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Abstract. In the present work our main objective is to determine the radii of k— starlikeness of
order o of the some normalized Struve and Lommel functions of the first kind. Furthermore it has
been shown that the obtained radii satisfy some functional equations. The main key tool of our
proofs are the Mittag-Leffler expansions of the Struve and Lommel functions of the first kind and
minimum principle for harmonic functions. Also we take advantage of some basic inequalities
in the complex analysis.
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1. INTRODUCTION

It is well-known that there are numerous connections between geometric function
theory and special functions. Due to these close relationships many authors stud-
ied on some geometric properties of special functions like Bessel, Struve, Lommel,
Wright and Mittag-Leffler functions. Especially, the authors in the papers [3-5,7, 14—

, 19] have investigated univalence, starlikeness, convexity and close-to convexity
of the above mentioned functions. Actually, the beginning of these studies is based
on the papers [0, 12,21] written by Brown, Kreyszig and Todd and Wilf, respectively.
Also the authors who studied the geometric properties of special functions have used
some properties of zeros of the mentioned special functions. For comprehensive
information about the zeros of these functions, we refer to the studies [17, 18, 20].
Motivated by the earlier investigations on this field our main goal is to determine
the radii of k-starlikeness of the normalized Struve and Lommel functions of the first
kind. Morever, we show that our obtained radii are the smallest positive roots of some
functional equations. Also, for some special values of k and o0 we obtain some earlier
results given by [1-3].

Now we would like to remind some basic concepts in geometric function theory.

© 2021 Miskolc University Press
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Let D, be the open disk {z € C: |z| < r} with radius r > 0 and D; = D. Let 4

denote the class of analytic functions f : D, — C,
f@) =24 a.d,
n>2

which satisfies the normalization conditions f(0) = f'(0) — 1 = 0. By § we mean the
class of functions belonging to A which are univalent in ID,. The class of k-starlike
functions of order a is denoted by S7 (k,a), where k > 0 and 0 < a < 1. This class
of functions was introduced by Kanas and Wisniowska [10, 11] which generalizes
the class of uniformly convex functions introduced by Goodman in [8]. On the other
hand, Kanas and Srivastava defined a linear operator and determined some conditions
on the parameters for which this linear operator maps the classes of starlike and
univalent functions onto the classes k—uniformly convex functions and k—starlike
functions in [9]. Very recently, Srivastava gave comprehensive information about the
usages of g—analysis in geometric function theory of complex analysis in his survey-
cum-expository article [ 13]. Srivastava’s work in particular inspired us to prepare this
paper.

Analytic characterization of the class k-starlike functions of order « is

ST (ko) = {fGS:ER(Zf/(Z)) ARAC)

f(2) fo

Fok>0,0<0< 1,ze]D>}.

Also, the real number
- o (2(@) zf'(2)
r(f)—sup{r>0.9§<f(z)>>k Q)

is called the radius of k—starlikeness of order o of the function f.
The Struve and Lommel functions are defined as the infinite series

HV(Z) _ Z (—l)n ) (E)2n+v+l’ _v_% ¢N’

—1‘+0Lforallz6]D)}

=0T (n43) T (n+v+3) A2
and
_ () (=" z\ 1
suv(2) = (y—v+1)(y+v+1)n§)(l%+3)n(#)n (5) L (THEVEIEN,

where z,u,v € C. Also, we know that the Struve and Lommel functions are the

solutions of the inhomogeneous Bessel differential equations
4 (%)\Hrl
= 71
Var (v+1)

W (2) + 2w (2) + (22 = vH)w(2)

and
W (2) + 2w (2) + (22 = vHw(z) = 2T,

respectively. One can find comprehensive information about these functions in [20].
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Since the functions Hy and s,y do not belong to the class A, first we consider the
following six normalized forms:

1

() = (ﬁer <v+;) Hv<z>)v“, V£, (L)
w(z) =2z (v + ;) H,(z), (1.2)
wy(z) = \/ﬁzvzlzvr<v+;> Hy(v/2), (1.3)

£ul@) = (a1, g 4 (2) 7T ﬂ€<—;,1), uA0, (14

(2) (1.5)
and .
hy(z) = p(u+ I)ZT”SW%,%(\/E)- (1.6)

As a consequence, all functions considered above belong to the analytic functions
class 4.

2. MAIN RESULTS
Our first main result is related to the normalized Struve functions as follows.
Theorem 1. Let [v| < % 0<a<1andk>0. Then, the following assertions are

true:

i. The radius r, is the radius of k—starlikeness of order o. of the normalized
Struve function z — uy and it is the smallest positive root of the equation

r(1+k)H,(r) — (k+ o) (v+ 1)Hy(r) =0 (2.1)
in (0,hy,1), where hy 1 is the first positive zero of Struve function Hy.
ii. The radius r, is the radius of k—starlikeness of order o. of the normalized
Struve function z — vy and it is the smallest positive root of the equation
r(14+k)H,(r) = [V(1+k) + (k+ o) Hy(r) =0 (2.2)

in (0, hv)] ) .
iii. The radius r,, is the radius of k—starlikeness of order o. of the normalized
Struve function z — wy and it is the smallest positive root of the equation

(1+k)v/rH, (V) + (1 = v —k—vk—20)Hy(\/r) =0 (2.3)
in (0,h2 ).

2y 1
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Proof. We know that the zeros of the functions Hy(z) and H}(z) are real and
simple when [v| < 1, (see [4, 17]). Also the zeros of the function Hy(z) and its
derivative interlace when |v| < 1, according to [4]. In addition, it is known from [4]
that the Struve function Hy(z) has the following infinite product representation:

vy 3 Z
Va2V Ve <v+2> Hv(z):nl;ll(l—han), (2.4)

where hy , denotes n—th positive zero of the Struve function Hy. Using this product
representation one can easily see that

! 2
zuy,(2) 2 Z
=1- ) (2.5)
uy(z) v+1 ng‘l 3, — 2
/ 2
2, (2) Z
=1-2 (2.6)
Vy (Z) y; h\zln -z
and e
wy(z Z
=1- . 2.7
WV (Z) I’; h%,n -z
On the other hand, it is known from [19] that the inequality
z M
R < 2.8
() <ot &

holds true for z € C and 6 € R such that |z| < 6. Now, by using inequality (2.8) in
(2.5), (2.6) and (2.7), respectively, we get

aug(z)\ 2 z
R ( uy(2) ) =% (1_V+l,§1h%’n—zz>

2 2|

>1_ 2.9
oVl E R, -2 2
_ [zl (=)
uv(’ZD ’
, 2 2 /
m(zw)):m 12y = ) si—2y L EIWED
e L) 2L, i
and
, /
m(ZWV(Z))‘% oy sy E D g g
wy(z) g& h,—z g B, =zl wy(lz])

Also, from the reverse triangle inequality

lz1 —z2|| > |lz1| — |z2|
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we have
ab(x) | | 2 Z 2 2” L lzlug(lz)
w(2) IH Vi L, 2| v B, el
(2.12)
() ‘: . LR,
() ,,ghz § - w4
and
aw(z) ': B _ lzfwy(lz]) > 14
") e R e R D
As aresult of the above inequalities, one can easﬂy obtain that
auy (2) an(z) | [l (I2])
EK(MV(z)) —k 1 (2) 1‘ o> (1+k) ur(12]) (k+a), (2.15)
m(”“@> i@ 4—aza+mkv“w)—@+ax (2.16)
VV(Z) Vv(Z) Vv(‘Z’)
and
awy(2)\ | ] |z[wi(lz])
ER<WV(Z)> k (@) I|—a>(1+k) wo(l2]) (k+ o). (2.17)

It is important to emphasize here that the equalities in the last three inequalities hold
true for z = |z| = r. If we consider the minimum principle for harmonic functions in
the inequalities (2.15), (2.16) and (2.17), then we can say that these inequalities are
valid if and only if |z| < ry, |z| < r, and |z| < r,,, where r,, r, and r,, are the smallest
positive roots of the following equations

400 iy —o,

uy(r)
(14k) rvvlv((:)) —(k+0) =0
and .
(1+k) ’;VVVV((:)) —(k+a) =0,

respectively. Taking into account the definitions of the functions uy, vy and wy, it
can be easily seen that the last three equations are equivalent to (2.1), (2.2) and (2.3),
respectively. Now, we would like to show that equation (2.1) has an unique root on
the interval (0, Ay ). To show this, let us consider the function Wy : (0,Ay ;) — R,

1”2
) - _r2> — (k+o).

n>1""v,n

uy(r)

Wo(r) = (110 yay= (148 <1—V_2H



10

I. AKTAS, E. TOKLU, AND H. ORHAN

The function r — W, (r) is strictly decreasing since

Morever, we have

and

4r(1+k h2
‘I’/v(r)z—r(+)z L <0.
v+l SR, 1)
lim(14+4) [ 1——2 y a (k+0)=1—a>0
im - — =1-
N0 v+1 &hn,—r?
lim (1) [ 1——2 y rz (k+ o)
m — — = —o0o,
r/hy. v+1 &g, —r

As aresult of these limit relations, we can say that equation (2.1) has an unique root
in (0,hy;). Similarly, it can be shown that equations (2.2) and (2.3) have a root in
(0,hy 1) and (0,42 ), respectively. O

My 1

The following main result is regarding the normalized Lommel functions of the
first kind.

Theorem 2. The following assertions are true:

i.

ii.

ii.

2Vr(1+k)s, 1 (V) + (LK) (3= 2u) —4(k+ ) s,

Letuc (—%, 1) and p # 0. Then, the radius ry is the radius of k—starlikeness
of order o of the normalized Lommel function z — f, and it is the smallest
positive root of the equation

1
r(1+K)S, s 3 (1) = (k0 (u+ )5,y 1 (1) =0 (2.18)
in (0,1,1), where 1,1 is the first positive zero of Lommel function Sl L

Letpe (—1,1) and p# 0. Then, the radius rq is the radius of k—starlikeness
of order o of the normalized Lommel function z — g, and it is the smallest
positive root of the equation

r(l—i—k)s:l_] () + ((l—i—k)(;—u)—(k—l—a)) Sy (r)=0 (2.19)

272

0=
D=

in (Oal,u,l)-

Letp € (—1,1) and u # 0. Then, the radius ry, is the radius of k—starlikeness
of order o of the normalized Lommel function z — hy, and it is the smallest
positive root of the equation

(V=0 (220)

D=
(S

22

in (0,13,71).
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Proof. It is known from [4, 18] that the Lommel function s and its derivative

11
H=32
s;l ! have only real and simple zeros when u € (—1,1) and u # 0. Morever, the

zeros of the Lommel function s and its derivative s’ , , interlace under the

1
2 H—7:3

1
H=7,
same conditions, according to [4]. Also, the Lommel function Su-11 can be written
as the product (see [4])
1
Z,U"‘z Z2
s 11(2)=——< 1-— , (2.21)
w40 = ,E[l ( lﬁn>
where [, ,, denotes n—th positive zero of the Lommel function Spu-L 1 Using equality
(2.21), it can be easily seen that
2f,(2) 2 2
=1- , (2.22)
W0 TTHILE, 2
78\, (z 2
§9 _y oy T (2.23)
8u(2) a1 lun =2
and , @
zh,,(z Zz
R = ) (2.24)
h.U (Z) ,,Z'l l,L% n—<%

Now, if we consider inequality (2.8) in the equalities (2.22), (2.23) and (2.24), re-
spectively, then we have that

9‘(?8) ( 554&—)

el 1+#le —‘Z|

2 n>1
A
fu(‘ZD7
SO\ o (o e Pl
% () = (1 'L, )‘ P i ()

n>1 ,un n>1 ,u,n_|z‘

(2.25)

7h (z)) z 2 el Ay (lz])
R L =R(1- >1— e, 2.27
§e ( ,Eze,n—z>— L[ w2

By using the reverse triangle inequality again we can write that

Su(2) Z?  lzl Azl
e ' Iy Z 12 2 = . -

- (228
e Ek —1+§,§] —z|2 ey - ¢
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28,(2) ’ 2 Iz |zl g,,(1z])
—1|=]—2y <2y = =2 2.29
e D R VY I
and
2hy,(2) ' z Iz| |zl By, (|z])
== < =1- . 2.30
e ‘ Lo L7 D 230
As consequences of the above inequalities, it can be easily obtained that
Zf'(Z)> 2f,(2) ‘ 2] fa(lz])
R =E — k| —a> (1+k)—2 — (k+a), 231
(F) 70 U7y e 23D
28, (Z)> 28,(2) ' |zl g, (Iz])
R(—= — k|2 | —a> (14+k)—E— — (k+a 2.32
(o) oo SR R
and
zH@) . (2) ‘ |zl Ay, (|z])
R( L — k|- 1 —a> (14+k) = — (k+ ). 233
() e ) B

It is worth mentioning that the equalities in the inequalities (2.31), (2.32) and
(2.33) hold true for z = |z| = r. Also, if we consider the minimum principle for har-
monic functions in these inequalities, then we can say that these inequalities are valid
ifand only if |z| < r, |z| < r and |z] < ry, where r¢, r, and ry, are the smallest positive
roots of the following equations

U+HZ%?—@+®=&
10 a0
gu(r)
and
rh,(r) B
(105~ (k409 =0,

respectively. Taking into account the definitions of the functions f,, g, and A, it can
be easily seen that the last three equations are equivalent to (2.18), (2.19) and (2.20),
respectively. In addition, we can easily show that equations (2.18) and (2.19) have
one root in the interval (0,/,,1), while equation (2.20) has a root in (0, lil). Because
the proof of these assertions are similar to the proof of the previous theorem, details
are omitted. g

Remark 1. For k =0 and kK = o0 = 0, Theorem 1 and Theorem 2 reduce to some
earlier results given by [1-3], respectively.
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Now, we would like present some applications regarding our main results. For this,
we consider the following relationships between Struve and elementary trigonometric
functions:

2 2
_1(2) ”nz sinz and Hy (z) =4/ nz( cosz)
Using these relationships for v = —% andv = %, we have

us (@) = (2(1 ;c;sz)) 3 i) = 2(1 —cosz)

2

i (2) = 2(1 —cos V2)
Z
and

2
Sin~z
u_1(z) =

(@) =——, vf%(z) =sinz, wi%(z) = /zs8iny/z.

Corollary 1. The following statements are true.

i. The radius of k—starlikeness of order o of the function u 1 (z) = (M>
is the smallest positive root of the equation

in (o,h%J).

The radius of k—starlikeness of order o of the function v 1 (z) = 2l=cosa)
the smallest positive root of the equation

2(14+k)rsinr+ (1 +4k+3a)(cosr—1) =0

ii.

(I+k)rsinr+ (1+2k+a)(cosr—1) =0

in (O,hl 1).
2

The radius of k—starlikeness of order o of the function w1 (z) =2(1—cos/z)
is the smallest positive root of the equation

: 2
in (O,h%l).

)
The radius of k—starlikeness of order o of the function u_ ! (z) = %= is the
smallest positive root of the equation

iii.

(1+k)y/rsiny/r+2(k+a)(cos/r—1)=0

iv.

2(14k)rcosr—(1+2k+a)sinr =0
in (O,h_ll)-
25

The radius of k—starlikeness of order a. of the function v_,(z) = sinz is the
smallest positive root of the equation

(1+k)rcosr—(k+o)sinr=0
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vi. The radius of k—starlikeness of order o of the function w_1(z) = \/zsin /z

1
2
is the smallest positive root of the equation

(1+k)/reosy/r— (k+20—1)siny/r=0

in (0, W 1).
29
Now, by taking k = oo = 0 in Corollary 1 we get the following result.

Corollary 2. The following assertions are true.

[N

i. The radius of starlikeness of the function U (z2) = (L\/CZOSZ)> Y is r=22.7865
and it is the smallest positive root of the equation 2rsinr+cosr—1 = 0.
ii. The radius of starlikeness of the function v ! (z) = M is r = 2.33112
and it is the smallest positive root of the equation 2rsinr +2cosr—1 =0.
iii. The radius of starlikeness of the function wi (z) =2(1—cos+/z) is r = 9.8696
and it is the smallest positive root of the equation \/rsin/r = 0.

iv. The radius of starlikeness of the function u_ 1 (z) = S“% is r =2 1.16556 and

it is the smallest positive root of the equation 2rcosr —sinr = 0.
V. The radius of starlikeness of the function v_, (z) =sinz is r = 1.5708 and it

is the smallest positive root of the equation rcosr = 0.
vi. The radius of starlikeness of the function w_, (z) = +/zsin\/z is r = 4.11586

and it is the smallest positive root of the equation /T cos/r +sin/r = 0.
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DILATIONS, MODELS AND SPECTRAL PROBLEMS OF
NON-SELF-ADJOINT SRURM-LIUVILLE OPERATORS

BILENDER P. ALLAHVERDIEV

Received 12 May, 2016

Abstract. In this study, we investigate the maximal dissipative singular Sturm-Liouville oper-
ators acting in the Hilbert space L?(a,b) (—o0 < a < b < o), that the extensions of a minimal
symmetric operator with defect index (2,2) (in limit-circle case at singular end points a and b).
We examine two classes of dissipative operators with separated boundary conditions and we es-
tablish, for each case, a self-adjoint dilation of the dissipative operator as well as its incoming
and outgoing spectral representations, which enables us to define the scattering matrix of the
dilation. Moreover, we construct a functional model of the dissipative operator and identify its
characteristic function in terms of the Weyl function of a self-adjoint operator. We present several
theorems on completeness of the system of root functions of the dissipative operators and verify
them.

2010 Mathematics Subject Classification: 34B24; 34B40; 34L.10; 34L.25; 47A20; 47A40;
47A45; 47A75; 47B44; 47E05

Keywords: symmetric Sturm-Liouville operator, maximal dissipative operator, self-adjoint dila-
tion, scattering matrix, functional model, characteristic function, completeness of the root func-
tions

1. INTRODUCTION

Dissipative operators are one of the important classes of non-self-adjoint operators.
It is well recognized ([1-3,9, 13-16]), that the theory of dilations with application of
functional models gives an ample approach to the spectral theory of dissipative (con-
tractive) operators. By carrying the complete information on the spectral properties
of the dissipative operator, we can say that characteristic function plays the primary
role in this theory. Hence, in the incoming spectral representation of the dilation, the
dissipative operator becomes the model. Completeness problem of the system of ei-
genvectors and associated (or root) vectors is solved through the factorization of the
characteristic function. The computation of the characteristic functions of dissipative
operators is preceded by the construction and investigation of the self-adjoint dila-
tion and the corresponding scattering problem, in which the characteristic function is
considered as the scattering matrix. According to the Lax-Phillips scattering theory

© 2021 Miskolc University Press
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[10], the unitary group {U(s)} (s € R:= (—oo,0)) has typical properties in the sub-
spaces D~ and D™ of the Hilbert space H, which are called respectively the incoming
and outgoing subspaces. One can find the adequacy of this approach to dissipative
Schrédinger and Sturm-Liouville operators, for example, in [1-3,9, 13-15].

In this paper, we take the minimal symmetric singular Sturm-Liouville operator
acting in the Hilbert space L?(a,b) (—e < a < b < o) with maximal defect index
(2,2) (in Weyl’s limit-circle cases at singular end points @ and b) into consideration.
We define all maximal dissipative, maximal accumulative and self-adjoint extensions
of such a symmetric operator using the boundary conditions at a and b. We investigate
two classes of non-self-adjoint operators with separated boundary conditions, called
‘dissipative at @’ and ‘dissipative at »°. In each of these two cases, we construct a
self-adjoint dilation of the maximal dissipative operator together with its incoming
and outgoing spectral representations so that we can determine the scattering matrix
(function) of the dilation as stated in the scheme of Lax and Phillips [10]. Then,
we create a functional model of the maximal dissipative operator via the incoming
spectral representation and define its characteristic function in terms of the Weyl
function (or scattering matrix of the dilation) of a self-adjoint operator. Finally, using
the results found for characteristic functions, we prove the theorems on completeness
of the system of eigenfunctions and associated functions (or root functions) of the
maximal dissipative Sturm-Liouville operators. Results of the present paper are new
even in the case p = r =1 (in the case of the one-dimensional Schrodinger operator).

2. EXTENSIONS OF A SYMMETRIC OPERATOR AND SELF-ADJOINT DILATIONS
OF THE DISSIPATIVE OPERATORS

We address the following Sturm-Liouville differential expression with two singu-
lar end points a and b:

1
T(x): = @[—(p(t)x’(t))’+q(t)x(t)} (teJ:=(a,b), —o<a<b<+o), (2.1)
where p,q and r are real-valued, Lebesgue measurable functions on J, and p~',q,r
€ L} (J), p#0and r> 0 almost everywhere on J.
In order to pass from the differential expression to operators, we shall take the Hil-

bert space L?(J) consisting of all complex-valued functions f satisfying

JP () | £(2))*dt < oo, with the inner product (f,g) = [”r(¢)f(1)g(t)dt.

Let Dyax represent the linear set of all functions f € £2(J) such that f and pf’
are locally absolutely continuous functions on J, and T(f) € L2(J). Let us define the
maximal operator Ty on Dinax as Tax f = T(f).

For any two functions f,g € Dnax, Green’s formula is given by

(Tmaxfag) - (fv Tmaxg) = [fvg] (b) - [fvg} ((1), (22)
where

f:8l(t): =W (£,8): = f (1) (p&) (1) = (pf) (1) & (1) (t ),
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[fsl(@: = lim [£.g)(r). [£:8)(8): = lim [£.g)(0).

In er (J), we consider the dense linear set Dpyi, consisting of smooth, compactly sup-
ported functions on J. Let us indicate the restriction of the operator Tiax t0 Din by
Tiin- We can conclude from (2.2) that Ty, is symmetric. Thus, it admits closure de-
noted by Thin. The minimal operator Ty, is a symmetric operator with defect index
0,0), (1,1) or (2,2), and Tnax = T, ([4,5,12,18,19]). Note that the operator Ty,
is self-adjoint for defect index (0,0), that is, T.;; = Tiin = Tmax.

Moreover, we assume that Ty, has defect index (2,2). Under this assumption,
Weyl’s limit-circle cases are obtained for the differential expression T at @ and b (see
[4-6,8,11,12,17-19]). The domain of the operator Tp,i, consists of precisely the
functions f € Dyax, which satisfy the following condition

[fagKb) - [f?g](a) = 07 vg € Q)maX' (23)
Let T, and Tgin denote respectively the minimal symmetric operators generated by

the expression T on the intervals (a,c] and [c,b) for some ¢ € J, and D], represents
the domain of TnTin. It is known ([5, 12, 18]), that the defect number de fTinin of Tiin

can be computed using the formula defTnin = def Tnfin +defT ;, —2. Thus, we
obtain that dean;’in +defT_,, =4, defTHTin =2anddefT_, =2.
We denote by 6() and () the solutions of the equation
©(y) =0 (teJ) (2.4)

satisfying the conditions

6(c) =1, (p8')(c) =0, x(c) =0, (px')(c) =1, c € J. (2.5)
The Wronskian of the two solutions of (2.4) does not depend on ¢, and the two solu-

tions of this equation are linearly independent if and only if their Wronskian is non-
zero. Conditions (2.5) and the constancy of the Wronskian imply that

Wi(8,%) =We(0,x) =1 (a<1<b). (2.6)

Hence, 6 and  form a fundamental set of solutions of (2.4). Since T, has defect
index (2,2), we have 8, € £2(J), and 8, € Dpax as well.
The following equality holds for arbitrary functions f,g € Dnax ([2])

[f,8l(t) = [f,0]()[g,x](r) — [, x] () [8,8](r) (a <1 <b). 2.7
The domain Dy, of the operator Ty, is composed of precisely the functions
| € Dax satisfying the boundary conditions given as follows ([1])

[f6](a) = [fX(a) = [f,6](b) = [f,X](b) = 0. (2.8)

Recall that a linear operator A (with dense domain P(A)) acting on some Hilbert

space H is called dissipative (accumulative) if 3(Ay,y) > 0 (3(Ay,y) < 0) for all

y € D(A) and maximal dissipative (maximal accumulative) if it does not have a
proper dissipative (accumulative) extension ([7], p.149).
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Now, consider the linear maps of Dy into C? given by
_( fx)(a) ) ( [f,6](a) )
Y, f= Y, f= . 2.
a ( el ) = o) 29
Then we get the following statement ([ 1]).

Theorem 1. For any contraction S € C? the restriction of the operator Ty to the
set of vectors f € Dmax satisfying the boundary condition

(S—DWif+i(S+1)¥f =0 (2.10)

or
(S—=D)Wif—i(S+1)¥rf =0 @2.11)

is, respectively, a maximal dissipative or a maximal accumulative extension of the
operator Tnin. Conversely, every maximally dissipative (accumulative) extension of
Tin is the restriction of Tmax to the set consisting of vectors f € Dpax satisfying
(2.10) ((2.11)), and the contraction S is uniquely determined by the extension. These
conditions describe a self-adjoint extension if and only if S is unitary. In the latter
case, (2.10) and (2.11) are equivalent to the condition (cos B) ¥, f — (sinB) W, f =0,
where B is a self-adjoint operator (Hermitian matrix) in C2. The general forms of
dissipative and accumulative extensions of the operator Ty are respectively given
by the conditions

S(Wif +1¥af) = Wi f — i¥af, Wi f +¥af € D(S), 2.12)

S(W\f—i¥aof) =1 f+i¥af, V1 f—i¥af € D(S), (2.13)

where S is a linear operator with ||Sf|| < ||f]l, f € D(S). For an isometric operator
S in (2.12) and (2.13) we have the general forms of symmetric extensions.
Particularly, the boundary conditions (f € Dyax)

[f:x)(a) — o [£,0](a) =0, (2.14)

[f,8](b) — o[ f,x](b) =0 (2.15)
with 30y >0 o0r 0, = o0, and 30, > 0 0r 0y =00 It <0 or 0 = oo, and S0, <0
or Op = ) characterize all maximal dissipative (maximal accumulative) extensions
of Tmin with separated boundary conditions. If 30, = 0 or o,f = oo, and S0, =0
or Oy = oo hold true, then self-adjoint extensions of Twin are obtained. Here for
o) = oo (0 = o0), condition (2.14) ((2.15)) should be replaced by [f,0](a) =0
(£ 2(5) = 0).

Next, we shall consider the maximal dissipative operators T, generated by (2.1)
and the boundary conditions given by (2.14) and (2.15) of two different types: ‘dis-
sipative at a’, i.e., either S0y > 0 and Sa; = 0 or 0 = o0; and “dissipative at b’, i.e.,
Foy =0o0roy =o0and Son > 0.
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In order to establish a self-adjoint dilation of the maximal dissipative operator
Ty, «, for the case “dissipative at a’ (i.e., 3oy > 0 and S0y = 0 or 0 = ), we associ-
ate with #:= £2(J) the ‘incoming’ and ‘outgoing’ channels £? (R_)
(R_:= (—o0,0]) and L*(R,) (R, := [0,)), we form the orthogonal sum $:=
L2(R)®H @ L>(Ry). Let us call the space $) as the main Hilbert space of the

dilation and consider in this space the operator ¥, . generated by the expression

du_ d
Tu_,y,uy) = (idlg,r(y),iﬁ> (2.16)

dg
on the set D(Ty ) consisting of vectors (u_,y,u), where u_ € W} (R_), u; €
WH(R,), y € Dinax and

vy xl(a) = ouy, 8] (a) = vu—(0), [y, x](a) — 0y, 6](a) = vu+(0),

[, 61(b) — a2 [y, %] (b) = 0. (2.17)

Here W) (R=) denotes the Sobolev space, and Y*:= 23 ay, ¥ > 0. Then we obtain the
next assertion.

Theorem 2. The operator X, is self-adjoint in the space $and it is a self-
adjoint dilation of the maximal dissipative operator Ty .

Proof. We assume thatY,Z € D(%y, o), Y = (u_,y,ur)and Z = (v_,z,vy). If we
use integration by parts and (2.16), we find that

0 o

(gal(xznz)f) = /; iu'_V,dE,—i— (Trnax)@ Z)j—["i"/o iuQ-Verg

— iu_(0)v_(0) — it4 (0)v5(0) + [1.7)(5) — [ 2 (@) + (¥, Tgy 0 D)
(2.18)

Moreover, if the boundary conditions (2.17) for the components of the vectors Y,Z
and (2.7) are used, it can be seen easily that iu_(0)v_(0) — iu4 (0)v4(0) +[y,z](D)
—[,7](a) = 0. Hence, we conclude that T, ., is symmetric. Thus, in order to prove
that Ty, is self-adjoint, it is sufficient to show that (Tg o, )* € Ty, Take Z =

(v 24) € D((Tgy0,)")- Let (Tgyqy)'Z = Z° = (0" ,2%,v7) € 9, 50 that

(T Vs Z)sy = (Y, Z7) g, VY € D(Tyq,)- (2.19)

If we choose suitable components for ¥ € D(Ty ) in (2.19), it can be shown eas-
ily that v_ € WY (R_), v € WY (R,), 2 € Dinax and Z* = TZ, where T is given
by (2.16). Therefore, (2.19) takes the following form (2Y,Z)y = (Y,TZ)g, VY €
D(Tq,0,)- Hence, the sum of the integrated terms in the bilinear form (TY,Z) must
be zero:

iu—(0)v—(0) =iy (0)v4(0) + [y, 2] (b) — [y, 2] (a) = O (2.20)
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forallY = (u_,y,uy) € D(Ty,q,). Additionally, after the boundary conditions (2.17)
for [y,6](a) and [y,x](a) are solved, it is found that
0]

[,6](a) = —;(u+(0)—u(0)), > x](a) ZYuf(O)—T(M(O)—Mf(O))- (221

Therefore, (2.7) and (2.21) imply that (2.20) is equivalent to the equality given as
follows

iu—(0)v_(0) —iu1 (0)v+(0) = [v.2)(a) — [ 2] (b)

- —;' (14.(0) — u_(0)) [z,1] (@) — ¥iue_(0) — ‘;; (14(0) —u_(0))] £,6] (@)
~ 1.6)(6) (57 () + [ X](8) [2.6] (b)
=L (0) — u (0) 2] (@) — ¥l (0) — " (1, (0) — u_(0))] .6) (@)

Y v
+ ([z,6](b) — 02 [2,%] (B)) [y, x] (B)-
Note that 4 (0) can be arbitrary complex numbers. If we compare the coefficients of
u1(0) on the left and right sides of the last equality, we see that the vector
Z = (v_,z,v;) satisfies the boundary conditions [z,%]|(a) — o[z,0](a) = y_(0),
[z,x](a) — 01 [z,8](a) = y1(0), [z,8](P) —02]z,%](b) = 0. Consequently, the inclu-
sion (T, q,)" € T, 18 fulfilled. This proves that T, o) = (Tg,a,)"

In the space $), self-adjoint operator ¥ ., generates a unitary group i (s):=
exp[zTOcloCz s] (s € R). Denote by P :$ — H and P, : H — $) the mappings act-
ing in keeping with the formulas ? : (u_,y,uy) — y and P, : y — (0,y,0). Set
V(s) = PU ()P (s >0). The family {¥(s)} (s > 0) of operators is a strongly
continuous semigroup of completely non-unitary contractions on . Let A represent
the generator of this semigroup, i.e, Az = lim,_, . o[(is) "' (9(s)z — z)]. All vectors for
which this limit exists belong to the domain of A. The operator A is maximal dissip-

ative and the operator T, is called the self-adjoint dilation of A ([13—15]). We aim
to show that A = T, , which implies in turn that ¥  is a self-adjoint dilation of
T4, 0, To achieve this goal, we first verify the following equality ([13-15])

P(Tya, — M) ' Pry= (T4, — M)y, y€ H, SA<O. (2.22)

Let (Tgq, — M) "1y =Z = (v_,z,v4). Then (Ty,,, — M)Z = Py, and so,

Tmaxz — Az =y, v_ (&) = v_(0)e~™ and v, (g) = v (0)e ™5, Since Z € D(Toyar)
and hence, v_ € L?(R_); we have v_(0) = 0, and consequently, z satisfies the
boundary conditions [z,%](a) — ai[z,0](a) = 0, [z,0](b) — 02[z,%](p) = 0. There-
fore, z € D(Ty, 4, ), and since a dissipative operator cannot have an eigenvalue A with
3 < 0, we conclude that z = (T, — M) ~'y. Here, we evaluate v, (0) using the
formula v (0) =y~ ! ([z,x](a) — @ [z,0](a)). Then

(St =)™ By = (0, (Toay = M)~y ()@ ~ . 0](@) e )
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for y € H and SA < 0. Applying P, we get the desired equality (2.22).
Now, it is not difficult to show that A = Tj, .. In fact, it follows from (2.22) that

(Toron = M) ' = P(Tgq, — M) 'y = —i? /0 U (s)e Mdsy

_ / V(s)e ™Mds = (A— M), Sh<0,
0
and thus we have T, ,, = A proving Theorem 2. g

In order to construct a self-adjoint dilation of the maximal dissipative operator
Toj10c2 in the case ‘dissipative at b’ (i.e., 3oy =0 or oty = 0 and S0, > 0) in §H, we
consider the operator Ty ,, generated by the expression (2.16) on the set D(T ) of
vectors (u_,y,u; ) satisfying the conditions: u_ € MY (R_), u; € WY (R,),y € Diax
and

[, xl(@) —ouly,6](a) =0, [y,6](b) — [y, x](b) = Bu—(0),
[y, 6](b) — 02 [y, X (b) = Bu-+(0), (2.23)
where B2:= 230y, B > 0.
Since the proof of the next theorem is similar to that of Theorem 2, we omit it here.

Theorem 3. The operator T, (0, 18 self-adjoint in §) and it is a self-adjoint dilation
on the maximal dissipative operator TOZ 0"

3. SCATTERING THEORY OF THE DILATIONS, FUNCTIONAL MODELS AND
COMPLETENESS OF ROOT FUNCTIONS OF THE DISSIPATIVE OPERATORS

The unitary group 4= (s) = exp[iTy;, o, 5] (s € R) possesses a crucial feature through
which we can apply to it the Lax-Phillips scheme ([10]). Namely, it has incoming
and outgoing subspaces ® " := (£L?(R_),0,0) and D*:= (0,0, L?>(R,)) satisfying
the following properties:

(D) Y (s)D- CcD 7, s <0and UF(s)DT C DT, 5> 0;
2) NL()D™ = N (s)DF = {0};
5>0

s<0

B UE(s5)D™ = JUF(s)DT = 0;
s>0 5s<0

4 D 1D .

It is evident that property (4) holds true. Let us prove property (1) for ©* (the proof
for ©~ is similar). For this end, we define ﬂ(f = (Tg 0, — M)~ forall A with SA < 0.
Then, for any ¥ = (0,0,u.) € D, we get

. s .
REY = (0,0,~ie™ [ "¢ eu, (€)dE).
0
Therefore, we see that R, Y € D*. Further, if ZL D™, then
Y e —ih
0=(RY,2), = —1/0 e ™ (U5 (5)Y,Z) o ds, SA <0,
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which implies that (4*(s)Y,Z) ¢ = 0 for all s > 0. So, we obtain {(*(5)D" C D for
s > 0, proving property (1).

To prove property (2) for DT (the proof for D~ is similar), we denote by P :
$ — L2(Ry) and P; : L*(R}) — D the mappings acting according to the for-
mulae P : (u_,y,uy) — uy and P : u — (0,0,u), respectively. The semigroup of
isometries X (s) = PT84~ (s)P;", s > 0 is a one-sided shift in £L*(R;). In fact, the
generator of the semigroup of the one-sided shift 9(s) in £?(R,) is the differen-
tial operator i d% satisfying the boundary condition u(0) = 0. On the other hand, the
generator B of the semigroup of isometries X (s), s > 0, is the operator defined by
du B du
& e
where u € W, (R,) and u(0) = 0. However, since a semigroup is uniquely determ-
ined by its generator, we have X (s) = 9(s), and thus,

(U (5)DF = (0,0, (5) L2(R+)) = {0},

s>0 s>0

Bu=P %

o 0l

P'Y =P"%, . (0,0,u) = P"(0,0,i

(o105}

(the proof for $17 () is similar) verifying that property (2) is valid.

As stated in the scheme of the Lax-Phillips scattering theory, the scattering matrix
is defined using the spectral representations theory. Now, we shall continue with
their construction. During this process, we shall also have proved property (3) of the
incoming and outgoing subspaces.

Recall that the linear operator A (with domain D(A)) acting in the Hilbert space
H is called completely non-self-adjoint (or pure) if invariant subspace M C D(A)
(M # {0}) of the operator A whose restriction on M is self-adjoint, does not exist.

Lemma 1. The operator TS

o a, 18 completely non-self-adjoint (pure).

Proof. Let H' C # be a non-trivial subspace in which the operator Ty, (the
proof for T}, is similar) induces a self-adjoint operator 7’ with domain D(T") =
H'ND(Ty,q,). If z€ D(T'), then we have z € D(T"™) and [z,%](a) — o1 [z,0](a) =0,
[z,%](a) — 0 [z,0](a) =0, [z,0](b) — 02 [z,%](P) = 0. Hence, we have [z,0](a) = 0 for
the eigenfunctions z (¢, A) of the operator Ty, that lie in #" and are eigenfunctions of
T'. Since [z,%](a) — o1 [z,0](a) = 0, we derive that [z,%|(a) = 0 and z (¢,A) = 0. Since
all solutions of T(z) = Az (t € J) lie in L(J), we can see that the resolvent Ry (T, o,,)
of the operator Ty, is a Hilbert-Schmidt operator, and thus the spectrum of 7j, ,, is
purely discrete. Hence, the theorem on the expansion of the self-adjoint operator 7"
in eigenfunctions implies that #’ = {0}, that is, T, ,, is pure. This completes the
proof. O

In order to prove third property, we set

ot = JE(s)D -, ot = [Ju(s)D+

s>0 5s<0
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and first prove the next result.
Lemma 2. The equality ﬁf + f)f =5 is fulfilled.

Proof. By means of the property (1) of the subspace ®, it can be shown that the
subspace ), =H S (ﬁf + f_)f) is invariant with respect to the group {{*(s)} and it
can be described as $), = (0, #,0), where %] is a subspace in #. Therefore, if the
subspace $3, (and hence also ) were non-trivial, then the unitary group {4(*'(s)},
restricted to this subspace, would be a unitary part of the group {U*(s)}, and thus
the restriction T, of T, to #. would be a self-adjoint operator in #{. Since
the operator T, is pure, we conclude that H] = {0}, i.e., . = {0}. Hence, the
lemma is proved. U

Let ¢ (7,A) and W (¢,A) be the solutions of the equation T(y) = Ay (¢ € J) satisfying
the conditions given by

[9,6](a) = =1, [@,x](a) =0, [y,6](a) =0, [y,x](a) = 1. 3.
The Weyl function meq, (A) of the self-adjoint operator T, is determined by the
condition
(W + 1100, 9, B8] (£) — 02 [W + 110s, 9, X] (B) = O,

which implies in turn that

[w,6](b) — o v, X](b)
[¢,6](b) — o[, %] (D)

It follows from (3.2) that 7., (A) is a meromorphic function on the complex plane C
with a countable number of poles on the real axis. We note that these poles coincide
with the eigenvalues of the self-adjoint operator 7., . Furthermore, we can show that
the function me.q, (A) has the following properties: SA3 Mg, (A) > 0 for IA # 0 and
Moogr, (5&) = Mg, (A) for complex A, except the real poles Of Meg, (A).

For convenience, we adopt the following notations:

o1, 1) = Y(t, ) + Mooy (M) (2, 1),

Meniiy (N) = — 3.2)

- _ Meay (M) — 04
®06|062 (7\’) - Moo ()\4) _ al . (33)

Set
{Vki (l‘, E.n g) = <eii}h‘:7 (mchZ (7\‘) - Otl)leOJ(t, 7\«)7@;10(2 (k)e*ﬁ»q.

By means of the vector V; (1,&,¢), we consider the transformation ®_ : Y — Y_(A)

by (®P_Y)(A):=Y_(A):= \/%(Y, V) )5 on the vector Y = (u_,y,u ), where u_,u,,
and y are smooth, compactly supported functions.
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Lemma 3. The transformation ®_ maps $~ onto L*(R) isometrically. For all
vectors Y,Z € $_ the Parseval equality and the inversion formula hold:

L o 1 = -
(Y, 2)6 = (7,7 )2 = /_ P Z = /_ T (Y an,
where 7 (M):= (®_Y)(\) and Z_(M):= (®_Z)(L).
Proof. ForY,Ze€ ®~,Y =(u_,0,0), Z= (v_,0,0), we get

7 () = Vlﬁ(y, V) = \/%/iu(g)e%da € 7

and

(¥,2)g = / Ow u_(E)v_(E)dE = [ Z - NZ_(Wdh = (D_Y,®_7) -

in view of the usual Parseval equality for Fourier integrals. Here and below, #?
denote the Hardy classes in £?(IR) consisting of the functions analytically extendable
to the upper and lower half-planes, respectively.

We aim to extend the Parseval equality to the whole of H_. In this context, we
consider in $~ the dense set §) of vectors acquired from the smooth, compactly
supported functions in ®~ : Y € §' if ¥ = 4" (s5)Yp, Yo = (u—,0,0), u_ € C5(R-),
where s = sy is a non-negative number depending on Y. If Y, Z € §’ , then for s > sy
and s > sz we have 4™ (—s)Y, U™ (—s)Z € ©~ and, moreover, the first components
of these vectors lie in Cj'(R_). Then, as the operators [~ (s) (s € R) are unitary, it
follows from the equality

QU (—5)Y = (U (=5)Y, V) )g=e MY,V )g=e MDY,
that
(Y, Z)g = (U (=5)Y, U (=5)Z)g = (P_U (—5)Y, D_U (—5)Z) 12
= (e™D_Y,e ™D _7) 0 = (DY, D_Z) 2. (3.4)

If we take the closure in (3.4), we find the Parseval equality for the entire space $H_. If
all integrals in the Parseval equality are considered as limits in the mean of integrals
over finite intervals, we get the inversion formula. In conclusion, we have

P_H-=JP_U (5D = Je MH? = L*(R),

s>0 5>0

i.e., ®_ maps $_ onto whole L?(R), proving the lemma. 0
Let us set
V7 (8,8,0) = (0,0, (W™, (oo, (V) —81) ~00(1, 1), €7).

By using the vectors ¥f(t,€,¢), we define the map @, : ¥ — ¥, (L) on vectors
Y = (u_,y,uy) in which u_,u,, and y are smooth, compactly supported functions
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by setting (®,Y)(A):= ¥, (A):= ﬁ(Y, V" )s. The next result can be proved by

following the procedure used in the proof of Lemma 3.

Lemma 4. The transformation ®, isometrically maps $) . onto L2(R) and be-
sides, the Parseval equality and the inversion formula hold for all vectors Y,Z € §)7,
as follows:

(12)5 = (7.2 = [ FZ00ah, ¥ = fz*n JRES

where Y. (V):= (®,Y)(A) and Z.. (A):= (®,.Z)(}).

Equality given by (3.3) implies that @, () satisfies |@g, 4, (A)| =1 forall A € R.
Then, we conclude from the explicit formula for the vectors ;" and 9 that

Vi =04,4,(M) V" (LER). (3.5)

Lemmas 3 and 4 imply that )~ = $7. This, together with Lemma 2, verifies that
$=$H_ =$H, and property (3) for £{~ (s) above has been established for the incoming
and outgoing subspaces.

Hence, ®_ isometrically maps onto £%(R) with the subspace ©~ mapped onto
H?, and the operators 4~ (s) are transformed by the operators of multiplication by
¢™. This means that ®_ (P, ) is the incoming (outgoing) spectral representation
for the group {44 (s)}. Using (3.5), we can pass from the & -representation of a
vector Y € §) to its @_-representation by multiplication of the function @g 4, (A) :
Y_(A) = Oy, (MY, (). Based on [10], the scattering function (matrix) of the group
{47 (s)} with respect to the subspaces ©~ and D, is the coefficient by which the
&_ -representation of a vector ¥ € § must be multiplied in order to get the corres-
ponding @ -representation: ¥, (L) = O, (A)Y_(A) and thus we have proved the
following statement.

Theorem 4. The function @;l a, (A) is the scattering function (matrix) of the group
{47 (s)} or of the self-adjoint operator Ty ).

Let S(A) be an arbitrary non-constant inner function ([16]) defined on the upper
half-plane (we recall that a function S () analytic in the upper half-plane C is called
inner function on C, if |[S(A)| < 1for A € C., and |S(A)| = 1 for almost all A € R).
Setting K = H2 0 SH i, we can see that & # {0} is a subspace of the Hilbert space
2. We deal with the semigroup of the operators X (s) (s > 0) acting in X according
to the formula X (s)u = P [eﬁ“u] ,u:=u(A) € X, where P is the orthogonal projection
from #? onto K. The generator of the semigroup {X(s)} is represented as B : Bu =
limg ., o[(is) "' (X (s)u — u)]. B is a maximal dissipative operator acting in X and
its domain D(‘B) consisting of all functions u € X, for which the limit given above
exists. The operator B is called a model dissipative operator (we remark that this
model dissipative operator, which is associated with the names of Lax and Phillips



28 BILENDER P. ALLAHVERDIEV

[10], is a special case of a more general model dissipative operator constructed by
Sz.-Nagy and Foiag [16]). It is the basic assertion that S(A) is the characteristic
function of the operator B.

If we set 91 = (0, #,0), then it is obtained that H =D~ &N DT. From the
explicit form of the unitary transformation ®_ that under the mapping ®_, we have

H—=LR),Y =T (A)=(D_Y)N), D — H>,
©+ - ®&1(X2"H3’ N— "H-E @®&|azﬂ3’
U™ ()Y — (D U™ ()PP )(A) = ™7 (N). (3.6)
The formulas in (3.6) imply that our operator T, is unitary equivalent to the model
dissipative operator with the characteristic function @y, (A). The fact that charac-

teristic functions of unitary equivalent dissipative operators coincide ([13—-16]) leads
us the following theorem.

Theorem S. The characteristic function of the maximal dissipative operator Ty,
coincides with the function g (A)given by (3.3).

Weyl function of the self-adjoint operator T,/ .., denoted by mq,«()), can be ex-
pressed in terms of the Wronskians of the solutions:

_ )
==l o)

where 0(¢,A) and O (¢,A) are solutions of T(y) = Ay (¢ € J) and satisfying the condi-
tions

1 05]
59 a) = ——F——, ) a) = ——F——,
9.6](a) mmx) Yo
[9,6)(a) = — 3, [8,x)(a) = ——.
\/1+0od 1402

Let us adopt the following notations:

k0 = 2OB) o ),

[9,%](b)’
O (M): = 0%, (A): = W (3.7)

Let
Wy (1.6,6) = (e, Bm(2) [(m(MK(R) — 00)[9,v](5)] ~'(2,1), 8" (R)e ™).

By means of the vector W, we set the transformation Y_ : ¥ — ¥_(A) given by
(Y_Y)A):=Y_(A):= \/%(Y, W, )5 on the vector ¥ = (u_,y,uy) in which u_,u,,
and y are smooth, compactly supported functions. The proof of the next result is

similar to that of Lemma 3.
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Lemma 5. The transformation Y _ isometrically maps $* onto L*(R). For all
vectors Y,Z € $Y, we obtain the Parseval equality and the inversion formula given
by:

oo

(Y,2)g = (T_,7_) ;2 = / P (NZ_(Nd, ¥ = \/% /_ Z 7 (M)W dh,

—o0

where Y_ (M) =(Y_Y)(A) and 7 (A)=(X_z2)(\).
Let
W (1,€,6) = (O (Ve ™=, Bm(M)[(m(Mk(L) — G) [, %] (b)] ' 0(t, 1), e %).

With the help of the vector W,"(2,&,¢), define the transformation Y. : ¥ — ¥ ())
on vectors ¥ = (u_,y,u; ) by setting (Y, Y)(A):=Y,(A):= ﬁ(Y, W, )s. Here, we
consider u_, uy, and y as smooth, compactly supported functions.

Lemma 6. The transformation Y isometrically maps ﬁi onto L*(R), and for all
vectors Y,Z € $T, the Parseval equality and the inversion formula hold:

(Y,2)5 = (T4, 74) 2 = [ Z 7 (WZ_(M)dr, ¥ = \/12771: [ Z 7, () W do,

where ¥, (\):= (Y.Y)(Mand Z, (W) := (Y1 Z) (L)

It follows from (3.7) that the function @ , (A) satisfies |@g o, (A)| =1 for A € R.
Then, the explicit formula for the vectors %" and W)~ implies that

Wy =g, q,(N) W, LER. (3.8)

Lemmas 5 and 6 result in § = ﬁi. By means of Lemma 2, we can conclude that
$ =91 =9HT. According to the formula (3.8), we can see that the passage from the

T_-representation of a vector Y € §) to its Yy -representation is achieved as follows:

Y.(A) = @;1 a, (MY_(X). Hence, according to [10], the following theorem follows.

Theorem 6. The function @;1 o, (A) is the scattering matrix of the group {$* (s)}
of the self-adjoint operator T ).

We derive from the explicit form of the unitary transformation ®_ that
9= LY R), Y= T7-(M)=(Y_Y)A), D — H?,
©+ - ®§1062’7-[37 N— ’[H;Z 66(;062‘[]-[3’

U ()Y — (Y_UT(YT'T)(A) = ™7 (N). (3.9)
The formulas given by (3.9) state that the operator T(Z a, 18 @ unitary equivalent to

the model dissipative operator with characteristic function @ ,, (A). We have thus

proved the next assertion.
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Theorem 7. The characteristic function of the maximal dissipative operator T(;T a
coincides with the function O, (A)defined by (3.7).

Let S represent the linear operator acting in the Hilbert space H with the domain
D(S). We know that a complex number A is called an eigenvalue of an operator S
if there exists a non-zero vector zo € D(S) satisfying the equation Szg = Ayzo; here,
70 is called an eigenvector of S for Ag. The eigenvector for Ay spans a subspace of
D(S), called the eigenspace for Ay and the geometric multiplicity of A is the dimen-
sion of its eigenspace. The vectors 71,22, ...,2 are called the associated vectors of
the eigenvector 2o if they belong to D(S) and Sz; = Aozj +zj—1, j = 1,2,...,k. The
non-zero vector z € D(S) is called a root vector of the operator S corresponding to
the eigenvalue Ao, if all powers of S are defined on this element and (S —A¢l)"z =10
for some integer m. The set of all root vectors of S corresponding to the same eigen-
value Ao with the vector z = 0 forms a linear set M, and is called the root lineal. The
dimension of the lineal My, is called the algebraic multiplicity of the eigenvalue Ao.
The root lineal M, coincides with the linear span of all eigenvectors and associated
vectors of S corresponding to the eigenvalue Ag. As a result, the completeness of the
system of all eigenvectors and associated vectors of S is equivalent to the complete-
ness of the system of all root vectors of this operator.

Characteristic function of a maximal dissipative operator Tofaz carries complete
information about the spectral properties of this operator ([9, 13—16]). For example,
when a singular factor 6 (1) of the characteristic function ©F , (L) in the factoriza-
tion ©F o, (L) = 6=(A)B=(L) (where B* (L) is a Blaschke product) is absent, we are
sure that system of eigenfunctions and associated functions (or root functions) of the
maximal dissipative Sturm-Liouville operator T(;'faz is complete.

Theorem 8. For all values of o.ywhere 30, > 0, with the possible exception of
a single value o = Oc(l), and for a fixed 0y (30, =0 or oy = 0), the characteristic
function @y, (M) of the maximal dissipative operator Ty, is a Blaschke product,
and the spectrum of T, is purely discrete, and lies in the open upper half plane.
The operator Ty, o, (01 # ) has a countable number of isolated eigenvalues having
finite multiplicity and limit points at infinity, and the system of all eigenfunctions and

associated functions (or all root functions) of this operator is complete in the space
L2().

Proof. Tt can be seen from the explicit formula (3.3) that @y, (A) is an inner
function in the upper half-plane and, besides, it is meromorphic in the whole A-plane.
Therefore, we can factorize it in the following way

O, (V) = €M B0, (1), 1(04) >0, (3.10)
where By, q, (M) is a Blaschke product. Using (3.10), we find that
|O0, ()| < V3 SA >0, (3.11)
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Additionally, if we express e, (A) in terms of @, , (A) and use (3.3), we get

10y o, (M) —a

mwaz (7\‘) _ 1 jxl(x,z( ) 1
®0610€2 (7\') —1

For a given value o (Sou; > 0), if 7 (0t) > 0 then we have limy_, o @y, o, (is) = 0 by

(3.11). This, together with (3.12), results in limg_; {0 Moo, (is) = 01 SINCE Moogr, (A)

is independent of a.j, /(o) can be non-zero at not more than a single point o = oc(l)
(and, further, oc(l) = 1iMy_, o0 Mooqr, (i5)). Then, the theorem is proved. O

(3.12)

The next result can be proved in a similar manner in the proof of Theorem 8.

Theorem 9. For all values of o, with Sop > 0, with the possible exception of a
single value oy = 06(2), and for a fixed oy (30, = 0 or o,; = ), the characteristic

function @, o (M) of the maximal dissipative operator Ty, is a Blaschke product,

and the spectrum of T(;j o, IS purely discrete, and lies in the open upper half-plane.
The operator Tofl a (02 # ch) has a countable number of isolated eigenvalues having
finite multiplicity and limit points at infinity, and the system of all eigenfunctions and

associated functions (or all root functions) of this operator is complete in the space
L2(J).
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1. INTRODUCTION

In 2018 Tunc et al. [4] obtained Simpson’s type quantum integral inequalities.
Unfortunately, there are many mistakes in the proofs. Many g-integrals are calculated
incorrectly. Besides, the results of lemma and theorems are also wrong. In this paper,
we show the errors in the [4].

2. PRELIMINARIES AND DEFINITIONS OF g-CALCULUS

Throughout this paper, let a < b and 0 < g < 1 be a constant. The following
definitions and theorems for ¢- derivative and ¢- integral of a function f on [a,b] are
given in [2, 3].

Definition 1. For a continuous function f : [a,b] — R then ¢- derivative of f at
X € [a,b] is characterized by the expression

f(x) = flgx+(1—-q)a)
(1-¢q)(x—a)

Since f : [a,b] — R s a continuous function, thus we have ,D,f (a) =lim ,D,f (x) .
X—a

aqu(x) = ;X Fa. (2.1)

The function f is said to be g- differentiable on [a,b] if ,D,f(t) exists for all
x € [a,b]. If a=01in (2.1), then oD, f (x) =Dyf (x) , where D,f (x) is familiar
g-derivative of f at x € [a,b] defined by the expression (see [1])

f(x) — f(gx)

qu(x): (l—q)x )

x#0. 2.2)

© 2021 Miskolc University Press
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Definition 2. Let f : [a,b] — R be a continuous function. Then the g-definite
integral on [a, b] is delineated as

X

[0 di=0-a G- r@x+0-g)a) @3
n=0

a
for x € [a,b].
X X X
If a=01in (2.3), then [ f(t)qdyt = [ f(t)dyt, where [ f(t)d,t is familiar ¢-
0 0 0

definite integral on [0, x] defined by the expression (see [1])

[ 1@0di = [ F0di == ¥ d'F ). 4
0 0 n=0

If ¢ € (a,x), then the g- definite integral on [c, x| is expressed as

/ / F(0)dyt - / ) @5)

[n],, notation

g —1
il = L=
Lemma 1. [3] For a. € R\ {—1}, the following formula holds:
" o+1
o (x — a)
— e . 2.
[aay — 2.6)

a

3. ERRATUM: SIMPSON TYPE QUANTUM INTEGRAL INEQUALITIES FOR
CONVEX FUNCTIONS

](1—r>

0

1
"%

qt—f

Here, we will show the errors we mentioned above. For example, in Lemma 4 the
qt—— dgt

followin equality is not correct:
>
- | i
0 0 0

), m/ (&),
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1

1
6 2
1 1
— tlgt—— | dyt+ [t| -—qt| dyt
6 0 6 0
0 1

[
Here, for g € (0,1), e%q £ % For instance, g = é =14 % So, the proof of Lemma 4
is not correct. Lemma 5 also have the same errors. On the other hand, since Lemma
4 and Lemma 5 are used in proof of Theorem 1, there are errors in this theorem.
Moreover, Theorem 2 and 3 have the same mistakes. For instance, because of (2.6),
the following equalities are also not true:

3 1
Fooap (G-t a-g)
t——| djt =
o/q 6y 6rtlg(1—grtl) 7
s [(S—SQ)”“+(6q—5)”“](1—61)
t——| djt = .
l/q 6/, q 6P+lg (1 —gr+)
2

The integral boundaries that cause all these errors are chosen independently of g.
Now, let show the following Theorem 1 in [4] is not correct. For this, we give an
example.

Theorem 1. Suppose that f : [a,b] — R is a g-differentiable function on (a,b) and
0 < g < 1. If |aDyf] is convex and integrable function on [a,b|, then we possess the
inequality

b
1 a+b 1
5 f(a)+4f( 5 )+f(b)— (b_a)/f(t)adqt 3.1)
(b—a) 2q2+2q—|—1 16q3+4q2+4q+1
< 12 {q3+2q2+2q+1 |aqu(b)‘+§ P12+ 211 ‘aqu(a){}.

Example 1. Let choose f(t) =1—1t on [0,1] and f(¢) satisfies the conditions of
Theorem 1. On the other hand, |,D,f| = |.D, (1 —1)| =1 is convex and integrable
on [0,1]. Then we have

slr@ar(30) w o) s [0, (32)

1
1
=z 1—|—2—|—0—/(1—t)0dqt
0
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1
.2
31— =
< 1+Q>0

342¢q
6(1+¢q)

Also,

2 3 2
(blza) {613%526—;%52—;:—1 ‘aqu (b>‘ + :1;6;3 _:_;;qu _:_24qu11 ‘aqu(a)‘}
1 2¢°+2q+1 16> +4¢> +4g+1
:12{q3+2q2+2q+1 3P +242+2g+1 }
1 64> +6g+3+6¢> +4¢* +4q+1
~ 36 P27 +2q+1
1 64° +10g* +10g +4
T 36 P24 +2q+1
1 33 +5¢4°+5q+2
T B P22 +2g+1
As we seen, from (3.2) and (3.3) and for g € (0,1) we write
3+2q 1 34 +5¢° +5q+2
6(1+q) " 18 ¢*+2¢>+2q+1"
For instance, choosing g = % we have
4 7

97~ 54’
Therefore, Inequality (3.1) is not correct.

(3.3)

Similarly, other theorems can be shown to be false.
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Abstract. The boundary-value problem for a second order singularly perturbed Fredholm integro-
differential equation was considered in this paper. For the numerical solution of this problem,
we use an exponentially fitted difference scheme on a uniform mesh which is succeeded by the
method of integral identities with the use of exponential basis functions and interpolating quad-
rature rules with the weight and remainder terms in integral form. Also, the method is first order
convergent in the discrete maximum norm. Numerical example shows that recommended method
has a good approximation characteristic.
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1. INTRODUCTION

Fredholm integro-differential equations (FIDEs) have in large quantities applica-
tions in every branches of science. FIDEs arise from the mathematical modeling of
many scientific phenomena, such as the study of fluid, physics, chemistry, biology,
mechanics, astronomy, potential theory, electrostatics, control theory of industrial

mathematics and chemical kinetics [13, 14, 18]. On the other hand, FIDEs are quite
difficult to find exact solutions. For this reason, numerical methods play a significant
role in this problems, for example, in [5, 8—11](see, also references therein).

Below, the boundary-value problem for a singularly perturbed Fredholm integro-
differential equation(SPFIDE) is considered:

!
Lu ::—eu”+a(x)”+7\’0/K(x’s)”(S)ds =f(), *€(0,0), (L.1)
u

0)=A, u(l)=B5,

(
where € € (0,1] is a perturbation parameter, A is real parameter. We assume that
a(x) > o> 0, f(x) and K(x,s) are the sufficiently smooth functions satisfying certain

© 2021 Miskolc University Press
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regularity conditions to be specified. The solution u(x) of (1.1) has in general a
boundary layer near x =0 and x = [.

Singularly perturbed differential equations are typically characterized by a small
parameter € multiplying some or all of the highest order terms in the differential equa-
tion. This problem undergo rapid changes within very thin layers near the boundary
or inside the problem domain, so most of the conventional methods fail when this
small parameter approaches to zero. These singularly perturbed differential equations
arise in the modeling of various modern complicated processes, such as reaction-
diffusion processes, epidemic dynamics, high Reynold’s number flow in the fluid
dynamics, heat transport problem. For more details on singular perturbation, one can
refer the books [4, 15-17, 19] and the references therein. Survey of some existence
and uniqueness results of singularly perturbed equations can be found in [7, 15-17].

Inrecent years, there has been a growing interest in the numerical solution of integ-
ral equations. The Adomian decomposition method for solving linear second-order
FIDEs is presented in [10]. Qing Xue et al. [20] studied on an improved reproducing
kernel method to find the numerical solution of FIDE type boundary value prob-
lems. Emamzadeh and Kajani [6] used a numerical method for solving the nonlinear
Fredholm integral equation. Jackiewicz et al. [9] proposed several approaches to the
numerical solution of a new FIDEs modelling neural networks. Gegele et al. [8]
presented some approximation methods to solve higher order linear FIDEs. Karimi
and Jozi [11] proposed a new numerical method for solving system of linear Fred-
holm integral equations of the second kind.

The above mentioned papers, related to FIDEs were concerned only with the regu-
lar cases. Also, current studies for the numerical solution of SPFIDESs have not wide-
spread yet. Various difference schemes for singularly perturbed integro-differential
equations and problems with integral boundary condition were investigated in [3, 12].

In this paper, we present fitted type difference scheme on an uniform mesh for the
numerical solution of the problem (1.1). The difference scheme is constructed by the
method of integral identities with the use exponential basis functions and interpol-
ating quadrature rules with the weight and remainder terms in integral form [1]. To
approximate the integral part of (1.1), the composite right-side rectangle rule with the
remainder term in integral form is being used.

The organization of the paper is as follows. In Section 2, we state some signific-
ant properties of the exact solution. In Section 3, we describe the finite difference
discretization and appropriate mesh. The error analysis for the approximate solution
is presented in Section 4. Uniform convergence is proved in the discrete maximum
norm. Numerical results are given in Section 5 to support the predicted theory. The
paper ends with a summary of the main conclusions.

Notation 1. Throughout the paper, C will denote a generic positive constant inde-
pendent of € and the mesh parameter and ||g||.. is the continuous maximum norm on
the corresponding closed interval for any continuous function g (x).
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2. THE CONTINUOUS PROBLEM

Lemma 1. Ifa, f € C'[0,1], X € C[0,1]*,(s=0,1) and

o
Al < l : 2.1)
max /]K(x,s)|ds
0<x<l]
0
then for the solution u(x) of the problem (1.1) hold the following estimates
lull <C, 2.2)
Wl <clir L% 4o €10,1] 2.3)
u(x — (e vE+e E ) X . .
- Ve
Proof. Using the maximum principle for the operator Lou = —eu” + a(x)u, we

obtain the estimate
1
il oo < |A| + B+ 0| f]]oe + 0" [A maX/IK(x,S)Hu(S)IdS
0<x<l!
0

which after taking into account (2.1), leads to (2.2).
Next, we prove the estimate (2.3). Using (2.2) on (1.1) we have

/

f(x) —a(x)u(x)—k/K(x,s)u(s)ds <

0

" (x)| = , 0<x<l.

M| =

Moreover, we now proceed with the estimation of |u/(0)|, [t/(I)|. Here we use the

following relation which holds for any function g € C2[0,[]:

§/() = glow,0n) ~ [ Ko(E0)g" (), w<o, 24
where
g(ap;0n) = g(ocoltz :iiao)
Ko(&,x) = To(§ —x) — (o — o) ' (€ — 0tg)
and

I, A0
TOO“):{ 0, A<O.
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Equality (2.4) with the values g(x) = u(x), x =0, 0p = 0, and o] = /€ yields

/ u(f) /!

()] < O / Ko(6.0) (B < 5

Similarly, using (2.4) for g(x) = u(x), x =1, ag = [ — \/€, and o} = [ we confirm that
/ u( //

(1)) < B —AVE /Kb&l )dE < 7: (2.6)

Next, differentiating (1.1), according to (2.5) and (2.6), we get

—ev"’ +a(x)v = F(x), v(0) =0 <\%> , v(l)=0 (\2) (2.7)
with
I
v(x) = (x), F(x) = f'(x) —d (x)u(x) — k/ aaK(x,s)u(s)ds
0
By virtue of (2.2) evidently
[F(x)| <C. (2.8)

In order to estimate the solution of the problem (2.7), we present it in the form
v(x) = vi(x) +va(x),

where the functions v (x) and v, (x) are the solutions of the following problems re-
spectively:

_8V1+a( ) ( )7

v1(0) = vl(l) 0, 29)

~e+ala =0,

12(0) :0(\}€>, () = 0(\}@)_ (2.10)

For the solution of the problem (2.9), using the maximum principle and (2.8), we
have

vi(x)] <o Y|Fll. <C, 0<x<L (2.11)
According to the maximum principle, from the problem (2.10), we also conclude that

v2(0)] < wix), (2.12)
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where the function w(x) is the solution of the following problem:
—ew” +aw =0,
w(0) = [v2(0)], w(l) = [v2(D)].
The solution of problem (2.13) is given by

(2.13)

w(x) = _ {W(O)sinh<\/&(l_x)> +w(l)sinh<\/&x> } .
sinh ( %) VE VE
Hence, taking into consideration (2.10) we obtain
C _ Vo _Vall=x)

w(x)g\@{e VEte VE } (2.14)

Finally, the use bounds (2.11), (2.12) and (2.14) in the inequality
[ ()] < [vi ()] + [va (%)

immediately leads to (2.3). ]

3. THE MESH AND DISCRETIZATION

Let my be an uniform mesh on [0,]:

[
Oy = {x,-:ih,i: ,2,..N—1,h= N}

and
Oy Z(DNU{XZO,XNZI}.
To construct the difference scheme for the problem (1.1), we start with the following
identity
Xit1 Xi+1
o / Lu(x)@i(x)dx = 3 0! / FOedei=1,2,. . N—1,  (3.1)
Xi—1 Xi—1
with the basis functions
(P,(I)(x) — sinhyi(x—x;)

Snhyh Xi—1 <x<Xx;,

o(x) = (p,@(x) = %, X <X < Xiy1,

0, X & (Xio1,Xi11),

where
i+1
a(x; _ 2tanh(Y;h/2
’Yiz ( 1), Xz:h l/q)i(x)dx: (Yt / )
€ Yih
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(1)

i

We note that the functions @
respectively:

and @

i

(2)

Xi—1 <x <X
o(xi) =1,
X <X < Xjy1

¢(xit1) =0.

are the solutions of the following problems

By using the method of exact difference schemes (see e.g. [1-3]), it follows that

Xit1

_Xl._lh_lg/(pi(x)u”(x)dx—&—xi_lh_lai/(Pi(x)”(x)dx:

Xi—1

et Y 1ae | <p§”<x><xx,~>dx}uxx7,-

i—

tag ! /m?”
Xi-1

with

2
ap

/ o\ dx

ei = )
4sinh?* (\/aip/2)

Thereby

Xit1

x ! / [eu” (x) +a(x)u(x)] ¢; (x)dx = —SOiu,—m—i—aiui—i—Rl(l)
Xi-1

with remainder term

Xit1

_ N

RY =20 [ la() - alx)] u(x)oi(x)dx.

Xi—1

Further for the right-side in (3.1) we have

Xit1

a0 [ F@edx = fi+ R

with remainder term

} u; = —891'145“71' —+ aju;

(3.2)

(3.3)

(3.4)

3.5)
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For integral term involving kernel function, we have from (3.1)

Xit1 1 [
«'h! / i (x) / K(x,)u(s)ds — / K(xi,)u(s)ds
Xi—1 0 0
Xit+1 l
+Xf1 /dx(p, / K (xi,s)|u(s)ds.
Xi—1 0

Further using the composite right side rectangle rule, we obtain

l
/ (xi, 5 ds_h):zg,uj z / E—xj1) a@ [K (xi,E)u(€))] dE.
0 x,l

Therefore we get

!
N
x ! /dx(pi(x) /K(x, s)u(s)ds =hy_ Kiju; —i—Rl@ (3.6)
0 =1

. 3.7
N by
AL [ B g K B )]
=L
The relations (3.2), (3.4) and (3.6) yield the following exact relation for u(x;)
N
Lyu; : = =€z, ; +ajui + M Y Kijuj+R; = fi, 1<i<N-1 (3.8)
j=1
with remainder term
Ri=R"+ R +RY, (3.9)

where ng); (k =1,2,3) are defined by (3.3), (3.5) and (3.7) respectively. Based on
(3.8) we propose the following difference scheme for approximating (1.1).

N
Lyy; :=—0ys,; +ayi+M Y Kijyj = fi, I<i<N-1,
“ (3.10)

Yo =A, yv =B
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4. ERROR ANALYSIS

From (3.8) and (3.10) for the error of the approximate solution z; = y; — u; we have

N
Lyzi = —€0z;,; +aizi+ M Y Kijz; = R;, 1<i<N-1,
ot

: 4.1)

z0 =0, zy = 0.
where R; are defined by (3.9).

Theorem 1. Under the conditions of Lemma (2.1) and

o

N )
max h’Kij|
lgigNj 1

M <

the solution of (3.10) converges e-uniformly to the solution of (1.1). For the error of
approximate solution the following estimate hols

||y = tl|y < Ch.
Proof. Applying the maximum principle, from (4.1) we have
| N
12l < @ HIR =AY Kijzjl oo o
j=1

N
< 0 |Rl + Mo max 3 K2l

hence
-1
o [[R],
2l ooy < o
1— Aot h|K;;
A fé‘@v; K|
which implies of
[[2lleo.cy < CIIR||on,coy - 4.2)

Further we estimate le, Rgz) and Rl@)

orem, we have

seperately. For a(x), by the mean value the-

la(x) —a(xi)| < |a'(&)llx —x;| < Ch, X <G <x.
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Thereby for REI), by a € C'[0,1] and (2.2) we get

R <o ! 7'[a<x> — a(x)] u(x) @i (x)dx

i—1

. (4.3)
<Chy;'h! / @;(x)dx = Ch.
Xi—1
Similarly, for REZ) we get
R,@)) < Ch. (4.4)

Finally for Rl@ , taking into account the boundedness of %—Ij and (2.3) it follows that

Xit1 [
RO < [ axu) [ 1K 59) — K (x,9) () ds
1 0

Xi—

N
+A Y /(ﬁ—xf'fl)

d
& KB ' at

=
Xit1 l
d
<1 M [ dxoi) [ (rx) | S K spuls)| ds
l tit 0 (4.5)
d
Ak 0/ y [K(xi@u(a)]'dé
1
oK (x;, ,
< cnlal+ [ {55 ol + k) @)
0
[
< C{h+h0/ (1 +\}€ <e‘¢«&gé +eﬁ$€§)>>d§} < Ch.
Thus from (4.3)-(4.5) we see easily the estimate
IRl|s < Ch. (4.6)

The bound (4.6) together with (4.2) completes the proof. ]



46 GABIL M. AMIRALIYEV, MUHAMMET ENES DURMAZ, AND MUSTAFA KUDU

5. NUMERICAL RESULTS
Consider the particular problem with

a(x) =1, K (x,5) = x, f(x):x—a—i—ee*%, x€(0,1),

1
X:E, A=1, B=2—¢g+¢ee ¢,

The exact solution is given by

o=

X x—1 x=2 _ x4l
e VEtevE —eVE —eg Ve _x
u(x) = 5 +x—¢e+ee VE.
l—e &

We define the exact error e/ and the computed €-uniform maximum pointwise error
e as follows:

e = lly—ull.., ehzmsaxe'g.

We also define the computed parameter-uniform rate of convergence to be
p'=1In <eh/eh/2> /In2.

The resulting errors ¢’ and the corresponding numbers p” for various values € and
are listed in Table 1.

Table 1 Exact errors ¢}, computed €-uniform errors ¢” and convergence rates p
on My.

h=1/32 h=1/64 h=1/128 h=1/256 h=1/512 h=1/1024

1 0.00343868 0.00198874 0.00110332 0.00060368 0.00030394 0.00015197

0.79 0.85 0.87 0.99 1.00

274 0.01032126  0.00605257 0.00338123 0.00185003 0.00094445 0.00047551
0.77 0.84 0.87 0.97 0.99

278 0.01125894  0.00660244 0.00368841 0.0020181  0.00103025 0.00051871
0.77 0.84 0.87 0.97 0.99

2712 0.011200979 0.00656845 0.00366942 0.00200771 0.00102495 0.00051604
0.77 0.84 0.87 0.97 0.99

2716 0.0112049 0.00657075 0.00367071 0.00200842 0.00102531 0.00051622
0.77 0.84 0.87 0.97 0.99

e 0.01125894  0.00660244 0.00368841 0.0020181  0.00103025 0.00051622

P07 0.84 0.87 0.97 0.99

The obtained results show that the convergence rate of difference scheme is essen-
tially in accord with the theoretical analysis.
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6. CONCLUSION

A boundary-value problem for a second order singularly perturbed Fredholm
integro-differential equation has been considered. For the numerical solution of this
problem, we proposed a fitted finite difference scheme on a uniform type mesh. The
difference scheme is constructed by the method of integral identities with the use of
exponential basis functions and interpolating quadrature rules with the weight and
remainder terms in integral form. It is shown that the method displays uniform con-
vergence independently of the perturbation parameter in the discrete maximum norm.
We have implemented the present method on a example. Numerical results were car-
ried out to show the efficiency and accuracy of the method.
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Abstract. In this paper, a new class of nonconvex nonsmooth multiobjective programming prob-
lems with both inequality and equality constraints defined in a real Banach space is considered.
Under the nondifferentiable vectorial (@, p)"-invexity notion introduced in the paper, optimality
conditions and duality results in Mond-Weir sense are established for the considered nonsmooth
vector optimization problem. It turns out that the results developed here under (®,p)"-invexity
are applicable for a larger class of nonconvex nondifferentiable multiobjective programming
problems than under several generalized convexity notions existing in the literature.
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1. INTRODUCTION

The term multiobjective programming (or vector optimization) is used to denote
a type of optimization problems where two or more objectives are to be minimized
subject to certain constraints. Investigation on sufficiency of (weak) Pareto optimality
and duality has been one of the most attraction topics in the theory of multi-objective
problems. This is a consequence of the fact that vector optimization problems are
useful mathematical models of most real-life problems in economics, physics, mech-
anics, decision making, game theory, engineering, optimal control, etc. It is well
known that the concept of convexity and its various generalizations play an important
role in deriving sufficient optimality conditions and duality results for multiobjective
programming problems. In recent years, therefore, multiobjective programming has
grown remarkably in different directions in the settings of optimality conditions and
duality theory. It has been enriched by the applications of various types of general-
izations of convexity theory, with and without differentiability assumptions (see, for
example, [1,2,4,5,7,8,11,13-16,18,20,21] and others).

The aim of the present work is to introduce a new concept of nondifferentiable
generalized invexity notion and to use it to prove optimality and duality results for

© 2021 Miskolc University Press
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a new class of nonsmooth multiobjective programming problems defined in a real
Banach space. By taking the motivation from Antczak and Stasiak [6] and Stefanescu
and Stefanescu [22], we introduce the concept of nondifferentiable (P, p)"-invexity
for a nonsmooth multiobjective programming problem in which every component
of functions involved is a locally Lipschitz function. However, the central purpose
of this paper is to discuss application of the introduced vectorial nondifferentiable
(®,p)"-invexity notion in proving the optimality results for a new class of non-
convex nondifferentiable multiobjective programming problems. Namely, we prove
Karush-Kuhn-Tucker necessary optimality conditions for a (weak) Pareto optimal
solution in the considered nondifferentiable multiobjective programming problem in
which constraint functions are (®, p)"-invex. Sufficiency of these necessary optimal-
ity conditions for both weak Pareto and Pareto solutions is established for the class of
constrained vector optimization problems with nondifferentiable (®,p)"-invex func-
tions, not necessarily, with respect to the same p. Further, under (®, p)"-invexity hy-
potheses, several duality results are established between the considered nonsmooth
multiobjective programming problem and its nondifferentiable vector dual problem
in the sense of Mond-Weir. The optimality results proved in the paper are illustrated
by an example of a nonconvex nonsmooth vector optimization problem involving
nondifferentiable (®,p)"-invex functions.

2. PRELIMINARIES

Throughout this paper, we use the following conventions for vectors x =
(x1,x2, ...,xn)T, y= 1,2, ...,yn)T in the Euclidean space R":
(i) x=y ifandonlyifx;=y;foralli=1,2,....n;
(i) x>y ifandonlyifx; > y;foralli=1,2,....n;
(ili) x =y ifand only if x; = y; foralli = 1,2,...,n;
(iv) x>y ifand only if x = y and x # y.
In this section, we provide some definitions and some results that we shall use in the
sequel. Throughout this paper, we denote a real Banach space by X, the (continuous)
dual of X by X*, and the value of the function & in X* at v € X by (§,v).

Definition 1 ([9]). The Clarke generalized directional derivative of a locally Lipschitz
function f : X — R at x € X in the direction v € X, denoted by f° (x;v), is given by

fO(X;V) = limsupf(y+)”v) 7f()’).

y—x A
ALO

Definition 2 ([9]). The Clarke generalized subgradient of a locally Lipschitz func-
tion f: X — R atx € X, denoted by df (x), is defined as follows

of (x) ={EeX*: fOx;v) > (&,v) forallve X}.

Let S be a nonempty convex subset of X.
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Definition 3. The function ® : § — R is said to be quasi-convex if, for each o € R,
the level set {x € S: P (x) < o} is convex, or equivalently, if ®(Ay+ (1—-A1)x) <
max {® (y), P (x)} for every y,x € Sand A € [0, 1].

A stronger property is also considered as follows:

Definition 4. The function ® : S — R is said to be strictly quasi-convex if it is
quasi-convex and ® (Ay+ (1 —2X)x) < 0, whenever ®(y) <0, ®(x) <0 and A €
(0,1).

Proposition 1. If ® : S — R is a strictly quasi-convex function and there are
xt .. x% € S such that CID(xi) <0,i=1,...k and @(xi*) < 0 for at least one i* €
{1,.....k}, then @ (L5, Aix;) < O for every A= (Ay,...,;\) > 0 such that Y5 A; = 1
and Ay > 0.

In [22], Stefanescu and Stefanescu introduced the definition of a differentiable
(®,p)"-invex function. Now, in the natural way, we generalize this definition to the
nondifferentiable vectorial case.

Definition 5. Let f = (f1,..., fi) : X — R* be defined on X, every its component
fi»i=1,...,k, be alocally Lipschitz function on X and u € X. If there exist a function
P:X XX xX*"xR— R, where ® (x,u,(-,-)) is strictly quasi-convex on X* X R,
® (x,u,(0,a)) = 0 for all x € X and each a € R, and p = (p1,...,px) € R¥, where p;,
i=1,...,k, are real numbers such that the following inequalities

Jilx) = filu) 2 @ (x,u, (&i,pi) i =1,k (>) 2.1)
hold for all x € X (x # u) and each &; € df; (u), i = 1,...,k, then f is said to be a
nonsmooth vector (®,p)"-invex at u on X. If inequalities (2.1) are satisfied at any

point u, then f is said to be a nonsmooth (strictly) vector (®, p)"-invex function on
X.

In order to define an analogous class of nondifferentiable vector (strictly) (®,p)"-
incave functions, the direction of the inequality in the definition of these functions
should be changed to the opposite one.

Remark 1. Let X C R" and the functional ® (x,u,(-,-)) be convex on R x R.
From Definition 5, there are the following special cases:
a) If @ (x,u, (&;,p:)) = (&,x—u), where &; € df; (u), i = 1,...,k, then we obtain
the definition of a nondifferentiable convex function.
b) If D (x,u, (&;,p;)) = (&M (x,u)) for a certain mapping 1 : X x X — R", where
& € df;(u), i =1,...,k, then we obtain the definition of a locally Lipschitz
invex function (with respect to the function 1) (see Lee [16] and Kim and
Schaible [14] in a nonsmooth vectorial case).
c) If ®(x,u,(&,pi)) = m(ii,n(x,u», where b; : X x X — R \{0} and
n:X xX — R" then we obtain the definition of a nondifferentiable b-invex
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function (with respect to the function 1) (see, Li et al. [17] in a nondifferen-
tiable scalar case).

d) IF D (x,u, (§,p;)) = (&, x — u) +p;||x — u||*, then (P, p)"-invexity reduces to
the definition of a nonsmooth p-convex function (see Zalmai [23]).

e) If ®(x,u,(&,p;) = (€M (x,u)) + p;||0(x,u)||* for a certain mapping
N:X xX — R", where 6 : X XX — R", 0(x,u) # 0, whenever x # u, then
(®,p)"-invexity reduces to the definition of a nonsmooth p-invex function
(with respect to 1 and 0) introduced by Jeyakumar [12] in a scalar case.

f) If ®(x,u,(&i,pi)) = o(x,u)(&;,n(x,u)), where o; : X x X — R\{0},
0:X xX — R",0(x,u) #0, whenever x # u, then (®, p)"-invexity reduces to
the definition of a V-invex function (with respect to 1) introduced by Jeyak-
umar and Mond [13] in a differentiable case and Mishra and Mukherjee [19]
in a nonsmooth case.

2) I D (x,u, (&,p;)) = o (x,u) (€M (x,10)) +p; |8 (x, ) ||*, where i : X x X —
R \{0},0:X xX — R", 0(x,u) # 0, whenever x # u, then (®,p)"-invexity
reduces to the definition of a nonsmooth V-p-invex function (with respect to
1 and 0) introduced by Kuk et al. [15].

h) If @ (x,u, (§;,p;)) =F (x,u,&;), where F (x,u, -) is a sublinear functional with
respect to the third component, then the definition of a (®, p)"-invex function
reduces to the definition F-convexity introduced by Hanson and Mond [10].

i) If @ (x,u,(&,p:)) = F (x,u,&) + pid? (x,u), where F (x,u,-) is a sublinear
functional with respect to the third component and d : X x X — R is a pseudo-
metric on X, then the definition of a (®,p)"-invex function reduces to the
definition (F,p)-convexity introduced in a nondifferentiable case by Bhatia
and Jain [8] .

j) If the functional ® (x,u, (-,-)) is convex on X* X R, then we obtain the defin-
ition of a nondifferentiable (®,p)-invex function (see Antczak and Stasiak
[6] in a scalar case).

3. OPTIMALITY UNDER NONSMOOTH (®,p)"-INVEXITY
In the paper, we consider the following nonsmooth vector optimization problem:
f(x) == (fi(x),.... fi(x)) = V-min
subjectto  g;(x) £0, jeJ={l,..m},
h(x)=0,1€T=A{1,...,q},
xeX,

(VP)

where fi: X =R, iel={1,..,k},gj:X =R, jeJ,andh : X - R, t €T are
locally Lipschitz functions on X. For the purpose of simplifying our presentation,
we will next introduce some notations which will be used frequently throughout this
paper. Let D:={x € X : g;(x) £0, j€J, h(x) =0, € T} be the set of all feasible
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solutions in problem (VP), and J (X) be a set of active inequality constraints at point
X €D, thatis, J (X) = {j€J:g;(x) =0}.
Definition 6. A feasible point X is said to be a weak Pareto solution (weakly ef-

ficient solution, weak minimum) for (VP) if and only if there exists no other x € D
such that f(x) < f(X).

Definition 7. A feasible point X is said to be a Pareto solution (efficient solution)
for (VP) if and only if there exists no other x € D such that f(x) < f(%).

Theorem 1 (Generalized F. John necessary optimality conditions, [9]). Letx € D
be a (weakly) efficient solution of the considered nonsmooth multiobjective program-
ming problem (VP). Then, there exist . € R, i € R™ and & € RY such that

k m q
0€ ) Mofi(x)+ Y m0g;(x)+ Y 0:0h(x), (3.1)
i=1 j=1 =1
fijg/(®) =0, j€J, (3.2)
(ha) =0 (3.3)

Now, we prove the so-called Generalized Karush-Kuhn-Tucker necessary optim-
ality conditions for a nonsmooth vector optimization problem with locally Lipschitz
(®,p)"-invex constraint functions.

Theorem 2 (Generalized Karush-Kuhn-Tucker necessary optimality conditions).
Let X € D be a (weakly) efficient solution of the considered multiobjective program-
ming problem (VP) and Generalized F. John necessary optimality conditions (3.1)-
(3.3) be satisfied at X with Lagrange multipliers A € R*, i € R™ and © € R1. Fur-
ther, assume that there exists a feasible solution X such that g; (x) <0, j € J (X) and,
moreover, gj, j € J (X), is locally Lipschitz (CID, pgj)w—invex atxonD, hy, t €T (X) :=
{t € T:9, >0}, is locally Lipschitz (®,pp,)"-invex at X on D —hy, t € T~ (X) :=
{t €T Y < 0}, is locally Lipschitz (®,py,)"-invex at X on D and Y Hpg; +
ZzeTJr(X) ﬁtp;,; - ZzeT*(}) ﬁtp}; = 0. Then A # 0.

Proof. Letx € D be an efficient (weakly efficient) solution of the considered mul-
tiobjective programming problem (VP). Then, the necessary optimality conditions of
F. John type (3.1)-(3.3) are fulfilled with the Lagrange multipliers A € R¥, i € R™ and
¥ € R4 (see, for example, [9]). We prove that A # 0. Suppose, contrary to the result,
that A = 0. Hence, as it follows from the necessary optimality conditions of F. John
type (3.3), we have (X,,ﬂ) > 0. Since A = 0, the above relation implies that & # 0.

Using A = 0 together with the necessary optimality conditions of F. John type (3.1),
we get

m q
0€ ) m;og;(x)+ ) 0,0m(x). (3.4)
j=1 =1
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By (3.4), there exist {; € dg; (¥), j € J and ¢; € ol (X), t € T such that

m q o
0=Y Ai+) . (3.5)
j=1 =1
Since u # 0, we have that A = Y70 f1; + Y e+ () O — Lier—(x 13, > 0. Let us denote
Bi= - L —, jeJ ), (3.6)
! ZT:I“]'_‘_ZIET‘*'(X) Y _ZteT—(%) Y
_ 5
= : S €T, (37
Zj:l:uj +ZteT+ ZteT
~ —15},
Y, = — f,teT (x). (3.8)
t T:l;uj +ZteT+ ZteT

By (3.6)-(3.8), it follows that P — ([31,...,[3m) >0, 0SB, <1, je J(x),
0<% <1, teT*( ), 0%, <1, €T (x), and, moreover, Z]EJ [3]4—):;6T+

+Yer- (x ¥, = 1. By assumption, g;, j € J (%), is (P, pg) -invex at X on D, h,,
teTH(X):= {t €T > O} is locally Lipschitz (CID ph> -invex at X on D, —hy,

t €T (x):={t €T :9 <0}, is locally Lipschitz ((ID Ph ) -invex at X on D. Fur-

ther, as it follows from the assumption, there exists x € D such that g;(x) < 0,
J € J(x). Hence, by Definition 5, it follows that the following inequalities

g,(®) —gj(®) = ® (%%, (C),pg)), JeI ), (3.9)
(@ —h(®) 2@ (%5 (s.0})). 1T, (3.10)
—ht(ic”)+ht(x)§cb()7,x, (—g,,p,;)), 1eT (%) 3.11)

hold for each &; € df; (%), i € I (x), {j € 9g; (x), j€J(X), ¢ € Oy (X), 1 € TT (X) U
T~ (x). Combining g; (x) <0, j€J(X)and (3.9), we get

D (x,%, (Cj.pg,)) <0, jeJ(X). (3.12)

By x € D, X € D, inequalities (3.10) and (3.11) yield, respectively
® (%% (s.p7)) S0, €T (®), (3.13)
® (%% (~c.p,)) S0, re 7 (@) (3.14)

By Definition 5, we have that ® (X, %, (-,-)) is a strictly quasi-convex function on R* !
Since (3.12)-(3.14) are satisfied, by Proposition 1, it follows that

< < Z B]C:] Z VG + Z ¥ (—=¢) (3.15)

jeJ(x teT* () teT~(x)
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)y BJPg, Y vei+ X ?tpht>><0.

jeJ(x teT*(x) teT—(x)
Taking into account (3.6)—(3.8) and Lagrange multipliers equal to 0 in (3.15), we get

o m q m _ —
CD(X,X,A <ZM1C}+261‘CJ’ZHJP3’I+ Z ‘atp;:_ Z ﬁtpht)) <0.
j=1 t=1 j=1

teT*(x) teT—(X)
(3.16)

By the necessary optimality condition of F. John type (3.1), it follows that

~_1 o = =

d <x,x,A (0, Y e+ Y, G- ) ﬁtpht>> <0. (3.17)
Jj=1 teT*(x) teT~(X)

By assumption, ZT:1l7ngj +Yier+ ) ﬁ,ph —Lier(x ﬁtph 2 0. Thus, by Definition

5, the following inequality

~_ 1 - 3 T A
@(X,X,A <O7Zl'ljpgj+ Z ﬂtp;,_ Z ﬁtpm)) 20
J=1 teT*(x) teT—(x)
holds, contradicts (3.17). This means that A # 0. If Y*_; A; # 1, then it is sufficient

to normalize the Lagrange multipliers A;, i € I. This completes the proof of this
theorem. O

Remark 2. Theorem 2 can also be proved if hypotheses that each function /4,
teT(x):={reT: 19, > 0} is locally Lipschitz (®, pj, )" -invex at ¥ on D and each

functlon ht, teT™ = {t € T : 9, <0}, is locally Lipschitz (®,ps, )"-invex at

X on D are replaced by, in general, a weaker hypothesis that 7, O, h; is locally
Lipschitz (®,py,)"-invex at X on D.

Definition 8. The point (i,X,ﬁ,ﬁ) € D x R¥ x R™ x R4 is said to be a Karush-

Kuhn-Tucker point of the considered vector optimization problem (VP) if the neces-
sary optimality conditions (3.1)-(3.2) and, in place of (3.3), the conditions A>0,
YX A =1, 1= 0 are satisfied at X with Lagrange multipliers A,  and .

Now, we prove the sufficient optimality conditions for weak efficiency of a feas-
ible solution in the considered nonsmooth multiobjective programming problem (VP)
under nonsmooth (®, p)"-invexity.

Theorem 3. Let (%,X,ﬁ,ﬁ) € D x R* x R™ x RY be a Karush-Kuhn-Tucker point

of the considered nonsmooth multiobjective programming problem (VP). Further, as-
sume that f;, i € I, is locally Lipschitz (P, pf)w-invex atxonD, g, j€J(X), is loc-
ally Lipschitz (qD, pg ) -invexatxon D, hy, t € T* (X) := {t eT: 9> 0} is locally

Lipschitz (CID,p;E) -invex atx on D, —h;, t € T~ = {t €eT: V< 0} is locally
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w — —
Lipschitz <<I), p};) -invex at X on D. IfY*_, Nips +Xjcr@ HiPg; + Lier+ (%) ﬂ,p;: _
YieT- (%) Y, P, 2 0, then X is a weak Pareto optimal solution of the problem (VP).

Proof. Suppose, contrary to the result, that X is not a weak Pareto optimal solution
of the problem (VP). Then, by Definition 6, there exists a feasible solution x such that

fx)<f®. (3.18)

By assumption, (X Py ﬁ,@) € D x R* x R™ x R? is a Karush-Kuhn-Tucker point of the
considered nonsmooth multiobjective programming problem (VP). Then, by Defini-

tion 8, the necessary optimality conditions (3.1)-(3.2) hold with A >0, Z 7L =1.
By (3.1), there exist §; € df; (%), i€ 1,{; € g, (X), je€J, g €dh (%), t €T, suchthat

M+ Y B+ Y de+ Y Big =0 (3.19)

JjeJ(X) teT+(X) teT—(X)

I~

As it follows from Definition 5, the following inequality @ (x,X, (0,a)) = 0 holds for
eacha = 0. Hence, by (3.19), hypothesis Yic;x) AP, + X jesx) HPg; + Leer+ (%) ﬁtp,i: —
Yier-(x ﬁ,ph = 0 implies

_ 1 (&= _ _
c1><x,x,A (in§i+ g+ Y da+ ) Y. (3.20)

i=1 jeJ(x) teT*(x) teT~(x)

k _— — —
le’pfi_F Z HjPg; + Z ﬁtp;:— Z ﬁtPi)) 20,
i=1 JjEJ(X) teT+(x) teT— (%)

where
k m
A=Y N+Ym+ ) © Z ﬁt>o (3.21)
i=1 j=1 teT*(x) telT~
Let us denote B
ai:ﬁ,iel(x),ﬁ.:@,jeux), (3.22)
A A
+ + —0
¥ ==teTH %),y = 7 el (X). (3.23)

Then, by A > 0, Zl lk—l it follows that & := (Qly,...,0) > 0,0 o; S 1, i €1,
0<a; <1foratleastoneicl,p= ([31, B >_O O§B <1,jeJ,057 =1,
teTt(X),0=¥ <1,reT (x),and, moreover,

k
) ZB+ Y W+ Y v=1 (3.24)
i=1 jeJ(x

teT*(x) teT~(x)
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Since f;, i €1, is locally Lipschitz (®,ps)"-invex atxon D, g;, j € J (%), is (P, pgl)w-

invex at x on D, hy, t € T" (%) := {t eT:9> 0} is locally Lipschitz (CD ph> -

invex atxon D, —h;, t € T~ = {t €eT: V< O} is locally Lipschitz (CID P, )W—
invex at X on D, by Deﬁmtlon 5 it follows that the following inequalities

filx) = fi(X) 2 @55, (&i,pp)), i€, (3.25)

8,(¥) —g;(¥) 2@ (%%, (§jpg)))» JET(), (3.20)

hy(F) — Iy (%) = cp( (gt,p;l:)), teTH (%), (3.27)

— Iy (®) + hy (%) zqn(f,x, (—gt,p};)), teT () (3.28)

hold foreach &; € 9f; (x),i€1,{; € dg; (%), j€J (X). ¢ €9h (X),t € TT (X)UT ™ (%),
respectively. By (3.18), inequality (3.25) implies

By X € D, x € D, inequalities (3.26)-(3.28) yield, respectively,
@ (%,%, (§j;pg;)) S0, jeJ(X), (3.30)
<I>(J7,%, (gz,phf)) <0, teTt (%), (331
® (f,x, (—gt,p,;)) <0, 1eT (). (3.32)

As it follows from Definition 5, @ (,, -) is a strictly quasi-convex function on R"**!.
Since (3.24) is satisfied, by inequalities (3.29)-(3.32), Proposition 1 implies

@(ix,(Z g+ Z BGi+ Y e+t Z v, (3.33)

i€l (x) jeJ(x teT* () telT~

Y dpi+ Y B+ Y Tek+ ) vfp;,>><0-

icl(x) JEJ(X) teT+(X) teT—(X)
Taking into account (3.22)-(3.23) in (3.33), we obtain that the following inequality

k
(xx,(Z i+ Y, BG+ Y, v+ Y S,

=1 JjeJ(x) teT*(x) teT—(X)

Y Mpp+ Y mpg+ Y, e — ) ﬁr%)) <0

i€l (x) JEJ(x) teT*(x) teT—(x)
holds, contradicting (3.20). This means that X is a weakly efficient solution of (VP)
and completes the proof of this theorem. O
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In order to prove the sufficient optimality conditions for a Pareto optimal solution
of the nonsmooth multiobjective programming problem (VP) with nonsmooth (®, p)-
invex functions, some stronger hypotheses should be assumed.

Theorem 4. Let (X,X,ﬁ,ﬁ) € D x R* X R™ x R4 be a Karush-Kuhn-Tucker point

of the considered nonsmooth multiobjective programming problem (VP). Further, as-
sume that any one of the following hypotheses is satisfied:

i) the objective function f;, i € I, is locally Lipschitz strictly (®,p )" -invex at X
on D, the constraint function g, J €J(X), is locally Lipschitz (<I> Pg j)w—invex

w
atxonD, h, t € T* (X) := {t eT: % > 0} is locally Lipschitz (CD Py, ) -
invex at X on D, ht, teT™ = {t eT: %< 0} is locally Lipschitz

w
(<I>, p;{) -invex at X on D and moreover, Zizlkipf,- + Yjcsx HiPg;+

ZteT*(%)Efph, ZteT ﬂt h —0

ii) the Lagrange multlpllers Ai > 0, i € I, the objective function f;, i € I, is loc-
ally Lipschitz (®,py,)" -invex at X on D, the constmintfunction g, jE€J(X),
is locally Lipschitz (<I>, Pg; ) -invexatxonD, h,t €T (X {t eT: % > 0}

w
is locally Lipschitz <<I>,pht) -invex at X on D, —h,, t €T (x) =
— w
{tET:ﬁ,<0}, is locally Lipschitz (QD p,;) -invex at X on D and

Y iy + Yicix) HiPe; T Xeer+ (x) 6tph, Yier(z ﬁfph, 2 0.
Then X is an efficient solution of the problem (VP).

Proof. The proof of this theorem is similar to the proof of Theorem 3. 0

In order to illustrate the sufficient optimality results established in this section, we
consider the following example of a nondifferentiable multiobjective programming
problem with (®, p)"-invex functions, not necessarily, with respect to the same p.

Example 1. Consider the following nondifferentiable multiobjective programming
problem defined as follows

f(x) = (arctan (|x;|) + arctan (
g(x) = |x1] + |x2| — 2arctan (|x1x2|) £ 0, (VP1)
X =R

)X} 43 +arctan (|x1x2|)) — V-min

It is not difficult to see that D = {(x1,x2) € R? : |x1| + |x,| — 2arctan (|xx;|) < 0}
and x = (0,0) is such a feasible point at which the Generalized Karush-Kuhn-Tucker
necessary optimality conditions are satisfied. It can be established, by Definition 5,
that the objective function f;, i = 1,2, is locally Lipschitz strictly (®,p)"-invex at X
on D and the constraint function g is (®,p,)"-invex at X on D, where

@ (x,X,(c,p)) = arctan (¢ |x1|) + arctan (G, |x2|) + arctan (p) (arctan |x; x| — arctan [% X |)
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P =0, pp, =tan(l), pg = tan(—2),

and g € dk(X), where k denotes f; or f> or g, respectively, and p is equal to py,, Py,
or Pg, respectively.

Since all hypotheses of Theorem 4 are satisfied, X is an efficient solution of the con-
sidered nonsmooth multiobjective programming problem. Note that we are not in a
position to prove efficiency of X in the considered nonconvex nonsmooth multiobject-
ive programming problem (VP1) under other generalized convexity notions existing
in the literature, that is, invexity [ 14, 16], b-invexity [17], F-convexity [10], r-invexity
[3], V-invexity [13], G-invexity [4], V-r-invexity [5], univexity [18]. This follows
from the fact that not every stationary point of the functions constituting problem
(VP1) is a global minimum of such a function. Whereas one of the main property of
the concepts generalized convexity notions mentioned above is that a stationary point
of every function belonging to the aforesaid classes of generalized convex functions
is its global minimizer. Further, we can’t use also the sufficient optimality conditions
under nondifferentiable (®,p)-invexity since the functional ® (x,X,-) is not convex
for all x € D as it follows from the definition of this concept of generalized con-
vexity (see [6]). As it follows even from this example, the introduced concept of
nondifferentiable (®, p)"-invexity is useful to prove the sufficiency of Generalized
Karush-Kuhn-Tucker necessary optimality conditions for a larger class of nonconvex
nondifferentiable vector optimization problems in comparison to other generalized
convexity notions, earlier defined in the literature.

4. MOND-WEIR DUALITY

In this section, for the considered nonsmooth multiobjective programming prob-
lem (VP), we define a vector dual problem in the Mond-Weir sense. Then, we prove
several duality results between the primal multiobjective programming problem and
its Mond-Weir dual problem under (®,p)"-invexity hypotheses.

Now, for the considered nonsmooth multiobjective programming problem (VP),
we state the following vector Mond-Weir dual problems as follows:

f(y) — V-max
s..0€ X5 Mafi(y) + X0y 1j0g;(y) + Xy 00k (y),
Y7mgi(v) 20, L % (y) 20,
AERSA>0, Y \Mi=1,ucR", u=0,9cRI.

(VD)

We denote by Q the set of all feasible solutions in the vector Mond-Weir dual problem
(VD) and, moreover, let ¥ be the projection of the set Q on X, that is,
Y={yeX:(Aud) €}
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Theorem 5 (Weak duality). Let x and (y,A,u,®) be any feasible solutions for
the problems (VP) and (VD), respectively. Further, assume that f;, i € I, is loc-
ally Lipschitz (®,py)"-invex at y on DUY, Y u;g; is locally Lipschitz (®,p,)"-
invex at y on DUY, Y1 0;h, is locally Lipschitz (®,py)"-invex at y on DUY. If
Ll Py +Pg+Pn 2 0, then f (x) £ £(3).

Proof. We proceed by contradiction. Suppose, contrary to the result, that there
exist x € D and (y, A, u, %) € Q such that

fx)<f0). 4.1

By assumption, f;, i € 1, is locally Lipschitz (®,ps)"-invex at y on DUY. Hence, by
Definition 5, the following inequalities

£12)— i) 2 (23, Gpp)) i €1 42

hold for all z € DUY and for each &; € df;(y). Therefore, they are also satisfied for
z=2x € D. Thus, inequalities (4.2) yield

filx) = fi(y) 2 @ (x,3,(&i,pp)) i €L (4.3)
Combining (4.1) and (4.3), we have
D (x,y,(&i,pr)) <0,iel 4.4)

By assumptions, ZT:] u;gj is locally Lipschitz (®,p,)"-invex at y on DUY, Zle O hy
is locally Lipschitz (®, p,)"-invex at y on DUY. Hence, by Definition 5, the follow-
ing inequalities

Y wigi(x) = Y wigi(y) = @ (x,y, (Zujf;j,pg>>, (4.5)
J=1 j=1 j=1
q q q
Y Ochi(x) =Y Ouhi(y) = @ <x,y, (Z B:Grs Ph) ) (4.6)
=1 =1

=1
hold for each {; € dg;(y), j € J and ¢, € I, (y), t € T, respectively. By x € D and
(y, A, u,0) € Q, (4.5) and (4.6) yield, respectively,

j=1
q
P <x7y7 <Zﬂt€t7ph>>
t=1

By Definition 5, @ (x,y, ) is strictly quasi-convex on R""!. Then, by Proposition 1,
inequalities (4.4), (4.7) and (4.8) imply

K, (1T 1
D (xy | Y ZE+2 Y G+ Y v, (4.9)
i=1 3 3j:1 3::1

A

0. (4.8)
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Thus, (4.9) gives

1 k m q k
@ (x,y, 3 (Z MGit Y18+ ) i, Y P+ Pg +ph>> <0. (410
i=1 Jj=1 =1 i=1

Using (y, A, u,0) € Q again, the first constraint of dual problem (VD) gives

1 k
b (x,y,3 <0, Zkipﬁ+pg+ph>> <0. “4.11)
i=1

By Definition 5, it follows that ® (x,y, (0,a)) = 0 for any a € R,. Therefore, hypo-
thesis YX_; Mip . + pg + ps, = 0 implies that the following inequality

1 k
q)<x7y73<0’ szpf,"i‘pg'i‘ph)) 20
i=1

holds, contradicting (4.11). Hence, the proof of this theorem is completed. O

If a stronger (®,ps)"-invexity assumption is imposed on the objective functions
constituting considered vector optimization problems, then the following stronger
result can be established.

Theorem 6 (Weak duality). Ler x and (y,\,u,O) be feasible solutions for the
problems (VP) and (VD), respectively. Further, assume that f;, i € I, is locally
Lipschitz strictly (®,py)"-invex aty on DUY, YIL u;jg; is locally Lipschitz (®,p,)" -
invex at y on DUY, Y1, 9;h, is locally Lipschitz (®,pp)"-invex at y on DUY. If

Yi 1 Mg +Pg Py 2 0, then f(x) £ f(7)-

Theorem 7 (Strong duality). Let X be a weak Pareto solution (a Pareto solution)
of the primal multiobjective programming (VP) and all hypotheses of Theorem 2 be
satisfied at %. Then there exist h € R, i € R™ and & € R? such that (f,X,ﬁ,@) is feas-

ible in (VD) and the objective functions of (VP) and (VD) are equal at these points.
Further, if all hypotheses of the weak duality theorem (Theorem 5) are satisfied, then

(E,X,ﬁ,@) is a weakly efficient solution of a maximum type in (VD). If . > 0 and all

hypotheses of the weak duality theorem (Theorem 6) are satisfied, then (E,X,,ﬂ,@) is
an efficient solution of a maximum type for the vector Mond-Weir dual problem (VD).

Proof. By assumption, X € D is a weak Pareto optimal solution (a Pareto solution)
of the problem (VP) and the constraint qualification is satisfied at X. Then there
exist the Lagrange multipliers A € R¥, @ € R™ and © € RY such that the Karush-
Kuhn-Tucker necessary optimality conditions (3.3)-(3.5) are satisfied at x. Thus, the
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feasibility of (X,X,ﬁ,@) in (VD) follows from these necessary optimality conditions
and, moreover, X € D. Therefore, the objective functions of the problems (VP) and

(VD) are equal at x and (%,X,ﬁ, 5). Hence, weakly efficiency of a maximum type
of (X,X,,H, 5) for (VD) follows directly from weak duality (Theorem 5), whereas

efficiency of a maximum type of (i,X,ﬁ,ﬁ) follows from Theorem 6. U

Theorem 8 (Converse duality). Let (y,x,ﬁﬁ) be an efficient solution of a max-

imum type (a weakly efficient solution of a maximum type) for the vector mixed dual
problem (VD) such that y € D. Further, assume that f;, i € I, is (locally Lipschitz
(®,py)"-invex) locally Lipschitz strictly (®,ps)"-invex aty on DUY, Y7 fi;g; is
locally Lipschitz (®,pg)"-invex aty on DUY, Y'0_ b, is locally Lipschitz (®,p,)" -
invex at y on DUY. If ):;‘:1 Xipf-[. +pg+pr=0. Then y is an efficient solution
(a weakly efficient solution) of the considered multiobjective programming problem
(VP).

Proof. The proof of the theorem follows directly from weak duality (Theorem 5
or Theorem 6, respectively). g

5. CONCLUSIONS

In the paper, a new class of nonconvex nonsmooth multiobjective programming
problems is considered in which every component of functions involved is locally
Lipschitz (®,p)"-invex. Hence, the sufficient optimality conditions for weak effi-
ciency and efficiency and duality results in the sense of Mond-Weir have been estab-
lished for the considered nonconvex nonsmooth multiobjective programming prob-
lem under the concept of nondifferentiable (®,p)"-invexity introduced in the paper.
Note that the definition of nondifferentiable (®,p)"-invexity unifies many general-
ized convex notions earlier introduced in the literature (see Remark 1). In order to il-
lustrate the results established in the paper, some example of a nonconvex nonsmooth
multiobjective programming problem with nondifferentiable (®,p)"-invex functions
has been presented. It is interesting that not all functions constituting the considered
nonsmooth vector optimization problem have the fundamental property of the most
classes of generalized convex functions, namely that a stationary point of such a
function is also its global minimum. Thus, we have also shown that many gener-
alized convexity notions existing in the literature (that is, invexity [14], b-invexity
[17], F-convexity [10], univexity [18], r-invexity [3], V-invexity [19], V-r-invexity
[5], G-invexity [4]) may fail in proving the sufficiency of the Karush-Kuhn-Tucker
necessary optimality conditions and Mond-Weir duality results for the considered
nonconvex nonsmooth vector optimization problem. Thus, the concept of nondif-
ferentiable (®, p)"-invexity extend the class of nonconvex nonsmooth multiobjective



OPTIMALITY CONDITIONS AND DUALITY RESULTS 63

programming problems for which it is possible to prove the sufficiency of the Gener-
alized Karush-Kuhn-Tucker necessary optimality conditions and several duality the-
orems in the sense of Mond-Weir in comparison to similarly results proved under
other generalized convexity notions.
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Abstract. In this paper we deal with some Diophantine equations and present infinitely many
positive integer solutions for each one of them.
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1. INTRODUCTION

The Diophantine equations

Xyt =ut V" n=2,3,4
have been considered by many mathematicians. The case n = 2 was presented in
[13,14] while Euler [8] and Binet [3] considered the case n = 3. Parametric solutions

of the above equation for n = 4 can be found in [4, 10]. Some researches considered
more general Diophantine equations with more variables or with integer coefficients
that are not all equal to 1 [5-7, 11, 12].

In this paper, we deal with the equations

X3—Y2:X2—Z3,

X xydl=yt-v* (1.1)
and obtain infinitely many positive integer solutions for each one of them. We con-
sider the equation of the form

Am* + Bn* + Cp* + Dg* = Ar* + Bs* + Cr* + Du*, AB,.C,D€EZ,
introduce some linear transformations and set some special conditions on its coeffi-

cients. Some recent papers deal with the similar problems. In [9] the authors invest-
igate Diophantine equations of the form

TZZG(Y), X:(XUXZ)'“?XW!)?
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where m = 3 or m = 4 and G is a specific homogenous quintic form. The equations
%W+£ﬁ+imﬁzmﬁﬂﬂ%+fmﬁ, (12)
i=0 i=0
where m,n € NU {0} and a,b # 0, a;,b; are fixed arbitrary rational numbers are
studied in [2]. The theory of elliptic curves is used in order to solve (1.2) which is

transformed to a cubic or a quartic elliptic curve with a positive rank. In [1, Main
Theorem 2] authors prove that

n m b

ap j
Y pix =Y q;y/,
i=1 j=1

m,n,a;,b; €N, pj,q; €Z,i=1,...,n, j=1,...,m has a parametric solution and
infinitely many solutions in nonzero integers if there exists an i such that p; = 1
and (a;,a1a2 - aj—1ai41 - apbi1by -+ -by) = 1 or there exists a j such that gj=1and
(bj,ar---awby---bj_1bji1---by) = 1. In this article, even though linear transforma-
tions are also used, we introduce a different approach and some different conditions
on the integer coefficients in order to solve (1.1).

2. EQUATION X3 —Y2=Xx2-73
For start, we deal with the Diophantine equation
X —yri=x*-27. 2.1)

It is easily shown that equation (2.1) has infinitely many solutions
(X,Y,Z) = (1,n*,n*), n € N. The main task of our work in this section is to discover
whether there are more positive integer solutions of (2.1). We set

c=x%, d =y

and obtain
A tdd =204y = (¥ = (5)) (¥ + ()?)
= (0= yi) (& +2xyi = y*) (x+yi) (¥ = xyi = 7).
If we define
a—bi=(x+yi)(x>+xyi—y*) and  a+bi= (x—yi)(x* —xyi—y?),
we get
S+d=d>+p (2.2)
for a = x> — 2y?x and b = y*> — 2x?y. From (2.2) we obtain the equation
(@) + 07 = (2~ 220 + (0 —289)%
First we deal with the case

¥ =y =22, y#0
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and get
(2y—1)>—8x* = 1. (2.3)
After introducing y' = 2y — 1 in (2.3) a Pell equation
y2—8x? =1

is obtained. Some of its solutions are (y',x) = {(3,1),(17,6),(99,35),...}. Finally,
solutions of equation (2.3) are

(x,y) = {(1,2),(6,9),(35,50),... }.

The inequality x < y implies x*> — 2y*x < 0, so ¥ < 0. Because we deal with equation
of the form (2.1), we take |Y| and get infinitely many positive integer solutions

(X,Y,Z) = (y*, ¥ —2y%x, x%) = {(4,7,1), (81,756,36), (50%,132125,35%), ...}

of (2.1).
Alternatively, we get
2 _ 8x3
2x+1

8y

for y> = x> — 2y%x. Obviously, zijj: 1 € N if and only if (2x+ 1)[1 which happens

for only 2x+ 1 = 1 which implies x = 0, y = 0. This case is not considered. Cases

x% =x3—2y?x and x? = y> — 2x?y do not provide us with new solutions. Consequently,

(2.1) has infinitely many positive integer solutions of the form
(X.¥,2) = (2, ¥ = 2%, 22),
where (x,y) are solutions of equation (2.3).
Remark 1. It can be noticed that for X = Z equation (2.1) becomes
X2(2X —1) =72,

s0 X =Z = 2k*+2k+1, k € N will provide a solution. This approach can be gener-
alized by taking X = mZ, Y = nZ for m,n € N. We get

m? + n?
 omi41
and by fixing m we may yield some solutions. For example, if m = 4, then
n=7,32,33,58 (mod 65) will provide solutions. Similarily, for m = 9, we obtain
that n = 97,243,487,630 (mod 730) will provide solutions. This approach works
if m is a square, however we also have solutions for m = 28. Therefore, it may be
difficult to completely classify all the solutions here.
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3. EQUATION X3+ Y3 =U*—-Vv*
In this section we deal with the equation
X34y} =vut-v4 (3.1

It is easy to notice that (X,Y,U,V) = (m,—m,n,n) is a trivial solution of (3.1) for

m,n € N, while the smallest nontrivial solution of (3.1) is (X,Y,U,V) = (4,1,3,2).
Two different linear transformations are considered and for each one of them we

give a different class of infinitely many positive integer solutions of equation (3.1).

3.1. The First Method

Let
X = px+u, Y =gx—u, U=x+v, V =px—v, 3.2)
P,q,u,v € N. Introducing (3.2) into the initial equation (3.1), we get
ox* + B + % + 8x =0, (3.3)
where
4 3, 3 3
oa=p*—1, B=p’+q —4v—4p’y, 34

Y=73p*u—3q¢"u—6v> +6p*v?, 8=3pu*+3qu* — 4> —4pv:.
For 6 = 0 in (3.4), we obtain
3(p+q)u’ =4(p+ 1),
Additionally, we set u = >, v =t> and get p = 3g — 4. Finally, the following is
obtained
o = 81¢* — 432> + 864¢> — 7684 + 255,
B =4324%t> — 576t>q — 108¢> 4 252t> — 1084°1> + 284> + 144q — 64,

Y= 24483 + 54¢°t* — T2q13 — 144gt* +90r* + 483,

Let
y=6t>(q—1)(4g+9qt — 15t —8) = 0.
In that case, we have g = 195;: 48 and therefore (3.3) becomes

1166413 +23328¢> + 16128t + 3840 iy
X
(9t +4)*
N —52488¢% — 12830417 — 87480¢* 4-27216¢> + 6163212 + 27648t + 4096
X =

0.
(9t +4)*

We get
(9t +4)(2431* 43241 — 271> — 1921 — 64)

- 6(8172 + 108t + 40)
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and

v 267317 +55081* 4258913 — 194412 — 21121 — 512
6(81¢2 + 108t +40) ’

y_ 315987 +6156t* + 194713 — 30961% — 2496t — 512
6(8172 + 1087 +40) ’

U 21871 +4374t* + 170113 — 1596¢> — 13441 — 256
6(8112 + 108t +40) ’

v 21871 +4374t* +170113 —21841> — 21121 — 512
6(8112 + 108t + 40) '

(3.5)

After eliminating denominators in (3.5), we have

X =216(81¢> + 108t 4 40)> (2673t + 5508t* + 2589¢> — 1944¢> — 2112t — 512),
Y =216(81¢% + 108 +40)3 (3159 4+ 61561* + 194713 — 30961> — 2496t — 512),
U =36(81¢% + 108t +40)%(9¢ + 8)(243¢* +270t> — 511> — 132t — 32),

V =36(81¢> 4 108t +40)?(2187¢> +4374¢* +- 170173 — 218412 — 2112t — 512).
For ¢t = 1, the solutions of (3.1) are

(X,Y,U,V) = (16087625952048, 13379550896592, 9563979816, 65207230704 ),

while ¢t = 2 leads us to

(X,Y,U,V) = (7664511333888000, 8313869044224000,
1746900979200, 1696715481600) .

We get a positive integer solution (X,Y,U,V) of equation (3.1) for every ¢t € N. So,
the presented method generates infinitely many positive integer solutions of the initial
equation (3.1).

3.2. The Second Method

Again, we deal with (3.1) and start this new method by introducing a different
linear transformation in order to reach more (different) positive integer solutions. Let

X =u, Y =gx—u, U=x+u, V =px+u, (3.6)

D,q,u € N. Like in the previous subsection, introducing these linear transformations
into (3.3), leads us to the expression of the form

Ax* +Bx* +Cx* + Dx =0, (3.7)
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where

A:p4—1, B:q3—i—4p3u—4u,
22 2 2 3 3 2 (3-8)
C=6pu"—6u”—3q°u, D=4u’p—4u’ +3u’q.

We obtain u = %, p # 1 for D = 0. After introducing the latter expression into
(3.8) and canceling the denominators we get

A=8p —8p*—8p+8, B=84p—24p3q—84°+24q, C=214*p+ 184> +274*.

We obtain ¢ = —%( p+ 1) for C = 0. Under those conditions we get

9
A=p'-1, B=2(p+1)(p—1)°
and (3.7) becomes (p* — 1)x* + 3 (p+1)(p— 1)2x* = 0 where
_ 91 -p)
8(p*+1)

After plugging all of these results into (3.6) and canceling the denominators, we
finally get

X=18(p—1)°(p+1)(p*+1)%,
Y =9(p+1)(p>—6p+1)(p—1)*(p*+1)°,
U=9%((p*+3)(p—1)*(p*+1)%,
V=9@p*+1)(p°+1)*(p—1)*.

Remark 2. According to (3.9), X > 0 is satisfied for p € Z\{0,1}. Also, Y >0 s
satisfied for p € Z\{—1,0,1,2,3,4,5}. Therefore, by the introduced method we are
again able to generate infinitely many positive integer solutions of (3.1).

3.9

4. THE EQUATION X3 —Y3 =py*—-v*
In this section we deal with the equation
x}-y}=vut-v4 4.1)

If we introduce Y — —Y or X — —X in (3.1), it is clear that one gets solutions of
(4.1), but, as we mentioned earlier, we are interested only in positive integer solutions.
Therefore, we consider (3.1) and (4.1) as two different equations.

Clearly, (X,Y,U,V) = (1,n* 1,n%), n € N are trivial solutions of (4.1).

After introducing linear transformations

X = px+u, Y =gx+u, U=rx+u, V=u,
p,q,r,u € Ninto (4.1), we get the equation

Mx* +Nx* + Px> + Ox =0,
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where
M= —r4, N = p3 — q3 —4;’31,17 42)
P=3p*u—3¢°u—6r"u>, Q=73u’p—3utq—4u’r. .
If we set Q =0, it is easily obtained u = W. Plugging this new form of u into
(4.2), we get
_ 4 _ 2 2 2 — 9(p—q)*(2p+2q-3r)
M=—r*, N=(p—q)(p*+pg—3r+q*), p=22 P20 (43)

We obtain r = %(p +¢q) for 2p+2g —3r = 0. So, introducing the above expressions
into (4.3), we get

16 1
—51 (P =S (=9 (P +5pg+47)x =0,
_ 21(p—9)(P*+5pq+¢°)

16 (p+q)*

Finally, we define p? + 5pg + ¢*> — 16 = 0 which is a quadratic equation in p. So,

—5q+ /21> +64
pP= .
2

Let 21¢* +64 = r?, r € Z. Solution (g, ) = (0,8) is a trivial solution for this equation.

Therefore, considering r = mg + 8 and 21¢> + 64 = r* leads us to g = 211?’;’12 and
_ 4(m2r:21£);n1+21) or p= 4(m2271170::2+21). We get
_=27(m? —21)%(m* + 14m +21)
B 64(m? +6m-+21)*
for p = %. After canceling the denominators, we obtain

X = —9(m* + 14m+21)(m® — 6m> — 405m* — 3204m> — 8505m> — 2646m + 9261),
Y = 18(m® + 14m+21)(m® 4 24m’ + 171m* +720m> 4+ 3591m> + 10584m +9261),
U =27-2*-m(m* 4 14m+21)(m* + 10m +21), (4.4)
V =9(m* 4 6m+21)*(m* + 14m+21).

Some elementary analysis leads us to conclusion that X,Y > 0 for every m € N.
The described method generates infinitely many positive integer solutions (X,Y,U,V)
for the initial equation (4.1). Some of them are introduced in the following table.

m X Y U 1%

1 1783296 15780096 || 124416 | 254016
2 || 29712807 | 51631434 | 515160 | 653013
3 || 126531072 || 146686464 || 1399680 | 1492992
4 || 375132519 || 380970594 || 3093552 || 3114477
5 || 911771136 | 917584128 || 6013440 | 6030144
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Remark 3. If we apply the previous process by taking p =
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solutions are obtained.

4(m>—10m+21)
21—m?

, N0 new

Some basic calculations give us X,Y > 0 for m < —1 and these solutions are

already obtained for m > 0 in (4.4). This is shown in the following table. It is useful
to notice that, even though we get integer solutions in this case, we do not consider
negative ones because U,V are introduced with even powers in (4.1).

m X Y U Vv

—1| 1783296 15780096 || —124416 || 254016
—2 | 29712807 || 51631434 || —515160 | 653013
—3 || 126531072 || 146686464 || —1399680 || 1492992
—4 | 375132519 || 380970594 || —3093552 || 3114477
=5 || 911771136 || 917584128 || —6013440 || 6030144

5. THE EQUATION Am* 4 Bn* + Cp* + Dg* = Ar* + Bs* 4 Ct* + Du*
We deal with the equation of the form

Am* +Bn* +Cp* + Dg* = Ar* + Bs* +Ct* +Du*, AB,.C,DeZ. (5.1)
Let
m=Ix+1, n=>5x+k, p=4x+1, q = 2x,
r=Ix—1, s =4x—k, t=5x—1, u=x,

for k,l € N. Introducing these linear transformations into (5.1), one gets the equation
of the form

ax* +bx* + x> +dx =0, (5.2)
where
a = —396C + 15E +369B, b = 756Bk + 8AI® +756C,
¢ = —54C 4 54BK?, d = 8Al + 36Bk> 4 36C.
We set the conditions ¢ = d = 0 and get
9 Bk+C
C = Bk* and l= T (5.3)
Introducing (5.3) into (5.2) leads us to
_ 3(—123BA® + 123BK*A* — SEA?)x*
A2
~ 3(729B°k” 4 243B°k° 4 243B°K° + T29B°k® — 252Bk*A” — 252BA%k)x’ 0

A2
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and
_ 9Bk(—27B%kd — 81B%k” — 81B%k® — 27B%k> + 28A% + 28kA?)

A%(123Bk* —5E — 123B)
After plugging all results into (5.3) and cancelling the denominators, we get

m =2187B%k'> +8748B*k"" +13122B%'° 4 8748B*°
—4536B%k*A% — 2268B*k°A* + 2187B*k® — 2268B%k>A*
+246A°Bi> — 10A°E — 246A°B,

n =24k (—1215B°k® — 36458k’ — 3645B°k° — 12158k
+1137BA* + 1260BkA” + 123A°Bk* — 5A°E) ,

p =2A (—972B°k’ — 2916B°k® — 29168k’ — 972B°k°
+1008BkA* + 1131A%Bk* — SA’E — 123BA?)

q =36ABk(—27B*k® — 81B%k” — 81B*k® — 27B%k> + 28A% 4 28kA?),

r=—2187B*'> — 8748B*k'! — 13122B*k'° — 8748B*K°
+4536B%k* A% +2268B°k°A> — 2187B*k® 4 2268B%k>A*
+246A°Bi> — 10A°E — 246A°B,

s =2Ak (972B°k® +2916B°k” +2916B°k° + 972B°k” — 1131BA*
—1008BKkA* + 123A°Bk* — 5A’E)

t =2A (—1215B°k° — 1645B°k* — 16458 k7 — 1215B8°kS + 1260BkA*
+1137A’Bk* + 5A’E + 123BA?)

u =18ABk(—27B*® — 81B%*k” — 81B%k® — 27B*k> 4 28A% + 28kA?).

X

5.1. Numerical examples
We solve equation (5.1) of the form
m* 420t +2p* +5¢% = +25* + 214 + 50t
where A=1, B=2,C=2, D=5,s0k=1. According to (5.4), we obtain

m = 523534, n = 145490, p= 116402, g = 58176,
r = 523634, s = 116302, t = 145390, u = 39088

or
m= 261767, n="72745, p = 58201, g = 29088,
r=261817, s = 58151, t = 72695, u = 14544.

Let
3m* 4+ 2n* + 8p* +5¢% = 3r + 25 + 81 + 5u*.
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We have

m = 719753958, n = 99883476, p =79929882 q =39984192,
r=719676954, s = 80045388, t =99998982, u = 19992096

or

m = 13328777, n = 1849694, p = 1480183, q = 740448,
r=13327351, s = 1482322, t = 1851833, u=370224.

Remark 4. Even though the introduced method in Section 2 provides us with
the primitive solution of (2.1), methods for solving equations (3.1) and (4.1) do not
provide us with primitive solutions. In these particular cases, we can find some of
them using a few simple computer algorithms. For example,

(X,Y,U,V)=(4,15,10,9),(4,16,9,7),(14,23,16,15),
(20,31,14,5),(25,71,37,35), ...
are primitive integer solutions of (3.1) and
(X,Y,U,V)=(9,22,3,10),(10,25,2,11),(16,81,8,27),
(26,73,20,27),(57,58,3,10),(62,87,21,28),
(70,71,15,16),(79,92,18,25),(148,177,10,39),.....

are primitive integer solutions of (4.1). So, introducing a slightly different approach
could be a good starting point for our further research.
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1. INTRODUCTION

We start by giving some definitions that will be used throughout this paper.
For n > 1, the falling factorial denoted xZ is defined by

Mr=x(x—1)---(x—n+1),
and the central factorial x["], see [4,9], is defined by

= x(x+n/2—1)(x+n/2-2)-- (x—n/2+1).

We use the convention, x0 = x[0 = 1.

It is well-known that, for all non-negative integers n and k (k < n), Stirling numbers
of the second kind are defined as the coefficients S(n, k) in the expansion

K= f S(n,k)xk, (1.1)
k=0

Riordan, in his book [15], shows that, for all non-negative integers »n and k (k < n),
the central factorial numbers of the second kind are the coefficients T'(n,k) in the
expansion

=Y T(nk)xl. (1.2)
k=0
In combinatorics, the number of ways to partition a set of n elements into k
nonempty subsets are counted by Stirling numbers S(n,k), and the central factorial
numbers T (2n,2n — 2k) count the number of ways to place k rooks on a 3D-triangle
board of size (n—1), see [11].

© 2021 Miskolc University Press
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FIGURE 1. 3D-triangle board of size 3.

The coefficients S(n,k) and T (n, k) satisfy, respectively, the triangular recurrences
S(n,k) =kS(n—1,k)+S(n—1,k—1) (1<k<n) (1.3)
and
0\ 2
T (nk) = <2> T(n—2,k)+T(n—2,k—2) (2<k<n), (1.4)
where
S(n,k) =T (n,k) =0 for k >n, S(0,0) =7(0,0)=T7T(1,1)=1and T(1,0) =0.

S(n,k) and T (n,k) admit also the explicit expressions

k
sk = 1 Y17 () o (1.5
Yo i
rop— Ly (FY (k) 16
(m)—k!j_ZO( )(j><2 J)- (1.6)
n\k[0 1 2 3 4 5 6 01 23456
0 |1 01
10 1 110 1
2 101 1 200 0 1
3101 3 1 3]0 ;1 01
4101 7 6 1 410 0 1 0 1
510 1 1525 10 1 510 £ 0301
6 |0 1 31 90 65 15 1 6/0 01 05011
TABLE 1. The first few TABLE 2. The first few

values of S(n, k). values of T'(n, k).
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The usual difference operator A, the shift operator E* and the central difference
operator 0 are given respectively by

Af(x) = flx+1) = f(x),
E“f(x) = flx+a)

and

8f(x) = f(x+1/2) = f(x—1/2).
Riordan, [15], mentioned that the central factorial operator & satisfies the following
property

6fn<x> :nfn—l(x)7 (L.7)
where (f,(x))n>0 is a sequence of polynomials with fy(x) = 1.
We can also express & by means of both A and E?, see [9, 15], as follows:
8f(x) = AE™'2£(x). (1.8)

For more details about difference operators, we refer the reader to [9].

2. CENTRAL FUBINI-LIKE NUMBERS AND POLYNOMIALS

In 1975, Tanny [17], introduced the Fubini polynomials (or ordered Bell polyno-
mials) F,(x) by applying a linear transformation £ defined as

L(x") :=nlX".
The polynomials F,(x) are given by

Fp(x) == Z k!S(n,k)x*, 2.1)
k>0

according to,

n n n
Fo(x)=L(X")=L Z S(n k)t | =Y S(n,k)L(xk) = Z k!S(n, k)x*.
k=0 k=0
Putting x = 1 in (2) we get
n
Fy:=F,(1) =Y k!S(n,k), (2.2)
k=0

which is the n-th Fubini number.

The Fubini polynomial F,(x) has the exponential generating function given by, see

[17], i |
t
EFEx)—=———. 2.3
”;) n(x)n! 1—x(el—1) (2:3)
For more details concerning Fubini numbers and polynomials, see [3,6,8, 12,17, 18,
] and papers cited therein.
Now, we introduce the linear transformation Z as follows.
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Definition 1. For n > 0, we define the transformation
Z(xl") = nix, 24
Then, we have
n n n
z(x" =z| ), T(n,k)xM | = ) T(n,k) 2(x") = Y k!T (n, k)x*. (2.5)
k=0 k=0 k=0
And due to Formula (1.6), we are now able to introduce the main notion of the present
paper.
Definition 2. The n-th central Fubini-like polynomial is given by

n
Cu(x) := Y KIT (n,k)x. (2.6)
k=0
Setting x = 1, we obtain the central Fubini-like numbers,
n
€, =C,(1):= ) KIT(n,k). .7
k=0
The first central polynomials €, (x) are given in Table 3.
n [ € (x) 22€y, 41 (%)
011 X
1] 242 X+ 24x°
2 | 247 4+ 24x% X+ 2407 +1920x°
3 [ 2x% 4+ 120x% +720x° X+ 2184x + 67200x° 4 322560x7
4 | 2x% +504x* + 10080x° -+ 40320x3 | x + 19680x° + 1854720x° 4+ 27095040x7 + 92897280x°

TABLE 3. First value of €, (x).

The first few central Fubini-like numbers are

(€an)nz0 : 1,2,26,842,50906,4946282, 704888186, 138502957322, ...

(22"Cop i1 )n>0: 1,25,2161,391945,121866721,57890223865,38999338931281, ...

2.1. Exponential generating function

We begin by establishing the exponential generating function of the central Fubini-
like polynomials.

Theorem 1. The polynomials €,(x) have the following exponential generating

function
t" 1
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Proof. We have

Za: iZk‘Tnk Zk'kaTnk
b D0is0
from [15, p. 214] , we have

Z T(n, k (2smh(t/2))

therefore 1
" . k ok _
Y (En(x)n—! = ’;)(231nh(t/2)) K= T—2xsinh(1/2)°

O

Corollary 1. The sequence (€,,),>0 has the following exponential generating func-
tion
L 1

L& =1 —2sinh(t/2)

k=0

(2.9)

2.2. Explicit representations

In this subsection we propose some explicit formulas for the central Fubini-like
polynomials, we start by the derivative representation.

Proposition 1. The polynomials (€,(x)),>0 correspond to the higher derivative
expression

oo

Z 2xsmh t/2))

t=0
Proof. Let
J" = " > fm—n oo m
>t (Z Cm(x)m,> = Z Cm(x) (m_n)' = Z ¢n+m(x) :‘En(x)'
m=0 : =0 m=n “ =0 m=0 “li=0
Thus from Theorem 1 we get the result. [l

From Formula (1.6), it is clear that the following proposition holds.

Proposition 2. The central Fubini-like polynomials satisfy the following explicit
Sformula

Iiz)xkﬁ) ( ) (k/2—=j)".

Proof. Tt suffices to replace T (n, k) in Equation (2.6) by its explicit formula (Equa-
tion (1.6)),

n n k (k
SPICLUBEES W WEHU WICEEN
k=0 k=0 =0 J
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0

Theorem 2. For non-negative n, the following explicit representation holds true.

(x)zx:;l) <Z>§‘6<IJ‘> (_71)1{ —xZ < ) 0"9)€;(x),  (2.10)

where 8]0 /] = (1/2)" — (—1/2)"/.
The proof will depend on Lemma 1, Lemma 2 and Relation (1.8).
Lemma 1. For all polynomials p,(x) the following relation holds true.
Z(pa(x)) = xZ(3pa(x)).
Proof. We have
2y = ni = xn(n— DI = x2(nxl" 1) = xz(8x"),

as any polynomial can be written as sums of central factorials x". Thus, we have the
result. n

Lemma 2 (Tanny [17]). For all polynomials p,(x) we have

mmzfcﬁmy @11

k=0

Now we give the proof of Theorem 2,

Proof of Theorem 2. Using Lemma 1, Lemma 2 and setting p,(x) = x", we get

Z(x") = x2(5x") :xZ<AE_]/2x") :xZ(A(x_ %)n)

(B0 L DL

LR

% .
Using binomial product identity (Z) ( ) = <n J) (”) , we get the result. O
J

J k—j
Corollary 2. The central Fubini-like numbers satisfy
n—1 n )
C, =Y < ,)5[0”—f]¢,~. (2.12)
=0 \J

Now we give an explicit formula connecting the central Fubini-like polynomials
with Stirling numbers of the second kind S(n, k),
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Theorem 3. The central Fubini-like polynomials €, (x) satisfy

€, (x) :gk!xkg‘b(’;) <_2k>jS(n—j,k). (2.13)

Proof. From Theorem 1, we have
Z C (x)ﬁ — ;
=" n 1—2xsinh(/2)

Using the exponential form of 2xsinh (z/2) we get

" 1
C = — xk (—kt/2) 1 k‘
n;() "(x)n 1 —xe(~1/D (el — 1) kgz) € (¢ —1)
It is also known that .
" (e —1)
n=0
Therefore
Y €0 =Y Y ("‘)" i
an(X)— =) x°k! — ] = nk)—.
n=0 n k=0 n=0 2 n! n=0 n!
Then Cauchy’s product implies the identity. 0

Corollary 3. The central Fubini-like numbers €, satisfy

n n n —k J
C,=) k! — — j, k). 2.14
kZo;)@(z)S(”” @1
pd ji
2.3. Umbral representation

Umbral (or Blissard or symbolic) calculus originated as a method for discover-
ing and proving combinatorial identities in which subscripts are treated as powers.
Bell in [1] gave a postulational bases of this calculus. In this section we use the
following property given by Riordan [16]. As specified by the author in [16], "A
sequence ag,ay,... may be replaced by a°,a', ... with the exponents are treated as
powers during all formal operations, and only restored as indexes when operations
are completed”. Then when we have

a, = Z (Z) bicn—i

k=0
we can write it as
a, = (b+c)",
where b" = b, and ¢”" = ¢,. We note that »° and ¢° is not necessary equal to 1.
In the following theorem we use the umbral notation € (x) = €*(x) and €; = €*.

Theorem 4. Let n be a non-negative integer, for all real x we have
€, (x) = x[(€(x) +1/2)" = (€(x) —1/2)"].
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Proof. From Theorem 2 and using the umbral notation, a simple calculation gives
the umbral representation result. O

Corollary 4. For non-negative integer n, we have
C,=(C+1/2)"—(C—1/2)".
2.4. Parity

A function f(x) is said to be even when f(x) = f(—x) for all x and it is said to be
odd when f(x) = —f(—x).

Theorem 5. For all non-negative n and real variable x we have
C,(x) = (—1)"€Cy(—x).
Proof. Using the fact that the function f : # +— sinh(z) is odd, this gives G(x;t) =

G(—x;—t), then comparing the coefficients of " /n! in G(x;¢) and G(—x;—t) the
theorem follows. 0

Corollary 5. The polynomials €,(x) are odd if and only if n is odd.

Proof. Using Theorem 5, it suffices to replace n by 2k + 1 (resp. 2k) and establish
the property. U

2.5. Recurrences and derivatives of higher order

Now we are interested to derive some recurrences for €,(x) in terms of their de-
rivatives.
First, we deal with a recurrence of second order.

Theorem 6. For n > 2, the polynomials €,(x) satisfy the following recurrence
relation

C,(x) = 2xC, o (x) + G —|—4x3> (%) + (22 +x4> ().

Here €),(x) and €] (x) are respectively the first and second derivative of €,(x).

Proof. From Equation (1.4) we have

Ci(x) = Y KT (n,k)x*
k=0
n 1 n
=Y KTn—2k—2)x"+= 2KV (n— 2, k)x*
Z (n—2,k )x+4k:ZOk (n—2,k)x

n

!
(k+2)'T(n —2,k)x**? +§ (Z kk!T (n —2,k)xk)

»
et
[y}

k=0 k=0
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= x? <x2 ik!T(n—Z,k)xk> +§ (x (Z k!T(n—2,k)xk> )

k=0 k=0
—_— (szn,Q (x)) + j‘_ﬁ (x¢:’l—2(x))/

"

2
= 2%€, (x) + (§ +4¢) ;2@}+(2-£f> "),

this concludes the proof. g

In the next theorem we give a recurrence formula for the r-th derivative of €, (x).

Proposition 3. The r-th derivative of G(x;t), defined in (2.8), is given by

r |

auamnzgcmgmum—nh

Proof. Induction on r implies the equality. O

Theorem 7. Let €. (x) be the r-th derivative of €,(x). Then c (x) is given by

=R ()t () s

X = Jos gty Jk

Proof. Using Proposition 3, by applying Cauchy product and comparing the coef-
ficients of " /n!, we get the result. O

Corollary 6. The following equality holds for any real x:
n—1 n
XCZ (X) = Z (k) (Ek(x)Cn_k(x).
k=0
Proof. Setting r = 1 in Proposition 3, we get the first derivative of G(x;7) as
2sinh (5)  G(x;t)
(1 —2xsinh(%))2 X

iG(x;t) =

ax (G(X;t)_1)7

J ) — .4)2 .
xaG(x,t) =G(x;1)” — G(xs1),

2
N " "
Y60 = (gw)n!) Y

n=

then applying the Cauchy product in the right hand side and comparing the coeffi-
cients of t" /n! we get the result. U
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2.6. Integral representation

Integral representation is a fundamental property in analytic combinatorics. The
central Fubini-like polynomials can be represented as well.

Theorem 8. The polynomials €,(x) satisfy

2n! T sin(n0)
Culx) = =1 9.
W=7 "’/g [~ 2usinh (0/2)

Proof. We will use here the known identity, see [5],

! n ,
k' = %Im/ exp (ke™®) sin(1n0)08.
0
We have
Cu(x) = Y KT (n, k)
k=0
oo k n
) (o)
k=0  j=0 J/)\2
= K . ! ,
= Zxk Y (—1) <l;> 2nn'Im/Onexp ((k/2—j)e’9> sin(n6)00
k=0 j=0
! > , , k
= %Im /n sin(n0) Zxk exp (—];e’e> (exp () — 1) 00
0 k=0
_ %Im m sin(n0) 3.

T 0o 1—2xsinh(e®/2)

2.7. Determinantal representation

Several papers have been published on determinantal representations of many se-
quences as Bernoulli numbers, Euler numbers, ordered Bell numbers (or Fubini num-
bers), etc.

Komatsu and Ramirez in a recent paper gives the following theorem.

Theorem 9 (Komatsu & Ramirez [10]). Let (R(j)) >0 be a sequence, and let o,
be defined by the following determinantal expression for all n > 1:

R(1) 1
R(2)  R(1)

o, = 1 . (2.15)
R(n—1) R(n—2) R(1) 1
R(n) R(n—1) R(2) R(1)



ON CENTRAL FUBINI-LIKE NUMBERS AND POLYNOMIALS 87
Then we have

i DR, (n>1). (2.16)

We set ag = 1.
By applying the previous theorem we get

Theorem 10. Forn > 1, we have

R(1) 1
R(2) R(1)
C’;(,x | SR , 2.17)
' R(n—1) R(n—2) R(1) 1
R(n) R(n—1) R(2) R(1)

where

=== () - ()

Proof. From Theorem 2 we have,

j=0 j=1
€, (x) B < x ‘Cn—j(x)
TR Y Tt

C,(v)

n!

It suffices to set o, =

and R(j) =x (711.),‘/‘71 8[0/] to get the result. O
Remark 1. The function R(j) = 0 for j even.

Using Remark 1, we establish the following binomial convolution for the polyno-
mials €, (x).

Theorem 11. For n > 0 we have

/2] n+1
o1 (x) =x Z k<2k +1>¢n—2k(x)- (2.18)

Proof. From Remark | and using Formula (2.16) with a, = €,(x)/n! and

R(j) :x(flj)!jf1 ((%)]— (—%)1> we get the result. O

Remark 2. Formula (2.18) is better than result of Theorem 2 from a computational
point of view.
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2.8. Asymptotic result with respect to €,

Find an asymptotic behaviour of a sequence (a,),>0 means to find a second func-
tion depending on n simple than the expression of a, which gives a good approxima-
tion to the values of a, when n is large.

In this subsection, we are interested to obtaining the asymptotic behaviour of the
central Fubini-like numbers.

Let (an)n>0 be a sequence of non-negative real numbers, the asymptotic behaviour
ay is closely tied to the poles in G(z), where G(z) is the generating function of a,,,

G(z) = Z{)anzn.

Wilf, in his book [19] and Flajolet et al. in [7] gave a method to determine the
asymptotic behaviour @, which can be summarized in the following steps:
(1) Find the poles z9,z1, ...,z in G(z).
(2) Calculate the principal parts P(G(z),z;) at the dominant singularities z; (Which
have the smallest modulus R) as

P(G().a) = “ D,

where Res(G(z),z;) is the residue of G(z) at the pole z;.
(3) Set H(z) = Yo P(G(z),zi) then write H(z) as the expansion below,

H(z) = Z b,7".
n=0

(4) The sequence (b, ),—o is the asymptotic behaviour of a, when n is big enough,

l n
aann+0<(R,+8> ), N+ oo,

where R’ is the next smallest modulus of the poles.
For more details about singularities analysis method we refer to [7].

Remark 3. Poles zo,z1,...,z; are considered as simple poles (has a multiplicity
equal to 1).

Analytic methods of determining the asymptotic behavior of a sequence (a,), are
widely discussed on [2,7, 13, 14,19].

Theorem 12. The asymptotic behaviour of the €,, is given by
|
C, ~ n! 1
21/51og" " (9)

where ¢ is the Golden ratio.

+0((0.15732+¢)"), nr—s oo

Proof. Applying the previous steps in the generating function G(z) = T3snnia73) Sillh(z 72
gives
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(1) The poles of G(z) are

1++/5
2

z0 = —2log + 2im 4+ 4intk and z; = 2log + 4itk,

1+V5
2
with k € Z.
(2) By setting k = 0, the dominant singularity is z; = 21og (¢) (the modulus R =
0.96), then,

2
P(G(z),21) = — :
V/5(z—2log(9))
(3) Set H(z) = ——=——=—— , if we write H(z) as the expansion we get

V/5(z—2l0g(9))

1 n
1O L e

(4) The the next smallest modulus of the poles R' = 6.356..., then the asymptotic
behaviour of &, when 7 is big enough is,

n!

~ T L 0((0.15732+€)"), ns .
st ) O a

C,
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Abstract. Using the belongs to relation (€) and quasi-coincident with relation (q) between fuzzy
points and fuzzy sets, the notions of an (€, €)-fuzzy sub-hoop, an (€, € V g)-fuzzy sub-hoop and
a (g, €V q)-fuzzy sub-hoop are introduced, and several properties are investigated. Character-
izations of an (€, €)-fuzzy sub-hoop and an (€, € V g)-fuzzy sub-hoop are displayed. Relations
between an (€, €)-fuzzy sub-hoop, an (&€, €V g)-fuzzy sub-hoop and a (g, € V g)-fuzzy sub-hoop
are discussed. Conditions for a fuzzy set to be a (g, € \V ¢)-fuzzy sub-hoop are considered, and
condition for an (€, €V g)-fuzzy sub-hoop to be a (g, € V g)-fuzzy sub-hoop are provided.

2010 Mathematics Subject Classification: 03G25, 06A12, 06B99, 06D72.

Keywords: Sub-hoop, (€, €)-fuzzy sub-hoop, (€, € V q)-fuzzy sub-hoop, (g, € V q)-fuzzy sub-
hoop.

1. INTRODUCTION

After the introduction of the concept of a fuzzy set by Zadeh [18], several re-
searches were conducted on the generalizations of the concept of a fuzzy set. One
of the least satisfactory areas in the early development of fuzzy topology has been
that surrounding the concept of fuzzy point. In the original classical theory, where
values are taken in the closed unit interval I, it soon became apparent that, in order
to build up a reasonable theory, points should be defined as fuzzy singletons while
membership requires strict inequality. So crisp points, taking value 1, are excluded,
and fuzzy topology would seem not to include ge