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Abstract. In the present work our main objective is to determine the radii of k− starlikeness of

order α of the some normalized Struve and Lommel functions of the first kind. Furthermore it has

been shown that the obtained radii satisfy some functional equations. The main key tool of our

proofs are the Mittag-Leffler expansions of the Struve and Lommel functions of the first kind and

minimum principle for harmonic functions. Also we take advantage of some basic inequalities

in the complex analysis.
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1. INTRODUCTION

It is well-known that there are numerous connections between geometric function

theory and special functions. Due to these close relationships many authors stud-

ied on some geometric properties of special functions like Bessel, Struve, Lommel,

Wright and Mittag-Leffler functions. Especially, the authors in the papers [3–5,7,14–

16, 19] have investigated univalence, starlikeness, convexity and close-to convexity

of the above mentioned functions. Actually, the beginning of these studies is based

on the papers [6,12,21] written by Brown, Kreyszig and Todd and Wilf, respectively.

Also the authors who studied the geometric properties of special functions have used

some properties of zeros of the mentioned special functions. For comprehensive

information about the zeros of these functions, we refer to the studies [17, 18, 20].

Motivated by the earlier investigations on this field our main goal is to determine

the radii of k-starlikeness of the normalized Struve and Lommel functions of the first

kind. Morever, we show that our obtained radii are the smallest positive roots of some

functional equations. Also, for some special values of k and α we obtain some earlier

results given by [1–3].

Now we would like to remind some basic concepts in geometric function theory.

© 2021 Miskolc University Press
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Let Dr be the open disk {z ∈ C : |z| < r} with radius r > 0 and D1 = D. Let A

denote the class of analytic functions f : Dr → C,

f (z) = z+ ∑
n≥2

anzn,

which satisfies the normalization conditions f (0) = f ′(0)−1 = 0. By S we mean the

class of functions belonging to A which are univalent in Dr. The class of k-starlike

functions of order α is denoted by ST (k,α), where k ≥ 0 and 0 ≤ α < 1. This class

of functions was introduced by Kanas and Wiśniowska [10, 11] which generalizes

the class of uniformly convex functions introduced by Goodman in [8]. On the other

hand, Kanas and Srivastava defined a linear operator and determined some conditions

on the parameters for which this linear operator maps the classes of starlike and

univalent functions onto the classes k−uniformly convex functions and k−starlike

functions in [9]. Very recently, Srivastava gave comprehensive information about the

usages of q−analysis in geometric function theory of complex analysis in his survey-

cum-expository article [13]. Srivastava’s work in particular inspired us to prepare this

paper.

Analytic characterization of the class k-starlike functions of order α is

ST (k,α) =
{

f ∈ S : ℜ

(

z f ′(z)
f (z)

)

> k

∣

∣

∣

∣

z f ′(z)
f (z)

−1

∣

∣

∣

∣

+α,k ≥ 0,0 ≤ α < 1,z ∈ D

}

.

Also, the real number

r( f ) = sup

{

r > 0 : ℜ

(

z f ′(z)
f (z)

)

> k

∣

∣

∣

∣

z f ′(z)
f (z)

−1

∣

∣

∣

∣

+α for all z ∈ D

}

is called the radius of k−starlikeness of order α of the function f .
The Struve and Lommel functions are defined as the infinite series

Hν(z) = ∑
n≥0

(−1)n

Γ
(

n+ 3
2

)

Γ
(

n+ν+ 3
2

)

( z

2

)2n+ν+1

, −ν− 3

2
/∈ N,

and

sµ,ν(z) =
(z)µ+1

(µ−ν+1)(µ+ν+1) ∑
n≥0

(−1)n

(µ−ν+3
2

)n(
µ+ν+3

2
)n

( z

2

)2n

,
1

2
(−µ±ν−3) /∈ N,

where z,µ,ν ∈ C. Also, we know that the Struve and Lommel functions are the

solutions of the inhomogeneous Bessel differential equations

zw′′(z)+ zw′(z)+(z2 −ν2)w(z) =
4
(

z
2

)ν+1

√
πΓ
(

ν+ 1
2

)

and

zw′′(z)+ zw′(z)+(z2 −ν2)w(z) = zµ+1,

respectively. One can find comprehensive information about these functions in [20].



RADII OF k-STARLIKENESS 7

Since the functions Hν and sµ,ν do not belong to the class A , first we consider the

following six normalized forms:

uν(z) =

(√
π2νΓ

(

ν+
3

2

)

Hν(z)

)
1

ν+1

, ν 6=−1, (1.1)

vν(z) =
√

π2νz−νΓ

(

ν+
3

2

)

Hν(z), (1.2)

wν(z) =
√

π2νz
1−ν

2 Γ

(

ν+
3

2

)

Hν(
√

z), (1.3)

fµ(z) =
(

µ(µ+1)sµ− 1
2
, 1

2
(z)
)

1

µ+ 1
2 , µ ∈

(

−1

2
,1

)

, µ 6= 0, (1.4)

gµ(z) = µ(µ+1)z−µ+ 1
2 sµ− 1

2
, 1

2
(z) (1.5)

and

hµ(z) = µ(µ+1)z
3−2µ

4 sµ− 1
2
, 1

2
(
√

z). (1.6)

As a consequence, all functions considered above belong to the analytic functions

class A .

2. MAIN RESULTS

Our first main result is related to the normalized Struve functions as follows.

Theorem 1. Let |ν| ≤ 1
2
, 0 ≤ α < 1 and k ≥ 0. Then, the following assertions are

true:

i. The radius ru is the radius of k−starlikeness of order α of the normalized

Struve function z 7→ uν and it is the smallest positive root of the equation

r(1+ k)H′
ν(r)− (k+α)(ν+1)Hν(r) = 0 (2.1)

in (0,hν,1), where hν,1 is the first positive zero of Struve function Hν.
ii. The radius rv is the radius of k−starlikeness of order α of the normalized

Struve function z 7→ vν and it is the smallest positive root of the equation

r(1+ k)H′
ν(r)− [ν(1+ k)+(k+α)]Hν(r) = 0 (2.2)

in (0,hν,1).
iii. The radius rw is the radius of k−starlikeness of order α of the normalized

Struve function z 7→ wν and it is the smallest positive root of the equation

(1+ k)
√

rH′
ν(
√

r)+(1−ν− k−νk−2α)Hν(
√

r) = 0 (2.3)

in (0,h2
ν,1).
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Proof. We know that the zeros of the functions Hν(z) and H′
ν(z) are real and

simple when |ν| ≤ 1
2
, (see [4, 17]). Also the zeros of the function Hν(z) and its

derivative interlace when |ν| ≤ 1
2
, according to [4]. In addition, it is known from [4]

that the Struve function Hν(z) has the following infinite product representation:

√
π2νz−ν−1Γ

(

ν+
3

2

)

Hν(z) = ∏
n≥1

(

1− z2

h2
ν,n

)

, (2.4)

where hν,n denotes n−th positive zero of the Struve function Hν. Using this product

representation one can easily see that

zu′ν(z)
uν(z)

= 1− 2

ν+1
∑
n≥1

z2

h2
ν,n − z2

, (2.5)

zv′ν(z)
vν(z)

= 1−2 ∑
n≥1

z2

h2
ν,n − z2

(2.6)

and
zw′

ν(z)

wν(z)
= 1− ∑

n≥1

z

h2
ν,n − z

. (2.7)

On the other hand, it is known from [19] that the inequality

ℜ

(

z

θ− z

)

≤ |z|
θ−|z| (2.8)

holds true for z ∈ C and θ ∈ R such that |z| < θ. Now, by using inequality (2.8) in

(2.5), (2.6) and (2.7), respectively, we get

ℜ

(

zu′ν(z)
uν(z)

)

= ℜ

(

1− 2

ν+1
∑
n≥1

z2

h2
ν,n − z2

)

≥ 1− 2

ν+1
∑
n≥1

|z|2

h2
ν,n −|z|2

(2.9)

=
|z|u′ν(|z|)

uν(|z|)
,

ℜ

(

zv′ν(z)
vν(z)

)

= ℜ

(

1−2 ∑
n≥1

z2

h2
ν,n − z2

)

≥ 1−2 ∑
n≥1

|z|2

h2
ν,n −|z|2

=
|z|v′ν(|z|)

vν(|z|)
(2.10)

and

ℜ

(

zw′
ν(z)

wν(z)

)

= ℜ

(

1− ∑
n≥1

z

h2
ν,n − z

)

≥ 1− ∑
n≥1

|z|
h2

ν,n −|z| =
|z|w′

ν(|z|)
wν(|z|)

. (2.11)

Also, from the reverse triangle inequality

|z1 − z2| | ≥ ||z1|− |z2||
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we have
∣

∣

∣

∣

zu′ν(z)
uν(z)

−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

− 2

ν+1
∑
n≥1

z2

h2
ν,n − z2

∣

∣

∣

∣

∣

≤ 2

ν+1
∑
n≥1

|z|2

h2
ν,n −|z|2

= 1− |z|u′ν(|z|)
uν(|z|)

,

(2.12)

∣

∣

∣

∣

zv′ν(z)
vν(z)

−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−2 ∑
n≥1

z2

h2
ν,n − z2

∣

∣

∣

∣

∣

≤ 2 ∑
n≥1

|z|2

h2
ν,n −|z|2

= 1− |z|v′ν(|z|)
vν(|z|)

(2.13)

and
∣

∣

∣

∣

zw′
ν(z)

wν(z)
−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

− ∑
n≥1

z

h2
ν,n − z

∣

∣

∣

∣

∣

≤ ∑
n≥1

|z|
h2

ν,n −|z| = 1− |z|w′
ν(|z|)

wν(|z|)
. (2.14)

As a result of the above inequalities, one can easily obtain that

ℜ

(

zu′ν(z)
uν(z)

)

− k

∣

∣

∣

∣

zu′ν(z)
uν(z)

−1

∣

∣

∣

∣

−α ≥ (1+ k)
|z|u′ν(|z|)

uν(|z|)
− (k+α), (2.15)

ℜ

(

zv′ν(z)
vν(z)

)

− k

∣

∣

∣

∣

zv′ν(z)
vν(z)

−1

∣

∣

∣

∣

−α ≥ (1+ k)
|z|v′ν(|z|)

vν(|z|)
− (k+α), (2.16)

and

ℜ

(

zw′
ν(z)

wν(z)

)

− k

∣

∣

∣

∣

zw′
ν(z)

wν(z)
−1

∣

∣

∣

∣

−α ≥ (1+ k)
|z|w′

ν(|z|)
wν(|z|)

− (k+α). (2.17)

It is important to emphasize here that the equalities in the last three inequalities hold

true for z = |z| = r. If we consider the minimum principle for harmonic functions in

the inequalities (2.15), (2.16) and (2.17), then we can say that these inequalities are

valid if and only if |z|< ru, |z|< rv and |z|< rw, where ru, rv and rw are the smallest

positive roots of the following equations

(1+ k)
ru′ν(r)
uν(r)

− (k+α) = 0,

(1+ k)
rv′ν(r)
vν(r)

− (k+α) = 0

and

(1+ k)
rw′

ν(r)

wν(r)
− (k+α) = 0,

respectively. Taking into account the definitions of the functions uν, vν and wν, it

can be easily seen that the last three equations are equivalent to (2.1), (2.2) and (2.3),

respectively. Now, we would like to show that equation (2.1) has an unique root on

the interval (0,hν,1). To show this, let us consider the function Ψν : (0,hν,1) 7→ R,

Ψν(r) = (1+ k)
ru′ν(r)
uν(r)

− (k+α) = (1+ k)

(

1− 2

ν+1
∑
n≥1

r2

h2
ν,n − r2

)

− (k+α).
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The function r 7→ Ψν(r) is strictly decreasing since

Ψ′
ν(r) =−4r(1+ k)

ν+1
∑
n≥1

h2
ν,n

(

h2
ν,n − r2

)2
< 0.

Morever, we have

lim
rց0

(1+ k)

(

1− 2

ν+1
∑
n≥1

r2

h2
ν,n − r2

)

− (k+α) = 1−α > 0

and

lim
rրhν,1

(1+ k)

(

1− 2

ν+1
∑
n≥1

r2

h2
ν,n − r2

)

− (k+α) =−∞.

As a result of these limit relations, we can say that equation (2.1) has an unique root

in (0,hν,1). Similarly, it can be shown that equations (2.2) and (2.3) have a root in

(0,hν,1) and (0,h2
ν,1), respectively. �

The following main result is regarding the normalized Lommel functions of the

first kind.

Theorem 2. The following assertions are true:

i. Let µ ∈ (−1
2
,1) and µ 6= 0. Then, the radius r f is the radius of k−starlikeness

of order α of the normalized Lommel function z 7→ fµ and it is the smallest

positive root of the equation

r(1+ k)s′
µ− 1

2
, 1

2

(r)− (k+α)(µ+
1

2
)sµ− 1

2
, 1

2
(r) = 0 (2.18)

in (0, lµ,1), where lµ,1 is the first positive zero of Lommel function sµ− 1
2
, 1

2
.

ii. Let µ ∈ (−1,1) and µ 6= 0. Then, the radius rg is the radius of k−starlikeness

of order α of the normalized Lommel function z 7→ gµ and it is the smallest

positive root of the equation

r(1+ k)s′
µ− 1

2
, 1

2

(r)+

(

(1+ k)(
1

2
−µ)− (k+α)

)

sµ− 1
2
, 1

2
(r) = 0 (2.19)

in (0, lµ,1).
iii. Let µ ∈ (−1,1) and µ 6= 0. Then, the radius rh is the radius of k−starlikeness

of order α of the normalized Lommel function z 7→ hµ and it is the smallest

positive root of the equation

2
√

r(1+ k)s′
µ− 1

2
, 1

2

(
√

r)+((1+ k)(3−2µ)−4(k+α))sµ− 1
2
, 1

2
(
√

r) = 0 (2.20)

in (0, l2
µ,1).
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Proof. It is known from [4, 18] that the Lommel function sµ− 1
2
, 1

2
and its derivative

s′
µ− 1

2
, 1

2

have only real and simple zeros when µ ∈ (−1,1) and µ 6= 0. Morever, the

zeros of the Lommel function sµ− 1
2
, 1

2
and its derivative s′

µ− 1
2
, 1

2

interlace under the

same conditions, according to [4]. Also, the Lommel function sµ− 1
2
, 1

2
can be written

as the product (see [4])

sµ− 1
2
, 1

2
(z) =

zµ+ 1
2

µ(µ+1) ∏
n≥1

(

1− z2

l2
µ,n

)

, (2.21)

where lµ,n denotes n−th positive zero of the Lommel function sµ− 1
2
, 1

2
. Using equality

(2.21), it can be easily seen that

z f ′µ(z)

fµ(z)
= 1− 2

1+ µ
2

∑
n≥1

z2

l2
µ,n − z2

, (2.22)

zg′µ(z)

gµ(z)
= 1−2 ∑

n≥1

z2

l2
µ,n − z2

(2.23)

and
zh′µ(z)

hµ(z)
= 1− ∑

n≥1

z

l2
µ,n − z

. (2.24)

Now, if we consider inequality (2.8) in the equalities (2.22), (2.23) and (2.24), re-

spectively, then we have that

ℜ

(

z f ′µ(z)

fµ(z)

)

= ℜ

(

1− 2

1+ µ
2

∑
n≥1

z2

l2
µ,n − z2

)

≥ 1− 2

1+ µ
2

∑
n≥1

|z|2

l2
µ,n −|z|2

(2.25)

=
|z| f ′µ(|z|)

fµ(|z|)
,

ℜ

(

zg′µ(z)

gµ(z)

)

= ℜ

(

1−2 ∑
n≥1

z2

l2
µ,n − z2

)

≥ 1−2 ∑
n≥1

|z|2

l2
µ,n −|z|2

=
|z|g′µ(|z|)

gν(|z|)
(2.26)

and

ℜ

(

zh′µ(z)

hµ(z)

)

= ℜ

(

1− ∑
n≥1

z

l2
ν,n − z

)

≥ 1− ∑
n≥1

|z|
l2
µ,n −|z| =

|z|h′µ(|z|)
hµ(|z|)

. (2.27)

By using the reverse triangle inequality again we can write that
∣

∣

∣

∣

z f ′µ(z)

fµ(z)
−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

− 2

1+ µ
2

∑
n≥1

z2

l2
µ,n − z2

∣

∣

∣

∣

∣

≤ 2

1+ µ
2

∑
n≥1

|z|2

l2
µ,n −|z|2

= 1−
|z| f ′µ(|z|)

fµ(|z|)
, (2.28)
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∣

∣

∣

∣

zg′µ(z)

gµ(z)
−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−2 ∑
n≥1

z2

l2
µ,n − z2

∣

∣

∣

∣

∣

≤ 2 ∑
n≥1

|z|2

l2
µ,n −|z|2

= 1−
|z|g′µ(|z|)

gµ(|z|)
(2.29)

and
∣

∣

∣

∣

zh′µ(z)

hµ(z)
−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

− ∑
n≥1

z

l2
µ,n − z

∣

∣

∣

∣

∣

≤ ∑
n≥1

|z|
l2
µ,n −|z| = 1−

|z|h′µ(|z|)
hµ(|z|)

. (2.30)

As consequences of the above inequalities, it can be easily obtained that

ℜ

(

z f ′µ(z)

fµ(z)

)

− k

∣

∣

∣

∣

z f ′µ(z)

fµ(z)
−1

∣

∣

∣

∣

−α ≥ (1+ k)
|z| f ′µ(|z|)

fµ(|z|)
− (k+α), (2.31)

ℜ

(

zg′µ(z)

gµ(z)

)

− k

∣

∣

∣

∣

zg′µ(z)

gµ(z)
−1

∣

∣

∣

∣

−α ≥ (1+ k)
|z|g′µ(|z|)

gµ(|z|)
− (k+α) (2.32)

and

ℜ

(

zh′µ(z)

hµ(z)

)

− k

∣

∣

∣

∣

zh′µ(z)

hµ(z)
−1

∣

∣

∣

∣

−α ≥ (1+ k)
|z|h′µ(|z|)

hµ(|z|)
− (k+α). (2.33)

It is worth mentioning that the equalities in the inequalities (2.31), (2.32) and

(2.33) hold true for z = |z| = r. Also, if we consider the minimum principle for har-

monic functions in these inequalities, then we can say that these inequalities are valid

if and only if |z|< r f , |z|< rg and |z|< rh, where r f , rg and rh are the smallest positive

roots of the following equations

(1+ k)
r f ′µ(r)

fµ(r)
− (k+α) = 0,

(1+ k)
rg′µ(r)

gµ(r)
− (k+α) = 0

and

(1+ k)
rh′µ(r)

hµ(r)
− (k+α) = 0,

respectively. Taking into account the definitions of the functions fµ, gµ and hµ, it can

be easily seen that the last three equations are equivalent to (2.18), (2.19) and (2.20),

respectively. In addition, we can easily show that equations (2.18) and (2.19) have

one root in the interval (0, lµ,1), while equation (2.20) has a root in (0, l2
µ,1). Because

the proof of these assertions are similar to the proof of the previous theorem, details

are omitted. �

Remark 1. For k = 0 and k = α = 0, Theorem 1 and Theorem 2 reduce to some

earlier results given by [1–3], respectively.
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Now, we would like present some applications regarding our main results. For this,

we consider the following relationships between Struve and elementary trigonometric

functions:

H− 1
2
(z) =

√

2

πz
sinz and H 1

2
(z) =

√

2

πz
(1− cosz).

Using these relationships for ν =− 1
2

and ν = 1
2
, we have

u 1
2
(z) =

(

2(1− cosz)√
z

)
2
3

, v 1
2
(z) =

2(1− cosz)

z
, w 1

2
(z) = 2(1− cos

√
z)

and

u− 1
2
(z) =

sin2 z

z
, v− 1

2
(z) = sinz, w− 1

2
(z) =

√
zsin

√
z.

Corollary 1. The following statements are true.

i. The radius of k−starlikeness of order α of the function u 1
2
(z) =

(

2(1−cosz)√
z

)
2
3

is the smallest positive root of the equation

2(1+ k)r sinr+(1+4k+3α)(cosr−1) = 0

in
(

0,h 1
2
,1

)

.

ii. The radius of k−starlikeness of order α of the function v 1
2
(z) = 2(1−cosz)

z
is

the smallest positive root of the equation

(1+ k)r sinr+(1+2k+α)(cosr−1) = 0

in
(

0,h 1
2
,1

)

.

iii. The radius of k−starlikeness of order α of the function w 1
2
(z) = 2(1−cos

√
z)

is the smallest positive root of the equation

(1+ k)
√

r sin
√

r+2(k+α)(cos
√

r−1) = 0

in
(

0,h2
1
2
,1

)

.

iv. The radius of k−starlikeness of order α of the function u− 1
2
(z) = sin2 z

z
is the

smallest positive root of the equation

2(1+ k)r cosr− (1+2k+α)sinr = 0

in
(

0,h− 1
2
,1

)

.

v. The radius of k−starlikeness of order α of the function v− 1
2
(z) = sinz is the

smallest positive root of the equation

(1+ k)r cosr− (k+α)sinr = 0

in
(

0,h− 1
2
,1

)

.
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vi. The radius of k−starlikeness of order α of the function w− 1
2
(z) =

√
zsin

√
z

is the smallest positive root of the equation

(1+ k)
√

r cos
√

r− (k+2α−1)sin
√

r = 0

in
(

0,h2
− 1

2
,1

)

.

Now, by taking k = α = 0 in Corollary 1 we get the following result.

Corollary 2. The following assertions are true.

i. The radius of starlikeness of the function u 1
2
(z) =

(

2(1−cosz)√
z

)
2
3

is r ∼= 2.7865

and it is the smallest positive root of the equation 2r sinr+ cosr−1 = 0.

ii. The radius of starlikeness of the function v 1
2
(z) = 2(1−cosz)

z
is r ∼= 2.33112

and it is the smallest positive root of the equation 2r sinr+2cosr−1 = 0.
iii. The radius of starlikeness of the function w 1

2
(z) = 2(1−cos

√
z) is r ∼= 9.8696

and it is the smallest positive root of the equation
√

r sin
√

r = 0.

iv. The radius of starlikeness of the function u− 1
2
(z) = sin2 z

z
is r ∼= 1.16556 and

it is the smallest positive root of the equation 2r cosr− sinr = 0.
v. The radius of starlikeness of the function v− 1

2
(z) = sinz is r ∼= 1.5708 and it

is the smallest positive root of the equation r cosr = 0.
vi. The radius of starlikeness of the function w− 1

2
(z) =

√
zsin

√
z is r ∼= 4.11586

and it is the smallest positive root of the equation
√

r cos
√

r+ sin
√

r = 0.
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Abstract. In this study, we investigate the maximal dissipative singular Sturm-Liouville oper-

ators acting in the Hilbert space L2
r (a,b) (−∞ ≤ a < b ≤ ∞), that the extensions of a minimal

symmetric operator with defect index (2,2) (in limit-circle case at singular end points a and b).

We examine two classes of dissipative operators with separated boundary conditions and we es-

tablish, for each case, a self-adjoint dilation of the dissipative operator as well as its incoming

and outgoing spectral representations, which enables us to define the scattering matrix of the

dilation. Moreover, we construct a functional model of the dissipative operator and identify its

characteristic function in terms of the Weyl function of a self-adjoint operator. We present several

theorems on completeness of the system of root functions of the dissipative operators and verify

them.

2010 Mathematics Subject Classification: 34B24; 34B40; 34L10; 34L25; 47A20; 47A40;

47A45; 47A75; 47B44; 47E05

Keywords: symmetric Sturm-Liouville operator, maximal dissipative operator, self-adjoint dila-

tion, scattering matrix, functional model, characteristic function, completeness of the root func-

tions

1. INTRODUCTION

Dissipative operators are one of the important classes of non-self-adjoint operators.

It is well recognized ([1–3,9,13–16]), that the theory of dilations with application of

functional models gives an ample approach to the spectral theory of dissipative (con-

tractive) operators. By carrying the complete information on the spectral properties

of the dissipative operator, we can say that characteristic function plays the primary

role in this theory. Hence, in the incoming spectral representation of the dilation, the

dissipative operator becomes the model. Completeness problem of the system of ei-

genvectors and associated (or root) vectors is solved through the factorization of the

characteristic function. The computation of the characteristic functions of dissipative

operators is preceded by the construction and investigation of the self-adjoint dila-

tion and the corresponding scattering problem, in which the characteristic function is

considered as the scattering matrix. According to the Lax-Phillips scattering theory

© 2021 Miskolc University Press
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[10], the unitary group {U(s)} (s ∈ R:= (−∞,∞)) has typical properties in the sub-

spaces D− and D+ of the Hilbert space H, which are called respectively the incoming

and outgoing subspaces. One can find the adequacy of this approach to dissipative

Schrödinger and Sturm-Liouville operators, for example, in [1–3, 9, 13–15].

In this paper, we take the minimal symmetric singular Sturm-Liouville operator

acting in the Hilbert space L2
r (a,b) (−∞ ≤ a < b ≤ ∞) with maximal defect index

(2,2) (in Weyl’s limit-circle cases at singular end points a and b) into consideration.

We define all maximal dissipative, maximal accumulative and self-adjoint extensions

of such a symmetric operator using the boundary conditions at a and b. We investigate

two classes of non-self-adjoint operators with separated boundary conditions, called

‘dissipative at a’ and ‘dissipative at b’. In each of these two cases, we construct a

self-adjoint dilation of the maximal dissipative operator together with its incoming

and outgoing spectral representations so that we can determine the scattering matrix

(function) of the dilation as stated in the scheme of Lax and Phillips [10]. Then,

we create a functional model of the maximal dissipative operator via the incoming

spectral representation and define its characteristic function in terms of the Weyl

function (or scattering matrix of the dilation) of a self-adjoint operator. Finally, using

the results found for characteristic functions, we prove the theorems on completeness

of the system of eigenfunctions and associated functions (or root functions) of the

maximal dissipative Sturm-Liouville operators. Results of the present paper are new

even in the case p = r = 1 (in the case of the one-dimensional Schrödinger operator).

2. EXTENSIONS OF A SYMMETRIC OPERATOR AND SELF-ADJOINT DILATIONS

OF THE DISSIPATIVE OPERATORS

We address the following Sturm-Liouville differential expression with two singu-

lar end points a and b:

τ(x): =
1

r(t)
[−(p(t)x′(t))′+q(t)x(t)] (t ∈ J: = (a,b), −∞ ≤ a < b ≤+∞), (2.1)

where p,q and r are real-valued, Lebesgue measurable functions on J, and p−1,q,r

∈ L1
loc(J), p 6= 0 and r > 0 almost everywhere on J.

In order to pass from the differential expression to operators, we shall take the Hil-

bert space L2
r (J) consisting of all complex-valued functions f satisfying∫ b

a r(t) | f (t)|2 dt < ∞, with the inner product ( f ,g) =
∫ b

a r(t) f (t)g(t)dt.

Let Dmax represent the linear set of all functions f ∈ L2
r (J) such that f and p f ′

are locally absolutely continuous functions on J, and τ( f ) ∈ L2
r (J). Let us define the

maximal operator Tmax on Dmax as Tmax f = τ( f ).
For any two functions f ,g ∈ Dmax, Green’s formula is given by

(Tmax f ,g)− ( f ,Tmaxg) = [ f ,g](b)− [ f ,g](a), (2.2)

where

[ f ,g](t): =Wt( f ,g): = f (t)(pg′)(t)− (p f ′)(t)g(t) (t ∈ J),
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[ f ,g](a): = lim
t→a+

[ f ,g](t), [ f ,g](b): = lim
t→b−

[ f ,g](t).

In L2
r (J), we consider the dense linear set Dmin consisting of smooth, compactly sup-

ported functions on J. Let us indicate the restriction of the operator Tmax to Dmin by

Tmin. We can conclude from (2.2) that Tmin is symmetric. Thus, it admits closure de-

noted by Tmin. The minimal operator Tmin is a symmetric operator with defect index

(0,0), (1,1) or (2,2), and Tmax = T ∗
min ([4, 5, 12, 18, 19]). Note that the operator Tmin

is self-adjoint for defect index (0,0), that is, T ∗
min = Tmin = Tmax.

Moreover, we assume that Tmin has defect index (2,2). Under this assumption,

Weyl’s limit-circle cases are obtained for the differential expression τ at a and b (see

[4–6, 8, 11, 12, 17–19]). The domain of the operator Tmin consists of precisely the

functions f ∈ Dmax, which satisfy the following condition

[ f ,g](b)− [ f ,g](a) = 0, ∀g ∈ Dmax. (2.3)

Let T−
min and T+

min denote respectively the minimal symmetric operators generated by

the expression τ on the intervals (a,c] and [c,b) for some c ∈ J, and D∓
min represents

the domain of T∓
min. It is known ([5, 12, 18]), that the defect number de f Tmin of Tmin

can be computed using the formula de f Tmin = de f T+
min + de f T−

min − 2. Thus, we

obtain that de f T+
min +de f T−

min = 4, de f T+
min = 2 and de f T−

min = 2.

We denote by θ(t) and χ(t) the solutions of the equation

τ(y) = 0 (t ∈ J) (2.4)

satisfying the conditions

θ(c) = 1, (pθ′)(c) = 0, χ(c) = 0, (pχ′)(c) = 1, c ∈ J. (2.5)

The Wronskian of the two solutions of (2.4) does not depend on t, and the two solu-

tions of this equation are linearly independent if and only if their Wronskian is non-

zero. Conditions (2.5) and the constancy of the Wronskian imply that

Wt(θ,χ) =Wc(θ,χ) = 1 (a ≤ t ≤ b) . (2.6)

Hence, θ and χ form a fundamental set of solutions of (2.4). Since Tmin has defect

index (2,2), we have θ,χ ∈ L2
r (J), and θ,χ ∈ Dmax as well.

The following equality holds for arbitrary functions f ,g ∈ Dmax ([2])

[ f ,g](t) = [ f ,θ](t)[g,χ](t)− [ f ,χ](t)[g,θ](t) (a ≤ t ≤ b). (2.7)

The domain Dmin of the operator Tmin is composed of precisely the functions

f ∈ Dmax satisfying the boundary conditions given as follows ([1])

[ f ,θ](a) = [ f ,χ](a) = [ f ,θ](b) = [ f ,χ](b) = 0. (2.8)

Recall that a linear operator A (with dense domain D(A)) acting on some Hilbert

space H is called dissipative (accumulative) if ℑ(Ay,y) ≥ 0 (ℑ(Ay,y) ≤ 0) for all

y ∈ D(A) and maximal dissipative (maximal accumulative) if it does not have a

proper dissipative (accumulative) extension ([7], p.149).
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Now, consider the linear maps of Dmax into C
2 given by

Ψ1 f =

(

[ f ,χ](a)
[ f ,θ](b)

)

, Ψ2 f =

(

[ f ,θ](a)
[ f ,χ](b)

)

. (2.9)

Then we get the following statement ([1]).

Theorem 1. For any contraction S ∈C
2 the restriction of the operator Tmax to the

set of vectors f ∈ Dmax satisfying the boundary condition

(S− I)Ψ1 f + i(S+ I)Ψ2 f = 0 (2.10)

or

(S− I)Ψ1 f − i(S+ I)Ψ2 f = 0 (2.11)

is, respectively, a maximal dissipative or a maximal accumulative extension of the

operator Tmin. Conversely, every maximally dissipative (accumulative) extension of

Tmin is the restriction of Tmax to the set consisting of vectors f ∈ Dmax satisfying

(2.10) ((2.11)), and the contraction S is uniquely determined by the extension. These

conditions describe a self-adjoint extension if and only if S is unitary. In the latter

case, (2.10) and (2.11) are equivalent to the condition (cosB)Ψ1 f −(sinB)Ψ2 f = 0,

where B is a self-adjoint operator (Hermitian matrix) in C
2. The general forms of

dissipative and accumulative extensions of the operator Tmin are respectively given

by the conditions

S (Ψ1 f + iΨ2 f ) = Ψ1 f − iΨ2 f , Ψ1 f + iΨ2 f ∈ D(S), (2.12)

S (Ψ1 f − iΨ2 f ) = Ψ1 f + iΨ2 f , Ψ1 f − iΨ2 f ∈ D(S), (2.13)

where S is a linear operator with ‖S f‖ ≤ ‖ f‖ , f ∈ D(S). For an isometric operator

S in (2.12) and (2.13) we have the general forms of symmetric extensions.

Particularly, the boundary conditions ( f ∈ Dmax)

[ f ,χ](a)−α1[ f ,θ](a) = 0, (2.14)

[ f ,θ](b)−α2[ f ,χ](b) = 0 (2.15)

with ℑα1 ≥ 0 or α1 = ∞, and ℑα2 ≥ 0 or α2 = ∞ ℑα1 ≤ 0 or α1 = ∞, and ℑα2 ≤ 0

or α2 = ∞) characterize all maximal dissipative (maximal accumulative) extensions

of Tmin with separated boundary conditions. If ℑα1 = 0 or α1 = ∞, and ℑα2 = 0

or α2 = ∞ hold true, then self-adjoint extensions of Tmin are obtained. Here for

α1 = ∞ (α2 = ∞), condition (2.14) ((2.15)) should be replaced by [ f ,θ](a) = 0

([ f ,χ](b) = 0).

Next, we shall consider the maximal dissipative operators T∓
α1α2

generated by (2.1)

and the boundary conditions given by (2.14) and (2.15) of two different types: ‘dis-

sipative at a’, i.e., either ℑα1 > 0 and ℑα2 = 0 or α2 = ∞; and ‘dissipative at b’, i.e.,

ℑα1 = 0 or α1 = ∞ and ℑα2 > 0.
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In order to establish a self-adjoint dilation of the maximal dissipative operator

T−
α1α2

for the case ‘dissipative at a’ (i.e., ℑα1 > 0 and ℑα2 = 0 or α2 = ∞), we associ-

ate with H := L2
r (J) the ‘incoming’ and ‘outgoing’ channels L2 (R−)

(R−:= (−∞,0]) and L2(R+) (R+:= [0,∞)), we form the orthogonal sum H:=
L2(R−)⊕H ⊕L2(R+). Let us call the space H as the main Hilbert space of the

dilation and consider in this space the operator T−
α1α2

generated by the expression

T〈u−,y,u+〉= 〈idu−
dξ

,τ(y), i
du+

dς
〉 (2.16)

on the set D(T−
α1α2

) consisting of vectors 〈u−,y,u+〉, where u− ∈ W 1
2 (R−), u+ ∈

W 1
2 (R+), y ∈ Dmax and

[y,χ](a)−α1[y,θ](a) = γu−(0), [y,χ](a)−α1[y,θ](a) = γu+(0),

[y,θ](b)−α2[y,χ](b) = 0. (2.17)

Here W 1
2 (R∓) denotes the Sobolev space, and γ2:= 2ℑα1, γ > 0. Then we obtain the

next assertion.

Theorem 2. The operator T−
α1α2

is self-adjoint in the space Hand it is a self-

adjoint dilation of the maximal dissipative operator T−
α1α2

.

Proof. We assume that Y,Z ∈ D(T−
α1α2

), Y = 〈u−,y,u+〉 and Z = 〈v−,z,v+〉. If we

use integration by parts and (2.16), we find that

(T−
α1α2

Y,Z)H =
∫ 0

−∞
iu′−v−dξ+(Tmaxy,z)H +

∫ ∞

0
iu′+v+dς

= iu−(0)v−(0)− iu+(0)v+(0)+ [y,z](b)− [y,z](a)+(Y,T−
α1α2

Z)H.

(2.18)

Moreover, if the boundary conditions (2.17) for the components of the vectors Y,Z

and (2.7) are used, it can be seen easily that iu−(0)v−(0)− iu+(0)v+(0) +[y,z](b)
−[y,z](a) = 0. Hence, we conclude that T−

α1α2
is symmetric. Thus, in order to prove

that T−
α1α2

is self-adjoint, it is sufficient to show that (T−
α1α2

)∗ ⊆ T−
α1α2

Take Z =
〈v−,z,v+〉 ∈ D((T−

α1α2
)∗). Let (T−

α1α2
)∗Z = Z∗ = 〈v∗−,z∗,v∗+〉 ∈ H, so that

(T−
α1α2

Y,Z)H = (Y,Z∗)H , ∀Y ∈ D(T−
α1α2

). (2.19)

If we choose suitable components for Y ∈ D(T−
α1α2

) in (2.19), it can be shown eas-

ily that v− ∈ W 1
2 (R−), v+ ∈ W 1

2 (R+), z ∈ Dmax and Z∗ = TZ, where T is given

by (2.16). Therefore, (2.19) takes the following form (TY,Z)H = (Y,TZ)H , ∀Y ∈
D(T−

α1α2
). Hence, the sum of the integrated terms in the bilinear form (TY,Z)H must

be zero:

iu−(0)v−(0)− iu+(0)v+(0)+ [y,z](b)− [y,z](a) = 0 (2.20)
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for all Y = 〈u−,y,u+〉 ∈ D(T−
α1α2

). Additionally, after the boundary conditions (2.17)

for [y,θ](a) and [y,χ](a) are solved, it is found that

[y,θ](a) =− i

γ
(u+(0)−u−(0)) , [y,χ](a) = γu−(0)−

iα1

γ
(u+(0)−u−(0)). (2.21)

Therefore, (2.7) and (2.21) imply that (2.20) is equivalent to the equality given as

follows

iu−(0)v−(0)− iu+(0)v+(0) = [y,z](a)− [y,z](b)

=− i

γ
(u+(0)−u−(0)) [z,χ] (a)− γ[u−(0)−

iα1

γ2
(u+(0)−u−(0))] [z,θ] (a)

− [y,θ](b) [z,χ] (b)+ [y,χ](b) [z,θ] (b)

=− i

γ
(u+(0)−u−(0)) [z,χ] (a)− γ[u−(0)−

iα1

γ2
(u+(0)−u−(0))] [z,θ] (a)

+([z,θ] (b)−α2 [z,χ] (b))[y,χ](b).

Note that u±(0) can be arbitrary complex numbers. If we compare the coefficients of

u±(0) on the left and right sides of the last equality, we see that the vector

Z = 〈v−,z,v+〉 satisfies the boundary conditions [z,χ](a)− α1[z,θ](a) = γv−(0),
[z,χ](a)−α1[z,θ](a) = γv+(0), [z,θ](b) −α2[z,χ](b) = 0. Consequently, the inclu-

sion (T−
α1α2

)∗ ⊆ T−
α1α2

is fulfilled. This proves that T−
α1α2

= (T−
α1α2

)∗.

In the space H, self-adjoint operator T−
α1α2

generates a unitary group U−(s):=
exp[iT−

α1α2
s] (s ∈ R). Denote by P : H → H and P1 : H → H the mappings act-

ing in keeping with the formulas P : 〈u−,y,u+〉 → y and P1 : y → 〈0,y,0〉. Set

V (s) = PU−(s)P1 (s ≥ 0). The family
{

V (s)
}

(s ≥ 0) of operators is a strongly

continuous semigroup of completely non-unitary contractions on H . Let A represent

the generator of this semigroup, i.e, Az = lims→+0[(is)
−1(V (s)z− z)]. All vectors for

which this limit exists belong to the domain of A. The operator A is maximal dissip-

ative and the operator T−
α1α2

is called the self-adjoint dilation of A ([13–15]). We aim

to show that A = T−
α1α2

, which implies in turn that T−
α1α2

is a self-adjoint dilation of

T−
α1α2

. To achieve this goal, we first verify the following equality ([13–15])

P (T−
α1α2

−λI)−1P1y = (T−
α1α2

−λI)−1y, y ∈ H , ℑλ < 0. (2.22)

Let (T−
α1α2

− λI)−1P1y = Z = 〈v−,z,v+〉. Then (T−
α1α2

− λI)Z = P1y, and so,

Tmaxz− λz = y, v− (ξ) = v−(0)e−iλξ and v+ (ς) = v+(0)e
−iλς. Since Z ∈ D(T−

α1α2
)

and hence, v− ∈ L2(R−); we have v−(0) = 0, and consequently, z satisfies the

boundary conditions [z,χ](a)− α1[z,θ](a) = 0, [z,θ](b)− α2[z,χ](b) = 0. There-

fore, z ∈ D(T−
α1α2

), and since a dissipative operator cannot have an eigenvalue λ with

ℑλ < 0, we conclude that z = (T−
α1α2

− λI)−1y. Here, we evaluate v+(0) using the

formula v+(0) = γ−1 ([z,χ](a)−α1[z,θ](a)). Then

(T−
α1α2

−λI)−1P1y =
〈

0,(T−
α1α2

−λI)−1y,γ−1 ([z,χ](a)−α1[z,θ](a))e−iλς
〉



DILATIONS, MODELS AND SPECTRAL PROBLEMS 23

for y ∈ H and ℑλ < 0. Applying P , we get the desired equality (2.22).

Now, it is not difficult to show that A = T−
α1α2

. In fact, it follows from (2.22) that

(T−
α1α2

−λI)−1 = P (T−
α1α2

−λI)−1P1 =−iP

∫ ∞

0
U−(s)e−iλsdsP1

=−i

∫ ∞

0
V (s)e−iλsds = (A−λI)−1

, ℑλ < 0,

and thus we have T−
α1α2

= A proving Theorem 2. �

In order to construct a self-adjoint dilation of the maximal dissipative operator

T+
α1α2

in the case ‘dissipative at b’ (i.e., ℑα1 = 0 or α1 = 0 and ℑα2 > 0) in H, we

consider the operator T+
α1α2

generated by the expression (2.16) on the set D(T+
α1α2

) of

vectors 〈u−,y,u+〉 satisfying the conditions: u− ∈W 1
2 (R−), u+ ∈W 1

2 (R+), y∈Dmax

and

[y,χ](a)−α1[y,θ](a) = 0, [y,θ](b)−α2[y,χ](b) = βu−(0),

[y,θ](b)−α2[y,χ](b) = βu+(0), (2.23)

where β2:= 2ℑα2, β > 0.

Since the proof of the next theorem is similar to that of Theorem 2, we omit it here.

Theorem 3. The operator T+
α1α2

is self-adjoint in H and it is a self-adjoint dilation

on the maximal dissipative operator T+
α1α2

.

3. SCATTERING THEORY OF THE DILATIONS, FUNCTIONAL MODELS AND

COMPLETENESS OF ROOT FUNCTIONS OF THE DISSIPATIVE OPERATORS

The unitary group U±(s)= exp[iT±
α1α2

s] (s∈R) possesses a crucial feature through

which we can apply to it the Lax-Phillips scheme ([10]). Namely, it has incoming

and outgoing subspaces D−:= 〈L2(R−),0,0〉 and D+:= 〈0,0,L2(R+)〉 satisfying

the following properties:

(1) U±(s)D− ⊂D−, s ≤ 0 and U±(s)D+ ⊂D+, s ≥ 0;

(2)
⋂

s≤0

U±(s)D− =
⋂

s≥0

U±(s)D+ = {0};

(3)
⋃

s≥0

U±(s)D− =
⋃

s≤0

U±(s)D+ = H;

(4) D−⊥D+.

It is evident that property (4) holds true. Let us prove property (1) for D+ (the proof

for D− is similar). For this end, we define R ±
λ =(T±

α1α2
−λI)−1 for all λ with ℑλ< 0.

Then, for any Y = 〈0,0,u+〉 ∈D+, we get

R ±
λ Y = 〈0,0,−ie−iλς

∫ ς

0
e−iλξu+(ξ)dξ〉.

Therefore, we see that RλY ∈D+. Further, if Z⊥D+, then

0 =
(

R ±
λ Y,Z

)

H
=−i

∫ ∞

0
e−iλs

(

U±(s)Y,Z
)

H
ds, ℑλ < 0,
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which implies that (U±(s)Y,Z)H = 0 for all s ≥ 0. So, we obtain U±(s)D+ ⊂D+ for

s ≥ 0, proving property (1).

To prove property (2) for D+ (the proof for D− is similar), we denote by P+ :

H → L2(R+) and P+
1 : L2(R+) → D+ the mappings acting according to the for-

mulae P+ : 〈u−,y,u+〉 → u+ and P+
1 : u → 〈0,0,u〉, respectively. The semigroup of

isometries X (s) = P+U−(s)P+
1 , s ≥ 0 is a one-sided shift in L2(R+). In fact, the

generator of the semigroup of the one-sided shift Y (s) in L2(R+) is the differen-

tial operator i d
dξ

satisfying the boundary condition u(0) = 0. On the other hand, the

generator B of the semigroup of isometries X (s), s ≥ 0, is the operator defined by

Bu = P+T−
α1α2

P+
1 Y = P+T−

α1α2
〈0,0,u〉= P+〈0,0, idu

dξ
〉= i

du

dξ
,

where u ∈ W 1
2 (R+) and u(0) = 0. However, since a semigroup is uniquely determ-

ined by its generator, we have X (s) = Y (s), and thus,⋂
s≥0

U−(s)D+ = 〈0,0,
⋂
s≥0

Y (s)L2(R+)〉= {0},

(the proof for U+(s) is similar) verifying that property (2) is valid.

As stated in the scheme of the Lax-Phillips scattering theory, the scattering matrix

is defined using the spectral representations theory. Now, we shall continue with

their construction. During this process, we shall also have proved property (3) of the

incoming and outgoing subspaces.

Recall that the linear operator A (with domain D(A)) acting in the Hilbert space

H is called completely non-self-adjoint (or pure) if invariant subspace M ⊆ D(A)
(M 6= {0}) of the operator A whose restriction on M is self-adjoint, does not exist.

Lemma 1. The operator T±
α1α2

is completely non-self-adjoint (pure).

Proof. Let H ′ ⊂ H be a non-trivial subspace in which the operator T−
α1α2

(the

proof for T+
α1α2

is similar) induces a self-adjoint operator T ′ with domain D(T ′) =
H ′∩D(T−

α1α2
). If z ∈ D(T ′), then we have z ∈ D(T ′∗) and [z,χ](a)−α1[z,θ](a) = 0,

[z,χ](a)−α1[z,θ](a) = 0, [z,θ](b)−α2[z,χ](b) = 0. Hence, we have [z,θ](a) = 0 for

the eigenfunctions z(t,λ) of the operator T−
α1α2

that lie in H ′ and are eigenfunctions of

T ′. Since [z,χ](a)−α1[z,θ](a) = 0, we derive that [z,χ](a) = 0 and z(t,λ)≡ 0. Since

all solutions of τ(z) = λz (t ∈ J) lie in L2
r (J), we can see that the resolvent Rλ(T

−
α1α2

)
of the operator T−

α1α2
is a Hilbert-Schmidt operator, and thus the spectrum of T−

α1α2
is

purely discrete. Hence, the theorem on the expansion of the self-adjoint operator T ′

in eigenfunctions implies that H ′ = {0}, that is, T−
α1α2

is pure. This completes the

proof. �

In order to prove third property, we set

H±
− =

⋃
s≥0

U±(s)D−, H±
+ =

⋃
s≤0

U±(s)D+
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and first prove the next result.

Lemma 2. The equality H±
−+H±

+ = H is fulfilled.

Proof. By means of the property (1) of the subspace D±, it can be shown that the

subspace H′
± = H⊖

(

H±
−+H±

+

)

is invariant with respect to the group {U±(s)} and it

can be described as H′
± =

〈

0,H ′
±,0

〉

, where H ′
± is a subspace in H . Therefore, if the

subspace H′
± (and hence also H ′

±) were non-trivial, then the unitary group {U±′(s)},

restricted to this subspace, would be a unitary part of the group {U±(s)}, and thus

the restriction T±′
α1α2

of T±
α1α2

to H ′
± would be a self-adjoint operator in H ′

±. Since

the operator T±
α1α2

is pure, we conclude that H ′
± = {0}, i.e., H′

± = {0}. Hence, the

lemma is proved. �

Let ϕ(t,λ) and ψ(t,λ) be the solutions of the equation τ(y) = λy (t ∈ J) satisfying

the conditions given by

[ϕ,θ](a) =−1, [ϕ,χ](a) = 0, [ψ,θ](a) = 0, [ψ,χ](a) = 1. (3.1)

The Weyl function m∞α2
(λ) of the self-adjoint operator T−

∞α2
is determined by the

condition

[ψ+m∞α2
ϕ,θ](b)−α2[ψ+m∞α2

ϕ,χ](b) = 0,

which implies in turn that

m∞α2
(λ) =− [ψ,θ](b)−α2[ψ,χ](b)

[ϕ,θ](b)−α2[ϕ,χ](b)
. (3.2)

It follows from (3.2) that m∞α2
(λ) is a meromorphic function on the complex plane C

with a countable number of poles on the real axis. We note that these poles coincide

with the eigenvalues of the self-adjoint operator T−
∞α2

. Furthermore, we can show that

the function m∞α2
(λ) has the following properties: ℑλℑm∞α2

(λ)> 0 for ℑλ 6= 0 and

m∞α2
(λ̄) = m∞α2

(λ) for complex λ, except the real poles of m∞α2
(λ).

For convenience, we adopt the following notations:

ω(t,λ) = ψ(t,λ)+m∞α2
(λ)ϕ(t,λ),

Θ−
α1α2

(λ) =
m∞α2

(λ)−α1

m∞α2
(λ)−α1

. (3.3)

Set

V −
λ (t,ξ,ς) = 〈e−iλξ

,(m∞α2
(λ)−α1)

−1γω(t,λ),Θ
−
α1α2

(λ)e−iλς〉.

By means of the vector V −
λ (t,ξ,ς), we consider the transformation Φ− : Y → Ỹ−(λ)

by (Φ−Y )(λ):= Ỹ−(λ):= 1√
2π
(Y,V −

λ )H on the vector Y = 〈u−,y,u+〉, where u−,u+,

and y are smooth, compactly supported functions.
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Lemma 3. The transformation Φ− maps H−
− onto L2(R) isometrically. For all

vectors Y,Z ∈ H−
− the Parseval equality and the inversion formula hold:

(Y,Z)H = (Ỹ−, Z̃−)L2 =
∫ ∞

−∞
Ỹ−(λ)Z̃−(λ)dλ, Y =

1√
2π

∫ ∞

−∞
Ỹ−(λ)V

−
λ dλ,

where Ỹ−(λ):= (Φ−Y )(λ) and Z̃−(λ):= (Φ−Z)(λ).

Proof. For Y,Z ∈D−, Y = 〈u−,0,0〉, Z = 〈v−,0,0〉, we get

Ỹ−(λ): =
1√
2π

(Y,V −
λ )H =

1√
2π

∫ 9

−∞
u−(ξ)e

iλξdξ ∈ H 2
−

and

(Y,Z)H =
∫ 0

−∞
u−(ξ)v−(ξ)dξ =

∫ ∞

−∞
Ỹ−(λ)Z̃−(λ)dλ = (Φ−Y,Φ−Z)L2

in view of the usual Parseval equality for Fourier integrals. Here and below, H 2
±

denote the Hardy classes in L2(R) consisting of the functions analytically extendable

to the upper and lower half-planes, respectively.

We aim to extend the Parseval equality to the whole of H−
−. In this context, we

consider in H−
− the dense set H′

− of vectors acquired from the smooth, compactly

supported functions in D− : Y ∈ H′
− if Y = U−(s)Y0, Y0 = 〈u−,0,0〉, u− ∈ C∞

0 (R−),
where s = sY is a non-negative number depending on Y . If Y,Z ∈H′

−, then for s > sY

and s > sZ we have U−(−s)Y, U−(−s)Z ∈ D− and, moreover, the first components

of these vectors lie in C∞
0 (R−). Then, as the operators U−(s) (s ∈ R) are unitary, it

follows from the equality

Φ−U
−(−s)Y = (U−(−s)Y,V −

λ )H = e−iλs(Y,V −
λ )H = e−iλsΦ−Y ,

that

(Y,Z)H = (U−(−s)Y,U−(−s)Z)H = (Φ−U
−(−s)Y,Φ−U

−(−s)Z)L2

= (e−iλsΦ−Y,e−iλsΦ−Z)L2 = (Φ−Y,Φ−Z)L2 . (3.4)

If we take the closure in (3.4), we find the Parseval equality for the entire space H−
−. If

all integrals in the Parseval equality are considered as limits in the mean of integrals

over finite intervals, we get the inversion formula. In conclusion, we have

Φ−H
−
− =

⋃
s≥0

Φ−U−(s)D− =
⋃
s≥0

e−iλsH 2
− = L2(R),

i.e., Φ− maps H−
− onto whole L2(R), proving the lemma. �

Let us set

V +
λ (t,ξ,ς) = 〈Θ−

α1α2
(λ)e−iλξ

,(m∞α2
(λ)−α1)

−1γω(t,λ),e−iλς〉.
By using the vectors V +

λ (t,ξ,ς), we define the map Φ+ : Y → Ỹ+(λ) on vectors

Y = 〈u−,y,u+〉 in which u−,u+, and y are smooth, compactly supported functions
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by setting (Φ+Y )(λ):= Ỹ+(λ):=
1√
2π
(Y,V +

λ )H. The next result can be proved by

following the procedure used in the proof of Lemma 3.

Lemma 4. The transformation Φ+ isometrically maps H−
+ onto L2(R) and be-

sides, the Parseval equality and the inversion formula hold for all vectors Y,Z ∈ H−
+

as follows:

(Y,Z)H = (Ỹ+, Z̃+)L2 =
∫ ∞

−∞
Ỹ+(λ)Z̃+(λ)dλ, Y =

1√
2π

∫ ∞

−∞
Ỹ+(λ)V

+
λ dλ,

where Ỹ+(λ):= (Φ+Y )(λ) and Z̃+(λ):= (Φ+Z)(λ).

Equality given by (3.3) implies that Θ−
α1α2

(λ) satisfies
∣

∣Θ−
α1α2

(λ)
∣

∣= 1 for all λ∈R.

Then, we conclude from the explicit formula for the vectors V +
λ and V −

λ that

V −
λ = Θ

−
α1α2

(λ)V +
λ (λ ∈ R). (3.5)

Lemmas 3 and 4 imply that H−
− = H−

+. This, together with Lemma 2, verifies that

H=H−
− =H−

+ and property (3) for U−(s) above has been established for the incoming

and outgoing subspaces.

Hence, Φ− isometrically maps onto L2(R) with the subspace D− mapped onto

H 2
−, and the operators U−(s) are transformed by the operators of multiplication by

eiλs. This means that Φ− (Φ+) is the incoming (outgoing) spectral representation

for the group {U−(s)}. Using (3.5), we can pass from the Φ+-representation of a

vector Y ∈ H to its Φ−-representation by multiplication of the function Θ−
α1α2

(λ) :

Ỹ−(λ) = Θ−
α1α2

(λ)Ỹ+(λ). Based on [10], the scattering function (matrix) of the group

{U−(s)} with respect to the subspaces D− and D+, is the coefficient by which the

Φ−-representation of a vector Y ∈ H must be multiplied in order to get the corres-

ponding Φ+-representation: Ỹ+(λ) = Θ
−
α1α2

(λ)Ỹ−(λ) and thus we have proved the

following statement.

Theorem 4. The function Θ
−
α1α2

(λ) is the scattering function (matrix) of the group

{U−(s)} or of the self-adjoint operator T−
α1α2

).

Let S(λ) be an arbitrary non-constant inner function ([16]) defined on the upper

half-plane (we recall that a function S(λ) analytic in the upper half-plane C+ is called

inner function on C+ if |S(λ)| ≤ 1 for λ ∈ C+, and |S(λ)|= 1 for almost all λ ∈ R).

Setting K = H 2
+⊖SH

2
+, we can see that K 6= {0} is a subspace of the Hilbert space

H 2
+. We deal with the semigroup of the operators X (s) (s ≥ 0) acting in K according

to the formula X (s)u=P
[

eiλsu
]

, u:= u(λ)∈K , where P is the orthogonal projection

from H 2
+ onto K . The generator of the semigroup {X (s)} is represented as B : Bu =

lims→+0[(is)
−1(X (s)u− u)]. B is a maximal dissipative operator acting in K and

its domain D(B) consisting of all functions u ∈ K , for which the limit given above

exists. The operator B is called a model dissipative operator (we remark that this

model dissipative operator, which is associated with the names of Lax and Phillips
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[10], is a special case of a more general model dissipative operator constructed by

Sz.-Nagy and Foiaş [16]). It is the basic assertion that S(λ) is the characteristic

function of the operator B .

If we set N = 〈0,H ,0〉, then it is obtained that H = D− ⊕N⊕D+. From the

explicit form of the unitary transformation Φ− that under the mapping Φ−, we have

H→ L2(R), Y → Ỹ−(λ) = (Φ−Y )(λ), D− → H 2
−,

D+ → Θ−
α1α2

H 2
+, N→ H 2

+⊖Θ−
α1α2

H 2
+,

U−(s)Y → (Φ−U
−(s)Φ−1

− Ỹ−)(λ) = eiλsỸ−(λ). (3.6)

The formulas in (3.6) imply that our operator T−
α1α2

is unitary equivalent to the model

dissipative operator with the characteristic function Θ−
α1α2

(λ). The fact that charac-

teristic functions of unitary equivalent dissipative operators coincide ([13–16]) leads

us the following theorem.

Theorem 5. The characteristic function of the maximal dissipative operator T−
α1α2

coincides with the function Θ−
α1α2

(λ)given by (3.3).

Weyl function of the self-adjoint operator T+
α1∞, denoted by mα1∞(λ), can be ex-

pressed in terms of the Wronskians of the solutions:

mα1∞(λ) =− [ϑ,χ](b)

[φ,χ](b)
,

where φ(t,λ) and ϑ(t,λ) are solutions of τ(y) = λy(t ∈ J) and satisfying the condi-

tions

[φ,θ](a) =− 1
√

1+α2
1

, [φ,χ](a) =− α1
√

1+α2
1

,

[ϑ,θ](a) =
α1

√

1+α2
1

, [ϑ,χ](a) =
1

√

1+α2
1

.

Let us adopt the following notations:

k(λ): =
[φ,θ](b)

[ϑ,χ](b)
, m(λ): = mα1∞(λ),

Θ+(λ): = Θ+
α1α2

(λ): =
m(λ)k(λ)−α2

m(λ)k(λ)−α2

. (3.7)

Let

W −
λ (t,ξ,ς) = 〈e−iλξ

,βm(λ)[(m(λ)k(λ)−α2)[[ϑ,v](b)]
−1φ(t,λ),Θ

+
(λ)e−iλς〉.

By means of the vector W −
λ , we set the transformation ϒ− : Y → Ỹ−(λ) given by

(ϒ−Y )(λ):= Ỹ−(λ):= 1√
2π
(Y,W −

λ )H on the vector Y = 〈u−,y,u+〉 in which u−,u+,

and y are smooth, compactly supported functions. The proof of the next result is

similar to that of Lemma 3.
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Lemma 5. The transformation ϒ− isometrically maps H+
− onto L2(R). For all

vectors Y,Z ∈ H+
−, we obtain the Parseval equality and the inversion formula given

by:

(Y,Z)H = (Ỹ−, Z̃−)L2 =
∫ ∞

−∞
Ỹ−(λ)Z̃−(λ)dλ, Y =

1√
2π

∫ ∞

−∞
Ỹ−(λ)W

−
λ dλ,

where Ỹ−(λ) = (ϒ−Y )(λ) and Z̃−(λ) = (ϒ−Z)(λ).

Let

W +
λ (t,ξ,ς) = 〈Θ+(λ)e−iλξ

,βm(λ)[(m(λ)k(λ)−α2)[ϑ,χ](b)]
−1φ(t,λ),e−iλς〉.

With the help of the vector W +
λ (t,ξ,ς), define the transformation ϒ+ : Y → Ỹ+(λ)

on vectors Y = 〈u−,y,u+〉 by setting (ϒ+Y )(λ):= Ỹ+(λ):=
1√
2π
(Y,W +

λ )H. Here, we

consider u−, u+, and y as smooth, compactly supported functions.

Lemma 6. The transformation ϒ+ isometrically maps H+
+ onto L2(R), and for all

vectors Y,Z ∈ H+
+, the Parseval equality and the inversion formula hold:

(Y,Z)H = (Ỹ+, Z̃+)L2 =
∫ ∞

−∞
Ỹ−(λ)Z̃−(λ)dλ, Y =

1√
2π

∫ ∞

−∞
Ỹ+(λ)W

+
λ dλ,

where Ỹ+(λ):= (ϒ+Y )(λ)and Z̃+(λ):= (ϒ+Z)(λ)

It follows from (3.7) that the function Θ+
α1α2

(λ) satisfies
∣

∣Θ+
α1α2

(λ)
∣

∣= 1 for λ ∈R.

Then, the explicit formula for the vectors W +
λ and W −

λ implies that

W −
λ = Θ

+
α1α2

(λ)W +
λ , λ ∈ R. (3.8)

Lemmas 5 and 6 result in H+
− = H+

+. By means of Lemma 2, we can conclude that

H= H+
− = H+

+. According to the formula (3.8), we can see that the passage from the

ϒ−-representation of a vector Y ∈ H to its ϒ+-representation is achieved as follows:

Ỹ+(λ) = Θ
+
α1α2

(λ)Ỹ−(λ). Hence, according to [10], the following theorem follows.

Theorem 6. The function Θ
+
α1α2

(λ) is the scattering matrix of the group {U+(s)}
of the self-adjoint operator T+

α1α2
).

We derive from the explicit form of the unitary transformation Φ− that

H→ L2(R), Y → Ỹ−(λ) = (ϒ−Y )(λ), D− → H 2
−,

D+ → Θ+
α1α2

H 2
+, N→ H 2

+⊖Θ+
α1α2

H 2
+,

U+(s)Y → (ϒ−U
+(s)ϒ−1

− Ỹ−)(λ) = eiλsỸ−(λ). (3.9)

The formulas given by (3.9) state that the operator T+
α1α2

is a unitary equivalent to

the model dissipative operator with characteristic function Θ+
α1α2

(λ). We have thus

proved the next assertion.
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Theorem 7. The characteristic function of the maximal dissipative operator T+
α1α2

coincides with the function Θ+
α1α2

(λ)defined by (3.7).

Let S represent the linear operator acting in the Hilbert space H with the domain

D(S). We know that a complex number λ0 is called an eigenvalue of an operator S

if there exists a non-zero vector z0 ∈ D(S) satisfying the equation Sz0 = λ0z0; here,

z0 is called an eigenvector of S for λ0. The eigenvector for λ0 spans a subspace of

D(S), called the eigenspace for λ0 and the geometric multiplicity of λ0 is the dimen-

sion of its eigenspace. The vectors z1,z2, ...,zk are called the associated vectors of

the eigenvector z0 if they belong to D(S) and Sz j = λ0z j + z j−1, j = 1,2, ...,k. The

non-zero vector z ∈ D(S) is called a root vector of the operator S corresponding to

the eigenvalue λ0, if all powers of S are defined on this element and (S−λ0I)mz = 0

for some integer m. The set of all root vectors of S corresponding to the same eigen-

value λ0 with the vector z = 0 forms a linear set Mλ0
and is called the root lineal. The

dimension of the lineal Mλ0
is called the algebraic multiplicity of the eigenvalue λ0.

The root lineal Mλ0
coincides with the linear span of all eigenvectors and associated

vectors of S corresponding to the eigenvalue λ0. As a result, the completeness of the

system of all eigenvectors and associated vectors of S is equivalent to the complete-

ness of the system of all root vectors of this operator.

Characteristic function of a maximal dissipative operator T±
α1α2

carries complete

information about the spectral properties of this operator ([9, 13–16]). For example,

when a singular factor θ±(λ) of the characteristic function Θ±
α1α2

(λ) in the factoriza-

tion Θ±
α1α2

(λ) = θ±(λ)B±(λ) (where B±(λ) is a Blaschke product) is absent, we are

sure that system of eigenfunctions and associated functions (or root functions) of the

maximal dissipative Sturm-Liouville operator T±
α1α2

is complete.

Theorem 8. For all values of α1where ℑα1 > 0, with the possible exception of

a single value α1 = α0
1, and for a fixed α2 (ℑα2 = 0 or α2 = 0), the characteristic

function Θ−
α1α2

(λ) of the maximal dissipative operator T−
α1α2

is a Blaschke product,

and the spectrum of T−
α1α2

is purely discrete, and lies in the open upper half plane.

The operator T−
α1α2

(α1 6= α0
1) has a countable number of isolated eigenvalues having

finite multiplicity and limit points at infinity, and the system of all eigenfunctions and

associated functions (or all root functions) of this operator is complete in the space

L2
r (J).

Proof. It can be seen from the explicit formula (3.3) that Θ−
α1α2

(λ) is an inner

function in the upper half-plane and, besides, it is meromorphic in the whole λ-plane.

Therefore, we can factorize it in the following way

Θ−
α1α2

(λ) = eiλl(α1)Bα1α2
(λ), l (α1)≥ 0, (3.10)

where Bα1α2
(λ) is a Blaschke product. Using (3.10), we find that

∣

∣Θ−
α1α2

(λ)
∣

∣≤ e−l(α1)ℑλ
, ℑλ ≥ 0. (3.11)
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Additionally, if we express m∞α2
(λ) in terms of Θ−

α1α2
(λ) and use (3.3), we get

m∞α2
(λ) =

α1Θ−
α1α2

(λ)−α1

Θ−
α1α2

(λ)−1
. (3.12)

For a given value α1 (ℑα1 > 0), if l (α1)> 0 then we have lims→+∞ Θ−
α1α2

(is) = 0 by

(3.11). This, together with (3.12), results in lims→+∞ m∞α2
(is) = α1. Since m∞α2

(λ)
is independent of α1, l(α1) can be non-zero at not more than a single point α1 = α0

1

(and, further, α0
1 = lims→+∞ m∞α2

(is)). Then, the theorem is proved. �

The next result can be proved in a similar manner in the proof of Theorem 8.

Theorem 9. For all values of α2 with ℑα2 > 0, with the possible exception of a

single value α2 = α0
2, and for a fixed α1 (ℑα1 = 0 or α1 = ∞), the characteristic

function Θ+
α1α2

(λ) of the maximal dissipative operator T+
α1α2

is a Blaschke product,

and the spectrum of T+
α1α2

is purely discrete, and lies in the open upper half-plane.

The operator T+
α1α2

(α2 6= α0
2) has a countable number of isolated eigenvalues having

finite multiplicity and limit points at infinity, and the system of all eigenfunctions and

associated functions (or all root functions) of this operator is complete in the space

L2
r (J).
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1. INTRODUCTION

In 2018 Tunç et al. [4] obtained Simpson’s type quantum integral inequalities.

Unfortunately, there are many mistakes in the proofs. Many q-integrals are calculated

incorrectly. Besides, the results of lemma and theorems are also wrong. In this paper,

we show the errors in the [4].

2. PRELIMINARIES AND DEFINITIONS OF q-CALCULUS

Throughout this paper, let a < b and 0 < q < 1 be a constant. The following

definitions and theorems for q- derivative and q- integral of a function f on [a,b] are

given in [2, 3].

Definition 1. For a continuous function f : [a,b] → R then q- derivative of f at

x ∈ [a,b] is characterized by the expression

aDq f (x) =
f (x)− f (qx+(1−q)a)

(1−q)(x−a)
, x 6= a. (2.1)

Since f : [a,b]→R is a continuous function, thus we have aDq f (a) = lim
x→a

aDq f (x) .

The function f is said to be q- differentiable on [a,b] if aDq f (t) exists for all

x ∈ [a,b]. If a = 0 in (2.1), then 0Dq f (x) = Dq f (x) , where Dq f (x) is familiar

q-derivative of f at x ∈ [a,b] defined by the expression (see [1])

Dq f (x) =
f (x)− f (qx)

(1−q)x
, x 6= 0. (2.2)

© 2021 Miskolc University Press
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Definition 2. Let f : [a,b] → R be a continuous function. Then the q-definite

integral on [a,b] is delineated as

x∫

a

f (t)a dqt = (1−q)(x−a)
∞

∑
n=0

qn f (qnx+(1−qn)a) (2.3)

for x ∈ [a,b].

If a = 0 in (2.3), then
x∫

0

f (t)0 dqt =
x∫

0

f (t)dqt, where
x∫

0

f (t)dqt is familiar q-

definite integral on [0,x] defined by the expression (see [1])

x∫

0

f (t)0 dqt =

x∫

0

f (t)dqt = (1−q)x
∞

∑
n=0

qn f (qnx) . (2.4)

If c ∈ (a,x), then the q- definite integral on [c,x] is expressed as

x∫

c

f (t)a dqt =

x∫

a

f (t)a dqt −

c∫

a

f (t)a dqt. (2.5)

[n]q notation

[n]q =
qn −1

q−1

Lemma 1. [3] For α ∈ R\{−1}, the following formula holds:

x∫

a

(t −a)α
a dqt =

(x−a)α+1

[α+1]q
. (2.6)

3. ERRATUM: SIMPSON TYPE QUANTUM INTEGRAL INEQUALITIES FOR

CONVEX FUNCTIONS

Here, we will show the errors we mentioned above. For example, in Lemma 4 the

followin equality is not correct:

1
2∫

0

(1− t)

∣

∣

∣

∣

qt −
1

6

∣

∣

∣

∣

0

dqt =

1
2∫

0

∣

∣

∣

∣

qt −
1

6

∣

∣

∣

∣

0

dqt −

1
2∫

0

t

∣

∣

∣

∣

qt −
1

6

∣

∣

∣

∣

0

dqt

=

1
6q∫

0

(

qt −
1

6

)

0

dqt +

1
2∫

1
6q

(

1

6
−qt

)

0

dqt
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−







1
6q∫

0

t

(

qt −
1

6

)

0

dqt +

1
2∫

1
6q

t

(

1

6
−qt

)

0

dqt






.

Here, for q ∈ (0,1) , 1
6q

� 1
2
. For instance, q = 1

6
→ 1 � 1

2
. So, the proof of Lemma 4

is not correct. Lemma 5 also have the same errors. On the other hand, since Lemma

4 and Lemma 5 are used in proof of Theorem 1, there are errors in this theorem.

Moreover, Theorem 2 and 3 have the same mistakes. For instance, because of (2.6),

the following equalities are also not true:

1
2∫

0

∣

∣

∣

∣

qt −
1

6

∣

∣

∣

∣

p

0

dqt =

(

1+(3q−1)p+1
)

(1−q)

6p+1q(1−qp+1)
,

1∫

1
2

∣

∣

∣

∣

qt −
5

6

∣

∣

∣

∣

p

0

dqt =

[

(5−3q)p+1 +(6q−5)p+1
]

(1−q)

6p+1q(1−qp+1)
.

The integral boundaries that cause all these errors are chosen independently of q.

Now, let show the following Theorem 1 in [4] is not correct. For this, we give an

example.

Theorem 1. Suppose that f : [a,b]→R is a q-differentiable function on (a,b) and

0 < q < 1. If |aDq f | is convex and integrable function on [a,b], then we possess the

inequality

1

6

∣

∣

∣

∣

∣

∣

f (a)+4 f

(

a+b

2

)

+ f (b)−
1

(b−a)

b∫

a

f (t)a dqt

∣

∣

∣

∣

∣

∣

(3.1)

≤
(b−a)

12

{

2q2 +2q+1

q3 +2q2 +2q+1

∣

∣

aDq f (b)
∣

∣+
1

3

6q3 +4q2 +4q+1

q3 +2q2 +2q+1

∣

∣

aDq f (a)
∣

∣

}

.

Example 1. Let choose f (t) = 1− t on [0,1] and f (t) satisfies the conditions of

Theorem 1. On the other hand, |aDq f | = |aDq (1− t) | = 1 is convex and integrable

on [0,1] . Then we have

1

6

∣

∣

∣

∣

∣

∣

f (a)+4 f

(

a+b

2

)

+ f (b)−
1

(b−a)

b∫

a

f (t)a dqt

∣

∣

∣

∣

∣

∣

(3.2)

=
1

6

∣

∣

∣

∣

∣

∣

1+2+0−

1∫

0

(1− t)0 dqt

∣

∣

∣

∣

∣

∣
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=
1

6

∣

∣

∣

∣

∣

3−

(

t −
t2

1+q

)1

0

∣

∣

∣

∣

∣

=
3+2q

6(1+q)
.

Also,

(b−a)

12

{

2q2 +2q+1

q3 +2q2 +2q+1

∣

∣

aDq f (b)
∣

∣+
1

3

6q3 +4q2 +4q+1

q3 +2q2 +2q+1

∣

∣

aDq f (a)
∣

∣

}

=
1

12

{

2q2 +2q+1

q3 +2q2 +2q+1
+

1

3

6q3 +4q2 +4q+1

q3 +2q2 +2q+1

}

=
1

36

6q2 +6q+3+6q3 +4q2 +4q+1

q3 +2q2 +2q+1

=
1

36

6q3 +10q2 +10q+4

q3 +2q2 +2q+1

=
1

18

3q3 +5q2 +5q+2

q3 +2q2 +2q+1
. (3.3)

As we seen, from (3.2) and (3.3) and for q ∈ (0,1) we write

3+2q

6(1+q)
�

1

18

3q3 +5q2 +5q+2

q3 +2q2 +2q+1
.

For instance, choosing q = 1
2

we have

4

9
�

7

54
.

Therefore, Inequality (3.1) is not correct.

Similarly, other theorems can be shown to be false.
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Abstract. The boundary-value problem for a second order singularly perturbed Fredholm integro-

differential equation was considered in this paper. For the numerical solution of this problem,

we use an exponentially fitted difference scheme on a uniform mesh which is succeeded by the

method of integral identities with the use of exponential basis functions and interpolating quad-

rature rules with the weight and remainder terms in integral form. Also, the method is first order

convergent in the discrete maximum norm. Numerical example shows that recommended method

has a good approximation characteristic.
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1. INTRODUCTION

Fredholm integro-differential equations (FIDEs) have in large quantities applica-

tions in every branches of science. FIDEs arise from the mathematical modeling of

many scientific phenomena, such as the study of fluid, physics, chemistry, biology,

mechanics, astronomy, potential theory, electrostatics, control theory of industrial

mathematics and chemical kinetics [13, 14, 18]. On the other hand, FIDEs are quite

difficult to find exact solutions. For this reason, numerical methods play a significant

role in this problems, for example, in [5, 8–11](see, also references therein).

Below, the boundary-value problem for a singularly perturbed Fredholm integro-

differential equation(SPFIDE) is considered:

Lu :=− εu′′+a(x)u+λ

l∫

0

K(x,s)u(s)ds = f (x), x ∈ (0, l) ,

u(0) =A, u(l) = B,

(1.1)

where ε ∈ (0,1] is a perturbation parameter, λ is real parameter. We assume that

a(x)≥ α > 0, f (x) and K(x,s) are the sufficiently smooth functions satisfying certain

© 2021 Miskolc University Press
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regularity conditions to be specified. The solution u(x) of (1.1) has in general a

boundary layer near x = 0 and x = l.

Singularly perturbed differential equations are typically characterized by a small

parameter ε multiplying some or all of the highest order terms in the differential equa-

tion. This problem undergo rapid changes within very thin layers near the boundary

or inside the problem domain, so most of the conventional methods fail when this

small parameter approaches to zero. These singularly perturbed differential equations

arise in the modeling of various modern complicated processes, such as reaction-

diffusion processes, epidemic dynamics, high Reynold’s number flow in the fluid

dynamics, heat transport problem. For more details on singular perturbation, one can

refer the books [4, 15–17, 19] and the references therein. Survey of some existence

and uniqueness results of singularly perturbed equations can be found in [7, 15–17].

In recent years, there has been a growing interest in the numerical solution of integ-

ral equations. The Adomian decomposition method for solving linear second-order

FIDEs is presented in [10]. Qing Xue et al. [20] studied on an improved reproducing

kernel method to find the numerical solution of FIDE type boundary value prob-

lems. Emamzadeh and Kajani [6] used a numerical method for solving the nonlinear

Fredholm integral equation. Jackiewicz et al. [9] proposed several approaches to the

numerical solution of a new FIDEs modelling neural networks. Gegele et al. [8]

presented some approximation methods to solve higher order linear FIDEs. Karimi

and Jozi [11] proposed a new numerical method for solving system of linear Fred-

holm integral equations of the second kind.

The above mentioned papers, related to FIDEs were concerned only with the regu-

lar cases. Also, current studies for the numerical solution of SPFIDEs have not wide-

spread yet. Various difference schemes for singularly perturbed integro-differential

equations and problems with integral boundary condition were investigated in [3,12].

In this paper, we present fitted type difference scheme on an uniform mesh for the

numerical solution of the problem (1.1). The difference scheme is constructed by the

method of integral identities with the use exponential basis functions and interpol-

ating quadrature rules with the weight and remainder terms in integral form [1]. To

approximate the integral part of (1.1), the composite right-side rectangle rule with the

remainder term in integral form is being used.

The organization of the paper is as follows. In Section 2, we state some signific-

ant properties of the exact solution. In Section 3, we describe the finite difference

discretization and appropriate mesh. The error analysis for the approximate solution

is presented in Section 4. Uniform convergence is proved in the discrete maximum

norm. Numerical results are given in Section 5 to support the predicted theory. The

paper ends with a summary of the main conclusions.

Notation 1. Throughout the paper, C will denote a generic positive constant inde-

pendent of ε and the mesh parameter and ‖g‖∞ is the continuous maximum norm on

the corresponding closed interval for any continuous function g(x).
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2. THE CONTINUOUS PROBLEM

Lemma 1. If a, f ∈C1[0, l], ∂sK
∂xs ∈C [0, l]2 ,(s = 0,1) and

|λ|< α

max
0≤x≤l

l∫

0

|K(x,s)|ds

, (2.1)

then for the solution u(x) of the problem (1.1) hold the following estimates

‖u‖∞ ≤C, (2.2)

∣

∣u′(x)
∣

∣≤C

{

1+
1√
ε

(

e
−

√
αx√
ε + e

−
√

α(l−x)√
ε

)}

, x ∈ [0, l]. (2.3)

Proof. Using the maximum principle for the operator L0u = −εu′′ + a(x)u, we

obtain the estimate

||u||∞ ≤ |A|+ |B|+α−1|| f ||∞ +α−1|λ| max
0≤x≤l

l∫

0

|K(x,s)| |u(s)|ds

which after taking into account (2.1), leads to (2.2).

Next, we prove the estimate (2.3). Using (2.2) on (1.1) we have

|u′′(x)|= 1

ε

∣

∣

∣

∣

∣

∣

f (x)−a(x)u(x)−λ

l∫

0

K(x,s)u(s)ds

∣

∣

∣

∣

∣

∣

≤ C

ε
, 0 ≤ x ≤ l.

Moreover, we now proceed with the estimation of |u′(0)|, |u′(l)|. Here we use the

following relation which holds for any function g ∈C2[0, l]:

g′(x) = g[α0,α1]−
α1∫

α0

K0(ξ,x)g
′′(ξ)dξ, α0 < α1, (2.4)

where

g(α0;α1) =
g(α1)−g(α0)

α1 −α0

,

K0(ξ,x) = T0(ξ− x)− (α1 −α0)
−1(ξ−α0)

and

T0(λ) =

{

1, λ ≥ 0

0, λ < 0.



40 GABIL M. AMIRALIYEV, MUHAMMET ENES DURMAZ, AND MUSTAFA KUDU

Equality (2.4) with the values g(x) = u(x), x = 0, α0 = 0, and α1 =
√

ε yields

|u′(0)| ≤ u(
√

ε)−u(0)√
ε

−

√
ε∫

0

K0(ξ,0)u
′′(ξ)dξ ≤ C√

ε
. (2.5)

Similarly, using (2.4) for g(x) = u(x), x = l, α0 = l−
√

ε, and α1 = l we confirm that

|u′(l)| ≤ u(l)−u(
√

ε)√
ε

−
l∫

l−
√

ε

K0(ξ, l)u
′′(ξ)dξ ≤ C√

ε
. (2.6)

Next, differentiating (1.1), according to (2.5) and (2.6), we get

−εv′′+a(x)v = F(x), v(0) = O

(

1√
ε

)

, v(l) = O

(

1√
ε

)

(2.7)

with

v(x) = u′(x), F(x) = f ′(x)−a′(x)u(x)−λ

l∫

0

∂

∂x
K(x,s)u(s)ds.

By virtue of (2.2) evidently

|F(x)| ≤C. (2.8)

In order to estimate the solution of the problem (2.7), we present it in the form

v(x) = v1(x)+ v2(x),

where the functions v1(x) and v2(x) are the solutions of the following problems re-

spectively:

−εv′′1 +a(x)v1 = F(x),

v1(0) = v1(l) = 0,
(2.9)

−εv′′2 +a(x)v2 = 0,

v2(0) = O

(

1√
ε

)

, v2(l) = O

(

1√
ε

)

.
(2.10)

For the solution of the problem (2.9), using the maximum principle and (2.8), we

have

|v1(x)| ≤ α−1||F ||∞ ≤C, 0 ≤ x ≤ l. (2.11)

According to the maximum principle, from the problem (2.10), we also conclude that

|v2(x)| ≤ w(x), (2.12)
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where the function w(x) is the solution of the following problem:

−εw′′+αw = 0,

w(0) = |v2(0)|, w(l) = |v2(l)|.
(2.13)

The solution of problem (2.13) is given by

w(x) =
1

sinh
(

√
αl√
ε

)

{

w(0)sinh

(√
α(l − x)√

ε

)

+w(l)sinh

(√
αx√
ε

)}

.

Hence, taking into consideration (2.10) we obtain

w(x)≤ C√
ε

{

e
−

√
αx√
ε + e

−
√

α(l−x)√
ε

}

. (2.14)

Finally, the use bounds (2.11), (2.12) and (2.14) in the inequality

|u′(x)| ≤ |v1(x)|+ |v2(x)|
immediately leads to (2.3). �

3. THE MESH AND DISCRETIZATION

Let ωN be an uniform mesh on [0, l]:

ωN =

{

xi = ih, i = 1,2, ...,N −1, h =
l

N

}

and

ω̄N = ωN ∪{x = 0, xN = l}.
To construct the difference scheme for the problem (1.1), we start with the following

identity

χ−1
i h−1

xi+1∫

xi−1

Lu(x)ϕi(x)dx = χ−1
i h−1

xi+1∫

xi−1

f (x)ϕi(x)dx, i = 1,2, ..,N −1, (3.1)

with the basis functions

ϕ(x) =



























ϕ
(1)
i (x)≡ sinhγi(x−xi)

sinhγih
, xi−1 < x < xi,

ϕ
(2)
i (x)≡ sinhγi(xi+1−x)

sinhγih
, xi < x < xi+1,

0, x /∈ (xi−1,xi+1),

where

γi =

√

a(xi)

ε
, χi = h−1

xi+1∫

xi−1

ϕi(x)dx =
2tanh(γih/2)

γih
.
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We note that the functions ϕ
(1)
i and ϕ

(2)
i are the solutions of the following problems

respectively:

−εϕ′′+ai(x)ϕ(x) = 0, xi−1 < x < xi

ϕ(xi−1) = 0, ϕ(xi) = 1,

−εϕ′′+ai(x)ϕ(x) = 0, xi < x < xi+1

ϕ(xi) = 1, ϕ(xi+1) = 0.

By using the method of exact difference schemes (see e.g. [1–3]), it follows that

−χ−1
i h−1ε

xi+1∫

xi−1

ϕi(x)u
′′(x)dx+χ−1

i h−1ai

xi+1∫

xi−1

ϕi(x)u(x)dx =

− εχ−1
i







1+aiε
−1

xi∫

xi−1

ϕ
(1)
i (x)(x− xi)dx







uxx,i

+aiχ
−1
i







h−1

xi∫

xi−1

ϕ
(1)
i dx+h−1

xi+1∫

xi

ϕ
(2)
i dx







ui =−εθiuxx,i +aiui

with

θi =
aiρ

2

4sinh2
(√

aiρ/2
) , ρ =

h√
ε
.

Thereby

χ−1
i h−1

xi+1∫

xi−1

[

εu′′ (x)+a(x)u(x)
]

ϕi (x)dx =−εθiuxx,i +aiui +R
(1)
i (3.2)

with remainder term

R
(1)
i = χ−1

i h−1

xi+1∫

xi−1

[a(x)−a(xi)]u(x)ϕi(x)dx. (3.3)

Further for the right-side in (3.1) we have

χ−1
i h−1

xi+1∫

xi−1

f (x)ϕi(x)dx = fi +R
(2)
i (3.4)

with remainder term

R
(2)
i = χ−1

i h−1

xi+1∫

xi−1

[ f (x)− f (xi)]ϕi(x)dx. (3.5)
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For integral term involving kernel function, we have from (3.1)

χ−1
i h−1

xi+1∫

xi−1

dxϕi(x)

l∫

0

K(x,s)u(s)ds =

l∫

0

K(xi,s)u(s)ds

+χ−1
i h−1

xi+1∫

xi−1

dxϕi(x)

l∫

0

[K(x,s)−K(xi,s)]u(s)ds.

Further using the composite right side rectangle rule, we obtain

l∫

0

K(xi,s)u(s)ds = h
N

∑
j=1

Ki ju j −
N

∑
j=1

x j∫

x j−1

(ξ− x j−1)
∂

∂ξ
[K(xi,ξ)u(ξ))]dξ.

Therefore we get

χ−1
i h−1

xi+1∫

xi−1

dxϕi(x)

l∫

0

K(x,s)u(s)ds = h
N

∑
j=1

Ki ju j +R
(3)
i (3.6)

with remainder term

R
(3)
i =χ−1

i h−1λ

xi+1∫

xi−1

dxϕi(x)

l∫

0

[K(x,s)−K(xi,s)]u(s)ds

−λ
N

∑
j=1

x j∫

x j−1

(ξ− x j−1)
∂

∂ξ
[K(xi,ξ)u(ξ))]dξ.

(3.7)

The relations (3.2), (3.4) and (3.6) yield the following exact relation for u(xi)

LNui : =−εθiuxx,i +aiui +λh
N

∑
j=1

Ki ju j +Ri = fi, 1 ≤ i ≤ N −1 (3.8)

with remainder term

Ri = R
(1)
i +R

(2)
i +R

(3)
i , (3.9)

where R
(k)
i ;(k = 1,2,3) are defined by (3.3), (3.5) and (3.7) respectively. Based on

(3.8) we propose the following difference scheme for approximating (1.1).

LNyi :=− εθiyxx,i +aiyi +λh
N

∑
j=1

Ki jy j = fi, 1 ≤ i ≤ N −1,

y0 =A, yN = B.

(3.10)
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4. ERROR ANALYSIS

From (3.8) and (3.10) for the error of the approximate solution zi = yi−ui we have

LNzi :=− εθizxx,i +aizi +λh
N

∑
j=1

Ki jz j = Ri, 1 ≤ i ≤ N −1,

z0 =0, zN = 0.

(4.1)

where Ri are defined by (3.9).

Theorem 1. Under the conditions of Lemma (2.1) and

|λ|< α

max
1≤i≤N

N

∑
j=1

h|Ki j|
,

the solution of (3.10) converges ε-uniformly to the solution of (1.1). For the error of

approximate solution the following estimate hols

||y−u||∞,ω̄N
≤Ch.

Proof. Applying the maximum principle, from (4.1) we have

||z||∞,ω̄N
≤ α−1||R−λh

N

∑
j=1

Ki jz j||∞,ωN

≤ α−1||R||∞,ωN
+ |λ|α−1 max

1≤i≤N

N

∑
j=1

h|Ki j|||z||∞,ω̄N
,

hence

||z||∞,ω̄N
≤ α−1||R||∞,ωN

1−|λ|α−1 max
1≤i≤N

N

∑
j=1

h|Ki j|

which implies of

||z||∞,ω̄N
≤C||R||∞,ωN

. (4.2)

Further we estimate R
(1)
i , R

(2)
i and R

(3)
i seperately. For a(x), by the mean value the-

orem, we have

|a(x)−a(xi)| ≤ |a′(ξi)||x− xi| ≤Ch, xi ≤ ξi ≤ x.
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Thereby for R
(1)
i , by a ∈C1[0, l] and (2.2) we get

∣

∣

∣
R
(1)
i

∣

∣

∣
≤ χ−1

i h−1

∣

∣

∣

∣

∣

∣

xi+1∫

xi−1

[a(x)−a(xi)]u(x)ϕi(x)dx

∣

∣

∣

∣

∣

∣

≤Chχ−1
i h−1

xi+1∫

xi−1

ϕi(x)dx =Ch.

(4.3)

Similarly, for R
(2)
i we get

∣

∣

∣
R
(2)
i

∣

∣

∣
≤Ch. (4.4)

Finally for R
(3)
i , taking into account the boundedness of ∂K

∂x
and (2.3) it follows that

∣

∣

∣
R
(3)
i

∣

∣

∣
≤χ−1

i h−1 |λ|
xi+1∫

xi−1

dxϕi(x)

l∫

0

|K(xi,s)−K(x,s)| |u(s)|ds

+ |λ|
N

∑
j=1

x j∫

x j−1

(ξ− x j−1)

∣

∣

∣

∣

∂

∂ξ
[K(xi,ξ)u(ξ)]

∣

∣

∣

∣

dξ

≤ χ−1
i h−1 |λ|

xi+1∫

xi−1

dxϕi(x)

l∫

0

(x− xi)

∣

∣

∣

∣

∂

∂ξ
K(ξ,s)u(s)

∣

∣

∣

∣

ds

+ |λ|h
l∫

0

∣

∣

∣

∣

∂

∂ξ
[K(xi,ξ)u(ξ)]

∣

∣

∣

∣

dξ

≤Ch |λ|+ |λ|h
l∫

0

{∣

∣

∣

∣

∂K(xi,ξ)

∂ξ

∣

∣

∣

∣

|u(ξ)|+ |K(xi,ξ)|
∣

∣u′(ξ)
∣

∣

}

dξ

≤C







h+h

l∫

0

(

1+
1√
ε

(

e
−

√
αξ√
ε + e

−
√

α(l−ξ)√
ε

)

)

dξ







≤Ch.

(4.5)

Thus from (4.3)-(4.5) we see easily the estimate

||R||∞ ≤Ch. (4.6)

The bound (4.6) together with (4.2) completes the proof. �
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5. NUMERICAL RESULTS

Consider the particular problem with

a(x) = 1, K (x,s) = x, f (x) = x− ε+ εe−
x
ε , x ∈ (0,1) ,

λ =
1

2
, A = 1, B = 2− ε+ εe−

1
ε ,

The exact solution is given by

u(x) =
e
− x√

ε + e
x−1√

ε − e
x−2√

ε − e
− x+1√

ε

1− e
− 2√

ε

+ x− ε+ εe
− x√

ε .

We define the exact error eh
ε and the computed ε-uniform maximum pointwise error

eh as follows:

eh
ε = ‖y−u‖∞ , eh = max

ε
eh

ε .

We also define the computed parameter-uniform rate of convergence to be

ph = ln

(

eh/eh/2

)

/ ln2.

The resulting errors eh and the corresponding numbers ph for various values ε and h

are listed in Table 1.

Table 1 Exact errors eh
ε , computed ε-uniform errors eh and convergence rates ph

on ωN .

ε h = 1/32 h = 1/64 h = 1/128 h = 1/256 h = 1/512 h = 1/1024

1 0.00343868 0.00198874 0.00110332 0.00060368 0.00030394 0.00015197

0.79 0.85 0.87 0.99 1.00

2−4 0.01032126 0.00605257 0.00338123 0.00185003 0.00094445 0.00047551

0.77 0.84 0.87 0.97 0.99

2−8 0.01125894 0.00660244 0.00368841 0.0020181 0.00103025 0.00051871

0.77 0.84 0.87 0.97 0.99

2−12 0.011200979 0.00656845 0.00366942 0.00200771 0.00102495 0.00051604

0.77 0.84 0.87 0.97 0.99

2−16 0.0112049 0.00657075 0.00367071 0.00200842 0.00102531 0.00051622

0.77 0.84 0.87 0.97 0.99

eh 0.01125894 0.00660244 0.00368841 0.0020181 0.00103025 0.00051622

ph 0.77 0.84 0.87 0.97 0.99

The obtained results show that the convergence rate of difference scheme is essen-

tially in accord with the theoretical analysis.
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6. CONCLUSION

A boundary-value problem for a second order singularly perturbed Fredholm

integro-differential equation has been considered. For the numerical solution of this

problem, we proposed a fitted finite difference scheme on a uniform type mesh. The

difference scheme is constructed by the method of integral identities with the use of

exponential basis functions and interpolating quadrature rules with the weight and

remainder terms in integral form. It is shown that the method displays uniform con-

vergence independently of the perturbation parameter in the discrete maximum norm.

We have implemented the present method on a example. Numerical results were car-

ried out to show the efficiency and accuracy of the method.
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Abstract. In this paper, a new class of nonconvex nonsmooth multiobjective programming prob-

lems with both inequality and equality constraints defined in a real Banach space is considered.

Under the nondifferentiable vectorial (Φ,ρ)w-invexity notion introduced in the paper, optimality

conditions and duality results in Mond-Weir sense are established for the considered nonsmooth

vector optimization problem. It turns out that the results developed here under (Φ,ρ)w-invexity

are applicable for a larger class of nonconvex nondifferentiable multiobjective programming

problems than under several generalized convexity notions existing in the literature.
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1. INTRODUCTION

The term multiobjective programming (or vector optimization) is used to denote

a type of optimization problems where two or more objectives are to be minimized

subject to certain constraints. Investigation on sufficiency of (weak) Pareto optimality

and duality has been one of the most attraction topics in the theory of multi-objective

problems. This is a consequence of the fact that vector optimization problems are

useful mathematical models of most real-life problems in economics, physics, mech-

anics, decision making, game theory, engineering, optimal control, etc. It is well

known that the concept of convexity and its various generalizations play an important

role in deriving sufficient optimality conditions and duality results for multiobjective

programming problems. In recent years, therefore, multiobjective programming has

grown remarkably in different directions in the settings of optimality conditions and

duality theory. It has been enriched by the applications of various types of general-

izations of convexity theory, with and without differentiability assumptions (see, for

example, [1, 2, 4, 5, 7, 8, 11, 13–16, 18, 20, 21] and others).

The aim of the present work is to introduce a new concept of nondifferentiable

generalized invexity notion and to use it to prove optimality and duality results for

© 2021 Miskolc University Press
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a new class of nonsmooth multiobjective programming problems defined in a real

Banach space. By taking the motivation from Antczak and Stasiak [6] and Stefanescu

and Stefanescu [22], we introduce the concept of nondifferentiable (Φ,ρ)w
-invexity

for a nonsmooth multiobjective programming problem in which every component

of functions involved is a locally Lipschitz function. However, the central purpose

of this paper is to discuss application of the introduced vectorial nondifferentiable

(Φ,ρ)w
-invexity notion in proving the optimality results for a new class of non-

convex nondifferentiable multiobjective programming problems. Namely, we prove

Karush-Kuhn-Tucker necessary optimality conditions for a (weak) Pareto optimal

solution in the considered nondifferentiable multiobjective programming problem in

which constraint functions are (Φ,ρ)w
-invex. Sufficiency of these necessary optimal-

ity conditions for both weak Pareto and Pareto solutions is established for the class of

constrained vector optimization problems with nondifferentiable (Φ,ρ)w
-invex func-

tions, not necessarily, with respect to the same ρ. Further, under (Φ,ρ)w
-invexity hy-

potheses, several duality results are established between the considered nonsmooth

multiobjective programming problem and its nondifferentiable vector dual problem

in the sense of Mond-Weir. The optimality results proved in the paper are illustrated

by an example of a nonconvex nonsmooth vector optimization problem involving

nondifferentiable (Φ,ρ)w
-invex functions.

2. PRELIMINARIES

Throughout this paper, we use the following conventions for vectors x =
(x1,x2, ...,xn)

T
, y = (y1,y2, ...,yn)

T
in the Euclidean space Rn:

(i) x = y if and only if xi = yi for all i = 1,2, ...,n;

(ii) x > y if and only if xi > yi for all i = 1,2, ...,n;

(iii) x ≧ y if and only if xi ≧ yi for all i = 1,2, ...,n;

(iv) x ≥ y if and only if x ≧ y and x 6= y.

In this section, we provide some definitions and some results that we shall use in the

sequel. Throughout this paper, we denote a real Banach space by X , the (continuous)

dual of X by X∗, and the value of the function ξ in X∗ at v ∈ X by 〈ξ,v〉.

Definition 1 ([9]). The Clarke generalized directional derivative of a locally Lipschitz

function f : X → R at x ∈ X in the direction v ∈ X , denoted by f 0 (x;v), is given by

f 0(x;v) = limsup
y→x
λ↓0

f (y+λv)− f (y)

λ
.

Definition 2 ([9]). The Clarke generalized subgradient of a locally Lipschitz func-

tion f : X → R at x ∈ X , denoted by ∂ f (x), is defined as follows

∂ f (x) =
{

ξ ∈ X∗ : f 0(x;v)≥ 〈ξ,v〉 for all v ∈ X
}
.

Let S be a nonempty convex subset of X .
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Definition 3. The function Φ : S → R is said to be quasi-convex if, for each α ∈ R,

the level set {x ∈ S : Φ(x)≦ α} is convex, or equivalently, if Φ(λy+(1−λ)x) ≦
max{Φ(y) ,Φ(x)} for every y,x ∈ S and λ ∈ [0,1].

A stronger property is also considered as follows:

Definition 4. The function Φ : S → R is said to be strictly quasi-convex if it is

quasi-convex and Φ(λy+(1−λ)x) < 0, whenever Φ(y) < 0, Φ(x) ≦ 0 and λ ∈
(0,1).

Proposition 1. If Φ : S → R is a strictly quasi-convex function and there are

x1, ...,xk ∈ S such that Φ
(
xi
)
≦ 0, i = 1, ...,k and Φ

(
xi∗
)
< 0 for at least one i∗ ∈

{1, ....,k}, then Φ
(
∑k

i=1 λixi

)
< 0 for every λ = (λ1, ...,λk)≥ 0 such that ∑k

i=1 λi = 1

and λi∗ > 0.

In [22], Stefanescu and Stefanescu introduced the definition of a differentiable

(Φ,ρ)w
-invex function. Now, in the natural way, we generalize this definition to the

nondifferentiable vectorial case.

Definition 5. Let f = ( f1, ..., fk) : X → Rk be defined on X , every its component

fi, i = 1, ...,k, be a locally Lipschitz function on X and u ∈ X . If there exist a function

Φ : X × X × X∗ × R → R, where Φ(x,u,(·, ·)) is strictly quasi-convex on X∗ × R,

Φ(x,u,(0,a))≧ 0 for all x ∈ X and each a ∈ R+ and ρ = (ρ1, ...,ρk) ∈ Rk, where ρi,

i = 1, ...,k, are real numbers such that the following inequalities

fi(x)− fi(u)≧ Φ(x,u,(ξi,ρi)) , i = 1, ...,k (>) (2.1)

hold for all x ∈ X (x 6= u) and each ξi ∈ ∂ fi (u), i = 1, ...,k, then f is said to be a

nonsmooth vector (Φ,ρ)w
-invex at u on X . If inequalities (2.1) are satisfied at any

point u, then f is said to be a nonsmooth (strictly) vector (Φ,ρ)w
-invex function on

X .

In order to define an analogous class of nondifferentiable vector (strictly) (Φ,ρ)w
-

incave functions, the direction of the inequality in the definition of these functions

should be changed to the opposite one.

Remark 1. Let X ⊆ Rn and the functional Φ(x,u,(·, ·)) be convex on R × R.

From Definition 5, there are the following special cases:

a) If Φ(x,u,(ξi,ρi)) = 〈ξi,x−u〉, where ξi ∈ ∂ fi (u), i = 1, ...,k, then we obtain

the definition of a nondifferentiable convex function.

b) If Φ(x,u,(ξi,ρi)) = 〈ξi,η(x,u)〉 for a certain mapping η : X ×X →Rn, where

ξi ∈ ∂ fi (u), i = 1, ...,k, then we obtain the definition of a locally Lipschitz

invex function (with respect to the function η) (see Lee [16] and Kim and

Schaible [14] in a nonsmooth vectorial case).

c) If Φ(x,u,(ξi,ρi)) =
1

bi(x,u)
〈ξi,η(x,u)〉, where bi : X × X → R+\{0} and

η : X ×X → Rn, then we obtain the definition of a nondifferentiable b-invex
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function (with respect to the function η) (see, Li et al. [17] in a nondifferen-

tiable scalar case).

d) If Φ(x,u,(ξi,ρi)) = 〈ξi,x−u〉+ρi ‖x−u‖2
, then (Φ,ρ)w

-invexity reduces to

the definition of a nonsmooth ρ-convex function (see Zalmai [23]).

e) If Φ(x,u,(ξi,ρi)) = 〈ξi,η(x,u)〉 + ρi ‖θ(x,u)‖2
for a certain mapping

η : X ×X → Rn, where θ : X ×X → Rn, θ(x,u) 6= 0, whenever x 6= u, then

(Φ,ρ)w
-invexity reduces to the definition of a nonsmooth ρ-invex function

(with respect to η and θ) introduced by Jeyakumar [12] in a scalar case.

f) If Φ(x,u,(ξi,ρi)) = αi (x,u)〈ξi,η(x,u)〉, where αi : X × X → R+\{0},

θ : X ×X →Rn, θ(x,u) 6= 0, whenever x 6= u, then (Φ,ρ)w
-invexity reduces to

the definition of a V -invex function (with respect to η) introduced by Jeyak-

umar and Mond [13] in a differentiable case and Mishra and Mukherjee [19]

in a nonsmooth case.

g) If Φ(x,u,(ξi,ρi)) = αi (x,u)〈ξi,η(x,u)〉+ρi ‖θ(x,u)‖2
, where αi : X ×X →

R+\{0}, θ : X ×X → Rn, θ(x,u) 6= 0, whenever x 6= u, then (Φ,ρ)w
-invexity

reduces to the definition of a nonsmooth V -ρ-invex function (with respect to

η and θ) introduced by Kuk et al. [15].

h) If Φ(x,u,(ξi,ρi)) = F (x,u,ξi), where F (x,u, ·) is a sublinear functional with

respect to the third component, then the definition of a (Φ,ρ)w
-invex function

reduces to the definition F-convexity introduced by Hanson and Mond [10].

i) If Φ(x,u,(ξi,ρi)) = F (x,u,ξi) + ρid
2 (x,u), where F (x,u, ·) is a sublinear

functional with respect to the third component and d : X ×X →R is a pseudo-

metric on X , then the definition of a (Φ,ρ)w
-invex function reduces to the

definition (F,ρ)-convexity introduced in a nondifferentiable case by Bhatia

and Jain [8] .

j) If the functional Φ(x,u,(·, ·)) is convex on X∗×R, then we obtain the defin-

ition of a nondifferentiable (Φ,ρ)-invex function (see Antczak and Stasiak

[6] in a scalar case).

3. OPTIMALITY UNDER NONSMOOTH (Φ,ρ)w
-INVEXITY

In the paper, we consider the following nonsmooth vector optimization problem:

f (x) := ( f1(x), ..., fk(x))→V -min

subject to g j(x)≦ 0, j ∈ J = {1, ...m} ,

ht (x) = 0, t ∈ T = {1, ...,q} ,

x ∈ X ,

(VP)

where fi : X → R, i ∈ I = {1, ...,k}, g j : X → R, j ∈ J, and ht : X → R, t ∈ T are

locally Lipschitz functions on X . For the purpose of simplifying our presentation,

we will next introduce some notations which will be used frequently throughout this

paper. Let D :=
{

x ∈ X : g j(x)≦ 0, j ∈ J, ht (x) = 0, t ∈ T
}

be the set of all feasible
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solutions in problem (VP), and J (x) be a set of active inequality constraints at point

x ∈ D, that is, J (x) =
{

j ∈ J : g j (x) = 0
}

.

Definition 6. A feasible point x is said to be a weak Pareto solution (weakly ef-

ficient solution, weak minimum) for (VP) if and only if there exists no other x ∈ D

such that f (x)< f (x).

Definition 7. A feasible point x is said to be a Pareto solution (efficient solution)

for (VP) if and only if there exists no other x ∈ D such that f (x)≤ f (x).

Theorem 1 (Generalized F. John necessary optimality conditions, [9]). Let x ∈ D

be a (weakly) efficient solution of the considered nonsmooth multiobjective program-

ming problem (VP). Then, there exist λ ∈ Rk, µ ∈ Rm and ϑ ∈ Rq such that

0 ∈
k

∑
i=1

λi∂ fi(x)+
m

∑
j=1

µ j∂g j(x)+
q

∑
t=1

ϑt∂ht(x), (3.1)

µ jg j(x) = 0, j ∈ J, (3.2)(
λ,µ
)
≥ 0. (3.3)

Now, we prove the so-called Generalized Karush-Kuhn-Tucker necessary optim-

ality conditions for a nonsmooth vector optimization problem with locally Lipschitz

(Φ,ρ)w
-invex constraint functions.

Theorem 2 (Generalized Karush-Kuhn-Tucker necessary optimality conditions).

Let x ∈ D be a (weakly) efficient solution of the considered multiobjective program-

ming problem (VP) and Generalized F. John necessary optimality conditions (3.1)-

(3.3) be satisfied at x with Lagrange multipliers λ ∈ Rk, µ ∈ Rm and ϑ ∈ Rq. Fur-

ther, assume that there exists a feasible solution x̃ such that g j (x̃)< 0, j ∈ J (x) and,

moreover, g j, j ∈ J (x), is locally Lipschitz
(
Φ,ρg j

)w
-invex at x on D, ht , t ∈ T+ (x) :={

t ∈ T : ϑt > 0
}

, is locally Lipschitz (Φ,ρht
)w

-invex at x on D −ht , t ∈ T− (x) :={
t ∈ T : ϑt < 0

}
, is locally Lipschitz (Φ,ρht

)w
-invex at x on D and ∑m

j=1 µ jρg j
+

∑t∈T+(x) ϑtρ
+
ht
−∑t∈T−(x) ϑtρ

−
ht
≧ 0. Then λ 6= 0.

Proof. Let x ∈ D be an efficient (weakly efficient) solution of the considered mul-

tiobjective programming problem (VP). Then, the necessary optimality conditions of

F. John type (3.1)-(3.3) are fulfilled with the Lagrange multipliers λ ∈ Rk, µ ∈ Rm and

ϑ ∈ Rq (see, for example, [9]). We prove that λ 6= 0. Suppose, contrary to the result,

that λ = 0. Hence, as it follows from the necessary optimality conditions of F. John

type (3.3), we have
(

λ,µ
)
≥ 0. Since λ = 0, the above relation implies that µ 6= 0.

Using λ = 0 together with the necessary optimality conditions of F. John type (3.1),

we get

0 ∈
m

∑
j=1

µ j∂g j(x)+
q

∑
t=1

ϑt∂ht(x). (3.4)
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By (3.4), there exist ζ j ∈ ∂g j (x), j ∈ J and ςt ∈ ∂ht (x), t ∈ T such that

0 =
m

∑
j=1

µ jζ j +
q

∑
t=1

ϑtςt . (3.5)

Since µ 6= 0, we have that A = ∑m
j=1 µ j +∑t∈T+(x) ϑt −∑t∈T−(x) ϑt > 0. Let us denote

β̂ j =
µ j

∑m
j=1 µ j +∑t∈T+(x) ϑt −∑t∈T−(x) ϑt

, j ∈ J (x) , (3.6)

γ̂+t =
ϑt

∑m
j=1 µ j +∑t∈T+(x) ϑt −∑t∈T−(x) ϑt

, t ∈ T+ (x) , (3.7)

γ̂−t =
−ϑt

∑m
j=1 µ j +∑t∈T+(x) ϑt −∑t∈T−(x) ϑt

, t ∈ T− (x) . (3.8)

By (3.6)-(3.8), it follows that β =
(

β̂1, ..., β̂m

)
≥ 0, 0 ≦ β̂ j ≦ 1, j ∈ J (x),

0≦ γ̂+t ≦ 1, t ∈ T+ (x), 0≦ γ̂−t ≦ 1, t ∈ T− (x), and, moreover, ∑ j∈J(x) β̂ j+∑t∈T+(x) γ̂+t
+∑t∈T−(x) γ̂−t = 1. By assumption, g j, j ∈ J (x), is

(
Φ,ρg j

)w
-invex at x on D, ht ,

t ∈ T+ (x) :=
{

t ∈ T : ϑt > 0
}

, is locally Lipschitz
(

Φ,ρ+
ht

)w

-invex at x on D, −ht ,

t ∈ T− (x) :=
{

t ∈ T : ϑt < 0
}

, is locally Lipschitz
(

Φ,ρ−
ht

)w

-invex at x on D. Fur-

ther, as it follows from the assumption, there exists x̃ ∈ D such that g j (x̃) < 0,

j ∈ J (x). Hence, by Definition 5, it follows that the following inequalities

g
j
(x̃)−g j(x)≧ Φ

(
x̃,x,

(
ζ j,ρg j

))
, j ∈ J (x) , (3.9)

ht(x̃)−ht(x)≧ Φ
(

x̃,x,
(

ςt ,ρ
+
ht

))
, t ∈ T+ (x) , (3.10)

−ht(x̃)+ht(x)≧ Φ
(

x̃,x,
(
−ςt ,ρ

−
ht

))
, t ∈ T− (x) . (3.11)

hold for each ξi ∈ ∂ fi (x), i ∈ I (x), ζ j ∈ ∂g j (x), j ∈ J (x), ςt ∈ ∂ht (x), t ∈ T+ (x)∪
T− (x). Combining g j (x̃)< 0, j ∈ J (x) and (3.9), we get

Φ
(
x̃,x,

(
ζ j,ρg j

))
< 0, j ∈ J (x) . (3.12)

By x̃ ∈ D, x ∈ D, inequalities (3.10) and (3.11) yield, respectively

Φ
(

x̃,x,
(

ςt ,ρ
+
ht

))
≦ 0, t ∈ T+ (x) , (3.13)

Φ
(

x̃,x,
(
−ςt ,ρ

−
ht

))
≦ 0, t ∈ T− (x) . (3.14)

By Definition 5, we have that Φ(x̃,x,(·, ·)) is a strictly quasi-convex function on Rn+1.

Since (3.12)-(3.14) are satisfied, by Proposition 1, it follows that

Φ

(
x̃,x,

(

∑
j∈J(x)

β̂ jζ j + ∑
t∈T+(x)

γ̂+t ςt + ∑
t∈T−(x)

γ̂−t (−ςt) , (3.15)
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∑
j∈J(x)

β̂ jρg j
+ ∑

t∈T+(x)

γ̂+t ρ+
ht
+ ∑

t∈T−(x)

γ̂−t ρ−
ht

))
< 0.

Taking into account (3.6)-(3.8) and Lagrange multipliers equal to 0 in (3.15), we get

Φ

(
x̃,x,

1

A

(
m

∑
j=1

µ jζ j +
q

∑
t=1

ϑtςt ,
m

∑
j=1

µ jρg j
+ ∑

t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)

ϑtρ
−
ht

))
< 0.

(3.16)

By the necessary optimality condition of F. John type (3.1), it follows that

Φ

(
x̃,x,

1

A

(
0,

m

∑
j=1

µ jρg j
+ ∑

t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)

ϑtρ
−
ht

))
< 0. (3.17)

By assumption, ∑m
j=1 µ jρg j

+∑t∈T+(x) ϑtρ
+
ht
−∑t∈T−(x) ϑtρ

−
ht
≧ 0. Thus, by Definition

5, the following inequality

Φ

(
x̃,x,

1

A

(
0,

m

∑
j=1

µ jρg j
+ ∑

t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)

ϑtρ
−
ht

))
≧ 0

holds, contradicts (3.17). This means that λ 6= 0. If ∑k
i=1 λi 6= 1, then it is sufficient

to normalize the Lagrange multipliers λi, i ∈ I. This completes the proof of this

theorem. �

Remark 2. Theorem 2 can also be proved if hypotheses that each function ht ,

t ∈ T+ (x) :=
{

t ∈ T : ϑt > 0
}

, is locally Lipschitz (Φ,ρht
)w

-invex at x on D and each

function −ht , t ∈ T− (x) :=
{

t ∈ T : ϑt < 0
}

, is locally Lipschitz (Φ,ρht
)w

-invex at

x on D are replaced by, in general, a weaker hypothesis that ∑
q
t=1 ϑtht is locally

Lipschitz (Φ,ρh)
w

-invex at x on D.

Definition 8. The point
(

x,λ,µ,ϑ
)
∈ D×Rk ×Rm ×Rq is said to be a Karush-

Kuhn-Tucker point of the considered vector optimization problem (VP) if the neces-

sary optimality conditions (3.1)-(3.2) and, in place of (3.3), the conditions λ ≥ 0,

∑k
i=1 λi = 1, µ ≧ 0 are satisfied at x with Lagrange multipliers λ, µ and ϑ.

Now, we prove the sufficient optimality conditions for weak efficiency of a feas-

ible solution in the considered nonsmooth multiobjective programming problem (VP)

under nonsmooth (Φ,ρ)w
-invexity.

Theorem 3. Let
(

x,λ,µ,ϑ
)
∈ D×Rk ×Rm ×Rq be a Karush-Kuhn-Tucker point

of the considered nonsmooth multiobjective programming problem (VP). Further, as-

sume that fi, i ∈ I, is locally Lipschitz (Φ,ρ fi
)w

-invex at x on D, g
j
, j ∈ J (x), is loc-

ally Lipschitz
(
Φ,ρg j

)w
-invex at x on D, ht , t ∈ T+ (x) :=

{
t ∈ T : ϑ > 0

}
, is locally

Lipschitz
(

Φ,ρ+
ht

)w

-invex at x on D, −ht , t ∈ T− (x) :=
{

t ∈ T : ϑ < 0
}

, is locally



56 TADEUSZ ANTCZAK AND RAM VERMA

Lipschitz
(

Φ,ρ−
ht

)w

-invex at x on D. If ∑k
i=1 λiρ fi

+∑ j∈J(x) µ jρg j
+∑t∈T+(x) ϑtρ

+
ht
−

∑t∈T−(x) ϑtρ
−
ht
≧ 0, then x is a weak Pareto optimal solution of the problem (VP).

Proof. Suppose, contrary to the result, that x is not a weak Pareto optimal solution

of the problem (VP). Then, by Definition 6, there exists a feasible solution x̃ such that

f (x̃)< f (x) . (3.18)

By assumption,
(

x,λ,µ,ϑ
)
∈D×Rk×Rm×Rq is a Karush-Kuhn-Tucker point of the

considered nonsmooth multiobjective programming problem (VP). Then, by Defini-

tion 8, the necessary optimality conditions (3.1)-(3.2) hold with λ ≥ 0, ∑k
i=1 λi = 1.

By (3.1), there exist ξi ∈ ∂ fi (x), i ∈ I, ζ j ∈ ∂g
j
(x), j ∈ J, ςt ∈ ∂ht (x), t ∈ T , such that

k

∑
i=1

λiξi + ∑
j∈J(x)

µ jζ j + ∑
t∈T+(x)

ϑtςt + ∑
t∈T−(x)

ϑtςt = 0. (3.19)

As it follows from Definition 5, the following inequality Φ(x̃,x,(0,a))≧ 0 holds for

each a≧ 0. Hence, by (3.19), hypothesis ∑i∈I(x) λiρ fi
+∑ j∈J(x) µ jρg j

+∑t∈T+(x) ϑtρ
+
ht
−

∑t∈T−(x) ϑtρ
−
ht
≧ 0 implies

Φ

(
x̃,x,

1

A

(
k

∑
i=1

λiξi + ∑
j∈J(x)

µ jζ j + ∑
t∈T+(x)

ϑtςt + ∑
t∈T−(x)

ϑtςt , (3.20)

k

∑
i=1

λiρ fi
+ ∑

j∈J(x)

µ jρg j
+ ∑

t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)

ϑtρ
−
ht

))
≧ 0,

where

A =
k

∑
i=1

λi +
m

∑
j=1

µ j + ∑
t∈T+(x)

ϑt − ∑
t∈T−(x)

ϑt > 0. (3.21)

Let us denote

αi =
λi

A
, i ∈ I (x) , β j =

µ j

A
, j ∈ J (x) , (3.22)

γ+t =
ϑt

A
, t ∈ T+ (x) , γ−t =

−ϑt

A
, t ∈ T− (x) . (3.23)

Then, by λ ≥ 0, ∑k
i=1 λi = 1, it follows that α := (α1, ...,αk) ≥ 0, 0 ≦ αi ≦ 1, i ∈ I,

0 < αi ≦ 1 for at least one i ∈ I, β =
(

β1, ...,βm

)
≧ 0, 0 ≦ β j ≦ 1, j ∈ J, 0 ≦ γ+t ≦ 1,

t ∈ T+ (x), 0 ≦ γ−t ≦ 1, t ∈ T− (x), and, moreover,

k

∑
i=1

αi + ∑
j∈J(x)

β j + ∑
t∈T+(x)

γ+t + ∑
t∈T−(x)

γ−t = 1. (3.24)
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Since fi, i ∈ I, is locally Lipschitz (Φ,ρ fi
)w

-invex at x on D, g j, j ∈ J (x), is (Φ,ρgi
)w

-

invex at x on D, ht , t ∈ T+ (x) :=
{

t ∈ T : ϑ > 0
}

, is locally Lipschitz
(

Φ,ρ+
ht

)w

-

invex at x on D, −ht , t ∈ T− (x) :=
{

t ∈ T : ϑ < 0
}

, is locally Lipschitz
(

Φ,ρ−
ht

)w

-

invex at x on D, by Definition 5, it follows that the following inequalities

fi(x̃)− fi(x)≧ Φ(x̃,x,(ξi,ρ fi
)) , i ∈ I, (3.25)

g
j
(x̃)−g j(x)≧ Φ

(
x̃,x,

(
ζ j,ρg j

))
, j ∈ J (x) , (3.26)

ht(x̃)−ht(x)≧ Φ
(

x̃,x,
(

ςt ,ρ
+
ht

))
, t ∈ T+ (x) , (3.27)

−ht(x̃)+ht(x)≧ Φ
(

x̃,x,
(
−ςt ,ρ

−
ht

))
, t ∈ T− (x) (3.28)

hold for each ξi ∈ ∂ fi (x), i∈ I, ζ j ∈ ∂g j (x), j ∈ J (x), ςt ∈ ∂ht (x), t ∈ T+ (x)∪T− (x),
respectively. By (3.18), inequality (3.25) implies

Φ(x̃,x,(ξi,ρ fi
))< 0, i ∈ I. (3.29)

By x̃ ∈ D, x ∈ D, inequalities (3.26)-(3.28) yield, respectively,

Φ
(
x̃,x,

(
ζ j,ρg j

))
≦ 0, j ∈ J (x) , (3.30)

Φ
(

x̃,x,
(

ςt ,ρ
+
ht

))
≦ 0, t ∈ T+ (x) , (3.31)

Φ
(

x̃,x,
(
−ςt ,ρ

−
ht

))
≦ 0, t ∈ T− (x) . (3.32)

As it follows from Definition 5, Φ(x̃,x, ·) is a strictly quasi-convex function on Rn+1.

Since (3.24) is satisfied, by inequalities (3.29)-(3.32), Proposition 1 implies

Φ

(
x̃,x,

(

∑
i∈I(x)

αiξi + ∑
j∈J(x)

β jζ j + ∑
t∈T+(x)

γ+t ςt + ∑
t∈T−(x)

γ−t (−ςt) , (3.33)

∑
i∈I(x)

αiρ fi
+ ∑

j∈J(x)

β jρg j
+ ∑

t∈T+(x)

γ+t ρ+
ht
+ ∑

t∈T−(x)

γ−t ρ−
ht

))
< 0.

Taking into account (3.22)-(3.23) in (3.33), we obtain that the following inequality

Φ

(
x̃,x ,

1

A

(
k

∑
i=1

λiξi + ∑
j∈J(x)

µ jζ j + ∑
t∈T+(x)

ϑtςt + ∑
t∈T−(x)

ϑtςt ,

∑
i∈I(x)

λiρ fi
+ ∑

j∈J(x)

µ jρg j
+ ∑

t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)

ϑtρ
−
ht

))
< 0

holds, contradicting (3.20). This means that x is a weakly efficient solution of (VP)

and completes the proof of this theorem. �
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In order to prove the sufficient optimality conditions for a Pareto optimal solution

of the nonsmooth multiobjective programming problem (VP) with nonsmooth (Φ,ρ)-
invex functions, some stronger hypotheses should be assumed.

Theorem 4. Let
(

x,λ,µ,ϑ
)
∈ D×Rk ×Rm ×Rq be a Karush-Kuhn-Tucker point

of the considered nonsmooth multiobjective programming problem (VP). Further, as-

sume that any one of the following hypotheses is satisfied:

i) the objective function fi, i ∈ I, is locally Lipschitz strictly (Φ,ρ fi
)w

-invex at x

on D, the constraint function g
j
, j ∈ J (x), is locally Lipschitz

(
Φ,ρg j

)w
-invex

at x on D, ht , t ∈ T+ (x) :=
{

t ∈ T : ϑt > 0
}

, is locally Lipschitz
(

Φ,ρ+
ht

)w

-

invex at x on D, −ht , t ∈ T− (x) :=
{

t ∈ T : ϑt < 0
}

, is locally Lipschitz(
Φ,ρ−

ht

)w

-invex at x on D and, moreover, ∑k
i=1 λiρ fi

+ ∑ j∈J(x) µ jρg j
+

∑t∈T+(x) ϑtρ
+
ht
−∑t∈T−(x) ϑtρ

−
ht
≧ 0,

ii) the Lagrange multipliers λi > 0, i ∈ I, the objective function fi, i ∈ I, is loc-

ally Lipschitz (Φ,ρ fi
)w

-invex at x on D, the constraint function g
j
, j ∈ J (x),

is locally Lipschitz
(
Φ,ρg j

)
-invex at x on D, ht , t ∈T+ (x) :=

{
t ∈ T : ϑt > 0

}
,

is locally Lipschitz
(

Φ,ρ+
ht

)w

-invex at x on D, −ht , t ∈ T− (x) :=
{

t ∈ T : ϑt < 0
}

, is locally Lipschitz
(

Φ,ρ−
ht

)w

-invex at x on D and

∑k
i=1 λiρ fi

+∑ j∈J(x) µ jρg j
+∑t∈T+(x) ϑtρ

+
ht
−∑t∈T−(x) ϑtρ

−
ht
≧ 0.

Then x is an efficient solution of the problem (VP).

Proof. The proof of this theorem is similar to the proof of Theorem 3. �

In order to illustrate the sufficient optimality results established in this section, we

consider the following example of a nondifferentiable multiobjective programming

problem with (Φ,ρ)w
-invex functions, not necessarily, with respect to the same ρ.

Example 1. Consider the following nondifferentiable multiobjective programming

problem defined as follows

f (x) =
(
arctan(|x1|)+ arctan(|x2|) ,x2

1 + x2
2 + arctan(|x1x2|)

)
→V -min

g(x) = |x1|+ |x2|−2arctan(|x1x2|)≦ 0, (VP1)

X = R2.

It is not difficult to see that D =
{
(x1,x2) ∈ R2 : |x1|+ |x2|−2arctan(|x1x2|)≦ 0

}

and x = (0,0) is such a feasible point at which the Generalized Karush-Kuhn-Tucker
necessary optimality conditions are satisfied. It can be established, by Definition 5,
that the objective function fi, i = 1,2, is locally Lipschitz strictly (Φ,ρ fi

)w
-invex at x

on D and the constraint function g is (Φ,ρg)
w

-invex at x on D, where

Φ(x,x,(ς,ρ)) = arctan(ς1 |x1|)+ arctan(ς2 |x2|)+ arctan(ρ)(arctan |x1x2|− arctan |x1x2|)



OPTIMALITY CONDITIONS AND DUALITY RESULTS 59

ρ f1 = 0, ρ f2 = tan(1) , ρg = tan(−2),

and ς ∈ ∂k(x), where k denotes f1 or f2 or g, respectively, and ρ is equal to ρ f1
, ρ f2

or ρg, respectively.

Since all hypotheses of Theorem 4 are satisfied, x is an efficient solution of the con-

sidered nonsmooth multiobjective programming problem. Note that we are not in a

position to prove efficiency of x in the considered nonconvex nonsmooth multiobject-

ive programming problem (VP1) under other generalized convexity notions existing

in the literature, that is, invexity [14,16], b-invexity [17], F-convexity [10], r-invexity

[3], V -invexity [13], G-invexity [4], V -r-invexity [5], univexity [18]. This follows

from the fact that not every stationary point of the functions constituting problem

(VP1) is a global minimum of such a function. Whereas one of the main property of

the concepts generalized convexity notions mentioned above is that a stationary point

of every function belonging to the aforesaid classes of generalized convex functions

is its global minimizer. Further, we can’t use also the sufficient optimality conditions

under nondifferentiable (Φ,ρ)-invexity since the functional Φ(x,x, ·) is not convex

for all x ∈ D as it follows from the definition of this concept of generalized con-

vexity (see [6]). As it follows even from this example, the introduced concept of

nondifferentiable (Φ,ρ)w
-invexity is useful to prove the sufficiency of Generalized

Karush-Kuhn-Tucker necessary optimality conditions for a larger class of nonconvex

nondifferentiable vector optimization problems in comparison to other generalized

convexity notions, earlier defined in the literature.

4. MOND-WEIR DUALITY

In this section, for the considered nonsmooth multiobjective programming prob-

lem (VP), we define a vector dual problem in the Mond-Weir sense. Then, we prove

several duality results between the primal multiobjective programming problem and

its Mond-Weir dual problem under (Φ,ρ)w
-invexity hypotheses.

Now, for the considered nonsmooth multiobjective programming problem (VP),

we state the following vector Mond-Weir dual problems as follows:

f (y)→V -max

s.t. 0 ∈ ∑k
i=1 λi∂ fi(y)+∑m

j=1 µ j∂g j(y)+∑
q
t=1 ϑt∂ht(y),

∑m
j=1 µ jg j(y)≧ 0, ∑

q
t=1 ϑtht(y)≧ 0,

λ ∈ Rk, λ ≥ 0, ∑k
i=1 λi = 1, µ ∈ Rm, µ ≧ 0, ϑ ∈ Rq.

(VD)

We denote by Ω the set of all feasible solutions in the vector Mond-Weir dual problem

(VD) and, moreover, let Y be the projection of the set Ω on X , that is,

Y = {y ∈ X : (y,λ,µ,ϑ) ∈ Ω}.
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Theorem 5 (Weak duality). Let x and (y,λ,µ,ϑ) be any feasible solutions for

the problems (VP) and (VD), respectively. Further, assume that fi, i ∈ I, is loc-

ally Lipschitz (Φ,ρ f )
w

-invex at y on D∪Y , ∑m
j=1 µ jg j is locally Lipschitz (Φ,ρg)

w
-

invex at y on D∪Y , ∑
q
t=1 ϑtht is locally Lipschitz (Φ,ρh)

w
-invex at y on D∪Y . If

∑k
i=1 λiρ fi

+ρg +ρh ≧ 0, then f (x)≮ f (y).

Proof. We proceed by contradiction. Suppose, contrary to the result, that there

exist x ∈ D and (y,λ,µ,ϑ) ∈ Ω such that

f (x)< f (y) . (4.1)

By assumption, fi, i ∈ I, is locally Lipschitz (Φ,ρ f )
w

-invex at y on D∪Y . Hence, by

Definition 5, the following inequalities

fi(z)− fi(y)≧ Φ(z,y,(ξi,ρ fi
)) , i ∈ I (4.2)

hold for all z ∈ D∪Y and for each ξi ∈ ∂ fi(y). Therefore, they are also satisfied for

z = x ∈ D. Thus, inequalities (4.2) yield

fi(x)− fi(y)≧ Φ(x,y,(ξi,ρ fi
)) , i ∈ I. (4.3)

Combining (4.1) and (4.3), we have

Φ(x,y,(ξi,ρ fi
))< 0, i ∈ I. (4.4)

By assumptions, ∑m
j=1 µ jg j is locally Lipschitz (Φ,ρg)

w
-invex at y on D∪Y , ∑

q
t=1 ϑtht

is locally Lipschitz (Φ,ρh)
w

-invex at y on D∪Y . Hence, by Definition 5, the follow-

ing inequalities

m

∑
j=1

µ jg j(x)−
m

∑
j=1

µ jg j(y)≧ Φ

(
x,y,

(
m

∑
j=1

µ jζ j,ρg

))
, (4.5)

q

∑
t=1

ϑtht(x)−
q

∑
t=1

ϑtht(y)≧ Φ

(
x,y,

(
q

∑
t=1

ϑtςt ,ρh

))
(4.6)

hold for each ζ j ∈ ∂g j(y), j ∈ J and ςt ∈ ∂ht (y), t ∈ T , respectively. By x ∈ D and

(y,λ,µ,ϑ) ∈ Ω, (4.5) and (4.6) yield, respectively,

Φ

(
x,y,

(
m

∑
j=1

µ jζ j,ρg

))
≦ 0, (4.7)

Φ

(
x,y,

(
q

∑
t=1

ϑtςt ,ρh

))
≦ 0. (4.8)

By Definition 5, Φ(x,y, ·) is strictly quasi-convex on Rn+1. Then, by Proposition 1,

inequalities (4.4), (4.7) and (4.8) imply

Φ

(
x,y,

(
k

∑
i=1

λi

3
ξi +

1

3

m

∑
j=1

µ jζ j +
1

3

q

∑
t=1

ϑtςt , (4.9)
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k

∑
i=1

λi

3
ρ fi

+
1

3
ρg +

1

3
ρh

))
< 0.

Thus, (4.9) gives

Φ

(
x,y,

1

3

(
k

∑
i=1

λiξi +
m

∑
j=1

µ jζ j +
q

∑
t=1

ϑtςt ,

k

∑
i=1

λiρ fi
+ρg +ρh

))
< 0. (4.10)

Using (y,λ,µ,ϑ) ∈ Ω again, the first constraint of dual problem (VD) gives

Φ

(
x,y,

1

3

(
0 ,

k

∑
i=1

λiρ fi
+ρg +ρh

))
< 0. (4.11)

By Definition 5, it follows that Φ(x,y,(0,a)) ≧ 0 for any a ∈ R+. Therefore, hypo-

thesis ∑k
i=1 λiρ fi

+ρg +ρht
≧ 0 implies that the following inequality

Φ

(
x,y,

1

3

(
0 ,

k

∑
i=1

λiρ fi
+ρg +ρh

))
≧ 0

holds, contradicting (4.11). Hence, the proof of this theorem is completed. �

If a stronger (Φ,ρ f )
w

-invexity assumption is imposed on the objective functions

constituting considered vector optimization problems, then the following stronger

result can be established.

Theorem 6 (Weak duality). Let x and (y,λ,µ,ϑ) be feasible solutions for the

problems (VP) and (VD), respectively. Further, assume that fi, i ∈ I, is locally

Lipschitz strictly (Φ,ρ f )
w

-invex at y on D∪Y , ∑m
j=1 µ jg j is locally Lipschitz (Φ,ρg)

w
-

invex at y on D∪Y , ∑
q
t=1 ϑtht is locally Lipschitz (Φ,ρh)

w
-invex at y on D∪Y . If

∑k
i=1 λiρ fi

+ρg +ρh ≧ 0, then f (x)� f (y).

Theorem 7 (Strong duality). Let x be a weak Pareto solution (a Pareto solution)

of the primal multiobjective programming (VP) and all hypotheses of Theorem 2 be

satisfied at x. Then there exist λ∈Rk, µ∈Rm and ϑ∈Rq such that
(

x,λ,µ,ϑ
)

is feas-

ible in (VD) and the objective functions of (VP) and (VD) are equal at these points.

Further, if all hypotheses of the weak duality theorem (Theorem 5) are satisfied, then(
x,λ,µ,ϑ

)
is a weakly efficient solution of a maximum type in (VD). If λ > 0 and all

hypotheses of the weak duality theorem (Theorem 6) are satisfied, then
(

x,λ,µ,ϑ
)

is

an efficient solution of a maximum type for the vector Mond-Weir dual problem (VD).

Proof. By assumption, x ∈ D is a weak Pareto optimal solution (a Pareto solution)

of the problem (VP) and the constraint qualification is satisfied at x. Then there

exist the Lagrange multipliers λ ∈ Rk, µ ∈ Rm and ϑ ∈ Rq such that the Karush-

Kuhn-Tucker necessary optimality conditions (3.3)-(3.5) are satisfied at x. Thus, the
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feasibility of
(

x,λ,µ,ϑ
)

in (VD) follows from these necessary optimality conditions

and, moreover, x ∈ D. Therefore, the objective functions of the problems (VP) and

(VD) are equal at x and
(

x,λ,µ,ϑ
)

. Hence, weakly efficiency of a maximum type

of
(

x,λ,µ,ϑ
)

for (VD) follows directly from weak duality (Theorem 5), whereas

efficiency of a maximum type of
(

x,λ,µ,ϑ
)

follows from Theorem 6. �

Theorem 8 (Converse duality). Let
(

y,λ,µ,ϑ
)

be an efficient solution of a max-

imum type (a weakly efficient solution of a maximum type) for the vector mixed dual

problem (VD) such that y ∈ D. Further, assume that fi, i ∈ I, is (locally Lipschitz

(Φ,ρ f )
w

-invex) locally Lipschitz strictly (Φ,ρ f )
w

-invex at y on D∪Y , ∑m
j=1 µ jg j is

locally Lipschitz (Φ,ρg)
w

-invex at y on D∪Y , ∑
q
t=1 ϑtht is locally Lipschitz (Φ,ρh)

w
-

invex at y on D ∪Y . If ∑k
i=1 λiρ fi

+ ρg + ρh ≧ 0. Then y is an efficient solution

(a weakly efficient solution) of the considered multiobjective programming problem

(VP).

Proof. The proof of the theorem follows directly from weak duality (Theorem 5

or Theorem 6, respectively). �

5. CONCLUSIONS

In the paper, a new class of nonconvex nonsmooth multiobjective programming

problems is considered in which every component of functions involved is locally

Lipschitz (Φ,ρ)w
-invex. Hence, the sufficient optimality conditions for weak effi-

ciency and efficiency and duality results in the sense of Mond-Weir have been estab-

lished for the considered nonconvex nonsmooth multiobjective programming prob-

lem under the concept of nondifferentiable (Φ,ρ)w
-invexity introduced in the paper.

Note that the definition of nondifferentiable (Φ,ρ)w
-invexity unifies many general-

ized convex notions earlier introduced in the literature (see Remark 1). In order to il-

lustrate the results established in the paper, some example of a nonconvex nonsmooth

multiobjective programming problem with nondifferentiable (Φ,ρ)w
-invex functions

has been presented. It is interesting that not all functions constituting the considered

nonsmooth vector optimization problem have the fundamental property of the most

classes of generalized convex functions, namely that a stationary point of such a

function is also its global minimum. Thus, we have also shown that many gener-

alized convexity notions existing in the literature (that is, invexity [14], b-invexity

[17], F-convexity [10], univexity [18], r-invexity [3], V -invexity [19], V -r-invexity

[5], G-invexity [4]) may fail in proving the sufficiency of the Karush-Kuhn-Tucker

necessary optimality conditions and Mond-Weir duality results for the considered

nonconvex nonsmooth vector optimization problem. Thus, the concept of nondif-

ferentiable (Φ,ρ)w
-invexity extend the class of nonconvex nonsmooth multiobjective
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programming problems for which it is possible to prove the sufficiency of the Gener-

alized Karush-Kuhn-Tucker necessary optimality conditions and several duality the-

orems in the sense of Mond-Weir in comparison to similarly results proved under

other generalized convexity notions.
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Abstract. In this paper we deal with some Diophantine equations and present infinitely many
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1. INTRODUCTION

The Diophantine equations

xn + yn = un + vn
, n = 2,3,4

have been considered by many mathematicians. The case n = 2 was presented in

[13,14] while Euler [8] and Binet [3] considered the case n = 3. Parametric solutions

of the above equation for n = 4 can be found in [4, 10]. Some researches considered

more general Diophantine equations with more variables or with integer coefficients

that are not all equal to 1 [5–7, 11, 12].

In this paper, we deal with the equations

X3 −Y 2 = X2 −Z3,

X3 ±Y 3 =U4 −V 4 (1.1)

and obtain infinitely many positive integer solutions for each one of them. We con-

sider the equation of the form

Am4 +Bn4 +Cp4 +Dq4 = Ar4 +Bs4 +Ct4 +Du4
, A,B,C,D ∈ Z,

introduce some linear transformations and set some special conditions on its coeffi-

cients. Some recent papers deal with the similar problems. In [9] the authors invest-

igate Diophantine equations of the form

T 2 = G(X), X = (X1,X2, · · · ,Xm),

The first author is supported by the Croatian Science Foundation under the project no. IP-2018-01-

1313.

The second author is supported by Iran National Science Foundation grant number 95005149.

© 2021 Miskolc University Press
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where m = 3 or m = 4 and G is a specific homogenous quintic form. The equations

a(X ′5
1 +X ′5

2 )+
n

∑
i=0

a1X5
i = b(Y ′3

1 +Y ′3
2 )+

n

∑
i=0

biY
3
i , (1.2)

where m,n ∈ N∪ {0} and a,b 6= 0, ai,bi are fixed arbitrary rational numbers are

studied in [2]. The theory of elliptic curves is used in order to solve (1.2) which is

transformed to a cubic or a quartic elliptic curve with a positive rank. In [1, Main

Theorem 2] authors prove that

n

∑
i=1

pi · x
ai

i =
m

∑
j=1

q j · y
b j

j ,

m,n,ai,b j ∈ N, pi,q j ∈ Z, i = 1, . . . ,n, j = 1, . . . ,m has a parametric solution and

infinitely many solutions in nonzero integers if there exists an i such that pi = 1

and (ai,a1a2 · · ·ai−1ai+1 · · ·anb1b2 · · ·bm) = 1 or there exists a j such that q j = 1 and

(b j,a1 · · ·anb1 · · ·b j−1b j+1 · · ·bm) = 1. In this article, even though linear transforma-

tions are also used, we introduce a different approach and some different conditions

on the integer coefficients in order to solve (1.1).

2. EQUATION X3 −Y 2 = X2 −Z3

For start, we deal with the Diophantine equation

X3 −Y 2 = X2 −Z3
. (2.1)

It is easily shown that equation (2.1) has infinitely many solutions

(X ,Y,Z) = (1,n3,n2), n ∈ N. The main task of our work in this section is to discover

whether there are more positive integer solutions of (2.1). We set

c = x2
, d = y2

and obtain

c3 +d3 = x6 + y6 = (x3 − (yi)3)(x3 +(yi)3)

= (x− yi)(x2 + xyi− y2)(x+ yi)(x2 − xyi− y2).

If we define

a−bi = (x+ yi)(x2 + xyi− y2) and a+bi = (x− yi)(x2 − xyi− y2),

we get

c3 +d3 = a2 +b2 (2.2)

for a = x3 −2y2x and b = y3 −2x2y. From (2.2) we obtain the equation

(x2)3 +(y2)3 = (x3 −2y2x)2 +(y3 −2x2y)2
.

First we deal with the case

y2 = y3 −2x2y, y 6= 0
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and get

(2y−1)2 −8x2 = 1. (2.3)

After introducing y′ = 2y−1 in (2.3) a Pell equation

y′2 −8x2 = 1

is obtained. Some of its solutions are (y′,x) = {(3,1),(17,6),(99,35), . . .}. Finally,

solutions of equation (2.3) are

(x,y) = {(1,2),(6,9),(35,50), . . .}.

The inequality x < y implies x3 −2y2x < 0, so Y < 0. Because we deal with equation

of the form (2.1), we take |Y | and get infinitely many positive integer solutions

(X ,Y,Z) = (y2
, x3 −2y2x, x2) = {(4,7,1), (81,756,36), (502

,132125,352), . . .}

of (2.1).

Alternatively, we get

8y2 =
8x3

2x+1

for y2 = x3 − 2y2x. Obviously, 8x3

2x+1
∈ N if and only if (2x + 1)|1 which happens

for only 2x+ 1 = 1 which implies x = 0, y = 0. This case is not considered. Cases

x2 = x3−2y2x and x2 = y3−2x2y do not provide us with new solutions. Consequently,

(2.1) has infinitely many positive integer solutions of the form

(X ,Y,Z) = (y2
, x3 −2y2x, x2),

where (x,y) are solutions of equation (2.3).

Remark 1. It can be noticed that for X = Z equation (2.1) becomes

X2(2X −1) = Y 2
,

so X = Z = 2k2 +2k+1, k ∈N will provide a solution. This approach can be gener-

alized by taking X = mZ, Y = nZ for m,n ∈ N. We get

Z =
m2 +n2

m3 +1

and by fixing m we may yield some solutions. For example, if m = 4, then

n ≡ 7,32,33,58 (mod 65) will provide solutions. Similarily, for m = 9, we obtain

that n ≡ 97,243,487,630 (mod 730) will provide solutions. This approach works

if m is a square, however we also have solutions for m = 28. Therefore, it may be

difficult to completely classify all the solutions here.
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3. EQUATION X3 +Y 3 =U4 −V 4

In this section we deal with the equation

X3 +Y 3 =U4 −V 4
. (3.1)

It is easy to notice that (X ,Y,U,V ) = (m,−m,n,n) is a trivial solution of (3.1) for

m,n ∈ N, while the smallest nontrivial solution of (3.1) is (X ,Y,U,V ) = (4,1,3,2).
Two different linear transformations are considered and for each one of them we

give a different class of infinitely many positive integer solutions of equation (3.1).

3.1. The First Method

Let

X = px+u, Y = qx−u, U = x+ v, V = px− v, (3.2)

p,q,u,v ∈ N. Introducing (3.2) into the initial equation (3.1), we get

αx4 +βx3 + γx2 +δx = 0, (3.3)

where

α = p4 −1, β = p3 +q3 −4v−4p3v,

γ = 3p2u−3q2u−6v2 +6p2v2
, δ = 3pu2 +3qu2 −4v3 −4pv3

.
(3.4)

For δ = 0 in (3.4), we obtain

3(p+q)u2 = 4(p+1)v3
.

Additionally, we set u = t3, v = t2 and get p = 3q− 4. Finally, the following is

obtained

α = 81q4 −432q3 +864q2 −768q+255,

β = 432q2t2 −576t2q−108q2 +252t2 −108q3t2 +28q3 +144q−64,

γ = 24q2t3 +54q2t4 −72qt3 −144qt4 +90t4 +48t3.

Let

γ = 6t3(q−1)(4q+9qt −15t −8) = 0.

In that case, we have q = 15t+8
9t+4

and therefore (3.3) becomes

11664t3 +23328t2 +16128t +3840

(9t +4)4
x4+

+
−52488t6 −128304t5 −87480t4 +27216t3 +61632t2 +27648t +4096

(9t +4)4
x3 = 0.

We get

x =
(9t +4)(243t4 +324t3 −27t2 −192t −64)

6(81t2 +108t +40)
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and

X =
2673t5 +5508t4 +2589t3 −1944t2 −2112t −512

6(81t2 +108t +40)
,

Y =
3159t5 +6156t4 +1947t3 −3096t2 −2496t −512

6(81t2 +108t +40)
,

U =
2187t5 +4374t4 +1701t3 −1596t2 −1344t −256

6(81t2 +108t +40)
,

V =
2187t5 +4374t4 +1701t3 −2184t2 −2112t −512

6(81t2 +108t +40)
.

(3.5)

After eliminating denominators in (3.5), we have

X = 216(81t2 +108t +40)3(2673t5 +5508t4 +2589t3 −1944t2 −2112t −512),

Y = 216(81t2 +108t +40)3(3159t5 +6156t4 +1947t3 −3096t2 −2496t −512),

U = 36(81t2 +108t +40)2(9t +8)(243t4 +270t3 −51t2 −132t −32),

V = 36(81t2 +108t +40)2(2187t5 +4374t4 +1701t3 −2184t2 −2112t −512).

For t = 1, the solutions of (3.1) are

(X ,Y,U,V ) = (16087625952048, 13379550896592, 9563979816, 65207230704),

while t = 2 leads us to

(X ,Y,U,V ) = (7664511333888000,8313869044224000,

1746900979200,1696715481600) .

We get a positive integer solution (X ,Y,U,V ) of equation (3.1) for every t ∈ N. So,

the presented method generates infinitely many positive integer solutions of the initial

equation (3.1).

3.2. The Second Method

Again, we deal with (3.1) and start this new method by introducing a different

linear transformation in order to reach more (different) positive integer solutions. Let

X = u, Y = qx−u, U = x+u, V = px+u, (3.6)

p,q,u ∈ N. Like in the previous subsection, introducing these linear transformations

into (3.3), leads us to the expression of the form

Ax4 +Bx3 +Cx2 +Dx = 0, (3.7)
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where
A = p4 −1, B = q3 +4p3u−4u,

C = 6p2u2 −6u2 −3q2u, D = 4u3 p−4u3 +3u2q.
(3.8)

We obtain u = 3q

4(1−p) , p 6= 1 for D = 0. After introducing the latter expression into

(3.8) and canceling the denominators we get

A = 8p5 −8p4 −8p+8, B = 8q3 p−24p3q−8q3 +24q, C = 27q2 p+18q3 +27q2
.

We obtain q =−3
2
(p+1) for C = 0. Under those conditions we get

A = p4 −1, B =
9

8
(p+1)(p−1)2

and (3.7) becomes (p4 −1)x4 + 9
8
(p+1)(p−1)2x3 = 0 where

x =
9(1− p)

8(p2 +1)
.

After plugging all of these results into (3.6) and canceling the denominators, we

finally get

X = 18(p−1)3(p+1)(p2 +1)4
,

Y = 9(p+1)(p2 −6p+1)(p−1)3(p2 +1)3
,

U = 9p(p2 +3)(p−1)2(p2 +1)2
,

V = 9(3p2 +1)(p2 +1)2(p−1)2
.

(3.9)

Remark 2. According to (3.9), X > 0 is satisfied for p ∈ Z\{0,1}. Also, Y > 0 is

satisfied for p ∈ Z\{−1,0,1,2,3,4,5}. Therefore, by the introduced method we are

again able to generate infinitely many positive integer solutions of (3.1).

4. THE EQUATION X3 −Y 3 =U4 −V 4

In this section we deal with the equation

X3 −Y 3 =U4 −V 4
. (4.1)

If we introduce Y →−Y or X →−X in (3.1), it is clear that one gets solutions of

(4.1), but, as we mentioned earlier, we are interested only in positive integer solutions.

Therefore, we consider (3.1) and (4.1) as two different equations.

Clearly, (X ,Y,U,V ) = (1,n4,1,n3), n ∈ N are trivial solutions of (4.1).

After introducing linear transformations

X = px+u, Y = qx+u, U = rx+u, V = u,

p,q,r,u ∈ N into (4.1), we get the equation

Mx4 +Nx3 +Px2 +Qx = 0,
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where
M =−r4

, N = p3 −q3 −4r3u,

P = 3p2u−3q2u−6r2u2
, Q = 3u2 p−3u2q−4u3r.

(4.2)

If we set Q = 0, it is easily obtained u = 3(p−q)
4r

. Plugging this new form of u into

(4.2), we get

M =−r4, N = (p−q)(p2 + pq−3r2 +q2), P = 9(p−q)2(2p+2q−3r)
8r

. (4.3)

We obtain r = 2
3
(p+q) for 2p+2q−3r = 0. So, introducing the above expressions

into (4.3), we get

−
16

81
(p+q)4x4 −

1

3
(p−q)(p2 +5pq+q2)x3 = 0,

x =−
27

16

(p−q)(p2 +5pq+q2)

(p+q)4
.

Finally, we define p2 +5pq+q2 −16 = 0 which is a quadratic equation in p. So,

p =
−5q±

√

21q2 +64

2
.

Let 21q2+64= r2, r ∈Z. Solution (q,r)= (0,8) is a trivial solution for this equation.

Therefore, considering r = mq+ 8 and 21q2 + 64 = r2 leads us to q = 16m
21−m2 and

p = 4(m2+10m+21)
m2−21

or p = 4(m2−10m+21)
21−m2 . We get

x =
−27(m2 −21)3(m2 +14m+21)

64(m2 +6m+21)4

for p = 4(m2+10m+21)
m2−21

. After canceling the denominators, we obtain

X =−9(m2 +14m+21)(m6 −6m5 −405m4 −3204m3 −8505m2 −2646m+9261),

Y = 18(m2 +14m+21)(m6 +24m5 +171m4 +720m3 +3591m2 +10584m+9261),

U = 27 ·22 ·m(m2 +14m+21)(m2 +10m+21), (4.4)

V = 9(m2 +6m+21)2(m2 +14m+21).

Some elementary analysis leads us to conclusion that X ,Y > 0 for every m ∈ N.

The described method generates infinitely many positive integer solutions (X ,Y,U,V )
for the initial equation (4.1). Some of them are introduced in the following table.

m X Y U V

1 1783296 15780096 124416 254016

2 29712807 51631434 515160 653013

3 126531072 146686464 1399680 1492992

4 375132519 380970594 3093552 3114477

5 911771136 917584128 6013440 6030144
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Remark 3. If we apply the previous process by taking p = 4(m2−10m+21)
21−m2 , no new

solutions are obtained.

Some basic calculations give us X ,Y > 0 for m ≤ −1 and these solutions are

already obtained for m > 0 in (4.4). This is shown in the following table. It is useful

to notice that, even though we get integer solutions in this case, we do not consider

negative ones because U,V are introduced with even powers in (4.1).

m X Y U V

−1 1783296 15780096 −124416 254016

−2 29712807 51631434 −515160 653013

−3 126531072 146686464 −1399680 1492992

−4 375132519 380970594 −3093552 3114477

−5 911771136 917584128 −6013440 6030144

5. THE EQUATION Am4 +Bn4 +Cp4 +Dq4 = Ar4 +Bs4 +Ct4 +Du4

We deal with the equation of the form

Am4 +Bn4 +Cp4 +Dq4 = Ar4 +Bs4 +Ct4 +Du4
, A,B,C,D ∈ Z. (5.1)

Let

m = lx+1, n = 5x+ k, p = 4x+1, q = 2x,

r = lx−1, s = 4x− k, t = 5x−1, u = x,

for k, l ∈N. Introducing these linear transformations into (5.1), one gets the equation

of the form

ax4 +bx3 + cx2 +dx = 0, (5.2)

where

a =−396C+15E +369B, b = 756Bk+8Al3 +756C,

c =−54C+54Bk2
, d = 8Al +36Bk3 +36C.

We set the conditions c = d = 0 and get

C = Bk2 and l =−
9

2
·

Bk3 +C

A
. (5.3)

Introducing (5.3) into (5.2) leads us to

−
3(−123BA2 +123Bk2A2 −5EA2)x4

A2

−
3(729B3k7 +243B3k6 +243B3k9 +729B3k8 −252Bk2A2 −252BA2k)x3

A2
= 0
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and

x =
9Bk(−27B2k8 −81B2k7 −81B2k6 −27B2k5 +28A2 +28kA2)

A2(123Bk2 −5E −123B)
.

After plugging all results into (5.3) and cancelling the denominators, we get

m =2187B4k12 +8748B4k11 +13122B4k10 +8748B4k9

−4536B2k4A2 −2268B2k5A2 +2187B4k8 −2268B2k3A2

+246A3Bk2 −10A3E −246A3B,

n =2Ak
(

−1215B3k8 −3645B3k7 −3645B3k6 −1215B3k5

+1137BA2 +1260BkA2 +123A2Bk2 −5A2E
)

,

p =2A
(

−972B3k9 −2916B3k8 −2916B3k7 −972B3k6

+1008BkA2 +1131A2Bk2 −5A2E −123BA2
)

,

q =36ABk(−27B2k8 −81B2k7 −81B2k6 −27B2k5 +28A2 +28kA2),

r =−2187B4k12 −8748B4k11 −13122B4k10 −8748B4k9

+4536B2k4A2 +2268B2k5A2 −2187B4k8 +2268B2k3A2

+246A3Bk2 −10A3E −246A3B,

s =2Ak
(

972B3k8 +2916B3k7 +2916B3k6 +972B3k5 −1131BA2

−1008BkA2 +123A2Bk2 −5A2E
)

,

t =2A
(

−1215B3k9 −1645B2k8 −1645B3k7 −1215B3k6 +1260BkA2

+1137A2Bk2 +5A2E +123BA2
)

,

u =18ABk(−27B2k8 −81B2k7 −81B2k6 −27B2k5 +28A2 +28kA2).

(5.4)

5.1. Numerical examples

We solve equation (5.1) of the form

m4 +2n4 +2p4 +5q4 = r4 +2s4 +2t4 +5u4

where A = 1, B = 2, C = 2, D = 5, so k = 1. According to (5.4), we obtain

m = 523534, n = 145490, p = 116402, q = 58176,

r = 523634, s = 116302, t = 145390, u = 39088

or

m = 261767, n = 72745, p = 58201, q = 29088,

r = 261817, s = 58151, t = 72695, u = 14544.

Let

3m4 +2n4 +8p4 +5q4 = 3r4 +2s4 +8t4 +5u4
.
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We have

m = 719753958, n = 99883476, p = 79929882 q = 39984192,

r = 719676954, s = 80045388, t = 99998982, u = 19992096

or

m = 13328777, n = 1849694, p = 1480183, q = 740448,

r = 13327351, s = 1482322, t = 1851833, u = 370224.

Remark 4. Even though the introduced method in Section 2 provides us with

the primitive solution of (2.1), methods for solving equations (3.1) and (4.1) do not

provide us with primitive solutions. In these particular cases, we can find some of

them using a few simple computer algorithms. For example,

(X ,Y,U,V ) =(4,15,10,9),(4,16,9,7),(14,23,16,15),

(20,31,14,5),(25,71,37,35), ...

are primitive integer solutions of (3.1) and

(X ,Y,U,V ) =(9,22,3,10),(10,25,2,11),(16,81,8,27),

(26,73,20,27),(57,58,3,10),(62,87,21,28),

(70,71,15,16),(79,92,18,25),(148,177,10,39), . . . .

are primitive integer solutions of (4.1). So, introducing a slightly different approach

could be a good starting point for our further research.
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1. INTRODUCTION

We start by giving some definitions that will be used throughout this paper.

For n ≥ 1, the falling factorial denoted xn is defined by

xn = x(x−1) · · ·(x−n+1),

and the central factorial x[n], see [4, 9], is defined by

x[n] = x(x+n/2−1)(x+n/2−2) · · ·(x−n/2+1).

We use the convention, x0 = x[0] = 1.
It is well-known that, for all non-negative integers n and k (k ≤ n), Stirling numbers

of the second kind are defined as the coefficients S(n,k) in the expansion

xn =
n

∑
k=0

S(n,k)xk. (1.1)

Riordan, in his book [15], shows that, for all non-negative integers n and k (k ≤ n),

the central factorial numbers of the second kind are the coefficients T (n,k) in the

expansion

xn =
n

∑
k=0

T (n,k)x[k]. (1.2)

In combinatorics, the number of ways to partition a set of n elements into k

nonempty subsets are counted by Stirling numbers S(n,k), and the central factorial

numbers T (2n,2n−2k) count the number of ways to place k rooks on a 3D-triangle

board of size (n−1), see [11].

© 2021 Miskolc University Press
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FIGURE 1. 3D-triangle board of size 3.

The coefficients S(n,k) and T (n,k) satisfy, respectively, the triangular recurrences

S(n,k) = kS(n−1,k)+S(n−1,k−1) (1 ≤ k ≤ n) (1.3)

and

T (n,k) =

(

k

2

)2

T (n−2,k)+T (n−2,k−2) (2 ≤ k ≤ n), (1.4)

where

S(n,k) = T (n,k) = 0 for k > n, S(0,0) = T (0,0) = T (1,1) = 1 and T (1,0) = 0.

S(n,k) and T (n,k) admit also the explicit expressions

S(n,k) =
1

k!

k

∑
j=0

(−1) j

(

k

j

)

(k− j)n , (1.5)

T (n,k) =
1

k!

k

∑
j=0

(−1) j

(

k

j

)(

k

2
− j

)n

. (1.6)

n\ k 0 1 2 3 4 5 6

0 1

1 0 1

2 0 1 1

3 0 1 3 1

4 0 1 7 6 1

5 0 1 15 25 10 1

6 0 1 31 90 65 15 1

TABLE 1. The first few

values of S(n,k).

0 1 2 3 4 5 6

0 1

1 0 1

2 0 0 1

3 0 1
4

0 1

4 0 0 1 0 1

5 0 1
16

0 5
2

0 1

6 0 0 1 0 5 0 1

TABLE 2. The first few

values of T (n,k).
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The usual difference operator ∆, the shift operator Ea and the central difference

operator δ are given respectively by

∆ f (x) = f (x+1)− f (x),

E
a f (x) = f (x+a)

and

δ f (x) = f (x+1/2)− f (x−1/2).

Riordan, [15], mentioned that the central factorial operator δ satisfies the following

property

δ fn(x) = n fn−1(x), (1.7)

where ( fn(x))n≥0 is a sequence of polynomials with f0(x) = 1.

We can also express δ by means of both ∆ and E
a, see [9, 15], as follows:

δ f (x) = ∆E−1/2 f (x). (1.8)

For more details about difference operators, we refer the reader to [9].

2. CENTRAL FUBINI-LIKE NUMBERS AND POLYNOMIALS

In 1975, Tanny [17], introduced the Fubini polynomials (or ordered Bell polyno-

mials) Fn(x) by applying a linear transformation L defined as

L(xn) := n!xn.

The polynomials Fn(x) are given by

Fn(x) :=
n

∑
k≥0

k!S(n,k)xk, (2.1)

according to,

Fn(x) := L(xn) = L

(

n

∑
k=0

S(n,k)xk

)

=
n

∑
k=0

S(n,k)L(xk) =
n

∑
k=0

k!S(n,k)xk.

Putting x = 1 in (2) we get

Fn := Fn(1) =
n

∑
k=0

k!S(n,k), (2.2)

which is the n-th Fubini number.

The Fubini polynomial Fn(x) has the exponential generating function given by, see

[17],

∑
n=0

Fn(x)
tn

n!
=

1

1− x(et −1)
. (2.3)

For more details concerning Fubini numbers and polynomials, see [3, 6, 8, 12, 17, 18,

20] and papers cited therein.

Now, we introduce the linear transformation Z as follows.
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Definition 1. For n ≥ 0, we define the transformation

Z(x[n]) = n!xn. (2.4)

Then, we have

Z(xn) = Z

(

n

∑
k=0

T (n,k)x[k]

)

=
n

∑
k=0

T (n,k)Z(x[k]) =
n

∑
k=0

k!T (n,k)xk. (2.5)

And due to Formula (1.6), we are now able to introduce the main notion of the present

paper.

Definition 2. The n-th central Fubini-like polynomial is given by

❈n(x) :=
n

∑
k=0

k!T (n,k)xk. (2.6)

Setting x = 1, we obtain the central Fubini-like numbers,

❈n = ❈n(1) :=
n

∑
k=0

k!T (n,k). (2.7)

The first central polynomials ❈n(x) are given in Table 3.

n ❈2n(x) 22n
❈2n+1(x)

0 1 x

1 2x2 x+24x3

2 2x2 +24x4 x+240x3 +1920x5

3 2x2 +120x4 +720x6 x+2184x3 +67200x5 +322560x7

4 2x2 +504x4 +10080x6 +40320x8 x+19680x3 +1854720x5 +27095040x7 +92897280x9

TABLE 3. First value of ❈n(x).

The first few central Fubini-like numbers are

(❈2n)n≥0 : 1,2,26,842,50906,4946282,704888186,138502957322, . . .

(22n
❈2n+1)n≥0 : 1,25,2161,391945,121866721,57890223865,38999338931281, . . .

2.1. Exponential generating function

We begin by establishing the exponential generating function of the central Fubini-

like polynomials.

Theorem 1. The polynomials ❈n(x) have the following exponential generating

function

G(x; t) := ∑
n=0

❈n(x)
tn

n!
=

1

1−2xsinh(t/2)
. (2.8)
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Proof. We have

∑
n=0

❈n(x)
tn

n!
=

∞

∑
n=0

n

∑
k=0

k!T (n,k)xk tn

n!
= ∑

k=0

k!xk
∞

∑
n=k

T (n,k)
tn

n!
,

from [15, p. 214] , we have

∑
n=0

T (n,k)
tn

n!
=

1

k!
(2sinh(t/2))k ,

therefore

∑
n=0

❈n(x)
tn

n!
=

∞

∑
k=0

(2sinh(t/2))k
xk =

1

1−2xsinh(t/2)
.

�

Corollary 1. The sequence (❈n)n≥0 has the following exponential generating func-

tion
n

∑
k=0

❈n

tn

n!
=

1

1−2sinh(t/2)
. (2.9)

2.2. Explicit representations

In this subsection we propose some explicit formulas for the central Fubini-like

polynomials, we start by the derivative representation.

Proposition 1. The polynomials (❈n(x))n≥0 correspond to the higher derivative

expression

❈n(x) =
∞

∑
k=0

∂n

∂nt
(2xsinh(t/2))k

∣

∣

∣

∣

∣

t=0

.

Proof. Let

∂n

∂nt

(

∞

∑
m=0

❈m(x)
tm

m!

)∣

∣

∣

∣

∣

t=0

=
∞

∑
m=n

❈m(x)
tm−n

(m−n)!

∣

∣

∣

∣

t=0

=
∞

∑
m=0

❈n+m(x)
tm

m!

∣

∣

∣

∣

∣

t=0

= ❈n(x).

Thus from Theorem 1 we get the result. �

From Formula (1.6), it is clear that the following proposition holds.

Proposition 2. The central Fubini-like polynomials satisfy the following explicit

formula

❈n(x) =
n

∑
k=0

xk
k

∑
j=0

(−1) j

(

k

j

)

(k/2− j)n .

Proof. It suffices to replace T (n,k) in Equation (2.6) by its explicit formula (Equa-

tion (1.6)),

❈n(x) =
n

∑
k=0

k!T (n,k)xk =
n

∑
k=0

xk
k

∑
j=0

(−1) j

(

k

j

)

(k/2− j)n .
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�

Theorem 2. For non-negative n, the following explicit representation holds true.

❈n(x) = x
n−1

∑
k=0

(

n

k

)

k

∑
j=0

(

k

j

)

(−1

2

)k− j

❈ j(x) = x
n−1

∑
j=0

(

n

j

)

δ[0n− j]❈ j(x), (2.10)

where δ[0n− j] = (1/2)n− j − (−1/2)n− j.

The proof will depend on Lemma 1, Lemma 2 and Relation (1.8).

Lemma 1. For all polynomials pn(x) the following relation holds true.

Z(pn(x)) = xZ(δpn(x)).

Proof. We have

Z(x[n]) = n!xn = xn(n−1)!xn−1 = xZ(nx[n−1]) = xZ(δx[n]),

as any polynomial can be written as sums of central factorials x[n]. Thus, we have the

result. �

Lemma 2 (Tanny [17]). For all polynomials pn(x) we have

∆pn(x) =
n−1

∑
k=0

(

n

k

)

pk(x). (2.11)

Now we give the proof of Theorem 2,

Proof of Theorem 2. Using Lemma 1, Lemma 2 and setting pn(x) = xn, we get

Z(xn) = xZ(δxn) = xZ

(

∆E−1/2xn
)

= xZ

(

∆
(

x− 1

2

)n)

= xZ

( n−1

∑
k=0

(

n

k

)

(

x− 1

2

)k)

= xZ

( n−1

∑
k=0

(

n

k

)

k

∑
j=0

(

k

j

)

(−1

2

)k− j

x j
)

= x
n−1

∑
k=0

(

n

k

)

k

∑
j=0

(

k

j

)

(−1

2

)k− j

❈ j(x).

Using binomial product identity

(

n

k

)(

k

j

)

=

(

n− j

k− j

)(

n

j

)

, we get the result. �

Corollary 2. The central Fubini-like numbers satisfy

❈n =
n−1

∑
j=0

(

n

j

)

δ[0n− j]❈ j. (2.12)

Now we give an explicit formula connecting the central Fubini-like polynomials

with Stirling numbers of the second kind S(n,k),
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Theorem 3. The central Fubini-like polynomials ❈n(x) satisfy

❈n(x) =
n

∑
k=0

k!xk
n

∑
j=0

(

n

j

)(−k

2

) j

S(n− j,k). (2.13)

Proof. From Theorem 1, we have

∑
n=0

❈n(x)
tn

n
=

1

1−2xsinh(t/2)
.

Using the exponential form of 2xsinh(t/2) we get

∑
n=0

❈n(x)
tn

n
=

1

1− xe(−t/2)(et −1)
= ∑

k=0

xke(−kt/2)(et −1)k.

It is also known that

∑
n=0

S(n,k)
tn

n!
=

(et −1)k

k!
.

Therefore

∑
n=0

❈n(x)
tn

n
= ∑

k=0

xkk! ∑
n=0

(−k

2

)n
tn

n!
∑
n=0

S(n,k)
tn

n!
.

Then Cauchy’s product implies the identity. �

Corollary 3. The central Fubini-like numbers ❈n satisfy

❈n =
n

∑
k=0

k!
n

∑
j=0

(

n

j

)(−k

2

) j

S(n− j,k). (2.14)

2.3. Umbral representation

Umbral (or Blissard or symbolic) calculus originated as a method for discover-

ing and proving combinatorial identities in which subscripts are treated as powers.

Bell in [1] gave a postulational bases of this calculus. In this section we use the

following property given by Riordan [16]. As specified by the author in [16], ”A

sequence a0,a1, ... may be replaced by a0,a1, ... with the exponents are treated as

powers during all formal operations, and only restored as indexes when operations

are completed”. Then when we have

an = ∑
k=0

(

n

k

)

bkcn−k

we can write it as

an = (b+ c)n,

where bn ≡ bn and cn ≡ cn. We note that b0 and c0 is not necessary equal to 1.

In the following theorem we use the umbral notation ❈k(x)≡ ❈
k(x) and ❈k ≡ ❈

k.

Theorem 4. Let n be a non-negative integer, for all real x we have

❈n(x) = x [(❈(x)+1/2)n − (❈(x)−1/2)n] .



84 H. BELBACHIR AND Y. DJEMMADA

Proof. From Theorem 2 and using the umbral notation, a simple calculation gives

the umbral representation result. �

Corollary 4. For non-negative integer n, we have

❈n = (❈+1/2)n − (❈−1/2)n.

2.4. Parity

A function f (x) is said to be even when f (x) = f (−x) for all x and it is said to be

odd when f (x) =− f (−x).

Theorem 5. For all non-negative n and real variable x we have

❈n(x) = (−1)n
❈n(−x).

Proof. Using the fact that the function f : t 7→ sinh(t) is odd, this gives G(x; t) =
G(−x;−t), then comparing the coefficients of tn/n! in G(x; t) and G(−x;−t) the

theorem follows. �

Corollary 5. The polynomials ❈n(x) are odd if and only if n is odd.

Proof. Using Theorem 5, it suffices to replace n by 2k+1 (resp. 2k) and establish

the property. �

2.5. Recurrences and derivatives of higher order

Now we are interested to derive some recurrences for ❈n(x) in terms of their de-

rivatives.

First, we deal with a recurrence of second order.

Theorem 6. For n ≥ 2, the polynomials ❈n(x) satisfy the following recurrence

relation

❈n(x) = 2x2
❈n−2(x)+

( x

4
+4x3

)

❈
′
n−2(x)+

(

x2

4
+ x4

)

❈
′′
n−2(x).

Here ❈′n(x) and ❈′′n(x) are respectively the first and second derivative of ❈n(x).

Proof. From Equation (1.4) we have

❈n(x) =
n

∑
k=0

k!T (n,k)xk

=
n

∑
k=2

k!T (n−2,k−2)xk +
1

4

n

∑
k=0

k2k!T (n−2,k)xk

=
n

∑
k=0

(k+2)!T (n−2,k)xk+2 +
x

4

(

n

∑
k=0

kk!T (n−2,k)xk

)′



ON CENTRAL FUBINI-LIKE NUMBERS AND POLYNOMIALS 85

= x2

(

x2
n

∑
k=0

k!T (n−2,k)xk

)′′

+
x

4

(

x

(

n

∑
k=0

k!T (n−2,k)xk

)′)′

= x2
(

x2
❈n−2(x)

)′′
+

x

4

(

x❈′n−2(x)
)′

= 2x2
❈n−2(x)+

( x

4
+4x3

)

❈
′
n−2(x)+

(

x2

4
+ x4

)

❈
′′
n−2(x),

this concludes the proof. �

In the next theorem we give a recurrence formula for the r-th derivative of ❈n(x).

Proposition 3. The r-th derivative of G(x; t), defined in (2.8), is given by

∂r

∂rx
G(x; t) =

r!

xr
G(x; t)(G(x; t)−1)r.

Proof. Induction on r implies the equality. �

Theorem 7. Let ❈
(r)
n (x) be the r-th derivative of ❈n(x). Then ❈

(r)
n (x) is given by

❈
(r)
n (x) =

r!

xr

r

∑
k=0

(

r

k

)

(−1)r−k ∑
j0+ j1+···+ jk=n

(

n

j0, j1, . . . , jk

)

❈ j0(x)❈ j1(x) · · ·❈ jk(x).

Proof. Using Proposition 3, by applying Cauchy product and comparing the coef-

ficients of tn/n!, we get the result. �

Corollary 6. The following equality holds for any real x:

x❈′n(x) =
n−1

∑
k=0

(

n

k

)

❈k(x)❈n−k(x).

Proof. Setting r = 1 in Proposition 3, we get the first derivative of G(x; t) as

∂

∂x
G(x; t) =

2sinh
(

t
2

)

(

1−2xsinh( t
2
)
)2

=
G(x; t)

x
(G(x; t)−1) ,

x
∂

∂x
G(x; t) = G(x; t)2 −G(x; t),

x ∑
n=0

❈
′
n(x)

tn

n!
=

(

∑
n=0

❈n(x)
tn

n!

)2

− ∑
n=0

❈n(x)
tn

n!
,

then applying the Cauchy product in the right hand side and comparing the coeffi-

cients of tn/n! we get the result. �
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2.6. Integral representation

Integral representation is a fundamental property in analytic combinatorics. The

central Fubini-like polynomials can be represented as well.

Theorem 8. The polynomials ❈n(x) satisfy

❈n(x) =
2n!

π
Im

∫ π

0

sin(nθ)

1−2xsinh(eiθ/2)
∂θ.

Proof. We will use here the known identity, see [5],

kn =
2n!

π
Im

∫ π

0
exp(keiθ)sin(nθ)∂θ.

We have

❈n(x) =
∞

∑
k=0

k!T (n,k)xk

=
∞

∑
k=0

xk
k

∑
j=0

(−1) j

(

k

j

)(

k

2
− j

)n

=
∞

∑
k=0

xk
k

∑
j=0

(−1) j

(

k

j

)

2n!

π
Im

∫ π

0
exp
(

(k/2− j)eiθ
)

sin(nθ)∂θ

=
2n!

π
Im

∫ π

0
sin(nθ)

∞

∑
k=0

xk exp

(

−k

2
eiθ

)

(

exp(eiθ)−1
)k

∂θ

=
2n!

π
Im

∫ π

0

sin(nθ)

1−2xsinh(eiθ/2)
∂θ.

�

2.7. Determinantal representation

Several papers have been published on determinantal representations of many se-

quences as Bernoulli numbers, Euler numbers, ordered Bell numbers (or Fubini num-

bers), etc.

Komatsu and Ramı́rez in a recent paper gives the following theorem.

Theorem 9 (Komatsu & Ramı́rez [10]). Let (R( j)) j≥0 be a sequence, and let αn

be defined by the following determinantal expression for all n ≥ 1:

αn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R(1) 1

R(2) R(1)
...

...
. . . 1

R(n−1) R(n−2) · · · R(1) 1

R(n) R(n−1) · · · R(2) R(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.15)
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Then we have

αn =
n

∑
j=1

(−1) j−1R( j)αn− j (n ≥ 1). (2.16)

We set α0 = 1.

By applying the previous theorem we get

Theorem 10. For n ≥ 1, we have

❈n(x)

n!
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R(1) 1

R(2) R(1)
...

...
. . . 1

R(n−1) R(n−2) · · · R(1) 1

R(n) R(n−1) · · · R(2) R(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.17)

where

R( j) = x
(−1) j−1

j!
δ[0 j] = x

(−1) j−1

j!

(

(

1

2

) j

−
(

−1

2

) j
)

.

Proof. From Theorem 2 we have,

❈n(x) = x
n−1

∑
j=0

(

n

j

)

δ[0n− j]❈ j(x) = x
n

∑
j=1

(

n

j

)

δ[0 j]❈n− j(x)

❈n(x)

n!
=

n

∑
j=1

x

j!
δ[0 j]

❈n− j(x)

(n− j)!
.

It suffices to set αn =
❈n(x)

n!
and R( j) = x

(−1) j−1

j!
δ[0 j] to get the result. �

Remark 1. The function R( j) = 0 for j even.

Using Remark 1, we establish the following binomial convolution for the polyno-

mials ❈n(x).

Theorem 11. For n ≥ 0 we have

❈n+1(x) = x

⌊n/2⌋

∑
k=0

4−k

(

n+1

2k+1

)

❈n−2k(x). (2.18)

Proof. From Remark 1 and using Formula (2.16) with αn = ❈n(x)/n! and

R( j) = x
(−1) j−1

j!

(

(

1
2

) j −
(

− 1
2

) j
)

we get the result. �

Remark 2. Formula (2.18) is better than result of Theorem 2 from a computational

point of view.
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2.8. Asymptotic result with respect to Cn

Find an asymptotic behaviour of a sequence (an)n≥0 means to find a second func-

tion depending on n simple than the expression of an which gives a good approxima-

tion to the values of an when n is large.

In this subsection, we are interested to obtaining the asymptotic behaviour of the

central Fubini-like numbers.

Let (an)n≥0 be a sequence of non-negative real numbers, the asymptotic behaviour

an is closely tied to the poles in G(z), where G(z) is the generating function of an,

G(z) = ∑
n=0

anzn.

Wilf, in his book [19] and Flajolet et al. in [7] gave a method to determine the

asymptotic behaviour an which can be summarized in the following steps:

(1) Find the poles z0,z1, . . . ,zs in G(z).
(2) Calculate the principal parts P(G(z),zi) at the dominant singularities zi (which

have the smallest modulus R) as

P(G(z),zi) =
Res(G(z),zi)

(z− zi)
,

where Res(G(z),zi) is the residue of G(z) at the pole zi.

(3) Set H(z) = ∑s
i=0 P(G(z),zi) then write H(z) as the expansion below,

H(z) = ∑
n=0

bnzn.

(4) The sequence (bn)n=0 is the asymptotic behaviour of an when n is big enough,

an ∼ bn +O

((

1

R′ + ε

)n)

, n 7−→ ∞.

where R′ is the next smallest modulus of the poles.

For more details about singularities analysis method we refer to [7].

Remark 3. Poles z0,z1, . . . ,zs are considered as simple poles (has a multiplicity

equal to 1).

Analytic methods of determining the asymptotic behavior of a sequence (an)n are

widely discussed on [2, 7, 13, 14, 19].

Theorem 12. The asymptotic behaviour of the ❈n is given by

❈n ∼
n!

2n
√

5logn+1(φ)
+O((0.15732+ ε)n) , n 7−→ ∞

where φ is the Golden ratio.

Proof. Applying the previous steps in the generating function G(z) = 1
1−2sinh(z/2)

gives
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(1) The poles of G(z) are

z0 =−2log

(

1+
√

5

2

)

+2iπ+4iπk and z1 = 2log

(

1+
√

5

2

)

+4iπk,

with k ∈ Z.

(2) By setting k = 0, the dominant singularity is z1 = 2log(φ) (the modulus R =
0.96), then,

P(G(z),z1) =− 2√
5(z−2log(φ))

.

(3) Set H(z) =− 2√
5(z−2log(φ))

, if we write H(z) as the expansion we get

H(z) = ∑
n=0

1

2n
√

5logn+1(φ)
zn.

(4) The the next smallest modulus of the poles R′ = 6.356..., then the asymptotic

behaviour of ❈n when n is big enough is,

❈n ∼
n!

2n
√

5logn+1(φ)
+O((0.15732+ ε)n) , n 7−→ ∞.

�
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points and fuzzy sets, the notions of an (∈,∈)-fuzzy sub-hoop, an (∈,∈∨q)-fuzzy sub-hoop and

a (q,∈∨q)-fuzzy sub-hoop are introduced, and several properties are investigated. Character-

izations of an (∈,∈)-fuzzy sub-hoop and an (∈,∈∨q)-fuzzy sub-hoop are displayed. Relations

between an (∈,∈)-fuzzy sub-hoop, an (∈,∈∨q)-fuzzy sub-hoop and a (q,∈∨q)-fuzzy sub-hoop

are discussed. Conditions for a fuzzy set to be a (q,∈∨q)-fuzzy sub-hoop are considered, and

condition for an (∈,∈∨q)-fuzzy sub-hoop to be a (q,∈∨q)-fuzzy sub-hoop are provided.
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1. INTRODUCTION

After the introduction of the concept of a fuzzy set by Zadeh [18], several re-

searches were conducted on the generalizations of the concept of a fuzzy set. One

of the least satisfactory areas in the early development of fuzzy topology has been

that surrounding the concept of fuzzy point. In the original classical theory, where

values are taken in the closed unit interval I, it soon became apparent that, in order

to build up a reasonable theory, points should be defined as fuzzy singletons while

membership requires strict inequality. So crisp points, taking value 1, are excluded,

and fuzzy topology would seem not to include general topology. This disturbing state

of affairs was to some extent overcome by [15] who replaced membership by quasi-

coincidence (not belonging to the complement, where belonging is taken as ≤), thus

reinstating crisp points. More recently [11] has drawn attention to a duality between

quasi-coincidence and strict inequality membership. The duality, however, is only

partial [17].

Hoop, which is introduced by B. Bosbach in [9], is naturally ordered commut-

ative residuated integral monoids. Several properties of hoops are displayed in [3–

5, 8, 10, 13, 16, 19]. For example, Blok [3, 4], investigated structure of hoops and

their applicational reducts. Borzooei and Aaly Kologani in [5] defined (implicative,

© 2021 Miskolc University Press
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positive implicative, fantastic) filters in a hoop and discussed their relations and prop-

erties. Using filter, they considered a congruence relation on a hoop, and induced the

quotient structure which is a hoop. They also provided conditions for the quotient

structure to be Brouwerian semilattice, Heyting algebra and Wajesberg hoop. After

that in [2], they studied these notions in pseudo-hoops. The idea of quasi-coincidence

of a fuzzy point with a fuzzy set, which is mentioned in [15], played a vital role to

generate some different types of fuzzy subalgebras in of BCK/BCI-algebras. On

(α,β)-fuzzy subalgerbas of BCK/BCI-algebras, introduced by Jun [12]. In particu-

lar, (∈,∈∨q)-fuzzy subalgebra is an important and useful generalization of a fuzzy

subalgebra in BCK/BCI-algebras. It is now natural to investigate similar type of

generalizations of the existing fuzzy subsystems of other algebraic structures.

In this paper, we introduce the notions of an (∈,∈)-fuzzy sub-hoop, an (∈,∈∨q)-
fuzzy sub-hoop and a (q,∈∨q)-fuzzy sub-hoop, and investigate several properties.

We discuss characterizations of an (∈,∈)-fuzzy sub-hoop and an (∈,∈∨q)-fuzzy

sub-hoop. We find relations between an (∈,∈)-fuzzy sub-hoop, an (∈,∈∨q)-fuzzy

sub-hoop and a (q,∈∨q)-fuzzy sub-hoop. We consider conditions for a fuzzy set to

be a (q,∈∨q)-fuzzy sub-hoop of H. We provide a condition for an (∈,∈∨q)-fuzzy

sub-hoop to be a (q,∈∨q)-fuzzy sub-hoop.

2. PRELIMINARIES

By a hoop we mean an algebra (H,⊙,→,1) in which (H,⊙,1) is a commutative

monoid and the following assertions are valid.

(H1) (∀x ∈ H)(x → x = 1),
(H2) (∀x,y ∈ H)(x⊙(x → y) = y⊙(y → x)),
(H3) (∀x,y,z ∈ H)(x → (y → z) = (x⊙y)→ z).

By a sub-hoop of a hoop H we mean a subset S of H which satisfies the condition:

(∀x,y ∈ H)(x,y ∈ S ⇒ x⊙y ∈ S, x → y ∈ S). (2.1)

Note that every non-empty sub-hoop contains the element 1.

Every hoop H satisfies the following conditions (see [9]).

(∀x,y ∈ H)(x⊙y ≤ z ⇔ x ≤ y → z). (2.2)

(∀x,y ∈ H)(x⊙y ≤ x,y). (2.3)

(∀x,y ∈ H)(x ≤ y → x). (2.4)

(∀x ∈ H)(x → 1 = 1). (2.5)

(∀x ∈ H)(1 → x = x). (2.6)

A fuzzy set λ in a set X of the form

λ(y) :=

{

t ∈ (0,1] if y = x,
0 if y 6= x,

is said to be a fuzzy point with support x and value t and is denoted by xt .
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For a fuzzy point xt and a fuzzy set λ in a set X , Pu and Liu [15] gave meaning to

the symbol xtαλ, where α ∈ {∈,q,∈∨q,∈∧q}.

To say that xt ∈ λ (resp. xtqλ) means that λ(x)≥ t (resp. λ(x)+ t > 1), and in this

case, xt is said to belong to (resp. be quasi-coincident with) a fuzzy set λ.
To say that xt∈∨qλ (resp. xt∈∧qλ) means that xt ∈ λ or xtqλ (resp. xt ∈ λ and

xtqλ).

3. (α,β)-FUZZY SUB-HOOPS FOR (α,β) ∈ {(∈,∈),(∈,∈∨q),(q,∈∨q)}

In what follows, let H be a hoop unless otherwise specified.

Definition 1. A fuzzy set λ in H is called an (∈,∈)-fuzzy sub-hoop of H if the

following assertion is valid.

(∀x,y ∈ H)(∀t,k ∈ (0,1])

(

xt ∈ λ, yk ∈ λ ⇒

{

(x⊙y)min{t,k} ∈ λ

(x → y)min{t,k} ∈ λ)

)

. (3.1)

Example 1. Let H = {0,a,b,c,d,1} be a set with binary operations ⊙ and → in

Table 1 and Table 2, respectively.

TABLE 1. Cayley table for the binary operation “⊙”

⊙ 0 a b c d 1

0 0 0 0 0 0 0

a 0 a d 0 d a

b 0 d c c 0 b

c 0 0 c c 0 c

d 0 d 0 0 0 d

1 0 a b c d 1

TABLE 2. Cayley table for the binary operation “→”

→ 0 a b c d 1

0 1 1 1 1 1 1

a c 1 b c b 1

b d a 1 b a 1

c a a 1 1 a 1

d b 1 1 b 1 1

1 0 a b c d 1
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Then (H,⊙,→,1) is a hoop. Define a fuzzy set λ in H as follows:

λ : H → [0,1], x 7→































0.5 if x = 0,

0.7 if x = a,

0.3 if x = b,

0.5 if x = c,

0.3 if x = d,

0.8 if x = 1

It is routine to verify that λ is an (∈,∈)-fuzzy sub-hoop of H.

We consider characterizations of an (∈,∈)-fuzzy sub-hoop.

Theorem 1. A fuzzy set λ in H is an (∈,∈)-fuzzy sub-hoop of H if and only if the

following assertion is valid.

(∀x,y ∈ H)

(

λ(x⊙y)≥ min{λ(x),λ(y)}
λ(x → y)≥ min{λ(x),λ(y)}

)

. (3.2)

Proof. Assume that λ is an (∈,∈)-fuzzy sub-hoop of H. Note that xλ(x) ∈ λ and

yλ(y) ∈ λ for all x,y ∈ H. It follows from (3.1) that (x⊙y)min{λ(x),λ(y)} ∈ λ and (x →
y)min{λ(x),λ(y)} ∈ λ. Hence

λ(x⊙y)≥ min{λ(x),λ(y)}

and

λ(x → y)≥ min{λ(x),λ(y)}

for all x,y ∈ H.

Conversely, suppose that λ satisfies the condition (3.2). Let x,y∈H and t,k ∈ (0,1]
such that xt ∈ λ and yk ∈ λ. Then λ(x) ≥ t and λ(y) ≥ k, which implies from (3.2)

that

λ(x⊙y)≥ min{λ(x),λ(y)} ≥ min{t,k}

and

λ(x → y)≥ min{λ(x),λ(y)} ≥ min{t,k}

for all x,y ∈ H. Hence (x⊙y)min{t,k} ∈ λ and (x → y)min{t,k} ∈ λ. Therefore λ is an

(∈,∈)-fuzzy sub-hoop of H. �

Given a fuzzy set λ in H, we consider the set

U(λ; t) := {x ∈ H | λ(x)≥ t},

which is called an ∈-level set of λ (related to t).

Theorem 2. A fuzzy set λ in H is an (∈,∈)-fuzzy sub-hoop of H if and only if the

non-empty ∈-level set U(λ; t) of λ is a sub-hoop of H for all t ∈ [0,1].
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Proof. Let λ be a fuzzy set in H such that U(λ; t) is a non-empty sub-hoop of

H for all t ∈ [0,1]. Let x,y ∈ H and t,k ∈ (0,1] such that xt ∈ λ and yk ∈ λ. Then

λ(x)≥ t and λ(y)≥ k, and so x,y ∈U(λ;min{t,k}). By hypothesis, we have x⊙y ∈
U(λ;min{t,k}) and x → y ∈ U(λ;min{t,k}). Hence (x⊙y)min{t,k} ∈ λ and (x →
y)min{t,k} ∈ λ. Therefore λ is an (∈,∈)-fuzzy sub-hoop of H.

Conversely, assume that λ is an (∈,∈)-fuzzy sub-hoop of H. Let x,y ∈U(λ; t) for

all t ∈ [0,1]. Then λ(x) ≥ t and λ(y) ≥ t, that is, xt ∈ λ and yt ∈ λ. It follows from

(3.1) that (x⊙y)t ∈ λ and (x → y)t ∈ λ, that is, x⊙y ∈ U(λ; t) and x → y ∈ U(λ; t).
Therefore U(λ; t) of λ is a sub-hoop of H for all t ∈ [0,1]. �

Theorem 3. Let λ be an (∈,∈)-fuzzy sub-hoop of H such that |Im(λ)| ≥ 3. Then λ
can be expressed as the union of two fuzzy sets µ and ν where µ and ν are (∈,∈)-fuzzy

sub-hoops of H such that

(1) Im(µ) and Im(ν) have at least two elements.

(2) µ and ν have no same family of ∈-level sub-hoops.

Proof. Let λ be an (∈,∈)-fuzzy sub-hoop of H with Im(λ) = {t0, t1, . . . , tn} where

t0 > t1 > · · ·> tn and n ≥ 2. Then

U(λ; t0)⊆U(λ; t1)⊆ ·· · ⊆U(λ; tn) = H

is a chain of ∈-level sub-hoops of λ. Define two fuzzy sets µ and ν in H by

µ(x) =

{

k1 if x ∈U(λ; t1),
tr if x ∈U(λ; tr)\U(λ; tr−1) for r = 2,3, · · · ,n,

and

ν(x) =















t0 if x ∈U(λ; t0),
t1 if x ∈U(λ; t1)\U(λ; t0),
k2 if x ∈U(λ; t3)\U(λ; t1),
tr if x ∈U(λ; tr)\U(λ; tr−1) for r = 4,5 · · · ,n,

respectively, where k1 ∈ (t2, t1) and k2 ∈ (t4, t2). Then µ and ν are (∈,∈)-fuzzy sub-

hoops of H, and their ∈-level sub-hoops are chains as follows:

U(µ; t1)⊆U(µ; t2)⊆ ·· · ⊆U(µ; tn) = H

and

U(ν; t0)⊆U(ν; t1)⊆U(ν; t3)⊆ ·· · ⊆U(µ; tn) = H

It is clear that µ ⊆ λ, ν ⊆ λ and µ∪ν = λ. This completes the proof. �

Definition 2. A fuzzy set λ in H is called an (∈,∈∨q)-fuzzy sub-hoop of H if the

following assertion is valid.

(∀x,y ∈ H)(∀t,k ∈ (0,1])

(

xt ∈ λ, yk ∈ λ ⇒

{

(x⊙y)min{t,k}∈∨qλ

(x → y)min{t,k}∈∨qλ)

)

.

(3.3)
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Example 2. Consider the hoop (H,⊙,→,1) which is described in Example 1.

(1) Define a fuzzy set λ in H as follows:

λ : H → [0,1], x 7→















0.5 if x = 1,

0.3 if x = c,

0.2 if x = b,

0.1 if x ∈ {0,a,d}.

It is routine to verify that λ is an (∈,∈∨q)-fuzzy sub-hoop of H.

(2) Define a fuzzy set µ in H as follows:

µ : H → [0,1], x 7→































0.8 if x = 0,

0.7 if x = a,

0.3 if x = b,

0.4 if x = c,

0.3 if x = d,

0.5 if x = 1

It is routine to verify that µ is an (∈,∈∨q)-fuzzy sub-hoop of H.

We consider characterizations of (∈,∈∨q)-fuzzy sub-hoop.

Theorem 4. A fuzzy set λ in H is an (∈,∈∨q)-fuzzy sub-hoop of H if and only if

the following assertion is valid.

(∀x,y ∈ H)

(

λ(x⊙y)≥ min{λ(x),λ(y),0.5}
λ(x → y)≥ min{λ(x),λ(y),0.5}

)

. (3.4)

Proof. Assume that λ is an (∈,∈∨q)-fuzzy sub-hoop of H and let x,y ∈ H. Sup-

pose that min{λ(x),λ(y)}< 0.5.

If λ(x⊙y) < min{λ(x),λ(y)} or λ(x → y) < min{λ(x),λ(y)}, then λ(x⊙y) < t ≤
min{λ(x),λ(y)} or λ(x → y)< k ≤ min{λ(x),λ(y)} for some t,k ∈ (0,1]. It follows

that

xt ∈ λ and yt ∈ λ

or

xk ∈ λ and yk ∈ λ.

But (x⊙y)min{t,t} = (x⊙y)t∈∨qλ or (x → y)min{k,k} = (x → y)k∈∨qλ. This is a

contradiction, and so λ(x⊙y) ≥ min{λ(x),λ(y)} and λ(x → y) ≥ min{λ(x),λ(y)}
whenever min{λ(x),λ(y)}< 0.5.

Assume that min{λ(x),λ(y)} ≥ 0.5. Then x0.5 ∈ λ and y0.5 ∈ λ. It follows from

(3.3) that (x⊙y)0.5 =(x⊙y)min{0.5,0.5}∈∨qλ and (x→ y)0.5 =(x→ y)min{0.5,0.5}∈∨qλ.

Thus λ(x⊙y)≥ 0.5 and λ(x→ y)≥ 0.5. Consequently, λ(x⊙y)≥min{λ(x),λ(y),0.5}
and λ(x → y)≥ min{λ(x),λ(y),0.5}.

Conversely, suppose that λ satisfies the condition (3.4). Let x,y∈H and t,k ∈ (0,1]
such that xt ∈ λ and yk ∈ λ. Then λ(x)≥ t and λ(y)≥ k. If λ(x⊙y)< min{t,k}, then
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min{λ(x),λ(y)} ≥ 0.5 because if min{λ(x),λ(y)}< 0.5, then

λ(x⊙y)≥ min{λ(x),λ(y),0.5} ≥ min{λ(x),λ(y)} ≥ min{t,k}

which is a contradiction. Similarly, if λ(x → y)< min{t,k}, then

min{λ(x),λ(y)} ≥ 0.5. It follows that

λ(x⊙y)+min{t,k}> 2λ(x⊙y)≥ 2min{λ(x),λ(y),0.5}= 1

and

λ(x → y)+min{t,k}> 2λ(x → y)≥ 2min{λ(x),λ(y),0.5}= 1.

Hence (x⊙y)min{t,k}qλ and (x → y)min{t,k}qλ, and so (x⊙y)min{t,k}∈∨qλ and (x →
y)min{t,k}∈∨qλ. Therefore λ is an (∈,∈∨q)-fuzzy sub-hoop of H. �

Theorem 5. A fuzzy set λ in H is an (∈,∈∨q)-fuzzy sub-hoop of H if and only if

the non-empty ∈-level set U(λ; t) of λ is a sub-hoop of H for all t ∈ (0,0.5].

Proof. Assume that λ is an (∈,∈∨q)-fuzzy sub-hoop of H. Let x,y ∈U(λ; t) for

t ∈ (0,0.5]. Then λ(x)≥ t and λ(y)≥ t.

It follows from Theorem 4 that λ(x⊙y) ≥ min{λ(x),λ(y),0.5} ≥ min{t,0.5} = t

and

λ(x → y)≥ min{λ(x),λ(y),0.5} ≥ min{t,0.5}= t. Hence x⊙y ∈U(λ; t) and x →
y ∈U(λ; t). Therefore U(λ; t) is a sub-hoop of H.

Conversely, suppose that the non-empty ∈-level set U(λ; t) of λ is a sub-hoop of H

for all t ∈ (0,0.5]. If there exists x,y ∈ H such that λ(x⊙y)< min{λ(x),λ(y),0.5} or

λ(x → y) < min{λ(x),λ(y),0.5}, then λ(x⊙y) < t ≤ min{λ(x),λ(y),0.5} or λ(x →
y) < t ≤ min{λ(x),λ(y),0.5} for some t ∈ (0,1]. Hence t ≤ 0.5 and x,y ∈ U(λ; t),
and so x⊙y ∈ U(λ; t) and x → y ∈ U(λ; t). This is a contradiction, and therefore

λ(x⊙y)≥min{λ(x),λ(y),0.5} and λ(x→ y)≥min{λ(x),λ(y),0.5}. Using Theorem

4, we conclude that λ is an (∈,∈∨q)-fuzzy sub-hoop of H. �

Theorem 6. Every (∈,∈)-fuzzy sub-hoop is an (∈,∈∨q)-fuzzy sub-hoop.

Proof. Straightforward. �

The converse of Theorem 6 is not true in general as seen in the following example.

Example 3. The (∈,∈∨q)-fuzzy sub-hoop µ in Example 2(2) is not an (∈,∈)-
fuzzy sub-hoop of H since a0.55 ∈ µ and 00.75 ∈ µ, but (a → 0)min{0.55,0.75}∈µ.

We provide a condition for an (∈,∈∨q)-fuzzy sub-hoop to be an (∈,∈)-fuzzy

sub-hoop.

Theorem 7. If an (∈,∈∨q)-fuzzy sub-hoop λ of H satisfies the condition

(∀x ∈ H)(λ(x)< 0.5), (3.5)

then λ is an (∈,∈)-fuzzy sub-hoop of H.
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Proof. Let x,y ∈ H and t,k ∈ (0,1] such that xt ∈ λ and yk ∈ λ. Then λ(x)≥ t and

λ(y)≥ k. Using (3.5) and Theorem 4, we have

λ(x⊙y)≥ min{λ(x),λ(y),0.5}= min{λ(x),λ(y)} ≥ min{t,k}

and

λ(x → y)≥ min{λ(x),λ(y),0.5}= min{λ(x),λ(y)} ≥ min{t,k}.

Hence (x⊙y)min{t,k} ∈ λ and (x → y)min{t,k} ∈ λ. Therefore λ is an (∈,∈)-fuzzy sub-

hoop of H. �

Proposition 1. If λ is a non-zero (∈,∈∨q)-fuzzy sub-hoop of H, then λ(1)> 0.

Proof. Assume that λ(1) = 0. Since λ is non-zero, there exists x ∈ H such that

λ(x) = t 6= 0, and so xt ∈ λ. Then λ(x → x) = λ(1) = 0 and λ(x → x)+ t = λ(1)+
t = t ≤ 1, that is, (x → x)t∈λ and (x → x)t qλ. Thus (x → x)t ∈∨qλ, which is a

contradiction. Therefore λ(1)> 0. �

Corollary 1. If λ is a non-zero (∈,∈)-fuzzy sub-hoop of H, then λ(1)> 0.

Theorem 8. If λ is a non-zero (∈,∈)-fuzzy sub-hoop of H, then the set

H0 := {x ∈ H | λ(x) 6= 0} (3.6)

is a sub-hoop of H.

Proof. Let x,y∈H0. Then λ(x)> 0 and λ(y)> 0. Note that xλ(x) ∈ λ and yλ(y) ∈ λ.

If λ(x⊙y) = 0 or λ(x → y) = 0, then λ(x⊙y) = 0 < min{λ(x),λ(y)} or λ(x → y) =
0<min{λ(x),λ(y)}, that is, (x⊙y)min{λ(x),λ(y)}∈λ or (x→ y)min{λ(x),λ(y)}∈λ. This is a

contradiction, and so λ(x⊙y) 6= 0 and λ(x→ y) 6= 0. Hence x⊙y∈H0 and x→ y∈H0.

Therefore H0 is a sub-hoop of H. �

Theorem 9. For any sub-hoop S of H and t ∈ (0,0.5], there exists an (∈,∈∨q)-
fuzzy sub-hoop λ of H such that U(λ; t) = S.

Proof. Let λ be a fuzzy set in H defined by

λ : H → [0,1], x 7→

{

t if x ∈ S,

0 otherwise,
(3.7)

where t ∈ (0,0.5]. It is clear that U(λ; t) = S. Suppose that λ(x⊙y) < min{λ(x),
λ(y),0.5} or λ(x → y) < min{λ(x),λ(y),0.5} for some x,y ∈ H. Since |Im(λ)| = 2,

it follows that λ(x⊙y) = 0 or λ(x → y) = 0, and min{λ(x),λ(y),0.5} = t. Since

t ≤ 0.5, we have λ(x) = t = λ(y) and so x,y ∈ S. Then x⊙y ∈ S and x → y ∈ S, which

imply that λ(x⊙y) = t and λ(x → y) = t. This is a contradiction, and so λ(x⊙y) ≥
min{λ(x),λ(y),0.5} and λ(x → y) ≥ min{λ(x),λ(y),0.5}. Using Theorem 4, we

know that λ is an (∈,∈∨q)-fuzzy sub-hoop of H. �
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For any fuzzy set λ in H and t ∈ (0,1], we consider the following sets so called

q-set and ∈∨q-set, respectively.

λt
q := {x ∈ H | xt qλ} and λt

∈∨q := {x ∈ H | xt∈∨qλ}

It is clear that λt
∈∨q =U(λ; t)∪λt

q.

Theorem 10. A fuzzy set λ in H is an (∈,∈∨q)-fuzzy sub-hoop of H if and only if

λt
∈∨q is a sub-hoop of H for all t ∈ (0,1].

We call λt
∈∨q an ∈∨q-level sub-hoop of λ.

Proof. Assume that λ is an (∈,∈∨q)-fuzzy sub-hoop of H. Let x,y ∈ λt
∈∨q for t ∈

(0,1]. Then xt∈∨qλ and yt∈∨qλ, i.e., λ(x)≥ t or λ(x)+t > 1, and λ(y)≥ t or λ(y)+
t > 1. It follows from (3.4) that λ(x⊙y)≥ min{t,0.5} and λ(x → y)≥ min{t,0.5}. In

fact, if λ(x⊙y) < min{t,0.5} or λ(x → y) < min{t,0.5}, then xt ∈∨qλ or yt ∈∨qλ,

a contradiction.

If t ≤ 0.5, then λ(x⊙y)≥ min{t,0.5}= t and λ(x → y)≥ min{t,0.5}= t. Hence

x⊙y ∈U(λ; t)⊆ λt
∈∨q and x → y ∈U(λ; t)⊆ λt

∈∨q.

If t > 0.5, then λ(x⊙y) ≥ min{t,0.5} = 0.5 and λ(x → y) ≥ min{t,0.5} = 0.5.

Hence λ(x⊙y)+t > 0.5+0.5= 1 and λ(x → y)+t > 0.5+0.5= 1, that is, (x⊙y)t qλ
and (x → y)t qλ. It follows that x⊙y ∈ λt

q ⊆ λt
∈∨q and x → y ∈ λt

q ⊆ λt
∈∨q. Therefore

λt
∈∨q is a sub-hoop of H for all t ∈ (0,1].

Conversely, let λ be a fuzzy set in H and t ∈ (0,1] such that λt
∈∨q is a sub-hoop of

H. Suppose that λ(x⊙y) < min{λ(x),λ(y),0.5} or λ(x → y) < min{λ(x),λ(y),0.5}
for some x,y ∈ H. Then λ(x⊙y) < t < min{λ(x),λ(y),0.5} or λ(x → y) < t <
min{λ(x),λ(y),0.5} for some t ∈ (0,0.5). Hence x,y ∈U(λ; t)⊆ λt

∈∨q, and so x⊙y ∈

λt
∈∨q and x → y ∈ λt

∈∨q. Thus λ(x⊙y) ≥ t or λ(x⊙y)+ t > 1, and λ(x → y) ≥ t or

λ(x→ y)+t > 1. This is a contradiction, and therefore λ(x⊙y)≥min{λ(x),λ(y),0.5}
and λ(x→ y)≥min{λ(x),λ(y),0.5} for all x,y∈H. Consequently, λ is an (∈,∈∨q)-
fuzzy sub-hoop of H by Theorem 4. �

Theorem 11. If λ is an (∈,∈∨q)-fuzzy sub-hoop of H, then the q-set λt
q is a

sub-hoop of H for all t ∈ (0.5,1].

Proof. Let x,y ∈ λt
q for t ∈ (0.5,1]. Then λ(x)+ t > 1 and λ(y)+ t > 1, which

imply from Theorem 4 that

λ(x⊙y)+ t ≥ min{λ(x),λ(y),0.5}+ t

= min{λ(x)+ t,λ(y)+ t,0.5+ t}> 1,

and

λ(x → y)+ t ≥ min{λ(x),λ(y),0.5}+ t

= min{λ(x)+ t,λ(y)+ t,0.5+ t}> 1,
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that is, (x⊙y)t qλ and (x → y)t qλ. Hence x⊙y ∈ λt
q and x → y ∈ λt

q. Therefore λt
q is

a sub-hoop of H for all t ∈ (0.5,1]. �

Theorem 12. Let f : H → K be a homomorphism of hoops. If λ and µ are (∈
,∈∨q)-fuzzy sub-hoops of H and K, respectively, then

(1) f−1(µ) is an (∈,∈∨q)-fuzzy sub-hoop of H.

(2) If f is onto and λ satisfies the condition

(∀T ⊆ H)(∃x0 ∈ T )

(

λ(x0) = sup
x∈T

λ(x)

)

, (3.8)

then f (λ) is an (∈,∈∨q)-fuzzy sub-hoop of K.

Proof. (1) Let x,y∈H and t,k ∈ (0,1] such that xt ∈ f−1(µ) and yk ∈ f−1(µ). Then

( f (x))t ∈ µ and ( f (y))k ∈ µ. Since µ is an (∈,∈∨q)-fuzzy sub-hoop of K, we have

( f (x⊙y))min{t,k} = ( f (x)⊙ f (y))min{t,k}∈∨qµ

and

( f (x → y))min{t,k} = ( f (x)→ f (y))min{t,k}∈∨qµ.

Hence (x⊙y)min{t,k}∈∨q f−1(µ) and (x → y)min{t,k}∈∨q f−1(µ). Therefore f−1(µ)
is an (∈,∈∨q)-fuzzy sub-hoop of H.

(2) Let a,b ∈ K and t,k ∈ (0,1] such that at ∈ f (λ) and bk ∈ f (λ). Then ( f (λ))(a)
≥ t and ( f (λ))(b) ≥ k. Using the condition (3.8), there exist x ∈ f−1(a) and y ∈
f−1(b) such that

λ(x) = sup
z∈ f−1(a)

λ(z) and λ(y) = sup
w∈ f−1(b)

λ(w).

Then xt ∈ λ and yk ∈ λ, which imply that (x⊙y)min{t,k}∈∨qλ and (x→ y)min{t,k}∈∨qλ

since λ is an (∈,∈∨q)-fuzzy sub-hoop of H. Now x⊙y ∈ f−1(a⊙b) and x → y ∈
f−1(a → b), and so ( f (λ))(a⊙b)≥ λ(x⊙y) and ( f (λ))(a → b)≥ λ(x → y). Hence

( f (λ))(a⊙b)≥ min{t,k} or ( f (λ))(a⊙b)+min{t,k}> 1

and

( f (λ))(a → b)≥ min{t,k} or ( f (λ))(a → b)+min{t,k}> 1,

that is, (a⊙b)min{t,k}∈∨q f (λ) and (a → b)min{t,k}∈∨q f (λ). Therefore f (λ) is an

(∈,∈∨q)-fuzzy sub-hoop of K. �

Theorem 13. Let λ be an (∈,∈∨q)-fuzzy sub-hoop of H such that |{λ(x) | λ(x)<
0.5}| ≥ 2. Then there exist two (∈,∈∨q)-fuzzy sub-hoops µ and ν of H such that

(1) λ = µ∪ν.

(2) Im(µ) and Im(ν) have at least two elements.

(3) µ and ν have no the same family of ∈∨q-level sub-hoops.
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Proof. Let {λ(x) | λ(x)< 0.5}= {t1, t2, . . . , tr} where t1 > t2 > · · ·> tr and r ≥ 2.

Then the chain of ∈∨q-level sub-hoops of λ is

λ0.5
∈∨q ⊆ λt1

∈∨q ⊆ λt2
∈∨q ⊆ ·· · ⊆ λtr

∈∨q = H.

Define two fuzzy sets µ and ν in H by

µ(x) =

{

t1 if x ∈ λt1
∈∨q,

tn if x ∈ λtn
∈∨q \λ

tn−1
∈∨q for n = 2,3, · · · ,r,

and

ν(x) =







λ(x) if x ∈ λ0.5
∈∨q,

k if x ∈ λt2
∈∨q \λ0.5

∈∨q,

tn if x ∈ λtn
∈∨q \λ

tn−1
∈∨q for n = 3,4, · · · ,r,

respectively, where k ∈ (t3, t2). Then µ and ν are (∈,∈∨q)-fuzzy sub-hoops of H,

and µ ⊆ λ and ν ⊆ λ. The chains of ∈∨q-level sub-hoops of µ and ν are given by

µ
t1
∈∨q ⊆ µ

t2
∈∨q ⊆ ·· · ⊆ µ

tr
∈∨q and ν0.5

∈∨q ⊆ νt2
∈∨q ⊆ ·· · ⊆ νtr

∈∨q,

respectively. It is clear that µ∪ν = λ. This completes the proof. �

Definition 3. A fuzzy set λ in H is called a (q,∈∨q)-fuzzy sub-hoop of H if the

following assertion is valid.

(∀x,y ∈ H)(∀t,k ∈ (0,1])

(

xt qλ, yk qλ ⇒

{

(x⊙y)min{t,k}∈∨qλ

(x → y)min{t,k}∈∨qλ)

)

. (3.9)

Example 4. Let H = {0,a,b,1} be a set with binary operations ⊙ and → in Table

3 and Table 4, respectively.

TABLE 3. Cayley table for the binary operation “⊙”

⊙ 0 a b 1

0 0 0 0 0

a 0 0 a a

b 0 a b b

1 0 a b 1

TABLE 4. Cayley table for the binary operation “→”

→ 0 a b 1

0 1 1 1 1

a a 1 1 1

b 0 a 1 1

1 0 a b 1
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Define a fuzzy set λ in H as follows:

λ : H → [0,1], x 7→















0.8 if x = 1,

0.6 if x = b,

0.55 if x = a,

0.7 if x = 0.

It is routine to verify that λ is a (q,∈∨q)-fuzzy sub-hoop of H.

Question 1. Let λ be a fuzzy set in H such that

(1) 0 6= λ(a)≤ 0.5 for some a ∈ H,

(2) (∀x ∈ H) (x 6= a ⇒ λ(x)≥ 0.5).

Then is λ a (q,∈∨q)-fuzzy sub-hoop of H?

The answer to this question is negative as seen in the following example.

Example 5. Consider the hoop (H,⊙,→,1) which is described in Example 4. Let

λ be a fuzzy set in H defined by λ(0) = 0.6, λ(a) = 0.4, λ(b) = 0.55 and λ(1) =
0.8. Then λ is not a (q,∈∨q)-fuzzy sub-hoop of H since a0.7 qλ and b0.46 qλ, but

(a⊙b)min{0.7,0.46}∈∨qλ and/or (b → a)min{0.7,0.46}∈∨qλ.

We consider conditions for a fuzzy set to be a (q,∈∨q)-fuzzy sub-hoop of H.

Theorem 14. Let S be a sub-hoop of H and let λ be a fuzzy set in H such that

(∀x ∈ H)

(

λ(x) = 0 if x /∈ S

λ(x)≥ 0.5 if x ∈ S

)

. (3.10)

Then λ is a (q,∈∨q)-fuzzy sub-hoop of H.

Proof. Let x,y ∈ H and t,k ∈ (0,1] such that xt qλ and yk qλ, that is, λ(x)+ t > 1

and λ(y)+ k > 1. Then x⊙y ∈ S and x → y ∈ S because if x⊙y /∈ S, then x ∈ H \S or

y ∈ H \ S. Thus λ(x) = 0 or λ(y) = 0, and so t > 1 or k > 1. This is contradiction.

Similarly, if x → y /∈ S, then we arrive at a contradiction. If min{t,k} > 0.5, then

λ(x⊙y)+min{t,k} > 1 and λ(x → y)+min{t,k} > 1, and so (x⊙y)min{t,k} qλ and

(x → y)min{t,k} qλ. If min{t,k} ≤ 0.5, then λ(x⊙y) ≥ 0.5 ≥ min{t,k} and λ(x →
y) ≥ 0.5 ≥ min{t,k}. Thus (x⊙y)min{t,k} ∈ λ and (x → y)min{t,k} ∈ λ. Therefore

(x⊙y)min{t,k}∈∨qλ and (x → y)min{t,k}∈∨qλ. Consequently, λ is a (q,∈∨q)-fuzzy

sub-hoop of H. �

Corollary 2. If a fuzzy set λ in H satisfies λ(x) ≥ 0.5 for all x ∈ H, then λ is a

(q,∈∨q)-fuzzy sub-hoop of H.

Theorem 15. If λ is a (q,∈∨q)-fuzzy sub-hoop of H such that λ is not constant on

H0, then there exists x ∈ H such that λ(x)≥ 0.5. Moreover λ(x)≥ 0.5 for all x ∈ H0.

Proof. If λ(x) < 0.5 for all x ∈ H, then there exists a ∈ H0 such that ta = λ(a) 6=
λ(1) = t1 since λ is not constant on H0. Then ta < t1 or ta > t1. If t1 < ta, then we
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can take δ > 0.5 such that t1 + δ < 1 < ta + δ. It follows that aδ qλ, λ(a → a) =
λ(1) = t1 < δ = min{δ,δ} and λ(a → a)+min{δ,δ}= λ(1)+δ = t1+δ < 1. Hence

(a → a)min{δ,δ}∈∨qλ, which is a contradiction. If t1 > ta, then ta + δ < 1 < t1 + δ

for some δ > 0.5. It follows that 1δ qλ and a1 qλ, but (1 → a)min{1,δ} = aδ∈∨qλ

since λ(a) < 0.5 < δ and λ(a) + δ = ta + δ < 1. This leads a contradiction, and

therefore λ(x) ≥ 0.5 for some x ∈ H. We now prove that λ(1) ≥ 0.5. Suppose that

λ(1) = t1 < 0.5. Since λ(x) = tx ≥ 0.5 for some x ∈ H, it follows that t1 < tx. Choose

t0 > t1 such that t1 + t0 < 1 < tx + t0. Then λ(x)+ t0 = tx + t0 > 1, i.e., xt0 qλ. Also

we have

λ(x → x) = λ(1) = t1 < t0 = min{t0, t0}

and

λ(x → x)+min{t0, t0}= λ(1)+ t0 = t1 + t0 < 1.

Thus (x → x)min{t0,t0}∈∨qλ, a contradiction. Hence λ(1)≥ 0.5. Finally, assume that

ta = λ(a)< 0.5 for some a∈H0. Take t ∈ (0,1] such that ta+t < 0.5. Then λ(a)+1=
ta +1 > 1 and λ(1)+ (0.5+ t)> 1, which imply that a1 qλ and 10.5+t qλ. But (1 →
a)min{1,0.5+t} = amin{1,0.5+t}∈∨qλ since λ(1→ a) = λ(a)< 0.5+t <min{1,0.5+t}
and

λ(1 → a)+min{1,0.5+ t}= λ(a)+0.5+ t = ta +0.5+ t < 0.5+0.5 = 1.

This is a contradiction. Therefore λ(x) ≥ 0.5 for all x ∈ H0. This completes the

proof. �

Theorem 16. If λ is a (q,∈∨q)-fuzzy sub-hoop of H, then the set H0 in (3.6) is a

sub-hoop of H.

Proof. Let x,y ∈ H0. Then λ(x)+1 > 1 and λ(y)+1 > 1, that is, x1 qλ and y1 qλ.

Assume that λ(x⊙y) = 0 or λ(x → y) = 0. Then

λ(x⊙y)< 1 = min{1,1} and λ(x⊙y)+min{1,1}= 1

or

λ(x → y)< 1 = min{1,1} and λ(x → y)+min{1,1}= 1,

that is, (x⊙y)min{1,1}∈∨qλ or (x → y)min{1,1}∈∨qλ. This is a contradiction, and so

λ(x⊙y) 6= 0 and λ(x → y) 6= 0, i.e., x⊙y ∈ H0 and x → y ∈ H0. Consequently, H0 is a

sub-hoop of H. �

Theorem 17. If λ is a (q,∈∨q)-fuzzy sub-hoop of H, then the q-set λt
q is a sub-

hoop of H for all t ∈ (0.5,1].

Proof. Let x,y ∈ λt
q for t ∈ (0.5,1]. Then xt qλ and yt qλ. Since λ is a (q,∈∨q)-

fuzzy sub-hoop of H, we have (x⊙y)t∈∨qλ and (x → y)t∈∨qλ. If (x⊙y)t qλ (and

(x → y)t qλ), then x⊙y ∈ λt
q (and x → y ∈ λt

q). If (x⊙y)t ∈ λ (and (x → y)t ∈ λ), then

λ(x⊙y) ≥ t > 1− t (and λ(x → y) ≥ t > 1− t) since t > 0.5. Thus (x⊙y)t qλ (and

(x → y)t qλ), that is, x⊙y ∈ λt
q (and x → y ∈ λt

q). Therefore λt
q is a sub-hoop of H for

all t ∈ (0.5,1]. �
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We consider relations between (∈,∈∨q)-fuzzy sub-hoop and (q,∈∨q)-fuzzy sub-

hoop.

Theorem 18. Every (q,∈∨q)-fuzzy sub-hoop is an (∈,∈∨q)-fuzzy sub-hoop.

Proof. Let λ be a (q,∈∨q)-fuzzy sub-hoop of H. Let x,y∈H and t,k ∈ (0,1] such

that xt ∈ λ and yk ∈ λ. Suppose that (x⊙y)min{t,k}∈∨qλ or (x → y)min{t,k}∈∨qλ.

Then

λ(x⊙y)< min{t,k} and λ(x⊙y)+min{t,k} ≤ 1 (3.11)

or

λ(x → y)< min{t,k} and λ(x → y)+min{t,k} ≤ 1. (3.12)

It follows that λ(x⊙y)< min{t,k,0.5} or λ(x → y)< min{t,k,0.5}. Hence

1−λ(x⊙y)> 1−min{t,k,0.5}= max{1− t,1− k,0.5}

≥ max{1−λ(x),1−λ(y),0.5}

or

1−λ(x → y)> 1−min{t,k,0.5}= max{1− t,1− k,0.5}

≥ max{1−λ(x),1−λ(y),0.5}.

Therefore there exist δ1,δ2 ∈ (0,1] such that

1−λ(x⊙y)≥ δ1 > max{1−λ(x),1−λ(y),0.5} (3.13)

or

1−λ(x → y)≥ δ2 > max{1−λ(x),1−λ(y),0.5}. (3.14)

From the right inequalities in (3.13) and (3.14), we have

λ(x)+δ1 > 1 and λ(y)+δ1 > 1, i.e., xδ1
qλ and yδ1

qλ

or

λ(x)+δ2 > 1 and λ(y)+δ2 > 1, i.e., xδ2
qλ and yδ2

qλ.

Since λ is a (q,∈∨q)-fuzzy sub-hoop of H, it follows that (x⊙y)δ1
∈∨qλ or (x →

y)δ2
∈∨qλ. From the left inequalities in (3.13) and (3.14), we have λ(x⊙y)+δ1 ≤ 1

or λ(x → y)+ δ2 ≤ 1, that is, (x⊙y)δ1
qλ or (x → y)δ2

qλ. Also λ(x⊙y) ≤ 1− δ1 <
1−0.5 = 0.5 < δ1 or λ(x → y)≤ 1−δ2 < 1−0.5 = 0.5 < δ2. Hence (x⊙y)δ1

∈∨qλ
or (x → y)δ2

∈∨qλ. This is a contradiction, and so (x⊙y)min{t,k}∈∨qλ and (x →
y)min{t,k}∈∨qλ. Therefore λ is an (∈,∈∨q)-fuzzy sub-hoop of H. �

The following example shows that any (∈,∈∨q)-fuzzy sub-hoop may not be a

(q,∈∨q)-fuzzy sub-hoop.

Example 6. In Example 1, the fuzzy set λ is an (∈,∈∨q)-fuzzy sub-hoop of

H. But it is not a (q,∈∨q)-fuzzy sub-hoop of H since a0.4 qλ and b0.8 qλ. But

(a⊙b)min{0.4,0.8}∈∨qλ and/or (a → b)min{0.4,0.8}∈∨qλ.
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We provide a condition for an (∈,∈∨q)-fuzzy sub-hoop to be a (q,∈∨q)-fuzzy

sub-hoop.

Theorem 19. Let λ be an (∈,∈∨q)-fuzzy sub-hoop of H. If every fuzzy point has

the value in (0,0.5], then λ is a (q,∈∨q)-fuzzy sub-hoop of H.

Proof. Let x,y∈H and t,k ∈ (0,0.5] such that xt qλ and yk qλ. Then λ(x)> 1−t ≥
t and λ(y)> 1− k ≥ k, that is, xt ∈ λ and yk ∈ λ. Since λ is an (∈,∈∨q)-fuzzy sub-

hoop of H, it follows that (x⊙y)min{t,k}∈∨qλ and (x → y)min{t,k}∈∨qλ. Therefore

λ is a (q,∈∨q)-fuzzy sub-hoop of H. �

4. CONCLUSION

Our aim was to define the concepts of an (∈,∈)-fuzzy sub-hoop, an (∈,∈∨q)-
fuzzy sub-hoop and a (q,∈∨q)-fuzzy sub-hoop, and we discussed some proper-

ties and found some equivalent definitions of them. Then, we discussed charac-

terizations of an (∈,∈)-fuzzy sub-hoop and an (∈,∈∨q)-fuzzy sub-hoop. Also,

we found relations between an (∈,∈)-fuzzy sub-hoop, an (∈,∈∨q)-fuzzy sub-hoop

and a (q,∈∨q)-fuzzy sub-hoop and considered conditions for a fuzzy set to be a

(q,∈∨q)-fuzzy sub-hoop of H, and provided a condition for an (∈,∈∨q)-fuzzy sub-

hoop to be a (q,∈∨q)-fuzzy sub-hoop. By [1, 6, 7, 14] we defined the concept of

(∈,∈)-fuzzy filters (fuzzy implicative filters, fuzzy positive implicative filters, fuzzy

fantastic filters) of hoop and (∈,∈∨q)-fuzzy filters (fuzzy implicative filters, fuzzy

positive implicative filters, fuzzy fantastic filters) of hoop and have investigated some

equivalent definitions and properties of them.
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1. INTRODUCTION

1.1. Definitions

A function f : I → R, I ⊆ R is an interval, is said to be a convex function on I if

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y) (1.1)

holds for all x,y ∈ I and t ∈ [0,1]. If the reversed inequality in (1.1) holds, then f is

concave.

We say that f : I → R is Godunova-Levin function or that f belongs to the class

Q(I) if f is nonnegative and for all x,y ∈ I and t ∈ (0,1) we have

f (tx+(1− t)y)≤ f (x)

t
+

f (y)

1− t
(1.2)

[13, Godunova and Levin, 1985].

Let s ∈ (0,1] . A function f : (0,∞] → [0,∞] is said to be s-convex in the second

sense if

f (tx+(1− t)y)≤ ts f (x)+(1− t)s
f (y) , (1.3)

for all x,y ∈ (0,∞] and t ∈ [0,1]. This class of s-convex functions is usually denoted

by K2
s [14, Hudzik and Maligranda, 1994].

In 1978, Breckner introduced s-convex functions as a generalization of convex

functions in [6]. Also, in that work Breckner proved the important fact that the set

valued map is s-convex only if the associated support function is s-convex function in

© 2021 Miskolc University Press
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[7]. A number of properties and connections with s-convex in the first sense and its

generalizations are discussed in the papers [9, 10, 14]. Of course, s-convexity means

just convexity when s = 1.

We say that f : I → R is a P-function or that f belongs to the class P(I) if f is

nonnegative and for all x,y ∈ I and t ∈ [0,1] , we have

f (tx+(1− t)y)≤ f (x)+ f (y) (1.4)

[12, Dragomir, Pečarić and Persson, 1995].

Let h : J → R be a nonnegative function, h 6≡ 0. We say that f : I → R is an h-

convex function, or that f belongs to the class SX (h, I), if f is nonnegative and for

all x,y ∈ I and t ∈ (0,1) we have

f (tx+(1− t)y)≤ h(t) f (x)+h(1− t) f (y) . (1.5)

If inequality (1.5) is reversed, then f is said to be h-concave, i.e. f ∈ SV (h, I).
Obviously, if h(t) = t, then all nonnegative convex functions belong to SX (h, I) and

all nonnegative concave functions belong to SV (h, I); if h(t) = 1
t
, then SX (h, I) =

Q(I); if h(t) = 1, then SX (h, I) ⊇ P(I); and if h(t) = ts, where s ∈ (0,1), then

SX (h, I)⊇ K2
s [22, Varošanec, 2007].

A function f : I ⊆R→R is said to belong to the class of MT (I) if it is nonnegative

and for all x,y ∈ I and t ∈ (0,1) satisfies the inequality;

f (tx+(1− t)y)≤
√

t

2
√

1− t
f (x)+

√
1− t

2
√

t
f (y) (1.6)

[21, Tunç and Yıldırım, 2012]. Definition of MT -convex function may be regarded

as a special case of h-convex function. And in (1.6), if we take t = 1/2, inequality

(1.6) reduces to Jensen convex.

Let f : I ⊂R→R be a nonnegative function. We say that f : I →R is tgs−convex

function on I if the inequality

f (tx+(1− t)y)≤ t (1− t) [ f (x)+ f (y)] (1.7)

holds for all x,y∈ I and t ∈ (0,1). We say that f is tgs−concave if (− f ) is tgs−convex

[20]. In (1.5), if we take h(t) = t (1− t), inequality (1.5) reduces to inequality (1.7).

1.2. Theorems

If f is integrable on [a,b], then the average value of f on [a,b] is

1

b−a

∫ b

a
f (x)dx.

Let f : I ⊆R→R be a convex function and a,b ∈ I with a < b. Then the following

double inequality:

f

(

a+b

2

)

≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
(1.8)
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is known as Hermite-Hadamard inequality for convex mappings. For particular

choice of the function f in (1.8) yields some classical inequalities of means. Both

inequalities in (1.8) hold in reversed direction if f is concave. The refinement of the

second inequality in (1.8) is due to Bullen as follows:

1

b−a

∫ b

a
f (x)dx ≤ 1

2

[

f

(

a+b

2

)

+
f (a)+ f (b)

2

]

≤ f (a)+ f (b)

2
(1.9)

where f is as above. This (1.9) integral inequality is well known in the literature

as Bullen Inequality [18, Pečarić, Proschan and Tong, 1991]. For some recent res-

ults in connection with Hermite-Hadamard inequality and its applications we refer to

[1–5, 12, 15, 16, 21, 22] where further references are given.

The following inequality is well known in the literature as Simpson’s inequality

[11, Dragomir, Agarwal, and Cerone, 2000];
∫ b

a
f (x)dx− b−a

3

[

f (a)+ f (b)

2
+2 f

(

a+b

2

)]

≤ 1

1280

∥

∥

∥
f (4)
∥

∥

∥

∞

(b−a)5 ,

where the mapping f : [a,b]→ R is assumed to be four times continuously differen-

tiable on the interval and f (4) to be bounded on (a,b), that is,
∥

∥

∥
f (4)
∥

∥

∥

∞

= sup
t∈(a,b)

∣

∣

∣
f (4) (t)

∣

∣

∣
< ∞.

In [19], M. Z. Sarıkaya, A. Sağlam and H. Yıldırım established the following Hada-

mard type inequality for h-convex functions:

Let f ∈ SX (h, I), a,b ∈ I and f ∈ L1 ([a,b]), then

1

2h
(

1
2

) f

(

a+b

2

)

≤ 1

b−a

∫ b

a
f (x)dx ≤ [ f (a)+ f (b)]

∫ 1

0
h(t)dt. (1.10)

For recent results and generalizations concerning h-convex functions see [5, 8, 17,

19, 22] and references therein.

In this paper, firstly we will derive a new general inequality for functions whose

first derivatives in absolute value are h-convex, which not only provides a generaliz-

ation of the previous theorems but also gives some other interesting special results.

Then we give some corollaries and remarks for different type convex functions. Fi-

nally, applications to some special means of real numbers are considered.

2. MAIN RESULTS

Lemma 1. Let f : I ⊂ R → R be a differentiable function on I◦ such that f ′ ∈
L1 [a,b], where a,b ∈ I with a < b. Then, for any ε ∈ [0,1], the following equality
holds:

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx (2.1)
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=
b−a

4







1∫

0

(t −2ε) f
′
(

t
a+b

2
+(1− t)a

)

dt +
∫ 1

0
(2ε− t) f

′
(

t
a+b

2
+(1− t)b

)

dt







Proof. Integrating by parts, we have the following identity:

I1 =
∫ 1

0
(t −2ε) f ′

(

t
a+b

2
+(1− t)a

)

dt

= (t −2ε)
2

b−a
f

(

t
a+b

2
+(1− t)a

)∣

∣

∣

∣

1

0

− 2

b−a

∫ 1

0
f

(

t
a+b

2
+(1− t)a

)

dt

=
2(1−2ε)

b−a
f

(

a+b

2

)

+
4ε

b−a
f (a)− 2

b−a

∫ 1

0
f

(

t
a+b

2
+(1− t)a

)

dt.

(2.2)

Using the change of variable x = t a+b
2

+(1− t)a for t ∈ [0,1] and multiplying both

sides of (2.2) by b−a
4
, we obtain

b−a

4

∫ 1

0
(t −2ε) f

′
(

t
a+b

2
+(1− t)a

)

dt

=
1−2ε

2
f

(

a+b

2

)

+ ε f (a)− 1

b−a

∫ a+b
2

a
f (x)dx. (2.3)

Similarly, we observe that

I2 =
∫ 1

0
(2ε− t) f

′
(

t
a+b

2
+(1− t)b

)

dt

=
2(2ε−1)

a−b
f

(

a+b

2

)

− 4ε

a−b
f (b)+

2

a−b

∫ 1

0
f

(

t
a+b

2
+(1− t)b

)

dt. (2.4)

Using the change of variable x = t a+b
2

+(1− t)b for t ∈ [0,1] and multiplying both

sides of (2.4) by b−a
4
, we obtain

b−a

4

∫ 1

0
(2ε− t) f

′
(

t
a+b

2
+(1− t)b

)

dt

=
1−2ε

2
f

(

a+b

2

)

+ ε f (b)− 1

b−a

∫ b

a+b
2

f (x)dx. (2.5)

Thus, adding (2.3) and (2.5), we get the required identity (2.1). �

Theorem 1. Let I ⊂ [0,∞), f : I → R be a differentiable function on I◦ such that

f
′ ∈ L1 [a,b], where a,b ∈ I with a < b. If | f ′|q is h-convex on [a,b] for some fixed
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t ∈ (0,1) and q ≥ 1, then the following inequalities hold
∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

(2.6)

≤ b−a

4

(

4ε
2 −2ε+

1

2

)1− 1
q

×
[

{∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
|2ε− t|h(t)dt +

∣

∣ f ′ (a)
∣

∣

q
∫ 1

0
|2ε− t|h(1− t)dt

}
1
q

+

{∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
|2ε− t|h(t)dt +

∣

∣ f ′ (b)
∣

∣

q
∫ 1

0
|2ε− t|h(1− t)dt

}
1
q

]

for 0 ≤ ε ≤ 1
2
, and

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

(2.7)

≤ b−a

4

(

2ε− 1

2

)1− 1
q

×
[

{∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
|2ε− t|h(t)dt +

∣

∣ f ′ (a)
∣

∣

q
∫ 1

0
|2ε− t|h(1− t)dt

}
1
q

+

{∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
|2ε− t|h(t)dt +

∣

∣ f ′ (b)
∣

∣

q
∫ 1

0
|2ε− t|h(1− t)dt

}
1
q

]

for 1
2
≤ ε ≤ 1.

Proof. In case 0 ≤ ε ≤ 1
2
, by Lemma 1 and using the Hölder inequality, we have

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤ b−a

4

{

(∫ 1

0
|t −2ε|dt

)1− 1
q
(∫ 1

0
|t −2ε|

∣

∣

∣

∣

f ′
(

t
a+b

2
+(1− t)a

)∣

∣

∣

∣

q

dt

)
1
q

+

(∫ 1

0
|2ε− t|dt

)1− 1
q
(∫ 1

0
|2ε− t|

∣

∣

∣

∣

f ′
(

t
a+b

2
+(1− t)b

)∣

∣

∣

∣

q

dt

)
1
q

}

≤ b−a

4

(

4ε
2 −2ε+

1

2

)1− 1
q
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×
[

{∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
|2ε− t|h(t)dt +

∣

∣ f ′ (a)
∣

∣

q
∫ 1

0
|2ε− t|h(1− t)dt

}
1
q

+

{∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
|2ε− t|h(t)dt +

∣

∣ f ′ (b)
∣

∣

q
∫ 1

0
|2ε− t|h(1− t)dt

}
1
q

]

,

where ∫ 1

0
|t −2ε|dt = 4ε

2 −2ε+
1

2
.

In case 1
2
≤ ε ≤ 1, by Lemma 1 and using the Hölder inequality, we have

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤ b−a

4

[

(∫ 1

0
|t −2ε|dt

)1− 1
q
{∫ 1

0
|t −2ε|

∣

∣

∣

∣

f ′
(

t
a+b

2
+(1− t)a

)∣

∣

∣

∣

q

dt

}
1
q

+

(∫ 1

0
|2ε− t|dt

)1− 1
q
(∫ 1

0
|2ε− t|

∣

∣

∣

∣

f ′
(

t
a+b

2
+(1− t)b

)∣

∣

∣

∣

q

dt

)
1
q

]

≤ b−a

4

(

2ε− 1

2

)1− 1
q

×
[

{∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
|2ε− t|h(t)dt +

∣

∣ f ′ (a)
∣

∣

q
∫ 1

0
|2ε− t|h(1− t)dt

}
1
q

+

{∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
|2ε− t|h(t)dt +

∣

∣ f ′ (b)
∣

∣

q
∫ 1

0
|2ε− t|h(1− t)dt

}
1
q

]

,

where ∫ 1

0
|t −2ε|dt = 2ε− 1

2
.

Thus, the proof is completed. �

Corollary 1. Let I ⊂ [0,∞) , f : I → R be a differentiable function on I◦ such that

f
′ ∈ L1 [a,b] , where a,b ∈ I with a < b. If | f ′|q is h-convex on [a,b] for some fixed

t ∈ (0,1) and q = 1, then the following inequalities hold
∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

(2.8)

≤ b−a

4

[

2

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

∫ 1

0
|2ε− t|h(t)dt +

(∣

∣ f ′ (b)
∣

∣+
∣

∣ f ′ (a)
∣

∣

)

∫ 1

0
|2ε− t|h(1− t)dt

]

for 0 ≤ ε ≤ 1.
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Proof. Inequalities (2.8) is immediate by setting q = 1 in (2.6) and (2.7) of The-

orem 1. �

Remark 1. If we take ε = 0 in (2.8) then we get a midpoint type inequality

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− f

(

a+b

2

)

∣

∣

∣

∣

∣

∣

≤ b−a

4

[

2

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

∫ 1

0
th(t)dt +

(∣

∣ f ′ (a)
∣

∣+
∣

∣ f ′ (b)
∣

∣

)

∫ 1

0
th(1− t)dt

]

.

If we take ε = 1
2

in (2.8), then we get a trapezoid type inequality

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− f (a)+ f (b)

2

∣

∣

∣

∣

∣

∣

≤ b−a

4

[

2

∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

(∫ 1

0
|t −1|h(t)dt

)

+
(∣

∣

∣
f
′
(a)
∣

∣

∣
+
∣

∣

∣
f
′
(b)
∣

∣

∣

)

(∫ 1

0
|t −1|h(1− t)dt

)]

.

If we take ε = 1
4

in (2.8), then we get a Bullen type inequality

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− 1

4

[

f (a)+2 f

(

a+b

2

)

+ f (b)

]

∣

∣

∣

∣

∣

∣

≤ b−a

4

{

2

∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

(∫ 1

0

∣

∣

∣

∣

t − 1

2

∣

∣

∣

∣

h(t)dt

)

+
(∣

∣

∣
f
′
(a)
∣

∣

∣
+
∣

∣

∣
f
′
(b)
∣

∣

∣

)

(∫ 1

0

∣

∣

∣

∣

t − 1

2

∣

∣

∣

∣

h(1− t)dt

)}

.

If we take ε = 1
6

in (2.8), then we get a Simpson type inequality

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− 1

6

[

f (a)+4

(

a+b

2

)

+ f (b)

]

∣

∣

∣

∣

∣

∣

≤ b−a

4

{

2

∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

(∫ 1

0

∣

∣

∣

∣

t − 1

3

∣

∣

∣

∣

h(t)dt

)

+
(∣

∣

∣
f
′
(a)
∣

∣

∣
+
∣

∣

∣
f
′
(b)
∣

∣

∣

)

(∫ 1

0

∣

∣

∣

∣

t − 1

3

∣

∣

∣

∣

h(1− t)dt

)}

.

Corollary 2. Under the assumption of Theorem 1, if | f ′|q is s-convex in the second

sense on [a,b] for some fixed s∈ (0,1] and q≥ 1, then the following inequalities hold:
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∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤ b−a

4

(

4ε
2 −2ε+

1

2

)1− 1
q

[

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

P(s,ε)+
∣

∣ f ′ (a)
∣

∣

q
Q(s,ε)

)
1
q

+

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

P(s,ε)+
∣

∣ f ′ (b)
∣

∣

q
Q(s,ε)

)
1
q

]

, (2.9)

for 0 ≤ ε ≤ 1
2
, where P(s,ε) = s−4ε−2sε+2(2ε)s+2+1

(s+1)(s+2) , Q(s,ε) = 2(1−2ε)s+2+4ε+2sε−1

(s+1)(s+2) , and

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤ b−a

4

(

2ε− 1

2

)1− 1
q

[

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

U (s,ε)+
∣

∣ f ′ (a)
∣

∣

q
V (s,ε)

)
1
q

+

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

U (s,ε)+
∣

∣ f ′ (b)
∣

∣

q
V (s,ε)

)
1
q

]

, (2.10)

for 1
2
≤ ε ≤ 1 where U (s,ε) = 2ε(s+2)−(s+1)

(s+1)(s+2) , V (s,ε) = 4ε+2sε−1
(s+1)(s+2) .

Proof. In case 0 ≤ ε ≤ 1
2
, by Lemma 1 and using the Hölder inequality, we have

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤ b−a

4

[

(∫ 1

0
|t −2ε|dt

)1− 1
q
(∫ 1

0
|t −2ε|

∣

∣

∣

∣

f ′
(

t
a+b

2
+(1− t)a

)∣

∣

∣

∣

q

dt

)
1
q

+

(∫ 1

0
|2ε− t|dt

)1− 1
q
(∫ 1

0
|2ε− t|

∣

∣

∣

∣

f ′
(

t
a+b

2
+(1− t)b

)∣

∣

∣

∣

q

dt

)
1
q

]

≤ b−a

4

(

4ε
2 −2ε+

1

2

)1− 1
q

[

(∫ 1

0
|2ε− t|

(

ts

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

+(1− t)s
∣

∣ f ′ (a)
∣

∣

q

)

dt

)
1
q

+

(∫ 1

0
|2ε− t|

(

ts

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

+(1− t)s
∣

∣ f ′ (b)
∣

∣

q

)

dt

)
1
q

]

=
b−a

4

(

4ε
2 −2ε+

1

2

)1− 1
q
[{∫ 2ε

0
(2ε− t)

(

ts

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

+(1− t)s
∣

∣ f ′ (a)
∣

∣

q

)

dt
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+
∫ 1

2ε

(t −2ε)

(

ts

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

+(1− t)s
∣

∣ f ′ (a)
∣

∣

q

)

dt

}
1
q

+

{∫ 2ε

0
(2ε− t)

(

ts

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

+(1− t)s
∣

∣ f ′ (b)
∣

∣

q

)

dt

+
∫ 1

2ε

(t −2ε)

(

ts

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

+(1− t)s
∣

∣ f ′ (b)
∣

∣

q

)

dt

}
1
q

]

=
b−a

4

(

4ε
2 −2ε+

1

2

)1− 1
q

×





(

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q
s−4ε−2sε+2(2ε)s+2 +1

(s+1)(s+2)
+
∣

∣ f ′ (a)
∣

∣

q 2(1−2ε)s+2 +4ε+2sε−1

(s+1)(s+2)

)
1
q

+

(

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q
s−4ε−2sε+2(2ε)s+2 +1

(s+1)(s+2)
+
∣

∣ f ′ (b)
∣

∣

q 2(1−2ε)s+2 +4ε+2sε−1

(s+1)(s+2)

)
1
q





where

∫ 1

0
|t −2ε|dt =

∫ 2ε

0
(2ε− t)dt +

∫ 1

2ε

(t −2ε)dt = 4ε
2 −2ε+

1

2∫ 2ε

0
ts (2ε− t)dt =

(2ε)s+2

(s+1)(s+2)
∫ 2ε

0
(2ε− t)(1− t)s

dt =
(1−2ε)s+2 +4ε+2sε−1

(s+1)(s+2)
∫ 1

2ε

ts (t −2ε)dt =
s−4ε−2sε+(2ε)s+2 +1

(s+1)(s+2)
∫ 1

2ε

(t −2ε)(1− t)s
dt =

(1−2ε)s+2

(s+1)(s+2)
.

In case 1
2
≤ ε ≤ 1, by Lemma 1 and using the Hölder inequality, we have

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤ b−a

4

[

(∫ 1

0
|t −2ε|dt

)1− 1
q
(∫ 1

0
|t −2ε|

∣

∣

∣

∣

f ′
(

t
a+b

2
+(1− t)a

)∣

∣

∣

∣

q

dt

)
1
q

+

(∫ 1

0
|2ε− t|dt

)1− 1
q
(∫ 1

0
|2ε− t|

∣

∣

∣

∣

f ′
(

t
a+b

2
+(1− t)b

)∣

∣

∣

∣

q

dt

)
1
q

]
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≤ b−a

4

(

2ε− 1

2

)1− 1
q

[

(∫ 1

0
|2ε− t|

(

ts

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

+(1− t)s
∣

∣ f ′ (a)
∣

∣

q

)

dt

)
1
q

+

(∫ 1

0
|2ε− t|

(

ts

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q

+(1− t)s
∣

∣ f ′ (b)
∣

∣

q

)

dt

)
1
q

]

=
b−a

4

(

2ε− 1

2

)1− 1
q

[

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
(2ε− t) tsdt +

∣

∣ f ′ (a)
∣

∣

q
∫ 1

0
(2ε− t)(1− t)s

dt

)
1
q

+

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q ∫ 1

0
(2ε− t) tsdt +

∣

∣ f ′ (b)
∣

∣

q
∫ 1

0
(2ε− t)(1− t)s

dt

)
1
q

]

=
b−a

4

(

2ε− 1

2

)1− 1
q

[

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q
2ε(s+2)− (s+1)

(s+1)(s+2)
+
∣

∣ f ′ (a)
∣

∣

q 4ε+2sε−1

(s+1)(s+2)

)
1
q

+

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q
2ε(s+2)− (s+1)

(s+1)(s+2)
+
∣

∣ f ′ (b)
∣

∣

q 4ε+2sε−1

(s+1)(s+2)

)
1
q

]

.

The proof is completed. �

Corollary 3. Let I ⊂ [0,∞), f : I → R be a differentiable function on I◦ such that

f
′ ∈ L1 [a,b] , where a,b ∈ I with a < b. If

∣

∣

∣
f
′
∣

∣

∣
is s-convex in the second sense on

[a,b] for some fixed s ∈ (0,1], then the following inequalities hold:

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤ b−a

4

(

2

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

P+
(∣

∣ f ′ (a)
∣

∣+
∣

∣ f ′ (b)
∣

∣

)

Q

)

(2.11)

for 0 ≤ ε ≤ 1
2
, where P = s−4ε−2sε+2(2ε)s+2+1

(s+1)(s+2) , Q = 2(1−2ε)s+2+4ε+2sε−1

(s+1)(s+2) , and

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤ b−a

4
2

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

U +
(∣

∣ f ′ (a)
∣

∣+
∣

∣ f ′ (b)
∣

∣

)

V

)

(2.12)

for 1
2
≤ ε ≤ 1 where U = 2ε(s+2)−(s+1)

(s+1)(s+2) , V = 4ε+2sε−1
(s+1)(s+2) .

Proof. Inequalities (2.11) and (2.12) are immediate by setting q = 1 in (2.9) and

(2.10) of Corollary 2. �
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Remark 2. If we take ε = 0 in (2.11), then we get a midpoint type inequality
∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− f

(

a+b

2

)

∣

∣

∣

∣

∣

∣

≤ b−a

4

(

2

∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

1

s+2
+

| f ′ (a)|+ | f ′ (b)|
(s+1)(s+2)

)

.

(2.13)

If we take ε = 1
2

in (2.11) or (2.12), then we get a trapezoid type inequality

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− f (a)+ f (b)

2

∣

∣

∣

∣

∣

∣

≤ b−a

4

(

2

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

1

(s+1)(s+2)
+

(| f ′ (a)|+ | f ′ (b)|)
(s+2)

)

. (2.14)

If we take ε = 1
4

in (2.11), then we get a Bullen type inequality
∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− 1

4

[

f (a)+2 f

(

a+b

2

)

+ f (b)

]

∣

∣

∣

∣

∣

∣

(2.15)

≤ b−a

4

(∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

s+2−s

(s+1)(s+2)
+
(∣

∣ f ′ (a)
∣

∣+
∣

∣ f ′ (b)
∣

∣

) s+2−s

2(s+1)(s+2)

)

.

If we take ε = 1
6

in (2.11), then we get a Simpson type inequality
∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− 1

6

[

f (a)+4

(

a+b

2

)

+ f (b)

]

∣

∣

∣

∣

∣

∣

(2.16)

≤ b−a

4

(

2

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

2s+2×3s+1 +1

3(s+1)(s+2)
+
(∣

∣ f ′ (a)
∣

∣+
∣

∣ f ′ (b)
∣

∣

) s+2s+3 ×3−s−1 −1

3(s+1)(s+2)

)

.

Remark 3. If we put M = supx∈[a,b] | f ′| in (2.13)-(2.16), then we have
∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− f

(

a+b

2

)

∣

∣

∣

∣

∣

∣

≤ b−a

2

M

s+1
(2.17)

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− f (a)+ f (b)

2

∣

∣

∣

∣

∣

∣

≤ b−a

2

M

s+1
(2.18)

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− 1

4

[

f (a)+2 f

(

a+b

2

)

+ f (b)

]

∣

∣

∣

∣

∣

∣

≤ b−a

2

(

M
s+2−s

(s+1)(s+2)

)

(2.19)
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∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− 1

6

[

f (a)+4

(

a+b

2

)

+ f (b)

]

∣

∣

∣

∣

∣

∣

≤ M
b−a

6

(

3s+2×3s+1

(s+1)(s+2)
+

2s+3 ×3−s−1

(s+1)(s+2)

)

. (2.20)

Remark 4. If we further take s = 1 in (2.17)-(2.20) for functions f with convex

| f ′|, we have
∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− f

(

a+b

2

)

∣

∣

∣

∣

∣

∣

≤ M (b−a)

4
(2.21)

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− f (a)+ f (b)

2

∣

∣

∣

∣

∣

∣

≤ M (b−a)

4
(2.22)

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− 1

4

[

f (a)+2 f

(

a+b

2

)

+ f (b)

]

∣

∣

∣

∣

∣

∣

≤ M (b−a)

8
(2.23)

∣

∣

∣

∣

∣

∣

1

b−a

b∫

a

f (x)dx− 1

6

[

f (a)+4

(

a+b

2

)

+ f (b)

]

∣

∣

∣

∣

∣

∣

≤ 205M (b−a)

324
. (2.24)

Corollary 4. Under the assumption of Theorem 1, if | f ′|q is P(I), then the fol-
lowing inequality holds:
∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

(2.25)

≤ b−a

4

(

4ε
2 −2ε+

1

2

)

[

(∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

q

+
∣

∣

∣
f
′
(a)
∣

∣

∣

q
)

1
q

+

(∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

q

+
∣

∣

∣
f
′
(b)
∣

∣

∣

q
)

1
q

]

for 0 ≤ ε ≤ 1
2
,

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

(2.26)

≤ b−a

4

(

2ε− 1

2

)

[

(∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

q

+
∣

∣

∣
f
′
(a)
∣

∣

∣

q
)

1
q

+

(∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

q

+
∣

∣

∣
f
′
(b)
∣

∣

∣

q
)

1
q

]

for 1
2
≤ ε ≤ 1.

Proof. Proof of inequalities (2.25) and (2.26) is explicit by choosing h(t) = 1 in

(2.6) and (2.7) of Theorem 1. �
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Corollary 5. Under the assumption of Theorem 1, if | f ′|q is tgs-convex, then the

following inequality holds:
∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

≤ b−a

4

(

4ε
2 −2ε+

1

2

)1− 1
q
(

(1−4ε)

12
+

8ε
3 (1− ε)

3

)

1
q

×
[

(∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

q

+
∣

∣

∣
f
′
(a)
∣

∣

∣

q
)

1
q

+

(∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

q

+
∣

∣

∣
f
′
(b)
∣

∣

∣

q
)

1
q

]

, (2.27)

for 0 ≤ ε ≤ 1
2
, and

∣

∣

∣

∣

∣

∣

(1−2ε) f

(

a+b

2

)

+ ε [ f (a)+ f (b)]− 1

b−a

b∫

a

f (x)dx

∣

∣

∣

∣

∣

∣

(2.28)

≤ b−a

8×61/q
(4ε−1)

[

(∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

q

+
∣

∣

∣
f
′
(a)
∣

∣

∣

q
)

1
q

+

(

∣

∣

∣
f
′
(b)
∣

∣

∣

q

+

∣

∣

∣

∣

f
′
(

a+b

2

)∣

∣

∣

∣

q) 1
q

]

,

for 1
2
≤ ε ≤ 1.

Proof. Proof of inequalities (2.27) and (2.28) is explicit by taking h(t) = t (1− t)
in (2.6) and (2.7) of Theorem 1. �

3. APPLICATIONS

We consider the means for arbitrary positive numbers a,b (a 6= b) as follows:

The arithmetic mean:

A(a,b) =
a+b

2
,

the generalized log-mean:

Lp (a,b) =

[

bp+1 −ap+1

(p+1)(b−a)

]

1
p

, p ∈ Rr{−1,0} .

Now, by using the result of the second section, we give some applications to special

means of real numbers.

Proposition 1. Let 0 < a < b , s ∈ (0,1). Then the following inequalities hold:

|Ls
s (a,b)−As (a,b)| ≤ s(b−a)

2

(

As (a,b)

s+2
+

A(as,bs)

(s+1)(s+2)

)

(3.1)

|Ls
s (a,b)−A(as,bs)| ≤ s(b−a)

2

(

As (a,b)

(s+1)(s+2)
+

A(as,bs)

s+2

)

(3.2)
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∣

∣

∣

∣

Ls
s (a,b)−

As (a,b)+A(as,bs)

2

∣

∣

∣

∣

≤ s(b−a)

4

s+2−s

(s+1)(s+2)
(As (a,b)+2A(as,bs))

(3.3)

∣

∣

∣

∣

Ls
s (a,b)−

2As (a,b)+A(as,bs)

3

∣

∣

∣

∣

≤ s(b−a)

6

(

As (a,b)
2s+2×3s+1 +1

(s+1)(s+2)
+A(as,bs)

s+2s+3 ×3−s−1 −1

(s+1)(s+2)

)

. (3.4)

Proof. The inequalities are derived from (2.13)-(2.16) applied to the s-convex

functions f : R→ R, f (x) = xs, s ∈ (0,1) , x ∈ [a,b] and f ′ (x) = sxs−1, s ∈ (0,1) ,
x ∈ [a,b] . The details are disregarded. �

Proposition 2. Let 0 < a < b , s ∈ (0,1). Then the following inequalities hold:

|Ls
s (a,b)−As (a,b)| ≤ (b−a)(s+2)

2a1−s
(3.5)

|Ls
s (a,b)−A(as,bs)| ≤ (b−a)(s+2)

2a1−s
(3.6)

∣

∣

∣

∣

Ls
s (a,b)−

As (a,b)+A(as,bs)

2

∣

∣

∣

∣

≤ b−a

2

s+2−s

a1−s
(3.7)

∣

∣

∣

∣

Ls
s (a,b)−

2As (a,b)+A(as,bs)

3

∣

∣

∣

∣

≤ b−a

6a1−s

(

3s+2×3s+1 +2s+3 ×3−s−1
)

. (3.8)

Proof. The inequalities are derived from (2.17)-(2.20) applied to the s-convex

functions f : R→ R, f (x) = xs, s ∈ (0,1) , x ∈ [a,b] and f ′ (x) = sxs−1, s ∈ (0,1) ,

x ∈ [a,b] and we might take M = (s+1)(s+2)
a1−s . The details are disregarded. �
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[4] M. Bessenyei and Z. Páles, “Characterizations of convexity via Hadamard’s inequality.” Math.

Inequal. Appl., vol. 9, no. 1, pp. 53–62, 2006, doi: 10.7153/mia-09-06.
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Abstract. Third-order Jacobsthal polynomial sequence is defined in this study. Some properties
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1. INTRODUCTION

The Jacobsthal numbers have many interesting properties and applications in many

fields of science (see, [1]). The Jacobsthal numbers (Jn)n≥0 are defined by the recur-

rence relation

J0 = 0, J1 = 1, Jn+2 = Jn+1 +2Jn, n ≥ 0. (1.1)

Another important sequence is the Jacobsthal–Lucas sequence. This sequence is

defined by the recurrence relation jn+2 = jn+1 +2 jn, where j0 = 2 and j1 = 1.

In Cook and Bacon’s work [5] the Jacobsthal recurrence relation is extended to

higher order recurrence relations and the basic list of identities provided by A. F.

Horadam [9] is expanded and extended to several identities for some of the higher

order cases. In fact, the third-order Jacobsthal numbers, {J
(3)
n }n≥0, and third-order

Jacobsthal–Lucas numbers, { j
(3)
n }n≥0, are defined by

J
(3)
n+3 = J

(3)
n+2 + J

(3)
n+1 +2J

(3)
n , J

(3)
0 = 0, J

(3)
1 = J

(3)
2 = 1, n ≥ 0, (1.2)

and

j
(3)
n+3 = j

(3)
n+2 + j

(3)
n+1 +2 j

(3)
n , j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5, n ≥ 0, (1.3)

respectively.

Some of the following properties given for third-order Jacobsthal numbers and

third-order Jacobsthal–Lucas numbers are used in this paper (for more details, see

© 2021 Miskolc University Press
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[2–5]). Note that Eqs. (1.7) and (1.11) have been corrected in [3], since they have

been wrongly described in [5]. Then, we have

3J
(3)
n + j

(3)
n = 2n+1

, (1.4)

j
(3)
n −3J

(3)
n = 2 j

(3)
n−3, n ≥ 3, (1.5)

J
(3)
n+2 −4J

(3)
n =

{

−2 if n ≡ 1 (mod 3)
1 if n 6≡ 1 (mod 3)

, (1.6)

j
(3)
n+1 + j

(3)
n = 3J

(3)
n+2, (1.7)

j
(3)
n − J

(3)
n+2 =







1 if n ≡ 0 (mod 3)
−1 if n ≡ 1 (mod 3)
0 if n ≡ 2 (mod 3)

, (1.8)

(

j
(3)
n−3

)2

+3J
(3)
n j

(3)
n = 4n

, (1.9)

n

∑
k=0

J
(3)
k =

{

J
(3)
n+1 if n 6≡ 0 (mod 3)

J
(3)
n+1 −1 if n ≡ 0 (mod 3)

(1.10)

and
(

j
(3)
n

)2

−9
(

J
(3)
n

)2

= 2n+2 j
(3)
n−3, n ≥ 3. (1.11)

Using standard techniques for solving recurrence relations, the auxiliary equation,

and its roots are given by

x3 − x2 − x−2 = 0; x = 2, and x =
−1± i

√
3

2
.

Note that the latter two are the complex conjugate cube roots of unity. Call them

ω1 and ω2, respectively. Thus the Binet formulas can be written as

J
(3)
n =

2

7
2n −

(

3+2i
√

3

21

)

ωn
1 −
(

3−2i
√

3

21

)

ωn
2 (1.12)

and

j
(3)
n =

8

7
2n +

(

3+2i
√

3

7

)

ωn
1 +

(

3−2i
√

3

7

)

ωn
2, (1.13)

respectively. Now, we use the notation

Zn =
Aωn

1 −Bωn
2

ω1 −ω2

=







2 if n ≡ 0 (mod 3)
−3 if n ≡ 1 (mod 3)
1 if n ≡ 2 (mod 3)

, (1.14)

where A =−3−2ω2 and B =−3−2ω1. Furthermore, note that for all n ≥ 0 we have

Zn+2 =−Zn+1 −Zn, Z0 = 2, Z1 =−3. (1.15)
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From the Binet formulas (1.12), (1.13) and Eq. (1.14), we have

J
(3)
n =

1

7

(

2n+1 −Zn

)

and j
(3)
n =

1

7

(

2n+3 +3Zn

)

. (1.16)

A systematic investigation of the incomplete generalized Jacobsthal numbers and

the incomplete generalized Jacobsthal–Lucas numbers was featured in [6]. In [7],

Djordjević and Srivastava introduced the generalized incomplete Fibonacci polyno-

mials and the generalized incomplete Lucas polynomials. In [8], the authors invest-

igated some properties and relations involving generalizations of the Fibonacci num-

bers. In [10], Raina and Srivastava investigated the a new class of numbers associated

with the Lucas numbers. Moreover they gave several interesting properties of these

numbers.

In this paper, we introduce the third-order Jacobsthal polynomials and we give

some properties, including the Binet-style formula and the generating functions for

these sequences. Some identities involving these polynomials are also provided.

2. THE THIRD-ORDER JACOBSTHAL POLYNOMIAL, BINET’S FORMULA AND

THE GENERATING FUNCTION

The principal goals of this section will be to define the third-order Jacobsthal poly-

nomial and to present some elementary results involving it.

For any variable quantity x such that x3 6= 1. We define the third-order Jacobsthal

polynomial, denoted by {J
(3)
n (x)}n≥0. This sequence is defined recursively by

J
(3)
n+3(x) = (x−1)J

(3)
n+2(x)+(x−1)J

(3)
n+1(x)+ xJ

(3)
n (x), n ≥ 0, (2.1)

with initial conditions J
(3)
0 (x) = 0, J

(3)
1 (x) = 1 and J

(3)
2 (x) = x−1.

In order to find the generating function for the third-order Jacobsthal polynomial,

we shall write the sequence as a power series where each term of the sequence cor-

respond to coefficients of the series. As a consequence of the definition of generating

function of a sequence, the generating function associated to {J
(3)
n (x)}n≥0, denoted

by { j(t)}, is defined by

j(t) = ∑
n≥0

J
(3)
n (x)tn

.

Consequently, we obtain the following result:

Theorem 1. The generating function for the third-order Jacobsthal polynomials

{J
(3)
n (x)}n≥0 is j(t) = t

1−(x−1)t−(x−1)t2−xt3 .

Proof. Using the definition of generating function, we have

j(t) = J
(3)
0 (x)+ J

(3)
1 (x)t + J

(3)
2 (x)t2 + · · ·+ J

(3)
n (x)tn + · · · .

Multiplying both sides of this identity by −(x−1)t, −(x−1)t2 and by −xt3, and then

from Eq. (2.1), we have
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(1− (x−1)t − (x−1)t2 − xt3) j(t)

= J
(3)
0 (x)+(J

(3)
1 (x)− (x−1)J

(3)
0 (x))t +(J

(3)
2 (x)− (x−1)J

(3)
1 − (x−1)J

(3)
0 (x))t2

(2.2)

and the result follows. �

The following result gives the Binet-style formula for J
(3)
n (x).

Theorem 2. For n ≥ 0, we have

J
(3)
n (x) =

xn+1

x2 + x+1
− ωn+1

1

(x−ω1)(ω1 −ω2)
+

ωn+1
2

(x−ω2)(ω1 −ω2)
,

where ω1, ω2 are the roots of the characteristic equation associated with the respect-

ive recurrence relations λ2 +λ+1 = 0.

Proof. Since the characteristic equation has three distinct roots, the sequence

J
(3)
n (x) = a(x)xn + b(x)ωn

1 + c(x)ωn
2 is the solution of the Eq. (2.1). Considering

n = 0,1,2 in this identity and solving this system of linear equations, we obtain a

unique value for a(x), b(x) and c(x), which are, in this case, (x2 + x+ 1)a(x) = x,

(x − ω1)(ω1 − ω2)b(x) = −ω1 and (x − ω2)(ω1 − ω2)c(x) = ω2. So, using these

values in the expression of J
(3)
n (x) stated before, we get the required result. �

We define the modified third-order Jacobsthal polynomial sequence, denoted by

{K
(3)
n (x)}n≥0. This sequence is defined recursively by

K
(3)
n+3(x) = (x−1)K

(3)
n+2(x)+(x−1)K

(3)
n+1(x)+ xK

(3)
n (x), (2.3)

with initial conditions K
(3)
0 (x) = 3, K

(3)
1 (x) = x−1 and K

(3)
2 (x) = x2 −1.

We give their versions for the third-order Jacobsthal and modified third-order Jac-

obsthal polynomials.

For simplicity of notation, let

Zn(x) =
1

ω1 −ω2

(

(x−ω2)ω
n+1
1 − (x−ω1)ω

n+1
2

)

,

Yn = ωn
1 +ωn

2.

(2.4)

Then, we can write

J
(3)
n (x) =

1

x2 + x+1

(

xn+1 −Zn(x)
)

and

K
(3)
n (x) = xn +Yn.

Then, Zn(x) =−Zn−1(x)−Zn−2(x), Z0(x) = x and Z1(x) =−(x+1).
Furthermore, we easily obtain the identities stated in the following result:
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Proposition 1. For a natural number n and m, if J
(3)
n (x) and K

(3)
n (x) are, respect-

ively, the n-th third-order Jacobsthal and modified third-order Jacobsthal polynomi-

als, then the following identities are true:

K
(3)
n (x) = (x−1)J

(3)
n (x)+2(x−1)J

(3)
n−1(x)+3xJ

(3)
n−2(x), n ≥ 2, (2.5)

J
(3)
n (x)J

(3)
m (x)+ J

(3)
n+1(x)J

(3)
m+1(x)+ J

(3)
n+2(x)J

(3)
m+2(x)

=
1

(x2 + x+1)2















(1+ x2 + x4) · xn+m+2

−xn+1
(

(1− x2)Zm(x)+ x(1− x)Zm+1(x)
)

−xm+1
(

(1− x2)Zn(x)+ x(1− x)Zn+1(x)
)

+(x2 + x+1)(ωn
1ωm

2 +ωm
1 ωn

2)















,

(2.6)

(

J
(3)
n (x)

)2

+
(

J
(3)
n+1(x)

)2

+
(

J
(3)
n+2(x)

)2

=
1

(x2 + x+1)2







(1+ x2 + x4) · x2n+2

−2xn+1
(

(1− x2)Zn(x)+ x(1− x)Zn+1(x)
)

+2(x2 + x+1)







,

(2.7)

and Zn(x) as in Eq. (2.4).

Proof. (2.5): To prove Eq. (2.5), we use induction on n. Let n = 2, we get

(x−1)J
(3)
2 (x)+2(x−1)J

(3)
1 (x)+3xJ

(3)
0 (x) = (x−1)(x−1)+2(x−1)

= x2 −1

= K
(3)
2 (x).

Let us assume that K
(3)
m (x) = (x−1)J

(3)
m (x)+2(x−1)J

(3)
m−1(x)+3xJ

(3)
m−2(x) is true for

all values m less than or equal n ≥ 2. Then,

K
(3)
m+1(x) = (x−1)K

(3)
m (x)+(x−1)K

(3)
m−1(x)+ xK

(3)
m−2(x)

= (x−1)
(

(x−1)J
(3)
m (x)+2(x−1)J

(3)
m−1(x)+3xJ

(3)
m−2(x)

)

+(x−1)
(

(x−1)J
(3)
m−1(x)+2(x−1)J

(3)
m−2(x)+3xJ

(3)
m−3(x)

)

+ x
(

(x−1)J
(3)
m−2(x)+2(x−1)J

(3)
m−3(x)+3xJ

(3)
m−4(x)

)

= (x−1)J
(3)
m+1(x)+2(x−1)J

(3)
m (x)+3xJ

(3)
m−1(x).

(2.6): Using the Binet formula of J
(3)
n (x) in Theorem 2, we have

J
(3)
n (x)J

(3)
m (x)+ J

(3)
n+1(x)J

(3)
m+1(x)+ J

(3)
n+2(x)J

(3)
m+2(x)

=
1

(x2 + x+1)2







(

xn+1 −Zn(x)
)(

xm+1 −Zm(x)
)

+
(

xn+2 −Zn+1(x)
)(

xm+2 −Zm+1(x)
)

+
(

xn+3 −Zn+2(x)
)(

xm+3 −Zm+2(x)
)







.
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Then, we obtain

J
(3)
n (x)J

(3)
m (x)+ J

(3)
n+1(x)J

(3)
m+1(x)+ J

(3)
n+2(x)J

(3)
m+2(x)

=
1

(x2 + x+1)2















(1+ x2 + x4) · xn+m+2

−xn+1
(

Zm(x)+ xZm+1(x)+ x2Zm+2(x)
)

−xm+1
(

Zn(x)+ xZn+1(x)+ x2Zn+2(x)
)

+Zn(x)Zm(x)+Zn+1(x)Zm+1(x)+Zn+2(x)Zm+2(x)















=
1

(x2 + x+1)2















(1+ x2 + x4) · xn+m+2

−xn+1
(

(1− x2)Zm(x)+ x(1− x)Zm+1(x)
)

−xm+1
(

(1− x2)Zn(x)+ x(1− x)Zn+1(x)
)

+(x2 + x+1)(ωn
1ωm

2 +ωm
1 ωn

2)















.

Then, we obtain the Eq. (2.7) if m = n in Eq. (2.6). �

3. SOME IDENTITIES INVOLVING THIS TYPE OF POLYNOMIALS

In this section, we state some identities related with these type of third-order poly-

nomials. As a consequence of the Binet formula of Theorem 2, we get for this se-

quence the following interesting identities.

Proposition 2 (Catalan-like identity). For a natural numbers n, s, with n ≥ s, if

J
(3)
n (x) is the n-th third-order Jacobsthal polynomials, then the following identity

J
(3)
n+s(x)J

(3)
n−s(x)−

(

J
(3)
n (x)

)2

=
1

(x2 + x+1)2







xn+1 (xs − x−s)XsZn+1(x)
−xn+1 (2+ xsXs+1 − x−sXs−1)Zn(x)

−(x2 + x+1)X2
s







is true, where Zn(x) as in Eq. (2.4), Xn =
ωn

1−ωn
2

ω1−ω2
and ω1, ω2 are the roots of the

characteristic equation associated with the recurrence relation x2 + x+1 = 0.

Proof. Using the Eq. (2.4) and the Binet formula of J
(3)
n (x) in Theorem 2, we have

J
(3)
n+s(x)J

(3)
n−s(x)−

(

J
(3)
n (x)

)2

=
1

(x2 + x+1)2

{

(

xn+s+1 −Zn+s(x)
)(

xn−s+1 −Zn−s(x)
)

−
(

xn+1 −Zn(x)
)2

}

=
1

(x2 + x+1)2

{

−xn+1 (xsZn−s(x)+ x−sZn+s(x)−2Zn(x))

+Zn+s(x)Zn−s(x)− (Zn(x))
2

}

.

Using the following identity for the sequence Zn(x):

Zn+s(x) = XsZn+1(x)−Xs−1Zn(x),
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where Xs =
ωs

1−ωs
2

ω1−ω2
and X−s =−Xs. Then, we obtain

J
(3)
n+s(x)J

(3)
n−s(x)−

(

J
(3)
n (x)

)2

=
1

(x2 + x+1)2







xn+1 (xs − x−s)XsZn+1(x)
−xn+1 (xsXs+1 − x−sXs−1 −2)Zn(x)

−(x2 + x+1)X2
s







.

Hence the result holds. �

Note that for s = 1 in the Catalan-like identity obtained, we get the Cassini-like

identity for the third-order Jacobsthal polynomial. Furthermore, for s= 1, the identity

stated in Proposition 2, yields

J
(3)
n+1(x)J

(3)
n−1(x)−

(

J
(3)
n (x)

)2

=
1

(x2 + x+1)2







xn+1
(

x1 − x−1
)

X1Zn+1(x)
−xn+1

(

x1X1+1 − x−1X1−1 −2
)

Zn(x)
−(x2 + x+1)







.

and using X0 = 0 and X1 = 1 in Proposition 2, we obtain the following result.

Proposition 3 (Cassini-like identity). For a natural numbers n, if K
(3)
n is the n-th

third-order Jacobsthal numbers, then the identity

J
(3)
n+1(x)J

(3)
n−1(x)−

(

J
(3)
n (x)

)2

=
1

(x2 + x+1)2

{

xn
(

(x2 −1)Zn+1(x)+ x(x+2)Zn(x)
)

−(x2 + x+1)

}

.

is true.

The d’Ocagne-like identity can also be obtained using the Binet formula and in

this case we obtain

Proposition 4 (d’Ocagne-like identity). For a natural numbers m, n, with m ≥ n

and J
(3)
n (x) is the n-th third-order Jacobsthal polynomial, then the following identity

J
(3)
m+1(x)J

(3)
n (x)− J

(3)
m (x)J

(3)
n+1(x)

=
1

(x2 + x+1)2

{

xm+1 (Zn+1(x)− xZn(x))
−xn+1 (Zm+1(x)− xZm(x))+(x2 + x+1)Xm−n

}

is true.

Proof. Using the Eq. (2.4) and the Theorem 2, we get the required result. �

In addition, some formulae involving sums of terms of the third-order Jacobsthal

polynomial sequence will be provided in the following proposition.
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Proposition 5. For a natural numbers m, n, with n ≥ m, if J
(3)
n (x) and K

(3)
n (x)

are, respectively, the n-th third-order Jacobsthal and modified third-order Jacobsthal

polynomials, then the following identities are true:

n

∑
s=m

J
(3)
s (x) =

1

3(x−1)











(3x−2)J
(3)
n (x)+(2x−1)J

(3)
n−1(x)

+xJ
(3)
n−2(x)− J

(3)
m+2(x)

+(x−2)J
(3)
m+1(x)+(2x−3)J

(3)
m (x)











, (3.1)

n

∑
s=0

K
(3)
s (x) =

1

x−1







xn+1 +2x−3 if n ≡ 0 (mod 3)
xn+1 + x−2 if n ≡ 1 (mod 3)

xn+1 −1 if n ≡ 2 (mod 3)
. (3.2)

Proof. (3.1): Using Eq. (2.1), we obtain

n

∑
s=m

J
(3)
s (x) = J

(3)
m (x)+ J

(3)
m+1(x)+ J

(3)
m+2(x)+

n

∑
s=m+3

J
(3)
s (x)

= J
(3)
m (x)+ J

(3)
m+1(x)+ J

(3)
m+2(x)+(x−1)

n−1

∑
s=m+2

J
(3)
s (x)

+(x−1)
n−2

∑
s=m+1

J
(3)
s (x)+ x

n−3

∑
s=m

J
(3)
s (x)

Then,
n

∑
s=m

J
(3)
s (x) = (3x−2)

n

∑
s=m

J
(3)
s (x)+ J

(3)
m+2(x)− (x−2)J

(3)
m+1(x)− (2x−3)J

(3)
m (x)

− (3x−2)J
(3)
n (x)− (2x−1)J

(3)
n−1(x)− xJ

(3)
n−2(x).

Finally, the result in Eq. (3.1) is completed.

(3.2): As a consequence of the Eq. (2.4) of Theorem 2 and

n

∑
s=0

Ys =
n

∑
s=0

(ωs
1 +ωs

2)

=
ωn+1

1 −1

ω1 −1
+

ωn+1
2 −1

ω2 −1

=
1

3
(Yn −Yn+1)+1,

we have
n

∑
s=0

K
(3)
s (x) =

n

∑
s=0

xs +
n

∑
s=0

Ys

=
xn+1 −1

x−1
+

1

3
(Yn −Yn+1)+1
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=
1

x−1







xn+1 +2x−3 if n ≡ 0 (mod 3)
xn+1 + x−2 if n ≡ 1 (mod 3)

xn+1 −1 if n ≡ 2 (mod 3)
.

Hence, we obtain the result. �

For example, if n ≡ 0(mod 3) we have that xn+1 +2x−3 is divisible by x−1.

For negative subscripts terms of the sequence of modified third-order Jacobsthal

polynomial we can establish the following result:

Proposition 6. For a natural number n and x3 6= 0 the following identities are

true:

K
(3)
−n (x) = K

(3)
n (x)+ x−n − xn

, (3.3)

3n

∑
s=0

K
(3)
−s (x) =

1

x−1

(

3x−2− x−3n
)

. (3.4)

Proof. (3.3): Since Y−n =Yn, using the Binet formula stated in Theorem 2 and the

fact that ω1ω2 = 1, all the results of this Proposition follow. In fact,

K
(3)
−n (x) = x−n +Y−n

= x−n + xn +Yn − xn

= K
(3)
n (x)+ x−n − xn

.

So, the proof is completed.

(3.4): The proof is similar to the proof of Eq. (3.1) using Eq. (3.3). �

4. CONCLUSION

Sequences of polynomials have been studied over several years, including the

well-known Tribonacci polynomial and, consequently, on the Tribonacci-Lucas poly-

nomial. In this paper, we have also contributed for the study of third-order Jacobsthal

and modified third-order Jacobsthal polynomials, deducing some formulae for the

sums of such polynomials, presenting the generating functions and their Binet-style

formula. It is our intention to continue the study of this type of sequences, exploring

some their applications in the science domain. For example, a new type of sequences

in the quaternion algebra with the use of these polynomials and their combinatorial

properties.
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Abstract. The purpose of this paper is to present several new results concerning relations

between linear differential equations of the fourth order with one constraint and nonlinear dif-

ferential equations of the fourth order. We consider linear differential equations of the second,

the third and the fourth order and nonlinear fourth order differential equations related via the

Schwarzian derivative. The method is based on the use of the Schwarzian derivative, which is

defined as the ratio of two linearly independent solutions of the linear differential equations of

the second or third and fourth order. As a result we obtain new relations between the solutions

of these linear and nonlinear equations. To illustrate theorems and our constructive approach we

give two examples. The given method may be generalized to differential equations of higher

orders.
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1. INTRODUCTION

The Schwarzian derivative is a differential operator that is invariant under all linear

fractional transformations, see [1, 8, 10]. It plays a significant role in the theory of

modular forms, hypergeometric functions, univalent functions and conformal map-

pings [1, 8]. It is defined by

(S f )(z) =

(

f ′′(z)

f ′(z)

)′

−
1

2

(

f ′′(z)

f ′(z)

)2

=
f ′′′(z)

f ′(z)
−

3

2

(

f ′′(z)

f ′(z)

)2

.

The well-known relation between a second-order linear differential equation of the

form

y′′(z)+Q(z)y(z) = 0
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and the Schwarzian derivative of the ratio of two linearly independent solutions y1,

y2 of the linear equation above is as follows:

(Sξ)(z) = 2Q(z),

where ξ = y1/y2 and z is, in general, a complex variable. See [1] and [8] for more

details.

If we have a general second order differential equation

y′′(z)+ p(z)y′(z)+q(z)y(z) = 0, (1.1)

then substituting y(z) = ξ(z)y1(z) with the condition that y1 is also a solution of (1.1),

we get an expression for ξ, y1 and their derivatives (up to order 2 and 1 respectively).

Differentiating again and eliminating y1, y′1, we get that the function

w(z) = (Sξ)(z)

satisfies

w(z) =
1

2
(4q(z)− p(z)2 −2p′(z)). (1.2)

We call expression (1.2) the invariant for the second order linear differential equation

(1.1).

On extension of this approach for linear differential equation of the third order see

in [10–12]. The generalization of the method for the linear differential equations of

the fourth order is given in [6]. In papers [2, 4, 5] special classes of the fourth or-

der linear differential equations and the nonlinear fourth order differential equations

related via the Schwarzian derivative are considered and general solutions of both

differential equations are found. In paper [3] the generalization of the method for a

special type of linear differential equations of the fifth order is given along with a

computer realization of this method in Mathematica (www.wolfram.com).

Several questions arise. What happens if the second, the third and the fourth order

linear differential equations are related? What happens if we modify the function to

be the ratio of solutions of two different equations? These questions were answered

during the studies of linear differential equation of the third order in [9].

Similar questions were resolved for the fours order ordinary differential equations

with coefficients satisfying a system of two first order differential equations [7].

The main objective of this paper is to answer these questions for linear differential

equation of the fourth order with coefficients that satisfy the differential equation of

the first order. The proofs of statements are computational, that is the results can be

verified by using any computer algebra system.

2. MAIN RESULTS

In this section we shall present 5 main results concerning the relations between

linear

y′′′′(z)+ p(z)y′′′(z)+q(z)y′′(z)+ r(z)y′(z)+ s(z)y(z) = 0, (2.1)
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where

p′ =
1

12

(

8q−3p2
)

(2.2)

and nonlinear differential equations.

Theorem 1. Let y be a solution of the fourth order linear differential equation

(2.1) and y1 be a solution of another fourth order linear differential equation

y′′′′(z)+ p1(z)y
′′′(z)+q1(z)y

′′(z)+ r1(z)y
′(z)+ s1(z)y(z) = 0, (2.3)

where

p′1 =
1

12
(8q1 −3p2

1).

If the function w(z) = (Sξ)(z) with ξ = y/y1 solves a nonlinear differential equation

1

∑
k=0

2

∑
j=0

3

∑
i=0

αi jk(z)w
i(w′) j(w′′)kw′′′′+

2

∑
l=0

3

∑
k=0

4

∑
j=0

6

∑
i=0

βi jkl(z)w
i(w′) j(w′′)k(w′′′)l = 0,

(2.4)

which is explicitly given by

(240ww′′−300w′2 −40ψw′+160w3 +(80q′′+
40

3
q2 −10p2q+60pr−480s−20φ)w

−ψ2)w′′′′−280ww′′′2 +((56ψ+840w′)w′′− (1120w2 −110φ+55pψ−20ψ′)w′

−
448

3
ψw2 +(10pq2 −

5

2
p3q−

45

4
p2ψ−90φ′+45pψ′−

20

3
q(3r−4ψ−3p′′)−20ψ′′)w

+4φψ−2pψ2 +2ψψ′)w′′′−504w′′3 +(192w2 −153φ+
153

2
pψ−66ψ′)w′′2

+(2040ww′2 +448w4 −7φ2 −
5

16
p2ψ2 −

23

6
qψ2 +

23

2
ψφ′+φ(7pψ−18ψ′)

+
13

4
pψψ′−2ψ′2 +(42pψ−84φ+152ψ′)w2

+(
55

3
ψ2 −

15

4
p3ψ−30rψ+15p2ψ′−40qψ′+60φ′′+15p(qψ−2ψ′′))w

+ψψ′′+(
135

8
p2ψ−45qψ+528ψw+135φ′−

135

2
pψ′+30ψ′′)w′)w′′

−1275w′4 −520ψw′3 +(−560w3 +
15

2
(38φ−19pψ−4ψ′)w+

75

16
p3ψ

+
75

2
rψ−

611

12
ψ2 −

75

4
p2ψ′+50qψ′−75φ′′−

75

4
p(qψ−2ψ′′))w′2

+(−128ψw3 +
35

32
p2φψ−

35

12
qφψ+

5

64
p3ψ2 −

25

24
pqψ2 +5rψ2 −

7

6
ψ3

+
35

4
φφ′+

5

16
p2ψψ′+5qψψ′+5φ′ψ′+(32φψ−16pψ2 +16ψψ′)w

−10ψφ′′−
5

8
p(ψ′(7φ+4ψ′)+ψ(7φ′−2ψ′′))
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− (
45

2
p2ψ−60qψ+180φ′−90pψ′+40ψ′′)w2 +

15

2
φψ′′)w′+64w6

− (8φ−4pψ−
272

3
ψ′)w4 −

(

5

2
p3ψ+20rψ+

82

9
ψ2 −10p2ψ′+

80

3
qψ′−40φ′′

−10p(qψ−2ψ′′)
)

w3 +(344pψψ′−84φ2 −105p2ψ2 +4φ(21pψ−4ψ′)

+16(14qψ2 −42ψφ′+31ψ′2 −28ψψ′′))
w2

48
+(

13

24
φψ2 −

5

32
p3φψ−

5

9
q2ψ2

+
10

3
qψφ′−5φ′

2 −
5

3
qφψ′+

5

12
ψ2ψ′−

10

3
qψ′2 −

5

4
rψ(φ+2ψ′)

+
5

48
p2(qψ2 −12ψφ′+6φψ′)+

5

2
φφ′′+5ψ′φ′′+

5

3
qψψ′′−5φ′ψ′′

+
1

48
p(30rψ2 −13ψ3 +240φ′ψ′+10qψ(3φ+2ψ′)−60ψφ′′−60φψ′′))w

+
1

32
(3φ2(pψ−4ψ′)−2φ3 +2ψ(2rψ2 −3pψφ′+8φ′ψ′−4ψφ′′)

+2φ(ψ(6φ′+3pψ′+4ψ′′)−2qψ2 −8ψ′2)) = 0,

then conditions

p1(z) = p(z), q1(z) = q(z), r1(z) = r(z), s1(z) = s(z)

and

φ = pr−16s+4r′, ψ = pq−6r+4q′ (2.5)

hold.

Proof. We substitute w(z) = (Sξ)(z) into equation (2.4) with unknown coefficients

and then replace ξ by the ratio of y and y1. Replacing the fourth and higher order

derivatives of y and y1 by using the linear equations, we collect the coefficients of y,

y1 and their derivatives up to order 3. In the result we obtain a system of equations

on the coefficients of linear and nonlinear equations, from which we get the desired

result. �

Theorem 2. Let y be a solution of equation (2.1) and y1 be a solution of the third

order linear differential equation of the form

y′′′(z)+q1(z)y
′′(z)+ r1(z)y

′(z)+ s1(z)y(z) = 0. (2.6)

If the function w(z) = (Sξ)(z) with ξ = y/y1 solves the nonlinear differential equation

(2.4), then we have conditions (2.5) for (2.4) and three additional conditions on the

coefficients of the linear equation (2.6)

q′1 = q2
1 +q− p q1 − r1, r′1 = r− pr1 +q1r1 − s1, s′1 = s1(q1 − p)+ s. (2.7)

Proof. We substitute w(z) = (Sξ)(z) into equation (2.4), (2.5) with unknown coef-

ficients and then replace ξ by the ratio of y and y1. Replacing the fourth and higher

order derivatives of y and the third and higher order derivatives of y1 by using the

linear equations, we collect the coefficients of y, y1 and their derivatives up to order
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3, order 2 and order 1 respectively. In the result we obtain a system of equations

on the coefficients of linear and nonlinear equations, from which we get the desired

result. �

Example 1. Assume that we know a particular solution y and coefficient p of equa-

tion (2.1)

y(z) = z, p(z) = b, (2.8)

where b is a constant. We substitute functions (2.8) into equations (2.1), (2.2). Solv-

ing the obtained equations we find

q(z) =
3b2

8
, s(z) =−

r(z)

z
. (2.9)

Assume that we know a particular solution y1 and coefficient q1 of the equation (2.6)

y1(z) = z, q1(z) = b. (2.10)

Then from equation (2.6) we find

s1(z) =−
r1(z)

z
. (2.11)

We substitute functions (2.8) -(2.11) into equations (2.7) . Solving the resulting equa-

tions we find

r1(z) =
3b2

8
, r(z) =−

3b2

8z
. (2.12)

We substitute functions (2.10), (2.11) into equation (2.6) and obtain

8zy′′′+8bzy′′+3b2zy′−3b2y = 0. (2.13)

The substitution

y = z

∫
v(z)dz (2.14)

reduces equation (2.13) to the second order differential equation

8zv′′+8(bz+3)v′+b(3bz+16)v = 0. (2.15)

The general solution of equation (2.15) is of the form

v = e−
1
4

i(
√

2−2i)bz

(

C1U1 +C2L2
− 3

2
− i√

2

(

biz
√

2

))

, (2.16)

where U1 =U
(

3
2
+ i√

2
,3, biz√

2

)

is the confluent hypergeometric function and has the

integral representation

U(a,b,z) =
1

Γ(a)

∫ ∞

0
e−ztta−1(1+ t)b−a−1dt; L2

− 3
2
− i√

2

(

biz
√

2

)

is the Laguerre polynomial, that satisfy the differential equation

zv′′+(3− z)v′−

(

3

2
+

i
√

2

)

v = 0,
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and C1, C2 are arbitrary constants.

The general solution of equation (2.13) is of the form (2.14), (2.16). We choose,

for example, the values of the arbitrary constants equal to C1 = 1, C2 = 0. Then the

particular solution is

y1 = z

∫
e−

1
4

i(
√

2−2i)bzU

(

3

2
+

i
√

2
,3,

biz
√

2

)

dz

and

ξ =

(∫
e−

1
4

i(
√

2−2i)bzU

(

3

2
+

i
√

2
,3,

biz
√

2

)

dz

)−1

.

Then

w =
ξ′′′

ξ′
−

3

2

(

ξ′′

ξ′

)2

=
b2

16

(

U−2(3(7+6
√

2i)U2
2+ 2U1(5−2i

√
2)U2 − (13+8i

√
2)U3))−2i

√
2−1

)

,

(2.17)

where

U2 =U

(

5

2
+

i
√

2
,4,

biz
√

2

)

, U3 =U

(

7

2
+

i
√

2
,5,

biz
√

2

)

.

The differential equation (2.4), (2.5) has coefficients (2.8), (2.9), (2.12) and

φ(z) =−
3b2(12+bz)

8z2
, ψ(z) =

3b2(6+bz)

8z
.

Then according to Theorem 2 this nonlinear differential equation has a solution

(2.17) which can be easily verified by substitution.

Theorem 3. Let y be a general solution of the third order linear differential equa-

tion (2.6), (2.7). Then this solution is a three parameter family of solutions of the

fourth order linear differential equation (2.1), (2.2).

Proof. The proof is computational. �

Theorem 4. Let y be a solution of equation (2.1) and y1 be a solution of the second

order linear differential equation of the form

y′′(z)+ r1(z)y
′(z)+ s1(z)y(z) = 0. (2.18)

If the function w(z) = (Sξ)(z) with ξ = y/y1 solves a nonlinear differential equation

(2.4), then we have condition (2.5) for (2.4) and two additional conditions on the

coefficients of the linear equation (2.18)

r′′1 =−pr′1 + pr2
1 − ps1 −qr1 + r+3r1r′1 +2r1s1 − r3

1 −2s′1,

s′′1 = pr1s1 − ps′1 −qs1 +2s1r′1 + r1s′1 − r2
1s1 + s+ s2

1. (2.19)
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Proof. We substitute w(z) = (Sξ)(z) into equation (2.4), (2.5) with unknown coef-

ficients and then replace ξ by the ratio of y and y1. Replacing the fourth and higher

order derivatives of y and the second and higher order derivatives of y1 by using the

linear equations, we collect the coefficients of y, y1 and their derivatives up to order

3 and order 1 respectively. In the result we obtain a system of equations on the coef-

ficients of linear and nonlinear equations, from which we get the desired result. �

Example 2. Let

y(z) =
√

z, p(z) =
2

z
, r(z) =

3

2z3
. (2.20)

We substitute functions (2.20) into equations (2.1), (2.2). Solving the resulting equa-

tions we find

q(z) =−
3

2z2
, s(z) =−

15

16z4
. (2.21)

Let

r1(z) =−
3

z
. (2.22)

We substitute the relations (2.20)-(2.22) into (2.19). After simplifications we obtain

the system

s′′1(z) = s2
1(z)−

5

z
s′1(z)−

15

2z2
s1(z)−

5

16z4
, 4z3s′1(z)+16z2s1(z) = 30. (2.23)

We find the following solution of system (2.23):

s1(z) =
15

4z2
. (2.24)

We substitute the relations (2.22), (2.24) into equation (2.18) and integrate it. We

write the general solution in the form

y1 =C1z3/2 +C2z5/2, (2.25)

where C1, C2 are arbitrary constants. We choose, for example, the values of arbitrary

constants equal to one. Then we obtain y1 = z3/2 + z5/2 and ξ = 1
z2+z

. Then we find

the solution

w =
ξ′′′

ξ′
−

3

2

(

ξ′′

ξ′

)2

=−
6

(2z+1)2
. (2.26)

Differential equation (2.4), (2.5) for coefficients (2.20), (2.21) has the form

20(8w3 +12ww′′−15w′2)w′′′′−280ww′′′2 −280w′(4w2 −3w′′)w′′′−504w′′3

+192w2w′′2 +8(56w4 +255ww′2)w′′−1275w′4 −560w3w′2 +64w6 = 0.
(2.27)

According to Theorem 4 equation (2.27) has the solution (2.26) that can be easily

verified by the direct substitution.
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If we choose the function (2.25), then the corresponding solution of the equation

(2.27) takes the form

w =−
6C2

2

(2C2z+C1)2
.

It is a one-parameter family of solutions. This is easily seen by introducing the sub-

stitution c =C2/C1.

Theorem 5. Let y be a general solution of the second order linear differential

equation (2.18), (2.19). Then this solution is a two parameter family of solutions of

the fourth order linear differential equation (2.1), (2.2).

Proof. The proof is computational. �

3. CONCLUSIONS

One research direction is to replace linear differential equations with nonlinear

equations of second and higher order and to consider the Schwarzian derivative of the

ratio of 2 solutions. This might give a new insight into the theory of some nonlinear

special functions.

Taking into account the obtained results for the known solutions of the fourth and

the second order linear equations, we can formulate the corresponding theorems for

the known solutions of the fourth order linear equation and the Riccati equation, to

which the second order linear equation reduces. Here it seems appropriate to use the

results of [9] and the method of V. Orlov [13,14] for the study of the Riccati equation

and nonlinear differential equations of the second order.

From the point of view of programming algorithms for solving the considered

problems, the opportunities of Wolfram Research technologies described in [15] are

essential. They significantly complement the set of tools for creating, maintaining

and distributing dynamic content when constructing and studying solutions of differ-

ential equations.
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Abstract. Best proximity point theorems ensure the existence of an approximate optimal solution

to the equations of the type f (x) = x when f is not a self-map and a solution of the same does not

necessarily exist. Best proximity points theorems, therefore, serve as a powerful tool in the theory

of optimization and approximation. The aim of this article is to consider a global optimization

problem in the context of best proximity points in a complete metric space. We establish an

existence of best proximity result for multivalued mappings using Wardowski’s technique.
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1. INTRODUCTION AND PRELIMINARIES

Nadler [9] defined a Hausdorff concept by considering the distance between two

arbitrary sets as follows.

Let (Ω,η) be a complete metric space (in short, MS) and let CB(Ω) be the family

of all nonempty closed and bounded subsets of the nonempty set Ω. For M ,N ∈
CB(Ω), define the map H : CB(Ω)×CB(Ω)→ [0,∞) by

H (M ,N ) = max{sup
ξ∈N

∆(ξ,M ), sup
δ∈M

∆(δ,N )},

where ∆(δ,N ) = infξ∈N η(δ,ξ). Then (CB(Ω),H ) is an MS induced by η.

Let M ,N be any two nonempty subsets of the MS (Ω,η). The following notations

will be used throughout:

M0 = {µ ∈ M : η(µ,ν) = η(M ,N ) for some ν ∈ N },
N0 = {ν ∈ N : η(µ,ν) = η(M ,N ) for some µ ∈ M },

where η(M ,N ) = inf{η(µ,ν) : µ ∈ M ,ν ∈ N }.
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Grant vide letter No. F.30-452/2018(BSR) dated 12 Feb 2019.

© 2021 Miskolc University Press



144 PRADIP DEBNATH

For M ,N ∈CB(Ω), we have

η(M ,N )≤ H (M ,N ).

We say that µ ∈ M is a best proximity point (in short, BPP) of the multivalued map

Γ : M → CB(N ) if ∆(µ,Γµ) = η(M ,N ). υ ∈ Ω is said to be a fixed point of the

multivalued map Γ : Ω →CB(Ω) if υ ∈ Γυ.

Remark 1.

(1) In the MS (CB(Ω),H ), υ∈Ω is a fixed point of Γ if and only if ∆(υ,Γυ) = 0.

(2) If η(M ,N ) = 0, then a fixed point and a BPP are identical.

(3) The metric function η : Ω×Ω → [0,∞) is continuous in the sense that if

{υn},{ξn} are two sequences in Ω with (υn,ξn)→ (υ,ξ) for some υ,ξ ∈ Ω,

as n → ∞, then η(υn,ξn)→ η(υ,ξ) as n → ∞. The function ∆ is continuous

in the sense that if υn → υ as n → ∞, then ∆(υn,M )→ ∆(υ,M ) as n → ∞
for any M ⊆ Ω.

The following Lemmas are noteworthy.

Lemma 1 ([2, 4]). Let (Ω,η) be an MS and M ,N ∈CB(Ω). Then

(1) ∆(µ,N )≤ η(µ,γ) for any γ ∈ N and µ ∈ Ω;

(2) ∆(µ,N )≤ H (M ,N ) for any µ ∈ M .

Lemma 2 ([9]). Let M ,N ∈ CB(Ω) and let υ ∈ M , then for any r > 0, there

exists ξ ∈ N such that

η(υ,ξ)≤ H (M ,N )+ r.

But we may not have any ξ ∈ N such that

η(υ,ξ)≤ H (M ,N ).

Further, when N is compact, there exists ξ ∈ Ω such that η(υ,ξ)≤ H (M ,N ).

The concept of H -continuity for multivalued maps is listed next.

Definition 1 ([5]). Let (Ω,η) be an MS. We say that a multivalued map Γ : Ω →
CB(Ω) is H -continuous at a point µ0, if for each sequence {µn} ⊂ Ω, such that

lim
n→∞

η(µn,µ0) = 0, we have lim
n→∞

H (Γµn,Γµ0) = 0 (i.e., if µn → µ0, then Γµn → Γµ0

as n → ∞).

Definition 2 ([9]). Let Γ : Ω → CB(Ω) be a multivalued map. We say that Γ is a

multivalued contraction if H (Γµ,Γν)≤ λη(µ,ν) for all µ,ν ∈ Ω, where λ ∈ [0,1).

Remark 2.

(1) If Γ is H -continuous on every point of M ⊆Ω, then it is said to be continuous

on M .

(2) A multivalued contraction Γ is H -continuous.

In 2012, Wardowski [16] defined the concept of F-contraction as follows.
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Definition 3. Let F : (0,+∞)→ (−∞,+∞) be a function which satisfies the fol-

lowing:

(F1) F is strictly increasing;

(F2) For each sequence {un}n∈N ⊂ (0,+∞),

lim
n→+∞

un = 0 if and only if lim
n→+∞

F (un) =−∞;

(F3) There is t ∈ (0,1) such that lim
u→0+

utF (u) = 0.

Let F denote the class of all such functions F . If (Ω,η) is an MS, then a self-map

T : Ω → Ω is said to be an F−contraction if there exist τ > 0, F ∈ F , such that for

all µ,ν ∈ Ω,

η(T µ,T ν)> 0 ⇒ τ+F(η(T µ,T ν))≤ F(η(µ,ν)).

Multivalued F-contractions were defined by Altun et al. [1] as follows.

Definition 4 ([1]). Let (Ω,η) be an MS. A multivalued map Γ : Ω→CB(Ω) is said

to be a multivalued F-contraction (MVFC, in short) if there exist τ > 0 and F ∈ F
such that

τ+F(H (Γµ,Γν))≤ F(η(µ,ν)) (1.1)

for all µ,ν ∈ Ω with Γµ 6= Γν.

Remark 3. An MVFC is H -continuous.

We can find the concept of P-property in [12], whereas the notion of weak P

property was defined by Zhang et al. [18].

Definition 5 ([12]). Let (Ω,η) be an MS and M ,N be two non-empty subsets of

Ω such that M0 6= φ. The pair (M ,N ) is said to have the P-property if and only if

η(µ1,ν1) = η(M ,N ) = η(µ2,ν2) implies η(µ1,µ2) = η(ν1,ν2), where µ1,µ2 ∈ M0

and ν1,ν2 ∈ N.

Definition 6 ([18]). Let (Ω,η) be an MS and M ,N be two non-empty subsets of

Ω such that M0 6= φ. The pair (M ,N ) is said to have the weak P-property if and only

if η(µ1,ν1) = η(M ,N ) = η(µ2,ν2) implies η(µ1,µ2)≤ η(ν1,ν2), where µ1,µ2 ∈ M0

and ν1,ν2 ∈ N0.

BPP theorems for F-contractive non-self mappings were studied by Omidvari et al.

[11] with the help of P-property. Later, Nazari [10] investigated BPPs for a particular

type of generalized multivalued contractions by using the weak P-property.

Srivastava et al. [13,14] presented Krasnosel’skii type hybrid fixed point theorems

and found their very interesting applications to fractional integral equations. Xu et

al. [17] proved Schwarz lemma that involves boundary fixed point. Very recently,

Debnath and Srivastava [6] investigated common BPPs for multivalued contractive

pairs of mappings in connection with global optimization. Debnath and Srivastava

[7] also proved new extensions of Kannan’s and Reich’s theorems in the context
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of multivalued mappings using Wardowski’s technique. Further, a very significant

application of fixed points of F(ψ,ϕ)-contractions to fractional differential equations

was recently provided by Srivastava et al. [15].

In this paper, we introduce a best proximity result for multivalued mappings with

the help of F-contraction and the weak P property. Also we provide an example

where the P-property is not satisfied but the weak P-property holds.

2. BEST PROXIMITY POINT FOR MVFC

In this section, with the help of the notion of F-contraction, we show that an

MVFC satisfying certain conditions admits a BPP.

Theorem 1. Let (Ω,η) be a complete MS and M ,N be two non-empty closed

subsets of Ω such that M0 6= φ and that the pair (M ,N ) has the weak P-property.

Suppose Γ : M →CB(N ) be a MVFC such that Γµ is compact for each µ ∈ M and

Γµ ⊆ N0 for all µ ∈ M0. Then Γ has a BPP.

Proof. Fix µ0 ∈ M0 and choose ν0 ∈ Γµ0 ⊆ N0. By the definition of N0, we can

select µ1 ∈ M0 such that

η(µ1,ν0) = η(M ,N ). (2.1)

If ν0 ∈ Γµ1, then

η(M ,N )≤ ∆(µ1,Γµ1)≤ η(µ1,ν0) = η(M ,N ).

Thus η(M ,N ) = ∆(µ1,Γµ1), i.e., µ1 is a BPP of Γ. Therefore, assume that ν0 /∈ Γµ1.

Since Γµ1 is compact, by Lemma 2, there exists ν1 ∈ Γµ1 such that

0 < η(ν0,ν1)≤ H (Γµ0,Γµ1).

Since F is strictly increasing, the last inequality implies that

F(η(ν0,ν1))≤ F(H (Γµ0,Γµ1))

≤ F(η(µ0,µ1))− τ. (2.2)

Since ν1 ∈ Γµ1 ⊆ N0, there exists µ2 ∈ M0 such that

η(µ2,ν1) = η(M ,N ). (2.3)

From (2.1) and (2.3) and using weak P−property , we have that

η(µ1,µ2)≤ η(ν0,ν1). (2.4)

From (2.2) and (2.4), we have

F(η(µ1,µ2))≤ F(η(ν0,ν1))≤ F(η(µ0,µ1))− τ. (2.5)

If ν1 ∈ Γµ2, then

η(M ,N )≤ ∆(µ2,Γµ2)≤ η(µ2,ν1) = η(M ,N ).

Thus η(M ,N ) = ∆(µ2,Γµ2), i.e., µ1 is a BPP of Γ. So, assume that ν1 /∈ Γµ2.
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Since Γµ2 is compact, by Lemma 2, there exists ν2 ∈ Γµ2 such that

0 < η(ν1,ν2)≤ H (Γµ1,Γµ2).

Using the fact that F is strictly increasing, we have that

F(η(ν1,ν2))≤ F(H (Γµ1,Γµ2))

≤ F(η(µ1,µ2))− τ

≤ F(η(µ0,µ1))−2τ (using 2.5).

Since ν2 ∈ Γµ2 ⊆ N0, there exists µ3 ∈ M0 such that

η(µ3,ν2) = η(M ,N ). (2.6)

From (2.5) and (2.6) and using weak property P, we have that

η(µ2,µ3)≤ η(ν1,ν2). (2.7)

From (2.6) and (2.7), we have

F(η(µ2,µ3))≤ F(η(ν1,ν2))≤ F(η(µ0,µ1))−2τ. (2.8)

Continuing in this manner, we obtain two sequences {µn} and {νn} in M0 and N0

respectively, satisfying

(B1) νn ∈ Γµn ⊆ N0,

(B2) η(µn+1,νn) = η(M ,N ),
(B3) F(η(µn,µn+1))≤ F(η(νn−1,νn))≤ F(η(µ0,µ1))−nτ,

for each n = 0,1,2, . . ..
Put αn = η(µn,µn+1) for each n = 0,1,2, . . .. Taking limit on both sides of (B3) as

n → ∞, we have

lim
n→∞

F(αn) =−∞.

Using (F2), we obtain

lim
n→∞

αn = 0. (2.9)

Using (F3), there exists k ∈ (0,1) such that

αk
nF(αn)→ 0 as n → ∞. (2.10)

From (B3), for each n ∈ N, we have that

F(αn)−F(α0)≤−nτ.

This implies

αk
nF(αn)−αk

nF(α0)≤−nαk
nτ ≤ 0. (2.11)

Letting n → ∞ in (2.11) and using (2.9), (2.10), we obtain

lim
n→∞

nαk
n = 0.

Thus there exists n0 ∈N such that nαk
n ≤ 1 for all n ≥ n0, i.e., αn ≤ 1

n
1
k

for all n ≥ n0.
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Let m,n ∈ N with m > n ≥ n0. Then

η(µm,µn)≤
m−1

∑
i=n

η(µi,µi+1) =
m−1

∑
i=n

αi

≤
∞

∑
i=n

αi ≤
∞

∑
i=n

1

i
1
k

.

Since the series ∑∞
i=n

1

i
1
k

is convergent for k ∈ (0,1), we have η(µm,µn) → 0 as

m,n → ∞. Hence {µn} is Cauchy in M0 ⊆ M . Since (Ω,η) is complete and M
is closed, we have lim

n→∞
µn = θ for some θ ∈ M .

Since Γ is H -continuous (for it is an MVFC), we have

lim
n→∞

H (Γµn,Γθ) = 0. (2.12)

Exactly in the similar manner as above, using (B3), we can prove that {νn} is Cauchy

in N and since N is closed, there exists ξ ∈ B such that lim
n→∞

νn = ξ.

Since η(µn+1,νn) = η(M ,N ) for all n ∈ N, we have

lim
n→∞

η(µn+1,νn) = η(θ,ξ) = η(M ,N ).

We claim that ξ ∈ Γθ. Indeed, since νn ∈ Γµn for all n ∈ N, we have

lim
n→∞

∆(νn,Γθ)≤ lim
n→∞

H (Γµn,Γθ) = 0.

Therefore, ∆(ξ,Γθ) = 0. Since Γθ is closed, we have ξ ∈ Γθ.

Now,

η(M ,N )≤ ∆(θ,Γθ)≤ η(θ,ξ) = η(M ,N ).

Hence ∆(θ,Γθ) = η(M ,N ), i.e., θ is a BPP of Γ. �

A Geraghty type [8] result follows as a consequence of our previous theorem. Let

G be the class of functions g : [0,∞) → [0,1) satisfying the condition: g(ξn) → 1

implies ξn → 0. An example of such a map is g(ξ) = (1+ ξ)−1 for all ξ > 0 and

g(0) ∈ [0,1).

Definition 7. Let M ,N be two non-empty subsets of a MS (Ω,η). A multival-

ued map Γ : M → CB(N ) is said to be a multivalued Geraghty-type F-contraction

(MVGFC, in short) if there exist τ > 0, F ∈ F and g ∈ G such that

τ+F(H (Γµ,Γν))≤ g(η(µ,ν)) ·F(η(µ,ν)) (2.13)

for all µ,ν ∈ Ω with Γµ 6= Γν.

Corollary 1. Let (Ω,η) be a complete MS and M ,N be two non-empty closed

subsets of Ω such that M0 6= φ and that the pair (M ,N ) satisfies the weak P-property.

Suppose Γ : M →CB(N ) be a MVGFC such that Γµ is compact for each µ ∈ M and

Γµ ⊆ N0 for all µ ∈ M0. Then Γ has a BPP.
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Proof. Since g(t) ∈ [0,1) for all t ∈ [0,∞), from (2.13), we have that

τ+F(H (Γµ,Γν))≤ F(η(µ,ν)) (2.14)

for all µ,ν ∈ M with Γµ 6= Γν. Thus, Γ is an MVFC and hence from Theorem 1 it

follows that Γ has a BPP. �

Remark 4. Corollary 1 extends the results due to Caballero et al. [3] and Zhang et

al. [18] to their multivalued analogues using F-contraction.

Next, we provide some examples in support of our main result.

Example 1. Consider Ω = R with usual metric η(µ,ν) = |µ−ν| for all µ,ν ∈ Ω.

Let M = [5,6] and N = [−6,−5]. Then η(M ,N ) = 10 and M0 = {5}, N0 = {−5}.

Define the multivalued map Γ : M →CB(N ) such that

Γµ = [
−µ−5

2
,−5] for all µ ∈ [5,6].

Therefore Γ(5) = {−5} (i.e., Γµ ⊆ N0 for all µ ∈ M0).

We claim that Γ is a MVFC. Let H (Γµ,Γν)> 0. Then we have

H (Γµ,Γν) = H ([
−µ−5

2
,−5], [

−ν−5

2
,−5])

= |(−µ−5

2
)− (

−ν−5

2
)|

=
|ν−µ|

2

=
η(µ,ν)

2

< η(µ,ν).

From the last inequality, we have that ln(H (Γµ,Γν)) < ln(η(µ,ν)), and further,

τ + ln(H (Γµ,Γν)) ≤ ln(η(µ,ν)), for any τ ∈ (0, ln2]. Therefore, we have that

τ+F(H (Γµ,Γν))≤ F(η(µ,ν)), for any τ ∈ (0, ln2], where F(t) = ln t, t > 0.

Finally, it is easy to check that (M ,N ) satisfies weak P-property. Thus, all condi-

tions of Theorem 1 are satisfied and we observe that µ = 5 is a BPP of Γ.

In fact, in Example 1, the pair (M ,N ) satisfies P-property (and hence the weak

P-property as well). Next, we present an example in which the pair (M ,N ) satisfies

only the weak P-property but not the P-property.

Example 2. Consider Ω = R
2 with the Euclidean metric η.

Let M = {(−5,0),(0,1),(5,0)} and N = {(µ,ν) : ν= 2+
√

2−µ2,µ∈ [−
√

2,
√

2]}.

Then η(M ,N ) =
√

3 and M0 = {(0,1)}, N0 = {(
√

2,2),(−
√

2,2)}.

Define the multivalued map Γ : M →CB(N ) such that

Γ(−5,0) = {(−
√

2,2),(−1,3)}, Γ(0,1) = {(
√

2,2)}, Γ(5,0) = {(
√

2,2),(1,3)}.
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It is easy to check that Γ is a MVFC with τ = ln2 and F(t) = ln t, t > 0.

Finally, we observe that

η((0,1),(
√

2,2)) = η((0,1),(−
√

2,2)) =
√

3 = η(M ,N ),

but

η((0,1),(0,1)) = 0 < η((
√

2,2),(−
√

2,2)) = 2
√

2.

Thus, (M ,N ) satisfies weak P-property, but not the P-property. Therefore, all

conditions of Theorem 1 are satisfied and since ∆((0,1),Γ(0,1)) =
√

3 = η(M ,N ),
we conclude that (0,1) is a BPP of Γ.

3. CONCLUSION

We have proved our main result with a strong condition that images of the MVFC

are compact sets. Relaxation of this compactness criterion is a suggested future

work. We have shown the non-triviality of the assumption of the weak P-property

by presenting an example which does not satisfy the P-property but satisfies only the

weak P-property. The results due to Caballero et al. [3] and Zhang et al. [18] are also

extended to their multivalued analogues as a consequence of our results.
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Abstract. In this paper, firstly, we introduce the concept of a complex valued fuzzy b-metric

space, which is inspired by the work of Shukla et al. [24]. Also, we investigate some of its topo-

logical properties which strengthen this concept. Next, we establish some fixed point theorems

in the context of complex valued fuzzy b-metric spaces and give suitable examples to illustrate

the usability of the obtained main results. These results extend and generalize the corresponding

results given in the existing literature. Moreover, we provide some applications on the existence

and uniqueness of solutions for a certain type of nonlinear integral equations.
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1. INTRODUCTION

Fixed point theory plays a fundamental role in mathematics and applied sciences,

such as optimization, mathematical models and economic theories. Also, this theory

have been applied to show the existence and uniqueness of the solutions of differential

equations, integral equations and many other branches of mathematics [6, 18, 19].

A basic result in fixed point theory is the Banach contraction principle. Since the

appearance of this principle, there has been a lot of activity in this area.

In 2011, Azam et al. [4] defined the notion of a complex valued metric space which

is more general than the well-known metric space and obtained some fixed point res-

ults for a pair of mappings satisfying a rational inequality. In this line, Rouzkard et

al. [21] studied some common fixed point theorems in this space to generalize the

result of [4]. Ahmad et al. [2] investigated some common fixed point results for the

mappings satisfying rational expressions on a closed ball in such space. Later, Rao et

al. [20] gave a common fixed point theorem in complex valued b-metric spaces, gen-

eralizing both the b-metric spaces introduced by Czerwik [5] and the complex valued

metric spaces. After the establishment of this new idea, Mukhemier [14] presented

common fixed point results of two self-mappings satisfying a rational inequality in

complex valued b-metric spaces. Verma [26] studied common fixed point theorems

© 2021 Miskolc University Press
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using property (CLCS) in these spaces. In recent years, there has been a considerable

literature on fixed point theory in complex valued metric spaces [1, 15, 16, 25].

In 1965, Zadeh [28] introduced the concept of a fuzzy set theory to deal with the

unclear or inexplicit situations in daily life. Using this theory, Kramosil and Michalek

[12] defined the concept of a fuzzy metric space. Grabiec [8] gave contractive map-

pings on a fuzzy metric space and extended fixed point theorems of Banach and

Edelstein in such space. Successively, George and Veeramani [7] slightly modified

the notion of a fuzzy metric space introduced by Kramosil and Michalek [12] and

then obtained a Hausdorff topology and a first countable topology on it. In the light

of the results given in [7], Sapena [22] gave some examples and properties of fuzzy

metric spaces. Also, Shukla et al. [24] extended the concept of fuzzy metric space

to complex valued fuzzy metric space and obtained some fixed point results in this

space. In recent years, many researchers have improved and generalized fixed point

results for various contractive mappings in fuzzy metric spaces [3,9,10,13,17,23,27].

In this paper, we introduce the concept of a complex valued fuzzy b-metric space,

generalizing both the notion of a complex valued fuzzy metric space introduced by

Shukla et al. [24] and the notion of a b-metric space. Then, we give the topology in-

duced by this space and also study some properties about this topology such as Haus-

dorffness. Moreover, we present some fixed point theorems for contraction mappings

in this more general class of fuzzy metric spaces. Finally, we investigate the applicab-

ility of the obtained results to integral equations and show a concrete example which

illustrate the application part.

2. PRELIMINARIES

Consistent with Shukla, Rodriguez-Lopez and Abbas [24], the following defini-

tions and results will be needed in what follows.

C denotes the complex number system over the field of real numbers. We set

P = {(a,b) : 0 ≤ a < ∞,0 ≤ b < ∞} ⊂ C. The elements (0,0),(1,1) ∈ P are denoted

by θ and ℓ, respectively.

Define a partial ordering � on C by c1 � c2 (or, equivalently, c2 � c1) if and only

if c2−c1 ∈ P. We write c1 ≺ c2 (or, equivalently, c2 ≻ c1) to indicate Re(c1)< Re(c2)
and Im(c1)< Im(c2) (see, also, [4]). The sequence {cn} in C is said to be monotonic

with respect to � if either cn � cn+1 for all n ∈ N or cn+1 � cn for all n ∈ N.

We define the closed unit complex interval by I = {(a,b) : 0 ≤ a ≤ 1,0 ≤ b ≤ 1},

and the open unit complex interval by Iθ = {(a,b) : 0 < a < 1,0 < b < 1}. Pθ denotes

the set {(a,b) : 0 < a < ∞,0 < b < ∞}. It is obvious that for c1,c2 ∈C, c1 ≺ c2 if and

only if c2 − c1 ∈ Pθ.

For A ⊂ C, if there exists an element infA ∈ C such that it is a lower bound of A,

that is, infA � a for all a ∈ A and u � infA for every lower bound u ∈ C of A, then

infA is called the greatest lower bound or infimum of A. Similarly, we define supA,

the least upper bound or supremum of A, in usual manner.
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Remark 1 ([24]). Let cn ∈ P for all n ∈ N. Then,

(i) If the sequence {cn} is monotonic with respect to � and there exists α,β ∈
P such that α � cn � β, for all n ∈ N, then there exists a c ∈ P such that

limn→∞ cn = c.

(ii) Although the partial ordering � is not a linear (total) order on C, the pair

(C,�) is a lattice.

(iii) If S ⊂ C is such that there exist α,β ∈ C with α � s � β for all s ∈ S, then

infS and supS both exist.

Remark 2 ([24]). Let cn,c
′
n,z ∈ P, for all n ∈ N. Then,

(i) If cn � c′n � ℓ for all n ∈ N and limn→∞ cn = ℓ, then limn→∞ c′n = ℓ.

(ii) If cn � z for all n ∈ N and limn→∞ cn = c ∈ P, then c � z.

(iii) If z � cn for all n ∈ N and limn→∞ cn = c ∈ P, then z � c.

Definition 1 ([24]). Let {cn} be a sequence in P. Then, the sequence {cn} is said

to diverge to ∞ as n → ∞, and we write limn→∞ cn = ∞, if for all c ∈ P there exists an

n0 ∈ N such that c � cn for all n > n0.

Definition 2 ([24]). Let X be a nonempty set. A complex fuzzy set M is charac-

terized by a mapping with domain X and values in the closed unit complex interval

I.

Definition 3 ([24]). A binary operation ∗ : I × I → I is called a complex valued

t-norm if:

(n1) c1 ∗ c2 = c2 ∗ c1;

(n2) c1 ∗ c2 � c3 ∗ c4 whenever c1 � c3, c2 � c4;

(n3) c1 ∗ (c2 ∗ c3) = (c1 ∗ c2)∗ c3;

(n4) c∗θ = θ, c∗ ℓ= c

for all c,c1,c2,c3,c4 ∈ I.

Example 1 ([24]). Let the binary operations ∗1,∗2,∗3 : I × I → I be defined, re-

spectively, by

(1) c1 ∗1 c2 = (a1a2,b1b2), for all c1 = (a1,b1),c2 = (a2,b2) ∈ I;

(2) c1 ∗2 c2 = (min{a1,a2},min{b1,b2}), for all c1 = (a1,b1),c2 = (a2,b2) ∈ I;

(3) c1 ∗3 c2 = (max{a1 +a2 −1,0},max{b1 +b2 −1,0})

for all c1 = (a1,b1), c2 = (a2,b2) ∈ I.

Then, ∗1,∗2 and ∗3 are complex valued t-norms.

Example 2 ([24]). Define ∗4 : I × I → I as follows:

c1 ∗4 c2 =







(a1,b1), if (a2,b2) = ℓ;

(a2,b2), if (a1,b1) = ℓ;

θ, otherwise,

for all c1 = (a1,b1), c2 = (a2,b2) ∈ I. Then, ∗4 is a complex valued t-norm.
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Definition 4 ([24]). Let X be a nonempty set, ∗ a continuous complex valued

t-norm and M a complex fuzzy set on X2 ×Pθ satisfying the following conditions:

(M1) θ ≺ M(x,y,c);
(M2) M(x,y,c) = ℓ for every c ∈ Pθ if and only if x = y;

(M3) M(x,y,c) = M(y,x,c);
(M4) M(x,y,c)∗M(y,z,c′)� M(x,z,c+ c′);
(M5) M(x,y, ·) : Pθ → I is continuous

for all x,y,z ∈ X and c,c′ ∈ Pθ.

Then, the triplet (X ,M,∗) is called a complex valued fuzzy metric space and M

is called a complex valued fuzzy metric on X . A complex valued fuzzy metric can

be thought of as the degree of nearness between two points of X with respect to a

complex parameter c ∈ Pθ.

3. ON COMPLEX VALUED FUZZY b-METRIC SPACES

In this section, we present the notion of a complex valued fuzzy b-metric space

and study some of its topological aspects which strengthen this concept.

Definition 5. Let X be a nonempty set, s ≥ 1 a given real number, ∗ a continu-

ous complex valued t-norm and M a complex fuzzy set on X2 ×Pθ satisfying the

following conditions:

(bM1) θ ≺ M(x,y,c);
(bM2) M(x,y,c) = ℓ for every c ∈ Pθ if and only if x = y;

(bM3) M(x,y,c) = M(y,x,c);
(bM4) M(x,y,c)∗M(y,z,c′)� M(x,z,s(c+ c′));
(bM5) M(x,y, ·) : Pθ → I is continuous

for all x,y,z ∈ X and c,c′ ∈ Pθ.

Then, the quadruple (X ,M,∗,s) is called a complex valued fuzzy b-metric space

and M is called a complex valued fuzzy b-metric on X .

It is seen that the above definition coincides with that of the complex valued fuzzy

metric when s = 1. Thus, the class of the complex valued fuzzy b-metric spaces is

larger than that of the complex valued fuzzy metric spaces, that is, every complex

valued fuzzy metric space is a complex valued fuzzy b-metric space.

Now, we shall give the examples of complex valued fuzzy b-metric spaces induced

by the b-metric spaces.

Example 3. Let (X ,d,s) be a b-metric space. Let us consider a complex fuzzy set

M : X2 ×Pθ → I such that

M(x,y,c) =
a.b

ab+d(x,y)
ℓ,

where c = (a,b) ∈ Pθ. Then, (X ,M,∗2,s) is a complex valued fuzzy b-metric space.
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Example 4. Let (X ,d,s) be a b-metric space. Define the mapping M : X2×Pθ → I

by

M(x,y,c) = e−
d(x,y)
a+b ℓ,

where c = (a,b) ∈ Pθ. Then, (X ,M,∗2,2s) is a complex valued fuzzy b-metric space.

As shown in the following examples, every complex valued fuzzy b-metric space

may not be induced by a b-metric space.

Example 5. Let X = (3,+∞) and let M : X2 ×Pθ → I be defined by

M(x,y,c) =

{

ℓ, if x = y;

(1
x
+ 1

y
)ℓ, if x 6= y.

Then, it is easy to see that (X ,M,∗3,s) is a complex valued fuzzy b-metric space.

Moreover, there is not a b-metric d on X inducing the given complex valued fuzzy

b-metric.

Example 6. Let X = (0,+∞) be endowed with the mapping M : X2×Pθ → I given

by

M(x,y,c) =

{

( x
y
)aℓ, if x ≤ y;

( y
x
)aℓ, if y ≤ x,

where a > 0. Then, (X ,M,∗1,s) is a complex valued fuzzy b-metric space. Also,

there is not a b-metric d on X inducing the given complex valued fuzzy b-metric.

Lemma 1. Let (X ,M,∗,s) be a complex valued fuzzy b-metric space and

c1,c2 ∈ C. If c1 ≺ c2, then M(x,y,c1)� M(x,y,sc2) for all x,y ∈ X.

Proof. Let us take c1,c2 ∈ Pθ such that c1 ≺ c2. Therefore, c2 − c1 ∈ Pθ and so we

have that for all x,y ∈ X

M(x,y,c1) = ℓ∗M(x,y,c1) = M(x,x,c2 − c1)∗M(x,y,c1)� M(x,y,sc2).

�

Let (X ,M,∗,s) be a complex valued fuzzy b-metric space. An open ball BM(x,r,c)
with center x ∈ X and radius r ∈ Iθ, c ∈ Pθ is defined by

BM(x,r,c) = {y ∈ X : ℓ− r ≺ M(x,y,c)}.

Definition 6. Let (X ,M,∗,s) be a complex valued fuzzy b-metric space. Then,

(X ,M,∗,s) is called a Hausdorff space if for any two distinct points x,y ∈ X , there

exist two open balls B(x,r1,c1) and B(y,r2,c2) such that B(x,r1,c1)∩B(y,r2,c2) =∅.

Theorem 1. Every complex valued fuzzy b-metric space is a Hausdorff space.

Proof. Let (X ,M,∗,s) be a complex valued fuzzy b-metric space and x,y ∈ X with

x 6= y. Then, we have θ ≺ M(x,y,c) ≺ ℓ. Taking M(x,y,c) = r, we obtain an r1 ∈ Iθ

such that r ≺ r1 ≺ ℓ. Therefore, there exists an r2 ∈ Iθ satisfying r2∗r2 ≻ r1. It is clear

that x ∈ B(x, ℓ− r2,
c
2s
) and y ∈ B(y, ℓ− r2,

c
2s
). Also, we verify that B(x, ℓ− r2,

c
2s
)∩
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B(y, ℓ−r2,
c
2s
)=∅. Suppose instead that there is a z∈B(x, ℓ−r2,

c
2s
)∩B(y, ℓ−r2,

c
2s
).

Hence,

r ≺ r1 ≺ r2 ∗ r2 ≺ M(x,z,
c

2s
)∗M(y,z,

c

2s
)� M(x,y,c) = r

and so we get a contradiction. �

Theorem 2. Let (X ,M,∗,s) be a complex valued fuzzy b-metric space. Then, the

family

τM = {G ⊆ X : for all x ∈ G, there exist r ∈ Iθ and c ∈ Pθ such that BM(x,r,c)⊆ G}

is a topology on X.

Proof. It is enough to show that if G1,G2 ∈ τM, then G1 ∩G2 ∈ τM, since the other

axioms are readily verified. Let x ∈ G1 ∩G2. Then, there exist r1 = (a1,b1),r2 =
(a2,b2) ∈ Iθ and c1 = (m1,n1),c2 = (m2,n2) ∈ Pθ such that BM(x,r1,c1) ⊆ G1 and

BM(x,r2,c2)⊆ G2. Take

r = (min{a1,a2},min{b1,b2}) and c = (min{
m1

s
,
m2

s
},min{

n1

s
,
n2

s
}).

It is clear that r ∈ Iθ and c ∈ Pθ. Therefore, by applying Lemma 1, we get B(x,r,c)⊆
B(x,r,c1) and B(x,r,c)⊆ B(x,r,c2). Thus, we obtain B(x,r,c)⊆ G1∩G2, completing

the proof. �

Then, (X ,τM) is called the topological space induced by the complex valued fuzzy

b-metric space (X ,M,∗,s).

Example 7. (i) The complex valued fuzzy b-metric space defined in Example 5 in-

duces the discrete topological space on X since for x ∈ X , BM(x,r,c) = {x} whenever

r1 = r2 <
1
3
− 1

x
.

(ii) The complex valued fuzzy b-metric space defined in Example 6 induces the usual

topological space on X ⊂ R because

BM(x,r,c) =
(

max{x(1− r1)
1
a ,x(1− r2)

1
a },min

{ x

(1− r1)
1
a

,
x

(1− r2)
1
a

})

for x ∈ X , r ∈ Iθ and c ∈ Pθ.

Proposition 1. Let (X ,M1,∗,s) and (X ,M2,∗,s) be two complex valued fuzzy b-

metric spaces. Define the mappings M : X2 ×Pθ → I and N : X2 ×Pθ → I by

M(x,y,c) = M1(x,y,c)∗M2(x,y,c),

and

N(x,y,c) =
(

min{Re(M1(x,y,c)),Re(M2(x,y,c))},min{Im(M1(x,y,c)), Im(M2(x,y,c))}
)

.

Then, the following results hold:

(i) (X ,M,∗,s) is a complex valued fuzzy b-metric space if p∗q 6= θ with p,q 6= θ.

(ii) (X ,N,∗,s) is a complex valued fuzzy b-metric space.

(iii) τM = τN .
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Proof. (i) and (ii) are obvious.

(iii) Let G ∈ τM. Then, for all x ∈ G, there exist an r ∈ Iθ and a c ∈ Pθ such that

BM(x,r,c)⊆ G. Now, take an r′ ∈ Iθ with (ℓ− r′)∗ (ℓ− r′)≻ ℓ− r. If z ∈ BN(x,r
′,c),

then we have

ℓ−r′≺
(

min{Re(M1(x,z,c)),Re(M2(x,z,c))},min{Im(M1(x,z,c)), Im(M2(x,z,c))}
)

.

Therefore, from the fact that

ℓ− r ≺ (ℓ− r′)∗ (ℓ− r′)≺ M1(x,z,c)∗M2(x,z,c) = M(x,z,c)

it follows that z ∈ BM(x,r,c). Thus, we infer that G ∈ τN .

Conversely, let G ∈ τN . Then, for all x ∈ G, there exist an r ∈ Iθ and a c ∈ Pθ such

that BN(x,r,c)⊆ G. If z ∈ BM(x,r,c), then we have

ℓ− r ≺ M(x,z,c) = M1(x,z,c)∗M2(x,z,c).

Therefore, since M1(x,z,c) ∗M2(x,z,c) � M1(x,z,c) and M1(x,z,c) ∗M2(x,z,c) �
M2(x,z,c), we get ℓ− r ≺ N(x,z,c). Thus, z ∈ BN(x,r,c) and this implies that

G ∈ τM. �

Let (X ,d,s) be a b-metric space and τd be a topology induced by the b-metric d on

X . Then, we shall show that the topology τd coincides with the topology τM, where

(X ,M,∗,s) is deduced from the b-metric d.

Example 8. Consider Example 3. Then, we have τM = τd . Indeed, let G ∈ τM.

Then, for all x ∈ G, there exist an r = (r1,r2) ∈ Iθ and a c = (a,b) ∈ Pθ such that

BM(x,r,c)⊆ G. Let us choose a positive number h = min{ abr1

1−r1
, abr2

1−r2
}. Therefore, we

obtain Bd(x,h)⊆ G, where Bd(x,h) is an open ball with centre x and radius h for the

b-metric d and thus G ∈ τd .

On the other hand, let G ∈ τd . Then, for all x ∈ G, there exists a positive num-

ber h such that Bd(x,h) ⊆ G. Let us now take an arbitrary c = (a,b) ∈ Pθ and an

r = (r1,r2) = ( h
ab+h

, h
ab+h

) ∈ Iθ. Hence, we get BM(x,r,c)⊆ G and so that G ∈ τM.

Example 9. Let (X ,M,∗2,2s) be a complex valued fuzzy b-metric space defined

in Example 4. Then, τM = τd . Indeed, if G ∈ τM, then, for all x ∈ G, there exist

an r = (r1,r2) ∈ Iθ and a c = (a,b) ∈ Pθ such that BM(x,r,c) ⊆ G. Take a positive

number h = min{−(a+b)In(1− r1),−(a+b)In(1− r2)}. Clearly, Bd(x,h)⊆ G and

this shows that G ∈ τd .

For the reverse inclusion, let G ∈ τd . Then, for all x ∈ G, there exists a positive

number h such that Bd(x,h) ⊆ G. Let us consider an arbitrary c = (a,b) ∈ Pθ and

an r = (r1,r2) = (1− e
−h

a+b ,1− e
−h
a+b ) ∈ Iθ. Thus, it follows from BM(x,r,c) ⊆ G that

G ∈ τM.

Definition 7. Let (X ,M,∗,s) be a complex valued fuzzy b-metric space.
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(i) A sequence {xn} in X converges to x ∈ X if for every r ∈ Iθ and every c ∈ Pθ,

there exists an n0 ∈N such that, for all n > n0, ℓ− r ≺ M(xn,x,c). We denote

this by limn→∞ xn = x.

(ii) A sequence {xn} in X is said to be a Cauchy sequence in (X ,M,∗,s) if for

every c ∈ Pθ, limn→∞ infm>n M(xn,xm,c) = ℓ.

(iii) (X ,M,∗,s) is said to be a complete complex valued fuzzy b-metric space if

for every Cauchy sequence {xn} in (X ,M,∗,s), there exists an x ∈ X such

that limn→∞ xn = x.

The proofs of the following lemmas follow along similar lines as in [24] and are

therefore omitted.

Lemma 2. Let (X ,M,∗,s) be a complex valued fuzzy b-metric space. A sequence

{xn} in X converges to x ∈ X if and only if limn→∞ M(xn,x,c) = ℓ holds for all c ∈ Pθ.

Lemma 3. Let (X ,M,∗,s) be a complex valued fuzzy b-metric space. A sequence

{xn} in X is a Cauchy sequence if and only if for every r ∈ Iθ and every c ∈ Pθ, there

exists an n0 ∈ N such that, for all m,n > n0, ℓ− r ≺ M(xn,xm,c).

Example 10. Let X = [0,1]× {0} ∪ {0} × [0,1] and let d : X × X → C be the

mapping defined by

d((x,0),(y,0)) = (x− y)2(α,1)

d((0,x),(0,y)) = (x− y)2(1,β)

d((x,0),(0,y)) = d((0,y),(x,0)) = (αx2 + y2,x2 +βy2)

where α, β are fixed nonnegative real constants satisfying α 6= 1
β . Then, (X ,d,s) is a

complete complex valued b-metric space with s ≥ 2. Moreover, we define

M(u,v,c) =
ab

ab+ |d(u,v)|
ℓ

for all u,v ∈ X , c = (a,b) ∈ Pθ. Thus, one can check that (X ,M,∗2,s) is a complete

complex valued fuzzy b-metric space.

It follows from the above example that a complete complex valued fuzzy b-metric

space can be induced by a complete complex valued b-metric space.

Definition 8. Let (X ,M,∗,s) be a complex valued fuzzy b-metric space, f : X →X

be a mapping and x ∈ X . Then, the mapping f is continuous at x if for any sequence

{xn} in X , limn→∞ xn = x implies limn→∞ f xn = f x.

If f is continuous at each point x ∈ X , then we say that f is continuous on X .

4. MAIN RESULTS

Firstly, we prove the Banach Contraction Theorem in the setting of complex valued

fuzzy b-metric space.
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Theorem 3. Let (X ,M,∗,s) be a complete complex valued fuzzy b-metric space

such that, for every sequence {cn} in Pθ with limn→∞ cn = ∞, we have

lim
n→∞

inf
y∈X

M(x,y,cn) = ℓ

for all x ∈ X. Let f : X → X be a mapping satisfying

M( f x, f y,
λc

s
)� M(x,y,c) (4.1)

for all x,y ∈ X and c ∈ Pθ, where λ ∈ (0,1). Then, f has a unique fixed point in X.

Proof. We start by an arbitrary x0 ∈ X and generate a sequence {xn} in X by the

iterative process

xn = f xn−1 for all n ∈ N.

If xn = xn−1 for some n ∈ N, then xn is a fixed point of f . Consequently, assume that

xn 6= xn−1 for all n ∈ N. Now, we will prove that {xn} is a Cauchy sequence in X .

Define

Bn = {M(xn,xm,c) : m > n}

for all n ∈ N and c ∈ Pθ. Due to θ ≺ M(xn,xm,c) � ℓ, for all m ∈ N with m > n and

from Remark 1(iii), in f Bn = βn exists for all n ∈ N. Applying Lemma 1 and (4.1),

we get

M(xn,xm,c)� M(xn,xm,
sc

λ
)� M( f xn, f xm,c) = M(xn+1,xm+1,c), (4.2)

for c ∈ Pθ and m,n ∈ N with m > n. So, from the fact that

θ � βn � βn+1 � ℓ for all n ∈ N

it follows that {βn} is a monotonic sequence in P. Therefore, utilizing Remark 1(i),

we have an ℓ0 ∈ P satisfying

lim
n→∞

βn = ℓ0. (4.3)

Now, by successive application of the contractive condition (4.1), we have

M(xn+1,xm+1,c)� M(xn,xm,
sc

λ
) = M( f xn−1, f xm−1,

sc

λ
)

� M(xn−1,xm−1,
s2c

λ2
) = M( f xn−2, f xm−2,

s2c

λ2
)

� M(xn−2,xm−2,
s3c

λ3
)

� ·· · � M(x0,xm−n,
sn+1c

λn+1
),

for c ∈ Pθ and m,n ∈ N with m > n. Thus,

βn+1 = inf
m>n

M(xn+1,xm+1,c)� inf
m>n

M(x0,xm−n,
sn+1c

λn+1
)� inf

y∈X
M(x0,y,

sn+1c

λn+1
).
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Since limn→∞
sn+1c
λn+1 = ∞, by using the hypothesis along with (4.3), we obtain

ℓ0 � lim
n→∞

inf
y∈X

M(x0,y,
sn+1c

λn+1
) = ℓ,

which implies that ℓ0 = ℓ. Thus, {xn} is a Cauchy sequence in X .

Since (X ,M,∗,s) is a complete complex valued fuzzy b-metric space, by Lemma 2,

there exists a p ∈ X such that for all c ∈ Pθ,

lim
n→∞

M(xn, p,c) = ℓ. (4.4)

Next, we will show that p is the fixed point of f . Due to (bM4) and the contractive

condition (4.1), we have

M(p, f p,c)� M(p,xn+1,
c

2s
)∗M(xn+1, f p,

c

2s
)

= M(p,xn+1,
c

2s
)∗M( f xn, f p,

c

2s
)

� M(p,xn+1,
c

2s
)∗M(xn, p,

c

2λ
),

for any c ∈ Pθ. Letting the limit as n → ∞, by (4.4) and Remark 2(ii), we get

M(p, f p,c) = ℓ for all c ∈ Pθ, which gives f p = p.

To prove the uniqueness of the fixed point p, let q be another fixed point of f , that

is, there is a c ∈ Pθ with M(p,q,c) 6= ℓ. From (4.1), we obtain that

M(p,q,c) = M( f p, f q,c)� M(p,q,
sc

λ
) = M( f p, f q,

sc

λ
)

� M(p,q,
s2c

λ2
)

...

� M(p,q,
snc

λn
)

� inf
y∈X

M(p,y,
snc

λn
),

for all n ∈ N. Hence, since limn→∞
snc
λn = ∞, the above inequality turns into

M(p,q,c)� ℓ,

which gives a contradiction. Thus, we conclude that the fixed point of f is unique.

�

Now, we present an example which shows the superiority of our assertion.

Example 11. Let X = [0,1] and let M : X2 ×Pθ → I be defined by

M(x,y,c) =
ab

ab+(x− y)2
ℓ
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where c = (a,b) ∈ Pθ. Then, one can readily verify that (X ,M,∗1,s) is a complete

complex valued fuzzy b-metric space with s = 2. Moreover, following the same

procedure as in Example 3.10 of [24], we conclude that for any sequence {cn} in Pθ

with limn→∞ cn = ∞, we have limn→∞ infy∈X M(x,y,cn) = ℓ for all x ∈ X .

Now, we define a mapping f : X → X such that f x = αx2, where 0 < α < 1
4
. By a

routine calculation, we see that

M( f x, f y,
λc

2
)� M(x,y,c)

for all x,y ∈ X and c ∈ Pθ, where λ = 4α ∈ (0,1). Hence, all the conditions of

Theorem 3 are satisfied and 0 is the unique fixed point of f .

Next, we establish the following fixed point theorem that extends the Jungck’s

Theorem [11] to the setting of complex valued fuzzy b-metric spaces.

Theorem 4. Let (X ,M,∗,s) be a complete complex valued fuzzy b-metric space

such that, for every sequence {cn} in Pθ with limn→∞ cn = ∞, we have

lim
n→∞

inf
y∈X

M(x,y,cn) = ℓ

for all x ∈ X and f ,g : X → X be two mappings satisfying the following conditions:

(i) g(X)⊆ f (X),
(ii) f and g commute on X,

(iii) f is continuous on X,

(iv) M(gx,gy, λc
s
)� M( f x, f y,c) for all x,y ∈ X and c ∈ Pθ, where λ ∈ (0,1).

Then, f and g have a unique common fixed point in X.

Proof. Let x0 ∈ X . Due to g(X) ⊆ f (X), we can choose an x1 ∈ X such that

gx0 = f x1. Continuing this process, we can choose an xn ∈ X such that f xn = gxn−1.

Now, we shall show that the sequence { f xn} is a Cauchy sequence. For all n ∈N and

c ∈ Pθ, we define

Bn = {M( f xn, f xm,c) : m > n}.

Since θ ≺ M( f xn, f xm,c) � ℓ, for all m ∈ N with m > n and from Remark 1(iii) it

follows that in f Bn = βn exists for all n ∈ N. For c ∈ Pθ and m,n ∈ N with m > n, we

obtain, by Lemma 1 and the condition (iv),

M( f xn, f xm,c)� M( f xn, f xm,
sc

λ
)� M(gxn,gxm,c) = M( f xn+1, f xm+1,c).

Therefore, due to

θ � βn � βn+1 � ℓ for all n ∈ N,

{βn} is a monotonic sequence in P. So, using Remark 1(i), there exists an ℓ0 ∈ P

such that

lim
n→∞

βn = ℓ0. (4.5)
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For c ∈ Pθ and m,n ∈ N with m > n, by utilizing the condition (iv), we have

M( f xn+1, f xm+1,c) = M(gxn,gxm,c)

� M( f xn, f xm,
sc

λ
) = M(gxn−1,gxm−1,

sc

λ
)

� M( f xn−1, f xm−1,
s2c

λ2
) = M(gxn−2,gxm−2,

s2c

λ2
)

� M( f xn−2, f xm−2,
s3c

λ3
)

� ·· · � M( f x0, f xm−n,
sn+1c

λn+1
),

which gives

βn+1 = inf
m>n

M( f xn+1, f xm+1,c)

� inf
m>n

M( f x0, f xm−n,
sn+1c

λn+1
)

� inf
y∈X

M( f x0,y,
sn+1c

λn+1
).

Since limn→∞
sn+1c
λn+1 = ∞ and from the hypothesis along with (4.5) it follows that

ℓ0 � lim
n→∞

inf
y∈X

M( f x0,y,
sn+1c

λn+1
) = ℓ,

which yields ℓ0 = ℓ. Thus, { f xn} is a Cauchy sequence in X .

By completeness of X and Lemma 2, there exists a p ∈ X such that

lim
n→∞

f xn = p.

By the condition (iv), one can easily verify that continuity of f implies continu-

ity of g. Therefore, limn→∞ g f xn = gp. Since f and g commute on X , we have

limn→∞ f gxn = gp. Moreover, we know that limn→∞ gxn−1 = p and so we obtain

limn→∞ f gxn−1 = f p. According to the uniqueness of limit, we get f p = gp and

therefore f gp = ggp.

Now, repeated use of the condition (iv) gives

M(gp,ggp,c)� M( f p, f gp,
sc

λ
) = M(gp,ggp,

sc

λ
)

� ·· · � M(gp,ggp,
snc

λn
) = M(gp, f gp,

snc

λn
)

� inf
y∈X

M(gp,y,
snc

λn
).
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On taking the limit n → ∞ and applying the hypothesis we deduce M(gp,ggp,c) = ℓ,

which in turn implies that

ggp = f gp = gp.

That is, gp is a common fixed point of f and g.

Finally, we will investigate that such a point is unique. Let gp and q be two distinct

common fixed points of f and g. On using the condition (iv) with x = gp and y = q,

we find

ℓ� M(gp,q,c) = M(ggp,gq,c)

� M( f gp, f q,
sc

λ
) = M(gp,q,

sc

λ
)

...

� M(gp,q,
snc

λn
)

� inf
y∈X

M(gp,y,
snc

λn
).

Hence, taking into account limn→∞
snc
λn = ∞, we conclude that M(gp,q,c) = ℓ. Thus,

gp = q, which completes the proof. �

Now, we give the following example to illustrate the validity of Theorem 4.

Example 12. Let X = [0,1]. Define M : X2 ×Pθ → I as follows:

M(x,y,c) = e−
(x−y)2

a+b ℓ,

where c = (a,b) ∈ Pθ. Clearly, (X ,M,∗2,s) is a complete complex valued fuzzy b-

metric space with s = 4.

On the other hand, let limn→∞ cn = ∞ for any sequence {cn} in Pθ, where cn =
(an,bn). From the fact that (x− y)2 ≤ 1 for all x,y ∈ X it follows that

inf
y∈X

M(x,y,cn) = inf
y∈X

e
− (x−y)2

an+bn ℓ= e
−

supy∈X (x−y)2

an+bn ℓ� e
− 1

an+bn ℓ.

Therefore, we have

lim
n→∞

inf
y∈X

M(x,y,cn)� lim
n→∞

e
− 1

an+bn ℓ= ℓ.

Consider the mappings f ,g : X → X given by

f (x) = x and g(x) =
x

4
.

One can readily verify that g(X) ⊆ f (X) and f is continuous on X . Besides, f and

g commute on X . Furthermore, it is easy to find that the condition (iv) holds for all

x,y ∈ [0,1] with λ = 1
4
∈ (0,1).
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Thus, all of the assumptions of Theorem 4 are fulfilled and 0 ∈ X is the unique com-

mon fixed point of the involved mappings f and g.

Let (X ,M,∗,s) be a complete complex valued fuzzy b-metric space. The contrac-

tion condition for the mapping f : X → X can be changed as follows:

ℓ−M( f x, f y,c)� λ[ℓ−M(x,y,c)] (4.6)

for all x,y ∈ X and c ∈ Pθ, where λ ∈ [0,1).
Then, we demonstrate a fixed point result for this class of contraction, which is a

new generalization of the Banach contraction principle.

Theorem 5. Let (X ,M,∗,s) be a complete complex valued fuzzy b-metric space

and f : X → X be a mapping satisfying the contraction condition (4.6). Then, f has

a unique fixed point in X.

Proof. Let x0 be an arbitrary element of X . By induction, we can construct a se-

quence {xn} in X such that xn = f xn−1 for all n ∈N. Following the proof of Theorem

3.1 in [24], we observe that the sequence {xn} is a Cauchy sequence in X and con-

verges to some p ∈ X . We shall show that p is a fixed point of f . By the contractive

condition (4.6), we have

ℓ−M( f xn, f p,c)� λ[ℓ−M(xn, p,c)]

for all n ∈ N and c ∈ Pθ. The above inequality shows that

ℓ(1−λ)+λM(xn, p,c)� M( f xn, f p,c) (4.7)

for all n ∈ N and c ∈ Pθ. Therefore,

M(p, f p,c)� M(p,xn+1,
c

2s
)∗M(xn+1, f p,

c

2s
)

= M(p,xn+1,
c

2s
)∗M( f xn, f p,

c

2s
),

for any c ∈ Pθ. Making the limit as n → ∞, from (4.7) and Remark 2(ii), we deduce

that M(p, f p,c) = ℓ for all c ∈ Pθ, which yields f p = p.

To investigate the uniqueness of the fixed point of f , suppose that there exists

another q ∈ X such that f (q) = q. Then, there is a c ∈ Pθ satisfying M(p,q,c) 6= ℓ.

For this c, by virtue of (4.6), we have

ℓ−M(p,q,c) = ℓ−M( f p, f q,c)� λ[ℓ−M(p,q,c)].

Since M(p,q,c) 6= ℓ, we obtain Re(M(p,q,c)) 6= 1 or Im(M(p,q,c)) 6= 1. Let

Re(M(p,q,c)) 6= 1. Therefore, we get

1−Re(M(p,q,c))≤ λ(1−Re(M(p,q,c)))< 1−Re(M(p,q,c)),

which leads to a contradiction. The other case is similar to this one and so we skip

the details. Thus, M(p,q,c) = ℓ for all c ∈ Pθ and the proof is concluded. �

The following example validates the aforesaid theorem.
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Example 13. Let X = [0,1] and let M : X2 ×Pθ → I be given by the rule

M(x,y,c) = ℓ−
(x− y)2

1+ab
ℓ,

where c = (a,b) ∈ Pθ. Then, (X ,M,∗4,s) is a complete complex valued fuzzy b-

metric space. Define the mapping

f : X → X , f x =
x2

4
.

Therefore, we have
( f x− f y)2

1+ab
ℓ� λ

(

(x− y)2

1+ab
ℓ

)

,

where λ ∈ [1
4
,1). Hence, we conclude that (4.6) holds, so all the required hypotheses

of Theorem 5 are satisfied, and thus we deduce the existence and uniqueness of the

fixed point of f . Here, 0 is the unique fixed point of f .

Corollary 1. Let (X ,M,∗,s) be a complete complex valued fuzzy b-metric space

and let f : X → X be a mapping satisfying

ℓ−M( f nx, f ny,c)� λ[ℓ−M(x,y,c)]

for all x,y ∈ X and c ∈ Pθ, where λ ∈ [0,1). Then, f has a unique fixed point in X

(Here, f n is the nth iterate of f ).

Proof. By Theorem 5, we get a unique x ∈ X such that f nx = x. From the fact that

f n f x = f f nx = f x and from uniqueness, it follows that f x = x. This shows that f has

a unique fixed point in X . �

5. APPLICATIONS TO EXISTENCE OF SOLUTIONS OF INTEGRAL EQUATIONS

In this section, we study the existence theorem for a solution of the following

integral equation by using our main results in the previous section:

x(t) = ϑ(t)+β

∫ 1

0
ξ(t,s)ϕ(s,x(s))ds, t ∈ [0,1], (5.1)

where

(i) ϑ : [0,1]→ R is continuous;

(ii) ϕ : [0,1]×R→R is continuous, ϕ(t,x)≥ 0 and there exists a λ ∈ [0,1) such

that

|ϕ(t,x)−ϕ(t,y)| ≤ λ|x− y|,

for all x,y ∈ R;

(iii) ξ : [0,1]× [0,1]→R is continuous at t ∈ [0,1] for all s∈ [0,1] and measurable

at s ∈ [0,1] for all t ∈ [0,1]. Also, ξ(t,s)≥ 0 and
∫ 1

0 ξ(t,s)ds ≤ L;

(iv) λ2L2β2 ≤ 1
2
.

Now, we prove the following result.
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Theorem 6. Suppose that the conditions (i)-(iv) hold. Then, the integral equation

(5.1) has one and only one solution in C([0,1],R), where C([0,1],R) is the set of all

continuous real valued functions on [0,1] .

Proof. Let X =C([0,1],R) and let us define a mapping f : X → X by

f x(t) = ϑ(t)+β

∫ 1

0
ξ(t,s)ϕ(s,x(s))ds

for all x ∈ X and for all t ∈ [0,1]. Now, we have to show that the mapping f satisfies

all conditions of Theorem 5. Define a mapping M : X2 ×Pθ → I by

M(x,y,c) = ℓ− sup
t∈[0,1]

(

x(t)− y(t)
)2

eab
ℓ

where c = (a,b) ∈ Pθ. Clearly, (X ,M,∗4,s) is a complete complex valued fuzzy b-

metric space.

Moreover, for all x,y ∈ X and t ∈ [0,1], we have

| f x(t)− f y(t)|= β
∣

∣

∫ 1

0
ξ(t,s)ϕ

(

s,x(s)
)

−ξ(t,s)ϕ
(

s,y(s)
)

ds
∣

∣

≤ β

∫ 1

0
ξ(t,s)

∣

∣ϕ
(

s,x(s)
)

−ϕ
(

s,y(s)
)∣

∣ds

≤ β

∫ 1

0
ξ(t,s)λ|x(s)− y(s)|ds

≤ βLλ sup
t∈[0,1]

|x(t)− y(t)|.

From the fact that

sup
t∈[0,1]

| f x(t)− f y(t)| ≤ βLλ sup
t∈[0,1]

|x(t)− y(t)|

it follows that

sup
t∈[0,1]

| f x(t)− f y(t)|2

eab
≤ β2L2λ2 sup

t∈[0,1]

|x(t)− y(t)|2

eab

≤
1

2
sup

t∈[0,1]

|x(t)− y(t)|2

eab
.

This proves that the mapping f satisfy the contractive condition (4.6) appearing in

Theorem 5, and hence f has a unique fixed point in C([0,1],R), that is, the integral

equation (5.1) has a unique solution in C([0,1],R). �

Next, we give an example of an integral equation and establish the existence of its

solutions by using Theorem 6.
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Example 14. Consider the following integral equation

x(t) =
1

1+ t
+2

∫ 1

0

s2

t2 +2
.
|cosx(s)|

5es
ds, t ∈ [0,1]. (5.2)

It is seen that the above equation is of the form (5.1), for

β = 2, ϑ(t) =
1

1+ t
, ξ(t,s) =

s2

t2 +2
, ϕ(t,x) =

|cosx|

5et
.

Clearly, the mapping ϕ is continuous on [0,1]×R and we get

|ϕ(t,x)−ϕ(t,y)|=
1

5et
||cosx|− |cosy||

≤
1

5et
|cosx− cosy|

≤
1

5
|cosx− cosy|

≤
1

5
|x− y|

for all x,y ∈ R. Therefore, ϕ satisfies the condition (ii) of the integral equation (5.1)

with λ = 1
5
. One can readily check that the mapping ϑ is continuous and in view of

∫ 1

0
ξ(t,s)ds =

∫ 1

0

s2

t2 +2
ds =

1

t2 +2
.
1

3
≤

1

6
= L,

the mapping ξ satisfies the condition (iii). Also, we have

λ2β2L2 ≤
1

2
.

So, all the hypotheses (i)-(iv) are fulfilled. Thus, applying the Theorem 6, we con-

clude that the integral equation (5.2) has a unique solution in C([0,1],R).
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[4] A. Azam, B. Fisher, and M. Khan, “Common fixed point theorems in complex valued

metric spaces,” Numer. Funct. Anal. Optim., vol. 32, no. 3, pp. 243–253, 2011, doi:

10.1080/01630563.2011.533046.

[5] S. Czerwik, “Contraction mappings in b-metric spaces,” Acta mathematica et informatica uni-

versitatis ostraviensis, vol. 1, no. 1, pp. 5–11, 1993.

[6] B. C. Dhage, “Condensing mappings and applications to existence theorems for common solution

of differential equations,” Bull. Korean Math. Soc., vol. 36, no. 3, pp. 565–578, 1999.

[7] A. George and P. Veeramani, “On some results of analysis for fuzzy metric spaces,” Fuzzy Sets

Syst., vol. 90, no. 3, pp. 365–368, 1997, doi: 10.1016/S0165-0114(96)00207-2.

[8] M. Grabiec, “Fixed points in fuzzy metric spaces,” Fuzzy Sets Syst., vol. 27, no. 3, pp. 385–389,

1988, doi: 10.1016/0165-0114(88)90064-4.
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İzzettin Demir

Duzce University, Faculty of Science and Arts, Department of Mathematics, 81620 Duzce, Turkey

E-mail address: izzettindemir@duzce.edu.tr



Miskolc Mathematical Notes HU e-ISSN 1787-2413

Vol. 22 (2021), No. 1, pp. 173–192 DOI: 10.18514/MMN.2021.3377

INVERSE PROBLEM FOR SINGULAR DIFFUSION OPERATOR

ABDULLAH ERGÜN
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Abstract. In this study, singular diffusion operator with jump conditions is considered. Integ-

ral representations have been derived for solutions that satisfy boundary conditions and jump

conditions. Some properties of eigenvalues and eigenfunctions are investigated. Asymtotic rep-

resentation of eigenvalues and eigenfunctions have been obtained. Reconstruction of the singular

diffusion operator have been shown by the Weyl function.
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1. INTRODUCTION

Let’s define the following boundary value problem which will be denoted by L in

the sequel all the paper

l (y) :=−y′′+[2λp(x)+q(x)]y = λ2δ(x)y, x ∈ [0,π]/{p1, p2} (1.1)

with the boundary conditions

y′ (0) = 0, y(π) = 0 (1.2)

and the jump conditions

y(p1 +0) = α1y(p1 −0) , (1.3)

y′ (p1 +0) = β1y′ (p1 −0)+ iλγ1y(p1 −0) , (1.4)

y(p2 +0) = α2y(p2 −0) , (1.5)

y′ (p2 +0) = β2y′ (p2 −0)+ iλγ2y(p2 −0) , (1.6)

where λ is a spectral parameter, q(x) ∈ L2 [0,π], p(x) ∈ W 1
2 [0,π], p1, p2 ∈ (0,π),

p1 < p2, |α1 −1|2 + γ2
1 6= 0, |α2 −1|2 + γ2 6= 0,

(
βi =

1
αi
(i = 1,2)

)
and

δ(x) =





1 x ∈ (0, p1) ;

α2 x ∈ (p1, p2) ;

β2 x ∈ (p2,π) ;

to be α > 0, α 6= 1, β > 0, β 6= 1 real numbers.

© 2021 Miskolc University Press
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Direct and inverse problems are important in mathematics, physics and engineer-

ing. The inverse problem is called the reconstruction of the operator whose spec-

tral characteristics are given in sequences. For example; to learn the distribution of

density in the nonhomogeneous arc according to the wave lengths in mechanics and

finding the field potentials according to scattering data in the quantum physics are

examples of inverse problems. The first study on inverse problems for differential

equations was made by Ambartsumyan in [25]. A significant study in the spectral

theory of the singular differential operators was carried out by Levitan in [4]. An im-

portant method in the solution of inverse problems is the transformation operators. In

[14], Guseinov studied the regular differential equation and the direct spectral prob-

lem of the operator under certain initial conditions. In recent years, Weyl function has

frequently been used to solve inverse problems. The Weyl function was introduced

by H. Weyl in 1910 in the literature. Many studies have been made on direct or in-

verse problems [1–28]. The solution of discontinuous boundary value problem can be

given as an example of concrete problem of mathematical physics. Boundary value

problems with discontinuous coefficients are important for applied mathematics and

applied sciences.

In [17], Koyunbakan and Panakhov proved that the potential function can be de-

termined on
[

π
2
,π
]
while it is known on

[
0, π

2

]
by single spectrum in [12]. In [26],

Yang showed that can be determined uniquely diffusion operator from nodal data.

2. PRELIMINARIES

Let φ(x,λ), ψ(x,λ) be solutions of (1.1) respectively under the boundary condi-

tions

φ(0,λ) = 1, φ′ (0,λ) = 0

ψ(π,λ) = 0, ψ′ (π,λ) = 1

and discontinuity conditions (1.3)− (1.6), where Q(t) = 2λp(t)+q(t) .
It is obvious that the function φ(x,λ) is similar to [8] satisfies the following integral

equations if 0 ≤ x < p1:

φ(x,λ) = eiλx +
1

λ

∫ x

0
sinλ(x− t)Q(t)y(t,λ)dt, (2.1)

if p1 < x < p2:

φ(x,λ) =β+
1 eiλς+(x)+β−

1 eiλς−(x)+
γ1

2α
eiλς+(x)−

γ1

2α
eiλς−(x)

+β+
1

∫ p1

0

sinλ(ς+ (x)− t)

λ
J (t)y(t,λ)dt

+β−
1

∫ p1

0

sinλ(ς− (x)− t)

λ
J (t)y(t,λ)dt (2.2)
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− i
γ1

2α

∫ p1

0

cosλ(ς+ (x)− t)

λ
J (t)y(t,λ)dt

+ i
γ1

2α

∫ p1

0

cosλ(ς− (x)− t)

λ
J (t)y(t,λ)dt

+
∫ x

p1

sinλ(x− t)

λ
J (t)y(t,λ)dt,

if p2 < x ≤ π:

φ(x,λ) =ξ+eiλb+(x)+ξ−eiλb−(x)+ϑ+eiλs+(x)+ϑ−eiλs−(x)

+

(
β+

1 β+
2 +

γ1γ2

4αβ

)∫ p1

0

sinλ(b+ (x)− t)

λ
J (t)y(t,λ)dt

+

(
β+

1 β−
2 −

γ1γ2

4αβ

)∫ p1

0

sinλ(s+ (x)− t)

λ
J (t)y(t,λ)dt

+

(
β−

1 β−
2 −

γ1γ2

4αβ

)∫ p1

0

sinλ(b− (x)− t)

λ
J (t)y(t,λ)dt

+

(
β−

1 β+
2 +

γ1γ2

4αβ

)∫ p2

p1

sinλ(s− (x)− t)

λ
J (t)y(t,λ)dt

− i

(
γ1β+

2

2α
+

γ2β+
1

2β

)∫ p1

0

cosλ(b+ (x)− t)

λ
J (t)y(t,λ)dt

− i

(
γ1β−

2

2α
−

γ2β+
1

2β

)∫ p1

0

cosλ(s+ (x)− t)

λ
J (t)y(t,λ)dt (2.3)

+ i

(
γ1β−

2

2α
−

γ2β−
1

2β

)∫ p1

0

cosλ(b− (x)− t)

λ
J (t)y(t,λ)dt

+ i

(
γ1β+

2

2α
+

γ2β−
1

2β

)∫ p2

p1

cosλ(s− (x)− t)

λ
J (t)y(t,λ)dt

+β+
2

∫ p2

p1

sinλ(βx−βp2 +αp2 −αt)

λ
J (t)y(t,λ)dt

−β−
2

∫ p2

p1

sinλ(βx−βp2 −αp2 +αt)

λ
J (t)y(t,λ)dt

− i
γ2

2β

∫ p2

p1

cosλ(βx−βp2 +αp2 −αt)

λ
J (t)y(t,λ)dt

+ i
γ2

2β

∫ p2

p1

cosλ(βx−βp2 −αp2 +αt)

λ
J (t)y(t,λ)dt

+
∫ x

p2

sinλ(x− t)

λ
J (t)y(t,λ)dt,
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φ(x,λ) =ξ+eiλb+(x)+ξ−eiλb−(x)+ϑ+eiλs+(x)+ϑ−eiλs−(x)

+

(
β+

1 β+
2 +

γ1γ2

4αβ

)∫ p1

0

sinλ(b+ (x)− t)

λ
J (t)y(t,λ)dt

+

(
β+

1 β−
2 −

γ1γ2

4αβ

)∫ p1

0

sinλ(s+ (x)− t)

λ
J (t)y(t,λ)dt

+

(
β−

1 β−
2 −

γ1γ2

4αβ

)∫ p1

0

sinλ(b− (x)− t)

λ
J (t)y(t,λ)dt

+

(
β−

1 β+
2 +

γ1γ2

4αβ

)∫ p2

p1

sinλ(s− (x)− t)

λ
J (t)y(t,λ)dt

− i

(
γ1β+

2

2α
+

γ2β+
1

2β

)∫ p1

0

cosλ(b+ (x)− t)

λ
J (t)y(t,λ)dt

− i

(
γ1β−

2

2α
−

γ2β+
1

2β

)∫ p1

0

cosλ(s+ (x)− t)

λ
J (t)y(t,λ)dt

+ i

(
γ1β−

2

2α
−

γ2β−
1

2β

)∫ p1

0

cosλ(b− (x)− t)

λ
J (t)y(t,λ)dt

+ i

(
γ1β+

2

2α
+

γ2β−
1

2β

)∫ p2

p1

cosλ(s− (x)− t)

λ
J (t)y(t,λ)dt

+β+
2

∫ p2

p1

sinλ(βx−βp2 +αp2 −αt)

λ
J (t)y(t,λ)dt

−β−
2

∫ p2

p1

sinλ(βx−βp2 −αp2 +αt)

λ
J (t)y(t,λ)dt

− i
γ2

2β

∫ p2

p1

cosλ(βx−βp2 +αp2 −αt)

λ
J (t)y(t,λ)dt

+ i
γ2

2β

∫ p2

p1

cosλ(βx−βp2 −αp2 +αt)

λ
J (t)y(t,λ)dt

+
∫ x

p2

sinλ(x− t)

λ
J (t)y(t,λ)dt,

(2.4)

and it is obvious that the function ψ(x,λ) satisfies the following integral equations if

p2 < x ≤ π:

ψ(x,λ) =
sinλβ(x−π)

λβ
+

∫ π

x

sinλβ(x− t)

λβ
Q(t)y(t,λ)dt, (2.5)

if p1 < x < p2:

ψ(x,λ) =

(
αβ2 − γ2

2αβ2λα2β
−

1

2αβ2λ

)
e−iλ(β(p2−π)+α(p2−x))
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+

(
αβ2 + γ2

2αβ2λα2β
+

1

2αβ2λ

)
e−iλ(β(p2−π)−α(p2−x))

−

(
αβ2 − γ2

2αβ2

−
1

2

)∫ p2

p1

sinλ(x− p2 +αt −αp2)

λα
Q(t)y(t,λ)dt

+

(
αβ2 − γ2

2αβ2

+
1

2

)∫ p2

p1

sinλ(x− p2 −αt +αp2)

λα
Q(t)y(t,λ)dt (2.6)

+
1

2

(
αβ2 − γ2

αβ2α2β
−

1

αβ2

)∫ π

p2

sinλ(x− p2 +β(t − p2))

λβ
Q(t)y(t,λ)dt

−
1

2

(
αβ2 − γ2

αβ2α2β
−

1

αβ2

)∫ π

p2

sinλ(x− p2 −β(t − p2))

λβ
Q(t)y(t,λ)dt

+
γ2

2αβ2λ

∫ p2

p1

cosλ(x− p2 +αt −αp2)

λα
Q(t)y(t,λ)dt

−
γ2

2αβ2λ

∫ p2

p1

cosλ(x− p2 −αt +αp2)

λα
Q(t)y(t,λ)dt

+
∫ x

p1

sinλα(x− t)

λα
Q(t)y(t,λ)dt,

if 0 ≤ x < p1:

ψ(x,λ) =

(
ξ++

α

2β1

)
η−e−iλ(b−(π)+x)+

(
ξ−−

α

2β1

)
η+e−iλ(b+(π)+x)

+

(
ξ−+

α

2β1

)
η−e−iλ(s+(π)+x)+

(
ξ−−

α

2β1

)
η+e−iλ(s−(π)+x)

+

(
1

2α1

−
µ+

4β1

)∫ π

a2

sinλ(x− p2 −βt +βp2)

λ
Q(t)y(t,λ)dt

−

(
1

2α1

+
µ+

4β1

)∫ π

p2

sinλ(x−2p1 + p2 +βt −βp2)

λ
Q(t)y(t,λ)dt

+

(
1

2α1

+
µ−

4β1

)∫ π

p2

sinλ(x− p2 −βt +βp2)

λ
Q(t)y(t,λ)dt (2.7)

−

(
1

2α1

−
µ−

4β1

)∫ π

p2

sinλ(x−2p1 + p2 −βt +βp2)

λ
Q(t)y(t,λ)dt

+
iγ1

2α1β1

∫ π

p2

cosλ(x− p2 +βt −βp2)

λ
Q(t)y(t,λ)dt

−
iγ1

2α1β1

∫ π

p2

cosλ(x−2p1 + p2 −βt +βp2)

λ
Q(t)y(t,λ)dt

−
iγ1

2α1β1

∫ π

p2

cosλ(x− p2 −βt +βp2)

λ
Q(t)y(t,λ)dt
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+
iγ1

2α1β1

∫ π

p2

cosλ(x−2p1 + p2 +βt −βp2)

λ
Q(t)y(t,λ)dt

+A

∫ p2

p1

sinλ(x− p2 +αt −αp2)

λα
Q(t)y(t,λ)dt

+A

∫ p2

p1

sinλ(x−2p1 + p2 −αt +αp2)

λα
Q(t)y(t,λ)dt

+B

∫ p2

p1

cosλ(x− p2 +αt −αp2)

λα
Q(t)y(t,λ)dt

+B

∫ p2

p1

cosλ(x−2p1 + p2 −αt +αp2)

λα

+C

∫ p2

p1

sinλ(x− p2 −αt +αp2)

λα
Q(t)y(t,λ)dt

+C

∫ p2

p1

sinλ(x−2p1 + p2 +αt −αp2)

λα
Q(t)y(t,λ)dt

+D

∫ p2

p1

cosλ(x− p2 −αt +αp2)

λα
Q(t)y(t,λ)dt

+D

∫ p2

p1

cosλ(x−2p1 + p2 +αt −αp2)

λα
Q(t)y(t,λ)dt

+
∫ x

0

sinλ(x− t)

λ
Q(t)y(t,λ)dt,

where

ς± (x) =±αx∓αp1 + p1, β±
1 =

1

2

(
α1 ±

β1

α

)
,

b± (x) = βx−βp2 +µ± (p2) , s± (x) =−βx+βp2 +µ± (p2) ,

β∓
2 =

1

2

(
α2 ∓

αβ2

β

)
, ξ∓ =

1

2

(
β∓

1 ∓
γ1

2α

)(
α2 ∓

αβ2

β
+

γ2

β

)
,

ϑ∓ =
1

2

(
β∓

1 ∓
γ1

2α

)(
α2 ±

αβ2

β
−

γ2

β

)
, µ± =

(
αβ2 ± γ2

2αβ2λα2β
±

1

2αβ2λ

)
,

A =

[(
iγ1γ2

4λαα1β1β2

+

(
−1

2α1

−
1

4β1

)(
αβ2 − γ2

2αβ2

−
1

2

))]
,

B =

[
−iγ1

2α1β1

(
αβ2 − γ2

2αβ2

−
1

2

)
+

1

2α1

γ2

2αβ2λ

]
,

C =

[(
1

2α1

+
1

2β1

)(
αβ2 − γ2

2αβ2

+
1

2

)
+

iγ1γ2

4λαα1β1β2

]
,
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D =

[
iγ1

2α1β1

(
αβ2 − γ2

2αβ2

+
1

2

)
−

γ2

(
1−α2

)

4α1αβ2λ

]
.

Theorem 1. If p(x)∈W 1
2 (0,π) and q(x)∈ L2 (0,π); yυ (x,λ) be solutions of (1.1),

that satisfies conditions (1.2)− (1.6), has the form

yυ (x,λ) = y0υ (x,λ)+
∫ x

−x
Kυ (x, t)eiλtdt

(
υ = 1,3

)

where

y0υ (x,λ) =





R0 (x)eiλx 0 ≤ x < p1;

R1 (x)eiλς+(x)+R2 (x)eiλς−(x) p1 < x < p2;

R3 (x)eiλb+(x)+R4 (x)eiλb−(x)

+R5 (x)eiλs+(x)+R6 (x)eiλs−(x) p2 < x ≤ π;

R0 (x) = e−i
∫ x

0 p(x)dx, R1 (x) =
(

β+
1 +

γ1

2α

)
R0 (p1)e

− i
α

∫ x
p1

p(t)dt ,

R2 (x) =
(

β−
1 −

γ1

2α

)
R0 (p1)e

i
α

∫ x
p1

p(t)dt , R3 (x) =

(
β+

2 +
γ2

2β

)
R1 (p2)e

− i
β

∫ x
p2

p(t)dt
,

R4 (x) =

(
β−

2 +
γ2

2β

)
R2 (p2)e

− i
β

∫ x
p2

p(t)dt
, R5 (x) =

(
β−

2 −
γ2

2β

)
R1 (p2)e

i
β

∫ x
p2

p(t)dt
,

R6 (x) =

(
β+

2 −
γ2

2β

)
R2 (p2)e

i
β

∫ x
p2

p(t)dt
.

and ϖ(x) =
∫ x

0 (2 |p(t)|+(x− t) |q(t)|)dt and the functions Kυ (x, t) satisfies the in-

equality ∫ x

−x
|Kυ (x,λ)|dt ≤ ecυϖ(x)−1

with

c1 = 1, c2 =

(
β+

1 +
∣∣β−

1

∣∣+ γ1

α
+

2

α

)
,

c3 =

(
α2

(
β+

1 +
∣∣β−

1

∣∣)+ 1

α

(
β+

2 +
∣∣β−

2

∣∣)+ β+

β
+

γ2

β

)
,

where

ς± (x) =±αx∓αp1 + p1, β±
1 =

1

2

(
α1 ±

β1

α

)
,

b± (x) = βx−βp2 + ς± (p2) , s± (x) =−βx+βp2 + ς± (p2) ,

β∓
2 =

1

2

(
α2 ∓

αβ2

β

)
, ξ∓ =

1

2

(
β∓

1 ∓
γ1

2α

)(
α2 ∓

αβ2

β
+

γ2

β

)
,

ϑ∓ =
1

2

(
β∓

1 ∓
γ1

2α

)(
α2 ±

αβ2

β
−

γ2

β

)
, β± =

1

2

(
1±

1

β

)
.
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The proof is done as in [8].

Theorem 2. Let p(x) ∈ W 1
2 (0,π) and q(x) ∈ L2 (0,π). The functions A(x, t),

B(x, t), whose first order partial derivatives, are summable on [0,π], for each

x ∈ [0,π] such that representation

ϕ(x,λ) = ϕ0 (x,λ)+
∫ x

0
A(x, t)cosλtdt +

∫ x

0
B(x, t)sinλtdt

is satisfied.

If p1 < x < p2:

ϕ(x,λ) =
(

β+
1 +

γ1

2α

)
R0 (p1)cos

[
λς+ (x)−

1

α

∫ x

p1

p(t)dt

]

+
(

β−
1 −

γ1

2α

)
R0 (p1)cos

[
λς− (x)+

1

α

∫ x

p1

p(t)dt

]

+
∫ ς+(x)

0
A(x, t)cosλtdt +

∫ ς+(x)

0
B(x, t)sinλtdt,

(2.8)

where β±
1 = 1

2

(
α1 ±

β1

α

)
. If p2 < x ≤ π:

ϕ(x,λ) =

(
β+

2 +
γ2

2β

)
R1 (p2)cos

[
λb+ (x)−

1

β

∫ x

p2

p(t)dt

]

+

(
β−

2 +
γ2

2β

)
R2 (p2)cos

[
λb− (x)−

1

β

∫ x

p2

p(t)dt

]

+

(
β−

2 −
γ2

2β

)
R1 (p2)cos

[
λs+ (x)+

1

β

∫ x

p2

p(t)dt

]

+

(
β+

2 −
γ2

2β

)
R2 (p2)cos

[
λs− (x)+

1

β

∫ x

p2

p(t)dt

]

+
∫ x

p2

A(x, t)cosλtdt +
∫ x

p2

B(x, t)sinλtdt,

(2.9)

where β∓
2 = 1

2

(
α2 ∓

αβ2

β

)
. Moreover, the equations

A
(
x,ς+ (x)

)
cos

β(x)

α
+B

(
x,ς+ (x)

)
sin

β(x)

α

=
(

β+
1 +

γ1

2α

) R0 (p1)

2α

∫ x

0

(
q(t)+

p2 (t)

α2

)
dt (2.10)

A
(
x,ς+ (x)

)
sin

β(x)

α
−B

(
x,ς+ (x)

)
cos

β(x)

α

=
(

β+
1 +

γ1

2α

) R0 (p1)

2α2
(p(x)− p(0)) (2.11)
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A
(
x,ς− (x)+0

)
−A

(
x,ς− (x)−0

)
=
(

β−
1 −

γ1

2α

) R0 (p1)

2α2
sin

β(x)

α
(p(x)− p(0))

+
(

β−
1 −

γ1

2α

) R0 (p1)

2α
cos

β(x)

α

∫ x

0

(
q(t)+

p2 (t)

α2

)
dt (2.12)

B
(
x,ς− (x)+0

)
−B

(
x,ς− (x)−0

)
=
(

β−
1 −

γ1

2α

) R0 (p1)

2α2
cos

β(x)

α
(p(x)− p(0))

−
(

β−
1 −

γ1

2α

) R0 (p1)

2α
sin

β(x)

α

∫ x

0

(
q(t)+

p2 (t)

α2

)
dt (2.13)

B(x,0) =
∂A(x, t)

∂t

∣∣∣∣
t=0

= 0 (2.14)

A
(
x,s− (x)+0

)
−A

(
x,s− (x)−0

)
=−

(
β−

2 −
γ2

2β

)
R2 (p2)

2β2
(p(x)− p(0))sin

ω(x)

β

−

(
β−

2 −
γ2

2β

)
R2 (p2)

2β

∫ x

0

(
q(t)+

p2 (t)

β2

)
dt cos

ω(x)

β
(2.15)

B
(
x,s− (x)+0

)
−B

(
x,s− (x)−0

)
=−

(
β−

2 −
γ2

2β

)
R2 (p2)

2β2
(p(x)− p(0)) cos

ω(x)

β

+

(
β−

2 −
γ2

2β

)
R2 (p2)

2β

∫ x

0

(
q(t)+

p2 (t)

β2

)
dt sin

ω(x)

β
(2.16)

A
(
x,s+ (x)+0

)
−A

(
x,s+ (x)−0

)
=−

(
β−

2 −
γ2

2β

)
R1 (p2)

2β2
(p(x)− p(0)) sin

ω(x)

β

−

(
β−

2 −
γ2

2β

)
R1 (p2)

2β

∫ x

0

(
q(t)+

p2 (t)

β2

)
dt cos

ω(x)

β
(2.17)

B
(
x,s+ (x)+0

)
−B

(
x,s+ (x)−0

)
=−

(
β−

2 −
γ2

2β

)
R1 (p2)

2β2
(p(x)− p(0))cos

ω(x)

β

+

(
β−

2 −
γ2

2β

)
R1 (p2)

2β

∫ x

0

(
q(t)+

p2 (t)

β2

)
dt sin

ω(x)

β
(2.18)

A
(
x,b− (x)+0

)
−A

(
x,b− (x)−0

)
=−

(
β−

2 +
γ2

2β

)
R2 (p2)

2β2
(p(x)− p(0)) sin

ω(x)

β

−

(
β−

2 −
γ2

2β

)
R2 (p2)

2β

∫ x

0

(
q(t)+

p2 (t)

β2

)
dt cos

ω(x)

β
(2.19)
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B
(
x,b− (x)+0

)
−B

(
x,b− (x)−0

)
=

(
β−

2 +
γ2

2β

)
R2 (p2)

2β2
(p(x)− p(0)) cos

ω(x)

β

−

(
β−

2 −
γ2

2β

)
R2 (p2)

2β

∫ x

0

(
q(t)+

p2 (t)

β2

)
dt sin

ω(x)

β
(2.20)

A
(
x,b+ (x)+0

)
−A

(
x,b+ (x)−0

)
=−

(
β+

2 +
γ2

2β

)
R1 (p2)

2β2
(p(x)− p(0)) sin

ω(x)

β

−

(
β+

2 +
γ2

2β

)
R1 (p2)

2β

∫ x

0

(
q(t)+

p2 (t)

β2

)
dt cos

ω(x)

β
(2.21)

B
(
x,b+ (x)+0

)
−B

(
x,b+ (x)−0

)
=

(
β+

2 +
γ2

2β

)
R1 (p2)

2β2
(p(x)− p(0)) cos

ω(x)

β

−

(
β+

2 +
γ2

2β

)
R1 (p2)

2β

∫ x

0

(
q(t)+

p2 (t)

β2

)
dt sin

ω(x)

β
(2.22)

are held. If in addition we suppose that p(x) ∈W 2
2 (0,π) , q(x) ∈W 1

2 (0,π), the func-

tions A(x, t), B(x, t) the following system are provided.




∂2A(x, t)

∂x2
−q(x)A(x, t)−2p(x)

∂B(x, t)

∂t
= η

∂2A(x, t)

∂t2

∂2B(x, t)

∂x2
−q(x)B(x, t)+2p(x)

∂A(x, t)

∂t
= η

∂2B(x, t)

∂t2

(2.23)

where

η =

{
α2 p1 < x < p2;

β2 p2 < x < π.

The proof is done as in [7].

Conversely, if the second order derivatives of functions A(x, t), B(x, t) are sum-

mable on [0,π] and A(x, t), B(x, t) provides (2.23) system and equations (2.10)−
(2.22), then the function ϕ(x,λ) which is defined by (1.3)− (1.6) is a solution of

(1.1) satisfying boundary conditions (1.2).

Definition 1. If there is a nontrivial solution y0 (x) that provides the (1.2) condi-

tions for the (1.1) problem, then λ0 is called eigenvalue. Additionally, y0 (x) is called

the eigenfunction of the problem corresponding to the eigenvalue λ0.

Let us assume that q(x) satisfies the following conditions.∫ π

0

{∣∣y′ (x)
∣∣2 +q(x) |y(x)|2

}
dx > 0. (2.24)

For all y(x) ∈W 2
2 [0,π] such that y(x) 6= 0 and y′ (0) · y(0)− y′ (π) · y(π) = 0.

Lemma 1. The eigenvalues of the boundary value problem L are real.
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Proof. We set l (y) := [−y′′+q(x)y]. Integration by part yields

(l (y) ,y) =
∫ π

0
l (y) · y(x)dx =

∫ π

0

{∣∣y′ (x)
∣∣2 +q(x) |y(x)|2

}
dx. (2.25)

Since condition (2.24) holds, it follow that (l (y) ,y)> 0. �

Lemma 2. Eigenfunction corresponding to different eigenvalues of problem L are

orthogonal in the sense of the equality

(λn +λk)
∫ π

0
δ(x)y(x,λn)y(x,λk)dx−2

∫ π

0
p(x)y(x,λn)y(x,λk)dx = 0. (2.26)

The proof of Lemma 2 carried out as claim [14].

3. PROPERTIES OF THE SPECTRUM

Let ψ(x,λ) and ϕ(x,λ) be any two solutions of equation (1.1),

W [ψ(x,λ) ,ϕ(x,λ)] = ψ(x,λ)ϕ′ (x,λ)−ψ′ (x,λ)ϕ(x,λ) ,

Wronskian dosen’t depend on x. In this case, it depends only on the λ parameter.

Although it is shown as W [ψ,ϕ] = ∆(λ). ∆(λ) is called the characteristic function

of L . Clearly, the function ∆(λ) is entire in λ. It follows that, ∆(λ) has at most a

countable set of zeros {λn}.

Lemma 3. The zeros {λn} of the characteristic function ∆(λ) coincide with the

eigenvalues of the boundary value problem L . The functions ψ(x,λ0) and ϕ(x,λ0)
are eigenfunctions corresponding to the eigenvalue λn, and there exist a sequence

(βn) such that

ψ(x,λn) = βnϕ(x,λn) , βn 6= 0. (3.1)

The proof of the Lemma 3 is done as in [27].

Let use denote

αn =
∫ π

0
δ(x)ϕ2 (x,λn)dx−

1

λn

∫ π

0
p(x)ϕ2 (x,λn)dx, n = 1,2,3, . . . . (3.2)

The numbers {αn} are called normalized numbers of the problem L.

Lemma 4. The equality
•
∆(λn) = 2λnβnαn is obtained. Here

•
∆ = d∆

dλ .

Proof. Since ϕ(x,λ) and ψ(x,λ) are the solutions of (1.1),

−ϕ′′ (x,λ)+ [2λp(x)+q(x)]ϕ(x,λ) = λ2δ(x)ϕ(x,λ) ,

−ψ′′ (x,λ)+ [2λp(x)+q(x)]ψ(x,λ) = λ2δ(x)ψ(x,λ)

equations are provided. Hence, we differentiate the equalities with respect to

−
•

ϕ′′ (x,λ)+ [2λp(x)+q(x)]
•
ϕ(x,λ) = λ2δ(x)

•
ϕ(x,λ)+ [2λδ(x)−2p(x)]ϕ(x,λ) ,
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−
•

ψ′′ (x,λ)+ [2λp(x)+q(x)]
•
ψ(x,λ) = λ2δ(x)

•
ψ(x,λ)+ [2λδ(x)−2p(x)]ψ(x,λ) .

Thanks to these equations

d

dx

{
ϕ(x,λ) ·

•

ψ′ (x,λ)−ϕ′ (x,λ) ·
•
ψ(x,λ)

}
=− [2λδ(x)−2p(x)]ϕ(x,λ)ψ(x,λ) ,

d

dx

{
•
ϕ(x,λ) ·ψ′ (x,λ)−

•

ϕ′ (x,λ) ·ψ(x,λ)

}
= [2λδ(x)−2p(x)]ϕ(x,λ)ψ(x,λ) .

If the last equations are integrated from x to π and from 0 to x, respectively, by the

discontinuity conditions, we obtain

−

{
ϕ(ξ,λ) ·

•

ψ′ (ξ,λ)−ϕ′ (ξ,λ) ·
•
ψ(ξ,λ)

}∣∣∣∣
π

x

=
∫ π

x
[2λδ(ξ)−2p(ξ)]ϕ(ξ,λ)ψ(ξ,λ)dξ

and{
•
ϕ(ξ,λ) ·ψ′ (ξ,λ)−

•

ϕ′ (ξ,λ) ·ψ(ξ,λ)

}∣∣∣∣
x

0

=
∫ x

0
[2λδ(ξ)−2p(ξ)]ϕ(ξ,λ)ψ(ξ,λ)dξ.

If we add the last equalities side by side, we get

W
[
ϕ(ξ,λ) ,

.
ψ(ξ,λ)

]
+W

[ .
ϕ(ξ,λ) ,ψ(ξ,λ)

]
=−

.
∆(λ)

=
∫ π

0
[2λδ(ξ)−2p(ξ)]ϕ(ξ,λ)ψ(ξ,λ)dξ

for λ → λn, this yields

•
∆(λn) =−

∫ π

0
[2λnδ(ξ)−2p(ξ)]βnϕ2 (ξ,λn)dξ

= 2λnβn

{∫ π

0
δ(ξ)ϕ2 (ξ,λn)dξ−

1

λn

∫ π

0
p(ξ)ϕ2 (ξ,λn)dξ

}
= 2λnβnαn.

Denote,

Γn =
{

λ : |λ|=
∣∣λ0

n

∣∣+δ,δ > 0,n = 0,1,2, . . .
}
,

Gn =
{

λ :
∣∣λ−λ0

n

∣∣≥ δ,δ > 0,n = 0,1,2, . . .
}
,

where δ is sufficiently small positive number. For sufficiently large values of n, one

has

|∆(λ)−∆0 (λ)|<
Cδ

2
e|τ|(βπ−βa2+αp2−αp1+p1), λ ∈ Γn. (3.3)

As it is shown in [19], |∆0 (λ)| ≥Cδe|Imλ|π for all λ ∈ Ḡδ, where Cδ > 0

lim
|λ|→∞

e−|Imλ|π (∆(λ)−∆0 (λ))
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= lim
|λ|→∞

e−|Imλ|π

(∫ π

0
Ã(π, t)cosλtdt +

∫ π

0
B̃(π, t)sinλtdt

)
= 0

is constant. On the other hand, since for sufficiently large values of n (see[23]) we

get (3.3). The Lemma 4 is proved. �

Lemma 5. The problem L(α, p1, p2) has countable set of eigenvalues. If one

denotes by λ1,λ2, ... the positive eigenvalues arranged in increasing order and by

λ−1,λ−2, ... the negative eigenvalues arranged in decreasing order, then eigenvalues

of the problem L(α, p1, p2) have the asymptotic behavior

λn = λ0
n +

dn

λ0
n

+
kn

λ0
n

n → ∞,

where kn ∈ l2, dn is a bounded sequence and

λ0
n =

nπ

βπ−βp2 +αp2 −αp1 + p1

+ψ1 (n) ; sup
n

|ψ1 (n)|= c <+∞.

Proof. According to previous lemma, if n is a sufficiently large natural number

and λ ∈ Γn, we have |∆0 (λ)| ≥ Cδe|Imλ|π > Cδ
2

e|Imλ|π > |∆(λ)−∆0 (λ)| . Applying

Rouche’s theorem, we conclude that for sufficiently large n inside the contour Γn

the functions ∆0 (λ) and ∆0 (λ)+{∆(λ)−∆0 (λ)} = ∆(λ) have the same number of

zeros. That is, there are exactly (n+1) zeros λ1,λ2, . . . ,λn. Analogously, it is shown

by Rouche’s theorem that, for sufficiently large values of n, the function ∆(λ) has a

unique zero inside each circle
∣∣λ−λ0

n

∣∣< δ. Since δ > 0 is a arbitrary, it follows that

λn = λ0
n + εn, where lim

n→∞
εn = 0 . If ∆(λn) = 0, we have

∆0

(
λ0

n + εn

)
+

∫ π

0
A(π, t)cos

(
λ0

n + εn

)
tdt +

∫ π

0
B(π, t)sin

(
λ0

n + εn

)
tdt = 0, (3.4)

∆0

(
λ0

n + εn

)
=

(
β+

2 +
γ2

2β

)
R1 (p2)cos

[(
λ0

n + εn

)
b+ (π)−

1

β

∫ π

p2

p(t)dt

]

+

(
β−

2 +
γ2

2β

)
R2 (p2)cos

[(
λ0

n + εn

)
b− (π)−

1

β

∫ π

p2

p(t)dt

]

+

(
β−

2 −
γ2

2β

)
R1 (p2)cos

[(
λ0

n + εn

)
s+ (π)+

1

β

∫ π

p2

p(t)dt

]

+

(
β+

2 −
γ2

2β

)
R2 (p2)cos

[(
λ0

n + εn

)
s− (π)+

1

β

∫ π

p2

p(t)dt

]
.

(3.5)

Since ∆0 (λ) is an analytical function,

∆0

(
λ0

n + εn

)
= ∆0

(
λ0

n

)
εn +

·
∆
0

(
λ0

n

)
εn +

··
∆
0

(
λ0

n

)

2!
ε2

n + . . . , lim
n→∞

εn = 0.
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λ0
n is the roots of the ∆0 (λ) = 0 equation ∆0

(
λ0

n + εn

)
=

[
.
∆
0

(
λ0

n

)
+o(1)

]
εn, n → ∞

is provided.

[
.
∆
0

(
λ0

n

)
+o(1)

]
εn +

∫ s−(x)−0

p2

A(π, t)cos
(
λ0

n + εn

)
tdt

+
∫ s+(x)−0

s−(x)+0
A(π, t)cos

(
λ0

n + εn

)
tdt +

∫ b−(x)−0

s+(x)+0
A(π, t)cos

(
λ0

n + εn

)
tdt

+
∫ b+(x)−0

b−(x)+0
A(π, t)cos

(
λ0

n + εn

)
tdt +

∫ x

b+(x)+0
A(π, t)cos

(
λ0

n + εn

)
tdt

+
∫ s−(x)−0

p2

B(π, t)sin
(
λ0

n + εn

)
tdt +

∫ s+(x)−0

s−(x)+0
B(π, t)sin

(
λ0

n + εn

)
tdt

+
∫ b−(x)−0

s+(x)+0
B(π, t)sin

(
λ0

n + εn

)
tdt +

∫ b+(x)−0

b−(x)+0
B(π, t)sin

(
λ0

n + εn

)
tdt

+
∫ x

b+(x)+0
B(π, t)sin

(
λ0

n + εn

)
tdt = 0

It is easy to see that the function ∆0 (λ) = 0 is type of [16], so there is a ηδ > 0 such

that

∣∣∣∣
.
∆
0

(
λ0

n

)∣∣∣∣≥ ηδ > 0 is satisfied for all n. We also have

λ0
n =

nπ

βπ−βp2 +αp2 −αp1 + p1

+ψ1 (n) , (3.6)

where sup
n

|ψ1 (n)| < M is for some constant M > 0 [18]. Further, substituting (3.6)

into (3.5) after certain transformations, we reach εn ∈ l2.

Since
(∫ π

0 At (π, t)sin
(
λ0

n + εn

)
tdt
)
∈ l2 and

(∫ π
0 Bt (π, t)cos

(
λ0

n + εn

)
tdt
)
∈ l2, we

have

εn =
1

2λ0
n∆0 (λ0

n)

{[(
β−

2 −
γ2

2β

)
R2 (p2)

2β
sin

[
λ0

ns− (π)+
ω(x)

β

]

+

(
β−

2 −
γ2

2β

)
R1 (p2)

2β
sin

[
λ0

ns+ (π)+
ω(x)

β

]

+

(
β−

2 −
γ2

2β

)
R2 (p2)

2β
sin

[
λ0

nb− (π)−
ω(x)

β

]

+

(
β+

2 +
γ2

2β

)
R1 (p2)

2β
sin

[
λ0

nb+ (π)−
ω(x)

β

]]∫ π

0

(
q(t)+ p2 (t)

)
dt

+

[
−

(
β−

2 −
γ2

2β

)
R2 (p2)

2β2
cos

[
λ0

ns− (π)+
ω(x)

β

]
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−

(
β−

2 −
γ2

2β

)
R1 (p2)

2β2
cos

[
λ0

ns+ (π)+
ω(x)

β

]

+

(
β−

2 +
γ2

2β

)
R2 (p2)

2β2
cos

[
λ0

nb− (π)−
ω(x)

β

]

+

(
β+

2 +
γ2

2β

)
R1 (p2)

2β2
cos

[
λ0

nb+ (π)−
ω(x)

β

]]
[p(π)− p(0)]

}
+

kn

λ0
n

,

where

dn =
1

2∆0 (λ0
n)

{[(
β−

2 −
γ2

2β

)
R2 (p2)

2β
sin

[
λ0

ns− (π)+
ω(x)

β

]

+

(
β−

2 −
γ2

2β

)
R1 (p2)

2β
sin

[
λ0

ns+ (π)+
ω(x)

β

]

+

(
β−

2 −
γ2

2β

)
R2 (p2)

2β
sin

[
λ0

nb− (π)−
ω(x)

β

]

+

(
β+

2 +
γ2

2β

)
R1 (p2)

2β
sin

[
λ0

nb+ (π)−
ω(x)

β

]]∫ π

0

(
q(t)+ p2 (t)

)
dt

+

[
−

(
β−

2 −
γ2

2β

)
R2 (p2)

2β2
cos

[
λ0

ns− (π)+
ω(x)

β

]

−

(
β−

2 −
γ2

2β

)
R1 (p2)

2β2
cos

[
λ0

ns+ (π)+
ω(x)

β

]

+

(
β−

2 +
γ2

2β

)
R2 (p2)

2β2
cos

[
λ0

nb− (π)−
ω(x)

β

]

+

(
β+

2 +
γ2

2β

)
R1 (p2)

2β2
cos

[
λ0

nb+ (π)−
ω(x)

β

]]
[p(π)− p(0)]

}

is bounded sequence. The proof is completed. �

The ϕ(x,λ) function is |λ|→∞ in the region D= {λ : argλ ∈ [ε,π− ε]} for x> p2,

ϕ(x,λ) =
1

2

(
β+

2 +
γ2

2β

)
exp
(
−i
(
λb+ (x)−w(x)

))(
1+O

(
1

λ

))
|λ| → ∞

it has an asymptotic representation where w(x) =
∫ x

p2
p(t)dt and β∓

2 = 1
2

(
α2 ∓

αβ2

β

)
.
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4. INVERSE PROBLEM

Let us consider the boundary value problem L̃ :

L̃ :=





l (y) :=−y′′+[2λ p̃(x)+ q̃(x)]y = λ2δ̃(x)y, x ∈ (0,π)

y′ (0) = 0,y(π) = 0

y( p̃1 +0) = α̃1y( p̃1 −0)

y′ (p̃1 +0) = β̃1y′ ( p̃1 −0)+ iλγ̃1y(p̃1 −0)

y( p̃2 +0) = α̃2y( p̃2 −0)

y′ (p̃2 +0) = β̃2y′ ( p̃2 −0)+ iλγ̃2y(p̃2 −0)

Let the function Φ(x,λ) denote solution of (1.1) that satisfy the conditions

Φ′ (0) = 1 , Φ(π) = 0 respectively and jump conditions (1.3)− (1.6). Lets define

it as M (λ) := Φ(0,λ). The Φ(x,λ) and M (λ) functions are called the Weyl solution

and the Weyl function, respectively.

Φ(x,λ) = M (λ) .ϕ(x,λ)+S (x,λ) λ 6= λn, n =1,2,3, . . .

is true. Because of W [ϕ,S]|x=0 = ϕ(0,λ)S′ (0,λ)−ϕ′ (0,λ)S (0,λ) = 1 6= 0, ϕ(x,λ)
and S (x,λ) solutions are linear independent. When ψ(x,λ) is solution (1.1),

ψ(x,λ) =A(λ)ϕ(x,λ)+B(λ)S (x,λ) ,

ψ′ (x,λ) =A(λ)ϕ′ (x,λ)+B(λ)S′ (x,λ) .

Due to boundary conditions, A(λ) = ψ(0,λ) ,B(λ) = ψ′ (0,λ) = −∆(λ). Then

ψ(x,λ) = ψ(0,λ)ϕ(x,λ)−∆(λ)S (x,λ) is obtained. Hence,

Φ(x,λ) :=−
ψ(x,λ)

∆(λ)
= S (x,λ)+M (λ)ϕ(x,λ) , M (λ) =−

ψ(0,λ)

∆(λ)
.

The M (λ) function is a meromorphic function.

Theorem 3. If M (λ) = M̃ (λ), then L = L̃.

Proof. Let us define the matrix P(x,λ) =
[
Pj,k (x,λ)

]
,( j,k = 1,2) by the formula

P(x,λ) ·

(
ϕ̃(x,λ)Φ̃(x,λ)

ϕ̃
′
(x,λ)Φ̃

′
(x,λ)

)
=

(
ϕ(x,λ)Φ(x,λ)

ϕ
′
(x,λ)Φ

′
(x,λ)

)
.

In this case

P11 (x,λ) =−ϕ(x,λ)
ψ̃

′
(x,λ)

∆̃(λ)
+ ϕ̃

′
(x,λ)

ψ(x,λ)

∆(λ)
,

P12 (x,λ) =−ϕ̃(x,λ)
ψ(x,λ)

∆(λ)
+ϕ(x,λ)

ψ̃(x,λ)

∆̃(λ)
,
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P21 (x,λ) =−ϕ′ (x,λ)
ψ̃

′
(x,λ)

∆̃(λ)
− ϕ̃

′
(x,λ)

ψ′ (x,λ)

∆(λ)
,

P22 (x,λ) =−ϕ̃(x,λ)
ψ′ (x,λ)

∆(λ)
+ϕ′ (x,λ)

ψ̃(x,λ)

∆̃(λ)
.

Hence,

P11 (x,λ) =ϕ(x,λ)
[
S̃
′
(x,λ)+ M̃ (λ) · ϕ̃

′
(x,λ)

]
− ϕ̃

′
(x,λ) [S (x,λ)+M (λ) ·ϕ(x,λ)]

=ϕ(x,λ) S̃
′
(x,λ)− ϕ̃

′
(x,λ)S (x,λ)+

[
M̃ (λ)−M (λ)

]
ϕ(x,λ) ϕ̃

′
(x,λ) ,

P12 (x,λ) =ϕ̃(x,λ) [S (x,λ)+M (λ) ·ϕ(x,λ)]−ϕ(x,λ)
[
S̃ (x,λ)+ M̃ (λ) · ϕ̃(x,λ)

]

=ϕ̃(x,λ)S (x,λ)−ϕ(x,λ) S̃ (x,λ)+
[
M (λ)− M̃ (λ)

]
ϕ(x,λ) ϕ̃(x,λ) ,

P21 (x,λ) =ϕ′ (x,λ)
[
S̃
′
(x,λ)+ M̃ (λ) · ϕ̃

′
(x,λ)

]
− ϕ̃

′
(x,λ)

[
S′ (x,λ)+M (λ) ·ϕ′ (x,λ)

]

=ϕ′ (x,λ) S̃
′
(x,λ)− ϕ̃

′
(x,λ)S′ (x,λ)+

[
M̃ (λ)−M (λ)

]
ϕ′ (x,λ) ϕ̃

′
(x,λ) ,

P22 (x,λ) =ϕ̃(x,λ)
[
S′ (x,λ)+M (λ) ·ϕ′ (x,λ)

]
+ϕ′ (x,λ)

[
S̃ (x,λ)+ M̃ (λ) · ϕ̃(x,λ)

]

=ϕ′ (x,λ)S
′
(x,λ)−ϕ

′
(x,λ) S̃ (x,λ)+

[
M (λ)− M̃ (λ)

]
ϕ′ (x,λ) ϕ̃(x,λ) .

from M (λ)≡ M̃ (λ):

P11 (x,λ) = ϕ(x,λ) S̃
′
(x,λ)− ϕ̃

′
(x,λ)S (x,λ) ,

P12 (x,λ) = ϕ̃(x,λ)S (x,λ)−ϕ(x,λ) S̃ (x,λ) ,

P21 (x,λ) = ϕ′ (x,λ) S̃
′
(x,λ)− ϕ̃

′
(x,λ)S′ (x,λ) ,

P22 (x,λ) = ϕ′ (x,λ)S
′
(x,λ)−ϕ

′
(x,λ) S̃ (x,λ)

are obtained. When M (λ) ≡ M̃ (λ), it is clear that the Pj,k (x,λ) ,( j,k = 1,2) func-

tions are full functions according to λ. From (3.3); for ∀x ∈ [0,π], cδ , Cδ constants

that provide |P11 (x,λ)| ≤ cδ and |P12 (x,λ)| ≤ Cδ inequalities can be shown. From

the Liouville theorem P11 (x,λ)≡ A(x) and P12 (x,λ)≡ 0. From

ϕ(x,λ) ·Φ′ (x,λ)− ϕ̃
′
(x,λ) ·Φ(x,λ) = A(x) ,

ϕ̃(x,λ) ·Φ(x,λ)−ϕ(x,λ) · Φ̃(x,λ) = 0

ϕ(x,λ) = ϕ̃(x,λ) ·A(x) , Φ(x,λ) = Φ̃(x,λ) ·A(x) (4.1)

are obtained and

W [ϕ,Φ] =W

[
ϕ(x,λ) ,−

ψ(x,λ)

∆(λ)

]
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=
1

∆(λ)
W [ϕ(x,λ) ,−ψ(0,λ)ϕ(x,λ)+∆(λ)S (x,λ)]

=−
ψ(0,λ)

∆(λ)
W [ϕ(x,λ) ,ϕ(x,λ)]+W [ϕ(x,λ) ,S (x,λ)] = 1.

And similarly W
[
ϕ̃,Φ̃

]
= 1 is obtained. If this equation is written in place of (4.1),

1 =W [ϕ(x,λ) ,Φ(x,λ)] =W
[
A(x) ϕ̃(x,λ) ,A(x)Φ̃(x,λ)

]

= A2 (x)W
[
ϕ̃(x,λ) ,Φ̃(x,λ)

]
= A2 (x)

is obtained.

Therefore,
(

β+
2 + γ2

2β

)
6= 1; p1 = p̃1, p2 = p̃2. We have A(x) = 1 from (4.1)

ϕ(x,λ)≡ ϕ̃(x,λ) and Φ(x,λ)≡ Φ̃(x,λ).
When ϕ(x,λ)≡ ϕ̃(x,λ),

−ϕ′′+[2λp(x)+q(x)]ϕ = λ2δ(x)ϕ,

−ϕ′′+[2λp(x)+q(x)]ϕ = λ2δ̃(x)ϕ

are obtained.{
λ2
(

δ(x)− δ̃(x)
)
+2λ(p(x)− p̃(x))+(q(x)− q̃(x))

}
ϕ ≡ 0 ( for ∀ λ )

δ(x) = δ̃(x), p(x) = p̃(x) and q(x) = q̃(x) a.e. For every λ in discontinuity condi-

tions,

(α1 − α̃1)ϕ(p1 −0,λ) = 0
(

β1 − β̃1

)
ϕ′ (p1 −0,λ)+(γ1 − γ̃1)ϕ(p1 −0,λ) = 0

(α2 − α̃2)ϕ(p2 −0,λ) = 0
(

β2 − β̃2

)
ϕ′ (p2 −0,λ)+(γ2 − γ̃2)ϕ(p2 −0,λ) = 0

α1 = α̃1,β1 = β̃1,γ1 = γ̃1 and α2 = α̃2,β2 = β̃2,γ2 = γ̃2.

Consequently L = L̃. The proof is completed. �
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Abstract. In this paper, new types of k–Fibonacci numbers are described, with respect to the

definition of the distance between numbers using a recurrence relation. However, these sequences

differ not only by the value of the natural number k but also according to the value of a new

parameter r which is used in defining this distance. Furthermore, various properties of these new

numbers are discussed.

In the second part of this paper, we apply the binomial transform to these generalized k–

Fibonacci sequences.

2010 Mathematics Subject Classification: 15A36; 11C20; 11B39

Keywords: generalizations of Fibonacci numbers, k–Fibonacci numbers, r–distance Fibonacci

numbers, generating function, binomial transform

1. INTRODUCTION

Classical Fibonacci numbers have been generalized in different ways [8–11]. One

such generalization which has recently increased interest among researchers math-

ematical terms pertains to the k–Fibonacci numbers [4, 5].

k–Fibonacci numbers are defined by the recurrence relation Fk,n+1 = k Fk,n+Fk,n−1

for n ≥ 1 with the initial conditions Fk,0 = 0; Fk,1 = 1. If Fk = {Fk,n}, then F1 is the

classical Fibonacci sequence while F2 is the Pell sequence.

2. GENERALIZED k–FIBONACCI NUMBERS

In this section we apply the definition of r–distance to k–Fibonacci numbers in a

generalized approach to previous results [2, 12]. The formulas used to calculate the

general term of the sequences generated by the above definition are very interesting

and they allow us to find the sum of n first terms.

Definition 1. With respect to natural numbers k ≥ 1, n ≥ 0, r ≥ 1, we define the

generalized (k,r)–Fibonacci numbers Fk,n(r) by the recurrence relation

Fk,n(r) = k Fk,n−r(r)+Fk,n−2(r) for n ≥ r, (2.1)

with initial conditions Fk,n(r) = 1, n = 0,1,2, . . .r−1, except Fk,1(1) = k.

© 2021 Miskolc University Press
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The following proposition shows the formulae used to calculate the general term

of the sequence Fk(r), where r ≥ 2 is odd or even (for r = 1 see [4, 5]).

Theorem 1 (Main formula). (1) If r is even, r = 2p:

Fk,2n(2p) = Fk,2n+1(2p) =
n/p

∑
j=0

(

n− (p−1) j

j

)

k j. (2.2)

(2) If r is odd, r = 2p+1 ≥ 3:

Fk,2n(2p+1) = ∑
j=0

[(

n− (2p−1) j

2 j

)

k2 j +

(

n− p− (2p−1) j

2 j+1

)

k2 j+1

]

, (2.3)

Fk,2n+1(2p+1) = ∑
j=0

[(

n− (2p−1) j

2 j

)

k2 j +

(

n− (p−1)− (2p−1) j

2 j+1

)

k2 j+1

]

.

(2.4)

Proof. By induction.

Formula (2.2). Let r = 2p.

For n = 0, by definition, let Fk,0(2p) = 1, and the right hand side (RHS) of (2.2) is

Fk,0(2p) =
0

∑
0

(

(1− p) j

j

)

k j = 1.

For n = 1, by definition, let Fk,2(2) = 1+ k, and Fk,2(r) = 1 for r > 2. In formula

(2.2) we have

Fk,2(2p) =
2

∑
0

(

1− (p−1) j

j

)

k j = 1+

(

1− (p−1) j

1

)

k.

Then, Fk,2(2) = 1+ k and Fk,2(2p) = 1 for 2p = 4,6,8, . . .
Suppose this formula holds for n. Then

Fk,2n+2(2p) = k Fk,2n+2−2p(2p)+Fk,2n(2p)

= ∑
j=0

(

n− (p−1) j

j

)

k j + k Fk,2(n+1−p)(2p)

= ∑
j=0

(

n− (p−1) j

j

)

k j + k ∑
j=0

(

n+1− p− (p−1) j

j

)

k j

= 1+ ∑
j=1

(

n− (p−1) j

j

)

k j + ∑
j=0

(

n− (p−1)( j+1)

j

)

k j+1

= 1+ ∑
j=0

[(

n− (p−1)( j+1)

j+1

)

k j+1 +

(

n− (p−1)( j+1)

j

)

k j+1

]

= 1+ ∑
j=0

(

n− (p−1)( j+1)+1

j+1

)

k j+1
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= ∑
j=0

(

n+1− (p−1) j

j

)

k j = Fk,2n+2(2p)

as we proposed to prove.

We will prove formulae (2.3) and (2.4) together.

For n = 0 we have Fk,0(2p+1) = 1 and the RHS of (2.3) is

0

∑
0

[(

−(2p−1) j

2 j

)

k2 j +

(

−p− (2p−1) j

2 j+1

)

k2 j+1

]

= 1.

In the same manner, we have Fk,1(2p+1) = 1 and the RHS of (2.4) is

0

∑
0

[(

−(2p−1) j

2 j

)

k2 j +

(

1− p− (2p−1) j

2 j+1

)

k2 j+1

]

= 1 because 1− p < 0.

For n = 1 we have Fk,2(2p+1) = 1 and the RHS of (2.3) is

0

∑
0

[(

1− (2p−1) j

2 j

)

k2 j +

(

1− p− (2p−1) j

2 j+1

)

k2 j+1

]

= 1,

because the condition p ≥ 1 involves 1− p− (2p−1) j < 0.

For formula (2.4), if p = 1, the left hand side (LHS) is Fk,3(2p+1) = 1+k, while the

RHS is
0

∑
0

[(

1− j

2 j

)

k2 j +

(

1− j

2 j+1

)

k2 j+1

]

= 1+ k.

If p > 1, the LHS and the RHS of (2.4) are equal to 1.

Suppose the formula holds for 2n and 2n+1. Then

Fk,2n+2(2p+1) = k Fk,2n+1−2p(2p+1)+Fk,2n(2p+1)

= k Fk,2(n−p)+1(2p+1)+Fk,2n(2p+1)

= k ∑
j=0

[(

n− p− (2p−1) j

2 j

)

k2 j +

(

n− (2p−1)− (2p−1) j

2 j+1

)

k2 j+1

]

+ ∑
j=0

[(

n− (2p−1) j

2 j

)

k2 j +

(

n− p− (2p−1) j

2 j+1

)

k2 j+1

]

= ∑
j=0

[(

n− p− (2p−1) j

2 j

)

+

(

n− p− (2p−1) j

2 j+1

)]

k2 j+1

+ ∑
j=0

(

n− (2p−1)( j+1)

2 j+1

)

k2 j+2 +1+ ∑
j=1

(

n− (2p−1) j

2 j

)

k2 j

= ∑
j=0

(

n+1− p− (2p−1) j

2 j+1

)

k2 j+1
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+ ∑
j=1

(

n− (2p−1) j

2 j−1

)

k2 j +1+ ∑
j=1

(

n− (2p−1) j

2 j

)

k2 j

= ∑
j=0

(

n+1− p− (2p−1) j

2 j+1

)

k2 j+1 + ∑
j=1

(

n+1− (2p−1) j

2 j

)

k2 j +1

= ∑
j=0

(

n+1− p− (2p−1) j

2 j+1

)

k2 j+1 + ∑
j=0

(

n+1− (2p−1) j

2 j

)

k2 j

= Fk,2n+2(2p+1).

A similar development shows the formula for Fk,2n+3(2p+1). �

In [3] the following formulas are proven:

(1) Sum: Sk,n(r) =
1

k

(

Fk,n+r−1(r)+Fk,n+r(r)−2
)

.

(2) Generating function: fk(r,x) =
1+ x

1− x2 − k xr
.

3. BINOMIAL TRANSFORM OF THE GENERALIZED k–FIBONACCI NUMBERS

In this section we will apply the binomial transform to the preceding sequences

and will obtain new integer sequences [7].

Definition 2. Binomial transform of the generalized k–Fibonacci sequence is defined

in the classical form as

BFk,n(r) =
n

∑
j=0

(

n

j

)

Fk, j(r). (3.1)

For r = 1, see [6].
So, for r = 2,3, . . . the sequences obtained by applying this transformation are:

BFk(2) = {1,2,4+ k,8+4k,16+12k+ k2,32+32k+6k2,

64+80k+24k2 + k3,128+192k+80k2 +8k3, . . .}

BFk(3) = {1,2,4,8+ k,16+5k,32+17k,64+49k+ k2,128+129k+8k2,256+321k

+39k2,512+769k+150k2 + k3,1024+1793k+501k2 +11k3, . . .}

BFk(4) = {1,2,4,8,16+ k,32+6k,64+23k,128+72k,256+201k+ k2,

512+522k+10k2,1024+1291k+58k2,2048+3084k+256k2, . . .}

Curiously, BF1(2) is the classical Pell sequence.

3.1. Generating Function of the Sequences BFk(r)

[1] shows that if A(x) is the generating function of the sequence {an}, then S(x) =
1

1− x
A

(

x

1− x

)

is the generating function of the sequence {bn} with bn =∑
j

(

n

j

)

an.
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So, we can deduce the generating function of the Fk(r) sequence, for r = 2,3, . . . is

gr(x) =
1

1− x
fr

(

x

1− x

)

, that is:

gr(x) =
(1− x)r−2

(1−2x)(1− x)r−2 − k xr
. (3.2)

3.2. Recurrence Relation of the Sequences BFk(r)

Taking into account gr(x) is the generating function of the sequences BFk(r), the

coefficients of the denominator of this function shows the recurrence relation of the

sequences BFk(r).
For clarity, we indicate as bn(r) the elements of the sequence BFk(r). The coeffi-

cients of the polynomial D(x) = (1− 2x)(1− x)r−2 − k xr, for r = 2,3 . . ., show the

recurrence relation of the sequences {bn(r)}, and consequently:

r = 2 →{1,−2,−k}→ bn(2) = 2bn−1(2)+ k bn−2(2) (3.3)

r = 3 →{1,−3,2,−k}→ bn(3) = 3bn−1(3)−2bn−2(3)+ k bn−3(3) (3.4)

r = 4 →{1,−4,5,−2,−k}→ bn(4)

= 4bn−1(4)−5bn−2(4)+2bn−3(4)+ k bn−4(4) (3.5)

r = 5 →{1,−5,9,−7,2,−k}→ bn(5)

= 5bn−1(5)−9bn−2(5)+7bn−3(5)−2bn−4(5)+ k bn−5(5) (3.6)

with the initial conditions bn(r) = 2n for n = 0,1,2 . . .r−1.

3.3. Sums of the Sequences BFk(r)

In the sequel we will prove the formulas for the sums of the sequences BFk(2) and

BFk(3) and show for BFk(4).
Let bn(2) = BFk,n(2) be and we will indicate as bn.

From (3.3) it is bn = 2bn−1 + k bn−2. Then

Sn(2) =
n

∑
j=0

b j = b0 +b1 +
n

∑
2

b j = 1+2+2
n

∑
2

b j−1 + k
n

∑
2

b j−2

= 3+2(Sn −b0 −bn)+ k(Sn −bn−1 −bn)

= 1+2Sn + k Sn − (2+ k)bn − k bn−1 →

Sn(2) =
1

1+ k

(

(2+ k)bn(2)+ k bn−1(2)−1
)

.

Let bn(3) = BFk,n(3) be and we will idicate as bn.

From (3.4) it is bn = 3bn−1 −2bn−2 + k bn−3. Then

Sn(3) =
n

∑
j=0

b j = b0 +b1 +b2 +
n

∑
3

b j
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= 1+2+4+3
n

∑
3

b j−1 −2
n

∑
3

b j−2 + k
n

∑
3

b j−3

= 7+3(Sn −b0 −b1 −bn)−2(Sn −b0 −bn−1 −bn)+ k(Sn −bn−2 −bn−1 −bn)

= Sn + k Sn − (1+ k)Sn − (k−2)bn−1 − k bn−2 →

Sn(3) =
1

k
((1+ k)bn +(k−2)bn−1 + k bn−2)

=
1

k
(bn −2bn−1 + k bn−2 +(bn +bn−1 +bn−2)

=
1

k
(bn+1 −2bn)+Sn −Sn−3 → Sn−3(3) =

1

k
(bn+1 −2bn)→

Sn(3) =
1

k

(

bn+4(3)−2bn+3(3)
)

.

And so,

Sn(4) =
1

k

(

bn+4(4)−3bn+3(4)+2bn+2(4)
)

,

Sn(5) =
1

k

(

bn+4(5)−4bn+3(5)+5bn+2(5)−2bn+1(5)
)

.

And we see that the coefficients of the sum Sn(r) are the constant coefficients of the

polynomial D(x) for r = n−1. So, the following sum must be

Sn(6) =
1

k

(

bn+4(6)−5Bn+3(6)+9bn+2(6)−7bn+1(6)+2bn(6)
)

.

And rightly so!

CONCLUSIONS

We have generalized the r–distance Fibonacci numbers to the case of k–Fibonacci

numbers, getting more general formulas that previously found.

These formulas include which allows to find the general term of a sequence of this

type according to r is even or odd.

This paper also shows the formula to find the sum of the terms of the generalized

(k,r)–Fibonacci sequences.

We apply the binomial transform to these sequences and find its generating func-

tion. Later, we found both the recurrence relation for the sequences of the binomial

transforms of this new type of k–Fibonacci numbers and the formula for the sum of

the terms of these sequences.
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Abstract. Let G be a finite group. We define the prime graph Γ(G) of G as follows: The vertices

of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by

an edge, denoted by p ∼ q, if there is an element in G of order pq. We denote by π(G), the

set of all prime divisors of |G|. The degree deg(p) of a vertex p of Γ(G) is the number of

edges incident with p. If π(G) = {p1, p2, ..., pk} where p1 < p2 < ... < pk, then we define

D(G) = (deg(p1),deg(p2), ...,deg(pk)), which is called the degree pattern of G. Given a finite

group M, if the number of non-isomorphic groups G such that |G| = |M| and D(G) = D(M) is

equal to r, then M is called r-fold OD-characterizable. Also a 1-fold OD-characterizable group

is simply called OD-characterizable. In this paper we give some results on characterization of

finite groups by prime graphs and OD-characterizability of finite groups. In particular we apply

our results to show that the simple groups G2(7), B3(5), A11, and A19 are OD-characterizable.

2000 Mathematics Subject Classification: 20D05; 20D06; 20D60

Keywords: prime graph, finite group, degree pattern

1. INTRODUCTION

Throughout this paper, groups under consideration are finite. For any group G, we

denote by π(G) the set of prime divisors of |G|. We denote the set of elements of G

by πe(G). We associate to πe(G) a graph called prime graph of G, denoted by Γ(G).
The vertex set of this graph is π(G) and two distinct vertices p, q are joined by an

edge, denote by p ∼ q, if pq ∈ πe(G). The connected components of Γ(G) is denoted

by π1, π2, ..., πt(G), where t(G) is the number of connected components of Γ(G). If

the order of G is even, the notation is chosen so that 2 ∈ π1. Clearly the order of G

can be expressed as the product of m1, m2, ..., mt(G), where π(mi) = πi, 1 ≤ i ≤ t(G).
The degree deg(p) of a vertex p of Γ(G) is the number of edges incident with p.

If π(G) = {p1, p2, ..., pk} with p1 < p2 < ... < pk, then we define

D(G) = (deg(p1),deg(p2), ...,deg(pk)),

which is called the degree pattern of G. Given a finite group M, if the number of non-

isomorphic groups G such that |G|= |M| and D(G) = D(M) is equal to r, then M is

called r-fold OD-characterizable. Also a 1-fold OD-characterizable group is simply

called OD-characterizable.

© 2021 Miskolc University Press
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We call a directed graph strongly connected if there is a directed path from each

vertex in the graph to every other vertex. Given an integer a and a positive integer

n with (a,n) = 1, the multiplicative order of a modulo n is the smallest positive in-

teger k such that ak ≡ 1(modn). We denote the order of a modulo n by Ordn(a).
It is easy to see that if al ≡ 1(modn), then Ordn(a)

∣

∣l. Let G be a finite group with

|G|= p1
α1 p2

α2 ...pk
αk , where p1 < p2 < ... < pk are prime numbers. We define a dir-

ected graph γ(G) as follows: the vertex set is π(G) and two distinct vertices pi, p j are

joined by an edge, denote by pi ∼ p j, whenever pi ≁ p j in Γ(G) and Ordp j
α j (pi)>αi.

The problem of OD-characterizability of simple groups was raised in [2] for the

first time. Then many researchers paid attention to characterize finite simple groups

by orders and degree patterns of their prime graphs, to mention a few references we

will quote [8] and [7].

In this paper we consider the prime graph of a finite group G and prove results

which will be used to prove the OD-characterizability of the simple groups G2(7),
B3(5), A11, and A19. Of course there are many other simple groups whose OD-

characterizability can be proved using the results of this paper.

If m and l are natural numbers and p is a prime number, the notation pm ‖ n means

that pm
∣

∣n and pm+1 ∤ n. For a prime number r and a positive integer n, nr denotes the

r-part of n, i.e. type nr is a power of r and n = mnr, where (m,r) = 1.

2. PRELIMINARIES

Lemma 1. Let a > 1 and n be natural numbers and r be a prime number. If

2 6= rn ‖ a−1, then rn+1 ‖ (ar −1).

Proof. See [3], 3.2. �

Lemma 2. Let pi and p j be two distinct prime numbers, p j 6= 2, Ordp j
(pi) = m

and p j ‖ pi
m −1, then Ordp j

d (pi) = mp j
d−1, where d is a positive integer.

Proof. By Lemma 1 and induction on t we see that

p j
t ‖ pi

mp j
t−1

−1, (2.1)

where t is an arbitrary natural number. Now we prove the lemma by induction on d.

If d = 1, then clearly the lemma holds.

Suppose that Ordp j
k(pi) = mp j

k−1. Set s = Ordp j
k+1(pi). Thus p j

k+1
∣

∣pi
s −1 and

so p j
k
∣

∣pi
s − 1. Hence mp j

k−1
∣

∣s, because Ordp j
k(pi) = mp j

k−1. On the other hand

by (2.1) we have p j
k+1

∣

∣pi
mp j

k

−1 and since Ordp j
k+1(pi) = s, s

∣

∣mp j
k. It follows that

mp j
k−1

∣

∣ s
∣

∣mp j
k. This means that s = mp j

k−1 or s = mp j
k. If s = mp j

k−1, then we

have p j
k+1

∣

∣pi
mp j

k−1

−1. But by (2.1) p j
k ‖ pi

mp j
k−1

−1. This contradiction shows that

Ordp j
k+1(pi) = s = mp j

k. Therefore Ordp j
k+1(pi) = mp j

k and the lemma is proved.

�



ON THE PRIME GRAPH OF A FINITE GROUP 203

Lemma 3. Let G be a finite group with t(G) ≥ 2. If N✂G is a πi-group, then

(∏
t(G)
j=1, j 6=i m j)

∣

∣|N|−1.

Proof. See Lemma 8 of [1]. �

Lemma 4. Let G be a finite group with |G|= p1
α1 p2

α2 ...pn
αn , p1 < p2 < ... < pn

where pi is a prime number, 1 ≤ i ≤ n. Also assume that M is an arbitrary normal

subgroup of G. Then the following holds:

1) If pi, p j ∈ π(G) and pi ∼ p j in γ(G), then pi

∣

∣|M| implies that p j

∣

∣|M|, where

pi, p j are distinct prime numbers.

2) Let pi, p j ∈ π(M), pi ≁ p j in Γ(G) and p j
α j ∤ ∏

αi

k=1(pi
αi − pi

k−1).

If [∏
αi

k=1(pi
αi − pi

k−1)]p j

∣

∣p j
α j , then

p j
α j

[∏
αi
k=1(pi

αi−pi
k−1)]p j

∣

∣|M|.

3) If pi, p j ∈ π(M), pi ≁ p j in Γ(G) and Ordp j
d (pi) > αi for some integer

1 ≤ d ≤ α j, then p j
α j+1−d

∣

∣|M|.

Proof. 1) Since pi ∼ p j in γ(G), we conclude that pi ≁ p j in Γ(G) and Ordp j
α j (pi)

> αi. We suppose that pi

∣

∣|M|. By Frattini argument NG(Mpi
)M = G, where Mpi

is

a Sylow pi-subgroup of M. If p j ∤ |M|, then since p j
α j
∣

∣|G|, we have p j
α j
∣

∣|NG(Mpi
)|

and so NG(Mpi
) has a subgroup, say L of order p j

α j . Mpi
✂NG(Mpi

) implies that

LMpi
≤ NG(Mpi

). On the other hand there is an positive integer β ≤ αi such that

|LMpi
|= p j

α j pi
β and since pi ≁ p j in Γ(G), the prime graph of LMpi

is not connec-

ted. Also Mpi
✂ LMpi

. Thus p j
α j
∣

∣pi
β − 1 by Lemma 3. Hence Ordp j

α j (pi)
∣

∣β. In

particular we have Ordp j
α j (pi)≤ αi and this is a contradiction and so p j

∣

∣|M|.

2) We have NG(Mpi
)M = G. Thus

p j
α j

|NG(Mpi
)|p j

∣

∣|M|. Moreover if N is a minimal

normal subgroup of NG(Mpi
) such that N ≤ Mpi

, then N is isomorphic to a direct

product of cyclic groups Zpi
. Assume that N is isomorphic to a direct product of

r cyclic group Zpi
. (N ∼= Zpi

× ...×Zpi
). Since

NG(Mpi
)

CNG(Mpi
)(N) →֒ Aut(N), we have

|NG(Mpi
)|

|CNG(Mpi
)(N)|

∣

∣|Aut(N)| = |Aut(Zpi

r)| = |Glr(pi)| = ∏r
k=1(pi

r − pi
k−1). This implies

that |NG(Mpi
)|
∣

∣|CNG(Mpi
)(N)|∏r

k=1(pi
r − pi

k−1). But since pi ≁ p j in Γ(G), p j ∤

CNG(Mpi
)(N)|. (Note that N is a pi-group).

Thus |NG(Mpi
)|p j

∣

∣[∏r
k=1(pi

r − pi
k−1)]p j

. Also since r ≤ αi,

[
r

∏
k=1

(pi
r − pi

k−1)]p j

∣

∣[
αi

∏
k=1

(pi
αi − pi

k−1)]p j
.

Therefore |NG(Mpi
)|p j

∣

∣[∏
αi

k=1(pi
αi − pi

k−1)]p j
.
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Now from NG(Mpi
)M = G, we conclude that |G|= |NG(Mpi

)M|=
|NG(Mpi

)||M|

|NG(Mpi
)∩M| and

so |G|
∣

∣|NG(Mpi
)||M|. Thus p j

α j = |G|p j

∣

∣|NG(Mpi
)|p j

|M|p j
and since

|NG(Mpi
)|p j

∣

∣[
αi

∏
k=1

(pi
αi − pi

k−1)]p j
, p j

α j
∣

∣[
αi

∏
k=1

(pi
αi − pi

k−1)]p j
|M|p j

.

By assumption [∏
αi

k=1(pi
αi − pi

k−1)]p j

∣

∣p j
α j and so

p j
α j

[∏
αi
k=1(pi

αi−pi
k−1)]p j

∣

∣|M|p j

∣

∣|M|.

3) We will prove that p j
d ∤ |NG(Mpi

)|.

If p j
d
∣

∣|NG(Mpi
)|, then NG(Mpi

) has a subgroup, say J of order p j
d .

Since Mpi
✂ JMpi

and the prime graph of JMpi
is not connected (pi ≁ p j in Γ(G))

by Lemma 3, we have p j
d
∣

∣pi
e − 1 for a positive integer e ≤ αi. It means that

pi
e ≡ 1(mod p j

d). It follows that Ordp j
d (pi) ≤ αi, which is a contradiction. Thus

p j
d ∤ |NG(Mpi

)| and so |NG(Mpi
)|p j

∣

∣p j
d−1. But since NG(Mpi

)M = G, we conclude

that |G|
∣

∣|NG(Mpi
)||M|, which implies that p j

α j = |G|p j

∣

∣|NG(Mpi
)|p j

|M|p j
|p j

d−1|M|p j

and so p j
α j+1−d = p j

α j−(d−1)
∣

∣|M|. The proof is completed. �

3. CHARACTERIZATION OF FINITE GROUPS BY PRIME GRAPH AND ORDER OF

THE GROUP

Theorem 1. Let G be a finite group with |G| = p1
α1 p2

α2 ...pn
αn , p1 < p2 < · · · <

pn where pi is a prime number, 1 ≤ i ≤ n. If the directed graph γ(G) is strongly

connected, then the following assertions hold.

1) There is a simple group S such that S✂G ≤ Aut(S) and π(S) = π(G). Also if

pi ≁ p j in Γ(G), then pi ≁ p j in Γ(S) too and if pi ∼ p j in Γ(G), then pi ∼ p j

in Γ(Aut(S)) too.

2) Let pi, p j ∈ π(G), pi ≁ p j in Γ(G) and p j
α j ∤ ∏

αi

k=1(pi
αi − pi

k−1).

If [∏
αi

k=1(pi
αi − pi

k−1)]p j

∣

∣p j
α j , then

p j
α j

[∏
αi
k=1(pi

αi−pi
k−1)]p j

∣

∣|S|.

3) If pi, p j ∈ π(G), pi ≁ p j in Γ(G) and for some integer 1 ≤ d ≤ α j,

Ordp j
d (pi)> αi, then p j

α j+1−d
∣

∣|S|.

Proof. Assume that L is a minimal normal subgroup of G. Thus L 6= 1 and so there

is a prime number pi ∈ π(G) such that pi

∣

∣|L|. Since γ(G) is strongly connected, for

all p j ∈ π(G) there exists a directed path from pi to p j. So by Lemma 4 and induction

on the length of path we can easily see that p j

∣

∣|L| for all p j ∈ π(G). Therefore π(L) =
π(G) and since γ(G) is strongly connected, clearly Γc(G) is connected, where Γc(G)
denotes the complement of the graph Γ(G). Now if L is a direct product of more than

one isomorphic simple groups, then since π(L) = π(G), Γ(G) is a complete graph

and so Γ(G)c
is not connected, a contradiction. Hence L is a simple group. On the

other hand if for some q ∈ π(G), q
∣

∣|CG(L)|, then q ∼ t in Γ(G) for all t ∈ π(G)−{q}
and so Γc(G) is not connected, which is contradiction. Thus CG(L) = 1 and since
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G
CG(L)

→֒ Aut(L), we conclude that G →֒ Aut(L). So the proof of Part 1 is completed.

We conclude Part 2 and 3 of the Theorem from Lemma 4. �

Theorem 2. Let G be a finite group, |G|= p1
α1 p2

α2 ...pn
αn , where p1 < p2 < · · ·<

pn and pi is a prime number, 1≤ i≤ n. If γ1 is a strongly connected directed subgraph

of the graph γ(G) and V1 is the vertex set of γ1, then the following assertions hold.

1) There is a simple group S such that S✂ G
Oπ(G)−V1

(G) ≤ Aut(S), V1 ⊆ π(S) ⊆

π(G) and if pi, p j ∈ V1 and pi ≁ p j in Γ(G), then pi ≁ p j in Γ(S) and if

pi ∼ p j in Γ(G), then pi ∼ p j in Γ(Aut(S)) (Oπ(G)−V1
(G) is the largest normal

subgroup N with π(N) = π(G)−V1 ).

2) Let pi, p j ∈V1, pi ≁ p j in Γ(G) and p j
α j ∤ ∏

αi

k=1(pi
αi − pi

k−1).

If [∏
αi

k=1(pi
αi − pi

k−1)]p j

∣

∣p j
α j , then

p j
α j

[∏
αi
k=1(pi

αi−pi
k−1)]p j

∣

∣|S|.

3) If pi, p j ∈ V1 and pi ≁ p j in Γ(G) and for some integer 1 ≤ d ≤ α j,

Ordp j
d (pi)> αi, then p j

α j+1−d
∣

∣|S|.

Proof. Set L = Oπ(G)−V1
(G) and Ḡ = G

L
. Suppose that S is a minimal normal

subgroup of Ḡ. Thus for a normal subgroup of G, say M1, we have S = M1

L
, where

L ≤ M1. It is obvious that there is a prime number q ∈ V1, such that q
∣

∣|M1|. But

there exists a path between q and t for all t ∈ V1 −{q}. Therefore by Lemma 4 and

induction on length we see that V1 ⊆ π(M1). It follows that V1 ⊆ π(S)⊆ π(G). Since

γ1 is a strongly connected subgraph of γ(G), for all pi ∈V1, there exists p j ∈V1 such

that pi ≁ p j in Γ(G) and so S is not a direct product of more than one isomorphic

simple groups. Hence S is a simple group. Now we prove that CḠ(S) = 1. Assume

that CḠ(S) 6= 1. Thus there is a subgroup of G, say K such that CḠ(S) =
K
L

, L 6= K. It

follows that there is a prime number r ∈ V1 such that r
∣

∣|K|. It means that r
∣

∣|CḠ(S)|.

Moreover since V1 ⊆ π(S), we conclude that r ∼ t in Γ(Ḡ) for all t ∈ V1 −{r}. It is

easy to see that r ∼ t in Γ(G) for all t ∈V1 −{r} and so r ≁ t in γ(G), in particular in

γ1 for all t ∈ V1 −{r}, but this is a contradiction with γ1 being a strongly connected

graph and thus CḠ(S) = 1. Hence S✂ Ḡ = Ḡ
1
= Ḡ

CḠ(S)
≤ Aut(S).

Now we assume that pi, p j ∈ V1 and pi ≁ p j in Γ(G) and p j
α j ∤ ∏

αi

k=1(pi
αi −

pi
k−1). Also suppose that [∏

αi

k=1(pi
αi − pi

k−1)]p j

∣

∣p j
α j . By using Part 2 of Lemma 4

for M1✂G, we conclude that
p j

α j

[∏
αi
k=1(pi

αi−pi
k−1)]p j

∣

∣|M1| and since p j ∈ V1, p j ∤ |L| and

so
p j

α j

[∏
αi
k=1(pi

αi−pi
k−1)]p j

∣

∣|M1

L
|= |S|, thus the proof of Part 2 is completed.

Similar arguments prove Part 3.

If pi, p j ∈ V1, pi ∼ p j in Γ(S), then clearly pi ∼ p j in Γ(Ḡ) and so in Γ(G).
Thus if pi ≁ p j in Γ(G), then pi ≁ p j in Γ(S). Also if pi, p j ∈ V1 and pi ∼ p j in

Γ(G), then there is an element g ∈ G, such that gpi p j = 1 and o(g) = pi p j. Thus

gpi p j ∈ L. Since o(g) = pi p j ∤ |L|, g 6∈ L. If gpi ∈ L, then since π(L) ⊆ π(G)−V1

and pi, p j ∈V1, we conclude that there is a positive integer m such that (pi p j,m) = 1
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and (gpi)m = gpim = 1. This implies that pi p j

∣

∣pim, because o(g) = pi p j, thus p j

∣

∣m, a

contradiction. Therefore gpi 6∈ L. Similarly gp j 6∈ L and so o(gL)= pi p j. Thus pi ∼ p j

in Γ(Ḡ). But since Ḡ ≤ Aut(S), pi ∼ p j in Γ(Aut(S)) and the proof is completed. �

4. OD-CHARACTERIZABILITY OF FINITE GROUPS

Let G be a finite group and |G| = p1
α1 p2

α2 ...pn
αn , where p1 < p2 < · · · < pn and

pi is a prime number, 1 ≤ i ≤ n. For i = 1,2, ...,n, set R(pi) = |{p j ∈ π(G)|pi 6= p j,

Ordp j
α j (pi)> αi and Ordpi

αi (p j)> α j}|. We have the following three propositions.

Proposition 1. Let G be a finite group with |G| = p1
α1 p2

α2 ...pn
αn , p1 < p2 <

· · · < pn, pi is a prime number, 1 ≤ i ≤ n. Assume that there is pm ∈ π(G) such that

deg(pm) = 0 in Γ(G) and R(pm) = n−1. Then the following assertions hold.

1) There is a simple group S such that S✂G ≤ Aut(S), π(S) = π(G). Also we

have degΓ(S)(pi)≤ degΓ(G)(pi)≤ degΓ(Aut(S))(pi), 1 ≤ i ≤ n.

2) If pl ∈ π(G), pl
αl ∤ ∏

αm

k=1(pm
αm − pm

k−1) and [∏
αm

k=1(pm
αm − pm

k−1)]pl

∣

∣pl
αl ,

then
pl

αl

[∏
αm
k=1(pm

αm−pm
k−1)]pl

∣

∣|S|.

3) If pl ∈ π(G), pm
αm ∤ ∏

αl

k=1(pl
αl − pl

k−1) and [∏
αl

k=1(pl
αl − pl

k−1)]pm

∣

∣pm
αm ,

then
pm

αm

[∏
αl
k=1(pl

αl−pl
k−1)]pm

∣

∣|S|.

4) If pl ∈ π(G) and Ordpl
d (pm) > αm for some integer 1 ≤ d ≤ αl , then

pl
αl+1−d

∣

∣|S|.
5) If pl ∈ π(G) and Ordpm

d (pl) > αl . for some integer 1 ≤ d ≤ αm, then

pm
αm+1−d

∣

∣|S|.

Proof. By Theorem 1 it is sufficient to prove that γ(G) is strongly connected. Since

deg(pm)= 0 in Γ(G), pi ≁ pm in Γ(G) for all i 6=m, 1≤ i≤ n and since R(pm)= n−1,

Ordpm
αm (pi) > αi and Ordpi

αi (pm) > αm for all i 6= m, 1 ≤ i ≤ n. Hence there is a

directed edge from pi to pm and from pm to pi for all i 6= m, 1 ≤ i ≤ n.

Now assume that pa, pb are two arbitrary vertices in γ(G). Then by above discus-

sion there is a directed edge from pa to pm and from pm to pa in γ(G). Also there is

a directed edge from pm to pb and from pb to pm. Thus there is a directed path from

pa to pb. Therefore γ(G) is strongly connected.

Since for all q ∈ π(G)−{pm}, q ≁ pm in Γ(G), 2, 3, 4 and 5 are concluded from

Theorem 1 Part 2 and 3. �

Proposition 2. Let G be a finite group with |G|= p1
α1 p2

α2 ...pn
αn , p1 < p2 < · · ·<

pn, pi is a prime number, 1 ≤ i ≤ n. Assume that there exists pm ∈ π(G) such that

deg(pm) = 1 in Γ(G) and R(pm) = n−1. Then the following assertions hold.

1) There exists a simple group S and a prime number pr ∈ π(G)−{pm} such

that S✂ G
Opr (G) ≤ Aut(S) and π(G)−{pr} ⊆ π(S) ⊆ π(G). (Opr

(G) is the

largest normal subgroup N of G with π(N) = {pr}).
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2) a) If ps ∈ π(G) and deg(ps) = n−1 in Γ(G), then there is a simple group

S such that S✂ G
Ops (G) ≤ Aut(S) and π(G)−{ps} ⊆ π(S)⊆ π(G).

b) If pt ∈ π(G) − {ps, pm}, pt
αt ∤ ∏

αm

k=1(pm
αm − pm

k−1) and

[∏
αm

k=1(pm
αm − pm

k−1)]pt

∣

∣pt
αt , then

pt
αt

[∏
αm
k=1(pm

αm−pm
k−1)]pt

∣

∣|S|.

c) If pt ∈ π(G) − {ps, pm}, pm
αm ∤ ∏

αt

k=1(pt
αt − pt

k−1) and

[∏
αt

k=1(pt
αt − pt

k−1)]pm

∣

∣pm
αm , then

pm
αm

[∏
αt
k=1(pt

αt −pt
k−1)]pm

∣

∣|S|.

d) If pt ∈ π(G) − {ps, pm} and Ordpt
d (pm) > αm for some integer

1 ≤ d ≤ αt , then pt
αt+1−d

∣

∣|S|.
e) If pt ∈ π(G) − {ps, pm} and Ordpm

d (pt) > αt for some integer

1 ≤ d ≤ αm, then pm
αm+1−d

∣

∣|S|.

Proof. 1) By Theorem 2 it is sufficient to prove that γ(G) has a strongly connected

subgraph with n− 1 vertices. Since deg(pm) = 1 in Γ(G), there exists pr ∈ π(G)
such that pr ∼ pm in Γ(G). If pi is an arbitrary vertex of the directed graph γ(G) such

that pi 6= pr, pm, then since R(pm) = n− 1, we conclude that Ordpi
αi (pm) > αm and

Ordpm
αm (pi) > αi. On the other hand pi ≁ pm in Γ(G) and so there is an edge from

pi to pm and from pm to pi in γ(G).
Now if pa, pb are two arbitrary vertices of γ(G) such that pa, pb 6= pr, pm, then

there is an edge from pa to pm and from pm to pa, also from pb to pm and from

pm to pb in γ(G). Thus there is a path from pa to pb. Hence there is a strongly

connected subgraph of γ(G) such that its vertex set is equal to π(G)−{pr}. There-

fore by Theorem 2, there is a simple group S such that S✂ G
Opr (G) ≤ Aut(S) and

π(G)−{pr} ⊆ π(S)⊆ π(G).
2) Assume that there exists ps ∈ π(G) such that deg(ps) = n−1 in Γ(G). So ps is

joint to all vertices in Γ(G). In particular ps ∼ pm in Γ(G).
By similar argument as in Part 1 we can see that γ(G) has a strongly connected

subgraph such that its vertex set is equal to π(G)−{ps}. Thus by Theorem 2, there

is a simple group S such that S✂ G
Ops (G) ≤ Aut(S) and π(G)−{ps} ⊆ π(S) ⊆ π(G).

Also b, c, d, e are concluded from Theorem 2 Part 2 and 3. �

We define (m)∗ for all m ∈ Z by (m)∗ =

{

m for m > 0

0 for m ≤ 0.

Proposition 3. Let G be a finite group with |G|= p1
α1 p2

α2 ...pn
αn , p1 < p2 < · · ·<

pn, pi is a prime number, 1 ≤ i ≤ n. We set M = max{(R(pi)−deg(pi))
∗|1 ≤ i ≤ n}

and m = min{(R(pi)−deg(pi))
∗|1 ≤ i ≤ n}. If M+m ≥ n−1, then there is a simple

group S such that S✂G ≤ Aut(S) and π(S) = π(G). Also degΓ(S)(q)≤ degΓ(G)(q)≤

degΓ(Aut(S))(q) for all q ∈ π(G).

Proof. By Theorem 1 it is sufficient to prove that γ(G) is strongly connected. So

assume that pd is an arbitrary vertex of γ(G). We define Ad and Bd as follows:

Ad = {pi ∈ π(G)|pi 6= pd , pi ≁ pd in Γ(G)},
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Bd = {p j ∈ π(G)|p j 6= pd , Ordp j
α j (pd)> αd and Ordpd

αd (p j)> α j}.

Thus |Ad | = n− 1− deg(pd), |Bd | = R(pd), where deg(pd) is the degree of pd in

Γ(G).
Moreover Ad ∩Bd is equal to set of all vertices in γ(G) that are joined to pd and

also pd is joined to them by an edge. Since pd 6∈ Ad ∪Bd , Ad ∪Bd ⊆ π(G)−{pd}
and so |Ad ∪Bd | ≤ n−1. Therefore we have |Ad ∪Bd |= n−1−deg(pd)+R(pd)−
|Ad ∩Bd | ≤ n−1. Hence |Ad ∩Bd | ≥ R(pd)−deg(pd). Since |Ad ∩Bd | ≥ 0, we have

|Ad ∩Bd | ≥ (R(pd)−deg(pd))
∗
.

But (R(pd)−deg(pd))
∗ ≥ m, which implies that |Ad ∩Bd | ≥ m. Thus there exist m

vertices in γ(G) that are joined to pd and also pd is joined to them by an edge, where

pd is an arbitrary vertex of γ(G). Denote the set of all these m vertices by Ed .

Now we assume that pc ∈ π(G) and M = (R(pc)−deg(pc))
∗
. Then by a similar

argument we see that there exist M vertices in γ(G) that are joined to pc and also pc

is joined to them by an edge. Denote the set of all these M vertices by Fc.

We will show that if pu ∈ π(G) is different from pc, then there is a directed path

from pu to pc and from pc to pu. Since pu 6= pc, pu ≁ pc and pc ≁ pu in γ(G). We

know that pu ∼ q and q ∼ pu in γ(G) for all q ∈ Eu. If Eu ∩ Fc = ∅, then since

{pu} ∪ Eu ∪ {pc} ∪ Fc ⊆ π(G), pu 6= pc, pu ≁ pc and pc ≁ pu in γ(G), we have

|{pu}∪Eu ∪{pc}∪Fc|= 1+m+1+M ≤ n, which is a contradiction with assump-

tion, (M+m ≥ n−1 ). Thus Eu ∩Fc 6=∅. Suppose that pv ∈ Eu ∩Fc. It follows that

pu ∼ pv, pv ∼ pu, pc ∼ pv and pv ∼ pc. Hence pu → pv → pc is a directed path from

pu to pc and pc → pv → pu is a directed path from pc to pu. So we proved that for all

pu ∈ π(G) there exists a directed path from pu to pc and there is a directed path from

pc to pu.

Now we assume that pa, pb are two arbitrary vertices of γ(G). Thus by the above

discussion there is a path from pc to pa and from pa to pc, also there is a path from

pc to pb and from pb to pc. Therefore there is a path from pa to pb and so γ(G) is

strongly connected and the proof is completed. �

5. APPLICATIONS

We give some examples of characterization of finite groups by prime graph and

OD-characterization of them.

We note that the following examples are proved in [4] and a few more papers. But

our proofs are based on Theorems 1 and 2 and Propositions 1, 2 and 3. The prime

graphs of all groups considered are obtained by [6].

Example 1. We consider the simple group C2(7). We know that |C2(7)| =
28 · 32 · 52 · 74 and 2 ∼ 3, 2 ∼ 7, 3 ∼ 7, 5 ≁ 2, 5 ≁ 7 and 5 ≁ 3 in Γ(C2(7)). Since

Ord52(2)> 8, Ord52(3)> 2, Ord28(5)> 2, Ord32(5)> 2, we deduce that Eγ(C2(7)) ⊇
{(2,5),(5,2),(3,5),(5,3)}, where Eγ(C2(7)) is the edge set of γ(G). Hence there exists

a strongly connected subgraph of γ(C2(7)) that its vertex set is {2,3,5}.
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Now if G is a finite group with |G| = |C2(7)| and Γ(G) = Γ(C2(7)), then γ(G) =
γ(C2(7)) and so there exists a strongly connected subgraph of γ(G) that its vertex set

is {2,3,5}. Thus by Theorem 2 there is a simple group S such that S✂ G
O7(G) ≤ Aut(S)

and {2,3,5} ⊆ π(S) ⊆ π(G) = {2,3,5,7}. Since 3 ≁ 5 in Γ(C2(7)) = Γ(G) and

Ord5(3) > 2 by Part 3 of Theorem 2, we conclude that 52+1−1 = 52
∣

∣|S|. Similarly

since 2 ≁ 5 in Γ(G) and Ord24(5) > 2, 28+1−4 = 25
∣

∣|S|. Now by Table 4 of [5] we

see that S ∼= B2(7) or S ∼= C2(7) and since S ≤ G
O7(G) and

|G|
|O7(G)|

∣

∣|G| = |C2(7)|, we

conclude that O7(G) = 1 and G = S and so G ∼= B2(7) or G ∼=C2(7).
Hence if Γ(G) = Γ(C2(7)) and |G|= |C2(7)|, then G ∼=C2(7) or G ∼= B2(7).

Example 2. We consider the simple group B3(5). We know that |B3(5)| =
29 ·34 ·59 ·7 ·13 ·31 and 2 ∼ 3, 2 ∼ 5, 2 ∼ 13 2 ∼ 31, 3 ∼ 5, 3 ∼ 7, 3 ∼ 13 and 5 ∼ 13

in Γ(B3(5)) and 7 ≁ i, 31 ≁ j for i ∈ {2,5,13,31} and j ∈ {3,5,7,13} in Γ(G). We

have Ord31(3)> 4, Ord34(31)> 1, Ord7(31)> 1 , Ord31(7)> 1, Ord31(13)> 1 and

Ord13(31) > 1. Thus Eγ(B3(5)) ⊇ {(31,3),(3,31),(31,7),(7,31),(31,13),(13,31)},

where Eγ(B3(5)) is the edge set of γ(B3(5)). Therefore there exists a strongly con-

nected subgraph of γ(B3(5)) that its vertex set is {3,7,13,31}. Now if G is a fi-

nite group with |G| = |B3(5)| and Γ(G) = Γ(B3(5)), then γ(G) = γ(B3(5)) and so

there exists a strongly connected subgraph of γ(G) that its vertex set is {3,7,13,31}
Thus by Theorem 2, there is a simple group S such that S✂ G

O{2,5}(G) ≤ Aut(S) and

{3,7,13,31} ⊆ π(S)⊆ {2,3,5,7,13,31}. But since 3 ≁ 31 in Γ(G) = Γ(B3(5)) and

34 ∤ 31−1 by Theorem 2 Part 2 we have 34

[31−1]3
= 33

∣

∣|S| and so 33 ·7 ·13 ·31
∣

∣|S|. Now

by Table 4 of [5], we conclude that S ∼= B3(5) or S ∼=C3(5). Thus O{2,5}(G) = 1 and

since |G|= |B3(5)|, we conclude that G ∼= B3(5) or G ∼=C3(5).
Hence if Γ(G) = Γ(B3(5)) and |G|= |B3(5)|, then G ∼= B3(5) or G ∼=C3(5).

Example 3. We consider the simple group A11. We know that |A11|= 27 ·34 ·52 ·
7 ·11. We can easily see that deg(11) = 0 in Γ(A11). Assume that G is a finite group

with D(G) = D(A11) and |G|= |A11|.
Since Ord11(2) > 7, Ord11(3) > 4, Ord11(5) > 2, Ord11(7) > 1, Ord27(11) > 1,

Ord34(11) > 1, Ord52(11) > 1 and Ord7(11) > 1, we conclude that R(11) = 4 and

since |π(G)|= 5 by Proposition 1 there is a simple group S such that S✂G ≤ Aut(S)
and π(S) = π(G) = {2,3,5,7,11}. Since 27 ∤ 11− 1 = 10 and [10]2

∣

∣27 by Part 2 of

Proposition 1 we have 27

[10]2
= 26

∣

∣|S|. Similarly 34
∣

∣|S|. Thus |S| = 2a · 34 · 5b · 7 · 11,

where 6 ≤ a ≤ 7, 1 ≤ b ≤ 2 and so by Table 4 of [5] S is isomorphic to A11 and since

S ≤ G, |G|= |A11|, we conclude that G ∼= A11.

Hence A11 is OD-characterizable.

Example 4. We consider the simple group A19. We know that |A19|= 215 ·38 ·53 ·
72 ·11 ·13 ·17 ·19. Obviously deg(19) = 0 in Γ(A19). Now assume that G is a finite

group with D(G) = D(A19) and |G|= |A19|.
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We have Ord19(2)> 15, Ord19(3)> 8, Ord19(5)> 3, Ord19(7)> 2, Ord19(11)>
1, Ord19(13) > 1, Ord19(17) > 1, Ord215(19) > 1, Ord38(19) > 1, Ord53(19) > 1,

Ord72(19) > 1, Ord11(19) > 1, Ord13(19) > 1 and Ord17(19) > 1, thus R(19) = 7

and since |π(G)| = 8 by Proposition 1 there is a simple group S such that S✂G ≤
Aut(S) and π(S)= π(G)= {2,3,5,7,11,13,17,19}. Since 215 ∤ 19−1= 18, [18]2

∣

∣215

by Part 2 of Proposition 1 we have 215

[18]2
= 214

∣

∣|S|. Similarly 38

[18]3
= 36

∣

∣|S|, 53
∣

∣|S| and

72
∣

∣|S|. Thus |S|= 2a ·3b ·53 ·72 ·11 ·13 ·17 ·19, where 14 ≤ a ≤ 15, 6 ≤ b ≤ 8 and so

by Table 4 of [5] S ∼= A19 and since S ≤ G, |G|= |A19|, we conclude that G ∼= A19.

Hence A19 is OD-characterizable.
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Abstract. We state sufficient conditions for the existence and uniqueness of Stepanov-like pseudo

almost periodic and Stepanov-like pseudo almost automorphic solutions for a class of nonlinear

Volterra integral with infinite delay of the form

x(t) = f (t,x(t),x(t − r(t)))−
∫ +∞

t
c(t,s)g(s,x(s),x(s− r(s)))ds.

Our approach is based on Bochner’s transform, some analytic techniques, and a Banach fixed

point theorem. Then we apply these results to a nonlinear differential equation when the delay is

time-dependent and the force function is continuous

x′(t) = ax(t)+αx′(t − r(t))−q(t,x(t),x(t − r(t)))+h(t).

2010 Mathematics Subject Classification: 34A12; 34C27; 43A60

Keywords: integral equation, almost periodic, almost automorphic, pseudo almost periodic, pseudo

almost automorphic, infinite delay

1. INTRODUCTION

The existence and stability of almost periodic solutions of some models are among

the most attractive topics in the qualitative theory of differential and integral equa-

tions due to their applications in physical science, mathematical biology, population

growth... Hence, in the literature, several studies have been conducted on Bohr’s

almost periodicity and Bochner’s almost automorphic to establish sufficient condi-

tions for the existence and uniqueness of various types of differential and integral

equations. For instance, one can see [1–3,6,20] and the references therein. In partic-

ular, it can be noted that several qualitative studies of various differential and integral

equations have been carried out in recently published articles [7, 17–19, 25]. The no-

tion of pseudo almost periodicity functions which is the central issue in this paper is

a new concept introduced a few years ago by Zhang [27] as a generalization of the

classical notion of Bohr’s almost periodicity. Also, the notion of almost automorphic

(Stepanov) was then defined firstly by N’G uérékata and Pankov [24] as an extension

© 2021 Miskolc University Press
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of the classical and well-known almost automorphic concept. It should be mentioned

that the study of the existence of almost periodic solutions of the integral equation

with a discrete delay was initiated in [16], where Fink and Gatica established the

existence of a positive almost periodic solution to the following equation

x(t) =
∫ t

t−τ
f (s,x(s))ds, (1.1)

which arises in models for the spread of epidemics. Since then, many works related

to the sufficient conditions on the delay and the function f in order to establish the

existence of almost periodic solutions to equation (1.1).

In 1997, Ait Dads and Ezzinbi [11] studied the existence of positive almost peri-

odic solutions for the following neutral integral equation

x(t) = γx(t − τ)+(1− γ)
∫ t

t−τ
f (s,x(s))ds. (1.2)

Later, Ait Dads et al. [10] established the existence of positive pseudo almost periodic

solutions in the case of infinite delay for the equation

x(t) =
∫ t

−∞
a(t, t − s) f (s,x(s))ds, t ∈ R. (1.3)

Afterwards, Ding et al. [15] developed the above results to the following integral

equation with neutral delay

x(t) = αx(t −β)+
∫ t

−∞
a(t, t − s) f (s,x(s))ds+h(t,x(t)), t ∈ R. (1.4)

Equations similar to (1.4) arise in the study of [28] where the authors established the

existence and uniqueness of almost periodic and pseudo almost periodic solutions of

the integral equation given by

x(t) = α(t)x(t −σ(t))+
∫ t

−∞
β(t, t − s) f (s,x(s),x′(s))ds, t ∈ R, (1.5)

where σ(t) is almost periodic (respectively pseudo almost periodic). Recently, the

authors in [12] consider two variants of Eq. (1.5), a variant where the delay σ(t)
is compact almost automorphic in time and another variant where the delay is state-

dependent. Also, the existence and uniqueness of periodic solutions of a more general

model were established via three fixed point theorems by Islam [21].

Hence, one of the still topical subjects in the study of integral equations and/or

differential equations is that if the force functions and/or the coefficients possess

a specific property, are we going to find the same characteristics in the solution?

Roughly speaking, if the considered functions are Stepanov-like pseudo almost peri-

odic, will the expected solutions of the differential or integral equation be of the same

type? The aim of this work is to study the existence and uniqueness of Stepanov-like
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pseudo almost periodic and Stepanov-like pseudo almost automorphic solutions for

the following integral equation

x(t) = f (t,x(t),x(t − r(t)))−
∫ +∞

t
c(t,s)g(s,x(s),x(s− r(s)))ds, (1.6)

where f : R×R×R −→ R, g : R×R×R −→ R and c : R −→ R are continuous

functions, r(·) is a time-dependent delay. To the best of our knowledge, there are

no papers published on the Sp-pseudo almost periodic solutions and/or Sp-pseudo

almost automorphic solutions of this class of Volterra equation.

Our main contributions in this paper are:

(1) The existence and uniqueness of Stepanov-like pseudo almost periodic solu-

tion for system (1.6) are proved.

(2) A new proof for the composition theorem in the space PAPSp is given based

mainly on the Banach’s transform.

(3) The existence and uniqueness of Stepanov-like pseudo almost automorphic

solution for system (1.6) are proved.

(4) The existence and uniqueness of Stepanov-like pseudo almost periodic solu-

tions and Stepanov-like pseudo almost automorphic of a class of logistic dif-

ferential equation are established.

The organization of this work is as follows. In Section 2, we present some defin-

itions and lemmas that will be used later. In Section 3, we state our main results.

More precisely, we give sufficient conditions for the existence and the uniqueness

of Sp-pseudo almost automorphic and Sp-pseudo almost periodic solutions of the in-

tegral equation (1.6). Our approach is based mainly on Bochner’s transform, using

analytic techniques and Banach’s fixed point theorem. Finally, in Section 4, we study

the validity of our theoretical result, therefore we give an illustrating application. It

should be mentioned that the main results of this paper include Theorems 1, 2, 3 and

4.

2. PRELIMINARIES: SPACES OF FUNCTIONS

Throughout this article (E,‖·‖E) and (F,‖·‖F) denote Banach spaces and C (E,F)
the Banach space of continuous functions from E to F. We denote by BC(R,E) the

Banach space of bounded and continuous defined functions on R with the sup norm

defined by

‖ f‖= sup
t∈R

‖ f (t)‖ . (2.1)

Definition 1 ([4]). A set D of real numbers is said to be relatively dense if there

exists a number ℓ > 0 such that any interval of length ℓ contains at least one number

of D.

Definition 2 ([4]). A function f ∈C(R,E) is called (Bohr) almost periodic if for

each ε > 0 the set T ( f ,ε) = {τ : f (t +τ)− f (t)} is relatively dense, i.e. for any ε > 0
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there exists l = l(ε)> 0 such that every interval of length l contains a number τ with

the property that

‖ f (t + τ)− f (t)‖< ε, t ∈ R.

The collection of all such functions will be denoted by AP(R,E).

Definition 3 ([26]). A function f ∈ C(R×E,F) is called (Bohr) almost periodic

in t ∈ R uniformly in y ∈ K where K ⊂ E is any compact subset if for each ε > 0

there exists l = l(ε)> 0 such that every interval of length l contains a number τ with

the property that

‖ f (t + τ,y)− f (t,y)‖< ε, t ∈ R, y ∈ K.

The collection of such functions will be denoted by AP(R×E,F).

Lemma 1 ([5]). Let f ∈ AP(R× E,F) and φ ∈ AP(R,E) then the function

[t 7−→ F(t,φ(t))] ∈ AP(R,F).

Definition 4 ([27]). A continuous function f : R −→ E is called pseudo almost

periodic if it can be written as f = h+ φ where h ∈ AP(R,E) and φ ∈ PAP0(R,E)
where the space PAP0(R,E) is defined by

PAP0(R,E) =

{

f ∈ BC(R,E),M (‖ f‖) = lim
T−→∞

1

2T

∫ T

−T
‖ f (t)‖dt = 0

}

.

The functions h and φ in above definition are respectively called the almost periodic

components and the ergodic perturbation of the pseudo-almost periodic function f .

The collection of all pseudo almost periodic functions which map from R to E will

be denoted by PAP(R,E).

Definition 5 ([13]). The Bochner transform f b(t,s) with t ∈R,s ∈ [0,1] of a func-

tion f : R 7→ E is defined by f b(t,s) := f (t + s).

Definition 6 ([13]). The Bochner transform Fb : R× [0,1]×E 7→ E of a function

F : R×E 7→ E is defined by Fb(t,s,u) := F(t + s,u) for each t ∈ R, s ∈ [0,1], and

u ∈ E.

Definition 7 ([13]). Let p ∈ [1,∞[. The space BSp(R,E) of all Stepanov-like

bounded functions, with exponent p, consists of all measurable functions f : R 7→ E

such that f b ∈ L∞(R,Lp((0,1),E)). This is a Banach space with the norm

‖ f‖BSp(R,E) := ‖ f b‖L∞(R,Lp) = sup
t∈R

(

∫ t+1

t
‖ f (τ)‖pdτ

)1/p

.

Definition 8 ([14]). A function f ∈ BSp(R,E) is called Stepanov-like almost peri-

odic if f b ∈ AP(R,Lp((0,1),E)). The collection of these functions will be denoted

by APSp(R,E).
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Definition 9 ([14]). A function f : R× E → F,(t,u) 7→ f (t,u) with f (·,u) ∈
BSp(R,), for each u ∈ E, is called Stepanov almost periodic function in t ∈ R uni-

formly for u ∈E if for each ε > 0 and each compact set K ⊂E there exists a relatively

dense set P = P(ε, f ,K)⊂ R such that

sup
t∈R

(

∫ 1

0
‖ f (t + s+ τ,u)− f (t + s,u)‖ds

)1/p

< ε, (2.2)

for each τ ∈ P, u ∈ K. We denote by APSp(R×E,F) the set of such functions.

Definition 10 ([13]). Let p ≥ 1. A function f ∈ BSp(R,E) is called Sp-pseudo

almost periodic (or Stepanov-like pseudo almost periodic) if it can be expressed as

f = h+φ, (2.3)

where hb ∈ AP(Lp((0,1),E)) and φb ∈ PAP0(L
p((0,1),E)). In other words, a func-

tion f ∈ Lp(R,E) is said to be Sp-pseudo almost periodic if its Bochner transform

f b : R −→ Lp((0,1),E) is pseudo almost periodic in the sense that there exist two

functions h,φ : R → E such that f = h+ φ, where hb ∈ AP(Lp((0,1),E)) and φb ∈
PAP0(L

p((0,1),E)) that is,

lim
T→∞

1

2T

∫ T

−T

(∫ t+1

t
‖ϕ(σ)‖pdσ

)
1
p

dt = 0. (2.4)

The collection of such functions will be denoted by PAPSp(R,E).

Definition 11 ([23]). A continuous function f : R−→ E is almost automorphic if

for every sequence of real numbers (sn)n∈N there exists a subsequence (sn)n∈N such

that

g(t) = lim
n→+∞

f (t + sn) (2.5)

is well defined for each t ∈ R, and

lim
n→+∞

g(t − sn) = f (t) (2.6)

for each t ∈ R. The collection of all almost automorphic functions which map from

R to E is denoted by AA(R,E).

Definition 12 ([5]). A function f : R×E −→ E (t,x) 7−→ f (t,x) is said to be

almost automorphic in t ∈ R for each u ∈ E when it satisfies the two following con-

ditions:

(1) For all x ∈ E, the function f (·,x) ∈ AA(R,E).
(2) For all subset compact K of E, for all ε > 0 there exists δ = δ(k,ε)> 0 such

that, for all x,z ∈ k, if d(x,z) ≤ δ then we have d( f (x, t), f (z, t)) ≤ ε for all

t ∈ R.

The collection of such functions will be denoted by AA(E×R,F).
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Lemma 2 ([5]). Let f ∈ AA(R×E,F) and u ∈ AA(R,E), then we have

[t 7−→ f (t,u(t))] ∈ AA(R,F).

Lemma 3 ([9]). If the functions x(·) ∈ PAPSp(R,R) and r(·) ∈ APSp(R,R) then

we have x(·− r(·)) ∈ PAPSp(R,R).

Definition 13 ([14]). A function f ∈ BSp(R,E) is called Sp-almost automorphic if

f b ∈ AA(Lp((0,1),E)). The collection of such functions will be denoted by

AASp(R,E).

Definition 14 ([14]). A function f ∈ BSp(R×E,F), (t,u) 7→ F(t,u) where F(·,u)
∈ Lp(R,E) for each u ∈ E, is called Sp-pseudo almost automorphic in t ∈ R uni-

formly in u ∈ E if t 7→ F(t,u) is Sp-pseudo automorphic for each u ∈ K where K ⊂ E

is a bounded subset. The collection of such functions will be denoted by PAASp

(R×E,F).

3. MAIN RESULTS

3.1. Stepanov-like pseudo almost periodic solutions

In this section, we consider the following integral equation

x(t) = f (t,x(t),x(t − r(t)))−
∫ +∞

t
c(t,s)g(s,x(s),x(s− r(s)))ds, (3.1)

where f : R×R×R→R, g : R×R×R→R, c,r : R→R are continuous functions.

We give sufficient conditions which guarantee the existence of Sp-pseudo almost peri-

odic solutions for equation (3.1).

(H1) f : R×R
2 −→ R is Sp-pseudo almost periodic, i.e. f b = hb + φb, where

hb ∈ AP(R×R
2,Lp((0,1),R)) and φb ∈ PAP0(R×R

2,Lp((0,1),R)) such

that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|φ(σ,u)|p dσ

)
1
p

dt = 0, (3.2)

uniformly in u ∈ R
2.

(H2) f is Lipschitz i.e. ∃L1
f , L2

f > 0 such that ∀x1, x2, y1, y2 ∈ R,

| f (t,x1,x2)− f (t,y1,y2)| ≤ L1
f |x1 − y1|+L2

f |x2 − y2|. (3.3)

(H3) g : R×R
2 −→ R is Sp-pseudo almost periodic, i.e. gb = gb

1 + gb
2, where

gb
1 ∈ AP(R×R

2,Lp((0,1),R)) and gb
2 ∈ PAP0(R×R

2,Lp((0,1),R)) such

that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|g2(σ,u)|p dσ

)
1
p

dt = 0, (3.4)

uniformly for all u ∈ R
2.
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(H4) g is Lipschitz i.e. ∃L1
g, L2

g > 0 such that ∀x1, x2, y1, y2 ∈ R

|g(t,x1,x2)−g(t,y1,y2)| ≤ L1
g|x1 − y1|+L2

g|x2 − y2|. (3.5)

(H5) There exists a constant λ > 0 such that c(t,s)≤ eλ(t−s), for all s ≥ t.
(H6) The function t 7→ r(t) ∈ APSp(R,R)∩C1(R,R) with

0 ≤ r(t)≤ r, r(t)≤ r∗ < 1, for all t ∈ R. (3.6)

Lemma 4. Assume that (H1)-(H3) hold, if x(·) ∈ PAPSp(R,R), then the function

β : R−→ R defined by β(·) = f (·,x(·),x(·− r(·))) belongs to PAPSp(R,R).

Proof. Let f = h+φ where hb ∈ AP(R×R
2,Lp((0,1),R)) and the function φb ∈

PAP0(R×R
2,Lp((0,1),R)). Similarly, let xb(·) = xb

1(·) + xb
2(·) where the function

xb
1 ∈ AP(R,Lp((0,1),R)) and xb

2 ∈ PAP0(R,L
p((0,1),R)) that is

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|x2(σ)|p dσ

)
1
p

dt = 0, (3.7)

for all t ∈ R. By Lemma 3 we get x(·− r(·)) ∈ PAPSp(R,R), then

xb(·− r(·)) = xb
1(·− rb(·))+ xb

2(·− rb(·)), (3.8)

where xb
1(·− rb(·)) ∈ AP(R,Lp((0,1),R)) and xb

2(·− rb(·)) ∈ PAP0(R,L
p((0,1),R))

that is

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|x2(σ− r(σ))|p dσ

)
1
p

dt = 0. (3.9)

Since f b : R−→ Lp((0,1),R) we decompose f b as follows

f b(·,xb(·),xb(·− r(t)))

= hb(·,xb
1(·),xb

1(·− r(t)))+ f b(·,xb(·),xb(·− r(t)))−hb(·,xb
1(·),xb

1(·− r(t)))

= hb(·,xb
1(·),xb

1(·− r(t)))+ f b(·,xb(·),xb(·− r(t)))− f b(·,xb
1(·),xb

1(·− r(t)))

+φb(·,xb
1(·),xb

1(·− r(t))).

Let us prove that hb(·,xb
1(·),xb

1(· − r(·))) ∈ AP(R,Lp((0,1),R)). First, the function

xb
1(·) ∈ AP(R,Lp((0,1),R)) and xb

1(·− rb(·)) ∈ AP(R,Lp((0,1),R)). Then the func-

tion ub
1(·) = (xb

1(·),xb
1(· − r(t))) ∈ AP(R,Lp((0,1),R2)). Indeed, ∀ε > 0, ∃ℓ > 0,

∀a ∈ R, ∃τ ∈ [a,a+ ℓ] such that

sup
t∈R

(∫ 1

0

∥

∥ub
1(t + τ)−ub

1(t)
∥

∥

p

∞
ds

)
1
p

= sup
t∈R

(∫ 1

0

(

max
(

|xb
1(t + τ)− xb

1(t)|, |xb
1(t + τ− rb(t))− xb

1(t − rb(t))|
))p

ds

)
1
p

≤ ε.
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Since the function hb ∈ AP(R×R
2,Lp((0,1),R)) and ub

1(·) ∈ AP(R,Lp((0,1),R2))
then, we can apply the composition theorem of almost periodic functions 1, thus

hb(·,ub
1(·)) ∈ AP(R,Lp((0,1),R)). Now, set

Gb(·) = f b(·,xb(·),xb(·− rb(·)))− f b(·,xb
1(·),xb

1(·− rb(·))). (3.10)

Gb(·) ∈ PAP0(R,(L
p((0,1),R)). Indeed, let T > 0, we have

lim
T→+∞

1

2T

∫ T

−T

(∫ 1

0

∣

∣Gb(σ)
∣

∣

p
dσ

)
1
p

dt

≤ lim
T→+∞

L1
f

2T

∫ T

−T

(∫ 1

0

∣

∣xb(σ)− xb
1(σ)

∣

∣

p
dσ

)
1
p

dt

+ lim
T→+∞

L2
f

2T

∫ T

−T

(∫ 1

0

∣

∣xb(σ− rb(σ))− xb
1(σ− rb(σ))

∣

∣

p
dσ

)
1
p

dt

≤ lim
T→+∞

L1
f

2T

∫ T

−T

(∫ 1

0

∣

∣xb
2(σ)

∣

∣

p
dσ

)
1
p

dt

+ lim
T→+∞

L2
f

2T

∫ T

−T

(∫ 1

0

∣

∣xb
2(σ− rb(σ))

∣

∣

p
dσ

)
1
p

dt.

Using (3.7) and (3.9) we get
1

2T

∫ T

−T

(∫ 1

0

∣

∣Gb
2(σ)

∣

∣

p
dσ

)
1
p

dt = 0.

Moreover, using the composition theorem of ergodic functions (cf. [22]) we have

φb(·,ub
1(·)) ∈ PAP0(R,L

p((0,1),R)) such that

lim
T→∞

1

2T

∫ T

−T

(∫ 1

0

∣

∣φb(σ,ub
1(σ))

∣

∣

p
dσ

)
1
p

dt = 0. (3.11)

�

Lemma 5. Assume that (H3)-(H5) hold. If x(·) ∈ PAPSp(R,R), then the function

Θ : t 7−→
∫ +∞

t
c(t,s)g(s,x(s),x(s− r(s)))ds ∈ PAPSp(R,R) for all s ∈ R.

Proof. Using Lemma 4 and the hypothesis (H5), we obtain that the integral is

convergent and consequently t 7−→
∫ +∞

t
c(t,s)g(s,x(s),x(s−r(s)))ds is well defined.

Otherwise, since [s 7−→ g(s,x(s),x(s− r(s))] ∈ PAPSp(R,R), one can write

g = g1 +g2 (3.12)

with g1 ∈ APSp(R,R) i.e. for each ε′ > 0 , there exists ℓ > 0 such that every in-

terval of length ℓ contains a τ such that ‖g1(t + τ)− g1(t)‖Sp < ε′ and the function
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g2 ∈ PAP0(R,L
p((t, t +1),R)) such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|g2(σ)|p dσ

)
1
p

dt = 0. (3.13)

Then

Θ(t) =
∫ +∞

t
c(t,s)g1(s)ds+

∫ +∞

t
c(t,s)g2(s)ds = Θ1(t)+Θ2(t).

Now, we shall study the Sp-almost periodicity of Θ1(·). We have

|Θ1(t + τ)−Θ1(t)| ≤
∣

∣

∣

∣

∫ +∞

t+τ
eλ(t+τ−s)g1(s)ds−

∫ +∞

t
eλ(t−s)g1(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ +∞

t
eλ(t−ξ)g1(ξ+ τ)dξ−

∫ +∞

t
eλ(t−s)g2(s)ds

∣

∣

∣

∣

≤
∫ +∞

t
eλ(t−s)|g1(s+ τ)−g1(s)|ds.

According to Hölder inequality

(

1

p
+

1

q
= 1

)

one has for all τ ∈ R,

|Θ1(t + τ)−Θ1(t)| ≤
∫ +∞

0
e−λs|g1(s+ t + τ)−g1(s+ t)|ds

≤
(

2

λq

)
1
q
(∫ +∞

0
e

−λps
2 |g1(s+ t + τ)−g1(s+ t)|p ds

)
1
p

.

Using Fubini’s theorem, we get for all τ ∈ R

sup
x∈R

(∫ x+1

x
|Θ1(t + τ)−Θ1(t)|pdt

)
1
p

≤
(

2

λq

)
1
q

sup
x∈R

(∫ x+1

x

∫ +∞

0
e

−λps
2 |g1(s+ t + τ)−g1(s+ t)|pdsdt

)
1
p

≤
(

2

λq

)
1
q
(∫ +∞

0
e

−λps
2 sup

x∈R

∫ x+1

x
|g1(s+ t + τ)−g1(s+ t)|pdtds

)
1
p

.

As g1 is Sp almost periodic, for ε′ =Cε > 0 we have

sup
x∈R

(∫ x+1

x
|g1(t ++s+ τ)−g1(t + s)|pdt

)
1
p

< ε′ =Cε, (3.14)

where C =

(

λp

2

)
1
p
(

λq

2

)
1
q

. Then sup
x∈R

(∫ x+1

x
|Θ1(t + τ)−Θ1(t)|pdt

)
1
p

≤ ε. This

proves the Sp-almost periodicity of Θ1. Now let’s show the ergodicity of Θ2(·). Since
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Θ2(·) ∈ BC(R,R), it remains to show that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|Θ2(σ)|p dσ

)
1
p

dt = 0. (3.15)

Let q ∈ [1,∞[ such that
1

p
+

1

q
= 1 then, by Hölder’s inequality and Fubini’s theorem

we obtain
∫ T

−T

(∫ t+1

t
|Θ2(σ)|p dσ

)
1
p

dt

≤ (2T )
1
q

[∫ T

−T

(∫ t+1

t
|Θ2(σ)|p dσ

)

dt

]
1
p

≤ |Θ2|
1
q

∞
(2T )

[

1

2T

∫ T

−T

(∫ t+1

t

∣

∣

∣

∣

∫ +∞

σ
eλ(σ−s)g2(s)ds

∣

∣

∣

∣

dσ

)

dt

]
1
p

,

which gives

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|Θ2(σ)|p dσ

)
1
p

dt

≤ lim
T→+∞

|Θ2|
1
q

∞

[

1

2T

∫ T

−T

(∫ t+1

t

∣

∣

∣

∣

∫ +∞

σ
eλ(σ−s)g2(s)ds

∣

∣

∣

∣

dσ

)

dt

]
1
p

.

On the other hand, we get

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t

∣

∣

∣

∣

∫ +∞

σ
eλ(σ−s)g2(s)ds

∣

∣

∣

∣

dσ

)

dt ≤ I + J, (3.16)

with

I = lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t

∣

∣

∣

∣

∫ T

σ
eλ(σ−s)g2(s)ds

∣

∣

∣

∣

dσ

)

dt (3.17)

and

J = lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t

∣

∣

∣

∣

∫ +∞

T
eλ(σ−s)g2(s)ds

∣

∣

∣

∣

dσ

)

dt. (3.18)

Further

I ≤ lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
eλσ

∫ T

σ
e−λs |g2(s)|dsdσ

)

dt.

Now, we have [s 7−→ e−λs] and [s 7−→ |g2(s)|] are two continuous functions on [σ,T ] ,
furthermore [s 7−→ |g2(s)|] keep a constant sign, so ∃ ξ ∈ ]σ,T [ such that,

I = lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t

(

eλσ |g2(ξ)|
∫ T

σ
e−λsds

)

dσ

)

dt

= lim
T→+∞

1

2T λ

∫ T

−T

(∫ t+1

t

(

|g2(ξ)|
[

1− e−λ(T−σ)
])

dσ

)

dt.
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Now as 1− e−λ(T−σ) ≤ 1, one has I ≤ lim
T→+∞

1

2T λ

∫ T

−T

(∫ t+1

t
|g2(ξ)|dσ

)

dt. Since

ξ ∈ ]σ,T [, then ξ = (1−α)σ+αT , where α ∈ ]0,1[ . Hence,

I = lim
T→+∞

1

2T λ

∫ T

−T

(∫ t+1

t
(|g2((1−α)σ+αT )|)dσ

)

dt. (3.19)

On the other hand, since t ≤ σ ≤ t +1, we get

(1−α)t +αT ≤ (1−α)σ+αT ≤ (1−α)t +(1−α)+αT.

Besides, 1−α < 1, thus

(1−α)t +αT ≤ (1−α)σ+αT ≤ (1−α)t +αT +1.

Set z = (1−α)σ+αT and u = (1−α)σ+αT. We obtain,

I ≤ lim
T→+∞

1

2T λ

∫ T

−T

(∫ z+1

z
|g2(u)|du

)

dt. (3.20)

According to the hypothesis g2 ∈ PAP0(R,L
p((t, t + 1),R)) we conclude that I = 0.

Meanwhile, by applying Fubini’s theorem we obtain

J = lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t

∣

∣

∣

∣

∫ +∞

T
eλ(α−s)g2(s)ds

∣

∣

∣

∣

dα

)

dt

= lim
T→+∞

1

2T λ

∫ T

−T

(∫ +∞

T
|g2(s)|e−sλ

[

eλ(t+1)− eλt
]

ds

)

dt.

Thus, J ≤ J1 + J2 with

J1 = lim
T→+∞

eλ

2T λ

∫ T

−T

∫ +∞

T
|g2(s)|eλ(t−s)dsdt, (3.21)

and

J2 = lim
T→+∞

1

2T λ

∫ T

−T

∫ +∞

T
|g2(s)|eλ(t−s)dsdt. (3.22)

Let ξ = s− t, then

J1 ≤ lim
T→+∞

eλ |g2|∞
2T λ

∫ T

−T

∫ +∞

T−t
e−λξdξdt = lim

T→+∞

eλ |g2|∞
2T λ3

[

1− e−2λT
]

= 0.

Similarly, it is easy to see that J2 = 0 which implies that J = 0. Then we have

lim
T→+∞

|Θ2|
1
q

∞

[

1

2T

∫ T

−T

(∫ t+1

t

∣

∣

∣

∣

∫ +∞

σ
eλ(σ−s)g2(s)ds

∣

∣

∣

∣

dσ

)

dt

]
1
p

= 0. (3.23)

Consequently,

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|Θ2(σ)|p dσ

)
1
p

dt = 0. (3.24)
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Therefore the function Θ : t 7−→
∫ +∞

t
c(t,s)g(s,x(s),x(s − r(s)))ds belongs to

PAPSp(R,R). �

Now, we are able to establish the existence and uniqueness of the Stepanov-like

pseudo almost periodic solutions of (3.1).

Theorem 1. We assume (H1)-(H5) hold. If m < 1 then, (3.1) has a unique Sp-

pseudo almost periodic solution with

m = max

(

L1
f , L2

f (1− r∗)−
1
p ,L1

g

(

2

λq

)
1
q
(

2

λp

)
1
p

,L2
g

(

2

λq

)
1
q
(

2

λp

)
1
p

(1− r∗)−
1
p

)

.

Proof. Define the operator on PAPSp(R,R) by

Γ(x)(t) = f (t,x(t),x(t−r(t)))−
∫ +∞

t
c(t,s)g(s,x(s),x(s−r(s)))ds, t ∈R. (3.25)

Using Lemma 3 and (H1) we get that the function t 7→ f (t,x(t),x(t − r(t))) is con-

tinuous. Furthermore, by Lemma 4 and the hypothesis (H5) we get that the integral

defined by t 7−→
∫ +∞

t
c(t,s)g(s,x(s),x(s− r(s)))ds exists. Thus, Γx is well defined.

Moreover, from Lemmas 4 and 5 we deduce that

Γ : PAPSp(R,R)−→ PAPSp(R,R).

Let x, y ∈ PAPSp(R,R), according to Hölder’s inequality

(

1

p
+

1

q
= 1

)

, we get

|Γx(t)−Γy(t)| ≤ | f (t,x(t),x(t − r(t)))− f (t,y(t),y(t − r(t)))|

+

∣

∣

∣

∣

∫ +∞

t
c(t,s)

(

g(s,y(s),y(s− r(s)))ds−g(s,x(s),x(s− r(s)))
)

ds

∣

∣

∣

∣

= | f (t,x(t),x(t − r(t)))− f (t,y(t),y(t − r(t)))|

+

(

2

qλ

)
1
q
(∫ +∞

0
e

−λps
2 |g(s+ t,y(s+ t),y(s+ t − r(t)))

− g(s+ t,x(s+ t),x(s+ t − r(t)))|p ds

)
1
p

.

Then using Fubini’s theorem and Minkowski’s inequality, we get

sup
ξ∈R

(∫ ξ+1

ξ
|Γx(t)−Γy(t)|p dt

)

1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ

(

L1
f |x(t)− y(t)|+L2

f |x(t − r(t))− y(t − r(t))|
)p

dt

)

1
p
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+

(

2

λq

)
1
q
(∫ ∞

0
e

−λps
2 sup

ξ∈R

∫ ξ+1

ξ

(

L1
g|y(t + s)− x(t + s)|

+ L2
g|y(t + s− r(s))− x(t + s− r(s))|

)p
dt ds

)
1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ

(

L1
f |x(t)− y(t)|+L2

f |x(t − r(t))− y(t − r(t))|
)p

dt

)

1
p

+

(

2

λq

)
1
q

×
(∫ ∞

0
e

−λps
2 sup

ξ′∈R

∫ ξ′+1

ξ′

(

L1
g|y(t ′)− x(t ′)|

+ L2
g|y(t ′− r(t))− x(t ′− r(t))|

)p
dt ′ds

)
1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ

(

L1
f |x(t)− y(t)|+L2

f |x(t − r(t))− y(t − r(t))|
)p

dt

)

1
p

+

(

2

λq

)
1
q
(

2

λp

)
1
p
(

sup
ξ′∈R

∫ ξ′+1

ξ′

(

L1
g|y(t ′)− x(t ′)|

+ L2
g|y(t ′− r(t ′))− x(t ′− r(t ′))|

)p
dt ′
)

1
p

≤ L1
f ‖x− y‖Sp +L1

g

(

2

λq

)
1
q
(

2

λp

)
1
p

‖x− y‖Sp

+L2
f

(

1− r′(t)
)− 1

p sup
ξ∈R

(∫ ξ+1−r(ξ+1)

ξ−r(ξ)
|x(ρ)− y(ρ)|p dρ

)

1
p

+L2
g

(

2

λq

)
1
q
(

2

λp

)
1
p
(

1− r′(t)
)− 1

p × sup
ξ∈R

(∫ ξ+1−r(ξ+1)

ξ−r(ξ)
|x(ρ)− y(ρ)|p dρ

)

1
p

≤ L1
f ‖x− y‖Sp +L2

f (1− r∗)−
1
p sup

ξ∈R

(∫ ξ+1−r

ξ−r
|x(ρ)− y(ρ)|p dρ

)

1
p

+L1
g

(

2

λq

)
1
q
(

2

λp

)
1
p

‖x− y‖Sp

+L2
g

(

2

λq

)
1
q
(

2

λp

)
1
p

(1− r∗)−
1
p sup

ξ∈R

(∫ ξ+1−r

ξ−r
|x(ρ)− y(ρ)|p dρ

)

1
p

≤ m‖x− y‖Sp ,
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where

m = max

(

L1
f , L2

f (1− r∗)−
1
p ,L1

g

(

2

λq

)
1
q
(

2

λp

)
1
p

,L2
g

(

2

λq

)
1
q
(

2

λp

)
1
p

(1− r∗)−
1
p

)

.

Since m < 1, the operator Γ : (PAPSp(R,R),‖ · ‖Sp) −→ (PAPSp(R,R),‖ · ‖Sp) is a

contraction. Therefore, by applying the Banach fixed point theorem, there is a unique

x∗ ∈ PAPSp(R,R) such that Γ(x∗) = x∗, which corresponds to the unique Sp-almost

periodic pseudo solution of equation (3.1). �

3.2. Stepanov like (pseudo) almost automorphic solutions

In this section, we establish the existence of pseudo almost automorphic solutions

of equation (3.1). For this study, we make the following assumptions:

(H1) f : R×R
2 −→ R is Sp-pseudo almost automorphic, i.e. f b = hb +φb, where

the function hb ∈ AA(R× R
2,Lp((0,1),R)) and the function φb ∈ PAP0

((R×R
2,Lp((0,1),R)) such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|φ(σ,u)|p dσ

)
1
p

dt = 0, (3.26)

uniformly for all u ∈ R
2.

(H2) f is a Lipschitz function, i.e. ∃L1
f , L2

f > 0 such that ∀x1, x2, y1, y2 ∈ R,

| f (t,x1,x2)− f (t,y1,y2)| ≤ L1
f |x1 − y1|+L2

f |x2 − y2|. (3.27)

(H3) g : R×R
2 −→ R is Sp-pseudo almost automorphic, i.e. gb = gb

1 +gb
2, where

gb
1 ∈ AA(R×R

2,Lp((0,1),R)) and gb
2 ∈ PAP0(R×R

2,Lp((0,1),R)) such

that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|g2(σ,u)|p dσ

)
1
p

dt = 0, (3.28)

uniformly for all u ∈ R
2.

(H4) g is Lipschitz , i.e. ∃L1
g, L2

g > 0 such that ∀x1, x2, y1, y2 ∈ R,

|g(t,x1,x2)−g(t,y1,y2)| ≤ L1
g|x1 − y1|+L2

g|x2 − y2|. (3.29)

(H5) There exists a constant λ > 0 such that c(t,s)≤ eλ(t−s), for all s ≥ t.
(H6) The function t 7→ r(t) ∈C1(R,R) with

0 ≤ r(t)≤ r, r(t)≤ r∗ < 1. (3.30)

Lemma 6. Assume that (H6) holds. If x(·) ∈ PAASp(R,R) then x(· − r(·)) ∈
PAASp(R).
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Proof. Since x(·) ∈ PAASp(R,R), then x(·) can be written as x = x1 + x2, where

xb
1(·) ∈ AA(R,Lp([0,1],R)) and xb

2(·) ∈ PAP0(R,L
p([0,1],R)), such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|x2(σ)|p dσ

)
1
p

dt = 0. (3.31)

Let

x(·− r(·)) = x1(·− r(·))+ x(·− r(·))− x1(·− r(·)) = Ψ1(·)+Ψ2(·), (3.32)

where Ψ1(·) = x1(·− r(·)) and Ψ2(·) = x(·− r(·))− x1(·− r(·)). Note that the func-

tion Ψb
2(·) ∈ PAP0(R,L

p((0,1),R)) (cf. [9]). Hence, it only remains to show that

xb
1(·− rb(·)) ∈ AA(R,Lp((0,1),R)). Since xb

1(·) ∈ AA(R,Lp((0,1),R)) then for any

sequence (s′n)n∈R there exists a subsequence (sn)n∈R and a function g ∈ L
p
loc(R,R)

such that
(∫ t+1

t
|x1(s+ sn)−g(s)|p ds

)
1
p

−→
n→∞

0 (3.33)

and
(∫ t+1

t
|g(s− sn)− x1(s)|p ds

)
1
p

−→
n→∞

0. (3.34)

Thus we could find
(∫ t+1

t
|x1(s+ sn − r(s+ sn))−g(s− r(s))|p ds

)
1
p

≤
(∫ t+1

t
|x1(s+ sn − r(s+ sn))−g(s− r(s+ sn)|p ds

)
1
p

+

(∫ t+1

t
|g(s− r(s+ sn)−g(s− r(s))|p ds

)
1
p

.

Let (gn)n∈N be a sequence such that gn → g as n → ∞ in BSp(R,R) which is domin-

ated by some integrable function w, then

(∫ t+1

t
|g(s− r(s+ sn)−g(s− r(s))|p ds

)
1
p

≤ I + J+K,

where

I =

(∫ t+1

t
|g(s− r(s+ sn)−gn(s− r(s+ sn)|p ds

)
1
p

, (3.35)

J =

(∫ t+1

t
|gn(s− r(s+ sn)−gn(s− r(s))|p ds

)
1
p

(3.36)

and

K =

(∫ t+1

t
|gn(s− r(s))−g(s− r(s))|p ds

)
1
p

. (3.37)
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Let us show that I = 0. For that, letting s′ = s− r(s+ sn) one obtains

I =
(

1− r′(s+ sn)
)− 1

p

(∫ t+1−r(t+1−sn)

t−r(t+sn)

∣

∣g(s′)−gn(s
′)
∣

∣

p
ds′
)

1
p

≤ (1− r∗))−
1
p

(∫ t+1−r

t−r

∣

∣g(s′)−gn(s
′)
∣

∣

p
ds′
)

1
p

≤ (1− r∗))−
1
p

(∫ t+1

t

∣

∣g(s′)−gn(s
′)
∣

∣

p
ds′
)

1
p

−→
n→∞

0.

In addition, by applying the dominated convergence theorem we get J = 0. Moreover,

let s′ = s− r(s), then

K =
(

1− r′(s)
)− 1

p

(∫ t+1−r(t+1)

t−r(t)

∣

∣g(s′)−gn(s
′)
∣

∣

p
ds′
)

1
p

≤ (1− r∗))−
1
p

(∫ t+1−r

t−r

∣

∣g(s′)−gn(s
′)
∣

∣

p
ds′
)

1
p

≤ (1− r∗))−
1
p

(∫ t+1

t

∣

∣g(s′)−gn(s
′)
∣

∣

p
ds′
)

1
p

−→
n→∞

0.

What is left to show that
(∫ t+1

t
|x1(s+ sn − r(s+ sn))−g(s− r(s+ sn)|p ds

)
1
p

−→
n→∞

0. (3.38)

For this purpose, we set s− r(s+ sn) = s′, then

(∫ t+1

t
|x1(s+ sn − r(s+ sn))−g(s− r(s+ sn)|p ds

)
1
p

=
(

1− r′(s+ sn)
)− 1

p

(∫ t+1−r(t+1−sn)

t−r(t+sn)

∣

∣x1(s
′+ sn)−g(s′)

∣

∣

p
ds′
)

1
p

≤ (1− r∗))−
1
p

(∫ t+1−r

t−r

∣

∣x1(s
′+ sn)−g(s′)

∣

∣

p
ds′
)

1
p

≤ (1− r∗))−
1
p

(∫ t+1

t

∣

∣x1(s
′+ sn)−g(s′)

∣

∣

p
ds′
)

1
p

−→
n→∞

0.

Similarly, we can get

(∫ t+1

t
|g(s− sn + r(s− sn))− x1(s− r(s))|p ds

)
1
p

−→
n→∞

0. (3.39)

Consequently,

xb
1(·− rb(·)) ∈ AA(R,Lp([0,1],R)).
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Therefore the function

x(·− r(·)) ∈ PAASp(R).

�

Lemma 7. We assume that (H1)-(H2) hold. If x(·) ∈ PAASp(R,R), then the func-

tion β : R−→ R defined by β(·) = f (·,x(·),x(·− r(·))) belongs to PAASp(R,R).

Proof. By (H1), we have f b = hb +φb where hb ∈ AA(R×R
2,Lp((0,1),R)) and

φb ∈ PAP0(R×R
2,Lp((0,1),R)) such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|φ(σ,u)|p dσ

)
1
p

dt = 0, (3.40)

uniformly for all u ∈ R
2. Similarly, xb = xb

1 + xb
2 where xb

1(·) ∈ AA(R,Lp((0,1),R))

and xb
2(·) ∈ PAP0(R,L

p((0,1),R)) such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|x2(σ)|p dσ

)
1
p

dt = 0, (3.41)

for all t ∈ R. Then, by Lemma 6, we get x(·− r(·)) ∈ PAASp(R,R), i.e.

xb(·− r(·)) = xb
1(·− rb(·))+ xb

2(·− rb(·)),
where xb

1(·− rb(·)) ∈ AA(R,Lp((0,1),R)) and xb
2(·− rb(·)) ∈ PAP0(R,L

p((0,1),R))
such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|x2(σ− r(σ))|p dσ

)
1
p

dt = 0, (3.42)

for all t ∈ R. In addition, f b : R−→ Lp((0,1),R). Now decompose f b as follows

f b(·,xb(·),xb(·− rb(·)))
= hb(·,xb

1(·),xb
1(·− rb(·)))+ f b(·,xb(·),xb(·− rb(·)))−hb(·,xb

1(·),xb
1(·− rb(·)))

= hb(·,xb
1(·),xb

1(·− rb(·)))+ f b(·,xb(·),xb(·− rb(·)))− f b(·,xb
1(·),xb

1(·− rb(·)))
+φb(·,xb

1(·),xb
1(·− rb(·))).

We start by demonstrating that hb(·,xb
1(·),xb

1(·−rb(·)))∈ AA(R,Lp((0,1),R)). Since

xb
1(·) ∈ AA(R,Lp((0,1),R)), i.e. there exists a subsequence (sn)n∈N and a function

yb
1(·) ∈ L

p
loc(R,E) such that

(∫ t+1

t
|x1(s+ sn)− y1(s)|p ds

)
1
p

−→
n→∞

0, (3.43)

and
(∫ t+1

t
|y1(s− sn)− x1(s)|p ds

)
1
p

−→
n→∞

0. (3.44)
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Similarly, xb
1(·−rb(·))∈ AA(R,Lp((0,1),R)), i.e. there exists a subsequence (sn)n∈N

and a function yb
1(·− rb(·)) ∈ L

p
loc(R,E) such that

(∫ t+1

t
|x1(s+ sn − r(s+ sn))− y1(s− r(s))|p ds

)
1
p

−→
n→∞

0, (3.45)

and
(∫ t+1

t
|y1(s− sn − r(s− sn))− x1(s− r(s))|p ds

)
1
p

−→
n→∞

0. (3.46)

Then ub
1(·) = (xb

1(·),xb
1(·− rb(·))) ∈ AA(R,Lp((0,1),R2)). Indeed, let (s′n)n′∈N a se-

quence has a subsequence (sn)n∈N and a function wb
1(·) = (yb

1(·),yb
1(· − rb(·))) ∈

L
p
loc(R,R

2) such that

(∫ t+1

t
‖u1(s+ sn)−w1(s)‖p

ds

)
1
p

⇔
(∫ t+1

t
‖(x1(s+ sn),x1(s+ sn − r(s+ sn)))− (y1(s),y1(s− r(s)))‖p

∞ ds

)
1
p

⇔
(∫ t+1

t
max(|x1(s+ sn)− y1(s)|p , |x1(s+ sn − r(s+ sn)− y1(s− r(s))|p)ds

)
1
p

.

We deduce from (3.43) and (3.45) that

lim
n→∞

(∫ t+1

t
max(|x1(s+ sn)− y1(s)|p , |x1(s+ sn − r(s+ sn)− y1(s− r(s))|p)ds

)
1
p

= 0.

Moreover, since hb ∈ AA(R×R
2,Lp((0,1),R)) and by applying Lemma 2, it is easy

to see that the function hb(.,ub
1(.)) ∈ AA(R,Lp([0,1],R)). Now set

Gb(.) = f b(·,xb(·),xb(·− rs+ sn(·)))− f b(·,xb
1(·),xb

1(·− rb(·)). (3.47)

Gb(·) ∈ PAP0(R,L
p((0,1),R)). Indeed, T > 0 using the fact that f is Lipschitz and

Minkowski’s inequality we get

lim
T→+∞

1

2T

∫ T

−T

(∫ 1

0

∣

∣Gb(σ)
∣

∣

p
dσ

)
1
p

dt

≤ lim
T→+∞

L1
f

2T

∫ T

−T

(∫ 1

0

∣

∣xb(σ)− xb
1(σ)

∣

∣

p
dσ

)
1
p

dt

+ lim
T→+∞

L2
f

2T

∫ T

−T

(∫ 1

0

∣

∣xb(σ− rb(σ))− xb
1(σ− rb(σ))

∣

∣

p
dσ

)
1
p

dt

≤ lim
T→+∞

L1
f

2T

∫ T

−T

(∫ 1

0

∣

∣xb
2(σ)

∣

∣

p
dσ

)
1
p

dt
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+ lim
T→+∞

L2
f

2T

∫ T

−T

(∫ 1

0

∣

∣xb
2(σ− rb(σ))

∣

∣

p
dσ

)
1
p

dt.

By (3.41) and (3.42) we obtain

1

2T

∫ T

−T

(∫ 1

0

∣

∣Gb
2(σ)

∣

∣

p
dσ

)
1
p

dt = 0. (3.48)

It remains to show that φb(·,xb
1(·),xb

1(· − rb(·))) ∈ PAP0(L
p((0,1),R)). We have

already shown that the function ub
1(·) = (xb

1(·),xb
1(·− rb(·))) ∈ AP(R,Lp((0,1),R2)).

Since the function φb ∈ PAP0(R×R
2,Lp((0,1),R)), hence by applying the compos-

ition theorem of ergodic functions (cf. [22]), we get φb(·,ub
1(·)) ∈ PAP0(L

p([0,1],R)
such that

lim
T→∞

1

2T

∫ T

−T

(∫ 1

0

∣

∣φb(σ,ub
1(σ))

∣

∣

p
dσ

)
1
p

dt = 0. (3.49)

�

Lemma 8. Suppose that assumptions (H3)-(H5) hold. If x(·) ∈ PAASp(R,R) then

the function Θ defined by Θ : t 7−→
∫ +∞

t
c(t,s)g(s,x(s),x(s − r(s)))ds belongs to

PAASp(R,R).

Proof. Using Lemma 7 and hypothesis (H5) one can easily check that the in-

tegral t 7−→
∫ +∞

t
c(t,s)g(s,x(s),x(s− r(s)))ds is well defined. Since the function

[ s 7−→ g(s,x(s),x(s− r(s))] ∈ PAASp(R,R), we can write g = g1 + g2 where

gb
1 ∈ AA(R,Lp((0,1),R)) and gb

2 ∈ PAP0(R,L
p((0,1),R)) such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|g2(σ)|p dσ

)
1
p

dt = 0. (3.50)

Then

Θ(t) =
∫ +∞

t
c(t,s)g1(s)ds+

∫ +∞

t
c(t,s)g2(s)ds = Θ1(t)+Θ2(t). (3.51)

We have already shown that [t 7−→ θ2(t)] ∈ PAP0(R,L
p([0,1],R)) (see Lemma 5).

So to prove the Sp-pseudo almost periodicity of the function θ(·), it suffices to show

that [t 7−→ θ1(t)] ∈ SAA(R,R). Let (s′n)n∈N a sequence of real numbers and g1 is Sp-

almost automorphic function then there exists a subsequence (sn)n∈N and a function

g∗1 ∈ L
p
loc(R,E) such that

(∫ 1

0
|g1(sn + s+ t)−g∗1(s+ t)|p ds

)
1
p

−→
n→∞

0, (3.52)
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and
(∫ 1

0
|g∗1(t + s− sn)−g1(t + s)|p ds

)
1
p

−→
n→∞

0. (3.53)

Set

θ∗
1(t) =

∫ +∞

t
c(t,s)g∗1(s)ds. (3.54)

Then we have

|θ1(u+ sn)−θ∗
1(u)|=

∣

∣

∣

∣

∫ +∞

u+sn

c(u+ sn,s)g1(s)ds−
∫ +∞

u
c(u,s)g∗1(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ +∞

u
eλ(u−s)g1(sn + s)ds−

∫ +∞

u
eλ(u−s)g∗1(s)ds

∣

∣

∣

∣

=
∫ +∞

0
e−sλ|g1(sn + s+u)−g∗1(s+u)|ds.

Using Hölder’s inequality

(

1

p
+

1

q
= 1

)

|θ1(u+ sn)−θ∗
1(u)| ≤

(

2

λq

)
1
q
(∫ ∞

0
e

−sλp
2 |g1(sn + s+u)−g∗1(s+u)|pds

)
1
p

.

Then
(∫ t+1

t
|θ1(u+ sn)−θ∗

1(u)|p du

)
1
p

≤
(

2

λq

)
1
q
(∫ t+1

t

∫ ∞

0
e

−λps
2 |g1(sn + s+u)−g∗1(s+u)|p dsdu

)
1
p

≤
(

2

λq

)
1
q
(

2

λp

)
1
p
(∫ t ′+1

t ′
|g1(sn +u′)−g∗1(u

′)|pdu′
)

1
p

.

Since

lim
n→+∞

(∫ t ′+1

t ′
|g1(sn +u)−g∗1(u)|p ds

)

1
p

= 0, (3.55)

we obtain

lim
n→+∞

(∫ t+1

t
|θ1(u+ sn)−θ∗

1(u)|p du

)
1
p

= 0. (3.56)

On the other hand, we have

|θ∗
1(u− sn)−θ1(u)| ≤

∣

∣

∣

∣

∫ +∞

u
eλ(u−s)g∗1(s− sn)ds−

∫ +∞

u
eλ(u−s)g1(s)ds

∣

∣

∣

∣

≤
∫ +∞

u
eλ(u−s)|g∗1(s− sn)−g1(s)|ds
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=
∫ +∞

0
e−λs|g∗1(s+u− sn)−g1(s+u)|ds.

Using Hölder’s inequality

(

1

p
+

1

q
= 1

)

we get

|θ∗
1(u− sn)−θ1(u)| ≤

(

2

λq

)
1
q
(∫ +∞

0
e

−sλp
2 |g1(s− sn +u)−g∗1(s+u)|pds

)
1
p

.

Now using Fubini theorem we get

(∫ t+1

t
|θ∗

1(u− sn)−θ1(u)|pdu

)
1
p

≤
(

2

λq

)
1
q
(∫ t+1

t

∫ ∞

0
e

−λps
2 |g∗1(s− sn +u)−g1(s+u)|pdsdu

)
1
p

=

(

2

λq

)
1
q
(

2

λp

)
1
p
(∫ t ′+1

t ′
|g∗1(sn +u′)−g1(u

′)|pdu′
)

1
p

.

Using the fact that

lim
n→+∞

(∫ t ′+1

t ′

∣

∣g∗1(u
′− sn)−g1(u

′)
∣

∣

p
du′
)

1
p

= 0, (3.57)

we get

lim
n→+∞

(∫ t ′+1

t ′
|θ∗

1(u− sn)−θ1(u)|p du

)

1
p

= 0. (3.58)

Therefore, Θ : t 7−→
∫ +∞

t
c(t,s)g(s,x(s),x(s− r(s)))ds ∈ PAASp(R,R). �

Theorem 2. Assume that (H1)-(H5) hold. If m < 1, then (3.1) has a unique Sp-

pseudo almost automorphic solution with

m = max

(

L1
f , L2

f (1− r∗)−
1
p ,L1

g

(

2

λq

)
1
q
(

2

λp

)
1
p

,L2
g

(

2

λq

)
1
q
(

2

λp

)
1
p

(1− r∗)−
1
p

)

.

Proof. Let us consider the operator Γ defined on PAASp(R,R) by

Γ(x)(t) = f (t,x(t),x(t − r(t)))−
∫ +∞

t
c(t,s)g(s,x(s),x(s− r(s)))ds, t ∈ R.

By Lemma 6 and (H1) we obtain that the function t 7−→ f (t,x(t),x(t − r(t))) is con-

tinuous. Furthermore, using Lemma 7 and (H5), we get that the integral defined by

t 7−→
∫ +∞

t
c(t,s)g(s,x(s),x(s− r(s)))ds exists. Thus, Γx is well defined. Moreover,

from Lemmas 7 and 8 we deduce that

Γ : PAASp(R,R)→ PAASp(R,R).
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Let x,y ∈ PAASp(R,R), by making a change of variables and according to Hölder’s

inequality

(

1

p
+

1

q
= 1

)

we get

sup
ξ∈R

(∫ ξ+1

ξ
|Γx(t)−Γy(t)|p dt

)

1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ

(

L1
f |x(t)− y(t)|+L2

f |x(t − r(t))− y(t − r(t))|
)p

dt

)

1
p

+

(

2

λq

)
1
q
(∫ ∞

0
e

−λps
2 sup

ξ∈R

∫ ξ+1

ξ

(

L1
g|y(t + s)− x(t + s)|

+ L2
g|y(t + s− r(s))− x(t + s− r(s))|

)p
dt ds

)
1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ

(

L1
f |x(t)− y(t)|+L2

f |x(t − r(t))− y(t − r(t))|
)p

dt

)

1
p

+

(

2

λq

)
1
q

×
(∫ ∞

0
e

−λps
2 sup

ξ′∈R

∫ ξ′+1

ξ′

(

L1
g|y(t ′)− x(t ′)|

+ L2
g|y(t ′− r(t))− x(t ′− r(t))|

)p
dt ′ds

)
1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ

(

L1
f |x(t)− y(t)|+L2

f |x(t − r(t))− y(t − r(t))|
)p

dt

)

1
p

+

(

2

λq

)
1
q
(

2

λp

)
1
p
(

sup
ξ′∈R

∫ ξ′+1

ξ′

(

L1
g|y(t ′)− x(t ′)|

+ L2
g|y(t ′− r(t ′))− x(t ′− r(t ′))|

)p
dt ′
)

1
p

≤ L1
f ‖x− y‖Sp +L1

g

(

2

λq

)
1
q
(

2

λp

)
1
p

‖x− y‖Sp

+L2
f

(

1− r′(t)
)− 1

p sup
ξ∈R

(∫ ξ+1−r(ξ+1)

ξ−r(ξ)
|x(ρ)− y(ρ)|p dρ

)

1
p

+L2
g

(

2

λq

)
1
q
(

2

λp

)
1
p
(

1− r′(t)
)− 1

p × sup
ξ∈R

(∫ ξ+1−r(ξ+1)

ξ−r(ξ)
|x(ρ)− y(ρ)|p dρ

)

1
p
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≤ L1
f ‖x− y‖Sp +L2

f (1− r∗)−
1
p sup

ξ∈R

(∫ ξ+1−r

ξ−r
|x(ρ)− y(ρ)|p dρ

)

1
p

+L1
g

(

2

λq

)
1
q
(

2

λp

)
1
p

‖x− y‖Sp

+L2
g

(

2

λq

)
1
q
(

2

λp

)
1
p

(1− r∗)−
1
p sup

ξ∈R

(∫ ξ+1−r

ξ−r
|x(ρ)− y(ρ)|p dρ

)

1
p

≤ m‖x− y‖Sp ,

where

m = max

(

L1
f , L2

f (1− r∗)−
1
p ,L1

g

(

2

λq

)
1
q
(

2

λp

)
1
p

,L2
g

(

2

λq

)
1
q
(

2

λp

)
1
p

(1− r∗)−
1
p

)

.

Since m < 1, the operator Γ : (PAASp(R,R),‖ · ‖Sp) −→ (PAASp(R,R),‖ · ‖Sp) is a

contraction. Therefore, by applying the Banach fixed point theorem there is a unique

x∗ ∈ PAASp(R,R) such that Γ(x∗) = x∗, which corresponds to the unique Sp-almost

periodic pseudo solution of the equation (3.1). �

4. APPLICATION

The purpose of this section is to show the existence and uniqueness of the Sp-

pseudo almost periodic and Sp-pseudo almost automorphic solutions of the following

logistic differential equation

x′(t) = ax(t)+αx′(t − r(t))−q(t,x(t),x(t − r(t)))+h(t). (4.1)

But rather than dealing with equation (4.1) we will study the existence and uniqueness

of Sp-pseudo almost periodic and Sp-pseudo almost automorphic solutions of the

following integral equation

x(t) = αx(t − r(t))−
∫ +∞

t
[q(s,x(s),x(s− r(s)))−aαx(s− r(s))]ea(t−s)ds+ p(t),

(4.2)

where h : R −→ R, q : R×R
2 −→ R are continuous functions, p : R −→ R a dif-

ferentiable function, a > 0, 0 ≤ |α|< 1 are respectively constants and r(·) is a time-

dependent delay. Indeed, let x a solution of (4.2) then

x′(t) = αx′(t − r(t))−q(t,x(t),x(t − r(t)))+aαx(t − r(t))

−a

∫ ∞

t
[q(s,x(s),x(s− r(s)))−aαx(s− r(s))]ea(t−s)ds+ p′(t)

= a

[

αx(t − r(t))−
∫ ∞

t
[q(s,x(s),x(s− r(s)))−aαx(s− r(s))]ea(t−s)ds

]

+αx′(t − r(t))−q(t,x(t),x(t −h))+ p′(t)
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= ax(t)+αx′(t − r(t))−q(t,x(t),x(t − r(t)))+h(t),

where h(t) = p′(t). Then, the solutions of equation (4.1) are exactly those of the

integral equation (4.2).

4.1. Stepanov-like pseudo almost periodic solutions

We will study the Sp-pseudo almost periodic solutions of (4.2). For this study, we

formulate the following assumptions

(H1) q : R×R
2 −→ R is Sp-pseudo almost periodic function, i.e.

qb = qb
1 +qb

2, (4.3)

with qb
1 ∈ AP(R×R

2,Lp((0,1),R)) and qb
2 ∈ PAP0(R×R

2,Lp((0,1),R))
such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|q2(σ,u)|p dσ

)
1
p

dt = 0, (4.4)

uniformly for all u ∈ R
2.

(H2) q is Lipschitz, i.e. ∃L1
q, L2

q > 0 such that ∀x1, x2, y1, y2 ∈ R

|q(t,x1,x2)−q(t,y1,y2)| ≤ L1
q|x1 − y1|+L2

q|x2 − y2|. (4.5)

(H3) p : R−→ R is Sp-pseudo almost periodic function, i.e.

pb = pb
1 + pb

2 (4.6)

where pb
1 ∈ AP(R,Lp((0,1),R)) and pb

2 ∈ PAP0(R,L
p((0,1),R)) such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|p2(σ)|p dσ

)
1
p

dt = 0. (4.7)

(H4) The function t 7→ r(t) ∈ APSp(R,R)∩C1(R,R), with

0 ≤ r(t)≤ r, r(t)≤ r∗ < 1. (4.8)

Theorem 3. Assume that (H1)-(H3) hold. If m1 < 1 then (4.2) has a unique Sp-

pseudo almost perodic solution, where

m1 = max

(

α(1− r∗) ,L1
q

(

2

aq

)
1
q
(

2

ap

)
1
p

,(1− r∗)
(

L2
q −aα

)

(

2

aq

)
1
q
(

2

ap

)
1
p

)

.

Proof. Let the operator Λ defined on PAPSp(R,R) by

Λ(x)(t) = αx(t−r(t))−
∫ +∞

t
[q(s,x(s),x(s− r(s)))−aαx(s− r(s))]ea(t−s)ds+ p(t).

(4.9)

Λx ∈ PAPSp(R,R). In fact, pose

f (·,x(·),x(·− r(·))) = αx(·− r(·))+ p(·), (4.10)
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and

g(·,x(·),x(·− r(·))) = [q(·,x(·),x(·− r(·)))−aαx(·− r(·))] . (4.11)

Since, [t 7→ x(t)] ∈ PAASp(R,R), Lemma 3 implies that

[t 7→ x(t − r(t))] ∈ PAPSp(R,R),

for all t ∈ R. Thus,

[t 7−→ αx(t − r(t))] ∈ PAASp(R,R),

for all t ∈ R. In accordance with Lemma 4, the function

[t 7→ f (t,x(t),x(t − r(t)))] ∈ PAPSp(R,R).

Moreover, under (H1)-(H2) and using Lemma 4, we obtain that the function

[s → q(s,x(s),x(s− r(s)))] ∈ PAPSp(R,R).

As previously we show that the function [s 7−→ −aαx(s− r(s))] ∈ PAPSp(R,R), for

all t ∈ R. Then, [s 7−→ g(s,x(s),x(s− r(s)))] ∈ PAPSp(R,R), as being the sum of

two Sp-pseudo almost periodic functions. It follows from Lemma 5 that
[

t 7−→
∫ +∞

t
[q(s,x(s),x(s− r(s)))−aαx(s− r(s))]ea(t−s)ds

]

∈ PAPSp(R,R).

Therefore we deduce that Λx ∈ PAPSp(R,R).
Let x, y ∈ PAPSp(R,R), then

|Λx(t)−Λy(t)|
≤ |αx(t − r(t))−αy(t − r(t))|

+
∫ +∞

t
ea(t−s) |q(s,y(s),y(s− r(s)))−q(s,x(s),x(s− r(s)))

+ aαx(s− r(s))−aαy(s− r(s))|ds

≤ |αx(t − r(t))−αy(t − r(t))|+
∫ +∞

0
e−as |q(s+ t,y(s+ t),y(s+ t − r(s+ t)))

− q(s+ t,x(s+ t),x(s+ t − r(s+ t)))

+ aαx(s+ t − r(s+ t))−aαy(s+ t − r(s+ t))|ds

≤ |αx(t − r(t))−αy(t − r(t))|+
(

2

qa

)
1
q

×
∫ ∞

0
e

−aps
2 |q(s+ t,y(s+ t),y(s+ t − r(s+ t)))+aαx(s+ t − r(s+ t))

− q(s+ t,x(s+ t),x(s+ t − r(s+ t)))−aαy(s+ t − r(s+ t))|p ds.

So, using Fubini’s theorem and Minkowski’s inequality we have

sup
ξ∈R

(∫ ξ+1

ξ
|Λx(t)−Λy(t)|p dt

)

1
p
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≤ sup
ξ∈R

(∫ ξ+1

ξ
|αx(t − r(t))−αy(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q

×
(∫ +∞

0
e

−aps
2 sup

ξ∈R

∫ ξ+1

ξ
|aαx(s+ t − r(s+ t))+q(s+ t,y(s+ t),y(s+ t − r(s+ t)))

−q(s+ t,x(s+ t),x(s+ t − r(s+ t)))−aαy(s+ t − r(s+ t))|p dtds

)
1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ
|αx(t − r(t))−αy(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q

(∫ +∞

0
e

−aps
2 sup

ξ′∈R

∫ ξ′+1

ξ′

∣

∣aαx(t ′− r(t ′))

+q(t ′,y(t ′),y(t ′− r(t ′)))−q(t ′,x(t ′),x(t ′− r(t ′)))−aαy(t ′− r(t ′))
∣

∣

p
dt ′ds

)
1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ
|αx(t − r(t))−αy(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

sup
ξ′∈R

(∫ ξ′+1

ξ′

∣

∣aαx(t ′− r(t ′))+q(t ′,y(t ′),y(t ′− r(t ′)))

− q(t ′,x(t ′),x(t ′− r(t ′)))−aαy(t ′− r(t ′))
∣

∣

p
dt ′
)

1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ
|αx(t − r(t))−αy(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

sup
ξ′∈R

(∫ ξ′+1

ξ′

(

L1
q

∣

∣y(t ′)− x(t ′)
∣

∣+(L2
q −aα)

∣

∣y(t ′− r(t ′))− x(t ′− r(t ′))
∣

∣

)p
dt ′
)

1
p

≤ αsup
ξ∈R

(∫ ξ+1

ξ
|x(t − r(t))− y(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

L1
q

sup
ξ′∈R

(∫ ξ′+1

ξ′

∣

∣y(t ′)− x(t ′)
∣

∣

p
dt ′
)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

(L2
q −aα) sup

ξ′∈R

(∫ ξ′+1

ξ′

∣

∣y(t ′− r(t ′))− x(t ′− r(t ′))
∣

∣

p
dt ′
)

1
p
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≤ α
(

1− r′(t)
)

sup
ξ∈R

(∫ ξ+1−r(ξ+1)

ξ−r(ξ)

∣

∣x(t ′)− y(t ′)
∣

∣

p
dt ′
)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

L1
q‖x− y‖Sp

+

(

2

aq

)
1
q
(

2

ap

)
1
p

(L2
q −aα)

(

1− r(t ′)
)

sup
ξ′∈R

(∫ ξ′+1−r(ξ′+1)

ξ′−r(ξ′)
|y(t)− x(t)|p dt ′

)

1
p

≤ α(1− r∗)sup
ξ∈R

(∫ ξ+1−r

ξ−r

∣

∣x(t ′)− y(t ′)
∣

∣

p
dt ′
)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

L1
q‖x− y‖Sp

+

(

2

aq

)
1
q
(

2

ap

)
1
p

(L2
q −aα)(1− r∗) sup

ξ′∈R

(∫ ξ′+1−r

ξ′−r
|y(t)− x(t)|p dt ′

)

1
p

≤ m1‖x− y‖Sp ,

with

m1 = max

(

α(1− r∗) ,L1
q

(

2

aq

)
1
q
(

2

ap

)
1
p

,(1− r∗)
(

L2
q −aα

)

(

2

aq

)
1
q
(

2

ap

)
1
p

)

.

As m1 < 1, the operator Λ : (PAPSp(R,R),‖ · ‖Sp) −→ (PAPSp(R,R),‖ · ‖Sp) is a

contraction. �

4.2. Example 1

Let us consider the following logistic differential equation

x′(t) = 3x(t)+
x′(t − r(t))

2
−q(t,x(t),x(t − r(t)))+h(t), (4.12)

where q : R×R
2 −→ R defined by:

q(t,sin(t),sin(t − cos(t))) =
(

sin(t)+ sin(
√

2t)
)

[sin(t)+ sin(t − cos(t))]

+
[sin(t)+ sin(t − cos(t))]

1+ t2

= q1(t,sin(t),sin(t − cot(t)))+q2(t,sin(t),sin(t − cos(t))).

h : R−→ R defined by h(t) = h1(t)+h2(t), with

h1(t) =

{

−sin(t) fort 6= kπ

0 for t = kπ
(4.13)
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and

h2(t) = arctan(t). (4.14)

Solving (4.12) returns to work out the following integral equation

x(t) =
x(t − r(t))

2
−

∫ +∞

t

[

q(s,x(s),x(s− r(s)))− 3x(s− r(s))

2

]

e3(t−s)ds+ p(t),

(4.15)

where the function p : R−→ R defined by p(t) = p1(t)+ p2(t), with

p1(t) =

{

cos(t) for t 6= kπ

k for t = kπ
(4.16)

and

p2(t) =
1

1+ t2
. (4.17)

Firstly, the function qb
1(·) ∈ AP(R×R

2,Lp((0,1),R)). In addition, the function qb
2 ∈

PAP0(R×R
2,Lp((0,1),R)). Then, the function q :R×R

2 −→R is Sp-pseudo almost

periodic, thus hypothesis (H1) holds. Secondly, the function q is Lipschitz. Then

hypothesis (H2) holds. Meanwhile, it is well-known that [t 7−→ p1(t)] ∈ SAP(R,R)
(cf. [8]). Moreover, pb

2(·)∈PAP0(R,L
p((0,1),R)). Then p(·)∈PAPSp(R,R), which

implies that (H3) holds. Now, by virtue of Theorem 3 equation (4.15) admits a unique

Sp-pseudo almost periodic solution when m1 < 1, with

m1 = max

(

1

2
,3

(

2

3q

)
1
q
(

2

3p

)
1
p

,
3

2

(

2

3q

)
1
q
(

2

3p

)
1
p

)

.

4.3. Stepanov-like pseudo almost automorphic solutions

We will study the Sp-pseudo almost automorphic solutions of (4.2). For this study,

we formulate the following assumptions

(H1) q : R×R
2 −→ R is Sp-pseudo almost automorphic, i.e.

qb = qb
1 +qb

2, (4.18)

where qb
1 ∈ AA(R×R

2,Lp((0,1),R)) and qb
2 ∈ PAP0(R×R

2,Lp((0,1),R))
such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|q2(σ,u)|p dσ

)
1
p

dt = 0, (4.19)

uniformly in u ∈ R
2.

(H2) q is Lipschitz, i.e. ∃L1
q, L2

q > 0 such that ∀x1, x2, y1, y2 ∈ R

|q(t,x1,x2)−q(t,y1,y2)| ≤ L1
q|x1 − y1|+L2

q|x2 − y2|. (4.20)



Sp-ALMOST PERIODIC AND Sp-ALMOST AUTOMORPHIC SOLUTIONS 239

(H3) p : R−→ R is Sp-pseudo almost automorphic, i.e. pb = pb
1 + pb

2 where pb
1 ∈

AP(R,Lp((0,1),R)) and pb
2 ∈ PAP0(R,L

p((0,1),R)) such that

lim
T→+∞

1

2T

∫ T

−T

(∫ t+1

t
|p2(σ)|p dσ

)
1
p

dt = 0. (4.21)

(H6) The function t 7→ r(t) ∈C1(R,R) with

0 ≤ r(t)≤ r, r(t)≤ r∗ < 1. (4.22)

Theorem 4. Assume that (H1)-(H3) hold. If m2 < 1 then (4.2) has a unique Sp-

pseudo almost automorphic solution where

m2 = max

(

α(1− r∗) ,L1
q

(

2

aq

)
1
q
(

2

ap

)
1
p

,(1− r∗)
(

L2
q −aα

)

(

2

aq

)
1
q
(

2

ap

)
1
p

)

.

Proof. Let the operator Λ2 defined on PAASp(R,R) by

Λ2(x)(t)=αx(t−r(t))−
∫ +∞

t
[q(s,x(s),x(s− r(s)))−aαx(s− r(s))]ea(t−s)ds+ p(t).

Now, showing that Λ2(x) ∈ PAASp(R,R), set the functions

f (·,x(·),x(·− r(t))) = αx(·− r(t))+ p(·), (4.23)

and

g(·,x(·),x(·− r(t))) = [q(·,x(·),x(·− r(t)))−aαx(·− r(t)).] (4.24)

Since, x(·) ∈ PAASp(R,R), Lemma 6 implies that

[t 7−→ x(t − r(t))] ∈ PAASp(R,R).

Then

[t 7→ αx(t − r(t))] ∈ PAASp(R,R).

By Lemma 7 we obtain that

[t 7−→ f (t,x(t),x(t − r(t)))] ∈ PAASp(R,R).

Assumptions (H1)-(H2) and Lemma 7, yield that

[s → q(s,x(s),x(s− r(s)))] ∈ PAASp(R,R).

Moreover, as previously we show, [s 7−→ −aαx(s− r(s))]∈PAASp(R,R). Hence, the

function [s 7−→ g(s,x(s),x(s− r(s)))] ∈ PAASp(R,R), as the sum of two Sp-pseudo

almost periodic functions. Then, it follows from Lemma 8 that
[

t 7−→
∫ +∞

t
[q(s,x(s),x(s− r(s)))−aαx(s− r(s))]ea(t−s)ds

]

∈ PAASp(R,R).

We deduce that Λ2x ∈ PAASp(R,R). It remains to show that Λ2 admits a unique fixed

point. Let x, y ∈ PAASp(R,R)

|Λ2x(t)−Λ2y(t)| ≤ |αx(t − r(t))−αy(t − r(t))|
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+
∫ +∞

t
ea(t−s) |q(s,y(s),y(s− r(s)))−q(s,x(s),x(s− r(s)))

+ aαx(s− r(s))−aαy(s− r(s))|ds

≤ |αx(t − r(t))−αy(t − r(t))|+
∫ +∞

0
e−as |q(s+ t,y(s+ t),y(s+ t − r(s+ t)))

− q(s+ t,x(s+ t),x(s+ t − r(s+ t)))

+ aαx(s+ t − r(s+ t))−aαy(s+ t − r(s+ t))|ds

≤ |αx(t − r(t))−αy(t − r(t))|+
(

2

qa

)
1
q

×
∫ ∞

0
e

−aps
2 |q(s+ t,y(s+ t),y(s+ t − r(s+ t)))+aαx(s+ t − r(s+ t))

− q(s+ t,x(s+ t),x(s+ t − r(s+ t)))−aαy(s+ t − r(s+ t))|p ds.

So, using Fubini’s theorem and Minkowski’s inequality we have

sup
ξ∈R

(∫ ξ+1

ξ
|Λ2x(t)−Λ2y(t)|p dt

)

1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ
|αx(t − r(t))−αy(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q

×
(∫ +∞

0
e

−aps
2 sup

ξ∈R

∫ ξ+1

ξ
|aαx(s+ t − r(s+ t))+q(s+ t,y(s+ t),y(s+ t − r(s+ t)))

−q(s+ t,x(s+ t),x(s+ t − r(s+ t)))−aαy(s+ t − r(s+ t))|p dtds

)
1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ
|αx(t − r(t))−αy(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q

×
(∫ +∞

0
e

−aps
2 sup

ξ′∈R

∫ ξ′+1

ξ′

∣

∣aαx(t ′− r(t ′))

+q(t ′,y(t ′),y(t ′− r(t ′)))−q(t ′,x(t ′),x(t ′− r(t ′)))−aαy(t ′− r(t ′))
∣

∣

p
dt ′ds

)
1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ
|αx(t − r(t))−αy(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p



Sp-ALMOST PERIODIC AND Sp-ALMOST AUTOMORPHIC SOLUTIONS 241

sup
ξ′∈R

(∫ ξ′+1

ξ′

∣

∣aαx(t ′− r(t ′))+q(t ′,y(t ′),y(t ′− r(t ′)))

− q(t ′,x(t ′),x(t ′− r(t ′)))−aαy(t ′− r(t ′))
∣

∣

p
dt ′
)

1
p

≤ sup
ξ∈R

(∫ ξ+1

ξ
|αx(t − r(t))−αy(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

sup
ξ′∈R

(∫ ξ′+1

ξ′

(

L1
q

∣

∣y(t ′)− x(t ′)
∣

∣+(L2
q −aα)

∣

∣y(t ′− r(t ′))− x(t ′− r(t ′))
∣

∣

)p
dt ′
)

1
p

≤ αsup
ξ∈R

(∫ ξ+1

ξ
|x(t − r(t))− y(t − r(t))|p dt

)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

L1
q

sup
ξ′∈R

(∫ ξ′+1

ξ′

∣

∣y(t ′)− x(t ′)
∣

∣

p
dt ′
)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

(L2
q −aα) sup

ξ′∈R

(∫ ξ′+1

ξ′

∣

∣y(t ′− r(t ′))− x(t ′− r(t ′))
∣

∣

p
dt ′
)

1
p

≤ α
(

1− r′(t)
)

sup
ξ∈R

(∫ ξ+1−r(ξ+1)

ξ−r(ξ)

∣

∣x(t ′)− y(t ′)
∣

∣

p
dt ′
)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

L1
q‖x− y‖Sp

+

(

2

aq

)
1
q
(

2

ap

)
1
p

(L2
q −aα)

(

1− r(t ′)
)

sup
ξ′∈R

(∫ ξ′+1−r(ξ′+1)

ξ′−r(ξ′)

∣

∣y(t ′)− x(t ′)
∣

∣

p
dt ′
)

1
p

≤ α(1− r∗)sup
ξ∈R

(∫ ξ+1−r

ξ−r

∣

∣x(t ′)− y(t ′)
∣

∣

p
dt ′
)

1
p

+

(

2

aq

)
1
q
(

2

ap

)
1
p

L1
q‖x− y‖Sp

+

(

2

aq

)
1
q
(

2

ap

)
1
p

(L2
q −aα)(1− r∗) sup

ξ′∈R

(∫ ξ′+1−r

ξ′−r

∣

∣y(t ′)− x(t ′)
∣

∣

p
dt ′
)

1
p

≤ m2‖x− y‖Sp ,

with

m2 = max

(

α(1− r∗) ,L1
q

(

2

aq

)
1
q
(

2

ap

)
1
p

,(1− r∗)
(

L2
q −aα

)

(

2

aq

)
1
q
(

2

ap

)
1
p

)

.
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As m2 < 1, the operator Λ2 : (PAASp(R,R),‖ · ‖Sp) −→ (PAASp(R,R),‖ · ‖Sp) is a

contraction and the result holds by Banach’s fixed point theorem. �

4.4. Example 2

In order to illustrate Theorem 4, we consider the following logistic differential

equation

x′(t) = 2x(t)+
x′(t − r(t))

4
−q(t,x(t),x(t − r(t)))+h(t), (4.25)

where q : R×R
2 −→ R defined by:

q(t,sin(t),sin(t −4)) =
[sin(t)+ sin(t − cos(t))]

2+ cos(t)+ cos(
√

2t)
+

[sin(t)+ sin(t − cos(t))]

1+ t2

= q1(t,sin(t),sin(t − cos(t)))+q2(t,sin(t),sin(t − cos(t))),

and h : R−→ R defined by h(t) = h1(t)+h2(t) where

h1(t) =
sin(t)+

√
2sin(

√
2t)

(2+ cos(t)+ cos(
√

2t))2
cos

(

1

2+ cos(t)+ cos(
√

2t)

)

and

h2(t) = arctan(t). (4.26)

Rather than dealing with (4.25) we will study the following integral equation

x(t) =
x(t − r(t))

2
−

∫ +∞

t

[

q(s,x(s),x(s− r(s)))− 3x(s− r(s))

2

]

e3(t−s)ds+ p(t),

(4.27)

the function q is Sp-pseudo almost automorphic and lipschtizian. In addition, the

function p : R−→ R is defined by p(t) = p1(t)+ p2(t) where

p1(t) = sin

(

1

2+ cos(t)+ sin(
√

2t)

)

(4.28)

and

p2(t) =
1

1+ t2
, (4.29)

belongs to PAASp(R,R). Hence, one can deduce that all the assumptions (H1), (H2)

and (H3) of Theorem 4 are satisfied and thus equation (4.25) has a unique Sp-pseudo

almost automorphic solution.
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1. INTRODUCTION

We recall some definitions on diverse convex functions in the literature.

Definition 1. A function f : I ⊆ R = (−∞,∞) → R is said to be convex if the

inequality

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)

holds for all x,y ∈ I and t ∈ [0,1].

Definition 2 ([2,11]). Let s∈ (0,1] be a real number. A function f :R0 = [0,∞)→
R0 is said to be s-convex in the second sense if the inequality

f (tx+(1− t)y)≤ ts f (x)+(1− t)s f (y)

holds for all x,y ∈ I and t ∈ [0,1].

Definition 3 ([25]). For f : [0,b]→ R, b > 0, and m ∈ (0,1], if the inequality

f (tx+m(1− t)y)≤ t f (x)+m(1− t) f (y)

is valid for all x,y ∈ [0,b] and t ∈ [0,1], then we say that f is an m-convex function

on [0,b].

*Corresponding author.

© 2021 Miskolc University Press
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Definition 4 ([28]). A function f : I ⊆ R→ R is said to be extended s-convex if

the inequality

f (tx+(1− t)y)≤ ts f (x)+(1− t)s f (y)

holds for all x,y ∈ I and t ∈ (0,1) and for some fixed s ∈ [−1,1].

Definition 5 ([13]). Let I ⊆R\{0} be a real interval. A function I →R is said to

be harmonically convex if the inequality

f

(

xy

tx+(1− t)y

)

≤ t f (x)+(1− t) f (y) (1.1)

holds for all x,y ∈I and t ∈ [0,1]. If the inequality in (1.1) is reversed, then f is said

to be harmonically concave.

Definition 6 ([17, Definition 2.6]). A function I ⊆ R+ = (0,∞)→ R is said to be

harmonically s-convex if the inequality

f

(

xy

tx+(1− t)y

)

≤ ts f (x)+(1− t)s f (y)

is valid for x,y ∈ I, t ∈ (0,1), and s ∈ [−1,1].

Definition 7 ([29]). Let f : (0,b] → R and let m ∈ (0,1] be a constant. If the

inequality

f

(

(

t

x
+m

1− t

y

)−1
)

≤ t f (x)+m(1− t) f (y)

is valid for all x,y ∈ (0,b] and t ∈ [0,1], then f is said to be an m-harmonic-arithmeti-

cally convex function or, simply speaking, an m-HA-convex function.

Definition 8 ([9]). Let f : (0,b] → R and let α,m ∈ (0,1] be constants. If the

inequality

f

(

(

t

x
+m

1− t

y

)−1
)

≤ tα f (x)+m(1− tα) f (y)

is valid for all x,y ∈ (0,b] and t ∈ [0,1], then f is said to be an (α,m)-harmonic-

arithmetically convex function or, simply speaking, an (α,m)-HA-convex function.

In recent decades, establishing integral inequalities of the Hermite–Hadamard type

for diverse convex functions has been being an active direction in mathematics. Some

of these results can be reformulated as follows.

Theorem 1 ([5, Theorem 2.2]). Let f : I◦ ⊆ R → R be a differentiable mapping

on I◦ and a,b ∈ I◦ with a < b. If | f ′| is convex on [a,b], then
∣

∣

∣

∣

f (a)+ f (b)

2
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
(b−a)(| f ′(a)|+ | f ′(b)|)

8
.



HERMITE–HADAMARD TYPE INTEGRAL INEQUALITIES 247

Theorem 2 ([20, Theorems 1 and 2]). Let f : I ⊆ R→ R be differentiable on I◦

and a,b ∈ I with a < b. If | f ′|q is convex on [a,b] and q ≥ 1, then
∣

∣

∣

∣

f (a)+ f (b)

2
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
b−a

4

[

| f ′(a)|q + | f ′(b)|q

2

]1/q

and
∣

∣

∣

∣

f

(

a+b

2

)

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
b−a

4

[

| f ′(a)|q + | f ′(b)|q

2

]1/q

.

Theorem 3 ([6]). Let m ∈ (0,1] and f : R0 = [0,∞) → R be m-convex. If f ∈
L1([a,b]) for 0 ≤ a < b < ∞, then

1

b−a

∫ b

a
f (x)dx ≤ min

{

f (a)+m f (b/m)

2
,
m f (a/m)+ f (b)

2

}

.

Theorem 4 ([14]). Let f : I ⊆ R0 → R be differentiable on I◦ and a,b ∈ I with

a < b. If | f ′|q is s-convex on [a,b] for some fixed s ∈ (0,1] and q ≥ 1, then
∣

∣

∣

∣

f (a)+ f (b)

2
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
b−a

2

(

1

2

)1−1/q[
2+1/2s

(s+1)(s+2)

]1/q
[

| f ′(a)|q + | f ′(b)|q
]1/q

.

Theorem 5 ([12]). Let f : I ⊆ R0 → R be differentiable on I◦, a,b ∈ I with a < b,

and f ′ ∈ L[a,b]. If | f ′|q is s-convex on [a,b] for some fixed s ∈ (0,1] and q > 1, then
∣

∣

∣

∣

f

(

a+b

2

)

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
b−a

4

[

1

(s+1)(s+2)

]1/q(
1

2

)1/p

×

{

[

| f ′(a)|q +(s+1)

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q]1/q

+

[

| f ′(b)|q +(s+1)

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

q]1/q
}

,

where 1
p
+ 1

q
= 1.

Theorem 6 ([24]). Let f : I ⊆ R0 → R be differentiable on I◦, a,b ∈ I with a < b,

and f ′ ∈ L[a,b]. If | f ′| is s-convex on [a,b] for some s ∈ (0,1] and p > 1, then
∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a+b

2

)

+ f (b)

]

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
(s−4)6s+1 +2×5s+2 −2×3s+2 +2

6s+2(s+1)(s+2)
(b−a)

(

| f ′(a)|+ | f ′(b)|
)

,

where 1
p
+ 1

q
= 1.
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For more information developed in recent decades on this topic, please refer to the

papers [1, 3, 4, 7, 8, 10, 15, 16, 18, 19, 21–23, 26, 27, 30] and closely related references.

In this paper, we will introduce a new notion “extended harmonically (s,m)-convex

function” and establish some new integral inequalities of the Hermite–Hadamard type

for extended harmonically (s,m)-convex functions.

2. A DEFINITION AND A LEMMA

Now we introduce the notion “extended harmonically (s,m)-convex function”.

Definition 9. For m ∈ (0,1] and s ∈ [−1,1], a function f : (0,b]→ R is said to be

extended harmonically (s,m)-convex on (0,b] if the inequality

f

(

(

t

x
+m

1− t

y

)−1
)

≤ ts f (x)+m(1− t)s f (y)

holds for all x,y ∈ (0,b] and t ∈ (0,1).

Example 1. Let s ∈ [−1,1] and f (x) = 1
xr for x ∈ R+ and r ≥ 1. Since

f

(

(

t

x
+

m(1− t)

y

)−1
)

≤
tyr +(1− t)(mx)r

(xy)r
≤ ts f (x)+m(1− t)s f (y)

for all x,y∈R+ and t ∈ (0,1), the function f (x) = 1
xr is extended harmonically (s,m)-

convex on R+.

To establish some new integral inequalities of the Hermite–Hadamard type for

extended harmonically (s,m)-convex functions, we need the following lemma.

Lemma 1. Let f : I ⊆R+ →R be a differentiable function on I◦ and a,b ∈ I◦ with

a < b. If f ′ ∈ L1([a,b]) and 0 ≤ λ,µ ≤ 1, then

λ f (a)+µ f (b)

2
+

2−λ−µ

2
f (H(a,b))−

ab

b−a

∫ b

a

f (x)

x2
dx (2.1)

=
b−a

4ab

∫ 1

0

[

(1−λ− t)

(

t

a
+

1− t

H(a,b)

)−2

f ′

(

(

t

a
+

1− t

H(a,b)

)−1
)

+(µ−1+ t)

(

t

b
+

1− t

H(a,b)

)−2

f ′

(

(

t

b
+

1− t

H(a,b)

)−1
)]

dt.

In particular, if λ = µ = 0, then

f (H(a,b))−
ab

b−a

∫ b

a

f (x)

x2
dx (2.2)

=
b−a

4ab

∫ 1

0

[

(1− t)

(

t

a
+

1− t

H(a,b)

)−2

f ′

(

(

1+ t

2a
+

1− t

2b

)−1
)
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−(1− t)

(

t

b
+

1− t

H(a,b)

)−2

f ′

(

(

1+ t

2b
+

1− t

2a

)−1
)]

dt,

where H(a,b) = 2ab
a+b

.

Proof. Putting x =
(

ta−1 +(1− t)[H(a,b)]−1
)−1

for t ∈ [0,1] gives

∫ 1

0
(1−λ− t)

(

t

a
+

1− t

H(a,b)

)−2

f ′

(

(

t

a
+

1− t

H(a,b)

)−1
)

dt (2.3)

=
2ab

b−a
[λ f (a)+(1−λ) f (H(a,b))]−

(

2ab

b−a

)2 ∫ H(a,b)

a

f (x)

x2
dx.

Similarly, letting x =
(

tb−1 +(1− t)[H(a,b)]−1
)−1

for t ∈ [0,1] results in

∫ 1

0
(µ−1+ t)

(

t

b
+

1− t

H(a,b)

)−2

f ′

(

(

t

b
+

1− t

H(a,b)

)−1
)

dt (2.4)

=
2ab

b−a
[µ f (b)+(1−µ) f ([H(a,b)])]−

(

2ab

b−a

)2 ∫ b

H(a,b)

f (x)

x2
dx.

Adding the equalities (2.3) and (2.4) leads to the equality (2.1). The proof of Lemma 1

is thus complete. �

3. INTEGRAL INEQUALITIES OF HERMITE–HADAMARD TYPE

Now we start out to establish some new integral inequalities of the Hermite–

Hadamard type for extended harmonically (s,m)-convex functions.

Theorem 7. Let f : (0,d] → R be differentiable, a,b ∈ (0,d] with a < b, f ′ ∈
L1([a,b]), and 0 ≤ λ,µ ≤ 1. If | f ′|q for q ≥ 1 is extended harmonically (s,m)-convex

on (0,d] for some fixed m ∈ (0,1] and s ∈ [−1,1], then

(1) when −1 < s ≤ 1,
∣

∣

∣

∣

λ f (a)+µ f (b)

2
+

2−λ−µ

2
f (H(a,b))−

ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

(3.1)

≤
(b−a)(2−q)/q

2(q+1)/q(ab)1/q

{

[T (a,b,λ)]1−1/q
(

mK(a,H(a,b),s,λ)| f ′(mH(a,b))|q

+K(H(a,b),a,s,1−λ)| f ′(a)|q
)1/q

+[T (b,a,µ)]1−1/q (mK(b,H(a,b),s,µ)

×| f ′(mH(a,b))|q +K(H(a,b),b,s,1−µ)| f ′(b)|q
)1/q

}

;

(2) when s =−1,
∣

∣

∣

∣

f (H(a,b))−
ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

≤
(ab)(q−2)/q(a+b)(1−q)/q

21/q(b−a)(q−2)/q
{[(a+b)(lna
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− lnH(a,b))+(b−a)]1−1/q
[(

2b2(ln(2a)− lnH(a,b))−bH(a,b)
)

| f ′(a)|q

+maH(a,b)| f ′(mb)|q
]1/q

+
[

m(2a2(ln(2b)− lnH(a,b))−aH(a,b))| f ′(mb)|q

+bH(a,b)| f ′(a)|q
]1/q

[(a+b)(lnb− lnH(a,b))− (b−a)]1−1/q
}

,

where

T (a,b,λ) = 2ab(lna+ lnH(a,b)

−2ln[(1−λ)H(a,b)+λa])+(b−a)[(1−λ)H(a,b)−λa]

and

K(a,u,s,λ) =
2λs+2a2

(s+1)(s+2)
2F1

(

2,s+1,s+3,
λ(u−a)

u

)

−
λa2

s+1
2F1

(

2,s+1,s+2,
u−a

u

)

+
a2

s+2
2F1

(

2,s+2,s+3,
u−a

u

)

with the hypergeometric function

2F1(c,d,e;z) =
Γ(e)

Γ(d)Γ(e−d)

∫ 1

0
td−1(1− t)e−d−1(1− zt)−cdt (3.2)

for e > d > 0, |z|< 1, c ∈ R, and u > 0.

Proof. When −1< s≤ 1, by virtue of Lemma 1 and the extended harmonic (s,m)-
convexity of | f ′|q, we obtain
∣

∣

∣

∣

λ f (a)+µ f (b)

2
+

2−λ−µ

2
f (H(a,b))−

ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

(3.3)

≤
b−a

4ab





(∫ 1

0
|1−λ− t|

(

t

a
+

1− t

H(a,b)

)−2

dt

)1−1/q

×

(∫ 1

0
|1−λ− t|

(

t

a
+

1− t

H(a,b)

)−2
∣

∣

∣

∣

∣

f ′

(

(

t

a
+

1− t

H(a,b)

)−1
)∣

∣

∣

∣

∣

q

dt

)1/q

+

(∫ 1

0
|1−µ− t|

(

t

b
+

1− t

H(a,b)

)−2

dt

)1−1/q

×

(∫ 1

0
|1−µ− t|

(

t

b
+

1− t

H(a,b)

)−2
∣

∣

∣

∣

∣

f ′

(

(

t

b
+

1− t

H(a,b)

)−1
)∣

∣

∣

∣

∣

q

dt

)1/q




≤
b−a

4ab





(∫ 1

0
|1−λ− t|

(

t

a
+

1− t

H(a,b)

)−2

dt

)1−1/q
(∫ 1

0
|1−λ− t|
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×

(

t

a
+

1− t

H(a,b)

)−2
[

ts| f ′(a)|q +m(1− t)s| f ′(mH(a,b))|q
]

dt

)1/q

+

(∫ 1

0
|1−µ− t|

(

t

b
+

1− t

H(a,b)

)−2

dt

)1−1/q
(∫ 1

0
|1−µ− t|

×

(

t

b
+

1− t

H(a,b)

)−2
[

ts| f ′(b)|q +m(1− t)s| f ′(mH(a,b))|q
]

dt

)1/q


 ,

where we used the facts∫ 1

0
|1−λ− t|

(

t

a
+

1− t

H(a,b)

)−2

dt =
2ab

(b−a)2
T (a,b,λ),

∫ 1

0
|1−λ− t|ts

(

t

a
+

1− t

H(a,b)

)−2

dt = K(H(a,b),a,s,1−λ),

and ∫ 1

0
|1−λ− t|(1− t)s

[

t

a
+

1− t

H(a,b)

]−2

dt = K(a,H(a,b),s,λ).

The inequality (3.1) is thus proved.

When s =−1, by the identity (2.2) and the extended harmonic (s,m)-convexity of

| f ′|q, we have
∣

∣

∣

∣

f (H(a,b))−
ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

≤
b−a

22−1/qab





(∫ 1

0
(1− t)

(

t

a
+

1− t

H(a,b)

)−2

dt

)1−1/q

×

(∫ 1

0
(1− t)

(

t

a
+

1− t

H(a,b)

)−2
[

(1+ t)−1| f ′(a)|q

+m(1− t)−1| f ′(mb)|q
]

dt

)1/q

+

(∫ 1

0
(1− t)

(

t

b
+

1− t

H(a,b)

)−2

dt

)1−1/q

×

(∫ 1

0
(1− t)

(

t

b
+

1− t

H(a,b)

)−2
[

(1− t)−1| f ′(a)|q

+m(1+ t)−1| f ′(mb)|q
]

dt

)1/q
]

(3.4)

=
(ab)(q−2)/q(a+b)(1−q)/q

21/q(b−a)(q−2)/q

{

[(a+b)(lna− lnH(a,b))+(b−a)]1−1/q
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×
[(

2b2(ln(2a)− lnH(a,b))−bH(a,b)
)

| f ′(a)|q +maH(a,b)| f ′(mb)|q
]1/q

+
[

m
(

2a2(ln(2b)− lnH(a,b))−aH(a,b)
)

| f ′(mb)|q +bH(a,b)| f ′(a)|q
]1/q

×[(a+b)(lnb− lnH(a,b))− (b−a)]1−1/q
}

.

The proof of Theorem 7 is thus complete. �

Corollary 1. Under conditions of Theorem 7, when q = 1,

(1) if −1 < s ≤ 1, then
∣

∣

∣

∣

λ f (a)+µ f (b)

2
+

2−λ−µ

2
f (H(a,b))−

ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

≤
b−a

4ab

{

K(H(a,b),a,s,1−λ)| f ′(a)|+K(H(a,b),b,s,1−µ)| f ′(b)|

+m[K(a,H(a,b),s,λ)+K(b,H(a,b),s,µ)]| f ′(mH(a,b))|
}

;

(2) if s =−1, then
∣

∣

∣

∣

f (H(a,b))−
ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

≤
b−a

ab

(

b2[ln(2a)− lnH(a,b)]| f ′(a)|+ma2[ln(2b)− lnH(a,b)]| f ′(mb)|
)

.

Corollary 2. Under conditions of Theorem 7, when q = s = 1 and λ = µ = 1
2
, we

have
∣

∣

∣

∣

f (a)+2 f (H(a,b))+ f (b)

4
−

ab

b−a

∫ b

a

f (x)

x2
dt

∣

∣

∣

∣

≤
1

4(b−a)2

×
{[

(20ab2 +12a2b)
(

ln
√

aH(a,b) − lnH(a,H(a,b))
)

−a(b−a)2
]

| f ′(a)|

+4mab
[

(7b+a)
(

lnH(a,H(a,b))− ln
√

aH(a,b)
)

+(7a+b)
(

ln
√

bH(a,b) − lnH(b,H(a,b))
)]

| f ′(mH(a,b))|

+
[

(

20a2b+12ab2
)

(

lnH(b,H(a,b))− ln
√

bH(a,b)
)

+b(b−a)2
]

| f ′(b)|
}

.

Theorem 8. Let f : (0,d] → R be differentiable, a,b ∈ (0,d] with a < b, f ′ ∈
L1([a,b]), and 0 ≤ λ,µ ≤ 1. If | f ′|q for q > 1 is extended harmonically (s,m)-convex

on (0,d] for some fixed s ∈ [−1,1] and 0 < m ≤ 1, then

(1) when −1 < s ≤ 1,
∣

∣

∣

∣

λ f (a)+µ f (b)

2
+

2−λ−µ

2
f (H(a,b))−

ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

(3.5)

≤
b−a

4ab[(s+1)(s+2)]1/q

{

Q1−1/q(a,H(a,b),λ)
[(

2(1−λ)s+2 +λ(s+2)
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−1) | f ′(a)|q +m
(

2λ
s+2 +(1−λ)(s+2)−1

)

| f ′(mH(a,b))|q
]1/q

+Q1−1/q(b,H(a,b),µ)
[(

2(1−µ)s+2 +µ(s+2)−1
)

| f ′(b)|q

+m
(

2µs+2 +(1−µ)(s+2)−1
)

| f ′(mH(a,b))|q
]1/q
}

;

(2) when s =−1,
∣

∣

∣

∣

f (H(a,b))−
ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

≤
b−a

2(2q−1)/qab
(3.6)

×
{

[

(2ln2−1)| f ′(a)|q +m| f ′(mb)|q
]1/q

Q1−1/q(a,H(a,b),0)

+
[

(2ln2−1)| f ′(b)|q +m| f ′(ma)|q
]1/q

Q1−1/q(b,H(a,b),0)
}

,

where, for u > 0 and u 6= a

Q(a,u,λ) =
(q−1)(au)2q/(q−1)

(q+1)(u−a)

{

(1−λ)a−(q+1)/(q−1)−λu−(q+1)/(q−1)

−
q−1

2(u−a)

[

a−2/(q−1)−2[(1−λ)(u−a)+a]−2/(q−1)+u−2/(q−1)
]}

.

Proof. If −1 < s ≤ 1, by the inequality (3.3) and the extended harmonic (s,m)-
convexity of | f ′|q, we derive

∣

∣

∣

∣

λ f (a)+µ f (b)

2
+

2−λ−µ

2
f (H(a,b))−

ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

(3.7)

≤
b−a

4ab





(∫ 1

0
|1−λ− t|

(

t

a
+

1− t

H(a,b)

)−2q/(q−1)

dt

)1−1/q

×

(∫ 1

0
|1−λ− t|

[

ts| f ′(a)|q +m(1− t)s| f ′(mH(a,b))|q
]

dt

)1/q

+

(∫ 1

0
|1−µ− t|

(

t

b
+

1− t

H(a,b)

)−2q/(q−1)

dt

)1−1/q

×

(∫ 1

0
|1−µ− t|

[

ts| f ′(b)|q +m(1− t)s| f ′(mH(a,b))|q
]

dt

)1/q
]

,

where ∫ 1

0
|1−λ− t|

(

t

a
+

1− t

H(a,b)

)−2q/(q−1)

dt = Q(a,H(a,b),λ),

∫ 1

0
|1−λ− t|tsdt =

2(1−λ)s+2 +λ(s+2)−1

(s+1)(s+2)
,



254 C.-Y. HE, B.-Y. XI, AND B.-N. GUO

and ∫ 1

0
|1−λ− t|(1− t)sdt =

2λs+2 +(1−λ)(s+2)−1

(s+1)(s+2)
. (3.8)

Combining (3.7) with (3.8) gives the required inequality (3.5).

Similarly, by the inequality (3.4), we can prove the inequality (3.6). The proof of

Theorem 8 is complete. �

Corollary 3. Under assumptions of Theorem 8,

(1) if −1 < s ≤ 1, then
∣

∣

∣

∣

λ f (a)+µ f (b)

2
+

2−λ−µ

2
f (H(a,b))−

ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

≤
b−a

24ab

[

6

(s+1)(s+2)

]1/q
{[(

2(1−λ)s+2 +λ(s+2)−1
)

| f ′(a)|q

+m
(

2λ
s+2 +(1−λ)(s+2)−1

)

| f ′(mH(a,b))|q
]1/q [(

2(1−λ)3

+3λ−1)a2q/(q−1)+(2λ
3 −3λ+2)H2q/(q−1)(a,b)

]1−1/q

+
[

(2 (1−µ)s+2

+ µ(s+2)−1) | f ′(b)|q +m
(

2µs+2 +(1−µ)(s+2)−1
)

| f ′(mH(a,b))|q
]1/q

×
[

(2(1−µ)3 +3µ−1)b2q/(q−1)+
(

2µ3 −3µ+2
)

H2q/(q−1)(a,b)
]1−1/q

}

;

(2) if s =−1, then
∣

∣

∣

∣

f (H(a,b))−
ab

b−a

∫ b

a

f (x)

x2
dx

∣

∣

∣

∣

≤
b−a

2×12(q−1)/qab

{[

(2ln2−1)| f ′(a)|q

+m| f ′(mb)|q
]1/q

[

a2q/(q−1)+2H2q/(q−1)(a,b)
]1−1/q

+
[

| f ′(a)|q

+m(2ln2−1)| f ′(mb)|q
]1/q

[

b2q/(q−1)+2H2q/(q−1)(a,b)
]1−1/q

}

.

Proof. Substituting

Q(a,H(a,b),λ)≤
2(1−λ)3 +3λ−1

6
a2q/(q−1)+

2λ3 −3λ+2

6
H2q/(q−1)(a,b)

into (3.7) yields Corollary 3. �

Theorem 9. Let f : (0,d] → R is extended harmonically (s,m)-convex for some

fixed m ∈ (0,1], s ∈ (−1,1], and a,b ∈ (0,d] with a < b. If f ∈ L1([a,b]), then

2s f (H(a,b))≤
ab

b−a

∫ b

a

f (x)+m f (mx)

x2
dx (3.9)

and
ab

b−a

∫ b

a

f (x)

x2
dx ≤ min

{

f (a)+m f (mb)

s+1
,
m f (ma)+ f (b)

s+1

}

.
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In particular, when m = 1, we have

2s−1 f (H(a,b))≤
ab

b−a

∫ b

a

f (x)

x2
dx ≤

f (a)+ f (b)

s+1
. (3.10)

Remark 1. The inequality (3.10) appeared in [17].

Proof. From the extended harmonic (s,m)-convexity f , it follows that

f (H(a,b)) =
∫ 1

0
f

(

2

ta−1 +(1− t)b−1 + tb−1 +(1− t)a−1

)

dt

≤
1

2s

∫ 1

0

[

f

(

(

t

a
+

1− t

b

)−1
)

+m f

(

m

(

t

b
+

1− t

a

)−1
)]

dt.

Let x =
(

t
a
+ 1−t

b

)−1
for t ∈ [0,1]. Then

∫ 1

0
f

(

(

t

a
+

1− t

b

)−1
)

dt =
ab

b−a

∫ b

a

f (x)

x2
dx. (3.11)

Similarly, we have

∫ 1

0
f

(

m

(

t

b
+

1− t

a

)−1
)

dt =
ab

b−a

∫ b

a

f (mx)

x2
dx. (3.12)

From (3.11) and (3.12), the inequality (3.9) follows immediately.

Let x =
(

t
a
+ 1−t

b

)−1
for t ∈ [0,1]. Then

ab

b−a

∫ b

a

f (x)

x2
dx =

∫ 1

0
f

(

(

t

a
+

1− t

b

)−1
)

dt

≤
∫ 1

0
[ts f (a)+m(1− t)s f (mb)]dt =

f (a)+m f (mb)

s+1
.

The proof of Theorem 9 is complete. �

Corollary 4. Under assumptions of Theorem 9, if s = m = 1, then

f (H(a,b))≤
ab

b−a

∫ b

a

f (x)

x2
dx ≤

f (a)+ f (b)

2
.

Theorem 10. For m ∈ (0,1] and s ∈ (−1,1], let f : (0,d] → R is extended har-

monically (s,m)-convex and a,b ∈ (0,d] with a < b. If f ∈ L1([a,b]), then

2s−2H2(a,b) f (H(a,b))≤
ab

b−a

∫ b

a
[ f (x)+m f (mx)]dx

and

ab

b−a

∫ b

a
f (x)dx ≤

a2

s+1

[

m× 2F1

(

2,1,s+2,1−ab−1
)

f (ma)
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+2F1

(

2,s+1,s+2,1−ab−1
)

f (b)
]

.

where 2F1(a,b;c;z) is the hypergeometric function defined by (3.2).

Proof. By the extended harmonic (s,m)-convexity of f , we have

H(a,b)]2 f (H(a,b))≤ 22−s

∫ 1

0

[

(

t

a
+

1− t

b

)−2
]

f

(

(

t

a
+

1− t

b

)−1
)

dt

+22−sm

∫ 1

0

[

(

t
b
+ 1−t

a

)−2
]

f
(

m
(

t
b
+ 1−t

a

)−1
)

dt

≤
ab

b−a

∫ b

a

f (x)+m f (mx)

2s−2
dx

and

ab

b−a

∫ b

a
f (x)dx =

∫ 1

0

(

1− t

a
+

t

b

)−2

f

(

(

1− t

a
+

t

b

)−1
)

dt

≤
∫ 1

0

(

1− t

a
+

t

b

)−2

[m(1− t)s f (ma)+ ts f (b)]dt

=
a2

s+1

[

m× 2F1(2,1,s+2,1−ab−1) f (ma)

+2F1(2,s+1,s+2,1−ab−1) f (b)
]

.

The proof of Theorem 10 is thus complete. �

Corollary 5. Under assumptions of Theorem 10, if s = m = 1, then

[H(a,b)]2 f (H(a,b))

4
≤

ab

b−a

∫ b

a
f (x)dx

≤
a2b[b ln(a−1b)− (b−a)]

(b−a)2
f (a)+

ab2[(b−a)−a ln(a−1b)]

(b−a)2
f (b).
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Bolyai Math., vol. 38, no. 1, pp. 21–28, 1993.
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and (α,m)-convex functions,” J. Inequal. Pure Appl. Math., vol. 9, no. 4, pp. Article 96, 12, 2008.

[Online]. Available: http://www.emis.de/journals/JIPAM/article1032.html

[16] M. A. Latif, S. S. Dragomir, and E. Momoniat, “Fejér type inequalities for harmonically-convex

functions with applications,” J. Appl. Anal. Comput., vol. 7, no. 3, pp. 795–813, 2017.

[17] M. A. Noor, K. I. Noor, M. U. Awan, and S. Costache, “Some integral inequalities for harmonically

h-convex functions,” Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., vol. 77, no. 1,

pp. 5–16, 2015.

[18] M. A. Noor, K. I. Noor, and M. U. Awan, “Some characterizations of harmonically log-convex

functions,” Proc. Jangjeon Math. Soc., vol. 17, no. 1, pp. 51–61, 2014.

[19] M. A. Noor, K. I. Noor, M. U. Awan, and S. Khan, “Fractional Hermite-Hadamard inequalities

for some new classes of Godunova-Levin functions,” Appl. Math. Inf. Sci., vol. 8, no. 6, pp. 2865–

2872, 2014, doi: 10.12785/amis/080623.



258 C.-Y. HE, B.-Y. XI, AND B.-N. GUO
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Abstract. In this paper, first we prove a common fixed point theorem for pairs of weakly com-

patible mappings satisfying a generalized φ-weak contraction condition that involves cubic terms

of metric functions. Secondly, we prove some results using different variants of R-weakly com-

muting mappings. At the end, we give an application in support of our results.

2010 Mathematics Subject Classification: 47H10; 54H25; 68U10

Keywords: φ-weak contraction, variant of R-weakly commuting mappings, common fixed point,

sequence of mappings, compatible mapping

1. INTRODUCTION AND PRELIMINARIES

The Banach Contraction Principle is a basic tool to study fixed point theory, which

ensures the existence and uniqueness of a fixed point under appropriate conditions.

It is most widely applied to understand fixed point results in many branches of math-

ematics because it requires the structure of complete metric spaces. Generalizations

of Banach Contraction Principle gave new direction to researchers in the field of

fixed point theory. In 1969, Boyd and Wong [4] replaced the constant k in Banach

Contraction Principle by a control function ψ as follows:

Let (X ,d) be a complete metric space and ψ : [0,∞) → [0,∞) be an upper semi

continuous from the right such that 0 ≤ ψ(t)< t for all t > 0. If T : X → X satisfies

d(T (x),T (y))≤ ψ(d(x,y)) for all x,y ∈ X , then it has a unique fixed point.

In 1994, Pant [13] introduced the notion of R-weakly commuting mappings in

metric spaces. In 1997, Pathak et al. [14] improved the notion of R-weakly com-

muting mappings to the notion of R-weakly commuting mappings of type (Ag) and

R-weakly commuting mappings of type (A f ). In fact, the main application of R-

weakly commuting mappings of type (A f ) or type (Ag) is to study common fixed

The first author was supported in part by the Council of Scientific and Industrial Research, New

Delhi for providing the fellowship vide file No. 09/1063/0009/2015-EMR-1 (JRF/SRF).

The third author was supported in part by Basic Science Research Program through the National

Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-

2017R1D1A1B04032937).
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points for noncompatible mappings. In 1998, Jungck and Rhoades [9] introduced

the notion of weakly compatible mappings. In 2006, Imdad and Ali [5] introduced

R-weakly commuting mappings of type (P) in fuzzy metric spaces. In 2009, Kumar

and Garg [12] introduced the concept of R-weakly commuting mappings of type (P)
in metric spaces analogue to the notion in fuzzy metric spaces given in [5]. In 1997,

Alber and Guerre-Delabriere [2] introduced the concept of a weak contraction and

further Rhoades [15] showed that the results of Alber and Gueree-Delabriere are also

valid in complete metric spaces. A mapping T : X → X is said to be a weak contrac-

tion if for all x,y ∈ X , there exists a function φ : [0,∞) → [0,∞) with φ(t) > 0 and

φ(0) = 0 such that

d(T x,Ty)≤ d(x,y)−φ(d(x,y)).

In 2017, Jain et al. [6] introduced a new type of inequality having cubic terms of

d(x,y) that extended and generalized the results of Alber and Gueree-Delabriere [2]

and others cited in the literature of fixed point theory. See [1, 3, 7, 10, 11] for more

information on fixed point theory.

In this paper, we extend and generalize the result of Jain et al. [6] for two pairs

of R-weakly commuting mappings and its variants satisfying the generalized φ-weak

contractive condition involving various combinations of the metric functions.

Our improvement in this paper is four-fold:

(i) to relax the continuity requirement of mappings completely;

(ii) to derogate the commutativity requirement of mappings to the point of coin-

cidence;

(iii) to soften the completeness requirement of the space;

(iv) to engage a more general contraction condition in proving our results.

2. BASIC PROPERTIES

In this section, we give some basic definitions and results that are useful for prov-

ing our main results.

Definition 1 ([8]). Two self-mappings f and g of a metric space (X ,d) are said to

be commuting if f gx = g f x for all x ∈ X .

The notion of weak commutativity as an improvement over the notion of com-

mutativity was introduced by Sessa [16] in 1982 as a sharpener tool to obtain fixed

point.

Definition 2 ([16]). Two self-mappings f and g of a metric space (X ,d) are said

to be weakly commuting if d( f gx,g f x)≤ d(gx, f x) for all x ∈ X .

Remark 1. Commutative mappings must be weak commutative mappings, but the

converse is not true.

Definition 3 ([9]). Two self-mappings f and g of a metric space (X ,d) are called

weakly compatible if they commute at their coincidence point.
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Definition 4 ([13]). Two self-mappings f and g of a metric space (X ,d) are said to

be R-weakly commuting if there exists some R≥ 0 such that d( f gx,g f x)≤Rd( f x,gx)
for all x ∈ X .

Remark 2. Notice that weak commutativity of a pair of self-mappings implies R-

weak commutativity and the converse is true only when R ≤ 1.

Example 1. Let X = [1,∞) be endowed with the usual metric. Define f ,g : X → X

by f (x) = 2x−1 and g(x) = x2 for all x ∈ X . Then d( f gx,g f x) = 2d( f x,gx). Thus

f and g are R-weakly commuting (R = 2) but are not weakly commuting.

Definition 5 ([14]). Two self-mappings f and g of a metric space (X ,d) are said

to be R-weakly commuting of type (A f ) if there exists a positive real number R such

that d( f gx,ggx)≤ Rd( f x,gx) for all x ∈ X .

Definition 6 ([14]). Two self-mappings f and g of a metric space (X ,d) are said

to be R-weakly commuting of type (Ag) if there exists a positive real number R such

that d(g f x, f f x)≤ Rd( f x,gx) for all x ∈ X .

It may be observed that Definition 6 can be obtained from Definition 5 by inter-

changing the role of f and g. Further, R-weakly commuting pair of self-mappings is

independent of R-weakly commuting of type (A f ) or type (Ag). In Example 1, we

note that d( f gx,ggx) > Rd( f x,gx) for all x > 1 and some R > 0. Thus f and g are

R-weakly commuting but not R-weakly commuting of type (A f ).

Definition 7 ([5,12]). Two self-mappings f and g of a metric space (X ,d) are said

to be R-weakly commuting mapping of type (P) if there exists some R >0 such that

d( f f x,ggx)≤ Rd( f x,gx) for all x ∈ X .

Remark 3. If f and g are R-weakly commuting or R-weakly commuting (A f ) or R-

weakly commuting of type (Ag) or R-weakly commuting (P) and if z is a coincidence

point, i.e., f z = gz, then we get f f z = f gz = g f z = ggz. Thus at a coincidence point,

all the analogous notions of R-weak commutativity including R-weak commutativity

are equivalent to each other and imply their commutativity.

3. MAIN RESULTS

Let S,T,A and B be four self-mappings of a metric space (X ,d) satisfying the

following conditions:

(C1) S(X)⊂ B(X), T (X)⊂ A(X);
(C2) (1+ pd(Ax,By))d(Sx,Ty)2

≤ p ·max{
1

2
(d(Ax,Sx)2d(By,Ty)+d(Ax,Sx)d(By,Ty)2),

d(Ax,Sx)d(Ax,Ty)d(By,Sx),d(Ax,Ty)d(By,Sx)d(By,Ty)}

+m(Ax,By)−φ(m(Ax,By))
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for all x,y ∈ X , where

m(Ax,By) = max{d(Ax,By)2
,d(Ax,Sx)d(By,Ty),d(Ax,Ty)d(By,Sx),

1

2
[d(Ax,Sx)d(Ax,Ty)+d(By,Sx)d(By,Ty)]},

p ≥ 0 is a real number and φ : [0,∞)→ [0,∞) is a continuous function such

that φ(t) = 0 if and only if t = 0 and φ(t)> t for all t > 0.

From (C1), for any arbitrary point x0 ∈X , we can find an x1 such that S(x0) =B(x1) =
y0 and for this x1 one can find an x2 ∈ X such that T (x1) = A(x2) = y1. Continuing in

this way one can construct a sequence {yn} such that

y2n = S(x2n) = B(x2n+1), y2n+1 = T (x2n+1) = A(x2n+2) (3.1)

for each n ≥ 0.

Lemma 1 ([6]). Let S,T,A and B be four self-mappings of a metric space (X ,d)
satisfying the conditions (C1) and (C2). Then the sequence {yn} defined by (3.1) is a

Cauchy sequence in X.

For the convenience of the reader, we give the following proof of Lemma 1.

Proof. For brevity, we write α2n = d(y2n,y2n+1).
First, we prove that {α2n} is a nonincreasing sequence and converges to zero.

Case I: Suppose that n is even. Taking x = x2n and y = x2n+1 in (C2), we get

[1+ pd(Ax2n,Bx2n+1)]d(Sx2n,T x2n+1)
2

≤ p ·max{
1

2
(d(Ax2n,Sx2n)

2d(Bx2n+1,T x2n+1)+d(Ax2n,Sx2n)d(Bx2n+1,T x2n+1)
2),

d(Ax2n,Sx2n)d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n),

d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n)d(Bx2n+1,T x2n+1)}

+m(Ax2n,Bx2n+1)−φ(m(Ax2n,Bx2n+1)),

where

m(Ax2n,Bx2n+1)

= max{d(Ax2n,Bx2n+1)
2
,d(Ax2n,Sx2n)d(Bx2n+1,T x2n+1),d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n),

1

2
(d(Ax2n,Sx2n)d(Ax2n,T x2n+1)+d(Bx2n+1,Sx2n)d(Bx2n+1,T x2n+1))}.

Using α2n = d(y2n,y2n+1) in (3.1), we have

[1+ pα2n−1]α
2
2n (3.2)

≤ pmax{
1

2
[α2

2n−1α2n +α2n−1α2
2n],0,0)}+m(y2n−1,y2n)−φ(m(y2n−1,y2n)),
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where

m(y2n−1,y2n) = max{α2
2n−1,α2n−1α2n,0,

1

2
[α2n−1d(y2n−1,y2n+1)+0])}.

By the triangular inequality, we get

d(y2n−1,y2n+1)≤ d(y2n−1,y2n)+d(y2n,y2n+1) = α2n−1 +α2n,

m(y2n−1,y2n)≤ max{α2
2n−1,α2n−1α2n,0,

1

2
[α2n−1(α2n−1 +α2n),0]}.

If α2n−1 < α2n, then (3.2) reduces to pα2
2n ≤ pα2

2n−φ(α2
2n), which is a contradiction.

Thus α2n ≤ α2n−1.

In a similar way, if n is odd, then we can obtain α2n+1 ≤ α2n. It follows that the

sequence {α2n} is decreasing.

Let limn→∞ α2n = r for some r ≥ 0. Then from the inequality (C2), we have

[1+ pd(Ax2n,Bx2n+1)]d(Sx2n,T x2n+1)
2

≤ p ·max{
1

2
(d(Ax2n,Sx2n)

2d(Bx2n+1,T x2n+1)+d(Ax2n,Sx2n)d(Bx2n+1,T x2n+1)
2),

d(Ax2n,Sx2n)d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n),

d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n)d(Bx2n+1,T x2n+1)}

+m(Ax2n,Bx2n+1)−φ(m(Ax2n,Bx2n+1)),

where

m(Ax2n,Bx2n+1)

= max{d(Ax2n,Bx2n+1)
2
,d(Ax2n,Sx2n)d(Bx2n+1,T x2n+1),d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n),

1

2
(d(Ax2n,Sx2n)d(Ax2n,T x2n+1)+d(Bx2n+1,Sx2n)d(Bx2n+1,T x2n+1))}.

Now using (3.2), the property of φ and passing to the limit as n → ∞, we get

[1+ pr]r2 ≤ pr3 + r2 −φ(r2).

So φ(r2) ≤ 0. Since r is positive, by the property of φ, we get r = 0. Therefore, we

conclude that

lim
n→∞

α2n = lim
n→∞

d(y2n,y2n−1) = r = 0. (3.3)

Now we show that {yn} is a Cauchy sequence. Assume that {yn} is not a Cauchy

sequence. For given ε > 0, we can find two sequences of positive integers {m(k)}
and {n(k)} such that for all positive integers k, n(k)> m(k)> k

d(ym(k),yn(k))≥ ε, d(ym(k),yn(k)−1)< ε. (3.4)

Thus ε ≤ d(ym(k),yn(k)) ≤ d(ym(k),yn(k)−1) + d(yn(k)−1,yn(k)). Taking the limit as

k → ∞, we get limk→∞ d(ym(k),yn(k)) = ε.
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Now using the triangular inequality, we have

|d(yn(k),ym(k)+1)−d(ym(k),yn(k))| ≤ d(ym(k),ym(k)+1).

Taking the limit as k → ∞ and using (3.3) and (3.4), we have

lim
k→∞

d(yn(k),ym(k)+1) = ε.

Again from the triangular inequality, we have

|d(ym(k),yn(k)+1)−d(ym(k),yn(k))| ≤ d(yn(k),yn(k)+1).

Taking the limit as k → ∞ and using (3.3) and (3.4), we have

lim
k→∞

d(ym(k),yn(k)+1) = ε.

Similarly, we have

|d(ym(k)+1,yn(k)+1)−d(ym(k),yn(k))| ≤ d(ym(k),ym(k)+1)+d(yn(k),yn(k)+1).

Taking the limit as k → ∞ in the above inequality and using (3.3) and (3.4), we have

lim
k→∞

d(yn(k)+1,ym(k)+1) = ε.

Putting x = xm(k) and y = xn(k) in (C2), we get

[1+ pd(Axm(k),Bxn(k))]d(Sxm(k),T xn(k))
2

≤ p ·max{
1

2
(d(Axm(k),Sxm(k))

2d(Bxn(k),T xn(k))+d(Axm(k),Sxm(k))d(Bxn(k),T xn(k))
2),

d(Axm(k),Sxm(k))d(Axm(k),T xn(k))d(Bxn(k),Sxm(k)),

d(Axm(k),T xn(k))d(Bxn(k),Sxm(k))d(Bxn(k),T xn(k))}

+m(Axm(k),Bxn(k))−φ(m(Axm(k),Bxn(k))),

where

m(Axm(k),Bxn(k)) = max{d(Axm(k),Bxn(k))
2
,d(Axm(k),Sxm(k))d(Bxn(k),T xn(k)),

d(Axm(k),T xn(k))d(Bxn(k),Sxm(k)),

1

2
(d(Axm(k),Sxm(k))d(Axm(k),T xn(k))

+d(Bxn(k),Sxm(k))d(Bxn(k),T xn(k)))}.

Using (3.1), we obtain

[1+ pd(ym(k)−1,yn(k)−1)]d(ym(k),yn(k))
2

≤ p ·max{
1

2
(d(ym(k)−1,ym(k))

2d(yn(k)−1,yn(k))+d(ym(k)−1,ym(k))d(yn(k)−1,yn(k))
2),

d(ym(k)−1,ym(k))d(ym(k)−1,yn(k))d(yn(k)−1,ym(k)),

d(ym(k)−1,yn(k))d(yn(k)−1,ym(k))d(yn(k)−1,yn(k))}

+m(Axm(k),Bxn(k))−φ(m(Axm(k),Bxn(k))),
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where

m(Axm(k),Bxn(k)) = max{d(ym(k)−1,yn(k)−1)
2
,d(ym(k)−1,ym(k))d(yn(k)−1,yn(k)),

d(ym(k)−1,yn(k))d(yn(k)−1,ym(k)),

1

2
(d(ym(k)−1,ym(k))d(ym(k)−1,yn(k))

+d(yn(k)−1,ym(k))d(yn(k)−1,yn(k)))}.

Taking the limit as k → ∞, we get

[1+ pε]ε2 ≤ pmax{
1

2
[0+0],0,0}+ ε2 −φ(ε2) = ε2 −φ(ε2),

which is a contradiction. Thus {yn} is a Cauchy sequence in X . �

Now we prove our main results as follows:

Theorem 1. Let S,T,A and B be four self-mappings of a metric space (X ,d) sat-

isfying the conditions (C1) and (C2) and one of the subspaces AX, BX, SX and T X

be complete. Then

(i) A and S have a point of coincidence;

(ii) B and T have a point of coincidence.

Moreover, if the pairs (A,S) and (B,T ) are weakly compatible, then S,T,A and B

have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. From (C1), we can find an x1 such that

S(x0)=B(x1)= y0 and for this x1 one can find an x2 ∈X such that T (x1)=A(x2)= y1.

Continuing in this way, one can construct a sequence such that

y2n = S(x2n) = B(x2n+1), y2n+1 = T (x2n+1) = A(x2n+2)

for all n ≥ 0 and {yn} is a Cauchy sequence in X .

Now suppose that AX is a complete subspace of X . Then there exists z ∈ X such

that

y2n+1 = T (x2n+1) = A(x2n+2)→ z

as n → ∞. Consequently, we can find w ∈ X such that Aw = z. Further, a Cauchy

sequence {yn} has a convergent subsequence {y2n+1} and so the sequence {yn} con-

verges and hence a subsequence {y2n} also converges. Thus we have y2n = S(x2n) =
B(x2n+1)→ z as n → ∞. Letting x = w and y = z in (C2), we get

[1+ pd(Aw,Bz)]d(Sw,T z)2

≤ p ·max{
1

2
[d(Aw,Sw)2d(Bz,T z)+d(Aw,Sw)d(Bz,T z)2],

d(Aw,Sw)d(Aw,T z)d(Bz,Sw),d(Aw,T z)d(Bz,Sw)d(Bz,T z)}

+m(Aw,Bz)−φ(m(Aw,Bz)),
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where

m(Aw,Bz) = max{d(Aw,Bz)2
,d(Aw,Sw)d(Bz,T z),d(Aw,T z)d(Bz,Sw),

1

2
[d(Aw,Sw)d(Aw,T z)+d(Bz,Sw)d(Bz,T z)]}.

Since

m(Aw,Bz) = max{d(z,z)2
,d(z,Sw)d(T z,T z),d(z,z)d(z,Sw),

1

2
[d(z,Sw)d(z,z)+d(z,Sw)d(T z,T z)]}= 0,

[1+ pd(z,z)]d(Sw,z)2 ≤ p ·max{
1

2
[d(z,Sw)2d(z,z)+d(z,Sw)d(z,z)2],

d(z,Sw)d(z,z)d(z,Sw),d(z,z)d(z,Sw)d(z,z)}+0−φ(0).

This implies that Sw = z and hence Sw = Aw = z. Therefore, w is a coincidence point

of A and S. Since z = Sw ∈ SX ⊂ BX , there exists v ∈ X such that z = Bv.

Next, we claim that T v = z. Now letting x = x2n and y = v in (C2), we get

[1+ pd(Ax2n,Bv)]d(Sx2n,T v)2

≤ p ·max{
1

2
[d(Ax2n,Sx2n)

2d(Bv,T v)+d(Ax2n,Sx2n)d(Bv,T v)2],

d(Ax2n,Sx2n)d(Ax2n,T v)d(Bz,Sx2n),d(Ax2n,T v)d(Bv,Sx2n)d(Bv,T v)}

+m(Ax2n,Bv)−φ(m(Ax2n,Bv)),

where

m(Ax2n,Bv) = max{d(Ax2n,Bv)2
,d(Ax2n,Sx2n)d(Bv,T v),d(Ax2n,T v)d(Bv,Sx2n),

1

2
[d(Ax2n,Sx2n)d(Ax2n,T v)+d(Bv,Sx2n)d(Bv,T v)]}= 0.

Therefore,

[1+ pd(z,z)]d(z,T v)2 ≤ p ·max{
1

2
[0+0],0,0}+0−φ(0).

This gives z = T v and hence z = T v = Bv. Therefore, v is a coincidence point of B

and T . Since the pairs (A,S) and (B,T ) are weakly compatible, we have

Sz = S(Aw) = A(Sw) = Az, T z = T (Bv) = B(T v) = Bz.

Now, we show that Sz = z. For this, letting x = z and y = x2n+1 in (C2), we get

[1+ pd(Az,Bx2n+1)]d(Sz,T x2n+1)
2

≤ p ·max{
1

2
[d(Az,Sz)2d(z,z)+d(Az,Sz)d(z,z)2],

d(Az,Sz)d(Az,z)d(z,Sz),d(Az,z)d(z,Sz)d(z,z)}+m(Az,z)−φ(m(Az,z)),
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where

m(Az,z) = max{d(Az,z)2
,d(Az,Sz)d(z,z),d(Az,z)d(z,Sz),

1

2
[d(Az,Sz)d(Az,z)+d(z,Sz)d(z,z)]}= d(Sz,z)2

.

Therefore, we get

[1+ pd(Sz,z)]d(Sz,z)2 ≤ p ·max{
1

2
[0+0],0,0}+d(Sz,z)2 −φ(d(Sz,z)2).

Thus we get d(Sz,z)2 = 0. This implies that Sz = z. Hence Sz = Az = z.

Next, we claim that T z = z. Now letting x = x2n and y = z in (C2), we get

[1+ pd(Ax2n,Bz)]d(Sx2n,T z)2

≤ p ·max{
1

2
[d(Ax2n,Sx2n)

2d(Bz,T z)+d(Ax2n,Sx2n)d(Bz,T z)2],

d(Ax2n,Sx2n)d(Ax2n,T z)d(Bz,Sx2n),d(Ax2n,T z)d(Bz,Sx2n)d(Bz,T z)}

+m(Ax2n,Bz)−φ(m(Ax2n,Bz)),

where

m(Ax2n,Bz) = max{d(Ax2n,Bz)2
,d(Ax2n,Sx2n)d(Bz,T z),d(Ax2n,T z)d(Bz,Sx2n),

1

2
[d(Ax2n,Sx2n)d(Ax2n,T z)+d(Bz,Sx2n)d(Bz,T z)]}= d(z,T z)2

.

Hence we get

[1+ pd(z,T z)]d(z,T z)2 ≤ p ·max{
1

2
[0+0],0,0}+d(z,T z)2 −φ(d(z,T z)2).

This gives z = T z and hence z = T z = Bz. Therefore, z is a common fixed point of

A,B,S and T .

Similarly, we can complete the proofs for the cases that BX or SX or T X is com-

plete.

Now, we prove the uniqueness. Suppose z and w are two common fixed points of

S,T,A and B with z 6= w. Letting x = z and y = w in (3.2), we get

[1+ pd(Az,Bw)]d(Sz,Tw)2 ≤ p ·max{0,0,0}+m(Az,Bw)−φ(m(Az,Bw)),

[1+ pd(Az,Bw)]d(Sz,Tw)2 ≤ p ·max{0,0,0}+d(Sz,Tw)2 −φ(d(Sz,Tw)2),

which implies that d(z,w)2 = 0. Hence z = w. This completes the proof. �

Theorem 2. If a ‘weakly compatible’ property in the statement of Theorem 1 is

replaced by one (retaining the rest of hypotheses) of the following:

(i) R-weakly commuting property;

(ii) R-weakly commuting mappings of type (A f );
(iii) R-weakly commuting mappings of type (Ag);
(iv) R-weakly commuting mappings of type (P);
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(v) weakly commuting,

then Theorem 1 remains true.

Proof. Since all the conditions of Theorem 1 are satisfied, the existence of coin-

cidence points for both the pairs is insured. Let w be an arbitrary point of coincidence

for the pair (A,S). Then using R-weak commutativity, one gets

d(ASw,SAw)≤ Rd(Aw,Sw),

which implies ASw = SAw. Thus the pair (A,S) is coincidentally commuting. Simil-

arly, (B,T ) commutes at all of its coincidence points. Now applying Theorem 1, one

concludes that S,T,A and B have a unique common fixed point.

If (A,S) are R-weakly commuting mappings of type (A f ), then

d(ASw,SSw)≤ Rd(Aw,Sw),

which implies that ASw = SSw. Since

d(ASw,SAw)≤ d(ASw,SSw)+d(SSw,SAw) = 0+0 = 0,

which implies that ASw = SAw.

Similarly, if (A,S) are R-weakly commuting mappings of type (Ag) or of type (P)
or weakly commuting, then (A,S) also commute at their points of coincidence.

Similarly, one can show that the pair (B,T ) is also coincidentally commuting. Now

in view of Theorem 1, for all four cases, A,B,S and T have a unique common fixed

point. This completes the proof. �

As an application of Theorem 1, we prove a common fixed point theorem for four

finite families of mappings.

Theorem 3. Let {A1,A2, · · · ,Am}, {B1,B2, · · · ,Bn}, {S1,S2, · · · ,Sp} and

{T1,T2, · · · ,Tq} be four finite families of self-mappings of a metric space (X ,d) such

that A = A1A2 · · ·Am, B = B1B2 · · ·Bn, S = S1S2 · · ·Sp and T = T1T2 · · ·Tq satisfy the

conditions (C1), (C2) and one of the mappings A(X), B(X), S(X) and T (X) is a

complete subspace of X. Then

(i) A and S have a point of coincidence,

(ii) B and T have a point of coincidence.

Moreover, if AiA j = A jAi, BkBl = BlBk, SrSs = SsSr, TtTu = TuTt , AiSr = SrAi and

BkTt = TtBk for all i, j ∈ I1 = {1,2, · · · ,m}, k, l ∈ I2 = {1,2, · · · ,n}, r,s ∈ I3 =
{1,2, · · · , p} and t,u ∈ I4 = {1,2, · · · ,q}, then (for all i ∈ I1, k ∈ I2, r ∈ I3 and t ∈ I4)

Ai,Sr,Bk and Tt have a common fixed point.

Proof. The conclusions (i) and (ii) are immediate since A,S,B and T satisfy all

the conditions of Theorem 1. Now appealing to component wise commutativity of

various pairs, one can immediately prove that AS= SA and BT = T B and hence, obvi-

ously, both pairs (A,S) and (B,T ) are weakly compatible. Note that all the conditions

of Theorem 1 (for mappings A,S,B and T ) are satisfied to ensure the existence of a
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unique common fixed point, say, z. Now one needs to show that z remains the fixed

point of all the component mappings. For this, consider

S(Srz) = ((S1S2 · · ·Sp)Sr)z = (S1S2 · · ·Sp−1)((SpSr)z)

= (S1S2 · · ·Sp−1)(SrSpz) = (S1S2 · · ·Sp−2)(Sp−1Sr(Spz))

= (S1S2 · · ·Sp−2)(SrSp−1(Spz)) = · · ·

= S1Sr(S2S3S4 · · ·Spz) = SrS1(S2S3 · · ·Spz) = Sr(Sz) = Srz.

Similarly, one can show that

A(Srz) = Sr(Az) = Srz,A(Aiz) = Ai(Az) = Aiz,

S(Aiz) = Ai(Sz) = Aiz,B(Bkz) = Bk(Bz) = Bkz,

B(Ttz) = Tt(Bz) = Ttz,T (Ttz) = Tt(T z) = Ttz,

T (Bkz) = Bk(T z) = Bkz,

which implies that (for all i,r,k and t) Aiz and Srz are other fixed points of the pair

(A,S), whereas Bkz and Ttz are other fixed points of the pair (B,T ).
Now appealing to the uniqueness of common fixed points of both pairs, separately,

we get

z = Aiz = Srz = Bkz = Ttz,

which shows that z is a common fixed point of Ai,Sr,Bk and Tt for all i,r,k and t. �

Setting A = A1 = A2 = · · ·= Am, B = B1 = B2 = · · ·= Bn, S = S1 = S2 = · · ·= Sp

and T = T1 = T2 = · · · = Tq, one can deduce the following result for certain iterates

of mappings.

Corollary 1. Let A,B,S and T be four self-mappings of a metric space (X ,d) such

that Am,Bn,Sp and Tq satisfy the conditions (C1) and (C2). If one of the mappings

Am(X),Bn(X),Sp(X) and Tq(X) is a complete subspace of X, then A,B,S and T have

a unique common fixed point provided (A,S) and (B,T ) commute.

Theorem 4. Let S,T,A,B be four mappings of a complete metric space (X ,d) into

itself satisfying all the conditions of Theorem 1 except (C2), where (C2) is replaced

by (C3) ∫ M(x,y)

0
γ(t)dt ≤ p

∫ N(x,y)

0
γ(t)dt. (C3)

Here

M(x,y) = (1+ pd(Ax,By))d(Sx,Ty)2
,

N(x,y) = max{
1

2
(d(Ax,Sx)2d(By,Ty)+d(Ax,Sx)d(By,Ty)2),

d(Ax,Sx)d(Ax,Ty)d(By,Sx),d(Ax,Ty)d(By,Sx)d(By,Ty)}

+m(Ax,By)−φ(m(Ax,By)),
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p ≥ 0 is a real number, φ : [0,∞) → [0,∞) is a continuous function with φ(t) = 0

if and only if t = 0 and φ(t) > t for all t > 0 and γ : [0,∞) → [0,∞) is a Lebesgue

integrable function which is summable on each compact subset of [0,∞) such that for

each ε > 0,
∫ ε

0 γ(t)dt > 0. Then S,T,A,B have a unique common fixed point.

Proof. Letting γ(t) = c in Theorem 1, we obtain the required results. �

Example 2. Let X = [2,20] and d be a usual metric. Define self-mappings A,B,S

and T on X by

Ax =







12 if 2 < x ≤ 5

x−3 if x > 5

2 if x = 2,

Bx =

{

2 if x = 2

6 if x > 2,

Sx =







6 if 2 < x ≤ 5

x if x = 2

2 if x > 5,

T x =

{

x if x = 2

3 if x > 2.

Let us consider a sequence {xn} with xn = 2. It is easy to verify that all the condi-

tions of Theorem 1 are satisfied. In fact, 2 is the unique common fixed point of S,T,A

and B.

CONCLUSION

In this paper, we have proved a common fixed point theorem for pairs of weakly

compatible mappings satisfying a generalized φ-weak contraction condition that in-

volves cubic terms of metric functions. Next, we have proved some results using

different variants of R-weakly commuting mappings. Finally, we have given an ap-

plication in support of our results.
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and statistical summability for martingale difference sequences of random variables via deferred

weighted summability mean. We then establish an inclusion theorem concerning the relation

between these two beautiful concepts. Also, based upon our proposed notions, we state and

prove new Korovkin-type approximation theorems with algebraic test functions for a martingale

difference sequence over a Banach space and demonstrate that our theorems effectively extend

and improves most (if not all) of the previously existing results (in statistical and classical ver-

sions). Finally, we present an illustrative example by using the generalized Bernstein polynomial

of a martingale difference sequence in order to demonstrate that our established theorems are

stronger than its traditional and statistical versions.
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1. INTRODUCTION AND MOTIVATION

Let (Ω,F ,P) be a probability measurable space and suppose that (Yn) be a differ-

ence random variable such that Yn = Xn −Xn−1 defined over this space, where (Xn)
and Xn−1 are also random variables belongs to this space. Also, let Fn ⊆ F (n ∈ N)
be a monotonically increasing sequence of σ-fields of measurable sets. Now, con-

sidering the random variable (Yn) and the measurable functions (Fn), we adopt a

stochastic sequence (Yn,Fn;n ∈ N).
A given stochastic sequence (Yn,Fn;n ∈ N) is said to be a martingale difference

sequence if

(i) E|Yn|< ∞,

(ii) E(Yn+1|Fn) = 0 almost surely (a.s.) and

(iii) Yn is a measurable function of F1, F2, · · ·, Fn,

where E is the mathematical expectation.

© 2021 Miskolc University Press
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Next, we discuss about the above properties of martingale difference sequence of

random variables.

Suppose (Xn) is a martingale sequence with respect to Fn. Also, let

Yn = Xn −Xn−1, n = 2,3, · · ·.

Now,

E|Yn|≦ E|Xn|+E|Xn−1|< ∞.

Next,

E(Yn+1|Fn) = E(Xn+1 −Xn|Fn)

= E(Xn+1|Fn)−Xn (∵ Xn is a constant on Fn)

= 0 (∵ E(Xn+1|Fn) = Xn).

Since, (Xn) and (Xn−1) are measurable, therefore (Yn) is measurable.

We now recall the definition for convergence of martingale difference sequences

of random variables.

Definition 1. A martingale difference sequence (Yn,Fn;n ∈ N) with E|Yn| is

bounded and Prob(Yn) = 1 (that is, with probability 1) is said to be convergent to

a martingale (Y0,F0), if

lim
n→∞

(Yn,Fn)−→ (Y0,F0) (E|Y0|< ∞).

The notion of statistical convergence has been one of the beautiful aspects of the

sequence space theory and such an interesting notion was introduced by Fast [5].

Subsequently, the notion of probability convergence for sequences of random vari-

ables was introduced and such a notion is more general than the statistical conver-

gence as well as of the usual convergence. Using both the concepts with different

settings, various researchers developed many interesting results in several fields of

pure and applied mathematics such as summability theory, Fourier series, approxim-

ation theory, probability theory, measure theory and so on, see [2,3,7–9,12,15,18,19]

and [23].

Let X ⊆ N, and also let Xn = { j : j ≦ n and j ∈ X}. Then the natural density

d(X) of X is defined by

d(X) = lim
n→∞

|Xn|

n
= χ,

where χ is real and a finite number, and |Xn| is the cardinality of Xn.

We now recall the definition of statistical convergence for real sequence.

Definition 2 (see [5]). A given sequence (un) is statistically convergent to κ if, for

each ε > 0,

Xε = { j : j ∈ N and |u j −κ|≧ ε}
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has zero natural density. Thus, for each ε > 0, we have

d(Xε) = lim
n→∞

|Xε|

n
= 0.

Here, we write

stat lim
n→∞

un = κ.

We now introduce the definition of statistical convergence of martingale difference

sequence for random variables.

Definition 3. A bounded martingale difference sequence (Yn,Fn;n ∈ N) having

probability 1 is said to be statistically convergent to a martingale (Y0,F0) with

E|Y0|< ∞ if, for all ε > 0,

Rε = { j : j ≦ n and |(Yj,F j)− (Y0,F0)|≧ ε}

has zero natural density. That is, for every ε > 0, we have

d(Rε) = lim
n→∞

|Rε|

n
= 0.

Here, we write

statMD lim
n→∞

(Yn,Fn) = (Y0,F0).

Now we present an example illustrating that every martingale difference conver-

gent sequence is statistically convergent, but not conversely.

Example 1. Let (Fn;n ∈ N) be a monotonically increasing sequence of 0-mean

independent random variables over σ-fields and suppose (Xn) is a sequence of n th

partial sum of (Fn;n∈N) such that Xn−Xn−1 =Yn. Consider the sequence of random

variables (Xn) as

Xn =











1 (n = m2;m ∈ N)

0 (otherwise).

It is easy to see that, the martingale difference sequence (Yn,Fn;n ∈N) is statistically

convergent to zero but not simply martingale difference convergent.

Based on our proposed definition, we establish a theorem concerning a relation

between ordinary and statistical versions of convergence of martingale difference

sequences.

Theorem 1. If a martingale difference sequence (Yn,Fn;n ∈ N) is convergent to

a martingale (Y0,F0) with E|Y0| < ∞, then it is statistically convergent to the same

martingale.
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Proof. Let the martingale difference sequence (Yn,Fn;n∈N) be bounded and con-

verges with probability 1, then there exists a martingale (Y0,F0) with E|Y0|< ∞, that

is

lim
n→∞

(Yn,Fn)−→ (Y0,F0).

As the given martingale sequence (Yn,Fn;n ∈ N) is bounded with probability 1, then

for every ε > 0, we have

1

n
{ j : j ≦ n and |(Yj,F j)− (Y0,F0)|≧ ε} ⊆ lim

n→∞
|(Yn,Fn)− (Y0,F0)|< ε.

Consequently, by Definition 3, we obtain

1

n
{ j : j ≦ n and |(Yj,F j)− (Y0,F0)|≧ ε}= 0.

�

Motivated essentially by the above mentioned investigations, we introduce and

study the concepts of statistical convergence and statistical summability for martin-

gale difference sequences of random variables via deferred weighted summability

mean. We then establish an inclusion theorem concerning the relation between these

two beautiful concepts. Also, based upon our proposed notions, we state and prove

new Korovkin-type approximation theorems with algebraic test functions for a mar-

tingale difference sequence over a Banach space and demonstrate that our theorems

effectively extend and improves most (if not all) of the previously existing results

(in statistical and classical versions). Finally, we present an illustrative example by

using the generalized Bernstein polynomial of a martingale difference sequence in

order to demonstrate that our established theorems are stronger than its traditional

and statistical versions.

2. DEFERRED WEIGHTED MARTINGALE DIFFERENCE SEQUENCE

Let (an) and (bn) be sequences of non-negative integers such that an < bn and

lim
n→∞

bn =+∞, and let (pi) be a sequence of non-negative numbers such that

Pn =
bn

∑
i=an+1

pi.

Then the deferred weighted mean for the martingale difference sequence

(Yn,Fn;n ∈ N) of random variables is defined by

W(Yn,Fn) =
1

Pn

bn

∑
i=an+1

pi(Yi,Fi).

It will be interesting to see that, for pi = 1, W(Yn,Fn) reduces to deferred Cesàro

mean {D(Xn,Fn) : Xn = ∑n
i=1Yi} which has been recently introduced by Srivastava
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et al. [17]. Moreover, recalling another result of Srivastava et al. [20] via deferred

Nörlund mean Db
a(N, p,q) for real sequence given by

tn =
1

Rn

bn

∑
m=an+1

pbn−mqmxm,

one can also extend the same for the martingale difference sequence.

We now present the definitions of deferred weighted statistical convergence and

statistically deferred weighted summability of martingale difference sequences of

random variables.

Definition 4. Let (an) and (bn) be sequences of non-negative integers, and let

(pn) be a sequence of non-negative numbers. A bounded martingale difference se-

quence (Yn,Fn;n ∈N) of random variables having probability 1 is deferred weighted

statistically convergent to a martingale (Y0,F0) with E|Y0|< ∞ if, for all ε > 0,

Yε = { j : j ≦ Pn and p j|(Yj,F j)− (Y0,F0)|≧ ε}

has zero natural density. That is, for every ε > 0, we have

lim
n→∞

1

Pn

|{ j : j ≦ Pn and p j|(Yj,F j)− (Y0,F0)|≧ ε}|= 0.

We write

DWMDstat lim
n→∞

(Yn,Fn) = (Y0,F0).

Definition 5. Let (an) and (bn) be sequences of non-negative integers, and let

(pn) be a sequence of non-negative numbers. A bounded martingale difference se-

quence (Yn,Fn;n ∈ N) of random variables having probability 1 is statistically de-

ferred weighted summable to a martingale (Y0,F0) with E|Y0|< ∞ if, for all ε > 0,

Zε = { j : an < j ≦ bn and |W(Yj,F j)− (Y0,F0)|≧ ε}

has zero natural density. That is, for every ε > 0, we have

lim
n→∞

|{ j : an < j ≦ bn and |W(Yj,F j)− (Y0,F0)|≧ ε}|

bn −an

= 0.

We write

statDWMD lim
n→∞

W(Yj,F j) = (Y0,F0).

Now we establish an inclusion theorem concerning the above mentioned two new

interesting definitions.

Theorem 2. If a given martingale difference sequence (Yn,Fn;n ∈ N) of random

variables is deferred weighted statistically convergent to a martingale (Y0,F0) with

E|Y0|<∞, then it is statistically deferred weighted summable to the same martingale,

but not conversely.
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Proof. Suppose the given martingale sequence (Yn,Fn;n ∈N) of random variables

is deferred weighted statistically convergent to a martingale (Y0,F0) with E|Y0|< ∞,

then by Definition 4, we have

lim
n→∞

1

Pn

|{ j : j ≦ Pn and p j|(Yj,F j)− (Y0,F0)|≧ ε}|= 0.

Now assuming two sets as follows:

Wε = { j : j ≦ Pn and p j|(Yj,F j)− (Y0,F0)|≧ ε}

and

W c
ε = { j : j ≦ Pn and p j|(Yj,F j)− (Y0,F0)|< ε},

we have

|W(Yn,Fn)− (Y0,F0)|=

∣

∣

∣

∣

∣

1

Pn

bn

∑
i=an+1

pi(Yi,Fi)− (Y0,F0)

∣

∣

∣

∣

∣

≦

∣

∣

∣

∣

∣

1

Pn

bn

∑
i=an+1

pi [(Yi,Fi)− (Y0,F0)]

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

Pn

bn

∑
i=an+1

pi(Y0,F0)− (Y0,F0)

∣

∣

∣

∣

∣

≦
1

Pn

bn

∑
i=an+1
( j∈Wε)

|pi(Yi,Fi)− (Y0,F0)|

+
1

Pn

bn

∑
i=an+1
( j∈W c

ε )

|pi(Yi,Fi)− (Y0,F0)|

+ |(Y0,F0)|

∣

∣

∣

∣

∣

1

Pn

bn

∑
i=an+1

pi −1

∣

∣

∣

∣

∣

≦
1

Pn

∣

∣Wε

∣

∣+
1

Pn

|W c
ε |= 0.

Clearly, we obtain

|W(Yn,Fn)− (Y0,F0)|< ε.

Thus, the martingale difference sequence (Yn,Fn;n ∈ N) of random variables is stat-

istically deferred weighted summable to the martingale (Y0,F0) with E|Y0|< ∞.

Next, in support of the non-validity of the converse statement, we present here

an example demonstrating that a statistically deferred weighted summable martin-

gale difference sequence of random variables is not necessarily deferred weighted

statistically convergent.
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Example 2. Suppose that an = 2n, bn = 4n and pn = n, and let (Fn;n ∈ N) be a

monotonically increasing sequence of 0-mean independent random variables of σ-

fields and suppose that (Xn) is a sequence of n th partial sum of (Fn;n ∈N) such that

Xn −Xn−1 = Yn. Consider the sequence of random variables (Xn) as

Xn =











1 (n = even)

−1 (n = odd).

It is easy to see that, the martingale difference sequence (Yn,Fn;n ∈ N) is neither

convergent nor deferred weighted statistically convergent; however, it is deferred

weighted summable to 0. Therefore, it is statistically deferred weighted summable to

0.

�

3. A KOROVKIN-TYPE THEOREM FOR MARTINGALE DIFFERENCE SEQUENCE

Quite recently, a few researchers worked toward extending (or generalizing) the

approximation of Korovkin-type theorems in different fields of mathematics such

as sequence space, Banach space, Probability space, Measurable space, etc. This

concept is extremely valuable in Real Analysis, Functional Analysis, Harmonic Ana-

lysis, and so on. Here, we like to refer the interested readers to the recent works

[4, 13, 18, 20, 21] and [26].

In fact, we establish here the statistical versions of new Korovin-type approxim-

ation theorems for martingale difference sequences of positive linear operators via

deferred weighted summability mean.

Let C ([0,1]) be the space of all real valued continuous functions defined on [0,1]
under the norm ‖.‖∞. Also, let C [0,1] be a Banach space. Then for f ∈ C [0,1], the

norm of f denoted by ‖ f‖ is given by

‖ f‖∞ = sup
x∈[0,1]

{| f (x)|}.

We say that, an operator A is a martingale difference sequence of positive linear

operators provided that

A( f ;x)≧ 0 whenever f ≧ 0, with A( f ;x)< ∞ and Prob(A( f ;x)) = 1.

Theorem 3. Let

Am : C [0,1]→ C [0,1]

be a martingale difference sequence of positive linear operators. Then, for all

f ∈ C [0,1],

DWMDstat lim
m→∞

‖Am( f ;x)− f (x)‖∞ = 0 (3.1)
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if and only if

DWMDstat lim
m→∞

‖Am(1;x)−1‖∞ = 0, (3.2)

DWMDstat lim
m→∞

‖Am(2x;x)−2x‖∞ = 0 (3.3)

and

DWMDstat lim
m→∞

‖Am(3x2;x)−3x2‖∞ = 0. (3.4)

Proof. Since each of the following functions

f0(x) = 1, f1(x) = 2x and f2(x) = 3x2

belong to C [0,1] and are continuous, the implication given by (3.1) implies (3.2) to

(3.4) is obvious.

In order to complete the proof of the Theorem 3, we first assume that the conditions

(3.2) to (3.4) hold true. If f ∈ C [0,1], then there exists a constant N > 0 such that

| f (x)|≦ N (∀ x ∈ [0,1]).

We thus find that

| f (r)− f (x)|≦ 2N (r,x ∈ [0,1]). (3.5)

Clearly, for given ε > 0, there exists δ > 0 such that

| f (r)− f (x)|< ε (3.6)

whenever

|r− x|< δ, for all r,x ∈ [0,1].

Let us choose

ϕ1 = ϕ1(r,x) = (2r−2x)2
.

If |r− x|≧ δ, then we obtain

| f (r)− f (x)|<
2N

δ2
ϕ1(r,x). (3.7)

From equation (3.6) and (3.7), we get

| f (r)− f (x)|< ε+
2N

δ2
ϕ1(r,x),

which implies that

−ε−
2N

δ2
ϕ1(r,x)≦ f (r)− f (x)≦ ε+

2N

δ2
ϕ1(r,x). (3.8)

Now, since Am(1;x) is monotone and linear, by applying the operator Am(1;x) to this

inequality, we have

Am(1;x)

(

−ε−
2N

δ2
ϕ1(r,x)

)

≦ Am(1;x)( f (r)− f (x))
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≦ Am(1;x)

(

ε+
2N

δ2
ϕ1(r,x)

)

.

We note that x is fixed and so f (x) is a constant number. Therefore, we have

−εAm(1;x)−
2N

δ2
Am(ϕ1;x)≦ Am( f ;x)− f (x)Am(1;x)

≦ εAm(1;x)+
2N

δ2
Am(ϕ1;x). (3.9)

Also, we know that

Am( f ;x)− f (x) = [Am( f ;x)− f (x)Am(1;x)]+ f (x)[Am(1;x)−1]. (3.10)

Using (3.9) and (3.10), we have

Am( f ;x)− f (x)< εAm(1;x)+
2A

δ2
Am(ϕ1;x)+ f (x)[Am(1;x)−1]. (3.11)

We now estimate Am(ϕ1;x) as follows:

Am(ϕ1;x) = Am((2r−2x)2;x) = Am(2r2 −8xr+4x2;x)

= Am(4r2;x)−8xAm(r;x)+4x2Am(1;x)

= 4[Am(r
2;x)− x2]−8x[Am(r;x)− x]

+4x2[Am(1;x)−1].

Using (3.11), we obtain

Am( f ;x)− f (x)< εAm(1;x)+
2N

δ2
{4[Am(r

2;x)− x2]

−8x[Am(r;x)− x]+4x2[Am(1;x)−1]}

+ f (x)[Am(1;x)−1].

= ε[Am(1;x)−1]+ ε+
2N

δ2
{4[Am(r

2;x)− x2]

−8x[Am(r;x)− x]+4x2[Am(1;x)−1]}

+ f (x)[Am(1;x)−1].

Since ε > 0 is arbitrary, we can write

|Am( f ;x)− f (x)|≦ ε+

(

ε+
8N

δ2
+N

)

|Am(1;x)−1|

+
16N

δ2
|Am(r;x)− x|+

8N

δ2
|Am(r

2;x)− x2|

≦ E(|Am(1;x)−1|+ |Am(r;x)− x|

+ |Am(r
2;x)− x2|), (3.12)
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where

E = max

(

ε+
8N

δ2
+N ,

16N

δ2
,
8N

δ2

)

.

Now, for a given µ > 0, there exists ε > 0 (ε < µ), we get

Gm(x;µ) = {m : m ≦ Pn and pm |Am( f ;x)− f (x)|≧ µ} .

Furthermore, for k = 0,1,2, we have

Gk,m(x;µ) =

{

m : m ≦ Pn and pm |Am( f ;x)− fk(x)|≧
µ− ε

3E

}

,

so that,

Gm(x;µ)≦
2

∑
k=0

Gk,m(x;µ).

Clearly, we obtain

‖Gm(x;µ)‖C [0,1]

Pn

≦
2

∑
k=0

‖Gk,m(x;µ)‖C [0,1]

Pn

. (3.13)

Now, using the above assumption about the implications in (3.2) to (3.4) and by

Definition 4, the right-hand side of (3.13) is seen to tend to zero as n → ∞. Con-

sequently, we get

lim
n→∞

‖Gm(x;µ)‖C [0,1]

Pn

= 0 (δ,µ > 0).

Therefore, implication (3.1) holds true. This completes the proof of Theorem 3. �

Next, by using Definition 5, we present the following theorem.

Theorem 4. Let Am : C [0,1] → C [0,1] be a martingale difference sequence of

positive linear operators and let f ∈ C [0,1]. Then

statDWMD lim
m→∞

‖Am( f ;x)− f (x)‖∞ = 0 (3.14)

if and only if

statDWMD lim
m→∞

‖Am(1;x)−1‖∞ = 0, (3.15)

statDWMD lim
m→∞

‖Am(2x;x)−2x‖∞ = 0 (3.16)

and

statDMD lim
m→∞

‖Am(3x2;x)−3x2‖∞ = 0. (3.17)

Proof. The proof of Theorem 4 is similar to the proof of Theorem 3. We, therefore,

choose to skip the details involved. �
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We present below an illustrative example for the martingale difference sequence of

positive linear operators that does not satisfy the conditions of the weighted statistical

convergence versions of Korovkin-type approximation Theorem 3 and also the res-

ults of Srivastava et al. [22], and Paikray et al. [11], but it satisfies the conditions of

statistical weighted summability versions of our Korovkin-type approximation The-

orem 4. Thus, our Theorem 4 is stronger than the results asserted by Theorem 3 and

also, the results of Srivastava et al. [22] and Paikray et al. [11].

We now recall the operator

ϑ(1+ϑD)

(

D =
d

dϑ

)

,

which was used by Al-Salam [1] and, more recently, by Viskov and Srivastava [25]

(see [14] and the monograph by Srivastava and Manocha [24] for various general

families of operators and polynomials of this kind). Here, in our Example 3 below,

we use this operator in conjunction with the Bernstein polynomial.

Example 3. We consider Bernstein polynomial Bm( f ;ϑ) on C[0,1] given by

Bm( f ;ϑ) =
n

∑
m=0

f
(m

n

)

(

n

m

)

ϑm(1−ϑ)n−m (ϑ ∈ [0,1]). (3.18)

Next, we present the martingale difference sequences of positive linear operators on

C[0,1] defined as follows:

Am( f ;ϑ) = [1+(Yn,Fn)]ϑ(1+ϑD)Bm( f ;ϑ) (∀ f ∈C[0,1]), (3.19)

where (Yn,Fn) is already mentioned in Example 2.

Now, we calculate the values of the functions 1, 2ϑ and 3ϑ2 by using our proposed

operators (3.19),

Am(1;ϑ) = [1+(Ym,Fm)]ϑ(1+ϑD)1 = [1+(Ym,Fm)]ϑ,

Am(2ϑ;ϑ) = [1+(Xm,Fm)]ϑ(1+ϑD)2ϑ = [1+(Ym,Fm)]ϑ(1+2ϑ),

and

Am(3ϑ2;ϑ) = [1+(Ym,Fm)]ϑ(1+ϑD)3

{

ϑ2 +
ϑ(1−ϑ)

m

}

= [1+(Ym,Fm)]

{

ϑ2

(

6−
9ϑ

m

)}

,

so that we have

statDWMD lim
m→∞

‖Am(1;ϑ)−1‖∞ = 0,

statDWMD lim
m→∞

‖Am(2ϑ;ϑ)−2ϑ‖∞ = 0

and

statDWMD lim
m→∞

‖Am(3ϑ2;ϑ)−3ϑ2‖∞ = 0.
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Consequently, the sequence Am( f ;ϑ) satisfies the conditions (3.15) to (3.17). There-

fore, by Theorem 4, we have

statDWMD lim
m→∞

‖Am( f ;ϑ)− f‖∞ = 0.

Here, the given martingale difference sequence (Ym,Fm) of functions in Example 2 is

statistically deferred weighted summable but not deferred weighted statistically con-

vergent. Thus, martingale difference operators defined by (3.19) satisfy the Theorem

4; however, it is not satisfying Theorem 3.

Moreover, if one considers the positive linear operators of the types Baskakov and

Szász-Mirakyan [6], and Beta Szász-Mirakjan [16] in place of Bernstein polynomial

Bm( f ;ϑ) in Example 3, then with the same algebraic test functions it will also satisfy

the conclusion of Korovkin-type approximation theorem via our purposed mean for

martingale difference sequences of random variables. Consequently, these operators

are also valid for Theorem 4; however, it will not satisfy Theorem 3.

4. CONCLUDING REMARKS AND OBSERVATIONS

In this concluding section of our investigation, we present several further remarks

and observations concerning to various results which we have proved here.

Remark 1. Let (Yn,Fn;n ∈ N) be a martingale difference sequence given in Ex-

ample 2. Then, since

statDWMD lim
m→∞

Ym = 0 on [0,1],

we have

statDWMD lim
m→∞

‖Am( fk;x)− fk(x)‖∞ = 0 (k = 0,1,2). (4.1)

Thus, by Theorem 4, we can write

statDWMD lim
m→∞

‖Am( f ;x)− f (x)‖∞ = 0, (4.2)

where

f0(x) = 1, f1(x) = 2x and f2(x) = 3x2
.

Here, the martingale difference sequence (Yn,Fn;n ∈ N) is neither statistically con-

vergent nor converges uniformly in the ordinary sense; thus, the classical and statist-

ical versions of Korovkin-type theorems do not work here for the operators defined

by (3.19). Hence, this application indicates that our Theorem 4 is a non-trivial gen-

eralization of the classical as well as statistical versions of Korovkin-type theorems

(see [5] and [10]).

Remark 2. Let (Yn,Fn;n ∈ N) be a martingale difference sequence given already

in Example 2. Then, since

statDWMD lim
m→∞

Ym = 0 on [0,1],
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so (4.1) holds true. Now, by applying (4.1) and Theorem 4, condition (4.2) also holds

true. However, since the martingale difference sequence (Yn,Fn;n ∈ N) is not de-

ferred weighted statistically convergent but it is statistically deferred weighted sum-

mable. Thus, Theorem 4 is certainly a non-trivial extension of Theorem 3. Therefore,

Theorem 4 is stronger than Theorem 3.
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1. INTRODUCTION

Let’s start our study by introducing the concept of convex function and the famous

inequality obtained for the mean value of a convex function (see [6], [15]).

Definition 1. Let I ⊆ R be an interval. Then a real-valued function f : I → R is

said to be convex (concave) on the interval I if the inequality

f (λx+(1−λ)y)≤ (≥)λ f (x)+(1−λ) f (y) (1.1)

holds for all x,y ∈ I and λ ∈ [0,1].

With the help of convex function and inequalities we will give below, we observe

that many applications take place in pure and applied mathematics.

The following double inequality is called Hermite-Hadamard inequality in the lit-

erature. If f : I →R is a convex function on the interval I of real numbers and a,b ∈ I

with a < b, then

f

(

a+b

2

)

≤
1

b−a

∫ b

a
f (x)dx ≤

f (a)+ f (b)

2
. (1.2)

The inequalities in (1.2) hold in the reversed direction if f is concave.

Different convex function types and different Hermite-Hadamard type inequalities

which are considered basic for each definition and for each inequality have been

© 2021 Miskolc University Press
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obtained through the Definition 1 and Hermite-Hadamard Inequality. It is observed

that studies in this direction take a large place in the literature.

In [22], G. Toader defined m−convexity as the following:

Definition 2. The function f : [0,b] → R,b > 0 is said to be m−convex where

m ∈ [0,1], if we have

f (λx+m(1−λ)y)≤ λ f (x)+m(1−λ) f (y)

for all x,y ∈ [0,b] and λ ∈ [0,1]. We say that f is m−concave if (− f ) is m−convex.

In [4], Dragomir obtained the following Theorem for m− convex functions.

Theorem 1. Let f : [0,∞) → R be a m− convex function with m ∈ (0,1] and

0 ≤ a < b. If f ∈ L1[a,b], then one has the inequalities

f

(

a+b

2

)

≤
1

b−a

∫ b

a

f (x)+m f ( x
m
)

2
dx

≤
1

2

[

f (a)+m f ( a
m
)

2
+m

f ( b
m
)+m f ( b

m2 )

2

]

. (1.3)

Let us remind the definition of h− convex function [11, 23]:

Definition 3. Let h− be a positive function. We say that f : I ⊆ R → R is

h−convex function or that belongs to the class SX(h, I), if f is non-negative and

for all x,y ∈ I and λ ∈ (0,1), we have

f (λx+(1−λ)y)≤ h(λ) f (x)+h(1−λ) f (y). (1.4)

If the inequality in (1.4) is reserved, then f is said to be h−concave, i.e. SV (h, I).
Obviously, if f (λ) = λ; f (λ) = 1

λ
; f (λ) = 1; f (λ) = λs where s ∈ (0,1), then all non-

negative convex function belong to SX(h, I) and all nonnegative concave functions

belong to SV (h, I); SX(h, I) = Q(I); SX(h, I)⊇ P(I); SX(h, I)⊇ K2
s , respectively.

The classical H-H inequality for h− convex functions was obtained by Sarikaya

et. al. in [18] is as follows:

Theorem 2. Let f ∈ SX(h, I), a,b ∈ I with a < b, f ∈ L1[a,b]. Then

1

2h(1
2
)

f

(

a+b

2

)

≤
1

b−a

∫ b

a
f (x)dx ≤ [ f (a)+ f (b)]

∫ 1

0
h(λ)dλ. (1.5)

In [5], Dragomir and Ionescu introduced the following class of functions and

proved some inequalities.

Definition 4. Let g : I → R be a convex function on the interval I. The function

g : I → R is called g−convex dominated on I if the following condition is satisfied:

|λ f (x)+(1−λ) f (y)− f (λx+(1−λ)y)| ≤ λg(x)+(1−λ)g(y)−g(λx+(1−λ)y)

for all x,y ∈ I and λ ∈ [0,1].
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Theorem 3. (See [7]) Let g : I → R be a convex function and f : I → R be a g−
convex dominated mapping. Then, for all a,b ∈ I,a < b,

∣

∣

∣

∣

f
(a+b

2

)

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
1

b−a

∫ b

a
g(x)dx−g

(a+b

2

)

(1.6)

and
∣

∣

∣

∣

f (a)+ f (b)

2
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
g(a)+g(b)

2
−

1

b−a

∫ b

a
g(x)dx. (1.7)

(g,m)− dominated convex function and interested theorem have been given as the

following (see [12]):

Definition 5. Let g : [0,b] → R be a given m− convex function on the interval

[0,b]. The real function f : [0,b]→ R is called (g,m)−convex dominated on [0,b] if

the following condition is satisfied

|λ f (x)+m(1−λ) f (y)− f (λx+m(1−λ)y)| (1.8)

≤ λg(x)+m(1−λ)g(y)−g(λx+m(1−λ)y)

for all x,y ∈ [0,b], m,λ ∈ [0,1].

Theorem 4. Let g : [0,∞) → R be an m−convex function with m ∈ (0,1]. f :

[0,∞)→R is (g,m)− convex dominated mapping and 0 ≤ a < b. If f ∈ L1[a,b], then

one has the inequalities:
∣

∣

∣

∣

1

b−a

∫ b

a

f (x)+m f ( x
m
)

2
dx− f

(a+b

2

)

∣

∣

∣

∣

(1.9)

≤
1

b−a

∫ b

a

g(x)+mg( x
m
)

2
dx−g

(a+b

2

)

and
∣

∣

∣

∣

∣

1

2

[

f (a)+m f ( a
m
)

2
+m

f ( b
m
)+m f ( b

m2 )

2

]

−
1

b−a

∫ b

a

f (x)+m f ( x
m
)

2
dx

∣

∣

∣

∣

∣

(1.10)

≤
1

2

[

g(a)+mg( a
m
)

2
+m

g( b
m
)+mg( b

m2 )

2

]

−
1

b−a

∫ b

a

g(x)+mg( x
m
)

2
dx.

Definition 6. (See [12]) Let h 6= 0,h : J → R be a nonnegative function, g : I →
R be an h−convex function. The real function f : I → R is called (g,h)−convex

dominated on I if the following condition is satisfied:

|h(λ) f (x)+h(1−λ) f (y)− f (λx+(1−λ)y)|

≤ h(λ)g(x)+h(1−λ)g(y)−g(λx+(1−λ)y)

for all x,y ∈ I and λ ∈ (0,1].
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Theorem 5. Let h : J →R be a non-negative function, h 6= 0, g : I →R, be an h−
convex function and the real function f : I → R be (g,h)− convex dominated on I.

Then one has the inequalities:
∣

∣

∣

∣

∣

1

b−a

∫ b

a
f (x)dx−

1

2h( 1
2
)

f
(a+b

2

)

∣

∣

∣

∣

∣

≤
1

b−a

∫ b

a
g(x)dx−

1

2h( 1
2
)
g
(a+b

2

)

and
∣

∣

∣

∣

[ f (a)+ f (b)]
∫ 1

0
h(λ)dλ−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

(1.11)

≤ [g(a)+g(b)]
∫ 1

0
h(λ)dλ−

1

b−a

∫ b

a
g(x)dx (1.12)

for all x,y ∈ I and λ ∈ (0,1].

Many authors study integral inequalities involving various fractional operators

like Erdelyi-Kober, Riemann-Liouville, conformable fractional integral operators,

Katugampola, etc. in last years. The most studied in them is Riemann-Liouville

fractional integral operators. In [16], Liouville and Riemann introduced the frac-

tional calculus at last of the nineteenth century. Now, we remind the definition of

Riemann-Liouville fractional integrals.

Definition 7. Let f ∈ L1[a,b]. The Riemann-Liouville integrals Jα

a+
f and Jα

b−
f of

order α > 0 with a ≥ 0 are defined by

Jα

a+ f (x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a (1.13)

and

Jα

b− f (x) =
1

Γ(α)

∫ b

x
(t − x)α−1 f (t)dt, x < b (1.14)

where Γ(α) =
∫

∞

0 e−tuα−1du. Here J0
a+

f (x) = J0
b−

f (x) = f (x). In the case of α = 1,

the fractional integral reduces to the classical integral.

One can find the interested properties and inequalities the references [1–3, 8–10,

13, 16, 17, 19–21, 24, 25].

In [19], Sarikaya et. al. obtained the Hermite-Hadamard type inequality for frac-

tional calculus as following:

Theorem 6. Let f : [a,b]→R be positive function with 0 ≤ a < b and f ∈ L1[a,b].
If f is a convex function on [a,b], then the following inequalities for fractional integ-

rals hold:

f
(a+b

2

)

≤
Γ(α+1)

2(b−a)α
[Jα

a+ f (b)+ Jα

b− f (a)]≤
f (a)+ f (b)

2
(1.15)
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with α ≥ 0.

In [14], another Hermite-Hadamard type inequality via fractional calculus have

been presented by Özdemir and Önalan.

Theorem 7. Let f ,g : [a,b]→ R be positive functions with 0 ≤ a < b and f ,g ∈
L1[a,b]. If g is a convex function on [a,b] and f is a g− convex dominated function,

then the following inequalities for fractional integrals hold:
∣

∣

∣

Γ(α+1)

2(b−a)α
[Jα

a+ f (b)+ Jα

b− f (a)]− f
(a+b

2

)∣

∣

∣

≤
Γ(α+1)

2(b−a)α
[Jα

a+g(b)+ Jα

b−g(a)]−g
(a+b

2

)

and
∣

∣

∣

f (a)+ f (b)

2
−

Γ(α+1)

2(b−a)α
[Jα

a+ f (b)+ Jα

b− f (a)]
∣

∣

∣

≤
g(a)+g(b)

2
−

Γ(α+1)

2(b−a)α
[Jα

a+g(b)+ Jα

b−g(a)].

In [14], Özdemir and Önalan present Hermite-Hadamard type inequalities for frac-

tional calculus as following:

Theorem 8. Let f : [0,∞) → R be a positive function with 0 ≤ a < b and f ∈
L1[a,

b
m
]. If f is an m-convex function on [0,∞), then the following inequality for

fractional integrals holds:

f

(

a+b

2

)

≤
Γ(α+1)

2(b−a)α

[

Jα

a+ f (b)+mα+1Jα
b
m

− f (
a

m
)

]

≤
1

2

[

α f (a)+m f ( a
m
)

α+1
+m

f ( b
m
)+mα f ( b

m2 )

α+1

]

with α > 0 ve m ∈ (0,1].

Yildiz et. al give Hermite-Hadamard type inequality for fractional calculus in [25].

Theorem 9. Let f : I ⊆ R → R be a real function with a < b,a,b ∈ I⋆ and f ∈
L [a,b]. If f belongs to the SX (h, I), we give

1

αh
(

1
2

) f

(

a+b

2

)

≤
Γ(α)

(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]

≤ [ f [a]+ f [b]]
∫ 1

0
tα−1 [h(t)+h(1− t)]dt

with α > 0.

Now, we give new Hermite-Hadamard type inequalities for (g,h)−convex domin-

ated functions and (g,m)−convex dominated functions by using fractional calculus.
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2. THE RESULTS

Theorem 10. Let f ,g : [a,b]→ R be positive functions with 0 ≤ a < b and f ,g ∈
L1[a,b]. If g is an h− convex function on [a,b] and f is a (g,h)− convex dominated

function, then the following inequalities for fractional integrals hold:

∣

∣

∣

∣

∣

Γ(α)

(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]−
f
(

a+b
2

)

αh
(

1
2

)

∣

∣

∣

∣

∣

≤
Γ(α)

(b−a)α [Jα

a+g(b)+ Jα

b−g(a)]−
g
(

a+b
2

)

αh
(

1
2

) (2.1)

and

[ f (a)+ f (b)]

[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]

−
Γ(α)

2(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]

≤ [g(a)+g(b)]

[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]

−
Γ(α)

2(b−a)α [Jα

a+g(b)+ Jα

b−g(a)] (2.2)

with α ≥ 0.

Proof. In Definition 6, if we choose λ = 1
2
, we get

∣

∣

∣
h

(

1

2

)

[ f (x)+ f (y)]− f

(

x+ y

2

)

∣

∣

∣
≤ h

(

1

2

)

[g(x)+g(y)]−g

(

x+ y

2

)

for all x,y ∈ [a,b]. Then if we take x = ta+(1− t)b and y = (1− t)a+ tb, we get

∣

∣

∣
h

(

1

2

)

[ f (ta+(1− t)b)+ f ((1− t)a+ tb)]− f

(

a+b

2

)

∣

∣

∣
(2.3)

≤ h

(

1

2

)

[g(ta+(1− t)b)+g((1− t)a+ tb)]−g

(

a+b

2

)

for t ∈ [0,1]. Multiplying (2.3) by tα−1, then integrating the deduced inequality with

respect to t over [0,1], we obtain;

∣

∣

∣
h

(

1

2

)[∫ 1

0
tα−1 ( f (ta+(1− t)b))dt +

∫ 1

0
tα−1 ( f ((1− t)a+ tb))dt

]

− f

(

a+b

2

)∫ 1

0
tα−1dt

∣

∣

∣
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≤ h

(

1

2

)[∫ 1

0
tα−1 (g(ta+(1− t)b))dt +

∫ 1

0
tα−1 (g((1− t)a+ tb))dt

]

−g

(

a+b

2

)∫ 1

0
tα−1dt

If we correct the above inequality, we get the first part of requested inequality.
∣

∣

∣

∣

∣

Γ(α)

(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]−
f
(

a+b
2

)

αh
(

1
2

)

∣

∣

∣

∣

∣

≤
Γ(α)

(b−a)α [Jα

a+g(b)+ Jα

b−g(a)]−
g
(

a+b
2

)

αh
(

1
2

) .

To get second part of Theorem 10, let’s use Definition 6. Then,
∣

∣

∣
h(t) f (a)+h(1− t) f (b)− f (ta+(1− t)b)

∣

∣

∣

≤ h(t)g(a)+h(1− t)g(b)−g(ta+(1− t)b)

and
∣

∣

∣
h(1− t) f (a)+h(t) f (b)− f ((1− t)a+ tb)

∣

∣

∣

≤ h(1− t)g(a)+h(t)g(b)−g((1− t)a+ tb) .

Obtained last two inequalities if add side by side, we get

[ f (a)+ f (b)] [h(t)+h(1− t)]− f (ta+(1− t)b)− f ((1− t)a+ tb)

≤ [g(a)+g(b)] [h(t)+h(1− t)]−g(ta+(1− t)b)−g((1− t)a+ tb) .

Multiplying the last inequality by tα−1, then integrating with respect to t over [0,1],
we obtain;

[ f (a) + f (b)]

[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]

−
∫ 1

0
tα−1 f (ta+(1− t)b)dt −

∫ 1

0
tα−1 f ((1− t)a+ tb)dt

≤ [g(a)+g(b)]

[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]

−
∫ 1

0
tα−1g(ta+(1− t)b)dt −

∫ 1

0
tα−1g((1− t)a+ tb)dt.

If we correct the obtained inequality, we get the desired inequality,

[ f (a) + f (b)]

[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]

−
Γ(α)

2(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]
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≤ [g(a)+g(b)]

[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]

−
Γ(α)

2(b−a)α [Jα

a+g(b)+ Jα

b−g(a)] .

So the proof is completed. �

Corollary 1. If we choose h(t) = t and α = 1 in Theorem 10, we get the results of

Theorem 3.

Corollary 2. If we choose h(t) = t in Theorem 10, we get the result of Theorem 7.

Also, if we choose α = 1, we obtain Theorem 5.

Theorem 11. Let f ,g : [0,∞)→R be positive functions with 0 ≤ a < b and f ,g ∈
L1[a,

b
m
]. If g is an m− convex function on [0,∞) and f is a (g,m)− convex dominated

function, then the following inequalities for fractional integrals hold:
∣

∣

∣

∣

∣

Γ(α+1)

2(b−a)α

[

Jα

a+ f (b)+mα+1Jα
b
m

− f
( a

m

)

]

− f

(

a+b

2

)

∣

∣

∣

∣

∣

≤
Γ(α+1)

2(b−a)α

[

Jα

a+g(b)+mα+1Jα
b
m

−g
( a

m

)

]

−g

(

a+b

2

)

and
∣

∣

∣

∣

∣

1

2

[

α f (a)+m f
(

a
m

)

α+1
+m

f
(

b
m

)

+mα f
(

b
m2

)

α+1

]

−
Γ(α+1)

2(b−a)α

[

Jα

a+ f (b)+mα+1Jα
b
m

− f
( a

m

)

]

∣

∣

∣

∣

∣

≤
1

2

[

αg(a)+mg
(

a
m

)

α+1
+m

g
(

b
m

)

+mαg
(

b
m2

)

α+1

]

−
Γ(α+1)

2(b−a)α

[

Jα

a+g(b)+mα+1Jα
b
m

−g
( a

m

)

]

with α > 0 and m ∈ (0,1].

Proof. In Definition 5, if we choose λ= 1
2

and x= ta+(1− t)b,y=(1− t) a
m
+t b

m
,

we get
∣

∣

∣

∣

∣

f (ta+(1− t)b)+m f
(

(1− t) a
m
+ t b

m

)

2
− f

(

a+b

2

)

∣

∣

∣

∣

∣

≤
g(ta+(1− t)b)+mg

(

(1− t) a
m
+ t b

m

)

2
−g

(

a+b

2

)

.
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Multiplying the last inequality by tα−1, then integrating with respect to t over [0,1],
we obtain;

∣

∣

∣

∣

∣

1

2

[∫ 1

0
tα−1 ( f (ta+(1− t)b))dt +m

∫ 1

0
tα−1 f ((1− t)

a

m
+ t

b

m
dt

]

− f

(

a+b

2

)∫ 1

0
tα−1dt

∣

∣

∣

∣

∣

≤
1

2

[∫ 1

0
tα−1 (g(ta+(1− t)b))dt +m

∫ 1

0
tα−1g

(

(1− t)
a

m
+ t

b

m

)

dt

]

−g

(

a+b

2

)∫ 1

0
tα−1dt.

If the necessary calculations are made and the resulting expression is edited, the first

part of Theorem 11 is obtained. To get second part of Theorem 11, we can use

Definition 5. Then, if we choose x = a and y = b
m

, we get;

∣

∣

∣
t f (a)+m(1− t) f

(

b

m

)

− f (ta+m(1− t))
b

m

∣

∣

∣

≤ tg(a)+m(1− t)g

(

b

m

)

−g

(

ta+m(1− t)
b

m

)

.

Also, in Definition 5 if we choose x = a
m

and y = b
m2 , then multiplying the obtained

inequality with m, the following inequality is obtained.

∣

∣

∣
mt f

( a

m

)

+m2 (1− t) f

(

b

m2

)

−m f

(

t
a

m
+m(1− t)

b

m2

)

∣

∣

∣

≤ mtg
( a

m

)

+m2 (1− t)g

(

b

m2

)

−mg

(

t
a

m
+m(1− t)

b

m2

)

.

Let’s multiply both of the last two inequalities we got above by tα−1,then integrate

the obtained inequality with respect to t over [0,1],
∣

∣

∣

∣

∣

f (a)

α+1
+m

f
(

b
m

)

α(α+1)
−

Γ(α)

(b−a)α Jα

a+ f (b)

∣

∣

∣

∣

∣

≤
g(a)

α+1
+m

g
(

b
m

)

α(α+1)
−

Γ(α)

(b−a)α Jα

a+g(b)

and
∣

∣

∣

∣

∣

m
f
(

a
m

)

α(α+1)
+m2

f
(

b
m2

)

α+1
−mα+1 Γ(α)

(b−a)α Jα
b
m

− f
( a

m

)

∣

∣

∣

∣

∣
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≤ m
g
(

a
m

)

α(α+1)
+m2

g
(

b
m2

)

α+1
−mα+1 Γ(α)

(b−a)α Jα
b
m

−g
( a

m

)

.

Finally, the second part of the theorem is proved when we arrange the inequalities we

obtained using the properties of absolute value. Thus, the proof is completed. �

Corollary 3. If we choose m = 1 and α = 1 in Theorem 11, we get the results of

Theorem 3.

Corollary 4. If we choose α = 1 in Theorem 11, we get the results of Theorem 4.

Also, if we choose m = 1 in Theorem 11, we get the result of Theorem 7.

REFERENCES

[1] S. Belarbi and Z. Dahmani, “On some new fractional integral inequalities,” J. Ineq. Pure Appl.

Math., vol. 10, p. Art. 86, 2009. [Online]. Available: https://www.emis.de/journals/JIPAM/

images/139 09 JIPAM/139 09.pdf

[2] Z. Dahmani, “New inequalities in fractional integrals,” Int. J. Nonlinear Sci., vol. 9, pp. 493–497,

2010.

[3] M. Dokuyucu, “Caputo and Atangana-Baleanu-Caputo fractional derivative applied to

garden equation,” Turkish Journal of Science, vol. 5, pp. 1–7, 2020. [Online]. Available:

https://dergipark.org.tr/en/download/article-file/1024808

[4] S. S. Dragomir, “On some new inequalities of Hermite-Hadamard type for m-convex

functions,” Tamkang Journal of Mathematics, vol. 33, no. 1, pp. 55–65, 2002, doi:

10.5556/j.tkjm.33.2002.304.

[5] S. S. Dragomir and N. M. Ionescu, “On some inequalities for convex-dominated functions,” Anal.

Num. Theor. Approx., vol. 19, pp. 21–28, 1990.

[6] S. S. Dragomir and C. E. M. Pearce, “Selected topics on Hermite–Hadamard inequalities and

applications,” RGMIA Monographs, 2000.

[7] S. Dragomir, C. Pearce, and J. Pecaric, “Means, g-convex dominated and Hadamard- type inequal-

ities,” Tamsui Oxford Journal of Mathematical Sciences, vol. 18, pp. 161–173, 2002.

[8] A. Ekinci and M. E. Ozdemir, “Some New Integral Inequalities Via Riemann Liouville Integral

Operators,” Applied and Computational Mathematics, vol. 3, pp. 288–295, 2019.

[9] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional

order. Wien: Springer, 1997.
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Abstract. Fuzzy soft positive implicative hyper BCK-ideal of types (≪,⊆,⊆), (≪,≪,⊆) and

(⊆,≪,⊆) are introduced, and their relations are investigated. Relations between fuzzy soft

strong hyper BCK-ideal and fuzzy soft positive implicative hyper BCK-ideal of types (≪,⊆,⊆)
and (≪,≪,⊆) are discussed. We prove that the level set of fuzzy soft positive implicative hyper

BCK-ideal of types (≪,⊆,⊆), (≪,≪,⊆) and (⊆,≪,⊆) are positive implicative hyper BCK-

ideal of types (≪,⊆,⊆), (≪,≪,⊆) and (⊆,≪,⊆), respectively. Conditions for a fuzzy soft

set to be a fuzzy soft positive implicative hyper BCK-ideal of types (≪,⊆,⊆), (≪,≪,⊆) and

(⊆,≪,⊆), respectively, are founded, and conditions for a fuzzy soft set to be a fuzzy soft weak

hyper BCK-ideal are considered.

2010 Mathematics Subject Classification: 06F35; 03G25; 06D72

Keywords: hyper BCK-algebra, fuzzy soft (weak, strong) hyper BCK-ideal, fuzzy soft positive

implicative hyper BCK-ideal of types (≪,⊆,⊆), (≪,≪,⊆) and (⊆,≪,⊆)

1. INTRODUCTION

Algebraic hyperstructures represent a natural extension of classical algebraic struc-

tures and they were introduced in 1934 by the French mathematician F. Marty [13]

when Marty defined hypergroups, began to analyze their properties, and applied them

to groups and relational algebraic functions (see [13]). Since then, many papers and

several books have been written on this topic. Nowadays, hyperstructures have a lot

of applications in several branches of mathematics and computer sciences etc. (see

[1,4,11,12]). In a classical algebraic structure, the composition of two elements is an

element, while in an algebraic hyperstructure, the composition of two elements is a

set. In [9], Jun et al. applied the hyperstructures to BCK-algebras, and introduced the

concept of a hyper BCK-algebra which is a generalization of a BCK-algebra. Sine

then, Jun et al. studied more notions and results in [5], and [8]. Dealing with un-

certainties is a major problem in many areas such as economics, engineering, envir-

onmental science, medical science and social science etc. These problems cannot be

dealt with by classical methods, because classical methods have inherent difficulties.

To overcome these difficulties, Molodtsov [14] proposed a new approach, which was
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called soft set theory, for modeling uncertainty. Jun applied the notion of soft sets to

the theory of BCK/BCI-algebras, and Jun et al. [5] studied ideal theory of BCK/BCI-

algebras based on soft set theory. Maji et al. [15] extended the study of soft sets to

fuzzy soft sets. They introduced the concept of fuzzy soft sets as a generalization of

the standard soft sets, and presented an application of fuzzy soft sets in a decision

making problem. Jun et al. applied fuzzy soft set to BCK/BCI-algebras. Khademan

et al. [10] applied the notion of fuzzy soft sets by Maji et al. to the theory of hyper

BCK-algebras. They introduced the notion of fuzzy soft positive implicative hyper

BCK-ideal, and investigated several properties. They discussed the relation between

fuzzy soft positive implicative hyper BCK-ideal and fuzzy soft hyper BCK-ideal, and

provided characterizations of fuzzy soft positive implicative hyper BCK-ideal. Us-

ing the notion of positive implicative hyper BCK-ideal, they established a fuzzy soft

weak (strong) hyper BCK-ideal.

In this paper, we introduce the notion of fuzzy soft positive implicative hyper BCK-

ideal of types (≪,⊆,⊆), (≪,≪,⊆) and (⊆,≪,⊆), and investigate their relations

and properties. We discuss relations between fuzzy soft strong hyper BCK-ideal and

fuzzy soft positive implicative hyper BCK-ideal of types (≪,⊆,⊆) and (≪,≪,⊆).
We prove that the level set of fuzzy soft positive implicative hyper BCK-ideal of

types (≪,⊆,⊆), (≪,≪,⊆) and (⊆,≪,⊆) are positive implicative hyper BCK-ideal

of types (≪,⊆,⊆), (≪,≪,⊆) and (⊆,≪,⊆), respectively. We find conditions for

a fuzzy soft set to be a fuzzy soft positive implicative hyper BCK-ideal of types

(≪,⊆,⊆), (≪,≪,⊆) and (⊆,≪,⊆), respectively. We also consider conditions for

a fuzzy soft set to be a fuzzy soft weak hyper BCK-ideal.

2. PRELIMINARIES

Let H be a nonempty set endowed with a hyper operation “◦”, that is, “◦” is a

function from H ×H to P ∗(H) = P (H)\{∅}. For two subsets A and B of H, denote

by A◦B the set ∪{a◦b | a ∈ A,b ∈ B}. We shall use x◦ y instead of x◦{y}, {x}◦ y,

or {x}◦{y}.

By a hyper BCK-algebra (see [9]) we mean a nonempty set H endowed with a

hyper operation “◦” and a constant 0 satisfying the following axioms:

(H1) (x◦ z)◦ (y◦ z)≪ x◦ y,

(H2) (x◦ y)◦ z = (x◦ z)◦ y,

(H3) x◦H ≪{x},

(H4) x ≪ y and y ≪ x imply x = y,

for all x,y,z ∈ H, where x ≪ y is defined by 0 ∈ x◦ y and for every A,B ⊆ H, A ≪ B

is defined by ∀a ∈ A,∃b ∈ B such that a ≪ b.

In a hyper BCK-algebra H, the condition (H3) is equivalent to the condition:

x◦ y ≪{x}. (2.1)
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In any hyper BCK-algebra H, the following hold (see [9]):

x◦0 ≪{x}, 0◦ x ≪{0}, 0◦0 ≪{0}, (2.2)

(A◦B)◦C = (A◦C)◦B, A◦B ≪ A, 0◦A ≪{0}, (2.3)

0◦0 = {0}, (2.4)

0 ≪ x, x ≪ x, A ≪ A, (2.5)

A ⊆ B implies A ≪ B, (2.6)

0◦ x = {0}, 0◦A = {0}, (2.7)

A ≪{0} implies A = {0}, (2.8)

x ∈ x◦0, (2.9)

x◦0 = {x}, A◦0 = A, (2.10)

for all x,y,z ∈ H and for all nonempty subsets A, B and C of H.

A subset I of a hyper BCK-algebra H is called a hyper BCK-ideal of H (see [9]) if it

satisfies

0 ∈ I (2.11)

(∀x,y ∈ H) (x◦ y ≪ I, y ∈ I ⇒ x ∈ I) (2.12)

A subset I of a hyper BCK-algebra H, is called a strong hyper BCK-ideal of H (see

[8]) if it satisfies (2.11) and

(∀x,y ∈ H) ((x◦ y)∩ I 6=∅, y ∈ I ⇒ x ∈ I). (2.13)

Recall that every strong hyper BCK-ideal is a hyper BCK-ideal, but the converse may

not be true (see [8]). A subset I of a hyper BCK-algebra H is called a weak hyper

BCK-ideal of H (see [9]) if it satisfies (2.11) and

(∀x,y ∈ H) (x◦ y ⊆ I, y ∈ I ⇒ x ∈ I) (2.14)

Every hyper BCK-ideal is a weak hyper BCK-ideal, but the converse may not be true.

A subset I of a hyper BCK-algebra H is said to be

• reflexive if (x◦ x)⊆ I for all x ∈ H,

• closed if the following assertion is valid.

(∀x ∈ H)(∀y ∈ I)(x ≪ y ⇒ x ∈ I).

Given a subset I of H and x,y,z ∈ H, we consider the following conditions:

(x◦ y)◦ z ⊆ I, y◦ z ⊆ I ⇒ x◦ z ⊆ I (2.15)

(x◦ y)◦ z ⊆ I, y◦ z ≪ I ⇒ x◦ z ⊆ I (2.16)

(x◦ y)◦ z ≪ I, y◦ z ⊆ I ⇒ x◦ z ⊆ I (2.17)

(x◦ y)◦ z ≪ I, y◦ z ≪ I ⇒ x◦ z ⊆ I (2.18)
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Definition 1 ([3, 6]). Let I be a nonempty subset of a hyper BCK-algebra H and

0 ∈ I. If it satisfies (2.15) (resp. (2.16), (2.17) and (2.18)), then we say that I is a

positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) (resp. (⊆,≪,⊆), (≪,⊆,⊆)
and (≪,≪,⊆)) for all x,y,z ∈ H.

Molodtsov ([14]) defined the soft set in the following way: Let U be an initial

universe set and E be a set of parameters. Let P(U) denote the power set of U and

A ⊆ E.

Definition 2 ([14]). A pair (λ,A) is called a soft set over U, where λ is a mapping

given by

λ : A → P(U).

In other words, a soft set over U is a parameterized family of subsets of the uni-

verse U . For ε ∈ A, λ(ε) may be considered as the set of ε-approximate elements

of the soft set (λ,A). Clearly, a soft set is not a set. For illustration, Molodtsov

considered several examples in [14].

Definition 3 ([15]). Let U be an initial universe set and E be a set of parameters.

Let F (U) denote the set of all fuzzy sets in U . Then a pair (λ̃,A) is called a fuzzy soft

set over U where A ⊆ E and λ̃ is a mapping given by λ̃ : A → F (U).

In general, for every parameter u in A, λ̃[u] is a fuzzy set in U and it is called fuzzy

value set of parameter u.

Given a fuzzy set µ in a hyper BCK-algebra H and a subset T of H, by µ∗(T ) and

µ∗(T ) we mean

µ∗(T ) = inf
a∈T

µ(a) and µ∗(T ) = sup
a∈T

µ(a). (2.19)

Definition 4 ([2]). A fuzzy soft set (λ̃,A) over a hyper BCK-algebra H is called

• a fuzzy soft hyper BCK-ideal based on a paramenter u ∈ A over H (briefly,

u-fuzzy soft hyper BCK-ideal of H) if the fuzzy value set λ̃[u] : H → [0,1] of

u satisfies the following conditions:

(∀x,y ∈ H)
(

x ≪ y ⇒ λ̃[u](x)≥ λ̃[u](y)
)

, (2.20)

(∀x,y ∈ H)
(

λ̃[u](x)≥ min{λ̃[u]∗(x◦ y), λ̃[u](y)}
)

. (2.21)

• a fuzzy soft weak hyper BCK-ideal based on a paramenter u ∈ A over H

(briefly, u-fuzzy soft weak hyper BCK-ideal of H) if the fuzzy value set

λ̃[u] : H → [0,1] of u satisfies condition (2.21) and

(∀x ∈ H)
(

λ̃[u](0)≥ λ̃[u](x)
)

. (2.22)



FUZZY SOFT POSITIVE IMPLICATIVE HYPER BCK-IDEALS OF SEVERAL TYPES 303

• a fuzzy soft strong hyper BCK-ideal over H based on a paramenter u in A

(briefly, u-fuzzy soft strong hyper BCK-ideal of H) if the fuzzy value set

λ̃[u] : H → [0,1] of u satisfies the following conditions:

(∀x,y ∈ H)
(

λ̃[u](x)≥ min{λ̃[u]∗(x◦ y), λ̃[u](y)}
)

, (2.23)

(∀x ∈ H)
(

λ̃[u]∗(x◦ x)≥ λ̃[u](x)
)

. (2.24)

If (λ̃,A) is a fuzzy soft (weak, strong) hyper BCK-ideal based on a paramenter u

over H for all u ∈ A, we say that (λ̃,A) is a fuzzy soft (weak, strong) hyper BCK-ideal

of H.

3. FUZZY SOFT POSITIVE IMPLICATIVE HYPER BCK-IDEALS

In what follows, let H be a hyper BCK-algebra unless otherwise specified.

Definition 5. Let (λ̃,A) be a fuzzy soft set over H. Then (λ̃,A) is called

• a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) based on

a parameter u ∈ A over H (briefly, u-fuzzy soft positive implicative hyper

BCK-ideal of type (⊆,⊆,⊆)) if the fuzzy value set λ̃[u] : H → [0,1] of u

satisfies the following conditions:

(∀x,y ∈ H) (x ≪ y ⇒ λ̃[u](x)≥ λ̃[u](y)), (3.1)

(∀x,y,z ∈ H)(λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}). (3.2)

• a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,≪,⊆) based

on a parameter u ∈ A over H (briefly, u-fuzzy soft positive implicative hyper

BCK-ideal of type (⊆,≪,⊆)) if the fuzzy value set λ̃[u] : H → [0,1] of u

satisfies (3.1) and

(∀x,y,z ∈ H) (λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}). (3.3)

• a fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆) based

on a parameter u ∈ A over H (briefly, u-fuzzy soft positive implicative hyper

BCK-ideal of type (≪,⊆,⊆)) if the fuzzy value set λ̃[u] : H → [0,1] of u

satisfies (3.1) and

(∀x,y,z ∈ H) (λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}). (3.4)

• a fuzzy soft positive implicative hyper BCK-ideal of type (≪,≪,⊆) based

on a parameter u ∈ A over H (briefly, u-fuzzy soft positive implicative hyper

BCK-ideal of type (≪,≪,⊆)) if the fuzzy value set λ̃[u] : H → [0,1] of u

satisfies (3.1) and

(∀x,y,z ∈ H) (λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}). (3.5)

Theorem 1. Let (λ̃,A) be a fuzzy soft set over H.
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(1) If (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆)

or type (⊆,≪,⊆), then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-

ideal of type (⊆,⊆,⊆).

(2) If (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type

(≪,≪,⊆), then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal

of type (≪,⊆,⊆) and (⊆,≪,⊆).

Proof. (1) Assume that (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal

of type (≪,⊆,⊆) or type (⊆,≪,⊆). Then

λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

or

λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)},

respectively. Thus (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type

(⊆,⊆,⊆).

(2) Suppose that (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type

(≪,≪,⊆). Then

λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

and

λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}.

Therefore (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type

(≪,⊆,⊆) and (⊆,≪,⊆). �

Corollary 1. If (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type

(≪,≪,⊆), then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type

(⊆,⊆,⊆).

The following example shows that any fuzzy soft positive implicative hyper BCK-

ideal of type (⊆,⊆,⊆) is not a fuzzy soft positive implicative hyper BCK-ideal of

type (≪,⊆,⊆).

Example 1. Consider a hyper BCK-algebra H = {0,a,b,c} with the hyper opera-

tion “◦” in Table 1.

Given a set A = {x,y} of parameters, we define a fuzzy soft set (λ̃,A) by Table 2.

Then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,⊆,⊆).
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TABLE 1. Cayley table for the binary operation “◦”

◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0} {0} {0}
b {b} {b} {0} {0}
c {c} {c} {b,c} {0,b,c}

TABLE 2. Tabular representation of (λ̃,A)

λ̃ 0 a b c

x 0.9 0.8 0.5 0.3
y 0.9 0.7 0.6 0.4

Since

λ̃[x]∗(c◦0) = 0.3 < 0.5 = min
{

λ̃[x]∗((c◦b)◦0), λ̃[x]∗(b◦0)
}

,

it is not an x-fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆), and

thus it is not a fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆).

Question.

Is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) a fuzzy

soft positive implicative hyper BCK-ideal of type (⊆,≪,⊆)?

The following example shows that any fuzzy soft positive implicative hyper BCK-

ideal of type (⊆,≪,⊆) is not a fuzzy soft positive implicative hyper BCK-ideal of

type (≪,⊆,⊆) or (≪,≪,⊆).

Example 2. Consider a hyper BCK-algebra H = {0,a,b} with the hyper operation

“◦” in Table 3.

TABLE 3. Cayley table for the binary operation “◦”

◦ 0 a b

0 {0} {0} {0}
a {a} {0} {0}
b {b} {a,b} {0,a,b}

Given a set A = {x,y} of parameters, we define a fuzzy soft set (λ̃,A) by Table 4.
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TABLE 4. Tabular representation of (λ̃,A)

λ̃ 0 a b

x 0.9 0.5 0.3
y 0.8 0.7 0.1

Then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,≪,⊆).
Since

λ̃[x]∗(b◦b) = 0.3 < 0.9 = min
{

λ̃[x]∗((b◦a)◦b), λ̃[x]∗(a◦b)
}

,

it is not an x-fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆) and

so not a fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆). Also,

since

λ̃[y]∗(b◦b) = 0.1 < 0.8 = min
{

λ̃[y]∗((b◦0)◦b), λ̃[y]∗(0◦b)
}

,

it is not a y-fuzzy soft positive implicative hyper BCK-ideal of type (≪,≪,⊆) and

so not a fuzzy soft positive implicative hyper BCK-ideal of type (≪,≪,⊆).

Question.

Is a fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆) a

fuzzy soft positive implicative hyper BCK-ideal of type (⊆,≪,⊆) or

(≪,≪,⊆)?

Lemma 1 ([10]). Every fuzzy soft positive implicative hyper BCK-ideal of type

(⊆,⊆,⊆) is a fuzzy soft hyper BCK-ideal.

The converse of Lemma 1 is not true (see [10, Example 3.6]). Using Theorems 1

and Lemma 1, we have the following corollary.

Corollary 2. Every fuzzy soft positive implicative hyper BCK-ideal (λ̃,A) of types

(≪,⊆,⊆), (⊆,≪,⊆) or (≪,≪,⊆) is a fuzzy soft hyper BCK-ideal.

We can check that the fuzzy soft set (λ̃,A) in Example 1 is a fuzzy soft hyper

BCK-ideal of H, but it is not a fuzzy soft positive implicative hyper BCK-ideal of

types (≪,⊆,⊆). This shows that any fuzzy soft hyper BCK-ideal may not be a fuzzy

soft positive implicative hyper BCK-ideal of types (≪,⊆,⊆). Also, we know that

the fuzzy soft set (λ̃,A) in Example 2 is a fuzzy soft hyper BCK-ideal of H, but it is a

fuzzy soft hyper BCK-ideal of type (≪,≪,⊆). Thus any fuzzy soft hyper BCK-ideal

may not be a fuzzy soft positive implicative hyper BCK-ideal of type (≪,≪,⊆).

Let (λ̃,A) be a fuzzy soft hyper BCK-ideal of H. If (λ̃,A) is a fuzzy soft positive

implicative hyper BCK-ideal (λ̃,A) of type (⊆,≪,⊆), then it is a fuzzy soft positive

implicative hyper BCK-ideal (λ̃,A) of type (⊆,⊆,⊆) by Theorem 1(1). Hence every
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fuzzy soft hyper BCK-ideal of H is a fuzzy soft positive implicative hyper BCK-ideal

(λ̃,A) of type (⊆,⊆,⊆). But this is contradictory to [10, Example 3.6]. Therefore we

know that any fuzzy soft hyper BCK-ideal may not be a fuzzy soft positive implicative

hyper BCK-ideal of type (⊆,≪,⊆).
We consider relation between a fuzzy soft positive implicative hyper BCK-ideal of

any type and a fuzzy soft strong hyper BCK-ideal.

Theorem 2. Every fuzzy soft positive implicative hyper BCK-ideal of type

(≪,⊆,⊆) is a fuzzy soft strong hyper BCK-ideal of H.

Proof. Let (λ̃,A) be a fuzzy soft positive implicative hyper BCK-ideal of type

(≪,⊆,⊆) and let u be any parameter in A. Since x ◦ x ≪ x for all x ∈ H, it follows

from (3.1) that

λ̃[u]∗(x◦ x)≥ λ̃[u]∗(x) = λ̃[u](x).

Taking z = 0 in (3.4) and using (2.10) imply that

λ̃[u](x) = λ̃[u]∗(x◦0)

≥ min{λ̃[u]∗((x◦ y)◦0), λ̃[u]∗(y◦0)}

= min{λ̃[u]∗(x◦ y), λ̃[u](y)}.

Therefore (λ̃,A) is a fuzzy soft strong hyper BCK-ideal of H. �

Corollary 3. Every fuzzy soft positive implicative hyper BCK-ideal of type

(≪,≪,⊆) is a fuzzy soft strong hyper BCK-ideal of H.

The following example shows that the converse of Theorem 2 and Corollary 3 is

not true in general.

Example 3. Consider a hyper BCK-algebra H = {0,a,b} with the hyper operation

“◦” which is given in Table 5. Given a set A = {x,y} of parameters, we define a fuzzy

TABLE 5. Cayley table for the binary operation “◦”

◦ 0 a b

0 {0} {0} {0}
a {a} {0} {a}
b {b} {b} {0,b}

soft set (λ̃,A) by Table 6.

Then (λ̃,A) is a fuzzy soft strong hyper BCK-ideal of H. Since

λ̃[x]∗(b◦b) = 0.5 < 0.9 = min
{

λ̃[x]∗((b◦0)◦b), λ̃[x]∗(0◦b)
}

,
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TABLE 6. Tabular representation of (λ̃,A)

λ̃ 0 a b

x 0.9 0.1 0.5
y 0.7 0.2 0.6

we know that (λ̃,A) is not an x-fuzzy soft positive implicative hyper BCK-ideal of

type (≪,⊆,⊆) and so it is not a fuzzy soft positive implicative hyper BCK-ideal of

type (≪,⊆,⊆). Also

λ̃[y]∗(b◦b) = 0.6 < 0.7 = min
{

λ̃[y]∗((b◦b)◦b), λ̃[y]∗(b◦b)
}

,

and so (λ̃,A) it is not a y-fuzzy soft positive implicative hyper BCK-ideal of type

(≪,≪,⊆). Thus it is not a fuzzy soft positive implicative hyper BCK-ideal of type

(≪,≪,⊆). Therefore any fuzzy soft strong hyper BCK-ideal of H may not be a

fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆) or (≪,≪,⊆).

Consider the hyper BCK-algebra H = {0,a,b,c} in Example 1 and a set A = {x,y}

of parameters. We define a fuzzy soft set (λ̃,A) by Table 2 in Example 1. Then (λ̃,A)
is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) and (⊆,≪,⊆).

But (λ̃,A) is not a fuzzy soft strong hyper BCK-ideal of H since

λ̃[y](c) = 0.4 < 0.6 = min
{

λ̃[y]∗(c◦b), λ̃[y](b)
}

.

Hence we know that any fuzzy soft positive implicative hyper BCK-ideal of types

(⊆,⊆,⊆) and (⊆,≪,⊆) is not a fuzzy soft strong hyper BCK-ideal of H.

Given a fuzzy soft set (λ̃,A) over H and t ∈ [0,1], we consider the following set

U(λ̃[u]; t) :=
{

x ∈ H | λ̃[u](x)≥ t
}

(3.6)

where u is a parameter in A, which is called level set of (λ̃,A).

Lemma 2. If a fuzzy soft set (λ̃,A) over H satisfies the condition (3.1), then

0 ∈U(λ̃[u]; t) for all t ∈ [0,1] and any parameter u in A with U(λ̃[u]; t) 6=∅.

Proof. Let (λ̃,A) be a fuzzy soft set over H which satisfies the condition (3.1). For

any t ∈ [0,1] and any parameter u in A, assume that U(λ̃[u]; t) 6=∅. Since 0 ≪ x for

all x ∈ H, it follows from (3.1) that λ̃[u](0)≥ λ̃[u](x) for all x ∈ H. Hence λ̃[u](0)≥

λ̃[u](x) for all x ∈U(λ̃[u]; t), and so λ̃[u](0)≥ t. Thus 0 ∈U(λ̃[u]; t). �

Lemma 3 ([2]). A fuzzy soft set (λ̃,A) over H is a fuzzy soft hyper BCK-ideal of

H if and only if the set U(λ̃[u]; t) in (3.6) is a hyper BCK-ideal of H for all t ∈ [0,1]

and any parameter u in A with U(λ̃[u]; t) 6=∅.
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Theorem 3. If a fuzzy soft set (λ̃,A) over H is a fuzzy soft positive implicative

hyper BCK-ideal of type (⊆,≪,⊆), then the set U(λ̃[u]; t) in (3.6) is a positive im-

plicative hyper BCK-ideal of type (⊆,≪,⊆) for all t ∈ [0,1] and any parameter u in

A with U(λ̃[u]; t) 6=∅.

Proof. Assume that a fuzzy soft set (λ̃,A) over H is a fuzzy soft positive implic-

ative hyper BCK-ideal of type (⊆,≪,⊆). Then 0 ∈ U(λ̃[u]; t) by Lemma 2. Let

x,y,z ∈ H be such that (x◦ y)◦ z ⊆U(λ̃[u]; t) and y◦ z ≪U(λ̃[u]; t). Then

λ̃[u](a)≥ t for all a ∈ (x◦ y)◦ z (3.7)

and

(∀b ∈ y◦ z)(∃c ∈U(λ̃[u]; t))(b ≪ c). (3.8)

The condition (3.7) implies λ̃[u]∗((x◦y)◦ z)≥ t, and the condition (3.8) implies from

(3.1) that λ̃[u](b)≥ λ̃[u](c)≥ t for all b ∈ y◦ z. Let d ∈ x◦ z. Using (3.3), we have

λ̃[u](d)≥ λ̃[u]∗(x◦ z)≥ min
{

λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)
}

≥ t.

Thus d ∈ U(λ̃[u]; t), and so x ◦ z ⊆ U(λ̃[u]; t). Therefore U(λ̃[u]; t) is a positive im-

plicative hyper BCK-ideal of type (⊆,≪,⊆). �

The following example shows that the converse of Theorem 3 is not true in general.

Example 4. Consider a hyper BCK-algebra H = {0,a,b} with the hyper operation

“◦” in Table 7.

TABLE 7. Cayley table for the binary operation “◦”

◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {a,b} {0,a,b}

Given a set A = {x,y} of parameters, we define a fuzzy soft set (λ̃,A) by Table 8.

TABLE 8. Tabular representation of (λ̃,A)

λ̃ 0 a b

x 0.9 0.5 0.8
y 0.8 0.3 0.6
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Then

U(λ̃[x]; t) =















∅ if t ∈ (0.9,1],
{0} if t ∈ (0.8,0.9],
{0,b} if t ∈ (0.5,0.8],
H if t ∈ [0,0.5]

and

U(λ̃[y]; t) =















∅ if t ∈ (0.8,1],
{0} if t ∈ (0.6,0.8],
{0,b} if t ∈ (0.3,0.6],
H if t ∈ [0,0.3],

which are positive implicative hyper BCK-ideals of type (⊆,≪,⊆). Note that a ≪ b

and λ̃[u](a)< λ̃[u](b) for all u∈ A. Thus (λ̃,A) is not a fuzzy soft positive implicative

hyper BCK-ideal of type (⊆,≪,⊆).

Lemma 4 ([3]). Every positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) is

a weak hyper BCK-ideal of H.

Lemma 5 ([8]). Let I be a reflexive hyper BCK-ideal of H. Then

(∀x,y ∈ H)((x◦ y)∩ I 6=∅ ⇒ x◦ y ≪ I). (3.9)

Lemma 6. If any subset I of H is closed and satisfies the condition (2.14), then

the condition (2.12) is valid.

Proof. Assume that x ◦ y ≪ I and y ∈ I for all x,y ∈ H. Let a ∈ x ◦ y. Then there

exists b ∈ I such that a ≪ b. Since I is closed, we have a ∈ I and thus x ◦ y ⊆ I. It

follows from (2.14) that x ∈ I. �

Theorem 4. Let A be a fuzzy soft set over H satisfying the condition (3.1) and

(∀T ∈ P (H))(∃x0 ∈ T )
(

λ̃[u](x0) = λ̃[u]∗(T )
)

. (3.10)

If the set U(λ̃[u]; t) in (3.6) is a reflexive positive implicative hyper BCK-ideal of type

(⊆,≪,⊆) for all t ∈ [0,1] and any parameter u in A with U(λ̃[u]; t) 6=∅, then (λ̃,A)
is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,≪,⊆).

Proof. For any x,y,z ∈ H let

t := min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}.

Then λ̃[u]∗((x◦y)◦z)≥ t and so λ̃[u](a)≥ t for all a∈ (x◦y)◦z. Since λ̃[u]∗(y◦z)≥ t,

it follows from (3.10) that λ̃[u](b0) = λ̃[u]∗(y ◦ z) ≥ t for some b0 ∈ y ◦ z. Hence

b0 ∈ U(λ̃[u]; t), and thus U(λ̃[u]; t)∩ (y ◦ z) 6= ∅. Since U(λ̃[u]; t) is a positive im-

plicative hyper BCK-ideal of type (⊆,≪,⊆) and hence of type (⊆,⊆,⊆), U(λ̃[u]; t)
is a weak hyper BCK-ideal of H by Lemma 4. Let x,∈ H be such that x ≪ y. If

y ∈ U(λ̃[u]; t), then λ̃[u](x) ≥ λ̃[u](y) ≥ t by (3.1) and so x ∈ U(λ̃[u]; t), that is,

U(λ̃[u]; t) is closed. Hence U(λ̃[u]; t) is a hyper BCK-ideal of H by Lemma 6.
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Since U(λ̃[u]; t) is reflexive, it follows from Lemma 5 that y◦ z ≪U(λ̃[u]; t). Hence

x ◦ z ⊆ U(λ̃[u]; t) since U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type

(⊆,≪,⊆). Hence

λ̃[u](a)≥ t = min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

for all a ∈ x◦ z, and thus

λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

for all x,y,z ∈ H. Therefore (λ̃,A) is a fuzzy soft positive implicative hyper BCK-

ideal of type (⊆, ≪, ⊆). �

Corollary 4. Let A be a fuzzy soft set over H satisfying the condition (3.1) and

(3.10). For any t ∈ [0,1] and any parameter u in A, assume that U(λ̃[u]; t) is nonempty

and reflexive. Then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type

(⊆,≪,⊆) if and only if U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type

(⊆,≪,⊆).

Theorem 5. If a fuzzy soft set (λ̃,A) over H is a fuzzy soft positive implicative

hyper BCK-ideal of type (≪,⊆,⊆), then the set U(λ̃[u]; t) in (3.6) is a positive im-

plicative hyper BCK-ideal of type (≪,⊆,⊆) for all t ∈ [0,1] and any parameter u in

A with U(λ̃[u]; t) 6=∅.

Proof. Let (λ̃,A) be a fuzzy soft positive implicative hyper BCK-ideal of type

(≪,⊆,⊆). Then 0 ∈U(λ̃[u]; t) by Lemma 2. Let x,y,z ∈ H be such that (x◦y)◦ z ≪

U(λ̃[u]; t) and y◦ z ⊆U(λ̃[u]; t). Then

(∀a ∈ (x◦ y)◦ z)(∃b ∈U(λ̃[u]; t))(a ≪ b), (3.11)

which implies from (3.1) that λ̃[u](a) ≥ λ̃[u](b) for all a ∈ (x ◦ y) ◦ z. Since y ◦ z ⊆

U(λ̃[u]; t), we have

λ̃[u](a)≥ t for all a ∈ y◦ z. (3.12)

Let c ∈ x◦ z. Then

λ̃[u](c)≥ λ̃[u]∗(x◦ z)≥ min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)} ≥ t

for all x,y,z ∈ H by (3.4), and thus c ∈U(λ̃[u]; t). Hence x◦ z ⊆U(λ̃[u]; t). Therefore

U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type (≪,⊆,⊆). �

The converse of Theorem 5 is not true as seen in the following example.
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Example 5. Consider the hyper BCK-algebra H = {0,a,b} and the fuzzy soft set

(λ̃,A) in Example 2. Then

U(λ̃[x]; t) =















∅ if t ∈ (0.9,1],
{0} if t ∈ (0.5,0.9],
{0,a} if t ∈ (0.3,0.5],
H if t ∈ [0,0.3]

and

U(λ̃[y]; t) =















∅ if t ∈ (0.8,1],
{0} if t ∈ (0.7,0.8],
{0,a} if t ∈ (0.1,0.7],
H if t ∈ [0,0.1],

which are positive implicative hyper BCK-ideals of type (≪,⊆,⊆). But we know

(λ̃,A) is not a fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆).

Lemma 7 ([8]). Every reflexive hyper BCK-ideal I of H satisfies the following

implication:

(∀x,y ∈ H) ((x◦ y)∩ I 6=∅⇒ x◦ y ⊆ I)

Lemma 8 ([7]). Every positive implicative hyper BCK-ideal of type (≪,⊆,⊆) is

a hyper BCK-ideal.

We provide conditions for a fuzzy soft set to be a fuzzy soft positive implicative

hyper BCK-ideal of type (≪,⊆,⊆).

Theorem 6. Let A be a fuzzy soft set over H satisfying the condition (3.10). If

the set U(λ̃[u]; t) in (3.6) is a reflexive positive implicative hyper BCK-ideal of type

(≪,⊆,⊆) for all t ∈ [0,1] and any parameter u in A with U(λ̃[u]; t) 6=∅, then (λ̃,A)
is a fuzzy soft positive implicative hyper BCK-ideal of type (≪,⊆,⊆).

Proof. Assume that U(λ̃[u]; t) 6= ∅ for all t ∈ [0,1] and any parameter u in A.

Suppose that U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type (≪,⊆

,⊆). Then U(λ̃[u]; t) is a hyper BCK-ideal of H by Lemma (8). It follows from

Lemma (3) that (λ̃,A) is a fuzzy soft hyper BCK-ideal of H. Thus the condition

(3.1) is valid. Now let t = min
{

λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)
}

for x,y,z ∈ H. Since

(λ̃,A) satisfies the condition (3.10), there exists x0 ∈ (x ◦ y) ◦ z such that λ̃[u](x0) =

λ̃[u]∗((x ◦ y) ◦ z) ≥ t and so x0 ∈ U(λ̃[u]; t). Hence ((x ◦ y) ◦ z)∩U(λ̃[u]; t) 6= ∅ and

so (x◦y)◦ z ≪U(λ̃[u]; t) by Lemma 7 and (2.6). Moreover λ̃[u](c)≥ λ̃[u]∗(y◦ z)≥ t

for all c ∈ y ◦ z, and hence c ∈ U(λ̃[u]; t) which shows that y ◦ z ⊆ U(λ̃[u]; t). Since

U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type (≪,⊆,⊆), it follows that

x◦ z ⊆U(λ̃[u]; t). Thus λ̃[u](a)≥ t for all a ∈ x◦ z, and so

λ̃[u]∗(x◦ z)≥ t = min
{

λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)
}

.



FUZZY SOFT POSITIVE IMPLICATIVE HYPER BCK-IDEALS OF SEVERAL TYPES 313

Consequently, (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type

(≪,⊆,⊆). �

Corollary 5. Let A be a fuzzy soft set over H satisfying the condition (3.10). For

any t ∈ [0,1] and any parameter u in A, assume that U(λ̃[u]; t) is nonempty and

reflexive. Then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type

(≪,⊆,⊆) if and only if U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type

(≪,⊆,⊆).

Using a positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) (resp., (⊆,≪,⊆),
(≪,⊆,⊆) and (≪,≪,⊆)), we establish a fuzzy soft weak hyper BCK-ideal.

Theorem 7. Let I be a positive implicative hyper BCK-ideal of type (⊆,⊆,⊆)
(resp., (⊆,≪,⊆), (≪,⊆,⊆) and (≪,≪,⊆)) and let z ∈ H. For a fuzzy soft set

(λ̃,A) over H and any parameter u in A, if we define the fuzzy value set λ̃[u] by

λ̃[u] : H → [0,1], x 7→

{

t if x ∈ Iz,

s otherwise,
(3.13)

where t > s in [0,1] and Iz := {y ∈ H | y ◦ z ⊆ I}, then (λ̃,A) is a u-fuzzy soft weak

hyper BCK-ideal of H.

Proof. It is clear that λ̃[u](0) ≥ λ̃[u](x) for all x ∈ H. Let x,y ∈ H. If y /∈ Iz, then

λ̃[u](y) = s and so

λ̃[u](x)≥ s = min
{

λ̃[u](y), λ̃[u]∗(x◦ y)
}

. (3.14)

If x◦ y * Iz, then there exists a ∈ x◦ y\ Iz, and thus λ̃[u](a) = s. Hence

min
{

λ̃[u](y), λ̃[u]∗(x◦ y)
}

= s ≤ λ̃[u](x). (3.15)

Assume that x◦ y ⊆ Iz and y ∈ Iz. Then

(x◦ y)◦ z ⊆ I and y◦ z ⊆ I. (3.16)

If I is of type (⊆,⊆,⊆), then x◦ z ⊆ I, i.e., x ∈ Iz. Thus

λ̃[u](x) = t ≥ min
{

λ̃[u](y), λ̃[u]∗(x◦ y)
}

. (3.17)

The condition (3.16) implies that (x ◦ y) ◦ z ≪ I and y ◦ z ≪ I by (2.6). Hence, if I

is of type (≪,≪,⊆), then x ◦ z ⊆ I, i.e., x ∈ Iz. Therefore we have (3.17). From

the condition (3.16), we have (x ◦ y) ◦ z ⊆ I and y ◦ z ≪ I. If I is of type (⊆,≪,⊆),
then x ◦ z ⊆ I, i.e., x ∈ Iz. Therefore we have (3.17). From the condition (3.16), we

have (x ◦ y)◦ z ≪ I and y◦ z ⊆ I. If I is of type (≪,⊆,⊆), then x ◦ z ⊆ I, i.e., x ∈ Iz.

Therefore we have (3.17). Therefore (λ̃,A) is a u-fuzzy soft weak hyper BCK-ideal

of H. �



314 S. KHADEMAN, M. M. ZAHEDI, R. A. BORZOOEI, AND Y. B. JUN

Theorem 8. Let (λ̃,A) be a fuzzy soft set over H in which the nonempty level

set U(λ̃[u]; t) of (λ̃,A) is reflexive for all t ∈ [0,1]. If (λ̃,A) is a fuzzy soft positive

implicative hyper BCK-ideal of H of type (≪,⊆,⊆), then the set

λ̃[u]z := {x ∈ H | x◦ z ⊆U(λ̃[u]; t)} (3.18)

is a (weak) hyper BCK-ideal of H for all z ∈ H.

Proof. Assume that (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of

H of type (≪,⊆,⊆). Obviously 0 ∈ λ̃[u]z. Then (λ̃,A) is a fuzzy soft hyper BCK-

ideal of H, and so U(λ̃[u]; t) is a hyper BCK-ideal of H. Let x,y ∈ H be such that

x ◦ y ⊆ λ̃[u]z and y ∈ λ̃[u]z. Then (x ◦ y) ◦ z ⊆ U(λ̃[u]; t) and y ◦ z ⊆ U(λ̃[u]; t) for all

t ∈ [0,1]. Using (2.6), we know that (x ◦ y) ◦ z ≪ U(λ̃[u]; t). Since U(λ̃[u]; t) is a

positive implicative hyper BCK-ideal of H of type (≪,⊆,⊆), it follows from (2.17)

that x◦ z ⊆U(λ̃[u]; t), that is, x ∈ λ̃[u]z. This shows that λ̃[u]z is a weak hyper BCK-

ideal of H. Let x,y ∈ H be such that x◦y ≪ λ̃[u]z and y ∈ λ̃[u]z, and let a ∈ x◦y. Then

there exists b ∈ λ̃[u]z such that a ≪ b, that is, 0 ∈ a ◦ b. Thus (a ◦ b)∩U(λ̃[u]; t) 6=

∅. Since U(λ̃[u]; t) is a reflexive hyper BCK-ideal of H, it follows from (H1) and

Lemma 7 that (a◦ z)◦ (b◦ z)≪ a◦b ⊆U(λ̃[u]; t) and so that a◦ z ⊆U(λ̃[u]; t) since

b◦ z ⊆U(λ̃[u]; t). Hence a ∈ λ̃[u]z, and so x ◦ y ⊆ λ̃[u]z. Since λ̃[u]z is a weak hyper

BCK-ideal of H, we get x ∈ λ̃[u]z. Consequently λ̃[u]z is a hyper BCK-ideal of H. �

Corollary 6. Let (λ̃,A) be a fuzzy soft set over H in which the nonempty level

set U(λ̃[u]; t) of (λ̃,A) is reflexive for all t ∈ [0,1]. If (λ̃,A) is a fuzzy soft positive

implicative hyper BCK-ideal of H of type (≪,≪,⊆), then the set

λ̃[u]z := {x ∈ H | x◦ z ⊆U(λ̃[u]; t)} (3.19)

is a (weak) hyper BCK-ideal of H for all z ∈ H.
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Abstract. In this paper, we introduce a new class of generalized polynomials associated with the

modified Milne-Thomson’s polynomials Φ
(α)
n (x,ν) of degree n and order α introduced by Dere

and Simsek. The concepts of poly-Bernoulli numbers, poly-Bernoulli polynomials, Hermite-

Bernoulli polynomials and generalized Hermite-Bernoulli polynomials are generalized to poly-

nomials of three positive real parameters. Numerous properties of these polynomials and some

relations are established. Some implicit summation formulae and general symmetry identities

are derived by using different analytical means and applying generating functions. These res-

ults extend some known summations and identities of generalized poly-Bernoulli numbers and

polynomials.

2010 Mathematics Subject Classification: 11B73; 11B68; 33C45

Keywords: Hermite polynomials, Bernoulli polynomials, poly-Bernoulli polynomials, Hermite-

poly-Bernoulli polynomials, summation formulae, symmetric identities

1. INTRODUCTION

Kaneko [6] introduced and studied poly-Bernoulli numbers which generalize the

classical Bernoulli numbers. poly-Bernoulli numbers B
(k)
n with k ∈ Z and n ∈ N,

appear in the following power series:

Lik(1− e−t)

1− e−t
=

∞

∑
n=0

B
(k)
n

tn

n!
, (1.1)

where

Lik(z) =
∞

∑
m=1

zm

mk
, |z|< 1,

and

Li1(z) =− ln(1− z), Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, ...

© 2021 Miskolc University Press
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Moreover when k ≥ 1, the left hand side of (1.1) can be written in the form of iterated

integrals

et 1

et −1

∫ t

0

1

et −1
· · ·

∫ t

0

1

et −1

∫ t

0

t

et −1
dtdt · · ·dt =

∞

∑
n=0

B
(k)
n

tn

n!
.

Obviously

B
(1)
n = Bn.

Recently, Jolany et al. [4, 5] generalized the concept of poly-Bernoulli polynomials

defined as follows.

Let a,b,c > 0 and a 6= b. The generalized poly-Bernoulli numbers B
(k)
n (a,b), the

generalized poly-Bernoulli polynomials B
(k)
n (x;a,b) and the generalized polynomials

B
(k)
n (x;a,b,c) are appeared in the following series respectively.

Lik(1− (ab)−t)

bt −a−t
=

∞

∑
n=0

B
(k)
n (a,b)

tn

n!
, |t|<

2π

| lna+ lnb|
, (1.2)

Lik(1− (ab)−t)

bt −a−t
ext =

∞

∑
n=0

B
(k)
n (x,a,b)

tn

n!
, |t|<

2π

| lna+ lnb|
, (1.3)

Lik(1− (ab)−t)

bt −a−t
cxt =

∞

∑
n=0

B
(k)
n (x,a,b,c)

tn

n!
, |t|<

2π

| lna+ lnb|
. (1.4)

Dere and Simsek [3] modified the Milne-Thomson’s polynomials Φ
(α)
n (x) (see for

detail [11]) as Φ
(α)
n (x,ν) of degree n and order α by the means of the following

generating function:

g1(t,x;α,ν) = f (t,α)ext+h(t,ν) =
∞

∑
n=0

Φ
(α)
n (x,ν)

tn

n!
, (1.5)

where f (t,α) is a function of t and integer α. Note that Φ
(α)
n (x,0) = Φ

(α)
n (x) (c.f.

[11]).

On setting f (t,α) = Lik(1−e−t)
1−e−t in (1.5), we obtain the following polynomials given

by the generating function:

g2(t,x;k,ν) =
Lik(1− e−t)

1− e−t
ext+h(t,ν) =

∞

∑
n=0

B
(k)
n (x,ν)tn

n!
. (1.6)

Observe that the polynomials B
(k)
n (x,ν) are related to not only Bernoulli polynomials

but also the Hermite polynomials. For example, if h(t,0) = 0 in (1.6), we have

B
(k)
n (x,0) = B

(k)
n (x),
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where B
(k)
n (x) denotes the poly-Bernoulli polynomials of higher order which is defined

by means of the following generating function:

FB(t,x;k) =
Lik(1− e−t)

1− e−t
ext =

∞

∑
n=0

B
(k)
n (x)

tn

n!
. (1.7)

One can easily see that

B
(k)
n (0,0) = B

(k)
n ,B

(k)
n (x) = 1+ x

and

B
(k)
n (x) = B

(k)
n (ex+1,ex), (1.8)

where B
(k)
n are generalized poly-Bernoulli numbers. For more information about

poly-Bernoulli numbers and poly-Bernoulli polynomials, we refer to [4–8].

In [10], Luo et al. gave the following definition of the generalized Bernoulli poly-

nomials, which generalize the concepts stated above.

Let a,b > 0 and a 6= b. The generalized Bernoulli polynomials Bn(x;a,b,c) for non-

negative integer n are defined by

Φ(x, t;a,b,c) =
t

at −bt
cxt =

∞

∑
n=0

Bn(x;a,b,c)
tn

n!
, | t |< 2π (1.9)

Let x,y ∈ R, the generalized Hermite-Bernoulli polynomials of two variables given

by means of the following generating function (see [14]):
(

t

at −bt

)α

cxt+yt2

=
∞

∑
n=0

HB
(α)
n (x,y;a,b,c)

tn

n!
, |t|<

2π

| lna+ lnb|
, (1.10)

which is essentially a generalization of Bernoulli numbers, Bernoulli polynomials,

Hermite polynomials and Hermite-Bernoulli polynomials HBn(x,y), generalized Her-

mite-Bernoulli polynomials HB
(α)
n (x,y) introduced by Pathan and Khan [15] and Dat-

toli et al. [2, p.386(1.6)] in the form:
(

t

et −1

)α

ext+yt2

=
∞

∑
n=0

HB
(α)
n (x,y)

tn

n!
, (1.11)

and
(

t

et −1

)

ext+yt2

=
∞

∑
n=0

HBn(x,y)
tn

n!
. (1.12)

Let c> 0. The generalized 2-variable 1-parameter Hermite Kampé de Fériet Hn(x,y,c)
polynomials for nonnegative integer n are defined by

cxt+yt2

=
∞

∑
n=0

Hn(x,y,c)
tn

n!
. (1.13)
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This is an extended 2-variable Hermite Kamp’e de Feriet polynomials Hn(x,y) (see

[1]) defined by

ext+yt2

=
∞

∑
n=0

Hn(x,y)
tn

n!
. (1.14)

Note that

Hn(x,y,e) = Hn(x,y),

and the definition (1.13) yields the relationship

Hn(x,y,c) =
[ n

2
]

∑
j=0

(

n

j

)

(lnc)n− jxn−2 jy j. (1.15)

In this note, we first give definitions of the generalized poly-Bernoulli polynomials

B
(k)
n (x;a,b.c), which generalize the concepts stated above and then research their ba-

sic properties and relationships with poly-Bernoulli numbers B
(k)
n (a,b), poly-Bernoulli

polynomials B
(k)
n (x) and the generalized poly-Bernoulli polynomials B

(k)
n (x;a,b,c) of

Joalny et al., Hermite-Bernoulli polynomials HBn(x,y) of Dattoli et al. and HB
(α)
n (x,y)

of Pathan and Khan. The remainder of this paper is organized as follows. We modify

generating functions for the Milne-Thomson’s polynomials and derive some iden-

tities related to Hermite polynomials, poly-Bernoulli polynomials and power sums.

Some implicit summation formulae and general symmetry identities are derived by

using different analytical means and applying generating functions. These results ex-

tend some known summations and identities of generalized Hermite-poly-Bernoulli

polynomials, degenerate Hermite poly-Bernoulli studied by Khan [7–9].

2. DEFINITION AND PROPERTIES OF THE GENERALIZED HERMITE

POLY-BERNOULLI POLYNOMIALS HB
(k)
n (x,y;a,b,c)

In the modified Milne Thomson’s polynomials due to Dere and Simsek [3, 11]

defined by (1.5), if we set f (t,α) = Lik(1−(ab)−t)
bt−a−t , we obtain the following generalized

polynomials B
(k)
n (x,ν;a,b,c).

Definition 1. Let a,b,c > 0 and a 6= b. The generalized poly-Bernoulli polynomi-

als B
(k)
n (x,ν;a,b,c) are defined by

G1(t,x;α,a,b,ν) =
Lik(1− (ab)−t)

bt −a−t
cxt+h(t,ν) =

∞

∑
n=0

B
(k)
n (x,ν;a,b,c)

tn

n!
, (2.1)

(| t |< 2π/(| lna+ lnb |),x ∈ R) .

On setting h(t,ν) = h(t,y) = yt2, (2.1) reduces to
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Definition 2. Let a,b,c > 0 and a 6= b. The generalized Hermite poly-Bernoulli

polynomials HB
(k)
n (x,y;a,b,c) are defined by

G2(t,x,y;k,a,b,c) =
Lik(1− (ab)−t)

bt −a−t
cxt+yt2

=
∞

∑
n=0

HB
(k)
n (x,y;a,b,c)

tn

n!
, (2.2)

(| t |< 2π/(| lna+ lnb |),x,y ∈ R) ,

whereas for x = 0 gives

HB
(k)
n (0,y;a,b,c) =

[ n
2
]

∑
m=0

n!

m!(n−2m)!
(lnc)mB

(k)
n−2m(a,b)y

m. (2.3)

Another special case of (2.2), for y = 0 leads to the extension of the generalized

poly-Bernoulli numbers B
(k)
n (a,b) defined by (1.2) in the form.

Definition 3. Let a,b,c > 0 and a 6= b. The generalized poly-Bernoulli polynomi-

als B
(k)
n (x;a,b,c) are defined by

Φ(t;k,a,b) =
Lik(1− (ab)−t)

bt −a−t
cxt =

∞

∑
n=0

B
(k)
n (x;a,b,c)

tn

n!
, (2.4)

(| t |< 2π/(| lna+ lnb |),x ∈ R) .

Letting c = e, equation (2.2) reduces to

Definition 4. Let a,b > 0 and a 6= b. The generalized Hermite poly-Bernoulli

polynomials HB
(k)
n (x,y;a,b,e) are defined by

G3(t,x,y;k,a,b,e) =
Lik(1− (ab)−t)

bt −a−t
ext+yt2

=
∞

∑
n=0

HB
(k)
n (x,y;a,b,e)

tn

n!
, (2.5)

(| t |< 2π/(| lna+ lnb |),x,y ∈ R) .

The generalized Hermite poly-Bernoulli polynomials HB
(k)
n (x,y;a,b,c) defined by

(2.2) have the following properties which are stated as theorems below.

Theorem 1. Let a,b,c > 0 and a 6= b. For x,y ∈ R and n ≥ 0, we have

HB
(k)
n (x,y;e,1,e) = HB

(k)
n (x,y),HB

(k)
n (0,0;a,b,1) = B

(k)
n (a,b)

HB
(k)
n (0,0;e,1,1) = B

(k)
n ,HB

(k)
n (0,0;a,b,e) = HB

(k)
n (a,b), (2.6)

HB
(k)
n (x+ y,z+u;a,b,c) =

n

∑
m=0

(

n

m

)

Hm(y,z;c)HB
(k)
n−m(x,u;a,b,c), (2.7)

HB
(k)
n (x+ z,y;a,b,c) =

n

∑
m=0

(

n

m

)

B
(k)
n−m(x;a,b,c)Hm(y,z;c). (2.8)
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Proof. The formula in (2.6) are obvious. Applying definition (2.2), we have

∞

∑
n=0

HB
(k)
n (x+ y,z+u;a,b,c)

tn

n!
=

∞

∑
n=0

HB
(k)
n (x,u;a,b,c)

tn

n!

∞

∑
m=0

Hm(y,z;c)
tm

m!

=
∞

∑
n=0

n

∑
m=0

Hm(y,z;c)HB
(k)
n−m(x,u;a,b,c)

tn

(n−m)!m!
.

Now equating the coefficients of the like powers of t in the above equation, we get

the result (2.7).

Again, by using (2.2) of generalized Hermite poly-Bernoulli polynomials, we have

Lik(1− (ab)−t)

bt −a−t
c(x+z)t+yt2

=
∞

∑
n=0

HB
(k)
n (x+ z,y;a,b,c)

tn

n!
, (2.9)

which can be written as

Lik(1− (ab)−t)

bt −a−t
cxtczt+yt2

=
∞

∑
n=0

B
(k)
n (x;a,b,c)

tn

n!

∞

∑
m=0

Hm(y,z;c)
tm

m!
. (2.10)

Replacing n by n−m in (2.10) and comparing with (2.9) and equating their coeffi-

cients of tn leads to formula (2.8). �

3. IMPLICIT SUMMATION FORMUALE INVOLVING GENERALIZED HERMITE

POLY-BERNOULLI POLYNOMIALS

For the derivation of implicit formulae involving generalized poly-Bernoulli poly-

nomials B
(k)
n (x;a,b,c) and generalized Hermite poly-Bernoulli polynomials HB

(k)
n

(x,y;a,b,c) the same considerations as developed for the ordinary Hermite and re-

lated polynomials in Khan [7–9] and Hermite-Bernoulli polynomials in Pathan and

Khan [12–17] holds as well. First we prove the following results involving general-

ized Hermite poly-Bernoulli polynomials HB
(k)
n (x,y;a,b,c).

Theorem 2. Let a,b,c > 0 and a 6= b. For x,y ∈ R and n ≥ 0, the following

implicit summation formulae for generalized Hermite poly-Bernoulli polynomials

HB
(k)
n (x,y;a,b,c) holds true:

HB
(k)
l+p(z,y;a,b,c) (3.1)

=
l,p

∑
m,n=0

(

l

m

)(

p

n

)

(z− x)m+n(lnc)m+n
HB

(k)
l+p−m−n(x,y;a,b,c).

Proof. We replace t by t +u and rewrite the generating function (2.2) as

Lik(1− (ab)−(t+u))

bt+u −a−(t+u)
cy(t+u)2

= c−x(t+u)
∞

∑
l,p=0

HB
(k)
l+p(x,y;a,b,c)

t l

l!

up

p!
. (3.2)
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Replacing x by z and equating the resulting equation to the above equation, we get

c(z−x)(t+u)
∞

∑
l,p=0

HB
(k)
l+p(x,y;a,b,c)

t l

l!

up

p!
=

∞

∑
l,p=0

HB
(k)
l+p(z,y;a,b,c)

t l

l!

up

p!
. (3.3)

On expanding exponential function (3.3) gives

∞

∑
N=0

[(z− x)(t +u)]N

N!

∞

∑
l,p=0

HB
(k)
l+p(x,y;a,b,c)

t l

l!

up

p!

=
∞

∑
l,p=0

HB
(k)
l+p(z,y;a,b,c)

t l

l!

up

p!
, (3.4)

which on using formula [18, p.52(2)]:

∞

∑
N=0

f (N)
(x+ y)N

N!
=

∞

∑
n,m=0

f (n+m)
xn

n!

ym

m!
, (3.5)

in the left hand side becomes

∞

∑
m,n=0

(z− x)m+n(lnc)m+ntmun

m!n!

∞

∑
l,p=0

HB
(k)
l+p(x,y;a,b,c)

t l

l!

up

p!
(3.6)

=
∞

∑
l,p=0

HB
(k)
l+p(z,y;a,b,c)

t l

l!

up

p!
. (3.7)

Now replacing l by l −m, p by p−n and using the lemma [18, p.100(1)] in the left

hand side of (3.7), we get

∞

∑
m,n=0

∞

∑
l,p=0

(z− x)m+n(lnc)m+n

m!n!
HB

(k)
l+p−m−n(x,y;a,b,c)

t l

(l −m)!

up

(p−n)!

=
∞

∑
l,p=0

HB
(k)
l+p(z,y;a,b,c)

t l

l!

up

p!
. (3.8)

Finally, on equating the coefficients of the like powers of t and u in the above equa-

tion, we get the required result. �

Remark 1. On setting l = 0 in Theorem 3.1, we immediately deduce the following

result.

Corollary 1. The following implicit summation formula for Hermite poly-Bernoulli

polynomials HB
(k)
n (z,y;a,b,c) holds true:

HB
(k)
p (z,y;a,b,c) =

p

∑
n=0

(

p

n

)

(z− x)n(lnc)n
HB

(k)
p−n(x,y;a,b,c). (3.9)
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Remark 2. Replacing z by z+ x and setting y = 0 in Theorem 3.1, we obtain the

following result involving generalized poly-Bernoulli polynomials of one variable

B
(k)
l+p(z+ x;a,b,c) =

l,p

∑
m,n=0

(

l

m

)(

p

n

)

(z)m+n(lnc)m+nB
(k)
l+p−m−n(x;a,b,c),

(3.10)

whereas by setting z = 0 in Theorem 3.1, we obtain another result involving general-

ized poly-Bernoulli polynomials of one and two variables

B
(k)
l+p(y;a,b,c) =

l,p

∑
m,n=0

(

l

m

)(

p

n

)

(−x)m+n(lnc)m+n
HB

(k)
l+p−m−n(x,y;a,b,c).

(3.11)

Remark 3. Along with the above results we will exploit extended forms of gener-

alized poly-Bernoulli polynomials B
(k)
l+p(z;a,b,c) by setting y = 0 in the Theorem 3.1

to get

B
(k)
l+p(z;a,b,c) =

l,p

∑
m,n=0

(

l

m

)(

p

n

)

(z− x)n+m(lnc)m+nB
(k)
l+p−m−n(x;a,b,c).

(3.12)

Theorem 3. Let a,b,c > 0 and a 6= b. Then x ∈ R and n ≥ 0, we have

B
(k)
n (x+1;a,b,c) = B

(k)
n

(

x;ac,
b

c
,c

)

. (3.13)

Proof. From (2.3), we have
∞

∑
n=0

B
(k)
n (x+1;a,b,c)

tn

n!
=

Lik(1− (ab)−t)

bt −a−t
c(x+1)t =

Lik(1− (ab)−t)

bt −a−t
cxtct

∞

∑
n=0

B
(k)
n (x+1;a,b,c)

tn

n!
=

Lik(1− (ab)−t)

(b
c
)t − (ac)−t

cxt =
∞

∑
n=0

B
(k)
n (x;ac,

b

c
,c)

tn

n!
. (3.14)

Equating the coefficients of tn on both sides, we get (3.13). �

Theorem 4. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n ≥ 0, we have

HB
(k)
n (x+1,y;a,b,c) =

[ n
2
]

∑
j=0

(

n

2 j

)

y j(lnc) jB
(k)
n−2 j

(

x;ac,
b

c
,c

)

. (3.15)

Proof. Since

HB
(α)
n (x+1,y;a,b,c)

tn

n!
=

Lik(1− (ab)−t)

bt −a−t
c(x+1)t+yt2

=
Lik(1− (ab)−t)

(b
c
)t − (ac)−t

cxtcyt2

=

(

∞

∑
n=0

B
(k)
n (x;ac,

b

c
,c)

tn

n!

)(

∞

∑
j=0

y j(lnc) j t
2 j

j!

)

.
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Now replacing n by n−2 j and comparing the coefficients of tn, we obtain the result

(3.15). �

Theorem 5. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n ≥ 0, we have

HB
(k)
n (x,y;a,b,c) =

n

∑
m=0

(

n

m

)

B
(k)
n−m(a,b)Hm(x,y,c). (3.16)

Proof. By using equations (2.2) and (1.2), we have

Lik(1− (ab)−t)

bt −a−t
cxt+yt2

=
∞

∑
n=0

HB
(k)
n (x,y;a,b,c)

tn

n!

=

(

∞

∑
n=0

B
(k)
n (a,b)

tn

n!

)(

∞

∑
m=0

Hm(x,y;c)
tm

m!

)

.

Replacing n by n−m and comparing the coefficients of tn, we required at the desired

result (3.16). �

Remark 4. For c = e, (3.16) yields

HB
(k)
n (x,y;a,b,e) =

n

∑
m=0

(

n

m

)

Bk
n−m(a,b)Hm(x,y).

Theorem 6. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n ≥ 0, we have

HB
(k)
n (x,y;a,b,c) =

n−2 j

∑
m=0

[ n
2
]

∑
j=0

y jxn−m−2 j(lnc)n−m− jB
(k)
m (a,b)

n!

m! j!(n−2 j−m)!
.

(3.17)

Proof. Applying the definition (2.2) to the term
Lik(1−(ab)−t)

bt−a−t and expanding the

exponential function cxt+yt2

at t = 0 yields

Lik(1− (ab)−t)

bt −a−t
cxt+yt2

=

(

∞

∑
m=0

B
(k)
m (a,b)

tm

m!

)(

∞

∑
n=0

xn(lnc)n tn

n!

)(

∞

∑
j=0

y j(lnc) j t
2 j

j!

)

=
∞

∑
n=0

(

n

∑
m=0

(

n

m

)

(lnc)n−mB
(k)
m (a,b)xn−m

)

tn

n!

(

∞

∑
j=0

y j(lnc) j t
2 j

j!

)

.

Replacing n by n−2 j in the L.H.S. of above equation, we have
∞

∑
n=0

HB
(k)
n (x,y;a,b)

tn

n!
(3.18)

=
∞

∑
n=0

(

n−2 j

∑
m=0

[ n
2
]

∑
j=0

(

n−2 j

m

)

(lnc)n−m− jB
(k)
m (a,b)xn−m−2 jy j

)

tn

(n−2 j)! j!
.

Combining (3.18) and (2.2) and equating their coefficients of tn produce the formula

(3.17). �
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Theorem 7. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n ≥ 0, we have

HB
(k)
n (x+1,y;a,b,c) =

[ n
2
]

∑
j=0

n−2 j

∑
m=0

(

n−2 j

m

)

y j(lnc)n−m− jB
(k)
m (x;a,b,c). (3.19)

Proof. By using the definition of generalized Hermite poly-Bernoulli polynomials,

we have

Lik(1− (ab)−t)

bt −a−t
c(x+1)t+yt2

=
∞

∑
n=0

HB
(k)
n (x+1,y;a,b,c)

tn

n!
, (3.20)

=

(

∞

∑
m=0

B
(k)
m (x;a,b,c)

tm

m!

)(

∞

∑
n=0

(lnc)n tn

n!

)(

∞

∑
j=0

y j(lnc) j t
2 j

j!

)

=
∞

∑
n=0

n

∑
m=0

(

n

m

)

(lnc)n−mB
(k)
m (x;a,b,c)

tn

n!

(

∞

∑
j=0

y j(lnc) j t
2 j

j!

)

=
∞

∑
n=0

∞

∑
j=0

n

∑
m=0

(

n

m

)

y j(lnc)n−m+ jB
(k)
m (x;a,b,c)

tn+2 j

n! j!
.

Replacing n by n−2 j in the L.H.S. of above equation, we have
∞

∑
n=0

HB
(k)
n (x+1,y;a,b,c)

tn

n!
(3.21)

=
∞

∑
n=0

(

[ n
2
]

∑
j=0

n−2 j

∑
m=0

(

n−2 j

m

)

y j(lnc)n−m− jB
(k)
m (x;a,b,c)

)

tn

n!
.

Combining (3.20) and (3.21) and equating their coefficients of tn leads to formula

(3.19). �

Theorem 8. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n ≥ 0, we have

HB
(k)
n (x+1,y;a,b,c) =

n

∑
m=0

(

n

m

)

(lnc)n−m
HB

(k)
m (x,y;a,b,c). (3.22)

Proof. From (2.2), we have
∞

∑
n=0

HB
(k)
n (x+1,y;a,b,c)

tn

n!
−

∞

∑
n=0

HB
(k)
n (x,y;a,b,c)

tn

n!

=
Lik(1− (ab)−t)

bt −a−t
cxt+yt2

(ct −1)

=

(

∞

∑
m=0

HB
(k)
m (x,y;a,b,c)

tm

m!

)(

∞

∑
n=0

(lnc)n tn

n!

)

−
∞

∑
n=0

HB
(k)
n (x,y;a,b,c)

tn

n!

=
∞

∑
n=0

n

∑
m=0

(lnc)n−m
HB

(k)
m (x,y;a,b,c)

tn

(n−m)!
−

∞

∑
n=0

HB
(k)
n (x,y;a,b,c)

tn

n!
.
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Finally, equating the coefficients of the like powers of tn, we get (3.22). �

Theorem 9. Let a,b,c > 0 and a 6= b. Then for x,y ∈ R and n ≥ 0, we have

n

∑
m=0

(

n

m

)

(lnab)m
HB

(k)
n−m(−x,y;a,b,c) = (−1)n

HB
(k)
n (x,y;a,b,c). (3.23)

Proof. We replace t by −t in (2.2) and then subtract the result from (2.2) itself

finding

cyt2

[

Lik(1− (ab)−t)

bt −a−t
(cxt − (ab)tc−xt)

]

=
∞

∑
n=0

[1− (−1)n]HB
(k)
n (x,y;a,b,c)

tn

n!
,

which is equivalent to

∞

∑
n=0

HB
(k)
n (x,y;a,b,c)

tn

n!
−

(

∞

∑
m=0

(lnab)m tm

m!

)

∞

∑
n=0

HB
(k)
n (−x,y;a,b,c)

tn

n!

=
∞

∑
n=0

[1− (−1)n]HB
(k)
n (x,y;a,b,c)

tn

n!

∞

∑
n=0

HB
(k)
n (x,y;a,b,c)

tn

n!
−

(

∞

∑
n=0

n

∑
m=0

(lnab)m

)

HB
(k)
n−m(−x,y;a,b,c)

tn

(n−m)!m!

=
∞

∑
n=0

[1− (−1)n]HB
(k)
n (x,y;a,b,c)

tn

n!
,

and thus by equating coefficients of like powers of tn, we get (3.23). �

4. SYMMETRY IDENTITIES

In this section, we establish general symmetry identities for the generalized poly-

Bernoulli polynomials B
(k)
n (x;a,b,c) and the generalized Hermite-poly-Bernoulli poly-

nomials HB
(k)
n (x,y;a,b,c) by applying the generating function (1.4) and (2.2). The

results extend some known identities of Khan [7–9], Pathan and Khan [12–17].

Theorem 10. Let a,b,c > 0 and a 6= b. Then for x,y ∈R and n ≥ 0, the following

identity holds true:

n

∑
m=0

(

n

m

)

bman−m
HB

(k)
n−m(bx,b2y;A,B,c)HB

(k)
m (ax,a2y;A,B,c)

=
n

∑
m=0

(

n

m

)

ambn−m
HB

(k)
n−m(ax,a2y;A,B,c)HB

(k)
m (bx,b2y;A,B,c). (4.1)

Proof. Start with

g(t) =

(

(Lik(1− (ab)−t))2

(Bat −A−at)(Bbt −A−bt)

)

cabxt+a2b2yt2

. (4.2)
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Then the expression for g(t) is symmetric in a and b and we can expand g(t) into

series in two ways to obtain:

g(t) =
∞

∑
n=0

HB
(k)
n (bx,b2y;A,B,c)

(at)n

n!

∞

∑
m=0

HB
(k)
m (ax,a2y;A,B,c)

(bt)m

m!

=
∞

∑
n=0

(

n

∑
m=0

(

n

m

)

an−mbm
HB

(k)
n−m(bx,b2y;A,B,c)HB

(k)
m (ax,a2y;A,B,c)

)

tn

n!

On the similar lines, we can show that

g(t) =
∞

∑
n=0

HB
(k)
n (ax,a2y;A,B,c)

(bt)n

n!

∞

∑
m=0

HB
(k)
m (bx,b2y;A,B,c)

(at)m

m!

=
∞

∑
n=0

(

n

∑
m=0

(

n

m

)

ambn−m
HB

(k)
n−m(ax,a2y;A,B,c)HB

(k)
m (bx,b2y;A,B,c)

)

tn

n!
.

Comparing the coefficients of tn on the right hand sides of the last two equations, we

arrive at the desired result. �

Remark 5. For c = e in Theorem 4.1, we get

n

∑
m=0

(

n

m

)

bman−m
HB

(k)
n−m(bx,b2y;A,B,e)HB

(k)
m (ax,a2y;A,B,e)

=
n

∑
m=0

(

n

m

)

ambn−m
HB

(k)
n−m(ax,a2y;A,B,e)HB

(k)
m (bx,b2y;A,B,e). (4.3)

Remark 6. By setting b = 1 in Theorem 4.1, the following result reduces to

n

∑
m=0

(

n

m

)

an−m
HB

(k)
n−m(x,y;A,B,c)HB

(k)
m (ax,a2y;A,B,c) (4.4)

=
n

∑
m=0

(

n

m

)

am
HB

(k)
n−m(ax,a2y;A,B,c)HB

(k)
m (x,y;A,B,c). (4.5)

Theorem 11. Let a,b,c > 0 and a 6= b. Then for x,y ∈R and n ≥ 0, the following

identity holds true:

n

∑
m=0

(

n

m

)

a−1

∑
i=0

b−1

∑
j=0

HB
(k)
n−m

(

bx+
b

a
i+ j,b2z;A,B,c

)

B
(k)
m (ay;A,B,c)bman−m

=
n

∑
m=0

(

n

m

)

b−1

∑
i=0

a−1

∑
j=0

HB
(k)
n−m

(

ax+
a

b
i+ j,a2z;A,B,c

)

B
(k)
m (by;A,B,c)ambn−m.

(4.6)

Proof. Let

h(t) =

(

(Lik(1− (ab)−t))2

(Bat −A−at)(Bbt −A−bt)

)

(cabt −1)2cab(x+y)t+a2b2zt2

(cat −1)(cbt −1)
.
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h(t) =

(

Lik(1− (ab)−t)

(Bat −A−at

)

cabxt+a2b2zt2

(

cabt −1

cbt −1

)

×

(

Lik(1− (ab)−t)

Bbt −A−bt

)

cabyt

(

cabt −1

cat −1

)

=

(

Lik(1− (ab)−t)

(Bat −A−at

)

cabxt+a2b2zt2
a−1

∑
i=0

cbti

(

Lik(1− (ab)−t)

Bbt −A−bt

)

cabyt
b−1

∑
j=0

cat j

=

(

Lik(1− (ab)−t)

Bat −A−at

)

ca2b2zt2
a−1

∑
i=0

b−1

∑
j=0

c(bx+ b
a

i+ j)at
∞

∑
m=0

B
(k)
m (ay;A,B,c)

(bt)m

m!

=
∞

∑
n=0

a−1

∑
i=0

b−1

∑
j=0

HB
(k)
n

(

bx+
b

a
i+ j,b2z;A,B,c

)

(at)n

n!

∞

∑
m=0

B
(k)
m (ay;A,B,c)

(bt)m

(m)!

=
∞

∑
n=0

(

n

∑
m=0

(

n

m

)

a−1

∑
i=0

b−1

∑
j=0

HB
(k)
n−m

(

bx+
b

a
i+ j,b2z;A,B,c

)

× B
(k)
m (ay;A,B,c)bman−m

) tn

n!
.

On the other hand, we have

h(t) =
∞

∑
n=0

(

n

∑
m=0

(

n

m

)

b−1

∑
i=0

a−1

∑
j=0

HB
(k)
n−m

(

ax+
a

b
i+ j,a2z;A,B,c

)

× B
(k)
m (by;A,B,c)ambn−m

) tn

n!
.

Comparing the coefficients of tn

n!
on the right hand sides of the last two equations, we

arrive at the desired result. �
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Abstract. In this paper we represent the well-defined solutions of the system of the higher-order

rational difference equations

x
( j)
n+1 =

1+2x
( j+1)mod(2p+1)
n−k

3+ x
( j+1)mod(2p+1)
n−k

, n,k, p ∈ N0

in terms of Fibonacci and Lucas sequences, where the initial values x
( j)
−k,x

( j)
−k+1, . . . ,x

( j)
−1 and x

( j)
0 ,

j = 1,2, . . . ,2p+1, do not equal -3. Some theoretical explanations related to the representation

for the general solution are also given.

2010 Mathematics Subject Classification: 39A10; 40A05

Keywords: Fibonacci sequence, Lucas sequence, system of difference equations, representation

of solutions

1. INTRODUCTION

The seniority, richness and the appreciable flexibility of use, have allowed dif-

ference equations to be an attractive subject in recent times among researchers and

scientists from different disciplines. Difference equations and system of difference

equations have been applied in diverse mathematical models in biology, economics,

genetics, population dynamics, medicine, and other fields (see [4, 8, 17]).

Solving system of difference equations in closed-form has attracted the attention

of many authors, (see, for example [1–3, 5–7, 9–16, 18, 21–23] and the references

therein).

It is a well-known fact that the Fibonacci sequence defined as follows

Fn+1 = Fn +Fn−1, n ∈ N, (1.1)

where F0 = 0 and F1 = 1. The solution of equation (1.1) is given by the formula

Fn =
αn −βn

α−β
, (1.2)

The work was supported by DGRSDT-MESRS (DZ).

© 2021 Miskolc University Press
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which is called the Binet formula of the Fibonacci numbers, where

α =
1+

√
5

2
(the so− called golden number), β =

1−
√

5

2
. (1.3)

One can easily verify that

lim
n→+∞

Fn+r

Fn

= αr
, n,r ∈ N. (1.4)

Also, the Lucas sequence has the same recursive relationship as the Fibonacci se-

quence,

Ln+1 = Ln +Ln−1, n ∈ N, (1.5)

but with different initial conditions, L0 = 2 and L1 = 1. The first few terms of the

recurrence sequence are 2,1,3,4,7,11,18,29,47,76, . . .. The Binet’s formula for this

recurrence sequence can easily be obtained and is given by

Ln = αn +βn
, (1.6)

where α and β are the two numbers mentioned in (1.3), and we have also

lim
n→+∞

Ln+r

Ln

= αr
, n,r ∈ N. (1.7)

Khelifa et al. in [19] gave some theoretical explanations related to the representa-

tion for the general solution of the system of three higher-order rational difference

equations

xn+1 =
1+2yn−k

3+ yn−k

, yn+1 =
1+2zn−k

3+ zn−k

, zn+1 =
1+2xn−k

3+ xn−k

, n,k ∈ N0. (1.8)

Motivated by the paper [19], we represents the well-defined solutions of the system

of (2p+1) higher-order rational difference equations

x
( j)
n+1 =

1+2x
( j+1)mod(2p+1)
n−k

3+ x
( j+1)mod(2p+1)
n−k

, n,k, p ∈ N0, j = 1,2, . . . ,2p+1. (1.9)

Clearly if take p = 1 in the system (1.9) we get the system (1.8). So our results

generalizes the results obtained in [19].

2. ON THE SYSTEM OF FIRST ORDER DIFFERENCE EQUATIONS (2.1)

In this section, to give a closed form for the well defined solutions of the system

(1.9) we consider the system of 2p+1 difference equations of first order

x
(1)
n+1 =

1+2x
(2)
n

3+ x
(2)
n

, x
(2)
n+1 =

1+2x
(3)
n

3+ x
(3)
n

, . . . , x
(2p+1)
n+1 =

1+2x
(1)
n

3+ x
(1)
n

, n, p ∈ N0.

(2.1)
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We replace x
(2p+1)
n+1 in the equation x

(2p)
n+1 =

1+2x
(2p+1)
n

3+ x
(2p+1)
n

, we get

x
(2p)
n+1 =

F2 +F1x
(1)
n−1

F3 +F2x
(1)
n−1

, n ≥ 1.

Similarly, we replace x
(2p)
n+1 in the equation x

(2p−1)
n+1 =

1+2x
(2p)
n

3+ x
(2p)
n

, we get

x
(2p−1)
n+1 =

L3 +L2x
(1)
n−2

L4 +L3x
(1)
n−2

n ≥ 2.

By induction we get

x
(2)
n+1 =

F2p +F2p−1x
(1)
n−2p+1

F2p+1 +F2px
(1)
n−2p+1

, n ≥ (2p−1),

x
(1)
n+1 =

L2p+1 +L2px
(1)
n−2p

L2p+2 +L2p+1x
(1)
n−2p

, n ≥ 2p.

So, the system (2.1) can be written as the following equation

xn+1 =
L2p+1 +L2pxn−2p

L2p+2 +L2p+1xn−2p

n ≥ 2p. (2.2)

Let
( j)xn = x(2p+1)n+ j, n ∈ N0 (2.3)

where j ∈ {0,1,2, · · · ,2p}.

Using notation (2.3), we can write (2.2) as

( j)xn+1 =
L2p+1 +L2p

( j)xn

L2p+2 +L2p+1
( j)xn

, n ∈ N (2.4)

for each j ∈ {0,1,2, · · · ,2p}.

Now consider the equation

yn+1 =
L2p+1 +L2pyn

L2p+2 +L2p+1yn

n ∈ N0. (2.5)

Using the change of variables

yn =
1

L2p+1

(wn −L2p+2) , n ∈ N0 (2.6)

we can write (2.5) as

wn+1 =
(L2p +L2p+2)wn −5

wn

, n ∈ N0. (2.7)
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In the following result, we solve in a closed form the equation (2.8) in terms of the

sequences (Fn)
+∞
n=0 and (Ln)

+∞
n=0 . The obtained formula will be very useful to get the

formula of the solutions of system (1.9).

Lemma 1. Consider the linear difference equation

zn+1 −5F2p+1zn +5zn−1 = 0, n ∈ N0, (2.8)

with initial conditions z−1,z0 ∈R. Then all solutions of equation (2.8) will be written

under the form

zn =

( √
5

n

L2p+1

)

[√
5z−1N(2p+1)n − z0N(2p+1)(n+1)

]

, (2.9)

where

N(2p+1)n =
(

α(2p+1)n − (−1)nβ(2p+1)n
)

, with α =
1+

√
5

2
, β =

1−
√

5

2
.

So,

N(2p+1)n =

{ √
5F(2p+1)n, if n even,

L(2p+1)n, if n odd,
(2.10)

where (Fn)
+∞
n=0is the Fibonacci sequence and (Ln)

+∞
n=0 is the Lucas sequence.

Proof. As it is well-known, the equation

zn+1 −5F2p+1zn +5zn−1 = 0, n ∈ N0,

(the homogeneous linear second order difference equation with constant coefficients),

where z0,z−1 ∈ R, is usually solved by using the characteristic roots λ1 and λ2 of the

characteristic polynomial λ2 −5F2p+1λ+5. So

λ1 =
5F2p+1 +

√
5L2p+1

2
, λ2 =

5F2p+1 −
√

5L2p+1

2

and the formula of general solution is

xn = c1λn
1 + c2λn

2.

The characteristic roots λ1 and λ2 check the following relationships

λ1 =
5F2p+1 +

√
5L2p+1

2
=
√

5

(

L2p+1 +
√

5F2p+1

2

)

=
√

5α2p+1
,

λ2 =
5F2p+1 −

√
5L2p+1

2
=−

√
5

(

L2p+1 −
√

5F2p+1

2

)

=−
√

5β2p+1
.

Using the initial conditions z0 and z−1 with some calculations we get

c1 =−
√

5

L2p+1

(

z−1 −
z0

5
λ1

)

,
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c2 =−
√

5

L2p+1

(z0

5
λ2 − z−1

)

.

So,

zn =

(

−
√

5

L2p+1

(

z−1 −
z0

5
λ1

)

)

λn
1 +

(

−
√

5

L2p+1

(z0

5
λ2 − z−1

)

)

λn
2

=−
√

5

L2p+1

(

z−1 [λ
n
1 −λn

2]−
z0

5

[

λn+1
1 −λn+1

2

]

)

=−
√

5

L2p+1

(

z−1(
√

5)n
[

α(2p+1)n − (−1)nβ(2p+1)n
]

− z0(
√

5)n+1

(
√

5)2

[

α(2p+1)(n+1)− (−1)n+1β(2p+1)(n+1)
]

)

,

putting

N(2p+1)n =
(

α(2p+1)n − (−1)nβ(2p+1)n
)

,

it is obtained that the general solution of equation (2.8) is

zn =−(
√

5)n

L2p+1

[

z−1

√
5N(2p+1)n− z0N(2p+1)(n+1)

]

. (2.11)

The lemma is proved. �

Through an analytical approach we put

wn =
zn

zn−1

, (2.12)

which reduces equation (2.7) to the following one

zn+1 = 5F2p+1zn −5zn−1. (2.13)

So, from Lemma (1) we get

zn =

( √
5

n

L2p+1

)

[
√

5z−1N(2p+1)n − z0N(2p+1)(n+1)],

with

N(2p+1)n =

{ √
5F(2p+1)n, if n even,

L(2p+1)n, if n odd,
(2.14)

where (Fn)
+∞
n=0 is the Fibonacci sequence and (Ln)

+∞
n=0 is the Lucas sequence.
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By formulas (2.12) and (2.14), it follows that the general solution of equation (2.7)

is














w2n =
5F2(2p+1)n −w0L(2p+1)(2n+1)

L(2p+1)(2n−1)−w0F2(2p+1)n
,

w2n+1 =
5L(2p+1)(2n+1)−5w0F2(2p+1)(n+1)

5F2(2p+1)n −w0L(2p+1)(2n+1)
.

From all above mentioned the following theorem holds.

Theorem 1. Let {yn}n≥0 b a well-defined solution of the equation (2.5). Then, for

n = 2,3, . . . ,















y2n =
F2(2p+1)n +F2(2p+1)n−1y0

F2(2p+1)n+1 +F2(2p+1)ny0

,

y2n+1 =
L2(2p+1)n+(2p+1)+L2(2p+1)n+2py0

L2(2p+1)n+(2p+2)+L2(2p+1)n+(2p+1)y0

,

(2.15)

where (Ln)
+∞
n=0 is the Lucas sequence and (Fn)

+∞
n=0 is the Fibonacci sequence.

Proof. According to the change of variable (2.6), and using the following equalit-

ies (see [20])

L2p+1F2(2n+1)n+1 = L2p+2F2(2p+1)n−1 −L2(2p+1)n−(2p+2),

L2p+1L2(2p+1)n+(2p+2) = L2p+1L2(2p+1)n+(2p+1)−5F2(2p+1)n,

L2p+1F2(2p+1)n−1 = L2(2p+1)n+(2p+1)−L2p+2F2(2p+1)n,

L2p+1L2(2p+1)n−(2p+2) = 5F2(2p+1)n −L2p+2L2(2p+1)n−(2p+1),

we obtain

y2n =
1

L2p+1

(w2n −L2p+2)

=
1

L2p+1

(

(5F2(2p+1)n −L2p+2L2(2p+1)n−(2p+1))

L2(2n+1)n−(2n+1)−w0F2(2n+1)n

)

+
1

L2p+1

(

+w0(L2p+2F2(2p+1)n −L2(2p+1)n+(2p+1))

L2(2n+1)n−(2n+1)−w0F2(2n+1)n

)

=
1

L2p+1

(

L2p+1L2(2p+1)n−(2p+2)−L2p+1w0F2(2p+1)n−1

L2(2p+1)n−(2p+1)−w0F2(2p+1)n

)

=
(L2(2p+1)n−(2p+2)−L2p+2F2(2p+1)n−1)−L2p+1y0F2(2p+1)n−1

(L2(2p+1)n−(2p+1)−L2p+2F2(2p+1)n)−L2p+1y0F2(2p+1)n

=
−L2p+1F2(2p+1)n −L2p+1y0F2(2p+1)n−1

−L2p+1F2(2p+1)n+1 −L2p+1y0F2(2p+1)n
.
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So

y2n =
F2(2p+1)n + y0F2(2p+1)n−1

F2(2p+1)n+1 + y0F2(2p+1)n
.

Similarly

y2n+1 =
1

L2p+1

(w2n+1 −L2p+2)

=
1

L2p+1

(

5(L2(2p+1)n+(2p+1)−L2p+2F2(2p+1)n)

5F2(2p+1)n −w0L2(2p+1)n+(2p+1)

)

+
1

L2p+1

(−w0(5F2(2p+1)n+(2p+1)−7L2(2p+1)n+2(2p+1))

5F2(2p+1)n −w0L2(2p+1)n+(2p+1)

)

=
L2p+1

L2p+1

(

5F2(2p+1)n−1 −w0L2(2p+1)(n+1)−(2p+2)

5F2(2p+1)n −w0L2(2p+1)n+(2p+1)

)

=
(5F2(2p+1)n−1 −L2p+2L2(2p+1)n+2p)−L2p+1y0L2(2p+1)n+2p

(5F2(2p+1)n −L2p+1L2(2p+1)n+(2p+1))−L2p+1y0L2(2p+1)n+(2p+1)

=
−L2p+1

−L2p+1

(

L2(2p+1)n+(2p+1)+ y0L2(2p+1)n+2p

L2(2p+1)n+(2p+2)+ y0L2(2p+1)n+(2p+1)

)

.

So

y2n+1 =
L2(2p+1)n+(2p+1)+ y0L2(2p+1)n+2p

L2(2p+1)n+(2p+2)+ y0L2(2p+1)n+(2p+1)
.

�

From Theorem (1), the solution of equation (2.4) given by


















( j)x2n =
F2(2p+1)n +F2(2p+1)n−1

( j)x0

F2(2p+1)n+1 +F2(2p+1)n
( j)x0

,

( j)x2n+1 =
L2(2p+1)n+(2p+1)+L2(2p+1)n+2p

( j)x0

L2(2p+1)n+(2p+2)+L2(2p+1)n+(2p+1)
( j)x0

.

(2.16)

By using (2.3) the following corollary is easily obtained from Theorem (1).

Corollary 1. Let {xn}n≥0 be a well-defined solution of (2.2). Then, for, n ≥ 2p














x(2p+1)(2n)+ j =
F2(2p+1)n +F2(2p+1)n−1x j

F2(2p+1)n+1 +F2(2p+1)nx j

,

x(2p+1)(2n+1)+ j =
L2(2p+1)n+(2p+1)+L2(2p+1)n+2px j

L2(2p+1)n+(2p+2)+L2(2p+1)n+(2p+1)x j

,

where j ∈ {0,1, . . . ,2p}, (Ln)
+∞
n=0 is the Lucas sequence and (Fn)

+∞
n=0 is the Fibonacci

sequence.
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Corollary 2. Let
{

x
(1)
n ,x

(2)
n , . . . ,x

(2p+1)
n

}

n≥0
be a well-defined solution of (2.1).

Then, for n ≥ 2p























x
(q)
2(2p+1)n+ j

=
F2(2p+1)n+ j + x

(q+ j)mod(2p+1)
0 F2(2p+1)n+( j−1)

F2(2p+1)n+( j+1)+ x
(q+ j)mod(2p+1)
0 F2(2p+1)n+ j

,

x
(q)
(2p+1)(2n+1)+ j

=
L(2p+1)(2n+1)+ j + x

(q+ j)mod(2p+1)
0 L(2p+1)(2n+1)+( j−1)

L(2p+1)(2n+1)+( j+1)+ x
(q+ j)mod(2p+1)
0 L(2p+1)(2n+1)+ j

,

with j ∈ {0,2, . . . ,2p}.























x
(q)
2(2p+1)n+ j

=
L2(2p+1)n+( j+1)+ x

(q+ j)mod(2p+1)
0 L2(2p+1)n+ j

L2(2p+1)n+( j+2)+ x
(q+ j)mod(2p+1)
0 L2(2p+1)n+( j+1)

,

x
(q)
(2p+1)(2n+1)+ j

=
F(2p+1)(2n+1)+( j+1)+ x

(q+ j)mod(2p+1)
0 F(2p+1)(2n+1)+ j

F(2p+1)(2n+1)+( j+2)+ x
(q+ j)mod(2p+1)
0 F(2p+1)(2n+1)+( j+1)

.

with j ∈ {1,3, . . . ,2p+1}, q ∈ {1,2, . . . ,2p+1}, (Ln)
+∞
n=0 is the Lucas sequence and

(Fn)
+∞
n=0 is the Fibonacci sequence.

Proof. Let
{

x
(1)
n ,x

(2)
n , . . . ,x

(2p+1)
n

}

n≥0
be a well-defined solution of system (2.1),

so {x
(1)
n }n≥0 is a solution of equation (2.2). Then,

x
(1)
(2p+1)(2n)+ j

=
F2(2p+1)n +F2(2p+1)n−1x

(1)
j

F2(2p+1)n+1 +F2(2p+1)nx
(1)
j

, (2.17)

x
(1)
(2p+1)(2n+1)+ j

=
L(2p+1)(2n+1)+L(2p+1)(2n+1)−1x

(1)
j

L(2p+1)(2n+1)+1 +L(2p+1)(2n+1)x
(1)
j

, (2.18)

n ≥ 2p, j ∈ {0,1, . . . ,2p}.
On the other hand, if j is even, we have

x
(1)
j =

Fj +Fj−1
1x

(1+ j)
0

Fj+1 +Fj
1x

(1+ j)
0

. (2.19)

From (2.17) we get

x
(1)
(2p+1)(2n)+ j

=
F2(2p+1)n +F2(2p+1)n−1x

(1)
j

F2(2p+1)n+1 +F2(2p+1)nx
(1)
j

.

Using (2.19) and the equalities

Fm = Fj+1Fm− j +FjFm−( j+1), j ∈ 2N,m ∈ N, (2.20)
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we obtain

x
(1)
2(2p+1)n+ j

=
(Fj+1 +Fjx

(1+ j)
0 )F2(2p+1)n +(Fj +Fj−1x

(1+ j)
0 )F2(2p+1)n−1

(Fj+1 +Fjx
(1+ j)
0 )F2(2p+1)n+1 +(Fj +Fj−1x

(1+ j)
0 )F2(2p+1)n

=
F2(2p+1)n+ j + x

(1+ j)
0 F2(2p+1)n+( j−1)

F2(2p+1)n+( j+1)+ x
(1+ j)
0 F2(2p+1)n+ j

.

Similarly, from (2.17) we have

x
(1)
(2p+1)(2n+1)− j

=
L(2p+1)(2n+1)+L(2p+1)(2n+1)−1x

(1)
j

L(2p+1)(2n+1)+1 +L(2p+1)(2n+1)x
(1)
j

.

Using (2.19) and the (2.20) we obtain

x
(1)
(2p+1)(2n+1)+ j

=
(Fj+1 +Fjx

(1+ j)
0 )L(2p+1)(2n+1)+(Fj +Fj−1x

(1+ j)
0 )L(2p+1)(2n+1)−1

(Fj+1 +Fjx
(1+ j)
0 )L(2p+1)(2n+1)+1 +(Fj +Fj−1x

(1+ j)
0 )L(2p+1)(2n+1)

=
L(2p+1)(2n+1)+ j + x

(1+ j)
0 L(2p+1)(2n+1)+( j−1)

L(2p+1)(2n+1)+( j+1)+ x
(1+ j)
0 L(2p+1)(2n+1)+ j

.

If j is odd, we have

x
(1)
j =

Fj +Fj−1x
( j)
1

Fj+1 +Fjx
( j)
1

. (2.21)

From (2.17) we have

x
(1)
(2p+1)(2n)+ j

=
F2(2p+1)n +F2(2p+1)n−1x

(1)
j

F2(2p+1)n+1 +F2(2p+1)nx
(1)
j

.

From (2.20) and (2.21), we get

x
(1)
2(2p+1)n+ j

=
(Fj+1 +Fjx

( j)
1 )F2(2p+1)n +(Fj +Fj−1x

( j)
1 )F2(2p+1)n−1

(Fj+1 +Fjx
( j)
1 )F2(2p+1)n+1 +(Fj +Fj−1x

( j)
1 )F2(2p+1)n

=
F2(2p+1)n+ j + x

( j)
1 F2(2p+1)n+( j−1)

F2(2p+1)n+( j+1)+ x
( j)
1 F2(2p+1)n+ j

.

So,

x
(1)
(2p+1)(2n+1)+ j

=
L(2p+1)(2n+1)+L(2p+1)(2n+1)−1x

(1)
j

L(2p+1)(2n+1)+1 +L(2p+1)(2n+1)x
(1)
j

.
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From (2.21), we have

x
(1)
(2p+1)(2n+1)+ j

=
(Fj+1 +Fjx

( j)
1 )L(2p+1)(2n+1)+(Fj +Fj−1x

( j)
1 )L(2p+1)(2n+1)−1

(Fj+1 +Fjx
( j)
1 )L(2p+1)(2n+1)+1 +(Fj +Fj−1x

( j)
1 )L(2p+1)(2n+1)

=
L(2p+1)(2n+1)+ j + x

( j)
1 L(2p+1)(2n+1)+( j−1)

L(2p+1)(2n+1)+( j+1)+ x
( j)
1 L(2p+1)(2n+1)+ j

.

So























x
(1)
2(2p+1)n+ j

=
F2(2p+1)n+ j + x

( j)
1 F2(2p+1)n+( j−1)

F2(2p+1)n+( j+1)+ x
( j)
1 F2(2p+1)n+ j

,

x
(1)
(2p+1)(2n+1)− j

=
L(2p+1)(2n+1)+ j + x

( j)
1 L(2p+1)(2n+1)+( j−1)

L(2p+1)(2n+1)+( j+1)+ x
( j)
1 L(2p+1)(2n+1)+ j

.

(2.22)

Since we have

x
( j)
1 =

1+2x
( j+1)
0

3+ x
( j+1)
0

, (2.23)

we get



















































x
(1)
2(2p+1)n+ j

=

F2(2p+1)n+ j +

(

1+2x
( j+1)
0

3+x
( j+1)
0

)

F2(2p+1)n+( j−1)

F2(2p+1)n+( j+1)+

(

1+2x
( j+1)
0

3+x
( j+1)
0

)

F2(2p+1)n+ j

,

x
(1)
(2p+1)(2n+1)− j

=

L(2p+1)(2n+1)+ j +

(

1+2x
( j+1)
0

3+x
( j+1)
0

)

L(2p+1)(2n+1)+( j−1)

L(2p+1)(2n+1)+( j+1)+

(

1+2x
( j+1)
0

3+x
( j+1)
0

)

L(2p+1)(2n+1)+ j

.

So































x
(1)
2(2p+1)n+ j

=
(3F2(2p+1)n+ j+F2(2p+1)n+( j−1))+x

( j+1)
0 (F2(2p+1)n+ j+2F2(2p+1)n+( j−1))

(3F2(2p+1)n+( j+1)+F2(2p+1)n+ j)+x
( j+1)
0 (F2(2p+1)n+( j+1)+2F2(2p+1)n+ j)

,

x
(1)
(2p+1)(2n+1)+ j

=
(3L(2p+1)(2n+1)+ j+L(2p+1)(2n+1)+( j−1))+x

( j+1)
0 (2L(2p+1)(2n+1)+( j−1)+L(2p+1)(2n+1)+ j)

(3L(2p+1)(2n+1)+( j+1)+L(2p+1)(2n+1)+ j)+x
( j+1)
0 (2L(2p+1)(2n+1)+ j+L(2p+1)(2n+1)+( j+1))

.
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Finally we get






















x
(1)
2(2p+1)n+ j

=
L2(2p+1)n+( j+1)+ x

( j+1)
0 L2(2p+1)n+ j

L2(2p+1)n+( j+2)+ x
( j+1)
0 L2(2p+1)n+( j+1)

,

x
(1)
(2p+1)(2n+1)+ j

=
F(2p+1)(2n+1)+( j+1)+ x

( j+1)
0 F(2p+1)(2n+1)+ j

F(2p+1)(2n+1)+( j+2)+ x
( j+1)
0 F(2p+1)(2n+1)+( j+1)

.

Hence






















x
(1)
2(2p+1)n+ j

=
F2(2p+1)n+ j + x

(1+ j)
0 F2(2p+1)n+( j−1)

F2(2p+1)n+( j+1)+ x
(1+ j)
0 F2(2p+1)n+ j

,

x
(1)
(2p+1)(2n+1)+ j

=
L(2p+1)(2n+1)+ j + x

(1+ j)
0 L(2p+1)(2n+1)+( j−1)

L(2p+1)(2n+1)+( j+1)+ x
(1+ j)
0 L(2p+1)(2n+1)+ j

,

with j ∈ {0,2, . . . ,2p}.






















x
(1)
2(2p+1)n+ j

=
L2(2p+1)n+( j+1)+ x

( j+1)
0 L2(2p+1)n+ j

L2(2p+1)n+( j+2)+ x
( j+1)
0 L2(2p+1)n+( j+1)

,

x
(1)
(2p+1)(2n+1)+ j

=
F(2p+1)(2n+1)+( j+1)+ x

( j+1)
0 F(2p+1)(2n+1)+ j

F(2p+1)(2n+1)+( j+2)+ x
( j+1)
0 F(2p+1)(2n+1)+( j+1)

,

with j ∈ {1,3, . . . ,2p+1}.

In the same way, after some calculations and using the fact that

x
(2p+1)
n =

1+2x
(1)
n−1

3+ x
(1)
n−1

, x
(i)
n =

1+2x
(i+1)
n−1

3+ x
(i+1)
n−1

, i = 2,3, . . . ,2p,

we obtain






















x
(q)
2(2p+1)n+ j

=
F2(2p+1)n+ j + x

(q+ j)mod(2p+1)
0 F2(2p+1)n+( j−1)

F2(2p+1)n+( j+1)+ x
(q+ j)mod(2p+1)
0 F2(2p+1)n+ j

,

x
(q)
(2p+1)(2n+1)+ j

=
L(2p+1)(2n+1)+ j + x

(q+ j)mod(2p+1)
0 L(2p+1)(2n+1)+( j−1)

L(2p+1)(2n+1)+( j+1)+ x
(q+ j)mod(2p+1)
0 L(2p+1)(2n+1)+ j

,

with j ∈ {0,2, . . . ,2p}.






















x
(q)
2(2p+1)n+ j

=
L2(2p+1)n+( j+1)+ x

(q+ j)mod(2p+1)
0 L2(2p+1)n+ j

L2(2p+1)n+( j+2)+ x
(q+ j)mod(2p+1)
0 L2(2p+1)n+( j+1)

,

x
(q)
(2p+1)(2n+1)+ j

=
F(2p+1)(2n+1)+( j+1)+ x

(q+ j)mod(2p+1)
0 F(2p+1)(2n+1)+ j

F(2p+1)(2n+1)+( j+2)+ x
(q+ j)mod(2p+1)
0 F(2p+1)(2n+1)+( j+1)

,

with j ∈ {1,3, . . . ,2p+1}. �
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3. ON THE SYSTEM OF HIGHER ORDER DIFFERENCE EQUATIONS (1.9)

In this section, we discuss the form of system (1.9) which generalizes (2.1) in a

graceful way. We establish the solution of the system (1.9) by using an appropriate

transformation reducing this system to the system of first-order difference equations

(2.1).

3.1. Analysis of the form of system (1.9)

The initial values with the smallest indexes are x
(1)
−k ,x

(2)
−k , . . . ,x

(2p)
−k and x

(2p+1)
−k . By

using (1.9) with n = 0, we obtain the values of x
(1)
1 ,x

(2)
1 , . . . ,x

(2p)
1 and x

(2p+1)
1 as fol-

lows

x
(1)
1 =

1+2x
(1)
−k

3+ x
(1)
−k

, x
(2)
1 =

1+2x
(3)
−k

3+ x
(3)
−k

, · · · , x
(2p+1)
1 =

1+2x
(1)
−k

3+ x
(1)
−k

.

After known the values of x
(1)
1 ,x

(2)
1 , . . . ,x

(2p)
1 and x

(2p+1)
1 , by using (1.9) with n= k+1

we get the values of x
(1)
k+2,x

(2)
k+2, . . . ,x

(2p)
k+2 and x

(2p+1)
k+2 . We have

x
(1)
k+2 =

1+2x
(1)
1

3+ x
(1)
1

, x
(2)
k+2 =

1+2x
(3)
1

3+ x
(3)
1

, · · · , x
(2p+1)
k+2 =

1+2x
(1)
1

3+ x
(1)
1

.

The values of x
(1)
k+2,x

(2)
k+2, . . . ,x

(2p)
k+2 and x

(2p+1)
k+2 , by using (1.9) with n = 2k+ 2, leads

us to obtain the values of x
(1)
2k+3,x

(2)
2k+3, . . . ,x

(2p)
2k+3 and x

(2p+1)
2k+3 . We have

x
(1)
2k+3 =

1+2x
(1)
k+2

3+ x
(1)
k+2

, x
(2)
2k+3 =

1+2x
(3)
k+2

3+ x
(3)
k+2

, · · · , x
(2p+1)
2k+3 =

1+2x
(1)
k+2

3+ x
(1)
k+2

.

...
...

...











































x
(1)
(k+1)m+1

=
1+2x

(1)
(k+1)m−k

3+x
(1)
(k+1)m−k

,

x
(2)
(k+1)m+1

=
1+2x

(3)
(k+1)m−k

3+x
(3)
(k+1)m−k

,

...

x
(2p+1)
(k+1)m+1

=
1+2x

(1)
(k+1)m−k

3+x
(1)
(k+1)m−k

.

(3.1)

In the same way, it is shown that the initial values x
(1)
−r ,x

(2)
−r , . . . ,x

(2p)
−r and x

(2p+1)
−r , for

a fixed r ∈ {0,1, . . . ,k}, determine all the values of the sequences (x
(1)
(k+1)(m+1)−r

)m,
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(x
(2)
(k+1)(m+1)−r

)m, . . . ,(x
(2p)
(k+1)(m+1)−r

)m and (x
(2p+1)
(k+1)(m+1)−r

)m. Also we have































































x
(1)
(k+1)(m+1)−r

=
1+2x

(1)
(k+1)m−r

3+ x
(1)
(k+1)m−r

,

x
(2)
(k+1)(m+1)−r

=
1+2x

(3)
(k+1)m−r

3+ x
(3)
(k+1)m−r

,

...

x
(2p+1)
(k+1)(m+1)−r

=
1+2x

(1)
(k+1)m−r

3+ x
(1)
(k+1)m−r

.

(3.2)

3.2. A representation of the general solution to system (1.9)

Now we are going to apply the previous analysis. Let

(r)x
(q)
n = x(k+1)n−r, (3.3)

where r ∈ {0,1, . . . ,k}. and q ∈ {1,2, . . . ,(2p+1)}.

Using notation (3.3), we can write (1.9) as

(r)x
(1)
n+1 =

1+2(r)x
(1)
n

3+ (r)x
(1)
n

,
(r)x

(2)
n+1 =

1+2(r)x
(3)
n

3+ (r)x
(3)
n

, · · · , (r)x
(2p+1)
n+1 =

1+2(r)x
(1)
n

3+ (r)x
(1)
n

,

(3.4)

for each r ∈ {0,1, . . . ,k}.
It signifies that the sequences

(

(r)x
(1)
n

)

n∈N0
,
(

(r)x
(2)
n

)

n∈N0
, . . . ,

(

(r)x
(2p)
n

)

n∈N0
and

(

(r)x
(2p+1)
n

)

n∈N0
, r = 0,k, are (2p+1)(k+1) solutions to system (2.1) with the initial

values (r)x
(1)
0 , (r)x

(2)
0 , . . . , (r)x

(2p)
0 and (r)x

(2p+1)
0 , r = 0,k, respectively.

Using Corollary (2) to the sequences
(

(r)x
(1)
n

)

n∈N0
,
(

(r)x
(2)
n

)

n∈N0
, . . . ,

(

(r)x
(2p)
n

)

n∈N0

and
(

(r)x
(2p+1)
n

)

n∈N0
, r = 0,k, we show that the following representation holds























(r)x
(q)
2(2p+1)n+ j

=
F2(2p+1)n+ j

(r)+ x
(q+ j)mod(2p+1)
0 F2(2p+1)n+( j−1)

F2(2p+1)n+( j+1)+ (r)x
(q+ j)mod(2p+1)
0 F2(2p+1)n+ j

,

(r)x
(q)
(2p+1)(2n+1)+ j

=
L(2p+1)(2n+1)+ j +

(r)x
(q+ j)mod(2p+1)
0 L(2p+1)(2n+1)+( j−1)

L(2p+1)(2n+1)+( j+1)+ (r)x
(q+ j)mod(2p+1)
0 L(2p+1)(2n+1)+ j

,



344 A. KHELIFA, Y. HALIM, AND M. BERKAL

with j ∈ {0,2, . . . ,2p}.






















(r)x
(q)
2(2p+1)n+ j

=
L2(2p+1)n+( j+1)+

(r)x
(q+ j)mod(2p+1)
0 L2(2p+1)n+ j

L2(2p+1)n+( j+2)+ (r)x
(q+ j)mod(2p+1)
0 L2(2p+1)n+( j+1)

,

(r)x
(q)
(2p+1)(2n+1)+ j

=
F(2p+1)(2n+1)+( j+1)+

(r)x
(q+ j)mod(2p+1)
0 F(2p+1)(2n+1)+ j

F(2p+1)(2n+1)+( j+2)+ (r)x
(q+ j)mod(2p+1)
0 F(2p+1)(2n+1)+( j+1)

,

with j ∈ {1,3, . . . ,2p+1}.

For each q ∈ {1,2, . . . ,2p+ 1}, r ∈ {1,2, . . . ,k}, (Ln)
+∞
n=0 is the Lucas sequence

and (Fn)
+∞
n=0 is the Fibonacci sequence.

Coming back to the original notation, from (3.3), it follows that the following

result holds.

Corollary 3. Let
{

x
(1)
n ,x

(2)
n , . . . ,x

(2p+1)
n

}

n≥−k
be a solution of (1.9). Then, for

n = 2,3, . . . ,










x
(q)
(k+1)(2(2p+1)n+ j)−r

=
F2(2p+1)n+ j+x

(q+ j)mod(2p+1)
−r F2(2p+1)n+( j−1)

F2(2p+1)n+( j+1)+x
(q+ j)mod(2p+1)
−r F2(2p+1)n+ j

,

x
(q)
(k+1)((2p+1)(2n+1)+ j)−r

=
L(2p+1)(2n+1)+ j+x

(q+ j)mod(2p+1)
−r L(2p+1)(2n+1)+( j−1)

L(2p+1)(2n+1)+( j+1)+x
(q+ j)mod(2p+1)
−r L(2p+1)(2n+1)+ j

,

with j ∈ {0,2, . . . ,2p}.










x
(q)
(k+1)(2(2p+1)n+ j)−r

=
L2(2p+1)n+( j+1)+x

(q+ j)mod(2p+1)
−r L2(2p+1)n+ j

L2(2p+1)n+( j+2)+x
(q+ j)mod(2p+1)
−r L2(2p+1)n+( j+1)

,

x
(q)
(k+1)((2p+1)(2n+1)+ j)−r

=
F(2p+1)(2n+1)+( j+1)+x

(q+ j)mod(2p+1)
−r F(2p+1)(2n+1)+ j

F(2p+1)(2n+1)+( j+2)+x
(q+ j)mod(2p+1)
−r F(2p+1)(2n+1)+( j+1)

,

where j ∈ {1,3, . . . ,2p+ 1}, q ∈ {1,2, . . . ,2p+ 1}, r ∈ {1,2, . . . ,k}, (Ln)
+∞
n=0 is the

Lucas sequence and (Fn)
+∞
n=0 is the Fibonacci sequence.

4. GLOBAL STABILITY OF POSITIVE SOLUTIONS OF (1.9)

In this section we study the global stability character of the solutions of system

(1.9). It is easy to show that (1.9) has a unique real positive equilibrium point given

by

E =
(

x(1),x(2), . . . ,x(2p+1)
)

= (−β,−β, . . . ,−β) ,

where β is the number defined in (1.3).

Let Ii(0,+∞) and consider the functions

fi : Ik+1
1 × Ik+1

2 × . . .× Ik+1
2p+1 −→ Ii,

defined by
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fi

(

u
(1)
0 ,u

(1)
1 , . . . ,u

(1)
k ,u

(2)
0 ,u

(2)
1 , . . . ,u

(2)
k , . . . ,u

(2p+1)
0 ,u

(2p+1)
1 , . . . ,u

(2p+1)
k

)

=
1+2u

(i+1)mod(2p+1)
k

3+u
(i+1)mod(2p+1)
k

,

with i ∈ {1,2, . . . ,2p+1}.

Theorem 2. The equilibrium point E is locally asymptotically stable.

Proof. The linearized system about the equilibrium point

E = (−β, . . . ,−β,−β, . . . ,−β) ∈ Ik+1
1 × Ik+1

2 × . . .× Ik+1
2p+1

is given by

Xn+1 = AXn, (4.1)

Xn =
(

x
(1)
n ,x

(1)
n−1, . . . ,x

(1)
n−k,x

(2)
n ,x

(2)
n−1, . . . ,x

(2)
n−k, . . . ,x

(2p+1)
n ,x

(2p+1)
n−1 , . . . ,x

(2p+1)
n−k

)t

(4.2)

and

A =

































































0 0 . . . 0 0 . . . 0 5
(3−β)2 . . . . . . 0 0 . . . 0

1 0 0 0

0 1
. . .

...

0
. . . 0 . . . . . . 0 0 . . . . . . 0 0 . . . 0

1 0
...

...
...

...
...

...
...

1 0

. . . 0 . . . . . . 0 0 . . .
5

(3−β)2

...
... 0 1 0

...
...

0 . . . 0 5
(3−β)2 0 0 . . . . . . 0

0 0 0 0
. . . 0

...
...

...
...

...
. . . 0 0

0 0 . . . 0 0 0 . . . . . . . . . 0 0 1 0

































































.

So, after some elementary calculations, we get

P(λ) = (−λ)(2p+1)(k+1)+(−1)k

(

5

(3−β)2

)2p+1

.
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Now, consider the two functions defined by

ϕ(λ) = λ(2p+1)(k+1)
, φ(λ) =

(

5

(3−β)2

)2p+1

.

We have

|φ(λ)|< |ϕ(λ)| ,∀λ : |λ|= 1

So, according to Rouche’s Theorem ϕ and P=ϕ+φ have the same number of zeros in

the unit disc |λ|< 1, and since ϕ admits as root λ = 0 of multiplicity (2p+1)(k+1),
then all the roots of P are in the disc |λ| < 1. Thus, the equilibrium point is locally

asymptotically stable. �

Theorem 3. For every well defined solution of system (1.9), we have

lim
n→+∞

x
(q)
n =−β,

for each q ∈ {1,2, . . . ,2p+1}.

Proof. From Corollary (3), we have

lim
n→+∞

x
(q)
(k+1)(2(2p+1)n+2(2p+1)+ j)−r

= lim
n→+∞

F2(2p+1)n+2(2p+1)+ j + x
(q+ j)
−r F2(2p+1)n+2(2p+1)+( j−1)

F2(2p+1)n+2(2p+1)+( j+1)−r + x
(q+ j)
−r F2(2p+1)n+2(2p+1)+ j

= lim
n→+∞

1+ x
(q+ j)
−r

F2(2p+1)n+2(2p+1)+( j−1)

F2(2p+1)n+2(2p+1)+ j

F2(2p+1)n+2(2p+1)+( j+1)

F2(2p+1)n+2(2p+1)+ j
+ x

(q+ j)
−r

.

Using the limit (1.4), we get

lim
n→+∞

x
(q)
(k+1)(2(2p+1)n+2(2p+1)+ j)−r

=
1+ x

(q+ j)
−r

1
α

α+ x
(q+ j)
−r

.

Hence

lim
n→+∞

x
(q)
(k+1)(2(2p+1)n+2(2p+1)+ j)−r

=−β.

Also,

lim
n→+∞

x
(q)
(k+1)((2p+1)(2n+1)+ j)−r

= lim
n→+∞

L2(2p+1)n+(2p+1)+ j + x
(q+ j)
−r L2(2p+1)n+(2p+1)+( j−1)

L2(2p+1)n+(2p+1)+( j+1)+ x
(q+ j)
−r L2(2p+1)n+(2p+1)+ j

= lim
n→+∞

1+ x
(q+ j)
−r

L2(2p+1)n+(2p+1)+( j−1)

L2(2p+1)n+(2p+1)+ j

L2(2p+1)n+(2p+1)+( j+1)

L2(2p+1)n+(2p+1)+ j
+ x

(q+ j)
−r

.
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Using the limit (1.7), we get

lim
n→+∞

x
(q)
(k+1)((2p+1)(2n+1)+ j)−r

=
1+ x

(q+ j)
−r

1
α

α+ x
(q+ j)
−r

.

Hence

lim
n→+∞

x
(q)
(k+1)((2p+1)(2n+1)+ j)−r

=−β.

Similarly, we find

lim
n→+∞

x
(q)
(k+1)(2(2p+1)n+2(2p+1)+ j)−r

= lim
n→+∞

x
(q)
(k+1)((2p+1)(2n+1)+ j)−r

=−β.

So, we have

lim
n→+∞

x
(q)
n =−β.

�

The following result is a direct consequence of Theorems (2) and (3).

Corollary 4. The equilibrium point E is globally asymptotically stable.

4.1. Numerical confirmation

In order to verify our theoretical results we consider several interesting numerical

examples in this section. These examples represent different types of qualitative

behaviour of solutions of the system (1.9). All plots in this section are drawn with

Matlab.

Example 1. Let k = 1 and p = 2 in system (1.9), then we obtain the system










x
(1)
n+1 =

1+2x
(2)
n−1

3+x
(2)
n−1

, x
(2)
n+1 =

1+2x
3)
n−1

3+x
(3)
n−1

, x
(3)
n+1 =

1+2x
(4)
n−1

3+x
(4)
n−1

,

x
(4)
n+1 =

1+2x
(5)
n−1

3+x
(5)
n−1

, x
(5)
n+1 =

1+2x
(1)
n−1

3+x
(1)
n−k

, n ∈ N0.

(4.3)

Assume x
(1)
−1 = 1, x

(1)
0 = 7, x

(2)
−1 = 1.3, x

(2)
0 = 0.3, x

(3)
−1 = 3, x

(3)
0 = 1.5, x

(4)
−1 = 14,

x
(4)
0 = 2, x

(5)
−1 = 3 and x

(5)
0 = 0.1. (See Figure (1)).

Example 2. Let k = 3 and p = 3 in system (1.9), then we obtain the system










x
(1)
n+1 =

1+2x
(2)
n−3

3+x
(2)
n−3

, x
(2)
n+1 =

1+2x
3)
n−3

3+x
(3)
n−3

, x
(3)
n+1 =

1+2x
(4)
n−3

3+x
(4)
n−3

, x
(4)
n+1 =

1+2x
(5)
n−3

3+x
(5)
n−3

,

x
(5)
n+1 =

1+2x
(6)
n−3

3+x
(6)
n−3

, x
(6)
n+1 =

1+2x
(7)
n−3

3+x
(7)
n−3

, x
(7)
n+1 =

1+2x
(1)
n−3

3+x
(1)
n−3

, n ∈ N0.

(4.4)

Assume x
(1)
−3 = 1,x

(1)
−2 = 0.2,x

(1)
−1 = 6,x

(1)
0 = 7,x

(2)
−3 = 1.3,x

(2)
−2 = 5,x

(2)
−1 = 0.7,x

(2)
0 =

9,x
(3)
−3 = 0.1,x

(3)
−2 = 3,x

(3)
−1 = 6,x

(3)
0 = 1.5,x

(4)
−3 = 7,x

(4)
−2 = 9.3,x

(4)
−1 = 5.3,x

(4)
0 = 5.3,

x
(5)
−3 = 2.2,x

(5)
−2 = 2.2,x

(5)
−1 = 14.3,x

(5)
0 = 0.8,x

(6)
−3 = 3.3,x

(6)
−2 = 6,x

(6)
−1 = 8,x

(6)
0 = 1.9,

x
(7)
−3 = 4,x

(7)
−2 = 7.2,x

(7)
−1 = 1.6 and x

(7)
0 = 8. ( See Figure (2)).
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FIGURE 1. The plot of system (4.3)
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FIGURE 2. The plot of system (4.4)

5. CONCLUSIONS

In the paper, we represented the well-defined solutions of the system (1.9) com-

posed by 2p+ 1 rational difference equations. More exactly, We gave general solu-

tions of system (1.9) in terms of Fibonacci and Lucas sequences. Also, we presented
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some results about the general behavior of solutions of system (1.9) and some numer-

ical examples are carried out to support the analysis results. Our system generalized

the systems studied in [18] and [19].

The results in this paper can be extended to the following system of difference

equations

x
( j)
n+1 =

Lm+2 +Lm+1x
(( j+1)mod(p))
n−k

Lm+3 +Lm+2x
(( j+1)mod(p))
n−k

, n,m, p,k ∈ N0, j = 1, p,

where (Ln)
+∞
n=0 is the Lucas sequence.
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Abstract. In this work, using an infinitely many critical points theorem we establish the existence

of a sequence of weak solutions for a Kirchhoff-type problem with singular term. This approach

is based on variational methods and critical point theory.
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1. INTRODUCTION

In 1883, the stationary problem

ρ
∂2u

∂t2
−


ρ0

h
+

E

2L

L∫

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx


 ∂2u

∂x2
= 0,

was proposed by Kirchhoff [14] as an extension of the classical D’Alembert’s wave

equation for free vibrations of elastic strings. In recent years, the study of elliptic

problems involving Kirchhoff type operators have been studied in many works, we

refer to [1, 3, 5–7, 16–18, 20, 22]. For instance, in [17], Molica Bisci and Pizzimenti

considered the following problem




−

(
a+b

∫
Ω

|∇u|pdx

)
∆pu+α(x)|u|p−2

u = λh(x) f (u) in Ω,

u = 0 on ∂Ω.

They obtained the existence of infinitely many weak solutions by using variational

methods. Also, in [5], the authors studied the non-local problem




−M

(∫
Ω

|∇u|pdx

)
∆pu = f (x,u) in Ω,

u = 0 on ∂Ω.

We gratefully thank the Iran National Science Foundation (INFS) for financial support.

© 2021 Miskolc University Press
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By using Browder Theorem, the writers proved the existence and uniqueness of solu-

tions. On the other hand, singular elliptic problems have been intensively studied in

the last decads. Among others, we mention the works [8–12, 15, 19, 21]. Recently,

motivated by this large interest, Ferrara and Molica Bisci in [8] studied the existence

of at least one non-trivial weak solution for the following elliptic Dirichlet problem





−∆pu = µ
|u|p−2u

|x|p
+λ f (x,u) in Ω,

u|∂Ω = 0,

where λ> 0 and µ≥ 0 are two real parameters, Ω is a bounded domain in R
N (N ≥ 2)

containing the origin and with smooth boundary ∂Ω, 1 < p < N and f : Ω×R→ R

is a Carathéodory function satisfying a suitable subcritical growth condition.

The aim of this paper is to investigate the existence of infinitely many weak solu-

tions for the following problem





−M

(∫
Ω

|∇u|pdx

)
∆pu+ |u|q−2

u

|x|q
= λ f (x,u) in Ω,

u = 0 on ∂Ω,
(1.1)

where ∆pu := div(|∇u|p−2∇u) denotes the p-Laplace operator, Ω is a bounded do-

main in R
N(N ≥ 2) containing the origin and with smooth boundary ∂Ω,

1 < q < N < p, M : [0,+∞)→ R is a continuous function satisfying

(f1) there are two positive constants m0 , m1, such that

m0 ≤ M(t)≤ m1, ∀t ≥ 0,

and f : Ω×R→ R is an L1-Carathéodory function.

Recall that a function f : Ω×R→ R is said to be an L1-Carathéodory function, if

(C1) the function x 7→ f (x, t) is measurable for every t ∈ R;

(C2) the function t 7→ f (x, t) is continuous for a.e. x ∈ Ω;

(C3) for every ρ > 0 there exists a function lρ ∈ L1(Ω) such that

sup
|t|≤ρ

| f (x, t)| ≤ lρ(x),

for a.e. x ∈ Ω.

A special case of our main result is the following theorem.

Theorem 1. Assume that f : R → R is a non-negative continuous function such

that

liminf
ξ→+∞

f (ξ)

ξp−1
= 0 and limsup

ξ→+∞

∫ ξ
0 f (t)dt

ξp
=+∞.
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Then, the problem



−




1+2

(∫
Ω

|∇u|pdx

)2

1+

(∫
Ω

|∇u|pdx

)2


∆pu+ |u|q−2u

|x|q = f (u) in Ω,

u = 0 on ∂Ω

admits a sequence of weak solutions which is unbounded in X .

1.1. Preliminary considerations

Let Ω be a bounded domain in R
N(N ≥ 2) containing the origin and with smooth

boundary ∂Ω. Further, denote by X the space W
1,p
0 (Ω) endowed with the norm

‖u‖ :=

(∫
Ω
|∇u(x)|p dx

)1/p

.

Also, let ‖ · ‖1 denotes the usual norm of L1(Ω); i.e.,

‖u‖1 :=
∫

Ω
|u(x)|dx.

We recall classical Hardy’s inequality, which says that∫
Ω

|u(x)|q

|x|q
dx ≤

1

H

∫
Ω
|∇u(x)|qdx, (∀u ∈ X), (1.2)

where H := (N−q
q

)q; see, for instance, the paper [2].

Let us define F(x,ξ) :=
∫ ξ

0 f (x, t)dt, for every (x,ξ) in Ω×R. Moreover we intro-

duce the functional Iλ : X → R associated with (1.1),

Iλ(u) := Φ(u)−λΨ(u),

for every u ∈ X , where

Φ(u) :=
1

p
M̂ (‖u‖p)+

1

q

∫
Ω

|u(x)|q

|x|q
dx,

and

Ψ(u) :=
∫

Ω
F(x,u(x))dx,

for every u ∈ X , where M̂ (t) :=
t∫

0

M(s)ds, t ≥ 0. By standard arguments, one has

that Φ is well defined (by Hardy’s inequality), Gâteaux differentiable and sequentially

weakly lower semicontinuous, and its Gâteaux derivative is the functional Φ′(u)∈ X∗

given by

Φ′(u)(v)=M



∫

Ω

|∇u|pdx




∫
Ω
|∇u(x)|p−2∇u(x)∇v(x)dx+

∫
Ω

|u(x)|q−2

|x|q
u(x)v(x)dx,
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for every v ∈ X and clearly Φ is coercive. It is easy to prove that Φ is strongly

continuous. On the other hand, standard arguments show that Ψ is well defined and

continuously Gâteaux differentiable functional whose Gâteaux derivative

Ψ′(u)(v) =
∫

Ω
f (x,u(x))v(x)dx,

for every v ∈ X , is a compact operator from X to the dual X∗.

Fixing the real parameter λ, a function u : Ω → R is said to be a weak solution of

(1.1) if u ∈ X and

M



∫

Ω

|∇u|pdx




∫
Ω
|∇u(x)|p−2∇u(x)∇v(x)dx

+
∫

Ω

|u(x)|q−2

|x|q
u(x)v(x)dx−λ

∫
Ω

f (x,u(x))v(x)dx = 0,

for every v ∈ X . Hence, the critical points of Iλ are exactly the weak solutions of

(1.1).
Our main tool to investigate the existence of infinitely many solutions for the prob-

lem (1.1) is a smooth version of [4, Theorem 2.1] which is a more precise version of

Ricceri’s variational principle [19, Theorem 2.5], which we now recall.

Theorem 2. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two

Gâateaux differentiable functionals such that Φ is sequentially weakly lower semi-

continuous, strongly continuous and coercive, and Ψ is sequentially weakly upper

semicontinuous. For every r > infX Φ, put

ϕ(r) := inf
Φ(u)<r

(
supΦ(v)<r Ψ(v)

)
−Ψ(u)

r−Φ(u)
,

γ := liminf
r→+∞

ϕ(r), and δ := liminf
r→(infX Φ)+

ϕ(r).

Then the following properties hold:

(a) For every r > infX Φ and every λ∈]0,1/ϕ(r)[, the restriction of the functional

Iλ := Φ−λΨ

to Φ−1(]−∞,r[) admits a global minimum, which is a critical point (local

minimum) of Iλ in X.

(b) If γ <+∞, then for each λ ∈]0,1/γ[, the following alternative holds: either

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ <+∞, then for each λ ∈]0,1/δ[, the following alternative holds: either
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(c1) there is a global minimum of Φ which is a local minimum of Iλ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local minima)
of Iλ which weakly converges to a global minimum of Φ, with

lim
n→+∞

Φ(un) = inf
u∈X

Φ(u).

2. MAIN RESULTS

Put

k := sup
u∈X ,u6=0

(
maxx∈Ω̄ |u(x)|

‖u‖

)
. (2.1)

Since the embedding X →֒C(Ω̄) is compact, one has k <+∞. Fix x0 ∈ Ω and D > 0

such that B(x0,D)⊂Ω and B(x0,D) not containing the origin, where B(x0,D) denotes

the ball with center at x0 and radius D.

Put

ω :=
m1

p

[( 2

D

)p

m

(
DN −

(D

2

)N
)]

, (2.2)

α :=
∫

B(x0,
D
2
)

1

|x|q
dx , β :=

( 2

D

)q
∫

B(x0,D)\B(x0,
D
2
)

(D−|x− x0|)
q

|x|q
dx, (2.3)

where m := πN/2

Γ(1+N
2
)
. Here Γ is the Gamma function defined by

Γ(t) :=
∫ +∞

0
zt−1e−zdz (∀t > 0) .

Put

A := liminf
ξ→+∞

‖lξ‖1

ξp−1
,

and

B := limsup
ξ→+∞

∫
B(x0,

D
2
) F(x,ξ)dx

ξp
,

where lξ ∈ L1(Ω) satisfies condition (C3) on f (x, t) for every ξ > 0.

Our main result is the following.

Theorem 3. Assume that M : [0,+∞[→ R is a continuous function satisfying (f1).
Also let f : Ω×R→ R be an L1-Carathéodory function such that

(i) F(x, t)≥ 0 for every (x, t) ∈ Ω×R
+,

(ii) A <
1

pωkp
B, where k and ω are given by (2.1) and (2.2), respectively.

Then, for every λ ∈ Λ :=
]

ω
B
, 1

pkpA

[
, the problem (1.1) admits a sequence of weak

solutions which is unbounded in X.
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Proof. Fix λ ∈
]

ω
B
, 1

pkpA

[
. Our aim is to apply Theorem 2 part (b) with X :=

W
1,p
0 (Ω) and where Φ and Ψ are the functionals introduced in Section 2. As seen be-

fore, the functionals Φ and Ψ satisfy the regularity assumptions requested in Theorem

2. Now, we look on the existence of critical points of the functional Iλ := Φ−λΨ in

X . To this end, we take {ξn} ⊂ R
+ such that limn→+∞ ξn =+∞, and

lim
n→+∞

‖lξn
‖1

ξ
p−1
n

= A.

Set rn := m0ξ
p
n

pkp for all n ∈ N. From (2.1) we get

max
x∈Ω̄

|u(x)| ≤ k‖u‖, (2.4)

for every u ∈ X . Then, for each u ∈ X with Φ(u)< rn, we have

max
x∈Ω̄

|u(x)| ≤ k(
p

m0

Φ(u))1/p < k(
p

m0

rn)
1/p = ξn.

Then, since Φ(0) = Ψ(0) = 0, we have

ϕ(rn) = inf
Φ(v)<rn

(
supΦ(u)<rn

Ψ(u)
)
−Ψ(v)

rn −Φ(u)

≤
supΦ(u)<rn

∫
Ω F(x,u(x))dx

rn

≤
ξn‖lξn

‖1

m0
ξ

p
n

pkp

.

Hence, it follows that

γ ≤ liminf
n→+∞

ϕ(rn)≤
p

m0

kp liminf
n→+∞

‖lξn
‖1

ξ
p−1
n

=
p

m0

kpA <+∞,

since condition (ii) yields A<+∞. Now, we claim that the functional Iλ is unbounded

from below. Let {dn} be a real sequence such that limn→+∞ dn =+∞ and

lim
n→+∞

∫
B(x0,

D
2
) F(x,dn)dx

d
p
n

= B. (2.5)

Further, for each n ≥ 1, define vn ∈ X given by

vn(x) :=





0, x ∈ Ω\B(x0,D),
dn, x ∈ B(x0,

D
2
),

2dn

D
(D−|x− x0|), x ∈ B(x0,D)\B(x0,

D
2
).

(2.6)
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By using condition (i), we infer

Ψ(vn) =
∫

Ω
F(x,vn(x))dx ≥

∫
B(x0,

D
2
)
F(x,dn)dx,

for every n ≥ 1. Then, we have

Iλ(vn)≤ ωdp
n +

α+β

q
dq

n −λ

∫
B(x0,

D
2
)
F(x,dn)dx.

If B <+∞, let

δ ∈
] ω

λB
,1
[
.

By (2.5), there exists Nδ such that∫
B(x0,

D
2
)
F(x,dn)dx > δBdp

n , (∀n > Nδ).

Consequently, one has

Iλ(vn)< ωdp
n +

α+β

q
dq

n −λδBdp
n

= (ω−λδB)dp
n +

α+β

q
dq

n ,

for every n > Nδ. Then, it follows that

lim
n→+∞

Iλ(vn) =−∞,

since q < p.

If B = +∞, let us consider L > ω
λ . By (2.5), there exists NL such that∫

B(x0,
D
2
)
F(x,dn)dx > Ldp

n , (∀n > NL).

So, we have

Iλ(vn)< ωdp
n +

α+β

q
dq

n −λLdp
n

= (ω−λL)dp
n +

α+β

q
dq

n (∀n > NL).

Taking into account the choice of L, also in this case, one has

lim
n→+∞

Iλ(vn) =−∞,

since q < p. Therefore owing to Theorem 2(b), the functional Iλ admits an unboun-

ded sequence {un} ⊂ X of critical points. Then the problem (1.1) admits a sequence

of weak solutions which is unbounded in X . �

Among the consequences of Theorem 3, we point out the following result.



358 M. KHODABAKHSHI, S.M. VAEZPOUR, AND M. R. HEIDARI TAVANI

Corollary 1. Let f : Ω×R → R be an L1-Carathéodory function. Assume that

condition (i) of Theorem 3 holds. Further, require that

(iii) A < 1
pkp and B > ω, where k and ω are given by (2.1) and (2.2), respectively.

Then the following problem




−M



∫

Ω

|∇u|pdx


∆pu+

|u|q−2u

|x|q
= f (x,u), in Ω,

u = 0, on ∂Ω,

admits a sequences of weak solutions which is unbounded in X .

Remark 1. We note that assumption (ii) in Theorem 3 could be replaced by the

following more general hypothesis:

(ii′) There exists two positive sequences {an} and {bn} such that

1

p

ω
m1

an
p∫

0

M(s)ds+
(α+β)

q
aq

n <
m0b

p
n

pkp
, (∀n ≥ 1)

and limn→+∞ bn =+∞ such that

Ã <
B

ω
,

where k, ω and α, β are given by (2.1), (2.2) and (2.3), respectively, and

Ã := lim
n→+∞

bn‖lbn
‖1 −

∫
B(x0,

D
2
) F(x,an)dx

m0b
p
n

pkp − 1
p

ω
m1

an
p∫

0

M(s)ds− (α+β)
q

a
q
n

.

Then, for every

λ ∈

]
ω

B
,

1

Ã

[
,

the problem (1.1) admits a sequence of weak solutions which is unbounded in X .
Indeed, from (ii′) we obtain (ii), by choosing an = 0 for all n ∈ N. Moreover, if

we assume (ii′) instead of (ii) and set rn := m0b
p
n

pkp for every n ≥ 1, one has

ϕ(rn) := inf
Φ(v)<rn

(
supΦ(u)<rn

∫
Ω F(x,u(x))dx

)
−

∫
Ω F(x,v(x))dx

rn −Φ(v)

≤
bn‖lbn

‖1 −
∫

Ω F(x,vn(x))dx

m0b
p
n

pkp −Φ(vn)
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≤
bn‖lbn

‖1 −
∫

B(x0,
D
2
) F(x,an)dx

m0b
p
n

pkp − 1
p

ω
m1

an
p∫

0

M(s)ds− (α+β)
q

a
q
n

,

by choosing

vn(x) :=





0, x ∈ Ω\B(x0,D),
an, x ∈ B(x0,

D
2
),

2an

D
(D−|x− x0|), x ∈ B(x0,D)\B(x0,

D
2
),

for every n ≥ 1. Therefore, since by assumption (ii′) one has Ã <+∞, we obtain

γ ≤ liminf
n→+∞

ϕ(rn)≤ Ã <+∞.

From now on, arguing as in the proof of Theorem 3, the conclusion follows.

Now, we present the other main result. First, put

A′ := liminf
ξ→0+

‖lξ‖1

ξp−1
, B′ := limsup

ξ→0+

∫
B(x0,

D
2
) F(x,ξ)dx

ξp
.

Arguing as in the proof of Theorem 3 but using conclusion (c) of Theorem 2 instead

of (b), the following result holds.

Theorem 4. Assume that f : Ω×R → R be an L1-Carathéodory function such

that hypothesis (i) in Theorem 3 holds, and

(iv) A′ < m0

pωkp B′.

Then, for every λ ∈ Λ′ :=
]

ω
B′ ,

m0

pkpA′

[
, the problem (1.1) has a sequence of weak

solutions, which strongly converges to zero in X .

Proof. Fix λ ∈ Λ′. We take Φ,Ψ and Iλ as in Section 2. Now, as it has been pointed

out before, the functionals Φ and Ψ satisfy the regularity assumptions reqired in

Theorem 2. As first step, we will prove that λ < 1/δ. Then, let {ξn} be a sequence of

positive numbers such that limn→+∞ ξn = 0 and

lim
n→+∞

‖lξn
‖1

ξ
p
n

= A′.

By the fact that infX Φ = 0 and the definition of δ, we have δ := liminfr→0+ ϕ(r). Put

rn := m0ξ
p
n

pkp for all n ∈N. Then, for all u ∈ X with Φ(u)< rn, taking (2.4) into account,

one has ‖u‖∞ < ξn. Thus, for all n ∈ N,

ϕ(rn)≤
supΦ(u)<rn

Ψ(u)

rn

≤
pkp

m0

‖lξn
‖1

ξ
p−1
n

.
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Hence,

δ ≤ liminf
n→+∞

ϕ(rn)≤
pkp

m0

liminf
n→+∞

‖lξn
‖1

ξ
p−1
n

=
pkpA′

m0

<+∞,

and therefore Λ′ ⊂ ]0,1/δ[ .
Let λ be fixed. We claim that the functional Iλ does not have a local minimum at

zero. Let {dn} be a sequence of positive numbers such that limn→+∞ dn = 0 and

lim
n→+∞

∫
B(x0,

D
2
) F(x,dn)dx

d
p
n

= B′.

For all n ∈ N, let vn ∈ X defined by (2.6) with the above dn. Now, with the same

argument as in the proof of Theorem 3, we achieve Iλ(vn) < 0 for every n ∈ N large

enough. Then, since limn→+∞ Iλ(vn) = Iλ(0) = 0, we see that zero is not a local

minimum of Iλ. This, together with the fact that zero is the only global minimum

of Φ, we deduce that the energy functional Iλ does not have a local minimum at the

unique global minimum of Φ. Therefore, by Theorem 2(c), there exists a sequence

{un} of critical points of Iλ which converges weakly to zero. In view of the fact

that the embedding X →֒C(Ω̄) is compact, we know that the critical points converge

strongly to zero, and the proof is complete. �

We end this paper with the following example to illustrate our results.

Example 1. Let r > 0 be a real number and {tn}, {sn} be two strictly increasing

sequences of real numbers that defined by induction

t1 = r, s1 = 2r

and for n ≥ 1,

t2n =
(
22n+1 −1

)
t2n−1, t2n+1 =

(
2−

1

22n+1

)
t2n,

s2n =
t2n

2n
=

(
2−

1

22n

)
s2n−1, s2n+1 = 2n+1t2n+1 =

(
22n+2 −1

)
s2n.

Let f : Ω×R→ R be the function defined by

f (x, t) :=

{
2ϕ(x)t, (x, t) ∈ Ω× [0, t1],

ϕ(x)
(

sn−1 +
sn−sn−1

tn−tn−1
(t − tn−1)

)
, (x, t) ∈ Ω× [tn−1, tn] forsome n > 1,

where ϕ : Ω → R is a positive continuous function with 0 < m ≤ ϕ(x)≤ M. Then f

is an L1-Carathéodory function and since f (x, t) is strictly increasing with respect to

t argument at every x ∈ Ω, the function lξ(x) := f (x,ξ) satisfies in condition (C3) on

f ; i.e.,

sup
|t|≤ξ

| f (x, t)| ≤ lξ(x), for a.e. x ∈ Ω.
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Arguing as in [13], we have

limsup
ξ→+∞

∫
B(x0,

D
2
) F(x,ξ)dx

ξ
7
3

=+∞, liminf
ξ→+∞

‖lξ‖1

ξ
4
3

= 0,

for every x0 ∈ Ω and D > 0 such that B(x0,D) ⊂ Ω and B(x0,D) not containing the

origin, where Ω is a bounded domain in R
2 containing the origin and with smooth

boundary ∂Ω. Hence, by Theorem 3, for every λ ∈]0,+∞[, the following problem




−M



∫

Ω

|∇u|
7
3 dx


∆ 7

3
u+

|u|
−1
2 u

|x|
3
2

= λ f (x,u), in Ω,

u = 0, on ∂Ω,

possesses an unbounded sequence of weak solutions in W
1, 7

3

0 (Ω).
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Abstract. In this study, we define a new type of associated curves in the Euclidean 3-space such

as normal-direction curve and normal-donor curve. We obtain characterizations for these curves.

Moreover, we give applications of normal-direction curves to some special curves such as helix,

slant helix, plane curve or normal-direction (ND)-normal curves in E3. And, we show that slant

helices and rectifying curves can be constructed by using normal-direction curves.
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1. INTRODUCTION

In the curve theory of Euclidean space, the most important subject is to obtain a

characterization for a regular curve, since these characterizations allow to classify

curves according to some relations. These characterizations can be given for a single

curve or for a curve pair. Helix, slant helix, plane curve, spherical curve, etc. are the

well-known examples of single special curves [1,10,12,17,20] and these curves, espe-

cially the helices, are used in many applications [2,7,9,16]. Moreover, special curves

can be defined by considering Frenet planes. If the position vector of a space curve

always lies on its rectifying, osculating or normal planes, then the curve is called

rectifying curve, osculating curve or normal curve, respectively [4]. In the Euclidean

space E3, rectifying, normal and osculating curves satisfy Cesaro’s fixed point con-

dition, i.e., Frenet planes of such curves always contain a particular point [8, 15]. In

particular, there exists a simple relationship between rectifying curves and Darboux

vectors (centrodes), which play some important roles in mechanics, kinematics as

well as in differential geometry in defining the curves of constant precession [4].

Moreover, special curve pairs are characterized by some relationships between

their Frenet vectors or curvatures. Involute-evolute curves, Bertrand curves, Man-

nheim curves are the well-known examples of curve pairs and studied by some math-

ematicians [3, 11, 14, 19, 20].

Recently, a new curve pair in the Euclidean 3-space E3 has been defined by Choi

and Kim [6]. They have considered an integral curve γ of a unit vector field X defined

© 2021 Miskolc University Press
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in the Frenet basis of a Frenet curve α and they have given the definitions and charac-

terizations of principal-directional curve and principal-donor curve in E3. They also

gave some applications of these curves to some special curves.

In the present paper, we consider a new type of associated curves and define a

new curve pair such as normal-direction curve and normal-donor curve in E3. We

obtain some characterizations for these curves and show that normal-direction curve

is a space evolute of normal-donor curve. Moreover, we give some applications of

normal-direction curve to some special curves such as helix, slant helix or plane

curve.

2. PRELIMINARIES

This section includes a brief summary of space curves and definitions of general

helix and slant helix in the Euclidean 3-space E3.

A unit speed curve α : I → E3 is called a general helix if there is a constant vector

u, so that 〈T,u〉= cosθ is constant along the curve, where θ 6= π/2 and T (s) = α′(s)
is unit tangent vector of α at s. The curvature (or first curvature) of α is defined by

κ(s) = ‖α′′(s)‖. Then, the curve α is called Frenet curve, if κ(s) 6= 0, and the unit

principal normal vector N(s) of the curve α at s is given by α′′(s) = κ(s)N(s). The

unit vector B(s) = T (s)×N(s) is called the unit binormal vector of α at s. Then

{T,N,B} is called the Frenet frame of α. For the derivatives of the Frenet frame, the

following Frenet-Serret formulae hold:





T ′

N′

B′



=





0 κ 0

−κ 0 τ
0 −τ 0









T

N

B



 (2.1)

where τ(s) is the torsion (or second curvature) of α at s. It is well-known that the

curve α is a general helix if and only if τ
κ(s) = constant [17,18]. If both κ(s) 6= 0 and

τ(s) are constants, we call α as a circular helix. A curve α with κ(s) 6= 0 is called

a slant helix if the principal normal lines of α make a constant angle with a fixed

direction. Also, a slant helix α in E3 is characterized by the differential equation of

its curvature κ and its torsion τ given by

κ2

(κ2 + τ2)3/2

( τ

κ

)
′

= constant.

(See [12]).

Now, we give the definitions of some associated curves defined by Choi and Kim

[6]. Let I ⊂ R be an open interval. For a Frenet curve α : I → E3, consider a vector

field X given by

X(s) = u(s)T (s)+ v(s)N(s)+w(s)B(s), (2.2)
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where u,v and w are arbitrary differentiable functions of s which is the arc length

parameter of α. Let

u2(s)+ v2(s)+w2(s) = 1, (2.3)

holds. Then the definitions of X-direction curve and X-donor curve in E3 are given

as follows.

Definition 1. (Definition 2.1. in [6]) Let α be a Frenet curve in Euclidean 3-space

E3 and X be a unit vector field satisfying the equations (2.2) and (2.3). The integral

curve β : I → E3 of X is called an X-direction curve of α. The curve α whose X-

direction curve is β is called the X-donor curve of β in E3.

Definition 2. (Definition 2.2. in [6]) An integral curve of principal normal vector

N(s) (resp. binormal vector B(s)) of α in (2.2) is called the principal-direction curve

(resp. binormal-direction curve) of α in E3.

Remark 1. (Remark 2.3. in [6]) A principal-direction (resp. the binormal-direction)

curve is an integral curve of X(s) with u(s) = w(s) = 0, v(s) = 1 (resp. u(s) =
v(s) = 0, w(s) = 1) for all s in (2.2).

3. NORMAL-DIRECTION CURVE AND NORMAL-DONOR CURVE IN E3

In this section, we will give definitions of normal-direction curve and normal donor

curve in E3. We obtain some theorems and results characterizing these curves. First,

we give the following definition.

Definition 3. Let α be a Frenet curve in E3 and X be a unit vector field lying on

the normal plane of α and defined by

X(s) = v(s)N(s)+w(s)B(s), v(s) 6= 0, w(s) 6= 0, (3.1)

and satisfying that the vectors X ′(s) and T (s) are linearly dependent. The integral

curve γ : I → E3 of X(s) is called a normal-direction curve of α. The curve α whose

normal -direction curve is γ is called the normal-donor curve in E3.

The Frenet frame is a rotation-minimizing with respect to the principal normal N

[8]. If we consider a new frame given by {T,X ,M} where M = T ×X , we have

that this new frame is rotation-minimizing with respect to T , i.e., the unit vector X

belongs to a rotation-minimizing frame.

Since, X(s) is a unit vector and γ : I → E3 is an integral curve of X(s), without

loss of generality we can take s as the arc length parameter of γ and we can give the

following characterizations in the view of these information.

Theorem 1. Let α : I → E3 be a Frenet curve and an integral curve of X(s) =
v(s)N(s)+w(s)B(s) be the curve γ : I → E3. Then, γ is a normal-direction curve of
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α if and only if the following equalities hold,

v(s) = sin

(∫
τds

)

6= 0, w(s) = cos

(∫
τds

)

6= 0. (3.2)

Proof. Since γ is a normal-direction curve of α, from Definition 3, we have

X(s) = v(s)N(s)+w(s)B(s), (3.3)

and

v2(s)+w2(s) = 1. (3.4)

Differentiating (3.3) with respect to s and by using the Frenet formulas, it follows

X ′(s) =−vκT +(v′−wτ)N +(w′+ vτ)B. (3.5)

Since we have that X ′ and T are linearly dependent. Then from (3.5) we can write






−vκ 6= 0,
v′−wτ = 0,
w′+ vτ = 0.

(3.6)

The solutions of second and third differential equations are

v(s) = sin

(∫
τds

)

6= 0, w(s) = cos

(∫
τds

)

6= 0,

respectively, which completes the proof. �

Theorem 2. Let α : I → E3 be a Frenet curve. If γ is the normal-direction curve

of α, then γ is a space evolute of α.

Proof. Since γ is an integral curve of X , we have γ′ = X . Denote the Frenet frame

of γ by {T̄ , N̄, B̄}. Differentiating γ′ = X with respect to s and by using Frenet formu-

las we get

X ′ = T̄ ′ = κ̄N̄. (3.7)

Furthermore, we know that X ′ and T are linearly dependent. Then from (3.7) we get

N̄ and T are linearly dependent, i.e, γ is a space evolute of α. �

Theorem 3. Let α : I → E3 be a Frenet curve. If γ is the normal direction curve

of α, then the curvature κ̄ and the torsion τ̄ of γ are given as follows,

κ̄ = κ

∣

∣

∣

∣

sin

(∫
τds

)∣

∣

∣

∣

, τ̄ = κcos

(∫
τds

)

.

Proof. From (3.5), (3.6) and (3.7), we have

κ̄N̄ =−vκT. (3.8)

By considering (3.8) and (3.2) we obtain

κ̄N̄ =−κsin

(∫
τds

)

T, (3.9)
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which gives us

κ̄ = κ

∣

∣

∣

∣

sin

(∫
τds

)∣

∣

∣

∣

. (3.10)

Moreover, from (3.9) and (3.10), we can write

N̄ = T. (3.11)

Then, we have

B̄ = T̄ × N̄ = cos

(∫
τds

)

N − sin

(∫
τds

)

B. (3.12)

Differentiating (3.12) with respect to s gives

B̄′ =−κcos

(∫
τds

)

T. (3.13)

Since τ̄ =−〈B̄′, N̄〉=−〈B̄′,T 〉, from (3.13) it follows

τ̄ = κcos

(∫
τds

)

, (3.14)

that finishes the proof. �

Corollary 1. Let γ be a normal-direction curve of the curve α. Then the relation-

ships between the Frenet frames of curves are given as follows,

X = T̄ = sin

(∫
τds

)

N + cos

(∫
τds

)

B,

N̄ = T,

B̄ = cos

(∫
τds

)

N − sin

(∫
τds

)

B.

Proof. The proof is clear from Theorem 3. �

Theorem 4. Let γ be a normal-direction curve of α with curvature κ̄ and torsion

τ̄. Then curvature κ and torsion τ of α are given by

κ =
√

κ̄2 + τ̄2, τ =
τ̄2

κ̄2 + τ̄2

(

κ̄

τ̄

)′

.

Proof. From (3.10) and (3.14), we easily get

κ =
√

κ̄2 + τ̄2. (3.15)

Substituting (3.15) into (3.10) and (3.14), it follows
∣

∣

∣

∣

sin

(∫
τds

)∣

∣

∣

∣

=
κ̄√

κ̄2 + τ̄2
, (3.16)
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cos

(∫
τds

)

=
τ̄√

κ̄2 + τ̄2
, (3.17)

respectively. Differentiating (3.16) with respect to s, we have

τcos

(∫
τds

)

=
τ̄(κ̄′τ̄− κ̄ τ̄′)

(κ̄2 + τ̄2)3/2
. (3.18)

From (3.17) and (3.18), it follows

τ =
κ̄′ τ̄− κ̄ τ̄′

κ̄2 + τ̄2
,

or equivalently,

τ =
τ̄2

κ̄2 + τ̄2

(

κ̄

τ̄

)′

. (3.19)

�

Theorem 4 leads us to give the following corollary whose proof is clear.

Corollary 2. Let γ with the curvature κ̄ and the torsion τ̄ be a normal-direction

curve of α. Then

τ

κ
=− κ̄2

(κ̄2 + τ̄2)3/2

(

τ̄

κ̄

)′

, (3.20)

is satisfied, where κ and τ are curvature and torsion of α, respectively.

4. APPLICATIONS OF NORMAL-DIRECTION CURVES

In this section, we focus on relations between normal-direction curves and some

special curves such as general helix, slant helix, plane curve or rectifying curve in

E3.

4.1. General helices, slant helices and plane curves

Considering Corollary 2, we have the following theorems which gives a way to

construct the examples of slant helices by using general helices.

Theorem 5. Let α : I → E3 be a Frenet curve in E3and γ be a normal-direction

curve of α. Then the followings are equivalent,

(i) A Frenet curve α is a general helix in E3.

(ii) α is a normal-donor curve of a slant helix.

(iii) A normal-direction curve of α is a slant helix.

Theorem 6. Let α : I → E3 be a Frenet curve in E3and γ be a normal-direction

curve of α. Then the followings are equivalent,

(i) A Frenet curve α is a plane curve in E3.

(ii) α is a normal-donor curve of a general helix.
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(iii) A normal-direction curve of α is a general helix.

Example 1. Let consider the general helix given by the parametrization

α(s) =
(

cos s√
2
, sin s√

2
, s√

2

)

in E3 (Fig 1a). The Frenet vectors and curvatures of

α are obtained as follows,

T (s) =

(

− 1√
2

sin
s√
2
,

1√
2

cos
s√
2
,

1√
2

)

,

N(s) =

(

−cos
s√
2
, sin

s√
2
, 0

)

,

B(s) =

(

1√
2

sin
s√
2
, − 1√

2
cos

s√
2
,

1√
2

)

,

κ = τ =
1

2
.

Then we have X(s) = (x1(s), x2(s), x3(s)) where

x1(s) =−sin
( s

2
+ c

)

cos
s√
2
+

1√
2

cos
( s

2
+ c

)

sin
s√
2
,

x2(s) = sin
( s

2
+ c

)

sin
s√
2
− 1√

2
cos

( s

2
+ c

)

cos
s√
2
,

x3(s) =
1√
2

cos
( s

2
+ c

)

.

and c is integration constant. Now, we can construct a slant helix γ which is also a

normal-direction curve of α (Fig 1b):

γ =
∫ s

0
γ′(s)ds =

∫ s

0
X(s)ds = (γ1(s), γ2(s), γ3(s)) ,

where

γ1(s) =
∫ s

0

[

−sin
( s

2
+ c

)

cos
s√
2
+

1√
2

cos
( s

2
+ c

)

sin
s√
2

]

ds,

γ2(s) =
∫ s

0

[

sin
( s

2
+ c

)

sin
s√
2
− 1√

2
cos

( s

2
+ c

)

cos
s√
2

]

ds,

γ3(s) =
∫ s

0

1√
2

cos
( s

2
+ c

)

ds.
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(A) General helix α. (B) Slant helix γ.

FIGURE 1. Slant helix γ constructed by α.

4.2. ND-normal Curves

In this subsection we define normal-direction (ND)-normal curves in E3 and give

the relationships between normal-direction curves and ND-normal curves.

A space curve whose position vector always lies in its normal plane is called nor-

mal curve [5]. Moreover, if the Frenet frame and curvatures of a space curve are

given by {T,N,B} and κ, τ, respectively, then the vector D̃(s) = τ
κ(s)T (s)+B(s) is

called modified Darboux vector of the curve [12, 13].

Let now α be a Frenet curve with Frenet frame {T,N,B} and γ a normal-direction

curve of α. The curve γ is called normal-direction normal curve (or ND-normal

curve) of α, if the position vector of γ always lies on the normal plane of its normal-

donor curve α.

The definition of ND-normal curve allows us to write the following equality,

γ(s) = m(s)N(s)+n(s)B(s), (4.1)

where m(s), n(s) are non-zero differentiable functions of s. Since γ is normal-

direction curve of α, from Corollary 1, we have
{

N = sin(
∫

τds) T̄ + cos(
∫

τds) B̄,
B = cos(

∫
τds) T̄ − sin(

∫
τds) B̄.

(4.2)

Substituting (4.2) in (4.1) gives

γ(s) =

[

msin

(∫
τds

)

+ncos

(∫
τds

)]

T̄

+

[

mcos

(∫
τds

)

−nsin

(∫
τds

)]

B̄. (4.3)
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Writing
{

ρ(s) = msin(
∫

τds)+ncos(
∫

τds) ,
σ(s) = mcos(

∫
τds)−nsin(

∫
τds) ,

(4.4)

in (4.3) and differentiating the obtained equality we obtain

T̄ = ρ′T̄ +(ρκ̄−στ̄)N̄ +σ′B̄. (4.5)

Then we have

σ = a = constant, ρ = s+b =
τ̄

κ̄
a, (4.6)

where a, b are non-zero integration constants. From (4.6), it follows that

γ(s) = a

(

τ̄

κ̄
T̄ + B̄

)

(s) = a ˜̄D(s), (4.7)

where ˜̄D is the modified Darboux vector of γ.

Now we can give the followings which characterize ND-normal curves.

Theorem 7. Let α : I → E3 be a Frenet curve in E3and γ be a normal-direction

curve of α. If γ is a ND-normal curve in E3, then we have the followings,

(i) γ is a rectifying curve in E3 whose curvatures satisfy τ̄
κ̄ = s+b

a
where a, b are

non-zero constants .

(ii) The position vector and modified Darboux vector ˜̄D of γ are linearly dependent.

Theorem 7 gives a way to construct a rectifying curve by using normal-donor curve

as follows:

Corollary 3. Let α : I → E3 be a Frenet curve in E3and γ a ND-normal curve of

α in E3. Then the position vector of γ is obtained as follows,

γ(s) =

[

(s+b)sin

(∫
τds

)

+acos

(∫
τds

)]

N(s)

+

[

(s+b)cos

(∫
τds

)

−asin

(∫
τds

)]

B(s)

(4.8)

where a, b are non-zero integration constants.

Proof. The proof is clear from (4.1), (4.4) and (4.6). �

Example 2. Let consider the general helix given by the parametrization

α(s) =
(

√

1+ s2,s, ln(s+
√

1+ s2)
)

,

and drawn in Fig 2a.
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(A) General helix α. (B) ND-normal curve γ for −π ≤ s ≤ π.

(C) ND-normal curve γ for −3π
2

≤ s ≤ 3π
2

. (D) ND-normal curve γ for −2π≤ s≤ 2π.

FIGURE 2. ND-normal curve γ constructed by α.

Frenet vectors and curvatures of the curve are

T (s) =
1√

2
√

1+ s2

(

s,
√

1+ s2,1
)

,

N(s) =
1√

1+ s2
(1,0,−s) ,

B(s) =
1√

2
√

1+ s2

(

−s,
√

1+ s2,−1
)

,

κ = τ =
1+ s2

2
,
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respectively. Then from Corollary 3, a ND-normal curve γ is obtained as follows,

γ(s) =

(

1√
1+ s2

[

(s+b)sin

(

s

2
+

s3

6
+ c

)

+acos

(

s

2
+

s3

6
+ c

)]

− s
√

2(1+ s2)

[

(s+b)cos

(

s

2
+

s3

6
+ c

)

−asin

(

s

2
+

s3

6
+ c

)]

,

− 1√
2

[

(s+b)cos

(

s

2
+

s3

6
+ c

)

−asin

(

s

2
+

s3

6
+ c

)]

,

− s√
1+ s2

[

(s+b)sin

(

s

2
+

s3

6
+ c

)

+acos

(

s

2
+

s3

6
+ c

)]

− 1
√

2(1+ s2)

[

(s+b)cos

(

s

2
+

s3

6
+ c

)

−asin

(

s

2
+

s3

6
+ c

)]

)

which is also a rectifying curve in the view of Theroem 7 and drawn in Figures 2b,

2c, 2d by choosing a = b = 1, c = 0.
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1. INTRODUCTION

Let Ap denote the class of functions f of the form

f (z) = zp +ap+1zp+1 + · · · , (1.1)

in the open unit disc E = {z : |z|< 1} with p ∈N= {1,2,3, ...}. Let S be the subclass

of A1 = A, consisting of univalent functions. In 1985, Louis de Branges de Bourcia

proved the Bieberbach conjecture, i.e., for a univalent function its nth- coefficient

is bounded by n (see [3]). The bounds for the coefficients of these functions give

information about their geometric properties. In particular, the growth and distortion

properties of a normalized univalent function are determined by the bound of its

second coefficient. The Hankel determinant of f for q ≥ 1 and n ≥ 1 (when p = 1)

was defined by Pommerenke [10] as follows and has been extensively studied.

Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

. (1.2)

One can easily observe that the Fekete-Szegő functional is H2(1) = a3 − a2
2. Fekete

and Szegő then further generalized the estimate |a3−µa2
2| with µ real and f ∈ S. Fur-

ther, sharp upper bounds for the functional H2(2) =
a2 a3

a3 a4
= a2a4−a2

3, the Hankel

determinant in the case of q = 2 and n = 2, known as the second Hankel determinant

© 2021 Miskolc University Press
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(functional), were obtained for various subclasses of univalent and multivalent ana-

lytic functions. Janteng et al. [6] have considered the functional |a2a4−a2
3| and found

a sharp upper bound for the function f in the subclass R of S, consisting of functions

whose derivative has a positive real part (also called bounded turning functions) stud-

ied by MacGregor [9] and have showed that |H2(2)| ≤
4
9
. For our discussion in this

paper, we consider the Hankel determinant in the case of q = 3 and n = p, denoted

by H3(p), given by

H3(p) =
ap ap+1 ap+2

ap+1 ap+2 ap+3

ap+2 ap+3 ap+4

. (1.3)

For f ∈ Ap, ap = 1, so that, we have

H3(p) = ap+2(ap+1ap+3 −a2
p+2)−ap+3(ap+3 −ap+1ap+2)+ap+4(ap+2 −a2

p+1)

and by applying the triangle inequality, we obtain

|H3(p)| ≤ |ap+2||ap+1ap+3−a2
p+2|+ |ap+3||ap+1ap+2−ap+3|+ |ap+4||ap+2−a2

p+1|.
(1.4)

Incidentally, all of the functionals on the right hand side of the inequality (1.4) have

known (and sharp) upper bounds except |ap+1ap+2 − ap+3|. It was known that if

f ∈ Rp, the class of p-valent bounded turning functions, then |ak| ≤
2p
k
, where k ∈

{p+1, p+2, ...} and |ap+2 −a2
p+1| ≤

2p
p+2

, with p ∈ N.

Motivated by the result obtained by Babalola [1] in finding the sharp upper bound

to the Hankel determinant |H3(1)| for the class R , in this paper we obtain an upper

bound to the functional |ap+1ap+2 − ap+3| and hence for |H3(p)|, for the function f

given in (1.1), belonging to certain subclass of p-valent analytic functions, as follows.

Definition 1 ([13]). A function f ∈ Ap is said to be in the class Ip(β)(β is real), if

it satisfies the condition

Re

{

(1−β)
f (z)

zp
+β

f ′(z)

pzp−1

}

> 0, z ∈ E. (1.5)

(1) Choosing β = 1 and p = 1, we obtain I1(1) = R .

(2) Selecting β = 1, we get Ip(1) = Rp.

2. PRELIMINARY RESULTS

In this section some preliminary lemmas are stated which are required for proving

our results.

Let P denote the class of functions consisting of p, such that

p(z) = 1+ c1z+ c2z2 + c3z3 + ...= 1+
∞

∑
n=1

cnzn
, (2.1)

which are analytic in the open unit disc E and satisfy Rep(z)> 0 for any z ∈ E. Here

p(z) is called Carathéodory function [4].
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Lemma 1 ([11, 12]). If p ∈ P , then |ck| ≤ 2, for each k ≥ 1 and the inequality is

sharp for the function p(z) = 1+z
1−z

.

Lemma 2 ([5]). The power series for p(z)= 1+∑∞
n=1 cnzn given in (2.1) converges

in the open unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn

c−1 2 c1 · · · cn−1

c−2 c−1 2 · · · cn−2

...
...

...
...

...

c−n c−n+1 c−n+2 · · · 2

, n = 1,2,3....

and c−k = ck, are all non-negative. They are strictly positive except for p(z) =

∑m
k=1 ρk p0(e

itk z), with ∑m
k=1 ρk = 1, tk real and tk 6= t j, for k 6= j, where p0(z) =

1+z
1−z

;

in this case Dn > 0 for n < (m−1) and Dn
.
= 0 for n ≥ m.

We may assume without restriction that c1 ≥ 0. Using Lemma 2, for n = 2 and

n = 3, for some complex values x and z with |x| ≤ 1 and |z| ≤ 1 respectively, we have

2c2 = c2
1 + x(4− c2

1) (2.2)

and 4c3 = c3
1 +2c1(4− c2

1)x− c1(4− c2
1)x

2 +2(4− c2
1)(1−|x|2)z. (2.3)

To obtain our results, we refer to the classical method devised by Libera and Zlotkiewicz

[8], which is used by many authors in the literature.

3. MAIN RESULTS

Theorem 1. If f ∈ Ip(β) (0 < β ≤ 1) with p ∈ N, then

|ap+1ap+2 −ap+3| ≤
2p

p+3β
.

Proof. For f = zp +∑∞
n=p+1 anzn ∈ Ip(β), by virtue of Definition 1, there exists an

analytic function p ∈ P in the open unit disc E with p(0) = 1 and Rep(z) > 0 such

that

(1 − β)
f (z)

zp
+ β

f ′(z)

pzp−1
= p(z) ⇔ (1 − β)p f (z) + β f ′(z) = pzp p(z). (3.1)

(1−β)p

{

zp +
∞

∑
n=p+1

anzn

}

+β

{

pzp−1 +
∞

∑
n=p+1

nanzn−1

}

= pzp

{

1+
∞

∑
n=1

cnzn

}

.

Upon simplification, we obtain

(p+β)ap+1zp+1+(p+2β)ap+2zp+2+(p+3β)ap+3zp+3+(p+4β)ap+4zp+4+ ...

= pc1zp+1 + pc2zp+2 + pc3zp+3 + pc4zp+4 + .... (3.2)
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Equating the coefficients of zp+1, zp+2, zp+3 and zp+4 respectively in 3.2, we have

ap+1 =
pc1

p+β
; ap+2 =

pc2

p+2β
; ap+3 =

pc3

p+3β
and ap+4 =

pc4

p+4β
. (3.3)

Substituting the values of ap+1, ap+2 and ap+3 from (3.3) in the functional

|ap+1ap+2 −ap+3|, after simplifying, we get

|ap+1ap+2 −ap+3|=
p

(p+β)(p+2β)(p+3β)
|p(p+3β)c1c2 − (p+β)(p+2β)c3| .

The above expression is equivalent to

|ap+1ap+2 −ap+3|=
p

(p+β)(p+2β)(p+3β)
|d1c1c2 +d2c3| , (3.4)

where d1 = p(p+3β); d2 =−(p+β)(p+2β). (3.5)

Substituting the values of c2 and c3 from (2.2) and (2.3) respectively from Lemma 2

on the right-hand side of (3.4), we have

|d1c1c2 +d2c3|= |d1c1 ×
1

2
{c2

1 + x(4− c2
1)}+d2

×
1

4
{c3

1 +2c1(4− c2
1)x− c1(4− c2

1)x
2 +2(4− c2

1)(1−|x|2)z}|.

Using the facts |z| ≤ 1 and |xa + yb| ≤ |x||a|+ |y||b|, where x,y,a and b are real

numbers, which simplifies to

4 |d1c1c2 +d2c3| ≤ [|(2d1 +d2)||c1|
3 +2|d2||(4− c2

1)|+2|(d1 +d2)||c1||(4− c2
1)||x|

+ |d2||(c1 +2)||(4− c2
1)||x|

2]. (3.6)

From (3.5), we can write

2d1 +d2 = p2 +3pβ−2β2; d1 +d2 =−2β2
. (3.7)

Substituting the calculated values from (3.7) along with (3.5) on the right-hand side

of (3.6), we have

4|d1c1c2 +d2c3| ≤ [(p2 +3pβ−2β2)c3
1 +2(p+β)(p+2β)(4− c2

1)

+4β2c1(4− c2
1)|x|+(c1 +2)(p+β)(p+2β)(4− c2

1)|x|
2].

Since c1 = c ∈ [0,2], noting that c1 −a ≤ c1 +a, where a ≥ 0 and replacing |x| by

µ on the right-hand side of the above inequality, we get

4|d1c1c2 +d2c3| ≤ [(p2 +3pβ−2β2)c3 +2(p+β)(p+2β)(4− c2)+4β2c(4− c2)µ

+(c−2)(p+β)(p+2β)(4− c2)µ2] = F(c,µ), (3.8)

for 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2, where

F(c,µ) = (p2 +3pβ−2β2)c3 +2(p+β)(p+2β)(4− c2)+4β2c(4− c2)µ

+(c−2)(p+β)(p+2β)(4− c2)µ2
. (3.9)
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Next, we need to find the maximum value of the function F(c,µ) on the closed region

[0,2]× [0,1]. Differentiating F(c,µ) given in (3.9) partially with respect to µ and c

respectively, we obtain

∂F

∂µ
= 4β2c(4− c2)+2(p+β)(p+2β)(4c− c3 −8+2c2)µ. (3.10)

and

∂F

∂c
= 3(p2 +3pβ−2β2)c2 −4c(p+β)(p+2β)+16β2µ−12β2c2µ

+(p+β)(p+2β)(4−3c2 +4c)µ2
. (3.11)

For the extreme values of F(c,µ), consider

∂F

∂µ
= 0 and

∂F

∂c
= 0. (3.12)

In view of (3.12), on solving the equations in (3.10) and (3.11), we obtain the only

critical point for the function F(c,µ) which lies in the closed region [0,2]× [0,1] is

(0,0). At the critical point (0,0), we observe that

∂2F

∂µ2
=−4(p+β)(p+2β)< 0;

∂2F

∂c2
=−16(p+β)(p+2β)< 0;

∂2F

∂c∂µ
= 16β2;

[

(

∂2F

∂µ2

)(

∂2F

∂c2

)

−

(

∂2F

∂c∂µ

)2
]

= 64[(p+β)2(p+2β)2 −4β4]> 0,

with p ∈ N and 0 < β ≤ 1.

Therefore, the function F(c,µ) has maximum value at the point (0,0), from (3.9),

it is given by

Gmax = F(0,0) = 8(p+β)(p+2β). (3.13)

Simplifying the expressions (3.4) and (3.8) together with (3.13), we obtain

|ap+1ap+2 −ap+3| ≤
2p

p+3β
. (3.14)

This completes the proof of our theorem. �

Remark 1. Choosing p = 1 and β = 1 in (3.14), we obtain |a2a3 − a4| ≤
1
2
, this

inequality is sharp and coincides with the result of Bansal et al. [2].
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Theorem 2. If f ∈ Ip(β) (0 < β ≤ 1) with p ∈ N then

|ap+2 −a2
p+1| ≤

2p

p+2β

and the inequality is sharp for the values c1 = c = 0, c2 = 2 and x = 1.

Proof. On substituting the values of ap+1 and ap+2 from (3.3) in the functional

|ap+2 −a2
p+1|, which simplifies to

|ap+2 −a2
p+1|=

p

(p+β)2(p+2β)

∣

∣(p+β)2c2 − p(p+2β)c2
1

∣

∣ . (3.15)

The above expression is equivalent to

|ap+2 −a2
p+1|=

p

(p+β)2(p+2β)

∣

∣d1c2 +d2c2
1

∣

∣ , (3.16)

where d1 = (p+β)2 and d2 =−p(p+2β). (3.17)

Substituting the value of c2 from (2.2) of Lemma 2, applying the triangle inequality

on the right-hand side of (3.16), after simplifying, we get

2
∣

∣d1c2 +d2c2
1

∣

∣≤
[

|(d1 +2d2)||c1|
2 + |d1||

(

4− c2
1

)

||x|
]

. (3.18)

From (3.17), we can write

d1 +2d2 =−(p2 +2pβ−β2); d1 = (p+β)2
. (3.19)

Substituting the calculated values from (3.19), taking c1 = c ∈ [0,2], replacing |x| by

µ on the right-hand side of (3.18), we obtain

2
∣

∣d1c2 +d2c2
1

∣

∣≤
[

(p2 +2pβ−β2)c2 +(p+β)2
(

4− c2
)

µ
]

= F(c,µ) , 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2, (3.20)

where F(c,µ) = (p2 +2pβ−β2)c2 +(p+β)2
(

4− c2
)

µ. (3.21)

Now, we maximize the function F(c,µ) on the closed region [0,2]× [0,1]. Let us

suppose that there exists a maximum value for F(c,µ) at any point in the interior of

the closed region [0,2]× [0,1]. Differentiating F(c,µ) given in (3.21) partially with

respect to µ, we obtain

∂F

∂µ
= (p+β)2

(

4− c2
)

(3.22)

For 0< β≤ 1, for fixed values of c with 0< c< 2 and p∈N, from (3.22), we observe

that ∂F
∂µ

> 0. Therefore, F(c,µ) which is independent of µ becomes an increasing

function of µ and hence it cannot have a maximum value at any point in the interior

of the closed region [0,2]× [0,1]. The maximum value of F(c,µ) occurs only on the

boundary i.e., when µ = 1. Therefore, for fixed c ∈ [0,2], we have

max
0≤µ≤1

F(c,µ) = F(c,1) = G(c). (3.23)
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In view of (3.23), replacing µ by 1 in (3.21), it simplifies to

G(c) =−2β2c2 +4(p+β)2
, (3.24)

G′(c) =−4β2c. (3.25)

From the expression (3.25), we observe that G′(c) ≤ 0 for each c ∈ [0,2] and for

every β with 0 < β ≤ 1. Therefore, G(c) becomes a decreasing function of c, whose

maximum value occurs at c = 0 only and from (3.24), it is given by

Gmax = G(0) = 4(p+β)2
. (3.26)

Simplifying the expressions (3.16), (3.20) along with (3.26), we obtain

|ap+2 −a2
p+1| ≤

2p

p+2β
. (3.27)

This completes the proof of our theorem. �

Remark 2. If p = 1 and β = 1 in (3.27) then |a3 − a2
2| ≤

2
3
, this result coincides

with that of Babalola [1].

Theorem 3. If f ∈ Ip(β) (0 < β ≤ 1) then

|ap+k| ≤
2p

p+ kβ
, for p, k ∈ N. (3.28)

Proof. Using the fact that |cn| ≤ 2, for n ∈ N, with the help of c2 and c3 values

given in (2.2) and (2.3) respectively, together with the values obtained in (3.3), we

get |ap+k| ≤
2p

p+kβ , with p ,k ∈ N. This completes the proof of our theorem. �

Substituting the results of Theorems 1, 2, 3 together with the known inequality

|ap+1ap+3 −a2
p+2| ≤

[

2p
p+2β

]2

(see [7]) in the inequality given in (1.4), we obtain the

following Corollary.

Corollary 1. If f ∈ Ip(β) (0 < β ≤ 1) with p ∈ N then

|H3(p)| ≤ 4p2

[

2p

(p+2β)3
+

1

(p+3β)2
+

1

(p+2β)(p+4β)

]

. (3.29)

Remark 3. In particular for the values p = 1 and β = 1 in (3.29), which simplifies

to |H3(1)| ≤
439
540

. This result coincides with that of Bansal et al. [2].
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Abstract. The investigation of stabilities of various types of equations is an interesting and

evolving research area in the field of mathematical analysis. Recently, there are many research

papers published on this topic, especially mixed type and multiplicative inverse functional equa-

tions. We propose a new functional equation in this study which is quite different from the

functional equations already dealt in the literature. The main feature of the equation dealt in this

study is that it has two different solutions, namely additive and multiplicative inverse functions.

We also prove that the hyperstability results hold good for this equation.
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1. INTRODUCTION

The analysis of stability of Functional Equation (FE) is due to the celebrated query

presented in [32]. An excellent response was presented in [15]. This method of prov-

ing stability result of FE is termed as Hyers-Ulam (H-U) stability which involves a

small positive constant as upper bound. Later, this result influenced many research-

ers to solve stability problems via different directions in [14,20,21] and these results

are respectively called as generalized Hyers-Ulam-Rassias stability, Ulam-Gavruta-

Rassias (U-G-R) stability and Hyers-Ulam-Rassias (H-U-R) stability.

For the first time, the hyperstability results associated with the ring homomorph-

isms were obtained in [5]. Also, the hyperstability of a class of linear functional

equations were dealt in [18]. There are a number of published papers associated with

hyperstability results and stability results via fixed point technique of various FEs,

one may refer to [1–3, 6–10, 13, 17, 19, 25].

The first two authors are supported by The Research Council, Oman (Under Project proposal ID:

BFP/RGP/CBS/18/099).

© 2021 Miskolc University Press
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On the other hand, for the first time in this theory, a rational FE of the form

r(x+ y) =
r(x)r(y)

r(x)+ r(y)
(1.1)

was introduced and studied its stability results in [23], where r : R⋆ −→ R is a map-

ping. It is interesting to note that the rational function f (x) = c
x
, c being a constant,

is a solution of equation (1.1). Motivated by the equation (1.1), there are numerous

papers published on the problems of solving stability of various multiplicative in-

verse FEs of the type reciprocal-quadratic, reciprocal-cubic, reciprocal-quintic, etc.,

and radical functional equation. The detailed information regarding these results are

available in [4, 11, 12, 16, 22, 24, 26–31].

In an algebraic polynomial equation g(x) = 0, if we replace the variable x by 1
x

and if we get the same equation, then it is called a reciprocal equation. Also, if α is a

root of g(x) = 0, then 1
α is also a root of g(x) = 0.

These concepts together with the results of equation (1.2) instigated us to deal with

a new FE of the form

h

(
m

∑
j=1

u j

)

+h







m

∏
j=1

u j

m

∑
j=1

m

∏
k=1,k 6= j

uk







=

m

∏
j=1

h(u j)

m

∑
j=1

m

∏
k=1,k 6= j

h(uk)
+

m

∑
j=1

h(u j). (1.2)

One can easily verify that the functions h(u) = u and h(u) = 1
u

are solutions of equa-

tion (1.2). We present preliminaries and some basic results connected with (1.2). We

also establish hyperstability results of (1.2) in the setting of real numbers.

Thoughout this paper, let N, N0, Nm0
, R and R

⋆ denote the set of all natural num-

bers, the set of all nonnegative integers, the set of all integers greater than or equal to

m0, the set of all real numbers and the set of all non-zero real numbers, respectively.

2. PRELIMINARIES

Here we recall some significant concepts related with hyperstability and fixed point

theorem [8] which are useful to prove our main results of this investigation. The

ensuing three propositions are significant in obtaining the hyperstability results.

(P1) Let A and B be a nonempty set and a Banach space, respectively.

Let h1,h2, . . . ,hk : A −→ A and Q1,Q2, . . . ,Qk : A −→R+ be given mappings.

(P2) Let an operator η : BA −→ BA satisfies the inequality

‖ηα(u)−ηβ(u)‖ ≤
k

∑
i=1

Qi(u)‖α(hi(u))−β(hi(u))‖ (2.1)

for all α,β ∈ BA, u ∈ A.
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(P3) The mapping Γ : RA
+ −→ R

A
+ be defined by

Γ∆(u) =
k

∑
i=1

Qi(u)∆(hi(u)) , ∆ ∈ R
A
+, u ∈ A. (2.2)

The subsequent theorem is employed in our investigation to claim the persistence

of the distinct fixed point operator η : BA −→ BA.

Theorem 1. Let the propositions (P1)–(P3) be substantial. Suppose the mappings

ψ : A −→ R+ and let φ : A −→ B satisfy the ensuing two conditions:

‖ηφ(u)−φ(u)‖ ≤ ψ(u), u ∈ A, (2.3)

ψ⋆(u) =
∞

∑
n=0

Γnψ(u)< ∞, u ∈ A. (2.4)

Then, there exists a unique fixed point χ of η such that

‖ψ(u)−χ(u)‖ ≤ ψ⋆(u), u ∈ A. (2.5)

Furthermore,

χ(u) = lim
n→∞

ηnψ(u) (2.6)

3. BASIC SIGNIFICANT RESULTS CONNECTED WITH EQUATION (1.2)

The following definition will be useful to prove our main results.

Definition 1. A function h : R⋆ −→ R is said to be a Rassias-Ravi reciprocal

function if it satisfies the following general FE:

h(mu)+h
( u

m

)

=
m2 +1

m
h(u) (3.1)

for all u ∈ R
⋆ and any integer m.

Remark 1. From the above definition, it is clear that (1.2) satisfies (3.1) by plug-

ging uk = u, for k = 1,2, . . . ,m in (1.2). Hence (1.2) is said to be Rassias-Ravi recip-

rocal functional equation.

Remark 2. When m = 2, (1.2) produces the following equation in two variables:

h(u1 +u2)+h

(
u1u2

u1 +u2

)

=
h(u1)h(u2)

h(u1)+h(u2)
+ [h(u1)+h(u2)].

When m = 3, (1.2) induces the ensuing equation in three variables:

h(u1 +u2 +u3)+h

(
u1u2u3

u1u2 +u1u3 +u2u3

)

=
h(u1)h(u2)h(u3)

h(u1)h(u2)+h(u1)h(u3)+h(u2)h(u3)
+ [h(u1)+h(u2)+h(u3)].
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Remark 3. In this investigation, we assume that

m

∑
j=1

u j,

m

∑
j=1

m

∏
k=1,k 6= j

uk,

m

∑
j=1

m

∏
k=1,k 6= j

h(uk) 6= 0,

for all u j ∈ R
⋆, j = 1,2, . . . ,m.

Theorem 2. A mapping h : R⋆ −→ R satisfying (1.2) also satisfies

h(mpu)+h
( u

mp

)

=
m2p +1

mp
h(u) (3.2)

for all u ∈ R
⋆ and p > 0 is an integer.

Proof. Firstly, let us consider u for every u j, j = 1,2, . . . ,m in (1.2) to obtain

h(mu)+h
( u

m

)

=
m2 +1

m
h(u) (3.3)

for all u ∈ R
⋆. Next, reinstating u by mu in 3.3 and then multiplying by m2+1

m
on its

both sides, we get

m2 +1

m
h(m2u)+

m2 +1

m
h(u) =

(m2 +1)2

m2
h(mu) (3.4)

for all u ∈ R
⋆. On the other hand, replacing u by u

m
in (3.3) and then multiplying by

m2+1
m

on its both sides, we obtain

m2 +1

m
h(u)+

m2 +1

m
h
( u

m2

)

=
(m2 +1)2

m2
h
( u

m

)

(3.5)

for all u ∈ R
⋆. Now, adding (3.4) with (3.5) and simplifying further, we arrive at

h(m2u)+h
( u

m2

)

=
m4 +1

m2
h(u) (3.6)

for all u ∈ R
⋆. Again, plugging u by mu in (3.6), we get

h(m3u)+h
( u

m

)

=
m4 +1

m2
h(mu) (3.7)

for all u ∈ R
⋆. Also, substituting u by u

m
in (3.6), we obtain

h(mu)+h
( u

m3

)

−
m4 +1

m2
h
( u

m

)

(3.8)

for all u ∈ R
⋆. Now, summing (3.7) and (3.8) and simplifying further to arrive at

h(m3u)+h
( u

m3

)

=
m6 +1

m3
h(u)

for all u ∈ R
⋆. Proceeding with similar arguments and employing mathematical in-

duction, one can find for any p > 0 integer,

h(mpu)+h
( u

mp

)

=
m2p +1

mp
h(u)
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for all u ∈ R
⋆. This completes the proof. �

4. HYPERSTABILITY OF EQUATION (1.2)

In this section, by employing the notions and fixed point theorem proposed in [8],

we establish the hyperstability of (1.2). For the sake of of convenience, let us define

the difference operator Dh(u1, . . . ,um) : R∗×·· ·×R
∗

︸ ︷︷ ︸

(m times)

−→ R as follows:

Dh(u1,u2, . . . ,um)

= h

(
m

∑
j=1

u j

)

+h

(

∏m
j=1 u j

∑m
j=1 ∏m

k=1,k 6= j uk

)

−
∏m

j=1 h(u j)

∑m
j=1 ∏m

k=1,k 6= j h(uk)
−

m

∑
j=1

h(u j)

for all u1, . . . ,um ∈ R
⋆.

Theorem 3. Let k > 0 and p < 0 be fixed constants. Let there exists n0 ∈ N with

nu ∈R
⋆ for u ∈R

⋆, n ∈Nn0
. Suppose a mapping h : R⋆ −→R satisfies the inequality

|Dh(u1,u2 . . . ,um)| ≤ k
m

∑
j=1

|u j|
p (4.1)

for all u1, . . . ,um ∈ R
⋆. Then there exists a unique Rassias-Ravi reciprocal function

H : R⋆ −→ R satisfying (1.2) and

|H(u)−h(u)| ≤
m2k

1−m1+p −m1−p +m2
|u|p (4.2)

for all u ∈ R
⋆.

Proof. Firstly, let us plug u j = u, for j = 1,2, . . . ,m in (4.1) and then multiply by
m

m2+1
on its both sides to get

∣
∣
∣
∣

m

m2 +1
h(mu)+

m

m2 +1
h
( u

m

)

−h(u)

∣
∣
∣
∣
≤

m2k

m2 +1
|u|p (4.3)

for all u ∈ R
⋆. We can find that there exists an m0 ∈ Nm0

such that

mp

(m2 +1)p
< 1 for m ≥ m0. (4.4)

Let m ∈ Nm0
be fixed integer. Let us denote

ηα(u) =
m

m2 +1
α(mu)+

m

m2 +1
α
( u

m

)

, u ∈ R, α ∈ R
R
⋆

, (4.5)

ψ(u) =
m2k

m2 +1
|u|p , u ∈ R

⋆
. (4.6)

Using (4.5) and (4.6), inequality (4.3) can be written as

|ηh(u)−h(u)| ≤ ψ(u), u ∈ R
⋆
. (4.7)
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The operator is defined by the following:

Γρ(u) =
m

m2 +1
ρ(mu)+

m

m2 +1
ρ
( u

m

)

, ρ ∈ R
R
⋆

+ , u ∈ R
⋆ (4.8)

has the form which is defined in (P3) with k = 2 and h1(u) = mu, h2(u) =
u
m

and

Q1(u) = Q2(u) =
m

m2+1
for u ∈ R

⋆. Also, for each α,β ∈ R
R
⋆

, u ∈ R
⋆,

|ηα(u)−ηβ(u)|=

∣
∣
∣
∣

m

m2 +1
α(mu)+

m

m2 +1
α
( u

m

)

−
m

m2 +1
β(mu)−

m

m2 +1
β
( u

m

)
∣
∣
∣
∣

≤
m

m2 +1
|(α−β)(mu)|+

m

m2 +1

∣
∣
∣(α−β)

( u

m

)∣
∣
∣

≤
2

∑
i=1

Qi(u) |(α−β)hi(u)| . (4.9)

Since
m

m2 +1

(
m2p +1

mp

)

< 1, we have

ψ⋆(u) =
∞

∑
n=0

Γnψ(u) =
∞

∑
n=0

m2k

m2 +1

(
m

m2 +1

(
m2p +1

mp

))n

|u|p

=
m2k

1−m1+p −m1−p +m2
|u|p . (4.10)

Owing to Theorem 1, there exists a unique solution H : R⋆ −→ R of the equation

H(u) =
m

m2 +1
h(mu)+

m

m2 +1
h
( u

m

)

(4.11)

such that the inequality (4.2) holds. Moreover,

H(u) = lim
n→∞

ηnh(u). (4.12)

In order to show that H satisfies (1.2), we find that

|ηnDh(u1,u2, . . . ,um)| ≤ k

(
m

m2 +1

)n(
m2p +1

mp

)n m

∑
j=1

|u|p (4.13)

for all u1, . . . ,um ∈ R
⋆, and n ∈ N0. Suppose n = 0, then (4.13) becomes (4.1). So,

let us fix n ∈ N0 and suppose that (4.13) holds for n and u1, . . . ,um ∈ R
⋆. Then

∣
∣ηn+1Dh(u1,u2, . . . ,um)

∣
∣

=
∣
∣
∣

m

m2 +1
ηnh

(
m

∑
j=1

mu j

)

+
m

m2 +1
ηnh

(
m

∑
j=1

u j

m

)

+
m

m2 +1
ηnh

(

∏m
j=1 mu j

∑m
j=1 ∏m

k=1,k 6= j muk

)

+
m

m2 +1
ηnh

(

∏m
j=1

u j

m

∑m
j=1 ∏m

k=1,k 6= j
uk

m

)
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−
m

m2 +1
ηn

(

∏m
j=1 h(mu j)

∑m
j=1 ∏m

k=1,k 6= j h(muk)

)

−
m

m2 +1
ηn

(

∏m
j=1 h

( u j

m

)

∑m
j=1 ∏m

k=1,k 6= j h
(

uk

m

)

)

−
m

m2 +1
ηn

m

∑
j=1

h(mu j)−
m

m2 +1
ηn

m

∑
j=1

h
(u j

m

)∣
∣
∣

≤ k

(
m

m2 +1

)n(
m2p +1

mp

)n
[

m

m2 +1

m

∑
j=1

∣
∣u j

∣
∣p +

m

m2 +1

m

∑
j=1

∣
∣
∣
u j

m

∣
∣
∣

p

]

≤ k

(
m

m2 +1

)n+1(
m2p +1

mp

)n+1 m

∑
j=1

∣
∣u j

∣
∣p . (4.14)

Hence through induction method, the above inequality (4.14) implies that (4.13)

holds good for all u j ∈R
⋆, for j = 1,2, . . . ,m. By letting n to ∞ in (4.13), we can find

that H satisfies (1.2). This completes the proof. �

In the sequel, we provide two examples for the non-stability of equation (1.2).

Example 1. Let A = [−1,1]\{0} and let h : A −→R be defined by h(u) = u, u ∈ A.

Then for u j ∈ A, j = 1,2, . . . ,m such that

m

∑
j=1

u j,

m

∑
j=1

u j

m
,

m

∏
j=1

mu j,

m

∏
j=1

u j

m
,

∏m
j=1 mu j

∑m
j=1 ∏m

k=1,k 6= j muk

,
∏m

j=1
u j

m

∑m
j=1 ∏m

k=1,k 6= j
uk

m

∈ A,

|Dh(u1,u2, . . . ,um)| ≤
m

∑
j=1

∣
∣u j

∣
∣p ,

with p < 0, but h does not satisfy (1.2).

The following theorem contains the hyperstability involving product of different

powers of norms. The proof is obtained by similar arguments as in Theorem 3. Hence

we omit the proof and provide only the statement.

Theorem 4. Let k > 0 be a fixed constant. Let p j ∈ R, j = 1,2, . . . ,m such that

p = ∑m
j=1 pi < 0. Let h : R⋆ −→ R satisfy the following inequality

|Dh(u1,u2, . . . ,um)| ≤ k
m

∏
j=1

∣
∣u j

∣
∣p j

for all u j ∈ R
⋆, j = 1,2, . . . ,m. Then there exists a unique Rassias-Ravi reciprocal

function H : R⋆ −→ R satisfying (1.2) and

|H(u)−h(u)| ≤
mk

1−m1+p −m1−p +m2
|u|p

for all u ∈ R
⋆.
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5. CONCLUSION

So far various forms of additive FEs and multiplicative inverse FEs are considered

in this research field to obtain their stability results through different methods. For

the first time, a new FE with additive function and multiplicative inverse function is

proposed in this paper and its hyperstability results are proved via fixed point method.
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Abstract. Neutrosophic set theory as a generalization of the fuzzy set theory and intuitionistic

fuzzy set theory is an effective tool to deal with inconsistent, imprecise, and vague information.

TOPSIS is a multiple attribute method to identify solutions from a finite set of alternatives based

upon simultaneous minimization of distance from an ideal point and maximization of distance

from a nadir point. In this paper, we first develop a new Hamming distance between single-valued

neutrosophic numbers and then present an extension of the TOPSIS method for multi-attribute

group decision-making (MAGDM) based on single-valued neutrosophic sets, where the inform

ation about attribute values and attribute weights are expressed by decision-makers based on

neutrosophic numbers.
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1. SECTION HEAD

Multi-attribute decision making (MADM) as a component of decision science is

a substantial and essential part of daily life which can be applied in various areas,

such as society, economics, management, military, and engineering technology. In

most cases, it is intricate for decision-makers to accurately reveal a preference when

solving MADM problems with imprecise, vague or incomplete information. Under

these conditions, in the past few decades, various types of sets, such as fuzzy sets

[32], interval-valued fuzzy sets [33], intuitionistic fuzzy sets [1, 3], interval-valued

intuitionistic fuzzy sets [2], type 2 fuzzy sets [8, 11], type n fuzzy sets [8], hesitant

fuzzy sets [29] and neutrosophic set theory [26], have been introduced and widely

used in the solution of significant decision-making problems. The neutrosophic set

theory which is an extension of the intuitionistic fuzzy set provides a practical tool to

deal with indeterminate and inconsistent information that exist commonly in the real

conditions. A given neutrosophic set such as N has three independent components,

This work is supported by the National Natural Science Foundation (NSF) of China (11901111).

© 2021 Miskolc University Press
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namely the truth membership TN(x), the indeterminacy membership IN(x) and falsity-

membership FN(x).
The technique for order performance by similarity to ideal solution (TOPSIS) was

first developed by Hwang and Yoon [11] for solving a MADM problem. It bases upon

the concept that the chosen alternative should have the shortest distance from the

positive ideal solution (PIS) and the farthest from the negative ideal solution (NIS).

In the process of TOPSIS, the performance ratings and the weights of the criteria are

given as crisp values. In recent years a lot of MADM methods [4, 14–16, 30, 31] and

multi-attribute group decision making (MAGDM) methods [6, 17, 19] based on the

extension of the TOPSIS method have been proposed.

In order to evaluate human resources, Jin et al. [14] introduced an extended TOP-

SIS method for MADM based on intuitionistic fuzzy sets where the attribute values

given by decision-makers are the intuitionistic fuzzy numbers. Wei and Liu [31]

presented an extended TOPSIS method based on uncertain linguistic variables to

manage high technological risks. In order to resolve MADM problems, Liu in [16]

presents an extension of the TOPSIS method where the weights and decision values

of the alternatives are considered as interval vague values. Liu and Su [15] pro-

posed an extended TOPSIS based on trapezoid fuzzy linguistic numbers and present

a method for determining attribute weights. Rădulescu. C. and Rădulescu. I. [24] by

modifying the variable ρ in the Minkowski distance measure proposed an extended

TOPSIS method for ranking cloud service providers. Verma et al. [30] proposed

an interval-valued intuitionistic fuzzy TOPSIS method for solving a facility location

problem. Balin [4] proposed an extension of TOPSIS based on interval-valued spher-

ical fuzzy sets to select the most effective stabilizing system for naval ships. In [6]

Chen proposed a symmetric approach to extend the TOPSIS to the fuzzy environ-

ment for MAGDM problems in which the weights of various attributes and ratings of

alternatives in regard to the different attributes indicated by linguistic variables. By

defining a distance formula of generalized interval-valued fuzzy numbers in [17] Liu

proposed an extended TOPSIS method for MAGDM problems where the attribute

values and weights given by different decision-makers are all generalized interval-

valued fuzzy numbers. In this respect, to choose adequate security mechanisms in e-

business processes, Mohammadi et al. [19] proposed a fuzzy TOPSIS method based

on group recommendation.

In this research, we first develop a distance measure to calculate the distance

between single-valued neutrosophic numbers and then present an extended TOPSIS

method for MAGDM under the neutrosophic environment where the attribute values

and weights given by decision-makers (DMs) are represented by single-valued neut-

rosophic numbers (SVNNs). The key of our proposed method is that the different

neutrosophic decision matrices presented by different decision-makers are converted

into a single matrix and create an aggregated group decision matrix. The remaining

of this research is marshaled as follows: in the next section, we will briefly review the
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basic concepts of neutrosophic sets, the operation rules of single-valued neutrosophic

sets, and the distance between them. Section 3 presents a distance measure to calcu-

late the distance between SVNNs and describes the steps of the proposed method to

rank the alternatives. Section 4 gives a numerical example to explain the validity of

the proposed method. The study is concluded in Section 5.

2. PRELIMINARIES

This section provides a brief review of particular preliminaries regarding neutro-

sophic sets, the distance between neutrosophic sets (NSs) and some other important

concepts.

Definition 1 ([22, 27]). A neutrosophic set (NS) N in a domain X(finite uni-

verse of objectives) can be represented by TN : X → ]0−,1+[ , IN : X → ]0−,1+[ and

FN : X → ]0−,1+[ that satisfy the condition 0− ≤ TN(x)+ IN(x)+FN(x)≤ 3+∀x ∈ X .

Where TN(x), IN(x) and FN(x) denote the truth, indeterminacy and falsity member-

ship functions, respectively.

Definition 2 ([20,21]). A neutrosophic set N is contained in another neutrosophic

set M, if and only if:

In f TN(x)≤ In f TM(x),

SupTN(x)≤ SupTM(x),

In f IN(x)≥ In f IM(x),

SupIN(x)≥ SupIM(x),

In f FN(x)≥ In f FM(x),

SupFN (x)≥ SupFM (x) ,

(2.1)

for all x ∈ X .

Definition 3 ([25]). The complement of a neutrosophic set N is denoted by Nc and

can be defined as T c
N(x) = {1}⊖TN(x), Ic

N(x) = {1}⊖IN(x) and Fc
N(x) = {1}⊖FN(x)

for all x ∈ X .

Definition 4 ([18, 28]). Let X be a domain. A single-valued neutrosophic set

(SVNS) N in the domain X can be denoted as N = {x,TN(x), IN(x),FN(x);x ∈ X},
where TN : X → [0,1], IN : X → [0,1] and FN : X → [0,1] are three maps in X that sat-

isfy the condition 0 ≤ TN(x)+FN(x)+ IN(x)≤ 3 ∀x ∈ X . The numbers TN(x), FN(x)
and IN(x) are the degree of truth, falsity and indeterminacy membership of element x

to N, respectively.

Remark 1. For a SVNS N, the trinary (TN(x), IN(x),FN(x)) is called a single-

valued neutrosophic number (SVNN). For convenience, the trinary (TN(x), IN(x),
FN(x)) is often denoted by (T, I,F).
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Definition 5 ([9, 18]). Let x = (T1, I1,F1) and y = (T2, I2,F2) be two SVNNs. The

mathematical operations between x and y are defined as follows:

I. x⊕ y = (T1 +T2 −T1T2, I1I2,F1F2) , (2.2)

II. x⊗ y = (T1T2, I1 + I2 − I1I2,F1 +F2 −F1F2) , (2.3)

III. λx =
(

1− (1−T1)
λ
, Iλ

1 ,F
λ

1

)

,λ > 0, (2.4)

IV. xλ =
(

T λ
1 ,1− (1− I1)

λ
,1− (1−F1)

λ
)

,λ > 0. (2.5)

Definition 6 ([10, 13]). The complement of a SVNS N is denoted by Nc and is

defined as T c
N(x) = FN(x), Ic

N(x) = 1− I(x) and Fc
N(x) = TN(x) for all x ∈ X . Therefore

[Nc = {x,FN(x),1− IN(x),TN(x);x ∈ X}.]

Definition 7 ([7,12]). Let N = {x,TN(x), IN(x),FN(x);x ∈ X} and M = {x,TM(x),
IM(x),FM(x);x ∈ X} be two single-valued neutrosophic sets, the Hamming distance

between N and M is defined as follow:

dH(x,y) =
1

6
(|TN(x)−TM(x)|+ |IN(x)− IM(x)|+ |FN(x)−FM(x)|) , (2.6)

also, the Euclidian distance between N and M is defined as follow:

dE(N,M) =

√

1

6
((TN(x)−TM(x))2 +(IN(x)− IM(x))2 +(FN(x)−FM(x))2) . (2.7)

Definition 8 ([5, 23]). d(N,M) is said to be a distance measure between neutro-

sophic sets if it satisfies the following properties:

P1: d(N,M)≥ 0.

P2: d(N,M) = 0 if and only if N = M for all N,M ∈ NSs.

P3: d(N,M) = d(M,N).
P4: If N ⊆ M ⊆ O where O ∈ NSs in X then: d(N,O) ≥ d(N,M) and

d(N,O)≥ d(M,O).

3. THE PROPOSED METHOD

In this section, we first propose a new Hamming distance based on the Hausdorff

metric between single-valued neutrosophic numbers. Then we will use this distance

to present a new multi-attribute group decision-making method (MAGDM) based on

the combination of neutrosophic sets and extended TOPSIS method.

3.1. Extended Hausdorff distance

Let X = {x1,x2, ...,xn} be a finite universe of objectives. Consider two neutro-

sophic sets N and M in X where N = {xi,TN(xi), IN(xi),FN(xi);xi ∈ X} and

M = {xi,TM(xi), IM(xi) ,FM(xi);xi ∈ X}. Then denote

d(N,M) =
1

n

n

∑
i=1

[
(|TN(xi)−TM(xi)|+ |IN(xi)− IM(xi)|+ |FN(xi)−FM(xi)|)

6
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+
max(|TN(xi)−TM(xi)| , |IN(xi)− IM(xi)| , |FN(xi)−FM(xi)|)

3
]. (3.1)

Theorem 1. d(N,M) is a distance between two neutrosophic sets N and M in X .

Proof. It is obvious d(N,M) satisfies P1-P3 of Definition 8. Therefore we only

need to prove d(N,M) satisfies P4. To this aim let O = {x,TO(x), IO(x),FO(x);x ∈ X}
be another neutrosophic set. In this case, if N ⊆ M ⊆ O then we have:

d(N,M) =
1

n

n

∑
i=1

[
(|TN(xi)−TM(xi)|+ |IN(xi)− IM(xi)|+ |FN(xi)−FM(xi)|)

6

+
max(|TN(xi)−TM(xi)| , |IN(xi)− IM(xi)| , |FN(xi)−FM(xi)|)

3
],

and

d(N,O) =
1

n

n

∑
i=1

[
(|TN(xi)−TO(xi)|+ |IN(xi)− IO(xi)|+ |FN(xi)−FO(xi)|)

6

+
max(|TN(xi)−TO(xi)| , |IN(xi)− IO(xi)| , |FN(xi)−FO(xi)|)

3
].

It’s easy to see

|TN(xi)−TO(xi)| ≥ |TN(xi)−TM(xi)| ,

|IN(xi)− IO(xi)| ≥ |IN(xi)− IM(xi)| ,

|FN(xi)−FO(xi)| ≥ |FN(xi)−FM(xi)| ,

so we have:

(|TN(xi)−TO(xi)|+ |IN(xi)− IO(xi)|+ |FN(xi)−FO(xi)|)

6

+
max(|TN(xi)−TO(xi)| , |IN(xi)− IO(xi)| , |FN(xi)−FO(xi)|)

3

≥
(|TN(xi)−TM(xi)|+ |IN(xi)− IM(xi)|+ |FN(xi)−FM(xi)|)

6

+
max(|TN(xi)−TM(xi)| , |IN(xi)− IM(xi)| , |FN(xi)−FM(xi)|)

3
.

Therefore we can get the inequality d(N,O) ≥ d(N,M). By the same reason we

can get d(N,O) ≥ d(M,O). So d(N,M) satisfies P4 of Definition 8. That is to say,

d(N,M) is a distance measure between neutrosophic sets N and M. �

3.2. The extended TOPSIS method for multi-attribute group decision-making

Suppose that A = {A1, A2, . . . ,An} be a set of alternatives, B = {C1,C2, . . . ,Cm}
be a set of attributes and D = {D1, D2, . . .Dk} be a set of decision-makers (DMs).

Let w̄p =
[

w̄
p
1 , w̄

p
2 , ..., w̄

p
m

]

be a vector of weights for attributes determined by DM Dp
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where w̄
p
j is a single-valued neutrosophic number denoting the weight of attribute C j

given by decision-maker Dp. 1 ≤ j ≤ m and 1 ≤ p ≤ k.

Assume that Wp represents the weight of DM Dp. If a decision group has k mem-

bers then WP = 1
k
, where Wp ∈ [0,1] and ∑k

p=1Wp = 1.

Let Xp = [xi j]m×n
be a decision matrix of the n alternatives in regard to the m

attributes characterized by decision-maker Dp, shown as follows:

C1 C2 · · · Cm

Xp =

A1

A2

...

An











x
p
11 x

p
12 ... x

p
1m

x
p
21 x

p
22 ... x

p
2m

...
...

. . .
...

x
p
n1 x

p
n2 ... x

p
nm











,
(3.2)

where xi j = (Ti j, Ii j,Fi j) is a single value neutrosophic number for the alternative Ai

in regard to the attribute C j.

The procedure of our proposed method can be summarized as follows:

Step 1. According to the weighting vector w̄p, the decision matrix XP and the multi-

plication operator of SVNSs presented in (2.3) calculate the weighted decision matrix

(WDM) EVP as follows:

C1 C2 · · · Cm C1 C2 · · · Cm

EVp =

A1

A2

...

An











x
p
11 ⊗ w̄P

1 x
p
12 ⊗ w̄P

2 ... x
p
1m ⊗ w̄P

m

x
p
21 ⊗ w̄P

1 x
p
22 ⊗ w̄P

2 ... x
p
2m ⊗ w̄P

m
...

...
. . .

...

x
p
n1 ⊗ w̄P

1 x
p
n2 ⊗ w̄P

2 ... x
p
nm ⊗ w̄P

m











=











y
p
11 y

p
12 ... y

p
1m

y
p
21 y

p
22 ... y

p
2m

...
...

. . .
...

y
p
n1 y

p
n2 ... y

p
nm











.

(3.3)

Step 2. Based on the obtained WDMs and the weight of decision-makers we can

get the aggregated group decision matrix AG of all decision-makers D1,D2, ...,Dk as

follows:
D1 D2 · · · Dk

AG =

A1

A2

...

An











G11 G12 · · · G1k

G21 G22 · · · G2k

...
...

. . .
...

Gn1 Gn2 · · · Gnk











,
(3.4)

where Gip is a neutrosophic value, representing the sum of alternatives in regard to

DM Dp, and can be calculated as follows:

Gip =WP[y
p
i1 ⊕ y

p
i2 ⊕ ·· ·⊕ y

p
im],

where WP is the weight of decision-maker DP and ⊕ is the addition operator presented

in (2.2).

Step 3. Based on the obtained aggregated group decision matrix we know that the

elements Gip are SVNNs. The absolute neutrosophic positive ideal solution (NPIS)
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P+and the neutrosophic negative ideal solution (NNIS) P−can be defined as follows:

P+ = (G+
1 ,G

+
2 , ...,G

+
k ),

P− = (G−
1 ,G

−
2 , ...,G

−
k ),

(3.5)

where G+
j = (1,0,0) and G−

j = (0,1,1), j = 1,2, ..,k. Also we can select the virtual

positive ideal solution and negative ideal solution by selecting the best values for each

attribute from all alternatives as follows:
{

G+
j = (max

i
Ti j,min

i
Ii j,min

i
Fi j) = (T+

j , I+j ,F
+
j ),

G−
j = (min

i
Ti j,max

i
Ii j,max

i
Fi j) = (T−

j , I−j ,F
−
j ),

1 ≤ j ≤ k. (3.6)

Step 4. Based on the proposed distance measure in (3.1). calculate the distance

between alternative Ai and the elements in the obtained positive ideal solution P+ as

follows:

d+
i =

n

∑
j=1

Gi j −G+
j =

1

n

n

∑
j=1

[

(∣

∣

∣
Ti j −T+

j

∣

∣

∣
+
∣

∣

∣
Ii j − I+j

∣

∣

∣
+
∣

∣

∣
Fi j −F+

j

∣

∣

∣

)

6

+
max

(∣

∣

∣
Ti j −T+

j

∣

∣

∣
,

∣

∣

∣
Ii j − I+j

∣

∣

∣
,

∣

∣

∣
Fi j −F+

j

∣

∣

∣

)

3
], (3.7)

also, the degree of distance between the alternative Ai and the elements in the obtained

negative ideal solution P− can be calculated as follows:

d−
i =

n

∑
j=1

Gi j −G−
j =

1

n

n

∑
j=1

[

(∣

∣

∣
Ti j −T−

j

∣

∣

∣
+
∣

∣

∣
Ii j − I−j

∣

∣

∣
+
∣

∣

∣
Fi j −F−

j

∣

∣

∣

)

6

+
max

(∣

∣

∣
Ti j −T−

j

∣

∣

∣
,

∣

∣

∣
Ii j − I−j

∣

∣

∣
,

∣

∣

∣
Fi j −F−

j

∣

∣

∣

)

3
], (3.8)

where 1 ≤ i ≤ n,1 ≤ j ≤ k.

Step 5. Compute the relative closeness coefficient to choose the most appropriate

and efficient decision by ranking the alternatives as follows:

R∗
i =

d−
i

d+
i +d−

i

,1, ...,n. (3.9)

Step 6. Utilize the relative closeness coefficients to sort the alternatives. The bigger

R∗
i is, the better alternative Ai is.

4. ILLUSTRATIVE EXAMPLE

In this section, an example based on TOPSIS method for MAGDM under the neut-

rosophic environment is used as a demonstration of the applications and the effect-

iveness of the proposed decision-making method.
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Suppose that there is a panel to compare four car companies A1,A2,A3 and A4 as

the alternatives. Also assume that three attributes such as “Quality (C1)”, “Design

(C2)” and “Price (C3)”. A committee of three decision-makers D1,D2 and D3 has

been formed to rank the alternatives and choose the best company. Assume that the

decision values of company alternatives A1,A2,A3 and A4 in regard to the attributes

“Quality”, “Design” and “Price” given by the decision-makers D1,D2 and D3 based

on single-valued neutrosophic numbers, as shown in Table 1, Table 2 and Table 3,

respectively.

TABLE 1. The decision values given by D1

Quality Design Price

A1 (0.1771,0.5573,0.5013) (0.1079,0.3390,0.4857) (0.1932,0.6289,0.9274)

A2 (0.8296,0.7725,0.4317) (0.1822,0.2101,0.8944) (0.8959,0.1015,0.9175)

A3 (0.7669,0.3119,0.9976) (0.0991,0.5102,0.1375) (0.0991,0.3909,0.7136)

A4 (0.9345,0.1790,0.8116) (0.4898,0.9064,0.3900) (0.0442,0.0546,0.6183)

TABLE 2. The decision values given by D2

Quality Design Price

A1 (0.3433,0.5493,0.9542) (0.6465,0.7565,0.2815) (0.8352,0.9727,0.5906)

A2 (0.9360,0.3304,0.0319) (0.8332,0.4139,0.2304) (0.3225,0.3278,0.6604)

A3 (0.1248,0.6195,0.3369) (0.3983,0.4923,0.7111) (0.5523,0.8378,0.0476)

A4 (0.7306,0.3606,0.6627) (0.7498,0.6947,0.6246) (0.9791,0.7391,0.3488)

TABLE 3. The decision values given by D3

Quality Design Price

A1 (0.4513,0.5038,0.3610) (0.2815,0.4494,0.0839) (0.1386,0.1892,0.4035)

A2 (0.2409,0.4896,0.6203) (0.7311,0.9635,0.9748) (0.5882,0.6671,0.1220)

A3 (0.2409,0.8770,0.8112) (0.1378,0.0423,0.6513) (0.3662,0.5864,0.2684)

A4 (0.8562,0.3531,0.0193) (0.8367,0.9730,0.2312) (0.8068,0.6751,0.2578)

Therefore the corresponding decision matrices X1,X2 and X3 can be shown as follows,

respectively:

C1 C2 C3

X1 =









(0.1771,0.5573,0.5013),(0.1079,0.3390,0.4857),(0.1932,0.6289,0.9274)
(0.8296,0.7725,0.4317),(0.1822,0.2101,0.8944),(0.8959,0.1015,0.9175)
(0.7669,0.3119,0.9976),(0.0991,0.5102,0.1375),(0.0991,0.3909,0.7136)
(0.9345,0.1790,0.8116),(0.4898,0.9064,0.3900),(0.0442,0.0546,0.6183)









,
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C1 C2 C3

X2 =









(0.3433,0.5493,0.9542),(0.6465,0.7565,0.2815),(0.8352,0.9727,0.5906)
(0.9360,0.3304,0.0319),(0.8332,0.4139,0.2304),(0.3225,0.3278,0.6604)
(0.1248,0.6195,0.3369),(0.3983,0.4923,0.7111),(0.5523,0.8378,0.0476)
(0.7306,0.3606,0.6627),(0.7498,0.6947,0.6246),(0.9791,0.7391,0.3488)









,

C1 C2 C3

X3 =









(0.4513,0.5038,0.3610),(0.2815,0.4494,0.0839),(0.1386,0.1892,0.4035)
(0.2409,0.4896,0.6203),(0.7311,0.9635,0.9748),(0.5882,0.6671,0.1220)
(0.2409,0.8770,0.8112),(0.1378,0.0423,0.6513),(0.3662,0.5864,0.2684)
(0.8562,0.3531,0.0193),(0.8367,0.9730,0.2312),(0.8068,0.6751,0.2578)









.

Suppose that the attribute weights given by three DMs D1,D2 and D3 are shown as
follows:

C1 C2 C3

W1 = [(0.2834, 0.3900, 0.8344),(0.8962, 0.4979, 0.6096),(0.8266, 0.6948, 0.5747)] ,

C1 C2 C3

W2 = [(0.3260, 0.8844, 0.6748),(0.4564, 0.7209, 0.4385),(0.7138, 0.0186, 0.4378)] ,

C1 C2 C3

W3 = [(0.1170, 0.2462, 0.5466),(0.8147, 0.3427, 0.5619),(0.3249, 0.3757, 0.3958)] .

Furthermore, because the decision group in this example has three members we can

consider W1 =W2 =W3 =
1
3
.

The proposed method is currently applied to solve this problem and the computational

procedure is summarized as follows:

Step 1. Construct the weighted decision matrices EV1,EV2 and EV3 as follows:

C1 C2 C3

EV1 =









(0.0502,0.7300,0.9174),(0.0967,0.6681,0.7992),(0.1597,0.8867,0.9691)
(0.2351,0.8612,0.9059),(0.1633,0.6034,0.9588),(0.7405,0.7258,0.9649)
(0.2173,0.5803,0.9996),(0.0888,0.7540,0.6633),(0.0819,0.8141,0.8782)
(0.2648,0.4992,0.9688),(0.4389,0.9530,0.7619),(0.0365,0.7115,0.8377)









,

C1 C2 C3

EV2 =









(0.1119,0.9479,0.9851),(0.2951,0.9320,0.5966),(0.5962,0.9732,0.7698)
(0.3052,0.9226,0.6852),(0.3803,0.8364,0.5679),(0.2302,0.3403,0.8091)
(0.0407,0.9650,0.7908),(0.1818,0.8583,0.8378),(0.3942,0.8408,0.4646)
(0.2382,0.9261,0.8903),(0.3422,0.9148,0.7892),(0.6989,0.7439,0.6339)









,
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C1 C2 C3

EV3 =









(0.0528,0.6260,0.7103),(0.2293,0.6381,0.5987),(0.0450,0.4938,0.6396)
(0.0282,0.6153,0.8278),(0.5956,0.9760,0.9890),(0.1911,0.7922,0.4695)
(0.0837,0.9073,0.9144),(0.1122,0.3705,0.8473),(0.1189,0.7418,0.5580)
(0.1002,0.5124,0.5553),(0.6817,0.9822,0.6632),(0.2621,0.7972,0.5516)









.

Step 2. Based on the obtained WDMs EV1,EV2, EV3 and addition operator of SVNN
shown in (2.2) construct the aggregated group decision matrix of all decision-makers
as follows:

D1 D2 D3

AG =









(0.0930,0.1442,0.2368),(0.2491,0.2866,0.1508),(0.1010,0.0658,0.0907)
(0.2780,0.1257,0.2794),(0.2228,0.0875,0.1049),(0.2274,0.1586,0.1281)
(0.1151,0.1187,0.1941),(0.1748,0.2300,0.1026),(0.0944,0.0831,0.1441)
(0.2009,0.1128,0.2061),(0.2830,0.2101,0.1485),(0.2629,0.1337,0.0677)









.

Step 3. Determine the virtual NPIS and NNIS as:

G+
j =

[

(0.2780,0.1128,0.1941),(0.2830,0.0875,0.1026),(0.2629,0.0658,0.0677)
]

,

G−
j =

[

(0.0930,0.1442,0.2794),(0.1748,0.2866,0.1508),(0.0944,0.1586,0.1441)
]

.

Step 4. Calculate the distance of each alternative from NPIS and NNIS, respectively,

as follows:

d+
1 = 0.3028, d+

2 = 0.1377, d+
3 = 0.2715, d+

4 = 0.1435,

d−
1 = 0.1148, d−

2 = 0.2799, d−
3 = 0.1246, d−

4 = 0.2397.

Step5. Based on (3.9), the relative closeness coefficient of each candidate can be

calculated as follows:

R∗
1 = 0.2748, R∗

2 = 0.6703, R∗
3 = 0.3146, R∗

4 = 0.6255.

Therefore, the ranking order of the four alternatives is A2,A4,A3 and A1. Obviously,

the best selection is A2.

Remark 2. In recent years, a lot of extended TOPSIS methods have been presented

to deal with MAGDM problems that only consider crisp or incomplete information

on their calculation. But until now there hasn’t been any TOPSIS method to consider

and handle indeterminate and inconsistent information that exists commonly in real

decision-making problems. In order to overcome this drawback, this paper for the

first time presents an extended TOPSIS method for MAGDM problems based on a

single-valued neutrosophic set. Although by using the neutrosophic sets we are faced

with a large class of problems the proposed method has less calculation and is more

flexible for decision making in the real world.
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5. CONCLUSION

In general, decision-making problems are included uncertain and imprecise in-

formation, and neutrosophic sets can depict this kind of information easier and bet-

ter. Because TOPSIS is an important decision-making method, and the neutrosophic

sets can handle the incomplete, indeterminate and inconsistent data, it is important

to establish an extended TOPSIS method based on NSs. In this paper, we first de-

velop a distance measures which is an effective and simple tool to measure the dis-

tance between two single-valued neutrosophic numbers and then present an extended

TOPSIS method to deal with multi-attribute group decision-making (MAGDM) un-

der neutrosophic environment, where decision-makers express the attribute weights

and attribute values for alternatives by using neutrosophic numbers. Although the

proposed method presented in this paper is illustrated by a personal selection prob-

lem, however, it can also be applied to problems such as information project selection,

material selection and many other areas of management decision problems.
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Abstract. In this paper, the concept of the centralizer of a subset (an element) of a BCI-algebra

by using commutators is given. The connection between commutative ideals with commutators

are considered. Also the pseudo center of a BCI-algebra is defined and the relationships between

center and pseudo center in BCI-algebras are discussed. Following the concept of the centralizer,

we introduce C-closed subalgebras of a BCI-algebra and discuss some characteristics of these

subalgebras. Finally, we define central ideal and derived ideal of a BCI-algebra and the relation-

ship between central ideal, derived ideal and other ideals of BCI-algebras are investigated.
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1. INTRODUCTION

K. Iséki introduced the concept of BCI-algebra in 1966 [13]. From then some

mathematicians studied and developed many concepts in this algebraic structure, for

instance, T. Lei and C. Xi [20] showed that each p-semisimple BCI-algebra can be

converted to an Abelian group and conversely each Abelian group is converted to a

BCI-algebra. S.A. Bhatti and M.A. Chaudhry introduced the concept of the center

of a BCI algebra based on the center of a group [1] and showed that the center of a

p-semisimple BCI-algebra is itself. Unlike Abelian group, this is not true in the case

of BCI-algebras. For example the center of a BCK-algebra X is {0}. This motivates

us to define pseudo center of a BCI-algebra which not only covers the mentioned

deficiencies but offers a number of advantages with respect to the center. The map

φ(x) = 0∗x, was formally introduced in [8] for BCH-algebras, but earlier it was used

in [4] and [3] to investigate some classes of BCI-algebras connected with groups. In

BCI-algebras which are quasigroups, that is, BCI-algebras isotopic to commutative

groups [1], any finite subset of such BCI-algebra is an ideal if and only if it is a

subgroup of the corresponding group. Any group G in which the square of every

element is the identity (i.e. a Boolean group) is a BCI-algebra. In [10] is proved

that a BCI-algebra (X ,∗,0) is a Boolean group if it has a neutral element (i.e. if

© 2021 Miskolc University Press
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0 ∗ x = x ∗ 0 = x for all x ∈ X) or if it is associative. Also every para-associative

BCI-algebra is a Boolean group [2, 6].

Since centralizer and center are two important notions, we extend these two no-

tions to these BCI-algebras and discuss further properties of these concepts. We

use the notions of pseudo center and centralizer in BCI-algebras to develop other

new concepts such as idealizer and normalizer in these structures. One of the main

motivations for defining pseudo center in BCI-algebras is proving similar Lagrange

and Sylow theorems if possible. The C-dimension theory, a new and interesting

concept has been of interest to many mathematicians recently. The theory has been

developed using centralizers in some algebraic structures including groups and rings.

The concept of C-dimension in these structures is defined as the length of the longest

nested chain of the centralizers, which is closely related to the general theory of

groups and rings. This means that if two groups have the same general theory, es-

pecially if they are elementary equivalent, they have the same C-dimension. The

converse is also correct under certain conditions. Investigation of the concept of C-

dimension in BCI-algebras using centralization could be an interesting subject for

further studies.

In this paper, we present a definition for the centralizer of an arbitrary element in

BCI-algebras on based commutators. We define also the notion of the centralizer of

a subset of a BCI-algebra, give several characterizations of it and prove that the class

of C-closed subalgebras of a BCI-algebra X is a commutative monoid and a lower

semi-lattice. We illustrate also these notions by some examples. Finally, we present

the concepts of central ideal and derived ideal of a BCI-algebra and some properties

of these notions are investigated. We verify some useful properties of these ideals in

BCI-algebras such as relation between central ideal and derived ideal with radical of

X .

2. PRELIMINARIES

By a BCI-algebra we mean an algebra (X ,∗,0) of type (2,0) satisfying the follow-

ing axioms: for all x,y,z ∈ X ,

(BCI1) ((x∗ y)∗ (x∗ z))∗ (z∗ y) = 0,
(BCI2) (x∗ (x∗ y))∗ y = 0,
(BCI3) x∗ x = 0,
(BCI4) x∗ y = y∗ x = 0 implies x = y.

A partial ordering ≤ on X can be defined by x ≤ y if and only if x ∗ y = 0. In any

BCI-algebra X for all x,y ∈ X , the following hold:

(1) (x∗ y)∗ z = (x∗ z)∗ y,

(2) x∗ (x∗ (x∗ y)) = x∗ y,

(3) x∗0 = x,

(4) x ≤ y imply that x∗ z ≤ y∗ z and z∗ y ≤ z∗ x,

(5) (x∗ z)∗ (y∗ z)≤ x∗ y.
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A BCI-algebra X is said to be p-semisimple if 0 ∗ (0 ∗ x) = x, for all x ∈ X . A non-

empty subset S of a BCI-algebra X is called a subalgebra of X , if x∗ y ∈ S whenever

x,y ∈ S. A nonempty subset I of a BCI-algebra X is called an ideal if: (i) 0 ∈ I

(ii) x ∗ y ∈ I and y ∈ I imply x ∈ I for all x,y ∈ X . An ideal I of a BCI-algebra X is

called closed if 0 ∗ x ∈ X , for all x ∈ X . An element x in a BCI-algebra X is called

a positive element if it satisfies 0 ∗ x = 0. A BCI-algebra X is called commutative

if x ≤ y implies x∧ y = x, where x∧ y = y ∗ (y ∗ x), for all x,y ∈ X . A BCI-algebra

X is called associative if x ∗ (y ∗ z) = (x ∗ y) ∗ z, for all x,y,z ∈ X . Let I be an ideal

of a BCI-algebra X , then the relation θ defined by (x,y) ∈ θ if and only if x ∗ y ∈ I

and y ∗ x ∈ I is a congruence relation on X . Let x/I denote the class of x ∈ X , then

0/I = I. Assume that X/I = {x/I : x ∈ X}. Then (X/I,∗,0/I) is a BCI-algebra,

where x/I ∗ y/I = (x∗ y)/I, for all x,y ∈ X (see [11, 14]).

In what follows, (X ,∗,0) or simply X would mean a BCI-algebra, unless otherwise

specified.

Definition 1. i) ([20]). The set {x ∈ X : 0∗(0∗x) = x}= {x ∈ X : φ2(x) = x}
is called the center of X and is denoted by C(X).

ii) ([1]). An element x0 ∈ X is said to be an initial element of X , if x ≤ x0 implies

x = x0. Let Ix denote the set of all initial elements of X . We call it the center

of X .

iii) ([15–18]). Let x,y be two elements of X . Then the element ((y∧x)∗(x∧y))∗
(0∗ (x∗ y)) of X is called a pseudo-commutator of x and y and is denoted by

[x,y].
iv) ([17]). For nonempty subsets A and B of X the commutator of A and B is the

set of all finite ∗-products of commutators of kind [a,b] with a ∈ A and b ∈ B.

[A,B] ={[ai1,b j1
]∗ [ai2,b j2

]∗ ...∗ [ain,b jn
] : aik ∈ A,b j l

∈ B,n ∈ N}.

When A = B = X , [X ,X ] is called the commutator subalgebra or the derived

subalgebra of X and denoted by X
′
. Therefore

X
′
= {x1 ∗ x2 ∗ ...∗ xn : n ≥ 1, each xi is a pseudo-commutator in X}.

v) ([11]). An element x of X is a nilpotent element if 0∗xn = 0 for some positive

integer n, where x ∗ yn = (...((x∗ y)∗ y)∗ ...)∗ y
︸ ︷︷ ︸

n−times

. If every x in X is nilpotent,

then X is called a nilpotent BCI-algebra. For every positive integer k, we

define Nk(X) = {x ∈ X : 0 ∗ xk = 0}. The intersection of all maximal ideals

of a BCI-algebra X is called the radical of X and is denoted by Rad(X).

Theorem 1 ([11]). A closed ideal I of X is a commutative ideal if and only if the

quotient algebra X/I is a commutative BCI-algebra.

Theorem 2 ([15, 17]). X is commutative if and only if X
′
= {0}.
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Theorem 3 ([11]). Let S be a nonempty subset of X and let

A = {x ∈ X : (...((x∗a1)∗a2)∗ ...)∗an = 0, for some a1,a2, ...,an ∈ S}.

Then < S >= A ∪ {0}. Especially, if S contains a positive element of X, or if S

contains a nilpotent element of X, then < S >= A.

Lemma 1. i) ([17]). Let f be a homomorphism from X to a BCI-algebra Y .

Then f ([x,y]) = [ f (x), f (y)], for all x,y ∈ X .

ii) ([18]). [x,y] is a positive element of X , for all x,y ∈ X .

iii) ([11]). 0∗ (x∗y) = (0∗x)∗ (0∗y), for all x,y ∈ X , i.e., φ is a homomorphism.

Theorem 4 ([11]). The following two types of abstract systems are equivalent:

p-semisimple BCI-algebra and Abelian group.

In the following lemma we show that the center of derived subalgebra C(X
′
) is

always {0}.

Lemma 2. i) x ∈C(X) if and only if a∗ (a∗ x) = x, for all a ∈ X.

ii) If x ∈C(X), then φ(y∗ x) = x∗ y, for all y ∈ X.

iii) C(X
′
) = {0}.

Proof. i) Let x∈C(X). Then 0∗(0∗x)= x. Since (a∗(a∗x))∗x= 0, a∗(a∗x)≤ x.

Conversely, (a ∗ (a ∗ x)) ∗ x = 0, then 0 ∗ ((a ∗ (a ∗ x)) ∗ x) = 0 ∗ 0 = 0. Hence

(0 ∗ (a ∗ (a ∗ x))) ∗ (0 ∗ x) = 0. Therefore (0 ∗ (0 ∗ x)) ∗ (a ∗ (a ∗ x)) = 0. Whence

x ∗ (a ∗ (a ∗ x)) = 0. Hence x ≤ (a ∗ (a ∗ x)). Then a ∗ (a ∗ x) = x, for all a ∈ X . If

a∗ (a∗ x) = x, for any a ∈ X , then 0∗ (0∗ x) = x. Therefore x ∈C(X).
ii) Suppose that x ∈C(X). Then

φ(y∗ x) = 0∗ (y∗ x) = (0∗ y)∗ (0∗ x) = (0∗ (0∗ x))∗ y = x∗ y.

iii) Let x ∈C(X
′
). Then x ∈ X

′
and 0∗ (0∗ x) = x. Thus there exist ai,bi ∈ X such

that x = ∏[ai,bi]. Hence

x = 0∗ (0∗ x) = 0∗ (0∗∏[ai,bi])

= (0∗ (0∗ [a1,b1]))∗ (0∗ (0∗ [a2,b2]))∗ ...∗ (0∗ (0∗ [an,bn])) = 0∗ ...∗0 = 0.

Therefore, C(X
′
) = {0}. �

Theorem 5. Let x,y ∈ X. Then

i) φ([x,y]) = 0,
ii) [φ(x),φ(y)] = 0.

Proof. i) We first show that [x,y]∗ y ≤ φ(y).

[x,y]∗ y = (((x∗ (x∗ y))∗ (y∗ (y∗ x)))∗ (0∗ (x∗ y)))∗ y

≤ ((y∗ (y∗ (y∗ x)))∗ (0∗ (x∗ y)))∗ y

= ((y∗ x)∗ (0∗ (x∗ y)))∗ y = ((y∗ x)∗ y)∗ (0∗ (x∗ y))
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= ((y∗ y)∗ x)∗ (0∗ (x∗ y)) = (0∗ x)∗ ((0∗ x)∗ (0∗ y))

≤ 0∗ y = φ(y).

Therefore 0 = ([x,y]∗ y)∗ (0∗ y)≤ [x,y]∗0 = [x,y]. So φ([x,y]) = 0∗ [x,y] = 0.

ii) By substitute φ for f in Lemma 1 we obtain 0 = φ([x,y]) = [φ(x),φ(y)]. �

W. A. Dudek presents a new method for studying the ideals and centralizer of 0

element based on the map φ in BCI/BCH/BCC-algebra (X ,∗,0) and some useful facts

on these notion are proved in [2–9]. He defines the centralizer of 0 element in X by

Z0 = {x ∈ X : x ∗0 = 0∗ x} = {x ∈ X : φ(x) = x}. It is shown that if (X ,∗,0) is a p-

semisimple BCI-algebra, then (X , .,0) is an Abelian group, where x.y = x∗ (0∗y) for

x,y∈X and conversely, if (X , .,0) is an Abelian group, then (X ,∗,0) with x∗y= x.y−1

is a p-semisimple BCI-algebra [3]. So we expect that the centralizer of 0 to be a fixed

element such as neutral element in Abelian groups. But in the following example we

see that this is not true in general.

Example 1. We consider Abelian group (Z3,+,0) and adjoint p-semisimple BCI-

algebra (Zad
3 ,∗,0) of it with the following Cayley table:

+ 0 a b

0 0 a b

a a b 0

b b 0 a

∗ 0 a b

0 0 b a

a a 0 b

b b a 0

By definition of centralizer of an element in Abelian group (Z3,+,0) as neutral

element 0 we have Z0 = {x ∈ Z3 : x+ 0 = 0+ x} = Z3 and in adjoint p-semisimple

BCI-algebra (Zad
3 ,∗,0) we obtain Z0 = {x ∈ Z3 : x∗0 = 0∗ x}= {0}.

We are trying to resolve this disagreement. By attention to φ(x), we would like to

consider centralizer from another perspective.

3. CENTRALIZER OF A SUBSET IN BCI-ALGEBRAS

In this section, we introduce the notion of centralizer of a subset of BCI-algebras

by using commutators and study it in detail.

Definition 2. Suppose that S is a nonempty subset of X . The centralizer of S in X

is defined to be {x ∈ X : [x,s] = [s,x] = 0,∀s ∈ S} and denoted by CX(S).

When S = {x} is a singleton set, then CX({x}) can be abbreviated to CX(x). Sym-

bolically,

CX(x) = {y ∈ X : [x,y] = [y,x] = 0}.

CX(x) is a nonempty set, because [x,0] = [0,x] = [x,x] = 0, for any x∈X . Specifically,

0,x ∈CX(x).
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Example 2. Let X = {0,a,b,c,d} be a BCI-algebra with the following Cayley

table:

∗ 0 a b c d

0 0 0 0 c c

a a 0 0 c c

b b b 0 d c

c c c c 0 0

d d d c b 0

By simple calculations we obtain CX(0)=CX(c)=CX(d)=X , CX(a)= {0,a,c,d}
and CX(b) = {0,b,c,d}. For S = {0,a,b} we obtain CX(S) = {0,c,d}.

Now we describe the relation between centralizer of a set with centralizer of con-

stituent elements.

Theorem 6. For subset S of X, CX(S) =
⋂

a∈S CX(a).

Proof.

x ∈CX(S)⇔∀a ∈ S, [x,a] = [a,x] = 0

⇔∀a ∈ S,x ∈CX(a)

⇔x ∈
⋂

a∈S

CX(a).

�

Lemma 3. Suppose that I is an ideal of X and a,b ∈ X. Then

i) CX(0) = X,

ii) a ∈CX(b) iff b ∈CX(a),
iii) CX(a)/I ⊆CX/I(a/I).

Proof. i) CX(0) = {x ∈ X : [x,0] = [0,x] = 0}= X .

ii) a ∈CX(b) if and only if [a,b] = [b,a] = 0 if and only if b ∈CX(a).
iii) Let b/I ∈ CX(a)/I. Then b ∈ CX(a) and hence [a,b] = [b,a] = 0. Therefore

[a,b]/I = [b,a]/I = 0/I. But [a,b]/I = [a/I,b/I] and [b,a]/I = [b/I,a/I]. Then

[a/I,b/I] = [b/I,a/I] = 0/I. So b/I ∈CX/I(a/I). Hence CX(a)/I ⊆CX/I(a/I). �

Lemma 4. Let f ∈ Aut(X). Then f (CX(a)) =CX( f (a)), for every a ∈ X.

Proof. Let y ∈ f (CX(a)). Then there exists x ∈ CX(a) such that y = f (x). Since

x ∈ CX(a), [x,a] = [a,x] = 0. Therefore, f ([x,a]) = f ([a,x]) = f (0) = 0 and hence

[ f (x), f (a)] = [ f (a), f (x)] = 0. Thus y= f (x)∈CX( f (a)). i.e., f (CX(a))⊆CX( f (a)).
If y = f (x) ∈ CX( f (a)), then [ f (x), f (a)] = [ f (a), f (x)] = 0. Therefore f ([x,a]) =
f ([a,x]) = f (0) = 0. But f is one to one, then [x,a] = [a,x] = 0. Hence x ∈ CX(a)
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and so y = f (x) ∈ f (CX(a)), that is, CX( f (a)) ⊆ f (CX(a)). Thus, f (CX(a)) =
CX( f (a)). �

Corollary 1. For subset S of X and f ∈ Aut(X), f (CX(S)) =CX( f (S)).

Proof.

f (CX(S)) = f (
⋂

a∈S

CX(a))

=
⋂

a∈S

f (CX(a))

=
⋂

a∈S

CX( f (a))

=CX( f (S)).

�

In the following two theorems, some of the properties of operator CX , such as

symmetry and decreasing are examined.

Theorem 7. Suppose that S,T are two subsets of X. Then

i) S ⊆CX(T ) iff T ⊆CX(S),
ii) If S ⊆ T , then CX(T )⊆CX(S).

Proof. i) Let S ⊆CX(T ) and let t ∈ T . To show that t ∈CX(S) we must show that

for all s ∈ S, [t,s] = [s, t] = 0. Suppose that s is an arbitrary element of S. Therefore

s ∈ CX(T ). By definition [t,s] = [s, t] = 0, for every t ∈ T . Hence t ∈ CX(S). By

symmetry if T ⊆CX(S), then we see S ⊆CX(T ).
ii) Let S ⊆ T . If x ∈ CX(T ), then [x, t] = [t,x] = 0, for all t ∈ T . Since S ⊆ T , for

all s ∈ S, [x,s] = [s,x] = 0. Hence x ∈CX(S). �

Theorem 8. Let S be a subset of X. Then

i) S ⊆CX(CX(S)),
ii) CX(CX(CX(S))) =CX(S).

Proof. i) Let x ∈ S. Then x ∈ CX(CX(S)) iff for all s ∈ CX(S) we have [x,s] =

[s,x] = 0. Let s be an arbitrary element of CX(S). Then [s,s
′
] = [s

′
,s] = 0, for all

s
′
∈ S. Since x ∈ S, [x,s] = [s,x] = 0. Therefore S ⊆CX(CX(S)).
ii) Since S ⊆ CX(CX(S)), it follows that CX(CX(CX(S))) ⊆ CX(S). Also we ob-

tain CX(S) ⊆ CX(CX(CX(S))) by putting CX(S) instead of S in (i). Hence CX(S) =
CX(CX(CX(S))). �

Remark 1. CX(CX(S)) contains S but is not necessarily equal, also CX(S) need not

contain S. For the set S = {0,a,b} from Example 2, we obtain CX(S) = {0,c,d} that

is not contain S. Also CX(CX(S)) = X 6= S.

Definition 3. A subalgebra S of X is said to be C-closed if S =CX(CX(S)).
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We denote by C(X) the set of all C-closed subalgebras of X . Since CX(CX(X))
contains X , CX(CX(X)) = X . Then C(X) is nonempty.

Obvious that if CX(S) is a subalgebra of X , then CX(S) is C-closed, because

CX(S) =CX(CX(CX(S))).

Example 3. Let X = {0,a,b,c,d} be a BCI-algebra with the following Cayley

table:

∗ 0 a b c d

0 0 0 0 0 0

a a 0 0 a 0

b b a 0 b a

c c c c 0 c

d d d d d 0

X has 14 subalgebra, but only 4 until of their are C-closed. The sets S1 = {0,c},
S2 = {0,c,d}, S3 = {0,a,b,c},S4 = X are subalgebras of X such that

CX(CX(S1)) = S1, CX(CX(S2)) = S2, CX(CX(S3)) = S3 and CX(CX(S4)) = S4.

Hence C(X) = {{0,c}, {0,c,d},{0,a,b,c},X}.

Now, we move to the study of C-closed subalgebras of BCI-algebras and it con-

sequences.

Theorem 9. If S,T are C-closed subalgebras of X, then S∩T is a C-closed sub-

algebra of X.

Proof. Let S,T be C-closed subalgebras of X . Clearly, S∩T is a subalgebra of X .

Since CX(CX(S∩T )) contains S∩T , it is sufficient to show that CX(CX(S∩T ))⊆ (S∩
T ). But S∩T ⊆ S and S∩T ⊆ T , then CX(S)⊆CX(S∩T ) and CX(T )⊆CX(S∩T ).
Hence CX(CX(S∩T ))⊆CX(CX(S)) = S and CX(CX(S∩T ))⊆CX(CX(T )) = T . That

means CX(CX(S∩T ))⊆ (S∩T ). �

This proves that the intersection of any two C-closed subalgebra of X is again an

C-closed subalgebra of X . The above theorem can be generalized to intersection of

any family of C-closed subalgebra of X .

Remark 2. A C-closed subalgebra of a C-closed subalgebra is again C-closed.

Corollary 2. If X is commutative, then X is only subalgebra that is C-closed.

Proof. Let X be commutative. Then for every proper subalgebra S of X , CX(S) =
X . Therefore CX(CX(S)) = CX(X) = X 6= S, for every proper subalgebra S of X . If

S = X , then CX(CX(X)) =CX(X) = X . �

The following example shows that the converse of Corollary 2 is not correct in

general.



CENTRALIZERS OF BCI-ALGEBRAS 415

Example 4. Let X = {0,a,b,c,d} be a BCI-algebra in which ∗ operation is defined

by the following table:

∗ 0 a b c d

0 0 0 0 0 0

a a 0 0 0 0

b b a 0 0 0

c c a a 0 0

d d c b a 0

By routine calculations we obtain C(X)= {X}. But X is not commutative, because

b∧ c = a 6= c∧b = b.

(C(X),∩,X) is a commutative monoid. C(X) is closed under ∩ and for any

S ∈ C(X), S ∩ X = S. Moreover the operation ∩ is commutative and associative.

Also (C(X),∩) forms a lower semi-lattice with respect to ⊆. Indeed, (C(X),⊆) is a

partially ordered set and for any S,T ∈ C(X) we have in f{S,T}= S∩T .

In the following lemma we examine the conditions under which the converse of

the Theorem 7 (ii) is also true.

Lemma 5. If S ∈ C(X) and CX(S)⊆CX(T ), then T ⊆ S.

Proof. Suppose that CX(S) ⊆ CX(T ). Then CX(CX(T )) ⊆ CX(CX(S)). Since

S ∈ C(X), CX(CX(S)) = S, hence T ⊆CX(CX(T ))⊆ S. �

4. THE PSEUDO CENTER OF BCI-ALGEBRAS

In this section, at first, we recall that the center of a BCI-algebra is defined in

several different ways such as Definition 1, but with common results. However, the

logical reasons for this definitions is not clear, it is famed that in algebraic struc-

tures including groups, rings and Lie algebras the notion of center is defined based

on commutators [10, 19]. These motivate us to introduce a new notion of center in

BCI-algebras without using the commutators. This concept is different from the cen-

ter of BCI-algebras previously defined but it is consistent with the center of other

mentioned algebras. The new proposed center definition is more general and reliable

and is called pseudo center in this manuscript.

Definition 4. The set {x ∈ X : [x,y] = [y,x] = 0, ∀y ∈ X} is called the pseudo

center of X and is denoted by Z(X).

Obviously, 0 ∈ Z(X).

Example 5. i) For Example 2, Z(X) = {0,c,d}, C(X) = {0,c} and X
′
= {0,a}.

ii) Let X = {0,a,b,c,d} be a BCI-algebra with the following Cayley table:
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∗ 0 a b c d

0 0 0 0 0 0

a a 0 a 0 a

b b b 0 b 0

c c a c 0 c

d d d d d 0

By simple calculations we obtain Z(X) = {0,a,c}, C(X) = {0} and X
′
= {0,b}.

Indeed, Z(X) is commutative part of X , and X
′

evaluates non commutative part and

commutative part of X from each other.

Theorem 10. X is commutative if and only if Z(X) = X.

Proof. Let X be commutative and x ∈ X . Then [x,y] = [y,x] = 0, for every y ∈ X .

So x ∈ Z(X) and hence X ⊆ Z(X). Obviously Z(X)⊆ X . Thus Z(X) = X .

Conversely, let Z(X) = X . Then [x,y] = [y,x] = 0, for all x,y ∈ X . Therefore X is

a commutative BCI-algebra. �

Corollary 3. The following conditions are equivalent:

i) X is commutative,

ii) Z(X) = X,

iii) X
′
= {0}.

Proof. i) ↔ ii) follows directly from Theorem 10.

ii) ↔ iii) Let Z(X) = X . Then X is commutative. By Theorem 6, X
′
= {0}.

Conversely, let X
′
= {0}. Therefore, X is commutative. Hence Z(X) = X . �

Remark 3. Z(X) is neither an ideal nor a subalgebra of X , in general. From Ex-

ample 4 by routine calculations we obtain that Z(X) = {0,a,d} is not a subalgebra

of X because a,d ∈ Z(X) but d ∗a = c /∈ Z(X) also Z(X) is not an ideal of X because

c ∗ a ∈ Z(X) and a ∈ Z(X), but c /∈ Z(X). Also, CX(I) for ideal I is not an ideal (a

subalgebra) of X , in general. For instance, in Example 4, X is an ideal of X , but

CX(X) = Z(X) is not an ideal (a subalgebra) of X .

In the following proposition we describe the relationship between center and pseudo

center in BCI-algebras.

Proposition 1. C(X)⊆ Z(X).

Proof. Suppose that x ∈ C(X). Then 0 ∗ (0 ∗ x) = x. We must show that for all

y ∈ X , [x,y] = [y,x] = 0. But

[x,y]c = ((x∗ (x∗ y))∗ (y∗ (y∗ x)))∗ (0∗ (x∗ y)) = ((x∗ (x∗ y))∗ (x))∗ (0∗ (x∗ y))

= ((x∗ x)∗ (x∗ y))∗ (0∗ (x∗ y)) = (0∗ (x∗ y))∗ (0∗ (x∗ y)) = 0.
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Also

[y,x] = ((y∗ (y∗ x))∗ (x∗ (x∗ y)))∗ (0∗ (y∗ x)) = (x∗ (x∗ (x∗ y)))∗ (0∗ (y∗ x))

= (x∗ y)∗ (x∗ y) = 0.

Therefore x ∈ Z(X). Hence C(X)⊆ Z(X). �

Remark 4. In Example 4 we see Z(X) = {0,a,d} and C(X) = {0}. Then the

equality of Proposition 1 does not hold, in general.

As immediate consequences of Definition 2 and Definition 4 we obtain:

Theorem 11. Suppose that a,b ∈ X and X1,X2 are subsets of X. Then

i) a ∈ Z(X) if and only if CX(a) = X,

ii) Z(X) =
⋂

a∈X CX(a),
iii) If X1 ⊆ X2, then Z(X2)⊆ Z(X1),
iv) CX(a)⊆CX(b) if and only if b ∈ Z(CX(a)),
v) Z(X)⊆CX(a), for every a ∈ X,

vi) X is commutative if and only if CX(a) = X, for every a ∈ X,

vii) CX(X) = Z(X),
viii) CX(a) =CX(b) if and only if Z(CX(a)) = Z(CX(b)).

Proof. i) Let a ∈ Z(X). Then for all x ∈ X , [x,a] = [a,x] = 0. Obviously, CX(a)⊆
X . Now, let x ∈ X . Thus [x,a] = [a,x] = 0. Therefore x ∈CX(a), that is, X ⊆CX(a).
Hence CX(a) =X . Conversely, let CX(a) =X . Since CX(a) = {b∈X : [a,b] = [b,a] =
0}= X , it follows that a ∈ Z(X).

ii) Let x ∈ Z(X). Then [x,a] = [a,x] = 0 for every a ∈ X . So x ∈CX(a), for every

a ∈ X . That means x ∈
⋂

a∈X CX(a). Therefore Z(X)⊆
⋂

a∈X C(a).
Conversely, let x ∈

⋂
a∈X CX(a). Then x ∈ CX(a) for every a ∈ X . Hence [x,a] =

[a,x] = 0 for every a ∈ X . Then x ∈ Z(X). So
⋂

a∈X CX(a)⊆ Z(X).
iii) Let x ∈ Z(X2). Then for every y ∈ X2, [x,y] = [y,x] = 0. Since X1 ⊆ X2, for

every y ∈ X1 we have [x,y] = [y,x] = 0. Therefore x ∈ Z(X1).
iv) Let CX(a)⊆CX(b). Then for any x ∈CX(a), x ∈CX(b). Hence [x,b] = [b,x] =

0, for any x ∈ CX(a). Therefore b ∈ Z(CX(a)). Conversely, let b ∈ Z(CX(a)) and

x ∈CX(a). Therefore [x,b] = [b,x] = 0. Hence x ∈CX(b). Then CX(a)⊆CX(b).
v) Since Z(X) =

⋂
a∈X CX(a), it follows that Z(X)⊆CX(a), for any a ∈ X .

vi) X is commutative iff Z(X) = X iff X =
⋂

a∈X CX(a) iff X = CX(a), for every

a ∈ X .

vii) CX(X) = {x ∈ X : [x,y] = [y,x] = 0, for all y ∈ X}= Z(X).
viii) Obviously, if CX(a) = CX(b), then Z(CX(a)) = Z(CX(b)). Conversely, let

Z(CX(a)) = Z(CX(b)). Since a ∈ Z(CX(a)), a ∈ Z(CX(b)). Then CX(b) ⊆ CX(a).
Similarly, since b∈Z(CX(b)), b∈Z(CX(a)), then CX(a)⊆CX(b). Therefore CX(a)=
CX(b). �

Theorem 12. Let I be an ideal of X. Then Z(X)/I ⊆ Z(X/I).
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Proof. Let x/I ∈ Z(X)/I. Then x∈ Z(X) and hence for every y∈X , [x,y] = [y,x] =
0. Therefore [x,y]/I = [y,x]/I = 0/I. Hence [x/I,y/I] = [y/I,x/I] = 0/I, for every

y/I ∈ X/I. So x/I ∈ Z(X/I). Thus Z(X)/I ⊆ Z(X/I). �

The following example shows that the equality of Theorem 12 may not hold.

Example 6. Let X = {0,1,2,3,4,5} be a BCI-algebra with the Cayley table as

follows:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 1 0 1 5

2 2 2 0 2 0 5

3 3 3 3 0 0 5

4 4 3 4 1 0 5

5 5 5 5 5 5 0

By simple calculations we obtain Z(X) = {0,5} = C(X). For ideal I = {0,2} of

X we have X/I = {0/I,1/I,3/I,4/I,5/I}. By routine calculus we obtain Z(X/I) =
{0/I,4/I,5/I} and Z(X)/I = {0/I,5/I}. Then Z(X)/I ( Z(X/I).

Lemma 6. f (Z(X))⊆ Z(X) and f (C(X))⊆C(X), for every f ∈ Aut(X).

Proof. Let y ∈ f (Z(X)). Then there exists x ∈ Z(X) such that y = f (x). Since

x ∈ Z(X), [x,a] = [a,x] = 0, for all a ∈ X . Therefore, f [x,a] = f [a,x] = f (0) = 0 and

hence [ f (x), f (a)] = [ f (a), f (x)] = 0. Since f ∈ Aut(X), y = f (x) ∈ Z(X). Hence

f (Z(X))⊆ Z(X).
If y ∈ f (C(X)), then exists x ∈ C(X) such that y = f (x). Since x ∈ C(X),

0∗ (0∗x) = x. Therefore f (x) = f (0∗ (0∗x)) = f (0)∗ ( f (0)∗ f (x)) = 0∗ (0∗ f (x)).
Thus y ∈C(X). Hence f (C(X))⊆C(X). �

Proposition 2. i) If X is a p-semisimple, then Z(X) = X.

ii) If X is an associative, then Z(X) = X.

Proof. i) Let X be a p-semisimple. Since C(X) ⊆ Z(X) and C(X) = X we obtain

Z(X) = X .

ii) Suppose that X is associative, then for any x,y ∈ X

[x,y] = ((x∗ (x∗ y))∗ ((y∗ (y∗ x))))∗ (0∗ (x∗ y))

= (((x∗ x)∗ y)∗ ((y∗ y)∗ x))∗ (x∗ y)

= ((0∗ y)∗ (0∗ x))∗ (x∗ y)

= (y∗ x)∗ (x∗ y) = (y∗ x)∗ (y∗ x) = 0.

Similarly, [y,x] = 0. Then Z(X) = X . �
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In the following example we show that the converse of Proposition 2 is generally

not correct.

Example 7. Let X = {0,a,b} with (∗) be defined by the following table:

∗ 0 a b

0 0 0 0

a a 0 0

b b a 0

X is a commutative BCI-algebra. Therefore Z(X) = X . But X is not associat-

ive because a = a ∗ (a ∗ b) 6= (a ∗ a) ∗ b = 0. Also X is not p-semisimple because

0∗ (0∗a) 6= a.

Lemma 7. Let X ,Y be two BCI-algebras. Then Z(X ×Y ) = Z(X)×Z(Y ).

Proof. Let (x,y) ∈ Z(X ×Y ). Then for every (a,b) ∈ X ×Y , we obtain

[(x,y),(a,b)] = [(a,b),(x,y)] = (0,0).

But

[(x,y),(a,b)]

= (((x,y)∗ ((x,y)∗ (a,b)))∗ ((a,b)∗ ((a,b)∗ (x,y))))∗ ((0,0)∗ ((x,y)∗ (a,b)))

= ((x∗ (x∗a),y∗ (y∗b))∗ (a∗ (a∗ x),b∗ (b∗ y)))∗ (0∗ (x∗a),0∗ (y∗b))

= ((x∗ (x∗a)∗ (a∗ (a∗ x))),((y∗ (y∗b))∗ (b∗ (b∗ y))))∗ (0∗ (x∗a),0∗ (y∗b))

= ((x∗ (x∗a)∗ (a∗ (a∗ x))∗ (0∗ (x∗a))),((y∗ (y∗b))∗ (b∗ (b∗ y)))∗ (0∗ (y∗b)))

= ([x,a], [y,b]).

Since [(x,y),(a,b)] = [(a,b),(x,y)] = (0,0), ([x,a], [y,b]) = ([a,x], [b,y]) = (0,0).
Therefore, [x,a] = [a,x] = 0, for any a ∈ X and [y,b] = [b,y] = 0, for any b ∈ Y .

Hence x ∈ Z(X) and y ∈ Z(Y ). Then (x,y) ∈ Z(X)×Z(Y ). That means Z(X ×Y ) ⊆
Z(X)×Z(Y ).

Conversely, let (x,y) ∈ Z(X)× Z(Y ). Then x ∈ Z(X) and y ∈ Z(Y ). Therefore,

for every a ∈ X , [x,a] = [a,x] = 0 and for every b ∈ Y , [y,b] = [b,y] = 0. Thus

[(x,y),(a,b)] = ([x,a], [y,b]) = (0,0) and [(a,b),(x,y)] = ([a,x], [b,y]) = (0,0). So

(x,y) ∈ Z(X ×Y ). Hence Z(X)× Z(Y ) ⊆ Z(X ×Y ). Whence Z(X ×Y ) = Z(X)×
Z(Y ). �

Lemma 8. Let S be a subalgebra of X. Then

i) S ⊆ Z(Z(S)),
ii) Z(Z(Z(S))) = Z(S).
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Proof. i) Let s ∈ S. Then for any x ∈ Z(S) we get [x,s] = [s,x] = 0. Hence

s ∈ Z(Z(S)). Therefore S ⊆ Z(Z(S)).
ii) Since S ⊆ Z(Z(S)), it follows that Z(Z(Z(S))) ⊆ Z(S). Also by putting Z(S)

instead of S in (i) we obtain S ⊆ Z(Z(Z(S))). Hence Z(Z(Z(S))) = Z(S). �

Theorem 13. Z(X)⊆
⋂

S∈C(X) S.

Proof. Since CX(S)⊆ X , for any S ∈C(X), we obtain CX(X)⊆CX(CX(S)). Hence

for any S ∈ C(X), CX(X)⊆ S. Then Z(X) =CX(X)⊆
⋂

S∈C(X) S. �

Theorem 14. Suppose that S is a nonempty subset of X. Then the following con-

ditions are equivalent:

i) CX(S) = X,

ii) S ⊆ Z(X),
iii) [S,X ] = [X ,S] = {0}.

Proof. i)↔ii) Let CX(S) = X and s ∈ S. Since s ∈ X = CX(S) we obtain [x,s] =
[s,x] = 0, for every x ∈ X . Therefore s ∈ Z(X). Conversely, let S ⊆ Z(X). Then

CX(Z(X))⊆CX(S). But CX(Z(X))=X and hence X ⊆CX(S). Obviously, CX(S)⊆X .

Then CX(S) = X .

ii)le f trightarrowiii) Let S ⊆ Z(X) and t ∈ [S,X ]. Then t = ∏[si,xi] such that si ∈ S

and xi ∈ X . Since S ⊆ Z(X), si ∈ Z(X) and so t = [si,xi] = 0. Therefore [S,X ] = {0}.

Similarity, [X ,S] = {0}. Conversely, let [S,X ] = [X ,S] = {0} and let s ∈ S. Therefore

[s,x] = [x,s] = 0, for all x ∈ X . Then s ∈ Z(X). Hence S ⊆ Z(X). �

5. CENTRAL IDEAL AND DERIVED IDEAL

In this section, we introduce the notions of central ideal and derived ideal and in-

vestigate the relation between commutative ideals and the derived subalgebra, central

ideal and derived ideal and others ideals of BCI-algebras.

Definition 5. The generated ideal by Z(X) is called the central ideal of X and is

denoted by CI(X). i.e.,

CI(X) =< Z(X)>=
⋂

Z(X)⊆I

I.

Also the generated ideal by X
′

is called the derived ideal of X and is denoted by

DI(X). i.e.,

DI(X) =< X
′
>=

⋂

X
′
⊆I

I,

where I is any ideal of X .

Example 8. i) In Example 7 we have CI(X) = X = DI(X) and for Example 5 (ii),

we have CI(X) = {0,a,c},DI(X) = {0,b}.
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ii) Let X = {0,a,b,c,d} be a BCI-algebra in which ∗ operation is defined by the

following table:

∗ 0 a b c d

0 0 0 0 0 0

a a 0 0 a 0

b b a 0 b 0

c c c c 0 c

d d d d d 0

By routine calculations, we obtain Z(X)= {0,c}. The central ideal of X is CI(X)=

{0,c}. Also X
′
= {0,a,b}. Therefore DI(X) =< X

′
>= {0,a,b}.

Theorem 15. Let I be an ideal of X. Then the following hold:

i) X/I is commutative if and only if X
′
⊆ I,

ii) X/DI(X) is commutative,

iii) If DI(X) =X
′
, then X

′
is smallest ideal of X such that corresponding quotient

algebra is commutative.

Proof. i) see Theorem 5.1 in [17].

ii) Since X
′
⊆ DI(X) by (i) X/DI(X) is a commutative BCI-algebra.

iii) Let DI(X) = X
′
, then X/DI(X) = X/X

′
is commutative. Now, let I be an ideal

of X such that X/I is commutative and I ⊆ X
′
. Since X/I is commutative by (i)

X
′
⊆ I. Therefore, X

′
= I. Hence X

′
is smallest ideal of X such that corresponding

quotient algebra is commutative. �

Remark 5. Since X
′

is a subalgebra of X , DI(X) =< X
′
> is a closed ideal [3].

Then X/DI(X) is a commutative BCI-algebra. Hence DI(X) is a commutative ideal.

The converse of this statement is not correct, for example X is a commutative ideal

of X but is not a derived ideal of X , generally.

The following example shows that the central ideals and derived ideals are differ-

ent from the other ideals, in general.

Example 9. i) Generally, a central ideal is neither commutative nor positive im-

plicative ideal of X . The central ideal from Example 3 is CI(X) = {0,c}. Since

a ∗ d = 0 ∈ CI(X) but d ∗ (a ∗ (a ∗ d)) = d /∈ CI(X), CI(X) is not a commutative

ideal. Also (b ∗ a) ∗ a = 0 ∈ CI(X) and a ∗ a = 0 ∈ CI(X) but b ∗ a = a /∈ CI(X).
Therefore CI(X) is not a positive implicative ideal. Also (a∗ (d ∗a))∗c = 0 ∈CI(X)
and c ∈ CI(X) but a /∈ CI(X). Therefore, CI(X) is not an implicative ideal. Since,

b∧ d = d ∗ (d ∗ b) = d ∗ d = 0 ∈ CI(X) but d ∧ b = b ∗ (b ∗ d) = a /∈ CI(X), CI(X)
is not a normal ideal. CI(X) is not prime ideal of X , because b∧ d = d ∗ (d ∗ b) =
d ∗d = 0 ∈CI(X) but neither b ∈CI(X) and nor d ∈CI(X).
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ii) Let X = {0,a,b,c,d} be a BCI-algebra in which ∗ operation is defined as fol-

lows

∗ 0 a b c d

0 0 0 0 0 0

a a 0 a 0 0

b b b 0 0 0

c c c c 0 0

d d d d c 0

By routine calculations, the central ideal of X is CI(X) = {0}. Also X
′
= {0,a,b}.

Therefore, the derived ideal of X is DI(X) = {0,a,b}. In this example CI(X) = {0} is

not a maximal ideal of X , because CI(X)( I = {0,a}. Also CI(X) = {0,a}∩{0,b}
but CI(X) 6= {0,a} and CI(X) 6= {0,b}. Then CI(X) is not an irreducible ideal of X .

Since a,b /∈CI(X) and neither a∗b ∈CI(X) and nor b∗a ∈CI(X), CI(X) is not an

obstinate ideal of X .

iii) In Example 3, X is an implicative, commutative, positive implicative, prime,

obstinate, maximal, Varlet, irreducible and normal ideal but is not central ideal of X

(for more details see [3, 12]).

Theorem 16. Let X be a BCI-algebra. Then

i) CI(X) = {x ∈ X : (...((x∗a1)∗a2)∗ ...)∗an = 0, for some a1, . . . ,an ∈ Z(X)}.

ii) DI(X) = {x ∈ X : (...((x∗a1)∗a2)∗ ...)∗an = 0, for some a1, . . . ,an ∈ X
′
}.

Proof. Since 0 is a positive element of X and 0 ∈ Z(X) and 0 ∈ X
′

by Theorem 3

(i) and (ii) holds. �

Theorem 17. Suppose that I is a closed ideal of X. Then I is a commutative ideal

if and only if [x,y] ∈ I, for all x,y ∈ X.

Proof. Let I be a closed ideal of X . I is a commutative ideal if and only if X/I

is a commutative BCI-algebra if and only if X
′
⊆ I if and only if [x,y] ∈ I, for all

x,y ∈ X . �

In the following theorem we consider a condition under which the equality of

Theorem 12 is correct.

Theorem 18. Let I be a commutative closed ideal of X and I ∩X
′
= {0}. Then

I ⊆ Z(X) and so Z(X/I) = Z(X)/I.

Proof. Let I be a commutative closed ideal of X and let x ∈ I. Then [x,y] ∈ I, for

every y ∈ X . Since [x,y] ∈ X
′

for every x,y ∈ X , [x,y] ∈ I ∩X
′
= {0} . Therefore,

[x,y] = 0. Similarity, [y,x] = 0. Thus [x,y] = [y,x] = 0. Hence x ∈ Z(X). That is

I ⊆ Z(X). But Z(X/I) = {x/I : [x/I,y/I] = [y/I,x/I] = 0/I, for all y/I ∈ X/I} =



CENTRALIZERS OF BCI-ALGEBRAS 423

{x/I : [x,y]/I = [y,x]/I = 0/I, for all y ∈ X} = {x/I : [x,y], [y,x] ∈ I, for all y ∈ X}.

Since [x,y], [y,x] ∈ X
′
, for all x,y ∈ X , then the recent set is equal {x/I : [x,y], [y,x]

∈ I∩X
′
, for all y ∈ X}= {x/I : [x,y] = [y,x] = 0, for all y ∈ X}= {x/I : x ∈ Z(X)}=

Z(X)/I. �

Theorem 19. If I is a commutative closed ideal of X, then I is a normal ideal of

X.

Proof. Let I be a commutative closed ideal of X and x ∧ y ∈ I. Then [y,x] =
(y∧ x)∗ (x∧ y) ∈ I for all x,y ∈ X . But I is an ideal, then (y∧ x) ∈ I.

Conversely, let y∧x ∈ I. Since [x,y] = (x∧y)∗ (y∧x) ∈ I and I is an ideal of X , then

x∧ y ∈ I. Therefore, I is a normal ideal of X . �

In the following example we show that the converse of Theorems 18, 19 are gen-

erally not correct.

Example 10. Let X = {0,a,b}. Define a binary operation (∗) on X by

∗ 0 a b

0 0 0 0

a a 0 0

b b b 0

X is a BCI-algebra. The set I = {0} is a closed ideal of X . With simple calculations

we obtain Z(X) = {0} and X
′
= {0,a}. Also I ∩X

′
= {0} and I ⊆ Z(X) but I is not

a commutative ideal, because [a,b] = a /∈ I.

In the Wronski algebra [3] I = {0} is a normal ideal of X but is not a commutative

ideal.

Remark 6. The set Nk(X) = {x ∈ X : 0∗xk = 0}, where k is a fixed natural number

is a commutative closed ideal of X [3]. Then X/Nk(X) is a commutative BCI-algebra.

Hence by Theorem 15, X
′
⊆ Nk(X) and so DI(X) =< X

′
>⊆< Nk(X) >= Nk(X).

Therefore, any pseudo commutator element of X is a nilpotent element of X . Also by

Corollary 3, we have Z(X/Nk(X)) = X/Nk(X).

In the last theorem a relationship between Rad(X) and CI(X), DI(X) is expressed

and proved.

Theorem 20. CI(X)∩DI(X)⊆ Rad(X).

Proof. It is sufficient to show that every maximal ideal M of X is contains

CI(X)∩DI(X). Since M is a maximal ideal, DI(X) ⊆ M or X = M ×DI(X), be-

cause if DI(X) * M, then M ( M ×DI(X), by the maximality of M in this case

X = M ×DI(X). If DI(X) ⊆ M, then CI(X)∩DI(X) ⊆ M. In the case X = M ×

DI(X), X/M ∼= DI(X). Then X/M is a commutative BCI-algebra and hence X
′
⊆ M.

Therefore DI(X) =< X
′
>⊆< M >= M. Hence CI(X)∩DI(X)⊆ M. �
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Open problem: Under what conditions dose the equality in Theorem 20 hold?

6. CONCLUSION

In groups, rings, lie algebras, monoids and semigroups the centralizer of a subset

is the set of all elements such that commute with all elements of them set and the

normalizer are elements that satisfy a weaker condition. This article presented the

centralizer of a subset of BCI-algebras as well as the concept of pseudo center of

BCI-algebras. The results of this paper show that:

i) X is commutative iff Z(X) = X iff X
′
= {0}.

ii) The pseudo center of X is exactly CX(X) and X is commutative if and only if

CX(X) = Z(X) = X .

iii) For subsets S,T of X , T ⊆CX(S) if and only if S ⊆CX(T ).
iv) CX(CX(S)) contains S, but CX(S) need not contain S.

v) CI(X)∩DI(X)⊆ Rad(X).

Some important topics for future work are:

i) The concept of C-dimension in BCI-algebras using centralization could be

an interesting subject for studies.

ii) Making normalizer of a subset S of X such that NX(X) = X and for singleton

sets, NX(a) =CX(a), for a ∈ X .
iii) Find subalgebra of X to which X/CI(X) (also X/DI(X)) is isomorphic.

iv) Using commutators to construct idealizer of an ideal I of X .

ACKNOWLEDGEMENT

The authors would like to express their sincere thanks to the referee for their valu-

able suggestions and comments.

REFERENCES

[1] S. A. Bhatti and M. A. Chaudhry, “Ideals in BCI-algebras,” Internat. J. Math. Ed. Sci. Tech.,

vol. 21, no. 4, pp. 637–643, 1990, doi: 10.1080/0020739900210419.

[2] W. A. Dudek, X. Zhang, and Y. Wang, “Ideals and atoms of BZ-algebras,” Math. Slovaca, vol. 59,

no. 4, pp. 387–404, 2009, doi: 10.2478/s12175-009-0135-2.

[3] W. A. Dudek, “On some BCI-algebras with the condition (S),” Math. Japon., vol. 31, no. 1, pp.

25–29, 1986.

[4] W. A. Dudek, “On group-like BCI-algebras,” Demonstratio Math., vol. 21, no. 2, pp. 369–376,

1988.

[5] W. A. Dudek, “Solid weak BCC-algebras,” Int. J. Comput. Math., vol. 88, no. 14, pp. 2915–2925,

2011, doi: 10.1080/00207160.2011.582103.

[6] W. A. Dudek and Y. B. Jun, “Quasi p-ideals of quasi BCI-algebras,” Quasigroups Related Systems,

vol. 11, pp. 25–38, 2004.

[7] W. A. Dudek, B. Karamdin, and S. A. Bhatti, “Branches and ideals of weak BCC-algebras,” Al-

gebra Colloq., vol. 18, no. Special Issue 1, pp. 899–914, 2011, doi: 10.1142/S1005386711000782.

[8] W. A. Dudek and J. Thomys, “On decompositions of BCH-algebras,” Math. Japon., vol. 35, no. 6,

pp. 1131–1138, 1990.



CENTRALIZERS OF BCI-ALGEBRAS 425

[9] W. A. Dudek and J. Thomys, “On some generalizations of BCC-algebras,” Int. J. Comput. Math.,

vol. 89, no. 12, pp. 1596–1616, 2012, doi: 10.1080/00207160.2012.692782.

[10] K. H. Hofmann and S. A. Morris, The Lie theory of connected pro-Lie groups, ser. EMS Tracts in

Mathematics. European Mathematical Society (EMS), Zürich, 2007, vol. 2, doi: 10.4171/032.
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Abstract. In this work, (amply) essential radical supplemented modules are defined and some

properties of these modules are investigated. Let M be an R-module and M = M1 +M2 + · · ·+
Mn. If Mi is essential radical supplemented for every i = 1,2, . . . ,n, then M is also essential

radical supplemented. It is proved that every factor module and every homomorphic image of an

essential radical supplemented module are essential radical supplemented. Let M be an essential

radical supplemented R-module. Then every finitely M-generated R-module is essential radical

supplemented.
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1. INTRODUCTION

Throughout this paper all rings will be associative with identity and all modules

will be unital left modules.

Let M be an R-module and N ≤ M. If L = M for every submodule L of M such that

M = N +L, then N is called a small (or superfluous) submodule of M and denoted

by N ≪ M. A submodule N of an R-module M is called an essential submodule of

M and denoted by N E M in case K ∩N 6= 0 for every submodule K 6= 0, or equival-

ently, N ∩L = 0 for L ≤ M implies that L = 0. Let M be an R-module and K be a

submodule of M. K is called a generalized small (briefly, g-small) submodule of M

if for every essential submodule T of M with the property M = K +T implies that

T = M, then we write K ≪g M. It is clear that every small submodule is a generalized

small submodule but the converse is not true generally. Let M be an R-module and

U,V ≤ M. If M =U +V and V is minimal with respect to this property, or equival-

ently, M = U +V and U ∩V ≪ V , then V is called a supplement of U in M. M is

called a supplemented module if every submodule of M has a supplement in M. Let

M be an R-module and U ≤ M. If for every V ≤ M such that M = U +V , U has

a supplement V
′
with V

′
≤ V , we say U has ample supplements in M. If every sub-

module of M has ample supplements in M, then M is called an amply supplemented

module. If every essential submodule of M has a supplement in M, then M is called

© 2021 Miskolc University Press
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an essential supplemented (or briefly, e-supplemented) module. If every essential

submodules of M has ample supplements in M, then M is called an amply essential

supplemented (or briefly, amply e-supplemented) module. Let M be an R−module

and U,V ≤ M. If M = U +V and M = U + T with T E V implies that T = V , or

equivalently, M =U +V and U ∩V ≪g V , then V is called a g-supplement of U in M.

M is said to be g-supplemented if every submodule of M has a g-supplement in M.

The intersection of all maximal submodules of an R-module M is called the radical

of M and denoted by RadM. If M have no maximal submodules, then we denote

RadM = M. The intersection of essential maximal submodules of an R-module M

is called the generalized radical of M and denoted by RadgM. If M have no essen-

tial maximal submodules, then we denote RadgM = M. Let M be an R-module and

U,V ≤ M. If M = U +V and U ∩V ≤ RadV , then V is called a generalized (rad-

ical) supplement (or briefly, Rad-supplement) of U in M. M is called a generalized

(radical) supplemented (or briefly, Rad-supplemented) module if every submodule

of M has a Rad-supplement in M. Let M be an R-module and U ≤ M. If for every

V ≤ M such that M =U +V , U has a Rad-supplement V
′
with V

′
≤V , we say U has

ample Rad-supplements in M. If every submodule of M has ample Rad-supplements

in M, then M is called an amply generalized (radical) supplemented (or briefly, amply

Rad-supplemented) module. Let M be an R-module. We say submodules X and Y

of M are β∗ equivalent, Xβ∗Y , if and only if Y +K = M for every K ≤ M such that

X +K = M and X + T = M for every T ≤ M such that Y + T = M. Let M be an

R-module X ≤ Y ≤ M. If Y/X ≪ M/X , then we say Y lies above X in M.

More information about (amply) supplemented modules are in [3, 9, 10] and [11].

More information about (amply) essential supplemented modules are in [5, 6]. More

results about g-small submodules and g-supplemented modules are in [4, 7]. The

definitions of (amply) generalized supplemented modules and some properties of

them are in [8, 10]. Some properties of (amply) generalized supplemented modules

are also in [2]. The definition of β∗ equivalence relation and some properties of this

relation are in [1].

In this paper, we define (amply) essential radical supplemented modules and in-

vestigate some properties about these modules. We constitute relationships between

essential radical supplemented modules and amply essential radical supplemented

modules by Proposition 3 and Proposition 4. We also constitute relationships between

essential radical supplemented modules and π-projective modules by Lemma 12. We

give two examples for essential radical supplemented modules separating with essen-

tial supplemented modules at the end of this paper.

Lemma 1. Let M be an R-module and K ≤ N ≤ M. If K is a generalized small

submodule of N, then K is a generalized small submodule in submodules of M which

contain N.

Proof. See [4, Lemma 1 (2)]. �
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Lemma 2. Let M be an R-module. Then RadgM = ∑L≪gM L.

Proof. See [4, Lemma 5 and Corollary 5]. �

Lemma 3. Let V be a Rad-supplement of U in M. Then RadV =V ∩RadM.

Proof. Let T be any maximal submodule of V . Since

M/(U +T ) = (U +T +V )/(U +T )∼=V/(U ∩V +T ) =V/T,

then U +T is a maximal submodule of M. Hence RadM ≤ U +T and V ∩RadM ≤

U ∩V + T = T . Thus V ∩RadM ≤ RadV and since RadV ≤ V ∩RadM, RadV =
V ∩RadM. �

2. ESSENTIAL RADICAL SUPPLEMENTED MODULES

Definition 1. Let M be an R-module. If every essential submodule of M has a

Rad-supplement in M, then M is called an essential radical supplemented (or briefly,

e-Rad-supplemented) module.

Clearly we see that every essential supplemented module is essential radical sup-

plemented. But the converse is not true in general. (See Examples 1 and 2).

Definition 2. Let M be an R-module and X ≤ M. If X is a Rad-supplement of an

essential submodule in M, then X is called an essential radical supplement (or briefly,

e-Rad-supplement) submodule in M.

Lemma 4. Let M be an R-module, V be an e-Rad-supplement in M and x ∈ V .

Then Rx ≪g M if and only if Rx ≪g V .

Proof. (=⇒) Let Rx ≪g M. Since V is an e-Rad-supplement in M, there exists

U E M such that V is a Rad-supplement of U in M. Let Rx+ T = V with T E V .

Then M =U +V =U +T +Rx, and since Rx ≪g M and (U +T )E M, U +T = M.

Let x = u+ t with u ∈ U and t ∈ T . Since x, t ∈ V , then u = x− t ∈ V . Then V =
Rx+T ≤ Ru+Rt +T = Ru+T ≤V and Ru+T =V . Since u ∈U ∩V ≤ RadV , then

Ru ≪V and T =V . Hence Rx ≪g V .

(⇐=) Clear from Lemma 1. �

Corollary 1. Let M be an R-module and V be an e-Rad-supplement in M. Then

RadgV =V ∩RadgM.

Proof. Let x ∈ RadgV . Here Rx ≪g V and by Lemma 1, Rx ≪g M. Then by

Lemma 2, Rx ≤ RadgM and x ∈V ∩RadgM.

Let y ∈ V ∩RadgM. Then y ∈ V and Ry ≪g M. By Lemma 4, Ry ≪g V . By

Lemma 2, Ry ≤ RadgV and y ∈ RadgV .

Hence RadgV =V ∩RadgM. �

Proposition 1. Let M be an essential radical supplemented module. Then M/RadM

have no proper essential submodules.
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Proof. Let K
RadM

be any essential submodule of M
RadM

. Since K
RadM

E M
RadM

, K E M

and since M is essential radical supplemented, K has a Rad-supplement V in M. Then

M = K +V and K ∩V ≤ RadV . Since M = K +V , M
RadM

= K
RadM

+ V+RadM
RadM

. Since

K ∩V ≤ RadM, then K
RadM

∩ V+RadM
RadM

= K∩V+RadM
RadM

= 0 and M
RadM

= K
RadM

⊕ V+RadM
RadM

.

Since M
RadM

= K
RadM

⊕ V+RadM
RadM

and K
RadM

E M
RadM

, K
RadM

= M
RadM

. Hence M
RadM

have no

proper essential submodules. �

Lemma 5. Let M be an R-module, U be an essential submodule of M and M1 ≤M.

If M1 is e-Rad-supplemented and U +M1 has a Rad-supplement in M, then U has a

Rad-supplement in M.

Proof. Let X be a Rad-supplement of U + M1 in M. Then M = U + M1 + X

and X ∩ (U +M1) ≤ RadX . Since U E M, (U +X) E M and (U +X)∩M1 E M1.

Since M1 is e-Rad-supplemented, (U +X)∩M1 has a Rad-supplement Y in M1. This

case M1 = (U +X)∩M1 +Y and (U +X)∩Y = (U +X)∩M1 ∩Y ≤ RadY . Then

M = U +M1 + X = U + X + (U +X)∩M1 +Y = U + X +Y and U ∩ (X +Y ) ≤
(U +X) ∩ Y + (U +Y ) ∩ X ≤ (U +M1) ∩ X + (U +X) ∩ Y ≤ RadX + RadY ≤

Rad(X +Y ). Hence X +Y is a Rad-supplement of U in M. �

Corollary 2. Let M be an R-module, U be an essential submodule of M and Mi ≤

M for every i = 1,2, . . . ,n. If Mi is e-Rad-supplemented for every i = 1,2, . . . ,n and

U +M1 +M2 + · · ·+Mn has a Rad-supplement in M, then U has a Rad-supplement

in M.

Proof. Clear from Lemma 5. �

Lemma 6. Let M = M1 +M2. If M1 and M2 are e-Rad-supplemented, then M is

also e-Rad-supplemented.

Proof. Let U E M. Then 0 is a Rad-supplement of U +M1 +M2 in M. Since M2

is e-Rad-supplemented and (U +M1) E M, by Lemma 5, U +M1 has a Rad-supp-

lement in M. Since M1 is e-Rad-supplemented and U E M, by Lemma 5, U has a

Rad-supplement in M. Hence M is e-Rad-supplemented. �

Corollary 3. Let M = M1 +M2 + · · ·+Mn. If Mi is e-Rad-supplemented for each

i = 1,2, . . . ,n, then M is also e-Rad-supplemented.

Proof. Clear from Lemma 6. �

Lemma 7. Every factor module of an e-Rad-supplemented module is e-Rad-supp-

lemented.

Proof. Let M be an e-Rad-supplemented R−module and M
K

be any factor mod-

ule of M. Let U
K
E M

K
. Then U E M and since M is e-Rad-supplemented, U has a

Rad-supplement V in M. Since K ≤U , by the proof of [8, Proposition 2.6(1)], V+K
K

is a Rad-supplement of U
K

in M
K

. Hence M
K

is e-Rad-supplemented. �
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Corollary 4. Every homomorphic image of an e-Rad-supplemented module is

e-Rad-supplemented.

Proof. Clear from Lemma 7. �

Lemma 8. Let M be an e-Rad-supplemented R-module. Then every finitely

M-generated R-module is e-Rad-supplemented.

Proof. Let N be a finitely M-generated R-module. Then there exist a finite index

set Λ and an R-module epimorphism f : M(Λ)−→N. Since M is e-Rad-supplemented,

by Corollary 3, M(Λ) is e-Rad-supplemented. Then by Corollary 4, N is e-Rad-supp-

lemented. �

Proposition 2. Let R be a ring. Then RR is essential radical supplemented if and

only if every finitely generated R-module is essential radical supplemented.

Proof. Clear from Lemma 8. �

Lemma 9. Let M be an R-module. If every essential submodule of M is β∗ equi-

valent to an e-Rad-supplement submodule in M, then M is essential radical supple-

mented.

Proof. Let U be an essential submodule of M. By hypothesis there exists an

e-Rad-supplement submodule X in M such that Uβ∗X . Since X is an e-Rad-supp-

lement submodule in M, there exists an essential submodule Y of M such that X is a

Rad-supplement of Y in M. This case M = X +Y and X ∩Y ≤ RadX . Since Y E M,

by hypothesis, there exists an e-Rad-supplement submodule V in M such that Y β∗V .

Since Uβ∗X and M = X +Y , then M = U +Y and since Y β∗V , M = U +V . Let

x ∈U ∩V and Rx+T = M with T ≤ M. Then U ∩V +T = M and since M =U +V ,

M =U +V ∩T = X +V ∩T . Since M =V +T = X +V ∩T , M =V +X ∩T . Then

by Y β∗V , M = Y +X ∩ T . Since M = X + T = Y +X ∩ T , M = X ∩Y + T . Let

x = y+ t, with y ∈ X ∩Y and t ∈ T . Since Rx+T = M, Ry+T = M also holds. By

y ∈ X ∩Y ≤ RadX ≤ RadM, Ry ≪ M and since Ry+T = M, T = M. Hence Rx ≪ M

and x ∈ RadM. Since V is a Rad-supplement in M, then by Lemma 3, V ∩RadM =
RadV . Since x ∈V and x ∈ RadM, x ∈V ∩RadM = RadV and U ∩V ≤ RadV . Hence

V is a Rad-supplement of U in M and M is essential radical supplemented. �

Corollary 5. Let M be an R-module. If every essential submodule of M lies above

an e-Rad-supplement submodule in M, then M is essential radical supplemented.

Proof. Clear from Lemma 9. �

3. AMPLY ESSENTIAL RADICAL SUPPLEMENTED MODULES

Definition 3. Let M be an R-module. If every essential submodule has ample

Rad-supplements in M, then M is called an amply essential radical supplemented (or

briefly, amply e-Rad-supplemented) module.
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Lemma 10. Let M be an amply e-Rad-supplemented module. Then every factor

module of M is amply e-Rad-supplemented.

Proof. Let M/K be any factor module of M, U/K E M/K and U/K +V/K =
M/K with V/K ≤ M/K. Since U/K E M/K, U E M. Since U/K +V/K = M/K,

U +V = M. Because M is amply e-Rad-supplemented, U has a Rad-supplement V
′

in M with V
′
≤V . By the proof of [8, Proposition 2.6(1)], V

′
+K
K

is a Rad-supplement

of U
K

in M
K

. In addition to this, V
′
+K
K

≤ V
K

. Hence M/K is amply e-Rad-supplemented.

�

Corollary 6. Let M be an amply e-Rad-supplemented module. Then every homo-

morphic image of M is amply e-Rad-supplemented.

Proof. Clear from Lemma 10. �

Lemma 11. Let M be an R-module. If every submodule of M is e-Rad-supplemented,

then M is amply e-Rad-supplemented.

Proof. Let M =U +V with U E M and V ≤ M. By hypothesis, V is e-Rad-supp-

lemented. Since U E M, U ∩V E V . Since V is e-Rad-supplemented, U ∩V has

a Rad-supplement K in V . Here U ∩V +K = V and U ∩K = U ∩V ∩K ≤ RadK.

Then M =U +V =U +U ∩V +K =U +K and U ∩K ≤ RadK. Hence M is amply

e-Rad-supplemented. �

Proposition 3. Let R be any ring. Then every R-module is e-Rad-supplemented if

and only if every R-module is amply e-Rad-supplemented.

Proof. (=⇒) Let M be any R-module. Since every R-module is e-Rad-supplemen-

ted, every submodule of M is e-Rad-supplemented. Then by Lemma 11, M is amply

e-Rad-supplemented.

(⇐=) Clear. �

Lemma 12. Let M be a π-projective and e-Rad-supplemented R-module. Then M

is amply e-Rad-supplemented.

Proof. Let U E M, M = U +V and X be a Rad-supplement of U in M. Since M

is π-projective and M =U +V , there exists an R-module homomorphism f : M → M

such that Im f ⊂ V and Im(1− f ) ⊂ U . So, we have M = f (M) + (1− f )(M) =
f (U)+ f (X)+U = U + f (X). Suppose that a ∈ U ∩ f (X). Since a ∈ f (X), then

there exists x ∈ X such that a = f (x). Since a = f (x) = f (x)−x+x = x−(1− f )(x)
and (1− f )(x) ∈ U , we have x = a + (1− f )(x) ∈ U . Thus x ∈ U ∩ X and so,

a = f (x) ∈ f (U ∩X). Therefore we have U ∩ f (X) ≤ f (U ∩X) ≤ f (RadX) ≤
Rad f (X). This means that f (X) is a Rad-supplement of U in M. Moreover, f (X)⊂
V . Therefore M is amply e-Rad-supplemented. �

Corollary 7. If M is a projective and e-Rad-supplemented module, then M is an

amply e-Rad-supplemented module.
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Proof. Clear from Lemma 12. �

Proposition 4. Let R be a ring. The following assertions are equivalent.

(i) RR is e-Rad-supplemented

(ii) RR is amply e-Rad-supplemented.

(iii) Every finitely generated R-module is e-Rad-supplemented.

(iv) Every finitely generated R-module is amply e-Rad-supplemented.

Proof. (i)⇐⇒ (ii) Clear from Corollary 7, since RR is projective.

(i) =⇒ (iii) Clear from Lemma 8.

(iii) =⇒ (iv) Let M be a finitely generated R-module. Then there exist a finite

index set Λ and an R-module epimorphism f : R(Λ) −→ M. Since every finitely gen-

erated R-module is e-Rad-supplemented, R(Λ) is e-Rad-supplemented. Since RR is

projective, R(Λ) is also projective. Then by Corollary 7, R(Λ) is amply e-Rad-supp-

lemented. Since f : R(Λ) −→ M is an R-module epimorphism, by Corollary 6, M is

also amply e-Rad-supplemented.

(iv) =⇒ (i) Clear. �

Example 1. Consider the Z-module Q. Since RadQ = Q, ZQ is essential radical

supplemented. But, since ZQ is not supplemented and every nonzero submodule of

ZQ is essential in ZQ, ZQ is not essential supplemented.

Example 2. Consider the Z-module Q⊕Zp for a prime p. It is easy to check that

Rad (Q⊕Zp) = Q 6= Q⊕Zp. Since Q and Zp are essential radical supplemented,

by Lemma 6, Q⊕Zp is essential radical supplemented. But Q⊕Zp is not essential

supplemented.
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Abstract. In this work, g-supplemented lattices are defined and some properties of these lattices

are investigated. g-small submodules and g-supplemented modules are generalized to lattices.

Let L be a lattice and 1 = a1 ∨ a2 ∨ ...∨ an with ai ∈ L (1 ≤ i ≤ n). If ai/0 is g-supplemented

for every i = 1,2, ...,n, then L is also g-supplemented. If L is g-supplemented, then 1/a is also

g-supplemented for every a ∈ L. It is also defined the g-radical of a lattice L and it is shown that

if L is g-supplemented, then 1/rg (L) is complemented.

2010 Mathematics Subject Classification: 06C05, 06C15

Keywords: Lattices, Essential Elements, Small Elements, Supplemented Lattices

1. INTRODUCTION

In this paper, every lattice is complete modular lattice with the smallest element

0 and the greatest element 1. Let L be a lattice, x,y ∈ L and x ≤ y. A sublattice

{a ∈ L|x ≤ a ≤ y} is called a quotient sublattice and denoted by y/x. An element y

of a lattice L is called a complement of x in L if x∧ y = 0 and x∨ y = 1, this case we

denote 1 = x⊕ y (in this case we call x and y are direct summands of L). L is said to

be complemented if each element has at least one complement in L. An element x of

L is said to be small or superfluous and denoted by x ≪ L if y = 1 for every y ∈ L

such that x∨y = 1. The meet of all maximal ( 6= 1) elements of a lattice L is called the

radical of L and denoted by r(L). An element a of L is called a supplement of b in L if

it is minimal for a∨b = 1. a is a supplement of b in a lattice L if and only if a∨b = 1

and a∧b ≪ a/0. A lattice L is called a supplemented lattice if every element of L has

a supplement in L. We say that an element y of L lies above an element x of L if x ≤ y

and y ≪ 1/x. L is said to be hollow if every element distinct from 1 is superfluous in

L, and L is said to be local if L has the greatest element ( 6= 1). We say an element

x ∈ L has ample supplements in L if for every y ∈ L with x∨y = 1, x has a supplement

z in L with z ≤ y. L is said to be amply supplemented if every element of L has ample

supplements in L. It is clear that every amply supplemented lattice is supplemented.

Let L be a lattice and k ∈ L. If t = 0 for very t ∈ L with k∧ t = 0, then k is called an

essential element of L and denoted by k E L.

© 2021 Miskolc University Press
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More informations about (amply) supplemented lattices are in [1, 2, 5, 9]. More

results about (amply) supplemented modules are in [8, 12].

Definition 1. Let L be a lattice and a ∈ L. If b = 1 for every b E L with a∨b = 1,

then a is called a generalized small (briefly, g-small) element of L and denoted by

a ≪g L.

It is clear that every small element is g-small, but the converse is not true in general

(See Example 1 and Example 2).

G-small elements generalize g-small submodules. G-small submodules are studied

in [6, 7, 11].

Lemma 1. Let L be a lattice and a,b,c,d ∈ L. Then the followings are hold.

(i) If a ≤ b and b ≪g L, then a ≪g L.

(ii) If a ≪g b/0, then a ≪g t/0 for every t ∈ L with b ≤ t.

(iii) If a ≪g L, then a∨b ≪g 1/b.

(iv) If a ≪g b/0 and c ≪g d/0, then a∨ c ≪g (b∨d)/0.

Proof. (i) Let a∨k = 1 with k E L. Since a ≤ b, b∨k = 1 and since b ≪g L, k = 1.

Hence a ≪g L as desired.

(ii) Let t ∈ L with b ≤ t and let a∨ k = t with k E t/0. Here k∧ b E b/0. Since

a≤ b, by modularity, b= b∧t = b∧(a∨ k)= a∨(k∧b) and since a≪g b/0, k∧b= b

and b ≤ k. Hence a ≤ k and t = a∨ k = k. Therefore, a ≪g t/0.

(iii) Let a∨b∨ k = 1 with k E 1/b. Since k E 1/b, we can easily see that k E L.

Since 1 = a∨b∨ k = a∨ k and a ≪g L, k = 1. Hence a∨b ≪g 1/b as desired.

(iv) Let a∨ c∨ k = b∨ d with k E (b∨d)/0. By (ii) a ≪g (b∨d)/0 and c ≪g

(b∨d)/0. Since a ≪g (b∨d)/0 and c∨ k E (b∨d)/0,c∨ k = b∨d and since c ≪g

(b∨d)/0, k = b∨d. Hence a∨ c ≪g (b∨d)/0 as desired. �

Corollary 1. If ai ≪g bi/0 for ai,bi ∈ L (i = 1,2, ...,n), then a1 ∨a2 ∨ ...∨an ≪g

(b1 ∨b2 ∨ ...∨bn)/0.

Proof. Clear from Lemma 1(iv). �

Corollary 2. Let a,b ∈ L and a ≤ b. If b ≪g L, then b ≪g 1/a.

Proof. Clear from Lemma 1(iii). �

2. G-SUPPLEMENTED LATTICES

Definition 2. Let L be a lattice and a,b ∈ L. If 1 = a∨b and 1 = a∨ t with t E b/0

implies that t = b, then b is called a g-supplement of a in L. If every element of L has

a g-supplement in L, then L is called a g-supplemented lattice.

G-supplemented lattices generalize g-supplemented modules. G-supplemented

modules are studied in [7]. Every supplemented lattice is g-supplemented. Hollow

and local lattices are g-supplemented.
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Lemma 2. Let L be a lattice and a,b ∈ L. Then b is a g-supplement of a in L if

and only if 1 = a∨b and a∧b ≪g b/0.

Proof. (=⇒) Let (a∧b)∨ k = b with k E b/0. Then 1 = a∨b = a∨ (a∧b)∨ k =
a∨ k hold. Since b is a g-supplement of a in L and k E b/0, by definition, k = b.

Hence a∧b ≪g b/0 as desired.

(⇐=) Let 1 = a∨ t with t E b/0. Since t ≤ b, by modularity, b = b∧ 1 = b∧
(a∨ t) = (a∧b)∨ t. Since a∧b ≪g b/0, t = b. Hence b is a g-supplement of a in L

as desired. �

Lemma 3. Let L be a lattice and a,b ∈ L. If a∨b has a g-supplement x in L and

(a∨ x)∧b has a g-supplement y in b/0, then x∨ y is a g-supplement of a in L.

Proof. Since x is a g-supplement of a∨b in L, by Lemma 2,

1 = a∨b∨ x and (a∨b)∧ x ≪g x/0.

Since y is a g-supplement of (a∨ x)∧b in b/0, by Lemma 2,

b = ((a∨ x)∧b)∨ y

and

(a∨ x)∧ y = (a∨ x)∧b∧ y ≪g y/0.

Then

1 = a∨b∨ x = a∨ x∨ ((a∨ x)∧b)∨ y = a∨ x∨ y

and by Lemma 1,

a∧ (x∨ y)≤ ((a∨ x)∧ y)∨ ((a∨ y)∧ x)

≤ ((a∨ x)∧ y)∨ ((a∨b)∧ x)≪g (x∨ y)/0.

Hence x∨ y is a g-supplement of a in L. �

Corollary 3. Let L be a lattice and a,b ∈ L. If a∨b has a g-supplement in L and

b/0 is g-supplemented, then a has a g-supplement in L.

Proof. Clear from Lemma 3. �

Lemma 4. Let 1 = a∨b with a,b ∈ L. If a/0 and b/0 are g-supplemented, then L

is also g-supplemented.

Proof. Let x be any element of L. Then 0 is a g-supplement of x∨ a∨ b in L and

since b/0 is g-supplemented, by Corollary 3, x∨ a has a g-supplement in L. Since

a/0 is g-supplemented, again by Corollary 3, x has a g-supplement in L. Hence L is

g-supplemented. �

Corollary 4. Let 1 = a1 ∨ a2 ∨ ... ∨ an with ai ∈ L (1 ≤ i ≤ n). If ai/0 is g-

supplemented for every i = 1,2, ...,n, then L is also g-supplemented.

Proof. Clear from Lemma 4. �
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Lemma 5. Let L be a lattice and a,b,c ∈ L with c ≤ a. If b is a g-supplement of a

in L, then b∨ c is a g-supplement of a in 1/c.

Proof. Since b is a g-supplement of a in L, 1 = a∨ b and a∧ b ≪g b/0. Since

a∧b ≪g b/0, by Lemma 1 (ii),

a∧b ≪g (b∨ c)/0

and by Lemma 1 (iii),

(a∧b)∨ c ≪g (b∨ c)/c.

Hence 1 = a∨b = a∨b∨ c and a∧ (b∨ c) = (a∧b)∨ c ≪g (b∨ c)/c and b∨ c is a

g-supplement of a in 1/c. �

Corollary 5. Let L be a g-supplemented lattice. Then 1/a is g-supplemented for

every a ∈ L.

Proof. Clear from Lemma 5. �

Definition 3. Let L be a lattice and t be a maximal ( 6= 1) element of L. If t E L,

then t is called a g-maximal element of L. The meet of all g-maximal elements of

L is called the g-radical of L and denoted by rg (L). If L have not any g-maximal

elements, then we call rg (L) = 1.

Corollary 6. Let L be a lattice. Then r (L)≤ rg (L).

Proof. Clear from definitions. �

Lemma 6. Let L be a lattice and a ∈ L. If a ≪g L, then a ≤ rg (L).

Proof. Assume a � rg (L). Then there exists a g-maximal element t of L with

a � t. Since t is maximal ( 6= 1) and a � t, a∨ t = 1 and since a ≪g L and t E L,

t = 1. This is contradiction. Hence a ≤ rg (L) as desired. �

Lemma 7. Let L be a lattice and a ∈ L. Then rg (a/0)≤ rg (L).

Proof. Let t be any g-maximal element of L. If a ≤ t, then rg (a/0) ≤ t. If a � t,

we can easily see that a∧ t is a g-maximal element of a/0 and hence rg (a/0) ≤ t.

Therefore, rg (a/0)≤ rg (L). �

Lemma 8. Let L be a g-supplemented lattice. Then 1/rg (L) is complemented.

Proof. Let x be any element of 1/rg (L). Since L is g-supplemented, x has a g-

supplement y in L. Here 1 = x∨ y and x∧ y ≪g y/0. Since x∧ y ≪g y/0, by Lemma

6 and Lemma 7, x∧ y ≤ rg (y/0)≤ rg (L). Hence 1 = x∨ y∨ rg (L) and

x∧ (y∨ rg (L)) = (x∧ y)∨ rg (L) = rg (L) .

Therefore, y∨ rg (L) is a complement of x in 1/rg (L) and 1/rg (L) is complemented.

�
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Let x,y ∈ L. It is defined a relation β∗ on the elements of L by xβ∗y if and only if

for every t ∈ L with 1 = x∨ t then 1 = y∨ t and for every k ∈ L with 1 = y∨ k then

1 = x∨ k. (See [10, Definition 1]. More informations about β∗ relation are in [10].

More informations about β∗ relation on modules are in [4].

Corollary 7. Let L be a g-supplemented lattice. Then 1/rg (L) is ⊕−supple-

mented.

Proof. Clear from [3, Definition 1] and Lemma 8. �

Lemma 9. Let L be a lattice and aβ∗b in L. If a and b have g-supplements in L,

then they have the same g-supplements in L.

Proof. Let x be a g-supplement of a in L. Then 1 = a∨ x and since aβ∗b, we have

1 = b∨ x. Let 1 = b∨ t with t E x/0. Since aβ∗b, we have 1 = a∨ t and since x is a

g-supplement of a in L, we have t = x. Hence x is a g-supplement of b in L. Similarly,

interchanging the roles of a and b we can prove that each g-supplement of b in L is

also a g-supplement of a in L. �

Corollary 8. Let L be a lattice and a lies above b in L. If a and b have g-

supplements in L, then they have the same g-supplements in L.

Proof. By [10, Theorem 3], aβ∗b and by Lemma 9, the desired is obtained. �

Lemma 10. Let L be a lattice and t ≪g x/0 for every g-supplement element x

in L and for every t ≪g L with t ≤ x. If every element of L is β∗ equivalent to a

g-supplement element in L, then L is g-supplemented.

Proof. Let a ∈ L. By hypothesis, there exists a g-supplement element x in L

such that aβ∗x. Let x be a g-supplement of b in L. By hypothesis, there exists a

g-supplement element y in L with bβ∗y. By Lemma 9, x is a g-supplement of y in L.

Here 1 = x∨y and x∧y ≪g x/0. Since x∧y ≪g L and y is a g-supplement element in

L, by hypothesis, x∧y≪g y/0. Then by Lemma 2, y is a g-supplement of x in L. Since

aβ∗x, by Lemma 9, y is a g-supplement of a in L. Hence L is g-supplemented. �

Corollary 9. Let L be a lattice and t ≪g x/0 for every g-supplement element x in

L and for every t ≪g L with t ≤ x. If every element of L lies above a g-supplement

element in L, then L is g-supplemented.

Proof. Clear from [10, Theorem 3] and Lemma 10. �

Definition 4. Let L be a lattice. If every element of L with distinct from 1 is

g-small in L, then L is called a g-hollow lattice.

Clearly we can see that every hollow lattice is g-hollow. But the converse is not

true in general (See Example 2).

Proposition 1. Every g-hollow lattice is g-supplemented.
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Proof. Let L be a g-hollow lattice. Then 1 is a g-supplement of every element of

L with distinct from 1 and 0 is a g-supplement of 1 in L. Hence L is g-supplemented.

�

Proposition 2. Let L be a lattice with rg (L) 6= 1. The following conditions are

equivalent.

(i) L is g-hollow.

(ii) L is local.

(iii) L is hollow.

Proof. (i) =⇒ (ii) Let x ∈ L and x 6= 1. Since L is g-hollow, x ≪g L and by Lemma

6, x ≤ rg (L). By hypothesis, rg (L) 6= 1. Hence rg (L) is the greatest element (6= 1) of

L and L is local.

(ii) =⇒ (iii) and (iii) =⇒ (i) are clear. �

Example 1. Let L be a nonzero complemented lattice. Here 1 ≪g L, but not 1 ≪ L.

1 is a g-supplement of 1 in L, but 1 is not a supplement of 1 in L.

Example 2. Consider the lattice L = {0,a,b,1} given by the following diagram.

1

ր տ
a b

տ ր
0

Then L is g-hollow but not hollow. Here 1 ≪g L, but not 1 ≪ L. 1 is a g-supplement

of 1 in L, but 1 is not a supplement of 1 in L. Here also r (L) = 0 6= 1 = rg (L) hold.

Example 3. Consider the lattice L = {0,a,b,c,1} given by the following diagram.

1

ր տ
b c

տ ր
a

↑
0

Then L is g-supplemented but not g-hollow.
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Abstract. The purpose of this paper is to consider a system of N-fixed point equations in metric

spaces. The existence and uniqueness of solution and an iterative algorithm for approximating

the solution are studied. This system of N-fixed point equations is an extension of the classical of

fixed point equation x = T x. The results of this paper improve several important works recently

published in the literature.
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1. INTRODUCTION

Banach’s contraction principle is one of the most powerful tools in applied non-

linear analysis. Weak contractions (also called φ-contractions), as generalizations of

Banach contraction mappings, have been studied by several authors. Let T be a self-

map of a metric space (X ,d) and φ : [0,+∞)→ [0,+∞) be a function. We say that T

is a φ-contraction if

d(T x,Ty)≤ φ(d(x,y)), ∀ x,y ∈ X .

In 1968, Browder [2] proved that if φ is non-decreasing and right continuous and

(X ,d) is complete, then T has a unique fixed point x∗ ∈ X and lim
n→∞

T nx0 = x∗ for any

given x0 ∈ X . Subsequently, this result was extended in 1969 by Boyd and Wong [1]

by weakening the hypothesis on φ, in the sense that it is sufficient to assume that φ
is right upper semi-continuous and not necessarily monotone. For other results of

this type see also [3]. For a comprehensive study of relations between several such

contraction type conditions, see [7] and [8].

On the other hand, in 2015, Su and Yao [14] proved the following generalized

contraction mapping principle.

For this work, the fourth author was partially supported by the Grant MOST 103-2923-E-039-001-

MY3.

© 2021 Miskolc University Press
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Theorem 1. Let (X ,d) be a complete metric space. Let T : X → X be a mapping

such that

ψ(d(T x,Ty))≤ φ(d(x,y)), ∀ x,y ∈ X , (1.1)

where ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a)≤ φ(b)⇒ a ≤ b;

(2)

{

ψ(an)≤ φ(bn)

an → ε, bn → ε
⇒ ε = 0.

Then, T has a unique fixed point and, for any given x0 ∈ X, the iterative sequence

T nx0 converges to this fixed point.

In particular, the study of the fixed points and coupled fixed points for weak con-

tractions and generalized contractions was extended to partially ordered metric spaces

in [4–6, 10–12, 15]. Among them, some results involve altering distance functions.

Such functions were introduced by Khan et al. in [9], where some fixed point theor-

ems are presented.

Recently, Y. Su, A. Petruşel and J. C. Yao [13] proved a multivariate contraction

mapping principle in complete metric spaces.

The purpose of this paper is to consider a of system of N-fixed point equations in

metric spaces. The existence and uniqueness of solution and the iterative algorithm

of solution are studied. We notice that the system of N-fixed point equations is a

generalized form of the fixed point equation x= T x. The results of this paper improve

several important works published recently in the literature.

2. A SYSTEM OF NONLINEAR EQUATIONS WITH CONTRACTION TYPE

OPERATORS

We will start the section with some concepts and results which are useful in our

approach.

Definition 1. A multiply metric function △(a1,a2, · · ·,aN) is a continuous N vari-

ables non-negative real function with the domain

{(a1,a2, · · ·,aN) ∈ R
N : ai ≥ 0, i ∈ {1,2,3, · · ·,N}}

which satisfies the following conditions:

(1) △(a1,a2, · · ·,aN) is non-decreasing for each variable ai, i ∈ {1,2, ··,N},

(2) △(a1 +b1,a2 +b2, · · ·,aN +bN)≤△(a1,a2, · · ·,aN)+△(b1,b2, · · ·,bN),
(3) △(a,a, · · ·,a) = a,

(4) △(a1,a2, · · ·,aN)→ 0 ⇔ ai → 0, i ∈ {1,2,3, · · ·,N},

(5) △(a1,a2, · · ·,aN) =△(ai1 ,ai2 , · · ·,aiN ),

for all ai,bi,a ∈ R, i ∈ {1,2,3, · · ·,N}, where ai1 ,ai2 , · · ·,aiN is an arbitrary permuta-

tion of elements a1,a2, · · ·,aN .

The following are some basic examples of multiply metric functions.
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Example 1. △1(a1,a2, · · ·,aN) =
1
N

N

∑
i=1

ai.

Example 2. △2(a1,a2, · · ·,aN) =
1
h

N

∑
i=1

qiai, where qi ∈ [0,1), i ∈ {1, · · · ,N}

and 0 < h :=
N

∑
i=1

qi < 1.

Example 3. △3(a1,a2, · · ·,aN) =

√

1
N

N

∑
i=1

a2
i .

Example 4. △4(a1,a2, · · ·,aN) = max{a1,a2, · · ·,aN}.

An important concept is now presented.

Definition 2. Let (X ,d) be a metric space, T : XN → X be a N-variables mapping,

an element p ∈ X is called a multivariate fixed point (or a fixed point of order N, see

[13]) of T if

p = T (p, p, · · ·, p).

In what follows, we recall the following theorem which is a generalization of

Banach’s contraction principle. This theorem was proved by Y. Su, A. Petruşel and

J. C. Yao in 2016, see [11].

Theorem 2. Let (X ,d) be a complete metric space and T : XN → X be a N-

variables mapping for which there exists h ∈ (0,1) such that the following condition

holds

d(T x,Ty)≤ h△(d(x1,y1),d(x2,y2), · · ·,d(xN ,yN)), ∀ x,y ∈ XN
,

where △ is a multiply metric function.

Then, T has a unique multivariate fixed point p ∈ X and, for any p0 ∈ XN , the

iterative sequence {pn} ⊂ XN defined by

p1 = (T p0,T p0, · · ·,T p0)

p2 = (T p1,T p1, · · ·,T p1)

· · ·

pn+1 = (T pn,T pn, · · ·,T pn)

converges, in the multiply metric △, to (p, p, · · ·, p) ∈ XN and the iterative sequence

{T pn} ⊂ X converges, with respect to d, to p ∈ X .

In this article, we will extend Banach’s contraction principle in another direction.
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Definition 3. Let (X ,d) be a metric space, T : XN → X be a N-variables mapping,

we consider the following N-variables system of equations:































T (x1,1,x1,2, · · ·,x1,N) = x1,

· · ·

T (xi,1,xi,2, · · ·,xi,N) = xi,

· · ·

T (xN,1,xN,2, · · ·,xN,N) = xN ,

(2.1)

The system of equations (2.1) is said to be system of N-fixed point equations, where

xi,1,xi,2, · · ·,xi,N , i = 1,2, · · ·,N and x1, j,x2, j, · · ·,xN, j, j = 1,2, · · ·,N are the permuta-

tions of elements x1,x2,x3, · · · ,xN .

Remark 1. It is easy to see that system (2.1) includes
N

∏
n=1

n! systems of equations.

For example, if N = 2, then (2.1) includes
2

∏
n=1

n! = 2! · 1! = 2 systems of coupled

fixed point operator equations, i.e., the following systems

{

T (x1,x2) = x1

T (x2,x1) = x2

{

T (x1,x2) = x2

T (x2,x1) = x1.

Example 5. Let (X ,d) be a metric space and T : XN → X . We consider the follow-

ing systems of equations:































T (x1,x2, · · ·,xN) = x1,

T (x2,x3, · · ·,x1) = x2,

· · ·

· · ·

T (xN ,x1, · · ·,xN−1) = xN ,

(2.2)

and






























T (x1,x2, · · ·,xN) = xN ,

T (x2,x3, · · ·,x1) = x1,

· · ·

· · ·

T (xN ,x1, · · ·,xN−1) = xN−1.

(2.3)
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The above systems of equations are also special forms of a system of N-fixed point

equations. Moreover, the system (2.3) can be re-written as






































T (x2,x3, · · ·,x1) = x1,

T (x3,x4, · · ·,x2) = x2,

· · ·

· · ·

T (xN ,x1, · · ·,xN−1) = xN−1,

T (x1,x2, · · ·,xN) = xN ,

(2.4)

In what follows, we prove our first main theorem, which generalizes Banach’s

contraction principle. We need first the following auxiliary notions and results.

Definition 4. Let (X ,d) be a complete metric space and define the following mul-

tiply metric D given by

D((x1, · · ·,xN),(y1, · · ·,yN)) =△(d(x1,y1), · · ·,d(xN ,yN))

for all (x1, · · ·,xN), (y1, · · ·,yN) ∈ XN .

Notice that the functional D is a metric on XN . Indeed, the following two condi-

tions are obvious:

(i) D((x1, · · ·,xN),(y1, · · ·,yN)) = 0 ⇔ (x1, · · ·,xN) = (y1, · · ·,yN);
(ii) D((y1, · · ·,yN)),(x1, · · ·,xN) = D((x1, · · ·,xN),(y1, · · ·,yN)),

for all (x1, · · ·,xN),(y1, · · ·,yN) ∈ XN .

Next we prove the triangular inequality. For all

(x1, · · ·,xN),(y1, · · ·,yN),(z1, · · ·,zN) ∈ XN
,

from the definition of △, we have that

D((x1, · · ·,xN),(y1, · · ·,yN)) =△(d(x1,y1), · · ·,d(xN ,yN))

≤△(d(x1,z1)+d(z1,y1), · · ·,d(xN ,zN)+d(zN ,yN))

≤△(d(x1,z1), · · ·,d(xN ,zN))+△(d(z1,y1), · · ·,d(zN ,yN))

= D((x1, · · ·,xN),(z1, · · ·,zN))+D((z1, · · ·,zN),(y1, · · ·,yN)).

Moreover, if the metric space (X ,d) is complete, then we can prove that (XN ,D) is a

complete metric space. Indeed, let {pn} ⊂ XN be a Cauchy sequence, then we have

lim
n,m→∞

D(pn, pm) = lim
n,m→∞

△(d(x1,n,x1,m), · · ·,d(xN,n,xN,m)) = 0,

where pn = (x1,n,x2,n, · · ·,xN,n), pm = (x1,m,x2,m, · · ·,xN,m). From the definition of △,

we have that

lim
n,m→∞

d(xi,n,xi,m) = 0, ∀i ∈ {1,2,3, · · ·,N}.
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Hence each {xi,n} (i∈ {1,2, · · ·,N}) is a Cauchy sequence. Since (X ,d) is a complete

metric space, there exist x1,x2, · · ·,xN ∈ X such that, for all i ∈ {1,2, · · ·,N} we have

lim
n→∞

d(xi,n,xi) = 0. Therefore lim
n→∞

D(pn,x) = 0, where x= (x1,x2, · · ·,xN)∈XN . Thus,

the pair (XN ,D) is a complete metric space.

Theorem 3. Let (X ,d) be a complete metric space and T : XN → X be a N-

variables mapping for which there exists h ∈ (0,1) such that, for all

x = (x1, · · ·,xN), y = (y1, · · ·,yN) ∈ XN , the following condition is satisfied:

d(T x,Ty)≤ h△(d(x1,y1), · · ·,d(xN ,yN)),

where △ is a multiply metric function.

Then, the system of N-fixed point equations (2.1) has a unique solution

p = (p1, · · ·, pN) and for any u0 = (x0
1, · · ·,x

0
N) ∈ XN , the Picard iterative sequence

{un} ⊂ XN defined by un := T n
∗ (u0) converges, with respect to the multiply metric D,

to p ∈ XN , where the operator T∗ : XN → XN is defined by

T∗ : (x1,x2, · · ·,xN) 7→ (X1,X2, · · · ,XN),

where X1 := T (x1,1,x1,2, · · · ,x1,N), X2 := T (x2,1,x2,2, · · · ,x2,N), · · · , and XN :=
T (xN,1,xN,2, · · · ,xN,N).

Proof. We consider on XN the define multiply metric D given in Definition 4.

We prove that T∗ is a contraction from (XN ,D) into itself. Observe that, for any

x = (x1,x2, · · ·,xN),y = (y1,y2, · · ·,yN) ∈ XN , we have that

D(T∗x,T∗y) = D((T (x1,1,x1,2, · · ·,x1,N), · · ·,T (xN,1,xN,2, · · ·,xN,N)),

(T (y1,1,y1,2, · · ·,y1,N), · · ·,T (xN,1,xN,2, · · ·,xN,N)))

=△(d(T (x1,1,x1,2, · · ·,x1,N),T (y1,1,y1,2, · · ·,y1,N)),

d(T (x2,1,x2,2, · · ·,x2,N),T (y2,1,y2,2, · · ·,y2,N)),

d(T (xN,1,xN,2, · · ·,xN,N),T (yN,1,yN,2, · · ·,yN,N)))

≤△(h△(d(x1,1,y1,1),d(x1,2,y1,2), · · ·,d(x1,N ,y1,N)),

h△(d(x2,1,y2,1),d(x2,2,y2,2), · · ·,d(x2,N ,y2,N)),

h△(d(x3,1,y3,1),d(x3,2,y3,2), · · ·,d(x3,N ,y3,N))),

· · · · · · ,

h△(d(xN,1,yN,1),d(xN,2,yN,2), · · ·,d(xN,N ,yN,N)))

From the conditions (1), (5) of △, we have

△(h△(d(x1,1,y1,1),d(x1,2,y1,2), · · ·,d(x1,N ,y1,N)),

h△(d(x2,1,y2,1),d(x2,2,y2,2), · · ·,d(x2,N ,y2,N)),

h△(d(x3,1,y3,1),d(x3,2,y3,2), · · ·,d(x3,N ,y3,N))),

· · · · · · ,
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h△(d(xN,1,yN,1), d(xN,2,yN,2), · · ·,d(xN,N ,yN,N)))

= h△(d(x1,1,y1,1),d(x1,2,y1,2), · · ·,d(x1,N ,y1,N))

= hD((x1,x2, · · ·,xN),(y1,y2, · · ·,yN))

= hD(x,y).

Hence

D(T∗x,T∗y)≤ hD(x,y), for all x,y ∈ XN
.

By Banach’s contraction principle, we obtain that there exists a unique element p =
(p1, · · ·, pN) ∈ XN such that p = T∗p and, for any element u0 ∈ XN , the iterative

sequence un = T n
∗ (u0) converges, in the multiply metric D, to p. That is

T∗(p1, p2, p3, · · ·, pN) = (p1, p2, p3, · · ·, pN).

From the definition of T∗, we have

T∗(p1, p2, p3, · · ·, pN) = (P1,P2,P3, · · ·,PN),

where

P1 = T (p1,1, p1,2, · · ·, p1,N),

P2 = T (p2,1, p2,2, · · ·, p2,N),

· · · ,

PN = T (pN,1, pN,2, · · ·, pN,N).

Therefore, the vector p = (p1, p2, · · ·, pN) ∈ XN is the unique solution of the system

of N-fixed point equations (2.1). This completes the proof. �

Notice that taking N = 1,△(a) = a in Theorem 3, we obtain Banach’s contraction

mapping principle. Some other consequences of the above general result are the

following corollaries.

Corollary 1. Let (X ,d) be a complete metric space and T : X × X → X be a

mapping for which there exists h ∈ (0,1) such that

d(T x,Ty)≤ h△(d(x1,y1),d(x2,y2)), ∀ x = (x1,x2),y = (y1,y2) ∈ X ×X ,

where △ is a multiply metric function.

Then, the system of coupled fixed point equations
{

T (x1,x2) = x1,

T (x2,x1) = x2.

has a unique solution p = (p1, p2) and for any u0 = (x0
1,x

0
2)∈ X2, the Picard iterative

sequence {un} ⊂ XN defined by un = T n
∗ (u0) converges, in the multiply metric D, to

p ∈ X2, where the operator T∗ : X2 → X2 is defined by

T∗ : (x1,x2) 7→ (T (x1,x2),T (x2,x1)).
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Notice that, in the above theorem, the detailed Picard iterative process is the fol-

lowing:


















u0 = (x0
1,x

0
2),

u1 = (T (x0
1,x

0
2),T (x

0
2,x

0
1)),

u2 = (T (T (x0
1,x

0
2),T (x

0
2,x

0
1)),T (T (x

0
2,x

0
1),T (x

0
1,x

0
2))),

· · ·

Another consequence follows if we consider the multiply metric given in Example 3.

Corollary 2. Let (X ,d) be a complete metric space, T : XN → X be a N-variables

mapping for which there exists h ∈ (0,1) such that

d(T x,Ty)≤
h

N

N

∑
i=1

d(xi,yi), ∀x = (x1,x2, · · · ,xN),y = (y1,y2, · · · ,yN) ∈ XN
.

Then, the system of N-fixed point equations (2.1) has a unique solution p =
(p1, p2, · · · , pN) and, for any u0 = (x0

1,x
0
2, · · · ,x

0
N)∈XN , the Picard iterative sequence

{un} ⊂ XN defined by un = T n
∗ (u0) converges, in the multiply metric D, to p ∈ XN ,

where the operator T∗ : XN → XN is defined by

T∗ : (x1,x2, · · ·,xN) 7→ (X1,X2, · · ·,XN),

where

X1 = T (x1,1,x1,2,x1,3, · · ·,x1,N),

X2 = T (x2,1,x2,2,x2,3, · · ·,x2,N),

· · · ,

XN = T (xN,1,xN,2,xN,3, · · ·,xN,N).

Some other corollaries, given for different other multiply metrics, can be given.

For example, we have the following two results.

Corollary 3. Let (X ,d) be a complete metric space and T : XN → X be a N-

variables mapping for which there exists h ∈ (0,1) such that the following condition

holds

d(T x,Ty)≤ h

√

1

N

N

∑
i=1

d(xi,yi)2, ∀x = (x1,x2, · · ·,xN),y = (y1,y2, · · yN) ∈ XN
.

Then, the system of N-fixed point equations (2.1) has a unique solution p =
(p1, p2, p3, · · ·, pN) and for any u0 = (x0

1,x
0
2, · · ·,x

0
N) ∈ XN , the Picard iterative se-

quence {un} ⊂ XN defined by un = T n
∗ (u0) converges, in the multiply metric D, to

p ∈ XN . The operator T∗ : XN → XN is defined by

T∗ : (x1,x2, · · ·,xN) 7→ (X1,X2, · · ·,XN),
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where

X1 = T (x1,1,x1,2,x1,3, · · ·,x1,N),

X2 = T (x2,1,x2,2,x2,3, · · ·,x2,N),

· · · ,

XN = T (xN,1,xN,2,xN,3, · · ·,xN,N).

Corollary 4. Let (X ,d) be a complete metric space and T : XN → X be a N-

variables mapping for which there exists h ∈ (0,1) such that, for all x = (x1,x2, · ·
·,xN),y = (y1,y2, · · yN) ∈ XN , the following condition holds

d(T x,Ty)≤ hmax{d(x1,y1), · · ·,d(xN ,yN)}.

Then, the system of N-fixed point equations (2.1) has a unique solution p =
(p1, p2, · · ·, pN) and, for any u0 = (x0

1,x
0
2, · · ·,x

0
N) ∈ XN , the Picard iterative sequence

{un} ⊂ XN defined by un = T n
∗ (u0) converges, in the multiply metric D, to p ∈ XN ,

where the operator T∗ : XN → XN is defined by

T∗ : (x1,x2, · · ·,xN) 7→ (X1,X2, · · ·,XN),

where

X1 = T (x1,1,x1,2,x1,3, · · ·,x1,N),

X2 = T (x2,1,x2,2,x2,3, · · ·,x2,N),

· · · ,

XN = T (xN,1,xN,2,xN,3, · · ·,xN,N).

In particular, for the systems (2.2) and (2.3) we get the following results.

Corollary 5. Let (X ,d) be a complete metric space, T : XN → X be a N-variables

mapping for which there exists h ∈ (0,1) such that, for all x = (x1, · · ·,xN), y =
(y1, · · ·,yN) ∈ XN , the following condition holds

d(T x,Ty)≤ h△(d(x1,y1), · · ·,d(xN ,yN)),

where △ is a multiply metric function.

Then, the system of N-fixed point equations (2.2) has a unique solution p =
(p1, p2, · · ·, pN) and for any u0 = (x0

1,x
0
2, · · ·,x

0
N) ∈ XN , the Picard iterative sequence

{un} ⊂ XN defined by un = T n
∗ (u0) converges, in the multiply metric D, to p ∈ XN ,

where the operator T∗ : XN → XN is defined by

T∗ : (x1,x2, · · ·,xN) 7→ (X1,X2, · · ·,XN),

where

X1 = T (x1,x2,x3, · · ·,xN),

X2 = T (x2,x3,x4, · · ·,x1),

· · · ,
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XN = T (xN ,x1,x2, · · ·,xN−1).

Corollary 6. Let (X ,d) be a complete metric space, T : XN → X be a N-variables

mapping for which there exists h ∈ (0,1) such that, for all x = (x1,x2, · · ·,xN),y =
(y1,y2, · · ·,yN) ∈ XN , the following condition holds

d(T x,Ty)≤ h△(d(x1,y1), · · ·,d(xN ,yN)),

where △ is a multiply metric function.

Then, the system of N-fixed point equations (2.3) has a unique solution p =
(p1, p2, · · ·, pN) and, for any u0 = (x0

1,x
0
2, · · ·,x

0
N)∈ XN , the iterative sequence {un} ⊂

XN defined by un = T n
∗ (u0) converges, in the multiply metric D, to p ∈ XN , where the

operator T∗ : XN → XN is defined by

T∗ : (x1,x2, · · ·,xN) 7→ (X1,X2, · · ·,XN),

where

X1 = T (x2,x3,x4, · · ·,x1),

X2 = T (x3,x4,x5, · · ·,x2),

· · · ,

XN = T (x1,x2,x3, · · ·,xN).

3. AN APPLICATION TO A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS

We will give now an application of the above results to an initial value problem

related to a system of first order differential equations of the following form:







































dx1

dt
= f (x1,1(t),x1,2(t), · · ·,x1,N(t), t),

· · ·
dxi

dt
= f (xi,1(t),xi,2(t), · · ·,xi,N(t), t),

· · ·
dxN

dt
= f (xN,1(t),xN,2(t), · · ·,xN,N(t), t),

xi(t0) = x0, i = 1,2,3, · · ·,N.

(3.1)

where t0 ∈ R. We denote I := [t0 − δ, t0 + δ] (where δ > 0 is a given real number)

and consider f : RN × I → R be a continuous (N + 1)-variables function satisfying

the following Lipschitz type condition

| f (x1,x2, · · ·,xN , t)− f (y1,y2, · · ·,yN , t)| ≤ k(t)
N

∑
i=1

|xi − yi|,
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with k ∈ L1(I,R+). We will consider first the following equivalent system of integral

equations






























x1(t) =
∫ t

t0
f (x1,1(τ),x1,2(τ), · · ·,x1,N(τ),τ)dτ+ x0,

· · ·

xi(t) =
∫ t

t0
f (xi,1(τ),xi,2(τ), · · ·,xi,N(τ),τ)dτ+ x0,

· · ·

xN(t) =
∫ t

t0
f (xN,1(τ),xN,2(τ), · · ·,xN,N(τ),τ)dτ+ x0,

(3.2)

Let X := C[t0 − δ, t0 + δ] be the linear space of continuous real functions defined on

closed interval I := [t0 −δ, t0 +δ]. We introduce on X a Bielecki type metric, by the

relation

dB(x,y) := max
t0−δ≤t≤t0+δ

|x(t)− y(t)|e−LK(t)
,

where K(t) :=
∫ t

t0
k(s)ds and L is a constant greater than N.

Let T : X ×X ×· · ·×X → X be a mapping defined by

T x(t) :=
∫ t

t0

f (x1(τ),x2(τ), · · ·,xN(τ),τ)dτ+ x0
.

For any x = (x1,x2, · · ·,xN),y = (y1,y2, · · ·,yN) ∈ XN and t ∈ I we have that

|T x(t)−Ty(t)| ≤ |
∫ t

t0

| f (x(τ),τ)− f (y(τ),τ)|dτ|

≤ |
∫ t

t0

N

∑
i=1

k(τ)|xi(τ)− yi(τ)dτ|

≤ |
∫ t

t0

|
N

∑
i=1

max
τ∈I

[|xi(τ)− yi(τ)|e
−LK(τ)]k(τ)eLK(τ)dτ|

= N|
∫ t

t0

(
1

N

N

∑
i=1

dB(xi,yi))k(τ)e
LK(τ)dτ|

= N△1(dB(x1,y1), · · · ,dB(xN ,yN))|
∫ t

t0

k(τ)eLK(τ)dτ|

≤
N

L
·△1(dB(x1,y1), · · · ,dB(xN ,yN))e

LK(t)
.

Thus,

|T x(t)−Ty(t)|e−LK(t) ≤
N

L
·△1(dB(x1,y1), · · · ,dB(xN ,yN)), for all t ∈ I.

Hence we get that

dB(T x,Ty)≤
N

L
·△1(dB(x1,y1), · · · ,dB(xN ,yN)), for all x,y ∈ X .
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Since h := N
L
< 1, we conclude, by using Theorem 3, that the system of integral

equations (3.2) has a unique solution

x∗ = (x∗1(t),x
∗
2(t),x

∗
3(t), · · ·,x

∗
N(t)) ∈ (C[t0 −δ, t0 +δ])N

.

Since the system (3.2) is equivalent to the system (3.1), by our approach, the existence

and uniqueness result for (3.1) follows.

On the other hand, by Theorem 3, we also know that, for any initial value

u0 = (x0,1,x0,2,x0,3, · · ·,x0,N) ∈ (C[t0 −δ, t0 +δ])N
,

the iterative sequence {un} ⊂ (C[t0 − δ, t0 + δ])N defined by un = T n
∗ (u0) converges,

in the multiply metric D, to the unique solution of the initial value problem (3.1) (i.e.,

x∗ ∈ (C[t0 −δ, t0 +δ])N), where

T∗ : (C[t0 −δ, t0 +δ])N → (C[t0 −δ, t0 +δ])N

is defined by

T∗ : (x1(t),x2(t),x3(t), · · ·,xN(t)) 7→ (X1(t),X2(t),X3(t), · · ·,XN(t)),

with






























X1(t) =
∫ t

t0
f (x1,1(τ),x1,2(τ), · · ·,x1,N(τ),τ)dτ+ x0,

· · ·

Xi(t) =
∫ t

t0
f (xi,1(τ),xi,2(τ), · · ·,xi,N(τ),τ)dτ+ x0,

· · ·

XN(t) =
∫ t

t0
f (xN,1(τ),xN,2(τ), · · ·,xN,N(τ),τ)dτ+ x0,

and the multiply metric D used here (see Example 1) is defined by

D((x1,x2, · · ·,xN),(y1,y2, · · ·,yN)) =△1(dB(x1,y1),dB(x2,y2), · · ·,dB(xN ,yN)),

for all (x1,x2, · · ·,xN), (y1,y2, · · ·,yN) ∈ (C[t0 −δ, t0 +δ])N .
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Abstract. In this paper, we aim to study the existence of global attractors for the time discretized

modified three-dimensional (3D) Bénard systems. Using the backward implicit Euler scheme, we

obtain the time discretization systems of 3D Bénard systems. Then, by the Galerkin method and

the Brouwer fixed point theorem, we prove the existence of the solution to this time-discretized

systems. On this basis, we proved the existence of the attractor by the compact embedding

theorem of Sobolev. Finally, we discuss the limiting behavior of the solution as N tends to

infinity.
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1. INTRODUCTION

In this work, we study the following 3D Bénard system:














∂u

∂t
−ν∆u+FN(‖∇u‖)(u ·∇)u+ξω = f (x)−∇p,

div u = 0,

u|∂Ω = 0,

(1.1)







∂ω

∂t
−∆ω+(u ·∇)ω = g(x),

ω|∂Ω = 0,
(1.2)

where Ω ⊂ R
3 be a bounded smooth domain; u = u(t,x), ω = ω(t,x) and

p = p(t,x) denote velocity, temperature and pressure of the fluid, respectively;

ν > 0, ξ ∈ R
3 are constants; f : Ω → R

3, g: Ω → R are given functions, and for

N ≥ 1, FN(r) = min
{

1,
N

r

}

.

It is well-known that the Bénard system is a dynamic model describing the rate,

pressure and temperature of incompressible fluids that are coupled by Navier-Stokes

This work was supported by the National Natural Sciences Foundation of China (No. 11571283).

© 2021 Miskolc University Press
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equations and convection diffusion equations. This problem is fundamentally im-

portant and of both theoretical and practical interest. In recent years, many important

achievements have been made in the study of the Bénard system, of which the study

of the solution and attractor of the Bénard system is a very important part. For ex-

ample, in [10], the authors proved the existence of global solution of the equation

(1.1)-(1.2) on channel-like domains by the Galerkin method, then they constructed

the global ϕ attractor of this systems. To date, many studies have investigated the

case of FN = 1 in the equation (1.1)-(1.2), for example, see [8, 9, 11, 12]. In [8], au-

thors introduced a class of functions which are strongly continuous with respect to the

second component of the vector. Then they prove the existence of solutions for the

3D Bénard system, and construct a multi-valued semi-flow generated by such solu-

tions. Moreover, they obtain the existence of a global ϕ attractor for the weak-strong

topology. In [12], authors investigate the regularized 3D Bénard problem. Using the

averaging technique which will give us the properties of the mean characteristics of

the flow, they prove that the global existence and uniqueness of the solutions, and

then obtain the existence of the global attractor. In [9], authors study the asymptotic

behaviour of weak solutions for the 3D Bénard problem. They first show some reg-

ularity properties of the weak solutions of this systems. Then they construct a one

parameter family of multi-valued semi-flow and obtain the existence of a global at-

tractor with respect to the weak topology of the phase space. In [11], authors first

establish an energy inequality in the space L4 for a broader class of weak solutions.

Using this inequality, they prove the existence and connectedness of a global attractor

in the space Hw ×L2 for the corresponding m-semi-flow.

It is well-known that the discretization method is the basic method to solve the

problems of continuum mechanics, which is a method to approximate the physical

quantities in continuum mechanics with finite parameters. The laws of continuum

mechanics are generally described by differential equations and integral equations.

The discretization method approximates the original problem by transforming it into

an algebraic equation with finite parameters. The discretization of differential equa-

tion mainly refers to the discretization of time and space. The usual discretization

methods include finite difference method, finite element method, weighted residual

method and so on (see [1, 2, 4, 6, 7, 14, 16]). In [5], the modified 3D Navier-Stokes

equations were discretized on the time by finite difference method, then the existence

of the global attractor was proved. In the literature [15], the Benjamin-Bona-Mahony

equation was discretized on the time by the Crank-Nicolson scheme. Then, using the

Galerkin method and the Brouwer fixed point theorem, authors proved that the ex-

istence of the solution to this time discretized system. Furthermore, authors showed

that the existence of attractor by Sobolev’s compact embedding theorem.

The main purpose of this paper is to investigate the long time dynamical behavior

of the solution of the discretized, modified 3D Bénard system (1.1)-(1.2) by the idea

in [5, 15].
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Let us firstly introduce some notations. Set

H=
{

u ∈ (L2(Ω))3,div u = 0, u ·n = 0 on ∂Ω
}

,

V=
{

u ∈ (H1
0 (Ω))3,div u = 0

}

,

with norms ‖ ·‖, 9 ·9 and scalar products (·, ·), ((·, ·)) (the same notations for norms

and scalar products also apply to L2(Ω), H1
0 (Ω)), where, n is the unit outward normal

on ∂Ω. Let

b(u,v,z) =
∫

Ω

3

∑
i, j=1

ui

∂v j

∂xi

z jdx, c(u,ω,η) =
∫

Ω

3

∑
i=1

ui

∂ω

∂xi

ηdx,

and bN(u,v,z) = FN(‖∇v‖)b(u,v,z). Thanks to Poincaré inequality, we can put

((u,v)) = (∇u,∇v), 9u9 = ‖∇u‖.

We denote by P the Leray projection of L2(Ω))d onto H and by T the Leray pro-

jection of L2(Ω))d onto L2(Ω). And we denote by D(A1) the domain of the Stokes

operator A1 = −P ∆ in H, and by D(A2) the domain of A2 = −T ∆ in L2(Ω). Obvi-

ously, A1 : V→ V
∗, A2 : H1

0 (Ω)→ H−1(Ω) are linear continuous operators and such

that

〈A1u,v〉
V,V∗ = (∇u,∇v), 〈A2ω,η〉H1

0 (Ω),H−1(Ω) = (∇ω,∇η),

where, u,v ∈ V,ω,η ∈ H1
0 (Ω). From the regularity theory for the Stokes equation,

it is proved in [13] that D(A1) = H2(Ω)
3 ∩V, D(A2) = H2(Ω)∩H1

0 (Ω), and the

following holds true

D(A1)⊂ V⊂H, D(A2)⊂ H1
0 (Ω)⊂ L2(Ω).

Therefore,

9u9 ≤ 1√
λ1

‖A1u‖, ∀u ∈ D(A1), 9ω9 ≤ 1√
λ2

‖A2ω‖, ∀ω ∈ D(A2),

‖u‖ ≤ 1√
λ1

9u9, ∀u ∈ V, ‖ω‖ ≤ 1√
λ2

9ω9, ∀ω ∈ H1
0 (Ω),

where, λ1 > 0, λ2 > 0 are the first eigenvalues of the Stokes operator A1,A2, respect-

ively.

We introduce two bilinear operators B :V×V→V
∗ and C :V×H1

0 (Ω)→H−1(Ω),
defined as:

〈B(u,v),z〉
V,V∗ = b(u,v,z), 〈C(u,ω),η〉H1

0 (Ω),H−1(Ω) = c(u,ω,η),
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where, u,v,z ∈ V, ω,η ∈ H1
0 (Ω). From [5],























|b(u,v,z)| ≤Cb‖u‖
1
4 9u9

3
4 9v9‖z‖

1
4
9z9

3
4 , ∀u,v,z ∈ V,

|b(u,v,z)| ≤Cb9u9
1
2 ‖A1u‖

1
2 9v9‖z‖, ∀u ∈ D(A1),v ∈ V,z ∈H,

|b(u,v,z)| ≤Cb‖u‖
1
4 ‖A1u‖

3
4 9v9‖z‖, ∀u ∈ D(A1),v ∈ V,z ∈H,

b(u,v,v) = 0, ∀u,v ∈ V.

(1.3)

Therefore,

bN(u,v,v) = 0, ∀u,v ∈ V and 〈BN(u,v),z〉V,V∗ = bN(u,v,z), ∀u,v,z ∈ V.

Since Ω ⊂ R
3 is bounded, there exists a constant c > 0, which is only related to Ω,

such that for all v ∈ H1(Ω) [5],

‖v‖L3(Ω) ≤ c‖v‖1/29v91/2, ‖v‖L6(Ω) ≤ c9v9. (1.4)

For M, N, p, q ∈ R+, there holds [5]

|FN(p)−FN(q)| ≤
|p−q|

q
, |FM(p)−FN(q)| ≤

|M−N|
q

+
|p−q|

q
. (1.5)

By the notations above, the equations (1.1)-(1.2) can be rewritten in the weak form

as
{

ut +νA1u+BN(u,u)+ξω = f (x),

ωt +A2ω+C(u,ω) = g(x).
(1.6)

In this paper, we aim to study the existence of global attractors for the time discretized

modified three-dimensional (3D) Bénard systems (1.1)-(1.2). To this end, using the

backward implicit Euler scheme, we obtain the time discretization systems of (1.6):














um −um−1

k
+νA1um +BN(u

m,um)+ξωm = f , (1.7)

ωm −ωm−1

k
+A2ωm +C(um,ωm) = g, (1.8)

where k is the time step, and um ∼ u(tm), ωm ∼ ω(tm).
The main results of this paper are as follows. Firstly, by the Galerkin method

and the Brouwer fixed point theorem, we prove the existence of the solution to this

time-discretized systems (1.7)-(1.8).

Theorem 1. Supposing that u0 ∈ D(A1), ω0 ∈ D(A2). Let f ∈ L2(Ω)3, g ∈ L2(Ω)
be given functions, and let k > 0. Then there is at least one set of solutions
{

um, ωm
}

∈ D(A1)×D(A2) to (1.7)-(1.8) for m ≥ 1 be integers.

On this basis, by the compact embedding theorem of Sobolev, we proved the ex-

istence of the attractor.
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Theorem 2. Supposing that u0 ∈ V, ω0 ∈ H1
0 (Ω). Let f ∈ L2(Ω)3, g ∈ L2(Ω) be

given functions and let k > 0 small enough. Then the C0 semigroup Sm defined by the

systems (1.7)-(1.8) has global attractors A in V×H1
0 (Ω).

Finally, we discuss the limiting behavior of the solution to (1.7)-(1.8) as N tends

to infinity.

Theorem 3. Supposing that u0 ∈ D(A1), ω0 ∈ D(A2). Let f ∈ L2(Ω)3, g ∈ L2(Ω)
be given functions, and let k > 0. Then, for m > 1 be integers, the solution sequence
{

um
N ,ω

m
N

}

N
of (1.7)-(1.8) converges to the weak solution of the following equations

when N → ∞,














um −um−1

k
+νA1um +B(um,um)+ξωm = f , (1.9)

ωm −ωm−1

k
+A2ωm +C(um,ωm) = g. (1.10)

This paper is organized as follows. Section 2 proves the existence of solutions and

completes the proof of Theorem 1. Section 3 proves the boundedness of solution in

phase space. Section 4 proves the continuous dependence of solution on initial value

and parameter N , and establishes a discrete semigroup Sm to complete the proof of

Theorem 2. Section 5 discusses the limit behavior of
{

um
N ,ω

m
N

}

as N tends to infinity

and completes the proof of Theorem 3.

2. EXISTENCE OF SOLUTIONS

In this section, we construct a weak solution of (1.7)-(1.8) by the Faedo-Galerkin

method and the following Brouwer fixed point principle (see [3], 24-29).

Lemma 1 ([3]). Let X be a finite-dimensional space endowed with a scalar product

[·, ·] and consider a continuous mapping F: X → X. Suppose that there exists R0 > 0

such that [F(U0),U0]> 0 for all U0 ∈ X with [U0,U0] = R2
0. Then there exists U with

[U,U ]≤ R2
0 such that F(U) = 0.

To prove the existence of the solution for (1.7)-(1.8), the following three steps are

required:

Step 1: Construct an approximate solution. Let p ≥ 1 be an integer. For

u1, · · · , um−1, ω1, · · · , ωm−1, we can define the approximate solutions of (1.7)-(1.8)

by um
p =

p

∑
i=1

gip
mei and ωm

p =
p

∑
i=1

hip
mēi:



















um
p −um−1

k
+νA1um

p +BN

(

um
p ,u

m
p

)

+ξωm
p = f , (2.1)

ωm
p −ωm−1

k
+A2ωm

p +C
(

um
p ,ω

m
p

)

= g, (2.2)
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where gip
m ∈ R, {ei}∞

i=1 ⊂ D(A1), corresponding to the eigenvectors of the oper-
ator A1, which are ortho-normal base in H and orthogonal in V; and hip

m ∈ R,

{ēi}∞
i=1 ⊂ D(A2), corresponding to the eigenvectors of the operator A2, which are

ortho-normal base in L2(Ω) and orthogonal in H1
0 (Ω). Let Kp = 〈e1,e2, · · · ,ep〉 is the

space generated by e1, e2, · · · , ep and Mp = 〈ē1, ē2, · · · , ēp〉 is the space generated by
ē1, ē2, · · · , ēp, we define operator Q1: Kp → Kp and Q2: Mp → Mp satisfy

((Q1(u),v1)) = (u,v1)+νk(∇u,∇v1)+ kbN(u,u,v1)+ k(ξω,v1)− (um−1,v1)− k( f ,v1);

((Q2(ω),v2)) = (ω,v2)+ k(∇ω,∇v2)+ kc(u,ω,v2)− (ωm−1,v2)− k(g,v2).

To apply Lemma 1, we introduce the operator F(u,ω) = (Q1(u),Q2(ω))
⊤:

(

F(u,ω),(v1,v2)
⊤
)

=
(

(Q1(u),Q2(ω))
⊤,(v1,v2)

⊤
)

= ((Q1(u),v1))+((Q2(ω),v2)).

Now we need to prove that F(u,ω) is continuous in V. To this end, let u1,u2,v1 ∈ Kp

and ω1,ω2,v2 ∈ Mp, we have
(

F(u1,ω1)−F(u2,ω2),(v1,v2)
⊤
)

=
(

(Q1(u1),Q2(ω1))
⊤,(v1,v2)

⊤
)

+
(

(Q1(u2),Q2(ω2))
⊤,(v1,v2)

⊤
)

= (u1,v1)+νk(∇u1,∇v1)+ kbN(u1,u1,v1)+ k(ξω1,v1)− (um−1,v1)

− k( f ,v1)+(ω1,v2)+ k(∇ω1,∇v2)+ kc(u1,ω1,v2)− (ωm−1,v2)− k(g,v2)

−
[

(u2,v1)+νk(∇u2,∇v1)+ kbN(u2,u2,v1)+ k(ξω2,v1)− (um−1,v1)

− k( f ,v1)+(ω2,v2)+ k(∇ω2,∇v2)+ kc(u2,ω2,v2)− (ωm−1,v2)− k(g,v2)
]

= (u1 −u2,v1)+νk(∇(u1 −u2),∇v1)+ k(ξ(ω1 −ω2),v1)

+ k(∇(ω1 −ω2),∇v2)+(ω1 −ω2,v2)

+ k
[

bN(u1,u1,v1)−bN(u2,u2,v1)
]

+ k
[

c(u1,ω1,v2)− c(u2,ω2,v2)
]

. (2.3)

Here, by using Poincaré inequality, we can get

(u1 −u2,v1)+νk(∇(u1 −u2),∇v1)+ k(ξ(ω1 −ω2),v1)

+ k(∇(ω1 −ω2),∇v2)+(ω1 −ω2,v2)

≤
[

C‖v1‖+νk9v19
]

9u1 −u29+
[

C‖v2‖+ kC |ξ|‖v1‖+ k9v29
]

9ω1 −ω29.

(2.4)

And by the definition of FN and (1.3), we obtain

bN(u1,u1,v1)−bN(u2,u2,v1) = FN(9u19)b(u1,u1,v1)−FN(9u29)b(u2,u2,v1)

= FN(9u19)b(u1 −u2,u1,v1)+FN(9u29)b(u2,u1 −u2,v1)
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+
[

FN(9u19)−FN(9u29)
]

b(u2,u1,v1)

≤CN9u1 −u299v19+C9u1 −u299u199v19

≤
[

CN9v19+C9u199v19
]

9u1 −u29. (2.5)

On the other hand, for c(u,ω,η), we have

|c(u,ω,η)| ≤ ‖u‖L6(Ω)‖∇ω‖L2(Ω)‖η‖L3(Ω) ≤C9u99ω99η9,

and c(u,ω,ω) = 0, so we can get

c(u1,ω1,v2)− c(u2,ω2,v2) = c(u1 −u2,ω1,v2)+ c(u2,ω1 −ω2,v2)

≤C9ω199v299u1 −u29+C9u299v299ω1 −ω29.
(2.6)

Thus, by (2.3)-(2.6), we obtain
(

F(u1,ω1)−F(u2,ω2),(v1,v2)
⊤
)

≤
[

C‖v1‖+νk9v19+CNk9v19+Ck9u199v19+C9ω199v29
]

9u1 −u29

+
[

C‖v2‖+ kC |ξ|‖v1‖+ k9v29+Ck9u299v29
]

9ω1 −ω29.

It is easy to know that F(u,ω) is continuous in V. Next, let k be small enough such

that 1− k
2
> 0 and 1− k

2
|ξ|2 > 0. For

{

u,ω
}

∈ Kp ×Mp, by Cauchy-Schwarz and

Poincaré inequality, we find
(

F(u,ω),(u,ω)⊤
)

=
(

(Q1(u),Q2(ω))
⊤,(u,ω)⊤

)

= (u,u)+νk(∇u,∇u)+ kbN(u,u,u)+ k(ξω,u)− (um−1,u)− k( f ,u)

+(ω,ω)+ k(∇ω,∇ω)+ kc(u,ω,ω)− (ωm−1,ω)− k(g,ω)

= ‖u‖2 +νk9u92 + k(ξω,u)− (um−1,u)− k( f ,u)

+‖ω‖2 + k9ω92 − (ωm−1,ω)− k(g,ω)

≥ ‖u‖2 +νk9u92 +‖ω‖2 + k9ω92 − k‖ξω‖‖u‖
−‖um−1‖‖u‖− k‖ f‖‖u‖−‖ωm−1‖‖ω‖− k‖g‖‖ω‖

≥ ‖u‖2 +νk9u92 +‖ω‖2 + k9ω92 − k

2

[

‖ξω‖2 +‖u‖2
]

− ‖um−1‖√
λ1

9u9− k
‖ f‖√

λ1

9u9− ‖ωm−1‖√
λ2

9ω9− k
‖g‖√

λ2

9ω9

=
[

1− k

2

]

‖u‖2 +νk9u92 +
[

1− k

2
|ξ|2

]

‖ω‖2 + k9ω92
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− ‖um−1‖√
λ1

9u9− k
‖ f‖√

λ1

9u9− ‖ωm−1‖√
λ2

9ω9− k
‖g‖√

λ2

9ω9

≥ νk9u92 + k9ω92 − ‖um−1‖√
λ1

9u9− k
‖ f‖√

λ1

9u9− ‖ωm−1‖√
λ2

9ω9− k
‖g‖√

λ2

9ω9

= 9u9

[

νk9u9− ‖um−1‖√
λ1

− k
‖ f‖√

λ1

]

+9ω9

[

k9ω9− ‖ωm−1‖√
λ2

− k
‖g‖√

λ2

]

.

Let r1 >
‖um−1‖+k‖ f‖

νk
√

λ1
and r2 >

‖ωm−1‖+k‖g‖
k
√

λ2
, for any

{

u,ω
}

∈ Kp ×Mp with 9u9 = r1

and 9ω9 = r2, one has
(

F(u,ω),(u,ω)⊤
)

> 0. Thus, from Lemma 1, we can find

(u∗,ω∗) satisfy F(u∗,ω∗)= 0, which is (Q1(u
∗),Q2(ω

∗))⊤= 0, and so

{

Q1(u
∗) = 0,

Q2(ω
∗) = 0.

Therefore, the approximate solution
{

um
p ,ω

m
p

}

exists.

Step 2: Some priori estimates. For k and m are fixed, we want to get a priori

estimates independent of p. Multiplying the equation (2.1) by um
p and the equation

(2.2) by ωm
p , we obtain

‖um
p ‖2 +‖ωm

p ‖2 +‖um
p −um−1‖2 +‖ωm

p −ωm−1‖2 +2νk9um
p 92 +2k9ωm

p 92

= 2k
(

f ,um
p

)

+2k
(

g,ωm
p

)

+‖um−1‖2 +‖ωm−1‖2 −2k
(

ξωm
p ,u

m
p

)

≤ 2k‖ f‖‖um
p ‖+2k‖g‖‖ωm

p ‖+2k |ξ|‖ωm
p ‖‖um

p ‖+‖um−1‖2 +‖ωm−1‖2

≤ k

νλ1

‖ f‖2 +νk9um
p 92 +

k

λ2

‖g‖2 + k9ωm
p 92 + k |ξ|‖ωm

p ‖2

+ k |ξ|‖um
p ‖2 +‖um−1‖2 +‖ωm−1‖2.

Therefore,

(1− k |ξ|)‖um
p ‖2 +(1− k |ξ|)‖ωm

p ‖2

+‖um
p −um−1‖2 +‖ωm

p −ωm−1‖2 +νk9um
p 92 + k9ωm

p 92

≤ k

νλ1

‖ f‖2 +
k

λ2

‖g‖2 +‖um−1‖2 +‖ωm−1‖2.

Let k be small enough such that 1− k |ξ|> 0, one has

‖um
p ‖2 +‖ωm

p ‖2 +
1

1− k |ξ|‖um
p −um−1‖2

+
1

1− k |ξ|‖ωm
p −ωm−1‖2 +

νk

1− k |ξ|9um
p 92 +

k

1− k |ξ|9ωm
p 92

≤ 1

1− k |ξ|

[

k

νλ1

‖ f‖2 +
k

λ2

‖g‖2 +‖um−1‖2 +‖ωm−1‖2

]

. (2.7)
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Now taking the L2 inner product of the equation (2.1) with A1um
p and of the equation

(2.2) with A2ωm
p , we obtain

νk‖A1um
p ‖2 + k‖A2ωm

p ‖2

= k
(

f ,A1um
p

)

+ k
(

g,A2ωm
p

)

−
(

um
p −um−1,A1um

p

)

−
(

ωm
p −ωm−1,A2ωm

p

)

− kbN

(

um
p ,u

m
p ,A1um

p

)

− kc
(

um
p ,ω

m
p ,A2ωm

p

)

− k
(

ξωm
p ,A1um

p

)

≤ k‖ f‖‖A1um
p ‖+ k‖g‖‖A2ωm

p ‖+‖um
p −um−1‖‖A1um

p ‖+‖ωm
p −ωm−1‖‖A2ωm

p ‖

+ k
N

9um
p 9

‖
(

um
p ·∇

)

um
p ‖‖A1um

p ‖+ k
∣

∣c
(

um
p ,ω

m
p ,A2ωm

p

)∣

∣+ k‖ξωm
p ‖‖A1um

p ‖

≤ k‖ f‖‖A1um
p ‖+ k‖g‖‖A2ωm

p ‖+‖um
p −um−1‖‖A1um

p ‖+‖ωm
p −ωm−1‖‖A2ωm

p ‖

+ k
N

9um
p 9

C9um
p 99um

p 9
1
2 ‖A1um

p ‖
3
2 + k

∣

∣c
(

um
p ,ω

m
p ,A2ωm

p

)∣

∣+ k |ξ|‖ωm
p ‖‖A1um

p ‖

≤ k‖ f‖‖A1um
p ‖+ k‖g‖‖A2ωm

p ‖+‖um
p −um−1‖‖A1um

p ‖+‖ωm
p −ωm−1‖‖A2ωm

p ‖

+CNk9um
p 9

1
2 ‖A1um

p ‖
3
2 + k

∣

∣c
(

um
p ,ω

m
p ,A2ωm

p

)∣

∣+ k |ξ|‖ωm
p ‖‖A1um

p ‖.
Since

|c(u,ω,A2ω)| ≤ ‖u‖L∞(Ω)‖∇ω‖L2(Ω)‖A2ω‖L2(Ω) ≤C

[

ε

2
9u929ω92 +

1

2ε
‖A2ω‖2

]

,

we can get

‖A1um
p ‖2 +‖A2ωm

p ‖2 ≤C‖ f‖2 +C‖g‖2 +C‖um
p −um−1‖2 +C‖ωm

p −ωm−1‖2

+CNk9um
p 92 + ck |ξ|‖ωm

p ‖2 + c9um
p 929ωm

p 92. (2.8)

By (2.7)-(2.8), we can get

‖A1um
p ‖2 +‖A2ωm

p ‖2 ≤C
(

‖ f‖,‖g‖,ν,λ1,λ2,k,‖um−1‖,‖ωm−1‖,N, |ξ|
)

.

Step 3: Passage to the limit. For k and m fixed, from the above inequality we

can see
{

um
p

}

p
,
{

ωm
p

}

p
are bounded in D(A1) and D(A2), respectively. Thus one can

extract from
{

um
p

}

p
and

{

ωm
p

}

p
subsequences respectively, denoted also by

{

um
p

}

p
,

{

ωm
p

}

p
, such that um

p ⇀ um, p → ∞ in D(A1), and ωm
p ⇀ ωm, p → ∞ in D(A2). But,

D(A1) →֒ V and D(A2) →֒ H1
0 (Ω) are compact, so um

p → um, p → ∞ in V, and ωm
p →

ωm, p → ∞ in H1
0 (Ω). Next, we prove that

{

um,ωm
}

is the solution of (2.1)-(2.2).

For the purpose, it is enough to show that

lim
p→∞

bN

(

um
p ,u

m
p ,v1

)

= bN (um,um,v1) and lim
p→∞

c
(

um
p ,ω

m
p ,v2

)

= c(um,ωm,v2) .

To this end, we calculate as follows

bN

(

um
p ,u

m
p ,v1

)

−bN (um,um,v1) = FN

(

9um
p 9

)

b
(

um
p ,u

m
p ,v1

)

−FN (9um9)b(um,um,v1)

= FN

(

9um
p 9

)

[b
(

um
p ,u

m
p ,v1

)

−b(um,um,v1)]
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+FN

(

9um
p 9

)

b(um,um,v1)−FN (9um9)b(um,um,v1)

= FN

(

9um
p 9

)[

b
(

um
p ,u

m
p ,v1

)

−b(um,um,v1)
]

+
[

FN

(

9um
p 9

)

−FN (9um9)
]

b(um,um,v1)

≤
∣

∣b
(

um
p ,u

m
p ,v1

)

−b(um,um,v1)
∣

∣+

∣

∣9um
p 9−9um9

∣

∣

9um9
|b(um,um,v1)| .

Following [13], one has
∣

∣b
(

um
p ,u

m
p ,v1

)

−b(um,um,v1)
∣

∣ → 0, p → ∞. And since

|b(um,um,v1)| is bounded uniformly with respect to p, one sees that
∣

∣9um
p 9−9um9

∣

∣

9um9
|b(um,um,v1)| → 0, p → ∞.

Therefore, lim
p→∞

bN

(

um
p ,u

m
p ,v1

)

= bN (um,um,v1). Similarly, we can get

lim
p→∞

c
(

um
p ,ω

m
p ,v2

)

= c(um,ωm,v2) .

So
{

um,ωm
}

is the solution of (1.7)-(1.8). The proof of Theorem 1 is completed. �

3. BOUNDEDNESS

Let
{

um,ωm
}

be the solution sequence of (1.7)-(1.8), we are going to show that the

boundedness of
{

um,ωm
}

in H×L2(Ω), V×H1
0 (Ω) and D(A1)×D(A2) respectively.

3.1. Boundedness in H×L2(Ω)

Lemma 2. Let
{

um,ωm
}

m
be the solution sequence of (1.7)-(1.8), constructed in

Theorem 1. Then for all integers m ≥ 1,
{

um,ωm
}

remain bounded in H×L2(Ω), in

the following sense,

‖ωm‖2 ≤ K1, ∀m ≥ 1; (3.1)

‖um‖2 ≤ K∗
1 , ∀m ≥ 1; (3.2)

L−1

∑
m=i

‖ωm −ωm−1‖2 +
L−1

∑
m=i

k9ωm92 ≤ k

λ2

‖g‖2(L− i)+K1, L ≥ i; (3.3)

L−1

∑
m=i

‖um −um−1‖2 +
L−1

∑
m=i

νk9um92

≤ K∗
1 +(L− i)

[

2k

νλ1

‖ f‖2 +
2k|ξ|2
νλ1

K1

]

, L ≥ i, (3.4)

where K1 , ‖ω0‖2 +
‖g‖2

λ2
2

, K∗
1 , ‖u0‖2 +

2‖ f‖2

ν2λ2
1

+
2|ξ|2
ν2λ2

1

K1.

Proof. Taking the L2 inner product of the equation (1.8) with 2kωm, we obtain

‖ωm‖2 +‖ωm −ωm−1‖2 +2k9ωm92 = 2k(g,ωm)+‖ωm−1‖2
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≤ 2k
‖g‖√

λ2

9ωm9+‖ωm−1‖2 ≤ k

λ2

‖g‖2 + k9ωm92 +‖ωm−1‖2.

Thus, we can get

‖ωm‖2 +‖ωm −ωm−1‖2 + k9ωm92 ≤ k

λ2

‖g‖2 +‖ωm−1‖2. (3.5)

By Poincaré inequality, we have

‖ωm‖2 ≤ 1

1+ kλ2

‖ωm−1‖2 +
1

1+ kλ2

k

λ2

‖g‖2.

Using the above inequality recursively, we find

‖ωm‖2 ≤ 1

(1+ kλ2)m
‖ω0‖2 +

‖g‖2

λ2
2

[

1− 1

(1+ kλ2)m

]

≤ ‖ω0‖2 +
‖g‖2

λ2
2

, K1, (3.6)

that is, equation (3.1) holds. On the other hand, taking the L2 inner product of the
equation (1.7) with 2kum, we obtain

‖um‖2 +‖um −um−1‖2 +2νk9um92 = 2k( f ,um)+‖um−1‖2 −2k(ξωm,um)

≤ 2k‖ f‖‖um‖+‖um−1‖2 +2k‖ξωm‖‖um‖

≤ 2k√
λ1

‖ f‖9um9+‖um−1‖2 +
2k|ξ|√

λ1

‖ωm‖9um9

≤ 2k

νλ1
‖ f‖2 +νk9um92 +‖um−1‖2 +

2k|ξ|2
νλ1

‖ωm‖2.

Combination (3.6) imply that

‖um‖2 +‖um −um−1‖2 +νk9um92 ≤ ‖um−1‖2 +
2k

νλ1

‖ f‖2 +
2k|ξ|2
νλ1

K1. (3.7)

Using Poincaré inequality again, we can get

(1+νkλ1)‖um‖2 ≤ ‖um−1‖2 +
2k

νλ1

‖ f‖2 +
2k|ξ|2
νλ1

K1.

Using the above inequality recursively, we find

‖um‖2 ≤ 1

(1+νkλ1)m
‖u0‖2 +

[

1− 1

(1+νkλ1)m

][

2‖ f‖2

ν2λ2
1

+
2|ξ|2
ν2λ2

1

K1

]

≤ ‖u0‖2 +
2‖ f‖2

ν2λ2
1

+
2|ξ|2
ν2λ2

1

K1 , K∗
1 , (3.8)

that is, the equation (3.2) holds. Adding up (3.5) with m from i to L−1, we find

‖ωL−1‖2 +
L−1

∑
m=i

‖ωm −ωm−1‖2 +
L−1

∑
m=i

k9ωm92 ≤ k

λ2

‖g‖2(L− i)+‖ωi−1‖2.
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Combination (3.6) imply that (3.3) holds. Adding up (3.7) with m from i to L−1, we
find

‖uL−1‖2 +
L−1

∑
m=i

‖um −um−1‖2 +
L−1

∑
m=i

νk9um92 ≤ ‖ui−1‖2 +(L− i)

[

2k

νλ1
‖ f‖2 +

2k|ξ|2
νλ1

K1

]

.

Combination (3.8) imply that (3.4) holds. The proof of Lemma 2 is completed. �

3.2. Boundedness in V×H1
0 (Ω)

Lemma 3 ([5]). Let
{

xm

}

,
{

ym

}

,
{

zm

}

be non-negative sequences. Assume that

there are integers m0, m1 such that, for k > 0,

kym <
1

2
, ∀m ≥ m0,

(1− kym)xm ≤ xm−1 + kzm, ∀m > m0 +m1.

and that for all integers m∗ ≥ m0, k
m∗+m1

∑
m=m∗

ym ≤ a1, k
m∗+m1

∑
m=m∗

zm ≤ a2, k
m∗+m1

∑
m=m∗

xm ≤ a3.

Then

xm ≤
[

a3

km1

+a2

]

e4a1 , ∀m > m0 +m1.

Lemma 4. Let
{

um,ωm
}

m
be the solutions sequence of (1.7)-(1.8), constructed in

Theorem 1. Then for all integers m ≥ 1,
{

um,ωm
}

remain bounded in V×H1
0 (Ω), in

the following sense, there exists positive constants C, a1, a2, a3, such that

9ωm92 ≤ K3, ∀m ≥ 1; (3.9)

9um92 ≤ K2, ∀m ≥ 1; (3.10)

L−1

∑
m=i

9um −um−19
2
+

L−1

∑
m=i

νk

16
‖A1um‖2

≤ K2 +C

[

‖ f‖2

ν
+

N8

ν7
K∗

1 +
|ξ|2
ν

K1

]

(L− i)k, L ≥ i ≥ 1; (3.11)

L−1

∑
m=i

9ωm −ωm−19
2
+

L−1

∑
m=i

1

2
k‖A2ωm‖2

≤ K3 +

[

k‖g‖2 +CK2

( k

λ2

‖g‖2 +K1

)

]

(L− i), L ≥ i ≥ 1, (3.12)

where

K2 , 9u09
2
+

C

ν2λ1

‖ f‖2 +
N8C

ν8λ1

K∗
1 +

C|ξ|2
ν2λ1

K1,

K3 , max

{

9ω09
2
+

‖g‖2

1
2
λ2 −CK2

,
[ a3

km1

+a2

]

e4a1 , C9ω09
2
+

C

K2 −λ2

‖g‖2

}

,
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L ≥ i ≥ 1.

Proof. Taking the L2 inner product of the equation (1.7) with 2kA1um, we obtain

9um92 +9um −um−19
2
+2νk‖A1um‖2

= 9um−19
2
+2k( f ,A1um)−2kbN(u

m,um,A1um)−2k(ξωm,A1um).

Each term of the right hand side of the above equation can be majorize by (1.3) as

follows

2k( f ,A1um)≤ 2k‖ f‖‖A1um‖ ≤ k

ν
‖ f‖2 +νk‖A1um‖2;

2k |(ξωm,A1um)| ≤ 16k

ν
|ξ|2 ‖ωm‖2 +

νk

16
‖A1um‖2;

2k |bN(u
m,um,A1um)|= 2kFN(9um9) |b(um,um,A1um)|

≤ 2k
N

9um9
C‖um‖ 1

4 ‖A1um‖ 3
4 9um9‖A1um‖

=CNk‖um‖ 1
4 ‖A1um‖ 7

4 ≤ 7

8
νk‖A1um‖2 +

N8C8k

8ν7
‖um‖2.

Then

9um92 +9um −um−19
2
+2νk‖A1um‖2

≤ 9um−19
2
+

k

ν
‖ f‖2 +νk‖A1um‖2 +

7

8
νk‖A1um‖2

+
N8C8k

8ν7
‖um‖2 +

16k

ν
|ξ|2 ‖ωm‖2 +

νk

16
‖A1um‖2.

By (3.1) and (3.2) gives

9um92 +9um −um−19
2
+

νk

16
‖A1um‖2

≤ 9um−19
2
+

k

ν
‖ f‖2 +

N8C8k

8ν7
‖um‖2 +

16k

ν
|ξ|2 ‖ωm‖2

≤ 9um−19
2
+

k

ν
‖ f‖2 +

N8C8k

8ν7
K∗

1 +
16k

ν
|ξ|2 K1, (3.13)

which together with 9um9 ≤ 1√
λ1

‖A1um‖ gives

9um92 +9um −um−19
2
+

νkλ1

16
9um92 ≤ 9um−19

2
+

k

ν
‖ f‖2 +

N8C8k

8ν7
K∗

1 +
16k

ν
|ξ|2 K1.

Therefore
[

1+
νkλ1

16

]

9um92 ≤ 9um−19
2
+

k

ν
‖ f‖2 +

N8C8k

8ν7
K∗

1 +
16k

ν
|ξ|2 K1,
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which is

9um92 ≤ 1

1+ νkλ1

16

9um−19
2
+

1

1+ νkλ1

16

[

k

ν
‖ f‖2 +

N8C8k

8ν7
K∗

1 +
16k

ν
|ξ|2 K1

]

.

Using the above inequality recursively, we find

9um92 ≤ 1

(1+ νkλ1

16
)m

9u09
2
+

16

νkλ1

[

1− 1

(1+ νkλ1

16
)m

]

×
[

k

ν
‖ f‖2 +

N8C8k

8ν7
K∗

1 +
16k

ν
|ξ|2 K1

]

≤ 9u09
2
+

16

νkλ1

[

k

ν
‖ f‖2 +

N8C8k

8ν7
K∗

1 +
16k

ν
|ξ|2K1

]

≤ 9u09
2
+

C

ν2λ1

‖ f‖2 +
N8C

ν8λ1

K∗
1 +

C|ξ|2
ν2λ1

K1 , K2. (3.14)

Therefore, we get (3.10), and um is bounded in V.

Taking the L2 inner product of the equation (1.8) with 2kA2ωm, we find

9ωm92 +9ωm −ωm−19
2
+2k‖A2ωm‖2

= 9ωm−19
2
+2k(g,A2ωm)−2kc(um,ωm,A2ωm)

≤ 9ωm−19
2
+ k‖g‖2 + k‖A2ωm‖2 +CK2k9ωm92 +

1

2
k‖A2ωm‖2.

Taking k small enough such that 1−CK2k > 0, we obtain

(1−CK2k)9ωm92 +
1

2
k‖A2ωm‖2 +9ωm −ωm−19

2 ≤ 9ωm−19
2
+ k‖g‖2, (3.15)

which, together with 9ωm9 ≤ 1√
λ2

‖A2ωm‖, leads to

[

1+
1

2
λ2k−CK2k

]

9ωm92 +9ωm −ωm−19
2 ≤ 9ωm−19

2
+ k‖g‖2. (3.16)

There are two cases to discuss the above inequality (3.16):

Case 1: If 1
2
λ2 >CK2, which is 1+ 1

2
λ2k−CK2k > 1, then from (3.16), one has

9ωm92 ≤ 1

1+ 1
2
λ2k−CK2k

9ωm−19
2
+

k

1+ 1
2
λ2k−CK2k

‖g‖2.

Using the above inequality recursively, we find

9ωm92 ≤ 1

(1+ 1
2
λ2k−CK2k)m

9ω09
2

+
1

1
2
λ2 −CK2

‖g‖2

[

1− 1

(1+ 1
2
λ2k−CK2k)m

]
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≤ 9ω09
2
+

1
1
2
λ2 −CK2

‖g‖2.

Case 2: If 1
2
λ2 ≤CK2, which is 1+ 1

2
λ2k−CK2k ≤ 1, then from (3.16), one gets

[

1− k
(

CK2 − 1
2
λ2

)]

9ωm92 ≤ 9ωm−19
2
+ k‖g‖2.

In the following, we will use Lemma 3 to discuss the above inequality. Let

xm = 9ωm92
, ym = CK2 − 1

2
λ2, zm = ‖g‖2. Obviously,

{

xm

}

,
{

ym

}

,
{

zm

}

are non-

negative sequences, and there exists m0, m1 such that

kym =CK2k− 1

2
kλ2 <

1

2
, ∀m ≥ m0,

(1− kym)xm ≤ xm−1 + kzm, ∀m > m0 +m1,

and that for all integers m∗ ≥ m0, from (3.3), we get

k
m∗+m1

∑
m=m∗

ym = k
m∗+m1

∑
m=m∗

[

CK2 − 1
2
λ2

]

= k(m1 +1)
[

CK2 − 1
2
λ2

]

≤ a1,

k
m∗+m1

∑
m=m∗

zm = k
m∗+m1

∑
m=m∗

‖g‖2 = k(m1 +1)‖g‖2 ≤ a2,

k
m∗+m1

∑
m=m∗

xm = k
m∗+m1

∑
m=m∗

9ωm92 ≤ k

λ2

‖g‖2(m1 +1)+K1 ≤ a3.

By Lemma 3, we get

9ωm92 ≤
[

a3

km1

+a2

]

e4a1 , ∀m > m0 +m1.

When m ≤ m0 +m1, there is
[

1+ 1
2
λ2k−CK2k

]m

≥
[

1+ 1
2
λ2k−CK2k

]m0+m1

, thus

9ωm92 ≤ 1

(1+ 1
2
λ2k−CK2k)m0+m1

9ω09
2

+
1

CK2 − 1
2
λ2

‖g‖2

[

1

(1+ 1
2
λ2k−CK2k)m0+m1

−1

]

≤C9ω09
2
+

C

K2 −λ2

‖g‖2, ∀m ≤ m0 +m1.

Above all, we get (3.9), that is, ωm is bounded in H1
0 (Ω).

Next, adding up (3.13) with m = i, i+1, · · · , L−1, we find

9uL−19
2
+

L−1

∑
m=i

9um −um−19
2
+

L−1

∑
m=i

νk

16
‖A1um‖2
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≤ 9ui−19
2
+(L− i)

[

k

ν
‖ f‖2 +

N8C8k

8ν7
K∗

1 +
16k

ν
|ξ|2 K1

]

.

Together with (3.14), leads to (3.11). Using (3.5)-(3.6) and (3.15), we obtain

9ωm92 +
1

2
k‖A2ωm‖2 +9ωm −ωm−19

2

≤ 9ωm−19
2
+ k‖g‖2 +CK2k9ωm92

≤ 9ωm−19
2
+ k‖g‖2 +CK2

[

k

λ2

‖g‖2 +K1

]

.

Adding up the above inequality with m = i, i+1, · · · , L−1, we get

9ωL−19
2
+

L−1

∑
m=i

9ωm −ωm−19
2
+

L−1

∑
m=i

1

2
k‖A2ωm‖2

≤ 9ωi−19
2
+(L− i)

[

k‖g‖2 +CK2

(

k

λ2

‖g‖2 +K1

)]

.

Together with (3.9), one obtains (3.12). Above all, we have
{

um,ωm
}

is bounded in

V×H1
0 (Ω). The proof of Lemma 4 is completed. �

3.3. Boundedness in D(A1)×D(A2)

Lemma 5. Assuming that f ∈ L2(Ω)3, g ∈ L2(Ω), u0 ∈ D(A1), ω0 ∈ D(A2). Let
{

um,ωm
}

m≥1
be the solutions sequence of (1.7)-(1.8). Then there exist positive con-

stants C0 ≡ C0(ν,N, |ξ|,K1,K2,K3, ‖A1u0‖,‖A2ω0‖,‖ f‖,‖g‖) and K4 ≡
K4

(

k,ν,λ1,λ2,N, |ξ|,‖u0‖,‖ω0‖,‖ f‖,‖g‖
)

such that
∥

∥

∥

∥

u1 −u0

k

∥

∥

∥

∥

+

∥

∥

∥

∥

ω1 −ω0

k

∥

∥

∥

∥

≤C0; (3.17)

∥

∥

∥

∥

um −um−1

k

∥

∥

∥

∥

2

+

∥

∥

∥

∥

ωm −ωm−1

k

∥

∥

∥

∥

2

≤ K4, m > 1. (3.18)

Proof. Let u = u1 −u0, ω = ω1 −ω0, then from (1.7)-(1.8), one obtains










u

k
+νA1u+νA1u0 +BN(u+u0,u+u0)+ξ(ω+ω0) = f , (3.19)

ω

k
+A2ω+A2ω0 +C(u+u0,ω+ω0) = g. (3.20)

Taking the scalar product of the equation (3.19) with A1u, we obtain

9u92

k
+ν‖A1u‖2 = ( f −νA1u0,A1u)−bN(u+u0,u+u0,A1u)− (ξω+ξω0,A1u).

(3.21)
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Taking the scalar product of the equation (3.20) with A2ω, we find

9ω92

k
+‖A2ω‖2 = (g−A2ω0,A2ω)− c(u+u0,ω+ω0,A2ω). (3.22)

Putting together (3.21) and (3.22), one obtains

9u92

k
+

9ω92

k
+ν‖A1u‖2 +‖A2ω‖2

= ( f −νA1u0,A1u)+(g−A2ω0,A2ω)− (ξω+ξω0,A1u)

−bN(u+u0,u+u0,A1u)− c(u+u0,ω+ω0,A2ω).

By (3.1) and (3.9)-(3.10) gives

|bN(u+u0,u+u0,A1u)|= FN(9u+u09)|b(u+u0,u+u0,A1u)|
≤ FN(9u+u09)‖(u+u0) ·∇(u+u0)‖‖A1u‖
≤ FN(9u+u09)‖u+u0‖L6

‖∇(u+u0)‖L3
‖A1u‖

≤ CN

9u+u09
9u+u099u+u09

1
2 ‖A1(u+u0)‖ 1

2 ‖A1u‖

≤CN9u+u09
1
2 ‖A1(u+u0)‖ 1

2 ‖A1u‖

≤CNK
1
4

2 ‖A1u‖ 3
2 +CNK

1
4

2 ‖A1u0‖ 1
2 ‖A1u‖;

( f −νA1u0,A1u)≤ ‖ f‖‖A1u‖+ν‖A1u0‖‖A1u‖;

(g−A2ω0,A2ω)≤ ‖g‖‖A2ω‖+‖A2ω0‖‖A2ω‖;

|c(u+u0,ω+ω0,A2ω)| ≤C9u199ω19‖A2ω‖ ≤CK
1
2

2 K
1
2

3 ‖A2ω‖;

|(ξω+ξω0,A1u)| ≤ |ξ|‖ω1‖‖A1u‖ ≤ |ξ|K
1
2

1 ‖A1u‖.
Therefore, one has

9u92

k
+

9ω92

k
+ν‖A1u‖2 +‖A2ω‖2

≤ ‖ f‖‖A1u‖+ν‖A1u0‖‖A1u‖+‖g‖‖A2ω‖+‖A2ω0‖‖A2ω‖

+CNK
1
4

2 ‖A1u‖ 3
2 +CNK

1
4

2 ‖A1u0‖ 1
2 ‖A1u‖

+CK
1
2

2 K
1
2

3 ‖A2ω‖+ |ξ|K
1
2

1 ‖A1u‖,
which, together with Young’s inequality, leads to

9u92

k
+

9ω92

k
+C‖A1u‖2 +C‖A2ω‖2

≤C‖ f‖2 +Cν‖A1u0‖2 +C‖g‖2 +C‖A2ω0‖2
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+CNK2 +CNK
1
2

2 ‖A1u0‖+CK2K3 +C|ξ|2K1. (3.23)

From (1.7)-(1.8), one has














u1 −u0

k
=−νA1u1 −BN(u

1,u1)−ξω1 + f ,

ω1 −ω0

k
=−A2ω1 −C(u1,ω1)+g.

Thus
∥

∥

∥

∥

u1 −u0

k

∥

∥

∥

∥

+

∥

∥

∥

∥

ω1 −ω0

k

∥

∥

∥

∥

≤ ν‖A1u1‖+‖A2ω1‖+‖BN(u
1,u1)‖+‖C(u1,ω1)‖+‖ξω1‖+‖ f‖+‖g‖

≤ ν‖A1u‖+ν‖A1u0‖+‖A2ω‖+‖A2ω0‖
+‖BN(u

1,u1)‖+‖C(u1,ω1)‖+ |ξ|‖ω1‖+‖ f‖+‖g‖
≤ ν‖A1u‖+ν‖A1u0‖+‖A2ω‖+‖A2ω0‖

+CN9u19
1
2 ‖A1u1‖ 1

2 +9u199ω19+ |ξ|‖ω1‖+‖ f‖+‖g‖

≤ ν‖A1u‖+ν‖A1u0‖+‖A2ω‖+‖A2ω0‖+CNK
1
4

2 ‖A1u‖ 1
2

+CNK
1
4

2 ‖A1u0‖ 1
2 +K

1
2

2 K
1
2

3 + |ξ|K
1
2

1 +‖ f‖+‖g‖.
Which together with (3.23), gives the desired result, that is

∥

∥

∥

∥

u1 −u0

k

∥

∥

∥

∥

+

∥

∥

∥

∥

ω1 −ω0

k

∥

∥

∥

∥

≤C0

(

ν,N, |ξ|,K1,K2,K3,‖A1u0‖,‖A2ω0‖,‖ f‖,‖g‖
)

.

Then (3.17) is holds.

For m > 1, let um
∗ =

um −um−1

k
, ωm

∗ =
ωm −ωm−1

k
in (1.7)-(1.8), we obtain



















um
∗ −um−1

∗
k

+νA1um
∗ +

1

k

[

BN(u
m,um)−BN(u

m−1,um−1)
]

+ξωm
∗ = 0, (3.24)

ωm
∗ −ωm−1

∗
k

+A2ωm
∗ +

1

k

[

C(um,ωm)−C(um−1,ωm−1)
]

= 0. (3.25)

Taking the scalar product of the equation (3.24) with 2kum
∗ , and taking the scalar

product of the equation (3.25) with 2kωm
∗ , we obtain

‖um
∗ ‖2 +‖um

∗ −um−1
∗ ‖2 +2kν9um

∗ 92 +‖ωm
∗ ‖2 +‖ωm

∗ −ωm−1
∗ ‖2 +2k9ωm

∗ 92

= ‖um−1
∗ ‖2 −2bN(u

m,um,um
∗ )+2bN(u

m−1,um−1,um
∗ )−2k(ξωm

∗ ,u
m
∗ )

+‖ωm−1
∗ ‖2 −2c(um,ωm,ωm

∗ )+2c(um−1,ωm−1,ωm
∗ ). (3.26)
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We now majorize the right-hand side of (3.26). By (1.3) and (3.10), one gets

2bN(u
m−1,um−1,um

∗ )−2bN(u
m,um,um

∗ )

= 2FN(9um−19)b(um−1,um−1,um
∗ )−2FN(9um9)b(um,um,um

∗ )

= 2
[

FN(9um−19)−FN(9um9)
]

b(um−1,um−1,um
∗ )

+2FN(9um9)
[

b(um−1,um−1,um
∗ )−b(um,um,um

∗ )
]

≤ 2
[

FN(9um−19)−FN(9um9)
]

b(um−1,um−1,um
∗ )

+2FN(9um9)|kb(um
∗ ,u

m,um
∗ )|

≤C
9um −um−19

9um−19
9um−199um−19‖um

∗ ‖
1
4 9um

∗ 9
3
4

+
CNk

9um9
‖um

∗ ‖
1
4 9um

∗ 9
3
4 9um9‖um

∗ ‖
1
4 9um

∗ 9
3
4

≤CK
1
2

2 k‖um
∗ ‖

1
4 9um

∗ 9
7
4 +CNk‖um

∗ ‖
1
2 9um

∗ 9
3
2 ,

−2k(ξωm
∗ ,u

m
∗ )≤ 2k|(ξωm

∗ ,u
m
∗ )| ≤ 2k|ξ|‖ωm

∗ ‖‖um
∗ ‖.

Together with (3.9), one has

2c(um−1,ωm−1,ωm
∗ )−2c(um,ωm,ωm

∗ )≤ 2|c(kum
∗ ,ω

m,ωm
∗ )|

≤Ck9um
∗ 99ωm9‖ωm

∗ ‖ ≤CK
1
2

3 k9um
∗ 9‖ωm

∗ ‖.

Thus, from (3.26) and above inequality, by Young’s inequality, we obtain

‖um
∗ ‖2 +‖um

∗ −um−1
∗ ‖2 +2kν9um

∗ 92 +‖ωm
∗ ‖2 +‖ωm

∗ −ωm−1
∗ ‖2 +2k9ωm

∗ 92

≤ ‖um−1
∗ ‖2 +CK

1
2

2 k‖um
∗ ‖

1
4 9um

∗ 9
7
4 +CNk‖um

∗ ‖
1
2 9um

∗ 9
3
2

+2k|ξ|‖ωm
∗ ‖‖um

∗ ‖+‖ωm−1
∗ ‖2 +CK

1
2

3 k9um
∗ 9‖ωm

∗ ‖
≤ ‖um−1

∗ ‖2 +‖ωm−1
∗ ‖2 +Ck‖um

∗ ‖2 +2kν9um
∗ 92 +Ck‖ωm

∗ ‖2.

Therefore

(1−Ck)
(

‖um
∗ ‖2 +‖ωm

∗ ‖2
)

≤ ‖um−1
∗ ‖2 +‖ωm−1

∗ ‖2. (3.27)

Using the above inequality (3.27) recursively, we find

‖um
∗ ‖2 +‖ωm

∗ ‖2 ≤ 1

(1−Ck)m−1

(

‖u1
∗‖2 +‖ω1

∗‖2
)

.

Obviously, when m≤M0 = ent
{

T
k

}

, then ‖um
∗ ‖2+‖ωm

∗ ‖2 is bounded, where ent
{

T
k

}

is the entire part of T
k

with T an arbitrarily fixed constant. Let xm = ‖um
∗ ‖2 +‖ωm

∗ ‖2,

ym =C, zm = 0, then by Lemma 2-3 and equation (3.27), we see that ‖um
∗ ‖2 +‖ωm

∗ ‖2
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is bounded as m > M0. Thus we have
∥

∥

∥

∥

um −um−1

k

∥

∥

∥

∥

2

+

∥

∥

∥

∥

ωm −ωm−1

k

∥

∥

∥

∥

2

≤ K4

(

ν,λ1,λ2,N, |ξ|,‖u0‖,‖ω0‖,‖ f‖,‖g‖
)

.

(3.28)

Then (3.18) is holds. The proof of Lemma 5 is completed. �

Theorem 4. Assuming that f ∈ L2(Ω)3, g ∈ L2(Ω), u0 ∈ D(A1), ω0 ∈ D(A2). Let
{

um,ωm
}

m≥1
be the solution sequence of (1.7)-(1.8). Then there exists a positive

constant C such that, ∀m ≥ 1,

‖A1um‖2 +‖A2ωm‖2 ≤ K5. (3.29)

Proof. From (1.7)-(1.8), we obtain














νA1um =−um −um−1

k
−BN(u

m,um)−ξωm + f , (3.30)

A2ωm =−ωm −ωm−1

k
−C(um,ωm)+g. (3.31)

Two sides of equation (3.30) and (3.31) multiply by A1um and A2ωm respectively, and

then integrate gives

ν‖A1um‖2 +‖A2ωm‖2

=−
[

um −um−1

k
,A1um

]

−
[

ωm −ωm−1

k
,A2ωm

]

−bN(u
m,um,A1um)

− c(um,ωm,A2ωm)− (ξωm,A1um)+( f ,A1um)+(g,A2ωm)

≤
∥

∥

∥

∥

um −um−1

k

∥

∥

∥

∥

‖A1um‖+
∥

∥

∥

∥

ωm −ωm−1

k

∥

∥

∥

∥

‖A2ωm‖

+
CN

9um9
‖(um ·∇)um‖‖A1um‖+C9um99ωm9‖A2ωm‖

+‖ξωm‖‖A1um‖+‖ f‖‖A1um‖+‖g‖‖A2ωm‖

≤
∥

∥

∥

∥

um −um−1

k

∥

∥

∥

∥

‖A1um‖+
∥

∥

∥

∥

ωm −ωm−1

k

∥

∥

∥

∥

‖A2ωm‖+CN9um9
1
2 ‖A1um‖ 3

2

+C9um99ωm9‖A2ωm‖+‖ξωm‖‖A1um‖+‖ f‖‖A1um‖+‖g‖‖A2ωm‖.
By Young’s inequality, one gets

‖A1um‖2 +‖A2ωm‖2 ≤C

∥

∥

∥

∥

um −um−1

k

∥

∥

∥

∥

2

+C

∥

∥

∥

∥

ωm −ωm−1

k

∥

∥

∥

∥

2

+C9um92

+C9um929ωm92 +C|ξ|2‖ωm‖2 +C‖ f‖2 +C‖g‖2

≤CK4 +CK2 +CK2K3 +C|ξ|2K1 +C‖ f‖2 +C‖g‖2 , K5.

The proof of Theorem 4 is completed. �
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4. GLOBAL ATTRACTOR

In this section, we first prove that continuous dependence of solutions on initial

data and N.

Lemma 6. Assuming that M, N > 0, f ∈ L2(Ω)3, g ∈ L2(Ω), u0
1, u0

2 ∈ D(A1), and

ω0
1, ω0

2 ∈ D(A2).
Let

{

um
1 ,ω

m
1

}

m
be the solution of (1.7)-(1.8), with initial condition

{

u0
1,ω

0
1

}

and

parameter N.

Let
{

um
2 ,ω

m
2

}

m
be the solution of (1.7)-(1.8), with initial condition

{

u0
2,ω

0
2

}

and

parameter M.

Then there exists C, C∗, a∗1, a∗2, a∗3, such that

9um
1 −um

2 92 +9ωm
1 −ωm

2 92 ≤ 1

C∗M0

[

9u0
1 −u0

29
2
+9ω0

1 −ω0
29

2
]

+
kCK5

1−C∗

[ 1

C
M0∗

−1
]

|M−N|2 , ∀m ≤ M0; (4.1)

9um
1 −um

2 92 +9ωm
1 −ωm

2 92 ≤
[ a∗3

k(M0 −3)
+a∗2

]

e4a∗1 , ∀m > M0, (4.2)

where M0 = ent
(

T
k

)

, T is an arbitrarily fixed constant.

Proof. Let um
∗ = um

1 −um
2 , ωm

∗ = ωm
1 −ωm

2 in (1.7)-(1.8), we obtain


















um
∗ −um−1

∗
k

+νA1um
∗ +BN(u

m
1 ,u

m
1 )−BM(um

2 ,u
m
2 )+ξωm

∗ = 0, (4.3)

ωm
∗ −ωm−1

∗
k

+A2ωm
∗ +C(um

1 ,ω
m
1 )−C(um

2 ,ω
m
2 ) = 0. (4.4)

Taking the scalar product of (4.3) with 2kA1um
∗ , we find

9um
∗ 92 −9um−1

∗ 9
2
+9um

∗ −um−1
∗ 9

2
+2νk‖A1um

∗ ‖2

= 2k
[

bM(um
2 ,u

m
2 ,A1um

∗ )−bN(u
m
1 ,u

m
1 ,A1um

∗ )
]

−2k(ξωm
∗ ,A1um

∗ )

= 2kFM(9um
2 9)b(um

2 ,u
m
2 ,A1um

∗ )

−2kFN(9um
1 9)b(um

1 ,u
m
1 ,A1um

∗ )−2k(ξωm
∗ ,A1um

∗ )

= 2k
[

FM(9um
2 9)−FN(9um

1 9)
]

b(um
1 ,u

m
2 ,A1um

∗ )

−2kFM(9um
2 9)b(um

∗ ,u
m
2 ,A1um

∗ )

−2kFN(9um
1 9)b(um

1 ,u
m
∗ ,A1um

∗ )−2k(ξωm
∗ ,A1um

∗ ). (4.5)

From (1.3) and Lemma 1, one has

FM(9um
2 9) |b(um

∗ ,u
m
2 ,A1um

∗ )| ≤
M

9um
2 9

C9um
∗ 9

1
2 9um

2 9‖A1um
∗ ‖

1
2 ‖A1um

∗ ‖
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=CM9um
∗ 9

1
2 ‖A1um

∗ ‖
3
2 ;

FN(9um
1 9) |b(um

1 ,u
m
∗ ,A1um

∗ )| ≤ |b(um
1 ,u

m
∗ ,A1um

∗ )|
≤C‖A1um

1 ‖9um
∗ 9‖A1um

∗ ‖;

and

[FM(9um
2 9)−FN(9um

1 9)]b(um
1 ,u

m
2 ,A1um

∗ )

≤
[ |M−N|+9um

1 −um
2 9

9um
2 9

]

C‖A1um
1 ‖9um

2 9‖A1um
∗ ‖

≤C
[

|M−N|+9um
∗ 9

]

‖A1um
1 ‖‖A1um

∗ ‖.

From (4.5) and above inequality, we obtain

9um
∗ 92 −9um−1

∗ 9
2
+9um

∗ −um−1
∗ 9

2
+2νk‖A1um

∗ ‖2

≤ 2kC [|M−N|+9um
∗ 9]‖A1um

1 ‖‖A1um
∗ ‖+2kCM9um

∗ 9
1
2 ‖A1um

∗ ‖
3
2

+2kC‖A1um
1 ‖9um

∗ 9‖A1um
∗ ‖+2k‖ξωm

∗ ‖‖A1um
∗ ‖

≤
[kC |M−N|2

ε1

+
kC9um

∗ 92

ε2

]

‖A1um
1 ‖2 +(kCε1 + kCε2)‖A1um

∗ ‖2

+
kM4C4

2ε3

9um
∗ 92 +

3kε3
3

2
‖A1um

∗ ‖2 +
kC2

ε4

‖A1um
1 ‖29um

∗ 92

+ kε4‖A1um
∗ ‖2 +

k |ξ|2
ε5λ2

9ωm
∗ 92 + kε5‖A1um

∗ ‖2. (4.6)

Taking the scalar product of (4.4) with 2kA2ωm
∗ , we find

9ωm
∗ 92 −9ωm−1

∗ 9
2
+9ωm

∗ −ωm−1
∗ 9

2
+2k‖A2ωm

∗ ‖2

= 2k[c(um
2 ,ω

m
2 ,A2ωm

∗ )− c(um
1 ,ω

m
1 ,A2ωm

∗ )]. (4.7)

By Young’s inequality and (3.9)-(3.10) gives

|c(um
2 ,ω

m
2 ,A2ωm

∗ )− c(um
1 ,ω

m
1 ,A2ωm

∗ )|
= |c(um

2 ,ω
m
2 ,A2ωm

∗ )− c(um
∗ ,ω

m
1 ,A2ωm

∗ )− c(um
2 ,ω

m
1 ,A2ωm

∗ )|
= |c(um

2 ,ω
m
∗ ,A2ωm

∗ )+ c(um
∗ ,ω

m
1 ,A2ωm

∗ )|
≤C9um

2 99ωm
∗ 9‖A2ωm

∗ ‖+C9um
∗ 99ωm

1 9‖A2ωm
∗ ‖

≤C
[ 1

2ε6

9um
2 929ωm

∗ 92 +
ε6

2
‖A2ωm

∗ ‖2
]

+C
[ 1

2ε7

9um
∗ 929ωm

1 92 +
ε7

2
‖A2ωm

∗ ‖2
]

≤C
[ 1

2ε6

K29ωm
∗ 92 +

ε6

2
‖A2ωm

∗ ‖2
]
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+C
[ 1

2ε7

9um
∗ 92

K3 +
ε7

2
‖A2ωm

∗ ‖2
]

=
CK2

ε6

9ωm
∗ 92 +

CK3

ε7

9um
∗ 92 +C(ε6 + ε7)‖A2ωm

∗ ‖2.

Thus, from (4.7), we have

9ωm
∗ 92 −9ωm−1

∗ 9
2
+9ωm

∗ −ωm−1
∗ 9

2
+2k‖A2ωm

∗ ‖2

≤ 2k
[CK2

ε6

9ωm
∗ 92 +

CK3

ε7

9um
∗ 92 +C(ε6 + ε7)‖A2ωm

∗ ‖2
]

. (4.8)

From (4.6) and (4.8), we get

9um
∗ 92 +9ωm

∗ 92 −9um−1
∗ 9

2 −9ωm−1
∗ 9

2
+9um

∗ −um−1
∗ 9

2

+9ωm
∗ −ωm−1

∗ 9
2
+2νk‖A1um

∗ ‖2 +2k‖A2ωm
∗ ‖2

≤
[kC |M−N|2

ε1

+
kC9um

∗ 92

ε2

]

‖A1um
1 ‖2 +(kCε1 + kCε2)‖A1um

∗ ‖2

+
kM4C4

2ε3

9um
∗ 92 +

3kε3
3

2
‖A1um

∗ ‖2 +
kC2

ε4

‖A1um
1 ‖29um

∗ 92

+ kε4‖A1um
∗ ‖2 +

k |ξ|2
ε5λ2

9ωm
∗ 92 + kε5‖A1um

∗ ‖2

+2k
[CK2

ε6

9ωm
∗ 92 +

CK3

ε7

9um
∗ 92 +C(ε6 + ε7)‖A2ωm

∗ ‖2
]

≤
[kC |M−N|2

ε1

+
kC9um

∗ 92

ε2

]

K5 +(kCε1 + kCε2)‖A1um
∗ ‖2

+
kM4C4

2ε3

9um
∗ 92 +

3kε3
3

2
‖A1um

∗ ‖2 +
kC2

ε4

K59um
∗ 92

+ kε4‖A1um
∗ ‖2 +

k |ξ|2
ε5λ2

9ωm
∗ 92 + kε5‖A1um

∗ ‖2

+2k
[CK2

ε6

9ωm
∗ 92 +

CK3

ε7

9um
∗ 92 +C(ε6 + ε7)‖A2ωm

∗ ‖2
]

= 9um
∗ 92

kC
[K5

ε2

+
M4

ε3

+
K5

ε4

+
K3

ε7

]

+‖A1um
∗ ‖2kC(ε1 + ε2 + ε3

3 + ε4 + ε5)

+9ωm
∗ 92

kC
[K2

ε6

+
|ξ|2
ε5λ2

]

+‖A2ωm
∗ ‖2kC(ε6 + ε7)+

kCK5

ε1

|M−N|2 .

That is

[

1− kC(K5 +M4 +K3)
]

9um
∗ 92 +

[

1− kC
(

K2 +
|ξ|2
λ2

)]

9ωm
∗ 92



480 CHAOSHENG ZHU

+9um
∗ −um−1

∗ 9
2
+9ωm

∗ −ωm−1
∗ 9

2
+ kC‖A1um

∗ ‖2 + kC‖A2ωm
∗ ‖2

≤ 9um−1
∗ 9

2
+9ωm−1

∗ 9
2
+ kCK5 |M−N|2 . (4.9)

Let C∗ = min

{

1− kC(K5 +M4 +K3), 1− kC
(

K2 +
|ξ|2
λ2

)

}

, then

9um
∗ 92 +9ωm

∗ 92 ≤ 1

C∗

[

9um−1
∗ 9

2
+9ωm−1

∗ 9
2
]

+
kCK5

C∗
|M−N|2 .

Using the above inequality recursively, we find

9um
∗ 92 +9ωm

∗ 92 ≤ 1

Cm∗

[

9u0
∗9

2
+9ω0

∗9
2
]

+
kCK5

1−C∗
|M−N|2

[

1

Cm∗
−1

]

.

Since 0 <C∗ < 1, for m ≤ M0 = ent
{

T
k

}

, one has

9um
∗ 92 +9ωm

∗ 92 ≤ 1

C
M0∗

[

9u0
∗9

2
+9ω0

∗9
2
]

+
kCK5

1−C∗
|M−N|2

[

1

C
M0∗

−1

]

.

For m > M0, let C∗∗ = max
{

C(K5 +M4 +K3), C
(

K2 +
|ξ|2
λ2

)}

. From (4.9), one has

(1− kC∗∗)9um
∗ 92 +(1− kC∗∗)9ωm

∗ 92 ≤ 9um−1
∗ 9

2
+9ωm−1

∗ 9
2
+ kCK5 |M−N|2 .

Let xm = 9um
∗ 92 +9ωm

∗ 92
, ym = C∗∗, zm = CK5 |M−N|2. Obviously,

{

xm

}

,
{

ym

}

,
{

zm

}

are non-negative sequences, and for k > 0,

kym = kC∗∗ <
1

2
, ∀m ≥ 2,

(1− kym)xm ≤ xm−1 + kzm, ∀m ≥ M−1.

For all integers m∗ ≥ 2, by Lemma 4, we get

k
m∗+m1

∑
m=m∗

ym = k(M0 −2)C∗∗ ≤ a∗1;

k
m∗+m1

∑
m=m∗

zm = k(M0 −2)CK5 |M−N|2 ≤ a∗2;

k
m∗+m1

∑
m=m∗

xm = k
m∗+m1

∑
m=m∗

(9um
1 −um

2 92 +9ωm
1 −ωm

2 92)

≤ k
m∗+m1

∑
m=m∗

(

C9um
1 92 +C9um

2 92 +C9ωm
1 92 +C9ωm

2 92
)

≤ kC
m∗+m1

∑
m=m∗

(K2 +K2 +K3 +K3)≤ kC(M0 −2)(K2 +K3)≤ a∗3.



ATTRACTOR OF DISCRETIZED 3D BÉNARD SYSTEMS 481

Thus, xm ≤
[

a∗3
k(M0 −3)

+a∗2

]

e4a∗1 , which is

9um
∗ 92 +9ωm

∗ 92 ≤
[

a∗3
k(M0 −3)

+a∗2

]

e4a∗1 .

The proof of Lemma 6 is completed. �

Proof of Theorem 2. Above, we show that the continuous dependence of solutions

on initial value and parameter N. It can be seen under the above conditions, when

determining the initial value and the parameter N, the system (1.7)-(1.8) has a unique

solution. Therefore, we can define a C0 semigroup Sm, acting on the phase space

V×H1
0 (Ω), and defined as follows:

Sm
(

u0,ω0
)

=
(

um,ωm
)

, ∀m ≥ 0.

From Lemma 4, the semigroup Sm has a bounded absorbing set in V×H1
0 (Ω):

B
V×H1

0 (Ω) =
{

(

um,ωm
)

∈ V×H1
0 (Ω),9um92 +9ωm92 ≤ K2 +K3

}

.

And from Theorem 4 we can know that Sm is bounded in D(A1)×D(A2), and using

Sobolev embedding theorem to know that Sm is compact in V×H1
0 (Ω). Hence, Sm

has a global attractor A in V×H1
0 (Ω). The proof of Theorem 2 is completed. �

5. LIMITING BEHAVIOR FOR N → ∞

One sees from Lemma 2 that

νk9um92 + k9ωm92 ≤ 2k

νλ1

‖ f‖2 +
k

λ2

‖g‖2 +

[

1+
2k|ξ|2
νλ1

]

K1 +K∗
1 .

For m and k fixed, let
{

um
N ,ω

m
N

}

N
be the solution of (1.7)-(1.8), then

9um
N92 +9ωm

N92 ≤ C

ν2λ1

‖ f‖2 +
C

νλ2

‖g‖2 +
1

νk

[(

1+
2k|ξ|2
νλ1

)

K1 +K∗
1

]

.

Thus the sequence
{

um
N ,ω

m
N

}

N
is bounded in V×H1

0 (Ω) uniformly in N. Therefore,

we can extract from
{

um
N ,ω

m
N

}

N
a subsequence still denoted by

{

um
N ,ω

m
N

}

N
such that

um
N ⇀ um, as N → ∞ in V, and ωm

N ⇀ ωm, as N → ∞ in H1
0 (Ω). As the injection

V →֒ H and H1
0 (Ω) →֒ L2(Ω) both are compact, we have um

N → um, as N → ∞ in H,

and ωm
N → ωm as N → ∞ in L2(Ω).

We shall show that










lim
N→∞

FN(9um
N9)b(um

N ,u
m
N ,v) = b(um,um,v), ∀v ∈ D(A1),

lim
N→∞

C(um
N ,ω

m
N ,v∗) = c(um,ωm,v∗), ∀v∗ ∈ H2(Ω).

Indeed, a simple computation gives
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FN(9um
N9)b(um

N ,u
m
N ,v)−b(um,um,v)

= [FN(9um
N9)−1]b(um

N ,u
m
N ,v)+b(um

N ,u
m
N ,v)−b(um,um,v).

First, by the definition of FN , we have FN(9um
N9) = min

{

1,
N

9um
N9

}

≤ 1. And from

the above inequality we can see

N

9um
N9

≥ N

{

C

ν2λ1

‖ f‖2 +
C

νλ2

‖g‖2 +
1

νk

[(

1+
2k|ξ|2
νλ1

)

K1 +K∗
1

]}− 1
2

.

Hence, if N >

{

C

ν2λ1

‖ f‖2 +
C

νλ2

‖g‖2 +
1

νk

[(

1+
2k|ξ|2
νλ1

)

K1 +K∗
1

]}

1
2

, we find that

FN(9um
N9) = 1. Therefore, lim

N→∞
FN(9um

N9) = 1. Next, from (1.3), we obtain

b(um
N ,u

m
N ,v)≤C9um

N99um
N9‖A1v‖

≤C

(

C

ν2λ1

‖ f‖2 +
C

νλ2

‖g‖2 +
1

νk

[(

1+
2k|ξ|2
νλ1

)

K1 +K∗
1

])

‖A1v‖,

showing that b(um
N ,u

m
N ,v) is bounded uniformly with respect to N, so

lim
N→∞

[FN(9um
N9)−1]b(um

N ,u
m
N ,v) = 0.

Using the strong convergence of um
N in H, we can prove as in [13], that b(um

N ,u
m
N ,v)→

b(um,um,v), as N → ∞. Thus lim
N→∞

FN(9um
N9)b(um

N ,u
m
N ,v) = b(um,um,v), ∀v ∈ D(A1).

Similarly, we have lim
N→∞

c(um
N ,ω

m
N ,v∗) = c(um,ωm,v∗), ∀v∗ ∈ H2(Ω). Therefore,

{

um
N ,ω

m
N

}

N
converges to the weak solution of the following equations when N → ∞,















um −um−1

k
+νA1um +B(um,um)+ξωm = f ,

ωm −ωm−1

k
+A2ωm +C(um,ωm) = g.

(5.1)

Thus, we have completed the proof of Theorem 3. �

ACKNOWLEDGEMENT

The author would like to thank the referee for the careful reading of this paper and

for the valuable suggestions to improve the presentation and style of the paper.

REFERENCES

[1] A. M. Alghamdi, I. B. Omrane, S. Gala, and M. A. Ragusa, “A regularity criterion to the 3D

Boussinesq equations,” Sib. Electron. Math. Rep., vol. 16, no. 12, pp. 1795–1804, 2019, doi:

10.33048/semi.2019.16.127.



ATTRACTOR OF DISCRETIZED 3D BÉNARD SYSTEMS 483

[2] B. Birnir and N. Svanstedt, “Existence theory and strong attractors for the Rayleigh-Bénard prob-

lem with a large aspect ratio,” Discr. Contin. Dynam. Syst. A, vol. 10, no. 1/2, pp. 53–74, 2012,

doi: 10.3934/dcds.2004.10.53.

[3] F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value

problems. New York: American Mathematical Society, Providence, 1965. doi: 10.1090/ps-

apm/017/0197933.

[4] F. Cheng and C. J. Xu, “Analytical smoothing effect of solution for the Boussinesq equations,”

Acta Math. Sci., vol. 39B, no. 1, pp. 165–179, 2019, doi: 10.3969/j.issn.0252-9602.2019.01.014.

[5] G. Deugoue and J. K. Djoko, “On the time discretization for the globally modified three dimen-

sional Navier-Stokes equations,” J. Comput. Appl. Math., vol. 235, no. 8, pp. 2015–2029, 2010,

doi: 10.1016/j.cam.2010.10.003.

[6] S. Gala and M. A. Ragusa, “A regularity criterion of weak solutions to the 3D Boussinesq equa-

tions,” Bullet. Brazilian Math. Society, vol. 50, no. 3, 2019, doi: 10.1007/s00574-019-00162-z.

[7] A. Huang and W. Huo, “The global attractor of the 2D Boussinesq equations with fractional Lapla-

cian in Subcritical case,” Discr. Contin. Dynam. Syst. B, vol. 21, no. 8, pp. 2531–2550, 2017, doi:

10.3934/dcdsb.2016059.

[8] A. V. Kapustyan, A. V. Pankov, and J. Valero, “On Global Attractors of Multivalued Semiflows

Generated by the 3D Bénard System,” Set-Valued Variat. Analy., vol. 20, no. 4, pp. 445–465, 2012,

doi: 10.1007/s11228-011-0197-5.

[9] O. V. Kapustyan, V. S. Melnik, and J. Valero, “A weak attractor and properties of solutions for the

three-dimensional Bénard problem,” Discr. Contin. Dynam. Syst., vol. 18, no. 2/3, pp. 449–481,

2007, doi: 10.3934/dcds.2007.18.449.

[10] O. V. Kapustyan and A. V. Pankov, “Global ϕ−attractor for a modified 3D Bénard system

on channel-like domains,” Nonauto. Stochastic Dyna. Syst., vol. 1, no. 1, pp. 1–9, 2014, doi:

10.2478/msds-2013-0001.

[11] O. V. Kapustyan, A. V. Pankov, and J. Valero, “On the existence and connectedness of a global

attractor for solutions of the three-dimensional Bénard system that satisfy a system of energy

inequalities,” J. Math. Sci., vol. 191, no. 3, pp. 388–402, 2013, doi: 10.1007/s10958-013-1325-6.
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