7]. Indeed, although the main emphasis was on the Direct or Analysis method, there
was already considerable interest developing also in the Inverse or Design method,
using potential flow theory to automatically design blade shapes to deliver a prescribed
surface velocity or pressure distribution. The theories of Ackeret [2] and Railly [8] are
typical of these, both based on linearised thin aerofoil theory. Subsequently Pollard
[9] extended the method for simulation of mixed-flow or radial turbomachinery blade
rows including the effect of change in meridional streamline thickness (or the so-called
AVR or axial-velocity-ratio effects).

In all of the above references to singularity methods however, the restrictions of
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thin aerofoil theory were applied, namely that the singularities were concentrated
onto the blade or aerofoil chord line, vortex singularities to represent lifting properties
and source singularities to generate profile thickness. In parallel with this Scholz [10]
introduced the concept of the carrier curve for the source/vortex singularities, enabling
them to be more strategically placed on the blade camber line, to be later improved
and applied by Czibere [11,12,13] and Baranyi [14], as later extended and reviewed
by Rohatynski [15]. As early as 1959, however, it was realised by Martensen [16],
in a key paper, that the complete potential flow could be represented instead by an
appropriate distribution of surface vorticity around the profile perimeter. However,
in parallel with this an alternative model was conceived by Smith and Hess [17]
involving instead a surface distribution of source singularities for modelling the three-
dimensional potential flow past arbitrary shaped bodies, although it was then clearly
necessary to introduce appropriate bound vorticity into the body to generate lift
forces. Although the latter so-called Douglas-Neumann method has been widely used
with great success for fully three-dimensional flow simulation, Martensen’s surface
vorticity method has proved crucial to development of turbomachinery cascade and
meridional (axisymmetric throughflow) inviscid flow models well geared to engineering
design needs. Initial adaptations for numerical computation were developed by Jacob
& Reigels [18] and Wilkinson [19,20] with extensions to mixed-flow radial cascades.
This was extensively investigated by Fisher [21,22] including the derivation of datum
exact solutions for mixed-flow rotors. Several of these works now also included AVR,
namely the influence of variation in meridional stream-surface thickness [9,13,21].

Extension of the surface vorticity method to deal with viscous flows including flows
with separation such as bluff body flows, was a natural step [23,24]. The literature
and methodology of both surface vorticity and vortex dynamics have been fully re-
viewed elsewhere by the present author [25] followed by adaptation of suitable surface
vorticity models and codes to general performance analysis for designers and students
[26]. The remainder of this paper will focus on applications of vortex dynamics to
turbomachine cascades and blade rows. Governing equations are presented in sec-
tion 2.0 including a simulation of compressor rotating stall, followed in section 3.0
by application to turbine and fan stages including wake interaction between stator
and rotor. In section 4.0 relevant analysis and numerical modelling are presented for
extension of vortex dynamics to radial cascades and turbomachines, including sample
calculations for radial pumps or fans.

2. Basic equations for surface vorticity and vortex dynamics modelling of

blade rows

The basis for surface vorticity modelling of plane two-dimensional flow past a single
body is illustrated in Figure 1 and Martensen’s governing integral equation, which
states the Dirichlet surface boundary condition of zero velocity parallel to the body
surface at point m due a surface vorticity distribution γ(sn), is given by

1

2
γ (sm) +

∮
k (sm, sn) γ (sn)dsn + W∞ (cosα∞ cosβm + sinα∞ sinβm) = 0 (2.1)
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Figure 1. The surface vorticity model

where the coupling coeffi cient k(sm, sn) linking the vortex element γ(sn)dsn at point
n to point m is given by

k (sm, sn) =
1

2π

{
(ym − yn) cosβm − (xm − xn) sinβm

(xm − xn)
2

+ (ym − yn)
2

}
. (2.2)

The body here has been immersed into a uniform stream W∞ with angle of attack
α∞ relative to the x axis and the local body profile slope is given by βm.

Figure 2. Numerical discretisation of the body surface

As shown fully elsewhere [16,25], for an infinite array of identical bodies spaced t
apart in the y direction between −∞ ≤ y ≤ +∞ , (e.g. a cascade of aerofoils), the
same governing equation (2.1) is valid provided the coupling coeffi cient is rewritten
as follows:

k (sm, sn) =
1

2t

{
sin 2πt (ym − yn) cosβm − sinh 2π

t (xm − xn) sinβm

cosh 2π
t (xm − xn)− cos 2πt (ym − yn)

}
. (2.3)

Numerical discretisation of the governing equation is achieved if the body surface is
represented by a finite number M of small elements ∆sn as illustrated in Figure 2,
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Figure 3. Simulation of rotating stall in an axial compressor cascade

whereupon the coupling coeffi cient for the infinite cascade becomes

K (sm, sn) = k (sm, sn) ∆sn . (2.4)

The following system of linear equations is then obtained

M∑
n=1

K (sm, sn) γ(sn) = −U∞ cosβm − V∞ sinβm (2.5)

where all the external influences, namely the component uniform streams U∞ and V∞
, have been transferred to the right hand side. These equations may be easily set up
and solved by matrix inversion after a number of essential numerical treatments (a) to
correct the self-inducing coupling coeffi cient K(sm, sm) for surface curvature and (b)
the profile opposite coupling coeffi cients K(sm, sM−m+1) for possible errors due to
close proximity. Details are given in full in ref. [25] including details of how to impose
a trailing edge Kutta-Joukowski condition for the case of aerofoil or turbomachine
cascade flows.

The above equations are of course only applicable as defined for inviscid/potential
flows. For the extended case of vortex dynamics, the numerical equation for body
point m may be easily modified as follows

M∑
n=1

K (sm, sn) γ (sn) = −U∞ cosβm − V∞ sinβm−
Z∑
j=1

∆Γj (Umj cosβm + Vmj sinβm)

(2.6)



Vortex dynamics for simulation of turbomachine cascades and blade rows 77

where a cloud of Z discrete vortices of strength ∆Γj are spread throughout the do-
main, with unit induced velocities Umj and Vmj given by

Umn =
1

2t

sin 2π
t (ym − yn)

cosh 2πt (xm − xn)− cos 2πt (ym − yn)

Vmn = − 1

2t

sinh 2π
t (xm − xn)

cosh 2π
t (xm − xn)− cos 2πt (ym − yn)

 . (2.7)

As stated the above equations apply to both identical bodies and flow patterns re-
peated periodically with pitch t in the y-direction. This restriction may be partially
lifted if the single body or aerofoil is broken down into say N independent (possible
identical) aerofoils of y-pitch t/N . For a cascade, the greater the value of N the
more representative will be the prediction of flow variations from blade to blade. The
ultimate limit will be set by computational requirements. Thus the matrix size will
now be increased in size to NM ×NM requiring increased memory requirements of
N2 and similarly execution times.

At this stage it may be helpful, without giving more analytical development, to
illustrate the final outcome of this procedure for simulation of the flow through a
fairly heavily loaded axial compressor cascade as illustrated in Figure 3 where N=8.
Thus the predicted flow pattern will repeat itself identically every eight blade pitches.

Table 1. Compressor cascade geometrical specification

Inlet angle β1 = 54.59◦ Stagger angle = 41.11◦

Outlet angle β2 = 30.59◦ Camber angle = 44.49◦

Inlet velocity W1 = 1.0 (Circular arc camber)
Diffusion factor = 0.6 Pitch/chord t/l = 1.162
Flow coeff. φ = 0.5 C4 Base profile
Work coeff. ψ = 0.40662

The cascade design data for this case are given in Table 1 and are applicable to a
typical axial compressor but with rather heavy duty coeffi cients (φ = 0.5, ψ ≈ 0.4).
As may be expected the cascade experiences predicted rotating stall. As shown by
Lewis [26] (pages 42 & 93), the diffusion factor must not exceed 0.6 for major stall
and the value here of DF = 0.6, as given by equation (2.8) below, is thus in the range
for incipient stall

DF = 1−

√
4φ2 + (1− ψ)

2

4φ2 + (1 + ψ)
2 +

t

`

ψ√
4φ2 + (1 + ψ)

2
. (2.8)

The remaining examples in this paper will be for the value N = 1, i.e. blades and flow
patterns which repeat for each blade pitch t. However, the additional variations will
be introduced of (a) two blade rows in relative motion, section 3, and (b) application
of the method to radial turbomachines for which the relative eddy and Coriolis accel-
erations induce enormously significant effects, section 4. Before proceeding, however,
it is important to draw attention to matters. First, the success of the vortex dynamics
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technique for predicting such a complex flow as rotating stall. Second, the importance
of relating CFD methods to the overall framework of turbomachinery performance
analysis, which is the burden of Ref. [26]. Thus the stage duty (φ, ψ) combined with
pitch/chord ratio t/l entirely and explicitly determine the diffusion factor DF im-
posed by the designer and hence the aerodynamic stability. Let us not despise such
historical parameters as diffusion factor but use CFD in a research manner to confirm
our wealth of experimental experience over many years of practical turbomachinery
and much empirical ingenuity of earlier researchers.

To conclude this section mention should be made of the additional numerical fea-
tures of full vortex dynamics modelling, the aim of which is to solve the Navier-Stokes
equations. A full explanation and review has been given elsewhere [25]. Suffi ce it to
say here that the following actions are required in a time-stepping sequence of numer-
ical analysis:
1. Shedding of discrete vortices ∆Γj = γ(sj)∆sj from each surface element at each
time step thus creating a cloud of vortex elements. This follows a potential flow
analysis using equation (2.6) to calculate the slip flow and the newly created
surface vorticity γ(sj).

2. Using a random walk procedure [24,25] for each discrete vortex ∆Γj to simulate
viscous diffusion at each time step.

3. Performing a thermodynamically reversible process for the mutual convective
influence of all members of the vortex cloud at each time step.

4. Recombining any vortices which become excessively close after the random walk.
This has the beneficial side effect of reducing the total volume of the vortex cloud.
Alternatively the cloud may be redistributed onto a fixed grid filling the regime.

5. Deleting any discrete vortices which stray inside the body profile during diffu-
sion and imposing the circulation theorem to ensure that the equivalent loss is
restored during the potential flow analysis in order to ensure overall conservation
of vorticity.

3. Simulation of turbomachine stages

Figure 4 shows the solution of the above equations
for flow through a typical 50% reaction axial tur-
bine stage comprising stator and rotor for the fol-
lowing design conditions close to the ideal stage duty
[26]: Table 2. Design data for sample turbine stage

Flow coeffi cient φ 0.6
Work coeffi cient ψ 1.1
Stage reaction R 50%
Pitch/chord ratio t/l 0.8
Relative inlet angle α1 = β2 4.764◦

Relative outlet angle α2 = β3 60.255◦

Fluid deflection εS = εR 65.019◦

Lift coeffi cient CL∞ 2.8167 Figure 4. Simulation of a
50% reaction turbine stage
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The selected duty (φ, ψ) duty is typical for a multi-stage gas or steam turbine
for power generation and both stator and rotor show a basically stable flow. The
simulation brings out the interaction of the stator wake with the downstream rotor
flow as it traverses the rotor blade passage.

A second simulation example for flow through a
turbomachine stage is given in Figure 5 for the case
of an axial fan or compressor, again with 50% re-
action and for design data as given in Table 3 be-
low. Table 3. Design data for sample fan stage

Flow coeffi cient φ 0.4
Work coeffi cient ψ 0.26
Stage reaction R 50%
Pitch/chord ratio t/l 1.0
Relative inlet angle α1 = β2 57.59◦

Relative outlet angle α2 = β3 42.77◦

Fluid deflection εS = εR 14.83◦

Lift coeffi cient CL∞ 0.8121
Figure 5. Simulation of the flow
through a 50% reaction fan
stage

In this case of course the rotor lies upstream of the stator which it then sweeps with
its shed blade wakes. The progress of the rotor wake through the downstream stator
is much more distinct in this example and there is some evidence here of rotor wake
interference causing a small disruption of the flow on the pressure (convex) surface
of the stator blade where the surface velocity is low. There is also evidence here of
the previous wake impinging on the suction (convex) surface close to the trailing edge
region and causing flow separation. This is a transient phenomenon which can be
observed more easily if the simulation is shown as a movie in real time, one further
advantage of vortex dynamics modeling.

Comparing Tables 2 and 3 it is worth pointing out that the design fluid deflection
and consequent lift coeffi cient of the turbine blades are enormously greater than those
imposed on the fan blades since the former involve accelerating cascade flows and the
latter diffusing flows. The flow simulations of these two extreme turbomachine speci-
fications confirm the general stability of both and are most encouraging confirmation
of the scope of vortex dynamics modelling as a check upon design decisions which can
be made at an early stage of the turbomachinery design process.

4. Simulation of radial turbomachines

To conclude this paper a brief outline will be given of the application of vortex
dynamics to radial or mixed-flow turbomachines such as the radial fan rotor illustrated
in Figure 6.

As illustrated in Figure 6, the most convenient approach to both surface vorticity
and vortex dynamics modelling of a radial turbomachine is to transform it conformally
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(a) Radial fan rotor in the z(r, θ) plane. (b) Equivalent cascade in the ζ(ξ, η) plane.

Figure 6. Transformation of backward swept radial fan rotor into an equivalent
infinite straight cascade

into an equivalent infinite straight cascade defined by Cartesian coordinates ξ,η in the
ζ plane. For a purely radial meridional flow this is accomplished by the well known
transformation,

ζ = ln z (4.1)

which may be expressed in terms of the coordinate relationships as follows

ζ = ln r, η = θ (4.2a)

or in differential form
dξ = dr/r, dη = dθ . (4.2b)

The velocity transformation between the two planes is then given by

q
ζ

= qzr . (4.3)

If the blade row is a rotor, however, the transformed cascade in the ζ plane will move
vertically with a different velocity at each point on the blade surface according to
equation (4.3). The main point of the transformation is to be able to apply the fore-
going cascade vortex dynamics routines directly in the ζ plane and then to invert the
transformation for visualisation of the actual flow in the z plane. The best approach
here is to consider the flow relative to the rotor and thus transform all the vorticity
across to the ζ plane including the relative eddy. Now with a rotor angular veloc-
ity of Ω, the field viewed relative to the rotor in the z plane will have a distributed
vorticity 2Ω throughout. Conformal transformation remains valid provided any con-
centrated vortex or source singularities are transformed across unchanged in value.
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Transformation of the vortex cloud elements thus presents no problem. However,
the relative eddy 2Ω must also be first transformed piecewise across to provide the
initially undisturbed flow field into which the rigid walled transformed cascade may
then be immersed. As shown elsewhere in detail [25], with uniform stream components
U∞, V∞ , the transformed vertical velocity becomes

v = V∞ + Ω

{
r2 − 1

2

(
r21 + r22

)}
(4.4)

and the Martensen governing equation, by extension of equation (2.6) becomes

M∑
n=1

K (sm, sn) γ (sn) = −U∞ cosβm−
[
V∞ + Ω

{
r2 − 1

2

(
r21 + r22

)}]
sinβm

−
Z∑
j=1

∆Γj (Umj cosβm + Vmj sinβm) . (4.5)

Figure 7 below shows the predicted flow patterns in the two planes for this 8 bladed
rotor. As can be inferred from Figures 6 and 7, the blade profile here is based on
a backward swept logarithmic spiral with angle 45◦, which of course transforms into
an uncambered blade profile in the ζ plane. In fact the author’s software MIXFLO
actually designs the blade profile in the ζ plane using standard cascade notation and
in this case made use of a NACA0006 profile thickness superimposed on the camber
line with zero camber. The general strategy for CFD design/analysis adopted here is
to use a quasi-three-dimensional inviscid code combining axisymmetric meridional

(a) Rotor in the z plane (b) Transformed cascade

Figure 7. Prediction of the flow through a radial backward swept fan rotor by vortex
dynamics modelling
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flow with superimposed blade-to-blade flows in order to create suitable blade geome-
try. This is then followed with vortex dynamics analysis to check on viscous blade-to-
blade effects. As expected in this example stable flow was obtained for this fan with
the design duty φ = 0.25, ψ = 0.5666, which is a reasonable loading for this type of
machine. There was zero prewhirl at entry to the rotor.

A second example is illustrated in Figure 8 for the much more demanding case of
a heavily loaded radially bladed centrifugal machine.

Figure 8. Flow through a radially blade centrifugal rotor

In this case some prewhirl was provided to avoid excessive relative angle of attack
at the inlet edge. Also shown in Figure 8 is a prediction of the frictionless surface
velocity distribution from the program MIXFLO, revealing at the design stage that we
would expect very low velocities on the driving surface of the blades and high diffusion
rates on the trailing (suction) surface. These phenomena result in the thickening up of
the boundary layer on the driving surface and the tendency towards separation on the
trailing surface toward the trailing edge due to the excessive diffusions. As explained
elsewhere, the remarkable ability of such centrifugal machines to pump with high duty
loadings is largely due to the presence of enormous Coriolis accelerations which are
automatically included into the present fluid dynamic modelling techniques.

To conclude, it would be of interest to check the flow prediction for this radi-
ally bladed rotor for a reduced flow rate chosen deliberately to attempt to obtain a
standing eddy on the driving surface. It is well known that even in inviscid flow the
presence of the relative eddy or slip flow may become so strong that it will induce
such a standing eddy at part load, and the power of vortex dynamics to predict this
is illustrated in Figure 9 below.

First of all an inviscid “potential flow”computation has been undertaken to pre-
dict the expected surface velocity distribution vs for ideal flow using the author’s
design/analysis software MIXFLO and expressing the blade surface velocity as a frac-
tion of the relative inlet velocity V1 at the leading edge, Figure 9a. As can be seen,
in ideal frictionless flow we would expect to observe a standing eddy (vs < 0) over
a substantial section of the driving surface. In view also of the heavy diffusion over
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(a) Inviscid ideal fluid flow analysis (b) Vortex cloud prediction

Figure 9. Prediction of the presence of a standing eddy in the radially bladed
centrifugal compressor at 60% of design flow rate

most of the blade trailing surface, we would also expect there to be stability problems.
Both of these phenomena have been very convincingly simulated here by the vortex
dynamics technique.

5. Conclusions

The surface vorticity method for simulation of the potential flow past bodies or
cascades of arbitrary shape emerged from classical methods as the most natural and
powerful numerical model representing, in effect, the infinite Reynolds number flow
for which the outer flow is bounded at the body surface by an infinitely thin vorticity
sheet. As we have seen, extension of this to the simulation of fully viscous flows is
equally natural if the surface vorticity sheet is discretised and shed from the surface
as a vortex cloud over a series of discrete time steps, viscous diffusion being modelled
by random walks. Application of this to turbomachinery blade rows here has resulted
in:

1. Predictions of rotation stall in compressor blade rows.
2. Simulation of blade wake interactions in both turbine and fan or compressor
stages.

3. Simulation of the flow through radial fan or compressor rotors including the
effects of Coriolis accelerations and “relative eddy”.

For practical design purposes the full vortex cloud method may be used in parallel
with the simpler surface vorticity potential flow analysis and should always be used
in context with more general performance analysis methods such as those which link
stage duty (φ, ψ) to other well known experimental correlations such as diffusion
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factors. It is considered essential for CFD tools to be used wisely in such a broader
context, including the theoretical validation and extension of correlations for losses
and general performance analysis. As may be seen from the results presented here,
the vortex cloud method has proved to be a most valuable simulation technique as
part of the designers tool kit.
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Abstract. Pipe breaks are a major consideration when designing electrical power generation
plants, especially for nuclear power plants. The most important pipes in nuclear power plants
are those which are connected to the reactor vessel. The reactor vessel, its internal parts,
and the connected pipes themselves all have to withstand forces generated due to pipe break.
In this paper we give some results of the calculated forces on a BWR vessel at feedwater pipe
break. The thermohydraulic calculations have been done by using the RELAP 5 code. This
code has proven to be appropriate for calculation of hydraulic forces in such a situation.

Keywords : Hydraulic loads, break flow, RELAP 5

1. Introduction

The assumption of a pipe break is a general design basis of electrical power generation
plants, especially of nuclear power plants. Forces generated due to pipe break must be
withstood by the reactor vessel including its internal parts and the pipes themselves.
Pipes connected to the reactor vessel are the most important ones in nuclear power
plants. Usually the most severe pipe breaks are the break of those large pipes that are
connected to the water filled part of the reactor vessel. These large diameter pipes
include the recirculation lines for reactors with external recirculation systems and
the feedwater lines for reactors with internal recirculation systems. Figure 1 shows a
principal sketch of a boiling water reactor (BWR) and the main pipes connected to
the water filled part of the reactor vessel.

In this paper we give some results for forces calculated for a BWR vessel and its
internal vessel (called the moderator vessel) at feedwater pipe break.

2. Simulation using RELAP 5 of a pipe break

The RELAP 5 code (Reactor Ex-cursion and Leak Analysis Program) [1] has been con-
tinuously developed since the 1970s. Idaho National Engineering Laboratory (INEL)
was the first principal code developer contracted by the Nuclear Regulatory Commis-
sion (NRC). The latest code development is an international effort called CAMP [2]
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and the principal code developer is Information Systems Laboratories (ISL), a San
Diego based employee-owned research and development company [3]. ISL acquired
the code development contract from SCIENTECH Inc.

The RELAP5/MOD3 computer code uses the two-fluid model, consisting of steam
and water, with the possibility of the vapor phase containing a noncondensable compo-
nent and the liquid phase containing a nonvolatile solute. The two-fluid model means
that the code solves the continuity equation, the momentum equation and the energy
equations for both the fluid phase and the gas phase. An Eulerian boron-tracking
model is used in RELAP 5 that simulates the transport of a dissolved component in
the liquid phase. There is a field equation for the conservation of the boron solute.
The numerical solution scheme uses results in a system representation using control
volumes connected by junctions. A physical system consisting of flow paths, volumes,
areas, etc., is simulated by constructing a network of control volumes connected by
junctions. Such a representation of a BWR vessel can be seen in Figure 1b.
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Figure 1. (a) Principle sketch of a BRW with internal recirculation system. (b)
nodalization of a BRW vessel for simulations with the RELAP 5 code

The Swedish Nuclear Power Inspectorate for auditing calculations developed the
model in Figure 1b. The main purpose for the model was to compute the maximum
cladding temperature in the core hot channel with different assumptions on vessel
break sizes. Basically this is the model that has been used in our computations. The
model has been adapted with some updates to the force calculations.
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3. Flow induced forces on pipes and structures

Many investigators [4, 5] have reported the theoretical solutions of unbalanced force
on pipes and structures due to blowdown. The basic principles are summarized here.
The resultant force acting on a container by the fluid it contains results from two
sources (a) the pressure acting on the wetted surfaces of the container, and (b) the
friction forces between the fluid and the container acting on the wetted surfaces of
the container, i.e.

R =

∫
w.s.

pnds+

∫
w.s.

τds (3.1)

where
R resultant force acting upon container by fluid,
p local pressure of fluid,
n unit vector normal to surfaces, positive outward,
ds differential surface area,
τ local shear stress due to friction,
w.s. wetted surface of container.

These forces can be computed by using the well-known momentum equation of
fluid mechanics:

R =

∫
w.s.

pnds+

∫
w.s.

τds = −
∫
c.v.

∂

∂t
(vρ) dV −

∫
inlet, outlet

[pn+ ρv (vn)] ds−
∫
c.v.

gρdV

(3.2)
where

g acceleration vector due to gravity,
v velocity of the center of mass of the fluid,
ρ density,
dV differential volume element,
c.v. control volume,
inlet inflow surface,
outlet outflow surface.

By proper choice of control boundaries, the integrations in equation (3.2) over the
inflow and outflow areas can be greatly simplified. Figure 2 shows the situation at
feedwater pipe break.

By using the equation for the total mass flow rate

ṁ = ρvA (3.3)

we can apply equation (3.2) to the situation shown in Figure 2 for computing the
resultant force acting on the reactor vessel. Fortunately, for a simple geometry such as
that of a pipe with constant cross sectional area like that in Figure 2, the integrations
in equation (3.2) can be simplified as

Rx = −
[
L
dṁ

dt
+ (p2 − pa)A+ ṁ2v2

]
(3.4)



90 F. Müller

where
ṁ average mass flow rate in the pipe. This can be computed as the sum of

the mass flow rates in the feedwater pipe control volumes divided by the
number of control volumes

dṁ
dt can be computed numerically by RELAP 5 internal control components.

The first term in (3.4) is called wave force, and the second and third terms together
are called the blowdown force.
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Figure 2. Detailed nodalization at feedwater inlet

The computed reaction force Rx can be correlated to the initial thrust, which is
simply the break plane area multiplied by the initial pressure within the pipe. The
thrust coeffi cient CT is defined by

CT =
Rx
p0A

(3.5)

where A is the break plane area and p0 is the initial pressure within the pipe. The
theoretical maximum value is CT = 2.0 which occurs at steady state frictionless flow
of subcooled water.

4. Computational results

According to [7] it is a conservative assumption to assume that the pipe break happens
in 1 ms, and the break flow area reaches its maximum at 10 ms. RELAP 5 uses Henry-
Fauske’s model [6] for two-phase critical flow calculations. The pipe break is modeled
by opening a break-valve connected to the pipe. The break-valve area is assumed to
increase linearly from zero to the full pipe flow area in 10 ms. The computed flow
rate in Figure 3 starts at a negative value, which is the normal feedwater mass flux
into the reactor vessel, and reaches its maximum slightly above 8 kg/cm2s at 22 ms.

The initial pressure in the vessel is 7 MPa and the feedwater temperatures are
assumed to vary between 453 − 473 K. The initial pressure in the pipe sinks very
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rapidly starting from the break location, as it is shown in Figure 4.

The computed forces (Figure 5) have an initial frequency, which is determined
by the length of the remaining pipe attached to the vessel. These oscillations
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are attenuated very rapidly with the increasing void and decreasing speed of sound
in the two-phase mixture. Finally Figure 6 shows the variations of the computed
blowdown- and wave forces equation —see equation (3.4).

5. Conclusions

The paper demonstrates an application of the RELAP 5 code for computing global
hydraulic loads due to a feed water pipe break at a nuclear boiling water reactor
system. These computed hydraulic loads should be used for design of the reactor vessel
and piping support structures. The computed loads have been evaluated against the
theoretical maximum of such loads and are found to be within the theoretical limits.
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This code has proven to be appropriate for calculation of hydraulic forces in such a
situation.
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Abstract. The paper presents some results of turbine investigations which can be utilized
at small hydroelectric power plants. The influence of turbine runner and blade shapes on the
velocity distributions in turbine channels based on calculations of various types of turbines is
considered here. The analysis of individual solutions gives a description of their advantages
and disadvantages for other utilization.
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1. Introduction

The Department of Power Engineering has been concerned with the development of
hydraulic turbines for small and micro hydroelectric power plants since its establish-
ment [1], [2]. The aim of this research is the design and production of turbines which
are simple from constructional points of view. This requirement is preferred because
of lower investment costs of building these hydroelectric power plants.

Figure 1. Types of turbines according to flow directions at inlet and outlet a)
radial-axial b) axial-radial c) radial-radial d) axial-radial

The basic idea of simple turbine design is to divide complicated three-dimensional
blades into two parts with a bladeless channel between them. It was assumed that the
above mentioned simplification enables us to solve the problem of flow in these types
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of turbines using mathematical formulas available for two-dimensional flows. Basic
types of new hydraulic turbines according to flow directions at inlet and outlet are
illustrated in Fig. 1.

2. Description of investigation of turbine types

The basic research is concentrated on the investigation of radial-axial hydraulic tur-
bine with parallel channel walls in both stages —see Figure 2. Laboratory measure-
ments were carried out on turbine models with diameter D1=0.4 m and D1=0.153 m.
A turbine model with diameter of turbine runner D1=0.4 m is illustrated in Figure
3.

Figure 2. Arrangement of the basic turbine type

Figure 3. Turbine model
The model parameters are as follows:

D1=0.4 m β1=120
◦ D2=1.8 m β2=74

◦

D′3=D
′
4=0.34 m β′3=82

◦ D′′3=D
′′
4=0.28 m β′4=31

◦

B1=B2=0.02 m β′′3=118
◦ B3=B4=0.03 m β′′4=35

◦
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Figure 4. Scheme of turbines with extremely long and highly curved blades

The theoretical investigation of other types of turbines has been done in addition to
the above mentioned basic type. The turbine runners with extremely long and highly
curved blades on radial stage are presented in Fig. 4.

The calculations of velocity and pressure distributions ([3], [4]) were performed for
these types of turbines. The results of calculations are utilized for the qualification of
other turbines.

3. Results

Measured and calculated values of effi ciency for turbine model with diameterD1=0.153
m as well as calculated values of effi ciency for turbine model with parallel channel
walls in both stages with diameter D1=0.4 m are illustrated in Fig. 5.

Figure 5. Curves of effi ciency on turbine models

Notations:
ηhv calculated effi ciency for a model with diameter D1=0.153 m
ηhn measured effi ciency for a model with diameter D1=0.153 m
ηh calculated effi ciency for a model with diameter D1=0.4 m

The “MESH”method”was used for the calculations of the velocity field for the
basic turbine type. A detailed description of the calculation process is given in [4].
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This method is of suffi cient accuracy for choosing the turbine type when appropriate
choice of mesh nodal points and correct implementation of boundary conditions is
ensured. More precise results can be obtained by using the Finite Element Method
(for example by the program COSMOS/M). First of all it is necessary to evaluate
preliminary results and to select the appropriate turbine type. Only after doing that
can we continue with the simulation of turbine runner and also with the investigation
of flow processes. The results of velocity calculations on the suction and pressure
sides of the blades and also in the middle of the channel between the blades achieved
by the method of Lakatos [5] in various sections according to Figure 6, are presented
in Figure 7.

Figure 6. Sections on turbine runner

Notations:
A-A Ψ∗ = 0.50 - Stage 1
B-B Ψ∗ = 0.05 - Stage 2
C-C Ψ∗ = 0.95 - Stage 2
D-D Ψ∗ = 0.50 - Stage 2

where Ψ∗ is the non-dimensional Stokes stream function
r, z cylindrical coordinates
σ curvilinear coordinate in streamline direction
B1, B2, B3, B4 channel widths

Velocity curves for turbine with extremely long blades on radial stage (Figure 4a)
are illustrated in Figure 8, particular sections are shown in Figure 6. Velocity curves
for highly curved blades in the same sections are illustrated in Figure 9.
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Figure 7. Velocity distributions

4. Evaluation of results

The analysis of results achieved up to the present time shows the following:

— for laboratory research of individual turbine types the model with the tur-
bine runner diameter D1=0.4 m is more suitable than the one with diameter
D1=0.153 m because of the better agreement between the measured and calcu-
lated results;

— the channel with non-parallel walls and with extremely long blades on radial
stage is not appropriate because one part of the turbine runner blades works as
a pump and the losses are increased;

— the extremely curved blades on radial stage enable the appropriate distribution
of energy in both stages but their manufacture is complicated;

— the basic type of turbine with parallel channel walls in both stages is more
appropriate from a productional point of view than the latter one, but the energy
utilization is not the best.
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Figure 8. Velocity curves for extremely long blades
Notations:
wm middle line between blades
wp pressure side
ws suction side
z coordinate
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Figure 9. Velocity curves for highly curved blades

Notations:
wm middle line between blades
wp pressure side
ws suction side
z coordinate
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5. Conclusions

On the basis of the achieved results we can see, that the more appropriate type of
turbine is the one shown in Figure 4b. Simplification in production process can be
attained by changing the blade length in the radial stage because the curvature of
the blades will be small. The distribution of energy gain between the stages can be
controlled by changing the channel wall bevel angle and that of the blade length.
A turbine effi ciency of about 75 % can be achieved by optimization of the above
mentioned parameters.

The production costs of these turbine types are very low in comparison with tradi-
tional turbines such as Francis and Girard turbines (about 30 %). This saving ensures
refunding of investment for a small hydroelectric power plant in a relatively short time
assuming relatively high effi ciency.

The aim of the research by members of Department of Power Engineering is to de-
sign several new turbine types for small and micro-hydroelectric power plants. These
types made the simple selection of appropriate turbine type for varied conditions ac-
cording to the water flow and head, possible. The results of this project will be used
in a future investigations.
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Abstract. Comprehensive wind tunnel experiments are carried out on the longitudinal
vortex excitation of the upstream cylinder in a cruciform two-cylinder system. The vortex
structure around the crossing is dominated by the ratio of gap s to the downstream cylinder
diameter d2, i.e., the trailing vortices shed when s/d2 < 0.25 and the necklace vortices shed
when 0.25 < s/d2 < 0.7. Based on measurements under variable damping factor, criteria for
occurrence of the longitudinal vortex excitations are presented and substantial alternating
lift coeffi cients are proposed for them to estimate the excitation force. These results are of
practical importance to predict and to avoid these newly found vortex excitations.

Keywords : Vortex excitation, cruciform arrangement cylinders, longitudinal vortex, scruton
number, alternating lift coeffi cient.

1. Introduction

It is well known that nearly two dimensional vortices shed alternately from both sides
of a cylindrical body set in a uniform flow, which form two arrays of vortices in a
staggered arrangement in the wake, i.e., Kármán’s vortex street [1]-[4]. Since the peri-
odic shedding of Kármán vortex can induce large cross-flow oscillation and/or sound
emission which are usually undesirable from the practical point of view, numerous
works have been carried out to control the Kármán vortex shedding and in turn the
sound and oscillation. Inspired by Tomita et al.’s work [5] on sound depression effect
of another cylinder set downstream in a cruciform arrangement as shown in Figure 1,
the present authors investigated the oscillation suppressing effect of the downstream
cylinder in the same arrangement [6]-[9]. Although the Kármán vortex excitation was
eliminated when the cylinder diameters were equal and the gap between the cylinders
was less than half the cylinder diameter, a new oscillation was found to occur over a
certain velocity range around three times higher than the Kármán vortex excitation
[6]. Recent investigations showed that the newly found oscillation is caused by one of
two types of vortices which shed periodically around the crossing of the two cylinders,
as seen in Figure 2 [7],[10],[11]. They are classified into longitudinal vortices since they
have axes parallel to the free flow. Each of them is referred to as the Trailing vortex
(Figure 2(a)) and the Necklace vortex (Figure 2(b)) according to their geometry.
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Since very few works have been carried out on these longitudinal vortices and little
is known about their nature concerning the vortex excitation yet, it is a problem of
practical importance to clarify the characteristics of these longitudinal vortices and
to know the conditions under which the longitudinal vortex shedding occurs, and to
establish a way to predict the oscillation amplitude for given conditions.

Therefore, the objectives of this work are to obtain understanding of the global
nature of the longitudinal vortices, to find a criterion for the occurrence of the vortex
excitation and to estimate the exciting force due to the longitudinal vortices, based
on comprehensive wind tunnel experiments.

z

y

x

d1

d2

s

Free Stream Velocity

Upstream Cylinder

Downstream Cylinder

U

Figure 1. Arrangement of two cylinders
and coordinate system.

(a) Trailing vortex (U=12.8cm/s, s/d=0.08, Re=860)

(b) Necklace vortex (U=12.5cm/s, s/d=0.28, Re=900)

Figure 2. Photographs of longitudinal
vortices shedding from two cylinders in
cruciform arrangement. (in water tun-
nel, d = d1 = d2 = 10mm)

2. Nomenclature

A oscillation amplitude of the upstream cylinder =
√
2 · Zrms

(CL)rms fluctuating lift coeffi cient, equation (4.1)
(CL)

′

rms substantial fluctuating lift coeffi cient, equation (4.2)
(CLR)rms alternating lift coeffi cient, equation (4.4)
(CLR)

′

rms substantial alternating lift coeffi cient, Equation (4.5a, 4.5b)
d cylinder diameter in case of identical cylinder system, i.e. d =

d1 = d2 = 26mm
f frequency
fc oscillation frequency of the upstream cylinder
fn natural frequency of the elastically supported upstream cylinder
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fv vortex shedding frequency
fv0 vortex shedding frequency from a fixed system
l effective length of cylinder
Re Reynold’s number defined by Re = U · d1/ν, where ν is the kine-

matic viscosity of air
s gap between cylinders
Sc Scruton number defined by equation (4.3)
St Strouhal number for the vortex shedding frequency defined by

St = fv · d1/U
St0 Strouhal number for the fixed system defined by St0 = fv0 · d1/U
St2 Strouhal number referred to d2
SL, Su spectrum of lift force and velocity, respectively
SuAB cross spectrum of velocities detected at two positions A and B
(SuAB)peak maximum peak value of SuAB
U free flow velocity
U0 the free flow velocity at which fv0 = fn
Zrms root-mean-square value of z-displacement of the upstream cylinder
δ logarithmic damping factor

3. Experimental apparatus and procedures

The arrangement of the two cylinders, the coordinate system and symbols used in this
paper are shown in Figure 1. The wind tunnel is a blow down type. The maximum
attainable velocity is 40 m/s and the turbulence intensity is less than 0.4% at 10 m/s.
The measuring section is 320 mm∗320 mm in cross-section and 1000 mm in length.
The upstream cylinder is set horizontally and perpendicularly to the free flow at the
center of the measuring section. It passes through the slots on the sidewalls of the
measuring section. End plates are fixed on the cylinder near both ends to avoid flow
through the slots. The downstream cylinder is fixed vertically on a traverse device so
as to make the gap s adjustable within an error of 0.01 mm. On the details of the
apparatus, see [6].

The diameter of the downstream cylinder d2 is varied from 18 mm to 32 mm,
while the upstream cylinder diameter d1 is fixed at 26 mm. The effective length l of
the cylinder, i.e. the distance between the two end plates, is also fixed at 318 mm.
Experiments are conducted first for a system with two identical cylinders, i.e. d1 = d2,
and then influence of the diameter ratio d2/d1 is investigated. Hence, the diameters
of both cylinders are simply denoted as d when the two cylinders are identical. In
the following sections the diameters of both cylinders are equal at 26 mm whenever
d is used as the cylinder diameter.

The upstream cylinder is fixed rigidly, or supported elastically by plate springs out-
side the measuring section. In the latter case, the motion of the elastically supported
cylinder is almost purely translational in vertical (z−) direction. An eddy-current
damper is applied to the elastically supported system to adjust the logarithmic damp-
ing factor δ from 0.008 to 0.2. The natural frequency fn of the elastic system and the
damping factor are determined from a free damping oscillation experiment in other-
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wise quiescent air. A mechanical oscillator is used to oscillate the upstream cylinder
sinusoidally in vertical direction with an arbitrary amplitude and frequency.

The free flow velocity U is measured by a ring type Kármán vortex velocimeter
developed in the present authors’laboratory [12].

Hot wire anemometry is applied to detect u, the x-component of velocity fluctua-
tion. Two hot wire probes, probe A and B, are set at opposite sides of the upstream
cylinder near the crossing to detect the velocity fluctuation caused by the periodic
vortex shedding. The positions of probes are determined by moving them to find
places where the fluctuation component due to the longitudinal vortex shedding is
most clearly discerned. The probe positions thus determined depend on the condi-
tions such as the gap-to-diameter ratio and the downstream cylinder diameter, as
indicated in the captions of figures. The vortex shedding frequency fv is determined
from the cross spectrum SuAB of two velocity signals uA and uB . The relative peak
height of SuAB at fv is considered to be a measure of the strength or regularity of
the vortex, although that value of the height itself has no significance. By using the
cross spectrum and its peak value, phenomena concerning the longitudinal vortices
are discerned more definitely than only to depend on one velocity signal as applied
so far.

The displacements at both ends of the upstream cylinder are measured by a non-
contacting laser beam displacement detector within an error of 0.1 mm over a range
of 0-13 mm.

The lift force acting on the fixed upstream cylinder is measured using a strain-gauge
type load-cell.

4. Results and discussion

4.1. Characteristics of longitudinal vortices shedding from fixed system

4.1.1. Influences of gap-to-diameter ratio and Reynolds number for identical-cylinder
system. In this section, results obtained for a system with an equal diameter two cylin-
ders, i.e. d1 = d2 = 26 mm (=d), are presented. Figure 3 shows the cross spectra of
velocities detected at two positions around the crossing of the cylinders for various
values of the gap-to-diameter ratio s/d under a fixed velocity. The two probe positions
A and B are symmetrical with each other about the x−y plane. Note that these probe
positions are selected because they are most suitable to detect the periodic shedding
of the respective longitudinal vortices. It is clearly seen that the shape of cross spec-
trum SuAB and the peak frequency are definitely different between two regions of s/d,
noted as the region T (s/d = 0−0.25) and the region N (s/d = 0.25−0.64). Strouhal
numbers of these peak frequencies correlate well with those confirmed for the longitu-
dinal vortex shedding frequencies based on various measurements, including counting
the vortex shedding in the visualized flow, as shown in Figure 2.

The vortex shedding frequency fv0 is determined as the highest-peak frequency of
SuAB . In Figure 4 the Strouhal number St0 for the vortex shedding frequency fv0 is
plotted against s/d for various Reynolds numbers. The abrupt change at s/d = 0.25
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observed in the earlier works is confirmed more clearly in this figure. The St0 − s/d
curve of the trailing vortex (s/d < 0.25) has an irregular shape and depends largely
on the Reynolds number in a somewhat incoherent way, while that of the necklace
vortex (s/d > 0.25) collapses on a single curve. The maximum value of s/d for the
necklace vortex shedding is shown to be 0.7, which is considerably larger than in the
earlier works.

The peak value of SuAB at fv0 is plotted against s/d in Figure 5 for various
values of free flow velocity U . It is confirmed again in this figure that s/d = 0.25
is the boundary value separating the trailing vortex region and the necklace vortex
region. In the earlier works by the authors, s/d = 0.08 and s/d = 0.28 were used
as the representative values for the trailing vortex and the necklace vortex since the
shedding of the two vortices were observed to shed most regularly at these values of
s/d [8]. Since (SuAB)peak in Figure 5 has the local maximum value for these values
of s/d in the respective regions, these s/d values are selected also in this work as the
representatives for the two longitudinal vortices.
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Figure 3. Cross-spectra of velocities at two locations around the crossing for var-
ious values of s/d. (U = 8.0 m/s,Re = 14, 000) Probe position: Region T
(x/d = 0.5, y/d = −1.25, z/d = 0.5 or − 0.5) Region N (x/d = 0.5, y/d =
−0.75, z/d = 0.5or − 0.5)

Strouhal numbers for the two longitudinal vortices at the above representative s/d
values are plotted against Reynolds number in Figure 6, where the ranges of the results
reported so far are compared. The Strouhal number for the necklace vortex increases
continuously with Re when 500 < Re < 5, 000 and attains at a value around 0.04,
then decreases very gradually up to Re = 40, 000. Meanwhile, the Strouhal number
for the trailing vortex increases with Re over the whole Re range of measurement,
and has a discontinuous jump at Re around 5,000.

The results in this section as shown in Figures 3, 4 and 6 show the different natures
of the two longitudinal vortices. The structure of flow near the crossing is definitely
decided by the gap-to-diameter ratio, i.e., the trailing vortices shed when s/d < 0.25
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and the necklace vortices when 0.25 < s/d < 0.7 over a wide range of Reynolds
number Re. The necklace vortex has a regular and definite nature in that the Strouhal
number St0 is nearly constant over the Reynolds number range 5,000 to 40,000 and
that St0−s/d data for various Re collapse on a single curve which decreases gradually
with s/d. In contrast, St0 for the trailing vortex increases from 0.02 to 0.09 in the same
Re range, and the St0 − Re curve has a discontinuous jump at around Re = 5, 000.
The change of St0 with s/d is quite large and irregular, and the influence of Re on the
St0 − s/d relationship is not coherent. Besides, the peak value of the cross spectrum
for the trailing vortex is usually lower than that for the necklace vortex as seen in
Figure 3, showing that the periodicity of the trailing vortex shedding is less than that
of the necklace vortex.
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4.1.2. Influence of diameter ratio. Figure 7 shows the vortex shedding frequency
fv0 plotted against the downstream cylinder diameter d2 in a system where the two
cylinders are not identical. While fv0 of the necklace vortex at a fixed free flow
velocity decreases with d2 for all the values of the gap, there was found no systematic
tendency in the influence of d2 on fv0 on the trailing vortex. Taking this behavior of
the necklace vortex into consideration, the downstream cylinder diameter is taken as
the reference length to define the Strouhal number, i.e. St2 = fv0 ·d2/U . In Figure 8,
St2 is plotted against the gap s divided by d2 for several diameter ratios. In this figure
it is clearly seen that St2 changes abruptly at s/d2 = 0.25, and the St2−s/d2 relation
is clearly different between the two regions bounded by this value of s/d2, like in Figure
4 for the identical cylinder system. This result suggests that the downstream cylinder
diameter has the decisive effect on the vortex structure around the crossing. However,
St2 plotted against s/d2 scatters largely for the trailing vortex (s/d2 < 0.25) and does
not collapse well on a single curve for the necklace vortex (0.25 < s/d2 < 0.5).
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To see the span-wise size of the longitudinal vortices, a hot wire probe is moved
parallel to the upstream cylinder axis. Figure 9 shows the spectrum Su of the velocity
detected by the probe for the identical cylinder system at various values of y/d. The
gap is set at the representative values for (a) the trailing vortex and (b) the necklace
vortex. In Figure (a), near the downstream cylinder, say y/d < 2.4, Su has the
highest peak corresponding to the trailing vortex, and the maximum value of y/d at
which the trailing vortex peak is observed is y/d = 3.2. At larger values of y/d, the
Kármán vortex peak becomes dominant in a spectrum. From this figure, the span-
wise extent of the trailing vortex is estimated around y/d = 3.2, as indicated in the
figure as RT . The span-wise extent RN of the necklace vortex is also determined in
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the same manner from Figure 9(b). RT and RN thus obtained are regarded as the
measures of the span-wise size of the trailing and the necklace vortices, respectively.
It is confirmed that RT is considerably larger than RN as observed in the photographs
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of the visualized vortices in Figure 2. Measurements on systems with various d2/d1
show that the span wise size of the two longitudinal vortices are roughly proportional
to the downstream cylinder diameter.

4.1.3. Fluctuating lift force acting on the upstream cylinder. Oscillograms of the
fluctuating lift force acting on the upstream cylinder in the identical cylinder system
and its spectrum SL are shown for s/d = 0.08, 0.25 and 0.28 in Figure 10. Velocities at
the two reference positions, uA and uB , were measured simultaneously. At s/d = 0.08
and 0.28, a dominant frequency component is observed and the frequency of this
dominant component is shown to coincide with the vortex shedding frequency fv0
determined from the velocity cross spectrum SuAB for the respective values of s/d.
At s/d = 0.25, two peaks appear in SL corresponding to the trailing and the necklace
vortices. The oscillogram shows that the two vortices shed not simultaneously but
alternately at s/d = 0.25.

The lower peak in SL at f = 75 Hz which appears for the three values of s/d is
due to the Kármán vortex shedding.
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Figure 10. Oscillograms and spectra of fluctuating lift force on the upstream cylinder
(fixed system, d = d1 = d2 = 26 mm, U = 8.0 m/s, Re = 14, 000)
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The root-mean-square value of the fluctuating lift coeffi cient (CL)rms is calculated
from the measured root-mean-square value of lift, (FL)rms, using equation (4.1) and
plotted against Re in Figure 11.

(CL)rms =

[
(FL)rms /

1

2
ρU2ld

]
. (4.1)

(CL)rms of the Necklace vortex is nearly constant over the Reynolds number range
from 5,000 to 30,000, while that of the trailing vortex decreases by the factor of two
over the same Re range.
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The alternating lift force is the resultant of the fluctuating pressure acting on the
upstream cylinder surface caused by the periodical shedding of longitudinal vortices.
The measurement of span-wise size of the longitudinal vortices as presented in Figure
9 shows that the fluctuating pressure due to the longitudinal vortices is exerted on
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a limited part of the effective length of the upstream cylinder. (CL)rms defined by
equation (4.1) is based on the assumption that the lift force distributes uniformly
over the whole span of the upstream cylinder. A practical improvement to define the
lift coeffi cient is to use the real span wise length of the longitudinal vortices as given
by RT and RN in Figure 9. Therefore, the substantial fluctuating lift coeffi cient is
defined by the following equation

(CL)
′

rms =

[
(FL)rms /

1

2
ρU2d× 2RT (or RN )

]
. (4.2)

(CL)′rms thus obtained are plotted against s/d2 in Figure 12 for three values of
d2/d1. Figure 12 shows that the alternating lift force due to the longitudinal vortices
is nearly proportional to their span wise extent along the upstream cylinder, and
hence proportional to d2 in turn.

Results in Figures 9 and 12 give a guide to estimate the fluctuating lift force exerted
on the upstream cylinder when dimensions of a cruciform cylinder system, d1, d2 and
s, and flow velocity are given.

4.2. Oscillation behavior of the upstream cylinder

The cross flow oscillation behavior of the upstream cylinder is observed when the
free flow velocity is stepwisely increased and then decreased. In Figure 13, the rms
value of the z-displacement of the upstream cylinder and the vortex shedding fre-
quency fv are plotted against the free flow velocity U. The vortex shedding frequency
from the fixed equivalent, fv0, and the natural frequency of the elastically supported
upstream cylinder, fn, are presented for comparison. Similarly to the well known
Kármán vortex excitation, very large oscillations are caused by the two longitudi-
nal vortices over a certain velocity range, always accompanied by the synchronization
phenomenon of the vortex shedding with the cylinder oscillation. “Over range”means
that the oscillation amplitude is beyond the range of measurement. The spectrum SZ
of the displacement shows that the frequency of these large excitations and hence the
vortex shedding frequency fv, coincide with the natural frequency fn of the cylinder.

Outside the excitation region, the vortex shedding frequency fv is nearly equal
to fv0, and SZ has a maximum peak at f = fn irrespective of U, showing that the
cylinder always oscillates at its natural frequency fn. When U is a little higher than
the vortex excitation range, an additional peak appears in SZ at fv. In this case, a
beat motion is observed in the oscillogram of the cylinder displacement.

The vortex excitation regions expand around the velocity U0, the velocity at which
the vortex shedding frequency fv0 from the fixed equivalent is equal to the natural fre-
quency fn of the elastically supported system. A hysteresis behavior is also observed
clearly in the necklace vortex excitation and less clearly but definitely for the trailing
vortex excitation as seen in Figures 13(a) and (b), respectively. The different features
between the two longitudinal vortex excitations are clearly observed as follows.

In Figure 13(a), the velocity range of the trailing vortex excitation expands to a
value as low as one half of U0, and it is narrower for U higher than U0. Accordingly,
the jump of fv caused by the synchronization at the lower edge of the excitation range
is very large. This may be associated with the jump of fv0 in the fv0−U curve which
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results in the discontinuity in the St0 − Re relationship in Figure 6. In spite of this
large jump of fv at the lower edge of vortex excitation range, the change of oscillation
amplitude there is continuous and the amplitude increases rather gradually with U
in the excitation range up to U = U0. In contrast, the necklace vortex excitation
region starts at a velocity slightly lower than U0 and the excitation region expands to
a velocity much higher than U0, as seen in Figure 13(b). In spite of the slight jump
in fv at the lower edge of the excitation region, the oscillation amplitude abruptly
increases with a large step there.

In Figure 14, the relationship between the oscillation amplitude and the gap-to-
diameter ratio under a fixed flow velocity is presented for various diameter ratios.
The two values of flow velocity U in the figure are selected as the representatives
of the trailing vortex excitation (U = 7.0 m/s) and the necklace vortex excitation
(U = 12.0 m/s) in Figure 13. When U = 7.0 m/s, the oscillation is large in the region
s/d2 < 0.25 and almost disappears for s/d2 larger than the boundary value of s/d2,
except the case of d2/d1 = 0.692. Since the cylinder oscillates at its natural frequency
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fn and fv0 of the trailing vortex at this velocity is close to fn, the vortex shedding is
“locked in”the cylinder oscillation and the oscillation amplitude becomes large due to
the resonance, i.e. the trailing vortex excitation. In contrast, large excitations occur
in the region 0.25 < s/d2 < 0.75 when U = 12.0 m/s. Since the natural shedding
frequency fv0 of the necklace vortex at this velocity is close to the natural frequency
fn of the cylinder, this oscillation is attributed to the necklace vortex excitation.

The abrupt change of oscillation amplitude at around s/d2 = 0.25 means that
a very slight change of the gap can induce a large oscillation. Generally speaking,
the maximum cylinder oscillation amplitude is larger when the downstream cylinder
diameter d2 is larger.
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Figure 14. Oscillation amplitude vs. non-dimensional gap for various diameter ratio
(δ = 0.01, d1 = 26 mm, fn = 14.8 Hz)

In some cases large oscillations appear in the two regions of s/d2, as the case of
d2/d1 = 0.692 at U = 7.0 m/s and d2/d1 = 1.154 at U = 12.0 m/s. This behavior
is explained by the result shown in Figure 8. For example, St2 for d2/d1 = 0.692 in
Figure 8 has an equal value in the both regions of the trailing vortex (s/d2 < 0.25) and
the necklace vortex (s/d2 > 0.25). Hence, the natural vortex shedding frequency fv0
is equal to fn in the two regions of s/d2. Therefore, the vortex shedding synchronizes
with the cylinder oscillation and the vortex excitation occurs in the two regions of
s/d2, i.e. two maximum peaks appear in the Zrms/d1 − s/d2 curve for d2/d1 = 0.692
as seen in Figure 14.

Results shown in Figures 13 and 14 are well coherent with the results on the fixed
systems, confirming that a large oscillation is induced by either of the two longitudinal
vortices in the respective regions of s/d2.
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Figure 15. Effect of damping factor on oscillation-velocity curve. (d = d1 = d2 =
26 mm)

Figure 15 shows the effect of the damping factor on the longitudinal vortex exci-
tations. When δ is increased, the oscillation amplitude decreases for both of the two
longitudinal vortex excitations. The width of the velocity range of vortex excitation
shrinks towards U0, the velocity at which fv0 = fn. For all the measured values of
the damping factor, the maximum amplitude of trailing vortex excitation occurs at
U0, while that for the necklace vortex appears at U considerably higher than U0.

The hysteresis behavior is not discernible for damping factors larger than those in
Figure 13.

4.3. Lock-in phenomenon of the longitudinal vortex

Although the synchronization of the vortex shedding with the upstream cylinder
oscillation (lock-in) occurs with the vortex excitation, it is not essential for the lock-in
whether the oscillation is induced by the fluid force or not. The lock-in is a phenom-
enon in the flow caused by the cylinder oscillation irrespective of the mechanism of the
cylinder motion. When the vortex shedding is said to “lock-in”the cylinder oscillation,
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it is controlled by the cylinder oscillation so that the vortex shedding frequency fv
coincides with the cylinder oscillation frequency fc and the velocity fluctuation caused
by the vortex shedding is in phase with the cylinder displacement, consequently its
periodicity becomes more regular. When the cylinder oscillation amplitude is smaller
than a certain value, it cannot control the vortex shedding. The threshold value of
amplitude for the lock-in is investigated using a mechanical oscillator [13]. The results
are presented by the broken lines in Figure 16 where the abscissa expresses the ratio
of the cylinder oscillation frequency to the natural vortex shedding frequency and the
coordinate the relative amplitude of the cylinder oscillation. The lock-in threshold
has a finite value even when fc/fv0 = 1. It means that the vortex shedding is not con-
trolled by a cylinder oscillation with an amplitude smaller than this threshold value
even when the cylinder oscillation frequency is equal to the natural vortex shedding
frequency.

(a) Trailing vortex (s/d=0.08)

(b) Necklace vortex (s/d=0.28)
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Figure 16. Synchronization region and excitation region for the longitudinal vortices.
(d = d1 = d2 = 26 mm) Solid curve: Contour of excitation region. Broken curve:
Contour of lock-in region measured by mechanical oscillator
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The regions of the vortex excitation for the two longitudinal vortices are also pre-
sented in Figure 16. The solid lines express the contour of the region where the vortex
excitations are observed. The vortex excitation regions observed for the elastically
supported system seem to be included in the above lock-in regions for the respective
vortices. The symbol “Beat”means that the cylinder oscillation contains both fn and
fv components but the amplitude is very small, as mentioned in Section 4.2.

The lock-in region for the necklace vortex (Figure 16(b)) is understandable from the
phenomenological point of view in that the lock-in threshold is minimum at fc = fv0
and it increases rapidly when fc differs from fv0 in both sides of fv0. However, for
the trailing vortex (Figure 16(a)) the lock-in region expands to very large values of
fc/fv0 > 1 and the threshold amplitude does not increase monotonouosly but has a
second minimum value at around fc/fv0 = 2. This peculiar behavior of the trailing
vortex is not understood at present, but may be associated with the lock-in region
widely expanding to a velocity lower than U0 and the discontinuity in fv0 − U curve
in Figure 13.

Since the lock-in phenomenon is the feedback of flow to the cylinder oscillation
which plays an essential role in the vortex excitation, it is acutely desired to clarify
the conditions for the lock-in by appropriate non-dimensional parameters as shown in
Figure 16. It is also desired to clarify the influences of other parameters, i.e. Reynolds
number, gap-to-diameter ratio and diameter ratio of the two cylinders, on the contour
lines in Figure 16.

4.4. Criterion for the longitudinal vortex excitation and estimation of
the alternating lift force

From an engineering point of view, the most practical way to avoid the vortex
excitation is to make the natural frequency of the system far enough from the vortex
shedding frequency fv0 and/or to adopt a damping factor large enough to suppress the
oscillation. Hence, in order to predict occurrence of vortex excitations of a system, it is
a convenient way to present the vortex excitation range of fv0 at an arbitrary damping
factor. To generalize the expression, these parameters are non-dimensionalized into
the relative deviation of fv0 from fn, i.e. ( fv0 − fn)/fn, and the Scruton number as
defined by the following equation [14].

Sc = 2mδ/ρd2l . (4.3)

Occurrence of the longitudinal vortex excitations is expressed on the Sc−(fv0−fn)/fn
plane in Figure 17 , where the criterion for the Kármán vortex excitation is added
for comparison. Solid curves in the figure show the contour line of the longitudinal
vortex excitation region. Although the definition of Sc by equation (4.3) is based on
the two dimensionality of the flows, Figure 17 gives a useful and clear comparison of
the features of longitudinal vortex excitations with the Kármán vortex excitation as
seen in the figure.

The difference in nature between the two longitudinal vortex excitations is also
clearly seen in Figure 17. While the trailing vortex excitation is suppressed with a
damping factor measured by Sc = 28, which is around one half of the maximum value
for the Kármán vortex excitation [14], the necklace vortex excitation is observed at
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Sc = 150, which corresponds to the maximum damping attained by the eddy current
damper used in this experiment. The width of necklace vortex excitation range of
(fv0 − fn)/fn gradually decreases with Sc. When Sc is small it is much wider in the
positive side than in the negative side. The lower limit of the range is almost constant
at around -0.1 over the whole Sc range.

In contrast, the (fv0−fn)/fn region for the trailing vortex excitation expands wider
in the negative side and the total width decreases rapidly in the range of Sc = 20−25.

(a) Trailing vortex excitation (s/d=0.08)

(b) Necklace vortex excitation (s/d=0.28)
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Figure 17. Criterion for longitudinal vortex excitation. (d = d1 = d2 = 26 mm) Solid
curve: Contour of longitudinal vortex excitation region. Broken curve: Contour of
Kármán vortex excitation region.

Since the oscillation frequency of the upstream cylinder is fixed at its natural fre-
quency over the whole longitudinal vortex excitation region, the oscillation is regarded
as the resonance of a linear elastic system with small damping. Hence, the amplitude
of excitation force is calculated by the following equation.

(CLR)rms =
8πSt2nmδ

ρd2l
·
√
2

(
Zrms
d

)
. (4.4)

Taking into account the fact that span-wise region where the fluctuating pressure
caused by the longitudinal vortices is exerted is limited to RT and RN as shown in
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Figure 9, the substantial alternating lift coeffi cients of the longitudinal vortices are
proposed as defined by the following equations.

Trailing vortex : (CLR)
′

rms =
8πSt2nmδ

ρd2 · 2RT
·
√
2

(
Zrms
d

)
(4.5a)

Necklace vortex : (CLR)
′

rms =
8πSt2nmδ

ρd2 · 2RN
·
√
2

(
Zrms
d

)
(4.5b)

In addition to the measurements of oscillation amplitude with varying U at a fixed
damping factor as shown in Figure 13, measurements were carried out with varying
damping factor δ at a fixed velocity. The oscillation amplitude at the vortex excitation
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Figure 18. Substantial alternating lift coeffi cient due to longitudinal vortices (d =
d1 = d2 = 26 mm)

is converted into the substantial alternating lift coeffi cient (CLR)
′

rms and plotted
against the non-dimensional amplitude as shown in Figure 18, where results obtained
for the fixed system presented in Figure 12 are also added. Note that the Reynolds
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number varies for the fixed-δ measurements while it is constant for the fixed-U mea-
surements.

(CLR)
′

rms for the necklace vortex seems to collapse on a single curve and decreases
with the oscillation amplitude A/d. The maximum value appears at the smallest
vortex excitation amplitude and has a value around 0.6, which is considerably larger
than the value for the fixed system.

In contrast, (CLR)
′

rms for the trailing vortex scatters largely, and at the incidence
of the vortex excitation (CLR)

′

rms is much smaller than that of the fixed system. It
seems to increase with the oscillation amplitude till the maximum value 0.5 appears
at around A/d = 0.2.

5. Conclusions

Comprehensive experiments are carried out to clarify the behavior of the longitu-
dinal vortex excitations of the upstream cylinder in a cruciform two circular cylinder
system in a uniform flow. Influences of the gap-to-diameter ratio, the diameter ratio
of the two cylinders and the damping factor on the vortex shedding and the oscillation
are investigated. Cross spectra of the velocities at properly selected two points near
the crossing and measurements of the fluctuating lift force definitely reconfirmed and
expanded the results so far reported by the present authors. The conclusions newly
found in this work are summarized as follows.

1. The downstream cylinder diameter d2 has a dominating influence on the longi-
tudinal vortex structure formed near the crossing. That is, the trailing vortices
shed when 0 < s/d2 < 0.25 and the necklace vortices shed when 0.25 < s/d2 <
0.7. The maximum value of s/d2 for the necklace vortex shedding found in this
work is considerably larger than reported so far.

2. Compared with the necklace vortex, the trailing vortex has a very irregular
nature as follows. Its St0 − Re curve does not attain a constant value up to
Re = 40, 000, unlike the Kármán vortex or the necklace vortex, and has a large
discontinuous jump at Re = 5, 000. Under a fixed velocity fv0 changes irregularly
with the gap s and there was found no coherent tendency in fv0 − d2 relation.

3. The shedding area of the longitudinal vortex on the upstream cylinder surface
is nearly proportional to the downstream cylinder diameter, and in turn, the
alternating lift force caused by the longitudinal vortices is also proportional to
the downstream cylinder diameter. Based on this result, the substantial lift
coeffi cient of the longitudinal vortices is proposed to estimate the exciting force
of the longitudinal vortices.

4. The criteria for the two longitudinal vortex excitations are presented as a curve
on Sc− (fv0−fv)/fn plane. The former parameter expresses the relative devia-
tion of the natural vortex shedding frequency from the natural frequency of the
upstream cylinder, and the latter is the Scruton number conventionally applied
to two-dimensional flows. Compared with the Kármán vortex excitation of the
same aspect ratio cylinder, the minimum value of Sc to suppress the trailing
vortex excitation is smaller than that for the Kármán vortex. In contrast, the
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necklace vortex excitation can occur even when Sc is three times as large as that
to suppress the Kármán vortex excitation.

The criteria for the longitudinal vortex excitation in Figure 17 give the guideline for
the occurrence of the excitation, and the substantial alternating lift coeffi cient given in
Figure 18 can be applied to predict the vortex excitation amplitude for a system with
an arbitrary aspect ratio. These results obtained in this work will be a guideline to
predict and to avoid or suppress hazardous vibrations caused by longitudinal vortices.
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Abstract. The infiltration of water into the soil was investigated by many researchers using
both theoretical and experimental approaches. While the ponded infiltration more or less
can also be treated with analytical methods, the unsaturated infiltration can generally be
solved only by numerical procedures. Unfortunately, the latter method provides no generally
valid relatonships.
Based on the analysis of the wetting front and on experimental results, some general rela-
tonships were established to calculate the equilibrium moisture content corresponding to a
given water flux.

Keywords : Unsaturated infiltration, ponded infiltration, soil.

1. Introduction

Infiltration from rainfall or sprinkler irrigation is of great importance for the practice.
An excess of rainfall over infiltration may cause severe overland flow and soil erosion.
In the case of saturated or ponded infiltration all of the pores are filled with water
and the hydraulic conductivity of the soil equals the saturated conductivity. If the
rate of supply of water is limited in comparison to the maximum rate, then the water
content at the surface and in the transmission zone can not reach the fully saturated
value Ws.

In the wetting front of an infiltration process the matric potential of the soil pre-
dominates and, therefore, the absorption of water takes place. Behind the advancing
wetting front, in which the water content is nearly constant (transmission zone), the
gravitational potential becomes dominant.

If the water content of the transmission zone for any infiltration rate were known,
then the wetting front velocity (or pore water velocity) could simply be determined.
From the continuity equation of flow it follows that the average depth of the wetting
front is given by

y =
v · t

W −W1
= w · t (1.1)

where
v is the rain intensity, cm/h,
W1,W are the initial and asymptotic volumetric water content,
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t is the elapsed time,
w is the velocity of the wetting front.

Unfortunately, the asymptotic water content for different infiltration conditions is
generally not known. Therefore we have analyzed the wetting front, especially the
distribution of the matric potential and the gradient of water content in it. We used
also experimental results obtained on packed plexiglass columns.

2. Theoretical Considerations

In any infiltration process a wetting front starts as it is shown in Figure 1.

Figure 1. Wetting profiles for different water fluxes. 1− v = Ks, 2− v = 0.001×Ks

The profile of water content generally shows a very steep wetting front and, there-
fore, in many cases a simplified approach may be used. Measurements on different
types of soils have shown that the steepness of the water profile decreases with increas-
ing hydraulic conductivity. The driving potential is the sum of the matric potential
of the dry soil and the gravitational potential. In the wetting front the absorption of
water occurs by tension forces while behind the wetting front the gravitational effect
becomes more dominant. The steady-state one-dimensional motion of water can be
described by Darcy’s law as

− v = K (W ) · d (Ψ + y)

dy
= K (W ) · dΨ

dy
+ 1 (2.1)

where
K (W ) is the hydraulic conductivity of the soil,
Ψ is the matric potential.

In order to use equation (1.1), the asymptotic water content must be known. In
the case of ponded infiltration W = Ws, that is the saturated water content. Under
unsaturated conditions the water content at the surface should approach a value
appropriate for K to equal v. Our main task is to find an appropriate relationship
to describe the variation of the asymptotic water content in terms of soil physical
properties such as the relative rain intensity Ks/v or the soil matric potential.
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The soil water diffusivity and the hydraulic conductivity are interrelated by the
soil matric potential as follows

K (W ) = D · dW

dΨ
. (2.2)

The soil matric potential is approximated by the following expression [1]:

MR =
1

[1 + (α ·Ψ)
n
]
m and m = 1− 1

n
(2.3)

where the moisture ratio is defined as

MR =
W −Wr

Ws −Wr
.

In this equation Wr is a small moisture value and serves first of all to achieve a better
fitting.

In order to use equation (2.2), the soil water diffusivity relationship is needed.
Earlier experiments have shown that the diffusivity is influenced first of all by the
degree of saturation [2]. Indeed, we have always found good correlation using the
following expression

D = D0 · exp [−A (1−DS)] (2.4)

where A is a constant (for soils in question its value is 9.75 and 7.39 respectively) and
the degree of saturation is given by

DS =
W −Wmin

Ws −Wmin
(2.5)

Wmin means a minimum water content at which the liquid diffusion coeffi cient dras-
tically decreases and it is corresponding to pF-values between 4.2 and 4.5 (wilting
point). For water contents less than Wmin Darcy’s law becomes no longer valid and
the water movement occurs more and more in vapor phase.

Examining equation.(2.1), it is easy to realize that the ratio of infiltration rate
to saturated conductivity has a fundamental influence on the equilibrium moisture
content in the transmission zone. In the following we analyze the structure of wetting
front for different flux conditions. Using the term saturated and relative hydraulic
conductivity and, keeping in mind that dΨ/dy = (dΨ/dW ) · (dW/dy), the moisture
gradient in the wetting front is given by

dW

dy
=

v

Ks
· 1

Kr

(
dΨ

dW

) . (2.6)

This relationship for soil 1 is demonstrated in Figure 2. The curves decline below
15% moisture content because of the deviation from Darcy’s law.

Knowing the moisture gradient, the potential gradient can also be calculated, which
for different relative flux values is plotted in Figure 3. From this Figure the equilibrium



126 Gy. Sitkei

Figure 2. Moisture gradient in the wetting
front as a function of moisture content. 1−
v = Ks, 2−v = 0.1Ks, 3−v = 0.01Ks, 4−
v = 0.001Ks.

moisture contents for any relative flux
value can be read. Namely, in all cases
the hydraulic potential gradient in the
transmission zone is the unity given by
the gravitational potential.

Figure 2 shows that the moisture
gradient on the outer surface of the
wetting front is the greatest and it
rapidly decreases as the moisture con-
tent increases. A decreasing flux fur-
ther decreases the moisture gradient
at any moisture content and, there-
fore, the wetting profile changes from
the steep shape to a gently sloping
one. The measured wetting front pro-
files support this statement.

An integration of equation (2.6)
gives the cumulative wetting front
depth between two given moisture con-
tents. We can write∫

dy =
Ks

v

∫
Kr (Ψ) dΨ . (2.7)

It is interesting to note that the integral on the right side is the so-called Kirchhoff-
potential often used in analytical solutions. The solution of equation (2.7) for soil 1 is
given in Figure 4. It can clearly be seen that the cumulative wetting front thickness
with increasing moisture content and with decreasing water flux rapidly increases.

A dimensionless equation describing the wetting front propagation can be derived
in the following way. The moisture variation by time is expressed as

dW

dt
=

dW

dy

dy

dt
=

dW

dy
w

where w means the effective pore velocity of water. Using equations (1.1) and (2.6)
we can write

dW

dt
=

v2

W −W1

1

KsKr

(
dΨ
dW

) (2.8)

Keeping in mind equation (2.2), a formal integration of equations (2.6) and (2.8)
supplies the following relationship:

vy

D
=

v2t

(W −W1)D
(2.9)

which is equivalent to equation (1.1). In the above equation y means the average
depth of the wetting front corresponding to the mean water content W . The left and
right sides of equation (2.9) can be used as dimensionless coordinates to represent
measurement data.
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Figure 3. Matric potential gradient in
the wetting front. Different relative
fluxes from those in Figure 2.

Figure 4. Cumulative wetting front
thickness for different relative fluxes.

In all equations derived above the unknown water content W appears. In order
to calculate this water content either the diffusion function D(W ) and the matric
potential curve Ψ(W ) or the relative hydraulic conductivity Kr(W ) is needed. In the
first case, the solution of the following equation (keeping in mind that dΨ/dy = 1):

v

Ks
= Kr =

D (W )

Ks

dW

dΨ

supplies the equilibrium moisture content. In the second case, if the Kr(W ) function
is available (see Figure 5), then the moisture content value can simple be read from
the curve.

3. Results

From the above discussion it is obvious that a generally valid closed form relation
for calculating the asymptotic moisture content cannot be obtained. Nevertheless, an
appropriate approximation would facilitate a rapid estimation of the expected value.

In order to establish such a relationship both theoretically derived asymptotic val-
ues and experimentally obtained values were used. For measurements two different
soils were used with several initial moisture contents. The hydraulic properties of
soils are given in Figure 5 and in Table 1.

soil porosity D0,
cm2

h Ks,
cm
h Wmin Wr α, 1

cm n
silty loam 50% 2000 3.0 0.15 0.03 0.015 1.25
loam 40% 400 0.4 0.12 0.02 0.018 1.25
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Figure 5. PF-curve and relative conductivity as a function of water content for soils.
1-silty loam, 2-loam

Figure 6. Equilibrium moisture content
as a function of the relative water flux.

Figure 7. Equilibrium moisture content
as a function of pF-number.

Measurements were carried out on packed plexiglass columns with Ks/v ratios
between 5 and 200 and with initial moisture contents of 10% and 20%.

The calculated and experimentally obtained results are plotted in Figure 6. using
double logaritmic scale and dimensionless quantities. To describe the relationship the
following simple equation is obtained:

W −W1

Ws −W1
=

(
Ks

v

)−n
(3.1)

where the exponent n varies between 0.08 and 0.1.
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Using equation (2.9), equation (3.1) can be rewritten as

vy

D
=
v2t

D

(
Ks

v

)n
Ws −W1

. (3.2)

In some cases it is interesting to express the equilibrium moisture content as a function
of matric potential or pF-number. Such relationship for the two soils in question is
to be seen in Figure 7. This curve can be approximated by the following empirical
equation:

W −W1

Ws −W1
= 1−ApFm

where the constants have the following values: A = 0.08 and m = 1.75. The pF -
number corresponds to the equilibrium moisture content for a given flux.

4. Conclusion

Based on theoretical and experimental investigations the following conclusions can be
drawn:

− the steepness of the wetting front is determined by the local moisture content
and the relative flux ratio v/Ks,

− the equilibrium moisture content in all cases can be approximated as the inter-
section of the matric potential gradient and the dΨ/dy = 1.0 lines,

− a simple dimensionless equation is obtained for determining the equilibrium
moisture content which is in good correlation with the experimental results,

− to represent wetting front propagations the dimensionless quantities vy/D and
v2t/[D(W −W1)] can be used.
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Abstract. The paper examines ejectors using supersonic gas jets in the wide range of
ejectors. Previously [2] a method was developed to calculate the supersonic operational
domains of ejectors when primary and secondary gas jets of different material quality are
used. A methodology was also developed for designing ejectors creating a given operational
domain. Now, in addition to the presentation of the fundamentals of the methodology
developed, the analyses conducted by means of the methodology will be reported on. It is
investigated what influence the material qualities of the two gas jets exert on the operation of
an ejector with a given geometry. Furthermore, the paper presents how the geometry of the
ejector creating a given final vacuum depends on the material quality of the gas operating
it (primary gas).

Keywords : Supersonic gas ejector, polytropic model, primary and secondary gases.

1. Introduction

In the supersonic operation of gas ejectors four different operational domains can be
distinguished [2]. The four different operational domains are easy to separate accord-
ing to their locations on a surface in the spatial coordinate system of the primary
pressure conditions π

′
= p

′

or/p3, the secondary pressure conditions π
′′

= p
′′

or/p3 and
the mass flow ratio µ = ṁ

′′
/ṁ

′
developing on the pipe ends of the ejector. The

diagram representing the relationship between these three quantities is called opera-
tional domain figure of the ejector [1]. In order to make plotting easier, the planar
projections of the surface are used.

In Figure 1 the surface is shown in the π
′′
(π
′
) coordinate system by means of the

lines µ = const. as lines of levels. The figure shows the different operational domains
and their boundary curves. (A point of operation means the comprehensive states
of gas at the pipe ends of the ejector. Points of operation of the same kind belong
into the same operational domain. The total of the different operational domains
represents the operational domain figure.) The operational domain figure is the basis
of any further investigation as it combines all the main features of the supersonic
operation of the ejector. Therefore the main objective is to determine the operational
domain figure, i.e., the total of values included in it.
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Figure 1. The operational domain figure of the ejector

The operation of ejectors using primary and secondary gas jets of different material
qualities was investigated. The method describing the operation of the ejector was
developed for operation in all the four operational domains [2]. Here only the basic
relationships of the method will be presented. They project what a significant role
the material quality of the operating and the working media plays in the operation of
the ejector. Next analyses will be conducted regarding the injector operated by two
different gases using the methodology developed.

Notations:
a speed of sound Re Reynolds number
A cross-sectional area T absolute temperature
cp specific heat at con- α diffuser angle

stant pressure η dynamic viscosity
cv specific heat at con- ηpol polytropic effi ciency

stant volume κ ratio of specific heats
d diameter λ pipe friction coeffi cient
F force v velocity
g acceleration due to ρ density

gravity f1 =
(
A
′

1 +A
′′

1

)
/A
′

1 inlet cross-sectional

h specific enthalpy area ratio
` length M = v/a Mach number
ṁ mass flow M∗ = v∗/a∗ critical Mach number
M0 mole mass P

′
= π

′
/f1 primary reduced pres-

n polytropic exponent sure ratio
p pressure P

′′
= π

′′
(f1 − 1) /f1 secondary reduced pres-

Q volume flow rate sure ratio
R gas constant
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δ =
(
A2 −A

′

1 −A
′′

1

)
/A
′

1 wall thickness parameter

ϕ1 = A
′

1/A
′

t cross-sectional area ratio of primary nozzle
µ = ṁ

′′
/ṁ

′
mass flow ratio

π
′

= p
′

or/p3 primary pressure ratio
π
′′

= p
′′

or/p3 secondary pressure ratio
π1 = p

′′

1/p
′

1 outlet pressure ratio
σ = A3/A2 diffuser cross-sectional area ratio
τ = T

′′

0 /T
′

0 ejector temperature ratio
τ
′

= T03/T
′

0 primary temperature ratio
τ
′′

= T03/T
′′

0 secondary temperature ratio
ξK = `K/d2 relative length of mixing tube
NA = 6.02283 · 1026 1

kmol Avogadro’s number
kB = 1.38048 · 10−23 J

kg Boltzmann constant

Gas dynamic functions:

T (M∗) = 1− κ−1
κ−1M

2
∗ ρp (M∗) = T (M∗)

1
n−1

pp (M∗) = T (M∗)
n
n−1 Γp (M∗) = M∗ρp (M∗)

[
n+1

2

] 1
n−1

[
κ−1
κ−1

n+1
n−1

] 1
2

Subscripts:

ax axis s separation cross-sectional
cr critical point area of primary nozzle
D diffuser t throat
ie isentropic ∗ critical state
k critical o stagnation state
K mixing tube 1 discharge cross-sectional
L Laval nozzle area from a nozzle
max maximum 2 inlet cross-sectional
p wall area of diffuser
pol polytropic 3 outlet cross-sectional
r stagnation state ahead of area of diffuser

ejector primary nozzle I.; II.; III.; IV. features of the individual
operational domains

Superscripts:
′ primary flow ′′ secondary flow

2. Description of ejector operation for primary and secondary gases

Figure 2 shows a schematic sectional drawing of the ejector under investigation. The
figure presents the typical cross-sectional areas and the main gas parameters there.
The process is presented for the most general operational domain, i.e., domain I.,
when the primary gas jet expands only as far as a cross section s of the primary gas
jet, and there separates from the nozzle wall accompanied by a shock wave. The other
three operational domains can be interpreted as a kind of boundary situation of this
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Figure 2. Control surface for the basic equations

state, therefore it will suffi ce to present this one here.

The energy transfer representing the operation principle of the ejector takes place
in the mixing tube of the ejector. Let us therefore choose as a control surface the one
shown in Figure 2, which surrounds the mixing tube and the section of the primary
nozzle after separation. The general forms of the laws of mass conservation and energy
conservation as well as the theorem of momentum concerning the control surface A
are as follows: ∫

A

ρ (v · dA) = 0, (2.1)∫
A

(
h+

v2

2

)
ρ (v · dA) = 0, (2.2)∫

A

ρv (v · dA) = −
∫
A

p · dA+

∫
A

σ · dA. (2.3)

Flow in the primary and secondary nozzles of the ejector is considered to be adi-
abatic and frictionless. For the description of the flow in the nozzles therefore what
is called the polytropic effi ciency [2] was defined, which is interpreted as the ratio of
elementary enthalpy changes due to elementary change in pressure dp in frictional or
frictionless (isentropic) cases, respectively:

ηpol =
dh

dhie
. (2.4)

Instead of the polytropic effi ciency ηpol, the equality

1

ηpol

κ

κ− 1
=

n

n− 1
(2.5)
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can define the polytropic exponent n, which is 1 < n < κ in case of expansion, and
n > κ for compression. This yields relations whose forms resemble the equations of
state valid for isentropic flow [1]. The resulting polytropic model will be used, but
no details will be given here. It should be noted that in the course of developing the
model, the modified gas dynamic functions were interpreted. They will play a major
role in the relations later on. They are listed under Notations.

Continuity equation (2.1) with the mass flows now takes the form

ṁ
′
+ ṁ

′′
= ṁ. (2.6)

By using the relations between the ejector pipe ends and the inlet and outlet cross-
sectional areas of the control surface, as well as dimensionless quantities, the gas
dynamic constants α, β and γ, and by introducing the pressure ratios P

′
, P
′′
equation

(2.6) can be written in the following form:

P
′′

P ′
= (f1 − 1)

p
′′

or

p′or
= (f1 − 1)

p
′′

1

p′s

pp

(
M
′

∗s

)
pp
(
M
′′
∗1
) = (f1 − 1)πs

pp

(
M
′

∗s

)
pp
(
M
′′
∗1
) . (2.7)

This expression which includes the parameters valid at the ejector pipe ends is con-
sidered to be the continuity equation of operational domain I. Table 1 gives the
interpretation of the gas dynamic constants α, β and γ.

Table 1. Interpretation of the gas dynamic constants α, β and γ

Primary jet Secondary jet Mixture

α
′

0 =
[
κ
′
+1

κ′−1

] 1
2

α
′

=
[
n
′
+1

n′−1

] 1
2

α
′′

0 =
[
κ
′′

+1
κ′′−1

] 1
2

α
′′

=
[
n
′′

+1
n′′−1

] 1
2

α =
[
κ+1
κ−1

] 1
2

β
′

0 = κ
′
+1

κ′−1

[
κ
′
+1
2

] 1

κ
′−1

β
′

= n
′
+1

n′−1

[
n
′
+1
2

] 1

n
′−1

β
′′

0 = κ
′′

+1
κ′′−1

[
κ
′′

+1
2

] 1

κ
′′−1

β
′′

= n
′′

+1
n′′−1

[
n
′′

+1
2

] 1

n
′′−1

β = κ+1
κ−1

[
κ+1

2

] 1
κ−1

γ
′

=

[
κ
′

R′

(
2

κ′+1

) κ′+1
κ
′−1

] 1
2

γ
′′

=

[
κ
′′

R′′

(
2

κ′′+1

) κ′′+1
κ
′′−1

] 1
2

γ =

[
κ
R

(
2

κ+1

) κ+1
κ−1
] 1
2

Thus equation (2.7) contains the material quality of the gases mainly through the
gas dynamic constants α, β and γ. Their significant role is easy to perceive.

Using the definition of stagnation enthalpy together with equality To2 = To3 the
energy equation (2.2) yields the following important relation for mass flow ratio µ:

µ =
ṁ
′′

ṁ′
=

cpT03 − c
′

pT
′

0

c′′pT
′′
0 − cpT03

=

cp
c′p
τ
′ − 1

c′′p
c′p
τ − cp

c′p
τ ′
. (2.8)

Expression (2.8) demonstrates univocally the emphatic influence of the specific
heats of the two gases as their material quality on the mass ratio.
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Momentum theorem (2.3) is obtained by using the mean values valid at the
inlet and outlet cross-sectional areas of the control surface:

− ρ
′

sv
′2
s A

′

s − ρ
′′

s v
′′2
s A

′′

s + ρ2v
2
2A2 = p

′

sA
′

s + p
′′

1A
′′

1 − p2A2 − Fsk + Fp + Fv (2.9)

where the last three terms on the right-hand side are as follows: friction force on
the wall of the mixing tube, the force transmitted on the wall behind the separation
cross-sectional area of the primary nozzle, as well as the force transmitted on the
nozzle wall with finite wall thickness at the outlet cross-sectional area of the primary
nozzle, respectively.

Using appropriate relations for determining the forces, as well as extending expres-
sion (2.9) to cover the ejector pipe ends yields the form of the momentum theorem
which is suitable for further computations:

P
′ 1+M

′2
∗s

M ′∗s

1
ϕ1

α
′
0α
′

α2β
′ +P

′′
pp

(
M
′′

∗1

){
α
′′2
0

α2
1+M

′′2
∗1

α
′′2
0 −M

′′2
∗1

+ 1
f1−1

[
f
α2

(
1− 1

ϕ1Γp(M ′∗s)

)
+ δ

α2

]}
=

=
1

M∗2

[
1 +M2

∗2

(
1 + λξK

α2 + 1

2α2

)]
σ
δ + f1

f1

M∗3
α2 −M2

∗3
. (2.10)

It is easy to see that material dependent constants play an important role in this
expression as well.

By means of the three fundamental equations outlined here and by using a number
of further relations and considerations, a computational method and the related com-
puter code were compiled, which can be used to compute the corresponding states of
the gases passing through the inlet sections of the primary and secondary gases and
at the outlet section of the ejector. Among the supplementary relations those will be
highlighted here which have been included in the computational method due to the
differences in the primary and secondary gases, i.e. they play a decisive role. In the
greater part of the mixing tube and in the diffuser the two gases are already mixed
completely. It is the material parameters of this mixed medium that are included
in the relations on this flow domain. The individual material parameters of the gas
mixture can be determined by means of the mass ratio µ = ṁ

′′
/ṁ

′
using the following

well-known expressions:

R =
R
′
+ µR

′′

1 + µ
, (2.11)

cp =
c
′

p + µc
′′

p

1 + µ
, (2.12)

cv =
c
′

v + µc
′′

v

1 + µ
, (2.13)

κ =
cp
cv
. (2.14)
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It is somewhat more complicated to calculate the viscosity of the gas mixture.
Further, the fact that viscosity is greatly temperature dependent is also to be taken
into consideration. All those effects are treated in the following way. The resulting
viscosity of the mixture of the primary and secondary gases is computed according to
Branley and Wilke [4] by using the mole masses Mo with the following expression:

η =
η
′

1 + µΦa
+

η
′′

1 + 1
µΦb

, (2.15)

where

Φa =

[
1 +

(
η
′

η′′

)2

+

(
M
′′
o

M ′o

)1/4
]2

2
√

2

√
1 +

M ′o
M ′′o

, (2.16)

Φb = Φb
η
′′

η′
M
′

o

M ′′
o

. (2.17)

In calculating the viscosities η
′
, η
′′
their temperature dependence is taken into

consideration according to Linneken [5]:

η (T ) = H1ηid,cr

(
T

Tkr

)2/3


(
T
Tcr

)2

1 +
(
T
Tcr

)2


1/4

. (2.18)

In expression (2.18) H1 is a material dependent viscosity factor and ηid,cr is the
critical viscosity belonging to an ideal gas, which can be computed from constants
independent of other material parameters and materials and is a constant typical of
the material of the gas. The relevant relation for the computation is:

ηid,cr =

[
Mo

NA

]1/2
p

2/3
cr

(kBTcr)
1/6

, (2.19)

where NA is the Avogadro number, kB is the Boltzmann constant, further pcr and Tcr
are pressure and temperature of the gas in the critical point, respectively. Expression
(2.18) yields the best approximation for viscosity exactly in the range of low pressure
used for ejectors.

On the basis of the fundamental equations outlined above and by using the supple-
mentary relations described, the methodology for computing the operational domain
figure of an ejector with a given geometry was developed. The design method de-
termining the geometrical data of the ejector creating a given final vacuum was also
developed. Now they will be used for analyses.



138 Sz. Szabó

3. Dependence of ejector operation on the gases transported

3.1. Material quality of the gases transported. In order to characterize the
material properties, let us examine four characteristically different gases. The gases
and their relevant properties essential for our purposes are summarized in Table 2.
The data in the Table belong to gas temperature T= 293K.

Table 2. Gases and their material properties

Gas Propane
(C3H8)

Carbon dioxide
(CO2)

Air Argon (Ar)

Symbol P C L A
R [J/kgK] 188.8 188.9 287.2 208.2
cp [J/kgK] 1549.5 814.8 1003.6 523.0

κ = cp/(cp −R) 1.14 1.30 1.40 1.66
M [kg/kmol] 44.097 44.009 28.964 39.948
Tcr [K] 370.8 304.2 132.5 150.7
pcr [bar] 42.6 73.8 37.67 48.7

106 · ηid,cr [Ns/m2] 17.135 25.510 15.182 20.710
H1 0.693 0.718 0.735 0.725

Further it is assumed that the degrees of changes in state are such that these
values can be taken to be constant with a good approximation. In the following these
material properties will be used, at the same time the other properties of the concrete
materials will be neglected, i.e., it will be assumed that they do not undergo changes
of phase and no chemical processes take place. The change of phase in both nozzles
will be considered isentropic so that the influence of the material properties can be
distinguished from the influence caused by friction. Therefore the approximation
n = κ will be used for both gas jets.

3.2. Dependence of the operational domain figure of an ejector with
a given geometry on the material quality of the gases transported. The
dependence of the operation of a supersonic gas ejector on the material quality of the
gas transported can be followed by means of the changes in the operational domain
figure. That analysis was carried out earlier [3].

The first case under examination is the combination when the two gas jets are of
the same material quality. Then the cases P-P, C-C, L-L and A-A can take place.
The second case is the analysis of the option when the operating primary gas jet is air,
but the secondary gas jet differs from case to case (L-P, L-C, L-L, L-A). And finally
the third case involves identical transported secondary gas jets, i.e., air, while the
operating primary gas jet is different again from case to case (P-L, C-L, L-L, A-L).
In all the three cases significant shifts were demonstrated in the operational domain
figure together with dependence on the isentropic exponent κ . Now only the results
obtained in the first case will be referred to as those findings project what is to be
described in detail in the following. Figure 3 shows the operational domain figures
for identical primary and secondary gases for each of the four gases. It can be seen
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Figure 3. Operational domain figure of ejector for identical primary and secondary
gases

that increasing the isentropic exponent κ pushes the boundaries of the operational
domains towards higher π

′
and lower π

′′
pressure ratios. The curves belonging to

mass ratio µ = 0, showing the elimination of the secondary gas jet, deserve special
attention. Point I in Figure 1, which is one of the final points of the operational
domains boundary II-III, lies on this curve. It is at the same time the point belonging
to the smallest secondary pressure ratio π

′′
in the operational domain figure. This

operational domain will be called final vacuum value (points IP , IC , IL, and IA in
Figure 3). This is what our investigation will focus on.

3.3. Dependence of the geometry of an ejector producing a given final
vacuum on the material quality of the primary gas jet. One of the important
uses of ejectors is to suck gas from a tank and to maintain a given vacuum value there.
This often provides the basis of designing ejectors, i.e., design for final vacuum. Then
the secondary flow has already ceased, i.e., the mass flow ratio is µ = 0. Thus, due to
the termination of secondary gas transportation, the curve µ = 0 in the operational
domain figure of the ejector is naturally independent of the material quality of the
secondary gas flow [3]. Similarly, design for final vacuum is only concerned with the
properties of the primary gas flow. For ejectors with a given geometry, the operational
domain figure depended on the material quality of the primary gas and for ejectors
ensuring a given final vacuum the geometry will differ according to the material quality
of the primary gas. Using the methodology developed earlier [2], let us now examine
the dependence of the main geometrical data of the ejector to be designed on the
material qualities of the gas. Again the four different gases listed in Table 2 will
be used. Any of the main material properties of the gases, the gas constant R, the
specific heats cp and cv, as well as the exponent κ can be expressed by any other two,
starting from the well known relations κ = cp/cv, R = cp − cv. Let us consider the
other three properties as functions of κ for the four gases.

According to the relation shown in Figure 4 there is no monotonous relation be-
tween the properties, mostly due to the data on air. In spite of this, as it will be
seen the geometrical data of the ejector to be designed based on exponent κ will keep
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mostly continuously changing. This means that it is the ratio of specific heats that
plays the most significant role regarding the final vacuum among the material prop-
erties.
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Figure 4. Dependence of material proper-
ties on exponent κ

′

In order to set up the relation sought,
let us now consider a typical real-life ex-
ample. The notations in Figure 2 will
be used. The temperature and quan-
tity of the operating primary gas jet
are T

′

0 = 293 K , Q3 = 283 m3/h, re-
spectively, and the operating primary
pressure ratio is π

′
= p

′

or/p3 = 18.18.
The secondary pressure ratio to be ob-
tained is π

′′
= p

′′

or/p3 = 0.121, which
means producing a very strong vac-
uum. (In the concrete case examined
the value of the final vacuum was only
p
′′

or = 666Pa = 5Torr!). The design
method referred to is expedient to de-
termine an ejector operating in point I
in Figure 1. That operation point be-
longs namely to the absolute maximum
value of vacuum to be obtained by the
given ejector.

The relation shown in Figure 5 was found between the typical diameters shown in
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in designing for final vacuum

Figure 2 of the ejector designed by the method and the primary ratio of specific heats
κ . Accordingly and considering the diameter ratio of the nozzle throats d

′

t/d3, it
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can be stated that the throat cross-sectional area of the primary nozzle d
′

t is almost
constant for a given ejector pipe end dimension d3, i.e. it hardly depends on the
material quality of the gas. The case is different for the outlet diameter ratio of the
Laval nozzle d

′

1/d3. This, namely, decreases almost quadratically with an increase in
the exponent κ

′
.

This means that the outlet cross-sectional area of the primary nozzle d
′

1 will con-
tinue to decrease for a given ejector pipe end dimension d3 if κ

′
increases. Thus

considering a constant Laval nozzle diffuser angle αL , the length of the nozzle will
also considerably decrease. The quadratic decrease in the outlet diameter of the Laval
nozzle is accompanied by an almost linear decrease in the diameter of the mixing tube.
This is shown by curve d2/d3 in Figure 5. The Figure also shows the interesting fact
that the size of the mixing tube carries outstanding significance even though there is
only one gas jet in the relevant operational domain.

Figure 6 demonstrates an important relation. It shows that the ratio of the throat
and outlet diameters of the Laval nozzle d

′

t/d1 increases almost linearly with exponent
κ
′
.

3.3. Dependence of final vacuum obtained with an ejector of a given
geometry on the material quality of the primary gas jet. Section 1.1 gave an
analysis of how the operational domain figures shifted for ejectors of a given geometry
depending on the material quality of the gases. Now particularly great emphasis will
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Figure 7. Dependence of primary pres-
sure ratio π

′
on exponent κ

′
in design-

ing for final vacuum.
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signing for final vacuum.

be given to the analysis of the dependence of the maximum vacuum values to be
obtained by a particular ejector on the material quality of the gases.

The particular emphasis is justified, as already mentioned, by the fact that super-
sonic gas ejectors are primarily used to increase the vacuum value, i.e. to produce the
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largest possible pressure difference between the secondary (p
′′

or) and outlet pipe end
(p3) of the ejector, i.e. to produce a small pressure ratio π

′′
= p

′′

or/p3. The operational
domain to be investigated is the one denoted by I in Figure 1. According to Figure
3 this final vacuum value greatly depends on the material quality of the primary gas
(See points IP , IC , IL, IA one by one.).
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Figure 9. Dependence of pressure ratio
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on exponent κ

′
in designing for fi-

nal vacuum.

Let us now analyze its sequence and
degree by using the data of the four
gases examined earlier. As secondary
flow ceases when the final vacuum is
obtained, i.e. the mass flow ratio is
zero (µ = 0), only primary gas plays
a role in obtaining the final vacuum,
and the final vacuum value is indepen-
dent of the material quality of the sec-
ondary gas. In order to demonstrate
the tendencies, let us consider an ejec-
tor with a concrete geometry, with the
main data given by the notation in Fig-
ure 2:

d
′

t = 6.03 mm, d
′

1 = 12.4 mm,

d2 = 27.9 mm, d3 = 65 mm,

αL = αD = 8◦.

When the coordinates of operational
point I of the ejector with a given ge-
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ometry are determined by the computation method and computer code mentioned
above, the results shown in Figures 7 and 8 are obtained. Figure 8 shows that the
secondary pressure ratio π

′′
decreases almost linearly when exponent κ

′
is increased,

but to achieve that an (again almost linearly) increasing primary pressure ratio π
′

is required. The relation between the two is expressed by pressure ratio π
′
/π
′′

=
p
′

or/p
′′

or. A great change in that is shown by Figure 9. It demonstrates that in order
to obtain a strong vacuum, i.e. to achieve a low secondary stagnation pressure p

′′

or, a
primary stagnation pressure p

′

or, which exceed this value to an ever increasing extent,
is required. In order to perceive the concrete orders, let us consider the

example with a primary jet pressure p
′

or = 1 bar = 105 Pa. Now the obtainable
final vacuum values p

′′

or are shown in Figure 10, and the relevant outlet ejector pipe
end pressure p3 can be seen in Figure 11. Considering the two extreme cases, it can
be stated that increasing the isentropic exponent κ

′
results in decreasing the pressure

value p
′′

or belonging to the final vacuum to a quarter of its value.

4. Summary and conclusions

Previously a one-dimensional polytropic model was developed [2] which was suit-
able for describing frictional supersonic flow in nozzles with changing cross-sectional
areas. That model served as a basis for developing a procedure to determine the
supersonic operational domains of a supersonic ejector. The method can be used to
give the relations between the gas flows at the inlet and outlet sections of the ejector
and the gas states for every supersonic operational domain. It is a speciality of the
methodology that not only may the primary and secondary gas jets be different from
each other but they can be of different material qualities as well.

Special emphasis was given to the analysis of the influences arising from the different
material qualities of the gases. Examining ejectors designed for given final vacuum
it was shown that their geometry greatly depended on the material quality of the
operating primary gas. That relation can be best described by the dependence on
the ratio of specific heats κ

′
. It is to be stressed that increasing the exponent κ

′
will

almost linearly increase the cross-sectional area ratio of the primary (Laval) nozzle
(d
′

t/d
′

1), while the cross-sectional area ratio of the diffuser behind the mixing tube
d2/d3 will linearly decrease.

Investigating the operation of an ejector with a given geometry at the final vacuum,
it was found for gases with different material qualities that the pressure ratios devel-
oping showed a monotonous change mainly depending on the ratio of specific heats
κ
′
. For the primary and secondary ratios π

′
and π

′′
best describing the pressure

conditions of the ejector, it was shown that they underwent almost linear change with
κ
′
, i.e. π

′
increased while π

′′
decreased. As a major characteristic it can be stated

that using a gas with a higher isentropic exponent π
′
will increase the final vacuum.

To sum it up, it can be stated that the material quality of gases exerts a significant
influence on the ejector operation, and that influence can be described by means of a
suitable model. Further investigations may aim to consider the changes in material
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quality due to temperature and pressure changes in gases. Currently, that is sig-
nificantly hindered by a lack of understanding of the relevant relations, particularly
concerning gas mixtures.
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Abstract. The authors worked out a computational process and software for calculating the
working conditions of blow-off systems at technological stations of gas pipelines. One part
of the investigated system is the closed gas pipeline section, the other is the blow-off pipe
provided with a control valve. To create the model they analysed the blow-off process, on the
basis of which the simplifying assumptions were determined. The calculation model gives
unsteady values of pressure, temperature and the gas flow at chosen points of the system. In
the second part of the article the authors demonstrate the application of the computational
algorithm by solving an example.

Keywords : Pipeline depressurising, venting system, blow-off pipe, Fanno flow, energy equa-
tion, subsonic flow.

1. Introduction

The high-speed pipe flow with friction has been investigated first by Frössel [1]. Pres-
sure distribution charts were obtained both for subsonic and supersonic flow. Prandtl
[2] elaborated the first mechanical model in which the friction factor depends not
only on the Reynolds number but also on the Mach number. Shapiro, Hawthorne and
Edelman [3] gave a complex mechanical and thermodynamical analysis of the prob-
lem. Their results are provided in tabulated form for numerical solutions. Landau
and Lifsic [4] investigated the high speed gas flow through an adiabatic pipe. Their
sophisticated analysis has mainly academic interest from the point of view of theo-
retical physics. Tihanyi, Bobok and Bódi [5] provided an analytical solution oriented
to applications in natural gas engineering.

2. Blow-off system

The blow-off system is a complementary part of disconnecting or technological sta-
tions, which serves for depressurising pipeline sections. During blow-off, the gas in the
pipeline section which is closed at both ends is discharged through a special pipeline
system, and throughout the process the own pressure energy of the gases is used.
Because of environmental regulations, the discharged gas is generally burnt, therefore
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the process is also called flaring of gas. Gas pipeline blow-off systems are infrequently
in operation, while refinery and gasworks flares are continuously being burnt. That
is why their sizes and arrangements are different.

Figure 1. Arrengement of the blow-off system. 1 closed section of the main pipeline,
2 control valve, 3 gate valve, 4 blow-off pipe, 5 stack

For technological and safety reasons, gas outflow can be controlled by reducing the
cross-section of the discharge area of the stack. Regulations in Hungary allow Mach
number 0.2 under normal circumstances, while 0.6-0.8 is allowed in an emergency.
The usual technological arrangement of blow-off systems at pipeline disconnecting
stations can be seen in Figure 1.

At the entrance of the blow-off pipe, a control valve and a gate valve are built
in. The volume of gas escaping from the closed pipeline section can be controlled
manually by means of a control valve.

3. Pressure and temperature changes in the closed pipeline section

When calculating the blow-off process, the examined system can be clearly divided
into two parts. One part is the closed pipeline section which has to be depressurised
and can be regarded as a “reservoir”. The other is the blow-off pipe, the cross-section
of which is either fixed or adjustable. At the “reservoir”of the whole system, changes
in pressure and temperature have to be controlled by assumptional blow-off gas flow.
For the part including the blow-off pipe and the control valve, the gas flow rate must
be calculated considering hydraulic assumptions for the initial and final points and
the control mode. The calculation for the complete system can only be done using
approximation methods.
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The pressure change in the closed pipeline section can be calculated applying the
perfect gas law:

p1
z1
− p2
z2

=
RT

MgVpipe
∆m . (3.1)

The formula gives the pressure change when altering the amount of gas in volume
Vpipe with a mass of ∆m. Subscript 1 refers to the initial, while subscript 2 refers
to the final conditions. Since the compressibility factor depends on pressure and
temperature, the equation can only be solved by successive approximation.

As pressure and temperature in the closed pipeline section change simultaneously,
different assumptions can be used as starting points

a) the expansion is isentropic, only gas temperature changes,

b) the expansion is polytropic, only gas temperature changes,

c) during expansion gas temperature and the temperature of the steel pipe change
in the same measure, but no heat exchange occurs between the system and its
environment,

d) during expansion gas temperature in the latter two cases, pipe wall temperature
and also the heat content of the gas in the pipeline section are to be taken into
consideration.

Supposing environmental heat exchange between the gas and its surrounding, we
have to consider heat convection between the gas flow and the soil in area A of
the pipe. Choosing heat transmission coeffi cient k = 0, the effect of the latter can be
disregarded. The formula to calculate the temperature of the gas in the closed pipeline
section regarded as a “reservoir”derived from the balance of heat is the following:

Ti+1 =
csmsTi + cgmgTi + kA∆τTt
csms + cgmg + kA∆τTt

(3.2)

The specific heat of the gas can be calculated from the equation of state at the
actual pressure and temperature; the specific heat of the steel can be determined
by extrapolating chart values. The mass of gas is the actual value in the pipeline
section at the examined time; the mass of steel is to be given as basic data. Similarly,
the heat transmission coeffi cient is to be given as input data, the heat convection
area is to be calculated from pipeline section parameters. Time step ∆τ depends
on the calculation algorithm. Temperature can be determined from formula (3.2) by
successive approximation.

Comparing the results of calculations on the basis of assumptions a/ ... d/ with
blow-off experiences, it seems reasonable to choose the boundary area not on the
internal but on the external surface, at the passive insulating layer. It is because the
mass and heat contents of the pipeline are multiples of the mass and heat contents
of the gas inside it, that the balancing effect of the mass of the steel pipe cannot be
neglected. For example, the specific mass of a pipeline with 600 mm nominal diameter
is 164 kg/m, while the mass of the gas at a pressure of 50 bar in a 1 m pipeline section
is only 10.7 kg. Since the gas is in direct contact with the inner wall of the pipeline,
thermal equilibrium can take place in a short period of time. In the calculation model
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of formula (3.2) the temperature of the pipeline and that of the gas inside it change
in the same extent.

Another question in connection with the “pressure vessel or reservoir” is whether
a significant gas flow develops in the pipeline section during the blow-off process,
which would cause a non-negligible pressure difference. Considering that the blow-off
process is not for its own sake but is the preparatory phase of maintenance, we have
to aim at minimising the process time. If there is no excluding factor, the blow-off
process is carried out at both ends of the pipeline at the same time. In this case
pressure will change evenly along the pipeline section and no significant gas flow will
develop. On this basis, at all the points along the closed pipeline section pressure
should be taken as constant.

4. Gas flow in the blow-off system

In the blow-off system linked with the “reservoir”, i.e. the pipeline section, a com-
plicated form of flow develops. Pressure and temperature at the initial point of the
blow-off system are derived from the “main line section model”. The first element
of the blow-off system is a short pipe section which links the main pipeline section
with the control valve. In this pipe section pressure is still high and flow velocity
is relatively low. The control valve is joined with the branch pipe, with the help of
which pressure can be reduced, therefore the gas flow can be controlled. Throttling
control can be regarded as an isoenthalpic change of state. The gas flow developing
at the nozzle or at the throttle is determined by the back pressure at the outflow end
of the nozzle. In the pipe section following the nozzle, i.e. the real blow-off pipe,
the pressure of the gas further decreases but its velocity increases. Depending on the
gas flow and the length of the blow-off pipe, a critical velocity can develop at the
outflow end. During the blow-off process the flowing gas expands, its pressure and
temperature decrease point by point.

The physical model and the calculation formulas describing high-velocity gas flows
developing in blow-off systems are different from those describing flowing conditions
in normal pipeline operation. The pressure loss is increased by friction and very
fast expansion, which mostly depends on the Mach-number [6]. For the purpose
of practical calculations, the most important flow parameters are given in charts
according to the Mach-number [7]. In the case of high-velocity gas flows there is
a significant difference between the stagnation pressure p0 and the static (or free-
stream) value ps. Similarly the stagnation temperature T0 is higher than static Ts,
because the sensing element is brought to rest. Thus the kinetic energy of the gas is
converted into enthalpy, which results in the higher temperature reading [8]. Therefore
the stagnation pressure and temperature may be written as functions of the Mach-
number:

ps =
p0(

1 + κ−1
2 M2

) κ
κ−1

(4.1)

Ts =
T0(

1 + κ−1
2 M2

) . (4.2)
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Because of the extremely high velocity of the gas flow moving along the blow-off
pipe, the environmental heat exchange is negligible. Thus, from the viewpoint of the
gas the system behaves as if it was heat-insulated [9]. At the same time, the energy
loss due to friction must be taken into consideration for actual pipelines. The gas
flow developing under such conditions is called Fanno-flow. To describe the process,
the differential form of the mechanical balance of energy for high-velocity, frictional
gas flows developing in heat-insulated pipes can be applied:

vdv +
dp

ρ
+

dp
′

ρ
= 0 . (4.3)

In the equation dp′ is the frictional pressure loss for length element dl. The Weissbach-
equation can be applied to the length element:

dp′ = fD
dl

D
ρ
v2

2
(4.4)

where fD is the friction factor, and D is the pipe diameter. As the gas expands the
flow velocity and the friction factor change point by point. The pressure change for
length element dl is:

dp = −ρvdv − fDρv
2

2D
dl . (4.5)

From the continuity and state equations the following correlation can be derived for
the pressure, velocity and temperature:

dp

p
= −dv

v
+

dT

T
. (4.6)

Term dT/T can be determined by differentiating the equation for sonic speed:

2
da

a
=

dT

T
. (4.7)

Combining equations (4.6) and (4.7) yields:

dp

p
= −dv

v
+ 2

da

a
. (4.8)

When transforming the equations, we have to consider that

ρ

p
=

κ

a2

where κ is the specific heat ratio. Finally we get the following differential equation:

2
da

a
− dv

v
= −κfD

2D

(v
a

)2
dl − κvdv

a2
. (4.9)

From this equation we can see that the frictional loss coeffi cient for the length element
fDdl/D depends only on flow velocity and sonic speed, and is independent of viscosity
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and surface roughness. If we consider that the ratio of flow velocity and sonic speed
is the Mach number equation (4.9) can be reshaped:

fD
dl

D
=

2
(
1−M2

)
dM

κM3
(
κ−1
2 M2 + 1

) . (4.10)

Integrating this equation between two given points of the pipeline we get a formula by
means of which the change in the Mach number can be calculated between two points
of the pipeline. The Mach number distribution along the pipeline can be determined
by repeating the calculation steps [10]:

fDL

D
=

1

κM2
1

− 1

κM2
2

+
κ+ 1

2κ
ln
M2
1

M2
2

[
2 + (κ− 1)M2

2

2 + (κ− 1)M2
1

]
. (4.11)

If Mach numbers are known at chosen points of the pipeline, pressure and temperature
can be calculated using the following formulas:

ps2
ps1

=
M1

M2

[
2 + (κ− 1)M2

2

2 + (κ− 1)M2
1

]
(4.12)

Ts2
Ts1

=
1 + κ−1

2 M2
1

1 + κ−1
2 M2

2

. (4.13)

Applying equations (4.11), (4.12) and (4.13), the flow conditions can be determined
in the actual flare system [11].
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Figure 2. Changes in the Mach number according to distance

As an example let us see a blow-off system where the pipeline section to be venting
and the control valve placed on the surface are connected by a 10 m long branch pipe,
and the blow-off pipe. Following the control valve there is a 150 m long blow-off pipe,
through which the gas flows into the environment. The blow-off pipe before and after
the control valve is of 100 mm nominal diameter. In Figure 2 changes in the Mach
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number can be seen in the complete system. In the short pipe between the main line
and the control valve, the Mach number is 0.14 in accordance with the blow-off gas
flow rate, which barely changes along the pipe. Because of pressure decrease between
the two sides of the control valve, the Mach number at the output point is 0.17.
Because of the expansion, flow velocity in the blow-off pipe grows continuously and
reaches the Mach number 1, i.e. critical flow velocity, at the outflow end.
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Figure 3. Changes in flow velocity according to distance

The changes in flow velocity are not linear along the blow-off pipe. In the section
following the control valve, the velocity change is rather slow, the Mach number is only
0.5 at 10 metres before the outflow end. However, in the last 10 m section velocity
changes extremely fast. The characteristic shape of the curve in Figure 2 has to be
taken into consideration when dividing the blow-off pipe into sections, which means
that the sections have to get shorter towards the outflow end. Figure 3 shows that
the growth of flow velocity along the pipeline is similar to that of the Mach number.
It is only moderate along nine tenths of the blow-off pipe but is powerful in the last
one tenth.

Temperature of the gas flow changes as a result of adjustment and expansion.
Figure 6 shows that temperature at the beginning point of the blow-off system is
2.4 oC, after adjustment it is 1.8 oC lower. There is significant cooling during the
flare process at the outflow end where temperature reaches the lowest value -35 oC.
Figure 5 illustrates changes in pressure along the blow-off pipe. In the short pipeline
section before the control valve, pressure decrease is only 0.3 bar because of low flow
velocity. At the output point of the control valve pressure is 17.2 bars because pressure
decreases by 3 bars during the control process. The pressure loss of 15.3 bars in the
blow-off pipe is mainly due to the large gas flow. Eventually, pressure at the outflow
end is 2 bars higher than environmental pressure.

Figure 6 illustrates the correlation between limiting conditions at the outflow end
of the blow-off pipe and the developing gas flow rate in the case of a 100 mm nominal
diameter pipeline. While the Mach number is below 1, pressure at the outflow end of
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the blow-out pipe is equal to ambient pressure, i.e. there is no overpressure. Under
this flow condition the outflow rate is proportional to the Mach number. If the critical
outflow velocity is reached by increasing the flare gas flow, further increase can only
be achieved by increasing density, and not velocity. Under this flow condition the
pressure at the outflow end will exceed ambient pressure.

5. Practical application

The examined system is a 15 km long 600 mm nominal diameter pipeline section,
in which the pressure at the beginning of the blow-off process is 25 bars, and (soil)
temperature is 5 oC. The flare system consists of a 10 m long linking pipe, an adjusting
valve and a 150 m long blow-off pipe with 100 mm nominal diameter.
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Figure 6. Outflow rate according to the Mach number and pressure

When processing computational results, subscript 1 always refers to the “reservoir”,
i.e. the closed pipeline section, subscript 3 to the output point of the control valve
and subscript 4 to the outflow end.

During the blow-off process different control methods can be implemented, which
result in different flow conditions. Each control method also influences the venting
time through the gas flow rate.

Figure 7 shows volumes of three different gas flows under different technical con-
ditions:

— pressure difference at the control valve is a constant of 3 bars,
— the volume of the controlled gas flow is a constant of 5.73 kg/s,
— the Mach number at the outflow end is a constant of 0.8.
If the control valve allows, adjusting at constant pressure difference is chosen.

The blow-off process can be carried out within a short period of time initially with
large, then fast decreasing gas flow. At constant gas flow first large, then gradually
decreasing throttling must be ensured on the control valve, and the process is to be
finished with the control valve completely open. If the critical velocity is not reached,
i.e. the Mach number is below 1, the gas flow in the first phase will be constant, then
it will gradually decrease.

Controlling the blow-out process by given pressure difference the constant pressure
decrease at the adjusting valve is 3 bars. Figure 8 shows that the flare process can
be divided into three parts. The first phase lasts 2 hours 47 minutes, and constant
throttling of 3 bars can be sustained between the two sides of the control valve. In
this period pressure loss can be neglected in the short branch pipe linking the main
pipeline section with the throttling valve, therefore “stagnation pressure”p1 and the
output pressure of the control valve decrease simultaneously. In the second period
throttling must be gradually decreased, and finally in the third period after 3 hours
41 minutes the control valve has to be opened completely, and there is no need for
adjusting.
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Figure 7. Comparing control methods
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Figure 8. Pressure change versus time

In the first phase when pressures p1 and p3 decrease simultaneously, p4 at the
outflow cross-section is higher than the ambient pressure. After 2 hours 47 minutes,
the Mach number 1 at the outflow end could only be kept by reducing throttling.
In 3 hours 41 minutes throttling reaches zero, thus in the remaining venting time is
carried out without throttling, with completely open control valve. The figure shows
that stagnation pressure in the last phase decreases below 5 bars. The blow-offprocess
is continued for 7 hours 50 minutes with gradually decreasing outflow. After 3 hours
41 minutes, i.e. in the last phase, pressure at the outflow cross section is equal to
ambient pressure.

Figure 9 shows the temperature calculated throughout the process. Stagnation
temperature T1 in the first, intensive phase decreases from soil temperature of 5 oC
to -0.8 oC, then in the next phase it increases due to surrounding heat convection. At
the output point of the throttling valve temperature T3 changes parallel with T1 due
to constant pressure difference. At the outflow point of the stack in the first phase, gas
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Figure 9. Change of temperature versus time

temperature T4 becomes very low because there is a significant expansion when flow
velocity reaches sonic speed. Later, as the outflow Mach number decreases, expan-
sion becomes smaller along the pipe, thus outflow temperature gradually approaches
temperature T3 at the beginning point of the blow-off pipe.
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Figure 10. Changes in Mach number versus time

Figure 10 shows that gas velocity reaches sonic speed in the phase of throttling
controlling when ∆p > 0, i.e., Mach number M4 at the outflow end is 1. In the last
phase of blow-off without throttling M4 decreases due to the gas flow decrease.

Mach number M3 refers to the output point of the control valve. There are no
breakpoints on the curve at the ends of the blow-off phases, which means that the
transition between the different control methods is continuous. In the last phase of
process, due to gradual gas flow decrease, the Mach number at the output point of
the control valve decreases as well, and the two curves approach each other fast.
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6. Conclusions

Blow-off systems are important complementary parts of gas transportation systems.
Blow-off is generally needed when gas needs to be removed from a pipeline section.
During the process a high-velocity gas flow develops, which shows a significant dif-
ference compared with change of state and form of flow under normal operation of
gas transportation systems. It is reasonable to divide the system into two parts: the
closed section of the main pipeline in which the gas volume continuously decreases;
and a blow-off pipe provided with a control valve, through which the controlled gas
flow is discharged into the environment.

Assumptions have to be examined for both parts of the system in order to get
the best approach to the process taking place. The next step is to determine the
mathematical model. Setting out from the calculation formulas, an algorithm can be
created to be realized in software form.

With the help of the example presented in the article, the changes in the most
characteristic parameters can be seen along the blow-off pipe and also their unsteady
changes at chosen points of the system. So the reader can be convinced of not only
the accuracy of the calculation process, but can also see the process under different
adjusting conditions.
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Abstract. During development of the continuous production of copper dried concentrate
and fluxes were injected through the top-blowing lance into the molten bath. The properties
of the equipment designed were determined by both classical measurements and modern flow
visualization methods. The results of the classical measurements of the air flow parameters
through an ejector with annular supersonic nozzle were confirmed by the Shleer and the
shade methods of flow visualization.
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1. Introduction

During development of the continuous production of copper dried concentrate and
fluxes were injected through the top-blowing lance by preheated, compressed and

Figure 1. Schematically illustrated lance with annular supersonic nozzle ejector

oxygen enriched air into the molten bath in the copper production zone [1-3]. Using an
ejector with an annular supersonic nozzle for the top-blowing lance, the experimental
study of the air flow parameters was performed.
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Figure 2. Graphical illustration of measured and calculated aerodynamic character-
istics for the lance with annular supersonic nozzle ejector.

Gas flow in the ejector with annular supersonic nozzle can be characterized as an
anisotropic discontinuous flow of viscous gas. The flow discontinuity is the result of
the energy losses due to the friction of air on the ejector walls and due to the shock
waves in supersonic flow [4-6].

2. Experiments

The experimental study of air flow through the ejector with annular supersonic nozzle
was realized on the lance schematically illustrated in Figure 1. The measurements of
the air flow parameters in the ejector mixing chamber with the simultaneous mea-
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surements of the pressures of primary, secondary and mixed flow were carried out for
the total air pressures of 0.4, 0.5, 0.595 and 0.69 MPa.

The results of the measurements for the primary flow with total pressure po = 0.69
MPa in the mixing chamber of the ejector are given in Figure 2.

It was diffi cult to carry out the measurements to determine the shock waves in the
air flow, so the Shleer and shade methods were applied. These optical methods make
the air flow visible. The visualized free flows under the total air pressure po= 0.69
MPa are shown in Figures 3 and 4.

Figure 3. Photograph of the free flow of the air from the lance with annular supersonic
nozzle ejector visualized by the Shleer method

Figure 4. Photograph of the free flow of the air from the lance with annular supersonic
nozzle ejector visualized by the shade method
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3. Discussion

The visualization of the free flow from the ejector with annular supersonic nozzle
showed shock waves of similar character to those in the flow originating from the Laval
nozzle. The air flow from supersonic annular nozzle slows down in the boundary layer
due to the contact of the flow with the surrounding air as well as due to the reciprocal
effect of the shock waves in the annular section of the air flow. Further influencing
factors are the energy losses and the flow deformation. Measurements confirm that
an ejector with supersonic annular nozzle has lower effi ciency than the Laval nozzle.

4. Conclusion

This investigation of the air flow in an ejector with a supersonic annular nozzle showed
that the flow was similar in character to the flow from the Laval nozzle but the
effi ciency of the former device is lower.

The investigated basic aerodynamic data of the air flow in the ejector with super-
sonic annular nozzle have been used for the construction of a top-blowing lance for a
continuous copper reactor.
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3. Imrĭs, I. and Mackey, P.J.: The continuous copper production, Acta Metallurgica
Slovaca, 3, (1997), 511-522.

4. Wagnerová, E., Schmiedl, J., Repèák, V. and Tomás̆ek, K.: Blowers development
for continuous copper production, Hutnícke listy, 6, (1982), 415-419. (in Slovakian).

5. Szekely, J. and Themelis, N.J.: Rate Phenomena in Process Metallurgy, Wiley-Inter-
science, New York. 1971.

6. Wagnerová E.: A study in the air flow through an ejector with annular supersonic
nozzle, Strojírenství, March (1988), 151-157. (in Slovakian).



Journal of Computational and Applied Mechanics, Vol. 2., No. 1., (2001) pp. 161—170

THROUGH THE EYES OF A FELLOW WORKER

András Nyiri
Deptartment of Fluid and Heat Engineering, University of Miskolc

3515 Miskolc-Egyetemváros, Hungary
aramnya@gold.uni-miskolc.hu

[Received: October 15, 2000]

Abstract. The paper aims to present the most important results of Tibor Czibere.

Keywords : Cascade theory, turbomachinery, boundary layer, rotordynamics, lubrication,
supersonic injector, heat transfer. heat conduction, vortex theorems, stochastic turbulence
model, Reynolds stress tensor

1. Years in the Works Ganz

I learned about the vivid professional public life of experienced colleagues as well
as of promising young fellow workers at the Engineers’Club of the Ganz Locomo-
tive and Wagon Manufacturers and Mechanical Engineers in the second half of the
1950s. Ern̋o Trenka, head of the Hydraulic Department - earlier the Design Division
of Pumps and Turbine - attached me to the Pump Division, though my intention was
to join the turbine designers. His aim was to introduce me into the pump design that
had been taught in the school of professors Pattantyús1 and Gruber2 . The lectures in
the Club by assistant professor F̋uzy offered a very good opportunity to ask him a lot
of questions concerning the problems I had trouble in what today is called numerical
computational methods. But before he was able to respond another beginner gave
surprisingly very competent and thoroughgoing answers to my questions. The name
of the other young man was Tibor Czibere, who was working on the design of the
blade rows of torque converters at another division of Ganz. Since the turbine blades
of a converter were made of highly curved profiles, he necessarily had to deal with
the cascades. In theis way he must have gone over the task of designing hydrofoils
for pump blades having straight camber lines. A short time after that we worked
at desks opposite each other in the newly established Research Division of the De-
partment. Czibere’s task was the design of water turbine runners and mine involved
pump impellers.

Czibere was able to exceed the old and still applied concept of solving engineer-
ing tasks on an empirical basis because he represented a different way of approach.
Kármán had been a pioneer of the concept of using mathematics as the language of
problem solving in engineering. Professor Samu Borbély founded a school in Miskolc
which belonged to Rothe’s famous school of applied mathematics in Berlin.

1Géza Á. Pattantyús (1885-1956) Professor of Hydraulic Machines
2József Gruber (1915-1972) Professor of Fluid Mechanics



162 A. Nyíri

2. A nonlinear heat conduction problem

Before coming to the Ganz Czibere worked as an assistant of Professor Borbély for
two years.

Metallurgy flourised in those years so the heat transfer problems arose related to
the heating of blocks [1,2]. The non-linear partial differential equation (PDE) of heat
conduction is as follows:

∇ · [k (ϑ)∇ (ϑ)] = ρ (ϑ) c (ϑ)
∂ϑ

∂t

where the density ρ, the specific heat c, the heat conductivity k depend on the tem-
perature ϑ and t is time. Without entering into details I refer only to the excellent
technique of integral transformation by which the task of solving the PDE becomes
a linear PDE of potential theory:

U (r, t) =

∫ ϑ(r,t)

0

k (λ) dλ

where U (r, t) depends on the radius vector r and the time t. Transforming the PDE
we get the equation:

∆U = A (U)
∂U

∂t
, where A (U) =

ρ c

k
.

Applying Green’s formulas one arrives at an integro-differential equation. The solu-
tion of a complicated problem should contain the solutions valid for its special case.
As is well known, the solution of the heat conduction problem for physical parameters
independent of the temperature can be given in terms of Bessel functions. Czibere’s
solution coincides with the solution valid for that special case.

3. Computational method for the design of a straight cascade of airfoils

The paper Computational method for the design of straight cascade of airfoils with
highly curved profile blades by Czibere was published in the Acta Technica Academiae
Scientiarum Hungaricae in 1960 [3]. In this profound article a method of computa-
tion to determine a straight cascade with a prescribed deflection angle of flow was
presented. In another approach the deflection means the lift force arising on a profile,
or putting it another way again, the change of the energy content of the flow passing
through the blades. The treatise was based on the determination of the velocity field
induced by vortices and sources on the plane of complex numbers. The vortex and
source-sink distributions along a curve mean tangential and normal velocity jumps
across it. These distributions are the so-called hydrodynamic singularities. The inte-
gral of the vortices along the curve gives the circulation around the profile, i.e., the
deflection and the source-sink distribution determine the shape of the foil. Because
the task is to find the very shape of the foil, i.e., the carrier curve of the hydrodynamic
singularities, the solution can only be obtained by iterative computations.
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In the middle of 1950s Scholtz and Schlichting published their work on straight
cascade but the camber line was supposed to be a straight line and the thickness of the
profile was also restricted size. Czibere extended the method in his paper on 69 pages
including not only the theory but the detailed algorithm of computations as well. The
sequence of calculations was supported with appropriate tables applicable by anyone.
Furthermore several elaborated examples showing blade shapes, velocity and pressure
distributions proved the practical use of the method. The value and importance of the
algorithm and the pattern of computation can really be appreciated if we remember
the tools of calculation available forty years ago. In the age of mechanical calculators
the numerical evaluation of improper integrals with acceptable accuracy was really
of a high value. I remember when after having returned from a conference held in
London in 1963, I was given a possibility to acquire a computing machine from abroad
but the western company refused to sell it to Hungary. I scarcely believe that one
could find anybody willing to undertake a task like that having such rudimentary
tools nowadays.

Achieving such a theoretical result could justly be praised any time. But it should
not be forgotten that we worked for an industrial company where the goal is always to
serve customers with products, therefore a pure theoretical method can satisfy just a
few people but not the company. Research activities must be determined accordingly.

In the year of publication, in 1960 the 10th Congress of International Applied Me-
chanics was held at Stresa, Italy, where Czibere presented a paper entitled Iterative
method for the determination of straight and radial cascades [4]. Theodore von Kár-
mán also attended the congress and noticee the young lecturer for two reasons. First
the name Czibere had to be a Hungarian one, and secondly, the idea of vortex had
made Kármán’s name famous all over the world. The appreciation by von Kármán
put Czibere’s name onto the list of the world-famous engineers of the Ganz Works.
There was a common saying: an engineer either belonged or belongs or will belong to
the Ganz. Unfortunately this a saying of the past now.

In 1963 the Hungarian Academy of Sciences awarded Czibere the Ph. D. degree
for the thesis in which he worked out a method for the determination of highly cam-
bered straight cascade of foils [5,6]. His method was worth mentioning in the book
Vorlesungen über Theoretische Mechanik by Professor István Szabó of the Technische
Universität Charlottenburg, West-Berlin. Professor Szabó invited Czibere as visiting
professor to deliver lectures about his method.

4. Two main tasks concerning the cascade of airfolds

The design method of straight cascades can only be applied to runners and impellers of
axial flow machines having a constant meridional width. The blade channels of mixed-
flow machines with a variable channel width needed the extension of the method. The
functions of complex variables can only be applied to plane flow. The conformal map-
ping provides a possibility to establish the relation between the flow around straight
and radial cascades. A cascade cut off a mixed flow impeller is also a two dimensional
one but it is on a surface of revolution. One can obtain an integral transformation
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between a plane flow and the flow on a surface of revolution having the same prop-
erties like that of a conformal mapping by solving an ordinary differential equation.
Let us denote the arc length of the meridional curve of the surface of revolution by
σ, the distance from the axis of rotation by r (σ), and the angle of a point by ϕ. The
angle and ratio preserving the transformation between the points on the surface and
the points (σ, ϕ) on the plane of Descartes coordinates (x, y) are as follows:

x = K

[
−1

2
+

1

a

∫ σ

0

dσ

r (σ)

]
, y = K

ϕ

a
,

where K and a are constants. The connection between the velocity components on
the plane and on the surface F is:

cx,y =
a

K
r (σ) cFσ,ϕ.

This transformation brought a decisive change in the determination of the velocity
field in a part channel with variable width b and density of fluid ρ of a mixed-flow
machine.

The PDE for the velocity potential function φ on the plane is of the form

∆φ = −∂φ
∂x

1

ρ b

d (ρ b)

dx
.

One has to write another equation between the velocity and the density of the flow.
The solution of these equations relates not only to the hydraulic machines but to the
compressors and turbines working with compressible fluid as well.

I must make a remark concerning the applicability of the method. While the
theoretical work was being made by Czibere, I designed the first double suction pump
with a mixed-flow impeller of the type DST.

There are two main tasks concerning the cascade of airfoils: 1.) to design the
geometry of the foils apt to deflect the flow as required, 2.) to determine the velocity
field around the given cascade of foils. In the first case the boundary curve is sought
for on which the distributions of hydrodynamic singularities are prescribed and in the
domain around the PDE has to be satisfied. The second task could be solved utilizing
the potential theory directly, i.e., the PDE can be reduced to an integral equation. By
solving the integral equation a potential density is obtained. Substituting the latter
into the Green formula, the solution of the PDE, i.e., the velocity potential function
will be determined. However, we do not need the velocity potential but its derivatives
only. The velocity jump across the boundary is either prescribed or sought for. On
the right hand side (RHS) of the PDE the through flow velocity component and the
varying flow density are included. Because the PDE is Poisson like, which includes
the unknown velocity distribution on the RHS, the solution can only be obtained by
iterative computations. Consequently, the canonical way is not advantageous, instead,
the extension of the method worked out for the straight cascade with constant width
and density - for which the same PDE stands with zero RHS - offers a more suitable
computational procedure. Without showing the details, I must make a remark that
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in the early 1960s we could not know that the applied method would later be called
as the boundary element method.

For the thesis that contained the solutions of the two main tasks of the hydrody-
namic cascade theory the Hungarian Academy of Sciencis awarded Czibere the degree
Doctor of Technical Sciences in 1967, see [7,8] for details.

The application of the method in engineering practice proved to be fruitful in the
hydraulic design of several Francis and Kaplan turbines. Czibere not only directed
but also took part in the work.

I would also like to mention a detail from his career here. He was appointed Minister
of Culture and Education in 1988. I think it was because of his scientific, industrial
and academic activities and his successful work as the head of the University. Being
a minister is first and foremost a political position, where —I think —the assertion of
the professional’s intention, his engineering expertise, integrity, scientific talents and
personal excellence may have to yield priority to other issues.

5. Further investigations in incompressible and compressible flows

Czibere was chosen to be a corresponding member of the Hungarian Academy of
Sciences (1976). His inaugural speech was The determination of the boundary layer
plane flow based on vortex discontinues [9]. The basic idea is that a boundary layer
around the surface of a solid body in the stream is simultaneously a vortex layer. The
vortex density function is either discontinuous or has a pole on the surface. After
having determined the vector potential of the vortex layer, an integral expression will
serve to compute the velocity field around the body. The proper choice of the vector
potential ensured that the computed theoretical results had good agreement with the
experiments. This study proved the generally accepted concept that the flow can be
dealt with as an ideal fluid apart from the immediate vicinity of the body first stated
by Prandtl.

Czibere was promoted to be an ordinary member of the Hungarian Academy of
Sciences in 1985. The theme of his inaugural lecture was quite different from the
previous one and had the title Shock waves in a supersonic gas ejector [10]. The
nature of the supersonic flow is quite different from the subsonic one. Shock waves
always occur if the speed of the compressible fluid exceeds the speed of sound. This is
the case when the gas is flowing around a bullet or an aeroplane and if the gas flows
in a channel. The properties of the gas - like velocity, pressure, density, temperature,
and entropy - passing over a shock wave suddenly change therefore the basic equations
of motion are not applicable. These jumps take place in a narrow strip. Depending
on the angle of crossing we speak about normal or oblique shock waves. Since entropy
always increases, the shock wave can only be an expansion wave. Two fluids are mixed
in a gas ejector flowing in the same direction but with a different speed: one below,
the other above the speed of sound. The driving gas arrives from a Laval nozzle,
which accelerates the gas over the speed of sound. First the possible flow patterns
in the Laval nozzle are examined. Then mixing procedures are dealt with depending
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on the pressure, density, mass ratios of the gases and the ratio of cross sections the
gases flow through. This subject requires different mathematical tools as the tasks
mentioned earlier. The process must be followed step by step. The practical goal of
this study was to decrease the vacuum in order to avoid cavitation in the water ring
vacuum pump coupled with the ejector. The comparison of the calculated and the
measured pressure distributions proved the theoretical approach.

6. Research for the industry

The forces exerted on the rotor of a turbomachine are of hydrodynamic origin. Due to
the variation of the eccentricity in circumferential direction between the staying and
rotating sleeves of a multistage pump unsteady forces arise like in a slide bearing. The
impellers are subjected to axial thrust because the area opposite the impeller eye is
under less pressure than the pressure on its back shroud. The thrust can be balanced
automatically by a rotating disk mounted onto the shaft. The axial gap between the
rotating and staying disk also varies because of the flexible deformation of the shaft.
This causes a non-symmetrical pressure distribution around the shaft which leads to
a pulsing bending moment in the shaft. The study Determination of the dynamic
interacting between solid and fluid continua suggests a more comprehensive method
to compute the unsteady hydrodynamic forces and momenta. The special cases, e.g.,
the theory of lubrication of slide bearings can be deduced from the general method.

The next paper Computation of the eigenfrequencies of multicomponent rotors
loaded by hydrodynamic forces and momenta employs the previous report. The con-
ditions supposed in this paper are much less restrictive than in other investigations.
The angle torsion of a cross section of the shaft revolving with constant angular ve-
locity perpendicular to the axis of rotation is allowed. The rotating shaft will make
precessional motion. After having determined the hydrodynamic and shearing forces
and momenta, a fourth order PDE is set up for the neutral axis which will be de-
formed to a space curve. The function sought for is of a complex value with complex
variables. The PDE can be reduced to an ordinary differential equation the eigen-
functions of which are complex functions depending on real variables. The method
is for analyzing the bending vibration of a rotating shaft with finite length. The
complex deformation and angular torsion of the center of gravity of a cross section
and the bending moment as well as the shear forces can be computed. The rotor of a
multistage machine can be divided to loaded and unloaded parts. All the cases which
may occur to a shaft are treated: e.g. varying cross sections, rigid disk, clutch, fixed
shaft end, flexibly supported bearing etc. Matrix equations describe these sections of
the rod. These transfer matrices can be coupled in a rather simple way. The study
ended by an example analyzing numerically the bending vibrations of a multistage
boiler feed pump.

The computer simulation of the air and exhaust system including the boiler of the
200 MW block of the Mátra Power Plant was a new task. The operational parameters
such as the temperature, pressure, etc. were to be determined for varying thermal
loads of the boiler, different fuels and air inputs. The setting of the closing and
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throttling valves and the unavoidable leaks and through flows were to be taken into
consideration. The characteristics of the pulverizer fan, which is a special part of the
system, had to be determined for different concentrations and grain sizes of the lignite.
The balance equations and the continuity conditions at the nodal points resulted in
a non-linear system of 45 equations. A great number of constant parameters of the
block were also needed but their site measurements could not been carried out with
acceptable accuracy or at all. The original design parameter values were not available.
Had those been available, they would have been obsolete. After all the model of the
system had to correspond with the measurable operational values. Finally the software
developed had to be apt for the every day use by the staff running the block.

To determine the real characteristics of a turbomachine the viscous effects should be
taken into account [11,12]. An extension of the cascade theory must involve frictions.
A method was worked out for a cascade of foils bounded by two plane walls [13]. The
effect of blading and friction on the flow were taken into consideration separately.
The blade effect is represented hydrodynamically by a field of constraint forces which
are determined by the change of the moment of momentum in the inviscid flow. The
frictional effect on the fluid flowing through a cascade is taken into account based on
the analogy between the channel flow and the flow in the bladed space. The results
are the energy loss along the blades in the through flow direction and other quantities.
Further steps aiming at the application to a mixed-flow channel made it possible to
compute the real head-discharge characteristics of a pump for different flow rates and
pre-whirl of the absolute flow. The calculated and measured characteristics showed a
good agreement.

7. A heat transfer problem associated with phase change

One of the important courses of the Ph.D. programs at our University is thermody-
namics for which Professor Czibere is responsible. Within this heat conduction is his
favorite as he dealt with it in his younger age. The transport processes are treated
in his book Heat conduction published in 1998 [14]. The global balance equations,
the conservation laws, the main laws of thermodynamics and the similarity laws are
dealt with in a much more comprehensive way than one could expect it upon the
title of this book. The general PDE of heat conduction and its initial and boundary
conditions are discussed including the heat transport in metals when phase change
occurs. A great many steady and unsteady tasks in 1, 2, and 3 dimensions are solved
on about 200 pages, several amongst them would be worth publishing as separate
scientific papers. The mathematics applied in the book can be found in its appendix.
Not only the Ph.D. students but researchers can use the book in their work as well.

8. A three dimensional stochastic turbulence model

The investigation of turbulence phenomena of flow has been the basic problem of
fluid dynamics since the end of the 19th century, when the first concept was created
by Osborne Reynolds. Theodore von Kármán stated n 1930 that the flow patterns
at different points of the velocity field are mechanically similar in a fully developed
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turbulent flow. His hypothesis was restricted only to two dimensional flow though the
turbulence is always three dimensional. Recently Czibere extended the mechanical
similarity to three dimensional flow. Details in connection with his investigations
can be found in the first paper of the present issue. In spite of this I would like to
present repeatedly the most important result of his paper in order to give a somewhat
different interpretation to it and for the sake of completeness as well. According to G.
I. Taylor’s at that time (1935) quite new concept, the turbulent velocity fluctuation
v, is to be considered a random variable. v, is the difference of the instantaneous
velocity and the mean velocity v. The assumptions were also made that the turbulence
is homogenous and isotropic. These hypotheses cannot be maintained for a real
turbulent flow today. The correlation tensors by which the phenomenon attempted
to describe the turbulence led to more unknown variables than equations could be
set up. Consequently, the determination of the Reynolds stress tensor FR could not
be attained. There are tremendous models for turbulence but they are valid only
in special particular cases. Attempts to obtain the Reynolds tensor assumed some
connection between it and the strain rate tensor. As Czibere’s theory proves it FR
cannot be coupled with the strain rate tensor [15].

q1
'

q2
'

q3
'

v

ª=4×v

Figure 1.

Applying Friedman’s theorem for conservation of vector lines to flow of fluids of
constant density ρ, Czibere’s theorem states, as analogy to Helmholtz’s vortex theo-
rem, that

∂Ω

∂ t
+ (v ·∇) Ω− (Ω ·∇) v =ν·∆Ω +∇×

(
v, ×Ω′

)
,

where Ω= ∇×v, Ω
′

= ∇× v,, ν is the kinematic viscosity coeffi cient, t is time and
the time average is denoted by an overbar. The conclusion is that the vortex line will
not persist either in fully viscous or in fully turbulent flow. The vortex theorem for
the turbulent velocity fluctuation is:

∂Ω
′

∂ t
+ (v, ·∇) Ω

′
−
(
Ω

′
·∇
)

v, = (Ω ·∇) v, + ν∆ Ω
′
.

It follows from this that the vortex diffusion occurs even in an inviscid fluid. One can
conclude that the source of turbulence is the vorticity of the main flow Ω.

The velocity fluctuation vector can be expressed as the rotation of a vector potential
function. After proper geometrical and physical similarity transformations, a PDE



Through the eyes of a fellow worker 169

for the dimensionless vector potential f can be obtained. Applying the solution, the
Reynolds stress tensorwill have the following form:

FR = −ρ (v, ◦ v,) = −ρ `2 |Ω| Ω
(
∇× f◦∇× f

)
,

where ` is the scale factor of turbulence.

The representation of the stochastic process of the intrinsic mechanism of turbu-
lence in the natural orthogonal coordinate system (q,1, q

,
2, q

,
3) with a coordinate plane

spanned by the vectors Ω =∇× v and v, - the direction of Ω being opposite to q,3 -
looks like

Ω =
1

H ,
1H

,
2

∂ (v1H
,
1)

∂ q,2
.

where H ,
i are the Lamé coeffi cients. The Reynolds stress tensor will have the form:

FR = ρ κ2 `2 H0

∣∣∣∣ 1

H ,
1H

,
2

∂ (v1H
,
1)

∂ q,2

∣∣∣∣ 1

H ,
1H

,
2

∂ (v1H
,
1)

∂ q,2
,

here κ is the Kármán’s constant and the similarity tensor is:

H0 =

 α 1 µ
1 β ϑ
µ ϑ γ

 .

The elements of H0 are constant numbers. A very important circumstance is that
the number of equations and the unknown variables of the turbulent flow are equal.

The shortly outlined concept of turbulence applied to the flow in tubes of circular
cross-section resulted in velocity distributions that are in good agreement with the
measurements carried out by Nikuradse about 70 years ago. Czibere is currently
working on more complicated applications of his concept.

I ought not forget to mention that the computer codes are worked out and numerical
computations are carried out by himself.

I suppose that this unavoidably short summing up the activities of Tibor Czibere
would make any evaluation superfluous. What I may only do is to express my pleasure
that I could be a witness of the thoughts arising and from time to time I was a fellow
worker to discuss the problems. I am also very proud of my friendship with him. At
the same time the fact that Czibere’s work has not yet been utilized as completely as
it would be required and possible —like the achievements of many other Hungarian
Scientists —fills me with sorrow. One can only hope that time will make up for the
delay.
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