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Slovenskej akadémie vied, Dubróvska cesta 9,
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Abstract. In this paper, a nonlinear vibrational and rotational analysis of microbeams in
nanobiomaterials using Galerkin Decomposition (GDM) and Differential Transform Methods
(DTM) is presented. The dependency of cell migration and growth on nanoscaffold porosity
and pore size architecture in tissue regeneration is governed by a dynamic model for the
nonlinear vibration and rotation of the microbeams of nanobiomaterials and represented
by a set of nonlinear partial differential equations. The solutions of the governing model
are obtained by applying GDM and DTM and good agreement is achieved with numerical
Runge-Kutta method (RK4). From the results, it is observed that an increase in Duffing term
resulted in the increase of the frequency of the micro-beam. An increase in the foundation
term also resulted in a corresponding increase in the frequency of the system for both free
and forced dynamic responses. This study will enhance the application of tissue engineering
in the regeneration of damaged human body tissues.

Mathematical Subject Classification: 35M86
Keywords: Nonlinear vibration, rotation, microbeams, nanobiomaterials, Galerkin Decom-
position Method (GDM), Differential Transform Method (DTM)

1. Introduction

Cellular structured nanobiomaterials with extremely restrained micro-architectures
have a wide range of applications which includes bone-substituting biomaterials in
orthopaedics [1]. In these applications, the size and size distribution of the
biomaterials are important [2]. The production of these biomaterials has been enabled
by applying additive manufacturing techniques in engineering principles to produce
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one or multiple types of unit cells. One of the most recent applications of the unit
cell in the production of porous biomaterials is the diamond lattice unit cell [1, 3]. In
the application of additively manufacturing to porous titanium implants as replace-
ments for bone, it is observed that the excellent biocompatible properties of titanium
are preserved, which shows that the stiffness of titanium is quite small when com-
pared with that of the natural bones [4]. The porosity and permeability of materials
have been linked to fractal dimensions through imbibition model for petro-physical
applications [5].

Nanoporous biomaterials such as Metal-Organic Frameworks (MOFs) consist of
metal ions joined by organic connective ligands which have unique chemical and
physical characteristics. The application of MOFs in biological systems, drug de-
livery, material science, and nanotechnology is being explored [2]. The importance
and applications of biomaterials with more recent findings of smart biomaterials can-
not be overemphasized, as uses are being found in the medicine and healthcare sector;
as implants for body organ replacements, tissue regeneration, drug delivery systems,
medical devices, and immune engineering [6–9].

Mathematical models for size dependent dynamics of biomaterials have been de-
veloped for three-layered beams based on the hypothesis of the Grigolyuk–Chulkov
and the modified couple stress theory. The governing model and its boundary/initial
conditions for beam displacement are applied for motion of layers’ beams on the micro
and nano-scales [10]. Nanobeams with axially immovable ends and the geometrical
nonlinearity caused by mid-plane stretching are considered in the developed model.
In the Euler-Bernoulli beam model, the nano-device dynamic equation of motion is
applied in the model kinematics [11]. The mathematical models of the nanoparticle
are also affected by size and architecture, as shown in the normalized center deflec-
tions obtained in the study of size dependent composite laminated skew Mindlin plate.
The Raleigh-Ritz method was applied to obtain a numerical solution to the model
and it was observed that the normalized center deflections are always smaller than
those obtained by the classical one [12, 13]. The mechanisms of the nanoparticles
will aid the understanding of cell and nanoparticle size dependent toxicity. The elec-
tromechanical response of a nanostructure is observed to be influenced by the size of
its element. This property of the nanostructure has been exhibited and it is further
shown that the stability of the nanotweezers will be affected by the element size [14].
In the modeling of size effects of nanobeams, Reddy’s shear deformation beam the-
ory was applied to vibration characteristics of functional graded piezoelectric (FGP)
nanobeams. Eringen’s nonlocal elasticity theory was adopted to capture the small
size effect. The obtained results showed that the applied Reddy’s shear deformation
model presented accurate frequency results of the FGP nanobeams [15].

Remarkably, mathematical models have provided the means to understand the
physiochemical and physiological features of the behavior of nanomaterial in biolog-
ical systems, as shown in the application of nanotechnology in inducing cytotoxic
agents in cancer-nanomedicine [16], for predicting pore size distribution, and for the
estimations of growth rates [17]. Nanomaterials of different shapes and sizes relate
with cells in various ways, passively and actively. Recent studies on size-dependent
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effects of nanomaterials have been done with spherical nanoparticles but special con-
sideration has been given to critical cellular interaction [13]. In order to enhance the
cellular interaction and nanoparticle internalization, it has been proposed that the
best size for the nanoparticle is 50 nm [13], though most experimental data show that
the approximate nanoparticle size preferred for cell internalization is 100 nm. Hence
nanoparticle size influences the endocytic pathway which is followed by cell internal-
ization. The microtubules and the actin filaments are biological elements in the living
cells which serve as block builders for functional nanomaterials and nanosurctures
used for manufacturing nature—inspired small-scale devices or systems [18].

Analytical solutions have been obtained for wave dispersion in anisotropic doubly-
curved nanoshells. The governing equation for the formulation was based on Hamil-
ton’s principles [19]. In a related study of free vibration of piezoelectric nanotubes,
Hamilton’s principles were applied to develop the governing equation and the enthalpy
energy [20–22]. The effects of size as well as the geometrical and electromechanical
effects on the nanotube and their effects on natural frequency of the vibration of the
piezoelectric nanotubes were investigated. An explicit expression obtained for me-
chanical properties of nanoporous biomaterials. The expression was made in terms of
the pore size from the lattice structure of the refined truncated cube by applying ad-
ditive manufacturing in order to obtain appropriate mechanical properties [23]. The
effectiveness, robustness and applicability of analytical solutions to complex prob-
lems cannot be overemphasized and this makes the analytical solution of the present
problem of utmost importance. The study is focused on investigating the problems
of nonlinear vibrational and rotational analysis of microbeams in nanobiomaterials
using Galerkin Decomposition and Differential Transform Methods.

The developed nonlinear differential equations which describe the nonlinear vibra-
tional and rotational analysis of microbeams in nanobiomaterials do not have closed
form solutions, hence special analytical techniques are applied to obtain the solution:
the Galerkin Decomposition Methoid and the Differential Transform Method. The
Galerkin Decomposition Method is a numerical method which has proved to be ef-
fective in various applications, which include nonlinear elastic dynamics of a clamped
laminated composite [24] and solution of wide range of weighted residual problems
using Galerkin’s Method [25]. Galerkin’s method has also been applied to nonlinear vi-
brational problems in carbon nanotubes applications [26], and heat transfer problems
for temperature-dependent thermal conductivity of a porous fin in [27]. Galerkin’s
method has been combined with other methods to obtain more efficient results, such
as the Variational methods, in solving engineering problems in nonlinear ordinary dif-
ferential equations [28] and Petrov–Galerkin methods for nonlinear systems without
monotonicity [29].

In this study, the solution obtained by the Galerkin Decomposition Method is
compared with the solutions of the differential transform method. The differential
transform method (DTM) is an approximate analytical method for solving linear and
nonlinear ordinary and partial differential equations. It was proposed by Zhou in 1986
[30]. The DTM has been applied in free and forced convection flow about inclined
surfaces in porous media [31, 32], in Newtonian and non-Newtonian nanofluids flow
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analysis [33], and nonlinear ordinary differential matrix equations [34]. DTM has
proved to be effective when compared with the Adomian Decomposition Method
(ADM) and with the Variation Iteration Method (VIM) and Homotopy Perturbation
Method (HPM) [35, 36]. The DTM has some drawbacks which have been overcome
by combining it with Laplace transform in studies for nonlinear Duffing oscillator with
damping effect [37] and for non-linear oscillators by applying the multi-step differential
transform method [38]. Further works on vibration theories and applications have also
been presented [39, 40].

Therefore the main objective of this current study is to investigate the problem
of nonlinear vibrational and rotational analysis of microbeams in nanobiomaterials
using Galerkin Decomposition and the Differential Transform Methods. In replacing
damaged human body tissues, novel approaches are emerging in tissues engineering to
regenerate damaged tissues and the major elements in these approaches are the migra-
tion and growth of cells. These elements depend on the porosity of the nanoscaffolds
and the pore size architecture of the cell. In order to investigate this dependency
of the migration and growth of cell on pore size, the nonlocal strain gradient the-
ory of elasticity is applied to develop the dynamic model for the nonlinear vibration
and rotation of the microbeams made of nanobiomaterials. This dynamic model is a
set of nonlinear partial differential equations whose solutions require special analytic
techniques. The solutions are obtained by applying Galerkin Decomposition Method
or the Differential Transform Method. The effects of modal number on steady state
response, the effect of duffing term on stability response of the microbeam, the ef-
fect of elastic foundations on microbeam stability response, and the effect of elastic
foundation on microbeam free and forced dynamic responses are then investigated.

The paper is organized into five sections. The first one, i.e., the present section
considers the preliminary results and outlines the problem to be solved. Section 2
is devoted to the equations of motion which have a strongly non-linear character.
The solution algorithm is detailed in Section 3 where analytical approximations are
devised for the unknown quantities. The numerical results are evaluated and discussed
in Section 4. Our conclusions are presented in Section 5 which is a short summary of
our results. The last section is a Nomenclature. The readers are advised to refer to
this section for the fundamental notations.

2. Formulating the equation of motion

The degree of freedom of system for the microbeam’s unit cell as well as the im-
posed boundary conditions are represented by Figures 1 and 2. In this present study,
the biological system nanoporous microbeam is assumed to include the lattice struc-
ture of the refined truncated cube. With repeated cells, the unit cell is surrounded
by truncated cubes and hence, results in each membrane of refined truncated cube.
Consequently, analyzing a membrane of refined truncated cube is sufficient to obtain
the mechanical response of the unit cell. If η2 = 1, η1 = η3 and η4 = η5 = η6 = 0
it follows from Figure 1 that the point a1 (the vertices of links a1b1, a1b2, a1b3, a1b4
– the last three links are, however, not represented in Figure 1) displaces downwards
by unity.
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Figure 1. Cell unit with its degree of freedom
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Figure 2. The system condition considered (pinned-pinned)

According to the refined hyperbolic shear deformable beam model proposed by
Sahmani [41], the governing equations that capture the deflection and rotation are as
follows:

ξ1
∂4w

∂x4
− ξ2

∂3θ

∂x3
− ξ3

∂6w

∂x6
+ ξ4

∂5θ

∂x5
− p+ µ2 ∂

2p

∂x2
− ξ5

∂2w

∂x2
+

+ µ2ξ6
∂2w

∂x2
+ µ2ξ5

∂4w

∂x4
+ ξ7

∂2w

∂t2
−
(
µ2ξ7 + ξ8

) ∂4w

∂x2∂t2
+ ξ9

∂6w

∂x4∂t2
−

− ξ10
∂3w

∂x∂t2
+ µ2ξ10

∂5w

∂x3∂t2
= 0 , (1a)

ξ1
∂3w

∂x3
− ξ11

∂2θ

∂x2
+ ξ12θ − ξ12

∂3w

∂x∂t2
− ξ13

∂2w

∂t2
= 0 . (1b)
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In this work, a nonlinear elastic foundation term will be incorporated. This makes
the fully coupled governing equation strongly nonlinear as presented below:

R1(x, t) = ξ1
∂4w

∂x4
− ξ2

∂3θ

∂x3
− ξ3

∂6w

∂x6
+ ξ4

∂5θ

∂x5
− p+ µ2 ∂

2p

∂x2
− ξ5

∂2w

∂x2
+

+µ2ξ6
∂2w

∂x2
+ µ2ξ5

∂4w

∂x4
+ ξ7

∂2w

∂t2
−
(
µ2ξ7 + ξ8

) ∂4w

∂x2∂t2
+ ξ9

∂6w

∂x4∂t2
−

−ξ10
∂3w

∂x∂t2
+ µ2ξ10

∂5w

∂x3∂t2
+ k1w + k2w

3 = 0 ,

R2(x, t) = ξ1
∂3w

∂x3
− ξ11

∂2θ

∂x2
+ ξ12θ − ξ12

∂3w

∂x∂t2
− ξ13

∂2w

∂t2
= 0 .

(2)

The non-linear differential equations (2) are associated with the following boundary
conditions valid for pinned-pinned beams [40]:

w (0, t) = w′′ (0, t) = 0 ,

w (L, t) = w′′ (L, t) = 0 .
(3a)

The initial conditions are of the form

w(t = 0) = a = lim
t→0

w̄

10−6m
cos ω̄t = Wmax cos ω̄t, ẇ (t = 0) = 0 ,

θ (t = 0) = b = lim
t→0

b cos ω̄t , θ̇ (t = 0) = 0 .

(3b)

Here, the initial deflection and rotation of the microbeam, which are a and b, tend
to zero [41]. Equation 2 will be solved using Galerkin Decomposition (DG) and
Differential Transform Method (DTM) in order to obtain the dynamic response and
rotation of the system under consideration.

3. Models and solutions

3.1. Application of the Galerkin decomposition. The Galerkin Decomposition
method is applied to convert the governing partial differential equations into ordinary
differential equations using an appropriate shape function that satisfies the boundary
conditions. This approach is expressed as

L∫
0

Ri (x, t)ϕ (x) dx = 0 , (i = 1, 2) (4)

where

w = w (x, t) = T (t)ϕ (x) , and θ = θ (x, t) = J (t)ϕ (x) , (5)
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while R1 and R2 are given by (2). Substituting them into (4) yields∫ L

0

(
ξ1
∂4w

∂x4
− ξ2

∂3θ

∂x3
− ξ3

∂6w

∂x6
+ ξ4

∂5θ

∂x5
− p+ µ2 ∂

2p

∂x2
− ξ5

∂2w

∂x2
+

+µ2ξ6
∂2w

∂x2
+ µ2ξ5

∂4w

∂x4
+ ξ7

∂2w

∂t2
−
(
µ2ξ7 + ξ8

) ∂4w

∂x2∂t2
+ ξ9

∂6w

∂x4∂t2
−

−ξ10
∂3w

∂x∂t2
+ µ2ξ10

∂5w

∂x3∂t2
+ k1w + k2w

3

)
ϕ (x) dx = 0 ,

∫ L

0

(
ξ1
∂3w

∂x3
− ξ11

∂2θ

∂x2
+ ξ12θ − ξ12

∂3w

∂x∂t2
− ξ13

∂2w

∂t2

)
ϕ (x) dx = 0 .

(6)

from where by inserting (5) we have

L∫
0

(
ξ1
∂4T (t)ϕ (x)

∂x4
− ξ2

∂3J (t)ϕ (x)

∂x3
− ξ3

∂6T (t)ϕ (x)

∂x6
+ ξ4

∂5J (t)ϕ (x)

∂x5
−

− p+ µ2 ∂
2p

∂x2
− ξ5

∂2T (t)ϕ (x)

∂x2
+ µ2ξ6

∂2T (t)ϕ (x)

∂x2
+ µ2ξ5

∂4 (T (t)ϕ (x))

∂x4
+

+ξ7
∂2T (t)ϕ (x)

∂t2
−
(
µ2ξ7+ξ8

) ∂4T (t)ϕ (x)

∂x2∂t2
+ξ9

∂6T (t)ϕ (x)

∂x4∂t2
−ξ10

∂3T (t)ϕ (x)

∂x∂t2
+

+ µ2ξ10
∂5T (t)ϕ (x)

∂x3∂t2
+ k1T (t)ϕ (x) + k2(T (t)ϕ (x))

3

)
ϕ (x) dx = 0 (7)

and

L∫
0

(
ξ1
∂3T (t)ϕ (x)

∂x3
− ξ11

∂2J (t)ϕ (x)

∂x2
+ ξ12J (t)ϕ (x)−

− ξ12
∂3T (t)ϕ (x)

∂x∂t2
− ξ13

∂2J (t)ϕ (x)

∂t2

)
ϕ (x) dx = 0 . (8)

By introducing new notations equations, (7) and (8) can be manipulated into the
following simple forms

M1T̈ +K1T +K2J + V T 3 = F ,

M2J̈ +K12J +K21T = 0 ,
(9)

where

M1 =

L∫
0

(
ξ7ϕ (x) −

(
µ2ξ7 + ξ8

) d2ϕ (x)

dx2
+ ξ9

d4ϕ (x)

dx4
+

+ ξ10
dϕ (x)

dx
+ µ2ξ10

d3ϕ (x)

dx3

)
ϕ (x) dx , (10a)
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K1 =

L∫
0

(
ξ1
d4ϕ (x)

dx4
− ξ3

d6ϕ (x)

dx6
− ξ5

d2ϕ (x)

dx2
+

+ µ2ξ6
d2ϕ (x)

dx2
+ µ2ξ5

d4ϕ (x)

dx4
+ k1ϕ (x)

)
ϕ (x) dx , (10b)

K2 =

L∫
0

(
−ξ2

d3J (t)ϕ (x)

dx3
+ ξ4

d5J (t)ϕ (x)

dx5

)
ϕ (x) dx , (10c)

V =

L∫
0

k2(ϕ (x))
3
ϕ (x) dx (10d)

and

M2 =

L∫
0

(ξ13ϕ (x))ϕ (x) dx , (11a)

M21 = −
L∫

0

ξ12
dϕ (x)

dx
ϕ (x) dx = 0 , (11b)

K12 =

L∫
0

(
ξ11

d2ϕ (x)

dx2
+ ξ12ϕ (x)

)
ϕ (x) dx , (11c)

K21 =

L∫
0

ξ1
d3ϕ (x)

dx3
ϕ (x) dx . (11d)

Equation (9) is the desired system of ODE from the Galerkin decomposition of the
PDEs which will be solved using DTM. However, the natural frequency and frequency
ratio of the system may be obtained as

ω =

√
K1

M1
(12)

and

Ω =
ωnl

ω
=

√
1 ± 3VW 2

max

4K1
(13)

which in an expanded form are given by

ω =

=

√√√√√√√√
L∫
0

(
ξ1

d4ϕ(x)
dx4 −ξ3 d6ϕ(x)

dx6 −ξ5 d2ϕ(x)
dx2 +µ2ξ6

d2ϕ(x)
dx2 +µ2ξ5

d4ϕ(x)
dx4 +k1ϕ (x)

)
ϕ (x) dx

L∫
0

(
ξ7ϕ (x)−(µ2ξ7+ξ8) d2ϕ(x)

dx2 +ξ9
d4ϕ(x)
dx4 +ξ10

dϕ(x)
dx +µ2ξ10

d3ϕ(x)
dx3

)
ϕ (x) dx

,

(14)
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Ω =
ωnl

ω
=

=

√√√√√√√√1±
3W 2

max

L∫
0

k2(ϕ (x))
3
ϕ (x) dx

4
L∫
0

(
ξ1

d4ϕ(x)
dx4 −ξ3 d6ϕ(x)

dx6 −ξ5 d2ϕ(x)
dx2 +µ2ξ6

d2ϕ(x)
dx2 +µ2ξ5

d4ϕ(x)
dx4 +k1ϕ(x)

)
ϕ(x)dx

,

(15)

where ϕ = sin
nπ

L
x for the considered pinned-pinned beam, n is the modal number

and F is the Galerkin form of p – applying Galerkin decomposition to p yields F .

3.2. Analytical solution to the developed models and the basic concepts of
the differential transform method (DTM). Due to the presence of a nonlinearity
in the derived coupled governing equation of motion, a method capable of transforming
differential equations into another domain with a robust and easy way of inversion is
required. The differential transform method (DTM) possesses this attribute. DTM
maps a governing equation into an algebraic domain and then obtains an inversion
using a series summation method. This approximate analytical method generates a
solution with the controlling parameters adequately conserved. The recursive relations
that constitute DTM for transforming differential equation into the desired form are
shown in Table 1. As regards the notations used in this table we refer the reader to
[30] and [34] which detail the way they should be applied. By applying this scheme to
equations (9) we obtain the required analytical solutions of the governing equations.

Table 1. Recursive relations for the Differential Transform Method (DTM)

Z(t) = U(t)± V (t), Z(k) = U(k)± V (k);

Z(t) =∞U(t), Z(k) =∞U(k);

Z(t) =
dU(t)

dt
, Z(k) = (k + 1)U [k + 1];

Z(t) =
d2U(t)

dt2
, Z(k) = (k + 1)(k + 2)U [k + 2];

Z(t) =
dmU(t)

dtm
, Z(k) = (k + 1)(k + 2) · · ·U [k +m] = (k+m)!

k!
U [k +m];

Z(t) = U(t) ∗ V (t), Z(k) =
∑K

`=0 V (L)U [K − `] ;

Z(t) = tm, Z(k) = δ(k −m).

After applying the scheme in Table 1 to equations (9) we have

M1 (k + 1) (k + 2)Tk+2 +K1Tk +K2Jk+

+ V

k∑
q=0

(
q∑

l=0

TlTq−lTk−q

)
− Fωk sin (1/2kπ)

k!
= 0 (16)
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and
M2 (k + 1) (k + 2) Jk+2 +K12Jk +K21Tk = 0 , (17)

where with regard to the transformed initial conditions

T0 = a , T1 = 0 , J0 = b and J1 = 0 . (18)

Performing the iteration steps on equations (16) and (17) by utilizing equations (18)
leads to the following solutions for T2, J2, . . . , T7, J7:

T2 = −V a
3 +K1a+K2b

2M1
, (19)

J2 = −K12b+K21a

2M2
, (20)

T3 =
Fω

16M1
, (21)

J3 = 0 , (22)

T4 =
1

24M2
1M2

(
3M2V

2a5 + 4K1M2V a
3 + 3K2M2V a

2b+K2
1M2 a+

+K1K2M2b+K12K2M1b+K2K21M1a
)
, (23)

J4 =
K21M2V a

3 +K1K21M2a+K2
12M1b+K12K21M1a+K2K21M2b

24M1M2
2

, (24)

T5 = −Fω
(
M1ω

2 + 3V a2 +K1

)
/120M1

2 (25)

J5 = −K21Fω/120M1M2 , (26)

T6 = − 1

720M3
1M

2
2

(
27M2

2V
3a7 + 51K1M2

2V 2a5 + 45K2M
2
2V

2a4b+

+ 25K2
1M

2
2V a

3 + 42K1K2M
2
2V a

2b+ 3K12K2M1M2V a
2b+ 18K2

2M
2
2V ab

2+

+ 4K2K21M1M2V a
3 +K3

1M
2
2 a+K2

1K2M
2
2 b+K1K12K2M1M2+

+ 2K1K2K21M1M2a+K2
12K2M

2
1 b+K12K2K21M

2
1 a+K2

2K21M1M2b
)
, (27)

J6 = − 1

720M2
1M

3
2

(
3K21M

2
2V

2a5 + 4K1K21M
2
2V a

3 +K12K21M1M2V a
3+

+ 3K2K21M
2
2V a

2b+K2
1K21M

2
2 a+K1K12K21M1M2 a+

+K1K2K21M
2
2 b+K3

12M
2
1 b+K2

12K21M
2
1 a+ 2K12K2K21M1M2b+

+K2K
2
21M1M2a

)
, (28)

T7 =
Fω

5040M3
1M2

(
M2

1M2ω
4 + 3M1M2V a

2ω2 + 69M2V
2a4 +K1M1M2ω

2+

+ 66K1M2V a
2 + 60K2M2V ab+K2

1M2 +K2K21M1

)
, (29)

J7 =
K21Fω

(
M1M2ω

2 + 3M2V a
2 +K1M2 +K12M1

)
5040M2

1M
2
2

. (30)
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With T0, J0, . . . , T7, J7 we have the following analytical approximations

T (t) =

7∑
k=0

Tkt
k , J (t) =

7∑
k=0

Jkt
k . (31)

Equations (31), in which the coefficients are given by (18),. . . ,(30), are the desired
analytical solutions for T (t) and J(t). In order to find the unknown deflections for a
longer time history, the above technique is applied and the results obtained are utilized
to analyze the dynamic behavior of the system in the present study. Furthermore,
the computations require 16 iterations for achieving good accuracy.

4. Results and discussions

In this study, the nonlinear vibration and rotation of microbeams in presented. The
migration and growth of a cell depends on the porosity of the nanoscaffolds and
the pore size architecture. In order to investigate this dependency of the cell mi-
gration and growth on pore size, the nonlocal strain gradient theory of elasticity
is applied to develop a dynamic model for the nonlinear vibration and rotation of
microbeams made of nanobiomaterials. This dynamic model, which is a set of cou-
pled nonlinear ordinary differential equations, was solved by applying an approximate

Table 2. Validation of the Galerkin Decomposition Method with the Dif-
ferential Transform Method

Time Deflection (nm) Rotation (radian)

(Secs) GDM DTM Residual GDM DTM Residual

1 0.3000 0.3000 0.0000 0.1000 0.1000 0.0000

2 0.2384 0.2385 0.0001 0.0921 0.0921 0.0000

3 0.0787 0.0790 0.0003 0.0711 0.0711 0.0000

4 -0.1150 -0.1144 0.0006 0.0441 0.0440 0.0001

5 -0.2649 -0.2645 0.0004 0.0198 0.0197 0.0001

6 -0.3104 -0.3105 0.0001 0.0051 0.0050 0.0001

7 -0.2327 -0.2335 0.0008 0.0025 0.0023 0.0002

8 -0.0628 -0.0641 0.0013 0.0088 0.0087 0.0001

9 0.1316 -0.1302 0.0014 0.0173 0.0172 0.0001

10 0.2732 -0.2724 0.0008 0.0199 0.0199 0.0000

11 0.3056 0.3059 0.0003 0.0110 0.1112 0.0002

12 0.2160 0.2175 0.0015 -0.0104 -0.0100 0.0003

13 0.0413 0.0435 0.0022 -0.0398 -0.0395 0.0003

14 -0.1482 -0.1461 0.0021 -0.0693 -0.0690 0.0003

15 -0.2764 -0.2753 0.0011 -0.0901 -0.0900 0.0001

16 -0.2912 -0.2919 0.0007 -0.0964 -0.0965 0.0001

17 -0.1865 -0.1889 0.0008 -0.0874 -0.0876 0.0002

18 -0.0046 -0.0078 0.0032 -0.0675 -0.0678 0.0003

19 0.1818 0.1790 0.0028 -0.0446 -0.0449 0.0003

20 0.2980 0.2969 0.0011 -0.0272 -0.0272 0.0000
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solution method; Galerkin Decomposition Method and an approximate analytical
approach the Differential Transform Method. The results are shown in Table 2 and
an excellent agreement is established between them.

The effects of modal number on steady state response are shown in Figures 3-
6. This analysis is vital as it shows clearly the locations of nodes and anti-nodes.
Based on the results obtained, an increase in modal number increases the number
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Figure 3. Steady state response for mode 1
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Figure 4. Steady state response for mode 2
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Figure 5. Steady state response for mode 3
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Figure 6. Super-imposed steady state responses

of nodes and anti-nodes. The locations of anti-nodes are very important during the
system’s vibration that may tend to resonance as reducing disturbances at these point
automatically reduces vibration throughout the entire beam length.

The effect of the Duffing term on micro Wmax is shown in Figure 7. From the plot,
it is obvious that when the system’s deflection is low, the nonlinear term possesses
negligible impact. However, at very large amplitudes, an increase in the Duffing term
increases the dimensionless frequency of the nano-porous micro-beam. Figure 8 shows
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Wmax

Figure 7. The effect of the nonlinear term on Wmax

Wmax



Figure 8. The effect of the foundation term on Wmax

the effect of elastic foundation term m (also referred to as the linear Winkler coeffi-
cient k = k1) on on Wmax. From the plot, it is observed that when the micro-beam is
foundation free, it gives a very large frequency ratio. This may result in instable be-
havior. However, when the elastic foundation parameter is introduced, the frequency
ratio starts to decay even for high values of deflection. This reiterates the importance
of an elastic foundation. Figures 7 and 8 are included in the study for monitoring the
resonance of the microbeam.
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Figure 9. Effect of the foundation term on the free dynamic response
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Figure 10. Effect of foundation term on the forced dynamic response

5. Conclusion

In this study, the nonlinear vibrational and rotational analysis of microbeams in
nanobiomaterials using Galerkin Decomposition and the Differential Transform Method
has been presented. The degeneration of human body tissues caused by congenital
defects, diseases, trauma, etc. which were not replaced in times past, can now be
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replaced today with the novel approaches emerging in tissue engineering to regen-
erate such damaged tissues even after been replaced. The major element in one of
the novel approaches is the migration and growth of cells, which depends on the
porosity of the nanoscaffolds and the pore size architecture. In order to investigate
this dependency of the cell migration and growth on pore size, the nonlocal strain
gradient theory of elasticity is applied to develop a dynamic model for the nonlinear
vibration and rotation of the microbeams made of nanobiomaterials. This dynamic
model, which is a set of coupled nonlinear ordinary differential equations, was solved
by applying a decomposition scheme – Galerkin Decomposition Method and an ap-
proximate analytical technique, the Differential Transform Method. Good agreement
is established between the solutions. The effects of the modal number on the steady
state response, the effect of the Duffing term on stability response on microbeam,
the effect of the elastic foundations on the stability response of the microbeam, and
the effect of the elastic foundation on the free and forced dynamic responses of the
microbeam were investigated. It is observed that an increase in the modal number
increases the number of the nodes and anti-nodes. During system vibration that may
tend to resonance, the increased anti-nodes reduce disturbances at these nodal points
which automatically reduces the vibration in the entire beam length. An increase
in Duffing term also resulted in the increases of the dimensionless frequency of the
nano-porous micro-beam. When the elastic foundation is introduced and increased,
there is a decrease in the frequency ration of the microbeam. And for the free and
forced dynamic responses, an increase in the foundation term increases the frequency
of the system for both conditions. This study will enhance a parametric study in
vibration and rotation of nanobiomaterials and the application of tissue engineering
to regenerate damaged tissues in the human body.

6. Nomenclature

Latin notations
a1b1, . . . Links – see Figure 1 t Time
A Area T Temporal rotation
E Modulus of elasticity V Duffing term
F Galerkin force function w Deflection
G Shear modulus of elasticity Wmax Maximum dimensionless deflection
I Moment of inertia w̄ Deflection
J Temporal rotation x Independent variable
k1 Linear Winkler coefficient Greek notations
k2 Non-linear foundation coefficient θ Rotation
K Stiffness µ Nonlocal term
L Length of the microbeam ξ1 Flexural term
M Mass ξ2,...,13 Known coefficients [41]
Mb Bending moment ϕ Shape function
n Nodal number ω Natural frequency
p Distributed load ωn` Non-linear frequency
R Galerkin Function Ω Frequency ratio
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Abstract. This paper deals with the determination of the displacements and stresses
in a curved cantilever beam. The considered curved beam has circular centerline and the
thickness of its cross section depends on the circumferential coordinate. The kinematics of
Euler-Bernoulli beam theory are used. The curved elastic beam is fixed at one end and on the
other end is subjected to concentrated moment and force; three different loading cases are
considered. The paper gives analytical solutions for radial and circumferential displacements
and cross-sectional rotation and circumferential stresses. The presented examples can be used
as benchmark for the other types of solutions as given in this paper.
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1. Introduction

The analysis of curved beam has been a topic of interest to researchers for over
a century, it is a standard topic in the most text books of mechanics [1–3]. This
theme is still relevant at the present time because curved elements are important
components in many modern engineering structures. In this paper an analytical
solution is presented for cantilever curved beams with variable cross sections. One
of the ends of a curved beam is fixed and the other end is subjected to radial and
circumferential forces and a couple. Elasticity solutions are presented in [4] for curved
beams with orthotropic functionally graded layers by means of Airy stress functions.
The developed method is illustrated in curved cantilever beams with different types of
loading conditions. Pydah and Sabele [5] present an analytical model for the flexure
of bidirectional functionally graded circular beam. The formulation of the considered
problem is based on the Euler-Bernoulli beam theory. The governing equations are
solved for statically determinate circular cantilever beams under the action of tip
loads. Paper [6] deals with the determination of stress in circular curved beams
with cross-sectional inhomogeneity. In Ecsedi and Lengyel [7] an analytical solution
is presented for the determination of deformation of curved composite beams with
uniform cross sections. The developed analytical solution is based on fundamental
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solutions which are filling to the given loading and boundary conditions. Closed form
formulae are derived for the displacements, cross-sectional rotation normal and shear
forces and bending moment. Paper [7] gives the expressions of circumferential and
normal stresses and of shearing stress. Several studies give finite element numerical
solutions to the in-plane deformation static problems of curved beams with uniform
curvature such as [8–10].

2. Governing equations

In the cylindrical coordinate system Orϕz the curved beam of variable cross section
occupies the space domain (Figure 1)

B =
{

(r, ϕ, z)|R1 ≤ r ≤ R2, |z| ≤
t(ϕ)

2
, 0 < ϕ < α < 2π

}
, (2.1)

where Ri (i = 1, 2) is the radius of inner and outer cylindrical boundary surface of
body B, t = t(ϕ) is the cross-sectional thickness in direction of axis z. The radius of
the circular centerline of curved beam is

rc =
1

2
(R1 +R2). (2.2)
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Figure 1. Cantilever curved beam and its cross section

The plane z = 0 is the plane of symmetry of the curved beam and of the applied
loads. Denote the unit vectors of cylindrical coordinate system Orϕz er, eϕ and ez.
We start from the next displacement field to describe the in-plane deformation of
cantilever curved beam [11]

u = uer + veϕ + wez, (2.3)

u = U(ϕ), v = rφ(ϕ) + V (ϕ), V (ϕ) =
dU

dϕ
, w = 0. (2.4)
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Application of the strain-displacement relationships of the linearized theory of elas-
ticity gives [12, 13]

εr =
∂u

∂r
= 0, εz =

∂w

∂z
= 0, γrϕ =

1

r

(
∂u

∂ϕ
− v
)

= 0, γϕz =
∂v

∂z
+

1

r

∂w

∂ϕ
= 0,

(2.5)

γrz =
∂u

∂z
+
∂w

∂r
= 0, εϕ =

W (ϕ)

r
+

dφ

dϕ
, W (ϕ) =

d2U

dϕ2
+ U. (2.6)

The strain field given by equations (2.5), (2.6) satisfy the requirements of the Bernoulli-
Euler beam theory, only the normal strain εϕ is different from zero and all the other
strains vanish. Based on paper [11] we define the stress resultant forces N = N(ϕ),
S = S(ϕ) and stress couple resultant M = M(ϕ) as

N(ϕ) =

∫
A(ϕ)

σϕdA, S(ϕ) =

∫
A(ϕ)

τrϕdA, M(ϕ) =

∫
A(ϕ)

rσϕd(A), (2.7)

where τrϕ = τrϕ(r, ϕ) denotes the shearing stress. Here, we note, the shear force
S = S(ϕ) will be computed by the use of equilibrium equation which is the usual
in the case of Euler-Bernoulli beam theory. Figure 2 illustrates the stress and stress
couple resultants in an arbitrary cross section of curved beam. Application of Hooke’s
law yields the formula of normal stresses σϕ [13]

σϕ = E

(
W (ϕ)

r
+

dφ

dϕ

)
, (2.8)

where E is the modulus of elasticity. From equations (2.7) it follows that

N(ϕ) = EA(ϕ)

(
W (ϕ)

R
+

dφ

dϕ

)
, (2.9)

M(ϕ) = EA(ϕ)

(
W (ϕ) + rc

dφ

dϕ

)
. (2.10)

O ϕ = 0

ϕ

R2

N(ϕ) S(ϕ)

M(ϕ)

R1

Figure 2. Illustration of N(ϕ), S(ϕ) and M(ϕ)

In equations (2.9), (2.10) A = t(ϕ)(R2 − R1) is the area of the cross section,
rc = 1

2 (R1 +R2) is the radial coordinate of the center of cross section (Figure 1) and

R =
R2 −R1

ln R2

R1

. (2.11)
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The equilibrium equations in terms of N , S and M for curved cantilever beam
which is loaded its end cross sections are [7, 11]

dN

ds
+ S = 0,

dS

dϕ
−N = 0,

dM

dϕ
= 0. (2.12)

We remark that the considered cantilever curved beams satisfy the boundary condi-
tions

U(0) = 0, V (0) = 0, φ(0) = 0. (2.13)

3. Cantilever curved beam loaded by bending moment

Figure 3 shows the cantilever curved beam, which is loaded at its end cross section
ϕ = α by a bending moment M1. From equilibrium equations (2.12) we have

N(ϕ) = S(ϕ) = 0, M(ϕ) = M1 = constant, ϕ1 ≤ ϕ ≤ ϕ2. (3.1)

O ϕ = 0

α

R1

M1

R2

Figure 3. Cantilever curved beam with bending moment

Combination of equations (2.9) and (2.10) with equation (3.1) gives

W1(ϕ) +R
dφ1
dϕ

= 0, (3.2)

W1(ϕ) + rc
dφ1
dϕ

=
M1

EA(ϕ)
. (3.3)

The solution of the system of equations (3.2), (3.3) for W1(ϕ) and dφ1

dϕ is as follows:

W1(ϕ) = − M1

eEA(ϕ)
,

dφ1
dϕ

=
M1

eEA(ϕ)
, e = rc −R. (3.4)

In the present problem

W1(ϕ) =
d2U1

dϕ2
+ U1. (3.5)

Here, we will use the result of the theory of ordinary differential equations [14, 15]:
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Theorem 1: Let h = h(x) be a continuous bounded function defined for x ∈
[0, a > 0]. In this case the solution of the initial value problem

d2y

dx2
+ y = h(x), 0 ≤ x ≤ a, y(0) = 0,

dy

dx

∣∣∣∣
x=0

= 0, (3.6)

can be represented as

y(x) =

x∫
0

h(λ) sin(x− λ) dλ, (3.7)

and we have

dy

dx
=

x∫
0

h(λ) cos(x− λ) dλ. (3.8)

The application of Theorem 1 gives the next formulae for U1 = U1(ϕ) and V1 =
V1(ϕ)

U1(ϕ) = − M1R

e(R2 −R1)E

ϕ∫
0

sin(ϕ− ϑ)

t(ϑ)
dϑ, (3.9)

V1 =
dU1

dϕ
= − MR

e(R2 −R1)E

ϕ∫
0

cos(ϕ− ϑ)

t(ϑ)
dϑ. (3.10)

A direct integration of equation (3.4) yields the result

φ1(ϕ) =
M1

e(R2 −R1)E

ϕ∫
0

dϑ

t(ϑ)
. (3.11)

By the use of formula (2.8) we get the expression of circumferential normal stress

σϕ =
M1

e(R2 −R1)

r −R
rt(ϕ)

. (3.12)

The circumferential normal stress σϕ is zero in all cross sections at the radial coordi-
nate r = R.

4. Cantilever curved beam loaded by radial force

The cantilever curved beam which is loaded at its end cross section ϕ = α by a radial
force F2 is shown in Figure 4. From equilibrium equations in this case we have

N(ϕ) = −F sin(ϕ− α), S(ϕ) = F cos(ϕ− α), M(ϕ) = 0, 0 ≤ ϕ ≤ α. (4.1)

In the present problem the application of equations 2.9 and (2.10) gives

W2(ϕ) +R
dφ2
dϕ

= − F2R

EA(ϕ)
sin(ϕ− α), (4.2)

W2(ϕ) + rc
dφ2
dϕ

= 0. (4.3)
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O ϕ = 0

α

R1

R2

F2

Figure 4. Cantilever curved beam subjected by radial force

Solution of the system of equations for W2 = W2(ϕ) and dφ2

dϕ is as follows

W2(ϕ) = − F2Rr2
EA(ϕ)e

sin(ϕ− α),
dφ2
dϕ

=
F2R

EA(ϕ)e
sin(ϕ− α). (4.4)

Substitution of the expression W2 = W2(ϕ) into equation (3.6) gives the formula of
radial displacement function U2 = U2(ϕ)

U2(ϕ) = − F2Rrc
e(R2 −R1)E

ϕ∫
0

sin(ϕ− α)
sin(ϑ− α)

t(ϑ)
dϑ. (4.5)

A simple computation based on equation (4.5) yields the result

V2(ϕ) =
dU2

dϕ
= − F2Rrc

e(R2 −R1)E

ϕ∫
0

cos(ϕ− α)
sin(ϑ− α)

t(ϑ)
dϑ. (4.6)

From equation (4.4) it follows that

φ2(ϕ) =
F2R

E(R2 −R1)e

ϕ∫
0

sin(ϑ− α)

t(ϑ)
dϑ. (4.7)

In the present case we obtain for the circumferential normal stress the formula

σϕ =
F2R

(R2 −R1)e

r − rc
r

sin(ϕ− α)

t(ϕ)
. (4.8)

The circumferential normal stress σϕ is zero in all cross sections at the radial coordi-
nate r = rc.

5. Cantilever curved beam loaded by normal force

The curved beam which is fixed at one end and loaded by normal force F3 at the
other end is shown in Figure 5. In this case the solutions of equilibrium equations are
as follows:

N(ϕ) = F3 cos(ϕ− α), S(ϕ) = −F3 sin(ϕ− α), M(ϕ) = 0, 0 ≤ ϕ ≤ α. (5.1)
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O ϕ = 0

α
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F3

Figure 5. Cantilever curved beam loaded by normal force

In the present problem equations (2.9) and (2.10) lead to the system of equations

for W3 = W3(ϕ) and dφ3

dϕ

W3(ϕ) +R
dφ3
dϕ

=
F3R

EA
cos(ϕ− α), (5.2)

W3(ϕ) + rc
dφ3
dϕ

= 0. (5.3)

A simple computation gives

W3(ϕ) =
F3Rrc
EeA(ϕ)

cos(ϕ− α),
dφ3
dϕ

= − F3R

EeA(ϕ)
cos(ϕ− α). (5.4)

Application of Theorem 1 yields the expression of radial displacement U3 = U3(ϕ)

U3(ϕ) =
F3Rrc

Ee(R2 −R1)

ϕ∫
0

cosϑ− α
t(ϑ)

sin(ϕ− ϑ) dϑ. (5.5)

The circumferential displacement V3 = V3(ϕ) is

V3(ϕ) =
dU3

dϕ
=

F3R

Ee(R2 −R1)

ϕ∫
0

cos(ϑ− α)

t(ϕ)
cos(ϕ− ϑ) dϑ. (5.6)

Integration of equation (5.42) gives the cross-sectional rotation function φ3 = φ3(ϕ)

φ3(ϕ) = − F3R

Ee(R2 −R1)

ϕ∫
0

cos(ϑ− α)

t(ϑ)
dϑ. (5.7)

From equation (2.8) we obtain the formula of the circumferential normal stress σϕ as

σϕ =
F3R

e(R2 −R1)

rc − r
r

cos(ϕ− α)

t(ϕ)
. (5.8)

Here, we note that the circumferential normal stress σϕ is zero in all cross sections at
the radial coordinate r = rc.
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6. Betti’s theorem for cantilever curved beam

Let us consider two different equilibrium states of cantilever curved beam with end
loads. The applied loads for the first equilibrium state are M ′1, F ′2 and F ′3 which

cause the displacements Ũ(ϕ), Ṽ (ϕ) and φ̃(ϕ). The applied loads for the second
equilibrium state are M ′′1 , F ′′2 and F ′′3 and the corresponding displacements to the end

cross sectional loads M ′′1 , F ′′2 and F ′′3 are
∗
U(ϕ),

∗
V (ϕ) and

∗
φ(ϕ). A simple computation

shows that the work done by system of forces on the displacement field
∗
U(ϕ),

∗
V (ϕ)

and
∗
φ(ϕ) is as follows

w12 =

∫
A

σ′ϕ(r
∗
φ+

∗
V )

∣∣∣∣
ϕ=α

dA+

∫
A

τ ′rϕ
∗
U

∣∣∣∣
ϕ=α

dA = M ′1
∗
φ(α)+F ′3

∗
V (α)+F ′2

∗
U(α). (6.1)

It is evident the work done by system of forces M ′′1 , F ′′2 and F ′′3 on the displacement

field Ũ(ϕ), Ṽ (ϕ) and φ̃(ϕ) is obtained from the equation

w21 = M ′′1 φ̃(α) + F ′′3 Ṽ (α) + F ′′2 Ũ(α). (6.2)

According to Betti’s theorem [12, 13] we have

w12 = w21. (6.3)

We will use Betti’s theorem for the following three equilibrium states

M ′1 = M1, F ′2 = F ′3 = 0, Ũ(ϕ) = U1(ϕ), Ṽ (ϕ) = V1(ϕ), φ̃(ϕ) = φ1(ϕ);

M ′′1 = 0, F ′′2 = F2, F ′′3 = 0,
∗
U(ϕ) = U2(ϕ),

∗
V (ϕ) = V2(ϕ),

∗
φ = φ2(ϕ).

We remark that the third equilibrium state is defined as

M ′′′1 = 0, F ′′′2 = 0, F ′′′3 = F2, Û(ϕ) = U3(ϕ), V̂ (ϕ) = V3(ϕ), φ̂ = φ3(ϕ).

For these equilibrium states the following equations must be valid according to Betti’s
theorem:

w12 = w21, w13 = w31, w23 = w32. (6.4)

In the present problems we have

w12 = M1φ2(α) =
M1F2R

E(R2 −R1)e

α∫
0

sin(ϑ− α)

t(ϑ)
dϑ, (6.5)

w21 = F2U1(α) = − F2M1R

E(R2 −R1)e

α∫
0

sin(α− ϑ)

t(ϑ)
dϑ, (6.6)

w13 = M1φ3(α) = − M1F3R

E(R2 −R1)e

α∫
0

cos(ϑ− α)

t(ϑ)
dϑ, (6.7)

w31 = F3V1(α) = − M1F3R

E(R2 −R1)e

α∫
0

cos(α− ϑ)

t(ϑ)
dϑ, (6.8)
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w23 = F2U3(α) =

=
F2F3Rrc

E(R2 −R1)e

α∫
0

cos(ϑ− α)

t(ϑ)
sin(α− ϑ) dϑ, (6.9)

w32 = F3V2(α) =

= − F2F3Rrc
E(R2 −R1)e

α∫
0

cos(α− ϑ)

t(ϑ)
sin(ϑ− α) dϑ. (6.10)

The validity of equations (6.4)1,2,3 follows from equations (6.5-6.10).

7. Numerical examples

The following data are used in the numerical example: E = 2× 105 MPa,
R1 = 0.015 m, R2 = 0.025 m, t0 = 0.015 m, α = π

3 , t(ϕ) = t0 cosϕ.

7.1. Example 1. (see Figure 3) M1 = 50 Nm, F2 = F3 = 0 The graphs of the radial
displacement U1 = U1(ϕ) and circumferential displacement V1 = V1(ϕ) are shown in
Figure 6 and the cross sectional rotation φ1 = φ1(ϕ) is presented in Figure 7. The plots
of σϕ(r, ϕ) for four different values of polar angle ϕ (ϕ = 0, ϕ = π

6 , ϕ = π
4 , ϕ = π

3 )
are shown in Figure 8.
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Figure 6. Plots of U1 and V1
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Figure 7. Plot of φ1
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Figure 8. The plots of σϕ (Example 1)

7.2. Example 2. (see Figure 4) F2 = 1 400 N, M1 = 0, F3 = 0. The graphs of radial
displacement U2 = U2(ϕ) and circumferential displacement V2 = V2(ϕ) are given in
Figure 9. The plots of cross-sectional rotation φ2 = φ2(ϕ) is shown in Figure 10.
The plots of the circumferential stress σϕ(r, ϕ) for four different values of polar angle
ϕ (ϕ = 0, ϕ = π

6 , ϕ = π
4 , ϕ = π

3 ) are shown in Figure 11.
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Figure 9. Plots of U2 and V2
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Figure 11. Plots of σϕ

7.3. Example 3. (see Figure 5) F3 = 1 000 N, M1 = 0, F2 = 0. In this case the plots
of radial displacement U3 = U3(ϕ), and circumferential displacement V3 = V3(ϕ)
are given in Figure 12. The graph of φ3 = φ3(ϕ) is presented in Figure 13. The
plots of circumferential stress σϕ(r, ϕ) for four different values of the polar angle ϕ
(ϕ = 0, ϕ = π

6 , ϕ = π
4 , ϕ = π

3 ) are shown in Figure 14.
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Figure 12. Plots of U3 and V3.
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Figure 14. Plots of σϕ

8. Conclusions

In this paper an elastic cantilever curved beam of variable cross section is studied.
At one end of the beam its cross section is fixed and at the other end it is loaded
by concentrated forces and couples. Three different loading cases are considered.
The paper presents an analytical solution to obtain the radial and circumferential
displacements, cross sectional rotation and circumferential normal stress. Formulation
of the considered equilibrium problems is based on the Euler-Bernoulli beam theory.
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The validity of the obtained result is supported by Betti’s theorem. Three numerical
examples illustrate the application of the developed analytical solutions.

Acknowledgement. The present research was partially supported by the Hungarian Acad-
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demische Verlagsgesellschaft Gest and Portig K.-G. Leipzig, 1951.

15. A. R. Forsyth. A Treatise on Differential Equations. Macmillan, London, 1929.

https://doi.org/10.1111/j.1475-1305.1993.tb00852.x
https://doi.org/10.1016/j.euromechsol.2012.04.005
https://doi.org/10.116/compstruc.2016.10.120
https://doi.org/10.116/compstruc.2016.10.120
https://doi.org/10.15344/2455-7412/2015/107
https://doi.org/10.1515/cls-2019-0009
https://doi.org/10.1016/0045-7949(92)90057-7
https://doi.org/10.1002/nme.1620361903
https://doi.org/10.1002/nme.1620361903
https://doi.org/10.002/cnm.829
https://doi.org/10.1016/j.apm.2005.03.006
https://doi.org/10.2307/3608899
https://doi.org/10.1016/C2013-0-02524-8


Journal of Computational and Applied Mechanics, Vol. 16, No. 1, (2021), pp. 37–56

DOI: 10.32973/jcam.2021.003

THE AVERAGE METHOD IS MUCH BETTER THAN
AVERAGE
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Műegytem rkp. 3., H-1111 Budapest, Hungary

kalmarnagy@ara.bme.hu

[Received: October 14, 2020; Accepted: November 21, 2020]
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Abstract. Operator splitting is a powerful method for the numerical investigation of com-
plex time-dependent models, where the stationary (elliptic) part consists of a sum of several
structurally simpler sub-operators. As an alternative to the classical splitting methods, a
new splitting scheme is proposed here, the Average Method with sequential splitting. In this
method, a decomposition of the original problem is sought in terms of commuting matrices.
Wedemonstrate that third-order accuracy can be achieved with the Average Method. The
computational performance of the method is investigated, yielding run times 1-2 orders of
magnitude faster than traditional methods.
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1. Introduction

Operator splitting entails the decomposition (splitting) of the spatial differential op-
erator of the problem into a sum of different sub-operators having simpler forms.
Operator splitting methods are commonly used in many applications. The decompo-
sition can be motivated mathematically (equations of different types, elliptic, para-
bolic, etc.) or by the presence of subsystems described by different areas of physics
(coupled flow-structure or thermo-mechanical problems, for example).

McLahlan and Quispel [1] survey splitting methods for the numerical integration
of ODE’s. A nice exposition of splitting methods can be found in [2]. Different com-
munities use different names for the same concept. Operator splitting is also called
staggered methods (schemes), decomposition, co-simulation, etc. Gu and Asada [3]
discuss the concept of co-simulation, which refers to simultaneous numerical solution

©2021 Miskolc University Press

http://dx.doi.org/10.32973/jcam.2021.003


38 L. Boda, I. Faragó and T. Kalmár-Nagy

(discretization) of multiple interacting subsystem. A simple mathematical model for
co-simulation is proposed in [4], together with the study of the resulting stability
charts. Csomós and Nickel introduce splitting methods for delay equations in an
abstract setting [5] and prove the convergence of the method.

The structure of this paper is the following. In Section 2 we discuss two basic
splitting methods: sequential and Strang-Marchuk splitting. Then we introduce the
Average Method in Section 3. In the same section we discuss the possible reduction
of the terms needed for the Average Method by using a matrix decomposition of
pairwise commuting matrices. In Section 4 we state a condition that makes the
Average Method with sequential splitting third-order in accuracy. Here we also show
that third-order accuracy cannot be achieved when basing the Average Method on
Strang-Marchuk splitting. In Section 5 an example problem is given, motivated by
an aerodynamic model. In Section 6 results of eight runtimes of the various methods.
Section 7 summarizes the findings of this work.

2. Sequential and Strang-Marchuk splitting

This section is based on [2]. We consider the following Cauchy problem in Rm{
ẏ(t) = Ay(t) =

∑d
i=1Aiy(t) t ∈ [0, T )

y(0) = y0,
(1)

where y : [0, T ] → Rm is the unknown function, y0 ∈ Rm is the given initial vector,
Ai ∈ Rm×m (i = 1, . . . , d) are matrices.
The exact solution of the Cauchy problem (1) can be written directly as

y(t) = exp(tA)y(0). (2)

Our aim is to approximate the exact solution (2) numerically on the grid

ωh =
{
tn = n · h, h =

T

N
, n = 0, 1, ..., N

}
. (3)

In sequential splitting we decompose the original problem (1) into d sub-problems
(i = 1, 2, . . . , d) {

ẏni (t) = Aiy
n
i (t), t ∈

(
(n− 1)h, nh

]
,

yni
(
(n− 1)h

)
= yni−1(nh).

(4)

The solution is

yNseq(nh) = ynd (nh), (5)

where yn0 (nh) = yNseq
(
(n− 1)h

)
, and yNseq(0) = y(0) = y0.

Sequential splitting is a first-order method.

The main difference between sequential and Strang-Marchuk splitting is that the
latter computes the values in the midpoints of the subintervals. First{

ẏni (t) = Aiy
n
i (t), t ∈

(
(n− 1)h, (n− 1

2 )h
]
,

yni
(
(n− 1)h

)
= yni−1

(
(n− 1

2 )h
) (6)
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is computed for i = 1, 2, . . . , d− 1. For i = d the slightly different{
ẏnd (t) = Ady

n
d (t), t ∈

(
(n− 1)h, nh

]
,

ynd
(
(n− 1)h

)
= ynd−1

(
(n− 1

2 )h
) (7)

is evaluated. For i = d+ 1, . . . , 2d− 1 the following formula is used{
ẏni (t) = Aiy

n
i (t), t ∈

(
(n− 1

2 )h, nh
]
,

yni
(
(n− 1

2 )h
)

= yni−1
(
nh
)
.

(8)

The solutions are given by
yNSM (nh) = yn2d−1(nh),

where yn0
(
(n− 1

2 )h
)

= yNSM

(
(n− 1)h

)
and yNSM (0) = y(0) = y0.

The Strang-Marchuk method is a second-order method.

3. The Average Method

A new method is introduced here (referred to as the Average Method) based on the
following idea: dividing the Cauchy problem (1) into d subproblems, using sequential
splitting in all possible sequences, calculating the numerical solutions and then taking
their arithmetic mean and letting it be the numerical solution in ωh.

Let Pn denote the set for the permutations of the indices {1, 2, . . . , n}. For p =
{p1, p2, . . . , pn} ∈ Pn we introduce the notation

exp {p1, p2, . . . , pn} = exp (hAp1
) exp (hAp2

) · . . . · exp (hApn
). (9)

Solving the Cauchy-problem (1) using sequential splitting for all possible permu-
tations and then averaging the resulting numerical solutions yields a second-order
method, i.e.

Statement 1.

exp
(
h(A1 + . . .+Ad)

)
=

1

d!

∑
p∈Pd

exp{p1, p2, . . . , pn}+O(h3). (10)

See Appendix 1 for the proof.

Since Pd has d! elements, we examine conditions that reduce the complexity of the
Average Method. Consider the case of d = 3, i.e. A = A1 +A2 +A3. By Statement 1
we have

exp
(
h(A1 + . . .+Ad)

)
=

1

3!

∑
p∈P3

exp{p1, p2, p3}, (11)

with 3! = 6 terms on the right-hand side. We utilize the usual definition of the
commutator [A,B] = AB−BA. If, for example, A1 andA3 commute, i.e. [A1, A3] = 0,
then we have

exp {p2, p1, p3} = exp {p2, p3, p1}, (12)

exp {p1, p3, p2} = exp {p3, p1, p2}, (13)

and
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p∈P3

exp{p1, p2, p3} =

= exp {p1, p2, p3}+ exp {p3, p2, p1}+ 2 exp {p2, p1, p3}+ 2 exp {p1, p3, p2}, (14)

where the number of terms was reduced from six to four.

Let us now consider the general case. Let A = A1+A2+. . .+Ad, and suppose that ∃
i, j ∈ N, i 6= j such that [Ai, Aj ] = 0. Then instead of all the d! permutations, we have
d!−(d−1)! = (d−1)(d−1)! elements. If the decomposition includes more commuting
pairs of matrices, the reduction might be more significant. An interesting question
is the decomposition of a given matrix into pairwise commuting matrices. Even the
study of the pairs of n×n commuting matrices A and B yields non-trivial results (i.e.
Schur’s theorem, Gerstenhaber’s theorem, see, for example, Section 5 of [6]). The
so-called commuting variety generated by the n2 equations (AB)ij − (BA)ij = 0 can
be investigated with the tools of algebraic geometry or linear algebraic conditions can
be sought for commutativity. For k matrices one deals with commutative k-generated
subalgebras, where even the best upper bound for their dimension is an open problem.

4. Making the Average Method third-order

Now we consider if third-order accuracy can be achieved with the Average Method
based on sequential splitting. Assume that we have the Cauchy problem (1), with
d = 2. We then have the following

Statement 2. If and only if A = A1 +A2, and A1 and A2 satisfy the condition[
A1,

[
A1, A2

]]
=

[
A2,

[
A1, A2

]]
then

exp
(
h(A1 +A2)

)
=

exp(hA1) exp(hA2) + exp(hA2) exp(hA1)

2
+O(h4). (15)

See Appendix 2 for the proof.

Now we consider the Strang-Marchuk splitting as the base method of average split-
ting. Can third-order accuracy be obtained by the Average Method?

The decomposition A = A1 +A2 with weights α and β (α, β 6= 0 and α+ β 6= 0) has
to satisfy

exp
(
h(A1 +A2)

)
=

=

α

(
exp(

hA1

2
) exp(hA2) exp(

hA1

2
)

)
+β

(
exp(

hA2

2
) exp(hA1) exp(

hA2

2
)

)
α+ β

+

+O(h4). (16)

The right-hand side of equation (16) can be written as
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(α+ β)I + h(α+ β)(A1 +A2) + h2

2! (α+ β)(A2
1 +A2

2 +A1A2 +A2A1)

α+ β
+

+
h3

3!

(
(α+ β)(A3

1 +A3
2)

α+ β
+

( 3
4α+ 3

2β)A2
1A2 + ( 3

4α+ 3
2β)A2A

2
1 + ( 3

2α+ 3
4β)A2

2A1

α+ β
+

+
( 3
2α+ 3

4β)A1A
2
2 + 3

2αA1A2A1 + 3
2βA2A1A2

α+ β

)
+O(h4) =

= I + h(A1 +A2) +
h2

2!
(A2

1 +A2
2 +A1A2 +A2A1) +

h3

3!

(
(A3

1 +A3
2)+

+
( 3
4α+ 3

2β)A2
1A2 + ( 3

4α+ 3
2β)A2A

2
1 + ( 3

2α+ 3
4β)A2

2A1

α+ β
+

+
( 3
2α+ 3

4β)A1A
2
2 + 3

2αA1A2A1 + 3
2βA2A1A2

α+ β

)
+O(h4). (17)

The left-hand side of Equation (16) is

exp
(
h(A1 +A2)

)
= I + h(A1 +A2) +

h2

2!
(A1 +A2)2 +

h3

3!
(A1 +A2)3 +O(h4) =

= I + h(A1 +A2) +
h2

2

(
A2

1 +A2
2 +A1A2 +A2A1

)
+

+
h3

6

(
A3

1 +A3
2 +A1A

2
2 +A2

1A2 +A2A
2
1 +A2

2A1 +A1A2A1 +A2A1A2

)
+O(h4).

(18)

The equality (16) is only true under the conditions

3
4α+ 3

2β

α+ β
= 1, (19)

3
2α+ 3

4β

α+ β
= 1, (20)

3
2α

α+ β
= 1, (21)

3
2β

α+ β
= 1. (22)

Equations (19) and (21) give the condition α = 2β, while Equation (22) yields the
condition β = 2α. This implies α = β = 0, which contradicts our assumption.

Third-order accuracy thus cannot be achieved with the Average Method based on
Strang-Marchuk splitting.
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5. Example Application

As seen in Section 3, the number of terms needed for the Average Method can be
reduced by decomposing the underlying matrix into a set of matrices that have com-
muting elements.

We now investigate the efficacy of the three splitting methods discussed above on
a physical problem. The model was chosen because of the structure of the matrices
involved, i.e. sparse matrices whose decomposition into a partially commuting set
was easy.

A piecewise-linear model of flutter was investigated in [7] and [8]. The affine model
equations contain the three system matrices (k = 0, 1, 2)

Ak =


0 1 0 0
−1 −(p1 + p2µck) −µ2ckp2 0
0 0 0 1
0 ckµ −(p4 − ckµ2) −p3

 ,

with the model parameters given in Table 1 (see [7]) and µ ∈ (0,∞) represents the
nondimensional wind speed.

Table 1. Parameters of the model

Parameter c0 c1 c2 d1 d2 p1 p2 p3 p4
Value 5.932 -6.846 2.662 2.56 -0.2515 0.1485 0.0147 0.0540 0.2748

Motivated by this model, we consider the following 4-dimensional Cauchy problem{
ẋ (t) = Akx (t) ,
x (0) = x0.

(23)

5.1. Decompositions of matrix Ak. All three Ak matrices have the same structure,
thus we can discuss the symbolic decompositions of Ak.
First, we analyze the decomposition

Ak = Ak(1)
+Ak(2)

, (24)

where

Ak(1)
=


0 1 0 0
0 −(p1+p2µck) −µ2ckp2 0
0 0 0 1
0 0 0 −p3

 , Ak(2)
=


0 0 0 0
−1 0 0 0
0 0 0 0
0 ckµ −(p4−ckµ2) 0

 .

Clearly, Ak(1)
is an upper triangular matrix. On the other hand, Ak(2)

is a strictly

lower triangular matrix and hence it is nilpotent. Therefore (Ak(2)
)m = 0 for m > 2.

This means that the exponential of the matrix Ak(2)
can be computed exactly. Thus,

when we realize the splitting methods, the solution of the subproblem with this matrix
can be calculated exactly. We can also define a decomposition in which the exponential
of each matrix can be calculated exactly. For example, the decomposition

Ak = Ak(1)
+Ak(2)

+Ak(3)
, (25)



The average method is much better than average 43

with

Ak(1)
=


0 1 0 0
0 0 −µ2ckp2 0
0 0 0 1
0 0 0 0

 , Ak(2)
=


0 0 0 0
0 −(p1 + p2µck) 0 0
0 0 0 0
0 0 0 −p3

 ,

Ak(3)
=


0 0 0 0
−1 0 0 0
0 0 0 0
0 ckµ −(p4 − ckµ2) 0


has this property because it is the sum of two nilpotent matrices and a diagonal
matrix.

Now we define three decompositions which consist of commuting matrices. First,
we consider the decomposition:

Ak = Ak(1)
+Ak(2)

+Ak(3)
, (26)

where

Ak(1)
=


0 1 0 0
−1 −(p1 + p2µck) 0 0
0 0 0 0
0 0 0 0

 , Ak(2)
=


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −(p4 − ckµ2) −p3

 ,

Ak(3)
=


0 0 0 0
0 0 −µ2ckp2 0
0 0 0 0
0 ckµ 0 0

 .

Ak(3)
is a nilpotent matrix with (Ak(3)

)m = 0 for m > 2, hence its exponential can
be given exactly. For the matrices Ak(1)

and Ak(2)
Ak(1)

Ak(2)
= 0 and Ak(2)

Ak(1)
= 0,

so
[
Ak(1)

, Ak(2)

]
= 0. On the one hand we win some adventage, due to the Statement

1, and on the other hand, this decomposition has a disadvantage, namely we lost the
property of exact solvability.

In the following decomposition, the original matrix Ak is written as the sum of four
matrices, two of them are commuting, and each has the property of exact solvability.
The decomposition is the following:

Ak = Ak(1)
+Ak(2)

+Ak(3)
+Ak(4)

, (27)

where

Ak(1)
=


0 0 0 0
0 −(p1 + p2µck) 0 0
0 0 0 0
0 0 0 0

 , Ak(2)
=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −p3

 ,
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Ak(3)
=


0 1 0 0
0 0 −µ2ckp2 0
0 0 0 1
0 0 0 0

 , Ak(4)
=


0 0 0 0
−1 0 0 0
0 0 0 0
0 ckµ −(p4 − ckµ2) 0

 .

Ak(1)
and Ak(2)

are diagonal matrices (so they commute), therefore in both cases we
can solve the subproblems exactly. Further, matrices Ak(3)

and Ak(4)
are nilpotent,

so we can produce the exact solutions of the subproblems.

The last decomposition is the following:

Ak = Ak(1)
+Ak(2)

+Ak(3)
+Ak(4)

, (28)

where

Ak(1)
=


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , Ak(2)
=


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −(p4 − ckµ2) 0

 ,

Ak(3)
=


0 0 0 0
0 −(p1 + p2µck) 0 0
0 0 0 0
0 0 0 −p3

 , Ak(4)
=


0 0 0 0
0 0 −µ2ckp2 0
0 0 0 0
0 ckµ 0 0

 .

In this set matrices Ak(1)
and Ak(2)

commute, and the exponential of Ak(1)
can be

computed exactly (it is actually a rotation matrix). Matrices Ak(3)
and Ak(4)

are
nilpotent and diagonal matrices, already discussed in previous decompositions.

6. Numerical Experiments

For the numerical implementation of operator splitting, the question is the follow-
ing: what kind of methods to use for computing the solutions of subproblems? Here
we considered three possibilities.

The first and perhaps the most obvious choice is when at every step we solve the
subproblems by a numerical method with the same order of accuracy as that of the
splitting method. This means that for sequential splitting we have to use a first-order
method, such as the explicit or implicit Euler method. For Strang-Marchuk splitting
and the Average Method we have to use a second-order method, e.g. second-order
Euler or trapezoidal method.

The solution of the subproblems can also be given by truncating the infinite expo-
nential sequence at the order of the splitting method. Finally, we can produce exact
solutions by using decompositions of matrix Ak to yield exactly solvable subproblems.
We have already seen such decompositions in the previous section.

We performed the following eight experiments to solve the Cauchy problem (23):
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E1: Sequential splitting with decomposition (24), solving the subproblems cor-
responding to Ak(1)

and Ak(2)
with explicit Euler method and exactly, respec-

tively.
E2: Sequential splitting with decomposition (25), all subproblems solved exactly.
E3: Explicit Euler solution of the full problem (no splitting).
E4: Strang-Marchuk splitting with decomposition (24), solving the subproblems

corresponding to Ak(1)
and Ak(2)

with improved Euler method and exactly,
respectively.

E5: Strang-Marchuk splitting with decomposition (25), all subproblems solved
exactly.

E6: Average Method with sequential splitting and decomposition (24), solving
the subproblems corresponding to Ak(1)

and Ak(2)
with explicit Euler method

and exactly, respectively.
E7: Average Method with sequential splitting and decomposition (26) all sub-

problems solved with explicit Euler method in parallel.
E8: Improved Euler solution of the full problem (no splitting).

We now detail the results of the above numerical experiments. The parameter value
µ = 0.2 and the initial condition x0 = (1, 1, 1, 1) was used in all computations.

E1: Figure 1 shows component x3 (t) of the solution on the time interval [0, 100].
The figure shows how the splitting solution (red line) approximates the exact
solution (blue line) by reducing the step size h.
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Figure 1. Experiment 1: x3 (t) on time interval [0, 100]
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Figure 2. Experiment 2: x3 (t) on the time interval [0, 100]

E2: In Figure 2 we see how the splitting solution approximates the exact solution
by reducing the step size h. Figure 2 shows component x3 of the solution on
the time interval [0, 100]. The first 3 experiments utilized first-order methods.
Runtimes are shown in Table 2.

Table 2. Comparison of runtimes (in seconds) for E1-3

h 1. 2. 3.
1.0 7.02× 10−5 2.51× 10−5 2.39× 10−3

0.1 8.44× 10−4 8.93× 10−4 5.32× 10−3

0.01 1.70× 10−3 8.11× 10−3 1.09× 10−2

0.001 1.37× 10−2 4.02× 10−2 7.14× 10−1

As expected, we see that for the same order of accuracy splitting methods
are faster than the full numerical solution. It can be seen that by reducing the
step size h, the solvers containing splitting produce the numerical solution 1-2
orders of magnitude faster than the Euler method.

Table 3 shows the errors for Experiments 1 and 2. The methods give ap-
proximately the same error.

Table 3. Comparison of errors for Experiments 1 and 2

h 1. 2.
1.0 2.56× 10−1 2.64× 10−1

0.1 2.53× 10−2 2.09× 10−2

0.01 2.09× 10−3 2.05× 10−3

0.001 2.08× 10−4 2.04× 10−4

E4: Since the Strang-Marchuk method is second-order, the choice of a bigger
step size h is also sufficient to obtain a well-approximating splitting solution.
This is illustrated in Figure 3, which shows x4 (t) for the time interval [0, 100].
We see that even for h = 0.3 the splitting solution and the exact solution are
very close.
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Figure 3. Experiment 4: x4 (t) on the time interval [0, 100]

E5: We see in Figure 4 how the splitting solution behaves when the step size h is
reduced. The figures show the component x4 of the splitting solution on time
interval [0, 100].
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Figure 4. Experiment 5: x4 (t) of the splitting solution on interval
[0, 100]

For E4 and E5 the errors as well as the runtimes are similar. It is interesting
to compare the errors between the Strang-Marchuk splitting method and using
a second-order numerical method without splitting. We used the second-order
Euler method to solve the system (23) without splitting in Experiment 8. In
Table 4 we show the errors. The errors are two orders of magnitude smaller
for the same stepsize h using the splitting method than using the second-order
Euler method.

Table 4. Comparison of errors in case of Experiment 4 and 8

h Experiment 4 Experiment 8
1.0 7.20×10−4 8.21×10−2

0.1 4.90×10−7 8.24×10−5

0.01 4.78×10−10 7.52×10−8

0.001 4.76×10−13 7.43×10−11
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Figure 5. Error as a function of the stepsize h in Experiments 4 and 8

Figure 5 shows how errors change with decreasing h for Experiments 4 and 8.

E6: In this experiment we apply the average sequential splitting. At first we use
the decomposition (24) requiring 2 numerical solutions. For this case, we have
to solve the following two subproblems at each step:

{
ẏ1(t) = A0(1)y1(t) t ∈ [ti, ti+1],
y1(ti) = xsp(1)(ti),

(29)

{
ẏ2(t) = A0(2)y2(t) t ∈ [ti, ti+1],
y2(ti) = y1(ti+1).

(30)

The splitting solution at ti+1 (i = 0, . . . , n− 1) is

xsp(1)(ti+1) =

= exp
(
A0(2)(ti+1 − ti)

)
y1(ti+1) exp

(
A0(1)(ti+1 − ti)

)
xsp(1)(ti). (31)

We have to solve the following subproblems at each step:

{
ẏ1(t) = A0(2)y1(t) t ∈ [ti, ti+1],
y1(ti) = xsp(2)(ti),

(32)

{
ẏ2(t) = A0(1)y2(t) t ∈ [ti, ti+1],
y2(ti) = y1(ti+1).

(33)

The form of the splitting solution at ti+1 (i = 0, . . . , n− 1) is

xsp(2)(ti+1) =

= exp
(
A0(1)(ti+1 − ti)

)
y1(ti+1) exp

(
A0(2)(ti+1 − ti)

)
xsp(2)(ti). (34)



The average method is much better than average 49

The second-order approximate splitting solution is given by the average of the
solutions xsp(1)(ti+1) and xsp(2)(ti+1), i.e.

xsp(ti+1) =
xsp(1)(ti+1) + xsp(2)(ti+1)

2
. (35)

Figure 6 shows how the splitting solution approximates the exact solution with
decreasing h. The figures show x4 (t) on the [0, 100] time interval.
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Figure 6. Experiment 6: x4 (t) of the splitting solution on time in-
terval [0, 100]

E7: We consider the decomposition (26) where the first two matrices are commut-
ing. Therefore, for using the Average Method instead of 3! = 6 split problems
we have to solve four subproblems, only.

The decomposition has the following form

A0 = A0(3) +A0(4) , (36)

where we use the notation A0(4) for the sum of the two commuting matrices,
i.e. A0(4) := A0(1) +A0(2) , which means that

A0(4) =


0 1 0 0
−1 −(p1 + p2µck) 0 0
0 0 0 1
0 0 −(p4 − ckµ2) −p3

 .

Thus, in these cases, we solve the following sequences of sub-problems.

First, we solve the following two subproblems where the commutativity is not
present.

The ordering A1 → A3 → A2 results in the following split sub-problems:

{
ẏ1(t) = A0(1)y1(t) t ∈ [ti, ti+1],
y1(ti) = xsp(1)(ti),

(37)

{
ẏ2(t) = A0(3)y2(t) t ∈ [ti, ti+1],
y2(ti) = y1(ti+1),

(38)
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{
ẏ3(t) = A0(2)y3(t) t ∈ [ti, ti+1],
y3(ti) = y2(ti+1).

(39)

Then the splitting solution at t = ti+1 is

xsp(1)(ti+1) =

=exp
(
A0(2)(ti+1−ti)

)
y2(ti+1) exp

(
A0(3)(ti+1−ti)

)
y1(ti+1) exp

(
A0(1)(ti+1−ti)

)
xsp(1)(ti).

(40)

The ordering A2 → A3 → A1 results in the sub-problems following three
subproblems:{

ẏ1(t) = A0(2)y1(t) t ∈ [ti, ti+1],
y1(ti) = xsp(2)(ti),

(41)

{
ẏ2(t) = A0(3)y2(t) t ∈ [ti, ti+1],
y2(ti) = y1(ti+1),

(42)

{
ẏ3(t) = A0(1)y1(t) t ∈ [ti, ti+1],
y3(ti) = y2(ti+1).

(43)

Then the splitting solution at ti+1 is

xsp(2)(ti+1) =

=exp
(
A0(1)(ti+1−ti)

)
y2(ti+1) exp

(
A0(3)(ti+1−ti)

)
y1(ti+1) exp

(
A0(2)(ti+1−ti)

)
xsp(2)(ti).

(44)

Due to the commutativity, the remaining two problems, which we solve,
consist of only two subproblems. These are the following.

For the ordering A4 → A3 the subproblems are the following:

{
ẏ1(t) = A0(4)y1(t) t ∈ [ti, ti+1],
y1(ti) = xsp(3)(ti),

(45)

{
ẏ2(t) = A0(3)y2(t) t ∈ [ti, ti+1],
y2(ti) = y1(ti+1).

(46)

The splitting solution at ti+1 is

xsp(3)(ti+1) =

= exp
(
A0(3)(ti+1 − ti)

)
y1(ti+1) exp

(
A0(4)(ti+1 − ti)

)
xsp(3)(ti). (47)

Finally, for the ordering A3 → A4 we get

{
ẏ1(t) = A0(3)y1(t) t ∈ [ti, ti+1],
y1(ti) = xsp(4)(ti),

(48)

{
ẏ2(t) = A0(4)y2(t) t ∈ [ti, ti+1],
y2(ti) = y1(ti+1).

(49)
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Then

xsp(4)(ti+1) =

= exp
(
A0(4)(ti+1 − ti)

)
y1(ti+1) exp

(
A0(3)(ti+1 − ti)

)
xsp(4)(ti). (50)

Using the Average Method, the second-order accurate approximation is defined
as

xsp(t) =
xsp(1)(t) + xsp(2)(t) + 2 · xsp(3)(t) + 2 · xsp(4)(t)

6
. (51)

Figure 7 shows how the 4th component (x4 (t)) of the splitting solution ap-
proaches the exact solution with decreasing h. The advantage of the method is
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Figure 7. Experiment 7: x4 (t) on time interval interval [0, 100]

that the solutions (40), (44), (47) and (50) can be independently calculated,
i.e., the computation is parallelizable.

Table 5. Comparison of runtimes (in seconds) for Experiments 4-8.

h E4 E5 E6 E7 E8
1.0 4.32×10−2 7.57×10−2 1.15×10−4 4.54×10−4 8.18×10−3

0.1 7.55×10−1 8.71×10−1 1.01×10−3 1.52×10−3 1.96×10−2

0.01 5.20×100 6.39×100 3.65×10−3 7.81×10−3 8.44×10−2

0.001 1.53×101 2.06×101 1.89×10−2 6.47×10−2 1.13×100

Table 5 collects the comparison of runtimes for Experiments 4-8. These re-
sults show that sequential and Strang-Marchuk splitting is about two orders of
magnitude slower than the improved Euler method, while the Average Method
is about two orders of magnitude faster. This is an encouraging result for the
applicability of the Average Method.
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7. Summary

By performing several numerical experiments we demonstrated that the benefits of
the Average Method are the following:

• easy implementation when d is small,
• provides a second-order approximation solution using a first-order method,
• the numerical solutions of the subproblems can be independently computed,

therefore the method can be parallelized.

The drawback of the Average Method is the large number (d!) of solutions to be
computed. This number can be reduced by finding a decomposition of the system
matrix into a set of pairwise commuting matrices.
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Appendix 1

Statement 1. Assume that we have the Cauchy problem (1) Solving this problem
in all possible sequences using sequential splitting, and then taking the average of the
resulting numerical solutions, the method is second-order, i.e.

exp
(
h(A1 + . . .+Ad)

)
=

1

d!

∑
p∈Pd

exp{p1, p2, . . . , pn}+O(h3). (10)

Proof. We prove the statement by induction. First we consider the case k = 2, i.e.
the validity of the formula

exp
(
h(A1 +A2)

)
=

exp(hA1) exp(hA2) + exp(hA2) exp(hA1)

2!
+O(h3). (52)

Obviously, for any matrix C we have

exp
(
hC
)

= I + hC +
h2

2
C2 +O(h3). (53)

Hence,

exp(hA1) exp(hA2) + exp(hA2) exp(hA1)

2!
=

=

[
I+hA1+ h2

2! A
2
1

] [
I+hA2+ h2

2! A
2
2

]
+
[
I+hA2+ h2

2! A
2
2

] [
I+hA1+ h2

2! A
2
1

]
2!

=

=
2I + 2h(A1 +A2) + h2(A2

1 +A2
2 +A1A2 +A2A1)

2!
=

= I + h(A1 +A2) +
h2

2!
(A2

1 +A2
2 +A1A2 +A2A1) (54)
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which proves (52).

Now we suppose that the statement is true for k = d and prove its validity for
k = d+ 1.

exp
(
h(A1 +A2 + . . .+Ad +Ad+1)

)
=

= I + h

d+1∑
j=1

Aj +
h2

2!

( d+1∑
j=1

A2
j +

d∑
i=1

d+1∑
j=i+1

AiAj +

d+1∑
i=2

i−1∑
j=1

AiAj

)
+O(h3). (55)

Using the notation B = A1 +A2 + . . .+Ad, we have

exp
(
h(A1 +A2 + . . .+Ad +Ad+1)

)
=

= exp
(
h(B+Ad+1)

)
=

exp(hB) exp(hAd+1)+exp(hAd+1) exp(hB)

2!
+O(h3) =

=
1

2

[
I + h

d∑
j=1

Aj +
h2

2!

( d∑
j=1

A2
j +

d−1∑
i=1

d∑
j=i+1

AiAj +

d∑
i=2

i−1∑
j=1

AiAj

)
+

+ hAd+1 + h2
d∑

j=1

AjAd+1 +
h2

2
A2

d+1

]
+

+
1

2

[
I + h

d∑
j=1

Aj +
h2

2!

( d∑
j=1

A2
j +

d−1∑
i=1

d∑
j=i+1

AiAj +

d∑
i=2

i−1∑
j=1

AiAj

)
+

+ hAd+1 + h2
d∑

j=1

Ad+1Aj +
h2

2
A2

d+1

]
+O(h3) =

=
1

2

[
2I + 2h

( d∑
j=1

Aj +Ad+1

)
+ h2

( d∑
j=1

A2
j +A2

d+1 +

d−1∑
i=1

d∑
j=i+1

AiAj+

+

d∑
i=2

i−1∑
j=1

AiAj +

d∑
j=1

Ad+1Aj +AjAd+1

)]
+O(h3) =

=
1

2

[
2I + 2h

d+1∑
j=1

Aj + h2
( d+1∑

j=1

A2
j +

d∑
i=1

d+1∑
j=i+1

AiAj+

+

d+1∑
i=2

i−1∑
j=1

AiAj

)]
+O(h3) =

= I + h

d+1∑
j=1

Aj +
h2

2

( d+1∑
j=1

A2
j +

d∑
i=1

d+1∑
j=i+1

AiAj+

+

d+1∑
i=2

i−1∑
j=1

AiAj

)
+O(h3). (56)

This proves our statement. �
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Appendix 2

Statement 2. If and only if A = A1 + A2, and A1 and A2 satisfy the condition[
A1,

[
A1, A2

]]
=

[
A2,

[
A1, A2

]]
then

exp
(
h(A1 +A2)

)
=

exp(hA1) exp(hA2) + exp(hA2) exp(hA1)

2
+O(h4). (15)

Proof. Let x, y ∈ R\{0}, x + y 6= 0 and d = 2 and we want to prove the following
relation:

exp
(
h(A1 +A2)

)
=
x exp(hA1) exp(hA2) + y exp(hA2) exp(hA1)

x+ y
+O(h4). (57)

Clearly

exp
(
h(A1 +A2)

)
=

= I + h(A1 +A2) +
h2

2!
(A1 +A2)2 +

h3

3!
(A1 +A2)3 +O(h4) =

= I + h(A1 +A2) +
h2

2

(
A2

1 +A2
2 +A1A2 +A2A1

)
+
h3

6

(
A3

1 +A3
2+

+A1A
2
2 +A2

1A2 +A2A
2
1 +A2

2A1 +A1A2A1 +A2A1A2

)
+O(h4). (58)

Then, the right-hand side of (57):

x exp(hA1) exp(hA2) + y exp(hA2) exp(hA1)

x+ y
+O(h4) =

=
1

x+y

[
x

(
I+hA1+

h2

2!
A2

1+
h3

3!
A3

1+O(h4)

)(
I+hA2+

h2

2!
A2

2+
h3

3!
A3

2+O(h4)

)]
+

+
1

x+y

[
y

(
I+hA2+

h2

2!
A2

2+
h3

3!
A3

2+O(h4)

)(
I+hA1+

h2

2!
A2

1+
h3

3!
A3

1+O(h4)

)]
=

=
1

x+y

[
x

(
I + h(A1 +A2) + h2

(
1

2
A2

1 +
1

2
A2

2 +A1A2

)
+

+ h3
(

1

6
A3

1 +
1

6
A3

2 +
1

2
A2

1A2 +
1

2
A1A

2
2

))]
+

+
1

x+y

[
y

(
I + h(A1 +A2) + h2

(
1

2
A2

1 +
1

2
A2

2 +A2A1

)
+

+ h3
(

1

6
A3

1 +
1

6
A3

2 +
1

2
A2

2A1 +
1

2
A2A

2
1

))]
=

=I+h(A1+A2)+
1

x+y

{
h2
[
x

(
1

2
A2

1+
1

2
A2

2 +A1A2

)
+y

(
1

2
A2

1+
1

2
A2

2 +A2A1

)]
+

+h3
[
x

(
1

6
A3

1+
1

6
A3

2+
1

2
A2

1A2+
1

2
A1A

2
2

)
+y

(
1

6
A3

1+
1

6
A3

2+
1

2
A2

2A1+
1

2
A2A

2
1

)]}
.

(59)
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(57) will be true if coefficients of (58) and (59) are the same. The coefficients of hi,
i = 0, 1, 2, 3 are the following.

Coefficient of h0:
(x+ y)I

(x+ y)
= I =⇒ I = I.

Coefficient of h1:

(x+ y)(A1 +A2)

(x+ y)
= (A1 +A2) =⇒ (A1 +A2) = (A1 +A2).

Coefficient of h2:

x

(
1

2
A2

1 +
1

2
A2

2 +A1A2

)
+ y

(
1

2
A2

1 +
1

2
A2

2 +A2A1

)
=

=
1

2

(
A1 +A2

)
+

1

2

(
A1A2 +A2A1

)
1

2

(
A1 +A2

)
+
xA1A2 + yA2A1

x+ y
=

1

2

(
A1 +A2

)
+

1

2

(
A1A2 +A2A1

)
,

xA1A2 + yA2A1

x+ y
=

1

2

(
A1A2 +A2A1

)
,

xA1A2 + yA2A1 =
1

2
(x+ y)A1A2 +

1

2
(x+ y)A2A1.

⇓

x = y =
1

2
(x+ y),

x = y. (60)

Coefficient of h3:

1

x+y

[
x

(
1

6
A3

1+
1

6
A3

2+
1

2
A2

1A2+
1

2
A1A

2
2

)
+y

(
1

6
A3

1+
1

6
A3

2+
1

2
A2

2A1+
1

2
A2A

2
1

)]
=

=
1

6

(
A3

1 +A3
2 +A1A

2
2 +A2

1A2 +A2A
2
1 +A2

2A1 +A1A2A1 +A2A1A2

)
.

After some calculations we get

x
(
A2

1A2 +A1A
2
2

)
+ y
(
A2

2A1 +A2A
2
1

)
2(x+ y)

=

=
A1A

2
2 +A2

1A2 +A2A
2
1 +A2

2A1 +A1A2A1 +A2A1A2

6
,

Utilizing equation (60) yields

x
(
A2

1A2 +A1A
2
2 +A2

2A1 +A2A
2
1

)
4x

=

=
A1A

2
2 +A2

1A2 +A2A
2
1 +A2

2A1 +A1A2A1 +A2A1A2

6
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or
A2

1A2 +A1A
2
2 +A2

2A1 +A2A
2
1 = 2A1A2A1 + 2A2A1A2

and
A1

[
A1, A2

]
+
[
A2, A1

]
A1 +A2

[
A2, A1

]
+
[
A1, A2

]
A2 = 0.

On the basis of the well known equality
[
A, B

]
= −

[
B, A

]
we have

A1

[
A1, A2

]
−
[
A1, A2

]
A1 −A2

[
A1, A2

]
+
[
A1, A2

]
A2 = 0,

or [
A1,

[
A1, A2

]]
+

[[
A1, A2

]
, A2

]
= 0,

and [
A1,

[
A1, A2

]]
−
[
A2,

[
A1, A2

]]
= 0.

Hence, the condition of third order is as follows[
A1,

[
A1, A2

]]
=

[
A2,

[
A1, A2

]]
. (61)

This means that for a decomposition of two matrices the method will be third-order
if and only if condition (61) is satisfied. �
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Abstract. The application of cellular structural materials provide new light-weight
capabilities in many engineering fields. But the microstructure significantly influences the
strength, the fatigue and fracture behavior as well as the life span of a structure made from
cellular materials. The current paper illustrates the general idea how to take into account the
cellular microstructure in the stress and strain analysis. The detailed geometry, including all
discontinuities in the microstructure is available, for instance from measurements provided
by the computed tomography (CT). The proposed simulation methodology is a combination
of the finite element method (FEM) and the finite cell method (FCM). The FCM approach
is applied in regions where discontinuities occur, avoiding a body-fitted mesh. As basis
of the FEM-FCM coupling the commercial FEA package Abaqus is used. The theoretical
background and the overall simulation workflow along with specific implementation details
are discussed. Finally, academic benchmark problems are used to verify the developed
coupling method.

Mathematical Subject Classification: 65L05, 76G25
Keywords: Finite element method (FEM), finite cell method (FCM) , computed tomography
(CT), cellular structures, coupling of the FEM with the FCM

1. Introduction

The application of ultra-light-weight constructions contributes to a reduction of nat-
ural resources in many fields of engineering. There are several types of light-weight
materials available, such as cellular materials made of aluminium or plastic foam,
sandwich materials with a core layer from honeycomb, hollow spheres or foam, etc.
The increasing application of additive manufacturing technologies also allows the
production of complex light-weight components with a special designed porosity,
which can also be seen as a cellular structure as well. The general application of
cellular materials provides new design capabilities in several engineering fields, such
as in automotive and aerospace industries, electro engineering, wind power industries,
machine and plant engineering, container constructions, etc. Besides the application
of specially designed cellular materials there are other lightweight structures with
great advantages, particularly in mass production, e.g. aluminium die cast parts.
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Components produced with the die cast technology and with additive manufacturing
have local inhomogeneities, such as pores in die cast parts and voids in additive
produced parts, which are unavoidable. Such local porosities can be recognised with
help of computed tomography (CT).

The desired and also the undesired inhomogeneities in the microstructure have
to be taken into account in the simulation, because they significantly influence the
strength, the fatigue and fracture behavior and, consequently, also the life span of a
structure.

The main approach to analyse engineering structures is the application of the finite
element method [1–3]. The typical method to take into account the microstructure
in a global FE analysis is a homogenisation of the microstructure. Homogenisation
means, that with help of different methods the microstructure is smeared, resulting
in a homogenised reference material with the same global behavior as the original
material with the microstructure. One standard homogenisation approach is based
on the Hill theory [4]. There are several homogenisation methods available, such as
the Eshelby-based methods, the Mori-Tanaka method, the generalised self-consistent
method, the asymptotic homogenisation method, the representative volume element
approach (RVE) etc.; for an overview see [5–9]. Of course, the local behaviour, e.g.
the local stress-strain state, is lost when applying homogenisation methods. In FEM
the microstructure can be taken into account, e.g. by a substructure approach [10]
or by a multilevel finite element method (FE2) approach [11, 12]. In both cases the
microstructure has to be meshed in some detail, which results in an increase of the
computational effort.

One important problem is the generation of a high quality body-fitted mesh as
a basis for the FEM. This pre-processing step calls for an experienced designer and
can account for up to 80% of the overall analysis time [13]. In order to capture the
microstructure a refined finite element mesh is needed to ensure an accurate approxi-
mation of the geometry. Most cellular materials have a randomly sized and distributed
microstructure. To simplify the meshing procedure a reference microstructure can be
used, which is regular and statistically equivalent to the original microstructure. In
this case the finite element mesh can be generated automatically. The disadvantage
is the loss of the irregularity of the microstructure. Alternatively, the micro-structure
can be obtained from computed tomography (CT) images [14].

The most promising approach to avoid a finite element mesh fitting the geometry
of the cellular microstructure is the application of the finite cell method (FCM).
The FCM can also simply process CT data [15, 16]. The method can be automated
straightforwardly and thus reduces the required input data. In [17] we have success-
fully implemented the FCM in order to analyse the propagation of ultrasonic waves in
heterogeneous structures. The application of higher order finite elements increases the
accuracy and reduces the required computational effort [18]. In this case a rough finite
element approximation results in very accurate solutions even if a fine microstructure
has to be analysed. A first in-house code based on the higher order FCM has been
developed by S. Duczek [19, 20].
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The FCM has also great advantages for structures with a cellular microstructure,
which is often limited to small regions, such as in die cast parts [21]. The remaining
parts of a structure can be well approximated by the classical FEM. Consequently,
a combination of the FEM and the FCM, where the FCM is only applied in regions
with local heterogeneities, could be of great advantage. The regions with a local
microstructure known from CT scans can be simply meshed with hexagonal cells,
avoiding complicated body adapted mesh generation.

Most of the FE simulations in industry are performed with commercial FEA
tools, such as Abaqus, Ansy, Nastran and others. Therefore, it would be of a
great industrial interest if the FCM approach would be a part of commercial FEA
software [22]. In the following a concept of an overall workflow to combine the
FCM with the commercial FE software Abaqus is presented and tested, where also
specific implementation details and application problems are discussed. The paper is
organized as follows. In Section 2 the fundamental principles of the three-dimensional
finite cell method are briefly recalled. This also includes the main differences to the
classical finite element method. In Section 3 the coupling concept based on the
commercial analysis tool Abaqus is described. In Section 4 some information and
trouble shooting according to the STL data derived from CT measurements is given.
In Section 5 the developed coupling procedure is tested by analyzing an academic
test example, which demonstrates the capability of the developed simulation concept.
The paper finishes with conclusions in Section 6.

2. The finite cell method

In the following we briefly summarize the basics of the FCM, assuming that the FEM
is well known. The FCM slightly differs from the FEM, and, consequently, we start
with the typical basics from the FEM. We assume a linear elastic static boundary
value problem. The solution u in a region Ω is equivalent to the solution of the
variational form

B (u,v) = F (v) , ∀v ∈ V. (2.1)

This is the weak form of the equilibrium conditions of the problem. Here u is the
displacement vector and v represents the vector of arbitrary test functions in the
space V of admissible functions. The bilinear form B and the linear form F are given
as follows

B (u,v) =

∫
Ω

[Lv]
T
C [Lu] dΩ , (2.2)

F (v) =

∫
Ω

vT f̄ dΩ +

∫
ΓN

vT t̄dΓ . (2.3)

Here L denotes the linear strain-displacement operator, C stands for the Hook elas-
ticity matrix, f denotes the vector of body forces and t is the traction vector. A bar
over a variable signifies a prescribed value. The prescribed tractions are defined on
the Neumann boundary ΓN as

σn = t̄ on ΓN (2.4)
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where here σ denotes the stress tensor and n constitutes the outward normal vector of
unit length. Furthermore the displacements are prescribed on the Dirichlet boundary
ΓD, resulting in

u = ū on ΓD (2.5)

Equations (2.1)–(2.5) are the general basis of FEM [3]. In order to solve a problem
with the help of FEM a mesh of finite elements is required which approximately
coincides with the geometry of the structural region of interest Ω. But in FCM
the mesh in general must not fit the structural geometry. The physical domain Ω
is extended by a fictitious domain Ωfic. The union of these two domains forms the
extended domain Ωex – see Figure 1.

(a) Physical domain Ω (b) Fictitious domain Ωfic (c) Extended domain Ωex

Figure 1. Fictitious domain approach

Instead of equation (2.1) the weak form is now solved over the extended region

Bex (u,v) = Fex (v) , ∀v ∈ V. (2.6)

The main advantage of the fictitious domain approach is that the extended domain
is of a much simpler geometry and can, therefore, be simply meshed by regular non-
distorted finite elements. Quadrilateral and hexagonal elements and triangular and
tetrahedral elements can be used for 2D and 3D problems, respectively. During the
analysis it is imported to distinguish between normal (not cut) finite elements and
elements cut by the physical boundary. This differentiation is controlled by the so-
called indicator function α as

α(x) =

{
1 ∀x ∈ Ω

a0 = 10−q ∀x ∈ Ωex\Ω
(2.7)

If x is in the fictitious region, the indicator function can be taken as zero. In order to
avoid numerical problems a small value a0 is used instead of zero. The exponent q is
typically taken in the range from 4 to 15, depending on the material properties [23].
With the value α equations (2.2) and (2.3) are modified as

Bex (u,v) =

∫
Ωex

[Lv]
T
αC [Lu] dΩ , (2.8)

Fex (v) =

∫
Ωex

vTα f̄ dΩ +

∫
ΓN

vT t̄dΓ . (2.9)
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The indicator function α allows distinguishing between points that are located in Ω
or in Ωfic, respectively. In Figure 2 a simple rectangular mesh is shown. This mesh is
not aligned to the physical boundary of the structure, marked with a dotted red line.

 

Figure 2. Finite cell discretization

The problem now arises that the numerical integration of the element matrices of
the cut elements has to be performed over discontinuous integrands. The usual applied
Gaussian integration of the element matrices is in such cases not accurate enough.
Therefore, an adaptive Gaussian integration rule is recommended [15], which can be
applied automatically in 2D as well as in 3D finite elements without any extra manual
input. For this purpose a space tree partitioning (e.g. a quadtree in 2D and an octree
in 3D) of the integration domain is executed, and in each cut element of the extended
region Ωex a Gaussian integration rule is used [1]. The partitioning is carried out
as long as the solution of the integral is sufficiently accurately approximated. Figure
3 shows such a partitioning of an element in integration subdomains. Alternatively
to the space tree subdivision in [24], an efficient integration scheme based on the
divergence theorem (Gauss–Ostrogradsky theorem) can be applied, which reduces
the dimension of the integrals by one, i.e. instead of solving the integral for the whole
domain only its contour needs to be considered.

Following the standard Bubnov-Galerkin procedure, the displacement field as well
as the test function in each finite element e is approximated as

ue = NeUe , (2.10)

ve = NeVe . (2.11)
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Figure 3. Adaptive subdivision of one element in integration cells

Here Ne contains the element shape functions, Ue represents the vector of unknowns,
and Ve stands for the coefficients of the test functions for one single finite element,
which in the context of FCM is usually named a finite cell. Inserting equations (2.10)
and (2.11) into the weak form of equation (2.6) finally yields the well known linear
system of equations

KU = F , (2.12)

where K denotes the global stiffness matrix and F represents the global load vector.
The most important difference of the finite cell method to the standard finite element
approach is the integration over the finite elements (finite cells), which are cut by the
boundary (Figure 3).

For a more detailed insight into FCM we refer the reader to the comprehensive
review article by Schillinger et al. [25] and the works by Düster et al. [15] and
Parvizian et al. [16]. Here also several methods to include Dirichlet and Neumann
types of boundary conditions are presented.

3. Application of CT data in FCM simulation

CT measurements result in a three-dimensional voxel data set containing all necessary
information with respect to the microstructure. The voxel data can be further
processed to obtain a boundary representation of the structure, e.g. via the surface
tessellation language (STL) representation [26]. The determination of the material
properties is based on the Hounsfield units (HU) of CT data. Both voxel data and
STL data can be used as input data for simulation purposes.

The data from CT scans, given in STL format, can be processed by almost every
CAD program. The file format can be either ASCII or binary. For processing STL
data it is important that the triangular surface is closed and unique. Unfortunately,
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Figure 4. Problems of identifying closed STL surfaces [22]: left: two
surfaces connected by a unit point; right; two surfaces connected by
a unit line

the simplicity of STL format using unstructured triangular facets means some trouble
shootings regarding the 3D finite element meshing process. The STL data often
describe unclosed surfaces, or overlapping facets and incorrect normal directions.
Additionally, sometimes two closed surface triangulations are connected to each other,
as for instance by a line segment or by a point (see Figure 4).

The above mentioned problems complicate the unique identification of surface
regions in an automated algorithm. Therefore a mesh repair or a remeshing procedure
is absolutely essential for an FCM application. This is a highly complex issue and the
topic of several publications [27, 28].

4. Integration of FCM into a commercial FE package

Initially we developed and applied FCM for the analysis of ultrasonic waves propa-
gating in heterogeneous materials. This development was part of an interdisciplinary
research project, which was aimed at new wave based methods for structural health
monitoring. The developed methods are focused on light-weight structures made
from fiber and particle reinforced structures for airplanes or the rotor blades of wind
power stations. Our FCM software development is a Matlab based in-house code, see
[19, 29]. But, the FCM approach is also an interesting approach in other fields of
applications, such as for the stress analysis of structures made from materials with
a cellular microstructure. One important industrial application is the evaluation of
aluminum die cast parts and their quality assurance by taking into account their
inevitable porosity [21, 22]. Today highly stressed parts are inline measured with CT
in order to eliminate manufactured parts that do not meet the quality standards of
the pore specification.

The FCM method cannot be well applied utilizing a university based in-house
software which was developed for scientific reasons only. With regard to practical
applications we are convinced that a robust implementation of the FCM methodology
within a wide-spread and established software tool like Abaqus would create higher
applicability to practical engineering problems. Therefore, we developed a software
concept to couple the FCM with the commercial software package Abaqus, including
open source software products for the pre- and post-processing tasks. The general
workflow of our software concept is illustrated in Figure 5.
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Figure 5. Workflow of the coupling of FCM with the FEM package
Abaqus; the numbers I-VI denote the sequence of the application of
the subprograms

For the coupling only free of access available software interfaces of Abaqus are used.
To this end, we have defined a user subroutine with help of the Abaqus routine UEL
that is able to incorporate the required functionality. In 3D the FCM can be applied
if the FEM basis elements are hexahedral as well as tetrahedral finite elements [30].
Details concerning the required input data and the necessary pre- as well as post-
processing tools – although not directly related to Abaqus – are provided as well.
Besides microstructural data from CT measurements, also virtual generated STL
data can be applied in the design process of the constructions under investigation.

The initial model is set up in the pre-processing module of Abaqus. Here, the
material properties and the element types are defined. In the next step an Abaqus
input file is generated. This file is further processed in MATLAB and adjusted to
incorporate the user defined element routine (UEL). At this stage the micro-structural
details from CT measurements are added to the analysis and also the necessary details
to perform the composed numerical integration are generated. During the solution of
the governing equations these data are read in by the UEL. For the post-processing
a geometry-conforming visualization mesh is created. This can be achieved using
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powerful mesh generators (e.g. Netgen [31]) or Abaqus itself. The analysis results
are accordingly interpolated onto the new visualization nodes using the finite element
shape functions of the coupled FEM-FCM model and saved in a vtk-file format. This
format can be processed by ParaView, which offers all capabilities of commercial FE
post-processing tools.

5. Test example

The developed coupled FEM-FCM concept based on Abaqus has been tested with
help of several simple test examples, where as reference solutions overkill pure Abaqus
solutions were used. The following test example demonstrates the capability of the
developed coupling procedure [22].

In Figure 6 a cube with an edge length of a = 10 m is shown. A tensile load
of p = 100 N/m2 is applied normal to the positive z-direction. On the opposite
surface the displacements in z-direction are constrained to zero. Additionally the
displacements at two edges are also constrained to zero in x- and in y-direction,
respectively. A Young´s modulus of 70000 N/mm2 and a Poisson ratio of 0.33 are
used.

 

Figure 6. Cube with two types of inclusions: one centrally placed
ellipsoid, and four randomly distributed ellipsoids

In the solid cube two versions of pores are embedded, a centrally embedded ellipsoidal
pore in the first example and four randomly distributed embedded ellipsoidal pores
in the second example, where the pores have different volumes and size (see Figure
6).
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Cube with one central placed ellipsoid

The FE-FC model consists of 25×25×25 hexahedral elements of second polynomial
order (20 node hexahedrons). The cut elements are integrated with a subdivision
level k = 3 (for k see Figure 3). The overkill reference Abaqus model consists of
180,325 second order tetrahedral elements (764,424 DOFs). In Figure 7 the von Mises
stress results of the coupled FEM-FCM approach and the pure Abaqus solution are
compared. The results are in a very good agreement, with an error of about 0.6%.

  

Figure 7. Von Mises stresses in a cube with a central ellipsoid; left:
coupled FE-FC solution; right: overkill Abaqus reference solution

Cube with four randomly distributed ellipsoids

The FE-FC model consists again of 25×25×25 hexahedral elements of second poly-
nomial order (20 node hexahedrons). The cut elements are here integrated with a
subdivision level k=4 due to the smaller and more closely placed ellipsoids. The
reference Abaqus model consists of 300,864 tetrahedral elements (1,263,081 DOFs).
In Figure 7 the von Mises stress results of the coupled FEM-FCM approach and
the pure overkill Abaqus solution are compared. The results are again in a good
agreement, with a maximum error of 6%.

  

Figure 8. Von Mises stresses in a cube with a central ellipsoid; left:
coupled FE-FC solution; right: overkill Abaqus reference solution
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Regarding the convergence of FCM we refer to [16], where the convergence proper-
ties of FCM are investigated in detail. It is shown that the convergence properties of
the FCM can be directly derived from those of the associated finite element computa-
tion. In our case the FCM approach is coupled with the Abaqus software, where the
accuracy can be increased with h-refinements only. In this case the convergence rate of
the coupled FE-FC approach is algebraic and identical to the well known h-extension
of the applied finite elements. It is important that the stiffness matrices of the cut
finite elements are sufficiently accurately integrated, e.g. by an adaptive integration
approach (see Figure3). For more details regarding the numerical integration we refer
to [15, 24, 32]. If the mesh of the above given test examples is refined by increasing
the number of hexahedral elements, the solution will converge to the Abaqus reference
solution.

6. Conclusion

In the paper a concept for an implementation of the finite cell method (FCM) within
the commercial software Abaqus is presented. The FCM can be efficiently applied for
the stress and strain analysis of structures made from light-weight materials with a
cellular or porous microstructure. The great advantage is inherent automated mesh
generation with a quite regular hexahedron or tetrahedron mesh, which is not forced
to match with the physical geometry of the structure. The real geometry is taken
into account in the integration process of the element stiffness and load matrices of
the cut finite elements (finite cells). The uncut finite elements are processed as in the
standard FEM procedure. The cut elements are treated with an adaptive integration
algorithm, as shown in Figure 3. The FCM provides a fast convergence rate if high
order shape functions are used for the approximation of the displacement field in the
finite elements. This is especially important if a very fine microstructure has to be
taken into account with relative large finite elements/cells. In order to apply this
methodology for the solution of engineering problems the FCM should be coupled
with any standard commercial FEA software, such as Abaqus, Ansys, Nastran etc.,
which are powerful tools for solving complex engineering problems. In this paper the
concept of a coupled FEM-FCM methodology has been presented and realized by
using the Abaqus software. It is necessary to provide the microstructure in the form
of a STL data file. The STL data can be derived by the CT measurements or can
also be automatically generated. It is important that these STL data are unique and
provide closed surfaces. This is a great problem if CT data in form of voxel data are
used that are automatically transformed in STL data. Typically such data have to
be repaired to be usable for the coupled FEM-FCM simulation. The applicability of
the developed coupling method has been shown with academic test examples. The
coupled FEM-FCM approach can also be used to solve industrial problems.

With the proposed methodology to couple FCM with a commercial finite element
package like Abaqus, an important step has been taken towards a standardized
analysis method for light-weight structures made from materials with a cellular mi-
crostructure.



68 U. Gabbert and M. Würkner

References

1. O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method – Solid Me-
chanics. 5th ed. Vol. 2. Butterworth-Heinemann, 2000.

2. K. J. Bathe. Finite Element Procedures. 2nd ed. Watertown, 2014.
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