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1 Introduction

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain with smooth boundary ∂Ω. We consider the

family of problems






−div
(

ϕn(|∇v|)
|∇v|

∇v
)

= λev in Ω,

v = 0 on ∂Ω,
(1.1)

where for each positive integer n, the mappings ϕn : R → R are odd, increasing homeomor-

phisms of class C1 satisfying Lieberman-type condition

N − 1 < ϕ−
n − 1 ≤

tϕ′
n(t)

ϕn(t)
≤ ϕ+

n − 1 < ∞, ∀ t ≥ 0 (1.2)

for some constants ϕ−
n and ϕ+

n with 1 < ϕ−
n ≤ ϕ+

n < ∞,

ϕ−
n → ∞ as n → ∞, (1.3)
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and such that

there exists a real constant β > 1 with the property that ϕ+
n ≤ βϕ−

n , ∀ n ≥ 1 (1.4)

and

lim
n→∞

ϕn(1)
1/ϕ−

n = 1. (1.5)

For some examples of functions satisfying conditions (1.2)–(1.5) the reader is referred to [5,

p. 4398]. Here we just point out the fact that in the particular case when ϕn(t) = |t|n−2t, n ≥ 2,

the differential operator involved in problem (1.1) is the n-Laplacian, which for sufficiently

smooth functions v is defined as ∆nv := div(|∇v|n−2∇v). In this particular case problem (1.1)

becomes
{

−∆nv = λev in Ω,

v = 0 on ∂Ω,
(1.6)

which has been extensively studied in the literature (see, e.g. [3, 7, 12, 14, 15, 18, 19, 32]). An

existence result concerning problem (1.6) for each given n > N and λ > 0 sufficiently small

was proved by Aguilar Crespo & Peral Alonso in [3] by using a fixed-point argument while

Mihăilescu et al. [32] showed a similar result by using variational techniques. Moreover, in

[32] was studied the asymptotic behavoir of solutions as n → ∞. More precisely, it was proved

that there exists λ⋆
> 0 (which does not depend on n) such that for each n > N and each

λ ∈ (0, λ⋆) problem (1.6) possesses a nonnegative solution un ∈ W1,n
0 (Ω) and the sequence of

solutions {un} converges uniformly in Ω , as n → ∞, to the unique viscosity solution of the

problem
{

min{|∇u| − 1,−∆∞u} = 0 in Ω,

u = 0 on ∂Ω ,
(1.7)

which is precisely the distance function to the boundary of the domain dist(·, ∂Ω) (see [26,

Lemma 6.10]). The result from [32] was extended to the case of equations involving variable

exponent growth conditions by Mihăilescu & Fărcăs, eanu in [14]. Motivated by these results

the goal of this paper is to investigate the asymptotic behaviour of the solutions of the family

of problems (1.1), as n → ∞, for λ > 0 sufficiently small. We will show that the results from

[32] and [14] continue to hold true in the case of the family of problems (1.1). In particular,

our results generalise the results from [32] and complement the results from [14].

The paper is organized as follows. In Section 2 we give the definitions of the Orlicz and

Orlicz–Sobolev spaces which represent the natural functional framework where the problems

of type (1.1) should be investigated. Section 3 is devoted to the proof of the existence of weak

solutions for problem (1.1) when λ is sufficiently small. Finally, in Section 4 we analyse the

asymptotic behavior of the sequence of solutions found in the previous section, as n → ∞,

and we prove its uniform convergence to the distance function to the boundary of the domain.

2 Orlicz and Orlicz–Sobolev spaces

In this section we provide a brief overview on the Orlicz and Orlicz–Sobolev spaces and we

recall the definitions and some of their main properties. For more details about these spaces

the reader can consult the books [2, 22, 33, 34] and papers [4, 9, 10, 20, 21].
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First, we will introduce the Orlicz spaces. We assume that the function ϕ is an odd,

increasing homeomorphism from R onto R of class C1. We define Φ : [0, ∞) → R by

Φ(t) =
∫ t

0
ϕ(s) ds.

Note that Φ is a Young function, that is Φ vanishes when t = 0, Φ is continuous, Φ is convex

and limt→∞ Φ(t) = ∞. Moreover, since Φ(0) = 0 if and only if t = 0, limt→0
Φ(t)

t = 0 and

limt→∞
Φ(t)

t = ∞, then Φ is called a N-function (see [1, 2]). Next, we define the function

Φ⋆ : [0, ∞) → R given by

Φ⋆(t) =
∫ t

0
ϕ−1(s) ds .

Φ⋆ is called the complementary function of Φ. The functions Φ and Φ⋆ satisfy

Φ⋆(t) = sup
s≥0

(st − Φ(s)) for any t ≥ 0.

We note that Φ⋆ is also a N-function, too.

Throughout this paper, we will assume that

0 < ϕ− − 1 ≤
tϕ

′
(t)

ϕ(t)
≤ ϕ+ − 1 < ∞, for all t > 0 (2.1)

for some positive constants ϕ− and ϕ+. By [28, Lemma 1.1] (see also [31, Lemma 2.1]) we

deduce that

1 < ϕ− ≤
tϕ(t)

Φ(t)
≤ ϕ+

< ∞, for all t > 0. (2.2)

By relation (2.2) it follows that for each t > 0 and s ∈ (0, 1] we have

− ln sϕ−
=
∫ t

st

ϕ−

τ
dτ ≤

∫ t

st

ϕ(τ)

Φ(τ)
dτ = ln Φ(t)− ln Φ(st) ≤

∫ t

st

ϕ+

τ
dτ = − ln sϕ+

or

sϕ+
Φ(t) ≤ Φ(st) ≤ sϕ−

Φ(t), ∀ t > 0, s ∈ (0, 1] . (2.3)

Similarly, for each t > 0 and s > 1 we have

ln sϕ−
=
∫ st

t

ϕ−

τ
dτ ≤

∫ st

t

ϕ(τ)

Φ(τ)
dτ = ln Φ(st)− ln Φ(t) ≤

∫ st

t

ϕ+

τ
dτ = ln sϕ+

or

sϕ−
Φ(t) ≤ Φ(st) ≤ sϕ+

Φ(t), ∀ t > 0, s > 1 . (2.4)

Inequalities (2.3) and (2.4) can be reformulated as follows

min{sϕ−
, sϕ+

}Φ(t) ≤ Φ(st) ≤ max{sϕ−
, sϕ+

}Φ(t) for any s, t > 0 . (2.5)

Similarly, by [31, Lemma 2.1] we deduce that

min{sϕ−−1, sϕ+−1}ϕ(t) ≤ ϕ(st) ≤ max{sϕ−−1, sϕ+−1}ϕ(t), ∀ s, t > 0. (2.6)

Next, if we let s = ϕ−1(t) then we have

t(ϕ−1)
′
(t)

ϕ−1(t)
=

ϕ(s)

ϕ′(s)s
.
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By (2.1) we deduce that

1

ϕ+ − 1
≤

t(ϕ−1)
′
(t)

ϕ−1(t)
≤

1

ϕ− − 1
, ∀ t > 0 .

The above relation implies that

1 <
ϕ+

ϕ+ − 1
≤

tϕ−1(t)

Φ⋆(t)
≤

ϕ−

ϕ− − 1
< ∞ for all t > 0. (2.7)

Examples. We point out some example of functions ϕ which are odd, increasing homeomor-

phism from R onto R, and ϕ and the corresponding primitive Φ satisfy condition (2.2) (see

[10, Examples 1–3, p. 243]):

1. ϕ(t) = |t|p−2t, Φ(t) = |t|p

p with p > 1 and ϕ− = ϕ+ = p.

2. ϕ(t) = log(1 + |t|r)|t|p−2t, Φ(t) = log(1 + |t|r) |t|
p

p − r
p

∫ |t|
0

sp+r−1

1+sr ds with p, r > 1 and

ϕ− = p, ϕ+ = p + r.

3. ϕ(t) = |t|p−2t
log(1+|t|)

for t 6= 0, ϕ(0) = 0, Φ(t) = |t|p

p log(1+|t|)
+ 1

p

∫ |t|
0

sp

(1+s)(log(1+s))2 ds with

p > 2 and ϕ− = p − 1, ϕ+ = p = lim inft→∞
log Φ(t)

log t .

For each bounded domain Ω ⊂ R
N , the Orlicz space LΦ(Ω) defined by the N-function Φ

(see [1, 2, 9]) is the set of real-valued measurable functions u : Ω → R such that

‖u‖LΦ(Ω) := sup

{

∫

Ω
u(x)v(x) dx;

∫

Ω
Φ⋆(|v(x)|) dx ≤ 1

}

< ∞.

Then, the Orlicz space LΦ(Ω) endowed with the Orlicz norm ‖ · ‖LΦ(Ω) is a Banach space and

its Orlicz norm ‖ · ‖LΦ(Ω) is equivalent to the so-called Luxemburg norm defined by

‖u‖Φ := inf

{

µ > 0 ;
∫

Ω
Φ

(

u(x)

µ

)

dx ≤ 1

}

. (2.8)

In the case of Orlicz spaces, the following relations hold true (see, e.g. [17, Lemma 2.1]):

‖u‖
ϕ+

Φ ≤
∫

Ω
Φ(|u(x)|) dx ≤ ‖u‖

ϕ−

Φ ∀ u ∈ LΦ(Ω) with ‖u‖Φ < 1, (2.9)

‖u‖
ϕ−

Φ ≤
∫

Ω
Φ(|u(x)|) dx ≤ ‖u‖

ϕ+

Φ ∀ u ∈ LΦ(Ω) with ‖u‖Φ > 1 (2.10)

and
∫

Ω
Φ(|u(x)|) dx = 1 ⇐⇒ ‖u‖Φ = 1, ∀ u ∈ LΦ(Ω). (2.11)

Next, we recall that for each bounded domain Ω ⊂ R
N , the Orlicz–Sobolev space W1,Φ(Ω)

defined by the N-function Φ is the set of all functions u such that u and its distributional

derivatives of order 1 lie in Orlicz space LΦ(Ω). More exactly, W1,Φ(Ω) is the space given by

W1,Φ(Ω) =

{

u ∈ LΦ(Ω);
∂u

∂xj
∈ LΦ(Ω), j ∈ {1, . . . , N}

}

.
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It is a Banach space with respect to the following norm

‖u‖1,Φ := ‖u‖Φ + ‖ |∇u| ‖Φ.

By W1,Φ
0 (Ω) we denoted the closure of all functions of class C∞ with compact support over Ω

with respect to norm of W1,Φ(Ω), i.e.

W1,Φ
0 (Ω) := C∞

0 (Ω)
‖·‖1,Φ

.

Note that the norms ‖ · ‖1,Φ and ‖ · ‖
W1,Φ

0
:= ‖ |∇ · | ‖Φ are equivalent on the Orlicz–Sobolev

space W1,Φ
0 (Ω) (see [21, Lemma 5.7]).

Under conditions (2.2) and (2.7), Φ and Φ⋆ satisfy the ∆2-condition, i.e.

Φ(2t) ≤ CΦ(t), ∀ t ≥ 0, (2.12)

for some constant C > 0 (see [2, p. 232]). Therefore, LΦ(Ω), W1,Φ(Ω) and W1,Φ
0 (Ω) are

reflexive Banach spaces (see [2, Theorem 8.19] and [2, p. 232]).

Remark 2.1. For each real number p > 1 let ϕ(t) = |t|p−2t, t ∈ R. It can be shown that

ϕ− = ϕ+ = p as mentioned above in Example 1 and the corresponding Orlicz space LΦ(Ω)

reduces to the classical Lebesgue space Lp(Ω) while the Orlicz–Sobolev spaces W1,Φ(Ω) and

W1,Φ
0 (Ω) become the classical Sobolev spaces W1,p(Ω) and W

1,p
0 (Ω), respectively. Note also that

by [2, Theorem 8.12] the Orlicz space LΦ(Ω) is continuously embedded in the Lebesgue spaces

Lq(Ω) for each q ∈ (1, ϕ−].

3 Variational solutions for problem (1.1)

In this section we will show that there exists a certain constant λ⋆
> 0 (independent of n) such

that for each λ ∈ (0, λ⋆) problem (1.1) possesses a nonnegative weak solution for each integer

n ≥ 1.

We start by introducing the following notations: for each positive integer n we denote by

Φn a primitive of the function ϕn. More precisely, we define Φn : [0, ∞) → R by

Φn(t) :=
∫ t

0
ϕn(s) ds .

Definition 3.1. We say that vn is a weak solution of problem (1.1) if vn ∈ W1,Φn
0 (Ω) and the

following relation holds true

∫

Ω

ϕn(|∇vn|)

|∇vn|
∇vn∇w dx = λ

∫

Ω
evn w dx, ∀ w ∈ W1,Φn

0 (Ω). (3.1)

Note that the integral from the right-hand side of relation (3.1) is well-defined since

the Orlicz–Sobolev space W1,Φn
0 (Ω) is continuously embedded in the classical Sobolev space

W
1,ϕ−

n
0 (Ω) (see, e.g. [2, Theorem 8.12]) and for ϕ−

n > N we have W
1,ϕ−

n
0 (Ω) ⊂ L∞(Ω). Moreover,

we recall that Morrey’s inequality holds true, i.e. there exists a positive constant Cn such that

‖v‖L∞(Ω) ≤ Cn‖ |∇v| ‖
Lϕ−n (Ω)

, ∀ v ∈ W
1,ϕ−

n
0 (Ω) . (3.2)
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By [8, Proposition 3.1] we know that we can choose Cn as follows

Cn := ϕ−
n |B(0, 1)|

− 1

ϕ−n N
−

N(ϕ−n +1)

(ϕ−n )2 (ϕ−
n − 1)

N(ϕ−n −1)

(ϕ−n )2 (ϕ−
n − N)

N−(ϕ−n )2

(ϕ−n )2 [λ1(ϕ−
n )]

N−ϕ−n
(ϕ−n )2 , (3.3)

where |B(0, 1)| is the volume of the unit ball in R
N and for each real number p ∈ (1, ∞), λ1(p)

denotes the first eigenvalue for the p-Laplace operator with homogeneous Dirichlet boundary

conditions, i.e.

λ1(p) := inf
u∈C∞

0 (Ω)\{0}

∫

Ω
|∇u|p dx

∫

Ω
|u|p dx

, ∀ p ∈ (1, ∞).

By [8, Proposition 3.1] (see also [13, Theorem 3.2] for a similar result) it is well known that

lim
n→∞

Cn = ‖dist(·, ∂Ω)‖L∞(Ω) , (3.4)

where dist(x, ∂Ω) := infy∈∂Ω |x − y|, ∀ x ∈ Ω, stands for the distance function to the boundary

of Ω.

For each positive integer n and each positive real number λ we introduce the Euler–

Lagrange functional associated to problem (1.1) as Jn,λ : W1,Φn
0 (Ω) → R defined by

Jn,λ(v) :=
∫

Ω
Φn(|∇v|) dx − λ

∫

Ω
ev dx, ∀ v ∈ W1,Φn

0 (Ω) .

Standard arguments can be used in order to show that Jn,λ ∈ C1(W1,Φn
0 (Ω), R) and

〈J
′

n,λ(v), w〉 =
∫

Ω

ϕn(|∇v|)

|∇v|
∇v∇w dx − λ

∫

Ω
evw dx, ∀ v, w ∈ W1,Φn

0 (Ω) .

Thus, it is clear that vn is a weak solution of (1.1) if and only if vn is a critical point of

functional Jn,λ.

We point out that we cannot find critical points of Jn,λ by using the Direct Method in the

Calculus of Variations since in the case of our problem Jn,λ is not coercive. For that reason we

propose an analysis of problem (1.1) based on Ekeland’s Variational Principle in order to find

critical points of Jn,λ.

For each positive integer n we denote

λ⋆

n :=
1

2|Ω|
e
−Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

, (3.5)

where Cn is the constant given by relation (3.3) and |Ω| stands for the N-dimensional Lebesgue

measure of Ω. The starting point of our approach is the following lemma.

Lemma 3.2. For each positive integer n let λ⋆

n be given by relation (3.5). Then for each λ ∈ (0, λ⋆

n)

we have

Jn,λ(v) ≥
1

2
, ∀ v ∈ W1,Φn

0 (Ω) with ‖v‖
W1,Φn

0
= 1 .

Proof. Let n be a positive integer arbitrary fixed. By relation (2.5) we get that Φn(s) ≥

Φn(1)sϕ−
n , for all s > 1 and thus,

sϕ−
n ≤ 1 +

Φn(s)

Φn(1)
, ∀ s ≥ 0.
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Using this fact we deduce that

∫

Ω
|∇v|ϕ

−
n dx ≤ |Ω|+

1

Φn(1)

∫

Ω
Φn(|∇v|) dx, ∀ v ∈ W1,Φn

0 (Ω). (3.6)

By the above inequality, and since for each v ∈ W1,Φn
0 (Ω) with ‖v‖

W1,Φn
0

:= ‖ |∇v| ‖Φn = 1 we

have
∫

Ω
Φn(|∇v|) dx = 1 (via relation (2.11)), it results

‖ |∇v| ‖
Lϕ−n (Ω)

≤

[

|Ω|+
1

Φn(1)

]1/ϕ−
n

, ∀ v ∈ W1,Φn
0 (Ω) with ‖v‖

W1,Φn
0

= 1. (3.7)

Next, taking into account that W1,Φn
0 (Ω) is continuously embedded in W

1,ϕ−
n

0 (Ω) and using

the fact that ϕ−
n > N and Morrey’s inequality (3.2) we obtain

Jn,λ(v) =
∫

Ω
Φn(|∇v|) dx − λ

∫

Ω
ev dx

≥ 1 − λ|Ω|e‖v‖L∞(Ω)

≥ 1 − λ|Ω|e
Cn‖ |∇v| ‖

Lϕ−n (Ω) , ∀ v ∈ W1,Φn
0 (Ω) with ‖v‖

W1,Φn
0

= 1.

Then for each λ ∈ (0, λ⋆

n), combining the above estimates with relation (3.7) we get

Jn,λ(v) ≥ 1 − λ|Ω|e
Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

≥ 1 − λ⋆

n|Ω|e
Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

=
1

2
,

for all v ∈ W1,Φn
0 (Ω) with ‖v‖

W1,Φn
0

= 1. The proof of the lemma is complete.

Lemma 3.3. For each positive integer n let λ⋆

n be given by relation (3.5). Define

λ⋆ := inf
n∈N∗

λ⋆

n . (3.8)

Then λ⋆
> 0.

Proof. First, we show that there exists a positive constant K > 0 such that

[

|Ω|+
1

Φn(1)

]1/ϕ−
n

< K, ∀ n ≥ 1 . (3.9)

Indeed, since by (1.5) we have

lim
n→∞

ϕn(1)
1/ϕ−

n = 1 ,

it yields that for each positive integer n large enough we get

1

2
≤ ϕn(1)

1/ϕ−
n ,

which implies that
1

ϕn(1)
≤ 2ϕ−

n .

By (1.2) (via (2.1) and (2.2)) we find that for each positive integer n large enough the following

inequalities hold true
1

Φn(1)
≤

ϕ+
n

ϕn(1)
≤ ϕ+

n 2ϕ−
n ≤ βϕ−

n 2ϕ−
n .
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Using the above relations we deduce that for each positive integer n large enough we obtain

[

|Ω|+
1

Φn(1)

]1/ϕ−
n

≤
[

|Ω|+ βϕ−
n 2ϕ−

n

]1/ϕ−
n
≤
(

βϕ−
n 2ϕ−

n +1
)1/ϕ−

n
.

Now, taking into account the fact that limn→∞

(

βϕ−
n 2ϕ−

n +1
)1/ϕ−

n = 2, the above approximations

imply that relation (3.9) holds true.

Next, using (3.9) and the expression of λ⋆

n we infer that

λ⋆

n =
1

2|Ω|
e
−Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

>
1

2|Ω|
e−KCn , ∀ n ≥ 1 .

Recalling that limn→∞ Cn = ‖dist(·, ∂Ω)‖L∞(Ω) (by (3.4)) and taking into account that function

(1, ∞) ∋ p −→ λ1(p) is continuous (see, Lindqvist [29] or Huang [23]) we conclude from the

above estimates that λ⋆ = infn∈N∗ λ⋆

n > 0. The proof of Lemma 3.3 is complete.

The main goal of this section is to prove the existence of weak solutions of problem (1.1)

for each positive integer n. This result is the core of the following theorem.

Theorem 3.4. Let λ⋆
> 0 be given by (3.8). Then for each λ ∈ (0, λ⋆) and each n ∈ N

⋆, problem

(1.1) has a nonnegative solution vn ∈ B1(0) ⊂ W1,Φn
0 (Ω) identified by Jn,λ(vn) = inf

B1(0)
Jn,λ, where

B1(0) is the unit ball centered at the origin in the Orlicz–Sobolev space W1,Φn
0 (Ω).

Proof. We consider λ ∈ (0, λ⋆) and n ∈ N
⋆ arbitary fixed. For each v ∈ W1,Φn

0 (Ω) with

‖v‖
W1,Φn

0
≤ 1, in view of relations (2.9) and (2.11), we have

‖v‖
ϕ−

n

W1,Φn
0

≥
∫

Ω
Φn(|∇v|) dx ≥ ‖v‖

ϕ+
n

W1,Φn
0

. (3.10)

Thus, taking into account (3.10), Morrey’s inequality (3.2) and relation (3.6), for each v ∈

B1(0) ⊂ W1,Φn
0 (Ω) we obtain

Jn,λ(v) =
∫

Ω
Φn(|∇v|) dx − λ

∫

Ω
ev dx

≥ ‖v‖
ϕ+

n

W1,Φn
0

− λ|Ω|e‖v‖L∞(Ω)

≥ −λ|Ω|e
Cn‖ |∇v| ‖

Lϕ−n (Ω)

≥ −λ|Ω|e
Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

.

Computing Jn,λ(0) = −λ|Ω| we deduce that

Jn,λ(0) < 0

while by Lemma 3.2 we get

inf
∂B1(0)

Jn,λ ≥
1

2
> 0,

which imply that

γn := inf
B1(0)

Jn,λ ∈ (−∞, 0) .
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We consider ǫ > 0 such that

ǫ < inf
∂B1(0)

Jn,λ − inf
B1(0)

Jn,λ. (3.11)

Ekeland’s variational principle applied to Jn,λ restricted to B1(0) provides the existence of

vǫ ∈ B1(0) having the properties

i) Jn,λ(vǫ) < inf
B1(0)

Jn,λ + ǫ,

ii) Jn,λ(vǫ) < Jn,λ(v) + ǫ ‖v − vǫ‖W1,Φn
0

for all v 6= vǫ .

Since inf
B1(0)

Jn,λ ≤ infB1(0) Jn,λ and ǫ is chosen small such that (3.11) holds true, using relation

i) above we arrive at

Jn,λ(vǫ) < inf
B1(0)

Jn,λ + ǫ ≤ inf
B1(0)

Jn,λ + ǫ < inf
∂B1(0)

Jn,λ ,

from which we deduce that vǫ is not an element on the boundary of the unit ball of space

W1,Φn
0 (Ω), vǫ /∈ ∂B1(0), and consequently, vǫ is an element in the interior of this ball, that

means vǫ ∈ B1(0).

Next, we focus on the functional Fn,λ : B1(0) → R defined by Fn,λ(v) = Jn,λ(v) +

ǫ ‖v − vǫ‖W1,Φn
0

. Obviously, vǫ is a minimum point of Fn,λ (via ii)) that infers

Fn,λ(vǫ + tw)− Fn,λ(vǫ)

t
≥ 0

for small t > 0 and any w ∈ B1(0). Computing the above relation we find

Jn,λ(vǫ + tw)− Jn,λ(vǫ)

t
+ ǫ ‖w‖

W1,Φn
0

≥ 0

and then passing to the limit as t → 0+ it yields that 〈J
′

n,λ(vǫ), w〉+ ǫ ‖w‖
W1,Φn

0
≥ 0 that implies

‖J
′

n,λ(vǫ)‖(W1,Φn
0 (Ω))⋆ ≤ ǫ, where (W1,Φn

0 (Ω))⋆ is the dual space of W1,Φn
0 (Ω).

In consideration of that, we draw to the conclusion that there exists a sequence {vm}m ⊂

B1(0) such that

lim
m→∞

Jn,λ(vm) = γn and lim
m→∞

J
′

n,λ(vm) = 0 . (3.12)

The sequence {vm}m is certainly bounded in W1,Φn
0 (Ω) since vm ∈ B1(0) for all m ∈ N

⋆ and

this fact induces the existence of vn ∈ W1,Φn
0 (Ω) such that, up to a subsequence, {vm}m con-

verges weakly to vn in W1,Φn
0 (Ω) and uniformly in Ω, since ϕ−

n > N, as m → ∞. Furthermore,

we infer that

lim
m→∞

∫

Ω
evm(vm − vn) dx = 0

and

lim
m→∞

〈J
′

n,λ(vm), vm − vn〉 = 0 ,

which imply that

lim
m→∞

∫

Ω

ϕn(|∇vm|)

|∇vm|
∇vm∇(vm − vn) dx = 0. (3.13)

Owing to the weak convergence of sequence {vm}m to vn in W1,Φn
0 (Ω), as m → ∞, we have

that

lim
m→∞

〈J
′

n,λ(vn), vm − vn〉 = 0
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and it follows that

lim
m→∞

∫

Ω

ϕn(|∇vn|)

|∇vn|
∇vn∇(vm − vn) dx = 0. (3.14)

Assembling relations (3.13) and (3.14), we conclude that

lim
m→∞

∫

Ω

[

ϕn(|∇vm|)

|∇vm|
∇vm −

ϕn(|∇vn|)

|∇vn|
∇vn

]

∇(vm − vn) dx = 0. (3.15)

By [16, Lemma 3.2] we know that there exists a positive constant kn such that

[

ϕn(|ξ|)

|ξ|
ξ −

ϕn(|η|)

|η|
η

]

· (ξ − η) ≥ kn
[Φn(|ξ − η|)]

ϕ−n +2

ϕ−n +1

[Φn(|ξ|) + Φn(|η|)]
1/(ϕ−

n +1)
, ∀ ξ, η ∈ R

N , ξ 6= η.

In our case, we established that there exist constant kn > 0 so that

∫

Ω

[

ϕn(|∇vm|)

|∇vm|
∇vm −

ϕn(|∇vn|)

|∇vn|
∇vn

]

(∇vm −∇vn) dx

≥ kn

∫

Ω

[Φn(|∇vm −∇vn|)]
ϕ−n +2

ϕ−n +1

[Φn(|∇vm|) + Φn(|∇vn|)]
1/(ϕ−

n +1)
dx.

Due to relation (3.15) we deduce that

lim
m→∞

∫

Ω
Φn(|∇(vm − vn)|)

[

Φn(|∇(vm − vn)|)

Φn(|∇vm|) + Φn(|∇vn|)

]1/(ϕ−
n +1)

dx = 0.

Since Φn is a convex function we obtain by relation (2.5) that

Φn(|∇(vm − vn)|) ≤
Φn(2|∇vm|) + Φn(2|∇vn|)

2
≤ 2ϕ+

n −1 [Φn(|∇vm|) + Φn(|∇vn|)] .

Using assumption (1.4), the last two relations require

lim
m→∞

∫

Ω
Φn(|∇(vm − vn)|) dx = 0 ,

and (2.9) generates

lim
m→∞

‖vm − vn‖W1,Φn
0

= 0 .

That being the case, {vm}m converges strongly to vn in W1,Φn
0 (Ω) as m → ∞. Hence, relation

(3.12) contribute to

Jn,λ(vn) = γn < 0 and J
′

n,λ(vn) = 0 . (3.16)

As a result, vn is the minimizer of Jn,λ on B1(0), and also vn is a critical point of the functional

Jn,λ. Of course, vn is really a weak solution of (1.1). Finally, note that Jn,λ(|v|) ≤ Jn,λ(v) for

any v ∈ W1,Φn
0 (Ω) and for this reason vn is a nonnegative function on Ω.

The proof of Theorem 3.4 is complete.
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4 The asymptotic behavior of the sequence of solutions {vn}n of

problem (1.1) given by Theorem 3.4 as n → ∞

The goal of this section is to prove the following result.

Theorem 4.1. Let λ⋆
> 0 be given by (3.8). For each λ ∈ (0, λ⋆) and each n ∈ N

⋆ we denote by

vn the nonnegative weak solution of problem (1.1) given by Theorem 3.4. The sequence {vn} converges

uniformly in Ω to dist(·, ∂Ω), the distance function to the boundary of Ω.

In order to prove Theorem 4.1 we first establish the uniform Hölder estimates for the weak

solutions of (1.1).

Lemma 4.2. Let λ⋆
> 0 be given by (3.8). Fix λ ∈ (0, λ⋆) and let vn be the nonnegative solution of

problem (1.1) given by Theorem 3.4. Then there is a subsequence {vn} which converges uniformly in

Ω, as n → ∞, to a continuous function v∞ ∈ C(Ω) with v∞ ≥ 0 in Ω and v∞ = 0 on ∂Ω.

Proof. Let q ≥ N be an arbitrary real number. By (1.3) we can choose q < ϕ−
n for sufficiently

large positive integer n. Using Hölder’s inequality, relation (3.6), recalling that vn ∈ B1(0) ⊂

W1,Φn
0 (Ω) and taking into account (2.9) we have

(

∫

Ω
|∇vn|

q dx

)1/q

≤

(

∫

Ω
|∇vn|

ϕ−
n dx

)1/ϕ−
n

|Ω|1/q−1/ϕ−
n

≤

[

|Ω|+
1

Φn(1)

∫

Ω
Φn(|∇vn|) dx

]1/ϕ−
n

|Ω|1/q−1/ϕ−
n

≤

[

|Ω|+
1

Φn(1)
‖vn‖

ϕ−
n

W1,Φn
0

]1/ϕ−
n

|Ω|1/q−1/ϕ−
n

≤

[

|Ω|+
1

Φn(1)

]1/ϕ−
n

|Ω|1/q−1/ϕ−
n .

Thereupon, using (3.9) we find that sequence {|∇vn|} is uniformly bounded in Lq(Ω). It

is clear that q > N ensures that the embedding of W
1,q
0 (Ω) into C(Ω) is compact. Keeping in

mind the reflexivity of the Sobolev space W
1,q
0 (Ω) we deduce that there exists a subsequence

(not relabelled) of {vn} and a function v∞ ∈ C(Ω) such that vn ⇀ v∞ weakly in W
1,q
0 (Ω) and

vn → v∞ uniformly in Ω as n → ∞. In addition, the facts that vn ≥ 0 in Ω and vn = 0 on

∂Ω for each ϕ−
n > N hint that v∞ ≥ 0 in Ω and v∞ = 0 on ∂Ω. The proof of Lemma 4.2 is

complete.

In Theorem 4.5 below we show that function v∞ given by Lemma 4.2 is the solution in the

viscosity sense (see, Crandall, Ishii & Lions [11]) of a certain limiting problem. Accordingly,

we adopt the usual strategy of first proving that continuous weak solutions of problem (1.1) at

level n are indeed solutions in the viscosity sense. Before recalling the definition of viscosity

solutions for this type of problems, let us note that if we assume for a moment that the

solutions vn of problem (1.1) are sufficiently smooth so that we can perform the differentiation

in the PDE

−div

(

ϕn(|∇vn|)

|∇vn|
∇vn

)

= λevn , in Ω,

we get

−
ϕn(|∇vn|)

|∇vn|
∆vn −

|∇vn|ϕ′
n(|∇vn|)− ϕn(|∇vn|)

|∇vn|3
∆∞vn = λevn , in Ω, (4.1)
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where ∆ stands for the Laplace operator, ∆v := Trace(D2v) = ∑
N
i=1

∂2v
∂x2

i

and ∆∞ stands for the

∞-Laplace operator,

∆∞v := 〈D2v∇v,∇v〉 =
N

∑
i,j=1

∂v

∂xi

∂v

∂xj

∂2v

∂xi∂xj
,

while D2v denotes the Hessian matrix of v.

Remark that (4.1) can be reformulated as

Hn(vn,∇vn, D2vn) = 0, in Ω

with function Hn defined as follows

Hn(y, z, S) := −
ϕn(|z|)

|z|
Trace S −

|z|ϕ′
n(|z|)− ϕn(|z|)

|z|3
〈Sz, z〉 − λey,

where y ∈ R, z is a vector in R
N and S stands for a real symmetric matrix in M

N×N .

Since our main objective in this section is the asymptotic analysis of solutions {vn} as

n → ∞, we are now ready to give the definition of viscosity solutions for the homogeneous

Dirichlet boundary value problem associated to degenerate elliptic PDE of the type

{

Hn(v,∇v, D2v) = 0 in Ω,

v = 0 on ∂Ω.
(4.2)

Definition 4.3.

i) An upper semicontinuous function v is a viscosity subsolution of problem (4.2) if v ≤ 0 on

∂Ω and, whenever x0 ∈ Ω and Ψ ∈ C2(Ω) are such that v(x0) = Ψ(x0) and v(x) < Ψ(x)

if x ∈ B(x0, r) \ {x0} for some r > 0, we have Hn(Ψ(x0),∇Ψ(x0), D2Ψ(x0)) ≤ 0.

ii) A lower semicontinuous function v is a viscosity supersolution of problem (4.2) if v ≥ 0 on

∂Ω and, whenever x0 ∈ Ω and Υ ∈ C2(Ω) are such that v(x0) = Υ(x0) and v(x) > Υ(x)

if x ∈ B(x0, r) \ {x0} for some r > 0, we have Hn(Υ(x0),∇Υ(x0), D2Υ(x0)) ≥ 0.

iii) A continuous function v is a viscosity solution of problem (4.2) if it is both viscosity

supersolution and viscosity subsolution of problem (4.2).

In the sequel, functions Ψ and Υ stand for test functions touching the graph of v from

above and below, respectively.

Our goal now is to prove that any continuous weak solution of (1.1) is also viscosity

solution of (1.1) and in order to establish this result we follow the approach by Juutinen,

Lindqvist & Manfredi in [27, Lemma 1.8] (see also [35, Lemma 1] for a similar approach but

in the framework of inhomogeneous differential operators).

Lemma 4.4. A continuous weak solution of problem (1.1) is also a viscosity solution of (1.1).

Proof. Firstly, we prove that if vn is a continuous weak solution of problem (1.1) for a fixed

positive integer n, then it is a viscosity subsolution of problem (1.1). We begin by considering

x0
n ∈ Ω and a test function Ψn ∈ C2(Ω) such that vn(x0

n) = Ψn(x0
n) and vn − Ψn has a strict

local maximum at x0
n, that is vn(y) < Ψn(y) if y ∈ B(x0

n, ρ) \ {x0
n} for some ρ > 0.
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Next, we have to show that

−div

(

ϕn(|∇Ψn(x0
n)|)

|∇Ψn(x0
n)|

∇Ψn(x0
n)

)

≤ λeΨn(x0
n)

or

−
ϕn(|∇Ψn(x0

n)|)

|∇Ψn(x0
n)|

∆Ψn(x0
n)−

|∇Ψn(x0
n)|ϕ

′
n(|∇Ψn(x0

n)|)− ϕn(|∇Ψn(x0
n)|)

|∇Ψn(x0
n)|

3
∆∞Ψn(x0

n)≤ λeΨn(x0
n).

Arguing ad contrarium, suppose that this is not the case of the above assertion. In other words,

we admit that there exists a radius ρn > 0 such that B(x0
n, ρn) ⊂ Ω from the Euclidean space

R
N such that

−
ϕn(|∇Ψn(y)|)

|∇Ψn(y)|
∆Ψn(y)−

|∇Ψn(y)|ϕ′
n(|∇Ψn(y)|)− ϕn(|∇Ψn(y)|)

|∇Ψn(y)|3
∆∞Ψn(y) > λeΨn(y)

for all y ∈ B(x0
n, ρn). For ρn small enough, we may presume that vn − Ψn has a strict local

maximum at x0
n, that is vn(y) < Ψn(y) if y ∈ B(x0

n, ρn) \ {x0
n}. This fact implies that actually

sup
∂B(x0

n,ρn)

(vn − Ψn) < 0.

Thus, we may consider a perturbation of the test function Ψn defined as

wn(y) := Ψn(y) +
1

2
sup

y∈∂B(x0
n,ρn)

[vn − Ψn](y)

that has the properties

• wn(x0
n) < vn(x0

n);

• wn > vn on ∂B(x0
n, ρn) ;

• −div
( ϕn(|∇wn|)

|∇wn|
∇wn

)

> λeΨn in B(x0
n, ρn).

Multiplying the above inequality by the positive part of the function vn − wn, i.e.

(vn − wn)+, that vanishes on the boundary of the ball B(x0
n, ρn), and integrating on B(x0

n, ρn),

we get

∫

Mn

ϕn(|∇wn(x)|)

|∇wn(x)|
∇wn(x) [∇vn(x)−∇wn(x)] dx > λ

∫

Mn

eΨn(x) [vn(x)− wn(x)] dx, (4.3)

where the set Mn := {x ∈ B(x0
n, ρn); wn(x) < vn(x)}.

On the other hand, taking the test function in relation (3.1) to be

w : Ω → R, w(x) =

{

(vn − wn)+(x), if x ∈ B(x0
n, ρn),

0, if x ∈ Ω \ B(x0
n, ρn),

we obtain
∫

B(x0
n,ρn)

ϕn(|∇vn(x)|)

|∇vn(x)|
∇vn(x) ∇(vn − wn)

+(x) dx = λ
∫

B(x0
n,ρn)

evn(x)(vn − wn)
+(x) dx

or
∫

Mn

ϕn(|∇vn(x)|)

|∇vn(x)|
∇vn(x) ∇(vn − wn)(x) dx = λ

∫

Mn

evn(x)(vn − wn)(x) dx
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since vn ≤ wn in the ball B(x0
n, ρn) outside Mn.

Applying the subtraction of the above equality from inequality (4.3) it produces

∫

Mn

[

ϕn(|∇wn|)

|∇wn|
∇wn −

ϕn(|∇vn|)

|∇vn|
∇vn

]

(∇vn −∇wn) dx

> λ
∫

Mn

(

eΨn − evn

)

(vn − wn) dx ≥ 0 (4.4)

with the aid of the facts that vn < Ψn on B(x0
n, ρn) \ {x0

n} and wn < vn on Mn ⊂ B(x0
n, ρn).

Cauchy–Schwarz inequality implies

∫

Mn

[

ϕn(|∇vn|)− ϕn(|∇wn|)
]

(|∇vn| − |∇wn|)dx

≤
∫

Mn

[

ϕn(|∇vn|)

|∇vn|
∇vn −

ϕn(|∇wn|)

|∇wn|
∇wn

]

∇(vn − wn)dx

and combined with relation (4.4) leads to

∫

Mn

[

ϕn(|∇wn|)− ϕn(|∇vn|)
]

(|∇wn| − |∇vn|)dx < 0

which is a contradiction with the statement that ϕn is an increasing function on R. Actually,

it follows that vn is a viscosity subsolution of problem (1.1).

On the other hand, vn is a viscosity supersolution of problem (1.1) with similar arguments

as above adapted for this case and therefore, these details will be omitted. The proof of

Lemma 4.4 is complete.

By Lemma 4.2 we may select a subsequence {vn} that converges uniformly to v∞ in Ω

as n → ∞. Next, we will focus to identify the limit equation verified by v∞. The following

theorem encloses the main result regarding the asymptotic behavior of the solutions {vn} of

problem (1.1).

Theorem 4.5. Let v∞ be the function achieved as the uniform limit of a subsequence of {vn} in Lemma

4.2. Then v∞ is a solution in the viscosity sense of problem

{

min{−∆∞v, |∇v| − 1} = 0 in Ω,

v = 0 on ∂Ω .
(4.5)

Proof. First, we investigate if v∞ is a viscosity supersolution of (4.5). We consider y0 ∈ Ω

and a test function Υ ∈ C2(Ω) such that v∞ − Υ has a strict local minimum point at y0. We

claim that the uniform convergence of {vn} shown in Lemma 4.2 allows us to extract, up to

a subsequence, {yn} ⊂ Ω such that yn converges to y0 and moreover vn − Υ achieves a strict

local minimum point at yn. Indeed, since y0 is a strict minimum point of v∞ − Υ it follows

that v∞(y0) = Υ(y0) and v∞(y) > Υ(y) for every y in a punctured neighborhood of y0, let’s

say B(y0, r) \ {y0} with r > 0 fixed in such a manner that B(y0, 2r) ⊂ Ω. For any positive ρ

with ρ < r we get

inf
B(y0,r)\B(y0,ρ)

(v∞ − Υ) > 0.

By the uniform convergence of {vn} to v∞ in Ω and in particular in B(y0, r), for any positive

integer n sufficiently large, the function vn − Υ attains its zero minimum value in B(y0, ρ) and
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thus, the minimum point of vn − Υ will be represented by yn ∈ B(y0, ρ). Considering a

sequence ρk → 0+ as k → ∞, we can construct a subsequence {nk} such that ynk
converges to

y0 as k → ∞. The claim now holds true after an appropriate relabelling of the indices. In other

words, taking into account that vn, v∞ ∈ C(Ω) for any positive integer n sufficiently large, the

uniform convergence of sequence {vn} to v∞ in Ω implies that since Υ touches v∞ from below

at y0, then there are points yn → y0 such that

vn(y)− Υ(y) > 0 = vn(yn)− Υ(yn) for all y ∈ B(y0, ρ) \ {y0}

for some subsequence (see [6, Theorem 3.1] or [30, Lemma 11]).

Keeping in mind that in view of Lemma 4.4, vn is a continuous viscosity solution of (1.1)

we have

−
ϕn(|∇Υ(yn)|)

|∇Υ(yn)|
∆Υ(yn)−

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

|∇Υ(yn)|3
∆∞Υ(yn) ≥ λeΥ(yn) .

(4.6)

Since λeΥ(yn) > 0 for any λ ∈ (0, λ∗), it follows that |∇Υ(yn)| > 0 for each positive integer n.

Recalling inequality (2.6) states

min{sϕ−
n −1, sϕ+

n −1}ϕn(t) ≤ ϕn(st) ≤ max{sϕ−
n −1, sϕ+

n −1}ϕn(t), ∀ s, t ≥ 0 (4.7)

and keeping in mind (1.3), for each positive integer n sufficiently large, the functions An, Bn :

[0, ∞) → R,

An(t) :=







tϕ′
n(t)− ϕn(t)

t3
, if t > 0,

0, if t = 0,

Bn(t) :=







ϕn(t)

t
, if t > 0,

0, if t = 0

are continuous. Moreover, function Bn is of class C1 since An(t) = t−1B′
n(t) for t > 0. Accord-

ing to (1.2) and (1.3), we deduce that

|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

> 0.

Inequality (4.6) multiplied with the above positive quantity in both sides becomes

−
ϕn(|∇Υ(yn)|)|∇Υ(yn)|2

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

∆Υ(yn)− ∆∞Υ(yn)

≥
λeΥ(yn)|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

. (4.8)

On the other hand, we obtain

ϕn(|∇Υ(yn)|)|∇Υ(yn)|2

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

=
|∇Υ(yn)|2

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)

ϕn(|∇Υ(yn)|)
− 1

≤
|∇Υ(yn)|2

ϕ−
n − 2

, (4.9)

where in the latter inequality we use Lieberman-type condition (1.2).

In relation (4.8) we pass to the limit as n → ∞ and then using (1.3) we infer by relation

(4.9) that

− ∆∞Υ(y0) ≥ lim sup
n→∞

λeΥ(yn)|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

(4.10)
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which hints that

− ∆∞Υ(y0) ≥ 0. (4.11)

In the following we will show that

|∇Υ(y0)| − 1 ≥ 0. (4.12)

If we assume by contradiction that is not the case of the above claim, we get |∇Υ(y0)| −

1 < 0, that implies |∇Υ(yn)| < 1 for any positive integer n sufficiently large. Taking into

consideration (1.2) and then inequality (4.7) we arrive at

λeΥ(yn)|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

=
|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)

ϕn(|∇Υ(yn)|)
− 1

·
λeΥ(yn)

ϕn(|∇Υ(yn)|)

≥
|∇Υ(yn)|3

ϕ+
n − 2

·
λeΥ(yn)

ϕn(|∇Υ(yn)|)

≥
|∇Υ(yn)|3

ϕ+
n − 2

·
λeΥ(yn)

ϕn(1)|∇Υ(yn)|ϕ
−
n −1

=





(

λeΥ(yn)

(ϕ+
n − 2)ϕn(1)

)1/(ϕ−
n −4)

1

|∇Υ(yn)|





ϕ−
n −4

.

Since by (1.5) we have limn→∞ ϕn(1)1/ϕ−
n = 1 we get using (1.4) that

lim
n→∞

(

λeΥ(yn)

(ϕ+
n − 2)ϕn(1)

)1/(ϕ−
n −4)

= 1.

Next, taking into account that limn→∞

1

|∇Υ(yn)|
=

1

|∇Υ(y0)|
> 1 we obtain

lim
n→∞

(

λeΥ(yn)

(ϕ+
n − 2)ϕn(1)

)1/(ϕ−
n −4)

1

|∇Υ(yn)|
=

1

|∇Υ((y0)|
> 1

and then, we deduce that there exists ǫ0 > 0 such that

(

λeΥ(yn)

(ϕ+
n − 2)ϕn(1)

)1/(ϕ−
n −4)

1

|∇Υ(yn)|
≥ 1 + ǫ0 for all positive integer n sufficiently large,

which yields to

lim sup
n→∞

λeΥ(yn)|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

≥ lim
n→∞

(1 + ǫ0)
ϕ−

n −4 = +∞,

a contradiction with (4.10). Thus, inequality (4.12) holds true.

Assembling relations (4.11) and (4.12) we have min{−∆∞Υ(y0), |∇Υ(y0)| − 1} ≥ 0 which

leads to the fact that v∞ is a viscosity supersolution of (4.5).

Now, it remains to see that in fact v∞ is a viscosity subsolution of (4.5). We take a test

function Ψ ∈ C2(Ω) that touches the graph of v∞ from above in a point x0 ∈ Ω, that means

v∞(x0) = Ψ(x0) and v∞(x) < Ψ(x) for every x in a punctured neighborhood of x0 and we have
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to establish that min{−∆∞Ψ(x0), |∇Ψ(x0)| − 1} ≤ 0. We notice that if |∇Ψ(x0)| = 0 then we

have ∆∞Ψ(x0) = 0 and everything is clear. Then, it is sufficient to check that if |∇Ψ(x0)| > 0

and also

|∇Ψ(x0)| − 1 > 0, (4.13)

we get −∆∞Ψ(x0) ≤ 0. Actually, the uniform convergence of subsequence of {vn} ensures

again, as in the first part of this proof, the existence of a sequence xn → x0 as n → ∞ such

that vn − Ψ has a strict local maximum point at xn and

−
ϕn(|∇Ψ(xn)|)|∇Ψ(xn)|2

|∇Ψ(xn)|ϕ′
n(|∇Ψ(xn)|)− ϕn(|∇Ψ(xn)|)

∆Ψ(xn)− ∆∞Ψ(xn)

≤
λeΨ(xn)|∇Ψ(xn)|3

|∇Ψ(xn)|ϕ′
n(|∇Ψ(xn)|)− ϕn(|∇Ψ(xn)|)

. (4.14)

Passing to the limit as n → ∞ in the above relation and using (4.13), inequality (4.7), and

assumptions (1.3) and (1.5), we deduce that

−∆∞Ψ(x0) ≤ lim inf
n→∞





(

λeΨ(xn)

(ϕ−
n − 2)ϕn(1)

)1/(ϕ−
n −4)

1

|∇Ψ(xn)|





ϕ−
n −4

= 0

which implies that −∆∞Ψ(x0) ≤ 0. Thus, we conclude that v∞ is a viscosity solution of

problem (4.5). The proof of Theorem 4.5 is complete.

Next, we identify the limit of the entire sequence of weak solutions {vn} of problem (1.1).

Proof of Theorem 4.1 (concluded). It is well-known that problem (4.5) has as unique viscosity

solution dist(·, ∂Ω), namely the distance function to the boundary of Ω (see Jensen [25], or

Juutinen [26, Lemma 6.10], or Ishibashi & Koike [24, p. 546]). As a consequence, Lemma 4.2

and Theorem 4.5 allow us to reach to the conclusion that the entire sequence {vn} converges

uniformly to dist(·, ∂Ω) in Ω, as n → ∞.
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1 Introduction

Let F : R
2 → R be a continuous function. The well known global Picard–Lindelöf theorem

states that if F is Lipschitz continuous with respect to the second variable, then for every real
number y0, the initial value problem y′ = F(x, y), y(0) = y0 has a unique solution, which
exists globally. On the other hand the initial value problem y′ = 2

√

|y|, y(0) = 0 has infinitely
many solutions, which can be parametrized by real numbers −∞ ≤ a ≤ 0 ≤ b ≤ ∞ as

y =















−(x − a)2, x < a,

0, a ≤ x ≤ b,

(x − b)2, x > b.

We conclude that uniqueness does not hold in general without the Lipschitz condition. Simi-
larly the initial value problem y′ = 1+ y2, y(0) = 0 has the solution tan x, which does not exist
globally. Thus, global existence also needs some kind of Lipschitz condition. Here we show
that while some condition is necessary, being Lipschitz is unnecessarily strict, and determine
the optimal condition. We prove the following.

Theorem 1.1. Let ϕ : [0, ∞] → (0, ∞) be a non-decreasing function. Then the following are equiva-

lent.

(i) The series ∑
∞
n=1

1
ϕ(n)

diverges;

BEmail: jan-christoph.schlage-puchta@uni-rostock.de
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(ii) For every continuous functions F : R
2 → R for which there exists a continuous function

ψ : R → (0, ∞) such that

|F(x, y)− F(x, z)| < (z − y)ψ(x)ϕ(|ln (z − y)|) (1.1)

holds for all real numbers x, y, z such that y < z ≤ y + 1, the initial value problem y′ = F(x, y),

y(0) = y0 has a unique local solution.

(iii) For every continuous functions F : R
2 → R for which there exists a continuous function

ψ : R → (0, ∞) such that

|F(x, y)| < |y|ψ(x)ϕ(ln (2 + |y|)) (1.2)

holds for all x and y, every local solution of the initial value problem y′ = F(x, y), y(0) = y0,

where y0 is arbitrary, can be continued to a global solution.

In particular it is not possible to prove a general Picard–Lindelöff type theorem with a
bound that is strictly weaker than (1.1) or (1.2) for a function ϕ satisfying (i). In this sense our
theorem is indeed optimal. It might still be possible to prove existence or uniqueness under
weaker conditions on the growth of F, if we impose other additional constrictions. However,
the counterexamples we construct to prove (ii)⇒(i) and (iii)⇒(i) involve quite well behaved
functions F, so it is not clear how such an additional assumption could look like.

Cid and Pouso [1, Theorem 1.2] gave a quite ingenious proof for a uniqueness theorem,
which is equivalent to the implication (i)⇒(ii) of our theorem, provided that F(x, y0) = 0 for
all x in a neighbourhood of 0. Rudin [5] showed that if every global solution of y′ = F(x, y)

is unique, then there exists a function h such that for all y0 there exists some x0, such that the
solution of y′ = F(x, y), y(0) = y0, satisfies |y(x)| ≤ h(x) for all x > x0, whereas if solutions
are not unique, then there might exist arbitrary fast growing solutions. Although this result
is only loosely connected to our theorem, this work is relevant here, because the construction
of the counterexamples in [5] is quite similar to our construction. We would like to thank the
referee for making us aware of these publications.

The usual proof of the Picard–Lindelöf theorem uses contraction on a suitably defined
Banach space. For extensions of the Picard–Lindelöf theorem using contractions we refer the
reader to [2], [3] and [4]. A different generalization was given in [6]. However, our proof is
more elementary, once some local existence result is available. We will use Peano’s theorem
in the following form.

Theorem 1.2 (Peano). Let F : R
2 → R be a continuous function, y0 be some real number. Then there

exists some ǫ > 0 and a differentiable function y : (−ǫ, ǫ) → R, which satisfies y′ = F(x, y), y(0) =
y0 .

We begin with the implication (i)⇒(ii) in the special case that the zero function is a solu-
tion, that is, F(x, 0) = 0 holds for all x. Let y be a function satisfying y′ = F(x, y), y(0) = 1.
We claim that y(x) > 0 for all x > 0. If a solution tends to +∞ in finite time without at-
taining negative values we say that this statement is also satisfied. For n ≥ 1 define xn to be
the smallest positive solution of the equation y(xn) = e−n. If there is some n such that this
equation is not solvable, then y(x) > e−n for this particular n and all x > 0, and our claim is
trivially true, henceforth we assume that this equation is solvable for all n. Define x+n to be
the largest solution of the equation y(x) = e−n with x ∈ [xn, xn+1]. Clearly, x+n exists. In the
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interval [x+n , xn+1] we have y(x) ∈ [e−(n+1), e−n], thus,

xn+1 − x+n ≥ e−n − e−(n+1)

max
x∈[x+n ,xn+1]

|y′(x)|

≥ e−n − e−(n+1)

max
x∈[x+n ,xn+1]

max
t∈[e−(n+1),e−n]

|F(x, t)|

≥ e−n − e−(n+1)

e−n ϕ(n + 1) max
x∈[x+n ,xn+1]

ψ(x)

≥ 1
2ϕ(n + 1) max

x∈[0,xn+1]
ψ(x)

.

Assume that the sequence (xn) is bounded. Then maxx∈[0,xn+1] ψ(x) is bounded by some
constant C. We conclude that in this case

xn+1 − xn ≥ xn+1 − x+n ≥ 1
2Cϕ(n + 1)

.

By assumption we have that ∑
1

ϕ(n)
diverges, which contradicts the assumption that (xn) is

bounded. Hence, (xn) tends to infinity. By the definition of xn we have y(x) > 0 in [0, xn], and
our claim follows.

Next suppose that F(x, 0) = 0 holds for all x, and y1 is a solution of y′ = F(x, y) with
y(0) 6= 0. Then ỹ = y1

y1(0)
is a solution of y′ = 1

y1(0)
F(x, y). As ỹ(0) = 1, we conclude that

ỹ(x) > 0 holds for all x > 0, and therefore y1(x) 6= 0 for all x > 0.
Now suppose that F satisfies the assumption of the theorem, and y1, y2 are solutions of

y′ = F(x, y) with y1(0) 6= y2(0). Then we consider the differential equation

y′ = F(x, y + y1(x))− y′1(x).

The constant function y = 0 is a solution. The function y(x) = y2(x)− y1(x) is also a solution,
as for this function we have

F(x, y2(x)− y1(x) + y1(x))− y′1(x) = F(x, y2(x))− y′1(x) = y′2(x)− y′1(x).

The function G(x, t) = F(x, t + y1(x))− y′1(x) is continuous, and satisfies

|G(x, t1)− G(x, t2)| = |F(x, t1 + y1(x))− F(x, t2 + y1(x))|
≤ (t1 − t2)ψ(x)ϕ(|ln (t1 − t2)|)

as well as G(x, 0) = F(x, y1(x))− y′1(x) = 0. In particular we know that the claimed implica-
tion holds for G, and we obtain that y1 − y2 does not vanish. As we may revert time, it follows
that solutions are unique.

Now we prove the implication (i)⇒(iii). By symmetry it suffices to consider the range
[0, ∞). Let I ⊆ [0, ∞) be the maximal range of a solution. By Peano’s theorem we know
that solutions exist locally, that is, I is half open. Suppose I = [0, xmax) with xmax < ∞. A
computation similar to the one used for uniqueness shows that y is bounded on [0, xmax). As ψ

is continuous and [0, xmax] is compact, ψ is also bounded. Put Y = supx≤xmax
|y(x)|ψ(x). Then

F is bounded on [0, xmax]× [−Y, Y], that is, y is Lipschitz continuous on [0, xmax), and we can
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extend y continuously to [0, xmax]. Moreover, as F is continuous, this extension satisfies the
differential equation in xmax if we interpret the derivative as a one-sided derivative. By Peano
there exists a local solution around xmax, which by the uniqueness we already know coincides
with y for x < xmax, hence, y can be extended beyond xmax as a solution of the differential
equation. This contradicts the definition of xmax, and we conclude that xmax = ∞, that is, y

exists globally.
We now turn to the reverse implications. For a given function ϕ, such that ∑

∞
n=1

1
ϕ(n)

converges, we construct functions F which satisfy the conditions (1.1) resp. (1.2), but for which
the solutions of the corresponding differential equation are not unique resp. tend to infinity.
We claim that we may assume without loss of generality that ϕ(n) ≤ n2. In fact, ∑

∞
n=1

1
ϕ(n)

converges if and only if ∑
∞
n=1

1
min(ϕ(n),n2)

converges, hence, replacing ϕ(n) by min(ϕ(n), n2)

does not change condition (i), whereas conditions (ii) and (iii) become weaker.
Next we show (iii)⇒(i). Suppose that ∑

∞
n=1

1
ϕ(n)

converges. Let F be a piecewise linear
function satisfying F(0) = 1, F(en) = en ϕ(n). Let y be a solution of the differential equation
y′ = F(y), y(0) = 0, and let xn be the positive solution of the equation y(x) = en. Note that xn

exists and is unique, as y′ ≥ 1 for all x ≥ 0. Then we have

xn+1 − xn ≤ en+1 − en

min
xn≤x≤xn+1

y′(x)
=

en+1 − en

min
en≤y≤en+1

F(y)
≤ en+1 − en

F(en)
=

en+1 − en

en ϕ(n)
≤ 2

ϕ(n)
.

As ∑
∞
n=1

1
ϕ(n)

converges, we conclude that the sequence xn converges to some finite limit x∞,

that is, y(x) tends to infinity as x → x∞. We conclude that if ∑
∞
n=1

1
ϕ(n)

converges, then there
exists a differential equation as in (iii) which does not have a global solution.

Now consider the implication (ii)⇒(i). Suppose that ∑
∞
n=1

1
ϕ(n)

converges, and let F be the

function satisfying F(t) = 0 for t ≤ 0, F(t) = ϕ(0) for t ≥ 1
e , F(e−n) = e−n ϕ(n − 1), which

is continuous and linear on all intervals (e−n−1, e−n). We claim that F satisfies (2). As F is
constant outside [0, 1

e ], it suffices to check the case 0 ≤ y < z ≤ 1
e .

If y = 0, let n be the unique integer satisfying e−n−1
< z ≤ e−n. Then we have

|F(y)− F(z)| = F(z)

=
e−n − z

e−n − e−n−1 e−n−1ϕ(n) +
z − e−n−1

e−n − e−n−1 e−n ϕ(n − 1)

≤ e−n − z

e−n − e−n−1 e−n−1ϕ(n) +
z − e−n−1

e−n − e−n−1 e−n ϕ(n)

= zϕ(n)

≤ zϕ(|ln z|).

If y > 0, let m ≤ n be the unique integers satisfying e−n−1
< y ≤ e−n, e−m−1

< z ≤ e−m. If
m < n, then

|F(y)− F(z)| = F(z)− F(y)

=
e−m − z

e−m − e−m−1 e−m−1ϕ(m) +
z − e−m−1

e−m − e−m−1 e−m ϕ(m − 1)

− e−n − y

e−n − e−n−1 e−n−1 ϕ(n)− y − e−n−1

e−n − e−n−1 e−n ϕ(n − 1)

≤ zϕ(m)− yϕ(n − 1)
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≤ (z − y)ϕ(m)

≤ (z − y)ϕ(|ln z|)
≤ (z − y)ϕ(|ln (z − y)|),

and our claim follows. If m = n, then

|F(y)− F(z)| = F(z)− F(y)

=
e−m − z

e−m − e−m−1 e−m−1 ϕ(m) +
z − e−m−1

e−m − e−m−1 e−m ϕ(m − 1)

− e−n − y

e−n − e−n−1 e−n−1 ϕ(n)− y − e−n−1

e−n − e−n−1 e−n ϕ(n − 1)

= (z − y)
e−m ϕ(m − 1)− e−m−1ϕ(m)

e−m − e−m−1

≤ (z − y)ϕ(m)

≤ (z − y)ϕ(|ln (z − y)|)

We find that (2) holds in all cases.
Now consider the differential equation y′ = −F(y). This equation has the obvious solution

y = 0. Now consider the solution with starting value y(0) = 1
e . As y′(x) < 0 for all x with

y(x) > 0, there is for every n a unique xn solving the equation y(x) = e−n. We have

xn+1 − xn ≤ e−n − e−n−1

min
xn≤x≤xn+1

y′(x)
=

e−n − e−n−1

F(e−n−1)
=

e − 1
ϕ(n)

.

As ∑
1

ϕ(n)
converges, the sequence (xn) converges to some limit x∞, and we obtain that y(x) =

0 for x > x∞. Reversing time we find that the equation y′ = F(y), y(0) = 0 does not have a
unique solution. Hence, if (i) fails, so does (ii), and the proof of the theorem is complete.

We remark that the proof not only yields global existence and uniqueness of solutions, but
also gives explicit bounds. Here an explicit measure for uniqueness is a bound how quickly
different solutions can diverge. Equivalently we can revert time and ask how quickly solutions
with different starting conditions converge. By computing the sequence (xn) occurring in the
proof of the implication (i)⇒(ii) for specific functions ϕ we obtain the following.

Proposition 1.3.

(i) Let F : R
2 → R be a continuous function satisfying

|F(x, y)− F(x, z)| < L|y − z|

and F(x, 0) = 0 for all real numbers x, y and z. Then every solution of the equation y′ = F(x, y)

satisfies |y(x)| ≤ eLx|y(0)| for all x ≥ 0, and if y1, y2 are solutions, and x ≥ 0, then we have

|y1(x)− y2(x)| ≥ |y1(0)− y2(0)|e−Lx.

(ii) Let F : R
2 → R be a continuous function satisfying

|F(x, y)− F(x, z)| < |y − z|
(

1 +
√

∣

∣ln (|y − z|)
∣

∣

)

(1.3)
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for all real numbers x, y and z such that y ≤ z ≤ y + 1. If y1, y2 are solutions of the equation

y′ = F(x, y) satisfying y1(0)− y2(0) = 1, then we have

|y1(x)− y2(x)| ≥ e−x2

for all x > 35.

(iii) Let F : R
2 → R be a continuous function satisfying

|F(x, y)− F(x, z)| < |y − z|
(

1 +
∣

∣ln (|y − z|)
∣

∣

)

(1.4)

for all real numbers x, y, z such that y ≤ z ≤ y + 1. If y1, y2 are solutions of the equation

y′ = F(x, y) satisfying y1(0)− y2(0) = 1, then we have

|y1(x)− y2(x)| ≥ e−e2x−4

for all x ≥ 0.

Proof. For the upper bound in (i) note that as F(x, 0) = 0, the Lipschitz condition with z = 0
reads |y′(x)| ≤ L|y(x)|, and the upper bound follows. For the lower bound note that f (x) =

y1(x) − y2(x) satisfies | f ′(x)| ≤ L| f (x)|. We may assume without loss that y1(0) > y2(0).
Then we consider g(x) = eLx f (x). Put x0 = inf{x : f (x) ≤ 0}, we want to show that x0 = ∞.
For x ∈ [0, x0] we have g′(x) = eLx(L f (x) + f ′(x)) ≥ 0, in particular g(x) ≥ g(0) and therefore
f (x) ≥ e−Lx f (0). As f is continuous, we see that x0 cannot be finite, and f (x) ≥ e−Lx f (0)
holds for all x ≥ 0.

For (ii) and (iii) define xn as the least positive x, such that |y1(x)− y2(x)| = e−n, and let x+n
be the largest real number x, such that xn ≤ x ≤ xn+1, and |y1(x)− y2(x)| = e−n. We will give
a lower bound for xn+1 − xn, telescope these bounds to get a lower bound for xn, and solve
for n to get a lower bound for y1 − y2.

Suppose first that F satisfies (1.3) for all real numbers y ≤ z ≤ y + 1. Then in [x+n , xn+1] we
have

|y′1(x)− y′2(x)| = |F(x, y1(x))− F(x, y2(x)| ≤ sup
x,y1,y2

e−n−1≤|y1−y2|≤e−n

|F(x, y)|

≤ max
e−n−1≤δ≤e−n

δ

(

1 +
√

|ln δ|
)

≤ e−n
(

1 +
√

n
)

,

thus, by the mean value theorem,

e−n − e−n−1

xn+1 − xn
≤ e−n

(

1 +
√

n
)

,

that is, xn+1 − xn ≥ 1−e−1

1+
√

n
. As x0 = 0 we obtain

xn =
n−1

∑
ν=0

(xν+1 − xν) ≥
n

∑
ν=0

1 − e−1

1 +
√

ν

≥ (1 − e−1)
∫ n

0

dt

1 +
√

t
= (1 − e−1)

(

2
√

n − 2ln (
√

n + 1)
)

.
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By the definition of xn we have |y1(x)− y2(x)| > e−n for 0 ≤ x < xn, and we obtain |y1(x)−
y2(x)| > e−n for n ≥ 3 and

x < 2(1 − e−1)(
√

n − ln n).

The right hand side is larger than 1.264
√

n − 1.264ln n, and for n > 1200 we conclude that
|y1(x)− y2(x)| > e−n for x ≤

√
n + 1. Choosing n = ⌊x2⌋ we obtain |y1(x)− y2(x)| > e−n ≥

e−x2
, provided that x > 35.
Now suppose that F satisfies (1.4) for all real numbers y ≤ z ≤ y + 1. Then in [x+n , xn+1]

we have
|y′1(x)− y′2(x)| = |F(x, y1(x))− F(x, y2(x))| ≤ e−n(n + 1).

Using the mean value theorem we obtain

e−n − e−n−1

xn+1 − xn
≤ e−n(n + 1),

that is, xn+1 − xn ≥ 1−e−1

n+1 . As x0 = 0 we obtain

xn =
n−1

∑
ν=0

(xν+1 − xν) ≥
n−1

∑
ν=0

1 − e−1

ν + 1
≥ (1 − e−1)

∫ n+1

1

dt

t
≥ (1 − e−1)ln n

If n ≥ 4 we obtain xn ≥ 1
2 ln(n + 1). Putting n =

⌊

e2x
⌋

we obtain |y1(x)− y2(x)| ≥ e−n ≥ e−e2x

provided that n ≥ 4, which is satisfied for x > 1.
Since x4 ≥ (1 − e−1)

(

1 + 1
2 +

1
3

)

≈ 1.159, we have |y1(x)− y2(x)| ≥ e−4 for x ∈ [0, 1], and
therefore |y1(x)− y2(x)| ≥ e−4 · e−e2x

for all x ≥ 0.

The constants 35 and e−4 have no particular meaning, we just have to capture lower order
terms. We can either do so by prescribing a lower bound for x, as we did in (ii), or by
introducing a factor as we did in (iii).

In the same way we could give upper bounds corresponding to (iii) of Theorem 1.1, how-
ever, it turns out that a simple ad hoc argument is much easier.

Proposition 1.4.

(i) Let F : R
2 → R be a continuous function satisfying |F(x, y)| ≤ |y|

√

1 + ln |y| for all x and

y such that |y| ≥ 1. Then every solution of the initial value problem y′ = F(x, y), y(0) = 0

satisfies |y(x)| ≤ e
x2
4 +x for all x ≥ 0.

(ii) Let F : R
2 → R be a continuous function satisfying |F(x, y)| ≤ |y|ln |y| for all x and y such

that |y| ≥ e. Then every solution of the initial value problem y′ = F(x, y), y(0) = 0 satisfies

|y(x)| ≤ eex
for all x ≥ 0.

Proof. Let F and y be as in (i). The function ỹ(x) = e
x2
4 +x satisfies the equation y′ = y

√

1 + ln y,
y(0) = 1. We claim that for all x ≥ 0 we have |y(x)| < ỹ(x). Define x0 = sup{x > 0 : |y(x)| <
ỹ(x)}. Clearly x0 > 0. For x ∈ [0, x0) we have |y(x)| ≤ 1 or

ỹ′(x)− y′(x) = ỹ(x)
√

1 + ln ỹ(x)− F(x, y(x))

≥ ỹ(x)
√

1 + ln ỹ(x)− |y(x)|
√

1 + ln |y(x)| > 0.

If x0 6= ∞, it follows that ỹ(x0) > y(x0). In the same way we obtain ỹ(x0) > −y(x0), and
conclude that x0 = ∞.
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Now let F and y be as in (ii). The function ỹ(x) = eex
satisfies the equation y′ = yln y,

y(0) = e, and we obtain

ỹ′(x)− y′(x) = ỹ(x)ln ỹ(x)− F(x, y(x)) ≥ ỹ(x)ln ỹ(x)− y(x)ln y(x)

for all x such that e ≤ y(x) < ỹ(x), and our claim follows as in the first case.

In general whenever one can give a lower bound for the growth of the partial sums
∑n≤N

1
ϕ(n)

, one obtains upper bounds for the growth of solutions and for the convergence
of different solutions with different starting values.
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1 Introduction

In this paper we consider the following problem

uiυ(x)− (q(x)u′(x))′ + s(x)u(x) = λ f (x, u(x)), a.e. x ∈ R, (1.1)

where λ is a positive parameter and q, s ∈ L∞(R) with q0 = ess infR q > 0 and s0 =

ess infR s > 0. Here the function f : R
2 → R is an L1-Carathéodory function.

As we know, differential equations have many applications in engineering and mechanical

science. Many important engineering topics eventually lead to a differential equation. One

of the most important and widely used types of such equations is the fourth-order differen-

tial equation. These equations play an essential role in describing the large number of elastic

deflections in beams. Due to the importance of these equations in applied sciences, many

authors have studied different types of these equations and obtained important results. Re-

search on the existence and multiplicity of solutions for different types of these equations can

be seen in the work of many authors. For example, to study fourth-order two-point boundary

value problems we refer the reader to references [3–5, 8, 10–12].

For instance in [3], the authors researched the following problem:

{

uiυ + Au′′ + Bu = λ f (t, u), t ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.2)

BCorresponding author. Email: m.reza.h56@gmail.com
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where A and B are real constants and they achieved multiplicity results using variational

methods and critical point theory. It should be noted that in the study of many important

problems such as mathematical models of beam deflection, the differential equation is consid-

ered at infinite interval. Also, because the operators used to solve equations such as (1.1) on R

are not compact, so the study of such problems is very important. That is why some authors

have turned their attention to the whole space. For example in [9], applying the critical point

theory the author has studied the existence and multiplicity of solutions for the following

problem:

uiυ(x) + Au′′(x) + Bu(x) = λα(x). f (u(x)), a.e. x ∈ R, (1.3)

where A is a real negative constant and B is a real positive constant, λ is a positive parameter

and α, f : R → R are two functions such that α ∈ L1(R) , α(x) ≥ 0, for a.e. x ∈ R, α 6≡ 0 and

also f is continuous and non-negative.

In this work, using a critical point theorem obtained in [2] which we recall in the next

section (Theorem 2.7), we establish the existence of infinitely many weak solutions for the

problem (1.1).

2 Preliminaries

Let us recall some basic concepts.

Definition 2.1. A function f : R
2 → R is said to be an L1-Carathéodory function, if

(C1) the function x 7→ f (x, t) is measurable for every t ∈ R,

(C2) the function t 7→ f (x, t) is continuous for almost every x ∈ R,

(C3) for every ρ > 0 there exists a function lρ(x) ∈ L1(R) such that

sup
|t|≤ρ

| f (x, t)| ≤ lρ(x),

for a.e. x ∈ R.

Denote W2,2
0 (R) is the closure of C∞

0 (R) in W2,2(R) and according to the properties of the

Sobolev spaces, we know that W2,2
0 (R) = W2,2(R), [1, Corollary 3.19].

We denote by | · |t the usual norm on Lt(R), for all t ∈ [1,+∞] and it is well known that

W2,2(R) is continuously embedded in L∞(R), [6, Corollary 9.13].

The Sobolev space W2,2(R) is equipped with the following norm

‖u‖W2,2(R) =

(

∫

R

(|u′′(x)|2 + |u′(x)|2 + |u(x)|2)dx

)1/2

,

for all u ∈ W2,2(R). Also, we consider W2,2(R) with the norm

‖u‖ =

(

∫

R

(|u′′(x)|2 + q(x)|u′(x)|2 + s(x)|u(x)|2)dx

)1/2

,

for all u ∈ W2,2(R). According to

(min{1, q0, s0})
1
2 ‖u‖W2,2(R) ≤ ‖u‖ ≤ (max{1, |q|∞, |s|∞})

1
2 ‖u‖W2,2(R), (2.1)
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the norm ‖ · ‖ is equivalent to the ‖ · ‖W2,2(R) norm. Since the embedding W2,2(R) → L∞(R)

is continuous hence there exists a constant Cq,s (depending on the functions q and s) such that

|u|∞ ≤ Cq,s‖u‖, ∀u ∈ W2,2(R).

In the following proposition, we provide an approximation for this constant.

Proposition 2.2. We have

|u|∞ ≤ Cq,s‖u‖ (2.2)

where Cq,s =
(

1
4|q|∞|s|∞

)
1
4
(max{1,|q|∞,|s|∞}

min{1,q0,s0}
)

1
2 .

Proof. Let v ∈ W1,1(R), then from [7, p. 138, formula 4.64], one has

|v(x)| ≤ 1

2

∫

R

|v′(t)|dt. (2.3)

Now if u ∈ W2,2(R) then v(x) = (|q|∞|s|∞)
1
2 |u(x)|2 ∈ W1,1(R) and thus from (2.3) and

Hölder’s inequality one has,

(|q|∞|s|∞)
1
2 |u(x)|2 ≤

∫

R

(|q|∞|s|∞)
1
2 |u′(t)||u(t)|dt ≤ ((|q|∞)

1
2 |u′|2)(|s|∞

1
2 |u|2)

that is ,

|u(x)| ≤
(

1

|q|∞|s|∞

)
1
4

((|q|∞)
1
2 |u′|2)

1
2 (|s|∞

1
2 |u|2)

1
2 . (2.4)

Now according to xay1−a ≤ aa(1 − a)1−a(x + y), x, y ≥ 0, 0 < a < 1 [7, p. 130, formula 4.47],

and classical inequality a
1
p + b

1
p ≤ 2

(p−1)
p (a + b)

1
p , from (2.1) and (2.4) one has

|u(x)| ≤
(

1

|q|∞|s|∞

)
1
4
(

1

2

)
1
2
(

1

2

)
1
2
[(

∫

R

|q|∞|u′(t)|2dt

)
1
2

+

(

∫

R

|s|∞|u(t)|2dt

)
1
2
]

≤
(

1

|q|∞|s|∞

)
1
4
(

1

2

)
1
2
(

1

2

)
1
2

(2)
1
2

(

∫

R

(|q|∞|u′(t)|2 + |s|∞|u(t)|2)dt

)
1
2

≤
(

1

4|q|∞|s|∞

)
1
4
(

∫

R

(|u′′(t)|2 + |q|∞|u′(t)|2 + |s|∞|u(t)|2)dt

)
1
2

≤
(

1

4|q|∞|s|∞

)
1
4
(

max{1, |q|∞, |s|∞}
min{1, q0, s0}

)
1
2
(

∫

R

(|u′′(t)|2 + |u′(t)|2 + |u(t)|2)dt

)
1
2

which means that |u|∞ ≤ Cq,s‖u‖ .

Let Φ, Ψ : W2,2(R) → R be defined by

Φ(u) =
1

2
‖u‖2 =

1

2

∫

R

(|u′′(x)|2 + q(x)|u′(x)|2 + s(x)|u(x)|2)dx (2.5)

and

Ψ(u) =
∫

R

F(x, u(x))dx (2.6)

for every u ∈ W2,2(R) where F(x, ξ) =
∫ ξ

0 f (x, t)dt for all (x, ξ) ∈ R
2. It is well known that Ψ

is a sequentially weakly upper semicontinuous whose differential at the point u ∈ W2,2(R) is

Ψ
′(u)(v) =

∫

R

f (x, u(x))v(x)dx.
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It is clear that Φ is a strongly continuous and coercive functional. Also since the norm

‖ · ‖ on Hilbert space W2,2(R) is a weakly sequentially lower semi-continuous functional in

W2,2(R) therefore Φ is a sequentially weakly lower semicontinuous functional on W2,2(R).

Moreover, Φ is continuously Gâteaux differentiable functional whose differential at the point

u ∈ W2,2(R) is

Φ
′(u)(v) =

∫

R

(u′′(x)v′′(x) + q(x)u′(x)v′(x) + s(x)u(x)v(x))dx

for every v ∈ W2,2(R).

Definition 2.3. Let Φ and Ψ be defined as above. Put Iλ = Φ − λΨ, λ > 0. We say that

u ∈ W2,2(R) is a critical point of Iλ when I′λ(u) = 0{W2,2(R)∗}, that is, I′λ(u)(v) = 0 for all

v ∈ W2,2(R).

Definition 2.4. A function u : R → R is a weak solution to the problem (1.1) if u ∈ W2,2(R)

and
∫

R

(

u′′(x)v′′(x) + q(x)u′(x)v′(x) + s(x)u(x)v(x)− λ f (x, u(x))v(x)
)

dx = 0,

for all v ∈ W2,2(R).

Remark 2.5. We clearly observe that the weak solutions of the problem (1.1) are exactly the

solutions of the equation I′λ(u)(v) = Φ
′(u)(v)− λΨ

′(u)(v) = 0.

Lemma 2.6. Suppose that f : R
2 → R is a non-negative L1-Carathéodory function. If u0 6≡ 0 is a

weak solution for problem (1.1) then u0 is non-negative.

Proof. From Remark 2.5, one has Φ
′(u0)(v)− λΨ

′(u0)(v) = 0 for all v ∈ W2,2(R). Let v(x) =

ū0 = max{−u0(x), 0} and we assume that E = {x ∈ R : u0(x) < 0} . Then we have

∫

E∪Ec
(u′′

0 (x)ū′′
0 (x) + q(x)u′

0(x)ū′
0(x) + s(x)u0(x)ū0(x))dx =

∫

R

λ f (x, u0(x))ū0(x)dx,

that is
∫

E
(−|ū′′

0 (x)|2 − q(x)|ū′
0(x)|2 − s(x)|ū0(x)|2)dx ≥ 0

which means that ‖ū0‖ = 0 and hence u0 ≥ 0 and the proof is complete .

Our main tool is the following critical point theorem.

Theorem 2.7 ([2, Theorem 2.1]). Let X be a reflexive real Banach space, let Φ, Ψ : X → R be two

Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicontinuous, strongly

continuous, and coercive and Ψ is sequentially weakly upper semicontinuous. For every r > infX Φ,

let us put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)− Ψ(u)

r − Φ(u)

and

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈
]

0, 1
ϕ(r)

[

, the restriction of the functional Iλ = Φ − λΨ to

Φ
−1(]− ∞, r[) admits a global minimum, which is a critical point (local minimum) of Iλ in X.



Infinitely many weak solutions for a fourth-order equation on the whole space 5

(b) If γ < +∞ then, for each λ ∈
]

0, 1
γ

[

, the following alternative holds:

either

(b1) Iλ possesses a global minimum,

or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈
]

0, 1
δ

[

, the following alternative holds:

either

(c1) there is a global minimum of Φ which is a local minimum of Iλ,

or

(c2) there is a sequence of pairwise distinct critical points (local minima) of Iλ, with

limn→+∞ Φ(un) = infX Φ, which weakly converges to a global minimum of Φ.

3 Main results

Let

τ :=
540

86111 (max{1, |q|∞, |s|∞})Cq,s
2

, (3.1)

A := lim inf
ρ→+∞

∫

R
sup|t|≤ρ F(x, t)dx

ρ2
, (3.2)

and

B := lim sup
ρ→+∞

∫
5
8

3
8

F(x, ρ)dx

ρ2
. (3.3)

Now we formulate our main result as follows.

Theorem 3.1. Let f : R
2 → R be an L1-Carathéodory function, and assume that

(i) F(x, t) ≥ 0 for every (x, t) ∈ R×]0, 3
8 [ ∪ ] 5

8 , 1[,

(ii) A < τB, where τ , A and B are given by (3.1) , (3.2) and (3.3) respectively.

Then for every

λ ∈
]

(max{1, |q|∞, |s|∞})
B

86111

1080
,

1

2A Cq,s
2

[

the problem (1.1) admits a sequence of many weak solutions which is unbounded in W2,2(R).
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Proof. Fix λ as in our conclusion. Our aim is to apply Theorem 2.7, part (b) with X = W2,2(R),

and Φ, Ψ are the functionals introduced in section 2. As shown in the previous section, the

functionals Φ and Ψ satisfy all regularity assumptions requested in Theorem 2.7. Now, we

look on the existence of critical points of the functional Iλ in W2,2(R). To this end, we take

{ρn} be a sequence of positive numbers such that limn→∞ ρn = +∞ and

lim
n→∞

∫

R
sup|t|≤ρn

F(x, t)dx

ρ2
n

= A.

Set rn := 1
2

( ρn

Cq,s

)2
, for every n ∈ N.

For each u ∈ W2,2(R) and bearing (2.2) in mind, we see that

Φ
−1(]− ∞, rn[) = {u ∈ W2,2(R); Φ(u) < rn}

=

{

u ∈ W2,2(R);
1

2
‖u‖2

<
1

2

( ρn

Cq,s

)2
}

=
{

u ∈ X; Cq,s‖u‖ < ρn

}

⊆
{

u ∈ W2,2(R); |u|∞ ≤ ρn

}

.

Now, since 0 ∈ Φ
−1(]− ∞, rn[) then we have the following inequalities:

ϕ(rn) = inf
u∈Φ−1(]−∞,rn[)

supv∈Φ−1(]−∞,rn[)

∫

R
F(x, v(x))dx −

∫

R
F(x, u(x))dx

rn − ‖u‖2

2

≤
∫

R
sup|t|≤ρn

F(x, t)dx

rn
=

∫

R
sup|t|≤ρn

F(x, t)dx

1
2

( ρn

Cq,s

)2

= 2 Cq,s
2

∫

R
sup|t|≤ρn

F(x, t)dx

ρn
2

,

for every n ∈ N. Hence, it follows that

γ ≤ lim inf
n→∞

Φ(rn) ≤ 2 Cq,s
2A < +∞,

because condition (ii) shows A < +∞. Now, we prove that the functional Iλ is unbounded

from below. For our goal, let {ηn} be a sequence of positive numbers such that limn→∞ ηn =

+∞ and

lim
n→+∞

∫
5
8

3
8

F(x, ηn)dx

ηn
2

= B. (3.4)

Let {vn} be a sequence in W2,2(R) which is defined by

vn(x) :=























− 64 ηn

9

(

x2 − 3
4 x

)

, if x ∈
[

0, 3
8

]

,

ηn, if x ∈
]

3
8 , 5

8

]

,

− 64 ηn

9

(

x2 − 5
4 x + 1

4

)

, if x ∈
]

5
8 , 1

]

,

0, otherwise.

(3.5)

One can compute that

‖vn‖W2,2(R)
2 =

86111

540
ηn

2,

and so from (2.1) we have
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(min{1, q0, s0})
86111

1080
ηn

2 ≤ Φ(vn) ≤ (max{1, |q|∞, |s|∞})
86111

1080
ηn

2. (3.6)

Also, by using condition (i), we infer

∫

R

F(x, vn(x))dx ≥
∫ 5

8

3
8

F(x, ηn)dx,

for every n ∈ N. Therefore, we have

Iλ(vn) = Φ(vn)− λ Ψ(vn) ≤ (max{1, |q|∞, |s|∞})
86111

1080
ηn

2 − λ

∫ 5
8

3
8

F(x, ηn)dx,

for every n ∈ N. If B < +∞, let

ǫ ∈
]

(max{1, |q|∞, |s|∞})
λB

86111

1080
, 1

[

.

By (3.4) there is Nǫ such that

∫ 5
8

3
8

F(x, ηn)dx > ǫ B ηn
2, (∀n > Nǫ).

Consequently, one has

Iλ(vn) ≤ (max{1, |q|∞, |s|∞})
86111

1080
ηn

2 − λǫBηn
2

= ηn
2

(

(max{1, |q|∞, |s|∞})
86111

1080
− λǫB

)

,

for every n > Nǫ. Thus, it follows that

lim
n→∞

Iλ(vn) = −∞.

If B = +∞, then consider

M >
(max{1, |q|∞, |s|∞})

λ

86111

1080
.

By (3.4) there is N(M) such that

∫ 5
8

3
8

F(x, ηn)dx > Mηn
2, (∀n > N(M)).

So, we have

Iλ(vn) ≤ (max{1, |q|∞, |s|∞})
86111

1080
ηn

2 − λMηn
2

= ηn
2

(

(max{1, |q|∞, |s|∞})
86111

1080
− λM

)

,

for every n > N(M). Taking into account the choice of M, also in this case, one has

lim
n→∞

Iλ(vn) = −∞.

Therefore according to Theorem 2.7, the functional Iλ admits an unbounded sequence {un} ⊂
W2,2(R) of critical points. It means that, problem (1.1) admits a sequence of many weak

solutions which is unbounded in W2,2(R).
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Now we present the following example to illustrate Theorem 3.1.

Example 3.2. Let F : R
2 → R be the function defined as

F(x, t) :=







t5
(

1−cos(ln |t|)
)

1+x2 , if (x, t) ∈ R × R − {0}
0, if (x, t) ∈ R × {0}

and therefore we have

f (x, t) :=







5t4
(

1−cos(ln |t|)
)

+t4 sin(ln |t|)
1+x2 , if (x, t) ∈ R × R − {0}

0, if (x, t) ∈ R × {0}.

We observe that

A := lim inf
ρ→+∞

∫

R
sup|t|≤ρ F(x, t)dx

ρ2
= 0 (3.7)

and

B := lim sup
ρ→+∞

∫
5
8

3
8

F(x, ρ)dx

ρ2
= +∞. (3.8)

So, by Theorem 3.1, for every λ ∈ (0,+∞) the problem







uiυ(x)−
(

(1 + e−x2
)u′(x)

)′
+ (π + tan−1 x)u(x)

= λ
5u(x)4

(

1−cos(ln |u(x)|)
)

+u(x)4 sin(ln |u(x)|)
1+x2 , a.e. x ∈ R,

(3.9)

has a sequence of weak solutions which is unbounded in W2,2(R).

Note that, as in the previous example, under appropriate conditions, the existence of

infinitely many weak solutions for problem (1.1) will be guaranteed for any λ ∈ R
+. For this

case, the following result is a consequence of Theorem 3.1.

Corollary 3.3. Suppose that f : R
2 → R is an L1-Carathéodory function. Also, assume that the

assumption (i) in Theorem 3.1 holds and A = ∞ and B = 0 where A and B are given by (3.2) and

(3.3) respectively. Then, for every λ > 0, the problem (1.1) possesses a sequence of many weak solutions

which is unbounded in W2,2(R).

A special case of Theorem 3.1 is given in the following corollary.

Corollary 3.4. Suppose that f : R
2 → R is an L1-Carathéodory function. Also, assume that the

assumption (i) in Theorem 3.1 holds and

(i1) (max{1, |q|∞, |s|∞}) 86111
1080 < B,

(i2) A <
1

2 Cq,s
2 .

Then, the problem

uiυ(x)− (q(x)u′(x))′ + s(x)u(x) = f (x, u(x)), a.e. x ∈ R, (3.10)

possesses a sequence of many weak solutions which is unbounded in W2,2(R).

Proof. The corollary is an immediate consequence of Theorem 3.1 when λ = 1.
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Remark 3.5. In Theorem 3.1, we can consider f (x, t) = β(x) g(t) where β, g : R → R are

two functions such that β ∈ L1(R) , β ≥ 0 , for a.e. x ∈ R, β 6≡ 0 and also g is continuous

and non-negative. We set G(t) =
∫ t

0 g(ξ)dξ for all t ∈ R. Since G′(t) = g(t) ≥ 0 then G is

non-decreasing function. Therefore (3.2) and (3.3) become the following simpler forms:

A := lim inf
ρ→+∞

∫

R
sup|t|≤ρ F(x, t)dx

ρ2
= lim inf

ρ→+∞

G(ρ)|β|1
ρ2

(3.11)

and

B := lim sup
ρ→+∞

∫
5
8

3
8

F(x, ρ)dx

ρ2
= lim sup

ρ→+∞

G(ρ)
∫

5
8

3
8

β(x)dx

ρ2
. (3.12)

Now if we assume that A < τB where τ , A and B are given by (3.1), (3.11) and (3.12) respec-

tively, then according to Theorem 3.1 and Lemma 2.6 for every

λ ∈
]

(max{1, |q|∞, |s|∞})
B

86111

1080
,

1

2A Cq,s
2

[

the problem

uiυ(x)− (q(x)u′(x))′ + s(x)u(x) = λ β(x) g(u(x)), a.e. x ∈ R, (3.13)

admits a sequence of many non-negative weak solutions which is unbounded in W2,2(R).

Using the conclusion (c) instead of (b) in Theorem 3.1, can be obtained a sequence of

pairwise distinct weak solutions to the problem (1.1) which converges uniformly to zero. In

this case, by replacing ρ → +∞ with ρ → 0+, A and B will be converted to the following

forms:

A′ := lim inf
ρ→0+

∫

R
sup|t|≤ρ F(x, t)dx

ρ2
(3.14)

and

B′ := lim sup
ρ→0+

∫
5
8

3
8

F(x, ρ)dx

ρ2
. (3.15)

Therefore, we can present the other main result of this section as follows.

Corollary 3.6. Let f : R
2 → R be an L1-Carathéodory function, and assume that

(i) F(x, t) ≥ 0 for every (x, t) ∈ R ×
]

0, 3
8

[

∪
]

5
8 , 1

[

,

(ii) A′
< τB′, where τ , A′ and B′ are given by (3.1), (3.14) and (3.15) respectively.

Then for every

λ ∈
]

(max{1, |q|∞, |s|∞})
B′

86111

1080
,

1

2A′ Cq,s
2

[

the problem (1.1) admits a sequence of many weak solutions which strongly converges to zero in

W2,2(R).

We present the following example to illustrate Corollary 3.6.
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Example 3.7. Let α >
86111

√
π
6

120
∫

5
8

3
8

e−x2
dx

− 1 ≈ 2673 be a real number and F : R
2 → R be a function

defined by

F(x, t) :=

{

e−x2
t2(1 + α cos2( 1

t )), if (x, t) ∈ R × ]0,+∞[

0, if (x, t) ∈ R × ]− ∞, 0].

From F(x, t) =
∫ t

0 f (x, ξ)dξ we have

f (x, t) :=

{

e−x2(

2t + 2αt cos2( 1
t ) + α sin( 2

t )
)

, if (x, t) ∈ R × ]0,+∞[

0, if (x, t) ∈ R × ]− ∞, 0].

It is clear that f : R
2 → R is an L1-Carathéodory function.

Let q(x) = 1 + 1
1+x2 and s(x) = 2 + tanh x and therefore |q|∞ = 2 , q0 = 1 , |s|∞ = 3 , s0 = 1

and τ = 120
√

6
86111 .

Put an = 1
2n+1

2 π
and bn = 1

nπ for every n ∈ N, one has

A′ := lim inf
ρ→0+

sup|t|≤ρ t2
(

1 + α cos2
(

1
t

)) ∫

R
e−x2

dx

ρ2

≤ lim
n→∞

an
2
(

1 + α cos2
(

1
an

))

∫

R
e−x2

dx

an
2

=
√

π (3.16)

and

B′ := lim sup
ρ→0+

∫
5
8

3
8

F(x, ρ)dx

ρ2
≥ lim

n→∞

bn
2
(

1 + α cos2
(

1
bn

))

∫
5
8

3
8

e−x2
dx

bn
2

= (1 + a)
∫ 5

8

3
8

e−x2
dx. (3.17)

Now, since α >
86111

√
π
6

120
∫

5
8

3
8

e−x2
dx

− 1, we have

A′ ≤
√

π <
120

√
6

86111
(1 + a)

∫ 5
8

3
8

e−x2
dx ≤ τB′

and so condition (ii) of the Theorem 3.1 is satisfied. Now, according to the Theorem 3.1 for

every

λ ∈
]

86111

360(1 + a)
(

∫
5
8

3
8

e−x2 dx
)

,
1

3

√

6

π

[

the problem

{

uiυ(x)−
(

(1 + 1
1+x2 )u

′(x)
)′
+ (2 + tanh x)u(x)

= λ e−x2(

2u(x) + 2αu(x) cos2( 1
u(x)

) + α sin( 2
u(x)

)
)

, a.e. x ∈ R,
(3.18)

admits a sequence of many weak solutions which is converges uniformly to zero.
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Abstract. In this paper, we study the shape of bifurcation curve SL of positive solutions
for the Minkowski-curvature problem



















−





u′(x)
√

1 − (u′(x))2





′

= λ
(

−εu3 + u2 + u + 1
)

, −L < x < L,

u(−L) = u(L) = 0,

where λ, ε > 0 are bifurcation parameters and L > 0 is an evolution parameter. We
prove that there exists ε0 > 0 such that the bifurcation curve SL is monotone increasing
for all L > 0 if ε ≥ ε0, and the bifurcation curve SL is from monotone increasing to
S-shaped for varying L > 0 if 0 < ε < ε0.

Keywords: bifurcation curve, positive solution, Minkowski-curvature problem.
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1 Introduction and main result

In this paper, we study the shapes of bifurcation curves of positive solutions u ∈ C2(−L, L) ∩
C[−L, L] for the one-dimensional Minkowski-curvature problem



















−





u′(x)
√

1 − (u′(x))2





′

= λ f (u), −L < x < L,

u(−L) = u(L) = 0,

(1.1)

where λ > 0 is a bifurcation parameter, L > 0 is an evolution parameter and the nonlinearity

f (u) ≡ −εu3 + u2 + u + 1, ε > 0. (1.2)

BCorresponding author. Email: syhuang@mail.ntue.edu.tw
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It is well-known that studying the multiplicity of positive solutions of problem (1.1) is equiv-

alent to studying the shape of bifurcation curve SL of (1.1) where

SL ≡ {(λ, ‖uλ‖∞
) : λ > 0 and uλ is a positive solution of (1.1)} for L > 0. (1.3)

Thus this investigation is essential.

Before going into further discussions on problems (1.1), we give some terminologies in this

paper for the shape of bifurcation curve SL on the (λ, ‖u‖∞)-plane.

Definition 1.1. Let SL be the bifurcation curve of (1.1) on the (λ, ‖u‖
∞
)-plane.

(i) S-like shaped: The curve SL is said to be S-like shaped if SL has at least two turning

points at some points
(

λ1, ‖uλ1
‖

∞

)

and
(

λ2, ‖uλ2
‖

∞

)

where λ1 < λ2 are two positive

numbers such that:

(a) at
(

λ1, ‖uλ1
‖

∞

)

the bifurcation curve SL turns to the right,

(b) ‖uλ2
‖

∞
< ‖uλ1

‖
∞

,

(c) at
(

λ2, ‖uλ2
‖

∞

)

the bifurcation curve SL turns to the left.

(ii) S-shaped: The curve SL is said to be S-shaped if SL is S-like shaped, has exactly two

turning points, and has at most three intersection points with any vertical line on the

(λ, ‖u‖
∞
)-plane.

(iii) Monotone increasing: The curve SL is said to be monotone increasing if λ1 < λ2 for any

two points
(

λi, ‖uλi
‖

∞

)

, i = 1, 2, lying in SL with ‖uλ1
‖

∞
≤ ‖uλ2

‖
∞

.

Crandall and Rabinowitz [2, p. 177] first considered shape of bifurcation curve of positive

solutions for the n-dimensional semilinear problem

{

−∆u(x) = λ
(

−εu3 + u2 + u + 1
)

in Ω,

u(x) = 0 on ∂Ω,
(1.4)

where Ω is a general bounded domain in R
n (n ≥ 1) with smooth boundary ∂Ω. They applied

the implicit function theorem and perturbation arguments to prove that the bifurcation curve

of positive solutions of (1.4) is S-like shaped on the (λ, ‖uλ‖∞
)-plane when ε > 0 is sufficiently

small. Shi [17, Theorem 4.1] proved that the bifurcation curve of positive solutions of (1.4) is

S-shaped when ε > 0 is small and Ω is a ball in R
n with 1 ≤ n ≤ 6. Hung and Wang [6]

consider the one-dimensional case

{

−u′′(x) = λ
(

−εu3 + u2 + u + 1
)

, −1 < x < 1,

u(−1) = u(1) = 0.
(1.5)

Then they provided the complete variational process of shape of bifurcation curve S̄ of (1.5)

with varying ε > 0 where

S̄ ≡ {(λ, ‖uλ‖∞
) : λ > 0 and uλ is a positive solution of (1.5)} , (1.6)

see Theorem 1.2.
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Figure 1.1: Graphs of bifurcation curves S̄ of (1.4). (i) ε ≥ ε0 and (ii) 0 < ε < ε0.

Theorem 1.2 ([6, Theorem 3.1]). Consider (1.5). Then the bifurcation curve S̄ is continuous on the

(λ, ‖uλ‖∞
)-plane, starts from (0, 0) and goes to infinity. Furthermore, there exists a critical bifurcation

value ε0 ∈ (0, 1/
√

27) such that the bifurcation curve S̄ is monotone increasing if ε ≥ ε0, and S̄ is

S-shaped if 0 < ε < ε0, see Figure 1.1.

To the best of my knowledge, there are no manuscripts to describe the variational pro-

cess for SL of (1.5) with varying ε, L > 0. Hence we start to concern this issue. In addition,

references [7, 8, 16] provided some sufficient conditions to determine the shape of bifurcation

curve or multiplicity of positive solutions of problem (1.1) with general f (u) ∈ C[0, ∞). How-

ever, these results can not be applied in our problem (1.1) because the cubic nonlinearity f (u)

defined by (1.2) is not always positive in [0, ∞). So studying the problem (1.1) is worth and

interesting.

By elementary analysis, we find that f (u) has unique zero βε in [0, ∞). Then the main

result is as follows:

Theorem 1.3 (See Figure 1.2). Consider (1.1). Let ε0 be defined in Theorem 1.2. Then the following

statements (i)–(iii) hold:

(i) For L > 0, the bifurcation curve SL is continuous on the (λ, ‖uλ‖∞
)-plane, starts from (0, 0)

and goes to infinity along the horizontal line ‖u‖
∞
= ρL,ε where ρL,ε ≡ min{L, βε}.

(ii) If ε ≥ ε0, then the bifurcation curve SL is monotone increasing for all L > 0.

(iii) If 0 < ε < ε0, then there exist two positive numbers Lε < L̃ε such that

(a) the bifurcation curve SL is monotone increasing for 0 < L ≤ Lε.

(b) the bifurcation curve SL is S-like shaped for Lε < L ≤ L̃ε.

(c) the bifurcation curve SL is S-shaped for L > L̃ε.

Furthermore, Lε is a continuous function of ε ∈ (0, ε0), limε→0+ Lε ∈ (0, ∞) and limε→ε−0
Lε =

∞.

Remark 1.4. By numerical simulations to bifurcation curves SL of (1.1), we conjecture that the

bifurcation curve SL is also S-shaped on the (λ, ‖uλ‖∞
)-plane for Lε < L ≤ L̃ε and 0 < ε < ε0.

Further investigations are needed. In addition, by Theorems 1.2 and 1.3, we make a list which

shows the different properties for Minkowski-curvature problem (1.1) and semilinear problem

(1.4), see Table 1.



4 S.-Y. Huang and M.-S. Hwang

Figure 1.2: Graphs of bifurcation curve SL of (1.1) for ε > 0.

Bifurcation curve SL of (1.1) S̄ of (1.4)

1. Shapes (0 < ε < ε0)
from monotone increasing

to S-shaped with varying ε
S-shaped

2. Shapes (ε ≥ ε0) monotone increasing monotone increasing

3.
Numbers of

turning points

(1). from 0 to 2 varying L > 0 if 0 < ε < ε0

(2). 0 if ε ≥ ε0

(1). 2 if 0 < ε < ε0

(2). 0 if ε ≥ ε0

4. Continuity continuous continuous

5.
Evolution
parameter(s)

ε and L ε

6. Starting point (0, 0) (0, 0)

7. "End point" (∞,ρL,ε) (∞, ∞)

Table 1.1: Comparison of properties of SL and S̄.

The paper is organized as follows: Section 2 contains the lemmas used for proving the

main result. Section 3 contains the proof of main result (Theorem 1.3). Section 4 contains the

proof of assertion (2.31).
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2 Lemmas

To prove Theorem 1.3, we first introduce the time-map method used in Corsato [4, p. 127]. We

define the time-map formula for (1.1) by

Tλ(α) ≡
∫ α

0

λ [F(α)− F(u)] + 1
√

{λ [F(α)− F(u)] + 1}2 − 1
du for 0 < α < βε and λ > 0, (2.1)

where F(u) ≡
∫ u

0 f (t)dt. Observe that positive solutions uλ ∈ C2(−L, L) ∩ C[−L, L] for (1.1)

correspond to

‖uλ‖∞
= α and Tλ(α) = L.

So by definition of SL in (1.3), we have that

SL = {(λ, α) : Tλ(α) = L for some 0 < α < βε and λ > 0} . (2.2)

Thus, it is important to understand fundamental properties of the time-map Tλ(α) on (0, βε)
in order to study the shape of the bifurcation curve SL of (1.1) for any fixed L > 0. Note that

it can be proved that Tλ(α) is a triple differentiable function of ε ∈ (0, βε) for ε, λ > 0, and

Tλ(α), T′
λ(α) are differentiable function of λ > 0 for 0 < α < βε and a > 0. The proofs are easy

but tedious and hence we omit them. Similarly, we define the time-map formula for (1.5) by

T̄(α) ≡ 1√
2

∫ α

0

1
√

F(α)− F(u)
du for α > 0, (2.3)

see [12, p. 779]. Then we have that ‖uλ‖∞
= α and T̄(α) =

√
λ. So by the definition of S̄ in

(1.6), we see that

S̄ =
{

(λ, α) :
√

λ = T̄(α) for some α > 0
}

. (2.4)

For the sake of convenience, we let

A = A(α, u) ≡ α f (α)− u f (u), B = B(α, u) ≡ F(α)− F(u),

C = C(α, u) ≡ α2 f ′(α)− u2 f ′(u) and D = D(α, u) ≡ α3 f ′′(α)− u3 f ′′(u).

Obviously, we have

B(α, u) =
∫ α

u
f (t)dt > 0 for 0 < u < α < βε (2.5)

because f (u) > 0 for 0 < u < βε.

Lemma 2.1. Consider (1.1) with ε > 0. Then the following statements (i)–(iii) hold:

(i) limα→0+ Tλ(α) = 0 and limα→β−
ε

Tλ(α) = ∞ for λ > 0.

(ii) limλ→0+
√

λT
(i)
λ (α) = T̄(i)(α) and limλ→∞ T′

λ(α) = 1 for 0 < α < βε and i = 1, 2, 3.

(iii) ∂Tλ(α)/∂λ < 0 for 0 < α < βε and λ > 0.

Proof. Since

lim
u→0+

F(u)

u2
= ∞,
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and by [7, Lemma 3.1], we obtain that limα→0+ Tλ(α) = 0. Since f (βε) = 0, there exist b, c ∈ R

such that f (u) = (βε − u)(εu2 + bu + c). Since f (u) > 0 on (0, βε), there exists M > 0 such

that 0 < εu2 + bu + c < M for 0 < u < βε. For 0 < t < 1, by the mean-value theorem, there

exists ηt ∈ (βεt, βε) such that

B(βε, βεt) =
∫ βε

βεt
f (t)dt = f (ηt)βε (1 − t) = (βε − ηt)

(

εη2
t + bηt + c

)

βε (1 − t)

< (βε − βεt) Mβε (1 − t) = Mβ2
ε (1 − t)2 . (2.6)

Then there exists t∗ ∈ (0, 1) such that B(βε, βεt) < 1 for t∗ < t < 1. So by (2.5) and (2.6), we

see that

lim
α→β−

ε

Tλ(α) = lim
α→β−

ε

α
∫ 1

0

λB(α, αt) + 1
√

λ2B2(α, αt) + 2λB(α, αt)
dt

≥ lim
α→β−

ε

α
∫ 1

t∗

1
√

λ2B2(α, αt) + 2λB(α, αt)
dt

≥ βε

∫ 1

t∗

1
√

(λ2 + 2λ) B(βε, βεt)
dt ≥ 1

√

(λ2 + 2λ) M

∫ 1

t∗

1

1 − t
dt = ∞,

which implies that statement (i) holds. In addition, we compute that, for 0 < α < βε and

λ > 0,

T′
λ(α) =

1

α

∫ α

0

λ3B3 + 3λ2B2 + λ (2B − A)

(λ2B2 + 2λB)3/2
du, (2.7)

T′′
λ (α) =

1

α2

∫ α

0

(

3A2B − B2C − 2AB2
)

λ3 +
(

3A2 − 4AB − 2BC
)

λ2

(λ2B2 + 2λB)5/2
du, (2.8)

T′′′
λ (α) =

1

α3

∫ α

0

λ3

[λ2B2 + 2λB]7/2

[

B2
(

9A2B − 3B2C − B2D − 12A3 + 9ABC
)

λ2

+ B(27A2B − 12B2C − 4B2D − 24A3 + 27ABC)λ + 18A2B − 12B2C

− 4B2D − 15A3 + 18ABC
]

du. (2.9)

So we observe that, for 0 < α < βε,

lim
λ→0+

√
λT′

λ(α) =
1

α

∫ α

0

2B − A

(2B)3/2
du = T̄′(α),

lim
λ→0+

√
λT′′

λ (α) =
1

α2

∫ α

0

3A2 − 4AB − 2BC

(2B)5/2
du = T̄′′(α),

lim
λ→0+

√
λT′′′

λ (α) =
1

α3

∫ α

0

18A2B − 12B2C − 4B2D − 15A3 + 18ABC

(2B)5/2
du = T̄′′′(α).

Furthermore, limλ→∞ T′
λ(α) = 1. So statement (ii) holds. The statement (iii) follows immedi-

ately by [7, Lemma 4.2(ii)]. The proof is complete.

Lemma 2.2. Consider (1.1) with ε > 0. Then the following statements (i) and (ii) hold:

(i) T′
λ(α) > 0 for 0 < α ≤ 1 and λ > 0.

(ii) Tλ(α) has at most one critical point, a local minimum, on [ 5
12ε , βε).
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Proof. We can see that 2B(α, u)− A(α, u) > 0 for 0 < u < α ≤ 1 because 2B(α, α)− A(α, α) = 0

and
∂

∂u
[2B(α, u)− A(α, u)] = −2εu3 +

(

u2 − 1
)

< 0 for 0 < u < α < 1.

So by (2.5) and (2.7), we obtain that T′
λ(α) > 0 for 0 < α ≤ 1 and λ > 0. Then statement (i)

holds. By (2.5), (2.7) and (2.8), we observe that, for 0 < α < βε and λ > 0,

αT′′
λ (α) + 2T′

λ(α)

=
1

α

∫ α

0

B5λ3 + 5B4λ2 + λB
(

3A2 + 16B2 − 4AB − BC
)

+ 3A2 + 8B2 − 8AB − 2BC
√

λ (λB2 + 2B)5/2
du

>
1

α

∫ α

0

λB
(

3A2 + 16B2 − 4AB − BC
)

+ 3A2 + 8B2 − 8AB − 2BC
√

λ (λB2 + 2B)5/2
du

=
1

α

∫ α

0

λB
[

3 (A − B)2 + 5B2 + B (2A − 2B − C)
]

+ 3 (A − 2B)2 + 2B (2A − 2B − C)
√

λ (λB2 + 2B)5/2
du

>
1

α

∫ α

0

λB2 (2A − 2B − C) + 2B (2A − 2B − C)√
λ (λB2 + 2B)5/2

du

=
1

α

∫ α

0

(

λB2 + 2B
)

(2A − 2B − C)
√

λ (λB2 + 2B)5/2
du =

1

α

∫ α

0

2A − 2B − C√
λ (λB2 + 2B)3/2

du

=
1

6α

∫ α

0

φ(α)− φ(u)√
λ (λB2 + 2B)3/2

du, (2.10)

where φ(u) ≡ u3 (9εu − 4). Clearly, φ′(u) = 12u2 (3εu − 1). Since

f

(

4

9ε

)

= 1 +
324ε + 80

729ε2
> 0,

we see that
1

3ε
<

4

9ε
< βε. (2.11)

So we observe that

φ(u)















< 0 for 0 < u <
4
9ε ,

= 0 for u = 4
9ε ,

> 0 for 4
9ε < u < βε,

and φ′(u)















< 0 for 0 < u <
1
3ε ,

= 0 for u = 1
3ε ,

> 0 for 1
3ε < u < βε.

(2.12)

Let α ∈
[

5
12ε , βε

)

be given. Then we consider two cases.

Case 1. Assume that 4
9ε ≤ α < βε. Since φ(0) = 0, and by (2.12), we see that φ(α)− φ(u) > 0

for 0 < u < α. So by (2.10), we obtain αT′′
λ (α) + 2T′

λ(α) > 0 for λ > 0.

Case 2. Assume that 5
12ε ≤ α <

4
9ε . Since φ(0) = 0, and by (2.12), there exists α̃ ∈

(

0, 1
3ε

)

such

that

φ(α)− φ(u)















< 0 for 0 < u < α̃,

= 0 for u = α̃,

> 0 for α̃ < u < α.
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So by (2.10), we observe that, for λ > 0,

αT′′
λ (α) + 2T′

λ(α)

>
1

6α
√

λ

[

∫ α̃

0

φ(α)− φ(u)

[λB2 + 2B]3/2
du +

∫ α

α̃

φ(α)− φ(u)

[λB2 + 2B]3/2
du

]

>
1

6α
√

λ [λB2(α, α̃) + 2B(α, α̃)]3/2

{

∫ α̃

0
[φ(α)− φ(u)] du +

∫ α

α̃
[φ(α)− φ(u)] du

}

=
1

6α
√

λ [λB2(α, α̃) + 2B(α, α̃)]3/2

∫ α

0
[φ(α)− φ(u)] du

=
6εα3

5
√

λ [λB2(α, α̃) + 2B(α, α̃)]3/2

(

α − 5

12ε

)

≥ 0.

Thus by Cases 1–2, we have

αT′′
λ (α) + 2T′

λ(α) > 0 for
5

12ε
≤ α < βε and λ > 0. (2.13)

Fixed λ > 0. If Tλ(α) has a critical point ᾰ in [ 5
12ε , βε), by (2.13), then ᾰT′′

λ (ᾰ) = ᾰT′′
λ (ᾰ) +

2T′
λ(ᾰ) > 0. It implies that Tλ(α) has at most one critical point, a local minimum, on

[

5
12ε , βε

)

for λ > 0. Then the statement (ii) holds. The proof is complete.

Lemma 2.3. Consider (1.1) with ε > 0. Then

∂

∂λ

[√
λT′

λ(α)
]

> 0 for 0 < α ≤ 5

12ε
and λ > 0. (2.14)

Proof. By (2.5) and (2.7), we compute and find that

∂

∂λ

[√
λT′

λ(α)
]

=
1

2α

∫ α

0

B2
(

B3λ2 + 5B2λ + 3A + 6B
)

(λB2 + 2B)5/2
du >

1

2α

∫ α

0

3B2 (A + 2B)

(λB2 + 2B)5/2
du. (2.15)

In addition, we compute that

∂

∂u
[A(α, u) + 2B(α, u)] = R(u),

where R(u) ≡ 3εu3 − 3 (1 − ε) u2 − 6u− 4. Clearly, R′(u) = 9εu2 − 6 (1 − ε) u− 6 is a quadratic

polynomial of u with positive leading coefficient. Furthermore,

R′(0) = −6 < 0 and R′
(

5

12ε

)

≡ −56ε + 15

16ε
< 0.

Thus we observe that R′(u) < 0 for 0 ≤ u ≤ 5
12ε . It follows that

∂

∂u
[A(α, u) + 2B(α, u)] = R(u) ≤ R(0) = −4 < 0 for 0 ≤ u ≤ 5

12ε
.

Then we have

A(α, u) + 2B(α, u) > A(α, α) + 2B(α, α) = 0 for 0 < u < α ≤ 5

12ε
.

So by (2.15), we obtain (2.14). The proof is complete.
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Lemma 2.4. Consider (1.1) with ε > 0. Let I be a closed interval in (0, βε). Then the following

statements (i)–(iii) hold:

(i) If T̄′(α) < 0 for α ∈ I, then there exists λ̌ > 0 such that T′
λ(α) < 0 for α ∈ I and 0 < λ < λ̌.

(ii) If αT̄′′(α) + kT̄′(α) < 0 for α ∈ I and some k > 0, then there exists λ̂ > 0 such that αT′′
λ (α) +

kT′
λ(α) < 0 for α ∈ I and 0 < λ < λ̂.

(iii) If [2αT̄′′(α) + 3T̄′(α)]′ > 0 for α ∈ I, then there exists λ̄ > 0 such that [2αT′′
λ (α) + 3T′

λ(α)]
′
>

0 for α ∈ I and 0 < λ < λ̄.

Proof. (I) Assume that T̄′(α) < 0 for α ∈ I. By Lemma 2.1(ii), we have

lim
λ→0+

√
λT′

λ(α) = T̄′(α) < 0 for α ∈ I. (2.16)

For α ∈ I, by (2.16), we define λα by

λα ≡







1 if T′
λ(α) < 0 for all λ > 0,

sup{λ1 : T′
λ(α) < 0 for 0 < λ < λ1} if T′

λ(α) ≥ 0 for some λ > 0.
(2.17)

Clearly, T′
λ(α) < 0 for α ∈ I and 0 < λ < λα. Let λ̌ ≡ inf{λα : α ∈ I}. Assume that λ̌ = 0. By

(2.17), there exists a sequence {αk}k∈N
⊂ I such that

lim
k→∞

λαk
= 0 and T′

λαk
(αk) ≥ 0 for k ∈ N. (2.18)

Without loss of generality, we assume that limk→∞ αk = α̌ ∈ I. So by (2.16) and (2.18), we

observe that

0 ≤ lim
k→∞

√

λαk
T′

λαk
(αk) = lim

k→∞

√

λαk
T′

λαk
(α̌) = T̄′(α̌) < 0,

which is a contradiction. It implies that λ̌ > 0. So statement (i) holds.

(II) Assume that αT̄′′(α) + kT̄′(α) < 0 for α ∈ I and some k > 0. Let G1(α, λ) ≡ αT′′
λ (α) +

kT′
λ(α). By Lemma 2.1(ii), we see that

lim
λ→0+

√
λG1(α, λ) = αT̄′′(α) + kT̄′(α) < 0 for α ∈ I. (2.19)

For α ∈ I, by (2.19), we define λα by

λα ≡







1 if G1(α, λ) < 0 for all λ > 0,

sup{λ2 : G1(α, λ) < 0 for 0 < λ < λ2} if G1(α, λ) ≥ 0 for some λ > 0.

Clearly, G1(α, λ) < 0 for α ∈ I and 0 < λ < λα. Let λ̂ ≡ inf{λα : α ∈ I}. We use the similar

argument in (I) to obtain that λ̂ > 0. So statement (ii) holds.

(III) Assume that [2αT̄′′(α) + 3T̄′(α)]′ > 0 for α ∈ I. Let G2(α, λ) ≡ [2αT′′(α) + 3T′(α)]′. By

Lemma 2.1(ii), we see that

lim
λ→0+

√
λG2(α, λ) = lim

λ→0+

[

2α
√

λT′′′
λ (α) + 5

√
λT′′

λ (α)
]

= 2αT̄′′′(α) + 5T̄′′(α)

= [2αT̄′′(α) + 3T̄′(α)]′ > 0 for α ∈ I. (2.20)
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For α ∈ I, by (2.20), we define λα by

λα ≡







1 if G2(α, λ) < 0 for all λ > 0,

sup{λ3 : G2(α, λ) < 0 for 0 < λ < λ3} if G2(α, λ) ≥ 0 for some λ > 0.

Clearly, G2(α, λ) < 0 for α ∈ I and 0 < λ < λα. Let λ̄ ≡ inf{λα : α ∈ I}. We use the similar

argument in (I) to obtain that λ̄ > 0. So statement (iii) holds. The proof is complete.

Lemma 2.5. Consider (1.5) with ε > 0. Let ε0 be defined in Theorem 1.2. Then the following

statements (i)–(iii) hold:

(i) T̄′(α) ≥ 0 for 0 < α < βε and ε ≥ ε0.

(ii) [2αT̄′′(α) + 3T̄′(α)]′ > 0 for 1
3ε ≤ α ≤ 5

12ε and ε ≤ ε0.

(iii) There exists ε̂ ∈ (0, ε0) such that T̄′(α) ≥ 0 for 0 < α ≤ 1
3ε and ε̂ ≤ ε < ε0. Furthermore,

ε̂ <
√

31/1000.

Proof. The statement (i) follows immediately by Theorem 1.2 and (2.4). The statement (ii)

follows immediately by [6, Lemma 3.5]. By [11, Theorem 2.1], there exists ε̂ > 0 satisfying

ε̂ <

√

31

1000
< ε0

such that

T̄′
(

1

3ε

)















< 0 for 0 < ε < ε̂,

= 0 for ε = ε̂,

> 0 for ε̂ < ε < ε0.

(2.21)

By Theorem 1.2, (2.4) and [6, Lemma 3.3], we see that, for 0 < ε < ε0, there exist two positive

numbers α∗ < α∗
< βε such that

T̄′(α)















> 0 on (0, α∗) ∪ (α∗, βε) ,

= 0 when α = α∗ or α = α∗,

< 0 for (α∗, α∗) .

(2.22)

Since f is a convex function on
[

0, 1
3ε

]

, and by [15, Lemma 3.2], we see that T̄(α) is either

strictly increasing on
(

0, 1
3ε

)

, or strictly increasing and then strictly decreasing on
(

0, 1
3ε

)

. So

by (2.21) and (2.22), we observe that 1
3ε ≤ α∗ for ε̂ ≤ ε < ε0. It follows that T̄′(α) ≥ 0 for

0 < α ≤ 1
3ε and ε̂ ≤ ε < ε0. So the statement (iii) holds. The proof is complete.

Lemma 2.6. Consider (1.5) with 0 < ε ≤ ε̂ where ε̂ is defined in Lemma 2.5. Then αT̄′′ (α)+ T̄′ (α) <
0 for 1 ≤ α ≤ 1.7.

Proof. Let Ā ≡ ε
(

α4 − u4
)

, B̄ ≡ α3 − u3, C̄ ≡ α2 − u2 and D̄ ≡ α − u. We compute that

αT̄′′(α) + T̄′(α) =
1

4
√

2α

∫ α

0

N1(α, u)

[F(α)− F(u)]5/2
du, (2.23)

where

N1 (α, u) ≡ 1

72

(

9Ā2 + 4B̄2 + 36D̄2 − 6ĀB̄ + 198ĀD̄ − 120B̄D̄ + 36ĀC̄ − 12B̄C̄ − 36C̄D̄
)

.
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Let α ∈ [1, 1.7], u ∈ (0, α) and ε ∈ (0, ε̃] be given. By Lemma [11, Lemma 3.6], we have

Ā <
4εα

3
B̄ and D̄ >

1

3α2
B̄ >

1

3α2

(

3

4εα
Ā

)

=
Ā

4α3ε
.

Then

1 < α2
<

(

α2 + αu + u2
)

D̄

D̄
=

B̄

D̄
< 3α2 ≤ 3 (1.7)2 = 8.67, (2.24)

Ā <
4εα

3
B̄ <

4ε̂

3
(1.7) B̄ =

34ε̂

15
B̄ and D̄ >

Ā

4α3ε
>

Ā

4 (1.7)3 ε̂
=

250

4913ε̂
Ā. (2.25)

In addition, by Lemma 2.5(iii), we compute and find that

34

15
ε̂ − 2

3
<

34

15

√

31

1000
− 2

3
(≈ −0.26) < 0, (2.26)

198

(

34

15
ε̂ − 20

33

)

< 198

(

34

15

√

31

1000
− 20

33

)

(≈ −40.98) < −0.40, (2.27)

1 − 5

34ε̂
− 250

4913ε̂
< 1 − 5

34
√

31
1000

− 250

4913
√

31
1000

(≈ −0.88) < 0. (2.28)

By (2.24)–(2.28), we observe that

N1 (α, u) =
1

72

(

9Ā2 + 4B̄2 + 36D̄2 − 6ĀB̄ + 198ĀD̄ − 120B̄D̄ + 36ĀC̄ − 12B̄C̄ − 36C̄D̄
)

=
1

72

[

9Ā

(

Ā − 2

3
B̄

)

+ 198D̄

(

Ā − 20

33
B̄

)

+ 36C̄

(

Ā − 1

3
B̄ − D̄

)

+ 4B̄2 + 36D̄2

]

<
1

72

[

9ĀB̄

(

34

15
ε̂ − 2

3

)

+ 198B̄D̄

(

34

15
ε̂ − 20

33

)

+ 36ĀC̄

(

1 − 5

34ε̂
− 250

4913ε̂

)

+ 4B̄2 + 36D̄2

]

<
1

72

(

− 40B̄D̄ + 4B̄2 + 36D̄2
)

=
D̄2

18

[

(

B̄

D̄
− 5

)2

− 16

]

<
D̄2

18

[

(1 − 5)2 − 16
]

= 0.

So by (2.23), we obtain that αT̄′′ (α) + T̄′ (α) < 0 for 1 ≤ α ≤ 1.7 and 0 < ε ≤ ε̂. The proof is

complete.

Lemma 2.7. Consider (1.5) with 0.07 ≤ ε ≤ ε̂. Then αT̄′′ (α) + 5
2 T̄′ (α) < 0 for 1.7 ≤ α ≤ 1

3ε .

Proof. We compute that

αT̄′′(α) +
5

2
T̄′(α) =

1

4
√

2α

∫ α

0

N2(α, u)

[F(α)− F(u)]5/2
du, (2.29)

where

N2 (α, u) ≡ 1

144

(

− 9Ā2 + 42ĀB̄ + 450ĀD̄ + 126ĀC̄ − 16B̄2 − 240B̄D̄

− 60B̄C̄ + 288D̄2 + 36C̄D̄
)

. (2.30)
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Then we assert that

N2 (α, u) < 0 for 0 < u < α, 1.7 ≤ α ≤ 1

3ε
and 0.07 ≤ ε ≤ ε̂. (2.31)

The proof of assertion (2.31) is easy but tedious. Thus, we put it in Appendix. So by (2.29)–

(2.31), we see that αT̄′′ (α) + 5
2 T̄′ (α) < 0 for 1.7 ≤ α ≤ 1

3ε and 0.07 ≤ ε ≤ ε̂.

Lemma 2.8. Consider (1.5) with 0 < ε < 0.07. Then T̄′ (α) < 0 for 1.7 ≤ α ≤ 1
3ε .

Proof. We compute that

T̄′ (α) =
1

2
√

2α

∫ α

0

2B(α, u)− A(α, u)

B3/2(α, u)
du =

1

2
√

2α

∫ α

0

θ(α)− θ(u)

B3/2(α, u)
du, (2.32)

where θ(u) ≡ 2F(u)− u f (u) for 0 ≤ u < βε. Since 0 < ε < 0.07, and by [11, Lemma 3.1], there

exists p ∈
(

0, 1
3ε

)

such that θ′(u) > 0 for (0, p) and θ′(u) < 0 for
(

p, 1
3ε

)

. Let α ∈
[

1.7, 1
3ε

]

be

given. Assume that θ(α) ≤ 0, see Figure 2.1(i). Since θ(0) = 0, we see that θ(α)− θ(u) < 0

for 0 < u < α. So by (2.32), we obtain that T̄′ (α) < 0. Assume that θ(α) > 0, see Figure 2.1(ii).

We compute and find that

θ′(1.7) = 2εu3 − u2 + 1
∣

∣

u=1.7
=

4913

500
ε − 189

100
< 0 for 0 < ε < 0.07.

Since 1.7 ≤ α ≤ 1
3ε , there exists ᾱ ∈ (0, p) such that

θ(α)− θ(u)















> 0 for 0 < u < ᾱ,

= 0 for u = ᾱ,

< 0 for ᾱ < u < α.

Figure 2.1: Graphs of θ(u) on [0, α] where 1.7 ≤ α ≤ 1
3ε and 0 < ε < 0.07.

So by (2.32) and similar argument of [14, (3.11)], we observe that

T̄′ (α) <
1

2
√

2αB3/2(α, ᾱ)

∫ α

0
uθ′(u)du =

α
(

8εα3 − 5α2 + 10
)

40
√

2B3/2(α, ᾱ)
. (2.33)

Since
∂

∂u

(

8εu3 − 5u2 + 10
)

= 2u (12εu − 5) < 0 for 1.7 ≤ u ≤ 1

3ε
,
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we see that, for 1.7 ≤ u ≤ 1
3ε and 0 < ε < 0.07,

8εu3 − 5u2 + 10 < 8εu3 − 5u2 + 10
∣

∣

u=1.7
=

4913

125
ε − 89

20
< 0.

So by (2.33), we obtain that T̄′ (α) < 0. The proof is complete.

Lemma 2.9. Consider (1.1) with 0 < ε < ε0. Then there exists ξε > 0 such that

Γε ≡ {λ > 0 : T′
λ(α) < 0 for some α ∈ (0, βε)} = (0, ξε).

Proof. Let ε ∈ (0, ε0) be given. By (2.22), there exist two positive numbers α∗ < α∗
< βε such

that

lim
λ→0+

√
λT′

λ(α) = T̄′(α)















> 0 on (0, α∗) ∪ (α∗, βε),

= 0 when α = α∗ or α∗,

< 0 on (α∗, α∗) .

(2.34)

Then we divide this proof into the next four steps.

Step 1. We prove that α∗ < 5
12ε . Assume that α∗ ≥ 5

12ε . By (2.34) and Lemma 2.3, we see that

0 ≤ T̄′(α) = lim
λ→0+

√
λT′

λ(α) <
√

λT′
λ(α) for 0 < α ≤ 5

12ε
and λ > 0. (2.35)

By Lemma 2.2(ii) and (2.35), we further see that T′
λ(α) > 0 for 0 < α < βε for λ > 0. So by

(2.34), we obtain that

0 ≤ lim
λ→0+

√
λT′

λ

(

α∗ + α∗

2

)

= T̄′
(

α∗ + α∗

2

)

< 0,

which is a contradiction. It implies that α∗ < 5
12ε .

Step 2. We prove that, for α ∈ (α∗, α∗) ∩
(

0, 5
12ε

]

, there exists a continuously differential

function λ̃α > 0 of α such that

√
λT′

λ(α)















< 0 if 0 < λ < λ̃α,

= 0 if λ = λ̃α,

> 0 if λ > λ̃α.

(2.36)

By Lemma 2.1(ii), we see that

lim
λ→∞

√
λT′

λ(α) = ∞ · 1 = ∞ for α ∈ (0, βε). (2.37)

By (2.34), (2.37), Lemma 2.3 and implicit function theorem, we observe that, for α ∈ (α∗, α∗) ∩
(

0, 5
12ε

]

, there exists a continuously differential function λ̃α > 0 of α such that (2.36) holds.

Step 3. We prove that

ξε ≡ sup

{

λ̃α : α ∈ (α∗, α∗) ∩
(

0,
5

12ε

]}

∈ (0, ∞) .

Clearly, ξε > 0. By (2.34) and Lemma 2.3, we see that

0 = lim
λ→0+

√
λT′

λ(α∗) < T′
λ=1(α∗).
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So by Lemma 2.3 and continuity of T′
λ=1(α) with respect to α, there exists δ > 0 such that

0 < T′
λ=1(α) ≤

√
λT′

λ(α) for α∗ < α < α∗ + δ <
5

12ε
and λ ≥ 1,

from which it follows that λ̃α < 1 for α∗ < α < α∗ + δ. Thus limα→α+∗ λ̃α ≤ 1 < ∞. By similar

argument, we obtain that

lim
α→(α∗)−

λ̃α < ∞ if α∗
<

5

12ε
.

So by Step 2, we observe that ξε ∈ (0, ∞).

Step 4. We prove that Γε = (0, ξε). Let λ1 ∈ (0, ξε). There exists α1 ∈ (α∗, α∗) ∩
(

0, 5
12ε

]

such

that λ1 < λ̃α1
. Then by (2.36), we see that T′

λ1
(α1) < 0, which implies that λ1 ∈ Γε. Thus

(0, ξε) ⊆ Γε. Let λ2 ∈ Γε. There exists α2 ∈ (0, βε) such that T′
λ2
(α2) < 0. Next, we consider

two cases.

Case 1. Assume that 5
12ε < α∗. By (2.34) and Lemma 2.3, we see that

0 ≤ lim
λ→0+

√
λT′

λ(α) <
√

λT′
λ(α) for α ∈ (0, α∗] and λ > 0. (2.38)

By Steps 2 and 3, we see that

√
λT′

λ(α) ≥ 0 for α ∈
(

α∗,
5

12ε

]

if λ ≥ ξε. (2.39)

By (2.39) and Lemma 2.2, we see that

T′
λ(α) > 0 for

5

12ε
≤ α < βε and λ ≥ ξε. (2.40)

So by (2.38)–(2.40), we obtain that T′
λ(α) ≥ 0 for α ∈ (0, βε) if λ ≥ ξε. It implies that λ2 < ξε.

Thus Γε ⊆ (0, ξε).

Case 2. Assume that α∗
<

5
12ε . By (2.34) and Lemma 2.3, we see that

0 ≤ lim
λ→0+

√
λT′

λ(α) <
√

λT′
λ(α) for α ∈ (0, α∗] ∪

[

α∗,
5

12ε

]

and λ > 0. (2.41)

By Steps 2 and 3, we see that

√
λT′

λ(α) ≥ 0 for α ∈ (α∗, α∗) if λ ≥ ξε. (2.42)

By (2.41) and Lemma 2.2(ii), we see that

T′
λ(α) > 0 for

5

12ε
≤ α < βε and λ > 0. (2.43)

So by (2.41)–(2.43), we obtain that T′
λ(α) ≥ 0 for α ∈ (0, βε) if λ ≥ ξε. It implies that λ2 < ξε.

Thus Γε ⊆ (0, ξε).

By the above discussions, we obtain that Γε = (0, ξε). The proof is complete.

Lemma 2.10. Consider (1.1) with 0 < ε < ε0. Then there exists κε ∈ (0, ξε) such that Tλ(α) has

exactly two critical points, a local maximum at αM(λ) and a local minimum at αm(λ) (> αM(λ)), on

(0, βε) if 0 < λ < κε.
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Proof. Let ε ∈ (0, ε0) be given. By (2.34) and Lemma 2.1(ii), there exists λ1 > 0 such that

T′
λ

(

α∗ + α∗

2

)

< 0 for 0 < λ < λ1. (2.44)

We divide this proof into the next four steps.

Step 1. We prove that there exists λ2 ∈ (0, λ1) such that, for 0 < λ < λ2, either T′
λ(α) > 0 on

(

0, 1
3ε

]

, or Tλ(α) has exactly one critical point, a local maximum, on
(

0, 1
3ε

]

, see Figure 2.2. By

Lemma 2.2(i), we have

T′
λ(α) > 0 for 0 < α ≤ 1 and λ > 0. (2.45)

0 α 0 α

Tλ(α) Tλ(α)

(i) (ii)
1 11

3ε 1
3ε

Figure 2.2: Graphs of Tλ(α) on (0, 1
3ε ] for 0 < λ < λ2.

Then we consider the following three cases.

Case 1. Assume that ε̂ ≤ ε < ε0. By Lemmas 2.1(ii), 2.3 and 2.5(iii), we see that

0 ≤ T̄′(α) = lim
λ→0+

√
λT′

λ(α) <
√

λT′
λ(α) for 1 < α ≤ 1

3ε
and λ > 0.

So by (2.45), T′
λ(α) > 0 on

(

0, 1
3ε

]

for λ > 0, see Figure 2.2(i).

Case 2. Assume that 0.07 ≤ ε < ε̂. By (2.21), Lemmas 2.1(ii), 2.4(ii), 2.6 and 2.7, there exists

λ2 ∈ (0, λ1) such that

T′
λ

(

1

3ε

)

< 0 and αT′′
λ (α) + K(α)T′

λ(α) < 0 for 1 ≤ α ≤ 1

3ε
and 0 < λ < λ2, (2.46)

where K(α) ≡ 1 if 1 ≤ α ≤ 1.7, and K(α) ≡ 5/2 if 1.7 < α ≤ 1
3ε . By (2.45) and (2.46), there

exists αλ ∈
(

1, 1
3ε

)

such that T′
λ(αλ) = 0 for 0 < λ < λ2. Furthermore,

αλT′′
λ (αλ) = αλT′′

λ (αλ) + K(αλ)T
′
λ(αλ) < 0 for 0 < λ < λ2.

Thus Tλ(α) has exactly one local maximum at αλ on
(

0, 1
3ε

]

for 0 < λ < λ2, see Figure 2.2(ii).

Case 3. Assume that 0 < ε < 0.07. By Lemmas 2.4, 2.6 and 2.8, there exists λ2 ∈ (0, λ1) such

that

αT′′
λ (α) + T′

λ(α) < 0 for 1 ≤ α ≤ 1.7 and 0 < λ < λ2, (2.47)

T′
λ(α) < 0 for 1.7 ≤ α ≤ 1

3ε
and 0 < λ < λ2. (2.48)
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So by (2.45), (2.47) and (2.48), there exists αλ ∈ (1, 1.7) such that T′
λ(αλ) = 0 for 0 < λ < λ2.

Furthermore,

αλT′′
λ (αλ) = αλT′′

λ (αλ) + T′
λ(αλ) < 0 for 0 < λ < λ2.

Thus Tλ(α) has exactly one local maximum at αλ on
(

0, 1
3ε

]

for 0 < λ < λ2, see Figure 2.2(ii).

Step 2. We prove that there exists λ3 ∈ (0, λ2) such that, for λ ∈ (0, λ3), one of the following

cases holds:

(ci) T′
λ(α) > 0 on

(

1
3ε , 5

12ε

)

.

(cii) T′
λ(α) < 0 on

(

1
3ε , 5

12ε

)

.

(ciii) T′
λ(α) < 0 on

(

1
3ε , α̌

)

and T′
λ(α) > 0 on

(

α̌, 5
12ε

)

for some α̌ ∈
(

1
3ε , 5

12ε

)

.

(civ) T′
λ(α) > 0 on

(

1
3ε , α̌

)

and T′
λ(α) < 0 on

(

α̌, 5
12ε

)

for some α̌ ∈
(

1
3ε , 5

12ε

)

.

(cv) T′
λ(α) > 0 on

(

1
3ε , α̌

)

∪
(

α̂, 5
12ε

)

and T′
λ(α) < 0 on (α̌, α̂) for some α̌, α̂ ∈

(

1
3ε , 5

12ε

)

.

See Figure 2.3.

Figure 2.3: Graphs of Tλ(α) on ( 1
3ε , 5

12ε ) for 0 < λ < λ3.

Let H(α, λ) ≡ 2αT′′
λ (α) + 3T′

λ(α). By Lemmas 2.4(iii) and 2.5(ii), there exists λ3 ∈ (0, λ2)
such that

∂

∂α
H(α, λ) > 0 for

1

3ε
≤ α ≤ 5

12ε
and 0 < λ ≤ λ3. (2.49)

Fixed λ ∈ (0, λ3). Then we consider three cases.

Case 1. Assume that H(α, λ) < 0 for 1
3ε ≤ α <

5
12ε . If Tλ(α) has a critical point α1 in

(

1
3ε , 5

12ε

)

,

then

2α1T′′
λ (α1) = H(α1, λ) < 0.
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It implies that Tλ(α) has at most one critical point, a local maximum, on
(

1
3ε , 5

12ε

)

. Thus one of

(ci), (cii) and (civ) holds.

Case 2. Assume that H(α, λ) > 0 for 1
3ε < α ≤ 5

12ε . If Tλ(α) has a critical point α2 in
(

1
3ε , 5

12ε

)

,

then

2α2T′′
λ (α2) = H(α2, λ) > 0.

It implies that Tλ(α) has at most one critical point, a local minimum, on
(

1
3ε , 5

12ε

)

. Thus one of

(ci), (cii) and (ciii) holds.

Case 3. Assume that there exists α∗ ∈
(

1
3ε , 5

12ε

)

such that H(α, λ) < 0 for 1
3ε < α < α∗

and H(α, λ) > 0 for α∗ < α <
5

12ε . If Tλ(α) has a critical point in
(

1
3ε , α∗

)

, by above similar

argument, Tλ(α) has at most one critical point, a local maximum, on
(

1
3ε , α∗

)

. If Tλ(α) has a

critical point in
(

α∗, 5
12ε

)

, by above similar argument, Tλ(α) has at most one critical point, a

local minimum, on
(

α∗, 5
12ε

)

. Thus one of (ci)–(cv) holds.

Step 3. We prove Lemma 2.10. By Lemmas 2.1(i) and 2.2(ii), we see that, for λ > 0, either

T′
λ(α) > 0 on

[

5
12ε , βε

)

, or there exists α̊ ∈
(

5
12ε , βε

)

such that T′
λ(α) < 0 on

[

5
12ε , α̊

)

and

T′
λ(α) > 0 on (α̊, βε), see Figure 2.4.

0 α 0 α
(i) (ii)

5
12ε

5
12εβε βε

Tλ(α) Tλ(α)

Figure 2.4: Graphs of Tλ(α) on [5/(12ε), βε) for λ > 0.

Then by (2.44) and Steps 1–2, we observe that Tλ(α) has exactly two critical points, a local

maximum at αM(λ) and a local minimum at αm(λ) (> αM(λ)), on (0, βε) if 0 < λ < κε = λ3.

The proof is complete.

Lemma 2.11. Consider (1.1) with 0 < ε < ε0. Let αM(λ) and αm(λ) be defined in Lemma 2.10. Then

αM(λ) is a strictly increasing function of λ ∈ (0, κε) and

lim
λ→0+

αM(λ) < αM(λ) < lim
λ→κ−ε

αM(λ) ≤ αm(λ) for λ ∈ (0, κε). (2.50)

Proof. By Lemma 2.10, we have that

T′
λ(α)















> 0 for α ∈ (0, αM(λ)) ∪ (αm(λ), ∞) ,

= 0 for α = αM(λ) or α = αm(λ),

< 0 for α ∈ (αM(λ), αm(λ)) ,

if 0 < λ < κε. (2.51)

By Lemma 2.2, we see that 0 < αM(λ) <
5

12ε for 0 < λ < κε. Let 0 < λ1 < λ2 < κε. By

Lemma 2.3, we obtain that
√

λ1T′
λ1
(αM(λ2)) <

√

λ2T′
λ2
(αM(λ2)) = 0,
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which implies that αM(λ1) < αM(λ2) by (2.51). So αM(λ) is a strictly increasing function of

λ ∈ (0, κε). It follows that

lim
λ→0+

αM(λ) < αM(λ) < lim
λ→κ−ε

αM(λ) for λ ∈ (0, κε).

Assume that there exists λ3 ∈ (0, κε) such that limλ→0+ αM(λ) < αm(λ3) < limλ→κ−ε αM(λ).

Then there exists λ4 ∈ (λ3, κε) such that

αM(λ3) < αm(λ3) < αM(λ4) <
5

12ε
. (2.52)

By (2.51), there exists α1 ∈
(

αM(λ4),
5

12ε

)

such that T′
λ4
(α1) < 0. Then by (2.51), (2.52) and

Lemma 2.3, we observe that

0 <

√

λ3T′
λ3
(α1) <

√

λ4T′
λ4
(α1) < 0,

which is a contradiction. So (2.50) holds. The proof is complete.

Lemma 2.12 ([9, Lemma 4.6]). Consider (1.1) with fixed L > 0. Let ρL,ε ≡ min{L, βε} and sgn(u)

be the signum function. Then the following statements (i)–(iii) hold:

(i) There exists a positive function λL(α) ∈ C1(0, ρL,ε) such that TλL(α)(α) = L. Moreover, the

bifurcation curve SL = {(λL(α), α) : α ∈ (0, ρL,ε)} is continuous on the (λ, ‖u‖
∞
)-plane.

(ii) limα→0+ λL(α) = 0 and limα→ρ−L,ε
λL(α) = ∞.

(iii) sgn(λ′
L(α)) = sgn(T′

λL(α)
(α)) for α ∈ (0, ρL,ε).

Lemma 2.13 ([10, Lemma 3.5]). Consider (1.1). Let L > 0. Then the following statements (i) and

(ii) hold:

(i) If λL(α) has a local maximum at αM, then TλL(αM)(α) has a local maximum at αM. Conversely,

if Tλ(α) has a local maximum at αM and Tλ(αM) = L, then λL(α) has a local maximum at αM.

(ii) If λL(α) has a local minimum at αm, then TλL(αm)(α) has a local minimum at αm. Conversely, if

Tλ(α) has a local minimum at αm and Tλ(αm) = L, then λL(α) has a local minimum at αm.

Lemma 2.14. Consider (1.1) with 0 < ε < ε0. Then there exists a continuous function Lε ∈ (0, ∞) of

ε such that

Λε ≡
{

L > 0 : λ′
L(α) < 0 for some α ∈ (0, ρL,ε)

}

= (Lε, ∞) .

Furthermore, λ′
L(α) > 0 for α ∈ (0, ρL,ε) where 0 < L < Lε.

Proof. Let ε ∈ (0, ε0) be given. By Lemma 2.9 and similar argument in the proof of [7, Lemma

4.7], there exists Lε ∈ [0, ∞) such that Λε = (Lε, ∞). We divide the rest of the proof into the

next three steps.

Step 1. We prove that Lε > 0. Assume that Lε = 0. By Lemma 2.9, we have

T′
λ(α) ≥ 0 for 0 < α < βε and λ ≥ ξε. (2.53)
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Let L = Tξε
(1). It implies that L ∈ Λε = (0, ∞). Then there exists α1 ∈ (0, ρL,ε) such that

λ′
L(α1) < 0. It follows that T′

λL(α1)
(α1) < 0 by Lemma 2.12(iii). By (2.45) and (2.53), we observe

that α1 > 1 and 0 < λL(α1) < ξε. By Lemmas 2.1(iii), 2.12(i) and (2.53), we further observe that

L = TλL(α1)(α1) > Tξε
(α1) ≥ Tξε

(1) = L,

which is a contradiction. Thus Lε > 0.

Step 2. We prove that λ′
L(α) > 0 for α ∈ (0, ρL,ε) where 0 < L < Lε. Let L ∈ (0, Lε) be given.

Assume that there exists α2 ∈ (0, ρL,ε) such that λ′
L(α2) = 0. So by Lemma 2.12(iii), we obtain

that T′
λL(α2)

(α2) = 0. Since

0 < α2 < ρL,ε = min{L, βε} < min{Lε, βε} = ρLε,ε,

we see that TλL(α2)(α2) = L < Lε = TλLε (α2)(α2). So by Lemma 2.1(iii), we obtain that λL(α2) >

λLε(α2). Assume that α2 ≥ 5ε
12 . Since T′

λL(α2)
(α2) = 0, and by Lemma 2.2(ii), TλL(α2)(α) has a

local minimum at α2. By Lemma 2.13, we find that λL(α) has a local minimum at α2, which is

a contradiction since L < Lε. So 0 < α2 <
5ε
12 . By Lemma 2.3, we see that

√

λLε(α2)T
′
λLε (α2)

(α2) <
√

λL(α2)T
′
λL(α2)

(α2) = 0,

from which it follows that by Lemma 2.12(iii), λ′
Lε
(α2) < 0. It is a contradiction since λ′

Lε
(α) ≥

0 for α ∈ (0, ρL,ε). Thus λ′
L(α) > 0 for α ∈ (0, ρL,ε) where 0 < L < Lε.

Step 3. We prove the continuity of Lε. Let ε̄ ∈ (0, ε0) be given. For the sake of convenience,

we let Tλ(α, ε) = Tλ(α) and λL(α, ε) = λL(α). We consider the following two cases and prove

they would not occur.

Case 1. Assume that lim infε→ε̄ Lε < Lε̄. Let L ∈ (lim infε→ε̄ Lε, Lε̄) be given. Then there exists

{εn}n∈N
⊂ (0, ε0) such that

lim
n→∞

εn = ε̄ and Lεn < L < Lε̄ for n ∈ N.

So there exists {αn}n∈N
⊂ (0, ρL,εn) such that

∂

∂α
λL(α, ε̄) > 0 for 0 < α < ρL,ε and

∂

∂α
λL(αn, εn) < 0 for n ∈ N. (2.54)

By Lemmas 2.2(i) and 2.12(iii), we have

∂

∂α
λL(α, ε) > 0 for 0 < α ≤ 1 and 0 < ε < ε0. (2.55)

By (2.54) and (2.55), we see that αn ∈ (1, ρL,εn). We assume without loss of generality that

limn→∞ αn = ᾱ ∈ [1, ρL,εn ]. If ᾱ < ρL,εn , by (2.54), we observe that

0 <
∂

∂α
λL(ᾱ, ε̄) = lim

n→∞

∂

∂α
λL(αn, εn) ≤ 0,

which is a contradiction. If ᾱ = ρL,εn , by (2.54) and Lemma 2.12(ii), we observe that

lim
α→ρ−L,ε

λL(α, ε̄) = ∞ and lim
α→ρ−L,ε

∂

∂α
λL(α, ε̄) ≤ 0,
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which is a contradiction.

Case 2. Assume that lim supε→ε̄ Lε > Lε̄. Let L ∈ (Lε̄, lim supε→ε̄ Lε) be given. Then there

exists {εn}n∈N
⊂ (0, ε0) such that

lim
n→∞

εn = ε̄ and Lε̄ < L < Lεn for n ∈ N.

So there exists ᾱ ∈ (0, ρL,ε̄) such that

∂

∂α
λL(ᾱ, ε̄) < 0 and

∂

∂α
λL(α, εn) > 0 for 0 < α < ρL,εn and n ∈ N. (2.56)

Since f (βε) = 0, and by implicit function theorem, βε is a strictly decreasing and continuous

function of ε > 0. So we see that ᾱ < ρL,ε̄ ≤ β ε̄ < βεn for n ∈ N. It implies that 0 < ᾱ < ρL,εn

for n ∈ N. By (2.56), we observe that

0 >
∂

∂α
λL(ᾱ, ε̄) = lim

n→∞

∂

∂α
λL(ᾱ, εn) ≥ 0,

which is a contradiction.

So by Cases 1 and 2, we see that lim supε→ε̄ Lε ≤ Lε̄ ≤ lim infε→ε̄ Lε. It follows that Lε̄ =

lima→ā Lε. Thus Lε is a continuous function on (0, ε0).

The proof is complete.

Lemma 2.15. Consider (1.1) with 0 < ε < ε0. Then there exists L̃ε > Lε such that λL(α) has exactly

one local maximum and exactly one local minimum on (0, ρL,ε) for L > L̃ε.

Proof. Let λ∗ ∈ (0, κε) be given. By Lemma 2.10, then

T′
λ(α)















> 0 for α ∈ (0, αM(λ)) ∪ (αm(λ), βε) ,

= 0 for α = αM(λ) or α = αm(λ),

< 0 for α ∈ (αM(λ), αm(λ)) ,

if 0 < λ ≤ λ∗. (2.57)

Let L̃ε ≡ Tλ∗(αM(λ∗)). We divide this proof into the next three steps.

Step 1. We prove that L̃ε > Lε. Let L ≥ L̃ε and

α1 ∈
(

αM(λ∗), min

{

αm(λ
∗),

5

12ε

})

. (2.58)

By (2.57) and (2.58), we see that

lim
λ→0+

Tλ(α) = ∞ > L ≥ Tλ∗(αM(λ∗)) > Tλ∗(α1).

So by Lemma 2.1(iii) and continuity of Tλ(α) with respect to λ, there exists λ∗ ∈ (0, λ∗) such

that L = Tλ∗(α1). Clearly, λ∗ = λL(α1) by Lemma 2.12(i). Then by (2.57), (2.58) and Lemma 2.3,

we observe that
√

λ∗T′
λL(α1)

(α1) =
√

λ∗T′
λ∗(α1) <

√
λ∗T′

λ∗(α1) < 0.

So by Lemma 2.12(iii), we obtain that λ′
L(α1) < 0. It implies that L > Lε by Lemma 2.14. Thus

L̃ε > Lε.

Step 2. We prove that λL(α) has exactly one local maximum in (0, ρL,ε) for L > L̃ε. Let

L > L̃ε be given. By Lemmas 2.2(i) and 2.12(iii), we see that λ′
L(α) > 0 for 0 < α ≤ 1. Since
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L > L̃ε, and by Lemma 2.14, λL(α) has at least one local maximum in (0, ρL,ε). Assume that

λL(α) has two local maximums at α1
M and α2

M

(

> α1
M

)

. Then λL(α) has a local minimum at

αm ∈ (α1
M, α2

M). Without loss of generality, we assume that λL(α
1
M) > λL(αm). For the sake of

convenience, we let

λ1 = λL(α
1
M), λ2 = λL(α

2
M) and λ3 = λL(αm).

So by Lemma 2.13, we see that Tλ1
(α1

M) and Tλ2
(α2

M) are local maximum values and Tλ3
(αm)

is a local minimum value. In addition, we note that

Tλ1
(α1

M) = TλL(α
1
M)(α

1
M) = L > L̃ε = Tλ∗(αM(λ∗)). (2.59)

Assume that λ1 ≥ λ∗. By Lemma 2.1(iii) and (2.59), we observe that Tλ∗(α1
M) ≥ Tλ1

(α1
M) >

Tλ∗(αM(λ∗)). It implies that

αm(λ
∗) < α1

M and T′
λ∗(α1

M) > 0. (2.60)

By Lemma 2.2(ii), we have α1
M < α2

M <
5

12ε . So by Lemma 2.3 and (2.60), we observe hat

0 <

√
λ∗T′

λ∗(α1
M) ≤

√

λ1T′
λ1
(α1

M) = 0,

which is a contradiction. So λ1 < λ∗. Similarly, we obtain that λ2 < λ∗. So by (2.57) and

Lemma 2.10, we see that

αM(λ1) = α1
M < αm = αm(λ3) < α2

M = αM(λ2),

which is a contradiction by Lemma 2.11. Thus λL(α) has exactly one local maximum in

(0, ρL,ε).

Step 3. We prove Lemma 2.15. Since λ′
L(α) > 0 for 0 < α ≤ 1, and by Lemma 2.12(ii) and

Step 2, we see that λL(α) has exactly one local maximum and one local minimum on (0, ρL,ε)
for L > L̃ε.

The proof is complete.

3 Proof of the main result

Proof of Theorem 1.3. (I) The statement (i) follows immediately by Lemma 2.12(i)(ii).

(II) Assume that ε ≥ ε0. By Theorem 1.2 and (2.4), we obtain that T̄′(α) ≥ 0 for 0 < α < βε.

So by Lemmas 2.1(ii) and 2.3, we see that

0 ≤ T̄′(α) = lim
λ→0+

√
λT′

λ(α) <
√

λT′
λ(α) for 0 < α ≤ 5

12ε
and λ > 0. (3.1)

Since T′
λ(

5
12ε ) > 0 for λ > 0, and by Lemma 2.2(ii), we further see that

T′
λ(α) > 0 for

5

12ε
< α < βε and λ > 0. (3.2)

So by (3.1), (3.2) and Lemma 2.12(iii), we obtain that

λ′
L(α) > 0 for 0 < α < ρL,ε and λ > 0.
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Then the statement (ii) holds.

(III) Assume that 0 < ε < ε0. By Lemma 2.14, there exists a continuous function Lε ∈ (0, ∞)
of ε such that

Λε =
{

L > 0 : λ′
L(α) < 0 for some α ∈ (0, ρL,ε)

}

= (Lε, ∞) .

So by Lemma 2.12(i), the bifurcation curve SL is monotone increasing if 0 < L ≤ Lε, and is

S-like shaped if L > Lε. In addition, by Lemma 2.15, there exists L̃ε > Lε such that λL(α) has

one local maximum and one local minimum on (0, ρL,ε) for L > L̃ε. So by Lemma 2.12(i), the

bifurcation curve SL is S-shaped if L > L̃ε. Next, we divide into the next two steps to prove

that limε→0+ Lε ∈ (0, ∞) and limε→ε−0
Lε = ∞.

Step 1. We prove that limε→ε−0
Lε = ∞. Assume that limε→ε−0

Lε < ∞. Let L > limε→ε−0
Lε. For

the sake of convenience, we let

λL(α, ε) = λL(α), Tλ(α, ε) = Tλ(α) and T̄(α, ε) = T̄(α).

Since L > limε→ε−0
Lε, there exists δ > 0 such that L > Lε for ε ∈ (ε0 − δ, ε0). So for ε ∈

(ε0 − δ, ε0), by Lemmas 2.2(ii) and 2.14, there exists αε ∈
[

1, 5
12ε

]

such that ∂
∂α λL(αε, ε) < 0.

Without loss of generality, we assume that limε→ε+0
αε = α0 ∈

[

1, 5
12ε

]

. By Theorem 1.2 and

(2.4), we see that T̄′(α0, ε0) ≥ 0. So by Lemma 2.3, we further see that

0 ≤ T̄′(α0, ε0) = lim
λ→0+

√
λT′

λ(α0, ε0) <
√

λT′
λ(α0, ε0) for λ > 0.

Then by Lemma 2.12(iii), we obtain that ∂
∂α λL(α0, ε0) > 0. It follows that

0 ≥ lim
ε→ε+0

∂

∂α
λL(αε, ε) =

∂

∂α
λL(α0, ε0) > 0,

which is a contradiction. So limε→ε−0
Lε = ∞.

Step 2. We prove that limε→0+ Lε ∈ (0, ∞). Notice that as ε → 0+, the cubic polynomial f (u)

reduces to the quadratic polynomial u2 + u + 1. So we consider the equation















−





u′(x)
√

1 − (u′(x))2





′

= λ(u2 + u + 1), − L < x < L,

u(−L) = u(L) = 0.

(3.3)

Since u2 + u + 1 satisfies all hypotheses of [7, Theorem 3.2], there exists L0 > 0 such that the

bifurcation curve SL of (3.3) is S-like shaped for L > L0, monotone increasing for 0 < L ≤ L0,

and has no vertical tangent lines for 0 < L < L0. Thus we have the following assertions

(i)–(iii):

(i) if L > L0, then λ′
L(α, 0) < 0 for some α > 0.

(ii) if L = L0, then λ′
L(α, 0) ≥ 0 for α > 0.

(iii) if 0 < L < L0, then λ′
L(α, 0) > 0 for α > 0.

By a similar argument as in the proof of Lemma 2.14, we can prove that Lε is a continuous

function of ε ∈ [0, ε0). Thus limε→0+ Lε = L0 ∈ (0, ∞).

The proof is complete.
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4 Appendix

In this section, we prove assertion (2.31). Let ε̄ =
√

31
1000 (≈ 0.176). By Lemma 2.5(iii), we have

ε̂ < ε̄. To prove (2.31), it is sufficient to prove that

N2 (α, u) < 0 for 0 < u < α, 1.7 ≤ α ≤ 1

3ε
and 0.07 ≤ ε ≤ ε̄ (≈ 0.176). (4.1)

Let α ∈ [1.7, 1
3ε ] be given and N2 (u) = N2(α, u). It is easy to compute that

N′
2 (u) = − 1

2
ε2u7 +

49

24
εu6 +

(

21

4
ε − 2

3

)

u5 +

(

125

8
ε − 25

12

)

u4 +

(

1

2
ε2α4 − 7

6
εα3

−7

2
εα2 − 25

2
εα − 20

3

)

u3 +

(

−7

8
εα4 +

2

3
α3 +

5

4
α2 + 5α +

3

4

)

u2

+

(

−7

4
εα4 +

5

6
α3 − 1

2
α + 4

)

u − 25

8
εα4 +

5

3
α3 − 1

4
α2 − 4α,

N′′
2 (u) = − 7

2
ε2u6 +

49

4
εu5 +

(

105

4
ε − 10

3

)

u4 +

(

125

2
ε − 25

3

)

u3 +

(

3

2
ε2α4 − 7

2
εα3

−21

2
εα2 − 75

2
εα − 20

)

u2 +

(

−7

4
εα4 +

4

3
α3 +

5

2
α2 + 10α +

3

2

)

u

− 7

4
εα4 +

5

6
α3 − 1

2
α + 4,

N′′′
2 (u) = − 21ε2u5 +

245

4
εu4 +

(

105ε − 40

3

)

u3 +

(

375

2
ε − 25

)

u2 + (3ε2α4 − 7εα3

− 21εα2 − 75εα − 40)u − 7

4
εα4 +

4

3
α3 +

5

2
α2 + 10α +

3

2
,

N
(4)
2 (u) = − 105ε2u4 + 245εu3 + (315ε − 40) u2 + (375ε − 50) u + 3ε2α4 − 7εα3

− 21εα2 − 75εα − 40,

N
(5)
2 (u) = −420ε2u3 + 735εu2 + (630ε − 80) u + 375ε − 50,

N
(6)
2 (u) = −1260ε2u2 + 1470εu + 630ε − 80.

Then we divide the proof into the next four steps.

Step 1. We prove that, for 0.07 ≤ ε ≤ ε̄,

N′′
2 (0) = −7

4
εα4 +

5

6
α3 − 1

2
α + 4 > 0. (4.2)

It is easy to see that

1.7 ≤ α ≤ 1

3ε
≤ 1

3 (0.07)
=

100

21
for 0.07 ≤ ε ≤ ε̄. (4.3)
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Since ε ≤ 1
3α , and by (4.3), we observe that

N′′
2 (0) ≥ −7

4

(

1

3α

)

α4 +
5

6
α3 − 1

2
α + 4 =

1

4

(

α3 − 2α + 16
)

>
1

4

[

(1.7)3 − 2

(

100

21

)

+ 16

]

=
239173

84000
> 0.

Step 2. We prove that, for 0.07 ≤ ε ≤ ε̄,

N′′
2 (α) = −2α6ε2 + α3

(

7α2 + 14α + 25
)

ε − 2α4 − 5α3 − 10α2 + α + 4 < 0. (4.4)

Clearly,
{

(α, ε) : 1.7 ≤ α ≤ 1

3ε
and 0.07 ≤ ε ≤ ε̄

}

= Ω1 ∪ Ω2,

where

Ω1 ≡
{

(α, ε) : 1.7 ≤ α ≤ 1

3ε̄
and 0.07 ≤ ε ≤ ε̄

}

, (4.5)

Ω2 ≡
{

(α, ε) :
1

3ε̄
≤ α ≤ 1

3ε
and 0.07 ≤ ε ≤ ε̄

}

, (4.6)

see Figure 4.1. So we consider the following two cases.

Figure 4.1: The sets Ω1 and Ω2.0

Case 1. Assume that (α, ε) ∈ Ω1. It implies that

1.7 ≤ α ≤ 1

3ε̄
(≈ 1.893) < 1.9. (4.7)

So we observe that

∂

∂ε
N′′

2 (α) = −4εα6 + 7α5 + 14α4 + 25α3
> −4ε̄α6 + 7α5 + 14α4 + 25α3

> −4ε̄ (1.9)6 + 7 (1.7)5 + 14 (1.7)4 + 25 (1.7)3

=
33914439

105
− 47045881

25 × 106

√
310 (≈ 306.01) > 0.
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Then by (4.7),

N′′
2 (α) < N′′

2 (α)
∣

∣

ε=ε̄

= − 31

500
α6 +

7

10

√

31

10
α5 +

(

7

5

√

31

10
− 2

)

α4 +

(

5

2

√

31

10
− 5

)

α3

− 10α2 + α + 4

< 0,

see Figure 4.2(i).

Case 2. Assume that (α, ε) ∈ Ω2. It implies that

(α, ε) ∈ Ω2 =

{

(α, ε) :
1

3ε̄
≤ α ≤ 1

0.21
and 0 < ε <

1

3α

}

.

Then we observe that

∂

∂ε
N′′

2 (α) = − 4α6ε + α3
(

7α2 + 14α + 25
)

> −4α6

(

1

3α

)

+ α3
(

7α2 + 14α + 25
)

=
1

3

(

17α2 + 75 + 42α
)

α3
> 0. (4.8)

Since

1.8 < (1.89 ≈)
1

3ε̄
≤ α ≤ 1

0.21
< 5, (4.9)

and by (4.8), we observe that

N′′
2 (α) < N′′

2 (α)
∣

∣

ε= 1
3α
=

1

9

(

α2 − 3
) (

α2 − 3α − 12
)

< 0,

see Figure 4.2(ii).

Thus (4.4) holds by Cases 1–2.

Figure 4.2: (i) The graph of − 31
500 α6 + 7

10

√

31
10 α5 +

(

7
5

√

31
10 − 2

)

α4 +
(

5
2

√

31
10 − 5

)

α3

−10α2 + α + 4 on [1.7, 9]. (ii) The graph of
(

α2 − 3
) (

α2 − 3α − 12
)

on [1.8, 5].

Step 3. We prove that, for 0.07 ≤ ε ≤ ε̄,

N′′
2 (u) is strictly increasing, or strictly increasing-decreasing,

or strictly increasing-decreasing-increasing on (0, α) . (4.10)
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Clearly, N
(6)
2 (u) is a quadratic polynomial of u with negative leading coefficient. Since, for

ε > 0,

N
(6)
2 (0) = 630ε − 80

{

< 0 if 0.07 ≤ ε < 8
63 ,

≥ 0 if 8
63 ≤ ε ≤ ε̄,

and N
(6)
2

(

1

3ε

)

= 90 (7ε + 3) > 0,

we see that






N
(5)
2 (u) is strictly decreasing-increasing on (0, α) if 0.07 ≤ ε < 8

63 ,

N
(5)
2 (u) is strictly increasing on (0, α) if (0.126 ≈) 8

63 ≤ ε ≤ ε̄.
(4.11)

In addition, we compute and find that

N
(5)
2 (0) = 375ε − 50







< 0 for 0.07 ≤ ε < 2
15 (≈ 0.133) ,

≥ 0 for 2
15 ≤ ε ≤ ε̄,

(4.12)

N
(5)
2 (1.7) = −103173

50
ε2 +

71403

20
ε − 186 > 0 for 0.07 ≤ ε ≤ ε̄. (4.13)

Since 0 < u < α and 1.7 ≤ α ≤ 1
3ε , and by (4.11)–(4.13), we obtain that

N
(4)
2 (u) is either strictly decreasing-increasing, or strictly increasing on (0, α) . (4.14)

Since 1.7 ≤ α ≤ 1
3ε and 0.07 ≤ ε ≤ ε̄, we compute and find that

N
(4)
2 (0) = 3ε2α4 − 7εα3 − 21εα2 − 75εα − 40

< 3ε2

(

1

3ε

)4

− 7ε (1.7)3 − 21ε (1.7)2 − 75ε (1.7)− 40

=
1

27000ε2

(

−6009687ε3 − 1080000ε2 + 1000
)

<
1

27000ε2

[

−6009687 (0.07)3 − 1080 000 (0.07)2 + 1000
]

= −6353322641

27 × 109ε2
< 0. (4.15)

So by (4.14) and (4.15), we obtain that

N′′′
2 (u) is either strictly decreasing, or strictly decreasing-increasing on (0, α) . (4.16)

Since 0.07 ≤ ε ≤ ε̄, and by (4.3), we see that

N′′′
2 (0) = −7

4
εα4 +

4

3
α3 +

5

2
α2 + 10α +

3

2
≥ −7

4
ε̂α4 +

4

3
α3 +

5

2
α2 + 10α +

3

2

=
1

12

(

−21

10

√

31

10
α4 + 16α3 + 30α2 + 120α + 18

)

> 0, (4.17)

see Figure 4.3. Then by (4.16) and (4.17), we obtain (4.10).

Step 4. We prove (4.1). By Steps 1–2 and (4.10), we obtain that

N′
2 (u) is strictly increasing-decreasing on (0, α) . (4.18)
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Figure 4.3: The graph of − 21
10

√

31
10 α4 + 16α3 + 30α2 + 120α + 18 on [1.7, 5].

Since N′
2 (α) = 0 for 1.7 ≤ α ≤ 1

3ε , and by (4.18), we obtain that

N2 (u) is either strictly increasing, or strictly decreasing-increasing on (0, α) . (4.19)

We assert that

N2 (0) = − 1

16
ε2α8 +

7

24
εα7 +

7

8
εα6 +

25

8
εα5 − 1

9
α6 − 5

12
α5 − 5

3
α4 +

1

4
α3 + 2α2 ≤ 0. (4.20)

Since N2 (α) = 0, and by (4.19) and (4.20), we see that (4.1) holds. Next, we prove assertion

(4.20). Since 1.7 ≤ α ≤ 1
3ε and 0.07 ≤ ε ≤ ε̄, we compute and find that

∂

∂ε
N2 (0) =

(

−1

8
εα3 +

7

24
α2 +

7

8
α +

25

8

)

α5

≥
[

−1

8
ε

(

1

3ε

)3

+
7

24
(1.7)2 +

7

8
(1.7) +

25

8

]

α5

=
117837ε2 − 100

21600ε2
α5 ≥ 117837 (0.07)2 − 100

21600ε2
α5

=
4774 013

216 × 106ε2
α5

> 0. (4.21)

Recall the sets Ω1 and Ω2 defined by (4.5) and (4.6) respectively, see Figure 4.1. Then we

consider the following two cases.

Case 1. Assume that (α, ε) ∈ Ω1. By (4.7) and (4.21), we see that

N2 (0) ≤ N2 (0)|ε=ε̄ = Q1 (α) < 0 for 0.07 ≤ ε ≤ ε̄,

where

Q1 (α) ≡ − 31

16000
α8 +

7

240

√

31

10
α7 +

(

7

80

√

31

10
− 1

9

)

α6

+

(

5

16

√

31

10
− 5

12

)

α5 − 5

3
α4 +

1

4
α3 + 2α2,

see Figure 4.4(i).
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Case 2. Assume that (α, ε) ∈ Ω2. By (4.9) and (4.21), we see that

N2 (0) ≤ N2 (0)|ε= 1
3α
= Q2(α) < 0 for

1

3ε̄
≤ α ≤ 1

0.21
,

where

Q2 (α) ≡ − 1

48
α6 − 1

8
α5 − 5

8
α4 +

1

4
α3 + 2α2,

see Figure 4.4(ii).

Figure 4.4: (i) The graph of Q1 (α) on [1.7, 1.9]. (ii) The graph of Q2 (α) on [1.8, 5].

Thus, by Cases 1 and 2, assertion (4.20) holds. The proof is complete.
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Abstract. In this paper we continue the study of the linear equation with Stieltjes
derivatives in [M. Frigon, R. López Pouso, Adv. Nonlinear Anal. 6(2017), 13–36]. Specif-
ically, we revisit some of the results there presented, removing some of the required
conditions as well as amending some mistakes. Furthermore, following the classical
setting, we use the connection between the linear equation and the Gronwall inequality
to obtain a new version of this type of inequalities in the context of Lebesgue–Stieltjes
integrals. From there, we obtain a uniqueness criterion for initial value problems.

Keywords: Stieltjes integration, Stieltjes differentiation, linear equation, uniqueness,
Gronwall inequality.
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1 Introduction

In this paper we explore the linear equation with Stieltjes derivatives in its homogeneous and
nonhomogeneous formulation. Specifically, we will be looking at the initial value problem

x′g(t) + d(t)x(t) = h(t), t ∈ [t0, t0 + T), x(t0) = x0, (1.1)

where t0, T, x0 ∈ R, T > 0, are fixed, d, h : [t0, t0 + T) → R are given functions and x′g stands
for the Stieltjes derivative of x with respect to a nondecreasing and left-continuous function
g : R → R, usually called derivator, see [3, 10]. Note that [3] provides some information
regarding (1.1) in its homogeneous form (i.e. h = 0) as well as for the nonhomogeneous case.
Nevertheless, the results obtained there present some limitations, as the authors make use of
the product rule for Stieltjes derivatives in [10] which, unfortunately, is wrongly stated. Here,
we amend the mistakes in [10] as well as we simplify the required hypotheses for the existence
and uniqueness of solution of (1.1).

Furthermore, given the close relation existing between the Gronwall inequality and the
linear equation in the setting of ordinary differential equations, we will prove a new version

BEmail: ignacio.marquez@usc.es



2 I. Márquez Albés

of the inequality in the context of Stieltjes integrals, generalizing the classical result in [5], as
well as other existing formulations in the context of Stieltjes integrals, see [6, 8, 11, 12, 17].

The paper is structure as follows. In Section 2 we gather and revisit some of the informa-
tion available in [3, 10] regarding the definition of Stieltjes derivatives and its properties, as
well as some other basic definitions necessary for this paper. In particular, it is at this point
that we correct the formula for the product and the quotient rule in [10]. Next, in Section 3
we study the linear equation (1.1), providing explicit expressions for its solutions as well as
some of their properties. Finally, in Section 4 we establish a Gronwall-type inequality for
the Lebesgue–Stieltjes integral using the solution of the homogeneous linear equation. Then,
we discuss the relations with other existing inequalities available in the literature and we
complete the revision of the results in [3] for (1.1) through a uniqueness result based on our
version of Gronwall’s inequality.

2 Preliminaries

Let g : R → R be a nondecreasing and left-continuous function. Let us introduce some
notation before including the definition of Stieltjes derivative in [10]. In what follows, we will
consider µg to be the Lebesgue–Stieltjes measure associated to g, given by

µg([a, b)) = g(b)− g(a), a, b ∈ R, a < b,

see [1, 13, 15]; we will use the term “g-measurable” for a set or function to refer to µg-
measurability in the corresponding sense; and we will denote the integration with respect
to µg as ∫

X
f (s)d g(s).

Similarly, we will talk about properties holding g-almost everywhere in a set X, shortened
to g-a.e. in X, as a simplified way to express that they hold µg-almost everywhere in X.
In an analogous way, we will write that a property holds for g-almost all (or simply, g-a.a.)
x ∈ X meaning that it holds for µg-almost all x ∈ X. Along those lines, we find the following
interesting set:

Cg := {t ∈ R : g is constant on (t − ε, t + ε) for some ε > 0}.

The set Cg is the set of points around which g is constant and, as pointed out in [10, Propo-
sition 2.5], we have that µg(Cg) = 0. Hence, this set can be disregarded when it comes to
properties holding g-almost everywhere in a set. Observe that, as pointed out in [10], the set
Cg is open in the usual topology, so it can be uniquely expressed as the countable union of
open disjoint intervals, say

Cg =
⋃

n∈N

(an, bn). (2.1)

Another fundamental set for the work that lies ahead is the set Dg of all discontinuity
points of g. Observe that, given that g is nondecreasing, we can write

Dg = {t ∈ R : ∆+g(t) > 0},

where ∆+g(t) = g(t+) − g(t), t ∈ R, and g(t+) denotes the right-hand side limit of g at t.
Recall that Froda’s Theorem, [4], ensures that the set Dg is at most countable. Finally, given
the previous definitions, we can define the sets N−

g and N+
g introduced in [9] as

N−
g = {an : n ∈ N} \ Dg, N+

g = {bn : n ∈ R} \ Dg,
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where an, bn ∈ R are as in (2.1). We denote Ng = N−
g ∪ N+

g .
We have now all the information required to properly introduce the definition of Stieltjes

derivative in [10]. In order to clarify its definition, we have included a brief remark explaining
the limits involved.

Definition 2.1. Let g : R → R be a nondecreasing and left-continuous function and consider
a map f : R → R. We define the Stieltjes derivative, or g-derivative, of f at a point t ∈ R \ Cg as

f ′g(t) =





lim
s→t

f (s)− f (t)

g(s)− g(t)
, t 6∈ Dg,

lim
s→t+

f (s)− f (t)

g(s)− g(t)
, t ∈ Dg,

provided the corresponding limits exist. In that case, we say that f is g-differentiable at t.

Remark 2.2. Given a function f : R → R and a point t ∈ R, we define the function

Ft(·) =
f (·)− f (t)

g(·)− g(t)
,

which we will assume to be defined in a neighbourhood of t in which the expression makes
sense, namely, at the points s such that g(s)− g(t) 6= 0. The limits in Definition 2.1 are well-
defined when t is an accumulation point of the domain of the function Ft. This explains why
the points of Cg are excluded in the definition as if t ∈ Cg, then there exists εt > 0 such
that the expression of Ft does not make sense for any neighbourhood (t − ε, t + ε), ε ∈ (0, εt).
Moreover, the limits in Definition 2.1 should be properly understood at some other conflicting
points. For example, imagine there exists δ > 0 such that g(s) = g(t) for s ∈ (t − δ, t), and
g(s) > g(t) for s > t. Then

lim
s→t

Ft(s) = lim
s→t+

Ft(s),

since Ft is not defined at the left of t. Similarly, if there exists δ > 0 such that g(s) = g(t) for
s ∈ (t, t + δ), the function Ft is not defined at the right of t, so if g(s) < g(t) for s < t, then

lim
s→t

Ft(s) = lim
s→t−

Ft(s).

Therefore, the g-derivative of a function f : R → R at a point t ∈ R \ Cg is computed as

f ′g(t) =





lim
s→t

f (s)− f (t)

g(s)− g(t)
, t 6∈ Dg ∪ Ng,

lim
s→t−

f (s)− f (t)

g(s)− g(t)
, t ∈ N−

g ,

lim
s→t+

f (s)− f (t)

g(s)− g(t)
, t ∈ Dg ∪ N+

g ,

provided the corresponding limits exist.

Remark 2.3. Since g is a regulated function, it follows that the g-derivative of a function
f : R → R at a point t ∈ Dg exists if and only if the limit of f from the right of t, f (t+), exists.
In that case, we have that

f ′g(t) =
f (t+)− f (t)

∆+g(t)
.
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First, we include some information available in [10] regarding the Stieltjes derivatives of
functions. Specifically, we include a result about the continuity of differentiable functions,
[10, Proposition 2.1], that we will use to revisit the product and quotient rule in [10], as the
formulas there included are not correct.

Proposition 2.4. Let g : R → R be a nondecreasing and left-continuous function and f be a real-

valued function defined on a neighborhood of t such that f ′g(t) exists. Then t 6∈ Cg and, if g is

continuous at t:

• f is continuous from the left at t provided that

g(s) < g(t) for all s < t; (2.2)

• f is continuous from the right at t provided that

g(s) > g(t) for all s > t. (2.3)

Proposition 2.4 is a fundamental tool for the proof of [10, Proposition 2.2], where the
authors included some basic properties of the Stieltjes derivatives, such as the linearity of the
derivative or the product and the quotient rule. However, the authors did not include the
proof of the result, which led to an incorrect formulation of the product and the quotient
rule. Here, we amend these mistakes and, later, we show the limitations of the formulas in
[10, Proposition 2.2].

Proposition 2.5. Let g : R → R be a nondecreasing and left-continuous function, t ∈ R, and f1, f2

be two real-valued functions defined on a neighborhood of t, Ut. If f1 and f2 are g-differentiable at t,

then:

(i) The product f1 f2 is g-differentiable at t and

( f1 f2)
′
g(t) = ( f1)

′
g(t) f2(t) + ( f2)

′
g(t) f1(t) + ( f1)

′
g(t)( f2)

′
g(t)∆

+g(t). (2.4)

(ii) If ( f2(t))2 + ( f2)′g(t) f2(t)∆+g(t) 6= 0, the quotient f1/ f2 is g-differentiable at t and

(
f1

f2

)′

g

(t) =
( f1)

′
g(t) f2(t)− f1(t)( f2)′g(t)

( f2(t))2 + ( f2)′g(t) f2(t)∆+g(t))
. (2.5)

Proof. First, observe that t 6∈ Cg since ( f1)
′
g(t) and ( f2)′g(t) exist. Hence, we have that (2.2)

and/or (2.3) hold.
Let us show that (2.4) holds. First, observe that we can rewrite f1 f2(s)− f1 f2(t), s ∈ Ut, as

( f1(s)− f1(t))( f2(t) + f2(s)) + ( f2(s)− f2(t))( f1(t) + f1(s))

2
, s ∈ Ut. (2.6)

Assume that (2.3) holds. Then, it follows from (2.6) that the following limit exists and

lim
s→t+

f1 f2(s)− f1 f2(t)

g(s)− g(t)
=

( f1)
′
g(t)( f2(t) + f2(t+)) + ( f2)′g(t)( f1(t) + f1(t

+))

2
. (2.7)

Now, if t ∈ Dg, it follows from Remark 2.3 that

fi(t
+) = ( fi)

′
g(t)∆

+g(t) + fi(t), i = 1, 2. (2.8)
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Thus, (2.7) yields that

lim
s→t+

f1 f2(s)− f1 f2(t)

g(s)− g(t)
= ( f1)

′
g(t) f2(t) + ( f2)

′
g(t) f1(t) + ( f1)

′
g(t)( f2)

′
g(t)∆

+g(t). (2.9)

On the other hand, if t 6∈ Dg, it follows from Proposition 2.4 and (2.7) that

lim
s→t+

f1 f2(s)− f1 f2(t)

g(s)− g(t)
= ( f1)

′
g(t) f2(t) + ( f2)

′
g(t) f1(t),

which matches (2.9) since ∆+g(t) = 0. In other words, (2.9) holds in both cases. Hence, if
t ∈ Dg or g(s) > g(t), s ∈ [t − δ, t] for some δ > 0, then the limit in (2.9) coincides with
( f1 f2)′g(t) and the proof is complete. Otherwise, t 6∈ Dg and (2.2) holds. In that case, we
obtain from (2.6) that the following limit exists and

lim
s→t−

f1 f2(s)− f1 f2(t)

g(s)− g(t)
=

( f1)
′
g(t)( f2(t) + f2(t−)) + ( f2)′g(t)( f1(t) + f1(t

−))

2
.

However, in that case, Proposition 2.4 ensures that the previous limit equals ( f1)
′
g(t) f2(t) +

( f2)′g(t) f1(t), and so f1 f2 is g-differentiable at t and (2.4) holds.
Now, we show that (2.5) holds. First, observe that the extra hypothesis in (ii) guarantees

that f2(t) 6= 0. Furthermore, we also have that f2(t) + ( f2)′g(t)∆
+g(t) 6= 0 which, provided

that t ∈ Dg, ensures that f2(t+) 6= 0, see (2.8).
Assume that (2.3) holds. Since f2(t) 6= 0, it follows from Proposition 2.4 (if t 6∈ Dg) and the

definition of limit from the right (if t ∈ Dg) that there exists ε > 0 such that f2 does not vanish
in [t, t + ε) ∩ Ut. Hence, the following expression is well-defined for any s ∈ [t, t + ε) ∩ Ut,

f1(s)

f2(s)
−

f1(t)

f2(t)
=

f1(s) f2(t)− f1(t) f2(s)

f2(t) f2(s)
=

( f1(s)− f1(t)) f2(t) + f1(t)( f2(t)− f2(s))

f2(t) f2(s)
. (2.10)

Taking the corresponding limit from the right, we have that

lim
s→t+

( f1/ f2)(s)− ( f1/ f2)(t)

g(s)− g(t)
=

( f1)
′
g(t) f2(t)− f1(t)( f2)′g(t)

f2(t) f2(t+)
. (2.11)

Now, if t ∈ Dg, it follows from (2.8) that

lim
s→t+

( f1/ f2)(s)− ( f1/ f2)(t)

g(s)− g(t)
=

( f1)
′
g(t) f2(t)− f1(t)( f2)′g(t)

( f2(t))2 + ( f2)′g(t) f2(t)∆+g(t))
. (2.12)

On the other hand, if t 6∈ Dg, it follows from Proposition 2.4 and (2.11) that

lim
s→t+

( f1/ f2)(s)− ( f1/ f2)(t)

g(s)− g(t)
=

( f1)
′
g(t) f2(t)− f1(t)( f2)′g(t)

( f2(t))2 ,

which matches (2.12). That is, (2.12) holds in both cases. Hence, if t ∈ Dg or g(s) > g(t),
s ∈ [t − δ, t] for some δ > 0, then the limit in (2.12) coincides with ( f1/ f2)′g(t) and the proof is
complete. Otherwise, t 6∈ Dg and (2.2) holds. In that case, given that f2(t) 6= 0, it follows from
Proposition 2.4 that there exists ε′ > 0 such that f2 does not vanish in (t − ε′, t] ∩ Ut. Hence,
(2.10) is valid for all s ∈ (t − ε′, t] ∩ Ut. As a consequence, we obtain that the following limit
exists and

lim
s→t−

( f1/ f2)(s)− ( f1/ f2)(t)

g(s)− g(t)
=

( f1)
′
g(t) f2(t)− f1(t)( f2)′g(t)

f2(t) f2(t−)
=

( f1)
′
g(t) f2(t)− f1(t)( f2)′g(t)

( f2(t))2 ,

where the last equality follows, once again, from Proposition 2.4. This guarantees that f1/ f2

is g-differentiable at t and (2.5) holds.
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Remark 2.6. Observe that the formulas here presented reduce to the usual formulation when
g = Id. Furthermore, note that the expressions in Proposition 2.5 do not match those in [10].
Let us illustrate that the formulas there presented are not correct with some examples.

Consider g, f1, f2 : R → R defined as

g(t) =





t if t ≤ 0,

0 if 0 < t ≤ 1,

t if t > 1,

f1(t) = t + 2, f2(t) =

{
1 if t ≤ 0,

t + 2 if t > 0.

For this choice of functions, we have that f1 · f2, f1/ f2 : R → R are defined as

f1 · f2(t) =

{
t + 2 if t ≤ 0,

(t + 2)2 if t > 0,

f1

f2
(t) =

{
t + 2 if t ≤ 0,

1 if t > 0.

Observe that, given that g(t) = g(0) for t ∈ (0, 1), the derivatives at 0 are computed as the
limit from the left, as pointed out by Remark 2.2. In particular, we have that

( f1)
′
g (0) = lim

s→0−

f1(s)− f1(0)
g(s)− g(0)

= lim
s→0−

s + 2 − 2
s − 0

= 1,

( f2)
′
g (0) = lim

s→0−

f2(s)− f2(0)
g(s)− g(0)

= lim
s→0−

1 − 1
s − 0

= 0,

and, since f1 · f2 = f1/ f2 = f1 on (−∞, 0], we have that ( f1 · f2)′g(0) = ( f1/ f2)′g(0) = 1.
Observe that (2.4) and (2.5) hold at t = 0.

First, let us show that the formula for the product of two functions in [10],

( f1 f2)
′
g(t) = ( f1)

′
g(t) f2(t

+) + ( f2)
′
g(t) f1(t

+),

is not correct. Indeed, at t = 0 we have that

( f1)
′
g(0) f2(0+) + ( f2)

′
g(0) f1(0+) = 1 · 2 + 0 · 2 = 2 6= 1 = ( f1 · f2)

′
g(0).

Furthemore, this example also shows that the formula in [14, Lemma 13],

( f1 · f2)
′
g(t) = ( f1)

′
g(t) f2(t

+) + ( f2)
′
g(t) f1(t), t ∈ Dg, (2.13)

cannot be valid for a generic point in R \Cg, as the only difference with respect to the previous
formula is that f1(0+) is replaced by f1(0), which has no effect as both terms are multiplied
by zero. Nevertheless, observe that (2.4) yields (2.13) for t ∈ Dg as a consequence of (2.8).

Now, for the quotient formula in [10],
(

f1

f2

)′

g

(t) =
( f1)

′
g(t) f2(t)− ( f2)′g(t) f1(t)

f2(t) f2(t+)
.

Once again, this formula fails to be true as

( f1)
′
g(0) f2(0)− ( f2)′g(0) f1(0)

f2(0) f2(0+)
=

1 · 1 − 0 · 2
1 · 2

=
1
2
6= 1 =

(
f1

f2

)′

g

(0).

Finally, we include the last pieces of information required for this paper, the two for-
mulations of the Fundamental Theorem of Calculus for the Lebesgue–Stieltjes integral. The
next result is a reformulation of [10, Theorem 5.4], where we have added the definition of
g-absolute continuity, [10, Definition 5.1], to its statement.
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Theorem 2.7. Let a, b ∈ R, a < b, and F : [a, b] → R. The following conditions are equivalent:

1. The function F is g-absolutely continuous on [a, b] according to the following definition: for

every ε > 0, there exists δ > 0 such that for every open pairwise disjoint family of subintervals

{(an, bn)}m
n=1 verifying

m

∑
n=1

(g(bn)− g(an)) < δ,

we have that
m

∑
n=1

|F(bn)− F(an)| < ε.

2. The function F satisfies the following conditions:

(i) there exists F′
g(t) for g-a.a. t ∈ [a, b);

(ii) F′
g ∈ L1

g([a, b), R), the set of Lebesgue–Stieltjes integrable functions with respect to µg;

(iii) for each t ∈ [a, b],

F(t) = F(a) +
∫

[a,t)
F′

g(s)d g(s).

Remark 2.8. Observe that in statement 2 (iii) of Theorem 2.7, for t = a, we are considering the
integral over [a, a) = {x ∈ R : a ≤ x < a} = ∅, which makes the integral null, thus giving the
equality.

The other formulation of the Fundamental Theorem of Calculus that we include here is a
combination of Theorem 2.4 and Proposition 5.2 in [10] and it reads as follows.

Theorem 2.9. Let f ∈ L1
g([a, b), R). Then, the function F : [a, b] → R, defined as

F(t) =
∫

[a,t)
f (s)d g(s),

is well-defined, g-absolutely continuous on [a, b] and

F′
g(t) = f (t), for g-a.a. t ∈ [a, b).

In the work that follows, we shall use some known properties for g-absolutely continuous
functions, most of which are analogous to those of absolutely continuous functions in the
usual sense. For convenience, we refer the reader to [3, 10] for more information on the topic.

3 Linear equation

In this section we focus on the study of the linear equation with Stieltjes derivatives on the
real line in its homogeneous and nonhomogeneous formulation. Specifically, given a nonde-
creasing and left-continuous map, g : R → R, we consider the initial value problem

x′g(t) + d(t)x(t) = h(t), t ∈ [t0, t0 + T), x(t0) = x0, (3.1)

with x0 ∈ R and d, h : [t0, t0 + T) → R. Naturally, (3.1) yields the homogeneous formulation of
the problem when h = 0. In that case, for simplicity and in order to simplify the connections
with [3], we shall write c(t) = −d(t), t ∈ [t0, t0 + T), so that (3.1) reads as

x′g(t) = c(t)x(t), t ∈ [t0, t0 + T), x(t0) = x0. (3.2)



8 I. Márquez Albés

It is important to note, nevertheless, that [3] is not the only paper available in the study of
linear equations in a Stieltjes sense. For example, in [7,16,17] we find linear integral equations
in more general settings, for which the different authors were able to obtain the existence and
uniqueness of solution. In some cases, an explicit solution is given provided one can find a
fundamental matrix for the corresponding problem, which might be hard to obtain. Here, we
limit ourselves to a scalar version of the linear differential equation for which we obtain an
explicit solution in terms of elemental functions. Interestingly enough, the relations between
the different linear problems in the Stieltjes sense arises naturally. For example, condition
(6.13) in [17] is a necessary condition for the existence of solution, which yields the condition
required in Theorem 3.5 for our solution when both contexts are compatible.

Following [3], we start our study of the linear equation studying the homogeneous for-
mulation. A first reasonable guess for a solution for (3.2) would be to consider, under the
assumption that c ∈ L1

g([t0, t0 + T), R), the map

x(t) = x0 exp
(∫

[t0,t)
c(s)d g(s)

)
, t ∈ [t0, t0 + T], (3.3)

as this is the solution for g = Id. Nevertheless, note that this cannot be a solution of (3.2) as
for any t ∈ [t0, t0 + T) ∩ Dg,

x′g(t) = lim
s→t+

x(s)− x(t)

g(s)− g(t)

= lim
s→t+

x(t)

(
exp

(∫

[t,s)
c(r)d g(r)

)
− 1

)

g(s)− g(t)
= x(t)

exp
(∫

{t}
c(r)d g(r)

)
− 1

∆+g(t)
.

Therefore, we have that

x′g(t) = x(t)
exp(c(t)∆+g(t))− 1

∆+g(t)
, t ∈ [t0, t0 + T) ∩ Dg,

which is not, in general, equal to x(t)c(t). Therefore, the map x in (3.3) cannot be a solution
of (3.2). Nevertheless, it is easy to see using the chain rule for the Stieltjes derivative, [10,
Theorem 2.3] that x solves the problem in [t0, t0 + T) \ Dg. All this ideas resulted in the
modification of the map in (3.3) presented in [3, Definition 6.1]. It is at this point that we
encounter the first improvement on the results of [3]. The mentioned modification is subject
to a condition regarding the convergence of a series, namely, condition (3.5) in this paper. In
the following result we show that such condition is redundant in the considered context.

Lemma 3.1. Let c ∈ L1
g([t0, t0 + T), R) be such that 1+ c(t)∆+g(t) 6= 0 for all t ∈ [t0, t0 + T)∩ Dg.

Then

∑
t∈[t0,t0+T)∩Dg

∣∣ log |1 + c(t)∆+g(t)|
∣∣ < +∞. (3.4)

In particular, if 1 + c(t)∆+g(t) > 0 for all t ∈ [t0, t0 + T) ∩ Dg, then

∑
t∈[t0,t0+T)∩Dg

∣∣ log(1 + c(t)∆+g(t))
∣∣ < +∞. (3.5)

Proof. First, observe that the hypotheses ensure that the logarithms in the corresponding ex-
pressions are well-defined and finite for each t ∈ [t0, t0 + T) ∩ Dg.
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Now, elementary calculations show that lims→0 | log |1 + s|/s| = 1. Hence, the definition
of limit guarantees the existence of some r > 0 such that

∣∣∣∣
∣∣∣∣
log |1 + s|

s

∣∣∣∣− 1
∣∣∣∣ < 1, s ∈ (−r, r).

In particular, this implies that | log |1 + s|| < 2|s| for all s ∈ (−r, r).
On the other hand, since c is g-integrable on [t0, t0 + T), we have that

∑
t∈[t0,t0+T)∩Dg

|c(t)∆+g(t)| ≤
∫

[t0,t0+T)
|c(s)|d g(s) < +∞.

Therefore, the set Ar = {t ∈ [t0, t0 + T) ∩ Dg : |c(t)∆+g(t)| ≥ r} must be finite. Hence,
denoting Br = ([t0, t0 + T) ∩ Dg) \ Ar, we have that

∑
t∈[t0,t0+T)∩Dg

∣∣ log |1 + c(t)∆+g(t)|
∣∣ = ∑

t∈Ar

∣∣ log |1 + c(t)∆+g(t)|
∣∣+ ∑

t∈Br

∣∣ log |1 + c(t)∆+g(t)|
∣∣

≤ ∑
t∈Ar

∣∣ log |1 + c(t)∆+g(t)|
∣∣+ 2 ∑

t∈Br

|c(t)∆+g(t)| < +∞.

This shows that (3.4) holds. Now (3.5) follows from the extra hypothesis.

As a consequence of Lemma 3.1 and the product differentiation rule, we can reformulate
Lemmas 6.2 and 6.3 in [3] into the following results.

Theorem 3.2. Let c ∈ L1
g([t0, t0 + T), R) be such that 1 + c(t)∆+g(t) > 0 for all t ∈ [t0, t0 + T) ∩

Dg. Then, the map c̃ : [t0, t0 + T) → R, defined as

c̃(t) =





c(t) if t ∈ [t0, t0 + T)\Dg,

log
(
1 + c(t)∆+g(t)

)

∆+g(t)
if t ∈ [t0, t0 + T) ∩ Dg,

(3.6)

belongs to L1
g([t0, t0 + T), R); the map ec(·, t0) : [t0, t0 + T] → (0,+∞),

ec(t, t0) := exp
(∫

[t0,t)
c̃(s)d g(s)

)
, t ∈ [t0, t0 + T], (3.7)

is well-defined and g-absolutely continuous on [t0, t0 + T]; and the map x : [t0, t0 + T] → R, given by

x(t) = x0ec(t, t0), t ∈ [t0, t0 + T], solves the initial value problem (3.2) g-a.e. in [t0, t0 + T).

Remark 3.3. Observe that, for any t ∈ [t0, t0 + T) ∩ Dg,

ec(t
+, t0) = lim

s→t+
exp

(∫

[t0,s)
c̃(s)d g(s)

)
= lim

s→t+

(
exp

(∫

[t0,t)
c̃(s)d g(s)

)
exp

(∫

[t,s)
c̃(s)d g(s)

))

= ec(t, t0) exp
(∫

{t}
c̃(s)d g(s)

)
= ec(t, t0)(1 + c(t)∆+g(t)).

Essentially, this shows that the limitations that the map in (3.3) had at the discontinuity points
are avoided for ec(·, t0).

An analogous improvement to the more general result [3, Lemma 6.5] can be obtained
making use of the information in Lemma 3.1 regarding (3.4) instead of (3.5). In that case, we
obtain the following result.
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Theorem 3.4. Let c ∈ L1
g([t0, t0 + T), R) be such that 1 + c(t)∆+g(t) 6= 0 for all t ∈ [t0, t0 + T) ∩

Dg. Then, the set

T−
c = {t ∈ [t0, t0 + T) ∩ Dg : 1 + c(t)∆+g(t) < 0}

has finite cardinality. Furthermore, if T−
c = {t1, . . . , tk}, t0 ≤ t1 < t2 < · · · < tk < tk+1 = t0 + T,

then the map ĉ : [t0, t0 + T) → R, defined as

ĉ(t) =





c(t) if t ∈ [t0, t0 + T)\Dg,

log
∣∣1 + c(t)∆+g(t)

∣∣
∆+g(t)

if t ∈ [t0, t0 + T) ∩ Dg,

belongs to L1
g([t0, t0 + T), R); the map êc(·, t0) : [t0, t0 + T] → R\{0}, given by

êc(t, t0) =





exp
(∫

[t0,t)
ĉ(s)d g(s)

)
if t0 ≤ t ≤ t1,

(−1)j exp
(∫

[t0,t)
ĉ(s)d g(s)

)
if tj < t ≤ tj+1, j = 1, . . . , k,

is well-defined and g-absolutely continuous on [t0, t0 + T]; and the map x : [t0, t0 + T] → R, given by

x(t) = x0êc(t, t0), t ∈ [t0, t0 + T], solves the initial value problem (3.2) g-a.e. in [t0, t0 + T).

Now, we move on to the study of the nonhomogeneous case. The study of this problem
was also carried out in [3]. In particular, [3, Proposition 6.8] guarantees the existence of a
unique solution of (3.2) under certain hypothesis. Furthermore, although it is not explicitly
stated in the result, its proof provides a way to obtain it through the connection with the
problem in [3, Proposition 6.7], and they have been made explicit in [2]. However, the proof
of [3, Proposition 6.7] relays on the product rule for Stieltjes derivatives which, as it has been
pointed out before, was not correct in that paper. Specifically, it is equation (6.16) in [3] that
makes use of this property. It is possible to show that such expression remains true with the
product formula in Proposition 2.5. Nevertheless, here we will use a different approach to the
study of (3.2). Namely, we will recreate the method of variation of constants in this context.

Roughly speaking, the method of variation of constants revolves around the idea that the
solution of a nonhomogeneous linear equation can be expressed as the sum of a solution of
the homogeneous linear equation plus a particular solution of the nonhomogeneous one. In
order to obtain the particular solution, we consider the following family of functions

xC(t) = Cxh(t), t ∈ [t0, t0 + T], C ∈ R,

where xh is a given solution of x′g(t) = c(t)x(t). Observe that each element of the family xC,
C ∈ R, also solves the same problem. From there, we make a guess that a particular solution is
similar to that one, where we allow the constants to vary, i.e. we consider them as a function.
Explicitly, we guess that the solution is of the form

x(t) = C(t)xh(t), t ∈ [t0, t0 + T],

for some function C : [t0, t0 + T] → R . Then, we try our guess on the corresponding non-
homogeneous linear equation. In order to do so, we need to make use of the product rule
for Stieltjes derivatives, statement (ii) in Proposition 2.5. Let t ∈ [t0, t0 + T) be such that x′g(t)

exists. In that case,

x′g(t) = C′
g(t)xh(t) + C(t)xh(t)(−d(t)) + C′

g(t)xh(t)(−d(t))∆+g(t)

= xh(t)(C
′
g(t)(1 − d(t)∆+g(t))− C(t)d(t)).
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Hence, for such t ∈ [t0, t0 + T), it follows that x′g(t) + d(t)x(t) = xh(t)C
′
g(t)(1 − d(t)∆+g(t)).

Therefore, if x solves the nonhomogeneous linear equation, we must have that for such t ∈

[t0, t0 + T),
h(t) = xh(t)C

′
g(t)(1 − d(t)∆+g(t)).

Therefore, if we can find a function C satisfying the equation above, we obtain a particular
solution of the nonhomogeneous linear equation and, as a consequence, the general solution
of the same problem. Then, imposing the initial condition, we obtain the following result.

Theorem 3.5. Let d, h ∈ L1
g([t0, t0 + T), R) be such that 1 − d(t)∆+g(t) 6= 0 for all t ∈ [t0, t0 +

T) ∩ Dg. Then the map x : [t0, t0 + T] → R, defined as

x(t) = ê−d(t, t0)

(
x0 +

∫

[t0,t)

h(s)

ê−d(s, t0)(1 − d(s)∆+g(s))
d g(s)

)
, t ∈ [t0, t0 + T], (3.8)

is well-defined, g-absolutely continuous on [t0, t0 + T] and it solves (3.1) g-a.e. in [t0, t0 + T).

If, in particular, 1 − d(t)∆+g(t) > 0 for all t ∈ [t0, t0 + T) ∩ Dg, then

x(t) = e−d(t, t0)

(
x0 +

∫

[t0,t)

h(s)

e−d(s, t0)(1 − d(s)∆+g(s))
d g(s)

)
, t ∈ [t0, t0 + T]. (3.9)

Proof. First of all, note that, under the corresponding hypotheses, the maps ê−d(·, t0) and
e−d(·, t0) are well-defined. Let us show that the map x in (3.8) has the stated properties.

Consider the maps E, H : [t0, t0 + T) → R defined as

E(t) = ê−d(t, t0)(1 − d(t)∆+g(t)), H(t) =
h(t)

E(t)
, t ∈ [t0, t0 + T).

Since E(t) = ê−d(t, t0) for all t ∈ I \Dg and Dg is countable, E is g-measurable. Moreover, since
E 6= 0 by definition, and h and E are g-measurable, it follows that H is g-measurable. Further-
more, H belongs to L1

g([t0, t0 + T), R). Indeed, first of all note that for each t ∈ [t0, t0 + T),

|ê−d(t, t0)| = exp
(∫

[t0,t)
ĉ(s)d g(s)

)

≥ exp
(
−

∫

[t0,t)
|ĉ(s)|d g(s)

)
≥ exp

(
−

∫

[t0,t0+T)
|ĉ(s)|d g(s)

)
.

Observe that m := exp
(
−
∫
[t0,t0+T) |ĉ(s)|d g(s)

)
> 0. Hence,

|H(t)| ≤
1
m

|h(t)|

|1 − d(t)∆+g(t)|
, t ∈ [t0, t0 + T).

Therefore, it is enough to show that the map h : [t0, t0 + T) → R, defined as

h(t) =
h(t)

1 − d(t)∆+g(t)
, t ∈ [t0, t0 + T),

is g-integrable to prove that H ∈ L1
g([t0, t0 + T), R). In order to see that h is g-integrable,

observe that the set A = {t ∈ [t0, t0 + T) : d(t)∆+g(t) > 1/2} has finite cardinality as

∑
t∈A

1
2
< ∑

t∈[t0,t0+T)∩Dg

|d(t)∆+g(t)| ≤
∫

[t0,t0+T)
|d(s)|d g(s) < +∞.
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As a consequence, we have that |h(t)| ≤ 2|h(t)| for all t ∈ [t0, t0 + T) \ A, from which the
g-integrability of h follows. Hence, H ∈ L1

g([t0, t0 + T), R). Now, Theorem 2.9 yields that x

is g-absolutely continuous on [t0, t0 + T]. Hence, all that is left to do is to check that x solves
(3.1).

By definition, we have that x(t0) = x0. Furthermore, (i) in Proposition 2.5 and Theorems
2.9 and 3.4, ensure that for g-a.a. t ∈ [t0, t0 + T),

x′g(t) = −d(t)ê−d(t, t0)

(
x0 +

∫

[t0,t)
H(s)d g(s)

)
+ ê−d(t, t0)H(t)− ê−d(t, t0)d(t)H(t)∆+g(t)

= −d(t)x(t) + ê−d(t, t0)H(t)(1 − d(t)∆+g(t)) = −d(t)x(t) + h(t),

i.e. x solves (3.1).
Now, the expression of x in (3.9) follows from the extra hypothesis and the definition of

ê−d(·, t0) and e−d(·, t0)

Observe that, unlike [3, Proposition 6.8], Theorem 3.5 does not guarantee the uniqueness
of solution of (3.1) but it offers an explicit expression for a solution of the problem under
simpler conditions as condition (3.4) is not required. Nevertheless, using the results in the
next section, we will be able to show that (3.1) has a unique solution under the assumption
that d ∈ L1

g([t0, t0 + T), R).

4 Gronwall’s inequality for Lebesgue–Stieltjes integrals

In this section we turn our attention to the Gronwall inequality in the setting of Lebesgue–
Stieltjes integrals. Here, following the ideas [5], we obtain an integral inequality involving the
solution of the linear problem with Stieltjes derivatives. This argument improves, as we show
later, the corresponding results existing in the literature, such as those in [6, 8, 11, 12, 17].

In order to simplify the proof of the main result of this section, Proposition 4.3, we include
the following result. By doing this, we can also reflect on the meaning of Proposition 4.1 for
the study of the corresponding linear equation in (3.2).

Proposition 4.1. Let c ∈ L1
g([t0, t0 + T), R) be such that 1 + c(t)∆+g(t) > 0 for all t ∈ [t0, t0 +

T) ∩ Dg. Then the map h : [t0, t0 + T] → R, defined as

h(t) = (ec(t, t0))
−1, t ∈ [t0, t0 + T], (4.1)

is well-defined, g-absolutely continuous on [t0, t0 + T] and

h′g(t) =
−c(t)

ec(t, t0)(1 + c(t)∆+g(t))
, g-a.a. t ∈ [t0, t0 + T). (4.2)

Proof. Define h1(t) = ec(t, t0), t ∈ [t0, t0 + T]. Since h1 is g-absolutely continuous on [t0, t0 + T],
it has bounded variation on that interval (see [10, Proposition 5.3]) and thus, it is bounded on
[t0, t0 + T]. In particular, if we take

m := exp
(
−

∫

[t0,t0+T)
|c̃(s)|d g(s)

)
, M := exp

(∫

[t0,t0+T)
|c̃(s)|d g(s)

)
,

where c̃ is the modified function in (3.6), we have that 0 < m ≤ h(t) ≤ M < +∞, t ∈

[t0, t0 + T]. Hence, taking h2(t) = 1/t, t ∈ [m, M], we can rewrite h as h(t) = h2 ◦ h1, which
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shows that it is well-defined. Now, as in the classical setting, this is enough to ensure that h is
g-absolutely continuous on [t0, t0 + T], see [3, Proposition 5.3].

Let t ∈ [t0, t0 + T) be such that h′g(t) exists. If t 6∈ Dg, then by the chain rule, [10, Theo-
rem 2.3],

h′g(t) = h′2(h1(t))(h2)
′
g(t) =

−1
(ec(t, t0))2 ec(t, t0)c(t) =

−c(t)

ec(t, t0)
,

which coincides with (4.2) since ∆+g(t) = 0. On the other hand, if t ∈ Dg, using Remarks 2.3
and 3.3 we have that

h′g(t) =
(ec(t+, t0))−1 − (ec(t, t0))−1

∆+g(t)
=

(1 + c(t)∆+g(t))−1 − 1
ec(t, t0)∆+g(t)

=
−c(t)

ec(t, t0)(1 + c(t)∆+g(t))

which concludes the proof.

Remark 4.2. Observe that Proposition 4.1 shows that, under the corresponding hypotheses,
(ec(t, t0))−1 solves the Stieltjes differential equation x′g(t) = −c(t)x(t) except at the disconti-
nuity points of the derivator, presenting the limitations that the map in (3.3) had. In order to
obtain an equality at those points, one would have to modify the map c in an analogous way
to (3.6), which would lead to Theorem 3.2 under the corresponding hypotheses for −c.

As we mentioned before, Proposition 4.1 allows us to derive a version of Gronwall’s in-
equality in the context of Lebesgue–Stieltjes integrals. Naturally, in this context, the exponen-
tial map involved in the inequality is the one in (3.7). However, as we will see later, we can
obtain a different version of Gronwall’s inequality involving the usual exponential map. Let
us state and prove our first version of Gronwall’s inequality for the Lebesgue–Stieltjes integral.

Proposition 4.3. Let u, K, L : [t0, t0 + T) → [0,+∞) be such that L, K · L, u · L ∈ L1
g([t0, t0 + T),

[0,+∞)). If

u(t) ≤ K(t) +
∫

[t0,t)
L(s)u(s)d g(s), t ∈ [t0, t0 + T), (4.3)

then

u(t) ≤ K(t) +
∫

[t0,t)
K(s)L(s) exp

(∫

[s,t)
L̃(r)d g(r)

)
d g(s), t ∈ [t0, t0 + T), (4.4)

where L̃ is the modified function in (3.6). Moreover, if the map ϕ : [t0, t0 + T) → R, defined as

ϕ(t) = K(t)(1 + L(t)∆+g(t)), is nondecreasing, then

u(t) ≤ ϕ(t)eL(t, t0), t ∈ [t0, t0 + T). (4.5)

Proof. First, observe that 1 + L(t)∆+g(t) > 0 for all t ∈ [t0, t0 + T) ∩ Dg. Therefore, the maps
L̃ and eL(·, t0) are well-defined.

Define U(t) =
∫
[t0,t) L(s)u(s)d g(s), t ∈ [t0, t0 + T]. It follows from the hypotheses and

Theorem 2.9 that U is well-defined, g-absolutely continuous on [t0, t0 + T] and

U′
g(t) = L(t)u(t), g-a.a. t ∈ [t0, t0 + T).

Let h : [t0, t0 + T] → R be as in (4.1) for c = L and define v(t) = U(t)h(t), t ∈ [t0, t0 + T].
This is enough to ensure that v is g-absolutely continuous on [t0, t0 + T], which guarantees
that v′g(t) exists g-almost everywhere in [t0, t0 + T).
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Given t ∈ [t0, t0 + T) such that v′g(t) exists, Propositions 2.5 and 4.1 yield

v′g(t) = U′
g(t)(h(t) + h′g(t)∆

+g(t)) + h′g(t)U(t)

= u(t)L(t)

(
h(t)−

L(t)h(t)

1 + L(t)∆+g(t)
∆+g(t)

)
−

L(t)h(t)

1 + L(t)∆+g(t)
U(t)

= u(t)L(t)h(t)
1

1 + L(t)∆+g(t)
−

L(t)h(t)U(t)

1 + L(t)∆+g(t)

=
L(t)h(t)

1 + L(t)∆+g(t)

(
u(t)−

∫

[t0,t)
L(s)u(s)d g(s)

)
.

Thus, inequality (4.3) and the fact that 1 + L(t)∆+g(t) ≥ 1 for all t ∈ [t0, t0 + T), ensure that

v′g(t) ≤
K(t)L(t)h(t)

1 + L(t)∆+g(t)
≤ K(t)L(t)h(t), g-a.a. t ∈ [t0, t0 + T).

Therefore, it follows from Fundamental Theorem of Calculus for the Lebesgue–Stieltjes inte-
gral, Theorem 2.7, that

v(t) = v(t0) +
∫

[t0,t)
v′g(s)d g(s) ≤

∫

[t0,t)
K(s)L(s)h(s)d g(s), t ∈ [t0, t0 + T]

and, as a consequence, for all t ∈ [t0, t0 + T] we have
∫

[t0,t)
L(s)u(s)d g(s) = eL(t, t0)v(t)

≤ eL(t, t0)
∫

[t0,t)
K(s)L(s)h(s)d g(s)

= eL(t, t0)
∫

[t0,t)
K(s)L(s) (eL(s, t0))

−1 d g(s)

=
∫

[t0,t)
K(s)L(s) exp

(∫

[s,t)
L̃(r)d g(r)

)
d g(s).

Thus, it follows from 4.3 that

u(t) ≤ K(t) +
∫

[t0,t)
K(s)L(s) exp

(∫

[s,t)
L̃(r)d g(r)

)
d g(s), t ∈ [t0, t0 + T);

that is, (4.4) holds.
To prove (4.5), for each t ∈ [t0, t0 + T), define

ψt(s) = exp
(∫

[s,t)
L̃(r)d g(r)

)
=

eL(t, t0)

eL(s, t0)
, s ∈ [t0, t].

Then, it follows from (4.4) that for all t ∈ [t0, t0 + T),

u(t) ≤ K(t) +
∫

[t0,t)
K(s)L(s)ψt(s)d g(s)

≤ K(t)(1 + L(t)∆+g(t)) +
∫

[t0,t)
K(s)(1 + L(s)∆+g(s))

L(s)ψt(s)

1 + L(s)∆+g(s)
d g(s).

Now, since ϕ(t) = K(t)(1 + L(t)∆+g(t)) is nondecreasing, we have that

u(t) ≤ ϕ(t)

(
1 +

∫

[t0,t)

L(s)ψt(s)

1 + L(s)∆g(s)
d g(s)

)
, t ∈ [t0, t0 + T].
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On the other hand, Proposition 4.1 ensures that for all t ∈ [t0, t0 + T), the map ψt is g-
absolutely continuous on [t0, t] and

(ψt)
′
g(s) =

−L(s)

1 + L(s)∆g(s)
ψt(s) g-a.a. s ∈ [t0, t).

This fact, together with the Fundamental Theorem of Calculus, Theorem 2.7, yields that

u(t) ≤ ϕ(t)

(
1 −

∫

[t0,t)
(ψt)

′
g(s) d g(s)

)
= ϕ(t) (1 − (ψt(t)− ψt(t0))) = ϕ(t)ψt(t0),

for all t ∈ [t0, t0 + T), from which the result follows.

Remark 4.4. The bound (4.4), under the corresponding hypotheses, is sharp. Indeed, let
g : R → R be a nondecreasing and left-continuous function, K : [t0, t0 + T) → [0,+∞) be
constant and L be g-integrable on [t0, t0 + T). The map x(t) = KeL(t, t0), t ∈ [t0, t0 + T], is
g-absolutely continuous on [t0, t0 + T]. As a consequence, and with the aid of Theorems 2.7
and 3.2, we have that

x(t) = K +
∫

[t0,t)
L(s)KeL(s, t0)d g(s), t ∈ [t0, t0 + T],

that is, (4.3) holds. Furthermore, that same expression shows that (4.4) also holds with the
equality.

This type of inequalities for Stieltjes integrals already exist in the literature, see for example
[6, 8, 11, 12, 17]. Let us briefly discuss the relations between the mentioned references and
Proposition 4.3. First, in [12, Theorem 7.5.3], the authors worked in the more general context
of the Kurzweil–Stieltjes integral. Nevertheless, the results can be compared in the context
of the Lebesgue–Stieltjes integral as the integrability in this sense implies the integrability
in the Kurzweil–Stieltjes sense. In that case, we can see that the hypotheses required there
are stronger than the ones in Proposition 4.3. Furthermore, it is possible to deduce through
our next result, Corollary 4.5, that (4.5) gives a sharper bound than the one [12, Theorem
7.5.3]. A similar argument can be done for [8, Chapter 22], where the authors imposes some
condition regarding the length of the jumps that the map g presents to arrive to a similar
inequality that is not as sharp as the one provided in Proposition 4.3. The same thing happens
when we consider the generalized version of the Gronwall inequality in [17, Theorem 1.40].
For the particular setting in which we recover the usual Gronwall inequality (namely, when
ω(r) = r) then we obtain the same inequality as in [12, Theorem 7.5.3], which we have already
discussed. Now, for [6, 11], the authors obtained a Gronwall type inequality in the context
of a certain family of linear operators. The operators there considered can be the Lebesgue–
Stieltjes integrals in this paper. In that case, the authors impose some conditions on the
discontinuities of the map g, and moreover, the inequality is expressed using an unknown
function introduced in [6], called Gronwall majorant. Hence, in the context of our work, the
inequality in Proposition 4.3 provides more information.

Note that (4.5) in Proposition 4.3 becomes the usual Gronwall’s inequality when the deriva-
tor g is the identity map. Furthermore, as we mentioned before, we can obtain a different
Gronwall type inequality involving the usual exponential map, i.e. not involving the mod-
ified map in (3.6). However, the bound in Proposition 4.3 is sharper than the one in the
following result.
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Corollary 4.5. Let u, K, L : [t0, t0 + T) → [0,+∞) be such that L, K · L, u · L ∈ L1
g([t0, t0 + T),

[0,+∞)). If (4.3) holds, then

u(t) ≤ K(t) +
∫

[t0,t)
K(s)L(s) exp

(∫

[s,t)
L(r)d g(r)

)
d g(s), t ∈ [t0, t0 + T).

Moreover, if the map ϕ(t) = K(t)(1 + L(t)∆g(t)) is nondecreasing, then

u(t) ≤ ϕ(t) exp
(∫

[t0,t)
L(r)d g(r)

)
, t ∈ [t0, t0 + T).

Proof. Given the inequalities in Proposition 4.3, it is enough to show that L̃ ≤ L on [t0, t0 + T).
Observe that L̃ = L on [t0, t0 + T) \ Dg. Thus, we only need to show the inequality for
[t0, t0 + T) ∩ Dg.

For t ∈ [t0, t0 + T) ∩ Dg, we have that 1 + L(t)∆g(t) > 0. Now, since log(1 + s) ≤ s for
s ∈ (−1,+∞), it follows that

L̃(t) =
log

(
1 + L(t)∆g(t)

)

∆g(t)
≤

L(t)∆g(t)

∆g(t)
= L(t),

which concludes the proof.

As in the classical setting, Gronwall’s inequality allows us to obtain a uniqueness result
for a general initial value problem under the assumption that the map defining the problem
satisfies a Lipschitz condition. We present this information in the following result.

Theorem 4.6. Let X ⊂ R
n, x0 ∈ X and f : [t0, t0 + T)× X → R

n. If there exists τ ∈ (0, T] and

L ∈ L1
g([t0, t0 + τ), [0,+∞)) such that

‖ f (t, x)− f (t, y)‖ ≤ L(t)‖x − y‖, g-a.a. t ∈ [t0, t0 + τ), x, y ∈ X,

then the initial value problem

x′g(t) = f (t, x(t)), g-a.a. t ∈ [t0, t0 + T), x(t0) = x0, (4.6)

has at most one g-absolutely continuous solution on [t0, t0 + τ).

Proof. Suppose that x1, x2 ∈ ACg([t0, t0 + τ], R
n) are two solutions of (4.6) on [t0, t0 + τ). It

follows from Theorem 2.7 that f (·, xi(·)) ∈ L1
g([t0, t0 + τ), R

n), i = 1, 2. As a consequence, we
have that the map ‖ f (·, x1(·))− f (·, x2(·))‖ is g-integrable over [t0, t0 + τ).

Define u(t) = ‖x1(t) − x2(t)‖, t ∈ [t0, t0 + τ]. Clearly, u is nonnegative and bounded
on [t0, t0 + τ] as x1 and x2 are bounded, see [10, Proposition 5.3]. Hence, it follows that
u, u · L ∈ L1

g([t0, t0 + τ), [0,+∞)). Furthermore, the Fundamental Theorem of Calculus yields
that for t ∈ [t0, t0 + τ],

u(t) =

∥∥∥∥
∫

[t0,t)
f (s, x1(s))d g(s)−

∫

[t0,t)
f (s, x2(s))d g(s)

∥∥∥∥

≤
∫

[t0,t)
‖ f (s, x1(s))− f (s, x2(s))‖d g(s) ≤

∫

[t0,t)
L(s)u(s)d g(s).

Hence, (4.3) holds with K = 0. As a consequence, (4.4) holds for K = 0, which implies that
u = 0 on [t0, t0 + τ), or equivalently, x1 = x2 on that interval.
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We can now combine Theorems 3.5 and 4.6 to obtain the following result which is, to some
extend, a revision of [3, Proposition 6.8].

Theorem 4.7. Let d, h ∈ L1
g([t0, t0 + T), R) be such that 1 − d(t)∆g(t) 6= 0 for all t ∈

[t0, t0 + T) ∩ Dg. Then the unique g-absolutely continuous solution of (3.1) is given by the map

in (3.8). If, in particular, 1 − d(t)∆g(t) > 0 for all t ∈ [t0, t0 + T)∩ Dg, then the unique g-absolutely

continuous solution of (3.1) matches (3.9).
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Abstract. For more than 20 years, the Korteweg–de Vries equation has been intensively
explored from the mathematical point of view. Regarding control theory, when adding
an internal force term in this equation, it is well known that the Korteweg–de Vries
equation is exponentially stable in a bounded domain. In this work, we propose a weak
forcing mechanism, with a lower cost than that already existing in the literature, to
achieve the result of the global exponential stability to the Korteweg–de Vries equation.

Keywords: KdV equation, stabilization, observability inequality, unique continuation
property.

2020 Mathematics Subject Classification: 35Q53, 93B07, 93D15.

1 Introduction

1.1 Historical review

In 1834 John Scott Russell, a Scottish naval engineer, was observing the Union Canal in Scot-

land when he unexpectedly witnessed a very special physical phenomenon which he called

a wave of translation [35]. He saw a particular wave traveling through this channel without

losing its shape or velocity, and was so captivated by this event that he focused his attention

on these waves for several years, not only built water wave tanks at his home conducting prac-

tical and theoretical research into these types of waves, but also challenged the mathematical

community to prove theoretically the existence of his solitary waves and to give an a priori

demonstration a posteriori.

A number of researchers took up Russell’s challenge. Boussinesq was the first to ex-

plain the existence of Scott Russell’s solitary wave mathematically. He employed a variety

of asymptotically equivalent equations to describe water waves in the small-amplitude, long-

wave regime. In fact, several works presented to the Paris Academy of Sciences in 1871 and

1872, Boussinesq addressed the problem of the persistence of solitary waves of permanent

form on a fluid interface [4–7]. It is important to mention that in 1876, the English physicist

Lord Rayleigh obtained a different result [31].

BEmail: roberto.capistranofilho@ufpe.br

*This work is dedicated to my daughter Helena.
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After Boussinesq theory, the Dutch mathematicians D. J. Korteweg and his student

G. de Vries [22] derived a nonlinear partial differential equation in 1895 that possesses a

solution describing the phenomenon discovered by Russell,

∂η

∂t
=

3

2

√

g

l

∂

∂x

(

1

2
η2 +

3

2
αη +

1

3
β

∂2η

∂x2

)

, (1.1)

in which η is the surface elevation above the equilibrium level, l is an arbitrary constant

related to the motion of the liquid, g is the gravitational constant, and β = l3

3 − Tl
ρg with

surface capillary tension T and density ρ. The equation (1.1) is called the Korteweg–de Vries

equation in the literature, often abbreviated as the KdV equation, although it had appeared

explicitly in [7], as equation (283bis) in a footnote on page 360*.

Eliminating the physical constants by using the following change of variables

t →
1

2

√

g

lβ
t, x → −

x

β
, u → −

(

1

2
η +

1

3
α

)

one obtains the standard Korteweg–de Vries (KdV) equation

ut + 6uux + uxxx = 0 (1.2)

which is now commonly accepted as a mathematical model for the unidirectional propagation

of small-amplitude long waves in nonlinear dispersive systems. It turns out that the equation

is not only a good model for some water waves but also a very useful approximation model in

nonlinear studies whenever one wishes to include and balance a weak nonlinearity and weak

dispersive effects [27].

1.2 Motivation and setting of the problem

Consider the KdV equation (1.2). Let us introduce a source term in this equation as follows:

ut + 6uux + uxxx + f = 0, (1.3)

where f will be defined as

f := Gu(x, t) = 1ω

(

u (x, t)−
1

|ω|

∫

ω
u (x, t) dx

)

. (1.4)

Here, 1ω denotes the characteristic function of the set ω. Notice that this term can be seen

as a damping mechanism, which helps the energy of the system to dissipate. In fact, let us

consider ω subset of a domain M := T or M := R and the total energy of the linear equation

associated to (1.3), in this case, is given by

Es(t) =
1

2

∫

M
|u|2 (x, t) dx. (1.5)

Then, we can (formally) verify that

d

dt

∫

M
|u|2 (x, t) dx = −‖Gu‖2

L2(M) , for any t ∈ R.

*The interested readers are referred to [18, 30] for history and origins of the Korteweg–de Vries equation.
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The inequality above shows that the term G plays the role of feedback mechanism and, con-

sequently, we can investigate whether the solutions of (1.3) tend to zero as t → ∞ and under

what rate they decay.

Inspired by this, in our work we will study the full KdV equation from a control point of

view posed in a bounded domain (0, L) ⊂ R with a weak forcing term Gh added as a control

input, namely:














ut + ux + uux + uxxx + Gh = 0 in (0, L)× (0, T) ,

u (0, t) = u (L, t) = ux (L, t) = 0, in (0, T) ,

u (x, 0) = u0 (x) , in (0, L) .

(1.6)

Here, G is the operator defined by

Gh (x, t) = 1ω

(

h (x, t)−
1

|ω|

∫

ω
h (x, t) dx

)

, (1.7)

where h is considered as a new control input with ω ⊂ (0, L) and 1ω denotes the characteristic

function of the set ω.

Thus, we are interested in proving the stability for solutions of (1.6), which can be ex-

pressed in the following natural issue.

Stabilization problem: Can one find a feedback control law h so that the resulting closed-loop system

(1.6) is asymptotically stable when t → ∞?

1.3 Previous results

The study of the controllability and stabilization to the KdV equation started with the works

of Russell and Zhang [37] for a system with periodic boundary conditions and an internal

control. Since then, both the controllability and the stabilization have been intensively studied.

In particular, the exact boundary controllability of KdV on a finite domain was investigated

in e.g. [10, 11, 14–16, 32, 33, 39].

Most of these works deal with the following system

{

ut + ux + uxxx + uux = 0 in (0, T)× (0, L),

u(t, 0) = h1(t), u(t, L) = h2(t), ux(t, L) = h3(t) in (0, T),
(1.8)

in which the boundary data h1, h2, h3 can be chosen as control inputs.

The boundary control problem of the KdV equation was first studied by Rosier [32] who

considered system (1.8) with only one boundary control input h3 (i.e., h1 = h2 = 0) in action.

He showed that the system (1.8) is locally exactly controllable in the space L2(0, L). Precisely,

the result can be read as follows:

Theorem A ([32]). Let T > 0 be given and assume

L /∈ N :=

{

2π

√

j2 + l2 + jl

3
: j, l ∈ N

∗

}

. (1.9)

There exists a δ > 0 such that if φ, ψ ∈ L2 (0, L) satisfies

‖φ‖L2(0,L) + ‖ψ‖L2(0,L) ≤ δ,



4 R. de A. Capistrano-Filho

then one can find a control input h3 ∈ L2 (0, T) such that the system (1.8), with h1 = h2 = 0, admits

a solution

u ∈ C
(

[0, T] ; L2 (0, L)
)

∩ L2
(

0, T; H1 (0, L)
)

satisfying

u (x, 0) = φ (x) , u (x, T) = ψ (x) .

Theorem A was first proved for the associated linear system using the Hilbert Unique-

ness Method due J.-L. Lions [24] without the smallness assumption on the initial state φ and

the terminal state ψ. The linear result was then extended to the nonlinear system to obtain

Theorem A by using the contraction mapping principle.

Still regarding the KdV equation in a bounded domain, Chapouly [12] studied the exact

controllability to the trajectories and the global exact controllability of a nonlinear KdV in a

bounded interval. Precisely, first, she introduced two more controls as follows

{

ut + ux + uux + uxxx = g (t) , x ∈ (0, L) , t > 0,

u (0, t) = h1 (t) , u (L, t) = h2(t), ux (L, t) = 0, t > 0,
(1.10)

where g = g(t) is independent of the spatial variable x and is considered as a new control

input. Then, Chapouly proved that, thanks to these three controls, the global controllability

to the trajectories, for any positive time T, holds. Finally, she introduced a fourth control on

the first derivative at the right endpoint, namely,

{

ut + ux + uux + uxxx = g (t) , x ∈ (0, L) , t > 0,

u (0, t) = h1 (t) , u (L, t) = h2(t), ux (L, t) = h3(t), t > 0,

where g = g(t) has the same structure as in (1.10). With this equation in hand, she showed

the global exact controllability, for any positive time T.

Considering now a periodic domain T, Laurent et al. in [23] worked with the following

equation:

ut + uux + uxxx = 0, x ∈ T, t ∈ R. (1.11)

Equation (1.11) is known to possess an infinite set of conserved integral quantities, of which

the first three are

I1 (t) =
∫

T

u (x, t) dx, I2 (t) =
∫

T

u2 (x, t) dx

and

I3 (t) =
∫

T

(

u2
x (x, t)−

1

3
u3 (x, t)

)

dx.

From the historical origins [4, 22, 27] of the KdV equation, involving the behavior of water

waves in a shallow channel, it is natural to think of I1 and I2 as expressing conservation of

volume (or mass) and energy, respectively. The Cauchy problem for equation (1.11) has been

intensively studied for many years (see [3, 19, 21, 38] and the references therein).

With respect to control theory, Laurent et al. [23] studied the equation (1.11) from a control

point of view with a forcing term f = f (x, t) added to the equation as a control input:

ut + uux + uxxx = f , x ∈ T, t ∈ R, (1.12)
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where f is assumed to be supported in a given open set ω ⊂ T. However, in the periodic

domain, control problems were first studied by Russell and Zhang in [36, 37]. In their works,

in order to keep the mass I1(t) conserved, the control input f (x, t) is chosen to be of the form

f (x, t) = [Gh] (x, t) := g (x)

(

h (x, t)−
∫

T

g (y) h (y, t) dy

)

, (1.13)

where h is considered as a new control input, and g(x) is a given non-negative smooth func-

tion such that {g > 0} = ω and

2π [g] =
∫

T

g (x) dx = 1.

For the chosen g, it is easy to see that

d

dt

∫

T

u (x, t) dx =
∫

T

f (x, t) dx = 0, for any t ∈ R

for any solution u = u(x, t) of the system

ut + uux + uxxx = Gh. (1.14)

Thus, the mass of the system is indeed conserved. Therefore, the following results are due to

Russell and Zhang.

Theorem B ([37]). Let s ≥ 0 and T > 0 be given. There exists a δ > 0 such that for any u0, u1 ∈
Hs(T) with [u0] = [u1] satisfying

‖u0‖Hs ≤ δ, ‖u1‖Hs ≤ δ,

one can find a control input h ∈ L2(0, T; Hs(T)) such that the system (1.14) admits a solution u ∈
C([0, T]; Hs(T)) satisfying u(x, 0) = u0(x), u(x, T) = u1(x).

Note that one can always find an appropriate control input h to guide system (1.12) from a

given initial state u0 to a terminal state u1 so long as their amplitudes are small and [u0] = [u1].

With this result the two following questions arise naturally, which have already been cited in

this work.

Question 1: Can one still guide the system by choosing appropriate control input h from a given initial

state u0 to a given terminal state u1 when u0 or u1 have large amplitude?

Question 2: Do the large amplitude solutions of the closed-loop system (1.12) decay exponentially as

t → ∞?

Laurent et al. gave the positive answers to these questions:

Theorem C ([23]). Let s ≥ 0, R > 0 and µ ∈ R be given. There exists a T > 0 such that for any

u0, u1 ∈ Hs(T) with [u0] = [u1] = µ are such that

‖u0‖Hs ≤ R, ‖u1‖Hs ≤ R,

then one can find a control input h ∈ L2(0, T; Hs(T)) such that the system (1.12) admits a solution

u ∈ C([0, T]; Hs(T)) satisfying

u(x, 0) = u0(x) and u(x, T) = u1(x).
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Theorem D ([23]). Let s ≥ 0, R > 0 and µ ∈ R be given. There exists a k > 0 such that for any

u0 ∈ Hs(T) with [u0] = µ the corresponding solution of the system (1.12) satisfies

‖u (·, t)− [u0]‖Hs ≤ αs,µ (‖u0 − [u0]‖H0) e−kt ‖u0 − [u0]‖Hs for all t > 0,

where αs,µ : R
+ −→ R

+ is a nondecreasing continuous function depending on s and µ.

These results are established with the aid of certain properties of propagation of

compactness and regularity in Bourgain spaces for the solutions of the associated linear sys-

tem. Finally, with Slemrod’s feedback law, the resulting closed-loop system is shown to be

locally exponentially stable with an arbitrarily large decay rate.

Still with respect to problems of stabilization, Pazoto [28] proved the exponential decay

for the energy of solutions of the Korteweg–de Vries equation in a bounded interval with a

localized damping term, precisely, with a term a = a(x) satisfying

{

a ∈ L∞(0, L) and a(x) ≥ a0 > 0 a.e. in ω,

where ω is a nonempty open subset of (0, L).
(1.15)

With this mechanism the author showed that

dE

dt
= −

∫ L

0
a(x)|u(x, t)|2dx −

1

2
|ux(0, t)|2

with

E(t) =
1

2

∫ L

0
|u(x, t)|2dx.

This indicates that the term a(x)u in the equation plays the role of a feedback damping mech-

anism. Finally, following the method in Menzala et al. [26] which combines energy estimates,

multipliers and compactness arguments, the problem is reduced to prove the unique continu-

ation of weak solutions. The result proved by the author can be read as follows.

Theorem E ([28]). For any L > 0, any damping potential a satisfying (1.15) and R > 0, there exist

c = c(R) > 0 and µ = µ(R) > 0 such that

E(t) ≤ c ‖u0‖
2
L2(0,L) e−µt,

holds for all t ≥ 0 and any solution of















ut + ux + uux + uxxx + a(x)u = 0 in (0, T)× (0, L),

u(t, 0) = u(t, L) = ux(t, L) = 0 in (0, T),

u(0, x) = u0(x) in (0, L),

(1.16)

with u0 ∈ L2(0, L) such that ‖u0‖L2(0,L) ≤ R.

Massarolo et al. showed in [25] that a very weak amount of additional damping stabilizes

the KdV equation. In particular, a damping mechanism dissipating the L2−norm as a()̇ does is

not needed. Dissipating the H−1−norm proves to be. For instance, one can take the damping

term Bu instead of a(x)u, where Bu is defined by

B = 1ω

(

−
d2

dx2

)−1

= 1ω(−∆)−1,
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where 1ω denotes the characteristic function of the set ω,
(

−d2/dx2
)−1

is the inverse of the

Laplace operator with Dirichlet boundary conditions (on the boundary of ω ⊂ (0, L)). Under

the above considerations, they observed that (formally) the operator B satisfies

∫ L

0
uBudx =

∫ L

0
u
[

−1ω∆
−1u

]

dx = −
∫

ω

(

∆
−1u

)

∆

(

∆
−1u

)

dx

= − ∆
−1u

[

∆
−1u

]

x

∣

∣

∣

∂ω
+

∫

ω

∣

∣

∣

[

∆
−1u

]

x

∣

∣

∣

2
dx

=
∥

∥

∥

[

∆
−1u

]

x

∥

∥

∥

2

L2(ω)
=

∥

∥

∥
∆
−1u

∥

∥

∥

2

H1
0 (ω)

= ‖u‖2
H−1(ω).

Consequently, the total energy E(t) associated with (1.16) with Bu instead of a(x)u, satisfies

d

dt

∫ L

0
|u(x, t)|2dx = −u2

x(0, t)− ‖u‖2
H−1(ω),

where

E(t) =
∫ L

0
|u(x, t)|2dx.

This indicates that the term Bu plays the role of a feedback damping mechanism. Conse-

quently, they investigated whether E(t) tends to zero as t → ∞ and the uniform rate at which

it may decay, showing the similar result as in Theorem E .

To finish that small sample of the previous works, let us present another result of controlla-

bility for the KdV equation posed on a bounded domain. Recently, the author in collaboration

with Pazoto and Rosier, showed in [9] results for the following system,







ut + ux + uux + uxxx = 1ω f (t, x) in (0, T)× (0, L),

u(t, 0) = u(t, L) = ux(t, L) = 0 in (0, T),

u(0, x) = u0(x) in (0, L),

(1.17)

considering f as a control input and 1ω is a characteristic function supported on ω ⊂ (0, L).

Precisely, when the control acts in a neighborhood of x = L, they obtained the exact

controllability in the weighted Sobolev space L2
1

L−x dx
defined as

L2
1

L−x dx
:= {u ∈ L1

loc(0, L);
∫ L

0

|u(x)|2

L − x
dx < ∞}.

More precisely, they proved the following result:

Theorem F [9]: Let T > 0, ω = (l1, l2) = (L − ν, L) where 0 < ν < L. Then, there exists δ > 0

such that for any u0, u1 ∈ L2
1

L−x dx
with

‖u0‖L2
1

L−x dx

≤ δ and ‖u1‖L2
1

L−x dx

≤ δ,

one can find a control input f ∈ L2(0, T; H−1(0, L)) with supp( f ) ⊂ (0, T) × ω such that the

solution u ∈ C0([0, L], L2(0, L)) ∩ L2(0, T, H1(0, L)) of (1.17) satisfies u(T, .) = u1 in (0, L) and

u ∈ C0([0, T], L2
1

L−x dx
). Furthermore, f ∈ L2

(T−t)dt
(0, T, L2(0, L)).

We caution that this is only a small sample of the extant works in this field. Now, we are

able to present our result in this manuscript.
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1.4 Main result and heuristic of the paper

The aim of this manuscript is to address the stabilization issue for the KdV equation on a

bounded domain with a weak source (or forcing) term, as a distributed control, namely















ut + ux + uux + uxxx + Gh = 0, in (0, L)× (0, T) ,

u (0, t) = u (L, t) = ux (L, t) = 0, in (0, T) ,

u (x, 0) = u0 (x) , in (0, L) ,

(1.18)

where G is the operator defined by (1.7).

Notice that with a good choose of Gh, that is,

Gh := Gu (x, t) = 1ω

(

u (x, t)−
1

|ω|

∫

ω
u (x, t) dx

)

, (1.19)

the energy associate

I2 (t) =
∫ L

0
u2 (x, t) dx

verify that
d

dt

∫ L

0
u2 (x, t) dx ≤ −‖Gu‖2

L2(0,L) , for any t > 0,

at least for the linear system

ut + ux + uxxx + Gh = 0, in (0, L)× {t > 0}.

Consequently, we can investigate whether the solutions of this equation tend to zero as t → ∞

and under what rate they decay. To be precise, the main result of the work, give us an answer

to the stabilization problem for the system (1.6)-(1.7), proposed on the beginning of this paper,

and will be state in the following form.

Theorem 1.1. Let T > 0. Then, for every R0 > 0 there exist constants C > 0 and k > 0, such that,

for any u0 ∈ L2 (0, L) with

‖u0‖L2(0,L) ≤ R0,

the corresponding solution u of (1.6) satisfies

‖u (·, t)‖L2(0,L) ≤ Ce−kt ‖u0‖L2(0,L) , ∀t > 0.

Note that our goal in this work is to give an answer for the stabilization problem that

was mentioned at the beginning of this introduction. Is important to point out that a similar

feedback law was used in [37] and, more recently, in [23] for the Korteweg–de Vries equation,

to prove a globally uniform exponential result in a periodic domain. In [23, 37] the damping

with a null mean was introduced to conserve the integral of the solution, which for KdV

represents the mass (or volume) of the fluid.

In the context presented in this manuscript, our result improves earlier works on the

subject, for example, [28]. Roughly speaking, differently from what was proposed by [23, 37],

in this work, the weak damping (1.7) is to have a lower cost than the one presented in [28] in

the sense of that we can remove a medium term in the mechanisms proposed in these works

and still have positive result of stabilization of the KdV equation.
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Observe that the control used in [28], is formally the first part of the following forcing

term:

Gh (x, t) = 1ω

(

h (x, t)−
1

|ω|

∫

ω
h (x, t) dx

)

,

where ω ⊂ (0, L). In fact, to see this, in [28], define a(x) := −1ω in the above equality and

just forget the remaining term. Thus, due to these considerations, we do not need a strong

mechanism acting as control input. Surely, of what was shown in this article, to achieve

the stability result for the KdV equation, is that the forcing operator Gh can be taken as a

function supported in ω removing the medium term associated to the first term of the control

mechanism.

Here, it is important point out that, the week damping mechanism is related with respect

to the cost of the stabilization, as mentioned previously, which is different in the context

of [25], where the authors proves that the energy of the system dissipates in the H−1-norm

instead of L2-norm.

Concerning to the stabilization problem, the main ingredient to prove Theorem 1.1 is the

Carleman estimate for the linear problem proved by Capistrano-Filho et al. in [9]. This estimate

together with the energy estimate and compactness arguments reduces the problem to prove

the Unique Continuation Property (UCP) for the solutions of the nonlinear problem, precisely,

the following result is showed.

UCP: Let L > 0 and T > 0 be two real numbers, and let ω ⊂ (0, L) be a nonempty open set. If

v ∈ L∞
(

0, T; H1 (0, L)
)

solves














vt + vx + vxxx + vvx = 0, in (0, L)× (0, T) ,

v (0, t) = v (L, t) = 0, in (0, T) ,

v = c, in ω × (0, T) ,

for some c ∈ R. Thus, v ≡ c in (0, L)× (0, T), where c ∈ R.

It is important to point out here that the previous UCP was first proved by Rosier and

Zhang in [34]. In this way, to sake of completeness, we revisited this result now using the

Carleman estimate proved by the author in [9].

1.5 Structure of the work

To end our introduction, we present the outline of the manuscript: In Section 2, we present

some estimates for the KdV equation which will be used in the course of the work. Section 3

is devoted to present the proof of Theorem 1.1, that is, give the answer to the stabilization

problem. Comments of our result as well as some extensions for other models are presented

in Section 4. Finally, on the Appendix A, we will give a sketch how to prove the unique

continuation property (UCP) presented above.

2 Well-posedness for KdV equation

In this section, we will review a series of estimates for the KdV equation, namely,














ut + ux + uux + uxxx = f , in (0, L)× (0, T) ,

u (0, t) = u (L, t) = ux (L, t) = 0, in (0, T) ,

u (x, 0) = u0 (x) , in (0, L) ,

(2.1)
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which will be borrowed of [32]. Here f = f (t, x) is a function which stands for the control of

the system.

2.1 The linearized KdV equation

The well-posedness of the problem (2.1), with f ≡ 0, was proved by Rosier [32]. He notice

that operator A = − ∂3

∂x3 −
∂

∂x with domain

D (A) =
{

w ∈ H3 (0, L) ; w (0) = w (L) = wx (L) = 0
}

⊆ L2 (0, L)

is the infinitesimal generator of a strongly continuous semigroup of contractions in L2 (0, L).

Theorem 2.1. Let u0 ∈ L2 (0, L) and f ≡ 0. There exists a unique weak solution u = S (·) u0 of (2.1)

such that

u ∈ C([0, T]; L2(0, L)) ∩ H1(0, T; H−2 (0, L)). (2.2)

Moreover, if u0 ∈ D (A), then (2.1) has a unique (classical) solution u such that

u ∈ C([0, T]; D(A)) ∩ C1(0, T; L2(0, L)). (2.3)

An additional regularity result for the weak solutions of the linear system associated to

system (2.1) was also established in [32]. The result can be read as follows.

Theorem 2.2. Let u0 ∈ L2 (0, L), Gw ≡ 0 and u = S (·) u0 the weak solution of (2.1). Then, u ∈
L2(0, T; H1(0, L)) and there exists a positive constant c0 such that

‖u‖L2(0,T;H1(0,L)) ≤ c0 ‖u0‖L2(0,L) . (2.4)

Moreover, there exist two positive constants c1 and c2 such that

‖ux (·, 0)‖2
L2(0,T) ≤ c1 ‖u0‖L2(0,L) (2.5)

and

‖u0‖L2(0,L) ≤
1

T
‖u‖2

L2(0,T;L2(0,L)) + c2 ‖ux (·, 0)‖2
L2(0,T) . (2.6)

2.2 The nonlinear KdV equation

In this section we prove the well-posedness of the following system















ut + ux + uux + uxxx = Gw, in (0, L)× (0, T) ,

u (0, t) = u (L, t) = ux (L, t) = 0, in (0, T),

u (x, 0) = u0 (x) , in (0, L) .

(2.7)

To solve the problem we write the solution of (2.7) as follows

u = S (t) u0 + u1 + u2,

where (S (t))t≥0 denotes the semigroup associated with the operator Au = −u′′′ − u′ with

domain D (A) dense in L2 (0, L) defined by

D (A) =
{

v ∈ H3 (0, L) ; v (0) = v (L) = v′ (L) = 0
}

,
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and u1 and u2 are (respectively) solutions of two non-homogeneous problems















u1t + u1x + u1xxx = Gw, in ω × (0, T) ,

u1 (0, t) = u1 (L, t) = u1x (L, t) = 0, in (0, T),

u1 (x, 0) = 0, in (0, L) ,

(2.8)

and














u2t + u2x + u2xxx = f , in (0, L)× (0, T) ,

u2 (0, t) = u2 (L, t) = u2x (L, t) = 0, in (0, T),

u2 (x, 0) = 0, in (0, L) ,

(2.9)

where f = −u2u2x and w is solution of the following adjoint system















−wt − wx − wxxx = 0, in (0, L)× (0, T) ,

w (0, t) = w (L, t) = wx (0, t) = 0, in (0, T),

w (x, T) = 0 (x) , in (0, L) .

(2.10)

Let us define the following map

Ψ : w ∈ L2
(

0, T; L2 (0, L)
)

7−→ u1 ∈ C
(

[0, T] ; L2 (0, L)
)

∩ L2
(

0, T; H1 (0, L)
)

=: B,

endowed with norm

‖u1‖B := sup
t∈[0,T]

‖u1 (·, t)‖L2(0,L) +

(

∫ T

0
‖u1 (·, t)‖2

H1(0,L) dt

)
1
2

,

be the map which associates with w the weak solution of (2.8). Observe that, by using The-

orem 2.2 the map u0 ∈ L2 (0, L) 7→ S (·) u0 ∈ B is continuous. Furthermore, the following

proposition holds true.

Proposition 2.3. The function Ψ is a (linear) continuous map.

Proof. Indeed, let us divide the proof in two parts.

First part.

Notice that in (2.8) w is the solution of (2.10), thus,

g (x, t) = Gw (x, t) ∈ C1
(

[0, T] ; L2 (0, L)
)

and from classical results concerning such non-homogeneous problems (see [29]) we obtain a

unique solution

u1 ∈ C ([0, T] ;D (A)) ∩ C1
(

[0, T] ; L2 (0, L)
)

(2.11)

of (2.8). Additionally, the following estimate can be proved:

∫ T

0
‖Gu‖L2(0,L) dt ≤ CT ‖u‖Y0,T

, (2.12)

where,

Y0,T = C([0, T]; L2(0, T)) ∩ L2([0, T]; H1(0, L)).
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In fact, by a direct computation, we have

∫ T

0
||Gu||2L2(0,L)dt =

∫ T

0

(

∫

ω
u2dx − |ω|−1

(

∫

ω
udx

)2)1/2
dt

≤
∫ T

0

(

∫ L

0
u2dx

)1/2
dt ≤ T||u||Y0,T

.

Thus, (2.12) follows.

Second part.

Now, we will prove some estimates by multipliers method. Consider u0 (x) ∈ D (A). Let

w ∈ L2
(

0, T; L2 (0, L)
)

and q ∈ C∞ ([0, T]× [0, L]). Multiplying (2.8) by qu1, we obtain

∫ S

0

∫ L

0
qu1 (u1t + u1x + u1xxx) dxdt =

∫ S

0

∫ L

0
qu1 (Gw) dxdt, (2.13)

where S ∈ [0, T]. Using (2.8) (and Fubini’s theorem) we get:

−
∫ S

0

∫ L

0
(qt + qx + qxxx)

u2
1

2
dxdt +

∫ L

0

(

qu2
1

2

)

(x, S) dx

+
3

2

∫ S

0

∫ L

0
qxu2

1xdxdt +
1

2

∫ S

0

(

qu2
1x

)

(0, t) dt =
∫ S

0

∫ L

0
(qu1) (Gw) dxdt.

(2.14)

Choosing q = 1 it follows that

∫ L

0
u1 (x, S)2 dx +

∫ S

0
u1x (0, t)2 dt =

∫ S

0

∫ L

0
u1 (Gw) dxdt

≤
1

2
‖u‖L2(0,S;L2(0,L)) +

1

2
‖Gw‖2

L2(0,S;L2(0,L)) .

Then, we get

‖u1‖C([0,T];L2(0,L)) ≤ C ‖Gw‖L2(0,T;L2(0,L)), (2.15)

which yields

‖u1‖L2((0,T)×(0,L)) ≤ C ‖Gw‖L2(0,T;L2(0,L)) (2.16)

and

‖u1x (0, ·)‖L2(0,T) ≤ C ‖Gw‖L2(0,T;L2(0,L)) . (2.17)

Now take q (x, t) = x and S = T, (2.14) gives,

−
∫ T

0

∫ L

0

u2
1

2
dxdt +

∫ L

0

x

2
u2

1 (x, T) dx +
3

2

∫ T

0

∫ L

0
u2

1xdxdt =
∫ T

0

∫ L

0
xu1 (Gw) dxdt. (2.18)

Hence

∫ T

0

∫ L

0
u2

1xdxdt ≤
1

3

(

∫ T

0

∫ L

0
u2

1dxdt + L

{

∫ T

0

∫ L

0
u2dxdt +

∫ T

0

∫ L

0
(Gw)2 dxdt

})

and then, using (2.16),

‖u1‖L2(0,T;H1(0,L)) ≤ C (T, L) ‖Gw‖L2(0,T;L2(0,L)) . (2.19)

Using (2.15), (2.19), (2.12) and the density of D (A) in L2 (0, L), we deduce that Ψ is a linear

continuous map, proving thus the proposition.
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The next result, proved in [32, Proposition 4.1], give us that nonlinear system (2.9) is well-

posed.

Proposition 2.4. The following items can be proved.

1. If u ∈ L2
(

0, T; H1 (0, L)
)

, uux ∈ L1
(

0, T; L2 (0, L)
)

and u 7→ uux is continuous.

2. For f ∈ L1
(

0, T; L2 (0, L)
)

the mild solution u2 of (2.9) belongs to B. Moreover, the linear map

Θ : f 7−→ u2

is continuous.

Remark 2.5. Recall that for f ∈ L1
(

0, T; L2 (0, L)
)

the mild solution u2 of (2.9) is given by

u2 (·, t) =
∫ t

0
S (t − s) f (·, s) ds. (2.20)

3 Stabilization of KdV equation

In this section we study the stabilization of the system















ut + ux + uux + uxxx + Gu = 0, in (0, L)× {t > 0},

u (0, t) = u (L, t) = ux (L, t) = 0, t > 0,

u (x, 0) = u0 (x) , in (0, L) .

(3.1)

Here, Gu is defined by (1.19). Precisely, the issue in this section is the following one:

Stabilization problem: Can one find a feedback control law h so that the resulting closed-loop system

(3.1) is asymptotically stable when t → ∞?

The answer to the stability problem is given by the theorem below.

Theorem 3.1. Let T > 0. Then, there exist constants k > 0, R0 > 0 and C > 0, such that for any

u0 ∈ L2 (0, L) with

‖u0‖L2(0,L) ≤ R0,

the corresponding solution u of (3.1) satisfies

‖u (·, t)‖L2(0,L) ≤ Ce−kt ‖u0‖L2(0,L) , ∀t ≥ 0. (3.2)

As usual in the stabilization problem, Theorem 3.1 is a direct consequence of the following

observability inequality.

Proposition 3.2. Let T > 0 and R0 > 0 be given. There exists a constant C > 1, such that, for any

u0 ∈ L2 (0, L) satisfying

‖u0‖L2(0,L) ≤ R0,

the corresponding solution u of (3.1) satisfies

‖u0‖
2
L2(0,L) ≤ C

∫ T

0
‖Gu‖2

L2(0,L) dt. (3.3)
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Indeed, if (3.3) holds, then it follows from the energy estimate that

‖u (·, T)‖2
L2(0,L) ≤ ‖u0‖

2
L2(0,L) −

∫ T

0
‖Gu‖2

L2(0,L) dt, (3.4)

or, more precisely,

‖u (·, T)‖2
L2(0,L) ≤

(

1 − C−1
)

‖u0‖
2
L2(0,L) .

Thus,

‖u (·, mT)‖2
L2(0,L) ≤

(

1 − C−1
)m

‖u0‖
2
L2(0,L)

which gives (3.2) by the semigroup property. In (3.2), we obtain a constant k independent of

R0 by noticing that for t > c
(

‖u0‖L2(0,L)

)

, the L2-norm of u (·, t) is smaller than 1, so that we

can take the k corresponding to R0 = 1.

Proof of Proposition 3.2. We prove (3.3) by contradiction. Suppose that (3.3) does not occurs.

Thus, for any n ≥ 1, (3.1) admits a solution un ∈ C
(

[0, T] ; L2 (0, L)
)

∩ L2
(

0, T; H1 (0, L)
)

satisfying

‖un (0)‖L2(0,L) ≤ R0,

and
∫ T

0
‖Gun‖

2
L2(0,L) dt ≤

1

n
‖u0,n‖

2
L2(0,L) , (3.5)

where u0,n = un (0). Since αn := ‖u0,n‖L2(0,L) ≤ R0, one can choose a subsequence of {αn},

still denoted by {αn}, such that

lim
n→∞

αn = α.

There are two possible cases: i. α > 0 and ii. α = 0.

i. α > 0.

Note that the sequence {un} is bounded in L∞
(

0, T; L2 (0, L)
)

∩ L2
(

0, T; H1 (0, L)
)

. On the

other hand,

un,t = −

(

un,x +
1

2
∂x

(

u2
n

)

+ un,xxx − Gun

)

,

is bounded in L2
(

0, T; H−2 (0, L)
)

. As the first immersion of

H1 (0, L) →֒ L2 (0, L) →֒ H−2 (0, L) ,

is compact, exists a subsequence, still denoted by {un}, such that

un −→ u in L2
(

0, T; L2 (0, L)
)

,

−
1

2
∂x

(

u2
n

)

⇀ −
1

2
∂x

(

u2
)

in L2
(

0, T; H−1 (0, L)
)

.
(3.6)

It follows from (3.5) and (3.6) that

∫ T

0
‖Gun‖

2
L2(0,L) dt

n→∞
−→

∫ T

0
‖Gu‖2

L2(0,L) = 0, (3.7)

which implies that

Gu = 0,
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i.e.,

u (x, t)−
1

|ω|

∫

ω
u (x, t) dx = 0 ⇒ u (x, t) =

1

|ω|

∫

ω
u (x, t) dx.

Consequently,

u (x, t) = c (t) in ω × (0, T) ,

for some function c (t). Thus, letting n → ∞, we obtain from (3.1) that

{

ut + ux + uxxx = f , in (0, L)× (0, T) ,

u = c (t) , in ω × (0, T) .
(3.8)

Let wn = un − u and fn = − 1
2 ∂x

(

u2
n

)

− f − Gun. Note first that,

∫ T

0
‖Gwn‖

2
L2(0,L) dt

=
∫ T

0
‖Gun‖

2
L2(0,L) dt +

∫ T

0
‖Gu‖2

L2(0,L) dt − 2
∫ T

0
(Gun, Gu)L2(0,L) dt → 0. (3.9)

Since wn ⇀ 0 in L2
(

0, T; H1 (0, L)
)

, we infer from Rellich’s Theorem that
∫ L

0 wn (y, t) dy → 0

strongly in L2 (0, T). Combining (3.6) and (3.9), we have that

∫ T

0

∫ L

0
|wn|

2 −→ 0.

Thus,

wn,t + wn,x + wn,xxx = fn,

fn ⇀ 0 in L2
(

0, T; H−1 (0, L)
)

,

and,

wn −→ 0 in L2
(

0, T; L2 (0, L)
)

,

so,

∂x

(

w2
n

)

−→ w2
x

in the sense of distributions. Therefore, f = − 1
2 ∂x

(

u2
)

e u ∈ L2
(

0, T; L2 (0, L)
)

satisfies

{

ut + ux + uxxx +
1
2

(

u2
)

x
= 0, in (0, L)× (0, T) ,

u = c (t) , in ω × (0, T) .

The first equation gives c′ (t) = 0 which, combined with unique continuation property (see

Appendix A), yields that u (x, t) = c for some constant c ∈ R. Since u(L, t) = 0, we deduce

that

0 = u (L, t) = c,

and un converges strongly to 0 in L2
(

0, T; L2 (0, L)
)

. We can pick some time t0 ∈ [0, T] such

that un (t0) tends to 0 strongly in L2 (0, L). Since

‖un (0)‖
2
L2(0,L) ≤ ‖un (t0)‖

2
L2(0,L) +

∫ t0

0
‖Gun‖

2
L2(0,L) dt,

it is inferred that αn = ‖un (0)‖L2(0,L) −→ 0, as n → ∞, which is in contradiction with the

assumption α > 0.
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ii. α = 0.

First, note that αn > 0, for all n. Set vn = un/αn, for all n ≥ 1. Then,

vn,t + vn,x + vn,xxx − Gvn +
αn

2

(

v2
n

)

x
= 0

and
∫ T

0
‖Gvn‖

2
L2(0,L) dt <

1

n
. (3.10)

Since

‖vn (0)‖L2(0,L) = 1, (3.11)

the sequence {vn} is bounded in L20, T; L2(0, L) ∩ L2(0, T; H1(0, L)), and, therefore,
{

∂x(v2
n)
}

is bounded in L2
(

0, T; L2 (0, L)
)

. Then, αn∂x

(

v2
n

)

tends to 0 in this space. Finally,

∫ T

0
‖Gv‖2

L2(0,L) dt = 0.

Thus, v is solution of
{

vt + vx + vxxx = 0, in (0, L)× (0, T) ,

v = c (t) , in ω × (0, T) .

We infer that v (x, t) = c (t) = c, thanks to Holmgren’s Theorem, and that c = 0 due the fact

that v (L, t) = 0.

According to the previous fact, pick a time t0 ∈ [0, T] such that vn (t0) converges to 0

strongly in L2 (0, L). Since

‖vn (0)‖
2
L2(0,L) ≤ ‖vn (t0)‖

2
L2(0,L) +

∫ t0

0
‖Gvn‖

2
L2(0,L) dt,

we infer from (3.10) that ‖vn (0)‖L2(0,L) → 0, which contradicts to (3.11). The proof is complete.

4 Comments and extensions for other models

In this section we intend to analyze the results obtained in this manuscript as well as to present

some extensions of these results for other models.

4.1 Comments of the results

In this work we deal with the KdV equation from a control point of view posed in a bounded

domain (0, L) ⊂ R with a forcing term Gh added as a control input, namely:















ut + ux + uux + uxxx + Gh = 0, in (0, L)× (0, T) ,

u (0, t) = u (L, t) = ux (L, t) = 0, in (0, T) ,

u (x, 0) = u0 (x) , in (0, L) .

(4.1)

Here G is the operator defined by (1.4).

The result presented in this manuscript gives us a new “weak” forcing mechanism that en-

sures global stability to the system (4.1). In fact, Theorem 1.1 guarantees a lower cost to control
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the system proposed in this work and, consequently, to derive a good result related with the

stabilization problem as compared with existing results in the literature.

The interested readers can look at the following article [28], related to what we call “strong”

forcing mechanism. Indeed, in this article, the author proposed the source term as 1ωh(x, t), that

is, the mechanism proposed does not remove a medium term as seen in Gh defined by (1.4).

Finally, observe that the approach used to prove our main result as well as the weak

mechanism can be extended for KdV-type equation and for a model of strong interaction between

internal solitary waves. Let us breviary describe these systems and the results that can be

derived by using the same approach applied in this work.

4.2 KdV-type equation

Fifth-order KdV type equation can be written as

ut + ux + βuxxx + αuxxxxx + uux = 0, (4.2)

where u = u(t, x) is a real-valued function of two real variables t and x, α and β are real

constants. When we consider, in (4.2), β = 1 and α = −1, T. Kawahara [20] introduced a

dispersive partial differential equation which describes one-dimensional propagation of small-

amplitude long waves in various problems of fluid dynamics and plasma physics, the so-called

Kawahara equation.

With the damping mechanism proposed in this manuscript, we can investigate the

stabilization problem, already mentioned in this article, for the following system















ut + ux + uux + uxxx − uxxxxx + Gh = 0, in (0, T)× (0, L),

u(t, 0) = u(t, L) = ux(t, 0) = ux(t, L) = uxx(t, L) = 0, in (0, T),

u(0, x) = u0(x) in (0, L),

(4.3)

and G as in (1.7).

In fact, a similar result can be obtained with respect to global stabilization. Obviously,

we need to pay attention to the unique continuation property for this case (for our case see

Appendix A). However, due the Carleman estimate provided by Chen in [13], it is possible to

show the unique continuation property for the Kawahara operator.

4.3 Model of strong interaction between internal solitary waves

We can consider a model of two KdV equations types. Precisely, in [17], a complex sys-

tem of equations was derived by Gear and Grimshaw to model the strong interaction of

two-dimensional, long, internal gravity waves propagating on neighboring pycnoclines in a

stratified fluid. It has the structure of a pair of Korteweg–de Vries equations coupled through

both dispersive and nonlinear effects and has been the object of intensive research in recent

years. In particular, we also refer to [2] for an extensive discussion on the physical relevance

of the system.

An interesting possibility now presents itself is the study of the stability properties when

the model is posed on a bounded domain (0, L), that is, to study the Gear–Grimshaw system
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with only a weak damping mechanism, namely,














ut + uux + uxxx + a3vxxx + a1vvx + a2(uv)x = 0, in (0, L)× (0, ∞),

cvt + rvx + vvx + a3b2uxxx + vxxx + a2b2uux + a1b2(uv)x + Gv = 0, in (0, L)× (0, ∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), in (0, L),

(4.4)

satisfying the following boundary conditions

{

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0, in (0, ∞),

v(0, t) = 0, v(L, t) = 0, vx(L, t) = 0, in (0, ∞),
(4.5)

where a1, a2, a3, b2, c, r are constants in R assuming physical relations. Here, as in all work, Gv

is the weak forcing term defined in (1.7).

The stabilization problem for the system (4.4)–(4.5) was addressed in [8]. The author

showed that the total energy associated with the model decay exponentially when t tends

to ∞, considering two damping mechanisms Gu and Gv acting in both equations of (4.4).

However, even though the system (4.4) has the structure of a pair of KdV equations, it cannot

be decoupled into two single KdV equations** and, in this case, the result shown in this work

is not a consequence of the results proved in [8].

Lastly, Bárcena-Petisco et al. in a recent work [1], addressed the controllability problem

for the system (4.5), by means of a control 1ω f (x, t), supported in an interior open subset

of the domain and acting on one equation only. The proof consists mainly on proving the

controllability of the linearized system, which is done by getting a Carleman estimate for the

adjoint system. With this result in hand, by using Gv as a control mechanism, instead of

1ω f (x, t), it is possible to prove the global stabilization for the model (4.5). As in the KdV

(see Appendix A) and Kawahara cases, we need to prove a unique continuation property to

achieve the stabilization problem, however with the Carleman estimate [1, Proposition 3.2],

we are able to derive this property for the Gear–Grimshaw operator.

4.4 About exact controllability results

Now, we will discuss the exact controllability property of the KdV system














ut + ux + uux + uxxx = Gw, in (0, L)× (0, T) ,

u (0, t) = u (L, t) = ux (L, t) = 0, in (0, T),

u (x, 0) = u0 (x) , in (0, L) .

(4.6)

with weak source term G defined by

Gw (x, t) = 1ω

(

w (x, t)−
1

|ω|

∫

ω
w (x, t) dx

)

,

where ω ⊂ (0, L) and 1ω denotes the characteristic function of the set ω. We raise the follow-

ing open question:

Control problem: Given an initial state u0 and a terminal state u1 in L2(0, L), can one find an

appropriate control input w ∈ L2(ω × (0, T)) so that the equation (4.6) admits a solution u which

satisfies u (·, 0) = u0 and u (·, T) = u1?

**Remark that the uncoupling is not possible in (4.4) unless r = 0.
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It is important to point out that we do not expect that system (4.6) has the exact control

property as above mentioned when we consider the control w in L2(ω × (0, T)). Roughly

speaking, (large) negative waves propagate from the right to the left. Therefore, a negative

wave cannot be generated by a left control, that means, when the control is acting far from

the endpoint x = L, i.e. in some interval ω = (l1, l2) with 0 < l1 < l2 < L, then there is no

chance to control exactly the state function on (l2, L), (see e.g. [33]). However, we believe that

using the techniques proposed in [9] (or in [15]), i.e., considering the weight Sobolev spaces

(or control more regular), there is a chance to get positive answer for exact control problem in

the right hand side of the domain, precisely, considering ω = (L− ǫ, L), with the weak control

as defined in (1.19).

4.5 A natural damping mechanism

When we consider the boundary condition of (4.1) with G = 0, a natural feedback law is

revealed as we can see below
dE

dt
= −

1

2
|ux(0, t)|2 (4.7)

with

E(t) =
1

2

∫ L

0
|u(x, t)|2dx.

The energy dissipation law (4.7) shows that the boundary value problem under consideration

is dissipated through the extreme x = 0 and leads one to guess that any solution of (4.1),

with G = 0, may decay to zero as t → ∞. In order to answer this question, a really nonlinear

method is needed, and the method applied here can not be addressed to solve it.

A Unique continuation property

This appendix aims to provide a sketch of how to obtain the unique continuation property

through a Carleman estimate.

A.1 Carleman inequality

Pick any function ψ ∈ C3([0, L]) with

ψ > 0 in [0, L], |ψ′| > 0, ψ′′
< 0, and ψ′ψ′′′

< 0 in [0, L], (A.1)

ψ′(0) < 0, ψ′(L) > 0, and max
x∈[0,L]

ψ(x) = ψ(0) = ψ(L). (A.2)

Set

ϕ(t, x) =
ψ(x)

t(T − t)
· (A.3)

For f ∈ L2(0, T; L2(0, L)) and q0 ∈ L2(0, L), let q denote the solution of the system















qt + qx + qxxx = f , t ∈ (0, T), x ∈ (0, L),

q(t, 0) = q(t, L) = qx(t, L) = 0 t ∈ (0, T),

q(0, x) = q0(x), in (0, L) .

(A.4)

Thus, the following result is a direct consequence of the Carleman estimate proved by [9].
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Proposition A.1. Pick any T > 0. There exist two constants C > 0 and s0 > 0 such that any

f ∈ L2(0, T; L2(0, L)), any q0 ∈ L2(0, L) and any s ≥ s0, the solution q of (A.4) fulfills

∫ T

0

∫ L

0
[sϕ|qxx|

2 + (sϕ)3|qx|
2 + (sϕ)5|q|2]e−2sϕdxdt ≤ C

(

∫ T

0

∫ L

0
| f |2e−2sϕdxdt

)

, (A.5)

where ϕ is defined by (A.4) and ψ satisfies (A.1)–(A.2).

Actually, Proposition A.1 will play a great role in establishing the unique continuation

property describes below.

Corollary A.2. Let L > 0 and T > 0 be two real numbers, and let ω ⊂ (0, L) be a nonempty open

set. If v ∈ L∞
(

0, T; H1 (0, L)
)

solves















vt + vx + vxxx + vvx = 0, in (0, L)× (0, T) ,

v (0, t) = 0, in (0, T) ,

v = c, in (l′, L)× (0, T) ,

with 0 < l′ < L and c ∈ R, then v ≡ c in (0, L)× (0, T).

Proof. We do not expect that v belongs to

L2
(

0, T; H3(0, l)
)

∩ H1
(

0, T; L2(0, l)
)

.

In this way, we have to smooth it. For any function v = v(x, t) and any h > 0, let us consider

v[h](x, t) defined by

v[h](x, t) :=
1

h

∫ t+h

t
v(x, s)ds.

Remember that if v ∈ Lp(0, T; V), where 1 ≤ p ≤ +∞ and V denotes any Banach space, we

have that

v[h] ∈ W1,p(0, T − h; V)
∥

∥

∥
v[h]

∥

∥

∥

Lp(0,T−h;V)
≤ ‖v‖Lp(0,T;V),

and

v[h] → v in Lp
(

0, T′; V
)

as h → 0,

for p < ∞ and T′
< T.

Choose any T′
< T. Thus, for a small enough number h,

v[h] ∈ W1,∞
(

0, T′; H1
0(0, l)

)

and v[h] is solution of

v
[h]
t + v

[h]
x + v

[h]
xxx + (vvx)

[h] = 0 in (0, l)×
(

0, T′
)

, (A.6)

v[h](0, t) = 0 in
(

0, T′
)

(A.7)

and

v[h] ≡ c in
(

l′, l
)

×
(

0, T′
)

, (A.8)
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for some c ∈ R. Since v ∈ L∞
(

0, T; H1(0, l)
)

and vvx ∈ L∞
(

0, T; L2(0, l)
)

, therefore, it follows

from (A.6), that

v
[h]
xxx ∈ L∞

(

0, T′; L2(0, l)
)

and thus

v[h] ∈ L∞
(

0, T′; H3(0, l)
)

.

Thanks to the Carleman estimate (A.5), we get that

∫ T′

0

∫ L

0
[sϕ|v

[h]
xx |

2 + (sϕ)3|v
[h]
x |2 + (sϕ)5|v[h]|2]e−2sϕdxdt

≤ C

(

∫ T′

0

∫ L

0
| f |2e−2sϕdxdt

)

≤ 2C0

∫ T′

0

∫ l

0

∣

∣

∣
vv

[h]
x

∣

∣

∣

2
e−2sϕdxdt + 2C0

∫ T′

0

∫ l

0

∣

∣

∣(vvx)
[h] − vv

[h]
x

∣

∣

∣

2
e−2sϕdxdt

=: I1 + I2,

(A.9)

for any s ≥ s0 and ϕ(t, x) defined by (A.3).

Claim 1: I1 is bounded and can be absorbed by the left-hand side of (A.9).

In fact, since v ∈ L∞ (0, T; L∞(0, l)) , we have

I1 ≤ C
∫ T′

0

∫ l

0

∣

∣

∣
v
[h]
x

∣

∣

∣

2
e−2sϕdxdt, (A.10)

for some constant C > 0 which does not depend on h. Comparing the powers of s in the

right-hand side of (A.10) with those in the left-hand side of (A.9) we deduce that the term I1

in (A.9) may be dropped by increasing the constants C0 and s0 in a convenient way, getting

Claim 1.

Claim 2: I2 → 0, as h → 0.

From now on, fix s, which means, to the value s0. Thanks to the fact that e−2s0 ϕ ≤ 1, it is

sufficient to prove that

(vvx)
[h] → vvx in L2

(

0, T′; L2(0, l)
)

(A.11)

and

vv
[h]
x → vvx in L2

(

0, T′; L2(0, l)
)

. (A.12)

In fact, since

vvx ∈ L2
(

0, T′; L2(0, l)
)

(A.11) holds and, from the fact that v ∈ L∞ (0, T′; L∞(0, l))∩ L2
(

0, T′; H1(0, l)
)

, (A.12) follows,

showing the Claim 2.

By Claims 1 and 2, as h → 0, the integral term

∫ T′

0

∫ L

0
[sϕ|v

[h]
xx |

2 + (sϕ)3|v
[h]
x |2 + (sϕ)5|v[h]|2]e−2sϕdxdt → 0.

On the other hand, v[h] → v in L2
(

0, T′; L2(0, l)
)

. It follows that v ≡ c in (0, l)× (0, T′), for

c ∈ R. As T′ may be taken arbitrarily close to T, we infer that v ≡ c in (0, l)× (0, T), for some

c ∈ R. This completes the proof of Corollary A.2.

As a consequence of Corollary A.2, we give below the unique continuation property.
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Corollary A.3. Let L > 0, T > 0 be real numbers, and ω ⊂ (0, L) be a nonempty open set. If

v ∈ L∞
(

0, T; H1 (0, L)
)

is solution of















vt + vx + vxxx + vvx = 0, in (0, L)× (0, T) ,

v (0, t) = v (L, t) = 0, in (0, T) ,

v = c, in ω × (0, T) ,

where c ∈ R, then v ≡ c in (0, L)× (0, T).

Proof. Without loss of generality we may assume that ω = (l1, l2) with 0 ≤ l1 < l2 ≤ L. Pick

l = (l1 + l2) /2. First, apply Corollary A.2 to the function v(x, t) on (0, l)× (0, T). After that,

we use the following change of variable v(L − x, T − t) on (0, L − l)× (0, T), to conclude that

v ≡ c on (0, L)× (0, T), achieving the result.
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1 Introduction

Let n ≥ 2 denote an integer and let a < T1 < T2 < T3 < b. Let ai ∈ R, i = 1, . . . , n. We shall

consider the ordinary differential equation

y(n)(t) = f (t, y(t), . . . , y(n−1)(t)), t ∈ [T1, T3], (1.1)

where f : (a, b)× R
n → R, or the ordinary differential equation

y(n)(t) = f (t, y(t)), t ∈ [T1, T3], (1.2)

where f : (a, b)× R → R. We shall consider three point boundary value problems for either

(1.1) or (1.2) with the boundary conditions, for j ∈ {1, 2},

y(i−1)(T1) = ai, i = 1, . . . , n − 2, y(T2) = an−1, y(j−1)(T3) = an, (1.3)

and we shall have need to consider two point boundary value problems for either (1.1) or (1.2)

with the boundary conditions, for j ∈ {1, 2},

y(i−1)(T1) = ai, i = 1, . . . , n − 1, y(j−1)(T2) = an. (1.4)

With respect to (1.1), common assumptions for the types of results that we consider are:

BCorresponding author. Email: peloe1@udayton.edu
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(A) f (t, y1, . . . , yn) : (a, b)× R
n → R is continuous;

(B) Solutions of initial value problems for (1.1) are unique and extend to (a, b);

(C) For j ∈ {1, 2}, solutions of the two-point boundary value problems (1.1), (1.3) are unique

if they exist;

(D) For j ∈ {1, 2}, solutions of the two-point boundary value problems (1.1), (1.4) are unique

if they exist.

With respect to (1.2), the assumptions (A, (B), (C) and (D) are replaced, respectively, by

(A′) f (t, y) : (a, b)× R → R is continuous;

(B′) Solutions of initial value problems for (1.2) are unique and extend to (a, b).

(C′) For j ∈ {1, 2}, solutions of the two-point boundary value problems (1.2), (1.3) are unique

if they exist.

(D′) For j ∈ {1, 2}, solutions of the two-point boundary value problems (1.2), (1.4) are unique

if they exist.

In [3, Theorem 3.6], the authors claimed to have proved the following theorem.

Theorem 1.1. Assume that with respect to (1.1), Conditions (A), (B), (C) and (D) are satisfied. Then

for each a < T1 < T2 < T3 < b, ai ∈ R, i = 1, . . . , n, and for j = 1, the three point boundary value

problem (1.1), (1.3) has a solution.

The proof that is offered in [3] is incorrect and so, the alleged theorem remains a conjecture.

In this erratum, we state and prove a correct theorem. With the statement and proof of this

correct theorem, the remainder of the results produced in [3] are correct.

Theorem 1.2. Assume that with respect to (1.2), Conditions (A′), (B′), (C′) and (D′) are satisfied.

Then for each a < T1 < T2 < T3 < b, ai ∈ R, i = 1, . . . , n, and for j = 1, the three point boundary

value problem (1.2), (1.3) has a solution.

Before proving Theorem 1.2, we state several results to which we refer in the proof. The

first two are results about the continuous dependence of solutions of (1.1), (1.4) or (1.2), (1.4)

on boundary conditions. The third is a known generalized mean value theorem.

Theorem 1.3. Assume that with respect to (1.1), Conditions (A), (B), and (D) are satisfied. Let

j ∈ {1, 2}.

(i) Given any a < T1 < T2 < T3 < b, and any solution y of (1.1), there exists ǫ > 0 such that if

|T11 − T1| < ǫ, |y(i−1)(T1)− yi1| < ǫ, i = 1, . . . , n − 2, |T21 − T2| < ǫ, and |T31 − T3| < ǫ,

|y(T2) − y(n−1)1| < ǫ, |y(T3) − yn1| < ǫ, then there exists a solution z of (1.1) such that

z(i−1)(T11) = yl1, i = 1, . . . , n − 2, z(T21) = y(n−1)1, and z(j−1)(T31) = yn1.

(ii) If T1k → T1, T2k → T2, T3k → T3, yik → yi, i = 1, . . . , n and zk is a sequence of solutions of

(1.1) satisfying z
(i−1)
k (T1k) = yik, i = 1, . . . , n − 2, zk(T2k) = y(n−1)k, z

(j−1)
k (T3k) = ynk, then

for each i ∈ {1, . . . , n}, z
(i−1)
k converges uniformly to y(i−1) on compact subintervals of (a, b).

Theorem 1.3 was proved in [3] with a standard application of the Brouwer invariance of

domain theorem; technically we shall apply the following theorem for which the proof is

completely analogous to the proof of Theorem 1.3.
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Theorem 1.4. Assume that with respect to (1.2), Conditions (A′), (B′), and (D′) are satisfied. Let

j ∈ {1, 2}.

(i) Given any a < T1 < T2 < T3 < b, and any solution y of (1.1), there exists ǫ > 0 such that if

|T11 − T1| < ǫ, |y(i−1)(T1)− yi1| < ǫ, i = 1, . . . , n − 2, |T21 − T2| < ǫ, and |T31 − T3| < ǫ,

|y(T2) − y(n−1)1| < ǫ, |y(T3) − yn1| < ǫ, then there exists a solution z of (1.1) such that

z(i−1)(T11) = yl1, i = 1, . . . , n − 2, z(T21) = y(n−1)1, and z(j−1)(T31) = yn1.

(ii) If T1k → T1, T2k → T2, T3k → T3, yik → yi, i = 1, . . . , n and zk is a sequence of solutions of

(1.1) satisfying z
(i−1)
k (T1k) = yik, i = 1, . . . , n − 2, zk(T2k) = y(n−1)k, z

(j−1)
k (T3k) = ynk, then

for each i ∈ {1, . . . , n}, z
(i−1)
k converges uniformly to y(i−1) on compact subintervals of (a, b).

For a proof of a generalized mean value theorem, we refer the reader to the text by Conte

and de Boor [1, Theorem 2.2]. Let t0, . . . , ti denote i+ 1 distinct real numbers and let z : R → R.

Define z[tl ] = z(tl), l = 0, . . . , i and if tl , . . . , tk+1 denote k − l + 2 distinct points, define

z[tl , . . . , tk+1] =
z[tl+1, . . . , tk+1]− z[tl , . . . , tk]

tk+1 − tl
.

Theorem 1.5. Assume z(t) is a real-valued function, defined on [a, b] and i times differentiable in

(a, b). If t0, . . . , ti are i + 1 distinct points in [a, b], then there exists

c ∈ (min{t0, . . . , ti}, max{t0, . . . , ti})

such that

z[t0, . . . , ti] =
z(i)(c)

i!
.

For our purposes, we shall set h > 0 and choose t0 = T1, t1 = T1 + h, . . . , ti = T1 + ih to be

equally spaced. In this setting

z[T1, T1 + h, . . . , T1 + ih] =
∑

i
l=0(−1)i−l(i

l)z(T1 + lh)

i!hi
,

and, in general there exists c ∈ (T1, T1 + ih) such that

∑
i
l=0(−1)i−l(i

l)z(T + ih)

hi
= z(i)(c). (1.5)

We now proceed to the proof of Theorem 1.2.

Proof. Let a < T1 < T2 < T3 < b, and ai ∈ R, i = 1, . . . , n. Let m ∈ R and denote by y(t; m) the

solution of the initial value problem (1.2), with initial conditions

y(i−1)(T1; m) = ai, i = 1, . . . , n − 1, y(n−2)(T1; m) = m, y(T2) = an−1.

Let

Ω = {p ∈ R : there exists m ∈ R with y(T3; m) = p}.

The theorem is proved by showing Ω = R. It follows by Conditions (A′), (B′) and (D′) (see

[2]), Ω 6= ∅; thus, the theorem is proved by showing Ω is open and closed. That Ω is open

follows from Theorem 1.4.
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To show Ω is closed, let p0 denote a limit point of Ω and without loss of generality let pk

denote a strictly increasing sequence of reals in Ω converging to p0. Assume y(T3; mk) = pk

for each k ∈ N1. It follows by the uniqueness of solutions, Condition (C′), that

y(j−1)(t; mk1
) 6= y(j−1)(t; mk2

), t ∈ (T2, b), (1.6)

for each j ∈ {1, 2}, if k1 < k2, and in particular,

y(t; m1) < y(t; mk) t ∈ (T2, b), (1.7)

for each k.

Either y′(T3; mk) ≤ 0 infinitely often or y′(T3; mk) ≥ 0 infinitely often. Relabel if necessary

and assume y′(T3; mk) ≤ 0 or y′(T3; mk) ≥ 0 for each k.

We first assume the case y′(T3; mk) ≤ 0 for each k. We now consider two subcases. For

the first subcase, assume y′(T3; mk) < y′(T3; m1) ≤ 0 infinitely often. Relabeling if necessary,

assume y′(T3; mk) < y′(T3; m1) < 0 for each k. Find T3 < T4 < b such that y′(t; m1) ≤ 0, for

t ∈ [T3, T4]. Then y(t; m1) is decreasing on [T3, T4]. Set L = y(T4; m1); then, for t ∈ [T3, T4],

L = y(T4; m1) ≤ y(t; m1) ≤ y(T3; m1) ≤ p0.

Since y′(T2; mk) < y′(T2; m1), then analogous to (1.7), it follows that

y′(t; mk) < y′(t; m1), t ∈ (T2, b),

and y(t; mk) is decreasing on [T3, T4]. Then for t ∈ [T3, T4],

L = y(T4; m1) ≤ y(t; m1) ≤ y(t; mk) ≤ y(T3; mk) ≤ p0. (1.8)

In particular,

{(t, y(t; mk) : t ∈ [T3, T4], k ∈ N1} ⊂ [T3, T4]× [L, p0]. (1.9)

Since f : (a, b)× R → R is continuous, there exists M > 0 such that

max
t∈[T3,T4],k∈N1

|y(n)(t; mk)| ≤ M. (1.10)

We now proceed to adapt an observation made by Lasota and Opial [4] and apply the

adapted observation to higher order derivatives. Lasota and Opial essentially observed that

0 >
y(T4; mk)− y(T3; mk)

T4 − T3
≥

L − p0

T4 − T3
= −K1, (1.11)

which implies

{t ∈ [T3, T4] : −K1 ≤ y′(t; mk) < 0} 6= ∅.

For our purposes, define

Sk1 = {t ∈ [T3, T4] : |y′(t; mk)| ≤ K1},

and Sk1 6= ∅.

To proceed to higher order derivatives, employ Theorem 1.5. For example, set

h =
T4 − T3

2
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and consider
y(T3; mk)− 2y(T3 + h; mk) + y(T3 + 2h; mk)

h2
.

Employing (1.8), it follows that

∣

∣

∣

y(T3; mk)− 2y(T3 + h; mk) + y(T3 + 2h; mk)

h2

∣

∣

∣
≤

2(p0 − L)

h2

=
23(p0 − L)

(T4 − T3)2
= K2.

Thus,

Sk2 = {t ∈ [T3, T4] : |y′′(t; mk)| ≤ K2} 6= ∅.

So, in general, let i ∈ {1, . . . n − 1}. Set h = T4−T3
i . Then,

∣

∣

∣

∑
i
l=0(−1)i−l(i

l)y(T3 + lh; mk)

hi

∣

∣

∣
≤

(i)i2i−1(p0 − L)

(T4 − T3)i
= Ki.

Apply (1.5) and the set,

Ski = {t ∈ [T3, T4] : |y(i)(t; mk)| ≤ Ki} 6= ∅.

Let cn−1 ∈ Sk(n−1). Then for t ∈ [T3, T4],

y(n−1)(t; mk) = y(n−1)(cn−1; mk) +
∫ t

cn−1

y(n)(s; mk)ds

which implies

max
t∈[T3,T4]

|y(n−1)(t; mk)| ≤ Kn−1 + M(T4 − T3) = Mn−1.

Since Sk(n−2) 6= ∅, the same argument implies that

max
t∈[T3,T4]

|y(n−2)(t; mk)| ≤ Kn−2 + Mn−1(T4 − T3) = Mn−2.

Continuing with the same argument, define for i ∈ {n − 2, . . . , 1},

Mi = Ki + Mi+1(T4 − T3).

Then

max
t∈[T3,T4]

|y(i)(t; mk)| ≤ Mi, i = 1, . . . , n − 1.

For each k, choose tk ∈ [T3, T4]. Then

(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk)) ∈ [T3, T4]× [L, p0]× Πn−1
i=1 [−Mi, Mi]. (1.12)

The set on the righthand side of (1.12) is a compact subset of R
n+1 and independent of k.

Thus, there exists a convergent subsequence (relabeling if necessary)

{(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk))} → (t0, c1, . . . , cn)

where t0 ∈ [T3, T4]. Since t0 ∈ (a, b), by the continuous dependence of solutions of initial value

problems, y(t; mk) converges in Cn−1[T1, T3] to a solution, say z(t), of the initial value problem
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(1.2), with initial conditions, y(i−1)(t0) = ci, i = 1, . . . , n. Thus, p0 = z(T3) which implies

p0 ∈ Ω and Ω is closed. This completes the proof if, for each k,

y′(T3; mk) < y′(T3; m1) ≤ 0.

Moving to the second subcase, assume y′(T3; m1) < y′(T3; mk) ≤ 0 infinitely often. Relabel-

ing if necessary, assume y′(T3; m1) < y′(T3; mk) ≤ 0 for each k. For this case, we work on an in-

terval to the left of T3. Find T2 < T4 < T3 such that y′(t; m1) ≤ 0 and y(T3; m1) ≤ y(t; m1) ≤ p0

for t ∈ [T4, T3]. The inequality (1.7) remains valid and

y′(t; m1) < y′(t; mk), t ∈ (T2, b).

So, for t ∈ [T4, T3],

y(T3; m1) ≤ y(t; m1) < y(t; mk)

and there exists ck ∈ (t, T3) such that

y(t; mk) = y(T3; mk) + y′(ck; mk)(t − T3) ≤ y(T3; mk) + y′(ck; m1)(t − T3)

≤ p0 + max
t∈[T4,T3]

|y′(t; m1)|(T3 − T4).

Set L = y(T3; m1) and P0 = p0 + maxt∈[T4,T3] |y
′(t; m1)|(T3 − T4) and analogous to (1.8) we

have for t ∈ [T4, T3], k ∈ N1,

L ≤ y(t; mk) ≤ P0.

The proof of the second subcase now proceeds precisely as the proof of the first case.

For these two subcases we have assumed y′(T3; mk) ≤ 0 for each k. If y′(T3; mk) > 0

for each k, one again considers two subcases, y′(T3; mk) > y′(T3; m1) > 0 for each k, or

y′(T3; m1) > y′(T3; mk) ≥ 0 for each k. If y′(T3; mk) > y′(T3; m1) > 0 for each k, produce an

analogue to the preceding first subcase on an interval [T4, T3] where T2 < T4 < T3 and define

L = y(T4; m1). If y′(T3; m1) > y′(T4; mk) ≥ 0 for each k, produce an analogue to the preceding

second subcase on an interval [T3, T4] where T3 < T4 < b. The proof is complete.

Remark 1.6. In [3], the authors claim to have constructed a sequence of solutions of (1.1),

(1.3) for j = 1 and a compact set analogous to (1.12). The calculations to obtain an interval

analogous to [T3, T4] of positive length are incorrect which in turn implies the calculations to

obtain a priori bounds on higher order derivatives are incorrect. Thus, the conjecture, stated

as Theorem 3.6 in [3] is unproven.
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1 Introduction

Let R[x, y] be the set of all real polynomials in the variables x and y. Consider the planar

system

ẋ = P(x, y),
ẏ = Q(x, y),

(1.1)

where ẋ = dx/dt, ẏ = dy/dt and P, Q ∈ R[x, y]. We define the degree of a system (1.1) as

max{deg P, deg Q}. In the case where the polynomials P and Q are relatively prime i.e. they

do not have a non-constant common factor, we say that (1.1) is non-degenerate.
Consider

χ = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
(1.2)

the polynomial vector field associated to (1.1).

A real quadratic differential system is a polynomial differential system of degree 2, i.e.

ẋ = p0 + p1(ã, x, y) + p2(ã, x, y) ≡ p(ã, x, y),
ẏ = q0 + q1(ã, x, y) + q2(ã, x, y) ≡ q(ã, x, y)

(1.3)

with max{deg p, deg q} = 2 and

p0 = a, p1(ã, x, y) = cx + dy, p2(ã, x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(ã, x, y) = ex + f y, q2(ã, x, y) = lx2 + 2mxy + ny2.

Here we denote by ã = (a, c, d, g, h, k, b, e, f , l, m, n) the 12-tuple of the coefficients of system

(1.3). Thus a quadratic system can be identified with a point ã in R12.

We denote the class of all quadratic differential systems with QS.

Planar polynomial differential systems occur very often in various branches of applied

mathematics, in modeling natural phenomena, for example, modeling the time evolution of

conflicting species, in biology, in chemical reactions, in economics, in astrophysics, in the equa-

tions of continuity describing the interactions of ions, electrons and neutral species in plasma

physics (see, for example: [45], [73], [8] and [55]). Such differential systems have also theoreti-

cal importance. Several problems on polynomial differential systems, which were stated more

than one hundred years ago, are still open: the second part of Hilbert’s 16th problem stated

by Hilbert in 1900 [32], the problem of the center stated by Poincaré in 1885 [50], the problem

of algebraic integrability stated by Poincaré in 1891 [51], [52] (both problems later discussed in

this work), and problems on integrability resulting from the work of Darboux [20] published

in 1878. With the exception of the problem of the center for quadratic differential systems that

was solved, all the other problems mentioned above, are still unsolved even in the quadratic

case.

The theory of Darboux [20] (1878) was built for complex polynomial differential equations

over the complex projective plane. Here we are interested in polynomial differential systems

over the real affine plane. But every system (1.1) with real coefficient can be extended over

the complex affine plane and it leads to a polynomial differential equation with homogeneous

coefficients over the complex projective plane (see for example [40], pp. 316–317). As a con-

sequence, the theory of Darboux can be applied to real polynomial differential systems. This

is a theory of integrability of polynomial differential systems (1.1) which is based on the exis-

tence of particular solutions that are algebraic. The cases of integrable systems are rare but as

Arnold said in [2, p. 405] “. . . these integrable cases allow us to collect a large amount of information
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about the motion in more important systems. . . .” Poincaré was enthusiastic about the theory of

Darboux and called it “admirable” in [51] and “oeuvre magistrale” in [52]. In [52] Poincaré

stated his problem of algebraic integrability on systems (1.1), which is still open today. The

French Academy of Sciences proposed this problem for a prize which was won by Painlevé

and Autonne received an honorable mention but although the new results were interesting

they have not provided a complete solution to the problem posed by Poincaré. After the re-

search done by Poincaré, Painlevé and Autonne at the end of the 19th century we have the

work of Dulac and of Lagutinskiı̆ at the beginning of the 20th century. The work of Dulac

[24] will later be briefly discussed in this work. Lagutinskiı̆’s work is not well known because

except for one paper written in French, all of his other 16 papers, published between 1903

and 1914, were written in Russian. He died in 1915 at the age of 44. The interested reader

could find information about his life and work in [21], [22]. Almost a century passed before

Darboux theory began again to significantly attract researchers. It started to flower towards

the end of the last century and the beginning of the 21th century when in numerous works

Darboux’s theory has been enriched with new notions and results. Now this is a very active

field with new results scattered in many articles and several books. The various aspects of

this extended theory appear in the literature in surveys, some incomplete as they were pub-

lished earlier, some containing the latest additions to the theory such as [44]. These surveys

are mainly concerned with results and not with the historical conceptual development of the

subject, which is fascinating. For example we mentioned above the 1908 work of Dulac on

Poincaré’s problem of the center where connections with Darboux integrability are present.

These connections go deep. They allowed Dulac to solve the problem of the center for complex

quadratic systems with a center, the only case where the problem was solved. The method

of Darboux is also powerful in unifying proofs of integrability for whole families of systems

with centers or for other families of systems like the ones we consider in this paper. For other

applications of the theory of Darboux see the survey article of Llibre and Zhang [44].

One of the goals of this article is to make this task easier by providing here a brief con-

ceptual survey of this beautiful theory, which closely follows the historical evolution of the

subject. We also prove here that even when trying to understand the integrability of real

systems, their complex invariant curves are essential (see in Section 2, Example 40).

Definition 1.1 ([20]). An algebraic curve f (x, y) = 0 with f (x, y) ∈ C[x, y] is called an invariant
algebraic curve of system (1.1) if it satisfies the following identity:

fxP + fyQ = K f , (1.4)

for some K ∈ C[x, y] where fx and fy are the derivatives of f with respect to x and y. K is

called the cofactor of the curve f = 0.

For simplicity we write the curve f instead of the curve f = 0 in C2. Note that if system

(1.1) has degree m then the cofactor of an invariant algebraic curve f of the system has degree

m − 1.

Definition 1.2 ([20]). Consider a planar polynomial system (1.1). An algebraic solution of (1.1)

is an algebraic invariant curve f which is irreducible over C.

Definition 1.3. Let U be an open subset of R2. A real function H: U → R is a first inte-
gral of system (1.1) if it is constant on all solution curves (x(t), y(t)) of system (1.1), i.e.,

H(x(t), y(t)) = k, where k is a real constant, for all values of t for which the solution

(x(t), y(t)) is defined on U.
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If H is differentiable in U then H is a first integral on U if and only if

HxP + HyQ = 0. (1.5)

The problem of integrating a polynomial system by using its algebraic invariant curves

over C was considered for the first time by Darboux in [20].

Theorem 1.4 (Darboux [20]). Suppose that a polynomial system (1.1) has m invariant algebraic
curves fi(x, y) = 0, i ≤ m, with fi ∈ C[x, y] and with m > n(n + 1)/2 where n is the degree of the
system. Then we can compute complex numbers λ1, ..., λm such that f λ1

1 ... f λm
m is a first integral of the

system.

Definition 1.5. If a system (1.1) has a first integral of the form

H(x, y) = f1
λ1 ... fp

λp (1.6)

where fi are the invariant algebraic curves of system (1.1) and λi ∈ C then we say that system

(1.1) is Darboux integrable and we call the function H a Darboux function.

Remark 1.6. We stress that the theorem of Darboux gives only a sufficient condition for Dar-

boux integrability of a system (1.1) (see example below), expressed in a relation between the

number of invariant algebraic curves the system possesses and the degree of the system.

Example 1.7. Consider the system

{

ẋ = 3 + 2x2 + xy,

ẏ = 3 + xy + 2y2.

This system admits the invariant line x − y = 0 and the invariant hyperbola 2+ xy = 0. Then,

m = 2 < 3 = n(n + 1)/2. However we still have here a Darboux first integral H(x, y) = (x −
y)−3/2(2+ xy). Thus the lower bound on the number of invariant curves sufficient for Darboux

integrability in his theorem is in general greater than necessary. The following question arises

then naturally: Could we find a necessary and sufficient condition for Darboux integrability?

Definition 1.8. Let U be an open subset of R2 and let R : U → R be an analytic function

which is not identically zero on U. The function R is an integrating factor of a polynomial

system (1.1) on U if one of the following two equivalent conditions on U holds:

div(RP, RQ) = 0, RxP + RyQ = −R div(P, Q),

where div(P, Q) = Px + Qy.

A first integral H of

ẋ = RP, ẏ = RQ

associated to the integrating factor R is then given by

H(x, y) =
∫

R(x, y)P(x, y)dy + h(x),

where H(x, y) is a function satisfying Hx = −RQ. Then,

ẋ = Hy, ẏ = −Hx.
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In order that this function H be well defined the open set U must be simply connected.

The simplest integrable systems (1.1) are the Hamiltonian ones having a polynomial first

integral. Next we have the systems (1.1) which admit a rational first integral. These were

called by Poincaré algebraically integrable systems. Such a first integral yields a foliation with

singularities of the plane in algebraic phase curves. The question asked by Poincaré in [52] is

the following:

Can we recognize when a system (1.1) admits a rational first integral?
This is Poincaré’s problem of algebraic integrability and it is not even solved for quadratic

differential systems. We say more on this question in the next section.

To advance knowledge on algebraic, Darboux or more general types of integrability it is

useful to have a large number of examples to analyze. In the literature, scattered isolated

examples were analyzed, among them is the family of quadratic differential systems possess-

ing a center, i.e. a singular point surrounded by closed phase curves. There is a rather strong

relationship between the problem of the center and the theory of Darboux. In particular, every

quadratic system with a center possesses invariant algebraic curves and in the generic case it

possesses a Darboux first integral. For non-generic cases such a system is still integrable but

with a more general type of a first integral.

A more systematic approach for studying families of integrable systems was initiated in

the papers of Schlomiuk and Vulpe [65], [66], [67], [68] and [64] where they classified topo-

logically the phase portraits of quadratic systems with invariant lines of at least four total

multiplicity (including the line at infinity) as well as the quadratic systems with the line at

infinity filled up with singularities and proved their integrability. These results were applied

by Schlomiuk and Vulpe [69, 70] to the family of Lotka–Volterra differential systems (the L-V

family), important for so many applications. Not all the systems in this family are integrable

but since the L-V systems always have at least three invariant lines (including the line at in-

finity), numerous systems in this family also belong to the family of systems possessing at

least four invariant lines and using this fact and the results in the papers above indicated,

simplified the classification. There are thus many L-V systems that are integrable according

to the method of Darboux. For the Liouvillian integrability of L-V systems see [6]. The case of

quadratic systems possessing two complex invariant lines intersecting at a real finite point was

completed in [71]. Systems in this family are not always integrable but as the authors show,

for a large subfamily we can apply the Darboux theory of integrability. Work is in progress

for completing the study of the family of systems possessing three invariant lines, including

the line at infinity. In the above studies, the properties of the “configuration” of invariant

lines (term we will later define) were important to distinguish the types of integrability of the

systems. A natural question which arises is the following one:

What is the relation between the geometry of a “configuration” of invariant algebraic curves of a
system (1.1) and its integrability?

In order to be able to provide responses to such a question, data involving only invariant

lines is insufficient. Data involving more general curves and in particular conics and cubics, is

needed. In [47] the authors classified the family QSH of non-degenerate quadratic differential

systems possessing an invariant hyperbola according to “configurations of invariant hyperbolas
and lines”. They proved that the family QSH is geometrically rich as it has 205 distinct such

configurations. The problem of integrability of systems in QSH according to the theory of

Darboux was not considered in [47]. This is the problem we study in the second part of this

paper. Considered from the viewpoint of integrability, the family QSH is also very rich dis-

playing a vast array of systems of various kinds of integrability as we see in the examples we
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provide in this paper. This data will be precious in deeper exploring the Darboux theory of

integrability. Here by “deeper” we mean understanding the relationship between the integra-

bility of the systems and the geometry of the “configurations” of invariant algebraic curves they

possess.

Since its creation by Darboux in 1878 [20], this theory has evolved and it has been sig-

nificantly extended. Much of this development occurred during the past forty years. The

literature on this extended theory is scattered in many articles and also some books, not nec-

essarily following the history of the conceptual evolution of the subject with its connections

with the problem of the center. These connections were important for drawing attention to

the role of the theory of Darboux and its unifying capacity for proving integrability of families of
polynomial differential systems as we explain in the next Section and for classifying families of

vector fields not necessarily integrable such as the family of L-V systems previousy discussed.

The second goal is to study the systems of the family QSH from the viewpoint of what

we call today the Darboux theory of integrability. This adds a lot of integrability data next

to the data we have from the work of Schlomiuk and Vulpe, mentioned above, on quadratic

systems with invariant straight lines by allowing us to also include conics. Apart from richly

illustrating the theory and pointing out some rather subtle issues, this testing ground provides

us with the possibility of asking new questions relating the geometry of the configuration of
invariant algebraic curves and the Darboux theory of integrability. It is this relationship that is

our main motivation.

Our paper is organized as follows:

In Section 2 we give a short conceptual and historical overview of Darboux theory as we

have it today, including all essential new notions not used in Darboux’s work, as well as

new results, extensions of his theory. We also recall the unifying character of the method

of Darboux in proving integrability for some families of vector fields and we prove that the

theory of Darboux is essentially a theory over the complex field even when we search to

calculate real first integrals of real systems (see Example 2.34 in this Section).

In Section 3 we discuss the class QSH from the viewpoint of the relationship between

integrability and the geometry of the “configuration of invariant algebraic curves” which the

systems possess. In particular we are concerned here with the family QSHη=0 of systems in

QSH which possess either exactly two distinct real singularities at infinity or the line at infinity

filled up with singularities. In [47] the authors calculated the invariant lines and hyperbolas

of each normal form in QSHη=0.

In Section 4 we introduce a number of geometrical concepts which are very helpful in

understanding the relation between the geometry of the configuration of invariant algebraic

curves and the integrability of the systems.

In Section 5 we prove that for the 11 of the 13 normal forms for the systems in QSHη=0

all systems have a Liouvillian first integral. We present the invariant algebraic curves, expo-

nential factors, integrating factors and first integrals for each one of these 11 normal forms for

QSHη=0.

In Section 6 we prove the generic non-integrability for the remaining two normal forms for

QSHη=0, cases where the number of invariant curves and exponential factors are not sufficient

for finding a first integral or integrating factor.

In Section 7 we apply the Darboux theory of integrability to the geometric analysis of five

families of systems in QSHη=0. We exhibit the bifurcation diagrams of the configurations of

invariant algebraic curves as well as the bifurcation diagrams of the systems and raise the

problem of interaction between these two kinds of bifurcations. Phase portraits for quadratic
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system with an invariant hyperbola and an invariant straight line were also constructed in

[41]. However, we point out that the authors of [41] did not get all of the phase portraits, in

particular, in Section 7 we point out some of their missing phase portraits. This is due to the

fact that their normal form for this family misses some of the systems in the family. We also

solve the Poincaré problem of algebraic integrability for four of the families we studied.

In Section 8 we highlight some significant points raised in this paper, explain the relation

between the bifurcations of configurations of invariant curves and topological bifurcations,

raise a number of questions and state some problems. Finally we mention that we also ob-

tained, as limiting cases of the family (D), three other normal forms, i.e. (F), (G) and (I).

2 Brief conceptual and historical overview of the theory of Darboux

[20] as it is understood today

After the publication of the works of Poincaré, Painlevé and Autonne in the 1890’s originating

in the work of Darboux [20], the first article using the method of integration of Darboux

was Dulac’s paper [24] (1908) in which he solved Poincaré’s problem of the center [50] for

quadratic differential systems (see more on this problem on page 9). After the publication

of Dulac’s paper, the next important result concerning the Darboux theory of integrability is

Jouanolou’s who in [34] (1979) gave a sufficient condition for algebraic integrability.

Theorem 2.1 (Jouanolou [34]). Consider a polynomial system (1.1) of degree n and suppose that it
admits m invariant algebraic curves fi(x, y) = 0 where 1 ≤ i ≤ m, then if m ≥ 2 + n(n+1)

2 , there
exists integers N1, N2, . . . , Nm such that I(x, y) = ∏

m
i=1 f Ni

i is a first integral of (1.1).

If a differential system (1.1) has a rational first integral H(x, y) = f (x, y)/g(x, y) with

f , g ∈ C[x, y], then the solution curves are located on its level curves H(x, y) = C where C
is a constant, i.e. on the algebraic curves f (x, y) − Cg(x, y) = 0. We call degree of the first

integral H the number max(deg( f ), deg(g)). Then all the algebraic invariant curves of the

system have a degree bounded by the degree of H.

We can argue that in case we can show that a system has invariant algebraic curves of

bounded degree, in order to decide whether the system is algebraically integrable it remains

to compute, by solving algebraic equations, a sufficient amount of invariant algebraic curves.

This is true because we know that a finite number of steps will be sufficient. For this reason

the problem of Poincaré is sometimes understood as the problem of bounding the degrees of

the invariant algebraic curves the system possesses. Thus, in [7] the problem of Poincaré is

stated as follows:

Let F be a holomorphic foliation by curves of the complex projective plane P2
C. Let C be an algebraic

curve in P2
C. Is it possible to bound the degree of C in terms of the degree of F?

The problem of Poincaré is understood in this way elsewhere in the literature, see for

example [33], page 242. But solving this problem is far from solving the problem as initially

formulated by Poincaré. Indeed, the algebraic equations we would need to solve in order

to find a sufficient amount of algebraic invariant curves of the systems, to obtain algebraic

integrability, can easily surpass the present day capacity of computers. Besides, the problem

of bounding the degree of an algebraic invariant curve is not even solved in the general case.

For a solution of this problem under restrictive conditions see [7].

So far we mentioned only three steps in the hierarchy of first integrals: polynomial, ratio-

nal and Darboux first integrals which could be rational or transcendental. What other kinds
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of first integrals can we have next in this hierarchy? We can have elementary first integrals.

Roughly speaking these are functions which are constructed by using addition, multiplication,

composition of finitely many rational functions, trigonometric and exponential functions and

their inverses.

The next important result, obtained in 1983, involves elementary first integrals and is due

to Prelle and Singer. It was stated for more general vector fields in Cn in differential algebra

language. Here we consider only the case of planar differential systems (1.1).

Theorem 2.2 (Prelle–Singer [53]). If a polynomial differential system (1.1) has an elementary first
integral, then the system has a first integral of the following form:

f (x, y) + c1 log( f1(x, y)) + c2 log( f2(x, y)) + · · ·+ ck log( fk(x, y))

where f and fi, are algebraic functions over C(x, y) and ci ∈ C, i = 1, 2, . . . k.

Taking the exponential of the above expression we obtain the following corollary.

Corollary 2.3. If a polynomial differential system (1.1) possesses an elementary first integral then it
also admits a first integral of the form:

e f (x,y) f1(x, y)c1 f2(x, y)c2 . . . f ck
k .

where f and fi, are algebraic functions over C(x, y) and ci ∈ C, i = 1, 2, . . . k.

In particular we can take for f (x, y) a rational function and for all f ′i s polynomial functions

over C. This kind of expression differs from a Darboux first integral by the exponential factor

e f (x,y) which appears though not explicitly, in Prelle–Singer’s paper [53] and also fi’s are here

algebraic and not just polynomials over C.

The above expression is a more general first integral that includes the case of a Darboux

first integral when f is the zero-function and fi’s are polynomials. Although this kind of

expression does not appear in [20], nowadays a first integral of this more general kind, with

f rational and all fi’ s polynomial functions, is still called a Darboux first integral in the

literature.

In Section 3 of their paper [53] Prelle and Singer talk about “Algorithmic considerations”

and they say:

The preceding work was motivated by our desire to develop a decision procedure for finding elemen-
tary first integrals. These results show that we need only look for elementary integrals of a prescribed
form. In this section we shall discuss the problem of finding an elementary first integral for a two-
dimensional autonomous system of differential equations and reduce this problem to that of bounding
the degrees of algebraic solutions of this system.

They base their algorithm on the following two propositions.

Proposition 2.4 ([53]). If the planar system (1.1) has an elementary first integral, then there exists an
integer n and an invariant algebraic curve f such that

P fx + Q fy = −n
(

Px + Qy
)

f .

Proposition 2.5. If the equations of (1.1) have an elementary first integral, then there exists an element
R algebraic over C(x, y) such that RxP + RyQ = −(Px + Qy)R.

We use here a version of the Prelle–Singer algorithm provided in [31].
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Theorem 2.6 (The Prelle–Singer algorithm [53] (1983), as presented in [31] (2001)).

(1) Let N = 1.

(2) Find all the invariant algebraic curves C : f (x, y) = 0 with

P fx + Q fy = K f

such that K(x, y) ∈ C[x, y] and deg( f ) ≤ N.

(3) Decide if there exist constants λ1, λ2, . . . , λm ∈ C, not all zero, such as

m

∑
i=0

λiKi = 0,

where Ki is cofactor of a curve fi found in (2). If such λi’s exist, then I = ∏
m
i=0 fi

λi is a first
integral. Otherwise, go to (4).

(4) Decide if there exist constants λ1, λ2, . . . ., λm ∈ C, not all zero, such as

m

∑
i=0

λiKi = −(Px + Qy),

where Ki is cofactor of a curve fi found in (2).

If such λi’s exist, then R = ∏
m
i=0 fi

λi is an integrating factor and a first integral can be obtained
by integrating the equations:

Ix = RQ,

Iy = −RP.

If such λi’s do not exist, return to (1) increasing N by 1 and continue the process.

In further exploring the evolution of ideas and development of the theory of Darboux it

is important to mention the connections between this theory and the problem of the center

stated by Poincaré in [50] in 1885. These connections have done much to draw attention to

the theory of Darboux and its unifying power in proving integrability of polynomial systems.

We indicate here some of these connections as well as the story of the solution of the problem

of the center for quadratic systems and in proving their integrability in a unified way by the

method of Darboux.

For quadratic systems the problem of the center as already mentioned at the beginning

of this section was solved by Dulac. Unlike Poincaré, Dulac considered differential systems

defined over C. In [23] he defined the following notion of center: A singular point of a planar
holomorphic differential system with non-zero eigenvalues is a center if and only if the quotient of its
eigenvalues is negative and rational and the system has a local analytic first integral. In his paper [24],

Dulac mentions that the general case is more difficult to treat, he supposes that the quotient of

the eigenvalues is −1. Placing the singular point at the origin, he used the following normal

form for quadratic systems:

ẋ = x + a20x2 + a11xy + a02y2,

ẏ = −y + b20x2 + b11xy + b02y2.
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To solve the problem of the center for quadratic systems means to find necessary and sufficient

conditions in terms the coefficients aij and bij so that the origin be a center. He solved this

problem in 1908 [24] and used the method of integration of Darboux in one case.

This work of Dulac could not be readily applied for real system. Indeed, in the normal

form considered by Dulac, if we assume that the coefficients of the equations are real than

this real system has a saddle at the origin and we cannot pass from this normal form to the

normal form used by Poincaré (where the linear terms of the two equations are respectively

−y, x) by a real linear transformation. Thus the conditions for the center obtained by Dulac

cannot be readily used in the case of real systems for centers as defined by Poincaré.

In 1985, working on perturbations of quadratic Hamiltonian systems with a center, Guck-

enheimer, Rand and Schlomiuk needed the conditions on a real quadratic differential system

to have a center. Exploring the literature they found that it is very messy, containing many

errors. In [58] (1990), after making a historical survey pointing out the errors, they proved

by diverse ad hoc methods that each real quadratic system with a center is integrable. The

correct conditions for a center were obtained by Kapteyn and Bautin (see [35, 36]) thus solv-

ing the problem of the center for a real quadratic differential systems. At the suggestion of

Guckenheimer, Schlomiuk then tried to give a geometric interpretation of the Kapteyn–Bautin

conditions for a center. This geometric interpretation was revealed by studying the bifurcation

diagram of the family QSC of quadratic systems with a center (see [61]). The conditions for

the center can be interpreted in terms of the types of invariant algebraic curves the systems

possess.

These results were presented for the first time by Schlomiuk at the Luminy conference

in France on differential equations in 1989 and later in 1992 at the NATO Advanced Study

Institute in Montreal where she also presented the work of Prelle–Singer (see [60]). Meetings

are always very useful for disseminating information. Thus, it was in 1989 at the Luminy

conference that Moussu, present at that meeting, told Schlomiuk about the work of Darboux.

Specialists in integrability in the audience at the Montreal meeting in 1992, not previously

aware of this work of Prelle and Singer, found out about this work from Schlomiuk’s lectures.

A unified proof of integrability based on the theory of Darboux, for all systems in QSC was obtained

(see [59,60]) (1993). While the proof in [58] was done by using diverse ad hoc methods, in the

new proof all the cases were treated in the same way, by the method of Darboux in terms of

invariant algebraic curves. These and other articles mentioned further below played a role in

drawing attention to the unifying role the method of integration of Darboux played in proving

integrability for entire families of certain planar polynomial differential systems. The articles

[59, 61] were read by a number of people, in particular they were cited in [10] (1997), which

contains an extension of the theory of Darboux to be later discussed, and also in [5].

In his PhD Thesis (1990) entitled Invariant algebraic curves in polynomial differential systems as

well as later in his paper [11] (1994) Christopher had independently explored the relationship

between the presence of invariant algebraic curves and conditions for the center in quadratic

and also some cubic differential systems such as the cubic Kukles systems without a term in y3

in the equation for dy/dt, or the cubic system of Dolov. He showed that the conditions for the

center given by Kukles were incomplete and proved that the system of Dolov was integrable

by using four invariant lines and a circle.

Work on these connections between the problem of the center and the Darboux theory of

integrability continued to be published. We only mention here a few of the earliest papers

such as [38] (1992) of Cozma and S, ubă on cubic differential systems and of Żoła̧dek [76] (1994)

on quadratic systems and their perturbations. More work on cubic systems done by Cozma
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and S, ubă and also by Żoła̧dek alone or together with some of his students, can be accessed

through MathSciNet. The cubic symmetric systems were proven to be integrable using the

method of Darboux by Rousseau and Schlomiuk in [57] (1995) and they also had integrability

results on the reduced cubic Kukles systems [56] (1995).

To get to a higher echelon in the hierarchy of first integrals, we need to consider Liouvillian
first integrals. In [72] Singer describes Liouvillian functions as follows:

Liouvillian functions are functions that are built up from rational functions using exponentiation,
integration, and algebraic functions.

Thus, the logarithm as a function of one variable is a Liouvillian function being defined as

the integral from 0 to x of 1/x. In general, Liouvillian functions are defined in the context of

differential algebra.

The following result was proved by Singer in 1992.

Theorem 2.7 ([72]). If the system (1.1) has a Liouvillian first integral, then it has an integrating factor
of the form

e
∫

Udx+Vdy, Uy = Vx,

where U and V are rational functions over C[x, y].

A consequence of Singer’s theorem is the following.

Corollary 2.8 ([72]). A system of differential equations (1.1) has a Liouvillian first integral if and only
if it has an integrating factor of the form

R(x, y) = e
∫

Udx+Vdy, Uy = Vx (U, V are rational function over C[x, y])

in which case
F(x, y) =

∫

R(x, y)Q(x, y)dx − R(x, y)P(x, y)dy

is a Liouvillian first integral.

It is important to mention that a Liouvillian integrable system does not necessarily have

an affine invariant algebraic curve. An example of such a polynomial differential system is

presented in [30].

The following notion was defined by Christopher in 1994 (see [11]) where he called it

“degenerate invariant algebraic curve”.

Definition 2.9. Let F(x, y) = exp
( G(x,y)

H(x,y)

)

with G, H ∈ C[x, y] coprime. We say that F is an

exponential factor of system (1.1) if it satisfies the equality

FxP + FyQ = LF, (2.1)

for some L ∈ C[x, y]. The polynomial L is called the cofactor of the exponential factor F.

Proposition 2.10 ([11]). If F = exp(G/H) is an exponential factor of system (1.1) with cofactor L
then H = 0 is an invariant algebraic curve of the system (1.1) with cofactor KH and G satisfies the
equation

PGx + QGy = KHG + LH, where G, H, L, KH ∈ C[x, y]. (2.2)

See [15] for a detailed proof.

A theorem of Darboux was rephrased by Chavarriga, Llibre and Sotomayor [10] (1997) by

introducing in [10] the notion of independent points.
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If S(x, y) = ∑
m−1
i+j=0 aijxiyj is a polynomial of degree at most m − 1 with m(m + 1)/2 co-

efficients in C, then we write S ∈ Cm−1[x, y]. We identify the linear space Cm−1[x, y] with

Cm(m+1)/2 through the isomorphism

S → (a00, a10, a01, . . . , am−1,0, am−2,1, . . . , a0,m−1).

Definition 2.11 ([10]). We say that r singular points (xk, yk) ∈ C2, k = 1, . . . , r of a differential

system (1.1) of degree m are independent with respect to Cm−1[x, y] if the intersection of the r
hyperplanes

m−1

∑
i+j=0

xi
kyj

kaij = 0, k = 1, . . . , r,

in Cm(m+1)/2 is a linear subspace of dimension [m(m + 1)/2]− r.

We remark that the maximum number of isolated singular points of the polynomial system

(1.1) of degree m is m2 (by Bézout’s Theorem), that the maximum number of independent

isolated singular points of the system is m(m + 1)/2, and that m(m + 1)/2 < m2 for m ≥ 2.

The following is a theorem of Darboux as stated by Chavarriga, Llibre and Sotomayor

proved in [10].

Theorem 2.12 ([20]). Assume that a real (complex) polynomial system of degree m admits q =

m(m + 1)/2 + 1 − p algebraic solutions fi = 0, i = 1, 2, . . . , q, not passing through p real (com-
plex) independent singular points (xk, yk), k = 1, 2, . . . , p, then the system has a first integral of the

form f λ1
1 f λ2

2 . . . f
λq
q with λi ∈ R (C).

Remark 2.13. The above theorem is interesting because it reduces the number of invariant

algebraic curves we need to have, that according to Darboux’s theorem is m(m + 1)/2 + 1, to

just m(m + 1)/2 + 1 − p.

Let us consider again Example 1.7:

{

ẋ = 3 + 2x2 + xy,

ẏ = 3 + xy + 2y2.

The line f1(x, y) = x − y = 0 and the hyperbola f2(x, y) = 2 + xy = 0 are invariant for this

system with co-factors K1(x, y) = 2x + 2y and K2(x, y) = 3x + 3y. Here m = 2 = n and hence

m < n(n + 1)/2. Still, the number of curves suffices to compute the first integral H(x, y) =

(x − y)−3/2(2 + xy) although the condition in the theorem of Darboux is not satisfied by

this number. But here we have that the singular points P1,2 = ±(−i
√

3, i
√

3) of the system

are independent. Indeed, solving the system H1 = a00 − i
√

3a10 + i
√

3a01 = 0, H2 = a00 +

i
√

3a10 − i
√

3a01 = 0, we get a00 = 0 and a10 = a01 and hence dim(H1
⋂

H2) = 1. Also

f1(Pi) 6= 0 and f2(Pi) 6= 0. So the points Pi’s are independent. Applying the above theorem

we have q = 2, p = 2, n = 2 and we have q = n(n + 1)/2 + 1 − p.

Definition 2.14. A singular point (x0, y0) of system (1.1) is called weak if the divergence of

system (1.1) at (x0, y0) is zero.

In what follows we state a generalization of Darboux’s theorem taking into account ex-

ponential factors, independent points and invariants. The result was stated and proved by

Christopher and Llibre in 2000 in [15]. An earlier version appeared in [5] (1999).
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Theorem 2.15 ([15]). Suppose that a C−polynomial system (1.1) of degree m admits p algebraic
solutions fi = 0 with cofactors Ki for i = 1, . . . , p, q exponential factors Fj = exp(gj/hj) with
cofactors Lj for j = 1, . . . , q, and r independent singular points (xk, yk) ∈ C2 such that fi(xk, yk) 6= 0

for i = 1, . . . , p and for k = 1, . . . , r.

(i) There exist λi, µj ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µjLj = 0,

if and only if the (multi-valued) function

f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q (2.3)

is a first integral of system (1.1).

(ii) If p + q + r ≥ [m(m + 1)/2] + 1, then there exist λi, µj ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
i=1

µjLj = 0.

(iii) If p+ q+ r ≥ [m(m+ 1)/2] + 2, then system (1.1) has a rational first integral, and consequently
all trajectories of the system are contained in invariant algebraic curves.

(iv) There exist λi, µj ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µjLj = −div(P, Q),

if and only if function (2.3) is an integrating factor of system (1.1).

(v) If p + q + r = m(m + 1)/2 and the r independent singular points are weak, then function (2.3)

is a first integral if
p

∑
i=1

λiKi +
q

∑
i=1

µjLj = 0,

or an integrating factor if

p

∑
i=1

λiKi +
q

∑
j=1

µjLj = −div(P, Q),

under the condition that not all λi, µj ∈ C are zero.

(vi) If there exist λi, µj ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µjLj = −s

for some s ∈ C\{0}, then the (multi-valued) function

f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q exp(st) (2.4)

is an invariant of system (1.1).
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Of course, each irreducible factors of each hj is one of the fi’s.

Definition 2.16. If system (1.1) has a first integral of the form

H(x, y) = f1
λ1 . . . fp

λp F1
µ1 . . . Fq

µq (2.5)

where fi and Fj are respectively the invariant algebraic curves and exponential factors of a

system (1.1) and λi, µj ∈ C, then we say that the system is generalized Darboux integrable. We

call the function H a generalized Darboux function.

Remark 2.17. In [20] Darboux considered functions of the type (1.6), not of type (2.5). In

recent works functions of type (2.5) were called Darboux functions. Since in this work we

need to pay attention to the distinctions among the various kinds of first integral we call (1.6)

a Darboux and (2.5) a generalized Darboux first integral.

Proposition 2.18 ([25]). For a real polynomial system (1.1) the function exp(G/H) is an exponential
factor with cofactor K if and only if the function exp(G/H) is an exponential factor with cofactor K.

Remark 2.19 ([25]). If among exponential factors of the real system (1.1) a complex pair F =

exp(G/H) and F = exp(G/H) occurs, then the first integral (2.5) has a real factor of the form

(exp(G/H))µ (exp(G/H)
)µ

= exp (2 Re(µ(G/H))) ,

where µ ∈ C and Im(µ) Im(F) 6= 0. This means that function (2.5) is real when system (1.1) is

real.

Considering the definition of generalized Darboux function we can rewrite Corollary 2.8

as follows.

Theorem 2.20 ([11, 72]). A planar polynomial differential system (1.1) has a Liouvillian first integral
if and only if it has a generalized Darboux integrating factor.

For a proof see [75], page 134.

We can also state easily the following result of Preller–Singer.

Theorem 2.21 ([9, 53]). If a planar polynomial vector field (1.2) has a generalized Darboux first
integral, then it has a rational integrating factor.

In 2019, a converse of the previous result was proved in [16] as a consequence of [54].

Theorem 2.22 ([16]). If a planar polynomial vector field (1.2) has a rational integrating factor, then it
has a generalized Darboux first integral.

We have the following table summing up these results.

First integral Integrating factor

Generalized Darboux ⇔ Rational

Liouvillian ⇔ Generalized Darboux

To study the way integrable systems vary within families of polynomial differential sys-

tems (1.1) using the theory of Darboux, one needs to consider perturbations of a system within

such a family. An algebraic invariant curve f (x, y) = 0 of such a system could split in several
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algebraic invariant curves occurring in nearby systems. In [11] (1994) C. Christopher consid-

ered in an example the coalescence of two such curves and its relationship with exponential

factors but in [11] he did not yet talk about multiplicity of an invariant algebraic curve.

In [62] (1997) Schlomiuk introduced a general notion of multiplicity of an invariant alge-

braic curve f = 0 of a polynomial differential system (1.1). This definition was given in terms

of the multiplicities of singularities of the system located on the projective completion of the

curve (Definition 4.1 in [62]).

A notion of multiplicity was defined by Schlomiuk and Vulpe in 2004 for invariant lines

of quadratic differential systems and in [64] they classified the family of quadratic systems

with invariant lines of total multiplicity at least five, including the line at infinity, according

to configurations of straight lines of such systems. Around the same time this study was in

progress, Christopher, Llibre and Pereira were working on their important paper [18] (2007)

and produced a preprint, earlier version of their work, containing several notions of multiplic-

ity of an invariant algebraic curve. In [18] they gave a condition for these notions to coincide.

In this work, as we see later, we use three of the notions introduced in [18].

Suppose that a polynomial differential system has an algebraic solution f (x, y) = 0 where

f (x, y) ∈ C[x, y] is of degree n given by

f (x, y) = c0 + c10x + c01y + c20x2 + c11xy + c02y2 + · · ·+ cn0xn + cn−1,1xn−1y + · · ·+ c0nyn,

with ĉ = (c0, c10, . . . , c0n) ∈ CN where N = (n + 1)(n + 2)/2. We note that the equation

λ f (x, y) = 0, λ ∈ C∗ = C − {0}

yields the same locus of complex points in the plane as the locus induced by f (x, y) = 0.

Therefore, a curve of degree n is defined by ĉ where

[ĉ] = [c0 : c10 : · · · : c0n] ∈ PN−1(C).

We say that a sequence of curves fi(x, y) = 0, each one of degree n, converges to a curve

f (x, y) = 0 if and only if the sequence of points [ci] = [ci0 : ci10 : · · · : ci0n] converges to

[ĉ] = [c0 : c10 : · · · : c0n] in the topology of PN−1(C).

We observe that if we rescale the time t′ = λt by a positive constant λ the geometry of the

systems (1.1) (phase curves) does not change. So for our purposes we can identify a system

(1.1) of degree n with a point

[a0 : a10 : · · · : a0n : b0 : b10 : · · · : b0n] ∈ SN−1(R)

where N = (n + 1)(n + 2).
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Definition 2.23 ([64]).

(1) We say that an invariant curve

L : f (x, y) = 0, f ∈ C[x, y]

for a polynomial system (S) of degree n has geometric multiplicity m if there exists a

sequence of real polynomial systems (Sk) of degree n converging to (S) in the topology

of SN−1(R) where N = (n+ 1)(n+ 2) such that each (Sk) has m distinct invariant curves

L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm,k(x, y) = 0

over C, deg( f ) = deg( fi,k) = r, converging to L as k → ∞, in the topology of PR−1(C),

with R = (r + 1)(r + 2)/2 and this does not occur for m + 1.

(2) We say that the line at infinity

L∞ : Z = 0

of a polynomial system (S) of degree n has geometric multiplicity m if there exists a

sequence of real polynomial systems (Sk) of degree n converging to (S) in the topology

of SN−1(R) where N = (n + 1)(n + 2) such that each (Sk) has m − 1 distinct invariant

lines

L1,k : f1,k(x, y) = 0, . . . ,Lm−1,k : fm−1,k(x, y) = 0

over C, converging to the line at infinity L∞ as k → ∞, in the topology of P2(C) and this

does not occur for m.

In 2007 the authors of [18] introduced the following notion of geometric multiplicity:

Definition 2.24 ([18]). Consider χ a polynomial vector field of degree d. An invariant algebraic

curve f = 0 of degree n of the vector field χ has geometric multiplicity m if m is the largest

integer for which there exists a sequence of vector fields (χi)i>0 of bounded degree, converging

to hχ, for some polynomial h, not divisible by f , such that each χr has m distinct invariant

algebraic curves, fr,1 = 0, fr,2 = 0, . . . , fr,m = 0, of degree at most n, which converge to f = 0

as r goes to infinity. If h = 1, then we say that the curve has strong geometric multiplicity m.

Definition 2.25 ([18,49]). Let Cm[x, y] be the C-vector space of polynomials in C[x, y] of degree

at most m and of dimension R = (m + 1)(m + 2)/2. Let {v1, v2, . . . , vR} be a base of Cm[x, y].
We denote by MR(m) the R × R matrix

MR(m) =











v1 v2 . . . vR

χ(v1) χ(v2) . . . χ(vR)
...

...
. . .

...

χR−1(v1) χR−1(v2) . . . χR−1(vR)











, (2.6)

where χk+1(vi) = χ(χk(vi)). The mth extactic curve of χ, Em(χ), is given by the equation

det MR(m) = 0. We also call Em(χ) the mth extactic polynomial.

From the properties of the determinant we note that the extactic curve is independent of

the choice of the base of Cm[x, y].

Theorem 2.26 ([49]). Consider a planar vector field (1.2). We have Em(χ) = 0 and Em−1(χ) 6= 0 if
and only if χ admits a rational first integral of exact degree m.
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Observe that if f = 0 is an invariant algebraic curve of degree m of χ, then f divides

Em(χ). This is due to the fact that if f is a member of a base of Cm[x, y], then f divides the

whole column in which f is located.

Definition 2.27 ([18]). We say that an invariant algebraic curve f = 0 of degree m ≥ 1 has

algebraic multiplicity k if det MR(m) 6= 0 and k is the maximum positive integer such that f k

divides det MR(m); and it has no defined algebraic multiplicity if det MR(m) ≡ 0.

Definition 2.28 ([18]). We say that an invariant algebraic curve f = 0 of degree m ≥ 1 has

integrable multiplicity k with respect to χ if k is the largest integer for which the following is

true: there are k − 1 exponential factors exp(gj/ f j), j = 1, . . . , k − 1, with deg(gj) ≤ jm, such

that each gj is not a multiple of f .

In the next result we see that the algebraic and integrable multiplicity coincide if f = 0 is

an irreducible invariant algebraic curve.

Theorem 2.29 ([18]). Consider an algebraic solution f = 0 of degree m ≥ 1 of χ. Then f has
algebraic multiplicity k if and only if the vector field (1.2) has k − 1 exponential factors exp(gj/ f j),
where (gj, f ) = 1 and gj is a polynomial of degree at most jm, for j = 1, . . . , k − 1.

In 2007 Christopher, Llibre and Pereira showed in [18] that the definitions of geometric

(see Definition 2.24), algebraic and integrable multiplicity are equivalent when f = 0 is an

algebraic solution of the vector field (1.2). The algebraic multiplicity has the advantage that

we have the possibility of calculating it via the extactic curve and if the curve is irreducible

then this coincides with either the integrable (reflected in the exponential factors) or the ge-

ometric one. Christopher, Llibre and Pereira also stated and proved the following theorem

about Darboux theory of integrability that takes into account the multiplicity of the invariant

algebraic curves.

Theorem 2.30 ([18], see Theorem 8.3.). Consider a planar vector field (1.2). Assume that (1.2)

has p distinct irreducible invariant algebraic curves fi = 0, i = 1, . . . , p of multiplicity mi, and let
N = ∑

p
i=1 mi. Suppose, furthermore, that there are q critical points p1, . . . , pq which are independent

with respect to Cm−1[x, y], and f j(pk) 6= 0 for j = 1, . . . , p and k = 1, . . . , q. We have:

(a) If N + q ≥ [m(m + 1)/2] + 2, then χ has a rational first integral.

(b) If N + q ≥ [m(m + 1)/2] + 1, then χ has a Darboux first integral.

(c) If N + q ≥ [m(m + 1)/2] and pi’s are weak, then χ has either a Darboux first integral or a
Darboux integrating factor.

This theorem was generalized by Llibre and Zhang in [42] for invariant hypersurfaces in

Cn. In the same paper they also generalized the theorem of Jouanolou and gave a simplified,

elementary proof.

The term of total multiplicity of invariant curves, finite and infinite, of a polynomial differential

system was used for the first time in the theory of Darboux by Schlomiuk and Vulpe in [64],

in the specific context of invariant straight lines of quadratic differential systems. In [18] the

total multiplicity N of the finite number of affine (finite) invariant algebraic curves appeared for

the first time in the general context of the theory of Darboux in the above quoted theorem.

This number is clearly not the total multiplicity of invariant algebraic curves of the system as

the line at infinity is invariant and could have multiplicity (for examples see [64, 68]).
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The total multiplicity of the invariant algebraic curves finite and infinite occurs for the

first time in the general setting in the work of Llibre and Zhang (2009) but only for invariant

hyper-surfaces of polynomial vector fields in Rn and to this day we do not have the analog of

this theorem for multiple invariant hypersurfaces, both finite and the hyper plane at infinity.

We consider now the result of Llibre and Zhang in [43]. To state it the authors generalized

the Poincaré compactification on the sphere for planar differential systems to the Poincaré

compactification of polynomial differential systems in Rn which they constructed in the Ap-

pendix of [43].

To talk about multiplicity of the hyperplane at infinity they only needed to pass by central

projection from the systems in Rn, considered as the hyperplane Z = 1 in Rn+1 tangent to the

n-sphere with radius 1 centered at the origin of Rn+1, and then further into the chart x1 = 1

and obtain (x1, . . . , xn, 1) = λ(1, y2, . . . , yn, Z) for some non-zero real λ. Hence we must have

λ = x1 and therefore y2 = x2/x1,. . . , yn = xn/x1, Z = 1/x1 and x1 = 1/Z, x2 = y2/Z,. . . ,

xn = yn/Z. Transferring the vector field in this chart we obtain that it has a pole on Z = 0. In

complete analogy with the compactification of the plane we can obtain an analytic vector field

on the n-sphere which is conjugate to the vector field thus obtained. In this way our initial

hyper-surface at infinity, becomes just an affine hypersurface in the chart x1 = 1 and hence we

can apply to it our notions of multiplicity. Let χ = (P1(x), P2(x), . . . , Pn(x)) be the expression

of the compactified vector field χ. We say that the infinity of χ has algebraic multiplicity k if

Z = 0 has algebraic multiplicity k for the vector field χ; and that it has no defined algebraic

multiplicity if Z = 0 has no defined algebraic multiplicity for χ. One thing the authors did

not say is that this definition of the multiplicity of the infinite hypersurface does not depend

on the chart x1 we chose, and that it leads to the same value if we replace this chart by any

other chart xi = 1 with i 6= 1.

Theorem 2.31 ([43]). Let χ be the expression of the compactified vector field χ. Assume that χ

restricted to Z = 0 has no rational first integral. Then Z = 0 has algebraic multiplicity k for χ if and
only if χ has k − 1 exponential factors exp(gj/Zj) where j = 1, . . . , k − 1 with gj ∈ Cj[Z, y2, . . . , yn]

having no factor Z.

The next result provides a relation between the exponential factors of χ and those of χ

associated with Z = 0.

Proposition 2.32 ([43]). For the exponential factors associated with the hyperplane at infinity the
following statements hold.

(a) If E = exp(g(x)) with g a polynomial of degree k is an exponential factor of χ with cofactor
LE(x), then E = exp

( g
Zk

)

with g = Zkg
(

1
Z ,

y2

Z , . . . ,
yn
Z

)

is an exponential factor of χ with
cofactor LE = Zd−1LE

(

1
Z ,

y2

Z , . . . ,
yn
Z

)

.

(b) Conversely if F = exp
( h

Zk

)

with h ∈ Rk[Z, y2, . . . , yn] is an exponential factor of χ with
cofactor LF, then F = exp(h(x)) with h(x) = xkh

(

1
x1

, x2
x1

, . . . , xn
x1

)

is an exponential factor of χ

with cofactor LF = xd−1LF

(

1
x1

, x2
x1

, . . . , xn
x1

)

.

The following result was proved in 2009 by Llibre and Zhang.

Theorem 2.33 ([43]). Assume that the polynomial vector field χ in Rn of degree d > 0 has irreducible
invariant algebraic hypersurfaces fi = 0 for i = 1, . . . , p and the invariant hyperplane at infinity.

(i) If one of these irreducible invariant algebraic hypersurfaces or the invariant hyperplane at infinity
has no defined algebraic multiplicity, then the vector field χ has a rational first integral.
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(ii) Suppose that each irreducible invariant algebraic hypersurfaces fi = 0 has algebraic multiplicity
mi for i = 1, . . . , p and that the invariant hyperplane at infinity has algebraic multiplicity k.
If the vector field restricted to the hyperplane at infinity or to any invariant hypersurface with
multiplicity larger than 1 has no rational first integral, then the following hold

(a) If ∑
p
i=1 mi + k = N + 2, then the vector field χ has a real Darboux first integral, where

N = ( n+d−1
n ).

(b) If ∑
p
i=1 mi + k = N + n + 1, then (1.2) has a real rational first integral.

We remark that by “real Darboux first integral” in Theorem 2.33 the authors mean gen-

eralized Darboux first integral. For two-dimensional polynomial vector fields, the additional

condition in Theorem 2.33 on the nonexistence of rational first integrals of the vector field

restricted to the invariant algebraic curves including the line at infinity is not necessary.

We end our conceptual and historical survey with some comments about this result over

the reals. Darboux constructed his theory over the complex projective space which we think is

the natural field and natural space for this theory. Firstly the complex numbers form an alge-

braically closed field. So an essential ingredient in his theory, the theory of algebraic curves,

can be properly done. Indeed, Bézout’s theorem cannot be proved over the reals. Secondly

the complex projective plane is a compact space and in particular “the line at infinity” of the

affine plane completely looses its special status in the projective plane. It is like any other line.

On the other hand it is important to observe that when we consider the theory of Darboux

for real systems, we can go to their complexification and these systems could have complex

invariant algebraic curves f (x, y) = 0 with f ∈ C[x, y]. We can therefore end up with more

invariant curves than those with real coefficients. Let us consider an example.

Example 2.34.
{

ẋ = x2 + 1,

ẏ = x + y.

This system clearly has two invariant lines which are complex x ± i = 0 with respective

co-factors x ∓ i. It can easily be checked that the line at infinity has the multiplicity two. So

the total multiplicity of invariant lines over C is four. This system was proved to be integrable

in [66] having the inverse Darboux integrating factor (x + i)1+i/2(x − i)1−i/2.

Let us now consider this real system without taking into consideration its complexification.

Suppose now that we want to prove just by using real curves that the system is integrable.

The lines x ± iy = 0 are defined over C and it is only their union, the conic x2 + 1 = 0 which

is defined over R. This is an invariant curve of the real system with the cofactor 2x. We

also have an exponential factor e1+2y with co-factor 2(x + y). However this is insufficient for

proving integrability as we can check by trying to apply the usual algorithm for computing

an integrating factor. Indeed, given λ1, λ2 ∈ C we have 2λ1x + 2λ2(x + y) = −div(P, Q) =

−2x − 1, which has no solution. So although the real system is integrable and has a real first

integral, we cannot compute this real first integral without considering the two invariant lines.

So this supports the idea that the full real extension of the Darboux theory that also covers

the line at infinity with its own multiplicity cannot produce all the real integrable systems.

In conclusion we really need an extension of the Darboux theory over C that includes the

multiplicity of the line at infinity and work in this direction is in progress.
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3 Applications of Darboux’s theory to the family QSH of quadratic

differential systems with an invariant hyperbola, case η = 0

The notion of configuration of invariant curves of a polynomial differential system appears in

several works, see for instance [64].

Definition 3.1 ([64]). Consider a real planar polynomial system (1.1) with a finite number of

singular points. By configuration of algebraic solutions of the system we mean a set of algebraic

solutions over C of the system, each one of these curves endowed with its own multiplicity

and together with all the real singular points of this system located on these curves, each one

of these singularities endowed with its own multiplicity.

The notion of equivalence of configurations was used in many papers (see for instance,

[47, 64–68]) to classify systems in QS possessing invariant algebraic curves according to the

kind of configurations these systems.

In particular, in [47], QSH was classified according to the configuration of invariant hy-

perbolas and lines the systems possess. The equivalence of configurations in the class QSH

depends on whether the systems admits a finite or an infinite number of invariant hyperbolas.

See Definition 1.9 of [47] in case the system has a finite number of invariant hyperbolas and

Definition 1.10 of [47] for the case the system has an infinite family of invariant hyperbolas.

The classification of QSH led to 205 distinct configurations.

Here we introduce some invariant polynomials that play an important role in the study of

polynomial vector fields. Considering C2(ã, x, y) = yp2(ã, x, y)− xq2(ã, x, y) as a cubic binary

form of x and y we calculate

η(ã) = Discrim[C2, ξ], M(ã, x, y) = Hessian[C2],

where ξ = y/x or ξ = x/y. It is known that the singular points at infinity of quadratic systems

are given by the solutions in x and y of C2(ã, x, y) = 0. If η < 0 then this means we have one

real singular point at infinity and two complex ones.

Remark 3.2. We note that since a system in QSH always has an invariant hyperbola then clearly
we always have at least 2 real singular points at infinity. So we must have η ≥ 0.

The family QSH can be split as follows: QSHη=0 of systems which possess either exactly

two distinct real singularities at infinity or the line at infinity filled up with singularities and

QSHη>0 of systems which possess three distinct real singularities at infinity in P2(C). In this

paper we present a study of QSHη=0.

In [47] the authors gave necessary and sufficient conditions for a quadratic system to

have an invariant hyperbola. These conditions were given in terms of 40 affine invariant

polynomials and hence these conditions are independent of the normal forms in which the

systems may be presented. For the sake of completeness, we give below in the following tables

these conditions for QSHη=0.

In the next table we present in the first column the number associated to the equations

in [47], which are the normal forms for the systems in QSH. In the second column are the

necessary and sufficient conditions. For a proof see [47].
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Equations in [47] Invariants

(4.4) η = 0, M 6= 0, θ 6= 0, β2 6= 0, β1 6= 0,R1 6= 0, B1 6= 0

(4.10) η = 0, M 6= 0, θ 6= 0, β2 6= 0, β1 6= 0,R1 6= 0, B1 = 0

(4.11) η = 0, M 6= 0, θ 6= 0, β2 6= 0, β1 = 0, γ1 = 0,R3 6= 0

(4.13) η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0

(4.13) g = 1/4 η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0, β7β8 = 0,R10 < 0, β8 = 0

η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0, β7β8 = 0,R10 > 0, β8 = 0

(4.13) g = 1/2 η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0, β7β8 = 0,R10 < 0, β7 = 0

η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0, β7β8 = 0,R10 > 0, β7 = 0

(4.16) η = 0,A1 [M 6= 0, θ = 0], µ0 6= 0, β3 = γ8 = 0,R7 6= 0, χ
(7)
A < 0

η = 0,A1 [M 6= 0, θ = 0], µ0 6= 0, β3 = γ8 = 0,R7 6= 0, χ
(7)
A > 0

(4.16) c2 = a η = 0,A1 [M 6= 0, θ = 0], µ0 6= 0, β3 = γ8 = 0,R7 6= 0, χ
(7)
A = 0

(4.18) η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 6= 0, µ2 6= 0

(4.18) g = 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 6= 0, µ2 = 0, γ16 6= 0

(4.18) c = 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 6= 0, µ2 = 0, γ16 = 0

(4.22) η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 = 0, γ17 < 0

η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 = 0, γ17 > 0

(4.22) ǫ = 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 = 0, γ17 = 0

(4.25) c 6= 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N = 0, β13 6= 0, γ10 = γ17 = 0,R11 6= 0, γ16 6= 0

(4.25) c = 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N = 0, β13 6= 0, γ10 = γ17 = 0,R11 6= 0, γ16 = 0

(4.27) η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N = 0, β13 = 0, γ̃18 = γ̃19 = 0, µ2 6= 0

(4.28) η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N = 0, β13 = 0, γ̃18 = γ̃19 = 0, µ2 = 0

(4.30) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 6= 0, H9 < 0

η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 6= 0, H9 > 0

(4.31) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 6= 0, H9 = 0

(4.34) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 = 0, H12 6= 0, H2 6= 0

(4.36) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 = 0, H12 6= 0, H2 = 0

(4.38) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 = 0, H12 = 0

In this table we denote by (4.25) the following system that appears in [47] without number

ẋ = − 3c2

16 + cx − x2, ẏ = 1 − 2xy.

If c 6= 0 we may assume c = 4 by the rescaling (x, y, t) 7→ (cx/4, 4y/c, 4t/c). So we obtain the

system denoted by (4.25) in [47] which we denote here by (4.25) c 6= 0.

The normal forms numbered in the table from (4.4) and up to (4.38), that were obtained

in [47], appear below in a condensed table in the following proposition.

Proposition 3.3 ([47]). Every system in QSHη=0 can be brought by an affine transformation and time
rescaling to one of the following 13 normal forms, where a, g, c, ǫ are real parameters. Next to each
normal forms we present the respective invariant hyperbola.

{

ẋ = 2a + x + gx2 + xy,

ẏ = a(2g − 1)− y + (g − 1)xy + y2,

where a(g − 1) 6= 0

Φ(x, y) = a + xy (A)
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{

ẋ = 2a + gx2 + xy,

ẏ = a(2g − 1) + (g − 1)xy + y2,

where a(g − 1) 6= 0

Φ(x, y) = a + xy (B)

{

ẋ = 2a + 3cx + x2 + xy

ẏ = a − c2 + y2,

where a 6= 0

Φ(x, y) = a + cx + xy (C)

{

ẋ = (c + x)(c(2g − 1) + gx)

ẏ = 1 + (g − 1)xy,

where (g ± 1)(3g − 1)(2g − 1) 6= 0

Φ(x, y) = 1
(−1+2g) + cy + xy (D)

{

ẋ = x2 + ǫ

ẏ = 1 − 2xy
Φ1,2(x, y) = −1 ± i

√
ǫy + xy (E)

{

ẋ = (x − 1)(3 − x)

ẏ = 1 − 2xy
Φ(x, y) = 1

3 + y − xy (F)

{

ẋ = −x2

ẏ = 1 − 2xy
Φ(x, y) = −1 + 3xy (G)

{

ẋ = (2x − 1)(2x + 1)/4

ẏ = y
Φ(x, y) = − q

2 + qx + y
2 + 2xy, q 6= 0 (H)

{

ẋ = x2

ẏ = 1
Φ(x, y) = 1 + rx + xy (I)

{

ẋ = a + y + x2

ẏ = xy
Φ(x, y) = a + 2y + x2 − m2y2 (J)

{

ẋ = (1 + 3x)(2 + 3x)/9

ẏ = xy
Φ(x, y) = 4 + 12x + 9x2 + my + 3mxy (K)

{

ẋ = a + x2

ẏ = xy,

where a 6= 0

Φ(x, y) = a + x2 − m2xy (L)

{

ẋ = x2

ẏ = 1 + xy
Φ(x, y) = 1 + mx2 + 2xy. (M)

Using the invariants described previously which are powerful so as to give the necessary

and sufficient conditions for systems (1.3) to have an invariant hyperbola, in [47] the authors

considered the two possibilities: M(ã, x, y) 6= 0 (i.e. at infinity we have two distinct real

singularities) and M = 0 = C2 (when we have an infinite number of singularities at infinity).
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(i) M(ã, x, y) 6= 0: This brings systems (1.3) to the systems
{

ẋ = a + cx + dy + gx2 + hxy,

ẏ = b + ex + f y + (g − 1)xy + hy2.
(3.1)

with invariants C2(x, y) = x2y and θ = −h2(g − 1)/2.

(i.1) The case θ 6= 0 gives the condition h(g − 1) 6= 0 for (3.1) and via the bifurcation

diagram in [47] we arrive at the normal forms

• (A) where a(g − 1) 6= 0,

• (B) where a(g − 1) 6= 0.

(i.2) The case θ = 0 gives the condition h(g − 1) = 0 for (3.1) and via the bifurcation

diagram in [47] we arrive at another invariant µ0 = gh2.

(i.2.1) For µ0 6= 0 we have the normal form

• (C) where a 6= 0.

(i.2.2) For µ0 = 0 they calculated the invariant N = 9(g − 1)(g + 1)x2 and we need to

consider two possibilities.

(i.2.2.1) For the case N 6= 0 we have the normal forms

• (D) where (g − 1)(g + 1)(2g − 1)(3g − 1) 6= 0,

• (E) where ǫ 6= 0.

(i.2.2.2) The case N = 0 gives the condition (g − 1)(g + 1) = 0 and we have the

normal forms

• (F),

• (G),

• (H),

• (I).

(ii) M(ã, x, y) = 0 = C2: We arrive at the normal forms

• (J),

• (K),

• (L) where a 6= 0,

• (M).

Remark 3.4. The invariant hyperbolas involve:

(i) sometimes all the parameters of the system (such as (C));

(ii) sometimes only some parameters (such as (A)) and

(iii) sometimes additional parameters (such as (J)).

The next theorem is the main result of this paper.

Consider the following sets:

L1 = ∪k∈N L1,k, where L1,k =
{

(a, g) ∈ R2 : g = k/2 and a 6= 0
}

, k ∈ N,

L2 = ∪k∈N L2,k, where L2,k =
{

(a, g) ∈ R2 : g = k/3 and a 6= 0
}

, k ∈ N,

L3 =
{

(a, g) ∈ R2 : g = 1/4 and a 6= 0
}

,

C′ = ∪k∈N Ck, where Ck =
{

(a, g) ∈ R2 : g = (2 + a − 2ak)/4a and a 6= 0
}

, k ∈ N.
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Main Theorem. Consider the polynomial systems in QSHη=0.

(a) The 11 normal forms (C)–(M) are all Liouvillian integrable. The following table sums up the
results regarding the types of integrability:

Systems Parameters Type of first integral

(C) a = 8c2/9 and c 6= 0 Generalized Darboux
(C) a(a − 8c2/9) 6= 0 Liouvillian

(D) g(g ± 1)(2g − 1)(3g − 1) 6= 0 Darboux
(D) g = 0 and c 6= 0 Generalized Darboux

(E) ǫ ∈ R Polynomial (hamiltonian)

(F) - Rational

(G) - Rational

(H) - Rational

(I) - Rational

(J) a ∈ R Rational

(K) - Rational

(L) a 6= 0 Rational

(M) - Rational

(b) For the normal forms (A) and (B) we have the following:

(i) If (a, g) ∈ R2 − (L1 ∪ L2 ∪ C′), then systems (A) are not Liouvillian integrable.

(i.1) If (a, g) ∈ L1,1 then systems (A) are not Liouvillian integrable.

(ii) If (a, g) ∈ R2 − (L1 ∪ L3), then systems (B) are not Liouvillian integrable.

(ii.1) If (a, g) ∈ L1,1 then systems (B) are generalized Darboux integrable.

(ii.2) If (a, g) ∈ L3 then systems (B) are Liouvillian integrable.

The following table sums up the results regarding the types of integrability:

Systems Parameters Type of first integral

(A) (a, g) ∈ R − (L1 ∪ L2 ∪ C′) Not Liouvillian integrable

(B) g = 1/2 and a 6= 0 Generalized Darboux
(B) g = 1/4 and a 6= 0 Liouvillian
(B) (a, g) ∈ R − (L1 ∪ L3) Not Liouvillian integrable

Observation 3.5. The Liouvillian integrability of any system in class (A) with (a, g) ∈ (L1 − L1,1)∪
L2 ∪ C′ or in class (B) with (a, g) ∈ (L1 − L1,1) is still open. The reason is that the methods applied in
this paper for proving the existence or non-existence of a Liouvillian first integral do not work in these
cases and so new ideas are needed for proving or disproving their Liouvillian integrability.

For a proof, see Section 5 (integrable cases) and Section 6 (non integrable cases).
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4 Geometrical concepts and results useful for studying the geome-

try of the configurations of invariant curves and their bifurcations

Remark 4.1. In the theory of Darboux presented in the preceding section what counts is

mainly the number of invariant curves, their multiplicities, the number of independent points.

When certain inequalities involving these numbers are satisfied then we have integrability of

the system.

However in 1993 Christopher and Kooij stated a theorem in [13] where, if we reformulate

the theorem in geometric terms, we see a beautiful relation between the geometry of the

“configuration of invariant curves” and their Darboux integrability. This theorem was proved

in [17].

Theorem 4.2 ([13]). Consider a polynomial system (1.1) that has k algebraic solutions Ci = 0 such
that

(a) all curves Ci = 0 are non-singular and have no repeated factor in their highest order terms,

(b) no more than two curves meet at any point in the finite plane and are not tangent at these points,

(c) no two curves have a common factor in their highest order terms,

(d) the sum of the degrees of the curves is n + 1, where n is the degree of system (1.1).

Then system (1.1) has an integrating factor

µ(x, y) = 1/(C1C2 . . . Ck).

This theorem has a geometric content which is not completely explicit in the algebraic way

they stated the result. We rewrite the theorem above in geometric terms as follows:

Theorem 4.3. Consider a polynomial system (1.1) that has k algebraic solutions Ci = 0 such that

(a) all curves Ci = 0 are non-singular and they intersect transversally the line at infinity Z = 0,

(b) no more than two curves meet at any point in the finite plane and are not tangent at these points,

(c) no two curves intersect at a point on the line at infinity Z = 0,

(d) the sum of the degrees of the curves is n + 1, where n is the degree of system (1.1).

Then system (1.1) has an integrating factor

µ(x, y) = 1/(C1C2 . . . Ck).

In the hypotheses of this theorem the way the curves are placed with respect to one another

in the totality of the curves, in other words the “geometry of the configuration of invariant

algebraic curves” has an impact of the kind of integrating factor we could have.

We are interested in relating the geometry of the invariant algebraic curves curves taken

in their totality with the various kinds of integrability. To begin doing this we need to recall

some concepts and in particular those introduced by Poincaré in [52]. Among them we have

the following.

Let H = f /g be a rational first integral of the polynomial vector field (1.2). We say that

H has degree n if n is the maximum of the degrees of f and g. We say that the degree of H
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is minimal among all the degrees of the rational first integrals of χ if any other rational first

integral of χ has a degree greater than or equal to n. Let H = f /g be a rational first integral

of χ. According to Poincaré [52] we say that c ∈ C ∪ {∞} is a remarkable value of H if f + cg
is a reducible polynomial in C[x, y]. Here, if c = ∞, then f + cg denotes g. Note that for all

c ∈ C the algebraic curve f + cg = 0 is invariant. The curves in the factorization of f + cg,

when c is a remarkable value, are called remarkable curves.

Now suppose that c is a remarkable value of a rational first integral H and that uα1
1 . . . uα

r
is the factorization of the polynomial f + cg into reducible factors in C[x, y]. If at least one of

the αi is larger than 1 then we say, following again Poincaré (see for instance [28]), that c is a

critical remarkable value of H, and that ui = 0 having αi > 1 is a critical remarkable curve of the

vector field (1.2) with exponent αi.

Since we can think of C ∪ {∞} as the projective line P1(R) we can also use the following

definition.

Definition 4.4. Consider F(c1,c2) : c1 f − c2g = 0 where f /g is a rational first integral of (1.2).

We say that [c1 : c2] is a remarkable value of the curve F(c1,c2) if F(c1,c2) is reducible over C.

It was proved in [9] that there are finitely many remarkable values for a given rational first

integral H and if (1.2) has a rational first integral and has no polynomial first integrals, then

it has a polynomial inverse integrating factor if and only if the first integral has at most two

critical remarkable values.

Given H = f /g a rational first integral, consider F(c1,c2) = c1 f − c2g where deg F(c1,c2) = n.

If F(c1,c2) = f1 f2 where f1, f2 ∈ C[x, y] and deg fi = ni < n then necessarily the points on the

intersection of f1 = 0 and f2 = 0 must be singular points of the curve F(c1,c2).

Lemma 4.5 ([11]). Assume that system (1.1) with degree m has an invariant algebraic curve f of
degree n. Let fn, Pm and Qm be the homogeneous parts of f with degree n, P and Q with degree m.
Then each one of the irreducible factors of fn divides yPm − xQm.

In geometric terms, this lemma means that the points at infinity of any invariant algebraic

curve f = 0 of a system (1.1) are singularities of this system.

Let us recall the algebraic-geometric definition of an r-cycle on an irreducible algebraic

variety of dimension n.

Definition 4.6. Let V be an irreducible algebraic variety of dimension n over a field K. A cycle

of dimension r or r-cycle on V is a formal sum

∑
W

nWW

where W is a subvariety of V of dimension r which is not contained in the singular locus of

V, nW ∈ Z, and only a finite number of nW ’s are non-zero. We call degree of an r-cycle the

sum

∑
W

nW .

An (n − 1)-cycle is called a divisor.

Definition 4.7. For a non-degenerate polynomial differential system (S) possessing a finite

number of algebraic solutions

F = { fi}m
i=1, fi(x, y) = 0, fi(x, y) ∈ C[x, y],
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each with multiplicity ni and a finite number of singularities at infinity, we define the algebraic

solutions divisor (also called the invariant curves divisor) on the projective plane attached to

the family F ,

ICDF = ∑
ni

niCi + n∞L∞

where Ci : Fi(X, Y, Z) = 0 are the projective completions of fi(x, y) = 0, ni is the multiplicity

of the curve Ci = 0 and n∞ is the multiplicity of the line at infinity L∞ : Z = 0.

Proposition 4.8 ([2]). Every polynomial differential system of degree n and with a finite number of
invariant lines has at most 3n invariant straight lines, including the line at infinity.

In particular the maximum number of invariant lines for a quadratic system with a finite

number of invariant lines is six. In the case we consider here, we have a particular instance

of the divisor ICD because the invariant curves we consider are invariant hyperbolas and

invariant lines of a quadratic differential system, in case these are in finite number. In case we

have an infinite number of hyperbolas we can construct the divisor of the invariant straight

lines which are always in finite number.

Another ingredient of the configuration of algebraic solutions are the real singularities

situated on these curves. We also need to use here the notion of multiplicity divisor of real

singularities of a system, located on the algebraic solutions of the system.

Definition 4.9.

1. Suppose a real quadratic system (1.3) has a non-empty finite set of invariant hyperbolas

Hi and a finite number of affine invariant lines Lj, where Hi : hi(x, y) = 0, i = 1, 2, . . . , k,

Lj : f j(x, y) = 0, j = 1, 2, . . . , l and hi, f j ∈ C[x, y].

We denote the line at infinity L∞ : Z = 0 and suppose that on this line we have a finite

number of singularities. The divisor of invariant hyperbolas and invariant lines on the

complex projective plane of the system is the following

ICD = n1H1 + · · ·+ nkHk + m1L1 + · · ·+ mlLl + m∞L∞

where ni (respectively mj) is the multiplicity of the hyperbola Hi (respectively mj of the

line Lj), and m∞ is the multiplicity of L∞. We mark the complex (non-real) invariant

hyperbolas (respectively lines) denoting them by HC
i (respectively LC

i ). We define the

total multiplicity TM of the divisor as the sum ∑i ni + ∑j mj + m∞.

2. The zero-cycle on the real projective plane, of singularities of a quadratic system (1.3)

located on a configuration of invariant lines and invariant hyperbolas, is given by

M0CS = r1P1 + · · ·+ rl Pl + v1P∞
1 + · · ·+ vnP∞

n

where Pi (respectively P∞
j ) are all the finite (respectively infinite) real singularities of

the system and ri (respectively vj) are their corresponding multiplicities. We mark the

complex singular points denoting them by PC
i . We define the total multiplicity TM of

zero-cycles as the sum ∑i ri + ∑j vj.

Definition 4.10.

(1) In case we have an infinite number of hyperbolas and just two or three singular points

at infinity but we have a finite number of invariant straight lines we define the invariant

lines divisor as

ILD = m1L1 + · · ·+ mlLl + m∞L∞,

where mi denotes the multiplicity of the line Li and m∞ the multiplicity of L∞.
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(2) In case we have an infinite number of hyperbolas, the line at infinity is filled up with

singularities and we have a finite number of affine lines, we define the invariant lines

divisor

ILD = m1L1 + · · ·+ mlLl .

Definition 4.11.

(1) Suppose we have a finite number of invariant hyperbolas and invariant straight lines of

a system (S) and that they are given by equations

fi(x, y) = 0, i ∈ {1, 2, . . . , k}, fi ∈ C[x, y].

Set Fi(X, Y, Z) = 0 the projection completion of the invariant curves fi = 0 in P2(C). The

total invariant algebraic curve of the system (S) in QSH, on P2(R), is the curve

T(S) = ∏
i

Fi(X, Y, Z)mi Zm∞ = 0,

where mi is the multiplicity of fi = 0, i = 1, . . . , k and m∞ is the multiplicity of the line

at infinity.

(2) Suppose that a system (S) has an infinite number of invariant hyperbola. Then the sys-

tem (S) has a finite number of invariant affine straight lines (see [47]). Set Li(X, Y, Z) =
0 the projective completions of the invariant lines li(x, y) = 0, i ∈ {1, 2, . . . , k} in P2(C).

(i) If there are a finite number of singular points at infinity, the total invariant curve of

system (S) is

T(S) = ∏
i

Li(X, Y, Z)mi Zm∞ = 0,

where mi is the multiplicity of the line li = 0, i = 1, . . . , k and m∞ is the multiplicity

of the line at infinity.

(ii) If the line at infinity is filled up with singularities, the total invariant curve of system

(S) is

T(S) = ∏
i

Li(X, Y, Z)mi = 0,

where mi is the multiplicity of the line li = 0, i = 1, . . . , k.

The singular points of the system (S) situated on T(S) are of two kinds: those which are

simple (or smooth) points of T(S) and those which are multiple points of T(S).

Remark 4.12. To each singular point of the system we have its associated multiplicity as a

singular point of the system. In addition, when these singular points are situated on the total

curve, we also have the multiplicity of these points as points on the total curve T(S). Through

a singular point of the systems there may pass several of the curves Fi = 0 and Z = 0. Also we

may have the case when this point is a singular point of one or even of several of the curves

in case we work with invariant curves with singularities. This leads to the multiplicity of the

point as point of the curve T(S). The simple points of the curve T(S) are those of multiplicity

one. They are also the smooth points of this curve.
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Definition 4.13.

(i) Suppose a quadratic system (S) has a finite number of singularities finite or infinite. The

zero-cycle of singularities of the total curve T(S) of system (S) is given by

M0CT = r1P1 + · · ·+ rl Pl + v1P∞
1 + · · ·+ vnP∞

n

where Pi (respectively P∞
j ) are all the finite (respectively infinite) singularities situated

on T(S) and ri (respectively vj) are their corresponding multiplicities as points on the

total curve T(S). We mark the complex singular points denoting them by PC
i . We define

the total multiplicity TM of the zero-cycle M0CT as the sum ∑i ri + ∑j vj.

(ii) Suppose a system (S) possessess the line at infinity filled up with singularities. The

zero-cycle of the total curve T(S) of system (S) is given by

M0CT = r1P1 + · · ·+ rl Pl

where Pi are all the finite singularities situated on T(S) and ri are their corresponding

multiplicities as points on the total curve T(S). We mark the complex singular points

denoting them by PC
i . The total multiplicity TM of the zero-cycle M0CT as the sum ∑i ri.

Definition 4.14. If the intersection multiplicity [29] of two curves is one then we say that the

curves intersect transversally or that this point is a simple point of intersection.

If at a point two curves are tangent, we have an intersection multiplicity higher than or

equal to two.

Definition 4.15 ([63]). Two polynomial differential systems S1 and S2 are topologically equiv-

alent if and only if there exists a homeomorphism of the plane carrying the oriented phase

curves of S1 to the oriented phase curves of S2 and preserving the orientation.

To cut the number of non equivalent phase portraits in half we use here another equiva-

lence relation.

Definition 4.16. Two polynomial differential systems S1 and S2 are topologically equivalent if

and only if there exists a homeomorphism of the plane carrying the oriented phase curves of

S1 to the oriented phase curves of S2, preserving or reversing the orientation.

Notation: ∼=top .

In [4] the authors provide a complete classification of QS according to the geometric equiv-

alence relation of topological configurations of singularities, finite or infinite. Here we use the

same terminology and notation for singularities introduced in [4].

We say that a singular point is elemental if it possesses two non-zero eigenvalues; semi-
elemental if it possess exactly one eigenvalue equal to zero and nilpotent if it possesses two

zero eigenvalues and the linear part is not zero. We call intricate a singular point with its

Jacobian matrix identically zero.

We place first the finite singular points denoted with lower case letters and secondly the

infinite singular points denoted by capital letters, separating them by a semicolon ’;’.

In our study we have real and complex finite singular points for real systems and from

the topological viewpoint only the real ones are interesting. When we have a complex finite

singular point we use the notation ©. For the elemental singular points we use the notation
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‘s’, ‘S’ for saddles, ‘n’, ‘N’ for nodes, ‘ f ’ for foci and ‘c’ for centers. We also denote by ‘a’ (anti-

saddle) for either a focus or any type of node when the local phase portraits are topologically

equivalent.

Non-elemental singular points are multiple points. We denote by (a
b) the maximum num-

ber a (respectively b) of finite (respectively infinite) singularities which can be obtained by

perturbation of the multiple point at infinity. For example, (1
1)SN and (0

2)SN correspond to two

saddle-nodes at infinity which are locally topologically distinct since the first arises from the

coalescence of a finite with an infinite singularity and the second from the coalescence of two

infinite singularities.

The semi-elemental singular points can either be nodes, saddles or saddle-nodes (finite or

infinite). If they are finite singular points we denote them by ’n(3)’, ’s(3)’ and ’sn(2)’, respec-

tively and if they are infinite singular points by ’(a
b)N’, ’(a

b)S’ and ’(a
b)SN’, where (a

b) indicates

their multiplicity. We note that semi-elemental nodes and saddles are respectively topologi-

cally equivalent with elemental nodes and saddles.

The nilpotent singular points can either be saddles, nodes, saddle-nodes, elliptic-saddles,

cusps, foci or centers. The only finite nilpotent points for which we need to introduce notation

are the elliptic-saddles and cusps which we denote respectively by ’es’ and ’cp’.

In the case of nilpotent infinite points, the relative positions of the sectors with respect to

the line at infinity, can produce topologically different phase portraits. Then we use a notation

for these points similar to the notation which we will use for the intricate points.

The intricate singular points are degenerate singular points. It is known that the neigh-

bourhood of any singular point of a polynomial vector field (except for foci and centers) is

formed by a finite number of sectors which could only be of three types: parabolic (p), hyper-

bolic (h) and elliptic (e) (see [25]). Then, a reasonable way to describe intricate and nilpotent

points at infinity is to use a sequence formed by the types of their sectors. From the topo-

logical view point, any two adjacent parabolic geometrical sectors merge into one and any

elliptic sector, in a small vicinity of the singularity, always has two parabolic sectors one of

each side. We make the convention to eliminate the parabolic sectors adjacent to the elliptic

sectors, according to the notation in [4].

In quadratic systems, we have just four topological possibilities for finite intricate singular

points of multiplicity four:

• phph;

• hh;

• hhhhhh;

• ee.

For intricate and nilpotent singular points at infinity, we insert a dash (hyphen) between

the sectors to split those which appear on one side or the other of the equator of the sphere.

When describing a single finite nilpotent or intricate singular point, one can always apply an

affine change of coordinates to the system, so it does not really matter which sector starts

the sequence, or the direction (clockwise or counter-clockwise) we choose. If it is an infinite

nilpotent or intricate singular point, then we always start with a sector bordering the infinity

(to avoid using two dashes).

If the line at infinity is filled up with singularities, then it is known that any such sys-

tem has in a sufficiently small neighbourhood of infinity one of 7 topological distinct phase
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portraits (see [67]). The way to determine these portraits is by studying the reduced sys-

tems on the infinite local charts after removing the degeneracy of the systems within these

charts. Following [3] we use the notation [∞; ∅], [∞; N], [∞; Nd] (one-direction node, that

is a node with two identical eigenvalues whose Jacobian matrix cannot be diagonal), [∞; S],
[∞; C], [∞; (0

2)SN], [∞; (0
3)ES] indicating the kinds of singularities obtained after removing the

line filled with singularities.

The degenerate systems are systems with a common factor in the polynomials defining the

system. We denote this case with the symbol ⊖. The degeneracy can be produced by a non-

constant common factor of degree one which defines a straight line or a common quadratic

factor which defines a conic. In this paper we have just the second case happening.

Moreover, we also want to determine whether after removing the common factor of the

polynomials, singular points remain on the curve defined by this common factor. If the re-

duced system has no finite singularity on this curve, we use the symbol ∅ to describe this

situation. If some singular points remain on this curve we use the corresponding notation of

their various kinds. In this situation, the geometrical properties of the singularity that remains

after the removal of the degeneracy, may produce topologically different phenomena, even if

they are topologically equivalent singularities. So, we need to keep the geometrical informa-

tion associated to that singularity. In this paper we use the notation (⊖[)(]; ∅) which denotes

the presence of a hyperbola filled up with singular points in the system such that the reduced

system has no finite singularity on this curve.

The existence of a common factor of the polynomials defining the differential system also

affects the infinite singular points. We point out that the projective completion of a real affine

line filled up with singular points has a point on the line at infinity which will then be also a

non-isolated singularity. There is a detailed description of this notation in [3]. In case that after

the removal of the finite degeneracy, a singular point at infinity remains at the same place, we

must denote it with all its geometrical properties since they may influence the local topological

phase portrait. In this paper we use the notation (⊖[)(]; N, ∅) that means that the system has

at infinity a node, and one non-isolated singular point which is part of a real hyperbola filled

up with singularities and that the reduced linear system has no infinite singular point in that

position.

See [4] for more details on the notation for singularities.

In order to distinguish topologically the phase portraits of the systems we obtained, we

also use some invariants introduced in [66]. Let SC be the total number of separatrix connec-

tions, i.e. of phase curves connecting two singularities which are local separatrices of the two

singular points. We denote by

• SC f
f the total number of SC connecting two finite singularities,

• SC∞
f the total number of SC connecting a finite with an infinite singularity,

• SC∞
∞ the total number of SC connecting two infinite.

A graphic as defined in [26] is formed by a finite sequence of singular points p1, p2, . . . , pn,

pn+1 = p1 and oriented regular orbits s1, . . . , sn connecting them such that sj has pj as α-limit

set and pj+1 as ω-limit set for j < n and sn has pn as α-limit set and p1 as ω-limit set. Graphics

may or may not have a return map. Particular graphics are given special names. A loop is

a graphic through a unique singular point and with a return map. A polycycle is a graphic

through several singular points and with a return map. A degenerate graphic as defined in [26]

is formed by singular points p1, p2, . . . , pn, pn+1 = p1, oriented regular orbits and segments
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s1, . . . , sn of curves of singular points (which are also oriented) such that either sj is a orbit

that has pj as α-limit and pj+1 as ω-limit for j < n and sn has pn as α-limit set and p1 as

ω-limit set or an open segment of a curve of singular points with end points pj and pj+1,

for each j < n. Moreover, the regular orbits and the curves of singular points have coherent

orientations in the sense that if sj−1 has left hand orientation then so does sj. For more details,

see [26].

In what follows we present an example of the notation used in paper to describe the global

configuration of singularities of QSH.

Semi-elemental saddle–node
Saddle
Unstable node
Stable node

Non-elemental
Curve of singularities
Separatrices

Orbits

Graphics

Figure 4.1: Notations used on the phase portraits.

Figure 4.2: Some examples of phase portraits.

The notation used to describe the topological type of the singularities in Figure 4.2 is

(a, s, a, s; (0
2)SN, N)

(s, sn, a; (0
2)SN, N)

(s; (2
2)E − E, (1

1)SN)

for each phase portrait appearing in the respective order. The first letters appearing with lower

case represents the topological type of the finite singularities. Here ‘sn’ denotes a saddle-node

which arises from the coalescence of a finite saddle with a finite node so this is a singularity

of multiplicity two, ‘a’ denotes an elemental anti-saddle and ‘s’ denotes an elemental saddle.

The capital letters give the topological type of the singularities at infinity: ‘(0
2)SN’ denotes a

saddle-node which arises from the coalescence of two infinite singularities (saddle and node)

so this is a double singularity, ‘(1
1)SN’ also denotes a saddle-node but here this multiplicity

arises from the coalescence of a finite with an infinite singularity, ‘(2
2)E− E’ denotes an intricate

singularity arising from the coalesce of two finite singularities with two infinite singularities

and the neighbourhood of this singularity is formed by an elliptic sector which has, in a small
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vicinity of the singularity, two parabolic sectors one of each side. The cases where we do no

indicate the multiplicity means the singularity is simple, which is the case of ‘S’ (elemental

saddle) and ‘N’ (elemental node).

5 Proof of the Main theorem for the integrable cases

The data described in Table 5.2 led us to the proof of Main theorem for the integrable case.

We begin by using the Prelle–Singer algorithm (including the exponential factors, when

they exist) in order to prove integrability.

The result of our calculations are given in Table 5.2 where we have the invariant algebraic

curves, exponential factors and their cofactors, first integrals or integrating factors for each

normal form of Proposition 3.3 obtained using the software Mathematica.

In the first column are the normal forms for QSHη=0.

In the second column are the invariant algebraic curves, the exponential factors and the

respective cofactors.

In the third column are the expressions of the first integrals or the expressions of the

integrating factors. If we give the expression for the first integral then it is not necessary to

give the integrating factor to guarantee the integrability. When we give the expression for

the integrating factor instead of the first integral this means that we could not compute the

expression for the first integral using Mathematica and we use the notation “—”. When “—”

appears in both the first integral and integrating factor this means that we could find neither

of them applying the Prelle–Singer algorithm.

In the fourth and fifth columns are the normal forms and their possible configurations as

in [47]. The notation “—" appears when we do not have them appearing in [47].

In the sixth column are indicated the types of integrability of each normal form using the

notations in Table 5.1.

The precise integrating factor, first integral that did not fit in the table will be given in the

text following the table.

Thereby, the proof of the Main theorem follows except for the non integrable cases, that

will be done in Section 6.

Table 5.1: Notations used in Table 5.2.

Notation

N-I : Systems admit neither a Darboux nor a Liouvillian first integral;

D: Systems are Darboux integrable;

GD: Systems are generalized Darboux integrable;

L: Systems are Liouvillian integrable;

P: Systems admit a polynomial first integral;

R: Systems admit a rational first integral;

HAM: Systems are Hamiltonian.

open case : We could prove neither the integrability nor the non-integrability;

R : Represents an integrating factor;

F : Represents a first integral;
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Table 5.2: Proof of the Main theorem for the integrable cases.

Orbit representative Invariant curves/ ExpFac Integrating Factor Ri Eq. [47] Config. H̃ Integ.

a, g, c, ǫ ∈ R : a 6= 0 Respective cofactors First integral Fi

(A)

{

ẋ = 2a + x + gx2 + xy,

ẏ = a(2g − 1)− y + (g − 1)xy + y2,
a + xy — (4.4) 1, 3, 4, 5,

6, 7, 8, 9,

10, 11

N-I

where a(g−1)(2g−1)(3g−1)(g−2)(25a−3) 6=0 (−1 + 2g)x + 2y —

(A) where g = 1/2 y, a + xy — (4.10) 12, 13, 14,

15, 16, 17

N-I

−1 − x
2 + y, 2y —

(A) where g = 2 and a = 3/25 xy + 3
25 , x + 5y2

9 − y + 3
5 — — — open case

3x + 2y, 2x + 2y − 1
5 —

(A) where g = 1/3 and a = a/2 a + 2xy — (4.11) 1, 4, 5, 6,

10

open case

2y − x
3 —

(B)

{

ẋ = 2a + gx2 + xy,

ẏ = a(2g − 1) + (g − 1)xy + y2,
a + xy — (4.13) 1, 2, 6 N-I

where a(g−1)(2g−1)(4g−1) 6=0 (−1 + 2g)x + 2y —

(B) where g = 1/2 y, a + xy, e−
a+2y2

2(a+xy) — 31, 32 GD

− x
2 + y, 2y, y FB,1 = e

a+2y2

a+xy (a + xy)

(B) where g = 1/4 a + xy, e
y2

a+xy RB,3 = e
2y2

a+xy√
a+xy — 29, 30 L

− x
2 + 2y, −y —
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(C)

{

ẋ = 2a + 3cx + x2 + xy,

ẏ = a − c2 + y2,
y +

√
c2 − a, y −√

c2 − a, a + cx + xy
RC (4.16) 18, 20, 21,

22, 33

L

where a(c2−a)(9a−8c2) 6=0 y −
√

c2 − a, y +√
c2 − a, 2c + x + 2y

—

(C) where a = c2 y, c2 + cx + xy, e
1
y RC,1 — 23 L

y, 2c + x + 2y, −1 —

(C) where a = 8c2/9 3y − c, 3y + c, 8c2 +

9cx + 9xy, e
−cx+48cy+63xy−24y2

48c(8c2+9cx+9xy)

— 33 GD

c
3 + y, y − c

3 , 2c + x +

2y,
y

18c − 1
54

FC,2

(D)

{

ẋ = (c + x)(c(2g − 1) + gx),

ẏ = 1 + (g − 1)xy,

x + c, c(2g − 1) + gx,
1

(−1+2g) + cy + xy (4.18) 19 D

where cg(g±1)(2g−1)(3g−1) 6=0 c(−1 + 2g) + gx, cg +

gx, c(−1 + 2g) + (−1 +

2g)x

FD

(D) where g = 0 and c 6= 0 c + x, −1+ cy + xy, ex+1 — 24 GD

−c, −c − x, −c2 − cx FD,1 = ex+1(y(c + x)− 1)−c

(D) where c = 0 and g 6= 0,−1/2
x, 1

−1+2g + xy, e
1
x ,

e
2gxy+1

x2

25, 34 D

gx, (−1 + 2g)x, −g,

−2gy
FD,2 = x

1
g −2

(2gxy−xy+1)
2g−1

(E)

{

ẋ = x2 + ǫ,

ẏ = 1 − 2xy,

x + i
√

ǫ, x − i
√

ǫ,

−1 + i
√

ǫy + xy,

−1 − i
√

ǫy + xy
(4.22) 27, 28 P/HAM

where ǫ 6= 0
x − i

√
ǫ, x + i

√
ǫ,

−x − i
√

ǫ, −x + i
√

ǫ
FE =(x2+ǫ)((xy−1)2+y2ǫ)
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(E) where ǫ = 0
x, −1 + xy, e

1
x ,

e
2xy+1

x2 , e
y

xy−1 , e
y2(2xy−3)

(xy−1)2
— 34 P/HAM

x, −x, −1,

−6y, −1, −6y
FE,1 = x(−1 + xy)

(F)

{

ẋ = (x − 1)(3 − x),

ẏ = 1 − 2xy

1 − x, 3 − x,

− 1
3 − y + xy,

− 19
8 + x + 3y − x2

8

(4.25) 19 R

3 − x, 1 − x, 3 − 3x,

−2x
FF = − (x−3)2

3(x−1)y−1

(G)

{

ẋ = −x2,

ẏ = 1 − 2xy

x, −1 + 3xy, e
1
x ,

e
1−2xy

x2 , e
1−3xy−2x2y+x

x3

— 26 R

−x, −3x, 1, 2y,

2y
FG = x3

3xy−1

(H)

{

ẋ = (2x − 1)(2x + 1)/4,

ẏ = y

1 + 2x, 1 − 2x, y,

− q
2 + qx + y + 2xy,

ey, e
−2x+y+1

1−2x

(4.27) 35 R

− 1
2 + x, 1

2 + x, 1,
1
2 + x, y,

y
2

FH = (2x+1)y
q(x− 1

2 )+2xy+y

(I)

{

ẋ = x2,

ẏ = 1

x, 1 + rx + xy, e
x+1

x

e
x2+2xy+x+1

x2 , ey2+y+1
(4.28) 36 R

x, x, −1,

−1 − 2y, 2y + 1
FI =

x
1 + rx + xy

(J)

{

ẋ = a + y + x2,

ẏ = xy,

y, −i
√

a + x − iy√
a ,

i
√

a + x + iy√
a ,

a + 2y + x2 − m2y2

(4.30) 39, 41 R

where a 6= 0
x, i

√
a + x,

−i
√

a + x, 2x
FJ =

y2

a+2y+x2−m2y2
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(J) where a = 0
y, 2y + x2 − m2y2,

e
x
y , e

x2+2xy+2y2

2y2
— 43 R

x, 2x, 1, 1 FJ,1 = y2

2y+x2−m2y2

(K)

{

ẋ = (1 + 3x)(2 + 3x)/9,

ẏ = xy
y, 2 + 3x, 1 + 3x, 4 +

12x + 9x2 + my + 3mxy
(4.34) 37 R

x, 1
3 + x, 2

3 + x, 2
3 + 2x FK = (3x+1)y

(3x+2)2

(L)

{

ẋ = a + x2,

ẏ = xy,

y, 1 − ix√
a , 1 + ix√

a ,

a + x2 − m2y2
(4.36) 38, 40 R

where a 6= 0 x, −i
√

a + x, i
√

a + x, 2x FL =
x2 + a

ay2

(M)

{

ẋ = x2,

ẏ = 1 + xy

x, 1 + mx2 + 2xy,

e1/x, e
x2+2xy+x+1

x2
(4.38) 42 R

x, 2x, −1, −1 FM =
x2

1 + mx2 + 2xy
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RC = (y +
√

c2 − a)
1
2

(

1+ c√
c2−a

)

(y −
√

c2 − a)
1
2

(

1− c√
c2−a

)

(a + cx + xy)−2;

RC,1 = y
(

c + x +
xy
c

)−2
e
−c
y ;

FC,2 = (c + 3y)

(

e
−cx+48cy+63xy−24y2

48c(8c2+9cx+9xy)

)−18c

;

FD = (c(2g − 1) + gx)
(

y(c + x) +
1

2g − 1

)− g
2g−1

.

6 Proof of the Main theorem for the non integrable cases

Consider the sets:

L1 = ∪k∈N L1,k, where L1,k =
{

(a, g) ∈ R2 : g = k/2 and a 6= 0
}

, k ∈ N,

L2 = ∪k∈N L2,k, where L2,k =
{

(a, g) ∈ R2 : g = k/3 and a 6= 0
}

, k ∈ N,

L3 =
{

(a, g) ∈ R2 : g = 1/4 and a 6= 0
}

,

C′ = ∪k∈N Ck, where Ck =
{

(a, g) ∈ R2 : g = (2 + a − 2ak)/4a, a 6= 0
}

, k ∈ N.

6.1 The systems (A)
{

ẋ = 2a + x + gx2 + xy,

ẏ = a(2g − 1)− y + (g − 1)xy + y2,

where a(g − 1) 6= 0.

Theorem 6.1.

(a) If (a, g) /∈ L1 then the only invariant algebraic curves of a system in the family (A) are of the
form Jm

1 = 0 where J1(x, y) = a + xy and m is a positive integer.

(b) If (a, g) /∈ (L1 ∪ L2 ∪ C′) then any system in the family (A) has no exponential factors.

(c) If (a, g) /∈ (L1 ∪ L2 ∪ C′) then any system in the family (A) is not Liouvillian integrable.

Remark: When g = 1/2 the systems posses the invariant line y = 0 but this invariant curve
is still not enough to prove the integrability. The non integrability in this case can be done just
by adapting g = 1/2 in the proof below. In (a) we find C = ym−l(a + xy)l .

Proof. (a) By a straightforward computation, we can verify that J1(x, y) = a + xy is an in-

variant hyperbola with cofactor α1(x, y) = (−1 + 2g)x + 2y. Assume that

C =
n

∑
i=0

Ci(x, y) = 0

is an invariant algebraic curve of the system (A) with cofactor K = K0 + K1x + K2y, where Ci

are homogeneous polynomial of degree i where 0 ≤ i ≤ n. From the definition of invariant
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algebraic curve (1.4), we have:

(2a + x + gx2 + xy)
n

∑
i=0

Ci,x + (a(2g − 1)− y + (g − 1)xy + y2)
n

∑
i=0

Ci,y

= (K0 + K1x + K2y)
n

∑
i=0

Ci. (6.1)

Taking from (6.1) the terms of degree n + 1 we have:

(

gx2 + xy
)

Cn,x +
(

(g − 1)xy + y2
)

Cn,y = (K1x + K2y) Cn. (6.2)

For this system we have

yP2 − xQ2 = x2y.

Then, from Lemma 4.5 we can assume that

Cn = xmyl , where n = m + l.

Substituting Cn in (6.2) and doing some computations we terminate that

K1 = gm + (g − 1)l; K2 = m + l.

Now, taking from (6.1) the terms of degree n we have:

x Cn,x + (gx2 + xy) Cn−1,x − y Cn,y + ((g − 1)xy + y2) Cn−1,y

= K0 Cn + [(gm + (g − 1)l) x + (m + l) y] Cn−1. (6.3)

Set Cn−1 = ∑
n−1
i=0 cn−1−ixn−1−iyi. Replacing Cn, Cn−1 in (6.3) and doing some calculations, we

obtain

m+l−1

∑
i=0

(l − i − g) cm+l−1−i xm+l−i yi −
m+l−1

∑
i=0

cm+l−1−i xm+l−1−i yi+1 = (K0 − m + l) xmyl .

Note that this equation can be written as

m+l

∑
i=0

[(l − i − g) cm+l−1−i − cm+l−i] xm+l−i yi = (K0 − m + l) xmyl ,

where ci = 0 for i < 0 and i > m+ l − 1. Equating the coefficients of xiyj in the above equation,

we get:

{

(l − i − g) cm+l−1−i − cm+l−i = 0, where i = 0, 1, . . . , l − 1, l + 1, . . . , m + l

(−g) cm−1 − cm = K0 − m + l.
(6.4)

For i = m + l, m + l − 1, . . . , l + 1 we have

c0 = c1 = · · · = cm−1 = 0.

Then cm = −K0 + m − l. Working recursively we have

cm+1 = (−g + 1)(−K0 + m − l),

cm+2 = (−g + 2)(−g + 1)(−K0 + m − l), . . .

cm+l−1 = (−g + l − 1) . . . (−g + 2)(−g + 1)(−K0 + m − l).
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Replacing cm+l−1 in (6.4) where i = 0, we get

(−g + l)(−g + l − 1) . . . (−g + 2)(−g + 1)(−K0 + m − l) = 0.

Note that

(−g + l)(−g + l − 1) . . . (−g + 2)(−g + 1)

is a polynomial of degree l in the variable g, which has at most l real roots. Denote by Sl
1 the

set of roots. If g /∈ Sl
1 then K0 = m − l. Therefore, we can conclude that

K = (m − l) + (gm + (g − 1)l)x + (m + l)y,

since g /∈ Sl
1. This is

Cn−1 ≡ 0.

Now, taking from (6.1) the terms of degree n − 1 we have:

2a Cn,x + (gx2 + xy) Cn−2,x + a(2g − 1) Cn,y + ((g − 1)xy + y2) Cn−2,y

= [(gm + (g − 1)l) x + (m + l) y] Cn−2. (6.5)

Setting Cn−2 = ∑
n−2
i=0 cn−2−ixn−2−iyi and replacing Cn, Cn−2 in (6.5) we obtain

m+l−2

∑
i=0

(l − i − 2g) cm+l−2−i xm+l−1−i yi +
m+l−2

∑
i=0

(−2) cm+l−2−i xm+l−2−i yi+1

= −a(2g − 1)l xmyl−1 − 2am xm−1yl .

This equation can be written as

m+l−2

∑
i=0

[(l − i − 2g) cm+l−2−i + (−2) cm+l−1−i] xm+l−1−i yi

= −a(2g − 1)l xmyl−1 − 2am xm−1yl

where ci = 0 for i < 0 and i > m+ l − 2. Equating the coefficients of xiyj in the above equation,

we get















(l − i − 2g) cm+l−2−i − 2 cm+l−1−i = 0, where i = 0, . . . , l − 2, l + 1, . . . , m + l − 1,

(−2g + 1)cm−1 − 2cm = −a(2g − 1)l,

(−2g)cm−2 − 2cm−1 = −2am.

(6.6)

For i = m + l − 1, m + l − 2, . . . , l + 1 we have

c0 = c1 = · · · = cm−2 = 0.

Then cm−1 = am. Working recursively we have

cm =
a(−2g + 1)(m − l)

2
, cm+1 =

a(−2g + 1)(−2g + 2)(m − l)
4

, . . .

cm+l−2 =
a(−2g + 1)(−2g + 2) . . . (−2g + l − 1)(m − l)

2l−1
.
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Replacing cm+l−2 in (6.6) where i = 0, we get

a(−2g + 1)(−2g + 2) . . . (−2g + l − 1)(−2g + l)(m − l)
2l−1

= 0.

Note that

(−2g + 1)(−2g + 2) . . . (−2g + l − 1)(−2g + l)

is a polynomial of degree l in the variable g, which has at most l real roots. Denote by Sl
2 the

set of roots. If g /∈ Sl
1 ∪ Sl

2 then a = 0 or m = l.
The hyperbola is not an invariant algebraic curve when a = 0 and this cases does not

matter for us. We assume m = l. Then, we have the following:

K = (2g − 1)m x + 2m y,

Cn = xmym, Cn−1 ≡ 0, Cn−2 = amxm−1ym−1,
(6.7)

for g /∈ Sm
1 ∪ Sm

2 which is a numerable set.

Following similar arguments for terms of degree n − 2, n − 3, . . . in (6.1) we conjecture that

C = (a + xy)m. Now we prove this statement by induction:

Suppose that for k = 1, 2 . . . , L we have

Cn−(2k−1) ≡ 0, Cn−2k =
ak(m − (k − 1))!

k!
xm−kym−k. (6.8)

We shall prove that:

Cn−2L−1 ≡ 0, Cn−2L−2 =
aL+1(m − L)!

(L + 1)!
xm−L−1ym−L−1.

Considering in (6.1) the terms of degree n − 2L we have:

2a Cn−2L+1,x + x Cn−2L,x + (gx2 + xy) Cn−2L−1,x + a(2g − 1) Cn−2L+1,y

− y Cn−2L,y +
(

(g − 1)xy + y2
)

Cn−2L−1,y = ((2g − 1)m x + 2m y) Cn−2L−1.

By the induction hypothesis Cn−2L+1 ≡ 0 then:

x Cn−2L,x + (gx2 + xy) Cn−2L−1,x − y Cn−2L,y + ((g − 1)xy + y2) Cn−2L−1,y

= [(2g − 1)m x + 2m y] Cn−2L−1. (6.9)

Setting Cn−2L−1 = ∑
2m−2L−1
i=0 c2m−2L−1−ix2m−2L−1−iyi and replacing Cn−2L, Cn−2L−1 in (6.9) we

obtain

2m−2L−1

∑
i=0

(m − i − g(2L + 1)) c2m−2L−1−i x2m−2L−i yi

+
2m−2L−1

∑
i=0

(−2L − 1) c2m−2L−1−i x2m−2L−1−i yi+1 = 0.

This equation can be written as

2m−2L

∑
i=0

[(m − i − g(2L + 1)) c2m−2L−1−i + (−2L − 1) c2m−2L−i] x2m−2L−i yi = 0,
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where ci = 0 for i < 0 and i > 2m − 2L − 1. Equating the coefficients of xiyj in the above

equation, we have:

(m − i − g(2L + 1)) c2m−2L−1−i + (−2L − 1) c2m−2L−i = 0,

for i = 0, 1, . . . , 2m − 2L. As L ∈ N then L 6= −1/2 and:

c2m−2L−1 = c2m−2L−2 = · · · = c1 = c0 = 0.

Therefore,

Cn−2L−1 ≡ 0.

Now, considering in (6.1) the terms of degree n − 2L − 1 we have:

2a Cn−2L,x + x Cn−2L−1,x + (gx2 + xy) Cn−2L−2,x + a(2g − 1) Cn−2L,y

− y Cn−2L−1,y + ((g − 1)xy + y2) Cn−2L−2,y = [(2g − 1)m x + 2m y] Cn−2L−2.

We just proved that Cn−2L−1 ≡ 0, then we have:

2a Cn−2L,x + (gx2 + xy) Cn−2L−2,x + a(2g − 1) Cn−2L,y

+ ((g − 1)xy + y2) Cn−2L−2,y = [(2g − 1)m x + 2m y] Cn−2L−2 (6.10)

By the induction hypothesis it follows that Cn−2L = aL(m−(L−1))!
L! xm−Lym−L. Setting Cn−2L−2 =

∑
2m−2L−2
i=0 c2m−2L−2−ix2m−2L−2−iyi and replacing Cn−2L, Cn−2L−2 in (6.10) we have:

2m−2L−2

∑
i=0

(m − i − g(2(L + 1)) c2m−2L−2−i x2m−2L−1−i yi

+
2m−2L−2

∑
i=0

(−2L − 2) c2m−2L−2−i x2m−2L−2−i yi+1

= − (2g − 1)
aL+1(m − L)!

L!
xm−Lym−L−1 − 2aL+1(m − L)!

L!
xm−L−1ym−L.

This equation can be rewritten as

2m−2L−1

∑
i=0

[(m − i − g(2(L + 1)) c2m−2L−2−i + (−2L − 2) c2m−2L−1−i] x2m−2L−1−i yi

= −(2g − 1)
aL+1(m − L)!

L!
xm−Lym−L−1 − 2aL+1(m − L)!

L!
xm−L−1ym−L

where ci = 0 for i < 0 and i > 2m − 2L − 2. Equating the coefficients of xiyj in the above

equation, we get the following equations


























(m − i − g(2(L + 1))) c2m−2L−2−i + (−2L − 2) c2m−2L−1−i = 0,

(L + 1 − g(2(L + 1)))cm−L−1 + (−2L − 2)cm−L = −(2g − 1)
aL+1(m − L)!

L!
,

(L − g(2(L + 1)))cm−L−2 + (−2L − 2)cm−L−1 = −2aL+1(m − L)!
L!

,

for i = 0, 1, . . . , m − L − 2, m − L + 1, . . . , 2m − 2L − 1. As L ∈ N then L 6= −1 and

cm−L−2 = · · · = c1 = c0 = 0.



Darboux theory of integrability with applications to a family of QSH 43

Then,

cm−L−1 =
aL+1(m − L)!

(L + 1)!
, cm−L = 0.

When i = m − L − 2, . . . , 0, we obtain

cm−L+1 = cm−L+2 = · · · = c2m−2L−2 = 0.

Therefore,

Cn−2L−2 =
aL+1(m − L)!

(L + 1)!
xm−L−1ym−L−1.

This finishes the induction proof. It follows that

C = Jm
1 , m ∈ N

for all (a, g) /∈ L1, where L1 = ∪k∈NL1,k = ∪k∈N

{

(a, g) ∈ R2 : g = k
2 and a 6= 0

}

.

(b) From (a) systems (A) have only the algebraic solution J1(x, y) = a + xy for (a, g) ∈
R2 − L1. Then by Proposition 2.10, if systems (A) have an exponential factor, it must have the

form:

F = exp
(

G/Jl
1

)

with cofactor L = L0 + L1x + L2y and where l is non-negative integer. Since the invariant

algebraic curve Jl
1 = 0 has the cofactor

K = lα1 = l(−1 + 2g)x + 2ly,

it follows by (2.2) that G satisfies the following equation:

[

2a + x + gx2 + xy
]

Gx +
[

a(2g − 1)− y + (g − 1)xy + y2
]

Gy

+ [l(1 − 2g)x − 2ly] G =
[

L0 + L1x + L2y
]

l

∑
k=0

(

l
k

)

akxl−kyl−k. (6.11)

From now on we assume G(x, y) = ∑
n
i=0 Gi(x, y), where Gi is a homogeneous polynomial of

degree i and split the study in cases.

Case 1: n + 1 < 2l.

By equating the homogeneous terms of highest degree in (6.11) we obtain that

L1 = L2 = 0 and L0 = 0.

Thus, G is an invariant algebraic curve. Then, G = c Jl
1 where c is a constant. Therefore, F is

constant and it cannot be an exponential factor of system (A).

Case 2: n + 1 = 2l.

By equating the homogeneous terms of highest degree in (6.11) we obtain that

L1 = L2 = 0.

Set Gn = ∑
n
i=0 cn−ixn−iyi where cn−i are constants. Equating the terms of degree n+ 1 in (6.11)

and using that n + 1 = 2l, we have:

∑
2l
i=0 [(−g − i + l)c2l−i−1 + (−1)c2l−i] x2l−iyi = L0xlyl ,
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where ci = 0 for i < 0 and i > n. Equating the coefficients of xiyj in the above equation, we

have:
{

(−g − i + l) c2l−i−1 − c2l−i = 0, where i = 0, 1, . . . , l − 1, l + 1, . . . , 2l

(−g) cl−1 − cl = L0.

For i = 2l, 2l − 1, . . . , l + 1 we obtain: c0 = c1 = · · · = cl−1 = 0. Then cl = −L0. Working

recursively,

cl+1 = (−g + 1)(−L0), cl+2 = (−g + 2)(−g + 1)(−L0), . . .

c2l−1 = (−g + l)(−g + l − 1) . . . (−g + 1)(−L0).

Therefore, if g /∈ {l, l − 1, . . . , 1}, this is (a, g) /∈ L1 we have L0 = 0 then

L = 0.

Consequently, system (A) has no exponential factors for (a, g) ∈ R2 − L1.

Case 3: n = 2l.

Consider the notation for Gn introduced in the study of Case 2. Equating the terms of

degree n + 1 in (6.11) we have

∑
2l+1
i=0 (l − i) c2l−ix2l−i+1yi = L1 xl+1yl + L2 xlyl+1,

where ci = 0 for i < 0 and i > n. These equations are equivalent to














(l − i) c2l−i = 0, where i = 0, 1, . . . , l − 1, l + 2, l + 3, . . . , 2l + 1

0 cl = L1,

(−1) cl−1 = L2,

(6.12)

For i = 2l, 2l − 1, . . . , l + 2 we obtain: c0 = c1 = · · · = cl−2 = 0. Then,

cl−1 = −L2, cl is free, L1 = 0 and cl+1 = cl+2 = · · · = c2l = 0.

Therefore,

Gn = cl xlyl − L2xl−1yl+1.

Since cl 6= 0, without loss of generality, we assume that cl = 1.

Equating the terms of degree n in (6.11) we have

x Gn,x +
[

gx2 + xy
]

Gn−1,x − y Gn,y +
[

(g − 1)xy + y2
]

Gn−1,y

+ [l(1 − 2g)x − 2ly] Gn−1 = L0xlyl .

Set Gn−1 = ∑
n−1
i=0 cn−i−1xn−i−1yi. Replacing Gn−1 in the above equation and using that n = 2l

we obtain:

∑
2l
i=0 [(−g − i + l)c2l−i−1 − c2l−i] x2l−iyi = L0 xlyl + 2L2 xl−1yl+1,

where ci = 0 for i < 0 and i > 2l − 1. Equating the coefficients of xiyj in the above equation,

we have:














(−g − i + l)c2l−i−1 − c2l−i = 0, where i = 0, 1, . . . , l − 1, l + 2, . . . , 2l

(−g)cl−1 − cl = L0,

(−g − 1)cl−2 − cl−1 = 2L2.

(6.13)
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For i = 2l, . . . , l + 2 we have: c0 = c1 = · · · = cl−2 = 0. Then, cl−1 = −2L2, cl = 2gL2 − L0.

Working recursively,

cl+1 = (−g + 1)(2gL2 − L0), cl+2 = (−g + 1)(−g + 2)(2gL2 − L0), . . .

c2l−1 = (−g + 1)(−g + 2) . . . (−g + l − 1)(2gL2 − L0).

Replacing c2l−1 in (6.13) where i = 0, we have:

(−g + l)(−g + l − 1) . . . (−g + 1)(2gL2 − L0) = 0.

Then, if g /∈ {l, l − 1, . . . , 1} we must have L0 = 2gL2 and

Gn−1 = −2L2xl−1yl .

Therefore, L = 2gL2 + L2y.

Equating the terms of degree n − 1 in (6.11) we have:

2aGn,x + x Gn−1,x +
[

gx2 + xy
]

Gn−2,x + a(2g − 1)Gn,y − y Gn−1,y

+
[

(g − 1)xy + y2
]

Gn−2,y + [l(1 − 2g)x − 2ly] Gn−2 = alL2xl−1yl .

Set Gn−2 = ∑
n−2
i=0 cn−i−2xn−i−2yi. Replacing Gn−2 in the above equation and using that n = 2l

we obtain:

2l

∑
i=0

[(−2g − i + l)c2l−i−2 − 2c2l−i−1] x2l−i−1yi = al(−2g + 1)L2 xlyl−1

+
(

L2(al − 2)− 2al + a(2g − 1)(l + 1)L2

)

xl−1yl + 2a(l − 1)L2 xl−2yl+1,

where ci = 0 for i < 0 and i > 2l − 2. Equating the coefficients of xiyj in the above equation,

we have:






















(−2g − i + l)c2l−i−2 − 2c2l−i−1 = 0, where i = 0, 1, . . . , l − 2, l + 2, . . . , 2l − 1

(−2g + 1)cl−1 − 2cl = al(−2g + 1)L2,

(−2g)cl−2 − 2cl−1 = L2(al − 2)− 2al + a(2g − 1)(l + 1)L2,

(−2g − 1)cl−3 − 2cl−2 = 2a(l − 1)L2.

(6.14)

For i = 2l − 1, . . . , l + 2, we obtain: c0 = c1 = · · · = cl−3 = 0. Then,

cl−2 = −a(l − 1)L2, cl−1 = al + L2

(

1 +
a
2
− 2ag

)

,

cl =
al
2
(2g − 1)L2 +

(−2g + 1)

2

(

L2 + al +
aL2

2
− 2agL2

)

.
= A

Working recursively, we have:

cl+1 =
(−2g + 2)A

2
, cl+2 =

(−2g + 2)(−2g + 3)A
22

, . . .

c2l−2 =
(−2g + l − 1)(−2g + l − 2) . . . (−2g + 2)A

2l−2
.



46 R. Oliveira, D. Schlomiuk, A. M. Travaglini and C. Valls

Replacing c2l−2 in (6.14) where i = 0 we obtain:

(−2g + l)(−2g + l − 1) . . . (−2g + 2)A
2l−2

= 0, or

(−2g + l)(−2g + l − 1) . . . (−2g + 2)(−2g + 1)

2l−1

(

−alL2 + L2 + al +
aL2

2
− 2agL2

)

= 0

If g /∈
{

1
2 , 2

2 , 3
2 , . . .

}

, this is (a, g) /∈ L1 then we must have:

−alL2 + L2 + al +
aL2

2
− 2agL2 = 0,

that happens if, and only if,

L2 =
−2al

−2al + 2 + a − 4ag
, for − 2al + 2 + a − 4ag 6= 0, or g =

2 + a − 2al
4a

.

Suppose that (a, g) /∈ L1 ∪ C′ where

C′ = ∪k∈NCk = ∪k∈N

{

(a, g) : g =
2 + a − 2ak

4a
and a 6= 0

}

.

Therefore, we have:

Gn = xlyl +
2al

(−2al + 2 + a − 4ag)
xl−1yl+1, Gn−1 =

4al
(−2al + 2 + a − 4ag)

xl−1yl ,

Gn−2 =
2a2l(l − 1)

(−2al + 2 + a − 4ag)
xl−2yl − 2a2l2

(−2al + 2 + a − 4ag)
xl−1yl−1,

L =
−4agl

(−2al + 2 + a − 4ag)
− 2al

(−2al + 2 + a − 4ag)
y.

Equating the terms of degree n − 2 in (6.11) we have:

2aGn−1,x + x Gn−2,x +
[

gx2 + xy
]

Gn−3,x + a(2g − 1)Gn−1,y − y Gn−2,y

+
[

(g − 1)xy + y2
]

Gn−3,y + [l(1 − 2g)x − 2ly] Gn−3 =
−4a2gl2

(−2al + 2 + a − 4ag)
xl−1yl−1.

Set Gn−3 = ∑
n−3
i=0 cn−i−3xn−i−3yi. Replacing Gn−3 in the above equation and using that n = 2l

we obtain:

2l−2

∑
i=0

[(−3g − i + l)c2l−i−3 − 3c2l−i−2] x2l−i−2yi

=
4a2l2(1 − 3g)

(−2al + 2 + a − 4ag)
xl−1yl−1 − 4a2l(l − 1)

(−2al + 2 + a − 4ag)
xl−2yl ,

where ci = 0 for i < 0 and i > 2l − 3. Equating the coefficients of xiyj in the above equation,

we have:


























(−3g − i + l)c2l−i−3 − 3c2l−i−2 = 0, where i = 0, 1, . . . , l − 2, l + 1, . . . , 2l − 2

(−3g + 1)cl−2 − 3cl−1 =
4a2l2(1 − 3g)

(−2al + 2 + a − 4ag)
,

(−3g)cl−3 − 3cl−2 = − 4a2l(l − 1)

(−2al + 2 + a − 4ag)
.

(6.15)
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For i = 2l − 2, . . . , l + 1 : c0 = c1 = · · · = cl−3 = 0. Then,

cl−2 =
4a2l(l − 1)

3(−2al + 2 + a − 4ag)
, cl−1 =

(4a2l(2l − 1))(1 − 3g)
(−9)(−2al + 2 + a − 4ag)

.
= B.

Working recursively, we obtain:

cl =
(−3g + 2)B

3
, cl+1 =

(−3g + 2)(−3g + 3)B
32

, . . .

c2l−3 =
(−3g + 2)(−3g + 3) . . . (−3g + l − 1)B

3l−3
.

Replacing c2l−3 in (6.15) where i = 0 :

(−3g + l)(−3g + l − 1) . . . (−3g + 2)B
3l−2

= 0, or

(−3g + l)(−3g + l − 1) . . . (−3g + 2)(−3g + 1)

3l

(

4a2l(2l − 1)

2al − 2 − a + 4ag

)

= 0.

Consider L2 = ∪k∈NL2,k = ∪k∈N

{

(a, g) : g = k
3

}

. Then, if (a, g) /∈ (L1 ∪ L2 ∪ C′) we must

have

4a2l(2l − 1) = 0.

What happens if, and only if a = 0 or l = 0 or l = 1/2. Therefore, systems (A) have no

exponential factors for (a, g) ∈ R2 − (L1 ∪ L2 ∪ C′)

Case 4: n > 2l.

Consider the notation for Gn introduced in the study of Case 2. Equating the terms of

degree n + 1 in (6.11) we have:

[

gx2 + xy
]

n

∑
i=0

(n − i)cn−ix
n−i−1yi +

[

(g − 1)xy + y2
]

n

∑
i=0

icn−ix
n−iyi−1

+ [l(1 − 2g)x − 2ly]
n

∑
i=0

cn−ix
n−iyi = 0.

Working in a similar way to the previous cases, we obtain:

n+1

∑
i=0

[(gn − i + l(1 − 2g))cn−i + (n − 2l)cn−i+1] xn−i+1yi = 0,

when ci = 0 for i < 0 and i > n. Therefore,

(gn − i + l(1 − 2g))cn−i + (n − 2l)cn−i+1 = 0,

for i = 0, 1, . . . , n + 1. As n 6= 2l we have

c0 = c1 = · · · = cn = 0.

Then, Gn = 0.

Summing up these four cases the proof follows.
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(c) Suppose (a, g) ∈ R2 − (L1 ∪ L2 ∪ C′). Then, by (a) and (b) we get that the systems (A)

have only the algebraic solution

J1(x, y) = a + xy

with cofactor α1 = (−1+ 2g)x + 2y and they have no exponential factor. Under these assump-

tions
{

λ1α1 = 0 ⇔ λ1 = 0 and

λ1α1 = −div(P, Q) = −(1 + 2gx + y)− (−1 + (g − 1)x + 2y) has no solution.

Hence, from the Darboux theory of integrability it follows that systems (A) are not Liouvillian

integrable.

6.2 The systems (B)
{

ẋ = 2a + gx2 + xy,

ẏ = a(2g − 1) + (g − 1)xy + y2,

where a(g − 1) 6= 0.

Theorem 6.2.

(a) If (a, g) /∈ L1 then the only invariant algebraic curves of a system in the family (B) are of the
form Jm

1 = 0 where J1(x, y) = a + xy and m is a positive integer.

(b) If (a, g) /∈ (L1 ∪ L3) then any system in the family (B) has no exponential factors.

(c) If (a, g) /∈ (L1 ∪ L3) then any system in the family (B) is not Liouvillian integrable.

Proof. (a) By a straightforward computation, we can verify that J1(x, y) = a + xy is an

invariant hyperbola with cofactor α1(x, y) = (−1 + 2g)x + 2y. Assume that

C =
n

∑
i=0

Ci(x, y) = 0

is an invariant algebraic curve of the systems (B) with cofactor K = K0 + K1x + K2y, where Ci

are homogeneous polynomial of degree i where 0 ≤ i ≤ n. From the definition of the invariant

algebraic curve (1.4), we have:

(

2a + gx2 + xy
)

n

∑
i=0

Ci,x +
(

a(2g − 1) + (g − 1)xy + y2
)

n

∑
i=0

Ci,y

= (K0 + K1x + K2y)
n

∑
i=0

Ci. (6.16)

The step where we take the terms of degree n+ 1 in (6.16) is exactly the same made for system

(A). Then we have:

Cn = xm yl , where n = m + l,

K1 = gm + (g − 1)l; K2 = m + l.
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Now, taking from (6.16) the terms of degree n we have:

(

gx2 + xy
)

Cn−1,x +
(

(g − 1)xy + y2
)

Cn−1,y

= K0 Cn + [(gm + (g − 1)l) x + (m + l) y] Cn−1. (6.17)

Set Cn−1 = ∑
n−1
i=0 cn−1−ixn−1−iyi. Replacing Cn, Cn−1 in (6.17) and doing some calculations,

we obtain:

m+l−1

∑
i=0

(l − i − g) cm+l−1−i xm+l−i yi −
m+l−1

∑
i=0

cm+l−1−i xm+l−1−i yi+1 = K0 xmyl .

This equation can be written as

m+l

∑
i=0

[(l − i − g) cm+l−1−i − cm+l−i] xm+l−i yi = K0 xmyl ,

where ci = 0 for i < 0 and i > m + l − 1. Equating the coefficients of xiyj in the above

equation, we get:

{

(l − i − g) cm+l−1−i − cm+l−i = 0, where i = 0, 1, . . . , l − 1, l + 1, . . . , m + l

(−g) cm−1 − cm = K0.
(6.18)

For i = m + l, m + l − 1, . . . , l + 1 we have:

c0 = c1 = · · · = cm−1 = 0.

Then cm = −K0. Working recursively we have

cm+1 = (−g + 1)(−K0),

cm+2 = (−g + 1)(−g + 2)(−K0), . . .

cm+l−1 = (−g + 1)(−g + 2) . . . (−g + l − 1)(−K0).

Replacing cm+l−1 in (6.18) where i = 0, we get

(−g + l)(−g + l − 1) . . . (−g + 2)(−g + 1)(−K0) = 0.

Note that

(−g + l)(−g + l − 1) . . . (−g + 2)(−g + 1)

is a polynomial of degree l in the variable g, which has at most l real roots. Denote by Sl
1 the

set of roots. If g /∈ Sl
1 we have that K0 = 0. Therefore, we can conclude that

K = (gm + (g − 1)l)x + (m + l)y,

since g /∈ Sl
1. This is Cn−1 ≡ 0.

The step where we take the terms of degree n − 1 in (6.16) is exactly the same made for

system (A). Then we have m = l which leads us to

K = (2g − 1)mx + 2my,

Cn = xmym, Cn−1 ≡ 0, Cn−2 = amxm−1ym−1,
(6.19)
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for g /∈ Sm
1 ∪ Sm

2 numerable set, where Sm
2 is the set of roots of the polynomial

(−2g + 1)(−2g + 2) . . . (−2g + m − 1)(−2g + m).

Following similar arguments for terms of degree n − 2, n − 3, ... in (6.16) we can prove that

C = (a + xy)m. It follows that C = Jm
1 , m ∈ N for all (a, g) /∈ L1, where L1 = ∪k∈NL1,k =

∪k∈N

{

(a, g) ∈ R2 : g = k
2 and a 6= 0

}

.

(b) From (a) systems (B) have only the algebraic solution J1(x, y) = a + xy for (a, g) ∈ R2 −
L1. Then, by Proposition 2.10, if systems (B) have an exponential factor, it must have the form

F = exp
(

G/Jl
1

)

with a cofactor L = L0 + L1x + L2y and where l is non-negative integers. Since the invariant

algebraic curve Jl
1 = 0 has the cofactor

K = lα1 = l(−1 + 2g)x + 2ly,

it follows by (2.2) that G satisfies the following equation:

[

2a + gx2 + xy
]

Gx +
[

a(2g − 1) + (g − 1)xy + y2
]

Gy + [l(1 − 2g)x − 2ly] G

=
[

L0 + L1x + L2y
]

l

∑
k=0

(

l
k

)

akxl−kyl−k (6.20)

From now on we assume G(x, y) = ∑
n
i=0 Gi(x, y), where Gi is a homogeneous polynomial of

degree i and split the study in cases.

Case 1: n + 1 < 2l.

This case is exactly the same proved for systems (A). We have that F is constant, what

cannot happen.

Case 2: n + 1 = 2l.

This case is also the same proved for systems (A). We have that if g /∈ {l, l − 1, ..., 1}, this

is (a, g) /∈ L1 then L = 0. Consequently, system (B) has no exponential factors for (a, g) ∈
R2 − L1.

Case 3: n = 2l.

Set Gn = ∑
n
i=0 cn−ixn−iyi, where cn−i are constants. Equating the terms of (6.20) with

degree n + 1 we have

∑
2l+1
i=0 (l − i)c2l−ix2l−i+1yi = L1xl+1yl + L2xlyl+1,

where ci = 0 for i < 0 and i > n. This is the same equation solved for systems (A) in case 3.

Then we have:

Gn = xlyl − L2xl−1yl+1 and L1 = 0.

Equating the terms of degree n in (6.20) we have

[

gx2 + xy
]

Gn−1,x +
[

(g − 1)xy + y2
]

Gn−1,y + [l(1 − 2g)x − 2ly] Gn−1 = L0 xlyl .
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Set Gn−1 = ∑
n−1
i=0 cn−i−1xn−i−1yi. Replacing Gn−1 in the above equation and using that n = 2l

we obtain:
2l

∑
i=0

[(−g − i + l)c2l−i−1 − c2l−i] x2l−iyi = L0 xlyl ,

where ci = 0 for i < 0 and i > 2l − 1. Equating the coefficients of xiyj in the above equation,

we have:
{

(−g − i + l)c2l−i−1 − c2l−i = 0, where i = 0, 1, . . . , l − 1, l + 1, . . . , 2l

(−g)cl−1 − cl = L0.
(6.21)

Then

c0 = c1 = · · · = cl−1 = 0, cl = −L0,

cl+1 = (−g + 1)(−L0), cl+2 = (−g + 1)(−g + 2)(−L0), . . .

c2l−1 = (−g + 1)(−g + 2) . . . (−g + l − 1)(−L0).

Replacing c2l−1 in (6.21) where i = 0, we have:

(g + l)(−g + l − 1) . . . (−g + 1)(−L0) = 0.

Then, if g /∈ {l, l − 1, . . . , 1} we must have L0 = 0. Therefore,

Gn−1 ≡ 0 and L = L2y.

Equating the terms of degree n − 1 in (6.20) we have:

2aGn,x +
[

gx2 + xy
]

Gn−2,x + a(2g − 1)Gn,y +
[

(g − 1)xy + y2
]

Gn−2,y

+ [l(1 − 2g)x − 2ly] Gn−2 = alL2xl−1yl .

Set Gn−2 = ∑
n−2
i=0 cn−i−2xn−i−2yi. Replacing Gn−2 in the above equation and using that n = 2l

we obtain:

2l

∑
i=0

[(−2g − i + l)c2l−i−2 − 2c2l−i−1] x2l−i−1yi = (al(1 − 2g))xlyl−1

+ (L2al − 2al + a(2g − 1)(l + 1)L2)xl−1yl + 2a(l − 1)L2xl−2yl+1,

where ci = 0 for i < 0 and i > 2l − 2. Equating the coefficients of xiyj in the above equation,

we have:






















(−2g − i + l)c2l−i−1 + (−2)c2l−i = 0, where i = 0, 1, . . . , l − 2, l + 2, . . . , 2l − 1

(−2g + 1)cl−1 + (−2)cl = al(1 − 2g),

(−2g)cl−2 + (−2)cl−1 = L2al − 2al + a(2g − 1)(l + 1)L2,

(−2g − 1)cl−3 + (−2)cl−2 = 2a(l − 1)L2.

(6.22)

Therefore,

c0 = c1 = · · · = cl−3 = 0, cl−2 = −a(l − 1)L2, cl−1 =
a
2
(2l + L2)− 2agL2,

cl =
L2a
2

(

−2g +
1

2

)

(−2g + 1)
.
= A, cl+1 =

(−2g + 2)A
2

,

cl+2 =
(−2g + 2)(−2g + 3)A

4
, . . . , c2l−2 =

(−2g + l − 1)(−2g + l − 2) . . . (−2g + 2)

2l−2
A.
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Replacing c2l−2 in (6.22) where i = 0 we have:

(−2g + l)(−2g + l − 1) . . . (−2g + 2)

2l−2
A = 0, or

(−2g + l)(−2g + l − 1) . . . (−2g + 2)(−2g + 1)

2l−2

[

L2a
2

(

−2g +
1

2

)]

= 0.

Then, if g /∈ {1, 2, . . . , 1} ∪
{

1
2 , 2

2 , . . . , l
2

}

∪ {1/4}, this is (a, g) /∈ (L1 ∪ L3) we must have

L2 = 0.

Therefore, L = 0 and systems (B) have no exponential factors for (a, g) ∈ R2 − (L1 ∪ L3).

Case 4: n > 2l.

This case is the same proved for systems (A). Then, Gn = 0 that cannot happen.

Summing up these four cases the proof follows.

(c) Suppose (a, g) ∈ R2 − (L1 ∪ L3). Then, by (a) and (b) we get that the systems (B) have

only the algebraic solution

J1(x, y) = a + xy

with cofactor α1 = (−1+ 2g)x + 2y and they have no exponential factor. Under these assump-

tions
{

λ1α1 = 0 ⇔ λ1 = 0 and

λ1α1 = −div(P, Q) = −(2gx + y)− ((g − 1)x + 2y) has no solution.

Hence, from the Darboux theory of integrability it follows that systems (B) are not Liouvillian

integrable.

7 Geometric study of the families (C) and (D)

In this section we present a detailed study of two of the normal forms (C) and (D) for the

family QSHη=0. We note that we obtained, as limiting cases of the family (D), three other

normal forms, i.e. (F), (G) and (I). This is part of the more ample project of gathering data on

the geometry of polynomial systems as expressed in the configurations of invariant algebraic

curves and their impact on integrability. This data is useful in gaining more insight into

the Darboux theory of integrability in order to enable us to answer some questions and in

particular to give an answer to the problem of Poincaré for specific families of polynomial

differential systems. We are also interested in the topological phase portraits of systems in

QSHη=0 and their bifurcation diagrams. Is there any relationship between the two kinds of

bifurcation diagrams? Can we determine when we have algebraically integrable systems? All

these motivate our study in this section and we answer some of these questions here or in the

last section.

We first present the results of our calculations of the geometric features of the configu-

rations as well as the information on the singularities. Afterwards we sum up these in a

proposition and in pictures of the two bifurcation diagrams: one of the changes in the config-

urations, the other on the topological bifurcation of the systems.
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7.1 Geometric analysis of family (C)

Consider the family

(C)

{

ẋ = 2a + 3cx + x2 + xy

ẏ = a − c2 + y2,

where a 6= 0.

For a complete understanding of the bifurcation diagram of the systems in the full family

defined by the equations (C) we study here also the limit case a = 0 where the equations are

still defined.

In the generic case

a(a − c2)(a − 8c2/9) 6= 0

the systems have two invariant lines J1 and J2 and only one invariant hyperbolas J3 with

respective cofactors αi, 1 ≤ i ≤ 3 where

J1 = y −
√

c2 − a, α1 = y +
√

c2 − a,

J2 = y +
√

c2 − a, α2 = y −
√

c2 − a,

J3 = a + cx + xy, α3 = 2c + x + 2y.

We note that if a = c2 the two lines coincide and we get a double line. Also if a = 8v2/9

we get a double hyperbola as we later prove.

The multiplicities of each invariant straight line and invariant hyperbola appearing in the

divisor ICD of invariant algebraic curves were calculated by using the 1st extactic polynomial

for the lines and the 2nd extactic polynomial for the hyperbola.



54 R. Oliveira, D. Schlomiuk, A. M. Travaglini and C. Valls

(i) The generic case: a(a − c2)(a − 8c2/9) 6= 0.

Table 7.1: Invariant curves, cofactors, singularities and intersection points of

family (C) for the generic case.

Inv. curves and cofactors Singularities Intersection points

J1 = y −
√

c2 − a
J2 = y +

√
c2 − a

J3 = a + cx + xy

α1 = y +
√

c2 − a
α2 = y −

√
c2 − a

α3 = 2c + x + 2y

P1 =(−
√

c2−a−c,−
√

c2−a)
P2 =(−2(

√
c2−a+c),

√
c2−a)

P3 =(
√

c2−a−c,
√

c2−a)
P4 =(2(

√
c2−a−c),−

√
c2−a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For a <
8c2

9 we have

a, s, a, s; (0
2)SN, N

For 8c2

9 < a < c2 we have

s, s, a, a; (0
2)SN, N if c < 0

a, a, s, s; (0
2)SN, N if c > 0

For c2
< a we have

©, ©, ©, ©; (0
2)SN, N

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 =

{

P∞
2 simple

P3 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 =

{

P∞
2 simple

P1 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Table 7.2: Divisor and zero-cycles of family (C) for the generic.

Divisor and zero-cycles Degree

ICD =

{

J1 + J2 + J3 + L∞ if a < c2

JC
1 + JC

2 + J3 + L∞ if a > c2

M0CS =

{

P1 + P2 + P3 + P4 + 2P∞
1 + P∞

2 if a < c2

PC
1 + PC

2 + PC
3 + PC

4 + 2P∞
1 + P∞

2 if a > c2

T = ZJ1 J2 J3 = 0

M0CT =

{

2P1 + P2 + 2P3 + P4 + 2P∞
1 + 4P∞

2 if a < c2

2PC
1 + PC

2 + 2PC
3 + PC

4 + 2P∞
1 + 4P∞

2 if a < c2

4

4

7

7

5

12

12

where the total curve T has four distinct tangents at P∞
2 .

Remark 7.1. Mathematica could not give a response for the computation of the first integral

of family (C) in this generic case.
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Table 7.3: Integrating factor of family (C) for the generic case.

Integrating Factor

General R = J
c+
√

c2−a

2
√

c2−a
1 J

−c+
√

c2−a

2
√

c2−a
2 J−2

3

Simple

example
R = J

c+
√

c2−a

2
√

c2−a
1 J

−c+
√

c2−a

2
√

c2−a
2 J−2

3

(ii) The non-generic cases: a(a − c2)(a − 8c2/9) = 0.

(ii.1) a = c2 and c 6= 0.

Table 7.4: Invariant curves, exponential factor, cofactors, singularities and inter-

section points of family (C) for a = c2 and c 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 = y
J2 = xy

c + c + x

E3 = e
g0+g1y

y

α1 = y
α2 = 2c + x + 2y
α3 = −g0

P1 = (−2c, 0)
P2 = (−c, 0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

sn, sn; (0
2)SN, N

J1 ∩ J2 =

{

P∞
2 simple

P2 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Table 7.5: Divisor and zero-cycles of family (C) for a = c2 and c 6= 0.

Divisor and zero-cycles Degree

ICD = 2J1 + J2 + L∞

M0CS = 2P1 + 2P2 + 2P∞
1 + P∞

2

T = ZJ
2
1 J2 = 0

M0CT = 2P1 + 3P2 + 2P∞
1 + 4P∞

2

4

7

5

11

Table 7.6: First integral and integrating factor of family (C) for a = c2 and c 6= 0.

First integral Integrating Factor

General I R = J1 J−2
2 E

− c
g0

3

Simple

example
I R = J1 J−2

2 E−c
3

I = I =
c2
(

ec/yEi

(

− c
y

)

(

c2 + cx + xy
)

+ y(c + x − y)
) (

e
g0
y +g1

)− c
g0

c2 + cx + xy
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where Ei(z) = −
∫ ∞

−z
e−t

t dt is the exponential integral function that has a branch cut disconti-

nuity in the complex z plane running from −∞ to 0.

(ii.2) a = 8c2/9 and c 6= 0.

Table 7.7: Invariant curves, exponential factor, cofactors, singularities and inter-

section points of family (C) for a = 8c2/9 and c 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = −c + 3y
J2 = c + 3y
J3 = 8c2 + 9cx + 9xy

E4 = e
c2(48g0−g1x+48g1y)+54cg0x+3cg1y(21x−8y)+54g0xy

48c2(8c2+9cx+9xy)

α1 = y + c
3

α2 = y − c
3

α3 = 2c + x + 2y

α4 = − g1(c−3y)
54c

P1 =
(

− 8c
3 , c

3

)

P2 =
(

− 4c
3 ,− c

3

)

P3 =
(

− 2c
3 , c

3

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

s, sn, a; (0
2)SN, N

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 =

{

P∞
2 simple

P3 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 =

{

P∞
2 simple

P2 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Table 7.8: Divisor and zero-cycles of family (C) for a = 8c2/9 and c 6= 0.

Divisor and zero-cycles Degree

ICD = J1 + J2 + 2J3 + L∞

M0CS = P1 + 2P2 + P3 + 2P∞
1 + P∞

2

T = ZJ1 J2 J
2
3 = 0

M0CT = P1 + 3P2 + 3P3 + 3P∞
1 + 5P∞

2

5

7

7

15

Table 7.9: First integral and integrating factor of family (C) for a = 8c2/9 and

c 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J0
3 E

− 18cλ2
g1

4 R = J2
1 Jλ′

2
2 J−2

3 E
− 18(cλ′2+c)

g1
4

Simple

example
I = J2E−18c

4 R =
J2
1

J2 J2
3

(ii.3) a = 0 and c 6= 0.

Under this condition, systems defined by (C) do not belong to QSH. All the invariant lines

are x = 0 and ±c + y = 0 that are simple. By perturbing the reducible conic x(c + y) = 0 we

can produce the hyperbola a+ cx+ xy = 0. Furthermore, the conic x(c+ y) = 0 has integrable

multiplicity two.



Darboux theory of integrability with applications to a family of QSH 57

Table 7.10: Invariant curves, exponential factor, cofactors, singularities and in-

tersection points of family (C) for a = 0 and c 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = −c + y
J2 = c + y
J3 = x

E4 = e

(

− c2(g0−3g1x)+2cg0(x−y)−3cg1xy+g0y2

3cx(c+y)

)

α1 = c + y
α2 = −c + y
α3 = 3c + x + y

α4 = g0(y−c)
3c

P1 = (−4c, c)
P2 = (−2c,−c)
P3 = (0,−c)
P4 = (0, c)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

s, a, s, a; (0
2)SN, N

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 = P4 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 = P3 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ L∞ = P∞
1 simple

Table 7.11: Divisor and zero-cycles of family (C) for a = 0 and c 6= 0.

Divisor and zero-cycles Degree

ICD = J1 + J2 + J3 + L∞

M0CS = P1 + P2 + P3 + P4 + 2P∞
1 + P∞

2

T = ZJ1 J2 J3 = 0

M0CT = P1 + P2 + 2P3 + 2P4 + 2P∞
1 + 3P∞

2

4

7

4

11

Table 7.12: First integral and integrating factor of family (C) for a = 0 and c 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J0
3 E

− 3cλ2
g0

4 R = J1 Jλ′
2

2 J−2
3 E

− 3(2c+cλ′2)
g0

4

Simple

example
I = J2E−3c

4 R = J1

J2
2 J2

3

(ii.4) a = c = 0.

Under this condition, systems defined by (C) do not belong to QSH. Here we have a single

system which has a generalized Darboux first integral. The affine invariant lines x = 0 and

y = 0 are both double. By perturbing the reducible conic xy = 0 we can produce the hyperbola

a + cx + xy = 0.
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Table 7.13: Invariant curves, exponential factor, cofactors, singularities and in-

tersection points of family (C) for a = c = 0.

Invariant curves and cofactors Singularities Intersection points

J1 = x
J2 = y
E3 = eg0+

g1y
x

E4 = eh0+
h1
y

α1 = c + y
α2 = −c + y
α3 = −g1y
α4 = −h1

P1 = (0, 0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

phph; (0
2)SN, N

J1 ∩ J2 = P1 simple

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ = P∞
2 simple

Table 7.14: Divisor and zero-cycles of family (C) for a = c = 0.

Divisor and zero-cycles Degree

ICD = 2J1 + 2J2 + L∞

M0CS = 4P1 + 2P∞
1 + P∞

2

T = ZJ
2
1 J

2
2 = 0

M0CT = 4P1 + 3P∞
1 + 3P∞

2

5

7

5

10

Table 7.15: First integral and integrating factor of family (C) for a = c = 0.

First integral Integrating Factor

General I = J0
1 Jg1λ3

2 Eλ3
3 E0

4 R = J−2
1 J−1+g1λ′

3
2 Eλ′

3
3 E0

4

Simple

example
I = J2E3 R = 1

J2
1 J2

We sum up the topological, dynamical and algebraic geometric features of family (C) and

also confront our results with previous results in literature in the following proposition. We

show that all the phase portraits for family (C) are missing in [41].

Proposition 7.2.

(a) For the family (C) we obtained six distinct configurations C(C)
1 –C(C)

6 of invariant hyperbolas and
lines (see Figure 7.1 for the complete bifurcation diagram of configurations of this family). The
bifurcation set of configurations in the full parameter space is is a(a − c2)(a − 8c2/9) = 0 and
it is made of points of bifurcation due to change in the multiplicities of the invariant algebraic
invariant curves: On a = c2 and c 6= 0 the invariant lines coalesce into a double line. On
a = 8c2/9 and c 6= 0 the hyperbola becomes double. Outside the parameter space, i.e. on a = 0

the invariant hyperbola becomes reducible producing the lines x = 0 and c + y = 0 and when
also c = 0 then x = 0 and y = 0 become double lines.
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(b) The family (C) is Liouvillian integrable for a(a− 8c2/9) 6= 0 and generalized Darboux integrable
for a = 8c2/9. All systems in family (C) do not have a polynomial inverse integrating factor.
Outside the parameter space, i.e. on a = 0 we have a polynomial inverse integrating factor only
when c = 0.

(c) For the family (C) we have five topologically distinct phase portraits P(C)
1 –P(C)

5 . The topological
bifurcation set is the same as the one for configurations, i.e. it is a(a − c2)(a − 8c2/9) = 0

(see Figure 7.2 for the complete topological bifurcation diagram). The parabolas a = c2 and
a = 8c2/9 are bifurcation sets of singularities and the line a = 0 is a bifurcation of separatrices
connection. The phase portraits P(C)

1 − P(C)
5 are not topologically equivalent with anyone of the

phase portraits in [41].

Proof of Proposition 7.2. (a) We have the following type of divisors and zero-cycles of the

total invariant curve T for the configurations of family (C):

Table 7.16: Configurations for family (C).

Configurations Divisors and zero-cycles of the total inv. curve T

C(C)
1

ICD = J1 + J2 + J3 + L∞

M0CT = 2P1 + P2 + 2P3 + P4 + 2P∞
1 + 4P∞

2

C(C)
2

ICD = J1 + J2 + J3 + L∞

M0CT = 2P1 + P2 + 2P3 + P4 + 2P∞
1 + 4P∞

2

C(C)
3

ICD = J1 + J2 + J3 + L∞

M0CT = 2P1 + P2 + 2P3 + P4 + 2P∞
1 + 4P∞

2

C(C)
4

ICD = JC
1 + JC

2 + J3 + L∞

M0CT = 2PC
1 + PC

2 + 2PC
3 + PC

4 + 2P∞
1 + 4P∞

2

C(C)
5

ICD = 2J1 + J2 + L∞

M0CT = 2P1 + 3P2 + 2P∞
1 + 4P∞

2

C(C)
6

ICD = J1 + J2 + 2J3 + L∞

M0CT = P1 + 3P2 + 3P3 + 3P∞
1 + 5P∞

2

Note that C(C)
1 , C(C)

2 and C(C)
3 admit the same type of divisor and zero-cycles but the con-

figurations are non equivalent. In fact, consider the convex quadrilateral in Figure 7.1 formed

by the four finite singularities in these configurations. In C(C)
1 any two consecutive or opposite

points of this quadrilateral are not joined by anyone of the two branches of the hyperbola, in

C(C)
2 , two opposite points are joined by a branch of the hyperbola and in C(C)

3 two consecutive

points of this quadrilateral is joined by a branch of the hyperbola.

Therefore, the configurations C(C)
1 up to C(C)

6 are all distinct. For the limit cases of family

(C) we have the following configurations:

Table 7.17: Configurations for the limit cases of family (C).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 + L∞

M0CT = P1 + P2 + 2P3 + 2P4 + 2P∞
1 + 3P∞

2

c2
ICD = 2J1 + 2J2 + L∞

M0CT = 4P1 + 3P∞
1 + 3P∞

2
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Therefore, we have two distinct configurations for the limit cases.

(b) In the generic case a(a − c2)(a − 8c2/9) 6= 0 the three cofactors α1, α2, α3 of J1, J2, J3 are

linearly independent. Hence we cannot get a Darboux first integral by using these curves.

Furthermore the curves are each of multiplicity 1 and hence we cannot have exponential

factors attached to them. However we obtained an integrating factor for (C) in the generic

case. Using Mathematica we could not obtain an expression for the first integral of these

systems but we know that it exists and it is Liouvillian. For the non-generic cases we obtained

first integrals and they were given in previously exhibited tables.

Let us show that the family does not admit a polynomial inverse integrating factor.

(i) The generic case: a(a − c2)(a − 8c2/9) 6= 0.

We have the following integrating factor

R = J
c+
√

c2−a

2
√

c2−a
1 J

−c+
√

c2−a

2
√

c2−a
2 J−2

3 .

In order to R−1 to be polynomial we must have that











c+
√

c2−a
2
√

c2−a
= c

2
√

c2−a
+ 1

2 = −m1, m1 ∈ N

−c+
√

c2−a
2
√

c2−a
= −c

2
√

c2−a
+ 1

2 = −m2, m2 ∈ N.

Adding up these two expressions we have

1 = −(m1 + m2), m1, m2 ∈ N

and this equation does not have a solution. Therefore, R−1 cannot be polynomial.

(ii) The non-generic case: a(a − c2)(a − 8c2/9) = 0.

(ii.1) a = c2 : We have the integrating factor

R = J1 J−2
2 E−c/g0

3

and it is clear that R−1 cannot be polynomial.

(ii.2) a = 8c2/9 : We have the integrating factor

R = J2
1 Jλ′

2
2 J−2

3 E−18(cλ′
2+c)/g1

4

again it is clear that R−1 cannot be polynomial.

(ii.3) a = 0 and c 6= 0. We have the integrating factor

R = J1 Jλ′
2

2 J−2
3 E−3(2c+cλ′

2)/g0

4 .

again it is clear that R−1 cannot be polynomial.

(ii.4) a = 0 and c = 0 : We have the integrating factor

R = J−2
1 J−1+g1λ′

3
2 Eλ′

3
3 E0

4.

Taking λ′
3 = 0 we have that R−1 = J2

1 J2 which is polynomial.
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(c) We have:

Table 7.18: Phase portraits for family (C).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(C)
1 ((0

2)SN, N) (a, s, a, s) 4SC f
f 6SC∞

f 0SC∞
∞

P(C)
2 ((0

2)SN, N) (a, s, a, s) 4SC f
f 5SC∞

f 1SC∞
∞

P(C)
3 ((0

2)SN, N) (©, ©, ©, ©) 0SC f
f 0SC∞

f 2SC∞
∞

P(C)
4 ((0

2)SN, N) (sn, sn) 1SC f
f 5SC∞

f 1SC∞
∞

P(C)
5 ((0

2)SN, N) (s, sn, a) 3SC f
f 5SC∞

f 1SC∞
∞

Therefore, we have five distinct phase portraits for systems (C). For the limit case of family

(C) we have the following phase portraits:

Table 7.19: Phase portraits for the limit case of family (C).

Phase portraits Sing. at ∞ Finite sing. Separatrix connections

p1 ((0
2)SN, N) (s, a, s, a) 4SC f

f 5SC∞
f 0SC∞

∞

p2 ((0
2)SN, N) phph 0SC f

f 4SC∞
f 0SC∞

∞

Therefore, we have two topologically distinct phase portraits for the limit cases.

Table 7.20: Phase portraits in [41] that admit 2 singular points at infinity with

the type (SN, N).

Phase Portrait Sing. at ∞ Real finite sing. Separatrix connections

L01 ((0
2)SN, N) ∅ 0SC f

f 0SC∞
f 3SC∞

∞

L03 ((0
2)SN, N) ∅ 0SC f

f 0SC∞
f 3SC∞

∞

ω1 ((0
2)SN, N) (s, a) 1SC f

f 6SC∞
f 0SC∞

∞

Therefore, the phase portraits P(C)
1 –P(C)

5 are not topologically equivalent with anyone of the

phase portraits in [41].

Remark 7.3. Note that c1 (for example, for c > 0) has three distinct lines, each line is an

irreducible curve and for these lines the algebraic, integrable and geometric multiplicities

coincide and this multiplicity is one. Hence in perturbations the line y + c = 0 can produce at

most one line and in this case, it produces the line y +
√

c2 − a = 0.

Remark 7.4. Note that the necessary and sufficient condition for systems defined by the equa-

tions (C) to have a double hyperbola or a double line is that it has two singularities of the

system of multiplicity two or just one singularity of multiplicity four.
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a = 0

a − c2 = 0

a − 8c2/9 = 0

C(C)
3

C(C)
3

C(C)
2

(2)

(1) (1)

(1)(1)

C(C)
2

(2)

(1) (1)

(1) (1)

(1)

(2)

(1) (1)

(1)(1)

(1)

(2)

(1)

(1)(1)

(1)(1)

(2)

(1)

(2)

(1)

2

2 (4)

(2)

(1)

(1) (1)

(1)(1)

c1

c2

C(C)
1

C(C)
5

C(C)
4

(2)

(1) (1)

(2)

(1)

2

(2)

(2)

(1) (1)

(1)

2

(2)

(1)

(1) (1)

(1) (1)

c1

C(C)
6

C(C)
6

(2)

(2)

(2)
(1)

2

C(C)
5

(1)

(2)

(2)

(2)
(1)

2

(2)

(1) (1)

(1) (1)

(1)

Figure 7.1: Bifurcation diagram of configurations for family (C). The dashed

line a = 0 is a limit case of this family. The multiple invariant curves are

emphasized and the complex curves are drawn as dashed in the drawings of

the configurations.
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a = 0

a − c2 = 0

a − 8c2/9 = 0

p1

p2

P(C)
3

p1

P(C)
1

P(C)
2

P(C)
2

P(C)
2

P(C)
2

P(C)
4

P(C)
4

P(C)
5

P(C)
5

Figure 7.2: Topological bifurcation diagram for family (C). The continuous

curves in the phase portraits are separatrices. The dashed curves are the or-

bits given in each region of the phase portraits. The green bullet represents

an elemental saddle, the red bullet an elemental unstable node and the blue

an elemental stable node. The yellow triangle represents a saddle-node (semi-

elemental) and the black bullet is an intricate singularity.

7.2 Geometric analysis of family (D)

Consider the family:

(D)







ẋ = (c + x)(c(2g − 1) + gx)

ẏ = 1 + (g − 1)xy,

where (g ± 1)(3g − 1)(2g − 1) 6= 0 and c2 + g2 6= 0.

For a complete understanding of the bifurcation diagram of the systems in the full family

defined by the equations (D) we study here also the limit cases (g ± 1)(3g − 1)(2g − 1) = 0

where the equations are still defined.
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In the generic case

cg(g ± 1)(3g − 1)(2g − 1) 6= 0

the systems have two invariant lines J1 and J2 and only one invariant hyperbola J3 with

respective cofactors αi, 1 ≤ i ≤ 3 where

J1 = c + x, α1 = c(−1 + 2g) + gx,

J2 = c(−1 + 2g) + gx, α2 = −cg + gx,

J3 = 1
2g−1 + y(c + x), α3 = c(−1 + 2g) + (−1 + 2g)x.

We note that if g = 1 or c = 0 then the two lines coincide and we get a multiple line.

The multiplicities of each invariant straight line and invariant hyperbola appearing in the

divisor ICD of invariant algebraic curves were calculated by using the 1st extactic polynomial

for the line and the 2nd extactic polynomial for the hyperbola.

(i) The generic case: cg(g ± 1)(3g − 1)(2g − 1) 6= 0.

Table 7.21: Invariant curves, cofactors, singularities and intersection points of

family (D) for the generic case.

Invariant curves and cofactors Singularities Intersection points

J1 = c + x
J2 = c(−1 + 2g) + gx
J3 = 1

2g−1 + y(c + x)

α1 = c(−1 + 2g) + gx
α2 = −cg + gx
α3 = c(−1 + 2g) + (−1 + 2g)x

P1 =
(

−c,
1

c(g−1)

)

P2 =
(

c

(

1
g −2

)

,
g

2cg2−3cg+c

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For c < 0 we have

s, a; (2
2)E−E,S if g < 0

s, s; (2
2)E−E,N if 0<g<1/2

s, a; (2
2)PH−PH,N if g > 1/2

For c > 0 we have

s, a; (2
2)E−E,S if g < 0

s, s; (2
2)E−E,N if 0<g<1/2

s, a; (2
2)PH−PH,N if g > 1/2

J1 ∩ J2 = P∞
1 simple

J1 ∩ J3 = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ J3 =

{

P∞
1 simple

P2 simple

J2 ∩ L∞ = P∞
1 simple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Table 7.22: Divisor and zero-cycles of family (D) for the generic.

Divisor and zero-cycles Degree

ICD = J1 + J2 + J3 + L∞

M0CS = P1 + P2 + 4P∞
1 + P∞

2

T = ZJ1 J2 J3 = 0

M0CT = P1 + 2P2 + 4P∞
1 + 2P∞

2

4

7

5

9
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where the total curve T has only three distinct tangents at P∞
1 , but one of them is double.

Table 7.23: First integral and integrating factor of family (D) for the generic case.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J
− gλ2

2g−1

3 R = J0
1 Jλ′

2
2 J

1−g(λ′2+3)

2g−1

3

Simple

example
I = J2 J

− g
2g−1

3 R = 1
J1 J2

(ii) The non-generic case: cg(g ± 1)(3g − 1)(2g − 1) = 0

(ii.1) c = 0 and g(g ± 1)(3g − 1)(2g − 1) 6= 0.

Here the invariant line x = 0 has multiplicity 3 so we compute the exponential factors E3

and E4. The line at infinity and the hyperbolas are both simple. Thus the total multiplicity of

the hyperbolas and lines is 5 and by the Theorem 2.33 we must have a Darboux first integral.

We do the calculations to effectively compute the first integrals and the geometric features of

this family.

Table 7.24: Invariant curves, exponential factors, cofactors, singularities and

intersection points of family (D) for c = 0 and g 6= 0,±1, 1/3, 1/2.

Inv.curves/exp.fac. Singularities Intersection points

and cofactors

J1 = x
J2 = 1

2g−1 + xy

E3 = e
g0+g1x

x

E4 = e
2gh0xy+h0+x(h1+h2x)

x2

α1 = gx
α2 = (2g − 1)x
α3 = −gg0

α4 = −g(h1 + 2h0y)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For g < 0 we have

∅; (4
2)E − E, S

For g > 0 we have

∅; (4
2)PHP − PHP, N if g < 1/2

∅; (4
2)PH − HP, N if g > 1/2

J1 ∩ J2 = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Table 7.25: Divisor and zero-cycles of family (D) for c = 0 and g 6=
0,±1, 1/3, 1/2.

Divisor and zero-cycles Degree

ICD = 3J1 + J2 + L∞

M0CS = 6P∞
1 + P∞

2

T = ZJ
3
1 J2 = 0.

M0CT = 5P∞
1 + 2P∞

2

5

7

6

7
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where the total curve T has only two distinct tangents at P∞
1 , but one of them is quadruple.

Table 7.26: First integral and integrating factor of family (D) when c = 0 and

g 6= 0, 1/2.

First integral Integrating Factor

General I = Jλ1
1 J

− gλ1
2g−1

2 E0
3E0

4 R = Jλ′
1

1 J
1−g(λ′1+3)

2g−1

2 E0
3E0

4

Simple

example
I = J1 J

− g
2g−1

2 R = 1
J1 J2

(ii.2) c = 0 and g(g ± 1)(3g − 1)(2g − 1) = 0.

(ii.2.1) c = 0 and g = −1.

Under this condition, systems defined by the equations (D) do not belong to family (D).

We note that system defined by the equation (D) when c = 0 and g = −1 is exactly the

family (G). Here we have a single system that possess an invariant line which has multiplicity

four. The line at infinity and the hyperbolas are both simple. Thus the total multiplicity of

hyperbolas and lines is 6 and by the Theorem 2.33 we must have a rational first integral. We

do the calculations to effectively compute the first integrals and the geometric features of this

family.

Table 7.27: Invariant curves, cofactors, singularities and intersection points of

system (D) when c = 0 and g = −1.

Inv.curves and cofactors Singularities Intersection points

J1 = x
J2 = −1 + 3xy

E3 = e
g0+g1x

x

E4 = e
−2h0xy+h0+h1x+h2x2

x2

E5 = e
(−3l0xy+l0+x(−2l1xy+l1+x(l2+l3x))

x3

)

α1 = −x
α2 = −3x
α3 = g0

α4 = h1 + 2h0y
α5 = l2 + 2l1y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

∅; (4
2)E − E, S

J1 ∩ J2 = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple
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Table 7.28: Divisor and zero-cycles of system (D) when c = 0 and g = −1.

Divisor and zero-cycles Degree

ICD = 4J1 + J2 + L∞

M0CS = 6P∞
1 + P∞

2

T = ZJ
4
1 J2 = 0.

M0CT = 6P∞
1 + 2P∞

2

6

7

7

8

where the total curve T has only two distinct tangents at P∞
1 , but one of them is quintuple.

Table 7.29: First integral and integrating factor of system(D) when c = 0 and

g = −1.

First integral Integrating Factor

General I = Jλ1
1 J

− λ1
3

2 E
− (h1 l1−h0 l2)λ4

g0 l1
3 Eλ4

4 E
− h0λ4

l1
5 R = Jλ′

1
1 J

− 4
3−

λ′1
3

2 E
− (h1 l1−h0 l2)λ

′
4

g0 l1
3 Eλ′

4
4 E

− h0λ′4
l1

5

Simple

example
I =

J3
1

J2
R = 1

J1 J2

Remark 7.5. Consider F 1
(c1,c2)

= c1 J3
1 − c2 J2 = 0, degF 1

(c1,c2)
= 3. The remarkable value of

F 1
(c1,c2)

is [1 : 0] for which we have

F 1
(1,0) = J3

1 .

Therefore, J1 is a critical remarkable curves and [1 : 0] is a critical remarkable value of I1.

(ii.2.2) c = 0 and g = 0.

Under this condition, systems defined by (D) do not belong to QSH. The hyperbola −1 +

xy = 0 filled up with singularities and the following study is done with the reduced system.

Table 7.30: Singularities of the reduced system (D) when c = g = 0. (⊖[)(]; ∅)

denotes the presence of a hyperbola filled up with singular points in the sys-

tem such that the reduced system has no finite singularity on this curve and

(⊖[)(]; N, ∅) denotes that the system has at infinity a node, and one non-isolated

singular point which is part of a real hyperbola filled up with singularities and

that the reduced linear system has no infinite singular point in that position.

Singularities

P∞
1 = [0 : 1 : 0]

(⊖[)(]; ∅); (⊖[)(]; N, ∅)
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Table 7.31: First integral and integrating factor of the reduced system (D) when

c = g = 0.

First integral Integrating Factor

General I = −x R = −1

Simple

example
I = −x R = −1

(ii.2.3) c = 0 and g = 1/3.

Under this condition, systems defined by the equations (D) do not belong to family (D).

Here we have one affine invariant line and one invariant hyperbola, both of them are triple so

we compute the exponential factors E3, E4, E5 and E6. This system is Hamiltonian so it admits

a polynomial first integral.

Table 7.32: Invariant curves, exponential factors, cofactors, singularities and

intersection points of family (D) when c = 0 and g = 1/3.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x
J2 = −3 + xy

E3 = e
g0+g1x

x

E4 = e
h0+h1x+h2x2+

2h0xy
3

x2

E5 = e
l0y

−3+xy

E6 = e
m0
9 +

y(m1(6−2xy)+3m2y(2xy−9))

6(xy−3)2

α1 = x
3

α2 = − x
3

α3 = − g0

3

α4 = − h1
3 − 2h0y

3

α5 = −t l0
3

α6 = m1
9 − m2y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

∅; (4
2)PHP − PHP, N

J1 ∩ J2 = P∞
2 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Table 7.33: Divisor and zero-cycles of family (D) when c = 0 and g = 1/3.

Divisor and zero-cycles Degree

ICD = 3J1 + 3J2 + L∞

M0CS = 6P∞
1 + P∞

2

T = ZJ
3
1 J

3
2 = 0

M0CT = 7P∞
1 + 4P∞

2

7

7

10

11
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where the total curve T has

1) only three distinct tangents at P∞
1 , but two of them are triple;

2) only two distinct tangents at P∞
2 , but one of them is triple.

Table 7.34: First integral and integrating factor of family (D) when c = 0 and

g = 1/3.

.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 Eλ3
3 Eλ4

4 E
− g0λ3

l0
− λ4(2h0m1+9h1m1)

9l0m2
5 E

− 2h0λ4
3m2

6 R
Simple

example
I1 = J1 J2 R1 = 1

J1 J2

where R = Jλ′
1

1 Jλ′
1

2 Eλ′
3

3 Eλ′
4

4 E
− g0λ′3

l0
− λ′4(2h0m1+9h1m1)

9l0m2
5 E

− 2h0λ′4
3m2

6 .

(ii.2.4) c = 0 and g = 1/2.

Under this condition, systems defined by (D) do not belong to QSH. Here we have only

one triple invariant line so we compute the exponential factors E2 and E3. We have that the

line at infinity Z = 0 also is triple.

Table 7.35: Invariant curves, exponential factors, cofactors, singularities and

intersection points of family (D) when c = 0 and g = 1/2.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x

E2 = e
g0+g1x

x

E3 = e
h0xy+h0+x(h1+h2x)

x2

E4 = el0+l1xy

α1 = x
2

α2 = − g0

2

α3 = −h0y − h1
2

α4 = l1x

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

∅; (4
2)PH − HP, N

J1 ∩ L∞ = P∞
1 simple

Table 7.36: Divisor and zero-cycles of family (D) when c = 0 and g = 1/2.

Divisor and zero-cycles Degree

ICD = 3J1 + L∞

M0CS = 6P∞
1 + P∞

2

T = ZJ
3
1 = 0.

M0CT = 4P∞
1 + P∞

2

4

7

4

5

where the total curve T has only two distinct tangents at P∞
1 , one of them triple.
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Table 7.37: First integral and integrating factor of family (D) when c = 0 and

g = 1/2.

First integral Integrating Factor

General I = Jλ1
1 E0

2E0
3E

− λ1
2l1

4 R = Jλ′
1

1 E0
2E0

3E
− (1+λ′1)

2l1
4

Simple

example
I = J2

1 E−1
4 R = 1

J1

(ii.2.5) c = 0 and g = 1.

Under this condition, systems defined by the equations (D) do not belong to family (D).

The system defined by the equations (D) when c = 0 and g = 1 is exactly the family (I).

Here the systems possess an invariant line with multiplicity three and a family of invariant

hyperbolas

1 + rx + xy,

where r ∈ R. The line at infinity L∞ : Z = 0 has multiplicity 3.

Table 7.38: Invariant curves, exponential factors, cofactors, singularities and

intersection points of system (D) when c = 0 and g = 1.

Inv.cur./exp.fac and cofactors Singularities Intersection points

J1 = x
J2,r = 1 + rx + xy
E3 = eg0+g1y+g2y2

E4 = e
h0+h1x

c+x

E5 = e
l0+l1x+l2x2+2h0xy

x2

α1 = x
α2 = x
α3 = g1 + 2g2x
α4 = −h0

α5 = −l1 − 2l0y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

∅; (4
2)PH − HP, N

J1 ∩ J2,r = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2,r ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Table 7.39: Divisor and zero-cycles of system (D) when c = 0 and g = 1.

Divisor and zero-cycles Degree

ILD = 3J1 + 3L∞

M0CS = 6P∞
1 + P∞

2

T = Z3 J
3
1 = 0

M0CT = 6P∞
1 + 3P∞

2

6

7

6

9

where the total curve T has
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1) only two distinct tangents at P∞
1 , both of them triple and

2) only one triple tangent at P∞
2 .

Table 7.40: First integral and integrating factor of system (D) when c = 0 and

g = 1.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2,r Eλ3
3 E

− λ3(g2 l1−g1 l0)
h0 l0

4 E
g2λ3

l0
5 R = Jλ′

1
1 J−2−λ′

1
2,r Eλ′

3
3 E

− λ3(g2 l1−g1l0)
h0 l0

4 E
g2λ3

l0
5

Simple

example
I1 = J1

J2,1
R1 = 1

J2
1

Remark 7.6. Consider F 1
(c1,c2)

= c1 J1 − c2 J2,1 = 0, degF 1
(c1,c2)

= 2. We do not have any remark-

able values and remarkable curves for I1.

(ii.3) c 6= 0 and g(g ± 1)(3g − 1)(2g − 1) = 0.

(ii.3.1) g = −1 and c 6= 0.

Under this condition, systems defined by the equations (D) do not belong to family (D).

Here we have two invariant lines, one invariant hyperbola and one invariant parabola. We

note that in the case c = g = −1 this system is exactly family (F).

Table 7.41: Invariant curves, cofactors, singularities and intersection points of

system (D) when g = −1 and c 6= 0.

Inv.curves and cofactors Singularities Intersection points

J1 = c + x
J2 = 3c + x
J3 = −1 + 3cy + 3xy
J4 = 3c2y + x2

8c +
19c
8 + x

α1 = −3c − x
α2 = −c − x
α3 = −3c − 3x
α4 = −2x

P1 =
(

−c,− 1
2c

)

P2 =
(

−3c,− 1
6c

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

s, a; (2
2)E − E, S

J1 ∩ J2 = P∞
1 simple

J1 ∩ J3 = P∞
1 double

J1 ∩ J4 =

{

P∞
1 simple

P1 simple

J1 ∩ L∞ = P∞
1 simple

J2 ∩ J3 =

{

P∞
1 simple

P2 simple

J2 ∩ J4 =

{

P∞
1 simple

P2 simple

J2 ∩ L∞ = P∞
1 simple

J3 ∩ J4 =

{

P∞
1 simple

P2 triple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

J4 ∩ L∞ = P∞
1 double
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Table 7.42: Divisor and zero-cycles of system (D) when g = −1 and c 6= 0.

Divisor and zero-cycles Degree

ICD = J1 + J2 + J3 + J4 + L∞

M0CS = P1 + P2 + 4P∞
1 + P∞

2

T = ZJ1 J2 J3 J4 = 0.

M0CT = 2P1 + 3P2 + 5P∞
1 + 2P∞

2

5

7

7

12

where the total curve T has

1) only three distinct tangents at P∞
1 , two of them double and one simple,

2) two distinct tangents at P2, but one of them is double.

Table 7.43: First integral and integrating factor of system (D) when g = −1 and

c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
−λ1− λ2

3
3 Jλ1

4 R = Jλ′
1

1 Jλ′
2

2 J
− 4

3−λ′
1−

λ′2
3

3 Jλ′
1

4

Simple

example
I1 =

J3
2

J3
R = 1

J1 J2 J4

Remark 7.7. Consider F 1
(c1,c2)

= c1 J3
2 − c2 J3 = 0, degF 1

(c1,c2)
= 3. The remarkable value of

F 1
(c1,c2)

are [1 : −8c3] and [1 : 0] for which we have

F 1
(1,−8c3) = 8cJ1 J4, F 1

(1,0) = J3
2 .

Therefore, J1, J2, J4 are remarkable curves and [1 : −8c3], [1 : 0] are remarkable values of I1.

Moreover, [1 : 0] is a critical remarkable values and J2 is critical remarkable curve of I1. The

singular points are P1 for F 1
(1,−8c3)

and P2 for F 1
(1,0).

(ii.3.2) g = 0 and c 6= 0.

Here we have only one affine invariant line and one invariant hyperbola both of them are

simple. The line at infinity Z = 0 is double so we compute the exponential factor E3.
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Table 7.44: Invariant curves, exponential factors, cofactors, singularities and

intersection points of family (D) for g = 0 and c 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = c + x
J2 = −1 + cy + xy
E3 = eg0+g1x

α1 = −c
α2 = −c − x
α3 = −c2g1 − cg1x

P1 =
(

−c,− 1
c

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For c < 0 we have

s; (2
2)E − E, (1

1)SN

For c > 0 we have

s; (2
2)E − E, (1

1)SN

J1 ∩ J2 = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Table 7.45: Divisor and zero-cycles of family (D) for g = 0 and c 6= 0.

Divisor and zero-cycles Degree

ICD = J1 + J2 + 2L∞

M0CS = P1 + 4P∞
1 + 2P∞

2

T = Z2 J1 J2 = 0.

M0CT = P1 + 4P∞
1 + 3P∞

2

4

7

4

8

where the total curve T has

1) only three distinct tangents at P∞
1 , but one of them is double and

1) only two distinct tangents at P∞
2 , but one of them is double.

Table 7.46: First integral and integrating factor of family (D) when g = 0 and

c 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 E
− λ2

cg1
3 R = J0

1 Jλ′
2

2 E
− 1+λ′2

cg1
3

Simple

example
I = Jc

2E−1
3 R = 1

J2

(ii.3.3) g = 1/3 and c 6= 0.

Under this condition, systems defined by the equations (D) do not belong to family (D).

Here we have two invariant lines and two hyperbolas. These systems are Hamiltonian so

they admit a polynomial first integral.
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Table 7.47: Invariant curves, exponential factors, cofactors, singularities and

intersection points of family (D) when g = 1/3 and c 6= 0.

Inv.curves and cofactors Singularities Intersection points

J1 = −c + x
J2 = c + x
J3 = −3 − cy + xy
J4 = −3 + cy + xy

α1 = c
3 +

x
3

α2 = x
3 − c

3

α3 = c
3 − x

3

α4 = − c
3 − x

3

P1 =
(

−c,− 3
2c

)

P2 =
(

c, 3
2c

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

s, s; (2
2)E − E, N

J1 ∩ J2 = P∞
1 simple

J1 ∩ J3 = P∞
1 double

J1 ∩ J4 =

{

P∞
1 simple

P1 simple

J1 ∩ L∞ = P∞
1 simple

J2 ∩ J3 =

{

P∞
1 simple

P2 simple

J2 ∩ J4 = P∞
1 double

J2 ∩ L∞ = P∞
1 simple

J3 ∩ J4 =

{

P∞
1 simple

P∞
2 triple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

J4 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Table 7.48: Divisor and zero-cycles of family (D) when g = 1/3 and c 6= 0.

Divisor and zero-cycles Degree

ICD = J1 + J2 + J3 + J4 + L∞

M0CS = P1 + P2 + 4P∞
1 + P∞

2

T = ZJ1 J2 J3 J4 = 0.

M0CT = 2P1 + 2P2 + 5P∞
1 + 3P∞

2

5

7

7

12

where the total curve T has

1) only three distinct tangents at P∞
1 , but two of them are double;

2) three distinct tangents at P∞
2 .

Table 7.49: First integral and integrating factor of family (D) when g = 1/3 and

c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ2
3 Jλ1

4 R = Jλ′
1

1 Jλ′
2

2 Jλ′
2

3 Jλ′
1

4

Simple

example
I1 = J1 J4 R1 = 1

J1 J4

(ii.3.4) g = 1/2 and c 6= 0.
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Under this condition, systems defined by (D) do not belong to QSH. Here we have two

invariant lines. We also could find an exponential factor but it did not arise from multiple

curves since by calculating the 1st extactic polynomial we checked that the multiplicity of the

affine invariant lines is one. We also checked the multiplicity of the line at infinity and it is

also simple.

Table 7.50: Invariant curves, exponential factors, cofactors, singularities and

intersection points of family (D) for g = 1/2 and c 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x
J2 = x

c + 1

E3 = ecg1y+g0+g1xy

α1 = c
2 +

x
2

α2 = x
2

α3 = cg1 + g1x

P1 =
(

−c,− 2
c

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

s; (3
2)E − PH, N

J1 ∩ J2 = P∞
1 simple

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ = P∞
1 simple

Table 7.51: Divisor and zero-cycles of family (D) for g = 1/2 and c 6= 0.

Divisor and zero-cycles Degree

ICD = J1 + J2 + L∞

M0CS = P1 + 5P∞
1 + P∞

2

T = ZJ1 J2 = 0.

M0CT = P1 + 3P∞
1 + P∞

2

3

7

3

5

where the total curve T has three distinct tangents at P∞
1 .

Table 7.52: First integral and integrating factor of family (D) when g = 1/2 and

c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J0

2 E
− λ1

2g1
3 R = Jλ′

1
1 J0

2 E
− λ′1

2g1
− 1

2g1
3

Simple

example
I = J2

1 E−1
3 R = 1

J1

(ii.3.5) g = 1 and c 6= 0.

Note that this case can be reduced to the case c = 0 and g = 1 due to the translation

(x, y) → (x − c, y). Therefore, on the line g = 1 and c 6= 0 we have the same configuration and

the phase portrait as at the point (g, c) = (1, 0).

We sum up the topological, dynamical and algebraic geometric features of family (D) and

also confront our results with previous results in literature in the following proposition.
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Proposition 7.8.

(a) For the family (D) we obtained three distinct configurations C(D)
1 –C(D)

3 of invariant hyperbolas
and lines (see Figure 7.3 for the complete bifurcation diagram of configurations of this family).
The parameter space for this family is (g ± 1)(2g − 1)(3g − 1) 6= 0, c2 + g2 6= 0 and the
bifurcation set for the full family is cg = 0. On c = 0 and g 6= 0 the invariant lines coalesce
and two finite singularities coalesced with an infinite singularity. On g = 0 and c 6= 0 the
line at infinity has multiplicity two and we have just one invariant line. The bifurcation set
of configurations in the full parameter space is cg(g ± 1)(2g − 1)(3g − 1) = 0. Outside the
parameter space occurs the following: On g = 1/3 and c 6= 0 we have an additional invariant
hyperbola. On g = 1/3 and c = 0 we have one triple line and one triple hyperbola. On g = −1

and c 6= 0 we have an invariant parabola. On g = −1 and c = 0 we have one quadruple line.
On g = 1 we have a family of invariant hyperbolas and the invariant lines coalesce. On g = 1/2

the invariant hyperbola becomes reducible and we have two invariant lines c + x = 0 and x = 0

when c 6= 0 and only one triple line x = 0 when c = 0. On c = g = 0 the hyperbola is filled up
with singularities.

(b) The family (D) is Darboux integrable in the generic case cg(g ± 1)(3g − 1)(2g − 1) 6= 0 and
also when c = 0 and g 6= 0,±1, 1/3, 1/2. The family (D) is generalized Darboux integrable
when g = 0 and c 6= 0. All systems in family (D) have an inverse integrating factor which is
polynomial.

(c) For the family (D) we have seven topologically distinct phase portraits P(D)
1 –P(D)

7 . The topological
bifurcation diagram of family (D) is done in Figure 7.4. The bifurcation set is cg(2g − 1)(g −
1) = 0 and it is the bifurcation set of singularities. The phase portrait P(D)

7 is not topologically
equivalent with anyone of the phase portraits in [41].

Proof of Proposition 7.8. (a) We have the following type of divisors and zero-cycles of the

total invariant curve T for the configurations of family (D):

Table 7.53: Configurations for family (D).

Configurations Divisors and zero-cycles of the total inv. curve T

C(D)
1

ICD = J1 + J2 + J3 + L∞

M0CT = P1 + 2P2 + 4P∞
1 + 2P∞

2

C(D)
2

ICD = 3J1 + J2 + L∞

M0CT = 5P∞
1 + 2P∞

2

C(D)
3

ICD = J1 + J2 + 2L∞

M0CT = P1 + 4P∞
1 + 3P∞

2

Therefore, the configurations C(D)
1 up to C(D)

3 are all distinct. For the limit cases of family

(D) we have the following configurations:
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Table 7.54: Configurations for the limit cases of family (D).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 + J4 + L∞

M0CT = 2P1 + 2P2 + 5P∞
1 + 3P∞

2

c2
ICD = 3J1 + 3J2 + L∞

M0CT = 7P∞
1 + 4P∞

2

c3
ICD = J1 + J2 + J3 + J4 + L∞

M0CT = 2P1 + 3P2 + 6P∞
1 + 2P∞

2

c4
ICD = 4J1 + J2 + L∞

M0CT = 6P∞
1 + 2P∞

2

c5
ILD = 3J1 + 3L∞

M0CT = 6P∞
1 + 3P∞

2

c6
ICD = J1 + J2 + L∞

M0CT = P1 + 3P∞
1 + P∞

2

c7
ICD = 3J1 + 3L∞

M0CT = 6P∞
1 + 3P∞

2

c8
ICD = L∞

M0CT = P∞
1

The other statements on (a) follows from the study done previously.

(b) It follows directly from the tables.

(c) We have:

Table 7.55: Phase portraits for family (D).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(D)
1 ((2

2)E − E, S) (s, a) 1SC f
f 4SC∞

f 1SC∞
∞

P(D)
2 ((2

2)E − E, N) (s, s) 0SC f
f 8SC∞

f 0SC∞
∞

P(D)
3 ((2

2)PH − PH, N) (s, a) 1SC f
f 5SC∞

f 0SC∞
∞

P(D)
4 ((4

2)E − E, S) ∅ 0SC f
f 0SC∞

f 2SC∞
∞

P(D)
5 ((4

2)PHP − PHP, N) ∅ 0SC f
f 0SC∞

f 3SC∞
∞

P(D)
6 ((4

2)PH − HP, N) ∅ 0SC f
f 0SC∞

f 1SC∞
∞

P(D)
7 ((2

2)E − E, (1
1)SN) s 0SC f

f 4SC∞
f 1SC∞

∞

Therefore, we have seven distinct phase portraits for systems (D). For the limit case of family

(D) we have the following phase portraits:
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Table 7.56: Phase portraits for the limit case of family (D).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(D)
1 ((2

2)E − E, S) (s, a) 1SC f
f 4SC∞

f 1SC∞
∞

P(D)
2 ((2

2)E − E, N) (s, s) 0SC f
f 8SC∞

f 0SC∞
∞

P(D)
4 ((4

2)E − E, S) ∅ 0SC f
f 0SC∞

f 2SC∞
∞

P(D)
5 ((4

2)PHP − PHP, N) ∅ 0SC f
f 0SC∞

f 3SC∞
∞

P(D)
6 ((4

2)PH − HP, N) ∅ 0SC f
f 0SC∞

f 1SC∞
∞

p1 ((3
2)E − PH, N) s 0SC f

f 4SC∞
f 1SC∞

∞

p2 (⊖[)(]; N, ∅) (⊖[)(]; ∅) 0SC f
f 0SC∞

f 0SC∞
∞

In [41] the authors do not have any phase portrait with 2 singular points at infinity and

with 1 singular point in the finite plane. Therefore, the phase portrait P(D)
7 is missing.

7.2.1 The solution of the Poincaré problem for the family (D)

The following theorem solves the problem of Poincaré for the family defined by the equations

(D) with (c, g) ∈ R2.

Theorem 7.9. The necessary and sufficient condition for a system (S) defined by the equations (D)

with (c, g) ∈ R2 to have a rational first integral given by invariant algebraic curves of degree at most
two, is that g ∈ Q and either g(2g − 1) 6= 0 or g = 0 = c.

Proof. The proof of this result is based on all the formulas for the first integrals contained in

the Tables calculated for the family of systems defined by the equations (D) with (c, g) ∈ R2.

Case 1. This is the generic case, cg(g ± 1)(2g − 1)(3g − 1) 6= 0. We first show the necessity

of the condition, so suppose that the system has a rational first integral after fixing the cor-

responding value for the free parameter λ2. Then according to Table 7.23 the exponents of

J2 and J3 in this Table need to be integers. This implies that g/(2g − 1) = r ∈ Q and hence

g = r/(2r − 1) ∈ Q (here we have 2r − 1 = 2g/(2g − 1)− 1 = 1/(2g − 1) 6= 0). By hypothesis

we have that cg 6= 0. To prove necessity we need to show that g(2g − 1) 6= 0 but this we have

by the hypothesis of Case 1.

To prove the sufficiency we now suppose that g ∈ Q, that is g = m/n where m, n ∈ Z

with n 6= 0 and m and n are relatively prime. We also suppose that (c, g) satisfies the above

generic condition. Then the general first integral is given in Table 7.23. The exponents of J2,

respectively J3 are λ2 and −gλ2/(2g − 1). But g/(2g − 1) = m/(2m − n) where 2m − n 6= 0

since otherwise the fraction m/n would be reducible. So by taking λ2 = 2m − n we get the

first integral J2m−n
2 J−m

3 which is a rational first integral. Hence the condition is also sufficient.
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Figure 7.3: Bifurcation diagram of configurations for family (D). The dashed

lines g = ±1, g = 1/2 and g = 1/3 are limit cases of this family. The multiple

invariant curves are emphasized in the drawings of the configurations. When

g = 1 we have a family of invariant hyperbolas that are drawn in colors. The

dotted hyperbola on c = g = 0 represents an invariant hyperbola filled up with

singularities.
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c = 0

g = −1

g = 0

g = 1/3

g = 1/2

g = 1
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Figure 7.4: Topological bifurcation diagram for family (D). Note that the phase

portraits P(D)
1 , P(D)

2 , P(D)
4 , P(D)

7 , p1 and p2 possess graphics (drew in green). The

continuous curves in the phase portraits are separatrices. The dashed curves are

the orbits given in each region of the phase portraits. The green bullet represents

an elemental saddle, the red bullet an elemental unstable node and the blue

an elemental stable node. The yellow triangle represents a saddle-node (semi-

elemental) and the black bullet is an intricate singularity. In c = g = 0 we have

an hyperbola filled up with singularities represented by a dotted hyperbola.
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Case 2. This is the non-generic case, cg(g ± 1)(2g − 1)(3g − 1) = 0.

Case 2.1. Consider c = 0 6= g(g ± 1)(2g − 1)(3g − 1). We look for the general expression

of first integrals for this case which is Jλ1
1 J−gλ1/(2g−1)

2 . Suppose that we have a rational first

integral. Then in this integral the exponents λ1,−gλ1/(2g − 1) must be integers. But this

implies that g/(2g − 1) = r ∈ Q. Then g = r/(2r − 1) ∈ Q. By hypothesis we have that

g(2g − 1) 6= 0. Hence the necessity is proved. For the sufficiency we suppose that g ∈ Q.

Then again g = m/n with m, n ∈ Q, n 6= 0 and m, n relatively prime. The general form of the

first integral is Jλ1
1 J−gλ1/(2g−1)

2 . Replacing here g by m/n we obtain Jλ1
1 J−mλ1/(2m−n)

2 . Hence by

taking λ1 = 2m − n the first integral becomes J2m−n
1 J−m

2 which is rational.

Case 2.2. Consider c = 0 and g(g ± 1)(2g − 1)(3g − 1) = 0. This is a set of five points all with

a rational coordinate g. In this case a necessary and sufficient condition to have a rational first

integral is that g 6= 1/2. Indeed, by checking the Tables for first integrals we see that except

for the point g = 1/2 at all four other points, we have a rational first integral. So the condition

to have a rational first integral is satisfied in this case too.

Case 2.3. Consider c 6= 0 and g(g ± 1)(2g − 1)(3g − 1) = 0. This is a collection of five lines

out of which we exclude their intersection with c = 0.

Case 2.3.1. Suppose c 6= 0 and g(2g − 1) = 0 then we see that the general first integrals for

either g = 0 or g = 1/2 must contain an exponential factor and hence they are never rational.

Therefore if c 6= 0 then to have a rational first integral it is necessary and sufficient to have

g 6= 0, 1/2.

Case 2.3.2. Suppose c 6= 0 and (g ± 1)(3g − 1) = 0.

Case 2.3.2.1. We consider first c 6= 0 and g = −1. In this case two half lines. For each c the

system (c, g) = (c,−1) has a rational first integral as the Table for this case indicates and the

condition g ∈ Q and g 6= 0, 1/2 is clearly satisfied.

Case 2.3.2.2. The case c 6= 0 and (g − 1)(3g − 1) is treated in analogous manner as the Case

2.3.2.1.

We note that the set of systems defined by the equations (D) for (c, g) ∈ R2 that are

algebraically integrable is dense in R2.

8 Concluding comments and problems

There are many papers on the Darboux theory of integrability for planar polynomial vector

fields but it is actually impossible to find a single source summing up this theory with all its

extended features, as we know it today. The literature also often overlooks some significant

moments in its developments as well as its most useful consequences such as its unifying

character in proofs of integrability for whole classes of polynomial differential systems as well

as its help in topologically classifying some families of systems. In this paper we covered all

these aspects and proved that its complex character is essential.

In this paper the study of integrability of the family QSHη=0 displayed all the types from

algebraic to Liouvillian integrability as well as non-integrability, proved for the generic case.

We then pursued the geometric analysis of two of the four 2-parameter sub-families of

QSHη=0 by applying the method of Darboux and obtained all their phase portraits as well
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as their bifurcation diagrams and the bifurcation diagrams of the configurations of invariant

hyperbolas and lines.

In this Section we are interested in the relationship between these two bifurcation dia-

grams, more precisely we show how the dynamics of the systems expressed in their topo-

logical bifurcations impacts the bifurcations of the geometry of the configurations and the

resulting bifurcations in integrability.

8.1 Family (C)

The parameter space for this family is {(a, c) ∈ R2 : a 6= 0}, its topological bifurcation set

is (a − 8c2/9)(a − c2) = 0 and it is formed of bifurcation points of finite singularities. On

a − 8c2/9 = 0 we see coalescence of two finite singularities, both situated on the same one of
the two invariant lines, yielding a double singular point on this line. On a − c2 = 0 we have two

coalesces, but each one of them being a coalescence of two points situated on distinct lines yielding
a double singular point situated on a double line.

The bifurcation set for configurations of invariant lines and hyperbolas is also (a− 8c2/9) ·
(a − c2) = 0. On a − 8c2/9 = 0 the coalescence of the two singularities on the same line

yielding a double singular point generates a distinct configuration than the one in the generic

case surrounding points on this parabola where none of the singularities is double. As already

mentioned above, on the parabola a − c2 = 0 we get a double line due to the coalescence of

the four singularities located on the two lines into two double singularities on the double

line. Can we explain in a similar way the appearance of a double hyperbola on the parabola

a− 8c2/9 = 0? Within this family this is however not possible. Indeed moving in all directions

from a point on this parabola, we always get just one hyperbola, no two hyperbolas coalesce

when on a − 8c2/9 = 0 in the parameter space of this family.

We claim however that the same kind of phenomenon occurs as on a − c2 = 0, namely that

a bifurcation of singularities does occur on a− 8c2/9 = 0 but when we unfold these systems in

a larger family that includes systems with three distinct singular points at infinity and hence

for these systems we have η > 0. Looking at the families of systems in the set of systems with

η > 0 in [47] we find the configuration denoted by Config. H.139 (see Figure 8.1) with three

singular points at infinity in the real projective plane and with 4 singular points in the affine

plane. This configuration has two hyperbolas that coalesce when two of the three singular

points at infinity collide and we also have collision of two finite singular points located on

distinct hyperbolas. To prove this, consider the systems:











ẋ = 72c2(1−ǫ)(2+ǫ)
(−9+ǫ2)2 + 3cx + x2 + (1 + ǫ)xy

ẏ = − 9c2(1+ǫ2)
(−9+ǫ2)2 + y2,

(8.1)

where ǫ is sufficiently small. These systems possess the configuration Config. H.139 (see

Figure 8.1) of [47] for any value of ǫ > 0 as we can show that it satisfies the required conditions

on the polynomial invariants. On the other hand, the systems (8.1) form a perturbation of the

system obtained by setting ǫ = 0 which has the configuration Config. H̃.33 (see Figure 8.1) of

[47] (here family (C) when a = 8v2/9 with configuration C(C)
6 ).

We conclude that on both parabolas a − c2 = 0 and a − 8c2/9 = 0 bifurcation of multiple

singular points produce bifurcation points of configurations corresponding to multiple invari-

ant curves but this time we have apart from coalescence of finite singularities, also coalescence

of two infinite singularities.
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In the article [47] the classification of QSH according to the configurations of invariant

hyperbolas and lines was done separately for the two subfamilies corresponding to η > 0 and

η = 0 leading to two (non-integrated) bifurcation diagrams in terms of invariant polynomials.

As the above example clearly illustrates there is the need of obtaining an integrated bifurca-
tion diagram of QSH. We thus propose the following problem:

Problem: Obtain an integrated bifurcation diagram for the family QSH of the configurations of invari-
ant hyperbolas and lines that systems in QSH have, by finding a common set of invariant polynomials
to be applied jointly to both subfamilies η > 0 and η = 0.

Finally, in the full (extended) parameter space we observe that on a = 0 the hyperbola

becomes reducible. For c 6= 0 the hyperbola splits into the lines x = 0 and c + y = 0. On

a = 0 = c, the two lines coincide yielding a double line x = 0 and in addition the hyperbola

splits into the lines x = 0 and y=0.

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(2)

(2)

(1) (1)

(1)

2

Figure 8.1: Config. H.139 and Config. H̃.33 (respectively) from [47]. The left

configuration becomes the right one when the hyperbola with infinite points

point [1 : 1 : 0] and [1 : 0 : 0] is identified with the other hyperbola by moving

the point here at [1 : 0 : 0] to coincide with [0 : 1 : 0] in P2(C).

8.2 The family (D)

The parameter space for this family is {(c, g) ∈ R2 : (g± 1)(3g− 1)(2g− 1) 6= 0 and c2 + g2 6=
0}. The topological bifurcation set for this family is the set cg = 0, with c2 + g2 6= 0. On c = 0

and g 6= 0 we have that all the singularities of the systems are at infinity and this occurs

nowhere else. Moreover, on c = 0 and g 6= 0 we have that [0 : 1 : 0] is of multiplicity (2
4)

while [1 : 0 : 1] is of multiplicity one. On g = 0 and c 6= 0 the singular point [1 : 0 : 1] is of

multiplicity (1
1) while for neighbouring parameters this point is of multiplicity 1.

The bifurcation set of the configurations is again cg = 0, with c2 + g2 6= 0. On c = 0 the

line x = 0 is a triple line, except for the value (c, g) = (0,−1) where x = 0 is a quadruple

line. This phenomenon is forced by the topological bifurcation of singularities. Indeed, on this

line two of the finite singularities, one on a line and one at the intersection of the hyperbola

with the line coalesced with [0 : 1 : 0] producing the a line of multiplicity at least two. In fact

calculation indicates that the multiplicity of x = 0 is actually 3 for g 6= 0. Everywhere else in

the parameter space of (D) we either have just one simple invariant line (this occurs on g = 0)

or two simple invariant lines. This proves that g = 0 is a bifurcation line of configurations.
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Thus for both families of systems (C) and (D) the bifurcation of configurations is produced

by coalescence of singularities either finite or infinite or coalescence of a finite with an infinite

singularities.

The following problem was stated in the article [48].

Problem: Generalize the Theorem 4.2 so as to cover more cases than the ones imposed by the hypotheses
of this theorem.

The study of the families (C) and (D) give more motivation for solving this problem. For

example the systems in the family (D) with c = 0 6= (g ± 1)(2g − 1)(3g − 1) have the invariant

line J1 = x and the invariant hyperbola J2 = 1/(2g − 1) + xy but these curves do not satisfy

the (C-K) conditions because the line intersects the hyperbola at infinity but we still have the

inverse integrating factor J1 J2. We also have other examples.

Remark 8.1. Finally we observe that if we take in the family of systems with equations (D)

c = 0 and g = −1 we obtain exactly the system denoted by (G) in the list of normal forms.

The normal form (F) is also for just one system. This system coincides with the system in the

family (D) when g = c = −1. If we take c = 0 and g = 1 in the systems defined by equations

(D) we obtain exactly (I). Hence in this paper we covered five of the normal forms listed in

Proposition 3.3: (C), (D), (F) and (G), (I).
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1 Introduction

In this paper, we wish to obtain some new criteria for the oscillation of all solutions of the
third-order differential equations with bounded and unbounded neutral coefficients of the
form

(x(t) + p(t)x(τ(t)))′′′ + q(t)xβ(σ(t)) = 0, (1.1)

where t ≥ t0 > 0, and β is the ratio of odd positive integers with 0 < β ≤ 1. Throughout the
paper, we will always assume that:

(C1) p, q : [t0, ∞) → R are continuous functions with p(t) ≥ 1, p(t) 6≡ 1 for large t, q(t) ≥ 0,
and q(t) not identically zero for large t;

(C2) τ, σ : [t0, ∞) → R are continuous functions such that τ(t) ≤ t, τ is strictly increasing, σ

is nondecreasing, and limt→∞ τ(t) = limt→∞ σ(t) = ∞;

BCorresponding author. Email: John-Graef@utc.edu
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(C3) there exist a constant θ ∈ (0, 1) and tθ ≥ t0 such that

(

t

τ(t)

)2/θ 1
p(t)

≤ 1, t ≥ tθ . (1.2)

By a solution of equation (1.1), we mean a function x ∈ C ([tx, ∞), R) for some tx ≥ t0 such
that x(t) + p(t)x(τ(t)) ∈ C3 ([tx, ∞), R) and x satisfies (1.1) on [tx, ∞). We only consider those
solutions of (1.1) that exist on some half-line [tx, ∞) and satisfy the condition

sup {|x(t)| : T1 ≤ t < ∞} > 0 for any T1 ≥ tx;

we tacitly assume that (1.1) possesses such solutions. Such a solution x(t) of equation (1.1)
is said to be oscillatory if it has arbitrarily large zeros, and it is called nonoscillatory otherwise.
Equation (1.1) is termed oscillatory if all its solutions are oscillatory.

Neutral differential equations are differential equations in which the highest order deriva-
tive of the unknown function appears both with and without deviating arguments. As stated
in many sources, besides their theoretical interest, equations of this type have numerous appli-
cations in the natural sciences and technology. For example, they appear in networks contain-
ing lossless transmission lines (as in high-speed computers where the lossless transmission
lines are used to interconnect switching circuits), in the study of vibrating masses attached to
an elastic bar, and as the Euler equation in some variational problems; we refer the reader to
the monograph by Hale [14] for these and other applications.

Oscillatory and asymptotic behavior of solutions to various classes of third and higher
odd-order neutral differential equations have been attracting attention of researchers during
the last few decades, and we mention the papers [1, 3–13, 15, 18–26] and the references cited
therein for examples of some recent contributions in this area. However, except for the papers
[3,4,12,23,26], all the above cited papers were concerned with the case where p(t) is bounded,
i.e., the cases where 0 ≤ p(t) ≤ p0 < 1, −1 < p0 ≤ p(t) ≤ 0, and 0 ≤ p(t) ≤ p0 < ∞

were considered, and so the results established in these papers cannot be applied to the case
p(t) → ∞ as t → ∞. Based on this observation, the aim of this paper is to establish some
new oscillation criteria that can be applied not only to the case where p(t) → ∞ as t → ∞

but also to the case where p(t) is a bounded function. We would like to point out that the
results established here are motivated by oscillation results of Koplatadze et all. [17], where
a nth order linear differential equation with a deviating argument was considered. Since our
equation considered here is fairly simple, it would be possible to extend our results to the
more general equations studied in the papers cited above and to the others types that include
equation (1.1) as a special case. For these reasons, it is our hope that the present paper will
stimulate additional interest in research on third and higher odd-order neutral differential
equations in general, and those with unbounded neutral coefficients in particular.

In the sequel, all functional inequalities are supposed to hold for all t large enough. With-
out loss of generality, we deal only with positive solutions of (1.1); since if x(t) is a solution of
(1.1), then −x(t) is also a solution.

2 Main results

For the reader’s convenience, we define:

z(t) := x(t) + p(t)x(τ(t)),
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h(t) := τ−1(σ(t)), g(t) := τ−1(η(t)), η ∈ C1([t0, ∞)),

π1(t) :=
1

p(τ−1(t))

[

1 −
(

τ−1(τ−1(t))

τ−1(t)

)2/θ
1

p(τ−1(τ−1(t)))

]

and

π2(t) :=
1

p(τ−1(t))

[

1 −
1

p(τ−1(τ−1(t)))

]

,

where τ−1 is the inverse function of τ (if τ is invertible) and θ ∈ (0, 1). It is also important to
notice that condition (1.2) in (C3) ensures the nonnegativity of the functions π1(t).

Lemma 2.1 (See [2, Lemma 1]). Suppose that the function h satisfies h(i)(t) > 0, i = 0, 1, 2, . . . , m,

and h(m+1)(t) ≤ 0 on [T, ∞) and h(m+1)(t) is not identically zero on any interval of the form [T′, ∞),

T′ ≥ T. Then for every θ ∈ (0, 1),
h(t)

h′(t)
≥ θ

t

m
,

eventually.

Lemma 2.2. Assume that x is an eventually positive solution of (1.1), say for t1 ≥ t0. Then there

exists a t2 ≥ t1 such that the corresponding function z satisfies one of the following two cases:

(I) z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) ≤ 0,

(II) z(t) > 0, z′(t) < 0, z′′(t) > 0, z′′′(t) ≤ 0

for t ≥ t2.

Proof. This result follows immediately from Kiguradze’s lemma [16], so we omit its proof.

Lemma 2.3. Let x(t) be an eventually positive solution of (1.1) with z(t) satisfying case (I) of Lemma

2.2 for t ≥ t2 for some t2 ≥ t1. Then for every θ ∈ (0, 1) there exists a tθ ≥ t2 such that

(

z(t)

t2/θ

)′

≤ 0 for t ≥ tθ . (2.1)

Proof. Since z satisfies case (I) of Lemma 2.2 for t ≥ t2 for some t2 ≥ t1, by Lemma 2.1, there
exists a tθ ≥ t2 for every θ ∈ (0, 1) such that

z(t) ≥
θ

2
tz′(t) for t ≥ tθ . (2.2)

It follows from (2.2) that
(

z(t)

t2/θ

)′

=
θtz′(t)− 2z(t)

θt2/θ+1
≤ 0 for t ≥ tθ .

This completes the proof of the lemma.

Lemma 2.4. Let x(t) be an eventually positive solution of (1.1) with z(t) satisfying case (I) of Lemma

2.2. Assume that
∫

∞

t0

∫

∞

u
q(s)π

β
1 (σ(s))h

β(s)dsdu = ∞. (2.3)

Then:
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(i) z satisfies the inequality

z′′′(t) + q(t)π
β
1 (σ(t))z

β(h(t)) ≤ 0 (2.4)

for large t;

(ii) z′(t) → ∞ as t → ∞;

(iii) z(t)/t is increasing.

Proof. Let x(t) be an eventually positive solution of (1.1) such that x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. From the definition of z, we have

x(t) =
1

p(τ−1(t))

[

z(τ−1(t))− x(τ−1(t))
]

≥
z(τ−1(t))

p(τ−1(t))
−

1
p(τ−1(t))p(τ−1(τ−1(t)))

z(τ−1(τ−1(t))). (2.5)

Now τ(t) ≤ t and τ is strictly increasing, so τ−1 is increasing and t ≤ τ−1(t). Thus,

τ−1(t) ≤ τ−1(τ−1(t)). (2.6)

Since z(t) satisfies case (I) for t ≥ t2, by Lemma 2.3, there exists a tθ ≥ t2 such that (2.1) holds
for t ≥ tθ . From (2.1) and (2.6), we observe that

z
(

τ−1(τ−1(t))
)

≤

(

τ−1(τ−1(t))
)2/θ

z(τ−1(t))

(τ−1(t))
2/θ

. (2.7)

Using (2.7) in (2.5) yields
x(t) ≥ π1(t)z(τ

−1(t)) for t ≥ tθ . (2.8)

Since limt→∞ σ(t) = ∞, we can choose t3 ≥ tθ such that σ(t) ≥ tθ for all t ≥ t3. Thus, it follows
from (2.8) that

x(σ(t)) ≥ π1(σ(t))z(τ
−1(σ(t))) for t ≥ t3. (2.9)

Using (2.9) in (1.1) gives

z′′′(t) + q(t)π
β
1 (σ(t))z

β(h(t)) ≤ 0 for t ≥ t3, (2.10)

i.e., (2.4) holds.
Next, we claim that condition (2.3) implies z′(t) → ∞ as t → ∞. If this is not the case, then

there exists a constant k > 0 such that limt→∞ z′(t) = k, and so z′(t) ≤ k. Since z′(t) is positive
and increasing on [t2, ∞), there exist a t3 ≥ t2 and a constant c > 0 such that

z′(t) ≥ c for t ≥ t3,

which implies
z(t) ≥ dt

for t ≥ t4, for some t4 ≥ t3 and some d > 0. Since limt→∞ h(t) = ∞, we can choose t5 ≥ t4

such that h(t) ≥ t4 for all t ≥ t5, so

z(h(t)) ≥ dh(t).
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Using this in (2.10) gives

z′′′(t) + dβq(t)π
β
1 (σ(t))h

β(t) ≤ 0 for t ≥ t5.

Integrating this inequality from t to ∞, we obtain

z′′(t) ≥ dβ
∫

∞

t
q(s)π

β
1 (σ(s))h

β(s)ds.

Now integrating from t5 to t yields

k ≥ z′(t) ≥ dβ
∫ t

t5

∫

∞

u
q(s)π

β
1 (σ(s))h

β(s)dsdu,

which contradicts (2.3) and proves the claim.
Finally, from the fact that z′(t) → ∞ as t → ∞, we see that

z(t) = z(t2) +
∫ t

t2

z′(s)ds ≤ z(t2) + (t − t2)z
′(t) ≤ tz′(t),

which implies
(

z(t)

t

)′

=
tz′(t)− z(t)

t2 ≥ 0,

i.e., (iii) holds. The proof of the lemma is now complete.

Lemma 2.5. Let x(t) be an eventually positive solution of (1.1) with z(t) satisfying case (I) of

Lemma 2.2. If
∫

∞

t0

q(s)π
β
1 (σ(s))h

2β/θ(s)ds = ∞, (2.11)

then

lim
t→∞

z(t)

t2/θ
= 0. (2.12)

Proof. Since z(t) satisfies case (I) for t ≥ t2 for some t2 ≥ t1, by Lemma 2.3, there exists a
tθ ≥ t2 such that (2.1) holds for t ≥ tθ , i.e., z(t)/t2/θ is decreasing for t ≥ tθ . We now claim
that (2.11) implies

lim
t→∞

z(t)

t2/θ
= 0.

If this is not the case, then there exist a constant b > 0 and a t3 ≥ tθ such that

z(t) ≥ bt2/θ for t ≥ t3. (2.13)

Since case (I) holds, we again arrive at (2.10) for t ≥ t3. Using (2.13) in (2.10) gives

z′′′(t) + bβq(t)π
β
1 (σ(t))h

2β/θ(t) ≤ 0 (2.14)

for t ≥ t4 for some t4 ≥ t3. Integrating (2.14) from t4 to t yields

∫ t

t4

q(s)π
β
1 (σ(s))h

2β/θ(s)ds ≤
z′′(t4)

bβ
,

which contradicts (2.11) and completes the proof.
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Lemma 2.6. Let x(t) be an eventually positive solution of (1.1) with z(t) satisfying case (II) of

Lemma 2.2. Suppose also that there exists a nondecreasing function η ∈ C1([t0, ∞), R) such that

σ(t) ≤ η(t) < τ(t) for t ≥ t0. If
∫

∞

t0

q(s)π2(σ(s))(g(s)− h(s))2βds = ∞, (2.15)

then

lim
t→∞

z′′(t) = 0. (2.16)

Proof. Let x(t) be an eventually positive solution of (1.1) such that x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. As in Lemma 2.4, we again see that (2.5) and (2.6)
hold. Since z′(t) < 0, it follows from (2.6) that

z(τ−1(t)) ≥ z(τ−1(τ−1(t))),

so inequality (2.5) takes the form

x(t) ≥ π2(t)z(τ
−1(t)). (2.17)

Using (2.17) in (1.1) gives

z′′′(t) + q(t)π
β
2 (σ(t))z

β(h(t)) ≤ 0 (2.18)

for t ≥ t3 for some t3 ≥ t2. Since (−1)kz(k)(t) > 0 for k = 0, 1, 2 and z′′′(t) ≤ 0, for t3 ≤ u ≤ v,
it is easy to see that

z(u) ≥
(v − u)2

2
z′′(v). (2.19)

Since σ(t) ≤ η(t) and τ is increasing, we conclude that τ−1(σ(t)) ≤ τ−1(η(t)), i.e, h(t) ≤ g(t).
Letting u = h(t) and v = g(t) in (2.19), we obtain

z(h(t)) ≥
(g(t)− h(t))2

2
z′′(g(t)).

Using the latter inequality in (2.18) gives

z′′′(t) +
1
2β

q(t)π
β
2 (σ(t))(g(t)− h(t))2β

(

z′′(g(t))
)β

≤ 0. (2.20)

Since π2(t) < 1, we have π
β
2 (t) ≥ π2(t). So, inequality (2.20) takes the form

z′′′(t) +
1
2β

q(t)π2(σ(t))(g(t)− h(t))2β
(

z′′(g(t))
)β

≤ 0. (2.21)

Now, we claim that (2.15) implies z′′(t) → 0 as t → ∞. Suppose to the contrary that

lim
t→∞

z′′(t) = ℓ > 0.

Then, z′′(t) ≥ ℓ for t ≥ t3 for some t3 ≥ t2. Since limt→∞ g(t) = ∞, we can choose t4 ≥ t3 such
that g(t) ≥ t3 for all t ≥ t4. Hence, z′′(g(t)) ≥ ℓ for t ≥ t4. Using this in (2.21) gives

z′′′(t) +
ℓβ

2β
q(t)π2(σ(t))(g(t)− h(t))2β ≤ 0 for t ≥ t4. (2.22)

Integrating (2.22) from t4 to t yields

∫ t

t4

q(s)π2(σ(s))(g(s)− h(s))2βds ≤

(

2
ℓ

)β

z′′(t4),

which contradicts (2.15) and completes the proof.
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Now, we are ready to present our main results. Our first result is concerned with equation
(1.1) in the case where β = 1, i.e., equation (1.1) is linear.

Theorem 2.7. Let (2.3) hold and assume that there exists a nondecreasing function η ∈ C1([t0, ∞), R)

such that σ(t) ≤ η(t) < τ(t) for t ≥ t0. If there exist constants α, θ ∈ (0, 1) such that

lim sup
t→∞

(

αθh1− 2
θ (t)

2

∫ h(t)

t0

sq(s)π1(σ(s))(h(s))
2/θds

+
αθh2− 2

θ (t)

2

∫ t

h(t)
q(s)π1(σ(s))(h(s))

2/θds

+
αθh(t)

2

∫

∞

t
q(s)π1(σ(s))h(s)ds

)

> 1, (2.23)

and

lim sup
t→∞

∫ t

g(t)

1
2

q(s)π2(σ(s))(g(s)− h(s))2ds > 1, (2.24)

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, from Lemma 2.2, the corresponding function z

satisfies either case (I) or case (II) for t ≥ t2 for some t2 ≥ t1.
First, we consider case (I). By Lemma 2.4, we again arrive at (2.10) for t ≥ t3, which, for

β = 1, takes the form

z′′′(t) + q(t)π1(σ(t))z(h(t)) ≤ 0 for t ≥ t3. (2.25)

Integrating (2.25) from t to ∞ yields

z′′(t) ≥
∫

∞

t
q(s)π1(σ(s))z(h(s))ds, (2.26)

and integrating again from t3 to t yields

z′(t) ≥
∫ t

t3

∫

∞

u
q(s)π1(σ(s))z(h(s))dsdu

=
∫ t

t3

∫ t

u
q(s)π1(σ(s))z(h(s))dsdu +

∫ t

t3

∫

∞

t
q(s)π1(σ(s))z(h(s))dsdu

=
∫ t

t3

(s − t3)q(s)π1(σ(s))z(h(s))ds + (t − t3)
∫

∞

t
q(s)π1(σ(s))z(h(s))ds.

For any α ∈ (0, 1) there exists t4 ≥ t3 such that s − t3 ≥ αs and t − t3 ≥ αt for t ≥ s ≥ t4. Thus,
from the last inequality we see that

z′(t) ≥ α

∫ t

t4

sq(s)π1(σ(s))z(h(s))ds + αt
∫

∞

t
q(s)π1(σ(s))z(h(s))ds. (2.27)

In view of (2.2), it follows that

2z(t)

θt
≥ α

∫ t

t4

sq(s)π1(σ(s))z(h(s))ds + αt
∫

∞

t
q(s)π1(σ(s))z(h(s))ds. (2.28)
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From (2.28), we see that

2z(h(t))

θh(t)
≥ α

∫ h(t)

t4

sq(s)π1(σ(s))z(h(s))ds

+ αh(t)
∫ t

h(t)
q(s)π1(σ(s))z(h(s))ds

+ αh(t)
∫

∞

t
q(s)π1(σ(s))z(h(s))ds. (2.29)

Also, for t ≤ s, we have h(t) ≤ h(s). Since z(t)/t is increasing (see Lemma 2.4 (iii)),

z(h(s)) ≥
h(s)z(h(t))

h(t)
. (2.30)

For h(t) ≤ s ≤ t, we have h(h(t)) ≤ h(s) ≤ h(t). Since z(t)/t2/θ is decreasing (see (2.1)),

z(h(s)) ≥ h2/θ(s)
z(h(t))

h2/θ(t)
. (2.31)

For t4 ≤ s ≤ h(t) and h(t) ≤ t, we have h(s) ≤ h(h(t)) ≤ h(t). Since z(t)/t2/θ is decreasing,
we again obtain (2.31). Using (2.30) and (2.31) in (2.29) gives

2z(h(t))

θh(t)
≥

(

α

∫ h(t)

t4

sq(s)π1(σ(s))(h(s))
2/θds

)

z(h(t))

(h(t))
2
θ

+

(

αh(t)
∫ t

h(t)
q(s)π1(σ(s))(h(s))

2/θds

)

z(h(t))

(h(t))
2
θ

+

(

αh(t)
∫

∞

t
q(s)π1(σ(s))h(s)ds

)

z(h(t))

h(t)
. (2.32)

From (2.32), we see that

αθh1− 2
θ (t)

2

∫ h(t)

t4

sq(s)π1(σ(s))(h(s))
2/θds

+
αθh2− 2

θ (t)

2

∫ t

h(t)
q(s)π1(σ(s))(h(s))

2/θds +
αθh(t)

2

∫

∞

t
q(s)π1(σ(s))h(s)ds ≤ 1.

Taking the lim supt→∞
on both sides of the above inequality, we obtain a contradiction to

condition (2.23),
Next, we consider case (II). As in Lemma 2.6, we again arrive at (2.20), which, for β = 1,

takes the form

z′′′(t) +
1
2

q(t)π2(σ(t))(g(t)− h(t))2z′′(g(t)) ≤ 0. (2.33)

Integrating (2.33) from g(t) to t yields

z′′(t) +

[

∫ t

g(t)

1
2

q(s)π2(σ(s))(g(s)− h(s))2ds − 1
]

z′′(g(t)) ≤ 0,

which, by (2.24), leads to a contradiction. This completes the proof of the theorem.

Our next results is for equation (1.1) in the case where β < 1, i.e., equation (1.1) is sublinear.
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Theorem 2.8. Let (2.3) and (2.11) hold. Assume that there exists a nondecreasing function η ∈

C1([t0, ∞), R) such that σ(t) ≤ η(t) < τ(t) for t ≥ t0. If there exists θ ∈ (0, 1) such that

lim sup
t→∞

(

h1− 2
θ (t)

∫ h(t)

t0

sq(s)π
β
1 (σ(s))(h(s))

2β/θds

+ h2− 2
θ (t)

∫ t

h(t)
q(s)π

β
1 (σ(s))(h(s))

2β/θds

+
h2−β(t)

h2(1−β)/θ(t)

∫

∞

t
q(s)π

β
1 (σ(s))h

β(s)ds

)

> 0, (2.34)

and

lim sup
t→∞

∫ t

g(t)
q(s)π2(σ(s))(g(s)− h(s))2βds > 0, (2.35)

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, by Lemma 2.2, the corresponding function z

satisfies either case (I) or case (II) for t ≥ t2 for some t2 ≥ t1.
First, we consider case (I). By Lemma 2.4, we again arrive at (2.10) for t ≥ t3. Integrating

(2.10) from t to ∞ gives

z′′(t) ≥
∫

∞

t
q(s)π

β
1 (σ(s))z

β(h(s))ds. (2.36)

Integrating (2.36) from t3 to t yields

z′(t) ≥
∫ t

t3

∫

∞

u
q(s)π

β
1 (σ(s))z

β(h(s))dsdu

=
∫ t

t3

∫ t

u
q(s)π

β
1 (σ(s))z

β(h(s))dsdu +
∫ t

t3

∫

∞

t
q(s)π

β
1 (σ(s))z

β(h(s))dsdu

=
∫ t

t3

(s − t3)q(s)π
β
1 (σ(s))z

β(h(s))ds + (t − t3)
∫

∞

t
q(s)π

β
1 (σ(s))z

β(h(s))ds.

For any α ∈ (0, 1) there exists t4 ≥ t3 such that s − t3 ≥ αs and t − t3 ≥ αt for t ≥ s ≥ t4. Thus,

z′(t) ≥ α

∫ t

t4

sq(s)π
β
1 (σ(s))z

β(h(s))ds + αt
∫

∞

t
q(s)π

β
1 (σ(s))z

β(h(s))ds. (2.37)

By (2.2) and (2.37), we observe that

2z(t)

θt
≥ α

∫ t

t4

sq(s)π
β
1 (σ(s))z

β(h(s))ds + αt
∫

∞

t
q(s)π

β
1 (σ(s))z

β(h(s))ds. (2.38)

It follows from (2.38) that

2z(h(t))

θh(t)
≥ α

∫ h(t)

t4

sq(s)π
β
1 (σ(s))z

β(h(s))ds

+ αh(t)
∫ t

h(t)
q(s)π

β
1 (σ(s))z

β(h(s))ds

+ αh(t)
∫

∞

t
q(s)π

β
1 (σ(s))z

β(h(s))ds. (2.39)
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Using (2.30) and (2.31) in (2.39) gives

2z(h(t))

θh(t)
≥

(

α

∫ h(t)

t4

sq(s)π
β
1 (σ(s))(h(s))

2β/θds

)

zβ(h(t))

h2β/θ(t)

+

(

αh(t)
∫ t

h(t)
q(s)π

β
1 (σ(s))(h(s))

2β/θds

)

zβ(h(t))

h2β/θ(t)

+

(

αh(t)
∫

∞

t
q(s)π

β
1 (σ(s))h

β(s)ds

)

zβ(h(t))

hβ(t)
. (2.40)

Letting

w(t) =
z(h(t))

(h(t))2/θ
,

it follows from (2.40) that

2
αθ

w1−β(t) ≥ h1− 2
θ (t)

(

∫ h(t)

t4

sq(s)π
β
1 (σ(s))(h(s))

2β/θds

)

+ h2− 2
θ (t)

(

∫ t

h(t)
q(s)π

β
1 (σ(s))(h(s))

2β/θds

)

+
h2−β(t)

h2(1−β)/θ

(

∫

∞

t
q(s)π

β
1 (σ(s))h

β(s)ds

)

. (2.41)

Taking the lim supt→∞
on both sides of the above inequality and using (2.12) , we obtain a

contradiction to condition (2.34).
Next, we consider case (II). As in the proof of Lemma 2.6, we again arrive at (2.21). Inte-

grating (2.21) from g(t) to t yields
∫ t

g(t)
q(s)π2(σ(s))(g(s)− h(s))2βds ≤ 2β

(

z′′(g(t))
)1−β .

Noting that (2.35) implies (2.15), we see that (2.16) holds. Taking the lim supt→∞
on both sides

of the above inequality and using (2.16), we obtain a contradiction to condition (2.35), and this
proves the theorem.

We conclude this paper with the following examples and remarks to illustrate the above
results. Our first example is concerned with an equation with bounded neutral coefficients in
the case where p is a constant function; the second example is for an equation with unbounded
neutral coefficients in the case where p(t) → ∞ as t → ∞.

Example 2.9. Consider the third-order differential equation of Euler type
(

x(t) + 16x

(

t

2

))′′′

+
q0

t3 x

(

t

4

)

= 0, t ≥ 1. (2.42)

Here p(t) = 16, q(t) = q0/t3, β = 1, τ(t) = t/2, and σ(t) = t/4. Then, it is easy to see that
conditions (C1)–(C2) hold, and

τ−1(t) = 2t, τ−1(τ−1(t)) = 4t, h(t) = t/2, and g(t) = 2t/3 with η(t) = t/3.

Choosing θ = 2/3, we see that
(

t

τ(t)

)2/θ 1
p(t)

=
1
2

,
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i.e., condition (C3) holds, π1(t) = 1/32 and π2(t) = 15/256. Letting α = θ = 2/3, by Theorem
2.7, Eq. (2.42) is oscillatory for

q0 >
3 × 211

5 ln 3
2

.

Example 2.10. Consider the sublinear equation

(

x(t) + tx

(

t

2

))′′′

+
q0

t6/5
x3/5

(

t

10

)

= 0, t ≥ 16. (2.43)

Here p(t) = t, q(t) = q0/t6/5, β = 3/5, τ(t) = t/2, and σ(t) = t/10. Then, it is easy to see
that conditions (C1)–(C2) hold, and

τ−1(t) = 2t, τ−1(τ−1(t)) = 4t, h(t) = t/5, and g(t) = t/4 with η(t) = t/8.

Choosing θ = 2/3, we see that

(

t

τ(t)

)2/θ 1
p(t)

=
8
t
≤

1
2

,

i.e., condition (C3) holds. Since π1(t) ≥ 7/16t and π2(t) ≥ 63/128t, by Theorem 2.8, Eq. (2.43)
is oscillatory for all q0 > 0.

Remark 2.11. The results of this paper can be extended to the odd-order equation

(

r(t)
(

z(n−1)(t)
)γ)′

+ q(t)xβ(σ(t)) = 0, t ≥ t0 > 0,

under either of the conditions
∫

∞

t0

r−1/γ(t)dt = ∞

or
∫

∞

t0

r−1/γ(t)dt < ∞,

where n ≥ 3 is an odd natural number, r ∈ C ([t0, ∞), (0, ∞)), γ is the ratio of odd positive
integers, and the other functions in the equation are defined as in this paper.

Remark 2.12. It would be of interest to study the oscillatory behavior of all solutions of (1.1)
for p(t) ≤ −1 with p(t) 6≡ −1 for large t.
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we study the

following anisotropic singular Dirichlet problem

− ∆p(z)u(z) = u(z)−η(z) + f (z, u(z)) in Ω, u|∂Ω = 0, u > 0. (1.1)

In this problem the exponent p : Ω → R in the differential operator, is Lipschitz continuous

(that is p ∈ C0,1(Ω)) and 1 < p− = min
Ω

p. By ∆p(z) we denote the anisotropic p-Laplace

operator defined by

∆p(z)u = div(|Du|p(z)−2Du) ∀u ∈ W
1,p(z)
0 (Ω).

In problem (1.1) we have the competing effects of a singular term x−η(z) with η ∈ C(Ω), 0 <

η(z) < 1 for all z ∈ Ω and a Carathéodory perturbation f (z, x) (that is, for all x ∈ R, z →

f (z, x) is measurable and for a.a. z ∈ Ω, x → f (z, x) is continuous), which is (p+ − 1)-

superlinear as x → +∞ (here p+ = max
Ω

p), but need not satisfy the usual for superlinear

BCorresponding author. Email: zhhliu@hotmail.com
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problems Ambrosetti–Rabinowitz condition (the AR-condition for short). We are looking for

positive solutions. Using a combination of variational tools based on the critical point theory,

together with truncation and comparison techniques, we show that the problem has at least

two positive smooth solutions.

While anisotropic boundary value problems have been studied extensively in the last few

years (see the books of Diening–Harjulehto–Hästö–Růžička [2] and of Rădulescu–Repovš [12]

and the references therein), the study of singular anisotropic problems is lagging behind.

Only a very limited number of works exist on this subject and they all concern parametric

problems (see the works of Byun-Ko [1] and Saoudi–Ghanmi [13]). The presence of parameter

in the equation is very helpful, since by varying the parameter, we achieve certain desirable

geometric configurations which in turn permit the use of the minimax theorems of critical

point theory. In problem (1.1) there is no parameter to facilitate the analysis.

2 Mathematical background – hypotheses

The study of problem (1.1) requires the use of Lebesgue and Sobolev spaces with variable ex-

ponents. A comprehensive presentation of these spaces can be found in the book of Diening–

Harjulehto–Hästö–Růžička [2].

For every r ∈ C(Ω) we set

r− = min
Ω

r and r+ = max
Ω

r.

Let E1 = {r ∈ C(Ω) : 1 < r−} and M(Ω) = {u : Ω → R measurable}. As usual, we

identify two such functions which differ only on a Lebesgue-null set. For r ∈ E1, the variable

exponent Lebesgue space Lr(z)(Ω) is defined by

Lr(z)(Ω) =

{
u ∈ M(Ω) :

∫

Ω

|u|r(z)dz < ∞

}
.

We equip this space with the so-called “Luxemburg norm” defined by

‖u‖r(z) = inf

[
λ > 0 :

∫

Ω

(
|u(z)|

λ

)r(z)

dz ≤ 1

]
, u ∈ Lr(z)(Ω).

With this norm the space Lr(z)(Ω) is a Banach space which is separable and reflexive

(in fact uniformly convex). Let r′ ∈ E1 be defined by r′(z) = r(z)
r(z)−1

for all z ∈ Ω (that is,
1

r(z)
+ 1

r′(z)
= 1 for all z ∈ Ω). Then we have

Lr(z)(Ω)∗ = Lr′(z)(Ω)

and the following version of Hölder’s inequality is true

∫

Ω

|uv|dz ≤

[
1

r−
+

1

r′−

]
‖u‖r(z)‖v‖r′(z), ∀u ∈ Lr(z)(Ω), ∀v ∈ Lr′(z)(Ω).

Note that if r1, r2 ∈ E1 and r1(z) ≤ r2(z) for all z ∈ Ω, then we have

Lr2(z)(Ω) →֒ Lr1(z)(Ω) continuously.
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Using the variable exponent Lebesgue spaces, we can introduce variable exponent Sobolev

spaces. Given r ∈ E1, the anisotropic Sobolev space W1,r(z)(Ω) is defined by

W1,r(z)(Ω) = {u ∈ Lr(z)(Ω) : |Du| ∈ Lr(z)(Ω)},

where Du denotes the gradient of u in the weak sense. This space is equipped with the norm

‖u‖1,r(z) = ‖u‖r(z) + ‖Du‖r(z), u ∈ W1,r(z)(Ω) (here ‖Du‖r(z) = ‖|Du|‖r(z)).

If r ∈ E1 ∩ C0,1(Ω), then we define

W
1,r(z)
0 (Ω) = C∞

c (Ω)
‖·‖1,r(z)

.

The spaces W1,r(z)(Ω) and W
1,r(z)
0 (Ω) are separable, reflexive (in fact uniformly convex).

For the space W
1,r(z)
0 (Ω) the Poincaré inequality holds, that is, there exists ĉ > 0 such that

‖u‖r(z) ≤ ĉ‖Du‖r(z) for all u ∈ W
1,r(z)
0 (Ω).

This implies that on W
1,r(z)
0 (Ω) we can use the equivalent norm

|u|1,r(z) = ‖Du‖r(z), u ∈ W
1,r(z)
0 (Ω).

For r ∈ E1, we set

r∗(z) =





Nr(z)

N − r(z)
, if r(z) < N

+∞, if N ≤ r(z)

∀z ∈ Ω.

Let r, q ∈ E1 ∩ C0,1(Ω) and suppose that q(z) ≤ r∗(z) (resp. q(z) < r∗(z)) for all z ∈ Ω.

Then we have the anisotropic Sobolev embedding theorem

W
1,r(z)
0 (Ω) →֒ Lq(z)(Ω) continuously

(resp. W
1,r(z)
0 (Ω) →֒ Lq(z)(Ω) compactly).

In the study of these spaces, central role plays the following modular function

ρr(u) =
∫

Ω

|u|r(z)dz for all u ∈ Lr(z)(Ω).

If u ∈ W
1,r(z)
0 (Ω) or u ∈ W1,r(z)(Ω), then ρr(Du) = ρr(|Du|).

This modular function is closely related to the Luxemburg norm.

Proposition 2.1. If r ∈ E1 and {un, u}n∈N ⊆ Lr(z)(Ω), then we have

(a) For all λ > 0,

‖u‖r(z) = λ ⇔ ρr(
u
λ ) = 1;

(b) ‖u‖r(z) < 1 ⇔ ‖u‖r+
r(z)

≤ ρr(u) ≤ ‖u‖r−
r(z)

,

‖u‖r(z) > 1 ⇔ ‖u‖r−
r(z)

≤ ρr(u) ≤ ‖u‖r+
r(z)

;
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(c) ‖un‖r(z) → 0 ⇔ ρr(un) → 0;

(d) ‖un‖r(z) → ∞ ⇔ ρr(un) → +∞.

Also for r ∈ E1 ∩ C0,1(Ω), we have

W
1,r(z)
0 (Ω)∗ = W−1,r′(z)(Ω).

Consider the operator Ar : W
1,r(z)
0 (Ω) → W−1,r′(z)(Ω) defined by

〈Ar(z)(u), h〉 =
∫

Ω

|Du|r(z)−2(Du, Dh)RN dz, for all u, h ∈ W
1,r(z)
0 (Ω).

This operator has the following properties (see Gasiński–Papageorgiou [5], Proposition 2.5

and Rădulescu–Repovš [12], p.40).

Proposition 2.2. If r ∈ E1 ∩ C0,1(Ω) and Ar : W
1,r(z)
0 (Ω) → W−1,r′(z)(Ω) is defined as above, then

Ar(·) is bounded (maps bounded sets to bounded sets), continuous, strictly monotone (hence maximal

monotone too) and is of type (S)+, that is, it has the following property:

“if un
w
−→ u in W

1,r(z)
0 (Ω) and lim sup

n→∞

〈Ar(z)(un), un − u〉 ≤ 0, then un → u in W
1,r(z)
0 (Ω).”

For every u ∈ W
1,r(z)
0 (Ω), we define u± = max{±u, 0}. Then

u± ∈ W
1,r(z)
0 (Ω), u = u+ − u−, |u| = u+ + u−.

Suppose u, v : Ω → R are measurable functions such that u(z) ≤ v(z) for a.a z ∈ Ω. We

define

[u, v] =
{

h ∈ W
1,r(z)
0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω

}
,

[u) =
{

h ∈ W
1,r(z)
0 (Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω

}
.

Another space that we will need is C1
0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}. This is an ordered

Banach space with positive (order) cone C+ = {u ∈ C1
0(Ω) : u(z) ≥ 0 for all z ∈ Ω}. This

cone has a nonempty interior given by

int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω

< 0

}
.

with n(·) being the outward unit normal on ∂Ω.

Let X be a Banach space and ϕ ∈ C1(X). We introduce the set

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).

We say that ϕ(·) satisfies the “C-condition”, if it has the following property:

“Every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded

and (1 + ‖un‖X)ϕ′(un) → 0 in X∗ as n → ∞, admits a strongly convergent subsequence.”

Now we are ready to introduce our hypotheses on the data of problem (1.1).
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H0: p ∈ C0,1(Ω), 1 < p− = min
Ω

p, η ∈ C(Ω), 0 < η(z) < 1 for all z ∈ Ω.

H1: f : Ω × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and

(i) | f (z, x)| ≤ a(z)[1 + xr(z)−1] for a.a. z ∈ Ω, all x ≥ 0, with r ∈ C(Ω) and p(z) <

r(z) < p∗(z) for all z ∈ Ω;

(ii) if F(z, x) =
∫ x

0 f (z, s)ds, then limx→+∞

F(z,x)
xp+ = +∞ uniformly for a.a. z ∈ Ω and

there exists τ ∈ C(Ω) such that

τ(z) ∈

(
(r+ − p−)max

{
N

p−
, 1

}
, p∗(z)

)
for all z ∈ Ω,

0 < η̂0 ≤ lim inf
x→+∞

f (z, x)x − p+F(z, x)

xτ(z)
uniformly for a.a. z ∈ Ω;

(iii) there exists θ > 0 such that

θ−η(z) + f (z, θ) ≤ −ĉ < 0 for a.a. z ∈ Ω;

(iv) there exist δ > 0 and q ∈ E1 such that q+ < p− such that

c1xq(x)−1 ≤ f (z, x) for a.a. z ∈ Ω, all 0 ≤ x ≤ δ, with c1 > 0;

(v) there exists ξ̂θ > 0 such that for a.a.z ∈ Ω, the function

x → f (z, x) + ξ̂θxp(z)−1 is nondecreasing on [0, θ].

Remark 2.3. Since we look for positive solutions and all the above hypotheses concern the

positive semiaxis R+ = [0, ∞), we can always assume without any loss of generality that

f (z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. Hypotheses H1(ii) implies that for a.a. z ∈ Ω f (z, ·) is

(p+ − 1)-superlinear. However, it need not satisfy the AR-condition which is common in the

literature when dealing with superlinear problems (see, for example, Saoudi–Ghanmi [13],

hypothesis (H4) and Byun–Ko [1, p. 76]). Condition H1(ii) is less restrictive and incorporates

in our framework also superlinear nonlinearities with “slower” growth as x → +∞, which fail

to satisfy the AR-condition. For example, the following function f (z, x) satisfies hypotheses

H1 but fails to satisfy the AR-condition:

f (z, x) =

{
(x+)q(z)−1 − 2(x+)k(z)−1 if x ≤ 1

xp+−1 ln x − xp(z)−1 if 1 < x,

with q ∈ E1 as in hypothesis H1(iv), k ∈ C(Ω), τ(z) < k(z) for a z ∈ Ω. Evidently for this

f (z, x) we can choose θ = 1. Hypotheses H1(iii), (iv) dictate an oscillatory behavior for f (z, ·)

near 0+ since it starts positive near zero (see hypothesis H1(v)) and drops to negative values

as we approach θ > 0 (see hypothesis H1(iii)). Also, hypothesis H1(v) implies the presence of

a concave term near zero.

3 An auxiliary problem

When dealing with singular problems, a major difficulty that we encounter, is that the pres-

ence of the singularity leads to an energy functional which is not C1. This fact prevents us
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from using the results of critical point theory. So, we need to find a way to bypass the singu-

larity and deal with C1-functions in order to use the minimax theorems of critical point theory.

This is done by using the solution of an auxiliary problem which we introduce and solve in

this section. The auxiliary problem is suggested by a unilateral growth condition satisfied by

f (z, ·). More precisely note that on account of hypotheses H1(i), (iv), we can find c2 > 0 such

that

f (z, x) ≥ c1xq(z)−1 − c2xr(z)−1 for a.a z ∈ Ω, all x ≥ 0. (3.1)

Motivated by this unilateral growth condition on f (z, ·) and using hypothesis H1(iii), we

introduce the Carathéodory function g : Ω × R → R defined by

g(z, x) =

{
c1(x+)q(z)−1 − c2(x+)r(z)−1 if x ≤ θ

c1θq(z)−1 − c2θr(z)−1 if θ < x.
(3.2)

Then we consider the following Dirichlet problem

− ∆p(z)u(z) = g(z, u(z)) in Ω, u|∂Ω = 0, u > 0. (3.3)

Proposition 3.1. If hypotheses H0 hold, then problem (3.3) has a unique positive solution u ∈ int C+

and 0 ≤ u(z) ≤ θ for all z ∈ Ω.

Proof. First we show the existence of a positive solution for problem (3.3). To this end, let

ψ0 : W
1,p(z)
0 (Ω) → R be the C1-functional defined by ψ0(u) =

∫
Ω

1
p(z)

|Du|p(z)dz −
∫

Ω
G(z, u)dz

for all u ∈ W
1,p(z)
0 (Ω), where G(z, x) =

∫ x
0 g(z, s)ds. From (3.2), we see that

ψ0(u) ≥
1

p
ρp(Du)− c3 for some c3 > 0,

⇒ ψ0(·) is coercive (see Proposition 2.1).

Also, from the anisotropic Sobolev embedding theorem, we see that ψ0(·) is sequentially

weakly lower semicontinuous.

So, by the Weierstrass–Tonelli theorem, we can find u ∈ W
1,p(z)
0 (Ω) such that

ψ0(u) = min[ψ0(u) : u ∈ W
1,p(z)
0 (Ω)]. (3.4)

Let u ∈ int C+ and choose t ∈ (0, 1) small so that 0 ≤ tu(z) ≤ θ for all z ∈ Ω. Then using

(3.2), we have

ψ0(tu) ≤
tp−

p−
ρp(Du) +

tr−

r−
ρτ(u)−

tq+

q+
ρq(u)

≤ c4tp− − c5tq+ for some c4, c5 > 0. (3.5)

(since 1 < q+ < p− < r− and t ∈ (0, 1)).

From (3.5) we see that by taking t ∈ (0, 1) even smaller if necessary, we have

ψ0(tu) < 0,

⇒ ψ0(u) < 0 = ψ0(0) (see (3.4)),

⇒ u 6= 0.
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From (3.4) we have that

ψ′
0(u) = 0,

⇒ 〈Ap(z)(u), h〉 =
∫

Ω

g(z, u)hdz, for all h ∈ W
1,p(z)
0 (Ω). (3.6)

In (3.6) first we choose h = −u− ∈ W
1,p(z)
0 (Ω) and obtain

ρp(Du−) = 0 (see (3.2)),

⇒ u ≥ 0, u 6= 0.

Next in (3.6) first we choose h = [u − θ]+ ∈ W
1,p(z)
0 (Ω). We obtain

〈Ap(z)(u), (u − θ)+〉 =
∫

Ω

[c1θq(z)−1 − c2θr(z)−1](u − θ)+dz (see (3.2))

≤
∫

Ω

f (z, θ)(u − θ)+dz (see (3.1))

≤ 0 = 〈Ap(z)(θ), (u − θ)+〉 (see H1(iii)),

⇒ u ≤ θ.

So, we have proved that

u ∈ [0, θ], u 6= 0. (3.7)

From (3.7),(3.2) and (3.6), we infer that u 6= 0 is a positive solution of problem (3.3). From

Fan [3] (Theorem 1.3), we have that u ∈ C+\{0}. Moreover, we have

∆p(z)(u) ≤ c2θr(z)−p(z)u(z)p(z)−1 ≤ c6u(z)p(z)−1 in Ω for some c6 > 0.

Then the anisotropic maximum principle of Zhang [15, Theorem 1.2] implies that

u ∈ int C+. (3.8)

Next we show that this positive solution of (3.3) is in fact unique. Let v ∈ W
1,p(z)
0 (Ω) be

another positive solution of (3.3). Again we have

v ∈ int C+. (3.9)

From (3.8) and (3.9) and using Proposition 4.1.22, p. 274, of Papageorgiou–Rădulescu-

Repovš [9], we have that
u

v
∈ L∞(Ω) and

v

u
∈ L∞(Ω). (3.10)

Let j : L1(Ω) → R = R ∪ {+∞} be the integral functional defined by

j(u) =

{∫
Ω

1
p(z)

|Du1/p− |p(z)dz if u ≥ 0, u1/p− ∈ W
1,p(z)
0 (Ω),

+∞ otherwise.

Let dom j = {u ∈ L1(Ω) : j(u) < ∞} (the effective domain of j(·)). From Theorem 2.2

of Takač–Giacomoni [14], we know that j(·) is convex. Let h = up− − vp− ∈ W
1,p(z)
0 (Ω). On

account of (3.10), for |t| < 1 small, we have

up− + th ∈ dom j and vp− + th ∈ dom j.
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Then the convexity of j(·) implies the Gateaux differentiability of j(·) at up− and at vp− in

the direction h. Moreover, using Green’s theorem, we obtain

j′(up−)(h) =
1

p−

∫

Ω

−∆p(z)u

up−−1
hdz =

1

p−

∫

Ω

[
c1

up−−q(z)
− c2ur(z)−p−

]
hdz,

j′(vp−)(h) =
1

p−

∫

Ω

−∆p(z)v

vp−−1
hdz =

1

p−

∫

Ω

[
c1

vp−−q(z)
− c2vr(z)−p−

]
hdz.

The convexity of j(·) implies the monotonicity of j′(·). So, we have

0 ≤
∫

Ω

[
c1

(
1

up−−q(z)
−

1

vp−−q(z)

)
− c2(u

r(z)−p− − vr(z)−p−)

]
(up− − vp−)dz ≤ 0

(since q+ < p− < r−)

⇒ u = v.

This proves the uniqueness of the positive solution u ∈ int C+.

In what follows, let d̂(·) = d(·, ∂Ω) and û1 is the positive, Lp+-normalized (that is, ‖û1‖p+ =

1) eigenfunction corresponding to the principal eigenvalue of (−∆p+ , W1,p+(Ω)). We know

that û1 ∈ int C+ (see, for example, Gasiński–Papageorgiou [4, p. 739]).

Proposition 3.2. If Hypotheses H0 hold and u ∈ int C+ is the unique solution of problem (3.3), then

u(·)−η(·) ∈ L1(Ω) and for every h ∈ W
1,p(z)
0 (Ω), u(·)−η(·)h(·) ∈ L1(Ω).

Proof. From Lemma 14.16, p. 355 of Gilbarg–Trudinger [6], we can find δ0 > 0 such that,

if Ωδ0
= {z ∈ Ω : d̂(z) < δ0}, then d̂ ∈ C2(Ωδ0

). If follows that d̂ ∈ int C+ and so by

Proposition 4.1.22, p. 274, of Papageorgiou–Rădulescu–Repovš [9], we can find c7 > 0 such

that

c7û1 ≤ d̂ and c7d̂ ≤ u (recall u ∈ int C+). (3.11)

From (3.11) we infer that

u−η(·) ≤ c8û
−η(·)
1 for some c8 > 0.

Then the Lemma (in fact its proof to be precise) of Lazer–McKenna [8], implies that û
−η(·)
1 ∈

L1(Ω). Therefore we have

u−η(·) ∈ L1(Ω).

On the other hand, for every h ∈ W
1,p(z)
0 (Ω), we have

∫

Ω

|u−η(z)h|dz =
∫

Ω

u1−η(z) |h|

u
dz

≤ c9

∫

Ω

|h|

u
dz for some c9 > 0

(recall that u ∈ int C+ and see hypotheses H0)

≤ c10

∫

Ω

|h|

d̂
dz for some c10 > 0 (see (3.11))

≤ c11‖
h

d̂
‖p(z) for some c11 > 0

≤ c12‖Dh‖p(z) for some c12 > 0.
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This last inequality is a consequence of the anisotropic Hardy inequality due to Harjulehto–

Hästö–Koskenoja [7]. So, finally we have

u(·)−η(·)h(·) ∈ L1(Ω) for all h ∈ W
1,p(z)
0 (Ω).

4 Multiple positive solutions

In this section using u ∈ int C+, the unique positive solution of (3.3), we are able to bypass the

singularity and have C1-functionals. Working with them, we show that problem (1.1) has at

least two positive smooth solutions.

Theorem 4.1. If hypotheses H0, H1 hold, then problem (1.1) has at least two positive solutions u0, û ∈

int C+, u0 6= û, u0(z) < θ for all z ∈ Ω.

Proof. Let u ∈ int C+ be the unique positive solution of problem (3.3) produced in Proposi-

tion 3.1. We introduce the Carathéodory function g : Ω × R → R defined by

g(z, x) =

{
u−η(z) + f (z, u(z)) if x ≤ u(z)

x−η(z) + f (z, x) if u(z) < x.
(4.1)

From Proposition 3.1 we know that 0 ≤ u(z) ≤ θ for all z ∈ Ω. Hence we can consider the

truncation of g(z, ·) at θ, that is, the Carathéodory function ĝ : Ω × R → R defined by

ĝ(z, x) =

{
g(z, x) if x ≤ θ

g(z, θ) if θ < x.
(4.2)

We set G(z, x) =
∫ x

0 g(z, s)ds and Ĝ(z, x) =
∫ x

0 ĝ(z, s)ds and consider the functions ψ, ψ̂ :

W
1,p(z)
0 (Ω) → R defined by

ψ(u) =
∫

Ω

1

p(z)
|Du|p(z)dz −

∫

Ω

G(z, u)dz,

ψ̂(u) =
∫

Ω

1

p(z)
|Du|p(z)dz −

∫

Ω

Ĝ(z, u)dz, for all u ∈ W
1,p(z)
0 (Ω).

On account of Proposition 3.2, these functionals are well-defined and in fact Proposition 3.1

of Papageorgiou–Smyrlis [11] implies that ψ, ψ̂ ∈ C1(W
1,p(z)
0 (Ω)).

For every u ∈ W
1,p(z)
0 (Ω), we have

ψ̂(u) ≥
1

p+
ρp(Du)− c13 for some c13 > 0,

(see (4.1),(4.2) and Proposition 3.2)

⇒ ψ̂(·) is coercive.

(see Proposition 2.1 and use Poincaré’s inequality).

The anisotropic Sobolev embedding theorem implies that ψ̂(·) is sequentially weakly lower

semicontinuous.

So, by the Weierstrass–Tonelli theorem, we can find u0 ∈ W
1,p(z)
0 (Ω) such that

ψ̂(u0) = min[ψ̂(u) : u ∈ W
1,p(z)
0 (Ω)], (4.3)
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From (4.3) we have

〈ψ̂′(u0), h〉 = 0 for all h ∈ W
1,p(z)
0 (Ω),

⇒ 〈Ap(z)(u0), h〉 =
∫

Ω

ĝ(z, u0)hdz for all h ∈ W
1,p(z)
0 (Ω). (4.4)

In (4.4) first we choose h = [u − u0]+ ∈ W
1,p(z)
0 (Ω). We have

〈Ap(z)(u0), (u − u0)
+〉 =

∫

Ω

[u−η(z) + f (z, u)](u − u0)
+dz (see (4.1),(4.2))

≥
∫

Ω

f (z, u)(u − u0)
+dz (since u ∈ int C+)

= 〈Ap(z)(u), (u − u0)
+〉 (see Proposition 3.1),

⇒ u ≤ u0 (see Proposition 2.2).

Next in (4.4) we choose h = [u0 − θ]+ ∈ W
1,p(z)
0 (Ω). We have

〈Ap(z)(u0), (u0 − θ)+〉 =
∫

Ω

[θ−η + f (z, θ)](u0 − θ)+dz (see (4.1),(4.2))

≤ 0 = 〈Ap(z)(θ), (u0 − θ)+〉 (see hypothesis H1(iii)),

⇒ u0 ≤ θ.

So, we have proved that

u0 ∈ [u, θ]. (4.5)

From (4.5), (4.1), (4.2) and (4.4), we have that u0 is a positive solution of (1.1). Invoking

Theorem 13.1 of Saaudi–Ghanmi [13] (see also Theorem 3.2 of Byun–Ko [1]), we have that

u0 ∈ int C+ (recall u ∈ int C+).

Now let ξ̂θ > 0 be as postulated by hypothesis H1(v). We have

− ∆p(z)u0 + ξ̂θu
p(z)−1
0 − u

−η(z)
0

= f (z, u0) + ξ̂θu
p(z)−1
0

≤ f (z, θ) + ξ̂θθp(z)−1 (see (4.5) and hypothesis H1(v))

≤ − ∆p(z)θ + ξ̂θθp(z)−1 − θ−η(z) (see hypothesis H1(iii)),

⇒ u0(z) < θ for all z ∈ Ω (4.6)

(from Proposition A4 of Papageorgiou–Rădulescu–Zhang [10]).

It is clear from (4.1) and (4.2) that

ψ|[0,θ] = ψ̂|[0,θ].

Since u0 ∈ int C+, we infer that

u0 is a local C1
0(Ω) minimizer of ψ(·) (see (4.6)),

⇒ u0 is a local W
1,p(z)
0 (Ω) minimizer of ψ(·) (see [10, 13]). (4.7)

Using (4.1) and the anisotropic regularity theory, we can see that Kψ ⊆ [u) ∩ int C+. So,

we may assume that Kψ is finite or otherwise on account of (4.1) we see that we already have
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a whole sequence of distinct positive smooth solutions and so we are done. Then from (4.7)

and Theorem 5.7.6, p. 449, of Papageorgiou–Rădulescu–Repovš [9], we know that we can find

ρ ∈ (0, 1) small such that

ψ(u0) < inf[ψ(u) : ‖u − u0‖ = ρ] = mρ. (4.8)

Moreover, hypothesis H1(ii) implies that if u ∈ int C+, then

ψ(tu) → −∞ as t → +∞. (4.9)

Finally from Proposition 4.1 of Gasiński–Papageorgiou [5] (see hypothesis H1(ii)), we have

that

ψ(·) satisfies the C-condition. (4.10)

Then (4.8), (4.9) and (4.10) permit the use of the mountain pass theorem. Therefore we can

find û ∈ W
1,p(z)
0 (Ω) such that

û ∈ Kψ ⊆ [u) ∩ int C+, mρ ≤ ψ(û), (4.11)

⇒ û ∈ int C+ is a positive solution of (1.1) (see (4.1)),

û 6= u0 ( see (4.8) and (4.11)), u0(z) < θ for all z ∈ Ω.
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Abstract. We present a set of conditions enabling a polynomial system of ordinary dif-
ferential equations in the plane to have invariant algebraic curves. These conditions are
necessary and sufficient. Our main tools include factorizations over the field of Puiseux
series near infinity of bivariate polynomials generating invariant algebraic curves. The
set of conditions can be algorithmically verified. This fact gives rise to a method, which
is able not only to find some irreducible invariant algebraic curves, but also to perform
their classification. We study in details the problem of classifying invariant algebraic
curves in the most difficult case: we consider differential systems with infinite number
of trajectories passing through infinity. As an example, we find necessary and sufficient
conditions such that a general polynomial Liénard differential system has invariant al-
gebraic curves. We present a set of all irreducible invariant algebraic curves for quintic
Liénard differential systems with a linear damping function. It is supposed in scientific
literature that the degrees of their irreducible invariant algebraic curves are bounded
by 6. While we derive irreducible invariant algebraic curves of degree 9.
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1 Introduction

Performing the complete classification of trajectories contained in algebraic curves or surfaces

for a given polynomial system of ordinary differential equations is a very difficult problem.

Such algebraic curves and surfaces producing trajectories of a differential system are called

invariants. The knowledge of the set of all irreducible invariants is very important in describ-

ing dynamical properties and establishing integrability of a system under consideration. It

was noted by Jean Gaston Darboux and Henri Poincaré that the main difficulty in finding ir-

reducible invariants lies in the fact that their degrees are unknown in advance. Nowadays the

problem of defining an upper bound on the degrees of irreducible invariant algebraic curves

is known as the Poincaré problem. This problem is very difficult in general settings. Solutions

are only available in restricted cases, for more details see [20] and references therein.

BEmail: maria dem@mail.ru
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Let us consider the following polynomial system of ordinary differential equations in the

plane

xt = P(x, y), yt = Q(x, y) (1.1)

with coprime polynomials P(x, y) and Q(x, y) ∈ C[x, y]. By C[x, y] we denote the ring of

bivariate polynomials with coefficients from the field of complex numbers C. The curve

F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C is an invariant algebraic curves of this system when-

ever the following condition is valid Ft|F=0 = (PFx + QFy)|F=0 = 0. If F(x, y) is irreducible

in C[x, y], then the ideal generated by F(x, y) is radical. Consequently, there exists an el-

ement λ(x, y) of the ring C[x, y] such that the following linear partial differential equation

P(x, y)Fx + Q(x, y)Fy = λ(x, y)F is satisfied. The polynomial λ(x, y) is called the cofactor of

the invariant algebraic curve F(x, y) = 0. The degree of λ(x, y) is at most d − 1, where d is

the maximum between the degrees of the polynomials P(x, y) and Q(x, y). Let the variable

y be privileged with respect to the variable x, then the function y(x) satisfies the following

algebraic first-order ordinary differential equation

P(x, y)yx − Q(x, y) = 0. (1.2)

The aim of the present article is to present new necessary and sufficient conditions for

the existence of invariant algebraic curves. Our main tools include asymptotic analysis of

solutions to equation (1.2) and some results of algebraic geometry. The problem of finding

a set of conditions satisfied by a polynomial system of ordinary differential equations in the

plane with invariant algebraic curves was previously considered by J. Chavarriga et al. [3].

The method of article [3] also uses the local properties of solutions of differential system (1.2).

The conditions obtained by J. Chavarriga et al. are necessary conditions, but not sufficient.

Let us name some other works [15–17], which deal with algebraic functions, asymptotic series

and their role in finding first integrals and invariant algebraic curves of system (1.1).

Puiseux (or fractional power) series generalize Laurent series and can be used if one needs

to find local representations of solutions for algebraic equations of the form F(x, y(x)) = 0

with F(x, y) ∈ C[x, y] \ C[x]. A Puiseux series in a neighborhood of the point x = ∞ reads as

y(x) =
+∞

∑
l=0

clx
l0−l
n0 , (1.3)

where l0 ∈ Z, n0 ∈ N. The set of formal Puiseux series given by (1.3) produces an alge-

braically closed field, which we denote by C∞{x}. In addition, we shall consider the ring

C∞{x}[y] of polynomials in one variable with coefficients from the field C∞{x}. It follows

from the algebraic closeness of the field C∞{x} that every element from the ring C∞{x}[y] is

a product of polynomials in y of degree at most one. The differentiation in the field C∞{x} is

defined as a formal operation with most of the properties similar to those valid for convergent

Puiseux series. Any bivariate polynomial F(x, y) ∈ C[x, y] can be viewed as an element of

the ring C∞{x}[y]. Consequently, for the algebraic curve F(x, y) = 0 given by the polynomial

F(x, y), we can construct a factorization into a zero-degree and first-degree factors in the ring

C∞{x}[y], see [5, 6, 10, 24].

All the Puiseux series solving equation (1.2) can be found using algorithms of the power

geometry [1, 2] and Painlevé methods [19]. After the classification of Puiseux series satisfying

equation (1.2) is completed, the computation of invariant algebraic curves F(x, y) = 0 can

be made purely algebraic. Indeed, one should require that the non-polynomial part of the

factorization for the polynomial F(x, y) in the ring C∞{x}[y] vanishes. Generally speaking,
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this approach gives an infinite algebraic system. Due to the Hilbert’s basis theorem only finite

number of equations can be considered in practice. Note that the roles of x and y can be

changed.

Let us name other methods of finding invariant algebraic curves. The most commonly used

methods include the method of undetermined coefficients, the method of the extactic polyno-

mial [4, 21], and an algorithm based on decomposing the vector field related to the original

differential system into weight-homogenous components [19]. The method of undetermined

coefficients is able to find invariant algebraic curves of fixed degrees only. In addition, the

computations may be sufficiently involved. The method of the extactic polynomial was intro-

duced by M. N. Lagutinski [21] and further developed by C. Christopher et al. [4] This method

requires calculating certain determinants that are as a rule sufficiently huge. In addition, the

method needs a priori information about an upper bound on the degrees of irreducible in-

variant algebraic curves. The algorithm of decomposing the vector field related to the original

system into weight-homogenous components gives an infinite sequence of partial differential

equations. On the contrary, the second part of the method of Puiseux series is purely alge-

braic. Moreover, the latter method is capable to solve the Poincaré for a given polynomial

differential system. This comparison shows that the method of Puiseux series presented in

works [5, 6, 10] and developed in this article is a natural and visual method of finding and

classifying invariant algebraic curves of polynomial differential systems in the plane (1.1). Let

us mention that the problem of finding all irreducible invariant algebraic curves of differential

systems (1.1) with infinite number of trajectories passing through infinity was not considered

in articles [5, 6, 10]. Meanwhile this case turns out to be the most difficult. In this work our

goal is to fill this gap. In other words we shall examine the situation with infinite number of

Puiseux series near the point x = ∞ that satisfy equation (1.2).

As an application of our method we shall consider the famous Liénard differential systems.

The systems of first-order ordinary differential equations given by

xt = y, yt = − f (x)y − g(x) (1.4)

are commonly referred to as Liénard differential systems. These systems are used to model

different phenomena in physics, chemistry, biology, economics, etc. In this article we consider

polynomial Liénard differential systems, i.e. f (x) and g(x) are polynomials

f (x) = f0xm + · · ·+ fm, g(x) = g0xn + · · ·+ gn, f0g0 6= 0 (1.5)

with coefficients in the field C. K. Odani proved that Liénard systems with n ≤ m have

no invariant algebraic curves with the exception for some trivial cases [23]. Integrability

properties of these families of systems under the condition n ≤ m were studied by J. Llibre and

C. Valls [22]. H. Żolądek considered the problem of finding limit cycles contained in the ovals

of hyperelliptic invariant algebraic curves (y − p(x))2 − q(x) = 0 with p(x), q(x) ∈ C[x], see

[25]. The general structure of irreducible invariant algebraic curves and some other properties

in the case m < n < 2m + 1 were investigated in articles [6, 10]. Explicit expressions of

invariant algebraic curves for Liénard differential systems with m = 1 and n = 2 where

presented in work [14]. This article is devoted to the leftover cases: n ≥ 2m + 1. Let us note

that the case n = 2m+ 1 is in certain sense degenerate and the problem of classifying invariant

algebraic curves for n = 2m + 1 is very complicated. This degeneracy can be explained

analyzing properties of Puiseux series satisfying an algebraic first-order ordinary differential

equation of the form (1.2) related to associated Liénard differential systems.
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This article is organized as follows. In Section 2 we present and prove our main results

and consider some computational aspects of solving an algebraic system resulting form our

theorems. In Section 3 we study Liénard differential systems with n ≥ 2m + 1 in details. In

particular, we present the general structure of their invariant algebraic curves and cofactors.

Finally, in Section 4 we derive the complete classification of irreducible invariant algebraic

curves of systems (1.4) with m = 1 (deg f (x) = 1) and n = 5 (deg g(x) = 5). In the Appendix,

an algorithm of finding Puiseux series solving an algebraic first-order ordinary differential

equation is described.

2 Computational aspects of the Puiseux series method

Let us begin this section with some preliminary observations resulting from a factorization of

an invariant algebraic curve F(x, y) = 0 of differential system (1.1) in the ring C∞{x}[y]. It

is straightforward to show that invariant algebraic curves of differential system (1.1) capture

Puiseux series satisfying equation (1.2).

Lemma 2.1 ([5]). Let y(x) be a Puiseux series near the point x = ∞ that satisfies the equation

F(x, y) = 0 with F(x, y) = 0 being an invariant algebraic curve of differential system (1.1) such that

F(x, y) ∈ C[x, y] \ C[x]. Then the series y(x) solves equation (1.2).

Suppose S(x, y) is an element of the ring C∞{x}[y]. Let us introduce two operators of

projection acting in this ring. The first operator {S(x, y)}+ gives the sum of the monomials of

S(x, y) with non-negative integer powers. In other words, {S(x, y)}+ yields the polynomial

part of S(x, y). Analogously, the projection {S(x, y)}− = S(x, y) − {S(x, y)}+ produces the

non-polynomial part of S(x, y). It is straightforward to show that these projections are linear

operators. The action of the projection operators can be extended to the ring of Puiseux series

in y near the point y = ∞ with coefficients from the field C∞{x}.

By µ(x) we shall denote the highest-order coefficient (with respect to y) of the bivariate

polynomial F(x, y) producing the invariant algebraic curve F(x, y) = 0 of differential sys-

tem (1.1). The following theorem was proved in articles [5, 10].

Theorem 2.2 ([5, 10]). Let F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C[x] be an irreducible invariant

algebraic curve of differential system (1.1). Then F(x, y) and its cofactor λ(x, y) take the form

F(x, y) =

{

µ(x)
N

∏
j=1

{

y − yj(x)
}

}

+

,

λ(x, y) =

{

P(x, y)
∞

∑
m=0

L

∑
l=1

νlx
m
l

xm+1
+

∞

∑
m=0

N

∑
j=1

{Q(x, y)− P(x, y)yj, x}ym
j

ym+1

}

+

,

(2.1)

where y1(x), . . . , yN(x) are pairwise distinct Puiseux series in a neighborhood of the point x = ∞

that satisfy equation (1.2), x1, . . . , xL are pairwise distinct zeros of the polynomial µ(x) ∈ C[x] with

multiplicities ν1, . . . , νL ∈ N and L ∈ N ∪ {0}. The degree of F(x, y) with respect to y does not exceed

the number of distinct Puiseux series of the from (1.3) satisfying equation (1.2) whenever the latter is

finite. If µ(x) = µ0, where µ0 ∈ C, then we suppose that L = 0 and the first series is absent in the

expression for the cofactor λ(x, y).

Theorem 2.2 gives rise to the following algorithm of finding invariant algebraic curves

F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C[x].
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At the first step one should construct all the Puiseux series (near finite points and infinity)

that satisfy equation (1.2). Algorithms of classifying Puiseux series solving an algebraic ordi-

nary differential equation are available in the framework of the power geometry [1,2] and the

Painlevé methods [19], see Appendix.

At the second step one uses Theorem 2.2 in order to derive the structure of an irreducible

invariant algebraic curve and its cofactor, see relations (2.1). Possible zeros of the polynomial

µ(x) can be obtained using Puiseux series near finite points possessing certain properties. We

shall not discuss this problem here, for more details see [10]. Note that at this step all possible

combinations of Puiseux series near infinity found at the first step should be considered if

one wishes to classify irreducible invariant algebraic curves. Requiring that the following

condition
{

µ(x)
N

∏
j=1

{

y − yj(x)
}

}

−

= 0 (2.2)

is satisfied yields a system of algebraic equations.

At the third step one solves the algebraic system and makes the verification substituting the

resulting polynomial F(x, y) related to the invariant algebraic curve and its cofactor λ(x, y)

into equation

P(x, y)Fx + Q(x, y)Fy = λ(x, y)F. (2.3)

Interestingly, we do not need to consider the convergence of formal Puiseux series solving

equation (1.2). Indeed, we perform all the steps of the method working with formal series,

and finally, if some formal Puiseux series enters the factorization in the ring C∞{x}[y] of the

resulting polynomial F(x, y) giving the invariant algebraic curve F(x, y) = 0, then this series

is convergent in some domain by a Newton–Puiseux theorem.

The aim of the present article is to consider the problem of constructing and solving the

system arising at the third step of the method.

Let us leave for a while the x-dependence of the elements yj(x) from the field C∞{x}

and consider the ring Sym ⊂ C[y1, . . . , yN ] of symmetric polynomials in N variables. It is

a classical result that Sym is isomorphic to a polynomial ring with N generators. The most

commonly used generators include elementary symmetric polynomials given by

sk = ∑
1≤j1<j2<···<jk≤N

yj1 yj2 · · · yjk , 1 ≤ k ≤ N (2.4)

and power-sum symmetric polynomials

Sk =
N

∑
j=1

yk
j , 1 ≤ k ≤ N. (2.5)

These generators are related via the Newton’s identities of the form

ksk =
k

∑
j=1

(−1)j−1sk−jSj, 1 ≤ k ≤ N;

Sk = (−1)k−1ksk +
k−1

∑
j=1

(−1)k+j−1sk−jSj, 1 ≤ k ≤ N,

(2.6)

where additionally should be set s0 = 1. It is not an easy problem to find the coefficients of

the Puiseux series given by the elementary symmetric polynomials sk(y1(x), . . ., yN(x)) with
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k > 1 if N is not known in advance. This is due to the fact that the coefficients of Puiseux se-

ries satisfying an algebraic ordinary differential equation are defined via recurrence relations.

At the same time computing coefficients of symmetric polynomials Sk(y1(x), . . . , yN(x)) is

straightforward. The following theorem contains necessary and sufficient conditions enabling

the existence of invariant algebraic curves.

Theorem 2.3. The polynomial F(x, y) ∈ C[x, y] \ C[x] of degree N > 0 with respect to y gives an

invariant algebraic curve F(x, y) = 0 of differential system (1.1) if and only if there exist N Puiseux

series y1(x), . . . , yN(x) from the field C∞{x} that solve equation (1.2) and satisfy the conditions

{

k

∑
j=1

(−1)j−1wk−j(x)Sj(y1(x), . . . , yN(x))

}

−

= 0, 1 ≤ k ≤ N, (2.7)

where wm(x) ∈ C[x] are defined as

wm(x) =

{

1

m

m

∑
j=1

(−1)j−1wm−j(x)Sj(y1(x), . . . , yN(x))

}

+

, 1 ≤ m ≤ N (2.8)

and w0(x) = µ(x) with µ(x) ∈ C[x] being the highest-order coefficient with respect to y of the

polynomial F(x, y).

Proof. Let us prove necessity of conditions (2.7). Factorizing the polynomial F(x, y) giving an

invariant algebraic curve F(x, y) = 0 of differential system (1.1) in the ring C∞{x}[y] yields

F(x, y) = µ(x)
N

∏
j=1

{

y − yj(x)
}

, (2.9)

where it follows from Lemma 2.1 that the Puiseux series y1(x), . . . , yN(x) satisfy equation (1.2).

It is straightforward to rewrite relation (2.9) in the form

F(x, y) = µ(x)
N

∑
j=0

(−1)jsj(y1(x), . . . , yN(x))yN−j. (2.10)

The non-polynomial part of this expression vanishes and the elements µ(x)sm(y1(x), . . . , yN(x))

should be polynomials coinciding with wm(x) given in (2.8). Considering the non-polynomial

coefficients at yN−k, we obtain the conditions

{µ(x)sk (y1(x), . . . , yN(x))}− = 0, 1 ≤ k ≤ N. (2.11)

Using relations (2.6), we see that conditions (2.11) are equivalent to (2.7).

In order to verify sufficiency of conditions (2.7), let us consider a formal expression (2.9)

and at first prove that it is a polynomial in C[x, y]. We need to establish that for each k from

1 to N the coefficient at yN−k in expression (2.9) is a polynomial. We shall use induction

on k. If k = 1, then condition (2.7) reads as {µ(x)S1(y1(x), . . . , yN(x))}− = 0 and we see

that the coefficient at yN−1 in relations (2.9) and (2.10) is a polynomial in x taking the form

−w1(x), where w1(x) = {µ(x)S1(y1(x), . . . , yN(x))}+. Let us suppose that the coefficients at

yN−k with 1 < k ≤ l are polynomials in x. These polynomials we denote as (−1)kwk(x). It is

straightforward to prove that they are given by relations (2.8) with 1 < k ≤ l.
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The coefficient at yN−(l+1) in relation (2.9) is equal to (−1)l+1µ(x)sl+1(y1(x), . . . , yN(x)).

Using expression (2.6), we find

µ(x)sl+1(y1(x), . . . , yN(x)) =
1

l + 1

l+1

∑
j=1

(−1)j−1µ(x)sl+1−jSj (2.12)

According to the induction hypothesis, we see that the elements µ(x)sl+1−j, 1 ≤ j ≤ l + 1

are polynomials in x coinciding with wl+1−j(x), 1 ≤ j ≤ l + 1 and consequently it follows

from condition (2.7) at k = l + 1 that the coefficient at yN−(l+1) is a polynomial in x. Thus we

conclude that expression (2.9) gives a bivariate polynomial F(x, y) from the ring C[x, y].

Finally, let us establish that the polynomial F(x, y) indeed gives an invariant algebraic

curve F(x, y) = 0 of differential system (1.1). Let f (x, y) ∈ C[x, y] \ C[x] be an irreducible

factor of the polynomial F(x, y). The element P fx +Q fy is also a polynomial, which we denote

as h(x, y), i.e. h(x, y) = P fx + Q fy. Let us take one of the Puiseux series near infinity yj(x) that

satisfies the equation f (x, yj(x)) = 0. Differentiating this equation, we obtain fx(x, yj(x)) +

fy(x, yj(x))yj, x = 0. Since f (x, y) divides F(x, y), we see that the series yj(x) solves equation

(1.2) and we get P(x, yj(x))yj, x − Q(x, yj(x)) = 0. Combining the equations fx(x, yj(x)) +

fy(x, yj(x))yj, x = 0 and P(x, yj(x))yj, x − Q(x, yj(x)) = 0 yields the relation h(x, yj(x)) = O,

where O is the zero element of the field C∞{x}. Note that P(x, yj(x)) 6= O. Indeed, assuming

the converse, we find from equation (1.2) that Q(x, yj(x)) = O. This fact contradicts the

assumption that the polynomials P(x, y) and Q(x, y) are coprime in the ring C[x, y]. It follows

from the relations f (x, yj(x)) = 0 and h(x, yj(x)) = 0, that two algebraic curves f (x, y) = 0

and h(x, y) = 0 intersect in an infinite number of points inside the domain of convergence

of the series yj(x). Using the Bézout’s theorem, we see that there exists a polynomial both

dividing f (x, y) and h(x, y). Since f (x, y) is irreducible, we find that h(x, y) = λ0(x, y) f (x, y)

with λ0(x, y) ∈ C[x, y]. Recalling the definition of h(x, y), we conclude that the polynomial

f (x, y) gives an invariant algebraic curve of differential system (1.1) and the same is true for

all other irreducible divisors of F(x, y). Thus, so does F(x, y). This completes the proof.

If the highest-order coefficient (with respect to y) of the polynomial F(x, y) is a constant,

then there is no loss of generality in setting µ(x) = 1. Repeating the reasoning of Theorem 2.3

for this particular case we obtain the following lemma.

Lemma 2.4. The polynomial F(x, y) ∈ C[x, y] \ C[x] of degree N > 0 with respect to y and with

µ(x) = 1 gives an invariant algebraic curve F(x, y) = 0 of differential system (1.1) if and only if

there exist N Puiseux series y1(x), . . . , yN(x) defined in a neighborhood of the point x = ∞ that solve

equation (1.2) and satisfy the conditions
{

N

∑
j=1

yk
j (x)

}

−

= 0, 1 ≤ k ≤ N. (2.13)

Again we remark that an algorithm of finding Puiseux series solving a first-order algebraic

ordinary differential equation is presented in the Appendix. It follows from Theorem 2.2 that

the Puiseux series in Theorem 2.3 and in Lemma 2.4 should be pairwise distinct whenever

one wishes to find irreducible invariant algebraic curves.

If all the Puiseux series near the point x = ∞ satisfying equation (1.2) have uniquely

determined coefficients, then the degrees with respect to y of bivariate polynomials giving

irreducible invariant algebraic curves of differential system (1.1) are bounded by the num-

ber of distinct Puiseux series. This fact was established in Theorem 2.2. Consequently, the
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algebraic system produced by Theorem 2.3 involves only the parameters of the original sys-

tem and possibly the zeros of the polynomial µ(x), which are connected with the existence

of Puiseux series near finite points that solve equation (1.2) and have certain properties [10].

While if there exists a family of Puiseux series near the point x = ∞ solving equation (1.2)

such that these series possess arbitrary coefficients resulting from the presence of a ratio-

nal non-negative Fuchs index, then it is unknown in advance how many times this family

should be taken in representation (2.1) of the polynomial F(x, y) producing irreducible in-

variant algebraic curve F(x, y) = 0. Let us consider one of such families with an arbitrary

coefficient cm where m ∈ N0. The coefficient cm is arbitrary in the sense that it is not

provided by equation (1.2). Suppose that representation (2.1) involves this family of series

M times with M ∈ N. The coefficients c
(1)
m , . . . , c

(M)
m will entre the algebraic system. The

problem is to find not only c
(1)
m , . . . , c

(M)
m , but also the number M. Note that the coefficients

c
(1)
m , . . . , c

(M)
m should be pairwise distinct whenever the resulting invariant algebraic curve is

irreducible. Due to the invariance of the polynomial F(x, y) with respect to permutations of

the Puiseux series y1(x), . . . , yN(x) and the structure of recurrence relations satisfied by coef-

ficients of a Puiseux series solving an algebraic first-order ordinary differential equation, we

conclude that the polynomial F(x, y) inherits the invariance with respect to the permutations

of c
(1)
m , . . . , c

(M)
m . Consequently, the algebraic system with the exception for some degenerate

cases can be rewritten in terms of invariants

Ck =
M

∑
j=1

(

c
(j)
m

)k
. (2.14)

The same result follows from Theorem 2.3. In relation (2.14) we should set k ∈ N whenever the

family of Puiseux series under consideration corresponds to an edge of the Newton polygon

related to equation (1.2). While k ∈ Z provided that the family of Puiseux series in question

corresponds to a vertex of the Newton polygon. Thus, we conclude that the variables M and

{Ck} should be added to the list of variables. Further, one needs to study the structure of the

polynomial ideal generated by the algebraic system in the ring of polynomials in the variables

including the parameters of the original system, possible zeroes of the polynomial µ(x), {Ck},

and M. Solutions with M ∈ N should be selected. If several families of Puiseux series near

the point x = ∞ that have arbitrary coefficients take part in representation (2.1), then the

variables {Ck} and M should be introduced for each family of series.

It was proved in article [10] that there exists at most one irreducible invariant algebraic

curve F(x, y) = 0 of differential system (1.1) such that a Puiseux series near the point x = ∞

that solves equation (1.2) and possesses uniquely determined coefficients enters the represen-

tation of the polynomial F(x, y) in the field C∞{x}. Consequently, the most difficult problem is

finding irreducible invariant algebraic curves given by representation (2.1) with all the Puiseux

series possessing coefficients not provided by equation (1.2).

The following theorem is very important for practical solving the algebraic system in the

latter case.

Theorem 2.5. Let us consider the algebraic system of equations

M

∑
j=1

(

aj

)k
= Mgk, k ∈ N, (2.15)

where a1, . . . , aM ∈ C and M ∈ N are unknown variables, {gk} are given complex numbers. If for

some M0 ∈ N this system has a solution (a1, . . . , aM0
) with aj1 6= aj2 whenever j1 6= j2, then there are
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no other solutions of this system except for M = lM0, where l ∈ N \ {1}. The latter solutions involve

l multiple roots for each element of the tuple (a1, . . . , aM0
). Note that tuples obtained from each other

by permutations of their elements are supposed to be equivalent. We consider only one representative

from each equivalence class.

Proof. It is straightforward to verify that there exist "multiple" solutions for any solution

with pairwise distinct elements of the tuple (a1, . . . , aM0
). Let us establish that there are no

other solutions. The proof is by contradiction. Suppose that system (2.15) possesses a solu-

tion (ã1, . . . , ãM1
) with M = M1, where either M1 6= lM0 or M1 = lM0 and the tuple (ã1,

. . ., ãM1
) does not coincide with that described in the statement of the theorem. We recall

that the left-hand side of relations (2.15) represent power-sum symmetric polynomials in the

ring C[a1, . . . , aM]:

pk =
M

∑
j=1

(

aj

)k
. (2.16)

Let us introduce the elementary symmetric polynomials

ek = ∑
1≤j1<j2<···<jk≤M

aj1 aj2 · · · ajk , (2.17)

which are uniquely expressible via power-sum symmetric polynomials. Further, we consider

the following algebraic equation of degree M2 = M0M1

aM2 − e1 (a1, . . . , aM2) aM2−1 + e2 (a1, . . . , aM2) aM2−2

+ · · ·+ (−1)M2 eM2 (a1, . . . , aM2) = 0 (2.18)

It is straightforward to show that this equation possesses two distinct sets of solutions: M1

multiple roots for each element of the tuple (a1, . . . , aM0
) and M0 multiple roots for each ele-

ment of the tuple (ã1, . . . , ãM1
). The set of solutions of a polynomial equation in one variable

over the field C is unique up to the permutation of the roots. This contradiction completes the

proof.

If all the Puiseux series in representation (2.1) possess arbitrary coefficients, then the ele-

ments Ck given in (2.14) are of the form Ck = Mgk. It follows from the fact that Fl(x, y) = 0

with l ∈ N is an invariant algebraic curve whenever so does F(x, y) = 0. Consequently,

Theorem 2.5 can be used for establishing uniqueness of irreducible invariant algebraic curves.

Indeed, as soon as a solution (a1, . . . , aM0
) with aj1 6= aj2 and M0 ∈ N is found one should stop

calculations because other solutions will give reducible invariant algebraic curves. Examples

will be given in Section 4.

3 Invariant algebraic curves for Liénard differential systems

Now our aim is to apply the general results of the previous section to polynomial Liénard

differential systems (1.4). Supposing that the variable y is dependent and the variable x is in-

dependent, we see that the function y(x) satisfies the following first-order ordinary differential

equation

yyx + f (x)y + g(x) = 0. (3.1)

Let us begin with simple properties of invariant algebraic curves and their cofactors.
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Lemma 3.1. Suppose F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C is an invariant algebraic curve of a

Liénard differential system. The following statements are valid.

1. There are no invariant algebraic curves such that F(x, y) ∈ C[x].

2. The highest-order coefficient with respect to y of the polynomial F(x, y) is a constant.

3. The cofactors of invariant algebraic curves are independent of y.

Proof. Substituting λ(x, y) = λ0(x)yl , F(x, y) = µ(x)yN with l, N ∈ N ∪ {0} into the partial

differential equation

yFx − { f (x)y + g(x)}Fy = λ(x, y)F. (3.2)

and balancing the highest-order terms with respect to y, we conclude that µ(x) ∈ C, l = 0,

and N ∈ N. This means that cofactors of invariant algebraic curves do not depend on y and

there are no invariant algebraic curves independent of y. In addition, we observe that the

highest-order coefficient (with respect to y) of F(x, y) is a constant. Without loss of generality

we set µ(x) = 1. This result can be also obtained using the structure of Puiseux series near

finite points that satisfy equation (3.1), for more details see [10].

Our next step is to establish that the necessary and sufficient conditions of Theorem 2.3

and Lemma 2.4 become very easy in the case of Liénard differential systems.

Theorem 3.2. The polynomial F(x, y) ∈ C[x, y] \ C of degree N ∈ N with respect to y gives an

invariant algebraic curve of a Liénard differential system if and only if there exist N Puiseux series

y1(x), . . . , yN(x) defined in a neighborhood of the point x = ∞ that solve equation (3.1) and satisfy

the conditions
{

N

∑
j=1

yj(x)

}

−

= 0. (3.3)

Proof. It follows from Lemma 3.1 that Liénard differential systems do not have invariant alge-

braic curves with generating polynomials independent of y. Let us suppose that F(x, y) = 0

is an invariant algebraic curve of a system (1.4) such that F(x, y) ∈ C[x, y] \ C[x].

We shall use the results of Lemma 2.4. Let us show that if conditions (2.13) are satisfied

at k = 1, then they are also satisfied for all k ∈ N. Our proof is by induction on k. Suppose

that conditions (2.13) with k ≤ m hold. The Puiseux series appearing in these conditions solve

equation (3.1). Substituting y(x) = yj(x) into equation (3.1) and multiplying the result by

ym−1
j , we get

1

m + 1

d

d x

(

ym+1
j

)

= − f (x)ym
j − g(x)ym−1

j . (3.4)

Performing the summation, we obtain

1

m + 1

d

d x

(

N

∑
j=1

ym+1
j

)

= − f (x)
N

∑
j=1

ym
j − g(x)

N

∑
j=1

ym−1
j . (3.5)

It follows from the induction hypothesis that the right-hand side in (3.5) is a polynomial. This

yields

1

m + 1

{

d

d x

(

N

∑
j=1

ym+1
j

)}

−

= 0 (3.6)
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It is straightforward to see that for any element y(x) of the field C∞{x} the following relation

{y(x)}− = 0 is valid whenever {yx(x)}− = 0. Consequently, we get

{

N

∑
j=1

ym+1
j

}

−

= 0. (3.7)

Finally, the necessity and sufficiency of condition (3.3) follows from the results of Lemma 2.4

and the calculations carried out above.

In Section 4 we shall use this lemma to perform the classification of irreducible invariant

cases for Liénard differential systems with n = 1 (deg f (x) = 1) and m = 5 (deg g(x) = 5).

Now let us present the general structure of invariant algebraic curves and their cofactors

for Liénard systems satisfying the condition n ≥ 2m + 1. Recall that systems (1.4) with n <

2m + 1 were considered in articles [5, 10]. We begin with the case n > 2m + 1.

Theorem 3.3. Let F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C be an irreducible invariant algebraic curve

of a Liénard differential system from the family (1.4) with n > 2m + 1. Then F(x, y) and its cofactor

take the form

F(x, y) =

{

N1

∏
j=1

{

y − y
(1)
j (x)

} N2

∏
j=1

{

y − y
(2)
j (x)

}

}

+

, (3.8)

λ(x, y) = −(N1 + N2) f −
{

N1h
(1)
x + N2h

(2)
x

}

+
, (3.9)

where the Puiseux series y
(1,2)
j (x) are given by the relations

y
(1,2)
j (x) = h(1,2)(x) +

∞

∑
k=2(n+1)

c
(1,2)
k, j x

n+1
2 − k

2 , h(1,2)(x) =
2n+1

∑
k=0

c
(1,2)
k x

n+1
2 − k

2 (3.10)

and N1, N2 ∈ N ∪ {0}, N1 + N2 ≥ 1. The coefficients c
(1,2)
2(n+1), j

with the same upper index are

pairwise distinct and all the coefficients c
(1,2)
m, j with m > 2(n + 1) are expressible via c

(1,2)
2(n+1), j

. If n is

an odd number, then the corresponding Puiseux series are Laurent series and c
(1,2)
2l−1 = 0, c

(1,2)
2l−1, j = 0

with l ∈ N. In addition, Nk = 1 whenever n is odd and Nl = 0, where k, l = 1, 2 and k 6= l. If n is

an even number, then N1 = N2.

Proof. It follows from Lemma 3.1 that we can set µ(x) = 1. By Theorem 2.2 Puiseux series

from the field C∞{x} that arise in representation (2.1) are those satisfying equation (3.1). Let

us perform the classification of Puiseux series near the point x = ∞ solving equation (3.1) with

the restriction n > 2m + 1. For this aim we shall use the algorithm presented in the Appendix.

There exists only one dominant balance that produce Puiseux series in a neighborhood of the

point x = ∞. The ordinary differential equation related to this balance and its solutions are

the following

yyx + g0xn = 0, y(1,2)(x) = c
(1,2)
0 x

n+1
2 , c

(1,2)
0 = ±

√

−2(n + 1)g0

(n + 1)
. (3.11)

Calculating the Gâteaux derivative of the balance at its power solutions yields the Fuchs index:

p = n + 1. Definitions of dominant balances and Fuchs indices can be found in [1,2,5,19], see

also Appendix. Thus, we conclude that the Puiseux series corresponding to asymptotics (3.11)
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exist and have arbitrary coefficients at x−(n+1)/2 provided that the compatibility conditions

related to the unique Fuchs are satisfied. If n is an odd number, then Puiseux series (3.10) are

Laurent series.

Finding the factorization of F(x, y) in the ring C∞{x}[y] and taking the polynomial part

of this representation, we obtain (3.8). Since the polynomial F(x, y) in (3.8) is irreducible, we

get the condition of the theorem on the coefficients c
(1,2)
2(n+1), j

with the same upper index.

Now let us suppose that n is an odd number and N2 = 0. Our aim is to show that N1 = 1.

All the Puiseux series near the point x = ∞ arising in expression (3.8) are Laurent series with

the same initial part of the series. Further, we introduce the new variable z by the rule

z = y −

n+1
2

∑
l=0

c
(1)
2l x

n+1
2 −l . (3.12)

Calculating the projection in expression (3.8) yields

{

N1

∏
j=1

(

z − c
(1)
n+3x−1 − . . . − c

(1)
2(n+1),j

x−
n+1

2 − . . .
)

}

+

= zN1 . (3.13)

Requiring that the resulting invariant algebraic curve be given by an irreducible polynomial,

we get N1 = 1. The same can be done if N1 = 0 and n is odd.

Substituting L = 0 and series (3.10) into expression (2.1), we find the cofactor as given

in (3.9). Finally, if n is even, we calculate the coefficient at yN1+N2−1x(n+1)/2. The result is

(N1 − N2)c
(1)
0 . Since yN1+N2−1x(n+1)/2 is not an element of the ring C[x, y] and c

(1)
0 6= 0, we get

N1 = N2. The proof is completed.

Let us turn to Liénard differential systems satisfying the condition n = 2m+ 1. We shall see

that the Fuchs indices of the dominant balances near the point x = ∞ for equation (3.1) depend

on the parameters f0 and g0. It was proved in article [10] and in Theorem 3.3 that such a

situation cannot take place for other Liénard differential systems. This fact makes classification

of irreducible invariant algebraic curves sufficiently difficult in the case n = 2m + 1. The

method of Puiseux series can deal with each case of a fixed positive rational Fuchs index

separately.

We shall demonstrate that the structure of polynomials producing invariant algebraic

curves is in strong correlation with the properties of the following quadratic equation

p2 − ̺p + (m + 1)̺ = 0, (3.14)

where we have introduced notation

̺ = 4(m + 1)−
f 2
0

g0
. (3.15)

The set of all positive rational numbers will be denoted as Q+. Let p1 and p2 be the roots of

equation (3.14).

Theorem 3.4. Suppose F(x, y) = 0 with F(x, y) ∈ C[x, y] \ C is an irreducible invariant algebraic

curve of a Liénard differential system from family (1.4) with n = 2m + 1. One of the following

statements holds.
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1. If p1, p2 6∈ Q+ ∪ {0}, then the polynomial F(x, y) is of degree at most two with respect to y and

F(x, y) =
{{

y − y(1)(x)
}s1
{

y − y(2)(x)
}s2
}

+
,

λ(x, y) = −(s1 + s2) f (x)−
{

s1y
(1)
x + s2y

(2)
x

}

+
,

y(k)(x) =
∞

∑
l=0

c
(k)
l xm+1−l , c

(k)
0 =

f0

pk − 2(m + 1)
, k = 1, 2,

(3.16)

where s1 and s2 are either 0 or 1 independently, s1 + s2 > 0. The Puiseux series y(k)(x), k = 1,

2 are Laurent series and possess uniquely determined coefficients.

2. If pk ∈ Q+, pq 6∈ Q+, where either k = 1, q = 2 or k = 2, q = 1, then the polynomial F(x, y)

and the cofactor λ(x, y) take the form

F(x, y) =

{

Nk

∏
j=1

{

y − y
(k)
j (x)

}{

y − y(q)(x)
}sq

}

+

,

λ(x, y) = −(Nk + sq) f (x)−

{

Nk

∑
j=1

y
(k)
j, x + sqy

(q)
x

}

+

,

y
(k)
j (x) =

∞

∑
l=0

c
(k)
l, j x

m+1− l
nk , y(q)(x) =

∞

∑
l=0

c
(q)
l xm+1−l ,

c
(k)
0, j =

f0

pk − 2(m + 1)
, c

(q)
0 =

f0

pq − 2(m + 1)
,

(3.17)

where Nk ∈ N ∪ {0}, sq is either 0 or 1, Nk + sq > 0. The Puiseux series y(q)(x) is a Laurent

series and possesses uniquely determined coefficients. The Puiseux series y
(k)
j (x) have pairwise

distinct coefficients c
(k)
nk pk , j. The number nk is defined as pk = lk/nk, where lk and nk are coprime

natural numbers.

3. If p1, p2 ∈ Q+, then the polynomial F(x, y) and the cofactor λ(x, y) take the form

F(x, y) =

{

N1

∏
j=1

{

y − y
(1)
j (x)

} N2

∏
j=1

{

y − y
(2)
j (x)

}

}

+

,

λ(x, y) = −(N1 + N2) f (x)−

{

N1

∑
j=1

y
(1)
j, x +

N2

∑
j=1

y
(2)
j, x

}

+

,

y
(k)
j (x) =

∞

∑
l=0

c
(k)
l, j x

m+1− l
nk , c

(k)
0, j =

f0

pk − 2(m + 1)
, k = 1, 2,

(3.18)

where N1, N2 ∈ N ∪ {0}, N1 + N2 > 0. The Puiseux series y
(k)
j (x) possess pairwise distinct

coefficients c
(k)
nk pk , j. The number nk is defined as pk = lk/nk, where lk and nk are coprime natural

numbers, k = 1, 2.

4. If p1 = p2 = 0, then the polynomial F(x, y) and the cofactor λ(x, y) take the form

F(x, y) = y +
f0

2(m + 1)
xm+1 −

m+1

∑
l=1

clx
m+1−l ,

λ(x, y) = − f (x) +
f0

2
xm −

m

∑
l=1

(m + 1 − l)clx
m−l ,

(3.19)
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where the coefficients c1, . . . , cm+1 are uniquely determined. In addition, the following relation

4(m + 1)g0 − f 2
0 = 0 is valid.

There are no other irreducible invariant algebraic curves than those described above.

Proof. Again we use Theorem 2.2 and Lemma 3.1. Let us find Puiseux series near the point

x = ∞ that satisfy equation (3.1) with the restriction n = 2m + 1. There exists only one dom-

inant balance producing power asymptotics near the point x = ∞. The ordinary differential

equation related to this balance and its power solutions are of the form

yyx + f0xmy + g0x2m+1 = 0 : y(k)(x) = c
(k)
0 xm+1, k = 1, 2, (3.20)

where the coefficients c
(1,2)
0 satisfy the following equation (m + 1)c2

0 + f0c0 + g0 = 0. Calculat-

ing the Gâteaux derivative of the balance at its power solutions yields the following equation

for the Fuchs indices p: (2(m + 1) − p)c0 + f0 = 0. Expressing c0 from this equation and

substituting the result into the equation (m+ 1)c2
0 + f0c0 + g0 = 0, we get relation (3.14). Start-

ing from power asymptotics we can derive asymptotic series possessing these asymptotics as

leading-order terms. We are interested in Puiseux asymptotic series.

If equation (3.14) does not have positive rational solutions, then both Puiseux series related

to asymptotics (3.20) possess uniquely determined coefficients. Since the number of distinct

Puiseux series near the point x = ∞ satisfying equation (3.1) is finite and equals 2, it follows

from Theorem 2.2 that the degree with respect to y of the polynomial F(x, y) is bounded

by 2. Constructing the factorization of the polynomial F(x, y) in the ring C∞{x}[y] yields

representation (3.16).

Further, if one of the solutions of equation (3.14) defining the Fuchs indices is a positive

rational number and another one is not, then the Puiseux series related to the former case

possesses an arbitrary coefficient provided that the compatibility condition for this Fuchs

index is satisfied. Another Puiseux series possesses uniquely determined coefficients. As

a result we obtain relation (3.17). Since the polynomial giving the invariant algebraic curve

under consideration is irreducible, the coefficients c
(k)
nk pk , j corresponding to the positive rational

Fuchs index should be pairwise distinct. The number nk can be obtained from the relation

pk = lk/nk, where lk and nk are coprime natural numbers. For more details see the Appendix.

If both solutions of equation (3.14) are positive rational numbers, then the Puiseux series

have arbitrary coefficients and exist whenever the corresponding compatibility conditions for

the Fuchs indices hold. We get expression (3.18). Since polynomials generating the invariant

algebraic curves in question are irreducible, we conclude that the coefficients with the same

upper index c
(k)
nk pk , j, k = 1, 2 should be pairwise distinct. The numbers nk, k = 1, 2 are found

similarly to the previous case.

Finally, we need to examine the situation, when two roots of the equation (m + 1)c2
0 +

f0c0 + g0 = 0 merge. This gives 4(m + 1)g0 − f 2
0 = 0 and c0 = − f0/(2{m + 1}). Substituting

this relation into the equation (2(m + 1) − p)c0 + f0 = 0 for the Fuchs index yields p = 0.

Consequently, we obtain the Puiseux series with integer exponents and uniquely determined

coefficients. This gives the unique irreducible invariant algebraic curve as given in (3.19).

The cofactors λ(x, y) we find from expression (2.1). Since we have considered all possible

combinations of the Puiseux series from the field C∞{x} that solve equation (3.1), we conclude

that other irreducible invariant algebraic curves cannot exist.

Proving the above theorem, we have also established that if the compatibility condition

for the Puiseux series y
(k)
j (x) to exist is not satisfied and pk ∈ N in the case of representa-
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tion (3.17), then the irreducible invariant algebraic curve, if exists, is given by the polynomial

F(x, y) = y − c
(q)
0 xm+1 − c

(q)
1 xm − . . . − c

(q)
m+1. If a similar situation occurs for representation

(3.18), then either N1 = 0 or N2 = 0 and the product in expression (3.18) involving the corre-

sponding series is absent. Moreover, if p1, p2 ∈ N and the compatibility conditions for both

Puiseux series are not satisfied, then there are no invariant algebraic curves.

Let us note that invariant algebraic curves of Theorems 3.3 and 3.4 exist under certain

restrictions on the parameters of the original differential systems.

4 Examples

The most interesting families of Liénard differential systems (1.4) satisfying the condition n ≥

2m+ 1 are those with the smallest degrees of the polynomial g(x). They include cubic, quartic,

and quintic systems with a constant or linear damping function. In addition, a quadratic

damping function is allowed if g(x) is a fifth degree polynomial. According to Theorem 3.4

the cases deg f (x) = 1, deg g(x) = 3 and deg f (x) = 2, deg g(x) = 5 are degenerate. Partial

results were obtained in articles [12, 13].

We have studied other Liénard differential systems from those listed above. All of them

with the exception for the family satisfying the conditions deg f (x) = 1 and deg g(x) = 5

have irreducible invariant algebraic curves given by bivariate polynomials of degrees at most

2 with respect to y. While in the case deg f (x) = 1 and deg g(x) = 5 there exist irreducible

invariant algebraic curves of higher degrees. The aim of the present section is to perform

a classification of irreducible invariant algebraic curves of Liénard differential systems (1.4)

satisfying the conditions deg f (x) = 1 and deg g(x) = 5. We shall prove that algebraic curves

of degree 3 with respect to y arise. It is sometimes supposed that Liénard systems satisfying

under the restriction deg g 6= 2 deg f + 1 (n 6= 2m + 1) do not have such invariant algebraic

curves.

Liénard differential systems with deg f (x) = 1 and deg g(x) = 5 are of the form

xt = y, yt = −(αx + β)y − (εx5 + rx4 + νx3 + ex2 + σx + δ), αε 6= 0. (4.1)

A change of variables x 7→ X(x + x0), y 7→ Yy, T 7→ Tt, XYT 6= 0 relates systems (4.1) with

their simplified version at α = 5, ε = −3, r = 0. Thus, without loss of generality, we obtain

the systems

xt = y, yt = −(5x + β)y + (3x5 − νx3 − ex2 − σx − δ) (4.2)

where all the parameters are from the field C.

Theorem 4.1. Differential systems (4.2) admit invariant algebraic curves if and only if restrictions

on the parameters given below are satisfied. Generating polynomials of irreducible algebraic invariants

and their cofactors are of the form:

invariant algebraic curves of the first degree with respect to y

1. e = σ +
1

8
ν −

15

16
+

15

8
β +

1

16
ν2 −

1

8
β ν −

3

16
β2,

δ =
1

192
(3β − ν + 3)

(

ν2 − 6ν − 2βν + 6 β − 3β2 + 9 + 16σ
)

,

F(x, y) = y − x3 + x2 +
1

4
(β + ν − 3)x +

1

3
σ +

1

48
(β + ν − 3)(−3β + ν − 3),

λ(x, y) = −3x2 − 3x +
1

4
(ν − 3β − 3);
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2. e =
15

16
+

15

8
β − σ −

1

8
ν −

1

16
ν2 −

1

8
β ν +

3

16
β2,

δ =
1

192
(3β + ν − 3)

(

ν2 − 6ν + 2βν − 6 β − 3β2 + 9 + 16σ
)

,

F(x, y) = y + x3 + x2 +
1

4
(β − ν + 3)x +

1

3
σ +

1

48
(β − ν + 3)(3 − 3β − ν),

λ(x, y) = 3x2 − 3x +
1

4
(3 − ν − 3β);

invariant algebraic curves of the second degree with respect to y

3. e = 0, δ = 0, σ =
1

12
(9 − ν2), β = 0,

F(x, y) = y2 +

(

2x2 + 1 −
1

3
ν

)

y − x6 +
1

2
(ν − 1) x4 −

1

12
(ν + 1) (ν − 3) x2

+
1

216
(ν + 3)(ν − 3)2, λ(x, y) = −6x;

4. e =
3

1024
β
(

512 − 5β2
)

, δ = −
3

262144
β3
(

β2 + 1280
)

,

σ =
3

65536
β2
(

2816 + 15β2
)

, ν =
15

128
β2 + 3,

F(x, y) = y2 +

(

2x2 +
1

2
βx −

5

128
β2

)

y − x6 +

(

15

256
β2 + 1

)

x4 −
1

512
β
(

5β2 − 256
)

x3

+
3

65536
β2
(

512 + 15β2
)

x2 −
1

131072
β3
(

1280 + 3β2
)

x +
5

16777216
β4
(

β2 + 1280
)

,

λ(x, y) = −6x −
3

2
β;

invariant algebraic curves of the third degree with respect to y

5. e =
28511847

62500
, δ = −

94714508889

19531250
, σ = −

8628822111

1562500
, ν =

133188

625
, β =

91

5
,

F(x, y) = y3 +

(

x3 + 3x2 −
24297

625
x −

15500849

62500

)

y2 +
(

2x5 − x6 +
73219

625
x4 +

4316949

31250
x3

−
11403548611

1562500
x2−

7670383903

19531250
x+

109912617846031

976562500

)

y− x9 − x8+
96266

625
x7+

36191047

62500
x6

−
17544478133

1562500
x5 −

812450830009

19531250
x4 +

138358719104879

390625000
x3 +

131625246607012067

97656250000
x2

−
925725907851168424

152587890625
x −

356383541131462914069

61035156250000
, λ(x, y) = 3x2 − 9x −

58422

625
;

6. e = −
28511847

62500
, δ =

94714508889

19531250
, σ = −

8628822111

1562500
, ν =

133188

625
, β = −

91

5
,

F(x, y) = y3 +

(

3x2 − x3 +
24297

625
x −

15500849

62500

)

y2 −

(

x6 + 2x5 −
73219

625
x4 +

4316949

31250
x3

+
11403548611

1562500
x2−

7670383903

19531250
x −

109912617846031

976562500

)

y+ x9 − x8−
96266

625
x7+

36191047

62500
x6

+
17544478133

1562500
x5 −

812450830009

19531250
x4 −

138358719104879

390625000
x3 +

131625246607012067

97656250000
x2

+
925725907851168424

152587890625
x −

356383541131462914069

61035156250000
, λ(x, y) = −3x2 − 9x +

58422

625
.
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Proof. The structure of the polynomials F(x, y) producing irreducible invariant algebraic

curves has been presented in Theorem 3.3. The Puiseux series of Theorem 3.3 take the follow-

ing form

y(1)(x) = x3 − x2 +
1

4
(3 − β − ν)x +

1

6
(ν + 3β − 3 − 2e) +

∞

∑
l=4

c
(1)
l x3−l ;

y(2)(x) = −x3 − x2 +
1

4
(ν − β − 3)x +

1

6
(ν − 3β − 3 + 2e) +

∞

∑
l=4

c
(2)
l x3−l .

(4.3)

These Puiseux series have arbitrary coefficients c
(1,2)
6 and exist whenever the following condi-

tions are satisfied

y(1)(x) : δ =
3

160
β3 +

(

1

80
ν −

15

16

)

β2 +

(

123

32
−

21

80
ν −

1

160
ν2

)

β

+

(

2 −
1

10
β

)

σ +

(

7

20
β −

7

4
−

1

12
ν

)

e +
1

6
(ν − 3) (ν + 3) ;

y(2)(x) : δ =
3

160
β3 +

(

15

16
−

1

80
ν

)

β2 +

(

123

32
−

21

80
ν −

1

160
ν2

)

β

−

(

2 +
1

10
β

)

σ −

(

7

4
+

1

12
ν +

7

20
β

)

e −
1

6
(ν − 3) (ν + 3)

(4.4)

Further, we suppose that the series y(1)(x) enters the factorization of the polynomial F(x, y)

N1 times with pairwise distinct values of c
(1)
6, j . Analogously, we suppose that the series y(2)(x)

enters the factorization of the polynomial F(x, y) N2 times with pairwise distinct values of c
(2)
6, j .

If N2 = 0, then it follows from Theorem 3.3 that N1 = 1. The resulting irreducible invariant

algebraic curve exists whenever the series y(1)(x) terminates at the zero term. This gives the

restriction

e = σ −
3

16
β2 +

1

8
(15 − ν) β +

1

16
(ν + 5) (ν − 3) . (4.5)

Further, we do the same for the case N1 = 0. In such a way we construct irreducible invariant

algebraic curves of the first degree with respect to y.

Now let us suppose that N1 > 0 and N2 > 0. We introduce the following variables

C
(1)
k =

N1

∑
j=1

(

c
(1)
6, j

)k
; C

(2)
k =

N1

∑
j=1

(

c
(2)
6, j

)k
. (4.6)

According to the results of Theorem 3.2 we need to consider the algebraic system

N1

∑
j=1

c
(1)
l, j +

N2

∑
j=1

c
(2)
l, j = 0, l ≥ 4. (4.7)

We take the first eleven equations from this system. In addition, the compatibility conditions

for both series to exist should be considered. Solving the algebraic sub-system, we obtain

three possibilities: N1 = N2, N1 = 2N2, and N2 = 2N1. If the first possibility takes place, then

we find

C
(1)
1 = ̺1N1, C

(1)
2 = ̺2

1N1, C
(2)
1 = ̺2N2, C

(2)
2 = ̺2

2N2 (4.8)

and restrictions on the parameters as given in items 3 and 4. There exist two families of

irreducible invariant algebraic curves F(x, y) = 0 with N1 = 1 and N2 = 1. The irreducible
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invariant algebraic curves are presented in items 3 and 4. This fact proves the validity of the

following conditions

C
(1)
k = ̺k

1N1, C
(2)
k = ̺k

2N2, k ∈ N. (4.9)

According to Theorem 2.5, we see that the algebraic system in question has no other solutions.

If N1 = 2N2, then we get C
(2)
1 = ̺2N2 and C

(2)
2 = ̺2

2N2. Arguing as above, we find N2 = 1.

Analogously the case N2 = 2N1 can be studied. In expressions (4.8) and (4.9) the values ̺1

and ̺2 either are constants or depend on the parameters of the original differential systems,

but not on N1 and N2.

The cofactors can be obtained with the help of expression (3.9).

Note that it is a difficult computational problem to find invariant algebraic curves of items

5 and 6 using the method of undetermined coefficients, the method of extactic polynomial

or an algorithm of decomposing the vector field related to the original system into weight-

homogenous components. It seems that the classification of irreducible invariant algebraic

curves for quintic Liénard differential systems with a linear damping function is presented

here for the first time.

5 Conclusion

In this article we have derived necessary and sufficient conditions enabling a planar polyno-

mial differential system (1.1) to have invariant algebraic curves. Our conditions give rise to an

algorithm, which is able to perform a classification of irreducible invariant algebraic curves

for a given differential system. The algorithm can be easily implemented with the help of

computer systems of symbolic computations.

We have presented the general structure in the ring C∞{x}[y] for the bivariate polynomi-

als generating irreducible invariant algebraic curves of Liénard differential systems (1.4) with

deg g ≥ 2 deg f + 1. Their cofactors have been calculated in an explicit form. Let us empha-

size that the method of Puiseux series is also applicable in the case of systems (1.1) with the

parameters affecting degrees of the polynomials P(x, y) and Q(x, y). Some examples are given

in articles [9, 11]. In addition, the method enables one to find algebraic first-order ordinary

differential equations compatible with a higher-order autonomous ordinary differential equa-

tion [8]. Moreover, the method of Puiseux series admits a non-autonomous generalization, for

more details see [7]. We conclude that the method presented in works [5,6,10] and developed

in this article is a powerful tool of finding invariants for ordinary differential equations and

systems of ordinary differential equations.

Another way to derive an algebraic system similar to that presented in expression (2.7) is to

require that the non-polynomial part in the expression of the cofactor λ(x, y) in (2.1) vanishes.

This algebraic system coincides with that arising from Theorems 2.3 and 3.2 in the case of

Liénard differential systems. For other polynomial differential systems this approach may

lead to finding generalized (non-polynomial in x) invariant curves possessing polynomial

cofactors. It seems that this topic is also worth studying. Some results concerning non-

algebraic invariant curves with polynomial cofactors were obtained in article [18].
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7 Appendix

Let us describe a method, which can be used to perform the classification of Puiseux series

satisfying an algebraic first-order ordinary differential equation E(x, y, yx) = 0. The left-hand

side of this expression can be regarded as a sum of differential monomials given by

M[y(x), x] = Cxlyj0

{

dy

dx

}j1

, C ∈ C \ {0}, l, j0, j1 ∈ N0. (7.1)

The set of all the differential monomials of the form (7.1) will be denoted as M. In order to

simplify notation the expression W[x, y(x)] will stand for a polynomial in x, y(x), and yx(x)

with coefficients from the field C.

Let us define the map q : M → R2 by the following rules

Cxq1 yq2 7→ q = (q1, q2),
dky

dxk
7→ q = (−k, 1), q(M1M2) = q(M1) + q(M2),

where C ∈ C \ {0} is a constant, M1 and M2 are differential monomials. We denote the set

of all points q ∈ R2 corresponding to the differential monomials of equation E(x, y, yx) = 0

as S(E). The convex hull of S(E) is known as the Newton polygon of the equation under

consideration.

The boundary of the Newton polygon consists of vertices and edges. Selecting all the

differential monomials of the original equation that generate the vertices and the edges of the

Newton polygon, we obtain a number of balances. The balance for a vertex is defined as the

sum of those differential monomials in E(x, y, yx) that are mapped into the vertex. The balance

for an edge is defined as the sum of differential monomials in E(x, y, yx) whose images belong

to the edge. If solutions of the equation E(x, y, yx) = 0 possess an asymptotics of the form

y(x) = c0xr with x → 0 or x → ∞, then there exists a balance W[x, y(x)] such that the function

y(x) = c0xr satisfies the equation W[x, y(x)] = 0. Conversely, the function y(x) = c0xr solving

equation W[x, y(x)] = 0, where W[x, y(x)] is a balance, is an asymptotics at x → 0 (or x → ∞)

for solutions of equation (1.2) whenever for all the differential monomials M[x, y(x)] of the

original equation not involved into W[x, y(x)] we have Reκ > Reκ0 (or Reκ < Reκ0), where

M[x, c0xr] = Bxκ and M0[x, c0xr] = B0xκ0 with M0[x, y(x)] being a differential monomial of

the balance W[x, y(x)].

Thus, having found all the power solutions y(x) = c0xr for all the balances, one needs to

select those that give asymptotics at x → 0 or x → ∞. Using power asymptotics it is possible

to derive asymptotic series possessing these asymptotics as leading-order terms [1, 2]. In this

article we are interested in Puiseux series near x = ∞ that satisfy equation (1.2), therefore we

shall focus at the case r ∈ Q and x → ∞. Let us suppose that a balance W[y(x), x] of the

equation E(x, y, yx) = 0 has a solution y(x) = c0xr, which is an asymptotics at x → ∞ and

r ∈ Q.
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In order to obtain the structure of the corresponding series one should find the Gâteaux

derivative of the balance W[y(x), x] at the solution y(x) = c0xr:

δW

δy
[c0xr] = lim

s→0

W[c0xr + sxr−p, x]− W[c0xr, x]

s
= V(p)xr̃, r̃ ∈ Q.

In this expression V(p) is a first-degree polynomial with respect to p. The coefficients of this

polynomial depend on c0 and on the parameters (if any) of the original equation involved into

the balance W[y(x), x]. The zero p0 of V(p) is called the Fuchs index (or the resonance) of the

balance W[y(x), x] and its power solution y(x) = c0xr. Let lcm(n, m) be the lowest common

multiple of two integer numbers n and m. If the Fuchs index p0 is not a positive rational

number, then the number n0 in expression (1.3) is given by n0 = r2 where r2 is defined as

r = r1/r2 with r1 and r2 being coprime numbers, r1 ∈ Z and r2 ∈ N. Otherwise we obtain

n0 = lcm(g2, r2), where r2 was defined previously and g2 is given by p0 = g1/g2 with coprime

natural numbers g1 and g2.

Finally, it is important to verify the existence of the Puiseux series of the form (1.3) with

l0 = rn0. If the balance W[y(x), x] corresponds to a vertex of the Newton polygon, then the

Puiseux series always exists and possesses an arbitrary coefficient c0. In this case the Fuchs

index is equal to zero. Now let us suppose that the balance W[y(x), x] corresponds to an edge

of the Newton polygon. Substituting series (1.3) into the equation E(x, y, yx) = 0 one can find

the recurrence relation for its coefficients. This relation takes the form

V

(

k

n0

)

ck = Uk(c0, . . . , ck−1), k ∈ N,

where Uk is a polynomial of its arguments. Note that Uk can also depend on the parameters (if

any) of the original equation. The equation Un0 p0 = 0 is called the compatibility condition. If the

compatibility condition is not satisfied, then the Puiseux series under consideration does not

exist. Otherwise the corresponding Puiseux series exists and possesses an arbitrary coefficient

cn0 p0 . Consequently, we conclude that the Puiseux series in question has uniquely determined

coefficients provided that there are no non-negative rational Fuchs indices.

We note that if one wishes to find all the Puiseux series of the form (1.3) that satisfy the

original equation, then it is necessary to implement the procedure described above for all the

dominant balances and for all their power solutions y(x) = c0xr with r ∈ Q and x → ∞.

Asymptotic Puiseux series near the point x0 ∈ C can be found introducing the change of

variables w(s) = y(s+ x0), s = x − x0 and considering the case s → 0 in the resulting ordinary

differential equations.

We also observe that there may exist balances and their power solutions such that the

following condition V(p) ≡ 0 is valid. If V(p) is identically zero, then one should make the

substitution y(x) = c0xr + w(x) in equation E(x, y, yx) = 0 and find all the Puiseux series

w(x) = c1xr1 + . . . of the latter such that r1 < r, r1 ∈ Q and x → ∞. More details and some

generalizations can be found in the works by A. D. Bruno [1, 2].
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Abstract. We study the solutions to the following Dirichlet boundary problem:

d2x(t)

dt2
+ λ f (x(t)) = 0,

where x ∈ R, t ∈ R, λ ∈ R
+, with boundary conditions:

x(0) = x(1) = A ∈ R.

Especially we focus on varying the parameters λ and A in the case where the phase
plane representation of the equation contains a saddle loop filled with a period annulus
surrounding a center.

We introduce the concept of mixed solutions which take on values above and below
x = A, generalizing the concept of the well-studied positive solutions.

This leads to a generalization of the so-called period function for a period annu-
lus. We derive expansions of these functions and formulas for the derivatives of these
generalized period functions.

The main result is that under generic conditions on f (x) so-called S-shaped bifur-
cations of mixed solutions occur.

As a consequence there exists an open interval for sufficiently small A for which λ
can be found such that three solutions of the same mixed type exist.

We show how these concepts relate to the simplest possible case f (x) = x(x + 1)
where despite its simple form difficult open problems remain.

Keywords: ordinary differential equations, boundary value problem, period function.
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1 Introduction

We study the existence and bifurcation of solutions to a Dirichlet boundary problem:

d2x(t)

dt2
+ λ f (x(t)) = 0, (1.1)

BCorresponding author. Email: zegela1@yahoo.com
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where x ∈ R, t ∈ R, λ ∈ R
+, with boundary conditions:

x(0) = x(1) = A ∈ R. (1.2)

The differential equation can be interpreted as the scalar motion of a particle in a conservative

potential field depending on its position only. The boundary condition implies that a particle

returns to its initial position after one second.

A possible interpretation of this problem is to find the initial speed dx(t)
dt |t=0 such that the

solution with initial conditions x(0) = A, dx(t)
dt |t=0 returns to x = A after one second.

In [5] Chicone studied a similar problem for Neumann and Dirichlet boundary problems.

In this paper we generalize his analysis. The different types of mixed solutions which we

study in this paper were not considered there. It turns out that these mixed solutions lead to

a richer and more complex solution structure than the cases studied in [5].

Conditions on f (x)

The function f (x) is taken to be real analytic. For some results this condition could be weak-

ened but for the clarity of reading we will assume that f (x) is real analytic in all the cases of

this paper.

In particular we will consider the case where the corresponding system in the phase plane

has a center at the origin:

f (0) = 0, f ′(0) > 0. (1.3)

This will ensure that a continuum of periodic orbits exists, i.e. a period annulus surrounding

a singularity of center type.

Furthermore to obtain global results we will typically impose that the corresponding sys-

tem in the phase plane has a saddle for x = xs:

f (xs) = 0, f ′(xs) < 0. (1.4)

Finally we impose that outside these two singularities the following relation holds:

x(x − xs) f (x) > 0, x 6= 0, x 6= xs. (1.5)

which ensures that no other singularities exist.

Conservative forces and applications

Boundary problems of the type (1.1), (1.2) have been studied extensively in the literature.

Typical choices for the conservative force f (x) are ex (see [2, 10]), (x − a)(x − b)(x − c) (see

[14, 27, 29]), e
x

1+ǫx (see [11, 30]), ∑
k=n
k=0

xk

k! (see [32]), convex f (x) (see [19, 20]), quadratic f (x)

(see [4]). Applications of the BVP typically appear in the steady-state solutions of diffusion

equations, see [15] and [16] for an extensive discussion. Other examples of applications can

be found in the theory of combustion, see e.g. [3, 11, 30]. For other interesting flavours of

boundary value problems, see [1] and [25], where a constant damping term c dx(t)
dt was added

to the equation, and [9], where another type of damping was introduced. These cases with

damping are out of scope for this paper and require a different kind of analysis, since in

general no first integral of the differential equation is known. The analysis of the systems

with constant damping can be related to the study of limit cycles in so-called Liénard systems

after a Filippov transformation. The discussion of this relation is outside the scope of this

paper.
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Positive and negative solutions

In most of the papers on this subject A = 0 and only so-called positive solutions are studied,

where x(t) > 0 for 0 < t < 1. This generalizes to our formulation as the requirement that

x(t) > A for 0 < t < 1: the solution does not return to its initial value before t = 1. We

will refer to this as a positive solution to be consistent with the literature. Similarly a negative

solution can be defined as a solution for which x(t) < A for 0 < t < 1.

In the study of positive solutions many deep results have been proved in recent years. In

particular we refer to the papers [11, 12, 14], where upper bounds were found for the number

of solutions to the boundary value problems for general classes of potential functions.

In the phase plane (x, y), where y = dx(t)
dt , positive (negative) solutions are identified by

the property that the solution curve stays to the right (left) of the vertical line x = A before

returning to x = A.

Another important property of these types of solutions is that dx(t)
dt |t=0 > 0 (< 0) for

positive (negative) solutions. Positive (negative) solutions necessarily start at a point x = A,

y = y0 > 0 (y = y0 < 0) in the phase plane.

The study of negative solutions is essentially the same as for positive solutions. Similar

techniques can be applied. In this paper we typically prove results for the positive case and

state the results for the negative cases if needed without giving the detailed proofs.

Periodic orbits and mixed solutions

The main novelty of the research presented in this paper is the study of mixed solutions,

crossing the line x = A in the phase plane before their final return to x = A. Formally a

mixed solution is a solution such that ∃t̄ ∈ (0, 1) with x(t̄) = A, i.e. the solution will return

at least once to the initial value x(0) = A before t = 1. It implies that there exist values

t1, t2 ∈ (0, 1) such that x(t1) < A and x(t2) > A, hence the terminology mixed solution. A

necessary condition for this situation to be possible is that the solution lies on a periodic orbit

in the phase plane of (1.1). In systems of the type (1.1), because of its conservative nature,

no isolated period orbits (limit cycles) can occur and therefore necessarily we are looking at

systems which have a continuum of period orbits, a so-called period annulus.

In the fundamental paper on this subject [27] mixed solutions were studied for the case

f (x) = (x − a)(x − b)(x − c). The case of mixed solutions has not received much attention

in the literature since and we will show that new complex phenomena may occur even for

the simplest cases of f (x). In particular we will argue that the argument in [27] where it was

stated that for sufficiently large λ no bifurcation values will occur is not necessarily true in

general. Even for the simple quadratic case f (x) = x(x + 1) there are values of A such that

bifurcations exist no matter how large λ is chosen.

Time-to-return functions

Our approach will be to study the problem by a simple rescaling of the time parameter after

which we can continue the analysis by studying the time-to-return functions of system (1.1)

with λ = 1. These are functions depending on the integration constant (or energy level in

terms of the mechanical interpretation of the system) representing the time it takes to return

to the vertical line x = A in the phase plane. Returning to the initial x-coordinate can be

done in many different ways when the orbit in the phase plane is a closed curve representing
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a periodic solution. Part of the purpose of this paper is to categorize these different return

mechanisms and to analyze the corresponding time-to-return functions.

S-shaped bifurcations

In the literature one particular bifurcation phenomenon was observed for this type of bound-

ary value problem: the occurrence of S-shaped bifurcations for positive solutions, see [11, 13,

30]. Essentially this corresponds to the existence of two different critical λ values where so-

lutions to the equations bifurcate under a change of λ, while there exist λ-values for which

three solutions occur. We will show in this paper that S-shaped bifurcations occur for mixed

solutions under generic conditions on the function f (x), if the phase plane contains a period

annulus which is bounded on the outside by solution containing a saddle singularity (i.e. a

saddle loop) and on the inside by a singularity of center type.

Quadratic Hamiltonian

As illustration of the results for the general case we consider the simplest example by taking

f (x) = x(x + 1). For this quadratic Hamiltonian system several results have been obtained

in the past. It is well-known that for the case of positive and negative solutions at most two

solutions can occur for given λ, see [4, 19, 20]. The full period function is monotonic (see

e.g. [8]). The case of mixed solutions leads to more complicated situations. It will be shown

that for the mixed solution types with f (x) = x(1 + x), there exist λ-values for which at least

three mixed solutions occur and that S-shaped bifurcations occur.

Period functions

The problems addressed in this paper can be viewed as a generalization of the work on the

so-called period function of a period annulus. There is a rich literature on this subject (see for

example the pioneering work of [6] in the field of so-called quadratic systems and more recent

work in [21–24, 31]). In a sense, problems related to the period function can be interpreted as

a subset of the problems presented in this paper. We will show that in a generic setting at

least two local extreme values of the time-to-return functions can occur in the case of a mixed

solution, showing the increased complexity compared to the study of the period function.

Results

The main results of this paper are:

• a full classification of the solution types of system (1.1) with boundary conditions (1.2);

• analytical expressions for the corresponding time-to-return functions for each solution

type and their expansions near the center singularity;

• a new recursive formula for the derivatives of the full period function;

• existence of an S-shaped bifurcation phenomenon for systems with a generic form f (x)

under the condition that f ′′(0) 6= 0 and that a period annulus exists with a center and

saddle loop on its boundaries;

• finiteness of the number of solutions for each mixed solution type for a generic class of

f (x).
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2 Time-to-return functions

It is more convenient to study the boundary value problem (1.1), (1.2) in its equivalent form

in the phase plane, through the introduction of the auxiliary variable y(t) ≡ dx(t)
dt :

dx(t)

dt
= y(t),

dy(t)

dt
= −λ f (x(t)),

(2.1)

x(0) = x(1) = A. (2.2)

A simple scaling of the variables changes the boundary value problem (2.1), (2.2) into a

more tractable and traditional form, where a straightforward time-traversal can be studied for

all solutions. This is a well-known procedure, see e.g. [19].

Introducing new variables t = t̄√
λ

, y(t) = ȳ(t)
√

λ, the boundary problem (2.1), (2.2)

becomes:

dx(t̄)

dt̄
= ȳ(t̄),

dȳ(t̄)

dt̄
= − f (x(t̄)),

(2.3)

with boundary conditions

x(t̄ = 0) = x(t̄ =
√

λ) = A. (2.4)

i.e. the dependency on λ has been removed from the system of differential equations and

has been put into the boundary condition. In the following we will focus on this system and

drop the bars for notational convenience. We will refer to trajectories of (2.3) in the (x, y)

phase plane as orbits while we will refer to those trajectories satisfying not only (2.3), but the

additional boundary condition (2.4) as well, as solutions. So the set of solutions to (2.3), (2.4)

is contained in the set of orbits defined by (2.3) but not every orbit in the phase plane will

necessarily correspond to a solution.

2.1 Reformulating the original boundary value problem

In order to find solutions to the original boundary problem (1.1), (1.2), according to (2.4) we

need to find the time it takes an orbit of (2.3) starting at the line x = A in the phase plane

to reach the same line x = A again: for given λ those orbits of (2.3) returning to the original

vertical line x = A in
√

λ-time correspond to solutions of the original boundary problem

(1.1), (1.2). Depending on the nature of the solution curves in the phase plane, there is not

necessarily a unique way (if any) to achieve this. If the solution curve returns to x = A, then

we refer to the time it takes to traverse back to its original x-value as the time-to-return function.

Typically for periodic orbits there will not be a unique way to return to the original x-value

and therefore we will have to consider multiple time-to-return functions, each distinguished

by the way the solution returns to x = A.

The terminology function is used here to indicate that the time it takes to return to the

original x-value is a function of the initial starting point in the phase plane, i.e. depending on

the initial velocity (the initial y-value in the phase plane, i.e. dx(t)
dt |t=0 in system (2.3)).
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2.2 Phase plane interpretation of the Hamiltonian system

The orbits of the solutions of (2.3) in the phase plane can be written down explicitly:

h =
1

2
y2(t) + F(x(t)), (2.5)

where

F(u) ≡
∫ u

0
f (x)dx.

Each h corresponds to an integral curve in the phase plane. We will assume that conditions

Figure 2.1: Phase portrait for system (2.3) with conditions (1.3), (1.4) and (1.5)

on f (x).

(1.3), (1.4) and (1.5) hold. This implies that the phase portrait of the system contains two

singularities: a saddle at (x = xs, y = 0) and a center at (x = 0, y = 0). Through a change

of variables x → −x (if necessary) the saddle can be positioned to the left of the center, i.e.

xs < 0, which we will assume to hold true in the following for convenience of discussion.

The integration constant h ≡ hsep = F(xs) corresponds to a saddle loop, passing through

the saddle, see Figure 2.1. The integration constant h = 0 corresponds to the center point. For

the values 0 < h < hsep the region between center and saddle loop is filled with closed orbits

corresponding to periodic solutions, i.e. each h in this interval corresponds to one closed orbit,

which is symmetrical with respect to the x-axis as the integral formula (2.5) shows. The time

it takes to traverse a solution in the region y > 0 is the same as it takes to traverse the reflected

path for y < 0. Therefore when we consider traversal times along orbits we can always restrict

our attention to the part of the curve lying in y > 0.

The saddle loop intersects the x-axis in two points: through the saddle itself located at x =

xs and at the regular point x = x
(2)
s > 0 as long as ∃x

(2)
s > 0 such that F(xs) = F(x

(2)
s ). We will

assume that such a point exists, i.e. that the original system has a saddle loop. The arguments

of this paper generalize to the situation where x
(2)
s → ∞ but for notational convenience we

will omit this case here.
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Figure 2.2: Properties of a periodic orbit of (2.3).

Since we are interested in the behaviour of the solutions to (1.1), (1.2) related to the periodic

orbits, we restrict the value of A to the interval xs < A < x
(2)
s . For values of A outside this

interval no periodic orbits can reach the vertical line x = A in the phase plane.

The set of periodic orbits for h ∈ (0, hsep) is referred to as a period annulus in the literature.

The closed orbit representing a periodic orbit in the phase plane is denoted in the following

by γh.

Well-known properties of γh are:

• The orbit γh satisfies (2.5) for some integration constant h ∈ (0, hsep).

• The periodic orbit γh is symmetrical with respect to the x-axis. The time it takes to

traverse the periodic orbit for y > 0 is the same as for y < 0.

• For each h ∈ (0, hsep) γh crosses the x-axis in exactly two points, of which the coordinates

x−(h) < 0 and x+(h) > 0 satisfy F(x±(h)) = h.

• A periodic orbit γh intersecting a line x = B will do so in exactly two points (x = B, y =
√

2(h − F(B)), (x = B, y = −
√

2(h − F(B)), except when x = B coincides with the

crossing of the x-axis by γh at x = x−(h) or x = x+(h). In those latter cases there is

only one intersection point: the vertical line x = B is tangent to γh at the crossing of the

x-axis at (x±(h) = B, 0).

These properties are summarized in Figure 2.2.

3 Categorization of solution types

3.1 Types of solutions

With the results from the previous section in mind we can categorize the different ways in

which a solution to (2.3), (2.4) can start and end on the vertical line x = A. In Figure 3.1 the full
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list of possible solution types are displayed. Assume that the line x = A intersects the period

Figure 3.1: Solution types for the boundary value problem on a periodic orbit

of (1.1).

orbit γh in two points (x = A, y = yA ≡
√

2(h − F(A)), (x = A, y = −yA ≡ −
√

2(h − F(A)),

see Figure 2.2. If there is no such intersection, then the orbit γh cannot generate solutions to

(2.3), (2.4).

Positive solutions. First we discuss the case of starting at (x = A, y = yA > 0), i.e. above

the x-axis. The solution starts at (x = A, y = yA) on the periodic orbit. It will cross the

x-axis at (x = x+(h), 0) and return to x = A for the first time by reaching the reflected point

(x = A, y = −yA). We denote this part of γh by SA
+(h). We call it the positive part of the

periodic orbit because all x-values are larger than A in correspondence with the notation in

the literature. The time to reach this first point of return we refer to as TA
+ (h).

Negative solutions. These solutions have the same properties as the positive solutions except

that the solutions have to stay on the left of the line x = A. It translates into a starting point

(x = A, y = yA < 0), i.e. below the x-axis, with the solution returning to its reflected point

above the x-axis. We denote this part of γh by SA
−(h) and the time to reach the other side by

TA
− (h).

Full solutions. A full solution returns to its original starting point (x = A, y = yA), i.e. a full

period rotation has been made in the phase plane. We denote the time to make a full rotation

by Tfull(h) (the period of γh) and the trajectory itself by Sn(h), where n = 1, 2, .. indicates

the number of full rotations that were made. The corresponding time-to-return function is

written as Tn(h) ≡ nTfull(h). The function Tfull(h) is what in the literature is referred to

as the so-called period function. Clearly from the definition S1(h) = SA
+(h) ⊕ SA

−(h) and

Tfull(h) = TA
+ (h) + TA

− (h).

Mixed solutions. The argument can be continued by considering a positive solution starting

at (x = A, y = yA > 0), returning to (x = A, y = −yA < 0) and then making one full rotation.
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This orbit type is a combination of a partial rotation SA
+(h) followed by a full rotation along

Sfull(h). For notational convenience we label this trajectory by SA
3/2(h) to indicate that it is

a union of the two trajectories S1(h) and SA
+(h). It is important to note that this trajectory

contains parts where x < A and x > A before returning. Therefore we refer to this type of

solution as a mixed solution. The full rotations are mixed as well, but these solutions we will

keep referring to as Sn(h).

Similarly we can define mixed solution types that start below the x-axis. For example

starting at (x = A, y = yA < 0), a partial trajectory is followed by one full rotation. This is

denoted by SA
−3/2(h).

In this way we find a countably infinite number of ways of returning to the line x = A,

starting at (x = A, y = yA) above and below the x-axis. In Figure 3.1 the different solution

types are indicated with the corresponding trajectories on the periodic orbit. We summarize

the possibilities as follows (the dependency on the parameter h was dropped for convenience

of reading):

• SA
+: one partial rotation from y > 0 to y < 0, ending at the reflection in the x-axis of the

starting point.

• Sfull ≡ S1: one full rotation on the period orbit returning to its original point.

• SA
3/2 = SA

+ ⊕ Sfull.

• S2 = SA
full ⊕ Sfull.

• SA
5/2= SA

+ ⊕ Sfull ⊕ Sfull.

• . . .

• SA
−, similar to SA

+ but starting at y < 0 and ending at y > 0.

• SA
−3/2 = SA

− ⊕ Sfull.

• SA
−5/2 = SA

− ⊕ Sfull ⊕ Sfull.

The full set of solutions can be categorized by the following types:

Proposition 3.1. Solutions to the boundary value problem (2.3) and (2.4) corresponding to a given

period orbit γh, where h is the integration constant in (2.5), can be categorized by:

• Positive solution: SA
+

• Full solutions: Sn, where n = 1, 2, 3, . . .

• Mixed solutions: SA
n+1/2, SA

−n−1/2, where n = 1, 2, 3, . . .

Remark 3.2. In the proposition we grouped all full period solutions under the same label as a

full solution. For all these cases the time-to-return function to the starting point in the phase

plane does not depend on A. The behaviour of the solutions solely depends on the structure

of the period function of the period annulus.



10 A. Zegeling and P. A. Zegeling

Each of the solution types in Proposition 3.1 is characterized by the number of times it

crosses the x-axis in the phase plane and where it crosses the x-axis, i.e. for x < A or x > A.

The way to choose the solution types was chosen to have an easy reference to these crossings.

In terms of the original boundary problem (1.1) and (1.2) a crossing of the x-axis corresponds

with a local minimum (x < A) or local maximum (x > A) of the solution as a function of

t. This is due to the interpretation of the variable y in the phase plane as dx
dt . Therefore

the number of x-axis crossings equals the number of local extrema of the original solution.

Obviously an increase in rotations along the period orbit γh in the phase plane increases the

number of local extrema (i.e. each full rotation adds a local maximum and local minimum).

The conclusion is:

Proposition 3.3. According to the categorization of solutions in Proposition 3.1 to the original bound-

ary value problem (1.1) and (1.2) each type of solution is characterized by the number of crossings of

the x-axis by the periodic orbit γh in the phase plane of system (2.3):

• Positive solution: SA
+: one local maximum

• Negative solution: SA
−: one local minimum

• Full solutions: Sn, where n = 1, 2, 3, . . . : n local minima and n local maxima.

• Mixed solutions: SA
n+1/2, where n = 1, 2, 3, . . . : 2n+ 1 local extreme points, n+ 1 local maxima

and n local minima, the first local extreme point being a local maximum.

• Mixed solutions: SA
−n−1/2, where n = 1, 2, 3, . . . : 2n + 1 local extreme points, n local maxima

and n + 1 local minima, the first local extreme point being a local minimum.

3.2 Time-to-return functions for the different types of solutions

To each of the solution types as described in Proposition 3.1 we can associate the time it takes

to follow the trajectory from start to end point. As noted before, the corresponding trajectories

reflected in the x-axis are traversed in the same time span. The time-to-return functions can

be written as a linear combination of three fundamental functions:

Lemma 3.4. The time-to-return function for a positive solution of the type SA
+ is given by:

TA
+ (h) = 2

∫ x=x+(h)

x=A

dx

yh(x)
, (3.1)

where yh(x) ≡
√

2(h − F(x)) and F(x+(h)) = h, x+(h) > A.

The time-to-return function for a negative solution of the type SA
− is given by:

TA
− (h) = 2

∫ x=A

x=x−(h)

dx

yh(x)
, (3.2)

where F(x−(h)) = h, x−(h) < A.

The time-to-return function for a full solution of the type S1 is given by:

Tfull(h) = 2
∫ x+(h)

x=x−(h)

dx

yh(x)
. (3.3)
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Proof. Consider the case of a positive solution SA
+, i.e. x(t) > A. The solution starts at

x = A, crosses the x-axis at (x+(h), 0) and then returns to x = A along a trajectory which

is the reflection of the trajectory above the x-axis. The time it takes to traverse the trajectory

above the x-axis is the same as the time it takes to traverse the trajectory below the x-axis.

Therefore the total return time is twice the time it takes to reach (x+(h), 0). The formula in

the lemma follows by using the relation dx(t)
dt = yh(x(t)) which implies t1 − t0 =

∫ x(t1)
x(t0)

dx
yh(x)

,

where we defined yh(x) =
√

2(h − F(x)) for trajectories above the x-axis. Here x(t0) = A and

x(t1) = x+(h).

The proof for the negative solution follows the same arguments.

The formula for the full period is well-known in the literature (see e.g. [4]) .

Remark 3.5. The three functions are related by the obvious relation Tfull(h) = TA
+ (h) + TA

− (h).

As a direct consequence of the previous lemma and the solution structure as given in

Proposition 3.1, we can write down the time-to-return functions for all solution types:

Proposition 3.6. The time it takes to traverse the trajectories as defined by Proposition 3.1 of mixed

type can be expressed in terms of the three fundamental time-to-return functions of Lemma 3.4 in the

following way:

TA
n+1/2(h) = TA

+ (h) + nTfull(h), (3.4)

TA
−n−1/2(h) = TA

− (h) + nTfull(h), (3.5)

where n = 1, 2, . . .

Remark 3.7. Obviously TA
1/2(h) < Tfull(h), so there is a natural ordering of the values in the

proposition:

TA
1/2(h) < T1(h) < TA

3/2(h) < T2(h) < · · ·

TA
−1/2(h) < T1(h) < TA

−3/2(h) < T2(h) < · · ·

Due to the symmetry in the formulas for the negative and positive time-to-return functions,

we will focus on the functions TA
+ (h), TA

n (h) and TA
n+1/2(h) in this paper. The results for the

other two types TA
− (h), TA

−n−1/2(h) can be derived in a similar way and will differ only by

introduction of some additional minus signs in the expressions. The simplest way to achieve

this is by changing x → −x in (2.1), essentially changing f (x) into f (−x). Application of

the formulas for TA
+ (h) and TA

n+1/2(h) to the new system leads to the formulas for TA
− (h) and

TA
−n−1/2(h) in the original system.

4 Positive solutions

4.1 Expansion of the positive time-to-return function for small h and A = 0

Proposition 4.1. If f (x) is real analytic and condition (1.3) holds (i.e. a center exists at the origin of

the phase plane), then the positive time-to-return function (3.1) for A = 0 can be expanded for small h

as:

T0
+(h) = d0 + d1h

1
2 + d2h + d3h

3
2 + d4h2 + . . . (4.1)
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The first two terms explicitly take the following form:

T0
+(h) =

π√
a0

− 2a1

a2
0

√
h + . . . (4.2)

where ai are the coefficients of the expansion of the potential function: F(x) = x2(a0 + a1x + a2x2 +

. . . ) near x = 0.

Proof. We write T0
+(h) = 2

∫ x+(h)
0

dx
y(x,h)

in the following convenient way (introduced in [27]):

T0
+(h) = T̃0

+(x+) =
√

2
∫ x=x+

x=0

dx
√

F(x+)− F(x)
.

For convenience of reading (and because in the literature such a variable is used) we will write

x+ ≡ α.

With this notation we can rewrite the integral using a scaling of the integration variable

x = αu. The integral becomes:

T̃0
+(α) =

√
2
∫ u=1

u=0

αdu
√

F(α)− F(αu)
. (4.3)

By assumption we know that F(x) has an expansion of the form F(x) = x2(a0 + a1x + a2x2 +

. . . ) Substitution of this expansion into the integral leads to:

T̃0
+(α) =

√
2
∫ u=1

u=0

du

R(u, α)
√

1 − u
,

where R(u, α) =
√

Z0(u) + Z1(u)α + Z2(u)α2 + . . ., Z0(u) = a0(1+ u), Z1(u) = a1(1+ u+ u2),

. . . , Zi(u) = ai(1 + u + u2 + · · ·+ ui).

The function 1
R(u,α)

is analytical on the interval of integration, because the function F(x)

does not have any other zeroes on the interval of integration (we consider only x-values close

to the isolated zero at x = 0), i.e. R(u, α) 6= 0 for 0 ≤ u ≤ 1.

It leads to the following expansion in α:

T̃0
+(α) = C0 + C1α + C2α2 + . . . (4.4)

where

C0 =
√

2
∫ 1

0

du
√

Z0(u)
√

1 − u
=

π√
2a0

,

C1 =
√

2
∫ 1

0

−Z1(u)du

2Z0(u)
3
2

√
1 − u

= −
√

2a1

a
3
2
0

,

C2 =
√

2
∫ 1

0

(3Z1(u)
2 − 4Z0(u)Z2(u))du

8Z0(u)
5
2

√
1 − u

=

√
2(15πa2

1 − 12πa0a2 − 16a2
1)

8a
5
2
0

.

In order to find the expansion of the positive time-to-return function in terms of h we need to

find the relation between h and α for small h. After substitution of the above expansion for

F(x) into the relation
√

F(α) =
√

h we get:

α
√

a0 + a1α + a2α2 + . . . =
√

h.
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Note that the term µ(α) ≡
√

a0 + a1α + a2α2 + . . . is analytical in α and µ(0) 6= 0. It means

that we can apply the Lagrange inversion theorem to get:

α(u) =
∞

∑
n=1

gn
un

n!
, (4.5)

where u =
√

h and

gn = lim
z→0

dn−1

dzn−1

[

1

µn(z)

]

.

It follows that the first coefficients of the expansion are:

g1 = lim
z→0

1

µ(z)
=

1√
a0

,

g2 = lim
z→0

d

dz

[

1

µ2(z)

]

= − a1

a2
0

,

g3 = lim
z→0

d2

dz2

[

1

µ3(z)

]

=
15a2

1 − 12a0a2

4a
7
2
0

.

Substitution into (4.4) gives the expansion of the positive time-to-return function in terms of h.

T0
+(h) = C0 + C1α(h) + C2α(h)2 + · · · = π√

a0
− 2a1

a2
0

√
h + . . . (4.6)

4.2 Derivative of the positive time-to-return function for A 6= 0

Lemma 4.2. For A 6= 0 the derivative of the time-to-return functions TA
+ (h) (3.1) with respect to h is

given by the following equivalent expressions:

h
dTA

+ (h)

dh
=

√
2hA

f (A)
√

h − hA

+
∫ y=

√
h−hA

y=0
ω′(x(y))dy, (4.7)

where hA = F(A), ω(u) ≡ F(u)
f (u)2 , ω′(u) = dω(u)

du , x(y) satisfies h = 1
2 y2 + F(x(y)), y > 0.

dTA
+ (h)

dh
=
∫ Ā=A

Ā=0

1√
2(h − hĀ)

3
2

dĀ +
dT0

+(h)

dh
. (4.8)

Proof. Multiply the expression for TA
+ (h) as given in (3.1) by h and use that h = 1

2 y2 + F(x) to

write it in the form:

hTA
+ (h) = 2

∫ x=x+(h)

x=A

(

1

2
yh(x) +

F(x)

yh(x)

)

dx.

Integration by parts using
dyh(x)

dx = − f (x)
yh(x)

leads to:

hTA
+ (h) = 2

[

hAyh(A)

f (A)
+
∫ x=x+(h)

x=A

(

1

2
+

(

F(x)

f (x)

′))

yh(x)dx

]

,

where yh(A) =
√

2(h − hA).
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Taking the derivative of this expression with respect to h leads to:

h
dTA

+ (h)

dh
=

√
2hA

f (A)
√

h − hA

+ 2

[

∫ x=x+(h)

x=A

(

−1

2
+

(

F(x)

f (x)

′)) 1

yh(x)
dx

]

,

where the relation
∂yh(x)

∂h = 1
yh(x)

was used. Next we write − 1
2 +

( F(x)
f (x)

)′
= 1

2 f (x)ω′(x) and

change the integration variable from x to y to obtain the first equation of the lemma:

h
dTA

+ (h)

dh
=

√
2hA

f (A)
√

h − hA

+
∫ x=x+(h)

x=A
f (x)ω′(x)

1

yh(x)
dx

=

√
2hA

f (A)
√

h − hA

−
∫ y=0

y=
√

h−hA

ω′(x)dy,

where the last step uses the fact that y(x) satisfies the differential equation
dy
dx = − f (x)

y .

The first step in proving the second equation (4.8) in the lemma is to differentiate the

expression for TA
+ (h) with respect to A:

∂TA
+ (h)

∂A
= −

√
2√

h − hA

. (4.9)

Differentiating this expression with respect to h gives:

∂2TA
+ (h)

∂h ∂A
=

1√
2(h − hA)

3
2

.

The second equation (4.8) in the lemma then follows by integration over the variable A with

the notation that
dT0

+(h)
dh represents the derivative of the positive time-to-return function for

A = 0.

4.3 Limits of the positive time-to-return function

This section contains the limits of the positive time-to-return function TA
+ (h) near the bound-

ary of its definition, i.e. h = 0, the center, and h = hsep, the saddle loop.

Proposition 4.3. The behaviour near h = hA of the positive time-to-return function TA
+ (h) in (3.1) and

its derivative, defined on h ∈ (hA, hsep) for system (2.3) with real analytic f (x) satisfying conditions

(1.3), (1.4), (1.5) and f ′′(0) 6= 0 is as follows:

For A < 0:

lim
h↓hA

TA
+ (h) = TA

full > 0. (4.10)

For A = 0:

lim
h↓0

T0
+(h) =

1

2
T0 > 0. (4.11)

For A > 0:

lim
h↓hA

TA
+ (h) = 0, (4.12)

where the period of the periodic orbit γhA
is abbreviated as TA

full and is given by the expression:

TA
full ≡ 2

∫ x=x+(hA)

x=x−(hA)

dx

yhA
(x)

,
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where hA ≡ F(A). The orbit γhA
is the periodic orbit tangent to the vertical line x = A, passing

through the point (x = A, y = 0) in the phase plane.

The limiting value T0 is given by the expression 2π
f ′(0) and is the limiting period of the period orbits

in the period annulus when approaching the center in the phase plane.

The limits of the derivative are:

For A < 0:

lim
h↓hA

dTA
+ (h)

dh
= −∞. (4.13)

For A = 0:

lim
h↓0

dT0
+(h)

dh
= − sign( f ′′(0))∞. (4.14)

For A > 0:

lim
h↓hA

dTA
+ (h)

dh
= ∞. (4.15)

Proof. For A 6= 0 the limits for h ↓ hA for TA
+ (h) follow from the facts that:

For A > 0 the curve S+ shrinks and approaches the point (x = A, y = 0), i.e. in (3.1) the

upper integral limit x+(h) approaches A and the integral approaches 0.

For A < 0, the curve S+ approaches the periodic orbit tangent to x = A if h ↓ hA and

therefore the value of the positive time-to-return function approaches the full period of this

periodic orbit.

For A 6= 0 the limits for h ↓ hA for the derivative
dTA

+ (h)
dh follow from the expression

(4.7) in Lemma 4.2. The integral expression is bounded (and actually approaches 0 in the

limit) because of the continuity and boundedness of the function ω′(x) in the integrand and

therefore the behaviour of the derivative is dominated by the first term
√

2hA

f (A)
√

h−hA
which

approaches ±∞ with the sign depending on the sign of f (A) which is positive (negative) for

A > 0 (A < 0).

For A = 0 we can use the expansion of Proposition 4.1, i.e. expansion (4.2). The equations

of the lemma follow taking into account that the sign of a1 is determined by f ′′(0). If f ′′(0) = 0

higher order contributions of the expansion need to be taken into account, which can be

achieved by a straightforward procedure which is outside the scope of the paper.

The limits for the different cases are summarized in Figure 4.1.

Note 4.4. The crucial observation in Proposition 4.3 is that the limits in (4.10), (4.11) and (4.12)

are not continuous as a function of A. The value in (4.10) approaches T0 when A ↑ 0, while

the value is equal to 1
2 T0 for A = 0 and is identically equal to 0 for A > 0. The change in

the sign of the derivatives (4.13), (4.14), (4.15) while crossing A = 0 is exactly the cause of the

occurrence of S-shaped bifurcations in the mixed solution cases of this paper.

At the end point of the interval for h, i.e. h = hsep, we can use the position of the saddle

loop to arrive at:

Lemma 4.5. The limiting behaviour of the positive time-to-return function in TA
+ (h) (3.1) and its

derivative, defined on h ∈ (hA, hsep) for system (2.3) near h = hsep, is as follows:

lim
h↓hsep

TA
+ (h) = C(A) > 0, (4.16)

lim
h↓hsep

dTA
+ (h)

dh
= C2(A). (4.17)
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Figure 4.1: The three different cases for the limits of the function T0
+(h) depend-

ing on the sign of A. The case depicted here is for f ′′(0) > 0.

Proof. These limits follow from the fact that the part of the saddle loop surrounding the period

annulus for x > A is traversed in a finite positive time, because the saddle is positioned at

x = xs < A. Note that the sign of C2(A) is undetermined, which is of no further importance

for the discussion in this paper.

5 Full solutions

The full period solutions as defined in (3.3) correspond to the traditional period function of

the period annulus. First we derive a new iterative procedure for determining the derivatives

of all order for the period function.

5.1 Derivatives of the period function

Proposition 5.1. The n-th derivative
dnTfull(h)

dhn ≡ T
(n)
full (h), n ≥ 0 of (3.3) can be expressed in the form

(with n = 0 referring to the function Tfull(h) itself):

hnT
(n)
full (h) = cn

∫ x+(h)

x−(h)
yh(x)2n−1ψn(x)dx, (5.1)

where

cn =
1

2n−1

1

1 · 3 · 5 · . . . · (2n − 1)
,

ψn(x) = L[I ](n)
ω(x)

(x),

L[g](n)
ω(x)

(x) ≡ L[L[. . . [L[g]] . . . ]](x),
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L[g]ω(x)(x) ≡ [(ω(x)g(x))′ + ω(x)g′(x)]′,

ω(x) ≡ F(x)

f (x)2
,

and the identity function I is defined by:

I(x) ≡ 1.

The initial values for the iterations are:

c0 = 2,

ψ0(x) = 1.

Proof. The proof is by induction. The formula is true for n = 0, because of (3.3). It implies

that:

c0 = 2,

ψ0(x) = 1.

Next we show that it will hold true for n + 1 if the formula is true for n. For notational

simplicity we write Tfull = T and suppress the dependency of x− and x+ on h.

Multiply (5.1) with respect to h on both sides to obtain:

hn+1T(n)(h) = cn

∫ x+

x−

[

1

2
yh(x)2n+1ψn(x) + yh(x)2n−1F(x)ψn(x)

]

dx,

where we used (2.5), the expression relating h, x, y on an integral curve.

To the second term on the right hand side we apply integration by parts using
dy
dx = − f (x)

yh(x)
,

which is allowed since F(x) has a double zero at x = 0 compensating for the zero of f (x) at

x = 0 introduced in the denominator:

cn

∫ x+

x−
yh(x)2n−1F(x)ψn(x)dx = −cn

∫ x+

x−

F(x)ψn(x)

(2n + 1) f (x)
dyh(x)2n+1,

which leads to (since the boundary terms vanish):

hn+1T(n)(h) = cn

∫ x+

x−
yh(x)2n+1

[

1

2
ψn(x) +

1

(2n + 1)

(

F(x)ψn(x)

f (x)

)′]

dx.

Differentiating this expression with respect to h gives:

hn+1T(n+1)(h) = cn

∫ x+

x−
yh(x)2n−1

[

(

F(x)ψn(x)

f (x)

)′
− 1

2
ψn(x)

]

dx.

In this expression the integrand can be rewritten in the following convenient form:

(

F(x)ψn(x)

f (x)

)′
− 1

2
ψn(x) =

1

2

[

f (x)

(

F(x)ψn(x)

f (x)2

)′
+

F(x)ψ′
n(x)

f (x)

]

.

It follows that:

hn+1T(n+1)(h) =
1

2
cn

∫ x+

x−
yh(x)2n−1

[

f (x)

(

F(x)ψn(x)

f (x)2

)′
+

F(x)ψ′
n(x)

f (x)

]

dx.
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Note that F(x) has a double zero at x = 0 and therefore the expression F(x)
f (x)2 should be well-

behaved near x = 0.

Again with the use of the relation
dy
dx = − f (x)

yh(x)
, another integration by parts leads to:

hn+1T(n+1)(h) =
cn

2(2n + 1)

∫ x+

x−
yh(x)2n+1

[

(

F(x)ψn(x)

f (x)2

)′
+

F(x)ψ′
n(x)

f (x)2

]′

dx.

This confirms the general form for the nth derivative of the period function as indicated in

equation (5.1):

hn+1T(n+1)(h) = cn+1

∫ x+

x−
yh(x)2n+1ψn+1(x)dx,

where

cn+1 =
1

2(2n + 1)
cn,

ψn+1(x) =

(

F(x)ψn(x)

f (x)2

)′′

+

(

F(x)ψ′
n(x)

f (x)2

)′
.

According to this iterative procedure the first couple of derivatives take the following form:

hT′
full(h) = c1

∫ x+(h)

x−(h)
yh(x)ψ1(x)dx,

h2T′′
full(h) = c2

∫ x+(h)

x−(h)
[yh(x)]3ψ2(x)dx,

h3T′′′
full(h) = c3

∫ x+(h)

x−(h)
[yh(x)]5ψ3(x)dx,

ψ1(x) = ω′′(x),

ψ2(x) = (ω′′(x))2 + 3ω′(x)ω′′′(x) + 2ω(x)ωiv(x),

ψ3(x) = (ω′′(x))3 + 22ω(x)ω′′(x)ωiv(x) + 18ω′(x)ω′′(x)ω′′′(x) + 15(ω′(x))2ωiv(x)

+ 10ω(x)(ω′′′(x))2 + 20ω(x)ω′(x)ωv(x) + 4(ω(x))2ωvi(x),

(5.2)

where ω(x) ≡ F(x)
f (x)2 .

The first derivative corresponds with the well-known expression used in the literature, e.g.

see [8]. The expressions for the higher order derivatives seem to be new.

5.2 Properties of the full period function

Proposition 5.2. The behaviour of the full time-to-return function Tfull(h)in (3.3) and its derivative,

defined on h ∈ (hA, hsep) for system (2.3) with real analytic f (x) satisfying conditions (1.3), (1.4),

(1.5), near the boundaries of its domain is as follows:

For A 6= 0:

lim
h↓hA

Tfull(h) = TA
full > 0,

lim
h↓hA

dTfull(h)

dh
= C3(A) < ∞.

(5.3)
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For A = 0:

lim
h↓0

Tfull(h) = T0 > 0,

lim
h↓0

dTfull(h)

dh
= C3(0) < ∞,

(5.4)

where the period of the periodic orbit γheff
tangent to x = A is abbreviated as TA

full and is given by the

expression:

TA
full ≡ 2

∫ x=x+(heff )

x=x−(heff )

dx

yheff
(x)

,

where heff ≡ F(A). Notice that for A > 0 (A < 0), we have the relation x+(heff ) = A (x−(heff ) = A).

The limiting value T0 is given by the expression 2π
f ′(0) .

Near the outer boundary of the period annulus enclosed by a saddle loop we have the straightforward

result:

lim
h↑hsep

Tfull(h) = ∞,

lim
h↑hsep

dTfull(h)

dh
= ∞.

(5.5)

Proof. The results for limh↓hA
and A 6= 0 follow from the definition of the full period function.

Tfull(h) does not depend on A and will therefore assume the value of the function at hA due

to continuity. The limit for A = 0 is a classical result for the period of a periodic solution near

an elementary center, see e.g. [4]. In particular for the results of this paper it is important to

notice that the derivative remains bounded when approaching the center point at h = 0.

The outer boundary h = hsep is the saddle loop. The integrand inside the integral defining

the period function Tfull(h) approaches an essential singularity for limh↑hsep
and the value of

the integral goes to ∞. The intuition behind this is that the periodic orbits near the outer

boundary of the period annulus approach the saddle singularity where the solutions of the

ODE become slower and the passage time approaches ∞. A similar argument can be used for

the derivatives.

The limits for the full period functions are shown in Figure 5.1.

Figure 5.1: The limits of the full period functions nTfull(h) with n = 1, 2, 3.
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6 Mixed solutions

6.1 Properties of the mixed time-to-return functions

Using the limits for TA
+ (h) and TA

full(h) we can immediately write down the limits for TA
n+1/2(h).

Proposition 6.1. The behaviour of the mixed time-to-return function TA
n+1/2(h) in (3.4) and its deriva-

tive, defined on h ∈ (hA, hsep) for system (2.3) with real analytic f (x) satisfying conditions (1.3), (1.4),

(1.5), near h = hA and h = hsep, is as follows:

For A < 0:

lim
h↓hA

TA
n+1/2(h) = (n + 1)TA

full > 0. (6.1)

For A = 0:

lim
h↓0

TA
n+1/2(h) = (n +

1

2
)T0. (6.2)

For A > 0:

lim
h↓hA

TA
n+1/2(h) = 0. (6.3)

The limits of the derivative are:

For A < 0:

lim
h↓hA

dTA
n+1/2(h)

dh
= −∞. (6.4)

For A = 0:

lim
h↓0

dT0
n+1/2(h)

dh
= − sign( f ′′(0))∞. (6.5)

For A > 0:

lim
h↓hA

dTA
n+1/2(h)

dh
= ∞. (6.6)

Near the outer boundary the functions and their derivatives approach infinity:

lim
h↑hsep

TA
n+1/2(h) = ∞,

lim
h↑hsep

dTA
n+1/2(h)

dh
= ∞.

(6.7)

Proof. Since the mixed time-to-return functions are linear combinations of the positive time-

to-return function and the full period function through:

TA
n+1/2(h) = TA

+ (h) + nTfull(h),

the limiting behaviour near the boundaries follows in a straightforward way from the pre-

viously derived limits for TA
1/2(h) (Proposition 4.3) and Tfull(h) (Proposition 5.2). The critical

quantity is the limit in (6.5) which is determined by the sign of f ′′(0).

The limits for the mixed period functions are shown in Figure 6.1 for the case f ′′(0) > 0.

Note 6.2. As was indicated in Note 4.4, the functions display a discontinuity while changing

A, i.e. while crossing A = 0, as indicated in the limits (6.1), (6.2) and (6.3). Moreover, the

derivatives (6.4), (6.5) and (6.6) will change sign while crossing A = 0. This is the cause

for the occurrence of an additional local extreme value of the mixed period functions while

changing A. The discontinuity requires an accurate analysis and is the reason for the technical

proofs in the next sections.



S-shaped bifurcations in a Hamiltonian system 21

Figure 6.1: The limits of the mixed period functions TA
n+1/2(h) with n = 1, 2, 3

for the case f ′′(0) > 0.

6.2 Existence of a local minimum for the mixed time-to-return functions T A
n+1/2(h)

for sufficiently small A and f ′′(0) > 0

For convenience of the exposition we will discuss the case f ′′(0) > 0. The case f ′′(0) < 0 can

be analysed in a similar fashion. The function TA
n+1/2(h) for A = 0 tends to +∞ for h ↑ hsep

according to (6.7). Since at h = 0 the derivative is −∞ according to (6.5), there must exist a

local minimum for some h ∈ (0, hsep).

Proposition 6.3. For each n > 0 and with A = 0 the mixed time-to-return function TA
n+1/2(h) in (3.4)

with real analytic f (x) satisfying conditions (1.3), (1.4), (1.5) and f ′′(0) > 0, defined on h ∈ (0, hsep)

for system (2.3) has at least one local minimum for h = h0
1.

Proof. The proof follows easily from the limiting behaviour of the mixed time-to-return func-

tions as given in Proposition 6.1. For each n we have limh↓0
dT0

n+1/2(h)

dh = −∞, limh↑hsep

dT0
n+1/2(h)

dh =

∞.

It follows from the continuity of T0
n+1/2(h) that there exists at least one value 0 < h1(n) <

hsep such that
dT0

n+1/2(h)

dh |h=h1(n) = 0 and (h − h1(n))dT0
n+1/2(h) > 0 in a sufficiently small neigh-

borhood of h = h1(n), i.e. T0
n+1/2(h) has a local minimum at h = h0

1(n).

The visualization of the proof is shown in Figure 6.2. Next we prove that the minimum

of the previous proposition persists when A is perturbed. For the following we also need

estimates on the location of this minimum.

Proposition 6.4. For each n > 0 there exists A = ǫ(n) such that the mixed time-to-return function

TA
n+1/2(h) in (3.4) with A ∈ (0, ǫ(n)) defined on h ∈ (hA, hsep) for system (2.3) with real analytic f (x)

satisfying conditions (1.3), (1.4), (1.5) and f ′′(0) > 0, has at least one local minimum for h = h
ǫ(n)
1 (n)

with |hǫ(n)
1 (n)− h0

1(n)| < δ(ǫ(n)), where h0
1(n) corresponds to the local minimum of T0

n+1/2(h) in

Proposition 6.3.
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Figure 6.2: The existence of a minimum h0
1(n) for the mixed time-to-return

functions TA
n+1/2(h) with n = 1, 2, 3 for A = 0 in system (2.3) with real analytic

f (x) satisfying conditions (1.3), (1.4), (1.5) and f ′′(0) > 0.

Proof. From the representation (4.8) in Lemma 4.2 of the derivative of the positive time-to-

return function it follows immediately that:

dTǫ
+(h)

dh
− dT0

+(h)

dh
=
∫ Ā=ǫ

Ā=0

1√
2(h − hĀ)

3
2

dĀ.

Since Tǫ
n+1/2(h) = Tǫ

+(h)+ nTfull(h) where Tfull(h) does not depend on ǫ, the above relationship

implies that:

dTǫ
n+1/2(h)

dh
−

dT0
n+1/2(h)

dh
=
∫ Ā=ǫ

Ā=0

1√
2(h − hĀ)

3
2

dĀ. (6.8)

Consider an interval hδ1
< h0

1(n) < hδ2
such that

dT0
n+1/2(h)

dh < 0 (> 0) for hδ1
< h0

1(n) (h0
1(n) <

hδ2
). According to Proposition 6.3 this is possible. For given n choose h∗ ∈ (hδ1

, h0
1(n)). Since

in (6.8) the integrand on the right hand side is bounded for fixed h∗ > hĀ, for all 0 < Ā < ǫ,

we can choose ǫ small such that:

dTǫ
n+1/2(h)

dh
|h=h∗ =

dT0
n+1/2(h)

dh
|h=h∗ +

∫ Ā=ǫ

Ā=0

1√
2(h∗ − hĀ)

3
2

dĀ < 0.

Moreover we have by construction that:

dTǫ
(n+1/2)(h)

dh
|h=h∗∗ =

dT0
(n+1/2)(h)

dh
|h=h∗∗ +

∫ Ā=ǫ

Ā=0

1√
2(h∗∗ − hĀ)

3
2

dĀ > 0,

for h∗∗ ∈ (h0
1(n), hδ2

).
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From these two equations we conclude that for each n we can find a value h = h
ǫ(n)
1 (n)

such that
dTA

n+1/2(h)

dh has a zero where the sign changes from minus to plus for increasing h,

i.e. TA
n+1/2(h) has a local minimum for a value of h close to the local minimum h0

1(n) of

T0
n+1/2(h).

The persistence of the minimum of the mixed period functions for small ǫ is shown in

Figure 6.3.

Figure 6.3: The persistence of a minimum hǫ
1(n) for the mixed time-to-return

functions TA
n+1/2(h) for A = ǫ > 0 in system (2.3) with real analytic f (x) satis-

fying conditions (1.3), (1.4), (1.5) and f ′′(0) > 0.

Note 6.5. This proposition basically states that for sufficiently small A > 0 the local minimum

of the mixed time-to-return function TA
n+1/2(h) persists as would be expected from continuity.

6.3 Existence of a local maximum for the mixed time-to-return functions T A
n+1/2(h)

for sufficiently small A and f ′′(0) > 0

The result of the previous section showed that a local minimum exists for TA
n+1/2(h) when A

is sufficiently small. However, the results of the limits for the derivatives in Figure 6.1 show

that crossing A = 0 the derivative changes sign. This can only be explained by the creation of

a local maximum on the function TA
n+1/2(h).

Proposition 6.6. For each n > 0 there exists A = ǫ(n) such that the mixed time-to-return function

TA
n+1/2(h) in (3.4) with A ∈ (0, ǫ(n)) defined on h ∈ (hA, hsep) for system (2.3) with real analytic f (x)

satisfying conditions (1.3), (1.4), (1.5) and f ′′(0) > 0, has at least one local maximum for h = h
ǫ(n)
2 (n)

with hA < h
ǫ(n)
2 (n) < δ2(ǫ(n)).

Proof. In the proof of Proposition 6.4 it was shown that for sufficiently small A, there will be

a value h = h∗ depending on n for which the derivative of the mixed time-to-return function

TA
n+1/2(h) is negative. From Proposition 6.1 we know that for A > 0:

lim
h↓hA

dTA
n+1/2(h)

dh
= ∞,
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implying that there exists h∗∗ close enough to hA such that
dTA

n+1/2(h)

dh |h∗∗ > 0. Therefore there

is (at least one) a value h
ǫ(n)
2 (n) ∈ (h∗∗, h∗) such that

dTA
n+1/2(h)

dh |
h

ǫ(n)
2 (n)

= 0. Moreover the

derivative changes sign from minus to plus around this zero, showing that it represents a

local maximum of the function TA
n+1/2(h) as we set out to prove.

The creation of a local maximum of the mixed period functions for small ǫ is shown in

Figure 6.4.

Figure 6.4: The creation of a maximum hǫ
2(n) for the mixed time-to-return func-

tions TA
n+1/2(h) for A = ǫ > 0 in system (2.3) with real analytic f (x) satisfying

conditions (1.3), (1.4), (1.5) and f ′′(0) > 0.

Note 6.7. This proposition basically states that for sufficiently small A > 0 a local maximum of

the mixed time-to-return function TA
n+1/2(h) is created from the center point at (x = 0, y = 0)

in the phase plane by changing the parameter A. The condition f ′′(0) > 0 ensures that a

local maximum is created. This is a critical ingredient for the S-shaped bifurcation of the next

section.

6.4 Co-existence of a local maximum and a local minimum for the mixed time-to-
return functions T A

n+1/2(h) for sufficiently small A and f ′′(0) > 0

The results of the previous two sections showed the existence of a local minimum and maxi-

mum for the function TA
n+1/2(h). Combining these results we immediately get our main result.

Theorem 6.8. For each n > 0 there exists A = ǫ(n) such that the mixed time-to-return function

TA
n+1/2(h) in (3.4) with A ∈ (0, ǫ(n)) defined on h ∈ (hA, hsep) for system (2.3) with real analytic f (x)

satisfying conditions (1.3), (1.4), (1.5) and f ′′(0) > 0, has at least one local minimum h = h
ǫ(n)
1 (n)

and one local maximum for h = h
ǫ(n)
2 (n) for small enough ǫ(n).

Proof. The theorem is a direct consequence of the statements in Proposition 6.4 and Proposi-

tion 6.6.

The co-existence of a local maximum and local minimum of the mixed period functions

for small ǫ is shown in Figure 6.5.
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Figure 6.5: The S-shaped mixed time-to-return functions TA
n+1/2(h) with n =

1, 2, . . . for A = ǫ > 0 and f ′′(0) > 0.

Note 6.9. This proposition basically states that for sufficiently small A > 0 an S-shaped bifur-

cation occurs for each type of mixed time-to-return function TA
n+1/2(h) with n = 1, 2, . . . This

S-shape does not occur if f ′′(0) < 0. In that case it is not difficult to verify that the other type

of mixed time-to-return function TA
−n−1/2(h) will exhibit an S-shaped bifurcation. The case

f ′′(0) = 0 is more difficult because it would require taking higher order contributions into

account. We believe that even in these cases S-shaped bifurcations will take place.

7 Example of a quadratic Hamiltonian system

In this section we provide an application of the previous sections to the simplest possible

nonlinear case f (x) = x(x + 1). The conditions (1.3), (1.4) and (1.5) and f ′′(0) > 0 are

satisfied, since f (0) = 0, f ′(0) = 1, f ′′(0) = 2 > 0 and xs = −1 < 0, f (−1) = 0, f ′(−1) = −1

and f (x)x(x − xs) = x2(x + 1)2. The integral of this system is given by:

h =
1

2
y2(t) +

1

2
x(t)2 +

1

3
x(t)3. (7.1)

with the saddle loop represented by h = hsep = 1
6 . The saddle loop passes through the saddle

singularity at x = −1 and the regular point x = 1
2 , i.e. we consider −1 < A <

1
2 .

The derivatives of the full period function satisfy the following relations.

Lemma 7.1. On the interval h ∈
(

0, 1
6

)

the period function Tfull(h) for the quadratic Hamiltonian

system (2.3) with f (x) = x(1 + x) satisfies:

dTfull(h)

dh
> 0,

d2Tfull(h)

dh2
> 0,

d3Tfull(h)

dh3
> 0.
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Proof. In Proposition (5.1) a recurrence relation was derived for the full period function of

orbits in (2.3). The first three derivatives are given by:

h
dTfull(h)

dh
= c1

∫ x+

x−
yh(x)ψ1(x)dx,

h2
d2Tfull(h)

dh2
= c2

∫ x+

x−
y3

h(x)ψ2(x)dx,

h3
d3Tfull(h)

dh3
= c3

∫ x+

x−
y5

h(x)ψ3(x)dx,

where yh(x) =
√

2(h − F(x)), c1, c2, c3 positive constants,

ψ1(x) =

(

F(x)

f (x)2

)′′

,

ψ2(x) =

(

F(x)ψ1(x)

f (x)2

)′′

+

(

F(x)ψ′
1(x)

f (x)2

)′
,

ψ3(x) =

(

F(x)ψ2(x)

f (x)2

)′′

+

(

F(x)ψ′
2(x)

f (x)2

)′
.

The result of the lemma follows by proving that the three functions ψ1(x), ψ1(x), ψ1(x) are

positive on the interval of interest. In our case x ∈
(

− 1, 1
2

)

and F(x)
f (x)2 =

1
2 x2− 1

3 x3

x2(x+1)2 =
1
2− 1

3 x

(x+1)2 . With

this the three functions can be written out to become:

ψ1(x) =
1

3

(5 + 2x)

(1 + x)4
,

ψ2(x) =
35

9

(11 + 10x + 2x2)

(1 + x)8
,

ψ3(x) =
35

27

(2431 + 3486x + 1560x2 + 208x3)

(1 + x)12
.

These expressions are easily seen to be positive on the interval x ∈
(

− 1, 1
2

)

.

In particular this lemma proves that the full period function is convex and monotonically

increasing as a function of h. The convexity property seems to be new result. The positive

time-to-return function is more difficult to analyze, even for this simple case. The following

results were already established in the literature.

Lemma 7.2. The positive time-to-return function TA
+ (h) in (3.1) for A = 0 is monotonically decreasing

for (2.3) with f (x) = x(1 + x).

Proof. As before we first write:

T0
+(h) = T̃0

+(x+) =
√

2
∫ x=x+

x=0

dx
√

F(x+)− F(x)
.

Again we will write x+ ≡ α.

With this notation we can rewrite the integral using a scaling of the integration variable

x = αu. The integral becomes:

T̃0
+(α) =

√
2
∫ u=1

u=0

αdu
√

F(α)− F(αu)
.
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We formally differentiate with respect to α to get:

dT̃0
+(α)

dα
=

√
2
∫ u=1

u=0

√

F(α)− F(αu)− α
f (α)−u f (αu)

2
√

F(α)−F(αu)

F(α)− F(αu)
du.

Rewriting the integrand we get

dT̃0
+(α)

dα
=

√
2

2

∫ u=1

u=0

2(F(α)− F(αu))− (α f (α)− αu f (αu))

(F(α)− F(αu))
3
2

du.

This can be rewritten in the following compact form (after changing back to the integration

variable x = αu):

dT̃0
+(α)

dα
=

√
2

2

∫ x=α

x=0

∆[θ(x)]

∆[F(x)]
3
2

dx

α
, (7.2)

where θ(x) ≡ 2F(x)− x f (x) and ∆[Z(x)] ≡ Z(α)− Z(x).

In the case of the quadratic Hamiltonian f (x) = x(1 + x), F(x) = 1
2 x2 + 1

3 x3 which leads

to: θ(x) = x2 + 2
3 x3 − x2(1 + x) = − 1

3 x3
< 0 and θ′(x) < 0 for x > 0.

This implies that the integrand of (7.2) will be negative for 0 < x < α. Therefore
dT̃0

+(α)
dα < 0

implying
dT0

+(h)
dh < 0 as we set out to prove.

Note 7.3. It is straightforward by using the same type of argument to prove that the positive

time-to-return function T0
+(h) is monotonically decreasing for −1 < A < 0 as well.

If A > 0 the situation is slightly more complicated, because the function TA
+ (h) will have

a local maximum for some A. For our discussion of mixed time-to-return functions it is

important to establish that there exists a value 0 < A∗
<

1
2 such that T0

+(h) is monotonically

increasing for 0 < A∗ ≤ A <
1
2 .

Lemma 7.4. ∃A∗ ∈ (0, 1
2 ) such that the positive time-to-return function TA

+ (h) in (3.1) is monotoni-

cally increasing for a quadratic Hamiltonian system (2.3) with f (x) = x(1 + x).

Proof. The proof is similar to the case A = 0, except that we cannot use the formula introduced

above which was only valid for A = 0. Formally, the same procedure leads to the following

expression for the derivative
dT̃A

+ (α)
dα :

dT̃A
+ (α)

dα
=

√
2

2

∫ x=α

x=0

∆[θA(x)]

∆[F(x)]
3
2

dx

α
, (7.3)

where θA(x) ≡ 2F(x)− (x − A) f (x).

Substitution of f (x) = x(1 + x) gives: θA(x) = 1
3 x(−x2 + 3Ax + 3A) and dθA(x)

dx = −x2 +

2Ax + A. A straightforward calculation shows that θA(x) is monotonically increasing on

the interval x ∈ (A, 1
2 ) if 1

8 < A <
1
2 . Therefore for this range of A, ∆[θA(x)] is positive

and
dT̃A

+ (α)
dα > 0 proving that the derivative of TA

+ (h) is positive. The lemma follows with

A∗
<

1
8 .

Note 7.5. It is not so straightforward to prove that the positive time-to-return function T0
+(h)

has a unique local maximum for 0 < A < A∗ with this technique. It follows from other results

in the literature, i.e. see [4, 19].
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The application of Theorem 6.8 to the case f (x) = x(x + 1) shows that the case of the

mixed solutions is much more complicated. A full proof of the exact number of local maxima

and minima seems to be difficult even for this case.

Theorem 7.6. For each n > 0 there exists A = ǫ(n) such that the mixed time-to-return function

TA
n+1/2(h) in (3.4) with A ∈ (0, ǫ(n)) defined on h ∈ (hA, hsep) for system (2.3) with f (x) = x(x+ 1)

has at least one local minimum h = h
ǫ(n)
1 (n) and one local maximum for h = h

ǫ(n)
2 (n) for sufficiently

small ǫ(n).

8 Number of solutions for fixed λ

The previous sections showed the existence of an S-shaped bifurcation for mixed time-to-

return functions. This section is aimed at investigating how λ affects the number of solutions

to the original boundary value problem (1.1), (1.2) with conditions (1.3), (1.4) and (1.5). For

this we need to consider the intersection of a horizontal line T = λ2 = constant with the

different time-to-return functions TA
+ (h), Tn(h), TA

n+1/2(h). Each intersection will correspond

to a solution to the original problem for such a value of λ. Each tangency of the horizontal

line with such a function (i.e. tangent to a local minimum or maximum of the graph of the

function) corresponds to a bifurcation value of λ.

8.1 Number of solutions for fixed λ, fixed solution type

First we consider each type separately and find an estimate on the number of possible solu-

tions as a function of λ.

According to the results of the previous sections we know that at least three solutions of

the type SA
n+1/2 (for each n) exist for a proper choice of the parameter λ according to Theorem

6.8. Since for small A > 0 the function has at least one local maximum and local minimum,

there must exist a horizontal line which crosses the graph of the function in at least three

points, i.e. TA
n+1/2(h) = λ2 has at least three solutions for an appropriate choice of λ.

Proposition 8.1. Boundary value problem (1.1) with real analytic f (x) satisfying conditions (1.3),

(1.4), (1.5) and f ′′(0) > 0, for sufficiently small positive A, has at least three solutions of mixed type

SA
n+1/2 (for each n) by choosing λ appropriately.

In Figure 8.1 a numerical example is shown for this situation, i.e. an example of system

(1.1) with f (x) = x(1 + x) and boundary condition (1.2) having three solutions of the same

type. Figure 8.2 displays the mixed period function for the case TA
3/2, i.e. an example of system

(1.1) with f (x) = x(1 + x) and boundary condition (1.2) while varying the parameter A. It is

clearly visible that for the parameters A = 0.001 and A = 0.002, a local maximum and local

minimum occur. Both disappear by increasing A further as shown for the value A = 0.0035.

8.2 Number of simultaneous solutions for fixed λ

The first step in estimating the number of simultaneous solutions for the different solution

types is to determine the range of the functions. From the properties of the previous sections,

the following results are straightforward.

Lemma 8.2. For system (2.3) with real analytic f (x) satisfying conditions (1.3), (1.4), (1.5) and

f ′′(0) > 0, the ranges of the time-to-return functions are:
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Figure 8.1: Numerical example of the co-existence of three solutions of type SA
3/2

to the boundary value problem for λ = 86.23908, A = 0.002 for the quadratic

Hamiltonian case f (x) = x(1 + x). The initial conditions for the three solutions

are dx(t)
dt |t=0 = 0.46, dx(t)

dt |t=0 = 1.03, dx(t)
dt |t=0 = 1.71.

Figure 8.2: Numerical example for the mixed period function TA
3/2 for the

quadratic Hamiltonian case f (x) = x(1 + x) while varying the parameter A.

Five cases are shown for A. For A = −0.0005 and A = 0 only one local mini-

mum occurs. For small positive A, i.e. A = 0.001 and A = 0.002 an additional

local maximum occurs. For larger A, i.e. A = 0.0035, the function is monotoni-

cally increasing and both local extreme points have disappeared.

• TA
+ (h) ∈ (C1(A), C2(A)) with 0 < C2(A) < ∞; 0 < C1(A) < ∞, for xs < A ≤ 0, and

C1(A) = 0 for 0 < A < x
(2)
s ,

• Tn(h) ∈ (nTfull(hmin), ∞), where hmin corresponds to the global minimum Tfull(hmin) > 0 of

Tfull(h).

• TA
n+1/2(h) ∈ (C3(A, n), ∞), with C3(A, n) > 0.

Proof. The function Tfull(h) tends to ∞ for h → hsep according to Lemma 5.2. Since it is positive

on a bounded interval and Tfull(0) > 0, a global minimum of the function must exist, denoted
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by hmin.

This establishes the results for Tn(h) and TA
n+1/2(h) due to the continuity of the functions

on the bounded open interval for h. In the latter case the minimum value C3(A, n) is not

trivial to find explicitly, except when A > 0: we have TA
n+1/2(h) > Tn(h) = nTfull(h) and

limh↓hA
TA

n+1/2(hA) = nTfull(hA). See Figures 8.5, 8.6 for the case of f (x) = x(x + 1) where the

function Tfull(h) is monotonically increasing according to Lemma 7.1.

Figure 8.3: Conjectured time-to-return functions for simultaneous solutions to

the boundary value problem for (2.3) with f (x) = x(1 + x), xs < A ≤ 0.

Figure 8.4: Conjectured time-to-return functions for simultaneous solutions to

the boundary value problem for (2.3) with f (x) = x(1 + x), A = 0.

The result for the remaining case TA
+ (h) follows from the fact that TA

+ (h) approaches 0 for

h ↓ hA for 0 < A <
1
2 , while it approaches a positive constant when −1 < A ≤ 0 according to

Proposition 4.3.
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Figure 8.5: Conjectured time-to-return functions for simultaneous solutions to

the boundary value problem for (2.3) with f (x) = x(1 + x), 0 < A = ǫ ≪ 1.

Figure 8.6: Conjectured time-to-return functions for simultaneous solutions to

the boundary value problem for (2.3) with f (x) = x(1 + x), 0 < A∗
< A <

1
2 .

Note 8.3. The important feature of the lemma is that the range of each of the countably many

functions Tn(h) and TA
n+1/2(h) extends to +∞. This is due to the fact that the period annulus

is bounded on the exterior by a saddle loop. The other important feature is that the lower

bounds of the functions Tn(h) and TA
n+1/2(h) grow with increasing n as we will show below.

The implication of this lemma is that for each fixed sufficiently large λ the original bound-

ary value problem has at least one solution. In the case xs < A ≤ 0 there is an open interval

(0, C1(A)) such that for λ in this interval no solutions exist for the boundary value problem.

For A = 0 there is a second interval (C2(A), Tfull(0)) such that no solutions exist for λ in

this range. The different possibilities for the relative positions of the functions are shown in

Figures 8.3, 8.4, 8.5, 8.6 for the case of f (x) = x(x + 1) where the function Tfull(h) is mono-

tonically increasing according to Lemma 7.1. The figures assume that the maximum number
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of local extreme values on each time-to-return functions is three. Therefore the figures are

labelled as conjectured and have not been verified numerically.

The next proposition follows from the fact that in Lemma 8.2 the range of the countably

infinite functions Tn(h) and TA
n+1/2(h) is bounded below by a number which is monotonically

increasing as a function of n. This is obvious for the functions Tn(h) which are bounded

below by nTfull(hmin). For the function TA
n+1/2(h) we have the trivial estimate TA

n+1/2(h) =

Tn(h) + TA
+ (h) > Tn(h) > nTfull(hmin). The consequence of these lower bounds is that for

given λ, there are only finitely many functions which have a lower bound below λ. It implies

the finiteness of solutions of the boundary problem:

Proposition 8.4. Boundary value problem (1.1) with real analytic f (x) satisfying conditions (1.3),

(1.4), (1.5) and f ′′(0) > 0, has finitely many solutions for each λ > 0 if 0 < A < x
(2)
s and for each

λ ∈ (C1(A), ∞) (with C1(A) defined in Lemma 8.2) if xs < A ≤ 0.

The exact number is not easy to verify since we do not have an upper bound on the number

of local maxima and minima of the mixed time-to-return functions. Figures 8.3, 8.4, 8.5, 8.6

show for the case f (x) = x(x + 1) that for increasing λ the number of solutions will grow with

discrete jumps even though the exact number has not been proved, or verified numerically.

The number of solutions will jump when λ will cross a value of TA
n+1/2(h) corresponding to a

local minimum or maximum. For −xs < A ≤ 0 the functions each have (at least) a minimum

value C3(A, n) which increases without an upper bound as a function of n. It shows that for

any chosen λc countably infinite bifurcation values λ∗
n > λc can be found. This contradicts the

statement in the paper [27] where it was stated that only for small λ bifurcations would occur

for mixed solutions.

8.3 Systems with an infinite number of solutions

The previous section showed that boundary value problem (1.1) with real analytic f (x) sat-

isfying conditions (1.3), (1.4), (1.5) and f ′′(0) > 0, has finitely many solutions for given λ.

It is not difficult to point out the reason why this number is finite. The period annulus is

bounded on the outside by a saddle loop. It causes the full time-to-return functions Tn(h) to

become unbounded when h ↑ hsep. The functions will have a discrete set of distinct values

when h ↓ hA. These two properties combined with the continuity of the functions causes the

finiteness of solutions, i.e. a finite number of intersections for any horizontal line with the

collection of graphs of TA
n+1/2(h) and Tn(h).

It leaves the problem to determine in which situations this conclusion cannot be drawn.

This could happen in the case when the period annulus is not bounded by a finite solution

curve. A typical example is the case of an unbounded period annulus with the property that

f (x) → ±∞ as O(x1+α) when x → ±∞ with α > 0. In such a case the time-to-return function

will approach 0 for large h instead of ∞ (as was the case for a saddle loop). If Tfull(h) tends

to 0 instead of ∞, then each of the functions TA
n+1/2(h), Tn(h) will approach 0. It implies that

for each λ there will be an infinite number of intersections with the graphs of the functions

TA
n+1/2(h), Tn(h). Therefore the original boundary value problem has an infinite number of

solutions. It is outside the scope of this paper to give a full classification of all the different

structure types for the simultaneous solutions of equation (1.1) with boundary condition (1.2)

for arbitrary f (x), but the above argument can be extended to achieve this. Moreover, the

existence of an S-shaped bifurcation can be generalized as well to any case of f (x) such that a

period annulus occurs with a center singularity on the inside and a finite loop formed by the

separatrices of two saddles.
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In Figure 8.7 we sketch an example of a case with infinitely many solutions for f (x) =

x + 1
2 x2 + 1

6 x3, A = 0 as numerically discussed in [32].

Figure 8.7: Simultaneous solutions to a boundary value problem with f (x) =

x + 1
2 x2 + 1

6 x3, A = 0 where the period annulus is unbounded.

9 Representation of bifurcations in phase plane

It is possible to represent the bifurcations of the different mixed solution types in a transparent

way as a function of A by making the following observation:

Lemma 9.1. Suppose system (2.3) has a period annulus in the phase plane surrounding a singularity

of center type, represented by the integral curve given in (2.5) on some interval h ∈ (hmin, hmax). Then

for given h on the orbit γh in the phase plane there exists for each of the functions TA
n+1/2(h) exactly one

point
(

x = A
bif

(2n+1)/2
, y = y(A

bif

(2n+1)/2
, h)
)

≡ (xbif , ybif ), such that the boundary value problem (1.1)

with boundary condition (1.2) where A = xbif and dx(t)
dt |t=0 = ybif has a bifurcation value λ = λbif .

The bifurcation points of the boundary value problem can be represented by a curve µn+1/2(h) in the

phase plane intersecting the period annulus transversally. The case n = 0 is included representing the

positive time-to-return function TA
+ (h).

Proof. For a given periodic orbit, i.e. fixed h, the domain of A-values is given by (A−, A+)

where F(A±) = 0. The periodic orbit in a period annulus needs to intersect the x-axis in

exactly two points defined by F(x) = 0 and we indicate those two x-values by A− and A+.

See Figure 9.1. Equation (4.7) in Lemma 4.2 shows an expression for
dTA

+ (h)
dh . At the end

points necessarily F(A) = hA and in the expression
dTA

+ (h)
dh =

√
2hA

f (A)
√

h−hA
+
∫ y=

√
h−hA

y=0 ω′(x(y))dy

the term
√

2hA

f (A)
√

h−hA
will blow up when A approaches the boundary values. For a periodic

orbit in a period annulus necessarily f (A−) < 0 and f (A+) > 0 and we conclude that

limA→A−,A+
dTA

+ (h)
dh = sign( f (A±))∞ = ∓∞. According to (4.9) TA

+ (h) is monotonically de-

creasing as a function of A, showing that there exists exactly one value A such that
dTA

+ (h)
dh = 0.

This argument holds true if f (x) has a unique zero on the relevant x-interval. If f (x) has

multiple zeroes, the period annulus is bounded on the inside by a solution curve consisting of
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separatrices from one or more saddle(s). In that case the conclusion will be more complicated,

which is outside the scope of this paper.

The same argument applies to the function TA
n+1/2(h) = TA

+ (h) + nTfull(h) because Tfull(h)

does not depend on A and does not influence the behaviour near the end points A− and A+

and the monotonicity of the derivative with respect to A. It follows that for each n = 1, 2, 3...,

fixed h, there is a unique A
bif

(2n+1)/2
such that

dTA
n+1/2(h)

dh = 0, i.e. a bifurcation value for the

original boundary value problem.

There are many other properties of the bifurcation curves µn+1/2(h) mentioned in Lemma

9.1 that can be derived, but they are out of scope for this paper. We briefly indicate some

results which are not difficult to prove using the formulas in Lemma 4.2:

• If
dTfull(h)

dh > 0 (< 0) then the bifurcation points (x = A
bif

(2n+1)/2
, y = y(A

bif

(2n+1)/2
, h)) are

ordered counter-clockwise (clockwise) on the periodic orbit for increasing n. If
dTfull(h)

dh =

0 the points (x = A
bif

(2n+1)/2
, y = y(A

bif

(2n+1)/2
, h)) collapse into a single point on the

periodic orbit. Figure 9.1 shows the three situations.

• If the period annulus has a singularity of center type as its inner boundary, then the

curve µn+1/2(h) approaches the center in the phase plane along a vertical tangent direc-

tion. Figure 9.2 shows a sketch of this for the case f (x) = x(1 + x).

• If the curve µn+1/2(h) moves to the right (left) for increasing h, then the bifurcation point

corresponds to a local maximum (minimum) of the function TA
n+1/2(h). If the curve

µn+1/2(h) has a vertical tangent line (i.e. it is changing direction in the phase plane),

then a local maximum and minimum coincide to form a inflection point on TA
n+1/2(h).

• If a vertical line x = A in the phase plane intersects µn+1/2(h) in two points, then an

S-shaped bifurcation takes place. See Figure 9.2 where the situation is sketched for the

case of f (x) = x(1 + x). The results in the figure have been confirmed numerically. It is

clearly visible how for A = ǫ > 0 the situation occurs as was discussed in the previous

sections.

Figure 9.1: Ordered bifurcation points on a periodic orbit in a period annulus

corresponding to the different types of time-to-return functions.
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Figure 9.2: Schematic display of the different types of bifurcation curves shown

in the phase plane for the quadratic Hamiltonian case f (x) = x(1 + x).

10 Discussion

In this paper we studied mixed solutions of a nonlinear ordinary differential equation with

Dirichlet boundary conditions. The purpose was to show that generically complex bifurcation

phenomena occur, even for the most simple nonlinear choice i.e. f (x) = x(1+ x). The obvious

question remains how these results extend to more complex cases. The following topics for

further study come to our mind.

1) Generalizations

The results of this paper do not only apply to the case of a saddle loop surrounding the

period annulus with a center inside. A full categorization for all solution types in the case of

the general structure of f (x) is feasible and should lead to similar results as in this paper. In

particular we would like to point out the condition f ′′(0) > 0 which is necessary for the mixed

solutions to have an S-shaped bifurcation near the center singularity. If f ′′(0) < 0, then it is

not difficult to show that an S-shaped bifurcation will occur for the negative mixed solutions

SA
−(n+1/2), where n = 1, 2, 3, ... It implies that if f ′′(0) 6= 0 near a center singularity then always

an S-shaped bifurcation can be found among the mixed solutions.

2) Relation between the different time-to-return functions

There is a relation between the positive, negative and full time-to-return functions:

Tfull(h) = TA
+ (h) + TA

− (h). This indicates that even though for all solution types different

phenomena occur there is still some intrinsic relation between them. For example, the expan-

sion of the functions near the center singularity, i.e. h ↓ 0 has an interesting structure caused

by this relationship. The full period function is analytical in h, while the positive time-to-

return function TA
+ (h) is analytical in the variable

√
h (see the expansion in Proposition 4.1).

For the negative time-to-return function a similar result holds. The structure becomes:

Tfull(h) = T0 + c1h + c2h2 + . . .

TA
+ (h) =

1

2
(T0 + c1h + c2h2 + . . . ) +

√
h(d0 + d1h + d2h2 + . . . )
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TA
− (h) =

1

2
(T0 + c1h + c2h2 + . . . )−

√
h(d0 + d1h + d2h2 + . . . )

It would be interesting to extend the analysis for the local bifurcation of small-amplitude

critical periods for the full period function (for which an extensive literature exists) to the

cases of the positive and negative time-to-return functions and the different types of mixed

time-to-return functions.

3) Proving upper bounds

This paper mainly addressed the existence of solutions without considering the upper bounds

on the number of solutions. For example in the case of the quadratic Hamiltonian x(1 + x)

the conjecture is that at most three solutions can occur for each type of mixed solution. The

difficulty in proving this lies in the fact that the function contains the full period function for

which the depending parameter is h and the positive time-to-return function for which the

natural depending parameter is x+(h) (see the proof of Proposition 4.1). In order to study

the mixed functions a way must be found to combine the different techniques for these two

functions.

Acknowledgements

The authors would like to thank the referee for his useful comments which helped improve

this paper.

References

[1] T. Bakri, Y. A. Kuznetsov, F. Verhulst, E. Doedel, Multiple solutions of a generalized

singularly perturbed Bratu problem, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22(2012),

No. 4, 1250095, 10 pp. https://doi.org/10.1142/S0218127412500952; MR2926072

[2] G. Bratu, Sur les équations intégrales non linéaires (in French), Bull. Soc. Math. France

42(1914), 113–142. MR1504727

[3] J. Bebernes, Solid fuel combustion-some mathematical problems, Rocky Mount. J. Math.

16(1986), No. 3, 417–433. https://doi.org/10.1216/RMJ-1986-16-3-417; MR862274

[4] C. Chicone, The monotonicity of the period function for planar Hamiltonian vector

fields, J. Differential Equations 69(1987), No. 3, 310–321. https://doi.org/10.1016/0022-

0396(87)90122-7; MR903390

[5] C. Chicone, Geometric methods for two-point nonlinear boundary value problems,

J. Differential Equations 72(1988), 360–407. https://doi.org/10.1016/0022-0396(88)

90160-X; MR932371

[6] C. Chicone, M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer.

Math. Soc. 312(1989), No. 2, 433–486. https://doi.org/10.2307/2000999; MR930075

[7] C. V. Coffman, On the positive solutions of boundary-value problems for a class of

nonlinear differential equations, J. Differential Equations 3(1967), 92–111. https://doi.

org/10.1016/0022-0396(67)90009-5; MR0204755



S-shaped bifurcations in a Hamiltonian system 37

[8] W. A. Coppel, L. Gavrilov, The period function of a Hamiltonian quadratic system,

Differential Integral Equations 6(1993), No. 6, 1357–1365. MR1235199

[9] F. Dumortier, B. Smits, Transition time analysis in singularly perturbed boundary value

problems, Trans. of Amer. Math. Soc. 347(1995), No. 10, 4129–4145. https://doi.org/10.

2307/2155217; MR1308009

[10] I. M. Gel’fand, Some problems in the theory of quasi-linear equations (in Russian),

Uspehi Mat. Nauk 14(86)1959, No. 2, 87–158, translated in Amer. Math. Soc. Transl. Ser. 2

29(1963), 295–381. MR0110868

[11] S.-Y. Huang, S.-H. Wang, Proof of a conjecture for the one-dimensional perturbed

Gelfand problem from combustion theory, Arch. Ration. Mech. Anal. 222(2016), No. 2,

769–825. https://doi.org/10.1007/s00205-016-1011-1; MR3544317

[12] S.-Y. Huang, K.-C. Hung, S.-H. Wang, A global bifurcation theorem for a multiparame-

ter positone problem and its application to the one-dimensional perturbed Gelfand prob-

lem, Electron. J. Qual. Theory Differ. Equ. 2019, No. 99, 1–25. https://doi.org/10.14232/

ejqtde.2019.1.99; MR4049574

[13] K.-C. Hung, S.-H. Wang, A theorem on S-shaped bifurcation curve for a positone prob-

lem with convex–concave nonlinearity and its applications to the perturbed Gelfand

problem, J. Differential Equations 251(2011), No. 2, 223–237. https://doi.org/10.1016/

j.jde.2011.03.017; MR2800152

[14] K.-C. Hung, S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions

for a positone problem with cubic nonlinearity and their applications, Trans. Amer. Math.

Soc. 365(2013), No. 4, 1933–1956. https://doi.org/10.1090/S0002-9947-2012-05670-4;

MR3009649

[15] D. D. Joseph, Non-linear heat generation and stability of the temperature distribution in

conducting solids, Int. J. Heat Mass Transf. 8(1965), 281–288. https://doi.org/10.1016/

0017-9310(65)90115-8

[16] H. B. Keller, D. S. Cohen, Some positone problems suggested by nonlinear heat gener-

ation, J. Math. Mech. 16(1967), 1361–1376. MR0213694

[17] M. A. Krasnosel’skii, Positive solutions of operator equations, P. Noordhoff, Ltd, Groningen,

the Netherlands, 1964. MR0181881

[18] M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations,

Macmillam, New York, 1964. MR0159197

[19] T. Laetsch, On the number of solutions of boundary value problems with convex

nonlinearities, J. Math. Anal. Appl. 35(1971), 389–404. https://doi.org/10.1016/0022-

247X(71)90226-5; MR0280869

[20] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,

Indiana Univ. Math. J. 20(1970/1971), No. 1, 1–13. https://doi.org/10.1512/iumj.1970.

20.20001; MR0269922



38 A. Zegeling and P. A. Zegeling

[21] C. Li, K. Lu, The period function of hyperelliptic Hamiltonian of degree 5 with real

critical points, Nonlinearity 21(2008), No. 3, 465–483. https://doi.org/10.1088/0951-

7715/21/3/006; MR2396613

[22] P. De Maesschalck, F. Dumortier, The period function of classical Liénard equations, J.

Differential Equations 233(2007), No. 2, 380–403. https://doi.org/10.1016/j.jde.2006.

09.015; MR2292512

[23] F. Mañosas, J. Villadelprat, Criteria to bound the number of critical periods, J. Differ-

ential Equations 246(2009), No. 6, 2415–2433. https://doi.org/10.1016/j.jde.2008.07.

002; MR2498846

[24] P. Mardešić, D. Marin, J. Villadelprat, The period function of reversible quadratic centers,

J. Differential Equations 2242006, No. 1, 120–171. https://doi.org/10.1016/j.jde.2005.

07.024; MR2220066

[25] J. B. Mcleod, S. Sadhu, Existence of solutions and asymptotic analysis of a class of

singularly perturbed odes with boundary conditions, Adv. Differential Equations 18(2013),

No. 9–10, 825–848. MR3100053

[26] G. H. Pimbley, H. George, A sublinear Sturm–Liouville problem, J. Math. Mech. 11(1962),

121–138. MR0138820

[27] J. Smoller, A. Wasserman, Global bifurcation of steady-state solutions, J. Differential

Equations 39(1981), No. 2, 269–290. https://doi.org/10.1016/0022-0396(81)90077-2;

MR607786

[28] C.-C. Tzeng, K.-C. Hung, S.-H. Wang, Global bifurcation and exact multiplicity

of positive solutions for a positone problem with cubic nonlinearity, J. Differential

Equations 252(2012), No. 12, 6250–6274. https://doi.org/10.1016/j.jde.2012.02.020;

MR2911833

[29] S.-H. Wang, A correction for a paper by J. Smoller and A. Wasserman, J. Differential

Equations 77(1989), No. 1, 199–202. https://doi.org/10.1016/0022-0396(89)90162-9;

MR980548

[30] S.-H. Wang, On S-shaped bifurcation curves, Nonlinear Anal. 22(1994), No. 12, 1475–1485.

https://doi.org/10.1016/0362-546X(94)90183-X; MR1285087

[31] L. Yang, X. Zeng, The period function of potential systems of polynomials with real

zeros, Bull. Sci. Math. 133(2009), No. 6, 555–577. https://doi.org/10.1016/j.bulsci.

2009.05.002; MR2561363

[32] P. A. Zegeling, S. Iqbal, Nonstandard finite differences for a truncated Bratu–Picard

model, Appl. Math. Comput. 324(2018), 266–284. MR3743672; https://doi.org/10.1016/

j.amc.2017.12.005

[33] Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, The mathe-

matical theory of combustion and explosions, Consultants Bureau [Plenum], New York, 1985.

MR781350



Electronic Journal of Qualitative Theory of Differential Equations
2021, No. 50, 1–30; https://doi.org/10.14232/ejqtde.2021.1.50 www.math.u-szeged.hu/ejqtde/

Analysis of an age-structured dengue model with
multiple strains and cross immunity

Ting-Ting Zheng, Lin-Fei NieB , Zhi-Dong Teng, Yan-Tao Luo and

Sheng-Fu Wang

College of Mathematics and System Science, Xinjiang University, Urumqi 830046, P.R. China

Received 27 November 2019, appeared 14 July 2021

Communicated by Péter L. Simon

Abstract. Dengue fever is a typical mosquito-borne infectious disease, and four strains
of it are currently found. Clinical medical research has shown that the infected person
can provide life-long immunity against the strain after recovering from infection with
one strain, but only provide partial and temporary immunity against other strains. On
the basis of the complexity of transmission and the diversity of pathogens, in this paper,
a multi-strain dengue transmission model with latency age and cross immunity age is
proposed. We discuss the well-posedness of this model and give the terms of the basic
reproduction number R0 = max{R1, R2} , where Ri is the basic reproduction number
of strain i (i = 1, 2). Particularly, we obtain that the model always has a unique disease-
free equilibrium P0 which is locally stable for R0 < 1. And same time, an explicit
condition of the global asymptotic stability of P0 is obtained by constructing a suitable
Lyapunov functional. Furthermore, we also shown that if Ri > 1, the strain-i dominant
equilibrium Pi is locally stable for Rj < R∗

i (i, j = 1, 2, i 6= j). Additionally, the
threshold criteria on the uniformly persistence, the existence and global asymptotically
stability of coexistence equilibrium are also obtained. Finally, these theoretical results
and interesting conclusions are illustrated with some numerical simulations.

Keywords: dengue fever, age-structured model, cross immunity, uniform persistence,
stability.
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1 Introduction

Dengue is a vector-borne disease which was first described in 1779, and is common in more

than 100 countries around the world [16]. Dengue viruses are spread to humans through the

bite of an infected female mosquito (mainly Aedes aegypti and Aedes albopictus, which are known

as the principal vector of Zika, chikungunya, and other viruses). In recent decades, the global

incidence of dengue fever has increased dramatically and about half the world’s population

is now at risk. Each year, up to 400 million infections occur particularly in tropical and sub-

tropical regions [1]. Due to its high morbidity and mortality, the World Health Organization

has identified dengue as one of ten threats to global health in 2019 [44]. In order to understand

BCorresponding author. Email: lfnie@163.com
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the mechanism of dengue fever transmission, a lot of mathematical models have been used to

analyze its epidemiological characteristics [10, 12, 20, 24, 26, 30]. For example, Esteva et al. [10]

proposed an ordinary differential equations for the transmission of dengue fever with variable

human population size, found three threshold parameters that control the development of this

disease and the growth of the human population. Lee et al. [24] formulated a two-patch model

to assess the impact of dengue transmission dynamics in heterogeneous environments, and

found that reducing traffic is likely to take a host-vector system into the world of manageable

outbreaks.

It is well know that dengue fever is caused by the dengue virus, which contains four dif-

ferent but closely relevant serotypes (DEN1-DEN4), for more details, see [9, 11, 43]. Medical

statistic results show that recovery from infection with one virus provides lifelong immunity

to that virus, but just temporal cross immunity to the other viruses. Subsequent infection with

other viruses increases the risk of severe dengue (including Dengue Hemorrhagic Fever and

Dengue Shock Syndrome) which can be life-threatening [43]. According to the diversity and

transmission mechanism of dengue fever virus, some multi-strain dengue fever models have

been established to investigate the effect of immunological interactions between heterotypic

infections on disease dynamics. One example can be found in Ref. [9], Esteva et al. proposed

a multi-strain dengue fever model, where the authors assumed that the primary infection with

a specific strain changes the probability of being infected by a heterologous strain. Another

example is that Feng et al. [11] established a multi-strain dengue fever model and found that

there exists competitive exclusion phenomenon between different strains. More research can

be found in [9,11,17,19,27,29,32,34,41,42] and the references therein. Of course, there is still a

lot of research that has not been mentioned, and the research continues.

The patterns of transmission, infectivity and latent period of infectious diseases play an

important role in the process of transmission. It is well known that the period for individuals

in latent compartment is different from one to one, which depends on individuals situation. For

dengue fever, the period for individuals in latent compartment varies from 3 to 14 days and its

distributions usually peak around their mean [3, 7]. And for tuberculosis, the latent period for

individuals in latent compartment may take months, years or even decades. Therefore, several

epidemic models with latent age (time since entry into latent compartment) have been proposed

by many famous experts and scholars [5, 21, 37, 40]. Particularly, Wang et al. [37] proposed an

SVEIR epidemic model with age-dependent vaccination and latency, found that the latency

age not only impacts on the basic reproduction number but also could affect the values of the

endemic steady state. They also showed that the introduction of age structure may change

the dynamics of the corresponding model without age structure. Additionally, recent studies

[3, 15] pointed out cross immunity starts immediately after the primary infectious period and

prevents individuals from becoming infected by another strain for a period ranging from 6

months to 9 months, even to lifelong. To the best of our knowledge, there is currently no work

on the effect of cross immunity age on the dynamics of dengue fever model.
Based on the discussion above, it is necessary to incorporate latency age and cross immunity

age in the modeling of dengue fever. In this paper, we formulate a multi-strain dengue model

with latency age and cross immunity age to assess the effects of latency age and cross immunity

age on the transmission of dengue fever. The paper is structured as follows. The model is

proposed in Section 2, and the nonnegative, boundedness and smoothness of the solution of

this model are presented in Section 3. Section 4 analyzes the existence and stability of the

boundary equilibria of model, which includes the disease-free equilibrium and stain dominant

equilibrium. In Section 5, the uniform persistence of disease is discussed and the existence of

coexistence equilibrium is obtained, and the theoretical results are illustrated with numerical

simulations in Section 6. The paper ends with a brief conclusion.
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2 Model formulation

Studies have shown that the number of dengue admissions caused by a third and fourth dengue

virus infection have relatively few reported cases, accounting for only 0.08% −−0.80% of the

number of cases [14]. Therefore, it is reasonable to consider two strains in our model denote by

strain 1 and strain 2, where 1 and 2 can be DEN1–DEN4. The infected individuals are divided

into primary infected and secondary infected, and ignore further infections. Let S(t) represent

the number of susceptible individuals who are susceptible to both strain 1 and strain 2 at time t.

Êi(t), Ii(t) and Ri(t) represent the number of latent, primary infected and recovered individuals

with strain i(i = 1, 2) at time t, respectively. Likewise, Yi(t) be the number of secondary

infected individuals with strain i after being recovered from strain j (i, j = 1, 2, j 6= i) at time

t. Let R(t) represent the number of recovered individuals from secondary infection at time t (to

be permanently immune to both strains and hence there is no need to consider the evolution

of R(t)). At the same time, due to the short length of mosquitoes’ life cycle, assuming that

a mosquito, once infected, never recovers and no secondary infection occurs. The mosquito

population is subdivided into susceptible class U(t), and infectious with strain i class Vi(t)
(i = 1, 2). Based on the transmission characteristics of dengue fever, we further propose two

basic assumptions:

(A1) For latent individuals, the latent age (time since entry into latent class) is denoted by a. Let

Ei(t, a) denote the number of strain i latent individuals with latent age a at time t. Then

the total number of strain i latent individuals at time t is given by Êi(t) =
∫ ∞

0 Ei(t, a)da.

The conversion rate at which the latent individuals become infectious depends on the

latent age, and is denoted by ε i(a), i = 1, 2.

(A2) For recovered individuals, assume that the cross immunity wanes with time. Denote the

cross immunity age, i.e., time since entry into recovered class R̂i(i = 1, 2), by b. Let Ri(t, b)
represent the number of the recovered individuals from strain i (i = 1, 2) at time t and

cross immunity age b. Then the total number of strain i recovered individuals at time t is

given by R̂i(t) =
∫ ∞

0 Ri(t, b)db, i = 1, 2. The rate at which the cross immunity wanes of R̂i

(i = 1, 2) depends on cross immunity age, and is denoted by θj(b), j = 1, 2.

Based on the above assumptions, the model can be written as the following,





dS(t)

dt
= Λh − β1S(t)V1(t)− β2S(t)V2(t)− µhS(t),

(
∂

∂t
+

∂

∂a

)
Ei(t, a) = −(µh + ε i(a))Ei(t, a),

dIi(t)

dt
=
∫ ∞

0
ε i(a)Ei(t, a)da − (γi + µh)Ii(t),

(
∂

∂t
+

∂

∂b

)
Ri(t, b) = −β jθj(b)Vj(t)Ri(t, b)− µhRi(t, b),

dYi(t)

dt
= βiVi(t)

∫ ∞

0
θi(b)Rj(t, b)db − (γi + di + µh)Yi,

dU(t)

dt
= Λm − α1(I1(t) + Y1(t))U(t)− α2(I2(t) + Y2(t))U(t)− µmU(t),

dVi(t)

dt
= αi(Ii(t) + Yi(t))U(t)− µmVi(t),

Ei(t, 0) = βiS(t)Vi(t), Ri(t, 0) = γi Ii(t), i, j = 1, 2, i 6= j,

(2.1)
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with the initial condition

S(0) = S0 ≥ 0, Ei(0, a) = Ei0(a) ≥ 0, Ii(0) = Ii0 ≥ 0, Ri(0, b) = Ri0(b) ≥ 0,

Yi(0) = Yi0 ≥ 0, U(0) = U0 ≥ 0, Vi(0) = Vi0 ≥ 0, i = 1, 2,
(2.2)

where Ei0(a), Ri0(b) ∈ L1
+(0, ∞), and L1

+(0, ∞) is the space of nonnegative and Lebesgue inte-

grable functions on (0, ∞). In model (2.1), Λh and Λm are the recruitment rates of human and

mosquito population, respectively; 1/µh and 1/µm denote the life expectancy for human and

the average lifespan of mosquito, respectively; βi is the infectious rate from mosquito to human

with strain i; γi is the recovery rate of human with strain i; di is the disease induced death

rate in human with strain i and αi is the infectious rate from human to mosquito with strain i,

i = 1, 2. All these parameters are assumed to be positive.

For model (2.1), the following hypotheses are reasonable.

(H1) ε i(·), θi(·) ∈ L1
+(0, ∞) are bounded with essential upper bound ε̄ i, θ̄i, and Lipschitz contin-

uous on R+ with Lipschitz coefficients Mεi, Mθi, i = 1, 2, respectively. Besides, assuming

that θi(·) ∈ [0, 1), if θi(·) ∈ (0, 1), then there exists cross-immunity between the two

strains; if θi(·) = 0, then individuals recovered from primary infection with one strain

confer lifelong immunity to both strains.

(H2) āi and b̄i are the maximum ages of latency and cross immunity, the
∫ ∞

āi
Ei0(a)da = 0 and∫ ∞

b̄i
Ri0(b)db = 0, i = 1, 2.

The state space of model (2.1) is defined as follows, X = R+ × L1
+(0, ∞)× L1

+(0, ∞)×R
2
+ ×

L1
+(0, ∞)× L1

+(0, ∞)× R
5
+. For any X = (x1, φ1, φ2, x2, x3, ψ1, ψ2, x4, x5, x6, x7, x8) ∈ X the norm

is defined by

‖X‖X =
8

∑
i=1

|xi|+
∫ ∞

0
|ϕ1(a)|da +

∫ ∞

0
|ϕ2(a)|da +

∫ ∞

0
|ψ1(b)|db +

∫ ∞

0
|ψ2(b)|db.

For the convenience, we denote the solution of model (2.1) by X(t) = (S(t), E1(t, ·), E2(t, ·),
I1(t), I2(t), R1(t, ·), R2(t, ·), Y1(t), Y2(t), U(t), V1(t), V2(t)). Let X0 := (S0, E10(·), E20(·), I10,

I20, R10(·), R20(·), Y10, Y20, U0, V10, V20), then the initial condition (2.2) is rewritten as X(0) =
X0. Furthermore, we denote by X(t, X0) the solution of model (2.1) with the initial condition

X(0) = X0.

3 The well-posedness

Solving Ei(t, a) and Ri(t, b) in the second and fourth equations of model (2.1) along the charac-

teristic line t − a = const and t − b = const, respectively, we have

Ei(t, a) =





βiS(t − a)Vi(t − a)ηi(a), 0 ≤ a < t,

Ei0(a − t)
ηi(a)

ηi(a − t)
, 0 ≤ t ≤ a,

Ri(t, b) =





γi Ii(t − b)Ωj(t, b), 0 ≤ b < t,

Ri0(b − t)
Ωj(t, b)

Ωj(t, b − t)
, 0 ≤ t ≤ b,

(3.1)

where ηi(a) = e−
∫ a

0 (µh+εi(s))ds, Ωi(t, b) = e−
∫ b

0 [βiθi(s)Vi(t−b+s)+µh]ds, i, j = 1, 2, i 6= j.

On the existence and nonnegativity of solution for model (2.1), we have the following result.
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Theorem 3.1.

(i) For any X0 ∈ X, model (2.1) has a unique solution X(t) with the initial condition X(0) = X0

defined in maximal existence interval [0, t0) with t0 > 0.

(ii) X(t) is non-negative for all t ∈ [0, t0).

(iii) If S0 > 0, Ei0(a) > 0, Ii0 > 0, Ri0(b) > 0, Yi0 > 0, U0 > 0, Vi0 > 0 (i = 1, 2), then X(t) also

is positive for all t ∈ [0, t0).

Proof. From the Ref. [39], it is clear that conclusion (i) holds. From (3.1), we directly yield that

Ei(t, a) > 0 and Ri(t, b) > 0 (i = 1, 2) for all t ∈ [0, t0). We can obtain that the solution X(t) of

model (2.1) with positive initial value remains is positive by the method of Ref. [38]. From the

continuous dependence of solutions with respect to initial value, we immediately obtain that

X(t) is non-negative for all t ∈ [0, t0). This completes the proof.

Denote

D =

{
X = (S, E1(a), E2(a), I1, I2, R1(b), R2(b), Y1, Y2, U, V1, V2) ∈ X :

S +
2

∑
i=1

(
‖Ei(a)‖L1 + Ii + ‖Ri(b)‖L1 + Yi

)
≤

Λh

µh
, U + V1 + V2 ≤

Λm

µm

}
.

The following result is on the boundedness of solutions of model (2.1).

Theorem 3.2. For any initial value X0 ∈ X, solution X(t, X0) of model (2.1) is defined for all t ≥ 0

and is ultimately bounded. Further, D is positively invariant for model (2.1), i.e., X(t, X0) ∈ D for all

t ≥ 0 and X0 ∈ D, and D attracts all points in X.

Proof. From Theorem 3.1, it is obvious that X(t, X0) ≥ 0 for all t ∈ [0, t0). Define

Nh(t) = S(t) +
2

∑
i=1

(∫ ∞

0
Ei(t, a)da + Ii(t) +

∫ ∞

0
Ri(t, b)db + Yi(t)

)

and Nm(t) = U(t) + V1(t) + V2(t), from model (2.1), we have

dNh(t)

dt
= Λh − µhNh(t)− d(Y1(t) + Y2(t)) ≤ Λh − µhNh(t),

dNm(t)

dt
= Λm − µmNm(t), (3.2)

which implies that

Nh(t) ≤ max

{
N0

h ,
Λh

µh

}
, Nm(t) ≤ max

{
N0

m,
Λm

µm

}
.

Hence, Nh(t) and Nm(t) are bounded on [0, t0), which implies that X(t, X0) is defined for any

t ≥ 0. Further, from (3.2), we have lim supt→∞ Nh(t) ≤ Λh/µh, lim supt→∞ Nm(t) ≤ Λm/µm. It

follows that X(t, X0) is ultimately bounded. Furthermore, D is positively invariant for model

(2.1), and D attracts each point in X. The proof is complete.

From Theorems 3.1 and 3.2, we obtain that all nonnegative solutions X(t, X0) of model (2.1)

with the initial condition X(0) = X0 generate a continuous semi-flow Φ : R+ × X → X as

Φt(X0) = X(t, X0), t ≥ 0, X0 ∈ X.

On the asymptotically smoothness of the semi-flow {Φt}t≥0, we have the following result.

Theorem 3.3. The semi-flow {Φt}t≥0 generated by model (2.1) is asymptotically smooth. Furthermore,

model (2.1) has a compact global attractor A contained in X.

This theorem can be proved by using the standard argument, see [40] for detailed proof

methods.
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4 The existence and stability of boundary equilibria

Model (2.1) always has a disease-free equilibrium P0 = (S∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, U∗, 0, 0), where

S∗ = Λh/µh, U∗ = Λm/µm. For the convenience, denote Ki =
∫ ∞

0 ε i(a)ηi(a)da, i = 1, 2. It is

clear that Ki ∈ (0, 1), i = 1, 2.

Denote the basic reproduction number R0 by

R0 = max{R1,R2}, Ri =
ΛhΛmαiβiKi

µhµ2
m(γi + µh)

=
Λh

µh
×

Λm

µm
×

βi

µm
×

αi

γi + µh
× Ki, i = 1, 2. (4.1)

Here, βi/µm represents the number of secondary infections one infectious mosquito will pro-

duce in a completely susceptible human population, αi/(γi + µh) represents the number of

effective contact human to mosquito during the infectious period of human and Ki represents

the probability of an exposed individual becomes infective. Therefore, Ri can be considered

as the basic reproduction number of strain i, which is defined as the average number of sec-

ondary infective of strain i, produced by a single infective of strain i in a completely susceptible

population.

Let E2(t, a) = I2(t) = R2(t, b) = Y2(t) = V2(t) = 0 in model (2.1), then we obtain the

subsystem that only strain 1 exists as follows





dS(t)

dt
= Λh − β1S(t)V1(t)− µhS(t),

(
∂

∂t
+

∂

∂a

)
E1(t, a) = −(µh + ε1(a))E1(t, a), E1(t, 0) = β1S(t)V1(t),

dI1(t)

dt
=
∫ ∞

0
ε1(a)E1(t, a)da − (γ1 + µh)I1(t),

(
∂

∂t
+

∂

∂b

)
R1(t, b) = −µhR1(t, b), R1(t, 0) = γ1 I1(t),

dU(t)

dt
= Λm(t)− α1 I1(t)U(t)− µmU(t),

dV1(t)

dt
= α1 I1(t)U(t)− µmV1(t).

(4.2)

Clearly, model (4.2) always has a disease-free equilibrium p0 = (Λh/µh, 0, 0, 0, Λm/µm, 0). Let

p1 = (S∗
1 , E∗

1(a), I∗1 , R∗
1(b), U∗

1 , V∗
1 ) be the positive equilibrium of model (4.2), then

Λh − β1S∗
1V∗

1 − µhS∗
1 = 0, Λm − α1 I∗1 U∗

1 − µmU∗
1 = 0,

d

da
E∗

1(a) = −(µh + ε1(a))E∗
1(a),

d

db
R∗

1(b) = −µhR∗
1(b),

∫ ∞

0
ε1(a)E∗

1(a)da − (γ1 + µh)I∗1 = 0, E∗
1(0) = β1S∗

1V∗
1 , R∗

1(0) = γ1 I∗1 .

(4.3)

From (4.3),

R∗
1(b) = R∗

1(0)e
−µhb = γ1 I∗1 e−µhb, U∗

1 =
Λm

α1 I∗1 + µm
, V∗

1 =
α1 I∗1 Λm

µm(α1 I∗1 + µm)
,

E∗
1(a) = E∗

1(0)η1(a) = β1S∗
1V∗

1 η1(a), S∗
1 =

µm(α1 I∗1 + µm)(γ1 + µh)

α1β1ΛmK1
.

Substituting the above formulas for V∗
1 , E∗

1(a) and S∗
1 into the first equation of (4.3) yields

I∗1 =
α1β1ΛhΛmK1 − µhµ2

m(γ1 + µh)

α1(γ1 + µh)(β1Λm + µhµm)
=

µhµ2
m(R1 − 1)

α1(β1Λm + µmµh)
.
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Thus, from the expressions of S∗
1 , E∗

1(a), I∗1 , R∗
1(b), U∗

1 and V∗
1 , it can be easily seen that model

(4.2) has a unique positive equilibrium p1 if and only if R1 > 1. Therefore, model (2.1) has

a strain 1 dominant boundary equilibrium P1 = (S∗
1 , E∗

1 , 0, I∗1 , 0, R∗
1(b), 0, 0, 0, U∗

1 , V∗
1 , 0) when

R1 > 1, where

S∗
1 =

µ2
m(γ1 + µh)(R1µhµm + β1Λm)

α1β1Λm(β1Λm + µmµh)K1
, E∗

1(a) =
µ2

mµhη1(a)(γ1 + µh)(R1 − 1)

α1(β1Λm + µmµh)K1
,

I∗i =
(R1 − 1)µhµ2

m

α1(β1Λm + µmµh)
, R∗

1(b) =
(R1 − 1)γ1µhµ2

me−µhb

α1(β1Λm + µmµh)
,

U∗
1 =

Λm(β1Λm + µmµh)

µm(R1µhµm + β1Λm)
, V∗

1 =
Λmµh(R1 − 1)

(R1µhµm + β1Λm)
.

Similarly, model (2.1) has a strain-2 dominant boundary equilibrium P2 = (S∗
2 ,0, E∗

2 , 0, I∗2 , 0,

R∗
2(b), 0, 0, U∗

2 , 0, V∗
2 ) when R2 > 1, where

S∗
2 =

µ2
m(γ2 + µh)(R2µhµm + β2Λm)

α2β2Λm(β2Λm + µmµh)K2
, E∗

2(a) =
µ2

mµhη2(a)(γ2 + µh)(R2 − 1)

α2(β2Λm + µmµh)K2
,

I∗2 =
(R2 − 1)µhµ2

m

α2(β2Λm + µmµh)
, R∗

2(b) =
(R2 − 1)γ2µhµ2

me−µhb

α2(β2Λm + µmµh)
,

U∗
2 =

Λm(β2Λm + µmµh)

µm(R2µhµm + β2Λm)
, V∗

2 =
Λmµh(R2 − 1)

(R2µhµm + β2Λm)
.

Summarizing the discussions above, we have the following theorem.

Theorem 4.1.

(i) Model (2.1) always has a disease-free equilibrium P0.

(ii) If R1 > 1, then model (2.1) has a strain 1 dominant equilibrium P1.

(iii) If R2 > 1, then model (2.1) has a strain 2 dominant equilibrium P2.

On the stability of boundary equilibria of model (2.1), we first obtain the following results.

Theorem 4.2. If R0 < 1, then the disease-free equilibrium P0 of model (2.1) is locally asymptotically

stable, and if R0 > 1, then P0 is unstable.

Proof. Let S(t) = S∗ + s(t), Ei(t, a) = ei(t, a), Ii(t) = ii(t), Ri(t, a) = ri(t, a), Yi(t) = yi(t),
U(t) = U∗ + u(t) and Vi(t) = vi(t), i = 1, 2. Linearizing model (2.1) at equilibrium P0, one has





ds(t)

dt
= −β1(t)S

∗v1(t)− β2(t)S
∗v2(t)− µhs(t),

(
∂

∂t
+

∂

∂a

)
ei(t, a) = −(µh + ε i(a))ei(t, a), ei(t, 0) = βiS

∗vi(t),

dii(t)

dt
=
∫ ∞

0
ε i(a)ei(t, a)da − (γi + µh)ii(t),

(
∂

∂t
+

∂

∂b

)
ri(t, b) = −µhri(t, b), ri(t, 0) = γiii(t), i = 1, 2.

(4.4)

and 



dyi(t)

dt
= −(γi + di + µh)yi(t),

du(t)

dt
= −α1(i1(t) + y1(t))U

∗ − α2(i2(t) + y2(t))U
∗ − µmu(t),

dvi(t)

dt
= αi(ii(t) + yi(t))U

∗ − µmvi(t), i = 1, 2.

(4.5)
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It is easy to obtain that limt→∞ yi(t) = 0, i = 1, 2 from the first equation of model (4.5). Thus,

we only need to consider model (4.4) and the following limit system of model (4.5)





du(t)

dt
= −α1i1(t)U

∗ − α2i2(t)U
∗ − µmu(t),

dvi(t)

dt
= αiii(t)U

∗ − µmvi(t), i = 1, 2.

(4.6)

Let s(t) = s̄eλt, ei(t, a) = ēi(a)eλt, ii(t) = īie
λt, ri(t, b) = r̄i(b)e

λt, u(t) = ūeλt and vi(t) = v̄ie
λt,

where s̄, īi, ȳi, ū and v̄i (i = 1, 2) are positive constants, ēi(a) and r̄i(b) are nonnegative

functions, then we obtain the following eigenvalue problem

(λ + µh)s̄ = −β1S∗v̄1 − β2S∗v̄2, (λ + µm)ū = −α1 ī1U∗ − α2 ī2U∗ (4.7)

and 



(λ + γi + µh)īi =
∫ ∞

0
ε i(a)ēi(a)da, (λ + µm)v̄i = αi īiU

∗

dēi(a)

da
= −(µh + ε i(a) + λ)ēi(a),

dr̄i(b)

db
= −(µh + λ)r̄i(b),

ēi(0) = βiS
∗v̄i, r̄i(0) = γi īi, i = 1, 2.

(4.8)

From (4.7), it follows that

λ1 = −
β1S∗v̄1 + β2S∗v̄2

s̄
− µh < 0, λ2 = −

α1 ī1U∗ + α2 ī2U∗

ū
− µm < 0.

Therefore, the stability of P0 depends on the eigenvalues of (4.8). Directly calculating from the

equations of īi, ēi(a) and v̄i in problem (4.8) yields the following characteristic equation

λ + γi + µh =
αiβiΛhΛm

µhµm(λ + µm)

∫ ∞

0
ε i(a)e−

∫ a
0 (λ+µh+εi(s))dsda, i = 1, 2. (4.9)

Denote

LHS = λ + γi + µh, RHS = G(λ) =
αiβiΛhΛm

µhµm(λ + µm)

∫ ∞

0
ε i(a)e−

∫ a
0 (λ+µh+εi(s))dsda.

It is easy to verify that for any eigenvalue λ, if Re(λ) ≥ 0, when R0 < 1, then

|LHS| ≥ γi + µh, |RHS| ≤ G(Re λ) ≤ G(0) = Ri(γi + µh) < |LHS|, i = 1, 2.

This leads to a contradiction. Thus, all eigenvalues λ of problem (4.8) have negative real parts,

which implies that limt→∞ ii(t) = 0, limt→∞ ei(t, a) = 0, limt→∞ vi(t) = 0 and limt→∞ ri(t, b) =
0. Therefore, P0 is locally asymptotically stable when R0 < 1.

Now, assume that R0 > 1 and rewrite the characteristic equation (4.9) in the form

G1i(λ) = (λ + γi + µh)−
αiβiΛhΛm

µhµm(λ + µm)

∫ ∞

0
ε i(a)e−

∫ a
0 (λ+µh+εi(s))dsda = 0, i = 1, 2.

Obviously,

G1i(0) = (γi + µh)−
αiβiΛhΛm

µhµ2
m

∫ ∞

0
ε i(a)e−

∫ a
0 (µh+εi(s))dsda = (γi + µh)(1 −Ri) < 0,

and limλ→∞ G1i(λ) = +∞. Hence, the characteristic equation (4.9) at least has a positive real

root. It implies that equilibrium P0 is unstable. This completes the proof.
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Next, we discuss the global stability of equilibrium P0. To do so, define

qi(a) =
∫ ∞

a
ε i(s)e

−
∫ s

a (µh+εi(ξ))dξds, i = 1, 2.

It is easy to obtain that

dqi(a)

da
= (µh + ε i(a))qi(a)− ε i(a), qi(0) = Ki, i = 1, 2.

Theorem 4.3. If R0 ≤ min{K1, K2}, then disease-free equilibrium P0 of model (2.1) is globally asymp-

totically stable.

Proof. Define a Lyapunov functional as follows

L(t) =
2

∑
i=1

( ∫ ∞

0
qi(a)Ei(t, a)da + Ii(t) + KiYi(t) +

βiΛh

µmµh
KiVi(t)

)
.

Calculating the time derivative of L(t) along the solution of model (2.1), it can be easily obtained

that

dL(t)

dt
=

2

∑
i=1

(
βiKiS(t)Vi(t)− (γi + µh)Ii(t)

)
+

2

∑
i=1

(
αiβiΛhKi

µmµh
U(t)(Ii(t) + Yi(t))

−
βiΛhKi

µh
Vi(t)

)
+

2

∑
i=1

(
KiβiVi

∫ ∞

0
θi(b)Rj(t, b)db − (γi + di + µh)KiYi(t)

)

≤
2

∑
i=1

(
βiKiS(t)Vi(t)− (γi + µh)Ii(t)

)
+

2

∑
i=1

(
αiβiΛhΛmKi

µ2
mµh

(Ii(t) + Yi(t))

−
βiΛhKi

µh
Vi(t)

)
+

2

∑
i=1

(
KiβiVi

∫ ∞

0
Rj(t, b)db − (γi + di + µh)KiYi(t)

)

≤
2

∑
i=1

(
βiKiVi(t)

(
S(t) +

∫ ∞

0
Rj(t, b)db −

Λh

µh

))
+

2

∑
i=1

(
(γi + µh)(Ri − 1)Ii(t)

)

+
2

∑
i=1

(
(γi + µh)(Ri − Ki)Yi(t)

)
− d1Y1(t)− d2Y2(t).

Restricting to set D, we have S(t) +
∫ ∞

0 Rj(t, b)db − Λh/µh ≤ 0 for all t ≥ 0. Hence, when

Ri ≤ Ki (i = 1, 2), we have dL(t)/dt ≤ 0, and the equality holds only if Ii(t) = Yi(t) = 0 and

Vi(t)

(
S(t) +

∫ ∞

0
Rj(t, b)db −

Λh

µh

)
= 0.

When Ii(t) = Yi(t) = 0, it follows that limt→∞ Vi(t) = 0 and limt→∞ U(t) = U∗ from the sixth

and seventh equations model (2.1). Further, it is clearly that limt→∞ S(t) = S∗ from the first

equation model (2.1). Then, from the second and fourth equations of model (2.1), we obtain

that limt→∞ Ei(t, a) = 0 and limt→∞ Ri(t, b) = 0. Thus, {P0} is the largest invariant subset of set

{X ∈ D : dL(t)/dt = 0}. By the LaSalle’s invariance principle, P0 is globally asymptotically

stable. The proof is complete.

Remark 4.4. In the Section 6, by the numerical example, we verify the disease-free equilibrium

P0 is globally asymptotically stable when R0 < 1. However, our theoretical analysis can only

obtain the global stability of P0 when R0 < min{K1, K2}. This is an open question, and we will

continue to work on it in future studies.
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Now, we show the local stability of equilibrium P1 of model (2.1). Let S(t) = s(t) + S∗
1 ,

E1(t, a) = E∗
1(a) + e1(t, a), I1(t) = I∗1 + i1(t), R1(t, b) = R∗

1(b) + r1(t, b), U(t) = U∗
1 + u(t),

V1(t) = V∗
1 + v(t), I2(t) = i2(t), R2(t, b) = r2(t, b), Yi(t) = yi(t) and V2(t) = v2(t), i = 1, 2, then

the linearized system of model (2.1) at equilibrium P1 is as follows





ds(t)

dt
= −β1S∗

1v1(t)− β1s(t)V∗
1 − β2S∗

1v2(t)− µhs(t),
(

∂

∂t
+

∂

∂a

)
e1(t, a) = −(µh + ε1(a))e1(t, a), e1(t, 0) = β1S∗

1v1(t) + β1s(t)V∗
1 ,

(
∂

∂t
+

∂

∂a

)
e2(t, a) = −(µh + ε2(a))e2(t, a), e2(t, 0) = β2S∗

1v2(t),

dii(t)

dt
=
∫ ∞

0
ε i(a)ei(t, a)da − (γi + µh)ii(t), i = 1, 2,

(
∂

∂t
+

∂

∂b

)
r1(t, b) = −β2θ2(b)v2(t)R∗

1(b)− µhr1(t, b), r1(t, 0) = γ1i1(t),

(
∂

∂t
+

∂

∂b

)
r2(t, b) = −β1θ1(b)V

∗
1 r2(t, b)− µhr2(t, b), r2(t, 0) = γ2i2(t),

dy1(t)

dt
= β1V∗

1

∫ ∞

0
θ1(b)r2(t, b)db − (γ1 + d1 + µh)y1,

dy2(t)

dt
= β2v2(t)

∫ ∞

0
θ2(b)R∗

1(b)db − (γ2 + d2 + µh)y2,

du(t)

dt
= −α1(i1(t) + y1(t))U

∗
1 − α1u(t)I∗1 − α2(i2(t) + y2(t))U

∗
1 − µmu(t),

dv1(t)

dt
= α1(i1(t) + y1(t))U

∗
1 + α1u(t)I∗1 − µmv1(t),

dv2(t)

dt
= α2(i2(t) + y2(t))U

∗
1 − µmv2(t).

(4.10)

Firstly, we discuss the equations with strain 2 in model (4.10). Let e2(t, a) = ẽ2(a)eλt, i2(t) =
ĩ2eλt, r2(t, b) = r̃2(b)eλt and v2(t) = ṽ2eλt, where ĩ2, ỹ2 and ṽ2 are positive constants, ẽ2(a) and

r̃2(b) are nonnegative functions, then we can get the following eigenvalue problem





dẽ2(a)

da
= −(λ + µh + ε2(a))ẽ2(a), ẽ2(0) = β2S∗

1 ṽ2,

(λ + γ2 + µh)ĩ2 =
∫ ∞

0
ε2(a)ẽ2(a)da,

dr̃2(b)

db
= −(λ + β1θ1(b)V

∗
1 + µh)r̃2(b), r̃2(0) = γ2 ĩ2,

(λ + γ2 + d2 + µh)ỹ2 = β2ṽ2

∫ ∞

0
θ2(b)R∗

1(b)db,

(λ + µm)ṽ2 = α2(ĩ2 + ỹ2)U
∗
1 ,

(4.11)

and characteristic equation

G2(λ) = (λ + µm)(λ + γ2 + d2 + µh)−

{
α2β2U∗

1

∫ ∞

0
θ2(b)R∗

1(b)db

−
α2β2µm(γ1 + µh)(λ + γ2 + d2 + µh)

α1β1K1(λ + γ2 + µh)

∫ ∞

0
ε2(a)e−

∫ a
0 (λ+µh+ε2(s))dsda

}

= G3(λ)− G4(λ) = 0.

(4.12)
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Suppose that

R2 > R∗
1 = R1

(
1 −

α2β2U∗
1

∫ ∞

0 θ2(b)R∗
1(b)db

µm(γ2 + d2 + µh)

)
,

then, G2(0) = R1µm(γ2 + d2 + µh)(R
∗
1 −R2) < 0. Furthermore, it is easy to verify that G2(λ) is

increasing with λ, and limλ→+∞ G2(λ) = +∞. Hence, the equation (4.12) at least has a positive

real root, which implies that P1 is unstable.

On the other hand, if R2 < R∗
1 , then

|G3(λ)| ≥ µm(γ2 + d2 + µh),

|G4(λ)| ≤ G4(Re λ) ≤ G4(0) = µm(γ2 + d2 + µh)
R2

R1
+ α2β2U∗

1

∫ ∞

0
θ2(b)R∗

1(b)db < |G3(λ)|,

for the eigenvalue λ with Re(λ) ≥ 0. This leads to a contradiction. Hence, all eigenvalues of

equation (4.12) have negative real parts when R2 < R∗
1 . In this case, the stability of P1 depends

on the eigenvalues of the following problem,




ds(t)

dt
= −β1S∗

1v1(t)− β1s(t)V∗
1 − µhs(t),

di1(t)

dt
=
∫ ∞

0
ε1(a)e1(t, a)da − (γ1 + µh)i1(t),

(
∂

∂t
+

∂

∂a

)
e1(t, a) = −(µh + ε1(a))e1(t, a), e1(t, 0) = β1S∗

1v1(t) + β1s(t)V∗
1 ,

(
∂

∂t
+

∂

∂b

)
r1(t, b) = −µhr1(t, b), r1(t, 0) = γ1i1(t),

dy1(t)

dt
= β1V∗

1

∫ ∞

0
θ1(b)r2(t, b)db − (γ1 + d1 + µh)y1,

du(t)

dt
= −α1(i1(t) + y1(t))U

∗
1 − α1u(t)I∗1 − µmu(t),

dv1(t)

dt
= α1(i1(t) + y1(t))U

∗
1 + α1u(t)I∗1 − µmv1(t).

(4.13)

The corresponding characteristic equation of problem (4.13) is as follow

(λ + γ1 + µh)(λ + β1V∗
1 + µh)(λ + α1 I∗1 + µm)

= α1β1S∗
1U∗

1 (λ + µh)
∫ ∞

0
ε1(a)e−

∫ a
0 (λ+ε1(a)+µh)dsda. (4.14)

Dividing both sides of (4.14) by (λ + µh)(λ + µm), we obtain

(λ + γ1 + µh)(λ + β1V∗
1 + µh)(λ + α1 I∗1 + µm)

(λ + µh)(λ + µm)
=

µm(γ1 + µh)

(λ + µm)K1

∫ ∞

0
ε1(a)e−

∫ a
0 (λ+ε1(a)+µh)dsda,

where, we also use the expressions of S∗
1 and U∗

1 . Denote

G5(λ) =
(λ + γ1 + µh)(λ + β1V∗

1 + µh)(λ + α1 I∗1 + µm)

(λ + µh)(λ + µm)
,

G6(λ) =
µm(γ1 + µh)

(λ + µm)K1

∫ ∞

0
ε1(a)e−

∫ a
0 (λ+ε1(a)+µh)dsda.

If λ is a root of equation (4.14) with Re λ ≥ 0, then one further have

|G5(λ)| > γ1 + µh, |G6(λ)| ≤ |G6(Reλ)| ≤ G6(0) = γ1 + µh < |G5(λ)|,
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which leads to a contradiction. Hence, equation (4.14) has no any root with nonnegative real

part. This shows that characteristic equation corresponding to model (4.10) has only roots with

negative real parts. Consequently, the boundary equilibrium P1 is locally asymptotically stable

if R1 > 1 and R2 < R∗
1 . To sum up, the following results are true.

Theorem 4.5. Assume R1 > 1, the boundary equilibrium P1 of model (2.1) is locally asymptotically

stable when R2 < R∗
1 . Moreover, if the inequality is reversed, then P1 is unstable.

Remark 4.6. If θ2(b) = 0 for all b ≥ 0, then there is perfect cross-immunity and primary

infection with strain 1 prevents secondary infection with strain 2. In this case, from Theorem

4.5 we have that the boundary equilibrium P1 is locally asymptotically stable when R1 > 1 and

R1 > R2, i.e., strain 1 is dominant.

On the boundary equilibrium P2, we can also obtain similar result as follows.

Theorem 4.7. Assume R2 > 1, the boundary equilibrium P2 of model (2.1) is locally asymptotically

stable when

R1 < R∗
2 = R2

(
1 −

α1β1U∗
2

∫ ∞

0 θ1(b)R∗
2(b)db

µm(γ1 + d1 + µh)

)
.

Moreover, if R1 ≥ R∗
2 , then P2 is unstable.

Remark 4.8. If θ1(b) = 0 for all b ≥ 0, then there is perfect cross-immunity and primary

infection with strain 2 prevents secondary infection with strain 1. In this case, from Theorem

4.7 we have that the boundary equilibrium P2 is locally asymptotically stable when R2 > 1 and

R2 > R1, i.e., strain 2 is dominant.

Remark 4.9. Based on Remark 4.6 and Remark 4.8, we can conclude the following results. That

is, if θ1(b) = θ2(b) = 0 for all b ≥ 0, then there is no secondary infection in model (2.1) and

there is competitive exclusion between strain 1 and strain 2.

5 Uniform persistence

Define X̂ = L1
+(0, ∞)× L1

+(0, ∞)× R
6
+ and

Ŷ =

{
(E1(·), E2(·), I1, I2, Y1, Y2, V1, V2) ∈ X̂ :

∫ āi

0
Ei(·, a)da + Ii(·) + Yi(·) + Vi(·) > 0, i = 1, 2

}
,

Y = R+ × Ŷ × L1
+(0, ∞)× L1

+(0, ∞)× R+.

Obviously, ∂Y = X \ Y and

∂Ŷ = X̂ \ Ŷ =

{
(E1(·), E2(·), I1, I2, Y1, Y2, V1, V2) ∈ X̂ :

∫ ā1

0
E1(·, a)da + I1(·) + Y1(·)

+ V1(·) = 0 or
∫ ā2

0
E2(·, a)da + I2(·) + Y2(·) + V2(·) = 0

}
,

∂Ŷ0 =

{
(E1(·), E2(·), I1, I2, Y1, Y2, V1, V2) ∈ X̂ :

∫ āi

0
Ei(·, a)da + Ii(·) + Yi(·) + Vi(·) = 0, i = 1, 2

}
,

∂Ŷi =

{
(E1(·), E2(·), I1, I2, Y1, Y2, V1, V2) ∈ X̂ :

∫ āi

0
Ei(·, a)da + Ii(·) + Yi(·)

+ Vi(·) > 0,
∫ āj

0
Ej(·, a)da + Ij(·) + Yj(·) + Vj(·) = 0

}
, i, j = 1, 2, i 6= j.
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It is clear that

∂Y = ∂Y0 ∪ ∂Y1 ∪ ∂Y2, ∂Yi = R+ × ∂Ŷi × L1
+(0, ∞)× L1

+(0, ∞)× R+, i = 0, 1, 2.

Theorem 5.1. If R1 > 1, R2 > 1, R2 > R∗
1 and R1 > R∗

2 , then the semi-flow {Φ(t)}t≥0 is uniformly

persistent with respect to the pair (Y , ∂Y), i.e., the disease of model (2.1) is uniformly persistent.

Proof. We prove, firstly, the following conclusions:

(i) The disease-free equilibrium P0 is globally asymptotically stable for semi-flow {Φ(t)}t≥0

restricted to ∂Y0.

(ii) The boundary equilibrium Pi is globally asymptotically stable and P0 is unstable for

model (2.1) restricted to ∂Yi when Ri > 1, i = 1, 2.

For conclusion (i). If model (2.1) is restricted to ∂Y0, then it degenerates into





dS(t)

dt
= Λh − µhS(t),

(
∂

∂t
+

∂

∂b

)
Ri(t, b) = −µhRi(t, b), Ri(t, 0) = 0, i = 1, 2,

dU(t)

dt
= Λm(t)− µmU(t).

(5.1)

We can obtain that limt→+∞ S(t) = Λh/µh, limt→+∞ Ri(t, b) = 0 and limt→+∞ U(t) = Λm/µm.

Therefore, P0 is globally asymptotically stable for model (2.1) restricted to ∂Y0. Then the con-

clusion (i) is true.

For conclusion (ii). If model (2.1) restricted in ∂Y1, then it degenerates into





dS(t)

dt
= Λh − β1S(t)V1(t)− µhS(t),

(
∂

∂t
+

∂

∂a

)
E1(t, a) = −(µh + ε1(a))E1(t, a), E1(t, 0) = β1S(t)V1(t),

dI1(t)

dt
=
∫ ∞

0
ε1(a)E1(t, a)da − (γ1 + µh)I1(t),

(
∂

∂t
+

∂

∂b

)
R1(t, b) = −µhR1(t, b), R1(t, 0) = γ1 I1(t),

(
∂

∂t
+

∂

∂b

)
R2(t, b) = −(β1θ1(b)V1(t) + µh)R2(t, b), R2(t, 0) = 0,

dY1(t)

dt
= β1V1(t)

∫ ∞

0
θ1(b)R2(t, b)db − (γ1 + d1 + µh)Y1(t),

dY2(t)

dt
= −(γ2 + d2 + µh)Y2(t),

dU(t)

dt
= Λm(t)− α1(I1(t) + Y1(t))U(t)− µmU(t),

dV1(t)

dt
= α1(I1(t) + Y1(t))U(t)− µmV1(t).

(5.2)

Obviously, limt→+∞ R2(t, b) = limt→+∞ Y1(t) = limt→+∞ Y2(t) = 0. Since the equation of

R1(t, b) is decoupled from the other equations in model (5.2), we can consider the following
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system 



dS(t)

dt
= Λh − β1S(t)V1(t)− µhS(t),

(
∂

∂t
+

∂

∂a

)
E1(t, a) = −(µh + ε1(a))E1(t, a), E1(t, 0) = β1S(t)V1(t),

dI1(t)

dt
=
∫ ∞

0
ε1(a)E1(t, a)da − (γ1 + µh)I1(t),

dU(t)

dt
= Λm(t)− α1 I1(t)U(t)− µmU(t),

dV1(t)

dt
= α1 I1(t)U(t)− µmV1(t).

(5.3)

Model (5.3) has the equilibrium (S∗
1 , E∗

1(a), I∗1 , U∗
1 , V∗

1 ). Define Lyapunov functional

W(t) = W1(t) +W2(t) +W3(t) +W4(t) +W5(t),

where

W1(t) = K1S∗
1φ

(
S(t)

S∗
1

)
, W2(t) =

∫ ∞

0
q1(a)E∗

1(a)φ

(
E1(t, a)

E∗
1(a)

)
da,

W3(t) = I∗1 φ

(
I1(t)

I∗1

)
, W4(t) =

K1E∗
1(0)

α1 I∗1
φ

(
U(t)

U∗
1

)
, W5(t) =

K1E∗
1(0)V

∗
1

α1 I∗1 U∗
1

φ

(
V1(t)

V∗
1

)
,

with φ(x) = x − 1 − ln x. Then, it yields that

dW1(t)

dt
= K1S∗

1

(
1

S∗
1

−
1

S(t)

) [
Λh −

ΛhS(t)

S∗
1

+ β1S(t)V∗
1 − β1S(t)V1(t)

]

= −
Λh(S(t)− S∗

1)
2K1

S(t)S∗
1

+ K1β1S∗
1V∗

1

(
1

S∗
1

−
1

S(t)

)(
S(t)−

S(t)V1(t)

V∗
1

)

= − K1S∗
1(β1V∗

1 + µh)

(
φ

(
S(t)

S∗
1

)
+ φ

(
S∗

1

S(t)

))

+ K1β1S∗
1V∗

1

(
S(t)

S∗
1

− 1 − S(t)V1(t)S
∗
1V∗

1 + V1(t)V
∗
1

)
,

dW2(t)

dt
=
∫ ∞

0
q1(a)E∗

1(a)
∂

∂t
φ

(
E1(t, a)

E∗
1(a)

)
da

= −
∫ ∞

0
q1(a)E∗

1(a)

(
E1(t, a)

E∗
1(a)

− 1

)(
E1a(t, a)

E1(t, a)
+ µh + ε1(a)

)
da,

where E1a(t, a) = dE1(t, a)/da. Since

∂

∂a
φ

(
E1(t, a)

E∗
1(a)

)
=

(
E1(t, a)

E∗
1(a)

− 1

)(
E1a(t, a)

E1(t, a)
+ µh + ε1(a)

)
,

then

dW2(t)

dt
= −

∫ ∞

0
q1(a)E∗

1(a)
∂

∂a
φ

(
E1(t, a)

E∗
1(a)

)
da

= − q1(a)E∗
1(a)φ

(
E1(t, a)

E∗
1(a)

) ∣∣∣∣
a=∞

+ q1(0)E∗
1(0)φ

(
E1(t, 0)

E∗
1(0)

)

−
∫ ∞

0
ε1(a)E∗

1(a)φ

(
E1(t, a)

E∗
1(a)

)
da

= K1E1(t, 0)− K1E∗
1(0)

(
1 − ln

(
E1(t, 0)

E∗
1(0)

))
−
∫ ∞

0
ε1(a)E∗

1(a)φ

(
E1(t, a)

E∗
1(a)

)
da.
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Furthermore,

dW3(t)

dt
=
∫ ∞

0
ε1(a)

(
1 −

I∗1
I1(t)

)(
E1(t, a)− E∗

1(a)
I1(t)

I∗1

)
da

=
∫ ∞

0
ε1(a)E∗

1(a)

(
E1(t, a)

E∗
1(a)

−
I∗1

I1(t)
−

I∗1 E1(t, a)

I1(t)E∗
1(a)

+ 1

)
da,

dW4(t)

dt
=

K1E∗
1(0)

α1 I∗1

(
1

U∗
1

−
1

U(t)

)
(µm(U

∗
1 − U(t)) + α1U(t)I∗1 − α1U(t)I1(t))

= −
K1E∗

1(0)µm(U(t)− U∗
1 )

2

U(t)I∗1 U∗
1

+ K1E∗
1(0)

(
1 −

U(t)

U∗
1

+
I1(t)

I∗1
−

U(t)I1(t)

U∗
1 I∗1

)
,

and
dW5(t)

dt
=

K1E∗
1(0)V

∗
1

α1 I∗1 U∗
1

(
1

V∗
1

−
1

V1(t)

)(
α1U(t)I1(t)− α1U∗

1 I∗1
V1(t)

V∗
1

)

= K1E∗
1(0)

(
I1(t)U(t)

I∗1 U∗
1

−
V1(t)

V∗
1

−
U(t)I1(t)V

∗
1

U∗
1 I∗1 V1(t)

+ 1

)
.

Therefore,

dW(t)

dt
= − K1S∗

1(β1V∗
1 + µh)

[
φ

(
S(t)

S∗
1

)
+ φ

(
S∗

1

S(t)

) ]
+ K1β1S∗

1V∗
1

(
S(t)

S∗
1

+
V1(t)

V∗
1

− ln
S(t)V1(t)

S∗
1V∗

1

− 2

)
+
∫ ∞

0
ε1(a)E∗

1(a)

(
2 −

I1(t)

I∗1
−

I∗1 E1(t, a)

I1(t)E∗
1(a)

+ ln
E1(t, a)

E∗
1(a)

)
da

−
K1E∗

1(0)µm(U(t)− U∗
1 )

2

U(t)I∗1 U∗
1

+ K1E∗
1(0)

(
2 −

U(t)

U∗
1

+
I1(t)

I∗1
−

V1(t)

V∗
1

−
U(t)I1(t)V

∗
1

U∗
1 I∗1 V1(t)

)

= − K1S∗
1(β1V∗

1 + µh)

[
φ

(
S(t)

S∗
1

)
+ φ

(
S∗

1

S(t)

)]
+ K1S∗

1 β1V∗
1

[
φ

(
S(t)

S∗
1

)
+ φ

(
V∗

1

V1(t)

)]

−
∫ ∞

0
ε1(a)E∗

1(a)

[
φ

(
E1(t, a)I∗1
E∗

1(a)I1(t)

)
+ φ

(
I1(t)

I∗1

)]
da −

K1E∗
1(0)µm(U(t)− U∗

1 )
2

U(t)I∗1 U∗
1

− K1E∗
1(0)

[
φ

(
U∗

1

U(t)

)
+ φ

(
V1(t)

V∗
1

)
+ φ

(
U(t)I1(t)V

∗
1

U∗
1 I∗1 V1(t)

)]
+ K1E∗

1(0)φ

(
I1(t)

I∗1

)

= − K1S∗
1 β1V∗

1 φ

(
S∗

1

S(t)

)
− K1S∗

1µh

[
φ

(
S(t)

S∗
1

)
+ φ

(
S∗

1

S(t)

)]

−
∫ ∞

0
ε1(a)E∗

1(a)φ

(
E1(t, a)I∗1
E∗

1(a)I1(t)

)
da −

K1E∗
1(0)µm(U(t)− U∗

1 )
2

U(t)I∗1 U∗
1

− K1E∗
1(0)

[
φ

(
U∗

1

U(t)

)
+ φ

(
V1(t)

V∗
1

)
+ φ

(
U(t)I1(t)V

∗
1

U∗
1 I∗1 V1(t)

)]
≤ 0.

It is clear that dW(t)/dt ≤ 0 for any S(t) > 0, E1(t, a) > 0, I1(t) > 0, U(t) > 0 and V1(t) > 0,

and dW(t)/dt = 0 implies that (S(t), E1(t, a), I1(t), U(t), V1(t)) ≡ (S∗
1 , E∗

1(a), I∗1 , U∗
1 , V∗

1 ) for all

t > 0. Thus, by LaSalle’s invariance principle, equilibrium (S∗
1 , E∗

1(a), I∗1 , U∗
1 , V∗

1 ) is globally

asymptotically stable for model (5.3) when R1 > 1. From model (5.2), we easily obtain that

limt→∞ R1(t, b) = R∗
1(b). This shows that equilibrium P1 is globally asymptotically stable for

model (2.1) restricted to ∂Y1 when R1 > 1. Moreover, from Theorem 4.2, we can obtain that P0

is unstable for model (2.1) restricted to ∂Y1 when R1 > 1. That is, conclusion (ii) is hold.

Similarly, we can show that P2 is globally asymptotically stable and P0 is unstable for model

(2.1) restricted to ∂Y2 when R2 > 1.

Next, we claim that Ws(P0) ∩ Y = ∅, Ws(Pi) ∩ Y = ∅, i = 1, 2, where Ws(P0) = {X0 ∈ Y :

limt→∞ X(t, X0) = P0} and Ws(Pi) = {X0 ∈ Y : limt→∞ X(t, X0) = Pi}, i = 1, 2.
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For Ws(P0) ∩ Y = ∅. Suppose that there exists a X0 ∈ Y such that limt→∞ X(t, X0) = P0.

Then, for any constant ǫ > 0, there exists a T0 > 0 such that

S∗ − ǫ < S(t) < S∗ + ǫ, 0 < Ei(t, a) < ǫ, 0 < Ii(t) < ǫ, 0 < Ri(t, b) < ǫ,

0 < Yi(t) < ǫ, U∗ − ǫ < U(t) < U∗ + ǫ, 0 < Vi(t) < ǫ, i = 1, 2,

for all t > T0. From the third and eighth equations of model (2.1), it follows that

dIi(t)

dt
=
∫ ∞

0
ε i(a)Ei(t, a)da − (γi + µh)Ii(t)

≥ βi(S
∗ − ǫ1)

∫ t

0
ε i(a)Vi(t − a)ηi(a)da − (γi + µh)Ii(t),

dVi(t)

dt
≥ αi Ii(t)U(t)− µmVi(t) ≥ αi(U

∗ − ǫ)Ii(t)− µmVi(t).

Let us take the Laplace transform of both sides of above inequalities. Since all functions above

are bounded, the Laplace transform of the functions exist for λ > 0. Denote the Laplace trans-

form of the function f (t) by L[ f (t)]. Using the convolution property of the Laplace transform,

we obtain the following inequalities for L[Ii(t)] and L[Vi(t)],




λL[Ii(t)]− Ii(0) ≥ βi(S
∗ − ǫ)

∫ ∞

0
ε i(a)ηi(a)e−λadaL[Vi(t)]− (γi + µh)L[Ii(t)],

λL[Vi(t)]− Vi(0) ≥ αi(U
∗ − ǫ)L[Ii(t)]− µmL[Vi(t)].

Eliminating L[Vi(t)] yields

L[Ii(t)] ≥
αiβi(S

∗ − ǫ)(U∗ − ǫ)
∫ ∞

0 ε i(a)ηi(a)e−λada

(λ + µm)(λ + γi + µh)
L[Ii(t)] +

Ii(0)

λ + γi + µh
. (5.4)

Since Ri > 1, i = 1, 2, we can choose λ and ǫ small enough such that

αiβi(S
∗ − ǫ)(U∗ − ǫ)

∫ ∞

0 ε i(a)ηi(a)e−λada

(λ + µm)(λ + γi + µh)
> 1, i = 1, 2.

Therefore, inequality (5.4) does not hold. This implies that Ws(P0) ∩ Y = ∅.

For Ws(P1) ∩ Y = ∅. Suppose that there exists a X1 ∈ Y such that limt→∞ X(t, X1) = P1.

Then, for any constant ǫ > 0 there exists a T1 > 0 such that for all t > T1 one have

S∗
1 − ǫ1 < S(t) < S∗

1 + ǫ1, E∗
1 − ǫ1 < E1(t, a) < E∗

1 + ǫ1, 0 < E2(t, a) < ǫ1,

0 < I2(t) < ǫ1, I∗1 − ǫ1 < I1(t) < I∗1 + ǫ1, R∗
1(b)− ǫ1 < R1(t, b) < R∗

1(b) + ǫ1,

0 < R2(t, b) < ǫ1, 0 < Yi(t) < ǫ1, U∗
1 − ǫ1 < U(t) < U∗

1 + ǫ1,

V∗
1 − ǫ1 < V1(t) < V∗

1 + ǫ1, 0 < V2(t) < ǫ1, i = 1, 2.

From model (2.1), we can obtain




dI2(t)

dt
=
∫ ∞

0
ε2(a)E2(t, a)da − (γ2 + µh)I2(t)

≥ β2(S
∗
1 − ǫ1)

∫ t

0
ε2(a)V2(t − a)η2(a)da − (γ2 + µh)I2(t),

dY2(t)

dt
= β2V2(t)

∫ ∞

0
θ2(b)R1(t, b)db − (γ2 + d2 + µh)Y2(t)

≥ β2V2(t)
∫ ∞

0
θ2(b)(R∗

1(b)− ǫ1)db − (γ2 + d2 + µh)Y2(t),

dV2(t)

dt
≥ α2(U

∗
1 − ǫ1)(I2(t) + Y2(t))− µmV2(t).

(5.5)
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Take the Laplace transform of both sides of inequalities (5.5). Since all functions above are

bounded, the Laplace transform of the functions exist for λ > 0. Then, we can get the following

inequalities for L[I2(t)], L[Y2(t)] and L[V2(t)],





λL[I2(t)]− I2(0) ≥ β2(S
∗
1 − ǫ1)

∫ ∞

0
ε2(a)η2(a)e−λadaL[V2(t)]− (γ2 + µh)L[I2(t)],

λL[Y2(t)]− Y2(0) ≥ β2

∫ ∞

0
θ2(b)(R∗

1(b)− ǫ1)dbL[V2(t)]− (γ2 + d2 + µh)L[Y2(t)],

λL[V2(t)]− V2(0) ≥ α2(U
∗
1 − ǫ1)(L[I2(t)] + L[Y2(t)])− µmL[V2(t)].

Eliminating L[I2(t)] and L[Y2(t)] yields

L[V2(t)] ≥ α2β2(U
∗
1 − ǫ1)L[V2(t)]

{
(S∗

1 − ǫ1)
∫ ∞

0 ε2(a)η2(a)η2(a)e−λada

(λ + µm)(λ + γ2 + µh)

+

∫ ∞

0 θ2(b)(R∗
1(b)− ǫ1)db

(λ + µm)(λ + γ2 + d2 + µh)

}
+

V2(0)

λ + µm

+
α2(U∗

1 − ǫ1)

λ + µm

{
I2(0)

λ + γ2 + µh
+

Y2(0)

λ + γ2 + d2 + µh

}
.

This is impossible when R2 > R∗
1 . By calculation, we have S∗

1U∗
1 = µm(γ1 + µh)/α1β1K1, and

α2β2S∗
1U∗

1

∫ ∞

0 ε2η2(a)da

µm(γ2 + µh)
+

α2β2U∗
1

∫ ∞

0 θ2(b)R∗
1(b)db

µm(γ2 + d2 + µh)
=

R2

R1
+

α2β2U∗
1

∫ ∞

0 θ2(b)R∗
1(b)db

µm(γ2 + d2 + µh)
> 1.

Therefore, we can choose λ and ǫ1 small enough such that

α2β2(U
∗
1 − ǫ1)

{
(S∗

1 − ǫ1)
∫ ∞

0 ε2(a)η2(a)η2(a)e−λada

(λ + µm)(λ + γ2 + µh)
+

∫ ∞

0 θ2(b)(R∗
1(b)− ǫ1)db

(λ + µm)(λ + γ2 + d2 + µh)

}
> 1.

This contradiction implies that Ws(P1) ∩ Y = ∅.

Similarly, we can verify Ws(P2) ∩ Y = ∅, when R1 > R∗
2 . Thus, Theorem 4.2 in Hale and

Waltman [18] implies the semi-flow {Φ(t)}t≥0 is uniformly persistent with respect to the pair

(Y , ∂Y) if R1 > 1, R2 > 1, R1 > R∗
2 and R2 > R∗

1 . This completes the proof.

As a consequence of Theorem 5.1, we have the following Corollary 5.2.

Corollary 5.2. If R1 > 1, R2 > 1, R1 > R∗
2 and R2 > R∗

1 , then model (2.1) has at least a coexistence

equilibrium denoted by P3 = (S̃∗, Ẽ∗
1(a), Ẽ∗

2(a), Ĩ∗1 , Ĩ∗2 , R̃∗
1(b), R̃∗

2(b), Ỹ∗
1 , Ỹ∗

2 , Ũ∗, Ṽ∗
1 , Ṽ∗

2 ).

Based on the discussion in Section 4 and Section 5, we can conclude the existence and

stability of the equilibria of model (2.1), as shown in Table 5.1. Here, LAS and GAS denote

locally asymptotically stable and globally asymptotically stable, respectively.

Remark 5.3. It should be pointed out that the numerical simulations show that if the coexis-

tence equilibrium of model (2.1) is existence, then it is stable. In fact, we have also obtained

the sufficient conditions for the stability of the coexistence equilibrium by constructing the

Lyapunov function. Due to additional technical conditions, we put this result in the appendix.
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Case Existence or stability Case Existence or stability

R0 < 1 P0 is LAS R0 < min{K1, K2} P0 is GAS

R1 > 1 P1 exists R2 > 1 P2 exists

R1 > 1, R2 < R∗
1 P1 is LAS R2 > 1, R1 < R∗

2 P2 is LAS

R1 > 1, R2 > 1, coexistence equilibrium

R2 > R∗
1 , R1 > R∗

2 exists

Table 5.1: Summarizing the different scenarios depending on the threshold pa-

rameters.

6 Numerical simulation and discussions

In this section, some numerical simulations are conducted to illustrate our theoretical analysis

results. Since the longer one stay in the latency stage, the more one is likely to exposed to

the disease, and the risk of infection will increase, we assume that the age-dependent removal

rate ε i(a) in model (2.1) takes the form ε i(a) = xia
2 exp(−yia), where xi, yi > 0, i = 1, 2,

see [21]. Similarly, in order to describe the primary recovery period and the level about

losing cross vaccine protection, we choose cross immunity waning rate function as θi(b) =
ui(1 + 5 exp(−vib))

−1, where ui, vi > 0, i = 1, 2. Furthermore, the values of other parameters

of the model (2.1) are based on Refs. [6, 36, 42] and the references cited therein.

Example 6.1. The global asymptotic stability of the disease-free equilibrium of model (2.1).

We choose model parameters as follows: Λh = 25, β1 = 2.38 × 10−6, β2 = 2.25 × 10−6, µh =
0.004, γ1 = γ2 = 0.14, d1 = d2 = 0.0001, Λm = 21000, α1 = 3.75 × 10−6, α2 = 3.95 × 10−6, µm =
0.09, ε1(a) = 0.01a2 exp(−0.2a), ε2(a) = 0.01 exp(−0.18a)a2, θ1(b) = 0.45(1+5 exp(−0.026b))−1

and θ2(b) = 0.48(1 + 5 exp(−0.026b))−1 in model (2.1). By numerical calculations, we obtain

K1 ≈ 0.882, K2 ≈ 0.931, and basic reproduction number R1 ≈ 0.8687 < K1 and R2 ≈ 0.913 <

K2. Then, by Theorem 4.3, the disease-free equilibrium P0 of model (2.1) is globally asymptoti-

cally stable. The plots in Figures 6.1(a)-(c) show this theoretical result.

Further, we only adjust the values of transmission rates β1 and β2 and let β1 = 2.48 × 10−6

and β2 = 2.32 × 10−6 in model (2.1), then by numerical calculations it is obtained that the

basic reproduction numbers R1 ≈ 0.9052 and R2 ≈ 0.9414. The values of K1 and K2 remain

the same as above, then R1 > K1 and R2 > K2. In this case, numerical simulations show

that the disease-free equilibrium P0 is globally asymptotically stable, as shown in Figure 6.1(d).

However, numerical simulations show the disease-free equilibrium is globally asymptotically

stable if R0 < 1 without additional conditions. Therefore, we put forward an interesting open

question: If R0 < 1, then the disease-free equilibrium is globally asymptotically stable.

Example 6.2. The existence and stability of strain i (i = 1, 2) dominant equilibrium of (2.1).

Let Λh = 25, β1 = 9.85 × 10−6, β2 = 6.85 × 10−6, µh = 0.004, γ1 = 0.07, γ2 = 0.14,

d1 = d2 = 0.0001, Λm = 21000, α1 = 1.75 × 10−6, α2 = 3.75 × 10−6, µm = 0.07, ε1(a) = ε2(a) =
0.01a2 exp(−0.28a), θ1(b) = 0.45(1+ 5 exp(−0.026b))−1 and θ2(b) = 0.48(1+ 5 exp(−0.028b))−1

in model (2.1). It is easy to calculate that parameter values satisfy all conditions of Theorem 4.5,

that is, R1 ≈ 3.528 > 1 and R2 ≈ 2.7 < R∗
1 ≈ 3.5055. By Theorem 4.5, the strain 1 dominant

equilibrium P1 is locally asymptotically stable which is consistent with the simulation results

as shown in Figures 6.2(a)-(d). As we can see, in Figure 6.2(e), solution curves of I1(t), Y1(t)
and S(t) from different initial values all tend to a point in the first quadrant various, and the

number of I2(t), Y1(t)+Y2(t) and V2(t) all tend to zero, which is shown Figure 6.2(f). Therefore,
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Figure 6.1: The global asymptotical stability of disease-free equilibrium of

model (2.1) with the basic reproduction number R0 < 1, which implies that

the disease dies out.

numerical simulations imply that the strain 1 dominant equilibrium P1 of model (2.1) is globally

asymptotically stable. In addition, the numerical simulation for the existence and stability of

P2 is similar to that of P1, hence we omit it here.

Example 6.3. The persistence of disease, the existence and stability of coexistence equilibrium

for model (2.1).

We choose Λh = 100, β1 = 2.85 × 10−5, β2 = 4.25 × 10−5, µh = 0.004, γ1 = γ2 = 0.07,

d1 = d2 = 0.0001, Λm = 5500, α1 = 8.75 × 10−6, α2 = 8.45 × 10−6, µm = 0.05, ε1(a) =
0.01 exp(−0.25a)a2, ε2(a) = 0.01 exp(−0.31a)a2 and θ1(b) = θ2(b) = 0.4(1 + 50 exp(−0.05b))−1

in model (2.1). Numerical calculation follows that R1 ≈ 48.22, R2 ≈ 47.23, R∗
1 ≈ 41.3200 and

R∗
2 ≈ 40.8999, which satisfy the conditions of Theorem 5.1 and Corollary 5.2. Therefore, the

disease is uniformly persistent and model (2.1) exists coexistence equilibrium which is consis-

tent with the simulation results as shown in Figures 6.3(a)–(d). Particularly, as we can see, in

Figures 6.3(c) and (d), solution curves of I1(t) and V2(t) from different initial values all tend

to a positive constants rather than zero. This implies that model (2.1) exists a globally asymp-

totically stable coexistence equilibrium. Of course, we also verify the globally asymptotically

stability of coexistence equilibrium by constructing a Lyapunov functional in the Appendix

with some strong constraint conditions, but these conditions are difficult to verify. This may be

related to our research methods and the selection of Lyapunov functional. This encourages us

to propose new research methods or construct more suitable Lyapunov functional to solve this

problem in the future research.

In additional, we fixed parameter values of model (2.1) as above, and only adjust the value

of cross immunity wane rate θ2(b) to be 0.2(1 + 50 exp(−0.05b))−1, 0.3(1 + 50 exp(−0.05b))−1,

0.4(1 + 50 exp(−0.05b))−1 and 0.6(1 + 50 exp(−0.05b))−1, respectively, we obtain the Fig.6.3(e).



20 T.-T. Zheng, L.-F. Nie, Z.-D. Teng, Y.-T. Luo and S.-F. Wang

(a) (b)

(c)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

t

Pr
im

ar
y 

in
fe

ct
ed

 h
um

an

 

 

I
1
(t)

I
2
(t)

(d)

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

7000

t

inf
ec

te
d 

m
os

qu
ito

 

 

V
1
(t)

V
2
(t)

(e)

0

200

400

600

0100020003000400050006000
0

500

1000

1500

2000

2500

I
1
(t)

V
1
(t)

S(
t)

(f)

0
50

100
150

200

0
10

20
30

40
50

0

200

400

600

800

1000

I
2
(t)Y

1
(t)+Y

2
(t)

V 2(t)

Figure 6.2: The numerical simulation of the stability of strain 1 dominant equi-

librium for model (2.1) with the basic reproduction number areR1 ≈ 3.528 and

R2 ≈ 2.7.

It is easily to see that θi(b) does not appear in the expression of the basic reproduction number

(i.e., the value of θi(b) does not affect the dynamic behavior of the model) from equation

(4.1). However, the plot in Figure 6.3(e) show that the peak of secondary infection individuals

number with strain 2 increases remarkably with θ2(b) increases when the model persistent.

This illustrates that the value of cross immunity wane rate still play very important role in the

transmission of dengue fever.
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Figure 6.3: Numerical simulations of the persistence, the existence and stability

of coexistence equilibrium of model (2.1) with R1 > 1, R2 > 1, R1 > R∗
2 and

R1 > R∗
1 .

7 Conclusion

In recent years, many scholars have established lots of multi-strain dengue fever transmission

models, studied the existence and stability of the disease-free equilibria, endemic equilibria,

stain dominant equilibria, and competitive exclusion, and discussed the effects of the and mu-

tual immune of strains on on the spread and control of dengue fever [9, 11, 17, 19, 27, 29, 32,

34, 41, 42]. However, most of which are described by ordinary differential equations (ODEs).

In this paper, based on the two-strain dengue fever model proposed in Ref. [42], we propose

a two-strain dengue fever transmission model with age structure to investigate the effects of

latency age and cross immunity on the transmission dynamics of dengue virus. This extends

the existing single-strain age structure models [4, 5, 8, 36], which is a highlight of our paper.

By using these methods proposed in Refs. [18, 33, 38–40], we first obtain the non-negativity,

boundedness and asymptotic smoothness for solutions of our model. Further, the basic repro-
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duction number R0 = max{R1,R2} are defined, which plays a sharp threshold role in the

process of this disease outbreaks. That is, if R0 < 1, then the disease-free equilibrium P0 is

locally stable, and P0 is unstable for R0 > 1. Further, we also obtained sufficient conditions for

the global asymptotic stability of P0. To be specific, if R0 < min{K1, K2}, then P0 is globally

asymptotically stable. Of course, our numerical simulations suggest that P0 is also globally

asymptotically stable when R0 < 1 (see Figure 6.1(d)). In addition, if Ri > 1, this model has a

strain-i dominant equilibrium Pi which is locally stable for Rj < R∗
i (i, j = 1, 2, i 6= j). This

condition is similar to the threshold condition for the stability of strain-i dominant equilibria

of these multi strain ordinary differential equations [11, 42]. And we have given sufficient con-

ditions for the uniform persistence of disease and the coexistence of the two strains. Finally,

the numerical simulation implies that the strain-i dominant equilibrium is global asymptotic

stability for Ri > 1 and Rj < R∗
i (see Figures 6.3(c)–(d)). However, due to the limitations

of these research methods, the global attractivity of coexistence equilibrium obtained by us is

subject to certain technical conditions. Therefore, this issue needs further research.

From the expression of Ri, it is easy to observe that their value depends on ε i(a). Numerical

simulations also shows that if the period of cross-immunity between the two strains increased

(i.e., the rate of cross immunity waning decreased), the number of individuals with secondary

infection decreased, and then the number of severe dengue cases decreased (see Figure 6.3(d)).

This means that the latent age and cross immunity age play a important role in the transmission

of dengue fever. Additionally, other model parameters also have an impact on the value of

Ri, such as the rates of transmission (αi and βi), the death rate and the recruitment rate of

mosquito (µm and Λm), and so on. Therefore, control or prevent the transmission of dengue

fever is mainly to reduce the number of mosquito and to increase personal protect awareness.
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Appendix

According to the Corollary 5.2 and the Figure 6.3, the coexistence equilibrium P3 is globally

asymptotically stable. Hence, we attempt to construct a Lyapunov functional to obtain the

theoretical analysis.

Theorem A.1. If the condition of Corollary 5.2 and the following inequalities hold

S̃∗ +
∫ ∞

0
θ1(b)R̃∗

2(b)db <
µm

β1
, S̃∗ +

∫ ∞

0
θ2(b)R̃∗

1(b)db <
µm

β2
,

Ũ∗
< min

{
µh + γ1(1 − K1)

α1K1
,

1

α1
(γ1 + d1 + µh),

µh + γ2(1 − K2)

α2K2
,

1

α2
(γ2 + d2 + µh)

}
,
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then model (2.1) has a unique coexistence equilibrium P3 which is globally attractive.

Proof. Consider the Lyapunov functional as follows

L(t) = L1(t) + L6(t) +
2

∑
i=1

{
L2i(t) + L3i(t) + L4i(t) + L5i(t) + L7i(t)

}
,

where

L1(t) = S̃∗φ

(
S(t)

S̃∗

)
, L2i(t) =

1

Ki

∫ ∞

0
qi(a)Ẽ∗

i (a)φ

(
Ei(t, a)

Ẽ∗
i (a)

)
da,

L3i(t) =
1

Ki
Ĩ∗i φ

(
Ii(t)

Ĩ∗i

)
, L4i(t) =

∫ ∞

0
R̃∗

i (b)φ

(
Ri(t, b)

R̃∗
i (b)

)
da,

L5i(t) = Ỹ∗
i φ

(
Yi(t)

Ỹ∗
i

)
, L6(t) = Ũ∗φ

(
U(t)

Ũ∗

)
, L7i(t) = Ṽ∗

i φ

(
Vi(t)

Ṽ∗
i

)
.

Because of the complexity of the expressions, we make the derive of each component of the

Lyapunov functional separately.

dL1(t)

dt
= S̃∗

(
1

S̃∗
−

1

S(t)

)(
Λh −

ΛhS(t)

S̃∗
+ β1S(t)Ṽ∗

1 + β1S(t)Ṽ∗
2 − β1S(t)V1(t)− β2S(t)V2(t)

)

= Λh

(
2 −

S̃∗

S(t)
−

S(t)

S̃∗

)
+ β1S̃∗Ṽ∗

1

(
1 −

S̃∗

S(t)

)(
S(t)

S̃∗
−

S(t)V1(t)

S̃∗Ṽ∗
1

)

+ β2S̃∗Ṽ∗
2

(
1 −

S̃∗

S(t)

)(
S(t)

S̃∗
−

S(t)V2(t)

S̃∗Ṽ∗
2

)

=− Λh

[
φ

(
S(t)

S̃∗

)
+ φ

(
S̃∗

S(t)

)]
+ β1S̃∗Ṽ∗

1

(
S(t)

S̃∗
−

S(t)V1(t)

S̃∗Ṽ∗
1

− 1 +
V1(t)

Ṽ∗
1

)

+ β2S̃∗Ṽ∗
2

(
S(t)

S̃∗
−

S(t)V2(t)

S̃∗Ṽ∗
2

− 1 +
V2(t)

Ṽ∗
2

)

and

dL2i(t)

dt
=

1

Ki

∫ ∞

0
qi(a)Ẽ∗

i (a)
∂

∂t
φ

(
Ei(t, a)

Ẽ∗
i (a)

)
da

= −
1

Ki

∫ ∞

0
qi(a)Ẽ∗

i (a)

(
Ei(t, a)

Ẽ∗
i (a)

− 1

)(
Eia(t, a)

Ei(t, a)
+ µh + ε i(a)

)
da,

where Eia(t, a) = dEi(t, a)/da. Since

∂

∂a
φ

(
Ei(t, a)

Ẽ∗
i (a)

)
=

(
Ei(t, a)

Ẽ∗
i (a)

− 1

)(
Eia(t, a)

Ei(t, a)
+ µh + ε i(a)

)
,

it can be easily shown that

dL2i(t)

dt
= −

1

Ki

∫ ∞

0
qi(a)Ẽ∗

i (a)
∂

∂a
φ

(
Ei(t, a)

Ẽ∗
i (a)

)
da

= −
1

Ki
qi(a)Ẽ∗

i (a)φ

(
Ei(t, a)

Ẽ∗
i (a)

) ∣∣∣∣
∞

0

−
1

Ki

∫ ∞

0
ε i(a)Ẽ∗

i (a)φ

(
Ei(t, a)

Ẽ∗
i (a)

)
da

= βiS̃
∗Ṽ∗

i φ

(
S(t)Vi(t)

S̃∗Ṽ∗
i

)
−

1

Ki

∫ ∞

0
ε i(a)Ẽ∗

i (a)φ

(
Ei(t, a)

Ẽ∗
i (a)

)
da.
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By directly calculating, we have

dL3i(t)

dt
=

1

Ki

∫ ∞

0
ε i(a)

(
1 −

Ĩ∗i
Ii(t)

)(
Ei(t, a)− Ẽ∗

i (a)
Ii(t)

Ĩ∗i

)
da

=
1

Ki

∫ ∞

0
ε i(a)Ẽ∗

i (a)

(
Ei(t, a)

Ẽ∗
i (a)

−
Ĩ∗i

Ii(t)
−

Ĩ∗i Ei(t, a)

Ii(t)Ẽ∗
i (a)

+ 1

)
da

and

dL4i(t)

dt
=
∫ ∞

0
R̃∗

i (b)
∂

∂b
φ

(
Ri(t, b)

R̃∗
i (b)

)
db

= −
∫ ∞

0
R̃∗

i (b)

(
1

R̃∗
i (b)

−
1

Ri(t, b)

)(
∂

∂b
Ri(t, b) + β jθj(b)Vj(t)Ri(t, b) + µhRi(t, b)

)
db

= −
∫ ∞

0
R̃∗

i (b)

(
Ri(t, b)

R̃∗
i (b)

− 1

)

×

[(
Rib(t, b)

Ri(t, b)
+ β jθj(b)Ṽ

∗
j + µh

)
+ β jθj(b)Ṽ

∗
j

(
Vj(t)

Ṽ∗
j

− 1

)]
db,

where Rib(t, b) = dRi(t, b)/db, i, j = 1, 2, i 6= j. Since

∂

∂b
φ

(
Ri(t, b)

R̃∗
i (b)

)
=

(
Ri(t, b)

R̃∗
i (b)

− 1

)(
Rib(t, b)

Ri(t, b)
+ β jθj(b)Ṽ

∗
j + µh

)
,

this gives

dL4i(t)

dt
= −

∫ ∞

0

[
R̃∗

i (b)
∂

∂b
φ

(
Ri(t, b)

R̃∗
i (b)

)
+ β jθj(b)Ṽ

∗
j R̃∗

i (b)

(
Ri(t, b)

R̃∗
i (b)

− 1

)(
Vj(t)

Ṽ∗
j

− 1

)]
db

= − R̃∗
i (b)φ

(
Ri(t, b)

R̃∗
i (b)

) ∣∣∣∣
∞

0

−
∫ ∞

0
φ

(
Ri(t, b)

R̃∗
i (b)

)(
β jθj(b)Ṽ

∗
j R̃∗

i (b) + µhR̃∗
i (b)

)
db

= γi Ĩ
∗
i φ

(
Ii(t)

Ĩ∗i

)
− µh

∫ ∞

0
R̃∗

i (b)φ

(
Ri(t, b)

R̃∗
i (b)

)
db

+
∫ ∞

0
β jθj(b)R̃∗

i (b)Ṽ
∗
j

(
Ri(t, b)Vj(t)

R̃∗
i (b)Ṽ

∗
j

−
Vj(t)

Ṽ∗
j

− ln
Ri(t, b)

R̃∗
i (b)

)
db.

Furthermore, it can be easily calculated that

dL5i(t)

dt
= βi

∫ ∞

0
θi(b)

(
1 −

Ỹ∗
i

Yi(t)

)(
Vi(t)Rj(t, b)−

Yi(t)

Ỹ∗
i

Ṽ∗
i R̃∗

j (b)

)
db

= βi

∫ ∞

0
θi(b)Ṽ

∗
i R̃∗

j (b)

(
Vi(t)Rj(t, b)

Ṽ∗
i R̃∗

j (b)
−

Yi(t)

Ỹ∗
i

−
Ỹ∗

i Vi(t)Rj(t, b)

Yi(t)Ṽ∗
i R̃∗

j (b)
+ 1

)
db.
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dL6(t)

dt
= Λm

(
1 −

Ũ∗

U(t)

)(
1 −

U(t)

Ũ∗

)
+

(
1 −

Ũ∗

U(t)

)
(
α1( Ĩ∗1 + Ỹ∗

1 )U(t)− α1(I1(t)

+ Y1(t))U(t)
)
+

(
1 −

Ũ∗

U(t)

)(
α2( Ĩ∗2 + Ỹ∗

2 )U(t)− α2(I2(t) + Y2(t))U(t)

)

= − Λm

[
φ

(
U(t)

Ũ∗

)
+ φ

(
Ũ∗

U(t)

)]
+ α1 Ĩ∗1 Ũ∗

(
U(t)

Ũ∗
− 1 −

U(t)I1(t)

Ũ∗ Ĩ∗1
+

I1(t)

Ĩ∗1

)

+ α1Ỹ∗
1 Ũ∗

(
U(t)

Ũ∗
− 1 −

U(t)Y1(t)

Ũ∗Ỹ∗
1

+
Y1(t)

Ỹ∗
1

)
+ α2 Ĩ∗2 Ũ∗

(
U(t)

Ũ∗
− 1 −

U(t)I2(t)

Ũ∗ Ĩ∗2

+
I2(t)

Ĩ∗2

)
+ α2Ỹ∗

2 Ũ∗

(
U(t)

Ũ∗
− 1 −

U(t)Y2(t)

Ũ∗Ỹ∗
2

+
Y2(t)

Ỹ∗
2

)

and

dL7i(t)

dt
= αi

(
1 −

Vi(t)

Ṽ∗
i

)(
Ii(t)U(t)−

Vi(t)

Ṽ∗
i

Ĩ∗i Ũ∗ + Yi(t)U(t)−
Vi(t)

Ṽ∗
i

Ỹ∗
i Ũ∗

)

= αi Ĩ
∗
i Ũ∗

(
Ii(t)U(t)

Ĩ∗i Ũ∗
−

Vi(t)

Ṽ∗
i

−
Ii(t)U(t)Ṽ∗

i

Ĩ∗i Ũ∗Vi(t)
+ 1

)

+ αiỸ
∗
i Ũ∗

(
Yi(t)U(t)

Ỹ∗
i Ũ∗

−
Vi(t)

Ṽ∗
i

−
Yi(t)U(t)Ṽ∗

i

Ỹ∗
i Ũ∗Vi(t)

+ 1

)
.

Thus, to sum up, we can get

dL(t)

dt
=

dL1(t)

dt
+

dL6(t)

dt
+

2

∑
i=1

{
dL2i(t)

dt
+

dL3i(t)

dt
+

dL4i(t)

dt
+

dL5i(t)

dt
+

dL7i(t)

dt

}

= − Λh

[
φ

(
S(t)

S̃∗

)
+ φ

(
S̃∗

S(t)

)]
− Λm

[
φ

(
U(t)

Ũ∗

)
+ φ

(
Ũ∗

U(t)

)]
+ γ1 Ĩ∗1 φ

(
I1(t)

Ĩ∗1

)

− µh

∫ ∞

0
R̃∗

1(b)φ

(
R1(t, b)

R̃∗
1(b)

)
db + γ2 Ĩ∗2 φ

(
I2(t)

Ĩ∗2

)
− µh

∫ ∞

0
R̃∗

2(b)φ

(
R2(t, b)

R̃∗
2(b)

)
db

+
2

∑
i=1

(
H1i(t) +H2i(t) +H3i(t) +H4i(t) +H5i(t)

)
,

where

H1i(t) := βiS̃
∗Ṽ∗

i

[
S(t)

S̃∗
−

S(t)Vi(t)

S̃∗Ṽ∗
i

− 1 +
Vi(t)

Ṽ∗
i

+ φ

(
S(t)Vi(t)

S̃∗Ṽ∗
i

)]

= βiS̃
∗Ṽ∗

i

[
φ

(
S(t)

S̃∗

)
+ φ

(
Ṽ∗

i

Vi(t)

)]
,

H2i(t) :=
1

Ki

∫ ∞

0
ε i(a)Ẽ∗

i (a)

[
Ei(t, a)

Ẽ∗
i (a)

−
Ĩ∗i

Ii(t)
−

Ĩ∗i Ei(t, a)

Ii(t)Ẽ∗
i (a)

+ 1 − φ

(
Ei(t, a)

Ẽ∗
i (a)

)]
da

=
1

Ki

∫ ∞

0
ε i(a)Ẽ∗

i (a)

[
φ

(
Ei(t, a) Ĩ∗i
Ẽ∗

i (a)Ii(t)

)
+ φ

(
Ii(t)

Ĩ∗i

)]
da,

H3i(t) :=
∫ ∞

0
βiθi(b)R̃∗

j (b)Ṽ
∗
i

(
1 +

Vi(t)

Ṽ∗
i

+ ln
Rj(t, b)

R̃∗
j (b)

−
Yi(t)

Ỹ∗
i

−
Ỹ∗

i Vi(t)Rj(t, b)

Yi(t)Ṽ∗
i R̃∗

j (b)

)
db
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=
∫ ∞

0
βiθi(b)R̃∗

j (b)Ṽ
∗
i

[
φ

(
Vi(t)

Ṽ∗
i

)
− φ

(
Ỹ∗

i Vi(t)Rj(t, b)

Yi(t)Ṽ∗
i R̃∗

j (b)

)
− φ

(
Yi(t)

Ỹ∗
i

)]
db,

H4i(t) := αi Ĩ
∗
i Ũ∗

(
U(t)

Ũ∗
+

Ii(t)

Ĩ∗i
−

Vi(t)

Ṽ∗
i

−
Ṽ∗

i U(t)Ii(t)

Vi(t)Ũ∗ Ĩ∗i

)

= αi Ĩ
∗
i Ũ∗

[
φ

(
U(t)

Ũ∗

)
+ φ

(
Ii(t)

Ĩ∗i

)
− φ

(
Vi(t)

Ṽ∗
i

)
− φ

(
Ṽ∗

i U(t)Ii(t)

Vi(t)Ũ∗ Ĩ∗i

)]
,

H5i(t) := αiỸ
∗
i Ũ∗

(
U(t)

Ũ∗
+

Yi(t)

Ỹ∗
i

−
Vi(t)

Ṽ∗
i

−
Ṽ∗

i U(t)Yi(t)

Vi(t)Ũ∗Ỹ∗
i

)

= αiỸ
∗
i Ũ∗

[
φ

(
U(t)

Ũ∗

)
+ φ

(
Yi(t)

Ỹ∗
i

)
− φ

(
Vi(t)

Ṽ∗
i

)
− φ

(
Ṽ∗

i U(t)Yi(t)

Vi(t)Ũ∗Ỹ∗
i

)]
.

Note that equilibrium P3 satisfies

Λh = β1S̃∗Ṽ∗
1 + β2S̃∗Ṽ∗

2 + µhS̃∗,
∫ ∞

0
ε i(a)Ẽ∗

i (a)da = (γi + µh) Ĩ∗i ,

µmṼ∗
i = αi( Ĩ∗i + Ỹ∗

i )Ũ
∗, βi

∫ ∞

0
θi(b)Ṽ

∗
i R̃∗

j (b)db = (γi + di + µh)Yi,

Λm = α1( Ĩ∗1 + Ỹ∗
1 )Ũ

∗ + α2( Ĩ∗2 + Ỹ∗
2 )Ũ

∗ + µmŨ∗, i, j = 1, 2, i 6= j.

Therefore, we finally obtain

dL(t)

dt
= − µhS̃∗φ

(
S(t)

S̃∗

)
− Λhφ

(
S̃∗

S(t)

)
−

1

K1

∫ ∞

0
ε1(a)Ẽ∗

1(a)φ

(
E1(t, a) Ĩ∗1
Ẽ∗

1(a)I1(t)

)
da

− µh

∫ ∞

0
R̃∗

1(b)φ

(
R1(t, b)

R̃∗
1(b)

)
db − µh

∫ ∞

0
R̃∗

2(b)φ

(
R2(t, b)

R̃∗
2(b)

)
db

−
1

K2

∫ ∞

0
ε2(a)Ẽ∗

2(a)φ

(
E2(t, a) Ĩ∗2
Ẽ∗

2(a)I2(t)

)
da − µmŨ∗φ

(
U(t)

Ũ∗

)
− Λmφ

(
Ũ∗

U(t)

)

−
∫ ∞

0
β1θ1(b)R̃∗

2(b)Ṽ
∗
1 φ

(
Ỹ∗

1 V1(t)R2(t, b)

Y1(t)Ṽ∗
1 R̃∗

2(b)

)
db − α1 Ĩ∗1 Ũ∗φ

(
Ṽ∗

1 U(t)I1(t)

V1(t)Ũ∗ Ĩ∗1

)

−
∫ ∞

0
β2θ2(b)R̃∗

1(b)Ṽ
∗
2 φ

(
Ỹ∗

2 V2(t)R1(t, b)

Y2(t)Ṽ∗
2 R̃∗

1(b)

)
db − α2 Ĩ∗2 Ũ∗φ

(
Ṽ∗

2 U(t)I2(t)

V2(t)Ũ∗ Ĩ∗2

)

+ Ĩ∗1 φ

(
I1(t)

Ĩ∗1

)[
α1Ũ∗ + γ1

(
1 −

1

K1

)
−

µh

K1

]
+ (α1Ũ∗ − (γ1 + d1 + µh))Ỹ

∗
1

× φ

(
Y1(t)

Ỹ∗
1

)
+ Ĩ∗1 φ

(
I1(t)

Ĩ∗1

)[
α1Ũ∗ + γ1

(
1 −

1

K1

)
−

µh

K1

]

+ (α1Ũ∗ − (γ1 + d1 + µh))Ỹ
∗
1 φ

(
Y1(t)

Ỹ∗
1

)
− α1Ỹ∗

1 Ũ∗φ

(
Ṽ∗

1 U(t)Y1(t)

V1(t)Ũ∗Ỹ∗
1

)

− α2Ỹ∗
2 Ũ∗φ

(
Ṽ∗

2 U(t)Y2(t)

V2(t)Ũ∗Ỹ∗
2

)
+

(
β1S̃∗ + β1

∫ ∞

0
θ1(b)R̃∗

2(b)db − µm

)

× Ṽ∗
1 φ

(
V1(t)

Ṽ∗
1

)
+

(
β2S̃∗ + β2

∫ ∞

0
θ2(b)R̃∗

1(b)db − µm

)
Ṽ∗

2 φ

(
V2(t)

Ṽ∗
2

)
.
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It is easy to see that the sufficient condition for dL(t)/dt < 0 are

α1Ũ∗ + γ1

(
1 −

1

K1

)
−

µh

K1
< 0, α1Ũ∗ − (γ1 + d1 + µh) < 0,

α2Ũ∗ + γ2

(
1 −

1

K2

)
−

µh

K2
< 0, α2Ũ∗ − (γ2 + d2 + µh) < 0,

β1S̃∗ + β1

∫ ∞

0
θ1(b)R̃∗

2(b)db − µm < 0, β2S̃∗ + β2

∫ ∞

0
θ2(b)R̃∗

1(b)db − µm < 0.

That is,

S̃∗ +
∫ ∞

0
θ1(b)R̃∗

2(b)db <
µm

β1
, S̃∗ +

∫ ∞

0
θ2(b)R̃∗

1(b)db <
µm

β2
,

Ũ∗
< min

{
µh + γ1(1 − K1)

α1K1
,

1

α1
(γ1 + d1 + µh),

µh + γ2(1 − K2)

α2K2
,

1

α2
(γ2 + d2 + µh)

}
.

This shows that equilibrium P3 is globally attractive. This completes the proof.
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Abstract. We consider planar polynomial systems of ordinary differential equations
of the form ẋ=x+Pn(x, y), ẏ=y+Qn(x, y), where Pn(x, y), Qn(x, y) are homogeneous
polynomials of degree n. We study the algebraic and non-algebraic invariant curves of
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1 Introduction

The problem of studying the limit cycles is one of the central problems in the theory of ordi-

nary differential equations. A significant subarea in this area is the study of the limit cycles

of autonomous planar polynomial systems

ẋ = P(x, y), ẏ = Q(x, y). (1.1)

Here P(x, y), Q(x, y) are real polynomials of the variables x, y; t ∈ R acts as an inde-

pendent variable. The degree of the system is the maximum of the degrees of the polynomi-

als P(x, y), Q(x, y).

A limit cycle of system (1.1) is a periodic solution whose trajectory is isolated among

the trajectories of all periodic solutions. A limit cycle of system (1.1) is called algebraic of de-

gree m if it is the real oval of an irreducible algebraic curve H(x, y) = 0 of degree m.

The problems of finding algebraic solutions to polynomial systems, in particular, of al-

gebraic cycles, goes back to H. Poincaré and J.-G. Darboux, and are actively developing at

present (see [5] and the literature cited therein).

In the present article, we study these problems in application to a differential system of the

form

ẋ = x + Pn(x, y), ẏ = y + Qn(x, y), (1.2)

BCorresponding author. Email: volok@math.nsc.ru
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which we call a Darboux-type system. Here Pn(x, y), Qn(x, y) are homogeneous real polyno-

mials of degree n of the variables x, y. Systems of such a kind appeared in Darboux’s works

on geometry.

We study necessary and sufficient conditions for the existence of a hyperbolic limit cycle

for system (1.2), and this cycle turns out to be unique. The remaining trajectories (except

for the singular point at the origin) have a limit cycle as the α- or ω-limit set and cannot be

algebraic curves.

We prove that the degree of an algebraic limit cycle of system (1.2) is equal to 2 and obtain

necessary and sufficient conditions for the existence of an algebraic limit cycle for (1.2).

The obtained results are illustrated by examples.

2 The main part

Consider a Darboux-type system of a more general kind than (1.2):

ẋ = sx + Pn(x, y), ẏ = sy + Qn(x, y), s 6= 0, n > 1. (2.1)

Consider the functions

f (ϑ) = cos ϑPn(cos ϑ, sin ϑ) + sin ϑQn(cos ϑ, sin ϑ),

g(ϑ) = cos ϑQn(cos ϑ, sin ϑ)− sin ϑPn(cos ϑ, sin ϑ).

Theorem 2.1.

(1) If n is even then system (2.1) has no periodic solutions.

(2) If n is odd and g(ϑ) has zeros on [0, 2π] then system (2.1) has no periodic solutions.

(3) If there is a closed trajectory of system (2.1), then it contains inside itself the only singular point

that coincides with the origin.

(4) System (2.1) has at most one limit cycle.

(5) For system (2.1) to have a unique limit cycle Γ, it is necessary and sufficient that the following

conditions hold:

g(ϑ) 6= 0, ϑ ∈ [0, 2π]; sg(0)
∫ 2π

0

f (ϑ)

g(ϑ)
dϑ < 0. (2.2)

(6) The cycle Γ is hyperbolic.

(7) If the cycle Γ is algebraic then its degree is equal to 2 and it is defined by an algebraic curve

H(x, y) = 0, H(x, y) = 1 + ax2 + 2bxy + cy2.

Proof. Items (1)–(5) are proved in [1, 7].

We will briefly give fragments of this proof in order to use them for proving items (6)–(7),

which supplement the results of [1, 7] concerning Darboux-type systems.

Henceforth, unless otherwise specified, we assume that n is odd and conditions (4) are

fulfilled.

After passing to the polar coordinates x=r cos ϑ, y=r sin ϑ, system (2.1) turns into the sys-

tem
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ṙ = sr + rn f (ϑ), ϑ̇ = rn−1g(ϑ), (2.3)

which we replace by the linear equation

dρ

dϑ
=

(n − 1) f (ϑ)

g(ϑ)
ρ +

s(n − 1)

g(ϑ)
, ρ = rn−1, (2.4)

where the functions f (ϑ), g(ϑ) are defined above.

The periodic solutions to this equation (with period T = 2π) generate periodic solutions

to system (2.1).

Introduce the function

F(ϑ) = exp

(

(n − 1)
∫ ϑ

0

f (τ)

g(τ)
dτ

)

.

Denote the solution to equation (2.4) with ρ(0) = ρ0 by ρ(ϑ; ρ0):

ρ(ϑ; ρ0) =

(

ρ0 + s(n − 1)
∫ ϑ

0

dτ

g(τ)F(τ)

)

F(ϑ). (2.5)

For a periodic solution, we must take ρ0=ρ∗0 from the condition ρ(2π; ρ0)=ρ0. In the case

under consideration, there exists a unique such value:

ρ∗0 = s(n − 1)
F(2π)

1 − F(2π)

∫ 2π

0

dτ

g(τ)F(τ)
. (2.6)

For a solution ρ = ρ(ϑ, ρ∗0) to define a periodic solution to (2.1), the condition ρ(ϑ, ρ∗0) >

0, ϑ ∈ [0, 2π] must be fulfilled. This condition holds by (2.2).

The orbits of system (2.1) have the parametric definition

x = n−1

√

ρ(ϑ; ρ0) cos ϑ, y = n−1

√

ρ(ϑ; ρ0) sin ϑ, ϑ ∈ [0, 2π], (2.7)

where ρ(ϑ; ρ0) is from (7).

For a periodic orbit, we must take ρ0 = ρ∗0 in (2.6).

The cycle under consideration is hyperbolic. For showing this, calculate the derivative

of the solution (7) with respect to ρ0 for ϑ = 2π at the point ρ0 = ρ∗0 .

µ =
∂ρ(ϑ; ρ0)

∂ρ0

∣

∣

∣

∣

∣

{ϑ=2π,ρ0=ρ∗0}
= F(2π).

By (2.2), we have that µ 6= 1, i.e., the cycle Γ is hyperbolic.

Item (6) is proved.

For proving item (7), make use of another trick, proposed in [4].

The direction field of system (2.1) is symmetric with respect to the origin. In this case,

the trajectories of this system and the formulas defining them must also possess the symme-

try property. In particular, closed algebraic curves are defined by polynomials of the form

H(x, y) = h0 + h2(x, y) + h4(x, y) + . . . , where h0 = const 6= 0, h2(x, y), h4(x, y), . . . are ho-

mogeneous polynomials of even degrees. Without loss of generality, we may assume that

h0 = 1.

If the limit cycle of system (2.1) is algebraic then consider an irreducible polynomial

H(x, y) = 1 + h2(x, y) + · · ·+ h2k(x, y) such that H(x, y) = 0 contains the oval defined by (2.7)
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with ρ0 = ρ∗0 . H(x, y) = 0 is an invariant algebraic curve of (2.1), [4]. Then H(r cos ϑ, r sin ϑ) =

0 is an invariant curve of system (2.3). After inserting R = r2 in H(r cos ϑ, r sin ϑ), we obtain

a polynomial H̃(R, ϑ) of the variable R whose coefficients are hi(cos ϑ, sin ϑ).

Note that the polynomial H̃(R, ϑ) has only positive roots. Moreover, R = (ρ(ϑ; ρ∗0))
2

n−1

is its R-root. Each R-root of H̃(R, ϑ) generates a solution ρ(ϑ; ρ0) = R
n−1

2 to (2.4). If ρ0 6=
ρ∗0 then the solution ρ(ϑ; ρ0) takes infinitely many different values at the points ϑ = 2πk

for all integers k. On the other hand, H̃(R, 2πk) = H̃(R, 0) for all integers k; therefore, these

polynomials have the same roots. Hence, the polynomial H̃(R, 0) has infinitely many roots

R = (ρ(2πk; ρ0))
2

n−1 , which is impossible. We see that the R-root necessarily corresponds to

a unique limit cycle system R(n−1)/2 = ρ(ϑ; ρ∗0). Since the polynomial H̃ has only positive

roots, we conclude that H̃(R, ϑ) has one and only one R-root and, thus, it takes the form

H̃(R, ϑ) = 1 + h2(cos ϑ, sin ϑ)R. Then H(r cos ϑ, r sin ϑ) = 1 + r2h2(cos ϑ, sin ϑ), which implies

that H(x, y) = 1 + ax2 + 2bxy + cy2.

Item (7) is proved.

Theorem 2.2. System (2.1) has an algebraic limit cycle H(x, y) ≡ 1 + h2(x, y) = 0, h2(x, y) < 0 if

and only if the conditions

Pn
∂h2

∂x
+ Qn

∂h2

∂y
= 2s(−h2)

n+1
2 ; xPn − yQn 6= 0 for (x, y) 6= (0, 0)

are satisfied.

Proof. Recall that if the trajectory of a planar polynomial system of differential equations

ẋ = P(x, y), ẏ = Q(x, y) (1.1)

is a part of an irreducible algebraic curve H(x, y) = 0 then there exists a polynomial k(x, y)

(cofactor) such that

∂H(x, y)

∂x
P(x, y) +

∂H(x, y)

∂y
Q(x, y) = k(x, y)H(x, y). (2.8)

Obviously, the degree of a cofactor is at most n − 1 if n is the maximum of the degrees

of the polynomials P(x, y), Q(x, y).

As follows from Theorem 2.1, for system (2.1), the closed algebraic curve (an algebraic

limit cycle) is defined by the polynomial of the form H(x, y) = 1 + h2(x, y), where h2(x, y) is

a homogeneous polynomial of degree 2.

Condition (2.8) takes the form

(sx + Pn)
∂

∂x
(1 + h2) + (sy + Qn)

∂

∂y
(1 + h2) = k(1 + h2).

Setting n = 2m + 1, we have k = k2 + k4 + · · ·+ k2m, and

(sx + P2m+1)
∂h2

∂x
+ (sy + Q2m+1)

∂h2

∂y

= k2 + (h2k2 + k4) + (h2k4 + k6) + · · ·+ (h2k2m−2 + k2m) + h2k2m.
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We get

sx
∂h2

∂x
+ sy

∂h2

∂y
= k2,

h2k2 + k4 = 0,

h2k4 + k6 = 0,

...

h2k2m−2 + k2m = 0,

P2m+1
∂h2

∂x
+ Q2m+1

∂h2

∂y
= h2k2m.

Using Euler’s formula for the homogeneous polynomial h2(x, y), we have

2sh2 = k2.

Further, we put

k4=−h2k2=−2sh2
2, k6=−h2k4=2sh3

2, . . . , k2m=−h2k2m−2=(−1)m+12shm
2 .

Based on these equalities, we have

P2m+1
∂h2

∂x
+ Q2m+1

∂h2

∂y
= 2s(−1)m+1h2m+1.

The last equality proves the invariance of the curve H(x, y) = 0.

There are no singular points on the curve.

The theorem is proved.

In the case of a cubic Darboux system (n = 3), we can give an exhaustive solution the

problem under consideration.

In [2], Theorem 3.2 was proved, which classifies planar homogeneous cubic vector fields.

In our case, this theorem has the following consequence:

Proposition 2.3. The system

ẋ = x + P3(x, y), ẏ = y + Q3(x, y) (2.9)

has a limit cycle only if there exists a linear transformation σ ∈ GL(2; R) and a time scaling taking

system (2.9) into the system of the form

ẋ = sx + p1x3 + (p2 − α)x2y + p3xy2 − αy3 ≡ sx + P̃3(x, y),

ẏ = sy + αx3 + p1x2y + (p2 + α)xy2 + p3y3 ≡ sy + Q̃3(x, y),

p1, p2, p3, s ∈ R, α = ±1.

(2.10)

For system (2.10),

f (ϑ) =
1

2
(p1 + p3 + (p1 − p3) cos 2ϑ + p2 sin 2ϑ), g(ϑ) ≡ α,

sg(0)
∫ 2π

0

f (ϑ)

g(ϑ)
dϑ = πs(p1 + p3).
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By Theorem 2.1, we infer that, for the existence of a unique hyperbolic limit cycle for sys-

tem (2.10), it is necessary and sufficient that

s(p1 + p3) < 0. (2.11)

Consider the question of the existence of an algebraic limit cycle for system (2.10).

Suppose that system (2.10) has a quadratic limit cycle H = 1 + h2 ≡ 1 + ax2 + 2bxy + cy2.

Condition (2.8) takes the form

∂H

∂x
(sx + P̃3) +

∂H

∂y
(sy + Q̃3) = k2H.

From Theorem 2.2 we obtain

P̃3
∂h2

∂x
+ Q̃3

∂h2

∂y
= 2sh2

2. (2.12)

Equating the coefficients at the same degrees of the variables x, y on the left- and right-

hand sides of (2.12), after easy transformations, we obtain the system of equalities

−a2s + ap1 + αb = 0,

−4abs + ap2 − αa + 2bp1 + αc = 0,

−2acs + ap3 − 4b2s + 2bp2 + cp1 = 0,

−αa − 4bcs + 2bp3 + cp2 + αc = 0,

−αb − c2s + cp3 = 0.

(2.13)

Here and below, we have used the Mathematica system for implementing symbols and

numerical calculations.

System (2.13) can be regarded as an inhomogeneous system of linear equations AX = B

with respect to the variables p1, p2, p3 with the parameters a, b, c, s, α

A =















a 0 0

2b a 0

c 2b a

0 c 2b

0 0 c















, B =















a2s − αb

α(a − c) + 4abs

2acs + 4b2s

α(a − c) + 4bcs

αb + c2s















, X =





p1

p2

p3



 .

The system is solvable if and only if the rank of the matrix A is equal to the rank of the ex-

tended matrix (A|B).
Obviously, a 6= 0 in (2.13). Therefore, rank A = 3. Then all minors of order 4 in (A|B)

must be zero. These minors are

(A|B)1 = α(a2c2 − 8ab2c − 2ac3 + 8b4 + 4b2c2 + c4),

(A|B)2 = α(−3a2bc + 4ab3 + 2abc2 + bc3),

(A|B)3 = α(−a3c + 2a2b2 + 2a2c2 − ac3 + 2b2c2),

(A|B)4 = α(a3b + 2a2bc − 3abc2 + 4b3c),

(A|B)5 = α(a4 − 2a3c + 4a2b2 + a2c2 − 8ab2c + 8b4),

where (A|B)i stands for the minor obtained from (A|B) by deleting the ith row. Note that

the obtained expressions do not depend on s and contain α as a factor.
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Since α = ±1, it suffices to consider the system of homogeneous equations

a2c2 − 8ab2c − 2ac3 + 8b4 + 4b2c2 + c4 = 0,

−3a2bc + 4ab3 + 2abc2 + bc3 = 0,

−a3c + 2a2b2 + 2a2c2 − ac3 + 2b2c2 = 0,

a3b + 2a2bc − 3abc2 + 4b3c = 0,

a4 − 2a3c + 4a2b2 + a2c2 − 8ab2c + 8b4 = 0.

(2.14)

The second and fourth equations have the form

b(−3a2c + 4ab2 + 2ac2 + c3) = 0, b(a3 + 2a2c − 3ac2 + 4b2c) = 0. (2.15)

Case 1. b = 0.

In this case, system (2.14) is reduced to the system

c2(a − c)2 = ac(a − c)2 = a2(a − c)2 = 0,

which implies that we have a nonzero solution a = c 6= 0, b = 0 to system (2.14).

Case 2.

If b 6= 0 then −3a2c + 4ab2 + 2ac2 + c3 = a3 + 2a2c − 3ac2 + 4b2c = 0, which implies that

(a − c)(a + c)3 = 0. If a = c then the fourth equation of (2.14) gives c = 0, and hence the fifth

equation yields b = 0, which contradicts the assumption b 6= 0. If a = −c then the only real

solution to (2.15) is a = b = c = 0, which again leads to a contradiction.

For the above-found values of the parameters a, b, c, system (2.13) is reduced to the form

ap1 = a2s, ap2 = 0, ap1 + ap3 = 2a2s, ap2 = 0, ap3 = a2s, a 6= 0,

and has a nonzero solution p1 = p3 6= 0, p2 = 0, a = c = p1/s, b = 0.

Then H(x, y) = 1 + p1

s (x2 + y2), and the algebraic curve H(x, y) = 0 defines a real oval

(circle) under the condition p1/s < 0 (cf. (2.11)).

Thus, we have proved

Theorem 2.4. System (2.10) admits a hyperbolic algebraic cycle if and only if

p1 = p3, p2 = 0, p1s < 0. (2.16)

Moreover, the cycle is defined by the algebraic curve

H ≡ 1 +
p1

s
(x2 + y2) = 0.

System (2.10) for which conditions (2.16) are fulfilled has the form

ẋ = sx + px3 − αx2y + pxy2 − αy3, ẏ = sy + αx3 + px2y + αxy2 + py3. (2.17)

Put δ =
√

−s/p.

A straightforward check shows that

x(t) = δ cos δ2t, y(t) = αδ sin δ2t

is a periodic solution to system (2.17). This solution is a suitable parametrization for the circle

H = 0 mentioned in the theorem. The period of the obtained cycle is equal to T = 2π/δ2.

The cycle is stable if s > 0 and unstable if s < 0.

Using Therem 2.2 and Theorem 2.4, in [8], we proved



8 V. Cheresiz and E. Volokitin

Theorem 2.5. System (2.10) has an algebraic limit cycle if and only if the coefficients pij, qij, i, j =

0, 1, 2, 3, i + j = 3 are representable as

p30 = −s

(

c2 + d2
)

(α(ac + bd) + p(ad − bc))

(bc − ad)3
,

p21 = s
a2(α(3c2+d2)+2cdp) + 2ab(2αcd+p(d2−c2)) + b2(α(c2+3d2)−2cdp)

(bc − ad)3
,

p12 = −s
(a2 + b2)(3αac + adp + 3αbd − bcp)

(bc − ad)3
,

p03 = s
α(a2 + b2)2

(bc − ad)3
, q30 = −s

α
(

c2 + d2
)2

(bc − ad)3
,

q21 = s
(c2 + d2)(3α(ac + bd)− p(ad − bc))

(bc − ad)3
,

q12 = −s
a2(α(3c2+d2)−2cdp) + 2ab(2αcd+p(c2−d2)) + b2(α(c2+3d2)+2cdp)

(bc − ad)3
,

q03 = s
(a2 + b2)(α(ac + bd)− p(ad − bc))

(bc − ad)3
,

where a, b, c, d, p, s ∈ R, ad − bc 6= 0, ps < 0, α = ±1.

Moreover, the cycle is defined by the algebraic curve

H ≡ 1 +
ps

(ad − bc)2
((ay − cx)2 + (by − dx)2).

Consider several examples illustrating the obtained results.

Example 2.6. ([1]).

ẋ = −x + x3 − x2y + xy2 − y3, ẏ = −y + x3 + x2y + xy2 + y3. (2.18)

The system can be written down in the form (2.10) if we take s = −1, p1 = p3 = 1, p2 =

0, α = 1. Hence, by Theorem 2.4, system (2.18) has the hyperbolic algebraic limit cycle

1 − x2 − y2 = 0. The cycle is unstable since it contains a stable singular point, the origin. This

cycle was presented in [1].

Example 2.7.

ẋ = x − 2x2y − 4xy2 − 2y3, ẏ = y + 2x3 + 2xy2 − 4y3. (2.19)

We have

f (ϑ) = −4 sin2 ϑ, g(ϑ) ≡ 2, F(ϑ) = esin 2ϑ−2ϑ.

By Theorem 2.1, we conclude that the system has a hyperbolic stable limit cycle.

By (2.5), (2.6), the cycle is written as

r =
√

ρ, ρ =

(

ρ∗0 +
∫ ϑ

0
e2τ−sin 2τdτ

)

esin 2ϑ−2ϑ,

ρ∗0 =
1

e4π − 1

∫ 2π

0
esin 2τ−2τdτ.

An attempt to find a quadratic limit cycle in the form 1 + ax2 + 2bxy + cy2 = 0 leads

to the system of equations

a2 − 2b = 0, a + 2ab − c = 0, 2a + 2b2 + ac = 0, a + 4b − c + 2bc = 0, 2b + 4c + c2 = 0.
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Express b, c in terms of a from the first two equations and insert them in the remaining

three equations. After easy calculations, it is not hard to see that the system has only the zero

solution a = b = c = 0. Hence, the limit cycle of system (2.19) is non-algebraic.

Example 2.8.

ẋ = x + (x − y)(x2 + 2y2)2, ẏ = y − (x + y)(x2 + 2y2)2.

We have

f (ϑ) = g(ϑ) = −1

4
(cos 2ϑ − 3)2, F(ϑ) = e4ϑ.

By Theorem 2.1, we conclude that system has a hyperbolic stable limit cycle.

The cycle is written as

r =
√

ρ, ρ =

(

ρ∗0 − 8
∫ ϑ

0

dτ

e4τ(cos 2τ − 3)2

)

e4ϑ,

ρ∗0 =
8e8π

e8π − 1

∫ 2π

0

dτ

e4τ(cos 2τ − 3)2
.

Just as in the previous example, it can be shown that the cycle is non-algebraic due to

Theorem 2.2.

Using Example 2.6 and Theorem 2.2, we can construct a Darboux system of any (odd)

degree with an algebraic limit cycle.

Example 2.9.

ẋ = −x + (x3 − x2y + xy2 − y3)(x2 + y2)2k, ẏ = −y + (x3 + x2y + xy2 + y3)(x2 + y2)2k.

The system has the algebraic limit cycle H(x, y) ≡ 1 − x2 − y2 = 0.

As we already observed, in the presence of a limit cycle, all the remaining trajectories

of system (1.2) are non-algebraic curves. In a neighborhood of the cycle, these trajectories

are spirals with infinitely many helices and intersect a straight line transversal to the cycle

infinitely many times. In this case, the corresponding algebraic equation has infinitely many

roots, which is impossible.

Example 2.6 shows that the coexistence of algebraic and non-algebraic curves is possible

for cubic Darboux systems. Example 2.7 demonstrates that there exist cubic Darboux systems

having no algebraic curve. With account taken of Theorem 2.2, this property is possessed

by all Darboux systems (1.2) with n 6= 3 for which g(ϑ) 6= 0, ϑ ∈ [0, 2π] (see Example 2.8).

It was proved in [1] that system (1.2) is Darboux integrable and a formula for its first

integral was given.

System (1.2) has no polynomial integral (and, generally, no integral defined on the whole

phase plane) since its singular point at the origin is a node.

Under certain conditions, system (1.2) has a rational integral. In this case, all its trajectories

are algebraic curves.

Recall that if system (1.1) has N = n(n+ 1)+ 2 algebraic invariants then it admits a rational

first integral (see [3]).
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Example 2.10.

ẋ = x − x3, ẏ = y − y3. (2.20)

The singular points of system (2.20) are:

O(0, 0), O1(1, 1), O2(−1, 1), O3(−1,−1), O4(1,−1) are star nodes;

O5(1, 0), O6(0, 1), O7(−1, 0), O8(0,−1) are hyperbolic saddles.

System (2.20) has 8 invariant straight lines x=0, x=±1, y=0, y=±1, y=±x, using which

one can construct the rational Darboux integral

V(x, y) =
y2(1 − x2)

x2(1 − y2)
.

The phase portrait of system (2.20) is given in Figure 2.1.

-4 -2 2 4
x

-4

-2

2

4

y

Figure 2.1: The phase portrait of system (2.20)

In some cases, a rational integral for system (1.2) can be found with the use of a smaller

number of invariants than N.

Suppose that the homogeneous polynomials Pn(x, y), Qn(x, y) in system (1.2) satisfy the

Cauchy–Riemann conditions: Pnx = Qny, Pny = −Qnx. Introducing the complex variable

z = x + iy, we can write down this system in the form

ż = z + Pn(z), (2.21)

where Pn(z) is a complex polynomial of degree n : Pn(z) = Pn((z + z̄)/2, (z − z̄)/2i) +

iQn((z + z̄)/2, (z − z̄)/2i).

Theorem 2.11 ([6]). Suppose that all the singular points of system (2.21) are star nodes and all

the eigenvalues λk
1,2 = ωk are rationally commensurable: ωk ∈ ωQ, ω ∈ R, k = 1, 2, . . . , n. Then

system (2.21) admits a rational first integral.

In this case, the integral can be constructed with the use of n complex invariants of the form

fk = z − zk, where zk are the roots of the equation z + Pn(z) = 0 (see [6]).

Example 2.12. Consider the system

ẋ = x − x5 + 10x3y2 − 5x4y, ẏ = y − 5x4y − 10x2y3 − y5, (2.22)

which corresponds to the complex system ż = z − z5.
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-1 1
x

-1

1

y

Figure 2.2: The phase portrait of the system (2.22)

The singular points of system (2.22) are found from the relation z − z5 = 0 and have

the form O(0, 0), O1(1, 0), O2(0, 1), O3(−1, 0), O4(0,−1). The origin is an unstable star

node; the remaining four singular points are stable star nodes. The system has 5 invariants

f1=z, f2,3=z±1, f4,5=z±i, using which we can construct the rational first integral

V(x, y) =
xy(x2 − y2)

(x2 + y2)4 − (x2 + y2)2 + 8x2y2
.

Figure 2.2 contains a phase portrait of system (2.22).
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1 Introduction

Chemotaxis is the oriented movement of biological cells or microscopic organisms toward

or away from the concentration gradient of certain chemicals in their environment. We may

use cells to denote the biological objects whose movement we are interested in and chemo

attractants or repellents to denote chemicals which attract or repell the cells. This type of

movement exists in many biological phenomena, such as the movement of bacteria toward

certain chemicals [1], or the movement of endothelial cells toward the higher concentration of

chemoattractant that cancer cells produce [4].

Keller and Segel [11, 12] derived a mathematical model to describe the aggregation of

certain types of bacteria, which consists of the equations for the cell density n = n(x, t) and

the concentration of chemical attractant c = c(x, t) and is given by

{

nt = ∆n −∇ · (nχ∇c),

αct = ∆c + f (c, n),

where χ is the sensitivity of the cell movement to the density gradient of the attractant, α is a

positive constant, and the reaction term f is a smooth function of the arguments. Since then,

BCorresponding author. Email: hhattori@wvu.edu
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many mathematical approaches to describe chemotaxis using systems of partial differential

equations have emerged, some of which will be discussed later in this section.

In this paper, we use the equations for continuum mechanics to describe the movement

of cells and for the chemoattractant and repellent, we use diffusion equations. The com-

bined effects of chemoattractant and repellent for chemotaxis are studied in diseases such as

Alzheimer’s disease [2].

We consider the initial value problem for the system in R
3 given by























∂tn +∇ · (nu) = n(n∞ − n)

∂tu + u · ∇u + ∇p(n)
n = χ1∇c1 − χ2∇c2 + δ∆u

∂tc1 = ∆c1 − a12c1 + a11c1n

∂tc2 = ∆c2 − a22c2 + a21c2n,

(1.1)

where n(x, t), u(x, t), c1(x, t), c2(x, t) for t > 0, x ∈ R
3, are the cell concentration, velocity

of cells, chemoattractant concentration, and chemorepellent concentration, respectively. The

initial data is given by

(n, u, c1, c2)|t=0 = (n0, u0, c1,0, c2,0)(x), x ∈ R
3, (1.2)

where it is supposed to hold that

(n0, u0, c1,0, c2,0)(x) → (n∞, 0, 0, 0) as |x| → ∞,

for some constant n∞ > 0.

In this model the cells follow a convective logistic equation, the velocity is given by the

compressible Navier–Stokes type equations with the added effects of chemoattractants and

-repellents. The pressure for the cells p(n) is a smooth function of n and p′(n) > 0, a positive

constant δ is the coefficient for the viscosity term, and χ1 and χ2 express the sensitivity of the

cell movement to the density gradients of the attractants and repellents, respectively. Usually

χi, (i = 1, 2) are functions of ci and in this paper we consider the case χi = Kici, where Ki are

positive constants, so that the sensitivity is proportional to the concentration of the attractants

and repellents. We choose Ki = 2 for simplicity. We may equally use χi = Kic
αi
i , where αi

are positive constants. For chemical substances, we use the reaction diffusion equations. The

reaction terms are based on a Lotka–Volterra type model in which the nonnegative regions

of ci are invariant in the sense that if the initial conditions for ci are nonnegative, they are

nonnegative for positive t. This can be verified by the maximum principle. The couplings

between ci and n are given as nonlinear terms.

The main goal of this paper is to establish the local and global existence of smooth solutions

in three dimensions around a constant state (n∞, 0, 0, 0) and the decay rate of global smooth

solutions for the above system (1.1). The main result of this paper is stated as follows.

Theorem 1.1. Let N ≥ 4 be an integer. There exists a positive numbers ǫ0, C0 such that if

‖[n0 − n∞, u0, c1,0, c2,0]‖HN ≤ ǫ0,

then, the Cauchy problem (1.1)–(1.2) has a unique solution (n, u, c1, c2)(t) globally in time which

satisfies

(u, c1, c2)(t) ∈ C([0, ∞); HN(R3)) ∩ C1([0, ∞); HN−2(R3)),

n − n∞ ∈ C([0, ∞); HN(R3)) ∩ C1([0, ∞); HN−1(R3))
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and there are constants λ1 > 0 and λ2 > 0 such that

‖[n − n∞, u, c1, c2]‖2
HN + λ1

∫ t

0
‖∇[u, c1, c2]‖2

HN + λ2

∫ t

0
‖[n − n∞, c1, c2]‖2

HN

≤ C0‖[n0 − n∞, u0, c1,0, c2,0]‖2
HN . (1.3)

Furthermore, the global solution [n, u, c1, c2] satisfies the following time-decay rates for t ≥ 0:

‖n − n∞‖Lq ≤ C(1 + t)−2+ 3
2q , (1.4)

‖u‖Lq ≤ C(1 + t)
−3
2 + 3

2q , (1.5)

‖c1, c2‖Lq ≤ C(1 + t)
−3
2 , (1.6)

with 2 ≤ q < ∞, C > 0.

The proof of the existence of global solutions in Theorem 1.1 is based on the local exis-

tence and an a priori estimates. We show the local solutions by constructing a sequence of

approximation functions based on iteration. To obtain the a priori estimates we use the energy

method. Moreover, to obtain the time-decay rate in Lq norm of solutions in Theorem 1.1, we

first find the Green’s matrix for the linear system using the Fourier transform and then obtain

the refined energy estimates with the help of Duhamel’s principle.

To motivate our study, we present previous related work on chemotaxis models. Many

of them are based on the Keller–Segel system. Wang [21] explored the interactions between

the nonlinear diffusion and logistic source on the solutions of the attraction–repulsion chemo-

taxis system in three dimensions. E. Lankeit and J. Lankeit [13] proved the global existence of

classical solutions to a chemotaxis system with singular sensitivity. Liu and Wang [14] estab-

lished the existence of global classical solutions and steady states to an attraction–repulsion

chemotaxis model in one dimension based on the energy methods.

Concerning the chemotaxis models based on fluid dynamics, there are two approaches,

incompressible and compressible. For the incompressible case, Chae, Kang and Lee [3],

and Duan, Lorz, and Markowich [8] showed the global-in-time existence for the incompress-

ible chemotaxis equations near the constant states, if the initial data is sufficiently small.

Rodriguez, Ferreira, and Villamizar-Roa [19] showed the global existence for an attraction–

repulsion chemotaxis fluid model with logistic source. Tan and Zhou [20] proved the global

existence and time decay estimate of solutions to the Keller–Segel system in R3 with the small

initial data. For the compressible case, Ambrosi, Bussolino, and Preziosi [2] discussed the

vasculogenesis using the compressible fluid dynamics for the cells and the diffusion equation

for the attractant.

Many related approaches use the Fourier transform, and we only mention that Duan [6]

and Duan, Liu, and Zhu [7] proved the time-decay rate by the combination of energy estimates

and spectral analysis. Also by using Green’s function and Schauder fixed point theorem, one

can study the existence and regularity of solution for these kinds of equations (see [9, 10, 17,

18]).

For later use in this paper, we give some notations. C denotes some positive constant and

λi, where i = 1, 2, denotes some positive (generally small) constant, where both C and λi may

take different values in different places. For any integer m ≥ 0, we use Hm to denote the

Sobolev space Hm(R3). Set L2 = H0. We set ∂α = ∂α1
x1

∂α2
x2

∂α3
x3

for a multi-index α = [α1, α2, α3].

The length of α is |.| = α1 + α2 + α3; we also set ∂j = ∂xj
for j = 1, 2, 3. For an integrable
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function f : R
3 → R, its Fourier transform is defined by f̂ =

∫

R3 e−ix·ξ f (x)dx, x · ξ = ∑
3
i=0 xjξ j,

and x ∈ R
3, where i =

√
−1 is the imaginary unit. Let us denote the space

X(0, T) = {(u, c1, c2) ∈ C([0, T]; HN(R3)) ∩ C1([0, T]; HN−2(R3)),

n − n∞ ∈ C([0, T]; HN(R3)) ∩ C1([0, T]; HN−1(R3))}.

This paper is organized as follows. In Section 2, we reformulate the Cauchy problem

under consideration. In Section 3, we prove the global existence and uniqueness of solutions.

In Section 4, we investigate the linearized homogeneous system to obtain the L2 − Lq time-

decay property and the explicit representation of solutions. In Section 5, we study the Lq

time-decay rates of solutions to the reformulated nonlinear system and finish the proof of

Theorem1.1.

2 Reformulation of the system (1.1)

Let U(t) = [n, u, c1, c2] be a smooth solution to the Cauchy problem of the chemotaxis system

(1.1) with initial data U0 = [n0, u0, c1,0, c2,0]. We introduce the transformation:

n(x, t) = n∞ + ρ(x, t). (2.1)

Then the Cauchy problem (1.1) is reformulated as






















∂tρ + n∞∇ · u + n∞ρ = −∇ · (ρu)− ρ2

∂tu + u · ∇u − δ∆u + p′(n∞)
n∞

∇ρ = ∇(c1)
2 −∇(c2)2 − ( p′(ρ+n∞)

ρ+n∞
− p′(n∞)

n∞
)∇ρ

∂tc1 = ∆c1 − (a12 − a11n∞)c1 + a11ρc1

∂tc2 = ∆c2 − (a22 − a21n∞)c2 + a21ρc2,

(2.2)

with initial data

(ρ, u, c1, c2)|t=0 = (ρ0, u0, c1,0, c2,0) → (0, 0, 0, 0), (2.3)

as |x| → ∞, where ρ0 = n0 − n∞. We assume that a12 − a11n∞ > 0 and a22 − a21n∞ > 0.

In what follows, the integer N ≥ 4 is always assumed.

Proposition 2.1. There exists a positive number ǫ0 which is small enough such that if

‖[ρ0, u0, c1,0, c2,0]‖HN ≤ ǫ0,

then the Cauchy problem (2.2)–(2.3) has a unique solution (ρ, u, c1, c2)(t) globally in time which

satisfies (ρ, u, c1, c2)(t) ∈ X(0, ∞) and there are constants C0 > 0, λ1 > 0 and λ1 > 0 such that

‖[ρ, u, c1, c2]‖2
HN +λ1

∫ t

0
‖∇[u, c1, c2]‖2

HN +λ2

∫ t

0
‖[ρ, c1, c2]‖2

HN ≤ C0‖[ρ0, u0, c1,0, c2,0]‖2
HN . (2.4)

Proposition 2.2. Let U(t) = [ρ, u, c1, c2] be the solution to the Cauchy problem (2.2)–(2.3) obtained

in Proposition 2.1, which satisfies the following Lq-time decay estimates for any t ≥ 0:

‖ρ‖Lq ≤ C(1 + t)−2+ 3
2q , (2.5)

‖u‖Lq ≤ C(1 + t)
−3
2 + 3

2q , (2.6)

‖c1, c2‖Lq ≤ C(1 + t)
−3
2 , (2.7)

with 2 ≤ q < ∞ and C > 0.

The proof of Theorem 1.1 obtained directly from the global existence proof in Proposition

2.1 and the derivation of rates in Theorem 1.1 is based on Proposition 2.2.
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3 Global solution of the nonlinear system (2.2)

The goal of this section is to prove the global existence of solutions to the Cauchy problem

(2.2) when initial data is a small, smooth perturbation near the steady state (n∞, 0, 0, 0). The

proof is based on some uniform a priori estimates combined with the local existence, which

will be shown in Subsections 3.1 and 3.2.

3.1 Existence of local solutions

In this subsection, we show the proof of the existence of local solutions [ρ, u, c1, c2] by con-

structing a sequence of functions that converges to a function satisfying the Cauchy problem.

We construct a solution sequence (ρj, uj, c
j
1, c

j
2)j≥0 by iteratively solving the Cauchy problem

on the following



























∂tρ
j+1 + n∞∇ · uj+1 + n∞ρj+1 = −ρj∇ · uj+1 −∇ρj+1uj − ρj2

∂tu
j+1 − δ∆uj+1 = −uj · ∇uj +∇(c

j
1)

2 −∇(c
j
2)

2 − p′(ρj+n∞)
ρj+n∞

∇ρj

∂tc
j+1
1 − ∆c

j+1
1 + (a12 − a11n∞)c

j+1
1 = a11ρjc

j+1
1

∂tc
j+1
2 − ∆c

j+1
2 + (a22 − a21n∞)c

j+1
2 = a21ρjc

j+1
2 ,

(3.1)

with initial data

(ρj+1, uj+1, c
j+1
1 , c

j+1
2 )|t=0 = U0 = (ρ0, u0, c1,0, c2,0) → (0, 0, 0, 0) (3.2)

as |x| → ∞, for j ≥ 0. For simplicity, in what follows, we write U j = (ρj, uj, c
j
1, c

j
2) and

U0 = (ρ0, u0, c1,0, c2,0), where U0 = (0, 0, 0, 0).

Now, we can start the following Lemma.

Lemma 3.1. There are constants T1 and ǫ0 > 0 such that if the initial data U0 ∈ HN(R3) and

‖U0‖HN ≤ ǫ0, then there exists a unique solution U = (ρ, u, c1, c2) of the Cauchy problem (2.2)–(2.3)

on [0, T1] with U ∈ X(0, T1).

Proof. We first set U0 = (0, 0, 0, 0). Then, we use U0 to solve the equations for U1. The first

equation is the first order partial differential equation and the second, third, and fourth equa-

tions are the second order parabolic equations. We obtain u1(x, t), c1
1(x, t), c1

2(x, t), and ρ1(x, t)

in this order. Similarly, we define (uj, c
j
1, c

j
2, ρj) iteratively. Now, we prove the existence and

uniqueness of solutions in space C([0, T1]; HN(R3)), where T1 > 0 is suitably small. The proof

is divided into four steps as follows.

In the first step, we show the uniform boundedness of the sequence of functions under

our construction via energy estimates. We show that there exists a constant M > 0 such that

U j ∈ C([0, T1]; HN(R3)) is well defined and

sup
0≤t≤T1

‖U j(t)‖HN ≤ M, (3.3)

for all j ≥ 0. We use the induction to prove (3.3). It is trivial when j = 0. Suppose that it is

true for j ≥ 0 where M is small enough. To prove for j + 1, we need some energy estimate for

U j+1. Applying ∂α to the first equation of (3.1), multiplying it by ∂αρj+1 and integrating in x,
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we obtain

1

2

d

dt

∫

R3
(∂αρj+1)2dx + n∞

∫

R3
|∂αρj+1|2dx

= − n∞

∫

R3
∂αρj+1∂α∇ · uj+1dx −

∫

R3
∂αρj+1∂α(∇ρj+1 · uj)dx

+
∫

R3
∂αρj+1∂α(ρj∇ · uj+1)dx −

∫

R3
∂αρj+1∂αρj2dx.

The terms on the right hand side are further bounded by

C‖∇ · uj+1‖HN‖ρj+1‖HN + C‖∇ · uj‖L∞‖ρj+1‖2
HN

+ ‖uj‖HN‖ρj+1‖HN‖∇ρj+1‖HN−2 + ‖ρj‖HN‖ρj+1‖HN‖∇ · uj+1‖HN

+ C‖ρj‖HN−2‖ρj+1‖HN‖ρj‖HN .

Then, after taking the summation over |α| ≤ N and using the Cauchy inequality, one has

1

2

d

dt
‖ρj+1‖2

HN+λ2‖ρj+1‖2
HN

≤ C‖∇ · uj+1‖2
HN + C‖uj‖2

HN‖ρj+1‖2
HN + C‖ρj‖2

HN‖ρj+1‖2
HN + C‖ρj‖2

HN . (3.4)

Similarly, applying ∂α to the second equation of (3.1), multiplying it by ∂αuj+1, taking integra-

tions in x, and then using integration by parts, we have

1

2

d

dt

∫

R3
(∂αuj+1)2dx + δ

∫

R3
|∂α∇ · uj+1|2dx =

p′(n∞)

n∞

∫

R3
∇ · ∂αuj+1∂αρj+1dx

−
∫

R3
∇ · ∂αuj+1∂αc

j2

1 dx +
∫

R3
∇ · ∂αuj+1∂αc

j2

2 dx

−
∫

R3
∂αuj+1 · ∂α(uj · ∇uj)dx −

∫

R3
∂αuj+1 · ∂α

(∇p(ρj + n∞)

ρj + n∞

)

dx.

Then, after taking the summation over |α| ≤ N, the terms on the right side of the previous

equation are bounded by

C‖∇ · uj+1‖HN‖ρj+1‖HN + C‖c
j
1‖HN−3‖∇ · uj+1‖HN‖c

j
1‖HN

+ C‖c
j
2‖HN−3‖∇ · uj+1‖HN‖c

j
2‖HN + ‖uj‖2

HN‖∇ · uj+1‖HN + C‖ρj‖HN‖∇ · uj+1‖HN .

By using the Cauchy inequality, we obtain

1

2

d

dt
‖uj+1‖2

HN+λ1‖∇ · uj+1‖2
HN≤ C‖ρj+1‖2

HN+C‖c
j
1‖2

HN+C‖c
j
1‖2

HN‖∇ · uj+1‖2
HN+C‖c

j
2‖2

HN

+ C‖c
j
2‖2

HN‖∇ · uj+1‖2
HN+C‖uj‖2

HN‖∇ · uj+1‖2
HN+‖ρj‖2

HN . (3.5)

In a similar way as above, we can estimate c1 and c2 as

1

2

d

dt
‖c

j+1
1 ‖2

HN + ‖∇c
j+1
1 ‖2

HN + λ2‖c
j+1
1 ‖2

HN ≤ C‖ρj‖2
HN‖c

j+1
1 ‖2

HN (3.6)

1

2

d

dt
‖c

j+1
2 ‖2

HN + ‖∇c
j+1
2 ‖2

HN + λ2‖c
j+1
2 ‖2

HN ≤ C‖ρj‖2
HN‖c

j+1
2 ‖2

HN . (3.7)
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Taking the linear combination of inequalities (3.4)–(3.7), we have

1

2

d

dt
(‖ρj+1‖2

HN+‖uj+1‖2
HN+‖c

j+1
1 ‖2

HN + ‖c
j+1
2 ‖2

HN ) + λ1‖∇[uj+1, c
j+1
1 , c

j+1
2 ]‖2

HN

+ λ2‖[ρj+1, c
j+1
1 , c

j+1
2 ]‖2

HN ≤ C‖[ρj, uj, c
j
1, c

j
2]‖2

HN + C‖[ρj, uj]‖2
HN‖ρj+1‖2

HN

+ C‖[uj, c
j
1, c

j
2]‖2

HN‖∇ · uj+1‖2
HN + C‖ρj‖2

HN‖[cj+1
1 , c

j+1
2 ]‖2

HN .

Thus, after integrating with respect to t, we have

‖U j+1(t)‖2
HN+λ1

∫ t

0
‖∇[uj+1, c

j+1
1 , c

j+1
2 ]‖2

HN ds + λ2

∫ t

0
‖[ρj+1, c

j+1
1 , c

j+1
2 ]‖2

HN ds

≤ C‖U j+1(0)‖2
HN+C

∫ t

0
‖U j(s)‖2

HN ds + C
∫ t

0
‖U j(s)‖2

HN‖[ρj+1,∇ · uj+1, c
j+1
1 , c

j+1
2 ]‖2

HN ds. (3.8)

In the last inequality, we use the induction hypothesis. We obtain

‖U j+1(t)‖2
HN+λ1

∫ t

0
‖∇[uj+1, c

j+1
1 , c

j+1
2 ]‖2

HN ds + λ2

∫ t

0
‖[ρj+1, c

j+1
1 , c

j+1
2 ]‖2

HN ds

≤ Cǫ2
0 + CM2T1 + CM2

∫ t

0
‖[ρj+1,∇ · uj+1, c

j+1
1 , c

j+1
2 ]‖2

HN ds,

for 0 ≤ t ≤ T1. Now, we take the small constants ǫ0 > 0, T1 > 0 and M > 0. Then we have

‖U j+1(t)‖2
HN+λ1

∫ t

0
‖∇[uj+1, c

j+1
1 , c

j+1
2 ]‖2

HN ds + λ2

∫ t

0
‖[ρj+1, c

j+1
1 , c

j+1
2 ]‖2

HN ds ≤ M2, (3.9)

for 0 ≤ t ≤ T1. This implies that (3.3) holds true for j + 1. Hence (3.3) is proved for all j ≥ 0.

For the second step, we prove that the sequence (U j)j≥0 is a Cauchy sequence in the Banach

space C([0, T1]; HN−1(R3)), which converges to the solution U = (ρ, u, c1, c2) of the Cauchy

problem (2.2)–(2.3), and satisfies sup0≤t≤T1

∥

∥[U j(t)]
∥

∥

HN−1 ≤ M. See for example [16].

For simplicity, we denote δ f j+1 := f j+1 − f j. Subtracting the j-th equations from the

(j + 1)-th equations, we have the following equations for δρj+1, δuj+1, δc
j+1
1 and δc

j+1
1 :















































∂tδρj+1 + n∞∇ · (δuj+1) + n∞δρj+1 = −ρj∇ · δuj+1 − δρj∇ · uj

−uj∇δρj+1 − δuj∇ρj + (ρj + ρj−1)δρj

∂tδuj+1 − δ∆δuj+1 = −uj · ∇δuj − δuj · ∇uj−1 +∇((c
j
1 + c

j−1
1 )δc

j
1)

−∇((c
j
2 + c

j−1
2 )δc

j
2)− (∇p(ρj+n∞)

ρj+n∞
− ∇p(ρj−1+n∞)

ρj−1+n∞
)

∂tδc
j+1
1 + ∆δc

j+1
1 + (a12 − a11n∞)δc

j+1
1 = a11ρjδc

j+1
1 + a11δρjc

j
1

∂tδc
j+1
2 + ∆δc

j+1
2 + (a22 − a21n∞)δc

j+1
2 = a21ρjδc

j+1
2 + a21δρjc

j
2.

The estimate of δρj+1 is as follows:

1

2

d

dt
‖δρj+1‖2

HN−1+n∞‖δρj+1‖2
HN−1≤ C‖∇ · δuj+1‖HN−1‖δρj+1‖HN−1

+ C‖ρj‖HN−1‖δρj+1‖HN−1‖∇ · δuj+1‖HN−1 + C‖δρj‖HN−1‖∇ · uj‖HN−1‖δρj+1‖HN−1

+ C‖∇ · uj‖L∞‖δρj+1‖2
HN−1+C‖δρj+1‖HN−2‖uj‖HN−1‖δρj+1‖HN−1

+ C‖δρj+1‖HN−1‖δuj‖HN−1‖∇ρj‖HN−1+C‖δρj+1‖HN−1‖δ ρj‖HN−1 .



8 H. Hattori and A. Lagha

Then

1

2

d

dt
‖δρj+1‖2

HN−1+λ2‖δρj+1‖2
HN−1≤ C‖∇ · δuj+1‖2

HN−1 + C‖ρj‖2
HN−1‖δρj+1‖2

HN−1

+ C‖∇ · uj‖2
HN−1‖δρj‖2

HN−1+C‖uj‖2
HN−1‖δρj+1‖2

HN−1

+ C‖∇ρj‖2
HN−1‖δuj‖2

HN−1+C‖δρj‖2
HN−1 . (3.10)

The estimate of δuj+1 is

1

2

d

dt
‖δuj+1‖2

HN−1+δ‖∇ · δuj+1‖2
HN−1≤ C‖∇ · δuj+1‖HN−1‖uj‖HN−1‖δuj‖HN−1

+ ‖δuj+1‖HN−1‖∇ · uj‖HN−1‖δuj‖HN−1+C‖δuj+1‖HN−1‖δuj‖HN−1‖∇ · uj−1‖HN−1

+ C‖δc
j
1‖2

HN−1‖∇ · δuj+1‖2
HN−1+C‖δc

j+1
2 ‖2

HN−1‖∇ · δuj+1‖2
HN−1+C‖δρj+1‖2

HN

+ C‖δρj‖HN−1‖∇ · δuj+1‖HN−1 .

Then

1

2

d

dt
‖δuj+1‖2

HN−1+λ1‖∇ · δuj+1‖2
HN−1≤ C‖uj‖2

HN−1‖δuj‖2
HN−1+‖δuj+1‖2

HN−1‖∇ · uj‖2
HN−1

+ C‖δuj+1‖2
HN−1‖∇ · uj−1‖2

HN−1+C‖δuj‖2
HN−1

+ C‖δc
j
1‖2

HN−1+C‖δc
j
2‖2

HN−1+‖δρj‖2
HN−1 . (3.11)

We have a similar way to estimate δc
j+1
1 and δc

j+1
2 as follows:

1
2

d
dt‖δc

j+1
1 ‖2

HN−1+‖∇δc
j+1
1 ‖2

HN−1+λ2‖δc
j+1
1 ‖2

HN−1

≤ C‖ρj‖2
HN−1‖δc

j+1
1 ‖2

HN−1+C‖δc
j
1‖2

HN−1‖ρj‖2
HN−1 (3.12)

and

1

2

d

dt
‖δc

j+1
2 ‖2

HN−1+‖∇δc
j+1
2 ‖2

HN−1+λ2‖δc
j+1
2 ‖2

HN−1

≤ C‖ρj‖2
HN−1‖δc

j+1
2 ‖2

HN−1+C‖δc
j
2‖2

HN−1‖ρj‖2
HN−1 . (3.13)

We combine the equations (3.10)–(3.13) to obtain

1

2

d

dt
(‖δρj+1‖2

HN−1+‖δuj+1‖2
HN−1+‖δc

j+1
1 ‖2

HN−1+‖δc
j+1
2 ‖2

HN−1)

+ λ1(‖∇ · δuj+1‖2
HN−1+‖∇δc

j+1
1 ‖2

HN−1+‖∇δc
j+1
2 ‖2

HN−1)

+ λ2(‖δρj+1‖2
HN−1+‖δc

j+1
1 ‖2

HN−1+C‖δc
j+1
2 ‖2

HN−1)

≤ C(‖δuj+1‖2
HN−1 + ‖δρj+1‖2

HN−1+‖δc
j+1
1 ‖2

HN−1+‖δc
j+1
2 ‖2

HN−1)

+ C(‖δuj‖2
HN−1 + C‖δρj‖2

HN−1+C‖δc
j
1‖2

HN−1+C‖δc
j
2‖2

HN−1).

By using Gronwall’s inequality, we obtain

sup
0≤t≤T1

(‖δρj+1‖2
HN−1+‖δuj+1‖2

HN−1+‖δc
j+1
1 ‖2

HN−1+‖δc
j+1
2 ‖2

HN−1)

≤ e
∫ t

0 cds
∫ t

0
‖δU j(s)‖2

HN−1 ds + e
∫ t

0 cds‖δU j+1(0)‖2
HN−1 ds

≤ CT1(e
CT1) sup

0≤t≤T1

‖δU j‖2
HN−1 .
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By taking T1 > 0 sufficiently small we find that (U j)j≥0 is a Cauchy sequence in the Banach

space C([0, T1]; HN−1(R3)). Thus, we have the limit function

U = U0 + lim
m→∞

m

∑
j=0

(U j+1 − U j)

in the same space C([0, T1]; HN−1(R3)), and satisfies

sup
0≤t≤T1

‖U‖HN−1≤ sup
0≤t≤T1

lim
j→∞

inf‖U j‖HN−1≤ M. (3.14)

Thus, as j → ∞ the limit exists such that

(U)j≥0 → U(t)

strongly in C([0, T1]; HN−1) and as j′ → ∞, where {j′} is a subsequence of {j}, we have

D(u, c1, c2)j′ → D(u, c1, c2)

weakly in L2([0, T1]; HN) by step one. Also by step one, we know

(U)j′′(t) → U(t)

weakly in HN for every fixed t ∈ [0, T1], where j′′ = j′′(t) is a subsequence of {j′}, depending

on t. Thus, we have a solution U(t) ∈ L∞([0, T1]; HN) for the problem (2.2)–(2.3).

For the third step, we show that ‖U j+1(t)‖2
HN is continuous in time for each j ≥ 0.

For simplicity, let us define the equivalent energy functional

E(U j+1(t)) = ‖ρj+1‖2
HN+‖uj+1‖2

HN+‖c
j+1
1 ‖2

HN + ‖c
j+1
2 ‖2

HN .

Similarly to how we proved (3.8), we have

|EU j+1(t)− EU j+1(s)|=
∣

∣

∣

∣

∫ t

s
EU j+1(θ)dθ

∣

∣

∣

∣

≤
∫ t

s
‖U j(s)‖2

HN dθ

+ C
∫ t

0
(1 + ‖U j(s)‖2

HN )‖[ρj+1,∇ · uj+1, c
j+1
1 , c

j+1
2 ]‖2

HN ds + C
∫ t

s
‖∇[c

j+1
1 , c

j+1
2 ]‖2

HN ds

≤ CM2(t − s) + C(M2 + 1)
∫ t

s
‖[ρj+1,∇ · uj+1, c

j+1
1 , c

j+1
2 ]‖2

HN ds

+ C
∫ t

s
‖∇[c

j+1
1 , c

j+1
2 ]‖2

HN ds,

for any 0 ≤ s ≤ t ≤ T1. The time integral on the right-hand side from the above inequality is

bounded by (3.9), and hence EU j+1(t) is continuous in t for each j ≥ 0. Therefore, ‖U j(t)‖2
HN

is continuous in time for each j ≥ 1. Furthermore, U = (ρ, u, c1, c2) is a local solution to the

Cauchy problem (2.2)–(2.3).

For the fourth step, we show that the Cauchy problem (2.2)–(2.3) admits at most one solu-

tion in C([0, T1]; HN(R3)). We assume that there exist two local solutions U, Ũ in C([0, T1]; HN)

which satisfy (3.2). Let ρ̃ = ρ1(x, t)− ρ2(x, t), ũ(x, t) = u1(x, t)− u2(x, t), c̃1(x, t) = c1,1(x, t)−
c1,2(x, t) and c̃2(x, t) = c2,1(x, t)− c2,2(x, t) solve











































∂tρ̃ + n∞∇ · ũ + n∞ρ̃ = −∇ · (ρ̃u1)−∇ · (ρ2ũ)− (ρ1 + ρ2)ρ̃

∂tũ + u1 · ∇ũ − δ∆ũ = −ũ · ∇u2 −
p′(ρ1+n∞)

ρ1+n∞
∇ρ̃ +∇((c1,1 + c1,2)c̃1)

−∇((c2,1 + c2,2))c̃2 −
(

p′(ρ1+n∞)
ρ1+n∞

− p′(ρ2+n∞)
ρ2+n∞

)

∇ρ2

∂t c̃1 = ∆c̃1 − a12c̃1 + a11ρ1c̃1 + a11ρ̃1c1,2

∂t c̃2 = ∆c̃2 − a22c̃2 + a21ρ1c̃2 + a21ρ̃c2,2.

(3.15)
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Multiplying ρ̃ to both sides of the first equation of (3.15) and integrating over R
3, we have

∫

R3
ρ̃∂tρ̃dx + n∞

∫

R3
ρ̃∇ · ũdx + n∞

∫

R3
|ρ̃|2dx

= −
∫

R3
ρ̃∇ · (ρ̃u1)dx +

∫

R3
ρ̃∇ · (ρ2ũ)dx +

∫

R3
(ρ1 + ρ2)ρ̃

2.

Using integration by parts and the Cauchy–Schwarz inequality, we have

1

2
d
dt‖ρ̃‖2

L2+n∞‖ρ̃‖2
L2≤

n∞

2
‖ρ̃‖2

L2 +
n∞

2
‖∇ · ũ‖2

L2 +
1

2
‖∇ · u1‖L∞

∫

R3
|ρ̃|2dx

+ ‖ρ2‖L∞

∫

R3
(|∇ · ũ|2 + |ρ̃|2)dx + ‖∇ρ2‖L∞

∫

R3
(|ũ|2 + |ρ̃|2)dx

+ ‖[ρ1 + ρ2]‖L∞

∫

R3
| ρ̃|2dx. (3.16)

Next, we establish the energy estimates for ũ. By multiplying ũ to both sides of the second

equation of (3.15) and integrating in x, we have
∫

R3
ũ · ∂tũdx +

∫

R3
ũ · (u1 · ∇ũ)dx − δ

∫

R3
ũ · ∆ũdx

= − p′(n∞)

n∞

∫

R3
ũ · ∇u2dx +

∫

R3
ũ · ∇ρ̃dx

+
∫

R3
ũ · ( p′(ρ1 + n∞)

ρ1 + n∞

− p′(n∞)

n∞

)∇ρ̃ +
∫

R3
ũ · ∇((c1,1 + c1,2)c̃1)dx

−
∫

R3
ũ · ∇((c2,1 + c2,2)c̃2)dx −

∫

R3
ũ · ( p′(ρ1 + n∞)

ρ1 + n∞

dx − p′(ρ2 + n∞)

ρ2 + n∞

)∇ρ2dx.

By using integration by parts and the Cauchy–Schwarz inequality, we have

1

2

d

dt
‖ũ‖2

L2+δ‖∇ · ũ‖2
L2≤ ‖∇ · u1‖L∞‖ũ‖2

L2+‖∇ · u2‖L∞‖ũ‖2
L2+

p′(n∞)
2n∞

‖∇ · ũ‖2
L2+

p′(n∞)
2n∞

‖ρ̃‖2
L2

+ ‖ρ1‖L∞(‖∇ · ũ‖2
L2+‖ρ̃‖2

L2) + ‖∇ρ1‖L∞(‖ũ‖2
L2+‖ρ̃‖2

L2)

+ ‖c1,1 + c1,2‖L∞(‖∇ · ũ‖2
L2+‖c̃1‖2

L2)

+ ‖c2,1 + c2,2‖L∞(‖∇ · ũ‖2
L2+‖c̃2‖2

L2) + ‖∇ρ2‖L∞(‖ũ‖2
L2+‖ρ̃‖2

L2).

Since L∞ norms of ρi, ui, c1,i, c2,i where i = 1, 2 are bounded, we have

1

2

d

dt
‖ũ‖2

L2+
δ

2
‖∇ · ũ‖2

L2 ≤ C‖ũ‖2
L2+C‖ρ̃‖2

L2+C‖c̃1‖2
L2+C‖c̃2‖2

L2 . (3.17)

We have a similar way to estimate c̃1 and c̃2 as follows:

1

2

d

dt
‖c̃1‖2

L2 + ‖∇c̃1‖2
L2 + a12‖c̃1‖2

L2≤ a11‖ρ1‖L∞‖c̃1‖2
L2+

a11
2 ‖c1,2‖L∞(‖ρ̃‖2

L2+‖c̃1‖2
L2) (3.18)

1

2

d

dt
‖c̃2‖2

L2 + ‖∇c̃2‖2
L2 + a22‖c̃2‖2

L2≤ a21‖ρ1‖L∞‖c̃2‖2
L2+

a21
2 ‖c2,2‖L∞(‖ρ̃‖2

L2+‖c̃2‖2
L2). (3.19)

By taking a linear combination of all estimates, we obtain

1

2

d

dt
(‖ρ̃‖2

L2+‖ũ‖2
L2+‖c̃1‖2

L2 + ‖c̃2‖2
L2) + λ1(‖∇ · ũ‖2

L2+‖∇̃c1‖2
L2+‖∇̃c2‖2

L2)

+ λ2(‖ρ̃‖2
L2+‖c̃1‖2

L2 + ‖c̃2‖2
L2) ≤ C(‖ρ̃‖2

L2+‖ũ‖2
L2+‖c̃1‖2

L2 + ‖c̃2‖2
L2). (3.20)
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The Gronwall’s inequality implies

sup
0≤t≤T1

(‖ρ̃‖2
L2+‖ũ‖2

L2+‖c̃1‖2
L2 + ‖c̃2‖2

L2)

≤ ecT1(‖ρ̃(0)‖2
L2+‖ũ(0)‖2

L2+‖c̃1(0)‖2
L2 + ‖c̃2(0)‖2

L2). (3.21)

Since the initial data of (ρ̃, ũ, c̃1, c̃2) are all zero for T > 0, that implies the uniqueness of the

local solution.

3.2 A priori estimates

In this subsection, we provide some estimates for the solutions for any t > 0. We use the

energy method to obtain uniform-in-time a priori estimates for smooth solutions to Cauchy

problems (2.2)–(2.3).

Lemma 3.2 (A priori estimates). Let U(t) = (ρ, u, c1, c2) ∈ C([0, T]; HN(R3) be the smooth solu-

tion to the Cauchy problem (2.2)–(2.3) for T > 0 with

sup
0≤t≤T

‖(ρ, u, c1, c2)(t)‖N ≤ ǫ (3.22)

for 0 < ǫ ≤ 1. Then, there are ǫ0 > 0, C0 > 0, λ1 > 0 and λ2 > 0 such that for any ǫ ≤ ǫ0,

‖[ρ, u, c1, c2]‖2
HN + λ1

∫ t

0
‖∇[u, c1, c2]‖2

HN+λ2

∫ t

0
‖[ρ, c1, c2]‖2

HN ≤ C0‖[ρ0, u0, c1,0, c2,0]‖2
HN (3.23)

holds for any t ∈ [0, T].

Proof. First, we find the zero-order estimates. For the estimate of ρ, multiplying ρ to both

sides of the first equation of (2.2) and taking integrations in x ∈ R
3, we obtain

∫

R3
ρρtdx + n∞

∫

R3
ρ∇ · udx + n∞

∫

R3
|ρ|2dx = −

∫

R3
ρ∇ · (ρu)dx −

∫

R3
ρρ2dx.

Using integration by parts and the Cauchy–Schwarz inequality, we have

1

2

∫

R3

(

ρ2
)

t
dx + n∞

∫

R3
|ρ|2dx + n∞

∫

R3
ρ∇ · udx

≤ 1

2
sup

x
|∇u|

∫

R3
|ρ|2dx + sup

x
|ρ|

∫

R3
|ρ|2dx

≤ C‖ρ, u‖HN

∫

R3
|ρ|2dx. (3.24)

Now, we estimate u by multiplying the second equation of (2.2) by u and integrating over R
3.

Then, we have
∫

R3
u · utdx +

∫

R3
u · (u · ∇u)dx − δ

∫

R3
u · ∆udx + p′(n∞)

n∞

∫

R3
u · ∇ρdx

=
∫

R3
u · ∇c2

1dx −
∫

R3
u · ∇c2

2dx −
∫

R3
u ·

(

p′(ρ + n∞)

ρ + n∞

− p′(n∞)

n∞

)

∇ρdx.

By using integration by parts and the Cauchy–Schwarz inequality, we have

1

2

∫

R3

(

u2
)

t
dx + δ

∫

R3
|∇u|2dx − p′(n∞)

n∞

∫

R3
ρ∇ · udx

≤ ‖u‖H1

∫

R3
|∇u|2dx + C‖u‖HN

∫

R3
(|c1|2 + |c2|2 + |ρ|2)dx. (3.25)
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For the estimates of c1, we multiply c1 to both sides of the equation of c1 and integrate with

respect to x, and we have
∫

R3
c1(c1)tdx −

∫

R3
c1∆c1dx + (a12 − n∞a11)

∫

R3
|c1|2dx ≤ a11 sup

x
|ρ|

∫

R3
|c1|2dx.

By using integration by parts, we have

1

2

∫

R3
(c2

1)tdx +
∫

R3
|∇c1|2dx + (a12 − n∞a11)

∫

R3
|c1|2dx ≤ a11‖ρ‖H2

∫

R3
|c1|2dx. (3.26)

Similar to above, from the equation of c2, we have

1

2

∫

R3
(c2

2)tdx +
∫

R3
|∇c2|2dx + (a22 − n∞a21)

∫

R3
|c2|2dx ≤ a21‖ρ‖H2

∫

R3
|c2|2dx. (3.27)

Consider the linear combination d1 × (3.24) + (3.25) + (3.26) + (3.27), where d1 = p′(n∞)
n2

∞
. We

see that as long as E
1
2
N(U) = ‖U‖HN is small so that

(a12 − n∞a11) > a11E
1
2
N(U),

(a22 − n∞a21) > a21E
1
2
N(U)

are satisfied, the linear combination yields

1

2

d

dt

∫

R3

(

d1|ρ|2+|u|2+|c1|2+|c2|2
)

dx + n∞

∫

R3
|ρ|2dx + δ

∫

R3
|∇u|2dx

+
∫

R3
|∇c1|2dx +

∫

R3
|∇c2|2dx + (a12 − n∞a11)

∫

R3
|c1|2dx + (a22 − n∞a21)

∫

R3
|c2|2dx

≤ 0. (3.28)

Now, we make estimates on the high-order derivatives of (ρ, u, c1, c2). Take α with 1 ≤ |α| ≤ N.

Applying ∂α to the first equation of (2.2), multiplying by ∂αρ and then integrating in x, we

have
∫

R3
∂αρ∂αρtdx + n∞

∫

R3
∂αρ∂α∇ · udx + n∞

∫

R3
∂αρ∂αρdx

= −
∫

R3
∂αρ∂α∇ · (ρu)dx −

∫

R3
∂αρ∂αρ2dx.

By using integration by parts and Cauchy-Schwarz inequality, we obtain

1

2

d

dt

∫

R3
(∂αρ)2 dx + n∞

∫

R3
|∂αρ|2dx + n∞

∫

R3
∂αρ∂α∇ · udx

=
∫

R3
∂αρ

α

∑
β=0

C
β
α ∂β∇ · u∂α−βρdx +

∫

R3
∂αρ

α

∑
β=0

C
β
α ∂βu · ∂α−β∇ρdx −

∫

R3
∂αρ∂αρ2dx

≤ C‖u‖HN

∫

R3
|∂αρ|2+C‖ρ‖HN

∫

R3
|∂αρ|2+|∂α∇u|2dx. (3.29)

Similarly for ∂αu, what follows from (2.2)2 is

1

2

d

dt

∫

R3
(∂αu)2 dx − δ

∫

R3
∂αu · ∂α∆udx +

p′(n∞)

n∞

∫

R3
∂αu · ∂α∇ρdx

= −
∫

R3
∂αu · ∂α(u · ∇u)dx +

∫

R3
∂αu · ∂α∇c2

1dx −
∫

R3
∂αu · ∂α∇c2

2dx

−
∫

R3
∂αu · ∂α(( p′(ρ+n∞)

ρ+n∞
− p′(n∞)

n∞
)∇ρ)dx.
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By using integration by parts and the Cauchy–Schwarz inequality, we have

1

2

d

dt

∫

R3
(∂αu)2 dx + δ

∫

R3
|∂α∇u|2dx − p′(n∞)

n∞

∫

R3
∂α∇ · u ∂αρ dx

≤ C‖u‖HN

∫

R3
|∂αu|2dx + C‖c1‖HN

∫

R3
(|∂αu|2+|∂α∇c1|2)dx

+ C‖c2‖HN

∫

R3
(|∂αu|2+|∂α∇c2|2)dx + C‖ρ‖HN

∫

R3
|∂αu|2dx + |∂αρ|2dx. (3.30)

Similarly, we estimate c1, c2 as follows:

1

2

d

dt

∫

R3
(∂αc1)

2 +
∫

R3
|∇∂αc1|2ds + (a12 − n∞a11)

∫

R3
|∂αc1|2ds

≤ C‖ρ‖HN

∫

R3
‖∂αc1|2ds + C‖c1‖HN

∫

R3
(|∂αc1|2+|∂αρ|2)ds, (3.31)

and

1

2

d

dt

∫

R3
(∂αc2)

2 +
∫

R3
|∇∂αc2|2ds + (a22 − n∞a21)

∫

R3
|∂αc2|2ds

≤ C‖ρ‖HN

∫

R3
‖∂αc2|2ds + C‖c2‖HN

∫

R3
(|∂αc2|2+|∂αρ|2)ds. (3.32)

Then, after taking the summation over 1 ≤ |α| 6 N and the combination (3.29)× d1 + (3.30) +

(3.31) + (3.32), we obtain

1

2

d

dt ∑
1≤|α|≤N

Cα

∫

R3
|∂α(ρ, u, c1, c2)|2+λ1 ∑

1≤|α|≤N

∫

R3
|∂α∇(u, c1, c2)|2dx

+ λ2 ∑
1≤|α|≤N

∫

R3
|∂α(ρ, c1, c2)|2dx ≤ 0, (3.33)

for some positive constants Cα, λ1 and λ2. Therefore (3.23) follows from the further linear

combination of (3.28) and (3.33) and the time integration over [0, T]. This completes the proof

of Lemma 3.2.

Now, we are ready to present the proof of Proposition 2.1.

Proof of Proposition 2.1. Choose a positive constant M = min{ǫ0, ǫ1}, where ǫ0 > 0 and ǫ1 > 0

are given in Lemma 3.1 and Lemma 3.2.

Let U0 ∈ HN(R3) satisfy ‖U0‖HN<
M

2
√

C0+1
. Now, let us define

T = {t ≥ 0 : sup
0≤s≤t

‖U(s)‖HN≤ M}.

Since ‖U0‖HN≤ M
2
√

C0+1
≤ M

2 < M ≤ ǫ0, then T > 0 holds from the local existence result. If T

is finite, from the definition of T, we have

sup
0≤s≤t

‖U‖HN= M. (3.34)

On the other hand, from a priori estimates, we have

sup
0≤s≤t

‖U(s)‖HN≤
√

C0‖U0‖HN≤ M
√

C0

2
√

C0 + 1
≤ M

2 ,

which is a contradiction to (3.34). Therefore, T = ∞ holds. This implies that the local solution

U(t) obtained in Lemma 3.1 can be extended to infinity in time. Thus, we have a global

solution (ρ, u, c1, c2)(t) ∈ C([0, ∞); HN). This completes the proof of Proposition 2.1.
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4 Linearized homogeneous system

In this section, to study the time-decay property of solutions to the nonlinear system (2.2), we

have to consider the following Cauchy problem arising from the system (2.2)–(2.3)























∂tρ + n∞∇ · u + n∞ρ = g1

∂tu − δ∆u + p′(n∞)
n∞

∇ρ = g2

∂tc1 − ∆c1 + (a12 − a11)c1 = g3

∂tc2 − ∆c2 + (a22 − a21)c2 = g4,

(4.1)

with initial data

(ρ, u, c1, c2)|t=0 = U0 = (ρ0, u0, c1,0, c2,0). (4.2)

Here, the nonlinear source term takes the form























g1 = −∇ · (ρu)− ρ2

g2 = −u · ∇u +∇c2
1 −∇c2

2 − ( p′(ρ+n∞)
ρ+n∞

− p′(n∞)
n∞

)∇ρ.

g3 = a11ρc1

g4 = a21ρc2.

(4.3)

To obtain the time-decay rates of the solution to the system (4.1) in the next section, we

are concerned with the following Cauchy problem for the linearized homogenous system

corresponding to (4.1)






















∂tρ + n∞∇ · u + n∞ρ = 0

∂tu − δ∆u + p′(n∞)
n∞

∇ρ = 0

∂tc1 − ∆c1 + (a12 − a11)c1 = 0

∂tc2 − ∆c2 + (a22 − a21)c2 = 0.

(4.4)

In this section, we always denote U1 = [ρ, u] as the solution to the linearized homogeneous

system
{

∂tρ + n∞∇ · u + n∞ρ = 0

∂tu − δ∆u + p′(n∞)
n∞

∇ρ = 0,
(4.5)

with the initial data U1|t=0 = U1,0 = (ρ0, u0) in R
3.

4.1 Representation of solutions

We first find the explicit representation of the Fourier transform of the solution U1 = [ρ, u] for

the system
{

ρt + n∞∇ · u + n∞ρ = 0

ut − δ∆u + p′(n∞)
n∞

∇ρ = 0,
(4.6)

with initial data U1|t=0 = U1,0 = (ρ0, u0).

After taking the Fourier transform in x for the first equation of (4.6), we have

ρ̂t + n∞iξû + n∞ρ̂ = 0, (4.7)

with initial data ρ̂|t=0 = ρ̂0.
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Similarly, by taking the Fourier transform for the second equation of (4.6), we get

ût + δ|ξ|2û + p′(n∞)
n∞

iξρ̂ = 0, (4.8)

with initial data û|t=0 = û0.

Further, by taking the dot product of (4.8) with ξ̃, we have

ξ̃ · ût + δ|ξ|2ξ̃ · û + i
p′(n∞)

n∞
ξ̃ · ξρ̂ = 0. (4.9)

Here and in the sequel we set ξ̃ = ξ
|ξ| for |ξ| 6= 0.

Then, we have
{

ρ̂t + in∞ξ · û + n∞ρ̂ = 0

ξ̃ · ût + δ|ξ|2ξ̃ · û + i
p′(n∞)

n∞
ξ̃ · ξρ̂ = 0.

(4.10)

We can rewrite (4.10) as

∂tÛ = A(ξ)Û, (4.11)

with Û(ξ, t) = (ρ̂(ξ, t), ξ̃ · û(ξ, t))T and

A(ξ) =

[

−n∞ −in∞|ξ|
−i

p′(n∞)
n∞

|ξ| −δ|ξ|2

]

,

where T denotes the transpose of a row vector. Then,

det(A − λI) = λ2 + (δξ2 + n∞)λ + δn∞|ξ|2 + p′(n∞)|ξ|2 = 0.

The eigenvalues of the system are as follows

λ1 = −1

2
(δξ2 + n∞) +

1

2

√

(δξ2 + n∞)2 − 4|ξ|2(δn∞ + p′(n∞))

λ2 = −1

2
(δξ2 + n∞)−

1

2

√

(δξ2 + n∞)2 − 4|ξ|2(δn∞ + p′(n∞)).

Therefore, the eigenvectors corresponding to the eigenvalues λ of A(ξ) that satisfy (A −
λI)X = 0 are

v1 =

[

in∞|ξ|
−(n∞ + λ1)

]

and

v2 =

[

in∞|ξ|
−(n∞ + λ2)

]

.

From the work above, one can define the general solution of (4.10) as

[

ρ̂

ξ̃ · û

]

=

[

in∞|ξ|eλ1t in∞|ξ|eλ2t

−(n∞ + λ1)e
λ1t −(n∞ + λ2)eλ2t

] [

d1

d2

]

, (4.12)

where d1, d2 satisfy

[

ρ̂|t=0

ξ̃ · û|t=0

]

=

[

in∞|ξ| in∞|ξ|
−(n∞ + λ1) −(n∞ + λ2)

] [

d1

d2

]

.

From this, we deduce that
[

d1

d2

]

= 1
in∞|ξ|(λ1−λ2)

[−(n∞ + λ2) −in∞|ξ|
(n∞ + λ1) in∞|ξ|

] [

ρ̂0

ξ̃ · û0

]

. (4.13)
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Therefore, we have

[

ρ̂

ξ̃ · û

]

= 1
in∞|ξ|(λ1−λ2)

[

in∞|ξ|eλ1t in∞|ξ|eλ2t

−(n∞ + λ1)e
λ1t −(n∞ + λ2)eλ2t

][−(n∞ + λ2) −in∞|ξ|
(n∞ + λ1) in∞|ξ|

][

ρ̂0

ξ̃ · û0

]

. (4.14)

It is straightforward to obtain

ρ̂ =
(λ1 + n∞)eλ2t − (λ2 + n∞)eλ1t

(λ1 − λ2)
ρ̂0 − in∞

eλ1t − eλ2t

(λ1 − λ2)
ξ · û0 (4.15)

and

ξ̃ · û =
(n∞ + λ1)(n∞ + λ2)

in∞|ξ|

(

eλ1t − eλ2t

λ1 − λ2

)

ρ̂0 +
(λ1 + n∞)eλ1t − (λ2 + n∞)eλ2t

λ1 − λ2
ξ̃ · û0. (4.16)

Moreover, by taking the curl for the second equation of (4.6), we have

∇× ut − δ∇× ∆u +
p′(n∞)

n∞

∇×∇ρ = 0, (4.17)

since ∇×∇ρ = 0 implies

∂t(∇× u)− δ∇× ∆u = 0.

Taking the Fourier transform in x for the above equation, we have

∂t(ξ̃ × û) + δ|ξ|2(ξ̃ × û) = 0. (4.18)

Initial data is given as

(ξ̃ × û)|t=0 = ξ̃ × û0. (4.19)

By solving the initial value problem (4.18) and (4.19), we have

ξ̃ × û = e−δ|ξ|2t ξ̃ × û0. (4.20)

For t ≥ 0 and ξ ∈ R
3 with |ξ| 6= 0, one has the decomposition û = ξ̃ ξ̃ · û − ξ̃ × (ξ̃ × û). It is

straightforward to get

û =
(n∞ + λ1)(n∞ + λ2)

in∞|ξ|2
(

eλ1t − eλ2t

λ1 − λ2

)

ξ · ρ̂0

+

(

(λ1 + n∞)eλ1t − (λ2 + n∞)eλ2t

λ1 − λ2

)

ξ̃ ξ̃ · û0 − e−δ|ξ|2t ξ̃ × (ξ̃ × û0). (4.21)

Then

û =
(n∞ + λ1)(n∞ + λ2)

in∞|ξ|

(

eλ1t − eλ2t

λ1 − λ2

)

ξ

|ξ| ρ̂0

+

(

(λ1 + n∞)eλ1t − (λ2 + n∞)eλ2t

λ1 − λ2

)

ξ ⊗ ξ

|ξ|2 û0 + e−δ|ξ|2t(I3 −
ξ ⊗ ξ

|ξ|2 )û0. (4.22)

After summarizing the above computations on the explicit representation of the Fourier

transform of the solution U1 = [ρ, u], we have

[

ρ̂(ξ, t)

û(ξ, t)

]

= Ĝ(ξ, t)

[

ρ̂(ξ, 0)

û(ξ, 0)

]

.
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We can verify the exact expression of the Fourier transform Ĝ(ξ, t) of Green’s function G(ξ, t)=

etB as

Ĝ(ξ, t) =

[

Ĝ11 Ĝ12

Ĝ21 Ĝ22

]

=





(λ1+n∞)eλ2t−(λ2+n∞)eλ1t

λ1−λ2
−in∞ξ eλ1t−eλ2t

(λ1−λ2)
(n∞+λ1)(n∞+λ2)ξ

in∞|ξ|2
(

eλ1t−eλ2t

λ1−λ2

)

(λ1+n∞)eλ1t−(λ2+n∞)eλ2t

λ1−λ2

ξ⊗ξ
|ξ|2 + e−δξ2t(I3 − ξ⊗ξ

|ξ|2 )



 . (4.23)

4.2 L2–Lq time-decay property

In this subsection, we use (4.23) to obtain the refined L2–Lq time-decay property for

U1 = (ρ, u) = etBU1,0,

where etB is the linear solution operator for t ≥ 0. For this, we need to find the time-frequency

pointwise estimate on ρ̂, û in the following lemma.

Lemma 4.1. Let U1 = [ρ, u] be the solution to the linear homogeneous system (4.6) with the initial

data U1|t=0 = (ρ0, u0). Then there exist constants ǫ > 0, λ > 0, C > 0 such that for all t > 0, |ξ| ≤ ǫ,

|ρ̂(ξ, t)| ≤ C(|ξ|2e−λ|ξ|2t + e−n∞λt)|ρ̂0(ξ)|+ C(|ξ|e−λ|ξ|2t + |ξ|e−n∞λt)|û0(ξ)|, (4.24)

|û(ξ, t)| ≤ C|ξ|(e−λ|ξ|2t + e−n∞λt)|ρ̂0(ξ)|+ C(e−λ|ξ|2t + |ξ|2e−n∞λt)|û0(ξ)|, (4.25)

and for all t > 0, |ξ| ≥ ǫ,

|ρ̂(ξ, t)| ≤ Ce−λt|ρ̂0(ξ), û0(ξ)|, (4.26)

|û(ξ, t)| ≤ Ce−λt|ρ̂0(ξ), û0(ξ)|. (4.27)

Proof. In order to obtain the upper bound of ρ̂(ξ, t) and û(ξ, t), we have to estimate Ĝ11, Ĝ12,

Ĝ21, and Ĝ22 in (4.23). To do so, we need to deal with the low frequency |ξ| ≤ ǫ and high

frequency |ξ| > ǫ. By using the definition of the eigenvalue, we can analyze the eigenvalue

for |ξ| → 0 as

λ1 ∼ −O(1)|ξ|2,

λ2 ∼ −n∞ + O(1)|ξ|2.

On the other hand, we have the leading orders of the eigenvalue for |ξ| → ∞ as

λ1 ∼ −O(1),

λ2 ∼ −δξ2 + O(1).

Now, we can estimate Ĝ(ξ, t) as follows: For |ξ| ≤ ǫ,

|Ĝ11| ≤ C(|ξ|2e−λ|ξ|2t + e−n∞λt),

|Ĝ12| ≤ |ξ|(e−λ|ξ|2t + e−n∞λt),

|Ĝ21| ≤ C|ξ|(e−λ|ξ|2t + e−n∞λt),

|Ĝ22| ≤ C(e−λ|ξ|2t + |ξ|2e−n∞λt) + Ce−δ|ξ|2t,

≤ C(e−λ|ξ|2t + |ξ|2e−n∞λt),
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and for |ξ| > ǫ

|Ĝ11| ≤ Ce−O(1)λt ≤ Ce−λt,

|Ĝ12| = |Ĝ21| ≤ Ce−λt,

|Ĝ22| ≤ Ce−δ|ξ|2t + Ce−O(1)t ≤ Ce−λt.

Since the real parts of the eigenvalues are negative except when ξ = 0, Ĝ decays exponentially

when the eigenvalues coalesce.

Therefore, after plugging the above computations into (4.15) and (4.22), it holds that

|ρ̂(ξ, t)| ≤ C(|ξ|2e−λ|ξ|2t + e−n∞λt)|ρ̂0(ξ)|+ C(|ξ|e−λ|ξ|2t + |ξ|e−n∞λt)|û0(ξ)|
and

|û(ξ, t)| ≤ C|ξ|(e−λ|ξ|2t + e−n∞λt)|ρ̂0(ξ)|+ C(e−λ|ξ|2t + |ξ|2e−n∞λt)|û0(ξ)|,
for |ξ| ≤ ǫ. This proves (4.24) and (4.25). Finally, (4.26) and (4.27) can be proven in the

completely same way as for (4.24) and (4.25). This completes the proof of Lemma 4.1.

Theorem 4.2. Let 2 ≤ q ≤ ∞, and let m ≥ 0 be an integer. Suppose that U1 = eBtU1,0 is the

solution to the Cauchy problem (4.6) with the initial data U1,0 = (ρ0, u0). Then U1 = [ρ, u] satisfies

the following time-decay property:

‖∇mρ(t)‖Lq ≤ C(1 + t)−
3
2 (1− 1

q )−m+1
2 ‖ρ0, u0‖L1 + e−λt‖∇m+[3( 1

2− 1
q )]+(ρ0, u0)‖L2 , (4.28)

‖∇mu(t)‖Lq ≤ C(1 + t)−
3
2 (1− 1

q )−m
2 ‖ρ0, u0‖L1 + e−λt‖∇m+[3( 1

2− 1
q )]+(ρ0, u0)‖L2 , (4.29)

for any t ≥ 0, where C = C(m, q) and [3( 1
2 − 1

q )]+ is defined as

[

3

(

1

2
− 1

q

)]

+

=

{

0 if q = 2
[

3
(

1
2 − 1

q

)]

− + 1 if q 6= 2
(4.30)

where [·]− denotes the integer part of the argument.

Proof. Take 2 ≤ q ≤ ∞ and an integer m ≥ 0. Set U1 = eBtU1,0. From the Hausdorff–Young

inequality,

‖∇mρ(t)‖Lq(R3
x)
≤ C‖|ξ|mρ̂(ξ, t)‖Lq ′(R3

ξ )

≤ C‖|ξ|mρ̂(ξ, t)‖Lq ′(|ξ|≤ǫ) + C‖|ξ|mρ̂(ξ, t)‖Lq ′(|ξ|≥ǫ), (4.31)

where 1
q +

1
q′ = 1.

We estimate the first term of (4.31) by using (4.24), as follows:

‖|ξ|mρ̂(ξ, t)‖q′

Lq ′(|ξ|≤ǫ)
≤ c

∫

|ξ|≤ǫ
[(|ξ|(m+2)q′e−λq′|ξ|2t + |ξ|mq′e−n∞λq′t)|ρ̂0(ξ)|q

′

+ c(|ξ|mq′+q′e−λq′|ξ|2t + |ξ|mq′+q′e−n∞λq′t)|û0(ξ)|q ′]dξ

≤ C sup
ξ

|ρ̂0|q ′
∫

|ξ|≤ǫ
(|ξ|(m+2)q′e−q′λ|ξ|2(1+t)+q′λ|ξ|2 + |ξ|mq′e−n∞λq′t)dξ

+ C sup
ξ̂

|û0|q ′
∫

|ξ|≤ǫ
(|ξ|(m+1)q′e−λq′|ξ|2(1+t)+λq′|ξ|2 + |ξ|(m+1)q′e−n∞λq′t)dξ

≤ C(1 + t)−
mq′+2q′+3

2 ‖ρ0‖q′

L1 + C(1 + t)−
mq′+q′+3

2 ‖u0‖q′

L1

+ Ce−n∞λq′t‖[ρ0, u0]‖q′

L1 .
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Thus,

‖|ξ|mρ̂(ξ, t)‖Lq′ (|ξ|≤ǫ) ≤ C(1 + t)
− 3

2q′ −
m+2

2 ‖ρ0‖L1 + C(1 + t)
− 3

2q′ −(m+1
2 )‖u0‖L1

+ Ce−n∞λt‖[ρ0, u0]‖L1

≤ C(1 + t)−
3
2 [1− 1

q ]−m+1
2 ‖[ρ0, u0]‖L1 . (4.32)

Now, we estimate the second term of (4.31) from (4.26) as

‖|ξ|mρ̂(ξ, t)‖Lq′ (|ξ|≥ǫ) ≤ C

[

∫

|ξ|≥ǫ
|ξ|mq′e−q′λt|ρ̂0(ξ), û0(ξ)|q

′
dξ

]
1
q′

Now, take ǫ1 > 0 which is small enough. By the Hölder inequality 1
q′ =

1
2 +

2−q′

2q′ , we have

‖|ξ|mρ̂(ξ, t)‖Lq′ (|ξ|≥ǫ) ≤ C

[

∫

|ξ|≥ǫ
|ξ|−(3+ǫ)( 2−q′

2 )|ξ|(3+ǫ)( 2−q′
2 )+mq′e−q′λt|ρ̂0(ξ), û0(ξ)|q ′dξ

]
1
q′

≤ Ce−λt

[

∫

|ξ|≥ǫ
|ξ|−(3+ǫ)dξ

]

2−q′
2q′

[

∫

|ξ|≥ǫ
|ξ|((3+ǫ)( 2−q′

2 )+mq′) 2
q′ |ρ̂0(ξ), û0(ξ)|q

′( 2
q′ )dξ

]( 1
q′ )(

q′
2 )

≤ Ce−λt‖|ξ|−(3+ǫ)‖
2−q′
2q′ ‖|ξ|(3+ǫ) 2−q′

2q′ +m
[ρ̂0(ξ), û0(ξ)]‖L2

≤ Ce−λt‖∇m+(3+ǫ) 2−q′
2q′ [ρ0, u0]‖L2

≤ Ce−λt‖∇m+3[ 1
q′ −

1
2 ]+ [ρ0, u0]‖L2

≤ Ce−λt‖∇m+3[ 1
2− 1

q ]+ [ρ0, u0]‖L2 , (4.33)

after plugging (4.33) and (4.32) into (4.31) implies (4.28).

To prove (4.29), it similarly holds that

‖∇mu(t)‖Lq(R3
x)
≤ C‖|ξ|mû(ξ, t)‖Lq ′(R3

ξ )

≤ C‖|ξ|mû(ξ, t)‖Lq ′(|ξ|≤ǫ) + C‖|ξ|mû(ξ, t)‖Lq ′(|ξ|≥ǫ), (4.34)

where from (4.25), the first term is

‖|ξ|mû(ξ, t)‖q′

Lq′ (|ξ|≤ǫ)
≤ C

∫

|ξ|≤ǫ
(|ξ|mq′+q′(e−q′λ|ξ|2(t+1) + e−n∞λq′t)|ρ̂0(ξ)|q ′)dξ

+ C
∫

ξ≤ǫ
(|ξ|mq′e−λq′|ξ|2(t+1) + |ξ|(m+2)q′e−n∞λq′t)|û0(ξ)|q ′dξ

≤ C(1 + t)−
mq′+q′+3

2 ‖[ρ0‖q′

L1 + (1 + t)−
mq′+3

2 ‖u0‖q′

L1

+ Ce−n∞λq′t‖[ρ0, u0]‖q ′
L1 .

It follows that

‖|ξ|mû(ξ, t)‖Lq′ (|ξ|≤ǫ) ≤ C(1 + t)
− 3

2q′ −
m+1

2 ‖[ρ0‖L1

+ (1 + t)
− 3

2q′ −
m
2 ‖u0‖L1 + Ce−n∞λt‖[ρ0, u0]‖L1

≤ C(1 + t)−
3
2 [1− 1

q ]−m+1
2 ‖ρ0‖L1 + (1 + t)−

3
2 [1− 1

q ]−m
2 ‖u0‖L1

≤ C(1 + t)−
3
2 [1− 1

q ]−m
2 ‖[ρ0, u0]‖L1 . (4.35)
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Similarly to obtaining (4.33), one has

‖|ξ|mû(ξ, t)‖Lq ′(|ξ|≥ǫ) ≤ Ce−λt‖∇m+3[ 1
2− 1

q ]+ [ρ0, u0]‖L2 . (4.36)

Thus, plugging (4.35) and (4.36) into (4.34) implies (4.29). This completes the proof of Theo-

rem 4.2.

Corollary 4.3. Assume that U1 = eBtU1,0 is the solution to the Cauchy problem (4.6) with initial data

U1,0 = [ρ0, u0]. Then U1 = [ρ, u] satisfies the following:

‖ρ(t)‖L2 ≤ C(1 + t)−
5
4 ‖[ρ0, u0]‖L1 + e−λt‖[ρ0, u0]‖L2 , (4.37)

‖u(t)‖L2 ≤ C(1 + t)−
3
4 ‖[ρ0, u0]‖L1 + e−λt‖[ρ0, u0]‖L2 , (4.38)

‖ρ(t)‖L∞ ≤ C(1 + t)−2‖[ρ0, u0]‖L1 + e−λt‖[ρ0, u0]‖Ḣ2 , (4.39)

‖u(t)‖L∞ ≤ C(1 + t)−
3
2 ‖[ρ0, u0]‖L1 + e−λt‖[ρ0, u0]‖Ḣ2 . (4.40)

5 Time-decay rates for the nonlinear system

In this section, we will prove (2.5)–(2.7) in Proposition 2.2. The main idea is to introduce a

general approach to combine the energy estimates and spectral analysis. We will apply the

linear L2 − Lq time-decay property of the linearized homogeneous system (4.4), studied in

the previous section, to the nonlinear case. We need the mild form of the original nonlin-

ear Cauchy problem (2.2). Throughout this section, we suppose that U = [ρ, u, c1, c2] is the

solution to the Cauchy problem (2.3) with initial data U0 = (ρ0, u0, c1,0, c2,0).

Then, by Duhamel’s principle, the solution U = [ρ, u, c1, c2] can be formally written as

U(t) = eBtU0 +
∫ t

0
e(t−s)B[g1, g2, g3, g4]ds, (5.1)

where eBtU0 is the solution to the Cauchy problem (4.1) with initial data U0 = (ρ0, u0, c1,0, c2,0).

Here, the nonlinear source term takes the form (4.3).

5.1 Time rate for the energy functional and high-order energy functional

In this subsection, we will prove the time-decay rate for the energy functional ‖U(t)‖2
HN and

the time-decay rate for the high-order energy functional ‖∇U(t)‖2
HN . For that, we investigate

the time-decay rates of solutions in Proposition 2.1 under extra conditions on the given initial

data U0 = [ρ0, u0, c1,0, c2,0]. We define

ǫHN (U0) = ‖U0‖HN + ‖[ρ0, u0]‖L1 , (5.2)

for an integer N ≥ 4. We also define ENU(t) ∼ ‖[ρ, u, c1, c2]‖2
HN as the energy functional and

DNU(t) ∼ ‖[∇(u, c1, c2)]‖2
HN , Dh

NU(t) ∼ ‖[ρ, c1, c2]‖2
HN as the dissipation rates.

First, we start with this proposition for the energy functional and the high-order energy

functional.
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Proposition 5.1. Let U = [ρ, u, c1, c2] be the solution to the Cauchy problem (2.2) with initial data

U0 = (ρ0, u0, c1,0, c2,0). If ǫN+1(U0) > 0 is small enough, then the solution U = [ρ, u, c1, c2] satisfies

‖U(t)‖HN ≤ ǫN+1(U0)(1 + t)
−3
4 , (5.3)

and

‖∇U(t)‖HN ≤ ǫN+1(U0)(1 + t)
−5
4 , (5.4)

for any t ≥ 0.

Proof. Suppose ǫN+1(U0) is sufficiently small. From Proposition 2.1 the solution U=[ρ, u, c1, c2]

satisfies:
d

dt
EN(U(t)) + λ1DN(U(t)) + λ2Dh

N(U(t)) ≤ 0, (5.5)

for t ≥ 0.

Now, we proceed by making the time-weighted estimate and iteration for the inequality

(5.5). Let l ≥ 0. Multiplying (5.5) by (1 + t)l and integrating over [0, t] gives

(1 + t)lENU(t) + λ1

∫ t

0
(1 + s)lDN(U(s))ds + λ2

∫ t

0
(1 + s)lDh

N(U(s))ds

≤ EN(U0) + l
∫ t

0
(1 + s)l−1ENU(s)ds

≤ EN(U0) + Cl
∫ t

0
(1 + s)l−1(DN−1U(s) +Dh

N(U(s)) + ‖u(s)‖2
L2)ds,

where we have used

ENU(t) ≤ CDN−1U(t) + CDh
N(U(t)) + ‖u(t)‖2

L2 .

Using (5.5) again, we have

EN+1(U(t)) + λ1

∫ t

0
DN+1(U(t)) + λ2

∫ t

0
Dh

N+1(U(t)) ≤ EN+1(U0),

and

(1 + t)l−1EN+1U(t) + λ1

∫ t

0
(1 + s)l−1DN+1(U(s))ds + λ2

∫ t

0
(1 + s)l−1Dh

N+1(U(s))ds

≤ EN+1(U0) + C(l − 1)
∫ t

0
(1 + s)l−2EN+1U(s)ds

≤ EN+1(U0) + C(l − 1)
∫ t

0
(1 + s)l−2(DNU(s) + CDh

N+1(U(s)) + ‖u(s)‖2
L2)ds.

By iterating the above estimates for 1 < l < 2, we have

(1 + t)lENU(t) + λ1

∫ t

0
(1 + s)lDN(U(s))ds + λ2

∫ t

0
(1 + s)lDh

N(U(s))ds

≤ EN+1(U0) + C
∫ t

0
(1 + s)l−1‖u(s)‖2

L2 ds. (5.6)

To estimate the integral term on the right-hand side of (5.6), let us define

EN,∞(U(t)) = sup
0≤s≤T

(1 + t)
3
2 ENU(t).
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Now, we estimate the integral term on the right-hand side of (5.6) by applying the linear

estimate on u in (4.38) to the mild form (5.1), giving us

‖u(t)‖L2 ≤ C(1 + t)
−3
4 ‖ρ0, u0‖L1 + Ce−λt‖ρ0, u0‖L2

+ C
∫ t

0
(1 + t − s)

−3
4 ‖g1, g2‖L1 ds + C

∫ t

0
e−λ(t−s))‖g1, g2‖L2 ds. (5.7)

Recall the definitions (4.3) of g1 and g2. It is direct to check that for any 0 ≤ s ≤ t,

‖g1(s), g2(s)‖L1∩L2 ≤ CENU(t) ≤ C(1 + s)
−3
2 EN,∞U(t),

where

EN,∞(U(t)) = sup
0≤s≤T

(1 + t)
3
2 ENU(t).

Putting the above inequalities into (5.7), gives

‖u(t)‖L2 ≤ C(1 + t)
−3
4 (‖ρ0, u0‖L1∩L2 + EN,∞U(t)). (5.8)

Next, we prove the uniform-in-time boundedness of EN,∞U(t) which yields the time-decay

rates of the energy functional ENU(t). In fact, by taking l = 3
2 + ǫ in (5.6) where ǫ > 0 is

sufficiently small, it follows that

(1 + t)
3
2+ǫENU(t) + λ1

∫ t

0
(1 + s)

3
2+ǫDN(U(s))ds + λ2

∫ t

0
(1 + s)

3
2+ǫDh

N(U(s))ds

≤ EN+1(U0) + C
∫ t

0
(1 + s)

1
2+ǫ‖u(s)‖2

L2 ds.

Here, using (5.10) and the fact that EN,∞(U(t)) is non-decreasing in t, it further holds that

∫ t

0
(1 + s)

1
2+ǫ‖u(t)‖2

L2 ds ≤ C(1 + t)ǫ(E2
N,∞U(t)) + ‖ρ0, u0‖2

L1∩L2).

Therefore, it follows that

(1 + t)
3
2+ǫENU(t) + λ1

∫ t

0
(1 + s)

3
2+ǫDN(U(s))ds + λ2

∫ t

0
(1 + s)

3
2+ǫDh

N(U(s))ds

≤ EN+1(U0) + C(1 + t)ǫ(E2
N,∞U(t)) + ‖ρ0, u0‖2

L1∩L2),

which implies

(1 + t)
3
2 ENU(t) ≤ C(EN+1(U0) + ‖ρ0, u0‖2

L1 + E2
N,∞U(t)),

and thus

EN,∞U(t) ≤ C(ǫ2
N+1(U0) + E2

N,∞U(t)).

Since ǫN+1(U0) > 0 is sufficiently small, it holds that EN,∞U(t)) ≤ Cǫ2
N+1(U0) for any t ≥ 0,

which gives ‖U(s)‖HN ≤ C(ENU(t))
1
2 ≤ CǫN+1(U0)(1 + t)−

3
4 . This proves (5.3).

Now, we estimate the high-order energy functional. By comparing the definitions of

ENU(t), DNU(t) and Dh
NU(t), it follows from (5.5) that we have

d

dt
‖∇U(t)‖2

HN + λ‖∇U(t)‖2
HN ≤ C‖∇u(t)‖2

L2 ,
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which implies

‖∇U(t)‖2
HN ≤ e−λt‖∇U0‖2

HN + C
∫ t

0
e−λ(t−s)‖∇u(s)‖2

L2 ds, (5.9)

for any t ≥ 0.

Similarly to obtaining (5.8), we estimate the time integral term on the (r.h.s.) of the above

inequality. One can apply the linear estimate (4.29) to the mild form (5.1) so that

‖∇u(t)‖L2 ≤ C(1 + t)
−5
4 ‖ρ0, u0‖L1 + Ce−λt‖[ρ0, u0]‖Ḣ1

+ C
∫ t

0
(1 + t − s)

−5
4 ‖[g1(s), g2(s)]‖L1 ds + C

∫ t

0
e−λ(t−s)‖[g1(s), g2(s)]‖Ḣ1 ds. (5.10)

Recall the definition (4.3) of g1 and g2. It is straightforward to check that for any 0 ≤ s ≤ t,

‖[g1(s), g2(s)]‖L1∩Ḣ1 ≤ CENU(s) ≤ Cǫ2
N+1(U0)(1 + s)

−3
2 .

Putting this into (5.10) gives

‖∇u(t)‖L2 ≤ CǫN+1(U0)(1 + t)
−5
4 . (5.11)

Then, by using (5.11) in (5.9), we have

‖∇U(t)‖2
HN ≤ e−λt‖∇U0‖2

HN + Cǫ2
N+1(U0)(1 + t)

−5
2 ,

which implies (5.4). The proof of Proposition 5.1 is complete.

5.2 Time-decay rate in Lq

In this subsection, we will prove Proposition 2.2 for time-decay rates in Lq with 2 ≤ q ≤ ∞

corresponding to (1.4)–(1.6) in Theorem 1.1. For N ≥ 4, Proposition 5.1 shows that if ǫN+1(U0)

is small enough,

‖U(s)‖HN ≤ CǫN+1(U0)(1 + t)−
3
4 , (5.12)

and

‖∇U(t)‖HN ≤ CǫN+1(U0)(1 + t)
−5
4 . (5.13)

Now, let us establish the estimates on u, ρ as follows.

Estimate on ‖u(t)‖Lq . For the L2 rate, it is easy to see from (5.8) and (5.12) that

‖u(t)‖L2 ≤ CǫN+1(U0)(1 + t)
−3
4 ≤ C(1 + t)

−3
4 .

For the L∞ rate, by applying the L∞ linear estimate on u in (4.40) to the mild form (5.1), we

have

‖u(t)‖L∞ ≤ C(1 + t)
−3
2 ‖ρ0, u0‖L1 + Ce−λt‖∇2[ρ0, u0]‖L2

+ C
∫ t

0
(1 + t − s)

−3
2 ‖[[g1(s), g2(s)]‖L1 ds + C

∫ t

0
e−λ(t−s)‖∇2[g1(s), g2(s)]‖L2 ds

≤ C(1 + t)
−3
2 ‖ρ0, u0‖L1∩Ḣ2 + C

∫ t

0
(1 + t − s)

−3
2 ‖[g1(s), g2(s)]‖L1∩Ḣ2 ds. (5.14)

Since by (5.12) and (5.13)

‖[g1(s), g2(s)]‖L1∩Ḣ2 ≤ C‖∇U(t)‖HN‖U(s)‖HN ≤ Cǫ2
N+1(U0)(1 + s)−2,
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it follows that

‖u(t)‖L∞ ≤ CǫN+1(U0)(1 + t)
−3
2 .

Then, by L2 − L∞ interpolation,

‖u‖Lq ≤ CǫN+1(U0)(1 + t)
−3
2 + 3

2q (5.15)

for 2 ≤ q ≤ ∞.

Estimate on ‖ρ(t)‖Lq . For the L2 rate, utilizing the L2 estimate on ρ in (4.37) to (5.1), we have

‖ρ(t)‖L2 ≤ C(1 + t)
−5
4 ‖ρ0, u0‖L1 + Ce−λt‖ρ0, u0‖L2 + C

∫ t

0
(1 + t − s)

−5
4 ‖g1, g2‖L1 ds

+ C
∫ t

0
e−λ(t−s)‖g1(s), g2(s)‖L2 ds. (5.16)

Due to (5.12),

‖g1(s), g∗2(s)‖L1∩L2 ≤ C‖U(s)‖2
HN ≤ Cǫ2

N+1(U0)(1 + t)
−3
2 .

Then (5.16) implies the slower decay estimate

‖ρ(t)‖L2 ≤ CǫN+1(U0)(1 + t)
−5
4 ≤ C(1 + t)

−5
4 . (5.17)

For the L∞ rate, utilizing the L∞ estimate on ρ in (4.39) to (5.1), we have

‖ρ(t)‖L∞ ≤ (1 + t)−2‖ρ0, u0‖L1∩Ḣ2 + C
∫ t

0
(1 + t − s)−2‖[g1(s), g2(s)]‖L1∩Ḣ2 ds. (5.18)

Since by (5.12) and (5.13)

‖[g1(s), g2(s)]‖L1∩Ḣ2 ≤ C‖∇U(t)‖HN‖U(s)‖HN ≤ Cǫ2
N+1(U0)(1 + s)−2,

which yields from (5.18) that

‖ρ(t)‖L∞ ≤ CǫN+1(U0)(1 + s)−2.

Therefore, by L2 − L∞ interpolation,

‖ρ(t)‖Lq ≤ CǫN+1(U0)(1 + s)−2+ 3
2q (5.19)

for 2 ≤ q ≤ ∞.

Next, we estimate the time-decay rate of [c1, c2]. We start with the estimate on ‖c1(t)‖Lq .

For the L2 rate,

‖c1‖L2 ≤ C‖ĉ1‖L2(ξ) (5.20)

≤ C

[

∫

ξ
e−2(|ξ|2+(a12−a11n∞))t|ĉ0|2dξ

]
1
2

+ a11

∫ t

0

[

∫

ξ
[e−2(|ξ|2+(a12−a11n∞))(t−s)| ˆρc1|2dξ

]
1
2

ds

≤ e−(a12−a11n∞)t

[

∫

ξ
e−2|ξ|2(t)|ĉ0|2dξ

]
1
2

+C
∫ t

0
e−(a12−a11n∞)(t−s)

[

∫

ξ
e−2|ξ|2(t−s+1)| ˆρc1|2dξ

]
1
2

ds

≤ Ce−(a12−a11n∞)t‖ĉ0‖L2 + C
∫ t

0
e−(a12−a11n∞)(t−s) sup

ξ

e−|ξ|2(t−s+1)‖ρc1(s)‖L2 ds (5.21)

Due to (5.12),

‖ρc1(s)‖L2 ≤ C‖U(s)‖2
N ≤ Cǫ2

N+1(U0)(1 + t)
−3
2 .
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Then (5.20) implies the slower decay estimate

‖c1‖L2 ≤ CǫN+1(U0)(1 + t)
−3
2 . (5.22)

Similarly, we have

‖c2‖L2 ≤ CǫN+1(U0)(1 + t)
−3
2 . (5.23)

For L∞ rate, from the Hausdorff–Young inequality and the Hölder inequality, we have

‖c1‖L∞ ≤ C‖ĉ1‖L1 ≤ C
∫

ξ≤ǫ
e−(|ξ|2+(a12−a11n∞))t|ĉ1,0|dξ

+ C
∫ t

0

∫

ξ≤ǫ
e−(|ξ|2+(a12−a11n∞))(t−s)| ˆρc1|dξds

+ C
∫

|ξ|≥ǫ
e−(a12−a11n∞))t|ĉ1,0|dξ + C

∫ t

0

∫

|ξ|≥ǫ
e−(a12−a11n∞))(t−s)| ˆρc1|dξds

≤ Ce−(a12−a11n∞)t(1 + t)
−3
2 ‖c0‖L1 + C

∫ t

0
e−(a12−a11n∞)(t−s)‖ ˆρc1(s)‖L1

+ Ce−(a12−a11n∞))t

[

∫

|ξ|≥ǫ
|ξ|−4dξ

]
1
2
[

∫

|ξ|≥ǫ
|ξ|4|ĉ1,0|2dξ

]
1
2

+ C
∫ t

0
e−(a12−a11n∞))(t−s)

[

∫

|ξ|≥ǫ
|ξ|−4dξ

]
1
2
[

∫

|ξ|≥ǫ
|ξ|4| ˆρc1|2dξ

]
1
2

ds

≤ Ce−(a12−a11n∞)t(1 + t)
−3
2 ‖c0‖L1 + C

∫ t

0
e−(a12−a11n∞)(t−s)‖ρc1(s)‖L1 ds

+ Ce−(a12−a11n∞))t‖∇2c0‖L2 + C
∫ t

0
e−(a12−a11n∞)(t−s)‖∇2(ρc1(s))‖L2 ds (5.24)

Since by (5.12)

‖ρc1(s)‖L1∩Ḣ2 ≤ C‖U(s)‖2
N ≤ Cǫ2

N+1(U0)(1 + t)
−3
2 .

Then, (5.24) implies the slower decay estimate

‖c1‖L∞ ≤ CǫN+1(U0)(1 + t)
−3
2 . (5.25)

Similarly, we have

‖c2‖L∞ ≤ CǫN+1(U0)(1 + t)
−3
2 . (5.26)

So, by L2 − L∞ interpolation,

‖c1, c2‖Lq ≤ CǫN+1(U0)(1 + t)
−3
2 , (5.27)

for 2 ≤ q ≤ ∞.

This completes the proof of Proposition 2.2 and hence Theorem 1.1.

6 Conclusion

We have studied a chemotaxis model where a compressible fluid model for cells and a diffu-

sive Lotka–Volterra model for chemoattractants and repellents are used. The previous results

for chemotaxis are mostly extensions of the Keller and Segel model or in the case of fluid

dynamical models, the incompressible fluid models for the cells are used. We showed the
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existence of global solutions and their asymptotic behavior in three dimensions with the ini-

tial data as a small perturbation of the constant state (n∞, 0, 0, 0). Our method is based on

the basic energy estimates used for the a priori estimates and the iterative method in solving

the Cauchy problem (1.1). Moreover, we have also shown the decay estimates of solutions

to the Cauchy problem (1.1) in R
3, in which the detailed analysis of Green’s functions of

the linear system is combined with the refined energy estimates with the help of Duhamel’s

principle. We proved the decay property of solutions as time goes to infinity. Our results are

complementary to Ambrosi, Bussolino and Preziosi [2], where the modeling aspects such as

qualitative analysis and numerical simulations of the compressible fluid model for cells with

chemoattractants are examined for vasculogenesis.
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1 Introduction

In the paper we investigate the second order nonlinear differential equation

x′′ + b(t)t−γ|x|β sgn x = 0, t ∈ [1, ∞), (1.1)

where the function b ∈ AC[1, ∞) is positive on [1, ∞) and bounded away from zero, i.e.,

inf
t∈[1,∞)

b(t) = b0 > 0,

and the constants β and γ are positive and satisfy

β > 1, γ =
β + 3

2
.

Equation (1.1) is the so-called generalized super-linear Emden–Fowler differential equa-
tion; it is widely studied in the literature, see, e.g., [16,20,26] and references therein. Equation

BCorresponding author. Email: dosla@math.muni.cz



2 M. Bartušek, Z. Došlá and M. Marini

(1.1) arises also in the study for searching spherically symmetric solutions of the nonlinear
elliptic equation

div (r(x)∇u) + q(x) F(u) = 0,

where r and q are smooth functions defined on R
d, d ≥ 2, r is positive, F ∈ C(R). The search

for radially symmetric solutions outside of a ball of radius R leads to the equation
(

td−1r(t)u′)′ + td−1q(t)F(u) = 0, t ≥ R, (1.2)

where t = |x|. In the special case r(t) = t1−d, q(t) = b(t)t1−γ−d for t ≥ 1 and F(u) = |u|βsgn u,
we get (1.1).

By a solution of (1.1) we mean a function x, defined on some interval of positive measure
contained on [1, ∞), satisfying (1.1). Further, x is said to be proper if it is defined on some
interval [tx, ∞), tx ≥ 1, and supt∈[τ,∞)|x(t)| > 0 for any τ ≥ tx. In other words, a proper
solution of (1.1) is a solution that is continuable to infinity and different from the trivial
solution in any neighborhood of infinity. Since β > 1, the initial value problem associated to
(1.1) has a unique local solution, that is a solution x such that x(t) = x0, x′(t) = x1, defined in
a suitable neighborhood of t ∈ [tx, ∞) for arbitrary numbers x0, x1. Moreover, in view of the
assumptions on the function b, any nontrivial local solution of (1.1) is a proper solution, see,
e.g., [16, Theorem 17.1] or [26, Section 3]. Observe that, if b(t) > 0 but b 6∈ AC[1, ∞), then
equation (1.1) with uncontinuable to infinity solutions may exist, see, e.g., [10, 15].

As usual, a proper solution x of (1.1) is said to be nonoscillatory if x is different from zero for
any large t and oscillatory otherwise. Clearly, in view of the positiveness of b, any eventually
positive solution x of (1.1) is increasing for any large t. Thus, nonoscillatory solutions x of (1.1)
can be a-priori divided into three classes. More precisely, x is called a subdominant solution if

lim
t→∞

x(t) = ℓx, 0 < ℓx < ∞,

or intermediate solution if
lim
t→∞

x(t) = ∞, lim
t→∞

x′(t) = 0,

or dominant solution if

lim
t→∞

x(t) = ∞, lim
t→∞

x′(t) = ℓx, 0 < ℓx < ∞,

see, e.g., [11, 18, 24, 25].
In the literature great attention has been devoted to the existence of unbounded solutions

which are dominant solutions, sometimes called asymptotically linear solutions. However,
unbounded nonoscillatory solutions, which are not asymptotically linear solutions, are very
difficult to treat. Indeed, as far we know, until now no general necessary and sufficient
conditions for existence of intermediate solutions of (1.1) are known; this fact mainly is due to
the lack of sharp upper and lower bounds for intermediate solutions, see, e.g., [1, page 241],
[13, page 3], [18, page 2].

For the special case of (1.1) with b(t) = 1/4, that is for the equation

x′′ +
1
4

t−γ|x|β sgn x = 0, t ∈ [1, ∞), (1.3)

the above three types of nonoscillatory solutions cannot simultaneously coexist, as Moore and
Nehari proved in [21]. The problem of this triple coexistence has been solved in a negative
way for the more general equation

(a(t)|x′|αsgn x′)′ + b(t)|x|βsgn x = 0,
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where a is a positive continuous function on [1, ∞) and α is a positive constant, α 6= β, in
[14, 22] and [5, 7], according to α > β or α < β, respectively.

A much more subtle question concerns the possible coexistence between oscillatory so-
lutions and nonoscillatory solutions. The particular equation (1.3), as it is shown in [21],
has both oscillatory solutions and nonoscillatory solutions. These nonoscillatory solutions
are either subdominant solutions or intermediate solutions and both types exist. Moreover,
intermediate solutions of (1.3) intersect the intermediate solution

√
t infinitely many times.

Many efforts have been made to obtain the existence of at least one oscillatory solution for
more general equations than (1.3). A classical approach is due to Jasný [12] and Kurzweil [17],
see also [16, Theorem 18.4.], and is based on certain properties of an auxiliary energy-type
function. In particular, in [12, 17] it is proved that, if the function b is nondecreasing for large
t, then any proper solution x of (1.1), with x(t1) = 0 and |x′(t1)| sufficiently large, t1 ≥ 1, is os-
cillatory. The sharpness of this monotonicity condition follows from a Skhalyakho–Kiguradze
result, see e.g., [20, Theorem 14.3.], where it is shown that if the function tεb(t) is nonincreas-
ing for any large t and some ε > 0, then every proper solution of (1.1) is nonoscillatory.

Roughly speaking, in view of the above quoted results by Jasný, Kurzweil and Kiguradze,
equation (1.3) can be considered as the border equation between oscillation and nonoscillation.

Our aim here is to study how the quoted results in [21] for (1.3) can be extended to the
perturbed equation (1.1).

Since b ∈ AC[1, ∞), there exists the derivative of b almost everywhere on [1, ∞). Thus,
under the additional assumption

∫

∞

1
|b′(t)| dt < ∞, (1.4)

we will study the existence of at least one oscillatory solution to (1.1) and its coexistence with
intermediate solutions. Observe that in view of (1.4), the function b is of bounded variation
on [1, ∞), but b could not be monotone for large t.

Our main results are the following.

Theorem 1.1. Assume (1.4) holds. Then (1.1) has infinitely many oscillatory solutions.

Theorem 1.2. Assume (1.4) holds. Equation (1.1) has infinitely many intermediate solutions x defined

on [1, ∞) such that

C0t1/2 ≤ x(t) ≤ C1t1/2 for large t (1.5)

where C0 is a suitable positive constant which does not depends on the choice of x, and

C1 =

(

β + 1
8b0

)1/(β−1)

.

Moreover, intermediate solutions intersect the function

(

1
4b(t)

)1/(β−1) √
t

infinitely many times.

Corollary 1.3. Assume (1.4) holds. Equation (1.1) admits simultaneously infinitely many oscillatory

solutions, subdominant solutions, and intermediate solutions.
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For equation (1.1), Theorem 1.2 extends analogues results in [6, Theorem 2.1] and [3, The-
orem 3.1], where b is required to be nonincreasing for t ≥ 1. Recently, the existence of inter-
mediate solutions of (1.1) has been considered in [23, 24]. More precisely, in these papers, the
existence problem is reduced, by means of an ingenious change of variables, to the solvability
of a system of two integral equations on the half-line [1, ∞). Moreover, an asymptotic formula
for these solutions is presented, too. Observe that asymptotic forms of intermediate solutions
of (1.1) are given also in [13], where the existence problem is not studied. Hence, Theorem 1.2
extends also these quoted results in [13, 23, 24].

2 Preliminaries

We start by recalling the following asymptotic property of nonoscillatory solutions of (1.1).

Lemma 2.1. Any nonoscillatory solution x of (1.1) satisfies limt→∞ x′(t) = 0. Consequently, x is

either subdominant solution or intermediate solution.

Proof. Since

β − γ =
β − 3

2
> −1,

and b is bounded away from zero, we obtain
∫

∞

1
tβ−γb(t) dt = ∞.

Hence, in view of [8, Theorem 1], equation (1.1) does not have nonoscillatory solutions x such
that limt→∞ x′(t) 6= 0.

The approach for proving our main results is based on the following lemma.

Lemma 2.2. The change of variable

x(t) = t1/2u(s) , s = log t , t ∈ [1, ∞) , (2.1)

transforms equation (1.1) into equation

ü − u

4
+ b(es)|u(s)|β sgn u(s) = 0 , s ∈ [0, ∞), (2.2)

where “ · ” denotes the derivative with respect to the variable s.

Proof. We have

x′(t) =
1

2t1/2 u(s) + t1/2u̇(s)
1
t
=

1
t1/2

(

u(s)

2
+ u̇(s)

)

x′′(t) = − 1
2t3/2

(

u(s)

2
+ u̇(s)

)

+
1

t1/2

(

u̇(s)

2
+ ü(s)

)

1
t

=
1

t3/2

(

−u(s)

4
+ ü(s)

)

.

Substituting into (1.1) we get (2.2).

Lemma 2.3. All the solutions of (2.2) are defined on [0, ∞). Moreover, any solution u of (2.2) such

that u(S) = 0, u̇(S) = 0 at some S ≥ 0, satisfies u(s) ≡ 0 for s ≥ 0.
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Proof. The continuability at infinity follows from the same property for (1.1), see, e.g., [16,
Theorem 17.1]. Another approach employs an idea of Conti [4] and uses two Lyapunov
functions, see [9, Theorem 3.1.] and [27, Appendix A]. The second statement follows, e.g.,
from [19, Lemma 1.1.] and Lemma 2.2.

Set, for u ≥ 0,

Q(u) = −u2 +
8b0

β + 1
uβ+1 (2.3)

and

A0 =

(

1
4b0

)
1

β−1

, A =

(

β + 1
8b0

)
1

β−1

. (2.4)

Since β > 1, we have A0 < A. The following holds.

Lemma 2.4. The function Q satisfies

Q(0) = Q(A) = 0, Q(A0) = −A2
0

β − 1
β + 1

.

Moreover, Q is decreasing on [0, A0) and increasing on (A0, A].

Proof. Since 8b0 Aβ+1/(β + 1) = A2, we obtain

Q(A) = −A2 +
8b0

β + 1
Aβ+1 = 0.

From dQ/du = 2u(−1 + 4b0uβ−1) we get dQ/du = 0 for u = A0, dQ/du < 0 for u ∈ (0, A0),
and dQ/du > 0 for u ∈ (A0, A). This gives the assertion.

Lemma 2.5. Let u be a solution of (2.2). For fixed s ∈ [0, ∞), the solution u satisfies for s ∈ [0, ∞)

4u̇2(s) + Q(|u(s)|) = 4u̇2(s̄) + Q(|u(s̄)|) + 8
β + 1

(

b0 − b(es)
)

|u(s)|β+1

− 8
β + 1

(

b0 − b(es̄)
)

|u(s̄)|β+1 +
8

β + 1

∫ s

s̄
b′(eσ)eσ|u(σ)|β+1 dσ . (2.5)

Proof. Multiplying equation (2.2) by 8u̇, we get

8üu̇ − 2u̇u + 8b0|u|βu̇ sgn u = 8
(

b0 − b(es)
)

|u|βu̇ sgn u .

Integrating this equality on [s̄, s] we obtain

4u̇2(s) + Q(|u(s)|) = 4u̇2(s̄) + Q(|u(s̄)|) + 8
∫ s

s̄

(

b0 − b(eσ)
)

|u(σ)|β u̇(σ) sgn u(σ) dσ.

Hence (2.5) follows by integrating by parts.

Lemma 2.6. Let 0 < b1 ≤ b0 and T ≥ 1 be such that b(t) ≥ b1 on [T, ∞). Let x be a nonoscillatory

solution of (1.1) such that x(t) 6= 0 on [T, ∞) and u be given by (2.1) with s0 = log T. Then we have

for t ≥ T

|x(t)| ≤ Kt1/2 with K =
(β + 1

4b1

)
1

β−1
(2.6)
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and

|u(s)| ≤ K for s ≥ s0. (2.7)

Moreover, set b2 = supt≥T b(t). Then we have for t ≥ T

|x′(t)| ≤ K1t−1/2, with K1 = 2Kβb2 (2.8)

and

|u̇(s)| ≤ K1 + K/2 for s ≥ s0. (2.9)

Proof. Let x be nonoscillatory solution of (1.1) such that

x(t) > 0, x′(t) > 0 for t ≥ T.

Using Lemma 2.1, we have limt→∞ x′(t) = 0. Integrating (1.1) on [t, ∞), t ≥ T, we get

x′(t) =
∫

∞

t
b(τ)τ−γxβ(τ)dτ ≥ b1xβ(t)

∫

∞

t
σ− β+3

2 dσ = Ct−
β+1

2 xβ(t)

with C = 2
β+1 b1. Hence,

x′(t)
xβ(t)

≥ Ct−
β+1

2

or
x−β+1(t)

β − 1
≥ 2C

β − 1
t−

β−1
2 .

Thus, we have for t ≥ T

x(t) ≤
(

1
2C

)
1

β−1

t1/2 = Kt1/2 .

Since b(t) ≤ b2 < ∞ on [T, ∞), integrating (1.1) and using (2.6) we obtain for t ≥ T

x′(t) =
∫

∞

t
b(τ)τ−γxβ(τ)dτ ≤ b2Kβ

∫

∞

t
τ−3/2dτ = 2Kβb2t−1/2 = K1t−1/2.

Thus, (2.8) holds and using the transformation (2.1), the estimations for u and u̇ follow.

Lemma 2.7. Equation (2.2) has two types of nonoscillatory solutions. Namely:

Type (a): solution u satisfies for large s

0 < |u(s)| ≤ De−s/2 (2.10)

where |u| is decreasing and D > 0 is a suitable constant.

Type (b): solution u intersects the function

Z(s) =

(

1
4b(es)

)
1

β−1

, (2.11)

infinitely many times, i.e., there exists a sequence {sn}∞

n=1 , limn sn = ∞, such that |u(sn)| = Z(sn).
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Proof. First, observe that the function Z in (2.11) satisfies

lim
s→∞

Z(s) =

(

1
4b0

)
1

β−1

= A0. (2.12)

Let u be a nonoscillatory solution of (2.2) and, for sake of simplicity, assume

u(s) > 0 for s ≥ S ≥ 0 , (2.13)

where S is chosen such that for any s ≥ S

b(es) ≥ b0/2.

According to (2.7), we get for s ≥ S

0 < u(s) ≤ K, (2.14)

where K is given by (2.6) with b1 = b0/2.
Then, from (2.2), we get the following:

ü(s) > 0 if and only if u(s) < Z(s)

ü(s) < 0 if and only if u(s) > Z(s)

ü(s) = 0 if and only if u(s) = Z(s).

(2.15)

Since A0 < K, from (2.14) and (2.15), a-priori, only one of the following possibilities holds:

(i) A0 < lim
s→∞

u(s) ≤ K, ü(s) < 0 for large s;

(ii) 0 ≤ lim
s→∞

u(s) ≤ A0, ü(s) > 0 for large s;

(iii) u intersects infinitely many times the function Z.

Observe that in case (iii), the solution u is of Type (b) and the corresponding solution x of
(1.1) satisfies limt→∞ x(t) = ∞, limt→∞ x′(t) = 0. Thus, x is an intermediate solution of (1.1).

To prove the lemma, it is sufficient to prove that in cases (i) and (ii), the solution u is of
Type (a).

Case (i). Since lims→∞ u(s) = B > A0, we get from (2.2)

lim
s→∞

ü(s) = lim
s→∞

[

u(s)

4
− b(es)uβ(s)

]

=
B

4
− Bβb0

=
B

4
(1 − 4b0Bβ−1) <

B

4
(1 − 4b0 A

β−1
0 ) = 0.

Hence, lims→∞ u̇(s) = lims→∞ u(s) = −∞, which is a contradiction with the positiveness of
the constant B. Thus, the case (i) cannot occur.

Case (ii). If 0 < B = lims→∞ u(s) < 1, reasoning in a similar way as in case (i), we get a
contradiction. Now suppose lims→∞ u(s) = 0. According to (2.12), there exists S1 ≥ S such
that for s ≥ S1,

u(s) < Z(s), 0 < u(s) ≤
(

β + 1
24b0

)1/(β−1)

, b(es) ≤ 3
2

b0. (2.16)
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From this and (2.15) we obtain ü(s) > 0. Thus, we have for s ∈ [S1, ∞)

u̇(s) < 0 and lim
s→∞

u̇(s) = 0. (2.17)

Let S1 ≤ s < s̄. Multiplying (2.2) by 8u̇ and integrating on [s, s̄] we get

4u̇2(s̄)− u2(s̄) = 4u̇2(s)− u2(s)− 8
∫ s̄

s
b(eσ)uβ(σ) u̇(σ) dσ.

From this, (2.16) and (2.17), as s̄ tends to infinity, we have

4u̇2(s)− u2(s)− 8
∫

∞

s
b(eσ)uβ(σ) u̇(σ) dσ = 0,

and

4u̇2(s)

u2(s)
= 1 +

8
u2(s)

∫

∞

s
b(eσ)uβ(σ) u̇(σ) dσ ≥ 1 +

12b0

u2(s)

∫

∞

s
uβ(σ) u̇(σ) dσ

= 1 − 12b0

β + 1
uβ−1(s) > 0.

Since u̇(s) < 0, we obtain

u̇(s)

u(s)
≤ −1

2

√

1 − 12b0

β + 1
uβ−1(s) ≤ −1

2

(

1 − 12b0

β + 1
uβ−1(s)

)

. (2.18)

Using the estimation for u in (2.16), we get for s ≥ S1

u̇(s)

u(s)
≤ −1

4
,

or
u(s) ≤ u(S1)e

(−s+S1)/4.

Applying this estimation to the inequality (2.18), we have for s ≥ S1

u̇(s)

u(s)
≤ −1

2
+

6b0

β + 1
uβ−1(S1)e

−(β−1)(s−S1)/4

or

log
u(s)

u(S1)
≤ −1

2
(s − S1) +

24b0

β2 − 1
uβ−1(S1)e

(β−1)S1/4e−(β−1)s/4 ≤ − s

2
+ C,

where

C =
1
2

S1 +
24b0uβ−1(S1)e

(β−1)S1/4

β2 − 1
.

Therefore, setting K2 = u(S1)e
C, we obtain

u(s) ≤ K2e−s/2,

and in view of (2.17), u is of Type (a).

Remark 2.8. Solutions u of Type (a) in Lemma 2.7 correspond, via the transformation (2.1), to
subdominant solutions of equation (1.1) because

x(t) = t1/2u(s) ≤ t1/2K2e−s/2 = K2,

while solutions u of Type (b) correspond to intermediate solutions of (1.1).
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3 Proof of Theorem 1.1

Proof of Theorem 1.1. Consider equation (2.2) and the function Q given by (2.3). In view of
(1.4), there exists s0 ≥ 0 such that for s ≥ s0

∫

∞

s0

|b′(eσ)|eσdσ ≤ b0

8
, |b0 − b(es)| ≤ b0

8
. (3.1)

Let u be a solution of (2.2) such that

u(s0) = 0 , u̇(s0) = d > 0 , (3.2)

where

d >
√

3K3, K3 =

(

9
4

b0Kβ +
K

2

)

, (3.3)

and K is given by (2.6) with b1 = 7b0/8, i.e.,

K =

(

2(β + 1)
7b0

)1/(β−1)

.

Let us prove that u is oscillatory. By contradiction, suppose that there exists s2 ≥ s0 such that

u(s2) = 0 , u(s) 6= 0 for s > s2. (3.4)

Applying Lemma 2.6 with b1 = 7b0/8, b2 = 9b0/8, we have for s ≥ s2

|u(s)| ≤ K .

Using (2.9), we obtain for s ≥ s2

|u̇(s)| ≤ 2Kβb2 +
K

2
=

9
2

b0Kβ +
K

2
= K3. (3.5)

If s2 = s0, inequality (3.5) contradicts (3.2) and (3.3). Thus, suppose that s0 < s2. From
(3.2) and (3.4), there exists s1, s0 < s1 < s2, such that

|u(s1)| = maxs0≤s≤s2 |u(s)|.

Obviously, u̇(s1) = 0. Put
B = (β + 1)/(4b0)

and consider two cases:

(i) |u(s1)| < B1/(β−1), (ii) |u(s1)| ≥ B1/(β−1).

Assume case (i) holds. Applying Lemma 2.5 with s̄ = s0, s = s2, using (3.1), (3.2), and (3.4),
we get

4u̇2(s2) = 4d2 +
8

β + 1

∫ s2

s0

b′(eσ)eσ|u(σ)|β+1dσ

≥ 4d2 − 2
Bb0

B
β+1
β−1

∫

∞

s0

|b′(eσ)|eσdσ ≥ 4d2 − 1
4

B
2

β−1

≥ 4d2 −
(

K

2

)2

≥ 4d2 − (K3)
2 ≥ 4d2 − d2

3
=

11
3

d2.
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Therefore,

|u̇(s2)| ≥
√

11
12

d ≥
√

33
12

K3,

which contradicts (3.5).
Assume case (ii) holds. We have

|u(s1)|β+1

B
≥ u2(s1).

Thus,
Q(|u(s1)|)

2
=

1
B
|u(s1)|β+1 − u2(s1)

2
≥ 1

2B
|u(s1)|β+1. (3.6)

From here, applying Lemma 2.5 with s̄ = s0, s = s1, using (3.1) and u̇(s1) = 0, we get

Q(|u(s1)|) = 4d2 +
8

β + 1

(

b0 − b(es1)
)

|u(s1)|β+1 +
8

β + 1

∫ s1

s0

b′(eσ)eσ|u(σ)|β+1dσ

≥ 4d2 − 2b0

β + 1
|u(s1)|β+1 ≥ 4d2 − 1

2B
|u(s1)|β+1 ≥ 4d2 − Q(|u(s1)|)

2
.

Thus,

Q(|u(s1)|) ≥
8
3

d2. (3.7)

Applying Lemma 2.5 with s̄ = s1, s = s2, using (3.1), (3.6) and (3.7), we have

4u̇2(s2) = Q(|u(s1)|)−
8

β + 1

(

b0 − b(es1)
)

|u(s1)|β+1 +
8

β + 1

∫ s2

s1

b′(eσ)eσ|u(σ)|β+1dσ

≥ Q(|u(s1)|)−
2b0

β + 1
|u(s1)|β+1

≥ Q(|u(s1)|)−
1

2B
|u(s1)|β+1 ≥ Q(|u(s1)|)

2
≥ 4

3
d2.

From this and (3.3), we obtain

|u̇(s2)| ≥
d√
3
> K3,

which contradicts (3.5).
Thus, the solution u satisfying the initial condition (3.2) is defined on [s0, ∞) and is oscil-

latory. According to Lemma 2.3, the solution u can be extended to [0, ∞). Moreover, since s0

does not depend on the value d, equation (2.2) has infinitely many oscillatory solutions and,
in virtue of the transformation (2.1), the same occurs for equation (1.1).

4 Proof of Theorem 1.2

Proof of Theorem 1.2. Let δ be a constant such that

|δ| < 1
2

(

1
4b0

)
1

β−1

√

β − 1
2(β + 1)

,

and put

ε =
1
24

b0(β − 1)
(

2
β + 1

)(β+1)/(β−1)

.
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Let T ≥ 1 be such that
∫

∞

T
|b′(t)| dt ≤ ε , |b0 − b(t)| ≤ ε for t ≥ T . (4.1)

For s0 = log T, we have
∫

∞

s0

|b′(eσ)|eσdσ =
∫

∞

T
|b′(t)| dt ≤ ε, |b0 − b(es)| ≤ ε for s ≥ s0. (4.2)

Now, consider the solution u of (2.2) with

u(s0) = A0 , u̇(s0) = δ , (4.3)

where A0 is given by (2.4). By Lemma 2.4 we get

Q(u(s0)) = −β − 1
β + 1

(

1
4b0

)
2

β−1

(4.4)

and there exists u0, 0 < u0 < A0, such that

Q(u0) = −Q(u(s0))

4
= − β − 1

4(β + 1)

(

1
4b0

)
2

β−1

. (4.5)

We want to prove that the solution u of (2.2) with (4.3) satisfies for s ≥ s0

0 < u0 ≤ u(s) ≤ A , (4.6)

where A is given in (2.4). Note that (4.6) is satisfied for s = s0 and

u0 < u(s0) = A0 < A. (4.7)

Step 1. We claim that if there exists s1 > s0 such that

u(s1) = u0 , u(s) > u0 for s ∈ [s0, s1) , (4.8)

then
u(s) ≤ A on [s0, s1] . (4.9)

Since u(s1) = u0, from (4.7) we get u(s1) < A. By contradiction, suppose that there exists
s2, s0 < s2 < s1, such that

u(s2) = A , u(s) < A for s ∈ [s0, s2) . (4.10)

Using Lemma 2.4, we have
Q(u(s2)) = 0 . (4.11)

According to (4.3) and (4.8), we can use Lemma 2.5 for s̄ = s0, s = s2 and this together with
(2.5), (4.4) and (4.11) imply

4u̇2(s2) = 4u̇2(s2) + Q(u(s2))

= 4u̇2(s2) + Q(u(s0)) +
8

β + 1

(

b0 − b(es2)
)

uβ+1(s2)

− 8
β + 1

(

b0 − b(es0)
)

uβ+1(s0) +
8

β + 1

∫ s2

s0

b′(eσ)eσ|u(σ)|β+1 dσ.
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Thus, we get

4u̇2(s2) ≤ 4δ2 − β − 1
β + 1

(

1
4b0

)
2

β−1

+
8

β + 1

∣

∣

∣
b0 − b(es2)

∣

∣

∣
uβ+1(s2)

+
8

β + 1

∣

∣

∣
b0 − b(es0)

∣

∣

∣
A

β+1
0 +

8
β + 1

Aβ+1
∫ s2

s0

|b′(eσ)|eσ dσ.

From this, (2.4), (4.2), and (4.7), we have

4u̇2(s2) ≤ 4δ2 − β − 1
β + 1

(

1
4b0

)
2

β−1

+
24

β + 1
εAβ+1. (4.12)

Since

4δ2
<

β − 1
2(β + 1)

(

1
4b0

)
2

β−1

(4.13)

and
24

β + 1
εAβ+1 =

β − 1
4(β + 1)

(

1
4b0

)
2

β−1

, (4.14)

the inequality (4.12) implies

4u̇2(s2) ≤ − β − 1
4(β + 1)

(

1
4b0

)
2

β−1

< 0

and this contradiction proves Step 1.

Step 2. Now, we prove that
u(s) > u0 > 0 for s ≥ s0. (4.15)

As claimed, (4.15) holds for s = s0. By contradiction, assume that (4.8) is valid and s1 > s0

exists such that u(s1) = u0 and u(s) > u0 on [s0, s1). Hence, in view of (4.8) and (4.9) we
obtain

0 < u0 ≤ u(s) ≤ A for s ∈ [s0, s1]. (4.16)

Using this inequality and Lemma 2.5 with s̄ = s0 and s = s1, we have

4u̇2(s1) + Q(u(s1)) = 4u̇2(s0) + Q(u(s0)) +
8

β + 1

(

b0 − b(es1)
)

uβ+1(s1)

− 8
β + 1

(

b0 − b(es0)
)

uβ+1(s0) +
8

β + 1

∫ s1

s0

b′(eσ)eσuβ+1(σ) dσ

≤ 4u̇2(s0) + Q(u(s0)) +
8

β + 1

∣

∣

∣
b0 − b(es0)

∣

∣

∣
Aβ+1

+
8

β + 1

∣

∣

∣
b0 − b(es1)

∣

∣

∣
Aβ+1 +

8Aβ+1

β + 1

∫ s1

s0

|b′(eσ)|eσ dσ .

From this, (4.2), (4.4) and (4.5) we have

4u̇2(s1)−
β − 1

4(β + 1)

(

1
4b0

)
2

β−1

≤ 4δ2 − β − 1
β + 1

(

1
4b0

)
2

β−1

+
24

β + 1
εAβ+1.

Hence, in view of (4.13) and (4.14), we get

4u̇2(s1) < 0 ,
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which is a contradiction. This proves the validity of (4.15).
From here, using the transformation (2.1) and Remark 2.8, we obtain that the correspond-

ing solution x of (1.1) is an intermediate solution.
In a similar way, we prove that the second inequality of (4.6) is valid for s ≥ s0; the details

are left to the reader.
Thus, from the inequality (4.15) and Lemma 2.7, the solution u intersects the function Z(s),

given by (2.11), infinitely many times. Using the transformation (2.1), the final statement of
Theorem 1.2 follows.

Proof of Corollary 1.3. By using a similar argument to the one presented in [11, Theorem 4.3.],
equation (1.1) has infinitely many subdominant solutions. Thus, the assertion follows from
Theorems 1.1 and 1.2.

5 Case b nondecreasing

The assumption (1.4) is fulfilled if, in addition, the function b is either nondecreasing and
bounded or nonincreasing and bounded away from zero.

If b is nondecreasing, then intermediate solutions x are globally positive, that is x(t) 6= 0
on the whole interval [1, ∞). Moreover, any solution with a zero is oscillatory. These properties
follow from the following.

Theorem 5.1. Let b′(t) ≥ 0 for t ∈ [1, ∞) and limt→∞ b(t) = b0, b0 > 0. Then

(i) Equation (1.1) has infinitely many intermediate solutions.

(ii) Any eventually positive solution x is globally positive on [1, ∞) and satisfies (2.6) and (2.8).

(iii) For any a ≥ 1 every solution of (1.1) with the initial condition

x(a) = 0 or |x(a)| > K
√

a or |x′(a)| > K1a−1/2

where

K =

(

β + 1
4b(a)

)1/(β−1)

, K1 = 2b0Kβ,

is oscillatory.

Proof. Claim (i) follows from Theorem 1.2.

Claim (ii). Let u be the solution of (2.2), which is obtained from x by the change of variable
(2.1). For proving that x is globally positive, it is sufficient to show that u(s) > 0 on [0, ∞). By
contradiction, suppose that there exists s0 such that

u(s0) = 0 , u(s) > 0 on (s0, ∞) . (5.1)

According to Lemma 2.7, we obtain lim infs→∞ u(s) = ū, where ū ∈ [0, A0]. Moreover, either
lims→∞ u(s) = 0, or u is an intermediate solution of (2.2).

For these solutions, let {sn} be a sequence such that limn sn = ∞, s1 > s0,

lim
n

u(sn) = ū, lim
n

u̇(sn) = 0, (5.2)
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and
0 < u(sn) ≤

1
2
(A + A0), n ∈ N, (5.3)

where A > A0 is given by (2.4). The sequence {sn} may be defined in the following way,
according to whether u is either of Type (a) or of Type (b).

Let u be of Type (a). Then lims→∞ u(s) = 0 and by Lemma 2.7, we obtain u̇(s) < 0 for large
s. Then any sequence {sn} tending to infinity satisfies (5.2) and (5.3).

Let u be of Type (b). Then by Lemma 2.7, the solution u intersects the function Z, for which
lims→∞ Z(s) = A0, Z is decreasing and lims→∞ Ż(s) = 0. Thus, ū ∈ [0, A0]. Now, consider two
cases:

(i) ū ∈ [0, A0),

(ii) ū = A0.

In the first case the sequence {sn} can be choosen as points at which u has a local mini-
mum. In the second case, if u has a local minimum, then {sn} can be defined as in the first
case; if u does not have local minima, i.e., u is nonincreasing to A0, we choose {sn} as

u(sn) = Z(sn),

u(s) < Z(s) in a left neighborhood of sn.
(5.4)

Indeed, the first relation in (5.2) follows from lims→∞ Z(s) = A0. Since lims→∞ Ż(s) = 0, 0 >

u̇(sn) ≥ Ż(sn) and limn Ż(sn) = 0, the second relation in (5.2) follows. Thus, limn→∞ u̇(s) = 0.
From here and Lemma 2.4, we obtain

Q(sn) < 0, n ∈ N. (5.5)

By Lemma 2.3 and (5.1) we have
u̇(s0) > 0. (5.6)

Thus, applying Lemma 2.5 for s̄ = s0 and s = sn, from (5.1) we obtain

4u̇2(sn) + Q(u(sn)) = 4u̇2(s0) +
8

β + 1

(

b0 − b(esn)
)

uβ+1(sn)

+
8

β + 1

∫ sn

s0

b′(eσ)eσuβ+1(σ) dσ ≥ 4u̇2(s0).

Therefore, from (5.2) and (5.6) we get

lim inf
n→∞

Q(sn) ≥ 4 lim inf
n→∞

u̇2(sn) + 4u̇2(s0) = 4u̇2(s0) > 0,

which contradicts (5.5). Hence, u is positive for any s ≥ 0.
The estimations (2.6), (2.8) follow from Lemma 2.6 and Claim (ii) is proved.

It remains to prove Claim (iii). If x(a) = 0, the assertion follows from (ii). Otherwise,
using Lemma 2.6 with T = a, every nonoscillatory solution of (1.1) satisfies (2.6), (2.8) for t ≥ a.
Therefore, every solution x of (1.1) with the initial condition |x(a)| > K

√
a or |x′(a)| > K1a−1/2

must be oscillatory, and the proof is now complete.

If b is nondecreasing, it would be interesting to give conditions for the existence of inter-
mediate solutions of (1.1) in case b is unbounded. For example, the equation

x′′ +
15
64

t−11/4x3 = 0

has an intermediate solution x(t) = t3/8, whereby γ = 3 and b(t) = t1/4.
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Abstract. In this paper, we consider bifurcation from zero or infinity of nontrivial so-
lutions of the nonlinear Sturm–Liouville problem with indefinite weight. This problem
is mainly important because of it is related with a selection-migration model in genetic
population. We show the existence of four families of unbounded continua of nontriv-
ial solutions to this problem bifurcating from intervals of the line of trivial solutions
or the line R × {∞} (these intervals are called bifurcation intervals). Moreover, these
global continua have the usual nodal properties in some neighborhoods of bifurcation
intervals.

Keywords: nonlinear Sturm–Liouville problem, indefinite weight, population genetics,
selection-migration model, bifurcation point, bifurcation interval, global continua.
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1 Introduction

We consider the following nonlinear Sturm–Liouville eigenvalue problem

(ℓ(u))(x) ≡ −(p(x)u′(x))′ + q(x)u(x) = λρ(x)u(x) + h(x, u(x), u′(x), λ), x ∈ (0, 1),

(1.1)

α0u(0)− β0u′(0) = 0, α1u(1) + β1u′(1) = 0, (1.2)

where λ ∈ R is a spectral parameter, p ∈ C1([0, 1]; (0,+∞)), q ∈ C([0, 1]; [0,+∞)), and ρ ∈

C([0, 1]; R) such that there exist ς, ξ ∈ [0, 1] for which ρ(ς)ρ(ξ) < 0, and αi, βi, i = 0, 1, are real

BCorresponding author. Email: z_aliyev@mail.ru
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constants such that |αi|+ |βi| > 0 and αiβi ≥ 0, i = 0, 1. The function h has the representation

h = f + g, where the functions f , g ∈ C([0, 1]× R
3; R) and satisfy the conditions

u f (x, u, s, λ) ≤ 0, u g(x, u, s, λ) ≤ 0; (1.3)

there exists a constant M > 0 such that
∣

∣

∣

∣

f (x, u, s, λ)

u

∣

∣

∣

∣

≤ M, (x, u, s, λ) ∈ [0, 1]× R
2 × R, u 6= 0. (1.4)

Moreover, at various points in the paper, we will impose one or the other or both of the

following conditions on the function g:

g(x, u, s, λ) = o(|u|+ |s|), as |u|+ |s| → ∞, (1.5)

or

g(x, u, s, λ) = o(|u|+ |s|), as |u|+ |s| → 0, (1.6)

uniformly for x ∈ [0, 1] and λ ∈ Λ, for any bounded interval Λ ⊂ R.

Nonlinear eigenvalue problems of the type (1.1), (1.2) have been intensively studied re-

cently, as they arise from selection-migration models in population genetics (see for exam-

ple [2, 3, 9, 10, 14, 16, 18] and references therein). Note that population genetics is one of the

important branches of biology, which studies the genetic structure and evolution of popu-

lations. It has close ties to ecology, demography, epidemiology, phylogeny, genomics, and

molecular evolution. Population genetics is mainly used in human genetics and medicine,

as well as in animal and plant breeding. In the case of p(x) ≡ 1 and h(x, u(x), u′(x), λ) =

λρ(x)[u(x) − m(u(x))], where m(u) = u(1 − u)[h0(1 − u) + (1 − h0)u] and h0 ∈ (0, 1), Eq.

(1.1) is an one-dimensional reaction-diffusion equation, the interval [0,1] refers to the habi-

tat of a species, the boundary conditions (1.2) for β0 = β1 = 0 means that no individuals

cross the boundary of the habitat. Moreover, the weight function ρ(x) represents either the

selective strength of the environment on genes, or the intrinsic growth rate of the species at

location x, and the real parameter λ corresponds to the reciprocal of the diffusion coefficient

(see [10, 14, 18]).

If condition (1.6) is satisfied, then we consider bifurcation from u = 0, i.e. bifurcation from

the line of trivial solutions R0 = R × {0}. In the case when ρ(x) > 0 for x ∈ [0, 1] the global

bifurcation of solutions of the nonlinear eigenvalue problem (1.1), (1.2) under conditions (1.4)

and (1.6) (but without the conditions αiβi ≥ 0, i = 0, 1) was considered in [8,11,12,22,23,25,26].

These papers it was shown the existence of two families of unbounded continua of nontrivial

solutions in R × C1[0, 1], possessing the usual nodal properties and bifurcating from points

and intervals of the line R0 corresponding to the eigenvalues of the linear problem obtained

from (1.1), (1.2) by setting h ≡ 0. Similar results in nonlinear eigenvalue problems for ordinary

differential equations of fourth order were established in the paper [1].

If condition (1.5) is satisfied, then problem (1.1), (1.2) for f ≡ 0 is asymptotically linear (see

[17]), and, therefore, we must investigate the bifurcation from infinity, that is, the existence of

non-trivial solutions to this problem with large norms. Note that in the case when ρ(x) > 0

for x ∈ [0, 1] the global bifurcation from infinity of nontrivial solutions of problem (1.1), (1.2)

under conditions (1.4) and (1.5) (again without the conditions αiβi ≥ 0, i = 0, 1) was studied

in [11, 12, 22, 24, 25, 27, 28], where in particular, it was shown that there are two families of

global continua of nontrivial solutions of this problem bifurcating from points and intervals

of the set R∞ = R × {∞} corresponding to the eigenvalues of the linear problem (1.1), (1.2)
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with h ≡ 0 and having usual nodal properties in some neighborhoods these points and in-

tervals. Moreover, it was also established that these continua either contain other asymptotic

bifurcation points and intervals, or intersect the line R0, or have an unbounded projection

onto R0. Similar global results for fourth order nonlinear eigenvalue problems were obtained

in the paper [6].

The problem (1.1), (1.2) in cases (i) f ≡ 0, and (ii) g ≡ 0 and f satisfies condition (1.4)

for any (x, u, s, λ) ∈ [0, 1] × R
2 × R such that u 6= 0 and |u| + |s| ≤ τ0, where τ0 > 0 is

some constant, was considered in [7, 21]. These papers prove the existence of four families

of unbounded continua of solutions having the usual nodal properties and bifurcating from

points and intervals of the line of trivial solutions corresponding to the positive and negative

eigenvalues of linear problem (1.1), (1.2) with h ≡ 0.

The purpose of this paper is to study the location of bifurcation intervals in R0 and R∞,

and the structure of global continua of nontrivial solutions of problem (1.1), (1.2) emanating

from these bifurcation intervals.

In Section 2, we present the main properties of the eigenvalues and eigenfunctions of the

linear problem (1.1), (1.2) with h ≡ 0. Here we introduce classes of functions in R × C1[0, 1]

with a fixed oscillation counter and also possessing other properties of the eigenfunctions

of this linear problem. Here we consider problem (1.1), (1.2) under conditions (1.3), (1.4)

and (1.6). Then we find the bifurcation intervals of the line of trivial solutions with respect

to the above-mentioned oscillation classes and establish that the connected components of

solutions emanating from bifurcation intervals are contained in the corresponding oscillation

classes, and are unbounded in R × C1[0, 1]. In Section 3 and 4 we consider problem (1.1),

(1.2) under conditions (1.3)- (1.5). In Section 3 developing the approximation technique from

[8], we prove the existence of nontrivial solutions of problem (1.1), (1.2) with large norms

contained in the classes with a fixed oscillation count. Moreover, we find intervals containing

asymptotically bifurcation points of problem (1.1), (1.2) with respect to these classes. Note that

the approximation equation introduced here is more natural than those introduced in [24,25].

It is important to note that the solutions of problem (1.1), (1.2) from the global continuum

emanating from the bifurcation interval of the set R∞ with respect to a certain class of a

fixed oscillation count and located outside a some neighborhood of this interval may not

be included in this oscillation class. In Section 4, we present and prove the main result of

this paper, namely, we show that there are four classes of unbounded continua of solutions

of problem (1.1), (1.2) emanating from asymptotically bifurcation intervals which have usual

nodal properties in a some neighborhoods of these intervals and for each of them one of the

following statements holds: either contain other asymptotic bifurcation intervals, or intersect

the line R0, or have an unbounded projection onto R0. Similar results in nonlinear eigenvalue

problems for ordinary differential equations of fourth order and semi-linear elliptic partial

differential equations with indefinite weight in the classes of positive and negative functions

were obtained in recent papers [2–5]. In Section 5 we consider problem (1.1), (1.2) under

both conditions (1.5) and (1.6). Here we manage to show that the continua emanating from

asymptotically bifurcation intervals are contained in the corresponding oscillation classes and

therefore they do not intersect other asymptotically bifurcation intervals. In Section 6 we

consider problem (1.1), (1.2) in the case when the weight function ρ(x) ≥ 0 for x ∈ [0, 1].

Note that in this case linear problem obtained from (1.1), (1.2) by setting h ≡ 0 has only one

sequence of positive simple eigenvalues, and consequently, in this case problem (1.1), (1.2)

has two families of global connected components emanating from bifurcation intervals of R0

or R∞, and having the properties of global continua from Sections 2 and 3–4, respectively.
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Note that similar results was obtained in [11, 12] in the case of a special form of the nonlinear

term f .

2 Preliminary

By (b.c.) we denote the set of functions satisfying the boundary conditions (1.2).

It is known [15, Ch. 10, § 10·61] that the spectrum of the linear eigenvalue problem

{

(ℓ(u))(x) = λρ(x)u(x), x ∈ (0, 1),

u ∈ (b.c.),
(2.1)

obtained from (1.1), (1.2) by setting h ≡ 0 consists of two sequences of real and simple eigen-

values

0 < λ+
1 < λ+

2 < · · · < λ+
k 7→ +∞ and 0 > λ−

1 > λ−
2 > · · · > λ−

k 7→ −∞;

for each k ∈ N the eigenfunctions u+
k and u−

k corresponding to the eigenvalues λ+
k and λ−

k ,

respectively, have exactly k − 1 simple nodal zeros in (0, 1) (by a nodal zero, we mean that the

function changes sign at the zero, and at a simple nodal zero, the derivative of the function

is nonzero). Moreover, according to [21, formula (2.10)] for each k ∈ N the eigenfunctions u+
k

and u−
k satisfy the following relations

∫ 1

0
ρ(x)(u+

k (x))2dx > 0 and
∫ 1

0
ρ(x)(u−

k (x))2dx < 0, (2.2)

respectively.

Let E = C1[0, 1] ∩ (b.c.) be a Banach space with the usual norm ‖u‖1 = ‖u‖∞ + ‖u′‖∞,

where ‖u‖∞ = maxx∈[0,1] |u(x)|.

From now on σ (ν respectively) will denote either + or −.

For each k ∈ N, each σ and each ν we denote by Sν
k, σ the set of functions u ∈ E satisfying

the following conditions:

(i) u has exactly k − 1 simple nodal zeros in the interval (0, 1);

(ii) σ
∫ 1

0 ρ(x) u2(x)dx > 0;

(iii) νu(x) is positive in a deleted neighborhood of the point x = 0.

It follows from definition of the set Sν
k,σ, k ∈ N, that this set is open in E for each σ and each

ν. Note that for any (k, σ, ν) 6= (k′, σ′, ν′) the following relation holds:

Sν
k, σ ∩ Sν′

k′, σ′ = ∅.

Moreover, if u ∈ ∂Sν
k, σ, then either

(i)
∫ 1

0 ρ(x) u2(x)dx = 0, or

(ii) there exists x0 ∈ [0, 1] that such u(x0) = u′(x0) = 0.

Remark 2.1. It follows from the above arguments that

uσ
k ∈ Sk,σ = S+

k, σ ∪ S−
k, σ, k ∈ N.
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Remark 2.2. If (λ, u) ∈ R × E be a nontrivial solution of problem (1.1), (1.2), then

λ
∫ 1

0
ρ(x) u2(x) dx 6= 0.

Indeed, multiplying both sides of (1.1) by u(x), integrating the obtained equality in the range

from 0 to 1, using the formula for integration by parts, and taking into account conditions

(1.2), (1.3), we get

∫ 1

0

{

p(x)u′2(x) + q(x) u2(x)
}

dx + N[u] = λ
∫ 1

0
ρ(x) u2(x) dx

+
∫ 1

0
f
(

x, u(x), u′(x), λ
)

u(x) dx +
∫ 1

0
g
(

x, u(x), u′(x), λ
)

u(x)dx, (2.3)

where N[u] = − (p(x)u′(x)u(x))|x=1
x=0. Since the conditions |αi|+ |β| > 0 and αiβi ≥ 0, i = 0, 1,

are satisfied it follows that N[u] ≥ 0 for any function u ∈ E. Consequently, the left hand side

of (2.3) is positive, and if λ
∫ 1

0 ρ(x) u2(x) dx = 0, then by conditions (1.3) the right hand side

of this relation is non-positive, a contradiction.

Let {λ+
k, M}∞

k=1 and {λ−
k, M}∞

k=1 be sequences of positive and negative eigenvalues, respec-

tively, of the following spectral problem

{

(ℓ(u))(x) + Mu(x) = λρ(x)u(x), x ∈ (0, 1),

u ∈ (b.c.),
(2.4)

which are simple (see [15, Ch. 10, § 10·61]).

We introduce the notations:

I+
k = [λ+

k , λ+
k, M], I−k = [λ−

k, M, λ−
k ],

R
+ = (0,+∞), R

− = (−∞, 0), R+
0 = R

+ × {0}, R−
0 = R

− × {0},

and

R+
∞ = R

+ × {∞}, R−
∞ = R

− × {∞}.

By D we denote the set of nontrivial solutions of the nonlinear eigenvalue problem (1.1),

(1.2). For any λ ∈ R, we say that a subset C ⊂ D meets (λ, 0) (respectively (λ, ∞)) if there

exists a sequence {(λn, un)}∞

n=1 ⊂ C such that λn → λ and ‖un‖1 → 0 (respectively ‖un‖1 →

+∞) as n → +∞. Furthermore, we will say that C ⊂ D meets (λ, 0) (respectively (λ, ∞)) with

respect to the set R × Sν
k, σ, if the sequence {(λn, un)}∞

n=1 can be chosen so that un ∈ Sν
k, σ for

all n ∈ N. Moreover, we say (λ, 0) (respectively (λ, ∞)) is a bifurcation point of problem (1.1),

(1.2) with respect to the set R ×Sν
k, σ if there exists a sequence {(λn, un)}∞

n=1 ⊂ D ∩ (R ×Sν
k, σ)

such that λn → λ and ‖un‖1 → 0 (respectively ‖un‖1 → +∞) as n → +∞. If I ⊂ R

is a bounded interval we say that C meets I × {0} (I × {∞} respectively) if C meets (λ, 0)

(respectively (λ, ∞)) for some λ ∈ I. Furthermore, we will say that C meets I × {0} (I × {∞}

respectively) with respect to the set R × Sν
k, σ, if C meets (λ, 0) (respectively (λ, ∞)), λ ∈ I,

with respect to the set R × Sν
k, σ (see [1, 6, 25]).

Now we consider problem (1.1), (1.2) under the conditions (1.3), (1.4) and (1.6). Following

the corresponding reasoning given in [7, 19, 21] (see also [1, 8]) and using Remark 2.2 we are

convinced that the following results hold for this problem.
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Lemma 2.3. Let (λ, u) ∈ R × E be a solution of problem (1.1), (1.2) such that u ∈ ∂Sν
k,σ, k ∈ N,

σ, ν ∈ {+,−}. Then u ≡ 0.

Lemma 2.4. For each k ∈ N, each σ and each ν the set Bν
k, σ of bifurcation points (from zero) of problem

(1.1), (1.2) with respect to the set R
σ × Sν

k, σ is nonempty. Furthermore, Bν
k, σ ⊂ Iσ

k × {0}.

For each k ∈ N, each σ and each ν by Dν, ∗
k, σ we denote the union of all the components of

D which meet Iσ
k × {0} with respect to the set R

σ × Sν
k, σ ([25, Theorem 3.2] and Lemma 2.4

implies that Dν, ∗
k, σ 6= ∅). The set Dν, ∗

k, σ may not be connected in R
σ × E, but joining the interval

Iσ
k × {0} to this set gives a connected set Dν

k, σ = Dν, ∗
k, σ ∪ (Iσ

k × {0}).

Remark 2.5. By Lemma 2.4 it follows from Remark 2.2 that Dν
k, σ ⊂ R

σ × E.

Theorem 2.6. For each k ∈ N, each σ and each ν the connected set Dν
k, σ which contains Iσ

k × {0} lies

in (Rσ × Sν
k, σ) ∪ (Iσ

k × {0}) and is unbounded in R × E.

3 The existence of asymptotic bifurcation points of problem (1.1),

(1.2) with respect to the set Sν

k, σ

In the next two sections, we will consider problem (1.1), (1.2) under the conditions (1.3)–(1.5).

To study the structure of the set of asymptotic bifurcation points of problem (1.1), (1.2), we

introduce the following modified nonlinear eigenvalue problem

{

ℓ(u) = λρ(x)u + f (x,|u|εu,u′,λ)
(1+|u|+|u′|)2 ε + g(x, u, u′, λ), x ∈ (0, 1),

u ∈ (b.c.),
(3.1)

where ε ∈ (0, 1]. It is seen that this problem in a sense approximates problem (1.1), (1.2) for ε

near 0. Note that approximations similar to this one were previously used in [6, 25].

Since f ∈ C([0, 1]× R
3; R) it follows that | f (x,|u|εu,s,λ)|

(1+|u|+|s|)2ε ∈ C([0, 1]× R
3; R) for any ε ∈ (0, 1].

Moreover, by condition (1.4) we get

| f (x, |u|εu, s, λ)|

(1 + |u|+ |s|)2ε(|u|+ |s|)
≤

M|u|ε|u|

(|u|+ |s|)2ε(|u|+ |s|)
≤

M

(|u|+ |s|)ε
,

whence implies that for each bounded interval Λ ⊂ R

f (x, |u|ε u, s, λ)

(1 + |u|+ |s|)2ε
= o(|u|+ |s|) as |u|+ |s| → ∞,

uniformly for (x, λ) ∈ [0, 1]× Λ. Then, by conditions (1.5), it follows from [24, Theorem 2.4]

that for each k ∈ N, each σ and each ν there exist a neighborhood Pν
k,σ of the point (λσ

k , ∞)

and a continuum D
ν
k, σ, ε ⊂ R

σ × E of the set of solutions of problem (3.1) bifurcating from

(λσ
k , ∞) such that

(i) (Dν
k, σ, ε ∩ Pν

k,σ) ⊂ R × Sν
k, σ;

(ii) either D
ν
k, σ, ε \ Pν

k,σ is bounded in R × E, and in this case D
ν
k, σ, ε \ Pν

k,σ meets Rσ
0 , or

D
ν
k, σ, ε \ P

ν
k,σ is unbounded, and if in this case D

ν
k, σ, ε \ P

ν
k,σ has a bounded projection on

Rσ
0 , then this set meets (λσ

k′ , ∞) with respect to Sν′

k′, σ for some (k′, ν′) 6= (k, ν).
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Lemma 3.1. For each k ∈ N, each σ, each ν and any sufficiently large R > 0 there exists a solution

(λν
k, σ, R, uν

k, σ, R) of problem (1.1), (1.2) such that λν
k, σ, R ∈ R

σ, uν
k, σ, R ∈ Sν

k, σ, and ‖uν
k, σ, R‖1 = R.

Proof. Let R be a sufficiently large positive number. Property (i) of the set Dν
k, σ, ε implies that

for any ε ∈ (0, 1) there exists a solution (λν
k, σ, R, ε, uν

k, σ, R, ε) of problem (3.1) such that

λν
k, σ, R, ε ∈ R

σ, uν
k, σ, R, ε ∈ Sν

k, σ, ‖uν
k, σ, R, ε‖1 = R.

Then it follows from (3.1) that (λν
k, σ, R, ε, uν

k, σ, R, ε) solves the following problem

{

(ℓ(u))(x) + ϕν
k, σ, R, ε(x)u(x) = λρ(x)u(x) + g(x, u(x), u′(x), λ), x ∈ (0, 1),

u ∈ (b.c.),
(3.2)

where

ϕν
k, σ, R, ε(x) =







−
f (x, |uν

k, σ, R, ε(x)|εuν
k, σ, R, ε(x), (uν

k, σ, R, ε)
′(x), λν

k, σ, R, ε)

uν
k, σ, R, ε(x) (1+|uν

k, σ, R, ε(x)|+|(uν
k, σ, R, ε)

′(x)|)2ε if uν
k, σ, R, ε(x) 6= 0,

0 if uν
k, σ, R, ε(x) = 0.

(3.3)

In view of conditions (1.3) and (1.4), by (3.3) we have

ϕν
k, σ, R, ε(x) ≥ 0 and

|ϕν
k, σ, R, ε(x)| ≤

M|uν
k, σ, R, ε(x)|ε

(1 + |uν
k, σ, R, ε(x)|+ |(uν

k, σ, R, ε)
′(x)|)2ε

≤
M

(1 + |uν
k, σ, R, ε(x)|+ |(uν

k, σ, R, ε)
′(x)|)ε

≤ M for x ∈ [0, 1].

(3.4)

Since C[0, 1] is dense in L1[0, 1] and the function uν
k, σ, R, ε has a finite number of zeros in

(0, 1), by relation (3.4), it follows from [15, Ch. 10, § 10·61] that the eigenvalues of problem

{

(ℓ(u))(x) + ϕν
k, σ, R, ε(x)u(x) = λρ(x)u(x), x ∈ (0, 1),

u ∈ (b.c.),
(3.5)

are real, simple and form a positive infinitely increasing and negative infinitely decreasing

sequences {λν,+
k, σ, R, ε}

∞

k=1 and {λν,−
k, σ, R, ε}

∞

k=1 respectively. In this case, for each k ∈ N the function

uν,+
k, σ, R, ε (uν,−

k, σ, R, ε respectively) corresponding to the eigenvalue λν,+
k, σ, R, ε (λν,−

k, σ, R, ε respectively)

has k − 1 simple nodal zeros in the interval (0, 1). Moreover, by [21, Lemma 2.2], the following

relations hold:

λ+
k ≤ λν,+

k,+, R, ε ≤ λ+
k, M and λ−

k, M ≤ λν,−
k,−, R, ε ≤ λ−

k , k ∈ N. (3.6)

Hence it follows from (3.6) that

λν, σ
k, σ, R, ε ∈ Iσ

k , k ∈ N. (3.7)

Let

I+
k (δ) = [λ+

k − δ, λ+
k, M + δ], I−

k (δ) = [λ−
k, M − δ, λ−

k + δ],

where δ is a positive number.
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By [17, Ch. 4, § 3, Theorem 3.1] for each k ∈ N, each σ and each ν the point (λν, σ
k, σ, R, ε, ∞) is

an unique asymptotic bifurcation point of the nonlinear eigenvalue problem (3.2) with respect

to the set R
σ × Sν

k, σ. Then for any sufficiently large R > 0 there exists a sufficiently small τR, ε

such that

λν
k, σ, R, ε ∈ [λν, σ

k, σ, R, ε − τR, ε, λν, σ
k, σ, R, ε + τR, ε] ⊆ Iσ

k (τR, ε) ⊂ R
σ.

Let τ0 = supR,ε τR, ε. Hence it follows from last relation that

λν
k, σ, R, ε ∈ Iσ

k (τ0) ⊂ R
σ. (3.8)

Since ‖uν
k, σ, R, ε‖1 = R and f , g ∈ C([0, 1] × R

3; R), by relation (3.8), it follows from (3.1)

that

‖uν
k, σ, R, ε‖2 ≤ const,

where ‖u‖2 =‖u‖∞+‖u′‖∞+‖u′′‖∞. Then by the Arzelà–Ascoli theorem the set {uν
k, σ, R, ε}ε∈(0,1]

is precompact in E. Hence we can choose the sequence {εn}∞

n=1 ⊂ (0, 1) converging to 0 as

n → ∞ such that

(λν
k, σ, R, εn

, uν
k, σ, R, εn

) → (λν
k, σ, R, uν

k, σ, R) as n → ∞ in R × E,

and by (3.1) the sequence {(λν
k, σ, R, εn

, uν
k, σ, R, εn

)}∞

n=1 is convergent in R × C2[0, 1]. Putting

(λν
k, σ, R, εn

, uν
k, σ, R, εn

) instead of (λ, u) in (3.1) and passing to the limit (as n → ∞) in this re-

lation we obtain that (λν
k, σ, R, uν

k, σ, R) is a solution of problem (1.1), (1.2). It is obvious that

(λν
k, σ, R, uν

k, σ, R) has the following properties

λν
k, σ, R ∈ Iσ

k (τ0), ‖uν
k, σ, R‖1 = R, and uν

k, σ, R ∈ Sν
k, σ = Sν

k, σ ∪ ∂Sν
k, σ.

If uν
k, σ, R ∈ ∂Sν

k, σ, then either

(i)
∫ 1

0 ρ(x) (uν
k, σ, R(x))2dx = 0, or

(ii) there exists x0 ∈ [0, 1] that such uν
k, σ, R(x0) = (uν

k, σ, R)
′(x0) = 0.

Since ‖uν
k, σ, R‖1 = R it follows from Remark 2.2 that

∫ 1
0 ρ(x) (uν

k, σ, R(x))2dx 6= 0.

Now let there exists x0 ∈ [0, 1] such that uν
k, σ, R(x0) = (uν

k, σ, R)
′(x0) = 0. By (1.1), (1.2) we

have

ℓ(uν
k, σ, R) = λν

k, σ, R ρ(x) uν
k, σ, R + f (x, uν

k, σ, R (uν
k, σ, R)

′, λν
k, σ, R)

+ g(x, uν
k, σ, R, (uν

k, σ, R)
′, λν

k, σ, R), x ∈ (0, 1), uν
k, σ, R ∈ (b.c.). (3.9)

Dividing both sides of (3.9) by ‖uν
k,σ,R‖1 and setting vν

k,σ,R =
uν

k,σ,R

‖uν
k,σ,R‖1

we get

ℓ(vν
k, σ, R) = λν

k, σ, R ρ(x) vν
k, σ, R +

f (x, uν
k, σ, R (uν

k, σ, R)
′, λν

k, σ, R)

‖uν
k,σ,R‖1

+
g(x, uν

k, σ, R, (uν
k, σ, R)

′, λν
k, σ, R)

‖uν
k,σ,R‖1

, x ∈ (0, 1). (3.10)

In view of (1.4) we have
∣

∣

∣

∣

∣

f (x, uν
k, σ, R (uν

k, σ, R)
′, λν

k, σ, R)

‖uν
k,σ,R‖1

∣

∣

∣

∣

∣

≤ M|vν
k,σ,R|. (3.11)
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By virtue of condition (1.5) for any sufficiently small fixed ǫ > 0 there exists a sufficiently

large δǫ > 0 such that

|g(x, u, s, λ)| < ε(|u|+ |s|)
/

2 for any (x, u, s, λ) ∈ [0, 1]× R
2 × Λ, |u|+ |s| > δǫ, (3.12)

where Λ ∈ R
σ is a bounded interval. In other hand, since g ∈ C([0, 1]× R

3; R) it follows that

there exists a positive number Kǫ such that

|g(x, u, s, λ)| ≤ Kǫ for any (x, u, s, λ) ∈ [0, 1]× R
2 × Λ, |u|+ |s| ≤ δǫ. (3.13)

We choose R large enough to satisfy the relations

R > δǫ and Kǫ < R ǫ/2.

Then by (3.12) and (3.13) we have

∣

∣

∣

∣

∣

g(x, uν
k, σ, R(x) (uν

k, σ, R)
′(x), λν

k, σ, R)

‖uν
k,σ,R‖1

∣

∣

∣

∣

∣

=
1

R

∣

∣g(x, uν
k, σ, R(x) (uν

k, σ, R)
′(x), λν

k, σ, R)
∣

∣

≤
1

R







max
{

x∈[0,1] : |uν
k,σ,R(x)|+

∣

∣

∣(uν
k,σ,R)

′
(x)

∣

∣

∣
≤ δǫ

}

∣

∣

∣
g
(

x, uν
k,σ,R(x),

(

uν
k,σ,R

)′
(x), λν

k,σ,R

)∣

∣

∣

+ max
{

x∈[0,1] : |uν
k,σ,R(x)|+

∣

∣

∣(uν
k,σ,R)

′
(x)

∣

∣

∣
> δǫ

}

∣

∣

∣
g
(

x, uν
k,σ,R(x),

(

uν
k,σ,R

)′
(x), λν

k,σ,R

)∣

∣

∣







≤
1

R
{Kǫ + ǫR/2} =

Kǫ

R
+ ǫ/2 < ǫ/2 + ǫ/2 = ǫ.

(3.14)

Taking into account (3.11) and (3.14), from (3.10) we obtain

p0|(v
ν
k,σ,R)

′′(x)| ≤ |p(x)(vν
k,σ,R)

′′(x)|

≤
(

|λν
k, σ, R||ρ(x)|+ |q(x)|+ M

)

|vν
k,σ,R(x)|+ |p′(x)||(vν

k,σ,R)
′(x)|+ ǫ,

which implies that

|(vν
k,σ,R)

′′(x)| ≤ c0

(

|vν
k,σ,R(x)|+ |(vν

k,σ,R)
′(x)|

)

+
ǫ

p0
, (3.15)

where

c0 =
1

p0
max
x∈[0,1]

{

max
{

λ+
k,M, |λ−

k,M|
}

|ρ(x)|+ |q(x)|+ M, |p′(x)|
}

, p0 = min
x∈[0,1]

p(x).

Let wν
k,σ,R =

(

vν
k,σ,R

(vν
k,σ,R)

′

)

∈ R
2 with the norm that given by

|wν
k,σ,R|2 = |vν

k,σ,R|+ |(vν
k,σ,R)

′|.

Then it follows from (3.15) that

|(wν
k,σ,R)

′(x)|2 ≤ c1|w
ν
k,σ,R(x)|2 +

ǫ

p0
,
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where c1 = c0 + 1. Integrating the last relation in the range from x0 to x we have
∣

∣

∣

∣

∫ x

x0

|(wν
k,σ,R)

′(t)|2dt

∣

∣

∣

∣

≤ c1

∣

∣

∣

∣

∫ x

x0

|wν
k,σ,R(t)|2dt

∣

∣

∣

∣

+
ǫ

p0
. (3.16)

Using the relation vν
k,σ,R(x0) = (vν

k,σ,R)
′(x0) = 0 and inequality (3.16) we get

|wν
k,σ,R(x)|2 =

∣

∣

∣

∣

∫ x

x0

|(wν
k,σ,R)

′(t)|2dt

∣

∣

∣

∣

≤ c1

∣

∣

∣

∣

∫ x

x0

|wν
k,σ,R(t)|2dt

∣

∣

∣

∣

+
ǫ

p0
,

whence, with regard the Gronwall’s inequality, we get

|wν
k,σ,R(x)|2 ≤

ǫ

p0
ec1|x−x0| ≤

ǫ

p0
ec1 < 1, x ∈ [0, 1], (3.17)

(in advance we could choose ǫ so small enough that the inequality ǫ <
p0

ec1 holds). Then it

follows from (3.17) that ‖vν
k,σ,R‖1 < 1 which contradicts the condition ‖vν

k,σ,R‖1 = 1. Therefore,

we have uν
k,σ,R ∈ Sν

k,σ.

Corollary 3.2. For each k ∈ N, each σ and each ν there exists a sufficiently large positive number

Rν
k,σ such that for any R ≥ Rν

k,σ problem (1.1), (1.2) has a solution (λ, u) which satisfies the following

properties:

λ ∈ Iσ
k (τ0), u ∈ Sν

k,σ and ‖u‖1 = R.

Recall that (λ, ∞), λ ∈ R
σ, is an asymptotic bifurcation point of problem (1.1), (1.2) with

respect to the set R
σ × Sν

k,σ, k ∈ N, if for any sufficiently small r > 0 there exists a solution

(λν
k, σ, r, uν

k, σ, r) ∈ R
σ × E such that

|λν
k, σ, r − λ| < r, ‖uν

k, σ, r‖1 > r−1 and uν
k, σ, r ∈ Sν

k,σ.

Remark 3.3. We add the points {(λ, ∞) : λ ∈ R} to the space R × E and define an appropriate

topology on the resulting set.

For each k ∈ N, each σ and each ν by B
ν
k,σ, k ∈ N, we denote the set of asymptotic

bifurcation of (1.1), (1.2) with respect to R
σ × Sν

k,σ.

The following result immediately follows from Lemma 3.1 and Corollary 3.2.

Corollary 3.4. For each k ∈ N, each σ and each ν the set Bν
k,σ is nonempty. Furthermore, Bν

k,σ ⊂

Iσ
k × {∞}.

4 Structures of global continua emanating from the asymptotic bi-

furcation points of problem (1.1), (1.2)

Let conditions (1.3)–(1.5) hold.

For each k ∈ N, each σ and each ν we define the set Dν, ∗
k,σ as the union of all the components

of D bifurcating from Iσ
k × {∞} with respect to the set R ×Sν

k,σ. It follows from Corollary 3.4

that the set D
ν, ∗
k,σ is nonempty. This set may not be connected in R × E, but the set D

ν
k,σ =

D
ν, ∗
k,σ ∪ (Iσ

k × {∞}) will be connected in this space (see Remark 3.3).

The main result of this paper is the following theorem.

Theorem 4.1. For each k ∈ N, each σ and each ν the set Dν
k,σ is contained in R

σ × E and for this set

at least one of the following statements holds:
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(i) there exists (k′, ν′) 6= (k, ν) such that Dν
k,σ meets Iσ

k′ × {∞} with respect to the set R
σ × Sν′

k′, σ;

(ii) there exists λ ∈ R
σ such that D

ν
k,σ meets Rσ

0 at the point (λ, 0);

(iii) the projection PRσ
0
(Dν

k,σ) of Dν
k,σ on Rσ

0 is unbounded.

Proof. Let (λ, u) ∈ D and v = u
‖u‖2

1
. Then we have ‖v‖1 = 1

‖u‖1
and u = v

‖v‖2
1
.

Dividing both sides of (1.1), (1.2) by ‖u‖2
1 we obtain







(ℓ(v))(x) = λρ(x)v(x) + f (x, u(x), u′(x), λ)
‖u‖2

1
+ g(x,u(x),u′(x),λ)

‖u‖2
1

, x ∈ (0, 1),

v ∈ (b.c.).
(4.1)

We set

f̂ (x, v(x), v′(x), λ) =







‖v‖2
1 f

(

x, v(x)
‖v‖2

1
, v′(x)
‖v‖2

1
, λ

)

if v(x) 6= 0,

0 if v(x) = 0,
(4.2)

and

ĝ(x, v(x), v′(x), λ) =







‖v‖2
1 g

(

x, v(x)
‖v‖2

1
, v′(x)
‖v‖2

1
, λ

)

if v(x) 6= 0,

0 if v(x) = 0.
(4.3)

By conditions (1.4) for any x ∈ [0, 1] with v(x) 6= 0, and λ ∈ R the following estimates

hold:

| f̂ (x, v(x), v′(x), λ)|

|v(x)|
=

‖v‖2
1

∣

∣

∣
f
(

x, v(x)
‖v‖2

1
, v′(x)
‖v‖2

1
, λ

)∣

∣

∣

|v(x)|
=

∣

∣

∣
f
(

x, v(x)
‖v‖2

1
, v′(x)
‖v‖2

1
, λ

)∣

∣

∣

∣

∣

∣

v(x)
‖v‖2

1

∣

∣

∣

=
| f (x, u(x), u′(x), λ)|

|u(x)|
≤ M.

(4.4)

We choose δǫ, 1 > δǫ so that (see Section 3)

Kǫ

δǫ,1
<

ǫ

2
.

Let (λ, u) ∈ R × E such that λ ∈ Λ and ‖u‖1 > δǫ, 1, where Λ ⊂ R is any fixed bounded

interval. Then for any x ∈ [0, 1] we have

∣

∣g(x, u(x) u′(x), λ)
∣

∣

≤

{

max
{x∈[0,1] : |u(x)|+|u′(x)| ≤ δǫ}

∣

∣g
(

x, u(x), u′(x), λ
)∣

∣

+ max
{x∈[0,1] : |u(x)|+|u′(x)|> δε}

∣

∣g
(

x, u(x), u′(x), λ
)∣

∣

}

≤ Kǫ +
ǫ

2

{

|u(x)|+ |u′(x)|
}

≤
ǫ

2
δǫ, 1 +

ǫ

2
‖u‖1 ≤

ǫ

2
‖u‖1 +

ǫ

2
‖u‖1 = ǫ ‖u‖1.

(4.5)

By (4.5) for any x ∈ [0, 1], v ∈ E with 0 < ‖v‖1 <
1

δε,1
, and λ ∈ Λ we get

|ĝ(x, v(x), v′(x), λ)| = ‖v‖2
1

∣

∣

∣

∣

g

(

x,
v(x)

‖v‖2
1

,
v′(x)

‖v‖2
1

, λ

)∣

∣

∣

∣

=
‖v‖1

‖u‖1

∣

∣

∣

∣

g

(

x,
v(x)

‖v‖2
1

,
v′(x)

‖v‖2
1

, λ

)∣

∣

∣

∣

= ‖v‖1 ·
1

‖u‖1

∣

∣g
(

x, u(x), u′(x), λ
)∣

∣ ≤ ǫ ‖v‖1,
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which shows that

|ĝ(x, v(x), v′(x), λ)|∞ = o(‖v‖1) as ‖v‖1 → 0, (4.6)

uniformly for (x, λ) ∈ [0, 1]× Λ.

By (4.2) and (4.3) it follows from (4.1) that (λ, v) solves the nonlinear eigenvalue problem

{

(ℓ(v))(x) = λρ(x)v(x) + f̂ (x, v(x), v′(x), λ) + ĝ(x, v(x), v′(x), λ), x ∈ (0, 1),

v ∈ (b.c.).
(4.7)

Conditions (4.4) and (4.6) show that the inversion

(λ, u) →

(

λ,
u

‖u‖2
1

)

= (λ, v) (4.8)

transforms ”bifurcation at infinity” problem (1.1), (1.2) into ”bifurcation from zero” problem

(4.7).

It follows from Lemma 2.4 that the set of bifurcation points of problem (4.7) with respect

to the set R
σ ×Sν

k, σ is nonempty; moreover, if (λ, 0) is a bifurcation point of this problem with

respect to R
σ × Sν

k, σ, then λ ∈ Iσ
k .

Let D̂ be the set of nontrivial solutions of problem (4.7). It is obvious that inversion (4.8)

transforms D into D̂. By D̂ν, ∗
k, σ we denote the union of all the components of D̂ that meet

Iσ
k × {0} by the set R

σ × Sν
k, σ, and let D̂ν

k, σ = D̂ν, ∗
k, σ ∪ (Iσ

k × {0}). Then the set D
ν
k,σ is the

inverse image of the set D̂ν
k, σ under inversion (4.8).

Let Qν
k,σ be some neighborhood of the set Iσ

k (τ0)× (E \ BRν
k, σ

), where BRν
k, σ

is a ball in R× E

with center 0 and radius Rν
k, σ. Note that inversion (4.8) transforms the set Iσ

k (τ0)× (E \ BRν
k, σ

)

into the set Iσ
k (τ0)× B 1

Rν
k, σ

, and the set Qν
k,σ into the set T ν

k,σ which is some neighborhood of

Iσ
k (τ0) × B 1

Rν
k, σ

. Then it follows from Corollary 3.2 that (D̂ν
k, σ ∩ (Iσ

k (τ0) × B 1
Rν

k, σ

)) ⊂ (Rσ ×

Sν
k, σ) ∪ (Iσ

k (τ0)× {0}).

Remark 4.2. If (λ, u) ∈ (R× E) \ (
⋃

k∈N, σ, ν Q
ν
k, σ) is a solution of (1.1), (1.2) such that u ∈ ∂Sν

k, σ,

then it is seen from the proof of Lemma 3.1 that, in contrast to Lemma 2.3, the relation u ≡ 0

may not hold. Consequently, if (λ, u) ∈ R
σ × E is a solution of (1.1), (1.2) outside

⋃

k∈N, σ, ν Q
ν
k, σ

such that u ∈ ∂Sν
k, σ, then the relation u ≡ 0 may not hold.

Due to Remark 4.2, it need not be the case that (D̂ν
k, σ \ T

ν
k,σ) ⊂ R

σ × Sν
k, σ (see for example

[24, Remark 2.12]). Hence the assertions of Theorem 2.6 will not hold for D̂ν
k, σ. However,

using Remark 2.2, the above arguments and the techniques of [6, 25], and combining it with

the global results from [13] and [23], we can show that for each k ∈ N, each σ and each ν the

set D̂ν
k, σ lies in R

σ × E and for this set at least one of the following hold:

(a) there exists (k′, ν′) 6= (k, ν) such that D̂ν
k, σ meets Iσ

k′ × {0} with respect to R
σ × Sν′

k′, σ;

(b) D̂ν
k, σ is unbounded in R × E.

Now alternative (i) of Theorem 4.1 for Dν
k, σ is obtained from the alternative (a) for D̂ν

k, σ by

the inversion (4.8). The alternatives (ii) and (iii) of this theorem for D
ν
k, σ correspond, via the

inversion (4.8), to the various ways of the alternative (b) in which D̂ν
k, σ can be unbounded.
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Now suppose that along with the constant M > 0 there exists a sufficiently large constant

χ > 0 such that

∣

∣

∣

∣

f (x, u, s, λ)

u

∣

∣

∣

∣

≤ M, (x, u, s, λ) ∈ [0, 1]× R
3, u 6= 0, |u|+ |s| ≥ χ. (4.9)

Then the following result holds.

Lemma 4.3. Let conditions (1.3), (1.5) and (4.9) hold. Then there are functions f1, g1 ∈ C([0, 1]×

R
3; R) such that f1 satisfies condition (1.4) for any (x, u, s, λ) ∈ [0, 1] × R

3 with u 6= 0 and g1

satisfies the conditions (1.5) uniformly for (x, λ) ∈ [0, 1] × Λ, and the function h can also have a

representation h = f1 + g1.

The proof of this lemma is similar to that of [6, Lemma 5.1].

Remark 4.4. Let conditions (1.3), (1.5) and (4.9) hold. Then, in this case, for problem (1.1),

(1.2), Theorem 4.1 again holds.

5 Global bifurcation of solutions of problem (1.1), (1.2) under both

conditions (1.5) and (1.6)

In the case when both conditions (1.5) and (1.6) are satisfied, Theorems 2.6 and 4.1 can be

improved as follows.

Theorem 5.1. Let both conditions (1.5) and (1.6) be satisfied. Then for each k ∈ N, each σ and each

ν, (Dν
k, σ \ (I

σ
k × {∞})) ⊂ R

σ × Sν
k, σ, and alternative (i) of Theorem 4.1 cannot hold. Moreover, if

D
ν
k, σ meets Rσ

0 for some λ ∈ R
σ, then λ ∈ Iσ

k . Similarly, if Dν
k, σ meets Rσ

∞ for some λ ∈ R
σ, then

λ ∈ Iσ
k .

Proof. If (1.6) holds, then by Lemma 2.3 we have

D ∩ (Rσ × ∂Sν
k, σ) = ∅,

whence implies that the sets

D ∩ (Rσ × Sν
k, σ) and D \ (Rσ × Sν

k, σ)

are mutually separated in R × E. Hence, in view of [29, Corollary 26.6], every component of D

must be a subset of D ∩ (Rσ × Sν
k, σ) or D \ (Rσ × Sν

k, σ). Recall that Dν, ∗
k, σ = D

ν
k, σ \ (I

σ
k × {∞})

is the union of all components of the set D which intersect the set R
σ × Sν

k, σ. Therefore, each

of these components must be contained in R
σ × Sν

k, σ, and consequently, Dν, ∗
k, σ ⊂ R

σ × Sν
k, σ.

Then, by virtue of Theorem 4.1, its alternative (i) will not hold.

Now let Dν
k, σ meets Rσ

0 for some λ ∈ R
σ. Then it follows from Lemma 2.4 that λ ∈ Iσ

k .

Similarly, if Dν
k, σ meets Rσ

∞ for some λ ∈ R
σ, then Corollary 3.4 implies that λ ∈ Iσ

k .

6 Bifurcation of problem (1.1), (1.2) in the case ρ(x) ≥ 0

In this section we consider problem (1.1), (1.2) in the case when weight function ρ(x) ≥ 0 on

[0, 1] and ρ(x) 6≡ 0 on any subinterval of [0, 1]. Then it follows from [15, Ch. 10, § 10·6 and
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10·61] that the spectrum of the linear spectral problem consists of one sequence of positive

and simple eigenvalues

λ1 < λ2 < · · · < λk 7→ +∞;

for each k ∈ N the eigenfunctions uk corresponding to the eigenvalues λk has exactly k − 1

simple nodal zeros in (0, 1). Moreover, it follows from (2.3) with f ≡ 0 and g ≡ 0 that for each

k ∈ N the eigenfunction uk(x) satisfies the condition

∫ 1

0
ρ(x)u2

k(x)dx > 0.

By following the arguments in Sections 2–4 in this case we can justify the following results.

Theorem 6.1. Let the condition (1.6) holds. Then for each k ∈ N and each ν there exists a connected

component Dν
k of the closure of the set of nontrivial solutions of (1.1), (1.2) which contains Ik × {0}

lies in (R+ × Sν
k,+) ∪ (Ik × {0}) and is unbounded in R × E, where Ik = [λk, λk, M], k ∈ N, and

λk,M is the kth eigenvalue of problem (2.4).

Theorem 6.2. Let the condition (1.5) holds. Then for each k ∈ N and each ν there exists a connected

component Dν
k of the closure of the set of nontrivial solutions of (1.1), (1.2) which contains Ik × {∞}

is contained in R
+ × E and for this set at least one of the following statements holds:

(i) there exists (k′, ν′) 6= (k, ν) such that Dν
k meets Ik′ × {∞} with respect to the set R × Sν′

k′,+;

(ii) there exists λ ∈ R
+ such that D

ν
k meets R+

0 at the point (λ, 0);

(iii) the projection PR+
0
(Dν

k) of Dν
k on R+

0 is unbounded.

Theorem 6.3. Let both conditions (1.5) and (1.6) be satisfied. Then for each k ∈ N and each ν,

(Dν
k \ (Ik × {∞})) ⊂ R

+ × Sν
k,+, and alternative (i) of Theorem 6.2 cannot hold. Moreover, if D

ν
k

meets R+
0 for some λ ∈ R

+, then λ ∈ Ik. Similarly, if Dν
k meets R+

∞ for some λ ∈ R
+, then λ ∈ Ik.
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Abstract. In this paper, we study the following critical nonlocal problem




−

(
a − λb

∫

Ω

|∇u|2dx

)
∆u = λ|u|p−2u + Q(x)|u|2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where a > 0, b ≥ 0, 2 < p < 4, λ > 0 is a parameter, Ω is a smooth bounded domain
in R

4 and Q(x) ∈ C(Ω) is a nonnegative function. By virtue of variational methods
and delicate estimates, we prove that problem admits k positive solutions for λ > 0
sufficiently small, provided that the maximum of Q(x) is achieved at k interior points
in Ω.
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tive solutions.
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1 Introduction

In this paper, we concern with the multiplicity of positive solutions to the nonlocal problem





−

(
a − λb

∫

Ω

|∇u|2dx

)
∆u = λ|u|p−2u + Q(x)|u|2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where a > 0, b ≥ 0, 2 < p < 4, λ > 0 is a parameter, Ω is a smooth bounded domain in R
4

(2∗ = 4 is the critical exponent in dimension four) and Q(x) ∈ C(Ω) is a nonnegative function

satisfying:

(Q1) There exist k different points x1, x2, . . . , xk ∈ Ω such that Q(xj) are strict local maximums

and satisfy

Q(xj) = QM = max {Q(x) : x ∈ Ω} > 0, j = 1, 2, . . . , k;

BEmail: qianxiaotao1984@163.com



2 X. Qian

(Q2) QM − Q(x) = O
(
|x − xj|2

)
for x near xj, j = 1, 2, . . . , k.

In the past decade, the following Kirchhoff type problem involving critical growth on a

bounded domain Ω ⊂ R
N





−

(
a + b

∫

Ω

|∇u|2dx

)
∆u = g(x, u) + K(x)|u|2

∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.2)

has attracted considerable attention, where a, b > 0 are constants, 2∗ = 2N/(N − 2) with

N ≥ 3 and K(x) is a nonnegative continuous function. Kirchhoff type problem is often

viewed as nonlocal due to the presence of the term b
∫

Ω
|∇u|2dx which implies that such

problem is no longer pointwise identity. It is commonly known that Kirchhoff type problem

has a mechanical and biological motivation, see [1, 8]. Under different hypotheses on g(x, u)

and K(x), there are many interesting results of positive solutions to (1.2) by using variational

methods, see e.g. [6,7,15]. In particular, Fan [6] showed how the topology of the maximum set

of K(x) affects the number of positive solutions to (1.2) via Ljusternik–Schnirelmann category

theory when N = 3 and f (x, u) = f (x)uq with f (x) ∈ L
6

6−q (Ω) and 3 < q < 5. There are

also several existence results for (1.2) in the whole space R
N , see [5, 11, 12] and the references

therein.

In (1.2), if we replace a + b
∫

Ω
|∇u|2dx by a − b

∫
Ω
|∇u|2dx, it turns to be a new nonlo-

cal one. This kind of nonlocal problem presents some interesting difficulties different from

Kirchhoff type problem. Such nonlocal problem with subcritical growth





−

(
a − b

∫

Ω

|∇u|2dx

)
∆u = fλ(x)|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.3)

has been studied by some researchers, where fλ(x) ∈ L
2∗

2∗−p (Ω) and Ω ⊂ R
N is a bounded do-

main. If fλ(x) ≡ 1 and 2 < p < 2∗, Yin and Liu [23] obtained two nontrivial solutions to (1.3);

Qian [18] proved the existence and asymptotic behavior of ground state sign-changing solu-

tions for (1.3); Wang et al. [22] proved that (1.3) has infinitely many sign-changing solutions.

For 1 ≤ p < 2∗, Duan et al. [4] established the existence of multiple positive solutions to (1.3).

In [10], the multiplicity result of positive solutions to (1.3) was obtained for 0 < p < 1. When

fλ(x) has indefinite sign, Lei et al. [9] and Qian and Chao [16] proved the existence of positive

solution to (1.3) for 1 < p < 2 and 3 < p < 6, respectively. For more results about (1.3) with

general nonlinearities and its variants on unbounded domain, we refer the interested readers

to [19,20,24]. To the best of our knowledge, there is little result for (1.3) when f (x, u) exhibits

a critical exponent. Only Wang et al. [21] investigated the existence of two positive solutions

for the following problem involving critical exponent





−

(
a − b

∫

R4
|∇u|2dx

)
∆u = λg(x) + |u|2u, x ∈ R

4,

u ∈ D1,2(R4),

under the assumptions λ > 0 is sufficiently small and g(x) ∈ L4/3(R4) is a nonnegative

function.
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When a = 1, b = 0, R
4 and Q(x)|u|2u are replaced by R

N and Q(x)|u|2
∗−2u, respectively,

(1.1) is reduced to the following local one

{
− ∆u = λ|u|p−2u + Q(x)|u|2

∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.4)

which does not depend on the nonlocal term
∫

Ω
|∇u|2dx any more. The study by Cao and

Noussair [3] is the first to investigate the effect of the shape of the graph of Q(x) on the

number of positive solutions to (1.4) with p = 2. More precisely, they proved that for small

enough λ > 0, (1.4) has k positive solutions if the maximum of Q(x) is achieved at exactly

k different points of Ω, by applying Nehari manifold method. Liao et al. [13] extended the

result of [3] in the sense that a more wider range of p is covered. In [17], Qian and Chen got

a similar but more complicated result for (1.4) with an additional fast increasing weight.

Motivated by the idea of [3, 6, 21], it is natural and interesting to ask: can we apply the

shape of the graph of Q(x) to prove the multiplicity of positive solutions for the critical

nonlocal problem (1.1) as in Kirchhoff problem (1.2)? In the present paper, we will give a

positive answer to this question.

Our main results can be stated as follows.

Theorem 1.1. Assume that a > 0, b ≥ 0, 2 < p < 4 and Ω is a smooth bounded domain in R
4. If

the conditions (Q1) and (Q2) hold, then there exists Λ0 > 0, such that for each λ ∈ (0, Λ0), (1.1) has

at least k positive solutions.

Since the result of Theorem 1.1 still holds for b = 0, then we obtain the following corollary

related to the multiplicity result of positive solutions for a semilinear problem with critical

exponent.

Corollary 1.2. Assume that a > 0, 2 < p < 4 and Ω is a smooth bounded domain in R
4. If the

conditions (Q1) and (Q2) hold, then there exists Λ1 > 0, such that for each λ ∈ (0, Λ1), the problem

{
− a∆u = λ|u|p−2u + Q(x)|u|2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.5)

has at least k positive solutions.

Associated with (1.1), we define the functional Iλ on H1
0(Ω) by

Iλ(u) =
a

2
‖u‖2 −

λb

4
‖u‖4 −

λ

p

∫

Ω

|u|pdx −
1

4

∫

Ω

Q(x)|u|4dx,

where ‖u‖2 =
∫

Ω
|∇u|2dx. Then Iλ ∈ C1

(
H1

0(Ω), R
)
. Moreover, there exists a one to one

correspondence between the critical points of Iλ on H1
0(Ω) and the weak solutions of (1.1).

Here, we say that u is a weak solution of (1.1), if u ∈ H1
0(Ω) and for all v ∈ H1

0(Ω), there holds

(a − λb‖u‖2)
∫

Ω

∇u∇vdx − λ
∫

Ω

|u|p−2uvdx −
∫

Ω

Q(x)|u|2uvdx = 0.

The proof of Theorem 1.1 is based on variational methods. Since (1.1) has a negative

nonlocal term, the approaches used in [6] to deal with Kirchhoff problem do not work here.

Indeed, we shall apply the ideas introduced by Cao and Noussair [3]. However, in the present

paper, there are some new difficulties caused by the competing effect of the nonlocal term
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with the nonlinear terms and the non-compactness due to the critical exponent. To overcome

these difficulties, we need to add the factor λ of |u|p−2u to the nonlocal term −b
∫

Ω
|∇u|2dx

in problem (1.1). This modification will play an important role in our arguments (see Lemma

2.2 below). Moreover, inspired by [21], we consider our problem in dimension 4 and make

some delicate estimates in order to get the compactness condition. We also point out that it is

not clear whether the multiplicity result in Theorem 1.1 still holds for critical problem (1.1) in

other dimension, from which it follows that the critical exponent 2∗ is no longer equal to 4.

In Section 2, we present some lemmas which will be used to prove Theorem 1.1. Section 3

is devoted to the proof of Theorem 1.1.

2 Notations and preliminaries

Throughout the paper, for simplicity we write
∫

u instead of
∫

Ω
u(x)dx. H1

0(Ω) and Lr(Ω)

are the usual Sobolev spaces equipped with the standard norms ‖u‖ and |u|r, respectively.

D1,2(R4) = {u ∈ L4(R4) : ∇u ∈ L2(R4)}. Denote by Br(x) the ball centered at x with

radius r > 0. Let Br(x) and ∂Br(x) denote the closure and the boundary of Br(x), respectively.

We use → (⇀) to denote the strong (weak) convergence. O(εt) denotes |O(εt)|/εt ≤ C as

ε → 0, and o(εt) denotes |o(εt)|/εt → 0 as ε → 0. C and Ci denote various positive constants

whose exact values are not essential. Let S be the best constant of the Sobolev embedding

H1
0(Ω) →֒ L4(Ω), that is,

S = inf
u∈H1

0 (Ω)\{0}

∫
|∇u|2

( ∫
|u|4

)1/2
.

The Nehari manifold corresponding to Iλ is defined by

Mλ = {u ∈ H1
0(Ω) \ {0} : 〈I′λ(u), u〉 = 0}.

By the condition (Q1), we can take η > 0 sufficiently small such that B2η(xj) ⊂ Ω are

disjoint and Q(x) < Q(xj) for x ∈ B2η(xj) \ {xj}, j = 1, 2, . . . , k. Following the argument of

[3], we define a barycenter map β : H1
0(Ω) \ {0} → R

4 by setting

β(u) =

∫
x|u|4

∫
|u|4

.

With the help of the map above, we will first separate the Nehari manifold Mλ, then study

minimization problems of Iλ on its proper subset. We point out that, a key role of β is to

insure that the minimizers of the considered minimization problems are distinct.

For j = 1, 2, . . . , k, we consider the following subsets of Mλ,

M
j
λ = {u ∈ Mλ : β(u) ∈ Bη(xj)} and O

j
λ = {u ∈ Mλ : β(u) ∈ ∂Bη(xj)}.

Correspondingly, study the following minimization problems

m
j
λ = inf

u∈M
j
λ

Iλ(u) and m̃
j
λ = inf

u∈O
j
λ

Iλ(u).
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For all ε > 0 and x0 ∈ R
4, we define

Uε,x0 =
(8)1/2ε

(ε2 + |x − x0|2)
,

which solves −∆u = |u|2u in R
4. For j = 1, 2, . . . , k fixed, define a cut off function ϕj ∈ C∞

0 (R4)

such that 0 ≤ ϕj ≤ 1, ϕj(x) = 1 for |x − xj| < ρ and ϕj(x) = 0 for |x − xj| ≥ 2ρ with

0 < ρ < η/2. Let uε,j = ϕj(x − xj)Uε,xj(x). By [2], we have for 2 < p < 4,

‖uε,j‖
2 = S2 + O(ε2),

|uε,j|
4
4 = S2 + O(ε4),

|uε,j|
p
p = O(ε4−p).

Lemma 2.1. For j = 1, 2, . . . , k and λ > 0, we have

m
j
λ <

a2S2

4(λbS2 + QM)
. (2.1)

Proof. It is easy to see that there exists a unique tε > 0 such that tεuε,j ∈ Mλ and Iλ(tεuε,j) =

supt>0 Iλ(tuε,j). By the symmetry of uε,j about xj, we further obtain tεuε,j ∈ M
j
λ. Thus, to

complete the proof of lemma, it suffices to prove that

sup
t>0

Iλ(tuε,j) <
a2S2

4(λbS2 + QM)
. (2.2)

At this point, we can suppose that tε ≥ C1 > 0 for any ε > 0 small. Otherwise, there is a

sequence εn → 0+ such that tεn → 0. By the continuity of Iλ and the boundedness of {uεn,j},

sup
t>0

Iλ(tuεn,j) = Iλ(tεn uεn,j) → 0 <
a2S2

4(λbS2 + QM)
,

that is, the proof is complete. Similarly, we also suppose that tε ≤ C2 for some positive

constant C2 and any ε > 0 small.

To proceed, set

h(t) =
at2

2
‖uε,j‖

2 −
λbt4

4
‖uε,j‖

4 −
t4

4

∫
QM|uε,j|

4.

We easily see that h(t) achieves its maximum at

tmax =

(
a‖uε,j‖

2

λb‖uε,j‖4 + QM|uε,j|
4
4

)1/2

=

(
aS2 + O(ε2)

λbS4 + QMS2 + O(ε2)

)1/2

=

(
aS2

λbS4 + QMS2

)1/2

+ O(ε2),

with

h(tmax) =
a2S2

4(λbS2 + QM)
+ O(ε2). (2.3)
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Using condition (Q2), we also have

∫
(QM − Q(x)) |uε,j|

4 = O(ε2). (2.4)

By (2.3) and (2.4),

sup
t>0

Iλ(tuε,j) = Iλ(tεuε,j)

= h(tε) +
t4
ε

4

∫
(QM − Q(x)) |uε,j|

4 −
λ

p
t

p
ε

∫
|uε,j|

p

≤ h(tmax) +
C4

2

4

∫
(QM − Q(x)) |uε,j|

4 −
λ

p
C

p
1

∫
|uε,j|

p

=
a2S2

4(λbS2 + QM)
+ O(ε2)− O(ε4−p).

Since 2 < p < 4, (2.2) holds for ε > 0 small enough. This ends the proof.

Lemma 2.2. Assume that condition (Q1) holds. Then there exists Λ0 > 0 such that

m̃
j
λ >

a2S2

4QM

for j = 1, 2, . . . , k, and λ ∈ (0, Λ0).

Proof. Let us argue by contradiction and suppose that there exist sequences λn → 0, and

{un} ⊂ O
j
λn

satisfying

Iλn
(un) → c ≤

a2S2

4QM
,

and

a
∫

|∇un|
2 − λnb

( ∫
|∇un|

2

)2

= λn

∫
|un|

p +
∫

Q(x)|un|
4. (2.5)

By {un} ⊂ O
j
λn

, one has for n large,

c + 1 ≥ Iλn
(un)−

1

p
〈I′λn

(un), un〉

= a

(
1

2
−

1

p

)
‖un‖

2 + λnb

(
1

p
−

1

4

)
‖un‖

4 +

(
1

p
−

1

4

) ∫
Q(x)|un|

4

≥ a

(
1

2
−

1

p

)
‖un‖

2

which implies that {un} is bounded in H1
0(Ω). Using (2.5) and Sobolev embedding, we also

have

a‖un‖
2 = λnb‖un‖

4 + λn|un|
p
p +

∫
Q(x)|un|

4 ≤ λnb‖un‖
4 + λnC‖un‖

p + QMS−2‖un‖
4

from which we infer that

‖un‖ ≥ C3 > 0.
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Noting that λn → 0, we then deduce from (2.5) that there is a constant C4 > 0 such that

∫
Q(x)|un|

4 ≥ C4 > 0,

for all n ∈ N. Thus, we are able to choose tn > 0 such that vn = tnun satisfies

a
∫

|∇vn|
2 =

∫
QM|vn|

4. (2.6)

This and Sobolev inequality give that aS2

QM
≤ ‖vn‖2. Moreover,

tn =




∫
Q(x)|un|

4 + λnb

( ∫
|∇un|

2

)2

+ λn

∫
|un|

p

∫
QM|un|

4




1/2

.

It follows that {tn} is uniformly bounded. Then, we can assume limn→∞ tn = t0. By Q(x) ≤

QM, λn → 0 and the boundedness of {un}, we see that t0 ≤ 1. We show next that the case

t0 ≤ 1 leads to a contradiction. Since for t0 ≤ 1, we have

a2S2

4QM
≤ lim

n→∞

1

4
a
∫

|∇vn|
2 = lim

n→∞

1

4
at2

n

∫
|∇un|

2

= lim
n→∞

t2
n

[(
1

2
−

1

4

)(
a
∫

|∇un|
2 − λnb

( ∫
|∇un|

2

)2

− λn

∫
|un|

p

)

+ λnb

(
1

2
−

1

4

)( ∫
|∇un|

2

)2

+ λn

(
1

2
−

1

p

) ∫
|un|

p

]

= lim
n→∞

t2
n Iλn

(un) = t2
0c ≤ c ≤

a2S2

4QM
,

then it follows that

c =
a2S2

4QM
and lim

n→∞

∫
|∇vn|

2 =
aS2

QM
. (2.7)

Let wn = vn/|vn|4, then |wn|4 = 1. Moreover, by (2.6) and (2.7),

lim
n→∞

∫
|∇wn|

2 = lim
n→∞

‖vn‖2

|vn|24
= lim

n→∞

‖vn‖2

(a‖vn‖2/QM)1/2
= S,

namely, {wn} is a minimizing sequence for S. According to [14], we can find a point y0 ∈ Ω

such that

|∇wn|
2
⇀ dµ = Sδy0 and |wn|4 ⇀ dν = δy0 (2.8)

with the above convergence holding weakly in the sense of measure, where δy0 is a Dirac mass

at y0. Then

β(un) =

∫
x|un|

4

∫
|un|

4
=

∫
x|vn|

4

∫
|vn|

4
=

∫
x|wn|

4

∫
|wn|

4
→ y0, as n → ∞.
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This together with β(un) ∈ ∂Bη(xj) imply that y0 ∈ ∂Bη(xj). Thus, from (2.6) and (2.8), we

conclude that

lim
n→∞

Iλn
(un) = lim

n→∞
t2
n

[(
1

2
−

1

4

)(
a
∫

|∇un|
2 − λnb

( ∫
|∇un|

2

)2

− λn

∫
|un|

p

)

+ λnb

(
1

2
−

1

4

)( ∫
|∇un|

2

)2

+ λn

(
1

2
−

1

p

) ∫
|un|

p

]

≤ lim
n→∞

1

4

∫
Q(x)|un|

4

= lim
n→∞

1

4

∫
Q(x)|vn|

4

=
Q(y0)

4QM
lim
n→∞

∫
QM|vn|

4

=
Q(y0)

4QM
lim
n→∞

a
∫

|∇vn|
2

=
Q(y0)

4QM

a2S2

QM
<

a2S2

4QM
,

which contradicts with (2.7). This completes the proof.

Lemma 2.3. For any u ∈ M
j
λ, there exist ρ > 0 and a differential function g = g(w) defined for

w ∈ H1
0(Ω), w ∈ Bρ(0) satisfying that

g(0) = 1, g(w)(u − w) ∈ M
j
λ

and

〈g′(0), φ〉 =
(2a − 4λb‖u‖2)

∫
∇u∇φ − λp

∫
|u|p−2uφ − 4

∫
Q(x)|u|2uφ

a‖u‖2 − 3λb‖u‖4 − λ(p − 1)
∫

|u|p − 3
∫

Q(x)|u|4
.

Proof. Define F : R
+ × H1

0(Ω) → R by

F(t, w) = at‖u − w‖2 − λbt3‖u − w‖4 − λtp−1
∫

|u − w|p − t3
∫

Q(x)|u − w|4.

By u ∈ M
j
λ, we get F(1, 0) = 0 and

Ft(1, 0) = a‖u‖2 − 3λb‖u‖4 − λ(p − 1)
∫

|u|p − 3
∫

Q(x)|u|4

= a(2 − p)‖u‖2 − λb(4 − p)‖u‖4 − (4 − p)
∫

Q(x)|u|4

< 0.

Thus, we can use the implicit function theorem for F at the point (1, 0) and obtain ρ > 0 and

a functional g = g(w) > 0 defined for w ∈ H1
0(Ω), ‖w‖ < ρ satisfying that

g(0) = 1, g(w)(u − w) ∈ Mλ, ∀w ∈ H1
0(Ω), ‖w‖ < ρ.
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By the continuity of the maps g and β, we can further take ρ > 0 possibly smaller (ρ < ρ) such

that

β (g(w)(u − w)) ∈ Bη(xj), ∀w ∈ H1
0(Ω), ‖w‖ < ρ,

which means that g(w)(u − w) ∈ M
j
λ.

Moreover, we also have for all φ ∈ H1
0(Ω), r > 0,

F(1, 0 + rφ)− F(1, 0)

= a‖u − rφ‖2 − λb‖u − rφ‖4 − λ
∫

|u − rφ|p −
∫

Q(x)|u − rφ|4

− a‖u‖2 + λb‖u‖4 + λ
∫

|u|p +
∫

Q(x)|u|4

= − a
∫ (

2r∇u∇φ − r2|∇φ|2
)

+ λb

[
2
∫

|∇u|2
∫ (

2r∇u∇φ − r2|∇φ|2
)
−

( ∫ (
2r∇u∇φ − r2|∇φ|2

))2
]

− λ
∫ (

|u − rφ|p − |u|p
)
−
∫

Q(x)
(
|u − rφ|4 − |u|4

)
.

It follows that

〈Fw, φ〉|t=1,w=0 = lim
r→0

F(1, 0 + rφ)− F(1, 0)

r

= − (2a − 4λb‖u‖2)
∫

∇u∇φ + pλ
∫

|u|p−2uφ + 4
∫

Q(x)|u|2uφ.

Therefore,

〈g′(0), φ〉 = −
〈Fw, φ〉

Ft

∣∣∣∣
t=1,w=0

=
(2a − 4λb‖u‖2)

∫
∇u∇φ − λp

∫
|u|p−2uφ − 4

∫
Q(x)|u|2uφ

a‖u‖2 − 3λb‖u‖4 − λ(p − 1)
∫

|u|p − 3
∫

Q(x)|u|4
.

The proof is completed.

Lemma 2.4. There exist Λ0 > 0 and a sequence {un} ⊂ M
j
λ such that

un ≥ 0, Iλ(un) → m
j
λ, I′λ(un) → 0,

for j = 1, 2, . . . , k, and λ ∈ (0, Λ0).

Proof. Note that M
j
λ = M

j
λ ∪O

j
λ and O

j
λ is the boundary of M

j
λ. In view of Lemmas 2.1 and

2.2, we know that there exists Λ0 > 0 such that

m
j
λ < m̃

j
λ

for λ ∈ (0, Λ0), j = 1, 2, . . . , k,. This implies that

m
j
λ = inf{Iλ(u) : u ∈ M

j
λ}.

Then, for each j = 1, 2, . . . , k, we can apply Ekeland’s variational principle to construct a

minimizing sequence {un} ⊂ M
j
λ satisfying the following properties :
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(i) lim
n→∞

Iλ(un) = m
j
λ,

(ii) Iλ(un) ≤ Iλ(w) +
1

n
‖w − un‖, for each w ∈ M

j
λ.

Since Iλ(|u|) = Iλ(u), we may assume un ≥ 0. Using Lemma 2.3 with u = un, we get ρn > 0, a

differential function gn(w) defined for w ∈ H1
0(Ω), w ∈ Bρn(0) such that gn(w)(un −w) ∈ M

j
λ.

Let 0 < δ < ρn and let wδ = δu with ‖u‖ = 1. Fix n and set zδ = gn(wδ)(un −wδ). By zδ ∈ M
j
λ

and the property (ii), one has

Iλ(zδ)− Iλ(un) ≥ −
1

n
‖zδ − un‖.

Then, by mean value theorem

〈I′λ(un), zδ − un〉+ o(‖zδ − un‖) ≥ −
1

n
‖zδ − un‖.

Thus,

〈I′λ(un), (un − wδ) +
(

gn(wδ)− 1
)
(un − wδ)− un〉 ≥ −

1

n
‖zδ − un‖+ o(‖zδ − un‖)

which yields that

−δ〈I′λ(un), u〉+
(

gn(wδ)− 1
)
〈I′λ(un), un − wδ〉 ≥ −

1

n
‖zδ − un‖+ o(‖zδ − un‖).

Combining this with 〈I′λ(zδ), gn(wδ)(un − wδ)〉 = 0, we obtain

〈I′λ(un), u〉 ≤
1

n

‖zδ − un‖

δ
+

o(‖zδ − un‖)

δ
+

gn(wδ)− 1

δ
〈I′λ(un), un − wδ〉. (2.9)

By Lemma 2.3 and the boundedness of {un}, we easily see that

‖zδ − u
j
n‖ = ‖ (gn(wδ)− 1) (u

j
n − wδ)− wδ‖ ≤ |gn(wδ)− 1|C5 + δ

and

lim
δ→0

|gn(wδ)− 1|

δ
= 〈g′n(0), u〉 ≤ ‖g′n(0)‖ ≤ C6.

Therefore, for fixed n, we can conclude by passing δ → 0 in (2.9) that

〈I′λ(un), u〉 ≤
C

n
,

which implies that I′λ(un) → 0 as n → ∞, and Lemma 2.4 is proved.

Lemma 2.5. For all λ > 0, if {un} ⊂ Mλ is a sequence satisfying

Iλ(un) → c <
a2S2

4(λbS2 + QM)
and I ′λ(un) → 0,

as n → ∞, then {un} has a convergent subsequence.
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Proof. As in the proof of Lemma 2.2, it is easy to verify that {un} is bounded in H1
0(Ω). Hence,

we may assume that for some u∗ ∈ H1
0(Ω),

un ⇀ u∗ in H1
0(Ω),

un → u∗ in Lr(Ω), 1 ≤ r < 4,

un → u∗ a.e. in Ω.

Denote vn = un − u∗ and we claim that ‖vn‖ → 0. If not, there is a subsequence (still denoted

by {vn}) such that ‖vn‖ → L with L > 0. By 〈I′λ(un), u∗〉 = o(1) and the weak convergence of

un, we see that

0 = a‖u∗‖
2 − λb(L2 + ‖u∗‖

2)‖u∗‖
2 − λ

∫
|u∗|

p −
∫

Q(x)|u∗|
4. (2.10)

Moreover, by 〈I′λ(un), un〉 = 0, we can apply the Brézis–Lieb Lemma to get

0 = a(‖vn‖
2 + ‖u∗‖

2)− λb(‖vn‖
4 + 2‖vn‖

2‖u∗‖
2 + ‖u∗‖

4)

− λ
∫

|u∗|
p −

∫
Q(x)|vn|

4 −
∫

Q(x)|u∗|
4 + o(1).

(2.11)

Combining (2.10) and (2.11), we have

o(1) = a‖vn‖
2 − λb‖vn‖

4 − λb‖vn‖
2‖u∗‖

2 −
∫

Q(x)|vn|
4 (2.12)

and consequently,

a‖vn‖
2 − λb‖vn‖

4 − λb‖vn‖
2‖u∗‖

2 =
∫

Q(x)|vn|
4 + o(1) ≤ QMS−2‖vn‖

4 + o(1).

Passing the limit as n → ∞, we obtain that

L2 ≥
S2(a − λb‖u∗‖2)

λbS2 + QM
≥ 0. (2.13)

By (2.10) and (2.13), we have

Iλ(u∗) =
a

2
‖u∗‖

2 −
λb

4
‖u∗‖

4 −
λ

p

∫
|u∗|

p −
1

4

∫
Q(x)|u∗|

4

=
λb

4
‖u∗‖

4 +
λb

2
L2‖u∗‖

2 + λ

(
1

2
−

1

p

) ∫
|u∗|

p +
1

4

∫
Q(x)|u∗|

4

≥
λb

4
‖u∗‖

4 +
λb

2

S2(a − λb‖u∗‖2)

λbS2 + QM
‖u∗‖

2

=
λb(λbS2 + QM)‖u∗‖4

4(λbS2 + QM)
+

λabS2‖u∗‖2

2(λbS2 + QM)
−

λ2b2S2‖u∗‖4

2(λbS2 + QM)

≥
λabS2‖u∗‖2

2(λbS2 + QM)
−

λ2b2S2‖u∗‖4

4(λbS2 + QM)
.

(2.14)
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Furthermore, using (2.12)–(2.14), we deduce that

c + o(1) = Iλ(un)

=
a

2
‖un‖

2 −
λb

4
‖un‖

4 −
λ

p

∫
|un|

p −
1

4

∫
Q(x)|un|

4

=
a

2
‖u∗‖

2 −
λb

4
‖u∗‖

4 −
λ

p

∫
|u∗|

p −
1

4

∫
Q(x)|u∗|

4

+
a

2
‖vn‖

2 −
λb

4
‖vn‖

4 −
λb

2
‖vn‖

2‖u∗‖
2 −

1

4

∫
Q(x)|vn|

4 + o(1)

= I(u∗) +
a

4
‖vn‖

2 −
λb

4
‖vn‖

2‖u∗‖
2 + o(1)

= I(u∗) +
a − λb‖u∗‖2

4
L2 + o(1)

≥ I(u∗) +
a2S2

4(λbS2 + QM)
−

λabS2‖u∗‖2

2(λbS2 + QM)
+

λ2b2S2‖u∗‖4

4(λbS2 + QM)
+ o(1)

≥
a2S2

4(λbS2 + QM)
+ o(1)

a contradiction to the assumption c < a2S2

4(λbS2+QM)
. Therefore, the claim holds, namely, un → u∗

in H1
0(Ω). This completes the proof of Lemma 2.5.

3 Proof of Theorem 1.1

Proof of Theorem 1.1. By Lemma 2.4, we know that there exists Λ0 such that for each λ ∈

(0, Λ0) and j = 1, 2, . . . , k, there is a minimizing sequence {u
j
n} ⊂ M

j
λ satisfying u

j
n ≥ 0,

Iλ(u
j
n) → m

j
λ and I′λ(u

j
n) → 0. From Lemmas 2.1 and 2.5, it follows that u

j
n → uj and uj ≥ 0

is a weak solution of (1.1). Furthermore, standard elliptic regularity argument and strong

maximum principle imply that uj is a positive solution. Finally, uj, j = 1, 2, . . . , k, are different

positive solutions since β(uj) ∈ Bη(xj) and Bη(xj) are disjoint. The proof is completed.
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Abstract. In this paper, we consider the following fractional equation with a gradient
term

(−∆)su(x) = f (x, u(x),∇u(x)),

in a bounded domain and the upper half space. Firstly, we prove the monotonicity
and uniqueness of solutions to the fractional equation in a bounded domain by the
sliding method. In order to obtain maximum principle on unbounded domain, we
need to estimate the singular integrals define the fractional Laplacians along a sequence
of approximate maximum points by using a generalized average inequality. Then we
prove monotonicity and uniqueness of solutions to fractional equation in R

n
+ by the

sliding method. In order to solve the difficulties caused by the gradient term, some new
techniques are developed. The paper may be considered as an extension of Berestycki
and Nirenberg [J. Geom. Phys. 5(1988), 237–275].

Keywords: fractional equation with gradient term, monotonicity, uniqueness, sliding
method.
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1 Introduction

During the last decades, fractional Laplacian has attracted more and more attention due to its

various applications. The methods to study the fractional Laplacian are the extension method

[6], moving planes method in integral form [11], the method of moving sphere [26] and direct

methods of moving planes [9, 22] etc. Recently, to study the monotonicity of the solution, Liu

[28], Wu and Chen [35, 36] introduced a direct sliding method for fractional Laplacian and

fractional p-Laplacian. Berestycki and Nirenberg [3–5] first developed the sliding method,

which was used to establish qualitative properties of solutions for nonlinear elliptic equations

involving the regular Laplacian such as monotonicity, nonexistence and uniqueness etc. The

essential ingredients are different forms of maximum principles. The main idea lies in com-

paring values of the solution to the equation at two different points, between which one point

is obtained from the other by sliding the domain in a given direction, and then the domain

BCorresponding author. Email: wangpy@xynu.edu.cn
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is slide back to a critical position. While in the method of moving planes, one point is the

reflection of the other.

Inspired by the above article, in this article, we show the monotonicity, antisymmetry and

uniqueness of solutions for the following fractional equation with a gradient term

(−∆)su(x) = f (x, u(x),∇u(x)), (1.1)

where ∇u denotes the gradient of u, the fractional Laplacian (−∆)s with 0 < s < 1 is given

by

(−∆)su(x) = Cn,s P.V.
∫

Rn

u(x)− u(y)

|x− y|n+2s
dy

= Cn,s lim
ǫ→0

∫

Rn\Bǫ(x)

u(x)− u(y)

|x− y|n+2s
dy.

Define

L2s =
{

u : u ∈ L1
loc(R

n),
∫

Rn

|u(x)|

1 + |x|n+2s
dx < ∞

}

,

then it is easy to see that for u ∈ C1,1
loc (R

n) ∩ L2s, (−∆)su is well defined.

When s = 1, [3] derived the monotonicity, symmetry and uniqueness of (1.1) in a finite

cylinder and a bounded domain which is convex in the x1 direction by the sliding method. In

the case s = 1, f (x, u,∇u) = f (u), Gidas, Ni, Nirenberg [21] obtained monotonicity and sym-

metry for positive solutions of (1.1), vanishing on the boundary, using the maximum principle

and the method of moving planes; in [2, 5], Berestycki, Cafferelli and Nirenberg considered

the monotonicity and uniqueness of solution for (1.1) by the sliding method. Recently, in the

case 0 < s < 1, Chen, Li and Li [9] investigated the semilinear equation in the whole space

with f (x, u,∇u) = up, 1 < p ≤ n+2s
n−2s , developed a direct method of moving planes for the

fractional Laplacian and showed that the nonnegative solution of (1.1) is radially symmetric

and monotone decreasing about some point in the critical case p = n+2s
n−2s and nonexistence

of positive solutions in the subcritical case 1 < p <
n+2s
n−2s ; Dipierro, Soave and Valdinoci [16]

proved symmetry, monotonicity and rigidity results to (1.1) in an unbounded domain with

the epigraph property.

The purpose of the present paper is to extend the results in [3] to the fractional equation.

On the one hand, we extent the case s = 1 in [3] to the fractional case 0 < s < 1, and extend

bounded domain to R
n
+. On the other hand, the nonlinear term f (x, u,∇u) has a broader

form containing nonlinear term f (u) and f (x, u).

In order to solve the difficulty that the nonlinear term at the right side of (1.1) contain

the gradient term, in the bounded domain when deriving the contradiction for the minimum

point of the function wτ(x) (see Section 2 below for definition), for the first time, we use

the technique of finding the minimum value of the function wτ(x) for the variables τ and x

at the same time. This is different from the previous sliding process which only finds the

minimum value of the variable x for the fixed τ. In the whole space, we estimate the singular

integrals defining the fractional Laplacian along a sequence of approximate maximum, and

the estimating is for τ and the sequence of approximate maximum at the same time.

In order to apply the sliding method, we give the exterior condition on u. Let u(x) =

ϕ(x), x ∈ Ωc, and assume that

(C) for any three points x = (x′, xn), y = (x′, yn) and z = (x′, zn) lying on a segment parallel

to the xn axis, yn < xn < zn, with y, z ∈ Ωc, we have

ϕ(y) < u(x) < ϕ(z), if x ∈ Ω (1.2)
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and

ϕ(y) ≤ ϕ(x) ≤ ϕ(z), if x ∈ Ωc. (1.3)

Remark 1.1. The same monotonicity conditions (1.2) and (1.3) (with Ωc replaced by ∂Ω) were

assumed in [4, 5, 35].

The main result of this paper is

Theorem 1.2. Suppose that u ∈ C1,1
loc (Ω) ∩ C(Ω̄) satisfies (C) and is a solution of equation

{

(−∆)su(x) = f (x, u,∇u), x ∈ Ω,

u(x) = ϕ(x), x ∈ Ωc,
(1.4)

where Ω is a bounded domain which is convex in xn direction. Assume that f is continuous in all

variables, locally Lipschitz continuous in (u,∇u) and is nondecreasing in xn. Then u is strictly

monotone increasing with respect to xn in Ω, i.e., for any τ > 0,

u(x′, xn + τ) > u(x′, xn), for all (x′, xn), (x′, xn + τ) ∈ Ω.

Furthermore, the solution of (1.4) is unique.

Remark 1.3. Theorem (1.2) includes the result of Theorem 2 in [35], and we also prove the

uniqueness of solutions in bounded domain. If Ω is the finite cylinder C = {x = (x′, xn) ∈

R
n | |xn| < l, x′ ∈ ω}, where l > 0 and ω is a bounded domain in R

n−1 with smooth

boundary, the result of Theorem 1.2 still holds.

Remark 1.4. The conditions in Theorem 1.2 and Theorem 1 of [14] are different. Neither

implies the other. Cheng, Huang and Li [14] studied the positive solution u and obtained that

u is strictly increasing in the half of Ω in xn-direction with xn < 0 by the method of moving

planes, but the solution we study can be negative and is strictly increasing with respect to xn

in the whole domain Ω by the sliding method.

We also have a new antisymmetry result for the equation (1.4) if the bounded domain Ω

is symmetric about xn = 0.

Corollary 1.5 (Antisymmetry). Assume that the conditions of Theorem 1.2 are satisfied and in addi-

tion that ϕ is odd in xn on Ωc. If f (x, u,∇u) is odd in (xn, u,∇x′u). Then u is odd, i.e. antisymmetric

in xn:

u(x′,−xn) = −u(x′, xn), ∀ x ∈ Ω.

This follows from the fact that ū = −u(x′,−xn) is a solution satisfying the same conditions,

and so is u.

For the unbounded domain, we give the following result on R
n
+.

Theorem 1.6. Suppose that u ∈ C1,1
loc (R

n
+) ∩ L2s(Rn) ∩ C(Rn

+) is a solution of















(−∆)su(x) = f (u,∇u), x ∈ R
n
+,

0 < u(x) ≤ µ, x ∈ R
n
+,

u(x) = 0, x 6∈ R
n
+,

(1.5)

and

lim
xn→+∞

u(x′, xn) = µ, uniformly for all x′ ∈ R
n−1. (1.6)
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Assume that f is bounded, continuous in all variables and nonincreasing in u ∈ [µ− δ, µ] for some

δ > 0. Then u is strictly monotone increasing in xn direction, and moreover it depends on xn only.

Furthermore, the solution of (1.5) is unique.

Theorem 1.6 is closely related to the following well-known De Giorgi conjecture [19].

Conjecture (De Giorgi [19]). If u is a solution of

−∆u = u− u3,

such that

lim
xn→±∞

u(x′, xn) = ±1, for all x′ ∈ R
n−1,

and

|u(x)| ≤ 1, x ∈ R
n,

∂u

∂xn
> 0.

Then there exists a vector µ ∈ R
n−1 and a function u1 : R → R such that

u(x′, xn) = u1(µx′ + xn) in R
n.

The other symmetry, uniqueness and monotonicity results on local and nonlocal equations,

we also refer readers to [1, 18, 24, 25] for semilinear elliptic equations, [9, 13, 17, 23, 30, 31] for

fractional equations, [34, 38] for weighted fractional equation, [14, 37] for fractional equations

with a gradient term, [27] for integral system with negative exponents, [12] for weighted

Hardy-sobolev type system, [8, 32, 33] for fully nonlinear nonlocal equations with gradient

term, [7, 15, 29] for fractional p-Laplace equation, and references therein.

The paper is organized as follows. In Section 2 we prove Theorem 1.2 via the sliding

method. In Section 3, we first establish a maximum principle in the unbounded domain,

then uniqueness and monotonicity for the fractional equation with a gradient term on R
n
+ are

obtained.

2 The proof of Theorem 1.2

For convenience, we list some notations used frequently. For τ ∈ R, denote x = (x′, xn),

x′ = (x1, · · · , xn−1) ∈ R
n−1. Set

uτ(x) = u(x′, xn + τ), wτ(x) = uτ(x)− u(x).

Proof of Theorem 1.2. For τ > 0, it is defined on the set Ωτ = Ω − τen which is obtained

from Ω by sliding it downward a distance τ parallel to the xn axis, where en = (0, . . . , 0, 1).

Set

Dτ := Ωτ ∩Ω, τ̃ = sup{τ | τ > 0, Dτ 6= ∅}

and

wτ(x) = uτ(x)− u(x), x ∈ Dτ.

We mainly divide the following two steps to prove that u is strictly increased in the xn direc-

tion, i.e.

wτ(x) > 0, x ∈ Dτ, for any 0 < τ < τ̃. (2.1)
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Step 1. For τ sufficiently close to τ̃ i.e., Dτ is narrow, we claim that there exists δ > 0 small enough

such that

wτ(x) ≥ 0, ∀ x ∈ Dτ, ∀ τ ∈ (τ̃ − δ, τ̃). (2.2)

Otherwise, we set

A0 = min
x∈D̄τ

τ̃−δ<τ<τ̃

wτ(x) < 0.

From condition (C), A0 can be obtained for some (τ0, x0) ∈ {(τ, x) | (τ, x) ∈ (τ̃− δ, τ̃)×Dτ}.

Noticing that wτ0
(x) ≥ 0, x ∈ ∂Dτ0

, we arrive at x0 ∈ Dτ0
. So wτ0

(x0) = A0. Since (τ0, x0) is

a minimizing point, we have ∇wτ0
(x0) = 0, i.e., ∇uτ0

(x0) = ∇u(x0). Since uτ0
satisfies the

same equation (1.4) in Ωτ0
as u does in Ω, and f is nondecreasing in xn, so we have

(−∆)swτ0
(x0) = f ((x0)′, x0

n + τ0, uτ0
(x0),∇uτ0

(x0))− f (x0, u(x0),∇u(x0))

≥ f (x0, uτ0
(x0),∇uτ0

(x0))− f (x0, u(x0),∇u(x0))

= f (x0, uτ0
(x0),∇u(x0))− f (x0, u(x0),∇u(x0))

= −cτ0
(x0)wτ0

(x0),

(2.3)

where −cτ0
(x0) = f (x0,uτ0

(x0),∇u(x0))− f (x0,u(x0),∇u(x0))

uτ0 (x0)−u(x0)
is a L∞ function satisfying

|cτ0
(x0)| ≤ C, ∀ x0 ∈ Dτ0

.

Hence

(−∆)swτ0
(x0) + cτ0

(x0)wτ0
(x0) ≥ 0.

On the other hand, we obtain

(−∆)swτ0
(x0) + cτ0

(x0)wτ0
(x0)

= Cn,sP.V.
∫

Rn

wτ0
(x0)− wτ0

(y)

|x0 − y|n+2s
dy + cτ0

(x0)wτ0
(x0)

≤ Cn,sw
τ0
(x0)

∫

(Dτ0 )c

1

|x0 − y|n+2s
dy + inf

Dτ0
cτ0

(x)wτ0
(x0)

≤ wτ0
(x0)

(

C1

d2s
n

− C

)

< 0,

(2.4)

where dn denotes the width of Dτ0
in the xn direction and Dτ0

is narrow. This is a contradic-

tion.

Therefore we derive (2.2) is true for τ sufficiently close to τ̃.

Step 2. The inequality (2.2) provides a starting point, from which we can carry out the sliding. Now

we decrease τ as long as (2.2) holds to its limiting position. Define

τ0 = inf{τ | wτ(x) ≥ 0, x ∈ Dτ, 0 < τ < τ̃}.

We will prove

τ0 = 0.
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Otherwise, assume τ0 > 0, we show that the domain Ω can be slided upward a little bit

more and we still have

wτ(x) ≥ 0, x ∈ Dτ, for any τ0 − ε < τ ≤ τ0, (2.5)

which contradicts the definition of τ0.

Since wτ0(x) > 0, x ∈ Ω ∩ ∂Dτ0 by condition (C) and wτ0(x) ≥ 0, x ∈ Dτ0 , then

wτ0(x) 6≡ 0, x ∈ Dτ0 .

If there exists a point x̃ ∈ Dτ0 such that wτ0(x̃) = 0, then x̃ is the minimum point. So we have

∇wτ0(x̃) = 0 and

(−∆)swτ0(x̃) = Cn,sP.V.
∫

Rn

wτ0(x̃)− wτ0(y)

|x̃− y|n+2s
dy < 0,

which contradicts to

(−∆)swτ0(x̃) = f (x̃′, x̃n + τ0, uτ0(x̃),∇uτ0(x̃))− f (x̃, u(x̃),∇u(x̃))

≥ f (x̃, uτ0(x̃),∇uτ0(x̃))− f (x̃, u(x̃),∇u(x̃))

= 0.

Hence,

wτ0(x) > 0, x ∈ Dτ0 . (2.6)

Next we will prove (2.5). Suppose (2.5) is not true, one has

A1 = min
x∈Dτ

τ0−ε<τ<τ0

wτ(x) < 0.

The minimum A1 can be obtained for some µ ∈ (τ0 − ε, τ0), x̄ ∈ Dµ where wµ(x̄) = A1 by

condition (C). We carve out of Dτ0 a closed set K ⊂ Dτ0 such that Dτ0 \K is narrow. According

to (2.6),

wτ0(x) ≥ C0 > 0, x ∈ K.

From the continuity of wτ in τ, we have for small ε > 0,

wµ(x) ≥ 0, x ∈ K. (2.7)

From (C), it follows

wµ(x) ≥ 0, x ∈ (Dµ)c.

So x̄ ∈ Dµ \K and ∇wµ(x̄) = 0. Since Dτ0 ⊂ Dµ and small ε, we obtain that Dµ \K is a narrow

domain. Similar to (2.3), we have

(−∆)swµ(x̄) + c(x̄)wµ(x̄) ≥ 0.

Similar to (2.4) and narrow domain Dµ \ K , we have

(−∆)swµ(x̄) + c(x̄)wµ(x̄) < 0.

This is a contradiction. Hence we derive (2.5), which contradicts to the definition of τ0. So

τ0 = 0. Therefore, we have shown that

wτ(x) ≥ 0, x ∈ Dτ, for any 0 < τ < τ̃. (2.8)
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Next we prove (2.1). Since

wτ(x) 6≡ 0, x ∈ Dτ, for any 0 < τ < τ̃,

if there exists a point x0 for some τ1 ∈ (0, τ̃) such that wτ1(x0) = 0, then x0 is the minimum

point and

(−∆)swτ1(x0) = Cn,sP.V.
∫

Rn

wτ1(x0)− wτ1(y)

|x0 − y|n+2s
dy < 0.

This contradicts to

(−∆)swτ1(x0) = f ((x0)′, x0
n + τ1, uτ1(x0),∇uτ1(x0))− f (x0, u(x0),∇u(x0)) ≥ 0.

Therefore, we arrive at (2.1).

Now we prove uniqueness. If u is another solution satisfying the same conditions, the

same argument as before but replace wτ = uτ − u with wτ = uτ − u. Similarly to (2.8), we

have uτ(x) ≥ u in Dτ for any 0 < τ < τ̃. Hence, u ≥ u. Interchanging the roles of u and u,

we find the opposite inequality. Therefore, u = u.

This completes the proof of Theorem 1.2.

3 The uniqueness and monotonicity of solution on R
n

+

In the section, we will prove Theorem 1.6. We first establish a maximum principle in the

unbounded domain for the fractional equation with a gradient term.

Lemma 3.1 (Maximum principle). Let D be an open set in R
n, possibly unbounded and disconnected,

suppose that

lim
k→∞

|Dc ∩ (B2k+1(q) \ B2k(q))|

|(B2k+1(q) \ B2k(q))|
> 0,

where q is any point in D. Let w ∈ C1,1
loc (D) ∩ L2s be bounded from above and satisfy











(−∆)sw(x) + c(x)w(x) +
n

∑
j=1

bj(x)wj(x) ≤ 0, x ∈ D,

w(x) ≤ 0, x ∈ R
n \ D,

(3.1)

for some nonnegation function c(x). Then

w(x) ≤ 0, x ∈ D.

Furthermore, we have

either w(x) < 0 in D or w(x) ≡ 0 in R
n. (3.2)

Remark 3.2. The proof of Lemma 3.1 is different from Theorem 3 in [35]. Here we mainly use

the following generalized average inequality.

Lemma 3.3 ([35] A generalized average inequality). Suppose that w ∈ C1,1
loc (R

n) ∩ L2s and x̄ is a

maximum point of w in R
n. Then for any r > 0, we have

C0

Cn,s
r2s(−∆)sw(x̄) + C0

∫

Bc
r (x̄)

r2s

|x̄− y|n+2s
w(y)dy ≥ w(x̄),

where C0 satisfies

C0

∫

Bc
r (x̄)

r2s

|x̄− y|n+2s
dy = 1.
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Proof of Lemma 3.1. Suppose on the contrary, there is some point x such that w(x) > 0 in D,

then

0 < A := sup
x∈Rn

w(x) < ∞. (3.3)

There exists a sequence {xk} ⊂ D such that

w(xk)→ A > 0, as k→ ∞. (3.4)

Let

η(x) =







ce
1

|x|2−1 , |x| < 1,

0, |x| ≥ 1,
(3.5)

where c > 0 is a constant, taking c = e such that η(0) = maxRn η(x) = 1.

Set

ψk(x) = η(x− xk). (3.6)

From (3.4), there exists a sequence {εk} with εk > 0 such that

w(xk) + εkψk(xk) ≥ A.

Since w(x) ≤ 0, x ∈ R
n \ D, it follows from (3.4) that xk is away from ∂D. Without loss

of generality, we may assume that dist(xk, ∂D) = 2. So B1(xk) ⊂ D. Since for any x ∈

D \ B1(xk), w(x) ≤ A and ψk(x) = 0, hence

w(xk) + εkψk(xk) ≥ w(x) + εkψk(x), for any x ∈ R
n \ B1(xk).

It follows that there exists a point x̄k ∈ B1(xk) such that

w(x̄k) + εkψk(x̄k) = max
Rn

(w(x) + εkψk(x)) > A. (3.7)

So (w(x̄k) + εkψk(x̄k))j = 0 and

wj(x̄k)→ 0, as k→ ∞. (3.8)

For w + εkψk, using Lemma 3.3, we obtain

(w + εkψk)(x̄k) ≤ C1(−∆)s(w + εkψk)(x̄k) + C2

∫

Bc
2(x̄k)

(w + εkψk)(y)

|x̄k − y|n+2s
dy.

Let εk → 0, by the first inequality of (3.1), it implies that

w(x̄k) ≤ C1(−∆)sw(x̄k) + C2

∫

Bc
2(x̄k)

w(y)

|x̄k − y|n+2s
dy

≤ − c(x̄k)w(x̄k)−
n

∑
j=1

bj(x)wj(x̄k) + C2

∫

Bc
2(x̄k)

w(y)

|x̄k − y|n+2s
dy.

(3.9)

Letting k→ ∞, combining (3.4), (3.8), (3.9) and nonnegative function c(x), we arrive at

0 < (c(x) + 1)A← (c(x̄k) + 1)w(x̄k) ≤ C2

∫

Bc
2(x̄k)

w(y)

|x̄k − y|n+2s
dy,

this is impossible because of (3.3) and the second inequality of (3.1).
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Based on above result, if w = 0 at some point x0 ∈ D, then x0 is a maximum point of w in

D. And we still have wj = 0 in the maximum point. If w 6≡ 0 in R
n, then we have

(−∆)sw(x0) + c(x0)w(x0) +
n

∑
j=1

bj(x0)wj(x0) = Cn,sP.V.
∫

Rn

−w(y)

|x0 − y|n+2s
dy > 0.

This is a contradiction with (3.1). So we have either w < 0 in D or w ≡ 0 in R
n.

This completes the proof Lemma 3.1.

We also need the following lemma.

Lemma 3.4 ([9], Maximum principle). Let Γ be a bounded domain in R
n. Assume that u ∈

C1,1
loc (Γ) ∩ L2s and u be lower semi-continuous on Γ̄, and satisfy

{

(−∆)su(x) ≥ 0, x ∈ Γ,

u(x) ≥ 0, x ∈ R
n \ Γ.

Then

u(x) ≥ 0, x ∈ Γ.

If u(x) = 0 at some point x ∈ Γ, then

u(x) = 0 almost everywhere in R
n.

Proof of Theorem 1.6. Define R
n
+ = {x = (x1, . . . , xn) | xn > 0}. Let

uτ(x) = u(x′, xn + τ) and Uτ(x) = u(x)− uτ(x).

Outline of the proof: We will use the sliding method to prove the monotonicity and unique-

ness of u and divide the proof into three steps.

In Step 1, we will show that for τ sufficiently large, we have Uτ(x) ≤ 0, x ∈ R
n. Especially,

since u → µ uniformly as xn → +∞, for δ > 0, there exists a M0 > 0 such that for xn ≥ M0,

u ∈ [µ− δ, µ] and f is nondecreasing in u ∈ [µ− δ, µ]. Hence we will show that

Uτ(x) ≤ 0, x ∈ R
n, ∀ τ ≥ M0. (3.10)

This provides the starting point for the sliding method. Then in Step 2, we decrease τ contin-

uously as long as (3.10) holds to its limiting position. Define

τ0 := inf{τ | Uτ(x) ≤ 0, x ∈ R
n, 0 < τ < M0}. (3.11)

We first will show that τ0 = 0. Then we deduce that the solution u must be strictly monotone

increasing in xn. In Step 3, we obtain that the solution u depends on xn. Finally we will prove

the uniqueness.

Now we show the details in the three steps.

Step 1. Since u(x) = 0, x ∈ R
n \R

n
+, it yields that

Uτ(x) ≤ 0, ∀ x ∈ R
n \R

n
+.

For τ ≥ M0, suppose (3.10) is violated, there exists a constant A > 0 such that

sup
x∈R

n
+

Uτ(x) = A, (3.12)
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hence for some τ1 ≥ M0 there exists a sequence {xk} ⊂ R
n
+ such that

Uτ1(xk)→ A, as k→ ∞. (3.13)

We will apply Lemma 3.1 to function Uτ1(x)− A
2 .

Since τ1 ≥ M0, we have uτ1(x) ∈ [µ− δ, µ]. Let

D =

{

x ∈ R
n | Uτ1(x)−

A

2
> 0

}

.

For x ∈ D, we have u(x) ≥ uτ1 ≥ µ− δ. From equation (1.5), Uτ1(x) satisfied

(−∆)sUτ1(x) = f (u,∇u)− f (uτ1 ,∇uτ1)

:= − bj(x)(Uτ1)j(x)− c(x)Uτ1(x),

where c(x) = − f (u,∇u)− f (uτ1 ,∇u)
u−uτ1 ≤ 0 by the monotonicity of f .

Hence Uτ1(x)− A
2 satisfies

{

(−∆)sUτ1(x) + bj(x)(Uτ1)j(x) + c(x)(Uτ1(x)− A
2 ) = 0, x ∈ D,

Uτ1(x)− A
2 ≤ 0, x ∈ R

n \ D.

By Lemma 3.1, we derive

Uτ1(x)−
A

2
≤ 0, x ∈ R

n,

which contradicts (3.13). Hence we obtain (3.10) and finish the proof of Step 1.

We also give an alternative proof which is an application of the general average inequality

(Lemma 3.3), and this idea can be applied to other problems.

For τ ≥ M0, if (3.10) is violated, we have (3.13). Obviously, Uτ1(x) ≤ 0, x ∈ ∂R
n
+. So by

(3.13) we have xk is away from ∂R
n
+, without loss of generality, assume dist(xk, ∂R

n
+) > 2.

Thus there exists 0 < εk → 0, x̄k ∈ B1(xk) such that

Uτ1(x̄k) + εkψk(x̄k) = max
Rn

(Uτ1(x) + εkψk(x)) ≥ A,

where ψk(x̄k) is as stated in (3.6). So ∇(Uτ1(x̄k) + εkψk(x̄k)) = 0 and

∇Uτ1(x̄k)→ 0, as k→ ∞. (3.14)

Since

[Uτ1 + εkψk](x̄k) ≥ [Uτ1 + εkψk](xk)

and ψk(x̄k) ≤ ψk(xk), we obtain

Uτ1(x̄k) ≥ Uτ1(xk). (3.15)

Hence for τ1 ≥ M0,

u(x̄k) ≥ uτ1(x̄k) ≥ µ− δ.

This means u(x̄k), uτ1(x̄k) are all in the nondecreasing interval of f . So

f (u(x̄k),∇u(x̄k))− f (uτ1(x̄k),∇uτ1(x̄k))

= f (u,∇u(x̄k))− f (u,∇uτ1(x̄k)) + f (u,∇uτ1(x̄k))− f (uτ1 ,∇uτ1(x̄k))

≤ f (u(x̄k),∇u(x̄k))− f (u(x̄k),∇uτ1(x̄k)).

(3.16)
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Using Lemma 3.3 to the function Uτ1 + εkψk at x̄k, we obtain

(Uτ1 + εkψk)(x̄k) ≤ C1(−∆)s(Uτ1 + εkψk)(x̄k) + C2

∫

Bc
2(x̄k)

(Uτ1 + εkψk)(y)

|x̄k − y|n+2s
dy.

Let εk → 0, by the equation (1.5), it implies that

Uτ1(x̄k) ≤ C1(−∆)sUτ1(x̄k) + C2

∫

Bc
2(x̄k)

Uτ1(y)

|x̄k − y|n+2s
dy

= C1[ f (u,∇u(x̄k))− f (u,∇uτ1(x̄k))] + C2

∫

Bc
2(x̄k)

Uτ1(y)

|x̄k − y|n+2s
dy.

(3.17)

From (3.13) and (3.15), we have

Uτ1(x̄k)→ A > 0, as k→ ∞. (3.18)

Letting k→ ∞, combining (3.14), (3.17) and (3.18), we arrive at

0 < A← Uτ1(x̄k) ≤ C2

∫

Bc
2(x̄k)

Uτ1(y)

|x̄k − y|n+2s
dy,

this is impossible because of (3.12) and Uτ1(y) ≤ 0, y ∈ R
n \R

n
+.

Hence (3.10) is correct and we have finished the proof of Step 1.

Step 2. Firstly, we will check that

τ0 = 0, (3.19)

where τ0 as defined in (3.11). In fact, suppose on the contrary τ0 > 0, then τ0 can be decreased

a little bit. To be more rigorously, there exists a ǫ > 0 such that for any τ ∈ (τ0 − ǫ, τ0], one

has

Uτ(x) ≤ 0, for any x ∈ R
n
+. (3.20)

This is a contradiction with the definition of τ0. Hence (3.19) is correct. In the sequel, we will

prove (3.20).

To do so, we just need to prove

sup
Rn−1×(0,M0+1]

Uτ(x) < 0, ∀ τ ∈ (τ0 − ǫ, τ0] (3.21)

and

sup
Rn−1×(M0+1,+∞)

Uτ(x) ≤ 0, ∀ τ ∈ (τ0 − ǫ, τ0]. (3.22)

In order to prove (3.21) we need to show that

sup
Rn−1×(0,M0+1]

Uτ0(x) < 0. (3.23)

If not, then

sup
Rn−1×(0,M0+1]

Uτ0(x) = 0.

So there exists a sequence {xk} ⊂ R
n−1 × (0, M0 + 1] such that

Uτ0(xk)→ 0, as k→ ∞. (3.24)
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We first show that xk is away from the boundary ∂R
n
+. Suppose that z be a point on ∂R

n
+.

Denote rz := dist(z + τ0en, ∂R
n
+), en = (0, . . . , 0, 1). For each fixed τ0 > 0, we have

inf
x∈∂R

n
+

dist(z + τ0en, ∂R
n
+) := r0 > 0.

For every point z on ∂R
n
+, there exists a ball Brz(z + τ0en) ⊂ R

n
+ with radius of rz centered at

z + τ0en. For simplicity of notation, we use B instead of Brz(z + τ0en).

Let

E = {x ∈ R
n
+ | dist(x, ∂R

n
+) ≥ 2}.

We construct a subsolution

ū(x) = uE(x) + εΦ(x), x ∈ B,

where Φ(x) = (1− |x|2)s
+, uE := u · χE and χE is define as

χE(x) =

{

1, x ∈ E,

0, x ∈ R
n \ E.

By (−∆)sΦ(x) = C [20], for x ∈ B it yields

(−∆)sū(x) = (−∆)s(uE + εΦ)(x)

= ε(−∆)sΦ(x) + (−∆)suE(x)

≤ εC− ε1Cn,s

∫

E

1

|x− y|n+2s
dy

≤ εC− ε1CCn,s.

We can choose ε ≤ ε1Cn,sCC−1 := ε0 such that (−∆)su(x) ≤ 0, x ∈ B. Then fixing ε = ε0
2 ,

combining u(x) ≥ u(x), x ∈ Bc and Lemma 3.4, we derive

uτ0(z) = u(z + τ0en) ≥ u(z + τ0en) ≥
ε0

2
Φ(z + τ0en) ≥ Cτ0 > 0, ∀ z ∈ ∂R

n
+.

Then, we infer that

Uτ0(z) = uτ0(z) > Cτ0 > 0, ∀ z ∈ ∂R
n
+. (3.25)

By (3.24) and (3.25), we obtain that xk is away from the boundary ∂R
n
+. Without loss of

generality, we may assume B1(xk) ⊂ R
n
+. Similar to the argument as Lemma 3.1, let ψ(x) =

η(x− xk), where η is as stated in (3.5), xk satisfies dist(xk, ∂R
n
+) ≥ 2 and B1(xk) ⊂ R

n
+. Then

there exists a sequence εk → 0 such that

Uτ0(xk) + εkψ(xk) > 0.

Since for x ∈ R
n
+ \ B1(xk), noting that Uτ0(x) ≤ 0 and ψ(x) = 0, we have

Uτ0(xk) + εkψ(xk) > Uτ0(x) + εkψ(x), for any x ∈ R
n \ B1(xk).

Then there exists x̄k ∈ B1(xk) such that

Uτ0(x̄k) + εkψ(x̄k) = max
Rn

(Uτ0(x) + εkψ(x)) > 0. (3.26)
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It can be seen from

Uτ0(x̄k) + εkψ(x̄k) ≥ Uτ0(xk) + εkψ(xk),

and ψ(x̄k) ≤ ψ(xk) that

0 > Uτ0(x̄k) ≥ Uτ0(xk) + εkψ(xk)− εkψ(x̄k) ≥ Uτ0(xk)→ 0, as k→ ∞.

Hence

Uτ0(x̄k)→ 0, as k→ ∞.

Since f is continuous, we have

f (u(x̄k),∇u(x̄k))− f (uτ0(x̄k),∇uτ0(x̄k))→ 0, as k→ ∞. (3.27)

On one hand, we have

(−∆)s(Uτ0 + εkψ)(x̄k) = (−∆)sUτ0(x̄k) + (−∆)s(εkψ)(x̄k)

= f (u(x̄k),∇u(x̄k))− f (uτ0(x̄k),∇uτ0(x̄k)) + εk(−∆)sψ(x̄k).
(3.28)

On the other hand,

(−∆)s(Uτ0 + εkψ)(x̄k) = Cn,sP.V.
∫

Rn

Uτ0(x̄k) + εkψ(x̄k)−Uτ0(y)− εkψ(y)

|x̄k − y|n+2s
dy

≥ C
∫

Bc
2(xk)

|Uτ0(y)|

|xk − y|n+2s
dy

= C
∫

Bc
2(0)

|Uτ0(z + xk)|

|z|n+2s
dz.

(3.29)

Denote

uk(x) = u(x + xk) and Uτ0

k (x) = Uτ0(x + xk).

Since f is bounded, one can derive (see [10]) that u(x) is at least uniformly Hölder contin-

uous, so u(x) is uniformly continuous, by the Arzelà–Ascoli theorem, up to extraction of a

subsequence, one has

uk(x)→ u∞(x), x ∈ R
n
+, as k→ ∞.

Combining (3.27), (3.28) and (3.29), letting k→ ∞, we obtain

Uτ0

k (x)→ 0, x ∈ Bc
2(0), uniformly, as k→ ∞.

Therefore,

Uτ0

k (x)→ u∞(x)− uτ0
∞(x) ≡ 0, x ∈ Bc

2(0). (3.30)

Recall that u > 0 in R
n
+ while u(x) ≡ 0, x ∈ R

n \R
n
+. Since xk ∈ R

n−1 × (0, M0], there

exists x0 such that u∞(x0) = 0, then by (3.30),

0 = u∞(x0) = uτ0
∞(x0) = u∞((x0)′, x0

n + τ0) = uτ0
∞((x0)′, x0

n + τ0)

= u∞((x0)′, x0
n + 2τ0) = · · · = u∞((x0)′, x0

n + kτ0).
(3.31)

We obtain from (1.6) that

lim
xn→+∞

u∞(x) = µ > 0, uniformly in x′ = (x1, . . . , xn−1),
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that is

u∞((x0)′, x0
n + kτ0)→ µ, as k→ ∞.

This is a contradiction with (3.31). Hence (3.23) is correct. Now (3.23) implies immediately

that (3.21) holds by the continuity of Uτ(x) with respect to τ.

Next we prove (3.22). Otherwise, there exists a constant A > 0 such that

sup
x∈Rn−1×(M0+1,+∞)

Uτ(x) = A > 0, ∀ τ ∈ (τ0 − ǫ, τ0].

Then for some τ2 ∈ (M0 + 1,+∞) there exists a sequence {xk} ⊂ R
n−1 × (M0 + 1,+∞) such

that

Uτ2(xk)→ A, as k→ ∞. (3.32)

Since u = 0 in R
n \R

n
+, it follows that

Uτ2(x) ≤ 0, for any x ∈ R
n \R

n
+.

Denote xk = (xk
1, . . . , xk

n). Since Uτ2(xk) = u(xk)− uτ2(xk) → 0 as xk
n → +∞, then there exists

M0 > 0 such that

|xk
n| ≤ M0.

Set ψk(x) = η(x − xk), where η is as stated in (3.5). From (3.32), there exists a sequence

{εk}, with εk → 0 such that

Uτ2(xk) + εkψk(xk) > A.

Since for any x ∈ R
n
+ \ B1(xk), Uτ2(x) ≤ A and ψk(x) = 0, hence

Uτ2(xk) + εkψk(xk) > Uτ2(x) + εkψk(x), for any x ∈ R
n
+ \ B1(xk).

It follows that there exists a point x̄k ∈ B1(xk) i.e. x̄k ∈ R
n−1 × (M0,+∞) such that

Uτ2(x̄k) + εkψk(x̄k) = max
Rn

(Uτ2(x) + εkψk(x)) > A. (3.33)

On one hand, by the monotonicity of f , we obtain

(−∆)s(Uτ2 + εkψk)(x̄k) = f (u(x̄k),∇u(x̄k))− f (uτ2(x̄k),∇uτ2(x̄k)) + εk(−∆)sψk(x̄k)

≤ f (u(x̄k),∇u(x̄k))− f (u(x̄k),∇uτ2(x̄k)) + εk(−∆)sψk(x̄k).
(3.34)

On the other hand,

(−∆)s(Uτ2 + εkψk)(x̄k) = Cn,sP.V.
∫

Rn

Uτ2(x̄k) + εkψk(x̄k)− (Uτ2(y) + εkψk(y))

|x̄k − y|n+2s
dy

≥ C
∫

DM

A− A
2

|x̄k − y|n+2s
dy

≥
CA

2

∫

DM

1

|x̄k − y|n+2s
dy

≥ CA
1

[dist(x̄k, DM)]2s
,

(3.35)

where M > M0 and DM = {|xn| ≥ M}, in which Uτ(y) + εkψk(y) ≤
A
2 .



Uniqueness and monotonicity of solutions 15

Therefore we obtain

0 < c ≤ CA
1

[dist(x̄k, DM)]2s

≤ f (u(x̄k),∇u(x̄k))− f (u(x̄k),∇uτ2(x̄k)) + εk(−∆)sψk(x̄k),

(3.36)

from (3.33), so ∇(Uτ2(x̄k) + εkψk(x̄k)) = 0, i.e. ∇Uτ2(x̄k) → 0 as k → ∞. Let k → ∞, then the

right-hand side of (3.36) is less than or equal to 0, this is impossible. So (3.22) is true, which

contradicts to the definition of τ0. Therefore, τ0 = 0, we arrive at (3.20).

Secondly, we will show that u is strictly increasing with respect to xn and u(x) depends

on xn only. We already have

Uτ(x) ≤ 0, x ∈ R
n
+, ∀ τ > 0. (3.37)

Now we claim that

Uτ(x) < 0, x ∈ R
n
+, ∀ τ > 0. (3.38)

Otherwise, from (3.37) for some τ1 > 0 there exists x0 ∈ R
n
+ such that Uτ1(x0) = 0, then x0 is

the maximum point of Uτ1 in R
n
+. On one hand, since ∇Uτ1(x0) = 0 we have

(−∆)sUτ1(x0) = f (u(x0),∇u(x0))− f (uτ1(x0),∇uτ1(x0)) ≤ 0.

On the other hand,

(−∆)sUτ1(x0) = Cn,sP.V.
∫

Rn

−Uτ1(y)

|x0 − y|n+2s
dy > 0,

where the last inequality holds due to Uτ1(y) 6≡ 0 in R
n.

This is a contradiction. Hence (3.38) must be true.

Step 3. We will claim that u(x) depends on xn only and uniqueness. In fact, it can be seen

from the above process that the argument still holds if we replace uτ(x) by u(x + τν), where

ν = (ν1, . . . , νn) with νn > 0 being an arbitrary vector pointing upward. Applying the similar

arguments as in Steps 1 and 2, we can derive that, for each of such ν,

u(x + τν) > u(x), ∀ τ > 0, x ∈ R
n
+.

Letting νn → 0, from the continuity of u, we deduce that for arbitrary ν with νn = 0,

u(x + τν) ≥ u(x).

By replacing ν by −ν, we obtain that

u(x + τν) = u(x)

for arbitrary ν with ν = 0. It implies that u is independent of x′, hence u(x) = u(xn).

Finally we prove the uniqueness. Assume that u and v are two bounded solutions of (1.5).

For τ ≥ 0, denote

Ũτ(x) = v(x)− uτ(x).

We first show that for τ sufficiently large,

Ũτ(x) ≤ 0, x ∈ R
n
+. (3.39)
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The proof of (3.39) is completely similar to the proof of (3.10), so we omit the details. Note

that (3.39) provides a starting point from which we can decrease τ continuously as long as

(3.39) holds.

We show that

Ũτ(x) ≤ 0, ∀ τ ≥ 0, ∀ x ∈ R
n
+. (3.40)

Define

τ0 := inf{τ > 0 | Ũτ(x) ≤ 0, ∀ x ∈ R
n
+, 0 < τ < M0}.

Let us prove that

τ0 = 0. (3.41)

Suppose on the contrary τ0 > 0. Similarly to the argument of monotonicity in Step 2, one can

deduce that

v∞(x) ≡ uτ0
∞(x), ∀ x ∈ R

n \ B2(0), (3.42)

and

uτ0(z) ≥ Cτ0 > 0, ∀ z ∈ ∂R
n
+. (3.43)

Obviously, this property is preserved under translation. Let

R
n
+k = {x | x + xk ∈ R

n
+} and R

n
+∞ = lim

k→∞
R

n
+k.

Taking a point x0 ∈ ∂R
n
+∞, we deduce from (3.43) that

uτ0
∞(x0) > 0, but v∞(x0) = 0.

This contradicts (3.42). Hence we have τ0 = 0. This verifies that (3.40) is correct, and implies

that v(x) ≤ u(x). Interchanging u and v, we obtain u(x) ≤ v(x). Therefore, we have u ≡ v.

This yields the uniqueness.

The proof of Theorem 1.6 is completed.
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Abstract. In this paper, we obtain the existence of positive critical point with least en-
ergy for a class of functionals involving nonlocal and supercritical variable exponent
nonlinearities by applying the variational method and approximation techniques. We
apply our results to the supercritical Schrödinger–Poisson type systems and supercriti-
cal Kirchhoff type equations with variable exponent, respectively.
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1 Introduction and main results

We divide this section into two parts. In the first part, we present a critical point theory of
abstract functional inspired by the article of Marcos do Ó, Ruf and Ubilla [21]. The second
part is devoted to introduce its applications to a class of Schrödinger–Poisson type systems
and a class of Kirchhoff type equations.

1.1 Abstract critical point theory

In the pioneering article [8], Brézis and Nirenberg considered the existence of solution to the
following nonlinear elliptic equation















−∆u = u5 + f (x, u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(1.1)

where Ω is a bounded domain in R
3. If f (x, u) = 0 and Ω is star shaped, a well-known

nonexistence result of Pohozaev [26] asserts that (1.1) has no solution. But the lower-order
terms perturbation can reverse this situation. Brézis and Nirenberg [8] proved the existence
of solutions to (1.1) under the assumptions on the lower-order perturbation term f (x, u). On

BCorresponding author. Email: fengxj@sxu.edu.cn
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the other hand, the topology and the shape of the domain can affect the existence of solution
for (1.1) with f (x, u) = 0. For example, Coron [12] used a variational approach to prove that
(1.1) is solvable if Ω exhibits a small hole. Rey [27] established existence of multiple solutions
if Ω exhibits several small holes. As Ω is an annulus, Kazdan and Warner [17] observed that
there exists a solution to (1.1) without any constraint by critical exponent.

It is worth noticing that there are also a few papers concerning on the supercritical equa-
tions except adding lower-order perturbation terms or changing the topology of region Ω.
The papers in [10, 21] considered the following nonlinear supercritical elliptic problem

{

−∆u = |u|4+|x|α u, in B,

u = 0, on ∂B,
(1.2)

where B ⊂ R
3 is the unit ball and 0 < α < 1. By using the mountain pass lemma and

approximation techniques, a radial positive solution for (1.2) is obtained by Marcos do Ó, Ruf
and Ubilla in [21]. Cao, Li and Liu [10] considered the existence of infinitely many nodal
solutions to (1.2) by looking for a minimizer of a constrained minimization problem in a
special space.

Let H be the subspace of H1
0(B) consisting of radially symmetric functions. From [21], we

know that (1.2) possesses a variational structure, its solutions can be found as critical points
of the functional

I0(u) =
1
2

∫

B
|∇u|2 −

∫

B

1
6 + |x|α |u|

6+|x|α , u ∈ H.

The solutions to this kind of supercritical elliptic equations involving nonlocal nonlinearities
can be found to look for the critical points of a suitable perturbation of I0,

J(u) =
1
2

∫

B
|∇u|2 + λR(u)−

∫

B

1
6 + |x|α |u|

6+|x|α , u ∈ H,

where λ ∈ R and R ∈ C(H, R). In order to obtain the nontrivial critical point of J, we need to
consider the approximation functional I : H → R associated to J given by

I(u) =
1
2

∫

B
|∇u|2 + λR(u)− 1

6

∫

B
|u|6.

In this paper, we are interested in researching the least energy critical point of J, the
following assumptions are needed:

(i) R ∈ C1(H, R
+) with R

+ = [0,+∞);

(ii) there exist C, q > 0 such that for t > 0,

R(tu) = tqR(u), R(u) ≤ C‖u‖q, ∀ u ∈ H;

(iii) qR(u) = 〈R′(u)u〉, u ∈ H;

(iv) if {un} is a (PS)c sequence of J for some c > 0 and un ⇀ u weakly in H as n → ∞, then
J′(u) = 0.

Inspired by above papers, the main purpose of this paper is to consider the existence of ground
state for the functional J. Our main result reads as follows.
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Theorem 1.1. Assume that λ > 0, 2 < q < 6 or λ < 0, q > 6 and the assumptions (i)–(iv) hold.

Then the functional J possesses a (PS)c sequence with some c > 0. Moreover if the functional I satisfies

the (PS)c condition, then J admits a nontrivial critical point.

Theorem 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied. If R is even and weakly

lower semicontinuous, then the functional J possesses a least energy critical point.

Remark 1.3. The variable exponent function p(x) = 6+ |x|α has a strictly supercritical growth
except the origin and a critical growth in the origin. Hence, the functional J can be regarded
as the supercritical perturbation of the functional I.

Remark 1.4. In each case of λ > 0, 0 < q < 6 or λ < 0, q > 6, we can show that J possesses the
mountain pass structure. Hence, a minimax level for the functional J can be constructed. It is
important to verify that this level lies below the non-compactness level of the functional I. It
is worthwhile pointing out that the term R affects the non-compactness level of the functional
I. In most cases, it is difficult to calculate the level of the non-compactness level accurately.

Remark 1.5. Since the method of proving (iv) is different when R is different, the condition
(iv) is needed. The weak lower semicontinuity of R guarantees the existence of a ground state
for functional J.

Remark 1.6. Relatively speaking, the condition (iv) is easy to get for some functional J in-
volving nonlocal nonlinearities. It is obvious to see from (iv) that u is a critical point of the
functional J. Hence, we just need to show that u is nontrivial.

As an application, we apply the case of λ < 0 to a class of Schrödinger–Poisson type
systems and the case of λ > 0 to a class of Kirchhoff type equations, respectively.

1.2 Applications to two nonlocal problems

As a first application, we consider the existence of nontrivial solution to the supercritical
Schrödinger–Poisson type systems with variable exponent















−∆u − φ|u|3u = |u|4+|x|α u in B,

−∆φ = |u|5 in B,

u = φ = 0 on ∂B,

(1.3)

where B ⊂ R
3 is the unit ball and 0 < α < 1. The Schrödinger–Poisson system as a model

describing the interaction of a charge particle with an electromagnetic field arises in many
mathematical physics context (we refer to [7] for more details on the physical aspects). There
are a few references which investigated the well-known Schrödinger–Poisson system with
nonlocal critical growth in a bounded domain (see e.g. [3–5]). Azzollini, d’Avenia [3] consid-
ered the following problem involving the nonlocal critical growth















−∆u − φ|u|3u = λu in B,

−∆φ = |u|5 in B,

u = φ = 0 on ∂B.

(1.4)

They proved the existence of positive solution depending on the value of λ and (1.4) has no
solution for λ ≤ 0 via Pohozaev’s identity. Later, Azzollini, d’Avenia and Vaira [5] improved
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the results in [3]. They proved existence and nonexistence results of positive solutions for (1.4)
when λ is in proper region. By applying the variational arguments and the cut-off function
technique, Azzollini, d’Avenia and Luisi [4] studied the following generalized Schrödinger–
Poisson system















−∆u + εqφ f (u) = η|u|p−1u in Ω,

−∆φ = 2qF(u) in Ω,

u = φ = 0 on ∂Ω,

where Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω, 1 < p < 5, q > 0, ε, η = ±1,

f ∈ C(R, R), F(s) =
∫ s

0 f (t)dt. In the case where f is critical growth, they obtained the
existence and nonexistence results.

In the recent years, there have been a lot of researches dealing with the Schrödinger–
Poisson systems















−∆u + φu = f (x, u) in Ω,

−∆φ = u2 in Ω,

u = φ = 0 on ∂Ω.

(1.5)

When f (x, u) = |u|p−1u with p ∈ (1, 5), Ruiz and Siciliano [29] considered the existence,
nonexistence and multiplicity results by using variational methods. Alves and Souto [2] stud-
ied system (1.5) when f has a subcritical growth. They obtained the existence of least energy
nodal solution by using variational methods. Ba and He [6] proved the existence of ground
state solution for system (1.5) with a general 4-superlinear nonlinearity f by the aid of the
Nehari manifold. Pisani and Siciliano [25] proved the existence of infinitely many solutions
of (1.5) by means of variational methods. In [1], Almuaalemi, Chen and Khoutir obtained the
existence of nontrivial solutions for (1.5) when f has a critical growth via variational methods.

Motivated by above papers, by applying Theorems 1.1 and 1.2, we obtain the existence
of positive ground state solution for system (1.3) with both nonlinearity supercritical growth
and nonlocal critical growth. From the technical point of view, there are two difficulties to
prove our result. Firstly, the supercritical nonlinearity in the system sets an obstacle since
the bounded (PS) sequence could not converge. Secondly, due to the system has two critical
terms, it is difficult to estimate the critical level of mountain pass. In order to overcome these
difficulties, by employing the ideas of [21], we first estimate the critical level of the mountain
pass for the functional corresponding to (1.3) via approximation techniques and then show
that the level is below the non-compactness level of the functional. Finally, the existence
of positive ground state solution is obtained by applying the Nehari manifold method and
regularity theory. Hence, we have the following result:

Theorem 1.7. System (1.3) possesses at least a positive ground state solution.

Remark 1.8. By the Pohozaev’s identity used in [3], we can deduce that (1.3) has no nontrivial
solution if |x|α = 0. Hence, our result is interesting phenomena due to the nonlinearity
|u|4+|x|α u has supercritical growth everywhere in B except in the origin and critical growth in
the origin.

Next, as the second application, we consider the following Kirchhoff type equations:

{

−
(

1 + b
∫

B |∇u|2dx
)

∆u = |u|4+|x|α u, in B

u = 0, on ∂B,
(1.6)
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where b > 0, 0 < α < 1. This kind of equation is related to the stationary analogue of the
equation

ρ
∂2u

∂t2 −
(

ρ0

h
+

E

2l

∫ L

0

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dx

)

∂2u

∂x2 = 0

presented by Kirchhoff in [18]. The equation extends the classical d’Alembert’s wave equation
by considering the effects of the changes in the length of the strings during the vibrations.
The solvability of the Kirchhoff type equations has been well studied in a general dimension
by many authors after Lions [20] introduced an abstract framework to this problem. By using
new analytical skills and non-Nehari manifold method, Tang and Cheng [31] obtained the
ground state sign-changing solutions for a class of Kirchhoff type problems in bounded do-
mains. In [11], Chen, Zhang and Tang considered the existence and non-existence results for
Kirchhoff-type problems with convolution nonlinearity based on variational and some new
analytical techniques. There are also many papers devoted to the existence and multiplicity
of solutions for the following critical Kirchhoff type equations with subcritical disturbance















−
(

a + b
∫

Ω
|∇u|2dx

)

∆u = f (x, u) + u5 in Ω

u > 0 inΩ

u = 0 on ∂Ω,

(1.7)

where a, b are positive constants. By using concentration-compactness principle and varia-
tional method, Naimen in [22] obtained the existence and multiplicity of (1.7) with f (x, u) =

λu. Xie, Wu and Tang [34] derived the existence and multiplicity of solutions to (1.7) via
variational method by discussing the sign of a and b and adding different conditions on f .
By controlling concentrating Palais–Smale sequences, Naimen and Shibata [23] proved the
existence of two positive solutions for (1.7) with f (x, u) = uq, 1 ≤ q < 5.

In particular, there are some papers considered the equations with critical and supercritical
growth by adding the smallness of the coefficient in front of critical and supercritical which
is used to overcome the difficulty provoked by supercritical growth. By combining an appro-
priate method of truncation function with Moser’s iteration technique, Corrêa and Figueiredo
[13, 14] considered the existence of positive solution for a class of p-Kirchhoff type equations
and Kirchhoff type equations with supercritical growth, respectively.

Motivated by the above fact, we study the existence of positive ground state solution for
(1.6) with variable exponential perturbation by using the similar method introduced by Marcos
do Ó, Ruf and Ubilla in [21]. The result reads as follows.

Theorem 1.9. The equation (1.6) possesses at least a positive ground state solution.

Remark 1.10. Recall that in [22], if |x|α = 0, (1.6) has no nontrivial solution by Pohozaev’s
identity. Hence, our result is interesting phenomena for this kind of Kirchhoff type equations
due to the nonlinearity |u|4+|x|α u has supercritical growth everywhere in B except the origin
and critical growth in the origin.

Remark 1.11. Throughout the paper we denote by C > 0 various positive constants which
may vary from line to line and are not essential to the problem.

The paper is organized as follows: in Section 2, some notations and preliminary results are
presented. We obtain the existence of nontrivial critical point to the functional J in Section 3.
By using Nehari manifold method, the least energy critical point of the functional J is derived
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in Section 4. Sections 5 and 6 are devoted to show that the Theorems 1.1 and 1.2 can be
applied to the nonlinear Schrödinger–Poisson type systems and the Kirchhoff type equations,
respectively.

2 Preliminary

In this Section, we will give some notations and lemmas which will be used throughout this
paper. Let B ⊂ R

3 denote the unit ball, H = H1
0,rad(B) = {u ∈ H1

0(B) : u(x) = u(|x|)} be the
Sobolev space of radial functions, with respect to the norm

‖u‖ =

(

∫

B
|∇u|2

)1/2

.

Let C+(B̄) = {h : h ∈ C(B̄), h(x) > 1, x ∈ B̄}. For any h ∈ C+(B̄), we denote

h+ = sup
x∈B

h(x), h− = inf
x∈B

h(x).

Then for each p ∈ C+(B̄), the variable exponent function space Lp(x)(B) is defined as follows

Lp(x)(B) =

{

u : u is a measurable function in B such that
∫

B
|u(x)|p(x)dx < ∞

}

with the norm defined by

‖u‖Lp(x) = inf
{

λ > 0,
∫

B

∣

∣

∣

u

λ

∣

∣

∣

p(x)
≤ 1

}

.

We denote by Lp′(x)(B) the conjugate space of Lp(x)(B), where 1/p(x) + 1/p′(x) = 1. For any
u ∈ Lp(x)(B) and v ∈ Lp′(x)(B), there holds the Hölder type inequality

∣

∣

∣

∣

∫

B
uv

∣

∣

∣

∣

≤
(

1
p−

+
1

p′−

)

‖u‖Lp(x)‖v‖Lp′(x) .

Lemma 2.1 ([15]). Set ρ(u) =
∫

B |u(x)|p(x). For u ∈ Lp(x)(B), we have

(1) ‖u‖Lp(x) < 1 (= 1; > 1) ⇔ ρ(u) < 1 (= 1; > 1);

(2) If ‖u‖Lp(x) > 1, then ‖u‖p−

Lp(x) ≤ ρ(u) ≤ ‖u‖p+

Lp(x) ;

(3) If ‖u‖Lp(x) < 1, then ‖u‖p+

Lp(x) ≤ ρ(u) ≤ ‖u‖p−

Lp(x) .

Lemma 2.2 ([21]). Let q(x) = 6+ β|x|α, x ∈ B and α, β > 0. The following embedding is continuous:

H →֒ Lq(x)(B).

It is easy to check by (i), Lemma 2.2 and Hölder type inequality that J is well defined on
H and J ∈ C1(H, R), and

〈J′(u), v〉 =
∫

B
∇ · u∇v + λ〈R′(u), v〉 −

∫

B
|u|4+|x|α uv, u, v ∈ H.
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In the following we define the best embedding constant S by

S = inf
u∈H\{0}

∫

B |∇u|2
(∫

B |u|6
) 1

3
. (2.1)

Let χ ∈ C∞
0 (B) be a cut-off function with χ = 1 on B1/2(0) and η ∈ [0, 1] on B. Let us define

the function
Uε(x) = (3ε2)1/4(ε2 + |x|2)−1/2, ε > 0,

which satisfies the equation
−∆u = u5 on R

3.

Then define uε = χ(x)Uε(x), the following estimates can be deduced via standard arguments
as ε → 0+ (see [33]),

∫

B
|∇uε|2 = S

3
2 + O(ε),

∫

B
u6

ε = S
3
2 + O(ε3). (2.2)

3 The nontrivial critical point

In this section, we first show that the functional J possesses the mountain pass structure under
the assumption λ < 0, q > 6 or λ > 0, 0 < q < 6, respectively. And hence J has a (PS)c

sequence {un} with some c > 0. Then we prove that {un} is bounded and is also a (PS)c

sequence of I, which is a key in the existence of nontrivial critical point.

Lemma 3.1. Assume that λ < 0, q > 2 and the assumptions (i) and (ii) hold.

(a) There exist ρ1 > 0, η1 > 0 such that inf{J(u) : u ∈ H, with ‖u‖ = ρ1} > η1.

(b) There exists e1 ∈ H with ‖e1‖ > ρ1 such that J(e1) < 0.

Proof. (a) For ρ1 > 0, let
Σρ1 = {u ∈ H : ‖u‖ ≤ ρ1}.

We deduce, from the Sobolev inequality and Lemma 2.1, that for u ∈ ∂Σρ1 and C > 0,

J(u) =
1
2
‖u‖2 + λR(u)−

∫

B

1
6 + |x|α |u|

6+|x|α .

≥ 1
2
‖u‖2 + Cλ‖u‖q − C(‖u‖6 + ‖u‖7)

=
1
2

ρ2
1 + Cλρ

q
1 − Cρ6

1 − Cρ7
1.

Hence, by letting ρ1 > 0 small enough, it is easy to see that there is η1 > 0 such that (a) holds.
(b) By [21, Lemma 3.1], we know that there exists a constant C > 0 such that for ε > 0

small,
∫

B
|uε|6+|x|α ≥

∫

B
|uε|6 + C| log ε|εα + O(ε)

= S3/2 + C| log ε|εα + O(ε).
(3.1)
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This together with (2.2) implies that for t ≥ 1 and ε > 0 small enough,

J(tuε) =
t2

2
‖uε‖2 + λtqR(uε)−

∫

B

t6+|x|α

6 + |x|α |uε|6+|x|α

≤ t2

2
‖uε‖2 − t6

7

∫

B
|uε|6+|x|α

≤ S3/2t2 − S3/2

14
t6 → −∞

as t → +∞. Let T > 0 and define a path h̃ : [0, 1] → H by h̃(t) = tTuε. For T > 0 large
enough, we have

∫

B
|∇h̃(1)|2 > ρ2

1, J(h̃(1)) < 0.

By taking e1 = h̃(1), then (b) is valid. The proof is completed.

Lemma 3.2. Assume that λ > 0, 0 < q < 6 and the assumptions (i) and (ii) hold.

(a) There exist ρ2 > 0, η2 > 0 such that inf{J(u) : u ∈ H, with ‖u‖ = ρ2} > η2.

(b) There exists e2 ∈ H with ‖e2‖ > ρ such that J(e2) < 0.

Proof. (a) Let us define

Σρ2 = {u ∈ H : ‖u‖ ≤ ρ2}, ρ2 > 0.

It follows from the Sobolev inequality and Lemma 2.1 that for u ∈ ∂Σρ2 and C > 0,

J(u) =
1
2
‖u‖2 + λR(u)−

∫

B

1
6 + |x|α |u|

6+|x|α

≥ 1
2
‖u‖2 − C(‖u‖6 + ‖u‖7)

=
1
2

ρ2
2 − Cρ6

2 − Cρ7
2.

Hence, by letting ρ2 > 0 small enough, it is easy to see that there is η2 > 0 such that (a) holds.
(b) By using (2.2) and (3.1) again, we have for t ≥ 1 and ε > 0 small enough,

J(tuε) =
t2

2
‖uε‖2 + λtqR(uε)−

∫

B

t6+|x|α

6 + |x|α |uε|6+|x|α

≤ t2

2
‖uε‖2 + Cλtq‖uε‖q − t6

7

∫

B
|uε|6+|x|α

≤ S3/2t2 + 2CλS3q/4tq − t6

14
S3/2 → −∞

as t → +∞. Let T > 0 and define a path ĥ : [0, 1] → H by ĥ(t) = tTuε. For T > 0 large
enough, we have

∫

B
|∇ĥ(1)|2 > ρ2

2, J(ĥ(1)) < 0.

By taking e2 = ĥ(1), we proof (b). The proof is completed.
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From Lemmas 3.1 and 3.2, we know that the functional J possesses the mountain pass
geometry. Then there is a (PS)c sequence {un} ⊂ H for J with the property that

J(un) → c, ‖J′(un)‖H−1 → 0, n → ∞,

where c is given by
c = inf

γ∈Γ

max
t∈[0,1]

J(γ(t)), (3.2)

and Γ = {γ ∈ C([0, 1], H) : γ(0) = 0, J(γ(1)) < 0}.

Lemma 3.3. Assume that λ < 0, q > 6 or λ > 0, 0 < q < 6 and the assumption (iii) holds. If

{un} ⊂ H is a (PS)c sequence for J with c > 0, then {un} is bounded in H.

Proof. For n large enough, it is easy to deduce from (iii) that

c + 1 ≥ J(un)−
1
6
〈J′(un), un〉

=
1
3
‖un‖2 + λ

(

1
q
− 1

6

)

〈R′(un), un〉+
∫

B

(

1
6
− 1

6 + |x|α
)

|un|6+|x|α

≥ 1
3
‖un‖2,

which implies that {un} is bounded in H. The proof is completed.

Lemma 3.4 ([21]). Assume that u ∈ H. Then

|u(r)| ≤ r−1/2‖u‖, r > 0.

Proof of Theorem 1.1. By using Lemmas 3.1 and 3.2 respectively, there exists a sequence {un} ⊂
H satisfying J(un) → c, J′(un) → 0 as n → ∞, where c is given in (3.2). By Lemma 3.3, {un} is
a bounded sequence in H. Passing to a subsequence if necessary, we may assume that there
exists u ∈ H such that

un ⇀ u in H, and un(x) → u(x), a.e. x ∈ B.

If u 6= 0, then u is a nontrivial critical point of the functional J follows from the assumption
(iv). In what follows, we will deal with the case of u = 0 and show that this is impossible. In
fact, since H1

r (B\Bδ) →֒→֒ Lp(B\Bδ), for δ ∈ (0, 1) and p ≥ 1, there holds

∫ 1

δ
|un|6+rα

r2 → 0, as n → ∞ (3.3)

and
∫ 1

δ
|un|6r2 → 0, as n → ∞. (3.4)

In the following, we will show that {un} is also a (PS)c sequence of I. Hence, it is sufficient
to prove

(a) J(un) = I(un) + o(1);

(b) 〈J′(un), v〉 = 〈I′(un), v〉+ o(1)‖v‖, v ∈ H.
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We first claim that (a) is valid, indeed we only need to estimate

∫

B

(

1
6
|un|6 −

1
6 + |x|α |un|6+|x|α

)

=
∫

B

(

1
6
|un|6 −

1
6 + |x|α |un|6

)

+
∫

B

(

1
6 + |x|α |un|6 −

1
6 + |x|α |un|6+|x|α

)

.

(3.5)

For any ε > 0, there exist δ > 0 and n1 ∈ N such that for any n ≥ n1, we have, by (3.4),

∫

B

(

1
6
|un|6 −

1
6 + |x|α |un|6

)

≤ ω

36

∫ 1

0
|un|6r2+α

=
ω

36

∫ δ

0
|un|6r2+α +

ω

36

∫ 1

δ
|un|6r2+α

≤ ‖un‖6

36α
ωδα +

ω

36

∫ 1

δ
|un|6r2 ≤ ε

2
,

(3.6)

where ω is the surface area of the unit sphere in R
3. Similarly, for above ε > 0, there exist

δ1 > 0 small enough and n2 ∈ N such that for any n ≥ n2, it follows from (3.3) and (3.4) that

∣

∣

∣

∣

∫

B

(

1
6 + |x|α |un|6 −

1
6 + |x|α |un|6+|x|α

)∣

∣

∣

∣

≤ ω

6

∫

[0,δ1]∩{|un|>1}
|un|6

∣

∣

∣
|un|r

α − 1
∣

∣

∣
r2 +

ω

6

∫

[0,δ1]∩{|un|≤1}
|un|6

∣

∣

∣
|un|r

α − 1
∣

∣

∣
r2

+
ω

6

∣

∣

∣

∣

∫ 1

δ1

|un|6(|un|r
α − 1)r2

∣

∣

∣

∣

≤ ω

6

∫ δ1

0
|un|6r2

∣

∣

∣

∣

exp[− rα

2
log(Cr)]− 1

∣

∣

∣

∣

+
ω

18
δ3

1 +
ω

6

∣

∣

∣

∣

∫ 1

δ1

|un|6(|un|r
α − 1)r2

∣

∣

∣

∣

≤ Cω
∫ δ1

0
|un|6r2rα| log Cr|+ ω

18
δ3

1 +
ω

6

∣

∣

∣

∣

∫ 1

δ1

|un|6(|un|r
α − 1)r2

∣

∣

∣

∣

≤ C1ωδ1
α| log Cδ1|+

ω

18
δ3

1 +
ω

6

∣

∣

∣

∣

∫ 1

δ1

|un|6(|un|r
α − 1)r2

∣

∣

∣

∣

≤ ε

2
.

(3.7)

Hence, combining (3.5), (3.6) and (3.7), we have for above ε > 0, there exists n0 = max{n1, n2},
such that for any n ≥ n0,

∣

∣

∣

∣

∫

B

(

1
6
|un|6 −

1
6 + |x|α |un|6+|x|α

)∣

∣

∣

∣

≤ ε,

which implies that (a) is true.

Secondly, we will devoted to verify that (b) is correct. In fact, by Lemma 3.4, for 0 < η < 1
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small enough and v ∈ H,

∣

∣

∣

∣

∫ η

0
|un|5|v|(|un|r

α − 1)r2
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

[0,η]∩{|un|>1}
|un|5|v|(|un|r

α − 1)r2
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

[0,η]∩{|un|≤1}
|un|5|v|(|un|r

α − 1)r2
∣

∣

∣

∣

≤
∫ η

0
|un|5|v|

∣

∣

∣
(Cr)−rα/2 − 1

∣

∣

∣
r2 + Cη3/2‖v‖

≤
∫ η

0
|un|5|v|

∣

∣

∣exp(rα/2 log(Cr)−1)− 1
∣

∣

∣ r2 + Cη3/2‖v‖

≤ C
∫ η

0
|un|5|v|rα| log(Cr)|r2 + Cη3/2‖v‖

≤ Cηα| log(Cη)|
∫ 1

0
|un|5|v|r2 + Cη3/2‖v‖

≤ Cηα| log(Cη)|‖un‖5‖v‖+ Cη3/2‖v‖.

Hence, for any ε > 0, there exists η = η(ε) > 0 sufficiently small such that

Cηα| log(Cη)|‖un‖5‖v‖+ Cη3/2‖v‖ <
ε

3
‖v‖,

and then
∣

∣

∣

∣

∫ η

0
|un|5|v|(|un|r

α − 1)r2
∣

∣

∣

∣

<
ε

3
‖v‖. (3.8)

On the other hand, it follows that for above ε > 0, there exists n1 ∈ N such that for n > n1,

∫ 1

η
|un|5+rα |v|r2 ≤ C

(

∫ 1

η
|un|6+rα

r2
)5/7

‖v‖ ≤ ε

3
‖v‖. (3.9)

Similarly, we have for above ε > 0, there exists n2 ∈ N such that for n > n2,

∫ 1

η
|un|5|v|r2 ≤ C

(

∫ 1

η
|un|6r2

)5/6

‖v‖ ≤ ε

3
‖v‖. (3.10)

Combining (3.8), (3.9) and (3.10), we obtain for ε > 0, there exists n0 = max{n1, n2} such that
for n > n0,

∣

∣

∣

∣

∫ 1

0
|un|4+rα

unvr2 −
∫ 1

0
|un|4unvr2

∣

∣

∣

∣

≤
∫ 1

0
|un|5|v|

∣

∣

∣
|un|r

α − 1
∣

∣

∣
r2

≤
∫ η

0
|un|5|v|

∣

∣

∣
|un|r

α − 1
∣

∣

∣
r2 +

∫ 1

η
|un|5|v|r2 +

∫ 1

η
|un|5|v||un|r

α
r2 ≤ ε‖v‖, v ∈ H,

which ensures that (b) is valid. Thereby, it is obvious that {un} is also a (PS)c sequence for
the functional I. Recall that I satisfies (PS)c condition, we have that un → u = 0 strongly in
H, which is a contradiction to I(un) → c > 0. The proof is completed.
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4 The least energy critical point

In this section, we will use the Nehari manifold method to show the existence of nontrivial
nonnegative ground state of the functional J. In order to obtain the ground state, we need the
Nehari manifold associated with J given by

N = {u ∈ H \ {0} : 〈J′(u), u〉 = 0}.

Lemma 4.1. Assume that λ < 0, q > 2 or λ > 0, 2 < q < 6 and the assumptions (i)–(ii)

hold. Then, for each u ∈ H \ {0}, there exists a unique t(u) > 0 such that t(u)u ∈ N . Moreover,

J(t(u)u) = maxt≥0 J(tu).

Proof. (a) Let u ∈ H \ {0} be fixed. For convenience, we define the function h(t) = J(tu) for
t > 0. Note that h′(t) = 〈J′(tu), u〉 = 0 if and only if tu ∈ N . By simple calculation, we see
that when λ < 0, q > 2

h′(t) = t‖u‖2 + λqtq−1R(u)−
∫

B
t5+|x|α |u|6+|x|α

= t

(

‖u‖2 + λtq−2R(u)−
∫

B
t4+|x|α |u|6+|x|α

)

= tξ(t).

It is obvious that ξ is a non-increasing function for t > 0 and limt→0+ ξ(t) = ‖u‖2
> 0,

limt→∞ ξ(t) = −∞. Hence, there exists a unique t(u) > 0 such that h′(t(u)) = 0 and t(u)u ∈
N . Moreover, J(t(u)u) = maxt≥0 J(tu).

(b) By simple calculation, we see that for λ > 0, 2 < q < 6,

h′(t) = t‖u‖2 + λqtq−1R(u)−
∫

B
t5+|x|α |u|6+|x|α

= tq−1
(

1
tq−2 ‖u‖2 + λqR(u)−

∫

B
t6−q+|x|α |u|6+|x|α

)

= tq−1ξ(t).

It is easy to see that ξ is a non-increasing for t > 0 and limt→0+ ξ(t) = ∞, limt→∞ ξ(t) = −∞.
Hence, there exists a unique t(u) > 0 such that h′(t(u)) = 0 and t(u)u ∈ N . In addition,
J(t(u)u) = maxt≥0 J(tu). The proof is completed.

Lemma 4.2. Assume that λ < 0, q > 6 or λ > 0, 2 < q < 6 and the assumptions (i)–(iii) hold.

Then J is bounded from below on N .

Proof. For u ∈ N , it follows from (i) and (ii) that

‖u‖2 = −λqR(u) +
∫

B
|u|6+|x|α

≤ C(‖u‖6 + ‖u‖7 + ‖u‖q),

which implies that there exists a positive constant C such that ‖u‖ ≥ C. On the other hand,
we have

J(u) = J(u)− 1
6
〈J′(u), u〉

=
1
3
‖u‖2 + λ

(

1
q
− 1

6

)

〈R′(u), u〉+
∫

B

(

1
6
− 1

6 + |x|α
)

|u|6+|x|α

≥ 1
3
‖u‖2, u ∈ N .
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Hence, J is bounded below. The proof is completed.

By Lemmas 4.1 and 4.2, we can define

c∗ = inf
u∈N

J(u), c∗∗ = inf
u∈H\{0}

max
t≥0

J(tu).

Lemma 4.3. Assume that λ < 0, q > 6 or λ > 0, 2 < q < 6 and the assumptions (i)–(iii) hold.

Then c = c∗ = c∗∗.

Proof. It follows from Lemma 4.1 that c∗ = c∗∗. In the following, we will show that c = c∗.
Indeed, let u ∈ N , by Lemmas 3.1 and 3.2 there exists some t0 > 1 such that J(t0u) < 0. Thus,
J(u) = maxt>0 J(tu) ≥ maxt∈[0,1] J(tt0u) ≥ c, which leads to c∗ ≥ c.

On the other hand, we find for u ∈ H that

J(u)− 1
6
〈J′(u), u〉 = 1

3
‖u‖2 + λ

(

1
q
− 1

6

)

〈R′(u), u〉+
∫

B

(

1
6
− 1

6 + |x|α
)

|u|6+|x|α

≥ 1
3
‖u‖2 ≥ 0.

(4.1)

Let γ ∈ Γ, then it follows from (4.1) that 〈J′(γ(1)), γ(1)〉 ≤ 6J(γ(1)) < 0. Let us define
t1 = inf{t ∈ [0, 1) : 〈J′(γ(s)), γ(s)〉 < 0, s ∈ (t, 1]}. Then 〈J′(γ(t1)), γ(t1)〉 = 0 and γ(s) 6= 0
for all s ∈ (t1, 1]. We now show that γ(t1) 6= 0. Otherwise, γ(t1) = 0 then Lemma 3.1 implies
that 〈J′(γ(s)), γ(s)〉 > 0 as s → t+1 , thus there exists δ > 0 such that t1 + δ < 1 and 〈J′(γ(t1 +

δ)), γ(t1 + δ)〉 > 0. Note that the definition of t1, there holds 〈J′(γ(t1 + δ)), γ(t1 + δ)〉 < 0.
This comes to a contradiction. Thus, we conclude that γ(t1) ∈ N and c ≥ c∗. The proof is
completed.

The following lemma can be also obtained by Implicit Function Theorem or by the Lus-
ternik Theorem. We give the other proof by applying the Lagrange multiplier method.

Lemma 4.4. Assume that λ < 0, q > 6 or λ > 0, 2 < q < 6 and the assumptions (i)–(iii) hold. If

c∗ is attained at some u ∈ N , then u is a critical point of J in H.

Proof. Let G(u) = 〈J′(u), u〉, then G ∈ C1(H, R). By Lemma 4.1, N 6= ∅. We claim that
0 /∈ ∂N . In fact,

G(u) = ‖u‖2 + λR′(u)u −
∫

B
|u|6+|x|α

≥ 1
2
‖u‖2 − C(‖u‖6 + ‖u‖7) > 0

for any u ∈ H with ‖u‖ small. Note that for any u ∈ N

〈G′(u), u〉 = 〈G′(u), u〉 − 6G(u)

= −4‖u‖2 + λq(q − 6)R(u)−
∫

B
|x|α|u|6+|x|α

< 0.
(4.2)

Hence, G′(u) 6= 0 for any u ∈ N . Then the implicit function theorem implies that N is a C1

manifold. Recall that u is minimizer of J on u ∈ N . Then by the Lagrange multiplier method,
there exists λ ∈ R such that

J′(u) = λG′(u). (4.3)

Combining (4.2) and (4.3), we can find J′(u) = 0. The proof is completed.
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Proof of Theorem 1.2. Recall that Theorem 1.1 shows that u ∈ N and hence J(u) ≥ c∗. Then by
applying Lemma 4.3, Fatou’s lemma and weak semicontinuity of the norm, we derive

c∗ = lim inf
n→∞

[J(un)−
1
6
〈J′(un), un〉]

= lim inf
n→∞

[

1
3
‖un‖2 + λq

(

1
q
− 1

6

)

R(un) +
∫

B

(

1
6
− 1

6 + |x|α
)

|un|6+|x|α
]

≥ 1
3
‖u‖2 + λq

(

1
q
− 1

6

)

R(u) +
∫

B

(

1
6
− 1

6 + |x|α
)

|u|6+|x|α

= J(u)− 1
6
〈J′(u), u〉 = J(u).

This shows that J(u) = c∗. It is easy to see that J(|u|) = J(u) = c∗. Thus, Lemma 4.4 implies
that |u| is a ground state of J. The proof is completed.

5 The Schrödinger–Poisson type system

This section is devoted to apply the Theorems 1.1 and 1.2 to a class of Schrödinger–Poisson
type system. We first estimate the critical level of mountain pass of the functional J̃ associated
to (1.3) and then show that the critical level of mountain pass is below the non-compactness
level of J̃. Secondly, we are devoted to verify that the (PS) sequence of the functional J̃ is also
the one of the approximation functional associated to J̃ by using approximation techniques.
Finally, by using the regularity theory, the positive ground state solution of (1.3) is obtained.
We establish the following lemmas, which guarantee that the conditions in the Theorems 1.1
and 1.2 are valid.

We observe that by [3], for given u ∈ H, there exists a unique solution φ = φu ∈ H

satisfying −∆φu = |u|5 in B, u = 0 on ∂B in a weak sense and it has the following properties.

Lemma 5.1 ([5]). For every fixed u ∈ H, we have

(i) φu ≥ 0 a.e. in B;

(ii) φtu = t5φu for all t > 0;

(iii) ‖φu‖ ≤ S−3‖u‖5 and
∫

B
φu|u|5 ≤ S−6‖u‖10, (5.1)

where S is defined in (2.1);

(iv) if un ⇀ u in H, then, up to a subsequence, φun ⇀ φu in H.

Moreover, (1.3) is variational and its solutions are the critical points of the functional de-
fined in H by

J̃(u) =
1
2

∫

B
|∇u|2 − 1

10

∫

B
φu|u|5 −

∫

B

1
6 + |x|α |u|

6+|x|α .

It is easy to check by Lemmas 2.2 and 5.1 that J̃ is well defined on H and J̃ ∈ C1(H, R), and

〈 J̃′(u), v〉 =
∫

B
∇u∇v −

∫

B
φu|u|3uv −

∫

B
|u|4+|x|α uv, u, v ∈ H.
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Lemma 5.2. Let α1, β1, γ1 > 0 and define f1 : [0, ∞) → R as

f1(t) =
α1

2
t2 − β1

10
t10 − γ1

6
t6.

Then

sup
t∈[0,∞)

f1(t) =





√

γ2
1 + 4α1β1 − γ1

2β1





1/2
12α1β1 + γ2

1 − γ1

√

γ2
1 + 4α1β1

30β1
.

Proof. For t ≥ 0, we have

f ′1(t) = α1t − β1t9 − γ1t5 = t(α1 − β1t8 − γ1t4).

Set h(t) = α1 − β1t8 − γ1t4 = 0, we write at

t4 =

√

γ2
1 + 4α1β1 − γ1

2β1
.

Substituting it into f1(t), the result is obtained. The proof is completed.

Lemma 5.3. Let

g1(t) =
t2

2
‖uε‖2 − t10

10

∫

B
φuε |uε|5 −

t6

6

∫

B
|uε|6,

then we have, as ε → 0+,

sup
t≥0

g1(t) ≤
13 −

√
5

30

(√
5 − 1
2

)1/2

S3/2 + O(ε) =: Λ + O(ε).

Proof. Since −∆φuε = |uε|5, we have
∫

B
|uε|6 =

∫

B
∇φuε∇|uε|

≤ 1
2

∫

B
|∇|uε||2 +

1
2

∫

B
|∇φuε |2

=
1
2

∫

B
φuε |uε|5 +

1
2

∫

B
|∇uε|2.

Then thanks to (2.2) we derive that, for ε > 0 sufficiently small,
∫

B
φuε |uε|5 ≥ 2

∫

B
|uε|6 −

∫

B
|∇uε|2

= S
3
2 + O(ε).

This together with Lemma 5.2 and the estimate (2.2) implies that

g1(t) =
t2

2
‖uε‖2 − t10

10

∫

B
φuε |uε|5 −

t6

6

∫

B
|uε|6

≤ t2

2
(S3/2 + O(ε))− t10

10
(S3/2 + O(ε))− t6

6
(S3/2 + O(ε))

≤ 13 −
√

5
30

(√
5 − 1
2

)1/2

S3/2 + O(ε),

for ε > 0 sufficiently small. The proof is completed.
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From Lemma 3.1, we know that the functional J̃ possesses the mountain pass geometry.
Then there is a (PS)c1 sequence {un} ⊂ H for J̃ with the property that

J̃(un) → c1, ‖ J̃′(un)‖H−1 → 0, n → ∞,

where c1 is given by
c1 = inf

γ∈Γ̃

max
t∈[0,1]

J̃(γ(t)), (5.2)

and Γ̃ = {γ ∈ C([0, 1], H) : γ(0) = 0, J̃(γ(1)) < 0}.
In the following we give an estimate of the upper bound of the critical level c1 by using

above two lemmas.

Lemma 5.4. Let c1 be defined by (5.2), then 0 < c1 < Λ.

Proof. It follows from (3.1) that, for ε small enough,

J̃(tuε) =
t2

2

∫

B
|∇uε|2 −

t10

10

∫

B
φuε |uε|5 −

∫

B

t6+|x|α

6 + |x|α |uε|6+|x|α

≤ t2

2
‖uε‖2 − t6

7

∫

B
|uε|6+|x|α

≤ S3/2t2 − S3/2

14
t6 := ϕ(t).

Thus, there exists R1 > 0 sufficiently large which is independent of ε, such that ϕ(R1) = 0
and J̃(R1uε) ≤ 0 for ε small enough. Hence, we can find 0 < tε < R1 satisfying

0 < η1 ≤ c1 ≤ max
t∈[0,R1]

J̃(tuε) = J̃(tεuε).

Since d
dt J̃(tuε)|t=tε = 0, we have

tε‖uε‖2 = t9
ε

∫

B
φuε |uε|5 +

∫

B
t
5+|x|α
ε |u|6+|x|α .

Hence we deduce from (2.2) that

S
3
2 + O(ε) = t8

ε

∫

B
φuε |uε|5 + t4

ε

∫

B
|uε|6 + t4

ε

∫

B

(

t
|x|α
ε |uε|6+|x|α − |uε|6

)

= t8
ε

∫

B
φuε |uε|5 + t4

ε [S
3
2 + O(ε3) + Aε]

= t8
ε

∫

B
φuε |uε|5 + t4

ε [S
3
2 + O(ε3) + O(εα| log ε|) + O(ε3/2)],

(5.3)

where Aε = O(εα| log ε|) + O(ε3/2) is given in [21]. For convenience, we set A = S
3
2 + O(ε),

B =
∫

B φuε |uε|5 and C = S
3
2 + O(ε3) + O(εα| log ε|) + O(ε3/2). Thus, (5.3) can be rewritten as

A = Bt8
ε + Ct4

ε . It is easy to see that for ε small,

t4
ε =

√
C2 + 4AB − C

2B
=

√

5S3 + O(ε) + O(εα| log ε|)− S
3
2 − O(εα| log ε|)− O(ε3/2)

2S3/2 + O(ε)
.

Thereby, for ε small enough, there holds

(
√

5 − 1)/4 < t2
ε < 4/5. (5.4)
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In what follows, we will estimate the term

∫

B

t6
ε

6
|uε|6 −

∫

B

t
6+|x|α
ε

6 + |x|α |uε|6+|x|α

=
∫

B

(

t6
ε

6
− t6

ε

6 + |x|α
)

|uε|6 +
∫

B

t
6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|α)

+
∫

B

(

t6
ε

6 + |x|α − t
6+|x|α
ε

6 + |x|α

)

|uε|6

= I + II + III.

(5.5)

By [21, page 16] and (5.4), we can find

I =
∫

B

(

t6
ε

6
− t6

ε

6 + |x|α
)

|uε|6 ≤ Cεα (5.6)

and

II =
∫

B

t
6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|α) ≤ −Cεα| log ε|. (5.7)

It follows from (5.4) again that

III =
∫

B

(

t6
ε

6 + |x|α − t
6+|x|α
ε

6 + |x|α

)

|uε|6 ≤ C
∫

B

(

1 − t
|x|α
ε

)

|uε|6

= C
∫

B
(1 − exp(|x|α log tε)) |uε|6 ≤ C

∫

B
|x|α|uε|6

≤ Cω
∫ ε

0
rαε−3r2 + Cω

∫ 1

ε
rαε3r−4

≤ Cεα + C(εα − ε3) ≤ Cεα.

(5.8)

Combining (5.5)-(5.8) and using Lemma 5.3, we derive

J̃(tεuε) =
t2
ε

2
‖uε‖2 − t10

ε

10

∫

B
φuε |uε|5 −

∫

B

t
6+|x|α
ε

6 + |x|α |uε|6+|x|α

=
t2
ε

2
‖uε‖2 − t10

ε

10

∫

B
φuε |uε|5 −

∫

B

t6
ε

6
|uε|6 +

∫

B

t6
ε

6
|uε|6 −

∫

B

t
6+|x|α
ε

6 + |x|α |uε|6+|x|α

≤ sup
t≥0

g1(t) +
∫

B

t6
ε

6
|uε|6 −

∫

B

t
6+|x|α
ε

6 + |x|α |uε|6+|x|α

≤ 13 −
√

5
30

(√
5 − 1
2

)1/2

S3/2 + O(ε) + Cεα − Cεα| log ε|.

(5.9)

By choosing ε > 0 small enough, we derive by (5.9),

0 < η1 ≤ c1 ≤ J̃(tεuε) < Λ.

The proof is finished.

Lemma 5.5. If {un} is a (PS)c1 sequence of J̃, then there exists u ∈ H such that, up to a subsequence,

un ⇀ u and J̃′(u) = 0.
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Proof. From Lemma 3.3 we see that {un} is bounded in H. Then, up to a subsequence, we can
assume that {un} converges to u weakly in H and un → u a.e. in B. By taking ϕ ∈ C∞

0 (B), we
find

〈 J̃′(un), ϕ〉 =
∫

B
∇un∇ϕ −

∫

B
φun |un|3un ϕ −

∫

B
|un|4+|x|α un ϕ.

It follows from Lemma 5.1 that φun ⇀ φu in H, which implies φun ⇀ φu in L6(B). Then

∫

B
(φun − φu)|u|3uϕ → 0, n → ∞. (5.10)

Since un → u a.e. in B and
∫

B
|φun(|un|3un − |u|3u)| 6

5 ≤ C(|φun |
6
5
6 |un|

24
5

6 + |φun |
6
5
6 |u|

24
5

6 ) ≤ C,

we have φun(|un|3un − |u|3u) ⇀ 0 in L
6
5 (B) and thus

∫

B
φun(|un|3un − |u|3u)ϕ → 0, n → ∞,

which together with (5.10) ensures that

∫

B
φun |un|3un ϕ →

∫

B
φu|u|3uϕ, n → ∞. (5.11)

For any measurable subset Q ⊂ B, we have

∣

∣

∣

∣

∫

Q
(|un|4+|x|α un − |u|4+|x|α u)ϕ

∣

∣

∣

∣

≤
∫

Q
(|un|5+|x|α + |u|5+|x|α)|ϕ|

≤ ‖|un|5+|x|α + |u|5+|x|α‖
L

p(·)
p(·)−1 (Q)

‖ϕ‖Lp(·)(Q),

where p(x) = 6 + |x|α. Hence, Vitali’s theorem (see [28]) implies

∫

B
|un|4+|x|α un ϕ →

∫

B
|u|4+|x|α uϕ, as n → ∞. (5.12)

Combining (5.10), (5.11) and (5.12), there holds

〈 J̃′(u), ϕ〉 = lim
n→∞

〈 J̃′(un), ϕ〉 = 0.

Therefore, by density, we derive that J̃′(u) = 0. The proof is completed.

In order to obtain the nontrivial solution of (1.3), we need define the approximation func-
tional Ĩ : H → R associated to J̃ given by

Ĩ(u) =
1
2
‖u‖2 − 1

10

∫

B
φu|u|5 −

1
6

∫

B
|u|6.

Lemma 5.6. The functional Ĩ satisfies the (PS)c1 condition with c1 ∈ (0, Λ).
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Proof. Suppose that {un} is a (PS)c1 sequence of Ĩ for c1 ∈ (0, Λ), i.e.

Ĩ(un) → c1, Ĩ′(un) → 0 as n → ∞.

Similarly to Lemma 3.3, it is easy to see that {un} is bounded in H. Going if necessary to
a subsequence, we can find u ∈ H such that un ⇀ u in H. By the same argument used in
Lemma 5.5, we deduce that Ĩ′(u) = 0, hence

Ĩ(u) = Ĩ(u)− 1
6
〈 Ĩ′(u), u〉

=
1
3
‖u‖2 +

1
15

∫

B
φu|u|5 ≥ 0.

(5.13)

Now, let vn = un − u, it is obvious to see that

‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1).

From Brézis–Lieb Lemma in [9, 19], we have
∫

B
|un|6dx =

∫

B
|vn|6dx +

∫

B
|u|6dx + o(1)

and
∫

B
φun |un|5 =

∫

B
φvn |vn|5 +

∫

B
φu|u|5 + o(1).

These three equalities imply that

c1 − Ĩ(u) = Ĩ(un)− Ĩ(u) + o(1)

=
1
2
‖un‖2 − 1

2
‖u‖2 − 1

10

∫

B
φun |un|5 +

1
10

∫

B
φu|u|5

− 1
6

∫

B
|un|6 +

1
6

∫

B
|u|6 + o(1)

=
1
2
‖vn‖2 − 1

10

∫

B
φvn |vn|5 −

1
6

∫

B
|vn|6 + o(1),

(5.14)

and similarly

o(1) = 〈 Ĩ′(un), un〉 − 〈 Ĩ′(u), u〉
= ‖un‖2 − ‖u‖2 −

∫

B
φun |un|5 +

∫

B
φu|u|5 −

∫

B
|un|6 +

∫

B
|u|6

= ‖vn‖2 −
∫

B
φvn |vn|5 −

∫

B
|vn|6 + o(1).

(5.15)

We will show that ‖vn‖ → 0. Otherwise, there exists a subsequence still denoted by {vn} such
that ‖vn‖2 → l > 0. For convenience, let an =

∫

B φvn |vn|5 and bn =
∫

B |vn|6. Without loss of
generality, we may assume an → a1 and bn → b1, as n → ∞. Notice that

∫

B
|vn|6 =

∫

B
∇φvn∇|vn|

≤ ε2

2

∫

B
|∇|vn||2 +

1
2ε2

∫

B
|∇φvn |2

=
1

2ε2

∫

B
φvn |vn|5 +

ε2

2

∫

B
|∇vn|2,
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then as n → ∞ passing to the limit, we conclude that

b1 ≤ 1
2ε2 a1 +

ε2

2
l.

Taking ε2 =
√

5−1
2 , and combining with (5.15) leads to

a1 ≥ 3 −
√

5
2

l,

from which we get by (5.13), (5.14) and (5.15) that

c1 ≥ c1 − Ĩ(u) =
2
5

a1 +
1
3

b1 + o(1) =
1
3

l +
1
15

a1 + o(1) ≥ 13 −
√

5
30

l + o(1). (5.16)

On the other hand, (5.1) and (5.15) yield

l ≤ S−6l5 + S−3l3.

Therefore we get l2 ≥ −1+
√

5
2 S3. This together with (5.16) implies that c1 ≥ Λ, which will come

to a contradiction. Therefore vn → 0 strongly in H, or equivalently, un → u in H as n → ∞.
The proof is completed.

Lemma 5.7 ([30]). Let Ω be a domain in R
3 and g : Ω ×R → R be a Caratéodory function such that

for almost every x ∈ Ω, there holds

|g(x, u)| ≤ a(x)(1 + |u|).

If 0 ≤ a ∈ L
3
2 (Ω) and u ∈ H1

0(Ω) is a weak solution of equation −∆u = g(·, u) in Ω. Then,

u ∈ Lp(Ω) for all p < ∞.

Proof of Theorem 1.7. The Lemmas 5.4, 5.5 and Theorem 1.2 imply that (1.3) admits a nonneg-
ative nontrivial ground state solution u ∈ H, which satisfies the following equation in weak
sense

−∆u = φu|u|3u + u5+|x|α in B.

Let us define
g̃(u(x)) = φu|u|3u + u5+|x|α , x ∈ B.

Then thanks to Lemma 2.2, we have
∫

B u6+ 3
2 |x|α ≤ C. The fact φu ∈ D1,2(B) that implies

φu ∈ L6(B). On the other hand, it is easy to see that |φu| 3
2 ∈ L4(B) and |u| 9

2 ∈ L
4
3 (B). Thus we

derive from the Hölder inequality that φu|u|3 ∈ L
3
2 (B), which implies

a =
g̃(u)

1 + |u| ∈ L
3
2 (B).

Thereby, we deduce immediately from Lemma 5.7 that u ∈ Lq(B) for any 1 < q < ∞. Hence,
there holds g̃(u) ∈ Lq(B) for any 1 < q < ∞. Now, arguing by the Calderón–Zygmund
inequality and Lp estimate given in [16, 30], we derive u ∈ W2,q(B), whence also u ∈ C1,α1(B)

by Sobolev embedding theorem for any 0 < α1 < 1. Moreover, the Harnack inequality [32]
implies u(x) > 0 for all x ∈ B. The proof is completed.



Ground state solution for supercritical nonlocal equations with variable exponent 21

6 The Kirchhoff type equation

In this section, we obtain the existence of positive ground state solution of (1.6) by using
Theorem 1.2 with λ = 1, q = 4. Similarly to Section 4, we first estimate the level of mountain
critical of the functional Ĵ corresponding to (1.6) and show that the critical level is below the
non-compactness level of Ĵ by using approximation techniques. Then we are devoted to verify
that the (PS) sequence of the functional Ĵ is also the one of the approximation functional
associated to Ĵ. Finally, by the regularity theory of the elliptic equation, the positive ground
state solution of (1.6) is obtained. In order to find the weak solutions to (1.6) and it is natural
to consider the energy functional on H:

Ĵ(u) =
1
2
‖u‖2 +

b

4
‖u‖4 −

∫

B

1
6 + |x|α |u|

6+|x|α .

Then we have from Lemma 2.2 that Ĵ is well defined on H and is of C1, and

( Ĵ′(u), v) = (1 + b‖u‖2)
∫

B
∇u∇v −

∫

B
|u|4+|x|α uv, u, v ∈ H.

It is standard to verify that the weak solutions of (1.6) correspond to the critical points of the
functional Ĵ.

Lemma 6.1. Let α2, β2, γ2 > 0 and define f2 : [0, ∞) → R as

f2(t) =
α2

2
t2 +

β2

4
t4 − γ2

6
t6.

Then

sup
t∈[0,∞)

f2(t) =
6α2β2γ2 + β3

2 + 4α2γ2

√

β2
2 + 4α2γ2 + β2

2

√

β2
2 + 4α2γ2

24γ2
2

.

Proof. For t ≥ 0, we have

f ′2(t) = α2t + β2t3 − γ2t5 = t(α2 + β2t2 − γ2t4).

Let α2 + β2t2 − γ2t4 = 0, we write at

t2 =

√

β2
2 + 4α2γ2 + β2

2γ2
.

Substituting it into f2(t), the result is valid. The proof is completed.

Lemma 6.2. Let

g2(t) =
t2

2
‖uε‖2 +

bt4

4
‖uε‖4 − t6

6

∫

R3
|uε|6,

then we have, as ε → 0+,

sup
t≥0

g2(t) ≤ Λ1 + O(ε),

where Λ1 = b
4 S3 + b3

24 S6 + 1
6 S

√
S4b2 + 4S + b2

24 S4
√

S4b2 + 4S.
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Proof. It follows from Lemma 6.1 and the estimate (2.2) that

g2(t) =
t2

2
‖uε‖2 +

bt4

4
‖uε‖4 − t6

6

∫

R3
|uε|6

=
t2

2
(S3/2 + O(ε)) +

bt4

4
(S3 + O(ε))− t6

6
(S3/2 + O(ε3))

≤ b

4
S3 +

b3

24
S6 +

1
6

S
√

S4b2 + 4S +
b2

24
S4
√

S4b2 + 4S + O(ε),

for ε > 0 sufficiently small. The proof is completed.

From Lemma 3.2, we know that the functional Ĵ possesses the mountain pass geometry.
Then there is a (PS)c2 sequence {un} ⊂ H for Ĵ with the property that

Ĵ(un) → c2, ‖ Ĵ′(un)‖H−1 → 0, n → ∞,

where c2 is given by

c2 = inf
γ̂∈Γ

max
t∈[0,1]

Ĵ(γ(t)),

and Γ̂ = {γ ∈ C([0, 1], H) : γ(0) = 0, Ĵ(γ(1)) < 0}.
In the following we give an estimate of the upper bound of the critical level c2 by using

above two lemmas.

Lemma 6.3. There holds 0 < c2 < Λ1.

Proof. Similar to Lemma 5.4, there exists R2 > 0 sufficiently large, such that Ĵ(R2uε) ≤ 0 for ε

small enough, hence, we can find 0 < tε < R2 satisfying

0 < η2 ≤ c2 ≤ max
t∈[0,R2]

Ĵ(tuε) = Ĵ(tεuε).

Since d
dt Ĵ(tuε)|t=tε = 0, we have

tε‖uε‖2 + bt3
ε‖uε‖4 =

∫

B
t
5+|x|α
ε |u|6+|x|α .

Hence we deduce from (2.2) that

S
3
2 + O(ε) + bt2

ε (S
3 + O(ε)) = t4

ε

∫

B
|uε|6 + t4

ε

∫

B

(

t
|x|α
ε |uε|6+|x|α − |uε|6

)

= t4
ε [S

3
2 + O(ε3) + Aε]

= t4
ε [S

3
2 + O(ε3) + O(εα| log ε|) + O(ε3/2)],

(6.1)

where Aε = O(εα| log ε|) + O(ε3/2) is given in [21, page 14]. For convenience, we set A =

S
3
2 + O(ε), B = b(S3 + O(ε)) and C = S

3
2 + O(ε3) + O(εα| log ε|) + O(ε3/2). Thus, (6.1) can be

rewritten as A + Bt2
ε = Ct4

ε . It is easy to see that

t2
ε =

B +
√

B2 + 4AC

2C
=

bS3 + O(ε) +
√

b2S6 + 4S3 + O(ε) + O(εα| log ε|)
2S3/2 + O(ε3/2) + O(εα| log ε|) .
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Thereby, t2
ε > 1 for ε small enough, which implies

∫

B

t6
ε

6
|uε|6 −

∫

B

t
6+|x|α
ε

6 + |x|α |uε|6+|x|α

=
∫

B

(

t6
ε

6
− t6

ε

6 + |x|α
)

|uε|6 +
∫

B

t
6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|α)

+
∫

B

(

t6
ε

6 + |x|α − t
6+|x|α
ε

6 + |x|α

)

|uε|6

≤
∫

B

(

t6
ε

6
− t6

ε

6 + |x|α
)

|uε|6 +
∫

B

t
6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|α).

(6.2)

By [21, page 16] and using the fact that tε < R2, we have

∫

B

(

t6
ε

6
− t6

ε

6 + |x|α
)

|uε|6 ≤ Cεα (6.3)

and
∫

B

t
6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|α) ≤ −Cεα| log ε|. (6.4)

Combining (6.3), (6.4) with (6.2) and using Lemma 6.2, we derive

Ĵ(tεuε) =
t2
ε

2
‖uε‖2 +

bt4
ε

4
‖uε‖4 −

∫

B

t
6+|x|α
ε

6 + |x|α |uε|6+|x|α

=
t2
ε

2
‖uε‖2 +

bt4
ε

4
‖uε‖4 −

∫

B

t6
ε

6
|uε|6 +

∫

B

t6
ε

6
|uε|6 −

∫

B

t
6+|x|α
ε

6 + |x|α |uε|6+|x|α

= sup
t≥0

g2(t) +
∫

B

t6
ε

6
|uε|6 −

∫

B

t
6+|x|α
ε

6 + |x|α |uε|6+|x|α

≤ b

4
S3 +

b3

24
S6 +

1
6

S
√

S4b2 + 4S +
b2

24
S4
√

S4b2 + 4S + O(ε) + Cεα − Cεα| log ε|.

(6.5)

By choosing ε > 0 small enough, we derive by (6.5),

0 < η2 ≤ c2 ≤ Ĵ(tεuε) < Λ1.

The proof is completed.

Lemma 6.4. If {un} is a (PS)c2 sequence of Ĵ, then there exists u ∈ H such that, up to a subsequence,

un ⇀ u and Ĵ′(u) = 0.

Proof. By Lemma 3.3, {un} is bounded in H and hence, going if necessary to a subsequence,
we may assume that un ⇀ u in H. Let A > 0 be such that

∫

B |∇un|2 → A2. If u = 0, it is
easy to see that Ĵ′(u) = 0. If u 6= 0, then by the weakly lower semi-continuity of the norm,
∫

B |∇u|2 ≤ A2. In the sequel, we will claim that
∫

B |∇u|2 = A2. In fact, if it is false, then
∫

B |∇u|2 < A2. For any measurable subset Q ⊂ B, we have for v ∈ H,
∣

∣

∣

∣

∫

Q
(|un|4+|x|α un − |u|4+|x|α u)v

∣

∣

∣

∣

≤
∫

Q
(|un|5+|x|α + |u|5+|x|α)|v|

≤ ‖|un|5+|x|α + |u|5+|x|α‖
L

p(·)
p(·)−1 (Q)

‖v‖Lp(·)(Q),
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where p(x) = 6 + |x|α. Hence, the Vitali theorem (see [28]) leads to
∫

B
|un|4+|x|α unv →

∫

B
|u|4+|x|α uv, as n → ∞.

This together with the fact that Ĵ′(un) → 0 ensures that

(1 + A2b)
∫

B
∇u∇v =

∫

B
|u|4+|x|α uv, v ∈ H. (6.6)

By taking v = u in (6.6), there holds 〈 Ĵ′(u), u〉 < 0. Similarly to the proof of Lemma 3.1,
we have 〈 Ĵ′(tu), tu〉 > 0 for small t > 0. Thus, there exists a tu ∈ (0, 1) such that Ĵ(tuu) =

maxt≥0 Ĵ(tu) and 〈 Ĵ′(tuu), tuu〉 = 0. Then, we deduce by the weak lower semicontinuity of the
norm and Fatou’s lemma that

c2 ≤ Ĵ(tuu)− 1
6
〈 Ĵ′(tuu), tuu〉

=
t2
u

3
‖u‖2 +

t4
ub

12
‖u‖4 +

∫

B

(

t
6+|x|α
u

6
− t

6+|x|α
u

6 + |x|α

)

|u|6+|x|α

<
1
3
‖u‖2 +

b

12
‖u‖4 +

∫

B

(

1
6
− 1

6 + |x|α
)

|u|6+|x|α

≤ lim inf
n→∞

(

1
3
‖un‖2 +

b

12
‖un‖4 +

∫

B

(

1
6
− 1

6 + |x|α
)

|un|6+|x|α
)

= lim inf
n→∞

(

J(un)−
1
6
〈J′(un), un〉

)

= c2,

which is impossible. Thus,
∫

B |∇u|2 = A2 and Ĵ′(u) = 0. The proof is completed.

In order to obtain the nontrivial solution of (1.6), we need define the functional Î : H → R

by

Î(u) =
1
2
‖u‖2 +

b

4
‖u‖4 − 1

6

∫

B
|u|6.

Lemma 6.5. Assume that 0 < c2 < Λ1. The functional I satisfies the (PS)c2 condition.

Proof. Suppose that {un} is a (PS)c2 sequence for c2 ∈ (0, Λ1), i.e.

Î(un) → c2, Î′(un) → 0 as n → ∞.

By repeating the arguments used in Lemma 3.3, it is easy to show that {un} is bounded in
H. Then passing to a subsequence, we can find u ∈ H such that un ⇀ u in H. Now, let
vn = un − u, we claim that ‖vn‖ → 0. In fact, we use an argument of contradiction and
suppose that there exists a subsequence still denoted by {vn} such that ‖vn‖ → l̃ > 0. It is
easy to verify that

‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1) (6.7)

and
‖un‖4 = ‖vn‖4 + ‖u‖4 + 2‖vn‖2‖u‖2 + o(1). (6.8)

From the Brezis–Lieb lemma in [9], we have
∫

B
|un|6dx =

∫

B
|vn|6dx +

∫

B
|u|6dx + o(1). (6.9)
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Recall that Î′(un) → 0 as n → ∞, there holds by (6.7),

lim
n→∞

〈 Î′(un), u〉 = ‖u‖2 + bl̃2‖u‖2 + b‖u‖4 −
∫

B
|u|6dx = 0, (6.10)

which yields

Î(u) = Î(u)− 1
4

(

‖u‖2 + bl2‖u‖2 + b‖u‖4 −
∫

B
|u|6dx

)

=
1
2
‖u‖2 +

1
12

∫

B
|u|6dx − b

4
l̃2‖u‖2

≥ − b

4
l̃2‖u‖2.

(6.11)

On the other hand, combining (6.7), (6.8) with (6.9) leads to

Î(un)− Î(u) + o(1)

=
1
2
‖un‖2 − 1

2
‖u‖2 +

b

4
‖un‖4 − b

4
‖u‖4 − 1

6

∫

B
|un|6 +

1
6

∫

B
|u|6 + o(1)

=
1
2
‖vn‖2 +

b

4
‖vn‖4 +

b

2
‖vn‖2‖u‖2 − 1

6

∫

B
|vn|6 + o(1).

(6.12)

Similarly, by using (6.10) again, we deduce

o(1) = 〈 Î′(un), un〉 − (‖u‖2 + bl̃2‖u‖2 + b‖u‖4 −
∫

B
|u|6dx)

= ‖un‖2 − ‖u‖2 + b‖un‖4 − b‖u‖4 − bl̃2‖u‖2 −
∫

B
|un|6 +

∫

B
|u|6

= ‖vn‖2 + b‖vn‖4 + b‖vn‖2‖u‖2 −
∫

B
|vn|6 + o(1).

(6.13)

Then, taking the limit on the both sides in (6.13) as n → ∞, we find l̃2 + bl̃4 + bl̃2‖u‖2 ≤ S−3 l̃6,
which implies that

l̃2 ≥ S3b + S
√

S4b2 + 4(1 + b‖u‖2)S

2
. (6.14)

It follows from (6.12) and (6.13) that

Î(u) = Î (un)−
(

1
2
− 1

6

)

‖vn‖2 −
(

1
4
− 1

6

)

b‖vn‖4 −
(

1
2
− 1

6

)

b‖vn‖2‖u‖2 + o(1).

This together with (6.14) ensures that

Î(u) = c2 −
(

1
3

l̃2 +
1
12

bl̃4 +
1
3

bl̃2‖u‖2
)

≤ c2 −
b

4
S3 − 1

24
b3S6 − S

6

√

b2S4 + 4 (1 + b‖u‖2) S

− b2S4

24

√

b2S4 + 4 (1 + b‖u‖2) S

− 1
24

(

3b2S3 + S
√

b2S4 + 4 (1 + b‖u‖2) S

)

‖u‖2 − b

4
l̃2‖u‖2

≤ c2 −
(

b

4
S3 +

b3

24
S6 +

S

6

√

b2S4 + 4S +
b2

24
S4
√

b2S4 + 4S

)

− b

4
l̃2‖u‖2

≤ c2 − Λ − b

4
l̃2‖u‖2

< − b

4
l̃2‖u‖2,

which contradicts to (6.11). Therefore vn → 0 strongly in H, or equivalently, un → u in H as
n → ∞. The proof is completed.
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Proof of Theorem 1.9. By Lemmas 6.4, 6.5, we know that the assumptions in Theorem 1.2 are
valid. Hence, (1.6) possesses a nonnegative nontrivial ground state solution u ∈ H, which
satisfies the following equation in weak sense

−
(

1 + b
∫

B
|∇u|2

)

∆u = u5+|x|α in B.

Let us define

ĝ(u(x)) =
u5+|x|α

1 + b
∫

B |∇u|2 , x ∈ B.

It follows from Lemma 2.2 that
∫

B u6+ 3
2 |x|α ≤ C, which implies

a =
ĝ(u)

1 + |u| ∈ L
3
2 (B).

Hence, we deduce immediately from Lemma 5.7 that u ∈ Lq(B) for any 1 < q < ∞. Then,
there holds ĝ(u) ∈ Lq(B) for any 1 < q < ∞. By the Calderón–Zygmund inequality and
Lp estimate given in [16, 30], we derive u ∈ W2,q(B), whence also u ∈ C1,α2(B) by Sobolev
embedding theorem for any 0 < α2 < 1. Moreover, the Harnack inequality [32] implies
u(x) > 0 for all x ∈ B. The proof is completed.
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1 Introduction

In this paper, we consider the boundary value problem (BVP) consisting of a system of n

fractional order compartment models

u′
i + aiD

αi
0+ui = fi(u1 . . . , un, t), 0 < t < 1, (1.1)

and the boundary conditions (BCs)

ui(0) = biui(1), i = 1, . . . , n, (1.2)

where 0 < αi < 1 and Dαi
0+ui denotes the αi-th left Riemann–Liouville fractional derivative of

ui defined by

(

Dαi
0+ui

)

(t) =
1

Γ(1 − αi)

d

dt

∫ t

0
(t − s)−αi ui(s)ds,

provided the right-hand side exists with Γ being the Gamma function. We further assume

that for any i = 1, . . . , n,

(H1) ai > 0, bi > 0, fi ∈ C(Rn × [0, 1]), and fi(0, . . . , 0, t) 6≡ 0 on [0, 1].

BCorresponding author. Email: min.wang@kennesaw.edu
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Fractional differential equations have been an active research area for decades and at-

tracted extensive attention from scholars in both applied and theoretic fields. Due to the

superior capability of capturing long term memory and/or long range interaction, fractional

models have been successfully developed to investigate problems on fractal porous media,

social media networks, epidemiology, finance, control, etc. Those models were further gener-

alized and studied both analytically and numerically. The reader is referred to [1–11, 13–16]

and references therein for some recent advances.

This paper is mainly motivated by the study of a fractional compartment system for a bike

share system. In [7], the station inventory, i.e., the number of bikes at a station, is modeled by

y′i = qi(t)− ωi(t)yi − Θi(t)c
−βi

i D
1−βi

0+

(

yi

Θi

)

, t > 0, i = 1, . . . , n. (1.3)

The resilience of station inventory, i.e., the capability that the station inventory will restore

to certain level without extra interference, was further studied in [10, 16] by converting the

resilience of Eq. (1.3) to a special case of BVP (1.1), (1.2) with n = 1 (the scalar case). Intuitively,

it is more sensible to investigate BVP (1.1), (1.2) with n > 1 as the interactions among multiple

stations are inevitable. From the practical perspective, we are particularly interested in finding

conditions that guarantee the existence of positive solutions of BVP (1.1), (1.2). However, the

extension from scalar to system is not trivial and it will require new auxiliary results to study

the existence of positive solutions of the resulting system.

In this paper, a framework consisting of an appropriate Banach space and the associated

operator will be proposed so that the fixed point theory can be applied to study the existence

of positive solutions of BVP (1.1), (1.2). This framework will also be applicable to other fixed

point theorems. Our result will be further applied to establish the sufficient conditions for the

resilience of a fractional bike share inventory model. These conditions will provide guidance

for the development of operational policy. Therefore, our work will make contributions in

both theoretic and application aspects.

The paper is organized as follows: After this introduction, the main theoretic result and

its proof will be presented in Section 2. The resilience of a bike share model will then be

considered in Section 3 to demonstrate the application of our result.

2 Main results

We first introduce some needed notations and definitions. For any x = (x1, . . . , xn) ∈ R
n, let

‖x‖1 = ∑
n
i=1 |xi| and

Kr = {x ∈ R
n : ‖x‖1 ≤ r, xi ≥ 0, i = 1, . . . , n}. (2.1)

For any u = (u1, . . . , un) ∈ Πn
i=1C[0, 1], let ‖u‖ = maxt∈[0,1] ∑

n
i=1 |ui(t)|. By a solution of BVP

(1.1), (1.2), we mean a vector-valued function u ∈ Πn
i=1C[0, 1] that satisfies (1.1) and (1.2).

Furthermore, u is said to be a positive solution of BVP (1.1), (1.2) if ui(t) ≥ 0, i = 1, . . . , n, and

‖u‖ > 0.

Let Eα(t) be the Mittag-Leffler function defined by

Eα(t) =
∞

∑
n=0

tn

Γ(nα + 1)
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and Λi(t) be defined by

Λi(t) = E1−αi
(−ait

1−αi), i = 1, . . . , n. (2.2)

Throughout this paper, we assume

(H2) biΛi(1) < 1, i = 1, . . . , n.

Define

Gi = max
t∈[0,1]

{

biΛi(t)

1 − biΛi(1)
,

biΛi(t)Λi(1 − t)

1 − biΛi(1)
+ 1

}

(2.3)

and

Gi = min
t∈[0,1]

{

Λi(t)

1 − biΛi(1)
,

biΛi(t)Λi(1 − t)

1 − biΛi(1)

}

, i = 1, . . . , n. (2.4)

Then we have the following result.

Theorem 2.1. Let Kr and Gi, i = 1, . . . , n, be defined in (2.1) and (2.3), respectively. Assume that

(H1) and (H2) hold and that there exist r > 0 and ηi > 0, i = 1, . . . , n, such that

(a) ∑
n
i=1 Giηi ≤ r; and

(b) for any t ∈ [0, 1] and x ∈ Kr, 0 ≤ fi(x, t) ≤ ηi, i = 1, . . . , n.

Then BVP (1.1), (1.2) has at least one positive solution u with ‖u‖ ≤ r.

The following lemma plays an important role in the proof of Theorem 2.1.

Lemma 2.2. Assume (H2) holds. For i = 1, . . . , n, let Λi, Gi, Gi be defined by (2.2), (2.3), (2.4),

respectively, and

Gi(t, s) =























biΛi(t)Λi(1 − s)

1 − biΛi(1)
+ Λi(t − s), 0 ≤ s ≤ t ≤ 1,

biΛi(t)Λi(1 − s)

1 − biΛi(1)
, 0 ≤ t < s ≤ 1.

(2.5)

Then Gi(t, s) is the Green’s function for the scalar BVP

u′
i + aiD

αi
0+ui = 0, 0 < t < 1,

ui(0) = biu(1),

and satisfies

0 < Gi ≤ Gi ≤ Gi, i = 1, . . . , n. (2.6)

Proof. Let R+ := [0, ∞). By [7, Lemma 3.1], for any h ∈ C(R+, R) and i = 1, . . . , n, the

equation

u′
i + aiD

αi
0+ui = h(t), t > 0
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has a unique solution given by

ui(t) =
∫ t

0
Λi(t − s)h(s)ds + ui(0)Λi(t).

Then BC (1.2) implies

ui(0) =
∫ 1

0

biΛi(1 − s)

1 − biΛi(1)
h(s)ds.

Hence by (2.5) we have

ui(t) =
∫ t

0
Λi(t − s)h(s)ds +

(

∫ 1

0

biΛi(1 − s)

1 − biΛi(1)
h(s)ds

)

Λi(t) (2.7)

=
∫ 1

0
Gi(t, s)h(s)ds.

It is notable that when αi ∈ (0, 1), we have Λ′
i(t) ≤ 0 on (0, ∞), Λi(0) = 1, limt→∞ Λi(t) = 0,

and 0 < Λi(t) < 1; see for example [12]. Then by (2.5), for any t ∈ [0, 1],

∂Gi

∂s
≥ 0 on (0, t) ∪ (t, 1).

Hence

Λi(t)

1 − biΛi(1)
≤ Gi(t, s) ≤

biΛi(t)Λi(1 − t)

1 − biΛi(1)
+ 1, 0 ≤ s ≤ t,

biΛi(t)Λi(1 − t)

1 − biΛi(1)
≤ Gi(t, s) ≤

biΛi(t)

1 − biΛi(1)
, t < s ≤ 1.

Therefore, (2.6) holds.

Remark 2.3. It is clear that Gi defined by (2.5) is discontinuous at t = s. However, by (2.7), ui

is continuous on [0, 1] when h ∈ C[0, 1], i = 1, . . . , n.

With Lemma 2.2, we are able to construct a needed operator on an appropriate Banach

space. In the sequel, we choose the Banach space X = Πn
i=1C[0, 1] with the norm ‖u‖ =

maxt∈[0,1] ∑
n
i=1 |ui(t)|, where u = (u1(t), . . . , un(t)) ∈ X. Define an operator T : X → X by

(Tu)i(t) =
∫ 1

0
Gi(t, s) fi(u1(s), . . . , un(s), s)ds, t ∈ [0, 1], i = 1, . . . , n, (2.8)

where Gi is defined by (2.5). By Lemma 2.2, it is easy to see that u is a solution of BVP (1.1),

(1.2) if and only if u is a fixed point of T.

Proof of Theorem 2.1. First of all, it is obvious that (0, . . . , 0) is not a fixed point of T. By

Remark 2.3, we have T(X) ⊂ X. We need to prove that T : X → X is a compact operator. For

any u, v ∈ X, t ∈ [0, 1], and i = 1, . . . , n,

|(Tu)i(t)− (Tv)i(t)| =

∣

∣

∣

∣

∫ 1

0
Gi(t, s) fi(u1(s), . . . , un(s), s)ds −

∫ 1

0
Gi(t, s) fi(v1(s), . . . , vn(s), s)ds

∣

∣

∣

∣

≤ Gi max
s∈[0,1]

| fi(u1(s), . . . , un(s), s)− fi(v1(s), . . . , vn(s), s)|.

Hence T is continuous by the continuity of fi, i = 1, . . . , n.
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Let Ω = {u ∈ X : ‖u‖ ≤ B}. For any u ∈ Ω, t ∈ [0, 1], and i = 1, . . . , n,

|(Tu)i(t)| =

∣

∣

∣

∣

∫ 1

0
Gi(t, s) fi(u1(s), . . . , un(s), s)ds

∣

∣

∣

∣

≤ Gi max
v∈Ω,s∈[0,1]

| fi(v1(s), . . . , vn(s), s)|.

Hence T is uniformly bounded. For any 0 ≤ t1 < t2 ≤ 1, by (2.7),

|(Tu)i(t1)− (Tu)i(t2)|

=

∣

∣

∣

∣

∫ 1

0
Gi(t1, s) fi(u1(s), . . . , un(s), s)ds −

∫ 1

0
Gi(t2, s) fi(u1(s), . . . , un(s), s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t1

0
Λi(t1 − s) fi(u1(s), . . . , un(s), s)ds

+

(

∫ 1

0

biΛi(1 − s)

1 − biΛi(1)
fi(u1(s), . . . , un(s), s)ds

)

Λi(t1)

−
∫ t2

0
Λi(t2 − s) fi(u1(s), . . . , un(s), s)ds

−

(

∫ 1

0

biΛi(1 − s)

1 − biΛi(1)
fi(u1(s), . . . , un(s), s)ds

)

Λi(t2)

∣

∣

∣

∣

≤
∫ t1

0
|Λi(t1 − s)− Λi(t2 − s)|| fi(u1(s), . . . , un(s), s)|ds

+
∫ t2

t1

|Λi(t2 − s)|| fi(u1(s), . . . , un(s), s)|ds

+
∫ 1

0

∣

∣

∣

∣

biΛi(1 − s)

1 − biΛi(1)

∣

∣

∣

∣

| fi(u1(s), . . . , un(s), s)|ds|Λi(t1)− Λi(t2)|

≤ max
v∈Ω,s∈[0,1]

(| fi(v1(s), . . . , vn(s), s)||Λi(t1 − s)− Λi(t2 − s)|)

+ |t1 − t2| max
v∈Ω,s∈[0,1]

| fi(v1(s), . . . , vn(s), s)|

+ |Λi(t1)− Λi(t2)| max
v∈Ω,s∈[0,1]

(∣

∣

∣

∣

biΛi(1 − s)

1 − biΛi(1)

∣

∣

∣

∣

| fi(v1(s), . . . , vn(s), s)|

)

.

Then T is equicontinuous on Ω since Λi is uniformly continuous on [0, 1]. By Arzelà–Ascoli

Theorem, we can prove T is a compact operator.

Let Kr be defined by (2.1) and K ⊂ X be defined by

K = {u ∈ X : u(t) ∈ Kr, t ∈ [0, 1]}.

It is easy to see that K is a nonempty, closed, bounded, and convex subset of X. We claim that

T(K) ⊂ K.

In fact, by (2.8), for any u ∈ K and i = 1, . . . , n,

|(Tu)i(t)| =

∣

∣

∣

∣

∫ 1

0
Gi(t, s) fi(u1(s), . . . , un(s), s)ds

∣

∣

∣

∣

≤
∫ 1

0
Gi fi(u1(s), . . . , un(s), s)ds ≤

∫ 1

0
Giηids ≤ Giηi.

Then we have
n

∑
i=1

|(Tu)i(t)| ≤
n

∑
i=1

Giηi ≤ r.
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So ‖Tu‖ ≤ r. Moreover, it is easy to see that (Tu)i(t) ≥ 0 on [0, 1], i = 1, . . . , n. Hence

T(K) ⊂ K.

Therefore by the Schauder Fixed-Point Theorem [17, Theorem 2.A], T has a fixed point

u ∈ K. �

Remark 2.4. It is notable that the Banach space (X, ‖ · ‖) and the operator T defined by (2.8)

form a general framework to study the existence of solutions for BVP (1.1), (1.2). Other fixed

point theorems can also be applied to obtain more results on the existence and/or uniqueness

of solution or positive solutions, see for example [4, 9, 15, 17].

3 Resilience of a bike share inventory model

In this section, we consider the resilience of a bike share inventory model involving multiple

stations. We first revisit the inventory model proposed in [7]. Let yi(t) be the inventory at

time t at Station i, i = 1, . . . , n. Then yi satisfies

y′i = qi(t)− ωi(t)yi − Θi(t)c
−βi

i D
1−βi

0+

(

yi

Θi

)

, t > 0, i = 1, . . . , n. (3.1)

For i = 1, . . . , n,

• qi(t) represents the arrival flux at a station;

• ωi(t)yi represents a Markov removal process that is independent of the history;

• βi ∈ (0, 1) is a parameter relating to the bike waiting time distribution at a station; and

• Θi(t)c
−βi

i D
1−βi

0+

(

yi

Θi

)

represents a non-Markov removal process that relates to the bike

waiting time at a station with

Θi(t) = exp

(

−
∫ t

0
ω(s)ds

)

.

All the terms above are nonnegative. The reader is referred to [7] for the details of the terms.

To reflect the interactions among stations, we will extend Eq. (3.1) by modifying the arrival

flux term qi. Assume the total number of bikes in the entire bike share system is a constant Y.

Clearly
(

Y − ∑
n
j=1 yj

)

represents the total number of bikes in use at time t. Let pi(yi, t) ∈ [0, 1]

be the return rate of in-use bikes to Station i at time t with

pi(yi, t) ≥ 0,
n

∑
i=1

pi(yi, t) ≤ 1, t > 0, i = 1, . . . , n. (3.2)

Then the inventory yi satisfies

y′i =

(

Y −
n

∑
j=1

yj

)

pi(yi, t)− ωi(t)yi − Θi(t)c
−βi

i D
1−βi

0+

(

yi

Θi

)

, t > 0, i = 1, . . . , n. (3.3)

If the inventory will restore at some time τ1 > 0, then yi must satisfy

yi(0) = yi(τ1), i = 1, . . . , n. (3.4)

Therefore, the resilience problem can be described by BVP (3.3), (3.4).
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Remark 3.1. Since Eq. (3.3) models the rate of changes of yi at Station i, we assume the units

of both pi and ωi in (3.3) are 1/[unit of time] so that the units on both sides of the equation

are consistent.

The following result is obtained by applying Theorem 2.1.

Theorem 3.2. Let Kr and Gi be defined by (2.1) and (2.3), respectively. If for any x = (x1, . . . , xn) ∈

KY and t ∈ [0, 1], the return rates pi, i = 1, . . . , n, satisfy

n

∑
i=1

Gi
τ1 pi(Θi(τ1t)xi, t)

Θi(τ1t)
≤ 1, (3.5)

then BVP (3.3), (3.4) has at least one positive solution y with ‖y‖ ≤ Y.

Proof. By an idea similar to [7], i.e., making a change of variables and rescaling [0, τ1] to [0, 1],

BVP (3.3), (3.4) can be converted to BVP (1.1), (1.2) with ui(t) = yi(τ1t)/Θi(τ1t), αi = 1 − βi,

ai = c
−βi

i , bi = Θi(τ1), and

fi(u1, . . . , un, t) =
τ1 pi(Θi(τ1t)ui, t)

Θi(τ1t)

(

Y −
n

∑
j=1

(Θj(τ1t)uj)

)

, i = 1, . . . , n. (3.6)

Let KY be defined by (2.1) with r = Y. By (3.2) and (3.6), it is easy to see that for any

x ∈ KY and i = 1, . . . , n, we have fi(x, t) ≥ 0 and

fi(x1, . . . , xn, t) =
τ1 pi(Θi(τ1t)xi, t)

Θi(τ1t)

(

Y −
n

∑
j=1

(Θj(τ1t)xj)

)

≤
τ1 pi(Θi(τ1t)xi, t)

Θi(τ1t)
Y.

Therefore, all the conditions of Theorem 2.1 are satisfied. The conclusion then follows imme-

diately from Theorem 2.1.

Remark 3.3. Based on our assumption, the return rates pi, i = 1, . . . , n, depend on both time

t and current station inventory. Theorem 3.2 shows that it is feasible to manage the station

inventory by adjusting the return rates based on real-time status at each station. Therefore,

new operational policies may be developed based on Theorem 3.2 by monitoring the return

rates so that (3.5) is satisfied all the time.
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1 Introduction

Let us consider the bistable equation

∂u

∂t
=

∂2u

∂x2
+ g(u) (1.1)

in R, where the reaction term g : [0, 1] → R is continuous and there exists s∗ ∈ (0, 1) such that

g(0) = g(s∗) = g(1) = 0, g(s) < 0 for s ∈ (0, s∗), g(s) > 0 for s ∈ (s∗, 1).

Equation (1.1) appears in many mathematical models in population dynamics, genetics, com-

bustion or nerve propagation, see e.g. [1, 2] and references therein.

BCorresponding author. Email: pdrabek@kma.zcu.cz
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This kind of reaction is called bistable, cf. [3, 7–9]. We distinguish between two different

cases of bistable reactions which lead to different type of solutions to (1.1). Namely, when

∫ 1

0
g(s)ds = 0, (1.2)

we say that g is balanced bistable nonlinearity while in case

∫ 1

0
g(s)ds 6= 0

the bistable nonlinearity g is called unbalanced. In the former case the equation (1.1) possesses

(time independent) stationary solutions which connect constant equilibria u0 ≡ 0 and u1 ≡ 1,

i.e., solutions u = u(x) of (1.1) satisfying

lim
x→−∞

u(x) = 0 and lim
x→+∞

u(x) = 1 (1.3)

or

lim
x→−∞

u(x) = 1 and lim
x→+∞

u(x) = 0. (1.4)

On the other hand, the latter case leads to the (time dependent) nonstationary travelling wave

solutions connecting u0 and u1, see e.g. [6, 10].

The stationary solutions of (1.1) satisfying (1.3) or (1.4) can be found in the closed form for

special reaction terms. For example, for

g(s) = s(1 − s)

(

s − 1

2

)

we get stationary solution of (1.1), (1.3) in the following form

u(x) =
1

2
tanh

(

x

2
√

2

)

+
1

2
,

cf. [4]. Then solution u = u(x) ∈ (0, 1), x ∈ R, is a strictly increasing function which ap-

proaches equilibria u0 and u1 at an exponential rate:

u(x) ∼ ex as x → −∞ and 1 − u(x) ∼ e−x as x → +∞ . (1.5)

If we consider the quasilinear bistable equation

∂u

∂t
=

∂

∂x

(

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

p−2 ∂u

∂x

)

+ g(u), (1.6)

where p > 1 and g is balanced bistable nonlinearity then the structure of stationary solutions

to (1.6), (1.3) or (1.6), (1.4) may be considerably different as shown in [4]. For example, if

g(s) = sα(1 − s)α

(

s − 1

2

)

, s ∈ (0, 1), α > 0,

we distinguish between the following two qualitatively different cases:

Case 1: α + 1 ≥ p,

Case 2: α + 1 < p.
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In Case 1 solution u = u(x) of (1.6), (1.3) is again a strictly increasing continuously dif-

ferentiable function which assumes values in (0, 1). However, (1.5) holds only in the case

α + 1 = p. In the case α + 1 > p we have

u(x) ∼ |x|
p

p−(α+1) as x → −∞ and 1 − u(x) ∼ |x|
p

p−(α+1) as x → +∞ .

In Case 2 there exist real numbers x0 < x1 such that for all x ∈ (x0, x1) we have u(x) ∈
(0, 1), u is strictly increasing continuously differentiable, u(x) = 0 for all x ∈ (−∞, x0] and

u(x) = 1 for all x ∈ [x1,+∞). Moreover,

u(x) ∼ (x − x0)
p

p−(α+1) as x → x0+ and 1 − u(x) ∼ (x1 − x)
p

p−(α+1) as x → x1− .

Our ambition in this paper is to study similar properties for the quasilinear bistable equa-

tion with density dependent diffusion coefficient d = d(s)

∂u

∂t
=

∂

∂x

(

d(u)

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

p−2 ∂u

∂x

)

+ g(u), (1.7)

where the properties of d = d(s) are specified in the next section.

2 Preliminaries

Let p > 1, g : [0, 1] → R, g ∈ C[0, 1] be such that g(0) = g(s∗) = g(1) = 0 for s∗ ∈ (0, 1) and

g(s) < 0, s ∈ (0, s∗), g(s) > 0, s ∈ (s∗, 1).

The diffusion coefficient d : [0, 1] → R is supposed to be a nonnegative lower semicontinuous

function and d > 0 in (0, 1). There exist 0 = s0 < s1 < s2 < · · · < sn < sn+1 = 1 such that

d
∣

∣

(si ,si+1)
∈ C(si, si+1), i = 0, . . . , n, and d has discontinuity of the first kind (finite jump) at si,

i = 1, . . . , n.

For p = 2 and d(s) ≡ 1 in [0, 1] equation (1.7) reduces to the bistable equation (1.1) with

constant diffusion coefficient and bistable reaction term g. In this paper we deal with diffusion

which allows for singularities and for degenerations both at 0 and/or 1. We also consider d to

be a discontinuous function. Last but not least, reaction term g can degenerate in 0 and/or

in 1. In particular, we admit g′(0) = 0 and/or g′(1) = 0, as well as g′(0) = −∞ and/or

g′(1) = −∞. This in turn yields that our solution is not a C1-function in R and it does not

satisfy the equation pointwise in the classical sense. For this purpose we have to employ the

first integral of the second order differential equation. Since our primary interest in this paper

is the investigation of stationary solutions to (1.7) which are monotone (i.e., nonincreasing

or nondecreasing) between the equilibria 0 and 1, we provide rather general definition of

monotone solutions to the second order ODE

(

d(u)
∣

∣u′∣
∣

p−2
u′
)′

+ g(u) = 0, (2.1)

where, for the sake of simplicity, we write ( · )′ instead of d
dx ( · ).

Let u : R → [0, 1] be a monotone continuous function. We denote

Mu := {x ∈ R : u(x) = si, i = 1, 2, . . . , n}, Nu := {x ∈ R : u(x) = 0 or u(x) = 1}.
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Then Mu and Nu are closed sets, Mu is a union of a finite number of points or intervals,

Nu = (−∞, x0] ∪ [x1,+∞),

where −∞ ≤ x0 < x1 ≤ +∞ and we use the convention (−∞, x0] = ∅ if x0 = −∞ and

[x1,+∞) = ∅ if x1 = +∞.

Definition 2.1. A monotone continuous function u : R → [0, 1] is a solution of equation (2.1) if

(a) For any x /∈ Mu ∪ Nu there exists finite derivative u′(x) and for any x ∈ int Mu ∪ int Nu

we have u′(x) = 0.

(b) For any x ∈ ∂Mu there exist finite one sided derivatives u′(x−), u′(x+) and

L(x) :=
∣

∣u′(x−)
∣

∣

p−2
u′(x−) lim

y→x−
d(u(y)) =

∣

∣u′(x+)
∣

∣

p−2
u′(x+) lim

y→x+
d(u(y)).

(c) Function v : R → R defined by

v(x) :=















d(u(x)) |u′(x)|p−2 u′(x), x /∈ Mu ∪ Nu ,

0, x ∈ Nu ∪ int Mu ,

L(x), x ∈ ∂Mu

is continuous and for any x, y ∈ R

v(y)− v(x) +
∫ y

x
g(u(ξ))dξ = 0. (2.2)

Moreover, limx→±∞ v(x) = 0 if either limx→−∞ u(x) = 0 and limx→+∞ u(x) = 1 or

limx→−∞ u(x) = 1 and limx→+∞ u(x) = 0.

Remark 2.2. Constant functions

u0(x) = 0, u∗(x) = s∗, u1(x) = 1, x ∈ R,

are solutions of (2.1). It follows from the properties of d and g that those are the only constant

solutions of (2.1) and they are called equilibria.

Remark 2.3. If we set y = x + h, h 6= 0 in (2.2), multiply both sides of (2.2) by 1
h and pass to

the limit for h → 0, we obtain that v is continuously differentiable and the equation

v′(x) + g(u(x)) = 0 (2.3)

holds for all x ∈ R.

Remark 2.4. Let u be a solution of (2.1) in the sense of Definition 2.1. If Mu 6= ∅, i.e., d is

not continuous in (0, 1), then Mu = ∂Mu, int Mu = ∅ unless si = s∗ for some i = 1, 2, . . . , n.

In this case u can be constant on some interval (a, b), −∞ ≤ a < b ≤ +∞, and equal to s∗.

The equation (2.1) would then be satisfied pointwise for all x ∈ (a, b) and (a, b) ⊂ int Mu.

Furthermore, it follows from the continuity of v that if a > −∞ or b < +∞ we have u′(a) =

u′(b) = 0 because d(s∗) > 0. Also note that for x ∈ ∂Nu one sided derivatives u′(x−), u′(x+)

exist but one of them can be infinite.

If u is strictly monotone between 0 and 1 then Mu = {ξ1, ξ2, . . . , ξn} where u(ξi) = si,

i = 1, 2, . . . , n.

Remark 2.5. Let p = 2, d ≡ 1 and g ∈ C1[0, 1]. Let u = u(x) be a solution in the sense of

Definition 2.1. Then Mu = ∅ if u is not a constant, Nu = ∅, and (2.1) holds pointwise, i.e.,

u ∈ C2(R) and it is a classical solution, cf. [1], [2] or [6].
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3 Existence results

We are concerned with the existence of solutions of the equation (2.1) which satisfy the

“boundary conditions”

lim
x→−∞

u(x) = 0 and lim
x→+∞

u(x) = 1. (3.1)

Remark 3.1. Let u be a solution of the BVP (2.1), (3.1). Passing to the limit for x → −∞ in

(2.2) and writing x in place of y, we derive that for arbitrary x ∈ R we have

v(x) +
∫ x

−∞

g(u(ξ))dξ = 0. (3.2)

Theorem 3.2. Let d and g be as in Section 2 and recall that p > 1. Then the BVP (2.1), (3.1) has a

nondecreasing solution if and only if

∫ 1

0
(d(s))

1
p−1 g(s)ds = 0. (3.3)

If (3.3) holds then there is a unique solution u = u(x) of (2.1), (3.1) such that the following conditions

hold (see Figure 3.1):

(i) there exist −∞ ≤ x0 < 0 < x1 ≤ +∞ such that u(x) = 0 for x ≤ x0, u(x) = 1 for x ≥ x1

and 0 < u(x) < 1 for x ∈ (x0, x1);

(ii) u is strictly increasing in (x0, x1), u(0) = s∗;

(iii) for i = 1, 2, . . . , n let ξi ∈ R be such that u(ξi) = si, ξ0 = x0 and ξn+1 = x1. Then u is a

piecewise C1-function in the sense that u is continuous,

u
∣

∣

(ξi ,ξi+1)
∈ C1(ξi, ξi+1), i = 0, 1, . . . , n,

and the limits u′(ξi−) := limx→ξi− u′(x), u′(ξi+) := limx→ξi+ u′(x) exist finite for all i =

1, 2, . . . , n;

(iv) for any i = 1, 2, . . . , n, the following transition condition holds:

(

u′(ξi−)
)p−1

lim
s→si−

d(s) =
(

u′(ξi+)
)p−1

lim
s→si+

d(s).

1

0
x0 = −∞ x1 = +∞

1

0
x0 x1

Figure 3.1: Increasing solutions
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Proof. Necessity of (3.3). Let u = u(x) be a nondecreasing solution of the BVP (2.1), (3.1) such

that u(0) = s∗. Since the equation is autonomous this condition is just a normalization of a

solution. It follows from (3.1) that

−∞ ≤ x0 := inf{x ∈ R : u(x) > 0} < 0

is well defined. By (3.2) and continuity of v we have

0 < x1 := sup{x ∈ R : v(y) > 0 for all y ∈ (x0, x)} ≤ +∞ .

Since d(s) > 0, s ∈ (0, 1), it follows from the definition of v(x) that u is a strictly increasing

function in (x0, x1) and therefore the following limit

ū(x1) := lim
x→x1−

u(x)

is well defined. If x1 = +∞ then by the second condition in (3.1) it must be ū(x1) = 1. On

the other hand, if x1 < +∞, we have ū(x1) = u(x1), v(x1) = 0 and s∗ < u(x1) ≤ 1. We rule

out the case u(x1) < 1. Indeed, v(x1) = 0 implies u′(x1−) = u′(x1+) = u′(x1) = 0. From

s∗ < u(x1) and (2.3) we deduce v′(x1) = −g(u(x1)) < 0. Therefore, there exists δ > 0 such

that for all x ∈ (x1, x1 + δ) we have v(x) < 0 and hence also u′(x−) < 0 and u′(x+) < 0. This

contradicts our assumption that u is nondecreasing.

We proved that u(x1) = 1, i.e., u = u(x) is strictly increasing and maps (x0, x1) onto (0, 1).

Let ξi ∈ (x0, x1) be such that

u(ξi) = si , i = 1, 2, . . . , n, ξ0 = x0 , ξn+1 = x1 .

Then u is continuous in (x0, x1) and piecewise C1-function in the sense that

u
∣

∣

(ξi ,ξi+1)
∈ C1(ξi, ξi+1), u′(x) > 0, x ∈ (ξi, ξi+1), i = 0, 1, . . . , n,

and the limits limx→ξi− u′(x), limx→ξi+ u′(x), i = 1, 2, . . . , n, exist finite. Hence there exists

continuous strictly increasing inverse function u−1 : (0, 1) → (x0, x1), x = u−1(u), such that

u−1
∣

∣

∣

(si ,si+1)
∈ C1(si, si+1), i = 0, 1, . . . , n ,

and the limits

lim
u→si−

d

du
u−1(u), lim

u→si+

d

du
u−1(u)

exist finite, i = 1, 2, . . . , n. We employ the change of variables as indicated in [5, p. 174]. Set

w(u) = v(u−1(u)), u ∈ (0, 1).

Then w is piecewise C1-function in (0, 1),

w
∣

∣

(si ,si+1)
∈ C1(si, si+1), i = 0, 1, . . . , n

with finite limits limu→si− w′(u), limu→si+ w′(u), i = 1, 2, . . . , n. For any x ∈ (ξi, ξi+1) and

u ∈ (si, si+1), i = 0, 1, . . . , n,

d

dx
v(x) =

d

dx
w(u(x)) =

dw

du
(u(x)) u′(x). (3.4)
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From v(x) = d(u(x))(u′(x))p−1 we deduce

u′(x) =

(

v(x)

d(u(x))

)p′−1

, p′ =
p

p − 1
. (3.5)

It follows from (3.4), (3.5) that

dv

dx
=

dw

du
(u(x))

(

v(x)

d(u(x))

)p′−1

=
dw

du
(u)

(

w(u)

d(u)

)p′−1

.

Therefore, the equation

v′(x) + g(u(x)) = 0, x ∈ (ξi, ξi+1),

transforms to
dw

du

(

w(u)

d(u)

)p′−1

+ g(u) = 0, u ∈ (si, si+1),

i = 0, 1, . . . , n, or equivalently,

(w(u))p′−1 dw

du
+ (d(u))p′−1 g(u) = 0, (3.6)

1

p′
d

du
(w(u))p′ + (d(u))p′−1 g(u) = 0. (3.7)

The last equality holds in (0, 1) except the points s1, s2, . . . , sn and w is continuous in (0, 1).

Set

f (s) := − (d(s))
1

p−1 g(s), s ∈ (0, 1),

F(s) :=
∫ s

0
f (σ)dσ.

Integrating (3.7) over the interval (0, u) we arrive at

(w(u))p′ = p′F(u) + (w(0+))p′ , u ∈ (0, 1).

Clearly, F(0) = 0, and

lim
u→0+

w(u) = lim
x→x0+

v(x) = 0 (3.8)

by the definition of a solution. Therefore we have

w(u) =
(

p′F(u)
)

1
p′ , u ∈ (0, 1). (3.9)

By the definition of a solution we must also have

lim
u→1−

w(u) = lim
x→x1−

v(x) = 0. (3.10)

But (3.9) and (3.10) imply F(1) = 0, i.e., (3.3) must hold. Therefore, (3.3) is a necessary

condition.

Sufficiency of (3.3). Let (3.3) hold. Then w = w(u) given by (3.9) satisfies (3.6)–(3.10) above.

For u ∈ (0, 1) set

x(u) =
∫ u

s∗

(

d(s)

w(s)

)
1

p−1

ds.
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The function x = x(u) is strictly increasing and maps the interval (0, 1) onto (x0, x1) where

−∞ ≤ x0 < 0 < x1 ≤ +∞. Let u : (x0, x1) → (0, 1) be an inverse function. Then u(0) = s∗, u

is strictly increasing and

lim
x→x0+

u(x) = 0, lim
x→x1−

u(x) = 1.

Let x ∈ (ξi, ξi+1), i = 0, 1, . . . , n, where u(ξi) = si, i = 0, 1, . . . , n + 1. Then

du(x)

dx
=

1
dx(u)

du

=

(

w(u(x))

d(u(x))

)
1

p−1

, u(x) ∈ (si, si+1),

i.e., u ∈ C1(ξi, ξi+1), u′(x) > 0 and

d(u(x))

(

du(x)

dx

)p−1

= w(u(x)) =: v(x), (3.11)

d

dx

[

d(u(x))

(

du(x)

dx

)p−1
]

=
d

dx
w(u(x)) =

dw

du

du(x)

dx
. (3.12)

From (3.6), (3.11) we deduce

dw

du
= − (w(u))−(p′−1) (d(u))p′−1 g(u)

= − (d(u(x)))−(p′−1)
(

du(x)

dx

)−(p−1)(p′−1)

(d(u(x)))p′−1 g(u(x))

= −
(

du(x)

dx

)−1

g(u(x)).

Substituting this to (3.12), we get

d

dx

[

d(u(x))

(

du(x)

dx

)p−1
]

= −g(u(x)), x ∈ (ξi, ξi+1).

It follows from (3.8), (3.10) and (3.11) that

lim
x→x0+

d(u(x))

(

du(x)

dx

)p−1

= lim
x→x1−

d(u(x))

(

du(x)

dx

)p−1

= 0

and the following one-sided limits are finite

lim
x→ξi−

d(u(x))

(

du(x)

dx

)p−1

= lim
x→ξi+

d(u(x))

(

du(x)

dx

)p−1

, (3.13)

i = 1, 2, . . . , n. Since u = u(x) is monotone increasing function, we have

lim
x→ξi−

d(u(x)) = lim
s→si−

d(s) and lim
x→ξi+

d(u(x)) = lim
s→si+

d(s). (3.14)

Transition condition (iv) now follows from (3.13), (3.14).

Therefore, if for x0 > −∞ we set u(x) = 0, x ∈ (−∞, x0] and for x1 < +∞ we set u(x) =

1, x ∈ [x1,+∞), then u = u(x), x ∈ R, is a nondecreasing solution of the BVP (2.1), (3.1) and

it has the properties listed in the statement of Theorem 3.2. This proves the sufficiency of

(3.3).
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Remark 3.3. The condition (3.3) substitutes the balanced bistable nonlinearity condition (1.2)

in case of density dependent diffusion. It follows from Theorem 3.2 that it is not only the

reaction term but rather mutual interaction between the density dependent diffusion coef-

ficient and reaction which decides about the existence and/or nonexistence of nonconstant

stationary solutions of the generalized version of the bistable equation (1.6).

Remark 3.4. Let us replace the boundary conditions (3.1) by “opposite” ones:

lim
x→−∞

u(x) = 1 and lim
x→+∞

u(x) = 0. (3.15)

If u is a solution of the BVP (2.1), (3.15) then passing to the limit for y → +∞ in (2.2) we arrive

at

v(x)−
∫ +∞

x
g(u(ξ))dξ = 0 (3.16)

for arbitrary x ∈ R. Modifying the proof of Theorem 3.2 and using (3.16) instead of (3.2),

we show that (3.3) is a necessary and sufficient condition for the existence of nonincreasing

solution of the BVP (2.1), (3.15). If (3.3) holds then there is a unique solution u = u(x) of (2.1),

(3.15) satisfying analogue of (i)–(iv). In particular, it is strictly decreasing in (x0, x1), u(x) = 1

for x ∈ (−∞, x0] if x0 > −∞ and u(x) = 0 for x ∈ [x1,+∞) if x1 < +∞, see Figure 3.2.

1

0
x0 = −∞ x1 = +∞

1

0
x0 x1

Figure 3.2: Decreasing solutions

Remark 3.5. It follows from the proof of Theorem 3.2 that

x0 = x(0) =
∫ 0

s∗

(

d(s)

w(s)

)
1

p−1

ds =

(

1

p′

)
1
p
∫ 0

s∗

(d(s))
1

p−1

−
∫ s

0 (d(σ))
1

p−1 g(σ)dσ
ds, (3.17)

x1 = x(1) =
∫ 1

s∗

(

d(s)

w(s)

)
1

p−1

ds =

(

1

p′

)
1
p
∫ 1

s∗

(d(s))
1

p−1

−
∫ s

0 (d(σ))
1

p−1 g(σ)dσ
ds. (3.18)

Therefore, the fact that x0 and x1 are finite or infinite depends on the asymptotic behavior of

the diffusion coefficient d = d(s) and reaction term g = g(s) near the equilibria 0 and 1. The

detailed discussion of different configurations between d and g which lead to x0 and/or x1

finite or infinite is presented in the next section.

Remark 3.6. Since the equation (2.1) is autonomous, if u = u(x) is a solution to (2.1), (3.1)

then given any ξ ∈ R fixed, ũ = ũ(x) := u(x − ξ) is also a solution of (2.1), (3.1). Of course,

if x0 and/or x1 are finite, then corresponding x̃0 and x̃1 associated with ũ satisfy x̃0 = x0 + ξ

and x̃1 = x1 + ξ. Obviously, the same applies to (2.1), (3.15). If x0 = −∞ and x1 = +∞

and (3.3) holds, all possible solutions of (2.1), (3.1) are strictly increasing in (−∞,+∞) and

satisfy (i)–(iv) of Theorem 3.2, where u(0) = s∗ is replaced by u(ξ) = s∗, ξ ∈ R. On the
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other hand, if x0 ∈ R and/or x1 ∈ R, then the set of possible solutions of (2.1), (3.1) is much

richer than in the previous case. Indeed, we have plenty of possibilities how to define also a

nonmonotone solution of (2.1), (3.1) (or (2.1), (3.15)). For example, if both x0 and x1 associated

with strictly increasing solution u = u(x) from Theorem 3.2 are finite then the same holds

for corresponding x̂0 and x̂1 associated with the strictly decreasing solution from Remark 3.4.

Having in mind the translation invariance of solutions mentioned above, we may choose u1

and û such that x1 < x̂0. If we define u(x) = 0, x ∈ (−∞, x0], u(x) = u1(x), x ∈ (x0, x1),

u(x) = 1, x ∈ [x1, x̂0], u(x) = û(x), x ∈ (x̂0, x̂1), u(x) = 0, x ∈ [x̂1,+∞), we get solution of

(2.1) satisfying the boundary conditions

lim
x→−∞

u(x) = lim
x→+∞

u(x) = 0. (3.19)

Now, if ũ1 = ũ1(x) is a translation of u1 such that x̃0 > x̂1, we can extend the previous

function u as u(x) = 0, x ∈ [x̂1, x̃0], u(x) = ũ(x), x ∈ (x̃0, x̃1), u(x) = 1, x ∈ [x̃1,+∞) to get a

nonmonotone solution of (2.1), (3.1), see Figure 3.3. It is obvious that by suitably modifying

the above construction we may construct continuum of solutions not only of (2.1), (3.1) but

also of (2.1), (3.19). Of course, the same approach leads to the continuum of solutions of (2.1),

(3.15) and of (2.1), (3.20), respectively, where

lim
x→−∞

u(x) = lim
x→+∞

u(x) = 1. (3.20)

1

0
x0 x1 x̂0 x̂1

1

0
x0 x1 x̂0 x̂1 x̃0 x̃1

Figure 3.3: Nonmonotone solutions

4 Qualitative properties of solutions

In this section we study the qualitative properties of the solutions from Theorem 3.2. In

particular, we focus on two issues. Our primary concern is to provide detailed classification

of the asymptotic behavior of the stationary solution u = u(x) as x → −∞ and x → +∞ and to

show how it is affected by the behavior of the diffusion coefficient d and reaction g near the

equilibria 0 and 1. However, we also want to study the impact of the discontinuity of d = d(s)

on the lack of smoothness of the solution u = u(x). The role of the transition condition at the

points where u assumes values where the discontinuity of d occurs will be illustrated.

In order to simplify the expressions arising throughout this section we will use the follow-

ing notation:

h1(t) ∼ h2(t) as t → t0 if and only if lim
t→t0

h1(t)

h2(t)
∈ (0,+∞).

We start with the asymptotic analysis of

x(u) = x(s∗) +
(

1

p′

)
1
p
∫ u

s∗

(d(s))
1

p−1

(

−
∫ s

0 (d(σ))
1

p−1 g(σ)dσ
)

1
p

ds
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for u → 0+. Let us assume that g(s) ∼ −sα, d(s) ∼ sβ as s → 0+ for some α > 0, β ∈ R. Then

formally we get

−
∫ s

0
(d(σ))

1
p−1 g(σ)dσ ∼

∫ s

0
σ

α+ β
p−1 dσ ∼ s

α+ β
p−1+1

as s → 0 + .

Since we assume that s 7→ (d(s))
1

p−1 g(s) is integrable in (0, 1), we have to assume

α +
β

p − 1
> −1 . (4.1)

Then for u → 0+ we can write

x(u) ∼
∫ u

s∗

(d(s))
1

p−1

(

−
∫ s

0 (d(σ))
1

p−1 g(σ)dσ
)

1
p

ds ∼
∫ u

s∗
s

β
p−1− α

p−
β

p(p−1)
− 1

p ds =
∫ u

s∗
s

β−α−1
p ds. (4.2)

Convergence or divergence of the integral

I :=
∫ s∗

0
s

β−α−1
p ds

leads to the following primary distinction between two qualitatively different cases:

Case 1: I = +∞ if α − β ≥ p − 1,

Case 2: I < +∞ if α − β < p − 1.

Case 1. Let α − β = p − 1. Then (4.2) implies that x(u) ∼ ln u as u → 0+ and performing the

change of variables yields the asymptotics for u = u(x):

u(x) ∼ ex → 0 + for x → −∞ .

For α − β > p − 1 we have by (4.2) that x(u) ∼ −u
β−α−1

p +1 = −u
p−1−(α−β)

p → −∞ as u → 0+

and applying the inverse function we obtain

u(x) ∼ |x|
p

p−1−(α−β) → 0 + for x → −∞ .

In both cases x0 defined by (3.17) is equal to −∞ and solution u = u(x) approaches zero at

either an exponential or power rate.

Remark 4.1. It is interesting to observe that x0 = −∞ occurs even in the case when the

diffusion coefficient degenerates or has a singularity if this fact is compensated by a proper

degeneration of the reaction term g.

Possible values of parameters α, β for which Case 1 occurs for different values of p are

shown in Figures 4.1, 4.2, 4.3 where condition (4.1) is taken into account.

Case 2. Let α − β < p − 1. Then I < +∞ and hence from (3.17) we deduce x(0) = x0 > −∞.

Moreover,

I → +∞ as
β − α − 1

p
→ −1+ ,

i.e., we have x0 → −∞ as p − 1 − (α − β) → 0+. More precisely, for u → 0+ we have

x(u)− x0 ∼ u
β−α−1

p +1 = u
p−1−(α−β)

p .
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α

β

−1 1
2− 1

2

α + 2β = −1

α
− β

=
1

2

Figure 4.1: p = 3
2

α

β

−1 1

−1

α
+

β
=
−

1

α
− β

=
1

Figure 4.2: p = 2

α

β

−1 2

−2

α
+

β/
2
=
−

1
α
− β

=
2

Figure 4.3: p = 3

Depending on the shape of x(u) we further distinguish among three cases:

a)
dx

du

∣

∣

∣

∣

u=0+

∼ u
β−α−1

p → +∞ for u → 0+ if α − β > −1,

b)
dx

du

∣

∣

∣

∣

u=0+

∼ u0 → k > 0 for u → 0+ if α − β = −1,

c)
dx

du

∣

∣

∣

∣

∣

u=0+

∼ u
β−α−1

p → 0+ for u → 0+ if α − β < −1.

An inverse point of view gives us the asymptotics of u = u(x) for x → x0:

u(x) ∼ (x − x0)
p

p−1−(α−β) .
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As for the derivatives, we have

a)
du

dx

∣

∣

∣

∣

x=x0+

∼ (x − x0)
α−β+1

p−1−(α−β) → 0 for x → x0+ if α − β > −1,

b)
du

dx

∣

∣

∣

∣

x=x0+

∼ (x − x0)0 → k > 0 for x → x0+ if α − β = −1,

c)
du

dx

∣

∣

∣

∣

x=x0+

∼ (x − x0)
α−β+1

p−1−(α−β) → +∞ for x → x0+ if α − β < −1.

Remark 4.2. We observe that only in case a) the solution u = u(x) is smooth in the neighbor-

hood of x0 since u(x) = 0 for x ∈ (−∞, x0]. In the other two cases we only get continuous

solutions instead of smooth ones as a consequence of allowing for the diffusion term d = d(s)

to degenerate as s → 0+. The asymptotic behavior of such solutions near the point x0 is

illustrated in Figures 4.4, 4.5, 4.6.

1

0
x0

u

Figure 4.4: Case a)

1

0
x0

u

Figure 4.5: Case b)

1

0
x0

u

Figure 4.6: Case c)

Values of α, β for which these cases occur are for different values of p depicted in Figures

4.7, 4.8, 4.9. Areas corresponding to cases a) – c) are shown in respective colors as in Figures

4.4, 4.5, 4.6.

Proceeding similarly for u → 1− and assuming g(s) ∼ (1 − s)γ, d(s) ∼ (1 − s)δ as s → 1−
for some γ > 0, δ ∈ R satisfying the analogue of condition (4.1):

γ +
δ

p − 1
> −1,

we get the following asymptotics:

Case 1: γ − δ ≥ p − 1. Then x1 = +∞ by (3.18) and we distinguish between two cases. Either

u(x) ∼ 1 − e−x → 1 − for x → +∞
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α

β

−1 1

−1
α + 2β = −1

α
− β

=
1

2

α
− β

=
−1

Figure 4.7: p = 3
2

α

β

−1 1

−1

α + β = −1

α
− β

=
1

α
− β

=
−1

Figure 4.8: p = 2

α

β

−1 2

−2
α + β/2 = −1

α
− β

=
2

α
− β

=
−1

Figure 4.9: p = 3

if γ − δ = p − 1, or else

u(x) ∼ 1 − |x|
p

p−1−(γ−δ) → 1−
if γ − δ > p − 1.

Case 2: γ − δ < p − 1. Then x1 < +∞ by (3.18) and

u(x) ∼ 1 − (x1 − x)
p

p−1−(γ−β) → 1 − for x → x1− .

As for the one-sided derivatives of u at x1 we have

a)
du

dx

∣

∣

∣

∣

x=x1−
∼ (x1 − x)

γ−δ+1
p−1−(γ−δ) → 0 for x → x1− if γ − δ > −1,

b)
du

dx

∣

∣

∣

∣

x=x1−
∼ (x1 − x)0 → k > 0 for x → x1− if γ − δ = −1,

c)
du

dx

∣

∣

∣

∣

x=x1−
∼ (x1 − x)

γ−δ+1
p−1−(γ−δ) → +∞ for x → x1− if γ − δ < −1.

Remark 4.3. While all the illustrative pictures in Section 3 do not reflect the effect of the

discontinuity of d, finally, we want to focus on how the solution u = u(x) is affected by
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discontinuous diffusion coefficient d = d(s). Let us assume for simplicity that d only has one

point of discontinuity s1 ∈ (0, 1) and it is smooth and bounded in (0, s1) and (s1, 1). Then

Mu = {ξ1} and it follows from Theorem 3.2, (iv), that the jump of d at s1 must be compensated

by the proper “opposite” jump of u′ at ξ1, see Figure 4.10, namely
∣

∣u′(ξ1−)
∣

∣

p−2
u′(ξ1−) lim

s→s1−
d(s) =

∣

∣u′(ξ1+)
∣

∣

p−2
u′(ξ1+) lim

s→s1+
d(s).

1

0

s1

ξ1

Figure 4.10: Profile of solution u = u(x) for d discontinuous at s1

5 Final discussions

Let us consider the initial value problem for the quasilinear bistable equation










∂u

∂t
=

∂

∂x

(

d(u(x, t))

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

p−2 ∂u

∂x

)

+ g(u(x, t)), x ∈ R, t > 0,

u(x, 0) = ϕ(x), x ∈ R.

(5.1)

Here, ϕ : R → R is a continuous function, d and g are as in Section 2 and (3.3) (balanced

bistable condition) holds. If ϕ = ϕ(x) satisfies the hypothesis

lim sup
x→−∞

ϕ(x) < s∗ and lim inf
x→+∞

ϕ(x) > s∗

then one would expect that there exists ξ ∈ R such that the solution u = u(x, t) of (5.1)

satisfies

lim
t→+∞

u(x, t) = u(x − ξ), x ∈ R,

where u = u(x) is a solution given by Theorem 3.2, see Figure 5.1.

1

0

s∗

ϕ

1

0

s∗

ξ

u(x, t)
u(x)

Figure 5.1: Convergence to a stationary solution

It is maybe too ambitious to prove this fact if d is a discontinuous function. However, an

affirmative answer to this question, even for d continuous or smooth, would be an interesting

result. Even reliable numerical simulation of the asymptotic behavior of the solution u =

u(x, t) of the initial value problem (5.1) for t → +∞ might be of great help.
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1 Introduction

On an interval [0, ω], we consider the periodic problem

u′′ = p(t)u + q(t, u)u + f (t), (1.1)

u(0) = u(ω), u′(0) = u′(ω), (1.2)

where p, f ∈ L([0, ω]) and q : [0, ω] × R → R is a Carathéodory function. By a solution to
problem (1.1), (1.2), as usual, we understand a function u : [0, ω] → R which is absolutely con-
tinuous together with its first derivative, satisfies (1.1) almost everywhere, and meets periodic
conditions (1.2). A periodic boundary value problem for differential equations of different
types has been extensively studied in the literature. To make the list of references shorter,

BEmail: sremr@fme.vutbr.cz



2 J. Šremr

the reader is referred to the well-known monographs [2,3] for a historical background and an
extensive list of relevant references.

In this paper, we study the existence and multiplicity of positive solutions to problem (1.1),
(1.2). Since we are interested in a Duffing type equation, which is originally characterized by
a super-linear non-linearity, we write a non-linear term in the form q(t, u)u. We continue our
previous studies presented in [8], where problem (1.1), (1.2) with f (t) ≡ 0 is considered. We
have shown, among other things, that, if the function q is non-negative, then for the existence
of a positive solution to (1.1), (1.2) with f (t) ≡ 0, it is necessary that p 6∈ V−(ω) ∪ V0(ω) (see
Definitions 2.2 and 2.3). Therefore, we restrict ourselves to the case of (1.1), in which the
“linear part” satisfies p 6∈ V−(ω) ∪ V0(ω).

A particular case of (1.1) is the non-autonomous Duffing equation

u′′ = p(t)u + h(t)|u|λ sgn u + f (t), (1.3)

with p, h, f ∈ L([0, ω]) and λ > 1, that is frequently studied in the literature (not only for
ODEs), because arises in mathematical modelling in mechanics (mainly with λ = 3). Such an
equation (with constant coefficients p, h) is the central topic of the monograph [1] by Duffing
published in 1918 and still bears his name (see also [5]). Let us show, as a motivation, what
happens in the autonomous case. If p(t) := −a, then p 6∈ V−(ω) ∪ V0(ω) if and only if a > 0
(see Remark 2.4). Therefore, consider the equation

x′′ = −ax + b|x|λ sgn x + c, (1.4)

where a > 0 and b, c ∈ R. In this paper, we are interested in the equation (1.3) with a non-
negative h and, thus, we assume that b > 0 in (1.4). By direct calculation, the phase portraits of
(1.4) can be elaborated depending on the choice of c, which leads to the following proposition.

Proposition 1.1. Let λ > 1 and a, b > 0. Then, the following conclusions hold:

(1) If c ≤ 0, then equation (1.4) has a unique positive equilibrium (saddle) and no other positive
periodic solutions occur.

(2) If 0 < c <
(λ−1)a

λ

( a
λb

) 1
λ−1 , then equation (1.4) possesses exactly two positive equilibria x1 > x2

(x1 is a saddle and x2 is a center), a unique negative equilibrium x3 (saddle), and non-constant (both
positive and sign-changing) periodic solutions with different periods. Moreover, all non-constant
periodic solutions are smaller then x1 and oscillate around x2.

(3) If c = (λ−1)a
λ

( a
λb

) 1
λ−1 , then equation (1.4) has a unique positive equilibrium (cusp), a unique

negative equilibrium (saddle), and no other periodic solutions occur.

(4) If c > (λ−1)a
λ

( a
λb

) 1
λ−1 , then equation (1.4) has a unique negative equilibrium (saddle) and no other

periodic solutions occur.

In [4], the authors study the stability and exact multiplicity of solutions to the periodic
problem

x′′ + cx′ + ax − x3 = d(t); u(0) = u(ω), u′(0) = u′(ω), (1.5)

where c > 0, 0 < a <
π2

ω2 +
c2

4 , and d : [0, ω] → R is a positive continuous function. It follows
from the proof of Theorem 1.1 in [4] that all the conclusions of Theorem 1.1 remain true,
except of the asymptotic stability, even in the case of c = 0. Therefore, [4, Theorem 1.1] yields
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Proposition 1.2. Let 0 < a <
π2

ω2 and d0 := 2a
3

√ a
3 . Then, the following conclusions hold:

(1) Problem (1.5), with c = 0, has a unique solution that is negative if d(t) > d0 for t ∈ [0, ω].

(2) Problem (1.5), with c = 0, has exactly three ordered solutions if 0 < d(t) < d0 for t ∈ [0, ω].
Moreover, the minimal solution is negative and the other two solutions are positive.

In Section 3, we generalize some conclusions of Propositions 1.1 and 1.2. We use a tech-
nique developed in [8] and determine a well-ordered pair of positive lower and upper func-
tions, which allows us to establish general results guaranteeing the existence and exact mul-
tiplicity of positive solutions to (1.1), (1.2) as well as to provide some properties of the set of
all positive solutions to (1.1), (1.2). The obtained results and their consequences for (1.3), (1.2)
will be compared with the conclusions of Propositions 1.1 and 1.2 (see Remarks 3.18, 3.20,
3.21, 3.23, 3.28, and 3.35).

It is worth mentioning that, in contrast to [4], our results cover also the case of a sign-
changing coefficient p and a sign-changing forcing term f .

2 Notation and definitions

The following notation is used throughout the paper:

– R is the set of real numbers. For x ∈ R, we put [x]+ = 1
2 (|x|+ x) and [x]− = 1

2 (|x| − x).

– C(I) denotes the set of continuous real functions defined on the interval I ⊆ R. For
u ∈ C([a, b]), we put ‖u‖C = max{|u(t)| : t ∈ [a, b]}.

– AC1([a, b]) is the set of functions u : [a, b] → R which are absolutely continuous together
with their first derivatives.

– ACℓ([a, b]) (resp. ACu([a, b])) is the set of absolutely continuous functions u : [a, b] → R

such that u′ admits the representation u′(t) = γ(t) + σ(t) for a. e. t ∈ [a, b], where
γ : [a, b] → R is absolutely continuous and σ : [a, b] → R is a non-decreasing (resp.
non-increasing) function whose derivative is equal to zero almost everywhere on [a, b].

– L([a, b]) is the Banach space of Lebesgue integrable functions p : [a, b] → R equipped
with the norm ‖p‖L =

∫ b
a |p(s)|ds. The symbol Int A stands for the interior of the set

A ⊂ L([a, b]).

Definition 2.1. Let I ⊆ R. A function f : [a, b]× I → R is said to be Carathéodory function if

(a) the function f (·, x) : [a, b] → R is measurable for every x ∈ I,

(b) the function f (t, ·) : I → R is continuous for almost every t ∈ [0, ω],

(c) for any r > 0, there exists qr ∈ L([a, b]) such that | f (t, x)| ≤ qr(t) for a. e. t ∈ [a, b] and all
x ∈ I, |x| ≤ r.

Definition 2.2 ([6, Definitions 0.1 and 15.1, Propositions 15.2 and 15.4]). We say that a function
p ∈ L([0, ω]) belongs to the set V+(ω) (resp. V−(ω)) if, for any function u ∈ AC1([0, ω])

satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) ≥ u′(ω),
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the inequality
u(t) ≥ 0 for t ∈ [0, ω]

(
resp. u(t) ≤ 0 for t ∈ [0, ω]

)

holds.

Definition 2.3 ([6, Definition 0.2]). We say that a function p ∈ L([0, ω]) belongs to the set
V0(ω) if the problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω) (2.1)

has a positive solution.

Remark 2.4. Let ω > 0. If p(t) := p0 for t ∈ [0, ω], then one can show by direct calculation
that:

⊲ p ∈ V−(ω) if and only if p0 > 0,

⊲ p ∈ V0(ω) if and only if p0 = 0,

⊲ p ∈ V+(ω) if and only if p0 ∈
[
− π2

ω2 , 0
[

,

⊲ p ∈ IntV+(ω) if and only if p0 ∈
]
− π2

ω2 , 0
[

.

If the function p ∈ L([0, ω]) is not constant, efficient conditions for p to belong to each of
the sets V+(ω) and V−(ω) are provided in [6].

Remark 2.5. It is well known that, if the homogeneous problem (2.1) has only the trivial
solution, then, for any f ∈ L([0, ω]), the problem

u′′ = p(t)u + f (t); u(0) = u(ω), u′(0) = u′(ω) (2.2)

possesses a unique solution u and this solution satisfies

|u(t)| ≤ ∆(p)
∫ ω

0
| f (s)|ds for t ∈ [0, ω],

where ∆(p), depending only on p, denotes a norm of the Green’s operator of problem (2.1).
Clearly, ∆(p) > 0.

Assume that p ∈ IntV+(ω). Extend the function p periodically to the whole real axis
denoting it by the same symbol. It is proved in [6, Section 6] that, for any a ∈ R, the problem

u′′ = p(t)u; u(a) = 1, u(a + ω) = 1

has a unique solution ua and ua(t) > 0 for t ∈ [0, ω]. We put

Γ(p) := sup
{
‖ua‖C : a ∈ [0, ω]

}
e
∫ ω

0 [p(s)]+ds . (2.3)

It is clear that Γ(p) ≥ 1.

Remark 2.6. If p ∈ V+(ω), then the number ∆(p) defined in Remark 2.5 can be estimated, for
example, by using a maximal value of the Green’s function of problem (2.1) (see, e. g., [9]). On
the other hand, assuming p ∈ IntV+(ω), some estimates of the number Γ(p) given by (2.3)
are provided in [6, Section 6].

For instance, if p(t) := p0 for t ∈ [0, ω] and p0 ∈
[
− π2

ω2 , 0
[

, resp. p0 ∈
]
− π2

ω2 , 0
[

, then

∆(p) ≤
(

2
√
|p0| sin

ω
√
|p0|

2

)−1

, resp. Γ(p) =

(
cos

ω
√
|p0|

2

)−1

.
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3 Main results

This section contains formulations of all the main results of the paper. Their proofs are pre-
sented in detail in Section 5.

3.1 Existence theorems

Let us introduce the hypothesis

q(t, x) ≥ q0(t, x) for a. e. t ∈ [0, ω] and all x ≥ x0,

x0 ≥ 0, q0 : [0, ω]× [x0,+∞[→ R is a Carathéodory function,

q0(t, ·) : [x0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω].





(H1)

Theorem 3.1. Let hypothesis (H1) be fulfilled, and there exist R > x0 such that p+ q0(·, R) ∈ V−(ω).
Let, moreover, there exist a positive function α ∈ ACℓ([0, ω]) satisfying

α(0) = α(ω), α′(0) ≥ α′(ω), (3.1)

α′′(t) ≥ p(t)α(t) + q(t, α(t))α(t) + f (t) for a. e. t ∈ [0, ω]. (3.2)

Then, problem (1.1), (1.2) has a positive solution u satisfying

u(t) ≥ α(t) for t ∈ [0, ω]. (3.3)

We now provide an effective condition guaranteeing the existence of the function α in
Theorem 3.1.

Corollary 3.2. Let p + [q(·, 0)]+ 6∈ V−(ω) ∪ V0(ω), hypothesis (H1) be fulfilled, and

lim
x→+∞

∫

E
q0(s, x)ds = +∞ for every E ⊆ [0, ω], meas E > 0. (3.4)

Let, moreover,

∫ ω

0
[ f (s)]+ds < sup

{
r

∆
(

p + q∗(·, r)
) : r > 0, p + q∗(·, r) ∈ V+(ω)

}
, (3.5)

where ∆ is defined in Remark 2.5 and

q∗(t, ̺) := max
{
[q(t, x)]+ : x ∈ [0, ̺]

}
for a. e. t ∈ [0, ω] and all ̺ ≥ 0. (3.6)

Then, problem (1.1), (1.2) has at least one positive solution.

Remark 3.3. In Corollary 3.2, q∗ is obviously a Carathéodory function satisfying q∗(t, 0) ≡
[q(t, 0)]+. By Lemma 4.15, it follows from hypothesis (3.4) that there exists R > x0 such
that p + q0(·, R) ∈ V−(ω). Moreover, q∗(t, R) ≥ q0(t, R) for a. e. t ∈ [0, ω] and, therefore,
Lemma 4.12 yields p + q∗(·, R) ∈ V−(ω). Since p + q∗(·, 0) 6∈ V−(ω) ∪ V0(ω), by virtue of
Lemma 4.11 (with ℓ(t, x) := p(t) + q∗(t, x)), there exists r ∈ ]0, R[ such that p + q∗(·, r) ∈
V+(ω) and, thus, hypothesis (3.5) of Corollary 3.2 is consistent.

Remark 3.4. If the supremum on the right-hand side of (3.5) is achieved at some r0 > 0, then
the strict inequality (3.5) in Corollary 3.2 (as well as Corollary 3.7) can be weakened to the
non-strict one (see the end of the proof of Corollary 3.2).
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Remark 3.5. By Lemma 4.1, the hypothesis p + [q(·, 0)]+ 6∈ V−(ω) ∪ V0(ω) of Corollary 3.2 is
satisfied provided that

∫ ω

0

(
p(s) + [q(s, 0)]+

)
ds ≤ 0, p(t) + [q(t, 0)]+ 6≡ 0.

Remark 3.6. If
f (t) ≤ 0 for a. e. t ∈ [0, ω], (3.7)

then condition (3.5) is obviously satisfied.

Assuming p ∈ V+(ω), hypothesis (3.4) of Corollary 3.2 can be weakened to

lim
x→+∞

∫ ω

0
q0(s, x)ds = +∞. (3.8)

Moreover, in such a case, another type of condition on [ f ]+ can be provided instead of (3.5).

Corollary 3.7. Let p ∈ V+(ω), q(t, 0) ≡ 0, hypothesis (H1) be fulfilled, (3.8) hold, and there exist
x1 > x0 such that

q0(t, x1) ≥ 0 for a. e. t ∈ [0, ω]. (3.9)

Let, moreover, either (3.5) hold or [ f (t)]+ 6≡ 0 and

∆(p) < sup

{
r∫ ω

0 [ f (s)]+ds + r
∫ ω

0 q∗(s, r)ds
: r > 0

}
, (3.10)

where ∆ is defined in Remark 2.5 and q∗ is given by (3.6). Then, problem (1.1), (1.2) has at least one
positive solution.

Remark 3.8. If the supremum on the right-hand side of (3.10) is achieved at some r0 > 0, then
the strict inequality (3.10) in Corollary 3.7 can be weakened to the non-strict one (see the end
of the proof of Corollary 3.7).

It follows from Remark 2.6 that, in some particular cases, the number ∆ defined in Re-
mark 2.5 can be estimated from above and, thus, the effective conditions guaranteeing the
validity of (3.5) and (3.10) can be found. In Section 3.3, we will provide such conditions for
the Duffing equation (1.3).

3.2 Uniqueness and multiplicity theorems

Proposition 1.1 (1) implies that, if a, b > 0 and c ≤ 0, then, for any ω > 0, equation (1.4) pos-
sesses a unique positive ω-periodic solution. Now we show that, under a certain monotonicity
condition on q, a positive solution in Theorem 3.1 is unique provided that the function f is
non-positive. Moreover, we generalize the ideas used in the proof of [4, Theorem 1.1] and,
thus, we obtain some conditions on the forcing term f leading to the exact multiplicity of
positive solutions to problem (1.1), (1.2).

Theorem 3.9. Assume that p 6∈ V−(ω) ∪ V0(ω), q(t, 0) ≡ 0, (3.7) holds, and

for every d > c > 0 and e > 0, there exists hcde ∈ L([0, ω]) such that

hcde(t) > 0 for a. e. t ∈ [0, ω],

q(t, x + e)− q(t, x) ≥ hcde(t) for a. e. t ∈ [0, ω] and all x ∈ [c, d].





(H2)

Then, problem (1.1), (1.2) has at most one positive solution.
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Combining Corollary 3.2 and Theorem 3.9, we get

Corollary 3.10. Let p 6∈ V−(ω) ∪ V0(ω), q(t, 0) ≡ 0, hypotheses (H1) and (H2) be fulfilled, and
conditions (3.4) and (3.7) hold. Then, problem (1.1), (1.2) has a unique positive solution.

In the next theorem, we assume that the non-linearity q(t, u)u in (1.1) is “locally uniformly
strictly concave/convex” in the sense of hypothesis (Hℓ

3).

Proposition 3.11. Assume that p, f ∈ L([0, ω]), ℓ ∈ {1, 2}, and

for every d1 > c1 > 0, d2 > c2 > 0, d3 > c3 > 0 there exists

h∗ ∈ L([0, ω]), h∗(t) ≥ 0 for a. e. t ∈ [0, ω], h∗(t) 6≡ 0,

(−1)ℓ
[

q(t, x3)x3 − q(t, x2)x2

x3 − x2
− q(t, x2)x2 − q(t, x1)x1

x2 − x1

]
≥ h∗(t)

for a. e. t ∈ [0, ω] and all c1 ≤ x1 ≤ d1, x1 + c2 ≤ x2 ≤ x1 + d2,

x2 + c3 ≤ x3 ≤ x2 + d3,





(Hℓ
3)

Then, there are no three solutions u1, u2, u3 to problem (1.1), (1.2) satisfying

u3(t) > u2(t) > u1(t) > 0 for t ∈ [0, ω]. (3.11)

Remark 3.12. Let q(t, x) := h(t)ϕ(x), where h ∈ L([0, ω]) and ϕ : R → R be a continuous
function. Then, q satisfies hypothesis (H1

3) (resp. (H2
3) provided that h(t) ≥ 0 for a. e. t ∈ [0, ω],

h(t) 6≡ 0, and the function x 7→ ϕ(x)x is strictly concave (resp. convex) on ]0,+∞[ .

If p ∈ V+(ω), then hypothesis (H2) of Theorem 3.9 can be weakened to (H′
2). Moreover, one

can show some other properties of solutions to problem (1.1), (1.2) in such a case. Introduce
the hypothesis:

For every d > c > 0 and e > 0, there exists hcde ∈ L([0, ω]) such that

hcde(t) ≥ 0 for a. e. t ∈ [0, ω], hcde(t) 6≡ 0,

q(t, x + e)− q(t, x) ≥ hcde(t) for a. e. t ∈ [0, ω] and all x ∈ [c, d].





(H′
2)

Theorem 3.13. Let p ∈ V+(ω). Then, the following conclusions hold:

(1) If q satisfies hypothesis (H′
2),

q(t, 0) ≥ 0 for a. e. t ∈ [0, ω], (3.12)

and u, v are distinct positive solutions to problem (1.1), (1.2), then

u(t) 6= v(t) for t ∈ [0, ω]. (3.13)

(2) If (3.7) and (3.12) hold and q satisfies hypothesis (H′
2), then problem (1.1), (1.2) has at most one

positive solution.

(3) If ℓ ∈ {1, 2}, (3.12) holds and q satisfies hypotheses (H′
2) and (Hℓ

3), then problem (1.1), (1.2) has
at most two positive solutions.

(4) If

q(t, x) ≥ 0 for a. e. t ∈ [0, ω] and all x ∈ R, (3.14)

f (t) ≥ 0 for a. e. t ∈ [0, ω], f (t) 6≡ 0, (3.15)

then every solution to (1.1), (1.2) is either positive or negative.
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Combining Corollary 3.7 and Theorem 3.13 (2), we get

Corollary 3.14. Let p ∈ V+(ω), q(t, 0) ≡ 0, hypotheses (H1) and (H′
2) be fulfilled, there exist

x1 > x0 such that (3.9) holds, and conditions (3.7) and (3.8) be satisfied. Then, problem (1.1), (1.2) has
a unique positive solution.

3.3 Consequences for the non-autonomous Duffing equation (1.3)

We now apply the above general results for the non-autonomous Duffing equation (1.3) and
compare the obtained results with those stated in Propositions 1.1 and 1.2. In this section,
we assume that the function h in (1.3) is non-negative. However, the properties of the given
periodic problem differ in the following two cases: h(t) > 0 a. e. on [0, ω] and h(t) ≥ 0 a. e.
on [0, ω], h(t) 6≡ 0. Such phenomenon does not occur in the autonomous case of (1.3) (i. e., in
(1.4)).

Theorem 3.15. Let λ > 1, p 6∈ V−(ω) ∪ V0(ω), and

h(t) > 0 for a. e. t ∈ [0, ω]. (3.16)

Then, the following conclusions hold:

(1) There are no three solutions u1, u2, u3 to problem (1.3), (1.2) satisfying (3.11).

(2) Assume that there exists a positive function α ∈ ACℓ([0, ω]) such that (3.1) holds and

α′′(t) ≥ p(t)α(t) + h(t)αλ(t) + f (t) for a. e. t ∈ [0, ω]. (3.17)

Then, problem (1.3), (1.2) has a positive solution u∗ satisfying

u∗(t) ≥ α(t) for t ∈ [0, ω] (3.18)

such that every solution u to problem (1.3), (1.2) satisfies

either u(t) < u∗(t) for t ∈ [0, ω], or u(t) ≡ u∗(t). (3.19)

Moreover, for any couple of distinct positive solutions u1, u2 to (1.3), (1.2) satisfying

u1(t) 6≡ u∗(t), u2(t) 6≡ u∗(t), (3.20)

the conditions
min{u1(t)− u2(t) : t ∈ [0, ω]} < 0,

max{u1(t)− u2(t) : t ∈ [0, ω]} > 0
(3.21)

hold.

(3) If (3.7) holds, then problem (1.3), (1.2) has a unique positive solution.

Now we provide a sufficient condition guaranteeing the existence of the function α in
Theorem 3.15 (2)

Corollary 3.16. Let λ > 1, p 6∈ V−(ω) ∪ V0(ω), h satisfy (3.16), and

∫ ω

0
[ f (s)]+ds < sup

{
r

∆
(

p + rλ−1h
) : r > 0, p + rλ−1h ∈ V+(ω)

}
, (3.22)
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where ∆ is defined in Remark 2.5. Then, there exists a positive function α ∈ AC1([0, ω]) satisfying
(3.17) and

α(0) = α(ω), α′(0) = α′(ω), (3.23)

and, thus, the conclusions of Theorem 3.15 (2) hold.

Remark 3.17. It follows from the proof of Corollary 3.16 and Remark 3.4 that, if the supremum
on the right-hand side of (3.22) is achieved at some r0 > 0, then the strict inequality (3.22) can
be weakened to the non-strict one.

Remark 3.18. Observe that Theorem 3.15 (and Corollary 3.16) extends the conclusions of
Proposition 1.1 for the non-autonomous Duffing equation (1.3). Indeed, let ω > 0 and

p(t) := −a, h(t) := b for t ∈ [0, ω], (3.24)

where a, b > 0. Then, p 6∈ V−(ω) ∪ V0(ω) (see Remark 2.4) and the function h satisfies (3.16).
We emphasize, in particular, the conclusion of Corollary 3.16, which claims: If the forcing term
f satisfies the integral-type condition (3.22), then problem (1.3), (1.2) has a maximal solution
u∗ that is positive. Moreover, every two positive solutions to problem (1.3), (1.2) (different
from u∗) must intersect each other; compare it with Proposition 1.1 (2).

As we have mentioned in Remark 2.6, in the case of constant functions, the number ∆

defined in Remark 2.5 can be estimated from above. Therefore, for the problem

u′′ = −au + b|u|λ sgn u + f (t); u(0) = u(ω), u′(0) = u′(ω) (3.25)

with a, b > 0, λ > 1, and f ∈ L([0, ω]), Corollary 3.16 yields the following corollary.

Corollary 3.19. Let λ > 1, a, b > 0, and

∫ ω

0
[ f (s)]+ds ≤





2ω
π

(λ−1)a
λ

( a
λb

) 1
λ−1 if a <

λ
λ−1

(
π
ω

)2 ,

2π
ω

[
1
b

(
a − π2

ω2

)] 1
λ−1

if a ≥ λ
λ−1

(
π
ω

)2 .
(3.26)

Then, problem (3.25) has at least one positive solution.

Remark 3.20. Observe that, if f (t) ≡ c and 0 < a ≤ λ
λ−1

(
π
ω

)2, then (3.26) reads as

c ≤ 2
π

(λ − 1)a
λ

( a
λb

) 1
λ−1

. (3.27)

The right-hand side of (3.27) is, up to the factor 2
π , the number appearing in Proposition 1.1.

Since condition (3.27) was derived from the integral-type condition (3.26) concerning non-
constant forcing terms, it is not surprising that it can be improved in the autonomous case.

Remark 3.21. Let f ∈ L([0, ω]) be such that

[ f (t)]+ ≤ f0 for a. e. t ∈ [0, ω],

where

f0 :=





2
π

2a
3

√ a
3 if a <

3
2

(
π
ω

)2 ,

2π
ω2

√
a − π2

ω2 if a ≥ 3
2

(
π
ω

)2 .

Then, condition (3.26), with b = 1 and λ = 3, holds and, thus, Corollary 3.19 guarantees
the existence of a positive solution to problem (1.5), with c = 0 and d(t) ≡ f (t). Therefore,
Corollary 3.19 complements the conclusions of Proposition 1.2 for the case of a ≥ π2

ω2 and
a sign-changing forcing term d.
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From Theorem 3.15 (3), we get the following generalization of Proposition 1.1 (1) for the
Duffing equation with the constant coefficients and a non-constant forcing term.

Corollary 3.22. Let λ > 1, a, b > 0, and (3.7) hold. Then, problem (3.25) has a unique positive
solution.

Remark 3.23. Corollary 3.22 complements the conclusions of Proposition 1.2 by the existence
and uniqueness of a negative solution to problem (1.5), with c = 0, provided that a > 0 and
the forcing term d is non-negative.

We have shown in [8, Example 2.8] that, if f (t) ≡ 0, then hypothesis (3.16) in the above
statements is optimal and cannot be weakened to

h(t) ≥ 0 for a. e. t ∈ [0, ω], h(t) 6≡ 0. (3.28)

However, this weaker assumption on h can be considered instead of (3.16) under a stronger
assumption on p, namely, p ∈ V+(ω). Moreover, one can show the exact multiplicity of
solutions to problem (1.3), (1.2) in such a case. We first introduce the following definition.

Definition 3.24 ([6, Definition 16.1]). Let p, f ∈ L([0, ω]). We say that the pair (p, f ) belongs
to the set U (ω) if problem (2.2) has a unique solution which is positive.

Theorem 3.25. Let λ > 1, p ∈ V+(ω), and (3.28) be fulfilled. Then, the following conclusions hold:

(1) Problem (1.3), (1.2) has at most two positive solutions.

(2) Assume that (3.22) holds, where ∆ is defined in Remark 2.5. Then, problem (1.3), (1.2) has either
one or two positive solutions.

(3) Assume that there exists a positive function α ∈ ACℓ([0, ω]) satisfying (3.1) and (3.17). Then,
problem (1.3), (1.2) has a positive solution u∗ satisfying (3.18) such that, for every solution u to
problem (1.3), (1.2), condition (3.19) holds.

(4) Assume that (p, f ) ∈ U (ω) and there exist functions α1 ∈ ACℓ([0, ω]) and α2 ∈ AC1([0, ω])

such that

0 < α2(t) < α1(t) for t ∈ [0, ω], (3.29)

αk(0) = αk(ω), α′
k(0) ≥ α′

k(ω) for k = 1, 2, (3.30)

α′′
k (t) ≥ p(t)αk(t) + h(t)αλ

k (t) + f (t) for a. e. t ∈ [0, ω], k = 1, 2. (3.31)

Then, problem (1.3), (1.2) possesses exactly two positive solutions u1, u2 and these solutions satisfy

u1(t) > u2(t) > 0 for t ∈ [0, ω]. (3.32)

Moreover, for every solution u to problem (1.3), (1.2) different from u1, the condition

u(t) < u1(t) for t ∈ [0, ω] (3.33)

holds.

(5) If (3.7) holds, then problem (1.3), (1.2) has a unique positive solution.
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Remark 3.26. It follows from Lemma 4.3 that, if p ∈ IntV+(ω), then the inclusion (p, f ) ∈
U (ω) holds for every function f ∈ L([0, ω]) satisfying f (t) 6≡ 0 and

∫ ω

0
[ f (s)]+ds ≥ Γ(p)

∫ ω

0
[ f (s)]−ds,

where Γ is given by (2.3).
On the other hand, if p ∈ V+(ω) and f satisfies (3.15), then (p, f ) ∈ U (ω) as well (see

Lemma 4.2).

Remark 3.27. It follows from the proof of Theorem 3.25 that the solution u1 in the conclusion
of Theorem 3.25 (4) satisfies u1(t) ≥ α1(t) for t ∈ [0, ω] and the solution u2 is such that
u2(t0) ≤ α2(t0) for some t0 ∈ [0, ω].

Remark 3.28. Let ω > 0 and the functions p, h be defined by (3.24), where 0 < a ≤ π2

ω2 and
b > 0. Then, p ∈ V+(ω) (see Remark 2.4) and the function h satisfies (3.28). Therefore, it
follows from Theorem 3.25 (1) that, for any c ∈ R, equation (1.4) has at most two positive ω-

periodic solutions. Consequently, if 0 < c ≤ (λ−1)a
λ

( a
λb

) 1
λ−1 and u0 be a non-constant positive

periodic solution appearing in conclusion (2) of Proposition 1.1, then the minimal period T of
the solution u0 satisfies

T >
π√

a
.

Now we provide sufficient conditions guaranteeing the existence of the functions α and
α1, α2 in Theorem 3.25(3,4).

Corollary 3.29. Let λ > 1, p ∈ V+(ω), and h satisfy (3.28). Then, the following conclusions hold:

(1) If

0 <

∫ ω

0
[ f (s)]+ds ≤ λ − 1

λ [∆(p)]
λ

λ−1
[
λ
∫ ω

0 h(s)ds
] 1

λ−1
, (3.34)

where ∆ is defined in Remark 2.5, then there exists a positive function α ∈ AC1([0, ω]) satisfying
(3.17) and (3.23) and, thus, the conclusion of Theorem 3.25 (3) holds.

(2) If (p, f ) ∈ U (ω) and

0 <

∫ ω

0
[ f (s)]+ds <

λ − 1

λ [∆(p)]
λ

λ−1
[
λ
∫ ω

0 h(s)ds
] 1

λ−1
, (3.35)

where ∆ is defined in Remark 2.5, then there exists functions α1, α2 ∈ AC1([0, ω]) satisfying
(3.29), (3.31), and

αk(0) = αk(ω), α′
k(0) = α′

k(ω) for k = 1, 2 (3.36)

and, thus, the conclusions of Theorem 3.25 (4) hold.

For the constant coefficient p in (1.3), we derive the following corollary.

Corollary 3.30. Let λ > 1, a ∈
]
0, π2

ω2

]
, (3.28) hold, and

0 <

∫ ω

0
[ f (s)]+ds ≤ λ − 1

λ

[
2
√

a sin ω
√

a
2

] λ
λ−1

[
λ
∫ ω

0 h(s)ds
] 1

λ−1
. (3.37)
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Then, the problem

u′′ = −au + h(t)|u|λ sgn u + f (t); u(0) = u(ω), u′(0) = u′(ω) (3.38)

has either one or two solutions.

Corollary 3.31. Let λ > 1, a ∈
]
0, π2

ω2

]
, and conditions (3.7) and (3.28) hold. Then, problem (3.38)

has a unique positive solution.

Theorem 3.25 (2) and Corollary 3.29 say, among other things, that, if the forcing term f is
such that

∫ ω

0 [ f (s)]+ds is “small enough”, then problem (1.3), (1.2) has at least one positive
solution. The next theorem confirms that hypotheses of such a kind cannot be omitted. More
precisely, Theorem 3.32 below claims that, if f is such that

∫ ω

0 [ f (s)]+ds is “large enough”,
then problem (1.3), (1.2) has no positive solution.

Theorem 3.32. Let λ > 1, p ∈ IntV+(ω), condition (3.28) hold, f (t) 6≡ 0, and

∫ ω

0
[ f (s)]+ds − Γ(p)

∫ ω

0
[ f (s)]−ds ≥ λ − 1

λ

∣∣Γ(p)
∫ ω

0 [p(s)]−ds −
∫ ω

0 [p(s)]+ds
∣∣ λ

λ−1

[
λ
∫ ω

0 h(s)ds
] 1

λ−1
. (3.39)

where Γ is given by (2.3). Then, problem (1.3), (1.2) has no non-negative solution.

If the forcing term f is non-negative, then the conclusions of Corollary 3.29 (2) and Theo-
rem 3.32 can be extended as follows.

Theorem 3.33. Let λ > 1 and conditions (3.15) and (3.28) be fulfilled. Then, the following conclusions
hold:

(1) Assume that p ∈ V+(ω) and

∫ ω

0
f (s)ds <

λ − 1
λ

[∆(p)]−
λ

λ−1

[
λ
∫ ω

0 h(s)ds
] 1

λ−1
, (3.40)

where ∆ is defined in Remark 2.5. Then, problem (1.3), (1.2) possesses exactly three solutions u1,
u2, u3 and these solutions satisfy

u1(t) > u2(t) > 0, u3(t) < 0 for t ∈ [0, ω]. (3.41)

(2) Assume that p ∈ IntV+(ω) and

∫ ω

0
f (s)ds ≥ λ − 1

λ

[
Γ(p)

∫ ω

0 [p(s)]−ds −
∫ ω

0 [p(s)]+ds
] λ

λ−1

[
λ
∫ ω

0 h(s)ds
] 1

λ−1
, (3.42)

where Γ is given by (2.3). Then, problem (1.3), (1.2) has a unique solution u0 and this solution is
negative.

Remark 3.34. If ω > 0 and p(t) := −a for t ∈ [0, ω], with a ∈ ]0, π2

ω2 [ , then p ∈ IntV+(ω)

(see Remark 2.4) and, for any h, f ∈ L([0, ω]) satisfying (3.15) and (3.28), conditions (3.40) and
(3.42) are satisfied provided that

∫ ω

0
f (s)ds <

λ − 1
λ

[
2
√

a sin
ω
√

a
2

] λ
λ−1 1
[
λ
∫ ω

0 h(s)ds
] 1

λ−1
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and
∫ ω

0
f (s)ds ≥ λ − 1

λ

[
ωa

cos ω
√

a
2

] λ
λ−1 1
[
λ
∫ ω

0 h(s)ds
] 1

λ−1
(3.43)

(see Remark 2.6). If, moreover, h(t) := b for t ∈ [0, ω], with b > 0, then (3.43) reads as

1
ω

∫ ω

0
f (s)ds ≥

[
1

cos ω
√

a
2

] λ
λ−1

(λ − 1)a
λ

( a
λb

) 1
λ−1

;

compare this condition with those in Proposition 1.1 (4).

Remark 3.35. Theorem 3.33 extends the conclusions of Proposition 1.2 for the non-autonomous
Duffing equation (1.3). Indeed, let ω > 0 and the functions p, h be defined by (3.24), where
0 < a ≤ π2

ω2 and b = 1. Then, p ∈ V+(ω) (see Remark 2.4) and the function h satisfies
(3.28). As opposed to Proposition 1.2, where point conditions on the forcing term d are
obtained, Theorem 3.33 (1) provides the integral-type conditions. This confirms conjecture
(1) formulated by authors of [4] on p. 3930 – the graph of a forcing term may cross the line
y = 2a

3

√ a
3 mentioned therein.

4 Auxiliary statements

We first recall some results stated in [6, 8].

Lemma 4.1 ([6, Proposition 10.8, Remark 0.7]). If p ∈ V−(ω)∪V0(ω), then either
∫ ω

0 p(s)ds > 0
or p(t) ≡ 0.

Lemma 4.2. Let g ∈ V+(ω). Then, for any non-negative function ℓ ∈ L([0, ω]), the problem

u′′ = g(t)u + ℓ(t); u(0) = u(ω), u′(0) = u′(ω) (4.1)

has a unique solution u and this solution satisfies

0 ≤ u(t) ≤ ∆(g)
∫ ω

0
ℓ(s)ds for t ∈ [0, ω],

where ∆ is defined in Remark 2.5. Moreover, if ℓ(t) 6≡ 0, then the solution u is positive.

Proof. The conclusions of the lemma follow from Definition 2.2, Remark 2.5, and [6, Re-
mark 9.2].

Lemma 4.3 ([6, Theorem 16.4]). Let g ∈ IntV+(ω) and ℓ ∈ L([0, ω]) be such that ℓ(t) 6≡ 0 and
∫ ω

0
[ℓ(s)]+ds ≥ Γ(g)

∫ ω

0
[ℓ(s)]−ds,

where Γ is given by (2.3). Then,

Γ(g)
∫ ω

0
[g(s)]−ds >

∫ ω

0
[g(s)]+ds

and problem (4.1) has a unique solution u, which satisfies

u(t) > ν

(∫ ω

0
[ℓ(s)]+ds − Γ(g)

∫ ω

0
[ℓ(s)]−ds

)
for t ∈ [0, ω],

where

ν :=
(

Γ(g)
∫ ω

0
[g(s)]−ds −

∫ ω

0
[g(s)]+ds

)−1

.
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Lemma 4.4 ([6, Theorem 16.2]). Let g ∈ V−(ω). Then, there exists ν0 > 0 such that, for any
non-positive function ℓ ∈ L([0, ω]), problem (4.1) has a unique solution u and this solution satisfies

u(t) ≥ ν0

∫ ω

0
|ℓ(s)|ds for t ∈ [0, ω].

Lemma 4.5 ([6, Proposition 10.2]). The set V−(ω) ∪ V0(ω) is closed in L([0, ω]).

Definition 4.6 ([6, Definition 0.4]). We say that a function p ∈ L([0, ω]) belongs to the set
D(ω) if the problem

u′′ = p̃(t)u; u(a) = 0, u(b) = 0

has no non-trivial solution for any a, b ∈ R satisfying 0 < b− a < ω, where p̃ is the ω-periodic
extension of p to the whole real axis.

Lemma 4.7. D(ω) = V−(ω) ∪ V0(ω) ∪ V+(ω) and IntD(ω) = V−(ω) ∪ V0(ω) ∪ IntV+(ω).

Proof. It follows from Propositions 2.1, 10.5, and 10.6 stated in [6].

Lemma 4.8 ([6, Proposition 2.5]). Let g : R → R be an ω-periodic function such that g ∈ D(ω).
Then, for any a, b ∈ R and w ∈ AC1([a, b]) satisfying 0 < b − a < ω and

w′′(t) ≥ g(t)w(t) for a. e. t ∈ [a, b], w(a) ≤ 0, w(b) ≤ 0,

the inequality w(t) ≤ 0 holds for t ∈ [a, b].

Lemma 4.9 ([8, Lemma 3.10]). Let p ∈ D(ω) and ℓ ∈ L([0, ω]) be such that

ℓ(t) ≥ 0 for a. e. t ∈ [0, ω], ℓ(t) 6≡ 0. (4.2)

Then, p + ℓ ∈ IntD(ω).

Lemma 4.10 ([6, Lemma 2.7]). Let g ∈ D(ω), ℓ ∈ L([0, ω]) be a function satisfying (4.2), and u be
a solution to problem (4.1). Then, the function u is either positive or negative.

Lemma 4.11. Let ℓ : [0, ω]× [λ1, λ2] → R be a Carathéodory function such that

ℓ(·, λ1) 6∈ V−(ω) ∪ V0(ω), ℓ(·, λ2) ∈ V−(ω) ∪ V0(ω). (4.3)

Then, there exists r ∈ ]λ1, λ2[ such that ℓ(·, r) ∈ IntV+(ω).

Proof. Let
A :=

{
λ ∈ [λ1, λ2] : ℓ(·, x) 6∈ V−(ω) ∪ V0(ω) for x ∈ [λ1, λ]

}
. (4.4)

In view of (4.3), it is clear that A 6= ∅. Put

λ∗ := sup A. (4.5)

Since the set V−(ω) ∪ V0(ω) is closed (see Lemma 4.5), it follows from (4.4) and (4.5) that
λ∗ > λ1 and

ℓ(·, x) 6∈ V−(ω) ∪ V0(ω) for x ∈ [λ1, λ∗[ . (4.6)

We first show that
ℓ(·, λ∗) ∈ V−(ω) ∪ V0(ω). (4.7)
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Indeed, suppose on the contrary that ℓ(·, λ∗) 6∈ V−(ω) ∪ V0(ω). Then, hypothesis (4.3) yields
λ∗ < λ2. Since the set V−(ω) ∪ V0(ω) is closed (see Lemma 4.5), there exists ε > 0 such that
ℓ(·, x) 6∈ V−(ω) ∪ V0(ω) for x ∈ [λ∗ − ε, λ∗ + ε]. However, this condition, together with (4.4)
and (4.6), implies that λ∗ + ε ∈ A, which contradicts (4.5).

Now, in view of (4.7), it follows from Lemma 4.7 that ℓ(·, λ∗) ∈ IntD(ω). Therefore,
there exists η ∈ ]0, λ∗ − λ1[ such that ℓ(·, λ∗ − η) ∈ IntD(ω). By Lemma 4.7, we get ℓ(·, λ∗ −
η) ∈ V−(ω) ∪ V0(ω) ∪ IntV+(ω) and, thus, condition (4.6) yields ℓ(·, λ∗ − η) ∈ IntV+(ω).
Consequently, the conclusion of the lemma holds with r := λ∗ − η.

Lemma 4.12 ([6, Remark 8.5]). Let p ∈ V−(ω). Then, for any g ∈ L([0, ω]) satisfying g(t) ≥ p(t)
for a. e. t ∈ [0, ω], the inclusion g ∈ V−(ω) holds.

Lemma 4.13 ([6, Remark 8.4]). Let p ∈ V0(ω). Then, for any g ∈ L([0, ω]) satisfying g(t) ≥ p(t)
for a. e. t ∈ [0, ω] and g(t) 6≡ p(t), the inclusion g ∈ V−(ω) holds.

Lemma 4.14 ([8, Proposition 3.16]). Let g 6∈ V−(ω) ∪ V0(ω) and ℓ : [0, ω] × R → R be a
Carathéodory function satisfying ℓ(t, 0) ≡ 0. Then, for any c > 0, there exists a function α ∈
AC1([0, ω]) such that (3.23) holds and

α′′(t) ≥ g(t)α(t) + ℓ(t, α(t))α(t) for a. e. t ∈ [0, ω],

0 < α(t) ≤ c for t ∈ [0, ω].

Lemma 4.15. Let p ∈ L([0, ω]), x0 ≥ 0, and q0 : [0, ω]× [x0,+∞[→ R be a Carathéodory function
such that

the function q0(t, ·) : [x0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω] (4.8)

and (3.4) holds. Then, there exists K > x0 such that p + q0(·, x) ∈ V−(ω) for x ≥ K.

Proof. It follows from [8, Proposition 3.13] with

f (t, x) :=

{
q0(t, x) if x > x0,

q0(t, x0) if x0 ≥ x > 0.
(4.9)

Lemma 4.16. Let p ∈ V+(ω), x0 ≥ 0, q0 : [0, ω] × [x0,+∞[→ R be a Carathéodory function
satisfying (3.8) and (4.8), and there exist x1 > x0 such that (3.9) holds. Then, there exists K > x0 such
that p + q0(·, x) ∈ V−(ω) for x ≥ K.

Proof. It follows from [8, Proposition 3.14] with f given by (4.9).

Now we recall a classical results concerning the solvability of the periodic problem

u′′ = g(t, u); u(0) = u(ω), u′(0) = u′(ω), (4.10)

where g : [0, ω]× R → R is a Carathéodory function (see, e. g., [3]).

Lemma 4.17. Let there exist functions α ∈ ACℓ([a, b]) and β ∈ ACu([a, b]) satisfying

α(t) ≤ β(t) for t ∈ [a, b], (4.11)

α′′(t) ≥ g(t, α(t)) for a. e. t ∈ [a, b], α(0) = α(ω), α′(0) ≥ α′(ω), (4.12)

β′′(t) ≤ g(t, β(t)) for a. e. t ∈ [a, b], β(0) = β(ω), β′(0) ≤ β′(ω). (4.13)

Then, problem (4.10) has at least one solution u such that

α(t) ≤ u(t) ≤ β(t) for t ∈ [a, b]. (4.14)
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The next existence result is also known.

Lemma 4.18 ([7, Theorem 1.1 and Remark 1.2]). Let there exist p0 ∈ IntD(ω) and a Carathéodory
function z : [0, ω]× [0,+∞[→ [0,+∞[ such that

g(t, x) sgn x ≥ p0(t)|x| − z(t, |x|) for a. e. t ∈ [0, ω] and all x ∈ R

and

lim
x→+∞

1
x

∫ ω

0
z(s, x)ds = 0.

Let, moreover, there exist functions α ∈ ACℓ([0, ω]) and β ∈ ACu([0, ω]) satisfying (4.12) and (4.13).
Then, problem (4.10) has a solution u such that

min{α(tu), β(tu)} ≤ u(tu) ≤ max{α(tu), β(tu)} for some tu ∈ [0, ω].

The following three propositions concern the existence of the functions α, β appearing in
Lemmas 4.17 and 4.18 (with g(t, x) := p(t)x + q(t, x)x + f (t)), which are usually referred to
as lower and upper functions of problem (1.1), (1.2).

Proposition 4.19. Let p, f ∈ L([0, ω]), q : [0, ω]× R → R be a Carathéodory function, and there
exist r0 > 0 such that p + q∗(·, r0) ∈ V+(ω) and

0 <

∫ ω

0
[ f (s)]+ds ≤ r0

∆
(

p + q∗(·, r0)
) , (4.15)

where ∆ is defined in Remark 2.5 and q∗ is given by (3.6). Then, there exists a function α ∈ AC1([0, ω])

satisfying (3.2), (3.23), and
0 < α(t) ≤ r0 for t ∈ [0, ω]. (4.16)

Moreover, if both inequalities in (4.15) are strict, then there exists A > 0 such that

α′′(t) ≥ p(t)α(t) + q(t, α(t))α(t) + f (t) + A for a. e. t ∈ [0, ω]. (4.17)

Proof. Hypothesis (4.15) implies that there exists ε ≥ 0 such that

0 <

∫ ω

0
[ f (s)]+ds ≤ r0 − ε

∆
(

p + q∗(·, r0)
) (4.18)

and ε > 0 if both inequalities in (4.15) are strict.
Since we assume that p + q∗(·, r0) ∈ V+(ω) and [ f (t)]+ 6≡ 0 , it follows from Lemma 4.2

(with g(t) := p(t) + q∗(t, r0) and ℓ(t) := [ f (t)]+ + ε
ω∆(p+q∗(·,r0))

) that the problem

α′′ =
(

p(t) + q∗(t, r0)
)
α + [ f (t)]+ +

ε

ω∆
(

p + q∗(·, r0)
) ; α(0) = α(ω), α′(0) = α′(ω)

has a unique solution α and this solution satisfies

0 < α(t) ≤ ε + ∆
(

p + q∗(·, r0)
) ∫ ω

0
[ f (s)]+ds for t ∈ [0, ω].

Therefore, in view of (4.18), conditions (3.23) and (4.16) hold. Moreover, (3.6) implies that

the function q∗(t, ·) : [0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω] (4.19)
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and, thus, the function α satisfies

α′′(t) ≥ p(t)α(t) + q∗(t, α(t))α(t) + [ f (t)]+ +
ε

ω∆
(

p + q∗(·, r0)
)

≥ p(t)α(t) + q(t, α(t))α(t) + f (t) +
ε

ω∆
(

p + q∗(·, r0)
)

≥ p(t)α(t) + q(t, α(t))α(t) + f (t) for a. e. t ∈ [0, ω],

i. e., (3.2) holds. Furthermore, if both inequalities in (4.15) are strict, then ε > 0 and, therefore,
condition (4.17) is fulfilled with A := ε

ω∆

(
p+q∗(·,r0)

) .

Proposition 4.20. Let p ∈ V+(ω), f ∈ L([0, ω]), and q : [0, ω] × R → R be a Carathéodory
function. Let, moreover, [ f (t)]+ 6≡ 0 and there exist r0 > 0 such that

∆(p) ≤ r0∫ ω

0 [ f (s)]+ds + r0
∫ ω

0 q∗(s, r0)ds
, (4.20)

where ∆ is defined in Remark 2.5 and q∗ is given by (3.6). Then, there exists a function α ∈ AC1([0, ω])

satisfying(3.2), (3.23), (4.16), and

α′′(t) ≥ p(t)α(t) + q(t, α(t))α(t) + [ f (t)]+ for a. e. t ∈ [0, ω]. (4.21)

Moreover, if inequality (4.20) is strict, then there exists A > 0 such that α satisfies (4.17).

Proof. Hypothesis (4.20) implies that there exists ε ≥ 0 such that

∆(p) ≤ r0 − ε∫ ω

0 [ f (s)]+ds + r0
∫ ω

0 q∗(s, r0)ds
(4.22)

and ε > 0 if inequality (4.20) is strict.
It follows from Lemma 4.2 (with g(t) := p(t) and ℓ(t) := r0q∗(t, r0) + [ f (t)]+ + ε

ω∆(p) ) that
the problem

α′′ = p(t)α + r0q∗(t, r0) + [ f (t)]+ +
ε

ω∆(p)
; α(0) = α(ω), α′(0) = α′(ω)

has a unique solution α and this solution satisfies

0 < α(t) ≤ ε + ∆(p)
(

r0

∫ ω

0
q∗(s, r0)ds +

∫ ω

0
[ f (s)]+ds

)
for t ∈ [0, ω].

Therefore, in view of (4.22), conditions (3.23) and (4.16) hold. Moreover, (3.6) yields (4.19) and,
thus, the function α satisfies

α′′(t) ≥ p(t)α(t) + q∗(t, α(t))α(t) + [ f (t)]+ +
ε

ω∆(p)

≥ p(t)α(t) + q(t, α(t))α(t) + [ f (t)]+ +
ε

ω∆(p)

≥ p(t)α(t) + q(t, α(t))α(t) + f (t) +
ε

ω∆(p)

≥ p(t)α(t) + q(t, α(t))α(t) + f (t) for a. e. t ∈ [0, ω],

i. e., (3.2) and (4.21) hold. Furthermore, if inequality (4.20) is strict, then ε > 0 and, therefore,
condition (4.17) is fulfilled with A := ε

ω∆(p) .
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Proposition 4.21. Let p, f ∈ L(0, ω), q : [0, ω] × R → R be a Carathéodory function satisfying
hypothesis (H1), and there exist R > x0 such that p + q0(·, R) ∈ V−(ω). Then, for any c > 0, there
exist B > 0 and a function β ∈ AC1([0, ω]) such that

β′′(t) ≤ p(t)β(t) + q(t, β(t))β(t) + f (t)− B for a. e. t ∈ [0, ω], (4.23)

β(0) = β(ω), β′(0) = β′(ω), (4.24)

β(t) ≥ c for t ∈ [0, ω]. (4.25)

Proof. Let ν0 > 0 be the number appearing in the conclusion of Lemma 4.4 (with g(t) :=
p(t) + q0(t, R)) and let c > 0 be arbitrary. Then, it follows from Lemma 4.4 that the problem

β′′ =
(

p(t) + q0(t, R)
)

β − [ f (t)]− − max{c, R}
ν0ω

; β(0) = β(ω), β′(0) = β′(ω)

has a unique solution β and this solution satisfies

β(t) ≥ max{c, R} for t ∈ [0, ω].

Obviously, (4.24) and (4.25) hold. Since β(t) ≥ R > x0 for t ∈ [0, ω], by hypothesis (H1), we
get

β′′(t) ≤ p(t)β(t) + q0(t, β(t))β(t)− [ f (t)]− − max{c, R}
ν0ω

≤ p(t)β(t) + q(t, β(t))β(t) + f (t)− max{c, R}
ν0ω

for a. e. t ∈ [0, ω],

i. e., (4.23) is fulfilled with B := max{c,R}
ν0ω .

The following lemma concerning problem (1.3), (1.2) we use in the proof of Theorem 3.15.

Lemma 4.22. Let u1, u2 be solutions to problem (1.3), (1.2) such that

u2(t) ≥ u1(t) for t ∈ [0, ω], u2(t) 6≡ u1(t). (4.26)

Then,
u2(t) > u1(t) for t ∈ [0, ω]. (4.27)

Proof. Suppose on the contrary that (4.27) does not hold. Then, there exists t0 ∈ [0, ω] such
that

u2(t0) = u1(t0). (4.28)

Extend the functions p, h, f , u1, u2 periodically to the whole real axis denoting them by the
same symbols. Then, in view of (4.26) and (4.28), we get

u′
2(t0) = u′

1(t0). (4.29)

Since the function x 7→ |x|λ sgn x is Lipschitz on every compact interval, for any c1, c2 ∈ R,
the Cauchy problem

u′′ = p(t)u + h(t)|u|λ sgn u + f (t); u(t0) = c1, u′(t0) = c2

is uniquely solvable. Therefore, (4.28) and (4.29) yield u2(t) ≡ u1(t), which contradicts (4.26).
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We finally provide a technical lemma, which we use in the proof of Theorem 3.32.

Lemma 4.23. Let ̺ ≥ 1 and f , g ∈ L([0, ω]) be such that

g(t) ≥ 0 for a. e. t ∈ [0, ω]. (4.30)

Then, ∫ ω

0
[g(s) + f (s)]+ds − ̺

∫ ω

0
[g(s) + f (s)]−ds

≥
∫ ω

0
g(s)ds +

∫ ω

0
[ f (s)]+ds − ̺

∫ ω

0
[ f (s)]−ds.

(4.31)

Proof. Put

A+ :=
{

t ∈ [0, ω] : g(t) + f (t) ≥ 0
}

, A− :=
{

t ∈ [0, ω] : g(t) + f (t) < 0
}

.

Then, by (4.30) and the hypothesis ̺ ≥ 1, we get
∫ ω

0
[g(s) + f (s)]+ds =

∫

A+
g(s)ds +

∫

A+
[ f (s)]+ds −

∫

A+
[ f (s)]−ds

≥
∫

A+
g(s)ds +

∫

A+
[ f (s)]+ds − ̺

∫

A+
[ f (s)]−ds

and

̺

∫ ω

0
[g(s) + f (s)]−ds = ̺

(
−
∫

A−
g(s)ds −

∫

A−
[ f (s)]+ds +

∫

A−
[ f (s)]−ds

)

≤ −
∫

A−
g(s)ds −

∫

A−
[ f (s)]+ds + ̺

∫

A−
[ f (s)]−ds,

which yields (4.31).

5 Proofs of main results

Proof of Theorem 3.1. Let α ∈ ACℓ([0, ω]) be a positive function such that (3.1) and (3.2) hold.
It follows from Proposition 4.21 that there exists a function β ∈ AC1([0, ω]) satisfying (4.11),
(4.24), and

β′′(t) ≤ p(t)β(t) + q(t, β(t))β(t) + f (t) for a. e. t ∈ [0, ω]. (5.1)

Consequently, all the hypotheses of Lemma 4.17 (with g(t, x) := p(t)x + q(t, x)x + f (t)) are
fulfilled and, thus, problem (1.1), (1.2) has a positive solution u such that (4.14) holds.

Proof of Corollary 3.2. By Lemma 4.15 (with p(t) + [q(t, 0)]+ and q0(t, x)− [q(t, 0)]+ instead of
p(t) and q0(t, x)), there exists R > x0 such that the inclusion p + q0(·, R) ∈ V−(ω) holds. It
follows from (3.5) that there exists r0 > 0 such that p + q∗(·, r0) ∈ V+(ω) and

∫ ω

0
[ f (s)]+ds <

r0

∆
(

p + q∗(·, r0)
) .

If [ f (t)]+ 6≡ 0, then, by Proposition 4.19, there exists a function α ∈ AC1([0, ω]) satisfying
(3.2), (3.23), and (4.16).

Assume that [ f (t)]+ ≡ 0. In view of (3.6) and the hypothesis p + [q(·, 0)]+ 6∈ V−(ω) ∪
V0(ω), it follows from Lemma 4.14 (with g(t) := p(t) + [q(t, 0)]+, ℓ(t, x) := q∗(t, |x|) −
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[q(t, 0)]+, and c := r0) that there exists a function α ∈ AC1([0, ω]) satisfying (3.23), (4.16),
and

α′′(t) ≥
(

p(t) + [q(t, 0)]+
)
α(t) +

(
q∗(t, |α(t)|)− [q(t, 0)]+

)
α(t) for a. e. t ∈ [0, ω].

Since α is positive and f (t) ≤ 0 for a. e. t ∈ [0, ω], the latter inequality yields (3.2).
Consequently, the conclusion of the corollary follows from Theorem 3.1.
We finally prove the assertion stated in Remark 3.4. Assume that a supremum on the

right-hand side of (3.5) is achieved at some r0 > 0 and
∫ ω

0
[ f (s)]+ds =

r0

∆
(

p + q∗(·, r0)
) . (5.2)

Then, by Proposition 4.19, there exist a function α ∈ AC1([0, ω]) satisfying (3.2), (3.23), and
(4.16). Therefore, it follows from Theorem 3.1 that problem (1.1), (1.2) has at least one positive
solution.

Proof of Corollary 3.7. By Lemma 4.16, there exists R > x0 such that the inclusion p + q0(·, R) ∈
V−(ω) holds.

First assume that (3.5) is fulfilled, where ∆ is defined in Remark 2.5 and q∗ is given by (3.6).
In much the same way as in the proof of Corollary 3.2, we show that there exists a function
α ∈ AC1([0, ω]) satisfying (3.2), (3.23), and (4.16).

Now assume that [ f (t)]+ 6≡ 0 and (3.10) holds, where ∆ is defined in Remark 2.5 and q∗ is
given by (3.6). It follows from (3.10) that there exists r0 > 0 such that

∆(p) <
r0∫ ω

0 [ f (s)]+ds + r0
∫ ω

0 q∗(s, r0)ds

and, thus, Proposition 4.20 guarantees the existence of a function α ∈ AC1([0, ω]) such that
(3.2), (3.23), and (4.16) hold.

Consequently, in both cases (3.5) and (3.10), the conclusion of the corollary follows from
Theorem 3.1.

We finally prove the assertions stated in Remarks 3.4 and 3.8. First assume that a supre-
mum on the right-hand side of (3.5) is achieved at some r0 > 0 and (5.2) holds. Then, by
Proposition 4.19, there exist a function α ∈ AC1([0, ω]) satisfying (3.2), (3.23), and (4.16).
Therefore, it follows from Theorem 3.1 that problem (1.1), (1.2) has at least one positive solu-
tion.

Now assume that [ f (t)]+ 6≡ 0, a supremum on the right-hand side of (3.10) is achieved at
some r0 > 0, and

∆(p) =
r0∫ ω

0 [ f (s)]+ds + r0
∫ ω

0 q∗(s, r0)ds
.

Then, by Proposition 4.20, there exist a function α ∈ AC1([0, ω]) satisfying (3.2), (3.23), and
(4.16). Therefore, it follows from Theorem 3.1 that problem (1.1), (1.2) has at least one positive
solution.

Proof of Theorem 3.9. It follows from hypothesis (H2) that

the function q(t, ·) : [0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω]. (5.3)

Suppose on the contrary that u, w are positive solutions to problem (1.1), (1.2) satisfying

max
{

u(t)− w(t) : t ∈ [0, ω]
}
> 0.
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Put
β0(t) := min

{
u(t), w(t)

}
for t ∈ [0, ω].

It is not difficult to verify that β0 ∈ ACu([0, ω]),

β′′
0 (t) = p(t)β0(t) + q(t, β0(t))β0(t) + f (t) for a. e. t ∈ [0, ω], (5.4)

β0(0) = β0(ω), β′
0(0) ≤ β′

0(ω), (5.5)

β0(t) ≤ u(t) for t ∈ [0, ω], β0(t) 6≡ u(t). (5.6)

By Lemma 4.14 (with g(t) := p(t) and ℓ(t, x) := q(t, x)), there exists a function α ∈ AC1([0, ω])

such that (3.23) holds,

α′′(t) ≥ p(t)α(t) + q(t, α(t))α(t) for a. e. t ∈ [0, ω],

α(t) ≤ β0(t) for t ∈ [0, ω]. (5.7)

In view of hypothesis (3.7), it is clear that the function α satisfies also (3.2). Therefore, by
virtue of (3.2), (3.23), (5.4), (5.5), and (5.7), all the hypotheses of Lemma 4.17 (with g(t, x) :=
p(t)x + q(t, x)x + f (t) and β(t) := β0(t)) that there exists a solution v to problem (1.1), (1.2)
such that

α(t) ≤ v(t) ≤ β0(t) for t ∈ [0, ω].

However, the latter condition and (5.6) imply that there exist t1, t2 ∈ [0, ω] such that t1 < t2

and
u(t) ≥ v(t) > 0 for t ∈ [0, ω], u(t) > v(t) for t ∈ [t1, t2]. (5.8)

Consequently, there exist v∗, v∗, e0 > 0 such that

u(t) ≥ v(t) + e0, v∗ ≥ v(t) ≥ v∗ for t ∈ [t1, t2] (5.9)

and, thus, in view of (5.3), (5.8), (5.9), and (H2), we get

q(t, u(t)) ≥ q(t, v(t)) for a. e. t ∈ [0, ω] (5.10)

and
q(t, u(t))− q(t, v(t)) ≥ q(t, v(t) + e0)− q(t, v(t)) ≥ hv∗v∗e0(t) (5.11)

for a. e. t ∈ [t1, t2]. It follows immediately from (1.1) that u and v are solutions to the equations

z′′ =
(

p(t) + q(t, v(t)) +
f (t)
v(t)

)
z +

[
q(t, u(t))− q(t, v(t))

]
u(t)− f (t)

v(t)

[
u(t)− v(t)

]
,

z′′ =
(

p(t) + q(t, v(t)) +
f (t)
v(t)

)
z,

(5.12)

respectively. Therefore, by virtue of (3.7), (5.8), (5.10), and (5.11), third Fredholm’s theorem
yields the contradiction

0 =
∫ ω

0

([
q(t, u(t))− q(t, v(t))

]
u(t)− f (t)

v(t)

[
u(t)− v(t)

])
v(t)dt

≥
∫ t2

t1

[
q(t, u(t))− q(t, v(t))

]
u(t)v(t)dt ≥ v2

∗

∫ t2

t1

hv∗v∗e0(t)dt > 0.
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Proof of Proposition 3.11. Suppose on the contrary that u1, u2, u3 are solutions to problem (1.1),
(1.2) satisfying (3.11). It is clear that there exist d1 > c1 > 0, d2 > c2 > 0, and d3 > c3 > 0 such
that

c1 ≤ u1(t) ≤ d1 for t ∈ [0, ω],

ck ≤ uk(t)− uk−1(t) ≤ dk for t ∈ [0, ω], k = 2, 3.

Put

ϕk(t) :=
q(t, uk+1(t))uk+1(t)− q(t, uk(t))uk(t)

uk+1(t)− uk(t)
for a. e. t ∈ [0, ω], k = 1, 2.

It follows from hypothesis (Hℓ
3) with (x1 := u1(t), x2 := u2(t), and x3 := u3(t)) that

(−1)ℓ
[
ϕ2(t)− ϕ1(t)

]
≥ h∗(t) ≥ 0 for a. e. t ∈ [0, ω], h∗(t) 6≡ 0. (5.13)

Now let zk(t) := uk+1(t)− uk(t) for t ∈ [0, ω], k = 1, 2. Then, (1.1) yields

z′′k (t) = p(t)zk(t) + q(t, uk+1(t))uk+1(t)− q(t, uk(t))uk(t) =
(

p(t) + ϕk(t)
)
zk(t)

for a. e. t ∈ [0, ω], k = 1, 2, and, in view of (3.11), we get

z1(t) > 0, z2(t) > 0 for t ∈ [0, ω].

Therefore, by Definition 2.3, we get

p + ϕ1 ∈ V0(ω), p + ϕ2 ∈ V0(ω). (5.14)

On the other hand, (5.13) yields

p(t) + ϕℓ(t) ≥ p(t) + ϕ3−ℓ(t) for a. e. t ∈ [0, ω]

and
p(t) + ϕℓ(t) 6≡ p(t) + ϕ3−ℓ(t),

which, by virtue of Lemma 4.13, contradicts (5.14).

Proof of Theorem 3.13. Conclusion (1): Assume that (H′
2) and (3.12) hold and u, v are positive

solutions to problem (1.1), (1.2) such that

max
{

u(t)− v(t) : t ∈ [0, ω]
}
> 0. (5.15)

It follows from hypothesis (H′
2) that (5.3) is fulfilled which, together with (3.12), yields

q(t, x) ≥ 0 for a. e. t ∈ [0, ω] and all x ≥ 0. (5.16)

Suppose on the contrary that (3.13) does not hold. Then, either

u(t) ≥ v(t) for t ∈ [0, ω], u(t) 6≡ v(t), (5.17)

there exists t0 ∈ [0, ω] such that u(t0) = v(t0), (5.18)

or
min

{
u(t)− v(t) : t ∈ [0, ω]

}
< 0. (5.19)
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First assume that (5.17) and (5.18) are satisfied. Then, in view of (5.16), condition (5.3)
yields

q(t, u(t))u(t) ≥ q(t, v(t))u(t) ≥ q(t, v(t))v(t) for a. e. t ∈ [0, ω].

Put z(t) := u(t)− v(t) for t ∈ [0, ω]. The function z is a solution to the linear periodic problem

z′′ = p(t)z + q(t, u(t))u(t)− q(t, v(t))v(t); z(0) = z(ω), z′(0) = z′(ω).

If q(t, u(t))u(t) 6≡ q(t, v(t))v(t), then, in view of Lemma 4.2 (with g(t) := p(t) and ℓ(t) :=
q(t, u(t))u(t)− q(t, v(t))v(t)), we get z(t) > 0 for t ∈ [0, ω], which contradicts (5.18). On the
other hand, if q(t, u(t))u(t) ≡ q(t, v(t))v(t), then Lemma 4.2 (with g(t) := p(t) and ℓ(t) := 0)
yields z(t) ≡ 0, which is in contradiction with (5.17).

Now assume that (5.19) holds. Extend the functions u, v, p, f , q(·, x) periodically to the
whole real axis denoting them by the same symbols. Then, in view of (5.15) and (5.19), there
exist a, b ∈ R such that 0 < b − a < ω and

u(t) > v(t) for t ∈ ]a, b[ , u(a) = v(a), u(b) = v(b). (5.20)

Put w(t) := u(t)− v(t) for t ∈ [a, b]. By virtue of (5.3), (5.16), and (5.20), it follows from (1.1)
that

w′′(t) = p(t)w(t) +
[
q(t, u(t))− q(t, v(t))

]
u(t) + q(t, v(t))

[
u(t)− v(t)

]

≥ p(t)w(t) for a. e. t ∈ [a, b].

Since w(a) = 0 and w(b) = 0, by Lemma 4.7 and Lemma 4.8 (with g(t) := p(t)), we get
w(t) ≤ 0 for t ∈ [a, b], which is in contradiction with (5.20).

Conclusion (2): Assume that (3.7), (3.12), and (H′
2) are fulfilled. It follows from hypothesis

(H′
2) that (5.3) holds.
Suppose on the contrary that u, v are positive solutions to problem (1.1), (1.2) satisfying

(5.15). Then, the above-proved conclusion (1) yields

u(t) > v(t) for t ∈ [0, ω] (5.21)

and, thus, there exist v∗, v∗, e0 > 0 such that

u(t) ≥ v(t) + e0, v∗ ≥ v(t) ≥ v∗ for t ∈ [0, ω].

Therefore, by using (5.3) and (H′
2), we get

q(t, u(t))− q(t, v(t)) ≥ q(t, v(t) + e0)− q(t, v(t)) ≥ hv∗v∗e0(t) (5.22)

for a. e. t ∈ [0, ω]. It follows immediately from (1.1) that u and v are solutions to equations
(5.12) and, thus, by virtue of (3.7), (5.21), and (5.22), third Fredholm’s theorem yields the
contradiction

0 =
∫ ω

0

([
q(t, u(t))− q(t, v(t))

]
u(t)− f (t)

v(t)

[
u(t)− v(t)

])
v(t)dt

≥
∫ ω

0

[
q(t, u(t))− q(t, v(t))

]
u(t)v(t)dt ≥ v2

∗

∫ ω

0
hv∗v∗e0(t)dt > 0.

Conclusion (3): Assume that ℓ ∈ {1, 2}, condition (3.12) holds, and hypotheses (H′
2) and

(Hℓ
3) are fulfilled.
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Suppose on the contrary that u1, u2, u3 are mutually distinct positive solutions to problem
(1.1), (1.2). Then, the above-proved conclusion (1) implies that we can assume without loss
of generality that u1, u2, u3 satisfy (3.11), which is in contradiction with the conclusion of
Proposition 3.11.

Conclusion (4): Assume that (3.14) and (3.15) hold and let u be a solution to problem (1.1),
(1.2). Then, u is a solution to the linear periodic problem

z′′ =
(

p(t) + q(t, u(t))
)
z + f (t); z(0) = z(ω), z′(0) = z′(ω).

By virtue of (3.14), Lemmas 4.7 and 4.9 yield p + q(·, u(·)) ∈ D(ω). Since f satisfies (3.15), by
Lemma 4.10 (with g(t) := p(t) + q(t, u(t)) and ℓ(t) := f (t)), we conclude that the function u
is either positive or negative.

Proof of Theorem 3.15. Put

q(t, x) := h(t)|x|λ−1 for a. e. t ∈ [0, ω] and all x ∈ R. (5.23)

In view of (3.16), it is clear that q is a Carathéodory function satisfying hypothesis (H1) with
q0(t, x) := h(t)xλ−1 and x0 := 0. Moreover, q(t, 0) ≡ 0, condition (3.4) holds and hypothesis
(H2) is fulfilled. Furthermore, since the function x 7→ xλ is strictly convex on ]0,+∞[ , one can
show that q satisfies also hypothesis (H2

0).
Conclusion (1): It follows immediately from Proposition 3.11.
Conclusion (2): Let α ∈ ACℓ([0, ω]) be a positive function satisfying (3.1) and (3.17). By

Lemma 4.15, there exists R > 0 such that

p + q0(·, R) ∈ V−(ω). (5.24)

Consequently, all the hypotheses of Theorem 3.1 are fulfilled and, thus, problem (1.3), (1.2)
has a positive solution u0 such that

u0(t) ≥ α(t) for t ∈ [0, ω]. (5.25)

We now determine a solution u∗ to problem (1.3), (1.2) satisfying (3.18) such that, for any
solution u to problem (1.3), (1.2), condition (3.19) is fulfilled.

First assume that problem (1.3), (1.2) has a unique positive solution. Put u∗ := u0. In
view of (5.25), it is clear that (3.18) holds. We show that every solution u to problem (1.3),
(1.2) satisfies (3.19). Suppose on the contrary that u is a solution to (1.3), (1.2) such that (3.19)
does not hold. Lemma 4.22 implies that, if u(t) ≤ u∗(t) for t ∈ [0, ω] and u(t) 6≡ u∗(t), then
u(t) < u∗(t) for t ∈ [0, ω]. Therefore, u satisfies

max
{

u(t)− u∗(t) : t ∈ [0, ω]
}
> 0. (5.26)

Put
α0(t) := max

{
u(t), u∗(t)

}
for t ∈ [0, ω].

It is not difficult to verify that α0 ∈ ACℓ([0, ω]),

α′′
0 (t) = p(t)α0(t) + q(t, α0(t))α0(t) + f (t) for a. e. t ∈ [0, ω], (5.27)

α0(0) = α0(ω), α′
0(0) ≥ α′

0(ω), (5.28)

α0(t) ≥ u∗(t) for t ∈ [0, ω], α0(t) 6≡ u∗(t). (5.29)
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In view of (5.24), Proposition 4.21 implies that there exists β ∈ AC1([0, ω]) satisfying (4.24),
(5.1), and

β(t) ≥ α0(t) for t ∈ [0, ω].

Therefore, by virtue of (4.24), (5.1), (5.27), and (5.28), it follows from Lemma 4.17 (with
g(t, x) := p(t)x + q(t, x)x + f (t) and α(t) := α0(t)) that there exists a solution ũ to problem
(1.3), (1.2) such that

α0(t) ≤ ũ(t) ≤ β(t) for t ∈ [0, ω].

However, in view of (5.29), the latter condition yields

ũ(t) ≥ u∗(t) for t ∈ [0, ω], ũ(t) 6≡ u∗(t).

Consequently, by Lemma 4.22, we get

ũ(t) > u∗(t) > 0 for t ∈ [0, ω], (5.30)

which contradicts our assumption that problem (1.3), (1.2) has a unique positive solution.
Now assume that problem (1.3), (1.2) has at least two positive solutions. Then, there exists

a positive solution v to problem (1.3), (1.2) different from u0. We can assume without loss of
generality that

min
{

v(t)− u0(t) : t ∈ [0, ω]
}
< 0. (5.31)

We first determine a positive solution u∗ to problem (1.3), (1.2) satisfying (3.18) and

u∗(t) > v(t) for t ∈ [0, ω]. (5.32)

It is clear that either
max

{
v(t)− u0(t) : t ∈ [0, ω]

}
≤ 0 (5.33)

or
max

{
v(t)− u0(t) : t ∈ [0, ω]

}
> 0. (5.34)

Let (5.33) hold. Then, v(t) ≤ u0(t) for t ∈ [0, ω] and, in view of (5.31), Lemma 4.22 yields
v(t) < u0(t) for t ∈ [0, ω]. We put u∗ := u0 and, in view of (5.25), we conclude immediately
that (3.18) and (5.32) are satisfied.

Let (5.34) hold. Put

α0(t) := max
{

v(t), u0(t)
}

for t ∈ [0, ω].

In much the same way as above, we determine a solution u∗ to problem (1.3), (1.2) such that

u∗(t) ≥ max
{

v(t), u0(t)
}

for t ∈ [0, ω].

By virtue of (5.25) and (5.31), the solution u∗ satisfies (3.18) and

u∗(t) ≥ v(t) for t ∈ [0, ω], u∗(t) 6≡ v(t).

Therefore, in view Lemma 4.22, (5.32) holds.
Hence, in both cases (5.33) and (5.34), we have determined a solution u∗ to problem (1.3),

(1.2) satisfying (3.18) and (5.32). Now we show that every solution u to (1.3), (1.2) satisfies
(3.19). Suppose on the contrary that u is a solution to problem (1.3), (1.2) such that (3.19)
does not hold. Lemma 4.22 implies that, if u(t) ≤ u∗(t) for t ∈ [0, ω] and u(t) 6≡ u∗(t), then
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u(t) < u∗(t) for t ∈ [0, ω]. Therefore, u satisfies (5.26). In much the same way as above, we
determine a solution ũ to problem (1.3), (1.2) such that (5.30) holds. Hence, conditions (5.30)
and (5.32) yields

ũ(t) > u∗(t) > v(t) > 0 for t ∈ [0, ω],

which contradicts the above-proved conclusion (1).
It remains to show that, for any couple of distinct positive solutions u1, u2 to problem (1.3),

(1.2) satisfying (3.20), conditions (3.21) hold. Assume that u1, u2 are distinct positive solutions
to (1.3), (1.2) satisfying (3.20). We have proved above that

u1(t) < u∗(t), u2(t) < u∗(t) for t ∈ [0, ω]. (5.35)

Suppose on the contrary that (3.21) does not hold, i. e., there exists k ∈ {1, 2} such that

uk(t) ≤ u3−k(t) for t ∈ [0, ω], uk(t) 6≡ u3−k(t).

Then, Lemma 4.22, together with (5.35), yields

0 < uk(t) < u3−k(t) < u∗(t) for t ∈ [0, ω],

which contradicts the above-proved conclusion (1).
Conclusion (3): Assume that (3.7) holds. Then, the existence and uniqueness of a positive

solution to problem (1.3), (1.2) follows from Corollary 3.10.

Proof of Corollary 3.16. Let the function q be defined by formula (5.23). In view of (3.16), it is
clear that q is a Carathéodory function satisfying hypothesis (H1) with q0(t, x) := h(t)xλ−1

and x0 := 0. Moreover, q(t, 0) ≡ 0 and condition (3.4) holds. According to (3.22), inequality
(3.5) is obviously satisfied, because we have q∗(t, ̺) = h(t)̺λ−1. Therefore, by Corollary 3.2,
problem (1.3), (1.2) has a positive solution u0 and, thus, all the hypotheses of Theorem 3.15 (2)
(with α(t) := u0(t)) are fulfilled.

Proof of Corollary 3.19. Put

p(t) := −a, h(t) := b for t ∈ [0, ω]. (5.36)

It is clear that (3.16) holds and, by Remark 2.4, we get p 6∈ V−(ω) ∪ V0(ω).
Let us show that condition (3.22) is satisfied, where ∆ is defined in Remark 2.5. It follows

from Remark 2.4 that

p + rλ−1h ∈ V+(ω) if and only if − π2

ω2 ≤ −a + brλ−1
< 0.

Moreover, by Remark 2.6, we get

∆
(

p + rλ−1h
)
≤
(

2
√

a − brλ−1 sin
ω
√

a − brλ−1

2

)−1

for r > 0, − π2

ω2 ≤ −a + brλ−1 < 0. It is easy to see that sin x >
2
π x for x ∈ ]0, π

2 [ and, thus,

1
∆
(

p + rλ−1h
) >

2ω

π

(
a − brλ−1) for r > 0, −π2

ω2 < −a + brλ−1
< 0 (5.37)
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and
1

∆
(

p + rλ−1h
) ≥ 2ω

π

(
a − brλ−1) for r > 0, −π2

ω2 = −a + brλ−1. (5.38)

Put

ϕ(r) := ar − brλ for 0 ≤ r ≤
( a

b

) 1
λ−1

.

By direct calculation, we show that

max
{

ϕ(r) : 0 ≤ r ≤
( a

b

) 1
λ−1
}

= ϕ(r∗), ϕ′(r) < 0 for r∗ < r ≤
( a

b

) 1
λ−1

,

where r∗ :=
( a

λb

) 1
λ−1 .

If a <
λ

λ−1

(
π
ω

)2, then either a ≤ π2

ω2 or a >
π2

ω2 ,
[

1
b

(
a − π2

ω2

)] 1
λ−1

< r∗. Hence, we get

max
{

ϕ(r) : r > 0,
1
b

(
a − π2

ω2

)
≤ rλ−1

<
a
b

}
= ϕ(r∗) (5.39)

and, moreover, (5.37) yields

2ω

π
ϕ(r∗) <

r∗

∆
(

p + (r∗)λ−1h
) . (5.40)

If a ≥ λ
λ−1

(
π
ω

)2, then r∗ ≤
[

1
b

(
a − π2

ω2

)] 1
λ−1

and, thus,

max
{

ϕ(r) : r > 0,
1
b

(
a − π2

ω2

)
≤ rλ−1

<
a
b

}
= ϕ(r0), (5.41)

where r0 :=
[

1
b

(
a − π2

ω2

)] 1
λ−1

. Moreover, (5.38) implies

2ω

π
ϕ(r0) ≤

r0

∆
(

p + rλ−1
0 h

) . (5.42)

Therefore, from (3.26), (5.37), (5.38), (5.39), and (5.41), we conclude that the function f
satisfies ∫ ω

0
[ f (s)]+ds ≤ 2ω

π
max

{
ϕ(r) : r > 0,

1
b

(
a − π2

ω2

)
≤ rλ−1

<
a
b

}

≤ sup

{
r

∆
(

p + rλ−1h
) : r > 0, p + rλ−1h ∈ V+(ω)

}
.

(5.43)

Furthermore, it follows from (5.40) and (5.42) that, if (5.43) holds in the form of equalities, then
a ≥ λ

λ−1

(
π
ω

)2 and a supremum on the right-hand side of (5.43) is achieved at r0. Consequently,
taking into account Remark 3.17, all the hypotheses of Corollary 3.16 are fulfilled and, thus,
problem (3.25) has at least one positive solution.

Proof of Corollary 3.22. Let the functions p and h be defined by (5.36). Then, (3.16) holds and,
by Remark 2.4, we get p 6∈ V−(ω) ∪ V0(ω). Consequently, the conclusion of the corollary
follows from Theorem 3.15 (3).
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Proof of Theorem 3.25. Let the function q be defined by formula (5.23). In view of (3.28), it is
clear that q is a Carathéodory function satisfying hypothesis (H1) with q0(t, x) := h(t)xλ−1 and
x0 := 0. Moreover, hypothesis (H′

2) holds, q(t, 0) ≡ 0, and conditions (3.8), (3.9) with x1 := 1,
and (3.14) are fulfilled. Furthermore, since the function x 7→ xλ is strictly convex on ]0,+∞[ ,
one can show that q satisfies hypothesis (H2

0).
Conclusion (1): It follows from Theorem 3.13 (3) with ℓ := 2.
Conclusion (2): Assume that (3.22) holds, where ∆ is defined in Remark 2.5. Then, in-

equality (3.5) is obviously satisfied, because we have q∗(t, ̺) = h(t)̺λ−1. Consequently, all the
hypotheses of Corollary 3.7 are fulfilled and, thus, problem (1.3), (1.2) has at least one positive
solution.

On the other hand, in view of the above-proved conclusion (1), problem (1.3), (1.2) has at
most two positive solutions.

Conclusion (3): Let α ∈ ACℓ([0, ω]) be a positive function satisfying (3.1) and (3.17). Accord-
ing to Lemma 4.16, there exists R > 0 such that (5.24) holds. Consequently, all the hypotheses
of Theorem 3.1 are fulfilled and, thus, problem (1.3), (1.2) has a positive solution u satisfying
(3.3). By the above-proved conclusion (1), problem (1.3), (1.2) has either one or two positive
solutions.

If (1.3), (1.2) has a unique positive solution u0, then we put u∗ := u0. If (1.3), (1.2) has
exactly two positive solutions u1, u2, then it follows from Theorem 3.13 (1) that u1(t) 6= u2(t)
for t ∈ [0, ω], and we put

u∗(t) := max
{

u1(t), u2(t)
}

for t ∈ [0, ω].

It is clear that, in both these cases, u∗ satisfies (3.18).
We now show that every solution u to problem (1.3), (1.2) satisfies (3.19). Suppose on the

contrary that u is a solution to problem (1.3), (1.2) such that (3.19) does not hold. Lemma 4.22
implies that, if u(t) ≤ u∗(t) for t ∈ [0, ω] and u(t) 6≡ u∗(t), then u(t) < u∗(t) for t ∈ [0, ω].
Therefore, u satisfies (5.26). Put

α0(t) := max
{

u(t), u∗(t)
}

for t ∈ [0, ω].

Since we have proved that (5.24) holds for some R > 0, in much the same way as in the proof
of Theorem 3.15 (2), we determine a solution ũ to problem (1.3), (1.2) satisfying (5.30), which
is in contradiction with the definition of u∗.

Conclusion (4): Let α1 ∈ ACℓ([0, ω]) and α2 ∈ AC1([0, ω]) be such that (3.29), (3.30), and
(3.31) hold. According to Lemma 4.16, there exists R > 0 such that (5.24) holds. Consequently,
it follows from Proposition 4.21 that there exists a function β ∈ AC1([0, ω]) satisfying (4.24),
(5.1), and

β(t) ≥ α1(t) for t ∈ [0, ω].

Therefore, by virtue of (3.30), (3.31), (4.24), and (5.1), all the hypotheses of Lemma 4.17 (with
g(t, x) := p(t)x + q(t, x)x + f (t)) are fulfilled and, thus, problem (1.3), (1.2) has a solution u1

such that
α1(t) ≤ u1(t) ≤ β(t) for t ∈ [a, b]. (5.44)

We further determine a solution u2 to problem (1.3), (1.2) satisfying (3.32). It follows from
the hypothesis (p, f ) ∈ U (ω) (see Definition 3.24) that the problem

v′′ = p(t)v + f (t); v(0) = v(ω), v′(0) = v′(ω) (5.45)
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has a unique solution v, which is positive. Since h satisfies (3.28) and α2 is positive, it follows
from (3.30), (3.31), and (5.45) that

v′′(t) ≤ p(t)v(t) + h(t)vλ(t) + f (t) for a. e. t ∈ [0, ω], (5.46)

α2(0)− v(0) = α2(ω)− v(ω), α′
2(0)− v′(0) ≥ α′

2(ω)− v′(ω) for k = 1, 2,

and
(α2(t)− v(t))′′ ≥ p(t)(α2(t)− v(t)) for a. e. t ∈ [0, ω].

Therefore, by the hypothesis p ∈ V+(ω), the latter inequality yields

v(t) ≤ α2(t) for t ∈ [0, ω]. (5.47)

Put
δ := min

{
v(t) : t ∈ [0, ω]

}
(5.48)

and consider the periodic problem

u′′ = p(t)u + h(t)
[
χ(u)

]λ−1
u + f (t); u(0) = u(ω), u′(0) = u′(ω), (5.49)

where

χ(x) =

{
x for x ≥ δ,

δ for x < δ.
(5.50)

In view of (3.28), it is clear that χ(x) ≥ δ for x ∈ R and
(

p(t)x + h(t)
[
χ(x)

]λ−1
x + f (t)

)
sgn x

≥
(

p(t) + δλ−1h(t)
)
|x| − | f (t)| for a. e. t ∈ [0, ω] and all x ∈ R.

By Lemmas 4.7 and 4.9, we get p + δλ−1h ∈ IntD(ω), because δ > 0 and h satisfies (3.28).
Therefore, in view of (3.30), (3.31), (5.45), (5.46), (5.47), and (5.50), all the hypotheses of
Lemma 4.18 (with g(t, x) := p(t)x + [χ(x)]λ−1x + f (t), p0(t) := p(t) + δλ−1h(t), z(t, x) :=
| f (t)|, α(t) := α2(t), and β(t) := v(t)) are fulfilled and, thus, problem (5.49) possesses a solu-
tion u2 such that

v(t0) ≤ u2(t0) ≤ α2(t0) for some t0 ∈ [0, ω]. (5.51)

Let z(t) := u2(t)− v(t) for t ∈ [0, ω]. It is clear that z is a solution to the linear problem

z′′ =
(

p(t) + δλ−1h(t)
)
z + h(t)

([
χ(u2(t))

]λ−1 − δλ−1
)

u2(t) + δλ−1h(t)v(t),

z(0) = z(ω), z′(0) = z′(ω)

and, by virtue of (3.28), (5.50), and the condition δ > 0, we get

h(t)
([

χ(u2(t))
]λ−1 − δλ−1

)
u2(t) + δλ−1h(t)v(t) ≥ 0 for a. e. t ∈ [0, ω],

h(t)
([

χ(u2(t))
]λ−1 − δλ−1

)
u2(t) + δλ−1h(t)v(t) 6≡ 0.

Therefore, in view of the inclusion p + δλ−1h ∈ IntD(ω) and condition (5.51), it follows
from Lemma 4.10 (with g(t) := p(t) + δλ−1h(t) and ℓ(t) := h(t)([χ(u2(t))]λ−1 − δλ−1)u2(t) +
δλ−1h(t)v(t)) that z(t) > 0 for t ∈ [0, ω], i. e.,

u2(t) > v(t) for t ∈ [0, ω].
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Consequently, (5.48) yields u2(t) > δ for t ∈ [0, ω], which, in view of (5.50), yields χ(u2(t)) =
u2(t) for t ∈ [0, ω] and, thus, u2 is a positive solution to problem (1.3), (1.2). Moreover, (3.29),
(5.44), and (5.51) yield u1(t0) > u2(t0) for some t0 ∈ [0, ω]. Therefore, by Theorem 3.13 (1), we
conclude that the solutions u1, u2 satisfy (3.32). Furthermore, the above-proved conclusion (1)
implies that problem (1.3), (1.2) has exactly two positive solutions.

Finally, let u be a solution to problem (1.3), (1.2) different from u1. Then, it follows from
the above-proved conclusion (3) that u satisfies (3.33).

Conclusion (5): Assume that (3.7) holds. Then, the existence and uniqueness of a positive
solution to problem (1.1), (1.2) follow from Corollary 3.14.

Proof of Corollary 3.29. Let the function q be defined by formula (5.23).
Conclusion (1): Assume that (3.34) holds, where ∆ is defined in Remark 2.5. Observe that

the function q∗ given by (3.6) is of the form q∗(t, ̺) = h(t)̺λ−1. Put

H :=
∫ ω

0
h(s)ds, F :=

∫ ω

0
[ f (s)]+ds.

Since [ f (t)]+ 6≡ 0, by direct calculation, we get

sup

{
r∫ ω

0 [ f (s)]+ds + r
∫ ω

0 q∗(s, r)ds
: r > 0

}
= sup

{
r

F + Hrλ
: r > 0

}

=
(λ − 1)

λ−1
λ

λ
F− λ−1

λ H− 1
λ

and this supremum is achieved at r0 :=
[ F
(λ−1)H

] 1
λ . Therefore, (3.34) yields

∆(p) ≤ r0∫ ω

0 [ f (s)]+ds + r0
∫ ω

0 q∗(s, r0)ds

and, thus, Proposition 4.20 guarantees that there exists a positive function α ∈ AC1([0, ω])

satisfying (3.17) and (3.23). Consequently, all the hypotheses of Theorem 3.25 (3) are fulfilled.
Conclusion (2): Assume that (3.35) holds, where ∆ is defined in Remark 2.5. Then, there

exits ε > 1 such that

0 <

∫ ω

0
[ε f (s)]+ds ≤ λ − 1

λ [∆(p)]
λ

λ−1
[
λ
∫ ω

0 h(s)ds
] 1

λ−1
.

In much the same way as in the proof of conclusion (1), we show that there exists r0 > 0 such
that

∆(p) ≤ r0∫ ω

0 [ε f (s)]+ds + r0
∫ ω

0 q∗(s, r0)ds
.

By Proposition 4.20 (with [ε f ]+ instead of [ f ]+), there exists a positive function α1∈AC1([0, ω])

such that

α1(0) = α1(ω), α′
1(0) = α′

1(ω), (5.52)

α′′
1 (t) ≥ p(t)α1(t) + q(t, α1(t))α1(t) + ε[ f (t)]+ for a. e. t ∈ [0, ω]. (5.53)

Since ε > 1, the function α1 satisfies

α′′
1 (t) ≥ p(t)α1(t) + h(t)αλ

1 (t)) + f (t) for a. e. t ∈ [0, ω].
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Put α2(t) := 1
ε α1(t) for t ∈ [0, ω]. Then, (3.29) holds and from (5.52) and (5.53), we get

α2(0) = α2(ω), α′
2(0) = α′

2(ω)

and

α′′
2 (t) ≥ p(t)α2(t) + q(t, εα2(t))α2(t) + [ f (t)]+

= p(t)α2(t) + ελ−1h(t)αλ
2 (t) + [ f (t)]+

≥ p(t)α2(t) + h(t)αλ
2 (t) + f (t) for a. e. t ∈ [0, ω],

because ε > 1 and h satisfies (3.28). Consequently, α1, α2 satisfy (3.29), (3.31), and (3.36) and,
thus, all the hypotheses of Theorem 3.25 (4) are fulfilled.

Proof of Corollary 3.30. Put
p(t) := −a for t ∈ [0, ω]. (5.54)

By Remarks 2.4 and 2.6, we get p ∈ V+(ω) and

∆(p) ≤
(

2
√

a sin
ω
√

a
2

)−1

.

Consequently, hypothesis (3.37) yields (3.34) and, thus, problem (3.38) has either one or two
positive solutions as follows from Corollary 3.29 (1) and Theorem 3.25 (1,3).

Proof of Corollary 3.31. Let the function p be defined by (5.54). By Remark 2.4, we get p ∈
V+(ω) and, thus, Theorem 3.25 (5) implies that problem (3.38) has a unique positive solution.

Proof of Theorem 3.32. Suppose on the contrary that u is a non-negative solution to problem
(1.3), (1.2). In view of (3.28) and (3.39), it follows from Lemma 4.23 (with g(t) := h(t)uλ(t)
and ̺ := Γ(p)) that

∫ ω

0

[
h(s)uλ(s) + f (s)

]
+

ds − Γ(p)
∫ ω

0

[
h(s)uλ(s) + f (s)

]
−ds

≥
∫ ω

0
h(s)uλ(s)ds +

∫ ω

0
[ f (s)]+ds − Γ(p)

∫ ω

0
[ f (s)]−ds ≥ 0.

(5.55)

Assuming h(t)uλ(t) + f (t) ≡ 0, we conclude easily that u is a solution to problem (2.1) which,
together with the hypothesis p ∈ IntV+(ω), yields u(t) ≡ 0. However, this is in contradiction
with the hypothesis f (t) 6≡ 0. Therefore, h(t)uλ(t) + f (t) 6≡ 0 and, thus, from Lemma 4.3
(with g(t) := p(t) and ℓ(t) := h(t)uλ(t) + f (t)), we get

Γ(p)
∫ ω

0
[p(s)]−ds >

∫ ω

0
[p(s)]+ds (5.56)

and

u(t) > ν

(∫ ω

0

[
h(s)uλ(s) + f (s)

]
+

ds

−Γ(p)
∫ ω

0

[
h(s)uλ(s) + f (s)

]
−ds

)
for t ∈ [0, ω],

(5.57)

where

ν :=
(

Γ(p)
∫ ω

0
[p(s)]−ds −

∫ ω

0
[p(s)(s)]+ds

)−1

.
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The latter condition, together with (5.55) and (5.56) yields

m > 0, (5.58)

where m := min{u(t) : t ∈ [0, ω]}. Put

H :=
∫ ω

0
h(s)ds, F :=

∫ ω

0
[ f (s)]+ds − Γ(p)

∫ ω

0
[ f (s)]−ds.

Then, it follows (3.28), (3.39), and (5.56) that H > 0 and F > 0. Moreover, (5.55) and (5.57)
lead to the inequality

m > νHmλ + νF. (5.59)

Put
ϕ(x) := −x + νHxλ + νF for x > 0.

One can show by direct calculation that

inf
{

ϕ(x) : x > 0
}
= νF − λ − 1

λ

(
1

λνH

) 1
λ−1

and, thus, hypothesis (3.39) implies that inf
{

ϕ(x) : x > 0
}
≥ 0. Hence,

−x + νHxλ + νF ≥ 0 for x > 0,

which, in view of (5.58), contradicts (5.59).

Proof of Theorem 3.33. Let the function q be defined by formula (5.23). In view of (3.28), it is
clear that q is a Carathéodory function satisfying (3.14).

Conclusion (1): Assume that p ∈ V+(ω) and (3.40) holds, where ∆ is defined in Remark 2.5.
Since f satisfies (3.15), the inclusion (p, f ) ∈ U (ω) holds (see Remark 3.26) and condition (3.35)
is fulfilled. Therefore, it follows from Corollary 3.29 (2) and Theorem 3.25 (4) that problem
(1.3), (1.2) has exactly two positive solutions u1, u2 and these solutions satisfy (3.32).

Since u is a negative solution to problem (1.3), (1.2) if and only if the function −u is
a positive solution to the problem

z′′ = p(t)z + h(t)|z|λ sgn z − f (t); z(0) = z(ω), z′(0) = z′(ω), (5.60)

it follows from Theorem 3.25 (5) that problem (1.3), (1.2) possesses a unique negative solution
u3.

Finally, by Theorem 3.13 (4), we conclude that problem (1.3), (1.2) has exactly three solu-
tions u1, u2, u3 and these solutions satisfy (3.41).

Conclusion (2): Assume that p ∈ IntV+(ω) and (3.42) holds, where Γ is given by (2.3).
Since u is a negative solution to problem (1.3), (1.2) if and only if the function −u is a positive
solution to problem (5.60), it follows from Theorem 3.25 (5) that problem (1.3), (1.2) possesses
a unique negative solution u0. Moreover, Theorem 3.32 implies that problem (1.3), (1.2) has
no positive solution.

Therefore, by Theorem 3.13 (4), we conclude that problem (1.3), (1.2) has exactly one solu-
tions u0 and this solution is negative.
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1 Introduction

Investigation of Lazer–Solimini equation dates back to the year 1987 when the authors Lazer

and Solimini published their existence results for the equation

x′′ ±
1

xα
= p(t), α > 0, p is a 2π-periodic function,

where they found necessary and sufficient conditions for the existence of periodic solution,

see [3].

Later, many authors (e.g. see [1, 2, 8] or see an overview of the results in [10]) obtained

existence results for equation with a generalized singular term

x′′ + g(x) = p(t), (1.1)

where g : (0, ∞) → R has various types of singularity at x = 0. Two types of this singularity

are distinguished:

• attractive, i.e. limx→0+ g(x) = +∞, vs. repulsive, i.e. limx→0+ g(x) = −∞

and

BCorresponding author. Email: jan.tomecek@upol.cz



2 J. Tomeček and V. Krajščáková

• weak, i.e.
∫ 1

0 g(x)dx ∈ R vs. strong, i.e.
∫ 1

0 g(x)dx = ±∞.

It is a well-known result, that under the assumptions that g is positive, nonincreasing and

continuous on (0, ∞), limx→∞ g(x) = 0 and p is a 2π-periodic and continuous on R, then the

necessary and sufficient condition for the existence of a classical positive 2π-periodic solution

of Eq. (1.1) is the assumption

p̄ :=
1

2π

∫ 2π

0
p(t)dt > 0,

where 2π is the period of the function p – see e.g. [1,8] (the necessity can be immediately seen

by integrating Eq. (1.1) over the interval [0, 2π]).

Otherwise, i.e. if p̄ ≤ 0, the Eq. (1.1) can be understood as an impact oscillator having

a singularity at the obstacle. Therefore one can investigate another type of solution – so called

bouncing solution – e.g. see [5]. It is a generalized solution of Eq. (1.1) in the sense that

• such function is a solution of Eq. (1.1) only on certain open intervals where it is positive,

• it satisfies certain impulsive conditions at those instants where the solution reaches zero

– see Definition 2.2.

The problems of the existence of such solutions were investigated using Poincaré–Birkhoff

Twist Map Theorem for an area preserving homeomorphism of an annulus, e.g. see [4–7, 9].

In particular, in 2004, Qian and Torres [6] investigated Eq. (1.1) with an attractive weak sin-

gularity for the case p̄ < 0, i.e. if no classical solution exists. They found sufficient conditions

for the existence of periodic and subharmonic solutions with prescribed number of bounces

in each period. They suggested a possible existence of this type of solution even in the case

when the classical solution exists, i.e. a classical solution would coexist with a bouncing one.

In [9], this question was partially answered. Sufficient conditions ensuring the existence of at

least two 2π-periodic bouncing solutions with one bounce in each period were given.

The purpose of this paper is to extend the results of [9] and find sufficient conditions

guaranteeing the existence of the subharmonic solutions with prescribed number of bounces

in each period. The proofs in [9] are based on the investigation of the area-preserving homeo-

morphism T which has been constructed just for one bounce in the period. But T looses some

needed properties (e.g. the monotonicity of its first component T1) if the construction of T is

extended for more bounces in the period, and so the approach of [9] cannot be directly used.

Therefore the proofs in this paper are based on the combination of the results obtained in [6]

and [9].

The paper is organized as follows. In Section 2 we give necessary definitions of a classical

and bouncing solution, the main result (Theorem 2.3) together with a consequent result for

Lazer–Solimini equation (Corollary 2.4) and an example. In the third section we prove a slight

modification of the existence theorem from [6] in order to apply it to the properly constructed

auxiliary equation (3.4). In Section 4, the estimations of bouncing solutions of the auxiliary

problem are given and subsequently the proof of the main result is finished.

2 Problem formulation and main results

We investigate the differential equation of the second order (1.1) under the following assump-

tions:

g is locally Lipschitz continuous function, positive and nonincreasing on (0, ∞), (2.1)
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lim
x→0+

g(x) = ∞,
∫ 1

0
g(x)dx < ∞, (2.2)

p is continuous function, 2π-periodic on R, (2.3)

1

2π

∫ 2π

0
p(s)ds =: p̄ > g(∞) := lim

x→∞

g(x). (2.4)

Let us precisely define the types of solutions of Eq. (1.1) used in this article. To emphasize

the concept of bouncing solution, we start with a classical solution.

Definition 2.1. We say that x is a (classical) solution of Eq. (1.1) on an interval J ⊂ R iff x

is a positive, twice continuously differentiable function on J, and x satisfies the differential

equation (1.1) on J.

Definition 2.2. We say that x : R → R is a bouncing solution of Eq. (1.1) iff there exists a doubly

infinite sequence {ti}i∈Z, ti < ti+1, i ∈ Z such that

(i) x(ti) = 0,

(ii) x′(ti+) = −x′(ti−),

(iii) x is a classical solution of Eq. (1.1) on (ti, ti+1).

We call ti the bounces of the solution x.

We can see that a bouncing solution consists of several maximal classical solutions sepa-

rated by bounces.

To state the main result of the paper, we introduce the notation

pmax = max
s∈R

p(s), pmin = min
s∈R

p(s),

and denote by K a positive constant satisfying

g(K) > pmax. (2.5)

The existence of such K follows from assumptions (2.1)–(2.3).

Theorem 2.3 (Main result: Coexistence of bouncing and classical periodic solutions). Let (2.1)–

(2.4) hold and let
(

K

m

)2

+ 2π2 pminK ≥ 2π2
∫ K

0
g(x)dx, (2.6)

where K fulfills (2.5), m ∈ N. Then

(i) there exists a classical solution of Eq. (1.1) greater than K,

(ii) there exist at least two 2mπ-periodic bouncing solutions of Eq. (1.1) with one bounce in each

period such that their maximal values are lower than K,

(iii) for any n ∈ N, n > 1 there exist at least one 2mπ-periodic bouncing solution of Eq. (1.1) with

exactly n bounces in each period, which has the maximum value lower than K.

We give even more effective sufficient conditions for the existence of solutions of Lazer–

Solimini equation

x′′ + x−α = p(t), (2.7)

with α ∈ (0, 1).
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Corollary 2.4. Let p : R → R be a continuous, 2π-periodic function, p̄ > 0, α ∈ (0, 1) and m ∈ N

be such that

m <
1

π

√

√

√

√

1 − α

2p
1
α
max(pmax − (1 − α)pmin)

. (2.8)

Then

(i) there exists a classical solution of Eq. (2.7) greater or equal to p
− 1

α
max,

(ii) there exist at least two 2mπ-periodic bouncing solutions of Eq. (2.7) with one bounce in each

period such that their maximal values are lower than p
− 1

α
max,

(iii) for any n ∈ N, n > 1 there exist at least one 2mπ-periodic bouncing solution of Eq. (2.7) with

exactly n bounces in each period, which has the maximum value lower than p
− 1

α
max.

Proof. We apply Theorem 2.3 on Eq. (2.7). The assumptions (2.1)–(2.4) are trivially satisfied

for g(x) = x−α, x > 0. It remains to find a positive K satisfying (2.5) and (2.6). These

conditions are satisfied iff

K−α
> pmax (2.9)

and
(

K

m

)2

+ 2π2 pminK ≥ 2π2 K1−α

1 − α
. (2.10)

The inequality (2.9) is equivalent to K < p
− 1

α
max. And the inequality (2.10) can be written in the

form

ω(K) :=
K

2π2m2
+ pmin −

K−α

1 − α
≥ 0,

where ω : R → R is continuous on (0, ∞), limK→0+ ω(K) = −∞, limK→∞ ω(K) = ∞ and

ω′(K) > 0 for each K ∈ (0, ∞). Therefore there exists a unique K0 > 0 such that ω(K0) = 0.

Since ω is strictly increasing, K satisfies (2.9) and (2.10) iff K ∈ [K0, p
− 1

α
max). From (2.8) we get

ω(p
− 1

α
max) > 0, which implies that the interval [K0, p

− 1
α

max) is nonempty. Let us choose some

K ∈ [K0, p
− 1

α
max). According to Theorem 2.3 (i) there exists a classical solution x of Eq. (2.7)

greater than K. If mint∈R x(t) < p
− 1

α
max, then there exists t0 ∈ R such that x(t0) < p

− 1
α

max,

x′(t0) = 0 and x′′(t0) ≥ 0. In view of (2.7) we get

x′′(t0) = −(x(t0))
−α + p(t0) < −p(t0) + p(t0) = 0,

which is a contradiction. Therefore the classical solution is bounded from below by p
− 1

α
max.

The assertions (ii) and (iii) follow directly from Theorem 2.3 (ii), (iii) and from the inequal-

ity K < p
− 1

α
max. �

The feasibility of the obtained result is illustrated in the following example.

Example 2.5. We consider Lazer–Solimini equation (2.7), where α ∈ (0, 1), m ∈ N and p(t) =

b sin t + c with b, c > 0. Then pmax = b + c and pmin = c − b, and so the condition (2.8) can be

written as

m <
1

π

√

1 − α

2(b + c)
1
α (2b + α(c − b))

. (2.11)

For instance, the condition (2.11) is valid for these values of the parameters:
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• α = 0.5, b = 0.01, c = 0.11, m ≤ 3, or

• α = 0.1, b = 0.01, c = 0.51, m ≤ 30.

Remark 2.6. Let us note that the assumptions of Theorem 2.3 always fail to be satisfied for

high m. Indeed, let the assumptions of Theorem 2.3 hold for each m ∈ N with K = Km in (2.5)

and (2.6), i.e.

g(Km) > pmax (2.12)

and
(

Km

m

)2

+ 2π2 pminKm ≥ 2π2
∫ Km

0
g(x)dx (2.13)

for each m ∈ N. From (2.1), (2.2) and (2.4) it follows that there exists K > 0 such that

g(K) = pmax and according to (2.12) and (2.1) also K > Km for every m ∈ N, i.e. {Km} is

bounded. On the other hand, from (2.1) and (2.12) we get

∫ Km

0
g(x)dx ≥

∫ Km

0
g(Km)dx = g(Km)Km > pmaxKm.

This estimate together with (2.13) yields an inequality

(

Km

m

)2

+ 2π2 pminKm > 2π2 pmaxKm,

which gives
(

Km

m

)2

> 2π2(pmax − pmin)Km

and finally

Km > 2π2(pmax − pmin)m
2

for every m ∈ N. The last inequality contradicts the boundedness of {Km}. Therefore, the

(non)existence of subharmonic solutions of arbitrary period is still an open problem.

3 Auxiliary equation

First, let us state the main result from [6], which will be used here as the main existence

principle.

Theorem 3.1 (see [6, Theorem 1.2]). Let us assume that

g : (0, ∞) → (0, ∞) is locally Lipschitz continuous function,

there exists ε > 0 such that g is strictly decreasing on (0, ε),

}

(3.1)

g satisfies (2.2), p fulfills (2.3) and

1

2π

∫ 2π

0
p(s)ds =: p̄ < 0 = g(∞) := lim

x→∞

g(x). (3.2)

Then, for any m ∈ N, there exist at least two 2mπ-periodic bouncing solutions of Eq. (1.1) with one

bounce in each period. Moreover, for any n, m ∈ N, n ≥ 2, there exists at least one 2mπ-periodic

bouncing solution of Eq. (1.1) with n bounces in each period.



6 J. Tomeček and V. Krajščáková

In the current paper we will use this result under slightly different assumptions. More

precisely, we replace assumption (3.1) by (2.1) and assumption (3.2) by

p̄ < 0, 0 ≤ g(∞) := lim
x→∞

g(x). (3.3)

Theorem 3.2. Let us assume that (2.1), (2.2), (2.3) and (3.3) hold. Then the assertions of Theorem 3.1

remain valid.

Proof. Decreasing character of g in (3.1) is used in the paper [6] only to prove uniqueness in

the singular IVP (1.1), x(t0) = 0, x′(t0) = y0 > 0, see [6, Remark 2.4]. Since this uniqueness

was already proved in [9] under the assumptions (2.1)–(2.3), the replacement of (3.1) by (2.1)

in Theorem 3.2 is correct.

In [6], only the positivity of the function g is used, not the fact g(∞) = 0. Therefore the

replacement of (3.2) by (3.3) is also correct. �

Now, we introduce the auxiliary equation

x′′ + f (x) = p(t), (3.4)

where f : (0, ∞) → (0, ∞) is defined by

f (x) =

{

g(x) if x ∈ (0, K],

g(K) if x > K,
(3.5)

with g, p and K satisfying (2.1), (2.2), (2.3) and (2.5). From (2.5) it follows that there exists

ε > 0 such that

g(K)− pmax > ε

and therefore

f (x)− pmax > ε (3.6)

for each x > 0.

Theorem 3.3. Let us assume that (2.1), (2.2), (2.3) and (3.3) hold and let f : R → R be defined by

(3.5). Then the assertions of Theorem 3.2 are valid for Eq. (3.4).

Proof. Let us consider the differential equation

x′′ + h(x) = r(t) (3.7)

with

h(x) = f (x)− pmax −
ε

2
, x > 0 (3.8)

and

r(t) = p(t)− pmax −
ε

2
, t ∈ R. (3.9)

By (2.3), (3.8) and (3.9), we see that r is a continuous 2π-periodic function, so r fulfills condi-

tion (2.3).

By (2.1) and (3.6) we see that h is locally Lipschitz continuous, positive and nonincreasing

on (0, ∞) which means that h fulfills conditions (2.1).

Using (2.2), (3.6), (3.8) and (3.9), we get

r̄ = p̄ − pmax −
ε

2
< 0
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and

lim
x→∞

h(x) = g(K)− pmax −
ε

2
≥ ε −

ε

2
> 0.

Therefore also conditions (2.2) and (3.3) are satisfied. From Theorem 3.2 we get that assertions

of Theorem 3.1 are valid for Eq. (3.7).

Note that Eq. (3.7) is equivalent to Eq. (3.4). Indeed Eq. (3.7) is obtained from Eq. (3.4) by

subtracting the expression pmax + ε/2 from both sides. Therefore the assertions of Theorem 3.1

remains valid also for Eq. (3.4). �

4 Bounds of bouncing solutions

By Theorem 3.3 there exist at least two 2mπ-periodic bouncing solutions of Eq. (3.4) with

one bounce in each period and existence of at least one 2mπ-periodic bouncing solution of

Eq. (3.4) with n (n > 1) bounces in each period. It remains to prove that all these solutions

are bounded from above by the constant K and therefore they are also bouncing solutions of

Eq. (1.1). This is the main purpose of this section.

To achieve this goal we use several auxiliary results from [9], namely Lemma 4.1, 4.2

and 4.3 from Section 4 of that paper. Here, we assume that (2.1)–(2.4) are satisfied – these are

the same assumption as in [9, Section 4].

Let us consider an initial value problem (3.4),

x(t0) = 0, x′(t0+) = y0, (4.1)

where t0 ∈ R, y0 > 0.

Lemma 4.1 (see [9, Lemma 8]).

(a) Let t0 ∈ R, y0 > 0. Then there exists a finite t1 > t0 and a unique maximal solution x of IVP

(3.4), (4.1) on (t0, t1) such that x(t1−) = 0. Moreover there exists a ∈ (t0, t1) such that

x′(a) = 0, x′ > 0 on (t0, a), x′ < 0 on (a, t1), x′(t1−) < 0.

(b) Let t1 ∈ R, y1 > 0. Then there exists a finite t0 < t1 and a unique maximal solution x of

TVP (3.4), x(t1) = 0, x′(t1−) = −y1 on (t0, t1) such that x(t0+) = 0. Moreover there exists

a ∈ (t0, t1) such that

x′(a) = 0, x′ > 0 on (t0, a), x′ < 0 on (a, t1), x′(t0+) > 0.

Further we need some estimates. First we define several useful functions

F(x) =
∫ x

0
f (s)ds, α(x) = F(x)− pmaxx, β(x) = F(x)− pminx, x ∈ [0, ∞). (4.2)

Finally, we will need the following assertions from [9].

Lemma 4.2 (see [9, Lemma 10]). Let x be a maximal solution of Eq. (3.4) on the interval (t0, t1).

Then
√

2α(xmax) ≤ x′(t0+) ≤
√

2β(xmax), (4.3)

−
√

2β(xmax) ≤ x′(t1−) ≤ −
√

2α(xmax), (4.4)
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β−1

(

y2
0

2

)

≤ xmax ≤ α−1

(

y2
0

2

)

, (4.5)

t1 − t0 ≤
2y0

ε
, (4.6)

∀η ∈ (0, xmax) : t1 − t0 >

√

2(xmax − η)

f (η)− pmin
, (4.7)

where α, β are from (4.2), x(a) := xmax := max{x(t) : t ∈ (t0, t1)}, and ε is from (3.6).

Lemma 4.3 (see [9, Lemma 13]). There exists a continuous 2π-periodic function ψ : R → R,

ψ(R) ⊂
[

√

2α(K),
√

2β(K)
]

such that the solution x of IVP (3.4), (4.1) with y0 = ψ(t0) has its

maximum value xmax equal to K, for each t0 ∈ R.

The following lemma is a generalization of [9, Lemma 11].

Lemma 4.4. Let x, x̃ be two different maximal classical solutions of Eq. (3.4) defined on the intervals

(t0, t1), (t̃0, t̃1), respectively. If (t0, t1) ⊂ (t̃0, t̃1), then

0 < x(t) < x̃(t), t ∈ (t0, t1).

Proof. Let us prove the lemma by contradiction. Let the assumptions be satisfied and there

exists τ ∈ (t0, t1) such that x(τ) ≥ x̃(τ). We put v(t) = x(t) − x̃(t), t ∈ (t0, t1). Then

v(t0+) ≤ 0, v(t1−) ≤ 0 and v(τ) ≥ 0. From the continuity of v it follows that there exists an

interval (τ0, τ1) ⊂ (t0, t1) such that v(τ0+) = v(τ1−) = 0 and v(t) ≥ 0 for t ∈ (τ0, τ1). This

implies v′(τ0+) ≥ 0. There are two possibilities:

Case A. If v′(τ0+) = 0, then x and x̃ would be solutions of the same IVP and according to

the uniqueness (see Lemma 4.1), we get x = x̃, which is a contradiction.

Case B. Let v′(τ0+) > 0. From the Mean Value Theorem we get that there exists ξ ∈ (τ0, τ1)

such that v′(ξ) = v(τ1−)− v(τ0+) = 0. Since x and x̃ are solutions of Eq. (3.4) on (τ0, τ1) and

f is decreasing, we get

v′′(t) = x′′(t)− x̃′′(t) = − f (x(t)) + f (x̃(t)) ≥ 0

for t ∈ (τ0, τ1). Integrating this inequality over the interval (τ0, ξ), we get v′(ξ) ≥ v′(τ0+) > 0,

which is also a contradiction. �

The next lemma is a very slight generalization of [9, Lemma 14].

Lemma 4.5. Let x be a maximal solution of IVP (3.4), (4.1) with y0 = ψ(t0) defined on (t0, t1). If

(

K

m

)2

+ 2π2 pminK ≥ 2π2F(K), (4.8)

then

t1 − t0 > 2mπ. (4.9)

Proof. Let us consider linear functions

q(t) = (t − t0)
√

2β(K), t ∈ R
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y

t

K

x

t0 t1

q

t̂

r

t̃a

Figure 4.1: The solution x of IVP and auxiliary functions q and r from the proof

of Lemma 4.5.

and

r(t) = (t1 − t)
√

2β(K), t ∈ R.

The graph of function q passes through some point (t̂, K), where K = q(t̂) = (t̂ − t0)
√

2β(K).

Consequently,

t̂ − t0 =
K

√

2β(K)
.

Similarly, the graph of function r passes through some point (t̃, K), so

t1 − t̃ =
K

√

2β(K)
.

The solution x is concave on (t0, t1) and from Lemma 4.3 we obtain that x has its maximum

value equal to K. Denote x(a) = K, a ∈ (t0, t1). Therefore t̂ ∈ (t0, a) and t̃ ∈ (a, t1), see

Figure 4.1. From (4.2) and assumption (4.8) we have

K ≥ mπ
√

2β(K). (4.10)

Finally we obtain

t1 − t0 = t1 − a + a − t0 > t1 − t̃ + t̂ − t0 =
2K

√

2β(K)
≥

2mπ
√

2β(K)
√

2β(K)
= 2mπ,

where the last inequality follows from (4.10). �

Finally, in the next lemma we get the upper bound of bouncing solutions.

Lemma 4.6. Let x be 2πm-periodic bouncing solution of Eq. (3.4) with n bounces in each period,

m, n ∈ N. Then x(t) < K for each t ∈ R.

Proof. Let t0 ∈ R be such that x(t0) = 0. Then there exist bounces t1, . . . , tn ∈ R such that

t0 < t1 < · · · < tn = t0 + 2πm. Let x̃ be a maximal classical solution of IVP (3.4), (4.1) with

y0 = ψ(t0) defined on the interval (t0, t̃1). According to Lemma 4.5, t̃1 > t0 + 2πm = tn. Then

for i = 0, . . . , n − 1 we have (ti, ti+1) ⊂ (t0, t̃1), which by Lemma 4.4 implies that x(t) < x̃(t) ≤

K for each t ∈ (ti, ti+1). This proves that x is lower than K on the interval [t0, t0 + 2πm] and

the rest follows from 2πm-periodicity. �
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Now, we are ready to prove the main theorem of this paper.

Proof of Theorem 2.3. Let (2.1)–(2.6) be satisfied. Case (i) is proved in [9]. Let us prove the

cases (ii) and (iii). Due to Theorem 3.3 for any m ∈ N, there exists at least two 2mπ-periodic

bouncing solutions of Eq. (3.4) with one bounce in each period and for any n, m ∈ N, n ≥ 2,

there exists at least one 2mπ-periodic bouncing solution of Eq. (3.4) with n bounces in each

period. By Lemma 4.6 every bouncing solution of Eq. (3.4) is lower than K. According to (3.5),

these functions are also bouncing solutions of Eq. (1.1). �
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1 Introduction

In this paper, we consider the following elliptic problem:



















−∆u = µ
u

|x|2 + |x|αup(α)−1−ε, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where Ω is a ball BR(0) in R
N(N ≥ 3), −2 < α < 0, p(α) = 2(N+α)

N−2 , 0 < ε < p(α) − 1,

0 ≤ µ < µ =
(

N−2
2

)2
.

The equation in problem (1.1) is the Euler–Lagrange equation of the energy functional

E : H1
0(Ω) → R defined by

E(u) =
1

2

(

∫

Ω

|∇u|2 − µ
u2

|x|2
)

− 1

p(α)− ε

∫

Ω

|x|αup(α)−ε, ∀u ∈ H1
0(Ω).

BCorresponding author. Email: gmweixy@163.com
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It is known that critical points of functional E(u) correspond to solutions of (1.1).

We denote

‖u‖ ,

(

∫

Ω

|∇u|2 − µ
u2

|x|2
)

1
2

, ∀u ∈ H1
0(Ω).

Let us recall the Sobolev–Hardy inequality (see Lemma 2.1 in this paper), which using the fact

0 ≤ µ < µ̄ implies that ‖u‖ is equivalent to the norm of H1
0(Ω).

In the case µ = 0 and α = 0, a prototype of problem (1.1) is











−∆u = u2∗−1−ε, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(1.2)

When ε = 0, it is well known that the solution of problem (1.2) is bounded in the neighbor-

hood of the origin. Gidas, Ni and Nirenberg [17] proved that all the solutions with reasonable

behavior at infinity, namely

u = O(|x|2−N), (1.3)

are radially symmetric about some point. So, the form of the solutions may be assumed as

u(x) =
[N(N − 2)λ2]

N−2
4

(λ2 + |x − x0|2)
N
2 −1

for some λ > 0 and x0 ∈ R
N .

Later in [7, Corollay 8.2] and [9, Theorem 2.1], the growth assumption (1.3) was removed,

which implies that, for positive C2 solutions of problem (1.2), we have the same result.

When ε > 0, Atkinson and Peletier [2] used ODE arguments to obtain exact asymptotic

estimates of the radially symmetric solution of problem (1.2) as ε → 0. The following are their

principal results

lim
ε→0

εu2(0, ε) =
4

N − 2
{N(N − 2)} N−2

2
Γ(N)
[

Γ(N
2 )
]2

1

RN−2

and for x 6= 0

lim
ε→0

ε−
1
2 u(x, ε) =

1

2
N

N−2
4 (N − 2)

N
4 R

R−2
2

Γ(N
2 )

[Γ(N)]
1
2

(

1

|x|N−2
− 1

RN−2

)

.

In the case µ = 0 and α > 0, problem (1.1) is known as the Hénon equation











−∆u = |x|αup−1, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.4)

where p ∈ (2, 2∗). Equation (1.4) was proposed by Hénon when he studied rotating stellar

structures and readers can refer to Ni [24], Smets [26] and Cao–Peng [11]. Among these

works, for equations with critical, supercritical and slightly subcritical growth, the existence

and multiplicity of non-radial solutions, the symmetry and asymptotic behavior of ground

states were studied by variational method (for p → 2N
N−2 or α → ∞).
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In the case 0 ≤ µ < µ =
(

N−2
2

)2
and α = 0, problem (1.1) can be written as



















−∆u = µ
u

|x|2 + u2∗−1−ε, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(1.5)

By using Moser iteration and a generalized comparison principle, Cao and Peng [10] proved

u(x) ∈ H1
0(Ω) satisfying

{

u(x)|x|ν ≥ C1, ∀x ∈ Ω
′ ⊂⊂ Ω,

u(x)|x|ν ≤ C2, ∀x ∈ Ω,

where C1 and C2 are two positive constants, ν =
√

µ −
√

µ − µ. When Ω = BR, u(x) is

radially symmetric. Hence, they converted (1.5) to ODE and obtained the following:

lim
ε→0

lim
|x|→0

εu2
ε |x|2ν = 4(2

√

µ − µ)N−1N
N−2

2 (N − 2)−
N+2

2
Γ(N)
[

Γ(N
2 )
]2

1

R2
√

µ−µ

and for x 6= 0

lim
ε→0

ε−
1
2 uε(x) =

1

2
√

2
(2
√

µ − µ)
N−3

2 N
N−2

4 (N − 2)−
N−6

4 R
√

µ−µ Γ(N
2 )

[Γ(N)]
1
2

×
(

1

|x|
√

µ+
√

µ−µ
− 1

|x|
√

µ−
√

µ−µ|R|2
√

µ−µ

)

.

Motivated by the previous works and remark 4.2 in [10], we first prove the existence and

radial symmetry of positive solution of (1.1). Then we focus on the asymptotic behavior of the

solutions of problem (1.1) as ε → 0.

To state our main results, for convenience, we set p = p(α) − 1 − ε, ν =
√

µ −
√

µ − µ,

Ω = BR = {x ∈ R
N : |x| < R}, R > 0. We denote by uε(x) the solution of (1.1) and Γ(x) is

the Gamma function.

Theorem 1.1. Suppose that −2 < α < 0, 0 ≤ µ < µ̄, 0 < ε < p(α)− 1. Then problem (1.1) has a

radially symmetric solution in H1
0(Ω).

For the proof of this Theorem 1.1, we first obtain a solution by the Mountain Pass Lemma.

Then, by moving plane method for elliptic equations with variable coefficients in [14], we can

prove that the posotive solution is radially symmetric. For problem (1.2), the solution satisfies

Gidas–Ni–Nirenberg Theorem in [17] and hence all solutions of (1.2) are radial symmetric.

However, here we cannot use Gidas–Ni–Nirenberg theorem directly since problem (1.1) in-

cludes the hardy term µ u
|x|2 and singular coefficient |x|α. Luckily, through a transformation of

the original solution uε(x), the new equation satisfied by the new solution v(x) satisfies the

conditions of a Corollary in [14] and we obtain the result. To be more precise, set

v(x) = |x|−
√

µ+
√

µ−µuε(x),

using Moser iteration and a generalized comparison principle introduced by Merle and

Peletier [22], we prove that v ∈ L∞(Ω) and is bounded from below and above. Thus we

obtain that the precise singularity of uε(x) at the origin is like |x|−
√

µ+
√

µ−µ. Then applying
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Lemma 2.5 in Section 2 to this new equation, we deduce that v(x) is radially symmetric and

satisfies the following ODE:



















v′′ +
N − 1 − 2ν

r
v′ +

1

r(p(α)−2−ε)ν−α
vp(α)−1−ε = 0, for 0 < r < R,

v(r) > 0, for 0 < r < R,

v(R) = 0.

(1.6)

Because (1.6) is still singular at the origin, we can use the well-known shooting argument

introduced by Atkinson and Peletier [2] to convert (1.6) to the following ODE:











y′′(t) = −t−k(α,ε)yp(α)−1−ε
,

y(t) > 0, for T < t < ∞,

y(T) = 0,

(1.7)

where k(α, ε) = 2m+α
m−1 − (p(α)−2−ε)ν

m−1 , m = 1 + 2
√

µ − µ = N − 2ν − 1, T = (m−1
R )m−1, p(α)− 1 =

2k(α, ε)− 3 − 2νε
m−1 .

Till now, study on behaviors and precise properties of the original solution uε(x) can be

reduced to deal with (1.7). Based on this, we have

Theorem 1.2. Let uε(x) ∈ H1
0(Ω) be a solution of problem (1.1). Then

lim
ε→0

lim
|x|→0

εu2
ε |x|2ν = 2(α + 2)(2

√

µ − µ)
2N+α−2

α+2 (N + α)
N−2
α+2 (N − 2)−

2α+N+2
α+2

Γ( 2(N+2)
α+2 )

[

Γ(N+α
α+2 )

]2

1

R2
√

µ−µ
.

Theorem 1.3. Let uε(x) ∈ H1
0(Ω) be a solution of problem (1.1). Then, for every x 6= 0,

lim
ε→0

ε−
1
2 uε(x) =

1

2
(α + 2)−

1
2 (2
√

µ − µ)
2N−α−6

2α+4 (N + α)
N−2
2α+4 (N − 2)

2α−N+6
2α+4 R

√
µ−µ Γ(N+α

α+2 )
[

Γ

(

2(N+α)
α+2

)]
1
2

×
(

1

|x|
√

µ+
√

µ−µ
− 1

|x|
√

µ−
√

µ−µ|R|2
√

µ−µ

)

.

Notations:

• C, Ci, i = 0, 1, 2, . . . denote positive constants, which may vary from line to line;

• ‖ · ‖ and ‖ · ‖Lq denote the usual norms of the spaces H1
0(Ω) and Lq(Ω), respectively,

Ω ∈ R
N ;

• Some of the notations that will appear in the following paragraphs:

m = 1 + 2
√

µ − µ = N − 2ν − 1, T =
(m − 1

R

)m−1
,

k = k(α, ε) =
2m + α

m − 1
− (p(α)− 2 − ε)ν

m − 1
, k1(α, ε) = (k − 1)

1
k−2 ,

k2(α, ε) =
k − 1

k − 2
, Tα,ε =

γ
p(α)−2−ε

k−2

k1(α, ε)
=

γ
2− m−1−2ν

(m−1)(k−2)
ε

k1(α, ε)
,

τ(α, ε) =
( t

Tα,ε

)k−2
, ϕ(α, ε) =

m − 1 + 2ν

(m − 1)(k − 2)
ε,

Cα,β,ε =
β

(1 + βk−2)
1

k−2

, dα,β,ε =
(1 − Cα,β,ε)(1 + 2ν/(m − 1))

C
2+(1+2ν/(m−1))ε
α,β,ε

.
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2 Preliminary results and existence of solution

In this section,we shall provide some preliminaries which will be used in the sequel and prove

the existence of solution to problem (1.1).

Lemma 2.1 (see [16, Lemma 3.1 and 3.2]). Suppose −2 < α < 0, 2 ≤ q ≤ p(α), and 0 ≤ µ < µ.

Then

(i) (Hardy inequality)
∫

Ω

u2

|x|2 ≤ 1

µ

∫

Ω

|∇u|2, ∀u ∈ H1
0(Ω);

(ii) (Sobolev–Hardy inequality)

there exists a constant C > 0 such that

(

∫

Ω

|x|α|u|q
)

1
q

≤ C‖u‖, ∀u ∈ H1
0(Ω);

(iii) the map u 7→ |x|
α
q u from H1

0(Ω) into Lq(Ω) is compact for q < p(α).

Lemma 2.2 (see [5, Theorem 2.2]). Let J be a C1 function on a Banach space X. Suppose there exists

a neighborhood U of 0 in X and a constant ρ such that J(u) ≥ ρ for every u in the boundary of U,

J(0) < ρ and J(v) < ρ for some v /∈ U.

Set

c = inf
g∈Γ

max
ω∈g

J(ω) ≥ ρ,

where Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = v, J(g(1)) < ρ} .

Conclusion: there is a sequence {un} in X such that J(un) → c and J′(un) → 0 in X∗.

Lemma 2.3 (The Caffarelli–Kohn–Nirenberg inequalities, see [8] and [12]). For all u ∈ C∞

0 (RN),

(

∫

RN
|x|−bq|uq|

)

p
q

≤ Ca,b

∫

RN
|x|−ap|Du|pdx,

where (i) for n > p,

−∞ < a <
n−p

p , 0 ≤ b − a ≤ 1, and q = np
n−p+p(b−a)

and (ii) for n ≤ p,

−∞ < a <
n−p

p ,
p−n

p ≤ b − a ≤ 1, and q = np
n−p+p(b−a)

.

Lemma 2.4 (see [25, page 4]). Suppose V is a reflexive Banach space with norm ‖ · ‖, and let M ⊂ V

be a weakly closed subset of V. Suppose E : M → R ∪ {+∞} is coercive and (sequentially) weakly

lower semi-continuous on M with respect to V, that is, suppose the following conditions are fulfilled:

(1) (coercive) E(u) → ∞ as ‖u‖ → ∞, u ∈ M.

(2) (W.S.L.S.C) For any u ∈ M, any sequence {um} in M such that um ⇁ u weakly in V there

holds:

E(u) ≤ lim inf
m→∞

E(um).
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Then E is bounded from below on M and attains its infimum in M.

Lemma 2.5 (see [14, Corollary 1.6]). Let u be a bounded C2(BR\{0}) ∩ C1(BR\{0}) solution of















∂i(|x|b∂iu) + K|x|auq = 0, x ∈ BR\{0},

u > 0, x ∈ BR\{0},

u = 0, x ∈ ∂BR\{0},

where K is a positive constant.Then u is radially symmetric in BR provided q ≥ 1, b( 1
2 b + N − 2) ≤ 0

and 1
2 b ≥ a

q .

Proof. When b < 0, we have |x|b is singular at origin.

It’s clear that

S(x)

|x|b − S(xλ)

|xλ|b =
1

2
b

(

1

2
b + N − 2

)

(|x|b−2 − |xλ|b−2) ≥ 0

and

K

( |x|b
|xλ|b

)

1
2

|xλ|auq − K|x|a




( |x|b
|xλ|b

)

1
2

u





q

= K|x| 1
2 b|xλ|a− 1

2 b



1 −
( |xλ|

|x|

)

1
2 bq−a



 uq ≥ 0,

where S(x) = 1
2 (∆|x|b − 1

2|x|b |∇|x|b|2).
From [14], we have

hλ(x) =

( |xλ|b
|x|b

)

1
2

u(xλ)− u(x),

where xλ = (2λ − x1, x2, . . . , xN).

By Lemma 4.2 in [14], we can obtain u has a positive lower bound near the origin. Hence,

we can get the estimate of hλ(x) near the origin. Furthermore, if xλ = 0, we have hλ(x) = ∞.

Now, we consider the case of u ∈ C2(B1\{0}) ∩ C1(B1\{0}) in Proposition 1.3 of [14].

Analogically, we can also obtain u(x1, x2, . . . , xN) ≤ u(−x1, x2, . . . , xN) for x1 ∈ (−1, 0) and

x1 ∈ (0, 1). Hence, u is symmetric in x1. By Lemma 1.1 in [14], the above analysis and scaling

transformation, u(x) is radially symmetric in BR.

Next, we shall prove the existence of solution to the problem (1.1). To start with, we prove

the existence of nonnegative solution to the following Dirichlet problem:

{

−∆u = µ u
|x|2 + |x|α|u|p(α)−2−εu, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.1)

where Ω is a ball in R
N(N ≥ 3) centered at the origin, −2 < α < 0, p(α) = 2(N+α)

N−2 , 0 < ε <

p(α)− 1,0 ≤ µ < µ =
(

N−2
2

)2
.

The energy functional corresponding to problem (2.1) is

J(u) =
1

2
‖u‖2 − 1

p(α)− ε

∫

Ω

|x|α|u|p(α)−ε, u ∈ H1
0(Ω).

Lemma 2.6. The function J satisfies (PS)c condition for every c ∈ R.
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Proof. Take c ∈ R and assume that {un} is a Palais–Smale sequence at level c, namely such

that

J(un) → c and J′(un) → 0 (in H−1(Ω)).

This implies that there is a constant M > 0 such that

|J(un)| ≤ M. (2.2)

From J′(un) → 0, we obtain

o(1)‖un‖ = 〈J′(un), un〉 = ‖un‖2 −
∫

Ω

|x|α|un|p(α)−ε. (2.3)

Calculating (2.2) − 1
p(α)−ε

(2.3), we have

M + o(1)‖un‖ ≥ 1

2
‖un‖2 − 1

p(α)− ε

∫

Ω

|x|α|un|p(α)−ε

− 1

p(α)− ε
‖un‖2 +

1

p(α)− ε

∫

Ω

|x|α|un|p(α)−ε

=

(

1

2
− 1

p(α)− ε

)

‖un‖2,

which implies the boundedness of {un}. By usual arguments, we can assume that up to a

subsequence, there exists u ∈ H1
0(Ω) such that

• un ⇀ u in H1
0(Ω);

• |x|
α

p(α)−ε un → |x|
α

p(α)−ε u in Lp(α)−ε(Ω);

• ·un → u for almost every x ∈ Ω.

We now show that the convergence of un to u is strong.

First of all, from the above convergence properties, we obtain

∥

∥

∥
un|x|

α
p(α)−ε − u|x|

α
p(α)−ε

∥

∥

∥

Lp(α)−ε(Ω)
→ 0, n → ∞.

As J′(un) → 0 and un ⇀ u, we also have 〈J′(un), un − u〉 → 0 and obviously

〈J′(u), un − u〉 → 0. Then, as n → ∞, on the one hand,

〈J′(un)− J′(u), un − u〉 ≤ |〈J′(un), un − u〉|+ |〈J′(u), un − u〉| = o(1).

On the other hand,

〈J′(un)− J′(u), un − u〉

=
∫

Ω

|∇un −∇u|2 −
∫

Ω

µ
|un − u|2

|x|2 −
∫

Ω

|x|α(|un|p(α)−2−εun − |u|p(α)−2−εu)(un − u)

= ‖un − u‖2 −
∫

Ω

|x|α(|un|p(α)−2−εun − |u|p(α)−2−εu)(un − u).

We claim
∫

Ω
|x|α(|un|p(α)−2−εun − |u|p(α)−2−εu)(un − u) → 0.
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Indeed, by Hölder’s inequality,
∫

Ω

|x|α|un|p(α)−2−εun(un − u)

≤
∫

Ω

|x|α|un|p(α)−1−ε|un − u|

=
∫

Ω

|x|α·
p(α)−1−ε

p(α)−ε |un|p(α)−1−ε|x|α·
1

p(α)−ε |un − u|

≤





∫

Ω

(

|x|α·
p(α)−1−ε

p(α)−ε |un|p(α)−1−ε

)

p(α)−ε
p(α)−1−ε





p(α)−1−ε
p(α)−ε

[

∫

Ω

(

|x|α·
1

p(α)−ε |un − u|
)p(α)−ε

]

1
p(α)−ε

=

(

∫

Ω

|x|α|un|p(α)−ε

)

p(α)−1−ε
p(α)−ε ∥

∥

∥
|x|

α
p(α)−ε |un − u|

∥

∥

∥

Lp(α)−ε(Ω)

≤ C ‖un‖p(α)−1−ε
∥

∥

∥
un|x|

α
p(α)−ε − u|x|

α
p(α)−ε

∥

∥

∥

Lp(α)−ε(Ω)

= o(1).

(2.4)

By (2.4), similar calculation also gives
∫

Ω

|x|α|u|p(α)−2−εu(un − u) = o(1). (2.5)

From the above analysis, we obtain

o(1) = 〈J′(un)− J′(u), un − u〉 = ‖un − u‖2 + o(1),

which implies un → u in H1
0(Ω) and proves that J satisfies (PS)c condition for every c ∈ R.

Lemma 2.7. The function J admits a (PS)c sequence in the cone of nonnegative function at the level

c = inf
g∈Γ

max
t∈[0,1]

J(g(t)),

where Γ = {g ∈ C([0, 1], H1
0(Ω)) : g(0) = 0, J(g(1)) < 0}.

Proof. We next prove that J satisfies all the hypotheses of the mountain pass lemma. Obviously,

J(0) = 0.

From the Sobolev–Hardy inequality, we obtain

J(u) =
1

2
‖u‖2 − 1

p(α)− ε

∫

Ω

|x|α|u|p(α)−1−εu

≥ 1

2
‖u‖2 − C1‖u‖p(α)−ε.

For any α, we can choose ε small enough such that p(α)− ε > 2. From the above analysis,there

exist ρ, e > 0 such that J(u) ≥ ρ, ∀u ∈ {u ∈ H1
0(Ω) : ‖u‖ = e}. Furthermore, for any

u ∈ H1
0(Ω),

J(tu) =
t2

2
‖u‖2 − tp(α)−ε

p(α)− ε

∫

Ω

|x|α|u|p(α)−1−εu.

We obtain J(tu) → −∞ as t → ∞. Hence, we can choose t0 > 0 such that J(t0u) < 0.

Therefore, by Lemma 2.2, we infer that J admits a (PS)c sequence at level c, such sequence

may be chosen in the set of nonnegative functions because J(|u|) ≤ J(u) for all u ∈ H1
0(Ω).

By Lemma 2.6, 2.7 and mountain pass lemma, we get a nonnegative solution u ∈ H1
0(Ω)

for (1.1), this solution is positive by the maximum principle.
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3 Estimate of the singularity

First, we fix p = p(α) − 1 − ε > 0 in problem (1.1) and study the singularity and radial

symmetry of the solution uε(x) ∈ H1
0(Ω). By standard elliptic regularity theory, uε(x) ∈

C2(Ω\{0})⋂C1(Ω\{0}). Hence the singular point of uε(x) should be the origin.

Suppose that uε(x) ∈ H1
0(Ω) satisfies problem (1.1).

Let v(x) = |x|νuε(x), then

−∆u = (−ν2 − 2ν + Nν)|x|−ν−2v(x) + 2ν|x|−ν−2x∇v(x)− |x|−ν
∆v(x),

µ
u

|x|2 + |x|αup(α)−1−ε = µ|x|−ν−2v(x) + |x|α−(p(α)−1−ε)νv(x)p(α)−1−ε.

From equation in (1.1),

(−ν2 − 2ν + Nν)|x|−ν−2v(x) + 2ν|x|−ν−2x∇v(x)− |x|−ν
∆v(x)

= µ|x|−ν−2v(x) + |x|α−(p(α)−1−ε)νv(x)p(α)−1−ε.

Multiply both sides of the above equation by |x|−ν, then we get

[−ν2 +(N − 2)ν]|x|−2ν−2v(x)−div(|x|−2ν∇v(x)) = µ|x|−2ν−2v(x)+ |x|α−(p(α)−ε)νv(x)p(α)−1−ε.

For ν =
√

µ −
√

µ − µ, we obtain















−div(|x|−2ν∇v) = |x|−(p(α)−ε)ν+αvp(α)−1−ε, x ∈ Ω,

v > 0, x ∈ Ω,

v = 0, x ∈ ∂Ω.

(3.1)

By the regularity theory of elliptic equations, vε(x) ∈ C2(Ω\{0})⋂C1(Ω\{0}). Moreover,

we have

Lemma 3.1.

(i) v(x) ∈ H1
0(Ω, |x|−2ν).

(ii) v(x) is bounded in Ω.

Proof. (i) For any u(x) ∈ H1
0(Ω) satisfying problem (1.1), by Hardy inequality, we have

∫

Ω

|x|−2ν|∇v|2 =
∫

Ω

|x|−2ν||x|ν∇u + ν|x|ν−2ux|2

≤ 2

(

∫

Ω

|∇u|2 + ν2
∫

Ω

u2

|x|2
)

≤ C.

Hence, we claim v(x) = |x|νu(x) ∈ H1
0(Ω, |x|−2ν).

(ii) From Caffarelli–Kohn–Nirenberg inequality mentioned in Lemma 2.3, we have

(

∫

Ω

|x|m1 |∇u|2
)

1
2

≥ Cm1,n1

(

∫

Ω

|x|n1 |u|p(m1,n1)

)
1

p(m1,n1)

, ∀u ∈ H1
0(Ω, |x|m1), (3.2)



10 S. Li, G. Wei and X. Duan

where

m1 = −2ν, n1 = −(p(α)− ε)ν + α, p(m1, n1) = p(α) +
εν

√

µ − µ
.

Note that
∫

Ω

|x|m1∇v · ∇ϕ =
∫

Ω

|x|n1 vp ϕ, ∀ϕ ∈ H1
0(Ω, |x|m1).

For s, l > 1, define vl(x) = min{v(x), l}. Taking ϕ = v · v
2(s−1)
l ∈ H1

0(Ω, |x|m1) in the above

equation, we have
∫

Ω

|x|m1 |∇v|2v
2(s−1)
l + 2(s − 1)

∫

Ω

|x|m1 |∇vl |2v
2(s−1)
l =

∫

Ω

|x|n1 vp+1v
2(s−1)
l .

Hence,
(

∫

Ω

|x|n1(v · vs−1
l )p(m1,n1)

)
2

p(m1,n1)

≤ C−2
m1,n1

∫

Ω

|x|m1 |∇(v · vs−1
l )|2

≤ 2C−2
m1,n1

(

(s − 1)2
∫

Ω

|x|m1 |∇vl |2v
2(s−1)
l +

∫

Ω

|x|m1 |∇v|2v
2(s−1)
l

)

≤ 2C−2
m1,n1

s
∫

Ω

|x|n1 vp+2s−1.

(3.3)

From (3.3) and Levi’s theorem, we see that v∈Lp+2s−1(Ω,|x|n1) implies v∈Lsp(m1,n1)(Ω,|x|n1).

For j = 0, 1, 2, . . . , by induction we define

{

p − 1 + 2s0 = p(m1, n1),

p − 1 + 2sj+1 = p(m1, n1)sj,
(3.4)







M0 = (C · C−2
m1,n1

)
p(m1,n1)

2 ,

Mj+1 = (2C−2
m1,n1

sj Mj)
p(m1,n1)

2 ,
(3.5)

where C is a fixed number such that
∫

Ω
|x|m1 |∇v|2 ≤ C.

From (3.4), we see that

sj =
(2−1 p(m1, n1))

j+1(p(m1, n1)− p − 1) + p − 1

p(m1, n1)− 2
.

From (3.5), similar to the computation in [21], we can see that

∃d > 0 and d is independent of j, such that Mj ≤ edsj−1 .

Since 2 < p + 1 < p(m1, n1), it follows that sj > 1 for all j ≥ 0, sj → +∞ as j → +∞.

By (3.3), (3.4) and (3.5),

∫

Ω

|x|n1 vp+2s1−1 ≤ (2C−2
m1,n1

s0)
p(m1,n1)

2

(

∫

Ω

|x|n1 vp+2s0−1

)

p(m1,n1)
2

≤ (2C−2
m1,n1

s0)
p(m1,n1)

2

(

C
p(m1,n1)

2 C
−p(m1,n1)
m1,n1

)

p(m1,n1)
2

≤ (2C−2
m1,n1

s0M0)
p(m1,n1)

2

≤ M1.



Existence and asymptotic behavior of solutions of elliptic equations 11

Similarly,
∫

Ω

|x|n1 vp+2sj−1 ≤ Mj.

Hence, by p + 2sj+1 − 1 = p(m1, n1)sj, denoting C(Ω, n1) = maxx∈Ω|x|−n1 , we obtain

|v|
L

p(m1,n1)sj (Ω)
≤
(

∫

Ω

|v|p(m1,n1)sj |x|n1 · |x|−n1

)
1

p(m1,n1)sj

≤ C(Ω, n1)
1

p(m1,n1)sj |v|
1

p(m1,n1)sj

L
p(m1,n1)sj (Ω,|x|n1 )

≤ C(Ω, n1)
1

p(m1,n1)sj M

1
p(m1,n1)sj

j+1

≤ C(Ω, n1)
1

p(m1,n1)sj e
d

p(m1,n1) .

Taking limit on each side of the above inequality and using sj → +∞, as j → +∞, we have

|v|L∞(Ω) ≤ e
d

p(m1,n1) ,

which implies the conclusion.

From Lemma 3.1, we can see that v(x) = |x|νu(x) is bounded form above in Ω. For the

lower bound of v(x) = |x|νu(x), we have

Lemma 3.2. Suppose that u(x) ∈ H1
0(Ω) satisfies problem (1.1) and 0 ≤ µ < µ, then for any

Bρ ⊂⊂ Ω there exists a C(ρ) > 0, such that

u(x) ≥ C(ρ)|x|−ν, ∀x ∈ Bρ ⊂⊂ Ω.

Proof. Let f (x) = min{|x|αup(α)−1−ε(x), l} with l > 0, then f ∈ L∞(Ω).

Let u1 ≥ 0 and u1 ∈ H1
0(Ω) be the solution of the following linear problem







−∆u1 = µ
u1

|x|2 + f , x ∈ Ω,

u1 = 0, x ∈ ∂Ω.
(3.6)

Set U = u − u1, then U ∈ H1
0(Ω) and U satisfies the following problem







−∆U = µ
U

|x|2 + g, x ∈ Ω,

U = 0, x ∈ ∂Ω,

(3.7)

where g ≥ 0 and 0 ≤ µ < µ = (N−2
2 )2.

From Lemma 2.4, there exist solutions for problem (3.6) and (3.7). From the Hardy in-

equality and the comparison principle proved in [15], we obtain that u is a super-solution

of problem (3.6) and 0 ≤ u1 ≤ u. Actually we can prove this as follows. Multiplying

U− := max{0,−U(x)} on both side of equation in (3.7) and integrating by parts, we have

−
∫

Ω

|∇U−|2 = −
∫

Ω

µ
(U−)2

|x|2 +
∫

Ω

gU−.

It follows that U− = 0 in Ω and hence U ≥ 0.
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By Lemma 3.1, there exists a constant C1 > 0 such that 0 ≤ u1(x) ≤ u(x) ≤ C1|x|−ν. So it

suffices to prove the result for u1.

Since u1 6≡ 0, u1 ≥ 0 and −∆u1 ≥ 0 in Ω, there exists δ > 0 such that for sufficiently small

ρ > 0 it holds that u1 ≥ δ for ∀x ∈ B2ρ. Choose C(ρ) ≥ 0 satisfying C(ρ)|x|−ν ≤ δ for |x| = ρ

and set ω = (u1 − C|x|−ν)−. By
∫

Bρ
|∇|x|−ν|2 < ∞ and u1 ∈ H1

0(Bρ), we have ω ∈ H1
0(Bρ).

From (3.6) and the fact that |x|−ν is the solution of equation −∆u − µ u
|x|2 = 0, the linear

combination of u1 and |x|−ν is the solution of −∆u = µ u
|x|2 + f . Hence,

−∆(u1 − C|x|−ν) = µ
(u1 − C|x|−ν)

|x|2 + f .

Multiply ω on both side of the above equation and integrate by part, we obtain

−
∫

Bρ

|∇ω|2 +
∫

Bρ

µ
ω2

|x|2 =
∫

Bρ

f ω ≥ 0.

Since 0 ≤ µ < µ̄, it follows that ω = 0.

Another proof of ω = 0: It only need to prove that −
∫

Bρ
|∇ω|2 +

∫

Bρ
µ ω2

|x|2 ω ≥ 0. Other-

wise,

0 > −
∫

Bρ

|∇ω|2 +
∫

Bρ

µ
ω2

|x|2

=
∫

Bρ

∇(u1 − C|x|−ν) · ∇ω −
∫

Bρ

µ

|x|2 (u1 − C|x|−ν)ω

=
∫

Bρ

f ω − C(
∫

Bρ

∇|x|−ν · ∇ω −
∫

Bρ

µ

|x|2 |x|
−νω)

=
∫

Bρ

f ω +
Cν

ρν+1

∫

∂Bρ

ω

>
Cν

ρν+1

∫

∂Bρ

ω

≥ 0.

This is a contradiction and we are done.

Proposition 3.3. Suppose that u(x) ∈ H1
0(Ω) satisfies problem (1.1) and 0 ≤ µ < µ. Then for any

Ω
′ ⊂⊂ Ω there exists two positive constants C1 and C2, such that

{

u(x)|x|ν ≥ C1, ∀x ∈ Ω
′ ⊂⊂ Ω.

u(x)|x|ν ≤ C2, ∀x ∈ Ω.
(3.8)

Next, we use Lemma 2.5 and Proposition 3.3 to prove that the solution is radially symmet-

ric with Ω = BR.

Theorem 3.4. Suppose that −2 < α < 0 and p(α) = 2(N+α)
N−2 . Then the solution of problem (1.1) is

radially symmetric.

Proof. Using the previous notations, we only need to show that v(x) is radially symmetric in

Ω. By the regularity theory of elliptic equations, we have v(x) ∈ C2(BR\{0}) ∩ C1(BR\{0}).
Next, we have to prove that v(x) satisfies Lemma 2.5. From (3.1), we obtain

∂i(|x|−2ν∂iv) + |x|−(p(α)−ε)ν+αvp(α)−1−ε = 0.

Hence, v(x) satisfies Lemma 2.5 when b = −2ν,a = −(p(α)− ε)ν + α, q = p(α)− 1 − ε and

K = 1.
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4 Some basic estimates

Set r = |x|. Let v(r) = |x|νuε(x). Then v(r) satisfies



















v′′ +
N − 1 − 2ν

r
v′ +

1

r(p(α)−2−ε)ν−α
vp(α)−1−ε = 0,

v(r) > 0, for 0 < r < R,

v(R) = 0.

(4.1)

Let t =
(

N−2ν−2
r

)N−2ν−2
and y(t) = (N − 2ν − 2)−g(α,ε)v(r), where g(α, ε) = (p(α)−2−ε)ν−α

p(α)−2−ε
.

Then problem (4.1) can be rewritten as











y′′(t) = −t−k(α,ε)yp(α)−1−ε,

y(t) > 0, for T < t < ∞,

y(T) = 0,

(4.2)

where k(α, ε) = 2m+α
m−1 − (p(α)−2−ε)ν

m−1 , m = 1 + 2
√

µ − µ = N − 2ν − 1, T = (m−1
R )m−1, p(α)−

1 = 2k(α, ε)− 3 − 2νε
m−1 .

In order to simplify the expression, we will always replace k(α, ε) with k in the sequel.

First we give

Lemma 4.1. Let y(t) be a solution of problem (4.2), then there exists a positive number γ < ∞ such

that

limt→∞ y′(t) = 0 and limt→∞ y(t) = γ.

Proof. By Proposition 3.3, it is obvious that y(t) is bounded in [T, ∞). From (4.2), we know

y′′(t) < 0 for all t > T, so y′(t) decreases strictly in t ∈ (T, ∞). Hence

y′(t) → c x0as t → +∞.

If c > 0, we can deduce y(t) → +∞ when t → +∞. Similarly, when c < 0, we have

y(t) → −∞ when t → +∞. However, the boundedness of y(t) leads to the contradiction.

Hence, limt→∞ y′(t) = 0 and limt→∞ y(t) = γ.

Remark 4.2.

(i) From Lemma 4.1, if we define v(0) = limr→0 v(r) = (N − 2ν − 2)g(α,ε)γ, then v(r) ∈
C[0, R]. Furthermore, v′(r) < 0 for all r ∈ (0, R].

(ii) y′(t) > 0 for all t > T and y′(t) ∼ 1
k−1 t1−kγp(α)−1−ε as t → ∞.

Next, we consider
{

y′′(t) + t−kyp(α)−1−ε = 0, t < ∞,

lim
t→∞

y(t) = γ,
(4.3)

where γ > 0.

Since k > 2, it follows from [2] that problem (4.3) has a unique solution which will be

denoted by y(t, γ) for every γ > 0. Define

T(γ) = inf{t > 0 : y(t, γ) > 0 on (t, ∞)}. (4.4)
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From Lemma 4.1, we have limt→∞ w(s) = 1, where w(s) = y(t)
γ . Hence,

T(1) = inf{s > 0 : w(s, 1) > 0 on (s, ∞)}.

Set t = γ
p(α)−2−ε

k−2 s, then

w′′(s) = −s−kwp(α)−1−ε(s).

So, we have

T(γ) = γ
p(α)−2−ε

k−2 T(1).

By Lemma 5.1 in Section 5, T(1) > 0. Thus for every γ > 0, T(γ) > 0.

Hence, for any T > 0 and given ε > 0 small, there exists a unique γ such that problem

(4.3) has a solution y(t, γ) such that γ > 0, T(γ) > 0.

Remark 4.3. From the above analysis, when Ω is a ball centered at the origin, we conclude

that the solution to problem (1.1) is unique.

Now we give an upper and lower bound for y(t, γ).

Lemma 4.4. Suppose ε > 0, then

y(t, γ) < z(t, γ), for T(γ) ≤ t < ∞, (4.5)

where

z(t, γ) = γ

(

1 +
1

k − 1

γp(α)−2−ε

tk−2

)− 1
k−2

.

Proof. Since

(y′tk−1y1−k)′ = −(k − 1)tk−2y−k H1(t),

where

H1(t) = t(y′)2 − yy′ +
1

k − 1
t1−kyp+1

and y′(t) ∼ 1
k−1 t1−kγp(α)−1−ε (see Remark 4.2), we have limt→∞ H1(t) = 0.

By H′
1(t) =

1
k−1 t1−ky′(t)(p − 2k + 3)yp, we have

H′
1(t) < 0 for ∀t ∈ [T, ∞).

Hence H1(t) decreases strictly on [T, ∞). In combination with limt→∞ H1(t) = 0, we can obtain

H1(t) > 0 on (T, ∞) which implies (y′tk−1y1−k)′ < 0.

Integrating (y′tk−1y1−k)′ < 0 from t > T to t = ∞, we deduce

y1−ky′(t) >
1

k − 1
γp−k+1t1−k, for T < t < ∞.

Integrating the above equation again from t > T to t = ∞, we deduce

y2−k(t) >
1

k − 1
γp−k+1t2−k + γ2−k, for T < t < ∞,

which implies the conclusion.
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Remark 4.5. The function z(t, γ) is the solution of the following problem






z′′(t) + t−kγ−( 2ν
m−1+1)εz2k−3 = 0, 0 < t < ∞,

lim
t→∞

z(t, γ) = γ.
(4.6)

In the sequel, z(t, γ) plays an important role.

Set

Tα,ε =
γ

p(α)−2−ε
k−2

k1(α, ε)
=

γ
2− m−1−2ν

(m−1)(k−2)
ε

k1(α, ε)
, (4.7)

where k1(α, ε) = (k − 1)
1

k−2 .

Then for any β > 0, direct computation gives

z(βTα,ε, γ) = Cα,β,εγ, (4.8)

where Cα,β,ε =
β

(1+βk−2)
1

k−2

.

Lemma 4.6. Let β > 0 and ε > 0, then for every t ≥ βTα,ε,

y(t, γ) ≥ z(t, γ)(1 − dα,β,εε),

where

dα,β,ε =
(1 − Cα,β,ε)(1 + 2ν/(m − 1))

C
2+(1+2ν/(m−1))ε
α,β,ε

.

Proof. Integrating (4.3) twice, we have

y(t, γ) = γ −
∫

∞

t
(s − t)s−ky2k−3−(1+2ν/(m−1))ε(s, γ)ds.

Hence, by Lemma 4.4, we obtain

y(t, γ) > γ −
∫

∞

t
(s − t)s−kz2k−3−(1+2ν/(m−1))ε(s, γ)ds.

Similarly, integrate (4.6) for z twice, then

z(t, γ) = γ −
∫

∞

t
(s − t)s−kγ−(1+2ν/(m−1))εz2k−3(s, γ)ds.

Hence

y(t, γ) > z(t, γ)−
∫

∞

t
(s − t)s−kz2k−3(s, γ)(z−(1+2ν/(m−1))ε − γ−(1+2ν/(m−1))ε)ds. (4.9)

By the mean value theorem, we deduce

|z−(1+2ν/(m−1))ε − γ−(1+2ν/(m−1))ε| = (1 + 2ν/(m − 1))εθ−1−(1+2ν/(m−1))θ |z(s, γ)− γ|,

where z(s, γ) ≤ θ ≤ γ.

Hence, using (4.8), if βTα,ε ≤ t < ∞, we have

|z−(1+2ν/(m−1))ε − γ−(1+2ν/(m−1))ε|
≤ (1 + 2ν/(m − 1))ε(Cα,β,εγ)

−1−(1+2ν/(m−1))εγ

≤ (1 + 2ν/(m − 1))εC
−1−(1+2ν/(m−1))ε
α,β,ε γ−(1+2ν/(m−1))ε.
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Using this bound in (4.9), if t ≥ βTα,ε,

y(t, γ) > z(t, γ)− (1 + 2ν/(m − 1))εC
−1−(1+2ν/(m−1))ε
α,β,ε

×
∫

∞

t
(s − t)s−kγ−(1+2ν/(m−1))εz2k−3(s, γ)ds

= z(t, γ) + (1 + 2ν/(m − 1))εC
−1−(1+2ν/(m−1))ε
α,β,ε (z(t, γ)− γ).

(4.10)

On the other hand, by (4.8), if t ≥ βTα,ε,

γ = C−1
α,β,εz(βTα,ε, γ) ≤ C−1

α,β,εz(t, γ).

So we can deduce from (4.10) that

y(t, γ) > z(t, γ)(1 +
(1 + 2ν/(m − 1))

C
1+(1+2ν/(m−1))ε
α,β,ε

(1 − 1

Cα,β,ε
)ε)

= z(t, γ)(1 − dα,β,εε),

which is the bound we want to prove.

Now we return to problem (4.2). We fix T and denote the solution by y(t). Then

γ(ε) = lim
t→∞

y(t)

and γ(ε) depends on ε. The next lemma tells us the asymptotic behavior of γ(ε) as ε → 0.

Lemma 4.7.

lim
ε→0

γ(ε) = ∞

Proof. By contradiction, we can assume there exists a sequence {εn}, εn → 0 as n → ∞, and a

number M > 0 such that γ(εn) ≤ M for all n. Then we can choose a number β1 > 0 satisfying

β1Tα,εn = β1k−1
1 γ(εn)

2− m−1+2ν
(m−1)(k−2)

ε ≤ β1(
n−2
n+α )

n−2
α+2 M2 + o(1) ≤ T for large n.

So by Lemma 4.6, we have

z(t, γ(εn))(1 − dα,β,εn
εn) < z(T, γ(εn))(1 − dα,β,εn

εn) ≤ y(T, γ(εn)) = 0,

for 0 < t < β1Tα,εn and large n, which is impossible.

Finally, we give two formulae to use later. Define incomplete Beta function

B(ς, P, Q) =
∫

∞

ς
xP−1(1 + x)−P−Qdx,

where P and Q are positive parameters. It is well-known that

B(0, P, Q) =
Γ(P)Γ(Q)

Γ(P + Q)
. (4.11)

Lemma 4.8. Suppose k > 2, p = 2k − 3 − (1 + 2ν
m−1 )ε and ε small. Then

(i)
∫

∞

t
s−kzp(s, γ)ds = k1(α, ε)k2(α, ε)γ−1+ϕ(α,ε)B(τ(α, ε), 1 − ϕ(α, ε), k2(α, ε)),

(ii)
∫

∞

t
s−kzp+1(s, γ)ds = k1(α, ε)k2(α, ε)γϕ(α,ε)B(τ(α, ε), k2(α, ε)− ϕ(α, ε), k2(α, ε)),

where ϕ(α, ε) = m−1+2ν
(m−1)(k−2)

ε, k1(α, ε) = (k − 1)
1

k−2 , k2(α, ε) = k−1
k−2 , τ(α, ε) = ( t

Tα,ε
)k−2.
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Proof. (i) Insert the expression

z(t, γ) = γ

(

1 +
1

k − 1

γp(α)−2−ε

tk−2

)− 1
k−2

into the integral

∫

∞

t
s−kzp(s, γ)ds = γp

∫

∞

t
sp−k

(

sk−2 +
1

k − 1
γp−1

)− p
k−2

ds

= γp
∫

∞

t
sp−k(sk−2 + Tk−2

α,ε )−
p

k−2 ds

(4.12)

and by routine calculus, we can get the result as follows.

By making the change of variable x = ( s
Tα,ε

)k−2, we can write (4.12) as

∫

∞

t
s−kzp(s, γ)ds = γp

∫

∞

t
sp−k(sk−2 + Tk−2

α,ε )−
p

k−2 ds

=
γp

k − 2
T1−k

α,ε

∫

∞

( t
Tα,ε

)k−2
xP−1(1 + x)−P−Qdx,

where P = p−k−1
k−2 and Q = k−1

k−2 .

Since
γp

k − 2
T1−k

α,ε = k1(α, ε)k2(α, ε)γ−1+ϕ(α,ε),

we have
∫

∞

t
s−kzp(s, γ)ds = k1(α, ε)k2(α, ε)γ−1+ϕ(α,ε)B(τ(α, ε), 1 − ϕ(α, ε), k2(α, ε)),

where ϕ(α, ε) = m−1+2ν
(m−1)(k−2)

ε, k1(α, ε) = (k − 1)
1

k−2 , k2(α, ε) = k−1
k−2 , τ(α, ε) = ( t

Tα,ε
)k−2.

(ii) In a similar way as in (i).

We end this section by giving

lim
ε→0

k =
2N − 2 + α

N − 2
, k0, lim

ε→0
k1(α, ε) = (

N + α

N − 2
)

N−2
α+2 , k1,

lim
ε→0

k2(α, ε) =
N + α

α + 2
, k2, lim

ε→0
Cα,β,ε =

β

(1 + β
α+2
N−2 )

N−2
α+2

, Cα,β,

lim
ε→0

dα,β,ε =
(1 − cα,β)(1 + 2ν/(m − 1))

c2
α,β

, dα,β, lim
ε→0

ϕ(α, ε) = lim
ε→0

τ(α, ε) = 0.

(4.13)

5 Proof of the main results

Note that if uε(x) is a solution of problem (1.1) when Ω = BR, then from the previous analysis,

we know that

lim
|x|→0

uε(x)|x|ν = (N − 2ν − 2)g(α,ε)γ(ε),

where g(α, ε) = (p(α)−2−ε)ν−α
p(α)−2−ε

and R = (m − 1)T−1/(m−1). Thus we need to understand how

γ(ε) tends to infinity as ε → 0.
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We define the following Pohozaev functional introduced from [1] and [22],

H(t) = ty′2 − yy′ + 2t1−k yp+1

p + 1
, (5.1)

where

p = 2k − 3 −
(

1 +
2ν

m − 1

)

ε = p(α)− 1 − ε.

If y(t) solves problem (4.3), then

H′(t) = − (1 + 2ν/(m − 1))ε

p + 1
t−kyp+1 (5.2)

and y′(t) = O(t1−k) as t → ∞ (see Remark 4.2). Hence

lim
t→∞

H(t) = 0.

Since H(T) = Ty′2(T), integrating (5.2) from t > T to t = ∞, we obtain

Ty′2(T) =
(1 + 2ν/(m − 1))ε

p + 1

∫

∞

T
t−kyp+1(t)dt. (5.3)

This equation is crucial for us to obtain the desired results.

Lemma 5.1. Let T(γ) be defined as (4.4), then T(1) > 0.

Proof. By Lemma 4.2, y(t, 1) ≤ z(t, 1) for t ≥ T(1). Suppose in contrast that T(1) = 0, then

y′(0, 1) ≤ z′(0, 1) = kk−1
1 (α, ε).

So

y(t, 1) ≤ kk−1
1 (α, ε)t, t ≥ 0,

which means H(0) = 0.

On the other hand, combination of (5.2) and the fact limt→∞ H(t) = 0 yields H(t) > 0 for

T(1) ≤ t < ∞. This is a contradiction and our conclusion follows.

Lemma 5.2. limε→0 γ1−ϕ(α,ε)y′(T) = k1, where γ = γ(ε).

Proof. Integrating equation (4.2) over (T, ∞), we derive

y′(T) =
∫

∞

T
t−kyp(t)dt <

∫

∞

T
t−kzp(t)dt. (5.4)

Hence, by Lemma 4.8 (i) and Lemma 4.4, as ε → 0,

γ1−ϕ(α,ε)y′(T) ≤ k1(α, ε)k2(α, ε)B

((

T

Tα,ε

)k−2

, 1 − ϕ(α, ε), k2(α, ε)

)

→ k1k2B(0, 1, k2).

By (4.11) and the fact that Γ(x + 1) = xΓ(x), we deduce

k1k2B(0, 1, k2) =
k1k2

k2
= k1.
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Therefore

lim
ε→0

sup γ1−ϕ(α,ε)y′(T) ≤ k1. (5.5)

Next, we shall show that for any δ > 0 ,

lim
ε→0

inf γ1−ϕ(α,ε)y′(T) ≥ k1 − δ, (5.6)

which completes the proof of this lemma.

For a given β > 0, by (4.2) and Lemma 4.7, we can choose ε > 0 so small that βTα,ε > T.

Thus (5.4) can be written as

γ1−ϕ(α,ε)y′(T) = γ1−ϕ(α,ε)
∫ βTα,ε

T
t−kyp(t)dt + γ1−ϕ(α,ε)

∫

∞

βTα,ε

t−kyp(t)dt

= G1(α, β, ε) + G2(α, β, ε).

(5.7)

Because z(t) ≤
( γ

Tα,ε

)

t for all t > 0, using Lemma 4.4, we have

G1(α, β, ε) ≤ γ1−ϕ(α,ε)

(

γ

Tα,ε

)p ∫ βTα,ε

T
tp−kdt

< γ1−ϕ(α,ε)

(

γ

Tα,ε

)p (βTα,ε)p−k+1

p − k + 1

=
kk−1

1 (α, ε)

(k − 2)(1 − ϕ(α, ε))
β(k−2)(1−ϕ(α,ε)).

(5.8)

On the other hand, by Lemma 4.3 and (i) of Lemma 4.8, for ε > 0 small,

G2(α, β, ε) > γ1−ϕ(α,ε)(1 − dα,β,εε)
p
∫

∞

βTα,ε

t−kzp(t)dt

= (1 − dα,β,εε)
pk1(α, ε)k2(α, ε)B(βk−2, 1 − ϕ(α, ε), k2(α, ε)).

(5.9)

Combining (5.7), (5.8) and (5.9), we derive

lim
ε→0

inf γ1−ϕ(α,ε)y′(T) ≥ k1k2B(βk0−2, 1, k2)− L1βk0−2,

where L1 = limε→0
kk−1

1 (α,ε)
(k−2)(1−ϕ(α,ε))

.

Hence, given any δ > 0, we can choose β > 0 such that (5.6) holds. This completes the

proof.

Lemma 5.3. limε→0 γ1−ϕ(α,ε)
∫

∞

T t−kyp+1(t, γ(ε))dt = k1k2[Γ(k2)]2/Γ(2k2), where γ = γ(ε).

Proof. By Lemma 4.4 and Lemma 4.8(ii), as ε → 0, we deduce

γ−ϕ(α,ε)
∫

∞

T
t−kyp+1(t, γ)dt ≤ γ−ϕ(α,ε)

∫

∞

T
t−kzp+1(t, γ)dt

= k1(α, ε)k2(α, ε)B

(

(

T

Tα,ε

)k−2

, k2(α, ε)− ϕ(α, ε), k2(α, ε)

)

→ k1k2B(0, k2, k2)

= k1k2[Γ(k2)]
2/Γ(2k2).

(5.10)
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Hence,

lim
ε→0

sup γ−ϕ(α,ε)
∫

∞

T
t−kyp+1(t, γ)dt ≤ k1k2[Γ(k2)]

2/Γ(2k2).

Next, we shall show that for any δ > 0,

lim
ε→0

inf γ−ϕ(α,ε)
∫

∞

T
t−kyp+1(t, γ)dt ≥ k1k2[Γ(k2)]

2/Γ(2k2)− δ.

which completes the proof of this lemma.

For a given β > 0, by (4.2) and Lemma 4.7, we can choose a sufficiently small ε such that

βTα,ε > T. Thus (5.10) can be written as

γ−ϕ(α,ε)
∫

∞

T
t−kyp+1(t, γ)dt

= γ−ϕ(α,ε)
∫ βTα,ε

T
t−kyp+1(t, γ)dt + γ−ϕ(α,ε)

∫

∞

βTα,ε

t−kyp+1(t, γ)dt

= G3(α, β, ε) + G4(α, β, ε).

(5.11)

Because z(t) ≤
( γ

Tα,ε

)

t for all t > 0, using Lemma 4.4, we have

G3(α, β, ε) < γ−ϕ(α,ε)
∫ βTα,ε

T
t−kzp+1(t, γ)dt

≤ γ−ϕ(α,ε)
∫ βTα,ε

T
t−k

(

γ

Tα,ε
t

)p+1

dt

=
k1(α, ε)

k − 1 − ε
βk−1−ε.

(5.12)

On the other hand, by Lemma 4.3 and (ii) of Lemma 4.8, for ε > 0 small,

G4(α, β, ε) > γ−ϕ(α,ε)(1 − dα,β,εε)
p+1

∫

∞

βTα,ε

t−kzp+1(t, γ)dt

= (1 − dα,β,εε)
p+1k1(α, ε)k2(α, ε)B(βk−2, k2(α, ε)− ϕ(α, ε), k2(α, ε)).

(5.13)

Combining (5.11), (5.12) and (5.13), we derive

lim
ε→0

inf γ−ϕ(α,ε)
∫

∞

T
t−kyp+1(t, γ)dt ≥ k1k2B(βk0−2, k2, k2)− L2βk0−1. (5.14)

where L2 = limε→0
k1(α,ε)
k−1−ε .

Hence, given any δ > 0, we can choose β > 0 such that this conclusion is tenable.

Now we are ready to analyze the behavior of γ(ε) as ε → 0.

Theorem 5.4. Let y(t) be the solution of problem (4.2) and denote

γ(ε) = lim
t→∞

y(t).

Then

lim
ε→0

εγ2(ε) =
4(N + α)

√

µ − µ

(N − 2)2

k1

k2

Γ(2k2)

[Γ(k2)]2
T,

where k1 and k2 are defined by (4.13).
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Proof. Noting (5.3), we have

(

1 +
2ν

m − 1

)

εγ2−ϕ(α,ε) = (p + 1)T
[γ1−ϕ(α,ε)y′(T)]2

γ−ϕ(α,ε)
∫

∞

T t−kyp+1(t)dt
. (5.15)

From (5.15), Lemma 5.2 and Lemma 5.3, we have

lim
ε→0

εγ2−ϕ(α,ε)(ε) =
4(N + α)

√

µ − µ

(N − 2)2

k1

k2

Γ(2k2)

[Γ(k2)]2
T. (5.16)

The exponent 2 − ϕ(α, ε) in (5.16) may be replaced by 2, because

lim
ε→0

γ(ε)ϕ(α,ε) = 1. (5.17)

To see this, note that (5.16) implies that

γ(ε)2−ϕ(α,ε)
<

C

ε
,

for small ε and some constant C. Therefore

ln γ(ε)ϕ(α,ε) = ϕ(α, ε) ln γ(ε) <
ϕ(α, ε)

2 − ϕ(α, ε)
ln

C

ε
.

This means that

ln γ(ε)ϕ(α,ε) → 0 as ε → 0

and (5.17) follows.

Proof of Theorem 1.2. If y(t) is the solution of (4.2), then

v(x) = (N − 2ν − 2)g(α,ε)y((m − 1)m−1|x|1−m)

is the solution of problem (3.1) in BR with R = (m − 1)T−1/(m−1) and

uε(x) = |x|−νv(x) = (N − 2ν − 2)g(α,ε)|x|−νy((m − 1)m−1|x|1−m).

Therefore, Theorem 5.4 yields

lim
ε→0

lim
|x|→0

εu2
ε |x|2ν = lim

ε→0
(N − 2ν − 2)2g(α,ε)εγ2(ε)

= 2(α + 2)(2
√

µ − µ)
2N+α−2

α+2 (N + α)
N−2
α+2 (N − 2)−

2α+N+2
α+2

Γ( 2(N+2)
α+2 )

[

Γ(N+α
α+2 )

]2

1

R2
√

µ−µ
,

which is the content of Theorem 1.2.

Before proving Theorem 1.3, we first give two lemmas.

As a first observation, we note from Lemma 4.4 that

y(t, γ) < z(t, γ) < k1tγ−1+ϕ(α,ε) for t > T.

Hence, by Theorem 5.4, for every fixed t > T, we have

y(t, γ(ε)) = O(ε
1
2 ) as ε → 0.

If we allow t to tend to infinity as ε → 0, we obtain the following upper bound.
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Lemma 5.5. For every M > 0 and ξ ∈ (0, 1
2 ),

lim sup
ε→0

{y(t, γ(ε)) : T < t < Mε−ξ} = 0.

To obtain information about the limiting form of y(t, γ(ε)) as ε → 0, we are led by Lemma

5.2 to multiply y as the weight factor γ1−ϕ(α,ε), because

lim
ε→0

γ1−ϕ(α,ε)y′(T) = k1. (5.18)

In the next lemma, we show that (5.18) continues to be true for values of t > T, provided

t = O(γσ),

where σ may be any number less than 2.

Lemma 5.6. Let M > 0 and 0 < σ < 2. Then

lim sup
ε→0

{|γ1−ϕ(α,ε)y′(t)− k1| : T < t < Mγσ} = 0.

Proof. By Lemma 5.2, and the concavity of y,

lim sup
ε→0

γ1−ϕ(α,ε)y(t, γ) ≤ k1, ∀t ≥ T. (5.19)

To get a lower bound on y′, we also use the concave property of y. For ∀t ≥ T and for t0 > t,

we have

y′(t0) >
y(t0)− y(t)

t0 − t
>

1

t0
{y(t0)− y(t)}.

Hence, by Lemma 4.4,

γ1−ϕ(α,ε)y′(t) >
γ1−ϕ(α,ε)y(t0)

t0
− γ1−ϕ(α,ε)z(t)

t
· t

t0
. (5.20)

We assume that t = O(γσ) and 0 < σ < 2, so it is possible for us to substitute βTα,ε, β > 0 for

t0. Hence, for γ → ∞,
t

βTα,ε
→ 0. (5.21)

By Lemma 4.3,

γ1−ϕ(α,ε)y(βTα,ε)

βTα,ε
≥ γ1−ϕ(α,ε)z(βTα,ε)

βTα,ε
(1 − dα,β,εε)

= k1(1 + βk−2)−
1

k−2 (1 − dα,β,εε).

(5.22)

Thus, from (5.20)–(5.22), we conclude that

lim inf
ε→0

γ1−ϕ(α,ε)y(t, γ) ≥ k1 − δ(β),

where δ(β) → 0 as β → 0. Because we can choose β small enough, this means

lim inf
ε→0

γ1−ϕ(α,ε)y(t, γ) ≥ k1. (5.23)

By (5.19) and (5.22), we obtain the desired result.
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Proof of Theorem 1.3. By the concavity of y(t), we deduce

y′(t) ≤ y(t)− y(T)

t − T
≤ y′(T), t ≥ T. (5.24)

So, there exists a θ ∈ [T, t] such that

y(t) = y′(θ)(t − T). (5.25)

Combining Lemma 5.5, (5.25) and noting that limε→0 γ(ε)ϕ(α,ε) = 1, we obtain

lim
ε→0

ε−
1
2 y(t) = lim

ε→0
ε−

1
2 γ−1+ϕ(α,ε) lim

ε→0
γ1−ϕ(α,ε)y(t)

= [A(k1, k2, T)]−
1
2 lim

ε→0
γ1−ϕ(α,ε)y′(θ)(t − T)

= k1[A(k1, k2, T)]−
1
2 (t − T),

(5.26)

where A(k1, k2, T) =
4(N+α)

√
µ−µ

(N−2)2
k1
k2

Γ(2k2)
[Γ(k2)]2

T,

and the convergence is uniform on bounded intervals.

For the solution uε(x) of problem (1.1), (5.26) means that as ε → 0

lim
ε→0

ε−
1
2 uε(x) = lim

ε→0
|x|−ν(N − 2ν − 2)g(α,ε)k1[A(k1, k2, T)]−

1
2 (t − T)

=
1

2
(α + 2)−

1
2 (2
√

µ − µ)
2N−α−6

2α+4 (N + α)
N−2
2α+4 (N − 2)

2α−N+6
2α+4 R

√
µ−µ Γ(N+α

α+2 )
[

Γ( 2(N+α)
α+2 )

]
1
2

×
(

1

|x|
√

µ+
√

µ−µ
− 1

|x|
√

µ−
√

µ−µ|R|2
√

µ−µ

)

.

Hence, we obtain the desired result.
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Abstract. We prove the existence and multiplicity of positive solutions to the singular
φ-Laplacian BVP

{

−(r(t)φ(u′))′ = λg(t)
(

f (u)− a
uα

)

, t ∈ (0, 1),

u(0) = 0, u′(1) + H(u(1)) = 0

for a certain range of the parameter λ > 0, where a > 0, α ∈ (0, 1), φ is an odd,
increasing and convex homeomorphism on R, and f is φ-superlinear at ∞.

Keywords: φ-Laplacian, infinite semipositone, positive solutions.
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1 Introduction

Consider the one-dimensional φ-Laplacian problem
{

−(r(t)φ(u′))′ = λg(t)
(

f (u)− a
uα

)

, t ∈ (0, 1),

u(0) = 0, u′(1) + H(u(1)) = 0,
(1.1)

where a > 0, α ∈ (0, 1), λ is a positive parameter, and the following conditions are assumed:

(A1) r : [0, 1] → (0, ∞) is continuous and nondecreasing.

(A2) H : [0, ∞) → [0, ∞) is continuous and nondecreasing with H(0) = 0.

(A3) g : (0, 1) → (0, ∞) is continuous with g/pα ∈ L1(0, 1), where p(t) = min(t, 1 − t).

(A4) φ : R → R is an odd, increasing homeomorphism such that φ is convex on [0, ∞) and

lim sup
x→∞

φ(σx)

φ(x)
< ∞

for all σ > 0.
BCorresponding author. Email: dang@math.msstate.edu
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(A5) f : [0, ∞) → [0, ∞) is continuous, nondecreasing, and

lim
x→∞

f (x)

φ(x)
= ∞.

(A6) There exist constants m > 0 and β ∈ (0, 1) such that

f (x) ≥
( x

m

)β
f (m)

for x ∈ [0, m].

By a positive solution of (1.1), we mean a function u ∈ C1[0, 1] with u > 0 on (0, 1] and

r(t)φ(u′) absolutely continuous on [0, 1] that satisfies (1.1).

Our main result is

Theorem 1.1.

(i) Let (A1)–(A6) hold. Then there exist a positive number K and an interval I ⊂ (0, ∞) such that if

f (m) ≥ K then problem (1.1) has at least two positive solutions for λ ∈ I.

(ii) Let (A1)–(A5) hold. Then there exists a positive number λ0 > 0 such that for λ < λ0, problem

(1.1) has a positive solution uλ with uλ(t) → ∞ as λ → 0+ uniformly on compact subsets of

(0, 1].

Example 1.2. Let r satisfy (A1), a, α, γ, δ > 0 with α+γ < 1, and φ(x) = ∑
n
i=1 ai|x|

pi−2x, where

ai > 0, pi ≥ 2 for i = 1, . . . , n, and H(z) = zδ. Consider the BVP

{

−(r(t)φ(u′))′ = λ
tγ

(

f (u)− a
uα

)

, t ∈ (0, 1),

u(0) = 0, u′(1) + (u(1))δ = 0.
(1.2)

Let q > max1≤i≤n(pi − 1)Then

(i) By Theorem 1.1 (i) with m = 1, problem (1.2) with

f (u) =

{

Kuβ, 0 ≤ u ≤ 1,

Kuq, u > 1,

where 0 < β < 1, has two positive solutions for λ in a certain range of (0, ∞), provided

that K is large enough.

(ii) By Theorem 1.1 (ii), problem (1.2) with f (u) = uqe−
b

1+u , where b ≥ 0, has a large positive

solution for λ > 0 small.

A problem of the form (1.1) occurs in the study of positive radial solutions to the p-

Laplacian problems in an exterior domain















−∆pu = λK(|x|) f (u) in Ω = {x ∈ R
N : |x| > r0 > 0},

∂u
∂n + c̃(u)u = 0 on |x| = r0,

u(x) → 0 as |x| → ∞,
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where ∆pu = div(|∇u|p−2∇u), p > 1, N > p, c̃ : [0, ∞) → [0, ∞), n denotes the outer

unit normal vector on ∂Ω, as it reduced (see [10]) via the Kevin transformation r = |x|,

t = (r/r0)
p−N
p−1 to the ODE problem

{

−(φ(u′))′ = λh(t) f (u), t ∈ (0, 1),

u(0) = 0, u′(1) + c(u(1))u(1) = 0,

where φ(z) = |z|p−2z, h(t) =
( p−1

N−p r0

)p
t

p(N−1)
p−N K(r0t

p−1
p−N ), and c(s) = p−1

N−p r0c̃(s). It also arises

in the study of radial solutions for the (p, q)-Laplacian problem in an annulus i.e.















−∆pu − ∆qu = f (|x|, u), a < |x| < b,

u = 0 on |x| = a,
∂u
∂n − H(u) = 0 on |x| = b,

where p > q > 1, which stems from a variety of applied areas (see e.g. [2,3]). We are motivated

by related results on the existence and multiplicity of positive radial solutions for the system















−∆ui = λKi(|x|) fi(uj) in Ω = {x ∈ R
N : r0 < |x| < r1},

di
∂ui
∂n + c̃i(ui)ui = 0 on |x| = r0,

ui = 0 on |x| = r1,

in [6, 7], where di = 0, c̃i ≡ 1, r1 < ∞ in [6] and di ≥ 0, c̃i > 0, r1 = ∞ in [7], as well as its

extension to p-Laplacian systems in [12]. The results in [6,7,12] have been obtained under the

assumptions that the reaction terms satisfy a combined superlinear at ∞ and are allowed to

have semipositone structures at 0 i.e. fi(0
+) ∈ [−∞, 0). Searching for positive solutions in the

semipositone case is known to be challenging due to the lack of the maximum principle. Our

main result here on the one hand allows the p-Laplacian operator to be replaced by a general

homeomorphism on R, and on the other hand permits nonlinear boundary conditions that

can not be linearized e.g. u′(1) + 3
√

u(1) = 0, which are not allowed in [6,7,12] . We obtain the

existence of a large positive solution to (1.1) for λ > 0 small when f is merely φ-superlinear at

∞, and the existence of two positive solutions for λ in a certain interval in (0, ∞) if in addition

f satisfies a concavity condition on [0, m] for some m > 0 and f (m) is large enough. It is worth

noting that problem (1.1) is of infinite semipositone nature as limu→0+
(

f (u)− a
uα

)

= −∞. Our

approach is based on a Krasnoselskii’s fixed point theorem in a Banach space.

We refer to [4, 5, 8, 9, 11] for results in the PDE case related to (1.1), where [9, 11] are of

particular relevance to this study. In [9], an overview of recent developments on elliptic vari-

ational problems with functional satisfying nonstandard growth of (p, q)-type is provided.

Related existence results for positive solutions of the Brézis–Nirenberg type critical semiposi-

tone problem
{

−∆pu = λup−1 + up∗−1 − µ in Ω,

u = 0 on ∂Ω,

can be found in [11], where Ω is a bounded domain in R
N , p∗ = Np

N−p , and λ, µ are positive

parameters.
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2 Preliminary results

For the rest of the paper, we define r0 = mint∈[0,1] r(t), r1 = maxt∈[0,1] r(t), and H(z) = H(0)

for z < 0. The norm in Lp(0, 1) will be denoted by ‖ · ‖p .

We first recall the following fixed point result of Krasnoselskii type in a Banach space (see

e.g. [1, Theorem 12.3]).

Lemma A. Let E be a Banach space and T : E → E be a completely continuous operator. Suppose

there exist h ∈ E, h 6= 0 and positive constants r, R with r 6= R such that

(a) If y ∈ E satisfies y = θTy, θ ∈ (0, 1] then ‖y‖ 6= r,

(b) If y ∈ E satisfies y = Ty + ξh, ξ ≥ 0 then ‖y‖ 6= R.

Then T has a fixed point y ∈ E with min(r, R) < ‖y‖ < max(r, R).

Lemma 2.1.

(i) |φ−1(x)− φ−1(y)| ≤ 2φ−1(|x − y|) for all x, y ∈ R.

(ii) φ−1(x − y) ≥ φ−1(x)− 2φ−1(y) for all x, y ∈ R with y ≥ 0.

Proof. (i) Without loss of generality, we need only to consider two cases.

Case 1. x ≥ y ≥ 0.

Since φ−1 is concave on [0, ∞),

φ−1(x − y) + φ−1(y) ≥ φ−1(x),

which implies

φ−1(x)− φ−1(y) ≤ φ−1(x − y) ≤ 2φ−1(x − y)

i.e. (i) holds.

Case 2. x ≥ 0 ≥ y.

Then φ−1(x) ≤ φ−1(x − y) and −φ−1(y) = φ−1(−y) ≤ φ−1(x − y), from which (i) follows.

(ii) Since y ≥ 0, it follows from (i) that

φ−1(x − y)− φ−1(x) ≥ −2φ−1(|y|) = −2φ−1(y)

i.e. (ii) holds.

Lemma 2.2. Let h ∈ L1(0, 1) and u ∈ C1[0, 1] satisfy

{

(r(t)φ(u′))′ ≤ h on (0, 1)

u(0) ≥ 0, u′(1) + H(u(1)) ≥ 0.
(2.1)

Suppose ‖u‖∞ > φ−1(‖h‖1/r0). Then u(1) ≥ 0.

Proof. Suppose on the contrary that u(1) < 0. Then the boundary condition at 1 implies that

u′(1) ≥ 0. Let τ ∈ [0, 1] be such that ‖u‖∞ = |u(τ)|. Integrating the inequality in (2.1) on [t, 1]

we get

r(t)φ(u′(t)) = r(1)φ(u′(1))−
∫ 1

t
(r(s)φ(u′))′ds ≥ −‖h‖1,
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whence

u′(t) ≥ −φ−1

(

‖h‖1

r(t)

)

≥ −φ−1

(

‖h‖1

r0

)

(2.2)

for t ∈ [0, 1]. Next, integrating (2.2) on [0, τ] and [τ, 1] give

u(τ) ≥ u(0)− φ−1

(

‖h‖1

r0

)

≥ −φ−1

(

‖h‖1

r0

)

(2.3)

and

− u(τ) ≥ u(1)− u(τ) ≥ −φ−1

(

‖h‖1

r0

)

(2.4)

respectively. Combining (2.3) and (2.4), we deduce that

‖u‖∞ ≤ φ−1

(

‖h‖1

r0

)

a contradiction. Thus u(1) ≥ 0.

Lemma 2.3. Let h ∈ L1(0, 1) with h ≥ 0 and u ∈ C1[0, 1] satisfy

{

(r(t)φ(u′))′ ≤ h on (0, 1),

u(0) ≥ 0, u(1) ≥ 0.

Then

(i) u(t) ≥
(

u(1)− 2φ−1
( ‖h‖1

r0

))

t for t ∈ [0, 1].

(ii) u(t) ≥
(

‖u‖∞ − 4φ−1
( ‖h‖1

r0

))

p(t) for t ∈ [0, 1]. In particular,

u(t) ≥
1

5
‖u‖∞ p(t)

for t ∈ [0, 1], provided that ‖u‖∞ ≥ 5φ−1
( ‖h‖1

r0

)

.

Proof. Define

w(t) = φ−1

(

φ(u′(t)) +
1

r(t)

∫ 1

t
h

)

− u′(t), z(t) =
∫ t

0
w

for t ∈ [0, 1]. Then w, z ≥ 0 on [0, 1] and in view of Lemma 2.1 (i),

w(t) ≤ 2φ−1

(

1

r(t)

∫ 1

t
h

)

≤ 2φ−1

(

‖h‖1

r0

)

which implies

z(t) ≤ 2φ−1

(

‖h‖1

r0

)

t

for t ∈ [0, 1]. Since

(r(t)φ(u′ + z′))′ = (r(t)φ(u′ + w))′ = (r(t)φ(u′))′ − h ≤ 0 on (0, 1),

r(t)φ(u′ + z′) is nonincreasing on [0, 1]. This, together with (A1), gives the concavity of u + z

on [0, 1]. Since (u + z)(0) ≥ 0, we obtain
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(u + z)(t) ≥ t(u + z)(1) ≥ tu(1),

whence

u(t) ≥ tu(1)− z(t) ≥ t

(

u(1)− 2φ−1

(

‖h‖1

r0

))

i.e. (i) holds. Since (u + z)(1) ≥ 0, we deduce from the concavity of u + z on [0, 1] that

u(t) + z(t) ≥ ‖u + z‖∞ p(t)

for t ∈ [0, 1]. Consequently,

u(t) ≥ (‖u‖∞ − ‖z‖∞)p(t)− z(t)

for t ∈ [0, 1], which implies

u(t) ≥

(

‖u‖∞ − 4φ−1

(

‖h‖1

r0

))

t (2.5)

for t ∈ [0, 1/2]. Similarly, by defining

w0(t) = φ−1

(

φ(u′(t))−
1

r(t)

∫ t

0
h

)

− u′(t), z0(t) =
∫ 1

t
w0

for t ∈ [0, 1], and using w0, z0 ≤ 0 on [0, 1],

|z0(t)| ≤ 2φ−1

(

‖h‖1

r0

)

(1 − t)

for t ∈ [0, 1], together with

{

(r(t)φ(u′ − z′0))
′ = (r(t)φ(u′ + w0))′ = (r(t)φ(u′))′ − h ≤ 0 on (0, 1),

(u − z0)(0) ≥ 0, (u − z0)(1) ≥ 0,

we obtain as above that

u(t) ≥

(

‖u‖∞ − 4φ−1

(

‖h‖1

r0

))

(1 − t) (2.6)

for t ∈ [1/2, 1]. Combining (2.5) and (2.6), we obtain

u(t) ≥

(

‖u‖∞ − 4φ−1

(

‖h‖1

r0

))

p(t)

for t ∈ [0, 1]. In particular, u(t) ≥ 1
5‖u‖∞ p(t) if ‖u‖∞ ≥ 5φ−1 (‖h‖1/r0) , which completes the

proof.

3 Proof of the main result

Let E = C[0, 1] be equipped with ‖ · ‖∞.
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Proof of Theorem 1.1. (i) Since φ is convex on [0, ∞) and φ(0) = 0, it follows that

lim
x→0+

φ(x)

xβ
= 0.

Hence there exists γ ∈ (0, m) such that

φ(8γ)

(γ/5)β
<

r0g0φ(m)

64r1(4m)β

(

∫ 1

0

g

pα

)−1

, (3.1)

where g0 = inf[1/4,3/4] g. Suppose f (m) > K, where

K = max

{

a

(γ/5)α
,

aφ(m)

4(γ/5)αφ(γ/5)
,

16ar1(4m)β

g0r0(γ/5)α+β

(

∫ 1

0

g

pα

)}

.

Let

I =

(

16r1φ(8γ)

g0 f (γ/20)
,

r0φ(m)

4 f (m)

(

∫ 1

0

g

pα

)−1
)

.

Then I 6= ∅. Indeed, it follows from (A6) that

f
( γ

20

)

≥
( γ

20m

)β
f (m) =

(γ

5

)β f (m)

(4m)β
,

which, together with (3.1), implies

16r1φ(8γ)

g0 f (γ/20)
≤

16r1(4m)β

g0 f (m)

(

φ(8γ)

(γ/5)β

)

<
r0φ(m)

4 f (m)

(

∫ 1

0

g

pα

)−1

.

We shall verify that (1.1) has at least two positive solutions for λ ∈ I. For λ ∈ I and v ∈ E,

define Tλv = u, where u is the solution of

{

−(r(t)φ(u′))′ = λg(t)
(

f (ṽ)− a
ṽα

)

, 0 < t < 1,

u(0) = 0, u′(1) + H(u(1)) = 0,

where ṽ(t) = max (v(t), γp(t)/5). Note that u is given by

u(t) =
∫ t

0
φ−1

(

C − λ
∫ s

0 g(z)
(

f (ṽ − a
ṽα

)

dz

r(s)

)

ds (3.2)

for t ∈ (0, 1), where C is the unique number such that u′(1) + H(u(1)) = 0 i.e.

φ−1

(

C − λ
∫ 1

0 g(z)
(

f (ṽ)− a
ṽα

)

dz

r(1)

)

+ H

(

∫ 1

0
φ−1

(

C − λ
∫ s

0 g(z)
(

f (ṽ)− a
ṽα

)

dz

r(s)

)

ds

)

= 0.

Note that

|C| ≤ λ
∫ 1

0
g(t)

∣

∣

∣ f (ṽ)−
a

ṽα

∣

∣

∣ dt,

from which (3.2) gives

|u|C1 ≤ φ−1

(

2λ
∫ 1

0 g(t)
∣

∣ f (ṽ)− a
ṽα

∣

∣ dt

r0

)

≤ φ−1





2λ
∫ 1

0 g(t)
(

f (ṽ) + a
(γ/5)α pα(t)

dt
)

r0



 , (3.3)
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where |u|C1 = max(‖u‖∞, ‖u′‖∞). From this and standard arguments, it follows that Tλ : E →

E is a completely continuous operator. Next, we verify the two conditions of Lemma A.

(a) Let u ∈ E satisfy u = θTλu for some θ ∈ (0, 1]. Then ‖u‖∞ 6= m.

Suppose on the contrary that ‖u‖∞ = m. Then ‖ũ‖∞ ≤ m. Since u/θ = Tλu, we deduce

from (3.3) and the assumption f (m) > a
(γ/5)α that

∥

∥

∥

u

θ

∥

∥

∥

∞
≤ φ−1

(

2λ

r0

∫ 1

0
g(t)

(

f (m) +
a

(γ/5)α pα(t)

)

dt

)

≤ φ−1

(

2λ

r0

∫ 1

0
g(t)

(

f (m) +
f (m)

pα(t)

)

dt

)

≤ φ−1

(

4λ f (m)

r0

∫ 1

0

g

pα

)

.

Hence

m ≤ φ−1

(

4λ f (m)

r0

∫ 1

0

g

pα

)

,

which implies λ ≥ r0φ(m)
4 f (m)

( ∫ 1
0

g
pα

)−1
, a contradiction with λ ∈ I. Thus ‖u‖∞ 6= m.

(b) Let u ∈ E satisfy u = Tλu + ξ for some ξ ≥ 0. Then ‖u‖∞ /∈ {γ, R} for R >> 1.

Since u − ξ = Tλu, u satisfies
{

−(r(t)φ(u′))′ = λg(t)
(

f (ũ)− a
ũα

)

, 0 < t < 1,

u(0) = ξ ≥ 0, u′(1) + H(u(1)) = H(u(1))− H(u(1)− ξ) ≥ 0.

Note that

λg(t)
(

f (ũ −
a

ũα

)

≥ −
λag(t)

(γ/5)α pα(t)
= −hλ(t),

where hλ(t) =
λa

(γ/5)α

( g(t)
pα(t)

)

. Since f (m) > aφ(m)
4(γ/5)αφ(γ/5)

and λ ∈ I, we get

λ <
r0φ(m)

4 f (m)

(

∫ 1

0

g

pα

)−1

≤
r0(γ/5)αφ(γ/5)

a

(

∫ 1

0

g

pα

)−1

.

This implies φ(γ/5) > λa
r0(γ/5)α

( ∫ 1
0

g
pα

)

, i.e.

γ > 5φ−1

(

λa

r0(γ/5)α

(

∫ 1

0

g

pα

))

= 5φ−1

(

‖hλ‖1

r0

)

. (3.4)

Suppose ‖u‖∞ ∈ {γ, R} with R > γ. Since ‖u‖∞ ≥ γ > 5φ−1
( ‖hλ‖1

r0

)

in view of (3.4), it follows

from Lemma 2.3 (ii) that

u(t) ≥
1

5
‖u‖∞ p(t) for t ∈ [0, 1]. (3.5)

In particular, u(t) ≥ (γ/5)p(t) i.e. ũ ≡ u, and u(t) ≥ ‖u‖∞/20 for t ∈ [1/4, 3/4]. Conse-

quently, u satisfies






−(r(t)φ(u′))′ ≥ λg(t)
(

f
(

‖u‖∞

20

)

− a
(γ/5)α pα(t)

)

, 1
4 < t < 3

4 ,

u(1/4) ≥ 0, u(3/4) ≥ 0.

By the comparison principle, u ≥ v on [1/4, 3/4], where v is the solution of






−(r(t)φ(v′))′ = λg(t)
(

f
(

‖u‖∞

20

)

− a
(γ/5)α pα(t)

)

, 1
4 < t < 3

4 ,

v(1/4) = 0, v(3/4) = 0.
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Let t0 ∈ (1/4, 3/4) be such that v′(t0) = 0. Then upon integrating, we obtain

v′(t) = φ−1

(

λ

r(t)

∫ t0

t
g(s)

(

f

(

‖u‖∞

20

)

−
a

(γ/5)α pα(s)

)

ds

)

(3.6)

for t ∈ [1/4, 3/4]. We shall distinguish two cases.

Case 1. t0 > 1/2.

Integrating (3.6) on [1/4, 3/8] gives

v(3/8) =
∫ 3/8

1/4
φ−1

(

λ

r(t)

∫ t0

t
g(s)

(

f

(

‖u‖∞

20

)

−
a

(γ/5)α pα(s)

)

ds

)

dt

≥
∫ 3/8

1/4
φ−1

(

λ

r(t)

(

∫ 1/2

3/8
g(s) f

(

‖u‖∞

20

)

ds −
a

(γ/5)α

∫ 1

0

g

pα

)

dt

)

≥
1

8
φ−1

(

λ

(

g0

8r1
f

(

‖u‖∞

20

)

−
a

(γ/5)αr0

∫ 1

0

g

pα

))

. (3.7)

Since

f (m) >
16ar1(4m)β

g0r0(γ/5)α+β

(

∫ 1

0

g

pα

)

,

it follows from (A6) that

g0

8r1
f

(

‖u‖∞

20

)

≥
g0

8r1
f
( γ

20

)

≥
g0

8r1

( γ

20m

)β
f (m) ≥

2a

(γ/5)αr0

∫ 1

0

g

pα
.

Hence (3.7) gives

v(3/8) ≥
1

8
φ−1

(

λg0

16r1
f

(

‖u‖∞

20

))

,

which implies

‖u‖∞ ≥
1

8
φ−1

(

λg0

16r1
f

(

‖u‖∞

20

))

. (3.8)

Case 2. t0 ≤ 1/2.

Integrating (3.6) on [5/8, 3/4] gives

v(5/8) =
∫ 3/4

5/8
φ−1

(

λ

r(t)

∫ t

t0

g(s)

(

f

(

‖u‖∞

20

)

−
a

(γ/5)α pα(s)

)

ds

)

dt

≥
∫ 3/4

5/8
φ−1

(

λ

r(t)

(

∫ 5/8

1/2
g(s) f

(

‖u‖∞

20

)

ds −
a

(γ/5)α

∫ 1

0

g

pα

)

dt

)

≥
1

8
φ−1

(

λ

(

g0

8r1
f

(

‖u‖∞

20

)

−
a

(γ/5)αr0

∫ 1

0

g

pα

))

≥
1

8
φ−1

(

λg0

16r1
f

(

‖u‖∞

20

))

,

(3.9)

i.e. (3.8) holds. Thus (3.8) holds in either case. If ‖u‖∞ = γ then (3.8) gives

γ ≥
1

8
φ−1

(

λg0

16r1
f
( γ

20

)

)

,

which implies

λ ≤
16r1φ(8γ)

g0 f (γ/20)
,
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a contradiction with λ ∈ I. Thus ‖u‖∞ 6= γ.

Since

f
(

‖u‖∞

20

)

φ(8‖u‖∞)
≤

16r1

λg0

in view of (3.8) and limz→∞
f (z/20)
φ(8z)

= ∞ in view of (A4) and (A6), it follows that ‖u‖∞ 6= R for

R >> 1.

By Lemma A, Tλ has two fixed points ui,λ, i = 1, 2, such that γ < ‖u1,λ‖∞ < m, m <

‖u2,λ‖∞ < R. Since ‖ui,λ‖∞ ≥ γ, it follows from (3.5) with ξ = 0 that ui,λ(t) ≥ γ
5 p(t) for

t ∈ [0, 1] i.e. ũi,λ = ui,λ on [0, 1] for i = 1, 2. Hence ui,λ, i = 1, 2, are positive solutions of (1.1).

(ii) We shall modify the above proof. Let λ > 0 satisfy

φ−1

(

2λ

r0

∫ 1

0
g(t)

(

f (5) +
a

pα(t)

)

dt

)

< 5.

For v ∈ E, define Sλv = u, where u is the solution of

{

−(r(t)φ(u′))′ = λg(t)
(

f (ṽ)− a
ṽα

)

, 0 < t < 1,

u(0) = 0, u′(1) + H(u(1)) = 0,

where ṽ(t) = max (v(t), p(t)). (Sλ is Tλ in part (i) with γ = 5.) Then Sλ : E → E is completely

continuous. We verify that

(c) Let u ∈ E satisfy u = θTλu for some θ ∈ (0, 1]. Then ‖u‖∞ 6= 5.

Suppose ‖u‖∞ = 5. Then, as in part (a) above, we get

5 = ‖u‖∞ ≤ φ−1

(

2λ

r0

∫ 1

0
g(t)

(

f (5) +
a

pα(t)

)

dt

)

< 5,

a contradiction with the choice of λ. Thus ‖u‖∞ 6= 5.

(d) Let u ∈ E satisfy u = Tλu + ξ for some ξ ≥ 0. Then ‖u‖∞ 6= R for R >> 1.

Suppose ‖u‖∞ = R. Using the same arguments as in part (b) above with γ = 5 and note

that for R large

R = ‖u‖∞ > 5φ−1

(

‖hλ‖1

r0

)

,

where hλ(t) = λa
( g(t)

pα(t)

)

. Hence

u(t) ≥
‖u‖∞

5
p(t) ≥ p(t) for t ∈ [0, 1], (3.10)

i.e. ũ = u on [0, 1]. As in (3.7) and (3.9) above, we obtain

‖u‖∞ ≥
1

8
φ−1

(

λ

(

g0

8r1
f

(

‖u‖∞

20

)

−
a

r0

∫ 1

0

g

pα

))

i.e.
g0

8r1
f

(

‖u‖∞

20

)

−
a

r0

∫ 1
0

g

pα

φ(8‖u‖∞)
≤

1

λ
. (3.11)
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Since the left side of (3.11) tends to ∞ as ‖u‖∞ goes to ∞, we deduce that ‖u‖∞ < R for

R >> 1, which proves (d). By Lemma A, Sλ has a fixed point uλ with ‖uλ‖∞ > 5, which

together with (3.10) with ξ = 0 imply that ũλ = uλ on [0, 1], i.e. uλ is a positive solution of

(1.1). We show next that ‖uλ‖∞ → ∞ as λ → 0+. Since H(uλ(1)) ≥ H(0) = 0, it follows from

the boundary condition of uλ at 1 that u′
λ(1) ≤ 0. Hence uλ satisfies

{

−(r(t)φ(u′
λ))

′ ≤ λg(t) f (‖uλ‖∞), 0 < t < 1,

uλ(0) = 0, u′
λ(1) ≤ 0.

By the comparison principle, uλ ≤ vλ on [0, 1], where vλ is the solution of

{

−(r(t)φ(v′λ))
′ = λg(t) f (‖uλ‖∞), 0 < t < 1,

vλ(0) = 0, v′λ(1) = 0.
(3.12)

Note that

vλ(t) =
∫ t

0
φ−1

(

λ f (‖uλ‖∞)

r(s)

∫ 1

s
g

)

ds ≤ φ−1

(

λ‖g‖1 f (‖uλ‖∞)

r0

)

for t ∈ [0, 1]. Hence

‖uλ‖∞ ≤ φ−1

(

λ‖g‖1 f (‖uλ‖∞)

r0

)

,

i.e.

f (‖uλ‖∞)

φ(‖uλ‖∞)
≥

r0

λ‖g‖1
.

Consequently,

lim
λ→0+

f (‖uλ‖∞)

φ(‖uλ‖∞)
= ∞

and since ‖uλ‖∞ > 5, it follows from (A5) that limλ→0+ ‖uλ‖∞ = ∞.

Next, we show that uλ(1) → ∞ as λ → 0+. Since u′
λ(1) ≤ 0, it follows upon integrating

the equation in (1.1) and using Lemma 2.1 (ii) that

uλ(1) =
∫ 1

0
φ−1





λ
∫ 1

t g(s)
(

f (uλ)−
a

uα
λ

)

ds − r(1)φ(|u′
λ(1)|)

r(t)



 dt

≥
∫ 1

0
φ−1





λ
∫ 1

t g(s)
(

f (uλ)−
a

uα
λ

)

ds

r(t)



 dt − 2
∫ 1

0
φ−1

(

r(1)φ(|u′
λ(1)|)

r(t)

)

dt.

Thus

uλ(1) + 2
∫ 1

0
φ−1

(

r(1)φ(H(uλ(1)))

r(t)

)

dt ≥
∫ 1

0
φ−1





λ
∫ 1

t g(s)
(

f (uλ)−
a

uα
λ

)

ds

r(t)



 dt. (3.13)
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Since

∫ 1

0
φ−1





λ
∫ 1

t g(s)
(

f (uλ)−
a

uα
λ

)

ds

r(t)



 dt ≥
∫ 1

0
φ−1

(

λ
∫ 3/4

t g(s) f (uλ)ds

r1
−

λa

r0

∫ 1

0

g

pα

)

dt

≥
∫ 1/2

0
φ−1

(

λ
∫ 3/4

t g(s) f (uλ)ds

r1
−

λa

r0

∫ 1

0

g

pα

)

dt −
1

2
φ−1

(

λa

r0

∫ 1

0

g

pα

)

≥
1

2
φ−1





λ
(

∫ 3/4
1/2 g

)

f
(

‖uλ‖∞

4

)

r1
−

λa

r0

∫ 1

0

g

pα



−
1

2
φ−1

(

λa

r0

∫ 1

0

g

pα

)

→ ∞ as λ → ∞,

we deduce from (3.13) that uλ(1) → ∞ as λ → ∞. Since uλ satisfies

(r(t)φ(u′
λ))

′ ≤ hλ on (0, 1),

where hλ(t) = λa(g(t)/pα(t)), Lemma 2.3 (i) gives

uλ(t) ≥

(

uλ(1)− 2φ−1

(

‖hλ‖1

r0

))

t

for t ∈ [0, 1]. Consequently, uλ(t) → ∞ as λ → 0+ uniformly on compact subsets of (0, 1],

which completes the proof of Theorem 1.1.
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Abstract. Existence of mild solutions for a nonlocal abstract problem driven by a semi-
linear second order differential inclusion is studied in Banach spaces in the lack of
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nonlinear multivalued term. The method used for proving our existence theorems is
based on the combination of a fixed point theorem and a selection theorem developed
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1 Introduction

Let us consider the nonlocal abstract problem controlled by a semilinear second order differ-
ential inclusion















x′′(t) ∈ A(t)x(t) + F(t, x(t)), t ∈ J = [0, 1]

x(0) = g(x)

x′(0) = h(x).

(P)

where g, h : C(J; X) → X are suitable functions, without compactness conditions both on the
multimap F and on the fundamental system generated by the family {A(t)}t∈J .

The concept of nonlocal initial condition was introduced to extend the classical theory of
initial value problems by Byszewski in [3]. This notion is more appropriate then the classical
one to describe natural phenomena because it allows us to consider additional informations.
Nonlocal problems has been widely studied because of their applications in different fields to

BCorresponding author. Email: tiziana.cardinali@unipg.it
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applied science (see [8, 10, 33] and the reference cited therein). For instance, in [10] the author
described the diffusion phenomenon of a small amount of gas in a transparent tube by using
a first order differential equation and the following

g(u) =
p

∑
i=0

ciu(ti),

where ci is given constant and ti is a fixed instant of time, i = 0, 1, . . . , p.
On the other hand, there exists an extensive literature concerning abstract second order

equations in the autonomous case starting with the initial research works of Kato [19], [20]
and [21] (see, e.g. [12, 23, 27, 28, 30]), while the theory dealing with non-autonomous second
order abstract equations/inclusions has only recently been studied by using a concept of
fundamental Cauchy operator generated by the family {A(t)}t∈J , introduced by Kozak in
[24].

On this subject we recall Henríquez [15], Henríquez, Poblete and Pozo [16] for second
order differential equations; Cardinali and Gentili [5], Cardinali and De Angelis [4] for second
order differential inclusions. In all these papers the existence of mild solutions is studied
with topological techniques based on fixed point theorems for a suitable solution operator
and requesting strong compactness conditions, which are usually not satisfied in an infinite
dimensional framework.

Our purpose is to obtain existence results in the lack of this compactness both on the
semigroup generated by the linear part and on the nonlinear multivalued term. To achieve
this goal we use De Blasi measure of noncompactness and the weak topology. This approach
is present in [2], but with the aim of studying the existence of mild solutions for a problem
controlled by a semilinear first order differential inclusion.

Moreover the techniques for non-autonomous second order differential equations/inclu-
sions developed in [24] and [5] play a key role in the proof of our existence results.

This paper is organized as follows. After introducing in Section 2 some notations and some
preliminary results, in Section 3 we present the problem setting. Section 4 is devoted to obtain
some properties of the fundamental Cauchy operator, a new version of a selection theorem
proved in [2] (see Theorem 4.2) and, by using the classic Glicksberg Theorem, a variant of the
fixed point theorem introduced in [2] for x0-unpreserving multimaps (see Theorem 4.3) and
its version in Banach spaces (see Corollary 4.4).

In Section 5 we deal with the existence of mild solutions for the nonlocal abstract problem
controlled by a semilinear second order differential inclusion in Banach not necessarily reflex-
ive spaces; we end this section by presenting also an new existence theorem in the context of
reflexive spaces, omitting some assumption required in the previous result on the multimap
F and on the functions g and h (the reflexivity doesn’t imply these hypotheses removed). Fi-
nally, in Section 6, we apply our abstract existence theorem in reflexive Banach spaces to study
controllability of a Cauchy problem guided by the following wave equation

∂2w

∂t2 (t, ξ) =
∂2w

∂ξ2 (t, ξ) + b(t)
∂w

∂ξ
(t, ξ) + T(t)w(t, ·)(ξ) + u(t, ξ).

(see Theorem 6.1).
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2 Preliminaries

In this paper X is a Banach space with the norm ‖ · ‖X and P(X) is the family of nonempty
subsets of X. Moreover we will use the following notations:

Pb(X) = {H ∈ P(X) : H bounded},

Pc(X) = {H ∈ P(X) : H convex},

Pwk(X) = {H ∈ P(X) : H weakly compact}, . . .

Further, we recall that a Banach space X is said to be weakly compactly generated (WCG, for
short) if there exists a weakly compact subset K of X such that X = span{K} (see [14])

Remark 2.1. Let us note that every separable space is weakly compact generated as well as
the reflexive ones (see [14]).

Moreover, we recall that (see [26, Theorem 1.12.15]) a Banach space X is separable if and
only if it is compactly generated.

Moreover, we denote as X∗ the dual space of X.

Now, if τw is the weak topology on X and (An)n, An ∈ P(X), we set (see [17, Defini-
tion 7.1.3])

w − lim sup
n→+∞

An = {x ∈ X : ∃(xnk
)k, xnk

∈ Ank
, nk < nk+1, xnk

⇀ x} (2.1)

Then, we denote by BX(0, n) the closed ball centered at the origin and of radius n of X, and
for a set A ⊂ X, the symbol A

w
denotes the weak closure of A. We take for granted that a

bounded subset A of a reflexive space X is relatively weakly compact. Moreover we recall
that a subset C of a Banach space X is called relatively weakly sequentially compact if any
sequences of points in C has a subsequence weakly convergent to a point in X (see [26]).

In the sequel, on the interval J we consider the usual Lebesgue measure µ and we denote
by C(J; X) the space consisting of all continuous functions from J to X provided with the norm
‖ · ‖∞ of uniform convergence.

A function f : J → X is said weakly sequentially continuous if for every sequence (xn)n,
xn ⇀ x, then f (xn) ⇀ f (x). Moreover f is said to be B-measurable if there is a sequence of
simple functions (sn)n which converges to f almost everywhere in J (see [11, Definition 3.10.1
(a)]).

It easy to see that Theorem 4 of [22] can be rewritten in the following way.

Theorem 2.2. Let ( fn)n and g be respectively a sequence and a function in C(J; X). Then fn ⇀ g if

and only if ( fn − g)n is uniformly bounded and fn(t) ⇀ g(t), for every t ∈ J.

Moreover, we call by L1(J; X) the space of all X- valued Bochner integrable functions on
J with norm ‖u‖L1(J;X) =

∫ a
0 ‖u(t)‖X dt and L1

+(J) = { f ∈ L1(J; R) : f (t) ≥ 0, a.e. t ∈ J}. If
X = R we put ‖ · ‖1 = ‖ · ‖L1(J;R).

A set A ⊂ L1(J; X) has the property of equi-absolute continuity of the integral if for every
ε > 0 there exists δε > 0 such that, for every E ∈ M(J), µ(E) < δε, we have

∫

E
‖ f (t)‖X dt < ε

whenever f ∈ A.
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Remark 2.3. We observe that if A ⊂ L1(J; X) is integrably bounded, i.e. there exists ν ∈ L1
+(J)

such that
‖ f (t)‖X ≤ ν(t), a.e. t ∈ J, ∀ f ∈ A,

then the set A has the property of equi-absolute continuity of the integral.

Now we give Theorem 4.4.2 of [31] that we will use in Section 5 for the suitable pre-ideal
regular Lebesgue–Bochner space L2(T, C) (see [31, pp. 8,9,48]).

Theorem 2.4. An abstract function x : J → X, where X is a pre-ideal regular space on R, is B-

measurable if and only if there exists a measurable function y : J × R → X, such that x(t) = y(t, ·).

A multimap F : X → P(Y), where Y is a topological space:

• is upper semicontinuous at point x ∈ X if, for every open W ⊂ Y such that F(x) ⊂ W,
there exists a neighborhood V(x) of x with the property that F(V(x)) ⊂ W,

• is upper semicontinuous (u.s.c. for short) if it is upper semicontinuous at every point x ∈ X,

• is compact if its range F(X) is relatively compact in Y, i.e. F(X) is compact in Y,

• is locally compact if every point x ∈ X there exists a neighborhood V(x) such that the
restriction of F to V(x) is compact,

• has closed graph if the set graphF = {(x, y) ∈ X × Y : y ∈ F(x)} is closed in X × Y,

• if Y is a linear topological space, F has (s-w)sequentially closed graph [weakly sequentially

closed graph] if for every (xn)n, xn ∈ X, xn → x [xn ⇀ x] and for every (yn)n, yn ∈ F(xn),
yn ⇀ y, we have y ∈ F(x).

Next, we recall that, if K is a subset of X, F : K → P(X) is a multimap and x0 ∈ K, a closed
convex set M0 ⊂ K is (x0, F)-fundamental, if x0 ∈ M0 and F(M0) ⊂ M0 (see [2, p. 620]).

In this setting we recall the following result which allows to characterize the smallest
(x0, F)-fundamental set (see [2, Theorem 3.1])

Proposition 2.5. Let X be a locally convex Hausdorff space, K ⊂ X, x0 ∈ K. Let F : K → P(X) be a

multimap such that

i) co(F(K) ∪ {x0}) ⊂ K.

Then

1) F = {H : H is (x0, F)− fundamental set} 6= ∅;

2) put M0 =
⋂

H∈F H, we have M0 ∈ F and M0 = co(F(M0) ∪ {x0}).

Theorem 2.6 ([2, Theorem 4.4] (Containment Theorem)). Let X a Banach space and Gn, G : J →

P(X) be such that

α) a.e. t ∈ J, for every (un)n, un ∈ Gn(t), there exists a subsequence (unk
)k of (un)n and u ∈ G(t)

such that unk
⇀ u;

αα) there exists a sequence (yn)n, yn : J → X, having the property of equi-absolute continuity of the

integral, such that yn ∈ Gn(t), a.e. t ∈ J, for all n ∈ N.
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Then there exists a subsequence (ynk
)k of (yn)n such that ynk

⇀ y in L1(J; X) and, moreover, y(t) ∈

coG(t), a.e. t ∈ J.

Now, a function ϕ : Pb(X) → R
+
0 is said to be a Sadovskij functional in X if it satisfies

ϕ(co(Ω)) = ϕ(Ω), for every Ω ∈ Pb(X) (see [1]).

Definition 2.7 ([6, Definition 4.1]). A function ω : Pb(X) → R
+
0 is said to be a measure of weak

noncompactness (MwNC, for short) if the following properties are satisfied:

ω1) ω is a Sadowskii functional;

ω2) ω(Ω) = 0n if and only if Ω
w

is weakly compact (i.e. ω is regular).

Further, a MwNC ω : Pb(X) → R
+
0 is said to be:

monotone if Ω1, Ω2 ∈ Pb(X) : Ω1 ⊂ Ω2 implies ω(Ω1) ≤ ω(Ω2);

nonsingular if ω({x} ∪ Ω) = ω(Ω), for every x ∈ X, Ω ∈ Pb(X);

x0-stable if, fixed x0 ∈ X, ω({x0} ∪ Ω) = ω(Ω), Ω ∈ Pb(X);

invariant under closure if ω(Ω) = ω(Ω), Ω ∈ Pb(X);

invariant with respect to the union with compact set if ω(Ω ∪ C) = ω(Ω), for every relatively
compact set C ⊂ X and Ω ∈ Pb(X).

Remark 2.8. In particular in [9] De Blasi introduces the function β : Pb(X) → R
+
0 so defined

β(Ω) = inf{ε ∈ [0, ∞[: there exists C ⊂ X weakly compact : Ω ⊆ C + BX(0, ε)},

and he proves that β is a regular Sadowskii functional. Then β is MwNC, named in literature
De Blasi measure of weak noncompactness.

We recall that β has all the properties mentioned before and it is also algebraically subad-
ditive, i.e. β (∑n

k=1 Mk) ≤ ∑
n
k=1 β(Mk), where Mk ∈ Pb(X), k = 1, . . . , n. Moreover, for every

bounded linear operator L : X → X the following property holds ([18], p.35)

β(L(Ω)) ≤ ‖L‖ β(Ω), for every Ω ∈ Pb(X),

where ‖L‖ denotes the norm of the operator L.

We recall the following interesting result for MwNC.

Proposition 2.9 ([25, Theorem 2.8 and Remark 2.7 (b)] or [2, Theorem 2.7]). Let (Ω, Σ, µ)

be a finite positive measure space and X be a weakly compactly generated Banach space. Then for

every countable family C having the property of equi-absolute continuity of the integral of functions

x : Ω → X, the function β(C(·)) is measurable and

β

({

∫

Ω
x(s) ds : x ∈ C

})

≤
∫

Ω
β(C(s)) ds,

where β is a MwNC.

We recall a Sadowskii functional that we will use in the following.
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Definition 2.10 ([2, Definition 3.9]). Let X a Banach space, N ∈ R, and M a bounded subspace
of C([a, b]; X).

We use the notation M(t) = {x(t) : x ∈ M} and define

βN(M) = sup
C⊂M

countable

sup
t∈[a,b]

β(C(t))e−Nt, (2.2)

where β is the De Blasi MwNC.

Remark 2.11. We recall that the Sadowskii functional βN is x0-stable and monotone (see [2,
Proposition 3.10]) and βN has the two following properties

(I) βN is algebraically subadditive;

(II) M ⊂ C([a, b]; X) is relatively weakly compact ⇒ βN(M) = 0.

We note that (I) holds since β is algebraically subadditive while (II) is true taking into account
of the regularity of β.

3 Problem setting

First of all, on the linear part of the second order differential inclusion, presented in the
nonlocal problem (P), we assume the following property:

(A) {A(t)}t∈J is a family of bounded linear operators A(t) : D(A) → X, where D(A),
independent on t ∈ J, is a subset dense in X, such that, for each x ∈ D(A), the function
t 7→ A(t)x is continuous on J and generating a fundamental system {S(t, s)}t,s∈J , and F

is a suitable X-valued multimap defined in J × X.

In the following we recall the concept of fundamental system introduced by Kozak in [24]
and recently used in [4], [5] and [16].

Definition 3.1. A family {S(t, s)}t,s∈J of bounded linear operators S(t, s) : X → X is called a
fundamental system generated by the family {A(t)}t∈J if

S1. for each x ∈ X, S(·, ·)x : J × J → X is a C1-function and

a. for each t ∈ J, S(t, t)x = 0, for every x ∈ X;

b. for each t, s ∈ J and for each x ∈ X, ∂
∂t S(t, s)

∣

∣

t=s
x = x and

∂
∂s S(t, s)

∣

∣

t=s
x = −x;

S2. for all t, s ∈ J, x ∈ D(A), then S(t, s)x ∈ D(A), the map S(·, ·)x : J × J → X is of class C2

and

a’. ∂2

∂t2 S(t, s)x = A(t)S(t, s)x;

b’. ∂2

∂s2 S(t, s)x = S(t, s)A(s)x;

c’. ∂2

∂t∂s S(t, s)
∣

∣

t=s
x = 0;

S3. for all t, s ∈ J, x ∈ D(A), then ∂
∂s S(t, s)x ∈ D(A). Moreover, there exist ∂3

∂t2∂s
S(t, s)x,

∂3

∂s2∂t
S(t, s)x and
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a”. ∂3

∂t2∂s
S(t, s)x = A(t) ∂

∂s S(t, s)x;

b”. ∂3

∂s2∂t
S(t, s)x = ∂

∂t S(t, s)A(s)x;

and, for all x ∈ D(A), the function (t, s) 7→ A(t) ∂
∂s S(t, s)x is continuous in J × J.

Moreover, a map S : J × J → L(X), where L(X) is the space of all bounded linear operators
in X with the norm ‖ · ‖L(X), is said to be a fundamental operator if the family {S(t, s)}t,s∈J is a
fundamental system.

To abbreviate the notation we use, for each (t, s) ∈ J × J, the linear cosine operator

C(t, s) = −
∂

∂s
S(t, s) : X → X.

Remark 3.2. We recall that, by using Banach–Steinhaus Theorem, the fundamental system
{S(t, s)}t,s∈J satisfies the following properties (see [5]): there exist K, K∗

> 0 such that

p1. ‖C(t, s)‖L(X) ≤ K, (t, s) ∈ J × J;

p2. ‖S(t, s)‖L(X) ≤ K|t − s|, (t, s) ∈ J × J;

p3. ‖S(t, s)‖L(X) ≤ Ka, (t, s) ∈ J × J;

p4. ‖S(t2, s)− S(t1, s)‖L(X) ≤ K∗|t2 − t1|, t1, t2, s ∈ J.

Further we denote with GS : L1(J; X) → C(J; X) the fundamental Cauchy operator, introduced in
[5], defined by

GS f (t) =
∫ t

0
S(t, s) f (s) ds, t ∈ J, f ∈ L1(J; X).

It is easy to see that, by using Theorem 1.3.5 of [18] and the properties p3., p4. and S1., the
operator GS is well posed.

We investigate the existence of mild solutions for the nonlocal problem (P) (see [5, Defini-
tion 2.2])

Definition 3.3. A continuous function u : J → X is a mild solution for (P) if

u(t) = C(t, 0)g(u) + S(t, 0)h(u) +
∫ t

0
S(t, ξ) f (ξ) dξ, t ∈ J,

where f ∈ S1
F(·,u(·)) = { f ∈ L1(J; X) : f (t) ∈ F(t, u(t)), a.e. t ∈ J}.

4 Auxiliary results

First of all we describe some properties of the fundamental Cauchy operator by the following

Proposition 4.1. If {S(t, s)}(t,s)∈J×J is the fundamental system, then the fundamental Cauchy opera-

tor GS : L1(J; X) → C(J; X) is linear, bounded, weakly continuous and weakly sequentially continu-

ous.

Proof. Clearly GS is a bounded and linear operator. Hence we can deduce that GS is weakly
continuous.

Now we prove that GS is also weakly sequentially continuous.
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Fixed t ∈ J and e′ ∈ X∗, let us consider the map Ht : L1(J; X) → R, where Ht(g) =

e′(GSg(t)), for every g ∈ L1(J; X).
Obviously Ht is a linear and continuous functional. Fixed a sequence ( fn)n, fn ∈ L1(J; X)

such that fn ⇀ f , by using the properties of the weak convergence, we have e′(GS fn(t)) →

e′(GS f (t)). Then, by the arbitrariness of e′ ∈ X∗, we have

GS fn(t) ⇀ GS f (t), ∀t ∈ J.

Moreover we can say that the sequence (GS( fn − f ))n is uniformly bounded in C(J; X). Indeed,
by using p3. and the weak convergence of ( fn)n, we can write

‖GS fn − GS f ‖C(J;X) = sup
t∈J

∥

∥

∥

∥

∫ t

0
S(t, ξ)( fn(ξ)− f (ξ)) dξ

∥

∥

∥

∥

X

≤ K(‖ fn‖L1(J;X) + ‖ f ‖L1(J;X)) ≤ K(Q + ‖ f ‖L1(J;X)),

where Q is a positive constant such that ‖ fn‖L1(J;X) ≤ Q, for every n ∈ N. Therefore
(GS fn − GS f )n satisfies all the hypotheses of Theorem 2.2, so we have

Gs fn ⇀ GS f .

Now, let us introduce the following result, that will play a key role in the proof of our
existence theorem. Let us note that the analogous Proposition 4.5 of [2] is not able to work in
the proof of our existence theorem because the hypothesis d) is weaker of the assumption (d)

required in Proposition 4.5 of [2].

Theorem 4.2. Let M be a metric space, X a Banach space and F : J × M → P(X) a multimap having

the following properties:

a) for a.e. t ∈ J, for every x ∈ M, the set F(t, x) is closed and convex ;

b) for every x ∈ M, the multimap F(·, x) has a B-measurable selection;

c) for a.e. t ∈ J the multimap F(t, ·) : M → P(X) has a (s-w)sequentially closed graph in M × X;

d) for almost all t ∈ J and every convergent sequence (xn)n in M the set
⋃

nF(t, xn) is relatively

weakly compact;

e) there exists ϕ : J → [0, ∞): ϕ ∈ L1
+(J) such that

sup
z∈F(t,M)

‖ z ‖≤ ϕ(t), a.e. t ∈ J.

Then, for every B-measurable u : J → M, there is a B-measurable y : J → X with y(t) ∈ F(t, u(t))

for a.e. t ∈ J.

Proof. First of all we note that hypothesis b) implies

b)w for every s : J → M simple function, the multimap F(·, s(·)) has a B-measurable selec-
tion.
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Next fix u : J → M a B-measurable function, then there exists a sequence (up)p, up : J → M

simple function, such that
up(t) → u(t), a.e. t ∈ J. (4.1)

Using b)w, for every p ∈ N, in correspondence of the simple function up, there exists a B-
measurable function yp : J → X such that

yp(t) ∈ F(t, up(t)), a.e. t ∈ J. (4.2)

Now, let us consider A = {yp, p ∈ N}, subset of L1(J; X) (see e)).
First of all we note that, if N is the null measure set for which a), c), d), e), (4.1) and (4.2)

hold, we can write (see (4.2))

A(t) = {yp(t), p ∈ N} ⊂
⋃

p∈N

F(t, up(t))
w

, t ∈ J \ N (4.3)

where the set
⋃

p∈NF(t, up(t))
w

is weakly compact. Therefore the set A(t) is relatively weakly
compact.

Now, by using hypothesis e) we can say that A is bounded in L1(J; X). Indeed, put r =

‖ϕ‖1, we have
‖yp‖L1(J;X) ≤ r, ∀p ∈ N.

Moreover, by recalling that ϕ ∈ L1
+(J), we can say that, for every ε > 0, there exists δ(ε) > 0 :

for every H ∈ M(J), µ(H) < δ(ε) then
∣

∣

∣

∣

∫

H
yp(t) dt

∣

∣

∣

∣

≤
∫

H
‖yp(t)‖X dt ≤

∫

H
ϕ(t) dt ≤ ε, ∀p ∈ N,

i.e., A has the property of equi-absolute continuity of the integral.
Since, as we have showed, the set A satisfies all the hypotheses of [29, Corollary 9], we can

conclude that A is relatively weakly compact in L1(J; X). Therefore there exists (ypk
)k ⊂ (yp)p

such that ypk
⇀ y, y ∈ L1(J; X).

Now, we can apply [[17], Proposition 7.3.9] to the multimap G : J → Pwk(X), defined by
G(s) = Bs, ∀s ∈ J, where Bs =

⋃

p∈NF(s, up(s))
w

, and to the sequence (ypk
)k of L1(J; X). It is

possible since (see (4.3)) ypk
(t) ∈ Bt, t ∈ J \ N, ∀pk. Hence we can conclude that, for the fixed

t ∈ J \ N, we have (see (2.1))

y(t) ∈ co w − lim sup
k→∞

{ypk
(t)}k. (4.4)

Then, by (4.2), we can say

co w − lim sup
k→∞

{ypk
(t)}k ⊂ co w − lim sup

k→∞

F(t, upk
(t)). (4.5)

Finally, we will prove that (see hypothesis a) and (4.1))

co w − lim sup
k→∞

F(t, upk
(t)) ⊂ F(t, u(t)). (4.6)

Let us fix z ∈ co w − lim suppk→∞ F(t, upk
(t)), then there exists zpkq

∈ F(t, upkq
(t)) such that

zpkq
⇀ z
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in X, where (pkq
)q∈N is an increasing sequence. Moreover, by (4.1) we know that

upkq
(t) → u(t).

Therefore, since t /∈ N, hypothesis c) implies that z ∈ F(t, u(t)). For the arbitrariness of z we
can conclude that (4.6) is true.

Thanks to (4.4), (4.5), (4.6), finally we can say that the map y ∈ L1(J; X) satisfies y(t) ∈

F(t, u(t)) a.e. t ∈ J, so the thesis holds.

Now, by using the concept of smallest (x0, T)-fundamental set (see 2) of Proposition 2.5),
taking into account of Proposition 2.5 and the classical Glicksberg Fixed Point Theorem of
[13] we deduce a variant of Theorem 3.7 of [2] proved by Benedetti–Väth for x0-unpreserving
multimaps T.

Theorem 4.3. Let X be a locally convex Hausdorff space, K ⊂ X, x0 ∈ K and T : K → P(X) a

multimap such that

i) co(T(K) ∪ {x0}) ⊂ K;

ii) T(x) is convex, for every x ∈ M0;

iii) M0 is compact;

iv) T|M0
has closed graph,

where M0 is the smallest (x0, T)-fundamental set.

Then there exists at least one fixed point for T, i.e. there exists x ∈ M0: x ∈ T(x).

Proof. First of all, since M0 is a (x0, T)-fundamental set, we know that M0 is convex and
T(M0) ⊂ M0. Moreover by iii) M0 is also compact.

Therefore, taking into account of ii) and iv), the multimap T|M0
: M0 → P(M0) has convex

values and closed graph. So we are in a position to apply the Glicksberg Theorem to the
multimap T|M0

, then there exists x ∈ M0 such that x ∈ T(x).

When we deal with the weak topology in a Banach space, we can replace equivalently the
hypothesis about closed graph by a sequentially closed graph (see [2], Corollary 3.2), so we
have the following:

Corollary 4.4. Let X be a Banach space, K ⊂ X, x0 ∈ K and T : K → P(X) be a multimap such that

i) co(T(K) ∪ {x0}) ⊂ K;

ii) T(x) convex, for every x ∈ M0;

iii) M0 is weakly compact;

iv) T|M0
has weakly sequentially closed graph,

where M0 is the smallest (x0, T)-fundamental set.

Then there exists at least one fixed point for T.
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5 Existence result

In this section we assume the following hypotheses on the multimap F : J × X → P(X)

F1. for every (t, x) ∈ J × X, the set F(t, x) is convex;

F2. for every x ∈ X, F(·, x) : J → X admits a B-measurable selection;

F3. for a.e. t ∈ J, F(t, ·) : X → X has a weakly sequentially closed graph;

F4. there exists (ϕn)n, ϕn ∈ L1
+(J), such that

lim sup
n→∞

∫ 1
0 ϕn(ξ) dξ

n
<

1
K

(5.1)

and
‖F(t, BX(0, n))‖ ≤ ϕn(t), a.e. t ∈ J, n ∈ N, (5.2)

where K is the constant presented in Remark 3.2;

and the two properties related to functions g, h : C(J; X) → X

gh1. g, h are weakly sequentially continuous;

gh2. for every countable, bounded H ⊂ C(J; X), the sets g(H) and h(H) are relatively com-
pact.

Now we state the main result of the paper.

Theorem 5.1. Let X be a weakly compactly generated Banach space and {A(t)}t∈J a family of operators

which satisfies the property (A).

Let F : J × X → P(X) be a multimap satisfying F1, F2, F3, F4 and the following hypothesis

F5. there exists H ⊂ J, µ(H) = 0, such that, for all n ∈ N, there exists νn ∈ L1
+(J) with the

property

β(C1) ≤ νn(t)β(C0), t ∈ J \ H

for all countable C0 ⊆ BX(0, n), C1 ⊆ F(t, C0), where β is the De Blasi measure of weak

noncompactness.

Let g, h : C(J; X) → X be two functions satisfying gh1, gh2 and having the following properties

gh3. g, h are bounded;

gh4. for every bounded and closed subset M of C(J; X), the sets

C(·, 0)g(M) and S(·, 0)h(M)

are relatively weakly compact in C(J; X).

Then there exists at least one mild solution for the nonlocal problem (P).
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Proof. First of all we prove that

F(t, x) is closed, for a.e. t ∈ J and for every x ∈ X. (5.3)

Denoted by N a null measure set such that F3. and F5. hold in J \ N, we fix t ∈ J \ N and x ∈ X.
Put C0 = {x} and C1 = {yn : n ∈ N} , where yn ∈ F(t, x), ∀n ∈ N. Being C0 ⊂ BX(0, p), for
a suitable p ∈ N, and C1 ⊂ F(t, C0), by F5. we have β(C1) ≤ νp(t)β(C0) = 0. Therefore C1 is
relatively w-compact and so by Eberlein–Šmulian Theorem we can say that there exists (ynk

)k,
ynk

⇀ y. Then F3. implies that y ∈ F(t, x). So we have that F(t, x) is w-sequentially compact
and, invoking again the Eberlein–Šmulian Theorem, F(t, x) is w-compact. Therefore, by using
Theorem 3 of [32], in order to establish the closeness of the convex set F(t, x) it is sufficient to
observe that F(t, x) is w-sequentially closed by virtue of hypothesis F3. too.

Now, we consider the integral multioperator T : C(J; X) → Pc(C(J; X)) defined, for every
u ∈ C(J; X), as

Tu =

{

y ∈ C(J; X) : y(t) = C(t, 0)g(u) + S(t, 0)h(u)

+
∫ t

0
S(t, ξ) f (ξ) dξ, t ∈ J, f ∈ S1

F(·,u(·))

}

(5.4)

where
S1

F(·,u(·)) = { f ∈ L1(J; X) : f (t) ∈ F(t, u(t)) a.e. t ∈ J}. (5.5)

Note that, for all u ∈ C(J; X), Tu 6= ∅. Indeed, put

Mu = BX(0, nu), (5.6)

where nu ∈ N: ‖u(t)‖X ≤ nu, for all t ∈ J, we note that the multimap F|J×Mu
satisfies all the

hypotheses of Theorem 4.2, by considering on Mu the metric d induced by that on X.
First of all F1., (5.3) and F2. imply respectively a) and b) of Theorem 4.2 for the restriction

F|J×Mu
.

By F3. we have that F|J×Mu
has the property c) of Theorem 4.2.

Moreover, fixed t ∈ J \ H (where H is presented in F5.), if (un)n, un ∈ Mu, un → v in
(Mu, d), we can consider the countable set C̃0 = {un : n ∈ N} ⊂ Mu and the set C̃1 =
⋃

n F(t, un) ⊂ F(t, C̃0) and by F5. we can write

β(C̃1) ≤ νn(t)β(C̃0) = 0,

hence β(C̃1) = 0, i.e. the set C̃1 is relatively w-compact for the regularity of the De Blasi
MwNC. Therefore also d) of Theorem 4.2 holds.

Finally, for nu ∈ N presented in (5.6), by F4. we can say that there exists ϕnu ∈ L1
+(J) such

that
‖F(t, Mu)‖ ≤ ϕnu(t), a.e. t ∈ J

and so also e) of Theorem 4.2 is satisfied. Therefore we can conclude that there exists a B-
selection fu of the multimap F(·, u(·)), i.e. S1

F(·,u(·)) is nonempty. Then the map yu defined
by

yu(t) = C(t, 0)g(u) + S(t, 0)h(u) + GS fu, t ∈ J,

is such that yu ∈ Tu, i.e. Tu 6= ∅.
Moreover T takes convex values thanks the convexity of the values of F.
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From now on we proceed by steps.

Step 1. The multioperator T has a weakly sequentially closed graph.

Let (qn)n and (xn)n be two sequences in C(J; X) such that

xn ∈ Tqn, ∀n ∈ N (5.7)

and there exist q, x ∈ C(J; X) such that

qn ⇀ q, xn ⇀ x; (5.8)

we have to show that x ∈ Tq.
First of all we recall that, by the properties of the convergence qn ⇀ q, there exists n ∈ N

such that
‖qn‖C(J;X) ≤ n, ∀n ∈ N. (5.9)

Moreover, for every t ∈ J, the weak convergence of the sequence (qn)n to q implies also that

qn(t) ⇀ q(t). (5.10)

Then by (5.7), for every n ∈ N, there exists (see (5.5))

fn ∈ S1
F(·,qn(·))

(5.11)

such that (see (5.4))

xn(t) = C(t, 0)g(qn) + S(t, 0)h(qn) +
∫ t

0
S(t, ξ) fn(ξ) dξ, t ∈ J.

Now we want to prove that the multimaps Gn : J → P(X), n ∈ N and G : J → P(X)

respectively defined by

Gn(t) = F(t, qn(t)), t ∈ J, (5.12)

G(t) = F(t, q(t)), t ∈ J (5.13)

satisfy all the hypotheses of the Containment Theorem. To this aim we consider the null
measure set N for which F3. and F5. hold. Let us fix t ∈ J \ N, we consider a sequence (un)n

such that
un ∈ Gn(t), ∀n ∈ N. (5.14)

Now, we define a countable set of X

C0 = {qn(t) : n ∈ N}. (5.15)

It is evident that C0 ⊂ BX(0, n) (see (5.9)). Then, put C1 = {un : n ∈ N} we have that (see
(5.14), (5.12) and (5.15))

C1 ⊂ F(t, {qn(t)}n) = F(t, C0).

Now, in correspondence of n ∈ N chosen in (5.9), by virtue of F5. there exists νn ∈ L1
+(J)

such that
β(C1) ≤ νn(t)β(C0). (5.16)

Taking account of (5.10) we can say that the set C0 is relatively weakly compact and so, for the
regularity of β, β(C0) = 0. By virtue of the Eberlein–Šmulian Theorem, by (5.16) we deduce



14 T. Cardinali and G. Duricchi

that C1 is relatively weakly sequentially compact, i.e. there exist (unk
)k ⊂ (un)n and u ∈ X such

that unk
⇀ u. Now by (5.10), (5.14) and (5.12), thanks to F3., we have u ∈ G(t). Moreover,

being the sequence ( fn)n integrably bounded (see (5.11) and (5.9)), it has the property of
equi-absolute continuity of the integral (also named uniformly integrability) and, obviously
fn(t) ∈ Gn(t), a.e. t ∈ J (see (5.12)).

Therefore, applying the Containment Theorem to the multimaps Gn, G : J → P(X), n ∈ N,
(see (5.12) and (5.13)), we can say that there exists ( fnk

)k ⊂ ( fn)n such that

fnk
⇀ f in L1(J; X),

where (see (5.13), F1. and (5.3))

f (t) ∈ coG(t) = coF(t, q(t)) = F(t, q(t)), a.e. t ∈ J.

Hence, we can conclude that
f ∈ S1

F(·,q(·)). (5.17)

By using the weak continuity of the Cauchy operator GS (see Proposition 4.1) we have GS fnk
⇀

GS f . Then, for every fixed t ∈ J we have

GS fnk
(t) ⇀ GS f (t), (5.18)

and by hypothesis gh1. and taking into account of the linearity and continuity of S(t, 0) and
C(t, 0) we have

C(t, 0)g(qnk
) ⇀ C(t, 0)g(q) and S(t, 0)h(qnk

) ⇀ S(t, 0)h(q).

So, by using (5.7) and (5.18), we can write

xnk
(t) ⇀ C(t, 0)g(q) + S(t, 0)h(q) +

∫ t

0
S(t, ξ) f (ξ) dξ =: x̃(t). (5.19)

On the other hand, by (5.8)), we know that xnk
⇀ x in C(J; X), hence xnk

(t) ⇀ x(t), for all
t ∈ J. From the uniqueness of the limit we have

x(t) = x̃(t), t ∈ J. (5.20)

Finally, from (5.20), (5.19), (5.17) and (5.4) we deduce that x ∈ Tq. Therefore we can conclude
that T has a weakly sequentially closed graph.

Step 2. There exists a subset of C(J; X) which is invariant under the action of the operator T.

We will show that exists p ∈ N such that the operator T maps the ball BC(J;X)(0, p) into
itself.

Assume by contradiction that, for every n ∈ N, there exists qn ∈ C(J; X), with ‖qn‖C(J;X) ≤

n, such that there exists xqn ∈ Tqn, ‖xqn‖C(J;X) > n.
Since ‖xqn‖C(J;X) > n, there exists tn ∈ J such that ‖xqn(tn)‖X ≥ n. Now, taking into

account the p1. and p3. of Remark 3.2 we can write

n ≤ ‖xqn(tn)‖X ≤ ‖C(tn, 0)g(qn)‖X + ‖S(tn, 0)h(qn)‖X +
∫ tn

0
‖S(tn, ξ) fqn(ξ)‖X dξ

≤ ‖C(tn, 0)‖L(X)‖g(qn)‖X + ‖S(tn, 0)‖L(X)‖h(qn)‖X +
∫ tn

0
‖S(tn, ξ)‖L(X)‖ fqn(ξ)‖X dξ

≤ KQ + KQ + K
∫ 1

0
‖ fqn(ξ)‖X dξ,
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where Q > 0 is such that ‖g(u)‖X ≤ Q, ‖h(u)‖X ≤ Q, for every u ∈ C(J; X) (see gh3.)
and fqn ∈ S1

F(·,qn(·))
. Next, since ‖qn‖C(J;X) = supt∈J ‖qn(t)‖X ≤ n, there exists (see (5.2) of

hypothesis F4.) a function ϕn ∈ L1
+(J) such that

‖ fqn(t)‖X ≤ ϕn(t), a.e. t ∈ J,

then we deduce

n ≤ ‖xqn(tn)‖X ≤ 2KQ + K
∫ 1

0
ϕn(ξ) dξ. (5.21)

Therefore, since (5.21) is true for every n ∈ N, we have

1 ≤
2KQ

n
+

K
∫ 1

0 ϕn(ξ) dξ

n
, ∀n ∈ N.

Hence, passing to the superior limit, by (5.1) we obtain the following contradiction

1 ≤ lim sup
n→∞

(

2KQ

n
+

K
∫ 1

0 ϕn(ξ) dξ

n

)

≤ lim sup
n→∞

K
∫ 1

0 ϕn(ξ) dξ

n
< 1.

Therefore we can conclude that there exists p ∈ N such that BC(J;X)(0, p) is invariant under
the action of the operator T.

Step 3. There exists the smallest (0, T)-fundamental set which is weakly compact.

First of all, fixed p as in Step2., put x0 = 0 and K = BC(J;X)(0, p). We know that K is a
subset of the locally convex Hausdorff space C(J; X) equipped with the weak topology. Since
T(K) ⊂ K, we have co(T(K) ∪ {0}) ⊂ K.

Therefore by Proposition 2.5, we can say that there exists the smallest (0, T)-fundamental
set M0 such that

M0 ⊂ BC(J;X)(0, p) = K, (5.22)

and
M0 = co(T(M0) ∪ {0}). (5.23)

Now, we will prove that M0 is weakly compact.
We consider the Sadovskij functional βN , defined in (2.2), where N ∈ R+. Being βN

0-stable (where 0 denotes the null function), we can write (see (5.23))

βN(T(M0)) = βN(M0), (5.24)

hence, since βN satisfies (I) and (II) of Remark 2.11, (5.24), (5.4) and gh4. imply

βN(M0) = βN

(

{C(·, 0)g(u) + S(·, 0)h(u) + GS f : f ∈ S1
F(·,u(·)), u ∈ M0}

)

≤ βN(C(·, 0)g(M0)) + βN(S(·, 0)h(M0)) + βN({GS f : f ∈ S1
F(·,u(·)), u ∈ M0})

= βN({GS f : f ∈ S1
F(·,u(·)), u ∈ M0})

= sup
C⊂S1

F(·,M0(·))
C countable

sup
t∈J

β

({

∫ t

0
S(t, ξ) f (ξ) dξ : f ∈ C

})

e−Nt. (5.25)

Now, fixed t ∈ J and a countable set C ⊂ S1
F(·,M0(·))

, we define

CC
t = {S(t, ·) f (·) : f ∈ C}.
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By using F4. and p3. of Remark 3.2 we can say that the countable set is integrably bounded,
so it has the property of equi-absolute continuity of the integral. Now, since X is a weakly
compact generated Banach space, we are in the position to apply Proposition 2.9 of the Pre-
liminaries to the countable set CC

t , so we have

β

({

∫ t

0
S(t, ξ) f (ξ) dξ : f ∈ C

})

≤
∫ t

0
β(CC

t ) dξ, t ∈ J, (5.26)

so, by using (5.25), (5.26) and p3. of Remark 3.2 (a = 1), we can write

βN(M0) ≤ sup
C⊂S1

F(·,M0(·))
C countable

sup
t∈J

(

∫ t

0
β(CC

t ) dξ

)

e−Nt

≤ sup
C⊂S1

F(·,M0(·))
C countable

sup
t∈J

(

∫ t

0
‖S(t, ξ)‖L(X)β(C(ξ)) dξ

)

e−Nt

≤ sup
C⊂S1

F(·,M0(·))
C countable

sup
t∈J

(

K
∫ t

0
β(C(ξ)) dξ

)

e−Nt. (5.27)

Further let us note that for every f ∈ S1
F(·,M0(·))

we can consider, by the Axiom of Choice, a

continuous map q f ∈ M0 such that f (ξ) ∈ F(ξ, q f (ξ)) a.e. ξ ∈ J. So the set CC
0 = {q f ∈ M0 :

f ∈ C} is countable too. Now, taking into account of the numerability of C, there exists a null
measure set V ⊂ J: H ⊂ V, where H is the null measure set defined in F5., such that

f (ξ) ∈ F(ξ, q f (ξ)), for every ξ ∈ J \ V, f ∈ C,

where q f ∈ CC
0 .

Hence, fixed ξ ∈ J \ V, we observe that CC
0 (ξ) ⊂ M0(ξ) ⊂ BX(0, p) (see (5.22)) and C(ξ) ⊂

F(ξ, CC
0 (ξ)). By hypothesis F5. we can write

β(C(ξ)) ≤ νp(ξ)β(CC
0 (ξ)).

The above considerations allow to claim that, for every countable set C ⊂ S1
F(·,M0(·))

, there

exists a countable subset CC
0 ⊂ M0 ⊂ BX(0, p) such that

β(C(ξ)) ≤ νp(ξ)β(CC
0 (ξ)) ≤ νp(ξ) sup

C0⊂M0
C0 countable

β(C0(ξ)), a.e. ξ ∈ J. (5.28)

Therefore, taking into account of (5.28), by (5.27) we deduce

βN(M0) ≤ sup
C⊂S1

F(·,M0(·))
C countable

sup
t∈J

(

K
∫ t

0
β(C(ξ)) dξ

)

e−Nt

≤ sup
C⊂S1

F(·,M0(·))
C countable

sup
t∈J






K
∫ t

0
νp(ξ) sup

C0⊂M0
C0 countable

β(C0(ξ)) dξ






e−Nt

≤ sup
t∈J






K
∫ t

0
e−N(t−ξ)νp(ξ) sup

C0⊂M0
C0 countable

sup
ξ∈J

e−Nξ β(C0(ξ)) dξ







= βN(M0) sup
t∈J

∫ t

0
Ke−N(t−ξ)νp(ξ) dξ (5.29)
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By virtue of [7, Lemma 3.1] we can say that there exists H ∈ N such that

sup
t∈J

∫ t

0
Ke−H(t−ξ)νp(ξ) dξ < 1. (5.30)

Now, if we assume that βH(M0) > 0, and we consider in (5.29) the constant H characterized
as in (5.30), we have the following contradiction

βH(M0) ≤ βH(M0) sup
t∈J

∫ t

0
Ke−H(t−ξ)νp(ξ) dξ < βH(M0).

Therefore we conclude that this fact
βH(M0) = 0 (5.31)

is true.
By definition of βH(M0), first of all, we have that, for every t ∈ J, the set M0(t) is relatively

weakly sequentially compact. Indeed, fixed t ∈ J and a sequence (qn(t))n in M0(t), we
consider the countable set C̃(t) = {qn(t) : n ∈ N}. By (5.31) we can say that β(C̃(t)) = 0,
so we deduce that C̃(t) is relatively weakly compact. By the Eberlein–Šmulian Theorem we
have that the set C̃(t) is relatively weakly sequentially compact, i.e. there exists a subsequence
(qnk

(t))k of (qn(t))n such that qnk
(t) ⇀ q(t) ∈ X. Therefore, by the arbitrariness of (qn(t))n we

can conclude that M0(t) is relatively weakly sequentially compact.
Now, we show that also the set S1

F(·,M0(·))
is relatively weakly compact in L1(J; X).

To this aim we note that S1
F(·,M0(·))

is integrably bounded. Indeed, for every f ∈ S1
F(·,M0(·))

,

taking into account of M0 ⊂ BC(J;X)(0, p) (see (5.22)), we can write

f (t) ∈ F(t, M0(t)) ⊂ F(t, BX(0, p)), a.e. t ∈ J.

So, by F4. there exists ϕp ∈ L1
+(J) such that

‖ f (t)‖X ≤ ϕp(t), a.e. t ∈ J, for every f ∈ S1
F(·,M0(·))

. (5.32)

Therefore S1
F(·,M0(·))

is integrably bounded and then S1
F(·,M0(·))

has the property of equi-absolute
continuity of the integral (see Remark 2.3).

Moreover, by (5.32) we also deduce that S1
F(·,M0(·))

is bounded in L1(J; X).

Now, we show that S1
F(t,M0(t))

is relatively weakly compact in X, for a.e. t ∈ J.
Let us fix t ∈ J \ H∗, where H∗ is the null measure set for which F4. and F5. hold. First of

all, we note that S1
F(t,M0(t))

is norm bounded in X by the constant ϕp(t). Indeed we have

‖x‖X ≤ ‖F(t, M0(t))‖ ≤ ‖F(t, BX(0, p))‖ ≤ ϕp(t),

for every x ∈ S1
F(t,M0(t))

.

Next, let us fix a sequence (yn)n, where yn ∈ S1
F(t,M0(t))

, n ∈ N. Then there exists a

sequence ( fn)n ⊂ S1
F(·,M0(·))

such that

yn = fn(t) ∈ F(t, M0(t));

let us note that, for every n ∈ N, there exists qn ∈ M0(t) such that

yn ∈ F(t, qn). (5.33)
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Now, by considering the two countable sets C0 = {qn : n ∈ N} and C1 = {yn : n ∈ N} we
have (see (5.22) and (5.33))

C0 ⊂ BX(0, p) and C1 ⊂ F(t, C0).

So, by F5. and recalling that M0(t) is relatively weakly compact we can write

0 ≤ β(C1) ≤ νp(t)β(C0) ≤ νp(t)β(M0(t)) = 0,

so β(C1) = 0, i.e. C1 is relatively weakly compact. Hence there exists a subsequence (ynk
)k ⊂

(yn)n such that (ynk
)k is weakly convergent.

By the arbitrariness of (yn)n in S1
F(t,M0(t))

and taking into account the Eberlein–Šmulian

Theorem, we can claim that S1
F(t,M0(t))

is relatively weakly compact.

So, we are in the position to apply [29, Corollary 9], hence S1
F(·,M0(·))

is relatively weakly

compact in L1(J; X).
Next we are able to prove that T(M0) is relatively weakly compact in C(J; X).
To this aim we fix a sequence (xn)n, xn ∈ T(M0). Then there exists (pn)n, pn ∈ M0 such

that, for every n ∈ N, xn ∈ Tpn, hence

xn(t) = C(t, 0)g(pn) + S(t, 0)h(pn) +
∫ t

0
S(t, ξ) fn(ξ) dξ, t ∈ J, (5.34)

where fn ∈ S1
F(·,pn(·))

⊂ S1
F(·,M0(·))

.

By the relative weak sequential compactness of S1
F(·,M0(·))

in L1(J; X) we can find a subse-

quence ( fnk
)nk

of ( fn)n such that fn ⇀ f in L1(J; X). By using Proposition 4.1, we have

GS fnk
⇀ GS f . (5.35)

Moreover, thanks to hypothesis gh2., since {pnk
: k ∈ N} ⊂ M0 is countable and bounded in

C(J; X) (see (5.22)), there exists a subsequence of (pnk
)k, w.l.o.g we name also (pnk

)k, such that

g(pnk
) → x and h(pnk

) → y in X. (5.36)

Now, let us consider the subsequence (xnk
)k of (xn)n (see (5.34)).

For every linear and continuous functional e′ : C(J; X) → R, we can write

e′(xnk
) = e′(C(·, 0)g(pnk

)) + e′(S(·, 0)h(pnk
)) + e′(GS fnk

), ∀nk.

Taking into account (5.35) and (5.36), passing to the limit for k → +∞, we obtain

lim
k→∞

e′(xnk
) = e′(C(·, 0)x) + e′(S(·, 0)y) + e′(GS f ) = e′(C(·, 0)x + S(·, 0)y + GS f ).

By definition of weak convergence we have

xnk
⇀ C(·, 0)x + S(·, 0)y + GS f =: x,

where x ∈ C(J; X), which means that T(M0) is relatively weakly sequentially compact and
so, using again the Eberlein–Šmulian Theorem we can claim that T(M0) is relatively weakly
compact.

Finally, recalling (5.23), we can conclude M0 is weakly compact.

Step 4. Existence of a fixed point for T.
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Finally we are in the position to apply Corollary 4.4 to the multimap T|M0
. Hence the

multioperator T has a fixed point in M0, i.e. there exists x ∈ M0 such that

x(t) = C(t, 0)g(x) + S(t, 0)h(x) +
∫ t

0
S(t, ξ) f (ξ) dξ, t ∈ J

where f ∈ S1
F(·,x(·)). Of course, x is a mild solution for (P).

An immediate consequence of Theorem 5.1 is the following existence result for Cauchy
problems.

Corollary 5.2. Let X be a weakly compactly generated Banach space and x0, x1 ∈ X. Under the

assumptions (A), F1.–F5. of Theorem 5.1, there exists at least one mild solution for the Cauchy

problem














x′′(t) ∈ A(t)x(t) + F(t, x(t)), t ∈ J

x(0) = x0

x′(0) = x1.

(PC)

Now, we propose the following existence result for reflexive Banach spaces. We note that
in this proposition the assumptions F5. gh3. and gh4. of Theorem 5.1 are omitted. Let us
note that the lack of these hypotheses implies that this result is a new one with respect to
Theorem 5.1 since the reflexivity doesn’t imply that these assumptions hold. For this reason
it is necessary to modify in some points the proof of the previous existence result.

Theorem 5.3. Let X be a reflexive Banach space and {A(t)}t∈J a family of operators which satisfies

the property (A).

Let F : J × X → P(X) be a multimap satisfying F1, F2, F3, F4 and g, h : C(J; X) → X be two

functions having the properties gh1 and gh2.

Then there exists at least one mild solution for the nonlocal problem (P).

Proof. First we note that if N ⊂ J is null measure set such that (5.2) and F3. hold, fixed
t ∈ J \ N and x ∈ X, by (5.2) we deduce the boundedness of the set F(t, x), therefore the
reflexivity of the space X imply the relative weak compactness of F(t, x). Moreover, by F3. we
have that the set F(t, x) is weakly sequentially closed, so invoking Theorem 3 of [32] and F1.

we can claim that

F(t, x) is closed, for a.e. t ∈ J and for every x ∈ X. (5.37)

Let us consider the integral multioperator T : C(J; X) → Pc(C(J; X)) defined in (5.4) and (5.5).

First of all we have to prove that the multioperator T is well defined, i.e. it has nonempty
and convex values.

Let u ∈ C(J; X), by using the uniform continuity of u in J we can construct a sequence
(un)n, un : J → X, of step functions such that

sup
t∈J

‖un(t)− u(t)‖X → 0, for n → ∞, (5.38)

then, for every n ∈ N, by virtue of F2., there exists a B-measurable function fn : J → X such
that

fn(t) ∈ F(t, un(t)), a.e. t ∈ J. (5.39)
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Moreover, by (5.38), there exists Nu ∈ R+ such that

un(t), u(t) ∈ BX(0, Nu) := Mu, for every t ∈ J, n ∈ N, (5.40)

so, by hypothesis F4. and (5.39), we can claim

‖ fn(t)‖X ≤ ‖F(t, BX(0, Nu))‖ ≤ ϕNu
(t), a.e. t ∈ J, ∀n ∈ N, (5.41)

where ϕNu
∈ L1

+(J).
Therefore, since fn is B-measurable, by (5.41) we can deduce that fn ∈ L1(J; X), for every

n ∈ N.
Now, taking into account of (5.41), the set Au = { fn : n ∈ N} is bounded in L1(J; X) and

it has the property of equi-absolute continuity of the integral. Moreover, by (5.41), Au(t) ⊂

BX(0, ϕNu
(t)), a.e. t ∈ J. According to the reflexivity of the space and by [29, Corollary 9] we

can conclude that the set Au is relatively weakly compact in L1(J; X). Therefore, there exists
( fnk

)k, subsequence of ( fn)n, such that

fnk
⇀ fu ∈ L1(J; X).

Now, in order to obtain that fu ∈ S1
F(·,u(·)), we want to prove that fu(t) ∈ F(t, u(t)), a.e. t ∈ J.

Since fnk
⇀ fu, by using Mazur’s convexity theorem, there exists a sequence ( f̃nk

)k made
up of convex combinations of the fnk

’s such that f̃nk
→ fu in L1(J; X) and, up to a subsequence,

f̃nkp
(t) → fu(t), a.e. t ∈ J. (5.42)

Now, put H∗ the null measure set for which hypothesis F3., (5.37), (5.39), (5.41) and (5.42)
hold, by using respectively (5.37) and (5.41) we have

F(t, x) is weakly closed, for every x ∈ X, t ∈ J \ H∗, (5.43)

sup
x∈BX(0,Nu)

‖F(t, x)‖ ≤ ϕNu
(t), for every t ∈ J \ H∗. (5.44)

Next, we want to prove that fixed t ∈ J \ H∗, the multimap F|BX(0,Nu)
(t, ·) is weakly upper

semicontinuous and, in order to do that, we will show that all the hypotheses of [18, Theorem
1.1.5] are satisfied.

For every x ∈ BX(0, Nu) from (5.44), we can write F|BX(0,Nu)
(t, x) ⊂ BX(0, ϕNu

(t)), therefore,
by the reflexivity of X, we can say (see (5.43)) that the set F|BX(0,Nu)

(t, x) is weakly compact
and the multimap F|BX(0,Nu)

(t, ·) is weakly compact. Hence, recalling hypothesis F3., by [2,
Corollary 3.2] we have that F|BX(0,Nu)

(t, ·) is a weakly closed multimap. Since all the hypotheses
of [18, Theorem 1.1.5] are satisfied, F|BX(0,Nu)

(t, ·) is also weakly upper semicontinuous. Hence
we can conclude that F|BX(0,Nu)

(t, ·) is weakly upper semicontinuous, for every t ∈ J \ H∗.
Now, let us fix again t ∈ J \ H∗ and assume that absurdly fu(t) /∈ F|BX(0,Nu)

(t, u(t)).
We note that, thanks to F1. and (5.37), all the hypotheses of the Hahn–Banach Theorem are
satisfied, so there exists a weakly open convex set V ⊃ F|BX(0,Nu)

(t, u(t)) satisfying

fu(t) /∈ V = V
w

. (5.45)

Taking into account of the weak upper semicontinuity of F|BX(0,Nu)
(t, ·) , there exists a weak

neighborhood Wu(t) of u(t) such that F|BX(0,Nu)
(t, Wu(t))) ⊂ V. Therefore

F(t, x) ⊂ V, for every x ∈ Wu(t) ∩ BX(0, Nu). (5.46)
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Now, by (5.38) the subsequence (unkp
(t))p, indexed as in (5.42), satisfies unkp

(t) ⇀ u(t), so
there exists n ∈ N such that, for every nkp

> n we have unkp
(t) ∈ Wu(t), hence by (5.40)

unkp
(t) ∈ Wu(t) ∩ BX(0, Nu).
Further, by (5.39) and (5.46) we deduce that fnkp

(t) ∈ V, for every nkp
> n.

Now, the convexity of V implies that f̃nkp
(t) ∈ V, for every nkp

> n and, by the conver-

gence of ( f̃nkp
(t))k to fu(t), we arrive to the contradictory conclusion fu(t) ∈ V

w
(see (5.45)).

So we can conclude that fu(t) ∈ F(t, u(t)) a.e. t ∈ J.
By recalling (5.5) and the fact that fu ∈ L1(J; X) we finally obtain that fu ∈ S1

F(·,u(·)), i.e.

S1
F(·,u(·)) 6= ∅.

Now, we consider the function yu : J → X defined by

yu(t) = C(t, 0)g(u) + S(t, 0)h(u) +
∫ t

0
S(t, ξ) fu(ξ) dξ, t ∈ J.

It is easy to prove that yu is well posed and continuous in J, so yu ∈ Tu, i.e. Tu 6= ∅. Clearly,
Tu is convex.

We can conclude that the integral multioperator T assumes values in Pc(C(J; X)).

Form now on we proceed by steps.

Step 1. The multioperator T has a weakly sequentially closed graph.

As in Step 1 of Theorem 5.1 we fix two sequences (qn)n and (xn)n in C(J; X) with the
properties (5.7) and (5.8).

Using analogous considerations of Step 1 of Theorem 5.1 we can say that (5.9) and (5.10)
hold, so for every n ∈ N, by (5.7) there exists (see (5.5))

fn ∈ S1
F(·,qn(·))

(5.47)

such that (see (5.4))

xn(t) = C(t, 0)g(qn) + S(t, 0)h(qn) +
∫ t

0
S(t, ξ) fn(ξ) dξ, t ∈ J.

Now we want to prove that, put A = { fn : n ∈ N} (see (5.47)), A satisfies all the hypotheses
of [29, Corollary 9]. Obviously A is a subset of L1(J; X).

Moreover, by (5.47) and (5.9) we deduce

fn(t) ∈ F(t, qn(t)) ⊂ F(t, BX(0, n)), a.e. t ∈ J, ∀n ∈ N. (5.48)

Now, put H the null measure set for which F4. and (5.48) hold, we have that there exists
ϕn ∈ L1

+(J) such that (see (5.2))

‖ fn(t)‖X ≤ ϕn(t), ∀t ∈ J \ H, ∀n ∈ N (5.49)

that implies
‖ fn‖L1(J;X) ≤ ‖ϕn‖1, ∀n ∈ N, (5.50)

i.e. the set A is bounded in L1(J; X). Then, by (5.50) we also say that A has the property of
equi-absolute continuity of the integral (see Remark 2.3).

Now, by using (5.50) and the reflexivity of X we can also say that A(t) is relatively weakly
compact a.e. t ∈ J. Hence, since also (5.49) is true, thanks to [29, Corollary 9], we can conclude
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that A is relatively weakly compact in L1(J; X). So there exists a subsequence ( fnk
)k of ( fn)n

such that fnk
⇀ f ∈ L1(J; X), then by using again the Mazur’s convexity theorem and analo-

gous arguments presented in the previous part of the proof we can claim that f (t) ∈ F(t, q(t)),
a.e. t ∈ J. Therefore we can say that (see (5.5)) f ∈ S1

F(·,q(·)).
Now, by using gh1. and the same technique of the final part of Step 1 of Theorem 5.1 we

can obtain that x ∈ Tq.
Therefore we can conclude that T has a weakly sequentially closed graph.

Step 2. There exists a subset of C(J; X) which is invariant under the action of the operator T.

We omit this step of the proof, since it is identical to Step 2 of the proof of Theorem 5.1.
So, we can say that there exists p ∈ N such that BC(J;X)(0, p) is invariant under the action of
the operator T.

Step 3. There exists the smallest (0, T)-fundamental set which is weakly compact.

First of all, fixed p as in Step 2, by Proposition 2.5, put x0 = 0 and K = BC(J;X)(0, p) a
subset of the locally convex Hausdorff space C(J; X) equipped with the weak topology, we
can say that there exists

M0 ⊂ BC(J;X)(0, p) = K (5.51)

such that
M0 = co(T(M0) ∪ {0}) (5.52)

Now, we will prove that M0 is weakly compact. To this end we establish that the set T(M0) is
relatively weakly compact.

Let (qn)n be a sequence in M0 and (xn)n be a sequence in C(J; X) such that xn ∈ Tqn,
for every n ∈ N. Now, by definition of the multioperator T, there exists a sequence ( fn)n,
fn ∈ S1

F(·,qn(·))
, such that

xn(t) = C(t, 0)g(qn) + S(t, 0)h(qn) +
∫ t

0
S(t, ξ) fn(ξ) dξ, t ∈ J.

Next, put A = { fn : n ∈ N}, reasoning as in Step 1 of this proof, we can show that A is
bounded in L1(J; X), it has the property of equi-absolute continuity of the integral and, by
using the reflexivity of X, we can say that A(t) is relatively weakly compact, for a.e. t ∈ J.
Therefore, thanks again to [29, Corollary 9] we can say that A is relatively weakly compact in
L1(J; X), so there exists ( fnk

)k subsequence of ( fn)n such that fnk
⇀ f ∈ L1(J; X).

Now, by the weak sequential continuity of GS (see Proposition 4.1), we can write

GS fnk
⇀ GS f . (5.53)

Moreover, thanks to hypothesis gh2., since {qnk
: k ∈ N} ⊂ M0 is countable and bounded

(see (5.51)), there exists a subsequence of (qnk
)k w.l.o.g. named again (qnk

)k, such that

g(qnk
)k → x and h(qnk

)k → y in X. (5.54)

Now, by (5.53) and (5.54) the subsequence (xnk
)k of (xn)n weakly converges to x = C(·, 0)x +

S(·, 0)y + GS f ∈ C(J; X). Therefore T(M0) is relatively weakly compact and, invoking (5.52),
M0 is weakly compact.

Finally, reasoning as in Step 4 of Theorem 5.1 we can conclude that there exists at least
one mild solution for (P).
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We can immediately formulate the following consequence of Theorem 5.3 for Cauchy
problems.

Corollary 5.4. Let X be a reflexive Banach space and x0, x1 ∈ X. Under the assumptions (A), F1.–F4.

of Theorem 5.3, there exists at least one mild solution for the Cauchy problem (PC).

Remark 5.5. Let us note that, if J = [0, a], all the results of Sections 4 and 5 hold too. In
particular, Theorem 5.1, Theorem 5.3 and their respectively corollaries continue to be true if
we modify (5.1) by

lim sup
n→∞

∫ a
0 ϕn(ξ) dξ

n
<

1
Ka

.

6 An application

In this section we apply the theory developed in Section 5 to study the following controllability
problem















































∂2w
∂t2 (t, ξ) = ∂2w

∂ξ2 (t, ξ) + b(t) ∂w
∂ξ (t, ξ) + T(t)w(t, ·)(ξ) + u(t, ξ)

w(t, 0) = w(t, 2π), t ∈ J
∂w
∂ξ (t, 0) = ∂w

∂ξ (t, 2π), t ∈ J

w(0, ξ) = x0, ξ ∈ R

∂w
∂t (0, ξ) = x1, ξ ∈ R

‖u(t, ξ)‖C ∈
[

f1

(

t, ξ,
∫ 2π

0 k1(t, θ)w(t, θ) dθ
)

, f2

(

t, ξ,
∫ 2π

0 k2(t, θ)w(t, θ) dθ
)]

(6.1)

where x0, x1 ∈ C and b : J → R, ki : J × R → R, fi : J × R × C → R
+
0 , i = 1, 2, {T(t)}t∈J is a

suitable family of operators.
First of all, as in [16], we will use the identification between functions defined on the

quotient group T = R/2πZ with values in C and 2π-periodic functions from R to C. In
order to model the problem above in an abstract form we consider the space X = L2(T, C),
i.e. the space of all functions x : R → C, 2π-periodic and 2-integrable in [0, 2π], endowed with
the usual norm ‖ · ‖L2(T,C). Moreover we denote by H1(T, C) and by H2(T, C) respectively the
following Sobolev subspaces of L2(T, C)

H1(T, C) =

{

x ∈ L2(T, C) :
dx

dξ
∈ L2(T, C)

}

H2(T, C) =

{

x ∈ L2(T, C) :
dx

dξ
,

d2x

dξ2 ∈ L2(T, C)

}

,

where dx
dξ , d2x

dξ2 denote the weak derivatives.

Further we consider the operator A0 : D(A0) = H2(T, C) → L2(T, C) defined by

A0x =
d2x

dξ2 , x ∈ H2(T, C)

and we assume that the operator A0 is the infinitesimal generator of a strongly continuous
cosine family {C0(t)}t∈R, where C0(t) : L2(T, C) → L2(T, C), for every t ∈ R (see [16]).

Then we fix the function P : J → L(H1(T, C), L2(T, C)) defined as

P(t)x = b(t)
dx

dξ
, t ∈ J, x ∈ H1(T, C)
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where b : J → R is of class C1 on J.
Now we are able to define the family {A(t) : t ∈ J} where, for every t ∈ J, A(t) : D(A) =

H2(T, C) → L2(T, C) is an operator defined as

A(t) := A0 + P(t), t ∈ J.

Let us note that, as the Authors of [16] say (see Lemma 4.1), the family {A(t) : t ∈ J} generates
a fundamental system {S(t, s)}(t,s)∈J×J . In the sequel, we denote with K the constant, linked
to {S(t, s)}(t,s)∈J×J , satisfying the properties of Remark 3.2.

In what follows we revise functions w, u : J × R → C such that w(t, ·) ∈ H2(T, C) and
u(t, ·) ∈ L2(T, C), for every t ∈ J, as the maps x : J → H2(T, C), v : J → L2(T, C), respectively,
are defined by

x(t)(ξ) = w(t, ξ), t ∈ J, ξ ∈ R

v(t)(ξ) = u(t, ξ), t ∈ J, ξ ∈ R.

Moreover we construct, by using the family {T(t)}t∈J and the functions f1, f2, a suitable
multimap F such that we can rewrite the problem (6.1) in the abstract form















d2x
dt2 (t) ∈ A0x(t) + P(t)x(t) + F(t, x(t)) = A(t)x(t) + F(t, x(t)), t ∈ J

x(0) = x̃0
dx
dt (0) = x̃1

(6.2)

where x̃0, x̃1 : R → C are functions of L2(T, C) respectively defined x̃0(ξ) = x0, x̃1(ξ) = x1,
for every ξ ∈ R.

Let us note that, since we settle for proving the existence of a mild solution (therefore
the existence of derivatives is not necessary) it is sufficient to consider that w(t, ·) ∈ L2(T, C)

instead of w(t, ·) ∈ H2(T, C).

Hence, in order to apply our Corollary 5.4 we consider X = L2(T, C) and we assume the
following properties on the family of operators {T(t)}t∈J and the functions ki, fi, i = 1, 2

(T) for every t ∈ J, T(t) : L2(T, C) → L2(T, C) is linear, bounded and, for every y ∈

L2(T, C), T(·)y is B-measurable and ‖T(·)‖L(L2(T,C)) ∈ L1
+(J);

(k) ki(t, ·) ∈ L2(T), for every t ∈ J, i = 1, 2;

(f1) f1, f2 : J × R × C → R
+
0 are 2π- periodic functions with respect to the second variable,

such that

(1) for every (t, ξ, w) ∈ J × R × C, f1(t, ξ, w) ≤ f2(t, ξ, w);

(2) for each y ∈ L2(T, C) there exists a B-measurable map zy : J × R → C such that

‖zy(t, ξ)‖C ∈

[

f1

(

t, ξ,
∫ 2π

0
k1(t, θ)y(θ) dθ

)

, f2

(

t, ξ,
∫ 2π

0
k2(t, θ)y(θ) dθ

)]

,

for every t ∈ J and for a.e. ξ ∈ R;
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(f2) for a.e. t ∈ J and for a.e. ξ ∈ R, f1(t, ξ, ·) is lower semicontinuous and f2(t, ξ, ·) is upper
semicontinuous, i.e.

f1(t, ξ, s) ≤ lim inf
w→s

f1(t, ξ, w) f2(t, ξ, s) ≥ lim sup
w→s

f2(t, ξ, w),

for every s ∈ C;

(f3) there exists ϕ ∈ L1
+(J), K

∫ 1
0 (ϕ(θ) + ‖T(θ)‖L(L2(T,C)) dθ < 1, such that, for every t ∈ J

and each r > 0, there exists ψt,r ∈ L2
+([0, 2π]), with

sup
‖s‖C≤r‖k2(t,·)‖L2(T)

f2(t, ξ, s) ≤ ψt,r(ξ), a.e. ξ ∈ [0, 2π],

such that
‖ψt,r‖L2([0,2π]) ≤ rϕ(t). (6.3)

Now we define the function g : J × L2(T, C) → L2(T, C) such that

g(t, y)(ξ) = (T(t)y)(ξ), ξ ∈ R, (t, y) ∈ J × L2(T, C). (6.4)

Recalling that T(t) assumes values in L2(T, C), we have that g is obviously well posed.
Next we consider the multimap U : J × L2(T, C) → P(L2(T, C)), defined for every t ∈ J

and y ∈ L2(T, C) by

U(t, y) =

{

z ∈ L2(T, C) :

f1

(

t, ξ,
∫ 2π

0
k1(t, θ)y(θ) dθ

)

≤ ‖z(ξ)‖C ≤ f2

(

t, ξ,
∫ 2π

0
k2(t, θ)y(θ) dθ

)

,

a.e. ξ ∈ R

}

. (6.5)

Let us show that the multimap U assumes non empty values.
First of all, fixed y ∈ L2(T, C), we consider the B-measurable map zy : J × R → C charac-

terized in (2) of (f1). Fixed t ∈ J, by the B-measurability of zy, we can claim that zy(t, ·) is also
B-measurable. Moreover ‖zy(t, ·)‖C ∈ L2(T), indeed taking into account of (f1)(2) we have

‖zy(t, ξ)‖C ≤ f2

(

t, ξ
∫ 2π

0
k2(t, θ)y(θ) dθ

)

, a.e. ξ ∈ R. (6.6)

Now, by hypothesis (k), we have
∥

∥

∫ 2π
0 k2(t, θ)y(θ) dθ

∥

∥

C
≤ ‖k2(t, ·)‖L2(T)‖y‖L2(T,C), therefore,

put r = ‖y‖L2(T,C), by (f3) and (6.6) there exists ψt,r ∈ L2
+([0, 2π]) such that ‖zy(t, ξ)‖C ≤

ψt,r(ξ), a.e. ξ ∈ R. Hence ‖zy(t, ·)‖C ∈ L2(T) and so

zy(t, ·) ∈ L2(T, C). (6.7)

Finally, using again hypothesis (f1)(2) and by (6.7) we conclude that zy(t, ·) ∈ U(t, y) (see
(6.5)), so U(t, y) is non empty.

We are in the position to define the multimap F : J × L2(T, C) → P(L2(T, C)) as (see (6.4)
and (6.5))

F(t, y) = {T(t)y + v, v ∈ U(t, y)}, t ∈ J, y ∈ L2(T, C). (6.8)
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Since the operator T(t) assumes values in L2(T, C), F is obviously well defined.

Now we want to show that we can apply Corollary 5.4 to the problem (6.2).
First of all we note that X = L2(T, C) is obviously a reflexive Banach space. Moreover

hypothesis (A) is clearly true because of our construction of the family {A(t) : t ∈ J}.
Now, let us show that hypotheses F1.– F4. are satisfied.
First of all, since U has convex values, we can say that F takes convex values too, i.e. F1.

of our Corollary 5.4 holds.

Next, we prove that, fixed y ∈ L2(T, C), the multimap F(·, y) has a B-selection.
By the previous arguments we can say that the function zy : J × R → C characterized in

(2) of (f1) is such that, for every t ∈ J,

zy(t, ·) ∈ U(t, y). (6.9)

Now, taking into account that the function zy : J × R → C is B-measurable with zy(t, ·) ∈

L2(T, C), for every t ∈ J, from Theorem 2.4, we can say that the following abstract function

ẑy : J → L2(T, C), defined by ẑy(t) = zy(t, ·), is B-measurable. (6.10)

Next, we define py : J → L2(T, C) as

py(t) = T(t)y + ẑy(t), t ∈ J.

By using (6.10) and hypothesis (T) we have that py is obviously well posed and B-measurable.
Moreover, as a consequence of (6.9) and (6.8) we can write that py(t) ∈ F(t, y), for every

t ∈ J.
Therefore, for every y ∈ L2(T, C), py is a B-selection of F(·, y), i.e. hypothesis F2. of our

Corollary 5.4 holds.

Now, let us show that also hypothesis F3. is satisfied.
Let N ⊂ J be the null measure set for which hypothesis (f2) holds, t ∈ J \ N and (yn)n and

(qn)n be two sequences in L2(T, C) such that yn ⇀ y, y ∈ L2(T, C), qn ⇀ q, q ∈ L2(T, C) and
qn ∈ F(t, yn), ∀n ∈ N, i.e. qn = T(t)yn + vn, where vn ∈ U(t, yn), for every n ∈ N.

Now, if we consider
vn = qn − T(t)yn, ∀n ∈ N (6.11)

taking into account of hypothesis (T) and the weak convergence of (yn)n and (qn)n we have

vn ⇀ q − T(t)y =: v, (6.12)

i.e. q = T(t)y + v, where v ∈ L2(T, C).
Further, from (6.12), for every ξ ∈ R, we can write

vn(ξ) ⇀ v(ξ). (6.13)

In order to prove that q ∈ F(t, y), we establish that v ∈ U(t, y) (see (6.8)).
First of all, in the sequel we consider for i = 1, 2 and for every t ∈ J, the linear and

bounded operator lt
i : L2(T, C) → C defined by

lt
i (y) =

∫ 2π

0
ki(t, θ)y(θ) dθ,
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for every y ∈ L2(T, C).
Taking into account of the weak convergence of (yn)n we have limn→∞ lt

i (yn) = lt
i (y),

i = 1, 2.
Now, we consider the multimaps Gt

n : R → P(R), n ∈ N, and Gt : R → P(R) respectively
defined by

Gt
n(ξ) =

[

f1
(

t, ξ, lt
1(yn)

)

, f2
(

t, ξ, lt
2(yn)

)]

(6.14)

Gt(ξ) =
[

f1
(

t, ξ, lt
1(y)

)

, f2
(

t, ξ, lt
2(y)

)]

,

for every ξ ∈ R.
Moreover, let us fix a null measure set Ht ⊂ R for which hypotheses (f2) and (f3) and (see

(6.11) and (6.5)) ‖vn(ξ)‖C ∈ Gt
n(ξ) hold, for every ξ ∈ R \ Ht.

Let us note that, in order to apply the Containment Theorem (see Theorem 2.6), since f1, f2

are 2π-period functions with respect to the second variable, we can assume without loss of
generality that Gt

n and Gt are defined on [0, 2π].
Now, fixed ξ ∈ [0, 2π] \ (Ht ∩ [0, 2π]), we consider an arbitrary sequence (un)n such that

un ∈ Gt
n(ξ), for all n ∈ N, i.e.

f1
(

t, ξ, lt
1(yn)

)

≤ un ≤ f2
(

t, ξ, lt
2(yn)

)

, ∀n ∈ N. (6.15)

Next, by the strong convergence of (lt
2(yn))n, there exists r̂ > 0 such that

∥

∥lt
2(yn)

∥

∥

C
≤

r̂, ∀n ∈ N. Hence, taking into account that f1 is a nonnegative function, fixed r > 0 such
that r‖k2(t, ·)‖L2(T) = r̂, by hypothesis (f3) there exists ψt,r ∈ L2

+([0, 2π]) such that

Gt
n(ξ) ⊂ [0, ψt,r(ξ)], ∀n ∈ N,

so, we can say that there exists a subsequence (unk
)k of (un)n such that

unk
→ u. (6.16)

Now, taking into account of (6.15), by using (f2) and (6.16), passing to the limit we obtain

f1
(

t, ξ, lt
1(y)

)

≤ u ≤ f2
(

t, ξ, lt
2(y)

)

.

i.e. u ∈ Gt(ξ) (see (6.14)). So hypothesis α) of the Containment Theorem holds.
Next, let (ŷn)n be a sequence such that, for all n ∈ N, ŷn : [0, 2π] → R is defined by

ŷn(ξ) = ‖vn(ξ)‖C, ξ ∈ [0, 2π],

where vn is a function presented in (6.11).
First of all, fixed ξ ∈ [0, 2π] \ (Ht ∩ [0, 2π]), we know that ŷn(ξ) = ‖vn(ξ)‖C ∈ Gt

n(ξ), for
all n ∈ N. Moreover by the same arguments above presented we have

|ŷn(ξ)| ≤ ψt,r(ξ), ∀n ∈ N,

Being ψt,r ∈ L2
+([0, 2π]) ⊂ L1

+([0, 2π]), we can say that (ŷn)n is an integrably bounded se-
quence and so it has also the property of equi-absolute continuity of the integral (see Re-
mark 2.3), i.e. hypothesis αα) of Theorem 2.6 is true.

Now, since all the hypotheses of the Containment Theorem hold, there exists a subse-
quence (ŷnk

)k of (ŷn)n such that

ŷnk
⇀ ŷ in L1

+([0, 2π]) (6.17)



28 T. Cardinali and G. Duricchi

and
ŷ(ξ) ∈ coGt(ξ) = Gt(ξ), a.e. ξ ∈ [0, 2π]. (6.18)

Next, since the strong and weak topologies are the same in R and C, taking into account of
(6.17) and (6.13) respectively, we can write

ŷnk
(ξ) = ‖vnk

(ξ)‖C → ŷ(ξ), (6.19)

and
‖vnk

(ξ)‖C → ‖v(ξ)‖C, (6.20)

for a.e. ξ ∈ [0, 2π].
Finally, by using (6.19), (6.20) and the uniqueness of the limit we have (see (6.18))

‖v(ξ)‖C ∈ Gt(ξ), a.e. ξ ∈ [0, 2π].

In the same way, by applying the Containment Theorem to the restrictions Gt
n|[2kπ,2(k+1)π] and

Gt
|[2kπ,2(k+1)π] we have

‖v(ξ)‖C ∈
[

f1
(

t, ξ, lt
1(y)

)

, f2
(

t, ξ, lt
2(y)

)]

,

a.e. ξ ∈ R.
In conclusion, by recalling that v ∈ L2(T, C) (see (6.12)), we can claim that v ∈ U(t, y), a.e.

t ∈ J. So also F3. of Corollary 5.4 holds.

Now we will prove that hypothesis F4. is true. First of all, for every n ∈ N, let us fix
y ∈ BL2(T,C)(0, n), t ∈ J. Now, fixed q ∈ F(t, y), there exists v ∈ U(t, y) such that q = T(t)y + v

(see (6.8)) and we have

‖q‖L2(T,C) = ‖T(t)y + v‖L2(T,C) ≤ ‖T(t)y‖L2(T,C) + ‖v‖L2(T,C). (6.21)

By using analogous arguments of the previous part of the proof, (k) and (f3) imply

‖v(ξ)‖C ≤ f2
(

t, ξ, lt
2(y)

)

≤ ψt,n(ξ),

for a.e. ξ ∈ [0, 2π], where ψt,n ∈ L2
+([0, 2π]).

Therefore, by using (6.3) of (f3) we have

‖v‖L2(T,C) ≤ ‖ψt,r‖L2
+([0,2π]) ≤ nϕ(t). (6.22)

Then, by using (6.21) and (6.22) we are in the position to claim the following inequality

‖q‖L2(T,C) ≤ n
(

ϕ(t) + ‖T(t)‖L(L2(T,C))

)

.

Therefore, by the arbitrariness of y ∈ BL2(T,C)(0, n) we deduce

‖F(t, y)‖ ≤ n
(

ϕ(t) + ‖T(t)‖L(L2(T,C))

)

=: ϕn(t),

where ϕn ∈ L1
+(J), since ϕ ∈ L1

+(J) and ‖T(·)‖L(L2(T,C)) ∈ L1
+(J) (see (T)).

Finally we note that (see hypothesis (f3))

lim sup
n→∞

K
∫ 1

0 ϕn(θ) dθ

n
= K

∫ 1

0
(ϕ(θ) + ‖T(θ)‖L(L2(T,C))) dθ < 1,
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so also F4. of Corollary 5.4 holds.

By means of the arguments above presented, we are in a position to apply the Cauchy
version of our Theorem 5.3. Then we can deduce that there exists a continuous function
x̂ : J → L2(T, C) that is a mild solution for (6.2), i.e.

x̂(t) = C(t, 0)x0 + S(t, 0)x1 +
∫ t

0
S(t, θ)q̂(θ) dθ, t ∈ J,

where
q̂ ∈ S1

F(·,x̂(·)) = {q ∈ L1(J; L2(T, C)) : q(t) ∈ F(t, x̂(t)) a.e. t ∈ J}. (6.23)

Therefore, since a.e. t ∈ J, q̂(t) ∈ F(t, x̂(t)), there exists vx̂(t) ∈ U(t, x̂(t)) (see (6.8)) such that

vx̂(t) = q̂(t)− T(t)x̂(t), a.e. t ∈ J. (6.24)

Hence we can consider the map vx̂ : J → L2(T, C) defined as in (6.24) which is B-measurable,
since q̂(·) and T(·)x̂(·) are B-measurable (see respectively (6.23) and (T)).

At this point, by considering functions w : J × R → C and u : J × R → C respectively
defined by

w(t, ξ) = x̂(t)(ξ), t ∈ J, ξ ∈ R

u(t, ξ) = vx̂(t)(ξ), t ∈ J, ξ ∈ R,

which are 2π-periodic with respect to the second variable and 2-integrable in [0, 2π], we can
conclude that {w, u} is an admissible mild-pair for problem (6.1).

Finally we are able to enunciate the following result.

Theorem 6.1. In the framework above described, there exists an admissible mild-pair {w, u} for prob-

lem (6.1), i.e. w, u : J × R → C satisfying the following properties

(w1) for every t ∈ J, w(t, ·) is 2π-periodic and 2-integrable on [0, 2π];

(w2) for every ξ ∈ R, w(·, ξ) is continuous on J;

(w3) w(0, ξ) = x0, for every ξ ∈ R;

(w4) for every ξ ∈ R such that w(·, ξ) is derivable at 0, we have ∂w
∂t (0, ξ) = x1;

(u1) for every t ∈ J, u(t, ·) is 2π-periodic and 2-integrable on [0, 2π];

(u2) for every ξ ∈ R, u(·, ξ) is B-measurable and such that

‖u(t, ξ)‖C ∈
[

f1
(

t, ξ,
∫ 2π

0 k1(t, θ)w(t, θ) dθ
)

, f2
(

t, ξ,
∫ 2π

0 k2(t, θ)w(t, θ) dθ
)]

,

a.e. t ∈ J and for every ξ ∈ R.

Moreover, w, u are such that

w(t, ξ) = C(t, 0)x0 + S(t, 0)x1 +
∫ t

0
S(t, θ)q(θ, ξ) dθ, t ∈ J, ξ ∈ R

where q : J × R → C is defined by

q(t, ξ) = T(t)w(t, ·)(ξ) + u(t, ξ), t ∈ J, ξ ∈ R.
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Abstract. Under the exponential trichotomy condition we study the Hyers–Ulam sta-
bility for the linear partial difference equation:

xn+1,m = Anxn,m + Bn,mxn,m+1 + f (xn,m), n, m ∈ Z

where An is a k × k matrix whose elements are sequences of n, Bn,m is a k × k matrix
whose elements are double sequences of m, n and f : R

k → R
k is a vector function. We

also investigate the Hyers–Ulam stability in the case where the matrices An, Bn,m and
the vector function f = fn,m are constant.
Keywords: partial difference equations, Hyers–Ulam stability, exponential dichotomy.
2020 Mathematics Subject Classification: 39A14.

1 Introduction

Partial difference equations is an area which deals with difference equations with several
variables. Some classical results in the area can be found, for example, in books [4, 9, 12, 14].
Despite the fact that the study of partial difference equations is pretty much complicated, both
theoretically and technically, there are some investigations on solvability, stability and other
topics related to the equations (see, for example, [5–7, 10, 13, 15, 25, 29, 31, 34, 40, 41] and the re-
lated references therein). Many partial difference equations are obtained from some problems
in combinatorics, probability, discrete mathematics and other related areas of mathematics
and science (see, for example, [11, 22, 43]).

In [8] the authors studied the so-called µ-exponentially weighted shadowing property of
the equation

xm+1 = Lmxm + fm(xm), m ∈ Z,

where Lm is a sequence of linear operators, fm is a sequence of nonlinear operators m ∈ Z

assuming that the linear equation
xm+1 = Lmxm

has an exponential dichotomy and the sequence fm is uniformly Lipschitz continuous.

BCorresponding author. Email: gpapas@env.duth.gr
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Inspired by the above work, as well as some applications of solvability methods for dif-
ference equations, here we investigate Hyers–Ulam stability for the nonhomogenous linear
partial difference equation of the form:

xn+1,m = Anxn,m + Bn,mxn,m+1 + f (xn,m), n, m ∈ Z, (1.1)

where An is a k × k invertible matrix whose elements are sequences of n, Bn,m is a k × k matrix
whose elements are double sequences of m, n and f : R

k → R
k is a vector function.

In what follows we denote by | · | any convenient norm either of a vector or of a matrix.
We say that the linear difference equation

xv+1 = Cvxv, v ∈ Z, . . . (1.2)

where Cv is an invertible matrix has an exponential trichotomy (see [16, 17]) if there exist
constants K > 0, 0 < p < 1 and projections P1, P2, P3 (P2

i = Pi, i = 1, 2, 3), P1 + P2 + P3 = 1
such that

|XvP1X−1
s | ≤ Kpv−s, v ≥ s, s, v ∈ Z

|XvP2X−1
s | ≤ Kps−v, s ≥ v, s, v ∈ Z

|XvP3X−1
s | ≤ Kpv−s, v ≥ s ≥ 0

|XvP3X−1
s | ≤ Kps−v, 0 ≥ s ≥ v

(1.3)

where Xv is a fundamental matrix solution of (1.2) given by

Xv =





(v−1

∏
s=0

Cv−s−1

)
C, v ≥ 0

( −1

∏
s=v

C−1
s

)
C, v ≤ 0,

and C is a constant matrix. We regard that X0 = C.
For the readers’ convenience we give a simple example concerning exponential trichotomy

for a linear difference equation. Consider equation (1.2) where

Cv =




1/2 0 0
0 2 0
0 0 cv


 , cv =

{
1/2, v ≥ 0

2, v < 0.

Then if we take C = I3, I3 the 3 × 3 indentity matrix, we get

Xv =




(1/2)v 0 0
0 2v 0
0 0 dv


 , dv =

{
(1/2)v, v ≥ 0

2v, v ≤ 0.

If we take the projections

P1 =




1 0 0
0 0 0
0 0 0


 , P2 =




0 0 0
0 1 0
0 0 0


 , P3 =




0 0 0
0 0 0
0 0 1




we have P1 + P2 + P3 and (1.3) hold with K = 1 and p = 1/2.
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Moreover, we give some details concerning the form of operator T given in Proposition 2.2.
In Proposition 1 of [16] the author proved that if equation (1.2) has an exponential trichotomy
(1.3) then the inhomogenous ordinary difference equation

xv+1 = Avxv + fv, v ∈ Z,

fv : Z → R
k, | fv| ≤ M, v ∈ Z where M is a positive constant, has at least bounded solution yv

given by

yv =
−1

∑
s=−∞

XvP1X−1
s+1 fs +

v−1

∑
s=0

Xv(I − P2)X−1
s+1 fs −

∞

∑
s=v

XvP2X−1
s+1 fs, v ≥ 0,

yv =
v−1

∑
s=−∞

XvP1X−1
s+1 fs −

−1

∑
s=v

Xv(I − P1)X−1
s+1 fs −

∞

∑
s=0

XvP2X−1
s+1 fs, v ≤ 0.

(1.4)

According to [21] we say that (1.1) has the Hyers–Ulam stability if for any ǫ > 0 there
exists a δ > 0 such that if yn,m satisfies either

|yn+1,m − Anyn,m − Bn,myn,m+1 − f (yn,m)| < δ (1.5)

or
|yn,m+1 + B−1

n,m Anyn,m − B−1
n,myn+1,m + B−1

n,m f (yn,m)| < δ (1.6)

then there exists a solution xn,m of (1.1) such that

|xn,m − yn,m| < ǫ, n, m ∈ Z. (1.7)

Now in this paper assuming that equation (1.2) where Cn = An has an exponential trichotomy
then, under some assumptions on the matrices An, Bn,m and the function f , we prove that (1.1)
has the Hyers–Ulam stability. In addition, if Bn,m = AnDm, An, Dm are invertible matrices
and the equation (1.2) where Cm = −D−1

m has an exponential trichotomy, then, under some
assumptions on the matrices An, Dm and the function f , we prove that equation (1.1) has
also the Hyers–Ulam stability. Finally we study the Hyers–Ulam stability in the case where
the matrices An, Bn,m are constants, that is An = A, Bn,m = B and the function f = fn,m is
independent on x that is fn,m : N × N → R

k.
Roughly speaking the stability of Hyers–Ulam means that for any approximate solution

of equation (1.1) there exists a solution of (1.1) which is near the approximate solution. Since
this is very important there exists an increasing interest in studying this stability. Therefore
there are many papers which deal with this subject (see [1, 3, 8, 21] and the related references
therein).

In what follows we denote
l∞ = l∞(Z2)

the space of all double sequences (zn,m) ⊂ R
k which are bounded.

In the study we will essentially use a method related to the solvability of the linear dif-
ference equation of first order, by which the studied difference equations are transformed
to some difference equations of ‘integral’ type, for which it is easier to apply methods from
nonlinear functional analysis. Here it is applied the contraction principle. It should be men-
tioned that recently appeared many papers on difference equations and systems of difference
equations which have been solved by transforming them to some linear solvable ones (see, for
example, [2, 20, 26–28, 30, 32, 33, 35–39, 42] and the related references therein).

Finally it should be mentioned that, there is a plenty of papers dealing with solvability or
invariants for difference equations (see, for example, [18, 19, 23, 24, 28, 30, 35, 36, 38, 39]).
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2 Main results

Firstly we give a proposition which concerns the existence and uniqueness of the solutions of
(1.1).

Proposition 2.1.

(i) For a given sequence cm there exists a unique solution xn,m of (1.1) such that x0,m = cm, m ∈ Z.

Moreover, xn,m satisfies the following relations

xn,m =





XnX−1
0 cm +

n−1

∑
s=0

XnX−1
s+1 (Bs,mxs,m+1 + f (xs,m)) , n ≥ 0, m ∈ Z

XnX−1
0 cm −

−1

∑
s=n

XnX−1
s+1 (Bs,mxs,m+1 + f (xs,m)) , n ≤ 0, m ∈ Z

(2.1)

where Xn is a fundamental matrix solution of (1.2) with Cn = An.

(ii) Suppose that Bn,m = AnDm and An, Bm are invertible matrices. Then there exists a unique

solution of (1.1) such that xn,0 = dn, n ∈ Z where dn is given sequence. In addition if

R(xn,s) = D−1
s A−1

n xn+1,s − D−1
s A−1

n f (xn,s),

xn,m satisfies the following equalities

xn,m =





XmX−1
0 dn +

m−1

∑
s=0

XmX−1
s+1R(xn,s), m ≥ 0, n ∈ Z

XmX−1
0 dn −

−1

∑
s=m

XmX−1
s+1R(xn,s), m ≤ 0, n ∈ Z

(2.2)

where Xm is a fundamental matrix solution of (1.2) with Cm = −D−1
m .

From (1.1) and using the constant variation formula for a fixed m we can prove (2.1).
Since from (1.1) we have

xn,m+1 = −B−1
n,m Anxn,m + B−1

n,mxn+1,m − B−1
n,m f (xn,m)

= −D−1
m xn,m + D−1

m A−1
n xn+1,m − D−1

m A−1
n f (xn,m),

(2.3)

using the constant variation formula for a fixed n we can easily get (2.2).
We prove the Hyers–Ulam stability in the case where equation (1.2) with Cn = An or

Cm = −D−1
m , Bn,m = AnDm has an exponential trichotomy.

Proposition 2.2. The following statements are true:

(i) Suppose that (1.2) with Cn = An has an exponential trichotomy (1.3), that there exists a positive

number M such that

|Bn,m| ≤ M, n, m ∈ Z, (2.4)

and that f : R
k → R

k is a vector function such that for all x, y ∈ R
k

| f (x)− f (y)| ≤ L|x − y|, (2.5)

where L is a positive constant. Then if

(M + L)
2K(p + 1)

1 − p
< 1 (2.6)

equation (1.1) has the Hyers–Ulam stability.
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(ii) Suppose that Bn,m = AnDm, n, m ∈ Z where An, Dm are invertible matrices for any m ∈ Z,

that equation (1.2) where Cm = −D−1
m has an exponential trichotomy (1.3), that there exists a

positive number M such that

|D−1
m A−1

n | ≤ M, n, m ∈ Z. (2.7)

and that (2.5) is true. Then if

M(1 + L)
2K(p + 1)

1 − p
< 1, (2.8)

equation (1.1) has the Hyers–Ulam stability.

Proof. (i) Let ǫ be an arbitrary positive number and δ be a positive number such that

δ <
1 − p − 2K(1 + p)(M + L)

2K(1 + p)
ǫ. (2.9)

Suppose that yn,m is a double sequence such that (1.5) is satisfied. Let

H(zn,m) = −yn+1,m + Anyn,m + Bn,m(yn,m+1 + zn,m+1) + f (yn,m + zn,m). (2.10)

Inspired by (1.4) we define the operator T on l∞ as follows: If zn,m ∈ l∞ then we set

Tzn,m =
−1

∑
s=−∞

XnP1X−1
s+1H(zs,m) +

n−1

∑
s=0

Xn(I − P2)X−1
s+1H(zs,m)

−
∞

∑
s=n

XnP2X−1
s+1H(zs,m), n ≥ 0, m ∈ Z.

Tzn,m =
n−1

∑
s=−∞

XnP1X−1
s+1H(zs,m)−

−1

∑
s=n

Xn(I − P1)X−1
s+1H(zs,m)

−
∞

∑
s=0

XnP2X−1
s+1H(zs,m), n ≤ 0, m ∈ Z.

(2.11)

We prove that T(l∞) ⊆ l∞. Let

|z|∞ = sup{|zn,m|, n, m,∈ Z}.

From (2.10) we obtain

H(zn,m) = − yn+1,m + Anyn,m + Bn,myn,m+1 + f (yn,m)

+ Bn,mzn,m+1 + f (yn,m + zn,m)− f (yn,m).
(2.12)

Then from (1.5), (2.4), (2.5) and (2.12) we have

|H(zn,m)| ≤ δ + (M + L)|z|∞. (2.13)

Therefore from (1.3), (2.13) and since I − P2 = P1 + P3 for n ≥ 0, m ∈ Z we get

|Tzn,m| ≤

(
−1

∑
s=−∞

Kpn−s−1 + 2
n−1

∑
s=0

Kpn−s−1 +
∞

∑
s=n

Kp−n+s+1

)
(δ + (M + L)|z|∞)

≤
2K(1 + p)

1 − p

(
δ + (M + L)|z|∞

)
.

(2.14)
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Furthermore from (1.3), (2.13) and since I − P1 = P2 + P3 for n ≤ 0, m ∈ Z we have

|Tzn,m| ≤

(
n−1

∑
s=−∞

Kpn−s−1 + 2
−1

∑
s=n

Kp−n+s+1 +
∞

∑
s=0

Kp−n+s+1

)
(δ + (M + L)|z|∞)

≤
2K(1 + p)

1 − p

(
δ + (M + L)|z|∞

)
.

(2.15)

Relations (2.14) and (2.15) imply that T(l∞) ⊆ l∞. We prove now that T is a contraction on the
space S. Let zn,m, wn,m ∈ l∞. Using (2.10) we get for n, m ∈ Z

H(zn,m)− H(wn,m) = Bn,m(zn,m+1 − wn,m+1) + f (yn,m + zn,m)− f (yn,m + wn,m)

and so from (2.4), (2.5) we have

|H(zn,m)− H(wn,m)| ≤ (M + L)|z − w|∞, n, m ∈ Z. (2.16)

From (2.11) we have for n ≥ 0, m ∈ Z

Tzn,m − Twn,m =
−1

∑
s=−∞

XnP1X−1
s+1

(
H(zs,m)− H(ws,m)

)
+

n−1

∑
s=0

Xn(I − P2)X−1
s+1

(
H(zs,m)− H(ws,m)

)

−
∞

∑
s=n

XnP2X−1
s+1

(
H(zs,m)− H(ws,m)

)
.

Then relations (1.3) and (2.16) for n ≥ 0 and m ∈ Z imply that

|Tzn,m − Twn,m| ≤

(
−1

∑
s=−∞

Kpn−s−1 + 2
n−1

∑
s=0

Kpn−s−1 +
∞

∑
s=n

Kp−n+s+1

)
(M + L)|z − w|∞

≤
2K(1 + p)

1 − p
(M + L)|z − w|∞.

(2.17)

Moreover from (1.3) and (2.16) for n ≤ 0 and m ∈ Z we get

|Tzn,m − Twn,m| ≤

(
n−1

∑
s=−∞

Kpn−s−1 +
−1

∑
s=n

Kp−n+s+1 +
∞

∑
s=0

Kp−n+s+1

)
(M + L)|z − w|∞

≤
2K(1 + p)

1 − p
(M + L)|z − w|∞.

(2.18)

So, from (2.6), (2.17) and (2.18) T is a contraction on the complete metric space l∞. Hence
there exists a unique zn,m ∈ l∞ such that

Tzn,m = zn,m, n, m ∈ Z. (2.19)
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From (2.10), (2.11) and (2.19) we obtain for n ≥ 0, m ∈ Z

zn,m =
−1

∑
s=−∞

XnP1X−1
s+1H(zs,m) +

n−1

∑
s=0

Xn(I − P2)X−1
s+1H(zs,m)

+
n−1

∑
s=0

XnP2X−1
s+1H(zs,m)−

n−1

∑
s=0

XnP2X−1
s+1H(zs,m)−

∞

∑
s=n

XnP2X−1
s+1H(zs,m)

=
−1

∑
s=−∞

XnP1X−1
s+1H(zs,m) +

n−1

∑
s=0

XnX−1
s+1H(zs,m)−

∞

∑
s=0

XnP2X−1
s+1H(zs,m)

= XnX−1
0

−1

∑
s=−∞

X0P1X−1
s+1H(zs,m) +

n−1

∑
s=0

XnX−1
s+1(−ys+1,m + Asys,m)

+
n−1

∑
s=0

XnX−1
s+1

(
Bs,m(ys,m+1 + zs,m+1) + f (ys,m + zs,m)

)

− XnX−1
0

∞

∑
s=0

X0P2X−1
s+1H(zs,m).

(2.20)

Then for n = 0 we get

z0,m =
−1

∑
s=−∞

X0P1X−1
s+1H(zs,m)−

∞

∑
s=0

X0P2X−1
s+1H(zs,m). (2.21)

We claim that

yn,m = XnX−1
0 y0,m +

n−1

∑
s=0

XnX−1
s+1(ys+1,m − Asys,m), n ≥ 0, m ∈ Z. (2.22)

It is obvious that (2.22) is true for n = 0. Suppose that (2.22) holds for a fixed n. Then

Xn+1X−1
0 y0,m +

n

∑
s=0

Xn+1X−1
s+1(ys+1,m − Asys,m)

= AnXnX−1
0 y0,m + yn+1,m − Anyn,m + An

n−1

∑
s=0

XnX−1
s+1(ys+1,m − Asys,m)

= Anyn,m + yn+1,m − Anyn,m = yn+1,m.

Therefore (2.22) is true for every n. Using (2.20), (2.21) and (2.22) we obtain for n ≥ 0, m ∈ Z.

zn,m + yn,m = XnX−1
0 (y0,m + z0,m) +

n−1

∑
s=0

XnX−1
s+1

(
Bs,m(ys,m+1 + zs,m+1) + f (ys,m + zs,m)

)
.

Then if xn,m = zn,m + yn,m from (2.1) we have that xn,m, n ≥ 0, m ∈ Z is a solution of (1.1). So,
from (2.9), (2.14) and (2.19) we have

|x − y|∞ = |z|∞ ≤
2K(1 + p)δ

1 − p − 2K(p + 1)(M + L)
< ǫ.
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In addition from (2.11) and (2.19) we have for n ≤ 0, m ∈ Z

zn,m =
n−1

∑
s=−∞

XnP1X−1
s+1H(zs,m)−

−1

∑
s=n

Xn(I − P1)X−1
s+1H(zs,m)

−
−1

∑
s=n

XnP1X−1
s+1H(zs,m) +

−1

∑
s=n

XnP1X−1
s+1H(zs,m)−

∞

∑
s=0

XnP2X−1
s+1H(zs,m)

=
−1

∑
s=−∞

XnP1X−1
s+1H(zs,m)−

−1

∑
s=n

XnX−1
s+1H(zs,m)−

∞

∑
s=0

XnP2X−1
s+1H(zs,m)

= XnX−1
0

−1

∑
s=−∞

X0P1X−1
s+1H(zs,m)−

−1

∑
s=n

XnX−1
s+1

(
−ys+1,m + Asys,m)

)

−
−1

∑
s=n

XnX−1
s+1

(
Bs,m(ys,m+1 + zs,m+1) + f (ys,m + zs,m)

)

− XnX−1
0

∞

∑
s=0

X0P2X−1
s+1H(zs,m).

(2.23)

So, for n = 0 we get (2.21). Moreover, arguing as in (2.22) we can show that

yn,m = XnX−1
0 y0,m −

−1

∑
s=n

XnX−1
s+1

(
ys+1,m − Asys,m

)
, n ≤ 0, m ∈ Z. (2.24)

Therefore from (2.1), (2.23) and (2.24) we can prove that xn,m = yn,m + zn,m is a solution of
(1.1). Using (2.9), (2.15) the proof of (i) is completed.

(ii) Let ǫ be an arbitrary positive number and δ be a positive number such that

δ <
1 − p − 2KM(1 + p)(1 + L)

2K(1 + p)
ǫ. (2.25)

Suppose that yn,m is a double sequence such that (1.6) is satisfied. Then using (2.2), (2.3), (2.5),
(2.7), (2.8), (2.25) and arguing as in the case (i) we can prove (ii).

In what follows we study the Hyers–Ulam stability for the equation

xn+1,m = Axn,m + Bxn,m+1 + fn,m, n, m ∈ N (2.26)

where A, B are k × k are constant matrices and fn,m : N × N → R
k is a double sequence.

Firstly we give a formula for the solutions of (2.26).
Let xn,m be a double sequence. Then we define the operators E1, E2 as follows:

E1xn,m = xn+1,m, E2xn,m = xn,m+1.

Proposition 2.3. Consider the partial difference equations (2.26). Then the following statements are

true:

(i) There exists a unique solution xn,m of (2.26) with x0,m = cm, cm is a given sequence. Moreover

xn,m is given by

xn,m = (A + BE2)
ncm +

n−1

∑
s=0

(A + BE2)
n−s−1 fs,m. (2.27)
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(ii) Let B be an invertible matrix. There exists a unique solution xn,m of (2.26) where xn,0 = dn, dn

is a given sequence. Furthermore xn,m is given by

xn,m = (−B−1A + B−1E1)
mdn +

m−1

∑
s=0

(−B−1 A + B−1E1)
m−s−1(−B−1) fn,s. (2.28)

Proof. (i) From (2.26) we get

xn+1,m = Axn,m + BE2xn,m + fn,m = (A + BE2)xn,m + fn,m, n, m ∈ N. (2.29)

Then from (2.29), for a fixed m ∈ N by the constant variation formula we get (2.27). So, the
proof of part (i) is completed.

(ii) From (2.26) we get for a fixed n ∈ N

xn,m+1 = B−1xn+1,m − B−1 Axn,m − B−1 fn,m

= (B−1E1 − B−1A)xn,m − B−1 fn,m.

Then by the constant variation formula we take (2.28). This completes the proof of the propo-
sition.

Proposition 2.4. Suppose that A, B are k × k matrices. Suppose that either

|A|+ |B| < 1 (2.30)

or if B is invertible and

|B−1|+ |B−1A| < 1. (2.31)

Then equation (2.26) has the Hyers–Ulam stability.

Proof. Suppose firstly that (2.30) is satisfied. Let ǫ be an arbitrary number and δ =

ǫ(1 − (|A|+ |B|)). Let yn,m be a double sequence such that

|yn+1,m − Ayn,m − Byn,m+1 − fn,m| < δ. (2.32)

We set
yn+1,m − Ayn,m − Byn,m+1 − fn,m = Qn,m.

Then, from (2.32), it is obvious that

|Qn,m| < δ, n, m ∈ N. (2.33)

Arguing as in the case (i) of Proposition 2.3 we obtain

yn,m = (A + BE2)ny0,m +
n−1

∑
s=0

(A + BE2)
n−s−1( fs,m + Qs,m). (2.34)

Let xn,m be a solution of (2.26) with x0,m = y0,m. Then from (2.27) and (2.34) we have

xn,m − yn,m = −
n−1

∑
s=0

(A + BE2)
n−s−1Qs,m. (2.35)
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Relations (2.30), (2.33) and (2.35) imply that

|xn,m − yn,m| ≤
n−1

∑
s=0

(|A|+ |B|E2)
n−s−1|Qs,m|

=
n−1

∑
s=0

n−s−1

∑
k=0

(n − s − 1)!
k!(n − s − 1 − k)!

|A|n−s−1−k|B|kEk
2|Qs,m|

=
n−1

∑
s=0

n−s−1

∑
k=0

(n − s − 1)!
k!(n − s − 1 − k)!

|A|n−s−1−k|B|k|Qs,m+k|

< δ
n−1

∑
s=0

(|A|+ |B|)n−s−1 ≤
δ

1 − (|A|+ |B|)
= ǫ.

This completes the proof of case (i).
Suppose that (2.31) is fulfilled. Let ǫ be a positive number and δ = ǫ(1− (|B−1|+ |B−1A|)).

Let yn,m be a double sequence such that

|yn,m+1 + B−1Ayn,m − B−1yn+1,m + B−1 fn,m| < δ. (2.36)

We set
yn,m+1 + B−1Ayn,m − B−1yn+1,m + B−1 fn,m = Q̂n,m.

Then using the same argument as in the case (ii) of Proposition 2.3 we get,

yn,m = (−B−1 A + B−1E1)
myn,0 +

m−1

∑
s=0

(−B−1 A + B−1E1)
m−s−1(Q̂n,s − B−1 fn,s). (2.37)

Let xn,m be a solution of (2.26) with xn,0 = yn,0. Then from (2.28) and (2.37) we obtain

xn,m − yn,m = −
m−1

∑
s=0

(−B−1A + B−1E1)
m−s−1Q̂n,s.

Hence from (2.31) and (2.33) we get

|xn,m − yn,m| ≤
m−1

∑
s=0

(|B−1A|+ |B−1|E1)
m−s−1|Q̂n,s|

=
m−1

∑
s=0

m−s−1

∑
k=0

(m − s − 1)!
k!(m − s − 1 − k)!

|B−1 A|m−s−1−k|B−1|kEk
1|Q̂n,s|

=
m−1

∑
s=0

m−s−1

∑
k=0

(m − s − 1)!
k!(m − s − 1 − k)!

|B−1 A|m−s−1−k|B−1|k|Q̂n+k,s|

= δ
m−1

∑
s=0

(|B−1|+ |B−1A|)m−s−1
<

δ

1 − (|B−1|+ |B−1 A|)
= ǫ.

This completes the proof of the proposition.
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1 Introduction

In recent years several authors studied the existence of homoclinic orbits for first or second

order Hamiltonian systems via variational methods and critical point theory, see for instance

[2, 4–6, 9, 12–16]. In particular, with the aid of a bounded self-adjoint linear operator and the

dual action principle, Coti Zelati, Ekeland and Séré [4] obtained some existence theorems of

nonzero homoclinic orbit for first order Hamiltonian systems

{

x′ = JAx + JH′(t, x),

x(±∞) = 0,

via the Ambrosetti–Rabinowitz mountain-pass theorem and concentration compactness prin-

ciple. Inspired by the ideas of [4], we consider the more generalized operator equation

Lu − G′(t, u) = 0, (1.1)

where L : Lβ(R, R
N) → W1,β(R, R

N)
⋂

Lγ(R, R
N) is a bounded linear operator for all γ ≥ β

and for some β ∈ (1, 2) and
∫

R
((Lu)(t), v(t))dt =

∫

R
((Lv)(t), u(t))dt for all u, v ∈ Lβ(R, R

N),

BCorresponding author. Email: mlsong2004@163.com
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G : R × R
N → R and G′(t, u) denotes the gradient of G with respect to u. u = u(t) ∈

Lβ(R, R
N) is called a solution of (1.1) if (Lu)(t)− G′(t, u(t)) = 0 a.e. t ∈ R.

We need the following assumptions:

(L1) For any bounded {un} ⊂ Lβ(R, R
N) and R > 0, there exists a subsequence {unj

} such

that Lunj
→ w in C([−R, R], R

N).

(L2) There exists v0 ∈ Lβ(R, R
N) such that

∫ +∞

−∞
(Lv0, v0)dt > 0.

(L3) (Lu(·+ T))(t) = (Lu)(t + T) for all t ∈ R, where T > 0 is a constant.

(L4) |(Lu)(t)| ≤ c0

∫ +∞

−∞
e−l|t−τ||u(τ)|dτ for all u ∈ Lβ(R, R

N), where c0, l > 0 are two con-

stants.

(G1) G(t, ·) and G′(t, ·) are continuous for a.e. t ∈ R, G(·, u) and G′(·, u) are measurable for

all u ∈ R
N , G(t, ·) is convex for all t ∈ R and G∗′(t, ·) exists for a.e. t ∈ R .

(G2) G(t + T, u) = G(t, u) for all t ∈ R.

(G3) c1|u|
β ≤ G(t, u) ≤ c2|u|β, where c2 ≥ c1 > 0 are two constants.

(G4) 0 ≤ 1
β (G

′(t, u), u) ≤ G(t, u).

(G5) |G′(t, u)| ≤ c3|u|β−1, where c3 > 0 is a constant.

Now we state our main result as follows.

Theorem 1.1. Assume L and G satisfy (L1)–(L4) and (G1)–(G5). Then (1.1) has a nonzero solution.

Remark 1.1. Although the equation (1.1) also appeared in the proof of Theorem 4.2 in [4],

the bounded linear operator L there equal (2.2) which comes from first order Hamiltonian

systems. In this paper, L discussed in (1.1) contains not only (2.2) but also (2.4) coming from

indefinite second order Hamiltonian systems. In addition, introducing the condition (L1)

makes the proof of conclusion clearer and simpler.

The rest of this paper is organized as follows. In Section 2, we firstly establish a preliminary

lemma, and then, we give two application examples for homoclinic orbit of Hamiltonian

systems. In Section 3, we give the proof of our main result.

2 Preliminaries and examples

To complete the proof of Theorem 1.1, we need a lemma.

Lemma 2.1. Let 1
α + 1

β = 1.

(1) If u ∈ Lβ(R, R
N) and b > a > 0, then

(

∫

|t|≥b

(

∫ a

−a
e−l|t−τ||u(τ)|dτ

)α

dt

)

1
α

≤ 2(αl)−
2
α e−l(b−a)

(

∫ a

−a
|u(τ)|βdτ

)
1
β

.
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(2) If w, u ∈ Lβ(R, R
N) and b ≥ a > r ≥ 0, then

∫

|t|≥b
|u(t)|

∫

a≥|τ|≥r
e−l|t−τ||w(τ)|dτdt

≤ 2(αl)−
2
α e−l(b−a)

(

∫

|t|≥b
|u(t)|βdt

)
1
β
(

∫

a≥|τ|≥r
|w(τ)|βdτ

)
1
β

.

(3) If w, u ∈ Lβ(R, R
N) and b > a > r > 0, then

∫

a≤|t|≤b
|u(t)|

∫

|τ|≤a
e−l|t−τ||w(τ)|dτdt

≤ 2(αl)−
2
α ‖u‖Lβ

[

e−l(a−r)‖w‖Lβ +

(

∫

r≤|τ|≤a
|w(τ)|βdτ

)
1
β

]

.

Proof. For u ∈ Lβ(R, R
N) and b > a > 0, by some simple calculations, we have

(

∫

|t|≥b

(

∫ a

−a
e−l|t−τ||u(τ)|dτ

)α

dt

)

1
α

≤

((

∫ +∞

b
+

∫ −b

−∞

)

∫ a

−a
e−αl|t−τ|dτdt

)
1
α
(

∫ a

−a
|u(τ)|βdτ

)
1
β

= 2
1
α (αl)−

2
α

(

1 − e−2αal
)

1
α

e−l(b−a)

(

∫ a

−a
|u(τ)|βdτ

)
1
β

≤ 2(αl)−
2
α e−l(b−a)

(

∫ a

−a
|u(τ)|βdτ

)
1
β

,

which implies that (1) holds. The same arguments also prove that (2) holds.

By (2), we have
∫

a≤|t|≤b
|u(t)|

∫

|τ|≤a
e−l|t−τ||w(τ)|dτdt

=
∫

a≤|t|≤b
|u(t)|

(

∫

|τ|≤r
+

∫

r≤|τ|≤a

)

e−l|t−τ||w(τ)|dτdt

≤ 2(αl)−
2
α ‖u‖Lβ

[

e−l(a−r)‖w‖Lβ +

(

∫

r≤|τ|≤a
|w(τ)|βdτ

)
1
β

]

.

This shows that (3) holds.

Next, we return to applications to homoclinic orbit of Hamiltonian systems. For systematic

researches of homoclinic orbit of Hamiltonian systems, we refer to the excellent papers [2, 4–

6, 9, 12–16] and references therein.

As the first example we consider

{

x′ = JAx + JH′(t, x),

x(±∞) = 0,
(2.1)

where J =
(

0 In
−In 0

)

is the standard symplectic matrix in R
2N , A is a 2N × 2N symmetric

matrix and all the eigenvalues of JA have non-zero real part, H(t, x) satisfies
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(H1) H ∈ C(R × R
2N , R), H′ ∈ C(R × R

2N , R
2N) and H(t, ·) is strictly convex;

(H2) H(t + T, x) = H(t, x) for some T > 0;

(H3) k1|x|
α ≤ H(t, x) ≤ k2|x|α for some α > 2 and 0 < k1 ≤ k2;

(H4) H(t, x) ≤ 1
α (H′(t, x), x).

As in [4], define G(t, u) = supx∈R2N{(u, x)− H(t, x)} and G satisfies (G1)–(G5).

Define L : Lβ(R, R
2N) → W1,β(R, R

N)
⋂

Lα(R, R
2N) by z = Lu satisfies

−Jz′ − Az = u, z(±∞) = 0

Then

z(t) =
∫ t

−∞
eE(t−τ)Ps Ju(τ)dτ −

∫ +∞

t
eE(t−τ)Pu Ju(τ)dτ, (2.2)

where E = JA, R
2N = Eu ⊕ Es and Ps and Pu are the projections onto Es and Eu respectively

satisfying |etEPsξ| ≤ ke−bt|ξ| for t ≥ 0 and |etEPuξ| ≤ kebt|ξ| for t ≤ 0, ξ ∈ R
2N and some

b, k > 0. So

|(Lu)(t)| ≤
∫ t

−∞
ke−b(t−τ)|u(τ)|dτ +

∫ +∞

t
keb(t−τ)|u(τ)|dτ

= k
∫ +∞

−∞
e−b|t−τ||u(τ)|dτ,

which implies that (L4) holds. From Lemma 2.1 of [4], we know that L : Lβ(R, R
2N) →

W1,β(R, R
2N)

⋂

Lγ(R, R
2N) is a bounded linear operator for γ ≥ β, β ∈ (1, 2) and

∫

R

((Lu)(t), v(t))dt =
∫

R

((Lv)(t), u(t))dt

for all u, v ∈ Lβ(R, R
2N).

By z′(t) = Ju(t) + Ez(t) for all t ∈ R, we have

|z(t1)− z(t2)| =

∣

∣

∣

∣

∫ t2

t1

(Ju(t) + Ez(t))dt

∣

∣

∣

∣

≤ |t2 − t1|
1
α ‖u‖Lβ + M0|t2 − t1|‖z‖∞

where M0 > 0, which implies that (L1) holds. Note that the proof of (b) of Lemma 4.1 in [4],

we see that there exists v0 ∈ Lβ(R, R
2N) such that (L2) holds. The validity of (L3) is obvious.

Moreover, G∗(t, x) = H(t, x) and a solution u ∈ Lβ(R, R
2N) \ {0} of Lu − G′(t, u) = 0

corresponds to a nonzero solution x = Lu of

{

−Jx′ − Ax = H′(t, x),

x(±∞) = 0.

Therefore, we have the following corollary.

Corollary 2.2 ([4, Theorem 4.2]). Assume H satisfies (H1)–(H4). Then (2.1) has a nonzero solution,

i.e., the Hamiltonian system

−Jx′ − Ax = H′(t, x)

has at least one nontrivial homoclinic orbit.
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Remark 2.1. The above corollary was essentially [4, Theorem 4.2] by Coti Zelati, Ekeland and

Séré using the Ekeland variational principle and concentration compactness principle, and the

equation (1.1) also appeared in the proof the theorem already.

As a second example we consider

{

Dx′′ − Bx = V ′(t, x),

x(±∞) = 0,
(2.3)

where D, B are N × N symmetric matrix, (±σ(D))
⋂

(0,+∞) 6= ∅, D is invertible, D−1B = Q2

with Q being a N × N matrix and all the eigenvalues of Q have positive real part, V : R ×

R
N → R and V ′(t, x) denotes the gradient of V with respect to x. The system was called

indefinite second order system in [3].

Let
{

Dx′′ − Bx = u,

x(±∞) = 0.

Then
{

x′′ − D−1Bx = x′′ − Q2x = D−1u,

x(±∞) = 0

and
{

[

etQ(x′ − Qx)
]′
= etQD−1u,

x(±∞) = 0.

Assume x′(−∞) = 0 (and this will be verified later). Then

x′ − Qx = e−tQ
∫ t

−∞
eτQD−1u(τ)dτ

and

(e−tQx)′ = e−2tQ
∫ t

−∞
eτQD−1u(τ)dτ.

So, we have

x = −etQ
∫ +∞

t
e−2sQ

(

∫ s

−∞
eτQD−1u(τ)dτ

)

ds

= −
Q−1

2
etQ

∫ t

−∞
e−2tQeτQD−1u(τ)dτ −

Q−1

2
etQ

∫ +∞

t
e−τQD−1u(τ)dτ

= −
Q−1

2

∫ +∞

−∞
e−|t−τ|QD−1u(τ)dτ.

For u ∈ Lβ(R, R
N), set

x = Lu = −
Q−1

2

∫ +∞

−∞
e−|t−τ|QD−1u(τ)dτ. (2.4)

We claim that

x = Lu ∈ W1,β(R, R
N)

⋂

Lγ(R, R
N)
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for γ ≥ β, β ∈ (1, 2) and u ∈ Lβ(R, R
N). In fact, from all the eigenvalues of Q have positive

real part, we know that there exist λ0 > 0 and c4 > 0 such that |e−|t|Qξ| ≤ c4e−λ0|t||ξ| for t ∈ R

and ξ ∈ R
N . By

∫ +∞

−∞
e−η|t|dt = 2

η , we have

e−λ0|t| ∈ Lη(R, R) and ‖e−λ0|t|‖
η
Lη =

2

λ0η
∀η ≥ 1.

Using the convolution inequality, we have

(

∫ +∞

−∞
|Lu|rdt

)
1
r

≤
c4‖Q−1‖ · ‖D−1‖

2

(

∫ +∞

−∞

(

∫ +∞

−∞
e−λ0|t−τ||u(τ)|dτ

)r

dt

)

1
r

≤
c4‖Q−1‖ · ‖D−1‖

2
‖e−λ0|t|‖Lp · ‖u‖Lβ (2.5)

for 1
r = 1

p + 1
β − 1 and r, p ≥ 1, which shows that Lu ∈ Lr(R, R

N) ∀r ∈ [β,+∞]. Similarly,

from the equation

x′ = Qx +
∫ t

−∞
e−(t−τ)QD−1u(τ)dτ, (2.6)

it is easy to see that Lu ∈ W1,β(R, R
N). Moreover, by (2.5), we can also see that L : Lβ(R, R

N) →

W1,β(R, R
N)

⋂

Lγ(R, R
N) is a bounded linear operator for γ ≥ β. This implies x(±∞) = 0

and x′(−∞) = 0 via the above equation.

Let x = Lu and y = Lv. Then

∫

R

((Lu)(t), v(t))dt =
∫ +∞

−∞
(x, Dy′′ − By))dt

=
∫ +∞

−∞
(Dx′′ − Bx), y)dt

=
∫

R

(u(t), (Lv)(t))dt

for all u, v ∈ Lβ(R, R
N), which implies that L : Lβ → Lα is self-adjoint.

By (2.6) for all t1, t2 ∈ R, we have

|x(t1)− x(t2)| =

∣

∣

∣

∣

∫ t2

t1

(

Qx +
∫ t

−∞
e−(t−τ)QD−1u(τ)dτ

)

dt

∣

∣

∣

∣

≤ ‖Q‖ · ‖x‖∞ · |t2 − t1|+ c4(λ0α)
−1
α ‖D−1‖ · ‖u‖Lβ · |t2 − t1|,

which implies that (L1) holds.

Since (±σ(D))
⋂

(0,+∞) 6= ∅, we know that there exist λ1 < 0 and ξ0 ∈ R
N\{0} such that

|ξ0| = 1 and Dξ0 = λ1ξ0. Let

x0(t) =























ξ0 sin kt, t ∈ [0, 2mπ],

ξ0[
k

π2 (t − 2mπ − π)3 + k
π (t − 2mπ − π)2], t ∈ [2mπ, 2mπ + π],

0, t ≥ 2mπ + π,

−x0(−t), t < 0,

where k, m ∈ N\{0}. Then
{

Dx′′0 − Bx0 = v0,

x0(±∞) = 0
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and
∫ +∞

−∞
(Lv0, v0)dt = 2

∫ +∞

0
(Dx′′0 (t)− Bx0(t), x0(t))dt

= 2

(

∫ 2mπ

0
+

∫ 2mπ+π

2mπ

)

(Dx′′0 (t)− Bx0(t), x0(t)dt

≥ 2

(

∫ 2mπ

0
+

∫ 2mπ+π

2mπ

)

[

−λ1|x
′
0(t)|

2 − ‖B‖ · |x0(t)|
2
]

dt

= −2λ1

(

k2mπ +
2

15
k2π

)

− 2‖B‖ ·

(

mπ +
k2π3

105

)

> −2λ1mk2 − 2π‖B‖ · (m + k2)

> 0

provided m = k2 and k2
>

2π‖B‖
−λ1

. This shows that there exists v0 ∈ Lβ(R, R
N) such that (L2)

holds. The validity of (L3) and (L4) are obvious.

Further, assume V satisfies (H1)–(H4) with H(t, x) replaced with V(t, x) and 2N replaced

with N. Define V∗(t, u) = supx∈RN{(u, x)− V(t, x)}. Then V∗(t, u) satisfies (G1)–(G5) with

G(t, u) replaced with V∗(t, u). By the Legendre reciprocity formula

V∗′(t, u) = x ⇔ u = V ′(t, x),

we see that (2.3) is equivalent to

Lu − V∗′(t, u) = 0, u ∈ Lβ(R, R
N). (2.7)

Therefore, we have the following result from Theorem 1.1.

Corollary 2.3. Assume V satisfies (H1)–(H4) with H(t, x) replaced with V(t, x) and 2N replaced

with N. Then (2.3) has a nonzero solution.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. The method comes from [4] with some modifications.

Proof of Theorem 1.1. We define the functional I on Lβ(R, R
N) by

I(u) =
∫

R

G(t, u)dt −
1

2

∫

R

(Lu, u)dt (3.1)

for all u ∈ Lβ(R, R
N). From (G3), we have

0 ≤
∫

R

G(t, u)dt ≤ c2

∫

R

|u|βdt < +∞.

Noticing that Lu ∈ Lα(R, R
N) and L is a bounded linear operator, then

∫

R
(Lu, u)dt is well

defined. Since G(t, ·) and G′(t, ·) are continuous for a.e. t ∈ R, from (G5), we know that the

functional I is a C1 functional. Moreover, a solution of (1.1) correspond to a critical point of

the functional I.

Next, we take five steps to prove the existence of the critical point of the functional I.

Step 1. There exists a sequence {un} ⊂ Lβ(R, R
N) such that I(un) → c > 0 and I′(un) → 0.
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By (L2) and (G3), for v0 ∈ Lβ(R, R
N), β ∈ (1, 2) and s > 0 we have

I(sv0) =
∫

R

G(t, sv0)dt −
s2

2

∫

R

(Lv0, v0)dt

≤ c2sβ
∫

R

|v0|
βdt −

s2

2

∫

R

(Lv0, v0)dt

→ −∞ as s → +∞,

which shows there is s0 > 0 such that I(s0v0) < 0. Set u0 = s0v0 and define

c = inf
γ∈Γ

sup
u∈γ([0,1])

I(u),

where Γ = {γ ∈ C([0, 1], Lβ(R, R
N))|γ(0) = 0, γ(1) = u0}.

By (G3), we have

I(u) ≥ c1

∫

R

|u|βdt −
1

2

∫

R

(Lu, u)dt

≥ c1‖u‖
β

Lβ −
M

2
‖u‖2

Lβ ,

where M > 0 and ‖Lu‖Lα ≤ M‖u‖Lβ . Since β ∈ (1, 2), there exists r ∈ (0, ‖u0‖Lβ) such that

c1rβ − M
2 r2

> 0. So supu∈γ([0,1]) I(u) ≥ c1rβ − M
2 r2

> 0 and c > 0. By [7, Theorem V.1.6], the

result follows.

Step 2. We prove that the sequence {un} ⊂ Lβ(R, R
N) is bounded and there exist δ2 > δ1 > 0

such that ‖un‖Lβ ∈ [δ1, δ2].

Clearly,

〈I′(un), un〉 =
∫

R

(G′(t, un), un)dt −
∫

R

(Lun, un)dt.

Using (G3) and (G4), we have

I(un) +
1

2
‖I′(un)‖Lα · ‖un‖Lβ ≥ I(un)−

1

2
〈I′(un), un〉

=
∫

R

G(t, un)dt −
1

2

∫

R

(G′(t, un), un)dt

≥ (1 −
β

2
)
∫

R

G(t, un)dt

≥ (1 −
β

2
)c1‖un‖

β

Lβ .

Since c1 > 0, 1 < β < 2, I(un) → c > 0 and ‖I′(un)‖Lα → 0, we deduce that {un} is bounded

in Lβ(R, R
N).

Again, from (3.1) and (G3), we have

I(un) ≤ c2

∫

R

|un|
βdt −

1

2

∫

R

(Lun, un)dt

≤ c2‖un‖
β

Lβ +
M

2
‖un‖

2
Lβ .

If there is a subsequence{unk
} such that ‖unk

‖Lβ → 0, then

I(unk
) ≤ c2‖unk

‖
β

Lβ +
M

2
‖unk

‖2
Lβ → 0 ⇒ c ≤ 0,
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which contradicts c > 0.

Set ρn(t) =
|un(t)|β

‖un‖
β

Lβ

. Then
∫ +∞

−∞
ρn(t)dt = 1. By [4, page 145, Lemma] (also see [10, 11]), we

have three possibilities:

(i) vanishing

sup
y∈R

∫ y+R

y−R
ρn(t)dt → 0 as n → ∞ ∀R > 0;

(ii) concentration

∃yn ∈ R : ∀ε > 0 ∃R > 0 :
∫ yn+R

yn−R
ρn(t)dt ≥ 1 − ε ∀n;

(iii) dichotomy

∃yn ∈ R, ∃λ ∈ (0, 1), ∃R1
n, R2

n ∈ R such that

(a) R1
n, R2

n → +∞, R1
n

R2
n
→ 0;

(b)
∫ yn+R1

n

yn−R1
n

ρn(t)dt → λ as n → ∞;

(c) ∀ε > 0 ∃R > 0 such that
∫ yn+R

yn−R ρn(t)dt ≥ λ − ε ∀n;

(d)
∫ yn+R2

n

yn−R2
n

ρn(t)dt → λ as n → ∞.

Step 3. Vanishing cannot occur.

Otherwise, there exists a nonnegative sequence εn → 0 such that

∫ s+1

s−1
|un(t)|

βdt ≤ εn‖un‖
β

Lβ ∀s ∈ R.

By (L4), we have

|(Lun)(t)| ≤ c0

∫ +∞

−∞
e−l|t−τ||un(τ)|dτ

= c0

∫ +∞

t
e−l|t−τ||un(τ)|dτ + c0

∫ t

−∞
e−l|t−τ||un(τ)|dτ

≤ c0elt
+∞

∑
k=0

(

∫ t+k+1

t+k
e−αlτdτ

)
1
α
(

∫ t+k+1

t+k
|un(τ)|

βdτ

)
1
β

+ c0e−lt
+∞

∑
k=0

(

∫ t−k

t−k−1
eαlτdτ

)
1
α
(

∫ t−k

t−k−1
|un(τ)|

βdτ

)
1
β

≤ 2c0ε
1
β
n‖un‖Lβ

(

1 − e−αl

αl

)

1
α

·
1

1 − e−l
→ 0

as n → ∞ uniformly for t ∈ R, which implies that ‖Lun‖∞ → 0.

From L : Lβ(R, R
N) → W1,β(R, R

N)
⋂

Lγ(R, R
N) is a bounded linear operator for γ ≥ β,

we obtain ‖Lun‖Lβ ≤ c5‖un‖Lβ , where c5 > 0. Since

‖Lun‖
α
Lα =

∫

R

|Lun|
αdt ≤ ‖Lun‖

α−β
∞

∫

R

|Lun|
βdt ≤ c5‖un‖Lβ‖Lun‖

α−β
∞ ,
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we have ‖Lun‖Lα → 0. By (G3) and the convexity of G(t, ·), G(t, 0) ≡ 0 and G(t, un) ≤

(G′(t, un), un). So

∫

R

|un|
βdt ≤

1

c1

∫

R

(G′(t, un), un)dt ≤
1

c1
‖G′(t, un)‖Lα · ‖un‖Lβ → 0,

since G′(t, un) = Lun + I′(un) → 0 in Lα(R, R
N). This is a contradiction to ‖un‖Lβ ≥ δ1 > 0.

Step 4. Concentration implies the existence of a nontrivial solution of (1.1).

If concentration occurs, we set

wn(t) = un(t + yn), vn(t) =
wn(t)

‖wn‖Lβ

.

Then
∫

R
|vn(t)|βdt = 1 and for every ε1 > 0 there exists R > 0 such that

1 − ε1 ≤
∫ R

−R
|vn(t)|

βdt ≤ 1. (3.2)

We claim there is z and a subsequence denoted also by itself such that

Lvn → z in Lα(R, R
N). (3.3)

In fact it suffices to show that for every ε > 0 there exist zε ∈ Lα(R, R
N) and subsequence vnj

such that

‖Lvnj
− zε‖Lα ≤ ε.

Let v
(1)
n (t) = vn(t)χ[−R,R](t) and v

(2)
n (t) = vn(t) − v

(1)
n (t). By (L1), for every t0 > 0 there

exist {v
(1)
nj
} and u

(1)
ε ∈ C([−t0, t0], R

N) such that Lv
(1)
nj

→ u
(1)
ε in C([−t0, t0], R

N). Define

uε(t) = u
(1)
ε (t) for t ∈ [−t0, t0] and uε(t) = 0 otherwise. Then

‖Lvnj
− uε‖Lα ≤ ‖Lv

(2)
nj
‖Lα + ‖Lv

(1)
nj

− uε‖Lα ≤ Mε
1
β

1 + ‖Lv
(1)
nj

− uε‖Lα ,

and

(

∫ +∞

−∞
|Lv

(1)
nj

− uε|
αdt

)
1
α

≤

(

∫

|t|≥t0

|Lv
(1)
nj
|αdt + 2t0‖Lv

(1)
nj

− uε‖
α
C[−t0,t0]

)
1
α

≤ c0

(

∫

|t|≥t0

(

∫ R

−R
e−l|t−τ||v

(1)
nj
(τ)|dτ

)α

dt

)

1
α

+ (2t0)
1
α ‖Lv

(1)
nj

− uε‖C[−t0,t0]

≤ 2c0(αl)−
2
α e−l(t0−R)

(

∫ R

−R
|v

(1)
nj
(τ)|βdτ

)
1
β

+ (2t0)
1
α ‖Lv

(1)
nj

− uε‖C[−t0,t0]

≤ 2c0(αl)−
2
α e−l(t0−R) + (2t0)

1
α ‖Lv

(1)
nj

− uε‖C[−t0,t0]

via (1) of Lemma 2.1 and
∫

R
|vn(t)|βdt = 1, where t0 > R.

For any ε > 0, there is ε1 > 0 such that Mε
1
β

1 ≤ ε
3 , and there exists R = R(ε1) > 0 such that

(3.2) is satisfied. For the above R > 0, there exists t0 > R such that

2c0(αl)−
2
α e−l(t0−R) ≤

ε

3
.
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Then we can choose subsequence vnj
such that

(2t0)
1
α ‖Lv

(1)
nj

− uε‖C[−t0,t0] ≤
ε

3

via (L1). It follows that

‖Lvnj
− uε‖Lα ≤

ε

3
+

ε

3
+

ε

3
= ε.

From (3.3) and the boundedness of ‖wn‖Lβ , there exists z ∈ Lα(R, R
N) such that Lwn →

z in Lα(R, R
N). We assume

yn

T ∈ Z. It follows that I(wn) = I(un) and that I′(wn)(t) =

I′(un)(t + yn), and I(wn) → c, I′(wn) → 0 in Lα(R, R
N). Then

zn(t) = G′(t, wn) = I′(wn)(t) + (Lwn)(t) → z in Lα(R, R
N).

We have wn = G∗′(t, zn) → G∗′(t, z) = w on Lβ(R, R
N). Taking limit on both sides of

G′(t, wn)− Lwn = I′(wn),

we have G′(t, w)− Lw = 0, i.e., u = w is a nontrivial solution of (1.1).

Step 5. Dichotomy also leads to a nontrivial solution of (1.1).

If dichotomy occurs, we set

wn(t) = un(t + yn),

w
(1)
n (t) = wn(t)χ[−R1

n,R1
n]
(t),

w
(2)
n (t) = wn(t)(1 − χ[−R2

n,R2
n]
(t)),

w
(3)
n (t) = wn(t)− w

(1)
n (t)− w

(2)
n (t),

v
(1)
n (t) =

w
(1)
n (t)

‖w
(1)
n ‖Lβ

.

By (b) of the dichotomy, we have

∫ +∞

−∞

|w
(1)
n (t)|β

‖wn‖
β

Lβ

dt =
∫ R1

n

−R1
n

|wn(t)|β

‖wn‖
β

Lβ

dt → λ > 0.

From δ2 ≥ ‖wn‖Lβ = ‖un‖Lβ ≥ δ1, we can see that there exists δ3 > 0 such that ‖w
(1)
n ‖Lβ > δ3.

By Step 4 and (L1), w
(1)
n (t) → z in Lβ(R, R

N) and ‖z‖Lβ ≥ δ3. We will show that I′(w
(1)
n ) → 0,

and hence I′(z) = 0, that is, u = z is a nontrivial solution of (1.1). In fact, for any u ∈

Lβ(R, R
N), as the splitting of wn, u = u(1) + u(2) + u(3), and

〈I′(w
(1)
n ), u〉 =

∫ +∞

−∞
(G′(t, w

(1)
n ), u(1))dt −

∫ +∞

−∞
(Lw

(1)
n , u)dt

= 〈I′(wn), u(1)〉 −
∫ +∞

−∞
(Lw

(1)
n , u(2) + u(3))dt +

∫ +∞

−∞
(L(w

(2)
n + w

(3)
n ), u(1))dt.

In the following we assume ‖u‖Lβ ≤ 1 and the limits will be taken as n → +∞. From (b) and

(d) of the dichotomy, we have

‖w
(3)
n ‖

β

Lβ =
∫ +∞

−∞
|w

(3)
n |βdt =

∫

|t|≤R2
n

|wn|
βdt −

∫

|t|≤R1
n

|w
(1)
n |βdt → 0,
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which shows that
∣

∣

∣

∣

∫ +∞

−∞
(Lw

(3)
n , u(1))dt

∣

∣

∣

∣

≤ M‖w
(3)
n ‖Lβ‖u(1)‖Lβ ≤ M‖w

(3)
n ‖Lβ → 0. (3.4)

Using (L4), (2) of Lemma 2.1 and (a) of the dichotomy, we have

∣

∣

∣

∣

∫ +∞

−∞
(Lw

(2)
n , u(1))dt

∣

∣

∣

∣

≤ c0

∫ R1
n

−R1
n

|u(t)|
∫

|τ|≥R2
n

e−l|t−τ||wn(τ)|dτdt

≤ 2c0(αl)−
2
α e−l(R2

n−R1
n)‖u‖Lβ‖wn‖Lβ

≤ 2c0(αl)−
2
α e−l(R2

n−R1
n)δ2 → 0 (3.5)

and
∣

∣

∣

∣

∫ +∞

−∞
(Lw

(1)
n , u(2))dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ +∞

−∞
(Lu(2), w

(1)
n )dt

∣

∣

∣

∣

≤ 2c0(αl)−
2
α e−l(R2

n−R1
n)δ2 → 0. (3.6)

By (c) of the dichotomy, we have that for any ε1 > 0 there is R > 0 such that
∫ R
−R

|wn(t)|β

‖wn‖
β

Lβ

dt ≥

λ − ε1. Using (b) of the dichotomy, we obtain
∫

R≤|τ|≤R1
n
|wn(τ)|βdτ ≤ ε1‖wn‖

β

Lβ . By (L4), (3)

of Lemma 2.1 and (a) of the dichotomy, we have

∣

∣

∣

∣

∫ +∞

−∞
(Lw

(1)
n , u(3))dt

∣

∣

∣

∣

≤ c0

∫

R1
n≤|t|≤R2

n

|u(t)|
∫

|τ|≤R1
n

e−l|t−τ||wn(τ)|dτdt

≤ 2c0(αl)−
2
α ‖u‖Lβ

[

e−l(R1
n−R)‖wn‖Lβ +

(

∫

R≤|τ|≤R1
n

|wn(τ)|
βdτ

)
1
β

]

≤ 2c0(αl)−
2
α ‖u‖Lβ‖wn‖Lβ

(

e−l(R1
n−R) + ε

1
β

1

)

≤ 2c0(αl)−
2
α δ2

(

e−l(R1
n−R) + ε

1
β

1

)

→ 2c0(αl)−
2
α δ2ε

1
β

1 . (3.7)

Noticing I′(wn)→ 0, from (3.4)–(3.7), for any ǫ> 0 choosing ε1 > 0 satisfying 2c0(αl)−
2
α δ2ε

1
β

1 ≤ ǫ,

we find that lim supn→+∞ ‖I′(w
(1)
n )‖Lβ ≤ ǫ and hence I′(w

(1)
n ) → 0. The proof is complete.
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Abstract. Due to their applications to many physical phenomena during these last
decades the interest for studying the discontinuous piecewise differential systems has
increased strongly. The limit cycles play a main role in the study of any planar dif-
ferential system, but to determine the maximum number of limits cycles that a class
of planar differential systems can have is one of the main problems in the qualitative
theory of the planar differential systems. Thus in general to provide a sharp upper
bound for the number of crossing limit cycles that a given class of piecewise linear dif-
ferential system can have is a very difficult problem. In this paper we characterize the
existence and the number of limit cycles for the piecewise linear differential systems
formed by linear Hamiltonian systems without equilibria and separated by a reducible
cubic curve, formed either by an ellipse and a straight line, or by a parabola and a
straight line parallel to the tangent at the vertex of the parabola. Hence we have solved
the extended 16th Hilbert problem to this class of piecewise differential systems.

Keywords: limit cycles, discontinuous piecewise linear Hamiltonian systems, reducible
cubic curves.
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1 Introduction and statement of the main results

Andronov, Vitt and Khaikin [1] started around 1920’s the study of the piecewise differential

systems mainly motivated for their applications to some mechanical systems, and nowadays

these systems still continue to receive the attention of many researchers. Thus these differen-

tial systems are widely used to model processes appearing in mechanics, electronics, economy,

etc., see for instance the books [8] and [28], and the survey [25], as well as the hundreds of

references cited there.

BCorresponding author. Email:jjohanajimenez@gmail.com
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A limit cycle is a periodic orbit of the differential system isolated in the set of all periodic

orbits of the system. Limit cycles are important in the study of the differential systems. Thus

limit cycles have played and are playing a main role for explaining physical phenomena,

see for instance the limit cycle of van der Pol equation [26, 27], or the one of the Belousov–

Zhavotinskii model [3, 29], etc.

The extended 16th Hilbert problem, that is, to find an upper bound for the maximum number

of limit cycles that a given class of differential systems can exhibit, is in general an unsolved

problem. Only for very few classes of differential system this problem has been solved. For the

class of discontinuous piecewise differential systems here studied, we can obtain its solution

by using the first integrals provided by the Hamiltonians of the systems which form the

discontinuous piecewise differential systems. For the statement of the classical 16th Hilbert

problem see [16, 18, 21].

Of course in order that a discontinuous piecewise differential system be defined on the dis-

continuous line, which separates the different differential systems forming the discontinuous

piecewise differential system, we follow the rules of Filippov, see [11].

The discontinuous piecewise differential systems formed by linear differential systems can

exhibit two kinds of limit cycles, the crossing and the sliding limit cycles, the first are the ones

which only contain isolated points of the line of discontinuity, and the second the ones which

contains arcs of the line of discontinuity. Here we only study the crossing limit cycles.

The simplest class of discontinuous piecewise differential systems are the planar ones

formed by two pieces separated by a straight line having a linear differential system in each

piece. Several authors have tried to determine the maximum number of crossing limit cycles

for this class of discontinuous piecewise differential systems. Thus, in one of the first papers

dedicated to this problem, Giannakopoulos and Pliete [14] in 2001, showed the existence of

discontinuous piecewise linear differential systems with two crossing limit cycles. Then, in

2010 Han and Zhang [15] found other discontinuous piecewise linear differential systems

with two crossing limit cycles and they conjectured that the maximum number of crossing

limit cycles for discontinuous piecewise linear differential systems with two pieces separated

by a straight line is two. But in 2012 Huan and Yang [17] provided numerical evidence

of the existence of three crossing limit cycles in this class of discontinuous piecewise linear

differential systems. In 2012, Llibre and Ponce [24] inspired by the numerical example of Huan

and Yang, proved for the first time that there are discontinuous piecewise linear differential

systems with two pieces separated by a straight line having three crossing limit cycles. Later

on, other authors obtained also three crossing limit cycles for discontinuous piecewise linear

differential systems with two pieces separated by a straight line, see Braga and Mello [9] in

2013, Buzzi, Pessoa and Torregrosa [10] in 2013, Liping Li [22] in 2014, Freire, Ponce and Torres

[13] in 2014, and Llibre, Novaes and Teixeira [23] in 2015. But proving that discontinuous

piecewise linear differential systems separated by a straight line have at most three crossing

limit cycles is an open problem.

Recently, in [4, 6, 7, 19, 20] the authors have studied the extended 16th Hilbert problem

to discontinuous piecewise linear differential centers separated by either conics, or cubics.

However for the discontinuous piecewise linear Hamiltonian systems without equilibrium

points, it was proven in [12] that such systems separated by two parallel straight lines can

have at most one crossing limit cycle. In [5] it was proven that there is an example of two

crossing limit cycles when these systems are separated by three parallel straight lines, and

they can also have two crossing limit cycles if the curve of separation is a parabola, and three

crossing limit cycles if the curve of separation is either an ellipse or a hyperbola. In [2] the
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authors provided the maximum number of crossing limit cycles when the curve of separation

of these systems is an irreducible cubic.

In this paper we give the solution of the extended 16th Hilbert problem for discontinuous

piecewise linear differential Hamiltonian systems without equilibrium points separated by

two different reducible cubic curves, formed either by an ellipse and a straight line, or by

a parabola and a straight line parallel to the tangent at the vertex of the parabola. More

precisely, we provide the maximum number of crossing limit cycles for these systems, when

these limit cycles intersected with the cubic of separation in four points.

Note that if a crossing limit cycle of a discontinuous piecewise linear differential Hamilto-

nian systems without equilibrium points intersects in two points the discontinuity line formed

either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tan-

gent at the vertex of the parabola, this crossing limit cycle must intersect in two points either

the straight line, or the ellipse or the parabola, and these types of crossing limit cycles already

have been studied in [5, 12], as we have mention previously. For this reason in this paper

we study the crossing limit cycles with intersect in four points the reducible cubic formed

by either by an ellipse and a straight line, or by a parabola and a straight line parallel to the

tangent at the vertex of the parabola.

Doing an affine change if the reducible cubic is formed by an ellipse and a straight line we

can transform it into the reducible cubic

Γk = {(x, y) ∈ R
2 : (x − k)(x2 + y2 − 1) = 0, k ≥ 0},

formed by the circle x2 + y2 = 1 and the straight line x = k with k ≥ 0. In a similar way if the

reducible cubic is formed by a parabola and a straight line parallel to the tangent at the vertex

of the parabola we can transform it into the reducible cubic

Σk =
{

(x, y) ∈ R
2 : (y − k)(y − x2) = 0, k ∈ R

}

,

formed by the parabola y = x2 and the straight line y = k with k ∈ R

First in Subsection 1.1 we shall consider the piecewise linear Hamiltonian systems without

equilibrium points separated by the reducible cubic Γk, and after in Subsection 1.2 we shall

consider the piecewise linear Hamiltonian systems without equilibrium points separated by

the reducible cubic Σk.

The next result is proved in [12].

Lemma 1.1. An arbitrary linear differential Hamiltonian system in R
2 without equilibrium points can

be written as

ẋ = −λbx + by + µ, ẏ = −λ2bx + λby + σ,

where σ 6= λµ and b 6= 0. The Hamiltonian function of this Hamiltonian system is

H(x, y) = −1

2
λ2bx2 + λbxy − b

2
y2 + σx − µy. (1.1)

Of course H(x, y) is a first integral of the Hamiltonian system.

1.1 The line of discontinuity is a circle and a straight line

We denote by C1 the class of planar discontinuous piecewise linear Hamiltonian systems with-

out equilibrium points separated by Γk with k > 1. Let C2 be the class of planar discontinuous
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piecewise linear Hamiltonian systems without equilibrium points separated by Γk with k = 1.

For these two classes we get the following three zones

Z1 = {(x, y) ∈ R
2 : x2 + y2

< 1},

Z2 = {(x, y) ∈ R
2 : x2 + y2

> 1 and x < k},

Z3 = {(x, y) ∈ R
2 : x2 + y2

> 1 and x > k}.

(1.2)

Now we denote by C3 the class of piecewise linear Hamiltonian systems without equilibrium

points separated by Γk with 0 ≤ k < 1. In this case Γk separate the plane into four zones

Z1 = {(x, y) ∈ R
2 : x2 + y2

> 1 and x > k},

Z2 = {(x, y) ∈ R
2 : x2 + y2

> 1 and x < k},

Z3 = {(x, y) ∈ R
2 : x2 + y2

< 1 and x < k},

Z4 = {(x, y) ∈ R
2 : x2 + y2

< 1 and x > k}.

(1.3)
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Figure 1.1: (a) The three zones for the class C1. (b) The four zones for the class C3.

We have three different configurations of crossing limit cycles for the class C3. The first

one which will be denoted by Conf 1, here we have the limit cycles formed by four pieces of

orbits, such that in each zone of (1.3) we have one piece of orbit of each of the four Hamiltonian

systems considered, see Figure 1.4a.

The second configuration of limit cycles denoted by Conf 2, where we have the limit

cycles formed by pieces of orbits belonging to the three zones either Z1, Z2 and Z4, or Z1, Z2

and Z3. We are going to consider only the three zones Z1, Z2 and Z4, because by a similar

analysis we obtain the crossing limit cycles intersecting the three zones Z1, Z2 and Z3, for this

configuration, see Figure 1.4b.

Finally the third configuration namely Conf 3 where we have limit cycles formed by pieces

of orbits belonging to the three zones either Z1, Z3 and Z4, or Z2, Z3 and Z4. For the same

reason as in the second configuration, we are going to consider only the three zones Z1, Z3

and Z4, see Figure 1.4c.

We notice that we can obtain two new configurations by combining the three previous

ones, such as Conf 1 and Conf 2, Conf 1 and Conf 3. Note that we cannot have the configu-

ration Conf 2 and Conf 3, and Conf 1, Conf 2 and Conf 3.

Our main result on the crossing limit cycles of the discontinuous piecewise linear Hamil-

tonian systems without equilibria when the discontinuity line is formed by a circle and a

straight line is the following one.
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Theorem 1.2. The following statements hold for the discontinuous piecewise linear Hamiltonian sys-

tems without equilibria when the discontinuity line is formed by a circle and a straight line. The

maximum number of crossing limit cycles intersecting the cubic of separation in four points for the

class

(i) C1 or C2 is three and this maximum is reached in Example 1 for the class C1 and in Example 2

for the class C2, see Figures 1.3a and 1.3b, respectively;

(ii) C3 with Conf 1 is three and this maximum is reached in Example 3, see Figure 1.4a;

(iii) C3 with Conf 2 is three and this maximum is reached in Example 4, see Figure 1.4b;

(iv) C3 with Conf 3 is three and this maximum is reached in Example 5, see Figure 1.4c;

(v) C3 with Conf 1 and Conf 2 simultaneously is six and this maximum is reached in Example 6,

see Figure 1.5;

(vi) C3 with Conf 1 and Conf 3 simultaneously is six and this maximum is reached in Example 7,

see Figure 1.6.

Theorem 1.2 is proved in Section 2.

1.2 The line of discontinuity is a parabola and a straight line parallel to the tan-
gent at the vertex of the parabola
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Figure 1.2: (a) Three zones for the class Ck− . (b) Four zones for the class C0. (c)

Five zones for the class Ck+ .

Let CΣk− be the class of discontinuous piecewise linear Hamiltonian systems without equi-

libria separated by Σk− with k < 0. In this case we have following three zones in the plane

Z1
Σk−

= {(x, y) ∈ R
2 : y > x2},

Z2
Σk−

= {(x, y) ∈ R
2 : y < x2 and y > k},

Z3
Σk−

= {(x, y) ∈ R
2 : y < x2 and y < k},

see Figure 1.2a. Let CΣ0
be the class of discontinuous piecewise linear Hamiltonian systems

without equilibria separated by Σk with k = 0. When the discontinuity curve is Σ0 we have
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following four zones in the plane

Z1
Σ0

= {(x, y) ∈ R
2 : y > x2 },

Z2
Σ0

= {(x, y) ∈ R
2 : y < x2 and y > 0, x < 0},

Z3
Σ0

= {(x, y) ∈ R
2 : y < x2 and y < 0},

Z4
Σ0

= {(x, y) ∈ R
2 : y < x2 and y > 0, x > 0},

see Figure 1.2b. In this class we have two configurations of crossing limit cycles, first crossing

limit cycles with Conf 4 which are constituted by pieces of orbits of the four Hamiltonian

systems considered, see Figure 3.2a. Second crossing limit cycles with Conf 5 which intersect

only three zones, in this case we have two options, first we have the case where the crossing

limit cycles are formed by parts of orbits of the Hamiltonian systems in the zones Z1
Σ0

, Z3
Σ0

and Z4
Σ0

and second the crossing limit cycles that intersect only the three zones Z1
Σ0

, Z2
Σ0

and Z3
Σ0

, without loss of generality we can consider the first case because the study of the

second is the same, see Figure 3.2b. Here we observe that it is not possible to have crossing

limit cycles with Conf 5 that satisfy those two cases simultaneously, because the orbits of the

Hamiltonian system in the zone Z3
Σ0

would not be nested. In statement (ii) of Theorem 1.3

we study the discontinuous piecewise linear Hamiltonian systems without equilibria in CΣ0

which have crossing limit cycles with Conf 4 and Conf 5 separately, and in statement (iii) of

Theorem 1.3 we study the case when the crossing limit cycles with Conf 4 and Conf 5 appear

simultaneously.

Let CΣk+
be the class of discontinuous piecewise linear Hamiltonian systems without equi-

libria separated by Σk with k > 0, in this case we have the following five zones in the plane

Z1
Σk+

= {(x, y) ∈ R
2 : y > x2 and y > k},

Z2
Σk+

= {(x, y) ∈ R
2 : y < x2 and y > k, x < −

√
k},

Z3
Σk+

= {(x, y) ∈ R
2 : y > x2 and y < k},

Z4
Σk+

= {(x, y) ∈ R
2 : y < x2 and y > k, x >

√
k},

Z5
Σk+

= {(x, y) ∈ R
2 : x2

< y < k},

see Figure 1.2c. In this class we have six different configurations of crossing limit cycles.

First we have crossing limit cycles such that are formed by pieces of orbits of the four

Hamiltonian systems in the zones Z1
Σk+

, Z5
Σk+

, Z3
Σk+

and Z4
Σk+

, or crossing limit cycles formed

by pieces of orbits of the four Hamiltonian systems in the zones Z1
Σk+

, Z2
Σk+

, Z3
Σk+

and Z5
Σk+

,

namely crossing limit cycles with Conf 6+ and crossing limit cycles with Conf 6−, respectively,

see Figure 3.5. In statement (ii) of Theorem 1.3 we study the crossing limit cycles with Conf

6+ because the study for the case of crossing limit cycles with Conf 6− is the same. Second

we have crossing limit cycles with Conf 7, which intersect the three zones Z1
Σk+

, Z5
Σk+

and

Z3
Σk+

, see Figure 3.3b. Third we have the crossing limit cycles with Conf 8, which intersect

the zones Z1
Σk+

, Z2
Σk+

, Z3
Σk+

and Z4
Σk+

, see Figure 3.3c. And finally we have the crossing limit

cycles formed by pieces of orbits of the three Hamiltonian systems in the zones Z1
Σk+

, Z3
Σk+

and

Z4
Σk+

, or crossing limit cycles formed by pieces of orbits of the three Hamiltonian systems in

the zones Z1
Σk+

, Z2
Σk+

and Z3
Σk+

, namely crossing limit cycles with Conf 9+ and crossing limit

cycles with Conf 9−, respectively, see Figure 3.3d. Without loss of generality in statement

(ii) of Theorem 1.3 we study the crossing limit cycles with Conf 9+ because the study by
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the crossing limit cycles with Conf 9− is the same. We observe that there are no crossing

limit cycles that intersect the five zones Zi
Σk+

for i = 1, 2, 3, 4, 5. Then in statement (ii) of

Theorem 1.3 we study the crossing limit cycles with Conf 6+, Conf 7, Conf 8 and Conf 9+

separately. In statements (iii)-(ix) of Theorem 1.3 we study the discontinuous piecewise linear

Hamiltonian systems without equilibria in the class CΣk+
which have crossing limit cycles with

two configurations simultaneously. Finally in statements (x)–(xii) we study the discontinuous

piecewise linear Hamiltonian systems without equilibria in the class CΣk+
which have crossing

limit cycles with three different configurations simultaneously.

Our main result on the crossing limit cycles of the discontinuous piecewise linear Hamil-

tonian systems without equilibria when the discontinuity curve is formed by a parabola and

a straight line parallel to the tangent at the vertex of the parabola is the following one.

Theorem 1.3. The following statements hold for the discontinuous piecewise linear Hamiltonian sys-

tems without equilibria when the discontinuity line is formed by a parabola and a straight line parallel

to the tangent at the vertex of the parabola. The maximum number of crossing limit cycles intersecting

the cubic of separation in four points for the class

(i) CΣk− is three and this maximum is reached, see Figure 3.1;

(ii) CΣ0
or CΣk+

with either Conf 4, or Conf 5, or Conf 6+, or Conf 7, or Conf 8, or Conf 9+ is

three, respectively, see Figures 3.2a–3.3d;

(iii) CΣk+
with Conf 4 and Conf 5 simultaneously is six, see Figure 3.4;

(iv) CΣk+
with Conf 6+ and Conf 6− simultaneously is six, see Figure 3.5;

(v) CΣk+
with Conf 6− and Conf 7 simultaneously is six, see Figure 3.6a;

(vi) CΣk+
with Conf 6+ and Conf 8 simultaneously is six, see Figure 3.6b;

(vii) CΣk+
with Conf 6+ and Conf 9+ simultaneously is six, see Figure 3.7;

(viii) CΣk+
with Conf 7 and Conf 8 simultaneously is six, see Figure 3.8;

(ix) CΣk+
with Conf 8 and Conf 9+ simultaneously is six, see Figure 3.9;

(x) CΣk+
with Conf 6−, Conf 7 and Conf 8 simultaneously is nine, see Figure 3.10;

(xi) CΣk+
with Conf 6+, Conf 8 and Conf 9+ simultaneously is nine, see Figure 3.11;

(xii) CΣk+
with Conf 6−, Conf 6+ and Conf 8 simultaneously is six with 2 (resp. 3) limit cycles

with Conf 6−, 3 (resp. 2) limit cycles with Conf 6+ and 1 limit cycle with Conf 8, Figure 3.12

(resp. 3.13).

Theorem 1.3 is proved in Section 3.

2 Proof of Theorem 1.2

Proof of statement (i) of Theorem 1.2. We have to prove that the maximum number of crossing

limit cycles of the class C1 intersecting the curve Γk in four points is three. In a similar way we

should prove the statement for the classes C2 and C3.
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Figure 1.3: (a) The three limit cycles of the discontinuous piecewise differential

system (2.3). (b) The three limit cycles of the discontinuous piecewise differen-

tial system (2.4).

By Lemma 1.1 we can consider the discontinuous piecewise linear Hamiltonian systems

ẋ = −λibix + biy + µi, ẏ = −λ2
i bix + λibiy + σi, in the zone Zi, with i = 1, 2, 3. (2.1)

with bi 6= 0 and σi 6= λiµi, and the three zones Zi are defined in (1.2). Their corresponding

Hamiltonian first integrals are as (1.1)

Hi(x, y) = −(λ2
i bi/2)x2 + λibixy − (bi/2)y2 + σix − µiy, with i = 1, 2, 3.

In order to have a crossing limit cycle which intersects Γk in the points Ai = (xi, yi), Bi =

(zi, wi), Ci = (k, fi) and Di = (k, hi), where k > 1, Ai and Bi are points on the circle x2 + y2 −
1 = 0, these points must satisfy the following system

e1 = H1(xi, yi)− H1(zi, wi) = 0,

e2 = H2(xi, yi)− H2(k, fi) = 0,

e3 = H2(zi, wi)− H2(k, hi) = 0,

e4 = H3(k, fi)− H3(k, hi) = 0,

x2
i + y2

i − 1 = 0,

z2
i + w2

i − 1 = 0.

(2.2)

We suppose that the discontinuous piecewise linear differential system (2.1) has four limit cy-

cles. For this we must suppose that system (2.2) has four real solutions, namely (Ai, Bi, Ci, Di),

i = 1, 2, 3, 4. The points Ai and Bi can take the form Ai = (cos ri, sin ri), Bi = (cos si, sin si).

Then by solving e1 = 0 for the parameter σ1 and e4 = 0 for µ3, we get

σ1 =
1

2(cos r1 − cos s1)

(

b1 sin(r1 − s1)
(

−
(

λ2
1 − 1

)

sin(r1 + s1)− 2λ1

cos(r1 + s1)
)

+ 2µ1(sin r1 − sin s1)
)

,



Limit cycles of DPWLHS without equilibria separated by reducible cubics 9

-1 0 1 2 3

-1

0

1

2

3

4

(a)

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

2

3

4

5

(b)

-1 0 1 2 3 4

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

(c)

Figure 1.4: (a) The three limit cycles of Conf 1 of the discontinuous piecewise

differential system (2.5). (b) The three limit cycles of Conf 2 of the discontinuous

piecewise differential system (2.7). (c) The three limit cycles of Conf 3 of the

discontinuous piecewise differential system (2.9).

and µ3 =
b3

2
( f1 + h1 − 2kλ3), respectively.

Now we consider the second real solution of (2.2) for i = 2, and we fix the three points

A2 = (cos r2, sin r2), B2 = (cos s2, sin s2) and (k, f2), so by solving e1 = 0 for µ1 and e4 = 0 for

h2, we obtain

µ1 =
1

4
(

cos
(

1
2 (r1 − 2r2 + s1)

)

− cos
(

1
2 (r1 + s1 − 2s2)

))

(

b1 csc
(

r1−s1
2

)

(

− λ1 cos r1 sin(2r2) + cos r2 sin(r1 − s1)
((

λ2
1 − 1

)

sin(r1 + s1) + 2λ1

cos(r1 + s1)
)

−
(

λ2
1 − 1

)

cos r1 sin(r2 − s2) sin(r2 + s2) + λ2
1(− cos s2)

sin(r1 − s1) sin(r1 + s1) + cos s2 sin(r1 − s1) sin(r1 + s1)− λ1 sin(2r1)

cos s2 + λ1 cos r1 sin(2s2)− λ2
1 cos2 r2 cos s1 + cos s1

(

λ1 sin(2r2)

− sin2 r2 + (sin s2 − λ1 cos s2)2
)

+ λ1 sin(2s1) cos s2

))

,
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Figure 1.5: Three limit cycles of Conf 1 and three limit cycles of Conf 2 for the

class of the discontinuous piecewise differential system (2.10).
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Figure 1.6: Three limit cycles of Conf 1 and three limit cycles of Conf 3 for the

class of the discontinuous piecewise differential system (2.11).

and h2 = f1 − f2 + h1.

Likewise, the points A3 = (cos r3, sin r3), B3 = (cos s3, sin s3), (k, f3) and (k, h3) are solution

of (2.2), we fix A3, B3 and (k, f3), then by solving equation e4 = 0 for h3 and e1 = 0 for

λ1 we have h3 = f1 − f3 + h1 and we get the two values λ1,2
1 = (A ± 2

√
2 sin

(

1
2 (r1 − r2+

s1 − s2)
)
√

B)/C given in the appendix.

Finally, if we fix the three points A4 = (cos r4, sin r4), B4 = (cos s4, sin s4), and (k, f4), then

from the equation e4 = 0 and e1 = 0 we have that h4 = f1 − f4 + h1 and b1 = 0 which is a

contradiction to the assumptions. Therefore we have proved that the maximum number of

crossing limit cycles for the class C1 intersecting the curve Γk in four points is three.

Now we shall provide differential systems of class C1, C2 and C3 separated by Γk with three

limit cycles.

We will explain the method for constructing an example of three crossing limit cycles

intersecting Γk in four points, and by a similar way we build the remaining examples.

Example 1: Three crossing limit cycles for the class C1. Here we consider the three zones
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defined in (1.2) for k = 2.5. We consider the Hamiltonian systems

ẋ = − 0.02..x + 0.2..y + 0.316667.., ẏ = 0.02..y − 0.002..x in Z1,

ẋ = 10.8..x + 18y − 3, ẏ = −6.48..x − 10.8..y in Z2,

ẋ = 5.x − 3y − 1.38889.., ẏ = 8.33333..x − 5y in Z3.

(2.3)

The first integrals of the linear Hamiltonian systems (2.3) are

H1(x, y) = − 0.001..x2 + 0.02..xy − 0.1..y2 − 0.316667..y,

H2(x, y) = − 3.24..x2 − 10.8..xy − 9y2 + 3y,

H3(x, y) = 4.16667..x2 − 5xy + 1.5y2 + 1.38889..y,

respectively.

The discontinuous piecewise linear differential system formed by the linear Hamiltonian

systems (2.3) has exactly three crossing limit cycles, because the system of equations (2.2) has

the three real solutions Si = (xi, yi, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.244811..,−0.969571.., 0.767202.., 0.641406..,−2.05982..,−0.60685..),

S2 = (0.390566..,−0.920575.., 0.912879.., 0.40823..,−1.8861..,−0.780563..),

S3 = (0.535321..,−0.844649.., 0.979509.., 0.201401..,−1.62201.., 1.04466..).

Then these three limit cycles are drawn in 1.3a.

Example 2: Three crossing limit cycles for the class C2. We consider the three zones

defined in (1.2) with k = 1. We consider the Hamiltonian systems

ẋ = 15x − 3y − 11.25.., ẏ = 75.x − 15.y + 22.5 in Z1,

ẋ = 4x + 20y − 3, ẏ = −0.8x − 4y + 6 in Z2,

ẋ = − 0.4x + 4y + 0.6, ẏ = −0.04x + 0.4y − 1 in Z3.

(2.4)

The first integrals of the Hamiltonian systems (2.4) are

H1(x, y) = 37.5..x2 − 15xy + 22.5..x +
3y2

2
+ 11.25..y,

H2(x, y) = − 0.4x2 − 4xy + 6x − 10y2 + 3y,

H3(x, y) = − 0.02..x2 + 0.4..xy − x − 2y2 − 0.6..y,

respectively.

The discontinuous piecewise linear Hamiltonian system (2.4) has exactly three crossing

limit cycles, because the system of equations (2.2) has the three real solutions Si =

(xi, yi, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.559983.., 0.828504.., 0.619895..,−0.784685.., 0.878709..,−0.978709..),

S2 = (0.755607.., 0.655025.., 0.754335..,−0.65649.., 0.7,−0.8),

S3 = (0.903742.., 0.881627..,−0.471947.., 0.428077.., 0.462348..,−0.562348..).

These solutions provide three crossing limit cycles of the piecewise linear differential Hamil-

tonian system (2.2), which are illustrate in Figure 1.3b. This completes the proof of state-

ment (i).
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To complete the proof of statements (ii)–(iv) of Theorem 1.2 we shall provide discontinuous

piecewise linear Hamiltonian systems without equilibrium points separated by the cubic curve

Γk with three limit cycles for the class C3 of Conf 1; Conf 2; Conf 3.

Example 3: Three crossing limit cycles of Conf 1 for the class C3. For this class we

consider the four zones defined in (1.3). We consider the Hamiltonian systems

ẋ = − 6.8..x + 4y − 2, ẏ = −11.56x + 6.8y − 2 in Z1,

ẋ = 1.06216..x + 2y − 1.28925.., ẏ = −0.564089..x − 1.06216..y + 3.92358.. in Z2,

ẋ = − 4x + 2y − 2.8.., ẏ = −8x + 4y − 1 in Z3,

ẋ = 121.33..x + 3y + 508.239.., ẏ = −4907.01..x − 121.33..y + 611.017.. in Z4.

(2.5)

The linear Hamiltonian systems in (2.5) have the first integrals

H1(x, y) = − 5.78..x2 + 6.8..xy − 2x − 2y2 + 2y,

H2(x, y) = − 0.282045..x2 − 1.06216..xy + 3.92358..x − y2 + 1.28925..y,

H3(x, y) = − 4x2 + 4xy − x − y2 + 2.8..y,

H4(x, y) = − 2453.5..x2 − 121.33..xy + 611.017..x − 1.5y2 − 508.239..y,

respectively.

The discontinuous piecewise linear Hamiltonian system (2.5) has exactly three crossing

limit cycles intersecting Γk in the points Ai = (xi, yi), Bi = (zi, wi), Ci = (k, fi) and D4 = (k, hi)

for i = 1, 2, 3, where Ai and Bi are points on the circle x2 + y2 − 1 = 0, because the system of

equations

H1(xi, yi)− H1(k, fi) = 0,

H2(zi, wi)− H2(k, fi) = 0,

H3(zi, wi)− H3(k, hi) = 0,

H4(xi, yi)− H4(k, hi) = 0,

x2
i + y2

i − 1 = 0,

z2
i + w2

i − 1 = 0,

(2.6)

with k = 0, has only three real solutions Si = (xi, y,i, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.859402.., 0.5113..,−0.573716.., 0.819054.., 3.12047..,−0.724745..),

S2 = (0.795991.., 0.605309..,−0.403541.., 0.914962.., 2.8..,−0.5..),

S3 = (0.708174.., 0.706038..,−0.208691.., 0.977982.., 2.3798..,−0.207107..).

These three limit cycles are drawn in Figure 1.4a. This completes the proof of statement (ii).

Example 4: Three crossing limit cycles of Conf 2 for the class C3. In (1.3), we work only

with the three zones Z1, Z2 and Z4, with k = 0, and we consider the Hamiltonian systems

ẋ = 19 − 18x − 3y, ẏ = −68 + 108x + 18y in Z1,

ẋ = −3.88389x − 2y + 5.99641.., ẏ = 7.54231..x + 3.88389..y − 7.99048.. in Z2,

ẋ = 6 + 2x − 2y, ẏ = −2 + 2x − 2y in Z4.

(2.7)
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The first integrals of the Hamiltonian systems (2.7) are

H1(x, y) = 54x2 + 18xy − 68x +
3y2

2
− 19y,

H2(x, y) = 3.77115..x2 + 3.88389..xy − 7.99048..x + y2 − 5.99641..y,

H4(x, y) = x2 − 2xy − 2x + y2 − 6y,

respectively

The discontinuous piecewise linear differential system formed by the linear Hamiltonian

systems (2.7) has exactly three crossing limit cycles, because the system of equations

H1(xi, yi)− H1(k, fi) = 0,

H1(zi, wi)− H1(k, hi) = 0,

H2(k, hi)− H2(k, fi) = 0,

H4(xi, yi)− H4(zi, wi) = 0,

x2
i + y2

i − 1 = 0,

z2
i + w2

i − 1 = 0,

(2.8)

for k = 0 has the three real solutions Si = (xi, yi, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.597407.., 0.801938.., 0.29046.., 0.956887.., 4.80282.., 1.19718..),

S2 = (0.736107.., 0.676866.., 0.161682.., 0.986843.., 4.86511.., 1.13489..),

S3 = (0.831057.., 0.556188.., 0.0773343.., 0.997005.., 4.92764.., 1.07236..).

These three limit cycles are drawn in Figure 1.4b. This completes the proof of statement (iii).

Example 5: Three crossing limit cycles of Conf 3 for the class C3 . Here we consider the

three zones Z1, Z3 and Z4 defined in (1.3) with k = 0.

ẋ = − 43x

2
+ 43y + 6, ẏ = −43x

4
+

43y

2
− 2, in Z1,

ẋ = − 5.01788..x + 10y + 1.37209.., ẏ = −2.51792..x + 5.01788..y

− 0.356396.., in Z4,

ẋ = − 5.2..x + 13y + 1.78427.., ẏ = −2.08..x + 5.2..y + 7, in Z3.

(2.9)

The first integrals of the Hamiltonian systems (2.9) are

H1(x, y) = − 43x2

8
+

43xy

2
− 2x − 43y2

2
− 6y,

H2(x, y) = − 1.25896..x2 + 5.01788..xy − 0.356396..x − 5y2 − 1.37209..y,

H3(x, y) = − 1.04..x2 + 5.2xy + 7x − 13y2

2
− 1.78427..y,

respectively.

The discontinuous piecewise linear differential system formed by the linear Hamiltonian

systems (2.9) has exactly three crossing limit cycles, because the system of equations (2.2) has

the solutions Si = (xi, yi, zi, wi, fi, hi) for i = 1, 2, 3, where

S1 = (0.92178..,−0.387712.., 0.478499.., 0.878088..,−0.974503.., 0.7),

S2 = (0.988715..,−0.149808.., 0.647429.., 0.762126..,−0.819428.., 0.544924..),

S3 = (0.980618.., 0.195928.., 0.855019.., 0.518597..,−0.616986.., 0.342483..).

These three limit cycles are drawn in Figure 1.4c. This completes the proof of statement (iv).
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Proof of statement (v) of Theorem 1.2. In order to have limit cycles with Conf 1 and Conf 2 si-

multaneously, the intersection points of the limit cycles of Conf 1 with Γk must satisfy system

(2.6) with k = 0, and the points of intersection of the limit cycles with Conf 2 with Γk must

satisfy system (2.8). In statement (ii) and (iii) of Theorem 1.2 we proved that the maximum

number of limit cycles with Conf 1 and Conf 2 is three , then we know that the upper bound

of maximum number of limit cycles with both configurations is six.

Example 6: Six crossing limit cycles for the class C3, with three limit cycles of Conf 1

and three limit cycles of Conf 2. Here we consider the four zones defined in (1.3).

ẋ = − 3.37125..x − y + 3.95604.., ẏ = 11.3653..x + 3.37125..y − 11.7972.. in Z1,

ẋ = − 0.121473..x − 1

2
y + 2.02017.., ẏ = 0.0295115..x + 0.121473..y − 0.684232.. in Z2,

ẋ = 0.328515..x + y + 3, ẏ = −0.107922..x − 0.328515..y − 1.29868.. in Z3,

ẋ = − 9.2x − 2.3y + 17, ẏ = 36.8x + 9.2y − 56 in Z4.

(2.10)

The first integrals of the Hamiltonian systems (2.10) are

H1(x, y) = 5.68265..x2 + 3.37125..xy − 11.7972..x +
y2

2
− 3.95604..y,

H2(x, y) = 0.0147557..x2 + 0.121473..xy − 0.684232..x +
1

4
y2 − 2.02017..y,

H3(x, y) = − 0.0539609x2 − 0.328515xy − 1.29868x − y2

2
− 3y,

H4(x, y) = 18.4x2 + 9.2xy − 56x + 1.15y2 − 17y,

respectively.

For the discontinuous piecewise differential system (2.11), system (2.6) with k = 0, has the

three real solutions

S1 = (0.224513..,−0.974471..,−0.98, 0.198997, 8.21167..,−0.231664..),

S2 = (0.359928..,−0.93298..,−0.812094.., 0.583526.., 7.77944.., 0.239163..),

S2 = (0.503738..,−0.863856..,−0.41, 0.912086.., 7.31697.., 0.743252..).

and system (2.8), has the three real solutions

S1 = (0.65827..,−0.752782.., 0.093398.., 0.995629.., 6.82398.., 1.25669..),

S2 = (0.825187..,−0.56486.., 0.309897.., 0.95077.., 6.31504.., 1.76563..),

S2 = (0.986374..,−0.164516.., 0.630863.., 0.775894.., 5.87164.., 2.20904..).

These six limit cycles are presented in Figure 1.5. This completes the proof of statement

(v).

Proof of statement (vi) of Theorem 1.2. To get limit cycles with Conf 1 and Conf 3 simultane-

ously, the points of intersection of the limit cycles with Conf 1 and Conf 3 with Γk must

satisfy system (2.6) and (2.2), respectively, with k = 0. In statement (ii) and (iv) of Theorem

1.2 we showed that the maximum number of limit cycles with Conf 1 and Conf 3 is three , then

we know that the upper bound of maximum number of limit cycles with both configurations

is six.
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Example 7: Six crossing limit cycles for the class C3, with three limit cycles of Conf 1

and three others of Conf 3. Here we consider the four zones defined in (1.3) with k = 0 with

the following Hamiltonian systems

ẋ = −8.8x + 22y − 3, ẏ = −3.52x + 8.8y − 4 in Z1,

ẋ = 30.9637..x + 30y + 0.9.., ẏ = −31.9584..x − 30.9637..y + 24.1071.. in Z2,

ẋ = 0.713131..x + 0.9y − 0.162525.., ẏ = −0.565063..x − 0.713131..y + 0.620587.. in Z3,

ẋ = −8.37872..x + 22y − 3.97708.., ẏ = −3.19104..x + 8.37872..y − 3.05205.. in Z4.

(2.11)

The first integrals of the Hamiltonian systems (2.11) are

H1(x, y) = −1.76x2 + 8.8xy − 4x − 11y2 + 3y,

H2(x, y) = −13.0028..x2 − 27.9315..xy + 24.0252..x − 15y2 − 0.9y,

H3(x, y) = −0.282531..x2 − 0.713131..xy + 0.620587..x − 0.45..y2 + 0.162525..y,

H4(x, y) = −1.59552..x2 + 8.37872..xy − 3.05205..x − 11y2 + 3.97708..y,

respectively.

For the discontinuous piecewise differential system (2.11), system (2.6) with k = 0, has the

three real solutions

S1 = (0.859956..,−0.510369.., 0.89, 0.45596.., 1.232..,−0.895261..),

S2 = (0.925727..,−0.378193..,−0.818732.., 0.574176.., 1.14562..,−0.79916..),

S3 = (0.969836..,−0.243758..,−0.7, 0.714143.., 1.05112..,−0.694334..),

and system (2.2), has the three real solutions

S1 = (0.995048..,−0.0993944.., 0.167496.., 0.985873.., 0.937707..,−0.576541..),

S2 = (0.997733.., 0.0672986.., 0.41691.., 0.908948.., 0.799221..,−0.438055..),

S3 = (0.954489.., 0.298247.., 0.659704.., 0.751525..0.621163..,−0.259997..).

These six limit cycles are drawn in 1.6. This completes the proof of statement (vi).

3 Proof of Theorem 1.3

We will prove the statement (i). For the other statements the proof is completely analogous.

Proof of statement (i) of Theorem 1.3. From Lemma 1.1 we can consider an arbitrary piecewise

linear differential Hamiltonian system in CΣk− formed by the following three linear Hamilto-

nian systems without equilibrium points

ẋ = −λibix + biy + µi, ẏ = −λ2
i bix + λibiy + σi in Zi

Σk−
, (3.1)

for i = 1, 2, 3, where σi 6= λiµi and bi 6= 0. The Hamiltonian functions associated to these

systems are

Hi(x, y) = −1

2
λ2

i bix
2 + λibixy − bi

2
y2 + σix − µiy, in Zi

Σk−
for i = 1, 2, 3.
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Figure 3.1: Three limit cycles of system (3.3) intersecting Σ−1.

In order to have a limit cycle which intersects Σk− in four different points (x1, x2
1), (x2, x2

2),

(x3, k) and (x4, k) with k < 0, these points must satisfy the system

H1(x1, x2
1)− H1(x2, x2

2) = 0,

H2(x2, x2
2)− H2(x3, k) = 0,

H3(x3, k)− H3(x4, k) = 0,

H2(x4, k)− H2(x1, x2
1) = 0, k < 0.

(3.2)

Assume that the discontinuous piecewise linear differential system (3.1) has four limit cycles.

For this we must suppose that system (3.2) has four real solutions, namely (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 ),

with i = 1, 2, 3, 4. Firstly we consider that (x
(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ) satisfies system (3.2). From the

first equation, and by assuming that x
(1)
1 + x

(1)
2 6= 0, we obtain the expression

µ1 = (2σ1 − b1(x
(1)
1 + x

(1)
2 − λ1)((x

(1)
1 )2 + (x

(1)
2 )2 − (x

(1)
1 + x

(1)
2 )λ1))/(2(x

(1)
1 + x

(1)
2 )).

By the second equation we get µ2,

µ2 = (−b2(x
(1)
2 )2 + b2(x

(1)
2 )4 − 2b2(x

(1)
2 )3λ2 + 2b2kx

(1)
3 λ2 + b2(x

(1)
2 )2λ2

2

− b2(x
(1)
3 )2λ2

2 − 2x
(1)
2 σ2 + 2x

(1)
3 σ2)/2(k − (x

(1)
2 )2).

We observed that k − (x
(1)
2 )2

< 0, since k < 0.

Solving the third equation we have the parameter σ3,

σ3 = b3λ3(−2k + (x
(1)
3 + x

(1)
4 )λ3)/2.

By the fourth equation we obtain

σ2 = (−b2k3 + b2k2(x
(1)
1 )2 + b2k(x

(1)
2 )4 − b2(x

(1)
1 )2(x

(1)
2 )4 − 2b2k(x

(1)
2 )3λ2 + 2b2(x

(1)
1 )2(x

(1)
2 )3λ2

+ 2b2k2x
(1)
3 λ2 − 2b2k(x

(1)
1 )2x

(1)
3 λ2 + b2k(x

(1)
2 )2λ2

2 − b2(x
(1)
1 )2(x

(1)
2 )2λ2

2 − b2k(x
(1)
3 )2λ2

2

+ b2(x
(1)
1 )2(x

(1)
3 )2λ2

2 + (k − (x
(1)
2 )2)b2(k − (x

(1)
1 )2 + x

(1)
1 λ2 − x

(1)
4 λ2)(k + (x

(1)
1 )2

− (x
(1)
1 + x

(1)
4 )λ2))/2((x

(1)
2 − x

(1)
3 )(k − (x

(1)
1 )2) + (x

(1)
4 − x

(1)
1 )(k − (x

(1)
2 )2)),



Limit cycles of DPWLHS without equilibria separated by reducible cubics 17

considering (x
(1)
2 − x

(1)
3 )(k − (x

(1)
1 )2) + (x

(1)
4 − x

(1)
1 )(k − (x

(1)
2 )2) 6= 0.

Now we suppose the second solution of system (3.2), we fixed the points (x
(2)
2 , x

(2)
3 ), then

by the second equation we obtain the parameter λ2, then we have determined the values of

the parameters µ2, σ2 and λ2 of the Hamiltonian function H2 in the zone Z2
Σ− . By solving the

third equation we get that x
(2)
4 = x

(1)
3 + x

(1)
4 − x

(2)
3 , solving the fourth equation we get the

point x
(2)
1 which depends of parameters µ2, σ2, λ2 and b2, moreover the parameter λ2 depends

of parameters µ2, σ2 and b2, therefore we write x
(2)
1 depends of λ2, this is x

(2)
1 = x

(2)
1 (λ2). With

these points (x
(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4 ) and solving first equation we obtain the parameter σ1

σ1 =− b1

(

(x
(1)
1 + x

(1)
2 )(x

(2)
2 + x

(2)
1 )(−(x

(1)
1 )2 − (x

(1)
2 )2 + (x

(2)
2 )2 + (x

(2)
1 )2) + 2(x

(2)
2 ((x

(1)
1 )2

+ x
(1)
1 x

(1)
2 + (x

(1)
2 )2 − (x

(1)
1 + x

(1)
2 )x

(2)
2 ) + ((x

(1)
1 )2 + x

(1)
1 x

(1)
2 + (x

(1)
2 )2 − (x

(1)
1

+ (x
(1)
2 ))x

(2)
2 )x

(2)
1 − (x

(1)
1 + x

(1)
2 )(x

(2)
1 )2)λ1

)

/(2(−x
(1)
1 − x

(1)
2 + x

(2)
2 + x

(2)
1 )),

considering (−x
(1)
1 − x

(1)
2 + x

(2)
2 + x

(2)
1 ) 6= 0.

Likewise, we consider the third solution, and we fixed the point x
(3)
2 . Then by the second

equation we obtain the point x
(3)
3 which depends of parameter λ2, solving the third equation

we get that x
(3)
4 = x

(1)
3 + x

(1)
4 − x

(3)
3 and by fourth equation we obtain the point x

(3)
1 which

depends of parameter λ2, finally with these points (x
(3)
1 , x

(3)
2 , x

(3)
3 , x

(1)
3 + x

(1)
4 − x

(3)
3 ) and by the

first equation we obtain λ1 = A/B with B 6= 0, where

A =
(

(x
(1)
1 )3(x

(2)
1 + x

(2)
2 − x

(3)
1 − x

(3)
2 ) + (x

(1)
1 )2x

(1)
2 (x

(2)
1 + x

(2)
2 − x

(3)
1 − x

(3)
2 ) + (x

(1)
2 )3(x

(2)
1

+ x
(2)
2 − x

(3)
1 − x

(3)
2 ) + (x

(2)
1 + x

(2)
2 )(x

(3)
1 + x

(3)
2 )((x

(2)
1 )2 + (x

(2)
2 )2 − (x

(3)
1 )2 − (x

(3)
2 )2)

+ x
(1)
2 (−(x

(2)
1 )3 − (x

(2)
1 )2x

(2)
2 − x

(2)
1 (x

(2)
2 )2 − (x

(2)
2 )3 + (x

(3)
1 )3 + (x

(3)
1 )2x

(3)
2

+ x
(3)
1 (x

(3)
2 )2 + (x

(3)
2 )3) + x

(1)
1 (−(x

(2)
1 )3 − (x

(2)
1 )2x

(2)
2 − x

(2)
1 (x

(2)
2 )2 − (x

(2)
2 )3 + (x

(3)
1 )3

+ (x
(1)
2 )2(x

(2)
1 + x

(2)
2 − x

(3)
1 − x

(3)
2 ) + (x

(3)
1 )2x

(3)
2 + x

(3)
1 (x

(3)
2 )2 + (x

(3)
2 )3)

)

,

B = 2
(

(x
(2)
1 )2x

(3)
1 + x

(2)
1 x

(2)
2 x

(3)
1 + (x

(2)
2 )2x

(3)
1 − x

(2)
1 (x

(3)
1 )2 − x

(2)
2 (x

(3)
1 )2 + (x

(1)
1 )2(x

(2)
1

+ x
(2)
2 − x

(3)
1 − x

(3)
2 ) + (x

(1)
2 )2(x

(2)
1 + x

(2)
2 − x

(3)
1 − x

(3)
2 ) + (x

(2)
1 )2x

(3)
2 + x

(2)
1 x

(2)
2 x

(3)
2

+ (x
(2)
2 )2x

(3)
2 − x

(2)
1 x

(3)
1 x

(3)
2 − x

(2)
2 x

(3)
1 x

(3)
2 − x

(2)
1 (x

(3)
2 )2 − x

(2)
2 (x

(3)
2 )2 + x

(1)
2 (−(x

(2)
1 )2

− x
(2)
1 x

(2)
2 − (x

(2)
2 )2 + (x

(3)
1 )2 + x

(3)
1 x

(3)
2 + (x

(3)
2 )2) + x

(1)
1 (−(x

(2)
1 )2 − x

(2)
1 x

(2)
2 − (x

(2)
2 )2

+ (x
(3)
1 )2 + x

(1)
2 (x

(2)
1 + x

(2)
2 − x

(3)
1 − x

(3)
2 ) + x

(3)
1 x

(3)
2 + (x

(3)
2 )2)

)

.

We observed that we have determined the values of the parameters µ1, σ1 and λ1 of the

Hamiltonian function H1 in the zone Z1
Σ− .

By a similar way, we consider the fourth solution, and we fixed the point x
(4)
2 , then by the

second equation we obtain the point x
(4)
3 , solving the third equation we get that x

(4)
4 = x

(1)
3 +

x
(1)
4 − x

(4)
3 , by the fourth equation we get the point x

(4)
1 . With these points (x

(4)
1 , x

(4)
2 , x

(4)
3 , x

(1)
3 +

x
(1)
4 − x

(4)
3 ) from the first equation we have that b1 = 0 which is a contradiction, because from

Lemma 1.1 bi 6= 0 for i = 1, 2, 3. Therefore the maximum number of limit cycles in this case is

three.

Now we prove that this upper bound is attached. We have that the unique restriction

of value k is that the denominator in the expressions of σ2 is different from zero. We ob-

served that it is possible to choose values to the points x
(1)
1 , x

(1)
2 , x

(1)
3 and x

(1)
4 such that
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k 6=
(

(x
(1)
1 )2(x

(2)
2 − x

(1)
3 ) + (x

(1)
1 )2(x

(2)
2 − x

(1)
3 )

)

/
(

x
(1)
2 − x

(1)
3 + x

(1)
4 − x

(1)
1

)

, for instance if we

consider x
(1)
2 < 0, x

(1)
1 > −x

(1)
2 , x

(1)
1 < x

(1)
4 < x

(1)
1 − x

(1)
2 and x

(1)
3 <

(

(x
(1)
1 )2x

(1)
2 − x

(1)
1 (x

(1)
2 )2 +

(x
(1)
2 )2x

(1)
4

)

/(x
(1)
1 )2 we have that the expression

(

(x
(1)
1 )2(x

(2)
2 − x

(1)
3 ) + (x

(1)
1 )2(x

(2)
2 − x

(1)
3 )

)

/
(

x
(1)
2 − x

(1)
3 + x

(1)
4 − x

(1)
1

)

is always positive therefore it is different of value of k, since that

k < 0. Then we can consider without loss of generality that k = −1. We consider the discon-

tinuous piecewise linear differential system defined by the following three linear Hamiltonian

systems

ẋ = −24.293899.. − 0.692634..x +
3

2
y, ẏ = −19.232427.. − 0.319828..x + 0.692634..y,

ẋ = −378.204351.. + 62.383901..x − 4y, ẏ = 916.621187.. + 972.937795..x − 62.383901..y,

ẋ =
9

10
− 7

2
x − 35

4
y, ẏ =

7

2
+

7

5
x +

7

2
y,

(3.3)

in the zones Z1
Σ−1

, Z2
Σ−1

and Z3
Σ−1

, respectively. Then for system (3.3), we have that system (3.2)

has three real solutions (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 ), i = 1, 2, 3, namely

(

3,−2,− 7
2 , 7

2

)

,
(

2.625658..,− 17
10 ..,− 31

10 , 31
10

)

,
(

14
5 ,−1.843412..,−3.287307.., 3.287307..

)

.

These three real solutions provide the three limit cycles intersecting Σ−1 shown in Figure 3.1.

This completes the proof of statement (i).
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Figure 3.2: (a) Three limit cycles with Conf 4 of system (3.4). (b) Three limit

cycles with Conf 5 of system (3.6).

Proof of statement (ii) of Theorem 1.3. The proof in this statement is similar to the proof of state-

ment (i). For each configuration of limit cycles that intersect Σk with k ≥ 0 we have that the

upper bound of limit cycles is three. In what follows we show examples of piecewise linear

differential system in CΣ0
with three limit cycles with Conf 4 and Conf 5, respectively. And

piecewise linear differential system in CΣk+
with three limit cycles with Conf 6+, Conf 7, Conf

8 and Conf 9+, respectively.

Crossing limit cycles with Conf 4: In order to have a limit cycle with Conf 4 which intersects

Σ0 in four different points (x1, x2
1), (x2, x2

2), (x3, 0) and (x4, 0), these points must satisfy system
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(3.2) with k = 0. We consider the discontinuous piecewise linear differential system defined

by the following four linear Hamiltonian systems

ẋ =
17

2
− 207

50
x − 69

10
y, ẏ = −53

10
+

621

250
x +

207

50
y,

ẋ = 48.069511.. + 11.825263..x − 31

5
y, ẏ = −7.155434.. + 22.554330..x − 11.825263..y,

ẋ =
9

2
+

156

25
x − 39

10
y, ẏ = −13

10
+ 9.984000..x − 156

25
y,

ẋ = 17.727172.. − 7.176019..x − 27

5
y, ẏ = −1.428092.. + 9.536159..x + 7.176019..y,

(3.4)

in the zones Z1
Σ0

, Z2
Σ0

, Z3
Σ0

and Z4
Σ0

, respectively. For the discontinuous piecewise differential

system (3.4), system (3.2) has three real solutions (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 ), i = 1, 2, 3 given by

(

1.517382..,−2.102549..,−1.142394.., 1.402811..
)

,
(

1.474836..,−2.058730..,−0.973819.., 1.234236..
)

,
(

1.427170..,−2.00939..,−0.774355.., 1.034772..
)

.

These solutions provide the three limit cycles with Conf 4 shown in Figure 3.2a. Crossing

limit cycles with Conf 5: In order to have a limit cycle with Conf 5 which intersects Σ0 in the

four different points (x1, x2
1), (x2, x2

2), (x3, 0) and (x4, 0), they must satisfy

H1(x1, x2
1)− H1(x2, x2

2) = 0,

H4(x2, x2
2)− H4(x3, k) = 0,

H3(x3, k)− H3(x4, k) = 0,

H4(x4, k)− H4(x1, x2
1) = 0, with k = 0.

(3.5)

We consider the discontinuous piecewise linear differential system defined by the following

three linear Hamiltonian systems

ẋ = −4.711119.. + 3.915394..x − 3

2
y, ẏ = −11.965988.. + 10.220210..x − 3.915394..y,

ẋ =
9

10
+

27

10
x − 3

2
y, ẏ = −5.022000.. +

243

50
x − 27

10
y,

ẋ = −3.005265.. + 2.848936..x − 11

10
y, ẏ = −7.616106.. + 7.378583..x − 2.848936..y,

(3.6)

in the zones Z1
Σ0

, Z3
Σ0

and Z4
Σ0

, respectively. For the discontinuous piecewise differential system

(3.6), system (3.5) has three real solutions (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 ), i = 1, 2, 3 given by

(

2, 1
2 , 2

5 , 5
3

)

,
(

93
50 , 0.628914.., 47

100 , 479
300

)

,
(

1.696225.., 0.780317.., 0.534387.., 1.532279..
)

.

These solutions provide the three limit cycles with Conf 5 shown in Figure 3.2b.

Crossing limit cycles with Conf 6+: In order to have a limit cycle with Conf 6+ which

intersects Σ
+ in four different points (x1, x2

1), (x2, k), (x3, x2
3) and (x4, k), these points must

satisfy

H1(x1, x2
1)− H1(x2, k) = 0,

H5(x2, k)− H5(x3, x2
3) = 0,

H3(x3, x2
3)− H3(x4, k) = 0,

H4(x4, k)− H4(x1, x2
1) = 0, for k > 0.

(3.7)
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Figure 3.3: (a) Three limit cycles with Conf 6+ of system (3.9). (b) Three limit

cycles with Conf 7 of system (3.11). (c) Three limit cycles with Conf 8 of system

(3.13). (d) Three limit cycles with Conf 9+ of system (3.14).

To have a limit cycle with Conf 6− which intersects Σ
+ in four different points, these points

must satisfy the system

H2(x1, x2
1)− H2(x2, k) = 0,

H3(x2, k)− H3(x3, x2
3) = 0,

H5(x3, x2
3)− H5(x4, k) = 0,

H1(x4, k)− H1(x1, x2
1) = 0, for k > 0.

(3.8)

We provide an example of a piecewise linear differential system with three limit cycles with

Conf 6+. We observed that the upper bound found does not depend of the value of the

parameter k > 0, then we can consider without loss of generality that k = 4. We consider

the discontinuous piecewise linear differential system defined by the following four linear
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Hamiltonian systems

ẋ = −4.133710.. + 6.015251..x − 3

2
y, ẏ = −5.920817.. + 24.122170..x − 6.015251..y,

ẋ = 5.325742.. + 2.017936..x − 17

5
y, ẏ = 4.036253.. + 1.197666..x − 2.017936..y,

ẋ = −8.981178.. + 3.946297..x − y, ẏ = −15.942643.. + 15.573265..x − 3.946297..y,

ẋ = −2.454956.. + 4.664679..x +
3

2
y, ẏ = 6.613677.. − 14.506158..x − 4.664679..y,

(3.9)

in the zones Z1
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differential

system (3.9), system (3.7) has three real solutions (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 ), i = 1, 2, 3 given by

(

4,− 2
5 , 1

2 , 5
)

,
(

193
50 ,− 31

100 , 13
20 , 483

100

)

,
(

7
2 ,− 3

25 , 83
100 , 441

100

)

.

These solutions provide the three limit cycles with Conf 6+ shown in Figure 3.3a.

Crossing limit cycles with Conf 7: In order to have a limit cycle with Conf 7 which intersects

Σ
+ in the four different points (x1, k), (x2, k), (x3, x2

3) and (x4, x2
4), they must satisfy the system

H1(x1, k)− H1(x2, k) = 0,

H5(x2, k)− H5(x3, x2
3) = 0,

H3(x3, x2
3)− H3(x4, x2

4) = 0,

H5(x4, x2
4)− H5(x1, k) = 0, with k > 0.

(3.10)

We can suppose without loss of generality that k = 4. We consider the discontinuous piece-

wise linear differential system defined by the following three linear Hamiltonian systems

ẋ = −2 − 6x − 3

2
y, ẏ = −5.491482.. + 24x + 6y,

ẋ = 22.645454.. − 36.659999..x − 47

5
y, ẏ = −35.463636.. + 142.973999..x + 36.659999..y,

ẋ = 5.300000.. − 8.579999..x − 11

5
y, ẏ = −8.300000.. + 33.461999..x + 8.579999..y,

(3.11)

in the zones Z1
Σ3

, Z3
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differential system

(3.11), system (3.10) has three real solutions (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 ), i = 1, 2, 3 given by

(

0.502842..,−1.545218..,−0.572025.., 0.848539..
)

,
(

0.442709..,−1.485086..,−0.427227.., 0.781483..
)

,
(

0.378567..,−1.420944..,−0.276975.., 0.700080..
)

.

These solutions provide the three limit cycles with Conf 7 shown in 3.3b.

Crossing limit cycles with Conf 8: In order to have a limit cycle with Conf 8 which intersects

Σ
+ in four different points (x1, x2

1), (x2, x2
2), (x3, k) and (x4, k), they must satisfy

H1(x1, x2
1)− H1(x2, x2

2) = 0,

H2(x2, x2
2)− H2(x3, k) = 0,

H3(x3, k)− H3(x4, k) = 0,

H4(x4, k)− H4(x1, x2
1) = 0, with k > 0.

(3.12)
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We can consider without loss of generality that k = 2. We consider the discontinuous piece-

wise linear differential system defined by the following four linear Hamiltonian systems

ẋ =
9

2
+

19

50
x − 19

10
y, ẏ =

17

10
+ 0.076000..x − 19

50
y,

ẋ = 10.930108.. + 7.204668..x − 11

5
y, ẏ = 99.090506.. + 23.594202.x − 7.204668..y,

ẋ = −69

2
− 6.229999..x − 89

10
y, ẏ = −93

10
+

4361

1000
x + 6.229999..y,

ẋ = 32.954952.. − 16.575663..x − 17

5
y, ẏ = −277.274017.. + 80.809593..x + 16.575663..y,

(3.13)

in the pieces Z1
Σ2

, Z2
Σ2

, Z3
Σ2

and Z4
Σ2

, respectively. For the discontinuous piecewise differential

system (3.13), system (3.12) has three real solutions (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 ), i = 1, 2, 3 given by

(

2.514526..,−2.427396..,−6.114467.., 4.665258..
)

,
(

2.449236..,−2.371782..,−6.028697.., 4.579488..
)

,
(

2.374832..,−2.310077..,−5.941517.., 4.492308..
)

.

These solutions provide the three limit cycles with Conf 8 shown in Figure 3.3c.

Crossing limit cycles with Conf 9+: In order to have a limit cycle with Conf 9+ which

intersects Σ
+ in the four different points (x1, x2

1), (x2, x2
2), (x3, k) and (x4, k), they must satisfy

system (3.5) with k > 0. Without loss of generality we can suppose that k = 4. We consider

the discontinuous piecewise linear differential system defined by the following three linear

Hamiltonian systems

ẋ = −170.859539.. + 99.779168..x − 15y, ẏ = −1139.726782.. + 663.725497..x − 99.779168..y,

ẋ =
9

10
+

148

5
x − 4y, ẏ = −779.664000.. + 219.040000..x − 148

5
y,

ẋ = 116.632274.. − 30.946111..x − 23

10
y, ẏ = −1635.644521.. + 416.374692..x + 30.946111..y,

(3.14)

in the zones Z1
Σ4

, Z3
Σ4

, and Z4
Σ4

, respectively. For the discontinuous piecewise differential

system (3.14), system (3.5) with k = 4, has three real solutions (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 ), i = 1, 2, 3

given by

(

4, 3, 16
5 , 5

)

,
(

4.109491.., 141
50 , 303

100 , 517
100

)

,
(

47
10 , 2.053733.., 2.068270.., 6.131729..

)

.

These solutions provide the three limit cycles with Conf 9+ shown in Figure 3.3d. This

completes the proof of statement (ii).

Proof of statement (iii) of Theorem 1.3. In order to have limit cycles with Conf 4 and Conf 5

simultaneously, the points of intersection of the limit cycles with Conf 4 with Σ0 must satisfy

system (3.2) with k = 0, and the points of intersection of the limit cycles with Conf 5 with Σ0

must satisfy system (3.5). In statement (ii) we proved that the maximum number of limit cycles

with Conf 4 and Conf 5 is three, then we have that the upper bound of maximum number

of limit cycles with both configurations is six. We provide an example of a piecewise linear
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Figure 3.4: Three limit cycles with Conf 4, and three limit cycles with Conf 5 of

system (3.15) simultaneously.

differential system in CΣ0
such that have six limit cycles with three limit cycles with Conf 4

and Conf 5, respectively. This is the upper bound is reached. We consider the discontinuous

piecewise linear differential system defined by the following four linear Hamiltonian systems

ẋ = −154.076990.. − 28.017658..x + 15y, ẏ = −387.181918.. − 52.332611..x + 28.017658..y,

ẋ = −0.400024.. + 0.532848..x − 3

10
y, ẏ = 0.058205.. + 0.946425..x − 0.532848..y,

ẋ =
9

10
+

28

5
x − 4y, ẏ = −8.101333.. + 7.839999..x − 28

5
y,

ẋ = −3.005265.. + 2.848936..x − 11

10
y, ẏ = −7.616106.. + 7.378583..x − 2.848936..y,

(3.15)

in the zones Z1
Σ0

, Z2
Σ0

, Z3
Σ0

and Z4
Σ0

, respectively. For the discontinuous piecewise differential

system (3.15), system (3.2) with k = 0, has the following three real solutions

(

27
10 ,− 1

10 ,−0.166825.., 2.233491..
)

,
(

69
25 ,−0.147032..,−0.232725.., 2.299392..

)

,
(

14
5 ,−0.177898..,−0.278200.., 2.344866..

)

,

and system (3.5) with k = 0, has the three real solutions

(

2, 1
2 , 2

5 , 5
3

)

,
(

93
50 , 0.628914.., 47

100 , 479
300

)

,
(

1.393438.., 1.075216.., 0.604474.., 1.462192..
)

.

These solutions provide the three limit cycles with Conf 4 and Conf 5 shown in Figure 3.4.

This completes the proof of statement (iii).

Proof of statement (iv) of Theorem 1.3. In order to have limit cycles with Conf 6− and Conf

6+ simultaneously, the points of intersection of the limit cycles with Conf 6+ and Σk+ must

satisfy system (3.7), and the points of intersection of the limit cycles with Conf 6− and Σk+

must satisfy system (3.8). In statement (ii) we proved that the maximum number of limit cycles

with each configuration is three, then we have that the upper bound of maximum number of

limit cycles with both configurations is six. We provide an example of a piecewise linear
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Figure 3.5: Three limit cycles with Conf 6− and Conf 6+ of system (3.16).

differential system in CΣk+
such that have six limit cycles with three limit cycles with each

configuration. This is the upper bound is reached. Without loss of generality we can suppose

that k = 4. We consider the discontinuous piecewise linear differential system defined by the

following five linear Hamiltonian systems

ẋ = − 23138.489410.. + 403.676452..x +
9

2
y, ẏ = 2942.120325.. − 36212.150741..x

− 403.676452..y,

ẋ = 4.276633.. + 1.873985..x − 3

10
y, ẏ = 4.991226.. + 11.706072..x − 1.873985..y,

ẋ = 15.472057.. − 3.117904..x − 17

5
y, ẏ = −13.354567.. + 2.859213..x + 3.117904..y,

ẋ = 48.158492.. − 6.082779..x − y, ẏ = −31.590984.. + 37.000210..x + 6.082779..y,

ẋ = − 151.854124.. − 136.354901..x +
3

2
y, ẏ = −10611.949690.. − 12395.106180..x

+ 136.354901..y,

(3.16)

in the pieces Z1
Σ4

, Z2
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differ-

ential system (3.16), (3.7), has the three real solutions

(

5, 1
2 , 9

20 , 23
5

)

,
(

9
2 , 19

20 , 91
100 , 7

2

)

,
(

41
10 , 1.196150.., 1.163297.., 2.719447..

)

,

and system (3.8), has the following three real solutions

(

− 18
5 ,− 9

2 ,− 49
50 ,−1

)

,
(

− 3,−3.411586..,−1.557354..,−1.546135..
)

,
(

− 2.809209..,− 31
10 ,−1.671884..,−1.662653..

)

.

These solutions provide the three limit cycles with Conf 6− and Conf 6+ shown in Figure 3.5.

This completes the proof of statement (iv).

Proof of statement (v) of Theorem 1.3. In order to have limit cycles with Conf 6− and Conf 7

simultaneously, the points of intersection of the limit cycles with Conf 6− and Σk+ must satisfy
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system (3.8), and the points of intersection of the limit cycles with Conf 7 and Σk+ must satisfy

system (3.10). In statement (ii) we proved that the maximum number of limit cycles with each

configuration is three, then we have that the maximum number of limit cycles with both

configurations is six. Moreover this upper bound is reached. Without loss of generality we

can suppose that k = 3. We consider the discontinuous piecewise linear differential system

defined by the following four linear Hamiltonian systems

ẋ = −0.567977.. − 5.151614..x − 3

2
y, ẏ = −6.233588.. + 17.692757..x + 5.151614..y,

ẋ = 11.250254.. + 0.637407..x − 2

5
y, ẏ = −35.085985.. + 1.015720..x − 0.637407..y,

ẋ = 22.645454.. − 36.659999..x − 47

5
y, ẏ = −35.463636.. + 142.973999..x + 36.659999..y,

ẋ = 5.300000.. − 8.579999..x − 11

5
y, ẏ = −8.300000.. + 33.461999..x + 8.579999..y,

(3.17)

in the pieces Z1
Σ3

, Z2
Σ3

, Z3
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differential
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Figure 3.6: (a) Three limit cycles with Conf 6− and Conf 7 of system (3.17). (b)

Three limit cycles with Conf 6+ and Conf 8 of system (3.18).

system (3.17), system (3.8), has the following three real solutions

(

− 41
10 ,− 5

2 , 1.569412.., 1.457623..
)

,
(

− 106
25 ,− 263

100 , 1.647799.., 1.587623..
)

,
(

− 199
50 ,−2.401954.., 1.508473.., 1.359577..

)

,

and (3.10), has the three real solutions

(

0.502842..,−1.545218..,−0.572025.., 0.848539..
)

,
(

0.442709..,−1.485086..,−0.427227.., 0.781483..
)

,
(

0.378567..,−1.420944..,−0.276975.., 0.700080..
)

.

These solutions provide the three limit cycles with Conf 6− and Conf 7 shown in Figure 3.6a.

This completes the proof of statement (v).
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Proof of statement (vi) of Theorem 1.3. In order to have limit cycles with Conf 6+ and Conf 8

simultaneously, the points of intersection of the limit cycles with Conf 6+ and Σk+ must satisfy

system (3.8), and the points of intersection of the limit cycles with Conf 8 and Σk+ must satisfy

system (3.12). In statement (ii) we proved that the maximum number of limit cycles with each

configuration is three, then we have that the maximum number of limit cycles with both

configurations is six. Moreover this upper bound is reached. Without loss of generality we

can consider that k = 4. We consider the discontinuous piecewise linear differential system

defined by the following five linear Hamiltonian systems

ẋ = −0.325270.. − 1.247316..x − 3

2
y, ẏ = −35.808990.. + 1.037199..x + 1.247316..y,

ẋ = −13.295856.. − 8.394370..x − 2y, ẏ = 47.825295.. + 35.232724..x + 8.394370..y,

ẋ = 33.366737.. − 7.961636..x − 17

5
y, ẏ = −44.896945.. + 18.643428..x + 7.961636..y,

ẋ = 65.056521.. − 17.010074..x − y, ẏ = −1052.5380642.. + 289.342621..x + 17.010074..y,

ẋ = 74.167422.. + 12.003227..x +
3

2
y, ẏ = −187.420662.. − 96.051650..x − 12.003227..y,

(3.18)

in the pieces Z1
Σ4

, Z2
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differ-

ential system (3.18), system (3.7), has the following three real solutions

(

7
2 ,− 6

5 , 2
5 , 19

5

)

,
(

71
20 ,− 143

100 , 31
100 , 389

100

)

,
(

343
100 ,−0.893313.., 0.533583.., 3.654678..

)

,

and (3.12), has the three real solutions

(

4,−3,− 16
5 , 23

5

)

,
(

4.073407..,−3.179377..,−3.311999.., 589
125

)

,
(

4.144187..,−3.341881..,−3.420000.., 241
50

)

.

These solutions provide the three limit cycles with Conf 6+ and Conf 8 shown in Figure 3.6b.

This completes the proof of statement (vi).

Proof of statement (vii) of Theorem 1.3. In order to have limit cycles with Conf 6+ and Conf

9+ simultaneously, the points of intersection of the limit cycles with Conf 6+and Σk+ must

satisfy system (3.7), and the points of intersection of the limit cycles with Conf 9+ and Σk+

must satisfy system (3.5) with k > 0. In statement (ii) we proved that the maximum number

of limit cycles with each configuration is three, then we have that the maximum number of

limit cycles with both configurations is six. Moreover this upper bound is reached. We can

suppose without loss of generality that k = 4. We consider the discontinuous piecewise linear

differential system defined by the following four linear Hamiltonian systems

ẋ = −17.085953.. + 9.977916..x − 3

2
y, ẏ = −113.972678.. + 66.372549..x − 9.977916..y,

ẋ = 34.897550.. − 4.677048..x − 7

2
y, ẏ = −44.332934.. + 6.249936..x + 4.677048..y,

ẋ = 65.922589.. − 17.491280..x − 13

10
y, ẏ = −924.494729.. + 235.342217..x + 17.491280..y,

ẋ = 13.883036.. + 3.280745..x − 9

2
y, ẏ = −44.382913.. + 2.391842..x − 3.280745..y,

(3.19)
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in the pieces Z1
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differential

system (3.19), system (3.7), has the following three real solutions

(

6, 1.209968.., 7
5 , 8.457532..

)

,
(

156
25 , 1.006799.., 5

4 , 8.915579..
)

,
(

117
20 , 1.328327.., 1.486618.., 8.175706..

)

,

and (3.5), has the three real solutions

(

4, 3, 16
5 , 5

)

,
(

4.109491.., 141
50 , 303

100 , 517
100

)

,
(

47
10 , 2.053733.., 2.068270.., 6.131729..

)

.

These solutions provide the three limit cycles with Conf 6+ and Conf 9+ shown in Figure 3.7.

This completes the proof of statement (vii).
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Figure 3.7: Three limit cycles with Conf 6+ and Conf 9+ of system (3.19).

Proof of statement (viii) of Theorem 1.3. In order to have limit cycles with Conf 7 and Conf 8

simultaneously, the points of intersection of the limit cycles with Conf 7 and Σk+ must satisfy

system (3.10), and the points of intersection of the limit cycles with Conf 8 and Σk+ must

satisfy system (3.12). In statement (ii) we proved that the maximum number of limit cycles

with each configuration is three, then we have that the maximum number of limit cycles with

both configurations is six. Moreover this upper bound is reached. Without loss of generality

we can suppose that k = 3. We consider the discontinuous piecewise linear differential system

defined by the following five linear Hamiltonian systems

ẋ = −453.807220.. − 20.414445..x − 3

2
y, ẏ = 83.559977.. + 277.833055..x + 20.414445..y,

ẋ = −29.218386.. − 5.465711..x +
2

5
y, ẏ = −414.702614.. − 74.685013..x + 5.465711..y,

ẋ = 22.645454.. − 36.659999..x − 47

5
y, ẏ = −35.463636.. + 142.973999..x + 36.659999..y,

ẋ = 3.918325.. − 3.744301..x +
6

5
y, ẏ = 33.556264.. − 11.683162..x + 3.744301..y,

ẋ = 5.300000.. − 8.579999..x − 11

5
y, ẏ = −8.300000.. + 33.461999..x + 8.579999..y,

(3.20)
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in the zones Z1
Σ3

, Z2
Σ3

, Z3
Σ3

, Z4
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differ-

ential system (3.20), system (3.10), has the following three real solutions

(

0.502842..,−1.545218..,−0.572025.., 0.848539..
)

,
(

0.442709..,−1.485086..,−0.427227.., 0.781483..
)

,
(

0.378567..,−1.420944..,−0.276975.., 0.700080..
)

,

and (3.12), has the three real solutions

(

84
25 ,− 79

20 ,−4.562376.., 88
25

)

,
(

3297
1000 ,− 387

100 ,−4.492376.., 69
20

)

,
(

34301
10000 ,−4.039424..,−4.622376.., 179

50

)

.

These solutions provide the three limit cycles with Conf 7 and Conf 8 shown in Figure 3.8.

This completes the proof of statement (viii).
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Figure 3.8: Three limit cycles with Conf 7 and Conf 8 of system (3.20).

Proof of statement (ix) of Theorem 1.3. In order to have limit cycles with Conf 8 and Conf 9+

simultaneously, the points of intersection of the limit cycles with Conf 8 and Σk+ must satisfy

system (3.12), and the points of intersection of the limit cycles with Conf 9+ and Σk+ must

satisfy system (3.5) with k > 0. In statement (ii) we proved that the maximum number of

limit cycles with each configuration is three, then we have that the maximum number of limit

cycles with both configurations is six. Moreover this upper bound is reached. Without loss

of generality we can suppose that k = 4. We consider the discontinuous piecewise linear

differential system defined by the following four linear Hamiltonian systems

ẋ = −17.085953.. + 9.977916..x − 3

2
y, ẏ = −113.972678.. + 66.372549..x − 9.977916..y,

ẋ = −23.136372.. + 2.354826..x − 3

10
y, ẏ = 81.642102.. + 18.484031..x − 2.354826..y,

ẋ =
431

10
+ 14.700000..x − 7

2
y, ẏ = −194.334000.. +

3087

50
x − 14.700000..y,

ẋ = 65.922589.. − 17.491280..x − 13

10
y, ẏ = −924.494729.. + 235.342217..x + 17.491280..y,

(3.21)
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in the zones Z1
Σ4

, Z2
Σ4

, Z3
Σ4

and Z4
Σ4

, respectively. For the discontinuous piecewise differential

system (3.21), system (3.12), has the following three real solutions

(

9,−2.341532..,−6.604799.., 14.804799..
)

,
(

457
50 ,−2.481840..,−6.933823.., 15.133823..

)

,
(

187
20 ,−2.692262..,−7.432829.., 15.632829..

)

,

and (3.5), has the three real solutions

(

4, 3, 16
5 , 5

)

,
(

4.109491.., 141
50 , 303

100 , 517
100

)

,
(

47
10 , 2.053733.., 2.068270.., 6.131729..

)

.

These solutions provide the three limit cycles with Conf 8 and Conf 9+ shown in Figure 3.9.

This completes the proof of statement (ix).
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Figure 3.9: Three limit cycles with Conf 8 and Conf 9+ of system (3.21).
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Figure 3.10: Three limit cycles with Conf 6−, Conf 7 and Conf 8 of system

(3.22).

Proof of statement (x) of Theorem 1.3. In order to have limit cycles with Conf 6−, Conf 7 and

Conf 8 simultaneously, the points of intersection of the limit cycles with Conf 6− and Σk+
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Figure 3.11: Three limit cycles with Conf 6+, Conf 8 and Conf 9+ of system

(3.23).

must satisfy system (3.8), the points of intersection of the limit cycles with Conf 7 and Σk+

must satisfy system (3.10) and the points of intersection of the limit cycles with Conf 8 and

Σk+ must satisfy system (3.12). In statement (ii) we proved that the maximum number of

limit cycles with each configuration is three, then we have that the maximum number of limit

cycles with the three configurations simultaneously, is nine. Moreover this upper bound is

reached. Without loss of generality we can suppose that k = 3. We consider the discontinuous

piecewise linear differential system defined by the following five linear Hamiltonian systems

ẋ = −0.567977.. − 5.151614..x − 3

2
y, ẏ = −6.233588.. + 17.692757..x + 5.151614..y,

ẋ = 11.250254.. + 0.637407..x − 2

5
y, ẏ = −35.085985.. + 1.015720..x − 0.637407..y,

ẋ = 22.645454.. − 36.659999..x − 47

5
y, ẏ = −35.463636.. + 142.973999..x + 36.659999..y,

ẋ = −13.170507.. + 3.348185..x +
6

5
y, ẏ = 36.547853.. − 9.341954..x − 3.348185..y,

ẋ = 5.300000.. − 8.579999..x − 11

5
y, ẏ = −8.300000.. + 33.461999..x + 8.579999..y,

(3.22)

in the zones Z1
Σ3

, Z2
Σ3

, Z3
Σ3

, Z4
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differ-

ential system (3.22), system (3.8), has the following three real solutions

(

− 41
10 ,− 5

2 , 1.569412.., 1.457623..
)

,
(

− 106
25 ,− 263

100 , 1.647799.., 1.587623..
)

,
(

− 199
50 ,−2.401954.., 1.508473.., 1.359577..

)

,

and (3.10), has the three real solutions

(

0.502842..,−1.545218..,−0.572025.., 0.848539..
)

,
(

0.442709..,−1.485086..,−0.427227.., 0.781483..
)

,
(

0.378567..,−1.420944..,−0.276975.., 0.700080..
)

,
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and system (3.12), has the three real solutions

(

1.847758..,−4.593279..,−3.042376.., 2
)

,
(

1.910216..,−4.699349..,−3.192376.., 43
20

)

,
(

1.962805..,−4.784530..,−3.322376.., 57
25

)

.

These solutions provide the three limit cycles with Conf 6−, Conf 7 and Conf 8 shown in

Figure 3.10. This completes the proof of statement (x).

Proof of statement (xi) of Theorem 1.3. In order to have limit cycles with Conf 6+,Conf 8 and

Conf 9+ simultaneously, the points of intersection of the limit cycles with Conf 6+ and Σk+

must satisfy system (3.7), the points of intersection of the limit cycles with Conf 8 and Σk+

must satisfy system (3.12) and the points of intersection of the limit cycles with Conf 9+ and

Σk+ must satisfy system (3.5) with k > 0. In statement (ii) we proved that the maximum

number of limit cycles with each configuration is three, then we have that the maximum

number of limit cycles with the three configurations, is nine. Moreover this upper bound is

reached. Without loss of generality we can suppose that k = 3. We consider the discontinuous

piecewise linear differential system defined by the following five linear Hamiltonian systems

ẋ = −17.085953.. + 9.977916..x − 3

2
y, ẏ = −113.972678.. + 66.372549..x − 9.977916..y,

ẋ = −2.306102.. − 0.633078..x − 3

10
y, ẏ = 2.662449.. + 1.335961..x + 0.633078..y,

ẋ = 34.897550.. − 4.677048..x − 7

2
y, ẏ = −44.332934.. + 6.249936..x + 4.677048..y,

ẋ = 65.922589.. − 17.491280..x − 13

10
y, ẏ = −924.494729.. + 235.342217..x + 17.491280..y,

ẋ = 13.883036.. + 3.280745..x − 9

2
y, ẏ = −44.382913.. + 2.391842..x − 3.280745..y,

(3.23)

in the zones Z1
Σ4

, Z2
Σ4

, Z3
Σ4

, Z4
Σ4

and Z5
Σ4

, respectively. For the discontinuous piecewise differ-

ential system (3.23), system (3.7), has the following three real solutions

(

6, 1.209968.., 7
5 , 8.457532..

)

,
(

156
25 , 1.006799.., 5

4 , 8.915579..
)

,
(

117
20 , 1.328327.., 1.486618.., 8.175706..

)

,

and (3.12), has the three real solutions

(

9,−2.341532..,−6.604799.., 14.804799..
)

,
(

93
10 ,−2.642166..,−7.313423.., 15.513423..

)

,
(

943
100 ,−2.772412..,−7.624652.., 15.824652..

)

,

and system (3.5), has the three real solutions

(

4, 3, 16
5 , 5

)

,
(

4.109491.., 141
50 , 303

100 , 517
100

)

,
(

47
10 , 2.053733.., 2.068270.., 6.131729..

)

.

These solutions provide the three limit cycles with Conf 6+, Conf 8 and Conf 9+ shown in

3.11. This completes the proof of statement (xi).

Proof of statement (xii) of Theorem 1.3. In order to have limit cycles with Conf 6+,Conf 6−

and Conf 8 simultaneously, the points of intersection of the limit cycles with Conf 6+ and

Σk+ must satisfy system (3.7), the points of intersection of the limit cycles with Conf 6− and
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Figure 3.12: Three limit cycles with Conf 6+, two limit cycles with Conf 6− and

one limit cycle with Conf 8 of system (3.24).

- 6 - 5 - 4 - 3 - 2 - 1 0

0

5

10

15

20

0 20 40 60

- 60

- 40

- 20

0

20

40

Figure 3.13: Two limit cycles with Conf 6+, three limit cycles with Conf 6− and

one limit cycle with Conf 8 of system (3.25).

Σk+ must satisfy system (3.8) and the points of intersection of the limit cycles with Conf 8 and

Σk+ must satisfy system (3.12). If we suppose that there is one solution for each system (3.7)

and (3.8), then similar to statement (i) of Theorem 1.3, we obtain the value of the parameters

γ1, δ1, γ2, γ3, δ3, γ4, γ5, δ5.

Now we have two options, first we suppose that there is a solution of system (3.12), then

we obtain the value of the parameters λ1, δ2, λ3 and δ4, therefore we have two options, first

we can suppose that there is a second solution of system (3.12) then we obtain the value of

the parameters λ2 and λ4, hence in the zones Z1
Σ+ , Z2

Σ+ , Z3
Σ+ , Z4

Σ+ we only have the parameters

b1, b2, b3, b4 as unknowns and in the zone Z5
Σ+ we have λ5, b5 as unknowns. Therefore we can

obtain at most one solution either of system (3.7) or of system (3.8) and we cannot obtain

more solutions of systems (3.7), (3.8) and (3.12), because we would have that bi = 0 for some

i = 1, 2, 3, 4, 5. Hence we would have five limit cycles with two (resp. one) limit cycles with

Conf 6+, one (resp. two) limit cycle(s) with Conf 6− and two limit cycles with Conf 8. Second

we can suppose that there is a second solution for each system (3.7) and (3.8), then we obtain



Limit cycles of DPWLHS without equilibria separated by reducible cubics 33

the values of the parameters λ2, λ4, λ5 hence we cannot obtain more solutions of systems (3.7),

(3.8) and (3.12), because we would have that bi = 0 for some i = 1, 2, 3, 4, 5. Therefore in this

case we would obtain five limit cycles with two limit cycles with Conf 6+, two limit cycles

with Conf 6− and one limit cycle with Conf 8.

Second, after considering the first solution of each system (3.7) and (3.8), we can suppose

that there is a second solution for each system (3.7) and (3.8), then we obtain the values of

λ1, δ2, λ3 and δ4. Then in the zones Z1
Σ+ , Z3

Σ+ and Z5
Σ+ we only have the parameters b1, b3 and

b5 as unknowns and in the zones Z2
Σ+ and Z4

Σ+ we have the parameters λ2, b2, λ4, b4 unknowns.

Hence can have two cases, first we can suppose that there is a solution of system (3.12), then

we determine the value of parameters λ2 and λ4, hence we cannot to have more limit cycles

because we would have that bi = 0 for some i = 1, 2, 3, 4, 5. Therefore we would have five limit

cycles with two limit cycles with Conf 6+, two limit cycles with Conf 6− and one limit cycle

with Conf 8. Second we can suppose that there is a third solution of system (3.7) (resp. (3.8))

and we obtain the value of parameter λ4 (res. λ2), then in the zone Z4
Σ+ (resp. Z2

Σ+) we only

have the parameter b4 (resp. b2) as unknown and in the zone Z2
Σ+ (resp. Z4

Σ+) we have that

the parameters λ2, b2 (res. λ4, b4) as unknowns. Now we suppose that there is one solution

of system (3.12) and we obtain the parameter λ2 (res. λ4). We observe that we cannot obtain

more solutions of systems (3.7), (3.8) and (3.12), because we would have that bi = 0 for some

i = 1, 2, 3, 4, 5. Therefore we have at most six limit cycles with three (resp. two) limit cycles

with Conf 6+, two (resp. three) limit cycles with Conf 6− and one limit cycle with Conf 8.

We observe that these six limit cycles can be either three limit cycles with Conf 6+, two limit

cycles with Conf 6− and one limit cycle with Conf 8 or two limit cycles with Conf 6+, three

limit cycles with Conf 6− and one limit cycle with Conf 8. We shall give an example of each

case.

We observe that without loss of generality we can suppose that k = 4. We consider

the discontinuous piecewise linear differential system defined by the following five linear

Hamiltonian systems

ẋ = − 23138.489410.. + 403.676452..x +
9

2
y, ẏ = 2942.120325.. − 36212.150741..x

− 403.676452..y,

ẋ = 1.812606.. + 1.308936..x − 3

10
y, ẏ = −25.828218.. + 5.711045..x − 1.308936..y,

ẋ = 15.472057.. − 3.117904..x − 17

5
y, ẏ = −13.354567.. + 2.859213..x + 3.117904..y,

ẋ = 48.158492.. − 6.082779..x − y, ẏ = −31.590984.. + 37.000210..x + 6.082779..y,

ẋ = − 151.854124.. − 136.354901..x +
3

2
y, ẏ = −10611.949690.. − 12395.106180..x

+ 136.354901..y,

(3.24)

in the zones Z1
Σ3

, Z2
Σ3

, Z3
Σ3

, Z4
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differ-

ential system (3.24), system (3.7) has the following three real solutions

(

5, 1
2 , 9

20 , 23
5

)

,
(

9
2 , 19

20 , 91
100 , 7

2

)

,
(

41
10 , 1.196150.., 1.163297.., 2.719447..

)

;

and (3.8) has the two real solutions

(

− 18
5 ,− 9

2 ,− 49
50 ,−1

)

,
(

− 3,−3.411586..,−1.557354..,−1.546135..
)

;
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and system (3.12) has the real solution

(

5.688640..,−4.154651..,−5.682382.., 63
10

)

.

These solutions provide the three limit cycles with Conf 6+, the two limits cycles with Conf

6− and the limit cycle with Conf 8 shown in Figure 3.12.

Now we consider the discontinuous piecewise linear differential system defined by the

following five linear Hamiltonian systems

ẋ = − 23138.489410.. + 403.676452..x +
9

2
y, ẏ = 2942.120325.. − 36212.150741..x

− 403.676452..y,

ẋ = 4.276633.. + 1.873985..x − 3

10
y, ẏ = 4.991226.. + 11.706072..x − 1.873985..y,

ẋ = 15.472057.. − 3.117904..x − 17

5
y, ẏ = −13.354567.. + 2.859213..x + 3.117904..y,

ẋ = 293.931246.. − 44.804431..x − y, ẏ = −6905.938713.. + 2007.437106..x

+ 44.804431..y,

ẋ = − 151.854124.. − 136.354901..x +
3

2
y, ẏ = −10611.949690.. − 12395.106180..x

+ 136.354901..y,

(3.25)

in the zones Z1
Σ3

, Z2
Σ3

, Z3
Σ3

, Z4
Σ3

and Z5
Σ3

, respectively. For the discontinuous piecewise differ-

ential system (3.25), system (3.7) has the following two real solutions

(

5, 1
2 , 9

20 , 23
5

)

,
(

9
2 , 19

20 , 91
100 , 7

2

)

;

and (3.8) has the three real solutions

(

− 18
5 ,− 9

2 ,− 49
50 ,−1

)

,
(

− 3,−3.411586..,−1.557354..,−1.546135..
)

,
(

− 2.809209..,− 31
10 ,−1.671884..,−1.662653..

)

;

and system (3.12) has the real solution

(

667
100 ,−4.419374..,−6.225080.., 6.842698..

)

.

These solutions provide the two limit cycles with Conf 6+, the three limits cycles with Conf

6− and the limit cycle with Conf 8 shown in Figure 3.13. This completes the proof of statement

(xii).

4 Appendix

Here we provide the values A, B and C

A = csc
( r3 − s3

2

)(

− cos
(1

2
(3r1 − r2 + 2r3 + s1 − s2)

)

+ cos
(1

2
(r1 − r2 + 4r3 + s1 − s2)

)

+ cos
(1

2
(r1 − 3r2 − 2r3 + s1 − s2)

)

− cos
(1

2
(r1 − r2 − 4r3 + s1 − s2)

)

− cos
(1

2
(r1 − r2 + 2r3 + 3s1 − s2)

)

− cos
(1

2
(3r1 + r2 − 2r3 + s1 + s2)

)
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+ cos
(1

2
(r1 + 3r2 − 2r3 + s1 + s2)

)

− cos
(1

2
(r1 + r2 − 2r3 + 3s1 + s2)

)

+ cos
(1

2
(r1 + r2 − 2r3 + s1 + 3s2)

)

+ cos
(1

2
(r1 − r2 − 2r3 + s1 − 3s2)

)

+ cos
(1

2
(3r1 − r2 + s1 − s2 + 2s3)

)

+ cos
(1

2
(r1 − r2 + 3s1 − s2 + 2s3)

)

− cos
(1

2
(r1 − r2 + s1 − s2 + 4s3)

)

− cos
(1

2
(r1 − 3r2 + s1 − s2 − 2s3)

)

+ cos
(1

2
(3r1 + r2 + s1 + s2 − 2s3)

)

− cos
(1

2
(r1 + 3r2 + s1 + s2 − 2s3)

)

+ cos
(1

2
(r1 + r2 + 3s1 + s2 − 2s3)

)

− cos
(1

2
(r1 + r2 + s1 + 3s2 − 2s3)

)

− cos
(1

2
(r1 − r2 + s1 − 3s2 − 2s3)

)

+ cos
(1

2
(r1 − r2 + s1 − s2 − 4s3)

)

,

B = − (cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3)− 2 cos(r1 − s1) + cos(r2 − s1)

+ cos(r3 − s1) + cos(r1 − s2)− 2 cos(r2 − s2) + cos(r3 − s2) + cos(s1 − s2)

+ 2 cos(r1 − r2 + s1 − s2) + cos(2r1 − 2r2 + s1 − s2)− cos(2r1 − r2 − r3 + s1 − s2)

− cos(r1 − 2r2 + r3 + s1 − s2) + cos(r1 − 2r2 + 2s1 − s2)− cos(r1 − r2 − r3 + 2s1 − s2)

+ cos(2r1 − r2 + s1 − 2s2)− cos(r1 − r2 + r3 + s1 − 2s2)

+ cos(r1 − r2 + 2s1 − 2s2) + cos(r1 − s3) + cos(r2 − s3)− 2 cos(r3 − s3)

+ cos(s1 − s3) + 2 cos(r1 − r3 + s1 − s3)− cos(2r1 − r2 − r3 + s1 − s3)

+ cos(2r1 − 2r3 + s1 − s3)− cos(r1 + r2 − 2r3 + s1 − s3)− cos(r1 − r2 − r3 + 2s1 − s3)

+ cos(r1 − 2r3 + 2s1 − s3)− cos(2r1 − r2 + s1 − s2 − s3)− cos(2r1 − r3 + s1 − s2 − s3)

+ cos(r1 + r2 − r3 + s1 − s2 − s3) + cos(r1 − r2 + r3 + s1 − s2 − s3)

− cos(r1 − r2 + 2s1 − s2 − s3)− cos(r1 − r3 + 2s1 − s2 − s3) + cos(s2 − s3)

+ 2 cos(r2 − r3 + s2 − s3)− cos(r1 + r2 − 2r3 + s2 − s3) + cos(2r2 − 2r3 + s2 − s3)

+ cos(r1 + r2 − r3 − s1 + s2 − s3)− cos(2r2 − r3 − s1 + s2 − s3)

+ cos(r1 − r2 − r3 + s1 + s2 − s3)− cos(r1 − 2r3 + s1 + s2 − s3)

− cos(r2 − 2r3 + s1 + s2 − s3) + cos(r2 − 2r3 + 2s2 − s3)− cos(r2 − r3 − s1 + 2s2 − s3)

− cos(r1 − 2r2 + r3 − s2 + s3) + cos(r1 − r2 + r3 − s1 − s2 + s3)

− cos(r1 − 2r2 + s1 − s2 + s3) + cos(r1 − r2 − r3 + s1 − s2 + s3)

− cos(r1 − r2 + r3 − 2s2 + s3)− cos(r1 − r2 + s1 − 2s2 + s3) + cos(2r1 − r3 + s1 − 2s3)

− cos(r1 + r2 − r3 + s1 − 2s3) + cos(r1 − r3 + 2s1 − 2s3)− cos(r1 + r2 − r3 + s2 − 2s3)

+ cos(2r2 − r3 + s2 − 2s3)− cos(r1 − r3 + s1 + s2 − 2s3)− cos(r2 − r3 + s1 + s2 − 2s3)

+ cos(r2 − r3 + 2s2 − 2s3)− 6) csc2
(1

2
(r1 − r2 + s1 − s2)

)

sin2
( r3 − s3

2

)

,

C =2
(

− cos
(1

2
(r1 − 3r2 − r3 + s1 − s2 − s3)

)

+ cos
(1

2
(r1 − r2 − 3r3 + s1 − s2 − s3)

)

− cos
(1

2
(3r1 + r2 − r3 + s1 + s2 − s3)

)

+ cos
(1

2
(r1 + 3r2 − r3 + s1 + s2 − s3)

)

− cos
(1

2
(r1 + r2 − r3 + 3s1 + s2 − s3)

)

+ cos
(1

2
(r1 + r2 − r3 + s1 + 3s2 − s3)

)

− cos
(1

2
(r1 − r2 − r3 + s1 − 3s2 − s3)

)

+ cos
(1

2
(3r1 − r2 + r3 + s1 − s2 + s3)

)
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− cos
(1

2
(r1 − r2 + 3r3 + s1 − s2 + s3)

)

+ cos
(1

2
(r1 − r2 + r3 + 3s1 − s2 + s3)

)

− cos
(1

2
(r1 − r2 + r3 + s1 − s2 + 3s3)

)

+ cos
(1

2
(r1 − r2 − r3 + s1 − s2 − 3s3)

))

.
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Abstract. We consider a class of fractional logarithmic Schrödinger equation in
bounded domains. First, by means of the constraint variational method, quantitative
deformation lemma and some new inequalities, the positive ground state solutions and
ground state sign-changing solutions are obtained. These inequalities are derived from
the special properties of fractional logarithmic equations and are critical for us to obtain
our main results. Moreover, we show that the energy of any sign-changing solution is
strictly larger than twice the ground state energy. Finally, we obtain that the equation
has infinitely many nontrivial solutions. Our result complements the existing ones to
fractional Schrödinger problems when the nonlinearity is sign-changing and satisfies
neither the monotonicity condition nor Ambrosetti–Rabinowitz condition.

Keywords: logarithmic Schrödinger equation, fractional Laplacian, sign-changing so-
lutions, non-Nehari method, infinitely many solutions.
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1 Introduction

In this paper, we consider the following fractional Schrödinger equation with logarithmic
nonlinearity: {

(−∆)αu + V(x)u = |u|p−2u ln u2, x ∈ Ω,

u = 0, x ∈ R
N \ Ω,

(1.1)

where α ∈ (0, 1), N > 2α and 2 < p < 2∗α := 2N
N−2α , (−∆)α denotes the fractional Laplacian

operator, Ω is a bounded domain with smooth boundary in R
N and V : Ω 7→ R satisfy

(V1) V ∈ C(Ω, R).

BCorresponding author. Email: huiguo_math@163.com
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(V2) inf σ((−∆)α +V(x))> 0, where σ((−∆)α+V) is the spectrum of the operator (−∆)α +V.

The general form of problem (1.1) can be given by

(−∆)αu + V(x)u = f (x, u), in R
N , (1.2)

which arises in the study of standing waves to the time-dependent Schrödinger equation

i
∂ψ

∂t
= (−∆)αψ + M(x)ψ − F(x, ψ), (1.3)

where ψ : R
N × (0,+∞) 7→ R. This equation is of particular interest in fractional quantum

mechanics for the study of particles on stochastic field modelled by Lévy processes. A path in-
tegral over the Lévy flights paths and a fractional Schrödinger equation of fractional quantum
mechanics are formulated by Laskin [16] from the idea of Feynman and Hibbs path integrals.
We call ψ a standing waves solution if it possesses the form ψ(x, t) = eiωtu(x). Then ψ is a
standing waves solution for (1.3) if and only if u solves (1.2) with V(x) = M(x)− ω. Our goal
is to study the case for logarithmic nonlinearity F(x, ψ) = |ψ|p−2ψ log |ψ|2. Here, the fractional
Laplacian operator (−∆)α can be characterized as the singular integral (see, for example [11])

(−∆)αu(x) = C(N, α)P. V.
∫

RN

u(x)− u(y)

|x − y|N+2α
dy, (1.4)

for all x ∈ R
N , where C(N, α) is a normalization constant and P.V. stands for the principal

value. When u has sufficient regularity, the fractional Laplacian has a pointwise expression
(see [11, Lemma 3.2])

(−∆)αu(x) = −
1
2

C(N, α)
∫

RN

u(x + y) + u(x − y)− 2u(x)

|y|N+2α
dy, ∀x ∈ R

N .

Equation (1.1) and (1.2) admit applications related to quantum mechanics, phase transi-
tions and minimal surfaces etc. (see [11] and the references therein). There are much attention
by various scholars, especially on existence of ground state solution, multiple solutions, semi-
classical states and the concentration behavior of positive solutions, see for example [3,9,20,24],
and the references therein. When α = 1, Chen et al. [5] proved the existence of ground state
sign-changing solutions of problem (1.2) with f (x, u) = Q(x)|u|p−2u ln u2. When p = 2, Pietro
d’Avenia et al. [9] obtained the existence of infinitely many weak solutions of problem (1.1).
If α = 1 and p = 2, then the problem (1.1) reduces to the classical logarithmic Schrödinger
equation

− ∆u + V(x)u = u ln u2. (1.5)

More recently, many scholars focused on the problem (1.5), such as the existence of ground
state solution, multiple solutions, semiclassical states and the concentration behavior of posi-
tive solutions, see for example [1, 2, 8, 18, 25], and the references therein.

In 2014, Chang et al. [4] proved the existence of a nodal solution of (1.2) with V(x) = 0 in
bounded domain. They assume that the nonlinearity f (x, t) satisfies the following Ambrosetti–
Rabinowitz condition and monotonicity condition:

(AR) There exists µ ∈ (2, 2∗α) such that

0 < µF(x, t) ≤ t f (x, t)

for a.e. x ∈ Ω and all t 6= 0, where F(x, t) =
∫ t

0 f (x, τ)dτ.
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(NC) t 7→ f (x, t)/|t| is strictly increasing on (−∞, 0) ∪ (0,+∞) for every x ∈ Ω.

F. G. Rodrigo, et al. [13] considered the existence of sign-changing solution for (1.2) with
V(x) = 0 and f (x, u) = λg(x, u)+ |u|2

∗
α u, where g(x, u) satisfies the conditions (AR) and (NC).

When f (x, u) satisfies a monotonicity condition, Deng et al. [10] dealt with the least energy
sign-changing solutions for fractional elliptic equations (1.2) in bounded domain. Ji [15] con-
cerned with the existence of the least energy sign-changing solutions for a class of fractional
Schrödinger–Poisson system when f (x, t) satisfies the following monotonicity condition:

(F) t 7→ f (x, t)/t3 is strictly increasing on (−∞, 0) ∪ (0,+∞) for every x ∈ R
3.

For more discussions on the existence of sign-changing solutions, we refer the readers to other
references, such as [6, 7, 14, 22, 23] and so on.

However, the logarithmic nonlinearity f (x, u) = |u|p−2u ln u2 is sign-changing and satisfies
neither the condition (AR) nor monotonicity condition (NC). In addition, the nonlocal operator
brings some new difficulties, such as

∫

RN
|(−∆)

α
2 u(x)|2dx 6=

∫

RN
|(−∆)

α
2 u+(x)|2dx +

∫

RN
|(−∆)

α
2 u−(x)|2dx,

where
u+(x) := max{u(x), 0} and u−(x) := min{u(x), 0}.

But, most methods for local problem heavily rely on the decompositions
∫

RN
|∇u(x)|2dx =

∫

RN
|∇u+(x)|2dx +

∫

RN
|∇u−(x)|2dx.

Thus, these classic methods do not work for equation (1.1). Therefore, combining constraint
variational method, quantitative deformation lemma, non-Nehari manifold method and some
new energy inequalities, we will establish the existence of positive ground state solutions
and ground state sign-changing solutions for (1.1). Finally, we analysis that the existence of
infinitely many nontrivial solutions. To the best of our knowledge, there seem no results
concerned with sign-changing solutions for fractional problem (1.1).

Before stating our main results, we introduce some useful results of fractional Sobolev
spaces. For 0 < α < 1, the fractional Sobolev space is defined as

Hα
0 (Ω) := {u ∈ L2(Ω) : [u]α < ∞, u = 0 a.e. in R

N \ Ω},

where the Gagliardo seminorm [u]α is given by

[u]α =
∫∫

R2N

|u(x)− u(y)|2

|x − y|N+2α
dx dy.

It is well known that Hα
0 (Ω) is a Hilbert space endowed with the standard inner product

〈u, v〉 =
∫∫

R2N

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2α
dx dy +

∫

Ω

u(x)v(x)dx,

and the correspondent induced norm

‖u‖Hα
0 (Ω) =

√
〈u, u〉. (1.6)
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In light of the Propositions 3.4 and 3.6 in [11], we have

‖(−∆)
α
2 u‖2

2 =
1
2

C(n, α)
∫∫

R2N

|u(x)− u(y)|2

|x − y|N+2α
dx dy,

where û stands for the Fourier transform of u, ξ ∈ R
N and C(n, α) =

(∫
RN

1−cos ξ1
|ξ|n+2α dx

)−1
. As

a consequence, the norms on Hα(Ω) defined below

u 7→

(∫

Ω

u(x)2 dx +
∫

RN
|(−∆)

α
2 u(x)|2dx

) 1
2

u 7→

(∫

Ω

u(x)2 dx +
∫∫

RN

|u(x)− u(y)|2

|x − y|N+2α
dx dy

) 1
2

are equivalent. To find solutions of (1.1), we will use a variational approach. Hence, we will
associate a suitable functional to our problem. More precisely, the energy functional associated
with problem (1.1) is given by Ψ : H 7→ R defined as follows

Ψ(u) :=
1
2

∫

RN

(
|(−∆)

α
2 u|2 + V(x)u2

)
dx +

2
p2

∫

Ω

|u|p dx −
1
p

∫

Ω

|u|p ln u2 dx. (1.7)

We define the suitable subspace of Hα
0 (Ω),

H :=
{

u ∈ Hα
0 (Ω) :

∫

Ω

V(x)u2
< +∞

}
.

In view of assumptions (V1) and (V2), it is not hard to check that H is a Hilbert space endowed
with the inner product

〈u, v〉H =
∫

RN
(−∆)

α
2 u(−∆)

α
2 v dx +

∫

Ω

V(x)uv dx,

and the induced norm ‖u‖2 = 〈u, u〉H, which is equivalent to ‖u‖Hα
0 (Ω).

The basic property of Sobolev space H that we need is summarized in the following
lemma.

Lemma 1.1 ([11]). The embedding H →֒ Lp(Ω) is compact for p ∈ (2, 2∗α).

Note that

lim
t→0

tp−1 ln t2

t
= 0 and lim

t→∞

tp−1 ln t2

tq−1 = 0,

where q ∈ (p, 2∗α), thus, for any ǫ > 0, there exists Cǫ > 0 such that

|t|p−1| ln t2| ≤ ǫ|t|+ Cǫ|t|
q−1, ∀x ∈ Ω, t ∈ R \ {0}. (1.8)

By (1.8) and a standard argument, it is easy to check that Ψ ∈ C1(H, R) and

〈Ψ′(u), v〉 =
∫

RN
(−∆)

α
2 u(−∆)

α
2 v dx +

∫

Ω

V(x)uv dx −
∫

Ω

|u|p−2uv ln u2 dx, (1.9)

for any u, v ∈ H.
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Definition 1.2. We say that u ∈ H is a weak solution of (1.1), if u a critical point of the
functional Ψ, that is

∫

RN
(−∆)

α
2 u(−∆)

α
2 v dx +

∫

Ω

V(x)uv dx =
∫

Ω

|u|p−2uv ln u2 dx,

for all v ∈ H. Moreover, if u ∈ H is a solution of (1.1) and u± 6= 0, then u is called a
sign-changing solution.

Definition 1.3. The u ∈ H is called a classical solution of (1.1), if (−∆)αu can be written as
(1.4) and equation (1.1) is satisfied pointwise in Ω.

Remark 1.4. Since (u+, u−)α :=
∫

RN (−∆)
α
2 u+(−∆)

α
2 u− dx > 0 for u± 6= 0, it follows from a

simple computation that

Ψ(u) = Ψ(u+) + Ψ(u−) + (u+, u−)α > Ψ(u+) + Ψ(u−), (1.10)

and

〈Ψ′(u), u±〉 = 〈Ψ′(u±), u±〉+ (u+, u−)α > 〈Ψ′(u±), u±〉. (1.11)

Let

c := inf
u∈N

Ψ(u) and m := inf
u∈M

Ψ(u)

where

N := {u ∈ H \ {0}|〈Ψ′(u), u〉 = 0},

and

M := {u ∈ H, u± 6= 0 | 〈Ψ′(u), u+〉 = 〈Ψ′(u), u−〉 = 0}.

The main result of this work can now be stated as follows.

Theorem 1.5. Assume that (V1) and (V2) hold. Then problem (1.1) possesses one positive ground

state solution ū ∈ N such that Ψ(ū) = c := infN Ψ(u).

Theorem 1.6. Assume that (V1) and (V2) hold. Then problem (1.1) has a ground state sign-changing

solution ũ ∈ M such that Ψ(ũ) = m := infM. Moreover, m > 2c.

Theorem 1.6 indicates that the energy of any sign-changing solution of (1.1) is strictly
larger than twice of the ground state energy. In terms of the results, Theorem 1.6 is a rela-
tively new result for fractional equations. In terms of processing technology, we adopt some
new technique inequalities derived by the variable transformation and the special concave
properties of energy functional.

Theorem 1.7. Suppose that (V1) and (V2) hold. Then problem (1.1) possesses infinitely many non-

trivial solutions.

The remaining of the paper is organized as follows: In Section 2, we present some prelim-
inary results and we set up the variational framework to our problem. In Section 3 and 4, we
prove our main result. Throughout this paper, the symbol S denote unit sphere, the C, C1,
C2, . . . represent several different positive constants.
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2 Some preliminary results

In this section, we give some preliminary lemmas which are crucial for proving our results.
For a fixed function u ∈ H with u± 6= 0. We define a continuous function J : [0, ∞) ×

[0, ∞) 7→ R by

J(s, t) := Ψ

(
s

1
p u+ + t

1
p u−

)

=
1
2
‖s

1
p u+ + t

1
p u−‖2 +

2
p2

∫

Ω

|s
1
p u+ + t

1
p u−|p dx

−
1
p

∫

Ω

|s
1
p u+ + t

1
p u−|p ln

(
s

1
p u+ + t

1
p u−

)2
dx.

(2.1)

The following lemma is derived from the special properties of fractional logarithmic equa-
tions, which is critical to our results.

Lemma 2.1. The J(s, t) defined in (2.1) is strictly concave in (0,+∞)2 and thus there exists a unique

global maximum point in (0,+∞)2.

Proof. It follows from (2.1) that

∂J

∂s
(s, t) =

1
p

s
2
p−1‖u+‖2 +

1
p

s
1
p−1

t
1
p (u+, u−)α −

1
p

∫

Ω

|u+|p ln(u+)2 dx

−
1
p

∫

Ω

|u+|p ln(s
2
p )dx,

(2.2)

∂J

∂t
(s, t) =

1
p

t
2
p−1‖u−‖2 +

1
p

t
1
p−1

s
1
p (u+, u−)α −

1
p

∫

Ω

|u−|p ln(u−)2 dx

−
1
p

∫

Ω

|u−|p ln(t
2
p )dx,

(2.3)

∂2 J

∂s2 (s, t) =
2 − p

p2 s
2
p−2‖u+‖2 +

1 − p

p2 s
1
p−2

t
1
p (u+, u−)α −

2
p2s

∫

Ω

|u+|p dx, (2.4)

∂2 J

∂t2 (s, t) =
2 − p

p2 t
2
p−2‖u−‖2 +

1 − p

p2 t
1
p−2

s
1
p (u+, u−)α −

2
p2t

∫

Ω

|u−|p dx (2.5)

and

∂2 J

∂s∂t
(s, t) =

∂2G

∂t∂s
(s, t) =

1
p2 s

1
p−1

t
1
p−1(u+, u−)α. (2.6)

Therefore, the Hessian matrix D2 J(s, t) is

D2 J(s, t) =

(
∂2 J
∂s2

∂2 J
∂s∂t

∂2 J
∂t∂s

∂2 J
∂t2

)
(s, t)

=
2 − p

p2

(
s

2
p−2‖u+‖2 + s

1
p−2

t
1
p (u+, u−)α 0

0 t
2
p−2‖u−‖2 + t

1
p−2

s
1
p (u+, u−)α

)

+
1
p2 (u

+, u−)α

(
−s

1
p−2

t
1
p s

1
p−1

t
1
p−1

s
1
p−1

t
1
p−1 −t

1
p−2

s
1
p

)

+
2
p2

(
− 1

s

∫
Ω
|u−|p dx 0
0 − 1

t

∫
Ω
|u−|p dx

)

=: J1(s, t) + J2(s, t) + J3(s, t).

(2.7)
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Note that 2 < p < 2∗α and (u+, u−)α > 0, it is not difficult to verify that J1(s, t), J2(s, t) and
J3(s, t) are negative definite matrices for s, t > 0. Thus, D2 J(s, t) is a negative definite matrix.
Since J(0, 0) = 0 and

J(s, t) → −∞ as |(s, t)| → +∞,

which shows that J(s, t) is strictly concave and there exists a unique global maximum point in
(0,+∞)2. We complete the proof.

In view of Lemma 2.1, we have the following corollaries.

Corollary 2.2. Assume that u ∈ M, then

Ψ(u+ + u−) = max
s̃,̃t≥0

Ψ(s̃
1
p u+ + t̃

1
p u−) > Ψ(s

1
p u+ + t

1
p u−), (2.8)

for any s, t ≥ 0 and (s, t) 6= (1, 1).

Proof. Let J : [0, ∞) × [0, ∞) → R be defined in (2.1). Since u ∈ M, then 〈Ψ′(u), u+〉 =

〈Ψ′(u), u−〉 = 0. This, combined with (2.2) and (2.3), implies that

∂J

∂s
(1, 1) = 0 and

∂J

∂t
(1, 1) = 0.

Then, by the strict concavity of J in Lemma 2.1, (2.8) follows immediately, which is the desired
conclusion.

Since 〈Ψ′(u), u+〉 = p ∂J
∂s (1, 1) and 〈Ψ′(u), u−〉 = p ∂J

∂t (1, 1), the following corollary can be
directly derived from Lemma 2.1.

Corollary 2.3. If u ∈ H with u± 6= 0, there exists a unique pair (su, tu) ∈ R
+ × R

+ such that

s
1
p

u u+ + t
1
p

u u− ∈ M.

Corollary 2.4. Assume that u ∈ N , then

Ψ(u) = max
t≥0

Ψ(t
1
p u) > Ψ(t̃

1
p u), (2.9)

for any t̃ ≥ 0 and t̃ 6= 1.

Proof. By setting s = t in (2.1), we can deduce similarly that

J̃(t) = Ψ(t
1
p u)

is strictly concave in (0,+∞) and has a unique global maximum point. This, together with
u ∈ N , implies the desired conclusion.

The following corollary directly follows from the Corollary 2.4 and [19, Proposition 8].

Corollary 2.5. For any u ∈ H \ {0}, there exists a unique t = t(u) > 0 such that tu ∈ N . Moreover,

the map π̂ : H \ {0} 7→ N is continuous for π̂(u) = t(u)u and π := π̂|S defines a homeomorphism

between the unit sphere S of H with N .

In view of Corollaries 2.2, 2.3, 2.4 and 2.5, we have the following results.
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Lemma 2.6. The following equalities hold true:

inf
N

Ψ(u) =: c = inf
u∈E,u 6=0

max
t≥0

Ψ(t
1
p u)

and

inf
M

Ψ(u) =: m = inf
u∈E,u± 6=0

max
s,t≥0

Ψ(s
1
p u+ + t

1
p u−).

Proof. We only prove the second equality because the other case is similar. On the one hand,
it follows from Corollary 2.2 that

inf
u∈E,u± 6=0

max
s,t≥0

Ψ(s
1
p u+ + t

1
p u−) ≤ inf

u∈M
max
s,t≥0

Ψ(s
1
p u+ + t

1
p u−) = inf

u∈M
Ψ(u) = m. (2.10)

On the other hand, for any u ∈ H with u± 6= 0, by Corollary 2.3, we have

max
s,t≥0

Ψ(s
1
p u+ + t

1
p u−) ≥ Ψ(s

1
p
u u+ + t

1
p
u u−) ≥ inf

v∈M
Ψ(v) = m. (2.11)

Thus, the conclution directly follows from (2.10) and (2.11).

Proposition 2.7. For any u ∈ M, there exists ̺ > 0 such that ‖u±‖q ≥ ̺.

Proof. Since u ⊂ M, we have 〈Ψ′(u), u±〉 = 0, that is
∫

RN
(−∆)

α
2 u(−∆)

α
2 u± dx +

∫

Ω

V(x)|u±|2 dx =
∫

Ω

|u±|p ln |u±|2 dx.

Then, by (1.8), (u+, u−)α > 0 and the Sobolev inequality, we have

‖u±‖2 ≤
∫

Ω

|u±|p ln(u±)2 dx

≤
1
2
‖u±‖2 + C1‖u±‖2‖u±‖

q−2
q ,

for some C1 > 0 independent of u. Thus there exists a constant ̺ > 0 such that ‖u±‖q ≥ ̺.

Proposition 2.8. For any u ∈ N , there exists γ > 0 such that ‖u‖q ≥ γ.

Proof. By (1.8) and the Sobolev inequality, for any u ∈ N , we deduce that

‖u‖2 =
∫

Ω

|u|p ln u2 dx

≤
1
2
‖u‖2 + C2‖u‖2‖u‖

q−2
q .

for some C2 > 0 independent of u. Then there exists γ > 0 such that ‖u‖q ≥ γ.

Lemma 2.9. c > 0 and m > 0 can be achieved.

Proof. We only prove that m > 0 and is achieved since the other case is similar. Let {un} ∈ M
be such that Ψ(un) → m. By (1.7) and (1.9), one has

m + o(1) = Ψ(un)−
1
p
〈Ψ′(un), un〉

=

(
1
2
−

1
p

)
‖un‖

2 +
2
p2

∫

Ω

|un|
p dx

≥

(
1
2
−

1
p

)
‖un‖

2.



Sign-changing solutions and infinitely many solutions for fractional equations 9

This shows that {un} is bounded. Thus, passing to a subsequence, we may assume that
u±

n ⇀ û± weakly in H and u±
n → û± strongly in Ls(Ω) for 2 ≤ s < 2∗α. Since {un} ⊂ M, then

it follows from Proposition 2.7 that there exists a constant ̺ > 0 such that ‖u±
n ‖q ≥ ̺. By the

compactness of the embedding H →֒ Ls(Ω) for 2 ≤ s < 2∗α, we have

‖û±‖q = lim
n→∞

‖u±
n ‖q ≥ ̺,

which shows û± 6= 0. By (1.8), (1.9), the Theorem A.2 in [21], the weak semicontinuity of
norm and the Lebesgue dominated convergence theorem, we have

‖û±‖2 +
∫

RN
(−∆)

α
2 û∓(−∆)

α
2 û± dx ≤ lim inf

n→∞

(
‖u±

n ‖
2 +

∫

RN
(−∆)

α
2 u∓

n (−∆)
α
2 u±

n dx

)

= lim inf
n→∞

∫

Ω

|u±
n |

p ln(u±
n )

2 dx

=
∫

Ω

|û±|p ln(û±)2 dx,

(2.12)

which implies
〈Ψ′(û), û±〉 ≤ 0. (2.13)

According to Corollary 2.3, there exist ŝ, t̂ > 0 such that ŝ
1
p û+ + t̂

1
p û− ∈ M and

Ψ(ŝ
1
p û+ + t̂

1
p û−) ≥ m. (2.14)

By the concavity of Ĵ(s, t) := Ψ(s
1
p û+ + t

1
p û−) for s, t ≥ 0 and the Taylor expansion, for some

θ ∈ (0, 1), we have

Ĵ(ŝ, t̂) = Ĵ(1, 1) + Ĵ′s(1, 1)(ŝ − 1) + Ĵ′t(1, 1)(t̂ − 1)

+
1
2!
((ŝ − 1), (t̂ − 1))D2 Ĵ(1 + θ(ŝ − 1), 1 + θ(t̂ − 1))((ŝ − 1), (t̂ − 1))T

≤ Ĵ(1, 1) + Ĵ′s(1, 1)(ŝ − 1) + Ĵ′t(1, 1)(t̂ − 1).

(2.15)

That is

Ψ(û) ≥ Ψ(ŝ
1
p û+ + t̂

1
p û−)−

1
p
(ŝ − 1)〈Ψ′(û), û+〉 −

1
p
(t̂ − 1)〈Ψ′(û), û−〉. (2.16)

Therefore, it follows from (1.7), (1.9), (2.12), (2.13), (2.14), (2.16), Lemma 2.1, Corollary 2.2 and
the weak semicontinuity of norm that

m = lim
n→∞

(
Ψ(un)−

1
p
〈Ψ′(un), un〉

)

= lim
n→∞

(
(

1
2
−

1
p
)‖un‖

2 +
2
p2

∫

Ω

|un|
p dx

)

≥ (
1
2
−

1
p
)‖û‖2 +

2
p2

∫

Ω

|û|p dx

= Ψ(û)−
1
p
〈Ψ′(û), û〉

≥ Ψ(ŝ
1
p û+ + t̂

1
p û−)−

ŝ

p
〈Ψ′(û), û+〉 −

t̂

p
〈Ψ′(û), û−〉

≥ m,
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which implies that
〈Ψ′(û), û±〉 = 0 and Ψ(û) = m. (2.17)

Therefore, û ∈ M and Ψ(û) = m. Since û± 6= 0, then by (1.7), (1.9) and (2.17), we have

m = Ψ(û) =
1
2
‖û‖2 +

2
p2

∫

Ω

|û|p dx −
1
p

∫

Ω

|û|p ln û2 dx

≥
1
2
‖û‖2 −

1
p

∫

Ω

|û|p ln û2 dx

=

(
1
2
−

1
p

)
‖û+‖2 +

1
p
〈Ψ′(û), û〉

≥

(
1
2
−

1
p

)
‖û+‖2 +

(
1
2
−

1
p

)
‖û−‖2 +

1
p
〈Ψ′(û), û+〉+

1
p
〈Ψ′(û), û−〉

> 0.

That is m > 0. The proof is completed.

Lemma 2.10. The minimizers of infN Ψ(u) and infM Ψ(u) are critical points of Ψ.

Proof. We prove it by contradiction. Assume that ũ ∈ M, Ψ(ũ) = m and Ψ′(ũ) 6= 0. Then
there exists δ > 0, µ > 0 such that ‖Ψ′(v)‖ ≥ µ, for ‖v − ũ‖ ≤ 3δ. Let D = ( 1

2 , 3
2 )× ( 1

2 , 3
2 ). By

Lemma 2.1, we have

β := max
s,t∈∂D

Ψ

(
s

1
p ũ+ + t

1
p ũ−

)
< m. (2.18)

Applying the classical deformation [21, Lemma 2.3] with ε := min{(m − β)/3, µδ/8} and
S := Bδ(ũ), there exists a deformation η ∈ C([0, 1]× H, H) such that

(a) η(1, u) = u, if u 6∈ Ψ−1(m − 2ε, m + 2ε),

(b) η(1, Ψm+ε ∩ S) ⊂ Ψm−ε,

(c) Ψ(η(1, u)) ≤ u, ∀u ∈ H.

Corollary 2.2 implies that Ψ(s
1
p ũ+ + t

1
p ũ−) ≤ Ψ(ũ) = m, for s > 0, t > 0. Then it follows from

(b) that

Ψ

(
η
(

1, s
1
p ũ+ + t

1
p ũ−

))
≤ m − ε, (2.19)

for s > 0, t > 0 and |s − 1|2 + |t − 1|2 < δ2/‖ũ‖2. Furthermore, using Lemma 2.1 and (c), we
derive that

Ψ

(
η
(

1, s
1
p ũ+ + t

1
p ũ−

))
≤ Ψ

(
s

1
p ũ+ + t

1
p ũ−

)
< Ψ(ũ) = m, (2.20)

for s > 0, t > 0 and |s − 1|2 + |t − 1|2 ≥ δ2/‖ũ‖2. Thus, from (2.19) and (2.20), we obtain

max
s,t∈D

Ψ

(
η
(

1, s
1
p ũ+ + t

1
p ũ−

))
< m.

Define g(s, t) = s
1
p ũ+ + t

1
p ũ−. To complete the proof it suffices to prove that

η(1, g(D)) ∩M 6= ∅, (2.21)
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which implies maxs,t∈D Ψ(η(1, s
1
p ũ+ + t

1
p ũ−)) ≥ m and it contradicts (2.21). Let us define

κ(s, t) := η(1, g(s, t)) and

φ(s, t) :=
(

1
ps

〈Ψ′(κ(s, t)), (κ(s, t))+〉,
1
pt
〈Ψ′(κ(s, t)), (κ(s, t))−〉

)
.

Since κ(s, t)|∂D = g(s, t), we have

1
ps

〈Ψ′(g(s, t)), s
1
p u+〉 = J′s(s, t), on ∂D,

and
1
pt
〈Ψ′(g(s, t)), t

1
p u+〉 = J′t(s, t), on ∂D.

Therefore, by the homotopy invariance of Brouwer’s degree, we can deduce from (2.7) that

deg(φ, D, (0, 0)) = deg((J′s, J′t), D, (0, 0))

= sgn
(

det
(

J′s
J′t

)
(1, 1)

)
= 1,

which implies that φ(s, t) = 0 for some (s, t) ∈ D, that is κ(s, t) = η(1, g(s, t)) ∈ M, which is
a contradiction.

The proof of infN Ψ(u) is critical points of Ψ is similar to above argument and hence is
omitted here.

3 Proof of Theorems 1.5 and 1.6

We first prove Theorem 1.5. According to 2.9 and 2.10, there exists ū ∈ N such that Ψ(ū) = c

and Ψ′(ū) = 0. Now, we only need to prove that u is a positive solution of problem (1.1).
Indeed, replacing Ψ(u) with the functional

Ψ
+(u) :=

1
2

∫

RN

(
|(−∆)

α
2 u|2 + V(x)u2

)
dx +

2
p2

∫

Ω

|(u+|p dx −
1
p

∫

Ω

|u+|p ln(u+)2 dx.

In this way we can get a solution u such that

(−∆)αu + V(x)u = |u+|p−2u+ ln(u+)2 in Ω. (3.1)

Testing equation (3.1) with u−, we obtain
∫

RN
(−∆)

α
2 u(−∆)

α
2 u− dx +

∫

Ω

V(x)|u−|2 dx = 0. (3.2)

On the other hand,
∫

RN
(−∆)

α
2 u(−∆)

α
2 u− dx =

∫

RN
|(−∆)

α
2 u−|2 dx +

∫

RN
(−∆)

α
2 u+(−∆)

α
2 u− dx

=
∫

RN
|(−∆)

α
2 u−|2 dx + (u+, u−)α ≥ 0.

(3.3)

Thus, it follows from (3.2) and (3.3), we have u− = 0 and u ≥ 0. Since |t|p−1| ln t2| ≤ |t| +
Cq|t|q−1, ∀x ∈ Ω, t ∈ R \ {0}, for q ∈ (2, 2∗α), by the regularity theorem [12, Lemma 3.4],
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we can obtain that u ∈ C0,µ for some µ ∈ (0, 1). Therefore, using the maximum principle
[17, Proposition 2.17], we obtain u ≡ 0 in Ω, a contradiction. Thus, u is a positive solution of
problem (1.1).

Finally, we prove Theorem 1.6. We conclude from Lemma 2.9 and Lemma 2.10 that prob-
lem (1.1) has a sign-changing solution ũ ∈ M such that Ψ(ũ) = m and Ψ′(ũ) = 0. It remains
to prove that Ψ(ũ) = m := infM Ψ(u) > 2c. Indeed, by (1.10), Corollary 2.2 and Lemma 2.6,
we have

m = Ψ(ũ) = max
s,t≥0

Ψ(s
1
p ũ+ + t

1
p ũ−)

> max
s≥0

Ψ(s
1
p ũ+) + max

t≥0
Ψ(t

1
p ũ−) ≥ 2c.

The proof is completed.

4 Infinitely many solutions

In the following, we analysis the existence of infinitely many nontrivial solutions for problem
(1.1).

Define ϕ̂ : H 7→ R and ϕ : S 7→ R by ϕ̂(u) = Ψ(π̂(u)) and ϕ := ϕ̂|S, respectively. Clearly,
ϕ̂ and ϕ are even since Ψ is even. It is not difficult to verify that ϕ is bounded from below in S

and ϕ satisfies the Palais–Smale condition on S. Hence, arguing as [19], the functional Ψ has
infinitely many critical points, which shows that (1.1) has infinitely many nontrivial solutions.
The Theorem 1.7 is proved.
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1 Introduction and main results

In this article, we consider the multiplicity results of solutions of the following fourth-order

elliptic equation:

{
∆2u − ∆u + u = f (x)|u|q−2u + |u|p−2u, in R

N ,

u ∈ H2(RN),
(1.1)

where N > 4, 1 < q < 2 < p < 2∗(2∗ = 2N/(N − 4)), the weight function f satisfies the

following condition:

(F) f ≥ 0, f ∈ Lrq(RN) ∩ L∞(RN) where rq =
r

r−q for some r ∈ (2, 2∗).

Associated with (1.1), we consider the C1-functional I f , for each u ∈ H2(RN),

I f (u) =
1

2
‖u‖2 −

1

q

∫

RN
f (x)|u|qdx −

1

p

∫

RN
|u|pdx,

where ‖u‖ =
(∫

RN

(
|∆u|2 + |∇u|2 + u2

)
dx
)1/2

is the norm in H2(RN). It is well known that

the solutions of (1.1) are the critical points of the energy functional I f [14].

BCorresponding author. Email: math_chb@163.com
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In reality, elliptic equations with concave ang convex nonlinearities in bounded domains

have been the focus of a great deal of research in recent years. Ambrosetti et al. [1], for

example, considered the following equation:




−∆u = λuq−1 + up−1, in Ω,

u > 0, in Ω,

u ∈ H1
0(Ω),

(1.2)

where Ω is a bounded domain in R
N with 1 < q < 2 < p < 2∗ (2∗ = 2N

N−2 if N ≥ 3; 2∗ =

∞ if N = 1, 2) and λ > 0. They found that there is λ0 > 0 such that (1.2) admits at least two

positive solutions for λ ∈ (0, λ0), has a positive solution for λ = λ0 and no positive solution

exists for λ > λ0. Actually, many scholars have also obtained the same results in the unit ball

BN(0; 1), see [2, 6, 10, 13].

Furthermore, it is also an important subject to deal with elliptic equation with concave-

convex nonlinearities when a bounded domain Ω is replaced by R
N . Wu [18] studied the

concave-convex elliptic problem:




−∆u + u = fλ(x)uq−1 + gµ(x)up−1, in R
N ,

u > 0, in R
N ,

u ∈ H1(RN),

(1.3)

where 1 < q < 2 < p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2),

fλ = λ f+ + f− ( f± = ±max{0,± f } 6= 0)

is sign-changing, gµ = a + µb and the parameters λ, µ > 0. When the functions f+, f−, a, b

satisfy appropriate hypotheses, author obtained the multiplicity of positive solutions for the

problem (1.3). Hsu and Lin [9] dealt with the existence and multiplicity of positive solutions

for the following semilinear elliptic equation:




−∆u + u = λa(x)|u|q−2u + b(x)|u|p−2u, in R
N ,

u > 0, in R
N ,

u ∈ H1(RN),

(1.4)

where a, b are measurable functions and meet the right conditions. They obtained the result

of multiple solutions of the equation (1.4).

Inspired by the existing literature [5,8,9,11,15,18–20], the main aim of this article is to study

(1.1) involving concave-convex nonlinearities on the whole space R
N . As far as we know,

there are few articles dealing with this type of fourth-order elliptic equation (1.1) involving

concave-convex nonlinearities. Using arguments similar to those used in [16], we will prove

the existence of two nontrivial solutions by using Ekeland variational principle [7].

Let

σ =

(
p − 2

p − q

)(
2 − q

p − q

) 2−q
p−2

S
p(2−q)
2(p−2)
p S

q
2
r > 0,

where Sp and Sr are the best Sobolev constant. Now, we state the main result.

Theorem 1.1. Assume that (F) holds. If | f |rq ∈ (0, σ), then (1.1) has at least two nontrivial solutions,

one of which is the ground state solution.

This paper is organized as follows. In Section 2, we give some notations and preliminaries.

In Section 3, we are concerned with the proof of Theorem 1.1.
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2 Notations and preliminaries

We shall throughout use the Sobolev space H2(RN) with standard norm. The dual space

of H2(RN) will be denoted by H−2(RN). 〈·, ·〉 denotes the usual scalar product in H2(RN).

Lr(RN) is the usual Lebesgue space whose norms we denote by |u|r =
(∫

RN |u|rdx
)1/r

for

1 ≤ p < ∞. Moreover, we denote by Sr the best Sobolev constant for the embedding of

H2(RN) in Lr(RN).

Now, we consider the Nehari minimization problem:

α f = inf{I f (u)|u ∈ N f },

where N f = {u ∈ H2(RN)\{0}|〈I′f (u), u〉 = 0}. Define

ψ f (u) = 〈I′f (u), u〉 = ‖u‖2 −
∫

RN
f (x)|u|qdx −

∫

RN
|u|pdx.

Then for u ∈ N f ,

〈ψ′
f (u), u〉 = 〈ψ′

f (u), u〉 − 〈I′f (u), u〉

= ‖u‖2 − (q − 1)
∫

RN
f (x)|u|qdx − (p − 1)

∫

RN
|u|pdx.

Similarly to the skill used in Tarantello [16], we split N f into three parts:

N+
f = {u ∈ N f | 〈ψ

′
f (u), u〉 > 0},

N 0
f = {u ∈ N f | 〈ψ

′
f (u), u〉 = 0},

N−
f = {u ∈ N f | 〈ψ

′
f (u), u〉 < 0}

and note that if u ∈ N f , that is, 〈I′f (u), u〉 = 0, then

〈ψ′
f (u), u〉 = (2 − p)‖u‖2 − (q − p)

∫

RN
f (x)|u|qdx

= (2 − q)‖u‖2 − (p − q)
∫

RN
|u|pdx.

(2.1)

Then, we have the following results.

Lemma 2.1. If | f |rq ∈ (0, σ), then the submanifold N 0 = ∅.

Proof. Suppose the contrary. Then N 0
f 6= ∅, i.e., there exist u ∈ N f such that 〈ψ′

f (u), u〉 = 0.

Then for u ∈ N 0 by (2.1) and Sobolev inequality, we have

(2 − q)‖u‖2 = (p − q)
∫

RN
|u|pdx ≤ (p − q)S

− p
2

p ‖u‖p,

and so

‖u‖ ≥


 (2 − q)S

p
2
p

p − q




1
p−2

. (2.2)

Similarly, using (2.1), Sobolev and Hölder inequalities, we have

(p − 2)‖u‖2 = (p − q)
∫

RN
f (x)|u|qdx ≤ (p − q)| f |rq S

− q
2

r ‖u‖q,
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which implies that

‖u‖ ≤

(
(p − q)| f |rq

(p − 2)S
q
2
r

) 1
2−q

. (2.3)

Combining (2.2) and (2.3) we deduce that

| f |rq ≥

(
p − 2

p − q

)(
2 − q

p − q

) 2−q
p−2

S
p(2−q)
2(p−2)
p S

q
2
r = σ,

which is a contradiction. This completes the proof.

Lemma 2.2. If | f |rq ∈ (0, σ), then the set N−
f is closed in H2(RN).

Proof. Let {un} ⊂ N−
f such that un → u in H2(RN). In the following we show u ∈ N−

f . In

fact, by 〈I′f (un), un〉 = 0 and

〈I′f (un), un〉 − 〈I′f (u), u〉 = 〈I′f (un)− I′f (u), u〉+ 〈I′f (un), un − u〉 → 0 as n → ∞,

we have 〈I′f (u), u〉 = 0. So u ∈ N f . For any u ∈ N−
f , that is, 〈ψ′

f (u), u〉 < 0, from (2.1) we have

(2 − q)‖u‖2
< (p − q)

∫

RN
|u|pdx ≤ (p − q)S

− p
2

p ‖u‖p,

and so

‖u‖ >


 (2 − q)S

p
2
p

p − q




1
p−2

> 0.

Hence N−
f is bounded away from 0. Obviously, by (2.1), it follows that 〈ψ′

f (un), un〉 →

〈ψ′
f (u), u〉 as n → +∞. From 〈ψ′

f (un), un〉 < 0, we have 〈ψ′
f (u), u〉 ≤ 0. By Lemma 2.1,

for | f |rq ∈ (0, σ), N 0
f = ∅, then 〈ψ′

f (u), u〉 < 0. Thus we deduce u ∈ N−
f . This completes the

proof.

Lemma 2.3. The energy functional I f is coercive and bounded below on N f .

Proof. For u ∈ N f , then, by Sobolev and Hölder inequalities,

I f (u) = I f (u)−
1

p
〈I′f (u), u〉

=
p − 2

2p
‖u‖2 −

p − q

pq

∫

RN
f (x)|u|qdx

≥
p − 2

2p
‖u‖2 −

p − q

pq
| f |rq S

− q
2

r ‖u‖q.

This completes the proof.

The following lemma shows that the minimizers on N f are “usually” critical points for I f .

The details of the proof can be referred to Brown and Zhang [4].

Lemma 2.4. Suppose that û is a local minimizer for I f on N f . Then, if û /∈ N 0
f , û is a critical point

of I f .
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For each u ∈ H2(RN)\{0}, we write

tmax :=

(
(2 − q)‖u‖2

(p − q)
∫

RN |u|pdx

) 1
p−2

> 0.

Then, we have the following lemma.

Lemma 2.5. For each u ∈ H2(RN)\{0} and | f |rq ∈ (0, σ), we have

(i) there exist unique 0 < t+ := t+(u) < tmax < t− := t−(u) such that t+u ∈ N+
f , t−u ∈ N−

f

and

I f (t
+u) = inf

tmax≥t≥0
I f (tu), I f (t

−u) = sup
t≥tmax

I f (tu).

(ii) t− is a continuous function for nonzero u.

(iii) N−
f =

{
u ∈ H2(RN)\{0}| 1

‖u‖ t−
(

u
‖u‖

)
= 1

}
.

Proof. (i) Fix u ∈ H2(RN)\{0}. Let

s(t) = t2−q‖u‖2 − tp−q
∫

RN
|u|pdx for t ≥ 0.

We have s(0) = 0, s(t) → −∞ as t → ∞, s(t) is concave and achieves its maximum at tmax.

Moreover, for | f |rq ∈ (0, σ),

s(tmax) =

(
(2 − q)‖u‖2

(p − q)
∫

RN |u|pdx

) 2−q
p−2

‖u‖2 −

(
(2 − q)‖u‖2

(p − q)
∫

RN |u|pdx

) p−q
p−2 ∫

RN
|u|pdx

= ‖u‖q

(
‖u‖p

∫
RN |u|pdx

) 2−q
p−2 (

2 − q

p − q

) 2−q
p−2 p − 2

p − q

≥ ‖u‖q


 ‖u‖p

S
− p

2
p ‖u‖p




2−q
p−2 (

2 − q

p − q

) 2−q
p−2 p − 2

p − q

= ‖u‖q


 (2 − q)S

p
2
p

p − q




2−q
p−2

p − 2

p − q

> | f |rq S
− q

2
r ‖u‖q

≥
∫

RN
f (x)|u|qdx > 0.

(2.4)

Hence, there are unique t+ and t− such that 0 < t+ < tmax < t−,

s(t+) =
∫

RN
f (x)|u|qdx = s(t−)

and

s′(t+) > 0 > s′(t−).

Note that

〈I′f (tu), tu〉 = tq−1

(
s(t)−

∫

RN
f (x)|u|qdx

)
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and

〈ψ′
f (tu), tu〉 = tq+1s′(t) for tu ∈ N f .

We have t+u ∈ N+
f , t−u ∈ N−

f , and I f (t
−u) ≥ I f (tu) ≥ I f (t

+u) for each t ∈ [t+, t−] and

I f (t
+u) ≥ I f (tu) for each t ∈ [0, t+]. Thus,

I f (t
+u) = inf

tmax≥t≥0
I f (tu), I f (t

−u) = sup
t≥tmax

I f (tu).

(ii) By the uniqueness of t− and the external property of t−, we have that t− is a continuous

function of u 6= 0.

(iii) For u ∈ N−
f , let v = u

‖u‖ . By part (i), there is a unique t−(v) > 0 such that t−(v)v ∈ N−
f ,

that is t−( u
‖u‖ )

u
‖u‖ ∈ N−

f . Since u ∈ N−
f , we have t−( u

‖u‖ )
u

‖u‖ = 1, which implies

N−
f ⊂

{
u ∈ H2(RN)\{0}|

1

‖u‖
t−
(

u

‖u‖

)
= 1

}
.

Conversely, let u ∈ H2(RN)\{0} such that 1
‖u‖ t−

(
u

‖u‖

)
= 1. Then t−

(
u

‖u‖

)
u

‖u‖ ∈ N−
f . Thus,

N−
f =

{
u ∈ H2(RN)\{0}

∣∣∣∣
1

‖u‖
t−
(

u

‖u‖

)
= 1

}
.

This completes the proof.

By Lemma 2.1, for | f |rq ∈ (0, σ) we write N f = N+
f ∪N−

f and define

α+
f = inf

u∈N+
f

I f (u), α−
f = inf

u∈N−
f

I f (u).

Lemma 2.6. For | f |rq ∈ (0, σ), we have α f ≤ α+
f < 0.

Proof. Let u ∈ N+
f . By (2.1) we have

∫

RN
|u|pdx <

2 − q

p − q
‖u‖2,

and so

I f (u) =

(
1

2
−

1

q

)
‖u‖2 +

(
1

q
−

1

p

) ∫

RN
|u|pdx

<

[(
1

2
−

1

q

)
+

(
1

q
−

1

p

)(
2 − q

p − q

)]
‖u‖2

= −
(p − 2)(2 − q)

2pq
‖u‖2

< 0.

Therefore, α f ≤ α+
f < 0.

3 Proof of Theorem 1.1

First, we will use the idea of Ni and Takagi [12] to get the following lemmas.
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Lemma 3.1. If | f |rq ∈ (0, σ), then for every u ∈ N f , there exist ǫ > 0 and a differentiable function

g : Bǫ(0) ⊂ H2(RN) → R
+ := (0,+∞) such that

g(0) = 1, g(ω)(u − ω) ∈ N f , ∀ω ∈ Bǫ(0)

and

〈g′(0), v〉 =
2(u, v)− q

∫
RN f (x)|u|q−2uvdx − p

∫
RN |u|p−2uvdx

〈ψ′
f (u), u〉

(3.1)

for all v ∈ H2(RN). Moreover, if 0 < C1 ≤ ‖u‖ ≤ C2, then there exists C > 0 such that

|〈g′(0), v〉| ≤ C‖v‖. (3.2)

Proof. We define F : R × H2(RN) → R by

F(t, ω) = t‖u − ω‖2 − tq−1
∫

RN
f (x)|u − ω|qdx − tp−1

∫

RN
|u − ω|pdx,

it is easy to see F is differentiable. Since F(1, 0) = 0 and Ft(1, 0) = 〈ψ′
f (u), u〉 6= 0, we apply

the implicit function theorem at point (1, 0) to get the existence of ǫ > 0 and differentiable

function g : Bǫ(0) → R
+ such that g(0) = 1 and F(g(ω), ω) = 0 for ∀ω ∈ Bǫ(0). Thus,

g(ω)(u − ω) ∈ N f , ∀ω ∈ Bǫ(0).

Also by the differentiability of the implicit function theorem, for all v ∈ H2(RN), we know

that

〈g′(0), v〉 = −
〈Fω(1, 0), v〉

Ft(1, 0)
.

Note that

−〈Fω(1, 0), v〉 = 2(u, v)− q
∫

RN
f (x)|u|q−2uvdx − p

∫

RN
|u|p−2uvdx

and Ft(1, 0) = 〈ψ′
f (u), u〉. So (3.1) holds.

Moreover, by (3.1), 0 < C1 ≤ ‖u‖ ≤ C2 and Hölder’s inequality, we have

|〈g′(0), v〉| ≤
C̃‖v‖

〈ψ′
f (u), u〉

for some C̃ > 0. To prove (3.2), therefore, we only need to show that |〈ψ′
f (u), u〉| > d for

some d > 0. We argue by contradiction. Assume that there exists a sequence {un} ∈ N f ,

C1 ≤ ‖un‖ ≤ C2, we have 〈ψ′
f (un), un〉 = on(1). Then by (2.1) and Sobolev’s inequality, we

have

(2 − q)‖un‖
2 = (p − q)

∫

RN
|un|

pdx + on(1)

≤ (p − q)S
− p

2
p ‖un‖

p + on(1),

and so

‖un‖ ≥


 (2 − q)S

p
2
p

p − q




1
p−2

+ on(1). (3.3)
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Similarly, using (2.1) and Hölder and Sobolev inequalities, we have

(p − 2)‖un‖
2 = (p − q)

∫

RN
f (x)|un|

qdx + on(1)

≤ (p − q)| f |rq S
− q

2
r ‖un‖

q + on(1),

which implies that

‖un‖ ≤

(
(p − q)| f |rq

(p − 2)S
q
2
r

) 1
2−q

+ on(1). (3.4)

Combining (3.3) and (3.4) as n → +∞, we deduce that

| f |rq ≥

(
p − 2

p − q

)(
2 − q

p − q

) 2−q
p−2

S
p(2−q)
2(p−2)
p S

q
2
r = σ,

which is a contradiction. Thus if 0 < C1 ≤ ‖u‖ ≤ C2, there exists C > 0 such that

|〈g′(0), v〉| ≤ C‖v‖.

This completes the proof.

Lemma 3.2. If | f |rq ∈ (0, σ) ∈ (0, σ), then for every u ∈ N−
f , there exist ǫ > 0 and a differentiable

function g− : Bǫ(0) ⊂ H2(RN) → R
+ such that

g−(0) = 1, g−(ω)(u − ω) ∈ N−
f , ∀ω ∈ Bǫ(0)

and

〈(g−)′(0), v〉 =
2(u, v)− q

∫
RN f (x)|u|q−2uvdx − p

∫
RN |u|p−2uvdx

〈ψ′
f (u), u〉

(3.5)

for all v ∈ H2(RN). Moreover, if 0 < C1 ≤ ‖u‖ ≤ C2, then there exists C > 0 such that

|〈(g−)′(0), v〉| ≤ C‖v‖. (3.6)

Proof. Similar to the argument in Lemma 3.2, there exist ǫ > 0 and a differentiable function

g− : Bǫ(0) → R
+ such that g−(0) = 1 and g−(ω)(u − ω) ∈ N f for all ω ∈ Bǫ(0). By u ∈ N−

f ,

we have

〈ψ′
f (u), u〉 = ‖u‖2 − (q − 1)

∫

RN
f (x)|u|qdx − (p − 1)

∫

RN
|u|pdx < 0.

Since g−(ω)(u − ω) is continuous with respect to ω, when ǫ is small enough, we know for

ω ∈ Bǫ(0)

‖g−(ω)(u − ω)‖2 − (q − 1)
∫

RN
f (x)|g−(ω)(u − ω)|qdx − (p − 1)

∫

RN
|g−(ω)(u − ω)|pdx < 0.

Thus, g−(ω)(u − ω) ∈ N−
f , ∀ω ∈ Bǫ(0). Moreover, the proof details of (3.5) and (3.6) are

similar to Lemma 3.1.

Lemma 3.3. If | f |rq ∈ (0, σ), then

(i) there exists a minimizing sequence {un} ∈ N f such that

I f (un) = α f + on(1),

I′f (un) = on(1) in H−2(RN);
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(ii) there exists a minimizing sequence {un} ∈ N−
f such that

I f (un) = α−
f + on(1),

I′f (un) = on(1) in H−2(RN).

Proof. (i) By Lemma 2.3 and the Ekeland variational principle on N f , there exists a minimizing

sequence {un} ⊂ N f such that

α f ≤ I f (un) < α f +
1

n
(3.7)

and

I f (un) ≤ I f (v) +
1

n
‖v − un‖ for each v ∈ N f . (3.8)

And we can show that there exists C1, C2 > 0 such that 0 < C1 ≤ ‖un‖ ≤ C2. Indeed, if

not, that is, un → 0 in H2(RN), then I f (un) would converge to zero, which contradict with

I f (un) → α f < 0. Moreover, by Lemma 2.3 we know that I f (u) is coercive on N f , {un} is

bounded in N f .

Now, we show that

‖I′f (un)‖H−2(RN) → 0 as n → ∞.

Applying Lemma 3.1 with un to obtain the functions gn(ω) : Bǫn(0) → R
+ for some ǫn > 0,

such that

gn(0) = 1, gn(ω)(un − ω) ∈ N f , ∀ω ∈ Bǫn(0).

We choose 0 < ρ < ǫn. Let u ∈ H2(RN)\{0} and ωρ = ρu
‖u‖ . Since gn(ωρ)(un − ωρ) ∈ N f , we

deduce from (3.8) that

1

n
[|gn(ωρ)− 1|‖un‖+ ρgn(ωρ)]

≥
1

n
‖gn(ωρ)(un − ωρ)− un‖

≥ I f (un)− I f (gn(ωρ)(un − ωρ))

=
1

2
‖un‖

2 −
1

q

∫

RN
f (x)|un|

qdx −
1

p

∫

RN
|un|

pdx −
1

2

(
gn(ωρ)

)2
‖un − ωρ‖

2

+
1

q

(
gn(ωρ)

)q
∫

RN
f (x)|un − ωρ|

qdx +
1

p

(
gn(ωρ)

)p
∫

RN
|un − ωρ|

pdx

= −

(
gn(ωρ)

)2
− 1

2
‖un − ωρ‖

2 −
1

2
(‖un − ωρ‖

2 − ‖un‖
2)

+

(
gn(ωρ)

)q
− 1

q

∫

RN
f (x)|un − ωρ|

qdx

+
1

q

(∫

RN
f (x)|un − ωρ|

qdx −
∫

RN
f (x)|un|

qdx

)

+

(
gn(ωρ)

)p
− 1

p

∫

RN
|un − ωρ|

pdx +
1

p

(∫

RN
|un − ωρ|

pdx −
∫

RN
|un|

pdx

)
.

(3.9)

Note that

lim
ρ→0+

gn(ωρ)− 1

ρ
= lim

ρ→0+

gn(0 + ρ u
‖u‖ )− gn(0)

ρ
=

〈
(gn)

′(0),
u

‖u‖

〉
.
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If we divide the ends of (3.9) by ρ and let ρ → 0+, we have

1

n

[∣∣∣∣
〈
(gn)

′(0),
u

‖u‖

〉∣∣∣∣ ‖un‖+ 1

]

≥ −

〈
(gn)

′(0),
u

‖u‖

〉
‖un‖

2 −
∫

RN
∆un∆

(
−

u

‖u‖

)
+∇un∇

(
−

u

‖u‖

)
+ un

(
−

u

‖u‖

)
dx

+

〈
(gn)

′(0),
u

‖u‖

〉 ∫

RN
f (x)|un|

qdx +
∫

RN
f (x)|un|

q−2un

(
−

u

‖u‖

)
dx

+

〈
(gn)

′(0),
u

‖u‖

〉 ∫

RN
|un|

pdx +
∫

RN
|un|

p−2un

(
−

u

‖u‖

)
dx

= −

〈
(gn)

′(0),
u

‖u‖

〉(
‖un‖

2 −
∫

RN
f (x)|un|

qdx −
∫

RN
|un|

pdx

)
−

1

‖u‖

∫

RN
|un|

p−2unudx

+
1

‖u‖

∫

RN
(∆un∆u +∇un∇u + unu)dx −

1

‖u‖

∫

RN
f (x)|un|

q−2unudx

= −

〈
(gn)

′(0),
u

‖u‖

〉
〈I′f (un), un〉+

1

‖u‖
〈I′f (un), u〉

=
1

‖u‖

〈
I′f (un), u

〉
,

that is,
1

n

[
|〈(gn)

′(0), u〉|‖un‖+ ‖u‖
]
≥ 〈I′f (un), u〉.

By the boundedness of ‖un‖ and Lemma 3.2, there exists Ĉ > 0 such that

Ĉ

n
≥

〈
I′f (un),

u

‖u‖

〉
.

Therefore, we have

‖I′f (un)‖H−2(RN) = sup
u∈H2(RN)\{0}

〈I′f (un), u〉

‖u‖
≤

Ĉ

n
,

that is, I′f (un) = on(1) as n → +∞. This completes the proof of (i).

(ii) Similarly, by using Lemma 3.2, we can prove (ii). We will omit the details here.

Now, we establish the existence of minimum for I f on N+
f .

Theorem 3.4. Assume that (F) holds. If | f |rq ∈ (0, σ), then the functional I f has a minimizer u+ in

N+
f and it satisfies

(i) I f (u
+) = α f = α+

f ;

(ii) u+ is a solution of equation (1.1).

Proof. From Lemma 3.3, let {un} be a (PS)α f
sequence for I f on N f , i.e.,

I f (un) = α f + on(1), I′f (un) = on(1) in H−2(RN). (3.10)
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Then it follows from Lemma 2.3 that {un} is bounded in H2(RN). Hence, up to a subsequence,

there exists u+ ∈ H2(RN) such that





un ⇀ u+ in H2(RN);

un → u+ in Ls
loc(R

N) (2 ≤ s < 2∗);

un(x) → u+(x) a.e. in R
N .

(3.11)

By (F), Hölder inequality and (3.11), we can infer that

∫

RN
f (x)|un|

qdx =
∫

RN
f (x)|u+|qdx + on(1) as n → ∞. (3.12)

In fact, for any ǫ > 0, there exists M sufficiently large such that

(∫

|x|>M
| f (x)|rq dx

) 1
rq

< ǫ.

And from {un} ⊂ N f in H2(RN) is bounded, we obtain that
(∫

RN |un − u+|rdx
) q

r is bounded.

Therefore, we have
∫

RN
| f (x)(|un|

q − |u+|q)|dx ≤
∫

RN
f (x)|un − u+|qdx

=
∫

|x|≤M
f (x)|un − u+|qdx +

∫

|x|>M
f (x)|un − u+|qdx

≤

(∫

|x|≤M
| f (x)|rq dx

) 1
rq
(∫

|x|≤M
|un − u+|rdx

) q
r

+

(∫

|x|>M
| f (x)|rq dx

) 1
rq
(∫

|x|>M
|un − u+|rdx

) q
r

→ 0 as n → ∞.

First, we can claim that u+ is a nontrivial solution of (1.1). Indeed, by (3.10) and (3.11), it is

easy to see that u+ is a solution of (1.1). Next we show that u+ is nontrivial. From un ∈ N f ,

we have that

I f (un) =

(
1

2
−

1

p

)
‖un‖

2 −

(
1

q
−

1

p

) ∫

RN
f (x)|un|

qdx. (3.13)

Let n → ∞ in (3.13), we can get

α f ≥ −
p − q

pq

∫

RN
f (x)|u+|qdx.

In view of Lemma 2.6, we have 0 > α+
f ≥ α f , which implies

∫
RN f (x)|u+|qdx > 0. Thus,

u+ is a nontrivial solution of (1.1). Now we prove that un → u+ strongly in H2(RN) and

I f (u
+) = α. In fact, by un, u ∈ N f , (3.12) and weak lower semicontinuity of norm, we have

α f ≤ I f (u
+) =

(
1

2
−

1

p

)
‖u+‖2 −

(
1

q
−

1

p

) ∫

RN
f (x)|u+|qdx

≤ lim
n→∞

((
1

2
−

1

p

)
‖un‖

2 −

(
1

q
−

1

p

) ∫

RN
f (x)|un|

qdx

)

= lim
n→∞

I f (un) = α f ,
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which implies that I f (u
+) = α f and limn→∞ ‖un‖2 = ‖u+‖2. Noting that un ⇀ u+ in H2(RN),

so un → u+ strongly in H2(RN). Furthermore, we have u+ ∈ N+
f . On the contrary, if

u+ ∈ N−
f , then by Lemma 2.5 (i), there are unique t+ and t− such that t+u+ ∈ N+

f and

t−u+ ∈ N−
f . In particular, we have t+ < t− = 1 and so I f (t

+u+) < I f (t
−u+) = I f (u

+) = α f ,

which is a contradiction. By Lemma 2.4 we may assume that u+ is a solution of (1.1). This

completes the proof.

In order to obtain the existence of the second local minimum, we consider the following

minimization problem:

S0 = inf{I0(u) | u ∈ H2(RN)\{0}, I′0(u) = 0},

where

I0(u) =
1

2
‖u‖2 −

1

p

∫

RN
|u|pdx.

From [17, 21], we know that S0 is achieved at u0 ∈ H2(RN). Moreover,

S0 = I0(u0) = sup
t≥0

I0(tu0).

Then, we have the following lemma.

Lemma 3.5. If | f |rq ∈ (0, σ), then α−
f < α f + S0.

Proof. From Lemma 2.5 (iii), N−
f disconnects H2(RN)\{0} in exactly two components:

Λ1 =

{
u

∣∣∣∣
1

‖u‖
t−
(

u

‖u‖

)
> 1

}
,

Λ2 =

{
u

∣∣∣∣
1

‖u‖
t−
(

u

‖u‖

)
< 1

}
,

and N+
f ⊂ Λ1. Moreover, there exists t1 such that u+ + t1u0 ∈ Λ2. Indeed, denote t0 =

t−((u+ + tu0)/‖u+ + tu0‖). Since

t−
(

u+ + tu0

‖u+ + tu0‖

)(
u+ + tu0

‖u+ + tu0‖

)
∈ N−

f ,

we have

0 ≤
t
q
0

∫
RN f (x)|u+ + tu0|qdx

‖u+ + tu0‖q
= t2

0 −
t

p
0

∫
RN |u+ + tu0|pdx

‖u+ + tu0‖p
.

Thus

t0 ≤

[
‖u+/t + u0‖(∫

RN |u+/t + u0|p
)1/p

]p/(p−2)

→ ‖u0‖ as t → ∞.

Therefore, there exists t2 > 0 such that t0 < l‖u0‖, for some l > 1 and t ≥ t2. Set t1 > t2 + l,

then
(

t−
(

u+ + t1u0

‖u+ + t1u0‖

))2

< l2‖u0‖
2

≤ ‖u+‖2 + t2
1‖u0‖

2 + 2t1

∫

RN
(∆u+

∆u0 +∇u+∇u0 + u+u0)dx

= ‖u+ + t1u0‖
2,
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that is, u+ + t1u0 ∈ Λ2. So there exists k ∈ (0, 1) such that u+ + kt1u0 ∈ N−
f . Furthermore, we

have
α−

f ≤ I f (u
+ + kt1u0)

=
1

2
‖u+ + kt1u0‖

2 −
1

q

∫

RN
f (x)|u+ + kt1u0|

qdx −
1

p

∫

RN
|u+ + kt1u0|

pdx

< I f (u
+) +

1

2
‖kt1u0‖

2 −
1

p

∫

RN
|kt1u0|

pdx

= I f (u
+) + I0(kt1u0)

≤ α f + I0(u0)

= α f + S0.

This completes the proof.

Next, we establish the existence of minimum for I f on N−
f .

Theorem 3.6. Assume that (F) holds. If | f |rq ∈ (0, σ), then the functional I f has a minimizer u− in

N−
f and it satisfies

(i) I f (u
−) = α−

f ;

(ii) u− is a solution of equation (1.1).

Proof. From Lemma 3.3, let {un} be a (PS)α−f
sequence for I f on N−

f , i.e.,

I f (un) = α−
f + on(1), I′f (un) = on(1) in H−2(RN). (3.14)

From Lemma 2.3 we have {un} is bounded in H2(RN). Hence, up to a subsequence, there

exists u− ∈ H2(RN) such that




un ⇀ u− in H2(RN);

un → u− in Ls
loc(R

N) (2 ≤ s < 2∗);

un(x) → u−(x) a.e. in R
N .

(3.15)

From (3.14) and (3.15), we have 〈I′f (u
−), v〉 = 0, ∀v ∈ H2(RN), that is, u− is a weak solution

of (1.1) and u− ∈ N f . Let vn = un − u−. Then





vn ⇀ 0 in H2(RN);

vn → 0 in Ls
loc(R

N) (2 ≤ s < 2∗);

vn(x) → 0 a.e. in R
N .

(3.16)

Now we prove that un → u− strongly in H2(RN), that is, vn → 0 strongly in H2(RN). Arguing

by contradiction, we assume that there is c > 0 such that ‖vn‖ ≥ c > 0. By the Brézis–Lieb

theorem [3],

I f (un) =
1

2
‖un‖

2 −
1

q

∫

RN
f (x)|un|

qdx −
1

p

∫

RN
|un|

pdx

= I f (u
−) +

1

2
‖vn‖

2 −
1

q

∫

RN
f (x)|vn|

qdx −
1

p

∫

RN
|vn|

pdx + on(1)

= I f (u
−) +

1

2
‖vn‖

2 −
1

p

∫

RN
|vn|

pdx + on(1),

(3.17)
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where
∫

RN f (x)|vn|qdx → 0 as n → ∞. In fact, for any ǫ > 0, there exists M sufficiently large

such that (∫

|x|>M
| f (x)|rq dx

) 1
rq

< ǫ.

By (F), Hölder’s inequality and (3.16), we have

∫

RN
f (x)|vn|

qdx =
∫

|x|≤M
f (x)|vn|

qdx +
∫

|x|>M
f (x)|vn|

qdx

≤

(∫

|x|≤M
| f (x)|rq dx

) 1
rq
(∫

|x|≤M
|vn|

rdx

) q
r

+

(∫

|x|>M
| f (x)|rq dx

) 1
rq
(∫

|x|>M
|vn|

rdx

) q
r

→ 0 as n → ∞.

Moreover,

on(1) = 〈I′f (un), un〉 = ‖un‖
2 −

∫

RN
f (x)|un|

qdx −
∫

RN
|un|

pdx

= 〈I′f (u
−), u−〉+ ‖vn‖

2 −
∫

RN
f (x)|vn|

qdx −
∫

RN
|vn|

pdx + on(1)

= ‖vn‖
2 −

∫

RN
|vn|

pdx + on(1).

(3.18)

Combining (3.17) and (3.18), we obtain

‖vn‖
2 −

∫

RN
|vn|

pdx = on(1), I f (un) ≥ α f +
1

2
‖vn‖

2 −
1

p

∫

RN
|vn|

pdx + on(1).

Since ‖vn‖ ≥ c > 0, we can get a sequence kn, kn > 0, kn → 1 as n → ∞, such that sn = knvn

satisfying ‖sn‖2 −
∫

RN |sn|pdx = 0. Thus

I f (un) ≥ α f +
1

2
‖sn‖

2 −
1

p

∫

RN
|sn|

pdx + on(1) ≥ α f + S0 + on(1),

that is, α−
f ≥ α f + S0, contradicting Lemma 3.5. Hence un → u− strongly in H2(RN). This

implies

I f (un) → I f (u
−) = α−

f as n → ∞.

Furthermore, from Lemma 2.2, N−
f is closed set and bounded away from 0. We have u− ∈ N−

f

and u− is nontrivial. By Lemma 2.4 we may assume that u− is a solution of (1.1). This

completes the proof.

Proof of Theorem 1.1. By Theorems 3.4 and 3.6, for (1.1) there exist two solutions u+ and u−

such that u+ ∈ N+
f , u− ∈ N−

f . Since N+
f ∩N−

f = ∅, this implies that u+ and u− are different.

Moreover, u+ is the ground state solution. It completes the proof of Theorem 1.1.

Acknowledgements

The authors thank the anonymous referees for their valuable suggestions and comments.



Fourth-order elliptic equation 15

References

[1] A. Ambrosetti, H. Brézis, G. Cerami, Combined effects of concave and convex non-

linearities in some elliptic problems, J. Funct. Anal. 122(1994), No. 2, 519–543. https:

//doi.org/10.1006/jfan.1994.1078; MR1276168; Zbl 0805.35028

[2] Adimurthi, F. Pacella, S. L. Yadava, On the number of positive solutions of some

semilinear Dirichlet problems in a ball, Differential Integral Equations 10(1997), No. 6, 1157–

1170. MR1608057; Zbl 0940.35069

[3] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and conver-

gence of functionals, Proc. Am. Math. Soc. 88(1983), No. 3, 486–490. https://doi.org/10.

2307/2044999; MR0699419; Zbl 0526.46037

[4] K. J. Brown, Y. P. Zhang, The Nehari manifold for a semilinear elliptic equation with a

sign-changing weight function, J. Differential Equations 193(2003), No. 2, 481–499. https:

//doi.org/10.1016/S0022-0396(03)00121-9; MR1998965; Zbl 1074.35032

[5] K. J. Chen, Combined effects of concave and convex nonlinearities in elliptic equation on

R
N , J. Math. Anal. Appl. 355(2009), No. 2, 767–777. https://doi.org/10.1016/j.jmaa.

2009.02.029; MR2521751; Zbl 1185.35091

[6] L. Damascelli, M. Grossi, F. Pacella, Qualitative properties of positive solutions of

semilinear elliptic equations in symmetric domains via the maximum principle, Ann.

Inst. Henri Poincaré Anal. Non Linéaire 16(1999), No. 5, 631–652. https://doi.org/10.

1016/S0294-1449(99)80030-4; MR1712564; Zbl 0935.35049

[7] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47(1974), 324–353. https:

//doi.org/10.1016/0022-247X(74)90025-0; MR0346619; Zbl 0286.49015

[8] J. Giacomoni, S. Prashanth, K. Sreenadh, A global multiplicity result for N-Laplacian

with critical nonlinearity of concave-convex type, J. Differential Equations 232(2007), No. 2,

544–572. https://doi.org/10.1016/j.jde.2006.09.012; MR2286391; Zbl 1165.35022

[9] T. S. Hsu, H. L. Lin, Multiple positive solutions for semilinear elliptic equations in

R
N involving concave-convex nonlinearities and sign-changing weight functions, Abstr.

Appl. Anal. 2010(2010), Art. ID 658397, 21 pp. https://doi.org/10.1155/2010/658397;

MR2669082; Zbl 1387.35309

[10] P. Korman, On uniqueness of positive solutions for a class of semilinear equations, Dis-

crete Contin. Dyn. Syst. 8(2002), No. 4, 865–871. https://doi.org/10.3934/dcds.2002.8.

865; MR1920648; Zbl 1090.35082

[11] S. B. Liu, Z. H. Zhao, Solutions for fourth order elliptic equations on R
N involving

u∆(u2) and sign-changing potentials, J. Differential Equations 267(2019), No. 3, 1581–1599.

https://doi.org/10.1016/j.jde.2019.02.017; MR3945610; Zbl 1418.35128

[12] W. M. Ni, I. Takagi, On the shape of least-energy solutions to a semilinear Neumann

problem, Commun. Pure Appl. Math. 44(1991), No. 7, 819–851. https://doi.org/10.1002/

cpa.3160440705; MR1115095; Zbl 0754.35042



16 Z. Wu and H. Chen

[13] T. C. Ouyang, J. P. Shi, Exact multiplicity of positive solutions for a class of semilinear

problem. II, J. Differential Equations 158(1999), No. 1, 94–151. https://doi.org/10.1006/

jdeq.1999.3644; MR1721723; Zbl 0947.35067

[14] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential

equations, CBMS Regional Conference Series in Mathematics, Vol. 65, Published for the

Conference Board of the Mathematical Sciences, Washington, DC; by the American Math-

ematical Society, Providence, RI, 1986. MR0845785; Zbl 0609.58002

[15] K. Silva, A. Macedo, Local minimizers over the Nehari manifold for a class of concave-

convex problems with sign changing nonlinearity, J. Differential Equations 265(2018), No. 5,

1894–1921. https://doi.org/10.1016/j.jde.2018.04.018; MR3800105; Zbl 1392.35172

[16] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev ex-

ponent, Ann. Inst. Henri Poincaré Anal. Non Linéaire 9(1992), No. 3, 281–304. https:

//doi.org/10.1016/S0294-1449(16)30238-4; MR1168304; Zbl 0785.35046

[17] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their

Applications, Vol. 24, Birkhäuser, Boston, 1996. https://doi.org/10.1007/978-1-4612-

4146-1; MR1400007; Zbl 0856.49001

[18] T. F. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in

R
N involving sign-changing weight, J. Funct. Anal. 258(2010), No. 1, 99–131. https://

doi.org/10.1016/j.jfa.2009.08.005; MR2557956; Zbl 1182.35119

[19] F. L. Wang, M. Avci, Y. K. An, Existence of solutions for fourth order elliptic equations

of Kirchhoff type, J. Math. Anal. Appl. 409(2014), No. 1, 140–146. https://doi.org/10.

1016/j.jmaa.2013.07.003; MR3095024; Zbl 1311.35093

[20] W. H. Xie, H. B. Chen, Multiple positive solutions for the critical Kirchhoff type problems

involving sign-changing weight functions, J. Math. Anal. Appl. 479(2019), No. 1, 135–161.

https://doi.org/10.1016/j.jmaa.2019.06.020; MR3987029; Zbl 1425.35045

[21] W. Zou, M. Schechter, Critical point theory and its applications, Springer, New York, 2006.

https://doi.org/10.1007/0-387-32968-4 MR2232879; Zbl 1125.58004



Electronic Journal of Qualitative Theory of Differential Equations
2021, No. 72, 1–24; https://doi.org/10.14232/ejqtde.2021.1.72 www.math.u-szeged.hu/ejqtde/

Hopf bifurcation in a reaction-diffusive-advection

two-species competition model with one delay

Qiong MengB 1, Guirong Liu1 and Zhen Jin2

1School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
2Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China

Received 26 October 2020, appeared 19 September 2021

Communicated by Péter L. Simon

Abstract. In this paper, we investigate a reaction-diffusive-advection two-species com-
petition model with one delay and Dirichlet boundary conditions. The existence and
multiplicity of spatially non-homogeneous steady-state solutions are obtained. The sta-
bility of spatially nonhomogeneous steady-state solutions and the existence of Hopf
bifurcation with the changes of the time delay are obtained by analyzing the distribu-
tion of eigenvalues of the infinitesimal generator associated with the linearized system.
By the normal form theory and the center manifold reduction, the stability and bi-
furcation direction of Hopf bifurcating periodic orbits are derived. Finally, numerical
simulations are given to illustrate the theoretical results.
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1 Introduction

In this paper, we consider a two-species competition model in a reaction-diffusive-advection

with one delay

{
∂u(x,t)

∂t =∇· [d1∇u(x, t)− a1u(x, t)∇m]+u(x, t)[m(x)−b1u(x, t − r)− c1v(x, t − r)],
∂v(x,t)

∂t =∇· [d2∇v(x, t)− a2v(x, t)∇m]+v(x, t)[m(x)−b2u(x, t − r)− c2v(x, t − r)],
(1.1)

where u(x, t), v(x, t) represents the population density at location x ∈ Ω and time t, time

delay r > 0 represents the maturation time, and Ω is a bounded domain in Rk (1 ≤ k ≤ 3) in

(1.1) with a smooth boundary ∂Ω. ai, bi, ci, di > 0 (i = 1, 2).

In (1.1), we assume that both species have the same per-capita growth rates at place x ∈ Ω,

denoted by m(x). This scenario can occur if the two species are competing for the same

resources. To reflect the heterogeneity of environment, we assume that m(x) is a nonconstant

function. In some sense, m(x) can reflect the quality and quantity of resources available at the

location x, where the favorable region {x ∈ Ω : m(x) > 0} acts as a source and the unfavorable

part {x ∈ Ω : m(x) < 0} is a sink region, see [26]. When m(x) ≡ 1, see [15, 18].

BCorresponding author. Email: mengqiong@qq.com
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Under our assumptions in (1.1), the dispersal of the two competitors can be described in

terms of their fluxes

Ju = −d1∇u + a1u∇m, Jv = −d2∇v + a2v∇m,

respectively, where d1∇u and d2∇v account for random diffusion, and a1u∇m and a2v∇m

represent movement upward along the environmental gradient. The two non-negative con-

stants a1 and a2 measure the tendency of the two populations to move up along the gradient

of m(x), and d1 and d2 represent the random diffusion rates of two species, respectively. See

[1, 2, 4–8, 10, 11, 13, 17, 20, 22–29].

When b1 = b2 = c1 = c2 = 1, r = 0 in (1.1), Chen, Hambrock and Lou [6] investigated the

following model
{

∂u(x,t)
∂t = ∇ · [d1∇u(x, t)− a1u(x, t)∇m] + u(x, t)[m(x)− u(x, t)− v(x, t)],

∂v(x,t)
∂t = ∇ · [d2∇v(x, t)− a2v(x, t)∇m] + v(x, t)[m(x)− u(x, t)− v(x, t)].

(1.2)

They showed that at least two scenarios can occur: if only one species has a strong tendency

to move upward the environmental gradients, the two species can coexist since one species

mainly pursues resources at places of locally most favorable environments while the other

relies on resources from other parts of the habitat; if both species have such strong biased

movements, it can lead to overcrowding of the whole population at places of locally most fa-

vorable environments, which causes the extinction of the species with stronger biased move-

ment. These results provided a new mechanism for the coexistence of competing species, and

they also implied that selection is against excessive advection along environmental gradients,

and an intermediate biased movement rate may evolve.

When v = 0 in (1.1), Chen, Lou and Wei [8] investigated the following model,
{

∂u(x,t)
∂t = ∇ · [d∇u − a1u∇m] + u(x, t)[m(x)− u(x, t − r)],

u(x, t) = 0.
(1.3)

They investigated a reaction-diffusion-advection model with time delay effect. The stability

and instability of the spatially nonhomogeneous positive steady state were investigated when

the given parameter of the model is near the principle eigenvalue of an elliptic operator.

Their results implied that time delay can make the spatially nonhomogeneous positive steady

state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory

pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values was also

considered, and their results suggested that Hopf bifurcation is more likely to occur when the

advection rate increases. See [3, 9, 12, 14–16, 18, 19, 21, 30–34].

When d1 = d2 = d, a2 = a1 in (1.1), we study the following model with homogeneous

Dirichlet boundary and initial value conditions




∂u(x,t)
∂t = ∇ · [d∇u − a1u∇m] + u(x, t)[m(x)− b1u(x, t − r)− c1v(x, t − r)],

∂v(x,t)
∂t = ∇ · [d∇v − a1v∇m] + v(x, t)[m(x)− b2u(x, t − r)− c2v(x, t − r)],

x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, t) = ϕ1(x, t) ≥ 0, v(x, t) = ϕ2(x, t) ≥ 0, (x, t) ∈ Ω × [−r, 0],

(1.4)

with the initial value functions

ϕi(x, ·) ∈ C([−r, 0], R
+
0 ) (x ∈ Ω), ϕi(·, t) ∈ H1

0(Ω) (t ∈ [−r, 0]), i = 1, 2.
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In this paper, we mainly investigate whether time delay r can induce Hopf bifurcation for

reaction-diffusion-advection model (1.4).

As in [2, 8], Let ũ = e(−a1/d)m(x)u, ṽ = e(−a1/d)m(x)v, t̃ = td, dropping the tilde sign, and

denoting λ = 1/d, a = a1/d, τ = dr, system (1.4) can be transformed as follows:





∂u
∂t = e−am(x)∇ · [eam(x)∇u] + λu[m(x)− b1eam(x)u(x, t − τ)− c1eam(x)v(x, t − τ)],
∂v
∂t = e−am(x)∇ · [eam(x)∇v] + λv[m(x)− b2eam(x)u(x, t − τ)− c2eam(x)v(x, t − τ)],

x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, t) = ϕ1(x, t) ≥ 0, v(x, t) = ϕ2(x, t) ≥ 0, (x, t) ∈ Ω × [−τ, 0].

(1.5)

Throughout the paper, unless otherwise specified, m(x) satisfies the following assumption

(H) m ∈ C2(Ω), and maxx∈Ω
m(x) > 0.

The following eigenvalue problem

{
−e−am(x)∇ · [eam(x)∇u] = −∆u − a∇m · ∇u = λm(x)u, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.6)

is crucial to derive our main results. It follows from [2, 8, 26] that, under assumption (H),

(1.6) has a unique positive principal eigenvalue λ∗ admitting a strictly positive eigenfunction

ϕ ∈ C1+δ
0 (Ω) for some δ ∈ (0, 1) and

∫
Ω

ϕ2dx = 1.

The rest of the paper is organized as follows. In Section 2, we study the existence of

positive steady state solutions of (1.5). In Section 3, we focus on the eigenvalue problem of the

linearized system of the steady-state solution of (1.5). In Section 4, we study the stability and

Hopf bifurcation of the spatially nonhomogeneous positive steady state of (1.5). In Section 5,

we derive an explicit formula, which can be used to determine the direction of the Hopf

bifurcation and the stability of the bifurcating periodic orbits. In Section 6, we give some

numerical simulations are illustrated to support our analytical results.

Throughout the paper, we also denote the spaces X = H2(Ω) ∩ H1
0(Ω), Y = L2(Ω).

Moreover, we denote the complexification of a linear space Z to be ZC = Z ⊕ iZ = {x1 +

ix2 | x1, x2 ∈ Z}, the domain of a linear operator L by D(L), the kernel of L by N (L), and

the range of L by R(L). For Hilbert space YC, we use the standard inner product 〈u, v〉 =∫
Ω

u(x)Tv(x)dx, u, v ∈ Y2
C

.

2 Existence of positive steady state solutions

Denote

L := ∇ · [eam(x)∇] + λ∗eam(x)m(x),

where λ∗ is a unique positive principal eigenvalue of problem (1.6) admitting a strictly positive

eigenfunction ϕ ∈ C1+δ
0 (Ω) for some δ ∈ (0, 1) and

∫
Ω

ϕ2dx = 1.

Now, we have the following decompositions:

X = N (L)⊕ X1, Y = N (L)⊕ Y1, N (L) = span{ϕ},

X1 =

{
y ∈ X :

∫

Ω

ϕ(x)y(x)dx = 0

}
, Y1 = R(L) =

{
y ∈ Y :

∫

Ω

ϕ(x)y(x)dx = 0

}
.
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Clearly, the operator L : X → Y is Fredholm with index zero. L|X1
: X1 → Y1 is invertible and

has a bounded inverse.

In this section, we consider the existence of positive spatially nonhomogeneous steady

states solutions of system (1.5), which satisfy

{
∇ · [eam(x)∇u] + λeam(x)u[m(x)− b1eam(x)u(x, t)− c1eam(x)v(x, t)] = 0,

∇ · [eam(x)∇v] + λeam(x)v[m(x)− b2eam(x)u(x, t)− c2eam(x)v(x, t)] = 0,
(2.1)

Suppose that the solution of (2.1) has the following expressions:

{
uλ = α(λ − λ∗)[ϕ + (λ − λ∗)ξ(x)],

vλ = β(λ − λ∗)[ϕ + (λ − λ∗)η(x)],
(2.2)

where α, β ∈ R, ξ, η ∈ X1. Substitute (2.2) into (2.1) we have





Lξ + m(x)eam(x)[ϕ + (λ − λ∗)ξ]− λαb1e2am(x)[ϕ + (λ − λ∗)ξ]
2

−λβc1e2am(x)[ϕ + (λ − λ∗)ξ][ϕ + (λ − λ∗)η] = 0,

Lη + m(x)eam(x)[ϕ + (λ − λ∗)η]− λαc2e2am(x)[ϕ + (λ − λ∗)η]
2

−λβb2e2am(x)[ϕ + (λ − λ∗)ξ][ϕ + (λ − λ∗)η] = 0.

(2.3)

When λ = λ∗, (2.3) becomes following equations

{
Lξ + m(x)eam(x)ϕ − λ∗αb1e2am(x)ϕ2 − λ∗βc1e2am(x)ϕ2 = 0,

Lη + m(x)eam(x)ϕ − λ∗βb2e2am(x)ϕ2 − λ∗αc2e2am(x)ϕ2 = 0.
(2.4)

Multiplying both sides of each equation in (2.4) by ϕ and integrating on Ω, we have

αλ∗ =
c2 − c1

b1c2 − b2c1
d1, βλ∗ =

b1 − b2

b1c2 − b2c1
d1,

where d1 =
∫

Ω
m(x)eam(x)ϕ2dx

λ∗
∫

Ω
e2am(x)ϕ3dx

> 0, see [8]. And ξλ∗ , ηλ∗ ∈ X1 is the unique solution of the

following equations

{
Lξ + m(x)eam(x)ϕ − λ∗αλ∗b1e2am(x)ϕ2 − λ∗βλ∗c1e2am(x)ϕ2 = 0,

Lη + m(x)eam(x)ϕ − λ∗βλ∗b2e2am(x)ϕ2 − λ∗αλ∗c2e2am(x)ϕ2 = 0.
(2.5)

To guarantee positive steady states solutions of system (2.1), we need following conditions:

(H1) (λ − λ∗)
c2−c1

b1c2−b2c1
> 0, (λ − λ∗)

b1−b2
b1c2−b2c1

> 0.

Theorem 2.1. Assume that (H1) holds. Then there exist a constant δ > 0 and a continuously differ-

entiable mapping which defined by λ → (ξλ, ηλ, αλ, βλ), from (λ∗ − δ, λ∗ + δ) to X2
1 × (R+)2 such

that system (1.5) has a positive spatially nonhomogeneous steady-state solution:

{
uλ = αλ(λ − λ∗)[ϕ + (λ − λ∗)ξλ(x)],

vλ = βλ(λ − λ∗)[ϕ + (λ − λ∗)ηλ(x)].
(2.6)



Hopf bifurcation in a reaction-diffusive-advection 5

Proof. Let F = (F1, F2, F3, F4) be defined as the following





F1(ξ, η, α, β, λ) = Lξ + m(x)eam(x)[ϕ + (λ − λ∗)ξ]− λαb1e2am(x)[ϕ + (λ − λ∗)ξ]
2

− λβc1e2am(x)[ϕ + (λ − λ∗)ξ][ϕ + (λ − λ∗)η] = 0,

F2(ξ, η, α, β, λ) = Lη + m(x)eam(x)[ϕ + (λ − λ∗)η]− λαc2e2am(x)[ϕ + (λ − λ∗)η]
2

− λβb2e2am(x)[ϕ + (λ − λ∗)ξ][ϕ + (λ − λ∗)η] = 0,

F3(ξ, η, α, β, λ) = 〈ϕ, ξ〉 = 0,

F4(ξ, η, α, β, λ) = 〈ϕ, η〉 = 0.

It is easy to obtain that from (2.5)

Fi(ξλ∗ , ηλ∗ , αλ∗ , βλ∗ , λ∗) = 0, (i = 1, 2, 3, 4).

The Fréchet derivative of F at (ξλ∗ , ηλ∗ , αλ∗ , βλ∗ , λ∗) is

∂F

∂(ξ, η, α, β)

∣∣∣∣
(ξλ∗ ,ηλ∗ ,αλ∗ ,βλ∗ ,λ∗)




ξ̂

η̂

α̂

β̂


 =




Lξ̂ − λ∗(α̂b1 + β̂c1)e
am(x)ϕ2

Lη̂ − λ∗(α̂c2 + β̂b2)eam(x)ϕ2

〈ϕ, ξ̂〉
〈ϕ, η̂〉


 .

It is clear that the derivative operator ∂F
∂(ξ,η,α,β)

∣∣
(ξλ∗ ,ηλ∗ ,αλ∗ ,βλ∗ ,λ∗)

is bijective. By using the

implicit function theorem we know that there exist a constant δ > 0 and a continuously differ-

entiable mapping which defined by λ → (ξλ, ηλ, αλ, βλ) from (λ∗ − δ, λ∗ + δ) to X2
1 × (R+)2

such that system (1.5) has a positive spatially nonhomogeneous steady-state solution (2.6).

3 Eigenvalue problems of the linearized system

For the convenience of discussion, we always suppose that Λ = (λ∗ − δ, λ∗) ∪ (λ∗, λ∗ + δ).

Let (uλ, vλ)
T is a spatially nonhomogeneous steady-state solution of (1.5) which is deter-

mined by (2.6). Let

ũ = u − uλ, ṽ = v − vλ,

dropping the tilde sign, system (1.5) can be transformed as follows:





∂u
∂t = e−am(x)∇ · [eam(x)∇u] + λu(x, t)[m(x)− b1eam(x)uλ − c1eam(x)vλ]

− λeam(x)uλ[b1u(x, t − τ) + c1v(x, t − τ)],

∂v
∂t = e−am(x)∇ · [eam(x)∇v] + λv(x, t)[m(x)− b2eam(x)uλ − c2eam(x)vλ]

− λeam(x)vλ[b2u(x, t − τ) + c2v(x, t − τ)].

(3.1)

Denote Aλ, Bλ :

Aλ =

(
A1 0

0 A2

)
, Bλψ =

(
λeam(x)uλ[b1ψ1(−τ) + c1ψ2(−τ)]

λeam(x)vλ[b2ψ1(−τ) + c2ψ2(−τ)]

)

where

A1 = e−am(x)∇ · [eam(x)∇] + λ[m(x)− b1eam(x)uλ − c1eam(x)vλ],

A2 = e−am(x)∇ · [eam(x)∇] + λ[m(x)− b2eam(x)uλ − c2eam(x)vλ],
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and ψ = (ψ1, ψ2)T ∈ X2
C

.

It follows from [14,33] that the semigroup induced by the solutions of the linearized system

(3.1) has the infinitesimal generator Tτ,λ satisfying

Tτ,λψ = ψ̇, (3.2)

where

D(Tτ,λ) = {ψ ∈ CC ∩ C1
C
| ψ(0) ∈ XC, ψ̇(0) = Aλψ(0)− Bλψ(−τ)},

where

CC = C([−τ, 0], Y2
C
), C1

C
= C1([−τ, 0], Y2

C
).

Moreover, µ ∈ C an eigenvalue of Tτ,λ if and only if there exists ψ = (ψ1, ψ2)T ∈ X2
C \ {(0, 0)T}

such that

∆(λ, µ, τ)ψ = Aλψ − Bλψe−µτ − µψ = 0. (3.3)

Lemma 3.1. 0 is not an eigenvalue of Tτ,λ.

Proof. If 0 is an eigenvalue of Tτ,λ, that is, there exists some ψ = (ψ1, ψ2)T ∈ X2
C \ {(0, 0)T}

such that

∆(λ, 0, τ)ψ = 0. (3.4)

Note that ∆(λ∗, 0, τ) =
(

L 0
0 L

)
and N (L) = span{ϕ}. We let that ψ takes the form

{
ψ1 = p1ϕ + (λ − λ∗)q1(x),

ψ2 = p2ϕ + (λ − λ∗)q2(x),
(3.5)

where p1, p2 ∈ R, q1(x), q2(x) ∈ X1. Then substituting (3.5) into (3.4) and let λ = λ∗, by

calculation, we have
{

Lq1+[m(x)eam(x)ϕ−λ∗e2am(x)(b1αλ∗+c1βλ∗)ϕ2]p1−λ∗e2am(x)αλ∗ ϕ2(b1 p1+c1 p2)= 0,

Lq2+[m(x)eam(x)ϕ−λ∗e2am(x)(b2αλ∗+c2βλ∗)ϕ2]p2−λ∗e2am(x)βλ∗ ϕ2(b2 p1+c2 p2)= 0.
(3.6)

By (2.5), (3.6) becomes
{

L(q1 − ξλ∗ p1)− λ∗e2am(x)αλ∗ ϕ2(b1 p1 + c1 p2) = 0,

L(q2 − ηλ∗ p2)− λ∗e2am(x)βλ∗ ϕ2(b2 p1 + c2 p2) = 0.
(3.7)

Multiplying both sides of each equation in (3.7) by ϕ and integrating on Ω, we have
{

b1 p1 + c1 p2 = 0,

b2 p1 + c2 p2 = 0.
(3.8)

By the condition (H1), we have b1c2 − b2c1 6= 0. So we get p1 = p2 = 0 from (3.8). By (3.6), we

get q1 = q2 = 0. Then ψ1 = 0, ψ2 = 0. The Lemma 3.1 is now proved.

We will show that the eigenvalues of Tτ,λ could pass through the imaginary axis when

time delay τ increases. It is obvious that Tτ,λ has an imaginary eigenvalue µ = iω (ω 6= 0) for

some τ ≥ 0 if and only if

m(λ, ω, θ)ψ = ∆(λ, ω, θ)ψ = Aλψ − Bλψe−iθ − iωψ = 0 (3.9)

is solvable for some ω > 0, θ ∈ [0, 2π), τ = θ+2nπ
ω , n ∈ N0 = {0, 1, 2, . . . } and ψ = (ψ1, ψ2)T ∈

X2
C
\ {(0, 0)T}.
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Lemma 3.2. If (ω, θ, ψ) ∈ (0, ∞)× [0, 2π)× (X2
C
\ {(0, 0)T}) solves (3.9), then ω

λ−λ∗
is bounded

for λ ∈ Λ.

Proof. Assume that (ω, θ, ψ) ∈ (0, ∞)× [0, 2π)× (X2
C
\ {(0, 0)T}) satisfy the following equation

〈Aλψ − Bλψe−iθ − iωψ, ψ〉 = 0. (3.10)

Separating the real and imaginary parts of system (3.10), we obtain

ω〈ψ, ψ〉 = sin θ〈Bλψ, ψ〉.

|ω|

|λ − λ∗|
= λeam(x)| sin θ|

∣∣∣
〈(

αλ[ϕ+(λ−λ∗)ξλ(x)](b1ψ1+c1ψ2)
βλ[ϕ+(λ−λ∗)ηλ(x)](b2ψ1+c2ψ2)

)
, ψ

〉∣∣∣
〈ψ, ψ〉

≤ (λ∗ + δ)ea maxx∈Ω m(x) max{M, N}max{|b1|, |c1|, |b2|, |c2|}.

where M = maxλ∈Λ{|αλ|[‖ϕ‖∞ + (λ + λ∗)‖ξλ(x)‖∞]},

N = maxλ∈Λ{|βλ|[‖ϕ‖∞ + (λ + λ∗)‖ηλ(x)‖∞]}. The boundedness of ω
λ−λ∗

follows from

the continuity of λ 7→ (αλ, βλ, ‖ξλ(x)‖∞, ‖ηλ(x)‖∞). The Lemma 3.2 is now proved.

Note that X = N (L)⊕ X1. If (ω, θ, ψ) satisfies (3.9), let ψ = (ψ1, ψ2)T ∈ X2
C
\ {(0, 0)T} can

be represented as {
ψ1 = p1ϕ + (λ − λ∗)q1(x),

ψ2 = p2 ϕ + (λ − λ∗)q2(x),
(3.11)

where p1, p2 ∈ R, q1(x), q2(x) ∈ X1. Let

G(q1, q2, p1, p2, h, θ, λ)ψ =
m(λ, (λ − λ∗)h, θ)

λ − λ∗
ψ = 0, (3.12)

where m(λ, ω, θ) is defined as in (3.9).

Obviously, we have

G(q1, q2, p1, p2, h, θ, λ∗)ψ = 0,

that is {
L(q1 − ξλ∗ p1)− λ∗e2am(x)αλ∗ ϕ2(b1 p1 + c1 p2)e−iθ − ihϕeam(x)p1 = 0,

L(q2 − ηλ∗ p2)− λ∗e2am(x)βλ∗ ϕ2(b2 p1 + c2 p2)e−iθ − ihϕeam(x)p2 = 0.
(3.13)

Multiplying both sides of each equation in (3.13) by ϕ and integrating on Ω, we have

− λ∗d2e−iθ Mp = ihp, (3.14)

where p = (p1, p2)T, d2 =
∫

Ω
e2am(x)ϕ3dx∫

Ω
eam(x)ϕ2dx

> 0, M =
(

αλ∗ b1 αλ∗ c1

βλ∗ b2 βλ∗ c2

)
.

Separating the real and imaginary parts of (3.14), we get

{
λ∗d2 sin θMp = hp,

λ∗d2 cos θMp = 0.
(3.15)

It is easy to obtain the following lemma.
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Lemma 3.3.

(1) When θ = π
2 in (3.15), λ∗d2M has two real eigenvalues h1 = λ∗d1d2, h2 = λ∗d1d2

(c2−c1)(b1−b2)
b1c2−b2c1

,

and (c2 − c1, b1 − b2)T and (−c1, b2)T are two eigenvectors associated with eigenvalues h1 and

h2, respectively.

(2) When θ= 3π
2 in (3.15), −λ∗d2M has two real eigenvalues h1=−λ∗d1d2, h2=−λ∗d1d2

(c2−c1)(b1−b2)
b1c2−b2c1

,

and (c2 − c1, b1 − b2)T and (−c1, b2)T are two eigenvectors associated with eigenvalues h1 and

h2, respectively.

For each j = 1, 2, set

h
j
λ∗ =

{
|hj|, if λ > λ∗,

−|hj|, if λ < λ∗,
(3.16)

which satisfies ω
j
λ∗ = (λ − λ∗)h

j
λ∗ > 0, and their corresponding eigenvectors

{
(p1

1λ∗, p1
2λ∗)

T = (c2 − c1, b1 − b2)T, if h1
λ∗ = |h1|,

(p2
1λ∗, p2

2λ∗)
T = (−c1, b2)T, if h2

λ∗ = |h2|,
(3.17)

{
(p1

1λ∗, p1
2λ∗)

T = (c2 − c1, b1 − b2)T, if h1
λ∗ = −|h1|,

(p2
1λ∗, p2

2λ∗)
T = (−c1, b2)T, if h2

λ∗ = −|h2|.
(3.18)

And set

θ
j
λ∗ =

{
π
2 , if λ > λ∗,
3π
2 , if λ > λ∗,

(3.19)

which satisfies −e−iθ
j
λ∗h

j
λ∗ = ih

j
λ∗.

Thus, q
j
1λ∗, q

j
2λ∗ ∈ X1 is the unique solution of the following equations





L(q
j
1 − ξλ∗ p

j
1λ∗)− λ∗e2am(x)αλ∗φ2(b1 p

j
1λ∗ + c1 p

j
2λ∗)e

−iθ
j
λ∗ − ih

j
λ∗φeam(x)p

j
1λ∗ = 0,

L(q
j
2 − ηλ∗ p

j
2λ∗)− λ∗e2am(x)βλ∗φ2(b2 p

j
1λ∗ + c2 p

j
2λ∗)e

−iθ
j
λ∗ − ih

j
λ∗φeam(x)p

j
2λ∗ = 0,

(3.20)

Remark 3.4.

(1) When v = 0, b1 = 1 in (1.4), h1 in Lemma 3.3 (1) is the same as hλ∗ in (2.20) in [8].

(2) When a1 = 0 in (1.4), h1, h2 in Lemma 3.3 (1) are the same as that in Lemma 3.4 (i) in

[15].

Then we get the following lemma.

Lemma 3.5. Assume that (H1) holds. For j = 1, 2, the following equation

{
G(q

j
1, q

j
2, p

j
1, p

j
2, θ j, hj, λ∗) = 0,

q
j
1, q

j
2 ∈ X1, p

j
1, p

j
2, hj ∈ R, θ j ∈ [0, 2π]

(3.21)

has a unique solution (q
j
1λ∗

, q
j
2λ∗

, p
j
1λ∗

, p
j
2λ∗

, θ
j
λ∗

, h
j
λ∗
), see (3.16)–(3.20).

Theorem 3.6. Assume that (H1) holds. Then for j = 1, 2, there exist a constant δ > 0 and

a continuously differentiable mapping which defined by λ → (q
j
1λ, q

j
2λ, p

j
1λ, p

j
2λ, θ

j
λ, h

j
λ) from Λ to

X2
1 × R2 × R+ × R such that G(q

j
1λ, q

j
2λ, p

j
1λ, p

j
2λ, θ

j
λ, h

j
λ, λ) = 0.
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Proof. Let G = (g1, g2, g3, g4, g5, g6) be defined as the following:





g1 = m(λ, (λ − λ∗)h
j
λ, θ

j
λ)q

j
1λ + m(x)eam(x)ϕp

j
1λ

− λeam(x)ϕ[αλb1(ϕ + (λ − λ∗)ξ) + βλc1(ϕ + (λ − λ∗)ξ)]p
j
1λ

+ λϕαλeam(x)(ϕ + (λ − λ∗)ξ)(b1 p
j
1λ + c1 p

j
2λ)e

−iθ
j
λ − ih

j
λ ϕp

j
1λ = 0,

g2 = m(λ, (λ − λ∗)h
j
λ, θ

j
λ)q

j
2λ + m(x)eam(x)ϕp

j
2λ

− λeam(x)ϕ[αλb2(ϕ + (λ − λ∗)ξ) + βλc2(ϕ + (λ − λ∗)ξ)]p
j
2λ

+ λϕαλeam(x)(ϕ + (λ − λ∗)ξ)(b2 p
j
1λ + c2 p

j
2λ)e

−iθ
j
λ − ih

j
λ ϕp

j
2λ = 0,

g3 = Re〈ϕ, q
j
1λ〉 = 0, g4 = Im〈ϕ, q

j
1λ〉 = 0,

g5 = Re〈ϕ, q
j
2λ〉 = 0, g6 = Im〈ϕ, q

j
2λ〉 = 0.

The Fréchet derivative of G at (q
j
1λ∗

, q
j
2λ∗

, p
j
1λ∗

, p
j
2λ∗

, θ
j
λ∗

, h
j
λ∗

, λ∗) is

∂G(q
j
1λ∗

, q
j
2λ∗

, p
j
1λ∗

, p
j
2λ∗

, θ
j
λ∗

, h
j
λ∗

, λ∗)

∂(q
j
1λ, q

j
2λ, p

j
1λ, p

j
2λ, θ

j
λ, h

j
λ)




q̂
j
1λ

q̂
j
2λ

p̂
j
1λ

p̂
j
2λ

θ̂
j
λ

ĥ
j
λ




=




e−am(x)Lq̂
j
1λ + g̃1 p̂

j
1λ + g̃2 p̂

j
2λ + g̃3θ̂

j
λ + g̃4ĥ

j
λ

e−am(x)Lq̂
j
2λ + g̃5 p̂

j
1λ + g̃6 p̂

j
2λ + g̃7θ̂

j
λ + g̃8ĥ

j
λ

Re〈ϕ, q̂
j
1λ〉

Im〈ϕ, q̂
j
1λ〉

Re〈ϕ, q̂
j
2λ〉

Im〈ϕ, q̂
j
2λ〉




,

where





g̃1 = m(x)eam(x)ϕ − λ∗eam(x)(αλ∗b1 + βλ∗c1)ϕ2 − λ∗αλ∗eam(x)b1e−iθ
j
λ∗ − ih

j
λ∗

ϕ,

g̃2 = −λ∗αλ∗eam(x)c1e−iθ
j
λ∗ , g̃3 = −iθ

j
λ∗

λ∗ϕ2αλ∗(b1 p
j
1λ∗

+ b2 p
j
2λ∗

)e−iθ
j
λ∗ , g̃4 = −iϕp

j
1λ∗

,

g̃5 = m(x)eam(x)ϕ − λ∗eam(x)(αλ∗b2 + βλ∗c2)ϕ2 − λ∗αλ∗eam(x)b2e−iθ
j
λ∗ − ih

j
λ∗

ϕ,

g̃6 = −λ∗αλ∗eam(x)c2e−iθ
j
λ∗ , g̃7 = −iθ

j
λ∗

λ∗ϕ2αλ∗(b1 p1λ∗ + b2 p2λ∗)e
−iθ

j
λ∗ , g̃8 = −iϕp

j
2λ∗

.

It is clear that the derivative operator

∂G(q
j
1λ∗

, q
j
2λ∗

, p
j
1λ∗

, p
j
2λ∗

, θ
j
λ∗

, h
j
λ∗

, λ∗)

∂(q
j
1λ, q

j
2λ, p

j
1λ, p

j
2λ, θ

j
λ, h

j
λ)

is bijective. By using the implicit function theorem we know that there exist a constant δ > 0

and a continuously differentiable mapping which defined by λ → (q
j
1λ, q

j
2λ, p

j
1λ, p

j
2λ, θ

j
λ, h

j
λ),

from from Λ to X2
1 × R2 × R+ × R such that G(q

j
1λ, q

j
2λ, p

j
1λ, p

j
2λ, θ

j
λ, h

j
λ, λ) = 0. The proof of

Theorem 3.6 is complete.

From Theorem 3.6, we derive the following result.

Theorem 3.7. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈ N0, let

τ
j
n =

θ
j
1λ + 2nπ

ω
j
λ

, ω
j
λ = (λ − λ∗)h

j
λ,
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and ψ
j
λ = (ψ

j
1λ, ψ

j
2λ)

T, {
ψ

j
1λ = p

j
1λ ϕ + (λ − λ∗)q

j
1λ(x),

ψ
j
2λ = p

j
2λ ϕ + (λ − λ∗)q

j
2λ(x),

(3.22)

where q
j
1λ, q

j
2λ, p

j
1λ, p

j
2λ, θ

j
λ, h

j
λ are defined as in Theorem 3.6. Then

(1) T
τ

j
n,λ

has a pair of purely imaginary eigenvalues ±iω
j
λ;

(2) T
τ

j
n,λ

eiω
j
λ ψj = iω

j
λeiω

j
λ ψ

j
λ, T

τ
j
n,λ

e−iω
j
λ ψ

j
= −iω

j
λe−iω

j
λ ψ

j
λ.

Now, we give some estimates to prove the simplicity of iω
j
λ. The proof of the following

Lemmas 3.8–3.10 is similar to [14]. For the sake of the integrity of the article, we are going to

prove them again.

Lemma 3.8. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈ N0, we have

S
j
n = 〈ψ

j
λ, ψ

j
λ − τ

j
ne−iθ

j
λ Bλψ

j
λ〉 6= 0, (3.23)

where ψ
j
λ, τ

j
n and θ

j
λ are defined as in Theorem 3.7.

Proof. It is easy to obtain that

Re {S
j
n} = 〈ψλ, (ψλ − τ

j
ne−iθ

j
λ Bλψλ)〉 → [(p

j
1λ∗

)2 + (p
j
2λ∗

)2] 6= 0, as λ → λ∗,

where using
∫

Ω
ϕ2dx = 1 in Section 1.

Lemma 3.9. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈ N0, iω
j
λ is a simple eigenvalue of

T
τ

j
n,λ

.

Proof. It follows from Theorem 3.7 that N [T
τ

j
n,λ

− iω
j
λ] = span[ψ

j
λeiω

j
λ(·)]. If ψ̃∈N [T

τ
j
n,λ

− iω
j
λ]

2,

that is

(T
τ

j
n,λ

− iω
j
λ)

2ψ̃ = 0,

then

(T
τ

j
n,λ

− iω
j
λ)ψ̃ ∈ N [T

τ
j
n,λ

− iω
j
λ] = span[ψ

j
λeiω

j
λ(·)].

We assume that a constant ρ satisfies

(T
τ

j
n,λ

− iω
j
λ)ψ̃ = ρψ

j
λeiω

j
λ(·),

which leads to {
ψ̃′(s) = iω

j
λψ̃(s) + ρψ

j
λeiω

j
λs, s ∈ [−τ

j
n, 0),

ψ̃′(0) = Aλψ̃(0)− Bλψ̃(−τ
j
n).

(3.24)

From the first equation of (3.24), we have

{
ψ̃(s) = ψ̃(0)eiω

j
λs + ρsψ

j
λeiω

j
λs, s ∈ [−τ

j
n, 0),

ψ̃′(0) = iω
j
λψ̃(0) + ρψ

j
λ.

(3.25)
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Eq. (3.24) and Eq. (3.25) imply that

{
Aλψ̃(0)− Bλψ̃(−τ

j
n) = iω

j
λψ̃(0) + ρψ

j
λ,

ψ̃(−τ
j
n) = ψ̃(0)e−iω

j
λτ

j
n − τ

j
nρψ

j
λe−iω

j
λτ

j
n .

(3.26)

Then we have

∆(λ, iω
j
λ, τ

j
n)ψ̃(0) = (Aλ − iω

j
λ)ψ̃(0)− Bλψ̃(0)e−iθ

j
λ

= ρ(ψ
j
λ − τ

j
ne−iθ

j
λ Bλψ

j
λ).

Since ∆(λ, iω
j
λ, τ

j
n)ψ

j
λ = 0, so

∆(λ,−iω
j
λ, τ

j
n)ψ

j
λ = 0. (3.27)

Then

0 = 〈∆(λ,−iω
j
λ, τ

j
n)ψ

j
λ, ψ̃(0)〉 = 〈ψ

j
λ, ∆(λ, iω

j
λ, τ

j
n)ψ̃(0)〉 = ρ〈ψ

j
λ, (ψ

j
λ − τ

j
ne−iθ

j
λ Bλψ

j
λ)〉.

As a consequence of Lemma 3.8, we have ρ = 0 and (T
τ

j
n,λ

− iω
j
λ)ψ̃ = 0, that is ψ̃ ∈

N [T
τ

j
n,λ

− iω
j
λ]. By induction, we obtain

N ([T
τ

j
n,λ

− iω
j
λ]

s) = N [T
τ

j
n,λ

− iω
j
λ]

for all s ∈ {1, 2, 3, . . . }. Hence, iω
j
λ is a simple eigenvalue of T

τ
j
n,λ

.

Note that µ = iω
j
λ is a simple eigenvalue of T

τ
j
n,λ

. It follows from the implicit function

theorem that there are a neighborhood On On × Dn × Hn ⊂ R × C × XC of (τ
j
n, iω

j
λ, ψ

j
λ) and a

continuously differential function (µ(τ), ψ(τ)) : On → Dn × Hn such that for each τ ∈ On, the

only eigenvalue of Tτ,λ in Dn is µ(τ), and the following equality holds

∆(λ, µ(τ), τ)ψ(τ) = Aλψ(τ)− e−µ(τ)τBλψ(τ)− µ(τ)ψ(τ) = 0. (3.28)

Moreover, µ(τ
j
n) = iω

j
λ and ψ(τ

j
n) = ψ

j
λ. Then we have the following transversality condition,

see [21].

Lemma 3.10. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈ N0, assume that µ(τ) is the

eigenvalue of Tτ,λ, then
d Re{µ(τ)}

dτ

∣∣∣∣
τ=τ

j
n

> 0.

Proof. Differentiating Eq. (3.28) with respect to τ at τ = τ
j
n, we have

∆(λ, iω
j
λ, τ

j
n)

dψ
j
λ(τ

j
n)

dτ
+ [τ

j
ne−iθ

j
λ Bλψ

j
λ − ψ

j
λ]

dµ(τ
j
n)

dτ
+ iω

j
λe−iθ

j
λ Bλψ

j
λ = 0. (3.29)

By (3.27), we get

〈
ψ

j
λ, ∆(λ, iω

j
λ, τ

j
n)

dψ
j
λ(τ

j
n)

dτ

〉
=

〈
∆(λ,−iω

j
λ, τ

j
n)ψ

j
λ,

dψ
j
λ(τ

j
n)

dτ

〉
= 0. (3.30)
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Calculating the inner product with ψ
j
λ in Eq. (3.29) and using Eq. (3.30), we have

S
j
n

dµ(τ
j
n)

dτ
= 〈ψ

j
λ, iω

j
λe−iθ

j
λ Bλψ

j
λ〉,

where S
j
n is defined as in Lemma 3.8. Then we have

dµ(τ
j
n)

dτ
=

I1 + I2

(S
j
n)2

,

where

I1 = 〈ψ
j
λ, ψ

j
λ〉〈ψ

j
λ, iω

j
λe−iθ

j
λ Bλψ

j
λ〉, I2 = iω

j
λτ

j
n|〈ψ

j
λ, Bλψ

j
λ〉|

2.

Hence, it is clear that
dRe{µ(τ)}

dτ

∣∣∣∣
τ=τ

j
n

= Re
I1

|S
j
n|2

.

In fact,

〈ψ
j
λ, ψ

j
λ〉 → [(p

j
1λ∗

)2 + (p
j
2λ∗

)2], as λ → λ∗,

and
1

(λ − λ∗)2
〈ψ

j
λ, iω

j
λe−iθ

j
λ Bλψ

j
λ〉 → (h

j
λ∗
)2, as λ → λ∗.

Therefore, for δ enough small, we have
d Re{µ(τ)}

dτ |
τ=τ

j
n
> 0.

From above analysis, we obtain that a pair of purely imaginary eigenvalues will occur as

τ passes τ = τ
j
n. The proof of Lemma 3.10 is complete.

From Lemmas 3.8–3.10, we have the result on the distribution of eigenvalues of Tτ,λ.

Theorem 3.11. Assume that (H1) holds. For j = 1, 2, λ ∈ Λ and n ∈ N0, the infinitesimal generator

Tτ,λ has exactly 2(n + 1) eigenvalues with positive real parts when τ ∈ (τ
j
n, τ

j
n+1).

4 Stability analysis

In this section, we study the stability of the steady state solutions (uλ, vλ) of (1.5) by regarding

the delay τ as a parameter. We first investigate the stability of when τ = 0, and then discuss

the stability and bifurcation when τ 6= 0. We need the following condition (H2).

(H2) b1c2 − b2c1 > 0.

Theorem 4.1. Assume (H1)–(H2) hold. For λ ∈ (λ∗, λ∗ + δ) (respectively, λ ∈ (λ∗ − δ, λ∗), then all

eigenvalues of T0,λ have negative (respectively, positive) real parts, and hence the steady state solution

(uλ, vλ)
T of (1.5) with τ = 0 is locally asymptotically stable (respectively, unstable).

Proof. When τ = 0, the eigenvalue problem (3.3) reduces to

∆(λ, µ, 0)ψ = Aλψ − Bλψ = µψ. (4.1)

with ψ = (ψ1, ψ2)T ∈ X2
C \ {(0, 0)T}. We suppose that

{
ψ1 = p1 ϕ + (λ − λ∗)q1(x),

ψ2 = p2 ϕ + (λ − λ∗)q2(x),
(4.2)
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where p1, p2 ∈ R, q1(x), q2(x) ∈ X1. Then substituting (4.2) into (4.1) and let λ → λ∗, by

calculation, we have




Lq1 + [m(x)eam(x)ϕ − λ∗e2am(x)(b1αλ∗ + c1βλ∗)ϕ2]p1

− λ∗e2am(x)αλ∗ ϕ2(b1 p1 + c1 p2) = µ̃eam(x)ϕp1,

Lq2 + [m(x)eam(x)ϕ − λ∗e2am(x)(b2αλ∗ + c2βλ∗)ϕ2]p2

− λ∗e2am(x)βλ∗ ϕ2(b2 p1 + c2 p2) = µ̃eam(x)ϕp2,

(4.3)

where µ̃ = limλ→λ∗

µ
λ−λ∗

. By (2.5), (4.3) becomes

{
L(q1 − ξλ∗ p1)− λ∗e2am(x)αλ∗ ϕ2(b1 p1 + c1 p2) = µ̃ϕp1,

L(q2 − ηλ∗ p2)− λ∗e2am(x)βλ∗ ϕ2(b2 p1 + c2 p2) = µ̃ϕp2.
(4.4)

Multiplying both sides of each equation in (4.4) by ϕ and integrating on Ω, we have

{
λ∗d2αλ∗(b1 p1 + c1 p2) + µ̃p1 = 0,

λ∗d2βλ∗(b2 p1 + c2 p2) + µ̃p2 = 0.
(4.5)

Thus, we get that the eigenvalue equation of µ̃

µ̃2 + λ∗d2(αλ∗b1 + βλ∗c2)µ̃ + λ2
∗d2

2αλ∗ βλ∗(b1c2 − b2c1) = 0. (4.6)

By (H2), we have that the eigenvalue of (4.6) µ̃1, µ̃2 < 0. Then the conclusion of Theorem 4.1

is obtained.

Theorem 4.2. Assume (H1)–(H2) hold. For j = 1, 2, λ ∈ Λ, n ∈ N0, then

(1) the steady state solution (uλ, vλ)
T of (1.5) is locally asymptotically stable when τ ∈ [0, τ0),

where τ0 = min{τ1
0 , τ2

0 };

(2) the system (1.5) undergoes a Hopf bifurcation at the steady state solution (uλ, vλ)
T when τ = τ

j
n,

i.e., system (1.5) has a branch of periodic solutions bifurcating from the steady state solution

(uλ, vλ)
T near τ = τ

j
n.

5 Direction of Hopf bifurcation

From the analysis of section 4, we obtained conditions for Hopf bifurcation to occur when

τ = τ
j
n (j = 1, 2, n ∈ N0). In this section,we shall derive the explicit formulae determining

the direction, stability, and period of these periodic solutions bifurcating from the equilibrium

(uλ, vλ)
T at τ = τ

j
n (j = 1, 2, n ∈ N0), by using techniques from normal form and center

manifold theory [9, 12, 14, 19, 33].

Let (uλ, vλ)
T is a spatially nonhomogeneous steady-state solution of (1.5). Let

ũ(t) = u(·, τt)− uλ, ṽ(t) = v(·, τt)− vλ.

For the simple, let U(t) = (u(t), v(t))T = (ũ(t), ṽ(t))T, then system (1.5) can be written as

follows:
dU(t)

dt
= τL0(Ut)− τL1(Ut) + f (Ut, τ), (5.1)
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where Ut ∈ C = C1([−1, 0], Y2), and

L0(U(t)) =

(
e−am(x)∇ · [eam(x)∇u] + λu(t)[m(x)− b1eam(x)uλ − c1eam(x)vλ]

e−am(x)∇ · [eam(x)∇v] + λv(t)[m(x)− b2eam(x)uλ − c2eam(x)vλ]

)
, (5.2)

L1(Ut) =

(
λeam(x)uλ[b1u(t − 1) + c1v(t − 1)]

λeam(x)vλ[b2u(t − 1) + c2v(t − 1)]

)
, (5.3)

f (Ut, τ) =

(
−τλeam(x)[b1u(t)u(t − 1) + c1u(t)v(t − 1)]

−τλeam(x)[b2v(t)u(t − 1) + c2v(t)v(t − 1)]

)
. (5.4)

Let τ = τ
j
n + ε, then (5.1) can be rewritten as

dU(t)

dt
= τ

j
nL0(U(t))− τ

j
nL1(Ut) + F(Ut, ε), (5.5)

where

F(Ut, ε) = εL0(U(t))− εL1(Ut) + f (Ut, τ
j
n + ε). (5.6)

From the previous discussion, it is clear that when ε = 0 (i.e., τ = τ
j
n) system (5.5) under-

goes Hopf bifurcation at the equilibrium (0,0).

It follows from [14, 33] that

T
τ

j
n
ψ = ψ̇, (5.7)

and the domain

D(T
τ

j
n
) = {ψ ∈ CC ∩ C1

C
: ψ(0) ∈ XC, ψ̇(0) = τ

j
nL0ψ(0)− τ

j
nL1ψ(−1)},

where

CC = C([−1, 0], Y2
C
), C1

C
= C1([−1, 0], Y2

C
).

We can compute the formal adjoint operator T∗
τ

j
n

of T
τ

j
n

with respect to the formal duality,

T∗
τ

j
n
φ = −φ̇, (5.8)

and the domain

D(T∗
τ

j
n
) = {φ ∈ C∗

C ∩ (C∗
C)

1 : φ(0) ∈ XC, −φ̇(0) = τ
j
nL0φ(0)− τ

j
nL1φ(1)},

where

C∗
C = C([0, 1], Y2

C
), (C∗

C)
1 = C1([0, 1], Y2

C
).

Following [30], we introduce the formal duality 〈〈·, ·〉〉 in CC × C∗
C

by

〈〈φ, ψ〉〉 = 〈φ(0), ψ(0)〉1 − τ
j
n

∫ 0

−1
〈φ(s + 1), L1ψ(s)〉1ds, (5.9)

for ψ ∈ CC and φ ∈ C∗
C

, where 〈ψ, φ〉1 =
∫

Ω
eam(x)ψ̄Tφdx, see [8].

Lemma 5.1. T
τ

j
n

and T∗
τ

j
n

are adjoint operators, that is

〈〈φ, T
τ

j
n
ψ〉〉 = 〈〈T∗

τ
j
n
φ, ψ〉〉,

for ψ ∈ CC, φ ∈ C∗
C

.
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Proof. It follows from (5.9) and the definition of T
τ

j
n
, T∗

τ
j
n

that,

〈〈φ, T
τ

j
n
ψ〉〉 = 〈φ(0), T

τ
j
n
ψ(0)〉1 − τ

j
n

∫ 0

−1
〈φ(s + 1), L1ψ̇(s)〉1ds

= 〈φ(0), τ
j
nL0ψ(0)− τ

j
nL1ψ(−1)〉1 − τ

j
n[〈φ(s + 1), L1ψ(s)〉1]

0
−1

+ τ
j
n

∫ 0

−1
〈φ̇(s + 1), L1ψ(s)〉1ds

= 〈T∗
τ

j
n
φ(0), ψ(0)〉1 + τ

j
n

∫ 0

−1
〈−φ̇(s + 1), L1ψ(s)〉1ds

= 〈〈T∗
τ

j
n
φ, ψ〉〉.

The proof of Lemma 5.1 is complete.

From Theorem 3.7 and Lemma 5.1, we have that ±iω
j
λτ

j
n are the eigenvalues of T

τ
j
n
, and

they are the eigenvalues of T∗
τ

j
n

. The vectors p(θ) = eiω
j
λτ

j
nθψ

j
λ (θ ∈ [−1, 0]) and q(s) =

eiω
j
λτ

j
nsψ

j
λ (s ∈ [0, 1]) satisfy

T
τ

j
n
p = iω

j
λτ

j
n p, and T∗

τ
j
n
q = iω

j
λτ

j
nq,

respectively. Let

Φ = (p(θ), p̄(θ))T, Ψ = (
q(s)

R̄
j
n

,
q̄(s)

R
j
n

)T,

R
j
n = 〈ψ

j
λ, ψ

j
λ − τ

j
ne−iθ

j
λ Bλψ

j
λ〉1.

and Re{R
j
n} = 〈ψλ, (ψλ − τ

j
ne−iθ

j
λ Bλψλ)〉1 → [(p

j
1λ∗

)2 + (p
j
2λ∗

)2]
∫

Ω
eam(x)ϕ2dx 6= 0, as λ → λ∗.

One can easily check that 〈〈Ψ, Φ〉〉 = I, where I is the identity matrix in R2×2. Moreover, can

be decomposed as CC = P ⊕ Q, where

P = span{p(θ), p̄(θ)}, P∗ = span{q(s), q̄(s)},

Q = {ψ̃ ∈ CC : 〈〈ψ̃, ψ〉〉 = 0, for all ψ̃ ∈ P∗}.

By (5.7), system (5.5) can be transformed into the following

dUt

dt
= T

τ
j
n
Ut + X0F(Ut, ε), (5.10)

where

X0(θ) =

{
0, θ ∈ [−1, 0),

1, θ = 0.
(5.11)

Let Ut be the solution of system (5.10) with ε = 0 and set

z(t) =
1

R
j
n

〈〈q(s), Ut〉〉, (5.12)

then

z̄(t) =
1

R̄
j
n

〈〈q̄(s), Ut〉〉. (5.13)
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Let

W(z, z̄, θ) = W
j
20(θ)

z2

2
+ W

j
11(θ)zz̄ + W

j
02(θ)

z̄2

2
+ · · · (5.14)

be the center manifold with the range in Q, and the flow of Eq. (5.10) on center manifold can

be written as

Ut = W(z, z̄, θ) + p(θ)z(t) + p̄(θ)z̄(t). (5.15)

From (5.12) and (5.10), we have that

ż(t) =
1

R
j
n

d

dt
〈〈q(s), Ut〉〉

=
1

R
j
n

〈〈q, T
τ

j
n
Ut〉+

1

R
j
n

〈〈q(s), X0F(Ut, 0)〉〉

=
1

R
j
n

〈〈T∗
τ

j
n
q, Ut〉+

1

R
j
n

〈q(0), F(Ut, 0)〉1

= iw
j
λτ

j
nz(t) +

1

R
j
n

〈q(0), F(W(z, z̄, θ) + p(θ)z(t) + p̄(θ)z̄(t), 0)〉1

= iw
j
λτ

j
nz(t) + g(z, z̄),

(5.16)

where

g(z, z̄) =
1

R
j
n

〈q(0), F(W(z, z̄, θ) + p(θ)z(t) + p̄(θ)z̄(t), 0)〉1.

From (5.15), we get

Ut(0) = ψ
j
λz + ψ

j
λ z̄ + W

j
20(0)

z2

2
+ W

j
11(0)zz̄ + W

j
02(0)

z̄2

2
+ · · ·,

Ut(−1) = ψ
j
λze−iw

j
λτ

j
n + ψ

j
λ z̄ee

iw
j
λ

τ
j
n
+ W

j
20(−1)

z2

2
+ W

j
11(−1)zz̄ + W

j
02(−1)

z̄2

2
+ · · ·.

From the above three equalities, we get

g(z, z̄) = −
λτ

j
n

R
j
n

∫

Ω

e2am(x)(ψ
j
λ)

T(U(0)× CU(−1))dx = g
j
20

z2

2
+ g

j
11zz̄ + g

j
02

z̄2

2
+ g

j
21

z2z̄

2
+ · · ·,

where

C =

(
b1 c1

b2 c2

)
and

(
a

b

)
×

(
c

d

)
=

(
ac

bd

)
.

Thus we get

g
j
20 = − 2λτ

j
n

R
j
n

e−iw
j
λτ

j
n

∫

Ω

e2am(x)(ψ
j
λ)

T(ψ
j
λ × Cψ

j
λ)dx,

g
j
11 = − λτ

j
n

R
j
n

[
eiw

j
λτ

j
n

∫

Ω

e2am(x)(ψ
j
λ)

T(ψ
j
λ × Cψ

j
λ)dx + e−iw

j
λτ

j
n

∫

Ω

e2am(x)(ψ
j
λ)

T(ψ
j
λ × Cψ

j
λ)dx

]

g
j
02 = − 2λτ

j
n

R
j
n

eiw
j
λτ

j
n

∫

Ω

e2am(x)(ψ
j
λ)

T(ψ
j
λ × Cψ

j
λ)dx,

g
j
21 = − 2λτ

j
n

R
j
n

∫

Ω

e2am(x)[eiw
j
λτ

j
n(ψ

j
λ)

T(W
j
20(0)× Cψ

j
λ) + (ψ

j
λ)

T(ψ
j
λ × CW

j
20(−1))]dx

− 2λτ
j
n

R
j
n

∫

Ω

e2am(x)[e−iw
j
λτ

j
n(ψ

j
λ)

T(W
j
11(0)× Cψ

j
λ) + (ψ

j
λ)

T(ψ
j
λ × CW

j
11(−1))]dx.
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Similarly, by (5.16), we have

˙̄z(t) = −iw
j
λτ

j
n z̄(t) + ḡ(z, z̄) = −iw

j
λτ

j
n z̄(t) + ḡ

j
20

z2

2
+ ḡ

j
11zz̄ + ḡ

j
02

z̄2

2
+ ḡ

j
21

z2z̄

2
+ · · · (5.17)

From (5.15), we have

Ẇt(z, z̄, θ) =
dUt

dt
− p(θ)ż(t)− p̄(θ) ˙̄z(t)

= T
τ

j
n
Ut + X0F(Ut, 0)− p(θ)ż(t)− p̄(θ) ˙̄z(t)

= T
τ

j
n
W + T

τ
j
n
(p(θ)z(t) + p̄(θ)z̄(t)) + X0F(Ut, 0)− p(θ)ż(t)− p̄(θ) ˙̄z(t)

= T
τ

j
n
W + X0F(Ut, 0)− p(θ)g(z, z̄)− p̄(θ)ḡ(z, z̄)

= T
τ

j
n
W + H(z, z̄, θ),

(5.18)

where

H(z, z̄, θ) = X0F(Ut, 0)− p(θ)g(z, z̄)− p̄(θ)ḡ(z, z̄)

= H
j
20(θ)

z2

2
+ H

j
11(θ)zz̄ + H

j
02(θ)

z̄2

2
+ · · ·

(5.19)

By using chain rule,

Ẇt =
∂W(z, z̄, θ)

∂z
ż +

∂W(z, z̄, θ)

∂z̄
˙̄z. (5.20)

It is from (5.18)–(5.20) and (5.15) that



(2iw

j
λτ

j
n − T

τ
j
n
)W

j
20(θ) = H

j
20(θ),

−T
τ

j
n
W

j
11(θ) = H

j
11(θ).

(5.21)

From (5.19), we get for θ ∈ [−1, 0),

{
H

j
20(θ) = −g

j
20 p(θ)− ḡ

j
20 p̄(θ),

H
j
11(θ) = −g

j
11 p(θ)− ḡ

j
11 p̄(θ),

(5.22)

and for θ = 0,

H
j
20(0) = −g

j
20 p(0)− ḡ

j
20 p̄(0)− 2λτ

j
ne−iw

j
λτ

j
n eam(x)(ψ

j
λ × Cψ

j
λ),

H
j
11(0) = −g

j
11 p(0)− ḡ

j
11 p̄(0)− λτ

j
ne2am(x)[eiw

j
λτ

j
n(ψ

j
λ × Cψ

j
λ) + e−iw

j
λτ

j
n(ψ

j
λ × Cψ

j
λ)].

It follows (5.21)-(5.22) and the definition of T
τ

j
n

that

(W
j
20)

′(θ) = 2iw
j
λτ

j
nW

j
20(θ) + g

j
20 p(θ) + ḡ

j
20 p̄(θ).

Hence,

W
j
20(θ) =

ig
j
20

w
j
λτ

j
n

pj(0)eiw
j
λτ

j
nθ +

iḡ
j
20

3w
j
λτ

j
n

p̄(0)e−iw
j
λτ

j
nθ + C

j
1λe2iw

j
λτ

j
nθ , (5.23)

where C
j
1λ ∈ R2 is a constant vector. From (5.22), we have that

T
τ

j
n
W

j
20(0) = 2iw

j
λτ

j
nW

j
20(0)− H

j
20(0). (5.24)
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From (5.23)–(5.25) and the definition of T
τ

j
n

in (5.7), we get that

(2iw
j
λτ

j
n − T

τ
j
n
)C1e2iw

j
λτ

j
nθ |θ=0 = −2λτ

j
ne−iw

j
λτ

j
n eam(x)(ψ

j
λ × Cψ

j
λ),

or equivalently,

△(λ, 2iw
j
λ, τ

j
n)C

j
1λ = 2λe−iw

j
λτ

j
n eam(x)(ψ

j
λ × Cψ

j
λ). (5.25)

Note that 2iw
j
λ is not the eigenvalue of T

τ
j
n

for λ ∈ Λ and hence

C
j
1λ = 2λe−iw

j
λτ

j
n△(λ, 2iw

j
λ, τ

j
n)

−1(eam(x)(ψ
j
λ × Cψ

j
λ)). (5.26)

Similarly, from (5.21)-(5.22) and the definition of T
τ

j
n
, we get that

(W
j
11)

′(θ) = g11 p(θ) + ḡ11 p̄(θ).

Hence,

W
j
11(θ) =

ig11

w
j
λτ

j
n

p(0)eiw
j
λτ

j
nθ +

iḡ11

3w
j
λτ

j
n

p̄(0)e−iw
j
λτ

j
nθ + C

j
2λ, (5.27)

where

C
j
2λ = λ(e−iw

j
λτ

j
n + eiw

j
λτ

j
n)△(λ, w

j
λ, τ

j
n)

−1(eam(x)(ψ
j
λ × Cψ

j
λ)). (5.28)

Lemma 5.2. For j = 1, 2, λ ∈ Λ and n ∈ N0, C
j
1λ and C

j
2λ are defined in (5.26) and (5.27), then

C
j
1λ =

1

λ − λ∗
(c

j
λUλ + η

j
λ), C

j
2λ =

1

λ − λ∗
ζ

j
λ, (5.29)

where Uλ = (uλ, vλ)
T,

〈Uλ, η
j
λ〉 = 0, lim

λ→λ∗

‖η
j
λ‖Y2

C

= 0, lim
λ→λ∗

‖ζ
j
λ‖Y2

C

= 0. (5.30)

Moreover,

lim
λ→λ∗

(λ − λ∗)c
j
λ =





2i
(2i−1)

(b1c2−b2c1)
2

d2
1

, j = 1,

2iαλ∗ βλ∗ (c
2
1+b2

2)(b1c2−b2c1)

d2
1(α

2
λ∗
+β2

λ∗
)[2iαλ∗ βλ∗ (b1c2−b2c1)−1]

, j = 2.
(5.31)

Proof. Since eam(x)AλUλ = 0. Substituting (5.29) into the equation eam(x)×(5.25), we obtain

eam(x)Aλη
j
λ − eam(x)Bλη

j
λe−2iw

j
λτ

j
n − 2iω

j
λeam(x)η

j
λ − c

j
λBλUλeam(x)e−2iw

j
λτ

j
n − 2iw

j
λc

j
λeam(x)Uλ

= 2λ(λ − λ∗)e
−iw

j
λτ

j
n e2am(x)(ψ

j
λ × Cψ

j
λ). (5.32)

Calculating the inner product of (5.32) with Uλ, we get

〈Uλ, eam(x)Bλη
j
λ〉e

−2iw
j
λτ

j
n + c

j
λ〈Uλ, eam(x)BλUλ〉e

−2iw
j
λτ

j
n + 2iw

j
λc

j
λ〈Uλ, eam(x)Uλ〉

= −2λ(λ − λ∗)e
−iw

j
λτ

j
n〈Uλ, e2am(x)(ψ

j
λ × Cψ

j
λ)〉. (5.33)

Then

(λ − λ∗)c
j
λ = −

2λ(λ − λ∗)2e−iw
j
λτ

j
n〈Uλ, e2am(x)(ψ

j
λ × Cψ

j
λ)〉+ (λ − λ∗)〈Uλ, eam(x)Bληλ〉e

−2iw
j
λτ

j
n

〈Uλ, eam(x)BλUλ〉e
−2iw

j
λτ

j
n + 2iw

j
λ〈Uλ, eam(x)Uλ〉

.
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Since

lim
λ→λ∗

(λ − λ∗)
−3〈Uλ, eam(x)BλUλ〉 = λ∗d1(α

2
λ∗

+ β2
λ∗
)
∫

Ω

e2am(x)ϕ3dx,

lim
λ→λ∗

(λ − λ∗)
−3w

j
λ〈Uλ, eam(x)Uλ〉 =

{
λ∗d1(α

2
λ∗

+ β2
λ∗
)
∫

Ω
e2am(x)ϕ3dx, j = 1,

λ∗d1(α
2
λ∗

+ β2
λ∗
) (c2−c1)(b1−b2)

b1c2−b2c1

∫
Ω

e2am(x)ϕ3dx, j = 2,

lim
λ→λ∗

(λ − λ∗)
−1λ〈Uλ, e2am(x)(ψ

j
λ × Cψ

j
λ)〉

=

{
1
d1

λ∗(α2
λ∗

+ β2
λ∗
)(b1c2 − b2c1)

2
∫

Ω
e2am(x)ϕ3dx, j = 1,

1
d1

λ∗αλ∗ βλ∗(c
2
1 + b2

2)(b1c2 − b2c1)
∫

Ω
e2am(x)ϕ3dx, j = 2.

Hence, there exist δ1 < δ, M0, M1 > 0 such that for any λ ∈ (λ − δ1, λ + δ1),

(λ − λ∗)c
j
λ ≤ M0‖η

j
λ‖Y2

C

+ M1. (5.34)

Calculating the inner product of (5.32) with ηλ, we obtain

〈η
j
λ, eam(x)Aλη

j
λ〉 − 〈η

j
λ, eam(x)Bλη

j
λ〉e

−2iw
j
λτ

j
n

− 2iw
j
λ〈η

j
λ, eam(x)η

j
λ〉 − c

j
λ〈η

j
λ, eam(x)BλUλ〉e

−2iw
j
λτ

j
n

= 2λ(λ − λ∗)e
−iw

j
λτ

j
n〈η

j
λ, e2am(x)(ψ

j
λ × Cψ

j
λ)〉.

(5.35)

From (5.35), it follows that there exist constants δ2 < δ1, M2, M3 > 0 such that for any λ ∈
(λ − δ2, λ + δ2),

λ2(λ)‖η
j
λ‖

2
Y2

C

≤ (λ − λ∗)M2‖η
j
λ‖

2
YC

+ (λ − λ∗)M3‖η
j
λ‖YC

. (5.36)

Similar to the proof of Lemma 2.3 of [3], we have |〈eam(x)AλUλ, Uλ〉| ≥ |λ2(λ)|‖Uλ‖
2
Y2

C

and

λ2(λ) is the second eigenvalue of eam(x)Aλ. Then we have limλ→λ∗ ‖ζ
j
λ‖Y2

C

= 0. From all, we

can obtain (5.31). This completes the proof of Lemma 5.2.

Remark 5.3.

(1) When v = 0, b1 = 1 in (1.4), (5.31) in Lemma 5.2 is as same as that in Lemma 3.2 in [8].

(2) When a1 = 0 in (1.4), (5.31) in Lemma 5.2 is as same as that [18, p. 106].

Therefore, one can easily check

lim
λ→λ∗

(λ − λ∗)g
j
11 = 0, lim

λ→λ∗

Re[(λ − λ∗)
2g

j
21] < 0.

It is well-known that the real part of the following quantity determines the direction and

stability of bifurcating periodic orbits (see [14, 19, 33]):

c
j
1(0) =

i

2w
j
λτ

j
n

(
g

j
20g

j
11 − 2|g

j
11|

2 −
1

3
|g

j
02|

2

)
+

1

2
g

j
21.

It follows from (5.31) that limλ→λ∗ Re[(λ− λ∗)2c
j
1(0)] < 0. Hence we have the following result.

Theorem 5.4. Assume (H1)–(H2) hold. Then for j = 1, 2, λ ∈ Λ and n ∈ N0, system (1.5) has a

branch of bifurcating periodic solutions emerging from the steady state solution (uλ, vλ)
T for τ near

τ
j
n. More precisely, the direction of the Hopf bifurcation at τ

j
n is forward and the bifurcating periodic

solution from τ
j
n have the same stability as the steady state solution (uλ, vλ)

T.
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6 Simulations

In this section, some numerical simulations for model (1.4) are given to illustrate the results

of Theorem 5.4.

In (1.4), choose

Ω = (0, π), m(x) = sin x,

d = 0.20, b1 = 0.04, b2 = 0.02, c1 = 0.03, c2 = 0.04.

and the initial value conditions:

u(x, t) = v(x, t) = sin x, for t ∈ [−r, 0].

Example 6.1. Model (1.4) without advection, that is a1 = 0.

(1) When r = 1, solutions of model (1.4) without advection tend to a positive steady state.

See Fig. 6.1.

(2) When r = 5, solutions of model (1.4) without advection tend to periodically oscillatory

orbit, that is, model (1.4) undergoes a Hopf bifurcation. See Fig. 6.2.

Figure 6.1: Solutions of model (1.4) without advection (a1 = 0) tend to a positive

steady state when r = 1.

Figure 6.2: Model (1.4) without advection (a1 = 0) undergoes a Hopf bifurcation

when r = 4.
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Example 6.2. Model (1.4) with advection, that is a1 = 0.5.

When r = 1, solutions of model (1.4) with advection tend to a positive steady state. See

Fig. 6.3.

When r = 5, solutions of model (1.4) with advection tend to periodically oscillatory orbit,

that is, model (1.4) undergoes a Hopf bifurcation. See Fig. 6.4.

Figure 6.3: Solutions of model (1.4) with advection (a1 = 0.5) tend to a positive

steady state when r = 1.

Figure 6.4: Model (1.4) with advection (a1 = 0.5) undergoes a Hopf bifurcation

when r = 4.
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Abstract. In this paper, we study the following quasilinear Schrödinger equation

−∆u + V(x)u − κu∆(u2) + µ
h2(|x|)

|x|2
(1 + κu2)u

+ µ

(

∫ +∞

|x|

h(s)

s
(2 + κu2(s))u2(s)ds

)

u = f (u) in R
2,

where κ > 0, µ > 0, V ∈ C1(R2, R) and f ∈ C(R, R). By using a constraint mini-
mization of Pohožaev–Nehari type and analytic techniques, we obtain the existence of
ground state solutions.

Keywords: gauged Schrödinger equation, Pohožaev identity, ground state solutions.
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1 Introduction

In this paper, we are interested in the existence of ground state solutions for the following

nonlocal quasilinear Schrödinger equation

−∆u + V(x)u − κu∆(u2) + µ
h2(|x|)

|x|2
(1 + κu2)u

+ µ

(

∫ +∞

|x|

h(s)

s
(2 + κu2(s))u2(s)ds

)

u = f (u) in R
2,

(1.1)

where u : R2 → R is a radially symmetric function, κ, µ are positive constants, h(s) =
∫ s

0 u2(l)ldl (s ≥ 0) and the nonlinearity f : R → R satisfies the following suitable assump-

tions:

BCorresponding author. Email: chuanxizhu@126.com
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( f1) lim|s|→0
f (s)

s = 0 and there exist constants C > 0 and q ∈ (2,+∞) such that

| f (s)| ≤ C(1 + |s|q−1), ∀s ∈ R;

( f2) there exists a constant p ∈ (6, 8) such that lim|s|→+∞

F(s)
|s|p

= +∞, where F(s) =
∫ s

0 f (t)dt;

( f3)
[ f (s)s−(8−p)F(s)]

|s|p−1s
is nondecreasing on both (−∞, 0) and (0,+∞).

Moreover, we assume that potential V : R2 → R verifies:

(V1) V ∈ C1(R2, R) and V∞ := lim|y|→+∞ V(y) > V0 := minx∈R2 V(x) > 0 for all x ∈ R2;

(V2) t → t6α−2
[

(2α − 2)V(tx)−∇V(tx) · (tx)
]

is nondecreasing on (0,+∞) for any x ∈ R2,

where α := 2
8−p > 1, which is inspired by [6] where Kirchhoff-type problems were

studied.

If κ = 0, (1.1) turns into the following nonlocal elliptic problem

− ∆u + V(x)u + µ
h2(|x|)

|x|2
u + 2µ

(

∫ +∞

|x|

h(s)

s
u2(s)ds

)

u = f (u) in R
2. (1.2)

(1.2) appears in the study of the following Chern–Simons–Schrödinger system























iD0φ + (D1D1 + D2D2)φ + f (φ) = 0,

∂0A1 − ∂1A0 = −Im(φD2φ),

∂0A2 − ∂2A0 = −Im(φD1φ),

∂1A2 − ∂2A1 = − 1
2 |φ|

2,

(1.3)

where i denotes the imaginary unit, ∂0 = ∂
∂t , ∂1 = ∂

∂x1
, ∂2 = ∂

∂x2
for (t, x1, x2) ∈ R1+2, φ :

R1+2 → C is the complex scalar field, Aµ : R1+2 → R is the gauge field, Dµ = ∂µ + iAµ is

the covariant derivative for µ = 0, 1, 2. Model (1.3) was first proposed and studied in [12, 13],

which described the non-relativistic thermodynamic behavior of large number of particles in

an electromagnetic field. In [1], the authors considered the standing waves of system (1.3)

with power type nonlinearity, that is, f (u) = λ|u|p−1u, and established the existence and

nonexistence of positeve solutions for (1.3) of type

φ(t, x) = u(|x|)eiwt, A0(t, x) = k(|x|),

A1(t, x) =
x2

|x|2
h(|x|), A2(t, x) = −

x1

|x|2
h(|x|),

(1.4)

where w > 0 is a given frequency, λ > 0 and p > 1, u, k, h are real valued functions depending

only on |x|. The ansatz (1.4) satisfies the Coulomb gauge condition ∂1A1 + ∂2 A2 = 0. Byeon

et al. [1] got the following nonlocal semi-linear elliptic equation

− ∆u + wu +
h2(|x|)

|x|2
u +

(

∫ +∞

|x|

h(s)

s
u2(s)ds

)

u = λ|u|p−1u in R
2. (1.5)

Later, based on the work of [1], the results for the case p ∈ (1, 3) have been extended by

Pomponio and Ruiz in [20]. They investigated the geometry of the functional associated with

(1.5) and obtained an explicit threshold value for w. The existence and properties of ground
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state solutions of (1.5) have also been studied widely by many researchers, see, e.g., [2,7,10,11,

14,19,21,29,31,33,35] and references therein. If we replace w > 0 with the radially symmetric

potential V and more general nonlinearity f , then (1.5) will turns into (1.2). Very recently,

by using variational methods, Chen et al. in [4] studied the existence of sign-changing multi-

bump solutions for (1.2) with deepening potential. In [25], when f satisfied more general

6-superlinear conditions, Tang et al. proved the existence and multiplicity results of (1.2). For

more related work about the problem (1.2), we refer to [9, 15, 28, 35] and references therein.

If µ = 0, (1.1) reduces to the following quasilinear elliptic problem

− ∆u + V(x)u − κu∆(u2) = f (u) in R
2. (1.6)

(1.6) is obtained from the quasilinear Schrödinger equation

iφ̂t + ∆φ̂ − W(x)φ̂ + κφ̂∆(|φ̂|2) + ĥ(|φ̂|2)φ̂ = 0 in R
2,

by setting φ̂ = e−iwtu(x), V(x) = W(x) − w, where w ∈ R, W is a given potential, ĥ is a

suitable function. The existence and properties of ground state solutions of (1.6) as well as the

stability of standing wave solutions have also been studied widely in [16, 32] and references

therein.

Motivated by [3, 8], we try to establish the existence of positive ground state solutions for

(1.1) involving radially symmetric variable potential V and more general nonlinearity f than

[8]. Compared to [3], the equation (1.1) has appearance the Chern–Simons terms

(

∫ +∞

|x|

h(s)

s
u2(s)ds +

h2(|x|)

|x|2

)

u,

so that the equation (1.1) is no longer a pointwise identity. This nonlocal term causes some

mathematical difficulties that make the study of it is rough and particularly interesting. To

overcome these difficulties, we adopted a constraint minimization of the Pohožaev–Nehari

type as in [5, 8] and establish some new inequalities.

In order to state our main theorem, let us define the metric space

χ =

{

u ∈ H1
r (R

2) :
∫

R2
u2|∇u2|dx < +∞

}

=
{

u ∈ H1
r (R

2) : u2 ∈ H1
r (R

2)
}

,

endowed with the distance

dχ(u, v) = ‖u − v‖+ ‖∇(u2)−∇(v2)‖L2 .

We will show that (1.1) can obtain the following energy functional: I : χ → R,

I(u) =
1

2

∫

R2

[

(1 + 2κu2)|∇u|2 + V(x)u2
]

dx +
µ

2

∫

R2

u2(x)

|x|2

(

∫ |x|

0
su2(s)ds

)2

dx

+
µ

4
κ
∫

R2

u4(x)

|x|2

(

∫ |x|

0
su2(s)ds

)2

dx −
∫

R2
F(u)dx, ∀u ∈ χ.

(1.7)

Similarly to [1,8,16,22,29], any weak solution u of (1.1) satisfies the Pohožaev identity, that

is, P(u) = 0. For the nice properties of the generalized Nehari manifold, we refer to previous

works in [17, 18, 34] and references therein. Inspired by this fact, we define the following

Pohožaev–Nehari functional Γ(u) = αN(u)− P(u) and the Pohožaev–Nehari manifold of I

M :=
{

u ∈ χ\{0} : Γ(u) = 0
}

.
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Although χ is not a vector space (it is not close with the respect to the sum), it is easy to check

that I is well-defined and continuous on χ. For any ϕ ∈ C∞

0,r(R
2), u ∈ χ and u + ϕ ∈ χ, we

can compute the Gateaux derivative

〈I′(u), ϕ〉 =
∫

R2

{

(1 + 2κu2)∇u · ∇ϕ + 2κu|∇u|2ϕ + V(x)uϕ + µ
h2(|x|)

|x|2
(1 + κu2)uϕ

}

dx

+ µ
∫

R2

(

∫ +∞

|x|

h(s)

s
(2 + κu2(s))u2(s)ds

)

uϕdx −
∫

R2
f (u)ϕdx. (1.8)

Then u ∈ χ is a weak solution of (1.1) if and only if the Gateaux derivative of I along any

direction ϕ ∈ C∞

0,r(R
2) vanishes (see Proposition 2.2 below). A radial weak solution is called

a radial ground state solution if it has the least energy among all nontrivial radial weak

solutions.

Our main result is the following theorem.

Theorem 1.1. Assume that (V1)–(V2) and ( f1)–( f3) are satisfied. Then (1.1) has a positive ground

state solution u ∈ χ\{0} ∩ C2(R2), such that I(u) = infu∈M I(u) = infu∈χ\{0} maxt>0 I(ut) where

ut = (u)t := tαu(tx).

Remark 1.2. Theorem 1.1 can be viewed as a partial extension to the counterpart of the result

and method in [8]. The assumptions on f in this paper are from the reference [5]. Furthermore,

by [5, Remark 1.4],

f (u) = (|u|p−2 − a|u|q−2)u,

satisfies ( f1)–( f3) when a > 0 and 2 < q < p ∈ (6, 8].

To prove the Theorem 1.1, by using some new techniques and inequalities related to I(u),

I(ut) and Γ(u), as performed in [3, 5, 24], we prove that a minimizing sequence {un} ⊂ χ of

infu∈M I(u) weakly converges to some nontrivial u in χ (after a translation and extraction of

a subsequence ) and u ∈ M is a minimizer of infu∈M I(u).

Notations. Throughout this paper, we make use of the following notations:

• V∞ is a positive constant;

• C, C0, C1, C2,. . . denote positive constants, not necessarily the same one;

• Lr(R2) denotes the Lebesgue space with norm ‖u‖Lr =
(∫

R2 |u|rdx
)1/r

, where 1 ≤ r <

+∞;

• H1(R2) denotes a Sobolev space with norm ‖u‖ =
(∫

R2 u2 + |∇u|2dx
)1/2

;

• H1
r (R

2) := {u ∈ H1(R2) : u is radially symmetric};

• C∞

0,r(R
2) := {u ∈ C∞

0 (R2) : u is radially symmetric};

• For any x ∈ R2 and r > 0, Br(x) = {y ∈ R2 : |y − x| < r};

• “ ⇀ ” and “ → ” denote weak and strong convergence, respectively.
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2 Variational framework and preliminaries

In this section, we will give the variational framework of (1.1) and some preliminaries. Now

we find that if u ∈ χ is a solution of (1.1), then it solves Q(u) = 0, where

Q(u) = divA(u,∇u) + B(x, u,∇u),

with

A(u,∇u) = (1 + 2κu2)∇u,

B(x, u,∇u) = −
(

2κ|∇u|2 + V(x) + µK1(x)(1 + κu2) + µK2(x)
)

u + f (u),
(2.1)

and

K1(x) =

{

h2(|x|)
|x|2

, x 6= 0,

0, x = 0,
K2(x) =

∫ +∞

|x|

h(s)

s

(

2 + κu2(s)
)

u2(s)ds.

We observe from (2.1) that (1.1) is a quasilinear elliptic equation with principal part in

divergence form and it satisfies all the structure conditions in [19] or [26].

In order to show that any weak solutions of (1.1) are classical ones, we introduce the

following lemma.

Lemma 2.1 ([8]). Let us fix u ∈ χ. We have:

(i) K1, K2 are nonnegative and bounded;

(ii) if we suppose further that u ∈ C(R2), then K1, K2 ∈ C1(R2).

Arguing as in [1, 8], standard computations show that

Proposition 2.2. The functional I in (1.7) is well-defined and continuous in χ and if the Gateaux

derivative of I evaluated in u ∈ χ is zero in every direction ϕ ∈ C∞

0,r(R
2), then u is a weak solution of

(1.1). Furthermore, the weak solution of (1.1) belongs to C2(R2), so the weak solution u is a classical

solution of (1.1).

Lemma 2.3. Any weak solution u of (1.1) satisfies the Nehari identity N(u) = 0 and the Pohožaev

identity P(u) = 0, where

N(u) =
∫

R2

[

(1 + 4κu2)|∇u|2 + V(x)u2 + µ
h2(|x|)

|x|2
(3 + 2κu2)u2

]

dx −
∫

R2
f (u)udx, (2.2)

P(u) =
∫

R2

[

V(x)u2 +
1

2
∇V(x) · x|u|2 + µ

h2(|x|)

|x|2
(2 + κu2)u2

]

dx − 2
∫

R2
F(u)dx. (2.3)

Proof. By a density argument, we can use u ∈ χ as a test function in (1.8), we have

∫

R2

[

(1 + 2κu2)|∇u|2 + 2κu2|∇u|2 + V(x)u2 − f (u)u
]

dx

+ µ
∫

R2

h2(|x|)

|x|2
(1 + κu2)u2 + µ

∫

R2

(

∫ +∞

|x|

h(s)

s
(2 + κu2(s))u2(s)ds

)

u2dx = 0. (2.4)

We claim that: for β = 2 or β = 4, we have
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∫

R2

h2(|x|)

|x|2
uβdx =

∫

R2

(

∫ +∞

|x|

uβ(s)h(s)

s
ds

)

u2dx.

Now we using the integration by parts to prove the claim. A simple computation yields that

∫

R2

[

uβh(|x|)

|x|2

(

∫ |x|

0
su2(s)ds

)]

dx =
∫ 2π

0

[

∫ +∞

0

uβh(r)

r2

(

∫ r

0
su2(s)ds

)

rdr

]

dθ

=
∫ 2π

0

∫ +∞

0

(

∫ +∞

r

uβ(s)h(s)

s
ds

)

u2rdrdθ

=
∫

R2

(

∫ +∞

|x|

uβ(s)h(s)

s
ds

)

u2dx.

Then, we conclude that the identity N(u) = 0 holds.

Next, let u ∈ χ ∩ C2(R2) be a solution of (1.1). Then multiplying by ∇u · x and integrating

by parts on BR. Arguing as in [1, 8], we get the following identities:

∫

BR

∆u(∇u · x)dx =
∫

∂BR

∂u

∂−→n
(∇u · x)dSx −

∫

BR

∇u · ∇(∇u · x)dx

= R
∫

∂BR

(

∂u

∂−→n

)2

dSx −
R

2

∫

∂BR

|∇u|2dSx

=
R

2

∫

∂BR

|∇u|2dSx =: I,

∫

BR

u∆(u2)(∇u · x)dx =
∫

∂BR

∂u2

∂−→n
u(∇u · x)dSx −

∫

BR

∇u2 · ∇(u(∇u · x))dx

=
R

2

∫

∂BR

(

∂u2

∂−→n

)2

dSx −
1

2

∫

BR

∇u2 · ∇(∇u2 · x)dx

=
R

4

∫

∂BR

|∇u2|2dSx =: II,

∫

BR

V(x)u(∇u · x)dx =
∫

BR

V(x)

(

∇
(1

2
u2
)

· x

)

dx

= −
∫

BR

V(x)u2dx −
1

2

∫

BR

(

∇V(x) · x
)

u2dx +
R

2

∫

∂BR

V(x)u2dSx

=: −
∫

BR

V(x)u2dx −
1

2

∫

BR

(

∇V(x) · x
)

u2dx + III,

∫

BR

f (u)(∇u · x)dx =
∫

BR

∇(F(u)) · xdx

= −2
∫

BR

F(u)dx + R
∫

∂BR

F(u)dSx

=: −2
∫

BR

F(u)dx + IV.

We note that if f (x) ≥ 0 is integrable on R2, then lim infR→+∞ R
∫

∂BR
f dS = 0. Since u ∈ χ,

then u2 ∈ H1(R2) and the integrands in the terms I, II, III and IV are all nonnegative and

contained in L1(R2), one can take a sequence {Rj} such that the terms I, II, III and IV with Rj
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replacing R converge to 0 as j → +∞. Moreover, for β = 2 or β = 4, we have

4

β

∫

BRj

(

∫ +∞

|x|

h(s)

s
uβ(s)ds

)

u(∇u · x)dx +
∫

BRj

h2(|x|)

|x|2
uβ−1(∇u · x)dx

=
∫

BRj

h2(|x|)

|x|2
uβ−1(∇u · x)dx +

4

β

∫

BRj

uβ(x)

|x|2

(

∫ |x|

0
su2(s)ds

)(

∫ |x|

0
s2u(s)u′(s)ds

)

dx

−
4

β

∫

BRj

uβ(x)

|x|2

(

∫ |x|

0
su2(s)ds

)(

∫ |x|

0
s2u(s)u′(s)ds

)

dx

+
4

β

∫

BRj

(

∫ +∞

|x|

h(s)

s
uβ(s)ds

)

u(∇u · x)dx

=
1

β

d

dt

∣

∣

∣

∣

t=1

∫

BRj

uβ(tx)

|x|2

(

∫ |x|

0
su2(ts)ds

)2

dx

−
4

β

∫

BRj

uβ(x)

|x|2

(

∫ |x|

0
su2(s)ds

)(

∫ |x|

0
s2u(s)u′(s)ds

)

dx

+
4

β

∫

BRj

(

∫ +∞

|x|

h(s)

s
uβ(s)ds

)

u(∇u · x)dx

= −
4

β

∫

BRj

uβ(x)

|x|2

(

∫ |x|

0
su2(s)ds

)2

dx +
Rj

β

∫

∂BRj

uβ(x)

|x|2

(

∫ |x|

0
su2(s)ds

)2

dSx

+
4

β

(

∫

(R2\BRj
)

uβ(x)h(|x|)

|x|2
dx

)

∫ Rj

0
s2u(s)u′(s)ds

= −
4

β

∫

BRj

uβ(x)

|x|2

(

∫ |x|

0
su2(s)ds

)2

dx + on(1).

Then, from (1.1), we get

∫

BRj

[

V(x)u2 +
1

2
∇V(x) · x|u|2 + µ

h2(|x|)

|x|2
(2 + κu2)u2

]

dx − 2
∫

BRj

F(u)dx + on(1) = 0.

This implies that P(u) = 0 holds. The proof is completed.

Remark 2.4. From (2.2) and (2.3), by Lemma 2.3, any weak solution of (1.1) belongs to M.

For functionals D(u), E(u) (see Section 3 below), we have the following compactness

lemma:

Lemma 2.5 ([8]). Suppose that a sequence {un} converges weakly to a function u in H1
r (R

2) as

n → +∞. Then for each ψ ∈ H1
r (R

2), D(un), D′(un)ψ and D′(un)un, E(un), E′(un)ψ and E′(un)un

converges up to a subsequence to D(u), D′(u)ψ and D′(u)u, E(u), E′(u)ψ, and E′(u)u, respectively,

as n → +∞.

3 Existence of ground state solutions

Throughout this section, for any u ∈ χ, we denote

A(u) =
∫

R2
|∇u|2dx, B(u) =

∫

R2
V(x)u2dx, C(u) =

∫

R2
u2|∇u|2dx,
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D(u) =
∫

R2

u2(x)

|x|2

(

∫ |x|

0
su2(s)ds

)2

dx,

E(u) =
∫

R2

u4(x)

|x|2

(

∫ |x|

0
su2(s)ds

)2

dx.

To complete the proof of Theorem 1.1, we prepare several lemmas.

Lemma 3.1. Assume that ( f1) and ( f3) hold. Then

g1(t, ̺) := t−2F(tα̺)− F(̺) +
1 − t8α−4

4(2α − 1)

[

α f (̺)̺ − 2F(̺)
]

≥ 0, ∀t > 0, ̺ ∈ R, (3.1)

and

f (̺)̺ −
(8α − 2)

α
F(̺) ≥ 0, ∀̺ ∈ R. (3.2)

Proof. It is easy to see that g1(t, 0) ≥ 0. For ̺ 6= 0, by ( f3), we have

d

dt
g1(t, ̺) = t8α−5|̺|

8α−2
α

[

α f (tα̺)tα̺ − 2F(tα̺)

|tα̺|
8α−2

α

−
α f (̺)̺ − 2F(̺)

|̺|
8α−2

α

]

=
2t

5p−24
8−p |̺|p

8 − p

[

f (t
2

8−p ̺)t
2

8−p ̺ − (8 − p)F(t
2

8−p ̺)

|t
2

8−p ̺|p
−

f (̺)̺ − (8 − p)F(̺)

|̺|p

]

,

and this expression is greater than or equal to zero for t ≥ 1 and less than or equal to zero for

0 < t < 1. Together with the continuity of g1(·, ̺), this implies that g1(t, ̺) ≥ g1(1, ̺) = 0 for

all t ≥ 0 and ̺ ∈ R\{0}. This shows that (3.1) holds. By ( f1) and (3.1), we have

lim
t→0

g1(t, ̺) =
1

4(2α − 1)

[

α f (̺)̺ − (8α − 2)F(̺)
]

≥ 0, ∀̺ ∈ R,

which implies that (3.2) holds.

Lemma 3.2. Assume that (V1)–(V2) hold. Then

g2(t, x) := V(x)− t2α−2V(t−1x)−
1 − t8α−4

4(2α − 1)

[

(2α − 2)V(x)−∇V(x) · x
]

≥ 0, ∀ t ≥ 0, x ∈ R
2 \ {0},

(3.3)

and

(6α − 2)V(x) +∇V(x) · x ≥ 0, ∀x ∈ R
2. (3.4)

Proof. For any x ∈ R2, by (V1) and (V2), we have

d

dt
g2(t, x) = t8α−5

{

(2α − 2)V(x)−∇V(x) · x

− t−(6α−2)
[

(2α − 2)V(t−1x)−∇V(t−1x) · (t−1x)
]

}

,

and this expression is greater than or equal to zero for t ≥ 1 and less than or equal to zero for

0 < t < 1. Together with the continuity of g2(·, x), this implies that g2(t, x) ≥ g2(1, x) for all

t ≥ 0 and x ∈ R2. This shows that (3.3) holds. By (3.3), one has

lim
t→0

g2(t, x) =
(6α − 2)V(x) +∇V(x) · x

4(2α − 1)
≥ 0,

which implies that (3.4) holds.
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For t ≥ 0, let

τ1(t) = αt8α−4 − (4α − 2)t2α + 3α − 2, (3.5)

τ2(t) = αt8α−4 − (2α − 1)t4α + α − 1 , (3.6)

τ3(t) = (3α − 2)t8α−4 − (4α − 2)t6α−4 + α. (3.7)

Since α > 1, for all t ∈ (0, 1) ∪ (1,+∞),

τ1(t) > τ1(1) = 0, τ2(t) > τ2(1) = 0, τ3(t) > τ3(1) = 0. (3.8)

Lemma 3.3. Assume that (V1)–(V2), ( f1) and ( f3) hold. Then for all u ∈ H1(R2) and t > 0,

I(u) ≥ I(ut) +
1 − t8α−4

4(2α − 1)
Γ(u) +

τ1(t)

4(2α − 1)
A(u) +

τ2(t)

(2α − 1)
C(u). (3.9)

Proof. Note that

I(ut) =
t2α

2
A(u) +

t2α−2

2

∫

R2
V(t−1x)u2dx + t4ακC(u)

+
t6α−4

2
µD(u) +

t8α−4

4
µκE(u)−

1

t2

∫

R2
F(tαu)dx, ∀u ∈ H1(R2).

(3.10)

Since Γ(u) = αN(u)− P(u) for u ∈ χ, then (1.7) and (1.8) imply that

Γ(u) = αA(u) +
1

2

∫

R2

[

(2α − 2)V(x)−∇V(x) · x
]

u2dx

+ 4ακC(u) + (3α − 2)µD(u) + (2α − 1)µκE(u) +
∫

R2

[

2F(u)− α f (u)u
]

dx.
(3.11)

Then, it follows from (1.7), (3.1)–(3.7), (3.10)–(3.11) that

I(u)− I(ut)

=
1 − t2α

2
A(u) +

1

2

∫

R2

[

V(x)− t2α−2V(t−1x)
]

u2dx + (1 − t4α)κC(u)

+

(

1 − t6α−4

2

)

µD(u) +

(

1 − t8α−4

4

)

µκE(u) +
∫

R2

[

t−2F(tαu)− F(u)
]

dx

=
1 − t8α−4

4(2α − 1)

{

αA(u) +
1

2

∫

R2

[

(2α − 2)V(x)−∇V(x) · x
]

u2dx

+ 4ακC(u) + (3α − 2)µD(u) + (2α − 1)µκE(u) +
∫

R2

[

2F(u)− α f (u)u
]

dx

}

+

[

1 − t2α

2
−

α(1 − t8α−4)

4(2α − 1)

]

A(u) +

[(

1 − t6α−4

2

)

−
(1 − t8α−4)(3α − 2)

4(2α − 1)

]

µD(u)

+
1

2

∫

R2

{

V(x)− t2α−2V(t−1x)−
1 − t8α−4

4(2α − 1)

[

(2α − 2)V(x)−∇V(x) · x
]

}

u2dx

+

[

1 − t4α −
4α(1 − t8α−4)

4(2α − 1)

]

κC(u)

+
∫

R2

{

t−2F(tαu)− F(u) +
1 − t8α−4

4(2α − 1)

[

α f (u)u − 2F(u)
]

}

dx

≥
1 − t8α−4

4(2α − 1)
Γ(u) +

τ1(t)

4(2α − 1)
A(u) +

τ2(t)

(2α − 1)
C(u),

for all u ∈ H1(R2) and t > 0. This implies that (3.9) holds.
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From Lemma 3.3, we have the following corollary.

Corollary 3.4. Assume that (V1)–(V2), ( f1) and ( f3) hold. Then for all u ∈ M,

I(u) = max
t>0

I(ut).

Lemma 3.5. Assume that (V1)–(V2), ( f1)–( f3) hold. Then for any χ\{0}, there exists a unique

tu > 0, such that (u)tu ∈ M.

Proof. Inspired by [3, 5], we let u ∈ χ\{0} be fixed and define the function γ(t) := I(ut) on

(0,+∞). Clearly by (3.10), (3.11), we have

γ′(t) = 0 ⇐⇒ αA(u)t2α−1 +
t2α−3

2

∫

R2

[

2(α − 1)V(t−1x)−∇V(t−1x) · (t−1x)
]

u2dx

+ 4ακC(u)t4α−1 + (3α − 2)µD(u)t6α−5 + (2α − 1)µκE(u)t8α−5

+ t−3
∫

R2

[

2F(tαu)− α f (tαu)tαu
]

dx = 0

⇐⇒ Γ(ut) = 0 ⇐⇒ ut ∈ M.

From (V1) and (V2), ( f1) and (3.10), it follows that limt→0 γ(t) = 0, γ(t) > 0 for t > 0 small.

Moreover, from ( f1) and ( f2), for every θ > 0, there exists Cθ > 0 such that

F(̺) ≥ θ|̺|p − Cθ̺2, ∀̺ ∈ R. (3.12)

We note from Lemma 2.1 and Hölder inequality that for some C0 > 0,

h(s) =
∫ s

0
u2(r)rdr =

∫

Bs

1

2π
u2(y)dy ≤ C0s‖u‖2

L4 , (3.13)

then

D(u) =
∫

R2

u2(x)

|x|2

(

∫ |x|

0
su2(s)ds

)2

dx ≤ C0‖u‖4
L4‖u‖2

L2 , (3.14)

E(u) =
∫

R2

u4(x)

|x|2

(

∫ |x|

0
su2(s)ds

)2

dx ≤ C0‖u‖8
L4 . (3.15)

By (V1), we have Vmax:= maxx∈R2 V(x) > 0 and by (3.10), (3.12) and (3.14), (3.15), we have

I(ut) ≤
t2α

2
A(u) +

t2α−2

2
Vmax‖u‖2 + t4ακC(u)

+
t6α−4

2
µC0‖u‖4

L4‖u‖2
L2 +

t8α−4

4
µκ‖u‖8

L4 − θt8α−4‖u‖
p
Lp

+ t2α−2Cθ‖u‖2
L2 .

(3.16)

Let θ be large enough in (3.16), then γ(t) < 0 for t large. Therefore, maxt>0 γ(t) is achieved at

some tu > 0, so that γ′(tu) = 0 and (u)tu ∈ M.

Next, we claim that tu > 0 is unique for any u ∈ χ\{0}. If there exist two positive constants

t1 6= t2, such that both ut1
, ut2 ∈ M, that is, Γ(ut1

) = Γ(ut2) = 0, then (3.5)–(3.7), (3.10) imply

I(ut1
) > I(ut2) +

t6α−4
1 − t6α−4

2

4(2α − 1)t6α−4
1

Γ(ut1
) = I(ut2)

> I(ut1
) +

t6α−4
2 − t6α−4

1

4(2α − 1)t6α−4
2

Γ(ut2) = I(ut1
).

This contradiction shows that tu > 0 is unique for any u ∈ χ\{0}.



New results on the existence of ground state solutions 11

Arguing as in [5], standard computations show that

Lemma 3.6. Assume that (V1)–(V2) hold. Then there exist constants C1, C2 > 0, such that

(2α − 2)V(x)−∇V(x) · x ≥ C1, ∀x ∈ R
2. (3.17)

and

(6α − 2)V(x) +∇V(x) · x ≥ C2, ∀x ∈ R
2. (3.18)

Lemma 3.7. Assume that (V1) and (V2), ( f1)–( f3) hold. Then

(i) there exists ρ0 > 0 such that ‖u‖ ≥ ρ0, ∀u ∈ M;

(ii) m := infu∈M I(u) = infu∈χ\{0} max I(ut) > 0.

Proof. (i) Since Γ(u) = 0 for u ∈ M, it follows from ( f1), (3.11), (3.17) and Sobolev embedding

inequality, there exists a constant C3 > 0, such that

αA(u) + 4ακC(u) +
1

2
C1‖u‖2

L2

≤ αA(u) + 4ακC(u) +
1

2

∫

R2

[

(2α − 2)V(x)−∇V(x) · x
]

u2dx

≤
∫

R2

[

α f (u)u − 2F(u)
]

dx

≤
1

4
C1‖u‖2

L2 + C3‖u‖p,

for all u ∈ M. This implies that there exists ρ0 > 0 such that

‖u‖ ≥ ρ0 :=

(

min{4α, C1}

4C3

)
1

p−2

, ∀u ∈ M. (3.19)

(ii) From Corollary 3.4 and Lemma 3.5, we have

M 6= ∅ and m = inf
u∈χ\{0}

max I(ut).

Next, we prove that m > 0. Let

Ψ(u) := I(u)−
1

4(2α − 1)
Γ(u)

=
3α − 2

4(2α − 1)
A(u) +

1

8(2α − 1)

∫

R2

[

(6α − 2)V(x) +∇V(x) · x
]

u2dx

+
α − 1

(2α − 1)
κC(u) +

α

4(2α − 1)
µD(u)

+
1

4(2α − 1)

∫

R2

[

α f (u)u − (8α − 2)F(u)
]

dx, ∀u ∈ H1(R2).

(3.20)

Since Γ(u) = 0 for all u ∈ M, then it follows from (3.2), (3.4), (3.18) and (3.19), (3.20) that

I(u) ≥
3α − 2

4(2α − 1)
A(u) +

1

8(2α − 1)

∫

R2

[

(6α − 2)V(x) +∇V(x) · x
]

u2dx

≥
min{2(3α − 2), C2}

8(2α − 1)
‖u‖2 ≥

min{2(3α − 2), C2}

8(2α − 1)
ρ2

0 := ρ1 > 0, ∀u ∈ M.

This shows that m = infu∈M I(u) ≥ ρ1 > 0.
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Next, we establish the following lemma.

Lemma 3.8. Assume that (V1)–(V2) and ( f1)–( f3) hold. If u ∈ M and I(u) = m, then u is a radial

ground state solution of (1.1). Moreover, it is positive (up to a change of sign).

Proof. We argue as in [8, 22]. Suppose by contradiction that u is not a weak solution of (1.2).

Then, we can choose ϕ ∈ C∞

0,r(R
2) such that

〈I′(u), ϕ〉 < −1.

Hence, we fix ε > 0 sufficiently small such that

〈I′(ut + ϑϕ), ϕ〉 ≤ −
1

2
, for |t − 1|, |ϑ| ≤ ε, (3.21)

and introduce ζ ∈ C∞

0 (R) be a cut-off function 0 ≤ ζ ≤ 1 such that ζ(t)=1 for |t − 1| ≤ ε
2 and

ζ(t) = 0 for |t − 1| ≥ ε. For t ≥ 0, we construct a path σ : R+ → χ defined by

σ(t) =

{

ut, if |t − 1| ≥ ε,

ut + εζ(t)ϕ, if |t − 1| < ε.

Note that η is continuous on the metric space (χ, dχ) and eventually, choosing a smaller ε, if

necessary, we obtain that dχ(σ(t), 0) > 0 for |t − 1| < ε.

We claim that

sup
t≥0

I(σ(t)) < m. (3.22)

Indeed, if |t − 1| ≥ ε, from Corollary 3.4, we have I(σ(t)) = I(ut) < I(u) = m. If |t − 1| < ε,

by using the mean value theorem, we get

I(σ(t)) = I(ut + εζ(t)ϕ) = I(ut) +
∫ ε

0
〈I′(ut + ϑζ(t)ϕ), ζ(t)ϕ〉dτ

≤ I(ut)−
1

2
εζ(t) < m,

where in the first inequality we have used (3.21).

To conclude that Γ(σ(1 + ε)) < 0 and Γ(σ(1 − ε)) > 0. By the continuity of the map t →

Γ(σ(t)), there exists t0 ∈ (1 − ε, 1 + ε) < 0 such that Γ(σ(t0)) = 0. This implies that σ(t0) =

ut0 + εζ(t0)ϕ ∈ M and I(σ(t0)) < m. By Lemma 3.7, this gives the desired contradiction,

hence u is a weak solution of (1.2). By Remark 2.4, we conclude that u is a radial ground state

solution. Moreover, if u ∈ M is a minimizer of I|M, then |u| is also a minimizer and a solution.

So we can assume that u is nonnegative. By Proposition 2.2, we know that u ∈ C2(R2) and by

the Harnack inequality [27], we know that u > 0. This completes the proof.

Lemma 3.9. Assume that (V1)–(V2) and ( f1)–( f3) hold. Then m is achieved.

Proof. Let {un} ⊂ M be such that I(un) → m, then by (3.20),

m + o(1) = I(un) ≥
3α − 2

4(2α − 1)
A(un) +

C2

8(2α − 1)
‖un‖

2
L2 +

α − 1

(2α − 1)
κC(un),

which implies that {un} and {u2
n} are bounded in H1

r (R
2). Therefore, by the compactness

result due to [23], there exists u ∈ χ such that, up to a subsequence,
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un ⇀ u in H1
r (R

2),

u2
n ⇀ u2 in H1

r (R
2),

un → u in Lq(R2) for any q > 2,

un → u a.e. in R
2.

There are two possible cases (i) u = 0 and (ii) u 6= 0. Next, we prove that u 6= 0.

Arguing by contradiction, suppose that u = 0, that is un ⇀ 0 in H1
r (R

2) and u2
n ⇀ 0 in

H1
r (R

2). Then un → 0 in Lq(R2) for q > 2 and un → 0 a.e. in R2. From Γ(un) = 0, (3.17) and

(3.19), one has

min{α,
1

2
C1}ρ0

2 ≤ min
{

α,
1

2
C1

}

‖un‖
2

≤ αA(u) +
1

2
C1‖un‖

2
L2

≤ αA(un) +
1

2

∫

R2

[

(2α − 2)V(x)−∇V(x) · x
]

u2
ndx

+ 4ακC(un) + (3α − 2)µD(un) + (2α − 1)µκE(un)

=
∫

R2

[

α f (un)un − 2F(un)
]

dx + o(1).

(3.23)

Using ( f1), ( f2), clearly, (3.23) contradicts with un → 0 in Lq(R2) for q > 2, therefore u 6= 0.

Let vn = un − u. Then by Lemma 2.5 and the Brezis–Lieb Lemma (see [22, 24, 30]), yield

I(un) = I(u) + I(vn) + o(1), (3.24)

and

Γ(un) = Γ(u) + Γ(vn) + o(1). (3.25)

Since I(un) → m, Γ(un) = 0, then it follows from (3.20), (3.24) and (3.25), we have

Ψ(vn) := I(vn)−
1

4(2α − 1)
Γ(vn)

= m − Ψ(u) + o(1)

= m −

[

I(u)−
1

4(2α − 1)
Γ(u)

]

+ o(1),

(3.26)

and

Γ(vn) = −Γ(u) + o(1). (3.27)

If there eixsts a subsequence {vni
} of {vn} such that vni

= 0, then

I(u) = m, Γ(u) = 0, (3.28)

which implies that the conclusion of Lemma 3.9 holds. Next, we assume that vn 6= 0. In view

of Lemma 3.5, there exists tn > 0 such that (vn)tn ∈ M for large n, we claim that Γ(u) ≤ 0,

otherwise, if Γ(u) > 0, then (3.27) implies that Γ(vn) < 0 for large n. From (1.7), (3.9) and

(3.26), we obtain

m − Ψ(u) + o(1) = Ψ(vn) = I(vn)−
1

4(2α − 1)
Γ(vn)

≥ I((vn)tn)−
t8α−4
n

4(2α − 1)
Γ(vn) +

τ1(tn)

4(2α − 1)
A(vn) +

τ2(tn)

(2α − 1)
C(vn)

≥ I((vn)tn)−
t8α−4
n

4(2α − 1)
Γ(vn) ≥ m for large n ∈ N,



14 Y. Xiao and C. Zhu

which implies that Γ(u) ≤ 0 due to Ψ(u) > 0. Applying Lemma 3.5, there exists t > 0 such

that ut ∈ M. From (1.7), (3.5), (3.6) and (3.9), the weak semicontinuity of norm and Fatou’s

Lemma, one has

m = lim
n→∞

Ψ(un)

= lim
n→∞

[

I(un)−
1

4(2α − 1)
Γ(un)

]

≥ I(u)−
1

4(2α − 1)
Γ(u)

≥ I(ut)−
t
8α−4

4(2α − 1)
Γ(u) +

τ1(t)

4(2α − 1)
A(u) +

τ2(t)

(2α − 1)
C(u)

≥ m −
t
8α−4

4(2α − 1)
Γ(u) ≥ m,

which implies that (3.28) holds.

Proof of Theorem 1.1. In view of Lemmas 3.7, 3.8, 3.9, there exists u ∈ M such that I′(u) = 0,

I(u) = m = infu∈χ\{0} max I(ut), we can conclude that, actually, u is a positive radial ground

state solution of (1.1). This completes the proof.
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Abstract. It is well known that biological pattern formation is the Turing mechanism, in
which a homogeneous steady state is destabilized by the addition of diffusion, though
it is stable in the kinetic ODEs. However, steady states that are unstable in the kinetic
ODEs are rarely mentioned. This paper concerns a reaction diffusion advection system
under Neumann boundary conditions, where steady states that are unstable in the ki-
netic ODEs. Our results provide a stabilization strategy for the same steady state, the
combination of large advection rate and small diffusion rate can stabilize the homoge-
neous equilibrium. Moreover, we investigate the existence and stability of nonconstant
positive steady states to the system through rigorous bifurcation analysis.
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1 Introduction

The central player in mathematical biology models is the stability of steady states. It is well

known that biological pattern formation is the Turing mechanism, in which a homogeneous

steady state that is stable in the kinetic ODEs is destabilised by the addition of diffusion terms.

However, steady states that are unstable in the kinetic ODEs are almost never mentioned. As

a result, there is a widespread assumption that unstable steady states are not biologically

significant as PDE solutions.

The objective of this paper is to explain how diffusion and advection can turn an unstable

steady state of kinetic ODEs to a stable one, to illustrate their implications for PDE models

of biological systems. For that purpose, we investigate the spatially extended Rosenzweig–

*Co-corresponding author. Email: chenhuialena@163.com
BCorresponding author. Email: xuelian632@163.com



2 H. Chen and X. Xu

MacArthur model for predator–prey interaction in river, which was proposed in [3]:







































Pt = d1(Pxx − αPx) + P

(

1 − P −
mN

a + P

)

, (0, L)× (0,+∞),

Nt = Nxx − αNx − dN +
mPN

a + P
, (0, L)× (0,+∞),

Px(0, t) = Px(L, t) = Nx(0, t) = N(L, t) = 0, t > 0,

P(x, 0) = P0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, x ∈ (0, L),

(1.1)

where P(x, t) and N(x, t) denote predator and prey densities, which depend on space x and

time t. Here, and throughout this paper, we restrict attention to one space dimension (0, L),

though our analysis carries over to multi-dimensions. Most predator–prey studies do not

include advection terms, advection of this type arises naturally in river-based predator–prey

systems [3] and α is the convective rate of unidirectional flow. The parameter d1 is the random

diffusion rate of the prey and the random diffusion rate of the predator is rescaled to 1. The

prey consumption rate per predator is an increasing saturating function of the prey density

with Holling type II form: m reflects how quickly the consumption rate saturates as prey

density increases, a is the density of prey necessary to achieve one half the rate. d is the death

rate of the predator, also see [9].

Here the zero Neumann boundary conditions correspond to a long river in which the

downstream boundary has little influence, see e.g., [3, 7]. For the same parameter values as

used ODEs, the stability of constant steady states does not change in diffusive systems under

zero Neumann boundary conditions, see e.g., [12]. We will find a distinguished result for the

reaction-diffusion-advection system (1.1): the coexistence steady state of (1.1) becomes stable

for large advection rates though it is unstable for the corresponding diffusive system.

Over the past few decades, reaction-diffusion systems have been widely applied and ex-

tensively studied to model the spatial-temporal predator–prey dynamics, which can greatly

explain the invasion of a prey by predators (e.g., [8]). For the spatial model with advection,

there are some recent related works to understand how the diffusion and advection jointly

effect population persist over large temporal scales and resist washout in such environment

[5, 6, 13]. Our purpose is to investigate the stabilization effect of advection.

In Section 2, we perform linear stability of the unique equilibrium (P∗, N∗) with respect to

(1.1). Our results in Theorem 2.4 indicate that advection and diffusion stabilize the homoge-

neous equilibrium when the advection is large and diffusion is small, while it still destabilizes

predator–prey interactions when the advection is small. This extends the work of [9]. Section

3 is devoted to the steady state bifurcation analysis of (1.1) which establishes the existence

of its nonconstant steady states, with advection rate α being the bifurcation parameter, see

Theorem 3.2.

2 Linearized stability driven by advection

The system (1.1) has three non-negative constant equilibrium solution (0, 0), (1, 0), (P∗, N∗),

where

(P∗, N∗) =

(

ad

m − d
,
(a + P∗)(1 − P∗)

m

)

.
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The coexistence equilibrium (P∗, N∗) is in the first quadrant if and only if 0 <
ad

m−d < 1. First

we recall some well known results on the ODE dynamics of (1.1), see for example [4, 11]:














Pt = P

(

1 − P −
mN

a + P

)

,

Nt = −dN +
mPN

a + P
.

(2.1)

Lemma 2.1. The following statements hold for system (2.1):

1. when P∗ ≥ 1, (1, 0) is globally asymptotically stable, see [4];

2. when 1 − a < P∗
< 1, (P∗, N∗) is globally asymptotically stable, see [4];

3. P∗ = 1−a
2 is the unique bifurcation point where a Hopf bifurcation occurs, and the Hopf bifurca-

tion is supercritical and backward;

4. when 0 < P∗
<

1−a
2 , (P∗, N∗) is unstable and there is a globally asymptotically stable periodic

orbit, see [11];

5. when 1−a
2 < P∗

< 1, then (2.1) has no closed orbits in the first quadrant and the positive

equilibrium (P∗, N∗) is globally asymptotically stable in the first quadrant, see [11].

Based on this, we always assume that the constants satisfy 0 < a < 1, P∗
> 0 and N∗

> 0

throughout the paper. Following the same process of Theorem 2.1 in [12], we have the exis-

tence of solution and a priori bound of the solution to the dynamical equation (1.1).

Lemma 2.2. The following statements hold:

(a) If P0(x) ≥ 0( 6≡ 0), N0(x) ≥ 0( 6≡ 0), then (1.1) has a unique solution (P(x, t), N(x, t)) such

that P(x, t) > 0, N(x, t) > 0 for t ∈ (0, ∞) and x ∈ [0, L];

(b) For any solution (P(x, t), N(x, t)) of (1.1),

lim sup
t→∞

P(x, t) ≤ 1,
∫ L

0
N(x, t)dx ≤

(

1 +
(a + 1)L

4d

)

.

Moreover, there exists C > 0 such that

lim sup
t→+∞

N(x, t) ≤ C,

where C is independent of P0, N0, d1, α. If d1 = 1, then N(x, t) ≤
(

1 + (a+1)L
4d

)

for all t > 0,

x ∈ [0, L].

In the following, we investigate the effect of diffusion and advection on the stability of

(P∗, N∗). For the convenience, we denote














f (P, N) = P

(

1 − P −
mN

a + P

)

,

g (P, N) = −dN +
mPN

a + P
.

Then the linearization of (1.1) at (P∗, N∗) can be expressed by:

(

φt

ψt

)

= L(α)

(

φ

ψ

)

:= D

(

φxx − αφx

ψxx − αψx

)

+ J(P,N)

(

φ

ψ

)

(2.2)
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with domain X =
{

(φ, ψ) ∈ H2((0, L))× H2((0, L)) : φx = ψx = 0, x = 0, L
}

, where

D =

(

d1 0

0 1

)

, J(P,N) =

(

fP fN

gP gN

)

,

and

fP =
P∗(1 − a − 2P∗)

(a + P∗)
, fN = −

mP∗

(a + P∗)
,

gP =
a(1 − P∗)

(a + P∗)
, gN = 0.

From Theorem 5.1.1 of [2], it is known that if all the eigenvalues of the operator L have

negative real parts, then (P∗, N∗) is asymptotically stable, otherwise, (P∗, N∗) is unstable.

Thus λ is an eigenvalue of L if and only if λ is an eigenvalue of the matrix Jk = −µkD +

J(P,N) for some k ≥ 0, where µk(k = 0, 1, 2, . . . ) is the kth eigenvalue of the following eigenvalue

problem:
{

φxx − αφx = −µkφ, x ∈ (0, L),

φx(0) = φx(L) = 0.
(2.3)

Since x ∈ (0, L), we can directly calculate the eigenvalue µk and eigenfunction φk(x) as fol-

lowing:


















µk =

(

kπ

L

)2

+
α2

4
, k = 0, 1, 2, . . . ,

φk(x) = αe
αx
2 cos

(

kπx

L

)

+
2kπ

L
e

αx
2 sin

(

kπx

L

)

, k = 0, 1, 2, . . .

(2.4)

So the stability is reduced to consider the characteristic equation

λ2 − Trace(Jk)λ + Det(Jk) = 0, k = 0, 1, 2, . . . (2.5)

with

Trace(Jk) = −(d1 + 1)µk + fP + gN := −(d1 + 1)µk + Trace(J),

Det(Jk) = d1µk
2 − (d1gN + fP)µk + fPgN − fN gP := d1µk

2 − (d1gN + fP)µk + Det(J).
(2.6)

We take α as the main bifurcation parameter to observe its effect on the local stability (P∗, N∗).

First of all, we list four conditions for the sake of following discussion.

(A1) f 2
P + 4d1 fN gP < 0,

(A2) f 2
P + 4d1 fN gP > 0,

(A3) d1µ2
0 − fPµ0 − fN gP ≤ 0,

(A4) d1µ2
0 − fPµ0 − fN gP > 0.

Theorem 2.3. Suppose P∗ ≥ 1−a
2 . Then (P∗, N∗) is always locally asymptotically stable for any

advection rate α > 0.

Proof. It can find that fP ≤ 0 when P∗ ≥ 1−a
2 . Thus Trace(Jk) < 0 and Det(Jk) > 0 for all

k = 0, 1, 2, . . . , which implies the desired results.
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Theorem 2.4. Suppose P∗
<

1 − a

2
.

1. If −(d1 + 1)µ0 + fP > 0, then (P∗, N∗) is unstable.

2. If there is some k ≥ 0 such that −(d1 + 1)µk + fP = 0, then system (1.1) generates a hetero-

geneous Hopf bifurcation at (P∗, N∗) provided either (A1) holds or (A2), (A4) and µ0 >
fP

2

holds.

3. If −(d1 + 1)µ0 + fP < 0, then (P∗, N∗) is locally asymptotically stable provided either (A1)

holds or (A2), (A4) and µ0 >
fP

2 holds; and (P∗, N∗) is unstable provided (A3) holds,

Proof. It just notices that Det(Jk) > 0 for all k = 0, 1, 2, . . . if either (A1) or (A2) holds; and

Det(J0) < 0 if (A3) holds.

Remark 2.5. Theorem 2.3 and Theorem 2.4 imply that the advection rate α makes (P∗, N∗)

more stable compared with that for the corresponding ODE system in Lemma 2.1. The pe-

riodic solution bifurcating from (P∗, N∗) will disappear when introducing the advection and

diffusion; Moreover under the same condition that (P∗, N∗) is unstable for (2.1), there is new-

born homogeneous/heterogeneous Hopf bifurcation solutions at (P∗, N∗) or (P∗, N∗) even

becomes stable for small diffusion rate d1 or large advection rate α.

3 Existence of non-constant positive steady state

In this section we show that when (P∗, N∗) is unstable, there exist positive non-constant steady

state solutions of (1.1). In order to show that we use bifurcation theory to prove the existence

of positive non-constant steady state solutions. The bifurcations can be shown with parameter

αk(or µk) as shown in Theorem 2.4. From the relation given in (2.6), we define the potential

bifurcation points:

α2
k,± =

2 fP ± 2
√

fP
2 + 4d1 fN gP

d1
− 4

(

kπ

L

)2

, k = 0, 1, 2, . . . (3.1)

We have the following properties of αk,±:

Lemma 3.1. Assume that (A2) holds. Then

1. limk→∞ αk,± = −∞;

2. Both αk,+ and αk,− are monotonically decreasing with respect to k, there exists m, n such that

α0,+ > α1,+ > · · · > αm,+ ≥ 0 and α0,− > α1,− > · · · > αm,− ≥ 0.

Theorem 3.2. Assume that (A2) holds. Let αk,± be defined as in (3.1) such that αi,+ 6= αj,− for any

0 ≤ i ≤ m and 0 ≤ j ≤ n. Then

1. Near (αi,±, P∗, N∗), the set of positive non-constant steady state solutions of (1.1) is a smooth

curve Σi = {αi(s), Pi(s), Ni(s) : s ∈ (−ε, ε)}, where where Pi(s) = P∗+ saiφi(x)+ s2ψ1,i(s)+

O(s3), Ni(s) = N∗+ sbiφi(x)+ s2ψ2,i(s)+O(s3) for some smooth functions ψ1,i, ψ2,i such that

αi(s) = αi,± + O(s) and ψ1,i(0) = ψ2,i(0) = 0; Here (ai, bi) satisfies

L(αi)[(ai, bi)
Tφi(x)] = (0, 0)T.
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2. The smooth curve Σi in part (1) is contained in a connected component Ci of Γ, which is the clo-

sure of the set of positive non-constant steady state solutions of (1.1), and either Ci is unbounded

or Ci contains another (αj,±, P∗, N∗) with αi,± 6= αj,±.

Proof. The existence and uniqueness of αi,± follows from discussions above. Then the local

bifurcation result follows the bifurcation theorem in [1], and it is an application of a more

general result Theorem 4.3 in [10].

Define a nonlinear mapping

F(α, P, N) =

(

d1(Pxx − αPx) + f (P, N)

Nxx − αNx + g(P, N)

)

with domain V = {(α, P, N) : 0 < α < α0,+, (P, N) ∈ X × X}, where X = {ω ∈ H2((0, L)) :

ω′(0) = ω′(L) = 0}. Then F(α, P, N) = 0 is equivalent to the steady state system of (1.1):


























d1(Pxx − αPx) + P

(

1 − P −
mN

a + P

)

= 0, x ∈ (0, L),

Nxx − αNx − dN +
mPN

a + P
= 0, x ∈ (0, L),

Px(0) = Px(L) = Nx(0) = Nx(L) = 0.

(3.2)

It is observed that F(α, P, N) = 0 for all α > 0. For any (α, P∗, N∗) ∈ V, the The Fréchet

derivative of F is given by

D(P,N)F(α, P∗, N∗)(P, N) =

(

d1(Pxx − αPx) + fPP + fN N

Nxx − αNx + gPP + gN N

)

.

Then D(P,N)F(αi,±, P∗, N∗)(P, N) is a Fredholm operator with index zero by Corollary 2.11 in

[10].

We show that the conditions for Theorem 4.3 in [10] are satisfied in several steps.

Step 1. dim N(D(P,N)F(αi,±, P∗, N∗)) = 1.

From the definition of αi,±, it is easy to verify that Det(Ji) = 0, hence zero is an eigenvalue

of Ji with an eigenvector (ai, bi) = (gP, d1µi). Then Vi = (gP, d1µi)φi(x) is an eigenfunction of

L(αi,±) defined in (2.2) and evaluated at (P∗, N∗) with eigenvalue zero. Since µi (i = 0, 1, 2 . . . )

is a simple eigenvalue from (2.4), then the eigenvector is unique up to a constant multiple.

Thus one has N(D(P,N)F(αi,±, P∗, N∗)) = span{Vi} which is one-dimensional. Note that we

also have that codim R(D(P,N)F(αi,±, P∗, N∗)) = 1 as D(P,N)F(αi,±, P∗, N∗) is Fredholm with

index zero.

Step 2. D(P,N)αF(αi,±, P∗, N∗)(Vi) 6∈ R(D(P,N)F(αi,±, P∗, N∗)).

It is easy to see that an eigenvector of L∗(αi,±) corresponding to zero eigenvalue is V∗
i =

(a∗i , b∗i ) = (−µi + fP, gP)φ(x), here L∗(αi,±) is the adjoint matrix of −L(αi,±). If (h1, h2) ∈

R(D(P,N)F(αi,±, P∗, N∗)), then there exists (ϕ1, ϕ2) such that D(P,N)αF(αi,±, P∗, N∗)(ϕ1, ϕ2)T =

−L(αi,±)(ϕ1, ϕ2)T = (h1, h2)T. Thus

∫ L

0
(a∗i h1 + b∗i h2)φi(x)dx = 0.

It is noticed that D(P,N)αF(αi,±, P∗, N∗)(Vi) = (0,−µibiφi(x))T, and

∫ L

0
a∗i · 0 + b∗i · (−µibiφi(x))dx =

∫ L

0
d1µ2

i gPφ2
i (x)dx > 0.
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Thus D(P,N)αF(αi,±, P∗, N∗)(Vi) 6∈ R(D(P,N)F(αi,±, P∗, N∗)).

Step 3. It is noticed that {(α, P∗, N∗) : 0 < α < α0,+} is a line of trivial solutions for F = 0, thus

Theorem 4.3 in [10] can be applied to each continuum Ci bifurcated from (αi,±, P∗, N∗). The

solutions of (3.2) on Ci near the bifurcation point are apparently positive. For each continuum

Ci, either C̄i contains another (αj,±, P∗, N∗) or Ci is not compact. (Here we do not make an

extinction between the solutions of (3.2) and F = 0 as they are essentially same, hence we

use Ci for solution continuum for both equations.) Therefore, either Ci is unbounded or Ci

contains another (αj,±, P∗, N∗) with αi,± 6= αj,±.

4 Conclusions and numerical simulations

It is a general result that a steady state that is unstable as a solution of the kinetic ODEs is

also unstable as a PDE solution on a finite domain under zero Neumann conditions [12]. Our

results in Theorem 2.4 indicate that the combination of advection and diffusion can stabilize

the homogeneous equilibrium. For the constant steady state that are unstable in the kinetic

ODEs, it becomes stable when the advection is large and diffusion is small, while it keeps

instability when the advection is small. Moreover, we obtain non-constant steady states by

bifurcation theory when the constant steady state is unstable. These results extend the work

of [9]. Our analysis and methods are also suitable for higher dimensional systems, we can

obtain the concrete bifurcation value in one dimensional interval. From a theoretical point of

view, this paper introduces a new class of reaction-diffusion models with advection, which

may be of independent interest.

Consider system (3.2) and fix d = 0.5, m = 1, a = 0.6. Then P∗
>

1−a
2 . Lemma 2.1 says

that (P∗, N∗) = (0.6, 0.48) is locally asymptotically stable for any d1 > 0 and α = 0, and

Theorem 2.3 shows that (P∗, N∗) = (0.6, 0.48) keeps stable for α > 0, see Figure 4.1.

Figure 4.1: (Left): d1 = 1, α = 0, and (P∗, N∗) is locally asymptotically stable;

(Right): d1 = 1, α = 10, and (P∗, N∗) is still locally asymptotically stable, the

same initial value (P0, N0) = (0.56, 0.4).

Fix d = 0.5, m = 1, a = 0.33. Then P∗ = 1−a
2 . Lemma 2.1 says that (3.2) has a homogeneous

Hopf bifurcation solution at (P∗, N∗) = (0.33, 0.44) for any d1 > 0 and α = 0, while Theo-

rem 2.3 shows that the homogeneous periodic solutions disappears for α > 0, see Figure 4.2.

Fix d = 0.5, m = 1, a = 0.32. Then P∗
<

1−a
2 . Lemma 2.1 says that (P∗, N∗) = (0.32, 0.44)

is unstable for any d1 > 0 and α = 0, while Theorem 2.3 shows that (P∗, N∗) = (0.32, 0.44)

becomes stable for large d1 > 0 and large α > 0, see Figure 4.3.
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Figure 4.2: (Left): d1 = 1, α = 0, and (3.2) has a homogeneous Hopf bifurca-

tion solution at (P∗, N∗); (Right): d1 = 0.3, α = 1, and the periodic solution

disappears, the same initial value (P0, N0) = (0.33, 0.4).

Figure 4.3: (Left): d1 = 1, α = 0, and and (P∗, N∗) is unstable; (Right): d1 = 1500,

α = 1, and (P∗, N∗) becomes locally asymptotically stable, the same initial value

(P0, N0) = (0.3, 0.4).
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Abstract. Let Ω ⊂ R
n, n > 1 and let p, q ≥ 2. We consider the system of nonlinear

Dirichlet problems























(Au)(x) = N′
u(x, u(x), v(x)), x ∈ Ω,

−(Bv)(x) = N′
v(x, u(x), v(x)), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

v(x) = 0, x ∈ ∂Ω,

where N : R × R → R is C1 and is partially convex–concave and A : W
1,p
0 (Ω) →

W−1,p′ (Ω), B : W
1,q
0 (Ω) → W−1,q′ (Ω) are monotone and potential operators. The

solvability of this system is reached via the Ky–Fan minimax theorem.

Keywords: Ky–Fan minimax theorem, Dirichlet problem, potential operators, mono-
tone operators
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1 Introduction

Let Ω be any bounded domain in R
n, where n ∈ N and let p, q ≥ 2, p, q ∈ R be fixed. The aim

of this work is to consider the system of two nonlinear Dirichlet boundary value problems

whose solvability is reached via the Ky–Fan minimax theorem (consult [14] for details) which

is a more general version of classical Sion’s minimax theorem [10]. We also use some reasoning

applied usually in the monotonicity approach. Namely we use direct method of Calculus of

Variations, and the fact that monotone and potential operators are actually convex and l.s.c. To

be precise we investigate the following problem. Let N : R × R → R be an L1-Carathéodory

function, with some more requirement for its derivative with respect to second and third

variables, and let A : W
1,p
0 (Ω) → W−1,p′ (Ω), B : W

1,q
0 (Ω) → W−1,q′ (Ω) be some monotone

and potential operators (pertaining to the classical negative p-Laplacian).

BEmail: piotr.kowalski.1@p.lodz.pl
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Problem 1 (Main problem). Find (u, v) ∈ W
1,p
0 (Ω)× W

1,q
0 (Ω) such that

〈A(u); ū〉 =
∫

Ω

N′
u(x, u(x), v(x))ū(x)dx,

− 〈B(v); v̄〉 =
∫

Ω

N′
v(x, u(x), v(x))ū(x)dx.

for all ū ∈ W
1,p
0 (Ω) , v̄ ∈ W

1,q
0 (Ω).

We see that the above is a system of mixed operator and integral type formulas, which

under certain assumption appears to admit a solution of saddle point type. The existence of

boundary value problems with the p-Laplacian is well covered in the literature, see for exam-

ple [4, 7–9, 15]. Some results investigating the relation between the monotonicity and varia-

tional approaches are given in [5]. The case in which operators on LHS are both monotone is

well studied, and existence result was proved by the critical point theory. In our situation one

of the operators (namely A) is monotone while the other (namely −B) only becomes mono-

tone in case it is multiplied by −1. This observation forces us to adapt the approach known

for elliptic systems, see for example [6,11] to the case that could include also more non-linear

equations. When compared with [11] we adapt their methods to the nonlinear setting and also

simplify whenever possible their arguments by using direct links to the monotonicity theory.

For an approach using the mixture of abstract formulation of the operator together with the

explicitly written RHS we refer to [3] while underlying that these authors considered single

equations.

2 Some preliminary results

The following properties are well known, but the full proofs are actually quite hard to be

found. Some short proofs are indicated in [13], here we provide a full proof of a slightly

modified result.

Lemma 2.1 (On properties of the pointwise maximum [13, Th. 3.3.3]). Assume f : U × V → R,

where U, V are some vector spaces over R and let for any u ∈ U there exists such v̂ ∈ Y that

f (u, v̂) = maxv f (u, v). If u 7→ f (u, v) is convex for any v ∈ V, then u 7→ maxv f (u, v), is convex.

If u 7→ f (u, v) is l.s.c. for any v ∈ V then u 7→ maxv f (u, v) , is also lower semicontinuous.

Proof. Let u, w ∈ U and let α ∈ (0, 1). Lets denote v̂ be such element of V that

f (αu + (1 − α)w, v̂) = max
v

f (αu + (1 − α)w, v) .

Then

f (αu + (1 − α)w, v̂) ≤ α f (u, v̂) + (1 − α) f (w, v̂)

≤ α max
v

f (u, v) + (1 − α) f (w, v̂)

≤ α max
v

f (u, v) + (1 − α)max
v

f (w, v).

Thus it follows that u 7→ maxv f (u, v), is convex. For the second part we assume u0 ∈ U and

v̄ ∈ V to be an arbitrary element. Then

lim inf
u→u0

max
v

f (u, v) ≥ lim inf
u→u0

f (u, v̄) ≥ f (u0, v̄).
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As we apply maximum over v̄ we gets

lim inf
u→u0

max
v

f (u, v) ≥ max
v

f (u0, v).

Since u0 ∈ X was arbitrary, thus u 7→ maxv f (u, v), is also lower semicontinuous.

Corollary 2.2 (On properties of the pointwise minimum). Assume f : U × V → R, where U, V

are some vector spaces and let for any u there exists such v̂ ∈ Y that f (u, v̂) = minv f (u, v). Let

u 7→ f (u, v) be concave for any v ∈ V, then u 7→ minv f (u, v), is concave. If u 7→ f (u, v) be u.s.c.

for any v ∈ V then u 7→ minv f (u, v), is also upper semicontinuous.

E will stand for a real and reflexive Banach space in this section. Since we shall use mono-

tone operator approach lets recall its definition. We refer to [2] and [16] for some background.

Definition 2.3 (Properties of operators). Let A : E → E∗. Then

• A is called monotone iff

〈A(u)−A(v); u − v〉 ≥ 0,

for all u, v ∈ E;

• A is called coercive iff

lim
‖u‖E→∞

〈A(u); u〉

‖u‖E

= +∞.

• A is called anticoercive iff operator −A is coercive.

• A is said to be demicontinuous iff un → u as n → ∞ implies that

Aun ⇀ Au,

as n → ∞.

• A is potential if there exists a functional f : E → R differentiable in the sense of Gâteaux

and such that

f ′ = A,

Then f is called potential of A.

Lemma 2.4. Assume A : E → E∗ is potential and monotone. Then its potential is convex and weakly

lower semicontinuous (w.l.s.c. for short). Also A is demicontinuous.

Lemma 2.5. Assume A : E → E∗ is potential and demicontinuous. Then

v 7→
∫ 1

0
〈A(tv); v〉 dt, v ∈ E,

is a potential of A.

Sufficient conditions for existence of solution may describe in terms of some constant

provided by the following Sobolev embedding theorem.

Theorem 2.6 (Sobolev imbedding theorem [1, Th. 4.12]). Let Ω be a bounded domain in R
n. Then
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• if p ≥ n then

W
1,p
0 (Ω) → Lq (Ω) ,

for 1 ≤ q ≤ ∞, and

• if p < n then

W
1,p
0 (Ω) → Lq (Ω) ,

for 1 ≤ q ≤ np
n−p .

We shall require following two constants. Let λ1,p > 0 be such that for all u ∈ W
1,p
0 (Ω):

λ1,p ‖u‖
p

Lp(Ω)
≤ ‖u‖

p

W
1,p
0 (Ω)

.

Also let λ1,q > 0 satisfy similar condition for q and v ∈ W
1,q
0 (Ω).

Definition 2.7 (Ls-Carathéodory function [5]). Assume f : Ω × R × R → R and s ≥ 1 holds.

We shall say that f is Ls-Carathéodory, if

• for all (u, v) ∈ R × R function x 7→ f (x, u, v) is measurable;

• for a. e. x ∈ Ω function (u, v) 7→ f (x, u, v) is continuous;

• for each d > 0 there exists a function fd ∈ Ls (Ω) such that for a. e. x ∈ Ω

max
(u,v)∈[−d,d]×[−d,d]

| f (x, u, v)| ≤ fd (x) ;

3 Variational framework and the existence of a solution

(A) Operator A is potential and monotone.

(B) Operator B is potential and monotone.

(C) Operator A fulfils that there exists α̂1 > 0 ,

〈A (u); u〉 ≥ α̂1 ‖u‖
p

W
1,p
0 (Ω)

,

for all u ∈ W
1,p
0 (Ω).

(D) Operator B fulfils that there exists α̂2 > 0,

〈B (v); v〉 ≥ α̂2 ‖v‖
q

W
1,q
0 (Ω)

,

for all v ∈ W
1,q
0 (Ω).

(E) Function N : Ω × R × R → R is L1-Carathéodory. Moreover, derivatives N′
u, N′

v exists

and N′
u : Ω × R × R → R is Lp′-Carathéodory, and N′

v : Ω × R × R → R is Lq′-

Carathéodory.

(F) for each v ∈ W
1,q
0 (Ω) there exists functions β1 ∈ L2 (Ω), γ1 ∈ L1 (Ω) and 0 < α1 < λ1,p

α̂1
p

that

N (x, u, v(x)) ≥ −α1|u|
p + β1(x) · u + γ1(x),

for almost every x ∈ Ω and all u ∈ R.
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(G) for each u ∈ W
1,p
0 (Ω) there exists functions β2 ∈ L2 (Ω), γ2 ∈ L1 (Ω) and 0 < α2 < λ1,q

α̂2
q

that

N (x, u(x), v) ≤ α2|v|
q + β2(x) · v + γ2(x),

for almost every x ∈ Ω and all v ∈ R.

(H) For any fixed v ∈ W
1,q
0 (Ω) functional

u 7→
∫

Ω

N(x, u(x), v(x))dx

is convex.

(I) For any fixed u ∈ W
1,p
0 (Ω) functional

v 7→
∫

Ω

N(x, u(x), v(x))dx

is concave.

Let A be a potential to A, and B to B. Also by N be shall denote the Nemyckij’s operator

to N.

In order to obtain the existence result, we consider the following reformulation of Prob-

lem 1 to a critical point-type problem:

Problem 2 (Variational form of the main problem). Consider the following functional

J : W
1,p
0 (Ω)× W

1,q
0 (Ω) → R

given by the formula

J (u, v) =
∫ 1

0
〈A (tu); u〉 dt −

∫ 1

0
〈B (tv); v〉 dt +

∫

Ω

N (x, u(x), v(x)) dx.

Find such û, v̂ that

sup
v∈W

1,q
0 (Ω)

inf
u∈W

1,p
0 (Ω)

J (u, v) = inf
u∈W

1,p
0 (Ω)

sup
v∈W

1,q
0 (Ω)

J (u, v) = J (û, v̂) .

We can easily observe that if conditions (A), (B), (E), (F), (G) holds then any solution to

problem 2 is a solution to Problem 1.

Lemma 3.1 (Growth estimate on A and B). Under (C) for any u ∈ W
1,p
0 (Ω) the following holds:

A (u) =
∫ 1

0
〈A (tu); u〉 dt ≥

α̂1

p
‖u‖

p

W
1,p
0 (Ω)

.

Similarly under (D) for any v ∈ W
1,q
0 (Ω) the following holds:

B (v) =
∫ 1

0
〈B (tv); v〉 dt ≥

α̂2

q
‖v‖

q

W
1,q
0 (Ω)

.
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Proof of Lemma 3.1. Let u ∈ W
1,p
0 (Ω). Then

∫ 1

0
〈A (tu); u〉 dt =

∫ 1

0

1

t
〈A (tu); tu〉 dt

≥
∫ 1

0

1

t
‖tu‖

p

W
1,p
0 (Ω)

α̂1 dt

= ‖u‖
p

W
1,p
0 (Ω)

α̂1

∫ 1

0
tp−1 dt = ‖u‖

p

W
1,p
0 (Ω)

α̂1

p
.

Similarly we prove the second part.

We also need a following auxiliary result used in order to prove the main theorem.

Lemma 3.2 (Properties of Fv). Assume (E), (F), (A), (C), (H). Let v ∈ W
1,q
0 (Ω) be fixed. The

functional Fv : W
1,p
0 (Ω) → R, given by formula

Fv := u 7→ A (u) + N (u, v),

has a minimizer, is convex and w.l.s.c.

Proof. Let v ∈ W
1,q
0 (Ω) be fixed. Potential A is convex and l.s.c. Also N is convex and l.s.c.

Thus functional Fv is convex and weakly l.s.c. In order to show that Fv has a minimizer it

suffices to estimate it from below by some coercive functional.

Let u ∈ W
1,p
0 (Ω), β̂v

1 denotes ‖βv
1‖L2(Ω) multiplied by a constant from embedding of

W
1,p
0 (Ω) → L2 (Ω). By (F) we have

N (u, v) =
∫

Ω

N (x, u(x), v(x)) dx

≥
∫

Ω

−α1|u(x)|p + βv
1(x)u(x) + γv

1(x)dx

≥ −α1 ‖u‖
p

Lp(Ω)
− ‖βv

1‖L2(Ω) ‖u‖L2(Ω) − ‖γ1‖L1(Ω)

≥ −
α1

λ1,p
‖u‖

p

W
1,p
0 (Ω)

− β̂v
1 ‖u‖

W
1,p
0 (Ω)

− ‖γ1‖L1(Ω) .

By (C) and Lemma 3.1 we have

Fv (u) = A (u) + N (u, v)

≥

(

α̂1

p
−

α1

λ1,p

)

‖u‖
p

W
1,p
0 (Ω)

− β̂v
1 ‖u‖

W
1,p
0 (Ω)

− ‖γ1‖L1(Ω) .

Since
(

α̂1
p − α1

λ1,p

)

> 0 we know that Fv is bounded from below by a coercive functional. Thus

since it is also w.l.s.c. functional, it must have a minimizer, however not necessarily unique.

Lemma 3.3 (Properties of Gu ). Assume (E), (G), (B), (D), (I). Let u ∈ W
1,p
0 (Ω) be fixed. The

functional Gu : W
1,q
0 (Ω) → R given by formula

Gu := v 7→ −B (v) + N (u, v).

has a maximizer (not necessarily unique), is concave and weakly upper semicontinuous (w.u.s.c. for

short).
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4 Main result – the existence of a saddle point

Theorem 4.1 (Existence of saddle point). Assume (A)–(I). There exists a solution to Problem 2.

Lets recall the main abstract result we use:

Theorem 4.2 (Ky–Fan minimax theorem [14, Th. 5.2.2.]). Let X and Y be Hausdorff topological

vector spaces, A ⊂ X and B ⊂ Y be convex sets and f : A × B → R be a function which satisfies the

following conditions

(i) for each z2 ∈ B the function z1 7→ f (z1, z2) is convex and lower semicontinuous on A;

(ii) for each z1 ∈ A the function z2 7→ f (z1, z2) is concave and upper semicontinuous on B;

(iii) for some ẑ1 ∈ A and some

δ0 < inf
z1∈A

sup
z2∈B

f (z1, z2) ,

the set {z2 ∈ B : f (ẑ1, z2) ≥ δ0} is compact. Then

sup
z2

inf
z1

f (z1, z2) = inf
z1

sup
z2

f (z1, z2) .

It is almost immediate to have (i) and (ii) fulfilled for our problem. But the hardest part is

to obtain the last technical condition.

Proof of Theorem 4.1. First we start by proving (i) and (ii). Lets recall that for all (u, v) ∈

W
1,p
0 (Ω)× W

1,q
0 (Ω):

J (u, v) = A(u)− B(v) + N(u, v).

Let us begin with (i). Let v ∈ W
1,q
0 (Ω) be fixed. Since (A) holds by Lemma 2.4, A is convex

and w.l.s.c. By (H) and since N is L1-Carathéodory u 7→ N(u, v) is convex and w.l.s.c. B(v) is

a constant - thus (i) holds. Similarly (ii) holds.

Actually we shall not use Ky–Fan theorem directly for J but for J|A×B where A, B are some

closed balls respectively in W
1,p
0 (Ω) and W

1,q
0 (Ω). Since J fulfils (i) and (ii), those properties

will remain unchanged for J|A×B.

We shall proceed as follows:

1. We shall define two more auxiliary functionals J+, J−, and bound each of them by yet

another functional.

2. We prove that both

sup
v

inf
u

J (u, v) and inf
u

sup
v

J (u, v)

are attained.

3. We prove that each minimax argument must lie within balls of certain radius.

4. We deduce a suitable constant δ and show the compactness of the required set.

We consider the following functional J− : W
1,q
0 (Ω) → R given by the formula

J− := v 7→ min
u∈W

1,p
0 (Ω)

J (u, v).
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We shall prove that that this functional is: well defined, concave and w.u.s.c. and anticoercive.

Let start with fixing v ∈ W
1,q
0 (Ω). Then we see that u 7→ J(u, v) differs from Fv by only a

constant element −B (v). Then by Lemma 3.2 a minimum must be attained. Since v ∈ W
1,q
0 (Ω)

was arbitrary thus J− is well defined.

Let fix u ∈ W
1,p
0 (Ω). Then we see that v 7→ J(u, v) differs from Gu by only a constant

element A (u). Then by Lemma 3.3 each of such functionals must be u.s.c. and concave. Then

by Corollaries 2.2 and 2.2 its is clear that J− is u.s.c. and concave.

Let v ∈ W
1,q
0 (Ω). By Assumption (G) and (D) we have

J− (v) ≤ J (0, v)

= −
∫ 1

0
〈B (tv); v〉 dt +

∫

Ω

N (x, 0, v(x)) dx

≤

(

α2

λ1,q
−

α̂2

q

)

‖v‖
q

W
1,q
0 (Ω)

+ β̂0
2 ‖v‖

W
1,q
0 (Ω)

+
∥

∥γ0
2

∥

∥

L1(Ω)
.

Since
(

α2
λ1,q

− α̂2
q

)

< 0, J−, it follows that is anticoercive.

Since J− is concave, u.s.c. (weakly) and anticoercive it must attain a maximum. Thus there

must exist a pair (û, v̂) such that

sup
v

inf
u

J (u, v) = J (û, v̂) .

Lets use the previous estimate to define a functional j− : W
1,q
0 (Ω) → R:

J− (v) ≤

(

α2

λ1,q
−

α̂2

q

)

‖v‖
q

W
1,q
0 (Ω)

+ β̂0
2 ‖v‖

W
1,q
0 (Ω)

+
∥

∥γ0
2

∥

∥

L1(Ω)
=: j− (v) .

It is obviously a concave, continuous and anticoercive functional. Similarly we can define the

following functional J+ : W
1,p
0 (Ω) → R given by the formula

J+(u) = max
v∈W

1,q
0 (Ω)

J(u, v).

By using the same argument we prove that that this functional is well defined, convex, w.l.s.c.,

coercive.

Let us fix u ∈ W
1,p
0 (Ω). Then we see that v 7→ J(u, v) differs from Gu by only a constant

element A (u). Then by Lemma 3.3 a maximum must be attained. So J+ is well defined since

u was set arbitrary.

Let set v ∈ W
1,q
0 (Ω). Then we see that u 7→ J(u, v) differs from Fv by only a constant

element −B (v). Then by Lemma 3.2 each of such functionals must be w.l.s.c. and convex.

Then by Lemmas 2.1 and 2.1 its is clear that J+ is w.l.s.c. and convex.

Let u ∈ W
1,p
0 (Ω). By Assumption (F) and (C) we have

J+ (u) ≥ J (u, 0)

= A(u) + N(u, 0)

≥

(

α̂1

p
−

α1

λ1,p

)

‖u‖
p

W
1,p
0 (Ω)

− β̂0
1 ‖u‖

W
1,p
0 (Ω)

+ γ̂0
1.
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Where β̂0
1 and γ̂0

1 are some nonnegative constants. Since
( α̂1

p − α1
λ1,p

)

> 0, it follows J+ is

coercive.

Since J+ is convex, l.s.c. (weakly) and coercive it must attain a minimum. Thus there must

exist a pair (û, v̂) which satisfies that

inf
u

sup
v

J (u, v) = J (û, v̂) .

Let us use the previous estimate to define a functional j+ : W
1,p
0 (Ω) → R

J+ (u) ≥

(

α1

λ1,p
−

α̂1

p

)

‖u‖
q

W
1,p
0 (Ω)

+ β̂0
1 ‖u‖

W
1,p
0 (Ω)

+
∥

∥γ0
1

∥

∥

L1(Ω)
=: j+ (u) .

It is a continuous, coercive and convex functional.

Now we shall focus on the balls which contain all the minimax points. Assume that

(ū, v̄) ∈ W
1,p
0 (Ω)× W

1,q
0 (Ω) is a pair such that

J(ū, v̄) = max
v

min
u

J(u, v).

Then

J−(v̄) ≥ J−(0) = min
u

J(u, 0)

≥ min
u

j+(u).

Minimum of a coercive functional is in this case obviously a finite number which we shall

denote as δ2.

Similarly assume (ū, v̄) ∈ W
1,p
0 (Ω)× W

1,q
0 (Ω) be a point such that

J(ū, v̄) = min
u

max
v

J(u, v).

Then

J+(ū) ≤ J+(0) = max
v

J(0, v)

≤ max
v

j−(v).

Maximum of an anticoercive functional is in this case obviously a finite number which we

shall denote as δ1.

Assume that (ū, v̄) ∈ W
1,p
0 (Ω)× W

1,q
0 (Ω) is a pair such that

J(ū, v̄) = max
v

min
u

J(u, v) = min
u

max
v

J(u, v).

Then

v̄ ∈
{

v ∈ W
1,q
0 (Ω) : J−(v) ≥ δ2

}

⊂
{

v ∈ W
1,q
0 (Ω) : j−(v) ≥ δ2

}

.

The set
{

v ∈ W
1,q
0 (Ω) : j−(v) ≥ δ2

}

, since j− is anticoercive, must be a bounded one. Thus one

could choose such a radius r2 that zero-centred ball B(r2) ⊃
{

v ∈ W
1,q
0 (Ω) : j−(v) ≥ δ2

}

∋ v̄.

Also

ū ∈
{

u ∈ W
1,p
0 (Ω) : J+(u) ≤ δ1

}

⊂
{

u ∈ W
1,p
0 (Ω) : j+(u) ≤ δ1

}

.
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Then again, the set
{

u ∈ W
1,p
0 (Ω) : j+(u) ≤ δ1

}

, since j+ is coercive, must be bounded. Thus

one could choose such a radius r1 that zero-centred ball

B(r1) ⊃
{

u ∈ W
1,p
0 (Ω) : J+(u) ≤ δ1

}

∋ ū.

It follows that (ū, v̄) ∈ B(r1)× B(r2). So if we restrict the domain of J to B(r1)× B(r2) we will

not exclude any solution to Problem 2.

Finally we deduce (iii). Take ẑ1 = 0, A = B(r1), B = B(r2) and δ0 < δ2. Then

• ẑ1 ∈ A obviously holds.

• It follows that:

min
u

max
v

J(u, v) ≥ min
u

J(u, 0) ≥ min
u

j+(u) = δ2 > δ0.

• And finally

{v ∈ B : J(0, v) ≥ δ0} ⊂
{

v ∈ B : j−(v) ≥ δ0

}

,

is bounded since j− is anticoercive and weakly closed (since J(0, v) is concave and

w.u.s.c). Thus by Banach–Alouglu theorem, and since a closed subset of compact set

is compact - it is a weakly compact set. All the requirements of the Ky–Fan minimax

theorem are fulfilled, so there exists û ∈ W
1,p
0 (Ω), and v̂ ∈ W

1,q
0 (Ω) that

max
v

min
u

J (u, v) = min
u

max
v

J (u, v) = J (û, v̂) .

This concludes the proof.

The following corollary follows instantly from the prove above.

Corollary 4.3. Assume that we replace convexity with strict convexity in (H) and concavity with strict

concavity in (I). If we also assume conditions (A)–(G) from Theorem 4.1 then Problem 2 has exactly 1

solution.

Assumptions (F), (G) can obviously have a stronger form, but without the upper bound

requirement on constants α̂1, α̂2.

(F1) for each v ∈ W
1,q
0 (Ω) there exists functions β1 ∈ L2 (Ω), γ1 ∈ L1 (Ω), 1 < p̂ < p and

α1 ∈ R
+ that

N (x, u, v(x)) ≥ −α1|u|
p̂ + β1(x) · u(x) + γ1(x),

for almost every x ∈ Ω and all u ∈ R.

(G1) for each u ∈ W
1,p
0 (Ω) there exists functions β2 ∈ L2 (Ω), γ2 ∈ L1 (Ω) 1 < q̂ < q and

α2 ∈ R
+ that

N (x, u(x), v) ≤ α2|v|
q̂ + β2(x) · v(x) + γ2(x),

for almost every x ∈ Ω and all v ∈ R.

Corollary 4.4. Assume (A), (B), (C), (D), (E), (F1), (G1), (H), (I). Then Problem 2 has a solution.

It is easy to check that each step of proof to Theorem 4.1 can be used with the above

setting.
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5 Example

Lets consider a constants [12] λp and λq which are the first nonlinear eigenvalues of −∆p and

−∆q respectively, namely

λp = min
u∈W

1,p
0 ([0,1]),u 6=0

∫ 1
0 |u′(x)|p dx
∫ 1

0 |u(x)|p dx
, λq = min

u∈W
1,q
0 ([0,1]),u 6=0

∫ 1
0 |u′(x)|q dx
∫ 1

0 |u(x)|q dx
.

Example 5.1. Lets p = 6, q = 4, and Ω = [0, 1]. We consider the system of the following form

∫ 1

0

∣

∣u′(t)
∣

∣

p−2
u′(t)ū′(t)dt = −

λ

2p

∫ 1

0

(

|u(t)|p−2u(t) + v(t)
)

ū(t)dt,

∫ 1

0

∣

∣v′(t)
∣

∣

q−2
v′(t)v̄′(t)dt =

λ

2p

∫ 1

0

(

|v(t)|q−2v(t)− u(t)
)

v̄(t)dt

(Ex1)

for all ū ∈ W
1,p
0 ([0, 1]) , v̄ ∈ W

1,q
0 ([0, 1]). We consider a functional which critical points corre-

sponds to solution Problem (Ex1). Such a functional has a form:

J (u, v) =
1

p

∫ 1

0

∣

∣u′(t)
∣

∣

p
dt −

1

q

∫ 1

0

∣

∣v′(t)
∣

∣

q
dt +

∫ 1

0

λ

2p

(

1

p
u(t)p −

1

q
v(t)q + u(t)v(t)

)

dt.

We shall apply Theorem 4.1 to prove the existence of a critical point (saddle point) to this

functional. Lets check all the required assumptions

(A), (B) Negative p-Laplace operator (−∆p) is know to be potential and monotone.

(C), (D) the conditions are fulfilled with α̂1 = 1
p and α̂2 = 1

q .

(E) is obviously fulfilled.

(F), (G) If v ∈ W
1,q
0 ([0, 1]) then it must be bounded a.e. as a continuous function by a positive

constant. Lets check the condition on α1. It is easy to observe that

α1 :=
λ

p2
≤ λp

1

p2
= λp

α̂1

p
= λ1,p

α̂1

p
.

Thus the condition holds. (G) follows in a similar manner.

(H) With v fixed functional u 7→ N (u, v) has a plot similar to a function

u 7→
1

2
up + cu + C.

Since its second derivative is nonnegative (p = 6) – it is a convex function.

(I) With u fixed functional v 7→ N (u, v) has a plot similar to a function

v 7→ −
1

2
vq + cv + C.

Since its second derivative is nonpositive (q = 4) – it is a concave function.

Thus from Theorem 4.1 it follows that Problem (Ex1) admits a solution.
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Abstract. In this paper, we focus on the global dynamics of a neoclassical growth sys-
tem incorporating patch structure and multiple pairs of time-varying delays. Firstly,
we prove the global existence, positiveness and boundedness of solutions for the ad-
dressed system. Secondly, by employing some novel differential inequality analyses and
the fluctuation lemma, both delay-independent and delay-dependent criteria are estab-
lished to ensure that all solutions are convergent to the unique positive equilibrium
point, which supplement and improve some existing results. Finally, some numerical
examples are afforded to illustrate the effectiveness and feasibility of the theoretical
findings.
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1 Introduction

Under the assumptions that labor and capital are fully allocated and the output market is

adjusted immediately, Day proposed a discrete-time neoclassical growth model in literature

[5], which has unimodal feedback production function. As we all know, there is an inevitable

time lag between the acquisition of information and the implementation of decisions, but the

model proposed by Day ignores the influence of delays and cannot fully explain the actual

economic situation. To revise this drawback and better characterize the long-term behavior

of economics, Matsumoto and Szidarovszky [25] introduced the delayed neoclassical growth

equation

x′(t) = −δx(t) + Pxγ(t − τ)e−σx(t−τ), (1.1)

where x(t) labels the capital per labor at time t, δ is the sum of labor growth rate and capital

depreciation rate multiplied by average saving rate, τ designates the delay in the production

BEmail: caoqianj2019@126.com



2 Q. Cao

function, γ denotes a proxy for measuring returns to scale of the production function, σ is

regarded as a strength of a ‘negative influence’ produced by adding concentration of capital

and is settled via a damaging degree of energy resources or natural environment. If γ = 1,

the model (1.1) is the famous Nicholson’s blowflies model, whose dynamic behavior has been

extensively studied in recent years [1, 3, 13, 15–20, 22, 23, 27, 31, 32, 37]. However, for the case

of γ 6= 1, there are relatively few studies devoted to model (1.1) and its extended models

[4, 7, 24, 26, 33, 34].

Recently, regarding that the identical production function usually contains different delays,

L. Berezansky and E. Braverman put forward a dynamic model of the form in [2],

x′(t) =
m

∑
j=1

Fj(t, x(t − τ1(t)), . . . , x(t − τl(t)))− G(t, x(t)), t ≥ t0, (1.2)

where l and m are positive integers, G describes the instantaneous mortality rate, and each

Fj(j ∈ I := {1, 2, · · · , m}) is the feedback control relying on the values of the stable variable

with distinctive delays τ1(t), τ2(t), . . . , τl(t). Manifestly, (1.2) contains the modified delayed

differential neoclassical growth model

x′(t) = β(t)

[

−δx(t) +
m

∑
j=1

Pjx
γ(t − gj(t))e

−σx(t−hj(t))

]

, γ ∈ (0, 1), (1.3)

which in the case hk ≡ gk agrees with the traditional model [33].

In general, when each nonlinear function of the model contains only a small enough time

delay, it will inherit some features of non time delay systems. For example, all the non-

oscillatory solutions with respect to the unique positive equilibrium point are convergent.

Moreover, as long as the time delay is small enough, the global attractivity for the positive

equilibrium point has been shown in [2, 30]. And the existence, oscillation, persistence, peri-

odicity and stability of positive solutions have been widely explored for the single time-delay

system (1.3) and similar models with gj(t) ≡ hj(t) [4,7,24,26,33,34]. However, when the same

nonlinear function of the model incorporates two or more time delays, chaotic oscillation of

the system will occur, which will increase the difficulty in the study of the dynamics of such

systems. Therefore, this issue has attracted the attention of many scholars. More recently,

Huang et al. [21] studied the attractivity for the scalar equation (1.3). Meanwhile, since the

financial environment of some capitals is fragmented, and the natural separation of the space

area is separate, the above scalar neoclassical growth model can be naturally generalized to

the patch structure system [8, 36], the scalar equation (1.3) can be normally extended to the

following system incorporating patch structure and multiple pairs of time-varying delays:

x′i(t) = β(t)

[

−δ̄ixi(t) +
n

∑
j=1,j 6=i

aijxj(t) +
m

∑
j=1

Pijx
γ
i (t − gij(t))e

−σijxi(t−hij(t))

]

, γ ∈ (0, 1), (1.4)

where i ∈ Q := {1, 2, . . . , n}, xi stands for the amount of the capital per labor in the patch

i, aij designates the dispersal coefficient of the capital from patch j to patch i, m accounts

for the number of population reproductive types, Pijx
γ
i (t − gij(t))e

−σijxi(t−hij(t)) describes the

time-dependent reproduction function which is related to the incubation delay hij(t) and the

maturation delay gij(t), and x
γ
i e−σijxi acquires the maximum reproduce rate at xi(t) =

γ
σij

. For

more detailed biological significance, one can directly refer to [8, 21, 36] and their references

quoted therein.
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Hereafter, by changing the variables

δ̄i = δi − aii with aii < 0,

(1.4) can be rewritten as

x′i(t) = β(t)

[

−δixi(t) +
n

∑
j=1

aijxj(t) +
m

∑
j=1

Pijx
γ
i (t − gij(t))e

−σijxi(t−hij(t))

]

, γ ∈ (0, 1), i ∈ Q.

(1.5)

It should be pointed out that, the dynamic characteristics of neoclassical growth model in-

corporating patch structure and multiple pairs of time-varying delays have not been fully

studied. To the best of our knowledge, we have only found that the author of [36] established

the attractivity results of the system (1.5) when gij(t) ≡ hij(t) (i ∈ Q, j ∈ I). However, there

is no research on the dynamic behavior of the model (1.5) with gij(t) 6= hij(t) (i ∈ Q, j ∈ I).

According to the above discussions, our goal is to establish the global attractivity condi-

tions of the unique positive equilibrium point for the system (1.5) under gij(t) 6= hij(t)(i ∈

Q, j ∈ I). Briefly speaking, the contributions of this article can be summarized as below. 1)

The boundedness and persistence on the solutions of system (1.5) are established by exploit-

ing some novel differential inequality analyses; 2) Under certain assumptions, with the aid

of the fluctuation lemma, some sufficient criteria ensuring the global attractivity of system

(1.5) are obtained for the first time, which improve and generalize all recent works reported

in [21, 36]; 3) Numerical simulations involving comparison discussions are afforded to reveal

the obtained theoretical results.

The remaining of this work is arranged as follows. In Section 2, some necessary lemmas

and assumptions are listed. In Section 3, the global attractivity of the unique positive equi-

librium point for the addressed system is demonstrated. To evidence our theoretical results,

some numerical experiments are carried out in Section 4. Conclusions are given in Section 5.

2 Preliminary results

Throughout this manuscript, N
+ labels the set of all positive integers and R

n (R1 = R)

designates the n-dimensional real vectors set. For a bounded real function u, let u+ =

supϑ∈R
u(ϑ), u− = infϑ∈R u(ϑ).

With the biological applications in mind, we assume that δi > 0, Pij > 0, σij > 0, β− > 0

and

ri = max

{

max
1≤j≤m

sup
t∈R

gij(t), max
1≤j≤m

sup
t∈R

hij(t)

}

, r = max
1≤i≤n

{ri}.

Likewise, gij, hij, β : R −→ (0,+∞) (i ∈ Q, j ∈ I) are bounded and continuous functions,

A = (aij)n×n
is an irreducible and cooperative matrix with aij ≥ 0 (i 6= j), and

n

∑
j=1,j 6=i

aij = −aii, for all i ∈ Q. (2.1)

In addition, suppose that there exists a positive constant N∗ such that

− δi(N∗)1−γ +
m

∑
j=1

Pije
−σij N

∗
= 0, for all i ∈ Q, (2.2)
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which implies that (N∗, N∗, . . . , N∗) is a positive equilibrium point of system (1.5).

Denote C = ∏
n
i=1 C([−ri, 0], R) be a Banach space involving the supremum norm ‖ · ‖, and

C+ = ∏
n
i=1 C([−ri, 0], [0, +∞)). Also, we set xt(t0, ϕ)(x(t; t0, ϕ)) for an admissible solution of

(1.5) obeying the initial conditions:

xt0 = ϕ, ϕ ∈ C+ and ϕi(0) > 0, i ∈ Q, (2.3)

and [t0, η(ϕ)) be the maximal right-interval of existence.

Now, we present two lemmas to reveal the positiveness and boundedness of (1.5).

Lemma 2.1. x(t) = x(t; t0, ϕ) has positiveness and boundedness on [t0, +∞).

Proof. By Theorem 5.2.1 in [28], we have that xt(t0, ϕ) ∈ C+ for all t ∈ [t0, η(ϕ)). This, together

with (1.5) and (2.3), follows that

xi(t) = ϕi(0)e
−
∫ t

t0
(δi−aii)β(s)ds

+ e
−
∫ t

t0
(δi−aii)β(s)ds

∫ t

t0

β(s)

×

[

n

∑
j=1,j 6=i

aijxj(s) +
m

∑
j=1

Pijx
γ
i (s − gij(s))e

−σijxi(s−hij(s))

]

e
∫ s

t0
(δi−aii)β(v)dv

ds

> 0 for all t ∈ [t0, η(ϕ)) and i ∈ Q. (2.4)

For t > t0, let i0 ∈ Q and Ti0 ∈ [t0 − ri0 , t] such that

xi0(Ti0) = max
t0−ri0

≤s≤t
xi0(s) = max

i∈Q

{

max
t0−ri≤s≤t

xi(s)

}

.

When Ti0 ∈ [t0 − ri0 , t0], it is easily seen that

‖xs(t0, ϕ)‖ ≤ xi0(Ti0) = ‖ϕ‖ for all s ∈ [t0, t]. (2.5)

If Ti0 ∈ (t0, t], (1.5), (2.1) and (2.4) lead to

0 ≤ x′i0(Ti0)

= β(Ti0)

[

−δi0 xi0(Ti0) +
n

∑
j=1

ai0 jxj(Ti0) +
m

∑
j=1

Pi0 jx
γ
i0
(Ti0 − gi0 j(Ti0))e

−σi0 jxi0
(Ti0

−hi0 j(Ti0
))

]

≤ β(Ti0)

[

−δi0 xi0(Ti0) +
n

∑
j=1

ai0 jxi0(Ti0) +
m

∑
j=1

Pi0 jx
γ
i0
(Ti0)e

−σi0 jxi0
(Ti0

−hi0 j(Ti0
))

]

≤ β(Ti0)x
γ
i0
(Ti0)

[

−δi0 x
1−γ
i0

(Ti0) +
m

∑
j=1

Pi0 j

]

,

which yields

‖xs(t0, ϕ)‖ ≤ xi0(Ti0) ≤ max
i∈Q

(

∑
m
j=1 Pij

δi

)
1

1−γ

for all s ∈ (t0, t]. (2.6)

From (2.5) and (2.6), we obtain that x(t) has boundedness on [t0, η(ϕ)), and

‖xt(t0, ϕ)‖ ≤ xi0(Ti0) ≤ max
i∈Q

(

∑
m
j=1 Pij

δi

)
1

1−γ

+ ‖ϕ‖ =: Xϕ for all t ∈ [t0, η(ϕ)). (2.7)

This, together with Theorem 2.3.1 in [9], follows η(ϕ) = +∞, and finishes the evidence of

Lemma 2.1.
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Lemma 2.2. lim inft→+∞ xi(t) > 0 for all i ∈ Q.

Proof. To obtain a contradiction, we suppose that l = min
i∈Q

lim inf
t→+∞

xi(t) = 0. Let

m(t) = max

{

ξ : ξ ≤ t

∣

∣

∣

∣

there is î ∈ Q satisfying xî(ξ) = min
i∈Q

{

min
t0≤s≤t

xi(s)

}}

.

Then, limt→+∞ m(t) = +∞. Likewise, for a strictly monotone increasing infinite sequence

{tp}p≥1, there are î ∈ Q and a subsequence {tpk
}k≥1 ⊆ {tp}p≥1 agreeing with

xî(m(tpk
)) = min

t0≤s≤tpk

xî(s) = min
i∈Q

{

min
t0≤s≤tpk

xi(s)

}

and lim
k→+∞

xî(m(tpk
)) = 0. (2.8)

Owing to (1.5), (2.1), (2.7) and (2.8), we derive

0 ≥ x′
î
(m(tpk

))

≥ β(m(tpk
))

[

−δîxî(m(tpk
)) + xî(m(tpk

))
n

∑
j=1

aî j

+
m

∑
j=1

Pî jx
γ

î
(m(tpk

)− gî j(m(tpk
)))e−σî jxî(m(tpk

)−hî j(m(tpk
)))

]

≥ β(m(tpk
))

[

−δîxî(m(tpk
)) +

m

∑
j=1

Pî jx
γ

î
(m(tpk

))e−σî jX
ϕ

]

for all m(tpk
) > t0,

and

δî ≥
m

∑
j=1

Pî j

1

x
1−γ

î
(m(tpk

))
e
−σî jX

ϕ

, for all m(tpk
) > t0. (2.9)

By taking limits, (2.8) and (2.9) give us δî ≥ +∞, which yields a contradiction and finishes the

proof.

Lemma 2.3. Lemma 2.2 indicates that (0, 0, . . . , 0) is unstable.

3 Global attractivity analysis

First, we present a delay-independent criterion to assure the attractivity for nonoscillatory

solutions of system (1.5).

Proposition 3.1. If

min
i∈Q

lim inf
t→+∞

xi(t) ≥ N∗ (or max
i∈Q

lim sup
t→+∞

xi(t) ≤ N∗),

then lim supt→+∞ xi(t) = N∗ (or lim inft→+∞ xi(t) = N∗) for all i ∈ Q.

Proof. We just need to deal with the case that

min
i∈Q

lim inf
t→+∞

xi(t) ≥ N∗,

since the situation is entirely analogous for the case that maxi∈Q lim supt→+∞ xi(t) ≤ N∗.
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Set yi(t) = xi(t)− N∗(i ∈ Q), it is evident that

lim sup
t→+∞

yi(t) ≥ 0 for all i ∈ Q. (3.1)

Let i∗ ∈ Q be such an index as lim supt→+∞ yi∗(t) = maxi∈Q lim supt→+∞ yi(t). We state

that

lim sup
t→+∞

yi∗(t) = 0.

Otherwise, lim supt→+∞ yi∗(t) > 0. Owing to the fluctuation lemma [29, Lemma A.1.], it is an

easy matter to find a sequence {tk}k≥1 obeying

lim
k→+∞

tk = +∞, lim
k→+∞

yi∗(tk) = lim sup
t→+∞

yi∗(t), lim
k→+∞

y′i∗(tk) = 0. (3.2)

Due to (1.5) and (2.1), we gain

y′i∗(tk) = β(tk)

[

−δi∗xi∗(tk) +
n

∑
j=1

ai∗ jyj(tk) +
m

∑
j=1

Pi∗ jx
γ
i∗(tk − gi∗ j(tk))e

−σi∗ jxi∗ (tk−hi∗ j(tk))

]

. (3.3)

Because β(t), xi∗(t − gi∗ j(t)) and xi∗(t − hi∗ j(t)) are bounded on [t0, +∞), we can select a

subsequence of {tk} (for convenience of exposition, we still label by {tk}) satisfying that

limk→+∞ β(tk), limk→+∞ yl(tk), limk→+∞ xi∗(tk − gi∗ j(tk)) and limk→+∞ xi∗(tk − hi∗ j(tk)) exist

for all l ∈ Q\{i∗} and j ∈ I. Moreover, 0 < β− ≤ limk→+∞ β(tk), and

N∗ ≤ lim
k→+∞

xi∗(tk − hi∗ j(tk)), lim
k→+∞

xi∗(tk − gi∗ j(tk)) ≤ N∗ + lim
k→+∞

yi∗(tk). (3.4)

With the help of (3.4), we regard two cases as follow.

Case 1. If limk→+∞ xi∗(tk − hi∗ j(tk)) = N∗ for all j ∈ I, by taking limits, (2.1), (2.2), (3.2), and

(3.3) reveal that

0 = lim
k→+∞

y′i∗(tk)

≤ lim
k→+∞

β(tk)

[

−δi∗

(

lim sup
t→+∞

yi∗(t) + N∗

)

+ lim sup
t→+∞

yi∗(t)
n

∑
j=1

ai∗ j

+
m

∑
j=1

Pi∗ j

(

lim sup
t→+∞

yi∗(t) + N∗

)γ

e−σi∗ j N
∗

]

≤ lim
k→+∞

β(tk)

(

lim sup
t→+∞

yi∗(t) + N∗

)γ


−δi∗

(

lim sup
t→+∞

yi∗(t) + N∗

)1−γ

+
m

∑
j=1

Pi∗ je
−σi∗ j N

∗





< lim
k→+∞

β(tk)

(

lim sup
t→+∞

yi∗(t) + N∗

)γ [

−δi∗(N∗)1−γ +
m

∑
j=1

Pi∗ je
−σi∗ j N

∗

]

= 0,

which leads to a contradiction, and suggests that lim supt→+∞ yi∗(t) = 0.
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Case 2. If for some j ∈ I, N∗ < limk→+∞ xi∗(tk − hi∗ j(tk)), it follows from (2.1), (2.2), (3.2) and

(3.3) that

0 = lim
k→+∞

y′i∗(tk)

< lim
k→+∞

β(tk)

[

−δi∗ lim
k→+∞

xi∗(tk) +
n

∑
j=1

ai∗ j lim
k→+∞

yj(tk)

+
m

∑
j=1

Pi∗ j

(

lim
k→+∞

x
γ
i∗(tk − gi∗ j(tk))

)

e−σi∗ j N
∗

]

< lim
k→+∞

β(tk)

(

lim sup
k→+∞

yi∗(t) + N∗

)γ [

−δi∗(N∗)1−γ +
m

∑
j=1

Pi∗ je
−σi∗ j N

∗

]

= 0,

which is also a contradiction and proves the above statement. This finishes the proof of

Proposition 3.1.

Corollary 3.2. If for any i ∈ Q, xi(t) is eventually nonoscillatory about N∗, i.e., there is T∗ obeying

that

xi(t) ≥ N∗(or xi(t) ≤ N∗) for all t ≥ T∗ and i ∈ Q.

Then limt→+∞ xi(t) = N∗ for all i ∈ Q.

Remark 3.3. Corollary 3.2 shows that a delay-independent criterion has been established to

guarantee that all non-oscillatory solutions of the system (1.5) are convergent to its unique

positive equilibrium point.

Remark 3.4. It is obvious that all conclusions in Theorem 3.1, Theorem 3.2 of [21] and the

results of Theorem 3.1 in [36] are special ones of Proposition 3.1.

Theorem 3.5. Let σ = maxi∈Q maxj∈I σij, suppose that, for all i ∈ Q,

δiσN∗(e(δi−aii)β+r − 1)

δi − aii
≤ 1, (3.5)

and

0 < σN∗δi
1 − e−r(δi−aii)β+

δi[1 − e(1 − e−r(δi−aii)β+)]− aiie−r(δi−aii)β+ ≤ 1, (3.6)

hold. Then limt→+∞ xi(t) = N∗ for all i ∈ Q.

Proof. Let

zi(t) = σ(xi(t)− N∗), i ∈ Q,

we have from (1.5) that

z′i(t) + σδiβ(t)N∗ + δiβ(t)zi(t)

= β(t)
n

∑
j=1

aijzj(t) + σβ(t)
m

∑
j=1

Pij

[

zi(t − gij(t))

σ
+ N∗

]γ

e−
σij zi(t−hij(t))

σ −σij N
∗
, (3.7)
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and

(

zi(t)e
∫ t

t0
(δi−aii)β(v)dv

)′
=

[

n

∑
j=1,j 6=i

aijβ(t)zj(t) + σβ(t)
m

∑
j=1

Pij

(

zi(t − gij(t))

σ
+ N∗

)γ

×e−
σijzi(t−hij(t))

σ −σij N
∗
− σβ(t)δiN

∗

]

e
∫ t

t0
(δi−aii)β(v)dv

, t ≥ t0, i ∈ Q. (3.8)

To finish the verification, we shall reveal that

min
i∈Q

lim inf
t→+∞

zi(t) = max
i∈Q

lim sup
t→+∞

zi(t) = 0.

In view of Corollary 3.2, we only need to treat the case that for each T∗ > t0, there are

t∗, t∗∗ ∈ (T∗, +∞) such that

min
i∈Q

zi(t
∗) < 0 and max

i∈Q
zi(t

∗∗) > 0. (3.9)

Set

µ = lim sup
t→+∞

zi1(t) = max
i∈Q

lim sup
t→+∞

zi(t), λ = lim inf
t→+∞

zi2(t) = min
i∈Q

lim inf
t→+∞

zi(t). (3.10)

Owing to (3.9), we gain

λ ≤ 0 ≤ µ.

Now, it suffices to evidence that λ = µ = 0. Contrarily, either µ > 0 or λ < 0 is valid.

We only deal with the case that µ > 0 occurs. (λ < 0 can be treated similarly.)

If λ = 0, i.e., λ = mini∈Q lim inft→+∞ zi(t) = 0. By Proposition 3.1, one can see that

µ = lim supt→+∞ zi1(t) = 0.

When µ > 0 and λ < 0, on account of the fluctuation lemma [29, Lemma A.1.], one can

take two strictly monotone increasing infinite sequences {lq}q≥1, {sq}q≥1 satisfying that

zi1(lq) > 0, lq → +∞, zi1(lq) → µ, z′i1(lq) → 0 as q → +∞, (3.11)

and

zi2(sq) < 0, sq → +∞, zi2(sq) → λ, z′i2(sq) → 0 as q → +∞. (3.12)

Note that a bounded sequence has a convergent subsequence, we can presume that for all j ∈

I,

lim
q→+∞

β(lq) = β∗, lim
q→+∞

zi1(lq − g
i1

j(lq)) = z
j
i1

, lim
q→+∞

zi(lq) = zl
i (i ∈ Q \ {i1}), (3.13)

and

lim
q→+∞

β(sq) = β∗∗, lim
q→+∞

zi2(sq − g
i2

j(sq)) = z
j
i2

, lim
q→+∞

zi(sq) = zs
i (i ∈ Q \ {i2}). (3.14)

To obtain a contradiction, we divide our proof into three steps.

First, we assert that there exists H1 > 0 obeying that, for any q ≥ H1, there is Lq ∈

[lq − ri1 , lq) agreeing with

zi1(Lq) = 0, and zi1(t) > 0, for all t ∈ (Lq, lq). (3.15)
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If not, there exists a subsequence of {lq} (do not relabel) such that

zi1(t) > 0, for all t ∈ [lq − ri1 , lq), q = 1, 2, . . . (3.16)

Subsequently,

0 ≤ lim
q→+∞

zi1(lq − gi1 j(lq)) ≤ µ for all j ∈ I, (3.17)

and

z′i1(lq) = β(lq)
n

∑
j=1

ai1 jzj(lq) + σβ(lq)
m

∑
j=1

Pi1 j

[

zi1(lq − gi1 j(lq))

σ
+ N∗

]γ

e−
σi1 jzi1

(lq−hi1 j(lq))

σ −σi1 j N
∗

− σδi1 β(lq)N∗ − δi1 β(lq)zi1(lq)

< β(lq)
n

∑
j=1

ai1 jzj(lq) + σβ(lq)
m

∑
j=1

Pi1 j

[

zi1(lq − gi1 j(lq))

σ
+ N∗

]γ

e−σi1 j N
∗

− σδi1 β(lq)N∗ − δi1 β(lq)zi1(lq). (3.18)

By taking limit, (3.11), (3.13), (3.17) and (3.18) lead to

0 ≤ ai1i1 β∗ lim
q→+∞

zi1(lq) + β∗
n

∑
j=1,j 6=i1

ai1 j lim
q→+∞

zj(lq)

+ σβ∗
m

∑
j=1

Pi1 j





lim
q→+∞

zi1(lq − gi1 j(lq))

σ
+ N∗





γ

e−σi1 j N
∗
− σδi1 β∗N∗ − δi1 β∗ lim

q→+∞
zi1(lq)

≤ σβ∗
m

∑
j=1

Pi1 j





lim
q→+∞

zi1(lq − gi1 j(lq))

σ
+ N∗





γ

e−σi1 j N
∗
− σβ∗δi1

(

N∗ +
µ

σ

)

≤ σβ∗
(

N∗ +
µ

σ

)γ
[

m

∑
j=1

Pi1 je
−σi1 j N

∗
− δi1

(

N∗ +
µ

σ

)1−γ
]

< 0,

which is a contradiction and validates the above assertion.

Similarly, from (3.12) and (3.14), one can find H∗
1 > 0 such that for any q ≥ H∗

1 , there is

Sq ∈ [sq − ri2 , sq) such that

zi2(Sq) = 0, and zi2(t) < 0, for all t ∈ (Sq, sq). (3.19)

Secondly, we show

e−µ − 1 ≤ λ ≤ 0 ≤ µ ≤ e−λ − 1. (3.20)

For any 0 < ε < σ(N∗ + λ
σ ) = σ lim inft→+∞ xi2(t), (3.10) suggests that one can select a

positive integer q∗ > H1 + H∗
1 satisfying

λ − ε < zi(t) < µ + ε for all t > min{lq∗ , sq∗} − 2r and i ∈ Q. (3.21)
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With the aid of (2.1), (2.2), (3.8), (3.19), (3.21) and (3.23), we obtain

zi2(sq)e
∫ sq

t0
(δi2

−ai2 i2
)β(v)dv

= − σδi2 N∗ e
∫ sq

t0
(δi2

−ai2 i2
)β(v)dv

− e
∫ Sq

t0
(δi2

−ai2 i2
)β(v)dv

δi2 − ai2i2

+
n

∑
j=1,j 6=i2

ai2 j

∫ sq

Sq

zj(t)β(t)e
∫ t

t0
(δi2

−ai2 i2
)β(v)dv

dt + σ
m

∑
j=1

Pi2 j

∫ sq

Sq

[

N∗ +
zi2(t − gi2 j(t))

σ

]γ

× e−σi2 j N
∗−

σi2 j
σ zi2

(t−hi2 j(t))β(t)e
∫ t

t0
(δi2

−ai2 i2
)β(v)dv

dt

> − σδi2 N∗ e
∫ sq

t0
(δi2

−ai2 i2
)β(v)dv

− e
∫ Sq

t0
(δi2

−ai2 i2
)β(v)dv

δi2 − ai2i2

+ (λ − ε)
e
∫ sq

t0
(δi2

−ai2 i2
)β(v)dv

− e
∫ Sq

t0
(δi2

−ai2 i2
)β(v)dv

δi2 − ai2i2.

n

∑
j=1,j 6=i2

ai2 j

+ σ
m

∑
j=1

Pi2 j

∫ sq

Sq

(N∗)γ

[

N∗ + λ−ε
σ

N∗

]γ

e−σi2 j N
∗−

σi2 j
σ (µ+ε)β(t)e

∫ t
t0
(δi2

−ai2 i2
)β(v)dv

dt

> − σδi2 N∗ e
∫ sq

t0
(δi2

−ai2 i2
)β(v)dv

− e
∫ Sq

t0
(δi2

−ai2 i2
)β(v)dv

δi2 − ai2i2

+ (λ − ε)
e
∫ sq

t0
(δi2

−ai2 i2
)β(v)dv

− e
∫ Sq

t0
(δi2

−ai2 i2
)β(v)dv

δi2 − ai2i2

n

∑
j=1,j 6=i2

ai2 j

+ σ
m

∑
j=1

Pi2 j

∫ sq

Sq

(N∗)γ−1

(

N∗ +
λ − ε

σ

)

e−σi2 j N
∗−

σi2 j
σ (µ+ε)β(t)e

∫ t
t0
(δi2

−ai2 i2
)β(v)dv

dt

≥ σδi2 N∗ e
∫ sq

t0
(δi2

−ai2 i2
)β(v)dv

− e
∫ Sq

t0
(δi2

−ai2 i2
)β(v)dv

δi2 − ai2i2

[e−(µ+ε) − 1]

+ (λ − ε)

(

e
∫ sq

t0
(δi2

−ai2 i2
)β(v)dv

− e
∫ Sq

t0
(δi2

−ai2 i2
)β(v)dv

)

, q > q∗

and

zi2(sq) + (λ − ε)
(

e−(δi2
−ai2 i2

)β+r − 1
)

≥ zi2(sq) + (λ − ε)

(

e
−
∫ sq

Sq
(δi2

−ai2 i2
)β(v)dv

− 1

)

> σN∗

(

1 − e
−
∫ sq

Sq
(δi2

−ai2 i2
)β(v)dv

)

δi2

δi2 − ai2i2

[

e−(µ+ε) − 1
]

≥ σN∗
(

1 − e−(δi2
−ai2 i2

)β+r
) δi2

δi2 − ai2i2

[

e−(µ+ε) − 1
]

, q > q∗. (3.22)

Letting q → ∞ and ε → 0, (3.5) and (3.22) give us

λ ≥ σN∗
(

e(δi2
−ai2 i2

)β+r − 1
) δi2

δi2 − ai2i2

(e−µ − 1) ≥ (e−µ − 1) ≥ −1. (3.23)

In view of (2.1), (2.2), (3.8), (3.15) and (3.21), we acquire
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zi1(lq)e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

= − σδi1 N∗ e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

+
n

∑
j=1,j 6=i1

ai1 j

∫ lq

Lq

zj(t)β(t)e
∫ t

t0
(δi1

−ai1 i1
)β(v)dv

dt

+ σ
m

∑
j=1

Pi1 j

∫ lq

Lq

[

N∗ +
zi1(t − gi1 j(t))

σ

]γ

× e−σi1 j N
∗−

σi1 j
σ zi1

(t−hi1 j(t))β(t)e
∫ t

t0
(δi1

−ai1 i1
)β(v)dv

dt

< − σδi1 N∗ e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

+ (µ + ε)
e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

n

∑
j=1,j 6=i1

ai1 j

+ σ
m

∑
j=1

Pi1 j

∫ lq

Lq

[

N∗ +
µ + ε

σ

]γ

e−σi1 j N
∗−

σi1 j
σ (λ−ε)β(t)e

∫ t
t0
(δi1

−ai1 i1
)β(v)dv

dt

= − σδi1 N∗ e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

+ (µ + ε)
e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

n

∑
j=1,j 6=i1

ai1 j

+ σ
m

∑
j=1

Pi1 j

∫ lq

Lq

(N∗)γ

[

N∗ + µ+ε
σ

N∗

]γ

e−σi1 j N
∗−

σi1 j
σ (λ−ε)β(t)e

∫ t
t0
(δi1

−ai1 i1
)β(v)dv

dt

< − σδi1 N∗ e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

+ (µ + ε)
e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

n

∑
j=1,j 6=i1

ai1 j

+ σ
m

∑
j=1

Pi1 j

∫ lq

Lq

(N∗)γ−1

(

N∗ +
µ + ε

σ

)

e−σi1 j N
∗−

σi1 j
σ (λ−ε)β(t)e

∫ t
t0
(δi1

−ai1 i1
)β(v)dv

dt

≤ − σδi1 N∗ e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

+ (µ + ε)
e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

n

∑
j=1,j 6=i1

ai1 j

+
e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

×

[

σ
m

∑
j=1

Pi1 j(N∗)γe−σi1 j N
∗
e−(λ−ε) + (µ + ε)e1+ε

m

∑
j=1

Pi1 j(N∗)γ−1e−σi1 j N
∗

]
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= σδi1 N∗ e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

[

e−(λ−ε) − 1
]

+ (µ + ε)
e1+εδi1 − ai1i1

δi1 − ai1i1

(

e
∫ lq

t0
(δi1

−ai1 i1
)β(v)dv

− e
∫ Lq

t0
(δi1

−ai1 i1
)β(v)dv

)

, q > q∗,

and

zi1(lq) < σN∗δi1

1 − e
∫ Lq

lq
(δi1

−ai1 i1
)β(v)dv

δi1 − ai1i1

[

e−(λ−ε) − 1
]

+ (µ + ε)
e1+εδi1 − ai1i1

δi1 − ai1i1

(

1 − e
∫ Lq

lq
(δi1

−ai1 i1
)β(v)dv

)

≤ σN∗δi1

1 − e−r(δi1
−ai1 i1

)β+

δi1 − ai1i1

[

e−(λ−ε) − 1
]

+ (µ + ε)
e1+εδi1 − ai1i1

δi1 − ai1i1

(

1 − e−r(δi1
−ai1 i1

)β+
)

, q > q∗. (3.24)

Letting q → ∞ and ε → 0, (3.6) and (3.24) entail that

µ ≤ σN∗δi1

1 − e−r(δi1
−ai1 i1

)β+

δi1 [1 − e(1 − e−r(δi1
−ai1 i1

)β+
)]− ai1i1 e−r(δi1

−ai1 i1
)β+ (e

−λ − 1) ≤ (e−λ − 1), (3.25)

which, together with (3.23), involves that (3.20) holds.

Finally, from the proof in Theorem 4.1 of [30], (3.20) implies that λ = µ = 0, which yields

a clear contradiction of the fact that µ > 0. This finishes the proof.

Remark 3.6. Apparently, limr→0+ e(δi−aii)β+r = 1, then the conditions (3.5) and (3.6) naturally

hold, which means that sufficiently small pairs of timing-varying delays have little influence

on the global attractivity of the positive equilibrium point for system (1.5). On the other hand,

limr→+∞ e(δi−aii)β+r = +∞, then the assumptions (3.5) and (3.6) do not hold, which indicates

that large enough pairs of time-varying delays will lead to chaotic oscillation of the system

(1.5). We will verify this through some numerical simulations in the next section.

4 Numerical example

Example 4.1. Regard the following patch structure neoclassical growth model incorporating

multiple pairs of time-varying delays:



































































x′1(t) = (3 + sin2(t))
[

(− 1
20 x1(t) +

1
20 x2(t))−

1
20 x1(t)

+ 11
100 e

8
5 x

1
3
1 (t − g11(t))e

− 1
5 x1(t−h11(t))

+ 9
100 e

16
5 x

1
3
1 (t − g12(t))e

− 2
5 x1(t−h12(t))

]

,

x′2(t) = (3 + sin2(t))
[

(− 1
80 x2(t) +

1
80 x1(t))−

1
80 x2(t)

+ 3
200 e

8
3 x

1
3
2 (t − g21(t))e

− 1
3 x2(t−h21(t))

+ 7
200 e2x

1
3
2 (t − g22(t))e

− 1
4 x2(t−h22(t))

]

,

(4.1)
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which possesses a unique positive equilibrium point (N∗, N∗) = (8, 8).

Now, one can easily check that

gij(t) =
1

20
| cos(i + j)t|, hij(t) =

1

40
| sin(i + j)t|, i, j = 1, 2. (4.2)

satisfy (3.5) and (3.6). By Theorem 3.5, we obtain that the positive equilibrium point (8, 8) is

a global attractor of (4.1) incorporating delays (4.2). The numeric simulations in Figure 4.1

support this theoretical assertions.

0 5 10 15 20 25 30 35 40 45
0
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12

14

16

18

t

x
i
(t
),
i
=

1,
2

 

 

x1(t)

x2(t)

Figure 4.1: Numerical solutions of example (4.1) obeying (4.2) and the initial

values: (3, 1), (10, 7), (17, 13).

Moreover, if we choose

gij(t) = 40j, hij(t) = 60j, i, j = 1, 2, (4.3)

it is an elementary computation to show that (3.5) and (3.6) do not hold for system (4.1) with

delays (4.3). It can be seen from Figure 4.2 that (8, 8) maybe not the global attractor of (4.1)

with delays (4.3). This confirms the conclusions reached in Remark 3.6.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

t

x
i
(t
),
i
=

1,
2

 

 

x1(t)
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Figure 4.2: Numerical solutions of example (4.1) satisfying (4.3) and the initial

value (35, 19).
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Remark 4.2. From the above simulations, we can make the following observations. First, small

delays will make the positive equilibrium point be attractive. Second, big delays maybe yield

complex dynamic behavior. In addition, the latest literature [8,21,36] and [6,10–12,14,35] have

not touched the global attractivity of the positive equilibrium point for the patch structure

neoclassical growth system with multiple pairs of time-varying delays. It can be found that

all the conclusions in the above mentioned literature and the references cited therein cannot

be used to reveal the global attractivity of (4.1). It should be pointed out that, in equations

(20) and (21) on page 3861 of [36],

lim
q→+∞

y′i1(lq) ≥ 0 and lim
q→+∞

y′i2(sq) ≤ 0

maybe not hold. For a counterexample, consider yi1(t) = 1 + 1
1+t2 and yi2(t) = −1 − 1

1+t2 . In

the proof of Theorem 3.5, we have successfully corrected these errors by adopting new proof

strategies and ideas. This implies that our results generalize and improve all the ones in the

above-mentioned references.

5 Conclusions

By introducing two time-varying delays in the same time-dependent reproduction function,

this paper proposed a neoclassical growth system incorporating patch structure and multiple

pairs of time-varying delays. Via some novel differential inequality analyses and the fluctua-

tion lemma, the persistence on the positive solutions, as well as the global attractivity on the

positive equilibrium point have firstly been established for the addressed model. The obtained

results reveal that, by controlling labor growth rate, capital depreciation rate and the related

parameters in the reproduction function, the attractivity of the positive equilibrium point can

be guaranteed if the time-varying delays are sufficiently small in the development process.

The adopted strategies could be taken into consideration in the area of dynamics problems on

other patch structure population systems incorporating two or more distinctive delays in the

same time-dependent reproduction function.
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Abstract. In the research literature, one can find distinct notions for higher order av-
eraged functions of regularly perturbed non-autonomous T-periodic differential equa-
tions of the kind x′ = εF(t, x, ε). By one hand, the classical (stroboscopic) averag-
ing method provides asymptotic estimates for its solutions in terms of some uniquely
defined functions gi’s, called averaged functions, which are obtained through near-
identity stroboscopic transformations and by solving homological equations. On the
other hand, a Melnikov procedure is employed to obtain bifurcation functions fi’s
which controls in some sense the existence of isolated T-periodic solutions of the dif-
ferential equation above. In the research literature, the bifurcation functions fi’s are
sometimes likewise called averaged functions, nevertheless, they also receive the name
of Poincaré–Pontryagin–Melnikov functions or just Melnikov functions. While it is
known that f1 = Tg1, a general relationship between gi and fi is not known so far for
i ≥ 2. Here, such a general relationship between these two distinct notions of averaged
functions is provided, which allows the computation of the stroboscopic averaged func-
tions of any order avoiding the necessity of dealing with near-identity transformations
and homological equations. In addition, an Appendix is provided with implemented
Mathematica algorithms for computing both higher order averaging functions.

Keywords: averaging theory, Melnikov method, averaged functions, Melnikov func-
tions, higher order analysis.
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1 Introduction

This paper is dedicated to investigate the link between two distinct notions of higher order

averaged functions of regularly perturbed non-autonomous T-periodic differential equations

of the kind x′ = εF(t, x, ε).

The first notion comes from the classical averaging method, which provides asymptotic es-

timates for the solutions of the differential equation x′ = εF(t, x, ε) in terms of some uniquely
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defined functions, called averaged functions, which are obtained through near-identity stro-

boscopic transformations and by solving homological equations.

The second notion is provided by the Melnikov method, where the averaged functions

are obtained by expanding the time-T map of the differential equation x′ = εF(t, x, ε) around

ε = 0 and control, in some sense, the bifurcation of isolated T-periodic solutions.

In the sequel, these notions will be discussed in detail.

1.1 The averaging method

An important and celebrated tool for dealing with nonlinear oscillating systems in the pres-

ence of small perturbations is the averaging method, which has its foundations in the works of

Clairaut, Laplace, and Lagrange, in the development of celestial mechanics, and was rigorous

formalized by the works of Fatou, Krylov, Bogoliubov, and Mitropolsky [1, 2, 7, 11] (for a brief

historical review, see [15, Chapter 6] and [20, Appendix A]). It is mainly concerned in pro-

viding long-time asymptotic estimates for solutions of non-autonomous differential equations

given in the following standard form

x′ =
k

∑
i=1

εFi(t, x) + εk+1R(t, x, ε). (1.1)

Here, Fi : R × D → R
n, for i = 1, . . . , k, and R : R × D × [−ε0, ε0] → R

n are assumed to be

smooth functions T−periodic in the variable t, with D being an open subset of R
n and ε0 > 0

small. Such asymptotic estimates are given in terms of solutions of an autonomous truncated

averaged equation

ξ ′ =
k

∑
i=1

εigi(ξ), (1.2)

where gi : D → R
n, for i ∈ {1, . . . , k}, are obtained by the following result:

Theorem 1.1 ([20, Lemma 2.9.1]). There exists a smooth T-periodic near-identity transformation

x = U(t, ξ, ε) = ξ +
k

∑
i=1

εi ui(t, ξ),

satisfying U(0, ξ, ε) = ξ, such that the differential equation (1.1) is transformed into

ξ ′ =
k

∑
i=1

εigi(ξ) + εk+1rk(t, ξ, ε). (1.3)

The averaging theory states that, for |ε| 6= 0 sufficiently small, the solutions of the original

differential equation (1.1) and the truncated averaged equation (1.2), starting at the same initial

condition, remains εk-close for a time interval of order 1/ε (see [20, Theorem 2.9.2]).

The functions gi and ui can be algorithmically computed by solving homological equations.

Section 3.2 of [20] is devoted to discuss how is the best way to work with such near-identity

transformations based on Lie theory (see also [6, 19]). One can see that, in general, g1 is the

average of F1(t, ·), that is,

g1(z) =
1

T

∫ T

0
F1(t, x)dt.

It is worth mentioning that the so-called stroboscopic condition U(ξ, 0, ε) = ξ does not have to

be assumed in order to get (1.3). However, in that case, the functions gi, for i ≥ 2, are not
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uniquely determined. For the stroboscopic averaging, the uniqueness of each gi is guaranteed

and so it is natural to call it by averaged function of order i (or ith-order averaged function) of the

differential equation (1.1). Here, these functions are referred by stroboscopic averaged functions

to indicate that the stroboscopic condition is being assumed.

The averaging method has been employed in the investigation of invariant manifolds of

differential equations (see, for instance, [8]). In particular, it has been extensively used to study

periodic solutions of differential equations. One can find results, in the classical research

literature, that relate simple zeros of the first-order averaged function g1 with isolated T-

periodic solutions of (1.1) (see, for instance, [9, 20, 21]).

1.2 The Melnikov method

The mentioned results relating simple zeros of the first-order averaged function g1 with iso-

lated T-periodic solutions of (1.1) have been generalized in several directions (see, for instance,

[4, 5, 12–14, 17, 18]). In particular, a recursively defined sequence of functions fi : D → R
n,

i ∈ {1, . . . , k}, was obtained in [13], for which the following result holds:

Theorem 1.2 ([13]). Denote f0 = 0. Let ℓ ∈ {1, . . . , k} satisfying f0 = · · · = fℓ−1 = 0 and fℓ 6= 0.

Assume that z∗ ∈ D is a simple zero of fℓ. Then, for |ε| 6= 0 sufficiently small, the differential equation

(1.1) admits an isolated T-periodic solution ϕ(t, ε) such that ϕ(0, ε) → z∗ as ε → 0.

The bifurcation functions fi, i ∈ {1, . . . , k}, are obtained through a Melnikov procedure,

which consists in expanding the time-T map of the differential equation (1.1) around ε = 0 by

using the following result:

Lemma 1.3 ([13, 16]). Let x(t, z, ε) be the solution of (1.1) satisfying x(0, z, ε) = z. Then,

x(t, z, ε) = z +
k

∑
i=1

εi yi(t, z)

i!
+O(εk+1),

where

y1(t, z) =
∫ t

0
F1(s, z) ds and

yi(t, z) =
∫ t

0

(

i!Fi(s, z) +
i−1

∑
j=1

j

∑
m=1

i!

j!
∂m

x Fi−j(s, z)Bj,m

(

y1, . . . , yj−m+1

)

(s, z)

)

ds,

(1.4)

for i ∈ {2, . . . , k}.

As usual, for p and q positive integers, Bp,q denotes the partial Bell polynomials:

Bp,q(x1, . . . , xp−q+1) = ∑
p!

b1! b2! · · · bp−q+1!

p−q+1

∏
j=1

(

xj

j!

)bj

.

The sum above is taken over all the tuples of nonnegative integers (b1, b2, . . . , bp−q+1) satisfying

b1 + 2b2 + · · ·+(p− q+ 1)bp−q+1 = p and b1 + b2 + · · ·+ bp−q+1 = q. Here, ∂m
x Fi−j(s, z) denotes

the Frechet’s derivative of Fi−j with respect to the variable x evaluated at x = z, which is a

symmetric m-multilinear map that is applied to combinations of “products” of m vectors in

R
n, in the present case Bj,m

(

y1, . . . , yj−m+1

)

.
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Accordingly, the functions fi, for i ∈ {1, . . . , k}, are defined by

fi(z) =
yi(T, z)

i!
. (1.5)

Notice that f1 is the average of F1(t, ·) multiplied by a factor T, that is, f1 = Tg1. Usually, fi

is likewise called by averaged function of order i (or ith-order averaged function) of the differential

equation (1.1). It is worth mentioning that, in the research literature, the bifurcation functions

fi’s also receive the name of Poincaré–Pontryagin–Melnikov functions or just Melnikov functions.

Such functions can be easily formally computed from (1.4) and (1.5), for instance

f2(z) =
∫ T

0

(

F2(t, z) + ∂xF1(t, z)y1(t, z)

)

dt

=
∫ T

0

(

F2(t, z) + ∂xF1(t, z)
∫ t

0
F1(s, z)ds

)

dt.

(1.6)

1.3 Main goals

In a first view, the functions fi and gi, for i ≥ 2, do not hold a clear relationship. Thus, the

present study is mainly concerned in establishing a link between them.

In Section 3, the main result of this paper, Theorem A, provides a general relationship be-

tween such distinct notions of higher order averaged functions, which allows the computation

of the higher order stroboscopic averaged functions avoiding the necessity of dealing with

near-identity transformations and homological equations. In addition, an Appendix is pro-

vided with implemented Mathematica algorithms for computing both higher order averaging

functions.

In Section 3.2, some consequences of the main result are presented. First, Corollary A

states that fi = T gi, for i ∈ {1, . . . , ℓ}, provided that either f1 = · · · = fℓ−1 = 0 or g1 = · · · =

gℓ−1 = 0. This gives a relatively simple and computable expression for the first non-vanishing

stroboscopic averaged function (see Corollary B). This last result has been reported in [10] for

differential equations coming from planar near-Hamiltonian systems.

2 Related results in research literature

In this section, some known results in research literature regarding the relationship between

Melnikov functions and averaged functions are discussed.

In [10], the authors have investigated the relationship between averaged functions and

Melnikov functions for planar near-Hamiltonian systems

ẋ = Hy + ε f (x, y, ε), ẏ = −Hx + εg(x, y, ε), (x, y) ∈ R
2,

assuming that the unperturbed system ẋ = Hy, ẏ = −Hx has a continuous family of periodic

solutions Lh, h ∈ J ⊂ R. It is worthy mentioning that this is the natural context where

Melnikov theory is applied. After a change of variables (x, y) ∈ R
2 7→ (θ, h) ∈ [0, 2π)× J, the

near-Hamiltonian system can be written in the standard form (1.1),

dh

dθ
= εF(θ, h, ε), (θ, h) ∈ [0, 2π)× J
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(see [10, Lemma 2.2]), for which the Melnikov functions fi’s and the stroboscopic averaged

functions gi’s can be computed. Then, in [10, Theorem 3.1], they showed that fi = T gi, for

i ∈ {1, . . . , ℓ}, provided that f1 = · · · = fℓ−1 = 0.

Although less related with the present study, another interesting paper to be mention is

[3], where the author considered planar autonomous differential equations given by

ẋ = X0(x) + εX(x, ε), (2.1)

for which the unperturbed system ẋ = X0(x) has a continuous period annulus P ⊂ R
2

without equilibria. A polar-like change of variables is employed in order to write the planar

system as the standard form (1.1),

dh

dθ
= εF(θ, h, ε), (θ, h) ∈ [0, 2π)× J, (2.2)

(see [3, Propositions 4 and 5]). The averaging method for scalar periodic equations, described in

[3, Section 1], corresponds to the Melnikov method described in Section 1.2 of this present

paper, where the averaged functions fi’s are given as the coefficients of the expansion of the

time-T map of the differential equation (2.2) around ε = 0. The Melnikov function method for pla-

nar systems, also described in [3, Section 1], consider a Poincaré map Pγ of the autonomous dif-

ferential equation (2.1) defined on an analytic transversal section given by Σ = {γ(h) : h ∈ I}.

Accordingly, the Melnikov functions Mi’s are given as the coefficients of the expansion of the

Poincaré map around ε = 0, which may depend on both the section Σ and its parametriza-

tion γ. As the conclusion of [3], it was showed that both procedure correspond to the study of

some Poincaré map and that Mℓ = fℓ, where ℓ is the index of the first non-vanishing Melnikov

function.

3 Main result

The main result of this paper establishes a general relationship between the distinct notions of

higher order averaged functions provided by the stroboscopic averaging method in Theorem

1.1 and by the Melnikov procedure in Lemma 1.3.

Theorem A. For i ∈ {1, . . . , k}, the following recursive relationship between gi and fi holds:

g1(z) =
1

T
f1(z),

gi(z) =
1

T

(

fi(z)−
i−1

∑
j=1

j

∑
m=1

1

j!
dmgi−j(z)

∫ T

0
Bj,m

(

ỹ1, . . . , ỹj−m+1

)

(s, z)ds

)

,
(3.1)

where ỹi(t, z), for i ∈ {1, . . . , k}, are polynomial in the variable t recursively defined as follows:

ỹ1(t, z) = t g1(z),

ỹi(t, z) = i!t gi(z) +
i−1

∑
j=1

j

∑
m=1

i!

j!
dmgi−j(z)

∫ t

0
Bj,m

(

ỹ1, . . . , ỹj−m+1

)

(s, z)ds.
(3.2)

Theorem A is proven in Section 3.1. An Appendix is provided with Mathematica algo-

rithms implementing the recursive formulae (1.4), (3.1), and (3.2) for computing both higher

order averaging functions.
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Remark 3.1. By applying the formula above for i = 2, one has

g2(z) =
1

T

(

f2(z)−
1

2
df1(z)f1(z)

)

,

where f2 is explicitly given by (1.6). Thus,

g2(z) =
1

T

∫ T

0

(

F2(t, z) + ∂xF1(t, z)
∫ t

0

(

F1(s, z)−
1

2
g1(z)

)

ds

)

dt,

which coincides with the expression provided by [20, Section 2.9.1].

3.1 Proof of Theorem A

From Theorem 1.1, there exists a T-periodic near-identity transformation x = U(t, ξ, ε), satisfy-

ing U(0, ξ, ε) = ξ, such that the differential equation (1.1) is transformed into (1.3). Let x(t, z, ε)

and ξ(t, z, ε) be, respectively, the solutions of (1.1) and (1.3) satisfying x(0, z, ε) = ξ(0, z, ε) = z.

From Lemma 1.3,

x(T, z, ε) = z +
k

∑
i=1

εifi(z) +O(εk+1), (3.3)

where fi, for i ∈ {1, . . . , k}, are given by (1.5), and

ξ(T, z, ε) = z +
k

∑
i=1

εi f̃i(z) +O(εk+1), (3.4)

where, for i ∈ {1, . . . , k},

f̃i(z) =
ỹi(T, z)

i!
(3.5)

and the functions ỹi’s are obtained recursively from (1.4) as (3.2):

ỹ1(t, z) = t g1(z),

ỹi(t, z) = i!t gi(z) +
i−1

∑
j=1

j

∑
m=1

i!

j!
dmgi−j(z)

∫ t

0
Bj,m

(

ỹ1, . . . , ỹj−m+1

)

(s, z)ds.

Now, taking the transformation x = U(t, ξ, ε) into account, given z ∈ D, there exists ẑ ∈ D

such that x(t, z, ε) = U(t, ξ(t, ẑ, ε), ε). By the stroboscopic condition, U(0, ξ, ε) = ξ, it follows

that

z = x(0, z, ε) = U(0, ξ(0, ẑ, ε), ε) = ξ(0, ẑ, ε) = ẑ.

In addition, since U is T periodic in the variable t, one also has that

x(T, z, ε) = U(T, ξ(T, z, ε), ε) = ξ(T, z, ε).

Thus, from (3.3) and (3.4), one obtains the following relationship

fi = f̃i for every i ∈ {1, . . . , k}. (3.6)

The proof follows by substituting (3.5) into the equality (3.6) and, then, isolating gi(z) in

the resulting relation by taking (3.2) into account.
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3.2 Some consequences

Two main consequences of Theorem A are given in the sequel. The first one states that

fi = T gi, for i ∈ {1, . . . , ℓ}, provided that either f1 = · · · = fℓ−1 = 0 or g1 = · · · = gℓ−1 = 0.

This generalizes the result from [10] discussed in Section 2.

Corollary A. Let ℓ ∈ {2, . . . , k}. If either f1 = · · · = fℓ−1 = 0 or g1 = · · · = gℓ−1 = 0, then

fi = T gi, for i ∈ {1, . . . , ℓ}.

Proof. First, assume that g1 = · · · = gℓ−1 = 0. Then, from (3.2), ỹi = 0, for i ∈ {1, . . . , ℓ− 1},

and ỹℓ(t, z) = ℓ! t gℓ(z). Thus, from (3.5) and (3.6), it follows that fi = f̃i = 0, for i ∈ {1, . . . ,

ℓ− 1}, and fℓ = f̃ℓ = Tgℓ.

Finally, assume that f1 = · · · = fℓ−1 = 0. Then, from (3.5), (3.2), and (3.6), one concludes

that gi, for i ∈ {1, . . . , ℓ− 1}, satisfy the following system of equations

0 = T g1(z),

0 = T gi(z) +
i−1

∑
j=1

j

∑
m=1

1

j!
dmgi−j(z)

∫ t

0
Bj,m

(

ỹ1, . . . , ỹj−m+1

)

(s, z)ds.

Hence, gi = 0 (and, then, fi = Tgi) for i ∈ {1, . . . , ℓ− 1}. Consequently, applying (3.2) for i = ℓ

and taking (3.5) and (3.6) into account, if follows that

fℓ(z) = f̃ℓ(z) =
ỹℓ(T, z)

ℓ!
= Tgℓ(z).

Now, as a direct consequence of Corollary A, the first non-vanishing stroboscopic averaged

function can be computed in relatively simple way. In particular, the following result holds:

Corollary B. Denote f0 = 0 and let ℓ ∈ {1, . . . , k} satisfy f1 = · · · = fℓ−1 = 0. Then, there

exists a smooth T-periodic near-identity transformation x = U(t, ξ, ε) satisfying U(ξ, 0, ε) = ξ,

such that the differential equation (1.1) is transformed into

ξ ′ = εℓ
1

T
fℓ(ξ) + εℓ+1rℓ(t, ξ, ε).

Appendix A: Algorithms

This appendix is devoted to provide implemented Mathematica algorithm, based on recursive

formulae (1.4), (3.1), and (3.2), for computing the higher order Melnikov functions and the

higher order stroboscopic averaged functions.

In what follows, Fi(t, x) is denoted by F[i,t,x], yi(t, x) is denoted by y0[i,t], ỹi(t, x) is denoted

by y1[i,t], fi(z) is denoted by f[i,z], and gi(z) is denoted by g[i,z]. The order of perturbation k

must be specified in order to run the code.

Listing 1: Mathematica’s algorithm for computing fi

1 y0[1, t_] = Integrate[F[1, s , z ], {s, 0, t }];

2 Y0[1] = {y0[1, t ]};

3 For[ i = 2, i <= k, i++,

4 y0[ i , t_] := Integrate [ i ! F[ i , s , z] + Sum[Sum[i!/j! D[F[i − j, t , z ], {z, m}] BellY[ j , m, Y0[j − m + 1]], {

m, 1, j }], {j , 1, i − 1}], {s, 0, t }];

5 Y0[i ] = Join[Y0[i − 1], {y0[ i , t ]}];

6 f [ i , z_] = y0[i , T]/i !];
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Listing 2: Mathematica’s algorithm for computing gi

1 g[1, z_] = f[1, z]/T;

2 y1[1, t ] = t g[1, z ];

3 Y1[1, t_] = {y1[1, t ]};

4 For[ i = 2, i <= k, i++,

5 g[ i , z_] = 1/T (f[i , z] −Sum[Sum[1/j! D[g[i − j,z], {z, m}] Integrate [BellY[ j , m, Y1[j − m + 1, s]], {s, 0,

T}], {m, 1, j }], {j , 1, i − 1}]);

6 y1[ i , t_] =i! t g[ i ,z] + Sum[Sum[i!/j! D[g[i − j,z ], {z, m}] Integrate [BellY[ j , m, Y1[j − m + 1, s]], {s, 0,

T}], {m, 1, j }], {j , 1, i − 1}];

7 Y1[i , t_] = Join[Y1[i − 1, t ], {y1[ i , t ]}]];
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1 Introduction

In the sequel we will always assume, unless otherwise stated that

1

p
, q ∈ L(I), [a, b] ⊂ I (1.1)

where I is a closed and bounded interval and the functions p, q : I → R. In this paper there are

generally no sign restrictions on the principal part of (1.2), i.e., the values, p(x), are generally

unrestricted as to their sign and p(x) may even be infinite on sets of positive measure. As

usual the symbol ‖ ∗ ‖1 will denote the L(I) norm.

It is well known [5] that the conditions (1.1) imply the existence and uniqueness of

Carathéodory solutions of initial value problems associated with (1.2),

− (p(x)y′)′ + q(x) y = 0, x ∈ [a, b], (1.2)

that is, solutions y such that both y and py′ are absolutely continuous on [a, b] and satisfy

y(a) = ya, py′(a) = ya′ , (1.3)

for given ya, ya′ . The study of problems with an indefinite leading term (a.k.a. an indefinite

principal part) are few and far between. For example, the failure of Sturm’s oscillation theorem

in such indefinite cases was observed in [2, p. 381] where, in the presence of an indefinite

weight function, it may occur that the spectrum is, in fact, the whole complex plane and the

BCorresponding author. Email: angelo@math.carleton.ca



2 L. Gholizadeh and A. B. Mingarelli

eigenfunctions behave in a totally non-Sturmian fashion. The example in question consists in

choosing p(x) = q(x) = sgn x for x ∈ [−1, 1], y(−1) = y(1) = 0. Then the two solutions

y1(x) = sin P(x) and y2(x) = cos P(x) where P(x) = |x| − 1 have non interlacing zeros.

Indeed, y2(x) 6= 0 on [−1, 1] while y1(x) vanishes at both ends there. This special case is

contained in Theorem 2.2 below.

Recall that, in its simplest most classical form, Sturm’s Separation Theorem states that

given any non-trivial solution y of (1.2) having consecutive zeros at a, b, a < b, where [a, b] ⊂ I

then every other linearly independent solution of (1.2) must vanish only once in (a, b). An

equation (1.2) is said to have the Sturm Separation Property (abbr. SSP) on [a, b] if Sturm’s

Separation Theorem holds for the given equation on the given interval.

The framework described above normally assumes that the principal part, p, appearing in

(1.2) is a.e. finite on [a, b]. However, still greater generality can be obtained by allowing p(x)

to be identically infinite on subintervals. In this case one needs to rewrite (1.2) as a vector

system in two dimensions, e.g.,

u′ =
v

p
, v′ = q u. (1.4)

This now defines a problem of Atkinson-type (see [1, Chapter 8], [3, p. 558] for more details).

The advantage of using this formulation is that it can be used to study three-term recurrence

relations as well, see [1], [8]. We summarize this approach briefly: we divide [a, b] into a finite

union of subintervals

[a, bo], [bo, a1], [a1, b1], [b1, a2], [a2, b2], . . . , [bm−1, am], [am, b]. (1.5)

on each of which alternately p(x) = ∞ or q(x) = 0 (but p(x) is not infinite when q(x) = 0).

Direct integration of (1.4) then shows that yn = u(an) satisfies the three-term recurrence rela-

tion

cn yn+1 + cn−1 yn−1 − dn yn = 0, (1.6)

where

c−1
n =

∫ an+1

bn

ds

p(s)
, dn = cn + cn+1 +

∫ bn

an

q(s) ds,

or, equivalently, a second order difference equation

−△(cn−1△yn−1) +

(

∫ bn

an

q(s) ds

)

yn = 0, (1.7)

where, as usual, △ represents the forward difference operator △yn = yn+1 − yn.

Recall that by a zero of a solution of (1.6) is meant the zero of that absolutely continuous

polygonal curve with vertices at (n, yn). (This interpretation arises directly by integrating

(1.4).) Thus, zeros of solutions of (1.6) are said to interlace if the corresponding polygonal

curves have interlacing zeros.

The failure of Sturm’s Separation Theorem (or SSP) in the case of recurrence relations

(or difference equations) is old but chronicled by both Bôcher [4] and Moulton, [9], and not

independently of one another. (Moulton [9] actually cites Bôcher in reference to the question.)

Bôcher [4] goes on to give, as an example, two independent solutions of the Fibonacci sequence

recurrence relation,

yn+1 = yn + yn−1, y−1 = 0, y0 = 1; y−1 = −10, y0 = 6,

with no interlacing features whereas Moulton [9] went on to show (at Bôcher’s prodding) that

(1.6) has the SSP provided cn cn−1 > 0 for all n. To the best of our knowledge, a converse of
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Sturm’s Separation Theorem has not been addressed. In [8, p. 209] we showed, by means of

an example, that the SSP may fail in the case where Moulton’s condition cn cn−1 > 0 fails.

This failure suggests that p(x) must change its sign in the continuous case and that inter-

vals in which violations to SSP occur must be neighborhoods of a “turning point” of p. The

existence of such a point is necessitated by the fact that otherwise p(x) would be (a.e.) of one

sign in [a, b] and so SSP must hold there by Sturmian arguments.

Below we present a converse to SSP as a consequence of more general results dealing with

(1.4). Said result will then apply to both differential and difference equations.

Specifically, we will prove (Theorem 2.2) that whenever the leading term p(x) has a turning

point in (a, b) then SSP must fail. This is equivalent to showing that if the SSP holds then

p(x) cannot have a turning point inside (a, b) and thus p(x) is a.e. of one sign. This is the

actual converse of Sturm’s Separation Theorem. We illustrate this result by means of explicit

examples.

We also present (Theorem 2.10) an effective necessary condition for the existence of a

solution vanishing at the end-points of an interval in the case of sign-indefinite p and q.

Examples are provided illustrating the various theorems. Other results of independent interest

are also presented thus demonstrating the complexities of qualitative behavior of solutions in

the case of indefinite leading terms.

We conclude by a conjecture which gives an upper and lower bound to the difference in

the number of zeros in [a, b] between two independent solutions in the case of an arbitrary

but finite number of turning points in p(x).

2 Main results

We recall that if p is continuous or piecewise continuous on [a, b] then a turning point is a

point c ∈ (a, b) around which p(x) changes its sign. If p is merely measurable then c is defined

by requiring that, in some interval containing c in its interior, we have (x − c)p(x) > 0 a.e.

(or (x − c)p(x) < 0 a.e.) This somewhat restrictive definition implies that the set of turning

points of p cannot be everywhere dense in (a, b). Indeed, this definition implies that turning

points must be separated from one another.

In the sequel we always assume that solutions of (1.4) or (2.1) below are deemed non-

trivial. In addition, we take it that 1/p(x) may vanish a.e. on sets of positive measure, but not

vanish a.e. on [a, b], and that p(x) is unrestricted as to its sign there.

Lemma 2.1. For i = 1, 2, let u1, u2 be solutions of

u′
i =

vi

p
, v′i = q ui, (2.1)

where p, q satisfy (1.1). Then

u2(x)v1(x)− u1(x)v2(x) = C, (2.2)

where C is a constant.

We will assume that, without loss of generality, C = 1. The main result shows that SSP

fails whenever p has a turning point and thus the a.e. positivity (or negativity) of p(x) is a

necessary condition for the validity of SSP as well as sufficient, as is well known.

Theorem 2.2. Let p(x) have a unique turning point at x = c, a < c < b and let ui, i = 1, 2 be

linearly independent solutions of (2.1) such that u1(a) = u1(b) = 0, u1(x) 6= 0 in (a, b). Then either
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u2(x) 6= 0 on [a, b], or u2(x) is of constant sign except only at x = c where u2(c) = 0, or finally

u2(x) has exactly two zeros in (a, b). In every case it follows that SSP fails on [a, b].

Remark 2.3. The previous theorem is independent of the sign of q(x) and assumes only that a

solution exists vanishing at two points around a given turning point. This is the general case

as otherwise the existence of two consecutive zeros in a turning-point-free set would lead to

SSP there by classical Sturm theory since p(x) is a.e. of one sign.

The result also includes an analog for the difference equation (1.7) above. Basically, if the

cn change sign once, then the solutions, viewed as polygonal curves, have the property stated

in the theorem.

The next example illustrates the result in the continuous case.

Example 2.4. Let I = [0, π], and consider the differential equation

u′ = cos(x) v, v′ = − cos(x) u.

with a unique turning point at c = π/2. Then the general solution is

y(x) = c1 sin(sin x) + c2 cos(sin(x)),

where c1, c2 are constants. First, note that solution u1(x) = sin(sin x) satisfies the conditions

of Theorem 2.2. We now exhibit solutions of the type guaranteed by said theorem.

• The solution u2(x) = cos(sin x) has no zeros in [0, π].

• The solution u2(x) = − cos 1 sin(sin x)+ sin 1 cos(sin(x)) ≥ 0 on [0, π] and it has exactly

one zero at the turning point x = π/2 bouncing positively there.

• The solution u2(x) = cos(sin x) − sin(sin x) has exactly two zeros, in conformity with

said theorem.

• Every solution of this equation has at most two zeros.

The latter result is most readily proved by contradiction. Assuming three such zeros xi,

i = 1, 2, 3, xi ∈ [0, π], we can easily deduce that the three quantities tan(sin(xi)) have a

common value (i.e., independent of i) and this is impossible on [0, π]. As a result, SSP fails

for this equation.

Next we consider the problem of finding necessary and sufficient conditions for the exis-

tence of two zeros of (1.4) on [a, b], i.e., in particular, we are asking for conditions under which

this equation not disconjugate. For the notion of disconjugacy we refer the reader to [3, 7].

Theorem 2.5. The equation (1.4) with q(x) = 0 a.e. on [a, b] has a non-trivial solution satisfying

u(a) = u(b) = 0 if and only if
∫ b

a

ds

p(s)
= 0, (2.3)

Corollary 2.6. Let cn satisfy
m−1

∑
n=0

c−1
n = 0. (2.4)

Then SSP fails for three-term recurrence relations of the form

cn yn+1 + cn−1 yn−1 − (cn + cn−1) yn = 0. (2.5)
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Example 2.7. Let cn−1 = (−1)n, n = 0, . . . , m, where m is even. Then (2.5) reduces to yn+1 =

yn−1. This has two linearly independent solutions defined by the initial conditions, y−1 = 0,

y0 = 1 and y−1 = 1, y0 = 2 the former of which has numerous zeros while the second has

none. We can see that SSP fails both by direct computation and by Corollary 2.6.

On the other hand, the same initial conditions y−1 = 0, y0 = 1 and y−1 = 1, y0 = 2 for

the slightly modified recurrence relation yn+1 = −yn−1 gives two solutions satisfying SSP by

Moulton’s theorem, [9].

The separation property for the zeros of the quasi-derivatives of solutions, i.e., terms of the

form (py′)(x), is next. Although the result is simply proved we have been unable to find a

reference to it and so present it here for the sake of completeness.

Proposition 2.8. For p, q as in (1.1), let p(x) be sign indefinite. In addition, let q(x) be a.e. of one

sign on [a, b] and let y be a non-trivial solution of (1.2) satisfying

(py′)(a) = 0 = (py′)(b). (2.6)

Then for any linearly independent solution y1 of (1.2) there is exactly one point c ∈ (a, b) such that

(py′1)(c) = 0.

Remark 2.9. This proposition seems to be the closest that one can get to a SSP-type result for

positive q. In other words, as we have seen earlier, the SSP fails even if q(x) > 0 on [a, b], and

p(x) is sign indefinite (i.e., has a turning point in (a, b)).

Next, we give a necessary condition for the existence of a solution vanishing at the end-

points of a typical interval, [a, b], and positive in its interior in the presence of an indefinite

principal part or leading term, p(x), in (1.4).

Theorem 2.10. Let ‖q‖1 > 0 and let (2.3) hold. Let u be a solution of (1.4) such that u(a) = u(b) = 0,

and u(x) > 0 for x ∈ (a, b). Then, writing,

P(x) :=
∫ x

a

ds

p(s)
, (2.7)

either P(x)q(x) = 0 a.e. on (a, b) or there is a set of positive measure on which P(x)q(x) > 0 a.e.

in (a, b) and a set of positive measure on which P(x)q(x) < 0 a.e. in (a, b) (i.e., Pq changes its “sign”

on (a, b).)

The next result is of independent interest, Example 2.4 being a special case.

Lemma 2.11. Let I = [a, b], λ > 0. The general solution of either

(py′)′ +
λ

p
y = 0, or u′ =

v

p
, v′ = −λ

p
u.

is given by

y(x) = u(x) = c1 cos
(√

λP(x)
)

+ c2 sin
(√

λP(x)
)

,

where

v(x) = −c1

√
λ sin

(√
λP(x)

)

+ c2

√
λ cos

(√
λP(x)

)

,

where c1, c2 are constants.

Remark 2.12. It is well known and easy to derive that in the case where the leading term p(x)

is a.e. positive (or negative) then the absolute value of the difference of the number of zeros

of two independent solutions is equal to 1, due to the interlacing property of such zeros. In

the case of an indefinite leading term we make the following conjecture.
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3 Conjecture

Let p(x) have at least one turning point in (a, b) and let y be a solution satisfying y(a) =

y(b) = 0 having n zeros in [a, b]. Then, given any integer k, 0 ≤ k ≤ n, there are examples

for which the absolute value of the difference of the number of zeros of two independent

solutions on [a, b] is equal to k.

This totally non-Sturmian behavior appears to be typical in cases where the principal part

changes sign.

4 Proofs

Proof of Lemma 2.1. The proof is by differentiation of the expression on the left of (2.2) making

use of (2.1). Note that all ui, vi, and so their products, are absolutely continuous on the interval

under consideration.

Proof of Theorem 2.2. There are only two logical possibilities. Either u2(x) 6= 0 in [a, b] or

u2(x) = 0 at x = x0 in (a, b]. Clearly u2(a) 6= 0 as its negation would violate (2.2). For the sake

of simplicity we may assume that u2(a) > 0 (or else we may replace u2 by −u2 in the ensuing

discussion along with other minor changes).

In addition, we may assume, without loss of generality, that this first zero is at, say x0 ∈
(a, c), that is, to the left of the turning point. A similar argument applies in the event that this

zero is in (c, b]. Thus, u2(x) ≥ 0 for x ∈ [a, x0).

Next, we show that, unless x0 = c (see below), u2(x) cannot “bounce” off x = x0 and

remain positive for some x > x0. To see this observe that (2.2) implies that v2(x0) < 0. The

continuity of v2 now implies the existence of a δ > 0 and a neighborhood J = (x0 − δ, x0 + δ) ∈
(a, c) in which v2(x) < 0. It follows that, for x ∈ (x0, x0 + δ),

u2(x) =
∫ x

x0

v2(s)

p(s)
ds.

Since p(x) > 0 a.e. in J and v2(x) < 0 there as well, we see that u2(x) < 0 to the right of

x0 and thus u2 must cross the axis whenever it is zero. Summarizing, we have shown that

there exists a δ > 0 such that u2(x) > 0 on [a, x0) and u2(x) < 0 on (x0, x0 + δ). Now, since

p(x) > 0 a.e. in [a, c], by ordinary Sturm theory we get that it is impossible for u2(x) = 0

again in (x0 + δ, c]. This is because SSP applies on intervals in which p(x) is a.e. of one sign,

and so u2(x) can have at most one zero there. It follows that u2(c) < 0.

As before we know that (2.2) forces u2(b) 6= 0. We show that u2(b) > 0. Assume the

contrary, i.e., u2(b) < 0. Since p(x) < 0 a.e. on (c, b) we have from (2.2) that u2(b)v1(b) = 1

and so that v1(b) < 0. A continuity argument again implies the existence of a η > 0 such that

v1(x) < 0 for x ∈ (b − η, b). For such x,

u1(b)− u1(x) = −u1(x) =
∫ b

x

v1(s)

p(s)
ds.

However, p(x) < 0 a.e. in (b − η, b). Hence u1(x) < 0 in (b − η, b) and this contradicts the

fact that u1(x) > 0 on (a, b). Hence u2(b) ≥ 0. As before, the case u2(b) = 0 being excluded

by (2.2), we find that u2(b) > 0. Since u2 is continuous and u2(c) < 0 there must exist another

zero x1 ∈ (c, b). This zero must be unique by Sturm theory since p(x) is a.e. of one sign on

(c, b), i.e., SSP applies here.
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Finally, let us consider the case where x0 = c, that is, the first zero of u2 occurs at the

turning point itself. This case may occur and a bounce is possible here. The reason for this

is that previous argument fails on account that p(x) a.e. changes its sign on every interval of

the form (c − δ, c + δ), by definition. Since p(x) < 0 a.e. on (c, c + δ), and arguing as above,

we get that for all x ∈ (c, c + δ) and δ sufficiently small,

u2(x) =
∫ x

c

v2(s)

p(s)
ds > 0.

Thus, a bounce may occur there. Finally, u2(x) may not vanish again in (c, b) since p(x) is a.e.

of one sign and so can only have at most one zero in [c, b] by Sturm theory. This completes

the proof.

Prof of Corollary 2.6. This follows from the discussion leading to the recurrence relations.

Proof of Proposition 2.8. We use the so-called reciprocal transformation [3]: let z = py′ where y

satisfies (1.2). Then z satisfies the equation

−
(

1

q
z′
)′

+
1

p
z = 0,

and

z(a) = z(b) = 0.

Since q is a.e. of one sign, classical Sturmian results apply so that the previous equation has

the SSP on said interval. Thus, for any other linearly independent solution z1(x) there is a

unique c ∈ (a, b) such that z1(c) = 0. In particular, if we define a solution y1 via z1 = py′1,

then z1(c) = 0 for some c, and the result follows.

Proof of Theorem 2.10. Without loss of generality we can assume that u(a) = 0, v(a) = M where

M 6= 0 is arbitrary but fixed. Then

u(x) = M
∫ x

a

ds

p(s)
+

∫ x

a

1

p(s)

∫ s

a
q(t)u(t) dt ds

= M
∫ x

a

ds

p(s)
+ P(x)

∫ x

a
q(t)u(t) dt −

∫ x

a
P(t)q(t)u(t) dt.

Since u(b) = 0 and P(b) = 0, it follows that

∫ b

a
P(t)q(t)u(t) dt = 0,

and, since u(x) > 0 in (a, b), the result follows.

Proof of Lemma 2.11. This is a direct calculation and so the proof is omitted.

Note added in proof: For an extension of some of the main results of this paper to the case

of finitely many turning points, see [6].
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Abstract. In this paper, we investigate even-order linear difference equations and their
criticality. However, we restrict our attention only to several special cases of the general
Sturm–Liouville equation. We wish to investigate on such cases a possible converse of
a known theorem. This theorem holds for second-order equations as an equivalence;
however, only one implication is known for even-order equations. First, we show the
converse in a sense for one term equations. Later, we show an upper bound on criticality
for equations with nonnegative coefficients as well. Finally, we extend the criticality of
the second-order linear self-adjoint equation for the class of equations with interlacing
indices. In this way, we can obtain concrete examples aiding us with our investigation.
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1 Introduction

The concept of criticality for second-order equations was developed in [15] and for equations
of general even-order in [8]. It is established for continuous case as well which the reader
can find for example in [14, 16, 27, 32, 36–38] and in other references. This work was intended
as an attempt to investigate a converse of the main result obtained in [8] through observing
subclasses of the Sturm–Liouville difference equation. We obtain several new properties of
said subclasses and concrete examples whose behaviour motivates further research.

Section 2 contains a summary of necessary definitions and theorems together with some
minor improvements. Nevertheless, it is worth pointing out that critical linear equations
create a subclass of disconjugated equations. When we work with second-order equations
we have only two options, that a disconjugated equation is either critical or subcritical. For
higher-order equations of order 2k we have to separate this approach into subsequent cases,
that equations can be p-critical for 0 ≤ p ≤ k, p ∈ Z and when it is 0-critical we say that the
equation is subcritical.

In Section 3 we work with the one term linear equation

(−△)k
(

rn△
kyn−k

)

= 0, rn > 0, n ∈ Z. (1.1)

BEmail: jekl@mail.muni.cz



2 J. Jekl

Eq. (1.1) gives a subclass of the general Sturm–Liouville equation where only one of the co-
efficients is non-zero. Our main result of Section 3 considers a situation where we make one
of the zero coefficients of Eq. (1.1) arbitrarily smaller. When this change leads to the situation
where Eq. (1.1) loses disconjugacy, then the original Eq. (1.1) is at least p-critical where the as-
sumptions give the number p. Later, we extend this approach for equations with more terms,
where we use mainly equations with nonnegative coefficients. We will introduce an upper
bound on the number p in the p-criticality of such equations. Our approach also partially
covers two term equations used in [7, 39].

Section 4 focuses on the following class of linear difference equations with interlacing
indices

anyn+2 + bnyn + an−2yn−2 = 0, n ∈ Z. (1.2)

The equations with interlacing indices from time to time appear in the literature (see, e.g.,
[19, 40–42]). They, among others, can be used in getting some counterexamples. Here we
describe a space of recessive solutions of Eq. (1.2) at ±∞ and link the criticality of the second-
order self-adjoint equation to the criticality of Eq. (1.2). The important fact to note here is that
for even-order equations, we cannot use several tools which are available for second-order
equations. Hence, we work with equations with interlacing indices to apply these tools at
least on a subclass of the Sturm–Liouville equation. By this, we obtain concrete examples
where the possible behaviour of the converse shows clearly.

Overall, we develop a background for further research even though no attempt has been
made to postulate the form of the possible converse. Additionally, our results show that there
are still many uncharted territories in regard to the criticality of even-order linear equations.
For other examples of the recent development in this field, we refer the reader to see, for ex-
ample, [13,17,22,25,28]. The important point to note here is that the topic of critical equations
is also close to the topic of oscillation. Hence, other closely related results about the critical
case concerning non-oscillation are stated in [23, 24], see also [9].

2 Preliminaries

The article [8] works with linear even-order Sturm–Liouville equation in the form

k

∑
i=0

(−△)i
(

r[i]n △iyn−i

)

= 0, n ∈ Z, (2.1)

and its criticality is developed. To show this, we have to link solutions of Eq. (2.1) to the
solutions of linear Hamiltonian difference system (see for example [1, 3, 8])

△xn = Axn+1 + Bnun, △un = Cnxn+1 − ATun (2.2)

through the substitution

xn =







yn

△yn−1

. . .
△k−1yn+1−k







, un =










∑
k
i=1(−△)i−1

(

r[i]n+1△
iyn+1−i

)

...

−△
(

r[k]n+1△
kyn+1−k

)

+ r[k−1]
n+1 △k−1yn+2−k

r[k]n+1△
kyn+1−k










. (2.3)
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Here A, Bn, Cn are k × k matrices Bn = diag
(

0, . . . , 0, 1
r[k]n+1

)

, Cn = diag
(
r[0]n+1, . . . , r[k−1]

n+1

)
and

A = aij =







1, i = j,

−1, i + 1 = j,

0, otherwise.

A 2k × k matrix solution
(

Xn
Un

)

of Eq. (2.2) is said to be a conjoined basis when XT
n Un is

symmetric and rank
(

Xn
Un

)

= k. A conjoined basis
(

Xn
Un

)

is said to be recessive solution at ∞

provided that for some N sufficiently large holds XnX−1
n+1A−1Bn ≥ 0, for all n ≥ N and

lim
h→∞

(
h

∑
n=N

X−1
n+1A−1Bn

(

XT
n

)−1
)−1

= 0.

If matrix solution
(

Xn
Un

)

is a recessive solution at ∞, then solutions y1
n, . . . , yk

n generating
columns of Xn form the system of recessive solutions of Eq. (2.1) at ∞. The system of reces-
sive solutions at −∞ is defined similarly. For analysis of recessive solutions of second-order
equations, see for example [4, 5, 35].

Here and subsequently, we denote the spaces of recessive solutions at ±∞ as ν±, i.e.

ν± = Lin{recessive solution of Eq. (2.1) at ± ∞}.

With this notation we shall call a disconjugate Eq. (2.1) as p-critical on Z when dim ν+ ∩ ν− =

p. The main result of [8] reads as follows.

Theorem 2.1. Let disconjugate Eq. (2.1) be p-critical on Z, and let H ∈ Z, ε > 0 be arbitrary.
Furthermore, let arbitrary J ⊂ {0, . . . , n − 1} satisfy |J| = k − p + 1 and consider the sequences

s[j]H =

{

r[j]H − ε, f or j ∈ J,

r[j]H , otherwise,

and s[i]n = r[i]n , for all i and n 6= H. Then the equation

k

∑
i=0

(−△)i
(

s[i]n △iyn−i

)

= 0

is not disconjugate.

This theorem has been later extended in [26, 44] and shows that critical equations create
a borderline where appears a bifurcation with respect to disconjugacy. Nevertheless, Theo-
rem 2.1 holds for second-order equations as an equivalence. One may ask whether this is still
true if we consider a general even-order equation. Such question also serves as the primary
motivation for our work.

Final conjecture of [8] is proved in [20] and they both focus on the one term equation

(−△)k
(

rn△
kyn−k

)

= 0, rn > 0, n ∈ Z, k ∈ N. (2.4)

With a notation that n[p] = n · (n − 1) · (n − 2) · . . . · (n − p + 1), p ∈ N, the results state
the following.
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Theorem 2.2. Let p ∈ {1, . . . , k} and suppose that

0

∑
j=−∞

j2(k−p)

rj+k
= ∞ =

∞

∑
j=0

j2(k−p)

rj+k
.

Then Lin{1, . . . , n[p−1]} ⊂ ν+ ∩ ν− and (2.4) is at least p-critical. Moreover, if either

0

∑
j=−∞

j2(k−1)

rj+k
< ∞ or

∞

∑
j=0

j2(k−1)

rj+k
< ∞

then ν+ ∩ ν− = ∅.

The converse of Theorem 2.2 can be found in [21]. Eq. (2.4) will be the main objective of
the following section and so let us mention that when dealing with Eq. (2.4) it is useful to
utilize the fact that if △j+1yn−j−1 = zn then

yn =
1
j!

n−1

∑
i=−∞

(n − i − 1)[j]zi+j+1. (2.5)

Another useful result of [8] is the following lemma. However, first of all, let us mention
that we follow the notation of [8] and by l2

0(Z) we denote the set of sequences

l2
0(Z) = {{un} | only for finitely many n ∈ Z is un 6= 0}.

Lemma 2.3. Suppose that Eq. (2.1) is p-critical for some p ∈ {1, . . . , k}. Then for every ε > 0 there
exists a sequence un ∈ l2

0(Z) such that

F(u) =
∞

∑
n=−∞

k

∑
i=0

r[i]n

(

△iun−i

)

< ε.

Proof of Lemma 2.3 obtains for any yn ∈ ν+ ∩ ν− such an un ∈ l2
0(Z) that yn = un on

arbitrary compact [A, B] and which satisfies that F(u) < ε, for arbitrary small ε > 0. In light
of this, we can reformulate ideas of the proof of Theorem 2.1 to obtain the following theorem.

Theorem 2.4. Let Eq. (2.1) be disconjugate and p-critical on Z, and let ε > 0 be arbitrary. For any
H ∈ Z there is J ⊂ {0, . . . , n − 1} with |J| ≥ p such that if for any j ∈ J we replace

s[i]H =







r[i]H − ε, for i = j

r[i]H , for i 6= j

and s[i]n = r[i]n for all i, n 6= H, then the equation

k

∑
i=0

(−△)i
(

s[i]n △iyn−i

)

= 0

is not disconjugate.

Proof. The proof of Theorem 2.1 (see also [8, 10]) shows that there are p solutions y1
n, . . . , yp

n of
Eq. (2.1) with the following property. For any H ∈ Z there is J ⊂ {0, . . . , n − 1} with |J| = p
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such that there is a surjection from J to yj
n where for any j ∈ J holds △jyj

H−j = 1. Hence, for

any ε > 0, H ∈ Z and j ∈ J we replace r[i]n by s[i]n to obtain

∞

∑
n=−∞

k

∑
i=0

s[i]n

(

△iun−i

)

= −ε
(

△juH−j

)

+
∞

∑
n=−∞

k

∑
i=0

r[i]n

(

△iun−i

)

= −ε
(

△juH−j

)

+ F(u).

However, from the proof of Lemma 2.3 we have that we can choose such un which satisfies
F(u) < ε

2 and that △juH−j = △jyj
H−j = 1.

The principal difference between Theorems 2.1 and 2.4 is that in Theorem 2.1 we make
k − p + 1 coefficients arbitrarily smaller, and then we lose disconjugancy. On the other hand,
in Theorem 2.4 it is enough to make only one of p coefficients smaller to obtain the same.
The problem in Theorem 2.4 is identifying the right coefficients. In contrast, because condi-
tions of Theorem 2.4 are less restrictive, we assume that we could find a converse of Theorem
2.4 in the future.

We would like to also remind the reader about the following results concerning the self-
adjoint second-order linear equation

an−1yn−1 + bnyn + anyn+1 = 0. (2.6)

In [15] it is shown, that Eq. (2.6) is disconjugate if and only if there are positive solutions u±
n ,

which are recessive at ±∞. Moreover, in [35] (see also [15]) appears the following theorem.

Theorem 2.5. If Eq. (2.6) is disconjugate, then

∞

∑
n

1
(−an)u+

n u+
n+1

= ∞ = ∑
n=−∞

1
(−an)u−

n u−
n+1

.

Additionally, Eq. (2.6) is critical if and only if u+
n = u−

n and Theorem 2.1 and 2.4 are for
Eq. (2.6) the same. They hold as an equivalence for the second-order equations and therefore
we have another way how to define criticality of Eq. (2.6). Other equivalent ways to define
critical equations can be found in [15] or [29].

3 One term even-order linear equations

Following section deals with one term difference equation

(−△)k
(

rn△
kyn−k

)

= 0, rn > 0, n ∈ Z, k ∈ N. (3.1)

Such equation is investigated in [20] and according to [2] Eq. (3.1) is disconjugate if and only
if

∞

∑
n=−∞

rn

(

△kun−k

)2
> 0, for all un ∈ l2

0(Z), un 6= 0.

Of course, this sum can be rewritten in different shapes and forms, as we can see for example
in [8]. Our main result is the following theorem. For simplicity of formulas, we denote in the
proof |0|k−p = 1, because otherwise, we would have to define a new sequence

χn =

{

|n|k−p, n 6= 0,

1, n = 0.
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Theorem 3.1. Assume that for any ε > 0 and H ∈ Z exists nontrivial un ∈ l2
0(Z) such that

∞

∑
n=−∞

rn

(

△kun−k

)2
< ε

(

△p−1uH−(p−1)

)2
. (3.2)

Then Eq. (3.1) is at least p-critical and Lin{1, . . . , n[p−1]} ⊂ ν+ ∩ ν−.

Proof. We first start by a series of substitution. Let us set vn = △p−1un−p+1 and then (3.2)
transforms as

∞

∑
n=−∞

rn

(

△k−p+1vn−(k−p+1)

)2
< ε (vH)

2 .

Because un ∈ l2
0(Z) and because differencing a zero sequence gives us only a zero sequence

then also vn ∈ l2
0(Z) and additionally △k−p+1vn−(k−p+1) ∈ l2

0(Z). Bearing that in mind con-
sider also xn = |n|k−p 1

vH
△k−p+1vn−(k−p+1) to obtain that xn ∈ l2

0(Z) as well and that

∞

∑
n=−∞

rn

n2(k−p)
x2

n < ε. (3.3)

It is clear from the sum (3.3) that limε→0 xn = 0 pointwise, for all n ∈ Z. Through (2.5) we get
via xn = |n|k−p 1

vH
△k−p+1vn−(k−p+1) that

vn =
vH

(k − p)!

n−1

∑
j=−∞

(n − j − 1)[k−p]

|j + (k − p + 1)|k−p xj+(k−p+1).

Hence, for all ε > 0 it has to hold that

1 =
1

(k − p)!

H−1

∑
j=−∞

(H − j − 1)[k−p]

|j + (k − p + 1)|k−p xj+(k−p+1) =
1

(k − p)!

H+k−p

∑
i=−∞

(H + k − p − i)[k−p]

|i|k−p xi. (3.4)

Next, we claim that we can obtain easily that

lim
i→−∞

(H + k − p − i)[k−p]

|i|k−p = 1.

Therefore, for some ω > 0 and some i0 is eventually

1 − ω <
(H + k − p − i)[k−p]

|i|k−p < 1 + ω, for all i ≤ i0. (3.5)

Having disposed of the preliminary steps, we can now assume for contradiction that it
holds ∑n=−∞

n2(k−p)

rn
< ∞. However, this would mean that

lim
n→−∞

ε→0

rn

n2(k−p)
xn 6= 0.

Otherwise, we get for arbitrarily small δ > 0 some ε0, n0 such that rn
n2(k−p) xn < δ, for any n ≤ n0

and ε < ε0. It is a simple fact that because of

n0

∑
n=−∞

xn < δ
n0

∑
n=−∞

n2(k−p)

rn
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is the sum ∑
n0
n=−∞ xn arbitrarily small. However, such situation cannot happen because by

(3.4) and (3.5) we get that

1 =
1

(k − p)!

H+k−p

∑
i=−∞

(H + k − p − i)[k−p]

|i|k−p xi

<
(1 + ω)δ

(k − p)!

min{n0,i0}

∑
i=−∞

i2(k−p)

ri
+

1
(k − p)!

H+k−p

∑
i=min{n0,i0}+1

(H + k − p − i)[k−p]

|i|k−p xi

ε→0
−−→

(1 + ω)δ

(k − p)!

min{n0,i0}

∑
i=−∞

i2(k−p)

ri
< 1, for δ sufficiently small.

Therefore,
lim

n→−∞
ε→0

rn

n2(k−p)
xn 6= 0

and by the definition of the limit we can find a positive constant C for which there is a sequence
εk → 0 with the following property. For any given εk there is a subsequence nl → −∞ such
that

rnl

n2(k−p)
l

|xnl (εk)| > C.

Before we proceed any further, let us consider, that for εk there can also be a subsequence nl̂
for which is

rnl̂

n2(k−p)
l̂

∣
∣xnl̂

(εk)
∣
∣ < δ.

Altogether, we obtain the inequality

1 =
1

(k − p)!

H+k−p

∑
i=−∞

(H + k − p − i)[k−p]

|i|k−p xi

<
(1 + ω)δ

(k − p)! ∑
i∈{nl̂}

i2(k−p)

ri
+

1
(k − p)!

H+k−p

∑
i 6∈{nl̂}

(H + k − p − i)[k−p]

|i|k−p xi

≤
(1 + ω)δ

(k − p)! ∑
i∈{nl̂}

i2(k−p)

ri
+

1 + ω

(k − p)!

i0

∑
i 6∈{nl̂}

|xi|+
1

(k − p)!

H+k−p

∑
i=i0+1

(H + k − p − i)[k−p]

|i|k−p xi.

We continue in this fashion by singling out

i0

∑
i 6∈{nl̂}

|xi| >
(k − p)!
1 + ω

− δ ∑
i∈{nl̂}

i2(k−p)

ri
−

1
1 + ω

H+k−p

∑
i=i0+1

(H + k − p − i)[k−p]

|i|k−p xi

≥
(k − p)!
1 + ω

− δ
H+k−p

∑
i=−∞

i2(k−p)

ri
−

1
1 + ω

H+k−p

∑
i=i0+1

(H + k − p − i)[k−p]

|i|k−p xi.

Because xn converges pointwise to the zero sequence, then the sum

1
1 + ω

H+k−p

∑
i=i0+1

(H + k − p − i)[k−p]

|i|k−p xi
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can be arbitrarily small if we make given εk sufficiently small. Hence, by letting εk → 0 we
can find δ sufficiently small so that

i0

∑
i 6∈{nl̂}

|xi| > δ and
rn

n2(k−p)
|xn(εk)| > δ, for all n 6∈ {nl̂}.

The result is that for a given εk sufficiently small we have through (3.3) that

εk >

i0

∑
j=−∞

rj

j2(k−p)
x2

j >

i0

∑
i 6∈{nl̂}

ri

i2(k−p)
|xi| · |xi| > δ

i0

∑
i 6∈{nl̂}

|xi| > δ2.

This contradicts our assumption as we have εk arbitrarily small and δ is independent from εk.
Hence, it has to be ∑n=−∞

n2(k−p)

rn
= ∞. Divergence of the other sum ∑

∞ n2(k−p)

rn
= ∞ is

obtained analogously. Only this time we have to use that

vn =
vH

(k − p)!

∞

∑
j=n−1

(n − j − 1)[k−p]

|j + (k − p + 1)|
xj+(k−p+1).

The rest of the proof follows from Theorem 2.2.

As an example let us consider the case of k = 2 with rn = 1
(n+1)2 . We know by Theorem 2.2

that such an equation is 2-critical. Furthermore, from Eq. (3.3) we have that for any ε > 0
there is xn ∈ l2

0(Z) such that
∞

∑
n=−∞

1
(n + 1)2 x2

n < ε.

It is verified easily that an example of such xn is the almost zero sequence where only xp = 1,
for p sufficiently large.

One question we can ask is whether Eq. (3.1) can be p-critical even when {1, . . . , n[p−1]} 6⊂

ν+ ∩ ν−. However, from Theorem 3.1 we get that this cannot happen.

Corollary 3.2. If Eq. (3.1) is p-critical, then Lin{1, . . . , n[p−1]} ⊂ ν+ ∩ ν−.

Proof. Let H ∈ Z be arbitrary. Because of Theorem 2.4 there is a set J ⊂ {0, . . . , k − 1}, |J| ≥ p
such that for any j ∈ J is

∞

∑
n=−∞

rn

(

△kun−k

)2
< ε

(

△juH−j

)2
.

However, because of Theorem 3.1 if j ∈ J, then Lin{1, . . . , n[j−1]} ⊂ ν+ ∩ ν−. This can be
satisfied only for J = {1, . . . , p − 1}.

We will formulate the following theorem to complete in a sense the equivalence with
Theorem 3.1.

Theorem 3.3. Suppose Eq. (3.1) is p-critical and Lin{1, . . . , n[p−1]} ⊂ ν+ ∩ ν−, then for any ε > 0
and H ∈ Z exists un ∈ l2

0(Z) such that

∞

∑
n=−∞

rn

(

△kun−k

)2
< ε

(

△p−1uH−p+1

)2
.
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Proof. This is a direct result of Theorem 2.4.

We see one drawback of Theorem 3.1 in that we do not know whether Eq. (3.1) is p-
critical or q-critical for some q ≥ p. We could probably deal with this issue if we formulate
Theorem 3.1 in a more precise way and with some workaround through Theorem 2.4. Note
also that in Eq. (3.3) it holds for s < p that

∞

∑
n=−∞

rn

n2(k−s)
x2

n <

∞

∑
n=−∞

rn

n2(k−p)
x2

n < ε.

3.1 Even-order equations with nonnegative coefficients

The following subsection works with Eq. (2.1) where

r[k]n > 0 and either r[i]n > 0 for all n ∈ Z, or r[i]n ≡ 0, i ∈ {0, . . . , k − 1}. (3.6)

Similar ideas as those in the proof of Theorem 3.1 lead us to the following result.

Theorem 3.4. Assume that Eq. (2.1) satisfies condition (3.6) and that for a given i is r[i]n a positive
sequence. Then Eq. (2.1) is at most i-critical.

Proof. First consider the situation where r[j]n > 0, for all j > i. Then replacing r[j]H by r[j]H − ε > 0
for j ≥ i does not lose disconjugacy. Hence, it means that Eq. (2.1) is at most i-critical by
Theorem 2.4.

Next, for contradiction assume that Eq. (2.1) is at least (i + 1)-critical. Therefore, for some

j > i and any ε > 0 there is H ∈ Z such that r[j]H = 0 and

∞

∑
n=−∞

r[i]n

(

△iun−i

)2
<

∞

∑
n=−∞

k

∑
l=0

r[l]n

(

△lun−l

)2
< ε

(

△juH−j

)2
, un ∈ l2

0(Z).

With convenient substitution vn = △iun−i we can rewrite this inequality as

∞

∑
n=−∞

r[i]n (vn)
2
< ε

(

△j−ivH−j+i

)2
, for some vn ∈ l2

0(Z).

Another substitution (

△j−ivH−j+i

)

xn = vn, (3.7)

yields
∞

∑
n=−∞

r[i]n (xn)
2
< ε, for some xn ∈ l2

0(Z).

It is clear that letting ε → 0 gives that xn → 0 pointwise, for all n ∈ Z. On the other side, by
differentiating (3.7) with respect to n for all ε > 0 we obtain

(

△j−ivH−j+i

)

△j−ixn = △j−ivn.

Note that △j−ivH−j+i is independent on n. And then by putting n = H − j + i we obtain that
△j−ixH−j+i = 1. However, we can rewrite (see for example [30]) the equality for all ε > 0 as

1 = △j−ixH−j+i =
j−i

∑
q=0

(−1)q
(

j − i
q

)

xH−q.
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Taking ε → 0 together with the fact that we have a finite sum yields

1 = lim
ε→0

j−i

∑
q=0

(−1)q
(

j − i
q

)

xH−q =
j−i

∑
q=0

(−1)q
(

j − i
q

)

lim
ε→0

xH−q =
j−i

∑
q=0

(−1)q
(

j − i
q

)

· 0 = 0.

This contradicts our assumption.

As a simple example take the equation

− 2△2yn +△4yn−1 = 0, (3.8)

which can be by Theorem 3.4 at most 1-critical. In fact, results of [29] show that such an
equation is 1-critical. However, [29] works only with equations of fourth-order and we do not
have any results about equation

2△4yn −△6yn−1 = 0. (3.9)

As a result, we can only say that Eq. (3.9) is at most 2-critical and everything else we would
have to work through its recessive solutions.

Corollary 3.5. Assume condition (3.6). If for a given i is r[i]n a positive sequence and Eq. (2.1) is
p-critical, then

∞

∑
n2(i−p)

r[i]n

= ∞ = ∑
−∞

n2(i−p)

r[i]n

.

Proof. First, because of Theorem 2.4 there is j ≥ p such that

∞

∑
n=−∞

r[i]n

(

△iun−i

)2
< ε

(

△j−1uH−j+1)

)2
, for some un ∈ l2

0(Z).

Then in the same way as was done in Theorem 3.1 we see that

∞

∑
n2(i−j)

r[i]n

= ∞ = ∑
−∞

n2(i−j)

r[i]n

.

However, it holds

∞ =
∞

∑
n2(i−j)

r[i]n

≤
∞

∑
n2(i−p)

r[i]n

,

∞ = ∑
−∞

n2(i−j)

r[i]n

≤ ∑
−∞

n2(i−p)

r[i]n

.

For introducing a nonhomogeneity into studied equations, we could use, for example,
results obtained in [33, 34]. Other possible ways forward may be hidden in extending the
concept of criticality for half-linear difference equations. See for example [11, 12] together
with [44]. For symplectic systems, see also [43].
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4 A class of linear equations with interlacing indices

To better understand critical equations of higher-order, we can consider other special cases. In
the next part we utilize the second-order linear equation with interlacing indices

anyn+2 + bnyn + an−2yn−2 = 0, n ∈ Z, (4.1)

where bn > 0, an < 0, for all n ∈ Z. Through the relations

r[2]n = an−2,

r[1]n = −2an−1 − 2an−2,

r[0]n = bn + an + an−2,

we directly link Eq. (2.1) and Eq. (4.1). For equations of general even-order we can find such
formulas in [31]. On top of that, Eq. (4.1) has the functional

F(u) =
∞

∑
n=−∞

anun+2un + bnu2
n + an−2unun−2 =

∞

∑
n=−∞

bnu2
n + 2an−2unun−2, for un ∈ l2

0(Z).

Eq. (4.1) consists of two equations of the second-order, where we separate Eq. (4.1) into two
cases for even and odd n, i.e.

anyn+2 + bnyn + an−2yn−2 = 0, n = 2k + 1, k ∈ Z, (4.2)

anyn+2 + bnyn + an−2yn−2 = 0, n = 2k, k ∈ Z. (4.3)

This property is useful because there are more known results about second-order equations,
and through them, we can extend some known results for higher-order equations. Moreover,
we have corresponding functionals F1(u) for Eq. (4.2) and F2(u) for Eq. (4.3). It holds that

F(u) =
∞

∑
k=−∞

b2k+1u2
2k+1 + 2a2k−1u2k+1u2k−1 +

∞

∑
k=−∞

b2ku2
2k + 2a2k−2u2ku2k−2

= F1(u1) + F2(u2),

where u1
k = u2k+1 and u2

k = u2k. It is clear that if u2k = 0, for all k ∈ Z then F(u) = F1(u1) and
vice versa for F2(u2). By these arguments, Eq. (4.1) is disconjugate if and only if Eq. (4.2) and
(4.3) are both disconjugate. See also [2] and [30].

Theorem 4.1. Assume that Eq. (4.1) is disconjugate then Eq. (4.1) is p-critical, for p ∈ {1, 2} if and
only if p of the equations (4.2), (4.3) are critical. Additionally, disconjugated Eq. (4.1) is subcritical if
and only if neither of the equations (4.2), (4.3) is critical.

Proof. Because of [15] Eq. (4.2) has a positive solutions u±
n , for n = 2k + 1, k ∈ Z and Eq. (4.3)

has a positive solutions v±n , for n = 2k, k ∈ Z. Both u±
n , v±n are recessive at ±∞. Let us define

two solutions of Eq. (4.1) as

α±
n =

{

u±
n , n = 2k + 1,

0, n = 2k,
and β±

n =

{

v±n , n = 2k,

0, n = 2k + 1.
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Through substitution (2.3) we obtain for n = 2k + 1 odd a matrix solution

X±
n =

(
u±

n 0
u±

n −v±n−1

)

,

U±
n =

(

−r[2]n+1u±
n+2 −

(

r[2]n+1 + 2r[2]n + r[1]n

)

u±
n

(

2r[2]n+1 + r[2]n + r[1]n

)

v±n+1 + r[2]n v±n−1

−2r[2]n u±
n r[2]n

(
v±n+1 + v±n−1

)

)

.

For n = 2k even, we get

X±
n =

(
0 v±n

−u±
n−1 v±n

)

,

U±
n =

((

2r[2]n+1 + r[2]n + r[1]n

)

u±
n+1 + r[2]n u±

n−1 −r[2]n+1v±n+2 −
(

r[2]n+1 + 2r[2]n + r[1]n

)

v±n

r[2]n
(
u±

n+1 + u±
n−1

)
−2r[2]n v±n

)

.

Such matrix solution is a conjoined basis because X±
n will always have rank 2 and it holds for

n odd that

(
X±

n
)T Un =







something
(

2r[2]n+1 + 2r[2]n + r[1]n

)

︸ ︷︷ ︸

=0

v±n+1u±
n + 2r[2]n u±

n v±n−1

2r[2]n u±
n v±n−1 something







,

is symmetrical. For n even is the situation the same.

Subsequently, we will show that
(

X+
n

U+
n

)

is a recessive solution at ∞. If n = 2k is even, then

X+
n
(
X+

n+1

)−1 A−1Bn =

(
0 0

0
−u+

n−1
u+

n+1an−1

)

≥ 0.

By properly multiplying matrices we conclude that it holds

(
X+

n+1

)−1 A−1Bn

(

X+T
n

)−1
=

( 1
u+

n+1
0

1
v+n

−1
v+n

)(

0 1
an−1

0 1
an−1

)( 1
u+

n−1

1
v+n

−1
u+

n−1
0

)

=

(
−1

an−1u+
n−1u+

n+1
0

0 0

)

.

Combining this with similar equality means for n odd we obtain that

h

∑
n=M

(
X+

n+1

)−1 A−1Bn

(

X+T
n

)−1
=




∑

h
i=M,i even

−1
ai−1u+

i−1u+
i+1

0

0 ∑
h
j=M,j odd

−1
aj−1v+j−1v+j+1



 .

Hence, because of Theorem 2.5 it holds that

lim
h→∞

(
h

∑
n=M

(
X+

n+1

)−1 A−1Bn

(

X+T
n

)−1
)−1

= 0

and
(

X+
n

U+
n

)

is indeed a recessive solution at ∞. Analogously we assert that
(

X−
n

U−
n

)

is a recessive
solution at −∞. The proof is complete by comparing definitions of criticality for Eq. (2.1) and
both Eq. (4.2) and (4.3).
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We assume that Theorem 4.1 can be extended for any tridiagonal equation of any even-
order in a similar fashion. Additionally, a system of recessive solutions of Eq. (4.1) is defined
in [18] through the relation that, if there are solutions u1

n, . . . , u4
n of Eq. (4.1) where for any

C > 0 there is K such that
uk−1

n < Cuk
n, for all n ≥ K,

then u1
n, u2

n create a system of recessive solutions. However, this does not work with α±
n , β±

n ,
and we work around that through the recessive solutions of Hamiltonian systems.

4.1 Final remarks and examples

Consider the following example where we set in Eq. (4.1) sequences an, bn as

an =

{

−1, n even,

−3, n odd,
bn =

{

2, n even,

6, n odd.

We know by the results of [29] and Theorem 4.1 that such an equation is 2-critical. It is simple
matter to verify that coefficients of (2.1) are r[2]n = an−2, r[1]n ≡ 8 and r[1]n ≡ 0. And therefore we
have a concrete example of 4th order Sturm–Liouville equations which is 2-critical.

Another interesting situation appears provided that Eq. (4.1) is 1-critical. Through The-
orem 4.1 we know that in such a case one of the equations (4.2) or (4.3) has to be critical.
Without loss of generality let us say that it is Eq. (4.2). Because Theorem 2.1 holds for Eq. (2.6)
as an equivalence, thus for any ε > 0 and H odd there is such un ∈ l2

0(Z) that

F(u) = F1(u1) < ε
(

u1
H

)2
= ε (△uH)

2 = ε (△uH−1)
2 .

Hence, we have seen two different behaviours of F(u) in regard to 1-critical equations. We
have seen, that 1-critical Eq. (3.1) satisfies F(u) < εu2

H for any H ∈ Z. On the other hand,
1-critical Eq. (4.1) satisfies that F(u) < εu2

H and F(u) < ε (△uH−1)
2 for all H either odd or

even. We obtain simple example of 1-critical Eq. (4.1) if we take bn ≡ 6 and

an =

{

−1, n even,

−3, n odd.

Such an equation is again 1-critical by the results of [29]. Furthermore, we can compare this
equation to Eq. (3.8) which is also 1-critical.

Possible applications of Eq. (4.1) arise when we consider the second-order self-adjoint
linear differential equation

(
p(x)z′(x)

)′
+ q(x)z(x) = 0, (4.4)

where p(x) > 0. We usually link Eq. (4.4) to the self-adjoint linear difference equation by
approximating

f ′(x) ≈
f (x + h)− f (x)

h
,

for some small h. See for example [30]. However, from numerical analysis we know (see for
example [6]), that we can get better numerical results by approximating

f ′(x) ≈
f (x + h)− f (x − h)

2h
.
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Using this approximation with a bit of work in Eq. (4.4) we obtain approximation

pnyn+2 − (pn + pn−2)yn + pn−2yn−2 + 4qnyn ≈ 0. (4.5)

Furthermore, fixing △syn = yn+1−yn−1
2 yields

△s (pn−1△syn) + qnyn ≈ 0.

This way, we arrive to a second-order self-adjoint linear equation with a different definition of
△. It is a simple matter to link such an equation through (4.5) to Eq. (4.1) by bn = pn + pn−2 −

4qn, an = −pn, for pn + pn−2 > 4qn.
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1 Introduction

Let

Ẋ = F(X), X ∈ IRn, F ∈ C1(IRn, IRn) (1.1)

be a first order differential system. Let us denote by JF(X) the Jacobian matrix of F(X). If O is

a critical point of (1.1) and the eigenvalues of JF(O) have negative real parts, then O is asymp-

totically stable [2]. In particular, all orbits starting close enough to O tend asymptotically to

O.

In [7] the question was raised, whether JF(X) having eigenvalues with negative real parts

for every X ∈ IRn imply O to be globally asymptotically stable, i. e. whether all orbits in IRn

tend asymptotically to O. Such a problem was named Markus–Yamabe Jacobian conjecture and

several results were obtained under various additional hypotheses. A key step was made in

[8], where it was proved that under Markus–Yamabe hypotheses, for planar systems the global

asymptotic stability of O is equivalent to the injectivity of F(X). Such a result led to study

the problem applying methods previously used to study injectivity. The Markus–Yamabe

Jacobian conjecture was solved in the positive in [4–6] for planar systems, and was proved to

have negative answer in higher dimensions [1, 3]. The three approaches proposed in in [4–6]

first prove the injectivity of F(X), then as a consequence get the global asymptotic stability.

Actually, in all such papers injectivity is proved under much weaker hypotheses than that of

negative real parts. In fact, it is sufficient to assume that the Jacobian matrix has nowhere real

positive eigenvalues.

BEmail: marco.sabatini@unitn.it
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Such general results did not lead to similarly general results in the study of the systems

dynamics. This is likely due to the fact that accepting the possibility of eigenvalues with

different real parts (positive, zero or negative) at different points of the plane does not allow

to apply the procedure developed in [8] to establish the equivalence of injectiviy and global

asymptotic stability. On the other hand, eigenvalues with zero real parts are compatible with

asymptotic stability, even if not sufficient to imply it.

In this paper we assume JF(X) to be non-singular and have eigenvalues with non-positive

real parts for all X ∈ IR2. Differently from the classical case, in this case a system does not

necessarily have a globally asymptotically stable critical point. If a critical point exists, we

prove that either such a system has a global center, or there exists a globally asymptotically

stable compact set. We show by an example that such a global attractor is not necessarily a

critical point. If the system is analytic the conclusion can be sharpened, proving that either

there exists a global center, or a globally asymptotically stable critical point. Our results follow

from Olech approach to global attractivity [8] and Fessler theorem about global injectivity [4].

2 Results

We consider maps F ∈ C1(IR2, IR2), F(x, y) = (P(x, y), Q(x, y)). We denote partial derivatives

by subscripts. Let

JF(x, y) =

(

Px(x, y) Py(x, y)

Qx(x, y) Qy(x, y)

)

.

be the Jacobian matrix of F at (x, y). We denote by D(x, y) = det JF(x, y) = Px(x, y)Qy(x, y)−

Py(x, y)Qx(x, y) its determinant and by T(x, y) = Px(x, y) + Qy(x, y) its trace. T(x, y) is the

divergence of the vector field F(x, y).

In what follows we consider the differential system associated to F:

{

ẋ = P(x, y),

ẏ = Q(x, y).
(2.1)

We denote by φ(t, x, y) the local flow defined by (2.1). We say that a critical point O of (2.1) is

a center if it has a punctured neighbourhood filled with non-trivial cycles surrounding O. The

largest connected set NO filled with such cycles is called period annulus of O. If NO = IR2 \ {O},

then O is said to be a global center. We say that a critical point O of (2.1) is asymptotically stable

if it is stable and attractive [2]. In this case we denote by AO its attraction region. If AO = IR2

then O is said to be globally asymptotically stable.

In the proof of Theorem 2.2 we repeatedly use F injectivity. We report here the theorem

applied, proved in [4].

Theorem 2.1. Let F ∈ C1(IR2, IR2) be such that:

1) D(x, y) > 0 for all (x, y) ∈ IR2;

2) there is a compact set K ⊂ IR2 such that JF(x, y) has no real positive eigenvalues for any

(x, y) 6∈ K.

Then F is injective.
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For the sake of simplicity, without loss of generality from now on we assume O = (0, 0).

The hypotheses we consider rely only on derivatives properties, hence they do not change

after a translation. We set

T− = {(x, y) : T(x, y) < 0},

and denote by T− its closure. We denote by µ the 2-dimensional Lebesgue measure.

Theorem 2.2. Assume D(x, y) > 0 and T(x, y) ≤ 0 for all (x, y) ∈ IR2. Let O be a critical point of

(2.1). Then:

i) O is a center if and only if it has a neighbourhood UO such that T(x, y) vanishes identically on

UO; in such a case (2.1) is Hamiltonian on all of NO; if, additionally, F is analytic, then the

system is Hamiltonian and O is a global center.

ii) O is asymptotically stable if and only if it belongs to T−; in such a case O is globally asymptoti-

cally stable.

iii) If T(x, y) does not vanish identically, then there exists a globally asymptotically stable compact

set M.

Proof. i.1) We claim that if O is a center, then T(x, y) vanishes identically on NO. By absurd,

assume T(x∗, y∗) < 0 for some (x∗, y∗) ∈ NO. By continuity there exists a neighbourhood

U∗ of (x∗, y∗) such that T(x, y) < 0 for all (x, y) ∈ U∗. Let γ∗ be the cycle passing through

(x∗, y∗) and ∆∗ the bounded planar region having γ∗ as boundary. ∆∗ is invariant, hence

µ(∆∗) = µ(φ(t, ∆∗)) for all t ∈ IR. By Liouville’s theorem one has

0 =
d

dt
µ(φ(t, ∆

∗)) =
∫

φ(t,∆∗)
T(x, y) dx dy < 0,

because T(x, y) < 0 on φ (t, ∆∗ ∩ U∗), contradiction.

i.2) Vice-versa, assume T(x, y) to vanish identically on a neighbourhood UO of O. Then

the system is Hamiltonian on a simply connected neighbourhood VO ⊂ UO. Let H(x, y) be its

Hamiltonian function. One has

The Hessian matrix of H(x, y) is

JF(x, y) =

(

Hxx Hxy

Hyx Hyy

)

=

(

Qx Qy

−Px − Py

)

. (2.2)

The Hessian determinant is Hxx Hyy − HxyHyx = PxQy − PyQx = D(x, y) > 0, hence H(x, y)

has a minimum at O. As a consequence, O is a center.

i.3) If additionally F is analytic, then also T(x, y) is analytic. If it vanishes in a neigh-

bourhood of O then it vanishes on all of IR2, hence the system is Hamiltonian on all of IR2.

We claim that NO is unbounded. In fact, let us assume by absurd NO is bounded, hence

also ∂NO is bounded. By F injectivity [4], ∂NO contains no critical points, hence by Poincaré–

Bendixson theorem ∂NO is a non-trivial cycle. One can consider the Poincaré map defined on

a section Σ of ∂NO. Such a map is analytic and coincides with the identity map on Σ ∩ NO,

hence it coincides with the identity map on all of Σ. As a consequence every orbit meeting

Σ ∩ ∂NO is a cycle, hence ∂NO is contained in the period annulus, contradicting the fact that

it is the boundary of NO. Moreover, every connected components of ∂NO is unbounded. In

fact, if a connected components of ∂NO was bounded, then by its invariance and by Poincaré–

Bendixson theorem either it would be a cycle or it would contain a critical point. The former

case has already been considered above, the latter one can be excluded by the injectivity of F.
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i.4) In order to prove that O is a global center we use again the injectivity of F. For ε > 0

let Bε be the open disk of radius ε > 0 centered at O. F is a diffeomorphism, hence the anti-

image Dε = F−1 (Bε) is an open neighbourhood of O. By construction and by the injectivity

of F, Dε contains all the points of (x, y) ∈ IR2 such that |F(x, y)| < ε, hence for all (x, y) 6∈ Dε

one has |F(x, y)| ≥ ε. Let us choose ε small enough such that ∂NO ∩ Dε = ∅. Let ∂Nu
O be an

unbounded component of ∂NO. Then working as in [8], since T(x, y) ≤ 0 and |F(x, y)| ≥ ε

outside Dε, one proves that every orbit starting close enough to ∂Nu
O is unbounded too, hence

it is not a cycle, contradicting the fact that ∂Nu
O is in the boundary of NO. As a consequence

∂NO = ∅ and NO = IR2 \ {O}.

ii) Assume O to be asymptotically stable and AO its region of attraction. By hypothesis,

in every neighbourhood of O there are points such that T(x, y) < 0, and by continuity this

occurs in an open subset of AO. If by absurd AO is bounded, then by its invariance, for all t

0 =
d

dt
µ(φ(t, AO)) =

∫

φ(t,AO)
T(x, y) dx dy < 0,

contradiction. Hence AO is unbounded. Assume by absurd there exists a bounded connected

component ∂Ab
O of ∂AO. As above, by Poincaré–Bendixson theorem either it is a cycle or

contains a critical point. If it is a cycle, it cannot surround O, since in such a case AO would be

bounded. Hence it surrounds another critical point, violating F injectivity. The same violation

would occur if ∂Ab
O contained a critical point. Then the argument proceeds as in point i.4),

showing that ∂AO = ∅ and AO = IR2.

Vice-versa, assume O ∈ T−. Then T(x, y) does not vanish identically on any neighbour-

hood UO of O, hence by point i) it is not a center. By the hypotheses on D(0, 0) and T(0, 0), O

is a non degenerate elementary critical point of center-focus type, according to the real part of

its eigenvalues. If such real parts are negative O is a focus, hence asymptotically stable. If such

real parts are zero, one proves, as at the beginning of point i), that O cannot be accumulation

point of cycles, hence it is asymptotically stable. Working as in point i.4) one proves that it is

globally asymptotically stable.

iii) If O ∈ T−, then point ii) applies and one can take M = {O}.

If O 6∈ T−, it has a neighbourhood UO where T(x, y) vanishes identically, hence it is a

center. We claim that NO is bounded. In fact, if NO is unbounded one can proceed as in

point i.4), in order to prove that every orbit starting close enough to ∂Nu
O is unbounded,

contradicting the fact that ∂Nu
O is part of the boundary. The boundedness of NO implies the

boundedness of ∂NO, which is a cycle, by the absence of critical points on ∂Nu
O. Let us consider

a section Σ of ∂NO and its Poincaré map. Such a map is the identity on Σ ∩ NO, and has no

fixed points on Σ \ NO, otherwise there would be a cycle γ containing ∂NO, T(x, y) would

vanish identically inside γ and every orbit inside γ would be a cycle, contradicting the fact

that ∂NO is the boundary of NO. Hence the Poincaré map is strictly monotone, which implies

either attractivity or repulsivity of ∂NO. Repulsivity is not compatible with the sign of the

divergence, hence ∂NO is attractive, and NO is asymptotically stable. Its global attractivity can

be proved as in i.4) and ii), proving that the boundary of its region of attraction is empty.

An example of globally asymptotically stable critical point belonging to T− is the origin in

the following differential system,
{

ẋ = y,

ẏ = −x − y3,
(2.3)
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for which one has

JF(x, y) =

(

0 1

−1 −3y2

)

.

One has D(x, y) = 1, T(x, y) = −3y2 ≤ 0, hence T− is x-axis.

If (2.1) is not analytic, then a center need not be global. We construct a system satisfying the

hypotheses of Theorem 2.2, having a non-global center and a globally asymptotically stable

compact set. Let α ∈ C∞(IR, IR) be such that











α(r) = 0, r ≤ 1,

α(r) > 0, r > 1,

α′(r) > 0, r > 1.

Let us set r =
√

x2 + y2. The vector field defined by the system

{

ẋ = y − x α(r),

ẏ = −x − y α(r).
(2.4)

Setting cr = x, sr = y, the Jacobian matrix of the vector field is

JF(x, y) =

(

−α(r)− xcα′(r) 1 − xsα′(r)

−1 − ycα′(r) − α(r)− ysα′(r)

)

.

Its determinant is 1+ α2(r) + rα(r)α′(r) > 0 and its trace is −2α(r)− 2rα′(r) ≤ 0. For r ≤ 1

the trace is zero, for r > 1 the trace is negative. The system (2.4) is Hamiltonian for r ≤ 1,

with a center at O whose central region is the disk of radius 1 centered at O. Such a disk is a

global attractor, since ṙ < 0 for r > 1.
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1 Introduction

In recent years, there has been considerable interest in mathematical models that are close to

practical situations of the real life. In the context of acoustics, and in order to gain a better

understanding of the nonlinear model, a typical and standard reference is the linearized part

of the Westervelt equation [25] i.e.

δ

c4
0

u′′′(t) + ∆u(t)−
1

c2
0

u′′(t) = 0, t ≥ 0,

where u denotes the sound pressure, c0 is the small signal sound speed, δ is the sound dif-

fusivity and ∆ denotes the Laplacian operator. An extension of the Westervelt equation that

takes into account second sound effects and the associated thermal relaxation in viscous fluids

is the Moore–Gibson–Thomson (MGT) equation

τu′′′(t) + u′′(t)− c2∆u′(t)− b0∆u(t) = 0, t ≥ 0, (1.1)

BCorresponding author. Email: carlos.lizama@usach.cl
*Email: mamuar1@upv.es
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where b0 = δ + τc2, see [16, 27–29, 35]. The MGT equation with memory

u′′′(t) + au′′(t)− b∆u′(t)− c∆u(t) +
∫ t

0
g(t − s)∆u(s)ds = 0, t ≥ 0, (1.2)

has been treated in [13, 20, 32, 33]. When g 6= 0, the memory term introduces further dis-

sipation. From the physical point of view, the most relevant case in connection with (1.2)

is

g(s) = de−ℓs, d, ℓ > 0.

Motivated by the above kernel, the following model

u′′′′(t) + αu′′′(t) + βu′′(t)− γ∆u′′(t)− δ∆u′(t)− ρ∆u(t) = 0, t ≥ 0, (1.3)

has been recently proposed [21, 34]. It can be obtained from (1.2) summing ∂t(1.2) + ℓ(1.2).

It should be pointed out that third and fourth order derivatives in time are observed in var-

ious areas of research. In physics and engineering third and fourth order derivatives should

always be considered when vibration occurs and particularly when this excitation induces

multi-resonant modes of vibration [6]. They should also be considered at all times when a

transition occurs such as: start up and shutdown; take-off and landing; and accelerating and

decelerating [23]. Fourth order derivatives in time appear, for instance, in the study of chaotic

hyperjerk systems [17], in the Taylor series expansion of the Hubble law [37] and in the kine-

matic performance of long-dwell mechanisms of linkage type, which are used in automatic

machines to generate intermittent motions [24].

The model (1.3) was introduced and first studied by Dell’Oro and Pata [21] in their abstract

version

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t) = 0, (1.4)

where A is a strictly positive unbounded linear operator with domain D(A) densely embed-

ded in a separable real Hilbert space H and α, β, γ, δ, ρ ∈ R. In such abstract model, the equa-

tion (1.3) corresponds to the choice H = L2(Ω) and A = −∆ with D(A) = H2(Ω) ∩ H1
0(Ω).

In [21] it was established the well-posedness for (1.4) by means of the existence of the solution

semigroup, providing a detailed description of the spectrum of its infinitesimal generator and

its relation with the growth bound. The stability properties of the related solution semigroup

were then investigated and, in particular, a necessary and sufficient condition for exponential

stability was established, in terms of the values of the stability numbers

χ = γ −
δ

α
, ̟ = β −

ρα

δ
,

where α, β, γ, δ and ρ are strictly positive. Later, Liu et al. [34] discussed the well-posedness of

the solution for (1.4) with an additional memory term like in (1.2) by using the Faedo–Galerkin

method. Then, the authors in [34] proved general decay results for the case χ > 0 and ̟ > 0

based on the perturbed energy method and on some properties of convex functions.

However, we note that all above mentioned references studied (1.4) in the context of Hilbert

spaces, and they do not include the important cases of the Lebesgue spaces Lq(Ω) except,

of course, the case q = 2. Furthermore, the class of operators A studied so far does not

allow the admissibility of more general types of differential operators like the Stokes operator,

the fractional Laplacian operator or the biharmonic ∆2, equipped with suitable boundary

conditions.
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On the other hand, using the method of operator-valued Fourier multipliers due to Arendt

and Bu [4, 5], well-posedness of the solutions for the nonhomogeneous MGT equation (1.2) in

the class of HT (or UMD) spaces, that includes the scale of Lebesgue spaces Lq(Ω) among

others, has been studied by Poblete and Pozo [36], Bu and Cai [7] and Conejero et al. [19].

This method allows the admissibility of very general linear operators A but, depending on the

regularity on the time variable, sometimes needs a more restrictive condition on the associated

operator-valued symbols, namely: R-boundedness [4, 10]. This restrictive condition can be

replaced by uniform boundedness if we assume, for instance, that time-regularity is needed

in the scales of Besov spaces (that includes the class of Hölder continuous functions) [5,11,12]

or the scale of Triebel–Lizorkin spaces [8, 9, 14].

In this paper we will take this last approach as method. We succeed in obtaining a com-

pletely new characterization of strongly well-posedness for the nonhomogeneous equation

(1.4) in the the scales of Lebesgue, Besov and Triebel–Lizorkin spaces. For that purpose, we

take advantage of a recent result proved in [19, Theorem 1.1] in order to simplify complex

computations on the operator-valued symbols associated to the corresponding nonhomoge-

neous model (1.4). In the case of the scale of Lebesgue spaces, our result reads as follows:

Assume that A is a closed linear operator with (not necessarily dense) domain D(A) defined

on a UMD space X. The following assertions are equivalent:

(i) The equation

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t)= f (t), t∈T := [0, 2π], (1.5)

is strongly Lp-well-posed, i.e. for each f ∈ Lp(T, X), there exists a unique solution

u ∈ W
4,p
per (T, X) ∩ W

2,p
per (T, [D(A)]).

(ii) Z ⊂ ρs(A) and the set {k4[k4 − αik3 − βk2 −γk2 A+ δikA+ ρA]−1 : k ∈ Z} is R-bounded.

Moreover, if (i) (or (ii)) holds, then the following maximal regularity estimate

‖u‖Lp(T,X) + ‖u′′‖
W

2,p
per (T,X)

+ ‖u′′′‖
W

3,p
per (T,X)

+ ‖u′′′′‖
W

4,p
per (T,X)

+ ‖Au‖Lp(T,[D(A)]) + ‖Au′‖
W

1,p
per (T,[D(A)])

+ ‖Au′′‖
W

2,p
per (T,[D(A)])

≤ C‖ f ‖Lp(T,X),

holds. The last estimate has many important applications. It is the central tool in the study of

the following problems: existence and uniqueness of solutions of nonautonomous evolution

equations; existence and uniqueness of solutions of quasilinear and nonlinear partial differ-

ential equations; stability theory for evolution equations; maximal regularity of solutions of

elliptic differential equations; existence and uniqueness of solutions of Volterra integral equa-

tions; and uniqueness of mild solutions of the NavierâĂŞStokes equations. In these applica-

tions, a maximal regularity estimate is frequently used to reduce, via a fixed-point argument,

a nonautonomous (resp. nonlinear) problem to an autonomous (resp. linear) problem. In

some cases, maximal regularity is needed to apply an implicit function theorem. According

to the literature, there has been a substantial amount of work, as one can see, for example, in

Amann [2], Denk, Hieber and Prüss [22], Clément, Londen and Simonett [18], the survey by

Arendt [3], and the bibliography therein.

Our new characterization of strongly Lp-well-posedness shows to be flexible in certain

combination of strictly positive parameters α, β, γ, δ and ρ, and that is amenable enough to



4 C. Lizama and M. Murillo

allow fractional powers of operators. In fact, as a consequence of our results we deduce that

if A is an R-sectorial operator of angle π/2 on Lq(Ω), Ω ⊂ RN , 1 < q < ∞ and

ρ + βγ < αδ

then for any given f ∈ Lp(T, Lq(Ω)), 1 < p < ∞, the initial value problem (1.5) admits a

unique solution u ∈ W
4,p
per (T, Lq(Ω)) ∩ W

2,p
per (T, [D(A)]). As a consequence, we obtain optimal

results, that we illustrate with two examples: A = ∆ the Laplacian, and A = −(−∆)s the

fractional Laplacian of order 1/2 < s < 1.

2 Preliminaries

We start this section introducing the notion of Lp-Fourier multiplier. We will denote the space

of bounded linear operators from X into Y endowed with the uniform operator topology as

B(X, Y). If X = Y we simply abbreviate B(X).

Definition 2.1. Let X and Y be Banach spaces and 1 ≤ p < ∞. We say that (Mk)k∈Z ⊂ B(X, Y)

is an Lp-Fourier multiplier if, for each f ∈ Lp(T, X), there exists u ∈ Lp(T, Y) such that

û(k) = Mk f̂ (k) for all k ∈ Z, where

f̂ (k) :=
1

2π

∫ 2π

0
e−ikt f (t)dt

denotes the k-th Fourier coefficient of f .

Our characterization will be provided in terms of the R-boundedness of certain sets of

operators. For that purpose, we need to recall the notion of R-boundedness.

Definition 2.2. Let X and Y be Banach spaces. A set T ⊂ B(X, Y) is called R-bounded if there

is a constant c ≥ 0 such that

‖(T1x1, . . . , Tnxn)‖R ≤ c‖(x1, . . . , xn)‖R, (2.1)

for all T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X, n ∈ N where

‖(x1, . . . , xn)‖R :=
1

2n ∑
ǫj∈{−1,1}n

∥∥∥
n

∑
j=1

ǫjxj

∥∥∥.

The least c such that (2.1) is satisfied is called the R-bound of T and is denoted R(T ).

The property of R-boundedness is preserved under sum or product by a constant. More-

over, if X and Y are Hilbert spaces, R- boundedness is equivalent to uniform boundedness.

More information about these properties are summarized in [22].

The class of Banach spaces X such that the Hilbert transform defined by

(H f )(t) = lim
ǫ,R→∞

1

π

∫

ǫ≤|s|≤R

f (t − s)

s
ds, t ∈ R,

is bounded in Lp(R; X) for some p ∈ (1, ∞) is denoted by HT . The basic reference for the

class HT is the survey article by Burkholder [15], where two other characterizations for the

class HT are also given, a probabilistic one, and a geometrical one. To describe the latter,
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recall that a Banach space X is termed ξ-convex, if there is a function ξ : X × X → R which is

convex in each of its variables and such that ξ(0, 0) > 0 and

ξ(x, y) ≤ |x + y| for all x, y ∈ X with |x| = |y| = 1.

A Banach space X belongs to the class HT if and only if X is ξ-convex if and only if X has the

unconditional martingale difference property (UMD) [15]. The UMD spaces include Hilbert

spaces, Sobolev spaces Hs
p(Ω), 1 < p < ∞, Lebesgue spaces Lp(Ω, µ), ℓp, 1 < p < ∞, vector-

valued Lebesgue spaces Lp(Ω, µ; X) where X is a UMD space, Hardy spaces, Lorentz and

Orlicz spaces, any von Neumann algebra, and the Schatten–von Neumann classes Cp(H); 1 <

p < 1; of operators on Hilbert spaces. On the other hand, the space of continuous functions

C(K) does not have the UMD property.

We need to recall the notion of M-bounded sequence (MR-bounded sequence) of opera-

tors.

Definition 2.3 ([31]). We say that a sequence {Tk}k∈Z ⊂ B(X, Y) is M-bounded of order n

(n ∈ N ∪ {0}), if

sup
0≤l≤n

sup
k∈Z

‖kl∆lTk‖ < ∞, (2.2)

where

∆0Tk := Tk, ∆Tk := ∆1Tk := Tk+1 − Tk

and for n ∈ N with n ≥ 2 we have

∆nTk := ∆(∆n−1Tk).

Remark 2.4.

(i) Given {Mk}k∈Z and {Nk}k∈Z be such that they are both M-bounded of order n, then

the sum is also M-bounded of the same order. Moreover, if {Mk}k∈Z and {Nk}k∈Z are

sequences in B(Y, Z) and B(X, Y) that are M-bounded of order n, then {Mk Nk}k∈Z ⊂

B(X, Z) is also M-bounded of the same order.

(ii) If we replace condition (2.2) in Definition 2.3 by the condition that the set

{kl∆l Mk : k ∈ Z }, (2.3)

is R-bounded for each 0 ≤ l ≤ n, then we say that {Mk}k∈Z ⊂ B(X, Y) is MR-bounded

of order n.

We also recall the definition of n-regular scalar sequences which was first considered in

[31].

Definition 2.5. A sequence {ck}k∈Z ⊂ C is called n-regular if the set {kp ∆pck
ck

}k∈Z is bounded

for all p = 1, . . . , n.

We finally recall the following result recently shown in [19] which provides an important

criterion for MR-boundedness in the context of maximal regularity for abstract evolution

equations.
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Theorem 2.6. Let T : D(T) ⊂ X → X be a closed linear operator defined in a Banach space X. For

each k ∈ Z let Hk : X → D(T) be a sequence of bounded and linear operators such that 0 ∈ ρ(Hk) for

all k ∈ Z. Suppose that (sk)k∈Z ⊂ C is a 1-regular sequence and denote

Mk := skTHk, (2.4)

and

Lk := (H−1
k − H−1

k+1)Hk. (2.5)

If {Mk : k ∈ Z} and {kLk : k ∈ Z} are R-bounded (uniformly bounded) sets, then {Mk : k ∈ Z} is

MR-bounded (M-bounded) of order 1. If, in addition, (sk)k∈Z is 2-regular and the set {k2∆Lk : k ∈ Z}

is R-bounded (uniformly bounded), then {Mk : k ∈ Z} is MR-bounded (M-bounded) of order 2.

3 Well-posedness in Lp-spaces

Let 1 ≤ p < ∞ and X be a Banach space. In this section, we want to give optimal conditions

that can describe the well-posedness of the problem

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t) = f (t), t ∈ T := [0, 2π] (3.1)

in 2π-periodic vector valued Lp-spaces. In other words, we want to obtain a complete char-

acterization on the existence, uniqueness and well-posedness of the problem only in terms of

the data of the problem. Here A is a closed linear operator with domain D(A).

We now introduce the notion of the following set denoted as ρs(A) as follows:

ρs(A) :=
{

s ∈ R : s4 − αis3 − βs2 − γs2 A + δisA + ρA : [D(A)] → X

is invertible and [s4 − αis3 − βs2 − γs2 A + δisA + ρA]−1 ∈ B(X)
}

, (3.2)

where [D(A)] denotes a Banach space under the norm ‖x‖[D(A)] := ‖x‖+ ‖Ax‖.

For any n ∈ N and 1 ≤ p < ∞ we define the vector-valued function spaces [7, Definition 2.4]:

W
n,p
per (T, X) := {u ∈ Lp(T, X) : there exists v ∈ Lp(T, X), v̂(k) = (ik)nû(k) for all k ∈ Z}.

Remark 3.1. It is important to point out that the following properties hold

(i) Given n, m ∈ N, if n ≤ m then W
m,p
per (T, X) ⊂ W

n,p
per (T, X).

(ii) If u ∈ W
n,p
per (T, X) then for all 0 ≤ k ≤ n − 1 it follows that u(k)(0) = u(k)(2π).

Note that [4]:

W
n,p
per (T, X) = {u ∈ Lp(T, X) : u is n-times differentiable a.e.,

u(n) ∈ Lp(T, X) and u(k)(0) = u(k)(2π), 0 ≤ k ≤ n − 1}.

We refer to [4, Lemma 2.1] and [7] for more information about these spaces. In order to

consider maximal regularity for our problem we need to define the following space:

Sp(A) := W
4,p
per (T, X) ∩ W

2,p
per (T, [D(A)]).

The space Sp(A) is a Banach space with the norm

‖u‖Sp(A) :=‖Au‖p + ‖Au′‖p + ‖Au′′‖p + ‖u‖p + ‖u′′‖p + ‖u′′′‖p + ‖u′′′′‖p.

We now introduce the following definition.
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Definition 3.2. Let 1 ≤ p < ∞ and f ∈ Lp(T, X) be given. We say that u ∈ Sp(A) is a strong

Lp-solution of equation (3.1) if it satisfies (3.1) for almost all t ∈ T. We say that equation (3.1)

is strongly Lp-well-posed if for each f ∈ Lp(T, X), there exists a unique strong Lp-solution of

equation (3.1).

As a very important consequence, we obtain the following: There exists a constant C > 0

such that for each f ∈ Lp(T, X), we have

‖u‖Sp(A) ≤ C‖ f ‖Lp .

Before we provide our main result, we need the following two theorems from [4] that

establish the equivalence between R-boundedness and the fact of being an Lp-multiplier. They

will be needed in order to characterize Lp-well-posedness for equation (3.1).

Theorem 3.3. Let X, Y be UMD spaces. If a sequence {Mk}k∈Z ⊂ B(X, Y) is MR-bounded of

order 1, then (Mk)k∈Z defines an Lp-Fourier multiplier whenever 1 < p < ∞.

Theorem 3.4. Let X, Y be Banach spaces, 1 ≤ p < ∞ and let (Mk)k∈Z ⊂ B(X, Y) be an Lp-Fourier

multiplier. Then the set {Mk : k ∈ Z} is R-bounded.

Let A be a closed linear operator such that Z ⊂ ρs(A). We denote

Nk := [ak − αbk − βck − γck A + δikA + ρA]−1, ak = k4, bk = ik3, ck = k2, k ∈ Z, (3.3)

where α, β, γ, δ, ρ ∈ R are fixed constants.

The following proposition will be an important tool for proving the main result of this

section.

Proposition 3.5. Let A be a closed linear operator defined on a UMD space X and α, β, γ, δ, ρ ∈ R.

If Z ⊂ ρs(A) and {k4Nk : k ∈ Z} and {k2ANk : k ∈ Z} are R-bounded sets, then (k4Nk)k∈Z,

(ik3Nk)k∈Z, (k2Nk)k∈Z, (k2ANk)k∈Z, (kANk)k∈Z and (ANk)k∈Z are Lp-Fourier multipliers.

Proof. We first point out that the R-boundedness of {k4Nk : k ∈ Z} immediately implies the

R-boundedness of the sets {ik3Nk : k ∈ Z} and {k2Nk : k ∈ Z}. Similarly, if by hypothesis

{k2ANk : k ∈ Z} is R-bounded then the sets {kANk : k ∈ Z} and {ANk : k ∈ Z} are so.

Let Mk := k4Nk. In order to show that Mk is an Lp-multiplier we only need to show that

{k∆Mk : k ∈ Z} is R-bounded. We apply Theorem 2.6 with sk = k4, which is 1-regular,

Hk = Nk and T = I. By hypothesis {Mk : k ∈ Z} is R-bounded, then we only need to show

that {kLk : k ∈ Z} is R-bounded. Indeed, we have

kLk = k(Nk
−1 − N−1

k+1)Nk

= k[−∆ak + α∆bk + β∆ck + γ∆ck A − δiA]Nk

= −
k∆ak

ak
Mk + α

k∆bk

bk
(bkNk) + β

k∆ck

ck
(ckNk) + γ

k∆ck

ck
(ck ANk)− δikANk.

By hypothesis then it follows that {kLk : k ∈ Z} is R-bounded. The R-boundedness of

{k∆(ik3Nk)}k∈Z and {k∆(k2Nk)}k∈Z follows similarly applying Theorem 2.6 with sk = ik3,

T = I and Hk = Nk in the first case, sk = k2, T = I and Hk = Nk in the second case.

As a consequence of Theorem 3.3 they are Lp-Fourier multipliers. On the other hand, the

R-boundedness of {k∆(k2ANk)}k∈Z, {k∆(kANk)}k∈Z and {k∆(ANk)}k∈Z also follows from

Theorem 2.6 with sk = k2, T = A and Hk = Nk in the first case, sk = k, T = A and Hk = Nk in

the second case and sk = 1, T = A and Hk = Nk in the last case.
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We now show the main result of this section that provides a computable criterion to char-

acterize the well-posedness of equation (3.1).

Theorem 3.6. Let 1 < p < ∞ and α, β, γ, δ, ρ ∈ R be given with (γ, δ, ρ) 6= (0, 0, 0). Assume that

A is a closed linear operator defined on a UMD space X. The following assertions are equivalent:

(i) Equation (3.1) is strongly Lp-well-posed;

(ii) Z ⊂ ρs(A) and the set {k4Nk : k ∈ Z} is R-bounded.

Proof. We first prove (i) =⇒ (ii). Given k ∈ Z and y ∈ X we define the function f ∈ Lp(T, X)

as f (t) = eikty. It is not difficult to check that f̂ (k) = y and 0 otherwise. By hypothesis,

equation (3.1) is Lp-well-posed and then there exists a unique u ∈ Sp(A) which solves equation

(3.1). If we take

Fourier transform in both sides of (3.1) we get:

[ak − αbk − βck − γck A + δikA + ρA]û(k) = y, (3.4)

and

[an − αbn − βcn − γcn A + δinA + ρA]û(n) = 0, n 6= k. (3.5)

This shows that [ak − αbk − βck − γck A + δikA + ρA] is surjective. On the other hand, let

x ∈ D(A) be such that

[ak − αbk − βck − γck A + δikA + ρA]x = 0.

We define u ∈ Sp(A) as u(t) = eiktx for t ∈ T. It is not difficult to see that u is a solution

for equation (3.1) when f = 0. By uniqueness, then it necessarily follows that x = 0 and then

[ak − αbk − βck −γck A+ δikA+ ρA] is bijective from D(A) onto X. Moreover, [ak − αbk − βck −

γck A + δikA + ρA]−1 ∈ B(X). Indeed, given y ∈ X and k ∈ Z let f (t) = eikty and let u be

the corresponding solution of (3.1) for f . Then û(k) = [ak − αbk − βck − γck A + δikA + ρA]−1y

and 0 otherwise.

This implies u(t) = −e−ikt[ak − αbk − βck − γck A + δikA + ρA]−1y by uniqueness. As a

consequence, there exists a positive constant C > 0 independent of y and k such that

‖u‖Sp(A) ≤ C‖ f ‖Lp ,

which implies

‖[ak − αbk − βck − γck A + δikA + ρA]−1‖ ≤ C

for all k ∈ Z. This proves the claim. We have shown that Z ⊂ ρs(A). Let Mk = k4Nk with

k ∈ Z, where Nk is defined in (3.3). To finish this implication it only remains to show that

(Mk)k∈Z is Lp-Fourier multiplier. Given f ∈ Lp(T, X), there exists u ∈ Sp(A) which is a

solution of equation (3.1) by assumption. Taking Fourier transforms on both sides of (3.1), we

get that û(k) ∈ D(A) and

[ak − αbk − βck − γck A + δikA + ρA]û(k) = f̂ (k), k ∈ Z.

Due to the invertibility of [ak − αbk − βck − γck A + δikA + ρA] we can assert that û(k) =

Nk f̂ (k), k ∈ Z. As u ∈ Sp(A) we obtain that

[̂u′′′′](k) = k4û(k) = k4Nk f̂ (k) = Mk f̂ (k).
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Finally, since u′′′′ ∈ Lp(T, X) we get that (Mk)k∈Z is Lp-Fourier multipliers and, by Theo-

rem 3.4, we conclude that the set {Mk : k ∈ Z} is R-bounded, proving (ii).

Let now show (ii) =⇒ (i). We assume that Z ⊂ ρs(A) and the set {k4Nk : k ∈ Z} is

R-bounded. A simple calculation shows the following identity

k2ANk =
k2

γk2 − ρ − iδk

[
1 −

β

k2
−

iα

k

]
k4Nk −

k2

γk2 − ρ − iδk
, k ∈ Z \ {0}, (3.6)

proving that the set {k2ANk : k ∈ Z} is R-bounded, too. Let Mk = k4Nk and Sk = k2ANk. It

follows from Proposition 3.5 that (Mk)k∈Z, (ik3Nk)k∈Z and (k2Nk)k∈Z are Lp-Fourier multipli-

ers.

Note that the R-boundedness of the set {k4Nk}k∈Z implies that {kNk}k∈Z is R-bounded

and then the set {k(Nk+1 − Nk)} is also R-bounded. It follows from Theorem 3.3 that {Nk}k∈Z

is an Lp-Fourier multiplier. In particular, Nk ∈ B(X, [D(A)]).

Then, for all f ∈ Lp(T, X) there exist w, u1, u2, u3 ∈ Lp(T, [D(A)]) satisfying:

ŵ(k) = Nk f̂ (k), û1(k) = Mk f̂ (k), û2(k) = −ik3Nk f̂ (k), û3(k) = −k2Nk f̂ (k).

Consequently, û1(k) = k4ŵ(k) when k ∈ Z. This implies that w ∈ W
4,p
per (T; [D(A)]) [4, Lemma

2.1] and w′′′′(t) = u1(t) a.e. [4, Lemma 3.1]. In particular, w′′′′ ∈ Lp(T, [D(A)]). Similarly, we

obtain:

û2(k) = (ik)3ŵ(k) = ŵ′′′(k), û3(k) = (ik)2ŵ(k) = ŵ′′(k)

and then w′′′(t) = u2(t) and w′′(t) = u3(t). In particular, w′′, w′′′ ∈ Lp(T, [D(A)]).

By hypothesis and Proposition 3.5, it follows that {Sk}k∈Z, {kANk}k∈Z and {ANk}k∈Z are

Lp-Fourier multipliers, and then we can ensure that there exist u4, u5, u6 ∈ Lp(T, X) such that

û4(k) = −k2 ANk f̂ (k) = Aŵ′′(k) = Âw′′(k),

and

û5(k) = ikANk f̂ (k) = Aŵ′(k) = Âw′(k),

as well as

û6(k) = ANk f̂ (k) = Aŵ(k) = Âw(k),

where we have used that A is closed. It follows from [4, Lemma 3.1] that w(t), w′(t), w′′(t) ∈

D(A) and Aw′′(t) = u4(t), Aw′(t) = u5(t) and Aw′(t) = u6(t). In addition, Aw, Aw′, Aw′′ ∈

Lp(T, X). As a consequence, w ∈ Sp(A). Moreover, the following identity holds:

IX = k4Nk − αik3Nk − βk2Nk − γk2 ANk + δikANk + ρANk, (3.7)

and then we obtain

f̂ (k) = [k4Nk − αik3Nk − βk2Nk − γk2ANk + δikANk + ρANk] f̂ (k)

= ŵ′′′′(k) + αŵ′′′(k) + βŵ′(k) + γÂw′′(k) + δÂw′(k) + ρÂw(k).

This implies that

w′′′′(t) + αw′′′(t) + βw′′(t) + γAw′′(t) + δAw′(t) + ρAw(t) = f (t),

by the uniqueness theorem (see [4, p. 314]). It only remains to prove that the solution is

unique. Indeed, for a given w ∈ Sp(A) that satisfies equation (3.1) for f = 0, if we take

Fourier transform we get that [ak − αbk − βck − γck A + δikA + ρA]ŵ(k) = 0 for all k ∈ Z.

Hence w = 0 since Z ⊂ ρs(A). Thus, equation (3.1) is strongly Lp-well-posed.
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We point out that Lp-well-posedness does not depend on the parameter p, that is, if equa-

tion (3.1) is strongly Lp-well-posed for some 1 < p < ∞, then it is strongly Lp-well-posed for

all 1 < p < ∞.

4 Well-posedness in Besov and Triebel–Lizorkin spaces

In this section, we now analyze the well-posedness of equation (3.1) in periodic Besov spaces

Bs
p,q(T, X) and periodic Triebel–Lizorkin spaces Fs

p,q(T, X). The definition and properties of

vector-valued periodic Besov spaces can be found in [5].

Given 1 ≤ p, q ≤ ∞ and s > 0, we define the maximal regularity space that describes the

strongly Bs
p,q-well-posedness of the equation (3.1) by

Sp,q,s(A) := Bs+4
p,q (T, X) ∩ Bs+2

p,q (T, [D(A)]).

The vectorial space Sp,q,s(A) is a Banach space with the norm

‖u‖Sp,q,s(A) :=‖u′′‖Bs
p,q
+ ‖u′′′‖Bs

p,q
+ ‖u′′′′‖Bs

p,q
+ ‖Au‖Bs

p,q
+ ‖Au′‖Bs

p,q
+ ‖Au′′‖Bs

p,q
.

Analogously to the case Lp we can define the strongly Bs
p,q-well-posedness for equation

(3.1) as follows.

Definition 4.1. Let 1 ≤ p, q < ∞, s > 0 and f ∈ Bs
p,q(T, X) be given. We say that u ∈ Sp,q,s(A)

is a strong Bp,q-solution of (3.1) if it satisfies (3.1) for all t ∈ T. We say that (3.1) is strongly

Bs
p,q-well-posed if for each f ∈ Bs

p,q(T, X), there exists a unique strong Bs
p,q-solution of (3.1).

Note that if (3.1) is strongly Bs
p,q-well-posed, by the Closed Graph Theorem, there exists a

constant C > 0 such that for each f ∈ Bs
p,q(T, X), we have

‖u‖Sp,q,s(A) ≤ C‖ f ‖Bs
p,q

.

We now introduce the following notion that corresponds to Bs
p,q-Fourier multiplier (see [4]).

Definition 4.2. Let X, Y be Banach spaces, 1 ≤ p, q < ∞, s ∈ R and (Mk)k∈Z ⊂ B(X, Y). We say

that (Mk)k∈Z is a Bs
p,q-Fourier multiplier if, for each f ∈ Bs

p,q(T, X) there exists u ∈ Bs
p,q(T, Y)

such that

û(k) = Mk f̂ (k)

for all k ∈ Z.

The following theorem contained in [5] states that M-boundedness of order 2 is sufficient

for an operator valued symbol to be a Bs
p,q- Fourier multiplier.

Theorem 4.3. Let X, Y be Banach spaces. If (Mk)k∈Z ⊂ B(X, Y) is M-bounded of order 2, then for

1 ≤ p, q ≤ ∞, s ∈ R the set (Mk)k∈Z is a Bs
p,q-Fourier multiplier.

The following result provides necessary conditions for certain sets which will be needed

to characterize strongly Bs
p,q-well-posedness.

Proposition 4.4. Let A be a closed linear operator defined on a UMD space X and α, β, γ, δ, ρ ∈

R. If Z ⊂ ρs(A) and the sets {k4Nk : k ∈ Z} and {k2ANk : k ∈ Z} are uniformly bounded,

then (k4Nk)k∈Z, (ik3Nk)k∈Z, (k2Nk)k∈Z, (k2 ANk)k∈Z, (kANk)k∈Z and (ANk)k∈Z are Bs
p,q-Fourier

multipliers.
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Proof. Let Mk = k4Nk. In order to show that Mk is a Bs
p,q-Fourier multiplier and according to

Theorem 4.3, we need to prove that supk∈Z
(‖Mk‖+ ‖k∆Mk‖) < ∞ and supk∈Z

‖k2∆2Mk‖ < ∞.

The first inequality holds as a consequence of the hypothesis and Proposition 3.5. Therefore,

we only need to show the second one which will be done applying Theorem 2.6 to sk = k4,

which is clearly a 2-regular sequence, Hk = Nk and T = I. By hypothesis, supk∈Z
‖Mk‖ < ∞.

Moreover, by Proposition 3.5 it follows that supk∈Z
‖kLk‖ < ∞, then it only remains to show

that supk∈Z
‖k2∆Lk‖ < ∞. Indeed, we have

Lk = (Nk
−1 − N−1

k+1)Nk = [−∆ak + α∆bk + β∆ck + γ∆ck A − δiA]Nk.

Then,

k2∆Lk = k2[(ak+1 − ak+2)Nk+1 − (ak − ak+1)Nk]

+ αk2[(bk+2 − bk+1)Nk+1 − (bk+1 − bk)Nk]

+ βk2[(ck+2 − ck+1)Nk+1 − (ck+1 − ck)Nk]

+ γk2[(ck+2 − ck+1)ANk+1 − (ck+1 − ck)ANk]

− δi(ANk+1 − ANk), (4.1)

where ak = k4 and bk = ik3 and ck = k2. We only need to prove that each term is bounded.

First of all, a simple calculus shows that:

(ak+1 − ak+2)Nk+1 − (ak − ak+1)Nk = −(∆2ak)Nk+1 +
∆ak

ak

[
(akNk − ak+1Nk+1) + Nk+1(∆ak)

]
.

Therefore

k2[(ak+1 − ak+2)Nk+1 − (ak − ak+1)Nk] =

− k2 (∆
2ak)

ak

ak

ak+1
(ak+1Nk+1) + k

∆ak

ak

[
k(akNk − ak+1Nk+1) + ak+1Nk+1

ak

ak+1

{
k(∆ak)

ak

}2
]

.

Since the sequence ak is 2-regular, Mk = akNk and k∆Mk are bounded, the above identity

shows that

sup
k∈Z

‖k2[(ak+1 − ak+2)Nk+1 − (ak − ak+1)Nk]‖ < ∞.

Analogously and following the same procedure as above, using the fact that bk is also 2-

regular, bkNk and k∆(bkNk) are bounded, we obtain that

sup
k∈Z

‖k2[(bk+2 − bk+1)Nk+1 − (bk+1 − bk)Nk]‖ < ∞.

Following the same idea we get that

sup
k∈Z

‖k2[(ck+2 − ck+1)Nk+1 − (ck+1 − ck)Nk]‖ < ∞

and

sup
k∈Z

‖k2[(ck+2 − ck+1)ANk+1 − (ck+1 − ck)ANk]‖ < ∞

since ck is 2-regular and Sk = ckNk and k∆Sk are bounded in the first case, meanwhile Rk =

ck ANk and k∆Rk are bounded for proving the second inequality. Finally, the fact that k∆Rk is
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bounded immediately implies the boundedness for the last summand −δi(ANk+1 − ANk) in

(4.1). Consequently, (k4Nk)k∈Z is a Bs
p,q-Fourier multiplier.

We now consider Mk = ik3Nk. In order to prove that it is a Bs
p,q-Fourier multiplier it

only remains to show again that supk∈Z
‖k2∆2Mk‖ < ∞, which can be do using the sec-

ond part of Theorem 2.6 with sk = ik3, Hk = Nk and T = I. By hypothesis and Proposi-

tion 3.5 it follows that supk∈Z
‖Mk‖ < ∞ and supk∈Z

‖kLk‖ < ∞, respectively. The inequality

supk∈Z
‖k2∆Lk‖ < ∞ has already been shown since Lk is exactly the same that in the above

computation. Therefore, (ik3Nk)k∈Z is a Bs
p,q-Fourier multiplier. Similarly, we obtain that

(k2Nk)k∈Z is a Bs
p,q-Fourier multiplier.

Let now Mk = k2ANk. From Proposition 3.5 it follows that supk∈Z
(‖Mk‖+ ‖k∆Mk‖) < ∞.

To prove that supk∈Z
‖k2∆2Mk‖ < ∞ we apply Theorem 2.6 with sk = k2, Hk = Nk and T = A.

It remains to show that supk∈Z
‖k2∆Lk‖ < ∞, where Lk is the same that in the above calculus.

Therefore, (k2 ANk)k∈Z is a Bs
p,q-Fourier multiplier. The same procedure can be applied to

Mk = kANk with sk = k, Hk = Nk and T = A and Mk = ANk with sk = 1, Hk = Nk and

T = A. The conclusion then holds and consequently (kANk)k∈Z and (ANk)k∈Z are Bs
p,q-

Fourier multipliers.

We now enunciate the main result of this section. The proof follows essentially the same

steps than the one of Theorem 3.6. However, we include here the essential changes of the

proof that differ from Theorem 3.6 in order to make it clear to the reader.

Theorem 4.5. Let 1 ≤ p, q ≤ ∞, s > 0 and α, β, γ, δ, ρ ∈ R be given with (γ, δ, ρ) 6= (0, 0, 0).

Assume A is a closed linear operator defined on a Banach space X. The following assertions are

equivalent:

(i) The equation

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t) = f (t), t ∈ [0, 2π]

is strongly Bs
p,q-well-posed;

(ii) Z ⊂ ρs(A) and supk∈Z
‖k4Nk‖ < ∞.

Proof. (i) =⇒ (ii) follows the same lines of Theorem 3.6 and therefore is omitted. We prove

(ii) =⇒ (i). We assume that Z ⊂ ρs(A) and the set {k4Nk : k ∈ Z} is uniformly bounded.

The identity (3.6) shows that the set {k2ANk : k ∈ Z} is uniformly bounded.

Analogously, the identities kNk =
1
k3 (k

4Nk) and k2Nk =
1
k2 (k

4Nk) show that the sets {kNk :

k ∈ Z} and {k2Nk : k ∈ Z} are also uniformly bounded. Therefore the sets {k(Nk+1 − Nk)}k∈Z

and {k2(Nk+2 − 2Nk+1 + Nk)}k∈Z are uniformly bounded and hence, by Theorem 4.3, the set

{Nk}k∈Z is a Bs
p,q-Fourier multiplier. Moreover, by hypothesis and Proposition 4.4 it follows

that (k4Nk)k∈Z, (ik3Nk)k∈Z, (k2Nk)k∈Z, (k2ANk)k∈Z, (kANk)k∈Z and (ANk)k∈Z are Bs
p,q-Fourier

multipliers.

Let f ∈ Bs
p,q(T, X) be given. Since (k4Nk)k∈Z, (ik3Nk)k∈Z, (k2Nk)k∈Z are Bs

p,q multipliers,

there exist w, u1, u2, u3 ∈ Bs
p,q(T, [D(A)]) satisfying:

ŵ(k) = Nk f̂ (k), û1(k) = k4Nk f̂ (k), û2(k) = −ik3Nk f̂ (k), û3(k) = −k2Nk f̂ (k). (4.2)

Consequently, û1(k) = k4ŵ(k) when k ∈ Z. This implies that w ∈ Bs+4
p,q (T; [D(A)]) and

w′′′′(t) = u1(t). In particular, w′′′′ ∈ Bs
p,q(T, [D(A)]). Similarly, we obtain:

û2(k) = (ik)3ŵ(k) = ŵ′′′(k), û3(k) = (ik)2ŵ(k) = ŵ′′(k),
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and then w′′′(t) = u2(t) and w′′(t) = u3(t). In particular, w′′, w′′′ ∈ Bs
p,q(T, [D(A)]).

By hypothesis and Proposition 4.4 the sets {k2 ANk}k∈Z, {kANk}k∈Z and {ANk}k∈Z are

Bs
p,q-Fourier multipliers, and then we have that there exist u4, u5, u6 ∈ Bs

p,q(T, X) such that

û4(k) = −k2 ANk f̂ (k) = Aŵ′′(k) = Âw′′(k),

û5(k) = ikANk f̂ (k) = Aŵ′(k) = Âw′(k), (4.3)

û6(k) = ANk f̂ (k) = Aŵ(k) = Âw(k).

where we have used that A is closed. It follows from [4, Lemma 3.1] that w(t), w′(t), w′′(t) ∈

D(A) and Aw′′(t) = u4(t), Aw′(t) = u5(t) and Aw′(t) = u6(t) a.e. In addition, Aw, Aw′,

Aw′′ ∈ Bs
p,q(T, X). Replacing (4.2) - (4.3) in the following identity:

f̂ (k) = k4Nk f̂ (k)− αik3Nk f̂ (k)− βk2Nk f̂ (k)− γk2 ANk f̂ (k) + δikANk f̂ (k) + ρANk f̂ (k),

we obtain by the uniqueness of the Fourier coefficients that w solves equation (3.1). The

uniqueness follows the same lines as in Theorem 3.6.

We point out that the second assertion in Theorem 4.5 does not depend on the parameters

p, q and s, and then strongly Bs
p,q-well-posedness for equation (3.1) holds for some 1 ≤ p, q ≤

∞, s > 0 if and only if it is strongly Bs
p,q-well-posed for all 1 ≤ p, q ≤ ∞, s > 0. To finish this

section, we consider well-posedness in periodic Triebel–Lizorkin spaces Fs
p,q with 1 ≤ p < ∞,

1 ≤ q ≤ ∞, s ∈ R. We do not include the formal definition of these spaces but we refer the

reader to [14] for the details and properties of these spaces.

Using a similar argument as the one in the proof of Theorem 4.5, we obtain the following

characterization of the strongly Fs
p,q-well-posedness of equation (3.1). In order to prove this

result we use the operator-valued Fourier multiplier theorem proved in [14]. We omit the

details.

Theorem 4.6. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0 and α, β, γ, δ, ρ ∈ R be given with (γ, δ, ρ) 6=

(0, 0, 0). Assume that A is a closed linear operator defined on a Banach space X. The following asser-

tions are equivalent:

(i) The equation

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t) = f (t), t ∈ [0, 2π]

is strongly Fs
p,q-well-posed;

(ii) Z ⊂ ρs(A) and supk∈Z
‖k4Nk‖ < ∞.

As it was pointed out for Bs
p,q-well-posedness, the problem (3.1) is strongly Fs

p,q-well-posed

for all 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0 if it is so for some 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0.

5 Sufficient conditions: Lp–Lq-well-posedness

Based on the previous abstract results, we give in this section a practical criteria to widely

solve the following Cauchy problem in Lp–Lq spaces with periodic boundary conditions:
{

∂ttttu(x, t) + α∂tttu(x, t) + β∂ttu(x, t) + γAx∂ttu(x, t) + δAx∂tu(x, t) + ρAxu(x, t) = f (x, t),

u(x, 0) = u(x, 2π), ∂tu(x, 0) = ∂tu(x, 2π), ∂ttu(x, 0) = ∂ttu(x, 2π), ∂tttu(x, 0) = ∂tttu(x, 2π),
(5.1)
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where x ∈ Ω ⊂ RN and t ∈ (0, 2π). We begin with some preliminaries on R-sectorial oper-

ators. Given any θ ∈ (0, π), we denote Σθ := {z ∈ C : | arg(z)| < θ, z 6= 0}. Recall that a

closed operator A : D(A) ⊂ X → X with dense domain D(A) is said to be R-sectorial of angle

θ if the following conditions are satisfied:

(i) σ(A) ⊆ C \ Σθ ;

(ii) The set {z(z − A)−1 : z ∈ Σθ} is R-bounded in B(X).

The permanence properties for R-sectorial operators are similar to those for sectorial op-

erators. For instance, they behave well under perturbations. Sufficient conditions for R-

sectoriality are studied in the monograph [22, Chapter 4]. As a consequence of our main

theorem, we obtain the following remarkable result.

Theorem 5.1. Assume that X is a UMD space, 1 < p < ∞, α, β, γ, δ, ρ ∈ (0, ∞) and let A be an

R-sectorial operator on X of angle π/2. If ρ + βγ < αδ then equation (5.1) is strongly Lp-well-posed.

Proof. Define dk =
(k4−βk2)−iαk3

(γk2−ρ)−iδk
and we note that

ℜ(dk) =
k2[γk4 − k2(ρ + βγ − αδ) + ρβ]

(γk2 − ρ)2 + δ2k2
> 0,

since ρ + βγ < αδ. Therefore dk ∈ Σπ/2. The R-sectoriality of angle π/2 of the operator A

ensures the invertibility of dk I − A and the set {dk(dk − A)−1}k∈Z is R-bounded. Finally, we

note the following identity

k4Nk =
k4

(k4 − βk2)− iαk3
dk(dk − A)−1, k ∈ Z,

which proves that the set {k4Nk}k∈Z is R-bounded. By Theorem 3.6 we conclude that the

problem (3.1) is strongly Lp-well-posed.

Example 5.2. Let 1 < p < ∞ and α, β, γ, δ, ρ be strictly positive real numbers satisfying ρ +

βγ < αδ. We consider the following equation in a bounded smooth domain Ω ⊂ RN :





[∂ttttu + α∂tttu + β∂ttu + γ∆∂ttu + δ∆∂tu + ρ∆u](x, t) = f (x, t), for (x, t) ∈ Ω × (0, 2π);

u(x, t) = 0, for (x, t) ∈ ∂Ω × (0, 2π);

u(x, 0) = u(x, 2π), ∂tu(x, 0) = ∂tu(x, 2π), ∂ttu(x, 0) = ∂ttu(x, 2π), ∂tttu(x, 0) = ∂tttu(x, 2π),
(5.2)

where ∆ denotes the Laplacian operator. By [26, Appendix] we have that the Lq realization

∆q in X = Lq(Ω) of ∆ is an R-sectorial operator in X with arbitrary angle θ ∈ (0, π), and

that ∆q coincides with ∆ in the domain D(∆q) of ∆q. Therefore, we can denote (∆q, D(∆q)) by

(∆, Dq(∆)). Thus, Theorem 5.1 implies that for any given f ∈ Lp(T, Lq(Ω)) the solution u of

the problem (5.2) written in abstract form as:




[∂ttttu + α∂tttu + β∂ttu + γ∆∂ttu + δ∆∂tu + ρ∆u](t) = f (t), for t ∈ (0, 2π);

u(x, 0) = u(x, 2π), ∂tu(x, 0) = ∂tu(x, 2π), ∂ttu(x, 0) = ∂ttu(x, 2π), ∂tttu(x, 0) = ∂tttu(x, 2π),
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exists, is unique and belongs to the space W
4,p
per (T, Lq(Ω)) ∩ W

2,p
per (T, [D(∆q)]). Moreover, for

any 1 < p, q < ∞ the estimate

‖u‖Lp(T,Lq(Ω)) + ‖u′′‖
W

2,p
per (T,Lq(Ω))

+ ‖u′′′‖
W

3,p
per (T,Lq(Ω))

+ ‖u′′′′‖
W

4,p
per (T,Lq(Ω))

+ ‖Au‖Lp(T,[D(∆q)]) + ‖Au′‖
W

1,p
per (T,[D(∆q)])

+ ‖Au′′‖
W

2,p
per (T,[D(∆q)])

≤ C‖ f ‖Lp(T,Lq(Ω))

holds.

We finish with the following example that considers the fractional Laplacian operator.

Example 5.3. Let 1 < p < ∞, 1
2 < s < 1 and α, β, γ, δ, ρ be strictly positive real numbers sat-

isfying ρ + βγ < αδ. Consider the following nonlocal equation in a bounded smooth domain

Ω ⊂ RN :




[∂ttttu + α∂tttu + β∂ttu

−γ(−∆)s∂ttu − δ(−∆)s∂tu − ρ(−∆)su](x, t) = f (x, t), for (x, t) ∈ RN × (0, 2π);

u(x, t) = 0, for (x, t) ∈ ∂Ω × (0, 2π);

u(x, 0) = u(x, 2π), ∂tu(x, 0) = ∂tu(x, 2π), ∂ttu(x, 0) = ∂ttu(x, 2π), ∂tttu(x, 0) = ∂tttu(x, 2π),

(5.3)

where the fractional Laplacian −(−∆)s is defined by

(−∆)sv := F−1
ξ ( |ξ| (Fv)(ξ) ), v ∈ H1,q(Ω).

For X = Lq(Ω) and Dq((−∆)s) := H1,q(Ω), 1 < q < ∞, the fractional operator −(−∆)s :

H1,q(Ω) → Lq(Ω) is also R-sectorial of angle θ for an arbitrary θ ∈ (0, sπ), see [1, Proposi-

tion 2.2]. Hence, by Theorem 5.1, for any f ∈ Lp(T, Lq(Ω)) there exists a unique solution

u ∈ W
4,p
per (T, Lq(Ω)) ∩ W

2,p
per (T, H1,q(Ω)) of the problem (5.3) and satisfies the following maxi-

mal regularity estimate

‖u‖Lp(T,Lq(Ω)) + ‖u′′‖
W

2,p
per (T,Lq(Ω))

+ ‖u′′′‖
W

3,p
per (T,Lq(Ω))

+ ‖u′′′′‖
W

4,p
per (T,Lq(Ω))

+ ‖Au‖Lp(T,H1,q(Ω)) + ‖Au′‖
W

1,p
per (T,H1,q(Ω))

+ ‖Au′′‖
W

2,p
per (T,H1,q(Ω))

≤ C‖ f ‖Lp(T,Lq(Ω)).

Analogous examples hold for the cases of the scales of Besov and Triebel–Lizorkin spaces,

replacing R-sectorial operator by sectorial operator and R-boundedness by uniform bounded-

ness. For instance, from Theorem 4.5 we obtain the following result.

Theorem 5.4. Let X be a Banach space, 1 < p < ∞, α, β, γ, δ, ρ ∈ (0, ∞) and let A be a sectorial

operator on X of angle π/2. If ρ + βγ < αδ then equation (5.1) is strongly Bs
p,q-well-posed.
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Abstract. We study the fourth order Kirchhoff equation ∆2u − (a + b
∫

Ω
|∇u|2)γ∆u =

f (u) in Ω with −∆u > 0 and u > 0 in Ω, and ∆u = u = 0 on ∂Ω, where f (t) =
α 1

tθ + λtq + µt + g(t) for t ≥ 0, g has subcritical growth, α > 0, λ > 0, µ ≥ 0, 0 < θ < 1,
0 < q < 1, γ ≥ 0, a > 0, b ≥ 0. We use the Galerkin projection method to show the
existence of solution under some boundedness restriction on α, λ, µ. In some cases we
study the behavior of the norm of the solution u as λ → 0 and as λ → ∞. Similar issues
are addressed for the equation (a + b

∫

Ω
|∇u|2)γ∆2u − ̺∆u = f (u), ̺ ≥ 0.

Keywords: existence of solution, Kirchhoff equation, singular nonlinearity, approxima-
tion scheme.
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1 Introduction

Let Ω ⊂ R
N , N ≥ 1, be a bounded domain with smooth boundary ∂Ω. We solve the following

problems.



















∆2u −

(

a + b
∫

Ω
|∇u|2

)γ

∆u = f (u) in Ω

−∆u > 0, u > 0 in Ω

∆u = u = 0 on ∂Ω

(1.1)

and


















(

a + b
∫

Ω
|∇u|2

)γ

∆2u − ̺∆u = f (u) in Ω

−∆u > 0, u > 0 in Ω

∆u = u = 0 on ∂Ω.

(1.2)
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Equation (1.1) is related to the study of Woinowsky–Krieger [31] in the analysis of buckling
and vibrations dynamics of nonlinear beam models. The equation is given by

utt + τ uxxxx −

(

a + b
∫ L

0
|ux|

2
)

uxx = f (x, u),

where τ, a, b are physical quantities detailed in the sequel: τ = EI/ρ, a = H/ρ and b =

EA/2ρL, where L is the length of the beam in the initial position, E is the modulus of elasticity
in tension, I is the cross-sectional moment of inertia, ρ is the mass density, H is the tension in
the initial position, A is the cross-sectional area. Here u(t, x) is the deflection of the point x

of the beam at time t subjected to a force f . More on wave equations in this field can be seen
in [6, 10, 14, 21, 32]. In this respect, McKenna–Walter [23, 24] studied oscillations of a hanged
bridge as it is conveyed by the equation

utt + uxxxx + κu+ = f (x, u),

where κ > 0 belongs to a specific range.
Equation (1.1) is also associated to Berger’s [5] plate model equation

utt + ∆2u +

(

a + b
∫

Ω
|∇u|2

)

∆u = f (x, u, ut)

that describes the vertical wave vibration of a thin plate. It takes into account horizontal forces
and material resistance represented by a and b. Vertical loads f forces the membrane up and
down, and may depend on the displacement u and speed ut. Consult also Chueshov–Lasiecka
[9] to appreciate the context of the continuum mechanics where such model is inserted.

Equation (1.2) is a fourth order generalization of the Kirchhoff’s [16] wave equation

utt −

(

a + b
∫

Ω
|∇u|2

)

∆u = f (x, u),

that describes changes in length u when a string is transversely fingered with force f , and
where a and b stand for horizontal tensions magnitudes. This can be viewed as an extension
of D’Alembert’s wave equation for free vibration strings that gives a more accurate description
of vibrations of an elastic string, see for instance [4]. Results dealing with variational methods
applied to the stationary equation can be viewed in [11, 18].

Recent works related to (1.1) and (1.2) dealing with variational methods are [2, 7, 8, 12, 17,
22, 25, 29, 33]. The list of papers in this subject is vast, we describe a fill of them below.

A similar equation to (1.1) was studied in [2], namely










∆2u − λ0

(

a + b
∫

Ω
|∇u|2

)

∆u = f (x, u) in Ω

∆u = u = 0 on ∂Ω,
(1.3)

where λ0 > 0 is a parameter. Among other suitable hypotheses, f is o(|u|) at zero, has
subcritical growth and satisfies the so-called Ambrosetti–Rabinowitz condition. By means of
the mountain pass theorem, it was shown that there exists a λ̄ > 0 such that the problem has
a nontrivial solution for 0 < λ0 < λ̄.

The Schrödinger–Kirchhoff equation

∆2u −

(

a + b
∫

RN
|∇u|2

)

∆u + V(x)u = f (x, u) + h(x) in R
N (1.4)
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was studied in [33]. When h ≥ 0, by the mountain pass theorem, there is a nontrivial solution.
For that matter the potential V satisfies some suitable hypotheses and f is o(|u|) at zero, has
subcritical growth and satisfies the so-called Ambrosetti–Rabinowitz condition. In case h = 0
and f has some symmetric properties, there are infinitely many high–energy solutions which
are obtained by the symmetric mountain pass theorem. Moreover, there are infinitely many
radial solutions.

The equation with critical growth

∆2u − M

(

∫

RN
|∇u|2

)

∆u + u = λ0 f (u) + |u|
8

N−4 u in R
N (1.5)

was studied in [7] for N ≥ 5, where M : [0, ∞) → [0, ∞) and f : R → R are continuous
functions with M(t) ≥ m0 > 0, f is o(|u|) at zero, has subcritical growth, f (t)/t is increasing
and satisfies the so-called Ambrosetti–Rabinowitz condition. Using minimax critical point
theorems, the authors show that there is a λ̄ > 0 such that for λ0 > λ̄ there is a nontrivial
solution.

The critical problem with indefinite potentials was considered in [12], namely










∆2u −

(

a + b
∫

Ω
|∇u|2

)

∆u = λ0a0(x)|u|q0−2u + b0(x)|u|p0−2u in Ω

∆u = u = 0 on ∂Ω.
(1.6)

Under suitable assumptions on the potentials a0 and b0, there is λ̄ > 0 such that if 1 <

q0 < 2 < p0 ≤ 2N/(N − 4), N ≥ 5, then there exists a nontrivial nonnegative solution for
0 < λ0 < λ̄. A second solution exists for λ0 small if 1 < q0 < 2, 4 < p0 ≤ 2N/(N − 4) and
N = 5, 6, 7. The first solution is obtained as the limit of a minimizing sequence by making use
of Ekeland’s variational principle and the second solution is found by means of the mountain
pass theorem.

Using a similar strategy of the Galerkin method compared to the present paper, the fol-
lowing singular fourth order Kirchhoff equation with Hardy potential was studied in [3].
There Ω is a bounded domain with 0 ∈ Ω, h and k are positive continuous functions,

M : [0, ∞) → [0, ∞) a continuous function such that M(t) ≥ m0 > 0 and µ̄ = (N(N−4))2

16 is
the best constant of the Hardy inequality. The problem











∆2u − λ0M

(

∫

Ω
|∇u|2

)

∆u = µ0
1

|x|4
u +

h(x)

uθ
+ k(x)uq in Ω

∆u = u = 0 on ∂Ω

(1.7)

has a positive solution for λ0 > µ0/µ̄m0 and 0 < µ0 < µ̄.
In contrast to some of the above papers, we prescribe mild assumptions on f , since we do

not need the so-called Ambrosetti–Rabinowitz condition nor specific behavior of f near zero.
Instead, we adopt an approximation scheme inspired in [27, 28].

Define

f (t) = α
1
tθ

+ λtq + µt + g(t) for t ≥ 0 (1.8)

where
α > 0, λ > 0, µ ≥ 0, 0 < θ < 1, 0 < q < 1. (1.9)

The constants in the differential operators respect the following rules:

γ ≥ 0, a > 0, b ≥ 0, ̺ ≥ 0. (1.10)
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The function

g : R → R is continuous (1.11)

and satisfies

|g(t)| ≤ c1|t|
p for t ∈ R and 1 ≤ p < 2N/(N − 4) (or 1 ≤ p < ∞ if N = 1, 2, 3, 4), (1.12)

where c1 is a constant.
By a solution of (1.1) and (1.2) we mean a function u ∈ H2(Ω) ∩ H1

0(Ω) such that

∫

Ω
∆u∆φ +

(

a + b
∫

Ω
|∇u|2

)γ

∇u∇φ − f (u)φ = 0, ∀φ ∈ H2(Ω) ∩ H1
0(Ω)

or
(

a + b
∫

Ω
|∇u|2

)γ

∆u∆φ + ̺∇u∇φ − f (u)φ = 0, ∀φ ∈ H2(Ω) ∩ H1
0(Ω).

The underlying idea in the proof of the existence of solution, is to consider the function
fε(t) = α 1

(t+ε)θ + λtq + µt with 0 < ε < 1, which is an approximation of f (t) = α 1
tθ + λtq + µt

that avoids the singular term at zero. We use the the spectral Galerkin projection method
and transform the original equation into a family of finite dimensional nonlinear equations.
In each of them we use Brouwer’s theorem to get a solution. Due to the structure of the
equations, we are able to obtain uniform estimates and to pass to the limit in the projected
finite dimensional equations. We thus obtain a solution uε. And some extra reasoning is used
to show that uε converges to a nontrivial solution of the original equation as ε → 0. Since
we use the classical strong maximum principle, some arguments do not work if the boundary
condition is u = ∂u

∂ν = 0. A more general boundary condition related to the Kirchhoff–Love
model for the vertical vibration of a thin elastic plate is presented in [13, pp. 5–7], motivated
to earlier works [15, 20], see also [26].

We state the main results.

Theorem 1.1. Assume (1.8)–(1.10) and g ≡ 0. There is µ∗
> 0 such that for 0 ≤ µ < µ∗ and for

every α, λ > 0, equation (1.1) has a solution.

Theorem 1.2. Assume (1.8)–(1.10) and g ≡ 0. There is µ∗
> 0 such that for 0 ≤ µ < µ∗ and for

every α, λ > 0, equation (1.2) has a solution.

Theorem 1.3. Assume (1.8)–(1.12). Then there exist α∗, λ∗, µ∗
> 0 such that for every 0 < α < α∗,

0 < λ < λ∗ and 0 ≤ µ < µ∗ equation (1.1) has a solution.

Theorem 1.4. Assume (1.8)–(1.12). Then there exist α∗, λ∗, µ∗
> 0 such that for every 0 < α < α∗,

0 < λ < λ∗ and 0 ≤ µ < µ∗ equation (1.2) has a solution.

Theorem 1.5. Let f be such that α = µ = 0 and g(t) = tp for t ≥ 0 with 1 < p < 2N/(N − 4).
And let uλ > 0 be the solution obtained in each Theorem 1.3 or 1.4. Then ‖uλ‖H2∩H1

0
→ 0 as λ → 0.

Theorem 1.6. Let f (t) = λ
( 1

tθ + tq + t
)

+ tp for t ≥ 0 with 1 < p < 2N/(N − 4). And let uλ > 0
be the solution obtained in each Theorem 1.3 or 1.4. If uλ exists for every λ large, then ‖uλ‖H2∩H1

0
→ ∞

as λ → ∞.
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2 Preliminaries

The space H2(Ω) ∩ H1
0(Ω) is Hilbert with

inner product (u, v) =
∫

Ω
∆u∆v and norm ‖u‖H2∩H1

0
=

(

∫

Ω
|∆u|2

)1/2

.

The embedding H2(Ω)∩ H1
0(Ω) →֒ Lσ(Ω) is continuous if 1 ≤ σ ≤ 2N/(N − 4) and compact

if 1 ≤ σ < 2N/(N − 4). The embedding is continuous if N = 1, 2, 3, 4 and 1 ≤ σ < ∞. Also,
the embedding H2(Ω)∩ H1

0(Ω) →֒ H1
0(Ω) is continuous and compact, see [1,12,30]. Moreover

‖u‖2
H1

0
≤ ‖u‖L2‖u‖H2∩H1

0
, since

∫

Ω
|∇u|2 =

∫

Ω
u(−∆u). The Sobolev embedding constant Cσ

related to ‖u‖Lσ ≤ Cσ‖u‖H2∩H1
0

will appear in some computations. The spectrum of −∆ in

H1
0(Ω) is given by the numbers λi, i ∈ N, where 0 < λ1 < λ2 ≤ λ3 ≤ λ4.... The corresponding

eigenfunctions are wi ∈ H1
0(Ω), i ∈ N. The first eigenfunction corresponding to λ1 is w1 > 0.

For every i ∈ N one has
{

−∆wi = λiwi in Ω

wi = 0 on ∂Ω.
(2.1)

By elliptic regularity wi ∈ C∞(Ω), i ∈ N. With respect to the biharmonic operator, for every
i ∈ N,

{

∆2wi = λ2
i wi in Ω

∆wi = wi = 0 on ∂Ω.
(2.2)

In other words, the spectrum of ∆2 in H2(Ω) ∩ H1
0(Ω) is given by the numbers λ2

i , i ∈ N,
where 0 < λ2

1 < λ2
2 ≤ λ2

3 ≤ λ2
4 . . . And the corresponding eigenfunctions are also wi ∈

H2(Ω) ∩ H1
0(Ω), i ∈ N. The following orthogonality relations take place

∫

Ω
∇wi∇wj =

∫

Ω
wi(−∆wj) = λj

∫

Ω
wiwj = 0 if i 6= j (2.3)

and
∫

Ω
∆wi∆wj =

∫

Ω
wi(∆

2wj) = λ2
j

∫

Ω
wiwj = 0 if i 6= j. (2.4)

The set of eigenfunctions can be normalized either as ‖wi‖H1
0
= 1 or ‖wi‖H2∩H1

0
= 1, i ∈ N.

Hence B = {w1, w2, . . . , wm, . . . } is an orthonormal basis of H1
0(Ω) and of H2(Ω) ∩ H1

0(Ω),
according the inner product of each space.

An aside result that will be useful in the proofs is Brouwer’s Theorem [19] that says: Let
F : R

m → R
m be a continuous function such that (F(η), η) ≥ 0 for every η ∈ R

m with |η| = r

for some r > 0. Then, there exists z0 ∈ R
m with |z0| ≤ r such that F(z0) = 0.

3 Proof of the theorems

We begin proving Theorem 1.1.

Proof. Define fε(t) = α 1
(t+ε)θ + λtq + µt with 0 < ε < 1 and let B = {w1, w2, . . . , wm, . . . } be an

orthonormal basis of H2(Ω) ∩ H1
0(Ω), see (2.3) and (2.4). (Here wi, i = 1, 2, 3, . . . need not to

be eigenfuncitons, but we choose a such basis for convenience). Define

Wm = [w1, w2, . . . , wm],



6 M. Montenegro

to be the space generated by {w1, w2, . . . , wm}. Define the function F : R
m → R

m such that

F(η) = (F1(η), F2(η), . . . , Fm(η))

where η = (η1, η2, . . . , ηm) ∈ R
m,

Fj(η) =
∫

Ω
∆u∆wj +

(

a + b
∫

Ω
|∇u|2

)γ ∫

Ω
∇u∇wj −

∫

Ω
fε(|u|)wj, j = 1, 2, . . . , m

and

u =
m

∑
i=1

ηiwi ∈ Wm.

Therefore

(F(η), η) =
∫

Ω
|∆u|2 +

(

a + b
∫

Ω
|∇u|2

)γ ∫

Ω
|∇u|2 −

∫

Ω
fε(|u|)u

≥ ‖u‖2
H2∩H1

0
− α|Ω|θC1−θ

1 ‖u‖1−θ
H2∩H1

0
− λC

q+1
q+1‖u‖

q+1
H2∩H1

0
− µC2

2‖u‖2
H2∩H1

0
. (3.1)

The function F is continuous because each Fj is continuous by Sobolev embedding and domi-
nated convergence theorem. Here C1, Cq+1 and C2 are Sobolev embedding constants appear-
ing in ‖u‖Lσ ≤ Cσ‖u‖H2∩H1

0
, which are independent on m and ε. Hence for µ < C−2

2 , there is
R > 0 such that

(F(η), η) > 0 for ‖u‖H2∩H1
0
= |η| = R. (3.2)

Brouwer’s Theorem asserts that there exists um,ε ∈ H2 ∩ H1
0 with ‖um,ε‖H2∩H1

0
≤ R satisfying

∫

Ω
∆um,ε∆wj +

(

a + b
∫

Ω
|∇um,ε|

2
)γ ∫

Ω
∇um,ε∇wj −

∫

Ω
fε(|um,ε|)wj = 0, j = 1, 2, . . . , m.

(3.3)
Hence

∫

Ω
∆um,ε∆ζm +

(

a + b
∫

Ω
|∇um,ε|

2
)γ ∫

Ω
∇um,ε∇ζm −

∫

Ω
fε(|um,ε|)ζm = 0, ∀ζm ∈ Wm.

Let k ∈ N, then for every m ≥ k we obtain

∫

Ω
∆um,ε∆ζk +

(

a + b
∫

Ω
|∇um,ε|

2
)γ ∫

Ω
∇um,ε∇ζk −

∫

Ω
fε(|um,ε|)ζk = 0, ∀ζk ∈ Wk. (3.4)

Since ‖um,ε‖H2∩H1
0
≤ R and H2 ∩ H1

0 is reflexive, there exists uε ∈ H2 ∩ H1
0 such that

(i1) um,ε ⇀ uε weakly in H2 ∩ H1
0 as m → ∞

(i2) um,ε → uε in H1
0 as m → ∞

(i3) um,ε → uε in Lσ for 1 ≤ σ < 2N/(N − 4) (or 1 ≤ σ < ∞ if N = 1, 2, 3, 4) as m → ∞

Letting m → ∞, in the expression (3.4) we get

∫

Ω
∆uε∆ζk +

(

a + b
∫

Ω
|∇uε|

2
)γ ∫

Ω
∇uε∇ζk −

∫

Ω
fε(|uε|)ζk = 0, ∀ζk ∈ Wk.
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Since the space of all subsapces [Wm]k∈N is dense in H2 ∩ H1
0 , then

∫

Ω
∆uε∆ζ +

(

a + b
∫

Ω
|∇uε|

2
)γ ∫

Ω
∇uε∇ζ −

∫

Ω
fε(|uε|)ζ = 0, ∀ζ ∈ H2 ∩ H1

0 . (3.5)

Hence uε is a nontrivial weak solution of










∆2uε −

(

a + b
∫

Ω
|∇uε|

2
)γ

∆uε = fε(|uε|) in Ω

∆uε = uε = 0 on ∂Ω.

Notice that −∆uε satisfy the equation with fε(|uε|) > 0, hence the maximum principle applies.
Consequently, −∆uε > 0 and moreover uε > 0 in Ω. Thus uε satisfies



















∆2uε −

(

a + b
∫

Ω
|∇uε|

2
)γ

∆uε = fε(uε) in Ω

−∆uε > 0, uε > 0 in Ω

∆uε = uε = 0 on ∂Ω.

(3.6)

As we shall see uε ≥ δ0w1 in Ω for some δ0 > 0, see (2.1) and (2.2). For that matter denote
−∆uε = v and rewrite the equation (3.6) in the form

− ∆v +

(

a + b
∫

Ω
|∇uε|

2
)γ

v = fε(uε) ≥ ϑ, (3.7)

where ϑ > 0 is a constant which does not depend on ε such that

fε(t) = α
1

(t + ε)θ
+ λtq + µt ≥ α

1
(t + 1)θ

+ λtq ≥ ϑ for t ≥ 0.

Let V = δw1 with δ > 0 and notice that ‖uε‖H2∩H1
0
≤ lim infm→∞ ‖um,ε‖H2∩H1

0
≤ R, then

−∆V +

(

a + b
∫

Ω
|∇uε|

2
)γ

V = δw1

[

λ1 +

(

a + b
∫

Ω
|∇uε|

2
)γ]

≤ δw1

[

λ1 +

(

a + b
1

λ1
‖uε‖

2
H2∩H1

0

)γ]

≤ δw1

[

λ1 +

(

a + b
R2

λ1

)γ
]

≤ ϑ,

where the last inequality is valid by taking δ small enough, and it is independent on ε. Owing
to (3.7) and remembering that v = V = 0 on ∂Ω, we obtain −∆uε = v ≥ δw1 in Ω. By the
maximum principle there is δ0 > 0 such that uε ≥ δ0w1 in Ω.

Since ‖uε‖H2∩H1
0
≤ R. By Sobolev embedding and continuing to denote a subsequence

ε = εn → 0, then

(j1) uε ⇀ u0 weakly in H2 ∩ H1
0 as ε → 0,

(j2) uε → u0 in H1
0 as ε → 0,

(j3) uε → u0 in Lσ for 1 ≤ σ < 2N/(N − 4) (or 1 ≤ σ < ∞ if N = 1, 2, 3, 4) as ε → 0,

(j4) uε → u0 a.e. in Ω as ε → 0,
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(j5) |uε| ≤ h(x) a.e. in Ω, for some h in Lσ, 1 ≤ σ < 2N/(N − 4) (or 1 ≤ σ < ∞ if
N = 1, 2, 3, 4).

We conclude that u0 ≥ δ0w1 in Ω. We rewrite (3.5) below

∫

Ω
∆uε∆ζ +

(

a + b
∫

Ω
|∇uε|

2
)γ ∫

Ω
∇uε∇ζ

−
∫

Ω

(

α
1

(uε + ε)θ
+ λu

q
ε + µuε

)

ζ = 0, ∀ζ ∈ H2 ∩ H1
0 . (3.8)

Using (j1)–(j5) and letting ε → 0 in (3.8) we arrive at

∫

Ω
∆u0∆ζ +

(

a + b
∫

Ω
|∇u0|

2
)γ ∫

Ω
∇u0∇ζ

−
∫

Ω

(

α
1
uθ

0

ζ + λu
q
0 + µu0

)

ζ = 0, ∀ζ ∈ H2 ∩ H1
0 . (3.9)

The first two integrals of (3.9) are consequences of (j1) and (j2). The integral involving u
q
0

follows from (j4), (j5) and dominated convergence theorem. The integral with µ follows by
(j3). It is useful to detail that

∫

Ω

1
(uε + ε)θ

ζ →
∫

Ω

1
uθ

0

ζ, ∀ζ ∈ H2 ∩ H1
0 . (3.10)

First notice that
∫

Ω
1
uθ

0
≤ 1

δθ
0

∫

Ω
1

wθ
1
< ∞. By dominated convergence theorem we can write

(3.10) with ζ ∈ C∞
0 (Ω), and by density we can take ζ ∈ H1

0 , and finally (3.10) holds for every
ζ ∈ H2 ∩ H1

0 .

We now prove Theorem 1.2.

Proof. We borrow B, Wm and F defined in the proof of Theorem 1.1. Define

Fj(η) =

(

a + b
∫

Ω
|∇u|2

)γ ∫

Ω
∆u∆wj + ̺

∫

Ω
∇u∇wj −

∫

Ω
fε(|u|)wj, j = 1, 2, . . . , m.

Then

(F(η), η) =

(

a + b
∫

Ω
|∇u|2

)γ ∫

Ω
|∆u|2 + ̺

∫

Ω
|∇u|2 −

∫

Ω
fε(|u|)u

≥ aγ‖u‖2
H2∩H1

0
− α|Ω|θC1−θ

1 ‖u‖1−θ
H2∩H1

0
− λC

q+1
q+1‖u‖

q+1
H2∩H1

0
− µC2

2‖u‖2
H2∩H1

0
. (3.11)

For µ < aγC−2
2 , there is R > 0 verifying (3.2) and um,ε ∈ H2 ∩ H1

0 with ‖um,ε‖H2∩H1
0
≤ R and

satisfying

(

a + b
∫

Ω
|∇um,ε|

2
)γ ∫

Ω
∆um,ε∆wj + ̺

∫

Ω
∇um,ε∇wj −

∫

Ω
fε(|um,ε|)wj = 0, j = 1, 2, . . . , m.

After the same steps of the previous proof and using (i1)–(i3) we reach

(

a + b
∫

Ω
|∇uε|

2
)γ ∫

Ω
∆uε∆ζ + ̺

∫

Ω
∇uε∇ζ −

∫

Ω
fε(|uε|)ζ = 0, ∀ζ ∈ H2 ∩ H1

0 . (3.12)
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We thus get a nontrivial weak solution uε of










(

a + b
∫

Ω
|∇uε|

2
)γ

∆2uε − ̺∆uε = fε(|uε|) in Ω

∆uε = uε = 0 on ∂Ω.

We are in position to apply the maximum principle to the function −∆uε. Then −∆uε > 0,
thus uε > 0 in Ω and



















(

a + b
∫

Ω
|∇uε|

2
)γ

∆2uε − ̺∆uε = fε(uε) in Ω

−∆uε > 0, uε > 0 in Ω

∆uε = uε = 0 on ∂Ω.

(3.13)

For V = δw1 with δ > 0 and using ‖uε‖H2∩H1
0
≤ R, then for δ small enough

−

(

a + b
∫

Ω
|∇uε|

2
)γ

∆V + ̺V ≤ δw1

[

(

a + b
R2

λ1

)γ

λ1 + ̺

]

≤ ϑ ≤ fε(uε).

Comparing with (3.13) we obtain −∆uε ≥ δw1 and uε ≥ δ0w1 in Ω for δ0 > 0 small enough.
The remaining steps are analogue to the proof of Theorem 1.1.

Next we describe the main steps of the proof of Theorem 1.3.

Proof. Define fε(t) = α 1
(t+ε)θ + λtq + µt + g(t) with 0 < ε < 1. As in the beginning of the proof

of Theorem 1.1 we consider B, Wm and F. Estimate (3.1) in this context turns out to be

(F(η), η) =
∫

Ω
|∆u|2 +

(

a + b
∫

Ω
|∇u|2

)γ ∫

Ω
|∇u|2 −

∫

Ω
fε(|u|)u

≥ ‖u‖2
H2∩H1

0
− α|Ω|θC1−θ

1 ‖u‖1−θ
H2∩H1

0
− λC

q+1
q+1‖u‖

q+1
H2∩H1

0

− c1C
p+1
p+1‖u‖

p+1
H2∩H1

0
− µC2

2‖u‖2
H2∩H1

0
. (3.14)

Hence, there is a constant K > 0 such that

(F(η), η) ≥ ‖u‖2
H2∩H1

0
− K

(

α‖u‖1−θ
H2∩H1

0
+ λ‖u‖

q+1
H2∩H1

0
+ ‖u‖

p+1
H2∩H1

0
+ µ‖u‖2

H2∩H1
0

)

. (3.15)

Next we will make the choice of R, α∗, µ∗ and λ∗. We need ‖u‖H2∩H1
0
= R < (2/3K)1/(p−1).

Thus, let
R = min{1, [(2/3K)1/(p−1)]/2}.

We require α < (1/2)1+θ(2/3K)1+θ/(p−1)(2/3K), then we select α∗ with

α∗ = [(1/2)1+θ(2/3K)1+θ/(p−1)(2/3K)]/2.

We need µ < 2/3K, thus we take µ∗ = 1/3K.
Once R has been chosen, we want λ∗ such that R2 − KλRq+1

> 0, i.e., λ < R1−q/K for
λ < λ∗. Hence we take

λ∗ = (1/K)min{1, (1/2)2−q(2/3K)(1−q)/(p−1)}.
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With these these choices of α∗, λ∗, µ∗ announced in the statement of the theorem, we have the
intervals where α, λ, µ belong to, namely 0 < α < α∗, 0 < λ < λ∗ and 0 ≤ µ < µ∗.

Thus, let Υ = R2 − Kλ∗Rq+1
> 0. Therefore,

(F(η), η) > Υ for ‖u‖H2∩H1
0
= |η| = R. (3.16)

Brouwer’s Theorem asserts that there exists um,ε ∈ H2 ∩ H1
0 with ‖um,ε‖H2∩H1

0
≤ R satisfying

(3.3). Notice that there is a constant ϑ > 0, which does not depend on ε such that

fε(t) = α
1

(t + ε)θ
+ λtq + µt + g(t) ≥ α

1
(t + 1)θ

+ λtq ≥ ϑ for t ≥ 0.

The remaining parts of the proof run in the same manner as before, see all steps from (3.3) to
(3.10).

The proof of Theorem 1.4 is similar.

Proof. The above proofs are well documented. It is a repetition of the arguments.

Next we prove Theorem 1.5.

Proof. The solution u = uλ satisfies

‖u‖2
H2∩H1

0
≤
∫

Ω
|∆u|2 +

(

a + b
∫

Ω
|∇u|2

)γ ∫

Ω
|∇u|2 =

∫

Ω
f (u)u

=
∫

Ω
λuq+1 + up+1 ≤ λC

q+1
q+1‖u‖

q+1
H2∩H1

0
+ C

p+1
p+1‖u‖

p+1
H2∩H1

0
.

Then

‖u‖
1−q

H2∩H1
0
≤

λC
q+1
q+1

1 − C
p+1
p+1‖u‖

p−1
H2∩H1

0

.

By the choice of R we get
1 − C

p+1
p+1‖u‖

p−1
H2∩H1

0
≥ 1/2.

Hence
‖u‖H2∩H1

0
≤
(

2λC
q+1
q+1

)1/(1−q)
→ 0 as λ → 0.

The proof for (1.2) is similar.

We conclude the paper proving Theorem 1.6.

Proof. We denote the existing solution of Theorem 1.3 by u = uλ and assume that ‖u‖H2∩H1
0
≤

R. Since ‖u‖2
H1

0
≤ ‖u‖L2‖u‖H2∩H1

0
, the term a+ b‖u‖2

H1
0

is bounded. Multiply the equation (1.1)

by w1, integrate and use (2.1) and (2.2), hence
∫

Ω
f (u)w1 = λ1

∫

Ω
uw1(1 + (a + b‖u‖2

H1
0
)γ) ≤ λ1M

∫

Ω
uw1, (3.17)

for a constant M > 0 independent on λ. Notice that f (t) = λ
( 1

tθ + tq + t
)

+ tp ≥ λtq + tp for

t ≥ 0. Then f (t) ≥ λ(p−1)(p−q)Cp,qt for t ≥ 0, where Cp,q > 0 is a constant depending only on
p and q. Hence (3.17) gives

λ(p−1)(p−q)Cp,q

∫

Ω
uw1 ≤ λ1M

∫

Ω
uw1,

which makes λ bounded, a contradiction. Again the reasoning for (1.2) is similar.
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Abstract. The paper focuses on the modified Kirchhoff equation

−

(
a + b

∫

RN
|∇u|2dx

)
∆u − u∆(u2) + V(x)u = λ f (u), x ∈ R

N ,

where a, b > 0, V(x) ∈ C(RN , R) and λ < 1 is a positive parameter. We just assume
that the nonlinearity f (t) is continuous and superlinear in a neighborhood of t = 0
and at infinity. By applying the perturbation method and using the cutoff function, we
get existence and multiplicity of nontrivial solutions to the revised equation. Then we
use the Moser iteration to obtain existence and multiplicity of nontrivial solutions to the
above original Kirchhoff equation. Moreover, the nonlinearity f (t) may be supercritical.

Keywords: modified Kirchhoff-type equation, cutoff function, perturbation approach.
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1 Introduction

In this paper, we are devoted to studying the following modified Kirchhoff equation:

−

(
a + b

∫

RN
|∇u|2dx

)
∆u − u∆(u2) + V(x)u = λ f (u), x ∈ R

N , (1.1)

where a, b > 0, V(x) ∈ C(RN , R), λ < 1 is a positive parameter and f is continuous in R. The

equation (1.1) is the Euler–Lagrange equation of the energy functional

Iλ(u) =
a

2

∫

RN
|∇u|2dx +

b

4

(∫

RN
|∇u|2dx

)2

+
1

2

∫

RN

(
V(x)u2 + 2u2|∇u|2

)
dx − λ

∫

RN
F(u)dx,

BCorresponding author. Email: wzhx5016674@126.com
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where F(t) =
∫ t

0 f (s)ds.

Kirchhoff’s model is a general version of the equation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0, (1.2)

which was first proposed by Kirchhoff in [6] for extending the classical D’Alembert’s wave

equations for free vibration of elastic strings. Kirchhoff’s model takes into account the changes

in string length produced by transverse vibration. In (1.2), L is the length of the string, h is

the area of cross section, E denotes the Young modulus of the material, ρ is the mass density

and P0 denotes the initial tension. In addition, we have to point out that nonlocal problems

also appear in other fields as biological systems, where u describes a process which depends

on the average of itself (for example, population density). Some early classical studies of

Kirchhoff equations can be found in Bernstein [1] and Pohožaev [14]. Much attention was

received after Lions [9] introducing an abstract functional framework to this problem. For

more relevant mathematical and physical background, we refer readers to papers [8, 13, 21],

and the references therein.

Especially, in recent paper [19], Wu studied the following problem:

−

(
a + b

∫

RN
|∇u|2dx

)
∆u + V(x)u = g(x, u), x ∈ R

N (1.3)

and obtained four new existence results of nontrivial solutions and a sequence of high energy

solutions for equation (1.3).

When a = 1 and b = 0, (1.3) is reduced to the well known quasilinear Schrödinger equation

−∆u + V(x)u − ∆
(
u2
)

u = g(x, u), x ∈ R
N . (1.4)

Several methods can be used to solve the equation (1.4), such as, the existence of a positive

ground state solution has been studied in [10, 15] by using a constrained minimization argu-

ment; the problem is transformed to a semilinear one in [2, 11] by a change of variables (dual

approach); Nehari method is used to get the existence results of ground state solutions in

[12, 17]. Especially, in [7], the existence of positive solutions, negative solutions and sequence

of high energy solutions for the following problem

−∆u + V(x)u − ∆
(
|u|2α

)
|u|2α−2u = g(x, ψ), x ∈ RN

was studied via a perturbation method, where α >
3
4 , V ∈ C

(
RN , R

)
and g ∈ C

(
RN × R, R

)
.

Recently, Feng et al. [3] studied the following modified Kirchhoff type equation

−

(
a + b

∫

RN
|∇u|2dx

)
∆u − u∆(u2) + V(x)u = h(x, u), x ∈ R

N , (1.5)

where a > 0, b ≥ 0, h ∈ C
(
R

N × R, R
)

and V ∈ C
(
R

N , R
)
. Under appropriate assumptions

on V(x) and h(x, u), some existence results for positive solutions, negative solutions and

sequence of high energy solutions were obtained via a perturbation method. Subsequently,

in 2015, Wu [20] studied the existence of infinitely many small energy solutions for equation

(1.5) by applying Clark’s Theorem to a perturbation functional. And in the same year, He [4]

proved the existence of infinitely many solutions for equation (1.5) by the dual method and

the non-smooth critical point theory. Last year, Huang and Jia [5] obtained the existence of
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infinitely many sign-changing solutions for equation (1.5) with a = 1 and h(x, u) = h(u) by

genus theory.

In the present paper, we assume that f ∈ C(R) and V ∈ C
(
R

N
)

satisfy the following

conditions

( f1) limt→0
f (t)

t = 0;

( f2) limt→+∞
f (t)

t = +∞;

(V) V(x) satisfies infx∈RN V(x) ≥ V0 > 0, and lim|x|→∞ V(x) = +∞.

Moreover, f may be supercritical. But we do not assume the Ambrosetti–Rabinowitz condition

or increasing condition.

Next, we give our main results.

Theorem 1.1. Assume that (V), ( f1), ( f2) hold. Then equation (1.1) has a positive and a negative

weak solutions for all λ small enough.

Theorem 1.2. If (V), ( f1), ( f2) hold and f (t) is odd, then the equation (1.1) has a sequence {un} of

solutions such that Iλ(un) → +∞ for all λ small enough.

This paper is organized as follows. In Section 2, we present the variational framework and

some lemmas, which are bases of Section 3. In Section 3, we give the proof of Theorems 1.1

and 1.2.

In what follows, C0, C, ci and Ci(i = 1, 2, . . . ) denote positive generic constants.

2 Preliminaries and revised functional

In this section, we give work space, the revised functional and some lemmas.

Let C∞
0

(
R

N
)

be the collection of smooth functions with compact supports. Let

H1
(

R
N
)

:=

{
u ∈ L2

(
R

N
)

:
∫

RN
|∇u|2dx < +∞

}

with the inner product

〈u, v〉H1 =
∫

RN
(∇u · ∇v + uv) dx

and the norm

‖u‖H1 = 〈u, u〉1/2
H1 .

Set

H1
V

(
R

N
)

:=

{
u ∈ H1

(
R

N
)

:
∫

RN
V(x)u2dx < +∞

}

with the inner product

〈u, v〉H1
V
=
∫

RN
[∇u · ∇v + V(x)uv] dx

and the norm

‖u‖H1
V
= 〈u, u〉1/2

H1
V

.

Then both H1
(
R

N
)

and H1
V

(
R

N
)

are Hilbert spaces. Set E = H1
V

(
R

N
)
∩ W1,4

(
R

N
)

with the

norm ‖u‖E = ‖u‖H1
V
+ ‖u‖W1,4 . Then E is a reflexive Banach space.
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Notice that there is no growth condition | f (t)| 6 C|t| + C|t|q−1 and no Ambrosetti–

Rabinowitz condition t f (t)− 4F(t) > 0. So we need the cutoff function.

By ( f2) , there exists M > 0 large such that f (M) > 0. And then given M > 0, let

hM(t) =





f (t), 0 < t 6 M

CMtp−1, t > M

0, t 6 0,

where CM = f (M)/Mp−1 and 4 < p < 22∗. The continuity of f implies the continuity of hM.

Moreover, by ( f1) and ( f2) , hM satisfies that

(h1) There exists 4 < p < 22∗ if N ≥ 3 and 4 < p < ∞ if N = 1, 2 such that

|hM(t)| 6 C′
M|t|+ CM|t|p−1

6 C(M)
(
|t|+ |t|p−1

)
, ∀t ∈ R,

where C′
M = maxt∈[0,M] | f (t)|/t and C(M) = max {C′

M, CM};

(h2) limt→0
hM(t)

t = 0;

(h3) There exists µ > 4 and r > M such that

inf
|t|=r

HM(t) > 0

and

µHM(t) ≤ hM(t)t

for |t| ≥ r, where HM(t) =
∫ t

0 hM(s)ds.

By [22, Lemma 3.4] and the condition (V), we get that the embedding H1
V(R

N) →֒ Ls(RN)

is compact for each 2 ≤ s < 2∗.

In what follows, we consider the revised problem

−

(
a + b

∫

RN
|∇u|2dx

)
∆u − u∆(u2) + V(x)u = λhM(u), x ∈ R

N . (2.1)

Equation (2.1) is the Euler–Lagrange equation associated of the natural energy functional

Jλ(u) : E → R given by

Jλ(u) =
a

2

∫

RN
|∇u|2dx +

b

4

(∫

RN
|∇u|2dx

)2

+
1

2

∫

RN

(
V(x)u2 + 2u2|∇u|2

)
dx

− λ
∫

RN
HM(u)dx.

For θ ∈ (0, 1], let Jθ,λ(u) = 1
4 θ
∫

RN

(
|∇u|4 + u4

)
dx + Jλ(u). Let u+ = max{u, 0} and u− =

max{−u, 0}. Set

J±λ (u) =
a

2

∫

RN
|∇u|2dx +

b

4

(∫

RN
|∇u|2dx

)2

+
1

2

∫

RN

(
V(x)u2 + 2u2|∇u|2

)
dx

− λ
∫

RN
HM(u±)dx
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and J±θ,λ(u) =
1
4 θ
∫

RN

(
|∇u|4 + u4

)
dx + J±λ (u).

A sequence {un} ⊂ E is called a P. S. sequence of Jλ if {Jλ(un)} is bounded and J′λ(un) → 0

in E∗. We say that Jλ satisfies the P. S. condition if every P. S. sequence possesses a convergent

subsequence.

Our goal is to first prove that the critical point of Jλ(u) can be obtained as limits of critical

points of Jθ,λ(u). And then we need to prove that the nontrivial critical point u of Jλ(u)

satisfying ‖u‖L∞ ≤ M is a nontrivial solution of (1.1).

Lemma 2.1. Assume that (V), (h1) and (h2) hold. Then the functionals Jλ and J±θ,λ are well defined

in E and Jλ, J±θ,λ ∈ C1(E, R).

Proof. The proof is similar to [3, Lemma 2.1], we omit it here.

Lemma 2.2. Assume that (V), (h1) and (h2) hold. Then every bounded P. S. sequence {un} ⊂ E of

Jθ,λ

(
respectively, J±θ,λ

)
possesses a convergent subsequence.

Proof. The proof is analogous to [3, Lemma 2.2], we omit it here.

Lemma 2.3. Assume that (V) and (h1)–(h3) hold. Let {θn} ⊂ (0, 1] be such that θn → 0. Let un ∈ E

be a critical point of Jθn,λ with Jθn,λ (un) ≤ c for some constant c independent of n. Then, passing

to a subsequence, we have un → u in H1
V

(
R

N
)

, un∇un → u∇u in L2
(
R

N
)
, θn

∫
RN

(
|∇un|

4 +

u4
n

)
dx → 0, Jθn,λ (un) → Jλ(u) and u is a critical point of Jλ.

Proof. Step 1: We need to prove that the sequences
{ ∫

RN u2
n |∇un|

2 dx
}

,
{

θn ‖un‖
4
W1,4

}
and{

‖un‖
2
H1

V

}
are bounded.

By (h2), for 0 < ε0 <
1
4

(
1
2 −

1
µ

)
V0, there exists δ > 0 such that

∣∣∣∣
1

µ
thM(t)− HM(t)

∣∣∣∣ ≤ ε0t2

for all |t| ≤ δ. By (h1) , for δ ≤ |t| ≤ r (r is the constant appearing in the condition (h3)) , one

obtains ∣∣∣∣
1

µ
thM(t)− HM(t)

∣∣∣∣ ≤ 2C(M)
(
1 + rp−2

)
t2,

where C(M) is the constant appearing in the condition (h1) . Thus, we get

∣∣∣∣
1

µ
thM(t)− HM(t)

∣∣∣∣ ≤ ε0t2 + 2C(M)
(
1 + rp−2

)
t2, ∀t ∈ [−r, r].

Since lim|x|→∞ V(x) = +∞, there exists ρ0 > 0 such that

1

4

(
1

2
−

1

µ

)
V(x) > 2λC(M)

(
1 + rp−2

)

for all |x| ≥ ρ0. Thus,

(
1

2
−

1

µ

) ∫

RN
V(x)u2

ndx + λ
∫

|un(x)|≤r

[
1

µ
unhM (un)− HM (un)

]
dx

≥

(
1

4
−

1

2µ

) ∫

RN
V(x)u2

ndx − 2λC(M)
(
1 + rp−2

)
r2
∣∣Bρ0

∣∣ , (2.2)
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where Bρ0 :=
{

x ∈ RN : |x| < ρ0

}
,
∣∣Bρ0

∣∣ := meas
(

Bρ0

)
. Moreover, since un ∈ E is a critical

point of Jθn,λ, for each φ ∈ E, we have

0 =
〈

J′θn,λ (un) , φ
〉
= θn

∫

RN

[
|∇un|

2 ∇un∇φ + |un|
2 unφ

]
dx

+

(
a + b

∫

RN
|∇un|

2 dx

) ∫

RN
∇un∇φdx + 2

∫

RN

(
u2

n∇un∇φ + |∇un|
2 unφ

)
dx

+
∫

RN
V(x)unφdx − λ

∫

RN
hM (un) φdx.

(2.3)

Hence, it follows from (h3) and (2.2) that

c ≥ Jθn,λ (un)

= Jθn,λ (un)−
1

µ

〈
J′θn,λ (un) , un

〉

=

(
1

4
−

1

µ

)
θn ‖un‖

4
W1,4 +

(
a

2
−

a

µ

) ∫

RN
|∇un|

2 dx +

(
b

4
−

b

µ

)(∫

RN
|∇un|

2 dx

)2

+

(
1 −

4

µ

) ∫

RN
|∇un|

2 u2
ndx +

(
1

2
−

1

µ

) ∫

RN
V(x)u2

ndx

+ λ
∫

RN

[
1

µ
unhM (un)− HM (un)

]
dx

≥

(
1

4
−

1

µ

)
θn ‖un‖

4
W1,4 +

(
a

2
−

a

µ

) ∫

RN
|∇un|

2 dx +

(
b

4
−

b

µ

)(∫

RN
|∇un|

2 dx

)2

+

(
1 −

4

µ

) ∫

RN
|∇un|

2 u2
ndx +

(
1

4
−

1

2µ

) ∫

RN
V(x)u2

ndx − 2λC(M)
(
1 + rp−2

)
r2
∣∣Bρ0

∣∣

≥

(
1

4
−

1

µ

)
θn ‖un‖

4
W1,4 + c1 ‖un‖

2
H1

V
+ c2

∫

RN
u2

n |∇un|
2 dx − λC1(M),

where C1(M) = 2C(M)
(
1 + rp−2

)
r2
∣∣Bρ0

∣∣. Therefore, we get

(
1

4
−

1

µ

)
θn ‖un‖

4
W1,4 + c1 ‖un‖

2
H1

V
+ c2

∫

RN
u2

n |∇un|
2 dx ≤ C0 + λC1(M). (2.4)

By (2.4), going if necessary to a subsequence, we get un ⇀ u in H1
V

(
R

N
)

, un∇un ⇀ u∇u

in L2
(
R

N
)

, un → u in Ls
(
R

N
)

for s ∈ [2, 22∗) and un(x) → u(x) a.e. x ∈ R
N . This completes

the proof of Step 1.

Step 2: We claim that un ∈ L∞
(
R

N
)
, ‖un‖L∞ ≤ M and ‖u‖L∞ ≤ M, where the positive

constant M is independent of n.

Depending on (2.4), we infer

‖un‖
4
L22∗ =

∥∥u2
n

∥∥2

L2∗ ≤ C
∥∥∇u2

n

∥∥2

L2 ≤ C0 + λC1(M). (2.5)

Set T > 2, r > 0 and ũT
n = γ (un) , where γ : R → R is a smooth function satisfying γ(t) = t for

|t| ≤ T − 1, γ(−t) = −γ(t); γ′(t) = 0 for t ≥ T and γ′(t) is decreasing in [T − 1, T]. This means

that ũT
n = un for |un| ≤ T − 1;

∣∣ũT
n

∣∣ = |γ (un)| ≤ |un| for T − 1 ≤ |un| ≤ T;
∣∣ũT

n

∣∣ = CT > 0 for

|un| ≥ T, where T − 1 ≤ CT ≤ T.
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Setting φ = un

∣∣ũT
n

∣∣2r
, then we easily infer that φ ∈ E. Therefore, it follows from (2.3) that

λ
∫

RN
hM (un) φdx −

∫

RN
V(x)unφdx

= θn

∫

RN

[
|∇un|

2 ∇un∇φ + |un|
2 unφ

]
dx +

(
a + b

∫

RN
|∇un|

2 dx

) ∫

RN
∇un∇φdx

+ 2
∫

RN

(
u2

n∇un∇φ + |∇un|
2 unφ

)
dx

≥ 2
∫

RN
u2

n∇un∇φdx

= 2
∫

|un|≥T
|un|

2 |∇un|
2
∣∣∣ũT

n

∣∣∣
2r

dx + 2
∫

|un|≤T−1
(1 + 2r) |un|

2r+2 |∇un|
2 dx

+ 2
∫

T−1<|un|<T

[
|γ (un)|

2r + 2runγ (un) |γ (un)|
2r−2 γ′ (un)

]
|un|

2 |∇un|
2 dx

≥
1

2

∫

|un|≥T

∣∣∣∇
[
|un|

2
(

ũT
n

)r]∣∣∣
2

dx +
∫

|un|≤T−1
|un|

2r+2 |∇un|
2 dx

+
1

2

∫

T−1≤|un|≤T

∣∣∣
(

ũT
n

)r
∇
(
|un|

2
)∣∣∣

2

dx

+ 2r
∫

T−1≤|un|≤T
|un|

4
∣∣∣ũT

n

∣∣∣
2r−2 (

γ′ (un)
)2

|∇un|
2 dx

=
1

2

∫

|un|≥T

∣∣∣∇
[
|un|

2
(

ũT
n

)r]∣∣∣
2

dx +
∫

|un|≤T−1
|un|

2r+2 |∇un|
2 dx

+
1

2

∫

T−1≤|un|≤T

∣∣∣
(

ũT
n

)r
∇
(
|un|

2
)∣∣∣

2

dx +
2

r

∫

T−1≤|un|≤T

∣∣∣|un|
2 ∇

(
ũT

n

)r∣∣∣
2

dx

≥
2

(r + 2)2

∫

|un|≥T

∣∣∣∇
[
|un|

2
(

ũT
n

)r]∣∣∣
2

dx +
1

(r + 2)2

∫

|un|≤T−1

∣∣∣∇
[
|un|

2
(

ũT
n

)r]∣∣∣
2

dx

+
2

(r + 2)2

∫

T−1≤|un|≤T

[∣∣∣
(

ũT
n

)r
∇
(
|un|

2
)∣∣∣

2

+
∣∣∣|un|

2 ∇
(

ũT
n

)r∣∣∣
2
]

dx

≥
1

(r + 2)2

∫

|un|≥T

∣∣∣∇
[
|un|

2
(

ũT
n

)r]∣∣∣
2

dx +
1

(r + 2)2

∫

|un|≤T−1

∣∣∣∇
[
|un|

2
(

ũT
n

)r]∣∣∣
2

dx

+
1

(r + 2)2

∫

T−1≤|un|≤T

∣∣∣∇
[
|un|

2
(

ũT
n

)r]∣∣∣
2

dx

=
1

(r + 2)2

∫

RN

∣∣∣∇
[
|un|

2
(

ũT
n

)r]∣∣∣
2

dx.

(2.6)

Choosing 0 < λ ≤ V0/C′
M, then it follows from (h1) and (2.6) that

1

(r + 2)2

∫

RN

∣∣∣∇
[
u2

n

(
ũT

n

)r]∣∣∣
2

dx ≤ λCM

∫

RN
|un|

p
∣∣∣ũT

n

∣∣∣
2r

dx. (2.7)

By (2.5) and Hölder inequality, we obtain

∫

RN
|un|

p
∣∣∣ũT

n

∣∣∣
2r

dx

=
∫

RN
|un|

p−4
∣∣∣ũT

n

∣∣∣
2r
|un|

4 dx

≤

(∫

RN
|un|

(p−4) 4N
(p−4)(N−2) dx

) (p−4)(N−2)
4N

(∫

RN

(∣∣∣ũT
n

∣∣∣
2r

u4
n

) 4N
4N−(p−4)(N−2)

dx

) 4N−(p−4)(N−2)
4N
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=

(∫

RN
|un|

22∗ dx

) (p−4)(N−2)
4N

(∫

RN

(∣∣∣ũT
n

∣∣∣
r

u2
n

) 4N
4N−(p−4)(N−2)

dx

) 4N−(p−4)(N−2)
4N

≤ (C0 + λC1 (M))
p−4

4

(∫

RN

(∣∣∣ũT
n

∣∣∣
r

u2
n

) 8N
4N−(p−4)(N−2)

dx

) 4N−(p−4)(N−2)
4N

. (2.8)

Since u2
n

∣∣ũT
n

∣∣r ∈ D1,2
(
R

N
)
, by the Sobolev embedding theorem, we infer

[∫

RN

(
u2

n

∣∣∣ũT
n

∣∣∣
r)2∗

dx

] 2
2∗

≤ C
∫

RN

∣∣∣∇
[
u2

n

(
ũT

n

)r]∣∣∣
2

dx. (2.9)

Then by (2.7), (2.8) and (2.9), one has

[∫

RN

(
u2

n

∣∣∣ũT
n

∣∣∣
r)2∗

dx

] 2
2∗

≤ λC2(M)(r + 2)2

[∫

RN

(∣∣∣ũT
n

∣∣∣
r

u2
n

) 8N
4N−(p−4)(N−2)

dx

] 4N−(p−4)(N−2)
4N

,

where the constant C2(M) > 0 is dependent on M. Since 4 < p < 22∗, d := 2∗/q = 2∗

2 − p
4 +

1 > 1, where q = 8N
4N−(p−4)(N−2)

. Then

(∫

RN

(
u2

n

∣∣∣ũT
n

∣∣∣
r)qd

dx

) 1
qd(r+2)

≤
[
λC2(M)(r + 2)2

] 1
2(r+2)

(∫

RN

[
u2

n

∣∣∣ũT
n

∣∣∣
r]q

dx

) 1
q(r+2)

. (2.10)

Take r = r0 be such that (2 + r0) q = 22∗. From
∣∣ũT

n

∣∣ = |γ (un)| ≤ |un| and (2.5), one has

∫

RN

[∣∣∣ũT
n

∣∣∣
r0

u2
n

]q

dx ≤
∫

RN
|un|

(2+r0)q dx < C0 + λC1(M).

Takeing the limit T → ∞ in (2.10) with r = r0, we obtain

(∫

RN
|un|

(2+r0)qd dx

) 1
qd(r0+2)

≤
[
λC2(M) (r0 + 2)2

] 1
2(r0+2)

(∫

RN
|un|

(2+r0)q dx

) 1
q(r0+2)

.

Further, setting 2 + r1 = d (2 + r0), we get

(∫

RN
|un|

(2+r1)q dx

) 1
q(r1+2)

≤
[
λC2(M) (r0 + 2)2

] 1
2(r0+2)

(∫

RN
|un|

(2+r0)q dx

) 1
q(r0+2)

.

Inductively, we have

(∫

RN
|un|

(2+rk+1)q dx

) 1
q(rk+1+2)

≤
[
λC2(M) (rk + 2)2

] 1
2(rk+2)

(∫

RN
|un|

(2+rk)q dx

) 1
q(rk+2)

≤
k

∏
i=0

[
λC2(M) (ri + 2)2

] 1
2(ri+2)

(∫

RN
|un|

(2+r0)q dx

) 1
q(r0+2)

,

where (2 + ri) = di (2 + r0) (i = 0, 1, . . . , k). Moreover,

k

∏
i=0

[
λC2(M) (ri + 2)2

] 1
2(ri+2) = exp

{
k

∑
i=0

ln
√

λC2(M)di (r0 + 2)

di (r0 + 2)

}

= exp

{
k

∑
i=0

[
ln
√

λC2(M) (r0 + 2)

di (r0 + 2)
+

i ln d

di (r0 + 2)

]}
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is convergent as k → ∞. Let Ck = ∏
k
i=0

[
λC2(M) (ri + 2)2

] 1
2(ri+2) . For Ck, we can choose

0 < λ0 ≤ C0/C1(M) small enough and 1
2 λ0 < λ < λ0 such that Ck → C∞ > 0 as k → ∞ and

C∞ ≤ M/(2C
1
4
0 ). Then we get

‖un‖
L(2+r0)qdk+1 ≤ Ck ‖un‖L22∗ .

Let k → ∞, for fixed constant M and 1
2 λ0 < λ < λ0, by (2.5) we have

‖un‖L∞ ≤ C∞ ‖un‖L22∗ ≤ M, ‖u‖L∞ ≤ M. (2.11)

Step 3: We will show that u is a critical point of Jλ.

For any ψ ∈ C∞
0

(
R

N
)
, there exists a bounded domain Ω ⊂ R

N such that supp(ψ) ⊂ Ω.

Thus, by (2.11), we know φ = ψ exp (−Kun) ∈ E for any ψ ≥ 0 and K > 0. Taking φ =

ψ exp (−Kun) as the test function in (2.3), we have

0 = θn

∫

RN
exp (−Kun)

[
|∇un|

2 ∇un (∇ψ − Kψ∇un) + |un|
2 unψ

]
dx

+

(
a + b

∫

RN
|∇un|

2 dx

) ∫

RN
exp (−Kun)∇un (∇ψ − Kψ∇un) dx

+ 2
∫

RN

[
exp (−Kun) u2

n∇un (∇ψ − Kψ∇un) + exp (−Kun)ψ |∇un|
2 un

]
dx

+
∫

RN
V(x)unψ exp (−Kun) dx − λ

∫

RN
hM (un)ψ exp (−Kun) dx

≤ θn

∫

RN
exp (−Kun)

[
|∇un|

2 ∇un∇ψ + |un|
2 unψ

]
dx

+

(
a + b

∫

RN
|∇un|

2 dx

) ∫

RN
exp (−Kun)∇un∇ψdx

+ 2
∫

RN
exp (−Kun) u2

n∇un∇ψdx

−
∫

RN
exp (−Kun)ψ |∇un|

2

[
K

(
a + b

∫

RN
|∇un|

2 dx + 2u2
n

)
− 2un

]
dx

+
∫

RN
V(x)unψ exp (−Kun) dx − λ

∫

RN
hM (un)ψ exp (−Kun) dx.

(2.12)

Choose large K > 1 be such that Ka > 1. Then, by

∫

RN
exp (−Kun)ψ |∇ (un − u)|2

[
K

(
a + b

∫

RN
|∇un|

2 dx + 2u2
n

)
− 2un

]
dx ≥ 0,

one has
∫

RN
exp (−Kun)ψ |∇un|

2

[
K

(
a + b

∫

RN
|∇un|

2 dx + 2u2
n

)
− 2un

]
dx

≥
∫

RN
exp (−Kun)ψ

(
2∇un∇u − |∇u|2

) [
K

(
a + b

∫

RN
|∇un|

2 dx + 2u2
n

)
− 2un

]
dx

→
∫

RN
exp(−Ku)ψ|∇u|2

[
K

(
a + b

∫

RN
|∇u|2dx + 2u2

)
− 2u

]
dx.

Because θn → 0 and ‖un‖∞ ≤ M, (2.4) implies

θn

∫

RN
exp (−Kun)

[
|∇un|

2 ∇un∇ψ + |un|
2 unψ

]
dx → 0
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as n → ∞. By the weak convergence of un, the Hölder inequality and Lebesgue’s dominated

convergence theorem, we infer

(
a + b

∫

RN
|∇un|

2 dx

) ∫

RN
e(−Kun)∇un∇ψdx →

(
a + b

∫

RN
|∇u|2dx

) ∫

RN
e(−Ku)∇u∇ψdx,

∫

RN
exp (−Kun) u2

n∇un∇ψdx →
∫

RN
exp(−Ku)u2∇u∇ψdx,

∫

RN
V(x)unψ exp (−Kun) dx →

∫

RN
V(x)uψ exp(−Ku)dx

and

λ
∫

RN
hM (un)ψ exp (−Kun) dx → λ

∫

RN
hM(u)ψ exp(−Ku)dx.

Hence, these together with (2.12) can deduce that

0 ≤

(
a + b

∫

RN
|∇u|2dx

) ∫

RN
exp(−Ku)∇u∇ψdx + 2

∫

RN
exp(−Ku)u2∇u∇ψdx

−
∫

RN
exp(−Ku)ψ|∇u|2

[
K

(
a + b

∫

RN
|∇u|2dx + 2u2

)
− 2u

]
dx

+
∫

RN
V(x)uψ exp(−Ku)dx − λ

∫

RN
hM(u)ψ exp(−Ku)dx.

(2.13)

For any ϕ ∈ E with ϕ ≥ 0, by (2.11), we know υ := ϕ exp(Ku) ∈ E. By applying [18,

Theorem 2.8], there exists a sequence {ψn} ⊂ C∞
0

(
R

N
)

of functions such that ψn ≥ 0, ψn → υ

in H1
V(R

N) and ψn(x) → υ(x) for a.e. x ∈ R
N . Taking ψ = ψn in (2.13) and letting n → ∞, we

have

0 ≤

(
a + b

∫

RN
|∇u|2dx

) ∫

RN
∇u∇ϕdx + 2

∫

RN
u2∇u∇ϕdx

+ 2
∫

RN
|∇u|2uϕdx +

∫

RN
V(x)uϕdx − λ

∫

RN
hM(u)ϕdx.

The opposite inequality can be obtained in a similar way. Therefore,

(
a + b

∫

RN
|∇u|2dx

) ∫

RN
∇u∇ϕdx + 2

∫

RN

(
u2∇u∇ϕ + |∇u|2uϕ

)
dx

+
∫

RN
V(x)uϕdx − λ

∫

RN
hM(u)ϕdx = 0

for all ϕ ∈ E. This shows that u ∈ E is a critical point of Jλ and

(
a + b

∫

RN
|∇u|2dx

) ∫

RN
|∇u|2dx + 4

∫

RN
u2|∇u|2dx

+
∫

RN
V(x)u2dx − λ

∫

RN
hM(u)udx = 0. (2.14)

Finally, taking φ = un as the test function in (2.3), one has

0 = θn

∫

RN

[
|∇un|

4 + |un|
4
]

dx +

(
a + b

∫

RN
|∇un|

2 dx

) ∫

RN
|∇un|

2 dx

+ 4
∫

RN
u2

n |∇un|
2 dx +

∫

RN
V(x)u2

ndx − λ
∫

RN
hM (un) undx.
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Notice that
∫

RN
|∇un|

2 dx ≥ 2
∫

RN
∇un∇udx −

∫

RN
|∇u|2dx −→

∫

RN
|∇u|2dx,

∫

RN
u2

n |∇un|
2 dx ≥ 2

∫

RN
u2

n∇un∇udx −
∫

RN
u2

n|∇u|2dx −→
∫

RN
u2|∇u|2dx,

λ
∫

RN
hM (un) undx → λ

∫

RN
hM(u)udx

and

lim inf
n→∞

∫

RN
V(x)u2

ndx ≥
∫

RN
V(x)u2dx.

By (2.4) and (2.14), up to a subsequence, one has

θn ‖un‖
4
W1,4 → 0, ‖un‖H1

V
→ ‖u‖H1

V
,
∫

RN
u2

n |∇un|
2 dx →

∫

RN
u2|∇u|2dx.

Hence, Jθn,λ (un) → Jλ(u) and un → u in H1
V

(
R

N
)
. This completes the proof.

3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. First, we will show that for each θ ∈ (0, 1], Jθ,λ and J±θ,λ satisfy the P.

S. condition. Indeed, by Lemma 2.2, it is sufficient to prove that any P. S. sequence of Jθ,λ is

bounded.

Let {un} ⊂ E be an arbitrary P. S. sequence for Jθ,λ. If {un} is unbounded in E, we can

assume ‖un‖E → +∞. By (2.2) and (h3) , we get

Jθ,λ (un)−
1

µ

〈
J′θ,λ (un) , un

〉

=

(
1

4
−

1

µ

)
θ ‖un‖

4
W1,4 +

(
a

2
−

a

µ

) ∫

RN
|∇un|

2 dx +

(
b

4
−

b

µ

)(∫

RN
|∇un|

2 dx

)2

+

(
1 −

4

µ

) ∫

RN
|∇un|

2 u2
ndx +

(
1

2
−

1

µ

) ∫

RN
V(x)u2

ndx

+ λ
∫

RN

[
1

µ
unhM (un)− HM (un)

]
dx

≥

(
a

2
−

a

µ

) ∫

RN
|∇un|

2 dx +

(
1

2
−

1

µ

) ∫

RN
V(x)u2

ndx

+ λ
∫

RN

[
1

µ
unhM (un)− HM (un)

]
dx

≥

(
a

2
−

a

µ

) ∫

RN
|∇un|

2 dx +

(
1

4
−

1

2µ

) ∫

RN
V(x)u2

ndx − λC1(M)

≥ min

{
a

2
−

a

µ
,

1

4
−

1

2µ

}
‖un‖

2
H1

V
− λC1(M).

(3.1)

If {‖un‖W1,4} is bounded, then
‖un‖H1

V

‖un‖E
→ 1. Therefore, by (3.1), we infer

Jθ,λ (un)−
1
µ

〈
J′θ,λ (un) , un

〉

‖un‖
2
E

≥ min

{
a

2
−

a

µ
,

1

4
−

1

2µ

} ‖un‖
2
H1

V

‖un‖
2
E

−
λC1(M)

‖un‖
2
E

,
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which implies 0 ≥ min
{

a
2 −

a
µ , 1

4 −
1

2µ

}
> 0. That is to say, it is a contradiction. Hence, we can

assume ‖un‖W1,4 → ∞. For large n, it follows from (3.1) that

Jθ,λ (un)−
1

µ

〈
J′θ,λ (un) , un

〉

≥

(
1

4
−

1

µ

)
θ ‖un‖

4
W1,4 + min

{
a

2
−

a

µ
,

1

4
−

1

2µ

}
‖un‖

2
H1

V
− λC1(M)

≥

(
1

4
−

1

µ

)
θ ‖un‖

2
W1,4 + min

{
a

2
−

a

µ
,

1

4
−

1

2µ

}
‖un‖

2
H1

V
− λC1(M)

≥
1

2
min

{(
1

4
−

1

µ

)
θ,

a

2
−

a

µ
,

1

4
−

1

2µ

}
‖un‖

2
E − λC1(M).

This together with ‖un‖W1,4 → ∞ implies 0 ≥ 1
2 min

{(
1
4 −

1
µ

)
θ, a

2 − a
µ , 1

4 −
1

2µ

}
> 0, a contra-

diction. This shows that {un} is bounded in E.

Next, by (h1) and (h2), we get

|HM(v)| ≤ C′
M|v|2 + CM|v|22∗ (3.2)

for all v ∈ R. For small 0 < ρ ≪ 1, set

Sρ = {v ∈ E : ‖v‖E = ρ} .

Then for v ∈ Sρ and 0 < λ ≤ V0/4C′
M, by (3.2), we have

J+θ,λ(v) =
1

4
θ
∫

RN

(
|∇v|4 + v4

)
dx +

a

2

∫

RN
|∇v|2dx +

b

4

(∫

RN
|∇v|2dx

)2

+
1

2

∫

RN

(
V(x)v2 + 2v2|∇v|2

)
dx − λ

∫

RN
HM

(
v+
)

dx

≥
1

4
θ‖v‖4

W1,4 +
1

4
min{2a, 1}‖v‖2

H1
V
+
∫

RN
v2|∇v|2dx − λCM

(∫

RN
v2|∇v|2dx

) 2∗

2

≥
1

4
θ‖v‖4

W1,4 +
1

4
min{2a, 1}‖v‖2

H1
V

≥
1

4
min{θ, 2a, 1}

[
‖v‖4

W1,4 + ‖v‖2
H1

V

]

≥
1

64
min{θ, 2a, 1}ρ4 := δ > 0.

Moreover, for |t| ≥ r, by (h3), we can infer HM(v) ≥ C|v|µ. Thus, by (h1) and (h2), there is a

constant C3(M) > 0 that depends on M such that

HM(v) ≥ C|v|µ − C3(M)v2 (3.3)

for all v ∈ E. For any finite-dimensional subspace Ẽ ⊂ E, by the equivalency of all norms in

the finite-dimensional space, there is a constant β > 0 such that

‖v‖µ ≥ β‖v‖E (3.4)
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for all v ∈ Ẽ. Hence, by (3.3) and (3.4), one has

Jθ,λ(v) =
1

4
θ
∫

RN

(
|∇v|4 + v4

)
dx +

a

2

∫

RN
|∇v|2dx +

b

4

(∫

RN
|∇v|2dx

)2

+
1

2

∫

RN

(
V(x)v2 + 2v2|∇v|2

)
dx − λ

∫

RN
HM(v)dx

≤
1

4
θ‖v‖4

W1,4 +
1

2
max{a, 1}‖v‖2

H1
V
+
∫

RN
v2|∇v|2dx

+
b

4

(∫

RN
|∇v|2dx

)2

− λ
∫

RN

[
C|v|µ − C3(M)v2

]
dx

≤
3

4
‖v‖4

W1,4 +
b

4
‖v‖4

H1
V
+

1

2
max{a, 1}‖v‖2

H1
V
− λC‖v‖

µ
µ + λC3(M)‖v‖2

2

≤
1

4
max{3, b}‖v‖4

E +

(
λC3(M) +

1

2
max{a, 1}

)
‖v‖2

E − λCβµ‖v‖
µ
E

(3.5)

for all v ∈ Ẽ and 0 < θ ≤ 1. Thus, there is a large R > 0 such that Jθ,λ < 0 on Ẽ \ BR, where

BR := {u ∈ E : ‖u‖E < R}. Set a fixed e ∈ Ẽ with e ≥ 0 and ‖e‖E = 1. For any fixed constant

T > 0, define the path hT : [0, 1] → Ẽ ⊂ E by hT(t) = tTe. Then for large T > 1 and µ > 4, by

(3.5), we get

J+θ,λ (hT(1)) ≤
1

4
max{3, b}T4 +

(
λC3(M) +

1

2
max{a, 1}

)
T2 − λCβµTµ

< 0

with ‖hT(1)‖E > ρ, and

max
t∈[0,1]

J+θ,λ (hT(t)) ≤ C.

Hence, by [16, Theorem 2.2], J+θ,λ possesses a critical value

cθ := inf
η∈Γ

max
t∈[0,1]

J+θ,λ(η(t)) ≥ δ > 0

and

cθ ≤ max
t∈[0,1]

J+θ,λ (hT(t)) ≤ C,

where

Γ = {η ∈ C([0, 1], E) : η(0) = 0, η(1) = hT(1)} .

Therefore, J+θ,λ possesses the Mountain Pass geometry. Further, by Lemma 2.3 and Mountain

Pass Theorem, we know that the equation (2.1) has a positive weak solution. This together

with (2.11) implies that (1.1) has a positive weak solution. Moreover, by a similar argument,

we infer that the equation (1.1) has a negative weak solution. This completes the proof.

Next, in order to prove Theorem 1.2, we need to revise the cutoff function. Let

ĥM(t) =





f (t), 0 < t 6 M

CMtp−1, t > M

−ĥM(−t), t 6 0.

Then for the odd function f (t), it is easy to know that ĥM(t) satisfies (h1)–(h3) and the odd

function property.
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Hereinafter, we will concentrate on the following equation

−

(
a + b

∫

RN
|∇u|2dx

)
∆u − u∆(u2) + V(x)u = λĥM(u), x ∈ R

N . (3.6)

Here Ĵλ(u) : E → R is the natural energy functional corresponding to (3.6)

Ĵλ(u) =
a

2

∫

RN
|∇u|2dx +

b

4

(∫

RN
|∇u|2dx

)2

+
1

2

∫

RN

(
V(x)u2 + 2u2|∇u|2

)
dx

− λ
∫

RN
ĤM(u)dx,

where ĤM(t) =
∫ t

0 ĥM(s)ds. For θ ∈ (0, 1], let Ĵθ,λ(u) =
1
4 θ
∫

RN

(
|∇u|4 + u4

)
dx + Ĵλ(u).

Lemma 3.1. Assume that (V), ( f1), ( f2) hold. If f (t) is odd, then for all θ ∈ (0, 1] fixed, Ĵθ,λ has a

sequence of critical points uj such that there exist αj, β j both of which are independent of θ to satisfy

αj → ∞ as j → ∞, αj < β j and cj(θ) ∈
[
αj, β j

]
for all θ > 0.

Proof. Consider the eigenvalue problem
∫

RN
(∇u · ∇ϕ + V(x)uϕ)dx = ξ

∫

RN
uϕdx, ∀ϕ ∈ H1

V(R
N). (3.7)

For real number ξ, if there exists u ∈ H1
V

(
R

N
)
(u 6= 0) to satisfy (3.7), then ξ is called a

eigenvalue of the operator L = −∆ +V. Further, by the condition (V) and the compactness of

the embedding H1
V

(
R

N
)
→֒ L2

(
R

N
)
, we infer that the spectrum σ(L) = {ξ1, ξ2, . . . , ξn, . . . }

of L satisfies

0 < ξ1 < ξ2 < · · · < ξn < · · ·

and ξn → +∞ as n → ∞. Let φn be the eigenfunction corresponding to the eigenvalue ξn. By

regularity argument, we know φn ∈ E. Set En = span {φ1, φ2, . . . , φn}. Then we decompose

the space E as a direct sum E = En ⊕ Wn for n = 1, 2, . . . , where Wn is orthogonal to En in

H1
V

(
R

N
)
. For ρ > 0, set

Zρ =

{
u ∈ E : ‖u‖2

H1
V
+
∫

RN
u2|∇u|2dx ≤ ρ2

}
.

By (3.5), there exists rn > 0 independent of θ such that

Ĵθ,λ(u) < 0, ∀u ∈ En\Zrn . (3.8)

Set

Dn = En ∩ Zrn , Gn =
{

ϕ ∈ C (Dn, E) : ϕ is odd and ϕ|∂Zrn∩En
= id

}

and

Γj =
{

ϕ
(

Dn\A
)

: ϕ ∈ Gn, n ≥ j, A = −A ⊂ En ∩ Zrn is closed and γ(A) ≤ n − j} ,

where γ(·) is the genus. Let

cj(θ) = inf
B∈Γj

sup
u∈B

Ĵθ,λ(u), j = 1, 2, . . .

We claim that cj(θ) (j = 1, 2, . . . ) are critical values of Ĵθ,λ and there exist β j > αj such that

cj(θ) ∈
[
αj, β j

]
and αj → ∞ as j → ∞.
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Since Ĵθ,λ is increasing with respect to θ, we have cj(θ) ≤ cj(1) := β j (j = 1, 2, . . . ).

And then we will estimate the lower bound for cj(θ). Depending on the following Lemma

3.2, we have an intersection property: If ρ < rn for all n ≥ j, then for B ∈ Γj, we have

B ∩ ∂Zρ ∩ Wj−1 6= ∅. Therefore,

cj(θ) ≥ inf
u∈∂Zρ∩Wj−1

Ĵθ,λ(u) ≥ inf
u∈∂Zρ∩Wj−1

Ĵλ(u).

For small ε > 0 and u ∈ ∂Zρ ∩ Wj−1, by (h1), for 0 < λ ≤ V0/4C′
M one has

Ĵθ,λ(u) ≥ Ĵλ(u)

≥
a

2

∫

RN
|∇u|2dx +

b

4

(∫

RN
|∇u|2dx

)2

+
1

2

∫

RN

(
V(x)u2 + 2u2|∇u|2

)
dx

− λ
∫

RN

(
C′

Mu2 + CM|u|p
)

dx

≥
1

4
min{a, 1}‖u‖2

H1
V
+
∫

RN
u2|∇u|2dx − λCM

∫

RN
|u|pdx

≥
1

4
min{a, 1}ρ2 − λCM‖u‖

(1−t)p
2 ‖u‖

tp
22∗

≥
1

4
min{a, 1}ρ2 − λCMξ

− (1−t)p
2

j ρ(1−t)p+ t
2

= ρ2

(
1

4
min{a, 1} − λCMξ

− (1−t)p
2

j ρ(1−t)p+ p
2 −2

)
,

where t ∈ (0, 1) satisfies 1
p = t

22∗ +
1−t

2 . Take ρ = ρj be such that ρ
(1−t)p+ tp

2 −2

j = min{a,1}
8λCM

ξ
(1−t)p

2
j .

Then choosing rn > ρn, we infer Ĵθ,λ(u) ≥ min{a,1}
8 ρ2

j := αj → +∞. Thus, cj(θ) ∈
[
αj, β j

]

(αj → ∞ as j → ∞).

Now we show that cj(θ) (j = 1, 2, . . . ) are critical values of Ĵθ,λ. Indeed, if cj(θ) is

not a critical value of Ĵθ,λ, then by [16, Theorem A.4], we know that for given 0 < ε̄ <

min
{

αj : j = 1, 2, . . .
}

, there exist ε ∈ (0, ε̄) and η ∈ C([0, 1]× E, E) such that

(a) η(t, u) = u for all t ∈ [0, 1] if Ĵθ,λ(u) /∈
[
cj(θ)− ε̄, cj(θ) + ε̄

]
.

(b) η(t, ·) : E → E is a homeomorphism for each t ∈ [0, 1].

(c) η
(
1, Ĵ

cj(θ)+ε

θ,λ

)
⊂ Ĵ

cj(θ)−ε

θ,λ , where Ĵκ
θ,λ =

{
u ∈ E : Ĵθ,λ(u) ≤ κ

}
.

(d) η(t, u) is odd in u.

Set ψ = η(1, ·). Then, by (3.8), ψ = id on ∂Zrn ∩ En for all n. By the definition of cj(θ), there

exists B ∈ Γj such that

sup
u∈B

Ĵθ,λ(u) ≤ cj(θ) + ε.

Notice that A = ψ(B) ∈ Γj. By (c), we know

cj(θ) ≤ sup
u∈A

Ĵθ,λ(u) ≤ cj(θ)− ε,

which is a contradiction. Hence, cj(θ) (j = 1, 2, . . . ) are critical values of Ĵθ,λ. This completes

the proof of Lemma 3.1.
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Lemma 3.2. For B ∈ Γj, it follows that B ∩ ∂Zρ ∩ Wj−1 6= ∅ provided ρ < rn for all n ≥ j.

Proof. Set B = ϕ
(

Dn\A
)

with n ≥ j and γ(A) ≤ n − j. Let X̃ =
{

u ∈ Dn : ϕ(u) ∈ Zρ

}
.

Then we can easily infer that 0 is an interior point of X̃ . Let X be the connected component

of X̃ containing 0 . Then X is a bounded symmetric neighborhood of 0 in En. Hence, by

[16, Proposition 7.7], γ(∂X ) = n. Since ϕ|∂Zrn∩En
= id, we obtain

‖ϕ(u)‖2
H1

V
+
∫

RN
ϕ2(u)|∇ϕ(u)|2dx = r2

n > ρ2, ∀u ∈ ∂Zrn ∩ En. (3.9)

Then we get ϕ(∂X ) ⊂ ∂Zρ. In fact, for each u ∈ ∂X , because ϕ(u) ∈ Zρ, (3.9) implies that

u ∈ int (Zrn) ∩ En. Hence, if ϕ(u) ∈ int
(
Zρ

)
, then the continuity of ϕ implies that there

exists an open ball B(u, r) ⊂ Dn centered at u with radius r such that ϕ(B(u, r)) ⊂ int
(
Zρ

)
.

Since B(u, r) is connected, u ∈ X and B(u, r) ⊂ X , we know that u is an interior point of

X . It contradicts that u ∈ ∂X . Hence, ϕ(u) ∈ ∂Zρ. Set W =
{

u ∈ Dn : ϕ(u) ∈ ∂Zρ

}
. Then

∂X ⊂ W, γ(W) = n and γ(W\A) ≥ n − (n − j) > j − 1. Hence [16, Proposition 7.5–20] implies

γ(ϕ(W\A)) > j − 1. Notice that codim
(
Wj−1

)
= j − 1. Consequently, ϕ(W\A) ∩ Wj−1 6= ∅,

that is to say, B ∩ ∂Zρ ∩ Wj−1 ⊃ ϕ(W\A) ∩ Wj−1 6= ∅. The proof is finished.

Proof of Theorem 1.2. Depending on Lemma 2.3, Lemma 3.1 and Lemma 3.2, we get that the

equation (2.1) has a sequence {un} of solutions such that Ĵλ(un) → +∞. Then for λ small

enough and fixed M, it follows from (2.11) that the equation (1.1) has a sequence {un} of

solutions such that Iλ(un) → +∞.
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Abstract. Our first purpose is to study the stability of linear flows on real, connected,
compact, semisimple Lie groups. Our second purpose is to study periodic orbits of
linear and invariant flows. As an application, we present periodic orbits of linear or
invariant flows on SO(3) and SU(2) and we study periodic orbits of linear or invariant
flows on SO(4).
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1 Introduction

Let G be a real, connected Lie group. A vector field X on G is called linear if its flow, which

is denoted by ϕt, is a family of automorphisms of G. In this work, we assume that G is a

semisimple Lie group. Our wish is to study some aspects of stability of a linear flow ϕt and

periodic orbits of a linear or invariant flows.

Our first task is to study the stability in a fixed point of a linear flow ϕt. In a natural way,

we follow the ideas presented in the classical literature of dynamical systems on a Euclidian

space (see for instance [3], [6] and [7]). In [5], Da Silva, Santana, and Stelmastchuk show

that a necessary and sufficient condition to the asymptotically and exponential stability of ϕt

at identity e is that X is hyperbolic. However, if a linear vector field X on G is hyperbolic,

then G is a nilpotent Lie group. Then, it is obstructed the use of hyperbolic property in the

study of the stability of a linear flow on a semisimple Lie group. Thus, we choose to restrict

our study to compact, semisimple Lie groups because their algebraic structure allows us to

develop some results about stability.

Let G be a real, connected, compact, semisimple Lie group. Consider a linear vector field

X on G and its linear flow ϕt. The first part of our work is about stability. We show that

any fixed point of the linear flow ϕt is stable (see Theorem 3.10). Furthermore, we proof that

any periodic orbit of the linear flow ϕt is stable (see Theorem 3.13). Also, we proof that the

derivation D = −ad(X ) associated to X has only semisimple eigenvalues since the identity e
is stable. The last fact is the key to study periodic orbits of linear flow ϕt.

BEmail: simnaos@gmail.com
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The second part of our work is about periodic orbits of the invariant and linear flows on

compact, semisimple Lie groups. An important fact is that, in semisimple Lie groups, for any

linear vector field X there is a right invariant vector field X associated to it. Thus, our first

step is to show that if the orbits of the invariant flow exp(tX) are periodic, then the orbits of

the linear flow ϕt are also periodic. Done this, we show that the orbits of the invariant flow

exp(tX) are periodic if and only if the derivation D of X has as eigenvalues 0 or ±αi i with

αi 6= 0, i = 1, . . . , r, and αi/αj is a rational number for i, j = 1, . . . , r (see Theorem 4.2). As

a direct consequence, every orbit that is not a fixed point of an invariant flow exp(tX) on a

3-dimensional, compact, semisimple Lie group is periodic.

To end, we present the periodic orbits of a linear or invariant flows on SO(3) and SU(2),

and we study the periodic orbits on SO(4) (see Theorem 5.4).

This paper is organized as follows. Section 2 briefly reviews the notions of the linear vector

fields. Section 3 works with stability on compact, semisimple Lie groups. Section 4 develops

results in periodic orbits of a linear or invariant flows. Finally, section 5 applies the previous

results on compact, semisimple Lie groups SO(3), SU(2) and SO(4).

2 Linear vector fields

Let G be a connected Lie group and g be its Lie algebra. We call a vector field X linear if its

flow (ϕt)t∈R is a family of automorphisms of the Lie group G. It is known that for any linear

vector field X we can define a derivation D by

D(Y) = −[X , Y], Y ∈ g.

Thus, the dynamical system

ġ = X (g), g ∈ G, (2.1)

is associated to the derivation D. In fact, the linearization of system above at the identity is

Ẋ = D(X), X ∈ g.

For the Euclidian case, if A ∈ Rn×n and b, x ∈ Rn, then D(b)(x) = [Ax, b] = −Ab. Thus, we

can view the dynamical system (2.1) as a generalization of dynamical system on Rn given by

ẋ = Ax.

Da Silva, in [4], writes

g+ =
⊕

α;Re(α)>0

gα, g0 =
⊕

α;Re(α)=0

gα, and g− =
⊕

α;Re(α)<0

gα,

where α are eigenvalues of the derivation D such that

g = g+ ⊕ g0 ⊕ g− and [gα, gβ] = gα+β

with α + β = 0 if the sum is not an eigenvalue. Let us denote by G+, G0 and G− the Lie

subgroups of the Lie algebras g+, g0 and g−, respectively. It is simple to show that G+, G0 and

G+ are ϕt-invariant. The Lie subgroups G+, G0 and G− are called unstable, central and stable

groups associated to ϕt, respectively.

For the convenience of the reader we resume some facts about a linear vector field X and

its flow ϕt. The proof of these facts can be found in [2].
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Proposition 2.1. Let X be a linear vector field, ϕt be its flow, and D be the derivation associated to
X . The following assertions are true:

(i) ϕt is an automorphism of Lie groups for each t;

(ii) X is linear iff X (gh) = Rh∗X (g) + Lg∗X (h) for g, h ∈ G;

(iii) (dϕt)e = etD for all t ∈ R.

3 Stability of the linear flow

Let G be a real, connected, semisimple Lie group and X be a linear vector field on G. In

this section, our wish is to study the stability of the linear flow ϕt that is the solution of the

differential equation on G given by

ġ = X (g), g ∈ G. (3.1)

Being G semisimple, there is a right invariant vector field X such that X = X + I∗X, where

I∗X is the left invariant vector field associated to X and I∗ is the differential of inverse map

i(g) = g−1 (more details is founded in [9]). It follows that the linear flow can be written as

ϕt(g) = exp(tX) · g · exp(−tX), ∀ g ∈ G.

According to the above expression, we have that the identity e is a fixed point for the linear

flow ϕt. However, it may exist other fixed points.

Proposition 3.1. If a point g belongs to center of the Lie group G, then g is a fixed point of the linear
flow ϕt.

Proof. Let g be a point in the center of the Lie group G. Then, for all t ∈ R,

ϕt(g) = exp(tX) · g · exp(−tX) = exp(tX) · exp(−tX) · g = g,

which is the desired conclusion.

Our next step is to present the hyperbolic concept to the linear vector fields. We remember

that the stability in Euclidian space is obtained if a dynamical system is hyperbolic (see for

instance [7]). As one can see in [5], it is also true if X is hyperbolic on a Lie group G.

Definition 3.2. Let X be a linear vector field on a Lie group G. We call X hyperbolic if its

associated derivation D is hyperbolic, that is, D has no eigenvalues with zero real part.

Let X be a hyperbolic linear vector field on a semisimple Lie group G. Then D has no

eigenvalues with zero real part. Denoting by gα the generalized eigenspace associated with

an eigenvalue α of D we get

[gα, gβ] ⊂ gα+β,

where α + β is an eigenvalue of D and zero otherwise (see for instance Proposition 3.1 in [9]).

Since dim G < ∞, it implies that the Lie algebra g is nilpotent. In consequence, G is nilpotent.

Proposition 3.3. There is not hyperbolic linear vector field on semisimple Lie groups.

We now begin studying the stability of linear flows on semisimple Lie groups. Firstly, we

remember some concepts of stability.



4 S. N. Stelmastchuk

Definition 3.4. Let g ∈ G be a fixed point of the linear vector field X . We call g

1) stable if for all g-neighborhood U there is a g-neighborhood V such that ϕt(V) ⊂ U for

all t ≥ 0;

2) asymptotically stable if it is stable and there exists a g-neighborhood W such that

limt→∞ ϕt(x) = g whenever x ∈ W;

3) exponentially stable if there exist c, µ and a g-neighborhood W such that for all x ∈ W
it holds that

̺(ϕt(x), g) ≤ ce−µt̺(x, g), for all t ≥ 0;

4) unstable if it is not stable.

Since property 3) is local, it does not depend of the metric on G. Because of this reason,

we will assume from now on that ̺ is a left invariant Riemannian metric.

In order to study the stability, let us work with the Lyapunov exponents. We follow [5] in

assuming that the Lyapunov exponent can be written as

λ(e, v) = lim sup
t→∞

1

t
log(‖etD(v)‖),

where v is in g and the norm ‖ · ‖ is given by the left invariant metric.

We will use λ1, . . . , λk to denote k distinct values of the real parts eigenvalues of the deriva-

tion D. Then, the Lie algebra g can be written as

g =
k

⊕

i=1

gλi where gλi :=
⊕

α;Re(α)=λi

gα.

Furthermore, from Theorem 4.2 in [5] we see that

λ(e, v) = λ ⇔ v ∈ gλ :=
⊕

α;Re(α)=λ

gα. (3.2)

Using the Lyapunov exponent we show a first result about stability of linear flow ϕt.

Theorem 3.5. For any linear vector field X on a semisimple Lie group G, any fixed point is neither
asymptotically nor exponentially stable to the linear flow ϕt.

Proof. We first observe that the Lyapunov exponents satisfy the following: λ(g, v) = λ(e, v)
for each v ∈ g. We need only consider the assertion at identity e. Suppose, contrary to our

claim, that the identity e is either asymptotically or exponentially stable. By Theorem 4.5 in

[5], it follows that all Lyapunov exponents of D are negatives. From (3.2) it follows that any

eigenvalue of D has the real part negative. It means that X is hyperbolic, and this contradicts

Proposition 3.3.

Despite any fixed point is neither asymptotically nor exponentially stable, they are stable

if G is compact and semisimple as we will show. For this purpose, we begin by introducing

an appropriate metric on G.

Let G be a compact, semisimple Lie group. It implies that the Cartan–Killing form is

negative defined. Thus we adopt the metric 〈·, ·〉 given by negative of the Cartan–Killing form

on g. Since 〈·, ·〉 satisfies

〈Ad(g)X, Ad(g)Y〉 = 〈X, Y〉 , ∀ g ∈ G and X, Y ∈ g,



Linear flows on compact, semisimple Lie groups 5

it follows that 〈·, ·〉 is an invariant Riemannian metric on G (see [1] for more details). From

now on we make the assumption: every compact, semisimple Lie group is equipped with the

Riemannian metric given by Cartan–Killing form.

Adopting these invariant metrics and using the Lyapunov exponents we obtain an alge-

braic characterization of linear vector fields on compact, semisimple Lie groups.

Proposition 3.6. Let X be a linear vector field on a compact, semisimple Lie group G. Then G is the
central group of linear flow ϕt.

Proof. We begin by writing X = X + I∗(X) with X ∈ g. It is clear that D = −Ad(X). Then,

for any v ∈ g we have

‖etDv‖ = ‖et (−Ad(X))v‖ = ‖Ad(exp(−tX))v‖ = ‖v‖,

where we used the Ad-invariance of metric at last equality. Thus, Lyapunov exponents can be

written as

λ(e, v) = lim sup
t→∞

1

t
log(‖etDv‖) = lim sup

t→∞

1

t
log(‖v‖) = 0.

Therefore, λ1 = . . . = λk = 0. Using the relation (3.2) we conclude that g = g0. Since G is

connected, G = G0. It means that G is the central group associated to the linear flow ϕt.

Despite Proposition above is presented in [4], we proved it because our proof is done by

dynamical concepts instead of algebraic concepts.

Our next step is to show that the linear flow ϕt satisfies some metric properties. Let (M, g)
be a Riemannian manifold, a Riemannian distance is ρ associated to g is defined by

ρ(x, y) = inf
σ

{

∫ 1

0
g(σ̇(s), σ̇(s))1/2ds

}

,

where the infimum is taken over all smooth curves σ such that σ(0) = x and σ(1) = y.

Proposition 3.7. Let X be a linear vector field on a compact, semisimple Lie group G. Then ϕt is an
isometry for all t.

Proof. We begin writing X = X + I∗X where X is a right invariant vector field. Thus for any

g, h ∈ G and t ∈ R we see that

ρ(ϕt(g), ϕt(h)) = ρ
(

Lexp(tX) ◦ Rexp(−tX)(g), Lexp(tX) ◦ Rexp(−tX)(h)
)

,

where L and R stands for the left and right translation. Since left and right translations are

isometries on G to the invariant distance given by Cartan–Killing form, it follows that

ρ(ϕt(g), ϕt(h)) = ρ(g, h),

which shows that ϕt is an isometry for any t ∈ R.

Before our next result, we need to introduce some notations. For r > 0 we will denote an

sphere of radius r with center g by Sr(g) = {x ∈ G : ρ(x, g) = r} and an open ball of radius r
with center g by Br(g) = {x ∈ G; ρ(x, g) < r}.

Proposition 3.8. If G is a compact, semisimple Lie group, then for each g ∈ G the linear flow ϕt(g)
is in a sphere.



6 S. N. Stelmastchuk

Proof. We first choose an arbitrary point g ∈ G and write r = ρ(g, e). Then

ρ(ϕt(g), e) = ρ(ϕt(g), ϕt(e)) = ρ(g, e) = r, ∀ t.

It means that ϕt(g) ∈ Sr for all t, and the proof is complete.

A direct consequence of the proposition above is about ω-limit and α-limit sets.

Corollary 3.9. If G is a compact, semisimple Lie group, then ω-limit and α-limit sets of g are in
spheres.

We can now to prove our main result of our section.

Theorem 3.10. Let G be a compact, semisimple Lie Group. Then any fixed point of linear flow ϕt is
an stable point.

Proof. We begin by fixing an arbitrary fixed point g of G. We also remember that a Rieman-

nian distance induces the topology of Riemannian manifold. So it is sufficient to consider as

neighborhoods of g open balls Br(g) where r > 0 is arbitrary. Choose r0 > 0 such that r0 ≤ r
and consider the ball Br0(g). Taking any y ∈ Br0(g) we see that

ρ(ϕt(y), g) = ρ(y, g) < r0 ≤ r,

where we used Proposition 3.7 at first equality. It shows that ϕt(Br0(g)) ⊂ Br(g). Conse-

quently, by definition, g is a stable point to the linear flow ϕt.

Hereafter we give a characterization of derivations on compact, semisimple Lie groups.

Before we need to introduce some concepts. Following [3], if for an eigenvalue µ all com-

plex Jordan blocks are one-dimensional, i.e., a complete set of eigenvectors exists, it is called

semisimple. Equivalently, the corresponding real Jordan blocks are one-dimensional if µ is

real and two-dimensional if µ, µ̄ ∈ C \ R.

Theorem 3.11. On a compact, semisimple Lie group G, every derivation has only semisimple eigen-
values.

Proof. Let D be a derivation on G. From Theorem 3.10 we see that e is a stable point of the

linear flow ϕt associated to D. Since (dϕt)e = etD, it follows that the linearization of ġ = X (g)
is X = D(X). Being exp a local diffeomorphism and e stable, it follows that 0 is stable. From

Proposition 3.6 we know that eigenvalues of D has real part null. Then Theorem 1.4.10 in [3]

assures that every eigenvalue of D is semisimple, which gives the proof.

Theorem above is fundamental to study periodic orbits of linear flows.

To end this section, we study the stability of periodic orbits to the linear flows. A periodic

orbit Γ of a linear flow ϕt is stable if for each open set V that contains Γ, there is an open set

W ⊂ V such that every solution, starting at a point in W at t = 0, stays in V for all t ≥ 0.

Before presenting our next result, we need to introduce the following notation. Take g ∈ G
and consider the orbit ϕt(g). Write for any r > 0, Tuber(ϕt(g)) = {h ∈ G : ρ(h, ϕt(g)) < r for

some t}.

Proposition 3.12. Let X be a linear vector field on a compact, semisimple Lie group G. If h ∈

Tuber(ϕt(g)), then ϕs(h) ∈ Tuber(ϕt(g)) for any s ∈ R.
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Proof. Suppose that h ∈ Tuber(ϕt(g)). Then for some t we have ρ(h, ϕt(g)) < r. From Propo-

sition 3.7 it follows for any s ∈ R that

ρ(ϕs(h), ϕt+s(g)) = ρ(h, ϕt(g)) < r,

which implies that ϕs(h) ∈ Tuber(ϕt(g)).

Theorem 3.13. Let X be a linear vector field on a compact, semisimple Lie group G. Then every
periodic orbit is stable.

Proof. Let g ∈ G such that ϕt(g) is a periodic orbit of linear flow ϕt. We consider a open set

V such that ϕt(g) ⊂ V. Take r0 = inf{r : Br(ϕt(g)) ⊂ V, ∀ t ≥ 0}. Thus it is sufficient to take

U = Tuber0(ϕt(g)) and to apply the proposition above.

4 Periodic orbits

In this section, we study periodic orbits of a linear flow in a compact, semisimple Lie group

G. The key of our study is Theorem 3.11 because it describes all eigenvalues of any derivation

on G.

We begin by recalling that a linear vector field X can be written as X = X + I∗X, where X
is a right invariant vector field, I∗X is the left invariant vector field associated to X, and I∗ is

the differential of inverse map i(g) = g−1. In this way, we can rewrite the differential equation

(3.1) as

ġ = X(g) + (I∗X)(g).

It implies that there exists a relation between flows of the linear dynamical system ġ = X (g)
and of the invariant one ġ = X(g). In fact, direct accounts shows that, for all g ∈ G, ϕt(g) is

a solution of (3.1) if, and only if, ϕt(g) · exp(tX) is a solution of ġ = X(g). It suggests us that

there exists a relation between periodic orbits of the linear flow ϕt and its associated invariant

flow exp(tX). Therefore, our next step is to investigate this fact.

Proposition 4.1. Let X be a linear vector field on a compact, semisimple Lie group G. The following
sentences are equivalent:

(i) for every g ∈ G the invariant flow exp(tX)g is periodic;

(ii) the identity e is a periodic point of invariant flow exp(tX);

(iii) for each g the point Ad(g) is periodic with respect to the flow etD.

Furthermore, any assertion above implies that any point g ∈ G is a periodic point of linear flow ϕt.

Proof. (i) ⇔ (ii) If for every g ∈ G the orbit exp(tX)g is periodic, then e is a periodic point of

the curve exp(tX). On contrary, suppose that e is a periodic point of the flow exp(tX), that is,

there is a s > 0 such that exp((t + s)X) = exp(tX). Then for any g ∈ G

exp((t + s)X)g = (exp((t + s)X) · e) · g = exp(tX)g.

(i) ⇔ (iii) Since G is a semisimple Lie group, it follows

Ad(exp(tX) · g) = et Ad(X) Ad(g) = etD Ad(g).
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We thus get the equivalence.

Suppose now that e is a periodic point of the flow exp(tX), then there is a s > 0 such that

exp(tX) = exp((t + s)X). Thus

ϕt+s(g) = exp((t + s)X) · g · exp(−(t + s)X) = exp(tX) · g · exp(−tX) = ϕt(g),

which shows that g is a periodic point of ϕt.

The interest of the proposition above is that periodic orbits of linear or invariant flows are

equivalents on compact, semisimple Lie groups.

We are now in position to show our main result.

Theorem 4.2. Let G be a compact, semisimple Lie group. Assume that X is a linear vector field on
G, that D and X are its associated derivation and invariant vector field, respectively. The following
sentences are equivalent:

(i) there exists a periodic orbit for the right invariant flow exp(tX);

(ii) the eigenvalues of the derivation D = −Ad(X) are the form 0 or ±α1 i, . . . ,±αr i where αi 6= 0,
i = 1, . . . , r, and αi/αj is a rational for i, j = 1, . . . , r.

Furthermore, the sentences above implies that there exists a periodic orbit for the linear flow ϕt.

Proof. We first observe that (i) assures that ϕt has a periodic orbit by Proposition 4.1. We are

going to show that (i) is equivalent to (ii). For this, it is sufficient to consider e as a periodic

point to the flow exp(tX) with period T > 0. Then for all t ∈ R

exp((t + T)X) = exp(tX) ⇔ exp(TX) = e ⇔ eTD = Id.

Take the Jordan form J of D. A simple account shows that eTJ = Id. Since any eigenvalues of D

is semisimple, its real Jordan Block has dimension 1 or 2 if it is real or complex, respectively. If

0 is eigenvalue of D, then its real Jordan block is written as J0 = [0]. Therefore etJ0 is constant.

It implies that in direction of 0 the etJ is constant. Consequently, solutions associated to 0 are

trivially periodic. Suppose that there are non-null eigenvalues. From Proposition 3.6 these

eigenvalues are of the form ±αi i, i = 1, . . . , r. By Theorem 3.11, its real Jordan blocks are
(

cos(tαi) − sin(tαi)

sin(tαi) cos(tαi)

)

, i = 1, . . . r.

As eTJ = Id we have αi · T = pi · 2π for some pi ∈ Z, i = 1, . . . , r. It entails for any i, j = 1, . . . , r
that αi/αj = pi/pj is a rational number

Reciprocally, suppose that the eigenvalues of D are 0 or ±α1 i, . . . ,±αr i where αi 6= 0,

i = 1, . . . , r and αi/αj is rational for i, j = 1, . . . n. For the eigenvalue 0 we have that the solution

is constant. We thus consider the eigenvalues ±αi i with αi 6= 0. Being ±αi i semisimple, every

real Jordan block associated to it has dimension two and the solution applied at this block

gives the following matrix
(

cos(tαi) − sin(tαi)

sin(tαi) cos(tαi)

)

.

By assumption, there exists pij, qij ∈ Z with qij > 0 such that αi/αj = pij/qij for i, j = 1, . . . r.

In particular, we can written αi = (pi1/qi1)α1 for i = 2, . . . , r. Assuming that α1 > 0 it is

sufficient to take T = q21q31 . . . qr1(2π/α1) to see that J satisfies eTJ = Id. In other words, Id is

a periodic point of eTJ with period T > 0, which is equivalent Id to be periodic point of eTD.

Consequently, by Proposition 4.1, the right invariant flow exp(tX) is periodic with period of

T > 0.
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Remark 4.3. The theorem above fails if αi/αj is irrational for some i and j in {1, . . . r} because

the flow etJ in the proof of theorem above is a flow of a harmonic oscillator. The bidimensional

case is treated in Section 6.2 of [6].

Corollary 4.4. Let G be a compact, semisimple Lie group with dimension 3. If X is a right invariant
flow, then for every g ∈ G the orbit exp(tX) · g of the invariant flow is periodic. In consequence, the
orbit ϕt(g) of the linear flow is periodic for all g ∈ G.

Proof. It is sufficient to observe that the derivation D = − ad(X) has only eigenvalues 0, α i,

and −α i with α ∈ R∗.

5 Applications

In this section, our wish is to study the periodic orbits on compact, semisimple Lie groups of

lower dimension. In fact, we are interested to describe the periodic orbits of linear flows on

SO(3) and SU(2) and to study the periodic orbits of linear flows on SO(4).

5.1 Linear flows on SO(3) and SU(2)

Our first case is the orthogonal group

SO(3) = {g ∈ R
3×3 : ggT = 1, det g = 1}.

It is well known that its Lie algebra is

so(3) =











0 −z y
z 0 −x
−y x 0



 : x, y, z ∈ R







.

Let X be a linear vector field on SO(3). Then there exists a right invariant vector field X
such that X = X + I∗X. A direct calculus shows that eigenvalues of D = − ad(X) are

{

0,−
√

−x2 − y2 − z2,
√

−x2 − y2 − z2

}

.

Write λ1 = −
√

−x2 − y2 − z2 and λ2 =
√

−x2 − y2 − z2. Using functional calculus we obtain

exp(tX) =
cosh(tλ1)− 1

λ2
1

X2 +
sinh(tλ1)

λ1
X + Id.

Therefore it is possible to give the solution of linear flow ϕt on SO(3).

Proposition 5.1. Let X be a linear vector field on SO(3). Then the solution of linear flow ϕt(g)
associated to X is

(

cosh(tλ1)− 1

λ2
1

X2+
sinh(tλ1)

λ1
X+ Id

)

· g ·

(

cosh(tλ2)− 1

λ2
2

X2+
sinh(tλ2)

λ2
X+ Id

)

,

where X is the right invariant vector field associated to X and

λ1 = −
√

−x2 − y2 − z2 and λ2 =
√

−x2 − y2 − z2.
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Corollary 4.4 now assures the characterization of periodic orbits of the linear flow ϕt.

Proposition 5.2. Under assumptions above,

(i) every orbit of the invariant flow exp(tX) is periodic;

(ii) every orbit of the linear flow ϕt is periodic.

Our other case is the unitary group SU(2), which is a matrix group given by

SU(2) =
{

g ∈ C
2×2 : ggT = 1, det g = 1

}

.

The Lie algebra associated to SU(2) is described as

su(2) =

{[ i
2 x 1

2 (iz + y)
1
2 (iz − y) − 1

2 x

]

: x, y, z ∈ R

}

.

Let X be a linear vector field on SU(2) and X the right invariant vector field associated to

it. In analogous way to the case of SO(3), it is easily to see that eigenvalues of a derivation

D = − ad(X) are
{

0,−
√

−x2 − y2 − z2,
√

−x2 − y2 − z2

}

.

In consequence,

Proposition 5.3. Under assumptions above,

(i) every orbit of some invariant flow exp(tX) is periodic;

(ii) every orbit of some linear flow ϕt is periodic.

5.2 Periodic orbits on SO(4)

In this subsection, our wish is to give a condition for the orbits of invariant or linear flow on

SO(4) be or not be periodic. Let so(4) be the Lie algebra of SO(4) given by























0 −x −y −z
x 0 −u −v
y u 0 −w
z v w 0









: x, y, z, u, v, w ∈ R















.

Consider the basis β for so(4) that consists of 4 × 4 matrices e12, e13, e14, e23, e24, e34 that have 1

in the (i, j) entry, −1 in the (j, i) entry, and 0 elsewhere (1 ≤ i < j ≤ 4). A computation of Lie

brackets gives

[e12, e13] = e23, [e12, e14] = e24, [e12, e23] = −e13, [e12, e24] = −e14, [e12, e34] = 0,

[e13, e14] = e34, [e13, e23] = e12, [e13, e24] = 0, [e13, e34] = −e14, [e14, e23] = 0,

[e14, e24] = e12, [e14, e34] = e13, [e23, e24] = e34 [e23, e34] = −e24, [e24, e34] = e23.

Let X be a linear vector field on SO(4). Let us denote by D = −Ad(X) the associated

derivation to X where X is an right invariant vector field on SO(4). Our next step is to

describe the derivation D. To do this, write

X = ae12 + be13 + ce14 + de23 + ee24 + f e34, a, b, c, d, e, f ∈ R.
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By Lie brackets above, we compute

D = − ad(X) =



















0 −d −e b c 0

d 0 − f −a 0 c
e f 0 0 −a −b
−b a 0 0 − f e
−c 0 a f 0 −d
0 −c b −e d 0



















.

Some calculus show that the eigenvalues of D = − ad(X) are

{

0, 0,±
√

−(a + f )2 − (b − e)2 − (c + d)2,±
√

−(a + f )2 − (b + e)2 − (c − d)2

}

.

We observe that the eigenvalues are according to Theorem 3.11. We now are in a position to

give a condition that characterizes periodic orbits of an invariant or linear flow.

Theorem 5.4. Let X be a linear vector field on SO(4). Consider the derivation D = − ad(X) of X ,
where X is a right invariant vector field such that

X = ae12 + be13 + ce14 + de23 + ee24 + f e34, a, b, c, d, e, f ∈ R.

A necessary and sufficient condition to every orbit that is not a fixed point of the invariant flow exp(tX)

be periodic is that
√

(a + f )2 + (b − e)2 + (c + d)2

(a + f )2 + (b + e)2 + (c − d)2
(5.1)

is a rational number. The last condition is satisfies if be = cd.

Proof. It is a direct application of Theorem 4.2.

Corollary 5.5. Under conditions of Theorem above, if (5.1) is a rational number, then every orbit of
the linear flow ϕt associated to derivation D that is not a fixed point is periodic.

As a direct application of the theorem above, each right invariant vector field of the basis

β = {e12, e13, e14, e23, e24, e34} yields periodic orbits for the linear or invariant flows.
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Abstract. This paper is dedicated to studying the following semilinear Schrödinger
system











−∆u + V1(x)u = Fu(x, u, v) in R
N ,

−∆v + V2(x)v = Fv(x, u, v) in R
N ,

u, v ∈ H1(RN),

where the potential Vi are periodic in x, i = 1, 2, the nonlinearity F is assumed to be
super-quadratic at some x ∈ R

N and asymptotically quadratic otherwise. Under a local
super-quadratic condition of F, an approximation argument and variational method are
used to prove the existence of Nehari–Pankov type ground state solutions and the least
energy solutions.

Keywords: Schrödinger system, local super-quadratic condition, ground state solution.
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1 Introduction

We consider the following system of semilinear Schrödinger equations:















−∆u + V1(x)u = Fu(x, u, v) in R
N ,

−∆v + V2(x)v = Fv(x, u, v) in R
N ,

u, v ∈ H1(RN),

(1.1)

where V1, V2 ∈ C(RN , R), F : R
N × R

2 → R satisfy the following assumptions:

(V) V1, V2 ∈ C(RN , R) are 1-periodic in xj, j = 1, 2, . . . , N, and

sup[σ(−∆ + Vi) ∩ (−∞, 0)] =: Λi < 0 < Λi := inf[σ(−∆ + Vi) ∩ (0, ∞)];

BCorresponding author. Email: 19010701008@mail.hnust.edu.cn
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(F1) F ∈ C1(RN × R
2, [0, ∞)) and there exist constants p ∈ (2, 2∗), C1 > 0 such that

|Fz(x, z)| ≤ C1(1 + |z|p−1), ∀(x, z) ∈ R
N × R

2,

where Fz := (Fu, Fv) = ∇F, 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := +∞ if N = 1 or 2;

(F2) |Fz(x, z)| = o(|z|) as |z| → 0 uniformly in x ∈ R
N .

From (V), (F1) and (F2), we can easily get that the critical points of functional Φ are the
solutions of (1.1), here Φ is defined as:

Φ(z) =
1
2

∫

RN

[

|∇u|2+V1(x)|u|2+ |∇v|2 + V2(x)|v|2
]

dx−
∫

RN
F(x, z)dx, z = (u, v) ∈ E, (1.2)

where E = H1 × H2 is defined in Section 2.
There is a scalar case of the Schrödinger system:

{

−∆u + V(x)u = ∇F(x, u), x ∈ R
N ,

u ∈ H1(RN),
(1.3)

we can easily obtain that case when V1 = V2 and u = v. That equation has been widely
studied in the literature, such as [2, 9, 15, 16, 30, 32].

Solution of (1.1) was related to the following system:
{

−i ∂Ψ

∂t = ∆Ψ − V1(x)Ψ + F1(x, Ψ), x ∈ R
N , t ≥ 0,

−i ∂Φ

∂t = ∆Φ − V2(x)Φ + F2(x, Φ), x ∈ R
N , t ≥ 0,

where i denotes the imaginary unit, V1 and V2 are the relevant potentials, Φ and Ψ represent
the condensate wave functions. This type of Schrödinger systems arise in nonlinear optics,
and have extensively been applied in many areas, such as the investigation of pulse propaga-
tion, Bose–Einstein condensates, Hartree–Fock theory for a double condensate, gap solitons
in photonic crystals and so on, see as [6, 10, 13, 14, 22, 31]. In recent years, many researchers
were interested in such type of systems, we refer the readers to [1, 3–7, 17–20, 24, 25].

Manassés and João [29] investigated the existence of nontrivial solutions for the following
strongly coupled system in R

2:
{

−∆u + V(x)u = g(x, v), v > 0 in R
2,

−∆v + V(x)v = f (x, u), u > 0 in R
2,

(1.4)

where V : R
2 → R may change sign and vanish, f , g are superlinear at infinity and satisfy

critical or subcritical growth of Trudinger–Moser type. By using the linking geometry and a
Trudinger–Moser type inequality, they obtained the boundedness of a Palais–Smale sequence,
and proved there exists a subsequence that converges to a weak solution of (1.4). Finally,
applying a Galerkin approximation procedure, they proved the existence of solutions in the
subcritical case and critical case respectively.

Qin and Tang [23] established a nontrivial solution for the following elliptic system:














−∆u + U1(x)u = Fu(x, u, v) in R
N ,

−∆v + U2(x)v = Fv(x, u, v) in R
N ,

u, v ∈ H1(RN),
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where Ui(x) ∈ C(RN , R), i = 1, 2, F ∈ C1(RN × R
2, R) and ∇F = (Fu, Fv). In that paper, the

authors distinguished two situations about Ui and F: periodic and asymptotically periodic
case. For the periodic case, by using the diagonal method [32], the authors found a minimizing
Cerami sequence outside the Nehari–Pankov manifold, then they proved the existence of the
least energy solution and the ground state solution. For the latter case, by using a generalized
linking theorem, they obtained a nontrivial solution. In that paper, F satisfies the following
super-quadratic assumption:

(SQ) lim|z|→∞

F(x,z)
|z|2 = ∞ uniformly in x.

By using (SQ), one can prove the linking geometry, mountain pass geometry and verify the
boundedness of Cerami or Palais–Smale sequence. Moreover, it is standard to show that
N− 6= ∅, where

N− := {z ∈ E \ E− : 〈Φ′(z), z〉 = 〈Φ′(z), ζ〉 = 0, ∀ζ ∈ E−}, (1.5)

here E− defined in (2.11). Introduced by Pankov [22], N− is a natural constraint and contains
all nontrivial critical points of the energy functional Φ, and every minimizer u of Φ on the
manifold N− is a solution which is called a ground state solution of Nehari–Pankov type.
Also, the set N− plays a crucial role in proving the existence of the ground state solution.

Later, Tang et al. [33] investigated the existence of the ground state solutions about (1.3)
under the assumptions (V), (F1), (F2) and the following assumptions:

(F3) There exists a domain G ⊂ R
N such that lim|z|→∞

F(x,z)
|z|2 = ∞ a.e. x ∈ G.

(F4) z 7→ Fz(x,z)
|z| is non-decreasing on |z| 6= 0.

(F5) F (x, z) := 1
2 Fz(x, z) · z − F(x, z) ≥ 0, and there exist some constants C2 > 0, R0 > 0 and

σ ∈ (0, 1), such that
( |Fz(x, z)|

|z|σ
)κ

≤ C2F (x, z), ∀ |z| ≥ R0

holds with κ = 2N
2N−(1+σ)(N−2) if N ≥ 3, or with κ ∈

(

1, 2
1−σ

)

if N = 1, 2.

Since they relaxed condition (SQ) to the above local version (F3), it is difficult to demonstrate
N− 6= ∅ and prove the boundedness of Cerami or Palais–Smale sequences for the energy
functional Φ. They use some new techniques to conquer the above difficulties. For the first
one, by using linking geometry and verifying sup Φ(z) < ∞ for z ∈ E− ⊕R

+ ē+, they illustrate
that Φ is weakly upper semi-continuous, hence, they can prove that N− 6= ∅. For the second,
they consider an approximation argument to find a minimizing sequence satisfying the PS
condition for the corresponding functional. Finally, by using the uniqueness of the continuous
spectrum about the operator Ai = −∆ +Vi, they make a contradiction to get the boundedness
of the above sequence.

Recently, Qin et al. [26] proved the existence of nontrivial solutions for (1.1) by using
generalized linking theorem and variational methods. More precisely, they found a Cerami
sequence for the corresponding energy functional, and then proved the boundedness of the
Cerami sequence. By applying linking geometry, they proved there exists a ground state
solution of (1.1) with assumptions (V), (F1)–(F3). Besides, they used the following assumption
to prove the boundedness of Cerami sequences:
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(F6’) F (x, z) ≥ 0, and there exist some constants C̃1 > 0, δ0 ∈ (0, Λ0) and σ ∈ (0, 1), such that

|Fz(x, z)|
|z| ≥

√
2

2
τ =⇒

( |Fz(x, z)|
|z|σ

)κ

≤ C̃1F (x, z), ∀ (x, z) ∈ R
N × R

2

holds with κ = 2N
2N−(1+σ)(N−2) if N ≥ 3, or with κ ∈

(

1, 2
1−σ

)

if N = 1, 2, where

τ := Λ0 − δ0, Λ0 := min
{

−Λ1, Λ1, −Λ2, Λ2
}

. (1.6)

To the best of our knowledge, there is few result about the ground state solution of system
(1.1). Motivated by [26, 33], we aim to prove the existence of ground state solutions about
system (1.1) by using approximation argument and variational method. We try to obtain the
ground state solutions of Nehari–Pankov type and least energy solutions under assumptions
(V), (F1)–(F5) and the following conditions:

(F6) F(x, z) ≥ 0,F (x, z) ≥ 0, and there exist constants C3 > 0, δ0 ∈ (0, Λ0) and σ ∈ (0, 1),
such that

|Fz(x, z)|
|z| ≥ τ =⇒

( |Fz(x, z)|
|z|σ

)κ

≤ C3F (x, z), ∀ (x, z) ∈ R
N × R

2

holds with κ = 2N
2N−(1+σ)(N−2) if N ≥ 3, or with κ ∈

(

1, 2
1−σ

)

if N = 1, 2, note that τ is the
same with (1.6).

Now, we state our results of this paper.

Theorem 1.1. Let (V), (F1)–(F5) be satisfied. Then (1.1) has a Nehari–Pankov type ground state

solution.

Theorem 1.2. Let (V), (F1)–(F3) and (F6) be satisfied. Then (1.1) has a least energy solution z̄ in K,

where K := {z ∈ E \ {0} : Φ′(z) = 0}.

There is an example to illustrate that the assumptions (F3)–(F6) can be satisfied.
Let N ≥ 3 and F(x, z) = cos2(2πx1)|z|2 ln(1 + |z|2), it is easy to verify that

Fz(x, z) = 2z cos2(2πx1)

[

ln(1 + |z|2) + |z|2
1 + |z|2

]

and

F (x, z) =
cos(2πx1)|z|4

1 + |z|2 ≥ 0.

It is clear that F satisfies (F1)–(F6) with G = (− 1
8 , 1

8 )× R
N−1, but does not satisfy (SQ).

Remark 1.3. Assume that (F1), (F2), (F4) and (F5) hold. Then (F6) holds also. See as [33,
Lemma 3.8]. Moreover, (F6’) implies (F6).

To prove the existence of ground state solutions about (1.1), at first, we show that N− 6= ∅.
Inspired by Tang [33], we consider an approximation argument about the auxiliary function-
als Iǫ(z) = Φ(z)− ǫ

∫

RN |z|pdx, which makes the corresponding problem superlinear in R
N .

Moreover, by demonstrating a key inequality (3.3) and using N− 6= ∅, we prove that Iǫn(zǫn)

is bounded and I′ǫn
(zǫn) = 0, here ǫn → 0 as n → ∞. Finally, by using Sobolev embed-

ding theorem and Lion’s concentration compactness principle, we prove the sequence {zǫn} is
bounded, then we can get that {zǫn} is convergent to a solution of (1.1).

The reminder of this paper is organized as follows. In Section 2, some preliminaries are
presented. In Section 3, we give the proof of Theorem 1.1 and Theorem 1.2. For convenience,
let C0, C̃0, C1, C̃1, . . . denote different constants in different places.
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2 Preliminaries

Let Ai = −∆ + Vi, here and in what follows i = 1, 2. Then Ai are self-adjoint in L2(RN) with
domain D(Ai) = H2(RN) (see [12, Theorem 4.26]). Let {Ei(λ) : −∞ ≤ λ ≤ +∞} and |Ai| be
the spectral family and the absolute value of Ai, respectively, and |Ai|1/2 be the square root of
|Ai|. Set Ui = id − Ei(0)− Ei(0−). Then Ui commutes with Ai, |Ai| and |Ai|1/2. Furthermore,
Ai = Ui|Ai| is the polar decomposition of Ai (see [11, Theorem IV 3.3]). Let

Hi = D(|Ai|1/2), H−
i = Ei(0−)Hi, H+

i = [id − Ei(0)]Hi.

For any ui ∈ Hi, fixing i = 1 or i = 2, it is easy to see that ui = ui
− + ui

+ with

u−
i := Ei(0−)ui ∈ H−

i , u+
i := [id − Ei(0)]ui ∈ H+

i (2.1)

and
Aiu

−
i = −|Ai|u−

i , Aiu
+
i = |Ai|u+

i , ∀ ui = ui
− + ui

+ ∈ Hi ∩D(Ai). (2.2)

For fixed i taking 1 or 2, we define an inner product

(u, v)Hi
=

(

|Ai|1/2u, |Ai|1/2v
)

L2
, u, v ∈ Hi (2.3)

and the corresponding norm

‖u‖Hi
=

∥

∥

∥
|Ai|1/2u

∥

∥

∥

L2
, u ∈ Hi,

where (·, ·)L2 denotes the inner product of L2(RN), ‖ · ‖Ls stands for the usual Ls(RN) norm,
1 ≤ s < ∞. There are induced decompositions Hi = H−

i ⊕ H+
i which are orthogonal with

respect to both (·, ·)L2 and (·, ·)Hi
. Then

∫

RN

(

|∇ui|2 + Vi(x)|ui|2
)

dx = ‖u+
i ‖2

Hi
− ‖u−

i ‖2
Hi

, ∀ ui = u−
i + u+

i ∈ Hi, i = 1, 2.

Under condition (V), H−
i ⊕ H+

i = Hi = H1(RN) with equivalent norms. Therefore, Hi embeds
continuously in Ls(RN) for all 2 ≤ s < 2∗. Then, there exists a constant γs > 0 such that

‖z‖s ≤ γs‖z‖, ∀z ∈ E, s ∈ [2, 2∗], (2.4)

where ‖ · ‖s stands for the usual Ls(RN , R
2) norm.

Let
E = H1 × H2 (2.5)

equipped with the inner product

〈z, ξ〉 = (u, χ)H1 + (v, ψ)H2 , z = (u, v), ξ = (χ, ψ) ∈ E = H1 × H2 (2.6)

and the corresponding norm

‖z‖ =
[

‖u‖2
H1

+ ‖v‖2
H2

]1/2
, z = (u, v) ∈ E. (2.7)

For any ε > 0, (F1) and (F2) yield the existence of Cε > 0 such that

|Fz(x, z)| ≤ ε|z|+ Cε|z|p−1, ∀ (x, z) ∈ R
N × R

2. (2.8)
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Under (V), a standard argument (see [8, 36]) shows that the solutions of problem (1.1) are
critical points of the functional

Φ(z) =
1
2

∫

RN

[

|∇u|2+V1(x)|u|2+ |∇v|2 + V2(x)|v|2
]

dx−
∫

RN
F(x, z)dx, z = (u, v) ∈ E, (2.9)

Φ is of class C1(E, R), and

〈Φ′(z), ξ〉 =
∫

RN
(∇u∇χ + V1(x)uχ)dx +

∫

RN
(∇v∇ψ + V2(x)vψ)dx

−
∫

RN
(Fu(x, z)χ + Fv(x, z)ψ)dx, ∀ z = (u, v), ξ = (χ, ψ) ∈ E. (2.10)

Let
E+ = H+

1 × H+
2 , E− = H−

1 × H−
2 , (2.11)

then for any z = (u, v) ∈ E, (2.1) yields z = z+ + z− with the corresponding summands

z+ = (u+, v+) ∈ E+, z− = (u−, v−) ∈ E−. (2.12)

Moreover, E+ and E− are orthogonal with respect to the inner products 〈·, ·〉 and (·, ·)2, where
(·, ·)2 is chosen by ((u, v), (χ, ψ))2 = (u, χ)L2 + (v, ψ)L2 for any (u, v), (χ, ψ) ∈ L2(RN , R

2).
Hence

E = E+ ⊕ E−.

It follows from (2.2), (2.3), (2.6) and (2.12) that
∫

RN
[∇u∇χ + V1(x)uχ +∇v∇ψ + V2(x)vψ]dx

= (A1u, χ)L2 + (A2v, ψ)L2

= (u+
1 , χ+

1 )H1 + (v+2 , ψ+
2 )H2 − (u−

1 , χ−
1 )H1 − (v−2 , ψ−

2 )H2

=
〈

z+, ξ+
〉

−
〈

z−, ξ−
〉

, ∀ z = (u, v), ξ = (χ, ψ) ∈ E. (2.13)

and
∫

RN

[

|∇u|2 + V1(x)|u|2 + |∇v|2 + V2(x)|v|2
]

dx = ‖z+‖2 − ‖z−‖2, ∀ z = (u, v) ∈ E. (2.14)

Lemma 2.1. Assume that (V), (F1), (F2) and (F4) hold. Then there exists ρ > 0 such that

inf{Φ(z) : z ∈ E+, ‖z‖ = ρ} > 0. (2.15)

We omit the proof here since it is standard.

Suppose that G ∈ R
N is a bounded domain. We can choose ē := (ēu, ēv) ∈ C∞

0 (RN , R
+) ∩

C∞
0 (G, R

+) satisfying

‖ē+‖2 − ‖ē−‖2 =
∫

RN

[

|∇ēu|2 + V1(x)|ēu|2 + |∇ēv|2 + V2(x)|ēv|2
]

dx

=
∫

G

[

|∇ēu|2 + V1(x)|ēu|2 + |∇ēv|2 + V2(x)|ēv|2
]

dx ≥ 1,

then ē+ = (ē+u , ē+v ) 6= (0, 0).
Owing to prove N− 6= ∅, we also need the following lemma.
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Lemma 2.2. Assume that (V), (F1), (F2) and (F5) hold. Then sup Φ(E− ⊕ R
+ ē+) < ∞ and there is

Rē > 0 such that

Φ(z) ≤ 0, for z ∈ E− ⊕ R
+ ē+ with ‖z‖ ≥ Rē. (2.16)

Proof. As the ideal of [34, Lemma 3.2 and Corollary 3.3], we can prove Lemma 2.2 by veri-
fying that there is r > ρ such that sup Φ(∂Q) ≤ 0, where Q = {w + se+ : w ∈ E−, s ≥ 0,
‖w + se+‖ ≤ r}.

Lemma 2.3. Assume that (V), (F1), (F2) and (F5) hold. Then N− 6= ∅.

Proof. From Lemma 2.1, Φ(tē+) > 0 for small t > 0. Moreover, by Lemma 2.2, there exists
Rē > 0 such that Φ(z) ≤ 0 for z ∈ (E− ⊕R

+ ē+) \ BRē(0). Since that, 0 < sup Φ(E− ⊕R
+ ē+) <

∞. Hence, we can easily get that Φ is weakly upper semi-continuous on E− ⊕ R
+ ē+. Then,

there exists z0 ∈ E− ⊕ R
+ ē+ such that Φ(z0) = sup Φ(E− ⊕ R

+ ē+). It is obvious that z0 is
a critical point of Φ, that is 〈Φ′(z0), z0〉 = 〈Φ′(z0), ζ〉 = 0 for all ζ ∈ E− ⊕ R

+ ē+. Therefore,
z0 ∈ N− ∩ (E− ⊕ R

+ ē+).

3 The existence of ground state solutions

To prove Theorem 1.1 and Theorem 1.2, we define Iǫ(z) for any ǫ ≥ 0 as follows:

Iǫ(z) = Φ(z)− ǫ
∫

RN
|z|pdx. (3.1)

Let
N−

ǫ = {z ∈ E \ E− : 〈I′ǫ(z), z〉 = 〈I′ǫ(z), ζ〉 = 0, ∀ζ ∈ E−}. (3.2)

Similar to Lemma 2.3, for ǫ ≥ 0, we have N−
ǫ 6= ∅. Then we define mǫ := infN−

ǫ
Iǫ.

Lemma 3.1. Assume that (V), (F1), (F2) and (F4) hold. Then

Iǫ(z) ≥ Iǫ(tz + ζ) +
1
2
‖ζ‖2 +

1 − t2

2
〈I′ǫ(z), z〉 − t〈I′ǫ(z), ζ〉, ∀t ≥ 0, z ∈ E, ζ ∈ E−. (3.3)

Proof. From (2.9), (2.10) and (3.1), we have

Iǫ(z)− Iǫ(tz + ζ)

=
1
2
‖z+‖2 − 1

2
‖z−‖2 −

∫

RN
F(x, z)dx − ǫ

∫

RN
|z|pdx

− t2

2
‖z+‖2 +

1
2
〈tz− + ζ, tz− + ζ〉+

∫

RN
F(x, tz + ζ)dx − ǫ

∫

RN
|tz + ζ|pdx

=
1
2
‖ζ‖2 +

1 − t2

2
〈I′ǫ(z), z〉 − t〈I′ǫ(z), ζ〉

+
1 − t2

2

∫

RN
Fz(x, z) · zdx − t

∫

RN
Fz(x, z) · ζdx +

∫

RN
F(x, tz + ζ)dx −

∫

RN
F(x, z)dx

+
1 − t2

2
pǫ

∫

RN
|z|pdx − ǫ

∫

RN
|z|pdx + ǫ

∫

RN
|tz + ζ|pdx − tpǫ

∫

RN
|z|p−2z · ζdx. (3.4)

From [35, Lemma 4.3], one has

1 − t2

2
Fz(x, z)z − tFz(x, z)ζ + F(x, tz + ζ)− F(x, z) ≥ 0, ∀z ∈ E, ζ ∈ E−, t ≥ 0. (3.5)



8 J. Chen and Y. Q. Li

As in [28, Remark 6], we can get that

1 − t2

2
p|z|p − |z|p + |tz + ζ|p − tp|z|p−2z · ζ ≥ 0, ∀z ∈ E, ζ ∈ E−, t ≥ 0. (3.6)

Then, from (3.4), (3.5) and (3.6), we have

Iǫ(z)− Iǫ(tz + ζ) ≥ 1
2
‖ζ‖2 +

1 − t2

2
〈I′ǫ(z), z〉 − t〈I′ǫ(z), ζ〉.

The proof is completed.

From the above lemma, we can get the following two corollaries.

Corollary 3.2. Assume that (V), (F1), (F2) and (F4) hold. Then for z ∈ N−
ǫ ,

Iǫ(z) ≥ Iǫ(tz + ζ), ∀t ≥ 0, ζ ∈ E−. (3.7)

Corollary 3.3. Assume that (V), (F1), (F2) and (F4) hold. Then

Iǫ(z) ≥
t2

2
‖z‖2 −

∫

RN

[

F(x, tz+) + ǫ|tz+|p
]

dx+
1 − t2

2
〈I′ǫ(z), z〉+ t2〈I′ǫ(z), z−〉, ∀t ≥ 0, z ∈ E.

(3.8)

Lemma 3.4. Assume that (V), (F1), (F2) and (F4) hold. Then, for ǫ ∈ [0, 1],

(i) there exists κ̂ > 0 which does not depend on ǫ ∈ [0, 1] such that

Iǫ(z) ≥ mǫ ≥ κ̂, ∀z ∈ N−
ǫ ; (3.9)

(ii) ‖z+‖ ≥ max{‖z−‖,
√

2mǫ} for all z ∈ N−
ǫ .

Proof. (i) By (F1) and (F2), there exists a constant C4 > 0 such that

F(x, z) + ǫ|z|p ≤ 1
4γ2

2
|z|2 + C4|z|p, ∀x ∈ R

N , z ∈ R
2, ǫ ∈ [0, 1]. (3.10)

In virtue of (2.4), (3.1), (3.7) and (3.10), one has

Iǫ(z) ≥ Iǫ(tz
+) =

t2

2
‖z+‖2 −

∫

RN

[

F(x, tz+) + ǫ|tz+|p
]

dx

≥ t2

4
‖z+‖2 − tpC4‖z+‖p

p

≥ t2

4
‖z+‖2 − tpC4γ

p
p‖z+‖p, ∀z ∈ N−

ǫ , ǫ ∈ [0, 1], t ≥ 0. (3.11)

Choose t = tz := 1

[2C4γ
p
p p]

1
p−2 ‖z+‖

, then it follows from above inequality that

Iǫ(z) ≥
t2
z

4
‖z+‖2 − t

p
z C4γ

p
p‖z+‖p

=
p − 2

4p
[

2C4γ
p
p p

]
2

p−2
=: κ̂ > 0, ∀ǫ ∈ [0, 1], z ∈ N−

ǫ . (3.12)

Hence, (3.9) holds.

(ii) (F4) shows that F(x, z) ≥ 0. Then, it follows from (3.1), (3.2) and (3.9) that (ii) holds.
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Lemma 3.5. Assume that (V), (F1), (F2) and (F4) hold. Then for any ǫ ∈ (0, 1], there exists zǫ ∈ N−
ǫ

such that

Iǫ(zǫ) = mǫ, I′ǫ(zǫ) = 0. (3.13)

Proof. By virtue of [26, Lemma 4.2 and Lemma 4.3], we can get that there exists a bounded
sequence {zǫn} ∈ E such that

Iǫ(zǫn) → c, ‖I′ǫ(zǫn)‖(1 + ‖zǫn‖) → 0, n → ∞, (3.14)

where c ∈ [κ̂, mǫ]. Hence, there exists a constant C̃2 > 0 such that ‖zǫn‖2 ≤ C̃2. If

δ := lim sup
n→∞

sup
y∈RN

∫

B1(y)
|zǫn |2dx = 0,

applying Lion’s concentration compactness principle [36, Lemma 1.21], zǫn → 0 in Ls(RN) for
2 < s < 2∗. By (F1) and (F2), for ǫ = c

4C̃2
2
> 0, there exists C̃ǫ > 0 such that

|Fz(x, z)| ≤ ǫ|z|+ C̃ǫ|z|p−1,

|F(x, z)| ≤ ǫ|z|2 + C̃ǫ|z|p, ∀(x, z) ∈ R
N × R

2.

Thus,

lim sup
n→∞

∫

RN

[

F (x, zǫn) +
p − 2

2
ǫn|zǫn |p

]

dx ≤ 3
2

ǫC̃2
2 +

(

3
2

C̃ǫ + C̃3

)

lim
n→∞

‖zǫn‖p
p =

3
8

c. (3.15)

From (3.1), (3.14) and (3.15), one has

c = Iǫn(zǫn)−
1
2
〈I′ǫn

(zǫn), zǫn〉+ o(1)

=
∫

RN

[

F (x, zǫn) +
p − 2

2
ǫn|zǫn |p

]

dx + o(1)

≤ 3
8

c + o(1).

That is a contradiction, so we have δ > 0.
Going if necessary to a subsequence, we may assume there exists kn ∈ Z

N such that

∫

B1+
√

N(kn)
|zn|2dx >

δ

2
.

Define wn(x) := zn(x + kn) such that

∫

B1+
√

N(0)
|wn|2dx >

δ

2
. (3.16)

In view of Vi(x) and Fz(x, z) are periodic on x, i = 1, 2, we have ‖wn‖ = ‖zn‖ and

Iǫn(wn) → c, ‖I′ǫn
(wn)‖(1 + ‖wn‖) → 0. (3.17)

Going if necessary to a subsequence, we have wn ⇀ w̄ in E, wn → w̄ in Ls
loc(R

N), 2 < s < 2∗

and wn → w̄ a.e. on R
N . Obviously, (3.16) implies that w̄ 6= 0. By a standard argument, we
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have I′ǫn
(w̄) = 0. Then w̄ ∈ N− and Iǫn(wn) ≥ mǫ. Moreover, from (3.17), (F4) and Fatou’s

Lemma, one has

mǫ ≥ c = lim
n→∞

[

Iǫn(wn)−
1
2
〈I′ǫn

(wn), wn〉
]

= lim
n→∞

∫

RN

[

F (x, wn) +
p − 2

2
ǫn|wn|p

]

dx

≥
∫

RN
lim
n→∞

[

F (x, wn) +
p − 2

2
ǫn|wn|p

]

dx

=
∫

RN

[

F (x, w̄) +
p − 2

2
ǫn|w̄|p

]

dx

= Iǫn(w̄)− 1
2
〈I′ǫn

(w̄), w̄〉 = Iǫn(w̄).

This shows that Iǫn(w̄) ≤ mǫ and then Iǫn(w̄) = mǫ.

Lemma 3.6. Assume that (V), (F1), (F2) and (F4) hold. Then for any ǫ ∈ (0, 1] and z ∈ E \ E−, there

exist tǫ(z) > 0 and ζǫ(z) ∈ E− such that tǫ(z)z + ζǫ(z) ∈ N−
ǫ .

We can easily prove this lemma in a similar way as Lemma 2.3, so we omit it.

Proof of Theorem 1.1. Consider the case N ≥ 3. By Lemma 3.5, there exists zǫ ∈ N−
ǫ such that

(3.13) holds, where ǫ ∈ (0, 1].
By Lemma 2.3, N− 6= ∅. Then, for z0 ∈ N− and ζ ∈ E−, Φ(z0) := c̄ ≥ 0 and 〈Φ′(z0), z0〉 =

〈Φ′(z0), ζ〉 = 0 hold. In virtue of Lemma 3.6, there exist tǫ > 0 and ζǫ ∈ E− such that
tǫz0 + ζǫ ∈ N−

ǫ . By Corollary 3.2 and Lemma 3.4, one has

c̄ = Φ(z0) = I0(z0) ≥ I0(tǫz0 + ζǫ)

≥ Iǫ(tǫz0 + ζǫ) ≥ mǫ ≥ κ̂, ∀ǫ ∈ (0, 1). (3.18)

Choose a sequence {ǫn} ⊂ (0, 1] satisfy ǫn → 0 as n → ∞, and

zǫn ∈ N−
ǫn

, Iǫn(zǫn) = mǫn → m̄ ∈ [κ̂, c̄], I′ǫn
(zǫn) = 0. (3.19)

There are three steps to prove Theorem 1.1.

Step 1: We prove that {zǫn} is bounded in E.
Arguing by contradiction, suppose that ‖zǫn‖ → ∞. Set wn = zǫn

‖zǫn‖ , then ‖wn‖ = 1. By the
Sobolev embedding theorem, going if necessary to a subsequence, we have















wn ⇀ w, in E;

wn → w, in Ls
loc(R

N), ∀s ∈ [2, 2∗);

wn → w, a.e. on R
N .

From (3.19), we have

c̄ ≥ Iǫn(zǫn)−
1
2
〈I′ǫn

(zǫn), zǫn〉 =
∫

RN

[

F (x, zǫn) +
p − 2

2
ǫn|zǫn |p

]

dx. (3.20)

In view of Sobolev embedding theorem, there exists a constant C̃4 > 0 such that ‖wn‖2 ≤ C̃4.
If

δ := lim sup
n→∞

sup
y∈RN

∫

B1(y)
|w+

n |2dx = 0, (3.21)
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by Lion’s concentration compactness principle, w+
n → 0 in Ls(RN) for 2 < s < 2∗. Let

R > [2(1 + c̄)]
1
2 . From (F1) and (F2), choose ε = 1

4(RC̃4)2 > 0, there exists C̃5 > 0 such that

lim sup
n→∞

∫

RN

[

F(x, Rw+
n ) + ǫn|Rw+

n |p
]

dx ≤ lim sup
n→∞

[

εR2‖w+
n ‖2

2 + C̃5Rp‖w+
n ‖p

p

]

≤ ε(RC̃4)
2 =

1
4

. (3.22)

Let tn = R
‖zǫn‖ . From (3.19), (3.22) and Corollary 3.3, one has

c̄ ≥ mǫn = Iǫn(zǫn)

≥ t2
n

2
‖zǫn‖2 −

∫

RN

[

F(x, tnz+ǫn
) + ǫn|tnz+ǫn

|p
]

dx

=
R2

2
−

∫

RN

[

F(x, Rw+
n ) + ǫn|Rw+

n |p
]

dx

≥ R2

2
− 1

4
+ o(1)

> c̄ +
3
4
+ o(1),

which is a contradiction, then δ > 0.
Passing to a subsequence, we may assume there exists kn ∈ Z

N such that
∫

B1+
√

n(kn)
|w+

n |2dx >
δ

2
.

Let w̃n = wn(x + kn). Since V1(x) and V2(x) are 1-periodic in each of x1, x2, . . . , xN , then
Ai = −∆ + Vi, E+ and E− are Z

N-translation invariance. Thereby, ‖w̃n‖ = ‖wn‖ = 1, and
∫

B1+
√

n(0)
|w̃+

n |2dx >
δ

2
. (3.23)

Going if necessary to a subsequence , we have














w̃n ⇀ w̃, in E;

w̃n → w̃, in Ls
loc(R

N), ∀s ∈ [2, 2∗);

w̃n → w̃, a.e. on R
N .

Then (3.23) shows that w̃ 6= 0.
Define z̃n = (ũn, ṽn) = zǫn(x + kn), note that zǫn = (uǫn , vǫn). Hence, z̃n

‖zǫn‖ = w̃n → w̃ a.e.

on R
N and w̃ 6= 0, here w̃n = (η̃n, θ̃n). For any ϕ = (µ, ν) ∈ C∞

0 (RN), let φn = (µn, νn) =

ϕ(x − kn). From (3.1) and (3.19), we have

0 = 〈I′ǫn
(zǫn), ‖zǫn‖φn〉

= ‖zǫn‖
∫

RN
(∇uǫn · ∇µn + V1(x)uǫn · µn +∇vǫn · ∇νn + V2(x)vǫn · νn)dx

− ‖zǫn‖
∫

RN

[

Fz(x, zǫn) + pǫn|zǫn |p−2zǫn

]

ϕndx

= ‖zǫn‖
∫

RN
(∇ũn · ∇µ + V1(x)ũn · µ +∇ṽn · ∇ν + V2(x)ṽn · ν)dx

− ‖zǫn‖
∫

RN

[

Fz(x, z̃n) + pǫn|z̃n|p−2z̃n

]

ϕdx
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= ‖zǫn‖2
∫

RN

(

∇η̃n · ∇µ + V1(x)η̃n · µ +∇θ̃n · ∇ν + V2(x)θ̃n · ν
)

dx

− ‖zǫn‖
∫

RN

[

Fz(x, z̃n) + pǫn|z̃n|p−2z̃n

]

ϕdx, (3.24)

which implies
∫

RN

(

∇η̃n · ∇µ + V1(x)η̃n · µ +∇θ̃n · ∇ν + V2(x)θ̃n · ν
)

dx

=
1

‖zǫn‖
∫

RN

[

Fz(x, z̃n) + pǫn|z̃n|p−2z̃n

]

ϕdx. (3.25)

By virtue of (F1), (F2), (F6), (3.20) and the Hölder inequality, one can get that

1
‖zǫn‖

∫

RN

∣

∣

[

Fz(x, z̃n) + pǫn|z̃n|p−2z̃n

]

ϕ
∣

∣dx

≤ 1
‖zǫn‖1−σ

∫

z̃n 6=0

( |Fz(x, z̃n)|
|z̃n|σ

+ pǫn|z̃n|p−1−σ

)

|w̃n|σ|ϕ|dx

=
1

‖zǫn‖1−σ

[

∫

0<|z̃n|<R0

( |Fz(x, z̃n)|
|z̃n|σ

+ pǫn|z̃n|p−1−σ

)

|w̃n|σ|ϕ|dx

+
1

‖zǫn‖1−σ

∫

|z̃n|≥R0

( |Fz(x, z̃n)|
|z̃n|σ

+ pǫn|z̃n|p−1−σ

)

|w̃n|σ|ϕ|dx

]

≤ ‖w̃n‖σ
2∗‖ϕ‖2∗

‖zǫn‖1−σ





∫

|z̃n|≥R0

( |Fz(x, z̃n)|
|z̃n|σ

+ pǫn|z̃n|p−1−σ

)
2∗

2∗−1−σ

dx





2∗−1−σ
2∗

+
C5‖w̃n‖σ

2‖ϕ‖ 2
2−σ

‖zǫn‖1−σ

≤ C6

‖zǫn‖1−σ







‖ϕ‖ 2
2−σ

+ ‖ϕ‖2∗

[

∫

|z̃n|≥R0

(F (x, z̃n) +
p − 2

2
ǫn|z̃n|p)dx

]
2∗−1−σ

2∗






≤ C6

‖zǫn‖1−σ







‖ϕ‖ 2
2−σ

+ ‖ϕ‖2∗

[

∫

RN

(

F (x, z̃n) +
p − 2

2
ǫn|z̃n|p

)

dx

]
2∗−1−σ

2∗






≤ C̃6

‖zǫn‖1−σ

[

‖ϕ‖ 2
2−σ

+ ‖ϕ‖2∗
]

= o(1). (3.26)

It follows from (3.25) and (3.26) that
∫

RN

(

∇η̃n · ∇µ + V1(x)η̃n · µ +∇θ̃n · ∇ν + V2(x)θ̃n · ν
)

dx = o(1), ∀ (µ, ν) ∈ C∞
0 (RN). (3.27)

In view of w̃n ⇀ w̃, one has
∫

RN

(

∇η̃ · ∇µ + V1(x)η̃ · µ +∇θ̃ · ∇ν + V2(x)θ̃ · ν
)

dx = 0, ∀ (µ, ν) ∈ C∞
0 (RN). (3.28)

This implies that Aiw̃ = −∆w̃ + Vi(x)w̃ = 0. Then w̃ is an eigenfunction of the operator Ai,
where i = 1, 2. Note that Ai has only a continuous spectrum. That is a contradiction. Hence,
{‖zǫn‖} is bounded.

Step 2: We prove that there exists z̄ ∈ E such that Φ′(z̄) = 0 and Φ(z̄) ≥ m0 := infN−
0

I0 =

infN− Φ.
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Applying Lion’s concentration principle like in Step 1, we can deduce that there exist a
constant δ1 > 0, a sequence yn ∈ Z

N and a subsequence of {zǫn}, which is still denoted by
{zǫn}, such that

∫

B1(yn)
|zǫn |2dx > δ1. (3.29)

Define ẑn = zǫn(x + yn). By E+ and E− are Z
N-translation invariance, we have ‖ẑn‖ = ‖zǫn‖

and
ẑn ∈ N−

ǫn
, Iǫn(ẑn) = mǫn → m̄ ∈ [κ̂, c̄] , I′ǫn

(ẑn) = 0. (3.30)

Hence, there exists z̄ ∈ H1(RN) \ {0} such that, going if necessary to a subsequence ,














ẑn ⇀ z̄, in H1(RN);

ẑn → z̄, in Ls
loc(R

N), ∀s ∈ [1, 2∗);

ẑn → z̄, a.e. on R
N .

(3.31)

Noting that ẑn = (ûn, v̂n), ϕ = (µ, ν). By virtue of (2.10), (3.1) and (3.31), we have

〈Φ′(z̄), ϕ〉 =
∫

RN
(∇ûn∇µ + V1(x)ûnµ +∇v̂n∇ν + V2(x)v̂nν)dx −

∫

RN
Fz(x, z̄)ϕdx

= lim
n→∞

{

∫

RN
(∇ûn∇µ + V1(x)ûnµ +∇v̂n∇ν + V2(x)v̂nν)dx

−
∫

RN

[

Fz(x, ẑn) + ǫn p|ẑn|p−2ẑn

]

ϕdx

}

= lim
n→∞

〈I′ǫn
(ẑn), ϕ〉 = 0, ∀ϕ ∈ C∞

0 (Ω).

This implies that Φ′(z̄) = 0. Then, z̄ ∈ N−, Φ(z̄) ≥ m0.

Step 3: We prove that Φ(z̄) = m0.
In view of (2.9), (2.10), (3.1), (3.30), (3.31) and Fatou’s Lemma, we have

m̄ = lim
n→∞

mǫn

= lim
n→∞

[

Iǫn(ẑn)−
1
2
〈I′ǫn

(ẑn), ẑn〉
]

= lim
n→∞

∫

RN

[

F (x, ẑn) +
p − 2

2
ǫn|ẑn|p

]

dx

≥
∫

RN
F (x, z̄)dx = Φ(z̄)− 1

2
〈Φ′(z̄), z̄〉 ≥ m0. (3.32)

Let ε > 0. Then there exists wε ∈ N− such that Φ(wε) < m0 + ε. By Lemma 3.6, there exist
tn > 0 and ζn ∈ E− such that tnwε + ζn ∈ N−

ǫn
. From (3.1) and Corollary 3.2, one has

m0 + ε > Φ(wε) = I0(wε) ≤ I0(tnwε + ζn) ≥ Iǫn(tnwε + ζn) ≥ mǫn . (3.33)

Thus,
m̄ = lim

n→∞
mǫn ≤ m0 + ε. (3.34)

Since ε can be any positive number, we have m̄ ≤ m0. In view of (3.32), we can get that
m̄ = m0 = Φ(z̄).

Since the case N = 1, 2 can be dealt with similarly, we omit it. The proof is completed.
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Lemma 3.7. Assume that (V), (F1)–(F3) and (F6) hold. Then

(i) ϑ := inf {‖z‖ : z ∈ K} > 0;

(ii) ̺ := inf {Φ(z) : z ∈ K} > 0.

Proof. We only consider the case where N ≥ 3, since N = 1, 2 can be dealt with similarity.
(i) Similar to [26, Theorem 1.1], we have K 6= ∅. Let {zn} ⊂ K such that ‖zn‖ → ϑ. From

(2.10), we have

‖zn‖2 =
∫

RN
Fz(x, zn)(z

+
n − z−n )dx. (3.35)

In view of F(x, z) ≥ 0 and F (x, z) ≥ 0, then Fz(x, z)z ≥ 0. From (F1), (F2), (2.4) and (3.35), one
has

‖zn‖2 =
∫

zn 6=0

Fz(x, zn)

zn

(

|z+n |2 − |z−n |2
)

dx

≤ 1
2γ2

2
‖z+n ‖2

2 + C7‖zn‖p−2
p ‖z+n ‖2

p

≤ 1
2
‖zn‖2

2 + C8‖zn‖p,

then,
ϑ + o(1) = ‖zn‖ ≥ (2C8)

− 1
p−2 > 0. (3.36)

This implies that (i) holds.
(ii) Let {zn} ⊂ K such that Φ(zn) → ̺. Then 〈Φ′(zn), z̄〉 = 0 for any z̄ ∈ E. From (2.9) and

(2.10), we have

̺ + o(1) = Φ(zn)−
1
2
〈Φ′(zn), zn〉 =

∫

RN
F (x, zn)dx. (3.37)

Let wn = zn

‖zn‖ . Then ‖zn‖2 = 1. Set

Ωn :=
{

x ∈ R
N :

|Fz(x, zn)|
|z| ≤ τ

}

. (3.38)

Since Λ0‖w+
n ‖2

2 ≤ ‖w+
n ‖2, we have

∫

Ωn

Fz(x, zn)

zn
|wn|

(

|w+
n |+ |w−

n |
)

dx

≤ τ‖wn‖2

[

∫

RN
(|w+

n |+ |w−
n |)2dx

]
1
2

≤ τ‖wn‖2
(

‖w+
n ‖2

2 + ‖w−
n ‖2

2
)

1
2 ≤ 1 − δ0

Λ0
. (3.39)

From (F6), (3.36), (3.37) and the Hölder inequality, we have

1
‖zn‖1−δ

∫

RN\Ωn

|Fz(x, zn)|
|zn|σ

|wn|σ|w+
n − w−

n |dx

≤ 1
‖zn‖1−δ





∫

RN\Ωn

( |Fz(x, zn)|
|zn|σ

)
2∗

2∗−1−σ

dx





2∗−1−σ
2∗

‖wn‖σ
2∗‖w+

n − w−
n ‖2∗
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≤ C9

‖wn‖1−σ

[

∫

RN\Ωn

F (x, zn)dx

]
2∗−1−σ

2∗
≤ C10[̺ + o(1)]

2∗−1−σ
2∗ . (3.40)

By virtue of (3.39), (3.40) and (2.10), one has

1 =
‖zn‖2 − 〈Φ′(zn), z+n − z−n 〉

‖zn‖2

=
1

‖zn‖
∫

RN
Fz(x, zn)(z

+
n − z−n )dx

=
∫

Ωn

Fz(x, zn)

zn

[

(w+
n )

2 − (w−
n )

2]dx +
1

‖zn‖1−σ

∫

RN\Ωn

Fz(x, zn)

|zn|σ
|wn|σ

(

w+
n − w−

n

)

dx

≤
∫

Ωn

Fz(x, zn)

zn
(w+

n )
2dx +

1
‖zn‖1−σ

∫

RN\Ωn

Fz(x, zn)

|zn|σ
|wn|σ(w+

n − w−
n )dx

≤ 1 − δ0

Λ0
+ C10[̺ + o(1)]

2∗−1−σ
2∗ .

Then we can get that ̺ > 0.

Proof of Theorem 1.2. Let zn ∈ K such that Φ(zn) → ̺. As [26, Lemma 4.3], we can easily prove
the boundedness of {zn} in E, so we omit it. Then, similar to the proof of Theorem 1.1, we
can get that there exists z̄ ∈ E \ {0} such that Φ′(z̄) = 0 and Φ(z̄) = ̺ > 0.
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Abstract. In this paper we consider the following Schrödinger–Kirchhoff–Poisson-type
system



















−

(

a + b
∫

Ω

|∇u|2dx

)

∆u + λφu = Q(x)|u|p−2u in Ω,

−∆φ = u2 in Ω,

u = φ = 0 on ∂Ω,

where Ω is a bounded smooth domain of R
3, a > 0, b ≥ 0 are constants and λ is a

positive parameter. Under suitable conditions on Q(x) and combining the method of
invariant sets of descending flow, we establish the existence and multiplicity of sign-
changing solutions to this problem for the case that 2 < p < 4 as λ sufficiently small.
Furthermore, for λ = 1 and the above assumptions on Q(x), we obtain the same con-
clusions with 2 < p <

12
5 .
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flow, sign-changing solutions.
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1 Introduction

In this paper we are concerned with the existence of sign-changing solutions to the following

Schrödinger–Kirchhoff–Poisson-type system



















−

(

a + b
∫

Ω

|∇u|2dx

)

∆u + λφu = Q(x)|u|p−2u in Ω,

−∆φ = u2 in Ω,

u = φ = 0 on ∂Ω,

(1.1)
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where Ω is a bounded smooth domain of R
3, a > 0, b ≥ 0 are constants and λ is a positive

parameter.

When a = 1 and b = 0, problem (1.1) reduces to the classical Schrödinger–Poisson system

on bounded domain. We rewrite it in the following more general form











−∆u + λφu = f (x, u) in Ω,

−∆φ = u2 in Ω,

u = φ = 0 on ∂Ω.

(1.2)

It is well known that system (1.2) has a great importance in the study of stationary solu-

tion ψ(x, t) = e−itu(x) of time-dependent Schrödinger–Poisson equations, which describes

quantum (nonrelativistic) particles interacting with the electromagnetic field generated by

the motion. For more details about the physical background of system (1.2), we refer to

[3, 4, 31]. Compared with the researches about system (1.2) on the whole space R
3, there are

few works concerning the Schrödinger–Poisson system on bounded domain, see for instance

[2, 8, 12, 33, 37]. In [33], the authors considered the existence, nonexistence and multiplicity

results by using variational methods when f (x, u) = |u|p−1u with p ∈ (1, 5). Siciliano [37]

studied the same nonlinearity as in [33], and, by means of Lusternik–Schnirelmann theory,

proved that system (1.2) has at least cat
Ω
(Ω) + 1 solutions for p near the critical Sobolev ex-

ponent 6, where cat(·) denotes the Lusternik–Schnirelmann category. Alves and Souto [2]

studied system (1.2) when f has a subcritical growth and obtained the existence of least en-

ergy sign-changing solution by means of variational methods. Using a new sign-changing

version of the symmetric mountain pass theorem, Batkam [12] proved the existence of in-

finitely many sign changing solutions for system (1.2) with critical growth. Bai and He [8]

considered system (1.2) with a general 4-superlinear nonlinearity f and proved the existence

of ground state solution by the aid of the Nehari manifold; moreover, they also obtained the

existence of infinitely many solutions.

On the other hand, if setting φ = 0 and considering the first equation of problem (1.1), we

get the Kirchhoff–Dirichlet problem











−

(

a + b
∫

Ω

|∇u|2dx

)

∆u = f (x, u) in Ω

u = 0 on ∂Ω.

(1.3)

When b 6= 0, problem (1.3) is nonlocal due to the emergence of b
∫

Ω
|∇u|2dx∆u and is related

to the stationary analogue of the following problem











utt −

(

a + b
∫

Ω

|∇u|2dx

)

∆u = f (x, u) in Ω

u = 0 on ∂Ω,

which was introduced by Kirchhoff [22] as a generalization of the classical d’Alembert wave

equation

ρ
∂2u

∂t2
−

(

P0

h
+

E

2L

∫ L

0

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dx

)

∂2u

∂x2
= 0

for free vibration of elastic string, where L is the length of the string, h is the area of cross-

section, E is the Young modulus of the material and P0 is the initial tension. The Kirchhoff’s
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model takes into account the length variation of the string produced by the transverse vibra-

tion, which gives rise to the appearance of nonlocal term. For more mathematical and physical

relevance on problem (1.3), we refer the reader to [6, 16] and the references therein. Recently,

different methods and techniques are used to deal with the existence of sign-changing so-

lutions to problem (1.3) or similar Kirchhoff-type equations, and indeed, some interesting

results were obtained. For example, the method of invariant sets of descent flow was used in

[21, 30, 44] to obtain the existence of a sign-changing solution for problem (1.3). The authors

in [20, 36, 40] considered problem (1.3) or more general Kirchhoff-type equations respectively,

combining constraint variational methods and quantitative deformation lemma. Later, under

some more weak assumptions on f (especially, Nehari-type monotonicity condition has been

removed), with the aid of some new analytical skills and non-Nehari manifold method, Tang

and Cheng [39] improved and generalized some results obtained in [36].

Now we turn our attention to problem (1.1). As far as we know, for the first time Batkam

and Santos Júnior [13] introduced this type problem with bi-nonlocal terms and proved that

problem (1.1) with λ = 1 has at least three solutions: one positive, one negative, and one

changing its sign by imposing the conditions on the nonlinear term f (more general form

than Q(x)|u|p−2u) as follows

( f1) f ∈ C(Ω × R, R) and there exists a constant c > 0 such that

| f (x, t)| ≤ c(1 + |t|p−1), where 4 < p < 6;

( f2) f (x, t) = o(|t|) uniformly in x ∈ Ω as t → 0;

( f3) there exists µ > 4 such that 0 < µF(x, t) ≤ t f (x, t) for all t 6= 0, x ∈ Ω, where F(x, t) =
∫ t

0 f (x, s)ds.

Furthermore, in such case, if f is odd with respect to t, the authors obtained an unbounded

sequence of sign-changing solutions. After this pioneer work, several interesting results have

been obtained about the existence of positive solutions, multiple solutions, ground state solu-

tions and sign-changing solutions, we refer the reader to [5,14,25,27,28,34,35,41,43,45,46,48]

and their references. Here, we must point out that, to obtain their results in the above ref-

erences, various 4-superlinear growth conditions or asymptotical 4-linear assumptions or the

Nehari-type monotonicity condition on f are needed, especially for the discussion of sign-

changing solutions. So, a natural question is that, for the case that f (x, u) is 4-sublinear, here

special form f (x, u) = Q(x)|u|p−2u being considered, does problem (1.1) admit the existence

of sign-changing solutions? Meanwhile, due to the oddness of Q(x)|u|p−2u on u, does there

exist infinitely many sign-changing solutions as usual?

Motivated by the above discussion, the purpose of this paper is to deal with the existence

and multiplicity of sign-changing solutions to problem (1.1) for the case that 2 < p < 4. For

this case, to our best knowledge, during the existing literatures there is no result concerned

with sign-changing solutions for problem (1.1). To state our main results, Q(x) is supposed to

be satisfied the following condition

(Q) Q(x) > 0 and Q ∈ L∞(Ω).

Now we are in the position to state our first result.

Theorem 1.1. If 2 < p < 4 and (Q) holds true, there exists λ∗
> 0 such that for all 0 < λ ≤ λ∗,

problem (1.1) admits one sign-changing solution. Moreover, problem (1.1) has infinitely many sign-

changing solutions.
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In what follows, we list some difficulties during the process of dealing with sign-changing

solutions of nonlocal elliptic problems as usual. Problem (1.1) is a bi-nonlocal problem as

the appearance of the two terms b
∫

Ω
|∇u|2dx∆u and φuu implies that problem (1.1) is not a

pointwise identity, where φu is defined in Lemma 2.1. This causes some mathematical diffi-

culties in finding sign-changing solutions. In fact, since the nonlocal terms b
4

(∫

Ω
|∇u|2dx

)2

and 1
4

∫

Ω
φuu2dx in the associated variational functional are homogeneous of order 4, it seems

difficult to get the boundedness and compactness for any (PS) sequence or Cerami sequence.

Inspired by [21], we overcome this difficulty by adding a reasonable potential Q(x). On the

other hand, we observe that
∫

Ω

|∇u|2dx =
∫

Ω

|∇u+|2dx +
∫

Ω

|∇u−|2dx,

but the following decomposition relationship

∫

Ω

φuu2dx =
∫

Ω

φu+u+2
dx +

∫

Ω

φu−u−2
dx

does not hold in H1
0(Ω). In order to overcome these difficulties, we adopt the idea from [21,

24,26] to introduce an auxiliary operator A, which will be used to construct a pseudo-gradient

vector field to ensure existence of the desired invariant sets of the flow. However, since A is

merely continuous (see Lemma 3.1 below), it may not be used to define the descending flow.

Fortunately, one can construct a suitable locally Lipschitz continuous operator B inheriting the

properties of A in a similar way as [11] to define the flow. Finally, by restricting the parameter

λ small enough during the minimax arguments in the presence of invariant sets, we complete

the proof of Theorem 1.1.

Remark 1.2. As we discussed above, the necessary restriction must be added to the parameter

λ to obtain the existence and multiplicity of sign-changing solutions. Indeed, similar require-

ments have emerged in the literatures to discuss the nonexistence of nontrivial solutions or the

existence of positive solutions of Schrödinger–Poisson systems. Explicitly, we observe that, in

[31], system
{

−∆u + V(x)u + λφu = |u|p−2u in R
3,

−∆φ = u2 in R
3,

(1.4)

admits only one trivial solution with p ∈ (2, 3) if λ ≥ 1
4 . Moreover, the authors in [4] consid-

ered the bounded states of system (1.4), and showed that for any n ∈ N there exists λn ∈ (0, 1
4 )

such that for all λ ∈ (0, λn) system (1.4) with p ∈ (2, 3) has at least n pairs of radially sym-

metric solutions with positive energies.

However, it will be noted that, different from the whole space R
3 discussed in [4, 31], we

can also obtain the existence and multiplicity of sign-changing solutions for our problem (1.1)

considered on bounded domain without any restriction on the parameter λ. To discuss this

case simply, we set λ = 1. Nevertheless, the range of p will be limited to a small range as

follows.

Theorem 1.3. If 2 < p <
12
5 and (Q) is satisfied, then for λ = 1, the results of Theorem 1.1 still hold

true.

Remark 1.4. Here, two recent papers [21, 38] must be mentioned. In fact, as particular cases,

the existence of sign-changing solutions for problems (1.2) and (1.3) are considered, when
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the nonlinearity is the form of Q(x)|u|p−2u or general form covering the pure power type

Q(x)|u|p−2u with 2 < p < 4 for the case Ω = R
3. Certainly, different hypotheses on Q(x) are

presented to obtain their conclusions. To this point, it should be pointed out that Q(x) can be

equal to constants in our Theorems 1.1 and 1.3, which is different from the assumptions on

Q(x) in [21, 38]. In addition, compared with the situations investigated in [21, 38], it is worth

pointing out that the technique of constructing nonempty nodal set used in [38] is invalid

for our problem. To finish the proof of our Theorems 1.1 and 1.3, as in [21] we apply the

method of invariant sets of descending flow. In fact, we make use of an abstract critical point

theory developed in [24] that is very useful to deal with elliptic equations, see for instance

[9–11, 21, 26] and the references therein. Meanwhile, it is must be mentioned that, although

similar conditions on Q(x) have been given, we could not make the estimation for the energy

functional as in [21], and some new difficulties need to be addressed due to the combination

of two nonlocal terms b
∫

Ω
|∇u|2dx∆u and φuu, which is also the reason that we restrict the

parameter λ small enough in Theorem 1.1. The difference between the proof of Theorem 1.1

and Theorem 1.3 is just that the functions satisfying particular properties in Properties 3.7 and

3.11 are needed to make necessary changes.

Remark 1.5. Note that, our Theorem 1.3 is valid for the case that b = 0, this observa-

tion and Remark 1.2 indicate that Schrödinger–Poisson system has differently dynamical

behavior on bounded domain Ω and the whole space R
3. Meanwhile, the results of sign-

changing solutions in [38] are also based on the fundamental assumption that λ is sufficiently

small. Compared this fact with our Theorem 1.3, it is natural to ask whether one can show

that Schrödinger–Poisson system defined on the whole space R
3 possesses nontrivial sign-

changing solutions such as the case dealt with in [38] without any parameter. In addition,

Theorem 1.3 is actually an extension of Theorem 1.1 in the sense that there is not any restric-

tion on the parameter λ in Theorem 1.3. Here, we point out that, using the invariant sets of

descending flow, 2 < p <
12
5 is the optimal range (in fact, it is the optimal range to guaran-

tee that (4.2) holds). For 12
5 ≤ p < 4, it remains an open question about the existence and

multiplicity of sign-changing solutions when λ = 1 in problem (1.1).

This paper is organized as follows. In Section 2, we present some useful preliminary

results. Theorems 1.1 and 1.3 are proved in Sections 3 and 4, respectively.

2 Preliminaries

In this section, we first introduce the variational framework associated with problem (1.1).

Before that, we define E to be the usual Sobolev space H1
0(Ω) with the inner product

(u, v) =
∫

Ω

∇u · ∇vdx

and endowed with the norm ‖u‖ = (u, u)
1
2 for u, v ∈ E. From [42, Theorem 1.9], the embed-

ding E →֒ Lq(Ω) is compact for any 1 ≤ q < 6. The usual norm in the Lebesgue space Lq(Ω)

is denoted by ‖u‖q and C is the positive constant whose precise value can change from line to

line. The following result is well known and is a collection of results in [17] and [31].

Lemma 2.1. For each u ∈ H1
0(Ω), there exists a unique element φu ∈ H1

0(Ω) such that −∆φu = u2.

Moreover,

φu =
∫

Ω

u2(y)

4π|x − y|
dy
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has following properties:

(1) φu ≥ 0 and φtu = t2φu, ∀t > 0;

(2) there exists C > 0 independent of u such that ‖φu‖ ≤ C‖u‖2 and
∫

Ω

φuu2dx ≤ C‖u‖4;

(3) if un ⇀ u in H1
0(Ω), then φun ⇀ φu in H1

0(Ω) and

lim
n→∞

∫

Ω

φun u2
ndx =

∫

Ω

φuu2dx.

In view of Lemma 2.1, we can substitute φ = φu into problem (1.1) and rewrite it as a

single equation

−

(

a + b
∫

Ω

|∇u|2dx

)

∆u + λφuu = Q(x)|u|p−2u, u ∈ E. (2.1)

For the equivalent problem (2.1), the corresponding functional I : E 7→ R

I(u) =
a

2

∫

Ω

|∇u|2dx +
b

4

(

∫

Ω

|∇u|2dx

)2

+
λ

4

∫

Ω

φuu2dx −
1

p

∫

Ω

Q(x)|u|pdx

is well defined. In addition, standard discussion shows that I ∈ C1(E, R) and

〈I′(u), ϕ〉 =

(

a + b
∫

Ω

|∇u|2dx

)

∫

Ω

∇u · ∇ϕdx + λ
∫

Ω

φuuϕdx −
∫

Ω

Q(x)|u|p−2uϕdx (2.2)

for any u, ϕ ∈ E. Clearly, critical points of I are weak solutions of problem (2.1).

To estimate the second nonlocal term in (2.2) conveniently, we define

D(g, h) =
∫

Ω

∫

Ω

g(x)h(y)

4π|x − y|
dxdy.

Obviously, for each u ∈ H1
0(Ω), D(u2, u2) =

∫

Ω
φuu2. Moreover, the following properties can

be reached. For the proof, we refer to [32] and [23, p. 250].

Lemma 2.2.

(1) D(g, h)2 ≤ D(g, g)D(h, h) for any g, h ∈ L
6
5 (Ω);

(2) D(uv, uv)2 ≤ D(u2, u2)D(v2, v2) for any u, v ∈ L
12
5 (Ω).

Next we prove a compactness condition for the functional I which will be used later.

Lemma 2.3. Assume that (Q) holds, then the functional I satisfies the Cerami condition.

Proof. Let {un}⊂E be a Cerami sequence of I, that is, |I(un)| ≤ C and (1+ ‖un‖)‖I′(un)‖E−1 →

0 in the dual space E−1. Firstly, we show that {un} is bounded in E. In fact, for µ > 4, we

have

C + on(1) ≥ I(un)−
1

µ
〈I′(un), un〉

=

(

1

2
−

1

µ

)

a
∫

Ω

|∇un|
2dx +

(

1

4
−

1

µ

)

b

(

∫

Ω

|∇un|
2dx

)2

+

(

1

4
−

1

µ

)

λ
∫

Ω

φun u2
ndx +

(

1

µ
−

1

p

)

∫

Ω

Q(x)|un|
pdx.
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Due to the fact that L∞(Ω) ⊂ L
6

6−p (Ω), by means of Hölder’s inequality and the Sobolev

embedding theorem, we obtain that

(

1

µ
−

1

p

)

∫

Ω

Q(x)|un|
pdx ≥

(

1

µ
−

1

p

)

‖Q‖ 6
6−p

‖un‖
p
6 ≥

(

1

µ
−

1

p

)

C

(

∫

Ω

|∇un|
2dx

)

p
2

, (2.3)

which yields that

(

1

2
−

1

µ

)

a
∫

Ω

|∇un|
2dx +

(

1

4
−

1

µ

)

b

(

∫

Ω

|∇un|
2dx

)2

+

(

1

4
−

1

µ

)

λ
∫

Ω

φun u2
ndx

+

(

1

µ
−

1

p

)

C

(

∫

Ω

|∇un|
2dx

)

p
2

≤ C + 1.

Since 2 < p < 4 < µ, the above inequality indicates that {un} is bounded in E. Then, there

exists a subsequence of {un} (still denoted by {un}) such that

un ⇀ u in E; un → u in Lq(Ω), 1 ≤ q < 6; un → u a.e. in Ω. (2.4)

Since un → u in L
12
5 (Ω) (q = 12

5 in (2.4)), using Hölder’s inequality, we have

∣

∣

∣

∫

Ω

(φun un − φuu) (un − u) dx
∣

∣

∣

≤ ‖φun‖6‖un − u‖2
12
5
+ ‖φun − φu‖6‖u‖ 12

5
‖un − u‖ 12

5

= on(1).

From (Q) and (2.4), using Hölder’s inequality again gives that

∣

∣

∣

∫

Ω

Q(x)(|un|
p−2un − |u|p−2u)(un − u)dx

∣

∣

∣

≤ C(‖un‖
p−1
p ‖un − u‖p + ‖u‖

p−1
p ‖un − u‖p)

= on(1).

Hence, the above two facts and the weak convergence of un ⇀ u in E bring that

on(1) = 〈I′(un)− I′(u), un − u〉

=

(

a + b
∫

Ω

|∇un|
2dx

)

∫

Ω

|∇(un − u)|2dx

+ b

(

∫

Ω

|∇un|
2dx −

∫

Ω

|∇u|2dx

)

∫

Ω

∇u · ∇(un − u)dx

+ λ
∫

Ω

(φun un − φuu) (un − u) dx

−
∫

Ω

Q(x)(|un|
p−2un − |u|p−2u)(un − u)dx

≥ a‖un − u‖2 + on(1),

which implies that un → u in E.
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3 Proof of Theorem 1.1

In this section, we use the method of invariant sets of descending flow to study the existence

of sign-changing solutions for problem (1.1). To do this, we introduce an auxiliary operator

A : E → E. Explicitly, for any u ∈ E, we define v = Au to be the unique solution for the

equation

−

(

a + b
∫

Ω

|∇u|2dx

)

∆v + λφuv = Q(x)|u|p−2u, v ∈ E. (3.1)

Clearly, u is a fixed point of A if and only if u is a solution of (2.1).

Lemma 3.1. The operator A is well defined, maps bounded sets to bounded sets and is continuous.

Proof. For any u ∈ E, define

J(v) =
1

2

(

a + b
∫

Ω

|∇u|2dx

)

∫

Ω

|∇v|2dx +
λ

2

∫

Ω

φuv2dx −
∫

Ω

Q(x)|u|p−2uvdx. (3.2)

Then, J ∈ C1(E, R) and

〈J′(v), ω〉 =

(

a + b
∫

Ω

|∇u|2dx

)

∫

Ω

∇v · ∇ωdx + λ
∫

Ω

φuvωdx −
∫

Ω

Q(x)|u|p−2uωdx (3.3)

for any ω ∈ E. From (Q) and the Sobolev embedding theorem, it is easy to verify that

J is coercive, bounded below and weakly lower semicontinuous. Thus, J admits a unique

minimizer v = Au ∈ E, which is the unique solution to (3.1), that is to say, A is well defined.

Taking v = ω = Au in (3.3) leads to
(

a + b
∫

Ω

|∇u|2dx

)

∫

Ω

|∇Au|2dx + λ
∫

Ω

φu(Au)2dx =
∫

Ω

Q(x)Au|u|p−2udx,

which implies, using (Q) and the Sobolev embedding theorem, that

a‖Au‖ ≤ C‖u‖p−1.

Therefore, Au is bounded whenever u is bounded.

In the following, we prove that A is continuous. Assuming {un} ⊂ E with un → u in

E and taking v = Au, vn = Aun, we need to prove that ‖vn − v‖ → 0 in E. Based on the

observation that 〈J′(vn)− J′(v), vn − v〉 = 0, that is,
(

a + b
∫

Ω

|∇un|
2dx

)

∫

Ω

|∇(vn − v)|2dx

= b

(

∫

Ω

|∇u|2dx −
∫

Ω

|∇un|
2dx

)

∫

Ω

∇v · ∇(vn − v)dx

+ λ
∫

Ω

(φun vn − φuv) (v − vn) dx

+
∫

Ω

Q(x)(|un|
p−2un − |u|p−2u)(vn − v)dx,

(3.4)

and un → u in E, it is sufficient to estimate the second and third terms in the right side of

(3.4). Indeed, using Hölder’s inequality, one has
∫

Ω

(φun vn − φuv) (v − vn) dx ≤
∫

Ω

(φun v − φuv) (v − vn) dx

≤ ‖φun − φu‖3‖v‖3‖v − vn‖3

≤ C‖φun − φu‖3‖v‖‖v − vn‖,

(3.5)



Sign-changing solutions for a Schrödinger–Kirchhoff–Poisson system 9

where ‖φun − φu‖3 → 0 due to Lemma 2.1. In addition, according to (Q) and Theorem A.2 in

[42], we have

Q(x)(|un|
p−2un − |u|p−2u) → 0 in L

p
p−1 (Ω),

which, combining with Hölder’s inequality, states that

∣

∣

∣

∫

Ω

Q(x)(|un|
p−2un − |u|p−2u)(vn − v)dx

∣

∣

∣
≤ C‖Q(x)(|un|

p−2un − |u|p−2u)‖ p
p−1

‖vn − v‖. (3.6)

Thus, (3.4), (3.5) and (3.6) imply that

a‖vn − v‖2 ≤ b

∣

∣

∣

∣

∫

Ω

|∇u|2dx −
∫

Ω

|∇un|
2dx

∣

∣

∣

∣

‖v‖‖vn − v‖

+ Cλ‖φun − φu‖3‖v‖‖v − vn‖

+ C‖Q(x)(|un|
p−2un − |u|p−2u)‖ p

p−1
‖vn − v‖

= on(1)‖vn − v‖,

which means that A is continuous.

Lemma 3.2.

(1) 〈I′(u), u − Au〉 ≥ a‖u − Au‖2 for any u ∈ E;

(2) ‖I′(u)‖E−1 ≤ [a + (Cλ + b)‖u‖2]‖u − Au‖ for some C > 0 and all u ∈ E.

Proof. Since Au is the solution of (3.1), we see that

〈I′(u), u − Au〉 =

(

a + b
∫

Ω

|∇u|2dx

)

∫

Ω

∇u · ∇(u − Au)dx

+ λ
∫

Ω

φuu(u − Au)dx −
∫

Ω

Q(x)|u|p−2u(u − Au)dx

=

(

a + b
∫

Ω

|∇u|2dx

)

∫

Ω

|∇(u − Au)|2dx + λ
∫

Ω

φu(u − Au)2dx,

which implies that 〈I′(u), u − Au〉 ≥ a‖u − Au‖2 for any u ∈ E.

By Hölder’s inequality, Lemmas 2.1 and 2.2, for any ϕ ∈ E, we have

〈I′(u), ϕ〉 =

(

a + b
∫

Ω

|∇u|2dx

)

∫

Ω

∇(u − Au) · ∇ϕdx + λ
∫

Ω

φu(u − Au)ϕdx

= (a + b‖u‖2)(u − Au, ϕ) + λD(u2, (u − Au)ϕ)

≤ (a + b‖u‖2)‖u − Au‖‖ϕ‖+ Cλ‖u‖2‖u − Au‖‖ϕ‖

≤ [a + (Cλ + b)‖u‖2]‖u − Au‖‖ϕ‖.

Thus, ‖I′(u)‖E−1 ≤ [a + (Cλ + b)‖u‖2]‖u − Au‖ for any u ∈ E.

Lemma 3.3. Let δ1 < δ2 and α > 0, there exists β > 0 such that ‖u − Au‖ ≥ β if u ∈ E,

I(u) ∈ [δ1, δ2] and ‖I′(u)‖E−1 ≥ α.
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Proof. Let µ > 4, for u ∈ E, using 〈J′(Au), u〉 = 0, we have

I(u)−
1

µ

(

a + b
∫

Ω

|∇u|2dx

)

∫

Ω

∇u · ∇(u − Au)dx −
λ

µ

∫

Ω

φuu(u − Au)dx

=

(

1

2
−

1

µ

)

a
∫

Ω

|∇u|2dx +

(

1

4
−

1

µ

)

b

(

∫

Ω

|∇u|2dx

)2

+

(

1

4
−

1

µ

)

λ
∫

Ω

φuu2dx +

(

1

µ
−

1

p

)

∫

Ω

Q(x)|u|pdx.

Using (2.3), Hölder’s inequality, Lemmas 2.1 and 2.2, we obtain

(

1

2
−

1

µ

)

a‖u‖2 +

(

1

4
−

1

µ

)

b‖u‖4 +

(

1

4
−

1

µ

)

λ
∫

Ω

φuu2dx +

(

1

µ
−

1

p

)

C‖u‖p

≤ |I(u)|+
1

µ

(

a + b
∫

Ω

|∇u|2dx

) ∣

∣

∣

∣

∫

Ω

∇u · ∇(u − Au)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

λ

µ

∫

Ω

φuu(u − Au)dx

∣

∣

∣

∣

≤ |I(u)|+
1

µ

(

a + b‖u‖2
)

‖u‖‖u − Au‖+
λ

µ

(

∫

Ω

φu(u − Au)2dx

)
1
2
(

∫

Ω

φuu2dx

)
1
2

≤ |I(u)|+
1

µ

(

a + b‖u‖2
)

‖u‖‖u − Au‖+ C‖u‖‖u − Au‖

(

∫

Ω

φuu2dx

)
1
2

≤ |I(u)|+
1

µ

(

a + b‖u‖2
)

‖u‖‖u − Au‖+
C

2

(

‖u‖2 +
∫

Ω

φuu2dx

)

‖u − Au‖.

If there exists {un} ⊂ E with I(un) ∈ [δ1, δ2] and ‖I′(un)‖E−1 ≥ α such that ‖un − Aun‖ → 0

as n → ∞, since 2 < p < 4, from the above inequality, we deduce that {un} is bounded. Then,

from Lemma 3.2-(2), we see that ‖I′(un)‖E−1 → 0 as n → ∞, which is a contradiction. Thus,

the proof is completed.

In the sequel, we introduce the positive and negative cones in E defined as follows

P+ := {u ∈ E : u ≥ 0} and P− := {u ∈ E : u ≤ 0}.

For given ε > 0, two open convex subsets of E are chosen in the following forms

P+
ε := {u ∈ E : dist(u, P+) < ε} and P−

ε := {u ∈ E : dist(u, P−) < ε},

where dist(u, P±) = infν∈P± ‖u − ν‖. Obviously, P−
ε = −P+

ε . Let W = P+
ε ∪ P−

ε , then W is

an open and symmetric subset of E, and E \ W contains only sign-changing functions. To

find solutions for problem (1.1) in E \ W, we establish the following result which provides

invariance properties for the convex sets P±
ε .

Lemma 3.4. There exists ε0 > 0 such that for all 0 < ε ≤ ε0, there hold

A(∂P+
ε ) ⊂ P+

ε and A(∂P−
ε ) ⊂ P−

ε .

Proof. Let u ∈ E and v = Au satisfying (3.1). Notice that for any 2 ≤ q ≤ 6, there exists Cq > 0

such that

‖u+‖q = inf
ν∈P−

‖u − ν‖q ≤ Cq inf
ν∈P−

‖u − ν‖ = Cqdist(u, P−). (3.7)
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Then, due to the fact that dist(v, P−) ≤ ‖v+‖, we have

a dist(v, P−)‖v+‖ ≤ a‖v+‖2

≤

(

a + b
∫

Ω

|∇u|2dx

)

∫

Ω

|∇v+|2dx + λ
∫

Ω

φuvv+dx

=
∫

Ω

Q(x)|u|p−2uv+dx ≤
∫

Ω

Q(x)|u+|p−2u+v+dx

=
∫

Ω

Q(x)|u+|p−1v+dx ≤ ‖Q‖ 6
6−p

‖u+‖
p−1
6 ‖v+‖6

≤ C(dist(u, P−))p−1‖v+‖,

which means that

dist(v, P−) ≤
C

a
(dist(u, P−))p−1.

Therefore, for ε0 ∈
(

0,
(

a
2C

)
1

p−2

)

with 0 < ε ≤ ε0, it holds that

dist(v, P−) ≤
1

2
ε < ε for any u ∈ P−

ε .

That is to say, A(∂P−
ε ) ⊂ P−

ε . In a similar way, one also has A(∂P+
ε ) ⊂ P+

ε .

Let K = {u ∈ E : I′(u) = 0}. Since A is merely continuous, it may by itself not be the

right operator to construct a descending flow for the functional I, and we need an improved

operator B : E\K → E which is locally Lipschitz continuous and inherits the main properties

of A.

Lemma 3.5. For 0 < ε ≤ ε0, there exists a locally Lipschitz continuous odd operator B : E \ K → E

such that

(1) 1
2‖u − Au‖ ≤ ‖u − Bu‖ ≤ 2‖u − Au‖;

(2) 〈I′(u), u − Bu〉 ≥ 1
2 a‖u − Au‖2;

(3) B(∂P+
ε ) ⊂ P+

ε , B(∂P−
ε ) ⊂ P−

ε .

Proof. The proof is similar to that of [9, Lemma 4.1] and [11, Lemma 2.1], so we omit the

details.

By means of the invariant set of descending flow, we are intended to establish the existence

of sign-changing solutions for problem (1.1). Here, we use the known abstract critical theorem

given by [24, Theorem 2.4], and include its statement for the sake of completeness in the form

of a proposition.

Let X be a complete metric space with the metric d, h ∈ C1(X, R), P1, P2 ⊂ X be open

subsets, M = P1 ∩ P2, Σ = ∂P1 ∩ ∂P2 and W = P1 ∪ P2. For c ∈ R, hc = {x ∈ X : h(x) ≤ c} and

Kc = {x ∈ X : h(x) = c, h′(x) = 0}.

Definition 3.6 ([24]). {P1, P2} is called an admissible family of invariant sets with respect to h

at level c, provided that the following deformation property holds: if Kc \ W = ∅ there exists

ε0 > 0 such that for 0 < ε < ε0, there exists a continuous map η : X → X satisfying

(1) η(Pi) ⊂ Pi, i = 1, 2;
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(2) η|hc−2ε = Id;

(3) η(hc+ε \ W) ⊂ hc−ε.

Proposition 3.7 ([24]). Assume {P1, P2} is an admissible family of invariant sets with respect to h at

level c for c ≥ c∗ := infu∈Σ h(u) and there exists a map ψ0 : △ → X satisfying

(1) ψ0(∂i△) ⊂ Pi, i = 1, 2;

(2) ψ0(∂0△) ∩ M = ∅;

(3) c0 = supu∈ψ0(∂0△) h(u) < c∗,

where △ = {(t1, t2) ∈ R
2 : t1, t2 ≥ 0, t1 + t2 ≤ 1}, ∂0△ = △ ∩ {t1 + t2 = 1} and ∂i△ =

△∩ {ti = 0}, i = 1, 2. Define

c = inf
ψ∈Γ

sup
u∈ψ(△)\W

h(u),

where Γ := {ψ ∈ C(△, X) : ψ(∂i△) ⊂ Pi, i = 1, 2, ψ|∂0△ = ψ0}. Then c is a critical value of h and

Kc \ W 6= ∅.

Now we use Proposition 3.7 to obtain the existence of one sign-changing solution for

problem (1.1). Here, we choose X = E, h = I, P1 = P+
ε and P2 = P−

ε , then, M = P+
ε ∩ P−

ε , Σ =

∂P+
ε ∩ ∂P−

ε and W = P+
ε ∪ P−

ε . The following lemma implies that {P+
ε , P−

ε } is an admissible

family of invariant sets for the functional I at any level c ∈ R.

Lemma 3.8. Assume (Q) holds. If Kc \W = ∅, then there exists ε0 > 0 such that for 0 < ε < ε′ < ε0,

there exists a continuous map σ : [0, 1]× E → E satisfying

(1) σ(0, u) = u for all u ∈ E;

(2) σ(t, u) = u for t ∈ [0, 1], u /∈ I−1([c − ε′, c + ε′]);

(3) σ(1, Ic+ε \ W) ⊂ Ic−ε;

(4) σ(t, P+
ε ) ⊂ P+

ε , σ(t, P−
ε ) ⊂ P−

ε , t ∈ [0, 1].

Proof. The proof is similar to that of many existing literatures (see [21,26]). We include its proof

for the sake of completeness. If Kc \W = ∅, then Kc ⊂ W. Thus, 2δ := dist(Kc, ∂W) > 0 on ac-

count of Kc is compact by Lemma 2.3. For this δ, we have Nδ(Kc) := {u ∈ E : dist(u, Kc) < δ} ⊂

W. Since I satisfies the Cerami condition, there exist ε0, α > 0 such that

‖I′(u)‖E−1 ≥ α for u ∈ I−1([c − ε0, c + ε0]) \ N δ
2
(Kc).

By Lemmas 3.3 and 3.5-(1), there exists β > 0 such that

‖u − Bu‖ ≥
β

2
for u ∈ I−1([c − ε0, c + ε0]) \ N δ

2
(Kc).

Furthermore, owing to Lemma 3.5-(2), we obtain

〈

I′(u),
u − Bu

‖u − Bu‖

〉

≥
1

8
a‖u − Bu‖ ≥ θ :=

aβ

16
. (3.8)
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Decreasing ε0 if necessary, we assume ε0 ≤ θδ
4 . Take two even Lipschitz continuous functions

p, q : E → [0, 1] such that

p(u) =







0, u ∈ N δ
4
(Kc),

1, u /∈ N δ
2
(Kc),

and q(u) =

{

0, u /∈ I−1([c − ε′, c + ε′]),

1, u ∈ I−1([c − ε, c + ε]),

and consider the following initial value problem

{

dτ(t,u)
dt = −Φ(τ(t, u)),

τ(0, u) = u,
(3.9)

where Φ(u) = p(u)q(u) u−Bu
‖u−Bu‖

. Obviously, Φ(u) is locally Lipschitz continuous, so the ex-

istence and uniqueness theory of ODE in Banach space implies that (3.9) admits a unique

solution τ(·, u) ∈ C(R, E). Define σ on [0, 1]× E by σ(t, u) := τ( 2ε
θ t, u), it is sufficient to check

(3), because (1)–(2) are obvious, and (4) is a consequence of Lemma 3.5-(3).

To do this, choose u ∈ Ic+ε \ W. By (3.9), it easy to see dI(τ(t,u))
dt ≤ 0, namely, I(τ(t, u)) is

nonincreasing for t ≥ 0. Then, if there exists t0 ∈ [0, 2ε
θ ] such that I(τ(t0, u)) < c − ε, we have

I(σ(1, u)) = I

(

τ

(

2ε

θ
, u

))

< c − ε.

Otherwise, for any t ∈ [0, 2ε
θ ], I(τ(t, u)) ≥ c − ε, then τ(t, u) ∈ I−1([c − ε, c + ε]). We claim that

for any t ∈ [0, 2ε
θ ], τ(t, u) /∈ N δ

2
(Kc). If not, there exists t0 ∈ [0, 2ε

θ ] such that τ(t0, u) ∈ N δ
2
(Kc),

then, since Nδ(Kc) ⊂ W, we obtain

δ

2
≤ ‖τ(t0, u)− u‖ ≤

∫ t0

0
‖τ′(s, u)‖ds ≤ t0 <

2ε0

θ
≤

δ

2
,

which is a contradiction. Therefore, p(τ(t, u))q(τ(t, u)) ≡ 1 for t ∈ [0, 2ε
θ ]. Hence, by (3.8) and

(3.9),

I(σ(1, u)) = I

(

τ

(

2ε

θ
, u

))

= I(u)−
∫ 2ε

θ

0
〈I′(τ(s, u)), Φ(τ(s, u))〉ds

≤ c + ε −
2ε

θ
θ

= c − ε.

Thus, the proof is completed.

Lemma 3.9. If ε > 0 small enough, then I(u) ≥ aε2 for any u ∈ Σ = ∂P+
ε ∩ ∂P−

ε .

Proof. For any u ∈ Σ, it has ‖u±‖ = ‖u − u∓‖ ≥ dist(u, P∓) = ε. Then, using (Q) and (3.7),

we have

I(u) =
a

2

∫

Ω

|∇u|2dx +
b

4

(

∫

Ω

|∇u|2dx

)2

+
λ

4

∫

Ω

φuu2dx −
1

p

∫

Ω

Q(x)|u|pdx

≥
a

2
‖u‖2 −

C

p
‖u‖

p
p ≥ 2aε2 −

C

p
εp ≥ aε2

for ε > 0 small enough.
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Proof of Theorem 1.1 (Existence part). We construct a suitable map ψ0 satisfying the proper-

ties in Proposition 3.7. Choose v1 ∈ P−
ε , v2 ∈ P+

ε such that supp(v1) ∩ supp(v2) = ∅ and

infsupp(v1)∪supp(v2) Q(x) > 0. For

ρ = (ρ1, ρ2) ∈ ∆ = {t ∈ R
2 : t = (t1, t2), t1, t2 ≥ 0, t1 + t2 ≤ 1},

define

ψ0(ρ)(x) = R
(

ρ1v1(R−2x) + ρ2v2(R−2x)
)

,

where R is a positive constant to be determined later. It is obvious that, for any ρ = (0, ρ2) ∈

∂1∆ and ρ = (ρ1, 0) ∈ ∂2∆, we have

ψ0(ρ)(x) = R
(

ρ2v2(R−2x)
)

∈ P+
ε and ψ0(ρ)(x) = R

(

ρ1v1(R−2x)
)

∈ P−
ε ,

respectively. Thus, ψ0(∂1∆) ⊂ P+
ε and ψ0(∂2∆) ⊂ P−

ε .

From Lemma 3.9, we have c∗λ := infu∈Σ I(u) ≥ aε2. Next, we verify that

c0 = sup
u∈ψ0(∂0∆)

I(u) < c∗λ.

Set us = ψ0(s, 1 − s) for s ∈ [0, 1], a direct computation shows that
∫

Ω

|∇us|
2dx = R4

∫

Ω

(s2|∇v1|
2 + (1 − s)2|∇v2|

2)dx,
∫

Ω

φus u
2
s dx = R14

∫

Ω

φûs û
2
s dx, where ûs = sv1 + (1 − s)v2,

∫

Ω

|us|
pdx = Rp+6

∫

Ω

(sp|v1|
p + (1 − s)p|v2|

p)dx.

Based on the equalities above, we have

I(us) =
a

2

∫

Ω

|∇us|
2dx +

b

4

(

∫

Ω

|∇us|
2dx

)2

+
λ

4

∫

Ω

φus u
2
s dx

−
1

p

∫

supp(v1)∪supp(v2)
Q(x)|us|

pdx

≤
a

2

∫

Ω

|∇us|
2dx +

b

4

(

∫

Ω

|∇us|
2dx

)2

+
λ

4

∫

Ω

φus u
2
s dx

− min
supp(v1)∪supp(v2)

Q(x)
∫

Ω

|us|
pdx

=
a

2
R4
∫

Ω

(s2|∇v1|
2 + (1 − s)2|∇v2|

2)dx

+
b

4
R8

(

∫

Ω

(s2|∇v1|
2 + (1 − s)2|∇v2|

2)dx

)2

+
λ

4
R14

∫

Ω

φûs û
2
s dx − CRp+6

∫

Ω

(sp|v1|
p + (1 − s)p|v2|

p)dx.

(3.10)

Then, taking 0 < λ ≤ λR = R−6 =: λ∗ in (3.10) (which means that λ is sufficiently small for R

large enough), we obtain

I(us) ≤
a

2
R4
∫

Ω

(s2|∇v1|
2 + (1 − s)2|∇v2|

2)dx

+
b

4
R8

(

∫

Ω

(s2|∇v1|
2 + (1 − s)2|∇v2|

2)dx

)2

+
1

4
R8
∫

Ω

φûs û
2
s dx − CRp+6

∫

Ω

(sp|v1|
p + (1 − s)p|v2|

p)dx.

(3.11)
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Since 2 < p < 4, by (3.11), it is evident that I(us) → −∞ as R → ∞ uniformly for s ∈ [0, 1].

Consequently, choosing R large enough and independent of s, we have

c0 = sup
u∈ψ0(∂0∆)

I(u) < c∗λ := inf
u∈Σ

I(u). (3.12)

Moreover, we observe that
∫

Ω

|us|
2dx = R4

∫

Ω

(s2|v1|
2 + (1 − s)2|v2|

2)dx → ∞ as R → ∞ (3.13)

uniformly with respect to s ∈ [0, 1], which, combining with (3.7), indicates that ψ0(∂0∆)∩ M =

∅. Define

c = inf
ψ∈Γ

sup
u∈ψ(∆)\W

I(u),

where Γ := {ψ ∈ C(△, E) : ψ(∂1△) ⊂ P+
ε , ψ(∂2△) ⊂ P−

ε , ψ|∂0△ = ψ0}, and apply Proposition

3.7, there is a critical point u ∈ Kc \ W which is a sign-changing solution of problem (1.1).

Next we turn to the existence of infinitely many sign-changing solutions for problem (1.1).

To do this, we make use of Theorem 2.5 in [24] recalled below. Explicitly, let X be a complete

metric space with the metric d and h ∈ C1(X, R), then we say G : X → X is an isometric

involution if G satisfies G2 = Id and d(Gx, Gy) = d(x, y) for x, y ∈ X. A subset O ⊂ X is

said to be symmetric if Gx ∈ O for any x ∈ O. The genus of a closed symmetric subset O of

X \ {0} is denoted by γ(O).

Definition 3.10 ([24]). Assume G is an isometric involution of X and h is a G-invariant con-

tinuous functional on X that is h(Gx) = h(x) for any x ∈ X. We say P is a G-admissible

invariant set with respect to h at level c if the following deformation property holds: there

exist a symmetric open neighbourhood N of Kc \ (P ∪ Q) with γ(N) < ∞ and ε0 such that for

0 < ε < ε0 there exists a continuous map η : X → X satisfying

(1) η(P) ⊂ P, η(Q) ⊂ Q, here Q = GP;

(2) η ◦ G = G ◦ η;

(3) η|hc−2ε = Id;

(4) η(hc+ε \ (N ∪ (P ∪ Q))) ⊂ hc−ε.

Proposition 3.11 ([24]). Assume that P is a G-admissible invariant set with respect to h at level c for

c ≥ c∗ := infu∈∂P∩∂Q h(u) and for any n ∈ N there exists a continuous map ψn : Bn → X satisfying

(1) ψn(0) ∈ P ∩ Q;

(2) ψn(∂Bn) ∩ (P ∩ Q) = ∅;

(3) supu∈FixG ∪ψn(∂Bn)
h(u) < c∗,

where Bn := {x ∈ R
n : |x| ≤ 1} and FixG := {u ∈ X : Gu = u}. Define

cj = inf
B∈Γj

sup
u∈B\(P∪Q)

h(u),

where Γj := {B : B = ψ(Bn \ Y), ψ ∈ Gn, n ≥ j, and open subset Y = −Y ⊂ Bn, γ(Y) ≤ n − j}

and Gn := {ψ : ψ ∈ C(Bn, X), ψ(−t) = Gψ(t), t ∈ Bn, ψ(0) ∈ P ∩ Q and ψ|∂Bn
= ψn}. Then

cj, j ≥ 2, are critical values of h with cj → ∞ and Kcj
\ (P ∪ Q) 6= ∅.
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To apply Proposition 3.11, we set X = E, h = I, G = −Id, P = P+
ε . In addition, thanks

to the nonlinearity in problem (1.1) is odd, as a sequence, G is an isometric involution on

E, Q = −P+
ε = P−

ε , and the functional I is G-invariant continuous functional. Since Kc is

compact, there exists a symmetric open neighborhood N of Kc \ (P+
ε ∪ P−

ε ) with γ(N) < ∞.

Lemma 3.12. Assume (Q) holds true, then there exists ε0 > 0 such that for 0 < ε < ε′ < ε0, there

exists a continuous map σ : [0, 1]× E → E satisfying

(1) σ(0, u) = u for u ∈ E;

(2) σ(t, u) = u for t ∈ [0, 1], u /∈ I−1([c − ε′, c + ε′]);

(3) σ(t,−u) = −σ(t, u) for (t, u) ∈ [0, 1]× E;

(4) σ(1, Ic+ε \ (N ∪ (P+
ε ∪ P−

ε ))) ⊂ Ic−ε;

(5) σ(t, P+
ε ) ⊂ P+

ε , σ(t, P−
ε ) ⊂ P−

ε , t ∈ [0, 1].

Proof. The proof is similar to Lemma 3.8. Since I is even, thus σ is odd in u. Here, we omit

the details.

Combining Definition 3.10 with Lemma 3.12, we conclude that P+
ε is a G-admissible set

for the function I at any level c ∈ R.

Proof of Theorem 1.1 (Multiplicity part). According to the above discussion, we need to con-

struct an appropriate continuous map ψn : Bn → E to apply Proposition 3.11. In order

to achieve this point, for any n ∈ N, we choose {vi}
n
1 ∈ E with disjoint supports and

infsupp(vi) Q(x) > 0, and define

ψn(t)(x) = Rn(t1v1(R−2
n x) + · · ·+ tnvn(R−2

n x)),

where t = (t1, t2, . . . , tn) ∈ Bn, Rn is a large number such that ψn(∂Bn) ∩ (P+
ε ∩ P−

ε ) = ∅ and

sup
u∈ψn(∂Bn)

I(u) < 0 < inf
u∈∂P+

ε ∩∂P−
ε

I(u)

as in (3.12) and (3.13). Obviously, ψn(0) = 0 ∈ P+
ε ∩ P−

ε and ψn(−t) = −ψn(t) for t ∈ Bn.

Define

cj = inf
B∈Γj

sup
u∈B\(P+

ε ∪P−
ε )

I(u),

where Γj is given in Proposition 3.11, then it follows that cj (j ≥ 2) are critical values of I with

cj → ∞ as j → ∞, and the corresponding critical points uj ∈ Kcj
\ (P+

ε ∪ P−
ε ) are sign-changing

solutions of problem (1.1).

4 Proof of Theorem 1.3

Under the assumptions of Theorem 1.3, we establish the existence and multiplicity of sign-

changing solutions for problem (1.1) in this section. Before proceeding, we point out that

the energy functional is still denoted by I, and obviously the conclusions of Lemma 2.3 and

Lemmas 3.1–3.9 are effective for λ = 1. However, due to the fact that p ∈ (2, 12
5 ), we need to

construct ψ0 different from ψ0 in Theorem 1.1 to establish the proof of Theorem 1.3.
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Proof of Theorem 1.3. Define

ψ0 = ψ0(ρ)(x) = R−1
(

ρ1v1(R−mx) + ρ2v2(R−mx)
)

,

where v1, v2, ρ = (ρ1, ρ2) are the same as in the proof of Theorem 1.1 and m ∈
( p

3 ,
4−p

2

)

is a

constant dependent on p. Next, we check that ψ0 satisfies the properties in Proposition 3.11.

Similar to the proof of Theorem 1.1, we obtain ψ0(∂1∆) ⊂ P+
ε and ψ0(∂2∆) ⊂ P−

ε . Therefore, it

suffices to verify (2) and (3) of Proposition 3.11. Indeed, set ūs = ψ0(s, 1 − s) for s ∈ [0, 1], the

direct computations show that
∫

Ω

|∇ūs|
2dx = R−2+m

∫

Ω

(s2|∇v1|
2 + (1 − s)2|∇v2|

2)dx,
∫

Ω

φūs ū
2
s dx = R−4+5m

∫

Ω

φûs û
2
s dx, where ûs = sv1 + (1 − s)v2,

∫

Ω

|ūs|
pdx = R−p+3m

∫

Ω

(sp|v1|
p + (1 − s)p|v2|

p)dx,

which signify that

I(ūs) ≤
a

2
R−2+m

∫

Ω

(s2|∇v1|
2 + (1 − s)2|∇v2|

2)dx

+
b

4
R−4+2m

(

∫

Ω

(s2|∇v1|
2 + (1 − s)2|∇v2|

2)dx

)2

+
1

4
R−4+5m

∫

Ω

φûs û
2
s dx

− CR−p+3m
∫

Ω

(sp|v1|
p + (1 − s)2|v2|

p)dx.

(4.1)

Since 2 < p <
12
5 and m ∈

( p
3 ,

4−p
2

)

, we get

max{−2 + m,−4 + 2m,−4 + 5m,−p + 3m} = −p + 3m > 0. (4.2)

Considering the above relationship in (4.1), we are led to I(ūs) → −∞ as R → ∞ uniformly

for s ∈ [0, 1]. In addition, from Lemma 3.9, we have known that c∗1 := infu∈Σ I(u) ≥ aε2.

Therefore, choosing R large enough and independent of s can guarantee that

c̄0 = sup
u∈ψ0(∂0∆)

I(u) < c∗1 .

Meanwhile, it is obvious that
∫

Ω

|ūs|
2dx = R−2+3m

∫

Ω

(s2|v1|
2 + (1 − s)2|v2|

2)dx → ∞ as R → ∞

uniformly for s ∈ [0, 1], which, combining with (3.7), indicates that that ψ0(∂0∆) ∩ M = ∅.

Based on the above facts, define

c̄ = inf
ψ∈Γ

sup
u∈ψ(∆)\W

I(u),

where Γ := {ψ ∈ C(△, E) : ψ(∂1△) ⊂ P+
ε , ψ(∂2△) ⊂ P−

ε , ψ|∂0△ = ψ0} and apply Proposi-

tion 3.7, we obtain the existence of sign-changing solution. The rest of proof with respect to

multiplicity is very similar to that of Theorem 1.1. Actually, it is just necessary to use

ψn(t)(x) = R−1
n (t1v1(R−m

n x) + · · ·+ tnvn(R−m
n x))

instead of ψn(t)(x) in the process of the proof of Theorem 1.1. Once ψn(t)(x) is determined

as above, the remainder is just to repeat the proof of Theorem 1.1, so we omit the details.
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Abstract. In this paper, we study the following generalized quasilinear Schrödinger
equation

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = λ f (x, u) + h(x, u), x ∈ R
N ,

where λ > 0, N ≥ 3, g ∈ C1(R, R+). By using a change of variable, we obtain the
existence of positive solutions for this problem with concave and convex nonlinearities
via the Mountain Pass Theorem. Our results generalize some existing results.
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1 Introduction

In this paper, we are concerned with a class of generalized quasilinear Schrödinger equation

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = λ f (x, u) + h(x, u), (1.1)

where λ > 0, N ≥ 3, 2∗ = 2N
N−2 , and g satisfies:

(g) g ∈ C1(R, (0,+∞)) is even with g′(t) ≥ 0, for all t ∈ [0,+∞), g(0) = 1 and satisfies

g∞ := lim
t→∞

g(t)

t
∈ (0, ∞), (1.2)

and

β := sup
t∈R

tg′(t)
g(t)

≤ 1. (1.3)

BCorresponding author. Email: xjhuangxwen@163.com
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Mathematically, it is also a hot issue in nonlinear analysis to study the existence of solitary
wave solutions for the following quasi-linear Schrödinger equation

i∂tz = −∆z + W(x)z − k(x, |z|)− ∆l(|z|2)l′(|z|2)z, (1.4)

where z : R × RN → C, W : RN → R is a given potential, l : R → R and k : RN × R → R are
suitable functions.

The quasilinear equation of the form (1.4) appears naturally in mathematical physics and
has been derived as models of several physical phenomena corresponding to various types of
nonlinear terms l. Kurihara [23] considered the case where l(s) = s in (1.4), and this kind of
equation was used for the superfluid film [23,24] equation in fluid mechanics. [29–31] studied
the equation which corresponds to the case l(t) = tα for some α ≥ 1. For more details see
[2–4, 21, 25, 32, 34, 38] and references therein. Moreover, many conclusions about the equation
(1.4) with l(s) = 1 have been studied, see [35–37] and the references therein.

Cuccagna [11] was interested in the existence of standing wave solutions, that is, solutions
of type z(t, x) = exp(−iEt)u(x), where E ∈ R and u is a real function. It is well known that
z satisfies (1.4) if and only if the function u(x) solves the following equation of elliptic type
with the formal variational structure

− ∆u + V(x)u − ∆l(u2)l′(u2)u = a(x, u), x ∈ R
N . (1.5)

If we take

g2(u) = 1 +
[(l2(u))′]2

2
,

then (1.5) turns into quasilinear elliptic equations (see [39])

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = a(x, u), x ∈ R
N . (1.6)

The existence of solutions for (1.6) have been extensively investigated in the literature over
the past several decades (see [5, 9, 12, 13, 26, 27, 39–42]). For example, Shen et al. studied the
existence of positive solutions for two types of quasilinear elliptic equations with degenerate
coerciveness and slightly superlinear growth in [40]. By introducing a new variable replace-
ment, Cheng et al. proved the existence of positive and soliton solutions to a class of relativistic
nonlinear Schrödinger equations in [12, 13]. In [9], Chen et al. proved existence and asymp-
totic behavior of standing wave solutions for a class of generalized quasilinear Schrödinger
equations with critical Sobolev exponents. In [42], Shi et al. proved the positive solutions for
generalized quasilinear Schrödinger equations with potential vanishing at infinity. Besides,
Li et al. in [26] considered a class of generalized quasilinear Schrödinger equations with a
Kirchhoff-type perturbation. Under the assumption that the potential may be vanishing at
infinity, the existence of both the ground state and the ground state sign-changing solutions
is established. Furthermore, the behavior of these solutions is studied when the perturba-
tion vanishes. More concretely, Deng et al. [17, 18] proved the existence of positive solutions
with critical exponents, where critical exponents are 2∗ and α2∗, respectively. Moreover, the
existence of nodal solutions have been proved by Deng et al. in [15, 16]. Very recently, in
[27], Li et al. via Nehari manifold method proved the existence of ground state solutions and
geometrically distinct solutions. In [28], the authors by using symmetric mountain theorem,
considered the existence of a positive solution, a negative solution and infinitely many so-
lutions. For generalized quasilinear Schrödinger equation of Kirchhoff type and generalized
quasilinear Schrödinger–Maxwell system, we can refer to [6, 7, 26, 44] and references therein.
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If we set
g2(u) = 1 + 2u2,

then (1.6) reduces to the following well-known quasilinear Schrödinger equation

− ∆u + V(x)u − u∆(u2) = h(x, u). (1.7)

For (1.7), Liu–Wang–Wang [30] and Colin–Jeanjean [14] made the change of variable by v =

f−1(u), where f is defined by

f ′(t) =
1

(1 + 2 f 2(t))
1
2

on [0, ∞) and f (t) = − f (−t) on(−∞, 0], (1.8)

and then equation (1.7) in form can be transformed into a semilinear equation. Afterwards,
many recent studies has focused on the above quasilinear equation via the variable f , see
for example [8, 14, 33] and references therein. Especially, in [33], the authors considered the
existence of positive solutions for (1.7) with concave and convex nonlinearities.

To our knowledge, there are few papers studying the existence of positive solutions for
(1.6) with concave and convex nonlinearities. Motivated by the previously mentioned pa-
pers, especially [33], we study the existence of positive solutions with concave and convex
nonlinearities. Next, we give the following conditions on V:

(V1) V ∈ C(RN , R) and 0 < V0 ≤ infx∈RN V(x);

(V2) [V(x)]−1 ∈ L1(RN).

Moreover, the nonlinearities term f and h should satisfy the following assumptions:

(FH) f , h ∈ C(RN × R, R) and f (x, s) = 0, h(x, s) = 0 for all s ≤ 0 and x ∈ RN ;

(FH1) there exist constant c1 > 0 and q ∈ (1, 2) such that

0 ≤ f (x, s) ≤ c1|s|q−1, for all (x, s) ∈ R
N × R;

(FH2) lim
s→0

h(x,s)
s = 0 uniformly in x ∈ RN ;

(FH3) there exist c2 > 0 and 4 < p < 2 · 2∗ such that

h(x, s) ≤ c2(1 + |s|p−1), for all (x, s) ∈ R
N × R;

(FH4) there exists µ ≥ 2 such that

0 < 2µg(s)H(x, s) ≤ G(s)h(x, s),

where H(x, s) =
∫ s

0 h(x, t)dt and G(s) =
∫ s

0 g(t)dt;

(FH5) there exist c3 > 0 and q1 ∈ (1, 2) such that

h(x, s) ≥ c3g(s)|G(s)|q1−1 for all (x, s) ∈ R
N × R.
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Next, we recall some basic notions. Let

H1(RN) =
{

u ∈ L2(RN) : ∇u ∈ L2(RN)
}

,

endowed with the norm

‖u‖H1 =

(

∫

RN
(|∇u|2 + u2)

)
1
2

.

In the study of the elliptic equations, it is well known that the potential function V plays an
important role in choosing of a right working space and some suitable compactness methods.
Generally speaking, many papers study (1.1) under the following working space:

X =

{

u ∈ H1(RN) :
∫

R3
V(x)u2

< ∞

}

,

endowed with the norm

‖u‖X =

(

∫

RN
(|∇u|2 + V(x)u2)

)
1
2

, u ∈ X.

But in this paper, we define the following working space:

E =

{

v ∈ H1(RN) :
∫

RN
V(x)|G−1(v)|2 < ∞

}

,

which is called Orlicz–Sobolev space. Then E is a Banach space endowed with the following
norm

‖v‖ := ‖∇v‖2 + inf
ξ>0

1
ξ

{

1 +
∫

RN
V(x)|G−1(ξv)|2

}

. (1.9)

To resolve the equation (1.1), due to the appearance of the nonlocal term
∫

RN g2(u)|∇u|2,
the right working space seems to be

E0 =

{

u ∈ E :
∫

RN
g2(u)|∇u|2 < ∞

}

.

But under the assumption of (g), it is easy to see that E0 is not a linear space. To overcome
this difficulty, we follow the idea developed by Shen and Wang in [39], that is, we make the
change of variable substitution

u = G−1(v) and G(u) =
∫ u

0
g(t)dt, v ∈ E,

then
∫

RN
g2(u)|∇u|2 =

∫

RN
g2(G−1(v))|∇G−1(v)|2 := |∇v|22 < +∞, v ∈ E.

In such a case, we obtain the following Euler–Lagrange functional associated with the
equation (1.1)

Jλ(u) =
1
2

∫

RN
[g2(u)|∇u|2 + V(x)u2]− λ

∫

RN
F(x, u)−

∫

RN
H(x, u).

Therefore, after this change of variable, E can be used as the working space and the equa-
tion (1.1) in form can be transformed into the following functional

Jλ(v) =
1
2

∫

RN
(|∇v|2 + V(x)|G−1(v)|2)− Ψλ(v), (1.10)
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where
Ψλ(v) = λ

∫

RN
F(x, G−1(v)) +

∫

RN
H(x, G−1(v)). (1.11)

Because g is a nondecreasing positive function, we get |G−1(v)| ≤ 1
g(0) |v|. From this and

our hypotheses, it is clear that J is well defined in E and J ∈ C1.
Moreover, we can easily derive that if v ∈ C2(RN) is a critical point of (1.10), then u =

G−1(v) ∈ C2(RN) is a classical solution to the equation (1.1). In order to obtain a critical point
of (1.10), we only need to find the weak solution to the following equation

− ∆v + V(x)
G−1(v)

g(G−1(v))
= λ

f (x, G−1(v))

g(G−1(v))
+

h(x, G−1(v))

g(G−1(v))
, x ∈ R

N . (1.12)

Here, we call that v ∈ E is a weak solution to the equation (1.12) if it holds that

〈J ′
λ(v), ϕ〉 =

∫

RN
∇v · ∇ϕ +

∫

RN
V(x)

G−1(v)

g(G−1(v))
ϕ − 〈Ψλ(v), ϕ〉,

where

〈Ψλ(v), ϕ〉 = λ
∫

RN

f (x, G−1(v))

g(G−1(v))
ϕ +

∫

RN

h(x, G−1(v))

g(G−1(v))
ϕ, ϕ ∈ E.

Then it is standard to obtain that v ∈ E is a weak solution to the equation (1.12) if and
only if v is a critical point of the functional J in E. All in all, if we find a critical point of the
functional J in E, then we will get a classical solution to the equation (1.1).

Now, we state the results by the following theorems.

Theorem 1.1. Suppose that (g), (V1), (V2) and (FH)–(FH4) are satisfied. Then there exist λ0, C0 >

0 such that for all λ ∈ [0, λ0], problem (1.1) has one positive solution uλ,1 ∈ H1(RN) such that

‖uλ,1‖H1 ≤ C0. Moreover, if λ = 0, then there exist constants M, ζ > 0 such that

u0,1 ≤ M exp (−ζ|x|), for all x ∈ R
N .

Theorem 1.2. Suppose that (g), (V1), (V2) and (FH)–(FH5) are satisfied. Then for all λ > 0, (1.1)
possesses a positive solution vλ,2 ∈ H1(RN), which is different of vλ,1 when λ ∈ (0, λ0].

Remark 1.3. Condition (g) originates from [19]. In fact, as [10], there are many functions
satisfying (g). For example:

g(s) =















√
1 + s2, if 0 ≤ s ≤ 1,√
2

2 (s + 1), if s > 1,

g(−s), if s < 0,

and
g(s) =

√

1 + 2s2.

Note that if we choose g(s) =
√

1 + 2s2 in (1.1), then (1.1) will become the classical quasilinear
Schrödinger equation

−∆u + V(x)u − ∆(u2)u = λ f (x, u) + h(x, u).

Remark 1.4. By Remark 1.3, our results extend [33].
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Remark 1.5. Is easy to check that the following function satisfies (V1) and (V2):

V(x) =

{

2, if |x| < 1,

|x|N−1(1 + |x|2), if |x| ≥ 1,

where N ≥ 3.

For the above problem, there are many difficulties in treating this class of generalized
quasilinear Schrödinger equations in RN . The first difficulty is the possible lack of compact-
ness besides the concave term. The second difficulty is lack of natural functions space for
the associated energy functional to be well defined. The function space H1(RN) cannot be
applied directly to handle with this class of generalized quasilinear Schrödinger equations.
To overcome these difficulties, we refer [33] and establish a different approach based on an
appropriate Orlicz space. It was crucial in our argument the fact that this function space
considered in our approach can be embedded into the usual Lebesgue spaces Lr(RN) for all
1 ≤ r < 2∗.

Motivated by the argument used in [39], we use a change of variable to turn the problem
into a semilinear one so that it has the associated functional well defined and Gateaux differ-
entiable in a suitable Orlicz space. We prove that the energy functional satisfies the geometric
hypotheses of the mountain-pass theorem and the Palais–Smale condition. In this paper, the
first result is proved by using a version of the mountain-pass theorem and the second solution
is obtained as a consequence of a minimization argument based on the Ekeland variational
principle.

The paper is organized as follows. In Section 2, we give some preliminary lemmas. In
Section 3, we give the proof of Theorem 1.1 and Theorem 1.2, respectively.

Notations. Throughout this paper, we make use of the following notations:

•
∫

RN ♣ denotes
∫

RN ♣dx.

• C will denote a positive constant, not necessarily the same one.

• Lr(RN) denotes the Lebesgue space with norm

‖u‖r =

(

∫

RN
|u|r
)1/r

,

where 1 ≤ r < ∞.

• For any z ∈ RN and R > 0, BR(z) := {x ∈ RN : |x − z| < R}.

• The weak convergence in H1(RN) is denoted by ⇀, and the strong convergence by →.

2 Some preliminary lemmas

In this section, we present some useful lemmas and corollaries. Now, let us recall the following
lemma which has been proved in [19].

Lemma 2.1 ([19]). For the function g, G, and G−1, the following properties hold:

(g1) the functions G(·) and G−1(·) are strictly increasing and odd;
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(g2) 0 <
d
dt

(

G−1(t)
)

= 1
g(G−1(t))

≤ 1
g(0) for all t ∈ R;

(g3) |G−1(t)| ≤ 1
g(0) |t| for all t ∈ R;

(g4) lim
|t|→0

G−1(t)
t = 1

g(0) ;

(g5) lim
|t|→+∞

G−1(t)
g(G−1(t))

= ± 1
g∞

;

(g6) 1 ≤ tg(t)
G(t)

≤ 2 and 1 ≤ G−1(t)g(G−1(t))
t ≤ 2 for all t 6= 0;

(g7)
G−1(t)√

t
is non-decreasing in (0,+∞) and |G−1(t)| ≤ (2/g∞)1/2

√

|t| for all t ∈ R;

(g8)

|G−1(t)| ≥
{

G−1(1)|t|, for all |t| ≤ 1,

G−1(1)
√

|t|, for all |t| ≥ 1;

(g9)
t

g(t)
is increasing and

∣

∣

∣

t
g(t)

∣

∣

∣
≤ 1

g∞
for all t ∈ R;

(g10) the function [G−1(t)]2 is convex. In particular, [G−1(θt)]2 ≤ θ[G−1(t)]2 for all t ∈ R, θ ∈
[0, 1];

(g11) [G−1(θt)]2 ≤ θ2[G−1(t)]2 for all t ∈ R, θ ≥ 1;

(g12) [G−1(t1 − t2)]2 ≤ 4([G−1(t1)]
2 + [G−1(t2)]2) for all t1, t2 ∈ R;

(g13) the function G−1(t) is concave. In particular, G−1(θt) ≤ θG−1(t) for all t ∈ R, θ ∈ [1,+∞);

(g14) G−1(θt) ≥ θG−1(t) for all t ∈ R, θ ∈ [0, 1].

Proposition 2.2 ([19]). Assume that V satisfies (V1)–(V2). Then the space E has the following

properties:

(1) if {vn} ⊂ E is such that vn(x) → v(x) a.e. in RN and

lim
n→+∞

∫

RN
V(x)[G−1(vn)]

2 =
∫

RN
V(x)[G−1(v)]2,

then

inf
ξ>0

1
ξ

{

1 +
∫

RN
V(x)|G−1(ξ(vn − v))|2

}

→ 0;

(2) the embedding E →֒ D1,2(RN), E →֒ H1(RN) and X →֒ E are continuous;

(3) the map v 7→ G−1(v) from E to Lr(RN) is continuous for each r ∈ [2, 2 · 2∗];

(4) if v ∈ E and u = G−1(v), then

‖ug(u)‖ ≤ 4‖v‖;

(5) if vn ⇀ v in D1,2(RN) and
{∫

RN V(x)[G−1(vn)]2dx
}

is bounded then, up to a subsequence,

G−1(vn) → 0 strongly in Lr(RN) for any 2 ≤ r < 2 · 2∗.
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Proposition 2.3 ([10]). Assume that V satisfies (V1)–(V2). Then the space E has the following

properties:

(i) E is a normed linear space with respect to the norm given in (1.9);

(ii) there exists a positive constant C > 0 such that for all v ∈ E,

∫

RN V(x)|G−1(v)|2
[

1 +
(∫

RN V(x)|G−1(v)|2
)1/2

] ≤ C‖v‖; (2.1)

(iii) if vn → v in E, then
∫

RN
V(x)

∣

∣

∣
|G−1(vn)|2 − |G−1(v)|2

∣

∣

∣
→ 0,

and
∫

RN
V(x)

∣

∣

∣
G−1(vn)− G−1(v)

∣

∣

∣

2
→ 0.

Lemma 2.4. Suppose that (V1)–(V2) holds. Then the embedding

X →֒ Lr(RN)

is continuous for 1 ≤ r ≤ 2∗ and compact for 1 ≤ r < 2∗.

Proof. Similar to the proof of [33], by (V1), the embedding X →֒ H1(RN) is continuous. Thus
X →֒ Lr(RN) is continuous for 2 ≤ r ≤ 2∗. Moreover, if u ∈ X we get

∫

RN
|u| ≤

(

∫

RN
V(x)−1

)1/2

‖u‖X.

Therefore, by interpolation the first part the lemma is proved. Next, let {un} ⊂ X be a
bounded sequence. Hence up to a subsequence, un ⇀ u0 in X. Given ε > 0, for enough large
R > 0, we have

∫

|x|>R
V(x)−1 ≤

[

ε

2(C + ‖u0‖X)

]2

,

which shows that

∫

|x|>R
|un − u0| ≤

(

∫

|x|>R
V(x)−1

)1/2

‖un − u0‖X ≤ ε

2
,

and since X →֒ L1(BR) is compact, it follows that there exists N such that for all n ≥ N

∫

BR

|un − u0| ≤
ε

2
.

Thus un → u0 in L1(RN). Now, if r ∈ [1, 2∗), by interpolation inequality, for some 0 < σ ≤ 1,
we have

‖un − u0‖r ≤ ‖un − u0‖σ
1‖un − u0‖1−σ

2∗ ≤ C‖un − u0‖σ
1 → 0,

and this completes the proof.

Lemma 2.5. The map v 7→ G−1(v) from E to Lr(RN) is continuous for each r ∈ [1, 2 · 2∗]. Moreover,

under assumption (V2), the above map is compact for r ∈ [1, 2 · 2∗).
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Proof. Let v ∈ E. By definition, we know that G−1(v) ∈ X, which together with Lemma 2.4
and (g2) in Lemma 2.1 implies that

‖G−1(v)‖r ≤ C‖G−1(v)‖X ≤ C

[

∫

RN
(|∇v|2 + V(x)|G−1(v)|2)

]1/2

, (2.2)

for all 1 ≤ r ≤ 2∗. Moreover, by the Gagliardo–Nirenberg inequality and (g9) in Lemma 2.1,
we have

‖G−1(v)‖2·2∗ = ‖G−1(v)2‖1/2
2∗

≤ C‖∇(G−1(v)2)‖1/2
2

= C

[

∫

RN

∣

∣

∣

∣

G−1(v)

g(G−1(v))

∣

∣

∣

∣

2

|∇v|2
]1/2

≤ C

g∞

‖v‖.

(2.3)

Thus for all v ∈ E, we know G−1(v) ∈ L2·2∗(RN).
Let {vn} be a sequence in E such that vn → v in E. Thus

∂vn

∂xi
→ ∂v

∂xi
in L2(RN),

for i = 1, 2, . . . , N. By (iii) in Proposition 2.3, we have

∫

RN
V(x)

∣

∣

∣
|G−1(vn)| − |G−1(v)|

∣

∣

∣

2
dx → 0. (2.4)

Therefore, by Lemma A.1 in [43], up to a subsequence, there exists Ui ∈ L2(RN) for i =

1, 2, . . . , N such that
∣

∣

∣

∣

∂vn

∂xi

∣

∣

∣

∣

≤ Ui(x), a.e. x ∈ R
N .

Hence
∣

∣

∣

∣

∂G−1(vn)

∂xi

∣

∣

∣

∣

=

∣

∣

∣

∣

1
g(G−1(vn))

∂vn

∂xi

∣

∣

∣

∣

≤ 1
g(0)

Ui(x),

and
∂G−1(vn)

∂xi
=

1
g(G−1(vn))

∂vn

∂xi
→ 1

g(G−1(v))

∂v

∂xi
=

∂G−1(v)

∂xi
a.e. x ∈ R

N ,

for i = 1, 2, . . . , N. So by the Lebesgue Dominated Converge Theorem, we have

G−1(vn) → G−1(v) in D1,2(RN),

which together with (2.4), we have

G−1(vn) → G−1(v) in X.

Moreover, by Lemma 2.4, one has

G−1(vn) → G−1(v) in Lr(RN) for 1 ≤ r ≤ 2∗.

By (2.3), we have
|G−1(vn − v)|2 → 0 in L2∗(RN).
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Again by Lemma A.1 in [43], there exists W ∈ L2∗(RN) such that

|G−1(vn − v)|2 ≤ W(x) a.e. x ∈ R
N .

By the convexity of G−1(v)2, we get

|G−1(vn)
2·2∗ | ≤

∣

∣

∣

∣

1
2

G−1(2(vn − v))2 +
1
2

G−1(2v)2
∣

∣

∣

∣

2∗

≤
∣

∣

∣

∣

C0

2
G−1(vn − v)2 +

C0

2
G−1(v)2

∣

∣

∣

∣

2∗

≤ C022∗−1

2

(

|G−1(vn − v)2|2∗ + |G−1(v)2|2∗
)

≤ C022∗−1

2

(

W(x)2∗ + |G−1(v)2|2∗
)

∈ L1(RN).

Hence by the Lebesgue dominated converge theorem, one has

G−1(vn) → G−1(v) in L2·2∗(RN).

Therefore, this completes the proof of continuity.
Next, we will prove the compactness. Let {vn} ⊂ E be a bounded sequence. Then {vn} is

bounded in D1,2(RN) and by (2.1), we conclude that there exists a constant C > 0 such that
∫

RN
V(x)G−1(vn)

2 ≤ C.

Form (2.2) and (2.3), we can know that {G−1(vn)} is bounded in X and in L2·2∗(RN). The
compact embedding X →֒ L1(RN) implies that, up to a subsequence, there is w ∈ L1(RN)

such that G−1(vn) → w in L1(RN) and almost everywhere in RN . Thus, by the Brezis–Lieb
Lemma we conclude that w ∈ L2·2∗(RN) and according to interpolation inequality, given any
1 ≤ q < 2 · 2∗, there exists 0 < ς ≤ 1 such that

‖G−1(vn)− w‖q ≤ ‖G−1(vn)− w‖ς
1‖G−1(vn)− w‖1−ς

2·2∗ ≤ C‖G−1(vn)− w‖ς
1,

which shows that G−1(vn) → w in Lr(RN) for 1 ≤ r < 2 · 2∗. This completes the proof.

Lemma 2.6. The embedding E →֒ Lr(RN) is continuous for 1 ≤ r ≤ 2∗.

Proof. Firstly, by (g8) in Lemma 2.1, we can get

|t| ≤ 1
G−1(0)

|G−1(t)|+ 1
G−1(0)2 |G

−1(t)|2. (2.5)

Moreover, by Lemma 2.5, if v ∈ E, then v ∈ L1(RN). That is to say that if vn → 0 in E, then we
have G−1(vn) → 0 in L1(RN) and L2(RN). Thus by (2.5), we know vn → 0 in L1(RN). Thus
E →֒ L1(RN) is continuous. Using one more time (2.5), we have

|t|2∗ ≤ 1
G−1(0)

|G−1(t)|2∗ + 1
G−1(0)2 |G

−1(t)|2·2∗ .

It follows from Lemma 2.5 that vn → 0 in L2∗(RN). Finally, by interpolation the results
obviously holds.
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Proposition 2.7 ([10]). E is a Banach space. Moreover, C∞
0 (RN) is dense in E.

Proposition 2.8. The functional Jλ is well defined, continuous and Gateaux-differentiable in E with

〈J ′
λ(v), ϕ〉 =

∫

RN
∇v∇ϕ +

∫

RN
V(x)

G−1(v)

g(G−1(v))
ϕ − 〈Ψλ(v), ϕ〉,

where

〈Ψλ(v), ϕ〉 = λ
∫

RN

f (x, G−1(v))

g(G−1(v))
ϕ +

∫

RN

h(x, G−1(v))

g(G−1(v))
ϕ, v, ϕ ∈ E.

Moreover, for v ∈ E we know that J ′
λ(v) ∈ E∗ and if vn → v in E then

〈J ′
λ(vn), ϕ〉 → 〈J ′

λ(v), ϕ〉,

for each ϕ ∈ E, that is, J ′
λ(vn) → J ′

λ(v) in the weak ∗ topology of E∗.

Proof. By (FH1)–(FH3), for each v ∈ E, we have
∫

RN
F(x, G−1(v)) ≤ c1

q

∫

RN
|G−1(v)|q, (2.6)

and
∫

RN
H(x, G−1(v)) ≤ C

∫

RN
(|G−1(v)|2 + |G−1(v)|p). (2.7)

Hence, by Lemma 2.6, Ψλ(v) is well defined.
Let vn → v in E, then by the continuous embedding E →֒ D1,2(RN) →֒ L2∗(RN), we have

vn → v in D1,2(RN), vn → v in Lr(RN) for 1 ≤ r ≤ 2∗ and
∫

RN
V(x)G−1(vn)

2 →
∫

RN
V(x)G−1(v)2.

It follows from (2.6), (2.7) and Lebesgue’s Dominated Converge Theorem implies that
∫

RN
F(x, G−1(vn)) →

∫

RN
F(x, G−1(v)),

∫

RN
H(x, G−1(vn)) →

∫

RN
H(x, G−1(v)).

Thus Jλ is continuous.
Next, we prove that Jλ is Gateaux-differentiable in E. Note that for any fixed v, ϕ ∈ E, by

the mean value theorem, there exists 0 < θ < 1 such that

1
2

∫

RN

V(x)(|G−1(v + tϕ)|2 − |G−1(v)|2)
t

dx =
∫

RN
V(x)

G−1(v + θtϕ)

g(G−1(v + θtϕ))
ϕdx.

For any |t| ≤ 1, we have
∣

∣

∣

∣

V(x)
G−1(v + θtϕ)

g(G−1(v + θtϕ))
ϕ

∣

∣

∣

∣

≤ CV(x)|(v + θtϕ)ϕ|

≤ CV(x)|vϕ + ϕ2|
≤ CV(x)(|vϕ|+ |ϕ|2) ∈ L1(RN).

Since
G−1(v + θtϕ)

g(G−1(v + θtϕ))
ϕ → G−1(v)

g(G−1(v))
ϕ, a.e. on R

N , as t → 0,
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then by the Lebesgue Dominated Convergence Theorem, we have

1
2

∫

RN

V(x)(|G−1(v + tϕ)|2 − |G−1(v)|2)
t

→
∫

RN
V(x)

G−1(v)

g(G−1(v))
ϕ, as t → 0,

Similar to the proof and using (FH)–(FH1), we can conclude that

∫

RN

F(x, G−1(v + tϕ))− F(x, G−1(v))

t
→
∫

RN

f (x, G−1(v))

g(G−1(v))
ϕ, as t → 0,

and
∫

RN

H(x, G−1(v + tϕ))− F(x, G−1(v))

t
→
∫

RN

h(x, G−1(v))

g(G−1(v))
ϕ, as t → 0,

Based on the above discussion, we have that J ∈ C1(E, R).

To prove J ′ ∈ E∗ for v ∈ E, we only need to check the term
∫

RN V(x) G−1(v)
g(G−1(v))

ϕ. In fact, let
ωn → 0 in E. By Proposition 2.3-(iii), we have

∫

RN
V(x)|G−1(ωn)|2 → 0, as n → ∞.

Moreover, it follows from (g2), (g9) in Lemma 2.1 and (2.5) that

∣

∣

∣

∣

∫

RN
V(x)

G−1(v)

g(G−1(v))
ωn

∣

∣

∣

∣

≤
∫

RN
V(x)

∣

∣

∣

∣

G−1(v)

g(G−1(v))

∣

∣

∣

∣

|ωn|

≤ 1
G−1(0)

∫

RN
V(x)

∣

∣

∣

∣

G−1(v)

g(G−1(v))

∣

∣

∣

∣

|G−1(ωn)|

+
1

G−1(0)2

∫

RN
V(x)

∣

∣

∣

∣

G−1(v)

g(G−1(v))

∣

∣

∣

∣

|G−1(ωn)|2

≤ 1
G−1(0)

∫

RN
V(x)

∣

∣

∣
G−1(v)

∣

∣

∣
|G−1(ωn)|

+
1

g∞G−1(0)2

∫

RN
V(x)|G−1(ωn)|2

≤ 1
G−1(0)

[

∫

RN
V(x)

∣

∣

∣
G−1(v)

∣

∣

∣

2
]1/2 [∫

RN
V(x)

∣

∣

∣
G−1(ωn)

∣

∣

∣

2
]1/2

+
1

g∞G−1(0)2

∫

RN
V(x)|G−1(ωn)|2,

which implies that
∫

RN
V(x)

G−1(v)

g(G−1(v))
ωn → 0.

Thus J ′ ∈ E∗ for any v ∈ E.
Similar to the proof of the first part in this proposition, we can prove that if vn → v in E,

then

〈J ′
λ(vn), ϕ〉 → 〈J ′

λ(v), ϕ〉,

for each ϕ ∈ E, that is, J ′
λ(vn) → J ′

λ(v) in the weak ∗ topology of E∗.
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3 Proofs of Theorem 1.1 and Theorem 1.2

This section is devoted to prove Theorem 1.1 and Theorem 1.2. To this end, we will present
two lemmas to show that the functional Jλ verifies the mountain pass geometry. Before
proving the two lemmas, we need to the following version mountain pass theorem, which is
a consequence of the Ekeland variational principle as developed in [1].

Theorem 3.1 ([1]). Let E be a Banach space and Φ ∈ C(E, R), Gateaux-differentiable for all v ∈ E,

with G-derivative Φ′(v) ∈ E∗ continuous from the norm topology of E to the weak ∗ topology of E∗,

Φ satisfies (PS) condition and Φ(0) = 0. Let S be a closed subset of E which disconnects (archwise)

E. Let v0 = 0 and v1 ∈ E be points belonging to distinct connected components of E\S. Suppose that

inf
S

Φ ≥ η > 0 and Φ(v1) ≤ 0.

Then

c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)) ≥ α,

and there exists a (PS)c sequence for Φ. c is critical value of Φ.

Next, we prove that there exists λ0 > 0 such that for all λ ∈ [0, λ0], Jλ satisfies all the
conditions of Theorem 3.1. To this end, for ρ > 0, let us define the following set

S(ρ) =
{

x ∈ R
N : P(v) = ρ2

}

,

where P : E → R is given by

P(v) =
∫

RN

(

|∇v|2 + V(x)|G−1(v)|2
)

.

Since P(v) is continuous then S(ρ) is a closed subset and disconnects the space E for ρ > 0.

Lemma 3.2. Suppose that (V1)–(V2) and (FH)–(FH4) are satisfied. Then there exist λ0, η, ρ > 0
such that for all λ ∈ [0, λ0], Jλ(v) ≥ η for all v ∈ S(ρ).

Proof. By (FH2) and (FH3), for any ε > 0 there exists Cε > 0 such that

|H(x, G−1(s))| ≤ ε|G−1(s)|2 + Cε|G−1(s)|p for all (x, s) ∈ R
N × R.

Thus for v ∈ Sρ, by (V1) and Hölder’s inequality, we get
∫

RN
H(x, G−1(v)) ≤ ε

∫

RN
|G−1(v)|2 + Cε

∫

RN
|G−1(v)|p

≤ ε

V0

∫

RN
V(x)|G−1(v)|2 + Cε

∫

RN
|G−1(v)2|p/2

≤ ε

V0
ρ2 + Cε

[

∫

RN
|G−1(v)|2

]

pκ
2
[

∫

RN
|G−1(v)2|2∗

]1− pκ
2

≤ ε

V0
ρ2 + Cερ

pκ

[

∫

RN
|∇(G−1(v)2)|2

]
2∗
2 (1− pκ

2 )
,

where

κ =
2 · 2∗ − p

p(2∗ − 1)
.
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Moreover, since v ∈ Sρ, then

∫

RN
|∇(G−1(v)2)|2 = 4

∫

RN

∣

∣

∣

∣

G−1(v)

g(G−1(v))

∣

∣

∣

∣

2

|∇v|2 ≤ 4
g2

∞

∫

RN
|∇v|2 ≤ 4

g2
∞

ρ2.

Therefore, one has

∫

RN
H(x, G−1(v)) ≤ ε

V0
ρ2 + Cερ

pκ

[

4
g2

∞

ρ2
]

2∗
2 (1− pκ

2 )

≤ ε

V0
ρ2 + Cρ

2(p+N)
N+2 .

(3.1)

Next, by (FH1) and (2.2), we conclude that
∫

RN
F(x, G−1(v)) ≤ c1

∫

RN
|G−1(v)|q

≤ ‖G−1(v)‖q
X

≤ C

[

∫

RN
(|∇v|2 + V(x)|G−1(v)|2)

]q/2

,

and so v ∈ Sρ, we get
∫

RN
F(x, G−1(v)) ≤ Cρq. (3.2)

It follows from (3.1) and (3.2) that for v ∈ Sρ,

Jλ(v) ≥
(

1
2
− ε

V0

)

ρ2 − Cλρq − Cρ
2(p+N)

N+2

= ρ2
(

1
2
− ε

V0
− Cρ

2(p−2)
N+2

)

− Cλρq.

Next, we choose 0 < 2ε < V0 and ρ0 > 0 such that

α0 :=
1
2
− ε

V0
− Cρ

2(p−2)
N+2

0 > 0,

where implies that

Jλ(v) ≥ ρ
q
0(α0ρ

2−q
0 − λC).

In the above inequality, choosing λ0 =
α0ρ

2−q
0

4C and η := 3α0ρ2
0

4 > 0 such that for all λ ∈ [0, λ0],

Jλ(v) ≥ η > 0.

This completes the proof.

Lemma 3.3. Suppose that (V1)–(V2) and (FH)–(FH4) are satisfied. Then for λ ∈ [0, λ0], there exists

v ∈ E such that P(v) > ρ0 and Jλ(v) < 0.

Proof. To this end, we prove that for fixed ψ ∈ E\{0},

Jλ(tψ) → −∞ as t → +∞.
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By (FH4), there exist C1, C2 > 0 such that H(x, G−1(s)) ≥ C1s2µ − C2 for all (x, s) ∈ RN × R.
Choosing ψ ∈ (C∞

0 (RN), [0, 1]) such that supp ψ = Ω, we have

Jλ(tψ) ≤
1
2

∫

RN

(

|t∇ψ|2 + V(x)|G−1(tψ)|2
)

−
∫

RN
H(x, G−1(tψ))

≤ t2
∫

Ω

(

|∇ψ|2 + V(x)ψ2)− C1

∫

Ω
|G−1(tψ)|2µ + C2|Ω|

≤ t2

[

∫

Ω

(

|∇ψ|2 + V(x)ψ2)− C1

∫

Ω

|G−1(tψ)|2µ

t2 + C2
|Ω|
t2

]

,

where |Ω| denotes the Lebesgue measure of Ω. Moreover, by (g7) in Lemma 2.1, we have

∫

Ω

|G−1(tψ)|2µ

t2 =
∫

Ω

(

G−1(tψ)
√

t|ψ|

)4

|G−1(tψ)|2µ−4ψ2 → +∞ as t → +∞.

Hence, we take v = tψ with t large enough. This completes the proof.

A sequence {vn} ⊂ E is said to be a (PS)c-sequence if Jλ(vn) → c and J ′
λ(vn) → 0. Jλ is

said to satisfy the (PS)c-condition if any (PS)c-sequence has a convergent subsequence. Now,
we will prove that Jλ satisfies (PS)c-condition.

Lemma 3.4. Any (PS)c sequence for Jλ is bounded in E.

Proof. Suppose that {vn} is a (PS)c for Jλ, that is, Jλ(vn) → c and J ′
λ(vn) → 0. Using (g)

Jλ(vn)−
1

2µ
〈J ′

λ(vn), vn〉

=

(

1
2
− 1

2µ

)

∫

RN
|∇vn|2 +

∫

RN
V(x)

(

1
2
|G−1(vn)|2 −

1
2µ

G−1(vn)

g(G−1(vn))
vn

)

− 1
2µ

∫

RN

[

2µH(x, G−1(vn))−
h(x, G−1(vn))

g(G−1(vn))
vn

]

− λ
∫

RN
F(x, G−1(vn)) +

λ

2µ

∫

RN

f (x, G−1(vn))

g(G−1(vn))
vn

≥
(

1
2
− 1

2µ

)

∫

RN
|∇vn|2 +

∫

RN
V(x)

(

1
2
|G−1(vn)|2 −

1
2µ

G−1(vn)

g(G−1(vn))
vn

)

− 1
2µ

∫

RN

[

2µH(x, G−1(vn))−
h(x, G−1(vn))

g(G−1(vn))
vn

]

− λ
∫

RN
F(x, G−1(vn)).

(3.3)

Using the definition of G, we can get G(t) ≤ g(t)t for all t ≥ 0. In fact, by g′(t) ≥ 0 for all
t ≥ 0

G(t) =
∫ t

0
g(s)ds = sg(s)

∣

∣

∣

∣

t

0
−
∫ t

0
sg′(s)ds ≤ g(t)t. (3.4)

By (3.4) and (g6) in Lemma 2.1, it is easy to check that

1
2
|G−1(s)|2 ≤ G−1(s)s

g(G−1(s))
≤ |G−1(s)|2, for all s ∈ R. (3.5)

By (3.3) and (3.5), we have

c + on(1)‖vn‖ ≥
(

1
2
− 1

2µ

)

∫

RN

(

|∇vn|2 + V(x)|G−1(vn)|2
)

− λC‖G−1(vn)‖q
q. (3.6)
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It follows from (2.2) and (3.6) that

c + on(1)‖vn‖+ λC

[

∫

RN

(

|∇vn|2 + V(x)|G−1(vn)|2
)

]q/2

≥
(

1
2
− 1

2µ

)

∫

RN

(

|∇vn|2 + V(x)|G−1(vn)|2
)

,

which implies that there exists C > 0 such that
∫

RN

(

|∇vn|2 + V(x)|G−1(vn)|2
)

≤ C, (3.7)

due to q ∈ (1, 2). Since s1/2 ≤ 1 + s for all s ≥ 0, then we have the following estimate

‖vn‖ ≤
(

∫

RN
|∇vn|2

)1/2

+ 1 +
∫

RN
V(x)|G−1(vn)|2

≤ 2 +
∫

RN

(

|∇vn|2 + V(x)|G−1(vn)|2
)

.
(3.8)

It follows from (3.7) and (3.8) that {vn} is bounded in E.

Lemma 3.5. Any (PS)c sequence for Jλ has a converge subsequence.

Proof. Let {vn} be a (PS)c for Jλ. By Lemma 3.4, we know that {vn} is bounded in E.
Since E →֒ H1(RN), {vn} is bounded in H1(RN). Hence up to a subsequence, there exists
v ∈ H1(RN) such that

vn ⇀ v in H1(RN), vn ⇀ v in Lr(RN) for all 1 ≤ r ≤ 2∗, vn → v a.e. in R
N .

Using (2.1) and Fatou’s Lemma, we have
∫

RN
V(x)|G−1(v)|2 ≤ lim inf

n→∞

∫

RN
V(x)|G−1(vn)|2 ≤ C,

which shows that v ∈ E. Moreover, by Lemma 2.5, one has

G−1(vn) → G−1(v) in Lr(RN) for all 1 ≤ r < 2 · 2∗. (3.9)

Since [G−1(s)]2 is convex, then P(s) is also convex function. Therefore by Lemma 15.3 in [22],
we have

1
2
P(v)− 1

2
P(vn) ≥

1
2
〈P ′(vn), v − vn〉

=
∫

RN
∇vn∇(v − vn) +

∫

RN
V(x)

G−1(vn)

g(G−1(vn))
(v − vn).

Moreover,
1
2

∫

RN
[|∇v|+ V(x)|G−1(v)|2]− 1

2

∫

RN
[|∇vn|+ V(x)|G−1(vn)|2]

≥ λ
∫

RN

f (x, G−1(vn))

g(G−1(vn))
(v − vn) +

∫

RN

h(x, G−1(vn))

g(G−1(vn))
(v − vn)

+ 〈J ′
λ(vn), v − vn〉.

(3.10)
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Writing
∫

RN

h(x, G−1(vn))

g(G−1(vn))
(v − vn) =

∫

RN

[

h(x, G−1(vn))

g(G−1(vn))
− h(x, G−1(v))

g(G−1(v))

]

(v − vn)

+
∫

RN

h(x, G−1(v))

g(G−1(v))
(v − vn).

Due to h(x,G−1(v))
g(G−1(v))

∈ L2N/(N+2)(RN) and vn ⇀ v in L2∗(RN), we have

∫

RN

h(x, G−1(v))

g(G−1(v))
(v − vn) → 0 as n → ∞.

By (FH2)–(FH3), (3.9) and the Lebesgue Dominated Converge Theorem, we have

h(x, G−1(vn))

g(G−1(vn))
→ h(x, G−1(v))

g(G−1(v))
in L2N/(N+2)(RN).

By Hölder inequality and the boundedness of {vn} in L2∗(RN), one has
∫

RN

[

h(x, G−1(vn))

g(G−1(vn))
− h(x, G−1(v))

g(G−1(v))

]

(v − vn) → 0 as n → ∞.

Thus
∫

RN

h(x, G−1(vn))

g(G−1(vn))
(v − vn) → 0 as n → ∞.

Similarly, we can prove the following
∫

RN

f (x, G−1(vn))

g(G−1(vn))
(v − vn) → 0 as n → ∞,

which dues to

vn ⇀ v in Lq(RN) and
f (x, G−1(vn))

g(G−1(vn))
→ f (x, G−1(v))

g(G−1(v))
in Lq/(q−1)(RN).

By virtue of 〈J ′
λ(vn), v − vn〉 = on(1), by (3.10), we get

lim inf
n→∞

∫

RN
[|∇vn|+ V(x)|G−1(vn)|2] ≤

∫

RN
[|∇v|+ V(x)|G−1(v)|2].

In addition, by the semicontinuity of norm and Fatou’s Lemma, we have

lim inf
n→∞

∫

RN
|∇vn|2 ≥

∫

RN
|∇v|2,

lim inf
n→∞

∫

RN
V(x)|G−1(vn)|2 ≥

∫

RN
V(x)|G−1(v)|2.

Therefore we have
lim inf

n→∞

∫

RN
|∇vn|2 =

∫

RN
|∇v|2,

and
lim inf

n→∞

∫

RN
V(x)|G−1(vn)|2 =

∫

RN
V(x)|G−1(v)|2.

By (1) in Proposition 2.2, we get

inf
ξ>0

1
ξ

{

1 +
∫

RN
V(x)|G−1(ξ(vn − v))|2

}

→ 0,

which together with ∇vn → ∇v in L2(RN), implies that vn → v in E.
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Proof of Theorem 1.1. By Lemmas 3.2–3.5, all conditions of Theorem 3.1 are satisfied. Thus
there exists a critical point cλ for Jλ at mountain pass level

cλ = inf
γ∈Γλ

max
t∈[0,1]

Jλ(γ(t)) > 0,

where
Γλ = {γ ∈ C([0, 1], E) : γ(0) = 0 and Jλ(γ(1)) < 0} .

Therefore for all φ ∈ E, we get

∫

RN
∇vλ∇φ + V(x)

G−1(vλ)

g(G−1(vλ))
φ = λ

∫

RN

f (x, G−1(vλ))

g(G−1(vλ))
φ +

∫

RN

h(x, G−1(vλ))

g(G−1(vλ))
φ. (3.11)

Choosing φ = −v−λ , where v−λ = max{−vλ, 0}, we have

∫

RN

[

|∇v−λ |2 + V(x)
G−1(vλ)

g(G−1(vλ))
(−v−λ )

]

= 0.

Since G−1(vλ)(−v−λ ) ≥ 0, we conclude that

∫

RN
|∇v−λ |2 = 0 and

∫

RN
V(x)

G−1(vλ)

g(G−1(vλ))
(−v−λ ) = 0.

Thus v−λ = 0 a.e. in RN and we have vλ ≥ 0. It follows from the strong maximum principle
that vλ > 0 in RN , therefore uλ,1 = G−1(vλ) is a positive solution for (1.1).

Next, we shall prove that there exists C > 0 such that ‖uλ,1‖ ≤ C for all λ ∈ [0, λ0]. In
(3.11), taking φ = vλ and using (3.5), we get

2
∫

RN
|∇vλ|2 + 2

∫

RN
V(x)|G−1(vλ)|2 ≥ 2

∫

RN
|∇vλ|2 + 2

∫

RN
V(x)

G−1(vλ)vλ

g(G−1(vλ))

≥
∫

RN

h(x, G−1(vλ))vλ

g(G−1(vλ))
.

(3.12)

Since Jλ(vλ) = cλ, we get

2µcλ = µ
∫

RN
(|∇vλ|2 + V(x)|G−1(vλ)|2)dx − 2µλ

∫

RN
F(x, G−1(vλ))dx

− 2µ
∫

RN
H(x, G−1(vλ))dx,

(3.13)

and cλ ≤ c0, where
c0 = inf

γ∈Γ0
max
t∈[0,1]

J0(γ(t)) > 0,

with J0 is given by

J0(v) =
1
2

∫

RN
(|∇vλ|2 + V(x)|G−1(vλ)|2)dx −

∫

RN
H(x, G−1(vλ))dx,

and
Γ0 = {γ ∈ C([0, 1], E) : γ(0) = 0 and J0(γ(1)) < 0} .
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Thus, by (3.12), (3.13), (FH4) and (2.2), one has

(µ − 2)
∫

RN
(|∇vλ|2 + V(x)|G−1(vλ)|2)

= − 2
∫

RN
(|∇vλ|2 + V(x)|G−1(vλ)|2) + 2µλ

∫

RN
F(x, G−1(vλ))

+ 2µ
∫

RN
H(x, G−1(vλ))dx + 2µcλ

≤
∫

RN

[

2µH(x, G−1(vλ))−
h(x, G−1(vλ))

g(G−1(vλ))
vλ

]

+ 2µc1

∫

RN
|G−1(vλ)|q + 2µc0

≤ 2µc1

[

∫

RN
(|∇vλ|2 + V(x)|G−1(vλ)|2)

]q/2

+ 2µc0,

which implies that
∫

RN (|∇vλ|2 + V(x)|G−1(vλ)|2) is bounded in λ. Thus

‖uλ,1‖H1 = ‖G−1(vλ)‖H1 ≤ C

[

∫

RN
(|∇vλ|2 + V(x)|G−1(vλ)|2)

]1/2

≤ C.

Next, we study the exponential decay property for solutions of (1.1) when λ = 0. Let v0 be
a solution of (1.12) for λ = 0. Now, we first prove that v0 ∈ L∞(RN). Thus we conclude that

∫

RN

(

∇v0∇φ + V(x)
G−1(v0)

g(G−1(v0))
φ

)

=
∫

RN

h(x, G−1(v0))

g(G−1(v0))
φ, φ ∈ E. (3.14)

For each k > 0, let

vk =

{

v0, if v0 ≤ k,

0, if v0 ≥ k,

and
̺k = v

2(β−1)
k v0 and wk = v

β−1
k v0,

where β > 1. By (V1), (FH2) and (FH3), we have

h(x, G−1(v0)) ≤
V0

2
|G−1(v0)|+ CV0 |G−1(v0)|p−1.

Thus choosing ̺k as a test function in (3.14), we know

∫

RN
v

2(β−1)
k |∇v0|2 ≤

∫

RN
v

2(β−1)
k |∇v0|2 + 2(β − 1)

∫

RN
v

2(β−1)−1
k v0∇vk · ∇v0

≤ CV0

∫

RN

|G−1(v0)|p−1

g(G−1(v0))
v

2(β−1)
k v0.

By (3.5), we have
v0

g(G−1(v0))
≤ G−1(v0).

It follows from (g7) in Lemma 2.1 and the above inequality that

∫

RN
v

2(β−1)
k |∇v0|2 ≤ C

∫

RN
v

2(β−1)
k v

p
2
0 = C

∫

RN
v

p
2 −2
0 w2

k . (3.15)
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Moreover, using the Gagliardo–Nirenberg–Sobolev inequality and (3.15), one has
(

∫

RN
w2∗

k

)2/2∗

≤ C
∫

RN
|∇wk|2

≤ C
∫

RN
v

2(β−1)
k |∇v0|2 + C(β − 1)2

∫

RN
v2

0v
2(β−2)
k |∇vk|2

≤ Cβ2
∫

RN
v

2(β−1)
k |∇v0|2

≤ Cβ2
∫

RN
v

p
2 −2
0 w2

k ,

which dues to vk ≤ v0, 1 ≤ β2 and (β − 1)2 ≤ β2. By Hölder’s inequality,

(

∫

RN
w2∗

k

)2/2∗

≤ Cβ2
(

∫

RN
v2∗

0

)

(
p
2 −2)
2∗
(

∫

RN
w

2·2∗
2∗− p

2
+2

k

)

2∗− p
2 +2

2∗

.

Since wk ≤ v
β
0 , using the continuity of the embedding E →֒ L2∗(RN), we have

(

∫

RN
[v0v

β−1
k ]2

∗
)2/2∗

≤ Cβ2‖v0‖(
p
2 −2)

(

∫

RN
v

2·2∗β

2∗− p
2 +2

0

)

2∗− p
2 +2

2∗

.

Taking β = 1 + 2∗− p
2

2 , we get 2·2∗β

2∗− p
2 +2

= 2∗. Let δ := 2·2∗
2∗− p

2 +2
. Thus

(

∫

RN
|v0v

β−1
k |2∗

)2/2∗

≤ Cβ2‖v0‖(
p
2 −2)‖v0‖2β

βδ.

Using Fatou’s Lemma in k, we have

‖v0‖2∗β ≤
(

Cβ2‖v0‖(
p
2 −2)

)
1

2β ‖v0‖βδ. (3.16)

For m = 0, 1, 2, . . ., let 2∗βm = δβm+1 with β0 = β. Hence, similar to (3.16), for β1, we know
that

‖v0‖2∗β1 ≤
(

Cβ2
1‖v0‖(

p
2 −2)

)
1

2β1 ‖v0‖β1δ

≤
(

Cβ2
1‖v0‖(

p
2 −2)

)
1

2β1
(

Cβ2‖v0‖(
p
2 −2)

)
1

2β ‖v0‖βδ

≤
(

C‖v0‖(
p
2 −2)

)
1

2β1
+ 1

2β
β

1
β β

1
β1
1 ‖v0‖2∗ .

Since βm+1 = βm · β, we know βm = βm · β. Thus by iteration, we have

‖v0‖2∗βm
≤
(

C‖v0‖(
p
2 −2)

)
1

2β ∑
m
i=0 β−i

β
1
β ∑

m
i=0 β−i

β
1
β ∑

m
i=0 iβ−i‖v0‖2∗ .

Using β > 1, we conclude that ∑
m
i=0 β−i and ∑

m
i=0 iβ−i. Thus letting m → ∞, we have v0 ∈

L∞(RN) and

‖v0‖∞ ≤ C‖v0‖
2∗−2
2∗− p

2 .

By (V1), (g9) in Lemma 2.1 and (3.14), for all ϕ ∈ C∞
0 (RN), we get

∫

RN
∇v0∇ϕ ≤ C

∫

RN
v0 ϕ.



Positive solutions of generalized quasilinear Schrödinger equation 21

Thus using an elliptic estimate in [20], for ι > N
2 and any ball BR(x) centered at any x ∈ RN ,

we have
sup

y∈BR(x)

v0(y) ≤ C
[

‖v0‖L2(B2R(x)) + ‖v0‖Lι(B2R(x))

]

.

Obviously,

v0(x) ≤ C
[

‖v0‖L2(B2R(x)) + ‖v0‖Lι(B2R(x))

]

.

Since
‖v0‖L2(B2R(x)) + ‖v0‖Lι(B2R(x)) → 0 as |x| → ∞,

it follows that
v0(x) → 0 as |x| → ∞.

At last, we give a proof of the exponential decay for v0. By (FH2) and since

lim
s→0

G−1(s)

sg(G−1(s))
= 1,

we can choose R0 > 0 such that for all |x| ≥ R0,

G−1(v0(x))

g(G−1(v0(x)))
≥ 3

4
v0(x), (3.17)

and
h(x, G−1(v0(x)))

g(G−1(v0(x)))
≤ V0

2
v0(x). (3.18)

Now, we define
χ(x) = M exp(−ζ|x|),

where ζ and M are such that 4ζ2
< V0 and for all |x| = R0,

M exp(−ζR0) ≥ v0(x).

It is easy to check that for all x 6= 0,
∆χ ≤ ζ2χ. (3.19)

Let ϑ = χ − v0. Then it follows from (3.17)–(3.19) and

−∆v0 + V(x)
G−1(v0)

g(G−1(v0))
=

h(x, G−1(v0))

g(G−1(v0))
, x ∈ R

N ,

that
−∆ϑ +

V0

4
ϑ ≥ 0 in |x| ≥ R0,

ϑ ≥ 0 in |x| = R0,

lim
|x|→∞

ϑ(x) = 0.

By the maximum principle, we know that ϑ(x) ≥ 0 for all |x| ≥ R0. Hence

ϑ(x) ≤ M exp(−ζ|x|) for all |x| ≥ R0,

which implies that

u0 = G−1(v0) ≤ v0(x) ≤ M exp(−ζ|x|) for all x ∈ R
N .

This completes the proof.
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Next, we shall use the Ekeland variational principle in [43] to prove Theorem 1.2. To this
end, we prove the following lemma.

Lemma 3.6. Suppose that (V1)–(V2) and (FH)–(FH5) are satisfied. Then there exists ψ ∈ E such

that Jλ(tψ) < 0 for t enough small.

Proof. To this end, by (g14) in Lemma 2.1 and choosing ψ ∈ (C∞
0 (RN), [0, 1])\{0} such that

supp ψ = Ω, we have

Jλ(tψ) ≤
1
2

∫

RN

(

|t∇ψ|2 + V(x)|G−1(tψ)|2
)

−
∫

RN
H(x, G−1(tψ))

≤ t2
∫

Ω

(

|∇ψ|2 + V(x)ψ2)− C1

∫

Ω
|G−1(tψ)|q1

≤ t2
[

∫

Ω

(

|∇ψ|2 + V(x)ψ2)− C1tq1−2
∫

Ω
|G−1(ψ)|q1

]

< 0,

where |Ω| denotes the Lebesgue measure of Ω and t enough small. This completes the proof.

Proof of Theorem 1.2. By the previous proof, we know that Jλ is bounded in BR for R > 0.
By Lemma 3.6, we have

−∞ < bλ := inf
BR

Jλ < 0.

Since Jλ satisfies (PS)-condition. By the Ekeland variational principle (see [43]) for Jλ in BR,
there exists ̟λ ∈ E such that for all λ > 0

Jλ(̟λ) = bλ and J ′
λ(̟λ) = 0.

Therefore uλ,2 = G−1(̟λ) is a solution of (1.1).
Moreover, for λ ∈ (0, λ0], we have Jλ(̟λ) < 0 < η ≤ Jλ(vλ), which shows that uλ,1 is

different from uλ,2, where (0, λ0].
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Abstract. We investigate the asymptotic properties of solutions to higher order nonlin-
ear difference equations in Banach spaces. We introduce a new technique based on a
vector version of discrete L’Hospital’s rule, remainder operator, and the regional topol-
ogy on the space of all sequences on a given Banach space. We establish sufficient
conditions for the existence of solutions with prescribed asymptotic behavior. More-
over, we are dealing with the problem of approximation of solutions. Our technique
allows us to control the degree of approximation of solutions.

Keywords: difference equation in Banach space, prescribed asymptotic behavior, de-
gree of approximation, remainder operator, regional topology.
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1 Introduction

Let N, R denote the set of positive integers and the set of real numbers respectively. In this
paper we assume that m ∈ N is fixed and X is a real Banach space. We consider the equation

∆mxn = an f (n, xσ(n)) + bn (E)

n ∈ N, an ∈ R, bn ∈ X, f : N × X → X, σ : N → N, lim σ(n) = ∞.

By a solution of (E) we mean a sequence x : N → X satisfying (E) for all large n.
Nonlinear difference equations often appear in mathematical models used, for example, in

technology, biology, physics, economics or medicine. Hence the study of behavior of solutions
to difference equations is of great importance. Therefore, many papers are devoted to this
topic, see for example [3, 4, 6, 12, 14, 15, 17–22]. In some papers the difference equations in
Banach spaces are also investigated, see for example [1, 2, 5, 7–9, 16].

In this paper we deal with the problem of the existence of solutions to the equation (E),
with prescribed asymptotic behavior and the problem of approximation of solutions to equa-
tion (E). More precisely, in Section 4 we establish conditions under which for a given sequence

BEmail: migda@amu.edu.pl
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y : N → X such that ∆mxn = bn and a given number s ∈ (−∞, 0] there exists a solution x of
(E) such that xn = yn + o(ns) (then x is called a solution with prescribed asymptotic behavior,
and y is called an approximative solution of (E)). Next, in Section 5, we establish conditions
under which for a given solution x of (E) and a given number s ∈ (−∞, 0] there exists a se-
quence y : N → X such that ∆myn = bn and xn = yn + o(ns). By selecting the number s, we
can control the degree of approximation of solution.

The paper is organized as follows. In Section 2, we introduce notation and terminology.
In Section 3, we present our technical tools, i.e. vector version of discrete L’Hospital’s rule,
the regional topology on the space of all sequences on a given Banach space, and remainder
operator which are needed to get the main results. The next two sections contain our main
results. In Section 4 we establish sufficient conditions for the existence of solutions with
prescribed asymptotic behavior. Section 5 is devoted to approximation of solutions.

2 Notation and terminology

Let Z, denote the set of all integers. If p, k ∈ Z, p ≤ k, then N(p), N(p, k) denote the sets
defined by

N(p) = {p, p + 1, . . . }, N(p, k) = {p, p + 1, . . . , k}.

We use the symbol |t| to denote the norm of a vector t ∈ X. The space of all sequences
x : N → R we denote by R

N. Moreover, we use the symbol XN to denote the space of all
sequences x : N → X. If a ∈ R

N and x ∈ XN, then ax denotes the sequence defined by
pointwise multiplication

ax(n) = anxn.

Moreover, |x| denotes the sequence defined by |x|(n) = |xn| for every n. Let

Fin(X) =
∞
⋃

p=1

{x ∈ XN : xn = 0 for n ≥ p},

oX(1) =
{

x ∈ XN : lim
n→∞

xn = 0
}

, OX(1) =
{

x ∈ XN : x is bounded
}

and for a ∈ R
N let

oX(a) = {ax : x ∈ oX(1)}+ Fin(X),

OX(a) = {ax : x ∈ OX(1)}+ Fin(X).

For a sequence a ∈ R
N and x ∈ XN we write xn = o(an) to denote the relation

x ∈ oX(a).

Analogously xn = O(an) denotes the relation x ∈ OX(a).
We use the symbol ∆ to denote the difference operator defined by

∆ : XN → XN, (∆x)(n) = xn+1 − xn.

As usual we use ∆xn to denote the value (∆x)(n). For k ∈ N we denote by ∆k the k-th iteration
of the operator ∆. Moreover, ∆0 denotes the identity operator. For k ∈ N(0) we define

PolX(k − 1) = Ker(∆k) =
{

x ∈ XN : ∆kx = 0
}

.
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Then PolX(k − 1) is the space of all polynomial sequences of degree less than k. Note that

PolX(−1) = Ker(∆0) = 0

is the zero space. It is easy to see that ϕ ∈ PolX(k − 1) if and only if there exist vectors
x0, x1, . . . , xk−1 ∈ X such that

ϕ(n) = xk−1nk−1 + xk−2nk−2 + · · ·+ x1n + x0

for any n ∈ N. For b ∈ XN we use the symbol ∆−kb to denote the set

∆−kb =
{

x ∈ XN : ∆kx = b
}

.

Remark 2.1. If y is an arbitrary element of ∆−kb, then

∆−kb = y + PolX(k − 1).

Let H be a metric space. For a subset A of H and ε > 0, we define an ε-ball about A by

B(A, ε) =
⋃

a∈A

B(a, ε).

where B(a, ε) denotes an open ball of radius ε centered at a. We say that a subset U of H is a
uniform neighborhood of A if there exists a positive ε such that

B(A, ε) ⊂ U.

A subset A of H is called an ε-net for a subset Z of H if Z ⊂ B(A, ε). A subset Z of H is said
to be totally bounded if for any ε > 0 there exist a finite ε-net for Z.

3 Preliminaries

In this section, we introduce the technical tools that form the basis of our technique for study-
ing the asymptotic properties of solutions to difference equations.

3.1 Discrete L’Hospital’s rule

Lemma 3.1. Assume a, b, r are positive real numbers, c ∈ X, a1, a2, . . . , an are real numbers with the

same nonzero sign. Then

aB(c, r) = B(ac, ar), aB(c, r) + bB(c, r) = (a + b)B(c, r), (3.1)

and

a1B(c, r) + a2B(c, r) + · · ·+ anB(c, r) = (a1 + · · ·+ an)B(c, r). (3.2)

Proof. The assertion (3.1) is an easy exercise, (3.2) is a consequence of (3.1).

Lemma 3.2. Assume x ∈ XN, p ∈ N, r, L ∈ R,

c ∈ X, r > 0, L ≥ |c|+ r,
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(yn) is a sequence of real numbers, strictly monotonic for n ≥ p. Moreover,

yn ̸= 0 and
∆xn

∆yn
∈ B(c, r) (3.3)

for n ≥ p. Then
∣

∣

∣

∣

xn

yn
− c

∣

∣

∣

∣

< r + L

∣

∣

∣

∣

yk

yn

∣

∣

∣

∣

+

∣

∣

∣

∣

xk

yn

∣

∣

∣

∣

(3.4)

for n, k ≥ p.

Proof. Assume the sequence (yn) is increasing for n ≥ p. Choose n, k ≥ p. For i ≥ p we have
∆xi ∈ (∆yi)B(c, r). Hence, using Lemma 3.1, we obtain

xn − xk = ∆xk + · · ·+ ∆xn−1 ∈ (∆yk)B(c, r) + · · ·+ (∆yn−1)B(c, r)

= (∆yk + · · ·+ ∆yn−1)B(c, r) = (yn − yk)B(c, r).

for n ≥ k. Similarly, for k ≥ n, we have xk − xn ∈ (yk − yn)B(c, r). Hence

xn − xk ∈ (yn − yk)B(c, r) and
xn

yn
−

xk

yn
∈

(

1 −
yk

yn

)

B(c, r).

Therefore, there exists a vector b ∈ B(c, r) such that

xn

yn
−

xk

yn
=

(

1 −
yk

yn

)

b = b −

(

yk

yn

)

b.

Hence
xn

yn
− c = b − c −

(

yk

yn

)

b +
xk

yn
.

Since |b − c| < r and |b| ≤ |c|+ r ≤ L, we have
∣

∣

∣

∣

xn

yn
− c

∣

∣

∣

∣

< r + L

∣

∣

∣

∣

yk

yn

∣

∣

∣

∣

+

∣

∣

∣

∣

xk

yn

∣

∣

∣

∣

The case when (yn) is decreasing for n ≥ p is analogous.

Theorem 3.3 (Discrete L’Hospital’s rule). Assume (xn) ∈ XN, (yn) is a sequence of real num-

bers which is strictly monotonic for large n. Moreover, we assume that the sequence (∆xn/∆yn) is

convergent and one of the following conditions is satisfied:

(a) limn→∞ xn = 0 and limn→∞ yn = 0,

(b) the sequence (yn) is unbounded.

Then the sequence (xn/yn) is convergent and

lim
n→∞

xn

yn
= lim

n→∞

∆xn

∆yn
.

Proof. Let ε > 0. There exists an index p such that
∣

∣

∣

∣

∆xn

∆yn
−

∆xk

∆yk

∣

∣

∣

∣

< ε
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for n, k ≥ p. Let c = ∆xp/∆yp. Then ∆xn/∆yn ∈ B(c, ε) for n ≥ p. If condition (a) is satisfied
and n ≥ p, then taking sufficiently large k and using Lemma 3.2 we obtain |xn/yn − c| < 2ε.
Similarly, if condition (b) is satisfied, then using Lemma 3.2 we obtain an index q ≥ p such
that |xn/yn − c| < 2ε for n ≥ q. Then

∣

∣

∣

∣

xn

yn
−

∆xn

∆yn

∣

∣

∣

∣

≤

∣

∣

∣

∣

xn

yn
− c

∣

∣

∣

∣

+

∣

∣

∣

∣

c −
∆xn

∆yn

∣

∣

∣

∣

< 2ε + ε.

Lemma 3.4. If x ∈ XN, m ∈ N, s ∈ (−1, ∞), and ∆mxn = o(ns), then

xn = o(ns+m).

Proof. Induction on m. Let m = 1. Using L’Hospital’s rule we obtain

lim
t→∞

(t + 1)s+1 − ts+1

ts
= lim

t→∞

(t + 1)s+1 − ts+1

t−1ts+1 = lim
t→∞

(1 + t−1)s+1 − 1
t−1

= lim
t→∞

(s + 1)(1 + t−1)s(−t−2)

−t−2 = s + 1.

Hence

lim
n→∞

∆ns+1

ns
= s + 1.

So by assumption ∆x = o(ns) we obtain

lim
∆xn

∆ns+1 = lim
∆xn

ns

ns

∆ns+1 = lim
∆xn

ns
lim

ns

∆ns+1 =
0

s + 1
= 0.

Since s > −1, the sequence (ns+1) is increasing to infinity. By Theorem 3.3, we obtain xn =

o(ns+1). Hence the assertion is true for m = 1. Assume it is true for certain m ≥ 1 and let
∆m+1xn = o(ns). Then ∆m∆xn = o(ns) and by inductive hypothesis we get ∆xn = o(ns+m).
Hence by the first part of the proof we obtain xn = o(ns+m+1).

3.2 Regional topology

Let Y be a real vector space. We say that a function ∥ · ∥ : Y → [0, ∞] is regional norm if the
condition ∥x∥ = 0 is equivalent to x = 0 and for any x, y ∈ Y and α ∈ R we have

∥αx∥ = |α|∥x∥, ∥x + y∥ ≤ ∥x∥+ ∥y∥.

Hence, the notion of regional norm generalizes the notion of usual norm. If a regional norm
on Y is given, then we say that Y is a regional normed space. If there exists a vector x ∈ Y

such that ∥x∥ = ∞, then we say that Y is extraordinary.

Assume Y is a regional normed space. We say that a subset Z of Y is ordinary if ∥x − y∥ <

∞ for any x, y ∈ Z. We regard every ordinary subset Z of Y as a metric space with metric
defined by

d(x, y) = ∥x − y∥.

Let U ⊂ Y. We say that U is regionally open if U ∩ Z is open in Z for any ordinary subset Z

of Y. The family of all regionally open subsets is a topology on Y which we call the regional
topology. We regard any subset of Y as a topological space with topology induced by the
regional topology. The subset

Y0 = {y ∈ Y : ∥y∥ < ∞},
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is a linear subspace of Y and regional norm induces an usual norm on Y0. We say that Y is a
regional Banach space if Y0 is a Banach space.

An important special case of a regional Banach space we obtain as follows. Let D be an
arbitrary nonempty set and let F(D, X) denote the space of all functions f : D → X. Then the
formula

∥ f ∥ = sup{| f (p)| : p ∈ D}

defines a regional norm on F(D, X). This space is extraordinary if D is infinite. In particular,
we obtain the regional topology on the space

XN = F(N, X).

The regional topology in F(D, X) is, simply, the topology of uniform convergence. In extraor-
dinary case this topology is not linear but almost linear. For more details and for the proof of
the following theorem we refer to [13].

Theorem 3.5 (Generalized Schauder theorem). Assume Q is a closed and convex subset of a re-

gional Banach space Y, a map A : Q → Q is continuous and the set A(Q) is ordinary and totally

bounded. Then there exists a point x ∈ Q such that A(x) = x.

We say that a family T ⊂ XN is pointwise totally bounded if for any n the set T(n) = {tn :
t ∈ T} is totally bounded. We say that T is stable at infinity if for any ε > 0 there exists an
index p such that |xn − yn| < ε for any n > p and any x, y ∈ T.

Lemma 3.6. If a family T ⊂ XN is pointwise totally bounded and stable at infinity, then T is totally

bounded with respect to regional norm.

Proof. Let t ∈ T and ε > 0. Choose an index p such that

|xn − yn| < ε

for any x, y ∈ T and any n > p. For any i = 1, . . . , p choose a finite ε-net Gi for the set

T(i) = {xi : x ∈ T}.

Let
G =

{

z ∈ XN : zn ∈ Gn for n ≤ p and zn = tn for n > p
}

.

Fix an x ∈ T. For any i ∈ N(1, p) choose gi ∈ Gi such that |xi − gi| < ε. Let h ∈ XN be
defined by

hn = gn for n ≤ p, hn = tn for n > p.

Then h ∈ G and |x − h| < ε. Hence G is a finite ε-net for T.

3.3 Remainder operator

In this section we define the iterated remainder operator. This operator will be used in the
proofs of our main results. In Lemmas 3.7 and 3.8 we establish some basic properties this
operator. Next in Lemma 3.10 we show that if x ∈ XN and ∆mx is asymptotically zero, then x

is asymptotically polynomial. In Lemmas 3.11 and 3.12 we present some useful consequences
of Lemma 3.10.
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Now we define the spaces SX(m) of m-times summable sequences and the remainder
operator. Let

SX(0) = oX(1), SX(1) =

{

x ∈ XN : the series
∞

∑
n=1

xn is convergent

}

.

For x ∈ SX(1), we define the sequence r(x) by the formula

r(x)(n) =
∞

∑
j=n

xj.

Then r(x) ∈ SX(0) and we obtain the remainder operator

r : SX(1) → SX(0).

For m ∈ N, by induction, we define the linear space SX(m + 1) and the linear operator

rm+1 : SX(m + 1) → SX(0)

by
SX(m + 1) = {x ∈ SX(m) : rm(x) ∈ SX(1)}, rm+1(x) = r(rm(x)).

Note that

rm(x)(n) =
∞

∑
i1=n

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

xim

for any x ∈ SX(m) and any n ∈ N.
In the proof of the next lemma we use the fact that in Banach space absolute convergence

implies convergence of a series.

Lemma 3.7. Assume x ∈ XN, m ∈ N, p ∈ N, and s ∈ (−∞, 0]. Then

(a) if |x| ∈ SR(m), then x ∈ SX(m) and |rm(x)| ≤ rm(|x|),

(b) |x| ∈ SR(m) if and only if ∑
∞
n=1 nm−1|xn| < ∞,

(c) if |x| ∈ SR(m), then rm(|x|)(p) ≤ ∑
∞
n=p nm−1|xn|,

(d) if x ∈ SX(m), then ∆m(rm(x)) = (−1)mx,

(e) if x ∈ oX(1), then ∆mx ∈ SX(m) and rm(∆m(x)) = (−1)mx,

( f ) if ∑
∞
n=1 nm−1−s|xn| < ∞, then x ∈ SX(m) and rm(x)(n) = o(ns).

Proof. Using our notation, the assertion (a) may be proved by repeating the proof of [10,
Lemma 1]. Analogously, repeating the proof of [10, Lemma 2] we obtain (b). Similarly, we
can obtain (c), (d), and (e) from [10, Lemma 2], [10, Lemma 5] and [10, Lemma 6] respectively.
The assertion (f) we can obtain from [12, Lemma 4.2].

Lemma 3.8. If x ∈ XN and |x| ∈ SR(m), then

rm(x)(n) =
∞

∑
i1=n

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

xim
=

∞

∑
k=0

(

m + k − 1
m − 1

)

xn+k

=
∞

∑
k=0

(k + 1)(k + 2) · · · (k + m − 1)
(m − 1)!

xn+k =
∞

∑
j=n

(j − n + 1) · · · (j − n + m − 1)
(m − 1)!

xj.



8 J. Migda

Proof. See [11, Lemma 4].

Lemma 3.9. If a, b ∈ SR(m) and a ≤ b, then rm(a) ≤ rm(b).

Proof. See [12, Lemma 4.1 (h)].

Lemma 3.10. Assume a ∈ R
N, x ∈ XN, m ∈ N, s ∈ (−∞, m − 1],

∞

∑
n=1

nm−1−s|an| < ∞, and ∆mxn = O(an).

Then

x ∈ PolX(m − 1) + oX(n
s).

Proof. Let s ≤ 0. The condition ∆mxn = O(an) implies

∞

∑
n=1

nm−1−s|∆mxn| < ∞.

Let u = ∆m(x). By Lemma 3.7 (f), u ∈ SX(m) and rm(u)(n) = o(ns). Let w = (−1)mrm(u).
Then wn = o(ns) and, by Lemma 3.7 (d), ∆m(w) = u = ∆m(x). Hence

x − w ∈ Ker(∆m) = PolX(m − 1)

and we obtain

x = x − w + w ∈ PolX(m − 1) + oX(n
s).

Let s ∈ (0, m − 1]. Choose k ∈ N(1, m − 1) such that k − 1 < s ≤ k. Then

∞

∑
n=1

n(m−k)−1−(s−k)|un| < ∞

and, by Lemma 3.7 (f), u ∈ S(m − k) and rm−k(u)(n) = o(ns−k). Let w = (−1)m−krm−k(u).
Then wn = o(ns−k) and, by Lemma 3.7 (d), ∆m−kw = u. Choose z ∈ XN such that ∆kzn =

wn = o(ns−k). Since s − k > −1, so by Lemma 3.4 we have zn = o(ns). Moreover

∆mz = ∆m−k∆kz = ∆m−kw = u = ∆mx

and

x = x − z + z ∈ PolX(m − 1) + oX(n
s).

Lemma 3.11. Assume a ∈ R
N, b, x ∈ XN, m ∈ N, s ∈ (−∞, m − 1],

∞

∑
n=1

nm−1−s|an| < ∞, and ∆mx ∈ OX(a) + b.

Then

x ∈ ∆−mb + oX(n
s).
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Proof. Choose u ∈ ∆−mb. Then

∆m(x − u) = ∆mx − ∆mu = ∆mx − b ∈ OX(a).

Hence, by the previous lemma,

x − u ∈ PolX(m − 1) + oX(n
s).

On the other hand,
u + PolX(m − 1) = ∆−mb.

Hence
x ∈ u + PolX(m − 1) + oX(n

s) = ∆−mb + oX(n
s).

Lemma 3.12. Assume b ∈ XN, m ∈ N, s ∈ (−∞, m − 1], and

∞

∑
n=1

nm−1−s|bn| < ∞.

Then

∆−mb + oX(n
s) = PolX(m − 1) + oX(n

s).

Proof. Let x ∈ ∆−mb and z ∈ oX(n
s). By Lemma 3.10,

x ∈ PolX(m − 1) + oX(n
s).

Hence x + z ∈ PolX(m − 1) + oX(n
s) and we have

∆−mb + oX(n
s) ⊂ PolX(m − 1) + oX(n

s).

By Lemma 3.7 (f), b ∈ SX(m) and rm(b)(n) = o(ns). Let

u = (−1)mrm(b) and ϕ ∈ PolX(m − 1).

Then u = o(ns) and using Lemma 3.7 (d), we have

∆m(ϕ + u) = ∆mu = b.

Hence
ϕ + u ∈ ∆−mb and ϕ ∈ ∆−mb + o(ns).

Therefore
PolX(m − 1) + oX(n

s) ⊂ ∆−mb + oX(n
s).

4 Solutions with prescribed asymptotic behavior

We say that a map f : Y → Z from a metric space Y to a metric space Z is a Heine map if it is
completely continuous and is uniformly continuous on any bounded subset of Y. We define
a metric d on N × X by

d((k, s), (n, t)) = max(|n − k|, |t − s|).

Note that if the dimension of the space X is finite then any continuous map f : N × X → X is
a Heine map.
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Theorem 4.1. Assume f is a Heine map, s ∈ (−∞, 0],

∞

∑
n=1

nm−s−1|an| < ∞, (4.1)

w ∈ R
N is positive and bounded, g : [0, ∞) → [0, ∞) is locally bounded,

| f (n, t)| ≤ g(wn|t|) (4.2)

for (n, t) ∈ N × X, y ∈ XN, ∆my = b and

wnyσ(n) = O(1). (4.3)

Then there exists a solution x of (E) such that x = y + o(ns).

Proof. For x ∈ XN let x̄ ∈ XN be defined by

x̄n = f (n, xσ(n)).

Choose a positive constant c. Let

T =
{

x ∈ XN : |x − y| ≤ c
}

.

By boundedness of w and (4.3), there exists a constant K such that if x ∈ T and n ∈ N, then

|wnxσ(n)| = |wnxσ(n) − wnyσ(n) + wnyσ(n)|

≤ |wn||xσ(n) − yσ(n)|+ |wnyσ(n)| ≤ K.

Since g is locally bounded, there exists M > 0 such that g([0, K]) ⊂ [0, M]. Therefore, we have

g(|wnxσ(n)|) ≤ M and |x̄n| ≤ g(|xσ(n)wn|) ≤ M (4.4)

for x ∈ T and n ∈ N. Since rm(|a|)(n) = o(1), there exists an index p ≥ 1 such that

Mrm(|a|)(n) ≤ c for n ≥ p. (4.5)

Let µ, ρ ∈ R
N,

µn =

{

0 for n < p,

1 for n ≥ p,
ρ = µMrm(|a|). (4.6)

Now, we define a subset S of XN and a map A : S → XN by

S =
{

x ∈ XN : |x − y| ≤ ρ
}

, A(x) = y + (−1)mµrm(ax̄).

Then S ⊂ T. Obviously, S is convex, closed and ordinary subset of XN. If x ∈ S, then, using
Lemma 3.7 (a), Lemma 3.9, (4.4) and (4.6) we get

|Ax − y| = |µrm(ax̄)| ≤ µrm(|ax̄|) ≤ ρ.

Hence A(S) ⊂ S. Choose ε > 0. There exists q ≥ p and α > 0 such that

2M
∞

∑
n=q

nm−1|an| < ε and αqm−1
q

∑
n=1

|an| < ε. (4.7)
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Let
L = max{|yσ(n) − yn| : n ∈ N(1, q)},

and
W = {(n, t) ∈ N × X : n ∈ N(1, q), |t − yn| ≤ L + c}.

The function f is uniformly continuous on W. Hence, there exists a δ > 0 such that

if (n, s), (n, t) ∈ W and |s − t| < δ, then | f (n, s)− f (n, t)| < α. (4.8)

Assume x, z ∈ S, |x − z| < δ. Let u = x̄ − z̄. Then

|Ax − Az| = |µrm(au)|.

Using Lemma 3.7 we get

d(Ax, Az) = sup
n∈N

|Axn − Azn| = sup
n∈N

|rm(au)(n)|

≤ sup
n∈N

rm(|au|)(n) ≤
∞

∑
n=1

nm−1|anun|.

Hence

d(Ax, Az) ≤
q

∑
n=1

nm−1|anun|+
∞

∑
n=q

nm−1|anun|. (4.9)

By (4.4), |u| ≤ 2M. If n ∈ N(1, q), then

|xσ(n) − yn| ≤ |xσ(n) − yσ(n)|+ |yσ(n) − yn| ≤ ρ(n) + L ≤ L + c.

Hence (n, xσ(n)) ∈ W. Analogously (n, zσ(n)) ∈ W. Therefore, by (4.8), |un| ≤ α for n ≤ q. By
(4.7) and (4.9) we get

d(Ax, Az) ≤ αqm−1
q

∑
n=1

|an|+ 2M
∞

∑
n=q

nm−1|an| < ε + ε.

Thus the map A is continuous. Now, we will show that the family A(S) is pointwise totally
bounded. Fix an n ∈ N. Then

A(S)(n) = {yn + (−1)mµnrm(ax̄)(n) : x ∈ S}

and, by Lemma 3.8,

rm(ax̄)(n) =
∞

∑
k=0

(

m + k − 1
m − 1

)

an+k f (n + k, xσ(n+k)).

Let
Qn = {rm(ax̄)(n) : x ∈ S}.

For k ∈ N(0) let

λk =

(

m + k − 1
m − 1

)

,

Vk = {(n + k, xσ(n+k)) : x ∈ S} = {n + k} × S(σ(n + k))
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and
Uk = {λkan+k x̄n+k : x ∈ S}

Then Vk is a bounded subset of N × X and, since f is completely continuous, the set f (Vk) is
totally bounded. Hence

Uk = {λkan+k f (n + k, xσ(n+k)) : x ∈ S} = λkan+k f (Vk)

is also totally bounded. Let ε > 0. By (4.1) and Lemma 3.7 (b), |a| ∈ SR(m). By Lemma 3.8
there exists an index n1 such that

M
∞

∑
k=n1

λk|an+k| < ε.

Let

D =

{

∞

∑
k=n1

λkan+k x̄n+k : x ∈ S

}

and U = U0 + U1 + · · ·+ Un1 .

Then

Qn =

{

∞

∑
k=0

λkan+k x̄n+k : x ∈ S

}

⊂ U + D.

By (4.4), |x̄n+k| ≤ M for any k. Hence |z| < ε for any z ∈ D. Moreover, U is totally bounded
and there exists a finite ε-net H for U. If u ∈ U, then there exists h ∈ H such that |u − h| ≤ ε.
Moreover, if z ∈ D, then

|u + z − h| ≤ |u − h|+ |z| ≤ 2ε.

Hence H is a finite 2ε-net for U + D and for Qn ⊂ U + D. Therefore Qn is totally bounded.
Thus

A(S)(n) = yn + (−1)mµnQn

is also totally bounded. Obviously the family A(S) is stable at infinity. Hence, by Lemma 3.6,
A(S) is totally bounded. Therefore, by Theorem 3.5, there exists a sequence x ∈ S such that
A(x) = x. Then

xn = yn + (−1)mrm(ax̄)(n)

for n ≥ p. This means that there exists a sequence u ∈ XN such that un = 0 for n ≥ p and

x = y + (−1)mrm(ax̄) + u. (4.10)

Hence, by Lemma 3.7 (d),

∆mx = ∆my + ax̄ + ∆mu = ax̄ + b + ∆mu.

It is easy to see that ∆mun = 0 for n ≥ p and we obtain

∆mxn = an f (n, xσ(n)) + bn

for n ≥ p. Moreover, using (4.10) and Lemma 3.7 (f), we get xn = yn + o(ns).

Theorem 4.2. Assume s ∈ (−∞, 0], y ∈ XN, ∆my = b,

∞

∑
n=1

nm−s−1|an| < ∞,

U ⊂ X is a uniform neighborhood of the set y(N), and the map f |N ×U is Heine and bounded. Then

there exists a solution x of (E) such that xn = yn + o(ns).
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Proof. For x ∈ XN let x̄ ∈ XN be defined by

x̄n = f (n, xσ(n)).

Choose a positive constant c such that B(y(N), c) ⊂ U. Let

T = {x ∈ XN : |x − y| ≤ c} and M = sup{| f (n, t)| : (n, t) ∈ N × U}.

If x ∈ T and n ∈ N, then xn ∈ B(y(N), c) ⊂ U. Hence

|x̄n| ≤ M

for any x ∈ T and n ∈ N. There exists an index p ≥ 1 such that

Mrm(|a|)(n) ≤ c for n ≥ p.

The rest of the proof is analogous to the second part of the proof of Theorem 4.1.

Corollary 4.3. Assume the map f is Heine, s ∈ (−∞, 0], and

∞

∑
n=1

nm−s−1|an| < ∞.

Moreover, for any bounded subset Z of X, f is bounded on N × Z. Then for any bounded solution y of

the equation ∆my = b there exists a solution x of (E) such that xn = yn + o(ns).

Proof. The assertion is an easy consequence of Theorem 4.2.

5 Approximations of solutions

Theorem 5.1. Assume x is a solution of (E), s ∈ (−∞, m − 1], p ∈ N, U ⊂ X,

∞

∑
n=1

nm−1−s|an| < ∞, g : [0, ∞) → [0, ∞), w ∈ R
N,

and one of the following conditions is satisfied:

(1) the sequence x̄n = f (n, xσ(n)) is bounded,

(2) f is bounded on N(p)× U and xσ(n) ∈ U for large n,

(3) f is bounded on N(p)× U and xn ∈ U for large n,

(4) f is bounded,

(5) g is locally bounded, xσ(n) = O(w−1
n ) and | f (n, t)| ≤ g(|wnt|) on N × X.

Then x ∈ ∆−mb + oX(n
s). If, moreover,

∞

∑
n=1

nm−1−s|bn| < ∞,

then x ∈ PolX(m − 1) + o(ns).
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Proof. Obviously (4) ⇒ (3) ⇒ (2) ⇒ (1). Assume (5). Then the sequence

zn = g(|wnxσ(n)|)

is bounded and | f (n, xσ(n))| ≤ g(|wnxσ(n)|) = zn. Hence (5) ⇒ (1). If the sequence x̄ is
bounded, then by the equality

∆mxn = an x̄n + bn

for large n we obtain ∆mx = O(a) + b. Hence the assertion follows from Lemma 3.11.

Corollary 5.2. Assume f is bounded on N × Z for any bounded subset Z of X, s ≤ 0,

∞

∑
n=1

nm−s−1|an| < ∞, and
∞

∑
n=1

nm−s−1|bn| < ∞.

Then any bounded solution x of (E) is convergent. More precisely, there exists a vector c ∈ X such

that x = c + o(ns).

Proof. Let x be a bounded solution of (E) and let Z = x(N). Then f is bounded on N × Z,
and, by Theorem 5.1, x ∈ PolX(m − 1) + o(ns). Using the boundedness of x and assumption
s ≤ 0 we see that there exists a vector c ∈ X such that x = c + o(ns).

Corollary 5.3. Assume that for any bounded subset Z of X, f is bounded on N × Z, s ≤ 0, q ∈ N, y

is a q-periodic solution of the equation ∆my = b and

∞

∑
n=1

nm−s−1|an| < ∞.

Then any bounded solution x of (E) is asymptotically q-periodic. More precisely, there exists a vector

c ∈ X such that x = c + y + o(ns).

Proof. If x is a bounded solution of (E), then, by Theorem 5.1,

x ∈ ∆−mb + o(ns) = y + PolX(m − 1) + oX(n
s).

Using boundedness of x and y and assumption s ≤ 0 we see that there exists a vector c ∈ X

such that x = c + y + o(ns).

Lemma 5.4. Assume a, u are nonnegative sequences, p ∈ N, λ, µ > 0, and b ≥ 0. Let g : [0, ∞) →

[0, ∞) be nondecreasing, g(b) > 0,

∞

∑
k=0

ak < ∞,
∫ ∞

b

dt

g(t)
= ∞, and un ≤ b + λ

n−1

∑
k=p

akg(µuk)

for n ≥ p. Then the sequence u is bounded.

Proof. See [12, Lemma 7.2].

Lemma 5.5. If x ∈ XN, m ∈ N and p ∈ N(m) then there exists a positive constant L such that

|xn| ≤ n(m−1)

(

L +
n−1

∑
i=p

|∆mxi|

)

for n ≥ p.
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Proof. The proof is analogous to the proof of [12, Lemma 7.3].

Theorem 5.6. Assume σ(n) ≤ n for large n, s ∈ (−∞, m − 1],

g : [0, ∞) → [0, ∞), w ∈ R
N, w = O(n1−m),

| f (n, t)| ≤ g(|wnt|) on N × X, g is nondecreasing, g(t) > 0 for t > 1,

∞

∑
n=0

nm−1−s|an| < ∞,
∞

∑
n=0

nm−1−s|bn| < ∞,
∫ ∞

1

dt

g(t)
= ∞

and x is a solution of (E). Then x ∈ PolX(m − 1) + oX(n
s).

Proof. Choose M > 0 such that |wn|nm−1 ≤ M. Then |wn|n(m−1) ≤ M. By assumption

|∆mxn| = |an f (n, xσ(n)) + bn| ≤ |an|| f (n, xσ(n))|+ |bn|

≤ |an||g(|wnxσ(n)|)|+ |bn|.

By Lemma 5.5, there exists a positive constant L such that

|xσ(n)| ≤ σ(n)(m−1)

(

L +
σ(n)−1

∑
i=p

|∆mxi|

)

≤ n(m−1)

(

L +
n−1

∑
i=p

|∆mxi|

)

.

Hence

|wnxσ(n)| ≤ ML + M
n−1

∑
j=1

|∆mxj|.

Then

|wnxσ(n)| ≤ ML + M
n−1

∑
j=1

|aj|g(|wjxσ(j)|) + M
n−1

∑
j=1

|bj|

≤ K + M
n−1

∑
j=1

|aj|g(|wjxσ(j)|),

where

K = ML + M
n−1

∑
j=1

|bj|.

Obviously
∫ ∞

K g(t)−1dt = ∞. By Lemma 5.4, the sequence (wnxσ(n)) is bounded. Choose
Q > 0 such that |wnxσ(n)| ≤ Q for every n. Choose P ≥ 1 such that g(Q) ≤ P. Then
g(|wnxσ(n)|) ≤ P for every n. Hence

|∆mxn| ≤ |an|g(|wnxσ(n)|) + |bn| ≤ P|an|+ |bn| ≤ P(|an|+ |bn|).

Therefore ∆mxn = O(|an|+ |bn|). Now the conclusion follows from Lemma 3.10.
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Abstract. In this paper, we study the Cauchy problem for linear and nonlinear Boussi-
nesq type equations that include the general differential operators. First, by virtue
of the Fourier multipliers, embedding theorems in Sobolev and Besov spaces, the ex-
istence, uniqueness, and regularity properties of the solution of the Cauchy problem
for the corresponding linear equation are established. Here, Lp-estimates for a solu-
tion with respect to space variables are obtained uniformly in time depending on the
given data functions. Then, the estimates for the solution of linearized equation and
perturbation of operators can be used to obtain the existence, uniqueness, regularity
properties, and blow-up of solution at the finite time of the Cauchy for nonlinear for
same classes of Boussinesq equations. Here, the existence, uniqueness, Lp-regularity,
and blow-up properties of the solution of the Cauchy problem for Boussinesq equations
with differential operators coefficients are handled associated with the growth nature
of symbols of these differential operators and their interrelationships. We can obtain
the existence, uniqueness, and qualitative properties of different classes of improved
Boussinesq equations by choosing the given differential operators, which occur in a
wide variety of physical systems.
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1 Introduction

The aim of this paper is to investigate the existence, uniqueness, and quality properties of the

solution of the Cauchy problem for the following improved Boussinesq equation

utt + L0utt + L1u = L2 f (u), x ∈ R
n, t ∈ (0, T), (1.1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), (1.2)

BCorresponding author. Email: veli.sahmurov@antalya.edu.tr
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where u(x, t) is the complex-valued unknown function, f (u) = f (x, t, u) is the given nonlinear

function, Li are differential operators with constant coefficients, ϕ(x) and ψ(x) are the given

initial value functions.

Here, we find the sufficient conditions depending on the qualifications and mutual rele-

vance of the elliptic operators included in the equation to ensure that there exists a unique

solution of the problem, being Lp-regular and blow up infinite time. By choosing the opera-

tors Li we obtain different classes of Boussinesq type equations which occur in a wide variety

of physical systems, such as in the propagation of longitudinal deformation waves in an elas-

tic rod, a hydro-dynamical process in plasma, in materials science which describe spinodal

decomposition and in the absence of mechanical stresses (see [2, 6, 9, 18, 21, 30–32]). We think

this article is useful in the context of Lp-regularity theory of improved Boussinesg equations.

For the first time here, the existence, uniqueness, Lp-regularity, and blow-up properties of

solution (at the finite time) of the Cauchy problem for these type Boussinesq equations are

established depending on the symbol of the differential operators and their orders, contained

in the equation. We can obtain different classes of Boussinesq equations, by choosing these

differential operators, which occur in a wide variety of physical systems. Moreover, in this

paper, the method of proofs naturally differs from those used in previous works. Indeed,

since the problem includes a general differential operator in the leading part, we need some

extra mathematics tools for deriving considered conclusions.

For example, if we choose L0 = L1 = L2 = −∆, where ∆ is n-dimensional Laplace, we

obtain the Cauchy problem for the Boussinesq equation

utt − ∆utt − ∆u = ∆ f (u), x ∈ R
n, t ∈ (0, T), (1.3)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (1.4)

Let

L0 = L1 = L2 = A1 = ∑
|α|=2

aαDα,

where aα are real numbers. Then the problem (1.1)–(1.2) is reduced to the Cauchy problem

for the following Boussinesq equation

utt + A1utt + A1u = A1 f (x, t, u), x ∈ R
2, t ∈ (0, T), (1.5)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

here

ϕ, ψ ∈ Ws
p

(

R
2
)

, s >
2

p
, p ∈ (1, ∞).

Now let

L0 = L1 = L2 = A2 = ∑
|α|=4

aαDα,

where aα are real numbers, α = (α1, α2, α3), αk are natural numbers and |α| = ∑
3
k=1 αk.

Then we get the following Boussinesq equation

utt + A2utt + A2u = A2 f (x, t, u), x ∈ R
3, t ∈ (0, T), (1.6)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

where

ϕ, ψ ∈ Ws
p

(

R
3
)

, s >
3

p
, p ∈ (1, ∞).
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Finally, let

L0 = ∑
|α|=4

a0αDα, L1 = ∑
|α|=2

a1αDα, L2 = ∑
|α|=4

a2αDα,

where aαi are real numbers, α = (α1, α2, α3), αk are natural numbers and |α| = ∑
3
k=1 αk.

The problem (1.1)–(1.2) reduced to Cauchy problem for the following Boussinesq equation

utt + L0utt + L1u = L2 f (x, t, u), x ∈ R
3, t ∈ (0, T), (1.7)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

where

ϕ, ψ ∈ Ws,p
(

R
3
)

, s >
3

p
, p ∈ (1, ∞).

By using the general result for (1.1)–(1.2), we obtain the existence, uniqueness, Lp-regularity,

and blow-up properties of the solutions of the problems (1.5), (1.6) and (1.7).

The equation (1.3) arises in different situations (see [18, 30]). For example, for n = 1 it

describes a limit of a one-dimensional nonlinear lattice [32], shallow-water waves [12, 31] and

the propagation of longitudinal deformation waves in an elastic rod [4]. Rosenau [23] derived

the equations governing dynamics of one, two and three-dimensional lattices. One of those

equations is (1.3). Note that, the existence of solutions and regularity properties for different

wave type equations are considered e.g. in [1, 7, 8, 14, 15, 17, 20, 22, 24, 29, 33]. In this respect

we can show new results e.g. [1, 7, 8, 14, 15, 22, 29, 33]. In [27] and [28] the existence of the

global classical solutions and the blow-up of the solutions of the initial value problem (1.3)–

(1.4) are studied. In this paper, we obtain the existence, uniqueness of solution and regularity

properties of the problem (1.1)–(1.2). The strategy is to express the Boussinesq equation as an

integral equation. To treat the nonlinearity as a small perturbation of the linear part of the

equation, the contraction mapping theorem is used. Also, a priori estimates on Lp norm of

solutions of the linearized version are utilized. The key step is the derivation of the uniform

estimate of the solutions of the linearized Boussinesq equation. The methods of harmonic

analysis, operator theory, interpolation of Banach spaces and embedding theorems in Sobolev

spaces are the main tools implemented to carry out the analysis.

2 Definitions and background

In order to state our results precisely, we introduce some notations and some function spaces.

Let E be a Banach space. Lp(Ω; E) denotes the space of strongly measurable E-valued func-

tions that are defined on the measurable subset Ω ⊂ Rn with the norm

‖ f ‖Lp
= ‖ f ‖Lp(Ω;E) =

(

∫

Ω
‖ f (x)‖

p
Edx

)
1
p

, 1 ≤ p < ∞,

‖ f ‖L∞(Ω:E) = ess sup
x∈Ω

‖ f (x)‖E.

Let R, C denote the sets of all real and complex numbers, respectively. For E = C the

Lp(Ω; E) denotes by Lp(Ω). Let m be a positive integer. Wm
p (Ω) denotes the Sobolev space, i.e.

space of all functions u ∈ Lp(Ω) that have the generalized derivatives ∂mu
∂xm

k
∈ Lp(Ω), 1 ≤ p ≤ ∞

with the norm

‖u‖Wm
p (Ω) = ‖u‖Lp(Ω) +

n

∑
k=1

∥

∥

∥

∥

∂mu

∂xm
k

∥

∥

∥

∥

Lp(Ω)

< ∞.
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Let F denotes the Fourier transform defined by

û(ξ) = Fu = (2π)−
n
2

∫

Rn
e−ixξu(x)dx for u ∈ S(Rn; E) and x, ξ ∈ R

n.

Let S(Rn) denote the Schwartz class, i.e., the space of rapidly decreasing smooth functions on

Rn, equipped with its usual topology generated by seminorms. Let S′(Rn) denote the space

of all continuous linear operators L : S(Rn) → C, equipped with the bounded convergence

topology. Recall S(Rn) is norm dense in Lp(Rn) when 1 ≤ p < ∞. Let 1 ≤ p ≤ q < ∞.

A function Ψ ∈ L∞(Rn) is called a Fourier multiplier from Lp(Rn) to Lq(Rn) if the map

u → F−1Ψ(ξ)Fu for u ∈ S(Rn) is well defined and extends to a bounded linear operator

T : Lp(R
n) → Lq(R

n).

Let Ls
p(R

n), −∞ < s < ∞ denotes Liouville–Sobolev space of order s which is defined as:

Ls
p = Ls

p(R
n) = (I − ∆)−

s
2 Lp(R

n)

with the norm

‖u‖Ls
p
=

∥

∥

∥(I − ∆)
s
2 u

∥

∥

∥

Lp(Rn)
=

∥

∥

∥

∥

F−1
(

1 + |ξ|2
)

s
2
û

∥

∥

∥

∥

Lp(Rn)

< ∞.

It clear that L0
p(R

n) = Lp(Rn). It is known that Lm
p (R

n) = Wm
p (R

n) for the positive integer m

(see e.g. [26, § 15].

Let L∗
q(E) denote the space of all E-valued function space such that

‖u‖L∗
q (E) =

(

∫ ∞

0
‖u(t)‖

q
E

dt

t

)
1
q

< ∞, 1 ≤ q < ∞, ‖u‖L∗
∞(E) = sup

t∈(0,∞)

‖u(t)‖E.

Here, F denotes the Fourier transform. Fourier-analytic representation of Besov space on

Rn are defined as:

Bs
p,q(R

n) =

{

u ∈ S′(Rn) : ‖u‖Bs
p,q(R

n) =
∥

∥

∥
F−1tκ−s

(

1 + |ξ|
κ

2

)

e−t|ξ|2 Fu
∥

∥

∥

L∗
q(Lp(Rn))

,

|ξ|2 =
n

∑
k=1

ξ2
k , ξ = (ξ1, ξ2, . . . , ξn),p ∈ (1, ∞), q ∈ [1, ∞], κ > s

}

.

Here,

Xp = Lp(Rn), 1 ≤ p ≤ ∞, Ys,p = Ls,p(Rn),

Y
s,p
1 = Ls

p(R
n) ∩ L1(R

n), Y
s,p
∞ = Ls,p(Rn) ∩ L∞(R

n),

It should be note that, the norm of Besov space does not depends on κ (see e.g. [25, § 2.3].

For p = q the space Bs
p,q(R

n) will be denoted by Bs
p(R

n).

Definition 2.1. For any T > 0 the function u ∈ C2
([

0, T
]

; Y
2,s,p
∞

)

satisfies the equation (1.1)–

(1.2) a.e. in Rn
T = Rn × (0, T) is called the continuous solution or the strong solution of the

problem (1.1)–(1.2). If T < ∞, then u(x, t) is called the local strong solution of the problem

(1.1)–(1.2). If T = ∞, then u(x, t) is called the global strong solution of (1.1)–(1.2).
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Sometimes we use one and the same symbol C without distinction in order to denote

positive constants which may differ from each other even in a single context. When we want

to specify the dependence of such a constant on a parameter, say α, we write Cα.

The paper is organized as follows: In Section 1, some definitions and background are

given. In Section 2, we obtain the existence of a unique solution and priory estimates for

the solution of the linearized problem (1.1)–(1.2). In Section 3, we show the existence and

uniqueness of the local strong solution of the problem (1.1)–(1.2). Section 4 is devoted to

the existence of the global solution. In Section 5 the blow-up properties of the solution are

derived. In Section 6 we show some applications of the problem (1.1)–(1.2).

Sometimes we use one and the same symbol C without distinction in order to denote

positive constants which may differ from each other even in a single context. When we want

to specify the dependence of such a constant on a parameter, say h, we write Ch.

3 Estimates for linearized equation

In this section, we make the necessary estimates for solutions of the Cauchy problem for the

following linear Boussinesq equation

utt + L0utt + L1u = L2g(x, t), x ∈ R
n, t ∈ (0, T), (3.1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

where

Liu = ∑
|α|=2mi

aiαDαu, aiα ∈ R, i = 0, 1, 2,

α = (α1, α2, . . . , αn), αk are natural numbers, |α| = ∑
n
k=1 αk and mi are positive integers. Let

Li(ξ) = ∑
|α|=2mi

aiα(iξ1)
α1(iξ2)

α2 . . . (iξn)
αn , i = 0, 1, 2, (3.2)

Q = Q(ξ) = L1(ξ)[1 + L0(ξ)]
−1, L(ξ) = L2(ξ)[1 + L0(ξ)]

−1.

Condition 3.1. Assume that L1(ξ) 6= 0, L0(ξ) 6= −1 and there exist positive constants M1 and

M2 depend only on aiα such that

∣

∣

∣
Q

1
2 (ξ)

∣

∣

∣
≤ M1

(

1 + |ξ|2
)

ν
2
,

∣

∣

∣
L(ξ)Q

1
2 (ξ)

∣

∣

∣
≤ M2

(

1 + |ξ|2
)

ν
2

(3.3)

for all ξ ∈ Rn and a real number ν.

Remark 3.2. It is not hard to see that if ν ≥ m1 − m0, then the first inequality verified. More-

over, if ν ≥ m1 + 2m2 − (2m0)
3
2 , then the second inequality holds.

First we need the following lemmas.

Lemma 3.3. Suppose that Q(ξ) 6= 0 for each ξ ∈ Rn. Then problem (3.1) has a strong solution.

Proof. Since L0, L1 and L2 are differential operators with constant coefficients, by using of

Fourier transform and in view of (3.2), we get from (3.1):

ûtt(ξ, t) + Q(ξ)û(ξ, t) = L(ξ)ĝ(ξ, t),

û(ξ, 0) = ϕ̂(ξ), ût(ξ, 0) = ψ̂(ξ), ξ ∈ R
n, t ∈ (0, T),

(3.4)
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where û(ξ, t) is a Fourier transform of u(x, t) with respect to x. By using the variation of

constants we get that there exists a solution of the problem (3.4) that can be written as the

following

û(ξ, t) = C(ξ, t)ϕ̂(ξ) + S(ξ, t)ψ̂(ξ) + Og(ξ), (3.5)

here,

C(ξ, t) = cos
(

Q
1
2 t
)

, S(ξ, t) = Q− 1
2 sin

(

Q
1
2 t
)

,

Φ̂(ξ, t) = L(ξ)Q− 1
2 (ξ) sin

(

Q
1
2 t
)

, Og = Og(ξ) =
∫ t

0
Φ̂(ξ, t − τ)ĝ(ξ, τ)dτ.

From (3.5) we get that the solution of the problem (3.1) can be expressed as

u(x, t) = S1(t)ϕ(x) + S2(t)ψ(x) +
∫ t

0
F−1Og(ξ)dξ, t ∈ (0, T), (3.6)

where F−1 denotes the inverse Fourier transformation, S1(t) and S2(t) are linear operators

defined by

S1(t)ϕ = (2π)−
n
2

∫

Rn
eixξC(ξ, t)ϕ̂(ξ)dξ,

S2(t)ψ = (2π)−
n
2

∫

Rn
eixξS(ξ, t)ψ̂(ξ)dξ.

Theorem 3.4. Assume that the Condition 3.1 holds and

s > n

(

2

q
+

1

p

)

+ ν if ν ≥ 0, s > n

(

2

q
+

1

p

)

if ν < 0 (3.7)

for p ∈ [1, ∞] and for a q ∈ [1, 2]. Then for ϕ, ψ, g(·, t) ∈ Y
s,p
1 for t ∈ (0, T) and g(x, ·) ∈

L1
(

0, T; Y
s,p
1

)

for x ∈ Rn problem (3.1) has a unique solution u(x, t) satisfies the following estimate

‖u‖X∞
+ ‖ut‖X∞

≤ C

[

‖ϕ‖Ys,p + ‖ϕ‖X1
+ ‖ψ‖Ys,p + ‖ψ‖X1

+
∫ t

0

(

‖g(·, τ)‖Ys,p + ‖g(·, τ)‖X1

)

dτ

]

(3.8)

uniformly with respect to t ∈ [0, T].

Proof. Let N ∈ N and

ΠN = {ξ : ξ ∈ R
n, |ξ| ≤ N}, Π′

N = {ξ : ξ ∈ R
n, |ξ| ≥ N}.

It is clear to see that

‖u‖X∞
≤

∥

∥

∥
F−1C(ξ, t)ϕ̂(ξ)

∥

∥

∥

X∞

+
∥

∥

∥
F−1S(ξ)ψ̂(ξ, t)

∥

∥

∥

X∞

≤

∥

∥

∥

∥

∫

Rn
eixξC(ξ, t)ϕ(x)dx

∥

∥

∥

∥

L∞(ΠN)

+

∥

∥

∥

∥

∫

Rn
eixξS(ξ, t)ψ(x)dx

∥

∥

∥

∥

L∞(ΠN)

+
∥

∥

∥
F−1C(ξ, t)ϕ̂(ξ)

∥

∥

∥

L∞(Π′
N)

+
∥

∥

∥
F−1S(ξ, t)ψ̂(ξ)

∥

∥

∥

L∞(Π′
N)

+
∥

∥

∥
F−1C(ξ, t)Og(ξ)

∥

∥

∥

L∞(Π′
N)

+
∥

∥

∥
F−1Og(ξ)

∥

∥

∥

L∞(Π′
N)

(3.9)
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Using Minkowski’s inequality for integrals and uniformly boundedness of C(ξ, t), S(ξ, t) on

ΠN we have

∥

∥

∥

∥

∫

Rn
eixξC(ξ, t)ϕ(x)dx

∥

∥

∥

∥

L∞(ΠN)

+

∥

∥

∥

∥

∫

Rn
eixξS(ξ, t)ψ(x)dx

∥

∥

∥

∥

L∞(ΠN)

≤ C
[

‖ϕ‖X1
+ ‖ψ‖X1

]

. (3.10)

It is clear to see that

∥

∥

∥
F−1C(ξ, t)ϕ̂(ξ)

∥

∥

∥

L∞(Π′
N)

+
∥

∥

∥
F−1S(ξ, t)ψ̂(ξ)

∥

∥

∥

L∞(Π′
N)

=

∥

∥

∥

∥

F−1
(

1 + |ξ|2
)− s

2
C(ξ, t)

(

1 + |ξ|2
)

s
2
ϕ̂(ξ)

∥

∥

∥

∥

L∞(Π′
N)

+

∥

∥

∥

∥

F−1
(

1 + |ξ|2
)−s

S(ξ, t)(1 + |ξ|)
s
2 ψ̂(ξ)

∥

∥

∥

∥

L∞(Π′
N)

. (3.11)

By using (3.5) and (3.3) we get the estimates

sup
ξ∈Rn,t∈[0,T]

|ξ|

∣

∣

∣

∣

|α|+ n
p Dα

[

(

1 + |ξ|2
)− s

2
C(ξ, t)

]∣

∣

∣

∣

≤ C2,

sup
ξ∈Rn,t∈[0,T]

|ξ|

∣

∣

∣

∣

|α|+ n
p Dα

[

(

1 + |ξ|2
)− s

2
S(ξ, t)

]∣

∣

∣

∣

≤ C2,

(3.12)

uniformly in t ∈ [0, T] for s > n
p , α = (α1, α2, . . . , αn), αk ∈ {0, 1}, ξ ∈ Rn and ξ 6= 0.

Let we show that G(·, t), V(·, t) ∈ B
n
q +

1
p

q,1 (Rn; E) for some q ∈ (1, 2) and for all t ∈ [0, T],

where

G(ξ, t) =
(

1 + |ξ|2
)− s

2
Q

1
2 (ξ)C(ξ, t), V(·, t) =

(

1 + |ξ|2
)− s

2
S(ξ, t).

By embedding properties of Sobolev and Besov spaces it sufficient to derive that G, V ∈

W
n( 1

q+
1
p )+ε

q (Rn) for some ε > 0. Indeed by construction of solution, by Condition 3.1 and

by (3.3) we get G ∈ Lq(Rn). Let σ > n
(

1
q + 1

p

)

. For deriving the embedding relating G ∈

Wσ+ε
q (Rn), it sufficient to show

(

1 + |ξ|2
)

σ
2
G(·, t) ∈ Lσ(R

n) for all t ∈ [0, T].

Indeed, in view of (3.3), (3.12) the function
(

1+ |ξ|2
)

σ
2 G(ξ, t) is uniformly bounded for ξ ∈ Rn

and s > σ. By virtue of (3.3), (3.12) and by assumption (3.7) we have

∫

Rn

(

1 + |ξ|2
)

σ
2 q
|G(ξ, t)|qdξ .

∫

Rn

(

1 + |ξ|2
)− (s−σ)

2 q
|C(ξ, t)|qdξ

.

∫

Rn

(

1 + |ξ|2
)−( s−σ

2 )q
dξ < ∞.

In a similar way we obtain the following

∫

Rn

(

1 + |ξ|2
)

σ
2 q
|V(ξ, t)|qdξ .

∫

Rn

(

1 + |ξ|2
)−( s−σ

2 )q
|S(ξ, t)|qdξ < ∞.
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By the Fourier multiplier theorem [10, Theorem 4.3], from (3.12) we get that the func-

tions
(

1 + |ξ|2
)− s

2 Q
1
2 (ξ)C(ξ, t),

(

1 + |ξ|2
)− s

2 L(ξ)Q
1
2 (ξ)S(ξ, t) are Lp(Rn) → L∞(Rn) Fourier

multipliers. Then by Minkowski’s inequality for integrals from (3.10) and (3.11) we obtain

∥

∥

∥
F−1C(ξ, t)ϕ̂(ξ)

∥

∥

∥

L∞(Π′
N)

+
∥

∥

∥
F−1S(ξ, t)ψ̂(ξ)

∥

∥

∥

L∞(Π′
N)

≤ C[‖ϕ‖Ys,p + ‖ψ‖Ys,p ]. (3.13)

Moreover, by using the representation of Φ̂(ξ, t) in (3.5) and the estimate (3.3) we get the

uniform estimate

sup
ξ∈Rn,t∈[0,T]

|ξ|

∣

∣

∣

∣

|α|+ n
p Dα

[

(

1 + |ξ|2
)− s

2
Φ̂(ξ, t)

]∣

∣

∣

∣

≤ C3. (3.14)

By reasoning as the above and in view of (3.3) we get that the function
(

1 + |ξ|2
)− s

2 Og(ξ)
is a Lp(Rn) → L∞(Rn) Fourier multiplier, i.e. we have the following uniform estimate

∥

∥

∥

∥

F−1
∫ t

0
Φ̂(ξ, t − τ)ĝ(ξ, τ)dτ

∥

∥

∥

∥

X∞

≤ C
∫ t

0

(

‖g(·, τ)‖Ys + ‖g(·, τ)‖X1

)

dτ.

Hence, from (3.9)–(3.11), we deduced the following

‖u‖X∞
≤C

[

‖ϕ‖Ys,p + ‖ϕ‖X1
+ ‖ψ‖Ys,p + ‖ψ‖X1

+
∫ t

0

(

‖g(·, τ)‖Ys,p + ‖g(·, τ)‖X1

)

dτ

]

. (3.15)

By differentiating from (3.5) we get

ût(ξ, t) = − Q
1
2 (ξ) sin

(

Q
1
2 t
)

ϕ̂(ξ) + cos
(

Q
1
2 t
)

ψ̂(ξ)

+
∫ t

0
Q

1
2 (ξ)L(ξ) sin

(

Q
1
2 (ξ, t − τ)

)

ĝ(ξ, τ)dτ, t ∈ (0, T). (3.16)

By using (3.3) and (3.16) in a similar way, we get

‖ut‖X∞
≤ C

[

‖ϕ‖Ys,p + ‖ϕ‖X1
+ ‖ψ‖Ys,p + ‖ψ‖X1

+
∫ t

0

(

‖g(·, τ)‖Ys,p + ‖g(·, τ)‖X1

)

dτ

]

(3.17)

Then from (3.15) and (3.17), we obtain the estimate (3.8). Let us now show that problem (3.1)

has a unique solution u ∈ C(1)([0, T]; Ys,p). Let us admit it is the opposite. So let us assume

that the problem (3.1) has two solutions u1, u2 ∈ C(1)([0, T]; Ys,p). Then by linearity of (3.1),

we get that υ = u1 − u2 is also a solution of the corresponding homogenous equation

υtt + L0υtt + L1υ = 0, υ(x, 0) = 0, υt(x, 0) = 0, x ∈ R
n, t ∈ (0, T).

Moreover, by (3.8) we have the following estimate

‖υ‖X∞
≤ 0.

The above estimate implies that υ = 0.

Remark 3.5. In view of Remark 3.2 we see that the assumption (3.7) is satisfied if ν ≥ 0 and

s > n

(

2

q
+

1

p

)

+ max
{

m1 − m0, m1 + 2m2 − (2m0)
3
2

}

.

By reasoning as in Theorem 3.4 we obtain
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Theorem 3.6. Let the Condition 3.1 hold. Then for ϕ, ψ, g(·, t) ∈ Ys,p for t ∈ (0, T), g(x, ·) ∈

L1
(

0, T; Y
s,p
1

)

for x ∈ Rn problem (3.1) has a unique solution u(x, t) and the following uniform

estimate holds

‖u‖Ys,p + ‖ut‖Ys,p ≤ C

[

‖ϕ‖Ys,p + ‖ψ‖Ys,p +
∫ t

0
‖g(., τ)‖Ys,p dτ

]

. (3.18)

Proof. From (3.5) we have the following uniform estimate

∥

∥

∥

∥

F−1
(

1 + |ξ|2
)

s
2
û

∥

∥

∥

∥

Xp

+

∥

∥

∥

∥

F−1
(

1 + |ξ|2
)

s
2
ût

∥

∥

∥

∥

Xp

≤ C

{

∥

∥

∥
F−1(1 + |ξ|)

s
2 C(ξ, t)ϕ̂

∥

∥

∥

Xp

+
∥

∥

∥
F−1(1 + |ξ|)

s
2 S(ξ, t)ψ̂

∥

∥

∥

Xp

+
∫ t

0

∥

∥

∥(1 + |ξ|)
s
2 Φ̂(ξ, t − τ)ĝ(·, τ)

∥

∥

∥

Xp

dτ

}

. (3.19)

By Condition 3.1 and by virtue of Fourier multiplier theorems (see e.g. [10, Theorem 4.3], we

get that C(ξ, t), S(ξ, t) and Φ̂(ξ, t) are Fourier multipliers in Lp(Rn) uniformly with respect to

t ∈ [0, T]. So, the estimate (3.19) by using Minkowski’s inequality for integrals implies (3.18).

The uniqueness of (3.3) is obtained by reasoning as in Theorem 3.4.

4 Initial value problem for nonlinear equation

In this section, we will show the local existence and uniqueness of solution for the Cauchy

problem (1.1)–(1.2).

For the study of the nonlinear problem (1.1)–(1.2) we need the following lemmas

Lemma 4.1 (Nirenberg’s inequality [19]). Assume that u ∈ Lp(Ω), Dmu ∈ Lq(Ω), p, q ∈ (1, ∞).

Then for i with 0 ≤ i ≤ m, m >
n
q we have

∥

∥

∥
Diu

∥

∥

∥

r
≤ C‖u‖1−µ

p

n

∑
k=1

‖Dm
k u‖µ

q , (4.1)

where
1

r
=

i

m
+ µ

(

1

q
−

m

n

)

+ (1 − µ)
1

p
,

i

m
≤ µ ≤ 1.

Lemma 4.2 ([19]). Assume that u ∈ Wm
p (Ω)∩ L∞(Ω) and f (u) possesses continuous derivatives up

to order m ≥ 1. Then f (u)− f (0) ∈ Wm
p (Ω) and

‖ f (u)− f (0)‖p ≤
∥

∥

∥
f
(1)
(u)

∥

∥

∥

∞
‖u‖p,

∥

∥

∥
Dk f (u)

∥

∥

∥

p
≤ C0

k

∑
j=1

∥

∥

∥
f (j)(u)

∥

∥

∥

∞
‖u‖j−1

∞

∥

∥

∥
Dku

∥

∥

∥

p
, 1 ≤ k ≤ m, (4.2)

where C0 ≥ 1 is a constant.

Let

E0 =
(

Ys,p, Xp

)

1
2p ,p

= B
s
(

1− 1
2p

)

p (Rn).



10 V. B. Shakhmurov and R. Shahmurov

Remark 4.3. By using a result by J. Lions and I. Petree (see e.g. [25, § 1.8]) we obtain that the

map u → u(t0), t0 ∈ [0, T] is continuous and surjective from W2
p

(

0, T; Ys,p, Xp

)

onto E0 and

there is a constant C1 such that

‖u(t0)‖E0
≤ C1‖u‖W2

p(0,T;Ys,p,Xp), 1 ≤ p ≤ ∞.

Let

C(m)(p) = C(m)
(

[0, T]; Y
s,p
∞

)

.

First all of, we define the space Y(T) = C
(

[0, T]; Y
s,p
∞

)

equipped with the norm defined by

‖u‖Y(T) = max
t∈[0,T]

‖u‖Ys,p + max
t∈[0,T]

‖u‖X∞
, u ∈ Y(T).

It is easy to see that Y(T) is a Banach space. For ϕ, ψ ∈ Ys,p, let

M = ‖ϕ‖Ys,p + ‖ϕ‖X∞
+ ‖ψ‖Ys,p + ‖ψ‖X∞

.

Condition 4.4. Assume:

(1) The Condition 3.1 holds, ϕ, ψ ∈ Y
s,p
1 and s > n

(

2
q +

1
p

)

+ ν if ν ≥ 0, s > n
(

2
q +

1
p

)

if ν < 0

for p ∈ [1, ∞] and for a q ∈ [1, 2];

(2) (2) the function u → f̂ (ξ, t, u): Rn × [0, T]× E0 → C is a measurable in (ξ, t) ∈ Rn × [0, T]
for u ∈ E0; moreover, f̂ (ξ, t, u) is continuous in u ∈ E0 and f̂ (ξ, t, u) ∈ C([s]+1)(E0; C)
uniformly for ξ ∈ Rn and t ∈ [0, T].

The main aim of this section is to prove the following result.

Theorem 4.5. Let the Condition 4.4 hold. Then problem (1.1)–(1.2) has a unique strong solution

u ∈ C(2)(p), where T0 is a maximal time that is appropriately small relative to M. Moreover, if

sup
t∈[0, T0)

(

‖u‖Ys,p + ‖u‖X∞
+ ‖ut‖Ys,p + ‖ut‖X∞

)

< ∞ (4.3)

then T0 = ∞.

Proof. First, we are going to prove the existence and the uniqueness of the local strong solution

of (1.1)–(1.2) by contraction mapping principle. Consider a map G on Y(T) such that G(u) is

the operator defined by

G(u) = G(u)(x, t) = S1(t)ϕ(x) + S2(t)ψ(x) + O(u), (4.4)

where

O(u) =
∫ t

0
F−1

[

S(ξ, t − τ)L(ξ) f̂ (u)(ξ, τ)
]

dτ, t ∈ (0, T). (4.5)

From Lemma 4.2 we know that f (u) ∈ Lp

(

0, T; Y
s,p
∞

)

for any T > 0. From Lemma 4.2 it is

easy to see that the map G is well defined for f ∈ C(2)(X0; C). We put

Q(M; T) =
{

u | u ∈ Y(T), ‖u‖Y(T) ≤ M + 1
}

.

First, by reasoning as in [12] let us prove that the map G has a unique fixed point in

Q(M; T). From Lemma 4.2 it is easy to see that the map G is well defined for f ∈ C(2)(X0; C).

Let

W(u) = F−1[S(ξ, t − τ)L(ξ) f (u)](x, τ).
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By assumption (2) of Condition 4.4 and by virtue [10, Theorem 4.3], the function U(ξ, t − τ)L(ξ)
is a Fourier multiplier theorem in Xp, i.e. if f (u) ∈ Xp, then W(u) ∈ Xp.

First, by reasoning as in [12] let us prove that the map G has a unique fixed point in

Q(M; T). For this aim, it is sufficient to show that the operator G maps Q(M; T) into Q(M; T)
and G : Q(M; T) → Q(M; T) is strictly contractive if T is appropriately small relative to M.

Consider the function W(ξ): [0, ∞) → [0, ∞) defined by

W(σ) = max
|ξ|≤σ

{∣

∣

∣
W

(1)
(ξ)

∣

∣

∣
,
∣

∣

∣
W

(2)
(ξ)

∣

∣

∣
,. . . ,

∣

∣

∣
W

([s])
(ξ)

∣

∣

∣

}

, σ ≥ 0.

It is clear to see that the function W(σ) is continuous and nondecreasing on [0, ∞). From

Lemma 4.2 we have

‖W(u)‖Y2,p ≤
∥

∥

∥
W(1)(u)

∥

∥

∥

X∞

‖u‖Xp
+

∥

∥

∥
W(1)(u)

∥

∥

∥

X∞

‖Du‖Xp

+ C0

[

∥

∥

∥
W(1)(u)

∥

∥

∥

X∞

‖u‖Xp
+ · · ·+

∥

∥

∥
W([s])(u)

∥

∥

∥

X∞

‖u‖X∞

∥

∥

∥
D[s]u

∥

∥

∥

Xp

]

≤ 2C0W(M + 1)(M + 1)‖u‖Ys,p . (4.6)

By using Theorem 3.4 we obtain from (4.5):

‖G(u)‖X∞
≤ ‖ϕ‖X∞

+ ‖ψ‖X∞
+

∫ t

0
‖W(x, τ, u(τ))‖X∞

, (4.7)

‖G(u)‖Y2sp ≤ ‖ϕ‖Ys,p + ‖ψ‖Ys,p +
∫ t

0
‖W(x, τ, u(τ))‖Y2,p dτ. (4.8)

Thus, from (4.6)–(4.8) and Lemma 4.2 we get

‖G(u)‖Y(T) ≤ M + T(M + 1)
[

1 + 2C0(M + 1) f̄ (M + 1)
]

.

If T satisfies

T ≤
{

(M + 1)
[

1 + 2C0(M + 1) f̄ (M + 1)
]}−1

, (4.9)

then

‖Gu‖Y(T) ≤ M + 1.

Therefore, if (4.9) holds, then G maps Q(M; T) into Q(M; T). Now, we are going to prove that

the map G is strictly contractive. Assume T > 0 and u1, u2 ∈ Q(M; T) given. We get

G(u1)− G(u2) =
∫ t

0
[W(u1)(x, τ)− W(u2)(x, τ)]dτ, t ∈ (0, T).

By using the assumption (3) and the mean value theorem, we obtain

W(u1)− W(u2) = W(1)(u2 + η1(u1 − u2))(u1 − u2),

D[W(u1)− W(u2)] = W(2)(u2 + η2(u1 − u2))(u1 − u2)Dξu1 + W(1)(u2)
(

Du1 − Dξu2

)

,

D2
[

f̂ (u1)− f̂ (u2)
]

= W(3)(u2 + η3(u1 − u2))(u1 − u2)(Du1)
2

+ W(2)(u2)(Du1 − Du2)(Du1 + Du2)

+ W(2)(u2 + η4(u1 − u2))(u1 − u2)D2u1 + W(1)(u2)
(

D2u1 − D2u2

)

,
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where 0 < ηi < 1. Thus, using Hormander’s and Nirenberg’s inequality, we have

‖W(u1)− W(u2)‖X∞
≤ W(M + 1)‖u1 − u2‖X∞

, (4.10)

‖(u1)− W(u2)‖Xp
≤ W(M + 1)‖u1 − u2‖Xp

,

‖D[W(u1)− W(u2)]‖Xp
≤ (M + 1)W(M + 1)‖u1 − u2‖X∞

+ W(M + 1)‖W(u1)− W(u2)‖Xp
, (4.11)

∥

∥D2[W(u1)− W(u2)]
∥

∥

Xp

≤ (M + 1)W(M + 1)‖u1 − u2‖X∞

∥

∥D2u1

∥

∥

2

Y2,p

+ W(M + 1)‖D(u1 − u2)‖Y2,p‖D(u1 + u2)‖Y2,p

+ W(M + 1)‖u1 − u2‖X∞

∥

∥D2u1

∥

∥

Xp
+ W(M + 1)‖D(u1 − u2)‖Xp

≤ C2W(M + 1)‖u1 − u2‖X∞
‖u1‖X∞

∥

∥D2u1

∥

∥

Xp

+ C2W(M + 1)‖u1 − u2‖X∞

∥

∥D2(u1 − u2)
∥

∥

Xp
‖u1 + u2‖X∞

∥

∥D2(u1 + u2)
∥

∥

Xp

+ (M + 1)W(M + 1)‖u1 − u2‖X∞
+ W(M + 1)

∥

∥D2(u1 − u2)
∥

∥

Xp

≤ 3C2(M + 1)2W(M + 1)‖u1 − u2‖X∞
+ 2C2(M + 1)W(M + 1)

∥

∥D2(u1 − u2)
∥

∥

Xp
. (4.12)

In a similar way, we have

∥

∥

∥
D[s][W(u1)− W(u2)]

∥

∥

∥

Xp

≤ C1‖u1 − u2‖X∞
+ C2

∥

∥

∥
D[s](u1 − u2)

∥

∥

∥

Xp

. (4.13)

From (4.10)–(4.13), using Minkowski’s inequality for integrals, Fourier multiplier theorem in

Xp spaces and Young’s inequality, we obtain

‖G(u1)− G(u2)‖Y(T) ≤
∫ t

0
‖u1 − u2‖X∞

dτ +
∫ t

0
‖u1 − u2‖Ys,p dτ

+
∫ t

0
‖W(u1)− W(u2)‖X∞

dτ +
∫ t

0
‖W(u1)− W(u2)‖Ys,p dτ

≤ T
[

1 + C1(M + 1)2W(M + 1)
]

‖u1 − u2‖Y(T),

where C1 is a constant. If T satisfies (4.9) and the following inequality

T ≤
1

2

[

1 + C1(M + 1)2W(M + 1)
]−1

, (4.14)

then

‖Gu1 − Gu2‖Y(T) ≤
1

2
‖u1 − u2‖Y(T).

That is, G is a contractive map. By contraction mapping principle we know that G(u) has

a fixed point u(x, t) ∈ Q(M; T) that is a solution of (1.1)–(1.2). From (3.6) we get that u is a

solution of the following integral equation

u(t, x) = S1(t)ϕ(x) + S2(t)ψ(x) + +
∫ t

0
W(u)(x, τ)dτ, t ∈ (0, T).
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Let us show that this solution is a unique in Y(T). Let u1, u2 ∈ Y(T) be two solutions of

the problem (1.1)–(1.2). Then

u1 − u2 =
∫ t

0
[W(u1)(x, τ)− W(u2)(x, τ)]dτ. (4.15)

By the definition of the space Y(T), we can assume that

‖u1‖X∞
≤ C1(T), ‖u1‖X∞

≤ C1(T).

Hence, by Minkowski’s inequality for integrals and Theorem 3.6 we obtain from (4.15)

‖u1 − u2‖Ys,p ≤ C2(T)
∫ t

0
‖u1 − u2‖Y2,p dτ. (4.16)

From (4.16) and Gronwall’s inequality, we have ‖u1 − u2‖Ys,p = 0, i.e. problem (1.1)–(1.2)

has a unique solution which belongs to Y(T). That is, we obtain the first part of the assertion.

Now, let [0, T0) be the maximal time interval of existence for u ∈ Y(T0). It remains only to

show that if (4.3) is satisfied, then T0 = ∞. Assume contrary that, (4.3) holds and T0 < ∞. For

T ∈ [0, T0), we consider the following integral equation

υ(x, t) = S1(t)u(x, T) + S2(t)ut(x, T) +
∫ t

0
W(υ)(x, τ)dτ, t ∈ (0, T). (4.17)

By virtue of (4.3), for T′
> T we have

sup
t∈[0 , T)

(

‖u‖Ys,p + ‖u‖X∞
+ ‖ut‖Ys,p + ‖ut‖X∞

)

< ∞.

By reasoning as in the first part of the theorem and by the contraction mapping principle,

there is a T∗ ∈ (0, T0) such that for each T ∈ [0, T0) the equation (4.17) has a unique solution

υ ∈ Y(T∗). The estimates (4.9) and (4.14) imply that T∗ can be selected independently of

T ∈ [0, T0). Set T = T0 −
T∗

2 and define

ũ(x, t) =







u(x, t), t ∈ [0, T],

υ(x, t − T), t ∈
[

T, T0 +
T∗

2

]

By construction ũ(x, t) is a solution of the problem (1.1)–(1.2) on
[

T, T0 +
T∗

2

]

and in view

of local uniqueness, ũ(x, t) extends u. This is against to the maximality of [0, T0), i.e. we

obtain T0 = ∞.

From [27], we have

Lemma 4.6. Let s ≥ 0, f ∈ C[s]+1(R) with f (0) = 0. Then for any u ∈ Ys,p ∩ L∞, we have f (u) ∈

Ys,p ∩ X∞. Moreover, there is some constant A(M) depending on M such that for all u ∈ Ys,p ∩ L∞

with ‖u‖X∞
≤ M,

‖ f (u)‖Ys,p ≤ C(M)‖u)‖Ys,p .

By using Lemma 4.1 and properties of convolution operators we obtain

Corollary 4.7. Let s ≥ 0, f ∈ C[s]+1(R) with f (0) = 0. Moreover, assume Φ ∈ L∞(Rn). Then for

any u ∈ Ys,p ∩ L∞, we have f (u) ∈ Ys,p ∩ X∞. Moreover, there is some constant A(M) depending on

M such that for all u ∈ Ys,p ∩ L∞ with ‖u‖X∞
≤ M,

‖Φ ∗ f (u)‖Ys,p ≤ C(M)‖u)‖Ys,p .
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Lemma 4.8. Let s ≥ 0, f ∈ C[s]+1(R). Then for for any M there is some constant K(M) depending

on M such that for all u, υ ∈ Ys,p ∩ X∞ with ‖u‖X∞
≤ M, ‖υ‖X∞

≤ M, ‖u‖Ys,p ≤ M, ‖υ‖Ys,p ≤ M,

‖ f (u)− f (υ‖Ys,p ≤ K(M)‖u − υ‖Ys,p , ‖ f (u)− f (υ‖X∞
≤ K(M)‖u − υ‖X∞

.

By reasoning as in [27, Lemma 3.4] and [5, Lemma X 4] we have, respectively

Corollary 4.9. Let s > n
p , f ∈ C[s]+1(R). Then for any M there is a constant K(M) depending on M

such that for all u, υ ∈ Ys,p with ‖u‖Ys,p ≤ M, ‖υ‖Ys,p ≤ M,

‖ f (u)− f (υ‖Ys,p ≤ K(M)‖u − υ‖Ys,p .

Lemma 4.10. If s > 0, then Y
s,p
∞ is an algebra. Moreover, for f , g ∈ Y

s,p
∞ ,

‖ f g‖Ys,p ≤ C
[

‖ f ‖X∞
+ ‖g‖Ys,p + ‖ f ‖Ys,p + ‖g‖X∞

]

.

By using Corollary 4.7 and Lemma 4.10 we obtain

Lemma 4.11. Let s ≥ 0, f ∈ C[s]+1(R) and f (u) = O
(

|u|γ+1) for u → 0, γ ≥ 1 be a positive

integer. If u ∈ Y
s,p
∞ and ‖u‖X∞

≤ M, then

‖ f (u)‖Ys,p ≤ C(M)
[

‖u‖Ys,p‖u‖
γ
X∞

]

,

‖ f (u)‖X1
≤ C(M)‖u‖

p
Xp
‖u‖

γ−1
X∞

.

The solution in Theorems 4.2–4.4 can be extended to a maximal interval [0, Tmax), where

finite Tmax is characterized by the blow-up condition

lim sup
T→Tmax

‖u‖Ys,p(A;E) = ∞.

Lemma 4.12. Let the Condition 4.4 hold and u be a solution of (1.1)–(1.2). Then there is a global

solution if for any T < ∞, we have

sup
t∈[0,T]

(

‖u‖Y
s,p
∞

+ ‖ut‖Y
s,p
∞

)

< ∞. (4.18)

Proof. Indeed, by reasoning as in the second part of the proof of Theorem 4.5, by using a

continuation of local solution of (1.1)–(1.2) and assuming contrary that, (4.18) holds and T0 <

∞, then we obtain contradiction, i.e. we get T0 = Tmax = ∞.

5 Conservation of energy and global existence.

Consider the problem for p = 2. Let us denote Ys,2 by Ws. We prove the following results.

Condition 5.1. Assume the Condition 4.4 holds for p = 2. Let L0 = L1 = L2 = −L and L be

a negative symmetric operator in L2(Rn). Suppose (I − L)−1, A = L(I − L)−1 are bounded in

L2(Rn) and assume

ψ ∈ L2(R
n), (Au, u) ∈ L2(Rn), Φ(·) ∈ L1(Rn),

where (u, υ) denotes the inner product in L2(Rn).
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Let

F(u) = A[ f (u)− u], Φ(η) =
∫ η

0
F(σ)dσ.

Remark 5.2. Note that if −L is self-adjoint positive operator in L2(Rn), then the operators

(I − L)−1, A are bounded in L2(Rn).

Lemma 5.3. Let the Condition 4.4 hold and let u ∈ C(2)([0, T]; Ws) be solution of (1.1)–(1.2) for any

t ∈ [0, T). Then the energy

E(t) = ‖ut‖
2 + 2

∫

Rn
Φ(u)dx (5.1)

is constant.

Proof. By use of (1.1) and in view of Condition 4.4, it follows from straightforward calculation

that
d

dt
E(t) = 2(utt, ut) + 2

∫

Rn
Φu(u)utdx = 2(utt + Au − A f (u), ut) = 0.

Hence, we obtain the assertion.

By using the above lemmas we obtain the following results.

Theorem 5.4. Assume the Condition 5.1 is satisfied and ϕ, ψ ∈ Ys,2
∞ . Moreover, there is some k > 0

so that

Φ(s) ≥ −k|s|2, for all s ∈ R. (5.2)

Then there is some T > 0 such that problem (1.1)–(1.2) has a global solution

u ∈ C(2)([0, T]; Ws).

Proof. Since r > 2 + n
2 , by Theorem 4.5 we get local existence in u ∈ C(2)([0, T]; Ws) for some

T > 0. Assume that u exists on [0, T). By assumption (5.2), we obtain

E(t) = ‖ut‖
2 + 2

∫

Rn
Φ(u)dx ≤ E(0) + 2k‖u(·, t)‖2. (5.3)

for all t ∈ [0, T). By properties of norms in Hilbert spaces and by the Cauchy–Schwarz

inequality, from (5.3) we get

d

dt
‖u(·, t)‖2

Ws ≤ 2‖ut(·, t)‖Ws‖u(·, t)‖Ws

≤ ‖ut(·, t)‖2
Ws + ‖u(·, t)‖2

Ws ≤ CE(0) + (2Ck + 1)‖u(t)‖2
Ws .

Gronwall’s lemma implies that ‖u(·, t)‖Ws is bounded in [0, T). But, since s >
n
2 , we

conclude that ‖u(t)‖L∞ also is bounded in [0, T). By Lemma 4.12 this implies a global solution.

6 Blow up in finite time

We will use the following lemma to prove blow up in finite time.
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Lemma 6.1 ([11]). Suppose H(t), t ≥ 0 is a positive, twice differentiable function satisfying

H(2)H − (1 + ν)
(

H(1)
)2

≥ 0 for ν > 0.

If H(0) > 0 and H(1)(0) > 0, then H(t) → ∞ when t → t1 for some

t1 ≤ H(0)
[

νH(1)(0)
]−1

.

We rewrite the energy identity as

E(t) = ‖ut‖
2 + 2

∫

Rn
Φ(u)dx = E(0),

where

Φ(η) =
∫ η

0
F(σ)dσ, A = L(I − L)−1. (6.1)

We prove here the following result.

Theorem 6.2. Assume the Condition 5.1 is satisfied and ϕ, ψ ∈ Ys,2
∞ . Let u ∈ C(2)([0, T]; Ws) be

solution of (1.1)–(1.2) for any t ∈ [0, T). Suppose there are some positive numbers ν, t0 and b such

that

σF(σ) ≤ 2(1 + 2ν)Φ(σ) for all σ ∈ R (6.2)

and

E(0) = ‖ut‖
2 + 2

∫

Rn
Φ(u)dx < 0. (6.3)

Then the solution u of the problem (1.1)–(1.2) blows up in finite time.

Proof. Assume that there is a global solution. Let

H(t) = ‖u‖2 + b(t + t0)
2.

for some positive b and t0 that will be determined later. We have

H(1)(t) = 2(u, ut) + 2b(t + t0),

H(2)(t) = 2‖ut‖
2 + 2(u, utt) + 2b.

(6.4)

Hence, from (1.1)we get

(u, utt) = −(u, AF(u)) = −
∫

Rn
uAF(u)dx. (6.5)

From (6.2)–(6.3) and (6.5) we deduced

(u, utt) ≥ −2(1 + ν)
∫

Rn
Φ(u)dx = 2(1 + ν)

[

‖ut‖
2 − E(0)

]

. (6.6)

From (6.4) and (6.6), we obtain

H(2)(t) ≥ 2‖ut‖
2 + 2(1 + ν)

[

E(0)− ‖ut‖
2
]

+ 2b. (6.7)

On the other hand, in view of the Cauchy–Schwarz inequality, we have

(

H(1)(t)
)2

= [2(u, ut) + 2b(t + t0)]
2

≤ 4
[

‖u‖2‖ut‖
2 + b2(t + t0)

2
(

‖u‖2 + ‖ut‖
2
)]

+ 4b2(t + t0)
2. (6.8)
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Hence, combining (6.4), (6.7) and (6.8) we obtain

H(2)H − (1 + ν)
(

H(1)
)2

≥
[

2‖ut‖
2 + 4(1 + ν)‖ut‖

2 − 2(1 + 2ν)E(0) + 2b
][

‖u‖2 + b(t + t0)
2
]

− 4(1 + ν)
[

‖u‖2‖ut‖
2 + b2(t + t0)

2
(

‖u‖2 + ‖ut‖
2
)]

+ 4b2(t + t0)
2

= − 2(1 + 2ν)[b + E(0)]H(t).

Hence, if we choose b ≤ −E(0), this gives

H(2)H − (1 + ν)
(

H(1)
)2

≥ 0.

Moreover,

H(1)(0) = 2(ϕ, ψ) + 2b(t0) ≥ 0

for sufficiently large t0. According to Lemma 6.1, this implies that H(t), and thus ‖u(t)‖2

blows up in finite time contradicting the assumption that the global solution exists.

7 Applications

In this section we give some application of Theorem 4.5.

1. Let

L0 = L1 = L2 = A1 = ∑
|α|=2

aαDα,

where aα are real numbers.

Then the problem (1.1)–(1.2) is reduced to the Cauchy problem for the following Boussi-

nesq equation

utt + A1utt + A1u = A1 f (x, t, u), x ∈ R
2, t ∈ (0, T),

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),
(7.1)

Let

Xp = Lp

(

R
2
)

, 1 ≤ p ≤ ∞, Ys,p = Ls
p

(

R
2
)

.

Assumption 7.1. Assume that A2(ξ) 6= 0, A2(ξ) 6= −1 for all ξ = (ξ1, ξ2) ∈ R2. Let ϕ,

ψ ∈ Ys,p ∩ X1 and

M = ‖ϕ‖Ys,p + ‖ϕ‖X1
+ ‖ψ‖Ys,p + ‖ψ‖X1

.

It is not hard to see that Assumtion 7.1 implies Condition 3.1. Hence, from Theorem 4.5

we obtain:

Theorem 7.2. Suppose that the Assumption 7.1 holds. Let s > 2
(

2
q + 1

p

)

for p ∈ [1, ∞] and for

a q ∈ [1, 2]. Assume that the function u → f (x, t, u): R2 × [0, T] × B
s(1− 1

2p )
p

(

R2
)

→ Lp

(

R2
)

is measurable in (x, t) ∈ R2 × [0, T] for u ∈ B
s(1− 1

2p )
p

(

R2
)

. Moreover, f (x, t, u) is continuous in

u ∈ B
s(1− 1

2p )
p

(

R2
)

and

f (x, t, u) ∈ C(3)

(

B
s(1− 1

2p )
p

(

R
2
)

)
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uniformly with respect to (x, t) ∈ R2 × [0, T]. Then for ϕ, ψ ∈ Ys,p ∩ X1 problem (7.1) has a unique

local strong solution u ∈ C(2)
(

[0, T0); Y
s,p
∞

)

, where T0 is a maximal time interval that is appropriately

small relative to M. Moreover, if

sup
t∈[0,T0)

(

‖u‖Ys,p + ‖u‖X∞
+ ‖ut‖Ys,p + ‖ut‖X∞

)

< ∞

then T0 = ∞.

2. Let

L0 = L1 = L2 = A2 = ∑
|α|=4

aαDα,

where aα are real numbers, α = (α1, α2, α3), αk are natural numbers and

|α| =
3

∑
k=1

αk.

Then the problem (1.1)–(1.2) is reduced to the Cauchy problem for the following

Boussinesq equation

utt + A2utt + A2u = A2 f (x, t, u), x ∈ R
3, t ∈ (0, T), (7.2)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

where

ϕ, ψ ∈ Ls
p

(

R
3
)

, s >
3

p
, p ∈ [1, ∞].

Assumption 7.3. Assume that A2(ξ) 6= 0, A2(ξ) 6= −1 for all ξ = (ξ1, ξ2, ξ3) ∈ R3. Let ϕ,

ψ ∈ Ys,p ∩ X1 and

M = ‖ϕ‖Ys,p + ‖ϕ‖X1
+ ‖ψ‖Ys,p + ‖ψ‖X1

.

It is clear to see that if Assumption 7.1 holds, then Condition 3.1 is satisfied.

Let

Xp = Lp

(

R
3
)

, 1 ≤ p ≤ ∞, Ys,p = Ls
p

(

R
3
)

.

Hence, from Theorem 4.5 we obtain:

Theorem 7.4. Suppose that the Assumption 7.3 holds. Let s > 3
(

2
q + 1

p

)

for p ∈ [1, ∞] and for

a q ∈ [1, 2]. Suppose that the function u → f (x, t, u): R3 × [0, T] × B
s(1− 1

2p )
p

(

R3
)

→ Lp

(

R3
)

is measurable in (x, t) ∈ R3 × [0, T] for u ∈ B
s
(

1− 1
2p

)

p

(

R3
)

. Moreover, f (x, t, u) is continuous in

u ∈ B
s
(

1− 1
2p

)

p

(

R3
)

and

f (x, t, u) ∈ C(3)

(

B
s(1− 1

2p )
p

(

R
3
)

)

uniformly with respect to (x, t) ∈ R3 × [0, T]. Then problem (7.2) has a unique local strong solution

u ∈ C(2)
(

[0, T0); Y
s,p
∞

)

,

where T0 is a maximal time interval that is appropriately small relative to M. Moreover, if

sup
t∈[0 , T0)

(

‖u‖Ys,p + ‖u‖X∞
+ ‖ut‖Ys,p + ‖ut‖X∞

)

< ∞

then T0 = ∞.
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3. Let

L0 = ∑
|α|=4

a0αDα, L1 = ∑
|α|=2

a1αDα, L2 = ∑
|α|=4

a2αDα,

where aαi are real numbers, α = (α1, α2, α3), αk are natural numbers and

|α| =
3

∑
k=1

αk.

Then the problem (1.1)–(1.2) is reduced to Cauchy problem for the following Boussinesq

equation

utt + L0utt + L1u = L2 f (x, t, u), x ∈ R
3, t ∈ (0, T), (7.3)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

where

ϕ, ψ ∈ Ls,p
(

R
3
)

, p ∈ [1, ∞].

Hence, from Theorem 4.5 we obtain:

Theorem 7.5. Assume that the Condition 3.1 is satisfied. Let ϕ, ψ ∈ Ys,p ∩ X1 and

M = ‖ϕ‖Ys,p + ‖ϕ‖X1
+ ‖ψ‖Ys,p + ‖ψ‖X1

for s > 3
(

2
q + 1

p

)

+ ν, p ∈ [1, ∞] and for a q ∈ [1, 2]. Suppose that the function u → f (x, t, u):

R3 × [0, T]× B
s(1− 1

2p )
p

(

R3
)

→ Lp

(

R3
)

is measurable in (x, t) ∈ R3 × [0, T] for u ∈ B
s(1− 1

2p )
p

(

R3
)

.

Moreover, f (x, t, u) is continuous in u ∈ B
s(1− 1

2p )
p

(

R3
)

and

f (x, t, u) ∈ C(3)

(

B
s(1− 1

2p )
p

(

R
3
)

)

uniformly with respect to (x, t) ∈ R3 × [0, T]. Then problem (7.3) has a unique strong solution

u ∈ C(2)
(

[0, T0); Y
s,p
∞

)

,

where T0 is a maximal time interval that is appropriately small relative to M. Moreover, if

sup
t∈[0 , T0)

(

‖u‖Ys,p + ‖u‖X∞
+ ‖ut‖Ys,p + ‖ut‖X∞

)

< ∞

then T0 = ∞.
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Abstract. In this article, we devote ourselves to investigate the following logarithmic
Schrödinger–Poisson systems with singular nonlinearity











−∆u + φu = |u|p−2u log |u|+ λ
uγ , in Ω,

−∆φ = u2, in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ R3 is a smooth bounded domain with boundary ∂Ω, 0 < γ < 1, p ∈
(4, 6) and λ > 0 is a real parameter. By using the critical point theory for nonsmooth
functional and variational method, the existence and multiplicity of positive solutions
are established.

Keywords: logarithmic Schrödinger–Poisson system, multiplicity, singularity, positive
solutions.
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1 Introduction and main result

In this paper, we consider the following logarithmic Schrödinger–Poisson system with singu-

lar term














−∆u + φu = |u|p−2u log |u|+ λ
uγ , in Ω,

−∆φ = u2, in Ω,

u = φ = 0, on ∂Ω,

(1.1)

where Ω ⊂ R3 is a smooth bounded domain with boundary ∂Ω, 0 < γ < 1, p ∈ (4, 6) and

λ > 0 is a real parameter.

BCorresponding author. Email:11394861@qq.com
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Due to the wide applications in physics and other applied sciences, partial differential

equations with logarithmic nonlinearity have attracted much attention in recent years, the

logarithmic Schrödinger equation given by

− i
∂Ψ

∂t
= −∆Ψ + (W(x) + W)Ψ − |Ψ|p−1 log |Ψ|, Ψ : [0, ∞)× R

N → C, N ≥ 1, (1.2)

has also received a special attention. This class of equation has some important physics appli-

cations, such as quantum mechanics, quantum optics, nuclear physics, transport and diffusion

phenomena, open quantum system, effective quantum gravity and Bose–Einstein condensa-

tion, for more details see [28] and the references therein. For the elliptic equations with

logarithmic nonlinearity, we can refer to [6,10–12,17,19,23,25] and the references therein. The

authors in [10] considered the following logarithmic elliptic equations of the type

{

−∆u + u = u log u2, in RN,

u ∈ H1(RN).

The authors obtained solutions for this equation by applying the non-smooth critical point

theory. In addition, Chao et al. in [11] considered the following Schrödinger equation with

logarithmic nonlinearity

−∆u + V(x)u = u log u2, x ∈ R
N ,

where the potential V is continuous and satisfies the condition lim|x|→∞ V(x) = V∞. When

the potential is coercive, the author obtained infinitely many solutions by adapting some

arguments of the Fountain theorem, and in the case of bounded potential obtained a ground

state solution.

Returning to the singular Schrödinger–Poisson over bounded or unbounded domains,

many papers have studied the following problem

{

−∆u + u + qφ f (u) = g(x, u), in R3,

−∆φ = 2F(u), in R3.
(1.3)

Under various assumptions of nonlocal term f and nonlinear term g, the existence, uniqueness

and multiplicity of solutions to system (1.3) has been studied by using the modern variational

methods, see [1, 8, 13–15, 20–22, 24, 26, 27].

There are also many references which investigated Schrödinger–Poisson system in bounded

domain, see [2, 3, 9]. It is worth mentioning that the author in [27] considered the following

singular Schrödinger–Poisson system























−∆u + ηφu = µu−γ, in Ω,

−∆φ = u2, in Ω,

u > 0, in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ R3 is a smooth bounded domain with boundary ∂Ω, η = ±1, γ ∈ (0, 1) is a

constant, µ > 0 is a parameter and he proved the existence and uniqueness result for η = 1

and multiplicity of solutions for η = −1 and µ > 0 small enough by using Nehari manifold.
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In [16] Liu et al. has considered the following singular p-Laplacian equation in RN

{

∆pu + f (x)u−α + λg(x)uβ = 0,

u ≥ 0, x ∈ RN ,

where ∆pu =div(|∇u|p−2∇u) is the p-Laplacian operator, N ≥ 3, 1 < p < N, λ > 0, 0 <

α < 1, max(p, 2) < β + 1 < p∗ = Np
N−p . The existence and multiplicity of positive solutions

for this equation are considered under some suitable condition by the critical point theory for

non-smooth functional and supper-and sub-solutions method.

On the one hand, we find that most of Schrödinger–Poisson system contain only power

terms and not the logarithmic terms |t|p−2t log |t|. This arouses the research interest of the

Schrödinger–Poisson systems with logarithmic nonlinear term. On the other hand, it is noted

that the logarithmic nonlinear term does not satisfy the monotonicity condition and (AR)

condition , which makes system (1.1) more complex and challenging than the case without the

logarithmic nonlinear term. Remarkably, the singular term leads to the non-differentiability

of the energy functional corresponding to the system (1.1) on H1
0(Ω), which make the study of

system (1.1) particularly interesting. To our knowledge, the logarithmic Schrödinger–Poisson

system with singular term has not been studied. Motivated by the above references, in this

paper, we consider logarithmic Schrödinger–Poisson system (1.1) with singular term.

Now our main result is as follows:

Theorem 1.1. Assume that 0 < γ < 1, p ∈ (4, 6), then there exists Λ0 > 0 such that for any

λ ∈ (0, Λ0), system (1.1) has at least two pair of different positive solutions.

2 Preliminaries

Throughout this paper, we denote the norm of Lp(Ω) by | · |p = (
∫

Ω
|u|pdx)

1
p , where p ∈

[1,+∞). Let H1
0(Ω) be the usual Sobolev space with the inner product and the norm (u, v) =

∫

Ω
(∇u,∇v)dx, ‖u‖2 =

∫

Ω
|∇u|2dx. We denote by Br (respectively, ∂Br) the closed ball (respec-

tively, the sphere) of center zero and radius r. u+
n (x)=max{un(x), 0}, u−

n (x)=max{−un(x), 0}.

C, C1, C2, . . . denote various positive constants, which may vary from line to line. Let S be the

best Sobolev constant, namely

S := inf
u∈H1

0 (Ω)\{0}

∫

Ω
|∇u|2dx

( ∫

Ω
|u|6dx

)1/3
.

With the help of the Lax–Milgram theorem, for any given u ∈ H1
0(Ω), the Dirichlet bound-

ary problem −∆φ = u2 in Ω has a unique solution φu ∈ H1
0 . Substituting φu to the first

equation of system (1.1), system (1.1) is transformed into the following equation

{

−∆u + φuu = |u|p−2u log |u|+ λ
uγ , in Ω,

u = 0, on ∂Ω.
(2.1)

The energy functional corresponding to the equation (2.1) is the following

J(u) =
1

2

∫

Ω

|∇u|2dx +
1

4

∫

Ω

φuu2dx +
1

p2

∫

Ω

|u|pdx −
1

p

∫

Ω

|u|p log |u|dx −
λ

1 − γ

∫

Ω

|u|1−γdx.
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From (1.3) and (1.4) in [25], we have

lim
t→0

tp−1 log |t|

t
= 0 and lim

t→∞

tp−1 log |t|

tq−1
= 0, (2.2)

where q ∈ (p, 6), and for any ǫ > 0, there exists Cǫ > 0 such that

|t|p−1 log |t| ≤ ǫ|t|+ Cǫ|t|
q−1, ∀t ∈ R\{0}. (2.3)

If a function u ∈ H1
0(Ω) satisfies

∫

Ω

(∇u,∇ϕ)dx +
∫

Ω

φuuϕdx −
∫

Ω

|u|p−1ϕ log |u|dx − λ
∫

Ω

ϕ

uγ
dx = 0

for ϕ ∈ H1
0(Ω), then we say u is a weak solution of (2.1) and (u, φu) is a pair solution of system

(1.1).

Before proving Theorem 1.1, we give the following important lemma.

Lemma 2.1 (See [3, 7, 18, 27]). For every u ∈ H1
0(Ω), there exists a unique solution φu ∈ H1

0(Ω) of

{

−∆φ = u2, in Ω,

φ = 0, on ∂Ω,

and

(1) ‖φu‖2 =
∫

Ω
φuu2dx;

(2) φu ≥ 0. Moreover, φu > 0 when u 6= 0;

(3) For t 6= 0, φtu = t2φu;

(4) Assume that un ⇀ u in H1
0(Ω), then φun → φu in H1

0(Ω) and

∫

Ω

φun unvdx →
∫

Ω

φuuvdx, ∀ v ∈ H1
0(Ω);

(5)
∫

Ω
φuu2dx =

∫

Ω
|∇φu|2dx ≤ C‖u‖4;

(6) Set F (u) =
∫

Ω
φuu2dx, then F (u) : H1

0(Ω) → H1
0(Ω) is C1 and

〈F ′(u), v〉 = 4
∫

Ω

φuuvdx, ∀v ∈ H1
0(Ω);

(7) For u, v ∈ H1
0(Ω),

∫

Ω
(φuu − φvv)(u − v)dx ≥ 1

2‖φu − φv‖2.

Lemma 2.2 (See [4]). For all p, a, s > 0, we have the following results:

sp log(s) ≤
1

ea
sp+a, (2.4)

and by simple calculation, we have

sp log(s) ≥ −
1

ep
.
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Proof. We can repeat the proof of [4, Lemma 2], so we omit the detailed proof of (2.4). Next,

we will prove that another inequality holds.

Let h(t) = tp log t for all t > 0. Clearly, one can obtain that t∗ = e
− 1

p is the unique

minimum point of function h. Thus, h(t) ≥ h(t∗) = − 1
ep for all t > 0.

In the following, we first recall some concepts and known results of the critical points

theory for continuous functional. Let (X, d) be a complete metric space with metric d and

f : X → R be a continuous functional in X. Denote by |D f |(u) the supremum of δ in [0, ∞)

such that there exist r > 0, and a continuous map σ : U × [0, r] → X satisfying

{

f (σ(v, t)) ≤ f (v)− δt, (v, t) ∈ U × [0, r],

d(σ(v, t), v) ≤ t, (v, t) ∈ U × [0, r].
(2.5)

The extended real number |D f |(u) is called the weak slope of f at u, we say that u ∈ X is

a critical point of f if |D f |(u) = 0, we say that c ∈ R is a critical value of f if there exists a

critical point u ∈ X of f with f (u) = c.

Because of looking for positive solutions of system (1.1), we consider the functional J

defined on the closed positive cone P of H1
0(Ω), that is,

P = {u | u ∈ H1
0(Ω), u(x) ≥ 0, a.e. x ∈ Ω}.

Lemma 2.3. Assume |DJ|(u) < +∞, then for any v ∈ P there holds

λ
∫

Ω

v − u

uγ
dx ≤

∫

Ω

∇u∇(v − u)dx +
∫

Ω

φuu(v − u)dx −
∫

Ω

|u|p−1(v − u) log |u|dx

+ |DJ|(u)‖v − u‖.
(2.6)

Proof. We take a similar approach to [16, Lemma 3.1]. Let |DJ|(u) < c, δ <
1
2‖v − u‖, v ∈ P

and v 6= u. Define the mapping σ : U × [0, δ] → P by

σ(z, t) = z + t
v − z

‖v − z‖
,

where U is a neighborhood of u. Then ‖σ(z, t)− z‖ = t, by (2.5), there exists a pair (z, t) ∈ U ×

[0, δ] such thatJ(σ(z, t)) > J(z)− ct. Consequently, we assume that there exists a sequences

{un} ⊂ P and {tn} ⊂ [0, ∞), such that un → u, tn → 0+, and

J(un + tn
v − un

‖v − un‖
) ≥ J(un)− ctn,

that is,

J(un + sn(v − un)) ≥ J(un)− csn‖v − un‖, (2.7)

where sn = tn

‖v−un‖
→ 0+ as n → ∞. Let us divide (2.7) by sn and rewrite it as

λ

1 − γ

∫

Ω

[un + sn(v − un)]1−γ − u
1−γ
n

sn
dx

≤
1

2

∫

Ω

|∇(un + sn(v − un))|2 − |∇un|2

sn
dx+

1

4

∫

Ω

φun+sn(v−un)(un + sn(v − un))2 − φun u2
n

sn
dx

+
∫

Ω

H(un + sn(v − un))− H(un)

sn
+ c‖v − un‖,
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where

H(u) =
1

p2

∫

Ω

|u|pdx −
1

p

∫

Ω

|u|p log |u|dx.

Letting n → ∞, we claim that we get

lim
n→∞

∫

Ω

H(un + sn(v − un))− H(un)

sn
dx

= lim
n→∞

∫

Ω

[un + sn(v − un)]p − u
p
n

p2sn
dx

− lim
n→∞

∫

Ω

[un + sn(v − un)]p log |un + sn(v − un)| − u
p
n log |un|

psn
dx

=
1

p

∫

Ω

|u|p−1(v − u)dx −
∫

Ω

|u|p−1(v − u) log |u|dx −
1

p

∫

Ω

|u|p−1(v − u)dx

= −
∫

Ω

|u|p−1(v − u) log |u|dx.

(2.8)

Indeed, we have only to justify the limit
∫

Ω

|un|
p log |un|dx →

∫

Ω

|u|p log |u|dx. (2.9)

Since un(x) → u(x) a.e. in Ω and u → up log(u) is continuous, then we get

u
p
n log un → up log u a.e. in Ω.

Furthermore,

up log u ≤
1

ea
up+a,

where a is a positive number small enough to ensure the compact embedding H1
0(Ω) →֒

Lp+a(Ω). By Lemma 2.2, for n large enough, we have

−
1

ep
≤ u

p
n log un ≤

1

ea
up+a + 1 ∈ L1(Ω).

By using dominating convergence theorem, we justify (2.9). Thus, (2.8) holds.

Notice that

∫

Ω

[un + sn (v − un)]
1−γ − u

1−γ
n

sn (1 − γ)
dx =

∫

Ω

[un + sn(v − un)]1−γ − [(1 − sn)un]1−γ

sn(1 − γ)
dx

+
∫

Ω

[(1 − sn) un]
1−γ − u

1−γ
n

sn (1 − γ)
dx

=
∫

Ω

[un + sn(v − un)]1−γ − [(1 − sn)un]1−γ

sn(1 − γ)
dx

+
(1 − sn)

1−γ − 1

sn (1 − γ)

∫

Ω

u
1−γ
n dx

= J1,n + J2,n.

Clearly, J1,n =
∫

Ω

ξ−r
n snv

sn
dx =

∫

Ω

v
ξ

γ
n

dx, where ξn ∈ (un − unsn, un + sn(v − un)), which implies

that ξn → u(un → u) as sn → 0+. Since J1,n ≥ 0 for all n, applying Fatou’s Lemma to J1,n, we

obtain

lim inf
n→∞

J1,n ≥
∫

Ω

v

uγ
dx,
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for any v ∈ P. For J2,n, by the dominated convergence theorem, we get

lim
n→∞

J2,n = −
∫

Ω

u1−γdx.

From the above information, for every v ∈ P, it follows

λ
∫

Ω

v − u

uγ
dx ≤

∫

Ω

∇u∇(v − u)dx +
∫

Ω

φuu(v − u)dx −
∫

Ω

|u|p−1(v − u) log |u|dx

+ c‖v − u‖.

Since |DJ|(u) < c is arbitrary, this leads us to the proof of Lemma 2.3.

Lemma 2.4. J satisfies the (PS) condition.

Proof. Let {un} ⊂ P be (PS) sequence of J, that is

|DJ|(un) → 0, J(un) → c as n → ∞.

By Lemma 2.3, for any v ∈ P, we have

λ
∫

Ω

v − un

u
γ
n

dx ≤
∫

Ω

∇un∇(v − un)dx +
∫

Ω

φun un(v − un)dx

−
∫

Ω

u
p−1
n (v − un) log |un|dx + o(1)‖v − un‖,

(2.10)

taking v = 2un ∈ P in (2.10), we get

λ
∫

Ω

u
1−γ
n dx ≤

∫

Ω

|∇un|
2dx +

∫

Ω

φun u2
ndx −

∫

Ω

u
p
n log |un|dx + o(1)‖un‖. (2.11)

Since J(un) → c,

1

2

∫

Ω

|∇un|
2dx +

1

4

∫

Ω

φun u2
ndx +

1

p2

∫

Ω

|un|
pdx −

1

p

∫

Ω

|un|
p log |un|dx

−
λ

1 − γ

∫

Ω

|un|
1−γdx = c + o(1). (2.12)

It follows from (2.11) and (2.12) that

p − 2

2p

∫

Ω

|∇un|
2 +

p − 4

4p

∫

Ω

φun u2
ndx +

1

p2

∫

Ω

|un|
pdx

≤ λ

(

1

1 − γ
−

1

p

)

∫

Ω

u
1−γ
n dx + c + o(1) + o(1)‖un‖

≤ Cλ‖un‖
1−γ + C + o(1)‖un‖.

Which implies that {un} is bounded in H1
0(Ω). Thus, there exists a subsequence, still denoted

by itself, and a function u ∈ H1
0(Ω), such that un ⇀ u in H1

0(Ω), un(x) → u(x) a.e. in Ω as

n → ∞. Choosing v = um as the test function in (2.10), we have

λ
∫

Ω

um − un

u
γ
n

dx ≤
∫

Ω

∇un∇(um − un)dx +
∫

Ω

φun un(um − un)dx

−
∫

Ω

u
p−1
n (um − un) log |un|dx + o(1)‖um − un‖.
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By changing the role of um and un, we have a similar inequality, by adding the two inequalities,

there holds

‖un − um‖
2 ≤ λ

∫

Ω

(un − um)

(

1

u
γ
n

−
1

u
γ
m

)

dx +
∫

Ω

(φum um − φun un) (un − um)dx

+
∫

Ω

(

u
p−1
n log |un| − u

p−1
m log |um|

)

(un − um)dx + o(1)‖um − un‖

≤
∫

Ω

(φum um − φun un) (un − um)dx

+
∫

Ω

(

u
p−1
n log |un| − u

p−1
m log |um|

)

(un − um)dx + o(1)‖um − un‖

≤ −
1

2
‖φum − φun‖

2 +
∫

Ω

u
p
n(un − um)dx +

∫

Ω

u
p
m(un − um)dx + o(1)‖um − un‖.

Note that

‖φum − φun‖ → 0,
∫

Ω

u
p
n(un − um)dx → 0,

∫

Ω

u
p
m(un − um)dx as n → ∞.

We have limn→∞ ‖un − um‖ = 0. Therefore, un → u in H1
0(Ω) as n → ∞. The proof is

complete.

Lemma 2.5. Assume that |DJ|(u) = 0 , then u is a weak solution of problem (2.1). Namely u−γ ϕ ∈

L1(Ω) for all ϕ ∈ H1
0(Ω), it holds that

∫

Ω

∇u∇ϕdx +
∫

Ω

φuuϕdx =
∫

Ω

|u|p−1 ϕ log |u|dx + λ
∫

Ω

ϕ

uγ
dx. (2.13)

Proof. By Lemma 2.3, we have

λ
∫

Ω

v − u

uγ
dx ≤

∫

Ω

∇u∇(v − u)dx +
∫

Ω

φuu(v − u)dx −
∫

Ω

|u|p−1(v − u) log |u|dx,

for every v ∈ P. Letting s ∈ R, ϕ ∈ H1
0(Ω), taking (u + sϕ)+ ∈ P as a test function in (2.6),

one has

0 ≤
∫

Ω

∇u∇((u + sϕ)+ − u)dx +
∫

Ω

φuu
(

(u + sϕ)+ − u
)

dx

−
∫

Ω

|u|p−1
(

(u + sϕ)+ − u
)

log |u|dx − λ
∫

Ω

(u + sϕ)+ − u

uγ
dx

= s

[

∫

Ω

∇u∇ϕdx +
∫

Ω

φuuϕdx −
∫

Ω

|u|p−1ϕ log |u|dx − λ
∫

Ω

ϕ

uγ
dx

]

−
∫

u+sϕ<0
∇u∇(u + sϕ)dx −

∫

u+sϕ<0
φuu(u + sϕ)dx +

∫

u+sϕ<0
|u|p−1(u + sϕ) log |u|dx

+ λ
∫

u+sϕ<0

u + sϕ

uγ
dx

≤ s

[

∫

Ω

∇u∇ϕdx +
∫

Ω

φuuϕdx −
∫

Ω

|u|p−1ϕ log |u|dx − λ
∫

Ω

ϕ

uγ
dx

]

− s
∫

u+sϕ<0
[∇u∇ϕ + φuuϕ]dx +

∫

u+sϕ<0
|u|p−1(u + sϕ) log |u|dx.

Since ∇u(x) = 0 for a.e. x ∈ Ω with u(x) = 0 and meas{x ∈ Ω | u(x) + sϕ(x) < 0,

u(x) > 0} → 0 as s → 0, we have
∫

u+sϕ<0
[∇u∇ϕ + φuuϕ]dx =

∫

u+sϕ<0,
u>0

[∇u∇ϕ + φuuϕ]dx → 0,
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and
∫

u+sϕ<0
|u|p−1(u + sϕ) log |u|dx =

∫

u+sϕ<0,
u>0

|u|p−1(u + sϕ) log |u|dx → 0 as s → 0.

Therefore

0 ≤ s

(

∫

Ω

∇u∇ϕdx +
∫

Ω

φuuϕdx −
∫

Ω

|u|p−1ϕ log |u|dx − λ
∫

Ω

ϕ

uγ
dx

)

+ o(s),

as s → 0. we obtain that
∫

Ω

∇u∇ϕdx +
∫

Ω

φuuϕdx −
∫

Ω

|u|p−1 ϕ log |u|dx − λ
∫

Ω

ϕ

uγ
dx ≥ 0.

By the arbitrariness of ϕ, this inequality also holds for −ϕ,

∫

Ω

∇u∇ϕdx +
∫

Ω

φuuϕdx −
∫

Ω

|u|p−1 ϕ log |u|dx − λ
∫

Ω

ϕ

uγ
dx = 0.

Hence, we can deduce that (2.13) holds. The proof of Lemma 2.5 is complete.

3 Proof of Theorem 1.1

In this section, we firstly prove that the problem (2.1) has a negative energy solution.

Lemma 3.1. Given 0 < γ < 1, there exist constants r, ρ, Λ0 > 0 such that the functional J satisfies

the following conditions for 0 < λ < Λ0:

(i) J(u)|u∈Sρ
≥ r, infu∈Bρ J(u) < 0;

(ii) There exists e ∈ H1
0(Ω) with ‖e‖ > ρ such that J(e) < 0.

Proof. (i) By (2.12) in [25], we have

∫

Ω

|u|p log |u|dx ≤
1

2
‖u‖2 + C1‖u‖q. (3.1)

Therefore, one has

J(u) =
1

2
‖u‖2dx +

1

4

∫

Ω

φuu2dx +
1

p2

∫

Ω

|u|pdx −
1

p

∫

Ω

|u|p log |u|dx −
λ

1 − γ

∫

Ω

|u|1−γdx

≥
p − 1

2p
‖u‖2 +

1

4

∫

Ω

φuu2dx − C1‖u‖q −
λ

1 − γ

∫

Ω

|u|1−γdx

≥
p − 1

2p
‖u‖2 − C1‖u‖q − C2λ ‖u‖1−γ .

Where q ∈ (p, 6). Which implies that there exist constants r, ρ, Λ0 > 0, such that J(u)|u∈Sρ
≥ r

for every λ ∈ (0, Λ0). Moreover, for u ∈ H1
0(Ω) \ {0}, it holds that

lim
t→0+

J(tu)

t1−γ
= −

λ

1 − γ

∫

Ω

|u|1−γdx < 0.

So we obtain that J(tu) < 0 for all u 6= 0 and t small enough. Therefore, for ‖u‖ small enough,

one has

m1 = infu∈Bρ J(u) < 0. (3.2)
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(ii) For every u+ ∈ H1
0(Ω), u+ 6= 0 and t > 0, we have

J(tu) =
t2

2
‖u‖2 +

t4

4

∫

Ω

φuu2dx +
tp

p2

∫

Ω

|u|pdx

−
tp

p

∫

Ω

up log |tu|dx −
λt1−γ

1 − γ

∫

Ω

|u|1−γdx

→ − ∞

as t → +∞. Therefore we can certainly find e ∈ H1
0(Ω) such that ‖e‖ > ρ and J(e) < 0. The

proof is complete.

Theorem 3.2. Suppose 0 < λ < Λ0, then system (1.1) has a positive function pair solution (u∗, φu∗) ∈

H1
0(Ω)× H1

0(Ω), satisfying J(u∗) < 0.

Proof. First, we claim that there exists u∗ ∈ Bρ, such that J(u∗) = m1 < 0.

By the definition of m1, we know that there exists a minimizing sequence {un} ⊂ Bρ ⊂ P

such that limn→∞ J(un) = m1 < 0. Since J(|un|) = J(un), we may assume that un(x) > 0 for

almost every x in Ω. Clearly, this minimizing sequence is of course bounded in Bρ, up to a

subsequence, there exists u∗ > 0 such that















un ⇀ u∗, weakly in H1
0(Ω),

un → u∗, strongly in Lq(Ω), 1 ≤ q < 2∗,

un(x) → u∗(x), a.e. in Ω,

(3.3)

as n → ∞. Set ωn = un − u∗, by the Brézis–Lieb Lemma, one has

‖un‖
2 = ‖ωn‖

2 + ‖u∗‖
2 + o(1). (3.4)

Hence, by Lemma 2.4, we have that

m1 = lim
n→∞

J(un) = J(u∗) +
1

2
lim
n→∞

‖ωn‖
2 ≥ J(u∗),

from u∗ ∈ Bρ and by definition of m1 equality holds. Hence, we obtain J(u∗) = m1 < 0 and

u∗ 6≡ 0. From the above arguments we know that u∗ is a local minimizer of J.

Now, we prove that u∗ is a critical point of J. Note that u∗ ≥ 0 and u∗ 6≡ 0. Then for any

ψ ∈ P ⊂ H1
0(Ω), let t > 0 such that u∗ + tψ ∈ H1

0(Ω) and one has

0 ≤ J(u∗ + tψ)− J(u∗)

=
1

2
‖u∗ + tψ‖2 +

1

4

∫

Ω

φu∗+tψ(u∗ + tψ)2dx +
1

p2

∫

Ω

|u∗ + tψ|pdx

−
1

p

∫

Ω

|u∗ + tψ|p log |u∗ + tψ|dx −
λ

1 − γ

∫

Ω

|u∗ + tψ|1−γdx

−
1

2
‖u∗|

2 −
1

4

∫

Ω

φu∗u2
∗dx −

1

p2

∫

Ω

|u∗|
pdx

+
1

p

∫

Ω

|u∗|
p log |u∗|dx +

λ

1 − γ

∫

Ω

|u∗|
1−γdx.

(3.5)
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Actually, from (3.5), we also get

λ

1 − γ

∫

Ω

[

(u∗ + tψ)1−γ − (u∗)
1−γ

]

dx

≤
1

2

(

‖u∗ + tψ‖2 − ‖u∗‖
2
)

dx +
1

4

∫

Ω

[

φu∗+tψ(u∗ + tψ)2 − φu∗u∗
2
]

dx

+
1

p2

∫

Ω

[(u∗ + tψ)p − u∗
p] dx −

1

p

∫

Ω

[(u∗ + tψ)p log |u∗ + tψ| − u∗
p log |u∗|] dx.

Dividing by t > 0 and passing to the limit as t → 0+, it gives

λ

1 − γ
lim inf

t→0+

∫

Ω

(u∗ + tψ)1−γ − (u∗)1−γ

t
dx ≤

∫

Ω

∇u∗∇ψdx +
∫

Ω

φu∗u∗ψdx

−
∫

Ω

|u∗|
p−1ψ log |u∗|dx.

(3.6)

Notice that

λ

1 − γ

∫

Ω

(u∗ + tψ)1−γ − (u∗)1−γ

t
dx = λ

∫

Ω

(u∗ + ξtψ)−γψdx.

Where ξ → 0+ and (u∗ + ξtψ)−γψ → (u∗)−γψ a.e. x ∈ Ω as t → 0+, since (u∗ + ξtψ)−γψ ≥ 0.

Thus by using Fatou’s Lemma, we have

λ
∫

Ω

(u∗)
−γψdx ≤

λ

1 − γ
lim inf

t→0+

∫

Ω

(u∗ + tψ)1−γ − (u∗)1−γ

t
dx.

Therefore, we deduce from (3.6) and the above estimate that

∫

Ω

(∇u∗,∇ψ)dx+
∫

Ω

φu∗u∗ψdx−
∫

Ω

|u∗|
p−1ψ log |u∗|dx− λ

∫

Ω

(u∗)
−γψdx ≥ 0, ψ ≥ 0. (3.7)

Since J(u∗) < 0, this together with Lemma 3.1, imply that u∗ 6∈ Sρ, therefore we obtain

‖u∗‖ < ρ. For u∗ there is δ1 ∈ (0, 1) such that (1 + t)u∗ ∈ Bρ for |t| ≤ δ1. Define k : [−δ1, δ1]

by k(t) = J((1 + t)u∗). Clearly, k(t) achieves its minimum at t = 0, namely

k′(t)|t=0 = ‖u∗‖
2 +

∫

Ω

φu∗(u∗)
2dx −

∫

Ω

|u∗|
p log |u∗|dx − λ

∫

Ω

(u∗)
1−γdx = 0. (3.8)

Suppose for any υ ∈ H1
0(Ω), and ε > 0. Define Ψ ∈ P by

Ψ = (u∗ + ευ)+.
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By (3.7) and (3.8), we have

0 ≤
∫

Ω

[

(∇u∗,∇Ψ) + φu∗u∗Ψ − |u∗|
p−1

Ψ log |u∗| − λ(u∗)
−γ

Ψ

]

dx

=
∫

{u∗+ευ>0}
(∇u∗,∇(u∗ + ευ))dx

+
∫

{u∗+ευ>0}

[

φu∗u∗(u∗ + ευ)− |u∗|
p−1(u∗ + ευ) log |u∗| − λ(u∗)

−γ(u∗ + ευ)
]

dx

=

(

∫

Ω

−
∫

{u∗+ευ≤0}

)

[(∇u∗,∇(u∗ + ευ))

+ φu∗u∗(u∗ + ευ)− |u∗|
p−1(u∗ + ευ) log |u∗| − λ(u∗)

−γ(u∗ + ευ)]dx

≤ ‖u∗‖
2 +

∫

Ω

φu∗u2
∗dx −

∫

Ω

|u∗|
p log |u∗|dx − λ

∫

Ω

(u∗)
1−γdx

+ ε
∫

Ω

[

(∇u∗,∇υ) + φu∗u∗υ − |u∗|
p−1υ log |u∗| − λ(u∗)

−γυ
]

dx

−
∫

{u∗+ευ≤0}
[(∇u∗,∇(u∗ + ευ)) + φu∗u∗(u∗ + ευ)] dx

+
∫

{u∗+ευ≤0}

[

|u∗|
p−1(u∗ + ευ) log |u∗|+ λ(u∗)

−γ(u∗ + ευ)
]

dx

≤ ε
∫

Ω

[

(∇u∗,∇υ) + φu∗u∗υ − |u∗|
p−1υ log |u∗| − λ(u∗)

−γυ
]

dx

− ε
∫

{u∗+ευ≤0}
(∇u∗∇υ + φu∗u∗υ)dx.

(3.9)

Since the measure of the domain of integration {u∗ + ευ ≤ 0} → 0 as ε → 0, it follows that

lim
ε→0

∫

{u∗+ευ≤0}
(∇u∗∇υ + φu∗u∗υ)dx = 0.

Therefore, dividing by ε and setting ε → 0 in (3.9), one has

∫

Ω

(∇u∗,∇υ)dx +
∫

Ω

φu∗u∗υdx −
∫

Ω

|u∗|
p−1υ log |u∗|dx − λ

∫

Ω

(u∗)
−γυdx ≥ 0. (3.10)

By the arbitrariness of υ, the inequality also holds for −υ,

∫

Ω

(∇u∗,∇υ)dx +
∫

Ω

φu∗u∗υdx −
∫

Ω

|u∗|
p−1υ log |u∗|dx − λ

∫

Ω

(u∗)
−γυdx = 0. (3.11)

Since u∗ 6≡ 0. From (3.10), there holds

−∆u∗ + φu∗u∗ ≥ 0.

Note that φu∗ > 0, then, by the strong maximum principle, it suggests that u∗ > 0 in Ω.

From the above arguments, we obtain that (u∗, φu∗) is a positive solution of system (1.1) with

J(u∗) = m1 < 0. This proof is complete.

Now, we only need prove that system (1.1) has another positive solution.

Theorem 3.3. Suppose 0 < λ < Λ0, then system (1.1) has a positive function pair solution (v∗, φv∗) ∈

H1
0(Ω)× H1

0(Ω), such that J(v∗) > 0.
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Proof. By Lemma 3.1, J satisfies the geometric structure of mountain pass Lemma. Applying

the Mountain pass Lemma [5] and Lemma 2.4, there exists a sequence {vn} such that

|DJ|(vn) → 0, J(vn) → c as n → ∞.

According to Lemma 2.4, we know that {vn} ⊂ H1
0(Ω) has a convergent subsequence, still

denoted by {vn}, we may assume that vn → v∗ in H1
0(Ω), and

J(v∗) = lim
n→∞

J(vn) = c, |DJ|(vn) → 0.

Similar to Theorem 3.2, v∗ satisfies equation (2.1) with J(v∗) = c > 0. Thus (v∗, φv∗) is a

positive solution of system (1.1). Thereby, we obtain that the function pairs (u∗, φu∗) and

(v∗, φv∗) are different positive solutions. This completes the proof of Theorem 1.1.
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a Lipschitz boundary ∂Ω. In this paper we study the

following double phase Dirichlet problem with gradient dependent reaction (convection)

{
−∆

a
pu(z)− ∆qu(z) = f (z, u(z)) + E(z)|Du(z)|q−1 in Ω,

u|∂Ω = 0, u > 0, 1 < q < p.
(1.1)

Here ∆
a
p denotes the weighted p-Laplace differential operator defined by

∆
a
pu = div(a(z)|Du|p−2Du).

Problem (1.1) has two interesting features. The first is that in the weighted operator, the

weight a ∈ L∞(Ω) is not bounded away from zero. This means that the integrand

θ(z, x) = a(z)xp + xq ∀z ∈ Ω, ∀x ≥ 0,

which is associated with the energy functional of the differential operator exhibits unbalanced

growth, that is,

xq ≤ θ(z, x) ≤ c1[x
p + xq] for all z ∈ Ω, all x ≥ 0, some c1 > 0.

BCorresponding author. Email: zhhliu@hotmail.com
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Such functionals were first examined by Marcellini [11] and Zhikov [19] in the context of

problems of the calculus of variations and of nonlinear elasticity theory. More recently Mar-

cellini and co-workers and Mingione and co-workers, produced important local regularity

results for such problems. We refer to the papers of Marcellini [12] and Baroni–Colombo–

Mingione [1] and the references therein. We also mention the recent informative survey paper

of Mingione–Rădulescu [13]. A global regularity theory (that is, regularity up to the bound-

ary), remains so far elusive and this makes double phase problems more difficult to deal with.

The second distinguishing feature of problem (1.1), is that the reaction (right hand side) of (1.1)

is gradient dependent. This makes the problem nonvariational and this eliminates the use of

minimax theorems from the critical point theory. For this reason, our approach is based on the

theory of nonlinear operators of monotone type. Variational double phase problems have been

studied recently using a variety of methods. We mention the works of Colasuonno–Squassina

[2], Gasiński–Winkert [5], Ge–Lv–Lu [7], Liu–Dai [9], Liu–Papageorgiou [10], Papageorgiou–

Rădulescu-Repovš [15], Papageorgiou–Vetro–Vetro [16]. On the other hand the study of dou-

ble phase problems with convection, is lagging behind. There are only the works of Gasiński–

Winkert [6] and Zeng-Bai-Gasiński–Winkert [18].

Finally we should mention the very recent work of Repovš–Vetro [17], who studied para-

metric, variational (that is, no convection term is presented) Dirichlet problems, driven by a

weighted (p, q)-Laplacian. However the weights in [17] are bounded away from zero and so

the differential operator in [17] exhibits balanced growth. This facilitates the analysis since for

such problems there is a global regularity theory available.

2 Mathematical background-hypotheses

The unbalanced growth of the integrand corresponding to the differential operator, leads

to a functional framework based on Musielak–Orlicz spaces. We introduce the following

conditions on the weight a(·), the coefficient E(·) and the exponents p, q, r. In what follows by

C0,1(Ω) we denote the space of locally Lipschitz functions from Ω into R.

H0: a ∈ C0,1(Ω), a 6= 0, a(z) ≥ 0 for all z ∈ Ω, E ∈ L∞(Ω), E(z) 6= 0, E(z) ≥ 0 for a.a. z ∈ Ω,

1 < q < p < N,
p
q < 1 + 1

N .

Remark 2.1. The relation
p
q < 1 + 1

N is standard in Dirichlet double phase problems and im-

plies p < q∗ = Nq
N−q . So the relation p ≤ r < q∗ makes sense and we have useful embeddings

of the relevant Musielak–Orlicz–Sobolev spaces.

Let θ : Ω × R+ → R+ (R+ = [0,+∞)) be the integrand θ(z, x) = a(z)xp + xq. Ev-

idently θ(·, ·) is continuous and uniformly convex in x ∈ R+. Let M(Ω) = {u : Ω →

R measurable function}. As usual we identify two such functions which differ only on a

Lebesgue-null set. The Musielak–Orlicz space Lθ(Ω) is defined by

Lθ(Ω) = {u ∈ M(Ω) : ρθ(u) < ∞},

with ρθ(·) being the modular function defined by

ρθ(u) =
∫

Ω

[a(z)|u|p + |u|q]dz.
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We equip Lθ(Ω) with the so called “Luxemburg norm” defined by

‖u‖θ = inf
[
λ > 0 : ρθ

(u

λ

)
≤ 1

]
.

Then Lθ(Ω) becomes a Banach space which is also separable and reflexive (in fact uni-

formly convex). Using Lθ(Ω) we can define the corresponding Musielak–Orlicz–Sobolev space

W1,θ(Ω) by

W1,θ(Ω) = {u ∈ Lθ(Ω) : |Du| ∈ Lθ(Ω)}.

Here Du denotes the weak gradient of u(·). We equip W1,θ(Ω) with the following norm

‖u‖1,θ = ‖u‖θ + ‖Du‖θ for all u ∈ W1,θ(Ω).

Here ‖Du‖θ = ‖|Du|‖θ . Also, we define

W1,θ
0 (Ω) = C∞

0 (Ω)
‖·‖1,θ

.

For this space the Poincaré inequality holds and so on W1,θ
0 (Ω) we consider the equivalent

norm

‖u‖ = ‖Du‖θ for all u ∈ W1,θ
0 (Ω).

Both spaces are separable and reflexive (in fact uniformly convex).

Given u ∈ W1,θ
0 (Ω), we define

u+ = max{u, 0}, u− = max{−u, 0}.

We know that u+ ∈ W1,θ
0 (Ω), u = u+ − u−, |u| = u+ + u−.

We have the following useful embeddings.

Proposition 2.2. If hypotheses H0 hold, then

(a) Lθ(Ω) →֒ Lr(Ω) and W1,θ
0 (Ω) →֒ W1,r

0 (Ω) continuously and densely for all 1 ≤ r ≤ q;

(b) W1,θ
0 (Ω) →֒ Lr(Ω) continuously (resp. compactly) and densely for all 1 ≤ r ≤ q∗ (resp.

1 ≤ r < q∗);

(c) Lp(Ω) →֒ Lθ(Ω) continuously and densely.

Also there is a close relation between the norm ‖ · ‖θ and the modular function ρθ(·).

Proposition 2.3. If hypotheses H0 hold, then

(a) ‖u‖θ = λ ⇔ ρθ(
u
λ ) = 1;

(b) ‖u‖θ < 1 (resp. = 1,> 1) ⇔ ρθ(u) < 1 (resp. = 1,> 1);

(c) ‖u‖θ < 1 ⇒ ‖u‖
p
θ ≤ ρθ(u) ≤ ‖u‖

q
θ ;

(d) ‖u‖θ > 1 ⇒ ‖u‖
q
θ ≤ ρθ(u) ≤ ‖u‖

p
θ ;

(e) ‖u‖θ → 0 (resp. → +∞) ⇔ ρθ(u) → 0 (resp. → +∞).
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We consider the nonlinear operators Aa
p, Aq : W1,θ

0 (Ω) → W1,θ
0 (Ω)∗ defined by

〈Aa
p(u), h〉 =

∫

Ω

a(z)|Du|p−2(Du, Dh)RN dz,

〈Aq(u), h〉 =
∫

Ω

|Du|q−2(Du, Dh)RN dz for all u, h ∈ W1,θ
0 (Ω).

We set V = Aa
p + Aq : W1,θ

0 (Ω) → W1,θ
0 (Ω)∗. This operator has the following properties.

Proposition 2.4. If hypotheses H0 hold, then V(·) is bounded (that is, maps bounded sets to bounded

sets), continuous, strictly monotone (hence maximal monotone too) and of type (S)+ that is, “un
w

−→ u

in W1,θ
0 (Ω) and lim supn→∞

〈V(un), un − u〉 ≤ 0 imply that un → u in W1,θ
0 (Ω).′′

For details on Musielak–Orlicz spaces, we refer to the book of Harjulehto–Hästo [8].

By λ̂1(q) we denote the principal eigenvalue of (−∆q, W
1,q
0 (Ω)). We know that λ̂1(q) > 0,

is simple, isolated and has the following variational characterization

λ̂1(q) = inf

[
‖Du‖

q
q

‖u‖
q
q

: u ∈ W
1,q
0 (Ω), u 6= 0

]
. (2.1)

The infimum in (2.1) is realized on the corresponding one-dimensional eigenspace. So, we

see that the elements of this eigenspace have fixed sign. By û1(q) we denote the Lq-normalized

(that is, ‖û(q)‖q = 1), positive eigenfunction corresponding to λ̂1(q). We know that û1(q) ∈

C1(Ω) and û1(q)(z) > 0 for all z ∈ Ω. For details we refer to Gasiński–Papageorgiou [4].

The hypotheses on the perturbation f (z, x) are the following:

(H1): f : Ω × R → R is a Carathéodory function (that is, for all x ∈ R, z → f (z, x) is

measurable and for a.a. z ∈ Ω, x → f (z, x) is continuous) such that f (z, 0) = 0 for

a.a. z ∈ Ω and

(i) | f (z, x)| ≤ â(z)[1 + xr−1] for a.a. z ∈ Ω, all x ≥ 0, with â ∈ L∞(Ω), p ≤ r < q∗;

(ii) there exists M > 1 such that f (z, x) ≤ 0 for a.a. z ∈ Ω, all x ≥ M;

(iii) there exists a function η ∈ L∞(Ω) such that

λ̂1(q) ≤ η(z) for a.a. z ∈ Ω, η 6≡ λ̂1(q),

η(z) ≤ lim inf
x→0+

f (z, x)

xq−1
uniformly for a.a. z ∈ Ω.

Remark 2.5. Since we look for positive solutions and the above hypotheses concern the posi-

tive semiaxis R+ = [0,+∞), without any loss of generality, we may assume that

f (z, x) = 0 for a.a. z ∈ Ω, all x ≥ 0.

On account of hypotheses H1(i), (iii), given ε > 0, we can find cε > 0 such that

f (z, x) ≥ [η(z)− ε]xq−1 − cεxr−1 for a.a. z ∈ Ω all x ≥ 0. (2.2)
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3 An auxiliary problem

The unilateral growth restriction (2.2) on f (z, ·), leads to the following auxiliary double phase

problem:

{
−∆

a
pu(z)− ∆qu(z) = [η(z)− ε]u(z)q−1 − cεu(z)r−1 in Ω,

u|∂Ω = 0, u > 0.
(3.1)

Proposition 3.1. If hypotheses H0 hold, then for all ε > 0 small problem (2.2) has a unique solution

u ∈ W1,θ
0 (Ω) ∩ L∞(Ω), u(z) > 0 for a.a. z ∈ Ω.

Proof. Consider the C1-functional ϕε : W1,θ
0 (Ω) → R defined by

ϕε(u) =
1

p
ρa(Du) +

1

q
‖Du‖

q
q +

cε

r
‖u+‖r

r −
1

q

∫

Ω

[η(z)− ε](u+)qdz.

Here ρa(Du) =
∫

Ω
a(z)|Du|pdz. Since q < p ≤ r, we see that ϕε(·) is coercive. Also since

ρa(·) is continuous, convex, exploiting the compact embedding of W1,θ
0 (Ω) into Lr(Ω) (see

Proposition 2.2), we infer that ϕε(·) is sequentially weakly lower semi-continuous. So, by the

Weierstrass–Tonelli theorem, we can find u ∈ W1,θ
0 (Ω) such that

ϕε(u) = inf[ϕε(u) : u ∈ W1,θ
0 (Ω)]. (3.2)

Let λ̂1 = λ̂1(q), û1 = û1(q), and t ∈ (0, 1). We have

ϕε(tû1) =
tp

p
ρa(Dû1) +

tq

q

[∫

Ω

(λ̂1 − η(z))û
q
1dz + ε

]
+

trcε

r
‖û1‖

r
r.

Since û1(z) > 0 for all z ∈ Ω, hypotheses H1(iii) implies that

µ0 =
∫

Ω

[η(z)− λ̂1]û
q
1dz > 0.

So, choosing ε ∈ (0, µ0) and since p ≤ r and t ∈ (0, 1), we have

ϕε(tû1) ≤ c1tp − c2tq for some c1, c2 > 0.

Recall that q < p. So, choosing t ∈ (0, 1) even smaller if necessary, we see that

ϕε(tû1) < 0,

⇒ ϕε(u) < 0 = ϕε(0) (see(3.2)),

⇒ u 6= 0.

From (3.2) we have ϕ′
ε(u) = 0,

⇒ 〈V(u), h〉 =
∫

Ω

[(η(z)− ε)uq−1 − cεu
r−1]hdz for all h ∈ W1,θ

0 (Ω). (3.3)

Choosing h = −u− ∈ W1,θ
0 (Ω) in (3.3), we obtain

ρθ(Du−) = 0 ⇒ u ≥ 0, u 6= 0.

Therefore u is a weak solution of (3.1). From Theorem 3.1 of Gasiński–Winkert [5], we have

that

u ∈ W1,θ
0 (Ω) ∩ L∞(Ω).



6 Z. H. Liu and N. S. Papageorgiou

Moreover, Proposition 2.4 of Papageorgiou–Vetro–Vetro [16] implies that

u(z) > 0 for a.a. z ∈ Ω.

Next we show that this positive solution of (3.1) is unique. So, suppose that v ∈ W1,θ
0 (Ω)

is another positive solution of (3.1). Again we show that

v ∈ W1,θ
0 (Ω) ∩ L∞(Ω), v(z) > 0 for a.a. z ∈ Ω.

Let uδ = u + δ, vδ = v + δ, δ > 0. If L∞(Ω)+ = {u ∈ L∞(Ω) : u(z) ≥ 0 for a.a. z ∈ Ω}

(the positive (order) cone of the ordered Banach space L∞(Ω)), then uδ, vδ ∈ int L∞(Ω)+.

Hence using Proposition 4.1.22, p. 274, of Papageorgiou–Rădulescu–Repovš [14], we have

uδ

vδ

∈ L∞(Ω),
vδ

uδ

∈ L∞(Ω). (3.4)

We consider the integral functional j : L1(Ω) → R = R ∪ {+∞} defined by

j(u) =

{
1
p ρa(Du

1
q ) + 1

q‖Du
1
q ‖

q
q if u ≥ 0, u

1
q ∈ W1,θ(Ω),

+∞ otherwise.

The convexity of ρa(·) implies that j(·) is convex (see Diaz–Saá [3]). On account of (3.4), if

h = u
q
δ − v

q
δ ∈ W1,θ(Ω) and |t| < 1 is small, we have

u
q
δ + th ∈ dom j, v

q
δ + th ∈ dom j,

where dom j = {u ∈ L1(Ω) : j(u) < ∞} (the effective domain of j(·)). Then using the

convexity of j(·), we see that j(·) is Gateaux differentiable at u
q
δ and at v

q
δ in the direction h.

Moreover, using the chain rule and the nonlinear Green’s identity (see [14, p. 34]), we have

j′(u
q
δ)(h) =

1

q

∫

Ω

−∆
a
puδ − ∆quδ

u
q−1
δ

hdz

=
1

q

∫

Ω

[η(z)− ε]u
q−1
δ − cεu

r−1
δ

u
q−1
δ

hdz, (see (3.1)).

and

j′(v
q
δ)(h) =

1

q

∫

Ω

−∆
a
pvδ − ∆qvδ

v
q−1
δ

hdz

=
1

q

∫

Ω

[η(z)− ε]v
q−1
δ − cεv

r−1
δ

v
q−1
δ

hdz, (see (3.1)).

The convexity of j(·) implies the monotonicity of j′(·), Hence

0 ≤
∫

Ω

[η(z)− ε]

[
uq−1

u
q−1
δ

−
vq−1

v
q−1
δ

]
(u

q
δ − v

q
δ)dz +

∫

Ω

cε

[
vr−1

v
q−1
δ

−
ur−1

u
q−1
δ

]
(u

q
δ − v

q
δ)dz. (3.5)

Note that for δ ∈ (0, 1], we have

∣∣∣∣∣
uq−1

u
q−1
δ

−
vq−1

v
q−1
δ

∣∣∣∣∣ |u
q
δ − v

q
δ| ≤ 2q

[
‖u‖

q
∞ + ‖v‖

q
∞ + 2

]
,
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[
uq−1

u
q−1
δ

−
vq−1

v
q−1
δ

]
(u

q
δ − v

q
δ) → 0 for a.a. z ∈ Ω, as δ → 0+.

So, invoking the dominated convergence theorem, we obtain

∫

Ω

[η(z)− ε]

[
uq−1

u
q−1
δ

−
vq−1

v
q−1
δ

]
(u

q
δ − v

q
δ)dz → 0 as δ → 0+. (3.6)

Also, for δ ∈ (0, 1] we have

∣∣∣∣∣
vr−1

v
q−1
δ

−
ur−1

u
q−1
δ

∣∣∣∣∣ |u
q
δ − v

q−1
δ | ≤ 2q−1[‖v‖

r−q
∞ + ‖u‖

r−q
∞ ][‖u‖

q
∞ + ‖v‖

q
∞ + 2],

∣∣∣∣∣
vr−1

v
q−1
δ

−
ur−1

u
q−1
δ

∣∣∣∣∣ (u
q
δ − v

q
δ) → (vr−q + ur−q)(uq − vq) for a.a. z ∈ Ω, as δ → 0+.

Then once again the dominated convergence theorem gives

∫

Ω

cε

[
vr−1

v
q−1
δ

−
ur−1

u
q−1
δ

]
(u

q
δ − v

q
δ)dz →

∫

Ω

cε

[
vr−q − ur−q

]
(uq − vq)dz as δ → 0+. (3.7)

We return to (3.5), pass to the limit as δ → 0+ and use (3.6) and (3.7). We obtain

0 ≤
∫

Ω

cε

[
vr−q − ur−q

]
(uq − vq)dz ≤ 0,

⇒ u = v.

This proves the uniqueness of the positive solution of (3.1).

In the next section, we will use this solution u ∈ W1,θ
0 (Ω)

⋂
L∞(Ω) of (3.1), to produce a

nontrivial positive solution for problem (1.1).

4 Positive solution

Let M > 1 be as in hypothesis H1(ii). Choose ū ≥ M > 1 big so that ‖u‖∞ < ū. We have

u < ū. Then on account of hypothesis H1(iii), we have

f (z, ū) ≤ 0 a.a. z ∈ Ω.

We introduce the truncation map τ : Lq(Ω) → Lq(Ω) defined by

τ(u)(z) =





u(z) if u(z) < u(z);

u(z) if u(z) ≤ u(z) ≤ ū;

ū if ū < u(z).

(4.1)

Evidently τ(·) is continuous and τ(u) ∈ W1,θ
0 (Ω) if u ∈ W1,θ

0 (Ω).

Let N f (τ(u))(·) = f (·, τ(u)(·)) (the Nemitsky map corresponding to f ). We define

Nτ(u)(·) = N f (τ(u))(·) + E(·)|Dτ(u)|q−1 for all u ∈ W1,θ
0 (Ω).

We consider the map K : W1,θ
0 (Ω) → W1,θ

0 (Ω)∗ defined by

K(u) = V(u)− Nτ(u) for all u ∈ W1,θ
0 (Ω).
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Proposition 4.1. If hypotheses H0, H1 hold, then K(·) is pseudomonotone.

Proof. Consider a sequence {un}n∈N ⊆ W1,θ
0 (Ω) such that

{
un

w
−→ u in W1,θ

0 (Ω), K(un)
w
−→ u∗ in W1,θ

0 (Ω)∗,

lim supn→∞
〈K(un), un − u〉 ≤ 0.

}
(4.2)

From (4.2) and since W1,θ
0 (Ω) →֒ Lq(Ω) compactly (see Proposition 2.2), we have un → u

in Lq(Ω). This implies that τ(un) → τ(u) in Lq(Ω). Then by Krasnoselskii’s theorem (see

Gasiński–Papageorgiou [4], p. 407), we have

N f (τ(un)) → N f (τ(u)) in Lq′(Ω)

(
1

q
+

1

q′
= 1

)
. (4.3)

Moreover, we have

{Dτ(un)}n∈N ⊆ Lθ(Ω, R
N) →֒ Lq(Ω, R

N) is bounded (see Proposition 2.2).

Therefore

〈E(·)|Dτ(un)|
q−1, un − u〉 =

∫

Ω

E(z)|Dτ(un)|
q−1(un − u)dz → 0. (4.4)

From (4.2), (4.3) and (4.4), it follows that

lim sup
n→∞

〈V(un), un − u〉 ≤ 0 ⇒ un → u in W1,θ
0 (Ω) (see Proposition 2.4).

Then we have

V(un) → V(u) in W1,θ
0 (Ω)∗,

N f (τ(un)) → N f (τ(u)) in Lq′(Ω) →֒ W1,θ
0 (Ω)∗ (see Gasiński–Papageorgiou [4], p. 141),

E(·)|Dτ(un)|
q−1 → E(·)|Dτ(u)|q−1 in Lq′(Ω) →֒ W1,θ

0 (Ω)∗.

So, finally we have

u∗ = V(u)− Nτ(u) = K(u) (see (4.2)),

〈K(un), un〉 → 〈K(u), u〉.

This means that K(·) is generalized pseudomonotone and by Proposition 3.2.49, p. 333, of

Gasiński–Papageorgiou [4], we conclude that K(·) is pseudomonotone.

Proposition 4.2. If hypotheses H0, H1 hold, then the map K(·) is strongly coercive (see [14], p. 130).

Proof. For every u ∈ W1,θ
0 (Ω) with ‖u‖ > 1, we have

〈K(u), u〉 = ρθ(Du)−
∫

Ω

f (z, τ(u))udz −
∫

Ω

E(z)|Dτ(u)|q−1udz

≥ c3‖u‖q − c4‖u‖q−1 for some c3, c4 > 0 (see Proposition 2.3 and (4.1))

⇒ K(·) is strongly coercive.

Now we are ready for the existence theorem.

Theorem 4.3. If hypotheses H0 and H1 hold, then problem (1.1) has a positive solution u0 ∈

W1,θ
0 (Ω)

⋂
L∞(Ω) with u0(z) > 0 for a.a. z ∈ Ω.
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Proof. Propositions 4.1 and 4.2 together with Theorem 3.2.52, p. 336, of Gasiński–Papageorgiou

[4], imply that K(·) is surjective. So we can find u0 ∈ W1,θ
0 (Ω) such that

K(u0) = 0.

Then we have

〈V(u0), (u − u0)
+〉 ≥

∫

Ω

f (z, u)(u − u0)
+dz (see (4.1) and recall E ≥ 0)

≥
∫

Ω

(
[η(z)− ε]uq−1 − cεu

r−1
)
(u − u0)

+dz (see (2.2))

= 〈V(u), (u − u0)
+〉 (see Proposition 4)

⇒ u ≤ u0 (see Proposition 3).

On the other hand, we have

〈V(u0), (u0 − ū)+〉 =
∫

Ω

f (z, ū)(u0 − ū)+dz (see (4.1) and note Dū = 0)

≤ 0 = 〈V(ū), (u0 − ū)+〉 (see H1(ii))

⇒ u0 ≤ ū (see Proposition 3).

So we have proved

u0 ∈ [u, ū] = {u ∈ W1,θ
0 (Ω) : u(z) ≤ u(z) ≤ ū for a.a. z ∈ Ω},

⇒ u0 ∈ W1,θ
0 (Ω) ∩ L∞(Ω) is a positive solution of (1.1).

Moreover, we have

0 < u(z) ≤ u0(z) for a.a. z ∈ Ω.
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Abstract. In this paper, we consider the continuous Hopfield model with a weak inter-
action of network neurons. This model is described by a system of differential equations
with linear boundary conditions. Also, we consider the questions of finding necessary
and sufficient conditions of solvability and constructive construction of solutions of
the given problem, which turn into solutions of the linear generating problem, as the
parameter ε tends to zero. An iterative algorithm for finding solutions has been con-
structed. The problem of finding the extremum of the target functions on the given
problem solution is considered. To minimize a functional, an accelerated method of
conjugate gradients is used. Results are illustrated with examples for the case of three
neurons.
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1 Introduction

The study of various natural and social phenomena is carried out today by building and

investigating their mathematical models. Practical applications contributed to the birth and

development of many mathematical disciplines. Among them, there is a theory of dynamic

neural networks, which are used to solve various optimization problems, control theory and

mathematical modelling. The variety of tasks to be solved led to the existence of several mod-

els of such networks. An important place among them takes Hopfield model (see [22,25,43]), a

single layer neural network with general non-linear and additional internal linear connections

among neurons. Hopfield nets have a large number of publications. Both models with discrete

and continuous time are considered. In particular, such questions as stability (see [47]), abso-

lute stability of neural nets (see [15]), modelling of closed control systems, asymptotics and

BCorresponding author. Email: boichuk.aa@gmail.com
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stability of relaxation self-oscillations in Hopfield nets with delay (see [19,20]) are considered.

The vital phenomenon is flow invariance for such systems (see [34]). Ill-posed problems with

fractional derivative (see [46]), optimization problems (see [17, 26, 45]), deep neural networks

(see [35]), relativistic Hopfield model (see [1]), quantum generalization of Hopfield model (see

[40]), as well as its discrete analogue (see [2]) are studied. Chaos is explored in the correspond-

ing models (see [14]). The Hopfield model is considered as a model of memory (see [23]). The

impulsive Hopfield model with boundary conditions is studied in [38]. In this work, the case

of weak interaction of network neurons is considered, to the study of which for other models,

for example, the papers are devoted [27,29]. Using the theory of pseudo-inverse matrices (see

[3–8,41]), an approach allows establishing necessary and sufficient conditions for the solvabil-

ity of boundary-value problem for a system of differential equations that describe Hopfield

network for n neurons with weak interaction. We use hyperbolic tangent as the increasing

activation function and symmetric matrix of weights as in [22, p. 690]). The application of the

accelerated method of conjugate gradients (see [31,32]) for solving the problem of finding the

extremum (minimum) of the loss function is explored on the solutions of the given problem

in the form of a quadratic functional of synaptic communication scales.

2 Formulation of the problem

We consider a continuous Hopfield model with a weak interaction of the network neurons,

the evolution in time of which is described by a system of n non-linear differential equations

(see [22, p. 690], [43, p. 140])

x′j(t) = − xj(t)

Rj
+ ε

(

Îj(t) +
n

∑
i=1

wij tanh

(

aixi(t)

2

)

)

+ Ij(t), j = 1, n, (2.1)

where xj(t) ∈ C1[0, T] is the potential of the jth neuron; the real parameters aj are gain

coefficients of the jth neuron, and wij are the elements of a symmetric matrix W:

W =











0 w12 . . . w1n

w12 0 . . . w2n
...

...
. . .

...

w1n w2n . . . 0











,

which consists of synaptic weights of the connection of the ith neuron with the jth neuron,

Rj are the leakage resistances, Îj(t) ∈ C1[0, T], Ij(t) ∈ C1[0, T] are external signals, ε ≪ 1 is a

small parameter characterizing the strength of the interaction of network neurons.

As is known (see [22, p. 693], [43, p. 144]), in practice the property of a monotonic increas-

ing of the activation function (in our case this is hyperbolic tangent) of the considered matrix

W (wij = wji, wii = 0) and the asynchronous mode of network operation are often used. It

provides the global asymptotic stability of the Hopfield network. These features persist in

the case of a weak interaction of network neurons described by equation (2.1) and provide

both practical and theoretical interest in Hopfield networks. For the convenience of further

reasoning, we rewrite the equation (2.1) in the following form

x′(t, w, ε) = Ax(t, w, ε) + ε
(

Î(t) + WZ(x(t, w, ε))
)

+ I(t), (2.2)

where

x(t, w, ε) = col
(

x1(t, w, ε), x2(t, w, ε), . . . , xn(t, w, ε)
)

,
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A = −diag
{

1
R1

, 1
R2

, . . . , 1
Rn

}

,

Z(x(t, w, ε)) = col
(

tanh
(

a1x1(t,w,ε)
2

)

, tanh
(

a2x2(t,w,ε)
2

)

, . . . , tanh
(

anxn(t,w,ε)
2

) )

,

Î(t) = col
(

Î1(t), Î2(t), . . . , În(t)
)

, I(t) = col
(

I1(t), I2(t), . . . , In(t)
)

,

w is a vector of dimension M = n(n − 1)/2 formed from the elements of the matrix W in the

following way:

w = col
(

w12, w22, . . . , w1n, w23, w24, . . . , w2n, . . . , w(n−1)n

)

.

In some cases, the solutions of systems of equations describing the functioning of neural nets

satisfy additional conditions due to particular properties of the modelled process. Various

types of boundary-value problems are explored for such systems (see [12,38,44]). In our paper,

we investigate the questions of finding conditions for the existence and effective construction

of equation (2.2) solutions with m boundary conditions

lx(·, w, ε) = α, (2.3)

l = col
(

l1, l2, . . . , lm

)

: C1[0, T] → R
m is bounded linear vector functional, lν : C1[0, T] →

R, ν = 1, m, α = col
(

α1, α2, . . . , αm

)

∈ R
m, which for ε = 0 turns into the solution of the

generating problem

x′(t) = Ax(t) + I(t), (2.4)

lx(·) = α. (2.5)

These solutions will be called generating solutions of the boundary-value problem (2.2), (2.3).

Note that the boundary-value problem (2.2), (2.3) includes both underdetermined (m < n) and

overdetermined (m > n) boundary-value problems, the study of which for Hopfield models

is not given enough attention, in our opinion.

3 Necessary condition for the solvability of the problem (2.2), (2.3)

Let us first consider the question of solution existence to the problem (2.2), (2.3). For this

purpose, we use the general scheme for the exploration of boundary-value problems studied

in detail in [7], which allows finding effective coefficients which are necessary and sufficient

for the solvability of problem (2.2), (2.3). In particular, for the generating problem (2.4), (2.5),

the following criterion holds (see [7]).

Theorem 3.1. The homogeneous problem (2.4), (2.5) (I(t) = 0, α = 0) has an r-parametric (r ≤ n)

family of solutions x(t, cr) ∈ C1[0, T]

x(t, cr) = U(t)PQr
cr ∀cr ∈ R

r.

The inhomogeneous problem (2.4), (2.5) is solvable if and only if g satisfies d (d ≤ m) linearly indepen-

dent conditions:

PQ∗
d
g = 0. (3.1)

In this case, the inhomogeneous problem (2.4), (2.5) has an r-parameter family of solutions x(t, cr) ∈
C1[0, T] of the following form:

x(t, cr) = U(t)PQr
cr + (G[I, α])(t) ∀cr ∈ R

r, (3.2)
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where

(G[I, α]) (t) := U(t)

(

Q+g +
∫ t

0
U−1(τ)I(τ)dτ

)

is the generalized Green operator.

Here

U(t) = diag
{

e
− t

R1 , e
− t

R2 , . . . , e−
t

Rn

}

is a fundamental decision matrix of the linear homogeneous system (2.4),

g = α − l
∫ ·

0
U(·)U−1(τ)I(τ)dτ,

Q = lU(·) is a matrix of dimension (m × n), PQr

(

PQ∗
d

)

is the matrix which consists of the

complete system r (d) of linearly independent columns (rows) of the projector matrix PQ

(PQ∗), where PQ (PQ∗) is projector onto the kernel (cokernel) of the matrix Q, Q+ is the

Moore–Penrose pseudo-inverse (see [37]) to the Q matrix.

Let us find necessary conditions for the existence of a solution x(t, w, ε) to the problem

(2.2), (2.3), which for ε = 0 turns into one of the solutions x(t, cr) of the generating problem

(2.4), (2.5). According to Theorem 3.1, boundary-value problem (2.2), (2.3) is solvable if and

only if d linearly independent conditions are satisfied

PQ∗
d

(

g − εl
∫ ·

0
U(·)U−1(τ)

(

Î(τ) + WZ(x(τ, w, ε))
)

dτ

)

= 0. (3.3)

Taking into account (3.1), we obtain that condition (3.3) is equivalent to the following

PQ∗
d
l
∫ ·

0
U(·)U−1(τ)

(

Î(τ) + WZ(x(τ, w, ε))
)

dτ = 0. (3.4)

Considering the limit for (3.4) as ε → 0 and also taking into account that x(t, w, ε) → x(t, cr)

in this case, we obtain the following solvability condition

F(cr) := PQ∗
d
l
∫ ·

0
U(·)U−1(τ)

(

Î(τ) + WZ(x(τ, cr))
)

dτ = 0. (3.5)

Note that in the case of the periodic boundary-value problem (2.2), (2.3) (lx(·, w, ε) =

x(0, w, ε)− x(T, w, ε) = α = 0) equation (3.5) corresponds to that known in the theory of non-

linear oscillations of the equation for the generating amplitudes (see [21, 33]). Therefore, we

will call the equation (3.5) the equation for the generating vectors of boundary-value problem

(2.2), (2.3). If equation (3.5) has a solution cr = c0
r ∈ R

r, then c0
r defines the solution

x
(

t, c0
r

)

= col
(

x1

(

t, c0
r

)

, x2

(

t, c0
r

)

, . . . , xn

(

t, c0
r

))

of the generating problem (2.4), (2.5), which may correspond to the solution x(t, w, ε) of the

problem (2.2), (2.3). If the equation (3.5) has no solutions, then problem (2.2), (2.3) also does

not have the desired solution. Note that since we are considering the original problem in real

form, we are only talking about real solutions of equation (3.5).

Thus, the following statement is true.

Theorem 3.2 (Necessary condition). If the boundary-value problem (2.2), (2.3) has a solution, which

for ε = 0 turns into one of the solutions x
(

t, c0
r

)

generating boundary-value problem (2.4), (2.5), then

the vector c0
r ∈ R

r must be a real solution to the equation for the generating vectors (3.5).
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4 Optimization of the objective function

One of the important research questions of exploring neural networks is finding the extremum

(minimum) or the objective function by solving the considered model. In particular, the such

problems, arising in medicine, neurobiology, machine learning, were studied in [11–13, 36, 42,

44]. In this paper, we consider the problem of finding the minimum of the objective function

L(x(t, w, ε), w):

L(x(t, w, ε), w) → min
w∈RM

,

L(·, w) ∈ C [‖x − x0‖ ≤ q] , L(x, ·) ∈ C
(

R
M
)

on the solutions of boundary-value problem (2.2), (2.3), which at ε = 0 turn into generating

solution of (2.4), (2.5). Here, x0 is the generating solution and q is a small parameter.

Suppose that when ε tends to 0 function L(x(t, w, ε), w) takes the form of quadratic func-

tional by vector of parameters w ∈ R
M, that is

L
(

x
(

t, c0
r

)

, w
)

= Φ(w) = (Sw, w)− 2( f , w) → min
w∈RM

, (4.1)

where x
(

t, c0
r

)

is a solution of the generating problem (2.4), (2.5) and S : R
M → R

M is the

linear self-adjoint bounded positive operator (positive definite quadratic form), that is

γ1‖u‖2 ≤ (Su, u) ≤ γ2‖u‖2, γ2 > γ1 > 0, ∀u ∈ R
M, (4.2)

f ∈ R
M. Restriction (4.1), as known from [30], is equivalent to finding solutions w of the

following equation

Sw = f . (4.3)

To minimize functional (4.1) we use the accelerated method of conjugate gradients, which,

as known from [31, 32], improves the convergence of the method of steepest descent and the

conjugate gradient method, expands their scope and is more robust to rounding errors. Since

S satisfies condition (4.2), the functional (4.1) has a unique minimum w∗ (equation (4.3) has a

unique solution for any f ) (see [30]).

Let us take a closer look at the accelerated method of conjugate gradients. Its essence for

the minimization of functional (4.1) is, that based on some initial value approximation w = w0,

the following approximate solutions are determined according to the formulas

wk+1 = wk + αkrk + βkδk + σk, (4.4)

rk = f − Swk, δk = wk − wk−1, σk =
n0

∑
i=1

ak
i ϕi, (4.5)

where ϕi, i = 1, n0, n0 ≤ M is a system of linearly independent elements and the unknown

parameters αk, βk and ak
i we will determine from the system of linear algebraic equations

∂Φ
(

wk+1
)

∂αk
= 0,

∂Φ
(

wk+1
)

∂βk
= 0,

∂Φ
(

wk+1
)

∂ak
i

= 0. (4.6)

Note that in [31], using the form of functional (4.1) and the rule of differentiation of scalar

product, a convenient for practical application computational scheme of the method (4.4)–(4.6)

is given.
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Remark 4.1. As known (see [31]), the use of the method (4.4)–(4.6) in the space R
M allows to

obtain an exact solution to equation (4.3) in k ≤ M iterations.

Remark 4.2. For σk = 0, the accelerated method of conjugate gradients (4.4)–(4.6) transforms

into the conjugate gradient method, and for δk = 0, σk = 0 – into the method of steepest

descent (see [31, 32]).

Let us formulate, using the results of [31], an estimate for the rate of convergence of the

corresponding conjugate gradient method (4.4)–(4.6) for our optimization problem. Let Hn0 ,

n0 ≤ M be the subspace spanned on a system of linearly independent elements {ϕi}n0
i=1. We

introduce into consideration a self-adjoint mapping in the space Vn0 ,

R
M = Hn0 ⊕ Vn0 ,

operator K = SZ which satisfies the condition

η1‖v‖2 ≤ (Kv, v) ≤ η2‖v‖2, γ1 ≤ η1 ≤ η2 ≤ γ2, ∀v ∈ Vn0 .

Here the operator Z is linear and is defined by the formula

Zg = g + h,

where g ∈ R
M is an arbitrary element and h ∈ Hn0 is a solution of equation

PS(g + h) = 0,

where P is the operator of orthogonal projection R
M onto Hn0 .

The following statement is true (see [31]).

Theorem 4.3. Let the operator S satisfy condition (4.2). Then, the accelerated method of conjugate

gradients (4.4)–(4.6) converges and the rate of its convergence is characterized by estimate

∥

∥

∥
w∗ − wk

∥

∥

∥
≤ qk√

γ1η1

∥

∥ f − Sw0
∥

∥ ,

where

qk =
2ρk

1 + ρ2k
, ρ =

√
η2 −

√
η1√

η2 +
√

η1
.

5 A sufficient condition for the solvability of problem (2.2), (2.3)

For the further investigation of the problem (2.2), (2.3), let us fix the value of the vector of

parameters w = w∗, which is found using the accelerated method of conjugate gradients (4.4)–

(4.6). To obtain a sufficient condition for the existence of a solution, we make the following

change in variables in the boundary-value problem (2.2), (2.3):

x(t, w∗, ε) = x
(

t, c0
r

)

+ y(t, w∗, ε), (5.1)

where x
(

t, c0
r

)

is a solution of the generating boundary-value problem (2.4), (2.5),

y(t, w, ε) = col
(

y1(t, w, ε), y2(t, w, ε), . . . , yn(t, w, ε)
)
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and c0
r ∈ R

r is a solution to the equation for the generating vectors (3.5). By replacing the

variables in (5.1), the study of the existence of a solution to problem (2.2), (2.3) is reduced to

the corresponding question for the boundary-value problem

y′(t, w∗, ε) = Ay(t, w∗, ε) + ε
(

Î(t) + W∗Z
(

x
(

t, c0
r

)

+ y(t, w∗, ε)
))

, (5.2)

ly(·, w∗, ε) = 0. (5.3)

As follows from the vector-function Z(x(t, w∗, ε)), it is differentiable in the neighbourhood of

the generating solution x
(

t, c0
r

)

, therefore, the following representation holds:

Z
(

x
(

t, c0
r

)

+ y(t, w∗, ε)
)

= Z
(

x
(

t, c0
r

))

+ A1(t)y(t, w∗, ε) +R(y(t, w∗, ε)),

where

Z
(

x
(

t, c0
r

))

= col

(

tanh

(

a1x1(t,c0
r)

2

)

, tanh

(

a2x2(t,c0
r)

2

)

, . . . , tanh

(

anxn(t,c0
r)

2

) )

is a limit to which the function Z(x(t, w∗, ε)) tends under ε tends towards 0 and c = c0
r ,

A1(t) = Z′
x(v)|v=x(t,c0

r )

=
1

2
diag

{

a1

cosh2
(

a1x1(t,c0
r )

2

) ,
a2

cosh2
(

a2x2(t,c0
r )

2

) , . . . ,
an

cosh2
(

anxn(t,c0
r )

2

)

}

is derivative in the sense of Fréchet, and R(y(t, w∗, ε)) are higher-order members

R(y(t, w∗, ε)) = Z
(

x
(

t, c0
r

)

+ y(t, w∗, ε)
)

− Z
(

x
(

t, c0
r

))

− A1(t)y(t, w∗, ε)

=































tanh

(

a1(x1(t,c0
r)+y1(t,w

∗,ε))
2

)

− tanh

(

a1x1(t,c0
r)

2

)

− a1y1(t,w
∗,ε)

2 cosh2

(

a1x1(t,c0
r)

2

)

tanh

(

a2(x2(t,c0
r)+y2(t,w

∗,ε))
2

)

− tanh

(

a2x2(t,c0
r)

2

)

− a2y2(t,w
∗,ε)

2 cosh2

(

a2x2(t,c0
r)

2

)

...

tanh

(

an(xn(t,c0
r)+yn(t,w∗,ε))

2

)

− tanh

(

anxn(t,c0
r)

2

)

− anyn(t,w∗,ε)

2 cosh2

(

an xn(t,c0
r )

2

)































.

Thus, the boundary-value problem (5.2), (5.3) takes the following form

y′(t, w∗, ε) = Ay(t, w∗, ε)

+ ε
(

Î(t) + W∗ (Z
(

x
(

t, c0
r

))

+ A1(t)y(t, w∗, ε) +R(y(t, w∗, ε))
))

, (5.4)

ly(·, w∗, ε) = 0. (5.5)

According to the Theorem 3.1, under d conditions

PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗ (Z

(

x
(

τ, c0
r

))

+ A1(τ)y(τ, w∗, ε) +R(y(τ, w∗, ε))
)

dτ

= −PQ∗
d
l
∫ ·

0
U(·)U−1(τ) Î(τ)dτ,

(5.6)
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boundary-value problem (5.4), (5.5) has an r-parametric family of solutions of the following

form

y(t, w∗, ε) = U(t)PQr
cr + y(t, w∗, ε) ∀cr ∈ R

r, (5.7)

y(t, w∗, ε) = ε
(

G
[

Î(t) + W∗Z
(

x
(

t, c0
r

)

+ y(t, w∗, ε)
)

, 0
])

(t, ε).

Using condition (3.5), relation (5.6) can be rewritten as

PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗(A1(τ)y(τ, w∗, ε) +R(y(τ, w∗, ε)))dτ = 0. (5.8)

Substituting (5.7) into (5.8), we obtain the following equation for cr:

Bcr = −PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗H (τ, y(τ, w∗, ε), y(τ, w∗, ε)) dτ, (5.9)

H (t, y(t, w∗, ε), y(t, w∗, ε)) = A1(t)y(t, w∗, ε) +R (y(t, w∗, ε)) ,

where matrix B (d × r) has the following form

B = PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗A1(τ)U(τ)PQr

dτ. (5.10)

The algebraic system (5.9) is solvable if and only if d1 conditions hold

PB∗
d1

PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗H (τ, y(τ, w∗, ε), y(τ, w∗, ε)) dτ = 0. (5.11)

If, for example,

PB∗
d1

PQ∗
d
= 0, (5.12)

then the condition (5.11) is always valid, and system (5.9) has r1-parametric solution

cr = PBr1
ĉr1

+ c̄r ∀ĉr1
∈ R

r1 ,

c̄r = −B+PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗H (τ, y(τ, w∗, ε), y(τ, w∗, ε)) dτ.

Here PBr1

(

PB∗
d1

)

is a matrix that consists of the complete system r1 (d1) of linearly independent

columns (rows) of the projector matrix PB (PB∗), where PB (PB∗) is the projector on kernel

(cokernel) of the matrix B, B+ is the Moore–Penrose pseudo-inverse to the matrix B.

From now on we will restrict ourselves to the particular solution cr = c̄ of the system (5.9).

So, for defining the solution of the problem (5.2), (5.3) we come to the system of equations

y(t, w∗, ε) = U(t)PQr
cr + y(t, w∗, ε),

cr = −B+PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗H (τ, y(τ, w∗, ε), y(τ, w∗, ε)) dτ,

y(t, w∗, ε) = ε
(

G
[

Î(t) + W∗Z
(

x
(

t, c0
r

)

+ y(t, w∗, ε)
)

, 0
])

(t, ε),

which can be solved using a convergent iterative process explained in detail in [7]. The fol-

lowing statement is true.

Theorem 5.1 (Sufficient condition). Let the generating problem for (2.2), (2.3) problem (2.4), (2.5),

subject to the conditions of d linearly independent conditions (3.1), have an r-parametric family of

solutions x
(

t, c0
r

)

(3.2) and the operator S satisfy condition (4.2). Then for every real value of the
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vector c0
r ∈ R

r, which satisfies the equation for the generating vectors (3.5), for the value of the

parameter vector w∗ ∈ R
M minimizing the quadratic functional (4.1), and when conditions (5.12)

hold, the boundary-value problem (2.2), (2.3) has a solution that can be found using the following

iterative process

ck
r = −B+PQ∗

d
l
∫ ·

0
U(·)U−1(τ)W∗H

(

τ, yk(τ, w∗, ε), yk(τ, w∗, ε)
)

dτ,

yk+1(t, w∗, ε) = ε
(

G
[

Î(t) + W∗
(

Z
(

x
(

t, c0
r

))

+ A1(t)U(t)PQr
ck

r

+ H
(

t, yk(t, w∗, ε), yk(t, w∗, ε)
))

, 0
])

(t, ε),

yk+1(t, w∗, ε) = U(t)PQr
ck

r + yk+1(t, w∗, ε),

xk(t, w∗, ε) = yk(t, w∗, ε) + x
(

t, c0
r

)

, x(t, w∗, ε) = lim
k→∞

xk(t, w∗, ε),

y0(t, w∗, ε) = y0(t, w∗, ε) = 0.

Corollary 5.2. Let r = d and nonlinearity F (cr) has the inverse to F′ (c0
r

)

for the vector c0
r , that

satisfies the equation (3.5). Then F′ (c0
r

)

= B, and for such each c0
r , the boundary-value problem (2.2),

(2.3) has a unique solution.

Proof. Consider the difference

F(cr + h)− F(cr) = PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗Z(x(τ, cr + h))dτ

− PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗Z(x(τ, cr))dτ.

Based on the representation (3.2), that is x(τ, cr) = U(τ)PQr
cr + (G[I, α])(τ), we obtain that

Z(x(τ, cr + h)) = Z (x(τ, cr) + U(t)PQr
h) = Z(x(τ, cr)) + A1(τ)U(τ)PQr

h +R (U(τ)PQr
h) ,

where R (U(τ)PQr
h) contains terms higher than the first order in h. Substituting the received

equality in the difference F(cr + h)− F(cr), we get the following:

F(cr + h)− F(cr) = PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗ (Z(x(τ, cr)) + A1(τ)U(τ)PQr

h +R (U(τ)PQr
h)) dτ

− PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗Z(x(τ, cr))dτ

= Bh + PQ∗
d
l
∫ ·

0
U(·)U−1(τ)W∗R (U(t)PQr

h) dτ.

From the equation above we obtain that F′ (c0
r

)

= B. Thus, reversibility of F′ (c0
r

)

implies the

invertibility of the matrix B. From this follows, that r1 = d1 = 0, PBr1
= PB∗

d1
= 0, condition

(5.12) is satisfied, and non-linear boundary-value problem (2.2), (2.3) has a unique solution for

each such c0
r .

Remark 5.3. To calculate the projectors and the Moore–Penrose pseudo-inverse matrices, one

can use the well-known formulas (see [7, p. 48], [28, p. 454]).
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6 Examples

Example 6.1. Consider the underdetermined boundary-value problem (2.2), (2.3) for three

equations in case when boundary condition (2.3) is T-periodic in part of the coordinates and

has the form

l





x1(·, w, ε)

x2(·, w, ε)

x3(·, w, ε)



 =

(

x1(T, w, ε)− x1(0, w, ε)

x2(T, w, ε)− x2(0, w, ε)

)

=

(

α1

α2

)

=

(

0

0

)

.

In this case, the matrix Q is defined by the equality

Q =

(

e
− T

R1 − 1 0 0

0 e
− T

R2 − 1 0

)

.

The Moore–Penrose pseudo-inverse matrix Q+ and vector g have the following form:

Q+ =













e
T

R1

1−e
T

R1

0

0 e
T

R2

1−e
T

R2

0 0













, g = −
∫ T

0

(

e
τ−T
R1 I1(τ)

e
τ−T
R2 I2(τ)

)

dτ,

and orthoprojectors PQ, PQ∗ look as follows

PQ = E3 − Q+Q = diag
{

0, 0, 1
}

, PQ∗ = E2 − QQ+ = O2,

where E2, E3 identity matrices of dimensions 2 and 3, respectively, O2 is zero matrix of di-

mension 2. That is, r = 1, d = 0 and the condition of solvability (3.1) holds, and the linear

boundary-value problem (2.4), (2.5) has a one-parameter set of solutions of the following form:

x(t, cr) =

















−1

1 − e
T

R1

∫ T

0
e

τ−t
R1 I1(τ)dτ +

∫ t

0
e

τ−t
R1 I1(τ)dτ

−1

1 − e
T

R2

∫ T

0
e

τ−t
R2 I2(τ)dτ +

∫ t

0
e

τ−t
R2 I2(τ)dτ

e
− t

R3 c3 +
∫ t

0
e

τ−t
R3 I3(τ)dτ

















.

The equation for the generating vectors (3.5) takes the form of the identity F(cr) ≡ 0 for

any vector cr.

Example 6.2. Consider the original problem for three equations with the boundary condition

(2.3) of this form

l





x1(·, w, ε)

x2(·, w, ε)

x3(·, w, ε)



 =





x1(T, w, ε)− x1(0, w, ε)

x2(T, w, ε)− x2(0, w, ε)

x3(T, w, ε)− x3(0, w, ε)



 =





α1

α2

α3



 . (6.1)

In this case

Q = diag
{

e
− T

R1 − 1, e
− T

R2 − 1, e
− T

R3 − 1

}
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and the Moore–Penrose pseudo-inverse matrix Q+ coincides with matrix Q−1

Q+ = Q−1 = diag

{

e
T

R1

1−e
T

R1

, e
T

R2

1−e
T

R2

, e
T

R3

1−e
T

R3

}

,

the vector g has the form

g =





α1

α2

α3



−
∫ T

0









e
τ−T
R1 I1(τ)

e
τ−T
R2 I2(τ)

e
τ−T
R3 I2(τ)









dτ.

The orthoprojectors PQ, PQ∗ are given by the relations

PQ = E3 − Q+Q = PQ∗ = E3 − QQ+ = O3,

where O3 is the zero matrix of dimension 3. The condition of solvability (3.1) is fulfilled

automatically, and the linear boundary-value problem (2.4), (2.5) has only one solution of the

following form:

x(t, cr) = x(t) =























e
T−t
R1

1 − e
T

R1

α1 −
1

1 − e
T

R1

∫ T

0
e

τ−t
R1 I1(τ)dτ +

∫ t

0
e

τ−t
R1 I1(τ)dτ

e
T−t
R2

1 − e
T

R2

α2 −
1

1 − e
T

R2

∫ T

0
e

τ−t
R2 I2(τ)dτ +

∫ t

0
e

τ−t
R2 I2(τ)dτ

e
T−t
R3

1 − e
T

R3

α3 −
1

1 − e
T

R3

∫ T

0
e

τ−t
R3 I3(τ)dτ +

∫ t

0
e

τ−t
R3 I3(τ)dτ























.

Any vector cr satisfies the equation for generating vectors (3.5) since PQ∗ = O3. From (5.10)

follows that matrix B = O3. Thus, the boundary-value problem (2.2), (6.1) has a solution

which, according to Theorem 5.1, can be found using the iterative process

xk+1(t, w, ε) = yk+1(t, w, ε) + x(t),

yk+1(t, w, ε) = yk+1(t, w, ε)

= ε
(

Î(t) + G
[

W
(

Z(x(t)) + A1(t)y
k(t, w, ε) +R

(

yk(t, w, ε)
))

, 0
])

(t, ε).

If we rewrite this componentwise, then we obtain the following iterative procedure for finding

the solutions of the boundary-value problem (2.2), (6.1):

yk+1
1 (t, w, ε) = ε

∫ t

0
e

τ−t
R1

(

Î1(τ) + w12 tanh

(

a2

(

x2(τ) + yk
2(τ, w, ε)

)

2

))

dτ

+ εw13

∫ t

0
e

τ−t
R1 tanh

(

a3

(

x1(τ) + yk
3(τ, w, ε)

)

2

)

dτ

− ε
∫ T

0

e
τ−t
R1

1 − e
T

R1

(

Î1(τ) + w12 tanh

(

a2

(

x2(τ) + yk
2(τ, w, ε)

)

2

))

dτ

− εw13

∫ T

0

e
τ−t
R1

1 − e
T

R1

tanh

(

a3

(

x1(τ) + yk
3(τ, w, ε)

)

2

)

dτ,
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yk+1
2 (t, w, ε) = ε

∫ t

0
e

τ−t
R2

(

Î2(τ) + w12 tanh

(

a1

(

x1(τ) + yk
1(τ, w, ε)

)

2

))

dτ

+ εw23

∫ t

0
e

τ−t
R2 tanh

(

a3

(

x3(τ) + yk
3(τ, w, ε)

)

2

)

dτ

− ε
∫ T

0

e
τ−t
R2

1 − e
T

R2

(

Î2(τ) + w12 tanh

(

a1

(

x1(τ) + yk
1(τ, w, ε)

)

2

))

dτ

− εw23

∫ T

0

e
τ−t
R2

1 − e
T

R2

tanh

(

a3

(

x3(τ) + yk
3(τ, w, ε)

)

2

)

dτ,

yk+1
3 (t, w, ε) = ε

∫ t

0
e

τ−t
R3

(

Î3(τ) + w13 tanh

(

a1

(

x1(τ) + yk
1(τ, w, ε)

)

2

))

dτ

+ εw23

∫ t

0
e

τ−t
R3 tanh

(

a2

(

x2(τ) + yk
2(τ, w, ε)

)

2

)

dτ

− ε
∫ T

0

e
τ−t
R3

1 − e
T

R3

(

Î3(τ) + w13 tanh

(

a1

(

x1(τ) + yk
1(τ, w, ε)

)

2

))

dτ

− εw23

∫ T

0

e
τ−t
R3

1 − e
T

R3

tanh

(

a2

(

x2(τ) + yk
2(τ, w, ε)

)

2

)

dτ.

Example 6.3. Let us consider the Hopfield model for three neurons described by the bounda-

ry-value problem (2.2), (2.3) of the form

x′1(t, w, ε) = ε (w12 tanh (x2(t, w, ε)) + w13 tanh (x3(t, w, ε))) ,

x′2(t, w, ε) = ε (w12 tanh (x1(t, w, ε)) + w23 tanh (x3(t, w, ε))) ,

x′3(t, w, ε) = ε (2 + w13 tanh (x1(t, w, ε)) + w23 tanh (x2(t, w, ε))) ,

(6.2)

x1(1, w, ε)− x1(0, w, ε) = 0,
∫ 1

0
x1(t, w, ε)dt = 1

(6.3)

and the generating problem for it

x′j(t) = 0, j = 1, 2, 3, (6.4)

x1(1)− x1(0) = 0,
∫ 1

0
x1(t)dt = 1.

(6.5)

That is, in our case R1 = R2 = R3 = ∞, a1 = a2 = a3 = 2, I1(t) = I2(t) = I3(t) = 0,

Î1(t) = Î2(t) = 0, Î3(t) = 2, l = col
(

l1, l2
)

, α = col
(

0, 1
)

.

Let us investigate the problem of finding the extremum (minimum) of the loss function

L(x(t, w, ε), w) = 2
(

2w2
12 + w2

13 + 2w2
23 − 2w12w13 + w13w23

)

x1(0, w, ε)

− 2 coth(1)(6w12 − 4w13 − w23)x1(1, w, ε) → min
w∈R3

,
(6.6)

on the solutions of the boundary-value problem (6.2), (6.3), which at ε = 0 turn into solutions

of the generating problem (6.4), (6.5), by the vector of parameters w = col
(

w12, w13, w23

)

∈
R

3.
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Using the well-known formulas (see [7, p. 48], [28, p. 501]), we get r = 2, d = 1,

Q =

(

0 0 0

1 0 0

)

, Q+ =





0 1

0 0

0 0



 , PQ2
=





0 0

1 0

0 1



 , PQ∗
1
=
(

1 0
)

(6.7)

and the vector g has the following form

g =

(

0

1

)

.

The solvability condition (3.1), in our case, is satisfied and due to Theorem 3.1, the solution

of the generating problem (6.4), (6.5) takes the form

x(t, cr) =





1

c2

c3



 . (6.8)

The necessary condition for the existence of a solution x(t, w, ε) of the problem (6.2), (6.3),

which by ε = 0 turns into one of the solutions x(t, cr) (6.8) of the generating problem (6.4),

(6.5), in our case has the following representation:

F(cr) =
∫ 1

0
(w12 tanh(c2) + w13 tanh(c3)) dt = 0 (6.9)

or

c2 = − tanh−1

(

w13

w12
tanh(c3)

)

.

The values of the parameters c2 = c3 = 0, which are the solution of the system of equations

(6.9), determine the generating solution

x
(

t, c0
r

)

=





1

0

0



 , (6.10)

to which corresponds the solution x(t, w, ε) of the problem (6.2), (6.3).

Let us return to the problem of finding the minimum of functional (6.6). When ε tends

to 0, taking into consideration x(t, w, ε) → x
(

t, c0
r

)

, where x
(

t, c0
r

)

taking into consideration

(6.10), we obtain the quadratic functional for the vector of parameters w

Φ(w) = 4w2
12 + 2w2

13 + 4w2
23 − 4w12w13 + 2w13w23

− coth(1)(12w12 − 8w13 − 2w23) → min
w∈R3

.
(6.11)

The problem of finding the minimum of the quadratic functional (6.11) is equivalent to the

solution of the following equation

Sw =





4 −2 0

−2 2 1

0 1 4









w12

w13

w23



 = coth(1)





6

−4

−1



 = f . (6.12)

To find the solution of the equation (6.12), or, which is the same, find the minimum of the

quadratic functional (6.11), we use the accelerated method of conjugate gradients (4.4)–(4.6)
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and compare it with the method of steepest descent and the conjugate gradient method. Now

let us consider the case where

w0 =
3

2
coth(1)





1

0

0



 , σk = ak ϕ, ϕ =





1

0

0



 .

If the system ϕi, i = 1, n, n ≤ 3 consists of more than one linearly independent element, then

the rate of convergence of the accelerated method of conjugate gradients increases. Without

cluttering the example above with calculations that can be made following the computational

scheme from [31], we present successive approximations to the minimum of functional (6.11)

obtained by the accelerated method of conjugate gradients

w1 =
coth(1)

14





19

−4

−4



 , w2 = coth(1)





1

−1

0



 ,

and the conjugate gradient method

w1 =
coth(1)

4





6

−1

−1



 , w2 =
coth(1)

10





11

−6

−2



 , w3 = coth(1)





1

−1

0



 .

Therefore, as can be proved by substituting the obtained approximations into the equation

(6.12), the minimum of functional (6.11) is achieved by the accelerated method of conjugate

gradients in the second approximation w2, and by the conjugate gradient method in the third

approximation w3, and is equal to

w∗
12 = coth(1), w∗

13 = − coth(1), w∗
23 = 0. (6.13)

Note that the rate of convergence of the method of steepest descent, in our case, is considerably

slower and even the approximation w5 is far away from the value (6.13)

w1 =
coth(1)

4





6

−1

−1



 , w3 =
coth(1)

32





42

−17

−5



 , w5 ≈ coth(1)





1, 206881

−0, 683004

−0, 103441



 .

Let us fix the value of the vector of parameters w = w∗ (6.13). Let us now find the

sufficient condition for the existence of solutions of the problem (6.2), (6.3). For this we make

the substitution

x(t, w∗, ε) = x
(

t, c0
r

)

+ y(t, w∗, ε),

where x
(

t, c0
r

)

has the form (6.10). After such a substitution we obtain the following boundary-

value problem

y′1(t, w∗, ε) = ε coth(1) (tanh (y2(t, w∗, ε))− tanh (y3(t, w∗, ε))) ,

y′2(t, w∗, ε) = ε coth(1) tanh (1 + y1(t, w∗, ε)) ,

y′3(t, w∗, ε) = ε (2 − coth(1) tanh (1 + y1(t, w∗, ε))) ,

y1(1, w∗, ε)− y1(0, w∗, ε) = 0,
∫ 1

0
y1(t, w∗, ε)dt = 0.
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For the vector-function Z
(

x
(

t, c0
r

)

+ y(t, w∗, ε)
)

, in the neighbourhood of the generating solu-

tion x
(

t, c0
r

)

(6.10), the following representation holds

Z(x(t, c0
r ) + y(t, w∗, ε)) = Z(x(t, c0

r )) + A1(t)y(t, w∗, ε) +R(y(t, w∗, ε)),

where

Z
(

x
(

t, c0
r

))

= col
(

tanh(1), 0, 0
)

,

A1(t) = diag
{

cosh−2(1), 1, 1
}

,

R(y(t, w∗, ε)) =





R1(y(t, w∗, ε))

R2(y(t, w∗, ε))

R3(y(t, w∗, ε))





=









tanh (1 + y1(t, w∗, ε))− tanh(1)− y1(t, w∗, ε)

cosh2(1)
tanh (y2(t, w∗, ε))− y2(t, w∗, ε)

tanh (y3(t, w∗, ε))− y3(t, w∗, ε)









.

The function H (t, y(t, w∗, ε), y(t, w∗, ε)) has the form:

H (t, y(t, w∗, ε), y(t, w∗, ε)) =





H1 (t, y(t, w∗, ε), y(t, w∗, ε))
H2 (t, y(t, w∗, ε), y(t, w∗, ε))
H3 (t, y(t, w∗, ε), y(t, w∗, ε))





=









y1(t, w∗, ε)

cosh2(1)
+R1(y(t, w∗, ε))

y2(t, w∗, ε) +R2(y(t, w∗, ε))

y3(t, w∗, ε) +R3(y(t, w∗, ε))









.

Matrices B, B+, PBr1
, PB∗

d1
in our case takes the following view

B = coth(1)
(

1 −1
)

, B+ =
tanh(1)

2

(

1

−1

)

, PB1
=

1

2

(

1

1

)

, PB∗ = 0. (6.14)

Using (6.7), (6.14), we verify the validity of condition (5.12). Following Theorem 5.1, we can

find an approximate solution of (6.2), (6.3), which under ε = 0 turns into x
(

t, c0
)

(6.10) of the

generating problem (6.4), (6.5), following this algorithm

ck
3(w

∗, ε) = −ck
2(w

∗, ε) =
1

2

∫ 1

0
H2

(

τ, yk(τ, w∗, ε), yk(τ, w∗, ε)
)

dτ

− 1

2

∫ 1

0
H3

(

τ, yk(τ, w∗, ε), yk(τ, w∗, ε)
)

dτ,

(6.15)

yk+1
1 (t, w∗, ε) = ε coth(1)

∫ t

0

(

2ck
2(w

∗, ε) + H2

(

τ, yk(τ, w∗, ε), yk(τ, w∗, ε)
))

dτ

− ε coth(1)
∫ t

0
H3

(

τ, yk(τ, w∗, ε), yk(τ, w∗, ε)
)

dτ

− ε coth(1)
∫ 1

0

∫ t

0

(

2ck
2(w

∗, ε) + H2

(

τ, yk(τ, w∗, ε), yk(τ, w∗, ε)
))

dτdt

+ ε coth(1)
∫ 1

0

∫ t

0
H3

(

τ, yk(τ, w∗, ε), yk(τ, w∗, ε)
)

dτdt,

(6.16)
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yk+1
2 (t, w∗, ε) = ε coth(1)

∫ t

0
tanh

(

1 + yk
1(τ, w∗, ε)

)

dτ

+
2ε

sinh(2)

∫ t

0

(

yk
1(τ, w∗, ε)− yk

1(τ, w∗, ε)
)

dτ,

(6.17)

yk+1
3 (t, w∗, ε) = 2εt − yk+1

2 (t, w∗, ε), (6.18)

yk+1
1 (t, w∗, ε) = yk+1

1 (t, w∗, ε), yk+1
2 (t, w∗, ε) = ck

2(w
∗, ε) + yk+1

2 (t, w∗, ε), (6.19)

yk+1
3 (t, w∗, ε) = ck

3(w
∗, ε) + yk+1

3 (t, w∗, ε), (6.20)

xk
1(t, w∗, ε) = 1 + yk

1(t, w∗, ε), xk
2(t, w∗, ε) = yk

2(t, w∗, ε), xk
3(t, w∗, ε) = yk

3(t, w∗, ε), (6.21)

xi(t, w∗, ε) = lim
k→∞

xk
i (t, w∗, ε), y0

i (t, w∗, ε) = y0
i (t, w∗, ε) = 0, i = 1, 3. (6.22)

Let us construct the first approximation x1(t, w∗, ε). Since y0(t, w∗, ε) = y0(t, w∗, ε) = 0,

then the constants c0
2(w

∗, ε), c0
3(w

∗, ε) defined by formula (6.15) take the form c0
2(w

∗, ε) =

c0
3(w

∗, ε) = 0. From (6.16)–(6.20) we obtain

y1(t, w∗, ε) = y1(t, w∗, ε) = ε





0

t

t





and, following (6.21), we get

x1(t, w∗, ε) =





1

εt

εt



 . (6.23)

Continuing calculations according to (6.15)–(6.22), we see that

ck
2(w

∗, ε) = ck
3(w

∗, ε) = 0, ∀k ≥ 1

and all subsequent approximations xk(t, w∗, ε), k ≥ 2 are equal to the first approximation, that

is vector-function (6.23), as can be seen by a simple substitution, is the solution of (6.2), (6.3),

which at ε = 0 turns into the generating solution (6.10) for the values of parameters (6.13),

minimizing functional (6.11).

Note that one of the important concepts in the study of the problem for finding the ex-

tremum of a function on solutions of an equation, including problem (2.2), (2.3), (4.1), is the

concept of solution sensitivity with respect to the parameters

s(t, ε) =
∂x(t, w, ε)

∂w
.

In the literature [9, 10, 12, 16, 18, 24, 42] there are two approaches to find s(t, ε): the direct

method, which uses the chain rule to find the complete derivative, and adjoint sensitivity

method from Pontryagin papers [39]. The use of the conjugate sensitivity method reduces the

computational costs when finding the gradient by parameters when the number of parameters

is much greater than the dimension of the set of required functions. When the number of

parameters is much less than the number of desired functions, the advantages of this method

are lost due to the complexity of solving the auxiliary coupled system. In Example 6.3 we

consider a boundary-value problem for systems of three differential equations with three

parameters. Therefore, the use of the direct method and adjoint sensitivity method for finding

the gradient by parameters w12, w13, w23 are equivalent. However, when investigating the
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problem of optimization of function on solutions of the Hopfield network for n (n ≫ 3)

neurons, in which the number of weights by far exceeds the number of potentials (M ≫ n), the

adjoint sensitivity method has advantages over the direct method. The study of relationships

of the direct method, adjoint sensitivity method and the accelerated method of conjugate

gradients for solving the presented paper tasks will be devoted to our future research.

7 Conclusions

Necessary and sufficient conditions for the solvability were established, as well as a con-

structive algorithm for finding solutions to a boundary-value problem for a system of weakly

non-linear differential equations describing Hopfield network for n neurons is presented. The

problem of minimizing a functional on the solutions of the given problem was investigated

and the application of the accelerated method of conjugate gradients to its solutions was ex-

plored. The results are demonstrated by examples of problems for the case of three neurons.
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1 Introduction

Discrete Schrödinger equations are widely used as models in Physics and other branches
of science (see, e.g., [3, 6, 11, 12, 14, 19] and the references therein). These discrete equations
belong to a large class of lattice dynamical systems which has been the object of extensive
research (see, for example, [4,5,7,9,12,13,19,22] and the references therein). Various properties
related to the dynamics of such systems have been studied. Among them, the existence of
global attractors is a theme which attracts a great deal of attention. However, most of the
contributions in this line of research addressed to discrete Schrödinger models are concerned
the discrete nonlinear Schrödinger equation (DNLS). In this paper, our main aim is to prove
the existence of a pullback attractor for a nonlocal discrete nonlinear Schrödinger equation
when delay terms are considered. The model is written as follows

iu̇n(t) +
+∞

∑
m=−∞

J(n − m)um(t) + gn(t, unt) + iγun(t) = fn(t), t > τ, n ∈ Z,

un(s) = ψn(s − τ), ∀s ∈ [τ − h, τ],

(1.1)

where τ, h, and γ are real numbers with h > 0 and γ > 0. In (1.1), un(t), fn(t), and ψn

are complex functions and unt denotes the translation of un at time t, defined by unt(s) =

un(t + s), ∀s ∈ [−h, 0]. The dispersive coupling parameters J(m) are assumed to be real
numbers, symmetric (i.e., J(−m) = J(m), for all positive integer m) and ∑

+∞
m=1 |J(m)| < +∞.

BEmail: jardel.m.pereira@ufsc.br
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This includes important special cases as J(m) = J0e−β|m| and J(m) = J0|m|−s, where J0, β, and
s are positive real constants suitably chosen [8].

We assume that the nonlinear term gn(t, unt) in (1.1) includes delay terms as follows

gn(t, unt) = g0,n(un(t)) + g1,n(un(t − ρ(t)) +
∫ 0

−h
bn(s, un(t + s)) ds. (1.2)

Appropriate hypotheses on the functions ρ : R → [0, h], gi,n : C → C, i = 0, 1, bn :
[0, h]× C → C, and fn(t) are stated in Section 2.

Specific deterministic cases of equation (1.1) have been used in the study of physical phe-
nomena in which long-range dispersive interactions cannot be disregarded (see the physical
discussions in [8]). An example is the model proposed in [17] for the description of the non-
linear dynamics of the DNA molecule.

A class of discrete Schrödinger equations of great importance is

iu̇n(t) + ∆
p
dun(t) + gn(t, unt) + iγun(t) = fn(t), (1.3)

where ∆
p
d = ∆d ◦ · · · ◦ ∆d, p times, and ∆d is the one-dimensional discrete Laplace operator

defined by ∆dun = un+1 + un−1 − 2un. Equation (1.3) can be derived from (1.1) by choosing
the coupling parameters J(m) as

J(m) =
2p

∑
j=0

(

2p

j

)

(−1)jδm,j−p,

where p is any positive integer and δm,k is the Kronecker delta.

Many contributions on existence and properties of solutions of the DNLS equation (i.e,
(1.3) with p = 1, g1,n = bn = 0) and fn independent of time can be found in the literature
(see, e.g., [3, 4, 11, 19] and references therein). For example, the existence and approximation
of attractors for the DNLS equation were investigated in [11] while the existence of attractors
for the DNLS with retarded terms was studied in [4]. Concerning equation (1.1), in [19],
the authors studied the existence of localized solutions for the homogeneous case without
delays. Later, also for the autonomous deterministic model, the existence of a global attractor
in weighted spaces was established in [20]. For the existence of attractors for some non-
autonomous lattice dynamical systems with retarded terms of the type (1.2) and references
about related works we refer the reader to the article [2]. Still concerning lattice models with
nonlocal terms, we would like to mention the papers [1, 10, 15, 18, 21].

In this paper, under suitable conditions on the functions ρ, gi,n, i = 0, 1, bn, and fn, we
prove the existence of a pullback attractor for the process associated with problem (1.1). As a
consequence of our discussion, the existence of a global attractor for the autonomous model
is derived.

The paper is organized as follows. In Section 2, we prove that the initial value problem
(1.1) is globally well posed. In Section 3, we establish the existence of a pullback attractor
for the process associated with problem (1.1) using the results in [16]. Finally, in Section 4,
we briefly show how the same ideas of the previous sections can be adapted to prove the
existence of a global attractor for the autonomous model.
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2 Existence of solutions

In this section, we discuss the existence of solutions for the problem (1.1). We denote by ℓp

the usual space of complex sequences u = (un)n∈Z such that ‖u‖ℓp < ∞, where

‖u‖ℓp =

(

+∞

∑
n=−∞

|un|p
)

1
p

, if 1 ≤ p < ∞ and ‖u‖ℓ∞ = sup
n∈Z

|un|, if p = ∞.

When p = 2, ℓ2 is a Hilbert space with the inner product given by

(u, v)ℓ2 =
+∞

∑
n=−∞

unvn, u, v ∈ ℓ
2,

and, in this case, we denote by ‖ · ‖ the corresponding norm.
For 1 ≤ p < ∞, Lp(−h, 0) denotes the usual Banach space of (class of ) real functions f

defined on [−h, 0] such that | f |p is integrable in sense of Lebesgue and we recall that for the
ℓp spaces the following embedding relation holds:

ℓ
q ⊂ ℓ

p, ‖u‖ℓp ≤ ‖u‖ℓq , 1 ≤ q ≤ p ≤ ∞.

Regarding the functions gi,n : C → C, i = 0, 1, bn : [−h, 0]× C → C , f = ( fn(t))n∈Z, and
ρ(t) in (1.1) and (1.2) we assume that

(A1) zg0,n(z) is real for all z ∈ C and n ∈ Z.

(A2) There exist a function κ ∈ L2(−h, 0) and functions b0,n : C → C such that

|bn(s, z1)− bn(s, z2)| ≤ κ(s)|b0,n(z1)− b0,n(z2)|,

∀s ∈ [−h, 0] and ∀z1, z2 ∈ C. We set κ2
0 :=

∫ 0
−h |κ(s)|2 ds.

(A3) For every R > 0 there exist positive constants Lj(R), j = 1, 2, such that

|gi,n(z1)− gi,n(z2)| ≤ L1(R) |z1 − z2|, i = 0, 1,

|b0,n(z1)− b0,n(z2)| ≤ L2(R) |z1 − z2|,

for any n ∈ Z and any z1, z2 ∈ C such that |zj| ≤ R, j = 1, 2. Moreover, (g0,n(0))n∈Z ∈ ℓ2.

(A4) There exist sequences of real numbers k1 = (k1,n)n∈Z ∈ ℓ∞, k2 = (k2,n)n∈Z ∈ ℓ2 and
non-negative real functions β1,n(·) ∈ L2(−h, 0) and β2,n(·) ∈ L1(−h, 0) such that

|g1,n(z)| ≤ k1,n|z|+ k2,n and |bn(s, z)| ≤ β1,n(s)|z|+ β2,n(s),

for all n ∈ Z, s ∈ [−h, 0], and z ∈ C. We set K1 = ‖k1‖ℓ∞ , K2 = ‖k2‖, and

B1 = sup
n∈Z

(

∫ 0

−h
β2

1,n(s) ds

)1/2

< ∞, B2 =

[

+∞

∑
n=−∞

(

∫ 0

−h
b2,n(s) ds

)2
]1/2

< ∞.

(A5) f ∈ C(R; ℓ2).

(A6) ρ ∈ C(R; [0, h]).

(A7)
∫ t
−∞

‖ f (s)‖2 ds < ∞, ∀t ∈ R.
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Example 2.1. Let 0 6= χ = (χn)n∈Z ∈ ℓp, for some 1 ≤ p ≤ ∞, and ϕ1 : R → R defined by
ϕ1(t) =

t2

a+bt2 , where a and b are positive real constants. Also define the functions g1,n : C → C,
b0,n : C → C and bn : [−h, 0]× C → C by

g1,n(z) = b0,n(z) = χn ϕ1(|z|) z,

bn(s, z) = χn ϕ1(|z|) z
1
h
(s + h), ∀n ∈ Z, s ∈ [−h, 0] and z ∈ C.

Then, the hypotheses (A2)–(A4) are satisfied with

L1(R) = L2(R) =

(

1
b
+

R√
ab

)

‖χ‖ℓp ,

κ(s) =
1
h
(s + h), k1,n =

1
b
|χn|, k2,n = 0, β1,n(s) =

1
bh

|χn|(s + h), and β2,n = 0.

Conditions (A1) and (A3) concerning g0,n are satisfied, for example, if g0,n(z) = χn ϕ2(|z|)z,
with χn as before and any ϕ2 ∈ C1(R+; R), such that ϕ2(0) = 0.

Now let us write (1.1) as an evolution equation with a retarded term in ℓ2. For any
u = (un)n∈Z we define (Au)n = ∑

+∞
m=−∞ J(n − m)um, ∀n ∈ Z.

Lemma 2.2. A : ℓ2 → ℓ2 is a bounded operator and ‖Au‖ ≤ 4‖J‖ℓ1‖u‖, ∀u ∈ ℓ2.

Proof. See Lemma 2.1 in [20].

We consider the space Eh = C([−h, 0]; ℓ2) with the usual norm given by ‖u‖Eh
=

maxs∈[−h,0] ‖u(s)‖ and define the map g : R × Eh → ℓ2 by (g(t, v))n∈Z = gn(t, vn), where
v(s) = (vn(s))n∈Z, for any s ∈ [−h, 0], and

gn(t, vn) = g0,n(vn(0)) + g1,n(vn(−ρ(t))) +
∫ 0

−h
bn(s, vn(s)) ds.

If we set ut = (unt)n∈Z for any t ≥ τ, then we can write the initial value problem (1.1) in
ℓ2 as

iu̇(t) + Au(t) + g(t, ut) + iγu(t) = f (t), t > τ,

u(s) = ψ(s − τ), ∀s ∈ [τ − h, τ],
(2.1)

where ψ(s) = (ψn(s))n∈Z, for any s ∈ [−h, 0].
We now define the map B : R × Eh → ℓ2 by

B(t, v) = −i
[

Av(0) + g(t, v) + iγv(0)− f (t)
]

.

Then, problem (2.1) can be rewritten as the following functional equation in ℓ2

du

dt
+ B(t, ut) = 0, t > τ

uτ = ψ.
(2.2)

The following two lemmas are sufficient to ensure the existence of a local solution for (2.1).
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Lemma 2.3. Assume that (A2)–(A6) hold. Then the map B is continuous and satisfies the local

Lipschitz condition: For any v, w ∈ Eh, with ‖v‖Eh
≤ R and ‖w‖Eh

≤ R, there exists a positive

constant L = L(R) such that

‖B(t, v)−B(t, w)‖ ≤ L ‖v − w‖Eh
, ∀t ∈ R.

Proof. Using (A2)–(A6) we see that B is well defined. Fix (t, v) ∈ R × Eh and consider tm → t

in R and vm → v in Eh. We have that

‖B(tm, vm)−B(t, v)‖ ≤ ‖A(vm(0)− v(0))‖+ ‖g(tm, vm)− g(t, v)‖
+ γ‖vm(0)− v(0)‖+ ‖ f (tm)− f (t)‖.

(2.3)

Since the sequence (vm)m∈N is bounded in Eh, then using the assumptions (A2), (A3), and
(A6) we can find a positive constant L depending only on ‖v‖Eh

such that

‖g(tm, vm)− g(t, v)‖2 ≤ 4
+∞

∑
n=−∞

|g0,n(v
m
n (0))− g0,n(vn(0))|2

+ 4
+∞

∑
n=−∞

|g1,n(v
m
n (−ρ(tm)))− g1,n(vn(−ρ(t)))|2

+ 4
+∞

∑
n=−∞

(

∫ 0

−h
|bn(s, vm

n (s))− bn(s, vn(s))| ds

)2

≤ 8 L2‖vm − v‖2
Eh
+ 4 L2

+∞

∑
n=−∞

(

∫ 0

−h
|κ(s)| |vm

n (s)− vn(s)| ds

)2

.

(2.4)

Using the Cauchy–Schwarz inequality and the fact that ‖vm − v‖Eh
< ∞ we can estimate

the last term in (2.4) as follows

+∞

∑
n=−∞

(

∫ 0

−h
|κ(s)| |vm

n (s)− vn(s)| ds

)2

ds ≤ κ2
0

+∞

∑
n=−∞

∫ 0

−h
|vm

n (s)− v(s)|2 ds

≤ κ2
0

∫ 0

−h

+∞

∑
n=−∞

|vm
n (s)− v(s)|2 ds ≤ κ2

0‖vm − v‖2
Eh

h.

(2.5)

From (2.3), (2.4), (2.5), (A5), and Lemma 2.2 we deduce the continuity of B. In a similar
manner we prove the Lipschitz condition.

Lemma 2.4. Assume that (A2)–(A6) hold. Then the map B is bounded, i.e., it takes bounded subsets

of R × Eh onto bounded subsets of ℓ2.

Proof. Let O be a bounded subset of R × Eh. Then, there exists a positive constant R such that
|t|2 + ‖v‖2

Eh
≤ R2, ∀(t, v) ∈ O. Using Lemma 2.3 we find a positive constant L = L(R) such

that

‖B(t, v)‖ ≤ ‖B(t, v)−B(t, 0)‖+ ‖B(t, 0)‖
≤ LR + max

|t|≤R
‖B(t, 0)‖ < ∞, ∀(t, v) ∈ O.

Using Lemmas 2.3, 2.4 and applying the Theory of Functional Equations to problem (2.2)
we deduce the following result of existence of local solution for (2.1).
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Theorem 2.5. Assume that (A2)–(A6) hold. Then, for each ψ ∈ Eh, the initial value problem (2.1)
has a unique solution u = u(t) defined in [τ − h, T) such that u ∈ C([τ − h, T); ℓ2) ∩ C1([τ, T); ℓ2).

Moreover, if T < ∞ then limt→T− ‖u(t)‖ = ∞.

Next let us show that the local solution obtained in Theorem 2.5 can be extended globally.

Lemma 2.6. Assume that (A1)–(A6) hold. Then the solution u of (2.1) with uτ = ψ ∈ Eh satisfies

1
2

d

dt
‖u(t)‖2 +

γ

2
‖u(t)‖2 ≤ 1

2γ
‖ f (t)‖2 + (K1‖u(t − ρ(t))‖+ K2)‖u(t)‖

+

[

B1

(

∫ 0

−h
‖u(t + s)‖2 ds

)1/2

+ B2

]

‖u(t)‖, τ ≤ t < T.
(2.6)

Proof. Taking the imaginary part of the inner product of equation (2.1) with u in ℓ2, we obtain

1
2

d

dt
‖u(t)‖2 + Im(Au(t), u(t))ℓ2 + γ‖u(t)‖2 + Im(g(t, ut), u(t))ℓ2 = Im( f (t), u(t))ℓ2 ,

for all τ ≤ t < T. Since

Im( f (t), u(t))ℓ2 ≤ 1
2γ

‖ f (t)‖2 +
γ

2
‖u(t)‖2,

(Au(t), u(t))ℓ2 = J(0)‖u(t)‖2 + 2
+∞

∑
m=1

+∞

∑
n=−∞

J(m)Re(un+m(t)un(t)),

then, using (A1), we get the inequality

1
2

d

dt
‖u(t)‖2 +

γ

2
‖u(t)‖2 ≤ 1

2γ
‖ f (t)‖2 − Im

+∞

∑
n=−∞

g1,n(un(t − ρ(t)))un

− Im
+∞

∑
n=−∞

∫ 0

−h
bn(s, un(t + s)) ds un, τ ≤ t < T.

(2.7)

Let us estimate the last two terms in (2.7) using the assumption (A4) and the fact that
‖ut‖Eh

< ∞, ∀τ ≤ t < T. We have that

− Im
+∞

∑
n=−∞

g1,n(un(t − ρ(t)))un ≤
+∞

∑
n=−∞

[k1,n|un(t − ρ(t))|+ k2,n]|un|

≤ (K1‖u(t − ρ(t))‖+ K2)‖u‖,

(2.8)

− Im
+∞

∑
n=−∞

∫ 0

−h
bn(s, un(t + s)) ds un ≤

+∞

∑
n=−∞

∫ 0

−h
[β1,n(s)|un(t + s)|+ β2,n(s)] ds|un|

≤
[

+∞

∑
n=−∞

(

∫ 0

−h
β2

1,n(s) ds

)(

∫ 0

−h
|un(t + s)|2 ds

)

]1/2

‖u‖+ B2‖u‖

≤
[

B1

(

∫ 0

−h
‖u(t + s)‖2 ds

)1/2

+ B2

]

‖u‖.

(2.9)

From (2.7)–(2.9) we obtain (2.6).
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We now make the following assumptions on the constants B1, K1, γ, h, and a suitable
positive parameter µ, which will be used in Section 3 to define the universe where the pullback
attractor will lie in.

(A8) We assume that there exists a positive real number µ such that

(i) If K1 > 0 and B1 ≥ 0 then

4B2
1h < e−µhγ

(γ

2
− µ

)

(2.10)

and
µ > 2K1eµh. (2.11)

(ii) If K1 = 0 and B1 > 0 then

µ <
γ

2
and µ >

4
γ

B2
1e2µhh. (2.12)

(iii) If K1 = B1 = 0 then µ = γ
2 and h is arbitrary.

Remark 2.7. Conditions in (A8) will be used in the next theorem to prove an estimate for the
solution of (2.1) that allows us to extend it globally and that will be used in the proofs of
Lemmas 3.1, 3.2 and 3.3 in Section 3. It is clear from (2.10) that µ <

γ
2 . We also observe that

(2.11) holds if and only if 0 < 2K1 <
1
he , where 1

he is the maximum value of the real function
φ(s) = se−hs, s ≥ 0. From this we see that 2K1eh < 1 and µ ∈ (µ1, µ2), where µj, j = 1, 2, are
the two positive solutions of the equation µe−µh = 2K1.

Theorem 2.8. Assume that (A1)–(A8) hold. Then, the solution u = u(t) of (2.1) with uτ = ψ ∈ Eh

exists globally. Moreover, for each τ < T < ∞, the map I : Eh → C([τ, T]; Eh), defined by I(ψ)(t) =

ut, ∀τ ≤ t ≤ T, is continuous.

Proof. Assume that (A8)(i) holds. Multiplying (2.6) by eµt and integrating the resulting in-
equality over [τ, t] we have, for any positive real constants ε and ε′,

eµt‖u(t)‖2 ≤ eµτ‖ψ‖2
Eh
+ (µ − γ + ε + ε′)

∫ t

τ
eµs‖u(s)‖2 ds +

1
γ

∫ t

τ
eµs‖ f (s)‖2 ds

+

(

2B2
2

ε
+

K2
2

ε′

)

eµt

µ
+ 2K1

∫ t

τ
eµs‖us‖2

Eh
ds

+
2B2

1
ε

∫ t

τ

∫ 0

−h
eµt′‖u(t′ + s)‖2 ds dt′.

(2.13)

Let us estimate the last term in (2.13) using the initial condition in (2.1). We have

∫ t

τ

∫ 0

−h
eµt′‖u(t′ + s)‖2 ds dt′ =

∫ 0

−h

∫ t

τ
e−µseµ(t′+s)‖u(t′ + s)‖2 dt′ ds

≤ eµh
∫ 0

−h

∫ t

τ−h
eµσ‖u(σ)‖2dσ ds

= eµhh

[

∫ τ

τ−h
eµσ‖u(σ)‖2dσ +

∫ t

τ
eµσ‖u(σ)‖2dσ

]

≤ eµ(τ+h)h

µ
‖ψ‖2

Eh
+ eµhh

∫ t

τ
eµσ‖u(σ)‖2dσ.

(2.14)
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Substituting (2.14) into (2.13) we get

eµt‖u(t)‖2 ≤ eµτ‖ψ‖2
Eh
+

(

µ − γ + ε + ε′ +
2B2

1eµhh

ε

)

∫ t

τ
eµs‖u(s)‖2 ds

+
2B2

1eµhh

µε
eµτ‖ψ‖2

Eh
+

(

2B2
2

ε
+

K2
2

ε′

)

eµt

µ

+
1
γ

∫ t

τ
eµs‖ f (s)‖2 ds + 2K1

∫ t

τ
eµs‖us‖2

Eh
ds.

(2.15)

Using (2.10) we can choose ε = γ
2 and

ε′ =
γ

2
− µ − 4B2

1eµhh

γ
(2.16)

in (2.15) to obtain

eµt‖u(t)‖2 ≤ eµτ

(

1 +
4B2

1eµhh

µγ

)

‖ψ‖2
Eh
+

(

4B2
2

γ
+

K2
2

ε′

)

eµt

µ

+
1
γ

∫ t

τ
eµs‖ f (s)‖2 ds + 2K1

∫ t

τ
eµs‖us‖2

Eh
ds.

(2.17)

Since ‖u(s)‖ ≤ ‖ψ‖Eh
, ∀s ∈ [τ − h, τ], then we can replace t in (2.17) by t + σ, with

σ ∈ [−h, 0], to deduce that

eµt‖ut‖2
Eh

≤ M(t) + L
∫ t

τ
eµs‖us‖2

Eh
ds,

where L = 2K1eµh and

M(t) = eµ(τ+h)

(

1 +
4B2

1eµhh

µγ

)

‖ψ‖2
Eh
+

(

4B2
2

γ
+

K2
2

ε′

)

eµ(t+h)

µ
+

eµh

γ

∫ t

τ
eµs‖ f (s)‖2 ds.

The above inequality implies that

eµt‖ut‖2
Eh

≤ eL(t−τ)M(τ) + eLt
∫ t

τ
e−Ls M′(s) ds. (2.18)

Performing the calculations in (2.18) using M(t) above and the fact that µ > L by (2.11),
we find the following estimate for the solution of (2.1)

‖ut‖2
Eh

≤ c1‖ψ‖2
Eh

e(L−µ)te(µ−L)τ +
2µ − L

µ − L
c2 +

eµh

γ

∫ t

−∞
‖ f (s)‖2 ds, (2.19)

where

c1 = eµh

(

1 +
4B2

1eµhh

µγ

)

and c2 =

(

4B2
2

γ
+

K2
2

ε′

)

eµh

µ
. (2.20)

Now, assume that (A8)(ii) holds. For this case we replace (2.14) by

eµt‖u(t)‖2 ≤ eµτ‖ψ‖2
Eh
+ (µ − γ + ε + ε′)

∫ t

τ
eµs‖u(s)‖2 ds

+
2B2

1eµhh

µε
eµτ‖ψ‖2

Eh
+

(

2B2
2

ε
+

K2
2

ε′

)

eµt

µ

+
1
γ

∫ t

τ
eµs‖ f (s)‖2 ds +

2B2
1eµhh

ε

∫ t

τ
eµs‖us‖2

Eh
ds.

(2.21)
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Since that µ <
γ
2 , then we can choose ε = γ

2 and ε′ = γ
2 − µ in (2.21) and proceed as before

to obtain

eµt‖u(t)‖2 ≤ eµ(τ+h)

(

1 +
4B2

1eµhh

µγ

)

‖ψ‖2
Eh
+

(

4B2
2

γ
+

K2
2

ε′

)

eµ(t+h)

µ

+
eµh

γ

∫ t

τ
eµs‖ f (s)‖2 ds + L

∫ t

τ
eµs‖us‖2

Eh
ds,

(2.22)

where L = 4
γ B2

1e2µhh. By (2.12) we see that µ > L. Therefore, we can deduce the estimate
(2.19) with c1 and c2 as in (2.20), with ε′ = γ

2 − µ. Similarly, we can treat the case (A8)(iii) to
obtain the estimate

‖ut‖2
Eh

≤ c′1‖ψ‖2
Eh

e−µteµτ + 2c′2 +
eµh

γ

∫ t

−∞
‖ f (s)‖2 ds, (2.23)

where

c′1 = 2eµh and c′2 =
eµh

µ2

(

B2
2 + K2

2
)

. (2.24)

From (2.19) or (2.23) and Theorem 2.5 we conclude that the solution of (2.1) exists globally.
Next, let us prove that the map I is continuous. Fix τ < T < ∞, ψ ∈ Eh and consider
ψ1 ∈ Eh such that ‖ψ − ψ1‖Eh

< 1. Let us denote by v = v(t) the solution of (2.1) with initial
condition v(s) = ψ1(s − τ), ∀s ∈ [τ − h, τ]. Using the estimate (2.19) or (2.23) we can find a
positive constant K0 depending on ‖ψ‖Eh

and T such that ‖ut‖Eh
≤ K0 and ‖vt‖Eh

≤ K0, for all
τ ≤ t ≤ T. Then, using the integral representations of u and v and Lemma 2.3 it follows that

‖u(t)− v(t)‖ ≤ ‖ψ(0)− ψ1(0)‖+
∫ t

τ
‖B(s, us)−B(s, vs)‖ ds

≤ ‖ψ − ψ1‖Eh
+ L(K0)

∫ t

τ
‖us − vs‖Eh

ds.
(2.25)

Replacing t in (2.25) by t + σ, with σ ∈ [−h, 0], taking into account that ‖u(t + σ) −
v(t + σ)‖Eh

≤ ‖ψ − ψ1‖Eh
if t + σ ≤ τ, we obtain

‖ut − vt‖Eh
≤ ‖ψ − ψ1‖Eh

+ L(K0)
∫ t

τ
‖us − vs‖Eh

ds, ∀τ ≤ t ≤ T.

Then, by Gronwall’s inequality, we conclude that ‖ut − vt‖Eh
≤ eL(K0)(T−τ)‖ψ − ψ1‖Eh

,
which implies the continuity of I.

3 Existence of a pullback attractor

By Theorem 2.8 we can associate to the initial value problem (2.1) a process {U(t, τ)}t≥τ of
continuous maps U(t, τ) in Eh defined by U(t, τ)ψ = ut, where τ ≤ t and u = u(t) is the
global solution of (2.1). In this section, we establish the existence of a pullback attractor for
the process {U(t, τ)}t≥τ using the results obtained in [16]. We are interested in the existence
of a pullback attractor for a family of sets depending on time (see [16, Section 3]). Motivated
by the estimate (2.19) we consider the set Rµ of all functions r : R → (0, ∞) such that

lim
t→−∞

e(µ−L)tr2(t) = 0. (3.1)
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Let us denote by Dµ the class of all families D̂ = {D(t); t ∈ R} of nonempty subsets of Eh such
that D(t) ⊂ BEh

[0; rD̂(t)] := {ψ ∈ Eh; ‖ψ‖Eh
≤ rD̂(t)}, for some radius rD̂ ∈ Rµ. For the case

(A8)(iii) we consider in (3.1) L = 0. In what follows, we will assume that (A8)(i) or (A8)(ii)
holds. Suitable modifications will be indicated for the case (A8)(iii). We will also consider L

as in the proof of Theorem 2.8 and the constants c1, c2, c′1 and c′2 given by (2.20) and (2.24).

Lemma 3.1. Assume that (A1)–(A8) hold. Then, the family B̂µ of closed balls Bµ(t) = BEh
[0; Rµ(t)],

where for each t ∈ R, the radius Rµ(t) is defined by

R2
µ(t) =

2µ − L

µ − L
c2 +

eµh

γ

∫ t

−∞
‖ f (s)‖2 ds + 1, (3.2)

is pullback Dµ-absorbing for the process {U(t, τ)}t≥τ.

Proof. Since µ > L, then using (A7), we have

lim
t→−∞

e(µ−L)tR2
µ(t) = lim

t→−∞
e(µ−L)t

(

2µ − L

µ − L
c2 +

eµh

γ

∫ t

−∞
‖ f (s)‖2 ds + 1

)

= 0,

which shows that B̂µ ∈ Dµ. Now, fixed t ∈ R and D̂ ∈ Dµ, there exists a τ0 = τ0(t, D̂) ≤ t

such that
e(µ−L)τr2

D̂
(τ) < c−1

1 e(µ−L)t,

for any τ ≤ τ0. Then, for any ψ ∈ D(τ), using (2.19) we obtain

‖U(t, τ)ψ‖2
Eh

≤ c1r2
D̂
(τ)e(µ−L)τe(L−µ)t +

2µ − L

µ − L
c2 +

eµh

γ

∫ t

−∞
‖ f (s)‖2 ds

≤ R2
µ(t).

Therefore, U(t, τ)D(τ) ⊂ Bµ(t), for all τ ≤ τ0, which proves that the family B̂µ is pullback
Dµ-absorbing for the process {U(t, τ)}t≥τ.

In Lemma 3.1, in the case (A8)(iii), we take L = 0 and replace c2 by c′2 in (3.2). Next, let
us prove an estimate for the tails of the solutions u = u(t) of (2.1) when the initial conditions
uτ = ψ belong to Bµ(τ).

Lemma 3.2. Assume that (A1)–(A8) hold. Let B̂µ be the pullback Dµ-absorbing family defined in

Lemma 3.1. Then, for any ε > 0 and any t′ < T, there exist τ0 = τ0(ε, t′, T, B̂µ) and a positive integer

k = k(ε, T, B̂µ), such that

max
s∈[−h,0]

∑
|n|>2k

|un(t + s)|2 < ε, ∀τ ≤ τ0, t ∈ [t′, T],

for any solution u = u(t) of (2.1) with initial condition uτ ∈ Bµ(τ).

Proof. Assume that (A8)(i) holds. Similarly, we treat the case (A8)(ii). Let uτ = ψ ∈ Bµ(τ) and
consider the corresponding solution u = u(t) of (2.1) defined in [τ, ∞). Let θ ∈ C1(R+; R)

be a function such that θ ≡ 0 on [0, 1], θ ≡ 1 on [2, ∞), 0 ≤ θ ≤ 1, and |θ′(t)| ≤ 2, ∀t ≥ 0.
Let v = (vn(t))n∈Z, where vn(t) = θ( |n|k )un(t), with k > 0 fixed in Z. In order to simplify

notation, we will write θn = θ
( |n|

k

)

, ‖w‖θ = ∑
+∞
n=−∞ θn|wn|2 and ‖ut‖2

Eh,θ
= maxs∈[−h,0] ‖ut(s)‖2

θ .

Taking the imaginary part of the inner product of equation (2.1) with v in ℓ2 we find

1
2

d

dt
(u, v)ℓ2 + γ(u, v)ℓ2 = Im( f , v)ℓ2 − Im(Au, v)ℓ2 − Im(g(t, ut), v)ℓ2 , ∀t ≥ τ. (3.3)
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Let us estimate the terms on the right-hand side of (3.3). Since ψ ∈ Bµ(τ) then, using
(2.19), we see that

‖u(t)‖ ≤ r0, ∀t ∈ [τ, T],

with r0 = (c1 + 1)Rµ(T). Moreover, by the definition of θ, we have that |θn+m − θn| ≤ 2
k m and

|θn+m − θn| ≤ 2. Then,

− Im(Au(t), v(t))ℓ2 = − Im

{

J(0)‖u(t)‖2
θ +

+∞

∑
n=−∞

+∞

∑
m=1

J(m)(θn+m − θn)un+m(t)un(t)

}

≤
+∞

∑
n=−∞

+∞

∑
m=1

|J(m)| |θn+m − θn| |un+m(t)| |un(t)| ≤ ν(T, k, l),

where ν(T, k, l) =
( 2

k ∑
l
m=1 m|J(m)|+ 2 ∑

+∞
m=l+1 |J(m)|

)

r2
0, l ≥ 1.

Using the hypotheses (A1) and (A4) and proceeding as in the proof of Lemma 2.6 we
obtain the estimate

− Im(g(t, ut), v(t))ℓ2 ≤
+∞

∑
n=−∞

θn|g1,n(t, un(t − ρ(t)))| |un(t)|

+
+∞

∑
n=−∞

θn

∫ 0

−h
|bn(s, un(t + s))| ds|un(t)|

≤ (K1‖u(t − ρ(t))‖θ + K2,θ)‖u‖θ

+

[

B1

(

∫ 0

−h
‖u(t + s)‖2

θ ds

)1/2

+ B2,θ

]

‖u‖θ ,

where B2,θ =
[

∑
+∞
n=−∞ θn

( ∫ 0
−h β2,n(s) ds

)2]1/2 and K2,θ =
(

∑
+∞
n=−∞ θnk2

2,n

)1/2.
In addition, we know that

− Im( f (t), v(t))ℓ2 ≤ 1
2γ

‖ f (t)‖2
θ +

γ

2
‖u(t)‖2

θ .

Therefore,

d

dt
‖u(t)‖2

θ + γ‖u(t)‖2
θ ≤

1
γ
‖ f ‖2

θ + 2 (K1‖u(t − ρ(t))‖θ + K2,θ) ‖u(t)‖θ

+ 2

[

B1

(

∫ 0

−h
‖u(t + s)‖2

θ ds

)1/2

+ B2,θ

]

‖u(t)‖θ + 2ν(T, k, l),
(3.4)

for all τ ≤ t ≤ T.
Now, we multiply (3.4) by eµt and use the inequalities

2

[

B1

(

∫ 0

−h
‖u(t + s)‖2

θ ds

)1/2

+ B2,θ

]

‖u‖θ ≤
4B2

1
γ

∫ 0

−h
‖u(t + s)‖2

θ ds +
4B2

2,θ

γ
+

γ

2
‖u‖2

θ ,

2 (K1‖u(t − ρ(t))‖θ + K2,θ) ‖u(t)‖θ ≤ 2K1‖ut‖2
Eh,θ

+
K2

2,θ

ε′
+ ε′‖u‖2

θ ,
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where ε′ > 0, to find

d

dt

(

eµt‖u(t)‖2
θ

)

≤
(

µ − γ

2
+ ε′

)

eµt‖u(t)‖2
θ +

1
γ

eµt‖ f (t)‖2
θ + 2K1eµt‖ut‖2

Eh,θ

+

(

4B2
2,θ

γ
+

K2
2,θ

ε′

)

eµt + 2ν(T, k, l)eµt

+
4B2

1eµt

γ

∫ 0

−h
‖u(t + s)‖2

θ ds, ∀τ ≤ t ≤ T.

(3.5)

Integrating (3.5) over [τ, t] and using the following estimate analogous to (2.14)

∫ t

τ

∫ 0

−h
eµt′‖u(t + s)‖2

θ ds dt′ ≤ eµ(τ+h)h

µ
‖ψ‖2

Eh
+ eµhh

∫ t

τ
eµs‖u(s)‖2

θ ds,

we obtain

eµt‖u(t)‖2
θ ≤ eµτ

(

1 +
4B2

1eµhh

µγ

)

‖ψ‖2
Eh
+

(

µ − γ

2
+ ε′ +

4B2
1eµhh

γ

)

∫ t

τ
eµs‖u(s)‖2

θ ds

+

(

4B2
2,θ

γ
+

K2
2,θ

ε′
+ 2ν(T, k, l)

)

eµt

µ
+ 2K1

∫ t

τ
eµs‖us‖2

Eh,θ
ds

+
1
γ

∫ t

τ
eµs‖ f (s)‖2

θ ds.

By condition (2.10) we can choose ε′ as in (2.16) in the above inequality to obtain

eµt‖u(t)‖2
θ ≤ eµτ

(

1 +
4B2

1eµhh

µγ

)

‖ψ‖2
Eh
+

(

4B2
2,θ

γ
+

K2
2,θ

ε′
+ 2ν(T, k, l)

)

eµt

µ

+ 2K1

∫ t

τ
eµs‖us‖2

Eh,θ
ds +

1
γ

∫ t

τ
eµs‖ f (s)‖2

θ ds.

(3.6)

Replacing t by t + σ, with σ ∈ [−h, 0] in (3.6) and using the inequality ‖u(t + σ)‖ =

‖ψ(t + σ)‖ ≤ ‖ψ‖Eh
, valid for t + σ < τ, we deduce that

eµt‖ut‖2
Eh,θ

≤ Mθ(t) + L
∫ t

τ
eµs‖us‖2

Eh,θ
ds, (3.7)

where L = 2K1eµh and

Mθ(t) = eµ(τ+h)

(

1 +
4B2

1eµhh

µγ

)

‖ψ‖2
Eh
+

(

4B2
2,θ

γ
+

K2
2,θ

ε′
+ 2ν(T, k, l)

)

eµ(t+h)

µ

+
eµh

γ

∫ t

τ
eµs‖ f (s)‖2

θ ds.

We know that µ > L. Then, from (3.7) and ψ ∈ Bµ(τ), we obtain

‖ut‖2
Eh,θ

≤ c1R2
µ(τ)e

(L−µ)te(µ−L)τ +
2µ − L

µ − L
c2,θ +

2(2µ − L)

µ(µ − L)
eµhν(T, k, l)

+
eµh

γ

∫ t

−∞
‖ f (s)‖2

θ ds, ∀t ≥ τ,
(3.8)
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where c2,θ =
( 4B2

2,θ
γ +

K2
2,θ
ε′
)

eµh

µ . Similarly, if (A8)(ii) holds, we obtain (3.8) with L = 4
γ B2

1e2µhh.

To conclude the proof, let ε > 0 be given. Since B̂µ ∈ Dµ and ∑
∞
m=1 |J(m)| < ∞, then there

exist τ0 = τ0(t′, T, ε, B̂µ) < t′ and a positive integer l(ε) such that

c1R2
µ(τ)e

(L−µ)te(µ−L)τ
<

ε

4
, ∀τ ≤ τ0, t ∈ [t′, T],

and
4(2µ − L)eµh

µ(µ − L)
r2

0

+∞

∑
m=l(ε)+1

|J(m)| < ε

4
.

Then, from (3.8) we have

‖ut‖2
Eh,θ

<
ε

2
+

2µ − L

µ − L
c2,θ +

4(2µ − L)eµh

µ(µ − L)

r2
0

k

l(ε)

∑
m=1

m|J(m)|+ eµh

γ

∫ T

−∞
‖ f (s)‖2

θ ds,

for all τ ≤ τ0 and t′ ≤ t ≤ T. Observe that the hypothesis (A7) and the Lebesgue Dominated
Convergence Theorem imply that

lim
k→+∞

∫ T

−∞
∑
|n|>k

| fn(s)|2 ds = 0.

Using this fact and also ∑
∞
n=−∞

(

∫ 0
−h β2,n(s) ds

)2
< ∞ and ∑

∞
−∞ k2

2,n < ∞ we can find a positive

integer k = k(ε, T, B̂µ) such that

2µ − L

µ − L
c2,θ +

4(2µ − L)eµh

µ(µ − L)

r2
0
k

l(ε)

∑
m=1

m|J(m)|+ eµh

γ

∫ T

−∞
‖ f (s)‖2

θ ds <
ε

2
.

Therefore,

max
s∈[−h,0]

∑
|n|>2k

|un(t + s)|2 ≤ ‖ut‖2
Eh,θ

< ε, if τ ≤ τ0, t′ ≤ t ≤ T.

In the case A(8)(iii), in (3.8), we take L = 0, replace c1 by c′1 and c2,θ and R2
µ(τ) by

c′2,θ =
eµh

µ2

(

B2
2,θ + K2

2,θ
)

and R2
µ(τ) = c′2 +

eµh

2µ

∫ t

−∞
‖ f (s)|2 ds.

Lemma 3.3. Under the assumptions (A1)–(A8), the process {U(t, τ)}t≥τ is pullback D-asymptotically

compact.

Proof. Fixed t ∈ R and D̂µ ∈ Dµ, consider the sequences (τm)m∈N and (um
t )m∈N, such that

τm → −∞ and um
t = U(t, τm)ψm, with ψm ∈ D(τm). We want to prove that (um

t )m∈N has
a subsequence which is relatively compact in Eh. Given ε > 0, by Lemma 3.2, there exist
τ = τ(ε, t, B̂µ) < t − h and a positive integer n1 = n1(ε, t, B̂µ) such that

max
s∈[−h,0]

∑
|n|>n1

|un(t + s)|2 <
ε2

8
, (3.9)

where u = u(t) = (un(t)) is any solution of the initial value problem (2.1) with uτ ∈ Bµ(τ).
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Since B̂µ is pullback Dµ-absorbing and τm → −∞, without loss of generality, we can
assume that

U(τ, τm)ψ
m ∈ Bµ(τ), ∀m ≥ 1. (3.10)

Also, by the definition of a process, we know that

U(t′, τ)U(τ, τm)ψ
m = U(t′, τm)ψ

m, ∀τ ≤ t′ ≤ t. (3.11)

Using (3.10), (3.11), and the estimate (2.19) we see that

‖U(t′, τm)ψ
m‖Eh

≤ K, ∀τ ≤ t′ ≤ t, (3.12)

where K = K(t) = (c1 + 1)R2
µ(t). In particular, the sequence (um

t (s))m∈N is bounded in ℓ2, for
any s ∈ [−h, 0]. Therefore, for any fixed s ∈ [−h, 0], there exists a subsequence, which we will
still denote by (um

t (s))m∈N and ζ(s) ∈ ℓ2, such that

um(t + s) ⇀ ζ(s) weakly in ℓ
2. (3.13)

Let us show that the convergence in (3.13) is strong in ℓ2. Since ζ(s) ∈ ℓ2, then there exists
a positive integer n2 such that

∑
|n|>n2

|ζn(s)|2 <
ε2

8
. (3.14)

Moreover, using the weak convergence (3.13), we can find a positive integer m1 = m1(ε, t, B̂µ)

such that

∑
|n|≤n0

|um
n (t + s)− ζn(s)|2 <

ε2

2
, ∀m ≥ m1, (3.15)

where n0 = max{n1, n2}. From (3.14) and (3.15), for any m ≥ m1, we have that

‖um(t + s)− ζ(s)‖2 ≤ ∑
|n|≤n0

|um
n (t + s)− ζn(s)|2 + 2 ∑

|n|>n0

|um
n (t + s)|2

+ 2 ∑
|n|>n0

|ζn(s)|2 <
3ε2

4
+ 2 ∑

|n|>n0

|um
n (t + s)|2.

(3.16)

Using the estimate (3.9) with uτ = U(τ, τm)ψm, m ≥ m1, from (3.16) we conclude that

‖um(t + s)− ζ(s)‖2
< ε2.

Therefore, (um
t (s))m∈N is relatively compact in ℓ2 for each s ∈ [−h, 0].

Next, let us show that (um
t )m∈N is equicontinuous in [−h, 0]. Using the integral represen-

tation of the solution of (2.1) we obtain

‖um(t + s1)− um(t + s2)‖ ≤
∫ t+s2

t+s1

‖B(r, um
r )‖ dr, (3.17)

for any −h ≤ s1 ≤ s2 ≤ 0. Using (3.12) in (3.17) and Lemma 2.4, we deduce the existence
of a positive constant L(K) such that ‖um(t + s1) − um(t + s2)‖ ≤ L(K)(s2 − s1), ∀m ∈ N,
which implies the equicontinuity. By the Ascoli–Arzelà Theorem, we conclude that (um

t )m∈N

is relatively compact in Eh. This completes the proof of Lemma 3.3.

As consequence of Lemmas 3.1, 3.3 and of Theorem 18 in [16] we obtain the main result
of this section.
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Theorem 3.4. Assume that (A1)–(A8) hold. Then, the process {U(t, τ)}t≥τ possesses a unique pull-

back Dµ-attractor Â in Dµ.

Proof. By Lemmas 3.1, 3.3 and Theorem 18 in [16] the process {U(t, τ})t≥τ possesses a pull-
back Dµ-attractor Â. Since the family Dµ is inclusion-closed and each member Bµ(t) of the
pullback family B̂µ is a closed subset of Eh, then Â ∈ Dµ and it is the unique pullback
Dµ-attractor belonging to the class Dµ.

4 The autonomous model

In this section, we consider the autonomous model

iu̇n(t) +
+∞

∑
m=−∞

J(n − m)um(t) + gn(unt) + iγun(t) = fn, t > 0, n ∈ Z,

un(s) = ψn(s), ∀s ∈ [−h, 0],

(4.1)

where f = ( fn)n∈Z and

gn(unt) = g0,n(un(t)) + g1,n(un(t − ρ)) +
∫ 0

−h
bn(s, un(t + s)) ds,

with 0 < ρ ≤ h. We assume that f ∈ ℓ2 and the functions g0,n, g1,n, and bn satisfy the
assumptions (A1)–(A4) stated in Section 2.

Defining the map g : Eh → ℓ2 by (g(v))n∈Z = gn(vn), where

gn(vn) = g0,n(vn(0)) + g1,n(vn(−ρ)) +
∫ 0

−h
bn(s, vn(s)) ds,

we can write (4.1) in ℓ2 as

iu̇(t) + Au(t) + g(ut) + iγu(t) = f , t > 0

u(s) = ψ(s), ∀s ∈ [−h, 0],
(4.2)

where, as before, u(t) = (un(t))n∈Z and ψ(s) = (ψn(s))n∈Z.
Using the assumptions (A1)–(A4) and the Theory of Functional Equations we obtain a

local solution for the problem (4.2) with ψ ∈ Eh.
In what follows, we will use the same notations of Sections 2 and 3 and, as before, we will

assume that (A8)(i) or (ii) holds. Similarly, we can prove the results for (A8)(iii). Proceeding
as in the proof of Theorem 2.8 we can prove the following lemma.

Lemma 4.1. Assume that (A1)–(A4) and (A8) hold. Then, the solution u = u(t) of (4.2) with initial

condition u0 = ψ ∈ Eh, defined in the maximal interval of existence [0, T), satisfies

‖ut‖2
Eh

≤ c1‖ψ‖2
Eh

e−(µ−L)t +
2µ − L

µ − L

(

c2 +
eµh

µγ
‖ f ‖2

)

. (4.3)

As a consequence of (4.3) we conclude that the solution u = u(t) of (4.2) exists on [0, ∞)

and we can define a semigroup {S(t)}t≥0 on Eh associated with (4.2) as follows

S(t)ψ = ut, ∀t ≥ 0.
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Moreover, from (4.3) we deduce that the closed ball O0 = BEh
[0; r0] in Eh, where

r0 =

[

2µ − L

µ − L

(

c2 +
eµh

µγ
‖ f ‖2

)

+ 1
]1/2

, (4.4)

is an absorbing set for {S(t)}t≥0 in Eh.
Next, let us modify the proof of Lemma 3.2 to show that {S(t)}t≥0 is asymptotically com-

pact in Eh.

Lemma 4.2. Assume that (A1)–(A4) and (A8) hold. Also, assume that ψ ∈ O0. Then, for any ǫ > 0,

there exist T(ǫ) ≥ 0 and a positive integer k(ǫ), such that the solution u = u(t) of (4.2) satisfies

max
s∈[−h,0]

∑
|n|>k(ε)

|un(t + s)|2 < ǫ, ∀t ≥ T(ǫ).

Proof. Since ψ ∈ O0, then by (4.3) and (4.4), we have

‖ut‖Eh
≤ r1, ∀t ≥ 0, (4.5)

where r1 = (c1 + 1)1/2r0.
Using (4.5) and proceeding as in the proof of Lemma 3.2 we can prove that

eµt‖ut‖2
Eh,θ

≤ Mθ(t) + L
∫ t

0
eµs‖us‖2

Eh,θ
ds, (4.6)

with

Mθ(t) = eµh

(

1 +
4B2

1
µγ

eµh

)

‖ψ‖2
Eh
+

(

4B2
2,θ

γ
+

K2
2,θ

ε′
+ 2ν(k, l) +

1
γ
‖ f ‖2

θ

)

eµ(t+h)

µ
,

where

ν(k, l) =

(

2
k

l

∑
m=1

m|J(m)|+ 2
+∞

∑
m=l+1

|J(m)|
)

r2
1.

From (4.6) we obtain

‖ut‖2
Eh,θ

≤ c1r2
1e−(µ−L)t +

2µ − L

µ − L
c2,θ +

2(2µ − L)

µ(µ − L)
eµhν(k, l), (4.7)

where

c2,θ =

(

4B2
2,θ

γ
+

K2
2,θ

ε′
+

1
γ
‖ f ‖2

θ

)

eµh

µ
.

Finally, from (4.7) we can conclude the proof of Lemma 4.2.

Under the hypotheses of Lemma 4.1, using Lemma 4.2 and proceeding as in the proof of
Lemma 3.3, we show that the semigroup {S(t)}t≥0 is asymptotically compact in Eh. Thus, we
can derive the desired result in this section.

Theorem 4.3. Under the same hypotheses of Lemma 4.1, the semigroup {S(t)}t≥0 possesses a unique

global attractor A in Eh.

Remark 4.4. When ρ(t) ≡ ρ and f (t) ≡ f in problem (2.1), then the constant family Â =

{A(t) = A; t ∈ R} is the pullback D-attractor from Theorem 4.3.
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1 Introduction and preliminaries

Recently, a great attention has been focused on the study of non-linear problems involving the

fractional Laplacian, in view of concrete real-world applications. For instance, this type of op-

erators arises in the thin obstacle problem, optimization, finance, phase transitions, stratified

materials, crystal dislocation, soft thin films, semipermeable membranes, flame propagation,

materials science and water waves, see [13]. Moreover fractional Laplace equations can be

applied to many subjects, such as anomalous diffusion, elliptic problems with measure data,

gradient potential theory, minimal surfaces, non-uniformly elliptic problems, optimization,

phase transitions, quasigeostrophic flows, singular set of minima of variational functionals

and water waves (see [2, 5–7, 13, 16–21] and the references therein). In present paper, we con-

sider the following fractional system





(−∆)s u +
[
m2 − (ω + φ)2

]
u = µ|u|q−2u + |u|2

∗
s −2u, x ∈ R

3

(∆)s φ = (ω + φ) u2, x ∈ R
3

(1.1)

where 3
4 < s < 1, µ > 0 and 4 ≤ q < 2∗s = 2n

n−2s = 6
3−2s , m and ω are real constants,

u ∈ Hs(R3), φ ∈ Ds,2(R3), (−∆)s stands for the fractional Laplacian, 2∗s is the fractional

Sobolev critical exponent.

The Klein–Gordon–Maxwell equations have been introduced in [3] as a model describing

solitary waves for the non-linear stationary Klein–Gordon equation coupled with Maxwell

BEmail: Zhang_Xinbb@163.com



2 X. Zhang

equation in the three dimensional space interacting with the eletrostatic field. In recent years,

some existence and nonexistence results for the Klein–Gordon–Maxwell equations have been

proved. In [3,4,12], the authors investigated the existence of infinitely many radially symmet-

ric solutions (u, φ) in H1(R3)× D1,2(R3). In [1] the existence of a ground state solution (u, φ)

in H1(R3)× D1,2(R3) was established; In [11], the nonexistence results for system related to

Klein–Gordon–Maxwell system were obtained.

Cassani in [8] investigated the following system when n = 3 and s = 1





− ∆u +
[
m2

0 − (ω + φ)2
]

u = µ|u|q−2u + |u|2
∗−2u, x ∈ R

3

∆φ = (ω + φ) u2, x ∈ R
3

where µ > 0 and 4 ≤ q < 6 = 2∗. Cassani proved that the system has at least a radially

symmetric (nontrivial) solution.

In [20], Servadei and Valdinoci showed the non-local fractional counterpart of the Laplace

equation involving critical non-linearities studied in the famous paper of Brezis and Nirenberg

(1983) by the following system

{
(−∆)su − λu = |u|2

∗
s −2u in Ω,

u = 0 in R
n \ Ω,

(1.2)

and the authors firstly studyed the problem in a general framework

{
LKu + λu + |u|2

∗
s −2 + f (x, u) = 0 in Ω,

u = 0 in R
n \ Ω,

(1.3)

where LK is a general non-local integrodifferential operator of order s, f is a lower order per-

turbation of the critical power |u|2
∗
s −2. In this setting they proved an existence result through

variational techniques. Then, as a concrete example, they derived a Brezis–Nirenberg type

result for the problem.

The authors in [15] explored the problem

{
(−∆)su + V(x)u − (2ω + φ) φu = K(x) f (u), in R

3,

(∆)sφ = (ω + φ) u2, in R
3,

where K : R
3 → R is a function satisfying some decay condition, V : R

3 → R is a positive

continuous function, φ, u : R
3 → R are functions. Furthermore, they showed the existence

and positivity of the ground state solution with zero mass potential for the problem, that is,

when the potential V(x) → 0, as |x| → ∞ and they also studied the case when V is bounded

and considered carefully the weight K(x). In addition, they treated the problem using the

fractional Laplace operator instead of classical Laplace operator.

Next there are two ways to define fractional Sobolev space. One is via Gagliardo seminorm

Hs(R3) :=

{
u ∈ L2(R3) :

|u(x)− u(y)|

|x − y|
3
2+s

∈ L2
(
R

3 × R
3
)
}

,

the other is via Fourier transformation

Ĥs(R3) :=

{
u ∈ L2(R3) :

∫

R3

(
1 + |ξ|2s

)
|Fu(ξ)|2dξ < +∞

}
,
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and Hs(R3) = Ĥs(R3). In the present paper, as the norm of fractional Sobolev space, we

define

∥u∥2
Hs :=

∫

R3

(
m2 − ω2

)
u2dx +

C3,s

2

∫∫

R3×R3

|u(x)− u(y)|2

|x − y|3+2s
dxdy.

The fractional Laplacian is defined by

(−∆)su(x) = C3,sP.V.
∫

R3

u(x)− u(y)

|x − y|3+2s
dy

= C3,s lim
ε→0+

∫

Bc
ε (x)

u(x)− u(y)

|x − y|3+2s
dy

= −
1

2
C3,s

∫

R3

u(x + y) + u(x − y)− 2u(x)

|y|3+2s
dy

= F−1
(
|ξ|2sFu(ξ)

)
,

where

C3,s =

(∫

R3

1 − cos(ζ1)

|ζ|3+2s
dζ

)−1

,

and P.V. is the principle value defined by the latter formula.

Consider the Sobolev space

Ds,2(R3) :=

{
u ∈ L2∗s (R3) :

|u(x)− u(y)|

|x − y|
3
2+s

∈ L2
(
R

3 × R
3
)
}

,

which is the completion of C∞

0 (R3) under the norm

∥u∥2
Ds,2 :=

C3,s

2

∫∫

R3×R3

|u(x)− u(y)|2

|x − y|3+2s
dxdy.

Theorem 1.1. If |m| > |ω| and 4 < q < 2∗s , then the problem (1.1) has a radially symmetric solution

(u, φ) ∈ Hs(R3)× Ds,2(R3) for each µ > 0.

Theorem 1.2. If |m| > |ω| and q = 4, system (1.1) still possesses a radially symmetric solution

provided that µ is sufficiently large.

According to system (1.1), one obtains the functional

F(u, φ) =
1

2
∥u∥2

Hs −
1

2
∥φ∥2

Ds,2 −
1

2

∫

R3

(
2ωφ + φ2

)
u2dx −

µ

q

∫

R3
|u|qdx −

1

2∗s

∫

R3
|u|2

∗
s dx. (1.4)

It’s easy to know that F(u, φ) exhibits a strong indefiniteness, namely it is unbounded from

below and from above on infinite dimensional subspaces. This indefiniteness can be removed

by using the reduction methods. For u and φ defined above, we have the following lemmas.

Lemma 1.3. Let u ∈ Hs(R3), then there exists a unique solution Φ(u) of the second equation for

problem (1.1) such that φ = Φ(u) ∈ Ds,2(R3).

Proof. The proof is similar to the proof of in Reference [15, Lemma 2.1], so we omit its proof.

Remark 1.4. Define the map Φ : Hs(R3) → Ds,2(R3). We can get that for each u ∈ Hs(R3),

the map Φ gives the unique solution Φ(u) = φ, i.e., Φ(u) =
(
(∆)s − u2

)−1
ωu2.
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Next we state some properties of problem (1.1) as follows.

Lemma 1.5. For any u ∈ Hs(R3), it results in Φ(u) ≤ 0. Moreover, Φ(u)(x) ≥ −ω if u(x) ̸= 0

and ω > 0.

Proof. Multiplying the second equation of problem (1.1) by Φ
+(u) = max{Φ(u), 0}, we get

−∥Φ
+(u)∥2

Ds,2 = ω

∫

R3
Φ

+(u)u2dx +
∫

R3
u2

(
Φ

+(u)
)2

dx ≥ 0,

so that Φ
+(u) ≡ 0.

If we multiply the second equation of problem (1.1) by (ω + Φ(u))− , one has

∫

{x:Φ(u)<−ω}

∣∣∣∣ (−∆)
s
2 Φ(u)

∣∣∣∣
2

dx = −
∫

{x:Φ(u)<−ω}
(ω + Φ(u))2 u2dx,

so that (ω + Φ(u))− = 0 where u(x) ̸= 0.

Lemma 1.6. The map Φ is C1 and

Gφ =
{
(u, φ) ∈ Hs(R3)× Ds,2(R3)

∣∣ F′
φ(u, φ) = 0

}
.

Proof. Noticing that Φ(u) is a solution of the second equation in problem (1.1), we have

− ∥Φ(u)∥2
Ds,2 =

∫

R3
(ω + Φ(u))Φ(u)u2dx =

∫

R3
ωΦ(u)u2dx +

∫

R3
Φ

2(u)u2dx. (1.5)

In addition,

F(u, Φ(u)) =
1

2
∥u∥2

Hs −
1

2
∥Φ(u)∥2

Ds,2 −
1

2

∫

R3

(
2ωΦ(u) + Φ

2(u)
)

u2dx

−
µ

q

∫

R3
|u|qdx −

1

2∗s

∫

R3
|u|2

∗
s dx

and

F′
φ(u, Φ(u)) = −∥Φ(u)∥2

Ds,2 −
∫

R3
ωΦ(u)u2dx −

∫

R3
Φ

2(u)u2dx,

according to (1.5), one gets that F′
φ(u, Φ(u)) = 0 for any (u, φ) ∈ Hs(R3)× Ds,2(R3). Thus

F′ (u, Φ(u)) = F′
u(u, Φ(u)) + F′

φ(u, Φ(u))Φ′(u) = F′
u(u, Φ(u)).

Define I(u) := F(u, Φ(u)) and if u, v ∈ Hs(R3), one gets that

I′(u)v = ⟨u, v⟩Hs +
∫

R3

[(
m2 − (ω + Φ(u))2

)
uv − µ|u|q−2uv − |u|2

∗
s −2uv

]
dx. (1.6)

Lemma 1.7. The following statements are equivalent:

(i) (u, φ) ∈ Hs(R3)× Ds,2(R3) is a solution of problem (1.1).

(ii) u is a critical point of I and φ = Φ(u).
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Proof. (ii) =⇒ (i) Obviously.

(i) =⇒ (ii) Let F′
u(u, φ) and F′

φ(u, φ) denote the partial derivatives of F at (u, φ) ∈ Hs(R3)×

Ds,2(R3). Then for every v ∈ Hs(R3) and ψ ∈ Ds,2(R3), one obtains that

F′
u(u, φ)[v] = ⟨u, v⟩Hs +

∫

R3

[(
m2 − (ω + φ)2

)
uv − µ|u|q−2uv − |u|2

∗
s −2uv

]
dx, (1.7)

F′
φ(u, φ)[ψ] = −⟨φ, ψ⟩Ds,2 −

∫

R3

(
ωψu2 + φψu2

)
dx. (1.8)

By standard computations, we can prove that F′
u(u, φ) and F′

φ(u, φ) are continuous. From (1.7)

and (1.8), it is easy to obtain that its critical points are solutions of problem (1.1), moreover, by

Lemma 1.3, one has φ = Φ(u).

2 Proof of Theorem 1.1

Lemma 2.1. For u ∈ Hs
r (R

3), if |m| > |ω|, then there exist some constants ρ, α > 0 such that

I(u)
∣∣
∥u∥Hs=ρ

≥ α > 0.

Proof. From (1.4) and (1.5), I(u) can be written in the following form

I(u) =
1

2
∥u∥2

Hs −
1

2
∥φ∥2

Ds,2 −
1

2

∫

R3

(
2ωφ + φ2

)
u2dx −

µ

q

∫

R3
|u|qdx −

1

2∗s

∫

R3
|u|2

∗
s dx

=
1

2
∥u∥2

Hs +
1

2
∥φ∥2

Ds,2 +
1

2

∫

R3
φ2u2dx −

µ

q

∫

R3
|u|qdx −

1

2∗s

∫

R3
|u|2

∗
s dx.

(2.1)

Then by the Sobolev inequality, we have

I(u) ≥
1

2
∥u∥2

Hs − C1∥u∥
q
Hs − C2∥u∥

2∗s
Hs ≥ α > 0, f or u ∈ Hs(R3), ∥u∥Hs = ρ.

Thus

I(u)
∣∣
∥u∥Hs=ρ

≥ α > 0

and the proof is completed.

Lemma 2.2. Under the assumptions of Theorem 1.1, there exists a function e ∈ Hs(R3) with ∥e∥Hs >

ρ such that I(e) < 0.

Proof. For any u ∈ Hs(R3) \ {0}, in view of (1.4), it is easy to obtain that

lim
t→+∞

I(tu) =
t2

2
∥u∥2

Hs −
1

2
∥Φ(tu)∥2

Ds,2 −
t2

2

∫

R3

(
2ωΦ(tu) + Φ

2(tu)
)

u2dx

−
tqµ

q

∫

R3
|u|qdx −

t2∗s

2∗s

∫

R3
|u|2

∗
s dx

≤
t2

2

(
∥u∥2

Hs +
∫

R3
2ω2u2dx

)
−

tqµ

q

∫

R3
|u|qdx −

t2∗s

2∗s

∫

R3
|u|2

∗
s dx

→ − ∞,

which implies that I(u) → −∞, as ∥u∥Hs → ∞.

The lemma is proved by taking e = tu with t > 0 large enough and u ̸= 0. Therefore we

know that there exists e ∈ Hs(R3), ∥e∥Hs > ρ such that I(e) < 0.
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Define

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)), (2.2)

where Γ = {γ ∈ C
(
[0, 1], Hs(R3)

) ∣∣γ(0) = 0, γ(1) = e} is the MP level. Obviously, c ≥ α > 0.

There exists a (PS)c sequence {uk} ⊂ E such that

I(uk) → c,

I′(uk) → 0, k → ∞.
(2.3)

Lemma 2.3. The (PS)c sequence {uk} ⊂ E given in (2.3) is bounded.

Proof. There is a positive constant M such that

M + o(1)∥uk∥ ≥ I(uk)−
1

q
(I′(uk), uk)

=

(
1

2
−

1

q

)
∥uk∥

2
Hs +

1

2
∥Φ(uk)∥

2
Ds,2 +

(
1

2
+

1

q

) ∫

R3
Φ

2(uk)u
2
kdx

+
2

q

∫

R3
ωΦ(uk)u

2
kdx +

(
1

q
−

1

2∗s

) ∫

R3
|uk|

2∗s dx.

(2.4)

Substituting (1.5) into (2.4), we get that

M + o(1)∥uk∥ ≥ I(uk)−
1

q
(I′(uk), uk)

=

(
1

2
−

1

q

)
∥uk∥

2
Hs +

(
1

2
−

2

q

)
∥Φ(uk)∥

2
Ds,2

+

(
1

2
−

1

q

) ∫

R3
Φ

2(uk)u
2
kdx +

(
1

q
−

1

2∗s

) ∫

R3
|uk|

2∗s dx

≥ C4∥uk∥
2
Hs .

Since 4 < q < 2∗s , as a consequence of the above inequality, {uk} is bounded in Hs(R3).

Furthermore, according to (1.5), one gets that

∥Φ(u)∥2
Ds,2 = −

∫

R3
(ω + Φ(u))Φ(u)u2dx = −

∫

R3
ωΦ(u)u2dx −

∫

R3
Φ

2(u)u2dx. (2.5)

Then by Hölder inequality and Sobolev inequality, one obtains that

∥Φ(uk)∥
2
Ds,2 ≤ −

∫

R3
ωΦ(uk)u

2
kdx

≤ |ω|

(∫

R3
|Φ(uk)|

2∗s dx

) 1
2∗s

(∫

R3
|uk|

2·2∗s
2∗s −1 dx

) 2∗s −1

2∗s

= |ω|

(∫

R3
|Φ(uk)|

6
3−2s dx

) 3−2s
6

(∫

R3
|uk|

12
3+2s dx

) 3+2s
6

≤ C5∥Φ(uk)∥Ds,2∥uk∥
2
Hs .

Thus {Φ(uk)} is bounded (even uniformly).

Due to the presence of the unbounded domain, the embedding Hs(R3) →֒ Lq(R3)(
2 ≤ q ≤ 2n

n−2s =
6

3−2s

)
is not compact. In order to overcome this kind, we restrict I to radial
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functions, namely, Hs
r (R

3) = {u ∈ Hs(R3)
∣∣u(x) = u(|x|)} is compactly embedded in L

q
r (R

3)

for 2 < q <
2n

n−2s = 6
3−2s (see [9] and [14]). By the standard arguments we know that a critical

point u ∈ Hs
r (R

3) for the functional I
∣∣

Hs
r (R

3)
is also a critical point for I.

Up to a subsequence, we may assume that there exist u ∈ Hs
r (R

3) and ϕ ∈ Ds,2
r such that

uk ⇀ u in Hs
r (R

3), (2.6)

uk → u in L
q
r (R

3) for 2 < q < 2∗s , (2.7)

Φ(uk) ⇀ ϕ in Ds,2
r (R3). (2.8)

Lemma 2.4. ϕ = Φ(u) and Φ(uk) → Φ(u) in Ds,2
r (R3).

Proof. First we prove the uniqueness. For every fixed u ∈ Hs
r (R

3), we consider the following

minimizing problem

inf
φ∈Ds,2

r

Eu(φ),

where Eu : Ds,2
r → R defined as energy functional of the second equation in system (1.1).

Eu(φ) =
1

2
∥φ∥2

Ds,2
r
+

∫

R3
ωφu2dx +

1

2

∫

R3
φ2u2dx.

In fact, by the proof of [22, Lemma 2.1], we know that

Φ(uk) → ϕ, locally uniformly in R
3,

so we obtain that
∫

R3
Φ(uk)u

2
kdx →

∫

R3
ϕu2dx,

∫

R3
Φ

2(uk)u
2
kdx →

∫

R3
ϕ2u2dx.

From the weak lower semicontinuity of the norm in Ds,2
r (R3) and the convergence above, one

has

Eu(ϕ) ≤ lim inf
k→∞

Euk
(Φ(uk)) ≤ lim inf

k→∞

Euk
(Φ(u)) = Eu(Φ(u)),

then by Lemma 1.3, ϕ = Φ(u).

Next we prove that {Φ(uk)} converges strongly in Ds,2
r (R3). Since Φ(uk) and Φ(u) satisfy

the second equation in problem (1.1).





⟨Φ(uk), ψ⟩Ds,2
r
= −

∫

R3

[
ωu2

kψ + Φ(uk)u
2
kψ

]
dx,

⟨Φ(u), ψ⟩Ds,2
r
= −

∫

R3

[
ωu2ψ + Φ(u)u2ψ

]
dx,

then we take the difference for Φ, one obtains that

⟨Φ(uk)−Φ(u), ψ⟩Ds,2
r
=−

∫

R3

[
ω
(
u2

k −u2
)

ψ+
(
Φ(uk)u

2
k −Φ(u)u2

)
ψ
]
dx, ψ∈Ds,2

r (R3). (2.9)

Thus

⟨Φ(uk)− Φ(u), ψ⟩Ds,2
r
+

∫

R3

[
u2

k (Φ(uk)− Φ(u))ψ
]

dx +
∫

R3

(
u2

k − u2
)

Φ(u)ψdx

= −ω

∫

R3

(
u2

k − u2
)

ψdx, ψ ∈ Ds,2
r (R3).

(2.10)
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By the Hölder inequality and the Sobolev inequality, testing with ψ = (Φ(uk)− Φ(u)), the

following holds:

∥Φ(uk)− Φ(u)∥2
Ds,2

r

= −ω

∫

R3

(
u2

k − u2
)
(Φ(uk)− Φ(u))dx

−
∫

R3
u2

k (Φ(uk)− Φ(u))2 dx −
∫

R3

(
u2

k − u2
)

Φ(u) (Φ(uk)− Φ(u))dx

≤ |ω|
∫

R3
|u2

k − u2||Φ(uk)− Φ(u)|dx +
∫

R3
|u2

k − u2||Φ(u)||Φ(uk)− Φ(u)|dx

≤ |ω||Φ(uk)− Φ(u)| 6
3−2s

|u2
k − u2| 6

3+2s
+ |u2

k − u2| 3
2s
|Φ(u)| 6

3−2s
|Φ(uk)− Φ(u)| 6

3−2s

≤ C6|uk − u| 12
3+2s

+ C7|uk − u| 3
s
.

Since uk ⇀ u in Hs
r (R

3), uk → u in L
q
r (R

3)(2 < q < 2∗s ), one has Φ(uk) → Φ(u) strongly in

Ds,2
r (R3).

Lemma 2.5. The weak limit (u, Φ(u)) solves problem (1.1).

Proof. From (1.6), we know that

(I′(uk), v) = ⟨uk, v⟩Hs +
∫

R3

[(
m2 − (ω + Φ(uk))

2
)

ukv
]

dx

−
∫

R3

[
µ|uk|

q−2ukv + |uk|
2∗s −2ukv

]
dx, v ∈ Hs

r (R
3).

(2.11)

All convergences in the sequel must be understood passing to a subsequence if necessary.

Since {uk} is bounded in L
2∗s
r (R3),

|uk|
2∗s −2uk ⇀ |u|2

∗
s −2u, in (L

2∗s
r (R3))∗.

Moreover by Lemma 2.4, for any v ∈ Hs
r (R

3), one gets that

∫

R3
ukΦ

2(uk)vdx + 2ω

∫

R3
Φ(uk)ukvdx →

∫

R3
uΦ

2(u)vdx + 2ω

∫

R3
Φ(u)uvdx.

In fact one obtains that
∫

R3
|Φ(u)u − Φ(uk)uk| |v|dx

≤ |Φ(u)− Φ(uk)| 6
3−2s

|u| 3
2s
|v| 6

3−2s
+ |Φ(uk)| 6

3−2s
|v| 6

3−2s
|uk − u| 3

2s

(2.12)

and
∫

R3
|ukΦ

2(uk)− uΦ
2(u)||v|dx

≤ |uk − u| 3
2s
|Φ(uk)|

2
12

3−2s
|v| 6

3−2s
+ |Φ(uk)− Φ(u)| 6

3−2s
|Φ(uk) + Φ(u)| 6

3−2s
|u| 3

s
|v| 3

s
.

(2.13)

The compactness of the embedding Hs
r (R

3) →֒ L
q
r (R

3) the lemma follows.

In the following we will prove u ̸= 0, so we assume that c denotes the MP level.
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Claim 2.6. c <
s
3 S

3
2s
s , where Ss corresponds to the best constant for the fractional Sobolev embedding

Ds,2(R3) →֒ L2∗s (R3), precisely,

Ss := inf
u∈Ds,2(R3)\{0}

∥u∥2
Ds,2

|u|22∗s
. (2.14)

Proof. By [10], Ss is attained by

ũ(x) = κ
(
ε2 + |x − x0|

)− 3−2s
2 ,

i.e., Ss =
∥ũ∥2

Ds,2

|ũ|2
2∗s

, normalizing ũ by |ũ|2∗s , one obtains that u = ũ
|ũ|2∗s

. Thus

Ss = inf
u∈Ds,2(R3),|u|2∗s =1

∥u∥2
Ds,2 = ∥u∥2

Ds,2 .

Moreover u1 = S
1

2∗s −2
s u is a positive ground state solution of (−∆)s = |u|2

∗
s −2 in R

3 and

∥u1∥
2
Ds,2 = |u1|

2∗s
2∗s

= S
3
2s
s .

Now according to Reference [20], given ε > 0, we consider the function

Uε(x) = ε−
3−2s

2 u1(
x

ε
), Uε ∈ Ds,2(R3). (2.15)

Let ϕ ∈ C∞

0 (R3) such that 0 ≤ ϕ ≤ 1 in R
3, ϕ ≡ 1 in Bδ(δ > 0) and ϕ ≡ 0 in CB2δ, where

Bδ = B(0, δ) and CBδ = R
3 \ Bδ. For every ε > 0 we denote uε by the following function:

uε = ϕ(x)Uε(x), x ∈ R
3 and

vε(x) =
uε(x)

|uε(x)|2∗s
.

Let e > 0 and µ > 0, if x ∈ CBe, then

|∇uε(x)| ≤ Cε
3−2s

2 for any ε > 0

and for some positive constant C, possibly depending on µ, e and s. Suppose s ∈ ( 3
4 , 1). Then

according to [20], the following estimate holds true:

Xε :=
C3,s

2

∫∫

R3×R3

|vε(x)− vε(y)|2

|x − y|3+2s
dxdy ≤ S

3
2s
s + O

(
ε3−2s

)
, as ε → 0. (2.16)

Since as t → +∞, I(tvε) → −∞, we may assume that

sup
t≥0

I(tvε) = I(tεvε)

and without loss of generality that tε ≥ C0 > 0, for all ε > 0. Otherwise, there exists a

sequence εn such that

lim
n→∞

tεn = 0

and then

0 < c ≤ lim
n→∞

I(tεn vεn) = 0.
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Next we will prove the above bound of tε, that is, for any ε > 0 small enough

tε ≤

(
Xε +

∫

R3
m2v2

ε dx

) 1
2∗s −2

= T. (2.17)

Set f (t) = I(tvε) and compute

f ′(t) =
(

I′(tvε), vε

)

= tT2∗s −2 − t2∗s −1 − t
∫

R3
(ω + Φ(tvε))

2 v2
ε dx − µtq−1

∫

R3
|vε|

qdx ≤ 0, t ≥ T.

Hence, f ′(t) ≤ 0 if t ≥ T and (2.17) holds.

Since the function t 7→ 1
2 t2T2∗s −2 − 1

2∗s
t2∗s is increasing in the internal [0, T), by (2.16), one

obtains that

I(tεvε) =
t2
ε

2

(
C3,s

2

∫∫

R3×R3

|vε(x)− vε(y)|2

|x − y|3+2s
dxdy +

∫

R3
m2v2

ε dx

)
−

t2
ε

2

∫

R3
(ω + Φ(tεvε))

2 v2
ε dx

−
1

2
∥Φ(tεvε)∥

2
Ds,2

r
−

µt
q
ε

q

∫

R3
|vε|

qdx −
∫

R3

t
2∗s
ε

2∗s
|vε|

2∗s dx

≤
s

3

(
S

3
2s
s + O

(
ε3−2s

)
+

∫

R3
m2v2

ε dx

) 3
2s

+
∫

R3

t2
ε

2
ω2v2

ε dx −
µt

q
ε

q

∫

R3
|vε|

qdx.

Then using the inequality (a + b)σ ≤ aσ + σ (a + b)σ−1 b, for all σ ≥ 1, a, b ≥ 0, we get that

I (tεvε) ≤
s

3
S

9
4s2
s + O

(
ε3−2s

)
+ C1 (ε)

∫

R3
v2

ε dx − C2(ε)
∫

R3
|vε|

qdx,

with constants Ci(ε) > 0 (i = 1, 2). On the other hand, we may get the conclusion that

lim
ε→0

1

ε2s

∫

R3

(
v2

ε − µ|vε|
q
)

dx = −∞ for ε small enough. (2.18)

In fact, by the definition of uε, since for ε → 0, as in [20],
∫

R3
|uε|

2∗s dx = S
3
2s
s + O

(
ε3
)

, (2.19)

it suffices to evaluate (2.18) with uε in place of vε. For p ≥ 1, one has
∫

R3
|uε(x)|pdx =

∫

Bδ

|Uε(x)|pdx +
∫

B2δ\Bδ

|ϕ(x)Uε(x)|pdx

= C8ε−
p(3−2s)

2

∫

Bδ

|u1(
x

ε
)|pdx

= C8ε
6−3p+2ps

2

∫ δ
ε

R
|u1(r)|

pr2dr

= C8ε
6−3p+2ps

2

∫ δ
ε

R
r−3p+2ps+2dr

(2.20)

for any 0 < R <
δ
ε and therefore, one has for 4 < q < 2∗s , as ε → 0,

∫

R3
u2

ε dx − µ

∫

R3
u

q
ε dx ≤ C9ε2s − C10µε

6−3q+2qs
2 , (2.21)

where Ci > 0 (i = 9, 10) are independent from ε. According to (2.19) and (2.21), we complete

the proof of (2.18).
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Claim 2.7. The solution u is nontrivial.

Proof. By contradiction, suppose that u ≡ 0. It follows that Φ(u) = 0 and as k → ∞,

(
I′(uk), uk

)
=

C3,s

2

∫∫

R3×R3

|uk(x)− uk(y)|
2

|x − y|3+2s
dxdy +

∫

R3

(
m2 − ω2

)
u2

kdx

−
∫

R3

(
2ωΦ(uk) + Φ

2(uk)
)

u2
kdx − µ

∫

R3
|uk|

qdx −
∫

R3
|uk|

2∗s dx

→ 0

and

uk → 0 in L
q
r (R

3).

Thus one obtains that ∫

R3
|uk|

qdx → 0

and ∫

R3

(
2ωΦ(uk) + Φ

2(uk)
)

u2
kdx → 0.

Hence, up to a subsequence, if necessary, we can assume that

C3,s

2

∫∫

R3×R3

|uk(x)− uk(y)|
2

|x − y|3+2s
dxdy +

∫

R3

(
m2 − ω2

)
u2

kdx → L, (2.22)

and ∫

R3
|uk(x)|2

∗
s dx → L, L ≥ 0. (2.23)

Furthermore, I(uk) → c, it follows that

c =

(
1

2
−

1

2∗s

)
L =

s

3
L. (2.24)

Since c ≥ α > 0, it is easily seen that L > 0. In addition,

C3,s

2

∫∫

R3×R3

|uk(x)− uk(y)|
2

|x − y|3+2s
dxdy ≥ Ss|uk|

2
2∗s

,

so that taking into account (2.22) and (2.23), we get L ≥ SsL
2

2∗s , which combined with (2.24)

gives

c ≥
s

3
S

2∗s
2∗s −2
s =

s

3
S

3
2s
s ,

this contradicts Claim 2.6. Hence u is nontrivial.

3 Proof of Theorem 1.2

We can observe if q = 4, in (2.21) one can stress the parameter choosing µ = ε−σ, σ > 0, then

to get (2.18), the rest proof of Theorem 1.2 is similar to proof of Theorem 1.1.
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