

Production Systems and Information Engineering
Volume 6 (2013), pp. 3-14

3

IDENTIFICATION OF A COMPLEX DRIVE CHAIN BASED
ON LOCAL LINEAR MODEL TREE

VIKTOR FÜVESI
University of Miskolc, Hungary

Research Institute of Applied Earth Science
Department of Research Instrumentation and Informatics

fuvesi@afki.hu

ERN� KOVÁCS
University of Miskolc, Hungary

Department of Electrical and Electronic Engineering
elkke@uni-miskolc.hu

CSABA VÖRÖS
University of Miskolc, Hungary

Research Institute of Applied Earth Science
Department of Research Instrumentation and Informatics

voros@afki.hu

 [Received November 2011 and accepted September 2012]

Abstract. This paper uses the local linear model tree (LOLIMOT) method for
modeling the angular velocity of a complex nonlinear system called Gamma-log.
The drive chain of the Gamma-log contains nonlinear parts such as an AC servo
drive or a worm gear drive. The drive chain is modeled with LOLIMOT
algorithm. An experiment was conducted to collect data from the original system
and to simulate the kinematics of the track. The best model was selected from
ARX and FIR models using a correlation coefficient based performance index.

Keywords: LOLIMOT, AC servo, electromechanical drive chain

1. Introduction

State-of-the-art industrial applications frequently use different kinds of actuators
with electromechanical kinematic chains (EKC). A wide range of these cannot be
controled only with a single motor but different kinds of gears and gearboxes are
applied. The drive chains thus developed include a great number of different
nonlinear components, such as motors, gears and bearings. The nonlinearities of
the components of the chain make it hard to control the system precisely. It is a
common requirement to supervise or monitor such systems, therefore modeling and
simulation are important.

4 V. FÜVESI, E. KOVÁCS AND CS. VÖRÖS

There can be found several references where complex drive chains are modeled
with different methods. One common method is when the system components are
separately modelled with differential equations. An example [1] introduces this
method where a PMSM AC servo with its drive is included. Erdogan models an
electric drive system with differential equations combined with object-oriented
technics and verifies also the simulation model with an experiment [2]. The
disadvantage of these methods is the need for a deep knowledge of the system
components, which is regularly not available. After the simulation process a
validation procedure follows when the real parameters are identified.

Systems can also be modeled with the ‘black box’ method. Inputs of the analysed
process are matched to the inputs of the black box and the process should be
carried out with the outputs as well. The black box can be e.g. a neural network
structure or a locally linear neuro-fuzzy structure (LLNF). During the training
process, these kinds of mathematical structures can find any nonlinear relation
between the inputs and outputs if any level of correlation exists. So this method can
powerfully assist as a general function approximator [3].

Neuro-fuzzy modeling is used in a wide range of applications. E.g. modeling and
identification of a vehicle suspension was carried out with the neuro-fuzzy method
[4]. A black box model for a temperature control pilot plant called RT542, which is
equipment for engineering education [5], is another example. The structure can be
used to model high nonlinearities such as the dynamics of centrifugal compressors
[6]. There can also be found examples of its use for solving the identification and
control problem of a combustion engine’s exhaust [7]. Besides the modeling, this
method can also be used for predictive control [8].

The literature does not detail the process of model selection or a
comparison of the different local linear neuro-fuzzy (LLNF) based models
which are connected to drive chains. This paper presents a nonlinear black box
model for a drive chain of the mobile Gamma-log equipment. The aim is to
develop a LLNF model using LOLIMOT algorithm that captures the dynamic
properties of the system over a wide operating range.

The paper covers the identification process, starting with a detailed description of
the investigated equipment. After that Section 3 deals with measurements on the
real system. Section 4 is about preprocessing the measured data. Section 5 shows
the basics of the Neuro-Fuzzy LOLIMOT and its dynamical extension, followed by
a comparison of the different utilized external dynamics and results.

2. Introduction of the investigated system

The section introduces the investigated Mobile Gamma-log equipment from many
aspects. First the aim of the Mobile Gamma-log will be clarified, then the main

 IDENTIFICATION OF COMPLEX DRIVE CHAIN USING LOLIMOT 5

construction of the device will be detailed. Following this, the investigated drive
chain will be discussed.

2.1. Mobile Gamma-log equipment

During onshore exploratory oil drilling, in order to determine the exact depth of the
core which contains oil, the natural gamma-ray spectral of the core is logged. To
refine the local measurements, experiments are conducted on the raised bore cores
in a laboratory. The result of the site experiments can be refined with the
correlation of the two measurements. One of the most important details in the
measurements is that the measured gamma spectrum of the bore core section
should not slip from the exact depth value. Therefore accurate moving of the
gamma-ray detector is needed during the experiments.

The main components of the investigated mobile equipment can be seen in Fig. 1.
The bore core lies on a lead case in the centre line of the modular, one meter long,
railway part. The detector-carrier-track carries the gamma-ray detector. The
necessary power, the control signal of the controller PC and the resulting
measurement signals go through the energy chain.

Figure 1. Main components of MGL-01F gamma-log equipment
1: modular railway; 2: detector-carrier-track; 3: energy chain; 4: controller PC

2.2. Drive chain of the track

The main drive in the actuator chain of Gamma-log is a 200W AC servo motor
manufactured by Omron. The shaft of the motor is connected to a worm gearbox,
which is a product of Bonfiglioli (Fig. 2). The reducing gear ratio of the worm gear
is 70. The rear left wheel of the track is the drive wheel which is connected to the
worm gear. An incremental encoder is assembled to the front left wheel of the
track. The encoder senses the movement of the track in the railway. The resolution

6 V. FÜVESI, E. KOVÁCS AND CS. VÖRÖS

of the encoder is 1000 pulses per rotation. Every wheel of the track has bearings on
both sides [9].

Figure 2. Drive chain of Gamma-log
1: Omron AC servo motor; 2: Bonfiglioli worm gear; 3: Bearings; 4: Wheel with V-profile

3. Measurements

Measurements were performed to model the kinematic and dynamic behaviour of
the Gamma-log track. The measurement set-up can be seen in Fig. 3. The main
difficulty was that the track was moving while the data acquisition was in progress.
During the measurements the track was controlled with different accelerations and
different velocities. During the different measurements the moving distance of the
track was set to a constant length of 100 millimetres. For the measurement NI
CompactDAQ modular equipment was used. The sampling frequency was set to 5
kHz per channel.

Figure 3. Measurement rig of the drive chain of Gamma-log

1: Control PC during the measurements; 2: PC for data acquisition;
3: Railway of the track; 4: Detector-carrier-track; 5: NI Compact DAQ modular unit

 IDENTIFICATION OF COMPLEX DRIVE CHAIN USING LOLIMOT 7

Not all of the parameters of the system could be measured because of the
construction of the drive chain. The electrical parameters such as exciting currents
(I1, I2, I3) on all 3 phases and line voltages (V12, V23, V31) were measured in addition
to the rotation of the wheel with an incremental encoder.

The velocity profile of the track can be calculated from the signal of the encoder
(v). The intervals of the measured parameters can be found in Table 1.

Table 1. Intervals of measured parameters

Parameter Unit
Lower

limit

Upper

limit

Current (I1, I2, I3) A -0.5 0.5
Phase-to-Phase Voltage (V12, V23, V31) V -25 25

Velocity of the Track (v) mm/s 0 30

4. Data pre-processing for modeling

The measured data required pre-processing before modeling. The velocity profile
of the track was calculated from the signal of the encoder. It was used later as
output of the neural network.

The signals of voltages and currents were filtered with a low pass filter. The well-
known Park or coordinate-frame transformation for three-phase machinery can
provide a useful framework for the investigation. The rotating transformations are
commonly used for machine design and control, but the simplifications that result
from applying the transformation can also be useful for modeling [10,11].

The three-phase values were calculated in the reference frame of stator using the
following formula (1) [12]:

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
−

−−

=

�
�
�

�

�

�
�
�

�

�

3

2

1

0 2/12/12/1

2/32/30

2/12/11

3

2

T

T

T

T

T

T

β

α

 (1)

Here T1...T3 are the three-phase parameters, currents or voltages. T� and T� are the
same components in the reference frame of the stator.

The measured signals show mainly sinusoidal characteristics with some noise
added. Using this transformation, the shapes of the new signals are also sinusoidal
but the frequency decreases.

Other transformations were also applied to the signals to get their amplitudes. The
angle of the rotating vector can be calculated from the T� and T� components. The

8 V. FÜVESI, E. KOVÁCS AND CS. VÖRÖS

changes of the values in the time domain were applied as inputs during the
modeling. Between the transformations the signals are filtered and resampled to
speed up the modeling process.

Figure 4. Resampled and transformed training datasets

From the measurements two datasets were created. One of them was the training
dataset which was used during the training process (Fig. 4). The other dataset was
the validating dataset which was applied during testing the network. The validating
set was different from the training set in order to test the extrapolating performance
of the model.

5. LOLIMOT model and algorithm

To model the system the Local Linear Model Network, LLMN, which is an
extension of the radial basis function network (RBFN) by Nelles is used. This
structure also deals with local linear neuro-fuzzy models referred to as the Takagi-
Sugeno fuzzy model [13, 14].

In this structure the weights of the output layer are replaced with a linear function
of the network’s input. Furthermore, the RBFN is normalized [13]. The structure of
the network can be seen in Fig. 5.

 IDENTIFICATION OF COMPLEX DRIVE CHAIN USING LOLIMOT 9

Figure 5. Structure of LOLIMOT neural network

The output of the network (ey) can be calculated with the following formula (2)

[13]:

 ()()pipiii

M

i

iiie uwuwwcuy +++=

=

�10
1

,, σφ , (2)

where: M is the number of sub-models; u is the input vector; p is the number of
inputs; wxy is the yth parameter in the xth neuron. iφ is the normalized Gaussian
validity function which determines the regions of the input space where each
neuron (Local Linear Model) is active. Furthermore, the nonlinear parameters are ci
(center) and �i (standard deviation).

The local linear model can be taught using the local linear model tree algorithm.
This training method is stable, very fast and robust and also has a good
convergence feature. The training process has two stages: a) in the first part of the
training the input space is decomposed by determining the parameters of the
validity function, b) in the second step the LLM is optimised to the region by the
least square method.

The training process begins with a globally identified linear model. In the first
iteration the global region is divided into two local linear models. The generated

10 V. FÜVESI, E. KOVÁCS AND CS. VÖRÖS

local models are valid in their own regions. The models are identified separately
and the global model comes from the summation of the local models. In the next
iteration the worst model is selected and further divided into two new models.
Some steps of the iteration can be seen in Fig. 6.

Figure 6. The first four iterations of LOLIMOT algorithm

6. Modeling the system with LOLIMOT

A drive chain is a dynamic system by nature. During the modeling the relationship
should be discovered between the inputs and the output. The investigated system
can be described by a Multi Input Single Output (MISO) model. The transformed
excitation current (u1) and voltages (u2) were the inputs and the movement of the
track was the output (y) of the mathematical model.

The previously described network structure is able to model static systems but
some external dynamics has to be added to the inputs to characterise the dynamic
feature of the system.

External dynamics means that virtual inputs are generated by adding new inputs to
the network. The new inputs can be transformed from the real inputs using one
time delay transformation.

Two different model structures were investigated during the simulations.

The first model uses only the input parameters of the system with some virtual
inputs added. This model structure is called FIR model and it is basically a
feedforward model (Fig. 7a). This model approximates the function f in the
following form:

 () () () ()()2,1,2,1 2211 −−−−= tutututufye (3)

 IDENTIFICATION OF COMPLEX DRIVE CHAIN USING LOLIMOT 11

The other model structure was the ARX model, where beside the inputs (u1 and u2)
the time delay real output (y) was also applied as input to the network (Fig. 7b).
The approximation of the model structure can be described by Eq. 4:

 () () () () () ()()2,1,2,1,2,1 2211 −−−−−−= tytytutututufye . (4)

Figure 7. MISO system with FIR input configuration (a) and with ARX external
dynamics (b)

To achieve the best result, the structure of the networks was changed by changing
the number of virtual inputs. The following six different structures were analysed:

• FIR input configuration with one time delay per input. It is called 2i0o.

• FIR input configuration with two time delays per input. It is called 4i0o
(Eq. 3).

• FIR input configuration with three time delays per input. It is called 6i0o.

• ARX input configuration with one time delay per input, the one time
delayed transform required output use as input. It is called 2i1o.

• ARX input configuration with two time delays per input, the two time
delayed transforms required output use as input. It is called 4i2o. (Eq. 4)

• ARX input configuration with three time delays per input, the three time
delayed transforms required output use as input. It is called 6i3o.

On every structure 35 iterations were applied using the training algorithm. In every
iteration step the correlation coefficients [15] of both the validating and the training
datasets were calculated from the estimated output of the system and the required
datasets. The best mode was selected using a performance index which was
calculated from correlation coefficients:

12 V. FÜVESI, E. KOVÁCS AND CS. VÖRÖS

 22
validtrainperf CORRCORRI += . (5)

7. Results

Using a performance index the best model can be found. The calculated
performance indexes for the 210 models can be found in Fig. 8.

Figure 8. Performance indexes of investigated models
star: 2i0o; square: 2i1o; plus: 4i0o; diamond: 4i2o; cross: 6i0o; triangle: 6i3o

Generally the higher number submodels make better solutions but increase
computation time and complexity of the global model. In some cases a new
submodel can decrease the performance of the global model because the
LOLIMOT training does not analyse whether a separation of a region is good for
the global model or not. This is the explanation of the big performance losses of the
models with a higher number of submodels comparing to less complicated models.

To find the best model with the best correlation feature, different structure types of
the models were compared. The selection criterion of the best model was the
previously defined performance index (5). To find the globally best model, the
locally selected best model was chosen. The models were compared using
performance index and MSE of the datasets. The results are summarised in Table
2. The higher performance index is better.

 IDENTIFICATION OF COMPLEX DRIVE CHAIN USING LOLIMOT 13

Table 2. Best model selection using performance index

Structure type Performance

index

Index of

best

model

MSE of

training

dataset

MSE of

validation

dataset

1. FIR structure (2i0o) 1.4048 16 54.948 67.317
1. ARX structure (2i1o) 1.4073 3 48.875 47.509
2. FIR structure (4i0o) 1.4076 10 43.171 48.798
2. ARX structure (4i2o) 1.4113 21 17.280 19.497
3. FIR structure (6i0o) 1.4081 31 23.029 55.013
3. ARX structure (6i3o) 1.4115 15 14.706 19.007

Increasing the number of the inputs makes the models better, but it also increases
the computation time and the necessary resources. Both model structures provided
good solutions but the best model came from the ARX structure called 6i3o.

Conclusion

An electrical drive chain of real mobile equipment was modeled with an artificial
intelligent method. The datasets were collected from the real system during the
measurements. Two feedforward structure types were used and compared. The
investigation shows that the LOLIMOT algorithm was able to learn the behaviour
of the system. Both of the network structures were suitable for modeling the
process but the ARX structure gave better results. To select the best model a
performance index was established based on correlations of the datasets and
estimations. The results can be used for fault detection and fault diagnosis of the
system.

Acknowledgements

The work described was carried out as part of the TÁMOP 4.2.1.B-10/2/KONV-
0001-2010 project in the framework of the Hungarian Development Plan. The
realization of this project is supported by the European Union, co-financed by the
European Social Fund.

REFERENCES

[1] LIU, J.; WANG, T.; XU, D.; CONG, L.: A New Algorithm Research and Simulation for

Permanent Magnet Synchronous Motor AC Servo, Proc. of the 2008 IEEE Int.
Conference on System, Robotics Automation and Mechatronics (RAM), 2008, pp.
965-969.

14 V. FÜVESI, E. KOVÁCS AND CS. VÖRÖS

[2] ERDOGAN, N.; HENAO, H.; GRISEL, R.: A Proposed Technique for Simulating the

Complete Electric Drive Systems with a Complex Kinematics Chain, IEEE Electric
Machines & Drives Conference, 2007., (IEMDC '07), pp. 1240-1245.

[3] TAKAGI, T.; M. SUGENO, M.: Fuzzy identification of systems and its application to

modeling and control, IEEE Transaction on Systems Vol. 15, 1985.

[4] HALFMANN, C.; NELLES, O.; HOLZMANN, H.: Modeling and Identification of the

Vehicle Suspension Characteristics using Local Linear Model Trees, Proc. of the 1999
IEEE Int. Conference on Control Applications, Vol. 2., pp. 1484-1489.

[5] NOURZADEH, H.; FATEHI, A.; LABIBI, B.; ARAABI, B.N.: An Experimental Nonlinear

System Identification Based on Local Linear Neuro-Fuzzy Models, Industrial
Technology, 2006. (ICIT 2006.), pp. 2274-2279, 2006.

[6] DAROOGHEH, N.: Centrifugal Compressor Identification Using LOLIMOT, Control
and Decision Conference, 2008. (CCDC 2008.), Chinese, pp. 771-774.

[7] HAFNER, M.; SCHULER, M.; NELLES, O.: Dynamical Identification and Control of

Combustion Engine Exhaust, American Control Conference, 2007., Vol. 1, pp 222-
226.

[8] MOHAMMADZAMAN, I.; JAMAB, A. S.: Adaptive Predictive Control of an

Electromagnetic Suspension System with LOLIMOT Identifier, 14th IEEE
Mediterranean Conference on Control and Automation (MED '06), pp 1-6, 2006.

[9] UNIVERSITY OF MISKOLC - RIAES RII, MGL-01F: User's Manual, Miskolc, 2011, pp.
2-14.

[10] CHIASSON, J.: Modeling and High-Performance Control of Electric Machines, John
Wiley & Sons, Inc. New York, 2005.

[11] KRAUSE, P.C., WASYNCZUK, O., SUDHOFF, S. D.: Analysis of Electric Machinery and

Drive Systems, IEEE Series on Power Engineering, John Wiley and Sons, 2002, ISBN
047114326X.

[12] LIDOZZI, A.; SOLERO, L.; CRESCIMBINI, F.; BURGOS, R.: Vector Control of

Trapezoidal Back-EMF PM Machines Using Pseudo-Park Transformation, IEEE
Power Electronics Specialists Conference, 2007. (PESC 2007.), pp. 2167-2171.

[13] ISERMANN, R.: Mechatronic System, Fundamentals. Springer, London, ISBN 1-
85233-930-6, 2005, pp 314-323.

[14] NEKOUI, M.A.; SAJADIFAR, S.M.: Nonlinear System Identification using Locally

Linear Model Tree and Particle Swarm Optimization, IEEE International Conference
on Industrial Technology, 2006., (ICIT 2006), pp. 1563-1568.

[15] REMESAN, R.; SHAMIM, M. A.; HAN, D.; MATHEW, J.: ANFIS and NNARX based

Rainfall-Runoff Modeling, IEEE Systems, Man and Cybernetics, 2008. (SMC '08), pp.
1454-1459.

Production Systems and Information Engineering
Volume 6 (2013), pp. 15-26

15

EFFICIENCY ANALYSIS OF QUALITY THRESHOLD
CLUSTERING ALGORITHMS

LÁSZLÓ BEDNARIK
University of Miskolc, Hungary

Department of Information Technology
laszlobednarik@gmail.com

LÁSZLÓ KOVÁCS
University of Miskolc, Hungary

Department of Information Technology
kovacs@iit.uni-miskolc.hu

[Received January 2012 and accepted September 2012]

Abstract. An important aspect of clustering is to provide a good intra-cluster
similarity. Most of the traditional methods do not consider this aspect and they
generate weak clusters from this viewpoint. The paper presents a survey of the
two dominant candidates for quality threshold clusterings, the QT and BIRCH
methods. Besides the analysis, a new variant of BIRCH method which can
provide a better performance is proposed.

Keywords: clustering, quality threshold clustering, BIRCH, genetic algorithm

1. Introduction

Data clustering is an important and widely used technique in data analysis and data
mining. The goal of clustering is to split the set of elements into subsets where the
elements of the same group are more similar to each other than the elements from
different groups. The process of clustering usually includes the following steps:
select an appropriate representation form of objects; define an appropriate
similarity function; determine the appropriate clustering algorithm and parameters;
execute the algorithm and interpretat the results. As the clustering problem uses an
unsupervised learning algorithm, there are many subjective parameters in the
process. One of the key parameters is the aspect of similarity: at which value of
similarity can the objects be assigned to the same cluster. There are many standard
methods in the literature for clustering. The most widely used standard methods are
hierarchical clustering [1], partitioning clustering [2], hybrid method [3],
incremental or batch methods, monothetic vs. polythetic methods [4], crisp and
fuzzy clustering [8].

16 L. BEDNARIK, L. KOVÁCS

Although the literature on clustering is very rich, there is an aspect that has not
attracted much interest in recent years. The aspect in question is the similarity
threshold within a cluster. Based on the informal definition of clustering, the
elements within a cluster should be more similar to each other than the elements of
different clusters. Considering the standard methods it can be seen that these
methods do not fulfill this requirement at an optimal level. The HAC method [9],
for example, can generate arbitrary large clusters where the distance between two
elements of the same cluster may be much higher than the distance related to an
element of another cluster (see Fig.1).

Cluster A Cluster B

Figure 1. Inter-cluster similarity is higher than intra-cluster similarity

The majority of standard methods use a greedy approach to build up a cluster:
while the distance between the candidate and the current cluster is below a
threshold value, the cluster is extended with new elements. The threshold criteria
are usually independent of the actual size of the current cluster. As a result, the
similarity between two points of the same cluster may be arbitrarily low.

The goal of the investigation is to find clustering methods preserving the distance.
In order to meet this requirement, the following two constraints are defined on the
clustering model:

- for every object pair with a smaller distance than a threshold, there exists a
cluster containing both elements of the pair.

- for every object pair with a larger distance than a threshold, there is no
cluster containing both elements of the pair.

The first criterion ensures that in examining the target clusters, all object pairs
similar to each other can be found. The second constraint says that a cluster does
not contain dissimilar objects, it contains only similar objects.

In the literature, there are two dominant variants providing an intra-cluster
similarity: the Quality Threshold method and the BIRCH method. The first variant
can provide a higher level of quality but it requires a higher execution cost. The
second one is a good and robust solution in the case of huge data sets. The paper
provides a comparison of these methods and suggests some modifications on the
BIRCH algorithm to create an improved intra-cluster quality for large databases.

 EFFICIENCY ANALYSIS OF QT CLUSTERING 17

2. Overview of clustering algorithm with quality threshold

2.1. QT algorithm

The QT (Quality Threshold) clustering method [11] ensures that the distance
between any two elements within a cluster should be below a given threshold. The
algorithm uses two input parameters: the first parameter is the maximum distance
diameter and the second is the minimum cluster size. The diameter is defined in the
following way:

 { }2

,
)(max ji

ji
xxd −= . (2.1)

The size of the cluster denotes here the number of elements within the cluster. The
main steps of QT clustering are the following:

1. Generating candidate clusters for each element where the candidate cluster
is built up with a greedy algorithm. Taking an element y, the cluster contains
all elements closer to y than the maximum radius.

2. The candidate cluster with the maximum size is selected as a true cluster.
The elements of this cluster are removed from the pool, the membership of
the remaining candidate clusters is updated.

3. If the largest remaining cluster has a greater size than the minimum limit,
go to step 2, otherwise terminate the algorithm.

The QT algorithm generates non-overlapping clusters where some elements remain
outside of clusters as outliers. The output of clustering is a set of clusters of limited
diameter, thus the similarity values between the elements are above a given
threshold.

Considering the execution cost, the algorithm contains three embedded loops. The
outer loop runs on the selection of real clusters, the loop in the middle runs on the
candidate clusters and the inner loop runs over the elements to generate the
candidate clusters. The cost value can be given by

��
�

�
��
�

�
D

L

N
O

2

,
where

N : number of elements in the data set,

L: average size of a cluster,

D: the cost of distance calculation.

18 L. BEDNARIK, L. KOVÁCS

Besides the base variant in the literature, there can be found some improved
versions using some special techniques such as parallelism [12].

2.2. BIRCH algorithm

The BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
algorithm [5] is of great importance as a fast and efficient pre-clustering method.
Each resulting cluster is represented by one single point for the task-specific further
clustering algorithms. The BIRCH algorithm guarantees that the distance of points
in sets created is smaller than a threshold given in advance. The threshold is the
most important input parameter of the BIRCH algorithm. By decreasing the
threshold it can be guaranteed that points in sets are close enough to the centre of
the set. Therefore the quality of clustering can be increased.

The structural information of the BIRCH algorithm is stored in Clustering Feature
(CF) data triplet. The strength of CF is to the calculation of core clustering features
using only simple arithmetic operations without analysing the individual elements.
The structure CF is given by the following formula:

{ }SSLSNCF ,,=
.

where

 N: number of points in the set represented by the given CF,

LS : d-dimensional linear sum of points in the set,

SS: d-dimensional square sum of points in the set.

The BIRCH algorithm organizes the points to be clustered in a balanced B+ tree.
Each leaf-node stores points (or sets of points). Moreover, each leaf-node contains
a pointer to the following node and a pointer to the preceding node in the tree to
reach them fast. During the insertion operation, if the quality threshold condition
does not hold, then, points in the given leaf-node are reassigned into two subsets.
In the split operation the two furthest points of the set are used as nuclei of the new
clusters. Then all the other points in the original set are moved into the leaf-node
whose nucleus is closer to it.

Another core parameter of the algorithm is the branching factor. If the number of
child nodes of a given non-leaf node exceeds the maximal branching factor, then
the set is split into two parts. The two child nodes which are the furthest from each
other are selected as the nuclei of the new sets. Afterwards all the other child nodes
of the given non-leaf node move into the non-leaf node whose nucleus is closer.

 EFFICIENCY ANALYSIS OF QT CLUSTERING 19

If B denotes the maximal number of child-nodes of non-leaf nodes, M denotes the
maximal size of the tree, then the cost function of the method can be given as [10]:

))log1((MBNdO B+⋅⋅⋅ .

Considering all components of the algorithm (e.g. reconstruction), the total time
cost of the BIRCH algorithm can be calculated by the following formula [10]:

))log1()1(log)log1((2 MBESd
N

N
MBNdO B

T

B +⋅⋅−⋅⋅++⋅⋅⋅ . (2.2)

3. Optimal selection of parameters for BIRCH algorithm

Test results of clustering on the base BIRCH algorithm reveal that the time
requirement of the procedure considerably depends on parameters of the threshold
value and of the maximal branching factor. The test results show that the
dominating factor is the threshold value, while the cost is considerably influenced
also by the maximal branching factor CF of the tree. Tests performed also revealed
that if the threshold value parameter is lower than the optimal value then the
number of sets resulting by BIRCH algorithm is increased exponentially. The
exponential increase in the number of sets results in an exponential increase in the
cost of the post-processing algorithms. If the threshold value parameter is larger
than the optimal value, then the number of points put into a cluster is increased,
which requires a continuously increasing extra cost during insertion and
reconstruction operations. If the CF value is too low, the depth of the tree increases
exponentially. Administrating the increased number of nodes (creation,
decomposition, memory usage, etc.) causes an increased total cost.
The goal function (C) is a function of two parameters: the threshold value (T) and
the maximal branching factor (B): C=f(T,B). The best known representatives of
local searching algorithms are: hill-climbing search [6], simulated annealing [7],
local beam search, and genetic algorithm. In order to perform parameter
optimization we have developed a combination of genetic algorithm and hill-
climbing search algorithm.

The formal description of the applied hill-climbing search algorithm is as follows:

1. The actual point is a point given by randomly chosen coordinates (T,B).

2. Determining the cost belonging to the actual point by carrying out the
clustering procedure with parameters represented by the actual point.

20 L. BEDNARIK, L. KOVÁCS

3. Determining the neighbours of the actual point by increasing and decreasing

the coordinates of the actual point by step ε.

4. Determining the costs belonging to the neighbours of the actual point by
carrying out the clustering procedure for each neighbour of the actual point
with parameters represented by the given neighbour.

5. If the cost of the neighbour having the smallest cost around the actual point
is not smaller than the cost of the actual point, then terminate the algorithm.

6. Let the actual point be the point represented by its neighbour with the
smallest cost. Take step 3.

The formal description of the algorithm reveals that in order to determine the
optimal parameters the same clustering task needs to be performed repeatedly with
different parameters. In a minimal case this requires performing the clustering task
four times. Hence it is obvious that a clearance of the cost of clustering can only be
expected when a relatively great number of samples with the same features are
clustered. By denoting the cost of clustering without optimization by S, and the
cost of clustering with optimization by O and the cost of finding the optimum by
M, then after the ith clustering the cost of clustering without optimizing is i⋅S, and
the cost of optimizing carried out with parameters T, B obtained by optimization
is: i⋅O+M . The gain of optimization can be given as

)(MOjSj +⋅−⋅
 .

 (3.1)

To show the results of the simple hill-climbing method, a test was performed on a
word-set containing 10,000 words from the Computer science book written by
Gábor Kovács (Hungarian Electronic Library). The measured cost values are
shown in Figure 2.

Figure 2. The value of cost calculated at each point of the domain in the example
considered

 EFFICIENCY ANALYSIS OF QT CLUSTERING 21

The quality threshold values ran in the interval [0.1, ..., 1] with distance 0.05. For
the CF parameter, 60 values at an equal distance from each other in interval
[2, ..., 500] were chosen. As Figure 2 shows, there are many similar local optimum
positions in the problem domain. In order to find a good approximation of the
global optimum, the simple hill-climbing method was extended with a stochastic
element, namely with a genetic algorithm module.

A group of discrete candidate points existing simultaneously creates a population.
Each discrete point of the starting population is generated by coordinates assigned
randomly. Each generated discrete point is the starting point of a hill-climbing
search algorithm. After the local optimization process, the coordinates of each
discrete point of the population are modified to the coordinates of the local
minimum obtained by the search. Therefore each discrete point of the population
gets into a local minimum. According to the cost of the discrete points of the
population obtained in this way, the average cost that describes the population can
be determined. If the average cost of the nth population already exceeds the average
cost of the population (n-1), then the algorithm terminates and the best discrete
point in the population (n-1) is considered to be the best solution obtained by the
optimization. If the nth population is the first population or its average cost is
smaller than or equal to the average cost of the population (n-1), then according to
the discrete points of the nth population a new population (n+1) is generated.

The algorithm uses the usual genetic operators such as selection, crossover and
mutation, to build up the next generation. During the selection operation, a number
of the best discrete points in the nth population are placed into the new population
without any change. For the generation of the rest of the points, the following
possibilities are carried out:

- Crossover of points: denoting the coordinates of the selected discrete points
by (ti,bi), (tj,bj), then the coordinates of the new point are (ti,bj).

- Mutation: denoting the coordinates of the chosen point by (ti,bi), the

coordinates of the new point are (ti+ε1,bi+ε2).

- A new point is generated randomly, independently of the coordinates of the
selected elements.

22 L. BEDNARIK, L. KOVÁCS

The optimal values of parameters T and B are given by the coordinates of the point
representing the lowest cost of the previous population.

Figure 3. Dependence of costs obtained with and without optimization on the number of
clustering

4. Analysing test results of clustering after BIRCH

During the test of the k-means post-clustering method after the BIRCH pre-
clustering, we analysed the relationship between the following six parameters:

- the maximal distance (threshold) between points in the leaf-nodes of the
BIRCH tree,

- the maximal branching factor of non-leaf nodes of the BIRCH tree,

- the expected number of clusters in a k-means algorithm based on the
BIRCH algorithm,

- the number of clustering points,

- the number of alignments of points to be clustered (focus points),

- the dispersion of normal distribution of points to be clustered around focus
points.

The first two parameters have a direct effect on the behaviour of the BIRCH
algorithm. With the third one the number of clusters expected from the k-means
can be set. The last three parameters relate to the problem domain. During tests
always only one of the parameters was changed in order to be able to show its
effect on the features of the algorithm. The following features were investigated:

 EFFICIENCY ANALYSIS OF QT CLUSTERING 23

- the time requirement of clustering (together with the k-means algorithm),

- the depth of the BIRCH tree,

- the number of leaf-nodes of the BIRCH tree (the number of sets created by
the BIRCH algorithm),

- the number of steps in re-arranging the k-means clustering based on the
BIRCH algorithm.

Results of the tests according to the above can be seen in the diagrams below.

Figure 4. Analysing the effect of the threshold value

24 L. BEDNARIK, L. KOVÁCS

According to the test results, we can see that the number of leaf-nodes decreases
exponentially with the increase of the threshold value. Therefore the k-means
algorithm needs to cluster considerably fewer sets, hence the time requirement of
clustering also decreases exponentially. By increasing the value of the threshold
above a certain level, too many points are gathered in leaf-nodes and during the
separation of sets a considerable number of points needs to be analysed. This effect
can be shown in the increase of time consumption.

Figure 5. Analysing the effect of the maximal branching factor

 EFFICIENCY ANALYSIS OF QT CLUSTERING 25

By increasing the branching factor of the tree, the depth of the tree decreases
exponentially. As in the case of a larger number of branchings, a considerably
larger number of child nodes must be processed. This procedure results in an
obvious increase in the rate of speed. Also, it is obvious that changing the
branching factor does not have any effect on the function of the k-means algorithm.

5. Conclusions

An important aspect of clustering is to provide a good intra-cluster similarity. The
BIRCH algorithm is a standard tool used to perform pre-clustering on large data
sets using a quality-threshold constraint on the clusters. As the efficiency of the
method depends on such parameters as cluster threshold and branching factor, the
optimization of the parameters is a crucial step to reduce the costs of clustering
operations. The proposed method, hill-climbing with genetic algorithm can be used
efficiently to optimize the cluster threshold and branching factor parameters of the
BIRCH algorithm. The test results show that a significant cost reduction can be
achieved using the proposed optimization method.

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-
0001 project with support by the European Union, co-financed by the European
Social Fund.

REFERENCES

[1] CRACRAFT, J., DONOGHUE, M.: Assembling the tree of life: Research needs in

phylogenetics and phyloinformatics. Report from NSF Workshop, Yale University,
July 2000.

[2] DAY, W.: Complexity Theory: An Introduction for Practitioners of Classification,

Clustering and Classification, World Scientific Publ., 1992.

[3] MURTY, M., KRISHNA, G.: A computationally efficient technique for data clustering,
Pattern Recognition, Vol. 12., 1980, pp. 153-158.

[4] SALTON, G.: Developments in automatic text retrieval, Science, Vol. 253., 1991, pp.
974-980.

[5] TIAN, Z., RAGHU R., MIRON L.: BIRCH: A New Data Clustering Algorithm and Its

Applications, 1997.

26 L. BEDNARIK, L. KOVÁCS

[6] BART, S., CARLA P. G.: Hill-climbing Search, Cornell University, Ithaca, New York,

USA, (Jan 15, 2006), pp. 333-336.

[7] SCOTT, K., CHARLES, D. G., MARIO, P. V.: Optimization by Simulated Annealing,
Science, New Series, Vol. 220, No. 4598. (May 13, 1983), pp. 671-680.

[8] RUSPINI, E.: A new approach to clustering, Information Control, Vol. 15., 1969, pp.
22-32.

[9] MANNING, C., RAGHAVAN, P., SCHÜTZE, H.: Introduction to Information Retrieval,
Cambridge University Press, 2008.

[10] TIAN, Z., RAGHU R., MIRON L.: BIRCH: An Efficient Data Clustering Method for

Very Large Databases. Proc. of the 1996 ACMSIGMOD International Conference on
Management of Data, Montreal, Canada, pp. 103–114, June 1996.

[11] HEYER, L., RAMAKRISHANAN, R., LIVNY, M.: BIRCH: An Efficient Data Clustering

Method for Very Large Databases, Genome Research, Vol 9., 1999, pp. 1106-1115.

[12] MOCIAN, H.: Survey of Distributed Clustering Techniques, Internal Research Project,
http://www.horatiumocian.com/papers/Distributed_Clustering_Survey.pdf, 2009.

Production Systems and Information Engineering
Volume 6 (2013), pp. 27-40

27

USING GRAPHICAL PROCESSING UNITS FOR
DETERMINISTIC SINGLE MACHINE SCHEDULING

PROBLEMS

KRISZTIÁN MIHÁLY
SAP Hungary Ltd., Hungary

krisztian.mihaly@sap.com

OLIVÉR HORNYÁK
University of Miskolc, Hungary

Department of Information Engineering
hornyak@ait.iit.uni-miskolc.hu

[Received January 2012 and accepted September 2012]

Abstract. This paper gives an introduction to how graphical processing units can
be used in non-graphical related problems or tasks. First a history of GPU is
provided. The next part focuses on GPU programming. A brief description is
given about the available hardware facilities and the available programming
languages. As an initial result of the project an easy and well-known scheduling
algorithm was implemented for deterministic, single machine models. To check
the performance achievement both the CPU and GPU code were implemented.
Finally, some of the performance measurements are presented.

Keywords: GPGpu, OpenCL, CUDA, scheduling problems

1. Aims and scope of the paper

This paper aims to give an overview of the history of graphical processing units
(GPUs) and how they can be used in non-graphical related tasks. After a short
historical introduction it presents a short discussion on two programming languages
and shows an easy example, where next to the CPU the GPU is used for solving
deterministic, single machine scheduling problems.

2. Historical overview of GPUs

As Sanders put it “the state of graphics processing underwent a dramatic
revolution. In the late 1980s and 1990s, the growth in popularity of graphically
driven operating systems such as Microsoft Windows helped create a market for a
new type of processors. In the early 1990s, users began purchasing 2D display
accelerators for their personal computer. These display accelerators offered

28 K. MIHÁLY, O. HORNYÁK

hardware-assisted bitmap operations to assist in the display and usability of
graphical operating systems” [1]. This accelerator approach was the first step to
separate the graphic related tasks from the CPU. In 1992, Silicon Graphics opened
the programming interface to its hardware by releasing the OpenGL library. It was
a standardized, platform-independent method for developing 3D applications. At
that time the computing of rendering was running in the CPU. The demand of the
market was strong to have some kind of hardware support for 3D calculations to
improve the application speed. The major companies were NVIDIA Corp., ATI
Technologies and 3dfx Interactive.

“August 31, 1999 marked the introduction of the graphics processing unit (GPU)
for the PC industry, the NVIDIA GeForce 256.” [2] First the graphical hardware
took care of the calculation of transformation and lighting computations, so these
operations could run on the hard-wired graphical processors and the CPU could be
used for other tasks. The next breakthrough in parallel-computing was the first
graphic card, which supported the Microsoft’s DirectX 8.0 standard. This standard
introduced the programmable vertex and pixel shaders. This was the first point
when the developers were able to influence the control of GPU programs.

Usually the developers used the GPU for graphics related tasks, but there were
some developers who wanted to use the calculation power of the GPU cards. Since
2010 there has been a greater focus on the GPU’s massive parallel computing
capacity. Figure 1 shows how the calculation power of GPUs is increasing.

Figure 1. NVidia GPU card GFLOPs evolution

 USING GPU IN DETERMINISTIC SINGLE MACHINE SCHEDULING PROBLEMS 29

2.1 Tasks of the GPU and the programming environments

Let us have a look at what a GPU card should do. The application runs on the CPU
and computes the 3D geometry. The geometry is loaded to the GPU and there is a
transformation from 3D to 2D. After the transformation the card creates fragments
and composes the image.

Figure 2. The rendering pipeline of the GPU

As described in the previous section, from the Microsoft’s DirectX 8.0 standard on,
the developer was able to influence the behaviour of the GPU through the so-called
shaders. The geometry transformation can be changed through the vertex shader,
the rasterization through the pixel shader.

There were disadvantages of programming GPUs through these shaders. The
provided APIs were designed to support graphical APIs and the programmers
needed a very deep knowledge of the graphical platform. There were resource
constraints; data could be loaded as picture and texture and retrieved data was
another picture. So if the algorithm required accessing a memory area to write, it
could not run on GPU. It was nearly impossible to predict how your particular
GPU can deal with floating-point data. There did not exist any good methods to
debug implementations in GPU.

3. New GPU programming languages

Two main programming languages will be described briefly: they are used to
develop applications running on GPU, without having any knowledge of the
graphical API.

30 K. MIHÁLY, O. HORNYÁK

Open Computing Language (OpenCL)

OpenCL is a multivendor open standard for general-purpose parallel programming
of heterogeneous systems that include CPUs, GPUs and other processors. OpenCL
provides a uniform programming environment for software developers to write
efficient, portable code for high-performance computer servers, desktop computer
systems and handheld devices. It is managed by the Khronos Group [4]. This
standard is applied by industrial companies and academics as well.

OpenCL has four main models

• Platform model

Figure 3. OpenCL platform model [12]

The host coordinates execution and data loading from computing devices.
Each computing device has one or more computing units, where one or
more processing elements take place.

• Execution model

The host role is context management and controlling of processes. The
kernel takes care of controlling the computing units. The kernel program
runs on the processing elements, achieves an index range and is grouped
into work groups.

• Memory model

There are four main types of memory. The global memory is
readable/writable from every processing element. Every processing
element can access it. The constant memory is readable from the
processing elements, the host allocates it and fills it with values. The local
memory is accessed from computing units. Every process element can
read/write it within the computing unit. The host cannot access it. The
private memory is assigned to the processing element and only the
assigned process element can read/write it.

Computing Device

Computing Unit

Processing Element

 USING GPU IN DETERMINISTIC SINGLE MACHINE SCHEDULING PROBLEMS 31

Figure 4. OpenCL memory model [12]

• Program model

The division of a kernel into work-items and work-groups supports data-
parallelism, but OpenCL supports another kind of parallelism as well,
called task-parallelism.

OpenCL includes a language for writing so-called kernels. OpenCL provides
parallel computing using task-based and data-based parallelism.

CUDA

CUDA was developed by NVidia Inc. and its architecture has two main parts: one
is the hardware which supports the CUDA programming and can be called the
device and the programming language to be able to create programs using the
device capacity. The programming language is based on industry standard C and
adds a relatively small number of keywords in order to harness some of the special
features of CUDA architecture. There is a public compiler for this language,
CUDA C. For further information you can refer to the CUDA Programming Guide
by NVidia [5].
As mentioned before, CUDA is an extension of C language and includes GPU
relevant APIs and interfaces. There are three main tasks, which are the tasks of the
developers, such as thread hierarchy, memory access and synchronisation [6].

Thread hierarchy

To perform computation with CUDA, programmers have to define a special C
function, the so-called kernel. This function can be run in a thread using a specified
number of lightweight threads in GPU. The kernel is loaded to the device from the

Computing Device k
Computing Unit 1 Computing Unit n

32 K. MIHÁLY, O. HORNYÁK

host, where the normal code is running. Threads are grouped into blocks, and
blocks form a grid. Threads can communicate through the memory area assigned to
the block. The blocks run independently and their behaviour cannot be affected by
the programmer.

Figure 5. CUDA Thread Hierarchy [7]

Memory hierarchy

There are a great number of types of memory areas, such as global memory, shared
memory, constant memory, registers and local memory. The differences between
the memory types are the size, the accessing time and the caching property. For
more details refer to [5] or to [6].

Figure 6. Basic organization of the GeForce 8800 [8]

 USING GPU IN DETERMINISTIC SINGLE MACHINE SCHEDULING PROBLEMS 33

Synchronisation

Sometimes algorithm behaviour requires a consistent state of the threads within the
same block. For example when the shared memory is used by the threads, it could
be necessary to have a consistent state in case after writing a thread. The CUDA
language provides a __synctrheads() method, which defines a waiting point in the
kernel code. The processing of a thread will be continued only if each thread
reaches this point.

4. Single machine scheduling problems with
objective function total weighted completion time

Single machine models are very simple and well-known models in the literature [9]
[10]. Only the definition of this model is given here.

There are two main types of objects, the machine and the job. The machine (M) is
the processing unit, which is capable of completing the jobs (J). The machine can
process only one job at one time and job execution cannot be interrupted. Each job
has a processing time (p) on the machine. Each job can have weight (w), which is a
priority factor, denoting the importance of the job related to other jobs. Each job
can have a completion time (C), which describes the point when the job has been
finished. Processing time, weight and completion time will be indexed with j (pj,
wj, Cj).

Each model can have one or more objective functions, which are used to compare
feasible schedulings. This model uses the total weighted completion time as an
objective function. This is the summary of the completion time weighted by the
priority of a job.

 �
=

=

n

j

jjcwTWCT
1

 (4.1)

If there are two feasible schedules, the schedule with the lower TWCT has to be
used.

5. First example of implementation

There is a proven theorem for this model [11]: The Weighted Shortest Processing
Time First (WSPT) rule is optimal for single machine models, where the objective
function is the total weighted completion time. This paper aims at comparing the
following implementations for this problem:

34 K. MIHÁLY, O. HORNYÁK

• CPU
• GPU with CUDA

Each implementation is based on the following object model. This model is used
and generalized later for other problem types.

Figure 7. Application object model

Application builds up the scheduling model from a txt file, where the jobs, the job
processing time and the job weight are stored. The main flow is described in Figure 8.

Figure 8. Application main flow

 USING GPU IN DETERMINISTIC SINGLE MACHINE SCHEDULING PROBLEMS 35

First the file is loaded from the file system and is mapped to the internal structures.
In our implementation we always should have enough free memory to store our
models. From this general model each algorithm should pre-fill its own data model.
During performance measurements this is measured as well. After a running of the
algorithms has been finished, the result and the performance result are stored in the
file system.

The CPU algorithm

The CPU algorithm uses a vector where the element structure is:

• job identifier

• job processing time

• job weight

• job weight / job processing time calculation result.

The values are calculated in a loop. During one loop phase only one item in the
vector can be processed.

Figure 9. Value calculation flow with CPU

36 K. MIHÁLY, O. HORNYÁK

The implementation algorithm is very simple. The data vector is pre-filled with pj
and wj values of the jobs. There is a loop where an index is used.

Step 1: Values from the index are accessed.

Step 2: The result value is calculated.

Step 3: The result is stored in the memory, the accessing index is increased and the
next item will be processed (GoTo Step1) if there exists one.

As can be seen in Figure 9, only one wj/pj value is calculated at one time.

The GPU algorithm

The GPU is capable of running the same kernel parallel in several GPU cores. The
vector is split into the available blocks and the data are loaded from the host to the
device. On the device each processing unit uses the same kernel function and
accesses the same memory.

In the single machine model the wj/pj values are independent of each other. That is
why several independent processing units can be used.

Because the algorithm runs on the GPU, first data have to be loaded from the host
(CPU) to the device. Next, memory is allocated to the device, then data are copied
from the host. Vectors are used and to each vector item a separated core is
assigned. It works only if the number of vector elements is smaller than 65 535. If
it is not true, the vector is split into several fragments and the GPU kernel is called
more times.

If data is loaded to the device, we start so many parallel kernels as possible to get
the highest efficiency. Each processing unit uses the same kernel code.

Step 1: During runtime each GPU core accesses one piece of the data. The indexes
come from the CUDA platform and they are called block indexes.

__global__ void gpuCalculateWSPT(int *a, int *b, float *c){

 int tid = blockIdx.x;

 c[tid] = a[tid] / b[tid];

}

 USING GPU IN DETERMINISTIC SINGLE MACHINE SCHEDULING PROBLEMS 37

Step 2: The result value is calculated.

Step 3: The result is stored in the device memory.

After the calculations the data have to be copied from the device to the host.

Figure 10. Value calculation flow with CPU

Performance measurements

In order to be able to run performance measurements, a test data set was generated.
The main program loads the available test data file from the file system, starts the
CPU and GPU solver, measures the processing time and stores the result file back
to the file system.

To execute the performance measurements, the following PC configuration was
used:

��CPU : Intel Core i3 – 2310M

��GPU: NVIDIA GeForce GT 520M

��Memory: DDRIII 2GB

38 K. MIHÁLY, O. HORNYÁK

The test program was developed in C++. The GPU programming model uses the
NVida CUDA version 1.1.

The measurements are depicted in the following diagramme.

Figure 11. Performance measurements

The axis X shows the number of generated jobs (divided by 1000). The axis Y
shows the processing time in microsecunds.

The CPU line shows the processing time of the CPU algorithm.

CUDA 1 line shows the GPU algorithm processing time when the internal data
mapping, data copying and the calculation were measured.

CUDA 2 line shows the GPU algorithm processing time when internal data
mapping was not necessary. In this case only the processing time of the calculation
result and the data copying from the host to the device and vica versa were
measured.

 USING GPU IN DETERMINISTIC SINGLE MACHINE SCHEDULING PROBLEMS 39

Conclusion

As can be seen from the performance results, the solution has O(n) complexity in
each case. The CUDA 2 measurement contains the necessary mapping between the
structures, the CUDA 1 measurement contains only the calculation of the wj/pj rate.
As shown, the GPU algorithm has a better performance if the data are structured
and stored as appropriate for the GPU.

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-
0001 project with support by the European Union, co-financed by the European
Social Fund.

REFERENCES

[1] SANDERS, J., KANDROT, E.: CUDA by example, Addison-Wesley, 2010, p. 3

[2] INTERNET: http://www.nvidia.com/page/geforce256.html, (2012.01.05)

[3] INTERNET: http://www.hardwareinsight.com/nvidia-cuda/, (2012. 01.05)

[4] INTERNET: http://www.khronos.org/opencl/

[5] INTERNET: NVidia Programming Guide 4.0, NVidia Developer Zone
http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit/docs/CUDA_C_
Programming_Guide.pdf (2011. 08. 25)

[6] CZAPISNKY, M., BARNES, S.: Tabu search with two approaches to parallel flowshop
evaluation on CUDA platform, J. Parallel Distrib. Comput. (2011)

[7] INTERNET: http://mohamedfahmed.wordpress.com/2010/05/03/cuda-computer-
unified-device-architecture/ (2011. 08. 25)

[8] RYOO, S., RODRIGES, C. I., BAGHSORKHI, S. S., STONE, S. S.: Optimization Principles
and Application Performance Evaluation of Multithread GPU Using CUDA

[9] BLAZEVICZ, J., ECKER, K.H., PESCH, E., SCHMIDT, G., WEGLARZ, J.:
Scheduling Computer and Manufacturing Processes, Springer

40 K. MIHÁLY, O. HORNYÁK

[10] CHEN, B., POTTS, C.N., AND WOEGINGER, G.J.: A review of machine scheduling:
Complexity, algorithms and approximability. Handbook of Combinatorial
Optimization (Volume 3) (Editors: D.-Z. Du and P. Pardalos), 1998, Kluwer
Academic Publishers. 21-169.

[11] PINEDO, M. L.: Scheduling; Theory, Algorithms, and Systems, Springer, 2008, p. 36.

[12] INTERNET: http://developer.amd.com/documentation/articles/pages/opencl-and-the-
amd-app-sdk.aspx

Production Systems and Information Engineering
Volume 6 (2013), pp. 41-56

41

DETAILED PRODUCTION SCHEDULING BASED ON
MULTI-OBJECTIVE SEARCH AND SIMULATION

GYULA KULCSÁR
University of Miskolc, Hungary

Department of Information Engineering
kulcsar@ait.iit.uni-miskolc.hu

MÓNIKA KULCSÁRNÉ FORRAI
University of Miskolc, Hungary

Department of Automation and Communication Technology
kulcsfm@mazsola.iit.uni-miskolc.hu

[Received January 2012 and accepted September 2012]

Abstract. This paper presents an advanced approach to solving fine scheduling
problems of production in practice. It focuses on creating near-optimal feasible
schedules considering detailed constraints and capabilities of the resource
environment. It is a very important and complicated task to make an efficient
schedule for the shop floor to include different types of facilities and operations.
The proposed model supports the flexible usage of production goals and
requirements simultaneously. The elaborated approach uses a special searching
technique with multiple neighbouring operators and problem space
transformation based on execution-driven simulation. Successful applications of
the methods in real manufacturing environments are also demonstrated.

Keywords: scheduling, simulation, multi-objective optimization, production

1. Introduction

In modern manufacturing/assembling production environments, a great number of
scheduling problems may occur. Production scheduling can be defined as the
allocation of available production resources over time to perform a collection of
tasks [1]. It is a very important decision making process at the operation level.
Most of the scheduling problems are highly complicated and hard to solve owing to
the complex nature of the applied model. Today, production engineering and
management utilize more and more computer integrated application systems to
support decision making.

This paper is primarily concerned with industrial scheduling problems, which
require advanced scheduling software to assign limited available resources to the
operation of jobs and to sequence the assigned operations on each resource over
time. It is mainly concerned with discrete manufacturing, in which typically series

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

42

of items are produced. The series (batch or lot) can include very different numbers
of pieces, from a single product (i.e. special part, complex or unique equipment) to
thousands or millions of the same product (simple parts). In discrete manufacturing
operations are executed on discrete, separate machines and workplaces. Depending
on the arrangement of machines, robots, buffers and material handling devices,
manufacturing systems may be characterized by different layouts (i.e. single
machine, parallel machines, line, flexible line, group, etc.). In essence the
execution of the operations requires the exact prior definition of the feasible
routing alternatives [4].

2. Scope of research

The paper focuses on the fine (or detailed) scheduling function of Manufacturing
Execution Systems. The main purpose of fine scheduling is to initiate a detailed
schedule so as to meet the master plan defined at the Enterprise Resource Planning
level. The scheduler is able to get the actual data of dependent production orders,
products, resource environment and other technological constraints (tools,
operations, buffers, material handling, etc.). The shop floor management configures
the actual production goals and their priorities. Obviously, the management may
declare various goals time by time. The scheduler has to provide a feasible
schedule which meets the management’s goals. The result of the scheduling
process is a detailed production program which declares the releasing sequence of
the jobs and the operations, assigns all the necessary resources to them and
proposes the starting time of activities. The execution of the production program
has to meet the predefined goals without breaking any of the hard constraints. The
computation time of the solving process is also an important issue, especially with
a large number of internal orders, jobs, operations, resources, technological
variants and constraints.

In the literature, different flexible scheduling functions with various models are
found. One of the main groups of these models is the flexible flow shop (FFS)
scheme. A detailed survey of the FFS problem is given by Quadt and Kuhn [7], and
Wang [10]. The FFS environment consists of stages that represent the fundamental
(operation-type) machine groups of the system. At each stage one or more identical
machines work in parallel. Each job has to be processed at each stage on any of the
parallel concurrent machines.

Considering the production performance, both the allocation of machines and the
sequence of jobs are of great importance. A great number of shop scheduling
models are known in the literature, but most of them use only one performance
measure. Usually the latest finishing time (make-span) of the released jobs appears
as a goal function of optimization for Make to Stock (MTS) manufacturing.
Frequently, one objective function related to due date plays the main role in
scheduling models for supporting Make to Order (MTO) manufacturing. Only a

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION 43

few of the models deal with multi-objective cases which are very important in
flexible and agile manufacturing [2, 6, 8, 9].

The existing models in the operation research field often disregard the machine
processing abilities, limited availability time frames of the machines, limited buffer
capacities, and shared machine tools, that is why the improvement and extension of
flexible shop models is justified. In order to consider the aforementioned important
features of real scheduling problems we have focused on the simulation based
scheduling approach. This paper presents our approach in which an execution-
driven fast simulation is used to transform and reduce the problem spaces
preserving important details.

3. Practice-oriented fine scheduling approach

The starting point of the new research was the Extended Flexible Flow Shop model
(EFFS) developed by the first author of this paper [5]. The main goal of our new
research is the aforementioned model which will be improved in order that the
problem class EFFS can also represent the problems for smaller units. From the
execution point of view, the units inherit the schedule of the job concerned but are
moved along in the shop environment and have their own due date.

In this paper an integrated approach is proposed to solve this complex scheduling
problem class as a whole without decomposition. In the approach, all the issues
(batching, assigning, sequencing and timing) are answered simultaneously. For
solving production scheduling problems in practice, a knowledge intensive
searching algorithm has been developed based on execution-driven fast simulation,
overloaded relational operators and multiple neighbouring operators. The core of
the engine implemented explores iteratively the feasible solution space and creates
neighbour candidate solutions by modifying the actual resource allocations, job
sequences and other decision variables according to the problem space
characteristics. The objective functions concerning candidate schedules are
evaluated by producing a simulation which represents the real-world environment
with capacity and technological constraints. In this execution-driven simulation,
items, parts, units and jobs are passive and they are processed, moved, and stored
by active system resources such as machines, material handling devices, manpower
and buffers. The numerical tracking of the product units provides the time data of
the manufacturing steps. The simulation process extends the pre-defined schedule
to a fine schedule by calculating and assigning the time data. Consequently the
simulation is able to transform the original searching space into a reduced space by
solving the timing sub-problem. This is the part of the approach that encapsulates
the dependency of real-world scheduling problems. Successful adaptation of the
approach into practice is highly influenced by the efficiency of the simulation
algorithm.

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

44

4. Application of the approach in practice

4.1. Motivation

The scheduling problem, which will be outlined in this section, is inspired by a real
case study concerning only one of the plants of Electrolux-Lehel Ltd. specialized in
refrigerator products (Jászberény, Hungary). The firm produces different types of
refrigerators with variable series simultaneously. It is typical that the market
centres or other distributors require very hard delivery due dates. Another
important market trend is that the number of product variants is increasing. The
companies are forced more and more to customize products to market demands and
to important seasons. These requirements cause a tendency to decrease lot size, to
develop better forecast, make more flexible production plans, and to use
information technology, operation research and artificial intelligence methods for
more efficient shop floor scheduling.

4.2. Problem description

The discrete manufacturing process examined produces various refrigerators as
final products. The production planners create the actual production plan for the
next time interval (typically one or two weeks) by using ERP system. External
orders, forecasts, market trends, seasonal characteristics are considered in decision
making. The planning phase is concerned with balancing supply and demand. The
production plan generated defines the production program of the final products at
the finishing technological step of the manufacturing processes. In other words, the
production plan consists of internal production orders and each production order
specifies the final product needed, the required quantity, the destination and the due
date demanded. The destination means the finishing machine which is assigned to
the production order for processing. According to the process plan of the product
type, pre-defined technological steps must be executed on the component parts.

The shop contains different machine groups connected to each other in a given
configuration (Figure 1). Each machine group contains a pre-defined number of
machines. In essence, refrigerator manufacturing includes two fields that can be
distinguished: the cabinet and door manufacturing processes. These sub-processes
can be modelled and analysed separately. In the system, refrigerators are assembled
on two finishing assembly lines (AL 1, AL 2). In this finishing step the cabinet and
the door meet with many other component parts to become one final product. Both
of them are very important from the viewpoint of overall stability. All the
necessary components have to be available at a given time at the destination pre-
defined. In order that this requirement should be satisfied, a detailed schedule for
all the predecessors are created efficiently to synchronize all the manufacturing
steps and sub-processes.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

45

Inner liner
VFM 1

Inner liner
VFM 2

Inner liner
VFM 3

Inner liner
VFM 4

Cabinet
PAL 1

Cabinet
PAL 2

Cabinet
PAL 3

Cabinet
FM 1

Cabinet
FM 2

Cabinet
FM 3

Cabinet
Buffer

 1

Cabinet
Buffer

2

Door
FM 1

Door
FM 2

Door
FM 3

Door
FM 4 Fridge

AL 1

Foamed
Door

Buffer 1

Fridge
AL 2

Door
PAL 1

Door
PAL 2

Door
PAL 3

Door
PAL 4

1
Door liner

VFM 1

Door liner
VFM 2

2

3

4

Fine Scheduling 1

Fine Scheduling 2

VFM: Vacuum Forming Machine; PAL: Pre-Assembly Line; FM: Foaming Machine; AL: Assembly Line

Figure 1. Scheme of refrigerator manufacturing

Based on the results of process analyses, it was clear that the scheduling of the
inner liner vacuum forming and the door foaming play key roles. These sub-
problems of the shop scheduling problem are denoted by Fine Scheduling 1 and
Fine Scheduling 2 in Figure 1. The remaining part of this paper describes the
applied model and solution method for detailed scheduling of door foaming.

The main purpose of the second R&D project was to develop a fine scheduler
software in order to initiate detailed schedule for door foaming machines to realize
the production plan and to synchronize the events on the finishing assembly lines
of the manufacturing system.

4.3. Modelling the problem

4.3.1. Resource environment

In the problem labelled Fine Scheduling 2 in Figure 1, z machines Mm (m = 1, …,z)
have to process n jobs Jj (j = 1, …, n). A job Jj consists of b operations Oj1, …,Ojb.
The execution sequence is defined by the following precedence relations between
the operations: Ojl � Oj,l+1, for l=1, …, b-1. Operation Ojl is not specified by a pre-
defined processing requirement pjl, because processing time depends on the

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

46

assigned resources. Each operation Ojl is associated with a set of machines �jl �
{M1, ...,Mz}. Ojl may be processed on any of the machines in �jl. Usually, �jl is not
one element set and �jl is not equal to the set of all machines.

Focusing on the door foaming scheduling, we have two operations: the first one is
door foaming (FM) and the second one is final assembly (AL). The machine is
dedicated to processing the AL of jobs because the input production plan
determines the destination. For processing the door FM, the suitable machines are
parallel. The foaming process of different types of doors can be executed on
different foaming machines with various production intensities by using suitable
tools. The pre-defined assignments and combinations mean hard constraints. In
general, the number of available tools and machines is more than one for each door
type. So the tools and machines belong to independent resource groups and can be
used as shared resources. The foaming machine and the tools which are assigned to
a given foaming operation Oj1, have to be available simultaneously for Oj1 during
the whole processing period. Scheduling problems of this type are called multi-
processor task scheduling problems. A schedule is feasible if no two time intervals
overlap on the same machine or the same tool, and if it meets a number of
additional problem-specific characteristics.

The machines can work only within the time frames pre-defined. These machine
availability intervals (shifts) have constant lengths (i.e. eight hours). Each machine
has its own shift distribution. In order to minimize the cost, it is very important for
shop floor control management that all the planned and started shifts are utilized as
much as possible.

The capacity of the buffer shared among foaming machines and final assembly
lines is strongly limited. As in the system different products are manufactured, we
have to take into consideration the buffer capacity, which depends on the product
types, because the volume of the buffer is constant but the sizes of the products are
different. Consequently, in the calculation we use the relative utilization of the
buffer.

4.3.2. Job characteristics

In order to create a final product, given components are taken through pre-defined
processes. A job includes work-pieces and their operations. A job as a series of
work-pieces must be scheduled in the manufacturing system. The actual work-
piece depends on the operation to be performed. The operation is an elementary
process of the manufacturing and changes one or more significant characteristics of
the work-piece. A given sequence of operations must be executed on work-pieces
to create final products. A sequence of operations means a technological step
which can be performed on a single machine; similarly, a sequence of
technological steps fulfilled by an integrated production or assembly line is an
execution step.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

47

Pre-emption of operations, technological steps or execution steps on a work-piece
is not allowed in a classical sense, but a job execution on a machine can be
suspended if the output buffer of the machine is full or the machine is unavailable
for processing. Precedence relations between complete jobs are not specified, but
restricted precedence chains of jobs (last operations) on finishing machines are
given by the input production plan.

In the scheduling problem considered the set I of all jobs is partitioned into disjoint
sets I1, ..., Iw, where I = I1 � I2 � ... � Iw and If � Ig = 0 for f, g � {1, ..., w}, f�g. For
any two jobs Jx � If and Jy � Ig to be processed on the same machine Mm, job Jy
cannot be started before settmfg time units after the finishing time of job Jx.
Similarly, job Jx cannot be started before settmgf time units after the finishing time
of job Jy. The groups correspond to different types of products and settmfg may be
interpreted as a machine dependent changeover (or set-up) time. During the
changeover period, the machine cannot process another job. If f = g, then settmfg =
0 for all f, g � {1, ... , w}, m � {1, ...,z}, and most of cases, if f � g, then settmfg �
settmgf.

Generating a schedule for the following time horizon, it has to be considered that
the machines can be loaded with unfinished tasks. So the input data set has to
include the actual state variables of the system. It means that the effect of the last
confirmed schedule must be considered when creating a new schedule.

4.3.3. Objective functions

In order to express the shop floor management’s goals as criteria of a multi-
objective optimization problem, we use seven objective functions to be
minimalized. These are as follows:
- the number of tardy jobs,
- the sum of tardiness,
- the maximum tardiness,
- the number of set-up activities,
- the sum of set-up times,
- the average waiting rate of machines, and
- the average flow time of jobs.

4.4. Solving the problem

4.4.1. Decision variables

In the approach applied the job plays the role of the basic scheduling item. In order
to create the fine schedule of the foaming machines, it is necessary for each job:
- to be assigned it to one of the suitable foaming machines,
- to fix its execution position in the queue for the assigned machine,
- to be assigned it to one of the suitable tools for use on the assigned machine, and

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

48

- to pre-set its starting time on the assigned machine.

To make decisions on these issues is very complicated. We developed a new
approach in order to answer these questions. The main idea of this approach is a
problem space transformation based on simulation. We use the following sets of
independent decision variables to represent a candidate schedule as a solution:
- the sequence of job-machine assignments on each foaming machine,
- the specification of the availability time frames (shifts) of each foaming machine.

The availability time intervals of a given machine Mm are expressed by a pre-
defined calendar (CALm). CALm is a list which stores the availability time frames
specified by means of start time and end time values. The calendar elements of the
foaming machines are decision variables, where the availability time frames of the
final assembly machines belong to the set of constraints.

The decision variables of this reduced problem space form a simple schedule which
will be extended to a fine schedule (detailed production program) by using
simulation. The simulation, which is a fast execution-driven simulation of the
simple schedule, answers the remaining issues concerning the tools needed and the
starting time data of the execution steps. Consequently, the simple schedule
determines the fine schedule. Sizes of production batches are formed dynamically
by scheduling the jobs and executing the production units on machines.

To accelerate the simulation we use indexed data structures as attributes of the
model objects. This memory model is based on indexes which are non-negative
integer values assigned to the entities, to point to the position in the target object.
The data model developed supports the association of two or more different type
objects (i.e. machines and jobs). Before scheduling a builder method creates the
full indexed data model which includes the valid technological and resource
constraints and possible alternatives (i.e. job dependent sets �jl of machines).

4.4.2. Internal due dates

From the execution point of view it is allowed that the job consists of smaller
production units (PU). These PUs inherit the schedule of the job concerned but are
moved along in the shop environment. The internal due date of a given job on a
given foaming machine is equal to the planned starting time of the same job on the
pre-defined final assembly line. Considering that the machines can only work in
accordance with pre-defined calendars, the internal due date of a given job refers to
the first unit of the job in the strict sense. The exact due date of the other units of
the job can be calculated by simulating the execution of the job on the final
assembly line assuming that all of the units arrive in time. Using this procedure, the
precise due date can be adjusted and assigned to each unit. These values are used as
indirect input data of the scheduling problem. In the simulation and the evaluation
of a candidate schedule, a given job will be delayed if either of its units is delayed.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

49

4.4.3. Execution-driven simulation

An execution-driven simulation can be realized with a rule-based numerical
simulation of the production to calculate the time data of the execution steps. Input
data determine the production order, the jobs, the production units, the resources
and the schedule to be executed. The schedule specifies the assignment of jobs and
machines, and in addition defines the execution sequences of jobs on machines and
the shift arrangement of machines.

Every job is represented by an individual model object (Jj) in the simulation. A Jj
means a set of work-pieces of the same type. All of the work-pieces of a given Jj
are processed on the same technological route by the same machines using the
same tools. The route and the machines are chosen by the scheduler and defined in
the schedule to be executed. A Jj consists of units Ui (i=1, …, vj). Every Ui
represents one or more work-pieces (item series) to be moved as an individual
atomic unit among machines. An execution step of a given unit on a machine
means a processing task.

The main steps of the simulation are as follows:
- build and initialize the model objects,
- choose the next execution step (task) to be performed,
- simulate the execution of the active unit on the active machine.

The most important objects of the simulation model are the production orders, the
jobs, the tasks, the machines, the buffer, the tools, the input schedule, the output
fine schedule and the object of performance indicators. At the beginning of the
calculation these objects are initialized with the actual values of the system state
variables.

The execution-driven method calculates and stores the time data of the execution
steps. On each machine the execution sequence of the assigned jobs is pre-defined.
The main issue is how the limited resources (tools and buffer) affect the execution.
To answer this issue, the simulation must perform all of the activities in a suitable
sequence. This sequence cannot be pre-defined but it is part of the simulation. In an
intermediate situation, the next execution step must be chosen from the set of
candidate units. Each machine has a loading list and a pointer that shows the next
unit to be processed according to the schedule. The pair of a given machine and its
mentioned unit means a candidate execution step for processing if all the starting
requirements are satisfied. These are as follows:
- the machine is not blocked by the buffer,
- the machine has finished its previous unit,
- the unit execution has been completed successfully on its previous machine,
- one of the suitable tools is available for processing.

The method chooses the candidate execution step which can be started the earliest.
The machine and the unit associated with the chosen execution step become active

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

50

entities. The method calculates the time data (start time STmi, set-up time SetTmi,
processing time ProcTmti, and completion time CTmi) of the active unit on the active
machine. The processing time (ProcTmti) is determined by the work-piece quantity
(qi) of the unit, the tool and the unit (product type) dependent production rate (prmti)
of the machine. The start time STmi of a given unit Ui on an assigned machine Mm is
determined by the following values:
- the end time of the interval while the machine is blocked by the buffer (BTmi),
- the end time of the interval while the tool is unavailable or engaged (et),
- the earliest release time of the unit (ri),
- the completion time of the unit on the previous machine (ctpi),
- the moving time of the unit from the previous machine (mtipm),
- the completion time of the previous unit on the machine (ctmh),
- the unit-sequence dependent set-up time on the machine (settmhi),
- the availability time frames of the machine (CALm).

Focusing on the simulation of the execution step of unit Ui on the assigned machine
Mm, the simplified description of the calculation can be seen in Figure 2 assuming
that the set-up activity can be started on the machine before the unit arrives (ami).

ami = ctpi + mtipm;

SetTmi = settmhi;

ProcTmi = qi / prmti;

STmi = max(ami – SetTmi, ctmh, ri - SetTmi, BTmi, et);

CTmi = STmi + SetTmi + ProcTmi;

Load_STET_to_CAL(STmi, CTmi, Mm);

Figure 2. A simplified calculation of the time data of a given execution step

The function Load_STET_to_CAL loads the timeframe required by unit Ui on
machine Mm. This allocation method inserts the set length time window [STmi,
CTmi] into the first suitable time frame of machine Mm. While the full size of the
required time window does not fit in the candidate time interval, the time window
is moved right to the next candidate time interval. This version of the load function
represents that the execution step of the unit is not pre-empted in time.

Simulation of an execution step covers the handler of the tools and the buffer
involved. The work-piece(s) of a given unit must be taken out of the buffer prior to
the start of the execution on a final assembly line. If the execution step is finished
successfully on a foaming machine, the work-piece(s) of the unit are to be put in
the buffer. If the buffer is full, then the work-piece(s) stays on the foaming
machine, therefore the next unit cannot be started and the foaming machine will be
blocked. If the stock level in the buffer decreases below a given value, the blocked
machine or machines will be released.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

51

One of the suitable tools is allocated by the first unit of the job before starting the
execution step. If more than one suitable tool is available at the same time, the
earliest released tool will be chosen. The exclusive reservation of the chosen tool
will be cleared by the last unit of the job.

The most important output data of the execution-driven simulation of the
production are coded in a data object MSTET which stores the evaluated time data
of all units. The simulation extends the pre-defined input schedule to a fine
schedule by calculating and assigning MSTET in a short time. The performance of
the fine schedule can be measured by calculating objective functions based on the
data of units, jobs, and machines. In this way the simulation is able to transform the
original searching space of the scheduling problem into a reduced space.

4.4.4. Search algorithm

For solving the scheduling problem in an integrated form addressed above, we
developed an advanced multi-operator and multi-objective search algorithm based
on overloaded relational operators, multiple neighbouring operators and a special
taboo list which stores schedules in coded form (MOMOTS). Our approach is
based on the taboo searching meta-heuristics that was first suggested by Glover [3]
and has been used frequently for different combinatorial optimization problems.

MOMOTS

{ s0 	 Generate an initial solution;
 s* 	 s0;

 Taboo_List 	 NULL;

 while (Stop criterion is not satisfied)
 { while (Extension criterion is satisfied)

 { Nc 	 Choose the actual neighbouring operator(priority_list);

 s 	 Generate a neighbour solution(s0 , Nc);
 if (Taboo_List does not include (s))

 { Insert new taboo into the first position of Taboo_List (s);

 if (Number of Taboos > Maximum number)
 Delete the taboo from the last position of Taboo_List;

 if (This is the first solution of the extension (s)) sk 	 s;
 else if (s < sk) sk 	 s;

 }

 }
 s0 	 sk;

 if (sk < s*) s* 	 sk;

 }
 return s*;

}

Figure 3. Multi-Operator and Multi-Objective Taboo Search (MOMOTS)

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

52

Our search algorithm variant (Figure 3) iteratively moves from an actual schedule
s0 to a candidate schedule s in the neighbourhood of s0 until the stop criterion is
satisfied. To reach and examine the unexplored regions of the search space, the
method modifies the neighbourhood structure of each schedule as the search
progresses. To escape local optimum, the method contains the schedules that have
been visited in the recent past (less than a given number of moves ago) in a taboo
list. Schedules in the taboo list are excluded from the neighbourhood of the actual
schedule. A certain number of neighbours of the current schedule are generated at
random successively by using priority controlled neighbouring operators. The
operator can only modify the first execution step (decision variables) of jobs in the
schedule (solution) because the second one is pre-defined by the input data
(constraints). The applied neighbouring operators are as follows:
- operator N1 moves a randomly chosen job elsewhere,
- operator N2 moves a randomly chosen tardy job elsewhere,
- operator N3 chooses a machine randomly and modifies the sequence of jobs on

the machine by using a random length permutation cycle,
- operator N4 exchanges two adjacent jobs on a machine which is chosen randomly,
- operator N5 chooses a tardy job and moves left one position in the sequence,
- operator N6 allows a denied calendar element randomly chosen on a machine,
- operator N7 denies an allowed calendar element randomly chosen on a machine.

The operators listed create new candidate schedules by modifying the values of the
decision variables of the initial schedule. The objective functions concerning
candidate schedules are evaluated by the execution-driven simulation. The
overloaded relational operator < is used to compare the generated schedules
according to multiple objective functions described in Section 4.3.3. These
objective functions are given so that:

f : S {0}, k {1, 2, ..., K}.k
+

→ ℜ ∪ ∀ ∈ (4.1)

Coefficients wk (k=1, …, K) as input parameters support that the user may calibrate
the actual priority of each fk independently. Each wk is an integer value within a
pre-defined close range [0, 1, …, W] and expresses the importance of fk.

Let sx, sy ��S be two candidate solutions. Function F is defined by (4.2) to express
the relative quality of sy compared to sx as a real number.

K2
F : S ,F(s , s) (w D(f (s), f (s))).x y x yk k kk 1

�→ ℜ = ⋅
=

. (4.2)

Function D defined by (4.3) means the comparison of sx and sy according to fk.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

53

0,if max(a, b) 0
2

D : , D(a, b) b a
, otherwise.

max(a, b)

=

ℜ → ℜ = −

�
�
�
��

 (4.3)

Using (4.2) the relational operators are overloaded by (4.4):

y(s ? s) : (F(s , s) ? 0).x x y= (4.4)

Any of the relational operators (i.e. in C++ programming language: <, >, <=, >=,
==, !=) can be used between two solutions to compare them as two real numbers.
For example: sy is a better solution than sx (sy < sx is true) if F(sx, sy) is less than
zero.

After comparing candidate solutions in an actual loop, the best schedule becomes
the initial solution of the next loop. When the scheduling process is finished or
stopped by the user, the currently best known schedule is returned, so the method
can be used in any-time working model.

4.5. Some numerical results

For testing the proposed multi-objective predictive scheduling method we have
used the data sets developed in Electrolux-Lehel Ltd. (Refrigerator Manufacturing
Plant, Jászberény, Hungary), which represent real industrial problems.

One of the case studies is summarized in Table 1. The main characteristics of the
problem are as follows: scheduling time horizon is one week, time unit is one
minute, number of jobs is 30, and number of production units is 16201.

Table 1. Sample Results of Multi-Objective Scheduling

Objective

function

priority (wk)

Objective function

(fk)

Initial

solution

(s0)

Best

solution

(s*)

5 f1: number of tardy jobs 18 0
5 f2: sum of tardiness [min] 16044.20 0

10 f3: maximum tardiness [min] 2289.68 0
5 f4: number of set-up activities 23 17
5 f5: sum of set-up times [min] 760 500
5 f6: average utilization rate of the

machines [%]
38.12 91.55

5 f7: average flow time of jobs [min] 1851.28 1419.48

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

54

f1: number of tardy jobs

f2: sum of tardiness [min]

f3: maximum tardiness [min]

f4: number of set-up activities

f5: sum of set-up times [min]

f6: average machine utilization rate [%]

f7: average flow time of jobs [min]

Figure 4. Actual values of the objective functions represented in the searching steps

Parameters of the searching algorithm are as follows: the maximum number of
elements in taboo list is 150, the number of neighbour solutions in extension is 50,
and the priority of each neighbouring operator is 1. In this case the computational
time of the solution process is approximately 50 sec. The software was coded in
C++ language. Concerning the running test environment we have; IntelR CoreTM 2
Duo T9550 2.66GHz CPU, Windows Vista OS, 4GB RAM. The actual values of

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

55

the objective functions represented in the searching steps can be seen in Figure 4.
All applications of the objective functions occur simultaneously. The diagrams
(screen shots) are generated by our software (with a Hungarian user interface).

The proposed method can solve the examined problems effectively in a short time.
The software developed is used in daily practice at shop floor control level of the
plant.

5. Conclusions

The paper describes the proposition and application of a practice-oriented approach
for solving multi-objective scheduling problems. It is based on execution-driven
simulation and use of relational operators for comparing qualities of schedules in
search algorithms. After developing the software, the concept is successfully tested
on extended flexible shop problems considering multiple objectives and constraints
originating from an industrial environment. Scheduling based on simulation can
consider exactly what the actual manufacturing system should perform in the
planned time horizon. In this approach, each schedule created for the shop is a
feasible solution, because all of the hard constraints are considered. The results
obtained and the independent nature of the approach encourage the application of
the method in other multi-objective optimization problems.

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-
0001 project with support by the European Union, co-financed by the European
Social Fund.

REFERENCES

[1] BAKER, K.: Introduction to Sequencing and Scheduling. 1st ed. Canada: John Wiley &
Sons, 1974.

[2] BAYKASO�LU, A., ÖZBAKIR, L., DERELI, T.: Multiple Dispatching Rule Based

Heuristic for Multi-Objective Scheduling of Job Shops Using Tabu Search. In
Proceedings of the 5th International Conference on Managing Innovations in
Manufacturing, pp. 396-402, Milwaukee, USA, 2002.

[3] GLOVER, F.: Tabu Search: a Tutorial. Interfaces, 20, 74-94, 1990.

[4] KULCSÁR, GY., ERDÉLYI, F.: A New Approach to Solve Multi-Objective Scheduling

and Rescheduling Tasks. International Journal of Computational Intelligence
Research, 3, (4), pp. 343-351, 2007.

[5] KULCSÁR, GY., KULCSÁRNÉ, F. M.: Solving Multi-Objective Production Scheduling

Problems Using a New Approach. Production Systems and Information Engineering,
A Publication of the University of Miskolc, 5, 81-94, 2009.

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

56

[6] LOUKIL, T., TEGHEM, J., TUYTTENS, D.: Solving Multi-Objective Production

Scheduling Problems Using Metaheuristics. European Journal of Operational
Research, 161, pp. 42-61, 2005.

[7] QUADT, D., KUHN, H.: A Taxonomy of Flexible Flow Line Scheduling Procedures,
European Journal of Operational Research, 178, pp. 686-698, 2007.

[8] SBALZARINI, L. F., MÜLLER, S., KOUMOUTSKOS, P.: Multiobjective Optimization

Using Evolutionary Algorithms. In Center of Turbulence Research, Proceedings of the
Summer Program 2000, pp. 63-74, 2000.

[9] SMITH, K. L., EVERSON, R. M., FIELDSEND, J. E.: Dominance Measures for Multi-

Objective Simulated Annealing. In Proceedings of Congress on Evolutionary
Computation, pp. 23-30, 2004.

[10] WANG, W.: Flexible Flow Shop Scheduling: Optimum, Heuristics, and Artificial

Intelligence Solutions, Expert Systems, 22, (2), pp. 78–85, 2005.

Production Systems and Information Engineering
Volume 6 (2013), pp. 57-68

57

MODERN SOFTWARE RENDERING

PETER MILEFF
University of Miskolc, Hungary

Department of Information Technology

mileff@iit.uni-miskolc.hu

 JUDIT DUDRA
Bay Zoltán Nonprofit Ltd., Hungary

Department of Structural Integrity

judit.dudra@bay-zoltan.hu

[Received January 2012 and accepted September 2012]

Abstract. The computer visualization process, under continuous changes has

reached a major milestone. Necessary modifications are required in the currently

applied physical devices and technologies because the possibilities are nearly

exhausted in the field of the programming model. This paper presents an

overview of new performance improvement methods that today CPUs can

provide utilizing their modern instruction sets and of how these methods can be

applied in the specific field of computer graphics, called software rendering.

Furthermore the paper focuses on GPGPU based parallel computing as a new

technology for computer graphics where a TBR based software rasterization

method is investigated in terms of performance and efficiency.

Keywords: software rendering, real-time graphics, SIMD, GPGPU, performance

optimization

1. Introduction

Computer graphics is an integral part of our life. Often unnoticed, it is almost
everywhere in the world today. The area has evolved over many years in the past
few decades, where an important milestone was the appearance of graphic
processors. Because the graphical computations have different needs than the CPU
requirements, a demand has appeared early for a fast and uniformly programmable
graphical processor. This evolution has opened many new opportunities for
developers, such as developing real-time, high quality computer simulations and
analysis.
The appearance of the first graphics accelerators radically changed everything and
created a new basis for computer rendering. Although initially the graphics pipeline
and the programmability of the cards followed a very simple model, the previously
existing software rasterization quickly lost its importance because CPUs of that

58 P. MILEFF, J. DUDRA

time were not able to compete with the performance of the graphics hardware.
From the perspective of manufacturers and industry, primarily speed came to the
fore against programming flexibility and robustness.
So in recent years the development of videocard technology focused primarily on
improving the programmability of the fixed-function pipeline. As a result, today's
GPUs have quite effectively programmable pipelines supporting the use of high-
level shader languages (GLSL, HLSL, CG).
Nowadays, technological evolution is proceeding in quite a new direction
introducing a new generation of graphics processors, the general-purpose graphics
processors (GPGPU). These units are no longer suitable only for speeding up the
rendering, but tend the direction of general calculations similarly to the CPU.
However, the problems of GPU-based rasterization should be emphasized. The
applied model and the programming logic slowly reach their limits, the intensity of
progress is apparently decreasing. Though there are fast hardware supported
pipelines in current graphics cards, they do not provide the same level of flexibility
for the programmer to manage the rendering process as CPU based rendering. The
reason for this is that the pipeline is adapted to hardware limitations and there are
many other limitations in utilization of shader languages.
Although the existing pipeline and 3D APIs provide many features for developers,
if we would like to deviate from conventional operation, we encounter many
difficulties. The general purpose programming of the GPU unit is limited because
of the memory model and the fixed-function blocks, which are responsible for
performing parallel thread executions [7]. For example, the sequence of pixel
processing is driven by rasterization and other dedicated scheduling logic. This is
clearly demonstrated by the uniform and predictable look and attitude of today's
computer games [1].
Today's GPU architecture is questionable and needs to be reformed, as leading
industrial partners strongly suggest [17,18]. What if developers could control every
aspect of the rendering pipeline? The answer is practically a return to software
rendering. A good basis is provided for this by the huge revolution in CPUs
occuring in recent years. Processor manufacturers responded with extended
instruction sets to market demands making faster and mainly vectorized (SIMD)
processing possible also for central units. Almost every manufacturer has
developed its own extension, like the MMX and SSE instruction family which are
developed by Intel and supported by nearly every CPU. Initially, AMD tried to
strengthen with its 3DNow instruction set, but nowadays the direction of
development is the Vector Floating Point (VFP) technology and the SSE like
NEON instruction set initially introduced at ARM Cortex-A8 architecture.
Due to new technologies, software can reach about 2-10x speedup by exploiting
properly the hardware instruction set. All this combined with the GPGPU
technology, the question arises: Why could a full software implemented graphical
pipeline not be developed where all parts are programmable? Although the

 MODERN SOFTWARE RENDERING 59

performance probably would not compete completely with a graphical unit, it
would offer a more flexible solution than today’s only GPU-based solutions.
The main aim of this paper is to examine how it is possible to develop a software
renderer built on modern basis, which points forward, is fast enough and takes
advantage of technological opportunities inherent in today's central units.

2. Related work

Computer graphics has always been a very crowded area over the years, but with
the spread of tablet PCs and mobile devices it has come fore even more. It is
common in almost all fields whether physical simulation, modeling, multimedia or
the area of computer games. However, although the GPU based display has a
detailed literature, the area of software rendering has only a small number of new
publications since the release of GPUs.
Software based image synthesis has been there since the first computers and it was
focused even more with the appearance of personal computers until about 2003.
Thereafter almost all visualization became GPU based. Among the software
renderers born during the early years, the most significant results were the Quake I,
Quake II renderers (1996), which are the first real three-dimensional engines [5].
These graphics subsystems were developed by the coordination of Michael Abrash,
and were typically optimized for the Pentium processor family taking advantage of
the great MMX instruction set. Among the later results, the Unreal engine (1998)
can be highlighted, whose functionality was very rich at the time (colored
lightning, shadowing, volumetric lighting, fog, pixel-accurate culling, etc) [13].
After the continuous headway of GPU rendering, software rasterization was
increasingly losing ground. Despite this, some great results have been born, such as
the Pixomatic 1, 2, 3 renderers [15] by Rad Game Tools and the Swiftshader by
TrasGaming [2]. Both products are highly optimized utilizing the modern threading
capabilities of today’s Multicore CPUs and have dynamically self-modifying pixel
pipelines. In addition, Pixomatic 3 and Swiftshader are 100% DirectX 9
compatible.
Microsoft supported the spread of GPU technologies by the development of
DirectX, but besides this, its own software rasterizer (WARP) has been
implemented. Its renderer scales very well to multiple threads and it is even able to
outperform low-end integrated graphics cards in some cases [3].
In 2008 based on problem and demand investigations, Intel aimed to develop its
own software solution based videocard within the Larrabee project [7]. The card in
a technological sense was a hybrid between the multi-core CPUs and GPUs. The
objective was to develop a fully programmable software pipeline using many x86
based cores [4].
Today, based on the GPGPU technology, a whole new direction is possible in
software rendering. Loop and Eisenacher [2009] describe a GPU software renderer
for parametric patches. Freepipe Software rasterizer [Liu et al. 2010] focuses on

60 P. MILEFF, J. DUDRA

multi-fragment effects, where each thread processes one input triangle, determines
its pixel coverage and performs shading and blending sequentially for each pixel.
Interestingly, recent work has also been done by NVidia to create a software
pipeline which runs entirely on the GPU using the CUDA software platform [8].
The algorithm uses the popular tile-based rendering method for dispatching the
rendering tasks to GPU. Like any software solution, this allows additional
fexibility at the cost of speed.
Today's leading computer game Battlefield 3 [14] introduced a new SPU (Cell
Synergistic Processor Unit) based deferred rendering process, which makes it
possible to handle and optimize a large number of light sources.
In [1] the author outlined a modern, multi-thread tile based software rendering
technique. The solution utilized only the CPU and had great performance results.
Thus, recent findings clearly underline the fact that in order to increase power and
flexibility CPU-based approaches come to the fore again.

3. Software rendering

The imaging process is called software rasterization when the entire image
rasterization process is carried out by the CPU instead of a target hardware (e.g.
GPU unit). The shape assembling geometric primitives are located in the main
memory in the form of arrays, structures and other data. The logic of image
synthesis is very simple: the central unit performs the required operations
(coloring, texture mapping, color channel contention, rotating, stretching,
translating, etc.) on data stored in the main memory, then the result is stored in the
framebuffer (holding pixel data) and sends the completed image to the video
controller. The following figure shows a general pipeline of a software renderer:

Figure 1. General graphics software pipeline

If we look at the pipeline stages, we can see that two dominant groups are formed
during the image rasterization process. The first group includes mainly vertex
transformation operations, which takes up to framebuffer operations. In these
phases, the pixel level rasterization is prepared by several matrix and vector
transformations (e.g. coordinate system, vertex, cameras, cutting). The second
group includes per-pixel operations, such as triangle discretization and pixel

 MODERN SOFTWARE RENDERING 61

shading. For graphics engines from the perspective of rendering these two groups,
but mainly the second, are the computationally intensive task.
However, optimizing stages in both groups can result in significant speedup. In the
following several modern performance improvement techniques are outlined.

3.1 Benefits of software rasterization

The software image synthesis has many advantages over the GPU-based
technology. As the CPU performs the whole processing, there is less need to worry
about compatibility issues because we do not have to adapt to any special
hardware, or follow its versions. The image synthetis can be programmed
uniformly using the same language as the application, so there is no restriction on
the data (e.g. maximum texture size) and the processes compared to GPU language
shader solutions. Every part of the entire graphics pipeline can be programmed
individually. Preparing the software to several platforms causes fewer problems
because displaying always goes through the operating system controller, there is no
need for a special video card driver.
In summary, software rendering allows more flexible programmability for image
synthesis than GPU technology.

3.2 Disadvantages of software rasterization

The main disadvantage of software visualization is that all data are stored in the
main memory. Therefore in case of any changes of data, the CPU needs to contact
this memory. These requests are limited mostly by the access time of the specific
memory type. Frequent changes on segmented data in memory cause significant
loss of speed.
The second major problem, which originates also from the bus (PCIe) bandwidth,
is the movement of large amounts of datasets between the main and the video
memory. During one second the screen should be redrawn at least 50-60 times,
which results in a significant amount of dataflow between the two memories. In
case of a 1024x768 screen resolution, 32 bit color depth, one screen buffer holds 3
MB data.

4. General acceleration opportunities and difficulties

Today’s modern processor architecture offers many opportunities to increase the
performance of the computationally intensive parts in the graphics pipeline.
Naturally, to achieve really good results it is necessary to combine these methods, but
due to space limitations this article focuses only on the most important techniques.

4.1 SSE based pipeline optimization

In recent years, the most important innovation was built around the SIMD processor
instruction sets (Intel – SSE family, AMD – 3DNow, Apple – AltiVec, ARM –

62 P. MILEFF, J. DUDRA

NEON). These allow us to accelerate calculations in a vectorized way and can
achieve multiple speed improvement in the pipeline. Besides, another important
aspect is the question of programmability: How difficult is it to turn an existing code
into an SSE code? Will the code be portable to other operating systems?
Among desktop computers the SSE instruction set is widely accepted today and the
instruction set based programming is well-supported by compilers (e.g. GCC, Intel).
Modern compilers provide several options to build SSE codes. It is possible to
implement the code in assembly language, which requires a deep programming
knowledge and the code will not always be portable. Another option is to use the
higher level Intrinsics library of the compiler. This approach makes the programming
level high enough and comfortable (e.g. GCC: __m128 z = mm_setzero_ps(); - fills
the vector with zero bytes), and does not limit portability either.

4.1.1 SSE based vector optimization

SSE (Streaming SIMD Extensions) is a SIMD instruction set family (currently SSE
4.2) developed by Intel for x86 architectures. The main innovation is that SSE
originally added eight new 128-bit registers, known as XMM0 through XMM7.
The extended instruction set provides the opportunity for the processor to execute
an operation (e.g. multiplication) on the data of two vectors in parallel.

Figure 2. Parallel computing with SSE vectors

The first operation group of the pipeline typically consists of some kind of vector
transformations performed on large datasets. In case of three-dimensional
visualization, applying the SSE instruction set makes it possible to store four
different 32 bit length floating point numbers (x,y,z,w) in a 128 bit length vector.
This means that calculations can be made on these numbers at the same time,
which results in significant speed improvements in the execution of the pipeline
transformations.

4.1.2 SSE based image processing

The SSE instruction family can be also successfully applied in the rasterization
stage of the pipeline or in any other graphical transformation because most of the
pixel operations are independent of each other and can be executed in parallel.
Today’s graphics engines use typically 32-bit (RGBA) color component
framebuffers, where each component is 4 bytes long. This mapping fits well with
the SSE approach because four pixels colors can be stored in a 128 bit length
register and operations can be performed on it in parallel.

 MODERN SOFTWARE RENDERING 63

4.1.3 SSE test results

In the following, the efficiency of the SSE solution is presented through two test
cases. The first test demonstrates a general calculation, vector normalization, which
is often used by graphics engines. The formula is compute intensive because it
contains square roots and divisions. During the test process 50,000 vector
normalizations are repeated 200,000 times.
The second test demonstrates the strength of SSE in an everyday pixel-level image
processing task. The test performs 1000 brightening transformations on a 32 bit,
1024x768 resolution image. The test programs were written using SSE2 instruction
set, C++ language and GCC 4.4.1 compiler was used and the measurements were
performed by an Intel Core i7 870 2.93 GHz CPU. The following table shows the
results of each test case.

Figure 3. Comparison of the computing results

Measurement results prove the strength of the SSE-based programming. The
performance of the calculations in pipeline bottlenecks can be multiple improved
with the appropriate SSE code. While in the first case the speed improvement is
7.8x, the second test shows that SSE was 3.05 times faster compared to the
conventional code.

4.1.4 Drawbacks of SSE programming

Applying the SSE-based programming, certain compromises are required.
Although this instruction set is well-supported by today's compilers (such as C++),
an efficient, fast SSE-based code adaptation requires higher programming skills.
SSE is not the Holy Grail, a poorly written code can be slower than the traditional
approach.
The only restriction of SSE is that the stored and used data must be 16 byte aligned
(evenly divisible by 16) in memory. Without this, the arithmetic instructions cannot
be used directly. The disadvantage of the aligned memories is that data storage
probably does not require 16-byte alignment, so basically we are wasting memory.
In return we can gain high performance.

64 P. MILEFF, J. DUDRA

4.2 Working with Alignment

The graphics pipeline, thus rasterization speed can be even further improved if we
store data properly aligned in memory. All data in memory have two properties:
value and address. Data alignment means that the address of the data is divisible by
one of the numbers (1,2,4,8) representing the byte length of the alignment. In other
words, a data object can have 1-byte, 2-byte, 4-byte, 8-byte alignment or any
power of 2. The CPU does not read from or write to memory one byte, instead
accesses memory in 2, 4, 8, 16, or 32 byte chunks at a time.
Therefore if the related datasets of the graphics pipeline are not properly aligned to
4, 8, or 16 byte order, then these misaligned structures can cause serious
performance losses, because CPU has to perform extra work (load 2 chunks, shift
and combine) to access the data [12]. A simple case:

CPU

Memory

Data

Load upper

4 byte

Load lower

4 byte

Shift

1 byte up

Shift 3 bytes

down

Combine 2

4 byte chunks

Figure 4. Unaligned data usage by CPU

The alignment problem of the pipeline structures is relatively easy to solve in
lower-level languages (e.g. C, C++, D). The principle of member alignment is
defined by the current compiler, but in most cases the rules are the same. The
alignment should be always based on the most restrictive structure member, which
is usually the largest intrinsic type. Therefore, members of a data storage structure
should be ordered in descending order according to their size. Thus we get an
aligned memory structure. In case of larger structure blocks this not only saves
memory but the efficiency of rasterization can also be increased significantly.

4.3 Minimize cache misses

Today's processors have at least one first-level instruction and data caches on chip,
and may have second-level cache memory. Memory access speeds are much faster
from these storages. If the pipeline wants to access some kind of data during its
running and these data are not in one of the caches, then a cache miss event is
generated and the data will be loaded into the cache. This event is very costly.

Load upper
4 byte

Load lower
4 byte

Shift 3 bytes

down

Shift

1 byte up

Combine 2

4 byte chunks

 MODERN SOFTWARE RENDERING 65

While a value of a variable can be loaded during some clock cycles from the cache,
loading it from the main memory requires hundreds of clock cycles. Due to this
rule an important goal is to reduce cache misses with the following proposals:

• Frequently used data should be stored together and not segmented,

• Avoid pointer indirection, store and access frequently used data in flat,
sequential data structures,

• Accessing data sequentially minimizes cache misses, because each cache
miss will load n number of new data into the cache,

• Group the functions which work on the same data.

5. GPGPU accelerated software pipeline

The GPU-based visualization technology is moving today towards to general
purpose processing. This opens up new possibilities for computer visualization and
engineering simulations because the graphics processors are no longer limited only
to displaying graphics, but can be used for any calculations. The latest GPGPU
cards are hiding huge computing power (~1 Tflops/s) because of the inherent
growing number of streaming processors (e.g. NVidia GTX 480 has 480 CUDA
cores), fast memory (GDDR5) and advanced technology. Since the traditional
GPU-based pipeline is not flexible enough, why cannot we use the GPGPU
solution of the graphics hardware to implement the pipeline entirely in software?
Logically, the general purpose options of the GPU can be used for any stages of the
graphics pipeline with certain restrictions. Since rasterization is a much more
computing-intensive task, the computations should be divided between the CPU
and GPU in the way that the GPU performs the tasks from the projection stage. The
GPU, due to its design and purpose, is very good at parallel task execution. And the
process of rasterization typically belongs among well-parallelizable calculations.

5.1 Working together with GPU

The objective of the rasterization stage is to map triangles of the models to screen
pixels considering the impact of lights, materials and any other factors. In case of
software rasterization the typical rendering process is that the CPU takes triangles

sequentially from memory, maps their points to the two-dimensional plane and
finally calculates their pixels. The color of pixels is stored in a memory array,
adapted to the screen resolution, called the framebuffer, and after the rasterization
the buffer is copied to the video memory.
GPGPU support of the process can be achieved in several ways. For the ideal
solution the characteristics and the programming language (OpenCL, CUDA)
options of the GPU should be taken into account [9]. The smallest unit of their
programming model is the work-item, which runs the implemented kernel code and
is groupped into work-groups. Each work-group has a dedicated processor and runs

66 P. MILEFF, J. DUDRA

separately from the others. The group of work-items also runs inside the same
computing unit. Therefore the proper rendering process should be chosen so that
we could exploit the hardware features. For this, logically the Tile-Based
Rendering [6] is the closest rasterization procedure. The following figure illustrates
the TBR rendering solution from the perspective of the GPGPU.

Work-

group 1

Work-

group 2

Work-

group n

Work-group i

Work item

1

Work item

2

Work item

m

Figure 5. GPGPU model of Tile-Based Rendering

Based on the central idea of TBR, the framebuffer should be divided into equal-
size areas, called bins. In order to exploit the parallel execution of the GPU, all
areas should be assigned to a specific work-group, where work-items perform the
computations. The rasterization logic is the following: all triangles of the pipeline
are assigned to a tile (binning) based on their 2D mapping, whether the tiles
overlap or not. All tiles are processed independently and parallelly on a separate
processor, where the pixel level rasterization is performed by work-items.
In frame buffer distribution, typically 16x16 or 32x32 size parts should be chosen.
The resolution is then not too high to take advantage of the card parallelism (e.g.
Card cache size, local memory size, maximum numbers of work items, etc.), and
not too small to result in many unnecessary calculations.
In a group, work-items are responsible for rasterizing the image of a tile. They take
the list of triangles belonging to the group, calculate their boundaries and perform
the pixel level rasterization. Within a group, work-items run also in parallel and
share the same local memory. Each item is associated with a triangle, it is
responsible for its rasterization. Because triangles can overlap according to their Z
value, synchronization is required between the items, which is supported by the
languages (OpenCL, CUDA). The whole image (framebuffer) is ready to display
when each group has completed its own task.

5.2 Constraints of GPGPU programming

The GPU and the main memory are away from each other, so moving data between
them is strongly limited by the PCIe bus transfer rate (~2.4 GB/s). It is therefore

 MODERN SOFTWARE RENDERING 67

appropriate to store all triangle data of the pipeline in a card’s memory and
minimize data movement. As a short test, an empty, 1024x768 size, 32 bit
framebuffer was shared with the GPU and performance was measured. No other
calculations were performed, only data sharing and framebuffer displaying. The
hardware used for the test was an ATI Radeon HD 5670 1 GB RAM. In the first
test case an empty framebuffer was displayed on the screen and no GPU share was
applied. The average rendering speed was 1100 FPS. In the second test, the
software framebuffer was shared with the GPU in each rendering frame using
OpenCL and the average performance dropped to 620 FPS without any GPU
calculations.
Another problem is that running a kernel (even an empty one) requires a specific
preparation time in execution. In the third test it was investigated how this kernel
initialization affects the rendering performance. During the test process an empty
kernel was created and four float type variables were shared with the kernel.
Rendering speed dropped to 580 FPS this time.
Naturally, there are opportunities to improve the loss of speed arising from the
communication. For example, if the entire framebuffer is stored as an OpenGL
texture in the card’s memory and is shared for GPGPU computations. However,
applying this method, we lose a part of the characteristics of software pipeline.
We can say that the modern GPU is very efficient in parallel processing, but is not
a wonder tool. Tests show that the technology can be applied in real-time
applications, but it provides sufficient efficiency only in case of well-prepared and
GPU uploaded data.

Conclusion

It can be said that the future is bright for a software rendering revolution. The

techniques presented in this article highlight the fact that developing a really fast

software renderer requires a lot of effort. It is essential to combine several

technologies and to use lower-level languages for programming. The CPU has

evolved over the past few years: utilizing its potential properly, the performance of

the software rendering pipeline can be improved to a large extent. This paper has

presented how the GPGPU technology can be applied as a new approach in the

rasterization stage. Its parallel potentials are adaptable to the TBR rendering

method but only within certain limits.

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-
0001 project with support by the European Union, co-financed by the European
Social Fund.

68 P. MILEFF, J. DUDRA

REFERENCES

[1] ZACH, B.: A Modern Approach to Software Rasterization. University Workshop,

Taylor University, 14. dec 2011.

[2] TRANSGAMING INC: Swiftshader Software GPU Toolkit, 2012.

[3] MICROSOFT CORPORATION: Windows advanced rasterization platform (warp) guide.

2012.

[4] ABRASH, M.: Rasterization on larrabee. Dr. Dobbs Portal, 2009.

[5] EBERLY H, D.: 3D Game Engine Design: A Practical Approach to Real-Time

Computer Graphics. Morgan Kaufmann/Academic Press, 2001.

[6] ANTOCHI, I.: Suitability of Tile-Based Rendering for Low-Power 3D Graphics

Accelerators. Dissertation, Delft University of Technology, 2007.

[7] SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T., ABRASH, M., DUBEY, P.,

JUNKINS, S., LAKE, A., SUGERMAN, J., CAVIN, R., ESPASA, R., GROCHOWSKI, E.,

JUAN, T., HANRAHAN, P.: Larrabee: a many-core x86 architecture for visual

computing. ACM Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH 2008 Volume 27 Issue 3, August 2008.

[8] LAINE, S., KARRAS T.: High-Performance Software Rasterization on GPUs. High

Performance Graphics, Vancouver, Canada, aug 5. 2011.

[9] OWENS, J., LUEBKE, D., GOVINDARAJU, N., HARRIS, M., KRUGER, J., LEFOHN, A.,

PURCELL, T.: A Survey of General Purpose Computation on Graphics Hardware.

Computer Graphics Forum. v.26, n. 1, pp. 80-113, 2007.

[10] SUGERMAN, J., FATAHALIAN, K., BOULOS, S., AKELEY, K., AND

HANRAHAN, P.: Gramps: A programming model for graphics pipelines. ACM

Trans. Graph. 28, 4:1–4:11, 2009.

[11] FANG, L., MENGCHENG H., XUEHUI L., ENHUA W.: FREEPIPE: A Programmable,

Parallel Rendering Architecture for Efficient Multi-Fragment Effects. In Proceedings

of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2010.

[12] AGNER, F.: Optimizing software in C++ An optimization guide for Windows, Linux

and Mac platforms. Study at Copenhagen University College of Engineering,

2011.06.08.

[13] SWENNEY, T.: The End of the GPU Roadmap. Proceedings of the Conference on High

Performance Graphics, pp. 45-52, 2009.

[14] COFFIN, C.: SPU-based Deferred Shading for Battlefield 3 on Playstation 3. Game

Developer Conference Presentation, March 8, 2011.

[15] RAD GAME TOOLS: Pixomatic advanced software rasterizer, 2012.

Production Systems and Information Engineering
Volume 6 (2013), pp. 69-80

69

A FAST METHOD FOR SECURING USER
 SUPPLIED CODE EXECUTION IN WEB SERVERS

DÁVID VINCZE
University of Miskolc, Hungary

Department of Information Technology
david.vincze@iit.uni-miskolc.hu

[Received January 2012 and accepted September 2012]

Abstract. This paper presents a novel method for securing web servers while
keeping performance overhead as low as possible. There are already existing
methods for separating the execution user and group identities for different
websites on the same web server, hence improving security, but all of them have
performance and resource usage weaknesses. The mechanism presented here
requires modifications also in the kernel of the operating system, not only in the
web server. The method works by extracting the calling address of the process
invoking a specific newly implemented system call in the Linux kernel. Based
on this address, the new system call can decide whether to grant additional
privileges to the invoking process or not. Integrating this method into the Apache
web server (the most popular web server application for many years as of
writing) makes it possible to create a secure environment for the different
websites belonging to different users on the same server. Compared to similar
solutions, the overhead of the method is very low. The last chapter presents
measurement results comparing the performance of the original version and that
of the modified version of the web server.

Keywords: operating systems security, Linux kernel, web server security,
Apache web server

1. Introduction

Web based applications are getting more and more widespread nowadays. In most
cases on multi-user systems for performance and resource benefits, separate web
applications are served by the same web server running with the same user
identities and permissions. Hence the served applications are equal when it comes
to accessing resources, independently from which user they belong to, because they
are served under the identity of the web server. In some cases this can be
uncomfortable for the users, moreover malicious users could exploit this easily,
e.g. they can access each other’s source code, database access passwords, in some

70 D. VINCZE

cases they could disturb the web server causing it to malfunction, hide backdoors,
etc. [5] [14]

In production environments these problems emerge quite soon if the given web
server has many users. Most commonly: uploaded files must be separately adjusted
by the system administrator or the user to the correct privileges; working with the
uploaded files can be difficult because the web server created these files with its
own user identity, deleting these files via File Transfer Protocol (FTP) [11] often
causes problems (because FTP separates identities); these files are accounted to the
resources of the web server and not to the user who had the file uploaded;
limitation and logging of resource usage cannot be distinguished among users;
setting arbitrary headers in e-mails when sending mail using the mail() function in
PHP [1] scripts; session manipulation [10] and other seemingly small, but serious
problems [13] [5] [14].

As nowadays most of the web servers in production apply this structure and
configuration, these problems affect a considerable number of users: internet
service providers, educational institutions, various enterprises, etc.

This paper presents a possible solution to eliminate these problems, providing a
fast and secure environment for web applications using runtime user and group
identity switching.

Currently the Apache HTTPD is one of the most commonly used web servers [20],
and most of its installations are deployed on Linux based systems. The Apache web
server and the Linux kernel are both open source software, therefore it is possible
to modify their source code freely. The presented solution has been developed for
the Linux operating system in C and Assembly (x86 32-bit and 64-bit)
programming languages.

First, the paper gives an overview of the operation of web servers at a glance,
especially the operation of the Apache HTTPD, then of the possibilities of run-
time user and group identity switching in the Linux kernel. A novel method is
introduced to determine whether a privilege elevation request is legitimate or not.
The modifications required for this new mechanism to work are also presented both
in the Linux kernel and the Apache web server. Finally, results of performance
benchmarks are presented.

2. Overview of the operation of web servers

In the beginning of the web-era, the first web servers were only able to serve regular
files. This practically means that only static content was available, e.g. text files,
documents, images, etc. These simple web servers only read the contents of the
requested files and sent it to the client unmodified. This is called a static web server,
which is still in use nowadays, because a great deal of static content can still be found
(e.g. images, videos, stylesheets, JavaScript scripts, etc.) on regular web pages.

 A FAST METHOD FOR SECURING USER SUPPLIED CODE EXECUTION IN WEB SERVERS 71

Nowadays it is common that web pages show dynamic content, which means the
pages are generated on-the-fly, taking various input data into consideration (usually
exchanging data with databases). In this case the web server, instead of sending the
exact content, runs the specified program/script corresponding to the request, and
sends back its output (the generated web page) to the requesting client. This is
called dynamic serving mode.

The first widespread method for generating dynamic content for web pages was
the Common Gateway Interface (CGI) mechanism [12]. The concept of CGI is
simple: the requested file (CGI application) is executed on the web server and the
output of the CGI application is sent as an answer to the request. Scripts can be
also used as CGI application, in this case the script interpreter must be defined. The
CGI application is executed in a newly created independent separate process, and
after the application finishes, this process is also terminated. CGI is still in use, but
not very common nowadays.

After the success of CGI, it was realized that CGI was mainly used for running
script interpreters. Interpreters embedded in the web server were developed for
various script languages (e.g. Perl, PHP, Python, Ruby, etc.). These were much
faster because there was no need for forking new processes and initialization every
time a request arrived. Also these embedded interpreters provide an environment
which is easier for programmers to use. Nowadays these solutions are in use,
superseding CGI.

According to the latest NetCraft survey [20], the most commonly used web server
on public web sites is the Apache HTTPD. Most of these are installed on Linux-
based servers.

Traditionally the Apache HTTPD uses the prefork model [21]. The prefork model
has a control process which does not serve incoming Hypertext Transfer Protocol
(HTTP) [4] requests, but only starts and monitors child processes, which do the
actual work. A child process can serve many independent HTTP requests
(configurable, some hundred on an average basis), hence it is not required to start a
new process and perform initialization for every request, which yields a
considerable performance gain.

The worker model [21] is similar to the prefork model, the difference being that it
uses threads instead of processes. That is the main reason why it is not used in
multi-user environments where users are not trusted.

Using either the prefork or the worker model, the user and group identities stay the
same through every served request. This means that all programs (e.g. CGI) are
running with the same permissions, which is considered a security weakness for
various reasons, see e.g. [13].

For securing CGI executions there is a method called suexec CGI [21], which

72 D. VINCZE

extends the CGI mechanism with the capability of running each CGI program as a
different user/group identity. The main idea is that CGI programs are executed
through a wrapper program. This wrapper program has a special permission setting
(suid – setuid, see [2] and [3] for details) allowing it to run with system
administrator privileges. The wrapper checks which user/group identities must be
set for the CGI program, and after changing the identities it loses all of the
administrator privileges (hence the CGI program cannot revert to be administrator
again), and the original CGI application will be executed. Injecting this wrapper
program in the chain of execution on one hand increases security, but the serving
requests becomes slower compared to normal CGI execution.

Also there was a model called perchild [21], which ran separate dedicated threads
for every website configured. These separated threads or thread groups had their
own configured user and group identities set, hence the requests were served with
the correct permissions. A drawback of this concept was that a certain number (the
number of the sites configured) of thread groups were always running even if they
never served a request. In case of many configured websites this consumes
resources unnecessarily. The main drawback of the perchild model is that the
model was never finished, furthermore it was dropped from the newest versions of
the Apache web server [21].

Another implementation of this concept was metuxmpm [16], but as with perchild,
the development was cancelled. Then came the peruser model [9], which tends to
be a working implementation, but it uses separate processes instead of threads. This
means that in case of many websites the amount of unnecessarily allocated
resources can be huge.

A promising model based on prefork is the itk model [6]. It can run the programs
required to generate pages with their own identities, without using dedicated
thread/process groups. All the children processes run with administrator privileges
till the necessary information (which identities to set) can be extracted from an
incoming HTTP request. After changing the user and group identities and serving
the requests belonging to the same website (user id), the identities cannot be set
back to administrator level, hence the process has to be terminated. This means that
processes cannot be reused, new processes should be created if a new incoming
request belongs to another website (user id). Thus compared to the prefork model,
this module also has performance and resource usage drawbacks.

A similar, experimental solution called Harache has been proposed in [7]. Harache
works very much like the itk model: sets the identifiers before processing the
incoming HTTP request, and after processing the request, terminates the process.

Another solution from the same authors called Hi-Sap [8] uses a complex model
consisting of a dispatcher/content scheduler and Apache worker pools. While the
performance is better compared to Harache, the overall resource usage is

 A FAST METHOD FOR SECURING USER SUPPLIED CODE EXECUTION IN WEB SERVERS 73

considerably higher.

Being aware of these facts, it is clear that system administrators have to make a
choice between security and performance. As impacts of performance can usually
be experienced directly (faster web pages, more customers can be handled by fewer
servers, etc.), performance is chosen over security.

The next chapter introduces a novel method which retains both performance and
security in the previously described situations.

3. Enhancing security while retaining performance

The main difficulty is to unambiguously determine whether the currently executed
code in the process is a normal web server code or a user-written code (e.g.
embedded script interpreter running a user's script), as a normal web server process
does not have any properties which could be used to distinguish between these two
states. For example the operating system kernel does not know whether the code of
the Apache web server itself is executed, or a user code is being interpreted by e.g.
the embedded PHP interpreter: mod_php.

Therefore, first a method should be developed which can distinguish between these
two conditions inside a process. This paper presents a novel approach which is
based on the calling memory address of a privilege elevating system call. In the
possession of this calling address it becomes possible to determine whether the
privilege elevation request is legitimate or not. If the request is allowed, then
various privileges can be granted for the requesting process.

In this section a new system call implemented in the Linux kernel will be
presented, which gives certain privileges to the calling process based on the return
address to the user-space (also referred to as calling address earlier). Then the
modifications required in the Apache web server to make use of this newly added
system call will be discussed.

First, some concepts required for understanding the new method will be
overviewed shortly.

3.1. The setuid() / setgid() system call family

On multi-user POSIX (Portable Operating System Interface) [17] compatible
systems, users and groups posses their own identifiers (one user id - uid, and at
least one group id - gid) for the purpose of separating the users. Authentication and
access control are based on these identities. The following system calls are
standardized in POSIX.1 [17]: setuid() / seteuid() / setreuid() / setresuid(). These
syscalls allow an arbitrary process in the system to change their user identities. The
same syscalls exist regarding changing group identities: setgid() / setegid() /
setregid() / setresgid().

74 D. VINCZE

The case of normal usage is when a process is running with administrator
privileges and after the application completes the procedures requiring
administrator privileges, the process switches its user and group identities to
unprivileged identities. These are carried out with calling the setuid()/setgid()
system calls, hence it drops the administrator privileges and continues to run as a
normal user process. See [2] [3] for more details.

The Apache web server works the same way as described. The system
administrator privileges are needed only for binding to TCP ports below 1024 – by
default port 80 or port 443 (HTTP / HTTPS ports) - and also for opening the log
files. Once these tasks are completed, the web server switches to a normal user for
the rest of its lifetime.

3.2. The Linux capabilities system

Access control of traditional UNIX systems (including Linux) distinguishes two
privilege levels: one level for the system administrator (user identity equals 0) and
another one for normal user level (user identity other than 0). Controlling access is
very simple by default: at the system administrator level no checking is performed
for accessing resources, but at the user level the current user and group identities
are compared with the identities required by the desired resource.

The capabilities mechanism is described in chapter 25 of the POSIX.1e [18]
standard. This allows finer granularity for permission distribution and access
control. The POSIX.1e standard has never been finalized, only a draft has been
published, and even that has been withdrawn later. Despite this fact, the
capabilities mechanism has been implemented in some operating systems, e.g.
Linux. The capabilities mechanism describes elemental privileges which can be
assigned to processes, independent from their current user identities. Some of the
implemented capabilities in the Linux operating system [15] are:

− CAP_NET_BIND_SERVICE: Allows binding to TCP/UDP ports
under 1024.

− CAP_SETUID: Allows setting the user identity to an arbitrary value
on the current process (allows the successful calling of the setuid()
syscall family).

− CAP_SETGID: Allows setting the groups identity and supplemental
groups to arbitrary groups on the current process (allows the successful
calling of the setgid() syscall family).

Naturally, there are many more capabilities defined. By default, the system
administrator possesses all the capabilities and normal users do not have any of the
system capabilities. The proposal in this paper makes use of the CAP_SETUID and
the CAP_SETGID capabilities.

 A FAST METHOD FOR SECURING USER SUPPLIED CODE EXECUTION IN WEB SERVERS 75

3.3. The new system call

As described earlier, a new method has been implemented, which elevates process
privileges based on the memory address in the memory area of the process where
the system call was invoked from. A new system call was implemented in the latest
Linux kernel (version 3.1.10 as of writing). Unfortunately the code is architecture
specific, currently the implementation is for the x86 and the x86_64 architectures
only. Details of the implementation are presented in this subsection.

Before a system call executes, the memory address of the next instruction to be
executed (the return address) is stored on the stack before entering into the kernel.
After the system call completes its task in the kernel, the control will be returned to
the user-space application, which will continue its execution exactly at the memory
address previously stored on the stack. The control returns to the saved memory
address in the process of the web server with a ret instruction. The return address is
popped from the stack, which was pushed to the stack earlier just before the actual
system call. This return address has to be traced back on the stack to be used for
authentication.

Tracing back the return address is done in the new syscall named getmyretaddr(). It
does not have any input parameters as its only task is to check whether to allow the
caller process elevated privileges or not. The newly implemented system call first
traces back the return address on the stack to determine where exactly the system
call came from the memory area of the calling process. If this is the first invocation
of the new system call within a given process, the traced return address will be
stored in the process context. Otherwise the traced memory address will be
compared with the previously stored memory address by the first invocation. In
case of a match, the privilege elevation will be successful, otherwise the privilege
elevation request will be ignored.

In possession of the calling address, the access verification is realized as described
in the following. In the case of the first invocation of the getmyretaddr() system
call, a new attribute in the process context (called retaddr – default value is zero)
will be initialized with the gathered return address. The initialization will only be
successful if the process possesses the CAP_SETUID and the CAP_SETGID
capabilities. Any next invocation of the getmyretaddr() system call checks the
return address against the stored retaddr; if these two match, then the calling
process will be granted both with CAP_SETUID and CAP_SETGID. Then the
system call finishes and the control is returned into user space. Now it is the task of
the privilege elevation requesting process to change the user and group identifiers,
then drop the two capabilities.

The next chapter describes how this new system call has been integrated into the
Apache web server.

76 D. VINCZE

4.2. Modifications in the Apache web server

The prefork module [21] was modified to make use of the presented mechanism.
The required modifications will be described briefly in the following.

Right after staring the web server, initially forked child processes wait for
incoming requests with the default user and group identities. The web server was
modified to leave both CAP_SETUID and CAP_SETGID capabilities set on the
inital processes. When a request arrives, the child process does its usual
initialization and just before serving the request, the getmyretaddr() syscall will be
invoked. If this is the first request served by the child process, the getmyretaddr()
does only initialization (stores the valid return address in the process context:
retaddr). The pre-forked child process should be in possession of the
CAP_SETUID and the CAP_SETGID capabilities, otherwise the system call will
be unsuccessful. Next, after successfully changing the user and group identities
with setresuid() and setresgid() calls, the two capabilities are not required anymore,
so they will be dropped. Finally the actual request will be served but now with the
correctly set unique identities. When serving the forthcoming requests, the child
process is no longer in possession of the two capabilities when calling
getmyretaddr(), but if it is called from the permitted memory address (the first
call's return address), then the syscall will be successful, and the kernel will grant
the two capabilities to the calling process. Hence the setresuid() and setresgid()

syscalls will be also successful when called. In case when the request is for another
user's resource, then the capabilities can be dropped again. This way the process
executes user supplied code (e.g. embedded interpreter runs a script) with the user
and group identities configured for the actual website.

Serving the incoming requests is the task of the child processes of the web server.
Every request triggers the ap_process_request_internal() function in the Apache
web server, hence it is an adequate function where the getmyretaddr() syscall and
its supplemental code can be injected. Just before invoking getmyretaddr(), it
should be determined which identities should be used for serving the request. A
new configuration directive called ServeAsUIDGID was defined, which can be
used in the configuration of the web server to specify which identities should be set
on a website. If the newly added directive was supplied in the configuration, then it
is straightforward which identities should be used (e.g 'ServeAsUIDGID 1303

1011' – the user id will be set to 1303, and the group id will be set to 1011).
Otherwise (very useful when applying solutions to automatize the publishing of
users' web pages, e.g. mod_userdir [21]) the same identities as the owner of the
requested file will be set. If the ownership of the file cannot be determined, a
HTTP error 404 (not found) is returned. And in case the owner of the file to be
served is the system administrator (root – uid 0), the request is denied with

 A FAST METHOD FOR SECURING USER SUPPLIED CODE EXECUTION IN WEB SERVERS 77

returning a HTTP error 403 (access forbidden).

It is possible that an incoming request requests a resource belonging to the same
identity as the one which was already set for the previous request. For achieving
better performance, it is first decided whether it is required to change identities or
not, by comparing the identities needed to be set and the currently set identities. If
these match, then the getmyretaddr() system call will not be invoked.

In the unfortunate case when an error occurs while dropping the now unwanted
capabilities, the web server fails with an internal error returning a HTTP error 500
(internal server error) to the client, and the serving of the request will be terminated.

With these modifications the Apache web server became capable of using the
presented mechanism. After compiling the modified source code, the method was
tested and verified with the usage of the GNU Debugger (not covered in this
paper).

The modifications in the source code of both the Linux kernel and the Apache web
server in the form of a patch can be found at [22].

4. Performance analysis

According to the modifications, the Apache web server and the Linux kernel
contain additional codes to be executed in every iteration when a request is served,
which yields additional performance overhead. This overhead was measured
empirically with the help of the siege HTTP testing utility [19]. The measurement
tests were conducted both using the original and modified web server in
conjunction with the modified kernel, and also using the previously mentioned ITK
module in the Apache web server.

The siege utility simply sends requests to a given web server, and measures the
elapsed time till the requests finish. The web server was configured with 16
separate websites with different user and group identities to be set for each site.
Siege was configured to send requests to these 16 sites in a round-robin fashion.
This results in an identity switch with every request, which means the worst
possible case was simulated and benchmarked.

The same measurement was conducted several times with various concurrency
level settings (1, 4 and 16 respectively) to minimize measurement incorrectness.
An average of these results were evaluated. The results corresponding to the
unmodified web server were taken as reference (100%). Accordingly, the results
are shown in Figure 1.

78 D. VINCZE

Figure 1. Performance overhead measurement results

It can be noticed that the overhead is very slight (+0.15%) when using concurrency
level 16. On production servers many clients access many sites, hence concurrency
level could be high. Also, keeping in mind that the tests were conducted simulating
the worst possible scenario, and on real world web servers many request batches
are for the same website, the average overhead should be lower. Therefore the
performance overhead can be so low that the overhead can go unnoticed in real
environments.

Conclusion

The mechanism introduced in this paper defines a novel approach for access
control. The main idea of the mechanism is to check the calling memory address in
the invoking process, and if this value is the same as it was during initialization,
then various privilege elevations can be performed. The mechanism was
implemented in the latest Linux kernel (version 3.1.10 as of writing) as a new
system call. Integrating this new system call into the most commonly used web
server nowadays - the Apache HTTPD web server - makes it possible to serve
every HTTP request with different user and group identities, with very slight
performance overhead. Hence the mechanism introduced in this paper is
significantly faster compared to other existing solutions with the same security
approach.

The separated identities allow some additional advantages for users and
administrators of web servers. E.g. limiting and accounting resources on a per user

 A FAST METHOD FOR SECURING USER SUPPLIED CODE EXECUTION IN WEB SERVERS 79

basis: OS level authentication for database access, controlled network access, file
system access, quota management for uploaded files, etc.

Further development possibilities include porting to other operating systems (e.g.
BSD), and also the new security risks possibly opened by the new system call (e.g.
rewriting code on the trusted memory address) should be investigated closely.

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-
0001 project with support by the European Union, co-financed by the European
Social Fund.

REFERENCES

[1] ACHOUR, M., BETZ, F., DOVGAL, A., ET. AL.: PHP Manual, PHP Documentation
Group, 2012

[2] BUNCH, S.: The Setuid Feature in Unix and Security, Proceedings of the 10th National
Computer Security Conference, pp. 245 – 253, 21-24 Sept. 1987

[3] CHEN, H., WAGNER, D., DEAN, D.: Setuid Demystified, Proceedings of the 11th
USENIX Security Symposium, pp. 171 – 190, 2002

[4] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P.,
BERNERS-LEE, T.: Hypertext Transfer Protocol – HTTP/1.1, Request for Comments

#2616, Internet Engineering Task Force, June 1999

[5] GARFINKEL, S.: Web Security, Privacy & Commerce, Second Edition, O'Reilly Media
Inc., ISBN: 978-0596000455, Jan. 2002

[6] GUNDERSON, S. H.: The Apache 2 ITK MPM

 HTTP://MPM-ITK.SESSE.NET (ACCESSED JAN. 2012)

[7] HARA, D., OZAKI, R., HYOUDOU, K., NAKAYAMA, Y.: Design and Implementation of

a Web Server For a Hosting Service, Proceedings of the Ninth IASTED International
Conference, Internet and Multimedia Systems and Applications, August 15-17, 2005,
Honolulu, Hawaii, USA

[8] HARA, D., NAKAYAMA, Y.: Secure and High-performance Web Server System for

Shared Hosting Service, Proceedings of the 12th International Conference on Parallel
and Distributed Systems (ICPADS'06), Minneapolis, USA, 2006

[9] HEACOCK, S. G.: Peruser MPM for Apache 2.x Technical Details

 HTTP://WWW.PERUSER.ORG/ (ACCESSED JAN. 2012)

80 D. VINCZE

[10] NIKIFORAKIS, N., JOOSEN, W., JOHNS, M.: Abusing Locality in Shared Web Hosting,

Proceedings EUROSEC '11 Proceedings of the Fourth European Workshop on System
Security, Salzburg, Austria, 2011

[11] POSTEL, J., REYNOLDS, J.: File Transfer Protocol, Request for Comments #959,
Internet Engineering Task Force, October 1985

[12] ROBINSON, D., COAR, K.: The Common Gateway Interface (CGI) Version 1.1,

Request for Comments #3875. Internet Engineering Task Force, Oct. 2004

[13] SHIFLETT, C.: Essential PHP Security, O'Reilly Media Inc., 2005, ISBN: 0-596-00656-X

[14] SNYDER, C., SOUTHWEL, M.: Pro PHP Security, Apress Media LLC, ISBN: 978-
1590595084, Sept. 2005

[15] TOBOTRAS, B.: Linux Capabilities FAQ, 1999
 HTTP://FTP.KERNEL.ORG/PUB/LINUX/LIBS/SECURITY/LINUX-PRIVS/KERNEL-2.4/

CAPFAQ-0.2.TXT

[16] WEIGEL, E.: Muxmpm/metuxmpm for Apache 2

 HTTP://WWW.SANNES.ORG/METUXMPM/ (ACCESSED JAN. 2012)

[17] IEEE STANDARD FOR INFORMATION TECHNOLOGY 1003.1-2004: Portable Operating
System Interface (POSIX)

[18] IEEE STANDARD FOR INFORMATION TECHNOLOGY P1003.1E Draft: Portable Operating
System Interface (POSIX)

[19] JOE DOG SOFTWARE: Siege HTTP Testing Utility

 HTTP://WWW.JOEDOG.ORG/INDEX/SIEGE-HOME (ACCESSED JAN. 2012)

[20] NETCRAFT LTD. Web Server Survey January 2012:

 HTTP://NEWS.NETCRAFT.COM/ARCHIVES/2012/01/03/JANUARY-2012-WEB-SERVER-
SURVEY.HTML

[21] APACHE HTTP SERVER DOCUMENTATION

 HTTP://HTTPD.APACHE.ORG/DOCS/ (ACCESSED JAN. 2012)

[22] THE SOURCE CODE MODIFICATIONS CAN BE ACCESSED AT:

 HTTP://USERS.IIT.UNI-MISKOLC.HU/~VINCZED/GETMYRETADDR/

Production Systems and Information Engineering
Volume 6 (2013), pp. 81-90

81

LOCALIZATION TECHNIQUES IN

WIRELESS SENSOR NETWORKS

ATTILA K. VARGA

University of Miskolc, Hungary

Department of Automation and Communication Technology
varga.attila@uni-miskolc.hu

 [Received February 2012 and accepted September 2012]

Abstract. The drawback of wired networks is that if we want to communicate

on it wired communication has to be established. Actually, wired

communication limits our mobility. In wireless networks there is no need for

wires, we can connect our devices to the network. Since wireless network

applications have been deployed widely, wireless sensor networks have become

an important research area.

The development of wireless technology enabled us to use cheap and small

sized sensors in short range communications. A sensor network consists of

several nodes that are low in cost and have a battery with low capacity.

Localization in wireless sensor networks is a vital issue, i.e. determining the

position of a given device in the network. Location information of mobile

nodes is a demand in many wireless systems.

Localization involves determining the location of the sensor node based on other

sensor nodes with known locations. The node can calculate its distance and/or

angle between itself and the reference points. In the 2D space, if a node

knows its distance from three reference points, its position can also be

determined. One more reference point is needed in the 3D space to determine

the current position of the target device. The paper deals with various

techniques of localization used in wireless sensor networks.

Keywords: wireless sensor network, localization, anchors, mobile nodes

1. Introduction

Distributed sensor networks have already been applied for years, but wireless

sensor networks [1] have recently been focused on. The rapid development of

wireless sensor networks opened the door to create low-cost, low-power and

82 A. K. VARGA

multifunctional sensor devices that are integrated with sensing, processing, and

communication capabilities.

Estimating the location of a sensor is a critical task in sensor networks. There exist

several location estimation techniques used in sensor networks. In the sensor

network there are two types of nodes:

- nodes that know their location (they are fixed nodes and are often called

anchor nodes),

- and some other nodes (called mobile sensor nodes) having the ability to

estimate their location using information about their position (i.e.

coordinates of a node, properties of a signal such as signal strength [2],

time difference of arrival, etc.) received from the fix nodes.

After performing such measurements for different nodes, the sensor node has to

combine all this information for estimating its location. The location estimation

algorithm has two main requirements:

- the sensor nodes should avoid complex and time consuming computations,

which would deplete their energy supply rapidly,

- the computations should take into consideration the error in the

measurements, which can be significant.

Several approaches use computationally demanding methods, such as convex

optimization [3], systems of complex equations [4], minimum mean square error

(MMSE) methods, and Kalman filters. In these approaches, the measurement

model is not adequately analyzed and the error is assumed to be small, which is not

the case in most real applications of sensor networks.

Other algorithms estimate the location of a node using the Received Signal Strength

Indicator method, which is the most realistic model for sensor network communication [5].

Many localization techniques used in sensor networks can be applied in a

variety of wireless networks with which a wireless node can estimate its

distance or its relative location to a reference point. In the past few years,

several algorithms for solving the localization problem have been proposed.

2. Basis of localization

A sensor node (often called mote) is practically a device in the wireless network

that is capable of data processing, information gathering and establishing

communication with the other nodes in the network.

 LOCALIZATION TECHNIQUES IN WIRELESS SENSOR NETWORKS 83

Wireless localization techniques [6] are used to give the positions of the mobile

nodes considering the known location information. In 2D and 3D space reference

points are needed to determine the position of a mobile device.

Using reference points, the angle and distance of a device can be calculated from

the reference points. Observing the well-known scenarios it is a widely used

technique that a mobile device computes its own location according to the position

information of fix devices. These fix devices are also called anchors (see Figure 1).

Many applications of sensor networks require knowledge of physical sensor

positions. Location information can be used not only to minimize the

communication but also to improve the performance of wireless networks and

provide new types of services.

Figure 1. Nodes in a self-organizing wireless sensor network

The positioning algorithm must be distributed and localized in order to scale well

for large sensor networks. Often, price, size and the precision of the localization are

the main factors when choosing the position determining technique. The wireless

solution generates a number of problems in connection with localization:

84 A. K. VARGA

- a number of measurements have to be done for determining the

position of a mobile node,

- choice of the localization technique depends on the given

environmental conditions,

- wireless sensors are cheap devices but have limited computation

capabilities,

- localization techniques need implementation with minimal hardware

investment considering the given measurement possibilities,

- in many cases sensor networks should be designed for using them in

multi-hop networks.

Localization algorithms used in large-scale ad-hoc sensor networks should meet

some requirements. These algorithms should be

- self-organizing,

- tolerant to node failures,

- energy and computation efficient (little consumption and low-

computational steps).

The most important and user-oriented factors are the accuracy and the precision

of the given positioning algorithm.

2. Types of localization

Localization can be classified in many aspects (Fig. 2). Localization techniques can

be divided into two categories based on the communication between nodes:

- centralized localization techniques,

- and decentralized localization techniques.

Centralized localization techniques involve data transfer to a central node in order

to compute the location for each node. Communication with centralized computing

is expensive, and sending data serially by time within the network introduces

latency, and it consumes energy and network bandwidth as well.

Decentralized or distributed localization techniques depend on each sensor node

being able to determine its location with only limited communication with nearby

nodes. Distributed localization techniques do not require centralized computation.

Distributed localization techniques involve two kinds of techniques such as [7]:

- range-based,

- and range-free localization techniques.

 LOCALIZATION TECHNIQUES IN WIRELESS SENSOR NETWORKS 85

Figure 2. Types of localization

Range-free methods calculate the distance between two nodes in a number of hops

and do not take into consideration any coordinate system. In range-free

algorithms [7] nodes can estimate their position according to the known

localization information of the neighbouring nodes. In this case, it is assumed

that not all the nodes have distance, angle or other metric information. Position

of the target node can be calculated as the ‘centroid’ of the surrounding fix

nodes or it can be derived from geometric relations.

Range-based methods estimate distance and direction of two nodes from a

measurement (i.e. angle of arrival measurements, distance related measurements

and received signal strength measurement). Range-based algorithms make

distance estimations between the fix and mobile nodes. The positions of a

group of nodes in the wireless network are known by means of simple distance

measurement. The target nodes try to estimate their position relative to the fix

nodes.

3. Localization methods

There are several advanced localization algorithms based on machine learning

and data fusion techniques.

86 A. K. VARGA

3.1. Weighted centroid method

The idea of the centroid method (Fig. 3) is that the position of the target device

is calculated by the known positions of the anchor nodes in the transmission

range. Although this algorithm is very simple, efficient, easy to implement and

needs low computational operations, it produces a lower level of precision. It is

widely used in such dense sensor networks – there are fix nodes having known

positions – that contains overlapping ranges. The known positions can be

weighted, so the unknown position can be calculated as follows:

�

�

=

==
N

i

i

N

i

ii x

x

1

1
~

ω

ω

 , (3.1)

where N is the number of anchors in the transmission zone, xi is the position

and
i is the weight of the i-th fix node. An adequately selected weighting

method can result in more precise information about the position of the given

node.

Figure 3. Centroid method

In practice, mobile nodes broadcast messages that are received by the fix nodes

in the transmission range. This message sending and receiving mechanism

helps the nodes to establish connection between themselves.

According to the connection metric, the weights can be calculated as follows:

 LOCALIZATION TECHNIQUES IN WIRELESS SENSOR NETWORKS 87

)(

)(
)(

)(

)(

tn

tn
t

i

sent

i

received
i =ω , (3.2)

where t is the duration of transmission of the broadcast messages, nreceived(t) and

nsent(t) are the number of received and sent messages during t. Only those nodes

will be considered that reached a given ratio – usually over 90 %.

3.2. Bounding box method

The bounding box method (Fig. 4) is a simple and low computational

localization technique. The accuracy of this technique is limited, but it is

simple, fast to implement and to run on sensor nodes.

Figure 4. Bounding box method

The main concept is that boxes are created around the transmission range of the

nodes, and the target device is located in the intersection of these boxes. The

distance between the target device and the i-th fix node can be estimated by the

side length of the i-th bounding box. The result of the position estimation is the

intersecting box or its centre:

�
�
	

�
�
�

∈ �
i

iBx
~

, (3.3)

where Bi is the box created around the xi-th node, and the side length of the box is

twice the transmission range.

88 A. K. VARGA

3.3. Point in Triangle method

The Point in Triangle method (Fig. 5) is a range-free localization scheme. In

this approach the target device sends a beacon message that is received by the

fix nodes. After that, the anchor nodes create communication triangles, i.e. they

form all the possible subsets of three nodes.

{ }

{ }

{ }

{ }4324

~

4313

~

4212

~

3211

~

,,

,,

,,

,,

xxxTx

xxxTx

xxxTx

xxxTx

=∈

=∈

=∈

=∈

, (3.4)

where Ti is the i-th subset that forms the i-th triangle. In each triangle the

so-called PiT test decides whether the target device is in the current area or not.

Figure 5. Point in Triangle based localization

Finally, the intersection of these areas will produce the position of the target:

 �
4

1

arg

=

=
i

iett TT . (3.5)

The main disadvantage of this method is the great number of computational

steps, as the PiT test must be done for all the triangles to examine whether the

current area includes the target device or not.

 LOCALIZATION TECHNIQUES IN WIRELESS SENSOR NETWORKS 89

Actually the PiT test is based on geometry: for a given triangle the mobile node

is outside the triangle if the gradient of the distance estimated to each vertex of

the triangle is positive, i.e. the mobile node moves farther away from the

points.

Conclusions

In wireless communication the localization of mobile devices is a major

problem. Location-based applications are very close to our daily life; it is a

process to compute the locations of wireless devices and relies on the geometric

relationship of network nodes.

As outlined in the paper, the positioning method should not increase the cost

and complexity of a sensor because an application may require a great number

of sensors. Communication and collaboration between nodes should be

minimized for achieving energy saving. Most wireless sensor networks have a

limited computation ability, so the main goal is to implement and run simple

distance estimation functions. The estimation must be very close to the real

position. If the position estimated is close to the average value, then estimation

is said to have great precision. When the position estimated is almost the same

as the real position, the degree of accuracy is very high. Absolute precision can

never be achieved, although a well-chosen estimator can improve the accuracy.

Precision and costs may contradict each other, but these are important factors

in location-based services. Extra hardware may be required to achieve higher

localization accuracy using the existing localization algorithms that generate

higher cost.

Fusion of techniques can improve localization precision and reduce the

variance of the position estimation that may minimize communication and the

computation overhead of the sensors.

As regards further work, software development is planned to simulate

localization techniques presented in the paper for comparing them in several

aspects such as speed, time of running, performance and maintainability. The

simulation is expected to provide useful results for providing solution to

performance and energy optimization in the localization process. After

drawing conclusions from these results an algorithm is planned to be

recommended which is optimized for performace, as well as to give

correction factors for the localisation methods described in the paper.

90 A. K. VARGA

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-

0001 project with support by the European Union, co-financed by the European

Social Fund.

REFERENCES

[1] BISCHOFF, U., STROHBACH, M., HAZAS, M., KORTUEM, G.: Constraint-based

distance estimation in ad-hoc wireless sensor networks. In: Proceedings of the

Third European Workshop on Wireless, New York, USA, 2007.

[2] WHITEHOUSE, K., KARLOF, C., CULLER, D.. A practical evaluation of radio signal

strength for ranging-based localization. In ACM Mobile Computing and

Communications Review (MC2R), vol.11, no.1, pp.41-52, 2007.

[3] DOHERTY, L., PISTER, K. S. J., GHAOUI, L. E.. Convex optimization methods for

sensor node position estimation. In Proc. IEEE Conference on Computer

Communications (INFOCOM), pp. 1655–1663, 2001.

[4] NICULESCU, D., BADRINATH, B. R.. Ad hoc positioning system (APS) using AOA. In

Proc. IEEE Conference on Computer Communications (INFOCOM), 2003.

[5] PATWARI, N., HERO III, A O, PERKINS, M., CORREAL, N. S., O’DEA, R. J.. Relative

Location Estimation in Wireless Sensor Networks, IEEE Transactions on Signal

Processing : A Publication of the IEEE Signal Processing Society., vol. 51, pp. 2137,

2003.

[6] TAREQ ALI ALHMIEDAT & SHUANG-HUA YANG (Senior Member, IEEE): A Survey:

Localization and Tracking Mobile Targets through Wireless Sensors Network, IEEE,

PGNet, 2007.

[7] HE, T., HUANG, C., BLUM, B.M., STANKOVIC, J.A., ABDELZAHER, T.: Range-free

localization schemes for large scale sensor networks. In: MobiCom ’03: Proceedings

of the 9th Annual International Conference on Mobile Computing and Networking, pp.

81–95. ACM, New York, 2003.

Production Systems and Information Engineering
Volume 6 (2013), pp. 91-100

91

PARAMETER APPROXIMATION FOR
TOOL LIFE EQUATIONS

SÁNDOR FEGYVERNEKI
University of Miskolc, Hungary

Department of Applied Mathematics
matfs@uni-miskolc.hu

ATTILA KÖREI
University of Miskolc, Hungary

Department of Applied Mathematics
matka@uni-miskolc.hu

JÁNOS KUNDRÁK
University of Miskolc, Hungary

Department of Production Engineering
janos.kundrak@uni-miskolc.hu

[Received March 2012 and accepted September 2012]

Abstract. The aim of this research is to investigate a model for estimating tool
life (Kundrák, 1996) during high speed hard turning based on the relationship
between the wear progress (speed) and time. The tool life equation is valid in the
whole cutting speed range for a given feed rate and depth of cut, and has two
extreme values. Here the coefficients ,A B and K of the equation are

calculated under different cutting conditions and the results are in good
agreement with experimental values. It is also shown that different feed rate and
depth of cut values change the location of the two extreme values of the tool life
curve. A Matlab model was developed to determine the parameters of the tool
life equation. Furthermore the properties of estimated parameters were
investigated by Statistica 9 program package.

Keywords: tool life equation, least squares, Levenberg-Marquardt

1. Introduction

The time spent cutting up to the allowed wear of the tool is considered tool life.
Among the cutting data it is the cutting speed that has the most significant effect on
the wear intensity.

92 S. FEGYVERNEKI, A. KÖREI, J. KUNDRÁK

The famous formula for estimating tool life was established by Taylor [11] about
one hundred years ago. It gave the tool lives belonging to different cutting speeds
by vc-T tool life curve (‘Taylor relation’), which is still in use.

The prediction of tool deterioration is done even today by calculating the tool life
based on experimental work, using the empirical tool life equations.

Although Taylor’s equation gives a simple relationship between tool life and
cutting speed, and it is easy to use, at the same time the information is limited only
to one cutting datum. In addition, Taylor equations consume a lot of money and
time since they give reliable results only in a relatively narrow range of cutting
speed [4, 7, 11].

The results of a wide range of tool life experiments proved that the real tool life
change depending on the cutting speed has a relative maximum and a relative
minimum value.

This is caused first of all by the layers of different thicknesses and origins (for
example metallic and non-metallic build-ups) which are created by the resultant of
highly complicated mechanical, physical and chemical procedures.

In the last one hundred years a great number of suggestions have been made to
describe the connection between the cutting parameters and tool life using
simplified approximation curves (Safonov, Temchin, Wu, Kronenberg, Metchisen,
Granovski, König-Depiéreaux etc) [2, 8].

Among the relationships found in technical literature only some are able to
describe tool life in a wide range of cutting parameters.

A new tool life equation valid for the whole cutting speed range created by
Kundrák [6] is suggested to be used for the description of tool life [5, 7, 8,9].

3 2

K
T

V AV BV
=

+ +
, (1.1)

(time T , speed ,V parameters ,A B and K).

This tool life equation is valid in the whole cutting speed range for a given feed
rate and depth of cut, and has two extreme values. Here the coefficients ,A B and

K of the equation are calculated under different cutting conditions and the results
are in good agreement with experimental values. It is also shown that different feed
rate and depth of cut values change the location of the two extreme values of the
tool life curve.

 PARAMETER APPROXIMATION FOR TOOL LIFE EQUATIONS 93

A Matlab simulink model was developed to simulate the tool life based on the
flank wear rate [1].

In this paper a good iterative, numerical algorithm is given with starting values.
Furthermore the properties of estimated parameters are investigated by Statistica 9
program package.

2. Mathematical description of tool life

Denote speed by x and tool life by ()f x . From the former investigations we have

the following conditions for the approximation of the tool life curve:

 F1 (0) (0)f : ,∞ → ,∞ .

 F2
0 0

lim ()
x

f x
→ +

= +∞.

 F3 lim () 0
x

f x
→+∞

= .

 F4 There exist 0 a b< < such that () () 0f a f b
′ ′

= = .

 F5

0 0
lim ()

x
f x

′

→ +
= −∞.

 F6 lim () 0
x

f x
′

→+∞
= .

The relationship suitable to describe the complete tool life curve can be written in
the following form using the symbols applied in cutting:

3 2

()
K

f x
x Ax Bx

=
+ +

. (2.1)

Remark. The function f was given by investigating reciprocal polynomials.

Conditon F4 implies that the degree of polynomials is at least 3 and the constant of
polynomials is equal to 0 by condition F2.

3 2

 ()
K

f x
x Ax Bx C

=
+ + +

 (2.2)

2

3 2 2

(3 2)
()

()

K x Ax B
f x

x Ax Bx C

′ − + +
=

+ + +
 (2.3)

94 S. FEGYVERNEKI, A. KÖREI, J. KUNDRÁK

The expansion of further constraints

 1. 0K > .

 2. 0C = .

 3. 2 4A B<

 4. 2 3A B>

 5. 0A < and 0B > .

Thus 0C = . The possible place of extrema are

 2 2
1 2

1 1 1 1
3 , 3

3 3 3 3
x A A B x A A B= − − − = − + − . (2.4)

The second derivative

2 2

3 2 3 3 2 2

2 (3 2) (6 2)
()

() ()

K x Ax B K x A
f x

x Ax Bx x Ax Bx

′′ + + +
== −

+ + + +
 (2.5)

implies that there is a local minimum at 1x and a local maximum at 2x .

By the classical relation of roots and cofficients we have

 1 2 1 2

2
 és

3 3

A B
x x x x+ = − = . (2.6)

The optimization problem can be defined as follows: Given the measurements

 1 1 2 2() () (),n nx y x y x y, ,…, (2.7)

determine the parameters , K A and B such that

2

3 2
1

min
n

i

i i i i

K
y

x Ax Bx=

 �
− →�

+ +� �
� . (2.8)

Let

2

3 2
1

n

i

i i i i

K
Q y

x Ax Bx=

 �
:= −�

+ +� �
� . (2.9)

 PARAMETER APPROXIMATION FOR TOOL LIFE EQUATIONS 95

Then

13 2

3 2
1

2 0,
n

i i i i

i i i i

Q K
y x Ax Bx

K x Ax Bx

 �
−�
 �

� �
� �� � = � �

∂
= − − + + =

∂ + +
� (2.10)

22 3 2

3 2
1

2 0,
n

i i i i i

i i i i

Q K
y Kx x Ax Bx

A x Ax Bx

 �
−�
 �

� �
� �� � = � �

∂
= − + + =

∂ + +
� (2.11)

23 2

3 2
1

2 0.
n

i i i i i

i i i i

Q K
y Kx x Ax Bx

B x Ax Bx

 �
−�
 �

� �
� �� � = � �

∂
= − + + =

∂ + +
� (2.12)

This is a system of nonlinear equations where the order of magnitude of parameters
is determined strictly by data. We can solve this system by an iterative method
(Levenberg-Marquardt, trust region) [3, 4]. The starting values are obtained by the
modified optimization problem

23 2

1

1n
i i i

i i

x Ax Bx

y K=

 �+ +
−�

� �
� . (2.13)

If we solve this modified least squares problem, then the system of
equations is linear and its solution is a good starting value for the original
least squares problem. By further investigations it was obtained that the
solution of the problem

22

1

1n
i i

i i i

x Ax B

y x K=

 �+ +
−�

� �
� (2.14)

would be better for starting value.

3. Experimental results

Table 1 contains the data of six experiments and the results of our calculations.
Having fixed the values of feedrate and depth of cut, tool life was measured
depending on different cutting speeds. The bottom part of the table shows the
calculated parameters of the six tool life curves and the coordinates of the extrema
on them where E is the error of the approximation.

96 S. FEGYVERNEKI, A. KÖREI, J. KUNDRÁK

Table 1. Data and results of calculations

vc [m/min] T [min]

X Y1 Y2 Y3 Y4 Y5 Y6

11 450 300 260 400 310 290

20 310 220 210 270 240 210

29 260 210 190 260 220 210

35 260 220 200 250 220 210

40 260 230 210 260 230 220

50 270 210 160 270 230 220

59 270 170 110 260 200 180

68 270 110 60 220 150 130

80 230 60 30 150 90 70

92 160 40 30 90 50 40

105 100 20 10 60 30 20

120 60 10 6 30 20 10

150 20 4 2 10 7 5

f[mm/rev] 0.025 0.075 0.125 0.05 0.05 0.05

ap[mm]
 0.1 0.1 0.1 0.05 0.15 0.25

K 26.03x106 7.67x106 5.05x106 16.12x106 9.86x106 8.06x106

A -146.61 -102.97 -90.44 -125.44 -112.03 -107.66

B 6772.17 3373.07 2647.84 4975.66 3959.55 3623.01

E 145.30 152.51 450.12 255.94 104.11 95.93

minx 37.43 26.99 25.02 32.33 28.70 26.93

miny 258.94 215.06 199.69 253.72 219.15 206.57

maxx 60.31 41.66 35.27 51.30 45.98 44.85

maxy 275.35 225.00 204.03 268.12 232.46 223.01

 PARAMETER APPROXIMATION FOR TOOL LIFE EQUATIONS 97

In order to make the discussion of different tool life curves convenient, a user
interface is developed with the help of Matlab GUI (Fig. 1). After loading the list
of cutting speeds and the corresponding tool life values, the program calculates the
parameters of the tool life equation, presents the graphs of v-T and v-L functions
and displays the extrema on these functions.

Figure 1. Matlab user interface for the problem

4. Statistical results

Main results are given by Statistica 9 software where (x11_Y1Y6) is the name of
data file.

Model is: Y2=K/(X^3+B*X^2+C*X); Dependent variable: Y2;

Independent variables: 1; Loss function: least squares;

Final value: 152,51007128;

Proportion of variance accounted for: 0,99877281 R =0,99938622.

A common alternative to the least squares loss function is to maximize the
likelihood or log-likelihood function (or to minimize the negative log-likelihood
function; the term maximum likelihood was first used by Fisher, 1929).

98 S. FEGYVERNEKI, A. KÖREI, J. KUNDRÁK

Table 2. Iteration history (Statistica 9 software)

Model is: Y2=K/(X^3+B*X^2+C*X) (x11_Y1Y6)

Dep. Var. : Y2

Loss

Function

K B C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

612,0588 0 0,100 0,100

603,7063 19131 0,100 0,100

600,1535 22883 -1,904 -0,187

592,9964 28799 -4,053 -1,180

579,2200 36857 -5,794 -5,159

546,9349 46742 -6,928 -17,346

525,4859 58241 -7,394 -22,311

523,4034 75313 -7,184 -19,546

519,6936 108030 -6,796 -14,177

513,7193 167372 -6,138 -4,121

503,8548 285899 -4,974 17,179

489,0267 520740 -3,234 64,050

468,1469 971452 -1,915 171,837

436,5744 1745041 -6,741 424,369

355,1769 2638343 -36,759 972,743

138,1249 4731877 -80,710 2119,442

35,0382 7526846 -99,462 3173,117

12,5452 7703253 -102,898 3370,423

12,3495 7676002 -102,973 3373,188

12,3495 7675579 -102,971 3373,075

Table 3. Summary: parameter estimates (Statistica 9 software)

Model is: Y2=K/(X^3+B*X^2+C*X) (x11_Y1Y6)

Dep. Var. : Y2

Level of confidence: 95.0% (alpha=0.050)

Estimate Standard

error

t-value

df = 10

p-value Lo. Conf

Limit

Up. Conf

Limit

K

B

C

7675579 196731,1 39,016 0,000000 7237235 8113923

-103 0,7 -140,242 0,000000 -105 -101

3373 53,2 63,393 0,000000 3255 3492

The estimated parameter values are rejected by t-test at arbitrary confidence level.

 PARAMETER APPROXIMATION FOR TOOL LIFE EQUATIONS 99

Table 4. Correlation of parameters (Statistica 9 software)

Model is: Y2=K/(X^3+B*X^2+C*X) (x11_Y1Y6

Dep. Var. : Y2

K B C

K

B

C

1,000000 -0,736468 0,909304

-0,736468 1,000000 -0,937510

0,909304 -0,937510 1,000000

The correlations are high in every case.

Table 5. Observed and predicted values (Statistica 9 software)

Model is: Y2=K/(X^3+B*X^2+C*X) (x11_Y1Y6

Dep. Var. : Y2

Observed Predicted Residuals

1

2

3

4

5

6

7

8

9

10

11

12

13

300,0000 295,4953 4,50468

220,0000 223,9542 -3,95422

210,0000 215,5498 -5,54976

220,0000 220,6083 -0,60835

230,0000 224,6363 5,36375

210,0000 211,8833 -1,88328

170,0000 167,0517 2,94834

110,0000 113,4403 -3,44033

60,0000 62,4896 -2,48961

40,0000 35,2962 4,70379

20,0000 20,3845 -0,38454

10,0000 11,8089 -1,80890

4,0000 4,9073 -0,90732

The approximation function of observed values is uniform in the whole interval.

5. Conclusions

With the appearance of superhard tools, the possibility of precision machining
applications has significantly widened. The results reported in this paper should
help us to promote the economical application of CBN tools. Application of a new
tool life equation is suggested and its advantages have been shown, i.e. it is valid
for the whole range of the cutting speed, it considers the joint influence of

100 S. FEGYVERNEKI, A. KÖREI, J. KUNDRÁK

technological data elements, and it can be applied in practice with our Matlab user
interface. This interface is simple, quick, accurate and user friendly.

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-
2010/0001 project with support by the European Union, co-financed by the
European Social Fund.

REFERENCES

[1] ADESTA, E.Y.T., AL HAZZA, M., RIZA, M., AGUSMAN, D.: Tool Life Estimation
Model Based on Simulated Flank Wear during High Speed Hard Turning. European

Journal of Scientific Research, 39, 2010, pp. 265-278.

 [2] BENO, J.: Theory of metal cutting, (in Slovakian) Edition Vienala Kosice, 1999.

[3] FORST, W., HOFFMANN, D.: Optimization - Theory and Practice, Springer-Verlag,
Berlin, 2010.

[4] HORVÁTH, M.: Computer Aided Planning of Part Machining Processes, DSc thesis (In

Hungarian), MTA SZTAKI Tanulmányok, Budapest, 169/1985.

[5] KARPAT YIGIT; OEZEL TUGRUL: Multi-objective optimization or turning processes
using neural network modeling and dynamic-neighborhood particle swarm
optimization Int. J. Advance Manufacturing Technology, 35, Issue: 3-4, 2007,
pp. 234-247.

[6] KUNDRÁK, J.: The scientific principles of increasing the effectiveness of inner
surfaces’ cutting with CBN Tools, DSc thesis (In Russian) Kharkov, 1996.

[7] MAMALIS, A. G., KUNDRÁK, J., HORVÁTH, M.: Wear and Tool Life of CBN Cutting
Tools. Int. J. Advance Manufacturing Technology, 20, pp. 475–479, 2002.

[8] MAMALIS, A. G. KUNDRÁK, J. HORVÁTH, M.: On a novel tool life relation for
precision cutting tools. J. Manuf. Sci. Eng., 127, 2005, pp. 328–332.

[9] ROY R.; MEHNEN J.: Dynamic multi-objective optimisation for machining gradient

materials CIRP ANNALS-MANUFACTURING TECHNOLOGY, 57, Issue: 1, 2008,
pp. 429-432.

[10] TAYLOR, F. W.: On the art of metal cutting, Transaction of the ASME, V.28, (1901).

[11] TÓTH, T.: Automated technical planning in production engineering, DSc thesis (In

Hungarian), Miskolc, 1988.

Production Systems and Information Engineering
Volume 6 (2013), pp. 101-112

101

EFFICIENT 2D SOFTWARE RENDERING

PETER MILEFF
University of Miskolc, Hungary

Department of Information Technology
mileff@iit.uni-miskolc.hu

JUDIT DUDRA
Bay Zoltán Nonprofit Ltd., Hungary
Department of Structural Integrity
judit.dudra@bay-zoltan.hu

[Received March 2012 and accepted September 2012]

Abstract. The market of computer graphics is dominated by GPU based
technologies. However today’s fast central processing units (CPU) based on
modern architectural design offer new opportunities in the field of classical
software rendering. Because the technological development of the GPU
architecture almost reached the limits in the field of the programming model, the
CPU-based solutions will become more popular in the near future. This paper
reviews the problems and opportunities of two-dimensional rendering from a
practical point of view. An efficient, software based rasterization method is
presented for textures having a transparent color component. The applicability of
the solution is proved through measurement results compared to other methods
and the GPU based implementation.

Keywords: real-time rendering, software rasterization, optimization

1. Introduction

Computer graphics has gone through dramatic improvements over the past few
decades, where an important milestone was the appearance of the graphic
processors. The main objective of the transformation was to improve graphical
computations and visual quality. Initially, the development process of the central
unit was far from being a fast paced evolution like today. So based on industry
demands, there was a need for dedicated hardware which takes over the
rasterization task from the CPU.
Graphical computations have different requirements from the other parts of the
software. This allowed for the graphics hardware to evolve independently from the
central unit opening new opportunities before developers, engineers and computer
games. From the perspective of manufacturers and industry, primarily speed came
to the fore against programming flexibility and robustness. So in recent years the

102 P. MILEFF, J. DUDRA

development of videocard technology focused primarily on improve the
programmability of its fixed-function pipeline. As a result, today's GPUs have
quite effectively programmable pipeline supporting the use of high-level shader
languages (GLSL, HLSL, CG).
Nowadays, the technological evolution proceeds to a quite new direction
introducing a new generation of graphics processors, the general-purpose graphics
processors (GPGPU). These units are no longer suitable only to speed up the
rendering, but tend the direction of general calculations similarly to the CPU.
However, the problems of the GPU-based rasterization should be emphasized. The
applied model and the programming logic slowly reach its limits, the intensity of
progress is apparently decreasing. Even there are fast hardware supported pipeline
in current graphics cards, they do not provide the same level of flexibility to the
programmer to manage the rendering process as CPU based rendering. Although
the existing pipeline and 3D APIs provide many features for developers, if we
would like to deviate from the conventional operation, we encounter many
difficulties.
Today's GPU architecture is questionable and needs to be reformed, as leading
industrial partners strongly suggest [12,13]. The video card industry is currently
under development. For example AMD’s new Fusion technology (APU -
Accelerated Processing Units) represents a whole new generation by the integration
of the graphical processor and the central unit.
For the problem posed also by game industry leaders [12], the solution is to return
to the software rendering technique, where the display content should be
programmed logically and technically using the same language as the application.
This would permit creating a more flexible development environment driving
computer graphics to a new direction.
A good basis for this is provided by the huge revolution of the CPUs occuring in
recent years. Processor manufacturers have responded with extended instruction
sets to market demands making possible faster and mainly vectorized (SIMD)
processing also for central units. Almost every manufacturer has developed its own
extension e.g. the MMX and SSE instruction family which are developed by Intel
and supported by nearly every CPU. Due to new technologies, a software can reach
about 2-10x speedup by exploiting properly the hardware instruction set.
This paper investigates practical realization questions of two-dimensional software
rasterization. A special optimization solution is presented, which helps to improve
the non GPU based rendering for transparent textures.

2. Related work

The software based image synthesis has existed since the first computers and it has
been focused even more with the appearance of personal computers until about
2003. After this time almost all the rendering techniques become GPU based.
However there were born many interesting software renderers during the early
years. The most significant results were the Quake I, Quake II renderers in 1996

 EFFICIENT 2D SOFTWARE RENDERING 103

and 1998, which are the first real three-dimensional engine [8]. The rendering
system of the engines was brilliant compared to the current computer technology
and was developed by the coordination of Michael Abrash. The engine was
typically optimized for the Pentium processor family taking advantage of the great
MMX instruction set. The next milestone of computer visualisation was the Unreal
Engine in 1998 with its very rich functionality the time (colored lightning,
shadowing, volumetric lighting, fog, pixel-accurate culling, etc) [12]. Today Unreal
technology is a leader in the area of computer graphics.
After the continuous headway of GPU rendering software rasterization was
increasingly losing ground. Fortunately there are some notable great results also
today, such as the Swiftshader by TrasGaming [2] and the Pixomatic 1, 2, 3
renderes [14] by Rad Game Tools. Both products are very complex and highly
optimized utilizing the modern threading capabilities of today’s Multicore CPUs.
The products have dynamically self-modifying pixel pipelines, which maximises
rendering performance by modifing its own code during runtime. In addition,
Pixomatic 3 and Swiftshader are 100% DirectX 9 compatible. Unfortunately, since
these products are all proprietary, the details of their architectures are not released
to the general public.
Microsoft supported the spread of GPU technologies by the development of
DirectX, but beside of this its own software rasterizer (WARP) has been
implemented. Its renderer scales very well to multiple threads and it is even able to
outperform low-end integrated graphics cards in some cases [3].
In 2008 based on problem and demand investigations, Intel aimed to develop an
own software solution based videcard within the Larrabee project [5]. The card in
technological sense was a hybrid between the multi-core CPUs and GPUs. The
objective was to develop an x86 core (many) based fully programmable pipeline
with 16 byte wide SIMD vector units. The new architecture made possible to
graphic calculations to be programmed in a more flexible way than GPUs with x86
instruction set [4].
Today, based on the GPGPU technology, a whole new direction is possible at a
software rendering. Loop and Eisenacher [2009] describe a GPU software renderer
for parametric patches. Freepipe Software rasterizer [Liu et al. 2010] focuses on
multi-fragment effects, where each thread processes one input triangle, determines
its pixel coverage and performs shading and blending sequentially for each pixel.
Interestingly, recent work has also been done by NVidia to create a software
pipeline which runs entirely on the GPU using the CUDA software platform [7].
The algorithm uses the popular tile-based rendering method for dispatching the
rendering tasks to GPU. Like any software solution, this allows additional
fexibility at the cost of speed.
A new SPU (Cell Synergistic Processor Unit) based deferred rendering process has
been introduced in today's leading computer game, Battlefield 3[13]. Its graphical
engine, Frostbite 2 engine makes possible to handle large number of light sources
effectively and optimized.

104 P. MILEFF, J. DUDRA

In publication [1] a modern, multi-thread tile based software rendering technique
was outlined where only the CPU has been used for calculations and had great
performance results.
Thus, recent findings clearly support the fact that CPU-based approaches are ready
to come back in order to improve performance and flexibility. So, the aim of this
publication is to investigate performance in the area of the 2D software rendering
utilizing today CPUs.

3. Software rendering in practice

Software rasterization is the process, where the entire image rendering is carried
out by the CPU instead of a target hardware (e.g. GPU unit). The main memory
stores the shape assembling geometric primitives in in the form of arrays,
structures and other data. The logic of image synthesis is very simple: the central
unit performs the required operations (coloring, texture mapping, color channel
contention, rotating, stretching, translating, etc.) on data stored in main memory,
then the result is mapped into the framebuffer and the completed image are sent to
the video controller. Framebuffer is an area in memory which is being streamed by
display hardware directly to the output device. Usually it is on video card, but can
be mapped into address space of the application and accessed directly like normal
RAM.
Software image synthesis has many advantages over the GPU-based technology.
As the CPU performs the whole processing, there is less need to worry about
compatibility issues because we do not have to adapt to any special hardware, or
follow its versions. The image synthes can be programmed uniformly using the
same language like the application, so there is no restriction on the data (e.g.
maximum texture size) and the processes compared to GPU language shader
solutions. Every part of the entire graphics pipeline can be programmed
individually. Preparing the software to several platform causes less problems
because displaying always goes through the operating system controller, there is no
need for special video card driver.
Developing a fast software renderering engine requires lower level programming
languages (e.g. C, C++, D) and higher programming skills. Because of the utilized
techniques it is necessary to use operating system-specific knowledge and codings.
A typical example is when the framebuffer should be copied into the video card’s
memory for displaying. To support this data transfer, several solutions are
developed in practice.
Firstly, we can use the operating system routines for framebuffer transfer, but it is
strongly platform-dependent. This method requires writing the bottom layer of the
software separately for all the operating systems. A more elegant solution is to use
the OpenGL’s platform-independent (e.g. glDrawPixels, texture) [6] or the DirectX
(e.g. DirectDraw surface, texture) solutions.

 EFFICIENT 2D SOFTWARE RENDERING 105

4. 2D software rendering solutions

Two-dimensional visualization plays an important role beside today's modern
three-dimensional rasterization. We can say that the world moved to the direction
of the field of 3D vizualization, but the two-dimensional solutions have always
been and will be present as a complementary technique. Several layers of the
computer applications belong here: any software that has some kind of graphical
menu or windowing system, and mainly the two-dimensional computer games.
There are always attempts to make menu systems more illustrative using three
dimensional graphics, but these solutions usually return to 2D mapping. The
rendering speed at these systems is not critical compared to today’s system
performance. Mostly a small number of static images vary, other transformations
(e.g. rotate, stretch, etc.) are not very typical.
In computer games the rasterization performance requirements are the opposite of
this. Generally a large number of continuously changing and moving sets of objects
have to be rendered, which consumes significant system resources. Typical features
of today's systems are high screen resolution, large texture sets, animations and
transformations to reach a higher user experience.
In the following several 2D rasterization techniques are presented, which make it
possible to develop a high performance and robost software-based rendering
system.

4.1 Classical 2D rendering

The classical two-dimensional software rasterization has to solve a great number of
difficulties. The main disadvantage of the GPU-based solutions is that there is no
special hardware for rendering, any calculation should be done on the CPU.
The basic building blocks of 2D rendering are two-dimensional images (textures)
and objects (animations). The graphics engine is responsible for image generation,
it takes objects one by one and draws them into the framebuffer. So the final image
is created as a combination of these. In all cases, textures are stored in the main
memory represented as a block of arrays. Arrays contain color information about
the objects, their size depends on the quality of the texture. Today software works
with 32-bit (4 bytes - RGBA) type color images, where image resolution can be up
to 1024x768 pixels depending on the requirements of the items to be displayed.
Textures can be classified into two main groups based on the color channels
included: there are visual elements with and without alpha channel (A). The
distinction is important because the displaying process, the potential acceleration
techniques differ in these two groups.

4.1.1 Rendering textures without alpha channel

Textures without alpha channel lack transparency and only have RGB color
components. This means that any two objects can draw on each other without

106 P. MILEFF, J. DUDRA

merging any colored pixels of the overlapping objects. The rendering process will
be faster and simpler.
The classical mechanism for drawing any type of texture is the per-pixel
rasterization (just like in 3D area), which is slow in terms of today’s high quality
requirements. The graphical engine asses through the graphical objects pixel by
pixel and generates the final image. The disadvantage of this is that many elements,
which can also consist of many points, have to be drawn on the screen. The per-
pixel drawing requires thousands of redundant computations and function calls. In
case of each pixel the color information should be read from memory, then
depending on the environmental data its position should be determined and finally
the color should be written into the framebuffer (e.g. pFrameBuffer[
y * screenWidth + x] = color). So the pixel-by-pixel realization is not enough to
provide a fast solution because too many small operations are performed, which
consumes CPU resources. In a real-time computer game up to 100 different
moving objects should be drawn simultaneously to the screen.
In order to achieve the appropriate speed, additional solutions and optimizations
are needed. In case of textures without alpha channel, the solution is relatively
simple. Move the picture array at once in one or more blocks into the frame buffer
and not pixel by pixel. So the main objective of a rendering optimization (for 3D as
well) is to try to perform all the operations in blocks as wide as possible. This
minimizes unnecessary movement of data and calculations. The following figure
shows the process:

Figure 1. Block oriented texture copy

In this case drawing means that the central blocks of the main memory are copied
to a specified area of the framebuffer using system level memory copy operations
(e.g. C - memcpy()). The solution can achieve significant performance speedup.
However, the method is not complete. The reason is that at pixel level rasterization
screen bounding check calculations can be performed easily, but in case of block

 EFFICIENT 2D SOFTWARE RENDERING 107

oriented rendering the data blocks should be segmented based on the object’s
position. If any object locates out of the screen bounding rectangle in any direction,
a viewport culling should be performed. Although it requires further calculations,
the solution remains still fast enough.

4.1.2 Rendering textures with alpha channel

Textures having also a fourth, alpha (A) color channel belong to another group of
images. The role of this type of images has increased today, they are used in many
areas in order to improve visualization experience (e.g. window shadows,
animations with blurred edges, semi-transparent components, etc.). Handling this
extra information is not more complicated, but more computing-intensive. The
reason is that transparent and non-transparent areas can arbitrarily vary within a
texture image (e.g. character animation, particle effects, etc.). Due to this the
rendering process is made at per-pixel level because transparent or semi-
transparent parts of the objects should be merged with the overlapped pixels. As
mentioned earlier, basically the procedure is not very computation intensive, but in
systems working with large amounts of objects and larger textures, the solution
performance will be insufficient. The following diagram illustrates the problem:

Figure 2. Overlapping RGBA textures

4.2 RLE like object rendering

The above implies that the main problem of two-dimensional software rasterization
is to handle semi-transparent textures or textures with ‘hole’ areas in a performance
friendly way. In the following we present a technique which offers an efficient
solution to this problem at the cost of some compromises.
It is foreseeable from the above that a process needs to be developed which
somehow tries to take advantage of block-based visualization capabilities handling

108 P. MILEFF, J. DUDRA

pixels in blocks. To resolve this issue, let us start from the investigation of a typical
texture. If we analyze pixels, we can see immediately that the majority of images
have parts where the colors of adjacent pixels are equal to each other or there are
fully transparent areas. This provides a good basis to develop an algorithm with a
custom data structure, which works like RLE (Run-length Encoding) encoding and
can group the same color and adjacent pixels into blocks.

4.2.1 Texture pre-processing

The basic idea of the solution is to collect the same colored pixels into blocks. This
requires pre-processing operations for all the loaded textures. During the process
the appropriate describing data structure will be established, which helps
performing the block oriented rendering in the rasterization stage. The following
figure shows the steps and logic of the pre-processing task.

Figure 3. Preparing textures for block oriented rendering

The figure illustrates that an even more complex structure is needed to store the
color blocks. Pre-processing is performed row by row, where a separate block is
created for all the coherent sets of pixels. For this the following should be stored:
color and length of the group, whether the group is transparent or not, and finally a
pointer pointing to the first pixel in the original texture address space. Moreover a
global data structure should be prepared, which stores the precalculated color
groups in rows, their counts and a pointer to the original texture memory space.
The proper implementation of the storage is especially important because in case of
systems containing a large amount of objects, the number of loops, function calls,
and operations are significant and slow down the rendering process.

4.2.2 The rendering process

During the rasterization stage object mapping is performed by the prepared data
structure. This data makes it possible that while the image has ‘holes’ (fully
transparent parts), a color group oriented block based blitting can be achieved on the

 EFFICIENT 2D SOFTWARE RENDERING 109

framebuffer. The result is that the rendering performance of images with alpha-
channel can be considerably increased. The rasterization will consist of so many
blocks as many were created during the texture pre-processing stage. In addition, the
rasterization is performed row by row. One reason is that the framebuffer has been
implemented in a row oriented form like in most systems, so a row is a logical unit.
Another reason is that each object can overrun the screen. Although the colors are
grouped, parts that are out of screen should be culled during the rasterization.
The row based approach results again in a speed improvement here because if the
beginning or the end of the row is out of the screen, other parts (groups) of the row
should not be checked. This prevents performing additional computions. The
following code summarizes the drawing process as a sample.

CFrameBuffer* framebuffer = g_Graphics->GetFrameBuffer();

 for(unsigned int i=0; i < row_group.size(); i++){

 vector<CRLEColor*> image_row = row _group[i];

 for(unsigned int j=0; j < image_row.size(); ++j){

 CRLEColor * c = image_row[j];

 if (c->invisible == false){

 framebuffer->BlitArray(c->offset,c->length,pos.x+c->x,pos.y+c->y);

 }}}

4.3 Test results

The following section presents the performance differences of the rasterization
techniques with the help of three test cases. The test programs were written using
the C++ language applying the GCC 4.4.1 compiler and the measurements were
performed by an Intel Core i7 870 2.93 GHz CPU. The chosen screen resolution
and color depth were 800x600x32 in windowed mode.
Because of the results’ validity we considered it important to implement all the test
cases with the GPU based technology as well. With this reference value, the
relative performance ratio of the methods will be visible and clear. The hardware
used for the test was an ATI Radeon HD 5670 with 1 GB RAM. To display the
framebuffer, the OpenGL glDrawPixels solution was applied in an optimized form.
The GPU based reference implementation was also developed with the OpenGL
API, where all visual elements were stored in the high-performance video memory
and the VBO (Vertex Buffer Object) extension was applied for the rendering.
Currently, VBO is the fastest texture rendering method in the GPU area.
The alpha-channel images used in the tests contained an average number of
transparent pixels.

Test case 1: during the test we were looking for an answer to the question of how
the presented methods can handle a relatively big texture. Although the RLE-based
solution logically does not fit this example because the picture does not contain
transparent areas, it is advisable to perform this measurement.

110 P. MILEFF, J. DUDRA

Test case 2: the aim of this test is to measure the speed of the RLE based rendering
implementation against the classical method in case of an average size (256x256)
image with alpha-channel. The fully block oriented approach cannot be used for
this type of images.

Test case 3: in test three a heavily loaded rendering system was simulated applying
200 64x64 size RGBA type textures.

During the tests the average Frame Rate (Frames Per Second) was recorded at least
one minute run-time. The following Table contains the results for all test cases.

Table 1. Benchmark results

Speed of rasterization methods (FPS)

Count

Pixel

level

Block

oriented

RLE

based

GPU based reference

implementation

800x600 texture 1 119 1290 1224 3522
256x256 texture

 (with alpha)
1 910 - 1798 3689

64x64 texture

(with alpha)
200 143 - 794 1690

The findings demonstrate that pixel-level rendering was proved to be the slowest
because of the large number of operations. However the RLE based approach has
good results in all test cases. The frame rate was only lower in the first test,
because RLE based rendering requires extra data structures and loops to rasterize
the image. This supports the fact well that moving pixels in larger blocks results in
significant performance improvements.
Naturally the GPU based implementation produces always the fastest frame rate.
But we must not forget that in this case the calculations are carried out by the
dedicated hardware. All the data are stored in video ram, so there is no need to
move data between the main memory and GPU memory.

4.4 Other optimization issues and features

Developing a really fast software renderer is not an easy task. During the
implementation the programmer should take care of several seemingly small
coding tricks, which have a strong influence on the performance. For example
current 3D hardware is highly optimized for texture and vertex uploads, but
framebuffer transfers have been neglected. Therefore the first optimization
technique is to implement the framebuffer as an uint32_t type array and not as a
floating-point or unsigned char type buffer. This storage type makes it possible to
handle all the color components of a single pixel in one unsigned integer type
variable, in one single block (e.g. color = A << 24 | R << 16 | G << 8 | B). With
this modification at least 20% speed improvement can be achieved.

 EFFICIENT 2D SOFTWARE RENDERING 111

The built-in data structures (e.g. vector) provided by the C++ STL library are slow,
it is not practical to use them [11]. The number of array iterations and unnecessary
assignments should be minimized. To detect bottlenecks in the code, use a Profiler
application and the component of the compiler which can display the assembly
code of a specific code section. These can help to localize the problematic code
segments.

Conclusion and further work

Although today's computer graphics is dominated by the GPU market, we cannot
forget the opportunities offered by software based image synthesis. The central
units have undergone a huge revolution during the recent years, which makes it
possible to turn back to CPU based image rasterization in order to gain more
flexibility. The techniques presented in this article highlight that developing a
really fast software renderer requires a great deal of effort. It is essential to
combine several technologies and to use lower-level languages (e.g. C, C++, D) for
programming.
This paper discussed software rendering solutions in two-dimensional space. Our
further objective is to perform a comprehensive analysis of the triangle
rasterization problems and optimization techniques in the area of 3D computer
graphics.

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-
0001 project with support by the European Union, co-financed by the European
Social Fund.

REFERENCES

[1] ZACH, B.: A Modern Approach to Software Rasterization. University Workshop,
Taylor University, 14. dec 2011.

[2] TRANSGAMING INC: Swiftshader Software GPU Toolkit, 2012.

[3] MICROSOFT CORPORATION: Windows advanced rasterization platform (warp) guide.
2012.

[4] ABRASH, M.: Rasterization on larrabee. Dr. Dobbs Portal, 2009.

[5] SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T., ABRASH, M., DUBEY, P.,
JUNKINS, S., LAKE, A., SUGERMAN, J., CAVIN, R., ESPASA, R., GROCHOWSKI, E.,
JUAN, T., HANRAHAN, P.: Larrabee: a many-core x86 architecture for visual

computing. ACM Transactions on Graphics (TOG) - Proceedings of ACM
SIGGRAPH 2008 Volume 27 Issue 3, August 2008.

[6] ROST, R.: The OpenGL Shading Language. ADDISON WESLEY, 2004.

112 P. MILEFF, J. DUDRA

[7] LAINE, S., KARRAS, T.: High-Performance Software Rasterization on GPUs. High
Performance Graphics, Vancouver, Canada, aug 5. 2011.

[8] AKENINE-MÖLLER, T., HAINES, E.: Real-Time Rendering, A. K. Peters. 3nd Edition,
2008.

[9] SUGERMAN, J., FATAHALIAN, K., BOULOS, S., AKELEY, K., AND
HANRAHAN, P.: Gramps: A programming model for graphics pipelines. ACM
Trans. Graph. 28, 4:1–4:11, 2009.

[10] FANG, L., MENGCHENG H., XUEHUI L., ENHUA W.: FREEPIPE: A Programmable,

Parallel Rendering Architecture for Efficient Multi-Fragment Effects. In Proceedings
of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2010.

[11] AGNER, F.: Optimizing software in C++ An optimization guide for Windows, Linux

and Mac platforms. Study at Copenhagen University College of Engineering,
2011.06.08.

[12] SWENNEY, T.: The End of the GPU Roadmap. Proceedings of the Conference on High
Performance Graphics, pp. 45-52, 2009.

[13] COFFIN, C.: SPU-based Deferred Shading for Battlefield 3 on Playstation 3. Game
Developer Conference Presentation, March 8, 2011.

[14] RAD GAME TOOLS: Pixomatic advanced software rasterizer, 2012.

Production Systems and Information Engineering
Volume 6 (2013), pp. 113-120

113

EVALUATION OF DATA OF FLATNESS MEASUREMENT

SÁNDOR FEGYVERNEKI
University of Miskolc, Hungary

Department of Applied Mathematics
matfs@uni-miskolc.hu

FERENC NAGY
University of Miskolc, Hungary

Department of Applied Mathematics
matnf@uni-miskolc.hu

PÉTER RAISZ
University of Miskolc, Hungary

Department of Applied Mathematics
matrp@uni-miskolc.hu

[Received March 2012 and accepted September 2012]

Abstract. The main point of the milling technology in this paper we are dealing
with is that a horizontal rod - of the same breadth as the ingot – ‘sits up’ onto the
highest point of the ingot, and at a given distance (depth) d the surface is milled
down. The task to be solved is the determination of this distance d in such a
way that the depth of the milling should be at least 8 mm even at the lowest point
of the surface.

Keywords: aluminium alloys, depth of the milling

1. Introduction

From aluminium alloys so-called rolling ingots are made to be rolled. The profiles
and lengths of the ingots are varied. One of the worst defects arising in the course
of rolling is the surface blistering caused by the accumulation of unwanted
elements. According to the standpoint of the majority of experts, this accumulation
may occour to a higher extent on the surface of the ingots, thus the outer surface is
to be removed. If this removal is not of the sufficient extent, then the chance of
arising surface blistering is higher, while if the extent of the removal is exorbitant,
then it cuts the output down substantially. The two ends and the sides are sawed
off (by circular or endless saw), while on the sides of the largest surface the
unwanted zone is removed by milling [3].

114 S. FEGYVERNEKI, F.NAGY, P.RAISZ

The main point of the milling technology is that a horizontal rod - of the same
breadth as the ingot – ‘sits up’ onto the highest point of the ingot, and at a given
distance (depth) d the surface is milled down.

The task to be solved is the determination of this distance d in such a way that the
depth of the milling should be at least 8 mm even at the lowest point of the surface.
The task is easier to understand when looking at the picture of the ingots waiting
for measurement.

2. Measurement, Processing Data

Figure 1. Flatness measurement

The surface to be treated can be observed much better in Figures 2 and 3.

 FLATNESS MESUREMENT 115

Figure 2. The face of an ingot

A zoomed part of this ingot is in Figure 3.

Measurements were performed on the surface of the ingots by a laser device. The
accuracy of the measurements was 0.01 mm. There were two-two sequences of
measurements for each of the 10 faces of 5 aluminum ingots, in 5 x 10 point per
faces. The first sequence of measurements gave in five-five points transversely the
vertical deviations with respect to the left-wing edge, while the second sequence
lengthwise in ten-ten points the vertical deviations with respect to the first edge.

116 S. FEGYVERNEKI, F.NAGY, P.RAISZ

Figure 3. A zoomed part of the ingot from Figure 2

Table 1. Here are the data for one face of an ingot as an illustration

 Ingot A face A

405 cm -3.43 -0.64 -3.61 -1.86 -1.33

360 cm -1.85 -1.3 -5.11 -1.83 -1.32

315 cm -1.65 -1.21 -4.27 -3.02 -1.73

270 cm -1.48 -1.24 -4.05 -2.84 -1.4

225 cm -0.72 -0.34 -2.77 -1.73 -0.55

180 cm 0.07 0.25 -1.35 -0.82 0.22

135 cm 0.89 0.99 -0.01 0.34 1.03

90 cm -3.3 1.36 0.71 1.01 1.62

45 cm 1.45 1.15 0.86 0.88 1.33

0 cm 0 0 0 0 0

 x0 x1 x2 x3 x4

 FLATNESS MESUREMENT 117

The problem was to decide with a satisfactory safety, whether the present
technology – the sensor of the milling machine is a rod laid on the peaks of the face
– is able to ensure the required minimal milling depth (at least 8 mm).

Processing the data the following steps were performed:
1. The vertical deviations with respect to the first left-hand point were

calculated.
2. The maximum of each row was determined.
3. The minimum of each face was calculated.
4. For each row the difference of the row-maximum and the face-minimum

were calculated.

Thus the results for the previous face A of ingot A are the following:

Table 2. The calculated results for the previous face A of ingot A

Ingot A face A

 Row-max absmin difference

-3.43 -2.38 -4.4 -4.26 -2.66 -2.38 -7.78 5.4

-1.85 -3.94 -7.78 -4.69 -1.26 -1.26 -7.78 6.52

-1.65 -3.76 -6.95 -6.28 -2.23 -1.65 -7.78 6.13

-1.48 -4.18 -7.04 -6.57 -2.44 -1.48 -7.78 6.3

-0.72 -2.91 -5.71 -5.21 -1.39 -0.72 -7.78 7.06

0.07 -2.44 -4.19 -4.57 -0.82 0.07 -7.78 7.85

0.89 -1.28 -2.08 -2.89 0.91 0.91 -7.78 8.69

-3.3 -1.02 -1.94 -2.37 1.51 1.51 -7.78 9.29

1.45 -1.58 -1.8 -2.39 0.94 1.45 -7.78 9.23

0 -2.58 -2.67 -2.87 -0.79 0 -7.78 7.78

It is to be mentioned that in the above model the row-max was chosen from the 5
measured data, while the face minimum was chosen from the 50 measured data.
Thus the actual deviation is somewhat greater, but a more precise estimation could
be reached only by a much more time-consuming and more expensive sequence of
measurements. Both the experience and the photos of the ingots support the
supposition of the independence of these data. Therefore we considered them as the
elements of a sample (VAR1) [2].

118 S. FEGYVERNEKI, F.NAGY, P.RAISZ

 VAR1

 5.400 6.520 6.130 6.300 7.060 7.850 8.690 9.290 9.230
 7.780 7.090 6.420 7.970 6.440 6.170 5.860 5.680 5.150
 6.010 7.460 5.160 4.640 4.600 4.430 4.240 4.030 3.800
 3.870 4.290 5.210 4.000 4.710 4.910 5.350 5.580 6.080
 6.330 6.320 6.080 4.960 4.400 5.210 4.690 4.820 4.560
 4.000 4.530 4.140 4.580 5.450 4.510 4.470 4.800 5.260
 5.730 6.320 6.870 7.080 6.950 6.240 3.740 4.940 4.970
 5.050 5.310 4.760 3.690 3.780 4.480 5.270 5.100 4.950
 5.200 5.400 5.790 6.360 6.840 7.040 6.890 6.210 3.250
 3.640 4.090 4.250 4.550 5.090 5.260 5.310 5.830 5.380
 3.260 2.620 2.850 3.230 4.190 3.370 3.730 4.240 4.410
 4.990

3. Statistical Results

Since at the beginning of the machining the measuring rod sits onto the maximum
point of the first edge and even from the lowest point 8 mm milling is required,
thus VAR1 can be treated as 100 ingot-faces.

Some of the descriptive statistics of sample VAR1 by Statistica for windows 9 [2]:

Sample size 100

Mean 5.310100

Confidence interval (95%) 5.046214 5.573986

Median 5.155000

Minimum 2.620000

Maximum 9.290000

Range 6.670000

Lower quartile 4.420000

Upper quartile 6.190000

Quartile range 1.770000

Variance 1.768700

Standard deviation 1.329925

Skewness 0.681855

Kurtosis 0.575884

 FLATNESS MESUREMENT 119

On the basis of these statistics and considering the histogram, we performed tests
for distribution fitting for normal (Gaussian), lognormal, gamma, extreme value
and Weibull distributions [1].

Using �2-test for the distribution fitting for lognormal distribution, the value of the
�2-statistic is 2.246493, with degree of freedom 8. For the other plausible
distributions the �2-statistics are greater.

Considering the density histogram, the above statistics and the �2-test, we can
consider the sample VAR1 as of lognormal distribution [2].

Histogram (alu2.STA 1v*100c)

 y = 100 * 0.606364 * lognorm (x, 1.639196, 0.248414)

VAR1

N
o

 o
f

o
b

s

0

2

4

6

8

10

12

14

16

18

20

22

<= 3.226
(3.226,3.833]

(3.833,4.439]
(4.439,5.045]

(5.045,5.652]
(5.652,6.258]

(6.258,6.865]
(6.865,7.471]

(7.471,8.077]
(8.077,8.684]

> 8.684

Figure 4. The frequency histogram was made using Statistica for Windows

The practical consequence of this statement can be demonstrated by some
examples [2]:

If the distance of the measuring rod and the face-minimum is supposed to be 9 mm,
then it will be right in 98.76 % of the cases.

If the distance of the measuring rod and the face-minimum is supposed to be 8 mm,
then it will be right in 96.18 % of the cases.

If the distance of the measuring rod and the face-minimum is supposed to be 7 mm,
then it will be right in 89.15 % of the cases.

120 S. FEGYVERNEKI, F.NAGY, P.RAISZ

Approaching the situation from the point of view of reliability, we get the
following values.

To get a 99% reliability, the distance of the measuring rod and the face -minimum
should be supposed to be 9.180 mm,

To get a 98% reliability, the distance of the measuring rod and the face -minimum
should be supposed to be 8.580 mm,

To get a 95% reliability, the distance of the measuring rod and the face -minimum
should be supposed to be 7.751 mm,

To get a 90% reliability, the distance of the measuring rod and the face -minimum
should be supposed to be 7.082 mm,

Subsequently seven sequences of measurements were performed – under
various conditions – and the measured data fully supported the
abovementioned inferences [1].

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-
2010/0001 project with support by the European Union, co-financed by the
European Social Fund.

REFERENCES

[1] FEGYVERNEKI, S.: Robust estimators and probability integral transformation, Math.
Comput. Modelling, 38, (2003), pp. 803-814.

 [2] JOHNSON, J. L.: Probability and Statistics for Computer Science, Wiley New York,
2008.

 [3] FEGYVERNEKI, S., RAISZ, P.: Sampling from delivered scrap, Report (in English) -
ALCOA-KÖFÉM Kft. Öntöde Üzletág, (2008), pp.1-29.

