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Abstract⎯ Cold air pool (CAP) is a winter-time, anticyclonic weather event: a cold air 
layer confined by the topography and warm air aloft. If its duration is more than one day, 
then it is called persistent cold air pool (PCAP). CAPs are mainly examined in small basins 
and valleys. Fewer studies pay attention to PCAPs in much larger basins (with an area of 
more than 50 000 km2), and it is not evident how effective the existing numerical 
definitions are in cases of extensive PCAP events. A possible method of identifying PCAPs 
in a large basin is to identify PCAP weather conditions at different measuring sites across 
the basin. If there are PCAP weather conditions at most of the sites, then it is likely to be 
an extensive PCAP.  

In this work, we examine which of the documented CAP definitions can be used for 
reliable local detection of CAP conditions. Daily weather reports and meteorological data 
from two locations in the 52 000 km2 sized Great Hungarian Plain have been used to obtain 
a reference set of days with PCAP weather conditions during two consecutive winter 
months. Several numerical CAP definitions were compared for their performance in 
recognizing the presence of PCAP weather conditions using radiosonde measurements and 
reanalysis data. The lowest error was produced by using the heat deficit (HD) method. So 
this is considered the most suitable method for local identification of PCAPs in the Great 
Hungarian Plain. 

Key-words: persistent cold air pool; temperature inversion; heat deficit; Carpathian Basin; 
radiosonde; reanalysis 
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1. Introduction 

Two very different meteorological phenomena are named cold air pool (CAP) in 
the literature. One of them is a synoptic scale weather formation, when there is a 
cold air mass above warmer air causing heavy precipitation (e.g., Llasat and 
Puigcerver, 1990). The subject of our study is the second one, which is a stagnant 
cold air layer in a basin or valley below a warmer air layer (Whiteman et al., 2001). 
This latter phenomenon is anticyclone-related and favorable to fog formation due 
to the weak near-surface wind and the strong temperature inversion causing 
limited vertical motion (Chachere and Pu, 2016). The subsidence in anticyclone 
plays a key role in the formation of the inversion. 

CAPs can be classified into two subgroups based on the height of the base 
of the inversion: simple or complex (Tóth, 1984). In the simple case, the inversion 
layer starts directly from the surface, and if the level of relative humidity is 
sufficiently high then fog forms. This stratification can lead to severe smog events 
in populated areas, where various pollutants are emitted from traffic, industry, and 
households (e.g., Deng et al., 2019). In the complex case, an unstable layer forms 
near the surface below the temperature inversion. This leads to the formation of 
elevated fog or stratus cloud if the atmosphere is wet enough. CAPs can transform 
from simple to complex type and vice versa over time. 

CAPs can be classified into two other subtypes according to their duration: 
nocturnal only or persistent event. Nocturnal CAP usually forms during the night 
and dissipates after sunrise due to the substantial change in energy budget 
elements associated to incoming solar radiation. It can occur throughout the year 
mainly in small valleys or basins (usually in the range of a few 10–100 km2). 
Persistent cold air pools (PCAPs) remain longer than a single diurnal cycle and 
can last several days or even for weeks. More specifically, this weather event 
typically occurs in winter, because the solar elevation angle is smaller and the 
daytime is shorter than in summer. These conditions lead to less incoming solar 
radiation that cannot destroy the inversion layer. The snow cover is also favorable 
for the inversion development. 

PCAPs may result in different socio-economic hazards: temperature inversion 
in the surface layers together with weak wind may lead to severe air pollution in 
cities causing health problems for many people, especially, elderly and children 
even in smaller settlements. For instance, Largeron and Staquet (2016a) examined 
the connection between persistent inversions and wintertime PM10 pollution in the 
valleys surrounding Grenoble, France. Their study concluded that polluted episodes 
are primarily driven by persistent inversions. Fog and/or smog during chilly 
weather conditions often results in freezing drizzle and rime accretion. These 
weather conditions can cause problems in transportation and electricity supply. 
Therefore, CAPs have a significant impact on the daily lives of the population. 
Unfortunately, simulating CAPs is difficult that causes a large forecasting error in 
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numerical weather forecasting models near the surface. That is why it is important 
to find a metric that adequately describes CAPs. 

To study the different stages of the life cycle of CAPs in more detail, 
numerous experiments and field measurement campaigns were performed. In the 
Stable Atmospheric Boundary-Layer Experiment (SABLES 98), Cuxart et al. 
(2000) examined dynamical processes including winds in the nocturnal stable 
boundary layers in Spain. They observed low-level jets during every nocturnal 
CAP. In the Meteor Crater Experiment (METCRAX), Whiteman et al. (2008), the 
effect of solar radiation and winds on CAP evolution was investigated in Arizona, 
USA. Their preliminary results show that nocturnal CAP forms frequently in the 
crater, and internal wave motions are common in CAP. During the Cold-Air 
Pooling Experiment (COLPEX), the formation of CAP and fog was examined 
within valleys in the United Kingdom (Price et al., 2011). According to the 
results, the temperature and turbulence during CAPs is generally greater in the 
Burfield valley than in the less open Duffryn valley. Initial results indicate that 
when clouds advected over the valley, the stability is greatly reduced. When sky 
becomes clear, CAP forms again. Numerical modeling of CAPs was also 
addressed in COLPEX using the data measured during the experiment. The initial 
results show that some of the successfully simulated CAPs are slightly too cold. 
The Persistent Cold-Air Pool Study (PCAPS) was performed to get more 
measurements and better understanding of PCAPs in Utah, USA (Lareau et al., 
2013). They showed that there is a connection between strong, long lasting PCAPs 
and high concentration of fine particulate matter. 

The wide variety of field campaigns and perspectives led to the use of 
different numerical definitions. Several definitions are reviewed here only briefly 
and are described in detail later in Section 3. The earliest study to describe and 
define CAPs in the intermountain western USA was performed by Wolyn and 
McKee (1989). They introduced the concept of deep stable layer (DSL). Later, 
Chachere and Pu (2016) also used this definition and referred to the DSL as CAP. 
Yu et al. (2017) also used this method but considered the wind speed at 10 m, too. 

Other methods are based on the identification of inversion over a valley or 
basin. There are different techniques for this purpose, for example the temperature 
difference between the mountain ridge and the valley base (Iijima and Shinoda, 
2000; Vitasse et al., 2017; Conangla et al., 2018), or the vertical temperature 
profile can also be used (Kahl et al., 1992). Some authors also include an upper 
threshold for wind speed because of the typical weak wind conditions during CAP 
episodes (Whiteman et al., 2001; Reeves and Stensrud, 2009; Reeves et al., 2011). 

Another group of methods is based on the so-called heat deficit (e.g., 
Whiteman et al., 1999, 2014; Chemel et al., 2016; Largeron and Staquet, 2016a, 
2016b; Baasandorj et al., 2017). This measure describes the atmospheric stability 
of an air column. 

Lareau et al. (2013) introduced a method based on the potential temperature 
deficit (PTD) to define CAPs. 
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CAPs are usually investigated in small basins (few 10 –100 km2), where the 
approximation of horizontal temperature homogeneity can be used (Largeron and 
Staquet, 2016a). In this case, even a single measurement site that monitors the 
vertical temperature profile is sufficient to identify PCAPs. Fewer studies pay 
attention to PCAPs in much larger basins with an area of more than 50 000 km2, 
like, e.g., the Colorado Plateau Basin of size 225 000 km2 (Whiteman et al., 1999). 
Consequently, it is not evident how effective the existing numerical definitions 
are in cases of extensive CAP events. A possible method for identifying PCAPs 
in a large basin is to identify PCAP weather conditions at different measuring sites 
across the basin. If there are PCAP weather conditions at most of the sites, then it 
is likely an extended PCAP. The extension of the event can be estimated 
considering the areal coverage of stations.  

In our study, weather conditions are analyzed in the 52 000 km2 sized Great 
Hungarian Plain, and two locations (Budapest and Szeged, Hungary) with 
radiosonde measurements are considered to test local identification of PCAP 
weather conditions during two consecutive winter months (December 2015 and 
January 2016). The above-mentioned numerical CAP definitions are compared 
for their performance in recognizing the presence of PCAP weather conditions 
near these two cities. 

A suitable numerical definition could be utilized possibly in synoptic-
climatological research and air quality studies (e.g., Haszpra et al., 2019) as well 
as by weather forecasters during post-processing of numerical weather prediction 
models. 

2. Data 

The two considered measuring stations (Budapest and Szeged) can be found in 
the Carpathian Basin, which is located in Central Europe (Fig. 1) surrounded by 
the Alps (from west), the Carpathian Mountains (from north, east, and south) and 
the Dinarides (from south). The general altitude of the Carpathian Mountains is 
around 1500 m, with several peaks above 2000 m. The average height of 850 hPa 
pressure level is 1500 m, therefore, this level has a prominent role in this study. 
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Fig. 1. Topography of the Carpathian Basin and its surroundings from the ERA5 reanalysis 
dataset with a horizontal resolution of 0.28125° (~31 km). The examined locations are 
indicated with black dots: Budapest and Szeged in Hungary. 

 
 
 
 
 
 

The Integrated Global Radiosonde Archive (IGRA) database (Durre et al., 
2006; IGRA dataset) was used to examine PCAPs. There were two measurements 
in a day during the examined period of two months. Only one measurement is 
missing at Budapest, namely, on December 11, 2015 at 12 UTC. 

Surface synoptic reports from the Integrated Surface Dataset (ISD) (Smith et 
al., 2011; ISD dataset) were used for describing the weather conditions of the 
examined months at Budapest and Szeged. The following variables are used from 
the reports: hourly atmospheric pressure at station level, temperature and dew 
point temperature at 2 m, and wind speed at 10 m. There are 28 and 50 missing 
measurements at Budapest and Szeged, respectively. Out of them, 8 and 20 
correspond to 00 UTC or 12 UTC, when radiosonde measurements are regularly 
available. 

To obtain finer temporal resolution, two global gridded reanalysis datasets 
were used: the ERA-Interim (with ~79 km horizontal resolution, Dee et al., 2011; 
ERA-Interim dataset) and the ERA5 (with ~31 km horizontal resolution, 
Hersbach et al., 2019; ERA5 dataset). These datasets are available with temporal 
resolutions of 6 h and 1 h, respectively. Main technical details of the databases 
used in this study are summarized in Table 1. For the present analysis, we used 
only the data from the two grid cells containing the measuring sites. 
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Table 1. Technical details of databases used in this study to examine PCAPs 

  IGRA ISD  ERA-
Interim ERA5 

Data type measurements measurements  reanalysis reanalysis 

Horizontal resolution station data station data  ~79×79 
km2 ~31×31 km2 

Temporal resolution (h) 12 1  6 1 

Stations/grid cell 
center coordinates 
and elevation 
above mean sea 
level 

Budapest, 
Hungary 

47.4333°N 
19.1833°E 

138 m 

47.4333°N 
19.1833°E 

138 m 

 
 
 

47.25°N 
19.5°E 
126 m 

47.53156°N 
19.12533°E 

168 m 

Szeged, 
Hungary 

46.25°N 
20.1°E 
82 m 

46.25°N 
20.1°E 
82 m 

 
 
 

46.5°N 
20.25°E 

80 m 

46.1254°N 
19.9688°E 

90 m 

Number of vertical pressure 
levels below 850 hPa 
(including 850 hPa) 

variable 
(min.: 3, 
max.: 11, 

average: 7) 

surface data  7 7 

Missing data 

Szeged: 0 
Budapest: 1 

(12 UTC 11th 
December 2015) 

Szeged: 50 
Budapest: 28  None None 

 
 

3. Methods 

3.1. Producing the reference set of PCAP days 

The Daily Weather Reports (DWR website) is a regular product of the Hungarian 
Meteorological Service (HMS) prepared by experienced synoptic meteorologists. 
This document describes the European and Hungarian weather situation every 
day. It contains a map with weather fronts and cloud cover over Europe and some 
maps with measured data from several locations in Hungary (e.g., daily maximum 
and minimum temperature, calculated sunshine duration, amount and type of 
precipitation, maximum wind gust). 

In addition to DWR, radiosonde measurements were also used to create a 
reference set of PCAP days. The main criterion for a PCAP day was the presence 
of a strong, low level inversion above the measuring station throughout the day 
(from 00 UTC to the subsequent 00 UTC) according to the radiosonde data. 

Major steps in determining local reference PCAP days are shown in Fig. 2. 
The presence of mid-latitude cyclone was recognized from the front maps of the 
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DWR. The presence of the following conditions was examined using the textual 
report: (1) cumulus clouds, (2) cloudy, foggy weather, and (3) European synoptic 
situation (warm air advection). The expression “cold air pool” is rarely used in 
the textual report, but when it is used it always refers to a PCAP. Areas of the 
stations are identified from context. For example „near the capital”, or „central 
part of Hungary” correspond to Budapest, while „southern part of the country, 
next to the river Tisza” refers to Szeged. 

Producing reference PCAP days data series is a rather time and energy 
consuming task, and sometimes it is subjective. The benefit of using numerical 
methods is that objective examinations can be made and they facilitate long-term 
examinations of PCAPs. 

 
 

 

 
Fig. 2. Major steps in determining local reference PCAP days. 
 
 

3.2. Persistent temperature inversion 

The first numerical method to identify possible PCAP days is based only on 
atmospheric temperature inversions. To locate the inversion layers, the method 
designed by Kahl (1990) is used. The vertical temperature profile is evaluated 
from the surface upwards at each location and each time step. The base of a 
specific inversion is that vertical level where the temperature begins to increase 
with height for the first time (starting from the surface), while the top of this 
inversion is that level where temperature begins to decrease with height. If there 
are more than one inversion layers above each other separated by thin (less than 
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100 m thick) unstable layer(s), then it is considered as one inversion with 
embedded unstable layer(s). Inversions thinner than 20 m and inversions with a 
base above 850 hPa pressure level (i.e., at the general altitude of the Carpathian 
Mountains) are excluded from the further analysis. If the identified inversion is 
present all day (i.e., from 00 UTC to the following 00 UTC) according to the 
available data, then that particular day was taken as a day of persistent inversion. 
This definition is abbreviated and called INV hereafter. 

3.3. Temperature inversion with low wind speed 

The second applied definition is the same as INV, but it also considers wind speed 
at 10 m. If there is inversion and the instantaneous wind speed is lower than 
3.1 ms-1 (Whiteman et al., 2001) during the whole day (from 00 UTC to the 
subsequent 00 UTC), then it is defined as a PCAP day. This method is called 
INV+WSPD.  

Wind speed of the lowest level from radiosonde data was used as “10 m wind 
speed” because of the large number of missing data in ISD (see Section 2). 
Namely, calculating PCAP days using IGRA combined with ISD data results in 
35% missing data in the time series, which would make the comparison with other 
methods and databases difficult. That is why we used only IGRA data with this 
method. 

3.4. Heat deficit 

The third definition is based on the heat deficit (HD, Eq. (1)). HD indicates the 
energy that is needed for the lapse rate to change to dry adiabatic within an 
atmospheric column with a 1 m2 base from the surface to a specific height 
(Whiteman et al., 2014). The height of the 850 hPa pressure level (see Section 2) 
was used as a reference. The following formula was used to calculate HD as a 
function of time: 
 
 
 ( ) = [ ( ) ( , )] [ ], (1) 
 
 
where  is the specific heat capacity at constant pressure for dry air  
(1005 Jkg-1K-1),  is the gravitational acceleration (9.81 ms-2),  is the pressure 
at the lowest level (e.g., surface), ( ) and ( , ) are the potential 
temperatures at 850 hPa and at a given  level, respectively. The integral part in 
Eq. (1) is equivalent to the shaded area between the potential temperature profile 
and the dry adiabatic curve in Fig. 3. 
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Fig. 3. Illustration of heat deficit using the potential temperature profile (line with circle 
symbols) at Budapest,  12 UTC, December 26, 2015. The dry adiabatic curve (vertical line) 
used for HD calculation is also indicated. HD = cp/g × shaded area = 13.9 MJm-2.  

 
 
 

If the value of HD exceeds 6.56 MJm-2 during the whole day (from 00 UTC 
to the subsequent 00 UTC), then it is considered as a PCAP-like day at the given 
location. The threshold is defined heuristically by minimizing the total error (see 
Section 3.7, Fig. 5). The short name of this definition is HD6.56.  

3.5. Potential temperature deficit 

Besides inversion-based and HD-based definitions, potential temperature deficit 
(PTD; Lareau et al., 2013) is also used to identify PCAP-like weather situations. 
Potential temperature is calculated at all vertical levels using atmospheric 
temperature (Eq. (2)): 
 

 ( ) = ( ) ( ) , (2) 
 
where ( ) is the pressure at a given level , ( ) and ( ) are the temperature 
and the potential temperature, respectively, at the given pressure level in kelvin 
(K).  is the specific gas constant of dry air (287 Jkg-1K-1), and  is the specific 
heat of dry air under constant pressure (1005 Jkg-1K-1). 

The potential temperature of the 850 hPa pressure level (see Section 2) is 
subtracted from the potential temperature of each level to get the PTD at any given 
level (Fig. 4):  

 
 ( ) = ( ) ( ), (3) 
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where CAP is assumed for vertical levels with PTDi < -8.58 K. If this condition 
is fulfilled all day long (from 00 UTC to the subsequent 00 UTC) at least at one 
vertical level, then it is also considered to be a PCAP-like day at the given 
location. The threshold is defined heuristically by minimizing total error (see 
Section 3.8, Fig. 6). This definition is called PTD8.58 hereafter. 

 

 

 
Fig. 4. Illustration of the PTD calculation using the temperature profile (the line with circles 
indicates the pressure levels of available measurements) at Budapest, 12 UTC, December 
26, 2015. Dashed lines indicate dry adiabatic curves used to calculate potential 
temperatures. 

 
 
 

3.6. Evaluating the performance of numerical PCAP identification methods 

To compare different numerical PCAP identification methods, three measures 
derived from the contingency table (Nurmi, 2003, Section 4.1) are examined for 
all of the methods and databases at both stations. The first measure is the 
probability of false detection (POFD, Eq. (4)) calculated using false alarms and 
correct rejections (Table 2): 
 
 = , (4) 

 
The second measure is called probability of misses (POM) and calculated as 

follows (Eq. (5)): 
 = . (5) 
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Furthermore, the sum of POFD and POM defined as total error (ERR) is 
evaluated. 

 
 
Table 2. Contingency table 

PCAP-like day according to 
the numerical method? 

PCAP-like day according to the reference? 
Yes No 

Yes Hits (Correct alarms) False alarms 
No Misses (False rejections) Correct rejections 

 
 

 
 

3.7. Threshold for the HD-based method 

The threshold of HD-based method (see Section 3.4) was determined by 
calculating ERR with three databases using different thresholds for Budapest and 
Szeged. Fig. 5 shows the average ERR (averaging is performed over the 
databases). The HD threshold values that resulted in the lowest average ERR 
values are 6.28 MJm-2 and 6.84 MJm-2 for Budapest and Szeged, respectively. The 
difference of these values (~8%) is due to the 56 m/46 m/78 m difference in 
altitude between the two locations using IGRA, ERA-Interim, and ERA5, 
respectively. The average of the best-performing thresholds for the two cities 
(6.56 MJm-2) was chosen as a general threshold to identify PCAP days. 
 
 
 

 
Fig. 5. Determining HD threshold by minimizing the average total error. 



178 

3.8. Threshold for the PTD-based method 

The threshold of PTD-based method (see Section 3.5) was determined in the same 
way as in case of HD-based method. The PTD threshold values that resulted in 
the lowest average ERR values are 8.39 K and 8.86 K for Budapest and Szeged, 
respectively (Fig. 6). The difference of these values (~5%) is due to the 56 m/46 
m/78 m difference in altitude between the two locations using IGRA, ERA-
Interim, and ERA5, respectively. The average of the best-performing thresholds 
for the two cities (8.58 K) was chosen as a general threshold to identify PCAP 
days. 
 
 

 

 
Fig. 6. Determining PTD threshold by minimizing the average total error. 

 

 

 

 

4. Results and discussion 

4.1. Weather conditions 

Altogether four PCAP events with a duration of 5–17 days occurred over the 
Carpathian Basin between December 2015 and January 2016 (Table 3). The exact 
dates for the two examined locations were identified (see Section 3.1) and will be 
used as reference while comparing the definitions described earlier. 
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Table 3. List of PCAP events between December 2015 and January 2016 over the 
Carpathian Basin on the basis of Daily Weather Reports of HMS and radiosonde 
measurements. Non-continuous event means that PCAP conditions were not present within 
the period up to maximum 1 day 

 First day Last day Duration (days) Continuous? 

PCAP1 
Budapest: December 4, 
2015 Szeged: December 

5, 2015 
December 9, 2015 Budapest: 6 

Szeged: 5 yes 

PCAP2 December 12, 2015 December 28, 2015 17 yes 

PCAP3 January 1, 2016 January 5, 2016 5 yes 

PCAP4 January 25, 2016 January 30, 2016 6 no 
 

 
 

At the beginning of December 2015, a cold front followed by a warm front 
passed over the Carpathian Basin. Then, a high-pressure system formed over the 
basin (Fig. 7), and warm air was advected to the area aloft resulting in the 
formation of PCAP1 on December 4. From that day, anticyclones governed 
weather across the southern part of Europe, while cyclones were found at the 
northern part. The Carpathian Basin was located near the border of these areas 
within the high-pressure part. A cold front brought cold air mass with strong wind 
on December 10 mixing the air of the basin and destroying the PCAP. 
 

 

 
Fig. 7. Mean sea level pressure in Budapest (black) and Szeged (grey) between December 
2015 and January 2016. Hourly data are from ISD dataset. Reference PCAP days are also 
indicated (shaded areas; darker: PCAP present at both stations, light: it is present only at 
Budapest). 
 
 
Two days later, the southern anticyclones reached the Carpathian Basin again 

and PCAP2 formed. The strong westerly wind over Western Europe weakened on 
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December 27, and the air pressure started to increase over Scandinavia and the Baltic 
region forming an extended anticyclone. Frosty, dry air mass advected from Siberia 
at the front side of the high pressure system. It reached the Carpathian Basin on 
December 29 leading to the dissipation of this PCAP. The temperature decreased by 
about 10 °C during the following three days (Fig. 8). 

 
 
 

 
Fig. 8. Temperature at 2 m in Budapest (black) and Szeged (grey) between December 2015 
and January 2016. Hourly data are from ISD dataset. Reference PCAP days are also 
indicated (shaded areas; darker: PCAP present at both stations, light: it is present only at 
Budapest). 
 
 
Siberian air filled the Carpathian Basin after the PCAP2 period. Warmer and 

humid air mass advected over the basin from Western Europe leading to the 
formation of PCAP3. This event was different from other typical PCAPs. Fog did 
not occur at the beginning of this event because of the low relative humidity 
(Fig. 9) of the arriving Siberian air mass. In addition to that, the daily maximum 
speed of wind gusts was below 8 ms-1 during PCAP1 and PCAP2, but in this case, 
it was higher: 8–10 ms-1 wind gusts occurred (Fig. 10). Also, the air pressure 
decreased by 30 hPa during PCAP3 to about 1000 hPa (Fig. 7). However, PCAPs 
are usually anticyclonic weather events, so the mean sea level air pressure should 
be higher than 1013 hPa. According to the maps of the DWR, there was a pressure 
ridge over the Carpathian Basin during the PCAP3. It means that the pressure was 
higher in the basin than over some of the neighboring areas. Additionally, the 
inversion was thick (sometimes more than 1 km) during PCAP3, so the weather 
inside the basin was quasi-independent from the synoptic weather formations. 
Considering this situation, the pressure decrease can be understood, if the 
Mediterranean cyclone passed from west to east near the Carpathian Basin on 
January 3 is taken into account. Another Mediterranean cyclone with a quite 
strong warm front passed over the Carpathian Basin on January 6 and led to the 
dissipation of PCAP3. 
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Fig. 9. Relative humidity at 2 m in Budapest (black) and Szeged (grey) between December 
2015 and January 2016. Hourly data are from ISD dataset. Reference PCAP days are also 
indicated (shaded areas; darker: PCAP present at both of the stations, light: it is present 
only at Budapest). 

 

 

 

 

 
Fig. 10. Daily maximum wind gusts in Budapest (black) and Szeged (grey) between 
December 2015 and January 2016. Data source: Daily Weather Reports. Reference PCAP 
days are also indicated (shaded areas; darker: PCAP present at both stations, light: it is 
present only at Budapest). 
 
 
 
 
A warm front approached the Carpathian Basin on January 8, and the basin 

was located in the warm sector of a mid-latitude cyclone from 9th to 11th of 
January. The warm advection caused temperature inversion, which was similar to 
the inversion during PCAPs. However, this event was definitely not a PCAP but 
a warm front. 
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Finally, PCAP4 was formed gradually after a warm front that had passed 
over the basin on January 23. The inversion strengthened day by day and became 
a typical PCAP inversion by January 25. Warm air mass advected from west aloft 
resulting in the changes of the inversion on January 27. It became a lower level 
inversion and the temperature difference between its base and top strongly 
increased. A cold front destroyed the PCAP for one day on January 29. Behind 
the front, the sky was clear and it led to fog formation over large areas during the 
night of January 29. It means that the PCAP returned within one day. The cold 
front that passed over the basin on January 31 destroyed this PCAP of short 
duration. 

4.2. Numerical prediction and the reference set of PCAP days 

The reference PCAP days between December 1, 2015 and January 31, 2016 
summarized for Budapest and Szeged are indicated in the first line of Fig. 11. 
There is some uncertainty in the set of reference PCAP days. On one hand, the 
names of the cities (Budapest and Szeged) are rarely mentioned in the DWR, so 
the areas of the stations are identified from context (see Section 3.1). The exact 
location of the evaluated sites cannot be determined using the DWR. On the other 
hand, data of the gridded datasets correspond to an exact grid cell. This difference 
could lead to different results. Furthermore, there are some weather situations that 
are very complex, e.g., PCAP3 when it is quite challenging to decide whether or 
not it is a PCAP. In addition to these, it is difficult to determine the exact time of 
PCAP creation and dissipation, because the DWR is descriptive and the time 
resolution of IGRA is 12 h. If the inversion is dissipated for 4–7 hours in the 
afternoon, it cannot be recognized using the radiosonde measurements unlike 
using reanalyses with 3 h or 6 h temporal resolution. Therefore, it will be defined 
as PCAP-like day using IGRA, but it will not be defined as PCAP-like day using 
reanalyses. Note, that thin (< 20 m) inversions can be unambiguously excluded 
using the radiosonde measurements. 

The results for the four numerical PCAP identification methods are also 
shown in Fig. 11. Each method was applied to three databases, which are also 
indicated at the beginning of the lines. This complex figure can be examined from 
several points of view. It is possible to compare 1) various numerical methods to 
the reference, 2) measurement-based results to reanalysis-based results, 3) the two 
reanalyses, 4) results from individual stations to each other. 

 
 
 
 



183 

 
Fig. 11. The temporal distribution of PCAP days according to different definitions using 
different databases for two stations (Budapest and Szeged, Hungary) between December 1, 
2015 and January 31, 2016. The reference is based on the Daily Weather Reports of the 
HMS and the vertical distribution of air temperature. 
 
 
 
 

4.2.1. Numerical methods vs. reference 

In general, the four PCAP periods can be identified using any of the methods 
(Fig. 11). During PCAP conditions, the values of HD usually exceed the 
determined threshold (Fig. 12) even during the special PCAP3 period. Some 
PCAP days were indicated falsely before PCAP4 using INV and INV+WSPD 
method. These are caused by thin inversion layers (~80-90 m thick), not PCAP-
like inversions. PCAP3 period is almost fully or partly missing when the 
INV+WSPD method is used. The explanation for INV+WSPD’s 
underperformance is the unusual high wind speeds during this period (Fig. 10). 
This suggests that wind affects PCAPs less in large basins than in smaller valleys. 
This emphasizes the need for careful consideration of the method and 
meteorological parameters to be used over different terrains. 
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Fig. 12. Heat deficit in Budapest (top) and Szeged (bottom) between December 2015 and 
January 2016. The threshold used to define PCAP conditions is indicated by a horizontal 
line. The reference PCAP days are also indicated (shaded areas; darker: PCAP present at 
both stations, light: it is present only at Budapest). 

 
 
 

PCAP3 is extended when INV or PTD8.58 methods are used with any of the 
databases. The inversion caused by a warm front described in Section 4.1 was 
indicated by PTD, but the values of the HD were below the given threshold. This 
situation is particularly apparent when reanalysis data was used. 

4.2.2. Measurements vs. reanalyses 

The most obvious difference between measurements and reanalyses can be 
observed in case of PCAP3 using HD6.56 method (Fig. 11). The extension of 
PCAP3 is present when IGRA measurements are used. These false detections are 
not found with reanalysis data. This difference probably comes from the 
difference between the databases: measurements are station data (representing 
single point-like location), but reanalyses contain gridded data (the values are 
averaged over entire grid cells). The size of the grid cells of ERA-Interim and 
ERA5 is approximately 6000 km2 and 1000 km2, respectively. The vertical 
resolutions also differ: reanalyses offer data on fixed pressure levels with coarser 
vertical resolution than the measurements. Therefore, strong local inversions may 
be missing from reanalyses. This leads to a decrease in HD. The days of the 
extension after PCAP3 were not PCAP days according to the reference. However, 
they were PCAP days at least over one station according to the measurements.  
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Besides the differences in spatial resolution, the temporal resolution also 
affects the results. For instance, the end of PCAP1 can illustrate this well. When 
only two measurements are used daily (with a difference of 12 h between them), 
the PCAP dissipates later than in the case of 6 hourly or 1 hourly reanalyses data. 
In this case, the IGRA measurements are more similar to the reference than 
reanalyses. Note that the reference data series was created using IGRA in addition 
to the DWR. The reference data series has some uncertainty in dissipation time of 
PCAPs due to the temporal resolution of IGRA and DWR. It means that the 
reanalyses can be more representative than the measurements because of their 
finer temporal resolution. 

The radiosonde measurements are used in the reanalyses through data 
assimilation, therefore, the vertical temperature profiles of the three databases at 
00 and 12 UTC (when radiosonde measurements are performed) should be similar 
to each other. However, large differences can be seen in Fig. 13 between the 
vertical temperature profiles of measurements and reanalyses. The data 
assimilation method and the spatial resolution could result in this difference. High 
correlations between the time series of HD are also expected. The Spearman’s 
correlation coefficients of the two-month-long HD time series between ERA-
Interim and IGRA are slightly higher (0.86 and 0.87 at Budapest and Szeged, 
respectively) than between ERA5 and IGRA (0.81 and 0.84 at Budapest and 
Szeged, respectively).  

 
 
 
 
 

 
Fig. 13. Vertical distribution of atmospheric temperature at Budapest at a) 12 UTC, January 
5, 2016 and b) 00 UTC, January 6, 2016 according to radiosonde measurements (black), 
ERA-Interim (dark grey), and ERA5 (light grey) databases. 
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4.2.3. ERA-Interim vs. ERA5 

The different temporal resolution causes differences between the results of the 
two reanalyses, too. In general, the results of ERA-Interim and ERA5 are similar 
to each other when using PTD8.58 and HD6.56 method (Fig. 11). In general, the 
vertical distributions of atmospheric temperature based on ERA-Interim and 
ERA5 are also more similar to each other than the radiosonde measurements (e.g., 
12 UTC, January 5, 2016, Fig. 13a). The Spearman’s correlation coefficient of 
the two-month-long HD time series between ERA-Interim and ERA5 is 0.93 and 
0.95 at Budapest and Szeged, respectively. Despite the high values, there are 
differences between the results of the two reanalyses. For example, the dissipation 
of PCAP3 is predicted one day earlier at Budapest when using HD6.56 method 
with ERA5 data (the value of HD fell below the threshold at 20 UTC, January 5). 
The top of the inversion was higher in ERA-Interim than in ERA5 at 00 UTC, 
January 6 (Fig. 13b). Therefore, HD was lower in ERA5 (5.8 MJm-2) than in ERA-
Interim (7.1 MJm-2) and fell below the 6.56 MJm-2 threshold. 

Additionally, there are differences between the two reanalyses during 
PCAP4. The results of ERA-Interim are closer to the IGRA measurements and 
are more similar to the reference than ERA5 results. This is probably caused 
by the different spatial resolution: ERA-Interim has coarser spatial resolution 
than ERA5, so it is more representative for a larger area and it fits better to the 
reference (it is difficult to delimit the exact location of the station using DWR, 
see Section 3.1).  

4.2.4. Comparing the identifications at the two test locations 

There is just one day (December 4, 2015) when the PCAP was present only at 
Budapest according to the reference database. However, the results of numerical 
PCAP identification differ at the two stations on several (5–18) days (Fig. 11). 
Most of the differences (10–18 days) are present using the INV+WSPD method 
because, in general, the daily maximum wind gusts were greater at Szeged than 
in Budapest (Fig. 10). The least differences (5–7 days) are present using the 
PTD8.58 method. Therefore, this method seems to be the most location-
independent. Besides, numerical methods are applied to well-defined areas (e.g., 
precise location, grid cell) in contrast to the reference, in which the areas around 
the stations are identified from context. Because of the distance between the two 
stations, different results can be expected. This emphasizes the importance of 
involving more stations and using data covering larger area to determine CAPs 
extended to large basins. The method of defining the reference PCAP days data 
series is also suitable to describe extended PCAPs. 
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4.3. Evaluation of errors 

POM, POFD, and ERR are shown in Fig. 14. In general, the values of POFD are 
higher than POM almost in all cases. It means that the methods rather overestimate 
the number of PCAP-like days. High values of POM are present when the 
INV+WSPD method was used, because wind speeds were high during PCAP3 
and towards the end of PCAP4 (Fig. 10). An outstanding value of POFD is found 
in case of INV method because of thin inversion layers. PTD8.58 is the other 
method, which substantially overestimates the number of PCAP days. 
 
 

 
Fig. 14. Probability of miss (POM) and probability of false detection (POFD), and sum of 
them (ERR) at Budapest (top) and Szeged (bottom). 

 
 

4.3.1. Differences in the errors of the different numerical methods 

In general, the results are similar at Budapest and Szeged, when the PTD8.58 or 
the HD6.56 methods were used to identify PCAPs (Fig. 14). Additionally, POM 
values are similar also when using the INV method. There are larger differences 
between the results of the two stations when applying INV or INV+WSPD 
method. Consequently, it is recommended to use the PTD8.58 or (more 
preferably) the HD6.56 method to identify PCAPs over large basins rather than 
inversion-based methods. 
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4.3.2. Evaluation of average total error 

The value of ERR averaged over the stations is shown in Fig. 15 for the different 
methods. The lowest average ERR is produced by using HD6.56 method (24%), 
and the PTD8.58 method results in the second lowest value (29%). When the two 
gridded databases are compared, the use of ERA-Interim as source data results in 
lower average ERR (18%) than the use of ERA5 (24%) in case of HD6.56 method. 
According to these results, HD6.56 definition is preferred for the local 
identification of PCAPs using ERA-Interim data. 
 
 
 

 
Fig. 15. Value of average total error for different numerical methods. 

 
 

5. Summary and conclusions 

In this study, it was examined how effective the existing numerical CAP 
definitions are in cases of PCAP events in the Great Hungarian Plain. Four 
different methods were compared to the reference and to each other during two 
consecutive winter months (December 2015 and January 2016). The considered 
methods have been adapted from other authors who examined CAPs in small 
valleys and basins. In order to determine which method performs better, a 
reference PCAP days data series was created using the regular DWRs of the HMS 
and radiosonde measurements. After applying the numerical methods to the 
various datasets, the probability of misses and false detections and the sum of 
them (total error) were calculated. 

On the basis of the presented analysis, the following conclusions can be 
drawn: 

(1) Wind affects PCAPs less in large basins than in smaller valleys.  
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(2) The lowest value of total error is produced by using the HD6.56 method (heat 
deficit below 850 hPa is larger than 6.56 MJm-2), which highlights the 
potential further use of this method in numerical-based objective definition 
of PCAP.  

(3) From the three examined databases, the use of ERA-Interim data yielded the 
lowest value of total error when it was used with the HD6.56 method. 
Overall, HD6.56 definition is preferred for the local identification of PCAPs 

using gridded analyses dataset providing that the reference PCAP days is selected 
according to the description in Section 3.1. Results obtained by using PTD method 
are also promising, because the errors are only slightly higher than in case of 
HD6.56.  

The present study is not exhaustive and has limitations: (i) textual Daily 
Weather Reports were (also) used to determine the reference PCAP days data 
series, making the study partly subjective; (ii) we examined only a two-month-
period; (iii) we processed the data of only 2 stations, because there are only two 
radio sounding stations in Hungary; (iv) the measures used do not take into 
account cloud formation (or at least the value of relative humidity). One 
possibility to improve the predictions can be if the measures used in this study 
were combined with other variables (e.g., relative humidity, tendency of mean sea 
level pressure, etc.) so that, for example, the inversion caused by the warm front 
and the inversion present in the PCAPs could be distinguished (see days after 
PCAP3, Section 4.2.1). Automation of the procedure of obtaining the reference 
set of PCAP days is possible and is planned using, e.g., SYNOP telegrams and 
radiosonde data. This would serve either as an alternative method for determining 
PCAP conditions objectively, and would also make it possible to extend this study 
in time and space (i.e., to more locations) in order to refine the numerical 
definitions examined in this work. The numerical definition(s) could be used in 
synoptic-climatological research and air quality studies (e.g., Haszpra et al., 
2019) as well as by weather forecasters during post-processing of numerical 
weather prediction models. Another possible utilization of the suggested 
numerical method is forecasting the outages in the production of green energy. 
Solar and wind energy production is heavily influenced by the weather. Having a 
foggy or cloudy PCAP for several days, or even weeks, with windless weather 
can prevent the use of these renewable sources. This is why it is important to know 
the frequency over time and average length of PCAPs, and how these features are 
likely to change in the future. 
Acknowledgements: This work was supported by the Széchenyi 2020 programme, the European 
Regional Development Fund and the Hungarian Government via the AgroMo project [grant number 
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The analysis used modified Copernicus Climate Change Service information (ERA-Interim and 
ERA5 data) [2019].  

The first author of this paper would like to say thank to András Zénó Gyöngyösi for his help and 
guidance in the world of cold air pools. 
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Abstract⎯ In this paper, evaluation the performances of GEP (gene expression 
programming), ANFIS ( adaptive fuzzy interference system), and SVM (support vector 
machine) artificial intelligence models in two scales of daily and monthly rainfall data 
from Urmia meteorological station (Iran) and monthly rainfall data from Diata 
meteorological station (India) was used in rainfall simulation. The correlation coefficient 
of observed and simulated values was evaluated by the R2 criterion, simulation error was 
evaluated by the root mean square error (RMSE), and MB criteria and model efficiency 
were evaluated by the Nash-Sutcliffe method. The results show that the correlation 
coefficients in the GEP model based on daily data from Urmia station and monthly data 
from Diata station are 23 and 58%, respectively, and R2 in simulation with GEP is 
estimated to be 55% lower than with the other two models. The R2 range in both ANFIS 
and SVM models varies from 91 to 93%. On average, the RMSE values in the GEP 
simulation are 50% and 55% higher than the ANFIS ratio for daily and monthly data at 
the two stations, respectively, and the RMSE values of ANFIS model are 1% and 3% 
higher than those of the SVM at Urmia and Diata stations, respectively. The bias values 
of the GEP model are 72% and 60% higher than those of ANFIS at Urmia and Diata 
stations, respectively. The GEP efficiency factors are 56% and 61% lower than those of 
ANFIS at Urmia and Diata stations, respectively. And the ANFIS efficiency ratio is 1 and 
2% lower than SVM in Urmia and Diata stations, respectively. Therefore, rainfall 
simulation with the SVM model is associated with a lower error rate and better efficiency, 
the ANFIS model is close to the efficiency of SVM, and the GEP model is not suitable 
for rainfall simulation. 

Key-words: artificial intelligence models, gene expression programming, rainfall 
simulation, support vector machine 

 



196 

1. Introduction 

One way to study hydrological systems and water resources to predict the 
behavior of its components is to use a model, or in other words, to simulate its 
processes (Refsgaard and Knudsen, 1996). Rainfall is an important factor that is 
directly involved in the hydrological cycle. Simulation and forecasting of this 
factor play an important role in hydrological planning and water and agricultural 
resources. (Refsgaard et al., 2005) Water science experts pay special attention to 
modeling and forecasting effective strategies in rainfall analysis and its effect on 
agricultural activities (Hoogenboom, 2000). Moreover, the results of a 
simulation model can be used to verify or correct the data (Sentelhas et al., 
2001). Intelligent models, meanwhile, have shown a relatively high ability to 
simulate and predict nonlinear hydrological time series (Nourani and Komasi, 
2013). These models include the gene expression programming (GEP), the 
adaptive fuzzy inference system (ANFIS), and the support vector machine 
(SVM) (Dibike, 2006; Jang, 1993; Ferreira, 2001).  

The GEP model, developed by Ferreira (2001), is an evolutionary method 
based on Darwin's theory of evolution and on the ability to simulate completely 
nonlinear and dynamic processes (Alvisi et al., 2005). The ANFIS structure is 
equivalent to a post-diffusion network that uses the neural network learning 
algorithm in combination with fuzzy reasoning to create a mapping between the 
input and output space (Jang, 1993). The SVM method is also one of the 
supervised learning methods that can be used for both classification and regression. 
This method is based on the Vapnik's method of statistical learning theory (Vapnik, 
1998), and it is a method for binary classification in the space of desired properties. 
The SVM is essentially a two-class binder that separates classes by a linear 
boundary. In this method, the closest samples to the decision boundary are called 
support vectors (Hamel, 2011). The mentioned models have been used in water 
engineering so far, the following are some of the researches conducted on them. 
Ustoorikar and Deo (2008) used GEP to estimate incomplete data on wave heights 
in the Gulf of Mexico, and they found that the structure was accurate in predicting 
time series data. Aytek and Kisi (2008) used ANN (artificial neural network) and 
GEP methods to rainfall-runoff modeling in the Juniyata River Basin in 
Pennsylvania, USA. Comparing their results showed that GEP performed better 
than ANN. The results of a study by Shiri and Kisi (2011) showed that, in 
comparing the predictive performance of short-term static level fluctuations using 
two models, GEP and ANFIS, both models perform well in predicting static level 
fluctuations, but the GEP model has a simpler structure than ANFIS. Kavehkar et 
al. (2013) simulated the water level fluctuations of Urmia Lake using GEP and 
ANN. The results showed the optimal GEP accuracy in simulating water level 
fluctuations. Comparing the performance of the Bayesian network and GEP models 
in daily river flow forecasting, Baba Ali and Dehghani (2016) showed that GEP 
forecasts are associated with lower error estimation. Chang and Chang (2001) used 
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ANFIS to predict reservoir inflow. According to their results, the predictions of the 
ANFIS model are more accurate than the classical models. Choubey et al. (2014) 
used the SVM model to predict and analyze the inflow of Narmada Reservoir Dam 
in the Indian state of Prague showing that this method has a very good ability to 
simulate and predict the average monthly flow. He et al. (2014) used the SVM 
model to predict river flow in mountainous and semi-arid regions in the 
northwestern part of China, and they found that SVM has better performance than 
ANN and ANFIS, to predict river flow in the semi-arid mountainous areas. Tabari 
et al. (2013) used SVM, ANFIS, regression, and meteorological models to simulate 
reference evapotranspiration using climate data. Their results showed the 
superiority of the SVM model over other methods. Ahmadi et al. (2014) used GP 
(genetic programming) and SVM to predict the monthly reference crop 
evapotranspiration. Their results showed that SVM was superior to GP. Dehghani 
et al. (2016) compared the performance of SVM, GEP, and Bayesian network 
models in predicting river flow. Their results showed that the SVM performed 
better with the least amount of error than the other models. Mehdizadeh et al. 
(2017) investigated the performance of empirical equations and soft computing 
approaches including GEP, SVM, as well as multivariate adaptive regression 
splines (MARS) in estimating monthly mean reference evapotranspiration. The 
performance of the SVM was better than the used empirical equations. Hong et al. 
(2018) coupled ANFIS with a genetic algorithm and differential evolution for flood 
spatial modeling. They combined two data mining techniques with the ANFIS 
model, including the ANFIS-Genetic Algorithm and the ANFIS-Differential 
Evolution. The result showed, the ANFIS-Differential Evolution hybrid model is 
more suitable for flood susceptibility mapping in their study area. Kalantar et al. 
(2018) assessed the training landslides random selection effects on support vector 
machine (SVM) accuracy, logistic regression (LR), and artificial neural network 
(ANN) models for landslide susceptibility mapping. Results showed that SVM and 
LR models performed better than ANN model. Pashazadeh and Javan (2020) 
compared the performance of GEP and ANN models with the equivalent 
Muskingum inflow model. Their results showed that the obtained outflow 
hydrograph by the GEP model had an excellent performance compared with ANN 
and equivalent Muskingum inflow models. 

Due to the importance of rainfall simulation to analyze, verify, correct, and 
complete data and forecasts in future periods as well as the impact of long-term 
memory data on the performance of certain models, the aim of this study was to 
evaluate the efficacy and accuracy of the three models (GEP, ANFIS, and SVM) 
in rainfall simulation. 

For this purpose, the monthly data of the 110-year-long time series of Diata 
station in India and the daily data of the 44-year-long time series of Urmia 
station have been used and the simulation performance has been evaluated using 
different criteria. 
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2. Materials and method 

In this study, two series of monthly rainfall records (1900–2010) of Diata 
meteorological station (Shivapouri Region of Madhya State of India) and daily 
rainfall records (1961–2005) of Urmia synoptic station (Iran) were used. To 
perform the simulation, 90% of the data was used to train (learning phase) and 
the remaining 10% of the data was used to test (testing phase) the models, 
followed by running the SVM, ANFIS, and GEP algorithms and the evaluation 
criteria. Fig. 1 shows the location of the Urmia and Datia meteorological 
stations in Iran and India, respectively. 
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Fig 1. Location map of the selected stations in Iran and India. 
 
 

2.1. Gene expression programming (GEP) 

This method is a combination of methods such as genetic programming (GP) 
and genetic algorithm (GA). In GEP, similarly to genetic algorithm, the 
individuals are encoded as linear strings of fixed length (the genome or 
chromosomes), and similarly to genetic programming, they are expressed as 
nonlinear entities of different sizes and shapes. In GEP, the genome or 
chromosome consists of a linear, symbolic string of fixed length composed of 
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one or more genes. It will be shown that despite their fixed length, GEP 
chromosomes can code expression trees (ETs) with different sizes and shapes. 
One of the strengths of GEP over GA and GP is that genetic operators’ works at 
the chromosome level, which makes genetic diversity creation extremely 
simplified. The other strong point of GEP is its unique, multigeneric nature, 
which allows the evolution of more complex programs composed of several sub-
programs (Ferreira, 2001). Further details on this method are provided by 
Shoaib et al. (2015). In this study, GEP simulation was performed using 
GeneXpro Tools (v5) software. 

2.2. Adaptive-network-based fuzzy inference system (ANFIS) 

The method of adaptive fuzzy-neural inference system is a combination method, 
in which the fuzzy part establishes the relationship between the input and output 
variables, and the characteristics related to the membership functions of the 
fuzzy part are determined by the neural network. This method has five layers 
according to Fig. 2, which are described in the following steps: 
 

 

 

 
Fig 2. ANFIS network structure. 

 

 

Layer 1, the input nodes: Every node in this layer acts as a member 
function that is assigned to each of the input variables of the model (x and y). 
Member amounts are determined based on the inputs belonging to each of the 
fuzzy sets A1 and B1. In other words, the output of each node in this layer is the 
degree of members assigned to the input variables in the fuzzy sets, which are 
expressed as follows: 
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 , (1) 
 
 , (2) 
 

where x and y are the non-fuzzy inputs of node i, Ai, and Bi are fuzzy 
membership functions, and O1,i and O2,i represents the outputs of the first layer. 

Layer 2, the rules nodes: Each node in this layer calculates the degree of 
activity of a rule. In this layer, the operator "and" is used to calculate the degree 
of participation of each rule. O2,k represents the output of the k-node in the 
second layer, and it is the product of the degrees of membership of each entry:  

 
 ( ) ( )2, μ . μK Ai BjO x y= . (3) 
 
Layer 3, the normalized nodes:This step calculates the ratio of the degree 

of participation of each rule to the total degree of participation of all the rules. 
As a result, this layer is defined as  
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where wi is the ith output node of the previous layer. 

Layer 4, the adaptive nodes: This step uses the result parameters to 
calculate the output of each node: 

 
 )(1,4 iiiiii ryqxpwfwO ++== , (5) 
 

where wi is ith output node of the previous layer and {pi, ri, qi} are linear 
adaptive parameters. 

Layer 5, the output node: This step expresses the final output value as the 
sum of the output nodes of the previous layer:  
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The ANFIS network learning algorithm is a hybrid learning algorithm 

consisting of a descending gradient algorithm and a minimum squared return 
method. The descending algorithm is used to update the network's nonlinear 
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parameters and the estimate of the minimum return square is used to adjust the 
network weights. Network training error is defined as: 

 

 
=

−=
N

i
ii ffE
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2)ˆ( , (7) 

 
where  and  are the optimal and estimated outputs of the network for the ith 
input, respectively, and N is the total number of input-output data pairs (training 
data) of the network (Jang, 1993). 

2.3. Support vector machine (SVM) 

SVM is a supervised learning model that is based on the constrained 
optimization theory and the method of structural risk minimization. In this 
model, the function related to the dependent variable Y, which is itself a function 
of several independent variables of x, is estimated. Similarly to other regression 
issues, it is assumed that the relationship between independent and dependent 
variables are specified with an algebraic function f(x) plus an acceptable error .  
 
 ( ) ( )Tf x W . bxφ= + ,  (8) 

 
  ,  (9) 
 

where the W (vector of the equations) and b (constant) are the characteristics of 
the regression, and φ is Kernel function. The purpose is to find the function of 
f(x). This is achieved by using the SVM training phase. Therefore, to calculate 
W and b, it is necessary to optimize the error function (Eq. (10)) in the ε-SVM 
model by considering the conditions in Eq. (11): 
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where C is a positive integer that determines the penalty when the model 
training error occurs, φ is the Kernel function, N is the number of samples, and 
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the two characters iξ and * iξ are slack variables determining the upper 
and lower limits of the training error associated with the allowable error value . 
In the case of predictions, the data are placed within the  -boundary range. But, 

if the data is out of range, then there is an equivalent error iξ  and  *iξ  
(Eskandari et al., 2012). After defining the Lagrangian coefficients, the 
characteristics of W and b in the regression SVM model are calculated using 
Crash-Cohen-Tucker theory, in which W is consistent with Eq. (12), and as a 
result, for SVM model, we will calculate Eq. (13): 

 

 

*

1
( ) ( )

N

i i
j

W ia a xφ
=

= + →
, (12) 

 

 
*

1
( ) ( ) (x)

N T

i i
i

W bia a xφ φ
=

= + +
, (13) 

 
where  and  are Lagrangian terms and  can be zero or non-zero. 
Therefore, only the data sets whose coefficients   are assumed to be non-zero, 
are entered into the final regression equation. These data sets are known as the 
support vectors. Finally, the regression SVM function can be rewritten as 
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In Eq.(14), the calculation of φ (x) in the specified space may be very 

complex. To solve this problem, a kernel function is selected in the regression 
SVM model. Different kernel functions can be used to construct different types 
of ε-SVM models (Hofmann, 2002): 

 
.  

(15) 
 

2.4. Performance criteria  

The correlation coefficient R2 (Eq. (16)), root mean square error (RMSE) 
(Eq. (17)), Nash-Sutcliffe efficiency coefficient NSE (Eq. (18)), and the bias or 
model bias MB (Eq. (19)) were used as performance criteria to evaluate the 
accuracy and efficiency of the used models. 

2( , ) 4( )T
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where  are the observed values,  are the simulated values,  are the mean 
observed values, S is the number of data,  is the variance of observed values, 

 is the variance of simulated values (Nash and Sutcliffe, 1970; Swinscow and 
Campbell, 2013; Salas et al., 1980). The flowchart of the proposed methodology 
is presented in Fig. 2. 

 
 

 
Preparing the daily and monthly rainfall  

 

Preparing the data in train (75%) and test (25%) scale  

 

Run the studied models in the training phase and evaluate the 
accuracy of the models 

 

Run the studied models in the test phase and evaluate the 
accuracy of the models 

 

Evaluate and compare the models studied based on RMSE, 
NSE, and MB 

 

Introducing the best models on the monthly and daily scale 
Fig 2. Flowchart of the proposed methodology 
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3. Results and discussion 

Rainfall simulation has been demonstrated by GEP, ANFIS, and SVM models 
along with the correlation between observed and simulated value. The results are 
shown in Figs. 4, 5, and 6. According to these figures, in simulation with GEP, 
simulated rainfall is less than the observed values, and the correlation diagram 
of this simulation shows the relative scattering of simulated data, and the 
simulated values by ANFIS and SVM are more consistent with observational 
data. The correlation between the observed and simulated values of these two 
models is high and slightly different from each other. The data correlation in the 
ANFIS model is slightly higher than in the SVM. The correlation coefficient in 
simulation with GEP is estimated to be 55% lower than the other two models, 
and the R2 range in both ANFIS and SVM models varies from 91 to 93%. 
 
 
 
 

 
Fig 4. Rainfall simulation and the correlation between observational data and simulation 
in the GEP model (mm). 
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Fig 5. Rainfall simulation and the correlation between observational data and simulation 
in the ANFIS model (mm) 

 
 

 
Fig 6. Rainfall simulation and the correlation between observational data and simulation 
in the SVM model (mm) 
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3.1. Evaluation of the performance of simulation models 

The evaluation of GEP, ANFIS, and SVM models using RMSE, MB, and NSE 
criteria are presented in Table 1. The comparison of simulations based on daily 
and monthly rainfall data shows that the root mean square error (RMSE) in 
simulation with daily data is less than with monthly data and the model 
bias (MB) is more in daily data compared to monthly. The Nash-Sutcliffe 
efficiency (NSE) criteria of models with daily data are higher than monthly, the 
details of which can be examined in the table. On average, the root mean square 
error (RMSE) in the GEP simulation is 50 and 55% higher than that of the 
ANFIS for Urmia and Diata stations, respectively. However, ANFIS is superior 
to SVM in the training phase and performs worse in the test phase. But on 
average, the RMSE of the ANFIS model is 1 and 3% higher than that of the 
SVM at Urmia and Diata stations, respectively. The bias model of GEP is 72 
and 60% higher than that of ANFIS at Urmia and Diata stations, respectively. 
The ANFIS bias is 62 and 15% higher than the SVM bias at Urmia and Diata 
stations, respectively. The GEP's Nash-Sutcliffe efficiency (NSE) criteria are 56 
percent and 61% lower than the NSE of ANFIS at Urmia and Diata stations, 
respectively. The NSE of ANFIS is 1 and 2% lower than the NSE of SVM in 
Urmia and Diata stations, respectively. 
 

 
Table 1. Evaluating the performance of simulation models GEP, ANFIS, and SVM 

Index 
Station Model RMSE (mm) MB (mm) NSE (%) 

Train Test TrainTest Train Test 

3.389 2.647 2.130.672 31 27 Urmia 
GEP 

81.327 70.558 0.02760.605 24 21 Diata 
0.997 0.998 0.1110.662 92 88 Urmia 

ANFIS 
32.453 35.592 0.1060.145 93 83 Diata 

1.007 0.952 0.3580.291 92 90 Urmia 
SVM 

33.002 32.702 0.1890.099 93 88 Diata 

 

 
By comparing the results of this study with the result of other researchers, it 

can be shown that the result is consistent with the results of Ahmadi et al. (2014) in 
the superiority of the SVM model over GEP to estimate reference 
evapotranspiration over a 37-year-long period. Results are consistent also with the 
results of Tabari et al. (2013), that they simulated the reference crop transpiration 
by using SVM and ANFIS, and showed the relative superiority of SVM. On the 
other hand, results of Shiri et al (2013), which used ANN, ANFIS, SVM, and GEP 
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methods to predict rainfall and evaporation parameters to predict groundwater level 
fluctuations, are inconsistent with the research results of the present study showing 
better GEP efficiency. The reason for the inefficiency of ANFIS and SVM in this 
study is related to the limited groundwater data due to their nature. Also, they used 
eight-year time series data in their research. Therefore, if the data used is limited, 
other models may be as efficient as ANFIS and SVM, which require an evaluation 
through different indicators. 

4. Conclusion 

Based on the performance criteria, evaluating efficiency, and accuracy of three 
models, GEP, ANFIS, and SVM in daily and monthly rainfall simulation, the 
correlation coefficient of rainfall simulation with daily data is higher than that of 
the simulations with monthly data in all three models. The correlation in GEP 
simulation is significantly lower than in the other two models, and ANFIS 
performs 1% better than SVM with daily and monthly data. According to the 
RMSE criterion, the use of daily data performs better than the use of monthly 
data in all three models, GEP simulation performs worse than the other two 
models, and ANFIS has a slight superiority over SVM, which requires further 
research. In all three simulations, the model bias (MB) with daily data is higher 
than monthly, and the simulation bias in GEP is 76% and 83% higher than the 
bias in ANFIS and SVM, respectively. The efficiency of all three models 
performs better in simulation with daily data than with monthly data, and the 
efficiency of the GEP model is 27% better on average according to this criterion, 
and SVM has about 4% better performance than that of ANFIS. Therefore, the 
SVM rain simulation is associated with a lower error rate and better efficiency, 
the ANFIS model has the same capability as the SVM, and the GEP model is not 
suitable for simulating rainfall. Therefore, the higher MB and RMSE, as well as 
less R2 and NSE of GEP model than the other two models show poor GEP 
performance compared to ANFIS and SVM. Due to the slight advantage of 
ANFIS over SVM based on R2 and RMSE criteria and the relative superiority of 
SVM over ANFIS based on MB and NSE criteria, SVM can be introduced as 
the superior model. 
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Abstract— In this paper, the mathematical models of a solar thermal system which governs 
the solar thermal collector, the heat storage system, and the pump are presented. It has been 
shown that it is possible to connect a Simulink-based model to a meteorological database 
server using standard communication protocols by a C language-based component in order 
to import real-life weather information into the simulation. The setup of the model 
predictive control of this solar thermal system and the results of the simulation are also 
presented. This computationally heavy control method is possible to use on today's personal 
computers, and it can be expanded. 

Key-words: SimSolar, Simulink, TCP/IP, JSON 

1. Introduction 

The need for renewable energy solutions has grown over the years, and the growth 
has continuously been rising. The technologies that utilize solar energy are solar 
thermal and photovoltaic systems. The process of design and optimization of these 
systems involves a huge number of calculations based on various types of 
mathematical models describing the system. 

The block-oriented modeling technique is a technique where a complex 
mathematical model can be abstracted into a block-relation model. The “block” 
can be interpreted as a function with inputs and outputs, and it can be visualized 
as a rectangle. In this way, the mathematical model transforms into a “wiring 
diagram”, where the underlying principles of the model can be seen easier, and 
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the linking of the blocks represent the relationships among the parts of the 
physical model (Parrino et al., 2005). 

The block-oriented modeling technique can be combined with the model-
based design (Qu et al., 2010). This design method focuses on the mathematical 
models of a system and uses the data of its simulations to reduce the cost of the 
prototyping phase of the product to optimize the already existing systems. 

The hardware-in-the-loop (HIL) simulation is the extension of the block-
oriented modeling. This method can connect the real-time world to the simulation 
by creating a block in the simulation that can read measurement data using 
dedicated measurement hardware (Tóth et al., 2019). 

Another way to connect real-world data to the simulation is by using a 
database, especially a meteorological source database. These databases can be 
accessed directly (Tóth and Farkas, 2018), but there is a security risk for public 
databases, so this method is common for local networks. A more acceptable way 
to access data from a public online database is to go through a TCP/IP 
(Transmission Control Protocol/Internet Protocol) API (Application 
Programming Interface). The API provides a way to the developer to interface 
with the application in a controlled manner. The most common format of these 
server-client messages (APIs) are JOSN (JavaScript Object Notation) and XML 
(Extensible Markup Language) (Wang, 2011). The advantage of this method is 
that the database is not directly accessible, and the messages can be viewed in a 
regular web browser in a human-readable format. This approach can greatly 
improve the productivity of the simulation, because it skips the step of the manual 
exchange of the data, and the request of a different data set is just a change of a 
few parameters of the model. 

The operation of a dynamical system usually requires a kind of control unit; 
in this case, the unit is a predictive control unit, which is a sophisticated solution 
in time-delayed solar systems. The predictive controlling algorithms provide a 
way to handle the systems with a slow response time. Such algorithms usually are 
neural network-based (Shuzhi et al., 2008) or mathematical model-based (Qin and 
Badgwell, 2003). The model predictive control (MPC) can be used if the 
mathematical model of the system and its inverse are known. This approach is a 
natural choice for solar thermal systems, because these types of systems are well 
known in the mathematical modeling perspective, and they have slow response 
time, especially if a solar thermal farm is considered. 

The aim of this paper is to present the block-oriented mathematical model of 
a solar thermal system and to show its model predictive control based on the data 
stored server and accessed through a TCP/IP API. The simulations were done 
using the Simulink framework. The mathematical models of the operational units 
of the solar thermal system are parts of a Simulink library, called SimSolar (Tóth 
and Farkas, 2017). 
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2. Materials and methods 

In this session the applied mathematical models for the main components of the 
solar thermal system are presented. The components are composed as blocks in 
the Simulink simulation. 

2.1. Model of the solar collector 

The solar thermal collector converts the radiant energy from the Sun into heat. 
The mathematical model of the solar collector, the Hottel-Whillier model (Farkas, 
1999), is interpreted as shown in Fig. 1. 
 
 

 
Fig. 1. Schematic diagram of the solar collector. 

 

 
The governing equation of the Hottel-Whillier model can be written as 

 
 

 = + + exp , (1) 

where 
 - time (s), 

 - outlet temperature of the solar collector (°C), 
 - ambient temperature (°C), 

 - solar radiation (W m-2), 
 - heat transfer coefficient (absorber – environment) (W m-2 K-1), 

 - inlet temperature of the solar collector (°C), 
 - heat transfer coefficient (working fluid – environment) (W m-2 K-1), 

 - width of the solar collector (m), 
 - length of the solar collector (m), 
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 - specific heat of the working fluid (J kg-1 K-1), 
- mass flow-rate of the working fluid (kg s-1). 

 
 

The implementation and the parameters of the applied model can be seen in 
Figs. 2 and 3. 

 
Fig. 2. Simulink implementation of the solar collector model. 

 

 

 

 
Fig. 3. Parameter window of the solar collector model. 
 
 
In order to use the block in the simulation, the following parameters have to 

be set in the parameter window: 

• specific heat of the containing fluid (J kg-1 K-1),  
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• width of the solar collector (m), 

• length of the solar collector (m), 

• heat transfer coefficient (absorber - working fluid) (W m-2 K-1), 

• heat transfer coefficient (environment - working fluid) (W m-2 K-1). 

2.2. Model of the heat storage 

In most cases, the period of the consumption of the collected solar energy is not 
necessarily the same as the time of the collection, so this energy must be stored 
for later use. The storage of the heat is taken care of by this unit. The interpretation 
of the heat storage model (Farkas, 1999) can be seen in Fig. 4. The heat storage 
could provide hot water for additional technological purposes. 
 
 

 
Fig. 4. Schematic diagram of the heat storage. 
 
 
The related governing equations are as follows: 

 

 = exp + , (2a) 

 
=+ , (2b) 

where 
 - time (s), 

 - inlet temperature of the solar collector (°C), 
 - outlet temperature of the solar collector (°C), 
 - outlet temperature of the storage (°C), 

 - heat transfer coefficient in the heat storage (W m-2 K-1), 
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 - surface of the heat storage (m2), 
 - specific heat of the working fluid in the heat storage (J kg-1 K-1), 
 - mass of the working fluid in the heat storage (kg), 

 - volume of the heat storage (m3), 
 - density of the working fluid in the heat storage (kg m-3), 
 - inlet temperature of the heat storage (°C), 

 - specific heat of the working fluid in the solar collector (J kg-1 K-1), 
 - mass flow-rate of the working fluid in the solar collector (kg s-1). 

 
The implementation and the parameters of the applied model are shown in 

Figs. 5 and 6. 
 
 
 

 
Fig. 5. Simulink implementation of the heat storage model. 

 

 

 

 
Fig. 6. Parameter window of the heat storage model. 
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In order to use the block in the simulation, the following parameters have to 
be set in the parameter window of the block: 

• specific heat of the containing fluid (J kg-1 K-1),  

• density of the containing fluid (kg m-3), 

• surface of the heat storage (m2), 

• volume of the heat storage (m3), 

• heat transfer coefficient (storage, environment) (W m-2 K-1), 

• initial temperature (°C). 

2.3. Model of the pump 

The pump circulates the working fluid in the system, which allows the flow of the 
liquid through the collector circuit to be controlled. The current model of the pump 
is linear. It describes a linear characteristic, i.e., the output mass flow rate is the 
product of the maximum mass flow rate and the control signal: 
 
 

 = . (3) 

 
The implementation and the parameters of the applied model are presented 

in Figs. 7 and 8. 
 
 
 

 
Fig. 7. Simulink implementation of the pump model. 
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Fig. 8. Parameter window of the pump model. 
 
 
 
In order to use the block in the simulation, the maximal mass flow-rate 

(kg s- 1) has to be set in the parameter window of the block. 

2.4. Weather API 

To access data from a server to run the simulation, a custom Simulink component 
had to be made. The Weather API block needs a server to communicate with. This 
server contains a database and a JSON based API. The server-client messages 
using TCP/IP provides the necessary information about the requested data. The 
server responds with a JSON formatted message containing the required data or 
an error message if an error occurred. 

The API was designed in a way, that it can also be accessed using a web 
browser. For example, a request can be sent by typing into the address bar:  
 

http://127.0.0.1/api/api.php?startDate=2018-04-
17&startTime=06:00:00&endDate=2018-04-
17&endTime=20:30:00&sensors=TW,I 

 
This works only if a local server with the necessary API is up and running. 
The response of this request contains the data from the sensors “TW” and 

“I” from the measurement interval from 06:00, April 17, 2018 to 20:30, April 17, 
2018 in JSON format or an error message describing the error. 

The Simulink implementation of this block contains a Level-2 MATLAB S-
Function (mathworks.com, 2020b) written in the C programming language to 
handle the low-level file input/output duties and to implement the TCP/IP client. 
The parsing of the JSON formatted response is done using DaveGamble’s cJSON 
library (github.com, 2020). 

In order to reduce the workload of the server, the block only requests for 
data, if updated data available. After the data arrives, the block saves it in a file, 
and uses the request to name this file uniquely. This mechanism allows the block 
to keep track of the already requested data. 
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The working principle of the Weather API block can be seen in Fig. 9. 

 
Fig. 9. Working principle of the Weather API block. 

 

 

 
The block contains an option for linear interpolation; this is useful when the 

measurement frequency of the data is low compared to the accuracy of the 
simulation. The parameters of the related Simulink block are shown in Fig. 10. 

 
 
 

 
Fig. 10. Parameter window of the Weather API block. 



220 

In order to use the block in a simulation, the following parameters have to 
be set in the parameter window of the block: 

• address of the server (IP address or URI),  

• port of the server (integer value), 

• the start day of the simulation (in yyyy-MM-dd format), 

• the start time of the interval (in HH-mm-ss format), 

• end day of the interval (in yyyy-MM-dd format), 

• the end time of the interval (in HH-mm-ss format), 

• name of the data fields (comma separated list), 

• request for interpolation (boolean value). 

2.5. Model predictive controller 

In a solar thermal system, the controllers manipulate the pump operation ensuring 
the expected temperature of the outlet medium. In this paper, the MPC algorithm 
was chosen to study the behavior of the control process. This control would be an 
ideal choice for solar thermal systems, even for solar thermal farms, due to its 
ability to handle slow response times. 

The controller is part of the Model Predictive Control Toolbox of Simulink 
(mathworks.com, 2020a). Fig. 11. shows the working principle of the model 
predictive controller. 

The setup and tuning of the controller can be done using its graphical 
interface. The main parameters of the controller are: 

• Prediction horizon: the quantity of future control intervals the controller 
must assess by prediction while optimizing its values at the control interval 
(mathworks.com, 2020c). 

• Control horizon: the quantity of adjustments steps to be optimized at the 
control interval (mathworks.com, 2020c). 

• Constraints: the minimum and maximum values that the output of the 
controller must obey. 
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Fig. 11. Working principle of the model predictive controller. 

 

 

 

3. Results 

The examined system and the results of the simulation are presented in this 
section. 

3.1. Examined system 

The examined system consists of the models of the solar thermal collector, the 
heat storage, the two pumps (in the primary (collector-side) loop and in the 
secondary (consumer-side) loop), and the controller. The input data of the 
simulation comes from the database through TCP/IP protocol using the JSON 
format. The technical parameters were identified based on previous measurements 
using a physically built solar thermal system (Tóth et al., 2019). 
Technical parameters of the solar collector: 

• width of the solar collector: 1 m, 

• height of the solar collector: 1 m, 

• heat transfer coefficient (absorber – working fluid): 6.31 W m-2 K-1, 

• heat transfer coefficient (environment – working fluid): 4.21 W m-2 K-1, 

• constant mass flow rate of the collector-side Pump1: 0.0059 kg s-1, 

• working fluid: water. 
Technical parameters of the water storage with heat exchanger: 

• volume of the storage: 10-3 m3, 

• area of the storage: 0.2674 m2, 
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• heat transfer coefficient in the heat storage: 24.79 W m-2 K-1, 

• initial temperature: 22.9 °C, 

• maximum mass flow rate of the consumer-side Pump2: 0.0059 kg s-1, 

• working fluid: water. 
Parameters of the controller: 

• set point temperature (SP): 50 °C, 

• prediction horizon: 3600 s, 

• control horizon: 1800 s, 

• constraint interval of control signal (CS): 0-1. 
The block-oriented implementation of the solar thermal system can be seen 

in Fig. 12. The figure shows that the control signal of the primary loop (CS1) is 
set to a constant value of 1, as it is indicated in the rectangular block, which means 
that the mass flow rate of this loop is 0.0059 kg s-1.  

 
 
 

 
Fig. 12. Simulink implementation for the model of the solar thermal system. 
 
 
 
The block-oriented implementation of the controlled system can be seen in 

Fig 13. During this experiment due to technical reasons, the solar thermal system 
was controlled at the consumer-side (CS2). 
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Fig. 13. Simulink implementation for the controlled solar thermal system. 
 
 
The input of the simulation, the environmental temperature, and the solar 

irradiance comes from a verified mathematical model. The main purpose of this 
simulation was to study the model predictive controller and the Weather API 
block/server, which was easily achievable by the generation of the input data. If 
the simulation works with this data set, obviously it will equally work with a 
different data set that comes from measurements. The inputs of the simulation can 
be seen in Fig. 14 and 15. 

 
 
 
 

 
Fig. 14. Input data: ambient temperature. 
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Fig. 15. Input data: solar irradiance. 

 

 

3.2. Results of the simulation 

The outlet temperature of the consumer-side (ToutU) of the heat storage and the 
outlet temperature of the solar collector (ToutC) can be seen in Fig. 16. The figure 
shows that the controlled heat storage temperature kept the 50 °C set point value 
with less than 0.2 °C dynamic error in the controlled period. Additionally, it was 
observed that in the non-controlled period, the solar collector outlet and the heat 
storage temperatures had almost the same value because of the relatively small 
volume of the storage tank. 

Fig. 17 shows the flow rate of the consumer-side pump which is proportional 
to the control signal (CS2). It can be seen, that the controller solved a dynamic 
problem with online optimization, and the control signal reflects the 
characteristics of both the environmental temperature and the solar irradiance, as 
it was expected. 

The MPC was chosen for its ability to handle dynamic systems with slow 
response time, and the results show that this control algorithm is capable of 
solving the controlling task of a solar thermal system. The study confirmed that 
this control approach works with the current framework, namely the SimSolar 
block-library and the Model Predictive Control Toolbox of Simulink, and this fact 
opens up a way for further expansion of this idea, e.g., the HIL implementation. 

The simulation verified that the Weather API block works. This result is as 
important as the working of the MPC, because it proved that a generic C language-
based TCP/IP client could be implemented within the Simulink framework. This 
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means that it can be the base of a bridge between the modern online data storage 
methods and the Simulink framework, because every major online system has 
some form of an API, either TCP/IP based or C language library. Despite the fact 
that the C language is mainly used as a system programming language, it is a 
generic programming language with nearly 50 years’ worth of programmer 
knowledge along with the proven-to-work function libraries. 

 

 
Fig. 16. Outlet temperatures of the system. 

 
Fig. 17. Mass flow-rate of the controlled consumer-side pump. 



226 

4. Summary 

A previously verified mathematical model capable of describing a solar thermal 
system was created in a block-oriented way. This model of the system contains 
the mathematical models of the solar collector, the heat storage, and the pump. 
These components are part of the block-oriented library for the solar thermal 
simulations, called SimSolar. 

In order to use real-life measurement data in the simulation, a custom 
Simulink block was created in the C programming language that can handle the 
TCP/IP based communication with the server, and it can interpret the JSON 
formatted response of the server. This block has proven that an external source of 
data, especially the meteorological ones, can be integrated into the simulation 
workflow of the Simulink framework, and the usage of an external programming 
language can be beneficial to solve problems that Simulink is not designed to 
solve by itself. 

The controlling of the model of the solar thermal system was performed by 
a model predictive controller to study and refine its behavior. Usually, the solar 
thermal systems have a slow response time, so the predictive control algorithm 
would be more suitable for them. The development in the IT field has paved the 
way to exploit such a computationally heavy control method by using an average 
personal computer. 

The studied system had a set point of 50 °C, and the controller kept the outlet 
temperature within the set limits. 

This research has shown that the usage of an online database server 
containing input data for the simulation is a quality-of-life addition; it eases the 
process of the import of the real-life data into the simulation. It has also shown 
that the model predictive control of a solar thermal system can be carried out using 
computers available at home, and it can be expanded with an HIL simulation in 
the future. 
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Abstract⎯The paper presents trends for three categories of variables: average annual, 
average maximum and average minimum air temperatures. Data was provided by the 
meteorological yearbooks of the Republic Hydrometeorological Service of Serbia. The 
main goal of this paper is to detect possible temperature trends in Central Serbia. The 
trend equation, trend magnitude, and Mann-Kendall non-parametric test were used in the 
analysis of climate parameters. The used statistical methods were supplemented by GIS 
numerical analysis, which aimed to analyze the spatial distribution of isotherms from 
1949 to 2018. The obtained results indicate that out of the 72 analyzed time series, an 
increase in air temperature is dominant in 61 time series, while 11 time series show no 
changes. The highest increase was recorded in the average maximum time series 
(4.2 °C), followed by an increase of 3.5°C in average maximum air temperatures. The 
highest increase in the average annual time-series was 3.0 °C. The lowest increases in air 
temperature were recorded in the average minimum time series (0.1 and 0.2 °C). In two 
average minimum time series a decrease in average air temperatures was identified (-0.6 
and -0.4 °C. The application of GIS tools indicates the existence of interregional 
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differences in the arrangement of isotherms, leaded by the orography of the terrain. In the 
spatial distribution of the analyzed variables, "poles of heat" and "poles of cold" stand 
out, and the influence of the urban heat island is evident (especially in the case of the 
urban agglomeration of Belgrade). The manifested spatial patterns of air temperature 
need to be further examined and the correlation with possible causes need to be 
determined. For these reasons, the paper provides a solid basis for studying the climate of 
this area in the future, as it provides insight into climate dynamics over the past decades. 

Key-words: variability, climate change, air temperature trends, Mann-Kendall trend test, 
GIS numerical analysis, isotherms, Central Serbia 

 

1. Introduction 

Climate change is referred to as large variations in climate averages which exist 
for decades or even longer periods. Hansen et al. (2013) concluded that the 
Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 
3±1 °C for a 4 W m 2 CO2 forcing if Holocene warming relative to the Last 
Glacial Maximum (LGM) is used as calibration. The most of the research on 
climate change and climate variability was focused on analyses of the second 
half of the 20th century. This is highlighted by the conclusion of the 5th 
Assessment Report (AR5) of the Intergovernmental Panel on Climate Change 
(IPCC): „it is extremely likely that more than half of the observed increase in 
global average surface temperature from 1951 to 2010 was caused by the 
anthropogenic increase in greenhouse gas concentrations and other 
anthropogenic forcings together“ (Bindoff et al., 2013). According to the IPCC 
(2018), a 0.87 °C increase of mean air temperature on global scale during the 
last decade (2005–2015) was identified. A similar trend continued during this 
decade. Thus, the WMO (2019) identified 2015, 2016, 2017, and 2018 as the 
warmest years during the instrumental period. 

In recent years, various studies for detecting possible trends and changes 
related to climate across the world’s regions have been published. Klein Tank 
and Können (2003) identified changes in mean air temperatures trends for more 
than 100 meteorological stations across Europe. The pronounced warming was 
especially intensive between 1976 and 1999; it is primarily associated with an 
increase in warm extremes rather than with a decrease in cold extremes. ElNesr 
et al. (2010) analyzed the changes of air temperature trends over the Arabian 
Peninsula. A warming trend was found in cases of mean annual, mean 
maximum, and mean minimum air temperatures. Exceptions are the winter 
months (November to January), where non-significant cooling trends were 
observed. Karaburun et al. (2011) analyzed the trends of annual, seasonal, and 
monthly mean, minimum, and maximum temperatures in Istanbul from 1975 to 
2006 by using the Mann-Kendall (MK) test and the Sen's method. Based on the 
air temperature measurements from 622 meteorological stations in China, Du et 
al. (2019) analyzed the temperature response to the global warming effects at 
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national and regional scales. They identified air temperature changes from 
0.2 °C per decade from 1998 to 2012. However, the mean increase is lower in 
comparison to the period from 1960 to 1998 (0.4 °C per decade).  

Numerous papers are dealing with air temperature changes across the 
regions of Southeast Europe: in Montenegro (Lukovi  et al., 2013; Buri  et al., 
2014, 2015, 2018, 2019), Bosnia and Herzegovina (Trbi  et al., 2017; Popov et 
al., 2017, 2018a, 2018b, 2019), Croatia (Tadi  et al., 2019; Radilovi  et al., 
2020), and Slovenia (Miloševi  et al., 2013, 2017; Toši  et al., 2016). 

Observed climatological data for Serbia were analyzed and classified into a 
few main categories: air temperature variables (Unkaševi  and Toši , 2013; 
Goci  and Trajkovi , 2013; Bajat et al., 2015; Putnikovi  et al., 2018; Vukoi i  
et al., 2018) and parameters as aridity and drought (Goci  and Trajkovi , 2014a, 
2014b; Hrnjak et al., 2014; Radakovi  et al., 2018; Milentijevi  et al., 2018; 
Trajkovi  et al., 2020). Several papers are focused on climate change problems 
on regional level on the territory of Serbia: Vojvodina (Gavrilov et al., 2015, 
2016, 2019), Kosovo and Metohija1 (Ba evi  et al., 2017, 2018; Gavrilov et al., 
2018). However, on the territory of Central Serbia, air surface temperature 
trends were not examined up to now. For that reason, the purpose of this paper 
is to analyze the variability of selected meteorological variables at 24 
meteorological stations over Central Serbia from 1949 to 2018. Thus, the main 
objectives of this study are: (1) to analyze and discuss the trend characteristics 
of meteorological variables in details; (2) to quantify the significance of changes 
by using the linear regression, the trend magnitude calculated from the trend 
equation, and by the application of MK non-parametric test; and (3) to present 
spatial distribution of isotherms on a defined study area using GIS numerical 
analysis. 

2. Data and methods 

2.1. Research area 

Central Serbia is located on the Balkan Peninsula and is a toponym that refers to 
the territory of Serbia (excluding the autonomous provinces Vojvodina, and 
Kosovo and Metohija). The borders of Central Serbia with the neighboring 
regions are natural: 1) in the west the River Drina forms the border with Bosnia 
and Herzegovina, 2) in the north, the River Danube forms the border with 
Romania, while Danube and Sava rivers with Vojvodina, 3) in the east, the 
Carpatho-Balkans form the border with Bulgaria, 4) in the south it borders 
Northern Macedonia, and 5) in the southwest it borders Montenegro. The total 

                                                      
1 According to the Kumanovo Agreement and United Nations Security Council Resolution 1244 (1999), Kosovo 
and Metohija are considered as the part of Serbian territory under the international protectorate (Clark, 2014). 
 



232 

area of Central Serbia (Fig. 1) is 55,947 km², and it makes up 63.3% of the 
territory of the Republic of Serbia (88,361 km²). The most important orographic 
units that affect the transformation of air masses and the climate of Central Serbia 
are the Pannonian Plain, the Dinarides, and the Carpatho-Balkans. Arctic 
continental air masses come to Central Serbia across the Pannonian Plain in the 
colder half of the year. The Dinarides and Carpatho-Balkanids represent an 
orographic barrier, which weakens the flow of air masses. In these parts, 
continental tropical air masses originating from North Africa in the warmer half 
of the year cause high summer temperatures (Duci  and Radovanovi , 2005). As a 
consequence of this atmospheric circulation, absolute temperature extremes were 
recorded in the meteorological stations of Serbia. Thus, in Smederevska Palanka, 
the absolute maximum air temperature of 44.9 °C was recorded on July 24, 2007. 
The absolute temperature minimum of -39.0 °C was recorded on the Pešter 
plateau, on January 26, 2006 (Andjelkovi , 2007). In Central Serbia, the influence 
of the continental and temperate-continental climates prevail. According to the 
Köppen climate classification, Central Serbia belongs to the Cfa climate (average 
temperature above 20 °C during the warmer months and above -3 °C during the 
colder months), while in the high mountains (above 1500 m) the Dfa climate is 
present (average temperature below 20 °C during warmer months and below -3 °C 
during colder months (Radinovi , 1981). The average annual air temperature for 
the time interval from 1949 to 2018 is 10.7 °C, the average maximum air 
temperature is 25 °C, while the average minimum temperature is -1.9 °C.  

 

 

Fig. 1. Geographical position of Central Serbia with the analyzed meteorological 
stations. 
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2.2. Materials 

In this study, three data sets of surface air temperatures were used: monthly 
mean temperatures, monthly maximum temperatures, and monthly minimum 
temperatures. From these three data sets, new data sets were created: mean 
annual air temperatures (YT), mean maximum air temperatures (YTx), and mean 
minimum air temperatures (YTn). The selected climatological datasets were 
collected from 24 meteorological stations from Central Serbia for the period from 
1949 to 2018. For the purpose of this study, based on the mentioned 
meteorological stations, 72 time series were identified (Fig. 2). The data (Table 1) 
were obtained from the Republic Hydrometeorological Service of Serbia (RHSS, 
2019). Analysis was performed on the selected stations due to three reasons: 1) 
each of the stations has good quality of datasets, 2) the data are reliable, 3) the 
data have adequate record length. Before calculation, the homogeneity of the 
temperature data was examined. Inhomogeneity in time series can cause the 
incorrect interpretation of climate time series (Rahman et al., 2017), and be 
misleading in the interpretation of tendencies in the time series. Several methods 
can be used to detect abrupt changes, e.g., Alexandersson’s test (Alexandersson, 
1986), Pettitt’s test (Kocsis et al., 2020). In this paper, the homogeneity test 
according to Alexandersson (1986) was performed. Applying the Alexandersson's 
test, all series were found to be homogeneous. Heterogenity of orography 
indicates different climate conditions over the defined study area. For example, 
the relative altitude between the highest (Sjenica) and the lowest meteorological 
stations (Negotin) is 996 meters of altitude. 

2.3. Methods  

Three main statistical rocedures were used in order to analyze the temperature 
trends in 72 time series. In the first step, the trend equation (tendency) was 
calculated for each time series using the method of linear regression (Mudelsee, 
2014). Second, in all cases the trend magnitude was calculated from the trend 
equation (Gavrilov et al., 2018). Finally, the third step was to asses all trends 
using the MK non-parametric test (Zele áková et al., 2018). 
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Table 1. Geographic features and short names of the analyzed meteorological stations used in 
the study. 

Station No. Station name Latitude (N) Longitude (E) Altitude (m) 

1. Beograd (BG) 44º48´ 20º28´ 132 
2. Bujanovac (BU) 42º27´ 21º46´ 399 
3. uprija (CU) 43º56´ 21º23´ 123 
4. Dimitrovgrad (DI) 43º01´ 22º45´ 450 
5. Jagodina (JA) 43º59´ 21º23´ 115 
6. Knjaževac (KŽ) 43º34´ 22º15´ 263 
7. Kragujevac (KG) 44º02´ 20º56´ 181 
8. Kraljevo (KV) 43º43´ 20º42´ 215 
9. Kruševac (KS) 43º37´ 21º15´ 404 

10. Kuršumlija (KU) 43º08´ 21º16´ 384 
11. Leskovac (LE) 42º59´ 21º57´ 231 
12. Loznica (LO) 44º32´ 19º14´ 121 
13. Negotin NG) 44º14´ 22º32´ 42 
14. Niš (NI) 43º20´ 21º54´ 202 
15. Novi Pazar (NP) 43º08´ 20º31´ 545 
16. Pirot (PI) 43º09´ 22º35´ 373 
17. Požega (PŽ) 43º51´ 20º02´ 311 
18. Sjenica (SJ) 43º16´ 20º00´ 1038 

  19. Smederevska Palanka (SP) 44º22´ 20º57´ 121 
20. Valjevo (VA) 44º17´ 19º55´ 174 
21. Veliko Gradište (VG) 44º45´ 21º30´ 80 
22. Vranje (VR) 42º33´ 21º55´ 433 
23. Zaje ar (ZA) 43º53´ 22º17´ 144 
24. Zlatibor (ZL) 43º44´ 19º43´ 1029 

 

 

2.3.1. Linear regression and trend equation 

The linear regression describes Xtrend by means of two parameters, namely the 
intercept, 0, and the slope, 1 (Mudelsee, 2019). This method is used to 
estimate the trend by the following equation: 
 
 = + + , (1) 
 
where T(i) is the time variable assigned to X(i) and   is the error 
term. 
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The trend equation has been long utilized in this type of research as an 
approach (Wibig and Glowicki, 2002), because it gives results which are simple 
to interpret; both graphically and analytically on the basis of the shape and 
parameters of the trend equation. For instance, the sign of the temperature trend 
depends on the value of the slope. There are three possible scenarios: a) if the 
size of slope is greater than zero, the sign of trend is positive (increase); b) if it 
is equal to zero, there is no trend (no changes); and c) if it is less than zero, the 
sign of trend is negative (decrease). 

2.3.2. The trend magnitude 

Based on the trend equation, the trend magnitude was defined and calculated as 
the difference in air surface temperature between the beginning and the end of 
the period (Gavrilov et al., 2016). The explained statistical procedure was 
defined as: 
 

 y = y(Pb) – y(Pe), (2) 

 
where y is the trend magnitude in °C, values y(Pb) and y(Pe) represent air 
surface temperatures from the trend equation in the beginning, Pb, and at the 
end of period, Pe. In our cases, the beginning period is defined as, Pb=1949, 
while the end of the period is Pe=2018. 

2.3.3. The Mann-Kendall non-parametric test 

In this study, the non-parametric MK test is used for the detection of the trend in 
a time series. This test is widely used in environmental science, because it is 
simple and robust and can cope with missing values and values below a 
detection limit. The first proposal of the test was by Mann (1945) and Kendall 
(1938). The MK test is a rank-based nonparametric test for assessing the 
significance of a trend, and it has been widely used in hydrometeorological 
trend detection studies: hydrological time series (Burn and Hag Elnur, 2002); 
air surface temperature (Karmeshu, 2012), precipitation (Ahmad et al., 2015), 
temperature extremes (Serra et al., 2001), aridity (Hrnjak et al., 2014), 
evapotranspiration (Shadmani et al., 2012). However, inconsistencies in 
hydroclimatical data recording may occur due to various reasons, such as: 
instrumentation, changes in observation procedures, or changes in gauge 
location or surrounding conditions (Alexander et al., 2006). 

The MK test statistic S (Karmeshu, 2012) can be calculated as: 
 
 = ( ), (3) 
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where n is the number of data points, xj and xi are the data values in time series i 
and j (j>i), respectively, and sgn(xj - xi) is the sign function as: 

 

 = +1, > 00, = 01, < 0 . (4) 

 
The variance is computed as: 
 
 ( ) = ( )( ) ( )( )

 , (5) 
 

where n is the number of data points, m represents the number of tied groups 
while ti denotes the number of ties of extent i. A tied group is a set of sample 
data having the same value. In cases where the sample size n>10, the standard 
normal test statistic Zs is computed as: 
 

 = ( ) , > 00, = 0
( ) < 0 ,. (6) 

 
Positive values of Zs indicate increasing trends, while negative Zs values 

show decreasing trends. Testing trends is done at the specific  significance 
level. By using MK test, two hypotheses were tested: zero hypothesis (H0) – 
pointing to the inexistence of trend in time series; and alternative hypothesis 
(Ha) – pointing to the existence of statistically significant trend in time series for 
the chosen level of significance ( ). The main role in MK test belongs to the 
value of p (Razavi et al., 2016). The value of p determines the accuracy of 
hypothesis. If the value p is lower than the chosen level of significance  (it is 
common that =0.05 or 5%), the hypothesis H0 should be rejected and 
hypothesis Ha is accepted. When p is larger than the level of significance, then 
the hypothesis H0 is accepted (Gavrilov et al., 2016). In the paper XLSTAT 
software was used (www.xlstat.com) for calculating the probability p, and for 
hypothesis testing. 

2.3.4. QGIS analysis 

GIS and data modeling are very powerful tools for estimating and calculating 
data of meteorological properties within an area (Tomazos and Butler, 2009; 
Blake et al., 2007). There are several methods for this calculation, but in this 
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research we gave importance to the methods of kriging and interpolations. 
Semi-automated and ordinary kriging methods were established trough the 
QGIS 3.12.0 (Quantum Geographical Information System) and SAGA (System 
for Automated Geoscientific Analysis) tools. Although there are a few other 
methods which can be used in spatial analysis, the priority is given to the semi-
automated and ordinary krigings, because they include autocorrelation of the 
statistical relationship among measured points (Valjarevi  et al., 2018). These 
maps show the dispersion of climate properties, temperature and precipitation 
on the territory of Central Serbia. GIS methods and spatial variability functions 
can be used along with methods of interpolation in mapping the climate 
properties (Wang et al., 2018). The models used in the spatial research are based 
on the Gaussian distribution. QGIS has a wide range of spatial models, which 
can be successfully applied. Method of interpolation is also used in order to 
compare potential errors in the estimations. In this research, the data from 24 
meteorological stations were used. These stations are well distributed. In that 
way, the created maps have a small percent of errors. 

3. Results 

3.1. Trend parameters 

In this paper, the main results are summarized in Table 2 and Figs. 2 and 3. The 
data for 24 meteorological stations, which are located in Central Serbia (a total 
of 72 time series), are analyzed. The obtained results for the analyzed climate 
variables are presented through the trend equation and trend magnitude in Fig. 2 
and Table 2. The results of the MK trend test as well as the evaluation of 
hypotheses are shown in Fig. 3. The spatial distribution of average annual (YT), 
average maximum (YTx), and average minimum (YTn) air temperatures is shown 
in more detail in Fig. 4. 
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Fig. 2. Average annual (YT), average maximum (YTx) and average minimum air 
temperatures (YTn), trend equations and linear trend for selected meteorological stations 
in Central Serbia from 1949 to 2018. 
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Table 2. Trend equation, trend magnitude ( y), and average temperature for 72 time 
series for average annual (YT), average maximum (YTx) and average minimum (YTn) 
temperatures for the 24 selected stations. Acronyms for stations are listed in Fig. 2. 

Time series Trend equation y (°C) Average temperature (°C) 

BG-YT y = 0.0292x + 11.36 2.0 12.1 
BG-YTx y = 0.0319x + 24.636 2.2 25.8 
BG-YTn y = 0.0307x + 0.5603 2.1 1.6 
BU-YT y = 0.0157x + 10.481 1.1 11.0 
BU-YTx y = 0.0363x + 22.988 2.5 24.3 
BU-YTn y = 0.0237x - 3.1391 1.6 -2.3 

U-YT y = 0.0131x + 10.747 0.9 11.2 
U-YTx y = 0.0358x + 24.629 2.5 25.9 
U-YTn y = 0.0065x - 2.5549 0.5 -2.3 

DI-YT y = 0.0085x + 9.7802 0.6 10.1 
DI-YTx y = 0.0259x + 23.89 1.8 24.8 
DI-YTn y = 0.0035x - 2.887 0.2 -2.8 
JA-YT y = 0.0204x + 10.954 1.4 11.7 
JA-YTx y = 0.0027x + 25.412 0.2 25.5 
JA-YTn y = 0.0438x - 2.3001 3.0 -0.7 
KŽ-YT y = 0.0183x + 10.148 1.3 10.8 
KŽ-Ytx y = 0.0611x + 23.941 4.2 26.1 
KŽ-YTn y = 0.0157x - 2.7361 1.1 -2.2 
KG-YT y = 0.0194x + 10.792 1.3 11.5 
KG-YTx y = 0.0319x + 24.8 2.2 25.9 
KG-YTn y = 0.0143x - 1.7176 1.0 -1.2 
KV-YT y = 0.0319x + 24.8 1.1 11.4 
KV-YTx y = 0.0319x + 24.8 1.6 25.6 
KV-YTn y = 0.0319x + 24.8 1.4 -1.0 
KS-YT y = 0.0178x + 10.666 1.2 11.3 
KS-YTx y = 0.03x + 24.93 2.1 26.0 
KS-YTn y = 0.0193x - 2.3684 1.3 -1.7 
KU-YT y = 0.0069x + 10.179 0.5 10.4 
KU-YTx y = 0.0231x + 24.366 1.6 25.2 
KU-YTn y = 0.0064x - 2.8218 0.4 -2.6 
LE-YT y = 0.0081x + 10.895 0.6 11.2 
LE-YTx y = 0.0253x + 25.078 1.7 25.9 
LE-YTn y = 0.0054x - 2.1455 0.4 -2.0 
LO-YT y = 0.0296x + 10.387 2.0 11.4 
LO-YTx y = 0.0287x + 25.353 2.0 26.3 
LO-YTn y = 0.0331x - 1.3454 2.3 -0.2 
NG-YT y = 0.0279x + 10.641 1.9 11.6 
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Time series Trend equation y (°C) Average temperature (°C) 

NG-YTx y = 0.0272x + 24.042 1.9 25.0 
NG-YTn y = 0.0281x - 1.9027 1.9 -1.0 
NI-YT y = 0.0168x + 11.263 1.2 11.1 
NI-YTx y = 0.0235x + 25.561 1.6 26.4 
NI-YTn y = 0.0185x - 1.0556 1.3 -0.3 
NP-YT y = 0.0405x + 8.1268 2.8 9.5 
NP-YTx y = 0.0514x + 23.047 3.5 24.9 
NP-YTn y = 0.0413x - 4.8405 2.8 -3.4 
PI-YT y = 0.0305x + 9.9109 2.1 11.0 
PI-YTx y = 0.0244x + 24.522 2.1 25.4 
PI-YTn y = 0.0198x - 2.9205 1.4 -2.2 
PŽ-YT y = 0.0207x + 8.8474 1.4 9.6 
PŽ-YTx y = 0.0232x + 24.139 1.6 24.9 
PŽ-YTn y = 0.0239x - 3.7112 1.7 -2.8 
SJ-YT y = 0.0207x + 5.8387 1.4 6.6 
SJ-YTx y = 0.0371x + 19.309 2.6 20.6 
SJ-YTn y = 0.0243x - 8.8094 1.7 -8.0 
SP-YT y = 0.0191x + 10.818 1.3 12.0 
SP-YTx y = 0.0346x + 24.482 2.4 25.7 
SP-YTn y = 0.0171x - 2.2929 1.2 -1.8 
VA-YT y = 0.0303x + 10.342 2.1 11.4 
VA-YTx y = 0.0275x + 25.246 2.0 26.2 
VA-YTn y = 0.041x - 2.4819 2.8 -1.1 
VG-YT y = 0.016x + 10.743 1.1 11.4 
VG-YTx y = 0.0261x + 23.804 1.8 24.8 
VG-YTn y = -0.0062x - 0.9246 -0.4 -1.1 
VR-YT y = 0.012x + 10.739 0.8 11.2 
VR-YTx y = 0.0369x + 23.108 2.6 24.4 
VR-YTn y = -0.0092x - 0.9409 -0.6 -1.3 
ZA-YT y = 0.0172x + 10.227 1.2 10.8 
ZA-YTx y = 0.0359x + 24.518 2.5 25.8 
ZA-YTn y = 0.0011x - 2.6094 0.1 -2.6 
ZL-YT y = 0.0211x + 6.8797 1.5 7.6 
ZL-YTx y = 0.0437x + 19.045 3.0 20.5 
ZL-YTn y = 0.0148x - 3.9099 1.0 -3.4 

 

Based on the magnitude of the trend ( y), the character of climate change 
can be presented, i.e., the average increase or decrease of observed climate 
variables. Generally speaking, the analyzed time series show an increase in 
average annual (YT), average maximum (YTx) and average minimum (YTn) air 
temperatures in Central Serbia. The highest average increase was recorded in 
the case of average maximum air temperatures (time series KŽ-YTx records an 
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average increase of 4.2 °C). Weaker intensity of changes was recorded in two 
time series: 3.5 °C (NP-YTx) and 3.0 °C (JA-YTn). The lowest increase in air 
temperature was recorded in the case of average minimum air temperatures 
(time series ZA-YTn). In this particular case, an average increase in air 
temperature of only 0.1°C was recorded. Similar results were observed in the 
time series DI-YTn ( y is 0.2°C) and JA-YTx ( y is 0.2 °C). In two time series, 
which refer to air temperatures YTn (VR-YTn and VG-YTn), a decrease in air 
temperature was recorded, with averages -0.6 °C and -0.4 °C, respectively. 

3.2. Trend assessment 

The results obtained by applying the non-parametric MK trend test, which 
serves to assess the hypotheses, are described in more detail in Fig. 3. General 
conclusions can be summarized in the following statements: a) out of a total of 
72 time series, a statistically significant positive trend was recorded in 61 time 
series (the hypothesis Ha prevails, while the p value is lower than the 
significance level ). In these time series the risk percentage is very low and 
ranges from 0.01% to 5.00%, which indicates that this statement should not be 
rejected; b) on the other hand, in the remaining 11 time series there is no trend 
(and in these cases the hypothesis Ho prevails, while the p value is greater than 
the significance level ). In these time series, the risk of rejecting this 
hypothesis is significantly higher and ranges from 5.00% to 95.46%. In four 
time series, the risk of rejecting such a claim ranges from 5.00% to 10.00%, 
which indicates that there is no trend. Also, in the next four time series, the risk 
of rejecting this hypothesis ranges from 10.00% to 50.00%, which indicates a 
declining trend. In the last three time series, the value of risk ranges from 
70.15% to 95.46%, which indicates a growing trend and a possible transition to 
a positive trend. 

In most of the analyzed cases, a positive equation trend is followed by a 
positive significant trend from MK test (Fig. 3). The third case shows two 
deviations, when the positive trend was not recognized by the MK test in 
Knjaževac, as well as the negative trend was not recognized in Veliko Gradište. 
According to the MK test in case of Vranje, a positive significant trend was 
recorded together with a negative equation trend. 
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Fig. 3. The results of linear equation trends and MK test separated by a comma: a) 
average annual air temperature; b) average maximum air temperature; c) average 
minimum air temperature. 
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3.3. GIS numerical analysis 

The spatial distribution of average annual (YT), average maximum (YTx) and 
average minimum (YTn) air temperatures from 1949 to 2018 in Central Serbia is 
shown in more detail in Fig. 4. 

 
 
 
 

 

 
 

Fig. 4. Spatial distribution of a) average annual (YT), b) average maximum (YTx), and  
c) average minimum (YTn) air temperatures from 1949 to 2018 in Central Serbia. 
 
 
 
Fig. 4 shows the distribution of average annual air temperatures (YT) in the 

analyzed area. Interregional differences in average air temperatures are caused 
by the influence of orography. Thus, the isotherms of 7 °C and 8 °C dominate in 
the hilly and mountainous area of the southwestern part of Central Serbia. The 
meteorological station at Beograd limits the isotherm to 12 °C, where the 
influence of the "urban heat island" is obvious. Thermal conditions in the 
central, eastern, and southern parts of the study area are limited by the 11 °C 
isotherm. 
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The values of average maximum air temperatures (YTx) from 1949 to 2018 
are summarized in Fig. 4. The patterns of behavior of average maximum air 
temperatures are similar in relation to average air temperatures. The valley 
positions of cities such as Niš, Knjaževac, Loznica, and Valjevo are the cause of 
the high average maximum air temperature (isotherm of 26 °C). These thermal 
oases are also the "poles of heat" of the analyzed area. The thermal inequalities of 
Zlatibor and Sjenica are even more caused by terrain hypsometry (isotherms of 
only 21 °C). 

In the spatial distribution of average minimum air temperatures (YTn) from 
1949 to 2018, significant differences can be noticed in relation to the previously 
analyzed climate variables (Fig. 4). The effect of the "city heat island" can be 
partly explained by the increase in the average minimum air temperature at the 
meteorological station at Beograd, as a macro-proportional variation that affects 
the local microclimate. Here, in addition to the impact of urbanization and the 
increase in the population of the urban area, the intense warming in the winter 
months, the impact of traffic and industry come to the fore (Unkaševi , 1994). 
However, additional research is needed to correlate the relationship between 
these parameters and the average minimum air temperature. At most 
meteorological stations, in the case of average minimum air temperatures, 
isotherms from -1.0 °C to -2.0 °C dominate. The exceptions are, as in the case 
of average annual (YT) and average maximum air temperatures (YTx), the 
meteorological stations Sjenica (-7.0 °C) and Zlatibor (-4.0 °C), which represent 
the "cold poles" in Central Serbia. 

4. Discussion 

From the above presented results it can be concluded that the increase of the air 
temperature is dominant in Central Serbia. Based on the trend magnitude in 
Table 2, the increase in the temperatures was in a wide range of values from 
0.1 °C to 4.2 °C. However, in two time series related to the mean minimal air 
temperatures, the decreases from -0.4 °C and -0.6 °C were identified. This 
behavior of the air temperatures in Central Serbia resembles the warming in the 
Northern Hemisphere (Leroux, 2005). Warming is expected to be enhanced and 
accelerated in the high latitudes of the Northern Hemisphere (the so-called 
“Arctic amplification” effect). The rise in Arctic near-surface air temperatures 
has been twice as large as the global average in recent decades (Screen and 
Simmonds, 2010). Zheng and Wang (2019) identified the past two summers as 
very hot in the Northern Hemisphere. A combination of natural internal 
variabilities and global warming explains summer air temperature variations in 
the Northern Hemisphere.  

It is difficult to find identical results in regions over the world, but there 
are some similarities. Türkes and Sümer (2004) detected increasing air 
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temperatures in the western part of Turkey. Kousari and Asadi Zarch (2011) 
identified a significantly increasing trend for the minimum and mean 
temperatures while changes were not found for the maximum temperature in 
arid and semi-arid regions of Iran. In the mountainous part of Europe, the Swiss 
temperatures from 1959 to 2008 were analyzed (Ceppi et al., 2012). The authors 
summarized: a) all trends are positive and mostly significant with an annual 
average warming rate of 0.35 °C/decade ( 1.6 times as large as the northern 
hemispheric warming rate), b) altitude-dependent trends are found in autumn 
and early winter, where the trends are stronger at low altitudes (<800 m asl), 
and in spring where slightly stronger trends are found at altitudes close to the 
snow line. In the wider Mediterranean region, increasing trends have also been 
recorded. In their paper, Gonzalez-Hidalgo et al. (2015) suggested that the 
warming rate in the Spanish mainland reached a maximum between 1970 and 
1990, followed by a decrease in intensity in bothmaximum temperatures ( Tmax) 
and minimum temperatures (Tmin) until the present. Furthermore, the decrease in 
the warming rate in Tmax has been higher than in Tmin for the last three decades; 
therefore, recent annual warming rates appears to depend more on Tmin than on 
Tmax. Significant trends disappear from the middle of the 1980s at any temporal 
window length in both Tmax and Tmin at annual and seasonal scales except in 
spring Tmin. By analyzing data from 52 meteorological stations in Greece, a 
negative trend between 1960 and 1976 was found (Mamara et al., 2016). A 
statistically significant positive trend has been reported since the period from 
1977 to 2004. In the Southern Levantine Basin, Tonbol et al. (2018) examined 
the mean annual variations. The results of the study revealed that 2010 was the 
hottest year in the region, while 2011 was the coolest. These conclusions are in 
agreement with the latest IPCC report (2018), in which the increase in the 
global temperature is not homogeneously distributed on the Earth surface. 
Similarly, in the near region, the temperature increase is dominant in 
Montenegro (Buri  et al., 2014), Bosnia and Herzegovina (Trbi  et al., 2017; 
Popov et al., 2018a, 2018b, 2019). In the territory of Serbia, in the region of 
Vojvodina (Gavrilov et al., 2015, 2016) and in Kosovo (Gavrilov et al., 2018), 
positive trends in air temperature were also observed. However, Radakovi  et 
al. (2018) did not notice any significant changes in the aridity trends over 
Central Serbia. Therefore, the dominant increase of air temperature is not in 
accordance with aridity trends in the same study area. 

5. Conclusion 

Based on the analyzed climate variables, certain conclusions can be drawn. In 
this paper, a total of 72 time series were analyzed using: a) trend equations, b) 
trend magnitude indicating the average increase or decrease in air temperature, 
c) MK non-parametric trend test, and d) GIS numerical analysis. Based on the 
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trend equation and the trend magnitude, the highest average increase was 
recorded in the case of average maximum air temperatures (4.2 °C). The lowest 
increase in air temperature was recorded in the case of average minimum air 
temperatures (0.1 °C). In two time series related to the average minimum air 
temperatures (VR-YTn and VG-YTn), a decrease in air temperature was 
recorded, which are -0.6 °C and -0.4 °C, respectively. Using the MK trend test, 
the obtained results indicate that in 61 time series, a statistically significant 
positive trend was recorded in the analyzed parameters. On the other hand, there 
are no changes in 11 time series (there is no trend). The spatial distribution of 
isotherms in Central Serbia is in the following intervals: from 6.6 °C to 12.1 °C 
for the average annual temperature, from 20.6°C to 26.4 °C for the average 
maximum temperature, andfrom 1.6°C to -7.9 °C for the average minimum 
temperature. Thermal inequalities are caused by pronounced hypsometric 
differences between the analyzed meteorological stations. They lead to the 
effect of a vertical thermal gradient - an average decrease of 0.65 °C in air 
temperature per 100 m altitude difference (Oliver, 2005). The presented climate 
dynamics of this area provide a solid basis for studying climate variations in the 
future, especially extreme climate events such as drought. Since the beginning 
of the 21st century, Europe has experienced a series of extremely hot and dry 
summers (2003, 2010, 2013, 2015) (Fink et al., 2003; Laaha et al., 2017). 
Drought causes numerous socio-economic consequences followed by water 
deficit, and impacts on nature and agricultural resources. These are the reasons 
why it is necessary to take appropriate adaptive measures before the 
manifestation of worse climatic conditions (Bressers et al., 2016). Central 
Serbia, as a significant agricultural region of the Republic of Serbia, requires 
certain measures in order to mitigate the resulting climate change, as defined in 
the Report of the Republic of Serbia under the UN Framework Convention on 
Climate Change (Ministry of Environmental Protection, 2017). Prominent 
reasons create the need for further research into the problems of climate change 
in Central Serbia (analysis of parameters such as absolute temperature extremes, 
seasonal air temperatures, and precipitation). 
Acnowledgements: This paper represents the result within the projects III43007 and III044006 funded 
by the Serbian Ministry of Education, Science and Technological Development. 
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Abstract⎯ The regional response over Southeast (SE) Europe to the climate warming in 
global and continental scales has been confirmed to have essential impact on the 
agriculture and forestry since the middle of twentieth century. Normal variations in 
weather throughout a growing season cause variations in harvest and, generally, the 
impact could be large in terms of production amounts and economic returns. Agriculture 
is sensitive to the changes in weather and climate, and the occurrence of extreme events 
threaten the agricultural systems. Forests are particularly sensitive to climate change, 
because the long life-span of trees does not allow for rapid adaptation to environmental 
changes. This study provides an overview of the spatial patterns and the long-term 
temporal evolution of the following agrometeorological indices: growing season length, 
accumulated active temperatures and biologically effective degree days. Hence the focus 
is on the Growing season length, its start and end dates are analyzed separately. All 
indices are computed from the daily mean temperatures which, in turn, are derived from 
the output of the MESCAN-SURFEX system analysis of the collaborative initiative 
UERRA. The geographical domain of interest is Southeast Europe, and the assessment is 
performed at a very high spatial resolution on annual basis for the period 1961–2018. We 
find strong evidences of essential increase in the considered indices which dominates 
spatially over the low-elevated areas of the domain and is statistically significant at 5% 
level. Key message is also the revealed asymmetry of the increase in the most relevant 
index, the growing season length: its total lengthening is linked more to the shifting to 
earlier date of the start, rather than to its later cessation. 

Key-words: UERRA MESCAN-SURFEX, daily mean temperature, agrometeorological 
indices, Southeast Europe, regional warming 
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1. Introduction 

According to the high-level synthesis report of the United Nations, titled ’United 
In Science’ (https://public.wmo.int/en/resources/unitedinscience), the climate 
change is the defining challenge of our time. The globally averaged surface 
temperature of the Earth increased 0.85 °C over the 1880 to 2012 period 
(Jankovi  et al., 2019). The climate change will exert influence on the 
ecosystems, on all branches of the international economy, and on the quality of 
life. That is why an operation plan for adaptation to climate changes has to be 
based on scientifically well-grounded assessments, giving an account of regional 
features in the climate changes and their consequences. 

Food security is a fundamental precondition for human well-being, and the 
agricultural and food sector is of major economic importance. Agriculture is 
arguably the sector most dependent on climate. Crops and livestock are directly 
impacted by adverse local weather and climate. Indirectly, food production is 
affected by climate-driven fluctuations in water resources as well as in the 
processing, transport, and storage of agricultural products. 

Associated with climate change there are several factors affecting forest 
ecosystems, which can act independently or in combination. As evidenced in 
many recent publications, the changes in climate have direct and indirect impact 
on biotic (frequency and consequences of pest and disease outbreaks) and 
abiotic (changes in occurrence and intensity of severe weather episodes) 
disturbances with strong implications for forest ecosystems. The comprehensive 
study of Lindner et al. (2010) compiles and summarizes the existing knowledge 
about observed and projected impacts of climate change on forests in Europe. 
Key message in this study is that the negative impacts of the climate change are 
very likely to outweigh positive trends (connected mainly with the increasing 
atmospheric CO2 concentration and higher temperatures) in the southern and 
eastern parts of Europe. The impact of the climate change on the population of 
widespread conifer species with high economic and ecological value like silver 
fir and Norway spruce is considered in the local studies for Romania (Mihai G, 
et al., 2018, 2020). The studies outline the high adaptive genetic variation of the 
Norway spruce in Southeast (SE) Europe and the resilience of the silver fir to 
climate change in the region. 

Temperature is one of the major environment factors affecting the growth, 
development, and yields of crops, especially the rate of development. On one 
hand, crops have basic requirement for temperature to complete a specific 
phenophase or the whole life cycle. On the other hand, extremely high and low 
temperatures can have detrimental effects on crop growth, development, and 
yield, particularly at critical phenophases such as anthesis Luo (2011). 

The study of near past climate provides an essential baseline, from which 
changes in the contemporary and future climate can be understood and 
contextualized. Past and future climate norms, documenting of climate change 
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are required to support transformational decisions, such as breeding new crop 
varieties, investments in irrigation, or relocation of production areas. 

The global warming effects and the associated regional climatic changes 
over Central and Southeast (SE) Europe have been widely documented in the 
last decades based on in situ measurements (Alexandrov et al.,2004; Bartholy 
and Pongrácz, 2006; Pongrácz et al., 2009a, 2009b; Croitoru et al., 2012), 
assimilated surface observations (Birsan et al., 2014; Chervenkov and Slavov, 
2019a; Cheval et al., 2014; Lakatos et al., 2013a, 2013b), reanalyses (Malcheva 
et al., 2016; Spinoni et al., 2015), global (Sillmann et al., 2013), Chervenkov and 
Slavov (2020a)) and regional climate models (Belda et al., 2015; Gadzhev et al., 
2018; Pieczka et al., 2019; Spiridonov and Valcheva, 2019). Most of these 
studies are focused on the second half of the 20th and the first decade of the 21st 
century, clearly evidencing that, similarly to the global and continental trends, 
the regional temperature got warmer during the period. Investigations of the 
changes in annual variation patterns under current climatic conditions across SE 
Europe aim to increase the current knowledge of recent climate changes in this 
region, and also to provide the baseline for the foregoing assessments of 
possible responses of the regional climate to global warming (Birsan et al., 
2014). 

Main aim of the present study is to analyze the spatial patterns and the 
temporal evolution of the near past and present thermal conditions over SE 
Europe from agrometeorological (AM) point of view using up-to-date data 
sources. These conditions are quantified by a set of AM indices with focus on 
the growing season length (GSL) index computed on annual basis from the daily 
mean temperatures. The daily mean temperatures are, in turn, derived from the 
output of the MESCAN-SURFEX model in the frames of the UERRA project 
(Unden, 2018) for the full 58-year-long time span of the data set (1961–2018) 
and in very high grid spacing of 0.05°×0.05°. 

The article is structured as follows. The used data and the considered 
indices are described in Section 1. The core of the article is Section 2, containing 
3 subsections and performed calculations and obtained results. The concluding 
remarks are in Section 3. 

2. Data and methods 

2.1. Concise remarks on UERRA and MESCAN-SURFEX 

The objective of the project-driven collaborative initiative UERRA 
(Uncertainties in Ensembles of Regional Reanalyses (RRA); www.uerra.eu ) is 
to produce ensembles of European RRA of essential climate variables for 
several decades and to estimate the associated uncertainties in the data sets 
(Ridal et al., 2018; Unden, 2018). It also includes recovery of historical (last 
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century) data and creation of user friendly data services. Within UERRA, three 
different numerical weather prediction (NWP) models have been employed to 
generate European RRA and subsequent surface reanalysis products. 

The MESCAN-SURFEX system analysis uses the 2D-analysis system 
MESCAN (Soci et al., 2016) and the land surface platform SURFEX (Bazile et 
al., 2017) to generate a coherent surface and soil analysis. The UERRA-NWP 
HARMONIE-ALADIN at 11 km grid spacing is used as a starting point to 
further downscaling. Besides the other parameters, MESCAN-SURFEX 
produces air temperature at 2 m above the surface in 6-hour temporal resolution, 
i.e., at 00, 06, 12, and 18 UTC for the period 1961–2018. Based on the 
availability of this data, the daily minimum, mean, and maximum temperatures, 
noted henceforth tm, tg, and tx correspondingly, are derived in a regular 
0.05°×0.05° grid and validated against independent data sets (Chervenkov and 
Slavov, 2021). 

2.2. Agrometeorological indices 

This study exploits part of the results of the work of Chervenkov and Slavov 
(2020b), namely the MESCAN-SURFEX derived data for the daily mean 
temperature, tg. 

Identification of the effects of mean temperature on crop production under 
various field/controlled environmental conditions can be used to improve crop 
models for accurate representation of the impacts of temperature change on crop 
production at regional level. The impacts of tg on crop production could be 
quantified by various AM indices (Seemann et al., 1979). Similar to other 
sector-oriented indicators which have no internationally agreed definitions, the 
computation of the most of the AM indicators can be performed in different 
ways, depending on the available data, region of interest, nature and scope of the 
study (Harding et al., 2015). A certain exception is the GSL, which is 
standardized in frames of collaborative initiatives like STARDEX, European 
Climate Assessment & Dataset (ECA&D) project (van Engelen et al., 2008), 
and Expert Team on Climate Change Detection and Indices (ETCCDI, Zhang et 
al., 2011). According to the unified definition, the GSL is the annual count 
between the first span of at least 6 days with tg > 5 °C and first span after July 1 
(in Northern Hemisphere) of at least 6 days with tg > 5 °C. The units of 
measurement of the GSL are, obviously, days. 

It must be emphasized that in some parts of the considered domain, mainly 
along the coastline of southern Greece, Italy, and Asia Minor, the daily mean 
temperature is over 5 °C practically over the whole year. Thus the GSL, at least 
with this threshold temperature, could not be defined in the current way. 

In the last decades, significant research has been done in many countries on 
temperatures critical to plants, and this, along with the aggregate evaluation of 
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thermal resources, made a substantially more accurate determination of climatic 
heat provision to crops possible (Luo, 2011). 

The total active air temperature or accumulated active temperature (AAT) 
index is commonly used AM index mostly for heat assurance characteristics 
during the growth of some cultivars for example winter wheat (Seemann et al., 
1979). AAT is calculated as 
 
 

 ( )−
DOYC=i

DOYB=i
,tb,tg(i)=AAT 0max  (1) 

 
 
where DOYB is the day of year (DOY) at the start, and DOYC is the day of year 
at the end (cessation) of the growing seasons. The threshold temperature, tb, is 
5 °C for the cold-tolerant and 10 °C for the thermophile species (Lakatos et al., 
2013b); we use the lower one in the current study. AAT is calculated in units 
called degree-days, °D (see Jankovi  et al., 2019). 

The degree-day method, which expresses numerically the relationship of 
plant development and growth to atmospheric temperature, was developed in the 
United States in the first half of the twentieth century. In the degree-day method, 
the mean diurnal air temperatures above the minimum plant heat requirements 
are totaled (in essence, this is analogous to the total active temperature method). 
This method was used in connection with the determination of crop maturation 
times (Seemann et al., 1979). 

The biologically effective degree days (BEDD) index has been specifically 
targeted to describe grape growth (Gladstones, 1992). The BEDD index is based 
on a growing degree days measure and is calculated by: 
 
 

 BEDD=
i= 01.04

i= 30.09

min(max( tgi th ,0) , tl),  (2) 

 
 

where th=10 °C and tl=9 °C are the upper and lower threshold temperatures 
correspondingly. Similarly to the AAT, the unit of BEDD is °D. 

Total active and effective temperatures, subsequently the values of AAT 
and BEDD, as well as ranges for GSL have been established for many crops. 
These methods of expressing crop heat requirements are widely used for 
agricultural climate evaluation in the former Soviet Union, Bulgaria, Poland, 
Romania, and a number of other countries (Seemann et al., 1979), which 
motivates their selection in the present study. 

These indices could be regarded not at least and beyond their AM scope as 
proxies of the cumulative thermal conditions during the warm period of the year. 
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3. Calculations and results 

3.1. Verification of the GSL 

The presented definitions on the one hand and the presence of data for the daily 
mean temperatures on the other give the opportunity for straightforward 
computation of the considered indices. They are computed with purpose-build 
procedures by the authors for the whole 58-year-long time span of the input data. 
First, the obtained results for the GSL are verified against independent data. 

The database ClimData (Chervenkov et al., 2019; Chervenkov and Slavov, 
2019a, available for free at https://repo.vi-seem.eu/handle/21.15102/VISEEM-
343.) contains the full set of STARDEX and ETCCDII climate indices (Cis) 
derived from CARPATCLIM and E-OBS daily temperature and precipitation 
data. It is intended to serve as convenient and versatile single-point access 
resource for any user interested in the CIs-based regional climatology. The GSL 
in the STARDEX CIs-collection is calculated with the original input data for the 
daily mean temperature and not with approximation using the arithmetic average 
from the tn and tx as in the ETCCDII-collection. Thus, it is reasonable to expect 
that it represents better this agrometeorological index. The GSL from 
STARDEX, based on CARPATCLIM data is compared to the one computed in 
this study as shown in Fig. 1. 

 

Fig. 1. Upper pane: multiyear means of the GSL (unit: days) for the periods [1961, 1970], 
[1971, 1980], [1981, 1990], [1991, 2000], and [2001, 2010] in the first, second, third, 
fourth, and fifth column, correspondingly, from STARDEX/CARPATCLIM (first row) 
and from UERRA MESCAN-SURFEX derived tg (second row). Lower pane: time series 
of the area-weighted averages (AA) of the GSL over the CARPATCLIM-domain from 
STARDEX/CARPATCLIM (red line) and from UERRA MESCAN-SURFEX derived tg 
(blue line). Fat lines are the running 3-year means. 
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Besides the different graphical appearance of the both sets caused by the 
different grid spacing (0.1°×0.1° for STARDEX/CARPATCLIM and 
0.05°×0.05° in current case), it is most obvious in the superimposition of the 
spatial patterns, that the GSL is generally underestimated in the present study 
compared with STARDEX/CARPATCLIM. The evolution of the AAs from 
both sets is coherent in time with almost constant positive shift of an 15 days of 
STARDEX/CARPATCLIM calculations in the present study. This fact is a 
direct consequence of the underestimation of the daily mean temperatures 
compared to the CARPATCLIM-output (Chervenkov and Slavov, 2020b). As 
emphasized in Chervenkov and Slavov (2020b), a part of this bias could be 
attributed to the principally different origin and nature of the considered data 
sets, which makes it practically unavoidable. 

3.2. Long-term inter-annual changes 

The GSL is certainly the most recognizable AM index and subject of many 
studies, considering the regional climate (Bartholy and Pongrácz, 2006; Birsan 
and Dumitrescu, 2014; Chervenkov and Slavov, 2019a). Most of them 
investigate the GSL solely, whereas little attention is paid on the start date 
(DOYB) of the vegetation period as well as to its end (cessation) date, DOYC. 
Part of the problem lies in the fact that the most standardized software tools for 
computation of CIs, like RclimDex of ETCCDI, output GSL only and not 
DOYB/DOYC. In some recent papers, like the study by Szyga-Pluta and 
Tomczyk (2019), the anomalies are analyzed in the length of the growing season 
in Poland in the period 1966–2015. The authors reveal statistically significant 
increase of the GSL on the east coast as well as in the central and southern parts 
of the country. The changes of the start date over the Carpathian Region in the 
period 1961–2010 are considered also in Lakatos et al. (2013b) evidencing 
significant shifting to earlier date. Experimenting with different approaches for 
calculation of DOYB and DOYC, Mesterházy et al. (2018) reveal that that the 
GSL in Hungary becomes significantly longer during the 21st century. 

The present study is focusing on the GSL. Hence our main aim is not only 
to assess the impact of the climate change on the GSL but also to find seasonal 
shift in the vegetation period, DOYB and DOYC are analyzed together with GSL 
simultaneously. 

First, in order to reveal long-term interannual changes for the considered 
indices, the spatial patterns of the multiyear means for the first 30-year-long 
period 1961–1990 are superimposed to the multiyear means for the second 30-
year-longperiod, 1989–2018 as shown in Fig. 2. 
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Fig. 2. Multiyear means of DOYB, DOYC, GSL, AAT, and BEDD in in the first, second, 
third, fourth, and fifth column, correspondingly, for 1961–1990 (first row) and 1989–
2018 (second row). The unit of the GSL are days; AAT and BEDD are presented 
in1000°D unit. 

 
 
 
 
 
 

The spatial patterns of the considered variables are generally consistent in 
the both time spans. The vertical gradients, especially along the main Carpathian 
ridge (MCR) are better expressed than the gradients in the latitude. As expected, 
the analysis shows increase of all variables, except the DOYB which 
demonstrates opposite tendency. 

The interannual shift of the vegetation period could be quantified simply by 
the middle day of the growing season, DOYM = (DOYB+DOYC)/2, which is 
independent from the GSL itself. If the DOYM is shifted to an earlier date, 
independently from the absolute change of the GSL, the vegetation period begins 
earlier (negative shift); the opposite case, when the detected shift of the DOYM 
moves towards later dates (positive shift), means later occurrence of the 
vegetation period. 

The logical next step is to assess the absolute difference between the 
multiyear means of both time spans as well as the relative change in respect to 
the earlier period. Both of these quantities, which are shown in Fig. 3, could be 
regarded as measures of the climate change impact on the considered variables. 
 



263 

 
Fig. 3. First row: absolute difference between the multiyear means for 1989-2018 and 
1961-1990 for DOYB, DOYM, DOYC, GSL, AAT and BEDD in in the first, second, third, 
fourth, fifth and sixth column, correspondingly. The units are as in Fig. 2. Second row: 
relative changes (in %) in the same order. 

 
 
 
 
 
The most obvious result from the analysis of Fig. 3 is the substantial 

increase of DOYC, GSL, AAT, and BEDD over the entire area. The DOYC is 
shifted towards later dates up to a week, and the GSL is sifted latermore than 
two weeks over the bigger part of the domain. The increase of the AAT, and 
especially BEDD, is spatially more heterogeneous than the increase for the other 
variables. The vertical gradient of the detected changes is most clearly expressed 
in relative terms for the BEDD. It is worth noting, however, that the latter index 
has limited applicability in high-elevated areas. 

The negative shift of the DOYB also appears clearly. It is spatially 
dominating except a few grid cells mostly along the coast lines of Greece and 
Turkey. In these grid cells, as emphasized before, the vegetation period begins 
in the first days of the year and small (less than a day) differences results in big 
relative changes. The decrease of the DOYB over the flat parts of the domain is 
generally in the interval of -21 to -9 days which, in absolute terms, is more than 
the increase of the DOYC over the same places. As a result, the DOYM, i.e., the 
whole vegetation period, is shifted to earlier dates with generally 2 to 10 days. 

The relative share of the negative shift of the DOYB in the total increase of 
the multiyear mean of the GSL for 1989–2018 relative to 1961–1990 as well as 
the temporal evolution of the area-weighted over land averages of DOYB, 
DOYM, DOYC, GSL are shown in Fig. 4. 
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Fig. 4. Left pane: relative share (in %) of the negative shift of the DOYB in the total 
increase of the GSL. Right pane: temporal evolution of the DOYB ((blue line), DOYC (red 
line), DOYM (green line, left ordinate) and GSL (black line, right ordinate, units: days). 
Fat lines are the running 3-year means. 

 
 
 
 

In agreement with the results from the analysis of Fig. 3, the left pane of 
Fig. 4 shows that the total increase of the multiyear mean of the GSL for 1989–
2018 relative to 1961–1990 is caused over the flat parts of the domain by more than 
70% from the negative shift of the DOYB. The vertical gradients are clearly 
distinguishable: over the mountains this share is significantly smaller, suggesting 
that in these regions the negative shift of the DOYB has equal, even smaller 
contribution than that of the positive DOYC-shift in the total increase of the GSL. 

The evolution of DOYB, DOYC, and especially of GSL, as well as in 
smaller degree of DOYM shows fairly clear tendencies, despite of some colder 
episodes as, for example, 1965. These episodes are distinguishable also in the 
lower pane of Fig. 1. The GSL demonstrates significant oscillations from year to 
year. The uprising tendency, however, especially after 1980–1985, is notable. 

The temporal evolution of the AAs of the AAT and BEDD are shown in 
Fig. 5. 
 
 
 

 

 

Fig. 5. Temporal evolution of the AAT (upper pane) and BEDD (lower pane) indices. The 
units are 1000°D. Fat lines are the running 3-year means. 
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Consistent with the similar results for the GSL, the evolution lines of the 
AAT and BEDD demonstrate steady increase of these values since the 1980s. 

3.3. Trend analysis 

The importance of assessing trends in climate extremes is often emphasized 
(e.g., Chervenkov et al., 2019) and, consequently, the trend analysis is an 
essential part of the most recent studies considering either regional (Bartholy 
and Pongrácz, 2006; Birsan et al., 2014; Chervenkov and Slavov, 2020a; 
Croitoru et al., 2012; Lakatos et al., 2013, and many others) or global (Sillmann 
et al., 2013) long-term climate changes. 

The Mann–Kendall (MK) test is a non-parametric procedure, especially 
suitable for non-normally distributed data, data containing outliers, and 
nonlinear trends (Birsan et al., 2014). Subsequently, it is used as practically 
standard tool for estimation of the statistical significance of trends in time series 
of climate variables (see references above). 

The estimation of the magnitude of the trend is performed with the Theil–
Sen estimator (TSE), which is also a non-parametric procedure, using a linear 
model to estimate the slope of the trend (Croitoru et al., 2012). It is increasingly 
applied in many geophysical branches, including climatology, as superior 
alternative of the ordinary least squares (see Chervenkov and Slavov, 2019b, and 
references therein). The MK test as well as the TSE were applied for each of the 
considered variables, on the time series of 58 annual values (from 1961 to 2018) 
and for all 301×321 grid cells individually. The results are presented in Fig. 6. 

 
 
 

Fig. 6. Trend magnitude for DOYB, DOYM, DOYC, GSL, AAT, and BEDD in the first, 
second, third, fourth, fifth, and sixth column, correspondingly The units for DOYB, 
DOYM, DOYC, and GSL are days/10 years; for AAT is °D/year, and for BEDD is  
°D/10 years. Stippling indicates grid points with changes that are not significant at the 5% 
significance level. 

 

 
Many conclusions could be drawn from Fig. 6. The first and foremost 

conclusion is the notable increasing trend for GSL, AAT, and BEDD. This trend 
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dominates practically over the whole domain and is statistically significant at the 
5% significance level over the low-elevated regions which, generally, are the 
biggest importance for the agriculture. As it is expected, mountains have the 
weakest trend for GSL, AAT, and BEDD without statistical significance. The 
vertical gradient in the spatial pattern of the trend is most notable for the BEDD 
index. DOYB demonstrates clear decreasing trend which, with values typically 
between -5 days/10 years and -1 days/10 years, is statistically significant over 
the flat regions. This result, in particular, confirms the finding in Lakatos et al. 
(2013b), where it is revealed that the DOYB shows significant change over the 
low-elevated areas of the Carpathian Region in 1961–2010 period. The areas 
experiencing decreasing trend of DOYM and increasing trend of DOYC are 
spatially dominating. These trends, however, are relatively week and, generally, 
statistically not significant.  

As noted in Birsan et al. (2014) in their study of the thermal extremes over 
the Carpathian Region, the signal of the significant trends of the considered 
parameters is spatially consistent as there are no areas of mixed trends within the 
study domain. 

4. Conclusion 

The present study provides an overview of the spatial patterns in very high 
resolution and the long-term temporal evolution on annual basis of the selected 
AM indices over SE Europe in the period 1961–2018. Generally, it confirms the 
essential impact of the ongoing climate change on the agriculture and forestry in 
the region. As noted in Section 2.2., however, the application of the selected 
indices cannot be limited to their agricultural implementations only, hence they 
could be treated as measures of the cumulative thermal conditions during the 
warm half of the year. 

Consistently with the long-term changes of the mean temperatures over the 
domain, documented in the most recent papers, the present study reveals strong 
evidences for the role of the regional climate warming on the considered indices. 
The GSL, AAT, and BEDD indices experienced essential increase which 
dominates spatially over the low-elevated areas of the domain and is statistically 
significant at the 5% significance level. Key message is also the revealed 
asymmetry in the increase of the most relevant index, the GSL: its total 
lengthening is linked more (more than 70% as relative share over the bigger part 
of the domain) to the shifting to earlier date of the start, rather than to later 
cessation. Our proposal is to use the middle day of the GSL, DOYM, as indicator 
for such long-term shifts appears also novel in this regard. Our computations 
show that DOYM is shifted to earlier dates practically over the whole domain, 
but this shift is statistically not significant over its bigger part. 
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The estimated changes of the AM indices in the near past and recent 
climate could be also prerequisite for deep ecological and economical 
consequences. Longer growing seasons, as well as bigger AAT and BEDD, may 
allow for a greater diversity of crops (including those with long maturation 
periods), and the potential for multiple harvests on the same land. Conversely, 
both irrigation needs and the risk from invasive species, pests, and pathogens 
may increase (Harding et al., 2015). 

The study could be extended and continued in many directions. The logical 
next step is to accomplish the work assessing the future changes and trends 
based on climate simulations. Hence the temperatures in all CMIP5 scenarios 
are projected to rise further, it is reasonable to expect additional increase of 
these indicators. Our preliminary computations with the regional climate model 
RegCM confirm this assumption. The study could also be extended backwards 
in time, as far as possible, in order to capture more general and robust trends. 
However, as for many other efforts in the regional climatology, the necessary 
prerequisite for such task is the (free) availability of reliable data with proper 
spatial coverage and spatio-temporal resolution. 

The data sets with the AM indices, as well as the trend measures (p-value 
and trend line slope) are in standard form (GrADS binary/descriptor files) and 
could be supplied from the corresponding author upon request. 
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Abstract⎯The study presents analysis of current air pollution state over Ukraine 
including remote regions and uncontrolled Ukrainian territories; features of NO2, SO2, 
and CO spatial distribution and seasonality under the influence of local anthropogenic 
emissions. The research is based on Sentinel-5P satellite data for the period of November 
2018 – January 2020. Despite the increasing traffic emissions, the industrial emissions 
still greatly influence the air pollution in Ukraine. Sentinel-5P coverage allowed detecting 
a number of cities with huge anthropogenic NO2 and SO2 emissions, where ground-based 
measurements are absent. Uncontrolled territories on the east part of Ukraine still 
negatively affect air quality in the region due to the activity of coal-fired thermal power 
plants. The study indicates significant air quality changes during the heating season in 
winter and open burning in March – April. There were found differences in NO2 seasonal 
variability over clean remote regions and industrial zones. The paper analyzes features of 
shipping emissions during the tourist season for Ukrainian coastline of Black and Azov 
Seas, showing huge negative impact of chaotic movements of tourists boats near the 
Dzharylhach National Nature Park. 

 
Key-words: Sentinel-5P, air pollution, seasonality, emissions, nitrogen dioxide, sulfur 
dioxide, carbon monoxide 

 

1. Introduction 

Open data development significantly increases the public awareness of air 
quality in Ukraine. Nowadays it becomes the concern of not only scientists and 
ecologists, but also ordinary people. Nevertheless, the state monitoring network 
for atmospheric air quality is still not developed well. Recently, Ukraine started 
the process of implementation of air quality EU Directives (Bashtannik et al., 
2016), and huge steps have been done by the authorities. However, the state 
monitoring network is the remnant of the former Soviet Union, where most sites 
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were set close to the location of emission sources without orientation to the 
territories with the highest population density. Currently, only 37 cities are 
carrying out ground-based measurements. Not so long ago, the air quality 
monitoring network covered 53 cities, but Ukraine lost a number of them on 
uncontrolled territories (on the Crimea and partially in the Donetsk and Luhansk 
regions) due to the Ukrainian – Russian conflict. 

The above mentioned coverage by monitoring network gives the possibility 
to analyze air pollution in large cities and over industrial regions. However, a 
general picture of air quality over the entire country is absent. Therefore, the 
overwhelming majority of research in Ukraine contain the results only for cities, 
where state monitoring sites exist (Bashtannik et al., 2014; Savenets et al., 2018; 
Shevchenko et al., 2016; Yatsenko et al., 2018). Very little amount of air 
pollution research had been done for Ukraine using satellite data (Dvoretska, 
2007; Galytska et al., 2018; Milinevsky et al., 2014) which often were 
corresponded to the territory with available ground-based measurements. 

Over the globe, satellite data provide great vision of air quality, pollutants’ 
distribution, temporal variability, etc., (Ghude et al., 2013; Krotkov et al., 2016; 
Lamsal et al., 2013; Richter et al., 2011). Sentinel-5P launch with TROPOMI 
instrument on it revolutionized remote sensing of air quality and showed new 
opportunities for satellite data usage, allowing distinguishing air pollution of 
separate cities (Ialongo et al., 2020; Zheng et al., 2019). In 2019, Sentinel-5P 
data were firstly used in Ukraine for the study of main features in pollutants’ 
spatial distribution over the country, which showed tremendous differences in 
our knowledge about the most polluted areas (Savenets et al., 2020). Many of 
the polluted territories have not been mentioned before as problematic regions. 
The Ukrainian coastline unexpectedly appeared as rather polluted area, firstly 
indicating the necessity of atmospheric air pollution analysis over the Black and 
Azov Seas, especially since the problem of ship emissions is not new for Europe 
(Aulinger et al., 2016). 

Great challenge appeared in 2014–2015, after the interruption of 
measurements on uncontrolled Ukrainian territories, where real atmospheric air 
quality became unknown. The situation seems to be serious on the east part of 
Ukraine as the territory is industrially loaded and there are no official 
information about the current industrial activity. The uncontrolled part of the 
Donetsk region is highly populated, which means the high probability of that the 
thermal power plants and local factories continue working. Thermal power 
plants and coal consumption have the greatest influence on the sulfur dioxide 
(SO2) anthropogenic emissions (Jiang et al., 2019), thus the absence of state 
control and management pose a risk for air quality in the region. Moreover, 
numerous military equipments from both sides protect the border and influence 
the environment and atmospheric air quality specifically. Changes of economic 
development have direct effect on pollutants’ emissions (Sinha, 2016). In these 
conditions, satellites become the only sources of monitoring the atmospheric 
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chemicals data providing vital information for the analysis of air pollution over 
the uncontrolled territories. 

The present study aimed to define air pollution state for the entire 
Ukrainian territory including remote regions and uncontrolled territories, to 
deepen the knowledge about seasonal changes of pollutants and to better 
understand spatiotemporal variability over Ukraine under the local 
anthropogenic load. 

2. Data and methods 

The research was carrying out using Sentinel-5P TROPOMI data for column 
number density of three pollutants: nitrogen dioxide (NO2), carbon monoxide 
(CO), and sulfur dioxide (SO2). The selected pollutants are enough for 
describing the features of air quality in Ukraine, because all main emission 
sources contain at least one of these chemical species. A large amount of data 
needed to be processed, because the main task is dedicated to air quality analysis 
in Ukraine, and total period covers more than one year. In this case, one of the 
most suitable instruments for analysis is the Google Earth Engine. It allows 
quickly processed data over Ukraine for relatively long period. The first full 
month in the Google Earth Engine available for all selected pollutants is 
November 2018, therefore the total research period covers 15 months: 
November 2018 – January 2020. The selected period gives the opportunity to 
look through the ongoing air pollution situation in Ukraine and to detect main 
features of seasonal changes. 

Data processing were implemented in Earth Engine Code Editor using 
JavaScript. The original data are represented as Level 2 products, whereas 
Google Earth Engine converts them to Level 3 products, where data is binned by 
latitude/longitude, not by time. Data were filtered with quality assurance index 
0.5 during the conversion; however, information might be used attentively to 
avoid false conclusions. Overall, temporal or spatial averaging usually offset 
unreliable data if any of them exist after filtering. 

For general air quality estimation averaging for the entire research period 
was used. Air pollution analysis during particular cases and seasons 
implemented with averaging for the periods from several days to several months 
depends on the research purpose and duration of impact from emission source. 
In case of shipping pollution, average NO2 data significantly smooth the main 
patterns, therefore, maximal values better represent spatial distribution of NO2 
pollution from shipping. 

Total column derived from Sentinel-5P cannot be accurately recalculated to 
near-ground values, which are crucial for estimation of negative air pollution 
influence on human health and ecosystems. Approximate near-ground values 
could be calculated using some assumptions about the vertical distribution of 
pollutants and knowing its molar mass. The overwhelming majority of NO2, CO, 
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and SO2 molecules over industrial regions and big cities gathered in the 
troposphere. Let us suppose, that the pollutant distributes in the lower 10 km 
layer ( ), and its concentrations ( ) are equal on each altitude for more simple 
calculations. [mol/m2] must be converted to [mg/m3] for comparison with 
national threshold standards. Therefore, the near-ground value in [mg/m3] is: 

 = , 
 
where  is the pollutant column content [mol/m2],  is the molar mass 
[g/mol],  is a constant, equals to 1000, for conversion from [g/m3] to [mg/m3]. 

 is expressed in [m]. 
It has to be clarified that the recalculated near-ground concentrations were 

comparable to the usual in-situ values, however, with lower-than-expected 
values. It happens because of assumption about pollutants’ equal vertical 
distribution. However, during the analysis of heating season, even recalculated 
values exceed national threshold standards; therefore, the author deems it 
necessary to describe the formulae in favor of heating season case analysis. 

3. Results and discussions 

3.1.  General features of air pollution in Ukraine 

Ukraine had been developed as the mix of an industrial and agricultural country 
for more than the 50 years. Such development significantly affects the current 
air pollution levels and features of pollutants’ spatial distribution. After the 
Soviet Union had collapsed, the industry in Ukraine rapidly decreased due to the 
huge economic crisis, and many factories were closed. Nevertheless, there are 
five big industrial zones in Ukraine, which are located close to mines or cities 
with working industrial units. 

The most well-known region is Donbass situated on the east part of 
Ukraine. Donetsk and Luhansk administrative regions comprise most factories 
and mines, however, Ukrainian – Russian conflict interrupted the production on 
the most uncontrolled territories. Another big industrial zone located near the 
Dnipro River in the central part of Ukraine. There are also a powerful set of 
factories near Kyiv city, on the northeast near Kharkiv city, and close to the 
Carpathians. 

In the last decade the traffic continuously increased, which caused rather 
serious trouble in big cities like Kyiv, Kharkiv, Odesa, Dnipro, Lviv, etc. Some 
drivers use cars, which do not filter the exhaust properly. Roads in the city 
centers, bypass routes within suburbs, and roads for commuting going out from 
cities are the busiest with traffic during day hours. Elevated pollution levels due 
to traffic emissions appear in case of favorable weather conditions with slow 
wind speed and temperature inversions. 
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Despite a large number of stationary point and linear emission sources, the 
square under agriculture is also big. These territories are typically low-emission 
zones during the year. However, the practice of agricultural burning is popular 
in Ukraine, therefore, in early spring and autumn, short-term but huge amount of 
substances from biomass burning are emitted in the atmosphere. 

Talking about Ukrainian territories three regions must be mentioned: 
Polissia (the north part of Ukraine), the Carpathian Mountains, and the Crimean 
Mountains. These regions are the cleanest in Ukraine, where number of natural 
reserves and parks are situated. In 1986, after the Chernobyl Nuclear Power 
Plant explosion, the population from the closest territories had been resettled, 
making the Polissia region even less populated. 

NO2 column number density is the most appropriate parameter for 
estimation of atmospheric air quality in Ukraine, which allowed distinguishing 
polluted zones and typical background. The highest NO2 column number density 
was observed over Kyiv and number of industrial cities in the Donbass region: 
Sloviansk, Kramatorsk, Khartsyzk, Kostiantynivka, Kurakhove, Novyi Svit. 
Kyiv combines huge emissions from traffic and industry, whereas traffic is not 
the main problem of Donbass cities. As in European cities, traffic emissions 
become the greatest issue, while industrial emissions continue to prevail over the 
tabove mentioned regions with high NO2 content. Average NO2 column number 
density over mentioned cities exceed 1.2 10-4 mol/m2 (Fig. 1).  

 
 
 

 
Fig. 1. Spatial distribution of average NO2 column number density for November 2018 – 
January 2020. 
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Thermal power plants are the main pollution sources over the Donbass 
region. The challenge is to estimate air pollution on uncontrolled Ukrainian 
territories on the east, where monitoring sites stopped in-situ measurements, and 
industry do not provide any information about current emissions. In this 
situation, remote sensing became the key opportunity for air pollution 
monitoring over uncontrolled territories. Using Sentinel-5P data huge NO2 
emissions were detected over Novyi Svit, where Starobeshiv thermal power 
plant is located. It becomes clear, that power plant is operating at full capacity, 
and emissions might significantly exceed permissible levels.  

Except for the group of cities with the highest NO2 content, there are 
another two groups, where air pollution levels are high and the average NO2 
column number density reaches about 1.0–1.2 10-4 mol/m2. The first group of 
big cities, which are the centers of administrative regions, has high NO2 content 
due to traffic and industrial emissions: Kharkiv, Lviv, Odesa, Dnipro, 
Zaporizhzhia, Cherkassy, and others. The other group of relatively small towns, 
where thermal power plants emit NO2, contains, e.g., Burshtyn, Ladyzhyn, 
Zmiiv. 

The rest territory on the distance from industrial zones and big cities is 
rather clean with background NO2 column number density of about 4.0–7.0 10-5 
mol/m2. Minimal NO2 concentrations observed over Carpathians Mountains, 
Crimean Mountains, and Polissia on the north part of Ukraine, where average 
values usually do not exceed 4.0 10-5 mol/m2. 

The spatial distribution of average CO column number density over 
Ukraine is quite homogeneous. The reason of it is the longer lifetime in the 
atmosphere, therefore, CO can distribute on the longer distances. As a result, 
any significant differences in spatial distribution are smoothed. There are four 
cities with values exceeding 4.0 10-2 mol/m2: Mariupol (the highest CO content 
in Ukraine), Dnipro, Zaporizhzhia, and Kryvyi Rih. The main pollution sources 
in these cities are numerous factories and power plants. Average background CO 
column number density over Ukraine is about 3.0 10-2 mol/m2. The cleanest 
territories are the Carpathians and Crimean Mountains, where average CO 
column number density do not exceed 2.0 10-2 mol/m2. 

The spatial distribution of SO2 is highly heterogeneous in contract to that of 
CO. Therefore, analysis makes sense only for relatively large territories, not for 
particular point locations. Main SO2 emission sources in Ukraine are 
metallurgical industry and coal-running power plants. In general, the most 
polluted area is southeastern Ukraine, where the most industrial sources are 
located. The average SO2 column number density over these regions often 
exceed 3.0 10-4 mol/m2. There is only one point in Ukraine, where strong SO2 
emissions are observed during the year. This point is the previously mentioned 
Novyi Svit with Starobeshiv thermal power plant, situated on the uncontrolled 
Ukrainian territory, where the average SO2 column number density exceeds 
4.6 10-4 mol/m2. 
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3.2. Seasonal variability and meteorological impact 

Ukraine is one of the largest countries in Europe with a total area of 603 628 
km2 having both remote clean territories and polluted industrial regions with 
huge anthropogenic emissions. Analysis of NO2 column number density over 
Ukraine allows detecting two types of seasonal variations that significantly 
differ. Over clean remote regions, which are plains on the north and mountains 
on the west parts of the country, the summertime NO2 content is higher than the 
wintertime. Industrial regions and big cities do not have clear seasonality, 
however, frequent elevated pollution levels during December – February disrupt 
the distribution, and winter average values are always higher than in other 
months.  

NO2 intra-annual variations in remote regions have seasonal maxima from 
late May to June, when column number density reach 0.7–0.8 10-4 mol/m2 

(Fig. 2). From March to November, NO2 values are characterized by small 
variance, and concentrations form under local conditions with rarely visible 
impact from cities and polluted areas. In winter, the NO2 content decreases to 
about 0.4–0.6 10-4 mol/m2. Nevertheless, the highest NO2 values ever observed 
in clean regions appeared in winter on the background of low values. It 
happened due to cases with polluted air advection from cities and industrial 
zones. These cases usually are short-term and lasts only few days, however, they 
disrupt the typical NO2 seasonality. This is the reason why we could observe 
maximal NO2 concentrations in the cold season, whereas, usual NO2 content due 
to natural processes is the lowest. The highest NO2 column number density 
exceeds 2.0 10-4 mol/m2, which is typical for large, highly polluted cities. 
 

 
 
 
 

 
Fig. 2. NO2 column number density over the Carpathian Mountains for November 2018 – 
January 2020. 
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NO2 in cities and industrial regions has opposite variations with maximal 
content from December to February, because the weather conditions are favorable 
for pollutants’ accumulation, car engines are running cold, and additional emissions 
appear from heating. NO2 column number density in winter often exceed 3.0 10-

4 mol/m2, the variance of data is high, and the polluted atmospheric air sometimes 
moved on long distances reaching clean regions. The most stable conditions are 
observed from June to August and slightly vary within 0.9–1.1 10-4 mol/m2 (Fig. 3).  

 

 
Fig. 3. NO2 column number density over Kyiv for November 2018 – January 2020.  

 
 

CO seasonal variations over Ukraine are similar for the clean and highly 
polluted regions. Unlike NO2, it happens due to its longer lifetime in the 
atmosphere, and CO is rather equally distributed over the territory. Usually there 
are higher CO column number density from December to April reaching of about 
3.0–4.0 10-2 mol/m2 in cities and polluted industrial zones (Fig. 4). Concentrations 
are lower over clean regions reaching about 2.7–3.5 10-2 mol/m2 (Fig. 5). 
 

 

 
Fig. 4. CO column number density over Kyiv for November 2018 – January 2020. 
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Fig. 5. CO column number density over the Carpathian Mountains for November 2018 – 
January 2020.  

 
 
 
 

CO intra-annual changes are well explained by the intensity of 
anthropogenic sources. Concentrations are gradually increasing in the start of 
heating season, from November to March, when the CO column number density 
is 1.0–1.5 10-2 mol/m2 higher than during the warm period. However, maximal 
values very often appear in April, which is completely out of the ordinary 
distribution, because heating season usually ends by this time, and the 
anthropogenic load decreases from February to March due to higher air 
temperatures. The answer about CO maximum in April is connected to the 
features of agricultural land usage in Ukraine. At the end of March – beginning 
of April, the weather conditions become stable with constant temperature 
increase and absence of raining. The snow usually disappears and the land under 
the sunny weather gets dry enough. Open burning still is very popular among 
Ukrainian farmers and on the private vegetable gardens. As the result of 
favorable weather conditions, most fields in Ukraine are being burnt at the end 
of March and in April, and huge amount of combustion products including CO 
are emitted in the air. This is the main reason, why we observed April CO 
maximum instead of gradually decreasing values.  

As it can be seen in Figs. 4 and 5, the CO maxima in April is detected over 
clean and polluted regions. Moreover, the difference between spring months and 
winter months is higher in clean regions, because industrial zones have more CO 
emission sources that smooth the temporal distribution. 

The CO content accumulated in the atmosphere during February – April 
decreases in May and usually minimal values are observed in July – the warmest 
month in Ukraine. From August to November, the CO column number density 
varies within 2.9 – 3.5 10-2 mol/m2 over the most polluted regions; in the 
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Carpathian Mountains – the cleanest region in Ukraine –it varies from 2.5 10-2 
mol/m2 to 2.7 10-2 mol/m2. 

Through the air pollution in Ukraine mostly depends on the anthropogenic 
emission sources meteorological conditions also have rather big influence on 
pollutants’ seasonality. Air mass advection with elevated pollution levels 
originated from the cities and industrial zones very often change the background 
concentrations and its spatial distribution. One of the examples is represented in 
Fig. 6, when huge amount of NO2 was distributed from large cities to Carpathian 
Mountains on December 12–13, 2018. This is exactly the case, when extremely 
high values disrupt typical NO2 seasonality over clean regions. 

 
 
 
 

 
Fig. 6. NO2 column number density over western Ukraine and the Carpathians before 
December1-2, 2018 and during December12-13, 2018 a period of polluted air advection. 

 

 

 

 
Meteorological conditions significantly influence air pollution levels 

through the possibility for pollutants’ accumulation and removal. Moreover, 
the intensity of emissions often depends on temperature and wind regimes 
because of changes in industrial exploitation. Favorable synoptic situation 
may decrease concentrations to background levels even over large and 
industrial cities. The excellent example of positive weather influence on air 
pollution is the difference between NO2 column number density in January 
2019 and January 2020 (Fig. 7).  
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Fig. 7. Spatial distribution of average NO2 column number density in January 2019 and 
January 2020.  

 
 
 
 
Temperature regime is the crucial difference between the winter months of 2019 
and 2020. According to the Central Geophysical Observatory named after Boris 
Sreznevskiy (CGO), January 2019 was a typical winter month for the Ukrainian 
territory (the coldest month in the year) with the average temperature of about  
-4–-5 °C, which was 1 °C higher than the climate normal. In contrast, January 
2020 was extremely hot with abnormal average temperature over 0.5 °C, more 
than 6 °C higher than the climate normal. As a result, weather affected both the 
decreasing of emissions and the increasing of air pollutants’ removal. In January 
2019, the power plants burned more fuel than in January 2020. The average NO2 
column number density in January 2019 exceeded 1.0 10-4 mol/m2 over cities 
and adjacent territories, while in January 2020, it was lower than 8.0 10-5 
mol/m2. Moreover, higher temperatures and frequent cloudless conditions have 
contributed to an increase of NOx chemical loss. Therefore, during the 2019–
2020 winter, air pollution levels were low and NO2 concentrations were close to 
background values over the overwhelming majority of the territory. 

3.3. Tracking emissions from industrial point sources and wildfires 

There are a number of towns in Ukraine with relatively small area, rather low 
population, absence of busy traffic, but huge pollutants’ emissions from 
industrial point sources. These features and the well-known origin of pollutants 
make them excellent objects for different kind of research dedicated to air 
pollution analysis, to study the dependence of plume distribution on different 
weather conditions, and to the comparison of satellite data with modeling 
results. However, most of the cities do not have any in-situ measurements, 
therefore, Sentinel-5P data might play crucial role for air quality monitoring and 
emissions tracking. The best examples of such type cities in Ukraine are 
Ladyzhyn, Burshtyn, Kurakhove, Novyi Svit, Chuhuiv, and Slobozhanske. 
Except Chuhuiv, all mentioned cities has powerful thermal power plants. 
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Chuhuiv has several industrial emission sources close to each other. Novyi Svit 
is situated on the uncontrolled Ukrainian territory, therefore no information 
about real industrial capacities and emission inventories are available. 

During favorable weather conditions, the plumes of elevated NO2 content 
were distributed from industrial sources affecting air quality in the relatively 
clean rural areas. Fig. 8 represents one of the cases with cloudless anticyclonic 
weather conditions and southwestern wind blowing for 4 days in one direction.  

 
 

 
Fig. 8. NO2 column number density and the area affected by elevated pollution levels 
from industrial sources (August 8, 2019). 

 
 

During August 4–9, 2019, an episode of stable anticyclonic weather 
condition was analysed which allowed to estimate the area affected by elevated 
NO2 content from thermal power plants. Total affected areas, where NO2 
column number density could be recognized as plume, cover 200 km out from 
cities. On large distances, other sources smooth the clarity of NO2 plume, and it 
became impossible to detect the origin of the emissions.  

Under the anticyclonic weather conditions with unidirectional 3–4 days 
wind, the affected area can be divided into 3 zones. At the distances up to 30 
km, NO2 column number density exceeds 5.0 10-5 mol/m2. Next zone usually 
covers the territory from of about 30 to 100 km out of the city, where NO2 
column number density reaches 3.7–5.0 10-5 mol/m2 and the plume extends like 
a rather narrow strip. On the distances more than 100 km, the plume is 
spreading, the NO2 content decreases to 2.0–4.0 10-5 mol/m2, however it is still 
well detected. Gradually, it becomes difficult to define whether the NO2 
concentration is originated from an industrial point emission source or comes 
from other cities. 
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The heating season is one of the most remarkable periods for air pollution 
increase in Ukraine. Usually it starts in November and lasts to March, however 
some deviations of its length are possible because of its relation to the transition 
of daily average air temperature through 8 °C (Krakovska et al., 2019). 
Domestic heating has some differences in comparison with thermal power 
supply by power plants and heating stations. The usual period of domestic 
heating is longer; nevertheless, there might be weaker heating intensities during 
the cases of warmer weather conditions in winter. 

Natural gas and coal are the mostly used fuels in Ukraine during the 
heating season. CO and NO2 emissions, which influence pollutants’ 
concentrations often, cannot be tracked for this purpose by using Sentinel-5P 
data. CO lifetime is relatively big in comparison to the length of the heating 
season, therefore, it is equally distributed in different directions and no 
maximum appears on the average map for the winter season. NO2 has a large 
number of sources, which make possible to detect emissions during the heating 
season only in cities with huge power plants and rather small traffic intensity. In 
opposite to CO and NO2 concentrations, SO2 column number density gives great 
opportunity for monitoring air pollution in Ukraine from coal-fired power 
plants. 

There are two big regions, where SO2 content significantly increase during 
the heating season due to usage of coal fuel in power plants. The first region is 
situated on the east part of Ukraine, where the majority of Ukrainian coal mines 
are located. The second region elongates from the northeast to the central 
regions of Ukraine. The maximum value of the SO2 content appears in the 
second region only during the heating season, which indicates prevailing of 
coal-fired heating plants, whereas the rest of the territory mainly uses natural gas 
for heating purpose. The average values of total SO2 column number density for 
heating season in cities with prevailing coal-burned power plants reach a level of 
about 2.2–4.0 10-3 mol/m2. If we suppose that the SO2 content gathered in the 
lower 10 km atmospheric layer, and for more easy calculations it is equally 
distributed within the mentioned layer, the near-ground average SO2 
concentrations for three months are comparative to the daily SO2 threshold 
levels of 0.05 mg/m3 (threshold level according to the national standard (CGO)). 
Analysis showed that the mentioned two regions are highly affected by elevated 
SO2 levels due to coal burning during the heating season. Moreover, the region 
with elevated values on the east mostly is situated on the uncontrolled Ukrainian 
territory, which means problems during the implementation of European 
standards and air quality management. The rest territory of Ukraine does not 
have significant elevations of SO2 column number density with average values 
lower than 2.0 10-4 mol/m2. 

The CO datasets from Sentinel-5P allow to detect elevated pollution levels 
caused by wildfires, moreover, averaging for several days makes visible the 
plume distribution from burned areas. Forests cover more than 15% of the 
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Ukrainian territory, and the State Emergency Service of Ukraine (SESU) 
recorded about 96 000 wildfires in 2019. With Sentinel-5P data it is possible to 
detect elevated pollution levels with CO from only the minority of forest fires, 
nevertheless, the largest reaches were always visible. During the large forest 
fires in Ukraine, CO average values for the period of active fire usually reach 
4.5–5.0 10-2 mol/m2, whereas maximal column number density of about 
0.15 mol/m2. CO plumes from most fires usually extended to 100 – 150 km out 
from the source. 

The analysis of elevated CO concentrations during wildfires showed an 
optimal period for appropriate disaster tracking using Sentinel-5P. Near real-time 
data and single data file might be good for indicating the position of maximal 
pollutants’ concentration. However, very often it shows the plume which was 
transported at some distance, not the location of the exact emission source. Usage 
of single files, even with high quality assurance values, might cause false 
conclusions about the burned area. Averaging gives the opportunity to combine 
the plume distribution with the exact emission point using a series of the day-to-
day files and to obtain a more complete picture. After averaging for different 
periods, it was found that 4–7 days are the optimal length for air pollution 
tracking. Periods of more than one week smooth the spatial values, thus plumes 
distribution and emission sources become less visible. Moreover, 4–7 days is the 
best period for staying within a single synoptic process in midlatitudes before 
another one appears significantly changing the direction of air advection and, 
consequently, the plume distribution. 

3.4. Shipping pollution 

Ukraine has access to the Black and Azov Seas with international seaports, 
active coastal shipping, numerous fishing boats and local cruise ships during the 
tourist season from June to September. It is worth to be noted, that the chaotic 
movement of fishing and tourist boats make impossible to estimate its exact 
amount. Big changes in Ukrainian shipping started in 2015, when the country 
lost control of Crimea during the Ukrainian – Russian conflict. Soon thereafter, 
shipping in Mariupol, Kherson, Mykolaiv, Odesa, and Chornomorsk has 
beenincreasingly congested. Tourists changed destinations, and the whole 
coastline of the Ukrainian mainland became a popular region for spending 
vacation. 

All mentioned changes possibly caused the increasing of air pollution 
levels within the last 5 years; however, it is impossible to find any tendency due 
to the absence of in-situ measurements and coarse resolution of previous 
satellite missions. Currently, shipping pollution over sea and shoreline could be 
detected with Sentinel-5P data by using CO and NO2 datasets. Air quality is 
affected by the different ratios of chemical compounds depending on the petrol. 
There are some visible elevations of background SO2 levels over the sea; 
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nevertheless, observed differences are not enough large to be considered as 
robust. The CO content is high along the shoreline of the Azov Sea, whereas it is 
not clearly visible over the Black Sea. 

The analysis finds three main polluted areas because of intense shipping: 
the main trade routes the shorelines during the tourist season, and the river 
mouth of Pivdennyi Buh and Dnipro rivers. Over the mentioned areas, maximal 
values of NO2 column number density reach about 5.0–8.0 10-4 mol/m2 (Fig. 9). 

 
 
 

 
Fig. 9. Spatial distribution of maximal NO2 column number density values over the 
northwestern part of the Black Sea. 

 
 
 

NO2 emissions is tracked by the main trade routes coming out of Odesa and 
Chornomorsk. Elevated NO2 total column values can be observed during the 
warm season and consist of several routes. Better-detected route connects to the 
opposite sides of the Ukrainian mainland, whereas the less visible routes are 
international routes to Bulgaria, Georgia, and Turkey. 

The current study finds higher NO2 concentrations at the river mouth of 
Pivdennyi Buh and Dnipro, where local trade shipping prevails. The closer the 
sea is the higher NO2 content can be observed, which increases also by adding 
emissions from tourist boats near the popular beachside resorts on the way from 
Kherson and Mykolaiv river ports to the sea. Maximal values in the 
northwestern part of the Black Sea, where number of resorts are situated, exceed 
the NO2 background values: they are of about three times higher than over the 
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sea at some distance from the coastline and twice higher than the inland NO2 
content in that area. 

The most unexpected results are obtained for the Dzharylhach National 
Nature Park, which is situated on the island Dzharylhach. The Park is popular 
among tourists, especially in its western part with two lighthouses and 
picturesque landscapes. During the active tourist season from June to August, 
NO2 concentrations significantly increase due to the numerous boats with 
hundreds of tourists arrive every day (Fig. 10). 

 
 

 
Fig. 10. Spatial distribution of maximal NO2 column number density values over the 
Dzharylhach National Nature Park (June 2019). 

 
 
 

The problem of air pollution in the Park seems to be serious, as every day 
the NO2 column number density increases to 3.5–5.0 10-4 mol/m2 and spreads 
out from the island at an average distance of about 12–15 km. The NO2 column 
number density over Dzharylhach during June–August is 5 times higher than 
concentrations over the surrounded mainland. However, control measures to the 
number of boats still have not been made.  

3.5.  Discussions 

The absence of ground-based measurements in the highly polluted industrial 
cities caused lack of mention in previous research papers (Bashtannik et al., 
2014; Savenets et al., 2018; Shevchenko et al., 2016; Yatsenko et al, 2018). 
These cities are Burshtyn, Khartsyzk, Kurakhove, Ladyzhyn, Novyi Svit, with 
an average NO2 column number density exceedeing 1.2 10-4 mol/m2, whigh is 
among the highest values in Ukraine. The mentioned cities need at least a 
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development of a network with indicative measurements in the future. The 
current study showed that the affected area around these industrial cities could 
cover 200 km during the favorable weather conditions with unidirectional wind. 
All results in this study connected with industrial sources point the need to 
include the mentioned cities in each plan regarding air quality management in 
Ukraine. 

Industrial zones on uncontrolled territories on the east part of Ukraine 
continue to contribute negative impact on atmospheric air. Several big power 
plants emit huge amount of SO2 and NO2. The current study confirms the 
findings from a previous one (Savenets et al., 2020), that emphasized on the 
mismatch between different sources of official and unofficial information and 
news. Sentinel-5P tracked highly polluted plumes from power plants on 
uncontrolled territories, which are the great evidence of its work at full or close 
to full capacities. 

The great concern is the air quality along the coastline. Very often tourists 
visit resorts for recreation thinking about the benefits of marine air. Actually, the 
whole coastline during the tourist season is highly polluted due to the numerous 
boats. In fact, there are no regulations of small boats’ movement, moreover 
information about atmospheric air pollution over the sea rarely appear among 
scientists and ecologists in Ukraine. Chaotic tourists’ activity in the Dzharylhach 
National Nature Park over the last few years might became a real catastrophe for 
local ecosystems, which need more strict protection. 

The study finds that anthropogenic emissions and features of agricultural 
land use significantly influence the CO seasonality over Ukraine. The well-
known fact is the role of CO loss due to OH concentrations decreasing in winter 
(Koike et al., 2006; Rinsland et al., 2000; Zhao et al., 2002). As a result, 
maximum values in the Northern Hemisphere can be observed in late winter/ 
early spring. The open burning activities during March – April in Ukraine result 
in a shift of the CO maxima to April, which means that CO temporal changes 
could not be explained only by anthropogenic emissions in winter and CO loss 
because of OH. CO emissions during open burning is the main reason of that 
CO maximal values appear in April. 

SO2 and NO2 seasonalities over cities depends on the location and emission 
sources, thus, they cannot be analyzed everywhere using similar methodology. 
In Ukraine, the highest SO2 concentrations are observed during the heating 
season because of fossil fuels usage for heating purpose. In comparison, SO2 
seasonal changes might differ even taking into consideration European cities 
(Bralic et al., 2012). 

4. Conclusions 

Air pollution in Ukraine forms under the influence of traffic emissions and 
activity of the five biggest industrial zones. In most polluted cities, the average 
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NO2 column number density exceeds 1.2 10-4 mol/m2, whereas background 
values are of about 4.0–7.0 10-5 mol/m2. There are three remote clean regions in 
Ukraine: the Carpathian Mountains, the Crimea Mountains, and Polissia with 
average NO2 column number density lower than 4.0 10-5 mol/m2. CO and SO2 

contents are the highest over cities with numerous factories and coal-fired 
thermal power plants. Some of the most powerful emission sources are located 
on the uncontrolled Ukrainian territories, which are the evidence of its active 
work. Affected area with elevated pollution levels during the favorable weather 
conditions exceed 200 km out from industrial emission sources and 100 –150 km 
during the wildfire events. 

NO2 seasonal variations differ over clean remote regions and over 
industrial zones and cities. NO2 seasonal maxima can be observed in May – June 
over remote territories, whereas the highest values over cities occur during 
December – February. CO is the highest during December – March, which is the 
typical temporal distribution due to emissions increase and loss because of OH 
decreasing. However, in Ukraine the practice of open burning in late March – 
April makes the maximum CO concentration to shift to April. SO2 seasonal 
variations depend on anthropogenic emission sources. In regions with coal-fired 
power plants, maximal values appear during the heating season. 

During the tourist season, the coastline of Black and Azov Seas is five 
times more polluted than the nearest inland territories because of the 
uncontrolled chaotic movement of tourist and fishing boats. Maximal NO2 
column number density reaches 5–8 10-4 mol/m2, even over the territory of the 
Dzharylhach National Nature Park that has become a popular visit point over the 
last few years. 
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Abstract⎯ Water scarcity and the climate change impacts on water components will 
drastically alter everybody's life. The Soil and Water Assessment Tool (SWAT) has been 
utilized in this study in combination with Sequential Uncertainty Fitting Program (SUFI-2) 
to simulate precipitation (P), temperature (T), blue water (BW), green water flow (GWF), 
and green water storage (GWS) in Kashafrood River Basin, Iran. The outputs of two 
Coupled Model Intercomparison Project Phase 5 (CMIP5) models (MIROC-ESM and 
GFDL-ESM2G) are selected for hydrological modeling under Representative 
Concentration Pathways (RCPs) of 4.5 and 8.5 and for the near future (2014-2042) and far 
future (2043-2100) periods compared to historical period (1995-2011). The results of 
RCPs, in comparison with the historical period, show that P and BW are increased and in 
GFDL-ESM2G are better than MIROC-ESM, while T tends to increase, and MIROC-ESM 
is better than GFDL-ESM2G. GWF, in all future periods (except in MIROC-ESM in near 
future and under RCP4.5 and 8.5) and in all RCPs tend to decrease, and the results of 
MIROC-ESM are better than those of GFDL-ESM2G in near future and are vice versa in 
far future. It is anticipated that GWS continues its historical trend in the future. 
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1. Introduction 

Climate change largely affects the hydrological cycle and availability of water 
resources (Pachauri et al., 2014). Its impact is more drastic in arid and semi-arid 
areas, and its effect on the accessibility of water resources to human has been focused 
in many studies. Studies show that climate change has an adverse impact on 
ecosystems and causes water crisis, both in arid and semi-arid areas (Falkenmark 
and Rockström, 2006), and millions of people would be dealing with the lack of 
uncontaminated water all over the world (Pereira et al., 2009). A comprehensive 
review of climate change is a necessary path for understanding and managing the 
limited freshwater resources in long-term. There is a dire need for climate change 
impact assessment in the realm of water resources to identify the changes in water 
usage patterns, especially in arid and semi-arid areas. Climate change is one of the 
main factors effecting the quantity and quality of water resources in a river basin. 
Climate models are developed in recent decades by scientists in order to study these 
effects. General Circulation Models (GCMs) are widely being applied in predicting 
various scenarios for the climatic change. The Intergovernmental Panel on Climate 
Change (IPCC) is responsible for gathering and reviewing the world wide climate 
models in the framework of the international climate change assessment report for 
policymakers and public users (IPCC, 1990). So far, IPCC has presented five distinct 
versions of GCM models including: First Assessment Report (FAR), Second 
Assessment Report (SAR), Third Assessment Report (TAR), Fourth Assessment 
Report (AR4), and Fifth Assessment Report (AR5) models. The IPCC AR5 has 
provided a novel approach of developing scenarios. These scenarios extend in the 
scope of possible radiative forcing scenarios called Representative Concentration 
Pathways (RCPs), whereas AR4 uses scenarios from the IPCC Special Report on 
Emissions Scenarios (SRES). The RCPs cover a broader extent of possibilities than 
the SRES marker scenarios employed in the modeling for the IPCC AR3 and AR4. 
Some RCPs account for mitigation and adaptation policies in opposition to SRES 
(see Chapter 9, IPCC, 2013). 

The Fifth Assessment Report (AR5) emission scenarios are founded on the 
different specifications, including technology level, social and economic status, 
and future policies that can lead to greenhouse gas emission and climate change 
to four new different paths. Later models were developed due to the concentration 
of greenhouse gases by considering radiative forcing and higher model resolution 
(Taylor et al., 2012). The Fifth Phase of the Coupled Model Intercomparison 
Project (CMIP5) including sixty-one climate change models, relies on the bases 
of new greenhouse gas concentration emission of RCP (Moss et al., 2010) and has 
started a few years ago under the international climate change agreement for AR5. 
CMIP5 has supplied a necessary basis from the compilation of AR5 and 
coordinated to be used in AR5, and allows for simulating, comparing, and 
synthesizing widespread hydro-climatic outputs from various GCMs (IPCC, 
2013; Taylor et al., 2012). 
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Freshwater cycle is classified into two different categories by involving the 
hydrological process and the storage type: green water (GW) and blue water 
(BW). The concepts of GW and BW were initially proposed by Falkenmark in 
1995 and then expanded by other researchers (Badou et al., 2018; Hoekstra, 2017; 
Veettil and Mishra, 2016; Zang et al., 2012; Faramarzi et al., 2009; Falkenmark 
and Rockström, 2006). Basically, human beings use BW as an important source 
of water availability in daily life. BW is a summation of surface runoff (originated 
from rivers, lakes, etc.) and groundwater aquifer recharge and used for irrigation 
purposes. Globally, irrigation water includes almost 70% of total human BW 
consumption (about 2500 km3/year). On the other hand, 90 percent of BW 
consumption (about 1200 to 1800 km3/year) belongs to agricultural BW 
consumption that transpires via the crops or evaporates from soils, vegetation, 
leaves, trees, or from water bodies. It is a misconception that agricultural water 
consumption is largely dependent on BW withdrawals, because about 80% of 
global croplands are rainfed, which consume the required water from precipitation 
that infiltrated into the unsaturated soil or stored in the soil texture (so-called green 
water, GW) (Mekonnen and Hoekstra, 2016). Food production and global 
ecosystems mainly depend on GW (a significant water source for terrestrial 
ecosystems), and an amount of about 5000 km3/year uses these water components 
as the only resource that supports rainfed agriculture on a global scale 
(Lathuillière et al., 2016; Zang et al., 2012; Falkenmark and Rockström, 2006). 
GW includes green water flow (GWF), which is the actual evapotranspiration of 
soil, water, and plants released into the atmosphere; and green water storage 
(GWS), which is the water volume stored in different soil layers at the end of a 
time period (Cuceloglu et al., 2017; Rodrigues et al., 2014; Falkenmark and 
Rockström, 2006). Although, BW is essential in irrigation water, but GWF and 
GWS resources are more than three times as large as BW consumption, and they 
play an essential role in crop production as well as in the supply of ecosystem 
services (Falkenmark, 1995). Thus, paying attention to BW and GW is very 
important in the management of watershed basins. In the past few years, many 
studies in the world have concentrated on BW and GW in the field of hydrology 
and water resources under climate change (Pandey et al., 2019; Afshar et al., 
2018; Badou et al., 2018; Shrestha et al., 2017; Zang et al., 2012; Faramarzi et 
al., 2009) and on the importance of these components in different watershed 
basins for strategic decision-making (Schyns et al., 2019; Veettil and Mishra, 
2016; Zang et al., 2012). 

Various physically-based integrated distribution models have extended for 
analysis and management of catchment, including: Hydrologic Simulation 
Program-Fortran (HSPF), Agricultural Non-Productive Source (AGNPS) model, 
Erosion Productivity Impact Calculator (EPIC), Hydrology Laboratory-Research 
Distributed Hydrologic Model (HL-RDHM), Water Erosion Prediction Project 
(WEPP), Chemical Runoff Erosion from Agricultural Management System 
(CREAMS), and Soil and Water Assessment Tools (SWAT). SWAT was 
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developed and employed in most studies in order to determine the effects of 
climate change in the quantity and spatiotemporal distribution of BW and GW, 
and also the impacts of human activity on agricultural yield, chemical, and stream 
flow in a large scale basin (Pandey et al., 2019; Dadfar et al., 2019; Fazeli 
Farsani et al., 2019; Masud et al., 2018; Afshar and Hassanzadeh, 2017; Veettil 
and Mishra, 2016; Besharat et al., 2015; Faramarzi et al., 2009, 2013;). The 
Calibration and Uncertainty Procedures (SWAT-CUP) computer program, which 
connects to SWAT model, is applied in order to investigate the sensitivity 
analysis, the model parameters, and the calibration and validation processes 
(Hassanzadeh et al., 2019; Shivhare et al., 2018; Afshar et al., 2018; Uniyal et 
al., 2015; Abbaspour et al., 2007). SWAT-CUP program also contains four 
algorithms to perform these processes, including a Monte Carlo Markov Chain 
(MCMC) algorithm, Generalized Likelihood Uncertainty Estimation (GLUE), 
Parameter Solution (ParaSol), and Sequential Uncertainty Fitting program (SUFI-2). 
Among them, SUFI-2 has extensively been employed in many parts of the world 
to optimize the parameters of the SWAT model, and it is found to be quite efficient 
in large scale models in comparison with another algorithms of SWAT-CUP 
program (Hassanzadeh et al., 2019; Shivhare et al., 2018; Li et al., 2017; 
Abbaspour et al., 2007).  

Most countries in the Middle East such as Iran are located in arid or semi-arid 
regions with low precipitation and high temperature. The climate change in Iran, like 
in other similar climates, is recognized as a challenging subject, and its negative 
impacts on water resources can also affect the environmental and socio-economic 
issues, and mainly the agricultural sector. The Kashafrood River Basin (KRB), in the 
northeast part of Iran with a wide range of climate conditions, is expected to face 
changes in both water quantity and quality in future time periods. On the other hand, 
cultivation is carried out in irrigated agricultural (28.56%) and rainfed (15.55%) 
forms in the majority portion of KRB (about 44.11% of the total land use). Given the 
strategic importance of KRB as the only water supply of northeast Iran, not much 
work (except for the research done by Afshar et al. (2017, 2018)) has been done to 
study the spatial and temporal changes of BW, GWF, and GWS (and even rainfall 
and temperature) in the basin under future climate change scenarios.  

Beyond the abovementioned facts, the current study consists of the following 
main objectives that are considered as innovation of the article: (1) identification of 
sensitive parameters of the SWAT model via the Regional Sensitivity Analysis 
(RSA) method based on the Latin hypercube sampling (LHS) theory and the 
Kolmogorov-Smirnov (K-S) test, (2) survey, comparison, and discussion the spatial 
and temporal variations of water resources components (e.g., blue water, green 
water flow, and green water storage) in the KRB during a period of 106 years by 
using MIROC-ESM and GFDL-ESM2G models of CMIP5 under two RCPs (4.5 
and 8.5). In addition, we explain the way that the water resources components have 
changed in the basin levels over three time periods from 1995 to 2100 (historical: 
1995–2011, near future: 2014–2042, and far future: 2043–2100). The impact of 



295 

climate parameters, such as the influence of precipitation and temperature on the 
availability of water resources in the basin, has also been investigated, so the third 
main objective of this study is the investigation of hydro-climatic conditions in 
sub-basins that contain hydraulic structures such as dams’ reservoirs (Torogh and 
Kardeh dams) in them by MIROC-ESM and GFDL-ESM2G models and two 
RCPs (4.5 and 8.5). 

2. Materials and methods 

2.1. Study area 

The Kashafrood River Basin, KRB is located in the northeastern part of Iran with 
an area of 16870 square kilometers, which is the largest basin in the Khorasan 
Razavi Province and located between latitudes of 35° 35' to 37° 07' N and 
longitudes 58° 15' to 61° 13' E. The average altitude of the basin is 1846 m above 
the sea level, and the eastern part is geographically low, while the western part is 
high. The KRB has a cold and semi-arid climate with low annual rainfall and high 
evapotranspiration due to the topographic conditions (Afshar et al., 2017). The 
mean annual precipitation for this basin is about 340 mm, and the highest rainfall 
occurs between January and May according to the recorded climate data (Afshar 
et al., 2017). The mean annual minimum and maximum temperatures during 
1992–2005 were 7.1 °C and 20.6 °C, respectively (Afshar et al., 2017). Torogh 
and Kardeh dams lie in the south and north of Mashhad, respectively, as the most 
populated cities in this area, providing water for agricultural and drinking sectors 
(Fig. 1). The topography of KRB, and the location of gauging and meteorological 
stations are depicted in Fig. 1.  
 

 
Fig. 1. DEM (digital elevation model) and the location of gauging and meteorological 
stations in KRB. 
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2.2. SWAT model, required data, and model set up 

SWAT, as a continuous-term, semi-distributed, process-based model, is 
developed to assess alternative management strategies for short- and long-term 
decisions in large river basins (Arnold et al., 2012) by policymakers. SWAT 
model has been widely applied at regional (Rahimpour et al., 2020; Hassanzadeh 
et al., 2019; Samuels et al., 2018; Huang et al., 2017; Rodrigues et al., 2014), 
national (Liu et al., 2017; Zhu et al., 2015; Faramarzi et al., 2009) and continental 
scales (Giles et al., 2019; Faramarzi et al., 2013). The basin of this model is 
classified into multiple sub-basins, and then the soil and topographical features 
are classified into hydrological response units (HRUs) according to the 
combination of land uses (Afshar et al., 2018; Cuceloglu et al., 2017; Arnold et 
al., 2012).  
The digital elevation model (DEM) for this research is extracted from topographic 
maps of the National Geographic Center (NGC) of Iran. The land-use map is 
obtained from the Indian Remote Sensing (IRS-1C) satellite images of 2002 with 
a spatial resolution of 23.6 meters. According to the satellite images of KRB and 
IRS-1C, KRB was classified into seven land-use and land-cover classes (Fig. 2a). 
Pasture (50.91%), generic agricultural (28.56%), and winter wheat (15.55%) 
lands form the majority portion of KRB and play fundamental role in the residents' 
economy. The studied watershed also consists of forest-evergreen (3.03%), urban 
(1.42%), range-brush, and water (0.5%) areas. The soil map was constructed by 
the Range and Watershed Department (RWD) and Agriculture Jehad 
Organization (AJO) of Khorasan Razavi Province (KRP), which is prepared using 
Landsat TM satellite with a resolution of 30 meters and classified into 19 soil 
types (Fig. 2b). Soil data, including rock fragment, silty sand, and clay contents, 
soil electrical conductivity (ECe), organic carbon content, water content, bulk 
density, porosity, soil hydrologic groups, and saturated hydraulic conductivity 
(Ks) were obtained from the soil map (which was divided into nineteen classes).  
 
 
 

 
Fig. 2. Input maps to SWAT model (a. land-use and b. soil map) in KRB. 
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The Iran Meteorological Organization (IMO) developed the climate database 
of precipitation and temperature stations, located within the watershed (during 
1992–2013). Monthly river discharge data of 5 stations, needed for the 
calibration/validation process, were recieved from the Iran Water Resource 
Management Company (IWRCM). Although, there are more flow stations located 
in this area, only five stations (Table 1) were found to be suitable in this work. 
The five hydrometric and rain gauge stations were established by the IWRCM in 
1978, and they are already under the control of IWRCM. These stations are flood 
alarming stations, which are recently equipped with several instruments such as 
limnograph, data logger, teleferic bridge and real-time data transmitters. 

 
 
 
 

Table 1. Overview of hydrometric multi-site stations in KRB 

Stations Symbol Altitude Latitude Longitude Mean monthly 
flow (m3/s) 

Sar Asiab Shandiz SARASSHA 1249 m 36.40 59.34 0.51 
Zire Band Golestan ZIRBAGOL 1164 m 36.32 59.43 0.71 
Golestan Jaghargh GOLHAGHR 1213 m 36.31 59.40 0.19 
Hesar Dehbar HESDEHB 1249 m 36.31 59.04 0.29 
Kartian KARTIAN 1232 m 36.17 59.51 0.36 

 
 

 
 

The model setup in this study is carried out by the ArcSWAT 2012 interface, 
and the basin is divided into 217 sub-basins and subsequently divided into 635 
hydrologic response units (HRUs) to evaluate the condition of GW and BW in 
small scales. Generally, these HRUs were determined in the model with threshold 
values of 20, 20, and 10 percent for land-use, soil, and slope, respectively. We 
concluded that small polygons with an area of less than 25 hectares could be 
integrated into larger polygons in the vicinity by considering the overlapping 
maps, based on their scale, and defining these thresholds. 

2.3. Sensitivity, calibration, and uncertainty analysis 

Twenty parameters were considered in the sensitivity analysis to enhance the 
understanding of sensitive parameters' impacts on the stream flow (Table 2). 
Predefined or prior range of SWAT parameters were mostly adopted from 
literature (Zadeh et al., 2017; Nossent and Bauwens, 2012; Abbaspour et al., 
2007), which may be considered as constant ranges in the majority of cases.  
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Table 2. Parameters used for the sensitivity analysis 

Parameters Group process Explanations Prior 
ranges 

SFTMP 

Snow 

Snowfall temperature -5 to 5 

SMTMP Snow melt base temperature -5 to 5 

SMFMN Melt factor for snow on December 21 0 to 10 

SMFMX Melt factor for snow on June 21 0 to 10 

TIMP Snow pack temperature lag factor 0.01 to 1 

SOL_K 

Soil water 

Saturated hydraulic conductivity -0.8 to 0.8 

SOL_BD Moist bulk density -0.3 to 0.3 

SOL_AWC Available water capacity of the soil layer -0.3 to 0.3 

SOL_ALB Moist soil albedo -0.5 to 0.5 

GW_DELAY 

Groundwater 

Groundwater delay time 0 to 400 

GW_REVAP Groundwater “revap” coefficient 0.02 to 0.2 

GWQMN Threshold depth of water in shallow aquifer 
for return flow 0 to 500 

SHALLST Initial depth of water in the shallow aquifer 0 to 1000 

ALPHA_BF Base-flow alpha factor 0 to 1 

RCHRG_DP Deep aquifer percolation fraction 0 to 1 

REVAPMN Threshold depth of water in shallow aquifer 
for “revap” 0 to 100 

EPCO 

Evapotranspiration 

Plant uptake compensation factor 0.01 to 1 

ESCO Soil evaporation compensation factor 0.01 to 1 

OV_N Manning’s ‘n’ value for overland flow 0 to 0.08 

CH_K2 
Channel flow 

Effective hydraulic conductivity in the main 
channel 0 to 150 

CH_N2 Manning's “n” value for the main channel 0 to 0.3 

PCPMM 

Precipitation 

Average or mean total monthly precipitation -0.5 to 0.5 

PCPSKW Skew coefficient for daily precipitation in 
month -0.5 to 0.5 

PCPSTD Standard deviation for daily precipitation in 
month -0.5 to 0.5 

SURLAG 

Overland flow 

Surface runoff lag coefficient 1 to 24 

MSK_CO1 Calibration coefficient used to control impact 
of the storage time constant for normal flow 0 to 10 

MSK_CO2 Calibration coefficient used to control impact 
of the storage time constant for low flow 0 to 10 

CN2 Runoff generation Curve number -0.4 to 0.4 

SLSUBBSN Geomorphology Average slope length (m) 10 to 150 
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The aim of the research is to apply a comprehensive sensitivity analysis 
method based on the Latin hypercube sampling (LHS) theory and the 
Kolmogorov-Smirnov (K-S) test called generalized sensitivity analysis (GSA, 
also referred as regionalized sensitivity analysis, RSA) in sensitivity evaluation 
of SWAT model parameters. The main objective of sensitivity analysis is to 
understand how different components of a model (parameters) affect the outputs 
of the model, and its results are very effective for model calibration and model 
uncertainty analysis (Sobol, 2001). Additionally, sensitivity analysis also allows 
ranking the most important variables influencing the simulated process. One of 
the most widely used types of comprehensive sensitivity analysis methods is the 
regional sensitivity analysis (RSA) method (Freer et al., 1996). The RSA method 
is sampled from the parametric space of model via the Latin hypercube (LH) 
random sampling method. Therefore, the set of different parameters is randomly 
generated and then the corresponding model outputs are evaluated after the 
execution of the model. The Latin hypercube method is in fact the same as the 
Monte Carlo (MC) sampling method with the difference of that sampling is done 
at equal distances from the logical range of each variable, which increases the 
accuracy of MC simulation (Mckay et al., 1979). MC methods are numerical for 
generating random variables in such a way to maintain the properties of 
distribution function governing them. The set of parameters produced based on 
the values of their corresponding objective function (a criterion of the difference 
between the model output and the measured values) are arranged and divided in 
to two categories of good (X1) and bad (X2) parameters after being sampled from 
the parameter space. The cumulative distribution functions (CDFs) of the model 
parameters are then compared with each other via the Kolmogorov-Smirnov test: 

 
 KS = max(| 1( 2( )|), (1) 

 
where, F1 and F2 are generalized distribution functions of the first and second 
parameter sets, respectively. Besides, the higher the KS in this test, the greater the 
probability of two distributions being different that indicates, that the 
corresponding parameter is more sensitive. The Nash-Sutcliffe (NS) criterion is 
also used as the objective function. 

The SWAT model, based on monthly observed runoff at the mentioned 
stations, was calibrated and validated using the SUFI-2 algorithm. However, some 
vital details are provided below. 

The SUFI-2 algorithm, as a one-at-a-time method for calibration and validation 
analysis in the SWAT-CUP program, provides a narrow range of measured data 
within 95% prediction uncertainty (95PPU) by recognizing those parameters 
contributing to the reduction of total uncertainty in the output data (Van Griensven 
et al., 2006). Four indices, applied for quantifying the reliability of calibration and 
validation performance, are the Nash and Sutcliffe (NS) efficiency, coefficient of 
determination (R2), P, and R-factor (Abbaspour et al., 2007): 
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• The NS efficiency criterion, as a performance metric, demonstrates the 
goodness-of-fit between the simulated and observed data (Nash and Sutcliffe, 
1970). The formula is given as follows: 

 

 = 1 ( )( )  , (2) 

 
where N is the number of observed data, Oi and Si are the observed and 
simulated sunoff data in step i. 

• The P-factor, indicating the observed data proportion identified by the 
prediction uncertainty of 95%, is frequently stated as 95PPU (Abbaspour, 
2007). The R-factor correspounds to the average thickness of the 95PPU 
band (within the upper and lower boundaries) divided by the standard 
deviation of the associated measured variable (Abbaspour, 2007):  

 

 =  , (3) 

 
where  and  are the upper and lower limits of the 95PPU,  
is the standard deviation of the observed data, and N is the number of the 
observed data. 

• The coefficient of determination (R2) represents the proportion of total 
variance in the observed data that can be explained by the model: 

 

 = ( ) ( )( ) . ( ) . ,  (4) 

 
where N, YLower, YUpper, and x are the total number of observed data, the lower 
and upper limits of the 95PPU, and the standard deviation of observed data, 
respectively. Oi and Si are the observed and simulated runoff data in step i, 
and  and  are the mean observed and simulated runoff data. P-factor and 
R2 range from 0 to 100, and R-factor and NS coefficient range from 0 to  
and -  to 1, respectively. When the P-factor and R2 are close to 100 percent, 
R-factor is close to 0, and the NS coefficient is between 0.75 to 1. The best 
fit among simulated and observed data is obtained during calibration and 
uncertainty analysis.  
The goodness-of-fit is calculated between the measured and simulated runoff 

with NS, R2, P, and R criteria in the calibration process, after each iteration  
(500 runs) with twenty parameters and NS as a likelihood function for each of the 
5 runoff stations, to conduct calibration until the performance criteria were 
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satisfied. If these criteria are satisfied in all stations, the calibration process would 
be finished and parameter ranges would be applied to investigation in the 
validation process and to extract BW, GWF, and GWS components. Otherwise, 
new parameter ranges are proposed for the next iteration. The final upper and 
lower bounds of the parameters as well as the fitted values of parameters were 
obtained after one or more iterations. Time periods from 1992 to 2011 were used 
for calibration (2001–2011) and validation (1995–2000) processes. Also, the first 
three years (1992–1995) were applied to warm-up the model. The calibrated 
parameter ranges were used without any change with the same number of 
simulations as utilized for calibration in the validation process. The efficiency 
measures were computed during the calibration process, as well. Details of the 
procedures for validation, calibration, sensitivity and uncertainty analysis can be 
found in the study conducted by Afshar et al. (2018). 

2.4. Climate change models and scenarios 

Fourteen climate change models, among the sixty one models of CMIP5, are used 
frequently to simulate future climate conditions in Asia (Afshar et al., 2017; 
Woldemeskel et al., 2016; Salzmann et al., 2014; Jiang and Tian, 2013; 
Chaturvedi et al., 2012). Their outputs of GCMs are appropriate for simulation of 
climatic data at a meteorological station in a regional location using high-
resolution GCMs due to the downscaling process (Duan and Mei, 2014). In this 
research, the monthly climate data (precipitation and temperature) of CMIP5 
models for different time periods were extracted from the CMIP3 and CMIP5 
Climate and Hydrology Projections website (https://gdo-dcp.ucllnl.org/). These 
data are downscaled using the bias-correction spatial disaggregation (BCSD) 
method (for more details, refer to Afshar et al. (2017)). 

The earth system models (ESMs) are frequently applied as coupled climate 
models to simulate biogeochemical components. The leading institutions in the 
climate field also establish them. The MIROC-ESM was developed by the Japan 
Agency for Marine-Earth Science and Technology (JAMSTEC) in cooperation 
with the University of Tokyo and the National Institute for Environmental Studies 
(NIES) (Nozawa et al., 2007). The latest version of the mentioned model has some 
limited functions due to the uncertainty in coupling processes, and only includes 
the impact of vegetation changes on dust emission and impact of deposition of dust 
and black carbon on snow albedo (Watanabe et al., 2011). On the other hand, the 
Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and 
Atmospheric Administration (NOAA) released their new ocean climate model in 
2012, which is based on density layers to understand the impact of the earth’s 
biogeochemical cycles including human activities in collaborating with the climate 
system (Dunne et al., 2013, 2012). The GFDL also developed the Geophysical 
Fluid Dynamics Laboratory Earth System Model with the Generalized Ocean Layer 
Dynamics component (GFDL-ESM2G) model (Dunne et al., 2013, 2012). The 
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GFDL-ESM2G model is a fully coupled Atmosphere Ocean General Circulation 
Model (AOGCM) with an interactive closed carbon cycle and does not exhibit a 
clear La Niña–like response. Recently, both models have been applied at different 
scales and locations (Samuels et al., 2018; Sylla et al., 2015). The longitude (and 
latitude) resolution of MIROC-ESM is about 2.8125° (and 2.796°) and in the 
GFDL-ESM2G model this resolution is about 2.5000° (and 2.0225°).  

According to Afshar et al. (2017), MIROC-ESM and GFDL-ESM2G models 
were selected in this study among 14 climate models based on the evaluation criteria, 
i.e., the Nash-Sutcliffe (NS) efficiency coefficient, the percent of bias (PBIAS), the 
coefficient of determination (R2), the ratio of the root mean square error to the 
standard deviation (RSR) (Table 3), and the performance rating of simulation model 
(Moriasi et al., 2007). Both models showed the highest agreement with observational 
data in KRB based on the evaluation criteria. (For more explanation about the 
methodology of selecting these two CMIP5 models refer to Afshar et al., 2017). 
 
 
 
 

Table 3. Reported performance rating of evaluation criteria for the  outputs of 14 CMIP5 
models (Afshar et al., 2017) 

Rating based on 
(Moriasi et al,. 

2007) 

Criteria Evaluation 

NS PBIAS (%) R2 RSR 

Very good (VG) 0.75 < NS  1.00     PBIAS  ±10.00 0.866  R2 < 1.00   0  RSR  0.5 

Good (G) 0.65 < NS  0.75 ±10  PBIAS < ±15 0.733  R2 < 0.866 0.5 < RSR  0.6 

Satisfactory (S) 0.50 < NS  0.65 ±15  PBIAS < ±25  0.60  R2 < 0.733 0.6 < RSR  0.7 

Unsatisfactory (US)          NS < 0.50           PBIAS  ±25         R2 < 0.6          RSR > 0.7 

Models Criteria values 

HadGEM2-ES 0.57 (S) -17.15 (S) 0.69 (S) 0.73 (US) 
IPSL-CM5A-LR 0.71 (G) -15.65 (S) 0.81 (G) 0.61 (S) 
NorESM1-M 0.88 (VG) -4.74 (VG) 0.92 (VG) 0.51 (G) 
BCC-CSM1.1 0.62 (S) -11.01 (G) 0.74 (G) 0.67 (S) 
CCSM4 0.43 (US) -28.15 (US) 0.52 (US) 0.79 (US) 
MIROC-ESM 0.95 (VG) -2.88 (VG) 0.97 (VG) 0.33 (VG) 
CSIRO-MK3.6.0 0.51 (S) -27.44 (US) 0.60 (S) 0.71 (US) 
GFDL-ESM2M 0.66 (G) -10.4 (G) 0.79 (G) 0.64 (S) 
GFDL-ESM2G 0.92 (VG) -2.93 (VG) 0.94 (VG) 0.37 (VG) 
CESM1(CAM5) 0.55 (S) -26.36 (US) 0.63 (S) 0.68 (S) 
GFDL-CM3 0.48 (US) -26.03 (US) 0.54 (US) 0.74 (US) 
MIROC-ESM-
CHEM 0.78 (VG) -5.25 (VG) 0.71 (S) 0.66 (S) 

IPSL-CM5A-MR 0.85 (VG) -4.96 (VG) 0.85 (G) 0.46 (VG) 
MIROC5 0.60 (S) -25.75 (US) 0.71 (S) 0.68 (S) 
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The CMIP5 model outputs include four representative concentration 
pathways (RCPs) of new emission scenarios (such as RCP2.6, 4.5, 6.0, and 8.5). 
RCPs are based on the emission forcing level until 2100 (see Chapter 11, Sections 
11.2 and 11.3, IPCC, 2013). The radiative forcing is the extra heat in the lower 
atmosphere that will be preserved by means of additional greenhouse gases.  

In this study, RCP8.5 is applied as a high baseline emission scenario and the 
highest amount of greenhouse gas concentration by the end of the 21st century 
(Van Vuuren et al., 2011a). The RCP8.5 radiative forcing pathway consistently 
rises (at a target of 8.5 W/m2 in 2100), while enhancing the residual circulation 
furthermore and increases the level of greenhouse gases significantly (Riahi et al., 
2011). Consumption of oil and coal, increasing the agricultural lands, and 
decreasing the forest area with current trends play an essential role in providing 
energy, and the population of earth will reach to 12 billion until the 22 century 
(Van Vuuren et al., 2011a). Therefore, the highest possible changes in climate will 
happen in this scenario.  

Besides, we applied RCP4.5 as an intermediate pathway with no exceedance 
from the projected level of long-term radiative forcing. The emission will reach 
to the highest level in this scenario in the middle of the century, then decline in 
30 years, then it stabilizes (Smith and Wigley, 2006). Renewable and nuclear 
powers play a greater role in this scenario, in comparison with RCP8.5 (Van 
Vuuren et al., 2011a). The RCP6.0 is similar to RCP4.5, but is not applied in this 
study due to a variety of technologies and strategies employed in the greenhouse 
gas emissions reduction (Hijioka et al., 2008).  

Considering the urge for developing  realistic climate change scenarios to 
make the planning of adaptation measures easier, we do not contribute RCP2.6 in 
the climate model group because it contains negative emissions of energy use in 
the second half of the 21st century, and one of its key assumptions is the full 
involvement of all countries worldwide in the short term (Van Vuuren et al., 
2011b). Therefore, the best selections in this research are RCP4.5 (the medium 
stabilization scenario) and RCP8.5 (the high emission scenario) that encompass 
the whole spectrum of radiative forcing arising from RCP4.5, RCP6.0, and 
RCP8.5. 

3. Results and discussion 

3.1. Sensitivity, calibration, and validation 

The most sensitive parameters with their assigned rank, based on the 
Kolmogorov-Smirnov (K-S) test values that are illustrated in Fig. 3, shows that 
20 parameters affect the results of runoff simulation and play an essential role in 
the calibration of SWAT model. Among these parameters, ESCO, GW_REVAP, 
SOL_AWC, and SFTMP were the most sensitive parameters for outflow. 
Although the RCHRG_DP, SOL_K, and SMTMP parameters seemed to be less 
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sensitive, as indicated by their K-S test (Fig. 3), these parameters have considerably 
contributed to increase the model calibration results for river discharges. The fitted 
values of parameters, as well as the final lower and upper bounds of parameters are 
shown after a total of 3000 runs (six iterations) in Table 4. Results of calibration 
and validation from R2, NS, R, and P indices are represented in Table 5. More than 
60% of the values of runoff data at all the stations can be bracketed on average in 
calibration (validation) by 95PPU. NS values were greater than 0.60 (0.64) in the 
calibration (validation) period, and R2 was greater than 0.63 (0.65) at all the 
stations. Accordingly, the calibrated model can be applied with confidence to the 
set of optimized parameters, and the validation period demonstrated better 
agreement in respect of the calibration period (Table 5). 

 
 
 

 
Fig. 3. Kolmogorov–Smirnov values (KS) for 20 sensitivity parameters. 

 
 
 

Table 4. Sensitive parameters, posterior ranges, and fitted values (Afshar et al., 2018) 

Parameters 
Range of parameter Fitted 

value Parameters 
Range of parameter Fitted 

value Minimum Maximum Minimum Maximum 

CN2 0.197 0.281 0.23 ESCO 0.41 0.501 0.50 
GW_DELAY 132.7 159 133.55 SLSUBBSN 96.5 109.5 99.54 
ALPHA_BF 0 0.08 0.042 CH_N2 0.102 0.13 0.12 
SOL_AWC 0.21 0.28 0.28 CH_K2 101.5 114 101.72 
SOL_K 0.15 0.32 -0.16 SFTMP -1.0 -1.81 -1.45 
SOL_BD 0.095 0.167 -0.11 SMTMP -0.95 -1.92 -1.70 
GW_REVAP 0.085 0.115 0.11 SMFMN 7.5 8.95 8.16 
SHALLST 460.8 510.5 485.30 TIMP 0.50 0.70 0.51 
RCHRG_DP 0.229 0.32 0.24 SURLAG 9.60 12.2 10.22 
EPCO 0.29 0.41 0.29 PCPMM -0.177 -0.325 -0.25 
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Table 5. Monthly runoff calibration and validation results at five stations (Afshar et al., 
2018) 

Stations 
Calibration period  Validation period 

 NS R-factor P-factor   NS R-factor P-factor 

SARASSHA 0.72 0.71 1.10 0.57  0.65 0.64 0.96 0.56 
ZIRBAGOL 0.66 0.65 1.29 0.58  0.84 0.83 0.92 0.65 
GOLJAGHR 0.66 0.64 0.95 0.63  0.74 0.74 0.81 0.64 
HESDEHB 0.63 0.60 0.92 0.74  0.81 0.81 0.75 0.78 
KARTIAN 0.68 0.63 0.90 0.66  0.87 0.87 0.58 0.67 

 
 
 

3.2. Spatial and temporal changes of water resources components 

We decided to divide future periods into two different sections, including near-
term perspective (2014–2042) and far-term perspective (2043–2100) with the 
historical period (1992–2011) in order to have a better comparison of precipitation 
(P), temperature (T), blue water (BW), green water flow (GWF), and green water 
storage (GWS) in MIROC-ESM and GFDL-ESM2G models in this work. The 
concentrations of CO2 for RCP4.5 and 8.5 are about 431 and 444 ppm in the near 
future and are about 533 and 811 ppm in the far future, which were used in the 
SWAT model. 

The spatial distribution of the average values of P, T, BW, GWF, and GWS 
for the historical period is shown in Fig. 4 and the results show that the amounts 
of GWF (Fig. 4d) and BW (Fig. 4c) were higher in the upstream than those in the 
downstream for this time period due to the differences in precipitation patterns 
(Pandey et al., 2019; Fazeli Farsani et al., 2019; Zuo et al., 2015). 

 
 
 

  
Fig. 4. Spatial pattern of mean annual water components over the KRB during the historical 
period. 
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Fig. 5 shows the simulation results of precipitation (P) in both models and 
scenarios. According to Fig. 5, the spatial variations of P in KRB for both RCP 
scenarios and periods, under the two models, show the same pattern. The highest 
and lowest values of this component occured in the northern and southeastern 
parts of the basin, respectively. The GFDL-ESM2G model provided higher rate 
of P than MIROC-ESM by comparing the results of both models in the future 
periods. The highest value of the mentioned component was observed in the 
GFDL-ESM2G model in the near future period under RCP 4.5 (Fig. 5a), while 
the MIROC-ESM model resulted in the lowest value of mean annual P in this area 
in the far future period (Fig. 5f) under the same RCP. 

 
 

  
Fig. 5. Variability of precipitation, simulated under different scenarios and models for near 
and far future in KRB. 
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Fig. 6 shows the simulation results of temperature (T) in both scenarios and 
models. It is obvious that T will be increased by transition from near-term to far-
term projection, and the spatial pattern shows that northern and high-altitude areas 
in the northeast and southwest would have the lowest mean annual temperature. 
T in RCP8.5 (Figs.  6c, d, g, and h) is higher than in RCP4.5 (Figs. 6a, b, d, and 
f), due to the high emission of greenhouse gases and the increase in CO2 
concentration. The MIROC-ESM model simulated higher T than the other model, 
and the mean annual T is estimated to increase about 3 °C in the far future period 
in MIROC-ESM under RCP8.5 (Fig. 6h). 

 
 

  
Fig. 6. Variability of temperature, simulated under different scenarios and models during 
the near and far future intervals in KRB. 
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The results of BW simulation are shown in Fig. 7 for KRB under different 
scenarios and models. Generally, BW decreases from northwest to southeast in the 
watershed. The simulations for both models and scenarios show a decreasing trend 
by passing from the near-term to far-term periods. The decrease of BW in the 
MIROC-ESM is higher than in the other model. There is no significant variation in 
the spatial distribution of P and BW according to the results of P (Figs. 5a-h) and 
the direct relationship between these two components. Furthermore, the MIROC-
ESM model estimated both components higher than the GFDL-ESM2G in the 
future periods. The highest (lowest) mean annual BW will occur under RCP4.5 in 
GFDL-ESM2G in the near future (in MIROC-ESM in the far future) period 
(Figs. 7a, f). It should be noted that the surface runoff is a major part of BW 
(Pandey et al., 2019; Fazeli Farsani et al., 2019). BW is a renewable resource and 
potentially necessary for the agriculture sector in this area. Therefore, the climate 
change will have a significant impact on agricultural activities in the study area. 

  
Fig. 7. Variability of BW, simulated under different scenarios and models during the near 
and far future intervals in KRB. 
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Fig. 8 shows the average values of GWF during the near and far future periods 
under two scenarios and models. As temperature increases in all of our calculations 
(Figs. 6a-h), the actual evapotranspiration expected to be increased if there is enough 
water. The value of GWF in the north and northwest (upstream) parts of the KRB is 
greater than that in the south and southeast parts of the study area. The lack of 
sufficient water resources in south and southeastern parts of the basin, the vegetation, 
and land use are the reasons of spatial distribution. The simulations show that the 
mean annual GWF slightly decreases under both scenarios and models by passing 
from the near to far period, due to the reduction of P. According to calculation results, 
GFDL-ESM2G simulates GWF slightly less than the other model throughout the 
near future. However, this parameter has been simulated higher than that by the 
MIROC-ESM during the far future by the mentioned model. 

 

  
Fig. 8. Variability of GWF, simulated under different scenarios and models during the near 
and far future intervals in KRB. 
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GWS is an important water source that sustains the earth's ecosystems, 
especially crops, which is a vital part of human food (Schyns et al., 2015). Fig. 9 
shows the results of simulations for the average annual GWS in KRB by different 
models and under different scenarios. The highest and lowest mean annuals of 
this component are projected in MIROC-ESM in the near and far future periods 
under RCP4.5 (Figs. 9b and f). In addition, GWS by the MIROC-ESM under 
RCP4.5 severely reduced by transition from the near to far period (Figs. 9b and 
f), while it will slightly increase under RCP8.5 (Figs. 9d and h). However, GFDL-
ESM2G shows a completely different trend. For instance, the value of GWS will 
decrease and increase by passing from the near to far future under RCP4.5 and 
RCP8.5, respectively. These findings are in a noble agreement with Pandey et al. 
(2019), and with Fazeli Farsani et al. (2019), Faramarzi et al. (2009), Abbaspour 
et al. (2009), that simulated P, BW, and GW values at the watershed scale. 

  
Fig. 9. Variability of GWS, simulated under different scenarios and models during the near 
and far future intervals in KRB. 
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The main reason for abrupt variations in the components of water resources 
(such as GWS and GWF) among the sub-basins is due to changes in the texture 
and soil characteristics and water holding capacity in the sub-basins (19 profiles 
defined in the present research) as well as to their effect on the evapotranspiration 
parameters in the hydrologic model (SWAT). 

The mean annual water components are shown in Table 6 in both models and 
RCPs and for two future periods regarding the historical period. At the same time, 
all the following results are compared with the historical time period. The 
obtained results show that BW and P increase under both scenarios, models, and 
future intervals compared with the historical period, and the values of BW and P, 
simulated by the GFDL-ESM2G model in KRB, are higher than those simulated 
by the other model. P and T will rise during the future intervals in both models in 
comparison with the historical period.  

 
 
Table 6. Mean annual values of water components during historical and future intervals 
(mm/yr) 

Hydro-
climatic 

component 

Historica
l period 

MIROC-ESM  GFDL-ESM2G 
Near Far  Near Far 

4.5 8.5 4.5 8.5  4.5 8.5 4.5 8.5 

P 250.41 319.57 372.24 269.81 297.69  442.32 402.33 390.08 348.26 
T 15.30 15.72 15.83 16.70 18.32  15.44 15.61 16.60 17.67 

BW 37.57 98.68 147.58 70.69 97.11  219.64 181.61 171.5 142.63 
GWF 203.40 204.94 206.45 187.02 187.27  201.95 203.32 200.23 190.10 
GWS 52.22 60.53 45.06 35.14 48.17  56.63 48.05 49.60 53.53 

P: precipitation (mm/year), T: temperature (°C), BW: blue water (mm/year),  
GWF: green water flow (mm/year), GWS: green water storage (mm/year) 

 
 
Calculations show that GWF only increases in the near future by the MIROC-

ESM model considering the historical period. The increase of this component is 
about 0.75–1.49%, while it will be decreased by 8.05% under different conditions. 
P, BW, and GWF were higher during the near future in similar RCPs than those in 
the far future. However, the T component in similar RCPs shows an inverse result. 
GWF shows negative and positive trends by moving from the historical to near and 
far future, respectively. On the other hand, using two GCMs leads to differences 
between results. The findings of studies by Pandey et al. (2019), Xue et al. (2017), 
and Su et al. (2016), also support and confirm these results. From the results of Table 
6, it could be deduced that P will rise up by 7.2–43.4%, BW will increase by 46.9–
82.9%, the T will increase by 0.9–16.5% in both RCPs and during both future periods 
(in comparison with historical period), while GWF will increase by 0.8–1.5% and 
decrease by 0.7–8.8%. Moreover, GWS tends to increase about 2.4–13.7% or 
decrease about 5.3–48.6% in the future intervals.  



312 

The annual P in MIROC-ESM under RCP4.5 (RCP8.5) will decrease by 
15.6% (20%) in the far-term projection in comparison with that in the near-term 
projection. This component will decrease for both scenarios approximately by 
11.8 and 13.4% in GFDL-ESM2G, respectively. However, the simulation results 
of the GFDL-ESM2G model in the near future under RCP4.5 (RCP8.5) is about 
38.4% (8.1%) and is about 44.6% (17%) in the far future, which is more than that 
projected by the MIROC-ESM model. The T component under RCP4.5 and 
RCP8.5 in MIROC-ESM (GFDL-ESM2G) will increase approximately by 6.2 
and 15.7% (7.5 and 13.2%) via moving from near-to far-term period. 
Furthermore, the GFDL-ESM2G under RCP4.5 (RCP8.5) simulated the annual T 
in the near future by 1.8% (1.4%) and in the far future by 0.6% (3.5%) less than 
those projected by the MIROC-ESM model, respectively. The annual BW in 
MIROC-ESM under RCP4.5 (RCP8.5) will decrease by 28.4% (34.2%) in the far-
term projection in comparison with that in the near-term projection. This 
component will decrease for both scenarios approximately by 21.9 and 21.5% in 
GFDL-ESM2G, respectively. The amount of BW in GFDL-ESM2G in both future 
time periods are higher than that of MIROC-ESM. The values of GWF in the near 
future are higher than in the far future (between 0.9 to 8.7% under RCP4.5 and 
between 6.5 to 9.3% under RCP8.5) in both models and RCPs. The increasing or 
decreasing of GWS through the MIROC-ESM will be around 6.4% (6.6%) in 
comparison with GFDL-ESM2G under RCP4.5 (RCP8.5) in the near and will be 
around 41.1% (11.1%) in the far future intervals, respectively.  

Another purpose of the study is to project the conditions of Kardeh and 
Torogh dam s’ sub-basins for the near and far perspectives. In this study, Torogh 
and Kardeh dams, which are located in the southern and northern part of the KRB 
with different topography conditions, were selected as the two important dams 
located in the sub-basins 133 and 52 in order to further investigate the conditions 
of hydraulic structures in KRB (i.e., dams, which are the most important sources 
for access to water resources), respectively. The mean annual values of BW (the 
summation of WYLD (runoff) and DA_RCHG (aquifer discharge)), GWF (ET 
(evapotranspiration)), and GWS (SW (soil water content)) were extracted from 
the output.sub file via modeling in SWAT and SWAT-CUP software at different 
time periods (historical and future), and the results are presented in Table 7. 

The GFDL-ESM2G model calculated BW higher than the MIROC-ESM in 
these two sub-basins in all cases in our study. The mean annual BW increases in 
both models and periods compared to the historical period under RCP4.5 and 8.5. 
The highest mean value of BW will occur in the near future, under RCP4.5, 
simulated by the GFDL-ESM2G in both sub-basins of the dams, while the GWS 
simulation shows different results. The highest mean annual GWF and GWS in 
both sub-basins of the dams will happen in the near future under RCP4.5, 
simulated by the MIROC-ESM. On the other hand, the lowest values of BW, 
GWF, and GWS will happen in the far future under RCP4.5 by the MIROC-ESM 
model. More details are represented in Table 7. 
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Table 7. Mean annual water resources components in Torogh and Kardeh dams’ sub-basins 
(mm/year) 

Dams  Torogh  Kardeh 
Water components  BW GWF GWS  BW GWF GWS 
Historical period  24.9 179.7 53.9  16.9 226.2 63.2 

Near 
future 

RCP4.5 
GFDL-
ESM2G  285.2 161.9 46.4  267.2 198.1 164.2 

MIROC-ESM  147.5 175.0 58.1  91.2 203.6 211.1 

RCP8.5 
GFDL-
ESM2G  235.4 165.8 55.5  253.1 196.8 130.9 

MIROC-ESM  220.6 173.4 51.3  153.1 197.0 185.9 

Far 
future 

RCP4.5 
GFDL-
ESM2G  227.8 162.3 44.4  226.9 192.3 173.0 

MIROC-ESM  108.2 153.3 41.7  65.9 175.8 112.4 

RCP8.5 
GFDL-
ESM2G  193.5 153.9 46.0  180.4 179.2 155.8 

MIROC-ESM  170.9 158.1 44.0  117.2 178.0 161.0 
 
 

 
 

4. Summary and conclusions 

Potential use of MIROC-ESM and GFDL-ESM2G models under RCP4.5 and 8.5 
in the historical (1995–2011), near (2014–2042), and far (2043–2100) periods to 
evaluate the status of water resources components (such as BW, GWF, and GWS) 
due to changes in climatic components (such as P and T) in KRB were simulated 
via the SWAT model. The SUFI-2 algorithm is applied at a monthly time step in 
five hydrometric stations to survey sensitivity and uncertainty analysis of the 
SWAT model. The main summary of the results is illustrated as follows: 

1) Sensitivity analysis was done by the regional sensitivity analysis (RSA) 
method and the Kolmogorov-Smirnov (K-S) test. Results showed that 20 
parameters are known as sensitive parameters. The most sensitive parameters 
for outflow are: ESCO, GW_REVAP, SOL_AWC, and SFTMP, while the 
parameters of RCHRG_DP, SOL_K, and SMTMP seemed to be less 
sensitive. 

2)  The model performance criteria (such as NS, R2, P, and R-factor) were 
rather satisfying for the KRB region, and the SWAT model setup is suitable 
for KRB to evaluate the flows of BW, GWF, and GWS. 

3) MIROC-ESM and GFDL-ESM2G models indicated the highest compliance 
with the observational rainfall data in accordance with the evaluation metrics 
such as NS (MIROC-ESM=0.95 and GFDL-ESM2G=0.92), PBIAS 
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(MIROC-ESM=-2.88 and GFDL-ESM2G=-2.93), R2 (MIROC-ESM=0.97 
and GFDL-ESM2G=0.94), and RSR (MIROC-ESM=0.33 and GFDL-
ESM2G=0.37), regarding the lack of information in the study area. 

4) BW increases in all future periods and RCPs compared to the historical 
period due to an increase in precipitation patterns. The amount of BW in 
RCP8.5 was higher than in RCP4.5 in MIROC-ESM in the two future 
periods, but these values were vice versa in GFDL-ESM2G. BW was also 
higher in the near future than in the far future in both RCPs. 

5) GWF were decreased in all future periods and RCPs in comparison with the 
historical period, except in the near future in both RCPs in MIROC-ESM. 
The amount of GWF in RCP8.5 is higher than RCP4.5 in both near and far 
future in MIROC-ESM, but this component was higher in RCP8.5 in GFDL-
ESM2G than in RCP4.5 in the near future and conversely in the far future 
period. On the other hand, the values of GWF in the near future in both 
models and RCPs were higher than in the far future.  

6) The GWS demonstrated positive and negative trends in different future 
intervals compared to the historical period. This component was more in 
RCP4.5 than RCP8.5 in both models and in the near future, and these results 
are opposite in the far future. The values of GWS in the near future were 
higher than in the far future in both models in RCP4.5, and these values were 
more in the far future than in the near future in RCP8.5. 

7) The mean annual BW increased in both models and periods under RCP4.5 
and 8.5 in the Kardeh and Torogh dam s’ sub-basins, in comparison with the 
historical period. The highest mean annual GWS in both dam’s sub-basins 
will happen in the near future under RCP4.5, simulated by MIROC-ESM. 
The lowest values of BW and GWF will occur in both sub-basins in MIROC-
ESM and in the far future under RCP4.5.  
Finally, it should be noted that the use of different models and scenarios 

identifies the range of uncertainty forecasts. The existence of differences between 
results of water components in the CMIP5 model limits the range of uncertainty 
and enlarges reliability of the projections. In addition, these models might provide 
decision makers and local authorities with appropriate vision for the near and long 
perspective condition of the region to adapt and optimize water resources in the 
KRB with climate change. 

A complementry work to this study would be exploring the security of water 
resources (demand, availability, scarcity, reliability, and vulnerability) based on 
BW and GW trace by making an application of the mentioned models in this 
region and similar sub-basins with considering the changes of slope and land-use 
in the future time periods. 
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Abstract⎯ Based on daily meteorological data, spatial and temporal distributions of 
extreme precipitation in 1961–2018 were examined for the North Caucasus and the 
Crimean Peninsula. Extreme precipitation indices recommended by the Expert Team for 
Climate Change Detection and Indices were calculated for 45 meteorological stations. 
Analysis shows that the highest values of extreme precipitation indices are on the Black 
Sea coast of the Caucasus, except duration of dry spell, because of the atmospheric 
circulation features and the complex orography of studied area. Extreme precipitation 
trends are spatially incoherent and mostly statistically insignificant over the studied 
territory. Significant upward trends on the Caspian Sea coast and Stavropol Upland and 
statistically significant decreasing trends in the fixed threshold-based indices and all 
intensity indices over the Crimean Peninsula were detected. Positive and significant 
correlation between precipitation indices (except consecutive dry days) and altitude was 
obtained. 
Key-words: extreme precipitation, indices, trend, North Caucasus, Crimean Peninsula 

 

1. Introduction 

The observed trend of climate change has been particularly noticeable since the 
1970s (Hartmann et al., 2013). Against the backdrop of global air temperature 
trends, cases of extreme events associated with precipitation in the middle 
latitudes of the Northern Hemisphere are becoming more frequent (IPCC, 2014). 
Changes in extreme precipitation are of great interest around the world because 
of its huge potential impact on efficiency of the activities in many sectors of 
economy and human life (Changnon et al., 2000; Zhang et al., 2017). 
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Extremely low precipitation leads to drought, wildfires, swallowing of rivers, 
hindered navigation and water supply, and crop losses (Ray et al., 2015). Droughts 
in many Russian regions and subsequent wildfires caused great disasters in 2010, 
2012, and 2019. In reverse, heavy rainfall causes floods, erosion, and landslides in 
the mountains. A good example is the floods in Krasnodar Krai of Russia in early 
July 2012, when the equivalent of two-five months precipitation norm fell in short 
time (Meredith et al., 2015, Kotlyakov et al., 2013). Lack of water in reservoirs on 
the Crimean Peninsula, Krasnodar Krai, and other regions of Northern Caucasus in 
2019 resulted from abnormally warm weather and prolonged lack of precipitation. 

Unlike temperature extremes, the distribution of extreme precipitation is 
spatially and temporally incoherent in many regions (Frich et al., 2002; Alexander 
et al., 2006; Donat et al., 2013). Precipitation extremes have been studied in many 
regions all over the world, e.g., in Asia (Limsakul and Singhruck, 2016; Khan et 
al., 2019; Wang et al., 2012; Liu et al., 2013; Tong et al., 2019; Yang et al., 2019; 
Nie et al., 2019), Europe (Klein Tank and Konnen, 2003; Mathbout et al., 2018; 
Popov et al., 2018; Bartolomeu et al., 2016; Lupikasza, 2010), and North America 
(Brown et al., 2010; Sayemuzzaman and Jha, 2014). 

Previous studies in Russia have also found spatially and seasonally incoherent 
patterns of change in extreme precipitation. The conclusion thereof, as reflected in 
the Second Roshydromet Assessment Report on Climate Change and its 
Consequences in the Russian Federation across the European part of Russia, is that 
there was an increase in annual rainfall over 1936–2010 (Second Roshydromet 
Assessment Report, 2014). For the southwestern part of Siberia, no significant 
trends were observed over 1969–2011 in relative and absolute precipitation indices 
(ETCCDI indices) at the regional level (Degefie et al., 2014). In the densely 
populated territories of Russia, the frequency of extreme winter precipitation has 
increased by an average of 20–40%. Rising occurrence rates of extreme summer 
precipitation were observed in the Central Black Earth Region of the European part 
of Russia over 1961–2013 (Zolotokrylin and Cherenkova, 2017). In 2000–2015, 
extreme winter precipitation was observed on a greater number of days per year 
compared to 1970–1999 in the European part and in the southern part of Russia 
(Titkova et al., 2018). Paper Ye (2018) identifies a correlation between air 
temperature and wet/dry periods: higher air temperatures were consistently 
associated with longer dry periods and shorter wet periods in summer. Opposite 
tendencies in annual precipitation amount, daily precipitation maximum, and 
number of days with precipitation in different seasons were obtained for foothill 
and steppe zones in the central part of North Caucasus for 1955–2004 (Ashabokov 
et al., 2008). Later Tashilova et al. (2019) found not unidirectional changes in the 
precipitation regime in the Caucasian region during 1961–2011.  

Whether globally or specifically in Russia, there are no clear patterns of 
extreme precipitation. The goal, hereof, is to investigate the spatio-temporal 
variability of extreme precipitation over North Caucasus and the Crimean 
Peninsula for 1961–2018. 
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2. Data and methods 

2.1. Study area 

The studied area includes the territory of the North Caucasus and the Crimean 
Peninsula. The North Caucasus consists of the northern slopes of the Greater 
Caucasus Mountains and Ciscaucasia. The northern border of Caucasus passes 
through the Kuma-Manych Depression, the Sea of Azov, and the Kerch Strait. It 
is bounded by the Black Sea in the west. The region is located on the border of 
temperate and subtropical latitudes, not far from the warm Mediterranean Sea. 
The movement of air masses and their transformation in the territory of the North 
Caucasus are extremely complex and diverse. Cyclones nearly always come from 
the west or northwest, and as they move to the east and southeast, the air masses 
they bring lose moisture. The western lowlands of Ciscaucasia are more humid 
than their eastern part. In the west, the annual precipitation is 380–520 mm, and 
in the Caspian region, it is only 220–250 mm. In the foothills and the Stavropol 
Upland, precipitation rises to 600–650 mm. The situation is further complicated 
by the extreme irregularity of precipitation over time. The eastern part of the 
studied region (the Caspian Sea coast) shows a high precipitation concentration 
index (Vyshkvarkova et al., 2018), which allows to detect relative contribution 
of rainy days to the total amount (Martin-Vide, 2004). Mountain slopes are 
much better moistened: in the mountains of the Western Caucasus at altitudes 
above 2000 m, 2500–2600 mm precipitation falls in a year; to the east, their 
number decreases to 900–1000 mm. 

The Crimean Peninsula has a diverse climate and includes several types of 
it: steppe, subtropical, and mountain climate. The average annual rainfall varies 
from 250 mm in the steppe zone to 1000 mm and more in the Crimean Mountains. 

2.2. Data source and methodology  

The analysis of changes in extreme climate indices over 1961–2018 was carried 
out using climatological data set of daily precipitation collected at 45 
meteorological stations over the North Caucasus and the Crimean Peninsula 
(Fig. 1). One station is located in Caspian Sea on Tyuleny Island. Data were 
provided by the All-Russian Research Institute of Hydrometeorological 
Information – World Data Centre (RIHMI-WDC) (http://aisori-m.meteo.ru). 
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Fig. 1. Studied area and location of meteorological stations. 
 
 
The input data were used for calculation of 10 extreme climate indices 

recommended by the CCl/CLIVAR Expert Team for Climate Change Detection 
and Indices (ETCCDI) for climate change assessment 
(http://www.clivar.org/organization/etccdi). Definition of extreme precipitation 
indices is presented in Table 1. Data quality control and indices calculating were 
done using RClimDex software developed by Zhang and Yang (2004) (freely 
available from http://etccdi.pacificclimate.org/software). Extreme precipitation 
indices are usually divided into two groups: indices in precipitation (RX1day, 
RX5day, PRCPTOT, R95p, R99p) and SDII, and indices in the number of 
precipitation days (R10 mm, R20 mm, CDD and CWD) (Wang et al., 2013, Liu 
et al., 2013). Indices also can be divided into fixed threshold-based indices (R10 
and R20), duration-based indices (CDD and CWD), absolute indices (RX1day, 
RX5day, PRCPTOT and SDII), and percentile-based indices (R95p and R99p) 
(Alexander et al., 2006).  

The trend magnitudes were calculated using the non-parametric Sen’s slope 
estimator (Sen, 1968) and the least squares method. Statistical significance of the 
trends was detected depending on the Mann–Kendall test with a 95% confidence 
level (Mann, 1945; Hamed and Rao, 1998). The probability density functions for 
each index were calculated for two subperiods: 1961–1990 and 1991–2018. The 
two-tailed nonparametric Kolmogorov–Smirnov test was performed to test 
whether the distributions changed significantly between the two specified periods 
and to confirm observed trends (Dodge, 2008). The Pearson`s correlation 
coefficient was used to analyze the relationship between extreme precipitation 
indices and altitude. All tests and calculations were performed in XLSTAT 
Version 2014.5.03. 
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Table 1. Definition of extreme precipitation indices used in the study 

ID Indicator name Definition Units 

CDD Consecutive dry days Maximum number of consecutive days 
when precipitation 1mm 

days 

CWD Consecutive wet days Maximum number of consecutive days 
when precipitation 1mm 

days 

PRCPTOT Annual total wet-day 
precipitation 

Annual total precipitation from days  
1mm 

 mm 

R10mm Number of heavy 
precipitation days 

Number of days per year when 
precipitation 10 mm 

days 

R20mm Number of very heavy 
precipitation days 

Number of days per year when 
precipitation  20 mm 

days 

RX1day Max 1-day precipitation 
amount 

Annual maximum 1-day precipitation mm 

RX5day Max 5-day precipitation 
amount 

Annual maximum consecutive 5-day 
precipitation 

mm 

SDII Simple daily intensity index The ratio of annual total precipitation to 
the number of wet days ( 1 mm) 

mm/day 

R95p  Very wet days Annual total precipitation from days   
95th percentile 

mm 

R99p  Extremely wet days Annual total precipitation from days   
99th percentile 

mm 

 
 
 

3. Results  

3.1. Spatial distribution of extreme precipitation indices 

Consecutive dry days (CDD) and wet days (CWD) are duration indices based on 
the maximum duration of dry and wet periods. CDD values over the studied area 
varied from 19 to 55 days and peaked in the Caspian Sea coastal zone (Tyuleny 
Island). The Black Sea coast has the lowest CDD index. In the steppe part of the 
studied region, the index is 29–33 days. In Crimea, the index varies from 31 days 
on the south coast to 41 days in the north. The opposite patterns are typical for the 
CWD index. The lowest values are observed for the coast of the Caspian Sea 
(3 days), and the highest are found on the Black Sea coast of Caucasus and on 
high mountain stations (up to 10 days). In Crimea, the index is 5–6 days. All 
indices, except CDD peak on the Black Sea coast, decrease towards the north and 
northeast. 
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Spatial distribution of the PRCPTOT index values corresponds to the annual 
precipitation. The highest values (1600–1800 mm) are found high in the 
mountains. This region features the greatest total precipitation of different types 
(showery and compound) in Russia (Chernokulsky et al., 2018 over 1966–2014). 
The coast of the Caspian Sea has the lowest value of the index. On the Black Sea 
coast of Caucasus, the annual precipitation increases southwards from 500 mm in 
Anapa to 1600 mm in Sochi. Over the Crimean Peninsula, PRCPTOT rises from 
the north (about 400 mm) to the south towards the Crimean Mountains. 

Indices R10mm and R20mm are frequency indices which are based on the 
absolute threshold. They represent the number of days of heavy and very heavy 
rainfall when the daily precipitation is 10 or 20 mm higher, respectively. R10mm 
ranges from 4 to 63 days per year. The number of heavy precipitation days rises 
from NW to SE over the North Caucasus and peaks on the western slopes. In the 
Crimea, the index varies from 9 to 18 days. 

R20mm index has an identical spatial distribution. Values range from 1 day 
on the Tyuleny Island to 33 days per year in the mountains. It varies from 2 to 
5.5 days/year in the Crimea. The annual index RX1day (90 mm) peaks in the 
Kluxor Pereval (a mountain pass across the Main Caucasian Range). Large values 
were also observed for the Black Sea coast of the Caucasus (Sochi region) (as in 
Ashabokov et al. (2017) over 1961–2011). Eastern arid zone has low values of 
RX1day index (about 30 mm). The Crimean Peninsula has a fairly even 
distribution of the index (30–40 mm). The annual index RX5day ranges from 35 
to 180 mm. It varies within 40–70 mm in the Crimea and peaks on the Black Sea 
coast. These indices represent the maximum single-day and consecutive five-day 
precipitation amounts, respectively, to provide information about the most rainy 
periods of the year; they are a potential flood indicator. A simple index of 
precipitation intensity (SDII) also peaks on the Black Sea coast of the Caucasus 
(14 mm/day), and it is minimal in the east of the studied region (about 5 mm/day). 
It varies slightly (5 – 7 mm/day) in the Crimea. 

The highest value (350–450 mm) for annual total precipitation on days above 
the 95th percentile (R95p) is found on the Black Sea coast of the Caucasus 
Mountains, and the lowest value is for the north-eastern part of the studied area 
and the northern coast of the Caspian Sea. 

The North Caucasus and the Crimean Peninsula mainly have R95p of about 
30–40 mm. The eastern arid region has the lowest R99p (about 20 mm). The Black 
Sea coast of the Caucasus has the highest annual total precipitation on days above 
the 99th percentile (110–150 mm). 

3.2. Trends in precipitation extremes 

Table 2 shows the generalized results of trend analysis and the percentage of 
stations with positive and negative trends in annual precipitation indices. 
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Table 2. Percentage (%) of stations with positive or negative trends for extreme 
precipitation indices over the North Caucasus and the Crimean Peninsula 1961–2018 

 Index Sig (+) Non-sig (+) Sig (–) Non-sig (–) No trend 

CDD 8.89 37.78 2.22 11.11 40 

CWD 13.33 – – – 86.67 

PRCPTOT 22.22 57.78 – 20 – 

R10mm 20 22.22 4.44 8.9 44.44 

R20mm 11.11 4.44 11.11 4.44 68.9 

RX1day 6.67 44.44 11.11 37.78 – 

RX5day 8.89 55.55 6.67 28.89 – 

SDII 22.22 28.9 15.55 15.55 17.78 

R95p 13.3 51.2 13.3 22.2 – 

R99p 8.9 4.4 – 4.4 82.3 

 
 
 

The consecutive dry days (CDD) showed a positive (dry) trend at 47% of all 
stations, 9% of them exhibited a statistically significant increase. Significant 
upward trends were found on the Crimean Peninsula reaching 2–4 days per decade. 
Results showed that the negative slopes of CDD were concentrated in the Caspian 
lowland (Fig. 2). Most stations (about 87%) did not show any trends in wet periods 
(the CWD index). The stations, where CWD exhibited significant positive trends, 
were mainly those on the Crimean Peninsula (+0.3 to 0.6 days/decade). For annual 
precipitation (PRCPTOT), statistically significant increase was typically observed 
for the Caspian Sea coast (23 mm/decade in Astrakhan, north coast of the Caspian 
Sea) and in the Stavropol Upland (9 to 17 mm/decade). More than 42% of the 
stations showed an increase in R10mm, but only 20% of those had a statistically 
significant change (0.3 to 0.5 days/decade on the Caspian Sea coast and 0.9 to 1.1 
in the mountains). Significant decrease was observed on the Crimean Peninsula 
(about –1 day/decade). About 70% of the stations did not show any change in 
R20mm. Stations that showed statistically significant increase were concentrated 
in the Stavropol Upland, where the change reached 0.5 days/decade. As for 
RX1day, half of the stations had a positive trend, and the rest had a negative trend, 
which were statistically significant for only 7% and 11% of the stations, 
respectively. Statistically significant decrease was mainly observed on the Crimean 
Peninsula (–5.5 mm/decade on the west coast of peninsula). As for RX5day, about 
65% of the meteorological stations showed positive trends but only 9% showed 
significance, mainly those in the Stavropol Upland (4.5 mm/decade). The Stavropol 
Upland is the climatic border between the eastern and western part of Ciscaucasia. 
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The percentages of stations with positive and negative trends for SDII are 51% 
(22% statistically significant) and 31% (15% statistically significant), respectively. 
Increasing trends for intensity index were observed in the Stavropol Upland and on 
the coast of the Caspian Sea (0.1 mm/day per decade on average), while significant 
decrease was mainly found on the Crimean Peninsula (ranging from -0.1 to -0.4 
mm/day per decade). For very wet days (R95p), 65% of the stations showed an 
upward trend, while 13% of all stations observed statistically significant changes. 
Most of the stations situated on the Crimean Peninsula had downward trends for 
R95p (ranging from -12 to -22 mm/decade). In the studied area, about 82% of 
meteorological stations did not show any trends in R99p. 

 
 
 

 

 
Fig. 2. Spatial distribution of trends over the North Caucasus and the Crimean Peninsula 
in 1961–2018. 
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Fig. 3 shows the regional average series of extreme precipitation indices. In 
1961–2018, all extreme precipitation indices were rising in the studied region, 
although insignificantly. The regional trend for dry periods (CDD) over 1961–
2018 was 4.5 days/decade. PRCPTOT for the studied area was rising at a rate of 
5.4 mm/decade. Simple daily intensity index (SDII) showed virtually no change 
in the regional average (0.1 mm/day per decade). Fixed-threshold indices 
(R10mm, R20mm and CWD) changed only slightly (0.1 to 0.7 days/decade). 
Percentile-based indices (R95p and R99p) had upward trends (not significant) and 
reached 16 and 23 mm/decade respectively. Maximum 1-day and 5-day 
precipitation amount also exhibited an upward trend at 3 and 6 mm/decade, 
respectively. 

 
 
 
 

 
Fig. 3. The regional average series of extreme precipitation indices over 1961–2018. Thin 
black lines represent average values of indices, bold black lines represent the 5-year 
moving average, and dotted black lines show trends. The slopes of trends are represented 
in units per decade. 
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3.3. Changes in the average annual values of extreme precipitation indices 

Fig. 4 shows changes in the average annual values of extreme precipitation 
indices for 1961–1990 and 1991 2018. In order to examine changes in extreme 
precipitation indices (and to confirm the observed trends), the probability density 
functions (PDFs) for each index were calculated for two subperiods: 1961–1990 
and 1991–2018.  
 
 
 
 

 
 

Fig. 4. Changes in average annual values of extreme precipitation indices over the North 
Caucasus and the Crimean Peninsula in 1991–2018 relative to 1961–1990. Negative 
changes mean decreasing index value in period 1991–2018 compared with period 1961–
1990. Positive changes – vice versa. Significance of changes was determined by the 
Kolmogorov–Smirnov test on 95% confidence level. 
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The majority of stations did not show any statistically significant shifts (by 
the Kolmogorov-Smirnov test) in the index distribution between the two 
subperiods. The duration of dry and wet periods (CDD and CWD) as well as 
PRCPTOT showed positive changes in the latter period for the studied region  
(73–80%). PRCPTOT index exhibited statistically significant increase for the 
Caspian Sea coast in the latter period (p < 0.05). 

Fixed threshold-based indices (R10mm and R20mm) and all intensity 
indices (RX1day, RX5day, SDII, R95p, and R99p) shifted their distributions 
towards smaller values for the Crimean Peninsula in the latter period compared to 
the reference period (statistically significant at p < 0.05). Number of days with 
precipitation above 10 and 20 mm were observed in 1991–2018 for Ciscaucasia 
with single significant values for the Caspian Sea coast. 

3.4. Correlation between extreme precipitation indices and altitude 

As it was mentioned above, the region has complex orography. Table 3 shows the 
Pearson correlation coefficients (r) for extreme precipitation indices and altitude. 
Except for CDD, extreme precipitation indices have positive correlations with 
altitude, and they all are statistically significant at 95% confidence level.  
 
 
 

Table 3. Correlation coefficients between extreme precipitation indices and altitude in 
1961–2018  

 CDD CWD PRCPTOT R10 
mm 

R20 
mm RX1day RX5day SDII R95p R99p 

Altitude -0.41 0.51 0.43 0.43 0.35 0.32 0.39 0.31 0.43 0.44 

 
 
 

The North Caucasus can be divided into several zones by the nature of its 
landscape: plains (0–500 m a.s.l.), foothills (500–1,000 m a.s.l.), mountains 
(>1,000 m a.s.l.), and high-mountain (>2,000 m a.s.l.) (Tashilova et al., 2019). In 
addition, there are areas below sea level (the Caspian Lowland) were allocated. 
All Crimean stations are located in the plains (below 500 m). Table 4 shows the 
average values of extreme precipitation indices by the altitudinal ranges. 

As it is shown in Table 4, all indices (except CDD) display increase-
decrease-increase tendency as the altitude increases. CDD demonstrates an 
opposite distribution. Decrease in indices (except CDD) is typical for the 
mountain stations (1000–2000 m). This range is represented by one station 
(Akhty), located in the southeast of the studied region. Despite its altitude, the 
climate of this region is temperate continental with an annual precipitation of 
about 400 mm. The heterogeneity in the altitudinal changes of extreme 
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precipitation index is made by the region of the Black Sea coast of the Caucasus, 
which is characterized by high average annual precipitation (about 1500 mm). 

 
 

 
Table 4. Changes of extreme precipitation indices in altitudinal ranges 

Altitudinal 
ranges (m) 

CDD 
(days) 

CWD 
(days) 

PRCPTOT 
(mm) 

R10 
mm 

(days) 

R20 
mm 

(days) 

RX1day 
(mm) 

RX5day 
(mm) 

SDII 
(mm/day) 

R95p 
(mm) 

R99p 
(mm) 

-24 – 0 43.8 3.9 242.9 5.8 1.5 31.7 44.1 5.1 64.6 23.5 

0–500 32.1 5.4 515.2 14.5 4.5 40.0 62.9 6.4 121.1 38.8 

500–1000 24.7 7.5 1102.7 35.4 15.3 55.7 107.4 9.3 237.2 65.9 

1000–2000 35.3 4.4 376.3 10.7 2.4 31.7 46.5 5.9 79.9 24.1 

>2000 23.4 8.0 1131.0 35.2 14.3 60.2 114.2 8.9 266.7 86.2 

 
 

 

4. Discussion and conclusions 

This paper dwells upon the spatial and temporal distribution of climate 
extremes indices for the North Caucasus and the Crimean Peninsula. The analysis 
is based on the climate data for 1961–2018 from 45 meteorological stations. 
Climate extremes indices recommended by the World Meteorological 
Organization (CCL/CLIVAR/JCOMM) and the Expert Team on Climate Change 
Detection and Indices (ETCCDI) were used. The use of these indices enables 
comparison of analyses carried out in any regions and combining them in a global 
picture (Zhang et al., 2011). 

Analysis shows that all indices (except CDD) peak for the Black Sea coast 
of Caucasus, while the Caspian Sea coast and the Caspian Lowland have the 
lowest values, which is due to the features of atmospheric circulation over this 
region and to the complex orography. The greatest amount of precipitation is 
associated with westerly winds that carry moisture from the Atlantic. Their 
humidity is then subject to the interference from the slopes of the mountains and 
hills facing west, and in the east, the climate becomes drier and more continental 
(Vyshkvarkova et al., 2018). 

Extreme precipitation trends are spatially incoherent and mostly statistically 
insignificant in the studied territory. Statistically significant downward trends in 
the fixed threshold-based indices and all intensity indices were detected for the 
Crimean Peninsula. At the same time, the Stavropol Upland had statistically 
significant upward trends in these indices as well as in PRCPTOT. Both dry and 
wet periods have been growing longer simultaneously on the Crimean Peninsula. 
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A similar trend was observed for some regions of the central and southern part of 
European Russia in 1950–2009 (Zolina et al., 2013). Statistically significant 
downward changes in the average annual extreme precipitation indices (except 
the duration of dry and wet periods and the precipitation amount) were detected 
for the Crimean Peninsula. Precipitation indices (except consecutive dry days) 
and altitude were found to correlate positively and significantly.  

Neither Russia nor the Caucasus show clear signs in the changes of extreme 
precipitation regime. The results obtained in the article are consistent with the 
regional changes in extreme precipitation observed in the southern part of 
European Russia. Aleshina et al. (2018) found significant trends in precipitation 
intensity and total monthly precipitation for no more than two months a year on 
the Black Sea coast over 1984–2014. Extreme precipitation growth (R95tot index) 
of up to 3% per decade was observed for the southern part of European Russia in 
1950–2000 (Zolina et al., 2009). Bulygina et al. (2007) did not identify significant 
changes in days with extremely large daily precipitation when comparing 1951–
2006 records to 1977–2006 records for Southern Russia. 

According to the Second Roshydromet Assessment Report on Climate 
Change and its Consequences in the Russian Federation (2014) in winter, 
throughout the 21st century for all scenarios, there is a steady positive trend in 
precipitation all over Russia. Summer precipitation in the southern regions is 
projected to drop by up to 25% compared to the late 20th century. Maximum five-
day precipitation in a year will increase by the mid-21st century; by the end of the 
current century, they will rise by up to 10% against the baseline. In the southern 
regions (including the Caucasus Mountains), the significant relative increase in 
the precipitation intensity maximum is expected by the middle of the 21st century 
according to the CMIP5 ensemble projections (Khlebnikova et al., 2019). At the 
same time, the frequency of extreme precipitation will decrease in the southern 
parts of Russia by the end of the 21st century according to results obtained by 
Aleshina et al. (2019). Apparently, there is no clear signal of changes in extreme 
precipitation in the future 

Redistribution of precipitation throughout the year, observed changes in 
precipitation regime, and possible changes in the intensity and frequency of 
extreme precipitation events in the future are becoming one of the main threats 
facing the region. The studied region has had to address water shortages in recent 
years (poor filling of reservoirs in the Crimea and Krasnodar Krai). This provides 
a more detailed picture of the spatially coherent trends in precipitation extremes 
over the territory of the North Caucasus and the Crimean Peninsula. It also calls 
for further research of different periods of the year (not only seasons), for 
example, for the vegetation periods of different crops, because Ciscaucasia is an 
agricultural region. Due to its complex orography, part of the studied area is flood-
prone, while droughts and related problems (crop loss, reservoir underflow, etc.) 
are possible in other parts. 
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