
 2 72 7  

SPATIAL ANALYSIS OF UNCERTAIN 

THERMOBAROMETRIC DATA: APPLICATION TO THE 

SWISS CENTRAL ALPS 

Tivadar M Tóth1,2 

1 Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Hungary (mtoth@geo.u-
szeged.hu) 

Abstract 

Several approaches exist to estimate peak pressure and temperature (PT) conditions of a 
single metamorphic rock sample. Because of many reasons from analytical problems to 
uncertainty in mineral solution models, all these calculations are rather uncertain making 
spatial interpretation of the data set for a whole metamorphic terrain problematic. In this study 
Error Kriging (de Marsily, 1984) is used to calculate PT maps for the Swiss Central Alps and 
the results are compared to those got by other kriging methods. 
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1. INTRODUCTION 

When one seeks to interpret the results of thermobarometric studies, the spatial context is 
obviously important. Graphical representations, e.g. isotherms and isobars on maps or 
profiles, are helpful in interpreting thermobarometric data sets in a regional context. For 
geologists to assess the significance and implications of P-T data, it may indeed be crucial to 
see them together with results from geophysical, tectonic, or geochronological studies. 
Similarly, in modeling studies it may be most useful to compare the thermal or baric field of an 
orogen with predictions based on theoretical simulations. For all these reasons, we need 
reliable graphical representations of spatially discrete P-T data sets. As these data sets may 
include various forms of information, commonly containing quite variable uncertainties, the 
task of interpolating and extrapolating such data sets demands adequate tools. 

2. PT dataPT data 

Several methods exist to estimate P and T data for a given metamorphic assemblage, either 
from traditional Fe-Mg exchange thermometers and net-transfer type barometers (such as 
GASP), or from more reliable multi-equilibria techniques (Berman 1991, Gordon 1992). A 
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number of authors (e.g. Kohn, Spear 1991, Lieberman, Petrakakis 1991, Gordon 1992, 
Holland, Powell 1994) have investigated the uncertainty of various PT-estimation methods, 
which are due to numerous sources of error, like electron microprobe calibration, counting 
statistics during measurement, mineral formula calculation, mineral solution models among 
many others. Evaluation of these individual uncertainties may allow their propagation into a 
finite statistical error of P and T data. Such results may then be quoted as „crisp” PT data (e.g. 
500±25°C, 2.8±0.6 kbar). Other thermobarometric approaches rely on phase diagrams (such 
as petrogenetic grids calculated using DOMINO/THERIAK software) and produce a “permitted” 
PT-window for each assemblage (e.g. 500-540°C). In this case no statistical error value is 
calculated; uncertainty appears as an inequality type of datum, i.e. an interval in T or P. 
A different way to present uncertainty is by means of fuzzy numbers (e.g. Dubois, Prade, 
2000). Fuzzy numbers are defined through "membership functions". The value of a 
membership function (m(x) in the [0,1] interval) depends on how possible (not how 
mathematically probable!) the datum (x) is. Defining the fuzzy numbers is usually based on 
qualitative or semiquantitative information. For example, if temperature is with known (without 
any doubt) to lie between 450 and 600 °C, and is possibly in the 500-550 °C interval, the 
proper fuzzy number would be a trapezoid: 

 0,  if T < 450 °C 

  (T-450)/50,  if 450 °C < T < 500 °C 

      m(T) = 1,  if 500 °C < T < 550 °C 

  (600-T)/50, if 550 °C < T < 600 °C 

 0,   if  T > 600 °C 

There are two reasons to prefer fuzzy numbers to standard error. Firstly, there is in most 
cases no proof that the uncertainty in P- and T-data are of probability type (e.g. Gaussian). 
Secondly, both error and inequality type data are easily transformed to fuzzy data, which thus 
offer a way to construct a data set having a uniform measure of uncertainty. 
Although, there are different ways to define and calculate uncertainty in data, their spatial 
representation is more problematic; interpolating between data that have different uncertainty 
is not a simple matter. In what follows, different interpolation methods are presented and 
tested, which are considered promising for mapping P- and T-data. 

3. Interpolation methods applied 

Thermobarometry yields P and T data in spatially discrete form, hence for many questions 
spatial interpolation (or limited extrapolation) is required, most notably in the production of 
maps and profiles. Traditional interpolation techniques, such as linear interpolation (by hand or 
machine), trend surface analysis or inverse distance interpolation have long been found 
useful, yet they all have significant disadvantages. Inverse distance method, for example, 
tends to generate unrealistic „bull's-eye” shaped structures surrounding the position of data 
points. None of them take into account the real spatial structure of the data set, and none of 
them allow an estimation of interpolation error. 
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Kriging, a family of stochastic interpolation methods, has a fundamental role in geostatistics for 
decades. Various texts and handbooks go deep into its basic concept and are not discussed 
here (e.g. Matheron, 1970, Cressie, 1991), Wackernagel, 1995). In what follows ordinary 
kriging system (OK) with and without nugget effect will be used. 

4. Kriging with uncertain data 
Ordinary kriging is a good interpolator in cases where reliable data exist in sufficient number 
(and spatial density). However, geostatistics has spread into several areas including hydrology 
and soil sciences, where the conditions and requirements for OK are not always satisfied. A 
common problem is the insufficient quantity or quality of measurements. In order to get a 
useful interpolator in such cases, a number of attempts have been made to incorporate 
additional information into the kriging system. Bárdossy et al. (1988) present an exhaustive 
collection of these approaches. Some of these shall be discussed here in the context of 
thermobarometry, the goal being to represent regional results as maps of continuous 
isotherms and isobars. 
In the case of mapping metamorphic P and T, difficulties arise because the data are of 
variable type and precision, and their spatial distribution tends to be far from uniform. Methods 
used to estimate statistical errors in thermobarometric data have received attention in recent 
years (e.g. Kohn, Spear 1991, Lieberman, Petrakakis 1991, Gordon 1992, Holland, Powell 
1994). Where the data set suggests that other types of uncertainty should be incorporated in 
the kriging system, this is possible by two approaches called soft kriging (Journel, 1986) and 
fuzzy kriging. A soft kriging system works with inequality type data and/or constraint intervals. 
This procedure may be useful in PT mapping, where the mineral assemblages or petrogenetic 
net model allow only an estimation of P-T intervals (e.g. Tmin and Tmax). Both error and interval 
type uncertainties can easily be transformed to fuzzy numbers, making it possible to use data 
sets with mixed types of information. However, at the present stage, the fuzzy kriging 
estimator tends to use either only fuzzy or only crisp data for interpolating, depending on the 
initial conditions (Bárdossy et al., 1990a, b). For fuzzy kriging to yield reliable results, 
considerable computational effort is needed. 
Error kriging 1 (EK) follows very simply from OK: One uses an error ε i associated with each 
datum Z(xi), with the following constraints (Marsily, 1984): 
-   E[ε i] = 0, i = 1 ... n             ε i is not a systematic error. (E is the mean); 
-   Cov[ε i, ε j] = 0, ∀ i ≠ j errors (ε) are not correlated with each other; 
-   Cov[ε i, Z(xj)] = 0, ∀i, ∀j errors (ε) are not correlated with data; 
-   σi

2 is known for each i. 
Compared to OK, the only difference in these conditions is that the kriging system now has 
values of -σi

2 (instead of zero) in the diagonal elements of the error matrix. As a consequence, 
the estimator uses normal distributions with a given mean and variance for interpolation. It is 
probably fair to say that only the best thermobarometric data sets may come close to satisfying 
the above four conditions reasonably well. For example, even if multi-equilibrium techniques 
are used, a (minor) systematic error cannot be ruled out. Additionally, at low temperature 

                                                               

1 Following a suggestion by A. Bárdossy (pers. comm.), the term "kriging with uncertain data" used by Marsily (1984) has been 
changed to "error kriging". 
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conditions T estimation becomes less accurate, hence there is likely a slight correlation 
between T-data and their error. However, for good thermobarometric data sets, estimation 
errors should come close to satisfying all four constraints fairly closely, in which case EK is the 
method of choice to interpolate P-T data. 
The use of OK and EK kriging to generate PT maps is presented here for the example of the 
Swiss Central Alps. By way of example, the main steps required in any type of kriging analysis 
and the graphical representation of the results are documented first. In the subsequent section 
the results are tested by cross validation (e.g. Wackernagel, 1995), and the maps obtained by 
these two different approaches are compared. 

5. A case study: P, T maps of the Swiss Central Alps 

120 T-data and 97 P-data for the Swiss Central Alps have been selected for constructing 
isotherms and isobars. For a description of the geology, methods, and data sets see Engi et 
al. (1995) and Todd, Engi (1997). Error data in P and T were calculated using program 
INERSX, if at least three independent reactions existed. For all other data points Terr was 
assumed as 50°, and Perr = 2 kbar. 

5.1. Sequence of spatial data analysis 

The spatial distribution of data points in both cases (P and T) is rather uneven. In relatively 
large areas, geological conditions are unfavorable, and no data points exist, whereas clusters 
of data exist in valleys with suitable outcrops, where detailed and multiple sampling was 
possible. Clustered distributions of data points usually lead to an estimation error in 
variography (Armstrong, 1984). In order to avoid this problem, a moving window declustering 
method was used prior to the calculation of variograms. This process substitutes data that fall 
into a given rectangle (spatial window) by their arithmetic mean. Moving this window and 
calculating the means over the study area result in a data distribution of equal density. The 

size of the windows is chosen on the basis 
of the average spacing between locations 
and the size of the entire area being 
studied. If the window is too large, the 
number of points left after the process 
insufficient. If it is chosen too small, no 
reliable statistics can be obtained for most 
windows. For the area studied in the 
Central Alps (~4000 km2), overlapping 
windows 5*5 km in size were found 
satisfactory for both T and P. For moving 
window statistic, calculations the program 
MWINDOW (Murray, Baker, 1991) was 
used. Variograms were calculated based on 

the cluster means rather then the original database. Both experimental variogram calculations 
and theoretical variogram fitting were performed using the program VARIOWIN (Pannatier, 
1994). 
On the experimental variogram that characterizes the spatial variation in temperature data, two 
different sills can be distinguished. The nested structure variogram (Serra, 1968) fitted to it is 
the sum of two Gaussian type variograms. One of them has small (5 km) range, the other 
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significantly larger (29.5 km) range: 
γ(h)=1520*G(5)+2520*G(29.5), where ”G” 
denotes the Gaussian variogram function 
(Fig. 1/a). A sum of two Gaussian 
variograms was also found best for 
pressure (Fig.1/b.) 
(γ(h)=0.234*G(10.2)+0.148*G(43.6)), but 
the range of both individual variograms for 
P is significantly higher than in the case of 
T. The fit for P is weaker than for T, 
probably due to a hole effect (Cressie, 
1991), shown by a negative correlation in a 
small range of the variogram (Fig. 1/b). 
Anisotropy was not calculated for either 
case. 

Finally, theoretical variogram parameters were 
combined with the original data for OK and EK 
in a program written by Bárdossy, A. 
(unpublished). This code allows both data 
estimation and kriging error calculation to be 
performed simultaneously. Each kriging 
parameter was chosen to be the same in the 
two processes, but for OK the estimated errors 
were set zero. Contour lines were then 
generated using program SURFER (Golden 
Software Inc., 1994) (Fig. 2/a-g). 
 
 
 

5.2. Results and Comparison of Different Methods 

EK error maps for both P and T exhibit low 
kriging standard deviations (Fig. 2/a-d). In 
both cases the interpolation is best where 
data points form clusters, while the error is 
largest in areas for which no data exist (see 
arrows on Figs 2/b, 2/d). Although the 
structure of the two error maps is similar, the 
dimension of low error areas is significantly 
smaller for pressure (Fig. 2/d). In addition, 
data clusters with a large error exist, 
indicating that the uncertainties in 
metamorphic pressure estimates are larger 
than in T. 
OK maps for both T and P exhibit unrealistic 
results, with peaks and ditches forming in many areas. Extreme values in P – up to 20 kbar or 
as low as 0 kbar – were locally interpolated (Fig. 2/e). Estimated temperature data vary  
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between 0 and 1700 °C (not presented). The results emphasize the problem of using exact 
interpolation methods for data sets that contain uncertainty. The reason of the conspicuous 
(mis)estimation is likely that significantly different values, both in the initial P and T data sets, 

exist close to each other. Because no 
nugget effect was involved in the variogram 
used, OK is an exact interpolator, i.e. the 
estimated surface tends to pass through 
each datum point. This ambition leads to 
bad interpolation results in areas where 
significantly different values exist. If OK with 
a nugget effect model (smoothing 
interpolator) is used, a more realistic result 
may be obtained. By using this variogram 
for kriging, one can generate smoothed 
maps even in areas having higher 
uncertainty in the data (Fig. 2/f). The error of 
estimation using OK is significantly larger 

than for EK in areas where data points are numerous (Fig. 2/g). On the other hand, for 
extrapolation OK appears to be more 
reliable, as shown by the small error values 
towards the border of the study area as well 
as in domains lacking data. 
The reliability of two maps calculated by EK 
and OK with nugget effect, respectively, can 
also be tested by cross a validation 
procedure. In this process each sample 
value at location x0 is removed in turn from 
the data set and Z*(x0) is estimated using the 
other samples. Comparison of the measured 
and the estimated data helps to identify 
apparent bias. For EK and OK the average 
of the T differences is as low as 2.5 and 0.8 
°C, respectively, no systematic overestimation is seen in either case. Correlation coefficients  
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between estimated and measured data are similar in the two cases (r=0.67 for both), and the 
two estimations produce similar data (r=0.99). On Fig. 4 one can see that EK reproduce the 
original data well, while the measured and the estimated T data are barely correlated (r=0.14) 
in the case of the OK map (without nugget effect). Whether the slight underestimation for high 
T data and the tendency to overestimate low T data (Fig. 3) for both EK and OK is 
characteristic of these interpolation methods, or whether these effects are inherited from the 
data set used is out of the scope of the present study. 

Based on the previous reasoning one can 
say that reliable maps can only be obtained 
if the uncertainty in the data is involved in 
the interpolation algorithm. The two 
approaches used (EK, OK) have different 
advantages and disadvantages. If a 
sufficient number of data points exist, with a 
spatial distribution close to uniform, EK is 
preferred because this method produces 
the smallest kriging error. For highly 
clustered data sets, as well as to get 
reliable maps close to the border of the 
area, OK is the superior method. 
 

5.3. Geological representation of kriging results 

For possible application of the PT maps in geological interpretation two examples are briefly 
presented. In both cases maps got by EK method are used. 
1) The T/P ratio may be an informative parameter when comparing different metamorphic 
terrains. Based on isotherms and isobars, the construction of a T/P map is a simple calculation 
(Fig. 4). To propagate errors into the T/P map, the following expression should be used: 
 

σT / P =
P

∑ ∂ (T / P )

∂P

 
 
  

 
 

T

∑ *
∂ (T / P )

∂T

 
 
  

 
 * σP * σT * r PT  
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where rPT is the correlation coefficient 
between P and T. 
 
2) The exact position of the sillimanitein 
isograd in the Central Alps has been argued 
for a long time. By taking into account the 
experimentally determined P-T-location (e.g. 
Holdaway, 1971) of the kyanite-sillimanite 
reaction, the appropriate combination of 
isotherms and isobars results in the 
representation of the univariant curve in the 
real space. If the error maps are considered 
as well (by using a function equivalent to the 
one above), one can represent the stability 
limit for sillimanite with an error envelope (Fig. 5). This confidence interval may then be 
compared to the mineral zone boundary as delimited by field observation (e.g. Irouschek 
1982, Todd, Engi 1997). 
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Abstract 

The application of mathematical methods has a long tradition in Hungary. The main bases of 
geomathematics are the universities of the country, more closely the departments related to 
geology, such as general geology, stratigraphy, paleontology, structural geology, mineralogy, 
pet-rography, geochemistry, hydrogeology and applied geology. The Hungarian Geological 
Survey, the Geological Institute of Hungary and the Geochemical Research Laboratory of the 
Hungarian Academy of Sciences are institutions where geomathematical methods found 
broad applications. Finally, some mining and exploration companies, like the Hungarian Oil 
Company (MOL), the Bakony Bauxite Mining Company and others are regularly using 
geomathematical methods, mainly for the evaluation of exploration results, for deposit and 
reservoir modelling and for the estimation of resources. 
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The application of mathematical methods has a long tradition in Hungary. The main bases of 
geomathematics are the universities of the country, more closely the departments related to 
geology, such as general geology, stratigraphy, paleontology, structural geology, mineralogy, 
pet-rography, geochemistry, hydrogeology and applied geology. The Hungarian Geological 
Survey, the Geological Institute of Hungary and the Geochemical Research Laboratory of the 
Hungarian Academy of Sciences are institutions where geomathematical methods found 
broad applications. Finally, some mining and exploration companies, like the Hungarian Oil 
Company (MOL), the Bakony Bauxite Mining Company and others are regularly using 
geomathematical methods, mainly for the evaluation of exploration results, for deposit and 
reservoir modelling and for the estimation of resources. In the following examples of recent 
geomathematical applications are listed. 

Eötvös Loránd University, Department of Applied Geology, 
Budapest 

Under the leading of Dr. J. Kovács:  

o Time- trend analyses of underground water systems and sedimentary sequences 
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o multivariate statistical methods e.g. cluster- ,principal component-,dynamic factor 
analyses for the study of underground hydrogeologic systems 

o spatial analyses of underground water systems e.g. autoeregression, moving 
averages, point- and block kriging 

Directed by Dr. A. Füst:  

o geostatistical calculations on different types of mineral deposits in Hungary, deposit  
modelling. 

Szent István University, Institute of Mathematics and 
Informatics, Gödöllõ 

Directed by Prof. Z. Varga and Dr. Z. Sebestyén: 

o Statistical evaluation of different sedimentary sequences by bivariate and multivariate 
statistical methods and by geostatistics, mainly variography 

o Application of the bootstrap method for the statistical evaluation of small sized samles 
(N=10-30) 

Szent István University, Department of Biomathematics and 
Informatics, Budapest  

Directed by Prof. J. Fodor:  

o application of fuzzy systems and fuzzy logic to the treatment of uncertainties and 
errors in geology,e.g. quantitative phase analysis of rocks by X-ray diffractometry and 
thermal  methods, safety assessment of radioactive waste repositories, transmissivity 
measurements of underground water in boreholes. 

University of Szeged, Department of Mineralogy, 
Geochemistry and Petrography, Szeged  

Under the leading of Dr. T. M. Tóth:  

o modelling of fractured crystalline rocks by the methods of fractal geometry. 
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University  of Szeged, Department of Geology and 
Paleontology, Szeged  

Under the leading of Dr. J. Geiger:  

o 3D geostatistical modelling of ancient fluvial dominated delta environments. 
o Time series analysis of sedimentary micro-cycles based on Computer Tomograph 

data of hand specimens 
o Multivariate statistical methods for identification of ancient sedimentary 

environments from grain size data and sedimentary structures 
o Markov chain analysis of sedimentary sequences. 

 

Miskolc University, Miskolc  

Prof. F. Steiner:  

o Detailed theoretical investigation of robust estimators. Practical applications in 
geology and geophysics. 

Hungarian Geological Survey, Budapest 

o evaluation of magmatic rocks in Hungary by various statistical methods (L. Ó. 
Kovács and G. Kovács) 

o application of the fuzzy set theory to the resource estimation of solid mineral 
deposits in Hungary (B. Fodor and G. Szebényi), modernization of the traditional 
resource estimation methods.  

Geological Institute of Hungary, Budapest 
o investigation of  the background concentrations of chemical elements of rocks and 

soils in Hungary by statistical methods (I . Horváth, P. Scharek) 
o geochemical evaluation of chemical data of soils in Hungary by statistical methods 

for agro-geological purposes (U. Fügedi) 
o statistical evaluation of hydrogeological data systems, including time-trend analyses 

(Á. Szalkay, I . Horváth, Gy. Tóth) 
o Statistical evaluation of micro-tectonic data, calculation of paleo-stress (Gy. 

Maros, K. Palotás, L. Fodor, B. Koroknai) 
o Modelling of fracture systems in rocks by methods of fractal-geometry, detection of 

fault systems by statistical methods (Z. Unger) 
o Geological evaluation of aerial and satellite pictures (Z. Unger) 
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Geochemical Research Laboratory of the Hungarian Academy 
of Sciences.Budapest 

Directed by P. Árkai:  

o statistical evaluation of measures of crystallinity of layer silicate minerals, application 
of fuzzy set theory to the evaluation of the results of quantitative mineralogical phase 
analyses. 

Hungarian Oil Company(MOL), Szeged 

Under the leading of J. Geiger:  

o Variography 
o Numerical modelling of the properties of oil and gas reservoirs by indicator kriging 

and co-kriging, sequential Gaussian simulation, Markov-Bayes simulation, 
turning band simulation. 

o 2D and 3D spatial modelling of reserves.  
o parameter upscaling for dinamic flow-models and study of the volume-effect.  
o Study of the spatial uncertainty of the models. 

 

Bakony Bauxite Mining Company, Tapolca 
o Resource estimation of bauxite deposits by traditional methods and by the application 

of the fuzzy set theory.(I . R. Szabó, G. Varga).  
o Geostatistical calculations for mining-geological purposes: variography, point- and 

block kriging (S. Diószegi). 
 
Finally, the author of this paper is studying the uncertainties and errors of geological 

investigations and possibilities of their evaluation by traditional stochastic and some 
new mathematical methods, e.g fuzy set theory, fuzzy logic, probability 
bounds.(Hungarian Academy of Sciences, Department of Earth Sciences) 
Applications of mathematical methods in other branches of the Earth Sciences, e.g. 
geography, geophysics, geodesy, mining etc.will be outlined in separate papers.Those who 
would like to have more informations about some of the investigations listed above, are 
requested to send an e-mail message to George Bárdossy ( h4750bar@helka.iif.hu ).  
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Abstract 

This paper presents a fuzzy logic based approach to data uncertainty management in 
groundwater pollution potential assessment; a modified parametric model produces a pollution 
potential score that ensures a degree of groundwater protection which increases with 
parameters measurement or estimation uncertainty. The model behavior is investigated and 
the consequences of its use are outlined with respect to risk analysis. 

Keywords: fuzzy logic, data uncertainty management, groundwater pollution potential 
assessment, SINTACS, f-SINTACS 
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1. PREMISES 
Aquifers’ pollution potential assessment is an important planning and pollution prevention tool. 

Among the assessment methods DRASTIC (Aller et. al. 1987) and SINTACS (Civita and De 

Maio, Italian Research Council, 1997) assign a partial pollution potential score to each value of 

the parameters assumed to be relevant (groundwater table depth, net recharge etc.) and 

produce a total pollution potential score as a weighted sum of the partial ones, with weights that 

depend on the specific hydrogeological situation. 

The actual parameters values are generally not known exactly, mainly because of 

measurement or estimation errors, and the same apply, therefore, to the true score. This raises 

the problem of choosing an appropriate pollution potential level for planning and design 

decisions. 

The problem can simply be ignored using only the measure or estimate of each parameter, 

obtaining directly the final score; it can be argued, however, that because this last is affected by 

some degree of uncertainty the real pollution potential at a given site may be underestimated, 

and therefore planning and design decision might not be sufficiently safe for groundwater 

resources. 

Parameter data quality can be increased but time, costs and different technical limitations may 

not allow to reach the desired level of accuracy. 

The model presented in this paper attempts to introduce a safety degree in pollution potential 

assessment with a given data set; a fuzzy logic system calculates a partial score starting from 

a parameter measure or best estimate and the mathematically formulated notions of 

acceptable approximation to its actual value and of negative influence of the parameter itself on 

pollution potential level. 

The model is expected to introduce a quantified and reasonable degree of precaution in 

pollution potential assessment, reducing the possibility to take planning and design decisions 

not sufficiently safe for groundwater resources. The underlying precaution principle receives 

the common interpretation which suggests to take decisions with a safety level directly related 

to the uncertainty of the information on which they are based; there is no radical or prejudicial 

action restraining approach and the procedure, which will now be briefly outlined, is 

mathematically defined even in its subjective elements. 

Let’s assume that Pa  is the actual value of a given parameter P and that Pm  is its measure or 

best estimate;  Pm  will be thought as the best available approximation of Pa .  
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Let’s suppose now that the higher (or lower) is the value of the parameter P, the higher is the 

related partial score; to obtain a safer pollution potential assessment because of uncertainty, 

then, a parameter level higher (or lower) than Pm  should be used, because the resulting score 

will be higher than the one calculated using Pm directly. However, due to the above-mentioned 

interpretation of Pm , numbers increasingly different from this last are less acceptable as 

approximations of the parameter actual value, so only some degree of deviation is tolerable. 

A choice of compromise between two requirements must be made. The model discussed 

hereafter, derived from SINTACS and called f-SINTACS (“f” stands for fuzzy) performs such 

choice, given some control factors. A key one is the amplitude of the range of numbers 

considered to some degree acceptable approximations of the actual value Pa  of a parameter 

P, provided that such degree is the highest possible for Pm  under all conditions; if the 

amplitude increases then  Pm  is thought to be a less reliable approximation of Pa , and the 

model deals with the resulting uncertainty by allowing numbers progressively distant from the 

former to be considered, to some extent, acceptable approximations of Pa  and potentially be 

used to calculate the partial score. This last, because of the inference process features, will be 

higher than the one computed when the choice is forced to remain nearer to Pm  or to coincide 

with it, except for special cases like those discussed later. 

F-SINTACS and SINTACS produce the same pollution potential score when Pm  is considered 

the only acceptable approximation of Pa ; the effect of uncertainty is then removed, and thus it 

can be quantitatively assessed by comparing the scores computed under the two different 

conditions. 

The conclusions about hydrogeological systems on which SINTACS is based are assumed to 

be valid; this last, particularly suited for the Mediterranean area, being well experimented in 

Italy has been considered a good starting point. 

This work draws on previous ones regarding DRASTIC (Cameron, E., Peloso, G. F., 2000 and 

2001) and, besides discussing a somewhat different assessment method, develops the 

analysis of the basic concepts and improves the investigation of the model behavior and the 

consequences of the approach employed. If further tests give positive results a limited software 

release may be issued. 
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2. SOME INTRODUCTORY CONCEPTS ABOUT FUZZY SET AND 
FUZZY LOGIC 
A fuzzy set S is described by a function m that assigns to an element x of a chosen reference 

set a membership degree ( )xm  of x to S, where ( ) 10 ≤≤ xm . A zero membership degree, that 

is ( ) 0=xm , means that x does not belong to S while if ( ) 1=xm  then x belongs to S as in the 

ordinary set theory. Values greater than zero and less than one means, freely speaking, that x 

belongs to S only to a certain extent.  

As an example consider the fuzzy set high temperature of Fig. 1 (fuzzy set names will be 

written in italic type); the function domain is the interval [ ]40,0  whose elements are assumed to 

be the temperatures, in Celsius degrees, inside a house situated in a temperate climate area. 
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Fig. 1. The fuzzy set high temperature 

 

The fuzzy set of Fig. 1 actually provides a mathematical model for the concept of high 

temperature and to what extent a temperature T is compatible with this notion is given by the 

membership degree ( )Tm  of T to the fuzzy set. 

From the graph it can be observed that ( ) 03 =g , ( ) 140 =g  and ( ) 5.018 ≅g  meaning that 3, 

40 and 18 degrees are, respectively, not compatible, fully compatible and half compatible with 

the concept of high temperature as represented by the function of Fig. 1. 

The function shape is of particular importance from a semantic point of view and like other 

fuzzy set features depends on the specific problem and the concept to be represented. The 

choice, usually not univocal, may involve some subjectivity, while the final result, a function, is 

clearly defined; it cannot be thought as a probability density function because it has a different 

meaning and, in general, lacks the required properties. 

Among the set-theoretical operations that can be performed with fuzzy sets intersection is of 

special interest for this paper: given two fuzzy sets A and B and the memberships degrees 
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( )xmA  and ( )xmB  of an element x to each, then the membership degree of x to BA ∩  is 

some convenient function ( )xm BA∩  of ( )xmA  and ( )xmB , where ( ) 10 ≤≤ ∩ xm BA ; for example 

( ) ( ) ( )[ ]xmxmxm BABA ,min=∩  for the standard Zadeh intersection operation or 

( ) ( ) ( )xmxmxm BABA ⋅=∩  for the product one. 
A logic based on fuzzy set theory can be developed firstly by asserting that the membership 

degree ( )xm  of an element x to a fuzzy set S is equal to the truth degree ( )xt  of the statement 

“x is S”. 

Thus, considering the preceding example, the statements P1=”[a temperature of] 3 °C is high”, 

P2=”18 °C is high” and P3=”40 °C is high” have a truth degree ( ) ( ) 03P1 == mt , 

( ) ( ) 5.018P2 ≅= mt  and ( ) ( ) 140P3 == mt  meaning, again loosely speaking, that the first 

statement is false, the second is half true and the third is true. Phrases in square brackets will 

be sometimes added for clarity. 

If P and Q are, respectively, the statements “x is A” and “y is B “ then a truth degree QPt ∧  can 

be assigned to the composite statement “x is A AND y is B” knowing those, ( )Pt  and ( )Qt , of P 

and Q; for example ( ) ( )[ ]Q,PminQP ttt =∧  or ( ) ( )QPQP ttt ⋅=∧  with analogy to fuzzy sets 

intersection. In the second case, considering the fuzzy set of fig. 1, ( ) 8.020 =m  and 

( ) 9.030 =m , so the statement “20° C is high AND 30° C is high” has the truth degree 

( ) ( )3020 tt ⋅ = ( ) ( )3020 mm ⋅ = 0.8⋅0.9 = 0.72. 

Other set-theoretical operations and logical operators are also defined but they will not be 

discussed here.  

Fuzzy logic, naturally, includes inference methods; the simple one used by f-SINTACS will be 

exemplified later. 

 

3. INFERENCE STEPS 
The core process to assess pollution potential with f-SINTACS is the inference of seven 

weighted partial scores *
Pis  ( 71 ≤≤ i ), one for each parameter considered by SINTACS, which 

are summed to obtain the total one ∑
=

=
7

1

**

i
PiT sS . The partial scores are weighted because they 

already incorporate, as it will be clear later, the weights (the relevance) assigned to them in 

pollution potential assessment. 
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The parameters are: water table depth, net recharge, self purification effect in the zone of 

aeration, soil type, aquifer type with respect to lithology, hydraulic conductivity and slope of the 

topographic surface; the corresponding Italian words are used for the acronym SINTACS (as 

for DRASTIC in English). 

The inference algorithm to calculate the partial scores, implemented with Wolfram Research’s 

software Mathematica v. 4.01, will be described for net recharge and comprises the following 

steps: 

 

1. Retrieval of net recharge measure or best estimate NRm , though as the best 

approximation of the real value NRa  

2. Retrieval of weight NRw  attributed to net recharge 

3. Choice of the net recharge value NRv̂  that is to the highest degree unfavourable for 

pollution potential and an acceptable approximation of NRa , given the fuzzy set that 

represents this last notion. 

4. Inference of the partial score *
NRs  through the rule “IF NRv̂  is unfavorably high AND  NRw  

is high THEN *
NRs  is high” 

 

The rule (Fox E., 1994) may be read as: “insofar as the net recharge value NRv̂  is compatible 

with the concept of unfavorably high [for pollution potential] and as the weight NRw  is 

compatible with the concept of high, then make the partial score *
NRs  compatible with the 

concept of high”. 

When the process is executed using only the measure or best estimate NRm  of net recharge 

then, in the third step, NRv̂  = NRm . 

Steps 1 to 4 are repeated for each parameter and the resulting partial pollution potential scores 

are added to obtain the total one. 

To perform the inference it is necessary to provide the fuzzy sets that mathematically represent 

the concepts of acceptable approximation to net recharge actual value, unfavourably high net 

recharge, high weight and high partial score; also the inference method and the type of AND 

operator appearing in the rule, among the different options allowed with fuzzy logic, must be 

chosen. The first issue will be discussed in the next two paragraphs; the second will be 

illustrated through the exemplification. 
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4. THE MODEL FOR THE CONCEPT OF ACCEPTABLE 
APPROXIMATION TO PARAMETERS ACTUAL VALUES 
Because to assess pollution potential f-SINTACS normally chooses parameters values 

different from the measures or estimates that are considered the best approximations of the 

actual ones, it is necessary to establish how much other options are themselves acceptable as 

approximations, to remain near enough to the best ones. 

It is reasonable to assume that the measure or best estimate Pm  of a parameter P, being the 

best approximation to the actual value Pa , fully corresponds to the concept of acceptable 

approximation of this last, while numbers progressively greater or smaller than Pm  are less 

suitable; thus the fuzzy set that represents the concept of acceptable approximation of Pa  

should have a maximum of one in Pm  and membership degrees gradually decreasing on both 

sides of it. Since the membership degree of Pm  to the fuzzy set is one, so is the truth degree 

of the statement “ Pm  is an acceptable approximation of Pa ”, while for other values x the truth 

degree of the corresponding statement progressively decreases as the difference from Pm  

increases. It will be assumed that the membership and truth degrees are zero 

when 1PP emx +≤  or 2PP emx +≥ , where 1Pe  and 2Pe  are two positive values and it can be 

21 PP ee ≠ ; this means that at the ends or outside the interval [ ]21, PPPP emem +−  there are no 

acceptable approximations of a parameter actual value Pa  and therefore no possible model 

choices. 

These notions will be discussed for net recharge. 

Let us suppose that the measure or best estimate NRm  of net recharge for a given site is 100 

mm/year and that 1NRe = 2NRe = 25 mm/year; the fuzzy set for the concept of acceptable 

approximation of net recharge actual value is a bell-shaped PI function (Cox E., 1994) which 

associates a membership degree of one to NRm  and whose domain is the interval 

[ ]21, NRNRNRNR emem +− =[ ] [ ]125,7525100,25100 =+−  that contains, ends excluded, all the 

possible model choices. The values NRm , 1NRe  and 2NRe  univocally determine the function 

and thus the fuzzy set, which therefore will be denoted with ( )21,, NRNRNRNRA eemA , where 

NRAA  reminds that the concept represented is of “Acceptable approximation of Net Recharge 

Actual value”. Since NRm  = 100 mm/year and 1NRe = 2NRe = 25 mm/year the fuzzy set 

( )25,25,100NRAA  shown in fig 2 is obtained. 
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Fig. 2. The fuzzy set ( )25,25,100NRAA  

 

If 1NRe  or 2NRe increase so does the fuzzy set domain amplitude; numbers more distant from 

the measure or best estimate NRm  are considered to some degree acceptable approximations 

of the net recharge actual value NRa , their previous membership degree to the fuzzy set 

raises, possibly from 0, and they become potential model choices. This means that NRm  still is 

the best approximation of NRa  but is also less reliable, so more values are accepted as 

approximations of NRa  and allowed to be chosen by the model to make pollution potential 

assessment precautionary enough for the new uncertainty condition. 

For NRm  = 100 mm/year and 1NRe = 2NRe = 80 mm/year the fuzzy set NRAA  becomes that of 

fig. 3, while an asymmetric example ( )80,25,100NRAA  is shown in fig. 4. 
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Fig. 3. The fuzzy set ( )80,80,100NRAA  
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Fig. 4. The fuzzy set ( )80,25,100NRAA  

 

In this case the reliability of NRm as an approximation to NRa  “from above” is considered higher 

then “from below”. 

 

5. THE MODELS FOR THE CONCEPTS OF UNFAVOURABLY 
HIGH NET RECHARGE, HIGH WEIGHT AND HIGH PARTIAL 
SCORE 
The concept of unfavorably high net recharge is represented by the fuzzy set whose function, 

with domain [ ]550,25 , is shown in Fig. 5. 
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Fig. 5. The fuzzy set unfavorably high net recharge 
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The membership degree ( )NRvm1  of a given net recharge value NRv  to the fuzzy set 

expresses to what level NRv  can be considered unfavorably high for pollution potential, and 

corresponds to the truth degree ( )[ ]NRvt 11 P  of the statement ( ) =NRv1P  “ NRv  is unfavorably 

high”; the functional notation is used because of the variable term NRv . From the graph, for 

example, it can be observed that the truth degree of the statement ( ) =200P1  “200 [mm/year] is 

unfavorably high [for pollution potential]” is ( )[ ] ( ) 82.0200200P 111 == mt  while 

( )[ ] ( ) 6.0400400P 111 == mt . 

The fuzzy set shape is that of the curve which in SINTACS directly correlates net recharge 

values to their respective partial scores; these latter are simply divided by 10 to obtain the 

membership degrees on the vertical axis. The higher the partial score, and hence the 

membership degree, the unfavourable the net recharge amount. Shape preservation means 

that the influence of net recharge on pollution potential in f-SINTACS and SINTACS is the 

same, but the mapping of Fig. 5 mathematically defines a concept for the inference algorithm. 

The function values decrease after a maximum, since if an increasing net recharge favours the 

movement of pollutants toward groundwaters it also causes dilution and dispersion effects that 

lowers the concentrations; this and other phenomena reduces the adverse effect of net 

recharge on pollution potential beyond a value of about 280 mm/year. Also the membership 

degrees ranges from 0.1 to 0.95 and this limits, in f-SINTACS and SINTACS alike, the 

parameter influence on final computation. 

The weights iw (i =1, 2, …,7) attributed by SINTACS to each parameter are normally integer 

numbers dependent on the hydrogeological situation and the anthropic impact, but each weight 

can be modified by the user to better adjust the assessment to the specific case, provided that 

26
7

1

=∑
=i

iw and 5≤iw , i =1, 2, …,7. 

With f-SINTACS how much each weight can be considered high is given by the fuzzy set 

named high weight shown in Fig. 6, a linear function whose domain is the interval [ ],0

of a discrete set; although fuzzy sets can be defined over discrete domains the choice of a 

continuous interval allows to treat uncertainty in weight attribution 

described later for parameters. This case, however, will not be discussed further. 
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Fig. 6. The fuzzy set high weight 

 

The compatibility level of a weight iw  with the concept of high weight is its membership degree 

( )iwm2  which corresponds to the truth degree 2t  of the statement ( ) =iw2P ” iw  is high”; thus, 

for example, ( )[ ] ( ) 8.044P 222 == mt . 

Finally f-SINTACS and SINTACS attributes to each parameter a partial score from 0 to 50; like 

for weights the mathematical model for the concept of high partial score is the linear function of 

Fig. 7, which can readily be interpreted considering the previous examples; thus the partial 

score is  related to the i-th parameter has a membership degree ( )ism3  to the fuzzy set of Fig. 

7 and a truth degree ( )[ ]ist 33 P = ( )ism3  of the statement ( ) =is3P ” is  is high”. 
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Fig. 7. The fuzzy set high partial score 
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6. PARTIAL SCORE INFERENCE USING ONLY THE MEASURE 
OR BEST ESTIMATE OF A PARAMETER 
The partial score inference performed by f-SINTACS when only the measure or best estimate 

of a parameter is used leads to the same result as SINTACS, except possibly for small 

differences due essentially to numerical approximations. 

The steps described in par. 3 will be exemplified for a net recharge measure or best estimate 

NRm  = 100 mm/year and the weight NRw  = 4 commonly assigned to the parameter. 

In steps 1 and 2 the values of NRm  and NRw  are defined as inputs for the process; in step 3 

NRv̂  is set equal to NRm  = 100 mm/year and the process immediately proceeds to step 4, 

which for clarity will be divided in sub-steps. 

Sub-step 4.1. Evaluation of the truth degree 1t  of the statement ( ) =100P1  “ NRv̂  is 

unfavorably high”; from Fig. 5, since NRv̂  = NRm  = 100 mm/year, it is 

( )[ ] ( ) 46.0100100P 111 ≅= mt , where ( )1001m  is the membership degree of 

100 mm/year to the fuzzy set unfavorably high net recharge. 

Sub-step 4.2. Evaluation of the truth degree 2t  of the statement ( ) =4P2  “[a weight of] 4 is 

high”; from Fig. 6 it is ( )[ ] ( ) 80.044P 222 == mt , where ( )42m  is the 

membership degree of 4 to the fuzzy set  high weight. 

Sub-step 4.3. Evaluation of the truth degree t of the composite statement ( )100P1  AND 

( )4P2 = “[ a net recharge value of] 100 [mm/year] is unfavorably high AND [a 

weight of] 4 is high” that forms the rule premise. The chosen AND operator 

(“product AND”) multiplies the two truth degrees to obtain the premise one, 

ensures a continuous dependence of partial scores on parameters and weight 

values and makes those of f-SINTACS and SINTACS equal when uncertainty 

is ignored. The composite statement truth degree t is 

( ) ( )[ ] 37.080.046.04P  AND100P 2121 ≅⋅≅⋅= ttt . 

Sub-step 4.4. Inference of the partial score *
NRs . The method used, called monotonic 

inference, consists in searching that partial score whose membership degree 

to the fuzzy set high partial score equals the truth degree t calculated in the 

preceding step. This is univocally identified because the mapping of Fig. 7 is 

one-to-one and, since from sub-step 4.3 it is t ≅ 0.37 a partial score 

4.18* ≅NRs  is obtained. 

The entire inference process is depicted in Fig. 8. 
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Fig. 8. Net recharge partial score inference when only the measure or best estimate of the parameter is used. Here 

this last is 100 mm/year and the parameter weight is 4. 
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7.  PARTIAL SCORE INFERENCE CONSIDERING UNCERTAINTY 
Because the measure or best estimate Pm  of a parameter P is only the best approximation to 

the actual value Pa , and therefore the knowledge of this last is to some extent uncertain, f-

SINTACS performs a precautionary pollution potential assessment by choosing a parameter 

value pv̂  that is to the highest degree both an acceptable approximation of Pa  and 

unfavourably high for pollution potential, given the fuzzy set that represents these concepts. 

The model, in other words, attempts to prevent pollution potential underestimation due to 

uncertainty by choosing pv̂  so as to obtain a score higher than the one related to Pm , with a 

choice freedom restricted by the request that pv̂  must be to the highest possible extent a 

satisfactory approximation of Pa . 

The choice is made in inference step 3 (see par. 3) using the fuzzy set representing the 

concept of acceptable approximation described in par. 4. 

Suppose once more that the measure or best estimate of net recharge actual value NRa  is 

NRm  = 100 mm/year and that both the numbers outside the interval [ ]25100,25100 +−  = 

[ ]125,75  and its ends cannot be accepted as approximations of NRa ; thus the model for the 

concept of acceptable approximation to net recharge actual value is given by the fuzzy set 

( )25,25,100NRAA  shown in fig 2 (see again par. 4) and the fuzzy set unfavorably high net 

recharge depicted in fig. 5 (see par. 5) represents the concept implied by the name as 

previously explained. Since the membership degree of a net recharge value NRv  to the 

intersection between the two fuzzy sets is the minimum between the memberships degrees of 

NRv  to each of them (see par. 2) by superimposing ( )25,25,100NRAA  and unfavorably high net 

recharge the intersection fuzzy set obtained is that highlighted in Fig. 9 by the thicker line, and 

the value to which the maximum membership degree corresponds is 113ˆ ≅NRv mm/year. 
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Fig. 9. Intersection between the fuzzy sets ( )25,25,100NRAA  and unfavorably high net recharge (thicker line) 

shown for the interval [ ] [ ]125,7525100,25100 =+− ; the value 
NRv̂  to which the maximum membership degree 

corresponds is about 113. 

 

The quantity NRv̂  has an interesting property. Values NRvx ˆ>   that would cause a higher 

pollution potential score (see fig. 5) appear to be an attractive choice for a precautionary 

assessment, but are less compatible than NRv̂  with the notion of acceptable approximation of 

net recharge actual value, because their membership degrees to the set  ( )25,25,100NRAA  are 

less than that of NRv̂  (see the bell-shaped curve portion that belongs to the intersection fuzzy 

set in fig. 9). On the other hand if NRNR vxm ˆ<≤  the correspondence of x to the notion of 

acceptable approximation increases but the resulting partial (and hence total) score would be 

lower than the one obtained using NRv̂  (see fig. 9 and 10) and therefore the assessment would 

be less safe. Finally values below NRm  clearly cannot be accepted whether with SINTACS or 

f-SINTACS. Thus NRv̂ , that can be regarded as an optimal compromise between acceptability 

and safeness, is chosen by the model to assess pollution potential. The same conclusion can 

be reached observing that NRv̂  maximizes the truth degree of the statement ( )xP =“x is 

unfavourably high for pollution potential AND x is an acceptable approximation of net recharge 

actual value” where the AND operator is now the standard Zadeh one described in par. 2. 

The inference process, represented in Fig. 10, then proceeds as explained earlier, using 

113ˆ ≅NRv  mm/year instead of 100=NRm  mm/year in step 4. The membership degree of 

NRv̂  to the fuzzy set unfavorably high net recharge increases from 0.46, correspondent to NRm  
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and calculated in par. 6, to 0.51, while the partial score increases from 18.4 to 20.2 or, rounding 

to integer numbers, from 18 to 20 with a 11% increment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Net recharge partial score inference using NRv̂ . Again net recharge measure or best estimate is 100 

mm/year and the parameter weight is 4; it is assumed that outside the interval [ ] [ ]125,7525100,25100 =+−  or at its 

ends there are no acceptable approximation of net recharge actual value. 
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If the choice tolerance interval amplitude increases because the measure or best estimate 

NRm  becomes less reliable then the assessment model, in favour of safety, is allowed to select 

a value NRv 'ˆ  that is more distant from NRm  than NRv̂  and causes and additional increment in 

pollution potential score; for instance if the tolerance interval is now 

[ ] [ ]150,5050100,50100 =+−  the situation described in Fig. 9 becomes that of Fig. 11, 

124ˆ ' ≅NRv  mm/year (instead of 100=NRm  mm/year and 113ˆ ≅NRv  mm/year) and the partial 

score increases again from 20 to 22 with a total percentage of 22%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Intersection between the fuzzy sets ( )50,50,100NRAA  and unfavorably high net recharge (thicker line) 

shown for the interval [ ] [ ]150,5050100,50100 =+− ; the new value NRv 'ˆ  to which the maximum membership 

degree corresponds is about 124 mm/year and the partial score increases from 20 to 22. 

 

If NRm  is greater than the value to which the maximum of the fuzzy set unfavorably high net 

recharge corresponds, about 280 mm/year, then NRNR mv <ˆ , but if the maximum belongs to 

the fuzzy sets intersection then NRv̂  is equal to it even if NRm  or the tolerance interval 

amplitude changes, as it is shown in Fig. 12; the adverse effect of net recharge on pollution 

potential and the partial score become, in fact, the highest allowed by SINTACS, and hence by 

f-SINTACS, and do not change with uncertainty nor with sufficiently small variations of NRm . 

The model choice, moreover, cannot fall outside the permissible values range of a parameter 

([ ]500,25  for net recharge) but at most corresponds to its upper or lower extreme. 
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Fig. 12. If the intersection between the fuzzy sets 
NRAA  and unfavorably high net recharge (thicker line) 

contains the maximum of the latter  then  
NRv̂  is the value, around 280 mm/year, to which the maximum is 

associated even if  the tolerance interval amplitude changes, or 
NRm does within certain limits 

 

The possibility, simply by repeating the inference,  to compare the results obtained ignoring or 

considering uncertainty as discussed, allows to quantitatively and separately determine its 

effect and is therefore a key model feature. 

 

8. MODEL ANALYSIS 
Decisions involving geological objects, as well as other complex systems, often imply some 

precaution. Foundations loads, for example, are by design normally less than soil bearing 

capacity also because the actual value of this latter cannot be exactly assessed due to many 

uncertainty factor such as soil variability, simplifications in failure phenomena description etc. 

Not rarely decisions involves a degree of subjectivity, which depends on experience and 

empirical observations. 

Within f-SINTACS inference process subjectivity is primarily involved in choosing the functions 

describing fuzzy sets like NRAA , that are mathematical models for the concept of acceptable 

approximations; because the main subjective features are expressed as functions they are 

unambiguous, and each different proposal can be compared on a quantitative base. 
Now let us assume that: 1) the risk R associated to pollution of an underground water resource 

is a function ( )VHPRR ,,=  of pollution potential P, hazard level H of an action and socio-

economical value V of the resource, where 0,, ≥VHP ; 2) R  increases whenever one of the 
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variables also does, if the others remains unchanged: for example VHPR ⋅⋅= ; 3) P is an 

increasing function of pollution potential score and V is constant; 4) it is possible to define an 

acceptable risk level 0R such that if 0RR >  the action is not undertaken or must cease and 

vice versa if 0RR ≤ . 

Using directly the parameters measures or best estimates the same pollution potential score 

TS  is obtained by SINTACS and f-SINTACS and the corresponding risk level is 

( ) VHSPR T ⋅⋅= ; if uncertainty is considered f-SINTACS produces a score *
TS  where, 

generally, TT SS >*  and the corresponding risk level is ( ) VHSPR T ⋅⋅= ** . Because P is an 

increasing function of pollution potential score if TT SS >*  then ( ) ( )TT SPSP >*  and therefore 

RR >* . To reach the acceptable risk level 0R using both estimations it must be 0
* RRR == . 

Since RR >*  and V is constant, the hazard level when the risk is assessed considering 

uncertainty must be changed to a value *H  so that 

( ) ( ) 0
*** RVHSPRVHSPR TT =⋅⋅==⋅⋅=  and so, dividing by V and rearranging terms, 

( )
( ) H
SP

SP
H

T

T ⋅=
*

* ; because ( ) ( )TT SPSP >*  then 
( )
( ) 1

*
<

T

T

SP

SP
 and HH <* . Assessing pollution 

potential through f-SINTACS, thus, leads to a hazard reduction *HHH −=∆  required to reach 

the acceptable risk level and to a strengthened pollution prevention approach because of 

uncertainty; the related cost ( )HC ∆  can be assumed to increase with H∆ . If pollution potential 

score is already the highest possible then *HH = and 0=∆H  regardless of uncertainty.  

For the purposes of this discussion other definitions of R and the problems that can be found to 

specify 0R  or the functions P and, especially, H, V and C can be ignored. 

Another path of thoughts can be followed. Under equal conditions if pollution potential score 

*
1TS  is obtained from more reliable parameters measures or best estimates than *

2TS , normally 

it will be *
2

*
1 TT SS < . The hazard levels required to reach the acceptable risk 0R  are *

1H  and 

*
2H  such that ( ) ( ) 0

*
2

*
2

*
2

*
1

*
1

*
1 RVHSPRVHSPR TT =⋅⋅==⋅⋅=  and so, again dividing by V and 

rearranging terms, 
( )
( )

*
1*

2

*
1*

2 H
SP

SP
H

T

T ⋅= ; since *
2

*
1 TT SS <  implies ( ) ( )*

2
*
1 TT SPSP <  then *

1
*
2 HH < , 

*
1

*
1

*
2

*
2 HHHHHH −=∆>−=∆  and ( ) ( )*

1
*
2 HCHC ∆>∆ , where H is the hazard level calculated 

without uncertainty and HHH <*
2

*
1 , .  
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Accepting a higher degree of uncertainty, then, implies an additional hazard reduction *
2

*
1 HH −  

to reach the acceptable risk level 0R  with increased costs; this theoretically allows to compare 

the expenditures required to improve measurement or estimates accuracy or to reduce the 

action hazard level to help decide which way to proceed to achieve the risk level 0R . 

Finally it is also possible to tolerate less accurate measurement or estimates, for example 

when it is difficult to improve data quality or in preliminary assessment, and be anyway 

confident that f-SINTACS will introduce a degree of precaution in pollution potential 

assessment that attempts to protect groundwaters from the potentially adverse effect of 

uncertainty. 
The partial score *

Ps  obtained by f-SINTACS for a given parameter P can be considered a 

function of its measure or best estimate Pm  and the positive values 1Pe  and 2Pe , which 

defines the fuzzy sets that are models for the concept of acceptable approximation of 

parameters real values, while the other fuzzy sets are fixed. It may thus be written 

( )21
** ,, PPPPP eemss = ; when 021 == PP ee  then ( ) ( ) PPPPP smsms == ** 0,0, , the score 

calculated by SINTACS using Pm  only. The partial score ( )21
** ,, NRNRNRNRNR eemss =  for a net 

recharge measure or best estimate 400100 ≤≤ NRm mm/year and for 7010 21 ≤=≤ NRNR ee  

mm/year is represented by the surface of Fig. 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The partial score ( )21
** ,, NRNRNRNRNR eemss =  calculated for a net recharge measure or best estimate 

400100 ≤≤ NRm mm/year and for 7010 21 ≤=≤ NRNR ee  mm/year. 
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For a given NRm  the partial score increases when 1NRe  or 2NRe  do; this means that the model 

introduces a degree of precaution in the assessment which intensify with uncertainty, as 

appropriate. The effect diminishes as NRm  approaches the value 0NRm  to which the maximum 

of the fuzzy set unfavourably high net recharge corresponds, because the adverse influence of 

net recharge on pollution potential draw nearer to the highest possible and partial score tends 

to remain constant even if NRm , 1NRe or 2NRe  change (see par. 7); the surface top, thus, 

becomes progressively horizontal. 

The partial score percent increment 100
*

⋅




 −
=

NR

NRNR
i

s

ss
s , where NRs  is the partial score 

calculated using NRm  only, is shown in Fig. 14, again for 400100 ≤≤ NRm  mm/year and 

7010 21 ≤=≤ NRNR ee  mm/year. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 14. The partial score percent increment 100
*

⋅




 −
=

NR

NRNR
i

s

ss
s calculated for a net recharge measure or best 

estimate 400100 ≤≤ NRm mm/year and for 7010 21 ≤=≤ NRNR ee  mm/year. 
 

 
The partial score percent increment taking uncertainty into account with respect to that 

obtained without it ranges from 0 to 26% and is already significant (over 10 %) when the 

precautionary choice of net recharge made by f-SINTACS is allowed to be within and interval 

of amplitude less then ± 25% of the net recharge measure or estimate NRm . 
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The increment is  progressively approaches 0 when NRm  come close to the value 0NRm  

previously considered, since *
NRs  tends to NRs  for the reasons already discussed. 

The ratio absolute value 
( ) ( )

( ) ( )21
*

21
*

21
*

21
*

,,1,1,

,,,,1

NRNRNRNRNRNRNRNR

NRNRNRNRNRNRNRNR

eemseems

eemseems
r

−++
−+

=  quantify how 

sensitive is partial score to unit increments of net recharge measure or best estimate with 

respect to unit increments, on each side, of the length of the interval where the model choice is 

allowed to fall; the result, shown in fig. 15, ranges approximately between 2 and 6. 

As NRm  approaches 0NRm  the score *
NRs  becomes progressively independent from 1NRe  and 

2NRe , the ratio denominator tends to 0 and, after the appearance of numerical instabilities, r 

cannot be calculated anymore and the function surface is interrupted. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 15. The ratio absolute value ( ) ( )
( ) ( )21
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*

,,1,1,

,,,,1

NRNRNRNRNRNRNRNR

NRNRNRNRNRNRNRNR

eemseems

eemseems
r

−++
−+= calculated for a net recharge 

measure or best estimate 400100 ≤≤ NRm mm/year and for 7010 21 ≤=≤ NRNR ee  mm/year. 
 

 

By comparing fig. 14, 15 and 16 it can be stated that: 1) partial score increases with 

uncertainty; 2) the increment is never very big even when uncertainty is considerable; 3) the 

increment is more sensitive to variations of parameters measures or best estimates than of 

uncertainty, at least when they are both small (or comparable, as it can be supposed 

considering the functions shapes). 
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These are all desirable properties. The first ensures a degree of protection induced by f-

SINTACS that increases with uncertainty, an appropriate behavior given the model purpose. 

The second allows to expect that the price paid for the additional groundwater protection due to 

uncertainty will not be excessive. The third suggests that pollution potential score variations, 

under opportune conditions, depend primarily on those of parameters measures or estimates, 

which give the fundamental physical description of an hydrogeological system; at the same 

time if their reliability diminish, the importance of uncertainty in the assessment increases. 

The model may suggest to protect, say, site A more than site B if parameters measure or best 

estimates have a lower adverse effect on pollution potential, but a higher uncertainty, in the 

former than in the latter; a similar situation is shown for net recharge in fig. 16. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16. Effect of differences in net recharge measures or estimation and uncertainty between two sites; it is 

21 NRNR mm > , but the model choices are such that 21 ˆˆ
NRNR vv <  

 
This is because the model aim is to provide a shield against uncertainty itself, which is 

strengthened when this latter increases; the situation described, which can be easily detected  

by comparing pollution potential scores computed with or without uncertainty between any two 

sites, is expected to occur when there is a rather small difference in measures or best 

estimates and a marked one in uncertainty (see again fig. 16). 

If parameters measures or best estimates in sites A and B lead to the same pollution potential 

scores and have an equal degree of uncertainty the model may suggest to protect A more than 

B if the effect of uncertainty can be considered more dangerous in the former than in the latter; 

this is when the curves portions of the fuzzy sets which express how unfavourably high or low 

for pollution potential a parameter is, are steeper for the values corresponding to site A than for 
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those of site B, since then a parameter variation can have a higher adverse effect in the former 

than in the latter and so does uncertainty; see fig. 17. 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

Fig. 17. Effect of parameter curve slope and uncertainty. Two net recharge values (vertical dashed lines) have the 
same membership degree (horizontal dashed line), and hence lead to the same partial score (see fig. 10); 

uncertainty is given by the bell-shapep fuzzy sets of equal amplitude. The membership degrees of the intersection 
maximums are different (arrows) and so are the respective pollution partial scores (see again fig. 10). 

 

However the degrees of uncertainty should in this case be compared to parameters measures 

or best estimates; in fig. 17 these latter, for example, are about 95 and 500 mm/year while the 

bell-shaped fuzzy sets amplitude is 30 mm/year on each side in both cases. So, relatively 

speaking, uncertainty is much more on the first value (a 32% admissible variation) than on the 

second (6%). Comparing results that, in the sense described, have the same degree of 

uncertainty should practically eliminate this effect, which is also a consequence of slope 

changes as the one previously discussed. 

As said before a key model feature is the possibility to repeat pollution potential score inference 

using only parameters measures or best estimates or considering uncertainty, obtaining two 

pollution potential scores TS  and *
TS  that can be compared; uncertainty effect, thus, can be 

quantitatively and separately evaluated for example starting from the differences TT SS −*  at 

each site. 

Also the model outcome should be sufficiently stable even if, to represent the concept of 

acceptable approximation, instead of the bell-shaped PI functions similar ones are used, such 

as the triangular shapes commonly employed in fuzzy set based models. 
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9. UNCERTAINTY DEFINITION 

Because the partial score *
Ps  calculated by f-SINTACS for a given parameter P is a function of 

its measure or best estimate Pm  and the positive values 1Pe  and 2Pe  the question of how to 

define 1Pe  and 2Pe  arises. 

There are no fixed solutions to this problem; 1Pe  and 2Pe  may, for example, be such that 

outside the interval [ ]21, PPPP emem +−  there is a sufficiently low probability (possibly 0) to 

find the parameter real value, or the choice can be based on different criteria, considering also 

the availability and reliability of the information required to define 1Pe  and 2Pe  on a quantitative 

base. 

 

10. FURTHER TESTS AND FINAL REMARKS 
The model will be tested further on simulated and real hydrogeological systems, artificially 

introducing or estimating uncertainty about parameters values, and within decision procedures 

and cost/benefit schemes; the problem of how to best define 1Pe  and 2Pe  from the features of 

a given data set will also be analyzed in depth.  

F-SINTACS may also contribute to describe, discuss and implement within a scientific 

framework the so-called “precaution principle” as to the debate around it. 
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Abstract 

First the basic concepts of resource estimation are discussed. All existing traditional methods 
of resource and reserve estimation are based either on deterministic or on stochastic 
approaches and they apply real (crisp) numbers as input data. The main disadvantage of the 
traditional estimation methods is that the uncertainty of the estimates cannot be determined 
quantitatively, instead so called „resource categories” are distinguished, e.g. measured, 
indicated, inferred resources. 
The authors of this paper investigated new, uncertainty oriented mathematical methods, e.g. 
interval analysis, fuzzy set theory, probability-bounds analysis and hybrid arithmetic to 
calculate quantitatively the errors of the resource estimations. As a first step, they analyzed 
the sources of uncertainties of resource estimations, followed by a short presentation of the 
above listed mathematical methods. The evaluation of the errors starts at the level of the input 
data and the propagation of errors is followed up to the end results. 
The authors performed a number of test calculations on karst bauxite deposits of Hungary, 
applying the fuzzy set theory. The step-be-step methodology is described and is 
demonstrated on figures. This methodology is relative simple and does not require high-level 
mathematical skill. It is suitable for the resource estimation of any other type of solid mineral 
deposits. The mineable and the economic reserves can be also calculated by the method 
recommended above. Finally the estimation results can serve as a base for risk calculations 
of mining investments as well. 

Keywords: resource estimation, uncertainties, errors, fuzzy set theory 
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1. INTRODUCTION 

The estimation of resources and reserves of solid mineral deposits – fossil fuels, ores and 
non-metallic mineral commodities – is a subject of paramount importance for mineral 
exploration, mining, for investors and shareholders. Hundreds of articles and several books 
have been published on the subject during the last five decades. General recommendations 
have been elaborated for the classification of resources and reserves by a commission of the 
United Nations (1997), including the definitions of mineral resources and reserves. 
Nevertheless, several open questions remained unsolved, particularly concerning the 
uncertainties of the estimates and the risks related to them. The problem is particularly valid to 
the bauxite deposits, as mining experiences often showed significant deviations from the 
originally calculated resources. 
During the last decades new „uncertainty oriented” mathematical methods have been 
elaborated and successfully applied in medicine, health, biology, ecology, communication 
systems, economy etc. Bárdossy and J.Fodor (2000, 2001a and 2001b) discussed the 
general aspects of their application to geological investigations, and they carried out a number 
of test calculations. Bárdossy and B.Fodor (2001) discussed the possibility of applying these 
methods to resource and reserve estimations, in general. Bárdossy, R.Szabó and Varga 
(2001) carried out a number of resource estimations by these methods on different types of 
karst-bauxite deposits in Hungary. 
In the following first the basic concepts of resource estimation, the advantages and the 
limitations of the traditional methods are discussed. This is followed by a short presentation of 
the new mathematical methods, illustrated by test calculations, carried out on selected 
Hungarian bauxite deposits. The estimation of reserves requiring the calculation of economic 
parameters, such as the internal rate of return (IRR) and the net present value (NPV) is 
beyond the scope of this article. 

2. BASIC CONCEPTS OF RESOURCE ESTIMATION 

Resource estimation involves the calculation of tonnage and grade of the ore (averages and 
spatial distribution). Different cut-off values are used in the different bauxite regions of the 
world, based on geological, mining, extraction and economic aspects of the given region. We 
do not discuss these aspects in this article, as they are well known and main-ly site 
specific.The ore resource estimation is based on input data obtained by the mineral 
exploration: mapping, trenching, pitting, drilling and geophysical measurements. Samples are 
taken from the deposits. The complicated problems of bauxite ore sampling have been 
discussed in detail by Bárdossy and Aleva (1990 pp.520-529). 
For all types of resource estimation - traditional and new ones – the right geological knowledge 
of the deposit is a basic precondition. This knowledge is expressed in the form of a deposit 
model. This important requirement has been neglected in the past in several cases, leading to 
a complete misestimation of the given resources. In the case when the deposit model cannot 
be established unequivocally – that is two or more variants are possible – it is recommended 
to perform several resource estimations, one for each possible model. The results can be 
compared and subjective probabilities can be attached to them. These probabilities express 
the experiences of the exploration geologist and his rational opinion about the chances of each 
variant. 
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Even in the case of only one valid deposit model, the results of the resource estimation will not 
correspond exactly to the natural reality. The larger are the deviations from the real values, the 
lower is the overall reliability of the resource estimation. From the beginning, one of the main 
goals of exploration geologists was the determination and quantification of these uncertainties, 
designated also by the rather vague term geological assurance. This is the point where our 
new methods essentially differ from the traditional ones and offer better solution. Let us review 
at first the types of uncertainties and errors related to resource estimations. (For us the term 
uncertainty expresses the imperfection and incompleteness of our knowledge. On the other 
hand, error is the difference between a true value and an estimate of that value. In the 
following these two terms will be used in this sense). Two main types can be distinguished: 

• Natural variability, an inherent feature of all geological objects and processes, is valid 
for the mineral deposits as well. The higher the variability of the variables included into 
the resource estimation, such as geometry of the deposit and grade distribution, the 
more uncertainties are connected with the results of the calculations. But there is a 
further influencing factor: in all deposits „structured” and „unstructured” features can be 
distinguished. The structured features, called also trends, can be described 
mathematically by trend-surface-analysis, thus they do not increase significantly the 
error of the resource estimation. On the other hand, local unstructured features may 
occur unexpectedly and their spatial position and magnitude cannot be exactly 
predicted. The proportion of structured and unstructured features is quite different in the 
mineral deposits of the world, according to our personal experiences. 

• Uncertainties related to the mineral exploration are due to incomplete geological 
experience, lack of time and money and to human errors and incompetency. Their 
main types are as follows: 

o Lack of representative sampling may be the result of technical, temporal and 
financial restrictions. It is a significant source of uncertainty of the resource 
estimations. 

o Errors of laboratory measurements („analytical errors”) comprise all chemical, 
mineralogical, technological and other laboratory measurements related to the 
resource estimation process. They consist of random and systematical 
components. Being studied and investigated by many authors, we do not 
discuss them in detail (Day, Underwood 1991). 

o Conceptual and model uncertainties. When evaluating a mineral deposit, 
existing geological concepts are applied necessarily. Unfortunately, they are not 
always adequate to the given deposit. Natural analogues, broadly applied in 
mineral exploration, are often imperfect, as they cannot take into account 
unknown, undetected local features. Even in the case of a valid deposit model, 
simplifications may increase the general error of the resource estimation. 

o Errors due to incorrect use of mathematical methods. They are rather frequent, 
as it is often neglected that resource estimation is a mathematical (statistical) 
procedure. And when doing so, the mathematical rules should be strictly 
respected. Some examples: 
� Interpolation between neighboring boreholes beyond the range of 

influence of the given variable may lead to erroneous results. 
� The generally calculated arithmetic means are valid only to normal or 

quasy-normal distributions. However, in mineral deposits the distribution 
of ore thickness and of some chemical components is often highly 
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skewed. In such cases „robust” estimators can be applied instead of the 
arithmetic mean. Due to this error up to 30 % we found overestimations 
of the bauxite resources in several former exploration reports on bauxite 
deposits of Hungary. 

� So called „point-estimates” are reported in most cases for the deposit, 
instead of the mathematically required „interval-estimate” including 
confidence limits and levels of significance. Theoretically, the 90 and 95 
% levels of significance are most suitable for the resource estimations. 

o Errors related to the choice of mathematical models. The choice between 
existing mathematical models is often difficult and can be a source of additional 
errors. E.g. the mathematical modeling of the „experimental variograms” 
influences the length of the corresponding ranges of influence. The different 
robust estimators, mentioned above also result in different values for the 
measure of central tendency. 

Natural variability being an inherent feature of Nature, can be studied, mathematically 
described, but not diminished. On the other hand, all the uncertainties and errors of mineral 
exploration are human factors and it depends on us how much we wish and try to diminish 
them. 

3. ADVANTAGES AND LIMITATIONS OF THE TRADITIONAL 

METHODS 

Two main groups of traditional resource estimations can be distinguished: 
1. The scalar-geometric methods 
2. The spatial („geostatistical”) methods 

The well known scalar-geometric methods comprise the block methods (triangular, regular, 
squares, rectangular, polygonal and irregular or geological blocks), the methods of profiles 
(vertical, horizontal, inclined) and the isopach method. All these methods being well known, we 
do not discuss them. 
The principles of the spatial methods were elaborated by Matheron (1963) in his „theory of 
regionalized variables”, called also geostatistics. This theory takes into account the spatial 
autocorrelation of the geological variables. By the method of variography the ranges of 
influence of the variables can be determined in two or three dimensions and predictions can 
be done for the spatial continuity of the deposit. An optimized estimation procedure was 
elaborated for the prediction of spatial points („point kriging”) and for blocks („block kriging”) by 
the solution of a set of linear equations. This new theory represented an important step ahead 
for resource estimations. It has been applied to bauxite deposits first in France (Maréchal and 
Roullier 1970), followed by Hungary (Bárdossy et al. 1985). Later the methodology has been 
mathematically developed and is broadly applied in all branches of mineral exploration. More 
than hundred articles appeared on the subject. Here we refer only to the books of Journel and 
Huijbregts (1978), Cressie (1991) and Goovaerts (1997). The different kriging methods use 
the kriging variance to express the uncertainty of kriging results. An improvement has been 
suggested by Yamamoto (1999) when applying interpo-lation variance, a parameter 
depending both on data values and data geometry. Let us stress that eveb this parameter 
expresses only the natural variability of the given variable and not the entire uncertainty as 
outlined in the first part of this article. 
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Further limitations of geostatistics were pointed out by Diehl (1997): thus with decreasing 
number of boreholes (below about 20), the calculation of variograms becomes increasingly 
uncertain, even impossible. This is a serious limitation for the application of the method in the 
case of relatively small deposits. Further uncertainties are related to the choice of the 
appropriate variogram model, as mentioned above. Furthermore, with high proportion of the 
nugget-effect the variogram model becomes uncertain. The generally applied rectangular 
kriging blocks depict rather roughly the real contours of the deposits. According to our own 
experiences, by applying different lags (distance intervals) the form and parameters of the 
experimental variogram may change significantly. Several important spatial features, such as 
the position of tectonic lines, dissecting the deposits, or the contouring of the deposit cannot 
be satisfactorily resolved by geostatistical methods. Finally, the application of geostatistics 
requires considerable expertise and a solid mathematical background, as pointed out by Diehl 
(1997). 
The results of all the traditional methods can be presented in two ways: 

• Deterministic presentation. In this case only the weighted averages of the resource 
estimation are reported, based on the well-known „best estimate” or „best guess” con-
cept. From the mathematical point of view these are point-estimates, giving no 
information on the amount of errors of the resource estimation. 

• Probabilistic (stochastic) presentation, when standard deviations and types of 
distribution are also reported. But the most important difference is, that instead of 
simple point-estimates interval-estimates are calculated involving confidence intervals 
at levels of confidence, chosen by the experts of the resource estimation. Uncertainties 
are generally expressed by the well-known resource categories, such as inferred, 
indicated and measured. However this classification is not based on uncertainty-
calculations, but on the judgment of one or several experts (Diehl 1997). 

Theoretically the geostatistical methods are interval estimates, as the „kriging standard 
deviations” refer to given levels of confidence. It should be stressed however that these 
standard deviations express only the amount of natural variability of the given variable and not 
the uncertainties related to the exploration process, as outlined above. 
All traditional methods are based on the probability theory and consequently on its 
fundamental axioms, elaborated by Kolmogorov (1933). The third axiom, declaring the 
principle of additivity recognizes only mutually exclusive cases. As a consequence, all pro-
babilistic methods have to work with well-defined, sharp boundaries and mutually exclusive 
geological objects. No transitions are admitted! However in geology, and particularly in bauxite 
deposits, sharp boundaries are rare, gradual transitions with mixed features are much more 
frequent, let us mention only the bauxite- clayey bauxite- bauxitic clay- clay sequence. Thus 
this axiom represents a serious limitation for the traditional resource estimations. 
Mathematical statistics, the practical realization of the probability theory, basically requires 
repeated experiments (The drilling of a bore-hole is an experiment in statistical sense). 
However it is practically impossible to fulfill this requirement in mineral exploration. Imagine 
repeating 100 times a drilling grid by small shifting and rotating of the drilling locations. This 
would be simply nonsensical! For this reason the error of the deposit area cannot be 
calculated, only approximative guesses can be produced. The estimation error is also strongly 
influenced by the choice of the size of the estimation blocks. The larger the block, the smaller 
is the estimation error. Thus the categorization of the resources can be easily manipulated by 
changing the size of the estimation blocks. 
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Finally, several geological features cannot be determined exactly; they can be described only 
in a semi-quantitative or even qualitative way. The traditional methods of resource estimation 
are not suitable for the mathematical evaluation of such data; consequent-lye they have to be 
excluded from the estimation procedure. Much useful information is lost this way. 

4. THE NEW, UNCERTAINTY ORIENTED MATHEMATICAL 

METHODS FOR RESOURCE ESTIMATION 

All the above-discussed traditional methods apply real numbers (called also crisp numbers) as 
input data. However, real numbers do not express the uncertainties related to them. Together 
with the limitations discussed above, this is the main reason why traditional resource 
estimations cannot determine the total error of the estimation results. Instead resource 
categories were created to express at least approximately the amount of uncertainty of a given 
resource estimate, e.g. measured, indicated, inferred (Mc Kelvey 1986). Shortcomings of this 
concept have been discussed by many authors, e.g. Akin (1997), Diehl (1997), Wellmer 
(1985,1989). 
During the last decades new mathematical methods have been developed, suitable to handle 
uncertainties from the beginning, that is from the level of the input data. Their common feature 
is that they apply different new types of numbers expressing the uncertainties related to them. 
The main methods are as follows: 

• Interval analysis (Moore 1979) replaces 
the crisp numbers by uncertainty 
intervals. It is assumed that the true 
value is somewhere within the interval 
(Figure 1). Interval analysis lacks 
gradations and is the simplest method 
to express uncertainty through 
arithmetic calculations. 

• The fuzzy set theory elaborated by 
Zadeh (1965) expresses uncertainty by 
fuzzy numbers. They represent 
estimates of uncertainty at different 
levels of possibility. Fuzzy numbers are 
by definition unimodal (convex) and 

they have to reach at least in one point 
the possibility level one, the full 
possibility. All arithmetic calculations 
can be carried out with fuzzy numbers. 
The main advantage of the fuzzy 
method is that prior geological 
experience can be incorporated into 
the construction of fuzzy numbers. 
This goal can be achieved by joint 
constructing of the fuzzy numbers by 
the exploration-geologist and by the 
mathematician. The method allows the 
evaluation of semi-quantitative and 
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qualitative input data as well. The transitions, mentioned above, can be also expressed 
by fuzzy numbers (Figure 2). According to our test calculations, the fuzzy numbers are 
highly suitable to carry out resource estimations. The development of fuzzy geostatistic 
(Bárdossy A. et al. 1990) was an essential step ahead for the evaluation of spatial 
uncertainty, especially for resource estimations. 

• The probability bounds theory (Ferson et al.1999, Smith 1996, Teseem 1992) is a 
combination of the probability theory and the possibility theory. It expresses uncertainty 
by two cummulative 
probability 
distributions. The area 
between the two 
curves represents the 
extent of the given 
uncertain input data 
(Figure 3). The great 
advantage of this 
method is, that it can 
take into account 
different probability distributions, and correlations of the variables. The probability 
bounds get narrower with increasing information about the deposit. However the 
calculations are more complicated. According to our experiences, the method seems to 
be highly efficient for resource estimations. 

• The method of hybrid arithmetic (Cooper et al.1996, Ferson and Ginzburg 1996) 
combines crisp data with uncertainty intervals, fuzzy numbers and probability bounds. 
This is the newest among the uncertainty-oriented methods. Test calculations for 
resource estimations are foreseen by us in the near future. 

• The methods of neural networks and fuzzy neural networks (Fullér 2001) represent 
useful complements to the above listed methods. 

5. RESULTS OF THE TEST CALCULATIONS 

For the test calculations bauxite deposits of Hungary have been chosen, as for these deposits 
a full and up-to-date documentation is at our disposal. It is well known that the bauxite deposits 
of Hungary belong to the karst-bauxite type. They are partly exploited, partly mined at present, 
underground and in open pits. Exploration by drilling continues at present in a number of 
bauxite occurrences. For the resource calculations the following cut-off-values are used: 

Ore thickness   ≥   2.0 meters 

Total Al2O3   ≥ 42.0 % 

Al2O3/ SiO2 ratio  ≥   4.0 

Total sulphur as S  ≤   0.6 % 
In the present time the isopach and the geologic-block methods are used for resource 
calculations. The geostatistical method is applied in some mines only, mainly because of the 
lack of the required number of boreholes for a single deposit. The input data of these resource 
calculations contain the following uncertainties and errors: 

• Delineation of the contour of the deposit (with the aim to determine the area of the 
deposit). The amount of the error depends mainly on the complexity of the deposit 
model and the spacing of the exploration grid. It is obvious, that with denser grid the 
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error of delineation diminishes. The calculation of the delineated area is carried out by 
an appropriate computer program. Its error is negligible. As repeated experiments, that 
is repeated drilling grids cannot be executed, the error of the deposit area cannot be 
exactly calculated. This is the main shortcoming of the traditional resource estimations. 

• The thickness of the ore-grade bauxite. It is determined in the boreholes with ± 10 cm 
error, if the core recovery is more than 90 %. With smaller recovery the error may 
increase to 20-40 % for the given core interval. (In Hungarian bauxite exploration this 
occurs rarely). Geophysical logging can diminish this error. 

• The bulk-density is determined by laboratory measurements of ore cores. More than 

100 measurements are carried out for each deposit. The average analytical error is ±5-

10 rel. %. These small-scale measurements are completed by large scale (½  - 1 m3) 

ore samples taken    from neighboring bauxite mines, assuming that they have a higher 
representativity. 

• The average analytical errors of the chemical analyses are as follows:  Al2O3 ±0,5 %, 
SiO2 ±0,3 %, CaO,MgO and total sulphur in S ±0,2 % (absolute percentages within the 
range of commercial bauxite composition). 

Before starting the resource calculations variograms have been calculated by us for the 
bauxite-ore thickness, and for the above-mentioned chemical components, by using the well-
known „VARIOWIN” computer program. All the selected bauxite deposits were checked for the 
drilling grid spacing: it should not surpass the calculated ranges of influence. This requirement 
was met in all cases. 
From the new, uncertainty oriented methods we present here the results obtained by the fuzzy 
methodology. As a first step the fuzzy numbers of the input data have been determined. It 
should be stressed, that according to our experiences, the construction of the fuzzy numbers 
has particularities for each input variable, as it will be shown later. 
An other essential difference to the traditional methods is the ranking of the boreholes. In all 
traditional methods only productive and improductive boreholes are distinguished. The latter 
ones comprise boreholes not reaching all the cut-off-values. However, according to our 
experience, these boreholes may also contain important information for the resource 
estimation, e.g. boreholes not reaching the required cut-off-thickness, but their bauxite being of 
high-grade composition. In other boreholes only one grade component did not reach the 
required value, and the thickness is also acceptable. Other boreholes contained information 
for the delineation of the deposit etc. We consider these cases as transitional and included 
them by the fuzzy numbers into the resource estimation. This way it was possible to increase 
considerably the accuracy of the final estimation results. Examples will be shown later. 
The construction of the fuzzy numbers may occur in three different ways: 

• For the chemical components and the bulk density the analytical error, established by 
the chemical laboratories is used, completed by the standard error of the mean and the 
confidence interval at 95% level of confidence. 

• For semi-quantitative and qualitative variables, like the area of the deposit, the deposit 
model and the exploration-expert’s opinion was taken into account, completed by the 
above mentioned direct borehole information. 

• Additional estimating points have been calculated, mainly in the marginal sector to 
incorporate the information of the above-mentioned transitional boreholes. Here again 
the deposit model and the expert’s opinion were taken into account 

In the following the resource estimation of selected bauxite deposits will be presented: The 
Szőc-Szárhegy deposit is situated in the SW part of the Bakony Mts. It has a relatively simple 
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geometry: lenticular form, with the bauxite ore in 
its central part, surrounded laterally by clayey 
bauxite and bauxitic clay. The upper and lower 
surfaces of the ore body are relatively sharp. The 
ore either wedges out gradually at the rims, or 
finishes abruptly along fault lines. The deposit 
has been explored by 107 productive and 84 
improductive boreholes. The resulting deposit-
model has been confirmed by subsequent open-
pit mining operations. 
The traditional resource estimation, carried out 
by the geological-block method resulted in 352,7 
kilotons of „geological resources”. When applying 
the fuzzy-set theory, we have constructed fuzzy 
numbers for the area of the deposit, the average 
ore-thick-ness and the average bulk-density. Our 
considerations regarding the area of the deposit 
are presented on Figure 4. The smallest 
possible area has been constructed by 
connecting the marginal productive boreholes by 
straigt lines. The area of maximum possibility 
extends further, up to the closest improductive 
boreholes. Geological and geomorphological 
mapping of this near-surface deposit 
(overburden less than 30 meters) showed that 
the deposit abruptly finishes on its west side 
along a north-south oriented fault line, as 

indicated on Figure 4. Here the maximum area has been diminished correspondingly to the 
fault line. To the south, another fault line downfaulted the bauxite that continues to the south of 
it. Here again the border follows the fault line. Thus the „support” of the fuzzy number for the 
deposit area extends from the minimum value of 22 261 m2, to a maximum of 51 922 m2. The 
„core” of the fuzzy number corresponds to the geologically most possible area, determined by 
a set of geological profiles and comprising 36861 m2. The resulting fuzzy number is triangular, 
as presented on Figure 5. A computer program, with negligible error, performed the 
calculation of the delineated areas. 
The average ore thickness of the 107 productive boreholes is 4.4 m. However, the histogram 
showed a right-skewed distribution, confirmed also by the coefficient of skewness (1.09). In 
this case the simple average is biased and must be replaced by robust estimators. According 
to our experiences, Tukey’s biweight M-estimateor has been chosen, resulting in an unbiased 
average of 3.9 m. The core of the corresponding fuzzy-number is an interval in this case, 
corresponding to the standard error of the mean, that is ± 0.2 m. Thus the core extends from 
3.7 to 4.1 m. The support of the fuzzy number is longer, corresponding to the confidence 
interval taken at 95 % level of confidence. This interval extends from 3.6 to 4.3 m. (Figure 5). 
It should be stressed, that within both intervals there are no preferred values, as each 
thickness has the same possibility of occurrence. 
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The average bulk-density of the bauxite-ore has been determined by only 9 laboratory 
measurements. It is well known that the reliability of statistical calculations diminishes when 
the number of cases decreases below about 30. To eliminate this difficulty the bootstrap 
method, elaborated by 
Efron and Tibshirani 
(1993) was applied. By a 
computer program 1000 
replicas (random samples 
taken by replacement) 
were produced and their 
averages calculated. The 
arithmetic mean of these 
1000 replica-averages 
represents a non-biased 
value, in our case 2.23 
g/cm3. The analytical error 
of the laboratory 
measurements ( ± 5 rel. 
%) is included in both the 
core and the support of the corresponding fuzzy number. It is completed – as in the case of 
the thickness – by the standard error of the mean in the core, and by the confidence interval at 
95 % level of confidence in the support. All these values were calculated by the above-
mentioned bootstrap method to avoid bias in the results. 
The geological resources of the deposit are calculated by simple multiplication of the three 
components, when applying a traditional method. In the case of fuzzy numbers „fuzzy 
multiplication” has to be applied, taking into account the „error propagation”. The resulting 
fuzzy number is shown on Figure 5. Its interpretation is as follows: The minimum value of the 
support (165 ktons) represents the lowest possible tonnage, for the case when all components 
take the most unfavourable values. The maximum value of the support represents the highest 
possible value (540 ktons) when all components are most favorable. Both cases are 
theoretically possible, but their probability is close to zero. The core of the fuzzy number 
represents the most possible tonnage, with an interval extending from 285 to 358 ktons. The 
extent of this interval comprises only 73 ktons. Again, it should be stressed, that at the existing 

level of exploration (drilling 
grid), no preferred values 
can be chosen within this 
interval. But it can be 
declared that this interval 
expresses ± 11.4 % 
uncertainty regarding the 
theoretical midpoint of the 
interval. The tonnage 
calculated by the traditional 
method is situated within this 
interval (353 ktons) and is 
slightly biased to the right, as 
a consequence of the above 
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mentioned biased thickness calculation (Figure 5). 
The above-discussed fuzzy numbers clearly demonstrate the errors of the calculated 
resources and enable the exploration geologist and the mining engineer to take well-based 
decisions about the risks of a possible mining investment. The traditional results, even if they 
are not biased, do not give any information about these uncertainties. 
The grade of the ore can be calculated in the same way. The traditional and the fuzzy 
numbers of the average Al2O3, SiO2, CaO and MgO content are presented on Figure 6. The 
broadness of the fuzzy numbers corresponds to the amount of the analytical error of the given 
component, plus the standard error of the mean in the core interval and the confidence interval 
at 95 % level of confidence in the support of the fuzzy number. Note how biased the traditional 
averages of SiO2 and MgO are, because of the highly skewed distribution of these two 
chemical componets.The error of the grade calculation has been determined in the same way 
as that of the tonnage: it corresponds to the difference between the theoretical midpoint of the 
„core” and its endpoints. Thus in the case of the test deposit Szőc-Szárhegy the following 
results were obtained: Al2O3 ± 0.5, SiO2 ± 0.2, CaO and MgO ± 0.05, expressed as absolute 
percentages. These errors are fully acceptable, as they are close to the analytical error of the 
chemical laboratories involved. 
The resources of further six bauxite deposits have been calculated by us in the same way as 
described above and similar experiences were obtained. Depending on the position and 
shape of the deposit, some additional information could be utilized for the resource estimation. 
E.g. observations made in the mines showed that close to vertical or very steep footwall 
surfaces, the bauxite becomes clayey and its brick red color changes to pink or yellow. The 
horizontal range of this zone is no more than 3 meters. This experience was used in sinkhole 
type deposits, when similar observations were made in some boreholes. At these places the 
the outer contour of the deposit  was taken close to the given borehole, at maximum 3-4 meter 

distance from it. Thus the 
error of the determination of 
the deposit area could be 
diminished considerably 
(Figure 7). 
In the Iharkút bauxite district 
the very complicated 
sinkhole type deposit of 
Németbánya II has been 
explored by a drilling grid of 
10 to 20 m. The error of the 
area determination could be 
diminished by the above-
mentioned method and thus 
the overall error of the 
resources is only ± 24.3 %. 
On the other hand, simple 
contours and shapes 
characterize the lenticular 
deposits of the Fenyőfő 
district. Despite the thinner 
(50 x 50 m) drilling grid our 
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calculations resulted in only ± 20.7 % error of the resource calculation, for the deposit No.XIII. 
A negative example is the Halimba II/SE deposit, characterized by particularly irregoular 
contours. As a consequence, a very broad area was obtained between the outer and the inner 
contour line. The triangular shape of the former calculations had to be changed to a 
trapezoidal, better expressing the increased uncertainty. Thus an overall ± 31.4 % error was 
obtained by the calculations, despite the close drilling grid (25 x 25 m). Further resource 
estimations using the outlined methodology are on the way. 

6. CONCLUSIONS 

• Our test calculations proved that the new method of resource calculation is relatively 
simple and can be carried out quickly. 

• A great advantage of the method is that fuzzy numbers are robust: subjective changes 
do not influence significantly the results. 

• By the use of fuzzy numbers the entire error of resource estimation could be 
determined quantitatively, this being the most important achievement of the new 
method. 

• When using the new method, the investor can decide whether the estimation error is 
acceptable to him (including to the financial risk connected to it), or not. In the latter 
case additional exploration can be started. By the use of the suggested new method 
the location of the additional boreholes can be optimized and the exploration can be 
stopped when the required error-level is reached. 

• The method outlined in this paper is suitable for any solid mineral deposits. At present 
further test calculations are on the way on selected lignite and building material 
deposits in Hungary. 

• Minerable resources and commercial reserves can be calculated also by the above 
outlined methods. 
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Abstract 

An important problem in the geosciences is the estimation or prediction of regionalized 
compositions. In fact, it is usual to deal with data such as percentages, concentrations, 
ppm,...., and use them to estimate values in other locations. Compositional data have been 
regarded as difficult to work with because of the so-called constant sum constraint. Following 
Aitchison (1986), any meaningful statement about a composition can be expressed in terms 
of logratios, but those transformations, and their backtransformations, are not always easy to 
deal with. The aim of this paper is to compare results obtained applying different 
methodologies developed in geostatistics, with samples of compositional data from a bauxite 
deposit in Halimba II (Hungary). Firstly, a classical geostatistics study is done using raw data; 
secondly applying two wellknown transformations in compositional data analysis: additive 
logratio (ALR) and centered logratio (CLR); thirdly, the Fast Fourier Transform (FFT) 
methodology to calculate the spatial variance-covariance matrix is used in cokriging. To be 
able to compare predictive values and kriging errors respective backtransforms are found. At 
last, results obtained with the different approaches are discussed and compared. 

Keywords: Compositional regionalised data, logratios, Fast Fourier Transform, kriging. 
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1. INTRODUCTION 
The most common goal in Geostatistics is to estimate the value of an unknown variable in a 
location using the information given by some samples in its surroundings. A new problem 
comes when compositional variables are studied, those variables are characterised by their 
constant sum; that is, variables summing up to one (proportions), summing up to 100 
(percentages) and so on. Their main features have been studied and described by many 
authors (Aitchison, Barceló, Egozcue, Pawlowsky and others) and have settled some specific 
methodologies to work with them. Those methodologies set up some transformation of data; 
the best-known ones are average logratio (ALR) and centered logratio (CLR). Recently, Yao 
and Journel have found some way to calculate covariances matrix with Fast Fourier Transform 
(FFT). So, it seems sensible to apply all those methods, as well as the classical one used by 
most geologists to the same data to assess their applicability and results. This is the goal of 
this paper: the use of all those four methods, finding out their difficulties and comparing their 
results with some well-known data. The database is a set of compositional data from a bauxite 
deposit named Halimba, which is the largest one in Europe continuously mined since 1950. 
The data were furnished by Gy. Bárdossy, Budapest. 

2. DATA SET 
The studied deposit is in Hungary (Europe) and it is limited by East 117.6 - 114.0; North 13.0 - 
8.8 geographic coordinates in a topographic map. The deposit covers an area of more than 8 
km2; Halimba II is the only sector in the deposit that is still under prospection. The database 
consists of 55 samples representing 55 boreholes, after getting off 3 incomplete samples. In 
these boreholes the thickness of bauxite varies from 0.8 to 36.1 m. Variables used are the 
following: X = Easting; Y = Northing; V1 = Concentration of Al2O3; V2 = Concentration of SiO2; 
V3 = Concentration of Fe2O3; V4 = Concentration of TiO2; V5 = Concentration of H2O; V6 = 
Concentration of CaO; V7 = Concentration of MgO; concentrations are in percent. The values 
of V1 to V7  represent weighted averages in each borehole taken from intervals of 0.5 to 1.0 m 
length. Full database and histograms of the variables can be found at our website; table 1 
shows the descriptive statistics of data set. 
 
     Table 1. Descriptive statistics of data set. 

 Range Minimum Maximum Average Standard  
deviation 

simmetry kurtosis 

V1 8.3 49.9 58.2 54.569 2.234 - 0.647 - 0.558 

V2 7.4 0.7 8.1 3.889 2.007 0.334 - 0.876 

V3 7.4 20.4 27.8 23.698 1.898 0.523 - 0.096 

V4 2.1 1.6 3.7 2.778 0.332 -0.683 2.773 

V5 2.3 11.3 13.6 12.371 0.499 0.477 0.128 

V6 2.7 0.1 2.8 0.536 0.545 2.232 5.543 

V7 1.8 0.1 1.9 0.267 0.327 3.133 11.688 

 

3. RAW DATA GEOSTATISTICAL ANALYSIS  
This is a traditional method to estimate any regionalised variable in geostatistics. It consists of 
building up variograms for each variable and cross-variograms when there are more than one 
of them. Once experimental (cross)variograms have been built they must be modeled. The 
corresponding theoretical ones are used in (co)kriging system to estimate the values on a 
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regular grid. Variograms for the seven variables have been calculated and modeled; a table 
with the full description of those models can be found in our website. Once all variograms were 
built, cokriging has been done using KB2D program from GSLIB (1998). 
 

4. GEOSTATISTICAL ANALYSIS CONSIDERING VARIABLES AS 
COMPOSITIONS: ALR TRANSFORM 
Classical applications of geostatistics are related to mapping the spatial distribution of the 
variables under study. They give emphasis to characterize the variogram model and use the 
kriging (error) variance as a measure of estimation accuracy. Nowadays, some problems have 
been reported with compositional data. Those problems have been studied by many authors 
(references [1], [2], [3] and [8]). The main problem when handling compositional data is the so-
called constant sum (K) constraint. Usually K = 1 or K = 100, if data are percentages. So, if V1, 
..., VN are proportions of N elements, then V1 + · · ·  + VN = K, which means that variables are not 
independent. To deal with compositional data and avoid this constraint, Aitchison has 
proposed some transforms. We have used two of them: average logratio (ALR) and centered 
logratio (CLR). With those transformations variables become independent and then classical 
kriging can be performed. 
As it is said beforehand, V1, ...., VN must follow the constant sum constraint, but this quite 
never is true. Actually, we must define a new variable (called the residual) as VR = K − (V1 + · · ·  
+ VN). Then, the ALR variables Ui (i = 1,2,…, N) are defined as follows: 

U alr V
V

V
i Ni i

i

R

= = =( ) log , , ,...,1 2

 

 

(1) 

 
So now we are working with several Ui variables which do not follow the sum constraint; so 
they can be used as any other geostatistical data. We build and model their variograms (they 
can be found in our website). Once variogram was built, kriging has been done using KB2D 
program from GSLIB (1998). Kriging results must be backtranformed to have the estimation of 
Vi in the grid; in this case, the corresponding ALR-backtranform is: 
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5. GEOSTATISTICAL ANALYSIS CONSIDERING VARIABLES AS 
COMPOSITIONS: CLR TRANSFORM 
Once VR has been defined, we define a new variable as the geometrical mean of all of them: 
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Then, CLR transform consists in stating N+1 new variables as: 
 

W clr V
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(4) 

 
These N+1 variables are not constrained, so they can be modeled and estimated. Once 
variograms have been built (they can be found in our website) cokriging has been done using 
KB2D program from GSLIB (1998). Then, backtransforms must be done to recover original 
variables. CLR-backtranform is: 
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6. FAST FOURIER TRANSFORM METHOD TO CALCULATE THE 
COVARIANCE MATRIX 
On the other hand, to avoid the modeling of variograms and crossvariograms, which may be 
very subjective, Yao and Journel (1998) have developed the so-called FFT method, which can 
be applied, in principle, to any kind of data. With FFT you do not need the independence of the 
variables and it builds up the covariance matrix, which can be used directly to krige. This 
approach works as follows: 

a) Generate an experimental correlogram map on a regular grid. The grid typically has 
multiple nodes without estimates. The user has to specify the minimum number of data 
to be considered in the estimates at every node. This task is performed by program 
CORRMAP (see reference [6]). 

b) Program INTMAP fills in the blanks typically present in the grid generated in step 1 by 
using a smooth local interpolation. 

c) Program MULTSMTH corrects the smoothed grid to generate a third grid that is a 
tabulation of a positively semidefined correlogram. This condition is required to assure 
a unique solution for the kriging system of equations yielding a non-negative kriging 
variance. 

d) Convert the correlogram tabulation in step 3 to covariance tabulation by multiplying the 
correlogram grid by the sampling variance. 

e) As it was not possible to use KB2D to krige, because with this method we obtain the 
covariance matrix and not the variograms, we had to change it (see reference [5]). 

 

7. RESULTS AND DISCUSSION 
Table 2 shows descriptive statistics for the estimations. Variables shown are raw estimations 
(Vi), backtranformations of ALR estimations (BACK Ui), backtransformations of CLR 
estimations (BACK Wi) and estimations using FFT (FFT Vi). Table 3 shows descriptive 
statistics of their differences, that is the differences between raw estimations and each of the 
other estimations. Kriging errors can be found in website. 
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Figures comparing kriging results for the seven variables can be found in website; as an 
example you can see hereafter, in figure 1, results for variable V1. In this figure, (a) is refered 
to raw data, (b) to the backtransformation of ALR-variable, (c) to the backtransformation of 
CLR-variable and (d) to the FFT transformation method. 
Looking at the contour maps, no significant differences among the first three methods arise. 
However (d)-picture, the one belonging to FFT method, shows higher resolution. It seems that 
it is because this method is less subjective. 
 

8. CONCLUSIONS. 
Using the results of this study some conclusions can be built: 

1. Kriging results in Halimba II using the four methods are quite similar. 
2. As regarding to the kriging errors, comparison is not so easy because it is not true that 

the backtransform of ALR and CLR transformations belong to the same space as the 
data (this is why Martin et al. defined stress).  

3. FFT method seems to be the best one, because it is less subjective, more precise and, 
furthermore, it is the easiest method to use. However, this method does not take into 
account if data are compositional or not. 
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Table 2. Descriptive statistics of kriging estimations. 
 

Variable N Average Median Std. Dev. Minimum Maximum 
V1 845 54.62 55.20 2.16 49.90 58.20 

BACK U1 845 54.68 55.19 2.14 49.78 58.10 

BACK W1 845 54.66 55.18 2.14 49.88 58.17 

FFT V1 578 54.62 55.30 2.24 49.90 58.20 

V2 845 3.929 3.800 2.000 0.700 8.100 

BACK U2 845 3.898 3.626 2.007 0.700 8.150 

BACK W2 845 3.899 3.623 2.006 0.700 8.150 

FFT V2 578 3.924 3.602 2.011 0.700 8.100 

V3 845 23.70 23.45 1.72 20.40 27.80 

BACK U3 845 23.72 23.41 1.72 20.32 27.75 

BACK W3 845 23.73 23.51 1.72 20.46 27.89 

FFT V3 578 23.61 23.30 1.83 20.40 27.80 

V4 845 2.777 2.800 0.348 1.600 3.700 

BACK U4 845 2.779 2.814 0.348 1.600 3.710 

BACK W4 845 2.779 2.813 0.346 1.600 3.680 

FFT V4 578 2.783 2.801 0.341 1.600 3.700 

V5 845 12.34 12.30 0.45 11.30 13.60 

BACK U5 845 12.35 12.34 0.47 11.01 13.76 

BACK W5 845 12.35 12.26 0.45 11.38 13.62 

FFT V5 578 12.37 12.30 0.50 11.30 13.60 

V6 845 0.504 0.300 0.465 0.100 2.800 

BACK U6 845 0.490 0.301 0.453 0.090 2.810 

BACK W6 845 0.490 0.301 0.453 0.100 2.810 

FFT V6 578 0.503 0.300 0.489 0.100 2.800 

V7 845 0.247 0.100 0.264 0.100 1.900 

BACK U7 845 0.234 0.105 0.247 0.090 1.900 

BACK W7 845 0.234 0.101 0.247 0.100 1.900 

FFT V7 578 0.249 0.100 0.293 0.100 1.900 

 
  Table 3. Descriptive statistics of errors. 

 N Average Median Std. Dev. Minimum Maximum 

V1 - BACK U1 845 -0.0621 -0.0088 0.2640 -2.6162 0.6762 

V1 - BACK W1 845 -0.0429 0.0009 0.2104 -1.7219 0.3092 

V1 - FFT V1 560 0.0189 0.0000 0.6570 -3.1083 6.7002 

V2 - BACK U2 845 0.0310 -0.0001 0.2165 -1.2449 2.0673 

V2 - BACK W2 845 0.0301 -0.0011 0.1993 -1.1678 1.7569 

V2 - FFT V2 560 0.0026 0.0000 0.4389 -3.9004 2.8890 

V3 - BACK U3 845 -0.0148 -0.0121 0.1170 -0.9911 0.4930 

V3 - BACK W3 845 -0.0299 -0.0262 0.1234 -1.1340 0.7786 

V3 - FFT V3 560 0.0174 0.0000 0.6029 -3.5003 6.5000 

V4 - BACK U4 845 -0.0018 0.0023 0.0268 -0.2413 0.2638 

V4 - BACK W4 845 -0.0017 0.0005 0.0260 -0.1852 0.2491 

V4 - FFT V4 560 0.0047 0.0000 0.0667 -0.6930 0.4000 

V5 - BACK U5 845 -0.0044 0.0034 0.1598 -1.0208 1.2711 

V5 - BACK W6 845 -0.0072 -0.0039 0.0685 -0.6018 0.2735 

V5 - FFT V6 560 -0.0116 0.0000 0.1633 -1.0505 1.0498 

V6 - BACK U6 845 0.0138 -0.0001 0.0633 -0.0745 0.6584 

V6 - BACK W6 845 0.0142 0.0000 0.0681 -0.0285 0.7951 

V6 - FFT V6 560 -0.0054 0.0000 0.1530 -1.2472 1.2500 

V7 - BACK U7 845 0.0133 0.0001 0.0673 -0.0251 0.6202 

V7 - BACK W7 845 0.0135 0.0001 0.0666 -0.0057 0.5916 

V7 - FFT V7 560 -0.0040 0.0000 0.1144 -1.0331 0.9000 
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Figure 1. Contour maps of variable V1. 
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Abstract 

Data processing in the above sense is now an everyday routine in most Hungarian institutions 
where geophysics is pursued, including university departments, research institutes, industrial 
laboratories and private geophysical companies. In the following description, the main 
emphasis will be put on those research groups which have recently contributed to the 
development of data processing techniques in some theoretical or methodological sense. 

Keywords: geophysics, data processing. 

 
Geomathematics, a special application of mathematical statistics to Earth science problems, 
aims in general at the extraction of geological objectsfrom "noisy" data sets (data including 
random errors). In a broad sense,this is also the basic goal of field geophysics, and this fact 
suggests a very close relationship between geophysics and geomathematics. 
Geophysicists have long been using various mathematical methods based on probability 
theory, information theory and mathematical statistics in order to evaluate their field 
measurements. Traditionally they use the term "geophysical data processing" for this 
collection of data evaluation methods, but it would not be a big mistake to say 
"geomathematics" instead. 
Notwithstanding, geophysical data processing has its own specialities, and not just because 
the objects of geophysical prospecting are different from, say, those of mineralogy or 
petrology. There are some specialities related to the methodological approach. In most 
geophysical data processing problems, the physical field of the geological object, which is 
investigated by a particular kind of geophysical measurements, is calculated from a 
deterministic physical theory, and these deterministically obtained theoretical values are 
contrasted with the stochastic data obtained in the field measurement. In this way, geophysical 
data processing mostly aims at an explicit physical model fitting, and the mathematical 
methods used in this process are selected according to this basic goal. 
Data processing in the above sense is now an everyday routine in most Hungarian institutions 
where geophysics is pursued, including university departments, research institutes, industrial 
laboratories and private geophysical companies. In the following description, the main 
emphasis will be put on those research groups, which have recently contributed to the 
development of data processing techniques in some theoretical or methodological sense. 
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A basic problem in the theory of model fitting is the probability distribution of the "noise", i.e. 
the measurement and model errors. The usual "default" assumption is that these errors follow 
a normal (Gaussian) distribution, but it is easy to find examples where this cannot be true. This 
question has very important implications for the choice of the criterion function or "norm" of the 
model fitting. Pioneering work has been carried out in this respect by geophysicists and 
mathematicians working together at the Geophysical Department of Miskolc University (F. 
Steiner, L. Csernyák, B. Hajagos, P. Szûcs, M. Dobróka, Á. Gyulai, T. Ormos, G. Petõ, E. 
Turai). They have published many papers not only on the theory of establishing robust 
estimators, but also on actual applications of model fitting and parameter estimation for 
various kinds of geophysical measurements, including the joint usage of different types of 
measurements ("joint inversion"). 
 
Basic theory of statistical parameter estimation and examples of practical applications has 
long been the subject of researchers at the Geophysical Department of Eötvös University, 
Budapest (P. Salát, D. Drahos, K. Kis). They have focused on the classical Bayesian 
estimation principle, with emphasis on the use of prior information and the optimum design of 
measurement strategy. Important applications of the above-mentioned principles have been 
established for seismic and electric prospecting 
by T. Fancsik, E. Prácser, G. Varga at the Eötvös Loránd Geophysical Institute of Hungary. 
 
A very important data processing tool which, inherited from the theory of general signal 
processing, has become widespread in geophysics is filtering. Numerical signal filters can be 
designed for very different purposes of data evaluation. Data transformation by linear filters 
can be useful in different stages of probabilistic model fitting, and can be used simply for 
easing data visualization. Seismic signal processing is the largest field of filtering applications 
in geophysics. A. Meskó, K. Kis (Geophysical Department of Eötvös University, Budapest), F. 
Steiner, E. Turai (Geophysical Department of Miskolc University), L. Gömböcz, Z. Timár, P. 
Solt (Eötvös Loránd Geophysical Institute of Hungary), I. Késmárky, G. Göncz, I. Véges (GES 
Company, Budapest) are just the most important contributors to filter theory and applications. 
 
A third large area of data evaluation which has found applications in geophysics (and in other 
branches of Earth sciences) is image processing. Aerial and satellite photos can be used in 
detecting various kinds of geophysical objects at the surface of the Earth. Besides using 
classical image processing tools, special geophysical applications have also been designed 
for this purpose. The contribution of the Space Research Group of the Geophysical 
Department, Eötvös University, Budapest (directed by Cs. Ferencz) and a team at the Eötvös 
Loránd Geophysical Institute of Hungary (directed by J. Kiss) has been valuable in this field. 
 


