

Ayaz Mahmood Dar^{[a]*}, Nisar A Dangroo^[b], Shafia Mir^[a] and Bashir Ahmad Dar^[c]

Keywords: arylboronic acids; tert-butyl hydroperoxide (TBPH); phenols; green method.

An efficient protocol for the synthesis of phenols from arylboronic acids has been developed by using t-butyl hydroperoxide (TBHP) as oxidant in water-ethanol as a binary reaction medium. The reaction is metal and additive free and does not require strong basic conditions. The developed protocol has a broad substrate scope and functional group compatibility. Notably the mild conditions, shorter reaction time, good to excellent yields and eco-friendly reaction medium are some important features of the developed method.

* Corresponding Authors Tel: +91 990695985

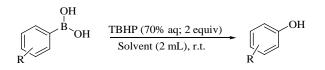
- E-Mail: ayazchem09@gmail.com
- Department of Chemistry Govt. Degree College Kulgam, [a] J&K. India
- Department of Chemistry, Govt. Degree College Sopore, [b] J&K, India
- Department of Chemistry, National Institute of Technology, [c] Srinagar, J&K, India

INTRODUCTION

Phenols and their derivatives are found in numerous bioactive natural products and serve as well-known precursors for the synthesis of pharmaceuticals and natural product analogs of therapeutic importance.¹ Consequently, the synthesis of phenols has attracted a considerable impetus and numerous methods have been developed over the years. Among these, copper-catalyzed conversion of diazoarenes, benzynes and aromatic nucleophilic substitutions of aryl halides are the main routes for the synthesis of phenols.² Some other strategies utilize palladium-based catalysts using phosphine ligands and copper catalyst using non-phosphine ligands at elevated temperature for the conversion of aryl halides into phenols.^{3,4} However, these methods involve prefunctionalization-defunctionalization strategies, rely upon the use of hazardous metal catalysts and harsh reaction conditions which limit their utility due to functional group compatibility problems.

An alternative easy accessible route utilizes arylboronic acids/esters for the synthesis of phenols. The harmless nature of arylboronic acids, their thermal, air and moisture stability make them useful and readily available precursors for the synthesis of phenols.^{5,6} In this direction, numerous methods are known for arylboronic acid/ester hydroxylation which include CuSO₄-phenanthrolin,⁷ H₂O₂-poly (Nvinylpyrrolidone),8 NH2OH,9 potassium per-oxy sulfate,10 H₂O/H₂O₂,¹¹ I₂/H₂O₂,¹² PEG400/H₂O₂,¹³ Cu₂O NPs,¹⁴ m-CPBA/KOH,¹⁵ TBPH/KOH.¹⁶ These strategies, however, have some demerits such as long reaction times.9,11 use of strong basic conditions⁷ and toxic chlorinated organic solvents.8 Thus, development of more efficient and environmentally benign and mild synthetic procedure for the synthesis of phenols is still desirable. In our previous communication, we report ipso-hydroxylation of phenyl boronic acids.¹⁷ therefore, in continuation of our previous research endeavors for the development of green and more efficient synthetic methods,18-20 herein we wish to report a rapid, base-free ipso-hydroxylation of arylboronic acids to phenols at room temperature in a green binary reaction medium (water-ethanol) and TBHP as an oxidant/catalyst.

EXPERIMENTAL


All the melting points were determined on a Kofler apparatus and are uncorrected. The IR spectra were recorded on KBr pellets with Perkin Elmer RXI Spectrophotometer and values are given in cm⁻¹. ¹H and ¹³C NMR spectra were run in CDCl₃ on a JEOL Eclipse (400 MHz) instrument with TMS as internal standard and values are given in ppm (δ). Mass spectra were recorded on a JEOL SX 102/DA-6000 Mass Spectrometer. Thin layer chromatography (TLC) plates were coated with silica gel G and exposed to iodine vapours to check the homogeneity as well as the progress of reaction. Petroleum ether refers to a fraction of boiling point 60-80 °C. Sodium sulfate (anhydrous) was used as a drying agent. All the chemicals were purchased from Merck India and were used after distillation.

Procedure for ipso-hydroxylation of arylboronic Acid

A reaction flask was charged with 1.0 mmol of arylboronic acid and TBPH (2.0 mmol) in 2 mL of H₂O-C₂H₅OH solvent (1:1) and stirred at room temperature for 8-18 min. The reaction progress and completion was monitored by TLC. After completion, the crude reaction mixture was extracted with ethyl acetate and dried over sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by SiO₂ column chromatography (ethyl acetate: hexane) to afford the desired product. The prepared phenols were characterized by comparing the observed spectral data¹⁷ and physical properties.

RESULTS AND DISCUSSION

The base-free *ipso*-hydroxylation of different arylboronic acids in a water-ethanol solvent system in presence of TBHP were completed within a short reaction time of 8-18 min and the phenols were produced in excellent yields. The reaction is shown below (Scheme 1).

Scheme 1. Synthesis of phenols from arylboronic acids.

 Table 1. Effect of solvent systems on *ipso*-hydroxylation of arylboronic acid.

Entry	Solvent	Time, min	Yield, ^a %
1	Water	10	85
2	Ethanol	10	77
3	Methanol	12	70
4	EtOAc	15	53
5	DMF	15	67
6	CH ₃ CN	17	62
7	DMSO	12	62
8	Dioxane	18	55
9	DCM	18	60
10	water-ethanol	9	95
11	water-methanol	10	93
12	water-DMSO	15	88
13	water-CH ₃ CN	13	85
14	water-DMF	16	69
15	ethanol-DMSO	10	77
16	ethanol-DMF	12	70

^a Isolated yields after purification using column chromatography.

To set up the optimum reaction conditions, phenylboronic acid (1) was chosen as a model substrate to evaluate the proposed hydroxylation of aryl boronic acids. The model reaction containing the mixture of (1) (1 mmol) and TBHP (70 % aq; 2.0 mmol) when stirred at room temperature in methanol furnished the corresponding phenol with 70% yield notably in a short reaction time of 12 min. We then began to evaluate a range of different solvents like water, acetate methanol, ethanol. ethyl (EtOAc), dimethylformamide (DMF), acetonitrile (ACN), dimethyl sulphoxide (DMSO) and dichloromethane (DCM) and noticed that the nature of the solvents have significant influence on rate and yield of the reaction (Table 1). Protic solvents such as water, methanol and ethanol proved to be better reaction medium than aprotic solvents with better yields (Table 1, entries 1-3) In aprotic solvents such as EtOAc, DMF, ACN, DMSO and DCM moderate yields were obtained with incomplete substrate conversion (Table 1, entries 4-9). Since protic medium particularly water proved to be a better solvent, we then evaluated different combination of water-organic solvents such as water-ethanol, water-methanol, water-ethanol, water-methanol, water-DMSO, Water-ACN and water-DMF to further improve the reaction conditions in terms of yield and reaction rate (Table 1, entries 10-16). It was observed that binary solvent system

improved the reaction yield especially when water is one of the co-solvents (Table 1, entry 14). Finally water-ethanol combination was found to be the medium of choice for the proposed model reaction with 95 % yield of the phenol in a short reaction time of 9 min. Additionally this reaction medium offers to synthesize phenols under environmental friendly conditions due to biodegradable nature of ethanol.

 Table 2.
 The *ipso*-hydroxylation reaction of substituted arylboronic acids.

Entry	Substituent	Time, min	Yield, %
1	$\mathbf{R} = \mathbf{H}$	8	94
2	$\mathbf{R} = p - \mathbf{F}$	10	90
3	$\mathbf{R} = m - \mathbf{CH}_3$	8	92
4	$\mathbf{R} = m - \mathbf{Br}$	10	88
5	$\mathbf{R} = p - \mathbf{OCH}_3$	14	95
6	$\mathbf{R} = p - \mathbf{B}\mathbf{r}$	12	89
7	$\mathbf{R} = p - \mathbf{CF}_3$	13	91
8	R = 2-butyl	15	94
9	$\mathbf{R} = p - \mathbf{NO}_2$	10	82
10	$\mathbf{R} = p \cdot \mathbf{C}_6 \mathbf{F}_5$	16	88
11	$\mathbf{R} = o - \mathbf{NO}_2$	18	60
12	$\mathbf{R} = o$ -Cl	10	89
13	$\mathbf{R} = p - \mathbf{F}, o - \mathbf{CF}_3$	18	74
14	$\mathbf{R} = o - \mathbf{F}$	18	87
15	$\mathbf{R} = p$ -OCF ₃	18	90

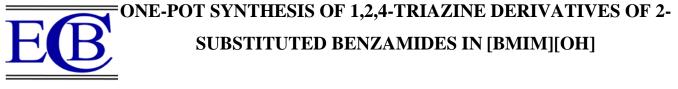
With the optimized reaction conditions, we evaluated a wide array of electronically and structurally diverse arylboronic acids to check the substrate scope of the developed protocol and found that a variety of functionalities were tolerated (Table 2). In general, arylboronic acid with either electron-withdrawing or electron-donating substituents like -OMe, -CH₃, -CF₃, -NO₂, OCF₃ and -OH underwent the *ipso*-hydroxylation reaction efficiently with excellent yields (Table 2, entries 2, 3, 5, 7, 9, 11 and 15). Ortho substituted arylboronic acids were found to be less reactive than para substituted arylboronic acids (Table 2, entries 2-6, 7, 9, 11, 12-15). Phenylboronic acids bearing bulky substituents, such as phenyl and butyl groups were also examined, and excellent yields of the phenols were obtained (Table 2, entries 8 and 10). Halogen substituted boronic acids like bromo, chloro and fluoro phenylboronic acids were also rapidly transformed into the corresponding products in excellent yield under the optimized conditions (Table 2, entries 2, 4, 6, 12, 13 and 14). Electron rich arylboronic acids (Table 2, entries 3, 5 and 8) gave satisfactory yields within 8-15 min. The optimized protocol was also found to be compatible with heteroaryl boronic acids furnishing good yields (Table 3).

 Table 3. The *ipso*-hydroxylation of naphthyl and heteroaryl boronic acid.

No.	Substrate	Product	Time, min	Yield, %
1	1-Naphthyl boronic acid	1-Naphthol	8	93
2	2-Naphthyl boronic acid	2-Naphthol	15	93
3	2-Furyl boronic acid	2-Hydroxy furan	14	82

Mechanistically the reaction is actually a nucleophilic 1, 2-migration of the aryl group from boron to oxygen²¹ which leads to the formation of phenols.

CONCLUSION


In conclusion, a mild and efficient prptpcol for the ipsohydroxylation of arylboronic acids to the corresponding phenol using TBHP as oxidizing agent in water-ethanol solvent has been developed. The developed method has a broad substrate scope and functional group compatibility. Notably mild reaction conditions, shorter reaction time, metal free conditions, devoid of additives such as ligands or bases and finally a green reaction medium are some of the striking features of this protocol.

REFERENCES

- ¹Tyman, J. H. P., *Synthetic and Natural Phenols*, Elsevier, New York, **1996**.
- ²Thakur, K. G., Sekar, G., d-Glucose as green ligand for selective copper-catalyzed phenol synthesis from aryl halides with an easy catalyst removal, *Chem. Commun.*, **2011**, *47*, 6692-6694. <u>https://doi.org/10.1039/c1cc10782h</u>
- ³Schulz, T., Torborg, C., Schaffner, B., Huang, J., Zapf, A., Kadyrov, R., Borner, A., Beller, M., Practical Imidazole-Based Phosphine Ligands for Selective Palladium-Catalyzed Hydroxylation of Aryl Halides, *Angew. Chem. Int. Ed.*, 2009, 48, 918-921. <u>https://doi.org/10.1002/anie.200804898</u>
- ⁴Zhao, D., Wu, N., Zhang, S., Xi, P., Su, X., Lan J., You, J., Synthesis of Phenol, Aromatic Ether, and Benzofuran Derivatives by Copper-Catalyzed Hydroxylation of Aryl Halides, *Angew. Chem. Int. Ed.*, **2009**, *48*, 8729-8732. <u>https://doi.org/10.1002/anie.200903923</u>
- ⁵Matteson, D. S., Boronic Esters in Stereodirected Synthesis, *Tetrahedron*, **1989**, 45, 1859-1885. <u>https://doi.org/10.1016/s0040-4020(01)80052-1</u>
- ⁶Sakurai, H., Tsunoyama, H., Tsunoyama H., Tsukuda, T., Oxidative homo-coupling of potassium aryltrifluoroborates catalyzed by gold nanocluster under aerobic conditions, J., Organomet. Chem., **2007**, 692, 368-374. <u>https://doi.org/10.1016/j.jorganchem.2006.04.054</u>
- ⁷Xu, J., Wang, X., Shao, C., Su, D., Cheng G., Hu, Y., Highly Efficient Synthesis of Phenols by Copper-Catalyzed Oxidative Hydroxylation of Arylboronic Acids at Room Temperature in Water, Org. Lett., 2010, 12, 1964-1967. <u>https://doi.org/10.1021/o11003884</u>
- ⁸Prakash, G. K. S., Chacko, S., Panja, C., Thomas, T. E., Gurung, L., Rasul, G., Mathew T., Olah, G. A., Regioselective Synthesis of Phenols and Halophenols from Arylboronic Acids Using Solid Poly(N-vinylpyrrolidone)/ Hydrogen Peroxide and Poly(4-vinylpyridine)/Hydrogen Peroxide Complexes, *Adv. Synth. Catal.*, **2009**, *351*, 1567-1574. <u>https://doi.org/10.1002/adsc.200900071</u>
- ⁹Kianmehr, E., Yahyaee M., Tabatabai, K., A mild conversion of arylboronic acids and their pinacolyl boronate esters into phenols using hydroxylamine, *Tetrahedron Lett.*, **2007**, *48*, 2713-2715. https://doi.org/10.1016/j.tetlet.2007.02.069

- ¹⁰Webb, K. S., Levy, D., A Facile Oxidation of Boronic Acids and Boronic Esters, *Tetrahedron Lett.*, **1995**, *36*, 5117-5118. <u>https://doi.org/10.1016/00404-0399(50)0963d-</u>
- ¹¹Simon, J., Salzbrunn, S., Prakash, G. K. S., Petasis, N. A., Olah, G. A., Regioselective Conversion of Arylboronic Acids to Phenols and Subsequent Coupling to Symmetrical Diaryl Ethers, J. Org. Chem., 2001, 66, 633-634. <u>https://doi.org/10.1021/jo0015873</u>
- ¹²Gogoi, A., Bora, U., An Iodine-Promoted, Mild and Efficient Method for the Synthesis of Phenols from Arylboronic Acids, *Synlett*, **2012**, 23, 1079-1081. <u>https://doi.org/10.1055/s-0031-1290654</u>
- ¹³Gohain, M., du Plessis, M., van Tonder J. H., Bezuidenhoudt, B. C. B., Preparation of phenolic compounds through catalystfree ipso-hydroxylation of arylboronic acids, *Tetrahedron Lett.*, **2014**, *55*, 2082-2084. https://doi.org/10.1016/j.tetlet.2014.02.048
- ¹⁴Borah, R., Saikia, E., Bora S. J., Chetia, B., On-water synthesis of phenols using biogenic Cu2O nanoparticles without using H₂O₂, *RSC Advances*, **2016**, *6*, 100443-100447. <u>https://doi.org/10.1039/c6ra22972g</u>
- ¹⁵Chen, D.-S., Huang, J.-M., A Mild and Highly Efficient Conversion of Arylboronic Acids into Phenols by Oxidation with MCPBA, *Synlett*, **2013**, 24, 499-501. <u>https://doi.org/10.1055/s-0032-1318197</u>
- ¹⁶Guo, S., Lu, L., Cai, H., Base-Promoted, Mild and Highly Efficient Conversion of Arylboronic Acids into Phenols with tert-Butyl Hydroperoxide, *Synlett*, **2013**, *24*, 1712-1714. <u>https://doi.org/10.1055/s-0033-1339303</u>
- ¹⁷Dar, B. A., Bhatti, P., Singh, A. P., Lazar, A., Sharma, P. R., Sharma, M., Singh. B., Clay entrapped Cu(OH)x as an efficient heterogeneous catalyst for ipso-hydroxylation of arylboronic acids, *Appl. Catal. A*, **2013**, *466*, 60-67. <u>https://doi.org/10.1016/j.apcata.2013.06.051</u>
- ¹⁸Dar, B. A., Dangroo, N. A., Gupta, A., Wali, A., Khuroo, M. A., Vishwakarma, R.A., Singh, B., Iodine catalyzed solvent-free cross-dehydrogenative coupling of arylamines and Hphosphonates for the synthesis of N-arylphosphoramidates under atmospheric conditions, *Tetrahedron Lett.*, 2014, 55, 1544-1548. <u>https://doi.org/10.1016/j.tetlet.2014.01.064</u>
- ¹⁹Dar, A. M., Mir, S., Jan, M., Shamsuzzaman, Spectroscopic studies of newly synthesized steroidal pyrroles, *Eur. Chem. Bull.*, **2017**, 6(7), 321-324. <u>https://doi.org/10.17628/ecb.2017.6.321-324</u>
- ²⁰Dar, A. M., Mir, S., Molecular Docking: Approaches, Types, Applications and Basic Challenges, *J. Anal. Bioanal. Tech.*, **2017**, 8(2), 1000356. <u>https://doi.org/10.4172/2155-9872.1000356</u>
- ²¹Zhu, C., Falck, J. R., Transition Metal-Free ipso-Functionalization of Arylboronic Acids and Derivatives, *Adv. Synth. Catal.*, 2014, **11**(56), 2395. <u>https://doi.org/10.1002/adsc.201400305</u>

Received: 29.04.2020. Accepted: 30.05.2020

V. Anitha Rani^{[a]*} and Y. Bharathi Kumari^[b]

Keywords: One-pot synthesis, Schiff bases, [BMIM][OH], 1, 2, 4-triazine.

One-pot three component synthesis of (Z)-N-5-(benzylidene/substituted benzylidene)-3-methyl-6-oxo-1,2,5,6-tetrahydro-1,2,4-triazine-2-substituted benzamide derivatives were described by one-pot reaction of (Z)-4-(benzylidene/substituted benzylidene)-2-methyl-oxazol-5(4H)-ones with hydrazine hydrate followed by PhCH=NPh in [BMIM][OH] as ionic liquid for 30 min at 80-85 °C. The importance of this method includes shorter reaction time and high yield.

* Corresponding Authors

- E-Mail: anitha1810@gmail.com[a] Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad
- [b] Department of Chemistry, Jawaharlal Nehru Technological University, College of Engineering, Kukatpally, Hyderabad (A.P) India - 500 085.

INTRODUCTION

Nowadays ionic liquids (ILs) are being used widely as reaction medium for organic reactions. ILs have non-volatile nature at room temperature and are used to develop eco-friendly methods for organic synthesis.²⁻⁴ Multi component reaction (MCR) is a one-pot reaction, which contains three to more components in single reaction vessel to give a final desired product containing substantial components of all the reactants.⁵ One of great challenges in modern medicinal chemistry is design and discovery of pharmaceutical active molecules.

Nitrogen containing heterocyclic compounds abounds in nature and their application as pharmaceutical active compounds and agrochemicals are becoming increasingly important.⁶ 1,2,4-Triazin-6-ones are a very important class of heterocyclic compounds that show a wide variety of applications in both pharmaceutical and agrochemical fields. 1,2,4-triazin-6-ones have exhibited anticancer, antitumor, antibacterial and antifungal activities, antimicrobial, biological activities of cell line cytotoxicity, antimalarials, antivirals and herbicides.⁷⁻¹²

Herein, we now wish to report synthesis of (Z)-N-5-(benzylidene/substituted benzylidene)-3-methyl-6-oxo-1,2,5,6-tetrahydro-1,2,4-triazine-2-substituted benzamide derivatives by one-pot three component reaction of (Z)-4-(benzylidene/substituted benzylidene)-2-methyl-oxazol-5(4H)-ones (**1a-f**) with hydrazine hydrate (**2**) followed by Schiff base (**3**) in the presence of [BMIM][OH], mediated at 80-85 °C for 30 min with excellent yields.

EXPERIMENTAL

Melting points were measured in open capillary tubes in sulphuric acid bath and are uncorrected. TLC was run on silica gel-G and visualization was done using UV light. IR spectra were recorded using Perkin-Elmer 1000 instrument in KBr pellets. ¹H NMR spectra were recorded in DMSO- d_6 using TMS as internal standard with a 400 MHZ spectrometer. Mass spectra were recorded on Agilent-LCMS instrument under CI conditions and given by Q⁺¹ value only.

Preparation of (Z)-5-(benzylidene/substitutedbenzylidene)-2-N-(benzamide/substituted benzamide)-3-methyl-6-oxo-1,2,5,6-tetrahydro-1,2,4-triazine derivatives (4 a-f).

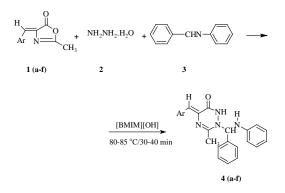
Charged the (Z)-4-(benzylidene-2-methyl-oxazol-5(4H)ones (**1 a-f**) (1 mmol) with hydrazine hydrate (**2**) (1 mmol) followed by Schiff base (**3**) (1 mmol) in 5 equiv. of [BMIM][OH]. The reaction mixture was heated at 80-85 °C for 30-40 min. the reaction was monitored by TLC (solvent system 1:3 EtOAc:hexane). After completion the reaction mixture was cooled to room temperature and poured into ice-cold water (50 mL). A solid separated out which was collected, washed with water (10 mL) and dried. The product was recrystallised from ethanol to obtain (Z)5-(benzylidene/substituted benzylidene)-2-N-(benzamide / substituted benzamide)-3-methyl-6-oxo-1,2,5,6-tetrahydro-1,2,4-triazine derivatives (**4a-f**) (Scheme 1).

4a: M.P. >230 °C. IR (KBr): 3360 (broad, -NH-N), 3313 (broad, -NH), 1680 (-C=O) cm⁻¹. ¹H NMR: δ = 2.9 (s, 3H, N-CH₃), 3.6 (s, 1H, -CH), 5.3 (s, 1H, -NH-CH) 7.2-8.8 (m, 16H, Ar-H and s, 1H, =CH-Ar), 11.2 (s, 1H, -NH). MS: M⁺+1 = 219.

4b: M.P. >230 °C. IR (KBr): 3310 (broad, -NH-N), 3244 (broad, -NH) 1659 (-C=O) cm⁻¹. ¹H NMR: δ = 2.9 (s, 3H, N-CH₃), 3.5 (s, 1H, -CH), 3.9 (s, 3H, -CH₃), 5.3 (s, 1H, -NH-CH) 7.0-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.1 (s, 1H, -NH). MS: M⁺·+1 = 249.

4c: M.P. >230 °C. IR (KBr): 3440 (broad, -NH), 3250 (broad, -NH), 1710 (-C=O) cm⁻¹. ¹H NMR: δ = 2.8 (s, 3H, N-CH₃), 3.5 (s, 1H, -CH), 5.3 (s, 1H, -NH-CH) 7.0-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.2 (s, 1H, -NH). MS: M⁺+1 = 237.

4d: M.P. >230 °C. IR (KBr): 3480 (broad, -NH), 3250 (broad, -NH), 1720 (-C=O) cm⁻¹. ¹H NMR: δ 2.9 (s, 3H, N-CH₃), 3.5 (s, 1H, -CH), 5.3 (s, 1H, -NH-CH) 7.0-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.1 (s, 1H, -NH). MS: M⁺+1 = 264.


4e: M.P. 180-182 °C. IR (KBr): 3322 (broad, -NH), 3304 (broad, -NH) 1720 (-C=O) cm⁻¹. ¹H- NMR: $\delta = 2.7$ (s, 3H,

N-CH₃), 3.4 (s, 1H, -CH), 5.7 (s, 1H, -NH-CH) 7.0-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.2 (s, 1H, -NH). MS: $M^{+}+1 = 253$.

4f: M.P. 170-172 °C. IR (KBr): 3334 (broad, -NH), 3283 (broad, -NH), 1712 (-C=O) cm⁻¹. ¹H- NMR: δ = 2.8 (s, 3H, N-CH₃), 3.5 (s, 1H, -CH), 5.5 (s, 1H, -NH-CH) 7.2-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.2 (s, 1H, -NH). MS: M⁺+1 = 253.

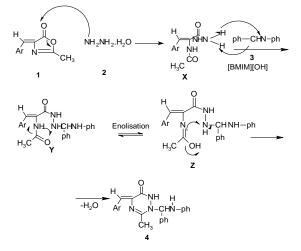
RESULTS AND DISCUSSION

Herein, the one-pot three component synthesis of (Z)-N-5-(benzylidene-3-(methyl/phenyl)-6-oxo-1,2,5,6-tetrahydro-1,2,4-triazine derivatives (4) has been described.

Scheme 1. One pot three-component synthesis of 4a-4f.

To optimize the reaction conditions, **1a** (1 mmol) was treated with **2** (1 mmol) followed by Schiff base **3** (1 mmol) in the presence of 5 equiv. of different ionic liquid ([BMIM][OH], [BMIM]Br and [BMIM]BF₆) at different temperature (Table 1). However, compound **4a** has formed with excellent yield in [BMIM][OH] as ionic liquid mediated at 80-85 °C for 30 min with excellent yields 90% (Table 1, entry 4).

Table 1. Effect of Ionic liquid and temperature on the reaction.


Entry	IL 5eq	Temp., ⁰C	Time, min	4a, %
1	[BMIM][OH]	70-75	120	85
2	[BMIM] Br	70-75	450	83
3	[BMIM] BF ₆	70-75	300	82
4	[BMIM][OH]	80-85	30	90
5	[BMIM] Br	80-85	300	85
6	[BMIM] BF6	80-85	240	84
7	[BMIM][OH]	90-95	25	86
8	[BMIM] Br	90-95	120	82
9	[BMIM] BF ₆	90-95	120	81

The structure of the compound has been confirmed by IR, ¹H and ¹³C-NMR and MS (see in Electronic Supplementary Material). The IR spectrum of the compound **4a** confirms the formation of 1,2,4-triazine-6-one derivatives by the appearance of absorptions at 3360 cm⁻¹ (NH), 2197 cm⁻¹(Ar) and 1681 cm⁻¹(C=O). The ¹H-NMR spectra showed the signals at δ 2.9 indicating methyl protons, along with trans olefinic proton observed at δ 11 and aromatic protons at δ 7.1-8.8.Signals at δ 3.8 and δ 5.2 indicate two –NH protons which were D₂O exchangeable. ¹³C NMR spectrum showed signals at δ20 (CH₃), δ115 (CH=C), δ127 (Ar C=C), δ130 (HC=C), δ137 (CH-Ar), δ139 (=CH-Ar), δ140(-C(CH3)), δ159(-CONH), δ164(N-C(Ar)-N). Further the mass spectrum of the compound **4a** showed the molecular ion peak at m/z 382 corresponding to molecular weight of the compound **4a**.

Based on the optimised condition and to test its generality the method, extended to six other derivatives and in the all cases the corresponding (Z)-N-5-(benzylidene/substituted benzylidene)-2-N-(benzamide/substituted benzamide)-3-(methyl/phenyl)-6-oxo-1,2,5,6-tetrahydro-1,2,4-triazine derivatives (**4a-4f**) were isolated in excellent yields. The synthesis of **4a-4f** in presence of [BMIM][OH] as ionic liquid at 80-85 °C for 30-40 min produced high yields, purities and short reaction time.

Mechanism

Though we have not investigated the mechanism, a plausible mechanism is suggested.

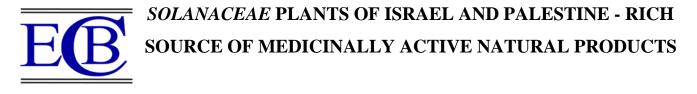
Scheme 2. A plausible mechanism of the formation of 4 a

Initially, the compound (Z)-4-(benzylidene-2-methyloxazol-5(4H)-ones 1 was reacted with hydrazine hydrate by nucleophilic substitution to form the intermediate (Z)-N-(3hydrazinyl-3-oxo-1-phenylprop-1-en-2-yl-acetamides Х which was treated with the Schiff base which is a proton acceptor, accepts proton from NH₂ group of X to produce an unstable intermediate, which in presence of a base undergoes enolisation followed by cyclocondensation and eliminates water molecule to produce the title compounds (Z)-N-5-(benzylidene/substituted benzylidene)-2-Nsubstituted benzamide)-3-methyl-6-oxo-(benzamide/ 1,2,5,6-tetrahydro-1,2,4-triazine (4a) (Scheme-2).

CONCLUSION

In summary, we developed the synthesis of (Z)-N-5-(benzylidene/substituted benzylidene)-3-methyl-6-oxo-1,2,5,6-tetrahydro-1,2,4-triazine-2-substituted benzamide derivatives (**4a-4f**) by one-pot reaction in [BMIM][OH] as ionic. The importance of this method includes shorter reaction time and high yield.

ACKNOWLEDGEMENT


Authors are very thankful to the authorities of Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad for providing laboratory facilities.

REFERENCES

- ¹Inamuddin,A. M., Green Solvents I: Properties and Applications of Ionic Liquids, Springer, UK, **2012.** https://www.springer.com/gp/book/9789400717114
- ²Inamuddin, A. M., Green Solvents II: Properties and Applications of Ionic Liquids, Springer, UK, **2012.** https://www.springer.com/gp/book/9789400728905
- ³Tundo, P., Perosa, A., Zecchini, F., Methods and Reagents for Green Chemistry: An Introduction, Wiley, New Jersey, 2007. DOI:10.1002/9780470124086
- ⁴Wasserscheid, P., Welton, P., *Ionic Liquids in Synthesis*, Wiley– VCH, Germany, **2003**. DOI:10.1002/9783527621194
- ⁵Montagne, C., Shiers, J. J., Shipman, M., Rapid generation of molecular complexity using 'sequenced' multi-component reactions: one-pot synthesis of 5,5'-disubstituted hydantoins from methyleneaziridines, *Tetrahedron Lett.*, **2006**, 47, 9207. https://www.sciencedirect.com/science/article/pii/S00404039 06021630
- ⁶Bienayme, H., *Multicomponent Reactions*, Wiley–VCH, Weinheim, **2005**, 311-341. DOI:10.1002/3527605118

- ⁷Anitha, V. R., Bharathi, Y. K., Green synthesis of 1, 2, 4-triazine-2-substituted benzamide Derivatives, *Heterocycl. Lett.*, **2019**, 9, 177-184. http://heteroletters.org
- ⁸Ayman, S., Hussaini, A., Elsherbing, H., Eman, M. R., Synthesis of 2,3,5-trisubstituted-1,2,4-triazine-6- ones as potential antitumor agent, *Der pharma chem.*, 2015, 7, 214-225. <u>http://derpharmachemica.com/archive.html</u>
- ⁹Basher, M. S., Santhosh, S., Shankariah, C. G., Konda, N. T., Khandare, S, A., Bhasker, S. D., An efficient synthesis and in vitro antimicrobial activity of 1, 2, 4- Triazin-6-(5H)-one derivatives, *Chem. Sinica*, **2010**, 2, 86-91. https://www.imedpub.com/der-chemica-sinica/archive/ipdcsvolume-1-issue-2-year-2010.html
- ¹⁰Abubshait, S. A., Abubshait, H. A., Transition Metal Complexes of Derivatized Chiral Dihydro-1,2,4-triazin-6-ones, Template Synthesis of Nickel(II) Tetraaza-(4N-M) Complexes Incorporating the Triazinone Moiety, J. Appl. Sci., 2008, 5, 750-754. DOI: 10.3844/ajassp.2008.750.754
- ¹¹Gucky, T., Frysova, I., Slouka, J., Hajduch, M., Dzubak, P., Cyclocondensation reaction of heterocyclic carbonyl compounds, Part XIII: Synthesis and cytotoxic activity of some 3,7-diaryl-5-(3,4,5-trimethoxyphenyl)pyrazolo[4,3e][1,2,4]triazines, *Eur. J. Med. Chem.*, **2009**, *44*, 891-900. https://doi.org/10.1016/j.ejmech.2008.05.026
- ¹²March, L. C, Bajwa, G. S., Lee, J., Wasti, K., Jouillie, M. M., Antimalarials: 3. 1,2,4-Triazines, *J. Med Chem.* **1976**, *19*, 845. https://doi.org/10.1021/jm00228a024

Received: 29.04.2020. Accepted: 31.05.2020.

Abdullatif Azab^{[a]*}

Keywords: Solanaceae; alkaloids; physalins; withanolides; medicinal activity; psychoactive; poisoning.

Solanaceae is one of the most studied among all plant families. Plants of this family are very rich with medicinally active natural products, some of them, with nutritional importance. Some of these compounds are psychoactive and mind altering. Alkaloids, physalins and withanolides are the major notable active natural products present in these plants. In this review article, we will present the vast majority of published research about these plants. This work will include biological and medicinal activities, extended presentation of natural products, their activities and in some cases, their synthesis, biosynthesis and production, along with other chemical aspects. Despite all the wideness of this article, we have introduced limited (but not ignored. presentations of two important aspects of this plant family, mainly due to the large size of this article. One, ethnobotany and ethnomedicine uses of these plants, and two, the influence of various cultivation conditions on these plants, and the results of these conditions.

* Co	rresponding Authors
	Fax: +972-4-6205906
	Phone: +972-50-5650025
	E-Mail: eastern.plants@gmail.com
[_1	Eastam Dianta Dagaanah Instituta Day

[a] Eastern Plants Research Institute, Box 868, Arara, Israel 30026

INTRODUCTION

The *Solanaceae* plants family is one of the most known and used by humans since the early dawn of humanity. It comprises 90 genera and 3000-4000 species, including some domesticated plants like potatos (*Solanum tuberosum*), tomatos (*S. lycopersicum*), eggplant (*S. melongena*) and chili pepper (*Capsicum annuum*).¹ These human cultivated species are among the most important for human nutrition and possees high economical value. Life forms of these plants are diverse and range from trees to annual grass.

They attracted the attentions of humans since antiquity. One of the earliest documented uses of these plants for medicinal uses can be found in the "Dioscorides Codex" (815 A.D).² All human civilizations utilized the plants of the *Solanaceae* family, while ancient people of the Americas (Maya) were the first to use the plants for food, ritual and religious matters.³ These civilizations used a wide variety of *Solanaceae* plants including the genera of *Capsicum* (some for war uses), *Solanum, Datura* and others. Shamanistic physicians of ancient Egypt used mandrake (*Mandragora autumnalis*) for several uses, including hypnosis, rituals and medications.⁴ Later studies showed that this type of use of *Solanaceae* plants was very common among all civilizations of the "Old World".⁵

Like other peoples of the world, ancient nations of the Middle East used the *Solanaceae* plants for many purposes, and these uses found their respectful rank in traditional medicines of civilizations of this region.⁶ They used and still use *Lycium europeaum*, *Solanum nigrum*, *Hyoscyamus aureus*, *Hyoscyamus albus*, *Datura* spp., *Mandragora autumnalis* and *Wifhania somnifera*. Arab-Palestinian ethnomedicine used these plants with clear caution and only in limited cases.^{7,8}

Finally, in the region between the Mediterranean sea and the Jordan river (Israel and Palestine), there are 24 species of *Solanaceae* wild plants.⁹ All of them were thoroughly studied except *Solanum cornutum* about which, as far as our knowledge could reach, there is not a single publication about its medicinal activities.

PUBLISHED REVIEW ARTICLES: SOLANACEAE AND TROPANE ALKALOIDS

Expectedly, many review articles were published about this plant family that contains great numbers of biologically active natural products. In addition, some of the plants of this family are edible and highly nutritious (especially, the domesticated species), while some of the wild species, are highly toxic and psychoactive. In this part of our review, we will introduce some selected, previously published review articles, bearing in mind that many will not be presented here, since they contain almost the same information included in the articles that we will present. We will introduce these review articles as brief summaries rather than a table, since this presentation will include many figures and some notices. Each summary will present the reviewed species, major presented topics and references. The presentation is according to alphabetical order of the species names.

1. *Datura* ssp. focusing on *D. stramonium*. A comprehensive article that presents all ssp. of the genus of *Datura*. It introduces some botany, ethnomedicine, modern medical uses (detailed), toxicity and some important active compounds.¹⁰

2. *Datura* ssp. Systematic, clearly presented and comprehensive review, with good figures and tables of active alkaloids of *Datura*. Ethno uses in Mexico and Spain are presented.¹¹

3. *Datura* ssp., antibacterial activity. Partial scan of natural products of *Datura* with antibacterial activity. The review focuses on few compounds, extensively presenting one of them, with a strange error.^{12,a} See Figure 1.

Tandon *et al.* (ref. 12) attempted to review "most promising" natural products in *Datura* ssp. with antibacterial activity. The only structure that they chose to present is the structure of this steroidal alkaloid that was isolated from *Datura metel*.

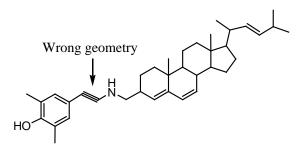


Figure 1. Wrong structure of steroidal alkaloid presented in reference 12

They cite: Okwu, D. E, Igara, E. C., Isolation, characterization and antibacterial activity of alkaloid from *Datura metel* Linn leaves, *Afr. J. Pharm. Pharmacol.*, **2009**, *3*, 277-281. Oddly enough, authors of the original research and the review article presented the structure of the alkaloid containing alkyne functional group with *trans* (*E*) stereochemistry instead of linear. Nonlinear geometry of alkynes exists only in reactive intermediates. See: Sanz, R., Recent Applications of Aryne Chemistry to Organic Synthesis. A Review, *Org. Prep. Proced. Int.*, **2008**, *40*, 215-291.

4. *Datura* ssp. Very detailed review of pharmacological activities of *Datura* ssp., with clear presentations of the structures of active natural products. Detailed tables also presented. Error in reference 12 is repeated here¹³ (see above).

5. *Datura* ssp. This very important review presents various *Datura* ssp. but focuses mainly on *D. stramonium*. The review introduces in great details its content of Tropane alkaloids (Figure 2), especially scopolamine and hyocsyamine, and the poisoning potential of the plants to animals.¹⁴

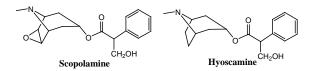


Figure 2. Tropane alkaloids, scopolamine and hyoscyamine

6. *Datura* ssp. This review focuses on *D. stramonium* and presents in very useful and detailed manner the different possibilities of *Datura* poisoning, its medical expressions and mechanisms, and most important, treatment of poisoning cases. It also presents some antidotes such as the natural alkaloid physostigmine (Figure 3).¹⁵⁻¹⁷

7. Datura stramonium. These comprehensive articles review the knowledge about this plant. Their major advantage is the detailed style but it lacks presentaion of important natural products structures. *D. fastuosa* is also

reviewed (ref. 18. but this plant does not exist in the region of the inerest of our article. 18,19

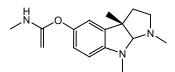


Figure 3. Physostigmine, natural alkaloid, antidote of *Datura* poisoning.

8. *Datura stramonium*. It is an important review with brief presentation of pharmacological activities of the plant, but with a wide scan of toxicity. It also includes an important, clear part of active natural products structures, alkaloids and many others.²⁰

9. Datura stramonium. A short document that presents active constituents.²¹

10. Datura stramonium. Another short document that presents in details active constituents, some structures, pharmacological activities, traditional uses (brief), with a list of amino acids present in the plant.²²

11. *Datura stramonium*. It is a veryshort documents with very few details. Useful short introductions of the plant.²³⁻²⁶

12. *Datura stramonium*. A short review that focuses on neurotoxicity of this plant, and provides a detailed list (no structures) of active compounds.²⁷

13. Datura stramonium. Despite the fact that the title of this short document gives the expression of presenting *Datura* ssp., it actually presents the toxicity history of *D.* stramonium in the 18-19th centuries in Europe.²⁸

14. *Hyoscyamus* ssp. This article reviews three plants of this genus namely *H. albus*, *H. niger* and *H. reticulatus*. It presents ethnobotanical uses, medicinal activities and list of some active natural products present in these species.²⁹

15. *Mandragora*. In one of the most comprehensive and useful review articles about this genus authors have presented in a very clear manner, with detailed structures, the interesting active natural products contained in the plants of these plants. In addition to tropane alkaloids, hydroxy acids, esters resulting from previous two families, N-oxides of tropane alkaloids, very interesting epoxy carotenoids, the structues of polyhydroxy tropane alkaloids, named Calystegines and of the alkaloid Coscohygrine, are presented.³⁰ In Figure 4 we present selected structures of three calystegines and of coscohygrine.

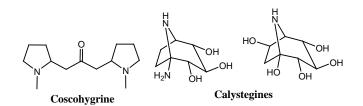


Figure 4. Structures of selected calystegines and coscohygrine (ref. 30).

16. *Nicandra physalodes*. The only published review about medicinal activities of this plant, and ethomedicinal uses are also presented. It lacks introduction of active natural products.³¹

17. *Physalis angulata*. One of the most comprehensive reviews about this plant. Information about traditional applications and medicinal activities is provided. Active natural products are extensively shown, clear structures and family classifications.³² Some of these natural products are shown in Figure 5.

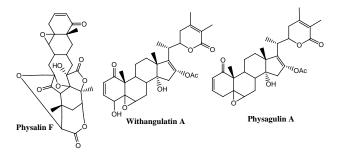
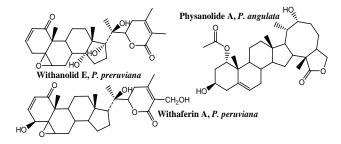



Figure 5. Selected natural products isolated from *Physalis* angulata (ref. 32).

18. *Physalis angulata*. A brief review that presents only medicinal activities.³³

19. *Physalis angulata*. This review presents medicinal activities and list some of the active compounds but does not provide structures.³⁴

20. *Physalis* ssp. Wide scan of traditional uses as well as systematic review of active natural pruducts and their structures (see Figure 6) are the two great adavantages of these reviews. They also include some medicinal activities.^{35,36}

Figure 6. Structures of natural products isolated from *Physalis* ssp. (35).

21. *Physalis peruviana*. The main focus of these reviews (by the same author. is highlighting the nutritional importance of this plant. Medicinal activities and natural products are presented.^{37,38}

22. *Physalis peruviana*. The morphology of the plant has been thoroughly discussed in this review, as well as its nutritional value. Limited chemical composition is presented.³⁹

23. *Physalis peruviana*. This short review presents the protective potential of this plant against intoxications by cigarette smoke, acetaminophen, cadmium and CCl_4 .⁴⁰

24. Solanum ssp. One of the most comprehensive and informative review articles about alkaloids of the Solanum genus and their structures. The article presents the glycoalkaloids and their free forms (aglycons, without the saccharide units).⁴¹ In Figure 7, the structure of α -Solanine is presented in both forms.

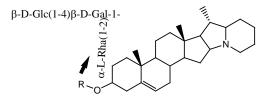


Figure 7. Glyco-α-solanine and its aglycon (ref. 41).

25. *Solanum* ssp. This review focuses on the medicinal activities of *Solanum* alkaloids, without presenting their chemistry or structures. Instead, it presents the basic structures of active natural products. For example, it presents the bicyclic skeleton on tropane alkaloids, without examples. Some of the structures are poorly presented.⁴²

26. *Solanum* ssp. This wide review focuses on two glycostreroidal-alkaloids found in *Solanum* plants: Solamargine and Solasonine (Figure 8). In addition to their structures and pharmacological activities, methods of their analysis are presented.⁴³

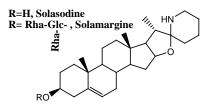


Figure 8. Solamargine and Solasonine (ref. 43).

27. Solanaceae. This vast, excellent review, presents the different active compounds groups in the *Solanaceae* plant family, their biological activities, toxicity and mechanisms of action. In Figure 9, we present some alkaloids from *Nicotiana glauca*.⁴⁴

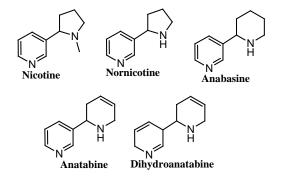


Figure 9. Selected alkaloids of Nicotiana glauca (ref. 44).

Medicinally active components in Solanaceae plant

28. *Solanaceae*. In this large review, the focus is only on insecticidal activity of alkaloids of this plant family. It presents a brief introduction about the structures of these compounds, but provides a clear presentation of the mechanisms of action and structure activity relationship. It also provides very detailed (10 pages) table of plants, alkaloids and their bioinsecticidal activities.⁴⁵

29. *Solanum elaeagnifolium*. This article discusses the botany and biology of this plant, that few decades ago was almost rare, and now, it is spreading rapidlay. In some areas of the Mediterranean basin, it became "monospecific". The article presents its negative effect on agricultural crops.⁴⁶

30. *Solanum incanum*. Two short reviews about the ethnopharmacology, medicinal activities and very short presentations of the chemical compositions. In both reviews, structures are not presented.^{47,48}

31. *Solanum nigrum*. Very colorful document, that presents the botany of the plant, very limited chemical composition (no structures. and some medicinal activities).⁴⁹

32. *Solanum nigrum*. A partial and brief presentation of chemical composition and medicinal activities of this plant.⁵⁰

33. *Solanum nigrum*. Despite the fact that the title of this article states that it discusses anticancer and antitumor activities of this plant, it also presents other activities.⁵¹

34. Solanum nigrum. A short review of the major active natural products.⁵²

35. *Solanum nigrum*. Presentation of botany, partial composition and some medicinal activities of this plant.⁵³

36. *Solanum nigrum.* An extended review that presents most topics related to this plant, including composition and medicinal activities. Special attention is drawn to the genetics of the plant, and some ethobotanical aspects are presented.⁵⁴

37. *Solanum nigrum*. Very brief sections of traditional uses and chemical composition of the plant are presented, but a wider part of medicinal activities is provided.⁵⁵

38. *Solanum nigrum*. Very short document that presents culinary uses and anti-inflammatory activity of the plant.⁵⁶

39. *Solanum nigrum*. The capacity of this plant to hyperaccommulate heavty metals from contaminated soil or water is presented.⁵⁷

40. *Solanum villosum*. Short review of botany, ethnomedicine, medicinal activities and very partial composition of the plant.⁵⁸

41. *Withania somnifera*. In this comprehensive review about many medicinal activities of this plant, chemical composition is not presented.⁵⁹

42. Withania somnifera. This excellent review, that focuses on antibacterial and antifungal activities of the plant,

includes short chemical composition description, with structures of selected active compounds. The various medicinal activities of the plants are presented, and the selected activities are very detailed in a very helpful table.⁶⁰

43. *Withania somnifera*. This document summarizes the research of anticancer activity of this plant. Various types of cancer are reviewed, mechanisms of action are presented and partial chemical composition is listed, especially the natural products with anticancer activity.⁶¹

44. Withania somnifera. This excellent and very comprehensive review about this plant, presents very datailed structures of active natural products, their biosynthesis, and their medicinal activities. This review provides some explanations for understanding the structures of withanolides (Figure 10).⁶²

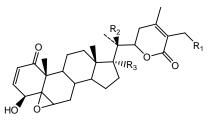


Figure 10. General structure of withanolides (ref. 62).

45. *Withania somnifera*. A minireview of medicinal activities of this plant with some information about withanolides. Structure of withanolide A is presented.⁶³

46. *Withania somnifera*. An extensive review of many medicinal activities of this plant, which includes almost every possible activity. Short chemical composition and ethnobotanical uses are presented.⁶⁴

47. *Withania somnifera*. Many medicinal activities are presented in these reviews, chemical structures and ethnobotanical uses are presented.⁶⁵⁻⁷²

48. *Withania somnifera*. A very good review that extensively presents the biosynthesis of withanolides. An excellent scheme is presented (page 5). The article presents an expanded review of ezymatic and genetic aspects, and builds future perspectives.⁷³

49. *Withania somnifera*. This review includes medicinal activities, partial chemical composition, genetic modifications, future perspective and molecular profiling. *W. coagulans* (that is not included in our review) is also discussed.⁷⁴

50. *Withania somnifera*. This is a very important and highly informative review. It presents extensive chemical composition part, along with some interesting modifications of natural products (an example is shown in Figure 11)^b. Many medicinal activities are presented, focusing on anticancer activity (an excellent figure on page 5) and neuprotection activities (excellent figure page 6).⁷⁵

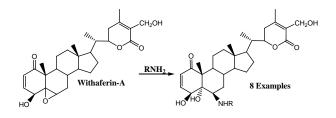


Figure 11. Aminolysis of Withaferin-A (ref. 75)^b b. Citation of Joshi, P. *et al.*, ref. 721.

51. Withania somnifera. This very extensive and excellent review presents various medicinal activities of the plant. Also, it includes a vast chemical composition section. But unlike all published reviews about this plant, this review specifies medicinal activity with single natural product. This information is summarized in clear, readable tables. In addition, it discusses the composition of the plant in two major habitats, India and Israel.⁷⁶

52. *Withania somnifera*. Anticancer activity specific review. It presents in details the anticancer activity of the plant products, its active compounds, as well as detailed mechanisms of action.⁷⁷

53. Withania somnifera. This review presents the beneficial effects of the plant products on human male fertility.⁷⁸

54. *Withania somnifera*. An excellent review of male fertility benefits of this plant and its products. The article presents general background of treating male infertility and sexual weakness with medicinal plants, partial chemical composition of this plant and some medicinal activities of it. It presents in clear and useful manner (very helpful tables and figures) the mechanism of action of the plant and its products in enhancing male reproductivity and sexual functioning.⁷⁹

55. Tropane alkaloids. This review is a followup of reference 14. It presents this family of natural products in clear link to *Solanaceae* plants, since these plants cause many cases of food contamination and poisoning, for humans and animals. The article provides chemical composition part, including general schemes of biosynthesis. But its main focus is toxicity of these compounds.⁸⁰

56. Tropane alkaloids. These three articles focus on biosynthesis and laboratory synthesis of tropane alkaloids. Biosynthetic and synthetic paths are presented in general scopes. To use these schemes for practical purposes, readers must use the original research papers cited by these review articles.⁸¹⁻⁸³

MEDICINAL, BIOLOGICAL AND OTHER ACTIVITIES OF *SOLANACEAE* WILD PLANTS

In this much extended section, we will present the published articles about the medicinal, biological and other activities of these plants. But it is important in our opinion to make it clear that some types of articles will not be presented here, for example, most publications of reported methods of enhancing the production of active natural products by these plants, through genetic engineering or various agricultural conditions. We cited some of them in order to enable the interested readers to start exploring this information, and continue their search if they want to. Due to the great phrmacological importance of these active natural products, an enormous number of researches have been published about this very important issue, a number of carefully selected articles of this type will be also presented in the next section.

The chemistry of the natural products that were isolated from the *Solanaceae* plants is very important and extremely interesting. But the vast majority of these publications are not included in this article. We have very carefully selected a few of them, which in our humble opinion, have special importance. These will be presented in a separate section.

Finally, the information in this section will be presented in tables, each presenting the published data about a single species. In this way, it is easier fot the interested readers to extract information about each plant. Publications are sorted by activity. All notes and figures related to a specific table will be shown right after it.

Datura ferox

This species is the less widespread among the three spcies that grow in our region (the others are *D. innoxia* and *D. stramonium*). But its natural habitat is very wide, including all continents. The activities of this plant are presented in Table 1.

Table 1. Medicinal, Biological and Other Activities of Daturaferox.

Activity/Property	Major Findings/Reference
Defensive alkaloids	Production of defensive alkaloids in leaves of this plant, mainly atropine, hyoscyamine, scopolamine and solanine; is adaptive to cope with herbivores. ⁸⁴
Alkaloids content	The alkaloid content ranged from 0.02-
(Argentina)	0.52 g of total alkaloids in different parts of the plant, and 0.0029-0.32 g of scopolamine per 100 g of dried material. ⁸⁵
Alkaloids content	Qualitative study of alkaloid content
(Algeria)	revealed that hyoscyamine and scopolamie are major compounds. ⁸⁶
Alkaloids content	An extended qualitative study of
(Argentina)	alkaloids content (HPLC, GC-MS) found five additional alkaloids compared with previously punlished (ref. 85). ⁸⁷
Alkaloids content (Algeria)	Quantitative study of alkaloid content revealed that hyoscyamine is major compound. ⁸⁸
Alkaloid effect on	A mixture of scopolamine and
hens and broilers	hyoscyamine (98:2), was incorporated at
	different alkaloid levels, into a control
	diet fed to 100 egg-laying hens for 3
	months. Various tests were performed to
	determine the effect of this treatment on
	different health aspects of the birds.
	Alkaloid dose as high as 75 mg kg ⁻¹ feed is safe. ^{89,90}

Chemical	Morphology and partial chemical
composition (partial)	composition, as well as general
	composition of the seeds were studied.91
Poisoning of horses	Severe poisoning of horses by D. ferox
	contaminated hay, that resulted serious
	health problems that lead to euthanasia
	in some case. Analysis showed that
	hyscyamine was the major toxin.92
Human pisoning,	A special method of forensic analysis
special forensic	was developed for detection an
method	conformation of atropine and
	scopolamine, helped confirm the death
	cause of a man by this plant. ⁹³
Toxicity test for pigs	Alkaloid toxicity for pigs showed a limit
	of 1.5 mg kg ⁻¹ feed, for animals with 20-
	60 kg weight. ⁹⁴

Datura innoxia (or inoxia)

In our region, *D. innoxia* is widespread like *D. stramonium* and most people can not distinguish between both species. It has been thoroughly studied, and a summary of these studies is presented in Table 2.

 Table 2. Medicinal, biological and other activities of Datura innoxia.

Activity/Property	Major Findings/Reference
Defensive alkaloids	Production of defensive alkaloids in
	leaves of this plant, mainly atropine,
	hyoscyamine, scopolamine and solanine;
	is adaptive to cope with herbivores. ⁸⁴
Alkaloid content	HPLC determination of total alkaloid
	content in different parts of the plant.
	Hyoscyamine and scopolamine were
	tested as well. ⁹⁵ Determination of
	alkaloids with various liquid
	chromatography techniques. ⁹⁶
	Comprehensive analysis of 38 alkaloids,
	and comaprison between alkaloid
	content of the plants in Egypt and Bulgaria. ⁹⁷ Effect of various growing
	conditions on alkaloid content. ^{98,99} GC-
	MS determination of 53 alkaloids
	contained in the plant in Morocco. ¹⁰⁰
	Influence of quantification methods on
	results of alkaloid determination. ¹⁰¹
	Feeding plants with alkaloids with
	certain stereochemistry has no effect on
	the enantiomer composition and
	content. ¹⁰²
Analgesic	Aqueous leaves extract was tested and
5	found active analgesic. It was analyzed
	for major active compounds. ¹⁰³
Antibacterial,	Aerial parts were extracted with water
antimicrobial,	and organic solvents. Extracts were
antifungal	tested against different bacteria.
	Methanolic extract was most active. ¹⁰⁴
	Flowers were extracted with 90 %
	aqueous ethanol, folllowed by various
	organic solvents. Extract was active
	against different bacteria. ¹⁰⁵ Aqueous
	and methanolic extracts were prepared

	from seeds, leaves and roots of the plant. They were tested against some bacteria and the methanolic extract was more active. ¹⁰⁶ Leaves were extracted with 95 % aqueous ethanol and the extract had clear antibacterial activity. ¹⁰⁷ Lectin was isolated from seeds of the plant and found antibacterial and antifungal. ¹⁰⁸ Ethanolic and aqueous extracts of leaves were tested, and ethanolic extract was found more active. ¹⁰⁹ Leaves and seeds aqueous extracts, that were fractionized by organic solvents, found active against some bacteria and fungi. ¹¹⁰ Methanolic extract of aerial parts was found active against some bacteria strains. ¹⁴⁰
	0
Anticancer and related activities	Leaves methanolic extract was found active against colon and breast cancer cells. ¹¹¹ Flowers methanolic extract was prepared and fractionized with other solvents. Extract and fractions showed clear cytotoxicity and anti-angiogenesis properties. ¹¹² Dinoxin B, was isolotared from the methanolic extract (and fractions) of leaves, and was found cytotoxic to cancer cells. ¹¹³
Anti-inflammatory	Aqueous leaves extract was tested and found active anti-inflammatory. ¹⁰³ Aqueous and methanolic extracts were prepared from seeds, leaves and roots of the plant. They were tested against <i>Aspergillus niger</i> fungus. Methanolic extract was more active. ¹⁰⁶
Antiparasitic, insecticide	Leaves and seeds were extracted with non-polar solvents. Extracts were active pediculocidal. ¹¹⁶ Leaves aqueous extract had high nematicidal activity. General chemical composition was also reported. ¹¹⁷ Leaves were extracted with water, methanol and hexane, and tested against <i>Agonoscelis pubescens</i> . Hexane extract had highest activity. ¹¹⁸ Fruits aqueous extract found active against <i>Holotrichia Serrata</i> (Fab). ¹¹⁹ Leaves aqueous had insecticidal activity against <i>Locusta migratoria</i> . ¹²⁰ Leaves were extracted with methanol and hexane. Both extracts found active against <i>Spodoptera Litura</i> (F.). ¹²¹ Leaves were extracted with ethanol and extract was found active against <i>Meloidogyne</i> <i>incognita</i> . General chemical composition of the extract was determine. ¹²²
Antioxidant	Leaves and seeds aqueous extracts were prepared and antioxidant capacity was determined (DPPH). ¹¹⁰ Leaves methanolic extract had high antioxidant capacity, determined with three methods. ¹¹⁴ Leaves and seeds ethanolic extracts had high antioxidant capacity, determined with three methods. ¹¹⁵ Seeds and roots were extracted with six

	solvents and antioxidant capacity was determined by two methods. General
	chemical composition was
	determined. ¹²³
Chemical	Leaves and seeds aqueous extracts were
composition	prepared and total phenolic contents and
	total flavonoid content were
	determined. ¹¹⁰ Dinoxin B, a withanolide
	was isolated from the methanolic extract and characterized. ¹¹³ See Figure 12.
	General composition was determine for
	all parts of the plant, separately. ^{124,125}
	Quantitative analysis of Hyoscine (see
	Figure 12) in three extracts of seeds. ¹²⁶
	Scopolamine and hyoscyamine content
	was determined in the seeds of diploid
	(2n) and induced autotetraploid (4n)
	forms. ¹²⁷ Total alkaloid content (1.75 %)
	and qualitative analysis of alkaloids was performed for leaves of Nigerian
	species. ¹²⁸ Roots and leaves were
	extracted with methanol and chloroform,
	successively, and phenylpropanoids and
	fatty acids were quantified.129
Enzyme inhibition	Leaves and seeds aqueous extracts were
	prepared and protein kinase inhibition
	was tested. ¹¹⁰
Phytoremediation	The plant was found good hyperaccumulator of Cd, Cu, Pb and Zn,
	for phytoremediation of contaminated
	soil. ¹³⁰
Toxicity	Leaves were extracted with 95 %
	aqueous ethanol and the extract had
	clear toxicity to rats.107 Leaves and seeds
	aqueous extracts were prepared and
	brine shrimp toxicity was determined. ¹¹⁰
	Aqueous and methanolic leaves extracts were found toxic to rats. ¹³¹
	were round toxic to rats.

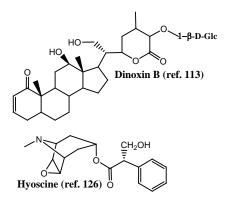


Figure 12. Selected active compounds isolated from Datura innoxia (Table 2).

Datura stramonium

D. stramonium is the most widespread of Datura species in the reviewed area. This is the main reason for the large number of published studies about it. This is also the reason of the high number of poisoning by it to humans and animals. Summary of selected published activities of this plant is presented in Table 3.

Table 3. Medicinal, Biological and Other Activities of Datura stramonium

Activity/Property	Major Findings/Reference
	•
Alkaloids	Production of defensive alkaloids in leaves of this plant, mainly atropine,
	hyoscyamine, scopolamine and
	solanine; is adaptive to cope with
	herbivores. ⁸⁴ Alkaloid analysis was
	done by GC-MS and the structures on
	new compounds were elucidated. Two
	of them are shown in Figure 13. ¹³² This
	is a followup, expanded study of
	previous one.133 Ammonia assested,
	whole plant extraction yielded hyoscine
	and atropine as main alkaloids. ¹³⁴ The
	effect of nitrate fertilization on
	alkaloids production of the plant was
	tested. Results differ between young
	and mature plants. ¹³⁶ Effect of various
	hormones and fertilizers on alkaloid
Antibacterial,	production is reported. ^{137,138,139} Ethanolic and aqueous extracts of
antimicrobial,	leaves were tested, and ethanolic
antifungal	extract was found more active. ¹⁰⁹
untilungui	Methanolic extract of aerial parts was
	found active against some bacteria
	strains. ¹⁴⁰ Dry leaves were extracted
	with 95 % aqueous ethanol. Extract
	was active against some bacteria.
	General chemical composition was
	determined. ¹⁴¹ Methanolic and
	ethanolic leaves extracts were tested
	against 7 bacteria, and found active
	against 4. ¹⁴² Leaves were extracted with four organic solvents, and extracts
	were tested against some bacteria types.
	Chloroform extract was most active. ¹⁴³
	Leaves were extracted with several
	organic solvents and extracts were
	tested against few bacteria. Hexane and
	ethyl acetate extracts were most
	active.144 Leaves were extracted with
	ethanol, and extract was found active
	against bacteria isolated from
	chicken. ¹⁴⁵ Leaves were extracted with
	85 % aqueous ethnol, and extract was
	found active against <i>Staphylococcus</i>
	aureus isolated from sheep. ¹⁴⁶ Leaves
	were extracted with some organic
	solvents, and extracts were tested
	against several types of bacteria and found active. Against <i>E. coli</i> they had
	weak activity, but in combination with
	Abutilon indicum, synergism was
	observed. ¹⁴⁷ Aerial parts were extracted
	with ethanol, chloroform and benxene.
	All extracts showed antibacterial and
	antifungal activities. ¹⁵⁴ Methanol-
	Water (70 %) extract of aerial parts
	*

had strong antifungal activity against Fusarium ssp.^{155,156} Leaves aqueous extract showed singnificant antibacterial activity against few types of bacteria. In this study, general chemical composition was also determined.¹⁵⁷ Silver nanoparticles were prepared with leaves aqueous extract, and they had antibaterial activity.¹⁵⁸ Ethanolic and aqueous extracts were prepared and found antibacterial. General chemical composition was determined in this study.159 Alkaloids were extracted (ethanol, H₂SO₄) and found very active against some types of bacteria. Alkaloids were isolated and characterized.¹⁶⁰ Different parts of the plant were extracted separately with 4 organic solvents, and extracts were tested and found aftive against several types of bacteria. General chemical composition was also determined with special attention to glycoalkaloids.¹⁶¹ Ethanolic extract was found active General antibaterial/ chemical composition was determined.¹⁶² Leaves were extracted with 80% aqueous ethanol, and protiens were isolated and found active against several types of bacteria.¹⁶³ Differenet parts of the plant were extracted separately with cold methanol. All extracts showed antibacterial activity. General chemical composition was also determined.164 Leaves were extracted with five organic solvents, and all extracts had antibacterial activity. Despite the article title, no chemical composition was reported.¹⁶⁵ Fresh whole plant was extracted with 90 % aqueous ethanol, and extract showed strong antibacterial activity. Total alkaloid content was also determined.166 Leaves were extracted with Soxhlet assembly successively with petroleum ether, benzene, solvent ether, chloroform, acetone, ethanol and methanol, and all extracts showed antibacterial activity. General chemical composition was determined.¹⁶⁷ Seeds were extracted with methanol and extract had strong antibacterial activity. Total alkaloid content was determined.168 Alkaloid wash inhibited the growth of Helianthus annuus.148 Leaf leachate (contained high concentration of alkaloids) inhibited the germination of Linum usitatissimum.149 Extracts had no effect on Sorghum halepense germination but the inhibited its

growth.¹⁵⁰ A wide range of extract

concentrations was studied for its effect

on Zea mays L. and Helianthus annuus. Interesting results were found, from growth stimulation to inhibition.¹⁵¹ Aqueous leaf concentrations (2-8 %) inhibited the growth of Vigna unguiculata and Triticum Aestivum.¹⁵² Leaves aqueous extract was prepared in concentrations of 1-5 %, and found to have negative effect on the growth of Phaseolus vulgaris, Vigna sinensis, Cajanus cajan and Medicago sativa.153 Essential oil was prepared and analyzed for chemical composition. The main components were phytosterols (see Figure 13). Saturated aqueous solution of this EO inhibited germination and growth of four crops.¹⁶⁹ Aqueous extract was used to prepare MgO-NPs which had antibacterial activity.175,c Flowers were extracted with several related activities solvents, but only ethyl acetate extract had anticancer activity (liver). Unlike claimed in article, no pure compound was isolated.¹⁷⁰ Seeds were extracted with methanol and the extract showed cytotoxic activity against MCF7 cell line. Two active compounds were identified by TLC, but they were not isolated.¹⁷¹ Leaves methaolic extract had immunomodulatory and anticancer (lung, breast) activities.¹⁷² Leaves were extracted with methanol, and extract was analyzed for alkaloids, yielding three known compounds. This fraction showed anticancer activity.¹⁷³ Leaves aqueous extract showed antidyslipidemic singnificant α -amylase inhibition activity.¹⁵⁷ Roots were extracted with 70 % aqueous methanol. Extract was hypoglycemic (STZ-induced diabetic mice) and antidyslipidemic.174 Antioxidant, anti-Leaves were extracted with some organic solvents, and extracts had moderate antioxidant activity (DPPH).147 Leaves were extracted with wound healing and related activities Soxhlet with ethanol and the antioxidant activity of the extract was determined (DPPH).¹⁶⁷ Seeds were extracted with methanol and extract had strong antioxidant activity (DPPH).¹⁶⁸ Seeds were extracted with methanol and the extract was tested for antioxidant activity (4 methods).171 Roots were extracted with 70 % aqueous methanol. Extract had significant antioxidant activity (DPPH).¹⁷⁴ Flowers were extracted with chloroform and methanol (5:7) and extract showed anticoagulant activity in poultry birds.¹⁷⁶ Seeds powder was washed with petroleum ether to remove fatty compounds, then

Allelopathy

Anticancer and

Antidiabetic,

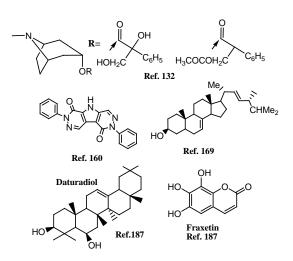
and related

inflammatory,

anticoagulant,

activities

extracted with 70 % aqueous methanol.


	Extract showed anti-inflammatory		had sedative activity on mice, showed
	activity in carrageenan induced paw		by elongation of diazepam-induced
	edema in rats. ^{177,d} Fresh leaves were		sleeping periods. ¹⁹⁰ Leaves were
	extracted with methanol and extract		extracted with petroleum ether, ethanol
	had high antioxidant activity		and water. Ethanolic extract had clear
	(DPPH). ¹⁷⁸ Leaves were extracted with		antiovulatory activity. ¹⁹¹
	several solvents and tested for	Insecticidal,	Leaves ethanolic extract showed high
	antioxidant activity (DPPH, NO/super-	antiparasitic and	insecticidal activity against Aedes
	oxide scavenging). Ethyl acetate had	related activities	Aegypti and Culex Quinquefaciatus. ¹⁹³
	highest activity. General chemical		Ethanolic seeds and leaves extract had
	composition was determined. ^{179,180}		efficient inseticidal activity against
	Leaves were extracted with methanol		Tribolium castaneum. ¹⁹⁴ Acetone
	and extract had high anioxidant activity		extract of aerial parts (excluding
	(DPPH, ABTS). ¹⁸¹ Essential oil was		flowers) had lethal effect on
	extracted from seeds by		Callosobruchus maculatus. ¹⁹⁵ Leaves
	hydrodistillation and had anti-		were extracted with several solvents
	inflammatory activity.182 Leaves were		and ethanolic extract showed highest
	extracted with petroleum ether and		activity against larvae of Culex
	50 % aq. EtOH. Extract showed		quinquefasciatus. ¹⁹⁶ Seeds were
	analgesic activity in two tests in rats.		extracted with acetone, ethanol and
	General chemical composition was		chloroform, and acetone extract was
	obtained. ¹⁸³ Leaves were extracted with		most insecticidal against Sitophilus
	70 % aq. EtOH and extract had wound		oryzae L.197 Shoots were extracted with
	healing effect on rats. ¹⁹²		methanol and extract had nematicidal
Chemical	Scopolamine and hyoscyamine content		activity. ¹⁹⁸
composition	was determined in the seeds of diploid	Metal chelating,	Alkaloid extracts had Fe ²⁺ and Cu ²⁺
_	(2n) and induced autotetraploid (4n)	accummulation and	chelating abilities. ¹³⁵ Silver
	forms. ¹²⁷ Total alkaloid content	nanoparticles	nanoparticles (AgNP's) were prepared
	(1.29 %) and qualitative analysis of		by reduction of $Ag^+_{(aq)}$ with leaves
	alkaloids was performed for leaves of		aqueous extract, and they had
	Nigerian species. ¹²⁸ Roots and leaves		antibaterial activity. ¹⁵⁸ Aqueous extract
	were extracted with methanol and		was used to prepare MgO-NPs.175,c
	chloroform, successively, and	Toxicity, body	Methanol-Water (70 %) extract of
	phenylpropanoids and fatty acids were	changes after	aerial parts showed high toxicity in
	quantified. ¹²⁹ Alkaloids were extracted	feeding	brine shrimp test.156 Alkaloid leaves
	(ethanol, H ₂ SO ₄) and characterized by		wash was found toxic to chicken when
	GC-MS (see Figure 13). ¹⁶⁰ Essential oil		concentrations were higher than 1 %. ¹⁹⁹
	was extracted from seeds by		Alkaloid seed extract that was prepared
	hydrodistillation and was analyzed by		by a multi-step method, was tested for
	GC-MS. Terpenes were major		toxicty in mice. This is a detailed study
	compounds in this EO.182 Two studies		that tested different variables and
	of general chemical composition. ^{184,185}		results. ²⁰⁰ Fatal case of dog posoning
	Seeds were analyzed for chemical		was reported of an animal that ate
	composition (GC-MS), yielding mainly		leaves. Damage was found in most
	alkaloids and terpenes.186 Seeds were		body organs.201 Small dosages (0.02-
	analyzed by column chromatography,		0.08 mL kg ⁻¹ of body mass) of seeds
	and some compounds were isolated for		aqueous extract was administered to
	the first time from the genus Datura or		buck (Africa), icreased white blood
	from the Solanaceae family. Two of		cells or spermatogenesis. Extract was
	them are shown in Figure 13. ¹⁸⁷		not evaporized and material
Enzyme inhibition,	Alkaloid extracts found as inhibitors of		concentration was not reported. ^{202,203,204}
brain influencing,	E-NTPDase, E-NTDase and ALP and		Alkaloid seed extract (1.5 mg kg-1 of
fertility influencing	stimulants of Na ⁺ /K ⁺ ATPase. ¹³⁵		body mass) caused mild toxicity in
and related	Leaves were extracted with MeOH and		pigs. ²⁰⁵ Consuming aerial parts that
activities	extract inhibited serine protease. ¹⁸¹		were present in horse food, reasulted in
	Leaves were extracted with 90 % aq.		a poisoning outbreak. ²⁰⁶ A case report
	EtOH and extract showed clear		of three horses that were poisoned by
	inhibition of acetylcholinesterase. ¹⁸⁸		eating fresh leaves while grazing other
	Known alkaloids were extracted		plants. ²⁰⁷ Many case reports of human
	(hydroethanol) and analyzed by GC-		poisoning after consumption of the
	MS. Extracts showed inhibitory activity		plant, mistakenly or deliberately.
	of cholinesterase and monoamine		Special attention is drawn to poisoning
	oxidase. ¹⁸⁹ Seeds cold aqueous extracts		management in children. ²⁰⁸⁻²¹¹

Medicinally active components in Solanaceae plant

(c) This report (ref. 175) is unclear and even misleading. Authors claim that they used D. stramonium aqueous extract to prepare MgO-NPs. They report that the strating material was "magnesium nitrate, $Mg(NO_3) 3H_2O''$. To the best of our knowledge, Mg(I)nitrate does not exist. Moreover, in all reports of NPs green synthesis, plants extracts either reduce the ions in starting materials or do not change their oxidation state. In this report, the Mg⁺ ions were oxidized to Mg^{+2} (MgO). This contradicts all known published reports. In addition, we found no commercial suppliers of manesium nitrate trihydrate (only di- and hexahydrate are commercially available). See:

Imani, M. M., et al., MgO-NPs, https://doi.org/10.1155/ 2019/6063832; Duong, T. H., *et al.*, MgO-NPs, https://doi.org/10.1155/2019/4376429; Ezealisiji, K.M., *et al.*, ZnO-NPs green synthesis, DOI: 10.1007/s40089-018-0263-1 (d) In the experimental section of ref. 177 there is a mistake in one

of the plant mentions. It is mentioned as Thevetia peruviana.

Hyoscyamus albus

Among the plants of the genus Hyoscyamus, this species, H. albus is the most studied so far. But it is important to mention that this genus is currently less investigated than some (not all) other genera of this family. Summary of selected published activities of this plant is presented in Table 4.

Table 4. Medicinal, biological and other activities of Hyscoyamus albus.

Activity/Property	Major Findings/Reference
Alkaloids	Auxin, an indole alkaloid plant hormone, increased the production of
	hyoscyamine and scopolamine (Figure 2) in roots. ²¹² Roots were analyzed for
	alkaloids, where some compounds
	were identified in this plant for the first time, along with some novel
	alkaloids. Two isomers are presented in Figure 14. ²¹³⁻²¹⁵
Antibacterial, antimicrobial,	Aerial parts were extracted with aqueous methanol (70 %) and extract
antifungal, analgesic	was found active antibacterial against
and related activities	some types of bacteria. Total alkaloid content and general chemical
	composition were determined. ²¹⁶

Leaves methanolic extract showed anlgesic (acetic acid, formalin) and antipyretic (Brewer's yeast) activities. Extract had no toxicity for albino rats.217 Leaves were extracted successively with petroleum ether, chloroform and methanol. General chemical composition was determined, and extract was active against few bacteria species.218 Aerial parts were extracted with methanol, and extract had antitumor activity several cancer cell lines.219 Atropine was isolated by HPLC and was active anticancer agent.222 Seeds were extracted by ion exchange antidyslipidemic and column and total fraction of (polyhydroxylated calystegines aminosugars, see Figure 4) was isolated. The toxicity of this fraction was measured (non-toxic up to 2000 mgkg⁻¹) and had significant antidiabetic activity (STZ-induced) in rats.220 Leaves were extracted successively with petroleum ether, chloroform and methanol. General chemical composition was determined and antioxidant capacity was measured with two methods.²¹⁸ Seeds were extracted calystegines-rich for fraction, and its antioxidant (4 methods) and anti-inflammatory (carrageenan-induced paw edema) activities were tested.²²¹ Leaves were extracted as in ref. 218. General chemical composition was determined and extract had antiulcer actvity induced by ethanol.223 Leaves were extracted as in ref. 218. General chemical composition was determined and extract had hepatoprotective actvity against CCl4-induce toxicity.224 Aerial parts were extracted with several solvents successively, and total lipid content as well as fatty acid composition were determined by TLC and GC-MS. C16:0, C17:0 and C18:0 with were detected highest concentrations.²²⁵ Aerial parts were with several solvents extracted successively and fractions were analyzed by TLC. Along with known compounds, two new natural products were isolated and their structures were elucidated by NMR spectroscopy (see Figure 14).²²⁶ Roots of the plants were fed with auxin-free supplements and Putrescine N-Methyltransferase was isolated from them. Alkaloid composition was also determined.227

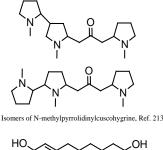
Anticancer and

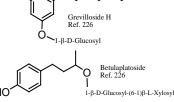
related activities

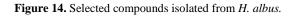
Antidiabetic,

related activities

Antioxidant, anti-


wound healing and related activities


inflammatory,


anticoagulant,

Chemical

composition

Hyoscyamus aureus

This plant is one of the least studied in the *Solanaceae* family and in the *Hyscyamus* genus. Very few studies were published about its medicinal activities, and none about its complete chemical or alkaloid compositions. So, here in this part of this review, we will present the few published studies, and some will be presented in the Discussion section.

Composition: aerial parts were extracted with several solvents successively, and total lipid content as well as fatty acid composition were determined by TLC and GC-MS. C16:0, C18:0 and C17:0 were detected with highest concentrations.²²⁵

Alkaloid production: different growth promoters (mixtures) were used for cultivation of the plants, and total alkaloid content was measured.²²⁸

Insecticidal: leaves and flowers were extracted with 70 % aqueous ethanol, extract was dissolved in water, and the solution had insecticidal activity against three species of insect. Fatal concentration was 62.5 mgmL^{-1} .²²⁹

Hyoscyamus desertorum

This is a typical desert plant that can be easily found in Southern Israel, Egypt and some regions of North Africa. Despite this, very few studies were published about its composition and medicinal properties, all were done in Egypt. Alkaloid composition of plants in Egypt was analyzed by GC-MS detecting 39 different compounds.^{214,230}

Hyoscyamus muticus

On scanning the published literature about this plant, it is apparent that it has been very partially studied. Summary of these studies is presented in Table 5.

Table 5. Medicinal,	biological	and	other	activities	of Hyoscyamus
muticus.					

Activity/Property	Major Findings/Reference
Alkaloids	Alkaloid composition of plants in
	Egypt was analyzed by GC-MS
	detecting 39 different compounds. ²¹⁴
Antibacterial,	Aerial parts were extracted with
antimicrobial,	aqueous methanol (70%) and extract
antifungal	was found active antibacterial against
e	some types of bacteria. Total alkaloid
	content and general chemical
	composition were determined. ²¹⁶
	Different species of fungi were
	exposed to hyoscyamine and
	scopolamine isolated from this plant.
	All fungi were tolerant to scopolamine
	but died when treated with
	hyoscyamine. ²³¹ Ethanolic, chloroform
	and hexane extracts of aerial parts were
	prepared by cold extraction. Each
	extract was dissolved in DMSO and
	tested against gram-positive and gram-
	negative bacteria. All extracts were
	active. General chemical composition
	was determined. ²³² Aerial parts were
	extracted with 80% aqueous ethanol
	and phenolic compounds were
	analyzed in extracts. No new
	compounds were reported. Extract was
	active against several types of
	bacteria. ²³³
Allelopathy	Aqueous extract and alkaloid fraction
	were prepared from the aerial parts.
	Both materials were tested and found
	active allelopathic against Cichorium
	intybus seeds germonation. Alkaloid
	fraction was analyzed and detailed
	compostion and structures are reported
	(all known compounds). ²³⁵
Antioxidant	Aerial parts were extracted with 80 %
	aqueous ethanol and phenolic
	compounds were analyzed in extracts.
	Antioxidant activity was determined
	with DPPH test. ²³³ Methanolic extract
	and essential oil of aerial parts were
	prepared and analyzed by GC-MS. No
	new compounds were reported. Both
	extract and EO were tested (DPPH) for
	antioxidant activity.234
Chemical	Whole plant was extracted with various
composition	solvents, and each extract was
	analyzed by GC-MS. A detailed
	chemical composition is provided,
	including known compounds that were
	isolated for the first time from this
	plant (<i>iso</i> -fucosterol, scopoletin) and
	new withnolide, Muticin (Figure
	15). ²³⁶
Insecticidal,	Aerial parts were extracted with 80 %
antiparasitic and	aqueous ethanol and phenolic
related activities	compounds were analyzed in extracts.
	Contracts were analyzed in extracts

Spodoptera littoralis (Egyptian cotton leafworm).²³³ Whole plant was extracted with various solvents, and each extract was analyzed by GC-MS. Chloroform root alkaloid extract had high activity against *Teteranychus urticae*.²³⁶

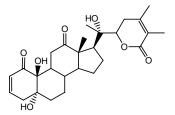


Figure 15. Structure of Muticin isolated from *Hyoscyamus muticus* (Ref. 236).

Hyoscyamus pusillus

The natural habital of this plant in the reviewed region is desert and semi-arid soils. Despite this, it is not a rare plant, but was very limitedly studied and published. Findings are summarized in Table 6.

Table 6. Medicinal, biological and other activities of *Hyoscyamus pusillus*.

Activity/Property	Major Findings/Reference
Alkaloids	Alkaloid content of whole plant was extracted and fractionized by several solvents. All isolated alkaloids are know, including apohyoscine and tropine (Figure 16). ²³⁷ Alkaloid content was analyzed in whole plant effected by two variables: growth stage and fertilizers supply. Flowering stage had the highest content and fertilizers enhanced the production of alkaloids. Hyoscyamine and scopolamine were major compounds. ²³⁸ Genetic analysis of different species of <i>Hyoscyamus</i> in realtion with alkaloid production in plants, showed that in genetically close species, similar alkaloids were produced, mainly hyoscyamine and scopolamine. ²³⁹ Comparison between different species of <i>Hyoscyamus</i> showed that <i>H. pusillus</i> contained
Antibacterial	mainly scopolamine. ²⁴⁰ Ultrasound assisted extraction was done to whole plant with water and ethanol. Both extracts were active against several types of bacteria. ²⁴¹
Anti-inflammatory	Ultrasound assisted extraction was done to whole plant with water and ethanol. Both extracts had anti- inflammatory activity (COX1- inhibition). ²⁴¹

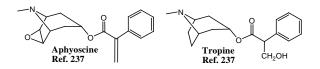


Figure 16. Active compounds isolated from Hyoscyamus pusillus.

Hyoscyamus reticulatus

This species was also, like most plants of the *Hyoscyamus* genus has been partially studied. But unlike most other species, studies of this plant are diverse. A summary is given in Table 7.

 Table 7. Medicinal, biological and other activities of Hyoscyamus reticulatus.

Activity/Property	Major Findings/Reference
Alkaloids, chemical composition	Aerial parts were extracted with several solvents successively, and total lipid content as well as fatty acid composition were determined by TLC and GC-MS. C16:0, C17:0 and C18:0 were detected with highest concentrations. ²²⁵ Genetic analysis of different species of <i>Hyoscyamus</i> in realtion with alkaloid production in plants, showed that in genetically close species, similar alkaloids were produced, mainly hyoscyamine and scopolamine. ²³⁹ Comparison between different species of <i>Hyoscyamus</i> showed that <i>H. pusillus</i> contained mainly hyoscyamine. ²⁴⁰ HPLC analysis of different aerial parts of the plant revealed that leaves contain the
Antinociceptive	highest level of tropane alkaloids. ²⁴² Aerial parts were extracted with methanol, and extract was active against pain in mice, induced by hot plate and acetic acid writhing. ²⁴³
Antihyperuricemia	Aqueous extract of aerial parts found active Antihyperuricemic in mice. ²⁴⁴
Antioxidant	Aqueous extract of aerial parts found active antioxidant (ABTS). ²⁴⁴
Enzyme inhibition	Aqueous extract of aerial parts found active xanthine oxidase inhibitor. ²⁴⁴
Toxicity	Case report of 19 children (Israel) poisoning that was treated with phytostigmine. ²⁴⁵ Six females (Turkey) were poisoned by consuming the plant and treated as mentioned before. ²⁴⁶

Lycium depressum

Plants of the *Lycium* (4 in our region) were parially studied, and this one, is one of the least. Its chemical composition is completely unkown, and wether it contains alkaloids or not, is also unkown until today. Leaves were extracted with water or 80 % aqueous ethanol, and both extracts showed notable antioxidant (several methods)

activity. Both extracts had no effect on four species of bacteria.²⁴⁷ In another study, leaves were extracted with methanol, and extract had significant wound healing activity in diabetic rats.²⁴⁸

Lycium europaeum

One of the notable properties of this plant is that its aerial parts are not toxic, and it is used as medicinal food, although it contains alkaloids and other cytotoxic natural products. But despite this, it has also been partially studied. Summary of the published data is presented in Table 8.

 Table 8. Medicinal, biological and other activities of Lycium europaeum.

Activity/Property	Major Findings/Reference
Anticacer,	Fruits were extracted with 80 %
cytotoxicity and	aqueous ethanol and extract had
related activities	cutotoxic effect on A549 human lung
	cancer cells and PC12 rat adrenal medulla cancer cells. ²⁴⁹ Fruits were
	extracted with supercritical CO ₂ .
	Obtained oil inhibited Caco-2 cell
	growth. Oil was analyzed and its
	composition was determined (no new
	compounds). ²⁵²
Antidiabetic and	Aqueous leaves extract was prepared
related activities	and was found antihyperglycemic and
	antihyperlipidemic in diabetic (alloxan)
	rats. Total phenolic and flavonoid
A (* *1 / /*	contents were also determined. ²⁵⁰
Antioxidant, anti-	Fruits were extracted with 80 % aqueous ethanol and extract had
inflammatory, analgesic	aqueous ethanol and extract had antioxidant activity (H ₂ O ₂). ²⁴⁹ Aqueous
anargesie	leaves extract was prepared and was
	found active antioxidant (DPPH). ²⁵⁰
	Leaves were extracted with water and
	extract had antioxidant (DPPH, H2O2)
	activity.251 Fruits were extracted with
	supercritical CO ₂ . Obtained oil had
	antioxidant activity (ABTS, DPPH). ²⁵²
	Whole plant methanolic extract was
	prepared and showed notable
	antioxidant (two methods) and analgesic (hot plate) activities. ²⁵³
	Polysaccharide was isolated from the
	aqueous extract of fruits. It had
	antioxidant (DPPH, H ₂ O ₂) and anti-
	inflammatory (carrageenan-induced
	paw edema in rats) activities. ²⁵⁴ Roots
	were extracted with several solvents,
	and extracts were analyzed for
	chemical composition. Main isolated
	compounds were terpenes and an
	alkaloid (see Figure 17). All extracts and isolated natural products had
	antioxidant (DPPH) activity. ²⁵⁵
Internal organs	Leaves were extracted with water and
protection, wound	extract had kidney and liver protection
healing	activity against Cisplatin induced
	injuries . ²⁵¹ Whole plant methanolic
	extract was prepared and showed

	notable hepatoprotective and
	nephroprotective activities against
	CCl ₄ -induced injuries in mice . ²⁵³
	Polysaccharide was isolated from the
	aqueous extract of fruits. It had hepato
	and renal protection against CCl4-
	induced toxicity. ²⁵⁴
Enzyme inhibition	Roots were extracted with several
	solvents, and extracts were analyzed
	for chemical composition. All extracts
	and isolated natural products had
	acetylcholinesterase inhibition
	activity. ²⁵⁵
Food	Fruits are used in North Africa as
	food. ²⁵⁶

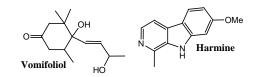


Figure 17. Selected compounds isolated from *L. europaeum* (Ref. 255).

Lycium chweinfurthii

As far as we could find in our published literature search, only two publications could be found. Different parts of the plant were extracted separately with several solvents. Each extract was analyzed and isolated compounds were characterized. No new compounds reported.²⁵⁷ A new glucoside (3-methoxy-4-*O*- β -D-glucopyranosyl-methyl benzoate) that was isolated from fruit aqueous extract, showed α -glucosidase inhibition activity.²⁵⁸

Lycium shawii

A thorny plant with red fruits, that its natural habital is desert edge. It has been partially studied and a summary of published data is presented in Table 9.

 Table 9. Medicinal, biological and other activities of Lycium shawii.

Activity/Property	Major Findings/Reference
Antibacterial,	Leaves were extracted with methanol
analgesic and related	and extract was active against some
activities	drug resistant pathogens. ²⁶⁰ Seeds
	were extracted with 70 % aqueous
	methanol and extract was very active
	against Staphylococcus aureus. ²⁶¹
	Fruits were extracted successively
	with several solvents. Most extracts
	showed significant activity against
	bacteria strains. ²⁶²
Anticacer,	Leaves methanolic extract was
cytotoxicity and	prepared and found active against
related activities	HEK293 cancer cell line. ²⁵⁹ Aerial
	parts were defatted with <i>n</i> -hexane,
	suspended in aqueous ethanol (50 %)
	and extracted with several solvents.

	Most extracts showed anticancer
	activity. ²⁶³
Antioxidant, anti-	Leaves were extracted with methanol
inflammatory,	and extract had notable antioxidant
wound healing	activity (DPPH, ABTS). Geral
C	chemical composition, total phenolic
	and total flavonoid contents we also
	determined ^{260} Fruits were extracted
	successively with several solvents.
	Most extracts showed significant
	antioxidant activity. Total phenolic
	and total flavonoid contents were also
	determined. ²⁶² Aerial parts were
	defatted with <i>n</i> -hexane, suspended in
	aqueous ethanol (50 %) and extracted
	with several solvents. All extracts
	showed anticancer activity. ²⁶³
Chemical	Aerial parts were defatted with <i>n</i> -
composition	hexane, suspended in aqueous ethanol
	(50 %) and extracted with several
	solvents. Ethyl acetate fraction was
	analyzed and detailed list of
	compounds is provided. No new
	compounds. ²⁶³ Two new compounds
	were isolated and characterized (see
	Figure 18). ²⁶⁴ Detailed chemical
	compositions were determined
	-
	effected by seasonal variations. The
	components that were reported are:
	general chemical composition,
	saccharides, fatty acids, hydrocarbons
	(including three sterols), total alkaloid,
	phenols, flavonols and tannins. ²⁶⁵
	Chemotaxonomic significance study
	of the chemical composition. No new
	compounds. ²⁶⁶
Internal organs	Aerial parts were defatted with n -
protection	hexane, suspended in aqueous ethanol
protection	(50 %) and extracted with several
	· · · · ·
	solvents. Most extracts showed
	hepatoprotective activity. ²⁶³
Enzyme inhibition	Active urease inhibitors were scanned
	and a structure-activity relationship
	study was performed.267

Mandragora autumnalis

M. autumnalis is a single species of the *Mandragora* genus, that grows in the reviewed area. Ripe fruits are edible and have pleasant smell, but all other parts of the plant are highly toxic, as can be seen in Table 10.

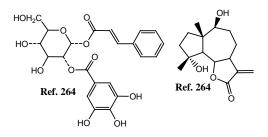


Figure 18. Selected natural products isolated from L. Shawii.

 Table 10. Medicinal, biological and other activities of Mandragora autumnalis.

Activity/Property	Major Findings/Reference
Antioxidant	Aerial parts were extracted with acetone and methanol. Extracts showed high antioxidant capacity (4 methods) and metal chelating activity. Total phenolic and flavonoid contents were determined. ²⁶⁸
Chemical composition	Aerial parts were extracted with acetone and methanol. Extracts were analyzed for fatty acids: 11 saturated (C8:0-C22:0) and 11 unsaturated (C14:1 ω 5-C20:2 ω 6). ²⁶⁸ Roots were analyzed for alkaloids and some compounds were indentified for the first time in <i>Mandragora</i> plants. Two of these alkaloids are presented in Figure 18. ²⁶⁹ In these five publications, detailed compositions of volatile and odoriferous compounds are presented after analysis or extraction of essential oil. Alkaloids or withanolides are not included. ²⁷⁰⁻²⁷⁴ Composition and morphological characteristics are presented in order to avoid misidentification that leads to poisoning. ²⁷⁵
Enzyme inhibition	Aerial parts were extracted with acetone and methanol. Extracts had notable enzyme inhibition (cholinesterase, tyrosinase, α -amylase, α -glucosidase). ²⁶⁸
Toxicity	72 Y.O. Female was poisoned after eating fruits that she mistaked with edible <i>Borago Officinalis</i> . ²⁷⁶ Two Greek and 15 Brazilian adults (separately) were treated with phytostigmine after being hospitalized with fruits eating poisoning. ^{277,278}

Nicandra physalodes

N. physalodes, known also as "Apple of Peru", is the most widespread species of the three included in the *Nicandra* genus. It was partly investigated, and most published researches focus on its active ingredients (Table 11)

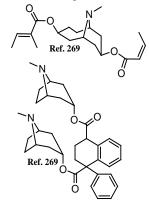


Figure 19. Natural products isolated from M. atumnalis.

 Table 11. Medicinal, Biological and Other Activities of Mandragora autumnalis.

Activity/Property	Major Findings/Reference
Antibacterial	Leaves were extracted with acetone and crude extract was fractionized with several solvents. Extract and fractions had various levels of antibacterial activity. ²⁸⁷
Anti-inflammatory	Fruits were extracted with 70 % aqueous ethanol and 18 glycosides were isolated, 3 of them new. Extract and pure compounds showed anti- inflammatory activity (NO prodution
Diuretic	inhibition). ²⁸⁴ Ethanolic and aqueous extracts of whole plant found diuretic in Wistar rats. ²⁷⁹
Insecticidal	Petroleum ether extract was prepared (plan part is not indicated) and was chromatographed for general composition: triterpenes, hydrocarbons and sterols. The crude extract and fraction had insecticidal activity against Spotted Spider Mites (<i>Tetranychus urticae</i>). ²⁸⁰ Nicandrenone, a natural product with insecticidal activity was isolated from leaves. ²⁸³ Leaves were extracted with acetone and crude extract was fractionized with several solvents. Extract and fractions had various levels of insecticidal activity against <i>Aedes</i> <i>aegypti</i> . ²⁸⁷
Chemical composition	General chemical composition was determined in fresh fruits tissue, and detailed composition of vitamins, antioxidants and minerals. ²⁸² Nicandrenone was isolated and characterized (Figure 20). ²⁸³ Three new glycosides were isolated from fruits, one of them is shown in Figure 20. ²⁸⁴ Three new withanolides were isolated from the flowers and characterized. One of them (nicphysatone B) is shown in Figure 20. ²⁸⁵ Nicanlodes A and B were isolated from the aerial parts (Figure 20). ²⁸⁶ Five new withanolides were isolated from leaves acetone extract. One of them is presented in Figure 20. ²⁸⁷
Nanoparticles and their applications	Leaves aqueous extract was prepared and used to reduce $Ag^+_{(aq)}$ ions, to prepare AgNP's, that had anti-mosquito activity. ²⁸¹

Nicotiana glauca

N. glauca is the only wild species of the *Nicotiana* genus (21), that grows in the reviewed area. Domesticated varieties of *N. tabacum* are cultivated and both species include many common natural products. *N. glauca* is toxic, as can be seen in Table 12.

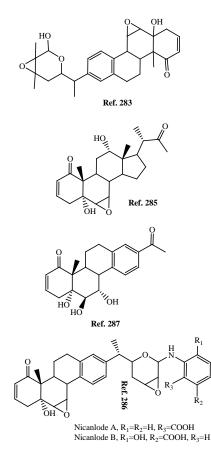


Figure 20. Natural products isolated from *N. physalodes*.

 Table 12. Medicinal, biological and other activities of Nicotiana glauca.

Activity/Property	Major Findings/Reference
Allelopathic	Aqueous extracts of different parts of the plant were prepared and their effect on the growth of <i>Juniperus</i> <i>procera</i> was studied. Leaf extract promoted growth, while root extract
Antibacterial	supressed growth. ²⁸⁸ Aerial parts were extracted with water and <i>n</i> -hexane, several times over a time period of one year, and seasonal as well as location influences were studied. Extracts had notable antibacterial activity. ²⁸⁹
Anti-inflammatory, antioxidant	Aerial parts were extracted with water and <i>n</i> -hexane, several times over a time period of one year, and seasonal as well as location influemces were studied. Content of different antioxidant compound families, including enzymes was determined. ²⁸⁹ Who plant was defatted with <i>n</i> -hexane and extracted with methanol and for alkaloids. Each part of the plant was treated similarly, and all extracts were tested for anti-inflammatory (ear edema) and antioxidant (DPPH, ABTS) activities. General chemical composition is also reported. ²⁹⁰

realcinally active comp	ponents in Solanaceae plant		Section C-Review
Insecticidal	Leaves were extracted for alkaloids and extract was analyzed by HPLC to		isolated from this extract was proposed as the natural product
	obtain pure anabasine (Figure 9). Both		responsible for this activity. ³⁰⁶ Known
	alkaloid and anabasine showed high		physalins (B, D, F) were found active
	activity against cabbage white caterpillars (<i>Pieris rapae</i>). ²⁹¹		against several types of bacteria, while physalin D was most active. Some
Chemical	Aerial parts were extracted with water		NMR results for physalin D are
composition	and <i>n</i> -hexane, several times over a		reported for the first time. ³⁴³
composition	time period of one year, and seasonal	Anticancer and	Fruits were extracted with several
	as well as location influences were	related activities	solvents and all extracts were active
	studied. General chemical		against human breast cancer MAD-
	composition, fatty acids composition		MB 231 and MCF-7 cell lines. ³⁰⁷
	and enzyme composition, were		Leaves were extracted with 70 %
	recorded. ²⁸⁹ First isolation and		aqueous ethanol, and extract was
	characterization of anabasine. ²⁹² High		active against human ovary cancer cell
	hydrocarbons (C29-C33) were		lines (SKOV3) and human blood
	analyzed in leaves by GC-MS. ²⁹³		cancer cell lines (HL60). ³⁰⁸ Whole
	Leaves essential oil was prepared by water distillation and analyzed by GC-		plant was extracted with 96 % aqueous ethanol and extract was active against
	MS. ²⁹⁴		myeloma cell line. ³⁰⁹ Ethanol and
Corrosion inhibition,	Leaves aqueous extract was prepared		aqueous extracts of fresh leaves were
metal accummu-	and found efficient corrosion inhibitor		prepared. Both extracts inhibited
lation	of steel, under different conditions of		lymphocyte cell proliferation. ³¹⁰ Nine
	acidity and salinity. Detailed		studies that present similar researches:
	potentiodynamic polarization curves		anticancer activities of natural products
	are presented.295 General chemical		isolated from this plant (physalines
	composition was determined after		and withanolides, see Figures 5, 6,
	extraction of leaves and flowers with		10). It is important to mention that
	several solvents. Metal		many of these compounds are new. ³¹¹⁻
	accumulation in these plants parts		³¹⁹ Stems and leaves were extracted
	(that grew in polluted habitat) was low. ²⁹⁶		with ethanol and methanol. Extracts had antitumor activity. ³²⁴ Whole plant
Toxicity	Two cows died after eating leaves.		was extracted with dichloromethane
Toxicity	Postmortem analysis detected nicotine		and fractionized with several solvents.
	and anabasine in corpses. ²⁹⁷ Seven		Physalin B and its 5,6-epoxide were
	ostriches that ate leaves died and		isolated. Both compounds were
	anabasine was the major toxicant. ²⁹⁸		cytotoxic (WI-38 cells).334 Physalin F
	Five reports of human poisoning by		was isolated (no plant part or solvent
	leaves of the plant, with some fatal		indicated) and proved antiproliferative
	cases. ²⁹⁹⁻³⁰³		against HTLV-1-infected cells. ³⁴¹
			Leaves were extracted with ethanol and 15 physalins were isolated, five of
Physalis angulata			them were new. All compounds had
			high anticancer activity against
	of two species of the Physalis genus,		different human cancer cell lines. ³⁴²
	rea. Both of them, were sufficiently addition, research included many areas		Cytotoxic compounds search using
nd topics, as can be s	•		various methods and techniques,
ia topics, as can be i			revealed many active natural products,
able 13. Medicinal, b	biological and other Activities of Physalis		some are new physlains, withanolides
ngulata.		A /* *1 / /*	and physagulides. ³⁴⁵⁻³⁴⁹
Activity/Property	Major Findings/Reference	Antioxidant, anti-	Ethanol and aqueous extracts of fresh
Antibacterial,	Fruits ethanolic extract found active	inflammatory and related activities	leaves were prepared. Total phenolic content was determined for both
antimicrobial,	against some bacteria, separately or	icialcu activities	extracts, and their antioxidant
antifungal	with ZnO in an formulation. ³⁰⁴		capacities were measured. ³¹⁰ Leaves
0	Essential oils of aerial parts and roots		methanolic extract was found
	were separately prepared by		analgesic (acetic acid induced writhing
	hydrodistillation. EO of aerial parts		test) and anti-inflammatory
	was more active against tested		(corregeonan induced naw edema) in

was more active against tested

bacteria, and both EO's did not affect

ethanolic extract was against some

bacteria species. Physalin B that was

Fruits

Staphylococcus aureus.³⁰⁵

(carrageenan induced paw edema) in

mice.320 Aerial parts were extracted

with super critical CO₂ and extract had anti-inflammatory activity against

TNBS-induced colitis in rats.³²¹ Whole

and

found

against formalin induced pain in

rats.325 Leaves were extracted with

methanol and extract had antioxidant

Section C-Review

compounds inhibited NO production

plant aqueous extract was prepared anti-inflammatory (carrageenan induced paw edema) in rats. General chemical composition was determined in this study.³²² Leaves were extracted with water, ethanol and methanol. Extracts had anti-inflammatory and anti-arthritic activities. Aqueous extract was most active. General chemical composition was determined.323 Roots aqueous extract had antinociceptive activity

(DPPH) activity.326 Leaves were extracted with water and extract was found active against oxidative stress in induced cell. by 2.4acid.327 dichlorophenoxyacetic Physalin E was isolated from aerial parts and tested for anti-inflammatory (12-O-tetradecanoyl-phorbol-13acetate-induced) activity in rats.328 Twelve new labdane-type diterpenoids were isolated from leaves and tested for anti-inflammatory activity (LPSinduced NO production). Ten of them found active, and structures of two of them are shown in Figure 21.329 Physalin B was isolated from whole plant ethanol extract and was active against LPS-induced inflammation.330 Different parts of the plant, which was collected in different locations and seasons, were extracted separately with 80 % aqueous ethanol. Each extract was tested for anioxidant capacity (3 methods), analyzed for total phenolic content, total flavonoid content, total phenolic acids content and analyzed with HPLC for phenolic compounds. New compounds were not reported.331 Fruits were separately extracted with 70 % aqueous ethanol and water. Each extract was tested for antioxidant capacity (ABTS, FRAP, DPPH), analyzed for total phenolic content and general chemical composition, including use of NMR.332 Leaves were extracted with methanol and general chemical composition was determined. Extract found active against ethanol-induced ulcer in rats.³³³ Methanolic extracts from leaves, roots, stems, and fruits were prepared, general chemical composition of each part was determined, and antioxidant capacity of these extracts were determined (DPPH).³³⁸ Leaves were extracted with ethanol and 15 physalins were isolated, five of them were new. most Chemical composition

Immune system and

blood cells enhan-

Enzyme inhibition

and related activities

parasitic and related

anti-

Insecticidal,

activities

cing activities

induced by LPS.342 Whole plant was extracted with dichloromethane and fractionized with several solvents. Physalin B and its isolated.334,e 5,6-epoxide were Essential oil was extracted from leaves hydrodistillation. by No new compounds reported.335 Whole plant was extracted with CH2Cl2 and n-BuOH. Three known compounds were isolated and characterized: physalin B, physalin G and quercetin 3-Orutinoside.336 Precise and comprehensive analysis of the chemical compositions of plant parts. All reported compounds are known.³³⁷ Leaves (dried or fresh) were extracted and fractionized with several solvents and total contents of alkaloids, phenolics flavonoids and saponins were determined.339,340 Leaves were extracted with ethanol and 15 physalins were isolated, five of them were new. One of them is shown in Figure 21.³⁴² Three new withanolides (physagulins A, B, C, see Figure 5) were isolated and characterized, from methanolic of fresh leaves.344 Leaves aqueous extract was prepared and had antisickling activity (blood cells).350 Leaves aqueous extract was prepared and fractionized. Fractions tested and found active in enhancing blastogenesis and stimulatory activity on B cells and less effect on T cells.351 Whole plant was extracted with CH₂Cl₂ and *n*-BuOH. Three known were isolated compounds and characterized including physalin G which inhibited α -glucosidase.³³⁶ Whole plant was extracted with dichloromethane and fractionized with several solvents. Physalin B and its 5,6-epoxide were isolated. Both were antiplasmodial compounds (Plasmodium falciparum).³³⁴ Known Physalins were active antileishmanial in parasite infected mice.352,353 Roots

aqueous extract had notable activity against Leishmania infantum.354Whole plant and different parts were extracted and fractionized ethanol, methanol, ethyl acetate, dichoromethane, chloroform, and hexane. Each extract was analyzed to obtain pure physalins. These were tested and found active against Biomphalaria tenagophila.355 Leaves were extracted with water and extract was used to prepare nickel oxide nanoparticles (NiO-NPs). Extract was used as stabilizing agent

Nanoparticles

synthesis

	not reductant. ³⁵⁶
Toxicity	Administration of plant extract (parts,
	solvents, not indicated) along with
	Methylprednisolone
	(immunosupressor, anti-inflammatory)
	resulted no toxicity in mice.357

(e) Physalin B that was reported by P.M. Kimpende and his colleagues (ref. 334) is not a new compound. Its reported epoxide was also mentioned in the past, but both epoxides differ in the stereochemistry of the epoxide group. See: Kawai, M., et al., Bull. Chem. Soc. Jpn., 1994, 67, 222–226.

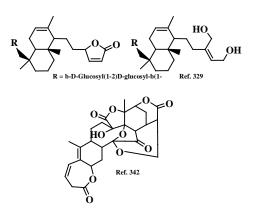


Figure 21. Selected natural products isolated from Physalis angulata.

Physalis peruviana

Even though P. peruviana is less widespread than P. angulata, locally and globally, it has ben reasonably studied. The amount of published research is sufficient and properties that were studied are diverse. Summary of research findings is presented in Table 14.

Table 14. Medicinal, biological and other activities of Physalis peruviana.

Activity/Property	Major Findings/Reference
Antibacterial,	Fruits were extracted (solvent not
antimicrobial,	indicated) and the resulting extract/s
antifungal	was/were active against 9 (out of 11
	tested) species of bacteria.358 Leaves
	and fruits were extracted with 95 %
	aqueous ethanol, and extract was
	active against <i>Listeria</i> ssp. isolated
	from meat. ³⁵⁹ Leaves and fruits were
	extracted with ethanol, and extract
	was active against Salmonella ssp. ³⁶⁰
	Fruits aqueous extract was prepared
	and found active againts six bacteria
	species. General chemical
	composition was determined in this study. ³⁶¹ Flowers were extracted with
	80 % aqueous methanol and extract
	was active against four bacteria
	species. Detailed chemical
	composition was reported but all
	compounds are previously known. ³⁶²
	Ethanolic extracts of different plant
	parts (fruit, seed, root, stem and leaf)
	were prepared separately. All extracts

Section C-Review

were active against several types of bacteria, where the fruit extract was most active. General chemical composition was determined.363 and Fruits aqueous extract was prepared related activities and found active against two types of human cancer cells.361 Flowers were extracted with 80 % aqueous methanol and extract was active against three types of human cancer cells.362 Whole plant was extracted with 95 % aqueous ethanol and extract was active against nicotine-derived-nitroamineketone-induced cancer in rats.364 Active natural product 4β-hydroxywithanolide E was isolated from different parts of the plants with different solvents and fractionation steps and found active against various human cancer cells.³⁶⁵⁻³⁶⁸ Fresh leaves were extracted separately with nhexane and ethanol. Both extracts were tested and found active against two human breast cancer cell lines.369 Fruits were extracted with ethanol and iso-propanol. Both extracts had anticancer and immunomodulatory activities.395 Fruits were defatted with petroleum ether then extracted with 95 % and related activities aqueous ethanol. The extract showed antidiabetic (STZ-induced) high-fat fed rats.370 Fruits aqueous extract was added to drinking of STZ-induced diabetic rats, resulting improvement of biochemical parameters in their brains.371 Flowers were extracted and fractionized with several solvents. Butanol and 80 % aqueous ethanolic farctions had antidiabetic activity.372 Fruits ethanolic extract had α -amylase inhibition activity.³⁷³ Obese diabetic (alloxan-induced) rats were treated with fruits ethanolic extracts, resulting improvement of both tested General parameters. chemical composition was determined in this study.374 Fruits fresh juice had high antidiabetic activity in STZ-induced diabetic rats.375 Dried fruit pomace was fed to high-cholesterol dietinduced hypercholesterolemia in rats resulting in body weight control.376 Fresh fruits were crushed and processed as pulp, which promoted insulin-dependent skeletal muscle glucose uptake.752 Antioxidant, anti-Fruits aqueous extract was prepared inflammatory and and tested for antioxidant capacity related activities (DPPH).361 Ethanolic extracts of different plant parts (fruit, seed, root, stem and leaf) were prepared separately. All extracts had notable

Anticancer

Antidiabetic,

antiobesity

antioxidant activity (DPPH). ³⁶³ Fresh	Chemical	First report of isolation and
leaves were extracted separately with <i>n</i> -hexane and ethanol. Both extracts	composition	characterization of 4β - Hydroxywithanolide E. ³⁸⁶ First report
had antioxidant capacity (DPPH).		of isolation and characterization of
General chemical composition and		perulactone. ³⁸⁷ Different protection
detailed volatile composition and		compounds (mainly withanolides and
were determined. ³⁶⁹ Fruits fresh juice		their derivatives) were isolated from
had high antioxidant (DPPH)		leaves and flowers (aqueous extract)
activity. ³⁷⁵ Filtered fresh fruite juice		and fresh fuits (juice) in various
ameliorated rabbit eye		maturity steps. New compounds are
inflammation. ³⁷⁷ Flowers petroleum		not reported. ³⁸⁸ Fresh berries juice;
ether extract was prepared, and its		seeds, and pulp/peel (extracts); were
anti-inflammatory activity was tested		analyzed by HPLC, GC-MS and FT-
by two methods: TNBS-induced		IR for fatty acids, lipid classes,
colitis in rats and inhibition of NO		triacylglyerols, phytosterols, fat-
production induced by LPS.		soluble vitamins, phenolics and β -
Antioxidant capacity of extract was		carotene. ³⁸⁹⁻³⁹¹ New alkaloids, such as
determined (DPPH, ABTS). ³⁷⁸ Leaves		physoperuvine (Figure 22) were
methanolic extract inhibited		isolated and characterized. ³⁹²
ovalbumin-induced airway		Comprehensive alkaloid analysis
inflammation by attenuating the		revealed eight compound, three of
activation of NF-KB and		them reported first time in Physalis
inflammatory molecules.379 Flowers		genus.393 Whole plant was analyzed
were extracted with methanol and 4β -		using various techniques, resulting the
Hydroxywithanolide E was isolated. It		determination of 18 odor compounds.
had anti-inflammatory activity by		Aroma recombination and sensory
inhibiting the NF-KB signaling in		evaluations tests were also
diabetic mouse adipose tissue. 380 4 β -		performed.394 Flowers of cultivated
Hydroxywithanolide E and		plants were analyzed with various
physalactone (Figure 22) were isolated		methods, revealing high
from flowers and had anhibited LPS-		concentrations (compared with wild
induced inflammation. ³⁸¹ Aerial parts		plants) of phytoprostanes (phenolics),
were extracted with water or different		some detected for the fist time in this
concentrantions of aqueous ethanol		plant. ³⁹⁶ A group of irinans (one is
(20-95 %), and antioxidant capacity of		shown in Figure 22), androstane-type
all extracts was tested (FeCl ₂ -Ascorbic		withanolides, were isolated for the
acid and lipid peroxidation). 95 %		first time and characterized. ³⁹⁷
Aqueous ethanol extract had the	Hepatoprotective	Roots were extracted with ethanol and
highest activity. ³⁸² Fresh fruit juice		50 % aqueous methanol, successively.
was added to rats food that had CCl4-		Extract had hepato-renal protective
induced liver oxidative stress, and		
improvement was recorded compaired		activity against CCl4-induced toxicity
		in rats. Further analysis of extract
with control animals.383 Fruits were		in rats. Further analysis of extract revealed that the major active natural
with control animals. ³⁸³ Fruits were extracted with ethanol and		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents.		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and culivated fruits		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and cultivated fruits were more active. ³⁸⁵ Fruits were		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant capacity (TBARS, NO radical
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and cultivated fruits were more active. ³⁸⁵ Fruits were extracted with ethanol and <i>iso</i> -	Insecticidal	in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant capacity (TBARS, NO radical inhibition) were determined. ³⁹⁹
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and cultivated fruits were more active. ³⁸⁵ Fruits were extracted with ethanol and <i>iso</i> - propanol. Both extracts were analyzed	Insecticidal	in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant capacity (TBARS, NO radical inhibition) were determined. ³⁹⁹ Withanolide E was the major
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and cultivated fruits were more active. ³⁸⁵ Fruits were extracted with ethanol and <i>iso</i> - propanol. Both extracts were analyzed for general chemical composition,	Insecticidal	in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant capacity (TBARS, NO radical inhibition) were determined. ³⁹⁹ Withanolide E was the major antifeedant against larvae of
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and cultivated fruits were more active. ³⁸⁵ Fruits were extracted with ethanol and <i>iso</i> - propanol. Both extracts were analyzed for general chemical composition, total phenolic and β -carotene contents,		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant capacity (TBARS, NO radical inhibition) were determined. ³⁹⁹ Withanolide E was the major antifeedant against larvae of <i>Spodoptera littoralis.</i> ⁴⁰⁰
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and cultivated fruits were more active. ³⁸⁵ Fruits were extracted with ethanol and <i>iso</i> - propanol. Both extracts were analyzed for general chemical composition, total phenolic and β -carotene contents, and antioxidant capacity was	Insecticidal Nutrition	in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant capacity (TBARS, NO radical inhibition) were determined. ³⁹⁹ Withanolide E was the major antifeedant against larvae of <i>Spodoptera littoralis.</i> ⁴⁰⁰ Fresh fruits juice of wild and culivated
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and cultivated fruits were more active. ³⁸⁵ Fruits were extracted with ethanol and <i>iso</i> - propanol. Both extracts were analyzed for general chemical composition, total phenolic and β -carotene contents, and antioxidant capacity was determined (DPPH, FRAP). ³⁹⁵ Fresh		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant capacity (TBARS, NO radical inhibition) were determined. ³⁹⁹ Withanolide E was the major antifeedant against larvae of <i>Spodoptera littoralis.</i> ⁴⁰⁰ Fresh fruits juice of wild and culivated plants were analyzed for nutritional
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and cultivated fruits were more active. ³⁸⁵ Fruits were extracted with ethanol and <i>iso</i> - propanol. Both extracts were analyzed for general chemical composition, total phenolic and β -carotene contents, and antioxidant capacity was determined (DPPH, FRAP). ³⁹⁵ Fresh fruits were crushed and processed as		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant capacity (TBARS, NO radical inhibition) were determined. ³⁹⁹ Withanolide E was the major antifeedant against larvae of <i>Spodoptera littoralis.</i> ⁴⁰⁰ Fresh fruits juice of wild and culivated plants were analyzed for nutritional value, and cultivated fruits contained
with control animals. ³⁸³ Fruits were extracted with ethanol and fractionized with several solvents. Extract and fractions were tested against rotenone-induced oxidative stress in astrocytic cells. Extract and acetone fraction were most active. ³⁸⁴ Fresh fruits juice of wild and culivated plants were tested for antioxidant capacity (DPPH), and cultivated fruits were more active. ³⁸⁵ Fruits were extracted with ethanol and <i>iso</i> - propanol. Both extracts were analyzed for general chemical composition, total phenolic and β -carotene contents, and antioxidant capacity was determined (DPPH, FRAP). ³⁹⁵ Fresh		in rats. Further analysis of extract revealed that the major active natural product responsible for this activity is cuscohygrine (Figure 4). ³⁹⁸ Fresh fruits juice had hepatoprotective activity against CCl ₄ -induced toxicity in rats. Analysis of extract revealed that the major active natural product responsible for this activity is kaempferol. In this study, general chemical composition and antioxidant capacity (TBARS, NO radical inhibition) were determined. ³⁹⁹ Withanolide E was the major antifeedant against larvae of <i>Spodoptera littoralis.</i> ⁴⁰⁰ Fresh fruits juice of wild and culivated plants were analyzed for nutritional

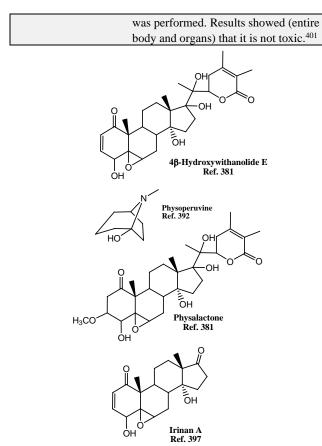


Figure 22. Selected natural products isolated from *Physalis peruviana*.

Solanum cornutum

No publications.

Solanum elaeagnifolium

This plant is one of the most known of the *Solanaceae* family and the *Solanum* genus in the reviewed region of Israel and Palestine. It can be easily confused with *S. incanum*, especially in terms of flowers shapes and colors. But leaves of both species are slightly different, where leaves of *S. elaeagnifolium* have smooth-shaped edges, while leaves of *S. incanum* have gulf-like edges.

Figure 23. Solanum elaeagnifolium

Even though *S. elaeagnifolium* was always a well known plant, it grew with low densities over a very wide range of natural habitats, excluding only very arid, desert areas. In recent years, this plant is spreading very rapidly, and now, in habitats of heavy soils, it is one of the most common plants. Its medicinal properties are presented in Table 15.

 Table 15. Medicinal, biological and other activities of Solanum elaeagnifolium.

Activity/Property	Major Findings/Reference
Allelopathy	Seeds were extracted with water and
	several organic solvents or mixtures.
	All extracts were tested for allelopathic
	activity against for plants growing in
	Corn (Zea mays) fields. Active
	extracts and fractions were analyzed
	(GC-MS), and ethanolic extract was
	most active, containing chlorogenic
	acid. ⁴⁰² Leaves aqueous extract had
	pesticidal activity against nematode <i>Meloidogyne incognita</i> and three weed
	species. Active ingredients were
	known phenolics. ⁴⁰³
Antibacterial	Leafy branches were extracted with
Antibacteria	water and several organic solvents.
	Each extract was tested against bacteria
	strains and analayzed, mainly for lipids
	and fatty acids. Detailed data is
	provided. New compounds were not
	reported. ⁴⁰⁴
Anticancer	Seeds were extracted with 30 %
	aqueous ethanol and chloroform-
	methanol (2:1, v/v), separately.
	Extracts found active in anti-
	proliferation test (MMT). ⁴⁰⁵ Whole
	plant was extracted with 90 % aqueous
	methanol and extract was
	chromatographed and analyzed,
	leading to isolation of two compounds
	(one new, see Figure 24) that had activity against several human cancer
	cell lines. ⁴⁰⁶ Fruits were extracted with
	10 % aqueous methanol, and extract
	was active against several breast cancer
	cell lines. Extract was analyzed and
	approximate composition is provided,
	presenting mainly known active
	phenolics. ⁴⁰⁷
Antidiabetic	Fruits were extracted successively with
	cyclohexane, dichloromethane, ethyl
	acetate and methanol. Each extract was
	tested for antidiabetic activity with
Antionia	Anti-AGEs assay. ⁴⁰⁸
Antioxidant, anti-	Seeds were extracted with 30 %
inflammatory and related activities	aqueous ethanol and chloroform- methanol $(2:1, v/v)$, separately.
related activities	methanol (2:1, v/v), separately. Extracts anti-inflammatory activity
	(LPS-induced NO production
	inhibition) and antioxidant capacity (4
	methods). ⁴⁰⁵ Fruits were extracted
	successively with cyclohexane,
	dichloromethane, ethyl acetate and
	methanol. Each extract was tested for

	antioxidant capacity (4 methods) and
	metal chelating activity.408 Five
	organic solvents and water used to
	extract seeds. For each extract, general
	chemical composition was determined
	and antioxidant capacity (TAOC,
	DPPH) was measured. ⁴⁰⁹
Hepatoprotective	Methanolic extract of aerial parts was
	prepared and found hepatoprotective
	against paracetamol-induced liver
	injury. In this study, a new compound
	was isolated and characterized (Figure
	24). ⁴¹⁰
Insecticidal,	Seeds methanolic extract had moderate
molluscicidal	insecticidal effect on three pest species,
	and strong effect inhibiting their
	oviposition. Leaf extract had lower
	efficiency. ^{411,412} Seeds were extracted
	with several solvents successively.
	Methanolic extract was most active
	against snails (Galba truncatula).
	Analysis of this extract revealed active
	compound β -solamarine, which was
	isolated for the first time from this
	plant. Total alkaloid and saponin
	contents of this extract were also
	determined. ⁴¹³
Toxicity	Alkaloid extract caused congenital
Toxicity	craniofacial malformations in rats and
	high ratio of deformed litter incidence.
	It is reported that solasodine (Figure 8)
	is the major cause of these effects. ⁴¹⁴
Chemical	Detailed seed oil chemical composition
composition	is presented. ⁴¹⁵ Leaves were extracted
composition	and analyzed with standard multi-step
	isolation procedure, yielded a new
	compound (Figure 24) along with
	known others. ⁴¹⁶
	KIIOWII UIIEIS.

Solanum incanum

S. incanum has a close appearance to S. elaeagnifolium, but the former grows in drier areas and it is less widespread in eastern part of the Mediterranean basin.

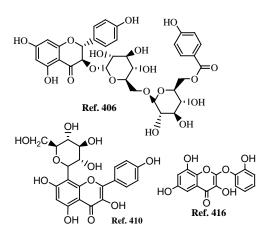


Figure 24. Selected natural products isolated from Solanum elaeagnifolium.

Table 16. Medicinal, biological and other activities of Solanum incanum.

Activity/Property	Major Findings/Reference
Antibacterial and	Aqueous and methanolic leaves
related activities	extracts found active against several
	bacteria species.417 Aerial parts were
	extracted with several organic solvents
	and all extracts were found weak
	antibacterial (B. subtilis, S. aureus E.
	coli, K.pneumoniae, P. aeruginosa). ⁴¹⁸
	Ethanolic fruits extract was analyzed for general chemical composition, and
	it had notable antibacterial activity. ⁴¹⁹
	Unripe fruits methanolic extract found
	active against some bateria species. ⁴²⁰
	A mixture of ripe and unripe fruit
	juice was prepared and diluted with
	water to prepare solutions with ten
	solutions, 10-100 $\mu L/10$ mL. 70 μL
	Was most effective against oral
	bacteria. ⁴²¹ Fruits methanolic and
	aqueous extracts were prepared, diluted to a range of concentrations,
	and foud active against <i>S. aureus</i>
	and/or other bacteria species. General
	chemical composition was determined
	in these studies. ^{422,423} Aerial parts
	were extracted with 80 % aqueous
	ethanol. Extract was analyzed for
	general chemical composition and
	found active against several bacteria
	types. ⁴²⁴ Fruits juice was filtered on silica gel and fractionized with several
	solvents. Some fractions had notable
	antibacterial activity, but it is reported
	that a compound that had "purine-like
	in structure and probably
	phosphorylated" had high activity.
	Compound was isolated by TLC but
	structure is not reported. ⁴²⁵ All parts
	of the plant, including ripe and unripe
	fruits were extracted separately with methanol, petroleum ether and
	cholroform, each. All extracts were
	tested (10-20 %) against six microbial
	species. Methanolic extract of ripe
	fruit was most active and peroleum
	ether extracts were inactive. General
	chemical composition is reported.426
	Fruits were extracted with 70 %
	aqueous ethanol. Extract was analyzed
	for qualitative composition and found active against several bacteria
	species. ⁴²⁷ Fruity aerial parts were
	extracted with methanol and extract
	was analyzed for general chemical
	composition. It was found active
	against two bacteria species.428 Nano
	particles were prepared by mechanical
	procedure from dry fruits powder and
	from dry methanolic extract of this
	powder.

·			
	Both nano particles found active		Fresh fruit juice was diluted with
	against P. erinaceus and E. coli.429		water and was found active against
Anticancer	Extract "SR-T100" (no preparation		cattle ticks larvae (Rhipicephalus
	method) which contains mainly		decoloratus).443 Fresh fruit juice was
	alkaloid fraction (solamargine), had		found active insecticidal against
	anti-ovarian-cancer activity.		cabbage aphids (Brevicoryne
	Mechanism of action is also		brassicae). ^{444,f}
	investigated.430 Extract "SR-T100"	Nutrition	Nurtitional values and general
	(partial preparation method) found		chemical composition are
	active against lung melanoma cells.431		reported.445,446 Fresh fruit juice added
	Aqueous fruit extract found active		to milk resulting milk clotting for the
	against human colorectal carcinoma		purpose of cheese manufacturing.447
	cell line (HCT 116).432 First isolation	Toxicity	Unripe fruits were found toxic to
	and characterization of incanumine		goats.448 Unripe fruits and seed are
	(fruits, methanolic extract), structure		reported as causing poisoning cases of
	elucidation, which revealed a		livestock. Results are: diarrhea,
	glycoside of solasodine (Figure 8). It		lacrimation incoordination,
	was found active against human		inappetance. ⁴⁴⁹ Fruits ethanolic extract
	hepatoma cancer cells.433		was added to healthy female Swiss
Antidiabetic	Aqueous fruit extract modulated		mice, in a single dose of 100, 250,
	glucose uptake by yeast cells inhibited		500, 750, 1000 and 2000 mgkg ⁻¹ body
	the enzymes α -glucosidase and α -		weight. Signs of toxicity and mortality
	amylase.434 Fruits aqueous extract had		were noted after 1, 4 and 24h of
	clear antihyperlipidemic activity in alloxan-induced diabetic rats. ⁴³⁵		administration of the extract for 14 days. ⁴⁵⁰
Antioxidant, anti-	Roots were extracted with	Chemical	Analysis of 80 % aqueous methanolic
inflammatory and	dichloromethane and extract was	composition	extract of leaves and fruits, resulted
related activities	found active antinociceptive	composition	the isolation and charcterization of a
related activities	(formalin-induced) and anti-		new steroid shown in Figure 25. ⁴⁵¹
	inflammatory (carrageenan-		Whole plant was extracted with
	induced). ⁴³⁶ Leaves were extracted		petroleum ether, chloroform,
	with 80% aqueous methanol and		methanol, and ethanol, separately.
	extract had analgesic activity in hot		Each extract was analyzed with GC-
	plate test and acetic-acid induced		MS. Detailed chemical compositions
	writhing test in mice.Very general		and spectra are presented. New
	chemical composition was		compounds are not reported. ⁴⁵²
	deterined.437 Roots were defatted with		General chemical composition is
	petroleum ether and extracted in a		presented. ⁴⁵³⁻⁴⁵⁶ Using two
	standard procedure to obtain		countercurrent chromatographic
	flavonoid-rich extract, and it was		techniques resulted the isolation of
	analyzed for general chemical		solasonine and solamargine (Figure
	composition. This extract had anti-		8). ⁴⁵⁷ Changes in the concentration of
	inflammatory and antinoceceptive		glycoalkaloids solasonine and
	activies, after inducing these health		solamargine according to growth
	disorders (both) in mice with		steps. ^{458,459}
	formalin.438 Methanolic extract of		
	aerial parts was prepared, and its		
	antioxidant (DPPH) capacity was		
	measured. ⁴³⁹ Leaves methanolic		
	extract was prepared and an ointment		vas more investigated as can be concluded
	was made containing 1% of this		shed studies about both plants. Summary
	extract. Ointment found active against	of these studies is	presented in Table 16.
	burn wound induced by hot metal rod. ⁴⁴⁰		
Insecticidal,	Methanolic extract of aerial parts was		▲ <u>/</u> _Q
molluscicidal,	prepared and was found active against		\sim
antiparasitic	four parasite species. ⁴³⁹ Roots were	~1	
	extracted with 98% aqueous ethanol		$\downarrow \downarrow \sim = \langle$
	and extract was active against	\smile	
	Schistosoma mansoni-infected	•	Ref. 451
	mice. ⁴⁴¹ Fresh fruits aqueous extract		
	and found active against Chilli root		
	knot pematodes (Meloidegyne) ^{442,f}		

Figure 25. Struture of a steroid isolated from Solanum incanum.

knot nematodes (Meloidogyne).442,f

Solanum nigrum

This species is the most studied among the plants of the *Solanum* genus. In the reviewed region, it is unmistakable with other plants, since most people can identify it very easily. It has been very extensively studied and published for almost every possible activity and property. Summary of these published studies is presented in Table 17.

 Table 17. Medicinal, biological and other activities of Solanum nigrum.

Activity/Property	Major Findings/Reference
Allelopathy	Shoots and roots were extracted
	separately with water. Both extracts
	had allelopathic effect on seed
	germination of cabbage, spinach and
	tomato. Roots essential oil was
	prepared and analyzed by GC-MS. A
	detailed composition is presented but
	new compounds are not reported.460
Antibacterial,	Various parts of the plants were
antifungal, antiviral	extracted with methanol and extracts
and related activities	were tested against four bacteria
	species. Extract of whole plant had
	highest activity. ⁴⁶¹ Fruits were
	extracted with seven solvents and
	extracts were tested against some bacteria species. Methanolic and
	aqueous extracts had highest
	activities. ⁴⁶² Leaves were extracted
	with 95% aqueous ethanol and extract
	was found active against pathogenic
	bacteria. ^{463,464} Acetone whole plant
	extract was prepared and found active
	antibacterial. General chemical
	composition was determined in this
	study.465 Leaves aqueous extract was
	used to prepare silver nanoparticles
	(AgNP's), that had activity against S.
	typhi and S. aureus.466 Solanine was
	isolated from leaves and found active
	against several bacteria species.467
	Aerial parts were ultrasonic-assisted-
	extracted with ethanol. Extract had
	activity against several bacteria
	species, with rutin as the major active
	compound. A mechanism of action is presented. ⁴⁶⁸ Aqueous and methanolic
	extracts were prepared and both were
	active against bacteria and fungi.
	General chemical composition was
	determined. ^{469,470} Gold nanoparticles
	AuNP's were prepared using aqueous
	extract of leaves. AuNP's had strong
	antibacterial activity. ⁴⁷¹ Ethanolic
	extract was prepared after defatting
	the "plant materials" (no parts
	indicated) with petroleum benzene and
	its antibacterial properties were tested.
	General chemical composition was
	determined and functional groups (in
	extract) were detected by IR
	spectroscopy. ⁴⁷² Leaves were

extracted with five solvents and for each extract, antibacterial activity and general chemical composition were determined.⁴⁷³ Leaves methanolic extract was prepared and found active antibacterial. General chemical composition and detailed analysis by GC-MS is provided, with structures and chromatograms. Some interesting siloxans are shown.474 Whole plant was extracted with water, acetone and ethanol, separately. Each extract was tested for antibacterial activity and analyzed for flavonoids.475 Leaves were extracted with water, chloroform and *n*-butanol, separately. For each extract, general chemical composition and antibacterial activity were determined.476 Leaves aqueous extract was prepared and found activie against different fungi species. General chemical composition is presented.^{477,478} Whole plant was extracted with 70 % aqueous ethanol, and extract was active against Cabbage Black Leaf Spot Disease (Alternaria brassicicola). Analysis (LC-MS, NMR) of extract lead to the natural product responsible for this activity: degalactotigonin (Figure 26).479 Different parts of the plant were extracted with methanol and extract was fractionized with acetone, *n*-hexane and chloroform. Extract and fractions had antiviral activity (hepatitis C), where seed extract was most active.480 Solanine was isolated from leaves and found active against HEP-2 and AGS cell lines.467 Aerial parts were ultrasonic-assisted-extracted with ethanol. Extract had activity against several cancer cell lines, with rutin as the major active compound. A mechanism of action is presented.468 Ethanolic, methanolic and aqueous extracts of fruits were prepared. All had anticancer activity against HL-60 human leukemia cell lines.⁴⁸¹ Leaves were extracted with chloroform and 80 % aqueous methanol. The combined extracts were active against PC3 and Hela-a cancer cells.482 Leaves aqueous extract had anticancer activity against human breast cancer

cells. Detailed mechanism of action is presented.⁴⁸³ Unripe fruits were extracted with hexane and chloroform, then with methanol. Extract was treated for alklaloid extraction and

concentration of α -solanine. This extract had high activity against

showed

analysis

HPI C

Anticancer

high

Adriamycin (commercial name, active compound: doxorubicin) resistant cancers.⁴⁸⁴ Fruits ethanolic extract was active against breast cancer cells.485 Aqueous whole plant extract had activity against human breast cancer cells MCF7 cells. Mechanism of action is presented.486 Solanine A, a new natural product that was isolated from the fruits, showed activity against MGC803, HepG2 and SW480.487 A new nor-spirosolane (unnamed) type steroidal alkaloid was isolated from unripe fruits, exhibited anticancer activity against HL-60, U-937, Jurkat, K562, and HepG2 cell lines.488 Leaves were extracted with ethanol and water, separately. Both extracts were analyzed for active compounds and a detailed list and structures are presented. New compounds are not reported. Both extracts and active compounds had anticancer activity (HepG2).489 Solamargine (commercially purchased) was found active against human cholangiocarcinoma QBC939 cancer cells.⁴⁹⁰ Ten (purchased) known alkaloids were tested for anticancer activity through SAR study.491 Leaves aqueous extract was found active against AU565 breast cancer cells. It was analyzed (HPLC) for phenolics and a detailed composition is presented.492 Six known glycoalkaloids were tested and found active against MGC-803 cancer cells.493 Stems were defatted with petroleum ether and extracted with 80% aqueous methanol, to obtain a polysaccharide (glucose and galctose). This polysaccharide was found active against RAW 264.7 cancer cells.494 Leaves were extracted and fractionized with several solvent, yielding the isolation of a new saponin. Uttroside B. It was characterized (Figure 26) and found active against liver cancer cell line, HepG2.495 Polysaccharide was isolated (plant part not indicated) by extraction with ethanol. Extract had activity against H22 cancer cells. Monosaccharide composition is not reported.⁴⁹⁶ Six new steroidal saponins were isolated from whole plant ethanolic extract, along with degalactotigonin, and all had activity against four types of cancer cell lines.497 Degalactotigonin was isolated from leaves and commercially purchased, and found active osteosarcoma cells.⁴⁹⁸ Leaves aqueous

	extract acted synergitically with known anticancer synthetic drugs (Cisplatin, Doxorubicin, Docetaxel, and 5-Fluorouracil) against human colorectal carcinoma cells. ⁴⁹⁹ Leaves extraction with methanol yielded seven known compounds. Five of them had anticancer activity (inhibition of GL11-DNA complex formation), where phisalin H was most active. ⁵⁰⁰ Commercial solamargine inhibited the progression of gasrtic cancer by regulating lncNeat1_2 via the MAPK pathway. ⁵⁰¹ Alkaloid fraction was extracted with <i>n</i> -butanol, and it was active against LIM-1863 human colon carcinoma cell line. ⁵⁶²
Anticonvulsant	Leaves were extracted with <i>n</i> -hexane, benzene, chloroform, ethanol and water. All extracts were analyzed for flavonoid composition, and tested for anticonvulsant activity (electric shock in rats). Ethanolic extract was most active. ⁵⁰²
Antidiabetic, anti- obesity and related activities	Low concentrations of fruits aqueous extract, have vasodilatory effect in diabetic (STZ-induced) and non-diabetic rats. Higher concentrations produced counter effect. ⁵⁰³ Fruits aqueous extract had nephropathy prevention effect in diabetic (STZ-induced) rats. ⁵⁰⁴ Fruits aqueous extract had blood glucose lowering, antihyperlipidimic, and sensitivity lowering of the vascular mesenteric bed to phenylephrine effects, in diabetic (STZ-induced) rats. ⁵⁰⁵ Leaves were extracted with 50 % aqueous ethanol, and extract had α -amylase inhibition activity in STZ- induced diabetic rats. Phenolic composition was determined. ⁵⁰⁶ Rats were toxicated with ethanol resulting elavation blood lipid levels. Animals were treated with fruits aqueous extract, which showed strong antihyperlipidemic activity. ⁵⁰⁷ Phenolic (aqueous) whole plant extract was found to have anti-obesity activity in high-fat-diet mice. ⁵⁰⁸ Leaves aqueous extract was active in diabetic (STZ-induced) rats. ⁵⁶⁹
Antioxidant, anti- inflammatory and related activities	Solanine was isolated from leaves and found active antioxidant (DPPH, H ₂ O ₂). ⁴⁶⁷ Gold nanoparticles AuNP's were prepared using aqueous extract of leaves. AuNP's had strong antioxidant (DPPH, H ₂ O ₂) activity. ⁴⁷¹ Solanine A, a new natural product that was isolated from the fruits, showed anti-inflammatory activity through

inhibition of LPS-induced

NO

production.487 A new nor-spirosolane (unnamed) type steroidal alkaloid was isolated from unripe fruits, exhibited anti-inflammatory activity through inhibition of LPS-induced NO production.488 ⁴⁸⁸ Leaves were extracted with ethanol and water, separately, and extracts were analyzed for active compounds. Both extracts and active compounds had antioxidant activity (DPPH).489 Stems were defatted with petroleum ether and extracted with 80 % aqueous methanol, to obtain a polysaccharide (glucose and galctose). This polysaccharide inhibited LPS-induced NO production.494 Leaves were extracted with *n*-hexane, benzene, chloroform, ethanol and water. All extracts were analyzed for flavonoid composition, and tested for antiinflammatory activity (carrageenaninduced paw edema in rats). Ethanolic extract was most active.502 Rats were toxicated with ethanol resulting elavation of oxidant thiobarbituric acid reactive substances. Animals were treated with fruits aqueous extract, which showed strong antioxidant activity.507 Whole plant was extracted with 95 % aqueous methanol, and extract showed significant dose dependent antiinflammatory activity in carrageenin and egg white induced paw edema in rats.⁵⁰⁹ Leaves chloroform extract was found to have antinociceptive (hot plate and formalin tests), antiinflammatory (carrageenan-induced paw edema) and antipyretic (Brewer's yeast-induced pyrexia test) in mice.510 Fresh fruits were extracted with 50 % aqueous ethanol to obtain a new compound, Spirost-5-ene- 3β , 12β -diol (Figure 26) along with other known natural products. Extract and isolated compounds inhibited LTC₄-release (anti-inflammatory activity).⁵¹¹ Oral inflammation was induced in rats by methotrexate and radiation. Leaves aqueous extract was found active inflammation.512 against this Ethanoloc extracts of aerial parts (excluding flowers) were tested for antioxidant activity (Mo-VI, DPPH), their general chemical and compositions were determined.513 Leaves or fruits were extracted with several solvents and antioxidant capacity (DPPH) of extracts was determined.^{514-517,522} Leaves were extracted with several solvents and antioxidant capacity of extracts was

	determined by stabilization of Sun flower oil. Polar extracts were more active than nonpolar ones. General chemical compositions were determined in this study. ⁵¹⁸ Aerial parts were extracted with 95 % aqueous ethanol. Extract was analyzed for general chemical composition, and had antioxidant, anti-inflammatory and anti-ulcer acttivities. ⁵¹⁹ Leaves were extracted with water, and extract was fractionized for alkaloid content. Both crude extract and alkaloid fraction had significant antioxidant activity. ⁵²⁰ Fruits were extracted with several aqueous-organic mixed solvents, and extracts were tested for antioxidant capacity (DPPH) and general chemical compositions were determined. ⁵²¹ Frozen fruits were extracted for anthocyanins fraction, and it was analyzed for its componets. Its antioxidant capacity was
	determined by ABTS test. ⁵²³ Leaves aqueous extract had notable activity of healing second degree burn wounds in rats. ⁵²⁴
Anti-stress	Stress was induced in rats by cycles of light-dark and immobilization. These animals were treated with leaves aqueous extract, resulting improvement in several physiological parameters (brain enzymes) compared with control. ⁵²⁵
Hepatoprotective	Leaves were extracted with water, and extract was fractionized for alkaloid content. Both crude extract and alkaloid fraction inhibited formation of thiobarbituric acid reactive substances in rats liver. ⁵²⁰ Fruits were extracted with 95 % aqueous ethanol and extract was active against CCl4-induce damage of liver rats. ⁵²⁶⁻⁵²⁹ Leaves aqueous extract had protective effect in rats liver against oxidative damages of thymus DNA. ⁵³⁰ Aqueous extract (plant part not indicated) had ameliorative effect on high-fat/ethanol damages of rat liver. Extract had also antidiabetic effect. ⁵³¹
Insecticidal, molluscicidal, antiparasitic	Seeds were extracted with methanol and extract had nematicidal activity. ¹⁹⁸ Plants were cultivated with growth promoters to produce high concentrantions of glycoalkaloids, which were extracted with 95 % aqueous methanol. These extracts were highly active against bilharziasis. ⁵³² Aerial parts were extracted successively with dichloromethane, methanol and 80 % aqueous methanol. Extracts were

active against Galba truncatula

(snail).⁵³³ Leaves were extracted with methanol, and extract had antileishmanial activity in mice. Extract antibacterial activity was also investigated.534 Eight extracts were prepared from leaves using water and organic solvents. All extracts were tested for molluscicidal (Lymnaea acuminata) and insecticidal (Culex vishnui) activities. General chemical composition is also presented.535 Several fruits extracts were found active mosquitocidal (Culex quinquefasciatus).536 Alkaloid fraction extracted from leaves was active against citrus whitefly (Dialerodus citri).537 Leaves were extracted with methanol:chloroform (v:v). 1:1 Extract had strong activity against two mosquito species (Culex vishnui and Anopheles subpictus).⁵³⁸ Green leaves were extracted with several solvents, and extracts were found active against Colorado potato beetle, Leptinotarsa decemlineata, where methanol extract was most active. Among active compounds, cis-hex-3-enyl acetate, was highly active.545 Leaves aqueous extract was used to

Metal accummulation, corrosion inhibition, nanoparticles

prepare silver nanoparticles (AgNP's) by reduction of silver nitrate solution.466 Gold nanoparticles AuNP's were prepared using aqueous extract (reductant) of leaves and AuCl.471 Leaves methanolic extract was prepared and used for steel corrosion inhibition and preparation of gold nanoparticles (AuNP's) by reduction of chloroauric acid (HauCl₄).⁵³⁹ Growth of the plants and its production of different natural products, especially antioxidant enzymes, was tested under the effect of cadmium accummulation. The metal ions were accummulated in highest concentration in leaves, and over all tested properties and activities of the plant were not affected.540 Plant was found as a good phytoremediator cadmium removal for from contaminated soils, without or with biochar.541,542 Comprehensive analysis of seed with special focus of nutritional potential. Presented parameters are: protein content, ash and mineral contents, dry matter, fatty acids composition, iodine

value, saponification value, peroxide value, energy value, viscosity and triglyceride composition.⁵⁴³ Ripe fruits were extracted and fractionized with various solvents, including obtaining

alkaloid fraction. All products were

Chemical composition and related activities

for analyzed general chemical composition and some medicinal activities (such as antioxidant) to determine the toxicity/safety of these fruits. The aim of this study was to consider the possible use of these fruits as food source. The results indicate that the fruits are not toxic.544 Changes in the concentration of glycoalkaloid solasonine according to growth steps.459 Solanine A (Figure 26), a new natural product that was isolated from fruits along with other three new compounds: 7a-OH khasianine, 7a-OH solamargine and 7α-OH solasonine .487 A new norspirosolane (Figure 26 unnamed) type steroidal alkaloid was isolated from unripe fruits, with two novel spirosolane type steroidal alkaloid glycosides.488 In the following reports, chemical compositions and some activities were reported but new compounds were not isolated. In some cases, known natural products were isolated for the first time from this species or the Solanum genus. Some reports are very detailed.546-561 Two new quercetin-3-gycosides were isolated from fruits meathnolic extract.563 Two new saponins, solanigroside Q and solanigroside R (Figure 26) were isolated from whole plant methanolic extract.564 Whole plant was extracted with several solvents and extracts were fractionized. Extracts had anticholinesterase and anti-tyrosinase activities. Two new phenolic glycosides were isolated, one of them is shown in Figure 26.565

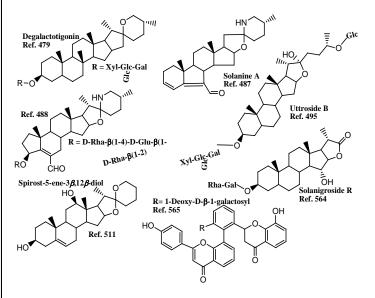


Figure 26. Structures of selected natural products isolated from *Solanum nigrum*.

Nutrition

Solanum villosum

Despite the very wide habitat of this plat, where it grows in the coldest and most rainiest areas (North) of the reviewed region, to the driest and most arid deserst areas in the South. It is very easy to confuse it with *S. nigrum*. Out of fruit ripening season, the major visible difference is that stems (and to less extent, leaves) of *S. nigrum* are smooth while these of *S. villosum* are hairy. After fruits ripening, is very easy to distinguish both species: fruits of *S. villosum* are very red while fruits of *S. nigrum* are black. *S. villosum* was limitedy studied, and a summary of selected published studies about it are presented in Table 18.

 Table 18. Medicinal, biological and other activities of Solanum villosum.

Activity/Property	Major findings/Reference
Antibacterial	Leaves aqueous extract was found active against frour bacteria species. ⁵⁷² Oils from leaves and fruits were extracted using petroleum ether. Both oils had activity against four bacteria species. ⁵⁷³
Anticancer	Alkaloid fraction was extracted with <i>n</i> -butanol, and it was active against LIM-1863 human colon carcinoma cell line. ⁵⁶² Leaves ethanolic extract was found active against diethylnitrosamine-induced hepatocellular carcinoma in experimental rats. ⁵⁶⁶ Silver nanopartcles (AgNP's) were prepared using leave aqueous/ethanolic extract to reduce AgNO ₃ solution. Extracts and AgNP's had anticancer activity (diethylnitrosamine-induced). ^{567,568,578}
Antidiabetic	Leaves aqueous extract was active in diabetic (STZ-induced) rats. ⁵⁶⁹
Antioxidant	Leaves were extracted with ethanol, and antioxidant capacity (DPPH) of extract was determined. General chemical composition is reported. ⁵⁷⁰ Ethanolic extract of leaves enhanced the production of antioxidant enzymes in goat liver. ⁵⁷¹
Hepatoprotective	Hepatotoxicity in rat was induced by carbon tetrachloride, and was treated 95 % aqueous whole plant extract, which had also antifibrotic actvity. Comprehensive chemical composition is presented with detailed GC-MS data. ⁵⁷⁴
Insecticidal	Green leaves were extracted with several solvents, and extracts were found active against Colorado potato beetle, <i>Leptinotarsa decemlineata</i> , where methanol extract was most active. Among active compounds, <i>cis</i> - hex-3-enyl acetate, was highly active. ⁵⁴⁵ Leaves aqueous extract was found active against three mosquito species. ⁵⁷² Leaves were extracted with

	six organic solvents and each extract was tested against larvae of <i>Culex</i> <i>quinquefasciatus</i> . Methanol:chloroform (1:1) extract had the strongest activity. ⁵⁷⁵ Fruits were extracted with six organic solvents and each extract was tested against larvae of <i>Stegomyia aegypti</i> . Methanol:chloroform (1:1) extract had the strongest activity. ⁵⁷⁶ Leaves were extracted with methanol:chloroform (1:1) and extract was active against larvae of <i>Anopheles subpictus</i> . ⁵⁷⁷
Nanoparticles synthesis	Silver nanopartcles (AgNP's) were prepared using leave aqueous/ethanolic extract to reduce
Nutrition	AgNO ₃ solution. ^{567,568,578} Ripe fruits were extracted and fractionized with various solvents, including obtaining alkaloid fraction. All products were analyzed for general chemical composition and some medicinal activities (such as antioxidant) to determine the toxicity/safety of these fruits. The aim of this study was to consider the possible use of these fruits as food source. The results indicate that the fruits are not toxic. ⁵⁴⁴ Oils from leaves and fruits were extracted using petroleum ether, and their fatty acid compositions were determined, in purpose of testing their nurtitional potential. ⁵⁷³
Toxicity	Leaves ethanolic extract was orally fed to rats and found non-toxic. ⁵⁷⁹
Chemical composition	Leaves were extracted with ethanol and extract was analyzed by GC-MS. A detailed composition is presented but new compounds are not reported. ⁵⁸⁰

Withania somnifera

There is only a single species of the *Withania* genus in the reviewed region. Globally, this genus includes 12 species, and another one, *W. obtusifolia*, grows on Eastern side of the Jordan valley. *W. somnifera* was extensively studied, and published researches about it are summarized in Table 19.

 Table 19. Medicinal, biological and other activities of Withania somnifera.

Activity/Property	Major findings/Reference
Allelopathy	Aqueous extract and alkaloid fraction were prepared from the aerial parts. Both materials were tested and found active allelopathic against <i>Cichorium</i> <i>intybus</i> seeds germonation. Alkaloid fraction was analyzed and detailed compostion and structures are reported (all known compounds). ²³⁵

Antibacterial, antifunga, antiviral and related activities	Leaves were extracted with ethanol, and extract was found active against bacteria isolated from chicken. ¹⁴⁵ Leaves were extracted with 95 % aqueous ethanol and extract was found active against pathogenic bacteria. ⁴⁶³ Whole plant was extracted with three solvents and tested against four bacteria species. Activity order of extracts was ethyl-acetate > ethanol > dichloromethane. ⁵⁸¹ Fresh leaves were extracted with 95 % aqueous ethanol and extract was active against <i>E.</i> <i>coli</i> . ⁵⁸² Whole plant was extracted with water and extract was used to prepare silver nanoparticles (AgNP's), which	Antidiabetic, anti- obesity and related activities
	had antibacterial activity. ⁵⁸³ Roots were extracted with methanol and extract was used to prepare silver nanoparticles (AgNP's), which had antibacterial activity. ⁵⁸⁴ Plant parts were extracted and fractionized separately with several solvents. Each fraction was extracted for flavonoids, and these extracts were active against five bacteria species. ⁵⁸⁵ Indian traditional antiviral formulation	Antioxidant, anti- inflammatory and related activities
Anticancer	(Amukkara Choornam) based of roots an leaves powder, was active gainst CHIKV virus in mice. ⁵⁹³ Roots were extracted with water and extract was administered to patients	
	with breast cancer with chemotherpay. Control group was treated only with chemotherapy. Test group showed positive results. ⁵⁸⁶ Rats/mice with cancer were treated with 70-75 % aqueous ethanol root extract. Positive results were recorded in test group compared with control. ^{587,588} Leaves aqueous extract was used to treat HepG2 hepatocarcenoma cells.	
	Molecular modeling and a mechanism of action are presented. ⁵⁸⁹ Roots ethanolic extract was prepared as Viwithan, and it was active against B16F1 murine melanoma cells. Analysis showed that it contained	
	mainly: withaferin A, withanoloids A, B. ⁵⁹⁰ Roots methanolic extract analysis yielded six new withanolides named withasilolides A-F (structures very close to compounds in Figures 5, 6, 10, 15, 20, 22). The compounds had cytotoxic effect on four cancer cell	
	lines. ⁵⁹¹ Roots were treated with dilute ammonia, methanol and then extracted with water. Extract <i>in vitro</i> enhanced the activity of chemotherapy agent, aimlating in HT 20 color appart	Brain related activities, aeging,
Anticonvulsant	cisplatin, in HT-29 colon cancer cells. ⁶⁴⁶ Stems and roots were extracted with ethanol and extracts showed positive	addiction, stress, anxiety, memory, depression, neuroprotection,

results in treating seizures in duced in rats by electrical and chemical (pentylenetetrazol, PTZ) shocks.592 Ethanolic root extract was active against PTZ-induced seizures in mice. A mechanism of action is proposed.⁵⁹⁴ Leaves ethanolic extract had lowering effect of collagen glycation and crosslinking in rats.595 Diabetes was induced in rats by STZ, and they were treated with formalin to induce pain in paws. When fed with roots, pain sensation in test group was lower that in control.596 Diabetes was induced in rats by STZ, and they were fed with aqueous roots extract. Compared with control groups, test group had lower blood glucose, lower hyperlipidemia and less oxidative stress.597 Root powder was supplemented to patients and it had significant hypoglycemic and hypocholesterolemic activities.⁶⁴⁷ Leaves aqueous extract was used to treat HepG2 hepatocarcenoma cells. Results indicated more production of antioxidant natural enzymes (glutathione S-transferase and glutathione reductase) in treated cells compared with control.589 Arthritic (collagen-induced) rats were treated with powder or roots aqueous extract of the plant compared with methotrexate treatment, and proved effective.598,599 Different parts of the plant were extracted separately with 80 % aqueous methanol, and antioxidant capacity of extracts was determined (DPPH). Mature roots had the highest activity.⁶⁰⁰ Roots aqueous extract was administered to humans with type II diabetes. Results showed improvement in lowering oxidative stress biomarkers (malondialdehyde, nitric oxide and glutathione).⁶⁰¹ Chronic footshock in rats induced stress that resulted an increase in superoxide dismutase and lipid peroxidation with activity. concomitant decrease in catalase and glutathione peroxidase activities in the Treating animals brain. with glycowithanolides extracted from the plant, altered the oxidative stress.602 Rats were dehydrated to result kidney oxidative stress, then they were treated with roots aqueous extract that had significant antioxidant activity.603 Chronic footshock in rats induced stress mainly due to oxidative processes in the brain of rats, that were altered after treating animals with glycowithanolides extracted from the plant.602 Withanamides A and C that

Alzheimer, were isolated from the fruits, protected Parkinson, sleep PC-12 cells, rat neuronal cells, from β -amyloid induced cell death, supposedly by prevention of fibril formation. ⁶⁰⁴ Roots were extracted with methanol:chloroform (1:1) and extract was orally (in ethanol) administered to mice. The result was lowering in low density lipoprotein in the liver and β -amyloid in the brain. ⁶⁰⁵ Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁰⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melionagaser</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of co		
β-amyloid induced cell death, supposedly by prevention of fibril formation. ⁶⁴⁴ Roots were extracted with methanol:chloroform (1:1) and extract was orally (in ethanol) administered to mice. The result was lowering in low density lipoprotein in the liver and β-amyloid in the brain. ⁶³⁵ Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁶⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzofiazepine lorazepan and imipramine). ⁶⁶⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁶⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>meliorastion</i> of memory impairment and neurodegeneration of memory impairment and neurodegeneration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶	Alzheimer,	were isolated from the fruits, protected
supposedly by prevention of fibril formation. ⁹⁴ Roots were extracted with methanol:chloroform (1:1) and extract was orally (in ethanol) administered to mice. The result was lowering in low density lipoprotein in the liver and β-amyloid in the brain. ⁹⁶ Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁹⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepan and imipratine). ⁹⁶⁷ Ethanolic root extract had antiaxiety and antistress effects in healthy (physical and mental) humans. ⁶⁶⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced symming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ¹⁰⁹ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A. 2.38 %) was administered to Common fruit <i>fly (Drosophili</i> melanogaster) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was	Parkinson, sleep	
formation. ⁶⁰⁴ Roots were extracted with methanol:chloroform (1:1) and extract was orally (in ethanol) administered to mice. The result was lowering in low density lipoprotein in the liver and β-amyloid in the brain. ⁶⁰⁵ Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁰⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly <i>(Drosophila melanogaster)</i> to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶		
with methanol:chloroform (1:1) and extract was orally (in ethanol) administered to mice. The result was lowering in low density lipoprotein in the liver and β -amyloid in the brain. ⁶⁰⁵ Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁰⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotime- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.33 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶		604
extract was orally (in ethanol) administered to mice. The result was lowering in low density lipoprotein in the liver and β-amyloid in the brain. ⁶⁶⁵ Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁰⁵ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solven!) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticostreone levels. ⁶¹⁶ Whole plant (commerial powder) was		
administered to mice. The result was lowering in low density lipoprotein in the liver and β-amyloid in the brain. ⁶⁰⁵ Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁰⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animal. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
lowering in low density lipoprotein in the liver and β -amyloid in the brain. ⁶⁰⁵ Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁰⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogasteri</i>) to test effect on brain disorders induced by roteone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		• · · · · · ·
the liver and β-amyloid in the brain. ⁶⁰⁵ Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁰⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by roteone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
Anxiety was induced in rats by ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁶⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative inpairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		°
ethanol, and ethanolic root extract (contained mainly withanolides) had positive effect on these animals. ⁶⁶⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomini and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation for corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
(contained mainly withanolides) had positive effect on these animals. ⁶⁶⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		5
positive effect on these animals. ⁶⁰⁶ Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insonnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
Ethanolic root extract had antiaxiety and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in anelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
and antidepressant activities, compared with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
with control groups which were not treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
treated or were treated with standard drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antiaxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
drugs (benzodiazepine lorazepam and imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenoe. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in anelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
imipramine). ⁶⁰⁷ Ethanolic root extract had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
had antianxiety and antistress effects in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in anelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
in healthy (physical and mental) humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		-
humans. ⁶⁰⁸ Roots aqueous extract mixed with Ghee butter, was admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		-
admistered to mice that went through three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
three depression methods: forced swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		mixed with Ghee butter, was
swimming, tail suspension and anti- resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70% aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50% aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38%) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		admistered to mice that went through
resperine test. In all cases, the extract had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		three depression methods: forced
had positive effect on animals. ⁶⁰⁹ Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
Roots ethanolic extract nicotine- induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
induced addiction in mice. ⁶¹⁰ Healthy humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		*
humans were treated with roots extract (70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
(70 % aqueous ethanol) and showed antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		-
antidepressant results. ⁶¹¹ Patients with schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
schezophrenia were treated with roots aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
aqueous extract and positive antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
antianxiety and antidepression results were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		-
were recorded. ⁶¹² Commercial root extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
extract (unkown solvent) was provided to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
to patients with insomnia and anxiety, resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
resulting improvement in both parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
parameters. ⁶¹³ Roots were extracted with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		-
with 50 % aqueous methanol, and extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		C 1
extract was administered to rats that were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		-
were exposed to various stress inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		-
inductors. Improvement was indicated in all tests. ⁶¹⁴ Commercial, standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		were exposed to various stress
standardized root extract (Withaferin A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		inductors. Improvement was indicated
A, 2.38 %) was administered to Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		· · · · · · · · · · · · · · · · · · ·
Common fruit fly (<i>Drosophila</i> <i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
<i>melanogaster</i>) to test effect on brain disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		,,
disorders induced by rotenone. The result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
result was lowering of the following parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
parameters: locomotor deficits, oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		-
oxidative impairments and neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
neurotoxicity. ⁶¹⁵ Aqueous root extract was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		r · · · · · · · · · · · · · · · · · · ·
was administered to rats, and resulted in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		1
in amelioration of memory impairment and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
and neurodegeneration in hippo- campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
campus through NO mediated modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		
modulation of corticosterone levels. ⁶¹⁶ Whole plant (commerial powder) was		0 11
Whole plant (commerial powder) was		I I I I I I I I I I I I I I I I I I I
extracted with water for proteins.		
		entraced with which for proteins.

Extract, along with scopolamine, were
fed orally to rats resulting
enhancement of learning and
memory. ⁶¹⁷ Commericial roots
aqueous extract (containing 5 %
withanolides) was administered to
human patients, resulting in immediate
and general memory, as well as
improving executive function,
attention, and information processing
speed. ⁶¹⁸ Commercial ethanolic root
extract was administered to mice with
L-dopa, which resulted in inhiition of
haloperidol-induced catalepsy in
mice. ⁶¹⁹ Root powder was orally fed to
mice along with seed powder of
<i>Mucuna pruriens</i> . This, attenuated the neurotoxicity due to MPTP (1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine
hydrochloride) in mice. ⁶²⁰ Ethanolic
root extracts of the plant and seed of
•
Mucuna pruriens were orally fed to
mice. This resulted (several tests) in
attenuation of paraquat $(N,N'-$
dimethyl-4,4'-bipyridinium dichloride)
induced parkinsonian. ⁶²¹ Commercial
roots ethanolic extract attenuated 6-
hydroxydopamine-induced
parkinsonism in rats. ⁶²² Fresh roots
were extracted with methanol and
extract was fractionized with several
organic solvents, yielding the isolation
of 18 known compounds. These were
tested axon or dendrite growth. It was
found that withanolide A enhanced
axons while withanosides IV and VI enhanced dendrites. ⁶²³ Roots ethanolic
extract was prepared and administered
to mice that were treated with paraquat
and maneb $[(C_4H_6MnN_2S_4)_n]$ to induce
parkinson. Results showed protection
against nigrostriatal dopaminergic
neurodegeneration and marked improvement in the behavioral,
anatomical and the biochemical
deformities. ⁶²⁴ Commercial extract
(plant part and solvent not indicated)
was active <i>in vitro</i> against Aβ peptide-
and acrolein-induced toxicity and
acetylcholinesterase inhibitor. ⁶²⁵ Root
ethanolic extract had protective
antioxidant and anti-inflammatory
effects against aluminum
neurotoxicity, and could prevent the
decline in cholinergic activity by
maintaining normal acetylcholin-
esterase activity. ⁶²⁶ Leaves aqueous
extract was found protective against
LPS-induced oxidative stress and
inflammation that produce
neurodegeneration. ⁶²⁷ Commercial
roots extract (solvent not indicated)
had neuroprotective activity agaist

	MPTP toxicity in mice. ⁶²⁸ Ethanolic		to healthy people who practice sports
	root extract had neuroprotective		on regular basis. Several parameters
	activity by reducing oxidative stress		were measured to test the effect of the
	(iNOS) and significantly improved the		supplement, and it was found positive
	maneb-and-paraquat mediated		in all tested parameters, especially
	induction of a pro-apoptotic state.629		muscle mass, strength and
	Commercial standardized extract		distribution. ^{643,644} Roots aqueous
	(plant part and solvent not indicated)		extract was prepared and
	was administered to patients with		supplemented to mice. Tests of
	exacerbation of schizophrenia, which		endurance and stamina were conducted
	resulted in amelioration of their mental		compared to control. Test group
	health.630 Whole plant powder was		showed clear improvement.645
	orally fed to rats resulting in	Enzyme inhibition	6-n-Propyl-2-thio-uracil (PTU) indu-
	attenuation of neuropathic pain arises	activity	ced hypothyroid in rats, and they were
	due to chronic constriction injury. ⁶³¹		treated with leaves EtOH extract along
	Roots ethanolic extract was given to		with eltroxin for 60 days. Results
	patients with obsessive-compulsive		showed recovery of thyroid hormone
	disorder, which reduced their food		secretion as compared to control.648
	addiction.632 Leaves aqueous extract		Whole plant was extracted with
	had neuroprotective effect against		methanol and extract was fractionized
	stress in sleep-deprived rats. ⁶³³		with several solvents, yielding two
	Standardized root extract (70 %		new compounds (withanolides, see
	aqueous ethanol) had positive effects		Figure 10). These compounds and
	on patients with nonrestorative sleep		other known had cholineesterase
	disorder. ⁶³⁴ Roots were extracted with		inhibition activity. ⁶⁴⁹
	50 % aqueous ethanol was	Fertility, hormones,	Commercial leaves and roots was
	administered orally to rats, and had	sexual functioning	supplied to overweight male
	significant antistress (that was induced		participants. No significat difference
	by several methods) adaptogenic		was recorded between test group and
	activity. ⁶³⁵ Roots ethanolic extract was		control in cortisol, estradiol, fatigue,
	supplemented to rats (100 mgkg ⁻¹ of		vigor, or sexual well-being. ⁶⁵⁰ Root
	body weight). As a result, behavioral		powder was supplied to infertile men (in stress or normal, 5 g day ⁻¹) orally
	deficits induced by Bisphenol A were alleviated, and treatment reinstated the		for 3 months with milk. Positive
	number of NMDA receptors in		indication of fertility increase
	hippocampus region in the brain. ⁶⁶⁰		(pregnancy of female mates) and stress
	Methanolic roots extract was prepared		reduction were recorded. ^{651,652} High
	and analyzed by HPLC. It was		concentration methanolic roots extract
	supplemented to rats resulting		was supplied to healthy women, who
	prevention of morphine withdrawal-		reported increase of sexual function. ⁶⁵³
	induced decrease in spine density in		Roots were extracted with 70 % aq.
	nucleus accumbens shell of rats. ⁶⁶⁶		EtOH and extract ameliorated diet-
Cardioprotection,	Commercial roots hydroalcoholic		induced obesity by enhancing energy
blood system, sport	(ratio is not indicated) extract was		expenditure via improving
, - <u>-</u>	prepared and was found		mitochondrial activity in skeletal
	cardioprotective against isoprenaline-		muscle and adipose tissue. ⁶⁵⁴
	induced myocardial necrosis in rats.	Nephroprotective	Root powder was supplemented to
	Control animals were fed with Vitamin	1 1	patients and it had significant diuretic
	E. ⁶³⁶⁻⁶³⁹ Commercial leaves extract		activity. ⁶⁴⁷
	(solvent not indicated) was orally fed	Antiparasitic	Whole plant aqueous extract was
	to rats that were toxicated with	1	prepared and combined with whole
	doxorubicin. Extract had		plant extract of Asparagus racemosus.
	cardioprotective activity measured by		The combination was used to treat
	several tests. ⁶⁴⁰ Water root extract was		Leishmania donovani-infected mice.
	supplied to athletes and they were		The results were positive and there
	tested for their endurance, by		was enhancement of the immune
	measuring peak oxygen consumption.		system of the animals.655
	Positive results were recorded. ⁶⁴¹ Root	Nanoparticles,	Whole plant (or roots) was extracted
	powder was supplied to stress-oriented	metal toxicity	with water (or MeOH) and extract
	hypertensive subjects, and		redused AgNO3 solution to prepare
	improvement was recorded when		AgNP's.583,584 Leaves aqueous extract
	powder was supplied with milk.642		had glioprotective effect in vitro (cells)
	Commercial root extract was supplied		and in vivo (rats) against Lead (lead

Toxicity	nitrate) toxicity. ⁶⁵⁶ Roots ethanolic extract was found
Toxicity	toxic to rats when supplemented in
	very high dosage (1100 mg kg ⁻¹ of
	body weight) and safe in lower doses
	(100 mg kg ⁻¹) in rats and mice. ⁶⁵⁷
	Methanolic roots extract standardized
	for withaferin A, was found safe in rats
	up to 2000 mg kg-1 of body weight,
	which was the highest tested dose.658
	"Purified extract", solvent and plant
	part were not indicated, contained
	35 % glycowithanolides and less than
	1 % alkaloids, was commercially
	prepared. It was found safe to rats up
	to 2000 mg kg ⁻¹ of body weight, which
	is the highest tested dose. ⁶⁵⁹
Chemical	Roots were extracted with 50 % aq.
composition and related activities	MeOH, and two new compounds were isolated and characterized.
related activities	acylsterylglucosides, sitoindoside VII
	and sitoindoside VIII (see Figure 27).
	Known withaferin A was also
	isolated. ⁶¹⁴ HPLC analysis was
	conducted for 10 commercial products
	that contain ingredients of the plat.
	Most of the contained withanolides. ⁶⁶¹
	General chemical composition of roots
	of plants that were harvested in five
	different locations, was determined.662
	Three known compounds (withaferin
	A, 12-deoxywithastramonolide,
	withanolide A) were determined in
	different parts of the plant by LC-ESI-
	MS-MS (MRM) method. ⁶⁶³ General
	chemical composition of roots was
	determined. ⁶⁶⁴ First isolation and
	characterization of isopelletierine
	(Figure 27). ⁶⁶⁵ Seven new withanolide
	glycosides were isolated from the methnolic root extract. They were
	characterized along with identification
	of other known compounds. The
	withanolides aglycons are not new.
	Some of these compounds had
	inhibitory activity against
	tachyphylaxis to clonidine (high blood
	pressure drug) in isolated guinea-pig
	ileum. ⁶⁶⁷ Seven withanolides
	(commercially purchased) were tested
	for bioavailability to cancer cells.
	Detailed structures and chromatograms
	are provided.668 Quantitative HPLC
	analysis of withanolides was
	developed, including the determination
	of withaferin A and withanolide D.669
	28 Commercial products were
	analyzed, mainly by HPLC to
	determine their compositions and
	genuineness. ⁶⁷⁰

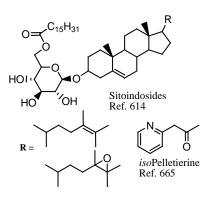


Figure 27. Strutures of selected natural products isolated from *Withania somnifera*.

CULTIVATION OF SOLANACEAE PLANTS AND PRODUCTION OF ACTIVE INGREDIENTS

One of the remarkable traits that can be observed immediately when searching literature about wild Solanaceae plants is the numerous number of published articles about the cultivation of these plants. This is a huge mass of articles and obviously, the main reason in the interest production of very important, active or potentially active natural product, especially alkaloids and withanolides and their direvatives and analogues. Laboratory syntheses of these compounds is possible (see next section, Synthesis, Biosynthesis and Selected Chemistry of Solanaceae Natural Products). But in the vast majority of cases, production of these compounds by cultivation of their plant source, is way So. we reprted very few of easier. these cultivation/production researches in the previous section and we are reporting here some more articles. Among the vast number of publications, these represent the notion of the entire literature in this subject.

Among the wild plants of the *Solanaceae* family plants, *Solanum nigrum* is the most cultivated and most important source of active natural products. A. de Sousa and her colleagues grew doubly sterilized (70 % aqueous ethanol, 0.02 % aq. NaClO) seeds that were harvested from wild plants.⁶⁷¹ They treated young plants fungicide chemical metalaxy (C₁₅H₂₁NO₄), which inhibited growth by reduction of photosynthesis and induced photorespiration. As a result, plants produced higher amounts of defense antioxidants and less sugars.

Tropane alkaloids, steroidal alkaloids and their glycons, are among the most active and intesting natural products in the plants of the *Solanaceae* family. They are the major defence compounds. Y. Sun *et al.* cultivated *S. nigrum* in a greenhouse with leaves infection with *Fusarium oxysporum* infectious fungus. As a resut, plants produced more of the enzyme squalene synthase, which has a key role in the biosynthesis of defence steroidal alycoalkaloids (solasodine and γ -solamargine, detected by HPLC-DAD-MS).⁶⁷²

Cultivation of *S. nigrum* under heavy metals stress was published by many research groups. R. Li *et al.* incorporated cultivation of *S. nigrum* with two domesticated, major food plants, tomato (*S. lycopersicum*) and eggplant (*S.*

melongena). The three plant species were planted together and stressed with cadmium contamination (CdCl₂).⁶⁷³ Researchers measured potassium content, and they found that this incorporated cultivation, increases the content in tomato and eggplant, aerial parts and roots, repectively. This means that the domesticated and the wild plant are more resistant to heavy metal stress. Another study was published by J. Xu et al. where they cultivated the plant under the stress of zinc contamination (ZnCl₂). While it was known that such stress results in programmed cell death (PCD), it was not clear what is the role of nitric oxide (NO) in this process. Researchers found out that zinc stress elevate the concentration of NO that causes, and if treated with either 2phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (NO scavenger) or N^G-nitro-L-arginine-methyl ester (NO synthase inhibitor); PCD process decreases.⁶⁷⁴ Incorporated cultivation was also used by W. Huo et al., where they cultivated maize (Zea mays) with S. nigrum, under cadmium (CdCl₂) stress. They studied the effect of N-fertilizers (ammonium sulfate and calcium nitrate) on the hyperaccumulation of the contaminating metal in the plants. Their finding indicated clearly that this incorporated cultivation accumulated the metal in S. nigrum, resulting in safety to grow maize in Cd-contaminated soils.675

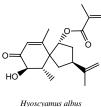
As in agricultural crops, C. de Matos and his colleagues, reported that cultivation of Nicandra physalodes, was enhanced by chemical fertilizers (NPK, ammonium sulfate, monocalciumphosphate, ptassium chloride, respectively).⁶⁷⁶ In a closely related study, N. Panayotov and A. Popova investigated the effect of various culivation conditions on the productivity and the storability of Physalis peruviana.677 They found that the productivity under cultivation by non pricking seedlings or by direct outdoor sowing was higher. Fruits from plants grown by direct outdoor sowing, were characterized with the highest storability, and with the weaker one were those grown by pricking out. Similarly, the effect of nitrogen supply (Calcium ammonium nitrate, 5Ca $(NO_3)_2 \cdot NH_4NO_3 \cdot 10H_2O)$ on plant growth and leaf N content of Solanum villosum, was studied by P. Masinde and his colleagues of a multinational research group.⁶⁷⁸ Expectedly, with N supply, plant growth was enhanced, leaf area was increased and total nitrogen content on a dry weight basis was significantly higher.

Nicotine is one of the major defence natural products in the plant kingdom. So, a very interesting study was carried out by I. Baldwin and P. Callahan. They supplied two some *Solanaceae* plants, two of them of our concern, *Nicotiana glauca*, a nicotine producer, and *Datura stramonium*, that does not produce nicotine.⁶⁷⁹ They tested the accumulation and tolerance of the plants towards this supply. They discovered that *N. glauca* accumulated nicotine but its photosynthesis process was not decreased, despite the fact that nicotine is known for its photosynthesis suppression capacity. As for *D. stramonium*, nicotine was not accumulated and physiological damages were not observed.

When we presented the literature about *Solanum elaeagnifolium* above (see information and Figure 23), we mentioned the fact that until approximately two decades ago, this plant was not very widespread or even common. But in recent years, it is spreading very rapidly, and now it threatens agricultural fields and farmlands, and it also invading areas outside of its usual habitat. This problem exists also in Australia, and H. Wu and his colleagues,

considered the plant "as one of the worst weeds of crop and pasture systems".⁶⁸⁰ They studied the herbicidal effect of different combinations of chemicals in growth inhibition of the plant, as well as the optimal timing for performing this activity. They concluded that using two combinations was most effective, and application at early flowering followed by a late application in autumn is necessary to effectively control the seedset (seedbank) and the root regrowth (rootbank).

The main objective of most cultivation researches of Solanaceae plants, is as mentioned earlier, production of active natural products and/or enhancement of important medicinal activities. A summary of some carefully selected (out of the vast number) publications is presented in Table 20, but some of them will be presented in details (as text and figures) since they include additional value of information such as synthesis, biosynthesis or corrections of previous knowledge. It is important to emphasize that the presentation of this very important literature as a table, will not be enough for the interested readers and researchers who wish to apply this information into their practical work. It is highly recommended for these to follow the citations. Another important note that should be made, is that some of these articles mention some Solanaceae plants and other families and genera that are not included in this review, and consequently, they will not be mentioned in Table 20. So, it is highly recommended to interested researchers to follow the cited literature.


Table 20. Cultivation of *Solanaceae* plants for production of active compounds and/or properties.

Plant species	Cultivation conditions, results,				
•	reference				
Datura innoxia Datura stramonium	Hairy roots were infected with <i>A.</i> <i>rhizogenes</i> and treated with elicitors salicylic acid and acetyl salicylic acid. Hyoscyamine content increased. ⁶⁸¹ AlCl ₃ enhanced the production of hyoscyamine and scopolamine and antioxidant enzyme superoxide dismutase. ⁶⁸² Total alkaloid content increased in young leaves when plants were cultivated under salt stress (with a miskae of NaCl amount in abstract, 153.8 mol/m ⁻³ that should be 153.8 mg). ⁶⁸³ Plants were cultivated with supply of triadimefon (fungicidal, C14H1 ₆ ClN ₃ O ₂). Total indole alkaloid, antioxidant phenolics and antioxidant enzymes contents, all were significantly increased. ⁶⁸⁴ Hairy roots were infected with <i>A.</i> <i>rhizogenes</i> and treated with elicitors salicylic acid and acetyl salicylic acid. Hyoscyamine content increased. ⁶⁸¹ Plants were grown in Mexico, original habitate of them, and in Spain, in which they				
	were introduced, under the same conditions. The plants in Mexico				
	produced about 36 times more atropine and around 21 times more scopolamine,				
	in leaves, than in Spain. In their natural				
	habitate (Mexico), plants have natural				
	enemies (herbivores) that do not exist in				

	omponents in Solunaceae plant		
	Spain. ⁶⁸⁵ A very comprehensive research		enzymes and pigments, were
	that studied the relation between		increased. ⁶⁹² The same research group
	irrigation and production of tropane		reports the effect of UV-C radiation
	alkaloids in the plant. The study		(253.7 nm) on the growth, total alkaloid
	measured the quantitative (direct		and hyscyamine contents. The optimal
	proportion), and very broad presentation		time period they found is 2 h of
	of the qualitative relation. Researchers		exposure. ⁶⁹³
	present very detailed analysis of tropane	Hyoscyamus	The effect of ammonium nitrate
	content, including changes of isomers	reticulatus	fertilization on the following variables
	ratios as a result of different iirigation		was studied: plant height, stem diameter,
	conditions. They also present		number of branch per plant, number of
	quantitative and qualitative analysis of		capsules per plant, capsule length,
	different plant parts. Moreover, a		capsule width, number seed per capsule,
	mechanism of isomers ratio is		seed yield per plant, thousand seed
	proposed.686 Plants were grown under		weight and alkaloid content. Fertilizer
	salt stress (NaCl and CaCl ₂ ,1:1 w/w),		supplementation was done in various
	and supplied with nutrients Ca(NO3) ₂ ,		courses, and alkaloid content was
	KCl, KH ₂ PO ₄ and MgSO ₄ . Concent-		increased. ⁶⁹⁴ Hairy roots were treated
	rations of insoluble and total		with Zinc oxide nanoparticles (ZnO- NPs). Growth was decreased but
	carbohydrate, insoluble protein. Free		,
	amino acids (not)proline and total alkaloid increased significantly, while		antioxidant activity of the enzymes catalase, guaiacol peroxidase and
	soluble carbohydrate, soluble and total		catalase, guaiacol peroxidase and ascorbate peroxidase was significantly
	protein, and proline contents		higher. Contents of hyoscyamine,
	decreased. ⁶⁸⁷ The effect of three		scopolamine and biosynthetic <i>h6h</i> gene
	parameters was tested, on plant growth		were increased. ⁶⁹⁵ Hairy roots were
	but mainly on hyoscyamine production:		genetically modified Agrobacterium
	Gamborg's B5 salts (mixture of 14		<i>rhizogenes</i> and supplied with iron oxide
	compounds) supply, nutrition with		nanoparticles (FeO-NPs). Antioxidant
	sucrose and temperature. Results		enzyme activity and hyoscyamine and
	indicated that high concentratios of		scopolamine production were
	material supply was needed and T= 25-		significantly increased.696
	30 °C, to achieve maximum yield of the	Physalis angulata	Methyl jasmonate was supplemented to
	alkaloid. ⁶⁸⁸		hairy roots, resulting increase of the
Hyoscyamus	Plants were cultivated under Fe-		production of physalins D and H.
albus	ddeficiency condition, and as result, the		Researchers propose that this supplement
	production of hyoscyamine and		increases in the levels of a number of
	scopolamine was reduced. The		terpenoid backbone biosynthesis and
	mechanism of this reduction was studied,		steroid biosynthesis related enzymes. ⁶⁹⁷
	and researchers discovered gene		Cultivation season has major effect on
	expression changes, that led to reduction		phenolic compounds content, antioxidant
	of key enzyme for tropane alkaloids		capacity and many agricultural qualities
	biosynthesis, such as hyoscyamine 6β - hydroxylase, that involves iron in the		of the plant. April is the best cultivation time period. ⁶⁹⁸
	conversion of hyoscyamine to	Physalis	Plants were supplied with commercial
	scopolamine. ⁶⁸⁹ Treatment of hairy roots	peruviana	fertilizer (Torped®, N,P,K and 9 other
	with CuSO ₄ and methyl jasmonate	peruviana	elements), which increased the number,
	enhanced the production of three known		average mass and total productivity of
	phytoalexines and four new, which were		fruits. It also promoted antioxidant
	isolated and characterized. One of them		activity (DPPH). ⁶⁹⁹
	is presented in Figure 28.690	Solanum nigrum	Leaves slices were grown in nutritive
Hyoscyamus	Twenty seven nutrients were used to	U	medium (general description).
aureus	cultivate plants for tropane alkaloids.		Production of glycoalkaloids (solasodine
	Results were comapired with wild plant		and solanidine) was increased by 2-5
	yiels, to reveal higher production of		folds. They were also tested for
	hyscyamine in cultivated plants and		biological activities and found active:
	higher production of scopolamine in wild		antiviral, cytotoxic anti-inflammatory
	plants. Genetic variation were also		and antiparasitic.700 Contents of proline
	observed in cultivated plants.691		and solasodine were increased in plants
Hyoscyamus	Seeds were collected from wild plants,		under salt (NaCl, 150 mM). ^{701,g}
muticus	sterilized and cultured with gibberellic		Production of solasodine was increased
	acid, in 25 °C and high concentrations of		by 5 folds under NaCl stress, 150 mM. ⁷⁰²
	NaCl. Contents of alkaloids, antioxidant	Solanum villosum	Plants were cultivated under 100 mM

	NaCl stress. Leaf caffeic acid, lutein, and			
	beta-carotene contents were considerably			
	increased, along with the up regulation of			
	some related enzymes and genes. The			
	leaf contents of β -solamargine and α -			
	solasonine also increased significantly.703			
Withania	Accumulation of withaferin A and			
somnifera	withanone was increased in leaves when			
	plants were supplemented with			
	saccharides or their combinations. The			
	highest increase recorded when 4 %			
	sucrose and glucose (2:1) was supplied.			
	No control was mentioned. ⁷⁰⁴ Enhanced			
	production of withanolide A was			
	recorded when plants were supplied with			
	4 % mixture of sucrose and glucose (3:4)			
	and with optimal pH of 5.8.705			

(g) The increase of solasodine in *S. nigrum* that was reported by J. Sutkovic *et al.*, is not clear. They present an unlear bar graph (page 45 in reference 701). They also direct readers to "table 1" for these results (page 46), but "table one" does not exist in the publication, supporting materials are not provided.

Hyoscyamus albus Ref. 690

Figure 28. Strutures of a new compound isolated from cultivated *Hyoscyamus albus*.

T. Hashimoto and Y. Yamada, performed a thorough research to reveal the mechanism of the biosynthetic path from L-hysoscyamine to scopolamine.⁷⁰⁶ They chose to study cultured root of *Hyoscyamus niger* which is not one of the plants included in this review, but they indicate that this mechanism is common for many *Solanaceae* plants of the genera *Atropa*, *Datura*, *Duboisia*,*Hyoscyamus*, and *Nicotiana*.

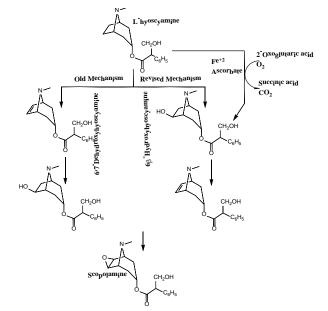


Figure 29. Mechanism of biosynthesis of scopolamine from L-hyoscyamine (Ref. 706).

They argue with older proposed mechanisms which state that L-hyoscaymine is dehydrogenated to 6,7dehydrohyoscyamine, which is converted to scopolamine (see Figure 29). But by chemoenzymatic study, they prove that between L-hyoscaymine and 6,7-dehydrohyoscyamine, there is an intermediate: 6β -hydroxyhyoscyamine.

Swiss group of A. Lanoue and his colleagues studied the rearrangement of L-littorine to L-hyoscyamine in the biosynthesis of scopolamine.⁷⁰⁷ For this purpose, they cultured hairy roots of *Datura innoxia* that were genetically modified by *Agrobacterium rhizogenes*. The supplemented the roots with labeled (*RS*)-phenyl[1,3-¹³C₂]lactic acid. This molecule reacted (in roots) with tropine yielding L-littorine, which rearranged to L-hyoscyamine (Figure 30). The carbon-carbon coupling constant that was calculated from ¹³C-NMR spectra of the three compounds was almost the same, 55 Hz.

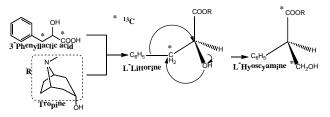


Figure 30. Part of the biosynthesis of Scopolamine (Ref. 707).

The last research that we will cite in this section was published by R.J. Robins and his colleagues.⁷⁰⁸ They studied the biosynthetic path of tropane alkaloids in cultured roots of Datura stramonium. For this objective, they have labled strating materials with ¹⁴C and ¹³C, in order to decide which of the proposed biosynthesis paths in literature is/are true. Their work provided an evidence that hygrine is not a direct precursor of tropane alkaloids, while cyclization occurres to give 2-carboxytropinone, that forms tropinone decarboxylation. This is shown path B in a scheme that they present in their publication, which we present here as Figure 31.

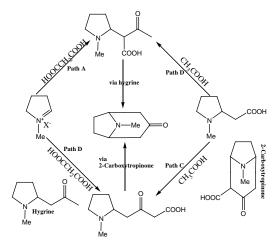


Figure 31. Proposed biosynthesis paths of tropinone (Ref. 708).

Medicinally active components in Solanaceae plant

Researchers used a special method named protin-noise decoupled ¹³C-NMR, where coupling and splitting of peaks of ¹³C atoms is clear, but peaks heights are not proportional to the number of atoms that produced this peak. They present ¹³C-NMR spectra of hyoscyamine that was produced in the roots of *D. stramonium*, and derive their conclutions from this outstanding work.

SELECTED PUBLICATIONS OF SYNTHESIS AND CHEMISTRY OF SOLANACEAE NATURAL PRODUCTS

Active natural products found in plants of *Solanaceae* family have drawn notable attention for their medicinal and other properties. Attempts of their large scale production were and are done continuously. In the previous section, we presented a brief summary of carefully selected articles of the biogeneses of these compounds in plants (or plant parts) of this family.

Naturally, there are many attempts to prepare these compounds through pure synthetic work. Many of these synthetic works focused on few compounds such as atropine, scopolamine and withanolide A. The laboratory syntheses of some of these compounds, such as hyoscyamine, were published.

Many synthetic works have limited value since the final product of the synthesis is racemic modification, while in most plants, the synthesis target is pure enantiomer, in the vast majority of cases. So, in this sense, the work of J-H. Lee *et al.* has additional importance because they prepared 97 % enantiopure hygrine.⁷⁰⁹ The managed to achieve this by using asymmetric phase-transfer catalytic alkylation, as shown in figure 32.

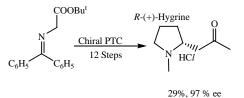


Figure 32. Synthesis of hygrine by J-H. Lee et al. (ref. 709).

The earliest synthesis of atropine was published by A. Landenburg in 1879.⁷¹⁰ Since then, this synthesis was published in several atricles. One of the latest describe semi-industrial, continuous flow synthesis and purification (Figure 33).⁷¹¹

Researchers (ref. 711) report that the best reaction conditions were: DMA, buffer (pH=10) in a ratio of 5:1, isolated yield of atropine was 79 % and A:B ratio was 16:1.

An outstanding synthesis of scopolamine (hyoscine) was published by P-A. Nocquet and T. Opatz.⁷¹² But since it included many starting materials preperation reactions, and since the synthesis itself is of a very multiple step type, it will be very partial presentation if were introduce it here with one scheme figure. In our humble opinion, interested readers should use the original publication (ref. 712).

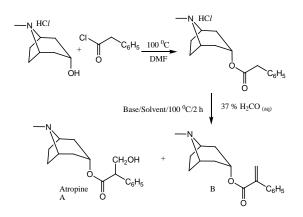


Figure 33. Continuous flow synthesis of atropine (ref. 711).

Withanolides and structurally related natural products are among the most medicinally active compounds and they are major ingredients of *Withania somnifera*. Withanolide A, was isolated among the first compounds of this unique compound family. It is also one of the most studied. It had significant activity against several bacteria species,⁷¹³ and has antioxidant activity (DPPH).⁷¹⁴ But according to published literature about withanolide A, it is clear that neuroprotection is its most important activity. It prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia,⁷¹⁵ attenuation of glutamateinduced excitotoxicity in neuron-like cells,⁷¹⁶ and by induction of neurite outgrowth.⁷¹⁷

Several syntheses of withanolide A have been reported so far. One of the best reports was published by C. K. Jana *et al.*⁷¹⁸ In addition to synthesis, some biological activities of the compound were tested, especially nueroprotection. But the work that we chose to present was published by R. Liffert and his colleagues.⁷¹⁹ It is a very comprehensive work of synthesis of withanolide A, preparation of 28 of its derivatives, out of which we will present three of them in Figure 34.

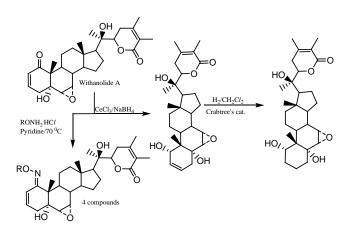
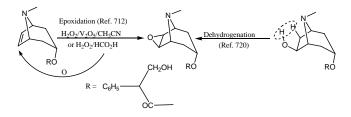



Figure 34. Withanolide A derivatives (ref. 719)

In the work of P-A. Nocquet and T. Opatz that we cited above (ref. 712), they prepared scopolamine by epoxidation of 6,7-dehydrohyscyamine (see Figure 35).

Since the biosynthesis of in hairy roots of *Solanaceae* plants involves also 6β -hydroxyhyoscyamine, T. Hashimoto and his colleagues, investigated the mechanism of the epoxide (scopolamine) biosynthesis, using ¹⁸O labeling.⁷²⁰ They discovered that the epoxide biosynthesis is a result of a very unique step of dehydrogenation of the hydroxy compound and not epoxidation of the alkene (Figure 35).

Figure 35. Biosynthesis vs. synthesis of scopolamine (ref. 720 and 712).

DISCUSSION

Finally, interested thiiranes (epoxide-like three membered ring of CSC) were prepared from epoxide moiety (C5-C6) of witholides.⁷²¹ P. Joshi and his colleagues prepared four different thiiranes from four different starting withanolides.

One of the major aspects that we noticed very clearly while scanning the published article about *Solanaceae* plants of the reviewd region, is the large number of review articles. As we have already mentioned, some of them were not cited. Those were of two classes. First, those focus on ethnomedicine and ethobotany of these plants. Despite being very interesting topic that sparked many of modern studies, in this review we decided to focus on medicinal activities. Second, those reviews that in our humble opinion had no additional value and/or knowledge compared to the review articles that we presented.

But there were eight review articles that we chose to present in this section because we think that they deserve special attention, in terms of their contents. A very recently published review by A. Kerchner and A. Farkas, analyzes the poisons of the plants of Datura and Brugmansia genera.⁷²² Even though *Brugmansia* is not one the plants reviewed in our article, it is closely related to Datura plants, and in most cases, it is grown as an ornamental plant. They present statistics of 25 years as tables and graphs. They devide their analysis to continents but present detailed information about Hungary, their homeland. They conclude that data of poison information centers from all over the world indicate that most exposures to Brugmansia and Datura are related to abuse, in connection with their hallucinogenic property, mostly in the age group of adolescents. Anticholinergic intoxication may also result from the improper use of traditional herbal medicines containing Datura. More recently, the use of Brugmansia and Datura as incapacitating drug in sexual crimes and robberies has caught the attention of authorities.

Psychoactivity of *Datura* plants has drawn the attention and use by humans since early times (ref. 4 and 5) and as mentioned in the previous citation. The review article published by T. Debnath and R. Chakraverty, focuses mainly on this aspect of biological and medicinal activities of *Datura stramonium*.⁷²³ This is a very short document that very briefly presents traditional uses, phytochemistry and medicinal activities of this plant. But right in the beginning in this article, we found a taxonomic mistake, that might easily mislead readers: in addition to using scientific name (*D. stramonium*), authors mistakenly use a common name of another plant: Angels' trumpet. We have already expressed our opinion on this issue (see note f), and as far as we are concerened, these names should not be used in scientific publications. This common name is for *Brugmansia* and not *Datura* plants.⁷²⁴

F. Elisante and P.A. Ndakidemi published and interesting review article about the allelopathic effects of *D. stramonium* on plants of Tanzania.⁷²⁵ Allelopathy of this plant has been widely studied (see ref. 148-153), but the special interest of this review article is that it focuses on allelopathic effects of this plant on legumes, that are major nutrient plants for wild and domestic animals in natural reserves.

Review articles of chemical compositions of plants are very common literature. But some of them possess special importance. One of these unique review articles was published by D. Qian et al.⁷²⁶ It is one of the most comprehensive reviews that were published about plant chemical composition in general and about the Lycium genus in particular. It presents 355 natural products of different compound family, with structure, tables and graphs. This article is a very important resource for readers and researchers who are interested in this genus. Similar but way smaller review article was published by Y-J. Zhang et al. about the chemical composition of Physalis peruviana.727 Along with using its common name (Cape Gooseberry), they use the scientific name, and their work consists two major issues, chemical composition and some medicinal activities of the plant. Their special contribution is listing the systematic (IUPAC) names of major natural products. Since they did not present structures of these compounds, scholars can easily convert these names to structures.

Withanolides were reviewed in several publications, but very few of them were reviewed as single compounds. On this basis, the review article of M. Dom and his colleagues has special importance.⁷²⁸ It presents broad perspective of antitumor activities of withaferin A (Figure 6). The article presents excellent figures of mechanism of action and pharmacokinetics against different types of tumors.

Poisoning of humans and animals by *Salanaceae* plants, their products and pure natural products, was extensively studied and reviewed as we cited earlier. But the review article of T.Y. Chan has very special relevance and importance.⁷²⁹ It presents an issue of health concern, poisoning of humans by tropane alkaloids that are found as contaminations in herbal medicines. These medicines are supposed to help cure health disorders, and these contaminations make these products life threatening. One of the wost types of this poisoning, is that can be caused by herbal teas (page 3 in article). Another dangerous poisoning

caused by these contamination, occurres after use of different slimming pills, which is becoming more and more a global trend, in the course of combating overweight and obesity, as well as fashion and modeling goals. Even prescribed herbal products are listed among these contaminated commercially used medications.

Last review article that we found as having special value, was published by F. Albouchi and her colleagues.⁷³⁰ Its importance emerges from the fact that icludes, in brief, all aspects that are needed about *Solanum nigrum*. The article presents taxonomy and morphology, ecology (including cultivation under different stress conditions), distribution and habitat (including introduction in different regions), reproduction, traditional and ethnobotanical uses, toxicty, chemical composition (major active compounds), essential oils and their uses; and medicinal activities (detailed).

In addition to the selected review articles there are some research articles that in our opinion possess the same attribute and deserve special attention,. One of the earliest publications of production of alkaloids in cultivated *Solanaceae* plants, was published by G.H. Gerlach in 1948.⁷³¹ It discusses the production of scopolamine in cultivated *Datura innoxia*. One of the major claims in this article is that scopolamine accumulation in cultivated *D. innoxia*, an originally "new world" plant, is higher than in cultivated *Datura metel*, the similar plant of the "old world". In fact, this is not only not trure, scopolamine or other alkaloid content in cultivated plats, may vary over a wide range and is mainly a result of cultivation conditions.⁷³²

A. H. El-Said and his colleagues prepared the chloroform extract of cultivated endophytic fungi that was growing on *Datura innoxia* and *Hyoscyamus muticus*.⁷³³ They report that this extract had clear activity against several types of bacteria, as well as L-asparaginase inhibition. Interestingly, the chloroform extract of the *D. iinoxia* itself or parts of it, were not tested for antibacterial activity (see Table 2) and it could be interesting to compare the plant extracts with those of endopythic fungi that grow on the plant. Contrary to that, the chloroform extract of *H. muticus* was prepared and tested for antibacterial activity (ref. 232) and it is less active than the fungi extract.

The role of alkaloids as defense matabolites, extensively studied in alkaloid-containing plants in general,734 in Solanaceae plants,^{44,45,735} and specifically in Datura stramonium,⁸⁴ are well known and published. But I. Shonle and J. Bergelson published an interesting research, which actually proposes that D. stramonium alkaloids have another opposite role.⁷³⁶ When insects feed on *D. stramonium* leaves that have low content of scopolamine and hyscyamine, they practically help plants in the natural selection and evolution, by extermination of defenseless "weak" plants. Further, it is evident that endophytic fungi can tolerate these toxic alkaloids and live on D. stramonium as a host plant. So, K. I. Tapfuma et al, have investigated the anticancer activity of the fungi extracts gainst two cancer cell lines.737 They performed LC-QTOF-MS/MS analysis of the active extracts, and the major natural products that they found were: 1,8dihydroxynaphthalene, anserinone B, phelligridin B, metacytofilin, phomopsidin and vermixocin A. Interestingly, none of these compounds is an alkaloid.

Chlorophyll a or b, are two of the most challenging natural products for every researcher who desires to extract them. The major reason for this difficuly is their instability. Not only the classical extraction sequence (collection of plant or plant parts, drying, powdering and then extraction with a solvent, cold or hot) but even modern methods such as ultrasound-assisted or use of supercritical CO₂ extractions, are destructive and modifying the sensitive pigments. For this reason, there was a need for two important tools. First, an adjustment of a solvent/s for the pigment extraction of plants and second, developing methods and technologies for field conditions extraction/determination of pigments in plants, in order to minimize the time that tese natural products are exposed to external effects, that can lead to their decomposition or modification.⁷³⁸⁻⁷⁴² On this basis, T.T. Tanan and her colleagues described the methods used to determine the pigment content of *Physalis angulata*.⁷⁴³ They concluded that the use of the 80 % aqueous acetone tissue maceration protocol followed by filtration was the most efficient for use in the laboratory, while in field conditions, the immersion technique of foliar disks in 95 % aqueous ethanol and 24 h incubation is best method.

B. Bibhuti and A. K. Yadav discuss the production and use of digestive pills from *Solanum nigrum*.⁷⁴⁴ In our view, their article have two disadvantages. The minor one is language mistakes ("and Makoi are the common name for it"). But the major one is their statement, "fruits of black colour are not used as they possess toxicity, therefore they are not used for medicinal purposes. Reddish- brown coloured fruits are used for edible purpose". Ripe fruits are black, and from this very fact, emerges the name of this plant. This statement completely contradicts other reports that unripe fuits (green or other colors but black) are toxic and not edible, while black, ripe fruits are.^{56,544,745} Another strange fact about this article is that it was published (exactly same article, with only a different title) in another journal in the same year.⁷⁴⁶

Solasodine, a steroidal alkaloid, is one of the most active natural products found in the *Solanaeae* plants (see figure 8). In addition to the publications that we have already cited about this important compound (ref. 414, 433, 459, 560, 672, 700-702), numerous articles have been published about it.^{747,748} Because of their importance, several methods (and many publications) were developed for the separation, extraction, quantification and validation of this compound.⁷⁴⁹⁻⁷⁵¹

CONCLUSIONS

1. Plants of the *Solanaceae* family, in the reviewd region, are very rich with active natural products.

2. Some of these 24 plants are extensively studied but some of them are moderately studied.

3. There very few published studies about some of the plants. More research of these plants is needed.

4. There are no publications about medicinal, biological and other activities of *Solanum cornutum*. There is an immediate need for comprehensive study of this species.

5. Some of the natural products isolated from these plants were reasonably investigated for their medicinal activities, while others were either not or very partially studied. So, these studies should be expanded.

6. The cultivation of some of these plants for the purpose of active natural products accumulation was done under various conditions, while other plants were very limitedly or not studied. It is important to expand this research.

7. It is very highly recommended to avoid using common name of plants in scientific publications. This use is inaccurate and misleading.

8. Global climate changes are seemingly responsible for the rapid habitat expansion of some of these plants. Careful approach is needed to understand this phenomenon, and to try to utilize the results for combating the plants weed spreading.

REFERENCES

- ¹Gebhardt, C., The historical role of species from the *Solanaceae* plant family in genetic research, *Theor. Appl. Genet.*, **2016**, *129*, 2281-2294. DOI: 10.1007/s00122-016-2804-1
- ²Ganaie, M. M., Raja, V., Reshi, Z. A., Verma, V., Family Solanaceae: Taxonomy and modern trends, *Ann. Plant Sci.*, **2018**, 7, 2403-2414.

http://dx.doi.org/10.21746/aps.2018.7.9.1

- ³Cagnato, C., Shedding Light on the Nightshades (Solanaceae) Used by the Ancient Maya: a Review of Existing Data, and New Archeobotanical (Macro- and Microbotanical) Evidence from Archeological Sites in Guatemala, *Econ. Bot.*, **2018**, 72, 180-195. DOI: 10.1007/s12231-018-9412-8
- ⁴Emboden, W., The sacred journey in dynastic Egypt: shamanistic trance in the context of narcotic water lily and mandrake, J. *Psychoactive Drugs*, **1989**, 21, 61-75. DOI: 10.1080/02791072.1989.10472144
- ⁵Dannaway, F. R., Strange fires, weird smokes and psychoactive combustibles: entheogens and incense in ancient traditions, J. *Psychoactive Drugs*, **2010**, 42, 485-497. DOI: 10.1080/02791072.2010.10400711
- ⁶Dafni, A., Yaniv, Z., *Solanaceae* as medicinal plants in Israel, *J. Ethnopharmacol.*, **1994**, *44*, 11-18. DOI: 10.1016/0378-8741(94)90093-0
- ⁷Azaizeh, H., Fulder, S., Khalil, K., Said, O., Ethnobotanical knowledge of local Arab practitioners in the Middle Eastern region, *Fitoterapia*, 2003, 74, 98–108. DOI: 10.1016/s0367-326x(02)00285-x
- ⁸Azaizeh, H., Saad, B., Khalil, K., Said, O., The State of the Art of Traditional Arab Herbal Medicine in the Eastern Region of the Mediterranean: A Review, *Evid. Based Complement. Alternat. Med.*, 2006, 3, 229–235. DOI: 10.1093/ecam/nel034
- ⁹Wild Flowers of Israel: <u>https://www.wildflowers.co.il/english/</u> <u>familyID.asp?id=8&titlepage=Solanaceae</u>
- ¹⁰Kadam, S. D., Chavhan, S. A., Shinde, S. A., Sapkal, P. N., Pharmacognostic Review on *Datura*, *Int. J. Pharmacogn. Chinese Med.*, **2018**, 2, 1-9.

https://medwinpublishers.com/IPCM/IPCM16000145.pdf

¹¹Benítez, G., March-Salas, M., Villa-Kamel, A., Chaves-Jimenez, U., Hernandez, J., Montes-Osuna, N., Moreno-Chocano, J., Carinanos, P., The genus *Datura* L. (Solanaceae) in Mexico and Spain – Ethnobotanical perspective at the interface of medical and illicit uses, *J. Ethnopharmacol.*, **2018**, *219*, 133-151. <u>https://doi.org/10.1016/j.jep.2018.03.007</u>

- ¹² Tandon, C., Mathur, P., Sen, M., Antibacterial compounds in different species of *Datura*: A review, *Afr. J. Microbiol. Res.*, **2014**, 8, 2090-2098. DOI: 10.5897/AJMR2014.6805
- ¹³Maheshwari, N. O., Khan, A., Balu A. Chopade, B. A., Rediscovering the medicinal properties of *Datura* sp.: A review, *J. Med. Plants Res.*, **2013**, *7*, 2885-2897. DOI: 10.5897/JMPR11.1657
- ¹⁴Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on Tropane alkaloids (from *Datura* sp.) as undesirable substances in animal feed. *EFSA J.*, **2008**, 691, 1-55. DOI: 10.2903/j.efsa.2008.691
- ¹⁵Krenzelok, E. P., Aspects of Datura poisoning and treatment, *Clin. Toxicol.*, **2010**, 48, 104-110. DOI: 10.3109/15563651003630672
- ¹⁶Triggle, D. J., John M. Mitchell, J. M., Filler, R., The Pharmacology of Physostigmine, *CNS Drug Rev.*, **1998**, *4*, 87–136. DOI: 10.1111/j.1527-3458.1998.tb00059.x
- ¹⁷Burns, M.J., Linden, C.H., Gradins, A., Brown, R. M., Fletcher, K. E., A comparison of physostigmine and benzodiazepines for the treatment of anticholinergic poisoning. *Ann. Emerg. Med.*, **2000**, *35*, 374-381. <u>https://doi.org/10.1016/s0196-0644(00)70057-6</u>
- ¹⁸Al-Snafi, A. E., Medical importance of *Datura fastuosa* (syn: *Datura metel*) and *Datura stramonium* - A review, *IOSR J. Pharm.*, **2017**, 7, 43-58. <u>http://iosrphr.org/papers/v7i2V1/E0702014358.pdf</u>
- ¹⁹ Soni, P., Siddiqui, A. A., Dwivedi, J., Soni, V., Pharmacological properties of *Datura stramonium* L. as a potential medicinal tree: An overview, *Asian Pac. J. Trop. Biomed.*, **2012**, *2*, 1002-1008. DOI: 10.1016/S2221-1691(13)60014-3
- ²⁰Gaire, B. P., Subedi, L., A review on the pharmacological and toxicological aspects of *Datura stramonium* L. J. Integr. Med., 2013, 11, 73-79. DOI: 10.3736/jintegrmed2013016
- ²¹Sanjita, D., Kumar, P., Basu, S. P., Phytoconstituents and Therapeutic Potentials of *Datura stramonium* LINN, *J. Drug Deliv. Ther.*, **2012**, *2*, 4-7. DOI: 10.22270/jddt.v2i3.141
- ²²Singh, L.R., Singh, O. M., *Datura stramonium*: An overview of its phytochemistry and pharmacognosy, *Res. J. Pharmacog. Phytochem.*, **2013**, *5*, 143-148. <u>https://www.researchgate.net/publication/249650218</u>
- ²³Sayyed, A., Shah, M., Phytochemistry, pharmacological and traditional uses of *Datura stramonium* L. review, *J. Pharmacog. Phytochem.*, **2014**, *2*, 123-125. <u>https://www.researchgate.net/publication/274063446</u>
- ²⁴Debnath, T., Raja Chakraverty, R., Newer Insights into the Pharmacological activities of *Datura stramonium* LINN: A Review. *Indo-Am. J. Pharm.*, **2017**, *7*, 441-444. <u>https://www.researchgate.net/publication/322138040</u>
- ²⁵Naik, V.K., Babu, K. S., Latha, J., Kolluru, B., A review on Phytochemical and Pharmacological activity of *Datura Stramonium*. (Medicinal Plant), *Res. J. Pharmacog. Phytochem.*, **2018**, *10*, 77-80. DOI: 10.5958/0975-4385.2018.00013.4
- ²⁶Cornelius, G., Lohiya, G., Sharma, R., Chemical Constituents and Pharmacological Properties of *Datura Stramonium* (Thorn Apple) - A Review, *Int. J. Eng. Res. Technol.*, **2019**, *8*, 512-515. <u>https://www.ijert.org/JJERTV8IS110259.pdf</u>
- ²⁷Devi, M.R., Bawari, M., Paul, S. B., Sharma, G. D., Neurotoxic and Medicinal Properties of *Datura stramonium* L. – Review, *Assam Univ. J. Sci. Technol.*, **2011**, 7, 139-144. <u>https://www.researchgate.net/publication/285309310</u>
- ²⁸Jonasson, M., Afshari, R., Chronicle of Datura Toxicity in 18th and 19th Century. Asia-Pac. J. Med. Toxicol., 2016, 5, 101-6. <u>http://apjmt.mums.ac.ir/article_8134.html</u>
- ²⁹Al-Snafi, A. E., Therapeutic importance of *Hyoscyamus* species grown in Iraq (*Hyoscyamus albus*, *Hyoscyamus niger* and *Hyoscyamus reticulates*)- A review, *IOSR J. Pharm.*, **2018**, 8, 18-32. <u>https://www.researchgate.net/publication/325809536</u>

- ³⁰Hanus, L. O., Rezanka, T., Spizek, J., Dembitsky, V. M., Substances isolated from *Mandragora* species, *Phytochemistry*, **2005**, *66*, 2408-2417. DOI: 10.1016/j.phytochem.2005.07.016
- ³¹Gupta, A., Singh, P., Trivedi, M., Jha, K. K., Kumar, S., Singh, B., A review on pharmacognostical and pharmacological activities of plant *Nicandra physalodes*, *Pharma Res.*, **2014**, *11*, 42-47.

https://www.researchgate.net/publication/287324309

- ³²Rengifo-Salgado, E., Vargas, Arana, G., *Physalis angulata* L. (Bolsa Mullaca): A Review of its Traditional Uses, Chemistry and Pharmacology, *Bol. Latinoam. Caribe Plant Med. Aromat.*, **2013**, *12*, 431-445 . <u>https://www.researchgate.net/publication/260284500</u>
- ³³Sharma, N., Bano, A., Dhaliwal, H. S., Sharma, V., A Pharmacological Comprehensive Review on 'Rassbhary' *Physalis angulata* (L.), *Int. J. Pharm. Pharm. Sci.*, 2015, 7, 30-34. <u>https://www.researchgate.net/publication/296461005</u>
- ³⁴Rathi, V., Rathi, J. C., Patel, K., Kanojia, S. S., Tamizharasi, S., Acomprehensive Review of *Physalis angulata*, *World J. Pharm. Res.*, **2017**, *6*, 1503-1512. DOI: 10.20959/wjpr20174-8251
- ³⁵Mirzaee, F., Hosseini, A. S., Askian, R., Azadbakht, M., Therapeutic Activities and Phytochemistry of *Physalis* Species Based on Traditional and Modern Medicine, *Res. J. Pharmacogn.*, **2019**, *6*, 79-96. DOI: 10.22127/rjp.2019.93529
- ³⁶Shah, P., Bora, K. S., Phytochemical and Therapeutic Potential of *Physalis* species: a Review, *IOSR J. Pharm. Biol. Sci.*, **2019**, *14*, 34-51. DOI: 10.9790/3008-1404033451
- ³⁷Hassanien, M. F., *Physalis peruviana*: A Rich Source of Bioactive Phytochemicals for Functional Foods and Pharmaceuticals. *Food Rev. Int.*, **2011**, *27*, 259-273. DOI: 10.1080/87559129.2011.563391
- ³⁸Ramadan, M. F., Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (*Physalis peruviana*): An overview, *Food Res. Int.*, **2011**, *44*, 1830-1836. DOI: 10.1016/j.foodres.2010.12.042
- ³⁹Puente, L. A., Pinto-Munoz, C. A., Castro, E. S., Cortes, M., *Physalis peruviana* Linnaeus, the multiple properties of a highly functional fruit: A review, *Food Res. Int.*, **2011**, 44, 1733-1740. DOI: 10.1016/j.foodres.2010.09.034
- ⁴⁰Elshama, S. S., Protective and Therapeutic Effect of *Physalis peruviana* L. in the Intoxicated Cases, *Trends Appl. Sci. Res.*, **2019**, *14*, 36-40. DOI: 10.3923/tasr.2019.36.40
- ⁴¹Milner, S. E., Brunton, N. P., Jones, P. W., O' Brien, N. M., Collins, S. G., Maguire, A. R., Bioactivities of Glycoalkaloids and Their Aglyconesfrom Solanum Species, J. Agric. Food Chem., **2011**, 59, 3454–3484. DOI: 10.1021/jf200439q
- ⁴²Jayakumar, K., Murugan, K., Solanum Alkaloids and their Pharmaceutical Roles: A Review. J. Anal. Pharm. Res., 2016, 3, 14 pages. DOI: 10.15406/japlr.2016.03.00075
- ⁴³Al Sinani, S. S., Eltayeb, E. A., The steroidal glycoalkaloids solamargine and solasonine in *Solanum* plants, *South Afr. J. Bot.*, **2017**, *112*, 253–269. <u>http://dx.doi.org/10.1016/j.sajb.2017.06.002</u>
- ⁴⁴Pomilio, A. B., Falzoni, E. M., Vitale, A. A., Toxic Chemical Compounds of the *Solanaceae*, *Nat. Prod. Commun.*, **2008**, *3*, 593-628. <u>https://doi.org/10.1177/1934578X0800300420</u>
- ⁴⁵Chowanski, S., Adamski, Z., Marciniak, P., Rosinski, G., Buyukguzel, E., Buyukguzel, K., Falabella, P., Scrano, L., Ventrella, E., Lelario, F., Bufo, S. A., A Review of Bioinsecticidal Activity of *Solanaceae* Alkaloids, *Toxins*, **2016**, *8*, 60-87. DOI: 10.3390/toxins8030060
- ⁴⁶Uludag, A., Gbehounou, G., Kashefi, J., Bouhache, M., Bon, M.-C., Bell, C. Lagopodi, A. L., Review of the current situation for *Solanum elaeagnifolium* in the Mediterranean Basin, *EPPO Bull.*, **2016**, *46*, 139-147. DOI: 10.1111/epp.12266

- ⁴⁷Mwonjoria, J. K., Ngeranwa, J. J., Kariuki, H. N., Githinji, C. G., Sagini, M. N., Wambugu, S. N., Ethno medicinal, phytochemical and pharmacological aspects of *Solanum incanum* (lin.), *Int. J. Pharmacol. Toxicol.*, **2014**, *2*, 17-20. DOI: 10.14419/ijpt.v2i2.1454
- ⁴⁸Dakone, D., Guadie, A., A review on ethnomedicinal use, nutritional value, phytochemistry and pharmacological characteristics of *Solanum incanum* L. An important medicinal plant, *Int. J. Sci. Technol. Res.*, **2016**, *5*, 350-354. <u>https://www.researchgate.net/publication/318463932</u>
- ⁴⁹Jain, R., Sharma, A., Gupta, S., Sarethy, I. P., Gabrani, R., *Solanum nigrum*: Current Perspectives on Therapeutic Properties, *Altern. Med. Rev.*, **2011**, *16*, 78-85. <u>https://www.researchgate.net/publication/50865162</u>
- ⁵⁰Atanu, F. O., Ebiloma, U. G., Ajayi, E. I., A review of the pharmacological aspects of *Solanum nigrum* Linn., *Biotechnol. Mol. Biol. Rev.*, **2011**, 6, 1-7. <u>https://www.researchgate.net/publication/228621131</u>
- ⁵¹Miraj, S., Solanum nigrum: A review study with anti-cancer and antitumor perspective, *Der Pharma Chem.*, 2016, 8, 62-68. <u>https://www.researchgate.net/publication/309922413</u>
- ⁵²Saleem, T. S., Chetty, C. M., Ramkanth, S., Alagusundaram, M., Gnanaprakash, M.K., Rajan, V.S., Angalaparameswari, S., *Solanum nigrum* Linn.–A Review, *Pharmacog. Rev.*, **2009**, *3*, 342-345. https://www.researchgate.net/publication/286038929
- ⁵³Potawale, S. E., Sinha, S. D., Shroff, K. K., Dhalawat, H. J., Boraste, S. S., Gandhi, S. P., Tondare, A. D., Solanum Nigrum Linn: A Phytopharmacological Review. Pharmacology online, **2008**, 3, 140-163. <u>https://scinapse.io/papers/2188237570</u>
- ⁵⁴ Kumar, A., Niketa, S. S, Rani, S., An Updated Review on Molecular Genetics, Phytochemistry, Pharmacology and Physiology of Black Nightshade (*Solanum nigrum*), *Int. J. Pharmacut. Sci Res.*, **2012**, *3*, 2956-2977. <u>http://dx.doi.org/10.13040/IJPSR.0975-8232.3(9).2955-77</u>
- ⁵⁵Rani, Y. S., Reddy, V. J., Basha, S. J., Koshma, M., Hanumanthu, G., Swaroopa, P., A Review on Solanum nigrum, World J. Pharm. Pharmaceut. Sci., 2017, 6, 293-303. https://www.researchgate.net/publication/322797670
- ⁵⁶Pallavi, S. S., Shivappa, N. N., Vikram, S. S., Krishna, R. S., Systematic Review on Solanum nigrum, World J. Pharmaceut. Life Sci., 2019, 5, 109-112. <u>https://www.wipls.org/admin/assets/article_issue/35012019/1 548912621.pdf</u>
- ⁵⁷Rehman, M. Z., Rizwan, M., Ali, S., Ok, Y. S., Ishaque, W., Saifullah, Nawaz, M.F., Akmal, F., Waqar, M., Remediation of heavy metal contaminated soils by using *Solanum nigrum*: A review, *Ecotoxicol. Environ. Safety*, **2017**, *143*, 236-248. DOI: 10.1016/j.ecoenv.2017.05.038
- ⁵⁸Zahara, K., Ahmad, N., Bibi, Y., Bibi, F., Sadaf, H. M., Sardar, N., An insight to therapeutic potential and phytochemical profile of *Solanum villosum* (L), *Med. Drug Discov.*, **2019**, 2, 6 pages. <u>https://doi.org/10.1016/j.medidd.2019.100007</u>
- ⁵⁹Alam, K., Hoq, O., Uddin, S., Therapeutic use of Withania somnifera. Asian J. Med. Biol. Res., 2016, 2, 148-155. DOI: 10.3329/ajmbr.v2i2.29004
- ⁶⁰Khanchandani, N., Shah, P., Kalwani, T., Ardeshna, A., Dharajiya, D., Antibacterial and Antifungal Activity of Ashwagandha (*Withania somnifera* L.): A review, **2019**, *9*, 154-161. <u>http://dx.doi.org/10.22270/jddt.v9i5-s.3573</u>
- ⁶¹Shah, D. R., Palaskar, S. J., Pawar, R. B., Punse, R. R., Withania Somnifera: A New Approach to Cancer, Ann. Appl. BioSci., 2018, 5, 1-8. DOI: 10.21276/AABS.1838
- ⁶²Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., Palazon, M., Steroidal Lactones from *Withania somnifera*, an Ancient Plant for Novel Medicine, *Molecules*, **2009**, *14*, 2373-2393. DOI: 10.3390/molecules14072373

- ⁶³Verma, S. K., Kumar, A., Therapeutic Uses of Withania somnifera (Ashwagandha) with a Note on Withanolides and its Pharmacological Actions, Asian J. Pharm. Clin. Res., 2011, 4, 1-4. <u>https://www.researchgate.net/publication/260419415</u>
- ⁶⁴Tiwari, R., Chakraborty, S., Saminathan, M., Dhama, K., Singh, S. V., Ashwagandha (*Withania somnifera*): Role in Safeguarding Health, Immunomodulatory Effects, Combating Infections and Therapeutic Applications: A Review, J. Biol. Sci., **2014**, 14, 77-94. DOI: 10.3923/jbs.2014.77.94
- ⁶⁵Gavande, K., Jain, K., Jain, B., Rakesh Mehta, R., Comprehensive Report on Phytochemistry and Pharmacological Prominence of Withania somnifera, UK J. Pharm. Biosci., 2015, 3, 15-23. https://ukjpb.com/article_details.php?id=107
- ⁶⁶Betsy B. Singh, Simon Dagenais, S., Singh, B. B., Mishra, L. R., Scientific Basis for the Therapeutic Use of Withania somnifera (Ashwagandha): A Review, Altern. Med. Rev., 2000, 5, 334-346. https://www.researchgate.net/publication/12365397
- ⁶⁷Gupta, G. L., Rana, A. C., Withania somnifera (Ashwagandha): A Review. *Pharmacog. Rev.*, **2007**, *1*, 129-136. <u>https://www.researchgate.net/publication/284801881</u>
- ⁶⁸ Vyas, V. K., Bhandari, P., Patidar, R., A Comprehensive Review on Withania somnifera Dunal, J. Nat. Remedies, 2011, 11, 1-13. <u>http://www.informaticsjournals.com/index.php/jnr/article/vie</u> w/43
- ⁶⁹ Mir, B. A., Khazir, J., Mir, N. A., Hasan, T., Koul, S., Botanical, chemical and pharmacological review of *Withania somnifera* (Indian ginseng): an ayurvedic medicinal plant, *Indian J. Drugs Diseas.*, **2012**, *1*, 147-160.

http://ijdd.informaticspublishing.com/index.php/ijdd/article/v iew/31369

⁷⁰Gaurav, N., Review: Pharmacological and Medicinal Activity of Active Compounds of Withania somnifera, J. Engin. Technol., 2013, 3, 7 pages.

https://www.researchgate.net/publication/328699653

- ⁷¹Jinu, J., Therapeutic Potential of Withania somnifera: A Report on Phyto-Pharmacological Properties, Int. J. Pharmaceut. Sci., Res., 2014, 5, 2131-2148. DOI: 10.13040/IJPSR.0975-8232.5(6).2131-48
- ⁷²Jana, S. N., Charan, S. M., Health Benefits and Medicinal Potency of Withania somnifera: A Review, Int. J. Pharm. Sci. Rev. Res., 2018, 48, 22-29. <u>http://globalresearchonline.net/journalcontents/v48-1/08.pdf</u>
- ⁷³Dhar, N., Razdan, S., Rana, S., Bhat, W. W., Vishwakarma, R., Lattoo, S. K., A Decade of Molecular Understanding of Withanolide Biosynthesis and *In vitro* Studies in *Withania somnifera* (L.) Dunal: Prospects and Perspectives for Pathway Engineering, *Front. Plant Sci.*, **2015**, *6*, 20 pages. DOI: 10.3389/fpls.2015.01031
- ⁷⁴Jain, R., Kachhwaha, S., Kothari, S. L., Phytochemistry, pharmacology, and biotechnology of Withania somnifera and Withania coagulans: A review, J. Med. Plants Res., 2012, 6, 5388-5399. DOI: 10.5897/JMPR12.704
- ⁷⁵Kumar, V., Dey, A., Hadimani, M.B., Marcovic, T., Emerald, M., Chemistry and pharmacology of *Withania somnifera*: An update, *TANG*, **2015**, *5*, 13 pages. <u>http://dx.doi.org/10.5667/tang.2014.0030</u>
- ⁷⁶Kalra, R., Kaushik, N., Withania somnifera (Linn.): a review of chemical and pharmacological diversity. *Phytochem. Rev.*, 2017, 16, 953-987. DOI: 10.1007/s11101-017-9504-6
- ⁷⁷Dutta, R., Khalil R., Green, R., Mohapatra, S.S., Mohapatra, S., Withania Somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology, Int. J. Mol. Sci., 2019, 20, 5310-5348. DOI: 10.3390/ijms20215310
- ⁷⁸Azgomi, R. N., Zomorrodi, A., Nazemyieh, H., Fazljou, S. M., Bazargani, H. S., Nejatbakhsh, F. Jazani, A. M., AsrBadr, Y. A., Effects of *Withania somnifera* on Reproductive System:

A Systematic Review of the Available Evidence, *BioMed. Res. Int.*, **2018**, Article ID 4076430, 17 pages. <u>https://doi.org/10.1155/2018/4076430</u>

- ⁷⁹Sengupta, P., Agarwal, A., Pogrebetskaya, M., Roychoudhury, S., Durairajanayagam, D., Henkel, R., Role of *Withania somnifera* (Ashwagandha) in the management of male infertility, *Reprod. Biomed. Online*, **2018**, *36*, 311-326. <u>https://doi.org/10.1016/j.rbmo.2017.11.007</u>
- ⁸⁰EFSA CONTAM Panel, Tropane alkaloids in food and feed, EFSA J., **2013**, 11, 3386-3498, DOI: 10.2903/j.efsa.2013.3386
- ⁸¹Gadzikowska, M., Grynkiewicz G., Tropane alkaloids in pharmaceutical and phytochemical analysis, *Acta Pol. Pharm.*, **2002**, *59*, 149-60. <u>https://www.ptfarm.pl/pub/File/Acta_Poloniae/2002/2/149.p</u> <u>df</u>
- ⁸²Grynkiewicz, G., Gadzikowska, M., Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs, *Pharmacol. Rep.*, **2008**, *60*, 439-463. <u>http://www.if-pan.krakow.pl/pjp/pdf/2008/4_439.pdf</u>
- ⁸³Kohnen-Johannsen, K. L., Kayser, O., Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production, *Molecules*, **2019**, *24*, 796-818,

DOI: 10.3390/molecules24040796

- ⁸⁴Karinho-Betancourt, E., Agrawal, A. A., Halitschke, R., Nunez-Farfan, J., Phylogenetic correlations among chemical and physical plant defenses change with ontogeny, *New Phytol.*, **2015**, 206, 796-806. DOI: 10.1111/nph.13300
- ⁸⁵Padula, L. Z., Bandoni, A. L., Rondina, R. V., Coussio, J. D., Quantitative determination of total alkaloids and scopolamine in *Datura ferox* growing in Argentina, *Planta Med.*, **1976**, *29*, 357-360. DOI: 10.1055/s-0028-1097676
- ⁸⁶Houmani, Z., Cosson, L., Composition in tropanic alkaloids of two Datura species from Algeria: *Datura ferox* L. and *Datura quercifolia* H.B.K., *Acta Bot. Gallica*, **1998**, *145*, 195-198. <u>https://eurekamag.com/research/010/368/010368451.php</u>
- ⁸⁷Vitale, A. A., Acher, A., Pomilio, A. B., Alkaloids of *Datura ferox* from Argentina. *J. Ethnopharmacol.*, **1995**, *49*, 81-89. DOI: 10.1016/0378-8741(95)90035-7
- ⁸⁸Houmani, Z., Cosson, L., Houmani, M., *Datura ferox* L. and D. quercifolia Kunth (Solanaceae) in Algeria, Flora Mediterr., **1999**, 9, 57-60. <u>http://www.herbmedit.org/flora/9-057.pdf</u>
- ⁸⁹Kovatsis, A., Kotsaki-Kovatsi, V. P., Nikolaidis, E., Flaskos, J., Tzika, S., Tzotzas, G., The influence of *Datura ferox* alkaloids on egg-laying hens, *Vet. Hum. Toxicol.*, 1994, 36, 89-92. <u>https://www.ncbi.nlm.nih.gov/pubmed/8197722</u>
- ⁹⁰Kovatsis, A., Flaskos, J., Nikolaidis, E., Kotsaki-Kovatsi, V. P., Papaioannou, N., Tsafaris, F., Toxicity study of the main alkaloids of Datura ferox in broilers, *Food Chem. Toxicol.*, **1993**, *31*, 841-845. DOI: 10.1016/0278-6915(93)90222-k
- ⁹¹Padma Rao, P., Subramanian, P., Sudhakar, P., Reddy, P. R., Pharmacognostic studies on seed of *Datura ferox, Ind. J. Nat. Prod. Resor.*, **2014**, *5*, 326-331.

https://pdfs.semanticscholar.org/4642/ac7430818a9a8fee9e8e c8da7cc753dbff2b.pdf

- ⁹²Gerber, R., Naude, T.W., de Kock, S. S., Confirmed Datura poisoning in a horse most probably due to *D. ferox* in contaminated tef hay, *S. Afr. Vet.Ver.*, **2006**, 77, 86–89. DOI: 10.4102/jsava.v77i2.350
- ⁹³Steenkamp, P. A., Harding, N. M., van Heerden, F. R., van Wyk, B. E., Fatal *Datura* poisoning: identification of atropine and scopolamine by high performance liquid chromatography/photodiode array/mass spectrometry, *Forensic Sci. Int.*, **2004**, *145*, 31-39. DOI: 10.1016/j.forsciint.2004.03.011
- ⁹⁴Piva, G., Piva, A., Anti-nutritional factors of Datura in feedstuffs. *Nat. Toxins*, **1995**, *3*, 238-241. DOI: 10.1002/nt.2620030413.

- ⁹⁵Plank, K-H., Wagner, K. G., Determination of Hyoscyamine and Scopolamine in *Datura innoxia* Plants by High Performance Liquid Chromatography, Z. *Naturforsch. C*, **1986**, *41*, 391-395. <u>https://doi.org/10.1515/znc-1986-0404</u>
- ⁹⁶Malinowska, I., Studzinski, M., Niezabitowska, K., Malinowski, H., Planar electrochromatography and thin layer chromatography of tropane alkaloids from *Datura innoxia* Mill. extract in pseudo-reversed phase systems, *J. Planar Chromat.*, **2016**, *29*, 38-44. DOI: 10.1556/1006.2016.29.1.5
- ⁹⁷Berkov, S., Zayed, R., Comparison of tropane alkaloid spectra between *Datura innoxia* grown in Egypt and Bulgaria, Z. *Naturforsch. C J. Biosci.*, **2004**, *59*, 184-186. DOI: 10.1515/znc-2004-3-409
- ⁹⁸Zayed, R., Wink, M., El-Shamy, H., *In vitro* organogenesis and alkaloid accumulation in *Datura innoxia*, Z. Naturforsch. C-J. Biosci., 2006, 61, 560-564. DOI: 10.1515/znc-2006-7-815
- ⁹⁹Al-Humaid, A.I., Effects of Compound Fertilization on Growth and Alkaloids of Datura Plants, *J. Plant Nutr.*, 2005, 27, 2203-2219, DOI: 10.1081/PLN-200034685
- ¹⁰⁰El Bazaoui, A., Bellimam, M. A., Soulaymani, A., Tropane alkaloids of *Datura innoxia* from Morocco, *Z. Naturforsch. C J. Biosci.*, **2012**, 67, 8-14. DOI: 10.1515/znc-2012-1-202
- ¹⁰¹Oniszcuzuk, A., Waksmundzka-Hajnos, M., Gadzikowska, M., Podgorski, R., Oniszczuk, T., Influence of Sample Preparation Methods on the Quantitation of Selected Tropane Alkaloids from Herb of *Datura innoxia* Mill. by HPTLC, *Acta Chromat.*, **2013**, 25, 545–554. DOI: 10.1556/AChrom.25.2013.3.10
- ¹⁰²McGaw, B. A., Woolley, J. G., Stereochemistry of tropane alkaloid formation in *Datura innoxia*, *Phytochemistry*, **1978**, *17*, 257-259. <u>https://doi.org/10.1016/S0031-9422(00)94158-X</u>
- ¹⁰³Jaafar, F. R., Ajeena, S. J., Mehdy, S. S., Anti-inflammatory impacts and analgesiac activity of aqueous extract *Datura innoxia* leaves against induced pain and inflammation in mice, J. Entomol. Zool. Stud., 2018, 6, 1894-1899. <u>http://www.entomoljournal.com/archives/2018/vol6issue2/Pa</u> <u>rtT/6-1-169-611.pdf</u>
- ¹⁰⁴Kaushik, P., Goyal, P., *In vitro* evaluation of *Datura innoxia* (thorn-apple) for potential antibacterial activity, *Indian J. Microbiol.*, **2008**, 48, 353–357. DOI: 10.1007/s12088-008-0020-7
- ¹⁰⁵Rajeshkanna, A., Senthamilselvi, M. M., Prabhakaran, D., Muruganantham, N., Solomon, S., Antimicrobial Activity of *Datura innoxia* (Flowers), *Int. J. Pharm. Pharmaceut. Res.*, **2017**, 9, 85-92. <u>http://ijppr.humanjournals.com/wpcontent/uploads/2017/07/9</u>
- ¹⁰⁶Adam, S. I., Abd-Kreem, Y. M., Fadowa, A. A., Samar, R. M., Sabahelkhier, M. K., *In vitro* antibacterial and antifungal activity of *Datura innoxia* extracts, *Int. J. Environ.*, **2014**, *3*, 173-185. <u>https://doi.org/10.3126/ije.v3i3.11077</u>
- ¹⁰⁷Al-Sarai, A.A., Abbas, D.A., Al-Rekabi, F. M., Some toxicological impacts and *in vitro* antibacterial activity of *Datura innoxia* extract in rats. Kufa J. Vet. Med. Sci., 2011, 2, 132-145. <u>https://www.iasj.net/iasj?func=fulltext&aId=32418</u>
- ¹⁰⁸ Singh, R., Suresh, C. G., Purification and Characterization of a Small Chito-specific Lectin from *Datura innoxia* Seeds Possessing Anti-microbial Properties, *Int. J. Biochem. Res. Rev.*, **2016**, *9*, 1-17. DOI: 10.9734/IJBCRR/2016/22157
- ¹⁰⁹Gachande, B. D., Khillare, E. M., *In-vitro* Evaluation of *Datura* Species for Potential Antimicrobial Activity, *Biosci. Discov.*, **2013**, 4, 78-81. <u>https://jbsd.in/Volume%204%20No1%20Jan%2013/Gachand</u> <u>e%2078-81.pdf</u>
- ¹¹⁰Fatima, H., Khan, K., Zia, M., Ur-Rehman, T., Mirza, B., Haq, I., Extraction optimization of medicinally important metabolites from *Datura innoxia* Mill.: an *in vitro* biological and phytochemical investigation, *BMC Complement. Alternat. Med.*, **2015**, *15*, 376-393. DOI 10.1186/s12906-015-0891-1

¹¹¹Arulvasu, C., Babu, G., Manikandan, R., Srinivasan, P., Sellamuthu, S., Prabhu, D., Dinesh, D., Anti-Cancer Effect of *Datura innoxia* P.mill. Leaf Extract *in vitro* through Induction of Apoptosis in Human Colon Adenocarcinoma and Larynx Cancer Cell Lines, *J. Pharm. Res.*, **2010**, *3*,1485-1488.

http://jprsolutions.info/article_detail.php?article_id=816

- ¹¹²Khoshkhoo, B., Motamed, M. S., Hamzeloo-Moghadam, M., Datura innoxia anti-angiogenesis properties, Res. J. Pharmacog., 2017, 4, 39-44. http://www.rjpharmacognosy.ir/article_44252.html
- ¹¹³Vermillion, K., Holguin, F. O., Berhow, M. A., Richins, R. D., Redhouse, T., O'Connell, M.A., Posakony, J., Mahajan, S. S., Kelly, S. M., Simon, J. A., Dinoxin B, a Withanolide from *Datura inoxia* Leaves with Specific Cytotoxic Activities, J. *Nat. Prod.*, **2011**, *74*, 267–271. DOI: 10.1021/np1004714
- ¹¹⁴Bhardwaj, K., Kumar, S., Ojha, S., Anioxidant Activity FT-IR Analysis of *Datura innoxia* and *Datura metel*, Afr. J. Tradit. Complement. Altern. Med., **2016**, 13, 7-16. DOI: 10.21010/ajtcam.v13i5.2
- ¹¹⁵Togola, I., Dembele, A. A., Tounkara, F., Diarra, N., Konare, M. A., Karembe, M., Maiga, S. Z., Dembele, D., Evaluation of *in vitro* Antioxidant Activities of Ethanol Extracts of *Datura innoxia* Mill. Leaves and Seeds Harvested in Mali, *Ann. Res. Rev. Biol.*, **2019**, *33*, 1-8.

DOI: 10.9734/ARRB/2019/v33i230115

- ¹¹⁶Sandhya, S., Prathyusha, V., Govardhan, S., Sridhar, D., Vinod, K. R., David, B., Pharmacognostical standardization and in vitro pediculocidal activity of *Datura innoxia* and *Cyclea peltata*, *Curr. Bot.*, **2011**, 2, 31-39. <u>https://updatepublishing.com/journal/index.php/cb/article/vie</u> <u>w/1372</u>
- ¹¹⁷Nandakumar, A., Vaganan, M. V., Sundararaju, P., Udayakumar, R., Nematicidal Activity of Aqueous Leaf Extracts of *Datura metel*, *Datura innoxia* and *Brugmansia suaveolens*, *Am. J. Entomol.*, **2017**, *1*, 39-45. DOI: 10.11648/j.aje.20170102.13
- ¹¹⁸El-Massad, H. A., Satti, A. A., Alabjar, Z. A., Insecticidal potentiality of *Datura innoxia* leaf extracts against the cluster bug (*Agonoscelis pubescens* (Thunberg), *Glo. Adv. Res. J. Environ. Sci. Toxicol.*, **2012**, *1*, 172-177. <u>https://www.researchgate.net/publication/271510558</u>
- ¹¹⁹Theurkar, S. V., Toxicity of Biopesticide Datura Innoxia against the Mortality of Holotrichia Serrata (Fab) Adults, Int. J. IT Eng. App. Sci. Res., 2013, 2, 8-11. <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40</u> <u>3.7640&rep=rep1&type=pdf</u>
- ¹²⁰Boubekka, A., Belmadani, K, Mouhouche, F., Insecticide Activity of *Datura innoxia* on Migratory Locust: *Locusta Migratoria* (LINNE, 1758) (Oedipodinae, Acrididae), *Int. J. Agricul. Sci. Res.*, **2014**, *4*, 1-8. <u>https://www.academia.edu/10470996</u>
- ¹²¹Rawal, V., Sharma, A. V., Vats, T. K., Singh, A. K., Antifeedant Activity of Methanol and Hexane Extracts of Datura Innoxia (Mill.) (Solanaceae) in the Management of Spodoptera Litura (F.) (Lepidoptera: Noctuidae) Larvae, *Int. J. Bioengin. Life Sci.*, **2015**, *9*, 8 pages. <u>https://publications.waset.org/abstracts/37846</u>
- ¹²²Nandakumar, A., Vaganan, M. M., Sundararaju, P., Phytochemical Analysis and Nematicidal Activity of Ethanolic Leaf Extracts of *Datura metel*, *Datura innoxia* and *Brugmansia suaveolens* Against *Meloidogyne incognita*. *Asian J. Biol.*, **2017**, 2, 1-11. DOI: 10.9734/AJOB/2017/34241
- ¹²³Partap, M., Gupta, R. C., Pradhan, S. K., Comparative Aanalysis of Morphology and Phytochemical Constituents in Different Populations and Morphotypes of *Datura innoxia* Mill. and *Datura metel* L. from Punjab Plains, *Asian J. Pharm. Clin. Res.*, **2019**, *12*, 193-199. <u>http://dx.doi.org/10.22159/ajpcr.2019.v12i1.27720</u>

- ¹²⁴Ayuba, V. O., Ojobe, T. O., Ayuba, S. A., Phytochemical and proximate composition of *Datura innoxia* leaf, seed, stem, pod and root, *J. Med. Plants Res.*, **2011**, *5*, 2952-2955. <u>https://academicjournals.org/journal/JMPR/articlestat/C2E161418683</u>
- ¹²⁵Christiana, K. A., Sunday, I. G., Samalia, B. J., Dayil, D. A., Chemical composition of the seeds of *Datura innoxia*, *Int. J. Innov. Sci. Engin. Technol.*, **2016**, *3*, 35-41. <u>http://ijiset.com/vol3/v3s2/IJISET_V3_I2_06.pdf</u>
- ¹²⁶Biswasroy, P., Pradhan, D., Pradhan, R., Quantitative analysis of Hyoscine in different extracts obtained from the seeds of *Datura innoxia* by RP- HPLC, *J. Ayur. Herb. Med.*, **2017**, *3*, 192-195. http://www.ayurvedjournal.com/JAHM_201734_04.pdf
- ¹²⁷Berkov, S., Size and Alkaloid Content of Seeds in Induced Autotetraploids of *Datura innoxia*, *Datura stramonium* and *Hyoscyamus niger*, *Pharmaceut. Biol.*, **2011**, *39*, 329-331. DOI: 10.1076/phbi.39.5.329.5896
- ¹²⁸Nuhu, H., Ghani, A., Alkaloids Content of the Leaves of Three Nigerian Datura Species, *Nig. J. Nat. Prod. Med.*, **2002**, *6*, 15-18. <u>http://dx.doi.org/10.4314/njnpm.v6i1.11685</u>
- ¹²⁹Rahmoune, B., Zerrouk, I. Z., Morsli, A., Khelifi-Slaoui, M., Khelifi, L., Amarante, D. L., Phenylpropanoids and Fatty Acids Levels in Roots and Leaves of *Datura stramonium* and *Datura innoxia*, *Int. J. Pharm. Pharmaceut. Sci.*, **2017**, *9*, 150-154. <u>http://dx.doi.org/10.22159/ijpps.2017v9i7.15946</u>
- ¹³⁰Fanna, A. G., Yadji, G., Tankari, D. A., Boubacar, S., Ousseini, I. Z., Ambouta, J. M., Phytoextraction of Cd, Cu, Pb and Zn by the Plant Species *Datura innoxia*, *Int. J. Curr. Res.*, **2018**, *10*, 70749-70755. <u>https://www.journalcra.com/sites/default/files/issuepdf/31063.pdf</u>
- ¹³¹Adam., S. I., Abd-Kreem., Y. M., Fadowa, A. A., Samar, R. M., Biochemical and Histopathological study of aqueous and methanolic extracts of *Datura innoxia* on Wistar rats, *Int. J. Adv. Res.*, **2014**, *2*, 878-887. <u>http://www.journalijar.com/article/1680</u>
- ¹³²Philipov, S., Berkov, S., GC-MS investigation of tropane alkaloids in *Datura stramonium*, Z .*Naturforsch. C - J. Biosci.*, 2002, 57, 559-561.DOI: 10.1515/znc-2002-5-627
- ¹³³Philipov, S., Berkov, S., Doncheva, T., GC-MS Survey of Datura stramonium Alkaloids, Cr. Acad. Bulg. Sci., 2007, 60, 239-250. https://www.researchgate.net/publication/272160587
- ¹³⁴Babiker, F., Jamal, P., Mirghani, M. E., Ansari, A. H., Characterization, purification and identification of some Alkaloids in *Datura stramonium*, Int. *Food Res. J.*, **2017**, *24*, S540-S543. <u>https://www.researchgate.net/publication/324154034</u>
- ¹³⁵Ademiluyi, A. O., Ogunsuyi, O. B., Oboh, G., Alkaloid extracts from Jimson weed (Datura stramonium L.) modulate purinergic enzymes in rat brain, *Neurotoxicology*, **2016**, *56*, 107-117. DOI: 10.1016/j.neuro.2016.06.012
- ¹³⁶Demeyer, K., Dejaegere, R., Nitrogen and Alkaloid Accumulation and Partitioning in *Datura stramonium* L., J. *Herbs, Spices Med. Plants*, **1998**, 5, 15-23. DOI: 10.1300/J044v05n03_03
- ¹³⁷Iranbakhsh, A. R., Oshagi, M. A., Ebadi, M., Growth and Production Optimization of Tropane Alkaloids in *Datura stramonium* Cell Suspension Culture, *Pak. J. Biol. Sci.*, **2007**, *10*, 1236-1242. DOI: 10.3923/pjbs.2007.1236.1242
- ¹³⁸Maldonado-Mendoza, I. E., Ayora-Talavera, T. R., Loyola-Vargas, V. M., Tropane Alkaloid Production in *Datura stramonium* Root Cultures, *In Vitro Cell. Dev. Biol.*, **1992**, 28, 67-72. DOI: 10.1007/BF02823021
- ¹³⁹Ballica, R., Ryu, D. D., Kado, C. I., Tropane alkaloid production in *Datura stramonium* suspension cultures: elicitor and precursor effects, *Biotechnol. Bioeng.*, **1993**, *41*, 1075-1081. DOI: 10.1002/bit.260411110

- ¹⁴⁰Eftekhar, F., Yousefzadi, M., Tafakori, V., Antimicrobial activity of *Datura innoxia* and *Datura stramonium*, *Fitoterapia*, **2005**, 76, 118-120. DOI: 10.1016/j.fitote.2004.10.004
- ¹⁴¹Uma Reddy, B., Antimicrobial Activity of *Datura stramonium* and *Tylophora Indica* (Burm. F.) Merr., *Pharmacol. Online*, **2009**, *1*, 1293-1300. <u>https://pharmacologyonline.silae.it/files/archives/2009/vol1/1</u> 38.Reddy.pdf
- ¹⁴²Nagesh, M., Samreen, A., Antimicrobial Activity of Carica papaya, Piper nigrum and Datura stramonium Plants on Drug Resistant Pathogens Isolated from Clinical Specimens, IOSR J. Biotechnol. Biochem., 2016, 2, 56-61. <u>https://www.iosrjournals.org/iosr-jbb/papers/Vol2issue6/Version-1/K02065661.pdf</u>
- ¹⁴³Baynesagne, S., Berhane, N., Sendeku, W., Ai, L., Antibacterial activity of *Datura stramonium* against standard and clinical isolate pathogenic microorganisms. *J. Med. Plants Res.*, **2017**, *11*, 501-506. DOI: 10.5897/JMPR2017.6381
- ¹⁴⁴Ndayambaje, J. B., Nteziyaremye, B. E., Ange, S. I., Habinshuti, J.,, Ingabire, A., Munyampundu, J. P., Comparative bacterial inhibition by bioactive extracts from *Datura stramonium* and *Phytolacca dodecandra*, *Virol. Res. J.*, **2018**, 2, 1-5. <u>https://www.alliedacademies.org/articles/10662.html</u>
- ¹⁴⁵Atef, N. M., Badr, H., Amer, W. M., Abd EL-Raheem, L. F., Efficiency of Egyptian Plant Extracts on the Antibiotic Susceptibleand Resistant Pathogenic bacterial Isolates, *Egypt. J. Bot.*, **2017**, *57*, 457-467. <u>https://ejbo.journals.ekb.eg/article_4030.html</u>
- ¹⁴⁶Saeidi, S., Nezhad, N. M., Sharifi-Rad, M., Javadian, F., Javadian, E., Antimicrobial Activity of *Prosopisfarcta L.* and *Datura stramonium L.* Extracts Against *Staphylococcus aureus, J. Herbal Drugs*, **2018**, *9*, 29-32. <u>http://jhd.iaushk.ac.ir/article_662010.html</u>
- ¹⁴⁷Soundaryadevi, V., Jeyamanikandan, V., Evaluation of antibacterial and antioxidant activities of *Abutilon indicum* and *Datura stramonium*, J. Chem. Pharmaceut. Res., 2015, 7, 964-969. http://www.jocpr.com/abstract/8064.html
- ¹⁴⁸Levitt, J., Lovett, J. V., Activity of allelochemicals of *Datura stramonium* L. (Thorn-apple) in contrasting soil types, *Plant Soil*, **1984**, 79, 181–189. https://www.jstor.org/stable/42934622
- ¹⁴⁹Lovett, J. V., Levitt, J., Duffield, A. M., Smith, N. G., Allelopathic potential of *Datura stramonium* L. (Thorn-apple), *Weed Res.*, **2006**, 21, 165-170. <u>https://doi.org/10.1111/j.1365-3180.1981.tb00112.x</u>
- ¹⁵⁰Butnariu, M., An analysis of Sorghum halepense's behavior in presence of tropane alkaloids from *Datura stramonium* extracts, *Chem. Cent. J.*, **2012**, 6, 7 pages. <u>http://journal.chemistrycentral.com/content/6/1/75</u>
- ¹⁵¹Pacanoski, Z., Velkoska, V., Tyr, S., Veres, T., Allelopathic potential of Jimsonweed (*Datura stramonium* L.) on the early growth of maize (*Zea mays* L.) and sunflower (*Helianthus annuus* L.), J. Cent. Eur. Agric., **2014**, 15, 198-208. DOI: 10.5513/JCEA01/15.3.1474
- ¹⁵²Sakadzo, N., Innocent, P., Simbarashe, M., Ronald, M., Kasirayi, M., Thorn apple (*Datura stramonium* L.) allelopathy on cowpeas (*Vigna unguiculata* L.) and wheat (*Triticum aestivum* L.) in Zimbabwe, *Afr. J. Agric. Res.*, **2018**, *13*, 1460-1467. DOI: 10.5897/AJAR2018.13226
- ¹⁵³Dafaallah, A. B., Mustafa, W. N., Hussein, Y. H., Allelopathic Effects of Jimsonweed (*Datua Stramonium* L.) Seed on Seed Germination and Seedling Growth of Some Leguminous Crops, *Int. J. Innov. Appr. Agric. Res.*, **2019**, *3*, 321-331. <u>https://doi.org/10.29329/ijiaar.2019.194.17</u>
- ¹⁵⁴Gul, H., Qaisrani, R. N., Khan, M. A., Hassan, S., Younis, N., Antibacterial and antifungal activity of different extracts of *Datura stramonium* (branches and leaves sample), *E3 J. Biotechnol. Pharmaceut. Res.*, **2012**, *3*, 141-148. <u>https://www.researchgate.net/publication/291022471</u>

- ¹⁵⁵Usha, K., Singh, B., Praseetha, P., Deepa, N., Agarwal, D. K., Agarwal, R., Nagaraja, A., Antifungal activity of *Datura* stramonium, Calotropis gigantea and Azadirachta indica against Fusarium mangiferae and floral malformation in mango, Eur. J. Plant Pathol., **2009**, 124, 637-657. DOI 10.1007/s10658-009-9450-2
- ¹⁵⁶Frías-Escalante, M. P., Burgos-Hernández, A., Plascencia-Jatomea, M., Aldana-Madrid, M. L., Cortez-Rocha, M. O., Antifungal, acute toxicity and mutagenicity activity of extracts from *Datura stramonium*, *Jacquinia macrocarpa* and *Krameria erecta* on *Fusarium verticillioides*, *Afr. J. Biotechnol.*, **2015**, *14*, 2251-2257. DOI: 10.5897/AJB2014.14365
- ¹⁵⁷Shobha, G., Soumya, C., Shashidhara, K. S., Moses, V., Phytochemical Profile, Antibacterial and Antidiabetic Effects of Crude Aqueous Leaf Extract of *Datura stramonium*, *Pharmacophore*, **2014**, *5*, 273-278. <u>https://www.researchgate.net/publication/264936217</u>
- ¹⁵⁸Gomathi, M., Rajkumar, P. V., Prakasam, A., Ravichandran, K., Green synthesis of silver nanoparticles using *Datura stramonium* leaf extract and assessment of their antibacterial activity, *Resource-Efficient Technol.*, **2017**, *3*, 280–284. <u>https://doi.org/10.1016/j.reffit.2016.12.005</u>
- ¹⁵⁹Gupta, A. K., Ahirwar, N. K., Shinde, N., Choudhary, M., Rajput, Y. S., Singh, A., Phytochemical Screening and Antimicrobial Assessment of Leaves of Adhatoda vasica, Azadirachta indica and Datura stramonium, UK J. Pharmaceut. Biosci., 2013, 1, 42-47. http://ukjpb.com/pdf/UKJPB08.pdf
- ¹⁶⁰ Altameme, H. J., Hameed, I. H., Kareem, M. A., Analysis of alkaloid phytochemical compounds in the ethanolic extract of *Datura stramonium* and evaluation of antimicrobial activity, *Afr. J. Biotechnol.*, **2015**, *14*, 1668-1674. DOI: 10.5897/AJB2015.14536
- ¹⁶¹Oyeleke, S. B., Adeyemi, H. R., Abijogun, A. S., Phytochemical and Antimicrobial Property of *Datura stramonium* on Some Oral Pathigenic Microorganisms, *Glob. J. Bio-Sci. Biotechnol.*, **2015**, *4*, 139-144.

http://scienceandnature.org/GJBB_Vol4(2)2015/GJBB-V4(2)2015-1.pdf

- ¹⁶²Banso, A., Adeyemo, S., Phytochemical screening and antimicrobial assessment of *Abutilon mauritianum*, *Bacopa monnifera* and *Datura stramonium*, *Biokemistri*, **2006**, *18*, 39-44. <u>http://www.bioline.org.br/pdf?bk06007</u>
- ¹⁶³Kumar, A., Garg, B. R., Rajput, G., Chandel, D., Muwalia, A. Bala, I., Singh, S., Antibacterial Activity and Quantitative Determination of Protein from Leaf of *Datura stramonium* and *Piper betle* Plants, *Pharmacophore*, **2010**, *1*, 184-195. <u>https://pharmacophorejournal.com/en/article/antibacterialactivity-and-quantitative-determination-of-protein-from-leafof-datura-stramonium-and-piper-betle-plants</u>
- ¹⁶⁴Sharma, P., Sharma, R. A., Comparative Antimicrobial Activity and Phytochemical Analysis of *Datura stramonium* L. Plant Extracts and Callus *In vitro*, *Eur. J. Med. Plants.*, **2013**, *3*, 281-287. <u>http://journalejmp.com/index.php/EJMP/article/view/14075/2 5843</u>
- ¹⁶⁵Girmay, S., Preliminary Phytochemical Screening and *in vitro* Antimicrobial Activity of *Datura stramonium* Leaves Extracts Collected from Eastern Ethiopia, *Int. Res. J. Biological Sci.*, 2015, 4, 55-59.

https://www.researchgate.net/publication/327069599

- ¹⁶⁶Carpa, R., Dumitru, D-V., Burtescu, R. F., Maior, M. C., Dobrota, C., Olah, N-K., Bio-chemical analysis of *Datura stramonium* extract, *Studia UBB Biologia*, **2017**, *LXII*, 5-19. DOI: 10.24193/subbbiol.2017.2.01
- ¹⁶⁷Sreenivasa, S., Vinay, K., Mohan, N. R., Phytochemical Analysis, Antibacterial and Antioxidant Activity of Leaf Extract of *Datura Stramonium*, *Int. J. Sci. Res.*, **2012**, *1*, 83-86. <u>https://www.academia.edu/5782838</u>

- ¹⁶⁸Waza, S. A., Anthony, P., Dar, S., Phytochemical Analysis, Antioxidant and Antimicrobial Activities of Methanolic Extract of *Datura stramonium* seeds, *Int. J. Pharmaceut. Sci. Res.*, **2015**, *6*, 3021-3026. DOI: 10.13040/IJPSR.0975-8232.6(7).3021-26
- ¹⁶⁹You, L. X., Wang, S. J., Chemical Composition and Allelopathic Potential of the Essential Oil from *Datura Stramonium L.*, *Adv. Mater. Res.*, **2011**, 233–235, 2472–2475. <u>https://doi.org/10.4028/www.scientific.net/amr.233-235.2472</u>
- ¹⁷⁰Rajeshkanna, A., Prabhakaran, D., Senthamilselvi, M. M., Muruganantham, N., <u>http://iajps.com/pdf/june2016/4.Anti-</u> <u>Cancer-activity-of-Datura-stramonium.pdf</u>
- ¹⁷¹Iqbal, S., Sivaraj, C., Gunasekaran, K., Antioxidant and Anticancer Activities of Methanol Extract of Seeds of *Datura stramonium* 1., *Free Rad. Antiox.*, **2017**, *7*, 184-189. DOI: 10.5530/fra.2017.2.28
- ¹⁷²Gupta, A., Kumar, S., Mahindroo, N., Saini, R. V., Bioactive Fraction from *Datura stramonium* Linn. Promotes Human immune Cells Mediated Cytotoxicity towards Lung and Breast Cancer Cells, *Pharmacogn. J.*, **2016**, *8*, 435-439. DOI : 10.5530/pj.2016.5.4
- ¹⁷³Karmakar, U. K., Toume, K., Ishikawa, N., Arai, M. A., Sadhub, S. K., Ahmed, F., Ishibashi, M., Bioassay-Guided Isolation of Compounds from *Datura stramonium* with TRAIL-Resistance Overcoming Activity, *Nat. Prod. Commun.*, **2016**, *11*, 185-187. DOI: 10.1177/1934578x1601100213
- ¹⁷⁴Belayneh, Y. M., Birhanu, Z., Birru, E. M., Getenet, G., Evaluation of in vivo antidiabetic, antidyslipidemic, and in vitro antioxidant activities of hydromethanolic root extract of *Datura stramonium L.* (Solanaceae), *J. Exper. Pharmacol.*, **2019**, *11*, 29–38. <u>http://dx.doi.org/10.2147/JEP.S192264</u>
- ¹⁷⁵Bodade, A. B., Wankhade, A. S., Kale, P. D., Chaudhari, G. N., Preparation and Characterization of Nanocrystaline Magnesium Oxide Using Datura Stramonium Leaves and Its Antibacterial Activity, *Int. J. Innov. Stud. Sci. Eng. Technol.*, **2019**, 8, 42-45.

http://ijisset.org/wp-content/uploads/2019/08/IJISSET-050821.pdf

- ¹⁷⁶Sarkar, S., Bagchi, A., Raha, A., Mukherjee, P., Paul, M., Roy, S., Mamud, R.M., *In vitro* anticoagulant activity of *Datura stramonium* flower extracts on blood plasma of poultry bird, *Pharma Innov. J.*, **2019**, *8*, 1146-1148. <u>http://www.thepharmajournal.com/archives/2019/vol8issue4/</u> <u>PartR/8-4-69-641.pdf</u>
- ¹⁷⁷Agarwal, P., Gupta, R., Yadav, R., Asati, V., Rathi, J. C., Anti-Inflammatory activity of seeds extract of datura stramonium against carrageenan induced paw edema on albino wistar rats, *J. Pharmaceut. Biol. Sci.*, **2019**, *7*, 41-46. <u>http://doi.org/10.18231/j.jpbs.2019.007</u>
- ¹⁷⁸Sharma, R. A., Yadav, A., Bhardwaj, R., Sharma, P., Study of Antioxidant Activity of *Datura stramonium* Linn., *Res. J. Phytochem.*, **2014**, 8, 112-118. DOI: 10.3923/rjphyto.2014.112.118
- ¹⁷⁹Ananth, A., Rajan, S., *In-vitro* antioxidant activity of *Datura* stramonium L. leaves, Adv. Appl. Sci. Res., 2015, 6, 147-151. <u>http://www.imedpub.com/articles/invitro-antioxidant-activity-of-datura-stramonium-l-leaves.pdf</u>
- ¹⁸⁰Veeraragavan, A., Sultan, H., Ali, S. J., Hathi, A., Ismail, M., In – vitro antioxidant activity of leaves on Datura stramonium, L.and Datura metal, L. Solanaceae – A comparative studies, IJRDO-J. Biol. Sci., 2017, 3, 32-43. https://www.ijrdo.org/index.php/bs/article/view/1583
- ¹⁸¹Variyar, J., Premrajan, P., Free radical scavenging and protease inhibitory activities of *Datura stramonium*, *Int. J. Res. Pharmacol. Pharmaceut.*, **2015**, *4*, 334-340. <u>https://www.researchgate.net/publication/304443968</u>
- ¹⁸²Aboluwodi, A. S., Avoseh, O. N., Lawal, O. A., Ogunwande, I. A., Giwa, A. A., Chemical constituents and antiinflammatory activity of essential oils of *Datura stramonium* L., *J. Med. Plants Stud.*, **2017**, *5*, 21-25.

http://www.plantsjournal.com/archives/2017/vol5issue1/PartA/4-6-33-110.pdf

- ¹⁸³Mekap, S. K., Rana, R. N., Acharya, B., Sarangi, D., Mahapatra, M., Ahmed, N., Ghose, D., Preliminary Phytochemical Screening and Analgesic Activity of *Datura stramonium* L. var. Tatula Leaf Extract Collected from Coastal Belt of Odisha, *Res. J. Life Sci. Bioinform. Phamaceut. Chem.Sci.*, **2018**, *4*, 312-321. DOI: 10.26479/2018.0402.24
- ¹⁸⁴Merza, A. H., Al- Jeboori, K. Z., Yaseen, N. Y., Investigation of the Phytochemicals Present in the Local *Datura stramonium* Seeds by Using Two Extraction Methods, *Iraqi J. Vet. Med.*, **2010**, *34*, 138-142. <u>https://www.iasj.net/iasj?func=fulltext&aId=2457</u>
- ¹⁸⁵Oseni, O. A., Olarinoye, C. O., Amoo, I. A., Studies on chemical compositions and functional properties of thorn apple (*Datura stramonium L*) Solanaceae, Afr. J. Food Sci., 2011, 5, 40-44. https://www.researchgate.net/publication/285309524
- ¹⁸⁶Friedman, M., Levin, C. E., Composition of jimson weed (*Datura stramonium*) seeds, J. Agric. Food Chem., **1989**, 37, 4, 998-1005. DOI: 10.1021/jf00088a040
- ¹⁸⁷Li, J., Lin, B., Wang, G., Gao, H., Qin M., Chemical constituents of *Datura stramonium* seeds, *Chin. Mater. Med.*, **2012**, *37*, 319-322. DOI: 10.4268/cjcmm20120313
- ¹⁸⁸Namdeo, A., Tembhre, M., Banerjee, S., Gour, S., Ahirwar, S., Inhibitory efficacy of Chlorpyriphos and *Datura stramonium* on Acetylcholinesterase activity, Kinetics and Histology of Brain of *Catla catla*, *Asian J. Exp. Sci.*, **2013**, *27*, 47-56. <u>https://www.researchgate.net/publication/320557923</u>
- ¹⁸⁹Ademiluyi, A. O., Ogunsuyi, O. B., Oboh, G., Agbebi, O. J., Jimson weed (*Datura stramonium* L.) alkaloid extracts modulate cholinesterase and monoamine oxidase activities in vitro: possible modulatory effect on neuronal function. *Com. Clin. Pathol.*, **2016**, *25*, 733-741. DOI: 10.1007/s00580-016-2257-6
- ¹⁹⁰Malami, I., Halilu, M. E., Mathias, S., Alhassan, M. A., Phytochemical evaluation and investigations in to sedative properties of *Datura stramonium* (Linn) seeds in experimental mice, *IOSR J. Pharm. Biol. Sci.*, **2014**, *9*, 1-3. https://www.researchgate.net/publication/314445920
- ¹⁹¹Soni, P., Siddiqui, A. A., Dwivedi, J., Soni, V., Antiovulatory and Estrogenic Activity of Leaves of *Datura stramonium* Linn. In Female Albino Rats, *Asian J. Pharmaceut. Res. Health Care*, **2016**, *5*, 65-71. <u>http://www.informaticsjournals.com/index.php/ajprhc/article/ view/532</u>
- ¹⁹²Shekhar, P., Joshi, A., Malviya, S., Kharia, A., Wound healing activity of the hydro-alcoholic extract of datura stramonium leaves in wistar albino rats, *J. Drug Deliv. Therapeut.*, **2017**, 7, 214-215. <u>http://jddtonline.info/index.php/jddt/article/view/1641</u>
- ¹⁹³Swathi, S., Murugananthan, G., Ghosh, S. K., Oviposition deterrent activity from the ethanolic extract of *Pongamia pinnata*, *Coleus forskohlii*, and *Datura stramonium* leaves against *Aedes aegypti* and *Culex quinquefaciatus*, *Pharmacogn. Mag.*, **2010**, 6, 320–322. DOI: 10.4103/0973-1296.71796
- ¹⁹⁴Abbsipour, H., Mahmoudvand, M., Rastegar, F., Hosseinpour, M. H., Bioactivities of jimsonweed extract, *Datura* stramonium L. (Solanaceae), against *Tribolium castaneum* (Coleoptera: Tenebrionidae), *Turk. J. Agric. For.*, **2011**, 35, 623-629. DOI: 10.3906/tar-1004-874
- ¹⁹⁵Abbasipour, H., Rastegar, F., Mahmoudvand, M., Hosseinpour, H. M., Insecticidal activity of extract from *Datura* stramonium (F.) (Solanaceae) against *Callosobruchus* maculatus, IOBC-wprs Bull., **2011**, 69, 251-256. <u>https://www.researchgate.net/publication/259148123</u>
- ¹⁹⁶Chintem, D. G., Nzelibe, H. C., James, D. B., Albaba, S. U., Grillo, H. T., Larvicidal Pootential of Leaf Extracts and Purified Fraction of *Datura stramonium* Against *Culex*

quinquefasciatu Mosquitoes, *Int. J. Nat. Sci. Res.*, **2014**, *2*, 284-293. <u>https://ideas.repec.org/a/pkp/ijonsr/2014p284-293.html</u>

- ¹⁹⁷Jawalkar, N., Zambare, S., Zanke, S., Insecticidal property of Datura stramonium L. seed extracts against Sitophilus oryzae L. (Coleoptera: Curculionidae) in stored wheat grains, J. Entomol. Zool. Stud., 2016, 4, 92-96. <u>http://www.entomoljournal.com/archives/2016/vol4issue6/Pa</u> rtB/4-5-142-966.pdf
- ¹⁹⁸Oplos, C., Eloh, K., Spiroudi, U. M., Pierluigi, C., Ntalli, N., Nematicidal Weeds, *Solanum nigrum* and *Datura stramonium*, *J. Nematol.*, **2018**, *50*, 317-328. DOI: 10.21307/jofnem-2018-017
- ¹⁹⁹Day, E. J., Dilworth, B. C., Toxicity of jimson weed seed and cocoa shell meal to broilers, *Poult. Sci.*, **1984**, *63*, 466-8. DOI: 10.3382/ps.0630466
- ²⁰⁰Benouadah, Z., Mahdeb, N., Bouzidi, A., Evaluation of Acute and Sub-Acute Toxicity of Alkaloids from *Datura* stramonium Sp. in Mice. Int. J. Pharmacog. Phytochem. Res., 2016, 8, 1759-1766. <u>http://impactfactor.org/PDF/IJPPR/8/IJPPR,Vol8,Issue11,Art</u> icle2.pdf
- ²⁰¹Tostes, R. A., Accidental Poisoning by *Datura stramonium* in Dog, Vet. Hum. Toxicol., 2002, 44, 33-34. <u>https://www.researchgate.net/publication/11535065</u>
- ²⁰²Fatoba1, T. A., Adeloye, A. A., Soladoye, A. O., Effect of *Datura stramonium* seed extracts on haematological parameters of West African Dwarf (WAD) bucks, *Eur. J. Exp. Biol.*, **2013**, *3*, 1-6. http://www.imedpub.com/articles/php?aid=14676
- ²⁰³Fatoba, T. A., Adeloye, A. A., Soladoye, A. O., Effect of aqueous extract of *Datura stramonium* on spermatogenesis of West African Dwarf bucks, *Eur. J. Zool. Res.*, **2012**, *1*, 77-79. <u>https://www.scholarsresearchlibrary.com/abstract/583.html</u>
- ²⁰⁴Daramola, J. O., Adeloye, A. A., Komolafe, S. E., Azeez, O. K., Effect of Aqueous Extract of *Datura Stramonium* Seed on Spermiograms of West African Dwarf Bucks, *J. Agric. Res. Develop.*, **2009**, *7*, 5 pages. <u>http://dx.doi.org/10.4314/jard.v7i1.48676</u>
- ²⁰⁵Worthington, T. R., Nelson, E. P., Bryant, M. J., Toxicity of thornapple (*Datura stramonium* L) seeds to the pig. *Vet. Rec.*, **1981**, *108*, 208-11. DOI: 10.1136/vr.108.10.208
- ²⁰⁶Naude, T. W., Gerber, R., Smith, R. J., Botha, C., Datura contamination of hay as the suspected cause of an extensive outbreak of impaction colic in horses, C.J., *J. S. Afr. Vet. Ass.*, **2005**, 76, 107–112. https://www.researchgate.net/publication/7651282
- ²⁰⁷Binev, R., Valchev, I., Nikolov, J., Haematological Studies on Jimson Weed (*Datura stramonium*) Intoxication in Horses, *Trakia J. Sci.*, **2006**, *4*, 43-48. <u>https://www.researchgate.net/publication/228688531</u>
- ²⁰⁸Chan, K., Jimson Weed Poisoning-A Case Report, *Perm. J.*, **2002**, 6, 28-30. <u>https://doi.org/10.7812/TPP/02-058</u>
- ²⁰⁹Adegoke, S. A., Alo, L. A., *Datura stramonium* poisoning in children, *Niger. J. Clin. Pract.*, **2013**, *16*, 116-118. DOI: 10.4103/1119-3077.106783
- ²¹⁰Arefi, M., Barzegari, N., Asgari, M., Soltani, S., Farhidnia, N., Fallah, F., Datura poisoning, clinical and laboratory findings. Report of five cases, *Rom. J. Leg. Med.*, **2016**, *24*, 308-311. DOI: 10.4323/rjlm.2016.308
- ²¹¹Tranca, S. D., Szabo, R., Cocis, M., Acute poisoning due to ingestion of Datura stramonium – a case report, *Rom. J. Anaesth. Intensive Care*, **2017**, *24*, 65-68. DOI: 10.21454/rjaic.7518.241.szb
- ²¹²Hashimoto, T., Yukimune, Y., Yamada, Y., Tropane Alkaloid Production in *Hyoscyamus* Root Cultures, *J. Plant Physiol.*, **1986**, *124*, 61-75. DOI: 10.1016/S0176-1617(86)80178-X
- ²¹³Doerk-Schmitz, K., Witte, L., Alfermann, A. W., Tropane alkaloid patterns in plants and hairy roots of *Hyoscyamus*

albus, Phytochemistry, **1993**, *35*, 107-110. DOI: 10.1016/S0031-9422(00)90517-X

- ²¹⁴El-Shazly, A., Tei, A., Witte, L., El-Domiaty, M., Wink, M., Tropane Alkaloids of *Hyoscyamus boveanus*, *H. desertorum*, *H. muticus* and *H. albus* from Egypt, *Z. Naturforsch. C*, **1997**, 52, 729-739. <u>https://doi.org/10.1515/znc-1997-11-1203</u>
- ²¹⁵El Bazaoui, A., Bellimam, M. A., Lancar, I. T., Soulaymani, A., Gas-Liquid Chromatography-Mass Spectrometry Investigation of Tropane Alkaloids in *Hyoscyanus albus* L. from Morocco, Z. Naturforsch. C, **2012**, 57, 461-465. DOI: 10.1515/znc-2012-9-1003
- ²¹⁶ Kebaili, Z., Hameurlaine, S., Fellah, O., Djermane, M., Gherraf, N., Zellagui, A., Abidi, A., Derouiche, K., Assessment of Alkaloid Content and Antibacterial Activity of *Hyoscyamus Albus* and *Hyoscyamus Muticus* Collected in Two Different Climatic Regions in Algeria, J. Biochem. Tech., 2019, 10, 1-6. <u>https://www.researchgate.net/publication/332278206</u>
- ²¹⁷Massinissa, Y., Benhouda, A., Yahia, M., Toxicity, Analgesic, and Anti-Pyretic Activities of Methanolic Extract from *Hyoscyamus albus*' Leaves in Albinos Rats, *Int. J. Biotechnol. Bioengin.*, **2016**, *10*, 121-127. <u>https://www.researchgate.net/publication/287287809</u>
- ²¹⁸Benhouda, A., Yahia, M., Benhouda, D., Bousnane, N. E., Benbia, S., Hannachi, N. E., Ghecham, A., Antimicrobial and Antioxidant activities of various extracts of Hyoscyamus albus L. and Umbilicus rupestris L. leaves, *Algerian J. Nat. Prod.*, **2014**, *2*, 4-17. <u>https://www.asjp.cerist.dz/en/article/10391</u>
- ²¹⁹Yahia, M., Yahia, M., Benhouda, A., Antitumor Activity of Methanolic Fractions Extracted From the Aerial Part of Algerian Hyoscyamus albus and apoptotic cell aspect screening, *Ind. J. Pharmaceut. Edu. Res.*, **2018**, **52**, 262-267. DOI: 10.5530/ijper.52.2.30
- ²²⁰Bourebaba, L., Saci, S., Touguit, D., Gali, L., Terkmane, S., Oukil, N., Bedjou, F., Evaluation of antidiabetic effect of total calystegines extracted from *Hyoscyamus albus*, *Biomed. Pharmacother.*, **2016**, *82*, 337-344. DOI: 10.1016/j.biopha.2016.05.011
- ²²¹Bourebaba, L., Sullini, G., Mendiola, J., Bourebaba, Y., Deghima, A., Oukil, N., Bedjou, F., *In-vivo* edema inhibition of *Hyoscyamus albus* antioxidant extracts rich in calystegines, *Ind. Crops Prod.*, **2016**, 89, 316-322, DOI: 10.1016/j.indcrop.2016.04.067
- ²²²Massinissa, Y., Mouloud, Y., Benhouda, A., Hamada, H., New biological anticancer activities of atropine isolated from algerian hyoscyamus albus's leaves, *Pharmacologyonline*, **2018**, *3*, 286-296. <u>https://pharmacologyonline.silae.it/files/archives/2018/vol3/P hOL_2018_3_A031_Yahia.pdf</u>
- ²²³Massinissa, Y., Mouloud, Y., Benhouda, A., Benbia, S., Khadraoui, H., Ulcer Healing and Gastroprotective Activity of Methanolic Extracts of *Hyoscyamus Albus* and *Umbilicus Rupestris* Leaves against Gastric Injury Caused by Ethanol in Rats, *Glob. J. Res. Rev.*, **2017**, *4*, 1-8. DOI: 10.21767/2393-8854.10008
- ²²⁴Massinissa, Y., Mouloud, Y., Benhouda, A., Nassiba, C., Khadraoui, H., Benhouda, D., Boutaghrine, S., Hepatoprotective effect of *hyoscyamus albus* leaves on carbon tetrachloride-induced an acute hepatotoxicity on rats, *Eur. J. Biotechnol. Biosci.*, **2016**, *4*, 8-12. <u>http://www.biosciencejournals.com/archives/2016/vol4/issue 11/4-10-20</u>
- ²²⁵Keskin, C., Yavuz, M., Kacar, S., Determination of fatty acid compositions of total lipid, phospholipid and triacylglycerol fractions of aboveground parts of four species of the genus *Hyoscyamus, Chem. Res. J.*, **2016**, *1*, 1-8. <u>https://www.researchgate.net/publication/311509624</u>
- ²²⁶Muhammad, A., Manzoor, A., Hanif, A., Shujaat, A., Phytochemical investigation of *Hyoscyamus albus*, *Pak. J. Pharm. Sci.*, **2019**, *32*, 661-667. <u>https://www.researchgate.net/publication/331412170</u>

- ²²⁷Hibi, N., Fujita, T., Hatano, M., Hashimoto, T., Yamada, Y., Putrescine N-Methyltransferase in Cultured Roots of *Hyoscyamus albus, Plant Physiol.*, **1992**, *100*, 826-835. DOI: 10.1104/pp.100.2.826
- ²²⁸Khater, M. A., Elashtokhy, M. M, Effect of growth regulators on in vitro production of *Hyoscyamus aureus* L. and tropane alkaloids, *Int. J. ChemTech. Res.*, **2015**, *8*, 113-119. <u>http://www.sphinxsai.com/2015/ch_vol8_no11/1/(113-119)V8N11CT.pdf</u>
- ²²⁹Atalla, A., Dardona, A., Pesticidal Effects of *Hyoscyamus aureus* L., J. Nat. Ayurvedic Med., **2019**, *3*, 1-3. DOI: 10.23880/jonam-16000214
- ²³⁰Sabri, N. N., el-Masry, S., Khafagy, S. M., Phytochemical investigation of *Hyoscyamus desertorum*, *Planta Med.*, **1973**, 23, 4-9. DOI: 10.1055/s-0028-1099408
- ²³¹Abdel-Motaal, F. F., Nassar, M. S., El-Zayat, S. A., El-Sayed, M. A., Ito, S., Responses of fungi to tropane alkaloids produced by a medicinal plant *Hyoscyamus muticus* (Egyptian henbane). *Folia Microbiol. (Praha)*, **2009**, *54*, 207-712. DOI: 10.1007/s12223-009-0033-6
- ²³²Mohd, I., Nudrat, F., Phytochemical and Antimicrobial Screening of *Hyoscyamus muticus*, a Plant Found in the Northern Border of Saudi Arabia, *Ind. Am. J. Phamaceut. Sci.*, **2017**, *4*, 1216-1220. <u>http://oaji.net/articles/2017/1210-1496682223.pdf</u>
- ²³³Elsharkawy, E. R., Ed-dra, A., Abdallah, E. M., Ali, A. M., Antioxidant, antimicrobial and antifeedant activity of phenolic compounds accumulated in *Hyoscyamus muticus* L., *Afr. J. Biotechnol.*, **2018**, *17*, 311-321. DOI: 10.5897/AJB2017.16316
- ²³⁴Ayari-Guentri, S., Djemouai, N., Gaceb-Terrak, R., Rahmania, F., Chemical Composition and Antioxidant Activity of *Hyoscyamus muticus* L. subsp. *falezlez* (Coss.) Maire from Algeria, J. Essent. Oil-Bear. Plants, **2017**, 20, 1370-1379. DOI: 10.1080/0972060X.2017.1396930
- ²³⁵Elsharkawy, E. R., Allelopathic effects of alkaloid contents of *Hyoscyamus muticus* and *Withania somnifera* on the germination of Cichorium intybus seeds, *Biosc. Biotech. Res. Comm.*, **2019**, *12*, 8 pages. <u>https://bit.ly/2MKSFnw</u>
- ²³⁶Dawidar, A. M., Abdel-Mogib, M., El-Naggar, M. E., Mostafa, M. E., Acaricidal Activity and Chemical Constituents of *Hyoscyamus muticus* against *Tetranychus urticae* KOCH, *Rev. Latinoamer. Quím.*, **2009**, *37*, 45-55. <u>https://www.researchgate.net/publication/237699696</u>
- ²³⁷Aripova, S. F., Alkaloids of Hyoscyamus pusillus, Chem. Nat. Compd., **1985**, 21, 260-265. DOI: 10.1007/BF00714933
- ²³⁸Deylamghani, K. A., Khavarinezhad, R. A., Fahimi, V., Hekmat, S. H., Extraction and Determination of Tropane Alkaloids, Hyoscyamine and Scopolamine, from Different Parts of Hyoscyamus pusillus L. in Different Stages of Plant Growth, Iran. J. Med. Aromat. Plants, 2006, 1, 1-10. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=112155
- ²³⁹Nejadhabibvash, F., Rahmani, F., Heidari, R., Jamei, R., Azimi, F., Study of inheritance and environment on tropane alkaloids within *Hyoscyamus* species, *Aust. J. Crop Sci.*, **2012**, *6*, 1428-1434.

http://www.cropj.com/pour_6_10_2012_1428_1434.pdf

- ²⁴⁰Bahmanzadegan, A., Sefidkon, F., Sonboli, A., Determination of Hyoscyamine and Scopolamine in Four *Hyoscyamus* Species from Iran, *Iran. J. Pharmaceut. Res.*, **2009**, *8*, 65-70. <u>http://ijpr.sbmu.ac.ir/article_790.html</u>
- ²⁴¹Jeppesen, A. S., Soelberg, J., Jager, A. K., Antibacterial and COX-1 Inhibitory Effect of Medicinal Plants from the Pamir Mountains, Afghanistan, *Plants*, **2012**, *1*, 74-81. DOI: 10.3390/plants1020074
- ²⁴²Moradi, B., Delfan, B., Hashemi, P., Mousavi, A., Rahnama, H., Matrix solid phase dispersion extraction for Tropane alkaloid detection in cultured and collected *Hyoscyamus reticulatus* plants, *Int. J. Adv. Res.*, **2015**, *3*, 78-82. <u>http://www.journalijar.com/uploads/282_IJAR-7276.pdf</u>

- ²⁴³Oto, G., Ozdemir, H., Yaren, B., Yetkin, Y., Tas, A., Tanritanir, P., Ozturk, F., Antinociceptive activity of methanol extract of *Hyoscyamus reticulatus L.* in mice, *Am. J. Phytomed. Clin. Therapeut.*, **2013**, *1*, 117-123. <u>http://www.imedpub.com/abstract/10180.html</u>
- ²⁴⁴Mohammad, M. K., Almasri, I. M., Tawaha, K., Issa, A., Al-Nadaf, A., Hudaib, M., AlKhatib, H. S, Abu-Gharbieh, E., Bustanji, Y., Antioxidant, antihyperuricemic and xanthine oxidase inhibitory activities of *Hyoscyamus reticulatus*, *Pharmaceut. Biol.*, **2010**, 48,1363-1776. DOI: 10.3109/13880209.2010.483521
- ²⁴⁵Urkin, J., Shalev, H., Sofer, S., Witztum A., Henbane (*Hyoscyamus reticulatus*) poisoning in children in the Negev, *Harefuah*, **1991**, *120*, 714-716. (Article in Hebrew) <u>https://www.ncbi.nlm.nih.gov/pubmed/1959806</u>
- ²⁴⁶Aslan, S., Cakir, Z., Emet, M., Aksakal, E., Akoz, A., Uzkeser, M., Wildflower (*Hyoscyamus reticulatus*) causes QT prolongation, *Bratisl. Lek. Listy*, **2013**, *114*, 333 – 336. DOI: 10.4149/BLL_2013_070
- ²⁴⁷Tabaraki, R., Nateghi, A., Ahmady-Asbchin, S., In Vitro Assessment of Antioxidant and Antibacterial Activities of Six Edible Plants from Iran, J. Acupunct. Meridian Stud., 2013, 6, 159-162. http://dx.doi.org/10.1016/j.jams.2013.01.016
- ²⁴⁸Naji, S., Zarei, L., Pourjabali, M., Mohammadi, R., The Extract of Lycium depressum Stocks Enhances Wound Healing in Streptozotocin-Induced Diabetic Rats, *Int. J. Low. Extrem. Wounds*, **2017**, *16*, 85-93. DOI: 10.1177/1534734617700538
- ²⁴⁹Ghali, W., Vaudry, D., Jouenne, T., Marzouki, M. N., *Lycium europaeum* fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells, *Nutr. Cancer*, **2015**, *67*, 637-646. DOI: 10.1080/01635581.2015.1017054
- ²⁵⁰Tej, R., Hamdi, A., Serairi Beji, R., Aidi Wannes, W., Bettaieb Rebey, I., Oueslati, S., Ksouri, R., Saidani Tounsi, M., Lachaal, M., Karray Bouraoui, N., Does *Lycium europaeum* leaf have antihyperglycemic, antihyperlipidemic and antioxidant effects, *Braz. J. Pharm. Sci.*, **2019**, 55, 13 pages. <u>http://dx.doi.org/10.1590/s2175-97902019000118064</u>
- ²⁵¹Rjeibi, I., Feriani, A., Ben Saad, A., Sdayria, J., Saidi, I., Ncib, S., Souid, S., Allagui, M. S., Hfaiedh, N., *Lycium europaeum* Extract: A New Potential Antioxidant Source against Cisplatin-Induced Liver and Kidney Injuries in Mice, *Oxid. Med. Cell. Longev.*, **2018**, Article ID 1630751, 9 pages. <u>https://doi.org/10.1155/2018/1630751</u>
- ²⁵²Rosa, A., Maxia, A., Putzu, D., Atzeri, A., Era, B., Fais, A., Sanna, C., Piras, A., Chemical composition of *Lycium europaeum* fruit oil obtained by supercritical CO2 extraction and evaluation of its antioxidant activity, cytotoxicity and cell absorption, *Food Chem.*, **2017**, *230*, 82-90. DOI: 10.1016/j.foodchem.2017.03.019
- ²⁵³Rjeibi I., Feriani, A., Ben Saad, A., Ncib, S., Sdayria, J., Saidi, I., Souid, S., Hfaiedh, N., Allagui, M. S., Phytochemical characterization and bioactivity of *Lycium europaeum*: A focus on antioxidant, antinociceptive, hepatoprotective and nephroprotective effects. *Biomed. Pharmacother.*, **2017**, *95*, 1441-1450. DOI: 10.1016/j.biopha.2017.09.035
- ²⁵⁴Rjeibi, I., Feriani, A., Saad, A. B., Ncib, S., Sdayria, J., Hfaiedh, N., Allagui, M. S., *Lycium europaeum* Linn as a source of polysaccharide with in vitro antioxidant activities and in vivo anti-inflammatory and hepato-nephroprotective potentials, *J. Ethnopharmacol.*, **2018**, 225, 116-127. DOI: 10.1016/j.jep.2018.06.036
- ²⁵⁵Bendjedou, H., Barboni, L., Maggi, F., Bennaceur, M., Benamar, H., Alkaloids and sesquiterpenes from roots and leaves of *Lycium europaeum* L. (Solanaceae) with antioxidant and anti-acetylcholinesterase activities, *Nat. Prod. Res.* **2019**, *33*, 1-5. DOI: 10.1080/14786419.2019.1666386
- ²⁵⁶Touati, J., Artib, M., Mouria, A., Selmaoui, K., Ouazzani Touhami, A., Benkirane, R., Douira, A., *Lycium europaeum*:

vegetative species with a multiple use, *Int. J. Innov. Sci. Res.*, **2017**, *32*, 30-36.

http://www.ijisr.issr-journals.org/abstract.php?article=IJISR-17-015-01

- ²⁵⁷ Ewais, E. A., Abd El-Maboud, M. M., Elhaw, M. H., Haggag, M. I., Extraction, separation and identification of compounds from leaves of *Lycium schweinfurthii var.schweinfurthii* (Solanaceae), *Int J. Innov. Sci. Engin. Technol.*, **2016**, *3*, 273-315. <u>https://www.researchgate.net/publication/311992383</u>
- ²⁵⁸ Elbermawi, A., Halim, A.F., Mansour, E. S., Ahmad, K. F., Ashour, A., Amen, Y., Shimizu, K., A new glucoside with a potent α-glucosidase inhibitory activity from *Lycium Schweinfurthii*, *Nat. Prod. Res.*, **2019**, *33*, 1-8. DOI: 10.1080/14786419.2019.1616730
- ²⁵⁹Dasmal Alkuwari, A., Al-Naemi, M. Y., Vito, P., Stilo, R., Ahmed, T. A., Al Naemi, H., Biological activities of *Lycium shawii* Leaves Extract, *Int. J. Pharmaceut. Biol. Arch.*, **2012**, *3*, 697-700.

https://www.ijpba.info/ijpba/index.php/ijpba/article/view/712

- ²⁶⁰Ali, S. S., El-Zawawy, N. A., Al-Tohamy, R., El-Sapagh, S., Mustafa, A. M., Sun, J., *Lycium shawii* Roem. & Schult.: A new bioactive antimicrobial and antioxidant agent to combat multi-drug/pan-drug resistant pathogens of wound burn infections, *J. Trad. Complement. Med.*, **2020**, *10*, 13-25. <u>https://doi.org/10.1016/j.jtcme.2019.01.004</u>
- ²⁶¹Tayel, A. A., Shaban, S. M., Moussa, S. H., Elguindy, N. M., Diab, A. M., Mazrou, K., Ghanem, R. A., El-Sabbagh, S. M., Bioactivity and application of plant seeds' extracts to fight resistant strains of *Staphylococcus aureus*, *Ann. Agric. Sci.*, **2018**, *63*, 47-53. DOI: 10.1016/j.aoas.2018.04.006
- ²⁶²Dahech, I., Farah, W., Trigui, M., Ben Hssouna, A., Belghith, H., Belghith, K. S., Ben Abdallah, F., Antioxidant and antimicrobial activities of *Lycium shawii* fruits extract. *Int. J. Biol. Macromol.*, **2013**, 60, 328-333. DOI: 10.1016/j.ijbiomac.2013.05.020
- ²⁶³Gaweesh, A., Aenb, S., El-Hefnawy, H. M., Osman, S. M., Abdou, A. M., Phytoconstituents, Cytotoxic, Antioxidant and Hepatoprotective Activities of the Aerial Parts of *Lycium shawii* R. Growing in Egypt., *Med. Aromat. Plants*, **2015**, *4*, 7 pages. DOI: 10.4172/2167-0412.1000180
- ²⁶⁴Rehman, N. U., Hussain, H., Al-Riyami, S. A., Csuk, R., Khiat, M., Abbas, G., Al-Rawahi, A., Green, I. R., Ahmed, I. and Al-Harrasi, A., Lyciumaside and Lyciumate: A New Diacylglycoside and Sesquiterpene Lactone from Lycium shawii, Helv. Chim. Acta, **2016**, 99, 632-635. DOI: 10.1002/hlca.201600066
- ²⁶⁵Ahmed, F. A., Abdallah, N. M., Ezz, M. K., El-Azab, M. M., Seasonal Variations and Identification of Biologically Active Constituents of *Lycium Shawii* Plant Roem. & Shult. (Family Solanaceae), *Int. J. Innov. Sci. Engin. Technol.*, **2017**, *4*, 34-47. DOI: 10.13140/RG.2.2.14010.49601
- ²⁶⁶Rehman, N. U., Hussain, H., Al-Riyami, S. A., Green, I. R., Al-Harrasi, A., Chemical Constituents Isolated from *Lycium shawii* and their Chemotaxonomic Significance, *Rec. Nat. Prod.*, **2018**, *12*, 380-384.

http://doi.org/10.25135/rnp.34.17.09.160

- ²⁶⁷Rehman, N. U., Khan, A., Al-Harrasi, A., Khiat, M., Hussain, H., Wadood, A., Riaz, M., Natural urease inhibitors from Aloe vera resin and Lycium shawii and their structuralactivity relationship and molecular docking study, *Bioorg. Chem.*, **2019**, 88, 102955-102961. DOI: 10.1016/j.bioorg.2019.102955
- ²⁶⁸Uysal, S., Zengin, G., Aktumsek, A., Antioxidant properties and enzyme inhibitory effects of extracts from *Mandragora autumnalis* and its fatty acid composition, *Marmara Pharmaceut. J.*, **2016**, 20, 144-151. DOI: 10.12991/mpj.201620206523
- ²⁶⁹Jackson, B. P., Berry, M. I., Hydroxytropane tiglates in the roots of *Mandragora* species, *Phytochemistry*, **1973**, *12*, 1165-1166. <u>https://doi.org/10.1016/0031-9422(73)85035-6</u>

- ²⁷⁰Fleisher, Z., Fleisher, A., The Odoriferous Principles of Mandrake, *Mandragora officinarum L., J. Essent. Oil Res.*, **1992**, *4*, 187-188. DOI: 10.1080/10412905.1992.9698041
- ²⁷¹Fleisher, A., Fleisher, Z. The fragrance of Biblical Mandrake, *Econ. Bot.*, **1994**, 48, 243–251. https://doi.org/10.1007/BF02862323
- ²⁷²Baser, K. H., Kurkcuoglu, M., Demirci, B., Erdogmus, H., Composition of the Essential Oil and the Headspace Sample of *Mandragora autumnalis* Bertol. Fruits, *J. Essent. Oil Res.*, **1998**, *10*, 632-634. https://doi.org/10.1080/10412905.1998.9700991
- ²⁷³Hanus, L. O., Dembitsky, V. M., Moussaieff, A., Comparative Study of Volatile Compounds in the Fresh Fruits of *Mandragora autumnalis, Acta Chromatogr.*, **2006**, *17*, 151-160. https://www.researchgate.net/publication/237806241
- ²⁷⁴Arbia, F., Ayari-Gribaa, O., Souilem, F., Chiboub,W., Zardi-Berguaoui, A., Ben Jannet, H., Ascrizzi, R., Flamini, G., Harzallah-Skhiri, F., Profiles of the Essential Oils and Headspace Analysis of Volatiles from *Mandragora autumnalis* Growing Wild in Tunisia, *Chem. Biodiver.*, **2019**, *16*, 14 pages. DOI: 10.1002/cbdv.201900345
- ²⁷⁵Cornara, L., Smeriglio, A., Frigerio, J., Labra, M., Di Gristina, E., Denaro, M., Mora, E., Trombetta, D., The problem of misidentification between edible and poisonous wild plants: Reports from the Mediterranean area, *Food Chem. Toxicol.*, **2018**, *119*, 112-121. DOI: 10.1016/j.fct.2018.04.066
- ²⁷⁶Piccillo, G. A., Miele, L., Mondati, E., Moro, P. A., Musco, A., Forgione, A., Gasbarrini, G., Grieco, A., Anticholinergic syndrome due to 'Devil's herb': when risks come from the ancient Time, *Int. J. Clin. Pract.*, **2006**, *60*, 492-494. DOI: 10.1111/j.1368-5031.2006.00864.x
- ²⁷⁷Tsiligianni, I. G., Vasilopoulos, T. K., Papadokostakis, P. K., Arseni, G. K., Eleni, A., Lionis, C. D., A two cases clinical report of mandragora poisoning in primary care in Crete, Greece: two case report, *Cases J.*, **2009**, *2*, 3 pages. DOI:10.1186/1757-1626-2-9331
- ²⁷⁸Jimenez, M. E., Montano, M., Lopez, F., Campos,, E., Martín, M. C., Ayuso, M. J., Puente, G., Atropine poisoning by Mandragora autumnalis. A report of 15 cases, *Med. Clin.* (*Barc*)., **1990**, *95*, 689-92. (Article in Spanish). https://www.researchgate.net/publication/21069139
- ²⁷⁹Devi, P., Meera, R., Muthumani, P.,, Chilakalapudi, R., Thota, V., Murthy, D. V., Jeyasundari, K., Evaluation of Alcoholic and Aqueous Extracts of *Nicandra Physalodes* Leaves for Diuretic Activity, *Int. J. Pharmaceut. Biol. Arch.*, **2010**, *1*, 331-334.

http://www.ijpba.info/ijpba/index.php/ijpba/article/view/117

- ²⁸⁰Dimetry, N. Z., Amer, S. A., El-Gengaihi, S., Toxicological evaluation and biological potency of petroleum ether extract of two plants and their isolates towards the two spotted spider mite *Tetranychus urticae* Koch, *Acarologia*, 2003, *43*, 67-73. <u>https://www1.montpellier.inra.fr/CBGP/acarologia/article.ph</u> <u>p?id=55</u>
- ²⁸¹Govindarajan, M., Khater, H. F., Panneerselvam, C., Benelli, G., One-pot fabrication of silver nanocrystals using *Nicandra physalodes*: A novel route for mosquito vector control with moderate toxicity on non-target water bugs, *Res. Vet. Sci.*, **2016**, *107*, 95–101. <u>http://dx.doi.org/10.1016/j.rvsc.2016.05.017</u>
- ²⁸²Kshirsagar, P. P., Bhogaonkar, P. Y., Nicandra physaloides (L.) Gaertn – A Less Known Wild Edible Fruit, Int. J. Curr. Pharm. Res., 2015, 7, 60-63. <u>https://innovareacademics.in/journals/index.php/ijcpr/article/ view/6295</u>
- ²⁸³Nalbandov, O., Yamamoto, R. T., Fraenkel, G. S., Insecticides from Plants, Nicandrenone, A New Compound with Insecticidal Properties, Isolated From *Nicandra Physalodes*, *J. Agric. Food Chem.*, **1964**, *12*, 55-59. https://doi.org/10.1021/jf60131a017
- ²⁸⁴Liu, Y., Jiang, H-B., Xu, Z-P., Cheng, Y-G., Lv, S-W., Yang, B-Y., Guo, H-W., Kuang, H-X., New Glycosides from the

Fruits of Nicandra physaloides, Molecules, 2017, 22, 828-835, DOI: 10.3390/molecules22050828

- ²⁸⁵Xiao, Q., Wang, C. F., Chen, J., Lian, C. L., Xu, Y., Xiao, L., Liu, J. Q., Three new withanolides from the calyces of *Nicandra physaloides*, *Steroids*, **2018**, *131*, 32-36. DOI: 10.1016/j.steroids.2018.01.003
- ²⁸⁶Yu, M-Y., Zhao, G-T., Liu, J., Khan, A., Peng, X., Zhou, L., Dong, J-R., Li, H-Z., Qiu, M-H., Withanolides from aerial parts of *Nicandra physalodes*, *Phytochemistry*, **2017**, *137*, 148-155. <u>https://doi.org/10.1016/j.phytochem.2017.02.009</u>
- ²⁸⁷Carrero, D. A., Batista, P. H., Souza, L. G., Pinto, F. C., de Vasconcelos, M. A., Teixeira, E. H., Canuto, K. M., Santiago, G. M., Silveira, E. R., Pessoa, O. D., Withanolides from Leaves of *Nicandra physalodes*, J. Braz. Chem. Soc., **2018**, 29, 11-16. <u>http://dx.doi.org/10.21577/0103-5053.20170105</u>
- ²⁸⁸Effect of aqueous extract of the invasive species Tobacco (*Nicotiana glauca* L.) on seedlings growth of Juniper (*Juniperus procera* L.), *Emir. J. Food Agric.*, **2008**, 20, 10-17. <u>https://www.ejfa.me/index.php/journal/article/view/445</u>
- ²⁸⁹Aldesuquy, H. S., Mashaly, I. A., Abd El-Aal, M., Mahdee, B. A., Phytochemical Constituents, Antibacterial and Antioxidant Activities of some Medicinal Plants, *Curr. Trends Biomed. Eng. Biosci.*, **2018**, *16*, 47-55. DOI: 10.19080/CTBEB.2018.16.555933
- ²⁹⁰Gutierrez, A. D., Moustapha, B., María, L., Garduno, R., Sandra, O., Mendoza, D., Serrano, C. V., Anti-inflammatory and Antioxidant Activities of Methanol Extracts and Alkaloid Fractions of Four Medicinal Plants of Solanaceae, Afr. J. Tradit. Complement. Altern. Med., 2014, 11, 259-267. http://dx.doi.org/10.4314/ajtcam.v11i3.36
- ²⁹¹Zammit, M., Shoemake, C., Attard, E., Azzopardi, L. M., The Effects of Anabasine and the Alkaloid Extract of *Nicotiana* glauca on Lepidopterous Larvae, *Int. J. Biol.*, **2014**, *6*, 46-53. DOI: 10.5539/ijb.v6n3p46
- ²⁹²Rindl, M., Sapiro, M. L., De Kock, G. W., A chemical investigation of the constituents of Nicotiana glauca R. Grah. (Solanaceae) (Wild tobacco), *Ondertepoort J. Vet. Sci. Anim. Ind.*, **1949**, *22*, 301-312. <u>https://repository.up.ac.za/handle/2263/59230?show=full</u>
- ²⁹³Mortimer, C. L., Bramley, P. M., Fraser, P. D., The identification and rapid extraction of hydrocarbons from Nicotiana glauca : A potential advanced renewable biofuel source, *Phytochem. Lett.*, **2012**, *5*, 455-458. DOI: 10.1016/j.phytol.2012.04.004
- ²⁹⁴Cherif, A., Ammar, S., Boukhchina, S., 2019. Composition and characterization by GC-MS of the essential oil extracted from *Nicotiana glauca* Graham, *Grasas Aceites*, **2019**, *70*, 5 pages. <u>https://doi.org/10.3989/gya.0927182</u>
- ²⁹⁵Abd-El-Khalek, D. E., Abd-El-Nabey, B. A., Abdel-Gaber, A. M., Evaluation of *Nicotiana* Leaves Extract as Corrosion., *Port. Electrochim. Acta*, **2012**, *30*, 247-259. DOI: 10.4152/pea.201204247
- ²⁹⁶Najah, Z., Elsherif, K. M., Kawan, E., Farah, N., Phytochemical Screening and Heavy Metals Contents of *Nicotiana glauca* Plant, *Int. J. Pharm. Pharmaceut. Res.*, **2015**, *4*, 82-91. <u>https://ijppr.humanjournals.com/19-3</u>
- ²⁹⁷Plumlee, K. H., Holstege, D. M., Blanchard, P. C., Fiser, K. M., Galey, F. D., *Nicotiana glauca* toxicosis of cattle, *J. Vet. Diagn. Invest.*, **1993**, *5*, 498-499. DOI: 10.1177/104063879300500340
- ²⁹⁸Both, C. J., Steenkamp P. A., Olivier, A., Bekker, L. C., *Nicotiana glauca* poisoning in ostriches (Struthio camelus). J. S. Afr. Vet. Assoc., **2011**, 82, 116-119. DOI: 10.4102/jsava.v82i2.44
- ²⁹⁹Castorena, J. L., Garriott, J. C., Barnhardt, F. E., Shaw, R. F., A fatal poisoning from *Nicotiana glauca*, *J. Toxicol. Clin. Toxicol.*, **1987**, 25, 429-435. DOI: 10.3109/15563658708992646

- ³⁰⁰Mellick, L. B., Makowski, T., Mellick, G. A., Borger, R., Neuromuscular blockade after ingestion of tree tobacco (*Nicotiana glauca*), Ann. Emerg. Med., **1999**, *3*, 101-104. DOI: 10.1016/s0196-0644(99)70280-5
- ³⁰¹Furer, V., Hersch, M., Silvetzki, N., Breuer, G. S., Zevin, S., *Nicotiana glauca* (Tree Tobacco) Intoxication—Two Cases in One Family, *J. Med. Toxicol.*, **2011**, 7, 47–51. DOI: 10.1007/s13181-010-0102-x
- ³⁰²Hassen, F. M., Sik Ali, B. H., Jaoued, O., Ayed, S., Tilouche, N., Gharbi, R., Elatrous, S., Severe *Nicotiana glauca* Poisoning: A Case Report, *J. Clin. Toxicol.*, **2014**, *4*, 2 pages. DOI:10.4172/2161-0495.1000216
- ³⁰³Musso, F., Lincor, D., Vasconsuelo, A., Pronsato, L., Faraoni, B., Milanesi, L., Adverse Effects in Skeletal Muscle Following the Medicinal Use of *Nicotiana glauca*, *Biol. Pharm. Bull.*, **2019**, 42, 671–679. DOI: 10.1248/bpb.b18-00424
- ³⁰⁴Donkor, A. M., Glover, R. L., Boateng, J. K., Gakpo, V. Y., Antibacterial activity of the fruit extract of Physalis angulata and its formulation, *J. Med. Biomed. Sci.*, **2012**, *1*, 21-26. <u>https://www.researchgate.net/publication/317036079</u>
- ³⁰⁵Osho, A., Adetunji, T., Fayemi, S. O., Moronkola, D. O., Antimicrobial Activity of Essential Oils of *Physalis angulata* L., Afr. J. Tradit. Complement. Altern. Med., **2010**, 7, 303-306. DOI: 10.4314/ajtcam.v7i4.56696
- ³⁰⁶Silva, M. T., Simas, S., Batista, T. G., Cardarelli, P., Tomassini, T. C., Studies on antimicrobial activity, in vitro, of *Physalis* angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination, *Mem. Inst.* Oswaldo Cruz, **2005**, 100, 779-782.DOI: 10.1590/S0074-02762005000700018
- ³⁰⁷Hsieh, W. T., Huang, K. Y., Lin, H. Y., Chung, J. G., *Physalis angulata* induced G2/M phase arrest in human breast cancer cells, *Food Chem. Toxicol.*, **2006**, *44*, 974-983 DOI: 10.1016/j.fct.2005.11.013
- ³⁰⁸Hidayat, T., Priyandoko, D., Perdana, F. S., Insan, A. M., Hernawati, F., Cytotoxicity effects of leaf extracts of Ciplukan (*Physalis angulata*; Solanaceae) on human blood and ovary cancer cell lines, *J. Phys. Conf. Ser.*, **2019**, *1280*, 6 pages. DOI: 10.1088/1742-6596/1280/2/022009
- ³⁰⁹Maryati, A., Sutrisna, E., Saifudin, A., Kusumaningrum, I. D., Abu Bakar, M. F., Extract of ceplukan (*Physalis angulata L.*) inhibited proliferation and induced apoptosis in myeloma cell line, *Food Res.*, **2019**, *3*, 755-760. https://doi.org/10.26656/fr.2017.3(6).169
- ³¹⁰Kusumaningtyas, R. W., Laily, N., Limandha, P., Potential of Ciplukan (*Physalis angulata* L.) as Source of Functional Ingredient, *Procedia Chem.*, **2015**, *14*, 367-372. DOI: 10.1016/j.proche.2015.03.050
- ³¹¹Chiang, H. C., Jaw, S. M., Chen, C. F., Kan, W. S., Antitumor agent, physalin F from *Physalis angulata* L., Anticancer Res., **1992**, *12*, 837-843. <u>https://www.researchgate.net/publication/21533876</u>
- ³¹²Magalhaes, H. I., Veras, M. L., Torres, M. R., Alves, A. P., Pessoa, O. D., Silveira, E. R., Lotufo, L. V., de Moraes, M. O., Pessoa, C., In-vitro and in-vivo antitumour activity of physalins B and D from *Physalis angulata*, J. Pharm. Pharmacol., **2006**, 58, 235-241. DOI: 10.1211/jpp.58.2.0011
- ³¹³Damu, A.G., Kuo, P-C., Su, C-R., Kuo, T-H., Chen, T-H., Bastow, K.F., Lee, K-H., Wu, T-S., Isolation, Structures, and Structure–Cytotoxic Activity Relationships of Withanolides and Physalins from *Physalis angulata*, J. Nat. Prod., 2007, 70, 1146-1152. https://doi.org/10.1021/np0701374
- ³¹⁴Wu, S-Y., Leu, Y-L., Chang, Y-L., Wu, T-S., Kuo, P-C., Liao, Y-R., Teng, C-M., Pan, S-L., Physalin F Induces Cell Apoptosis in Human Renal Carcinoma Cells by Targeting NF-kappaB and Generating Reactive Oxygen Species, *PLOS ONE*, **2012**, 7, e40727. DOI: 10.1371/journal.pone.0040727
- ³¹⁵Ma, Y-M., Han, W., Li, J., Hu, L-H., Zhou, Y-B., Physalin B not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in human colon

cancer cells *in vitro*, *Acta Pharmacol. Sin.*, **2015**, *36*, 517–527, DOI: 10.1038/aps.2014.157

- ³¹⁶ He, Q. P., Ma ,L., Luo, J.Y., He, F. Y., Lou, L. G., Hu, L. H., Cytotoxic withanolides from *Physalis angulata L., Chem. Biodivers.*, **2007**, *4*, 443-449. DOI: 10.1002/cbdv.200790036
- ³¹⁷Anh, H. L., Cytotoxic withanolides from Vietnamese ethnomedicinal plant *Physalis angulata*, *J. Multidis. Engin. Sci. Technol.*, **2017**, *4*, 8150-8152. <u>http://www.jmest.org/wpcontent/uploads/JMESTN42352388.pdf</u>
- ³¹⁸Gao, C., Li, R., Zhou, M., Yang, Y., Kong, L., Luo, J., Cytotoxic withanolides from *Physalis angulata*, *Nat. Prod. Res.*, **2018**, *32*, 676-681. DOI: 10.1080/14786419.2017.1338281
- ³¹⁹Meng, Q., Fan, J., Liu, Z., Li, X., Zhang, F., Zhang, Y., Sun, Y., Li, L., Liu, X., Hua, E., Cytotoxic Withanolides from the Whole Herb of *Physalis angulata* L., *Molecules*, **2019**, *24*, 1608-1616, DOI: 10.3390/molecules24081608
- ³²⁰Ukwubile, C. A., Oise, I. E., Analgesic and Anti-inflammatory Activity of *Physalis angulata* Linn. (Solanaceae) Leaf Methanolic Extract in Swiss Albino Mice, *Int. Biol. Biomed. J.*, **2016**, *2*, 167-170. <u>http://ibbj.org/article-1-89-en.pdf</u>
- ³²¹Junior, L. D, Quaglio, A. E., Costa, C. A., Di Stasi, L. C., Intestinal anti-inflammatory activity of Ground Cherry (*Physalis angulata* L.) standardized CO₂ phytopharmaceutical preparation, *World J. Gastroenterol.*, **2017**, 23, 4369-4380. DOI: 10.3748/wjg.v23.i24.4369
- ³²²Sri, L., Ressi, S., Dan, E. A., Antiinflammatory Activity Test of Aqueous Extracts Herb of Ciplukan (*Physalis angulata* L.) in Caragenan Inducted Wistar Rat (*Rattus norvegicus* L.), *Trad. Med. J.*, **2017**, *22*, 199-205. DOI: 10.22146/mot.31556
- ³²³Shravan, N., Kishore, G., Siva, G., Sindhu, E. S., In vitro antiinflammatory and anti-arthritic activity of leaves of *Physalis* angulata L. Int. J. Pharm. Ind. Res., 2011, 1, 211-213. <u>http://www.ijpir.com/view_content.php?quat=1&date=2011</u> <u>&issue=3</u>
- ³²⁴Ribeiro, I. M., Silva, M. T., Soares, R. D., Stutz, C. M., Bozza, M., Tomassini, T. C., *Physalis angulata* L. antineoplasic activity, *in vitro*, evaluation fromit's stems and fruit capsules, *Rev. Bras. Farmacogn.*, **2002**, *12*, 21-23. <u>http://dx.doi.org/10.1590/S0102-695X2002000300011</u>
- ³²⁵Bastos, G. N., Santos, A. R., Ferreira, V. M., Costa, A. M., Bispo, C. I., Silveira, A. J., Nascimento, J. L., Antinociceptive effect of the aqueous extract obtained from roots of *Physalis angulata* L. on mice, *J. Ethnopharmacol.*, **2006**, *103*, 241-245. DOI: 10.1016/j.jep.2005.08.008
- ³²⁶ Murali Krishna, T., Vadluri, R., Manoj Kumar, E., *In vitro* determination of antioxidant activity of *Physalis angulata* Linn., *Int. J. Pharm. Bio Sci.*, **2013**, *4*, 541-549. <u>https://www.researchgate.net/publication/267036284</u>
- ³²⁷Horn, R. C., Gelatti, G. T., Koefender, J., Golle, D. P., Mayer, M. S., Heringer, T. A., Pasini, M. B., Tissiani, A. C., Arruda, A. C., Rubin, L., Recktenwald, R., Moreira, P. R., Alegransi, C.,Antioxidant effect of *Physalis angulata* fruit on cells exposed to 2,4- dichlorophenoxyacetic acid, *Int. J. Innov. Edu. Res.*, **2019**, *7*, 374-386. https://doi.org/10.31686/ijier.Vol7.Iss8.1696
- ³²⁸Pinto, N. B., Morais, T. C., Carvalho, K. M., Silva, C. R., Andrade, G. M., Brito, G. A., Veras, M. L., Pessoa, O. D., Rao, V. S., Santos, F. A., Topical anti-inflammatory potential of Physalin E from *Physalis angulata* on experimental dermatitis in mice, *Phytomedicine*, **2010**, *17*, 740–743. DOI: 10.1016/j.phymed.2010.01.006
- ³²⁹Sun, C-P., Yuan, T., Wang, L., Kang, N., Zhao, F., Chen, L-X., Qiu, F., Anti-inflammatory labdane-type diterpenoids from *Physalis angulata*, *RSC Adv.*, **2016**, *6*, 76838-76847. DOI: 10.1039/C6RA16424B
- ³³⁰Yang,Y., Yi, L., Wang, Q., Xie, B., Sha, C., Dong, Y., Physalin B Suppresses Inflammatory Response to Lipopolysaccharide in RAW264.7 Cells by Inhibiting NF-κB Signaling, *J. Chem.*, **2018**, Article ID 7943140, 6 pages. <u>https://doi.org/10.1155/2018/7943140</u>

Medicinally active components in Solanaceae plant

- ³³¹Cobaleda-Velasco, M., Alanis-Banuelos, R. E., Almaraz-Abarca, N., Rojas-Lopez, M., Gonzalez-Valdez, L., Avila-Reyes, J. A., Rodrigo, S., Phenolic profiles and antioxidant properties of *Physalis angulata* L. as quality indicators, *J. Pharm. Pharmacog. Res.*, **2017**, *5*, 114-128. https://www.researchgate.net/publication/311969744
- ³³²Lima, L. G., Montenegro, J., Abreu, J. P., Nascimento, T. P., Santos, M., Ferreira, A. G., Cameron, L C., Ferreira, M. S., Teodoro, A. J., Metabolite Profiling by UPLC-MSE, NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (*Mammea Americana*), Camapu (*Physalis Angulata*), and Uxi (*Endopleura Uchi*), *Molecules*, **2020**, *25*, 342-359. DOI: 10.3390/molecules25020342
- ³³³Nanumala, S. K., Kannadhasan, R., Gunda, K., Sivakumar, G., Somasekhar, P., Anti ulcer activity of the ethanolic extract of leaves *Physalis angulata* L.*Int. J. Pharm. Pharm. Sci.*, **2012**, *4*, 226-228. https://www.researchgate.net/publication/262023773
- ³³⁴Kimpende M. P., Lusakibanza, M., Mesia, K., Tona, L., Tits, M., Angenot, L., Frederich M., Van Meervelt, L., Isolation, pharmacological activity and structure determination of physalin B and 5β,6β-epoxyphysalin B isolated from Congolese *Physalis angulata* L., *Acta Crystallogr. C.*, 2013,

69, 1557-1562. DOI: 10.1107/S010827011303117X

- ³³⁵Ogundajo, A. L., Akpome, A. S., Tijani, N. A., Ogunwande, I. A., Chemical Constituents of the Leaf Essential Oil of *Physalis angulata* L., *Asian J. Appl. Sci.*, **2015**, *3*, 652-655. https://www.yumpu.com/en/document/view/54826012
- ³³⁶Huong, T. N., Van, L. A., Thanh, N. D., Suong, N. T., Phuong, N. H., Tien, N. D., Chemical Constituents of *Physalis* angulata L. (Family Solanaceae), Can Tho Univ. J. Sci., 2016, 2, 46-49. DOI: 10.22144/ctu.2016.jen.015
- ³³⁷Brar, R., Gupta, R. C., Phytochemical Analysis of Two Cytotypes (2x and 4x) of *Physalis angulata* an Important Medicinal Plant, Collected from Rajasthan, *Biochem. Mol. Biol. J.*, **2017**, *3*, 7 pages. DOI: 10.21767/2471-8084.100043
- ³³⁸Ferreira, L. M., do Vale, A. E., de Souza, A. J., Leite, K. B., Sacramento, C., Moreno, M. L., Araujo, T. H., Soares, M. B., Grassi, M. F., Anatomical and phytochemical characterization of *Physalis angulata* L.: A plant with therapeutic potential, *Pharmacog. Res.*, **2019**, *11*, 171-177. DOI: 10.4103/pr.pr_97_18
- ³³⁹Ushie, O. A., Iyen, S. I., Abeng, F. E., Azuaga, T. I., Okpaegbe, U. C., Aikhoje, E. F., Quantification of Alkaloids, Flavonoids Physalis angulata and Mucuna pruriens and Saponins in Physalis angulata and Mucuna pruriens, Fudma Rec. Chem. Sci., 2019, 1, 86-89. <u>http://journal.fudutsinma.edu.ng/index.php/rcs/article/view/1</u> 075/pdf
- ³⁴⁰Ekeke, C., Obute, G. C., Ogazie, C. A., HPLC Evaluation of Phenolic Compounds in *Physalis angulata* Linn. and *Physalis micrantha* Linn. (Solanaceae), *Eur. J. Med. Plants*, **2019**, 29, 1-9. DOI: 10.9734/EJMP/2019/v29i230151
- ³⁴¹Pinto, L. A., Meira, C. S., Villarreal, C. F., Vannier-Santos, M. A., de Souza, C. V., Ribeiro, I. M., Tomassini, T. C., Galvao-Castroa, B., Soares, M. B., Grassi, M. F., Physalin F, a seco-steroid from *Physalis angulata* L., has immunosuppressive activity in peripheral blood mononuclear cells from patients with HTLV1-associated myelopathy, *Biomed. Pharmacother.*, 2016, 79, 129–134. http://dx.doi.org/10.1016/j.biopha.2016.01.041
- ³⁴²Sun, C-P., Qiu, C-Y., Zhao, F., Kang, N., Chen, L-X., Qiu, F., Physalins V-IX, 16,24-cyclo-13,14-seco withanolides from *Physalis angulata* and their antiproliferative and antiinflammatory activities, *Sci. Rep.*, **2017**, 7, 10 pages. DOI: 10.1038/s41598-017-03849-9
- ³⁴³Januario, A. H., Filho, E. R., Pietro, R. C., Kashima, S., Sato, D. N., Franca, S. C., Antimycobacterial physalins from *Physalis angulata* L. (Solanaceae), *Phytother. Res.*, **2002**, *16*, 445-448. DOI: 10.1002/ptr.939
- ³⁴⁴Shingu, K., Yahara, S., Nohara, T., Okabe, H., Three New Withanolides, Physagulins A, B and D from *Physalis*

angulata L., *Chem. Pharm. Bull.*, **1992**, *40*, 2088-2091. DOI: 10.1248/cpb.40.2088

- ³⁴⁵Zhang, Y., Chen, C., Zhang, Y.L., Kong L. Y., Luo, J. G., Target discovery of cytotoxic withanolides from *Physalis angulata* var. villosa via reactivity-based screening, *J. Pharm. Biomed. Anal.*, **2018**, 20, 194-199. DOI: 10.1016/j.jpba.2017.12.047
- ³⁴⁶Yu, P., Zhang, C., Gao, C-Y., Ma, T., Zhang, H., Zhou, M-M., Yang, Y-W., Yang, L., Kong, L-Y., Anti-proliferation of triple-negative breast cancer cells with physagulide P: ROS/JNK signaling pathway induces apoptosis and autophagic cell death, *Oncotarget*, **2017**, *8*, 64032-64049. DOI: 10.18632/oncotarget.19299
- ³⁴⁷Yang, Y-W., Yang, L., Zhang, C., Gao, C-Y., Ma, T., Kong, L-Y., Physagulide Q suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells by regulating the ROS-JAK2/Src-STAT3 signaling pathway, *RSC Adv.*, **2017**, *7*, 12793-12804. DOI: 10.1039/C6RA25032G
- ³⁴⁸Gao, C-Y., Ma, T., Luo, J., Kong, L-Y., Three New Cytotoxic Withanolides from the Chinese Folk Medicine *Physalis* angulata, Nat. Prod. Commun., 2015, 10, 2059-2062. <u>https://doi.org/10.1177/1934578X1501001211</u>
- ³⁴⁹Gao, C., Li, R., Zhou, M., Yang, Y., Kong, L., Luo, L., Cytotoxic withanolides from *Physalis angulata*, *Nat. Prod. Res.*, **2018**, *32*, 676-681. DOI: 10.1080/14786419.2017.1338281
- ³⁵⁰Onyegeme-Okerenta, B. M., Essien, E. B., Esin, J. I., Antisickling Properties of Aqueous Extracts of *Dennettia tripetala* and *Physalis angulata, Asian J. Biol. Sci.*, **2019**, *12*, 772-778. DOI: 10.3923/ajbs.2019.772.778
- ³⁵¹Lin, Y. S., Chiang, H. C., Kan, W. S., Hone, E., Shih, S. J., Won, M. H., Immunomodulatory activity of various fractions derived from Physalis angulata L extract, *Am. J. Chin. Med.*, **1992**, 20, 233-43. DOI: 10.1142/S0192415X92000242
- ³⁵²Guimaraes, E. T., Lima, M. S., Santos, L. A., Ribeiro, I. M., Tomassini, T. B., dos Santos, R. R., dos Santos, W. L., Soares, M. B., Activity of physalins purified from *Physalis* angulata in in vitro and in vivo models of cutaneous leishmaniasis, J. Antimic. Chemother., **2009**, 64, 84–87. DOI: 10.1093/jac/dkp170
- ³⁵³Guimaraes, E. T., Lima, M. S., Santos, L. A., Ribeiro, I. M., Tomassini, T. B., dos Santos, R. R., dos Santos, W. L., Soares, M. B., Effects of seco-steroids purified from *Physalis* angulata L., Solanaceae, on the viability of *Leishmania* sp. *Rev. Bras. Farmacogn.*, **2010**, 20, 945-949 DOI: 10.1590/S0102-695X2010005000036
- ³⁵⁴Da Silva, B. J., Pereira, S. W., Rodrigues, A. P., Do Nascimento, J. L., Silva, E. O., *In vitro* antileishmanial effects of *Physalis* angulata root extract on *Leishmania infantum*, *J. Integr. Med.*, **2018**, *16*, 404-410. DOI: 10.1016/j.joim.2018.08.004
- ³⁵⁵dos Santos, J. A., Tomassini, T. C., Xavier, D. C., Ribeiro, I. M., da Silva, M. T., Filho, Z. B., Molluscicidal Activity of *Physalis angulata* L. Extracts and Fractions on *Biomphalaria tenagophila* (d'Orbigny, 1835) under Laboratory Conditions, *Mem. Inst. Oswaldo Cruz*, **2003**, *98*, 425-428. DOI: 10.1590/S0074-02762003000300024
- ³⁵⁶Najmawati, S., Yoki, Y., Spectroscopic, structural, and morphology of nickel oxide nanoparticles prepared using *Physalis angulata* leaf extract, *Mater. Sci. Forum*, **2018**, *917*, 167-171. DOI: 10.4028/www.scientific.net/MSF.917.167
- ³⁵⁷Sukandar, E. Y., Sheba, S. H., Acute and Sub-chronic Toxicity Studies of Combination of *Physalis angulata L. (Cecendet)* Extract and Methylprednisolone on Animals, *Int. J. Integ. Health Sci.*, **2019**, *7*, 48-55. http://doi.org/10.15850/ijihs.v7n1.1619
- ³⁵⁸Goztok, F., Fikriye Zengin, F., The antimicrobial activity of *Physalis peruviana* L., *Bitlis Eren Univ. J. Sci. Technol.*, **2013**, *3*, 15-17. DOI: 10.17678/beuscitech.47134
- ³⁵⁹Cueva, B. R., Leon, R. A., Lopez, M., Yanchaliquín, A., Morejon, I. F., Salguero, H. S., Antibacterial Effects of Uvilla (*Physalis peruviana* L.) extracts against *Listeria* spp.

Isolated from Meat in Ecuador, *Int. J. Curr. Microbiol. App. Sci.*, **2017**, *6*, 1146-1153. https://doi.org/10.20546/ijcmas.2017.604.141

- ³⁶⁰Morejon, F., Tiger, A., Ruilova, B., Merino, O., Merino, M., Arreguin, M., Salazar, S., Ramon, O., Morales, J., Verdezoto, L., Moreno, I., Gomez, C., Antibacterial Activity of Uvilla (*Physalis peruviana* L.) Extracts Against Salmonella sp. Strains, Asian J. Microbiol. Biotechnol. Environ. Sci., 2019, 21, S32-S37. https://www.researchgate.net/publication/337946608
- ³⁶¹El-Beltagi, H. S., Mohamed, H. I., Safwat, G., Gamal, M., Megahed, B. M., Chemical Composition and Biological Activity of *Physalis peruviana L., Gesunde Pflanzen*, **2019**, 71, 113-122. DOI: 10.1007/s10343-019-00456-8
- ³⁶²Wahdan, O. A., Aly, B. S., Abdelfattah, M. S., Phytochemical Analysis, Antibacterial and Anticancer Activities of the *Physalis Peruviana* Calyces Growing in Egypt, *Food Nutr. J.*, 2019, 9, 6 pages. DOI: 10.29011/2575-7091.100097
- ³⁶³Erturk, O., Col, A. M., Can, K. U., Korkmaz, K., Antioxidant, Antimicrobial Activities and Phenolic and Chemical Contents of *Physalis peruviana* L. from Trabzon, Turkey. *Ind. J. Pharmaceut. Edu. Res.*, **2017**, *51*, 213-216. DOI: 10.5530/ijper.51.3s.15
- ³⁶⁴El-Kenawy, A. E., Elshama, S. S., Osman, H. H., Effects of *Physalis peruviana* L on Toxicity and Lung Cancer Induction by Nicotine Derived Nitrosamine Ketone in Rats, *Asian Pac. J. Cancer Prev.*, **2015**, *16*, 5863-5868. <u>http://dx.doi.org/10.7314/APJCP.2015.16.14.5863</u>
- ³⁶⁵Peng, C. Y., You, B. J., Lee, C. L., Wu, Y. C., Lin, W. H., Lu, T. L., Chang, F. C., Lee, H. Z., The Roles of 4β-Hydroxywithanolide E from *Physalis peruviana* on the Nrf2-Anti-Oxidant System and the Cell Cycle in Breast Cancer Cells, *Am, J. Chin. Med.*, **2016**, *44*, 617-636. DOI: 10.1142/S0192415X16500348
- ³⁶⁶Yen, C-Y, Chiu, C-C., Chang, F-R., Chen, J.Y., Hwang, C-C., Hseu, Y-C., Yang, H-L., Lee, A. Y, Tsai, M-T., Guo, Z-L., Cheng, Y-S., Liu, Y-C., Lan, Y-H., Chang, Y-C., Ko, Y-C., Chang, H-W., Wu, Y-C., 4β-Hydroxywithanolide E from *Physalis peruviana* (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest, *BMC Cancer*, **2010**, *10*, 8 pages. DOI: 10.1186/1471-2407-10-46
- ³⁶⁷Chiu, C-C., Haung, J-W., Chang, F-R., Huang, K-J., Huang, H-M., Huang, H-W., Chou, C-K., Wu, Y-C., Chang, H-W., Golden Berry-Derived 4β-hydroxywithanolide E for Selectively Killing Oral Cancer Cells by Generating ROS, DNA Damage, and Apoptotic Pathways, *PLOS ONE*, **2013**, *8*, 9 pages. DOI: 10.1371/journal.pone.0064739
- ³⁶⁸Ye, Z-N., Yuan, F., Liu, J-Q., Peng, X-R., An, T., Li, X., Kong, L-M., Qiu, M-H., Li, Y., *Physalis peruviana*-Derived 4β-Hydroxywithanolide E, a Novel Antagonist of Wnt Signaling, Inhibits
- Colorectal Cancer *In Vitro* and *In Vivo*, *Molecules*, **2019**, *24*, 1146-1158. DOI: 10.3390/molecules24061146
- ³⁶⁹Ramadan, M. M., El-Ghorab, A.H., Ghanem, K. Z., Volatile compounds, antioxidants, and anticancer activities of Cape gooseberry fruit (*Physalis peruviana* L.): an *in-vitro* study, *J. Arab Soc. Med. Res.*, **2015**, *10*, 56–64. DOI: 10.4103/1687-4293.175556
- ³⁷⁰Sathyadevi, M., Suchithra, E. R., Subramanian, S., *Physalis peruviana Linn.* fruit extract improves insulin sensitivity and ameliorates hyperglycemia in high-fat diet low dose STZ-induced type 2 diabetic rats, *J. Pharm. Res.*, **2014**, *8*, 625-635. <u>http://jprsolutions.info/files/final-file-56c0926c9f04c7.36196864.pdf</u>
- ³⁷¹Kirecci, O. A., Erman, F., Ozsahin, A. D., Erman, O., Kaya, T., Yilmaz, O., Influences of *Physalis peruviana* L. and *Lupinus albus* L. fruits extracts on the levels of some biochemical parameters in brain and muscle tissues of type II diabetic rats, *Prog. Nutr.*, **2018**, *20*, 279-289. DOI: 10.23751/pn.v20i2.6047

- ³⁷²Echeverry, S. M., Valderrama, I. H., Costa, G. M., Ospina-Giraldo, L. F., Aragon, D. M., Development and optimization of microparticles containing a hypoglycemic fraction of calyces from *Physalis peruviana*, *J. App. Pharm. Sci.*, **2018**, *8*, 010-018. DOI: 10.7324/JAPS.2018.8502
- ³⁷³Bernal, C. A., Ramos, F. A., Baena, Y., Dry Powder Formulation from *Physalis peruviana* Fruits Extract with Antidiabetic Activity Formulated Via Co-Spray Drying, *Int. J. App. Pharm.*, **2019**, *11*, 109-117. <u>http://dx.doi.org/10.22159/ijap.2019v11i3.29520</u>
- ³⁷⁴Soliman, G. Z., Soliman, A. S., Abbas, M. S., Abdallah, S. M., Egyptian *Physalis peruviana* L. as Anti-diabetic and Hypolipidemic Natural Herb: A Promising Treatment of Alloxan-Induced Diabetic Rats, *Case Stud. J.*, **2019**, *8*, 62-73. <u>http://www.casestudiesjournal.com/Volume%208%20Issue%204%20Paper%205.pdf</u>
- ³⁷⁵Dewi, L., Sulchan, M., Kisdjamiatun, M., Potency of Cape Gooseberry (*Physalis peruviana*) Juice in Improving Antioxidant and Adiponectin Level of High Fat Diet Streptozotocin Rat Model, *Rom. J. Diabetes Nutr. Metab. Dis.*, **2018**, 25, 253-260. DOI: 10.2478/rjdnmd-2018-0029
- ³⁷⁶Ramadan, M. F., *Physalis peruviana* pomace suppresses highcholesterol diet-induced hypercholesterolemia in rats, *Grasas* y Aceites, **2012**, 63, 411-422. DOI: 10.3989/gya.047412
- ³⁷⁷Pardo, J. M., Fontanilla, M. R., Ospina, L. F., Espinosa, L., Determining the pharmacological activity of *Physalis peruviana* fruit juice on rabbit eyes and fibroblast primary cultures, *Invest. Ophthalmol. Vis. Sci.*, **2008**, *49*, 3074-3079. DOI: 10.1167/iovs.07-0633
- ³⁷⁸Castro, J., Ocampo, Y., Franco, L., Cape Gooseberry [*Physalis peruviana* L.] Calyces Ameliorate TNBS Acid-induced Colitis in Rats, *J. Crohns Colitis*, **2015**, *9*, 1004–1015. DOI: 10.1093/ecco-jcc/jjv132
- ³⁷⁹Park, H. A., Kwon, O-K., Ryu, H. W., Min, J-H., Park, M-W., Park, M-H., Paik, J-H., Choi, S., Paryanto, I., Yuniato, P., Oh, S-R., Ahn, K-S., Lee, J-W., *Physalis peruviana* L. inhibits ovalbumin-induced airway inflammation by attenuating the activation of NF-κB and inflammatory molecules, *Int. J. Molec. Med.*, **2019**, *43*, 1830-1838. DOI: 10.3892/ijmm.2019.4110
- ³⁸⁰Takimoto, T., Kanbayashi, Y., Toyoda, T., Adachi, Y., Furuta, C., Suzuki, K., Miwa, T., Bannai, M., 4β-Hydroxywithanolide E isolated from *Physalis pruinosa* calyx decreases inflammatory responses by inhibiting the NF-κB signaling in diabetic mouse adipose tissue, *Int. J. Obes.*, **2014**, *38*, 1432–1439. DOI: 10.1038/ijo.2014.33
- ³⁸¹Park, E-J., Sang-Ngern, M., Chang, L. C., Pezzuto, J. M., Physalactone and 4β-Hydroxywithanolide E Isolated from *Physalis peruviana* Inhibit LPS-Induced Expression of COX-2 and iNOS Accompanied by Abatement of Akt and STAT1, *J. Nat. Prod.*, **2019**, *82*, 492-499. DOI: 10.1021/acs.jnatprod.8b00861
- ³⁸²Wum S-J., Nig, L-T., Huang, Y-M., Lin, D-L., Wang, S-S., Huang, S-N., Lin, C-C., Antioxidant Activities of *Physalis* peruviana, Biol. Pharm. Bull., **2005**, 28, 963—966. DOI: 10.1248/bpb.28.963
- ³⁸³Hassan, H. A., Ghareb, N. E., Azhari, G. F., Antioxidant activity and free radical-scavenging of cape gooseberry (*Physalis peruviana* L.) in hepatocellular carcinoma rats model, *Hepatoma Res.*, **2017**, 3, 27-33. DOI: 10.20517/2394-5079.2016.33
- ³⁸⁴Areiza-Mazo, N., Robles, J., Zamudio-Rodriguez, J. A., Giraldez, L., Echeverria, V., Barrera-Bailon, B., Aliev, G., Sahebkar, A., Ashraf, G. M., Barreto, G. E., Extracts of *Physalis peruviana* Protect Astrocytic Cells Under Oxidative Stress With Rotenone. *Front. Chem.*, **2018**, *6*, 13 pages. DOI: 10.3389/fchem.2018.00276
- ³⁸⁵Bazalar Pereda, M. S., Nazareno, M. A., Viturro, C. I., Nutritional and Antioxidant Properties of *Physalis peruviana* L. Fruits from the Argentinean Northern Andean Region, *Plant Foods Hum. Nutr.*, **2019**, *74*, 68-75. DOI: 10.1007/s11130-018-0702-1

- ³⁸⁶Kirson, I., Abraham, A., Sethi, P.D., Subramanian, S.S., Glotter, E., 4β-Hydroxywithanolide E, a new natural steroid with a 17α-oriented side-chain, *Phytochemistry*, **1976**, *15*, 340-342. <u>https://doi.org/10.1016/S0031-9422(00)89029-9</u>
- ³⁸⁷Gottlieb, H. E., Kirson, I., Glotter, E., Ray, A. B., Sahai, M., Ali, A., Perulactone, a new ergostane-type steroid from *Physalis* peruviana (Solanaceae), J. Chem. Soc. Perkin Trans. 1, **1980**, 0, 2700-2704. <u>https://doi.org/10.1039/P19800002700</u>
- ³⁸⁸Baumann, T. W., Meier, C. M., Chemical Defence by Withanolides During Fruit Development in *Physalis* peruviana, *Phytochemistry*, **1993**, 33, 17-321. <u>https://doi.org/10.1016/0031-9422(93)85510-X</u>
- ³⁸⁹Ramadan, M. F., Morsel, J-T., Oil Goldenberry (*Physalis peruviana* L.), J. Agric. Food Chem., **2003**, 51, 969-974. DOI: 10.1021/jf020778z
- ³⁹⁰Gautam, S. K., Dwivedi, D. H., Kumar, P., Preliminary studies on the bioactive phytochemicals in extract of Cape gooseberry (*Physalis Peruviana* L.) fruits and their Products, *J. Pharmacog. Phytochem.*, **2015**, *3*, 93-95. http://www.phytojournal.com/vol3Issue5/24.1.html
- ³⁹¹Lashin, I. I., Elhaw, M. H., Evaluation of Secondary Metabolites in Callus and Tissues of *Physalis peruviana*, *Int. J. Mod. Bot.*, **2016**, *6*, 10-17. DOI: 10.5923/j.ijmb.20160601.03
- ³⁹²Sahai, M., Ray, A. B., Secotropane alkaloids of *Physalis peruviana*, J. Org. Chem., **1980**, 45, 3265-3268. <u>https://doi.org/10.1021/jo01304a024</u>
- ³⁹³Kubwabo, C., Rollmann, B., Tilquin, B., Analysis of Alkaloids from Physalis peruviana by Capillary GC, Capillary GC-MS, and GC-FTIR, *Planta Med.*, **1993**, *59*, 161-163. DOI: 10.1055/s-2006-959634
- ³⁹⁴Majcher, M. A., Scheibe, M., Jelen, H. H., Identification of Odor Active Compounds in *Physalis peruviana L., Molecules*, 2020, 25, 245-253. DOI: 10.3390/molecules25020245
- ³⁹⁵Mier-Giraldo, H., Diaz-Barrera, L. E., Delgado-Murcia, L. G., Valero-Valdivieso, M. F., Caez-Ramirez, G., Cytotoxic and Immunomodulatory Potential Activity of *Physalis peruviana* Fruit Extracts on Cervical Cancer (HeLa) and Fibroblast (L929) Cells, *J. Evid. Based Complement. Alter. Med.*, **2017**, 22, 777-787. DOI: 10.1177/2156587217718751
- ³⁹⁶Medina, S., Collado-Gonzalez, J., Ferreres, F., Londono, J., Jimenez-Cartagena, C., Guy, A., Durand, T., Galano, J. M., Gil-Izquierdo, A., Potential of *Physalis peruviana* calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds, *J. Sci. Food Agric.*, **2019**, *99*, 2194-2204. DOI: 10.1002/jsfa.9413
- ³⁹⁷Stein, A., Compera, D., Karge, B., Bronstrup, M., Franke, J., Isolation and characterisation of irinans, androstane-type withanolides from *Physalis peruviana* L., *Beilstein J. Org. Chem.*, **2019**, *15*, 2003–2012. DOI: 10.3762/bjoc.15.196
- ³⁹⁸El-Gengaihi, S. E., Hassan, E. E., Hamed, M. A., Zahran, H. G., Mohammed, M. A., Chemical Composition and Biological Evaluation of *Physalis peruviana* Root as Hepato-renal Protective Agent, *J. Diet. Suppl.*, **2013**, *10*, 39–53. DOI: 10.3109/19390211.2012.760509
- ³⁹⁹Al-Olayan, E. M., El-Khadragy, M. F., Aref, A. M., Othman, M. S., Kassab, R. B., Abdel Moneim, A. E., The Potential Protective Effect of *Physalis peruviana* L. against Carbon Tetrachloride-Induced Hepatotoxicity in Rats Is Mediated by Suppression of Oxidative Stress and Downregulation of MMP-9 Expression, *Oxid. Med. Cell. Longev.*, **2014**, Article ID 381413, 12 pages. <u>http://dx.doi.org/10.1155/2014/381413</u>
- ⁴⁰⁰Ascher, K. R., Nemny, N. E., Eliyahu, M., Kirson, I., Abraham, A., Glotter, E.,Insect antifeedant properties of withanolides and related steroids from Solanaceae, *Experientia*, **1980**, *36*, 998–999. DOI: 10.1007/BF01953844
- ⁴⁰¹Perk, B. O., Ilgin, S., Atli, O., Duymus, H. G., Sirmagul, B., Acute and Subchronic Toxic Effects of the Fruits of *Physalis* peruviana L., Evid. Based Complement. Alter. Med., 2013, Article ID 707285, 10 pages. http://dx.doi.org/10.1155/2013/707285

- ⁴⁰²Balah, M. A., Herbicidal activity of constituents isolated from *Solanum elaeagnifolium* (Solanaceae), *J. Crop Prot.*, **2015**, *4*, 487-496. <u>https://jcp.modares.ac.ir/article-3-3802-en.html</u>
- ⁴⁰³Balah, M. A., AbdelRazek, G. H., Pesticidal activity of Solanum elaeagnifolium Cav. Leaves against nematodes and perennial weeds, Acta Ecol. Sin., 2019, In Press, https://doi.org/10.1016/j.chnaes.2019.07.001
- ⁴⁰⁴Amer, W. M., Abouwarda, A. M., El Garf, I. A., Dawoud, G. T., Abdelmohsen, G., Phytochemical Composition of *Solanum elaeagnifolium cav.* and Its Antibacterial Activity, *Int. J. Biol. Pharm. Allied Sci.*, **2013**, 2, 1282-1306. <u>https://www.researchgate.net/publication/323073939</u>
- ⁴⁰⁵Mellouk, K., Soualeh, N., Meziani, S., Linder, M., Boughrara, B., Soulimani, R., Legseir, B., Evaluation of the biological activity of plant extracts of Algerian Solanum elaeagnifolium, *Res. J. Pharmaceut. Biol. Chem. Sci.*, **2017**, *8*, 64-74. <u>https://www.rjpbcs.com/pdf/2017_8(1)/[9].pdf</u>
- ⁴⁰⁶Radwan, M. M., Badawy, A., Zayed, R., Hassanin, H., ElSohly, M., Ahmed, S. A., Cytotoxic flavone glycosides from *Solanum elaeagnifolium, Med. Chem. Res.*, **2015**, *24*, 1326– 1330. DOI 10.1007/s00044-014-1219-2
- ⁴⁰⁷Hernandez, L., Carranza, P., Cobos, L.E., Lopez, L. I., Ascasio, J. A., Silva, S.Y., Bioguided Fractionation from *Solanum elaeagnifolium* to evaluate Toxicity on Cellular Lines and Breast Tumor Explants, *Vitae*, **2017**, *24*, 124-131. <u>http://dx.doi.org/10.17533/udea.vitae.v24n1a05</u>
- ⁴⁰⁸Mejri, H., Derbre, S., Jedy, A., Tlili, N., Legault, J., Richomme, P., Limam, F., Saidani-Tounsi, M., Combined anti-ages and antioxidant activities of different solvent extracts of *Solanum elaeagnifolium* Cav (Solanacea) fruits during ripening and related to their phytochemical compositions, *Excli J.*, **2014**, *13*, 1029-1042. https://www.ncbi.nlm.nih.gov/pubmed/26417319
- ⁴⁰⁹Feki, H., Koubaa, I., Damak, M., Secondary metabolites and antioxidant activity of seed extracts from *Solanum elaeagnifolium* Cav., *Mediterr. J. Chem.*, **2014**, 2, 639-647. DOI: 10.13171/mjc.2014.05.01.22
- ⁴¹⁰Hawas, U. W., Soliman, G. M., Abou El-Kassem, L. T., Farrag, A. H., Mahmoud, K., Leon, F., A New Flavonoid C-Glycoside from Solanum elaeagnifolium with Hepatoprotective and Curative Activities against Paracetamol-Induced Liver Injury in Mice, Z. Naturforsch. C J. Biosci., 2013, 68, 19-28. <u>https://doi.org/10.1515/znc-2013-1-204</u>
- ⁴¹¹Ben Hamouda, A., Zarrad, K., Laarif, A., Chaieb, I., Insecticidal effect of *Solanum elaeagnifolium* extracts under laboratory conditions, *J. Entomol. Zool. Stud.*, **2015**, *3*, 187-190. <u>http://www.entomoljournal.com/vol3Issue3/pdf/3-3-81.1.pdf</u>
- ⁴¹²Ben Hamouda, A., Chaieb, I., Zarrad, K., Laarif, A., Insecticidal Activity of Methanolic Extract of Silverleaf Nightshade Against *Tribolium castaneum*, *Int. J. Entomol. Res.*, **2015**, *03*, 23-28. <u>https://journals.esciencepress.net/index.php/IJER/article/view</u> /1002/530
- ⁴¹³Njeh, F., Feki, H., Koubaa, I., Hamed, N., Damak, M., Ayadi, A., Hammami, H., Mezghani-Jarraya, R., Molluscicidal activity of Solanum elaeagnifolium seeds against *Galba truncatula* intermediate host of Fasciola hepatica: Identification of βsolamarine, *Pharmaceut. Biol.*, **2015**, *54*, 726-731. DOI: 10.3109/13880209.2015.1073332
- ⁴¹⁴Keeler, R. F., Baker, D. C., Gaffield, W., Spirosolane-containing Solanum species and induction of congenital craniofacial malformations, *Toxicon*, **1990**, *28*, 873-884. DOI: 10.1016/0041-0101(90)90017-2
- ⁴¹⁵Feki, H., Koubaa, I., Jaber, H., Makni, J., Damak, M., Characteristics and Chemical Composition of Solanum elaeagnifolium Seed Oil, J. Engin. App. Sci., 2013, 8, 708-712. http://www.arpnjournals.com/jeas/research_papers/rp_2013/j eas_0913_941.pdf

- ⁴¹⁶Elabbar, F. A., Bozkeha, N. M., El-Tuonsia, A. T., Extraction, separation and identification of compounds from leaves of *Solanum elaeagnifolium* Cav. (Solanaceae), *Int. Curr. Pharmaceut. J.*, **2014**, *3*, 234-239. <u>http://www.icpjonline.com/documents/Vol3Issue3/01.pdf</u>
- ⁴¹⁷John, B., Senthikumar, S., Antibacterial activity of Solanum incanum L. leaf extracts, Asian J. Microbiol. Biotechnol. Environ. Sci., 2001, 3, 65-66. <u>https://www.researchgate.net/publication/292826622</u>
- ⁴¹⁸Pavithra, P. S., Janani, V. S., Charumathi, K. H., Indumathy, R., Potala, S., Verma, R. S., Antibacterial activity of plants used in Indian herbal medicine, *Int. J. Green Pharm.*, **2010**, *4*, 22-29. DOI: 10.4103/0973-8258.62161
- ⁴¹⁹Indhumathi, T., Mohandass, S., Efficacy of Ethanolic extract of *Solanum incanum* fruit extract for its antimicrobial activity, *Int. J. Curr. Microbiol. App. Sci.*, **2014**, *3*, 939-949. <u>https://www.ijcmas.com/vol-3-</u> <u>6/T.Indhumathi%20and%20S.Mohandass.pdf</u>
- ⁴²⁰Owino, J., Omundi, J., Ngoci, N. S., Antibacterial Activity of Methanolic Crude Extract of *Solanum incanum*: Kenyan Traditional Medicinal Plant, *Int. J. Sci. Res.*, **2015**, 2, 560-563. <u>https://www.researchgate.net/publication/272531511</u>
- ⁴²¹Mukami, N. A., Wanzala, W., A Study of Bioactivity of Solanum incanum L. Fruit Extracts on Microorganisms of the Oral Cavity, Oral Health Dent. Manag., 2017, 16, 9 pages. <u>https://www.researchgate.net/publication/320131247</u>
- ⁴²²Jepkoech, K. E., Gakunga, N. J., Antimicrobial activity and phytochemical screening of *Solanum incanum* fruit extract against clinical samples of *Staphylococcus aureus* collecting from Nakuru Provincial General Hospital Laboratory, Kenya, *Int. Res. J. Med. Biomed. Sci.*, **2017**, 2,pp. 1-8. <u>https://doi.org/10.15739/irjmbs.17.001</u>
- ⁴²³Akanmu, A. O., Bulama, Y. A., Balogun, S. T., Musa, S., Antibacterial activities of aqueous and methanol leaf extracts of *Solanum incanum* Linn. (Solanaceae) against multi-drug resistant bacterial isolates, *Afr. J. Microbiol. Res.*, **2019**, *13*, 70-76. DOI: 10.5897/AJMR2018.8969
- ⁴²⁴Sbhatu, D, B., Abraha, H. B., Preliminary Antimicrobial Profile of Solanum incanum L.: A Common Medicinal Plant, Evid. Based Complement. Alter. Med., 2020, Article ID 3647065, 6 pages. <u>https://doi.org/10.1155/2020/3647065</u>
- ⁴²⁵Beaman-Mbaya, V., Muhammed, S. I., Antibiotic Action of Solanum incanum Linnaeus, *Antimicrob. Agents Chemother.*, **1976**, *9*, 920-924. DOI: 10.1128/aac.9.6.920
- ⁴²⁶Manal, A. H., Eltohami, M. S., Ahmad, G. M., The phytochemical screening and antimicrobial activity of *Solanum incanum* L., *Int. J. Innov. Pharmaceut. Sci. Res.*, **2016**, *4*, 87-92. https://www.ijipsr.com/sites/default/files/articles/IJIPSRMN <u>R-415.pdf</u>
- ⁴²⁷Sahle, T., Okbatinsae, G., Phytochemical investigation and antimicrobial activity of the fruit extract of *Solanum incanum* grown in Eritrea, *Ornament. Med. Plants*, **2017**, *1*, 15-25. <u>http://www.iaees.org/2017-1(1)/antimicrobial-activity-offruit-extract-of-Solanum-incanum.pdf</u>
- ⁴²⁸Kipngeno, C. D., Mshimba, S. M., Cheruiyot, G., Adongo, J. O., Antimicrobial activity and phytochemical investigation of crude extracts of the fruits of *Solanum incanum* (Solananceae) and *Dovyalis abbysinica* (Flacourtiaceae), *Sci. J. Microbiol.*, **2014**, Article ID: sjmb-193, 4 Pages. DOI: 10.7237/sjmb/193
- ⁴²⁹Griffin S., Tittikpina, N. K., Al-marby, A., Alkhayer, R., Denezhkin, P., Witek, K., Gbogbo, K. A., Batawila, K., Duval, R. E., Nasim, M. J., Awadh-Ali, N. A., Kirsch, G., Chaimbault, P., Schafer, K-H., Keck, C. M., Handzlik, J., Claus Jacob, C., Turning Waste into Value: Nanosized Natural Plant Materials of *Solanum incanum L.* and *Pterocarpus erinaceus* Poir with Promising Antimicrobial Activities, *Pharmaceutics*, **2016**, *8*, 12 pages. DOI: 10.3390/pharmaceutics8020011

- ⁴³⁰Wu, Y-H., Chiu, W-T., Young, M-J., Chang, T-H., Huang, Y-F., Chou, C-Y., *Solanum Incanum* Extract Downregulates Aldehyde Dehydrogenase 1-Mediated Stemness and Inhibits Tumor Formation in Ovarian Cancer Cells, *J. Cancer*, **2015**, *6*, 1011-1019. DOI: 10.7150/jca.12738
- ⁴³¹Yu, S., Sheu, H-M., Lee, C-H., *Solanum incanum* extract (SR-T100) induces melanoma cell apoptosis and inhibits established lung metastasis, *Oncotarget*, 2017, *8*, 103509-103517. DOI: 10.18632/oncotarget.21508
- ⁴³²Al-Emam, A., Al-Shraim, M., Eid, R., Alfaifi, M., Al-Shehri, M., Moustafa, M. F., Radad, K., Ultrastructural changes induced by Solanum incanum aqueous extract on HCT 116 colon cancer cells. *Ultrastruct. Pathol.*, **2018**, *42*, 255-261. DOI: 10.1080/01913123.2018.1447623
- ⁴³³Lin, C-N., Lu, C-M., Cheng, M-K., Gan, K-H., The Cytotoxic Principles of *Solanum incanum*, *J. Nat. Prod.*, **1990**, *53*, 513-516. <u>https://doi.org/10.1021/np50068a041</u>
- ⁴³⁴Sabiu, S., Ajani, E. O., Aladodo, R. A., Garuba, T., Agnubiade, M. O., Alimi, A. A., Lekena, N., Abdulrazaq, M., Membrane stabilization and probable mechanisms of hypoglycemic activity of fruit extract of *Solanum incanum* L.(Solanaceae), *Comp. Clin. Pathol.*, **2018**, 27, 1611-1619. DOI: 10.1007/s00580-018-2782-6
- ⁴³⁵Tsenum, J. L., Antihyperlipidemic Effect of Solanum incanum on Alloxan Induced Diabetic Wistar Albino Rats, *Cardiovasc. Pharm.*, **2018**, 7, 14 pages. DOI: 10.4172/2329-6607.1000239
- ⁴³⁶Mwonjoria, J. K., Ngeranwa, J. J., Githinji, C. G., Kahiga, T., Kariuki, H. N., Waweru, F. N., Suppression of nociception by *Solanum incanum* (Lin.) Diclomethane root extract is associated anti-inflammatory activity, *J. Phytopharmacol.*, **2014**, *3*, 156-162.
 - http://www.phytopharmajournal.com/Vol3 Issue3 01.pdf
- ⁴³⁷Abera, B., Hailu, A. E., Evaluation of Analgesic Activities of 80 % Methanol Leaf Extract of *Solanum incanum* L. (Solanaceae) in Mice, *J. Drug Deliv. Ther.*, **2019**, 9, 9-14. <u>http://dx.doi.org/10.22270/jddt.v9i5.3235</u>
- ⁴³⁸Enoc, W. N., Daisy, M. G., Wilbroda, O. A., Alphonse, W. W., Joseph, N. J., Maina, M. K., Antinociceptive and antiinflammatory effects of flavonoids rich fraction of *Solanum incanum* (Lin) root extracts in mice. *J. Phytopharmacol.*, **2018**, 7, 399-403.

http://www.phytopharmajournal.com/Vol7_Issue4_08.pdf

- ⁴³⁹Anwar, S., Pharmacological Investigation of Solanum incanum against P. falciparum, L. infantum, T. cruzi and T. brucei : A Role of Antioxidant Effect and Clinical Overview, Biomed. Pharmacol. J., 2018, 11, 653-660. http://dx.doi.org/10.13005/bpj/1418
- ⁴⁴⁰Qureshi, Z., Khan, T., Shah, A., Wahid, F., Solanum incanum extract enhances wound healing and tissue regeneration in burn mice model, *Bangladesh J. Pharmacol.*, **2019**, *14*, 101-106. DOI: 10.3329/bjp.v14i2.40098
- ⁴⁴¹Mose, J. M., Kutima, H. L., Muchira, P. N., Muna, K. K., Waihenya, R., Yole, D. S., The Evaluation of the Effects of an Aqueous and Methanol Extracts of Solanum incanum on Schistosoma mansoni Infected Mice, Asian J. Pharmaceut. Health Sci., 2012, 2, 278-282. http://www.ajphs.com/sites/default/files/AsianJPharmHealth Sci-2-1-278.pdf
- ⁴⁴²Waweru, C. M., Muthamia, J. M., Otaye, D. O., Potential of Sodom Apple (*Solanum incanum* L.) Fruit Extracts in the Management of Chilli Root Knot Disease in Nakuru County, Kenya, *Adv. Agric.*, **2017**, Article ID 3849829, 5 pages. <u>https://doi.org/10.1155/2017/3849829</u>
- ⁴⁴³Madzimure, J., Nyahangare, E.T., Hamudikuwanda, H., Hove, T., Belmain, S. R., Stevenson, P. C., Mvumi, B. M., Efficacy of Strychnos spinosa (Lam.) and Solanum incanum L. aqueous fruit extracts against cattle ticks, *Trop. Anim. Health Prod.*, **2013**, *45*, 1341-1347. DOI: 10.1007/s11250-013-0367-6

- ⁴⁴⁴Mvumi, C., Efficacy of Bitter Apple (*Solanum incanum*) in Relation to Contact Time for Controlling Cabbage Aphids (*Brevicoryne brassicae*), *Asian J. Crop Sci.*, **2019**, *11*, 71-76. DOI: 10.3923/ajcs.2019.71.76
- ⁴⁴⁵Patel, R., Tyagi, V., Singh, R. K., Mallesha, Raju, P. S., Nutritional analysis of *Solanum incanum* L. (Bitter Brinjal) cultivated in north east region of India, *Int. J. Adv. Edu. Res.*, **2018**, 3, 130-134. <u>http://www.educationjournal.org/archives/2018/vol3/issue2/3</u> <u>-2-42</u>
- ⁴⁴⁶Auta, R., James, S. A., Auta, T., Sofa, E. M., Nutrative Value and Phytochemical Composition of Processed Solanum incanum (Bitter Garden Egg). Sci. World J., 2011, 6, 5-6. <u>https://www.scienceworldjournal.org/article/view/10282</u>
- ⁴⁴⁷Ziade, A., Alemayehu, T., Mekonnen, Y., Emiru, B., Gebremedhn, B., Milk clotting characteristics of *Solanum incanum*, *Ficus carica* and *Rhus natalensis* for cheese making in Tigray, Northern Ethiopia, *Livest. Res. Rural Dev.*, **2018**, 30, 9 pages. http://www.lrrd.org/lrrd30/4/gebrem30074.html
- ⁴⁴⁸Thaiyah, A. G., Nyaga, P. N., Maribei, J. M., Nduati, D., Mbuthia, P. G., Ngatia, T. A., Experimental Solanum incanum L poisoning in goats, Bull. Anim. Health Prod. Afr., 2010, 58, 35-43. DOI: 10.4314/bahpa.v58i1.57048
- ⁴⁴⁹Desta, A. H., Livestock Poisoning Plants: Identification and its Veterinary Importance in Afar Region of Ethiopia, *Open Agric. J.*, **2019**, *13*, 107-115. DOI: 10.2174/1874331501913010107
- ⁴⁵⁰Indhumathi, T., Mohandass, S., Shibi, A., Acute Toxicity Study of Ethanolic Extract of *Solanum incanum*. L Fruit, *Asian J. Pharm. Clin. Res.*, **2014**, 7, 98-100. <u>https://innovareacademics.in/journals/index.php/ajpcr/article/ view/963</u>
- ⁴⁵¹Abebe, H., Gebre, T., Haile, A., Phytochemical Investigation on the Roots of *Solanum incanum*, Hadiya Zone, Ethiopia, J. *Med. Plants Stud.*, **2014**, 2, 83-93. <u>http://www.plantsjournal.com/vol2Issue2/Issue feb 2014/ht</u> <u>ml/18.1.html</u>
- ⁴⁵²Sundar, S., Pillai, Y. J., Phytochemical Screening and Gas Chromatograph-Mass Spectrometer Profiling in the Leaves of Solanum incanum L., Asian J. Pharm. Clin. Res., 2015, 8, 179-188. <u>https://innovareacademics.in/journals/index.php/ajpcr/article/ view/5246</u>
- ⁴⁵³Sambo, H. S., Olatunde, A., Kiyawa, A. S., Phytochemical, Proximate and Mineral Analyses of *Solanum incanum* Fruit, *Int. J. Chem. Mater. Environ. Res.*, **2016**, *3*, 8-13. <u>https://www.ijcmer.org/IJCMER-2016-0102_Sambo%20et%20al.pdf</u>
- ⁴⁵⁴Kumar, K., Henry, D. C., Sivakumar, K., Bioprofiling of phytochemicals and phytonutritional potentials of *Solanum incanum* L., *World Sci. News*, **2019**, *128*, 328-347. <u>http://www.worldscientificnews.com/wpcontent/uploads/2019/04/WSN-1282-2019-328-347.pdf</u>
- ⁴⁵⁵Sundar, S., Koil, P. Y., Physicochemical Evaluation of *Solanum incanum L, Res. J. Pharm. Technol.*, **2016**, *9*, 415-418. DOI: 10.5958/0974-360X.2016.00076.7
- ⁴⁵⁶Ahmed, I., Sahle, T., Hiya, A., Berhane, A., Melda, S., Manna, B., Phytochemical Investigation and Thin Layer Chromatographic Studies on the Fruits of *Solanum incanum* In Areza sub-zone, Zoba Debub, Eritrea, *J. Appl. Chem.*, **2019**, 8, 2142-2150. http://www.joac.info/AbstractPaper/2019/15-8-5-8A.pdf
- ⁴⁵⁷Fukuhara, K., Kubo, I., Isolation of steroidal glycoalkaloids from Solanum incanum by two countercurrent chromatographic methods, *Phytochemistry*, **1991**, *30*, 685-687. DOI: 10.1016/0031-9422(91)83753-8
- ⁴⁵⁸Al Sinani, S. S., Eltayeb, E. A., Kamal, Y. T., Khan, M. S., Ahmad, S., Variations in the cytotoxic glycoalkaloids solamargine and solasonine in different parts of the *Solanum incanum* plant during its growth and development in Oman, J.

Taibah Univ. Sci., **2016**, *10*, 813-822. DOI: 10.1016/j.jtusci.2014.11.013

- ⁴⁵⁹Eltayeb, E. A., Al-Ansari, A. A., Roddick, J. G., Changes in the steroidal alkaloid solasodine during development of *Solanum* nigrum and *Solanum incanum*, *Phytochemistry*, **1997**, *46*, 489-494. <u>https://doi.org/10.1016/S0031-9422(97)00323-3</u>
- ⁴⁶⁰Afolaya, A. J., Bvenura, C., Essential Oil and Phytotoxicity Effects of *Solanum nigrum* L. on Seeds Germination of Some Vegetables, *Appl. Ecol. Environ. Res.*, **2018**, *16*, 553-561. http://dx.doi.org/10.15666/aeer/1601_553561
- ⁴⁶¹Parameswari, K., Aluru, S., Kishori, B., In Vitro Antibacterial Activity In The Extracts Of Solanum Nigrum, Ind. Streams Res. J., 2012, 2, 4 pages. DOI : 10.9780/22307850
- ⁴⁶²Abbas, K., Niaz, U., Hussaini, T., Saeed, M. A., Javaid, Z., Idrees, A., Rasool, S., Antimicrobial Activity of Fruits of *Solanum nigrum* and *Solanum xanthocarpum*, *Acta Pol. Pharmaceut.*, **2014**, *71*, 415-421. <u>https://www.researchgate.net/publication/262258531</u>
- ⁴⁶³Rahnama, M., Fakheri, B. A., Mashhady, M. A., Saeidi, S., Jahani, S., The Antimicrobial Effects of Medicinal Plants on Pathogenic Food Bacteria, *Int. J. Infect.*, **2017**, *4*, 3 pages. DOI: 10.5812/iji.40238
- ⁴⁶⁴Javadian, E., Forgani, F., Javadian, F., Investigation of Antimicrobial Activity of Solanum nigrum and Saponaria officinalis Extracts Against Acinetobacter baumannii, Gene Cell Tissue, **2019**, 6, 5 pages. DOI: 10.5812/gct.93096
- ⁴⁶⁵Arun, T., Omprakash, S., Saravanan, P., Tadele, A., Abawa, G., Karthikeyan, M., Evaluation of Preliminary Phytochemical Constituents and Antibacterial Activity of Edible Plants against Urinary Tract Infection Causing Bacteria in Children, J. Clin. Microbiol. Biochem. Technol., 2017, 3, 024-030. https://www.peertechz.com/articles/doi10.17352jcmbt.000022.php
- ⁴⁶⁶Venkat Kumar, S., Karpagambigai, S., JRosy P. J., Rajeshkumar, S., Phyto-Assisted Synthesis of Silver Nanoparticles using *Solanum Nigrum* andAntibacterial Activity Against *Salmonella Typhi* and *Staphylococcus Aureus, Mech. Mater. Sci. Engin. J.*, **2017**, *9*, 8 pages. DOI: 10.2412/mmse.86.22.967
- ⁴⁶⁷Rajalakshmi, A., Jayachitra, A., Antioxidant, Antibacterial Effects of Solanine Isolated from *Solanum nigrum* and its Cytotoxic Activity on the HEP-2 and AGS Cell Lines, *Int. J. Pharmaceut. Sci. Res.*, **2017**, 8, 2932-2939. DOI: 10.13040/IJPSR.0975-8232.8(7).2932-39
- ⁴⁶⁸Alajmi, M. F., Alam, P., Rehman, T., Husain, F. M., Khan, A. A., Siddiqui, N. A., Hussain, A., Kalam, A., Parvez, M. K., Interspecies Anticancer and Antimicrobial Activities of Genus *Solanum* and Estimation of Rutin by Validated UPLC-PDA Method, *Evid. Based Complement. Alter. Med.*, **2018**, Article ID 6040815, 13 pages. https://doi.org/10.1155/2018/6040815
- ⁴⁶⁹Dar, K. B., Bhat, A. H., Amin, S., Zargar, M. A., Masood, A., Malik, A. H., Ganie, S. A., Evaluation of Antibacterial, Antifungal and Phytochemical Screening of *Solanum nigrum*, *Biochem. Anal. Biochem.*, **2017**, *6*, 6 pages. DOI: 10.4172/2161-1009.1000309
- ⁴⁷⁰Modilal, M. R., Anandan, R., Sindhu, R., Logeshwari, M. N., Screening of *Solanum nigrum* for Its Phytochemical and Antimicrobial Activity Against Respiratory Tract Pathogens, *Int. J. Pure Appl. Zool.*, **2015**, *3*, 210-215. <u>https://www.alliedacademies.org/abstract/3619.html</u>
- ⁴⁷¹Muthuvel, A., Adavallan, K., Balamurugan, K., Krishnakumar, N., Biosynthesis of gold nanoparticles using *Solanum nigrum* leaf extract and screening their free radical scavenging and antibacterial properties, *Biomed. Prev. Nutr.*, **2014**, *4*, 325-332. DOI: 10.1016/j.bionut.2014.03.004
- ⁴⁷²Venkatesan, D., Karrunakaran, C. M., Selvakumar, S., Studies on Phytochemical constituents, Functional Group Identification and Antimicrobial Activity of *Solanum nigrum* (Solanaceae), *Ethnobot. Leaflets*, **2009**, *13*, 1485-1503. <u>https://www.researchgate.net/publication/275708665</u>

- ⁴⁷³Subramanian, R., Gopinath, K., Ramaraj, J., Nagoorgani, P., Aruna, D., Bioprospecting Solanum nigrum Linn. (Solanaceae) as a potential source of Anti-Microbial agents against selected Bacterial strains, Asian J. Biomed. Pharmaceut. Sci., 2012, 2, 65-68. https://www.alliedacademies.org/4820.html
- ⁴⁷⁴Jasim H., Hussein, A. O., Hameed, I. H., Kareem, M. A., Characterization of alkaloid constitution and evaluation of antimicrobial activity of Solanum nigrum using gas chromatography mass spectrometry (GC-MS), *J. Pharmacog. Phytother.*, **2015**, *7*, 56-72. DOI: 10.5897/JPP2015.0346
- ⁴⁷⁵Kalwar, K., Rizvi, S. A., Estimation of Total Falvonoid Contents and Antibacterial Activity from Various Parts of *Solanum nigrum* L, *Sci.Int.(Lahore)*, **2016**, 28, 3935-3937. <u>https://www.researchgate.net/publication/315728255</u>
- ⁴⁷⁶Dargili, P. A., Shibi, P. A., Priya, F. S., Shazhni, J. R., Phytochemical Analysis and Assessment of Antimicrobial Activity of Solanum nigrum, Int. J. Pharm. Pharmaceut. Res., **2017**, 11, 135-141. <u>https://ijppr.humanjournals.com/phytochemical-analysis-andassessment-of-antimicrobial-activity-of-solanum-nigrum/</u>
- ⁴⁷⁷Musto, M., Potenza, G., Cellini, F., Inhibition of *Penicillium digitatum* by a crude extract from *Solanum nigrum* leaves, *Biotechnol. Agron. Soc. Environ.*, **2014**, *18*, 174-180. <u>https://popups.uliege.be/1780-4507/index.php?id=10980</u>
- ⁴⁷⁸Musto, M., Preliminary report on antifungal activity of a *Solanum nigrum* extract against five mycotoxin-producing fungi, *Emirates J. Food Agric.*, **2015**, *27*, 825-830. DOI: 10.9755/ejfa.2015.08.578
- ⁴⁷⁹Lin, T-C., Fan, M-C., Wang, S-Y., Huang, J-W., Identification of the Solanum nigrum Extract Component Involved in Controlling Cabbage Black Leaf Spot Disease, *J. Agric. Food Chem.*, **2011**, *59*, 1667–1672. DOI: 10.1021/jf103698b
- ⁴⁸⁰Javed, T., Ashfaq, U. A., Riaz, S., Rehman, S., Riazuddin, S., Invitro antiviral activity of *Solanum nigrum* against Hepatitis C Virus, *Virol. J.*, **2011**, *8*, 7 pages. DOI: 10.1186/1743-422X-8-26
- ⁴⁸¹Gabrani, R., Jain, R., Sharma, A., Sarethy, A. P., Dang, S., Gupta, S., Antiproliferative Effect of *Solanum nigrum* on Human Leukemic Cell Lines, *Indian J. Pharm. Sci.*, **2012**, *74*, 451-453. DOI: 10.4103/0250-474X.108421
- ⁴⁸²Moglad, E.H., Abdalla, O.M., Koko, W.S., Saadabi, A.M., In vitro Anticancer Activity and Cytotoxicity of Solanum nigrum on Cancers and Normal Cell Lines, Int. J. Cancer Res., 2014, 10, 74-80. DOI: 10.3923/ijcr.2014.74.80
- ⁴⁸³Lai, Y-J., Tai, C-J., Wang, C-W., Choong, C-Y., Lee, B-H., Shi, Y-C., Tai, C-J., Anti-Cancer Activity of *Solanum nigrum* (AESN) through Suppression of Mitochondrial Function and Epithelial Mesenchymal Transition (EMT) in Breast Cancer Cells, *Molecules*, **2016**, *21*, 553-563, DOI: 10.3390/molecules21050553
- ⁴⁸⁴Jagadeeshan, S., David, D., Jisha, S., Manjula, S., Nair, S.A., *Solanum nigrum* Unripe fruit fraction attenuates Adriamycin resistance by downregulating multi-drug resistance protein (Mdr)-1 through Jak-STAT pathway, *BMC Complement. Alter. Med.*, **2017**, *17*, 9 pages. DOI: 10.1186/s12906-017-1872-3
- ⁴⁸⁵Shirkavand, A., Boroujeni, Z. N., Aleyasin, S. A., Solanum Nigrum Anticancer Effect Through Epigenetic Modulations in Breast Cancer Cell Lines, Curr. Cancer Ther. Rev., 2019, 15, 6 pages. DOI: 10.2174/1573394715666190101114541
- ⁴⁸⁶Ling, B., Xiao, S., Yang, J., Wei, Y., Sakharkar, M.K., Yang, J., Probing the Antitumor Mechanism of *Solanum nigrum L.* Aqueous Extract against Human Breast Cancer MCF7 Cells, *Bioengineering*, **2019**, 6, 112-125. DOI: 10.3390/bioengineering6040112
- ⁴⁸⁷Gu, X. Y., Shen, X. F., Wang, L., Wu, Z. W., Li, F., Chen, B., Zhang, G. L., Wang, M. K., Bioactive steroidal alkaloids from the fruits of *Solanum nigrum*, *Phytochemistry*, **2018**, *147*, 125-131. DOI: 10.1016/j.phytochem.2017.12.020

- ⁴⁸⁸Xiang, L., Wang, Y., Yi, X., He, X., Steroidal alkaloid glycosides and phenolics from the immature fruits of *Solanum nigrum, Fitoterapia*, **2019**, *137*, Article 104268, DOI: 10.1016/j.fitote.2019.104268
- ⁴⁸⁹Aboul-Enein, A. M., Abu El-Ela, F., Shalaby, E., El-Shamy, H., Potent Anticancer and Antioxidant Activities of Active Ingredients Separated from *Solanum nigrum* and *Cassia italica* Extracts, J. Arid Land Stud., 2014, 24, 145-152. https://www.researchgate.net/publication/281811206
- ⁴⁹⁰Zhang, X., Yan, Z., Xu, T., An, Z., Chen, W., Wang, X., Huang, M., Zhu, F., Solamargine derived from *Solanum nigrum* induces apoptosis of human cholangiocarcinoma QBC939 cells, *Oncolog. Lett.*, **2018**, *15*, 6329-6335. DOI: 10.3892/ol.2018.8171
- ⁴⁹¹Ahmad, R., Steroidal glycoalkaloids from *Solanum nigrum* target cytoskeletal proteins: an *in silico* analysis, *PeerJ*, **2019**, 7, e6012, 39 pages. DOI: 10.7717/peerj.6012
- ⁴⁹²Huang, H. C., Syu, K.Y., Lin, J. K., Chemical composition of *Solanum nigrum* linn extract and induction of autophagy by leaf water extract and its major flavonoids in AU565 breast cancer cells, *J. Agric. Food Chem.*, **2010**, *58*, 8699-8708. DOI: 10.1021/jf101003v
- ⁴⁹³Ding, X., Zhu, F., Yang, Y., Li, M., Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (*Solanum nigrum* L.), *Food Chem.*, **2013**, *141*, 1181-1186. DOI: 10.1016/j.foodchem.2013.03.062
- ⁴⁹⁴Razali, F. N., Ismail, A., Abidin, N. Z., Shuib, A. S., Stimulatory Effects of Polysaccharide Fraction from Solanum nigrum on RAW 264.7 Murine Macrophage Cells, *PLOS ONE*, **2014**, 9, 8 pages. DOI: 10.1371/journal.pone.0108988
- ⁴⁹⁵Nath, L. R., Gorantla, J. N., Thulasidasan, A. K., Vijayakurup, V., Shah, S., Shabna, A., Joseph, S. M., Antony, J., Veena, K. S., Sundaram, S., Marelli, U. K., Lankalapalli, R. S., Anto, R. J., Evaluation of uttroside B, a saponin from *Solanum nigrum* Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma, *Sci. Rep.*, **2016**, *6*, 13 pages. DOI: 10.1038/srep36318
- ⁴⁹⁶Huang, Y., Yin, M., Pan, L., Yu, Q., Zhu, Q., Xu, W., Ding, B., Ji, Y., Zhou, J., *Solanum nigrum* polysaccharide inhibits tumor growth in H22-bearing mice through regulation of caspase-3 and bcl-2, *J. Cancer Res. Ther.*, **2018**, *14*, S232-S236. DOI: 10.4103/0973-1482.206862
- ⁴⁹⁷Zhou, X., He, X., Wang, G., Gao, H., Zhou, G., Ye, W., Yao, X., Steroidal saponins from *Solanum nigrum*, *J. Nat. Prod.*, **2006**, *69*, 1158-1163. DOI: 10.1021/np060091z
- ⁴⁹⁸Zhao, Z., Jia, Q., Wu, M-S., Xie, X., Wang, Y., Song, G., Zou, C-Y., Tang, Q., Lu, J., Huang, G., Wang, J., Lin, D-C., Koeffler, H.P., Yin J-Q., Jingnan Shen, J., Degalactotigonin, a Natural Compound from *Solanum nigrum* L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3b Inactivation–Mediated Repression of the Hedgehog/Gli1 Pathway, *Clin. Cancer Res.*, **2017**, *24*, 130–144. DOI: 10.1158/1078-0432.CCR-17-0692
- ⁴⁹⁹Tai, C-J., Wang, C-K., Tai, C-J., Lin, Y-F., Lin, C-S., Jian, J-Y., Chang, Y-J., Chang, C-C., Aqueous Extract of Solanum nigrum Leaves Induces Autophagy and Enhances Cytotoxicity of Cisplatin, Doxorubicin, Docetaxel, and 5-Fluorouracil in Human Colorectal Carcinoma Cells, Evid. Based Complement. Alter. Med., 2013, Article ID 514719, 12 pages. <u>http://dx.doi.org/10.1155/2013/514719</u>
- ⁵⁰⁰Arai, M. A., Uchida, K., Sadhu, S. K., Ahmed, F., Ishibashi, M., Physalin H from *Solanum nigrum* as an Hh signaling inhibitor blocks GLI1–DNA-complex formation, *Beilstein J. Org. Chem.*, **2014**, *10*, 134–140. DOI: 10.3762/bjoc.10.10
- ⁵⁰¹Fu, R., Wang, X., Hu, Y., Du, H., Dong, B., Ao, S., Zhang, L., Sun, Z., Zhang, L., Lv, G., Ji, J., Solamargine inhibits gastric cancer progression by regulating the expression of lncNEAT1_2 via the MAPK signaling pathway, *Int. J. Oncol.*, **2019**, *54*, 1545-1554. DOI: 10.3892/ijo.2019.4744
- ⁵⁰²Ravi, V., Saleem, T. S., Maiti, P. P., Gauthaman, K., Ramamurthy, J., Phytochemical and pharmacological

evaluation of *Solanum nigrum* Linn., *Afr. J. Pharm. Pharmacol.*, **2009**, *3*, 454-457. https://www.researchgate.net/publication/228498255

- ⁵⁰³Sohrabipour, S., Kharazmi, F., Soltani, N., Kamalinejad, M., Biphasic effect of *Solanum nigrum* fruit aqueous extract on vascular mesenteric beds in non-diabetic and streptozotocin-induced diabetic rats, *Pharmacog. Res.*, **2014**, *6*, 148-152. DOI: 10.4103/0974-8490.129036
- ⁵⁰⁴Azarkish, F., Hashemi, K., Talebi, A., Kamalinejad, M., Soltani, N.,Pouladian, N., Effect of the administration of *Solanum nigrum* fruit on prevention of diabetic nephropathy in streptozotocin-induced diabetic rats, *Pharmacog. Res.*, **2017**, *9*, 325-332. DOI: 10.4103/pr.pr_47_17
- ⁵⁰⁵Sohrabipour, S., Kharazmi, F., Soltani, N., Kamalinejad, M., Effect of the administration of *Solanum nigrum* fruit on blood glucose, lipid profiles, and sensitivity of the vascular mesenteric bed to phenylephrine in streptozotocin-induced diabetic rats, *Med. Sci. Monit. Basic Res.*, **2013**, *19*, 133-140. DOI: 10.12659/MSMBR.883892
- ⁵⁰⁶Dasgupta, N., Muthukumar, S. P., Murthy, P. S., Solanum nigrum Leaf: Natural Food Against Diabetes and its Bioactive Compounds, *Res. J. Med. Plant*, **2016**, *10*, 181-193. DOI: 10.3923/rjmp.2016.181.193
- ⁵⁰⁷Arulmozhi, V., Krishnaveni, M., Karthishwaran, K., Dhamodharan, G., Mirunalini, S., Antioxidant and antihyperlipidemic effect of *Solanum nigrum* fruit extract on the experimental model against chronic ethanol toxicity, *Pharmacog. Mag.*, **2010**, *6*, 42–50. DOI: 10.4103/0973-1296.59965
- ⁵⁰⁸Peng, C-H., Cheng, J-J., Yu, M-H., Chung, D-J., Huang, C-N., Wang, C-J., Solanum nigrum polyphenols reduce body weight and body fat by affecting adipocyte and lipid metabolism, Food Funct., **2020**, 11, 483–492. DOI: 10.1039/c9fo02240f
- ⁵⁰⁹Arunachalam, G., Subramanian, N., Pazhani, G., Karunanithi, M., Ravichandran, V., Evaluation of Anti-inflammatory Activity of Methanolic Extractof Solanum nigrum(Solanaceae), Iran. J. Pharmaceut. Sci., 2009, 5, 151-156. <u>http://www.ijps.ir/article_2117.html</u>
- ⁵¹⁰Zakaria, Z. A., Gopalan, H. K., Zainal, H., Mohd Pojan, N. H., Morsid, N. A., Aris, A., Sulaiman, M. R., Antinociceptive, anti-inflammatory and antipyretic effects of Solanum nigrum chloroform extract in animal models, *Yakugaku Zasshi*, **2006**, *126*, 1171-1178. DOI: 10.1248/yakushi.126.1171
- ⁵¹¹Cai, X-F., Chin, Y-W., Oh, S-R., Kwon, O-K., Ahn, K-S., Lee, H-K., Anti-inflammatory Constituents from Solanum nigrum, Bull. Korean Chem. Soc., 2010, 31, 199-201. DOI: 10.5012/bkcs.2010.31.01.199
- ⁵¹²Patel, A., Biswas, S., Shoja, M.H., Ramalingayya, G. V., Nandakumar, K., Protective Effects of Aqueous Extract of *Solanum nigrum* Linn. Leaves in Rat Models of Oral Mucositis, *Sci. World J.*, **2014**, Article ID 345939, 10 pages. <u>http://dx.doi.org/10.1155/2014/345939</u>
- ⁵¹³Alam, M. N., Roy, S., Anisuzzaman, S. M., Rafiquzzaman, M., Antioxidant activity of the ethanolic extracts of leaves, stems and fruits of *Solanum nigrum*, *Pharmacog. Commun.*, **2012**, 2, 67-71. DOI: 10.5530/pc.2012.3.14
- ⁵¹⁴Sharma, M., Romana, M., Menaria, J., Devi, S., Sheikh, M. A., In Vitro Antioxidant Potential of Various Extracts of Solanum Nigrum L, Pharmaceut. Chem. J., 2014, 1, 6-9. <u>http://tpcj.org/download/Vol-1-iss-1-2014/TPCJ2014-01-01-06-09.pdf</u>
- ⁵¹⁵Maharana, L., Kar, D. M., Pattnaik, S., Sahua, P. K., Sudam, C. S., *In Vitro* Antioxidant Activity of Aqueous Leaf Extract of *Solanum nigrum* Linn., *Pharmacologyonline*, **2010**, *3*, 333-345. https://www.researchgate.net/publication/287465888
- ⁵¹⁶Veerapagu, M., Jeya, K. R., Sankaranarayanan, A., Rathika, A., *In vitro* antioxidant properties of methanolic extract of *Solanum nigrum* L. fruit, *Pharm. Innov. J.*, **2018**, 7, 371-374. <u>https://www.researchgate.net/publication/325923462</u>

- ⁵¹⁷Campisi, A., Acquaviva, R., Raciti, G., Duro, A., Rizzo, M., Santagati, N.A., Antioxidant Activities of Solanum nigrum L. Leaf Extracts Determined in In Vitro Cellular Models, *Foods*, **2019**, *8*, 63-74. DOI:10.3390/foods8020063
- ⁵¹⁸Padmashree, A., Sharma, G. K., Semwal, A. D., Mahesh, C., Antioxygenic Activity of *Solanum nigrum L*. Leaves in Sunflower Oil Model System and Its Thermal Stability, *Food Nutr.* Sci., **2014**, 5, 1022-1029. <u>http://dx.doi.org/10.4236/fns.2014.511113</u>
- ⁵¹⁹El-Meligy, R. M., Awaad, A. S., Soliman, G. A., Bacha, A. B., Alafeefy, A. M., Kenawy, S. A., Prophylactic and curative anti-ulcerative colitis activity and the possible mechanisms of action of some desert plants, *J. Enzyme Inhib. Med. Chem.*, **2015**, *30*, 250–258. DOI: 10.3109/14756366.2014.915394
- ⁵²⁰Zaidi, S. K., Ansari, S. A., Tabrez, S., Naseer, M. I., Shahwan, M. J., Banu, N., Al-Qahtani, M. H., Antioxidant Potential of *Solanum nigrum* Aqueous Leaves Extract in Modulating Restraint Stress-Induced Changes in Rat's Liver, *J. Pharm. Bioallied Sci.*, **2019**, *11*, 60-68. DOI: 10.4103/jpbs.JPBS 58 18
- ⁵²¹Reck, I. M., Vagula, J. M., Kwiatkowski, A., Edmar, C., Physicochemical Evaluation and Bioactive Compounds in Fruits of Solanum Nigrum L., *Int. J. Sci.*, **2014**, *3*, 46-49. <u>https://ssrn.com/abstract=2573659</u>
- ⁵²²Sriram, P. G., Archana, P., Srinivasan, P. T., Subramanian, S., Studies on the Phytochemical Screening and Free Radical Scavenging of *Solanum nigrum* Leaves Extract, *Asian J. Pharm. Clin. Res.*, **2016**, *9*, 316-321. DOI: 10.22159/ajpcr.2016.v9i6.14506
- ⁵²³Wang, S., Chu, Z., Ren, M., Jia, R., Zhao, C., Fei, D., Su, H., Fan, X., Zhang, X., Li, Y., Wang, Y., Ding, X., Identification of Anthocyanin Composition and Functional Analysis of an Anthocyanin Activator in *Solanum nigrum* Fruits, *Molecules*, **2017**, 22, 876-889. DOI: 10.3390/molecules22060876
- ⁵²⁴Fahimi, S., Abdollahi, M., Mortazavi, S. A., Hajimehdipoor, H., Abdolghaffari, A. H., Rezvanfar, M. A., Wound Healing Activity of a Traditionally Used Poly Herbal Product in a Burn Wound Model in Rats, *Iran. Red Crescent Med. J.*, **2015**, *17*, 8 pages. DOI: 10.5812/ircmj.19960
- ⁵²⁵Zaidi, S. K., Nasrul, H., Tabrez, S., Ansari, S. A., Jafri, M. A., Khan, M. S., Hasan, S., Alqahtani, M. H., Abuzenadah, A. M., Banu, N., Protective Effect of *Solanum nigrum* Leaves Extract on Immobilization Stress Induced Changes in Rat's Brain, *Evid. Based Complement. Alter. Med.*, **2014**, Article ID 912450, 7 pages. <u>http://dx.doi.org/10.1155/2014/912450</u>
- ⁵²⁶Raju, K., Anbuganapathi, G., Gokulakrishnan, V., Rajkapoor, B., Jayakar, B., Manian, S., Effect of Dried Fruits of *Solanum nigrum* LINN against CCl4-Induced Hepatic Damage in Rats, *Biol. Pharm. Bull.*, **2003**, *26*, 1618-1619. DOI: 10.1248/bpb.26.1618
- ⁵²⁷Subash, K. R., Ramesh, K. S., Charian, B. V., Britto, F., Rao, N. J., Vijaykumar, S., Study of Hepatoprotective Activity of *Solanum nigrum* and *Cichorium intybus*, *Int. J. Pharmacol.*, **2011**, 7, 504-509. DOI: 10.3923/ijp.2011.504.509
- ⁵²⁸Krithika, R., Verma, R. J., Hypolipidemic and Hypoglycemic Effects of Hydroalcoholic Extract of *Solanum nigrum* Linn. in CCl4-induced Hepatotoxicity in Mice. *Toxicol. Environ. Health Sci.*, **2018**, *10*, 268–277. DOI: 10.1007/s13530-018-0375-z
- ⁵²⁹Krithika, R., Verma, R. J., Solanum nigrum confers protection against CCl₄-induced experimental hepatotoxicity by increasing hepatic protein synthesis and regulation of energy metabolism, *Clin. Phytosci.*, **2019**, *5*, 8 pages. <u>https://doi.org/10.1186/s40816-018-0096-5</u>
- ⁵³⁰Sultana, S., Perwaiz, S., Iqbal, M., Athar, M., Crude extracts of hepatoprotective plants, Solanum nigrum and Cichorium intybus inhibit free radical-mediated DNA damage, J. *Ethnopharmacol.*, **1995**, 45, 189-92. DOI: 10.1016/0378-8741(94)01214-k
- ⁵³¹Tai, C-J., Choong, C-Y., Shi, Y-C., Lin, Y-C., Wang, C-W., Lee, B-H., Tai, C-J., Solanum nigrum Protects against Hepatic

Fibrosis via Suppression of Hyperglycemia in High-Fat/Ethanol Diet-Induced Rats, *Molecules*, **2016**, *21*, 269-280. DOI: 10.3390/molecules21030269

- ⁵³²Al-Ashaal, H. A., Abduallah, H. F., Farghaly, A. A., Ali, S. A., EL-regal, N. S., Hamed, M. A., *In vitro* produced glycoalkaloids from *Solanum nigrum* L. and evaluation of their potential role as Antibilharziasis, *Asian Pac. J. Trop. Dis.*, **2017**, 7, 169-180. DOI: 10.12980/apjtd.7.2017D6-336
- ⁵³³Hammami, H., Mezghani-Jarraya, R., Damak, M., Ayadi, A., Molluscicidal Activity of Various Solvent Extracts from Solanum nigrum var. villosum Aerial Parts Against Galba truncatula, Parasite, 2011, 18, 63-70. http://dx.doi.org/10.1051/parasite/2011181063
- ⁵³⁴Mutoro, C. N., Kinyua, J., Nganga, J., Kariuki, D., Ingonga, J. M., Anjili, C. O., Efficacy of the combination of crude extracts of *Solanum nigrum* and *Plumbago capensis* on *Leishmania major*, F1000 *Res.*, **2018**, 7, 14 pages, <u>https://doi.org/10.12688/f1000research.15955.1</u>
- ⁵³⁵Rawani, A., Ghosh, A., Chandra, G., Laboratory evaluation of molluscicidal & mosquito larvicidal
- activities of leaves of Solanum nigrum L., Indian J. Med. Res., 2014, 140, 285-295. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216504/
- ⁵³⁶Rawani, A., Chowdhury, N., Ghosh, A., Laskar, S., Chandra, G., Mosquito larvicidal activity of *Solanum nigrum* berry extracts, *Indian J. Med. Res.*, **2013**, *137*, 972-976. <u>https://www.ncbi.nlm.nih.gov/pubmed/23760385</u>
- ⁵³⁷Rathi, M. H., Abdulhay, H. S., The effects of alkaloid extracted of *Solanum nigrum* leaves on the biological performance of *Dialerodus citri*, *Int. J. Adv. Res.*, **2013**, *1*, 794-799. <u>http://www.journalijar.com/uploads/2013-12-</u> 04_024858_69.pdf
- ⁵³⁸Rawani, A., Ray, A. S., Ghosh, A., Sakar, M., Chandra, G.,Larvicidal activity of phytosteroid compounds from leaf extract of *Solanum nigrum* against *Culex vishnui* group and *Anopheles subpictus*, *BMC Res. Notes*, **2017**, *10*, 8 pages. DOI 10.1186/s13104-017-2460-9
- ⁵³⁹Vidhya, S., Rose, L. A., Evaluation of *Solanum nigrum* leaf extract as a corrosion inhibitor and reductant for the green synthesis of gold nanoparticles, *Int. J. Res. Dev. Pharm. L. Sci.*, **2014**, *3*, 1011-1021. <u>https://www.omicsonline.org/peerreviewed/53620.html</u>
- ⁵⁴⁰Dwivedi, G. K., Upadhyay, S. K., Mishra, A. K., Singh, A. K., Hyper accumulation of Cadmium in *Solanum nigrum L.* and their effects on phyto-chemicals and antioxidant enzymatic activities. *Int. J. Pharm. Sci. Res.*, **2014**, *5*, 1424-1430. DOI: 10.13040/IJPSR.0975-8232.5(4).1424-30
- ⁵⁴¹Pisco, R. R., Jimenez, D. G., Cruz, D. B., Cadmium phytoextraction with mulberry grass (*Solanum nigrum* L.) in soils grown with cocoa (*Theobroma* cacao L.), *Acta Agron.*, **2018**, 67, 420-424. https://doi.org/10.15446/acag.v67n3.68536
- ⁵⁴²Li, K., Yang, B., Wang, H., Xu, X., Gao, Y., Zhu, Y., Dual effects of biochar and hyperaccumulator *Solanum nigrum* L. on the remediation of Cd-contaminated soil, *PeerJ*, **2019**, *7*, 19 pages. <u>http://doi.org/10.7717/peerj.6631</u>
- ⁵⁴³Nzikou, J. M., Mvoula-Tsieri, M., Matos, L., Matouba, E., Ngakegni-Limbili, A. C., Linder, M., Desobry, S., *Solanum nigrum* L. Seeds as an Alternative Source of Edible Lipids and Nutriment in Congo Brazzaville, *J. Appl. Sci.*, **2007**, *7*, 1107-1115. DOI: 10.3923/jas.2007.1107.1115
- ⁵⁴⁴Yuan, B., Byrnes, D., Giurleo, D., Villani, T., Simon, J. E., Wu, Q., Rapid screening of toxic glycoalkaloids and micronutrients in edible nightshades (*Solanum* spp.), *J. Food Drug Anal.*, **2018**, 26, 751-760. DOI: 10.1016/j.jfda.2017.10.005
- ⁵⁴⁵Ben-Abdallah, S., Caceres, L. A., Wang, Z., Renaud, B. J., Lachaal, M., Karray-Bouraoui, N., Hannoufa, A., Scott, I. M., Host plant defenses of black (*Solanum nigrum L.*) and red nightshade (*Solanum villosum Mill.*) against specialist

Solanaceae herbivore Leptinotarsa decemlineata (Say). Arch. Insect Biochem. Physiol., **2019**; 101, e21550. https://doi.org/10.1002/arch.21550

⁵⁴⁶Zhao, Y., Liu, F., Lou, H. X., Studies on the chemical constituents of *Solanum nigrum*, *J. Chin. Med. Mater.*, **2010**, *33*, 555-556. https://www.researchgate.net/publication/46286978

⁵⁴⁷Sarma, H., Sarma, A., Solanum nigrum L., a Nutraceutical Enriched Herb or Invasive Weed? Int. Conf. Environ. BioSci., 2011, 21, 105-109. <u>http://www.ipcbee.com/vol21/20--</u>

- 2011, 21, 105-109. <u>http://www.ipcbee.com/vol21/20--ICEBS2011P00005.pdf</u>
 ⁵⁴⁸Aburjai, T. A., Oun, I. M., Auzi, A. A., Hudaib, M. M., Volatile Oil Constituents of Fruits and Leaves of *Solanum nigrum* L. Growing in Libya, J. Essent. Oil-Bear. Plants, 2014, 17, 397-
- ⁵⁴⁹Guo, S-B., Tian, Y., Jian, L-Y., Optimization of Ethanol Extraction Process of *Solanum nigrum* Linn. and Structural Confirmation of its Compounds, *Asian J. Chem.*, **2014**, *26*, 4615-4618. http://dx.doi.org/10.14233/ajchem.2014.16139A

404. DOI: 10.1080/0972060X.2014.895194

- ⁵⁵⁰Zemali, D., Ouahrani, R. M., Phytochemical Study of Selected Medicinal plant, Solanum Nigrum, the Algerian Desert, *Int. Lett. Chem. Phys. Astron.*, **2014**, *1*, 25-30. <u>https://www.scipress.com/ILCPA.20.25</u>
- ⁵⁵¹Udoulla, A., Bellah, F., Alam, F., Faisal, S. S., Kafi, A. H., Fuad, F., Phytochemical screening of *Solanum nigrum* L, *S. myriacanthus Dunal, Solanum melongena* and *Averrhoa bilimbi* in Bangladesh, *J. Med. Plants Stud.*, **2016**, *4*, 35-38. <u>http://www.plantsjournal.com/archives/ArticleId=285</u>
- ⁵⁵²Taherpour, A., Khodaei, M. M., Ameen, B. A., Ghaitouli, M., Mahdizadeh, N., Amjadian, H. R., Larijani, K., Chemical composition analysis of the essential oil of *Solanum nigrum* L. by HS/SPME method and calculation of the biochemical coefficients of the components, *Arab. J. Chem.*, **2017**, *10*, S2372–S2375. <u>http://dx.doi.org/10.1016/j.arabjc.2013.08.015</u>
- ⁵⁵³Mohy-Ud-Din, A., Khan, Z., Ahmad, M., Kashmiri, M. A, Chemotaxonomic Value of Alkaloids in *Solanum nigrum* Complex, *Pak. J. Bot.*, **2010**, *42*, 653-660. <u>http://www.pakbs.org/pjbot/PDFs/42(1)/PJB42(1)653.pdf</u>
- ⁵⁵⁴Jagtap, C. Y., Prajapati, P. K., Rudrappa, H. C., Shukla, V. J., Pharmacognostic and phytochemical investigation of root of *Solanum nigrum* Linn.: An ethnomedicinally important herb, *Int. J. Green Pharm.*, **2013**, *7*, 46-49. DOI: 10.4103/0973-8258.111612
- ⁵⁵⁵Gayathri, V., Karthika, A., Preliminary phytochemical screening of two medicinal plants- *Solanum nigrum* Linn. and *Leucas aspera* (Willd.) Linn, *Int. J. Pharmacog.*, **2016**, *3*, 517-520. <u>http://dx.doi.org/10.13040/IJPSR.0975-8232.IJP.3(12).517-20</u>
- ⁵⁵⁶El-Shaboury, G. A., Haroun, S. A., Shaker, K., Badr, A., Systematics Implications of GC-MS Analysis of Secondary Metabolites in the Ethanol Extract of *Solanum* Species from South West Saudi Arabia, *Egypt J. Bot.*, **2017**, *57*, 429- 444. DOI: 10.21608/ejbo.2017.520.1019
- ⁵⁵⁷Chester, K., Paliwal, S., Khan, W., Ahmad, S., UPLC-ESI-MS/MS and HPTLC Method for Quantitative Estimation of Cytotoxic Glycosides and Aglycone in Bioactivity Guided Fractions of *Solanum nigrum* L., *Front. Pharmacol.*, **2017**, *8*, 434-448. DOI: 10.3389/fphar.2017.00434
- ⁵⁵⁸Ramanpreet, C., Gupta, R. C., Kaur, M., Determination of Lupeol and β-Sitosterol from *Solanum nigrum* L., *J. Genet. Cell Biol.*, **2019**, *2*, 68-71. https://www.researchgate.net/publication/334388809
- ⁵⁵⁹Huan, Y., Huang, Y., Zhang, H., Zhou, H., Jiu, Z., Liao, M., Study on selenium accumulation characteristics of different ploidies *Solanum nigrum*, *E3S Web Conf.*, **2019**, *136*, 3 pages. <u>https://doi.org/10.1051/e3sconf/201913607014</u>
- ⁵⁶⁰Lin, L., Yang, W., Wei, X., Wang, Y., Zhang, L., Zhang, Y., Zhang, Z., Zhao, Y., Zhao, M., Enhancement of Solasodine Extracted from Fruits of *Solanum nigrum* L. by Microwave-Assisted Aqueous Two-Phase Extraction and Analysis by

High-Performance Liquid Chromatography, Molecules, 2019, 24, 2294-2305. DOI: 10.3390/molecules24122294

- ⁵⁶¹Tai, B. H., Nhiem, N. X., Doan, V. V., Yen, P. H., Quang, T. H., Trang, D. T., Yen, D. T., Cuc, N. T., Kiem, P. V., Isolation of spirostanol glycosides from Solanum nigrum, Vietnam J. Chem., 2018, 56, 548-552. DOI: 10.1002/vjch.201800045
- ⁵⁶²Sammani, A., Shammaa, E., Chehna, F., Rahmo, A., The In-Vitro Toxic Effect of The Glycoalkaloids for Some Solanum Species Against The LIM-1863 Cell Line, Pharmacog. J., **2014**, *6*, 23-31. https://www.researchgate.net/publication/287308774
- ⁵⁶³Nawwar, M.A., El-Mousallamy, A.M., Barakat, H.H., Quercetin 3-glycosides from the leaves of Solanum nigrum, Phytochemistry, 1989, 28, 1755-1757. DOI: 10.1016/S0031-9422(00)97839-7
- ⁵⁶⁴Tai, B. H., Doan, V. V., Yen, P. H., Nhiem, N. X., Cuc, N. T., Trang, D. T., Hang, D. T., Dung, D. T., Yen, D. T., Quang, T. H., Dang, N. H., Mai, N. T., Minh, C. V., Kiem, P. V., Two New Steroidal Alkaloid Saponins from the Whole Plants of Solanum nigrum, Nat. Prod. Commun., 2018, 13, 1457-1460. https://doi.org/10.1177/1934578X1801301111
- ⁵⁶⁵Sabudak, T., Ozturk, M., Alpay, E., New Bioflavonoids from Solanum nigrum L. by Anticholinesterase and Antityrosinase Activities-guided Fractionation, Rec. Nat. Prod., **2017**, *11*, 130-140. https://www.researchgate.net/publication/319254383
- ⁵⁶⁶Venkatesh, R., Kalaivani, K., Bioactivity based evaluation of medicinal plant Solanum villosum (Mill.) in south India against diethylnitrosamine induced hepatocellular carcinoma (Funded Work), Int. J. Pharm. BioSci., **2019**, 10, 90-103. http://dx.doi.org/10.22376/ijpbs.2019.10.1.b90-103
- 567 Venkatesh, R., Kalaivani, K., Attenuation of DEN induced hepatocellular carcinoma by a novel synthesis of silver nanoparticles using Solanum villosum (Mill.) leaves, J. Adv. Biothechnol., 2016, 6, 867-881. https://rajpub.com/index.php/jbt/article/view/66

- ⁵⁶⁸Venkatesh, R., Kalaivani, K., Effect of Solanum villosum (Mill.) Extract and its silver nanoparticles on hematopoietic system of diethylnitrosamine-induced Hepatocellular Carcinoma in rats. *Innovare J. Health Sci.*, **2017**, *5*, 13-16. <u>https://innovareacademics.in/journals/index.php/ijhs/article/v</u> iew/15459
- 569Nyaga, S. N., Mathiu, P. M., Onyango, C. M., Areba, G. O., Antidiabetic properties of Solanum villosum and Solanum *nigrum var sarrachoides* in a streptozotocin-induced diabetic mice model, Int. J. Basic Clin. Pharmacol., 2019, 8, 2396-2402. http://dx.doi.org/10.18203/2319-2003.ijbcp20194774
- ⁵⁷⁰Venkatesh, R., Kalaivani, K., Vidya, R., Analysis of Phytochemicals and Free Radical Scavenging Activity of Solanu, villosum (Mill).- A Traditional Medicinal Plant in Southern India, World J. Pharm. Pharmaceut. Sci., 2014, 3, 741-755. https://www.wjpps.com/Wjpps_controller/abstract_id/1984
- ⁵⁷¹Rajendran, V., Rasu, V., Krishnasamy, K., Sundaram, S.K., In vivo Simulated In vitro Model of Solanum villosum (MILL) Using Mammalian Liver Slice Technique, Int. J. Recent Adv. 2015, Multidisc. 2. 732-736. Res., https://www.ijramr.com/sites/default/files/issues-pdf/354.pdf
- ⁵⁷²Chowdhury, N., Laskar, S., Chandra, G., Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves, BMC Complement. Alternat. Med., 2008, 8, 6 pages. DOI: 10.1186/1472-6882-8-62
- ⁵⁷³Chowdhury, N., Paramanik, M., Sarkar, N., Laskar, S., Chandra, G., Fatty Acid Analysis of Leaf and Berry of Solanum villosum Mill. And its Prospect as Diet and Bactericide, Analyt. Chem. Lett., **2015**, *5*, 260-266. DOI: **2015**, 5, 10.1080/22297928.2015.11
- ⁵⁷⁴Abdel-Hamid, A. E., El-Dine, R.S., Sendker, J., El-Zalabani, S. M., Meselhy, M. R., Jimenez-Negro, E., Abdel-Naim, A. B., Metabolic Profiling of Solanum villosum Mill subsp. miniatum (bernh. ex willd.): Hepatoprotective and

Antifibrotic Activity in a Rat Model of Liver Fibrosis, Mag., 2019, 659-670. Pharmacog. 15. DOI: 10.4103/pm.pm_547_18

- ⁵⁷⁵Chowdhury, N., Bhattacharjee, I., Laskar, S., Chandra, G., Efficacy of Solanum villosum Mill. (Solanaceae: Solanales) as a Biocontrol Agent against Fourth Instar Larvae of Culex quinquefasciatus Say, Turk. J. Zool., 2007, 31, 365-370. https://www.researchgate.net/publication/224775842
- ⁵⁷⁶ Chowdhury, N., Ghosh, A., Chandra, G., Mosquito larvicidal activities of *Solanum villosum* berry extract against the dengue vector *Stegomyia aegypti*, *BMC Complement*. Alternat. Med., 2008, 8, 8 pages. DOI: 10.1186/1472-6882-8-10
- ⁵⁷⁷Chowdhury, N., Chatterjee, S. K., Laskar, S., Chandra, G., Larvicidal activity of Solanum villosum Mill (Solanaceae: Solanales) leaves to Anopheles subpictus Grassi (Diptera: Culicidae) with effect on non-target Chironomus circumdatus Kieffer (Diptera: Chironomidae). J. Pest Sci., 2009, 82, 13-18. DOI: 10.1007/s10340-008-0213-1
- ⁵⁷⁸Venkatesh, R., Kalaivani, K., Toxicity Assessment of Biosynthesized Silver Nanoparticles from Solanum villosum MILL. (Solanaceae): In vitro and In vivo Study, Innovare J. Health Sci., 2017, 5, 15-20. https://innovareacademics.in/journals/index.php/ijms/article/ view/15460/9025
- ⁵⁷⁹Venkatesh, R., Kalaivani, K., Vidya, R., Toxicity assessment of ethanol extract of Solanum villosum (Mill) on wistar albino rats, Int. J. Pharm. Sci. Res., 2014, 5, 406-412. https://www.ijpsr.info/docs/IJPSR14-05-07-020.pdf
- ⁵⁸⁰Venkatesh, R., Vidya, R., Kalaivani, K., Gas Chromatography and Mass Spectrometry Analysis of Solanum Villosum (Mill) (Solanaceae), *Int. J. Pharmaceut. Sci. Res.*, **2014**, *5*, 5283-5287. DOI: 10.13040/IJPSR.0975-8232.5(12).5283-87
- ⁵⁸¹Sundaram, S., Dwivedi, P., Purwar, S., In vitro Evaluation of Antibacterial Activities of Crude Extracts of Withania somnifera (Ashwagandha) to Becterial Pathogens, Asian J. Biotechnol. 2011, 3, 194-199. DOI: 3, DOI: 10.3923/ajbkr.2011.194.199
- ⁵⁸²Bokaeian, M., Fakheri, B. A., Nejad, N. M., Zarei, H., Saeidi, S., Mohasseli, T., The Effect of Withania somnifera Extract on Drug Resistant Strains of Escherichia coli, Int. J. Infect., 2015, 2, 4 pages. DOI: 10.17795/iji-23036
- ⁵⁸³Marslin, G., Selvakesavan, R. K., Franklin, G., Sarmento, B., Dias, A. C., Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from *Withania* somnifera, Int. J.Nanomed., **2015**, 10, 5955–5963. http://dx.doi.org/10.2147/IJN.S81271
- ⁵⁸⁴John, T., Parmar, K. A., Kotval, S. C., Jadhav, J., Biosynthesis and Characterization of Silver Nanoparticles from Withania Somnifera (L.) Dunal (Ashwagandha) Root Extract, Int. J. DOI: Green Herb. Chem., 2018, 8. 43-54. 10.24214/IJGHC/GC/8/1/04354
- ⁵⁸⁵Singh, G., Kumar, P., Antibacterial activity of flavonoids of Withania somnifera L., Int. J. Green Pharm., 2014, 8, 114-118. DOI: 10.4103/0973-8258.129585
- ⁵⁸⁶B.M., Sulaiman, A. M., Zakaria, I. H., Abdul-Jalil, M. I., Muhammad, K. I., AOS14 Phase II clinical study of combination chemotherapy with herb *Withania somnifera* (ashwagandha) in breast cancer, Eur. J. Cancer, 2012, 48, S8-S9. https://doi.org/10.1016/j.ejca.2012.02.031
- 587Khazal, K. F., Hill, D. L., Grubbs, C. J., Effect of Withania somnifera root extract on spontaneous estrogen receptornegative mammary cancer in MMTV/Neu mice, Anticancer Res., 2014, 34, 6327-6332. http://ar.iiarjournals.org/content/34/11/6327.full.pdf
- ⁵⁸⁸Khazal, K. F., Hill, D. L., Withania somnifera extract reduces the invasiveness of MDA-MB-231 breast cancer and inhibits cytokines associated with metastasis. J. Cancer Metastasis Treat., 2015, 1, 94-100. DOI: 10.4103/2394-4722.157601

- ⁵⁸⁹Ahmed, W., Mofed, D., Zekri, A., El-Sayed, N., Rahouma, M., Sabet, S., Antioxidant activity and apoptotic induction as mechanisms of action of *Withania somnifera* (Ashwagandha) against a hepatocellular carcinoma cell line, *J. Int. Med. Res.*, **2018**, 46, 1358–1369. DOI: 10.1177/0300060517752022
- ⁵⁹⁰Sudeep, H. V., Gouthamchandra, K., Venkatesh, B. J., Prasad, K. S., Viwithan, a Standardized Withania somnifera Root Extract Induces Apoptosis in Murine Melanoma Cells, *Pharmacog. Mag.*, **2018**, *13*, S801-S806. DOI: 10.4103/pm.pm_121_17
- ⁵⁹¹Kim, S., Yu, J. S., Lee, J. Y., Choi, S. U., Lee, J., Kim, K. H., Cytotoxic Withanolides from the Roots of Indian Ginseng (*Withania somnifera*), J. Nat. Prod., **2019**, 82, 765-773. <u>https://doi.org/10.1021/acs.jnatprod.8b00665</u>
- ⁵⁹²Raju, S. K., Basavanna, P. L., Nagesh, H. N., Shanbhag, A. D., A study on the anticonvulsant activity of *Withania somnifera* (Dunal) in albino rats, *Natl. J. Physiol. Pharm. Pharmacol.*, **2017**, 7, 17-21. DOI: 10.5455/njppp.2016.6.0615112072016
- ⁵⁹³Jain, J., Narayanan, V., Chaturvedi, S., Pai, S., Sunil, S., In Vivo Evaluation of Withania somnifera–Based Indian Traditional Formulation (Amukkara Choornam), Against Chikungunya Virus–Induced Morbidity and Arthralgia, J. Evid. Based Integ. Med., 2018, 23, 1-7. DOI: 10.1177/2156587218757661
- ⁵⁹⁴Kulkarni, S. K., Akula, K. K., Dhir, A., Effect of Withania somnifera Dunal root extract against pentylenetetrazol seizure threshold in mice: possible involvement of GABAergic system, Indian J. Exp. Biol., 2008, 46, 465-469. <u>http://nopr.niscair.res.in/handle/123456789/4502</u>
- ⁵⁹⁵Babu, P. V., Gokulakrishnan, A., Dhandayuthabani, R., Ameethkhan, D., Kumar, C. V., Ahamed, M. I., Protective effect of *Withania somnifera* (Solanaceae) on collagen glycation and crosslinking, Comp. Biochem. Physiol. B Biochem. Mol. Biol., **2007**, *147*, 308-313. DOI: 10.1016/j.cbpb.2007.01.011
- ⁵⁹⁶Khalili, M., The Effect of Oral Administration of Withania Somnifera Root on Formalin-Induced Pain in Diabetic Rats, Basic Clin. Neurosci., 2009, 1, 29-31. https://www.researchgate.net/publication/266609422
- ⁵⁹⁷Anwer, T., Sharma, M., Khan, G., Alam, M. F., Alam, N., Ali, S., Alam, S., Preventive role of *Withania somnifera* on hyperlipidemia and cardiac oxidative stress in streptozotocin induced type 2 diabetic rats, *Trop. J. Pharm. Res.*, **2017**, *16*, 119-125. <u>http://dx.doi.org/10.4314/tjpr.v16i1.15</u>
- ⁵⁹⁸Gupta, A., Singh, S., Evaluation of anti-inflammatory effect of Withania somnifera root on collageninduced arthritis in rats, Pharm. Biol., **2014**, 52, 308-320. DOI: 10.3109/13880209.2013.835325
- ⁵⁹⁹Khan, M. A., Subramaneyaan, M., Arora, V. K., Banerjee, B. D., Ahmed, R. S., Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. J. Complement. Integr. Med., 2015, 12, 117-125. DOI: 10.1515/jcim-2014-0075.
- ⁶⁰⁰Palash, M., Mitali, G., Kumar, M. T., Prasad, D. A., Pharmacognostic and free-radical scavenging activity in the different parts of ashwagandha [*Withania somnifera* (L. Dunal)], *Int. J. Drug Dev. Res.*, **2010**, *2*, 830-843. <u>https://www.researchgate.net/publication/215573886</u>
- ⁶⁰¹Usharani, P., Fatima, N., Kumar, C. U., Kishan, P. V., Evaluation of a Highly Standardized Withania somnifera Extract on Endothelial Dysfunction and Biomarkers of Oxidative Stress in Patients with Type 2 Diabetes Mellitus: a Randomized, Double Blind, Placebo Controlled Study, Int. J. Ayur. Pharm. Res., 2014, 2, 22-32. https://ijapr.in/index.php/ijapr/article/view/240
- ⁶⁰²Bhattacharya, A., Ghosal, S., Bhattacharya, S. K., Anti-oxidant effect of *Withania somnifera* glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum, *J. Ethnopharmacol.*, **2001**, *74*, 1-6. DOI: 10.1016/s0378-8741(00)00309-3

- ⁶⁰³Koushik, D., Tanushree, S., Pradip, S., Nandi, D. K., Effect of Extract of Withania Somnifera on Dehydration-Induced Oxidative Stress-Related Uremia in Male Rats, Saudi J. Kidney Dis. Transpl., 2010, 21, 75-80. <u>http://www.sjkdt.org/temp/SaudiJKidneyDisTranspl21175-5258828_012738.pdf</u>
- ⁶⁰⁴Jayaprakasam, B., Padmanabhan, K., Nair, M. G., Withanamides in Withania somnifera fruit protect PC-12 cells from betaamyloid responsible for Alzheimer's disease, *Phytother. Res.*, **2010**, 24, 859-863. DOI: 10.1002/ptr.3033
- ⁶⁰⁵Sehgal, N., Gupta, A., Valli, R. K., Joshi, S. D., Mills, J. T., Hamel, E., Khanna, P., Jain, S. C., Thakur, S. S., Ravindranath, V., *Withania somnifera* reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liver, *PNAS*, **2012**, *109*, 3510– 3515. DOI: 10.1073/pnas.1112209109
- ⁶⁰⁶Gupta, G. L., Rana, A. C., Effect of Withania somnifera Dunal in ethanol-induced anxiolysis and withdrawal anxiety in rats, Indian J. of Exp. Biol., 2008, 46, 470-475. <u>https://www.researchgate.net/publication/23165437</u>
- ⁶⁰⁷Bhattacharya, S. K., Bhattacharya, A., Sairam, K., Ghosal S., Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study, *Phytomedicine*, 2000, 7, 463-469. DOI: 10.1016/S0944-7113(00)80030-6
- ⁶⁰⁸Chandrasekhar, K., Kapoor, J., Anishetty, S., A Prospective, Randomized Double-Blind, Placebo-Controlled Study of Safety and Efficacy of High Concentration Full Spectrum Extract of Aswagandha Root in Reducing Stress and Anxiety in Adults, Indian J. Psychol. Med., 2012, 34, 255–262. DOI: 10.4103/0253-7176.106022
- ⁶⁰⁹Jayanthi, M. K., Prathima, C., Huralikuppi, J. C., Suresha, R. N., Dhar, D., Anti-Depressant Effects Of *Withania Somnifera* Fat (Ashwagandha Ghrutha) Extract In Experimental Mice, *Int. J. Pharm. BioSci.*, **2012**, *3*, 33-42.

https://www.researchgate.net/publication/249656563

- ⁶¹⁰Dumore, N. G., Umekar, M. J., Taksande B. G., Aglawe M. M., Nandkishor, R. R., *Withania somnifera* Attenuates Nicotine Induced Conditioned Place Preference in Mice, *Pharmacog. J.*, **2019**, *11*, 43-47. DOI: 10.5530/pj.2019.1.8
- ⁶¹¹Lopresti, A. L., Smith, S. J., Malvi, H., Kodgule, R., An investigation into the stress-relieving and pharmacological actions of an ashwagandha (*Withania somnifera*) extract, *Medicine*, **2019**, *98*, 9 pages.

http://dx.doi.org/10.1097/MD.00000000017186

- ⁶¹²Gannon, J. M., Brar, J., Rai, A., Chengappa, K. N., Effects of a standardized extract of Withania somnifera (Ashwagandha) on depression and anxiety symptoms in persons with schizophrenia participating in a randomized, placebocontrolled clinical trial, *Ann. Clin. Psychiatry*, **2019**, *31*, 123-129. https://www.aacp.com/article/buy_now/?id=581
- ⁶¹³Langade, D., Kanchi, S., Salve, J., Debnath, K., Ambegaokar, D., Efficacy and Safety of Ashwagandha (*Withania somnifera*) Root Extract in Insomnia and Anxiety: A Double-blind, Randomized, Placebo-controlled Study, *Cureus*, **2019**, *11*, 22 pages. DOI 10.7759/cureus.5797
- ⁶¹⁴Bhattacharya, S. K., Goel, P. K., Kaur, R., Ghosal, S., Anti-stress activity of sitoindosides VII and VIII, new acylsteryl glycosides from *Withania somnifera*, *Phytother. Res.*, **1987**, *1*, 32—37. DOI: 10.1002/ptr.2650010108
- ⁶¹⁵Manjunath, M. J., Muralidhara, M., Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster, J. Food Sci. Technol., 2015, 52, 1971–1981. DOI: 10.1007/s13197-013-1219-0
- ⁶¹⁶Baitharu, I., Jain, V., Deep, S. N., Hota, K. B., Hota, S. K., Prasad, D., Ilavazhagan, G., Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats, J. Ethnopharmacol., 2013, 145, 431-441. DOI: 10.1016/j.jep.2012.10.063

- ⁶¹⁷Shivamurthy, S., Manchukonda, R., Ramadas, D., Evaluation of learning and memory enhancing activities of protein extract of Withania somnifera (Ashwagandha) in Wistar albino rats, *Int. J. Basic Clin. Pharmacol.*, **2016**, *5*, 453-457. <u>http://dx.doi.org/10.18203/2319-2003.ijbcp20160761</u>
- ⁶¹⁸Choudhary, D., Bhattacharyya, S., Bose, S., Efficacy and Safety of Ashwagandha (*Withania somnifera* (L.) Dunal) Root Extract in Improving Memory and Cognitive Functions, J. Diet. Suppl., **2017**, 14, 599-612. DOI: 10.1080/19390211.2017.1284970
- ⁶¹⁹Girdhari, L. G., Avtar, C. R., Synergistic effect of Withania somnifera Dunal and L-dopa in the inhiition of haloperidolinduced catalepsy in mice, *Pharmacog. Mag.*, **2009**, *5*, 46-50. <u>http://www.phcog.com/text.asp?2009/5/19/46/59782</u>
- ⁶²⁰Maheswari, T., Vijayraja, D., Natchiyar, R. K., Kalaivani, K., Rajasankar, S., Tamilselvam, K., Manivasagam, T., Synergitic Neuroprotective Effect of Withania somnifera Root Powder and Mucuna pruriens Seed Powder in Parkinsonic Mice Model, J. Herb. Med. Toxicol., 2010, 4, 63-69. <u>https://www.researchgate.net/publication/267834352</u>
- ⁶²¹Prakash, J., Yadav, S. K., Chouhan, S., Prakash, S., Singh, S. P., Synergistic effect of *Mucuna pruriens* and *Withania* somnifera in a paraquat induced Parkinsonian mouse model, *Adv. Biosci. Biotechnol.*, **2013**, *4*, 1-9. http://dx.doi.org/10.4236/abb.2013.411A2001
- ⁶²²Ahmad, M., Saleem, S., Ahmad, A. S., Ansari, M. A., Yousuf, S., Hoda, M. N., Islam, F., Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats, *Hum. Exp. Toxicol.*, **2005**, *24*, 137-47. DOI: 10.1191/0960327105ht509oa
- ⁶²³Kuboyama, T., Tohda, C., Zhao, J., Nakamura, N., Hattori, M., Komatsu, K., Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha, *Neuroreport*, **2002**, *13*, 1715-1720. DOI: 10.1097/00001756-200210070-00005
- ⁶²⁴Prakash, J., Yadav, S. K., Chouhan, S., Singh, S. P., Neuroprotective Role of Withania somnifera Root Extract in Maneb–Paraquat Induced Mouse Model of Parkinsonism, Neurochem. Res., 2013, 38, 972-980. DOI: 10.1007/s11064-013-1005-4
- ⁶²⁵Singh, M., Ramassamy, C., *In vitro* screening of neuroprotective activity of Indian medicinal plant *Withania somnifera*, *J. Nutr. Sci.*, **2017**, *6*, 5 pages. DOI: 10.1017/jns.2017.48
- ⁶²⁶Elhadidy, M. E., Sawie, H. G., Meguid, N. A., Khadrawy, Y. A., Protective effect of ashwagandha (*Withania somnifera*) against neurotoxicity induced by aluminum chloride in rats. *Asian Pac. J. Trop. Biomed.*, **2018**, *8*, 59-66. DOI: 10.4103/2221-1691.221139
- ⁶²⁷Gupta, M., Kaur, G., Withania somnifera (L.) Dunal ameliorates neurodegeneration and cognitive impairments associated with systemic inflammation, *BMC Complement. Alter. Med.*, **2019**, *19*, 18 pages. <u>https://doi.org/10.1186/s12906-019-2635-0</u>
- ⁶²⁸Raja, S. S., Manivasagam, T., Sankar, V., Prakash, S., Muthusamy, R., Krishnamurti, A., Surendran S., Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson's disease model mouse, J. Ethnopharmacol., 2009, 125, 369-373. DOI: 10.1016/j.jep.2009.08.003
- ⁶²⁹Prakash, J., Chouhan, S., Yadav, S. K., Westfall, S., Rai, S. N., Singh, S. P., *Withania somnifera* Alleviates Parkinsonian Phenotypes by Inhibiting Apoptotic Pathways in Dopaminergic Neurons, *Neurochem. Res.*, **2014**, *39*, 2527-2536. DOI: 10.1007/s11064-014-1443-7
- ⁶³⁰Chengappa, K. N., Brar, J. S., Gannon, J. M., Schlicht, P. J., Adjunctive Use of a Standardized Extract of Withania somnifera (Ashwagandha) to Treat Symptom Exacerbation in Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Study, J. Clin. Psychiatry, **2018**, 79, 17 pages. DOI: 10.4088/JCP.17m11826

- ⁶³¹Kumar, A., Meena, S., Pottabathini, R., Effect of Ashwagandha (Withania somnifera) against chronic constriction injury induced behavioral and biochemical alterations: Possible involvement of nitric oxide mechanism, Int. J. Nutr. Pharmacol. Neurol. Dis., **2014**, 4, 131-138. DOI: 10.4103/2231-0738.132664
- ⁶³²Jahanbakhsh, S. P., Manteghi, A. A., Emami, S. A., Mahyari, S., Gholampour, B., Mohammadpour, A. H., Sahebkar, A.,Evaluation of the efficacy of *Withania somnifera* (Ashwagandha) root extract in patients with obsessivecompulsive disorder: A randomized double-blind placebocontrolled trial, *Complement. Ther. Med.*, **2016**, *27*, 25-29. DOI: 10.1016/j.ctim.2016.03.018
- ⁶³³Manchanda, S., Mishra, R., Singh, S., Kaur, T., Kaur, G., Aqueous Leaf Extract of Withania somnifera as a Potential Neuroprotective Agent in Sleep-deprived Rats: a Mechanistic Study, Mol. Neurobiol., 2017, 54, 3050-3061. DOI: 10.1007/s12035-016-9883-5
- ⁶³⁴Deshpande, A., Irani, N., Balakrishnan, R., Study protocol and rationale for a prospective, randomized, double-blind, placebo-controlled study to evaluate the effects of Ashwagandha (*Withania somnifera*) extract on nonrestorative sleep, *Medicine*, **2018**, 97, 7 pages. DOI: 10.1097/MD.000000000011299
- ⁶³⁵Bhattacharya, S. K., Muruganandam, A. V., Adaptogenic activity of *Withania somnifera*: an experimental study using a rat model of chronic stress, *Pharmacol. Biochem. Behav.*, **2003**, *75*, 547-555. DOI: 10.1016/s0091-3057(03)00110-2
- ⁶³⁶Mohanty, I., Arya, D. S., Dinda, A., Talwar, K. K., Joshi, S., Gupta, S. K., Mechanisms of cardioprotective effect of *Withania somnifera* in experimentally induced myocardial infarction, *Basic Clin. Pharmacol. Toxicol.*, **2004**, *94*, 184-90. DOI: 10.1111/j.1742-7843.2004.pto940405.x
- ⁶³⁷Gupta, S. K., Mohanty, I., Talwar, K. K., Dinda, A., Joshi, S., Bansal, P., Saxena, A., Arya, D. S., Cardioprotection from ischemia and reperfusion injury by *Withania somnifera*: A hemodynamic, biochemical and histopathological assessment, *Mol. Cell. Biochem.*, **2004**, 260, 39–47. DOI: 10.1023/b:mcbi.0000026051.16803.03
- ⁶³⁸Mohanty, I. R., Arya, D. S., Gupta, S. K., Withania somnifera provides cardioprotection and attenuates ischemiareperfusion induced apoptosis, *Clin. Nutr.*, **2008**, *7*, 635-642. DOI: 10.1016/j.clnu.2008.05.006
- ⁶³⁹Mohanty, I. R., Gupta, S. K., Arya, D. S., Mohanty, N., Deshmukh, Y., Medicinal Herbs can Play Significant Role in Attenuation of Ischemia and Reperfusion Injury, *J. Homeop. Ayurv. Med.*, **2013**, 2, 11 pages. DOI: 10.4172/2167-1206.1000138
- ⁶⁴⁰Hamza, A., Amin, A., Daoud, S., The protective effect of a purified extract of *Withania somnifera* against doxorubicininduced cardiac toxicity in rats, *Cell Biol. Toxicol.*, **2008**, *24*, 63–73. DOI: 10.1007/s10565-007-9016-z
- ⁶⁴¹Choudhary, B., Shetty, A., Langade, D. G., Efficacy of *Ashwagandha (Withania somnifera* [L.] Dunal) in improving cardiorespiratory endurance in healthy athletic adults, *Ayu*, 2015, 36, 63-38. DOI: 10.4103/0974-8520.169002
- ⁶⁴²Kushwaha, S., Betsy, A., Chawla, P., Effect of Ashwagandha (Withania sonnifera) Root Powder Supplementation in Treatment of Hypertension, Stud. Ethno-Med., 2012, 6, 111-115. DOI: 10.1080/09735070.2012.11886427
- ⁶⁴³Wankhede, S., Langade, D., Joshi, K., Sinha, S. R., Bhattacharyya, S., Examining the effect of Withania somnifera supplementation on muscle strength and recovery: a randomized controlled trial, J. Int. Soc. Sports Nutr., 2015, 12, 11 pages. DOI: 10.1186/s12970-015-0104-9
- ⁶⁴⁴Ziegenfuss, T. N., Kedia, A. W., Sandrock, J. E., Raub, B. J., Kerksick, C. M., Lopez, H. L., Effects of an Aqueous Extract of *Withania somnifera* on Strength Training Adaptations and Recovery: The STAR Trial, *Nutrients*, **2018**, *10*, 1807-1824. DOI: 10.3390/nu10111807

- ⁶⁴⁵Raj J. P., D'Cruz, J. M., Toms, T., Muralidharan, P., Rao, M., Physical endurance enhancing capacity of *Withania somnifera* root powder post-water extraction in mice, *Pharmacog. Res.*, **2018**, *10*, 250-252. DOI: 10.4103/pr.pr_153_17
- ⁶⁴⁶Henley, A. B., Yang, L., Chuang, K-L., Sahuri-Arisoylu, M., Wu, L-H., Bligh, S. W., A, Bell, J.D., Withania somnifera Root Extract Enhances Chemotherapy through 'Priming', *PLOS ONE*, **2017**, 12, 13 pages. DOI: 10.1371/journal.pone.0170917
- ⁶⁴⁷Andallu, B., Radhika B., Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (*Withania somnifera*, Dunal) root, *Indian J. Exp. Biol.*, **2000**, *38*, 607-609. <u>https://www.researchgate.net/publication/12211068</u>
- ⁶⁴⁸Purohit, A., Purohit, A., Eltroxin Like Mimic Action of Withanis somnifera Leaf Extract in Hypothyroid-Induced Rats, Asian J. Pharm. Clin. Res., **2018**, 11, 280-284. http://dx.doi.org/10.22159/ajpcr.2018.v11i11.27424
- ⁶⁴⁹Choudhary, M. I., Yousuf, S., Nawaz, S.A., Ahmed, S., ur-Rahman, A., Cholinesterase inhibiting withanolides from *Withania somnifera, Chem. Pharm. Bull.*, **2004**, *52*, 1358-1361.DOI: 10.1248/cpb.52.1358
- ⁶⁵⁰Lopresti, A. L., Drummond, P. D., Smith, S. J., A Randomized, Double-Blind, Placebo-Controlled, Crossover Study Examining the Hormonal and Vitality Effects of Ashwagandha (*Withania somnifera*) in Aging, Overweight Males, Am. J. Men's Health, **2019**, 13, 1-15. DOI: 10.1177/1557988319835985
- ⁶⁵¹Ahmad, M. K., Mahdi, A. A., Shukla, K. K., Islam, N., Rajender, S., Madhukar, D., Shankhwar, S. N., Ahmad, S., Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males, *Fertil. Steril.*, **2010**, *94*, 989-996. DOI: 10.1016/j.fertnstert.2009.04.046
- ⁶⁵²Mahdi, A. A., Shukla, K. K., Ahmad, M. K., Rajender, S., Shankhwar, S. N., Singh, V., Dalela, D., Withania somnifera Improves Semen Quality in Stress-Related Male Fertility, Evid. Based Complement. Alter. Med., 2011, Article ID 576962, 9 pages. DOI: 10.1093/ecam/nep138
- ⁶⁵³Dongre, S., Langade, D., Bhattacharyya, S., Efficacy and Safety of Ashwagandha (*Withania somnifera*) Root Extract in Improving Sexual Function in Women: A Pilot Study, *BioMed Res.Int.*, **2015**, Article ID 284154, 9 pages. <u>http://dx.doi.org/10.1155/2015/284154</u>
- ⁶⁵⁴Lee, D-H., Ahn, J., Jang, Y-J., Seo, H-D., Ha, T-Y., Kim, M. J., Huh, Y. H., Jung, C. H., Withania somnifera Extract Enhances Energy Expenditure via Improving Mitochondrial Function in Adipose Tissue and Skeletal Muscle, Nutrients, 2020, 12, 431-445. DOI: 10.3390/nu12020431
- ⁶⁵⁵Kaur, S., Chauhan, K., Sachdeva, H., Protection against experimental visceral leishmaniasis by immunostimulation with herbal drugs derived from *Withania somnifera* and *Asparagus racemosus, J. Med. Microbiol.*, **2014**, *63*, 1328– 1338. DOI: 10.1099/jmm.0.072694-0
- ⁶⁵⁶Kumar, P., Singh, R., Nazmi, A., Lakhanpal, D., Kataria, H., Kaur, G., Glioprotective Effects of Ashwagandha Leaf Extract against Lead Induced Toxicity, *BioMed Res. Int.*, Volume 2014, Article ID 182029, 15 pages. <u>http://dx.doi.org/10.1155/2014/182029</u>
- ⁶⁵⁷Sharada, A. C., Solomon, F. E., Devi, P. U., Toxicity of Withania Somnifera Root Extract in Rats and Mice, Int. J. Pharmacog., 1993, 31, 205-212. DOI: 10.3109/13880209309082943
- ⁶⁵⁸Patel, S. B., Rao, N. J., Hingorani, L. L., Safety assessment of Withania somnifera extract standardized for Withaferin A: Acute and sub-acute toxicity study, J. Ayurveda Integr. Med., 2016, 7, 30-37. DOI: 10.1016/j.jaim.2015.08.001
- ⁶⁵⁹Antony, B., Benny, M., Kuruvilla, B. T., Gupta, N. K., Sebastian, A., Jacob, S., Acute and Sub Chronic Toxicity Studies of Purified Withania somnifera Extract in Rats, Int. J. Pharm.

Pharm. Sci., **2018**, *10*, 41-46, <u>http://dx.doi.org/10.22159/ijpps.2018v10i12.29493</u>

- ⁶⁶⁰Birla, H., Keswani, C., Rai, S. N., Singh, S. S., Zahra, W., Dilnashin, H., Rathore, A. S., Singh, S. P., Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice, *Behav. Brain Funct.*, 2019, 15, 9 pages. DOI: 10.1186/s12993-019-0160-4
- ⁶⁶¹Sangwan, R. S., Chaurasiya, N. D., Misra, L. N., Lal, P., Uniyal, G. C., Sharma, R., Sangwan, N. S., Suri, K. A., Qazi, G. N., Tuli, R., Phytochemical variability in commercial herbal products and preparations of *Withania somnifera* (Ashwagandha), *Curr. Sci.*, **2004**, 86, 461-465. <u>https://www.researchgate.net/publication/235733546</u>
- ⁶⁶²Khanna, P. K., Kumar, A., Ahuja, A., Kaul, M. K., Biochemical Composition of Roots of Withania somnifera (L.) Dunal, Asian J. Plant Sci., **2006**, 5, 1061-1063. DOI: 10.3923/ajps.2006.1061.1063
- ⁶⁶³Gajbhiye, N. A., Makasana, J., Kumar, S., Accumulation of Three Important Bioactive Compounds in Different Plant Parts of Withania somnifera and its Determination by the LC-ESI-MS-MS (MRM) Method, J. Chromatogr. Sci., 2015, 53, 1749–1756. DOI: 10.1093/chromsci/bmv088
- ⁶⁶⁴Gulati, S., Madan, V. K., Singh, S., Singh, I., Dusyant, D., Chemical and Phytochemical Composition of Ashwagandha (*Withania somnifera* L.) Roots. *Asian J. Chem.*, **2017**, *29*, 1683-1686. <u>https://doi.org/10.14233/ajchem.2017.20536</u>
- ⁶⁶⁵Khanna, K. L., Schwarting, A. E., Bobbitt, J. M., The occurrence of *iso*Pelletierine in *Withania somnifera*, *J. Pharm. Sci.*, **1962**, *51*, 1194. DOI: 10.1002/jps.2600511218
- ⁶⁶⁶Kasture, S.,, Vinci, S., Ibba, F., Puddu, A., Marongiu, M., Murali, B., Pisanu, A., Lecca, D., Zernig, G., Acquas, E., *Withania somnifera* prevents morphine withdrawal-induced decrease in spine density in nucleus accumbens shell of rats: a confocal laser scanning microscopy study, *Neurotox. Res.*, **2009**, *16*, 343-355. DOI: 10.1007/s12640-009-9069-2
- ⁶⁶⁷Matsuda, H., Murakami, T., Kishi, A., Yoshikawa, M., Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum, *Bioorg., Med. Chem.*, **2001**, *9*, 1499-1507. DOI: 10.1016/s0968-0896(01)00024-4
- ⁶⁶⁸Devkar, S.T., Kandhare, A. D., Sloley, B. D., Jagtap, S. D., Lin, J., Tam, Y. K., Katyare, S. S., Bodhankar, S. L., Hegde, M. V., Evaluation of the bioavailability of major withanolides of *Withania somnifera* using an in vitro absorption model system, J. Adv. Pharm. Technol. Res., 2015, 6, 159-164. DOI: 10.4103/2231-4040.165023.
- ⁶⁶⁹Ganzera, M., Choudhary, M. I., Khan, I. A., Quantitative HPLC analysis of withanolides in *Withania somnifera*, *Fitoterapia*, **2003**, 74, 68-76. DOI: 10.1016/s0367-326x(02)00325-8
- ⁶⁷⁰Shalini, R., Eapen, J. K., Deepa, M. S., Physical and Phytochemical Screening of Market Samples of Ashwagandha [*Withania somnifera (Linn)* Dunal] in Kerala, *Int. J. Adv. Res.*, **2018**, *5*, 2018-2024. DOI: 10.21474/IJAR01/5268
- ⁶⁷¹de Sousa, A., AbdElgawad, H., Asard, H., Pinto, A., Soares, C., Branco-Neves, S., Braga, T., Azenha, M., Selim, S., Al Jaouni, S., Fidalgo, F., Teixeira, J., Metalaxyl Effects on Antioxidant Defenses in Leaves and Roots of *Solanum nigrum* L., *Front. Plant Sci.*, **2017**, *8*, 13 pages. DOI: 10.3389/fpls.2017.01967
- ⁶⁷²Sun, Y., Zhao, Y., Wang, L., Lou, H., Cheng, A., Cloning and expression analysis of squalene synthase, a key enzyme involved in antifungal steroidal glycoalkaloids biosynthesis from *Solanum nigrum*, *Drug Discov. Ther.*, **2012**, *6*, 242-248. DOI: 10.5582/ddt.2012.v6.5.242
- ⁶⁷³Li, R., Sun, G., Tang, Y., Effect of Intercropping of Solanum nigrum L., Tomato and Eggplant on Potassium Content under

Cadmium Stress, *IOP Conf. Ser. Earth Environ. Sci.*, **2019**, 233, 4 pages. DOI: 10.1088/1755-1315/233/4/042024

- ⁶⁷⁴Xu, J., Yin, H., Li, Y., Liu, X., Nitric Oxide Is Associated with Long-Term Zinc Tolerance in *Solanum nigrum*, *Plant Physiol.*, **2010**, *154*, 1319–1334. DOI: 10.1104/pp.110.162982
- ⁶⁷⁵Huo, W., Zou, R., Wang, L., Guo, W., Zhang, D., Fan, H., Effect of different forms of N fertilizers on the hyperaccumulator *Solanum nigrum* L. and maize in intercropping mode under Cd stress, *RSC Adv.*, **2018**, *8*, 40210–40218. DOI: 10.1039/c8ra07151a
- ⁶⁷⁶de Matos, C., Silva, C. T., Cunha, P. T., Gandini, E. M., Silva, D. V., Barbosa, E. A., dos Santos, J. B., Ferreira, E. A., *Nicandra physalodes* growth at different concentrations of N, P and K, *Semin. Cienc. Agrar.*, **2015**, *36*, DOI: 10.5433/1679-0359.2015v36n3p1307
- ⁶⁷⁷Panayotov, N., Popova, A., Investigation of the Options to Extend the Period of Market Supply with Fruits of Cape Gooseberry (*Physalis peruviana* L.), *Acta Hort. Regiotect.*, **2016**, 19, 18-24. DOI: 10.1515/ahr-2016-0018
- ⁶⁷⁸Masinde, P. W., Wesonga, J. M., Ojiewo, C. O., Agong, S. G., Masuda, M., Plant Growth and Leaf N Content of *Solanum villosum* Genotypes in Response to Nitrogen Supply, *Dyn. Soil Dyn. Plant.*, **2009**, *3*, 36-47. <u>https://www.researchgate.net/publication/253341564</u>
- ⁶⁷⁹Baldwin, I. T., Callahan, P. Autotoxicity and chemical defense: nicotine accumulation and carbon gain in solanaceous plants, *Oecologia*, **1993**, *94*, 534–541. DOI: 10.1007/BF00566969
- ⁶⁸⁰Wu, H., Stanton, R., Lemerle, D., Herbicidal control of *Solanum elaeagnifolium* Cav. in Australia, *Crop Prot.*, **2016**, 88, 58-64. <u>http://dx.doi.org/10.1016/j.cropro.2016.06.001</u>
- ⁶⁸¹Harfi, B., Khelifi, L., Khelifi-Slaoui, M., Assaf-Ducrocq, C., Gontier, E., Tropane alkaloids GC/MS analysis and low dose elicitors' effects on hyoscyamine biosynthetic pathway in hairy roots of Algerian *Datura* species, *Sci. Rep.*, **2018**, *8*, 8 pages. DOI:10.1038/s41598-018-36625-4
- ⁶⁸²Karimi, F., Khataee, E., Aluminum Elicits Tropane Alkaloid Production and Antioxidant System Activity in Micropropagated *Datura innoxia* Plantlets, *Acta Physiol. Plant.*, **2012**, *34*, 1035-1041. DOI: 10.1007/s11738-011-0900-z
- ⁶⁸³Brachet, J., Cosson, L., Changes in the Total Alkaloid Content of *Datura innoxia* Mill. Subjected to Salt Stress, *J. Exp. Bot.*, **1986**, 37, 650-656. <u>https://doi.org/10.1093/jxb/37.5.650</u>
- ⁶⁸⁴Sivakumar, T., Panneerselvam, R., Triadimefon Mediated Changes in Antioxidant and Indole Alkaloid Content it Two Species of *Datura*, *Am. J. Plant Physiol.*, **2011**, *6*, 252-260. DOI: 10.3923/ajpp.2011.252.260
- ⁶⁸⁵Castillo, G., Calahorra-Oliart, A., Nunez-Farfan, J., Valverde, P. L., Arroyo, J., Cruz, L. L., Tapia-Lopez, R., Selection on tropane alkaloids in native and non-native populations of *Datura stramonium, Ecol. Evol.*, **2019**, *9*, 10176–10184. DOI: 10.1002/ece3.5520
- ⁶⁸⁶Moreno-Pedraza, A., Gabriel, J., Treutler, H., Winkler, R., Vergara, F., Effects of Water Availability in the Soil on Tropane Alkaloid Production in Cultivated *Datura stramonium*, *Metabolites*, **2019**, *9*, 131-143. DOI: 10.3390/metabo9070131
- ⁶⁸⁷Ali, R. M, Changes in Chemical Composition of Fruits of Salinized Datura stramonium, J. Islam. Acad. Sci., **1991**, 4, 289-292. <u>https://www.journalagent.com/ias/pdfs/IAS 4 4 289 292.pd</u>
- ⁶⁸⁸Hilton, M. G., Rhodes, M. J., Factors Affecting the Growth and Hyoscyamine Production during Batch Culture of Transformed Roots of *Datura stramonium.*, *Planta Med.*, **1993**, *59*, 340-344. DOI: 10.1055/s-2006-959696
- ⁶⁸⁹Khandakar, J., Haraguchi, I., Yamaguchi, K., Kitamura, Y., A small-scale proteomic approach reveals a survival strategy, including a reduction in alkaloid biosynthesis,

in *Hyoscyamus albus* roots subjected to iron deficiency, *Front. Plant Sci.*, **2013**, *4*, 13 pages. DOI: 10.3389/fpls.2013.00331

- ⁶⁹⁰Kuroyanagi, M., Arakawa, T., Mikami, Y., Yoshida, K., Kawahar, N., Hayashi, T., Ishimaru H., Phytoalexins from hairy roots of Hyoscyamus albus treated with methyl jasmonate, J. Nat. Prod., **1998**, 61, 1516-1519. DOI: 10.1021/np980214i
- ⁶⁹¹Besher, S., Al-Ammouri, Y., Murshed, R., Production of tropan alkaloids in the in vitro and callus cultures of *Hyoscyamus aureus* and their genetic stability assessment using ISSR markers, *Physiol. Mol. Biol. Plants*, **2014**, *20*, 343–349. DOI: 10.1007/s12298-014-0242-6
- ⁶⁹²Abdelrazik, E., El-hamahmy, M. A., Eltamany, E. E., Abo-Elsoud, I. H., Ali, E. M., Aboseidah, A. A., Enhancement of Growth and Alkaloids Accumulation in *Hyoscyamus muticus* L. Callus Cultures by High Salt Concentration, *Rec. Pharm. Biomed.* Sci., **2019**, *3*, 26-37. DOI: 10.21608/RPBS.2019.9807.1022
- ⁶⁹³Abdelrazik E., El-hamahmy, M. A., Abo-Elsoud, I., Ali, E. M., Aboseidah, A. A., Effect of UV-C Radiation on Egyptian Henbane (*Hyoscyamus muticus* L.) Callus Growth and Biochemical Components, DOI: 10.21608/hjsc.2019.59845
- ⁶⁹⁴Kizil, S., Toncer, O., Sogut, T., Effect of Different Nitrogen Doses on Some Agricultural Characteristics and Alkaloid Content of *Hyoscyamus reticulatus* L. and *Hyoscyamus niger* L., *Cercetari Agronomice în Moldova*, **2017**, *50*, 83-90. DOI: 10.1515/cerce-2017-0017
- ⁶⁹⁵Asl, K. R., Hosseini, B., Sharafi, A., Palazon, J., Influence of nano-zinc oxide on tropane alkaloid production, *h6h* gene transcription and antioxidant enzyme activity in *Hyoscyamus reticulatus* L. hairy roots, *Eng. Life Sci.*, **2019**, *19*, 73–89. DOI: 10.1002/elsc.201800087
- ⁶⁹⁶Moharrami, F., Hosseini, B. B., Sharafi, A., Farjaminezhad, M., Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of *Hyoscyamus reticulatus* L. elicited by iron oxide nanoparticles, *In Vitro Cell Dev. Biol. Plant*, **2017**, *53*, 104-111. DOI: 10.1007/s11627-017-9802-0
- ⁶⁹⁷Zhan, X., Liao, X., Luo, X., Zhu, Y., Feng, S., Yu, C., Lu, J., Shen, C., Wang, H., Comparative Metabolomic and Proteomic Analyses Reveal the Regulation Mechanism Underlying MeJA-Induced Bioactive Compound Accumulation in Cutleaf Groundcherry (*Physalis angulata* L.) Hairy Roots, J. Agric. Food Chem., **2018**, 66, 6336-6347. DOI: 10.1021/acs.jafc.8b02502
- ⁶⁹⁸de Abreu, C. B., de Souza, M. O., Miranda, F. M., Rodrigues, T. G., Dias, F., Growth and Evaluation of Phenolic Compounds in *Physalis angulata* L. at Two Different Periods in the Bahia Reconcavo, Brazil, *J. Agric. Sci.*, **2017**, *9*, 145-155. DOI: 10.5539/jas.v9n10p145
- ⁶⁹⁹Pedo, T., Carvalho, I. R., Szareski, V.J., Troyjack, C., Pimentel, J. R., Escalera, R. A., da Silva, F. L., Peter, M., Aumonde, T. Z., Oliveira, L., Villela, F. A., Nora, L., Mauch, C. R., Physiological Growth Attributes, Productivity, Chemical Quality of the Fruits of *Physalis peruviana* Under a Foliar Mineral Supplementationm, *J. Agric. Sci.*, **2019**, *11*, 561-568. DOI: 10.5539/jas.v11n1p561
- ⁷⁰⁰Al-Ashaal, H. A., Glycoalkaloids as medicinal agents from callus and regenerated plants of *Solanum nigrum* var. *judiacium*, *Comun. Sci.*, 2019, 10, 325-337. DOI: 10.14295/CS.v10i3.2840
- ⁷⁰¹Sutkovic, J., Ler, D., Gawwad, M. R., In vitro Production of Solasodine Alkaloid in *Solanum nigrum* Under Salinity Stress, J. Phytol., **2011**, *3*, 43-49. <u>https://www.researchgate.net/publication/224282157</u>
- ⁷⁰²Bhat, M. A., Ahmad, S., Aslam, J., Mujib, A., Uzzfar, M., Salinity stress enhances production of solasodine in *Solanum nigrum* L., *Chem. Pharm. Bull.*, **2008**, *56*, 17-21. DOI: 10.1248/cpb.56.17

- ⁷⁰³Ben-Abdallah, S., Zorrig, W., Amyot, L., Renaud, J., Hannoufa, A., Lachaal, M., Karray-Bouraoui, N., Potential production of polyphenols, carotenoids and glycoalkaloids in *Solanum villosum* Mill. under salt stress, *Biologia*, **2019**, *74*, 309–324. DOI: 10.2478/s11756-018-00166-y
- ⁷⁰⁴Sivanandhan, G., Rajesh, M., Arun, M., Jeyaraj, M., Dev, G. K., Manickavasagam, M., Selvaraj, N., Ganapathi A., Optimization of carbon source for hairy root growth and withaferin A and withanone production in *Withania somnifera*, *Nat. Prod. Commun.*, **2012**, *7*, 1271-1272. DOI: 10.1177/1934578x1200701005
- ⁷⁰⁵Praveen, N., Murthy, H. N., Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of *Withania somnifera*, *Indust. Crops Prod.*, **2012**, *35*, 241-243. <u>https://doi.org/10.1016/j.indcrop.2011.07.009</u>
- ⁷⁰⁶Hashimoto, T., Yamada, Y., Hyoscyamine 6β-Hydroxylase, a 2-Oxoglutarate-Dependent Dioxygenase, in Alkaloid-Producing Root Cultures, *Plant Physiol.*, **1986**, *81*, 619-625. DOI: 10.1104/pp.81.2.619
- ⁷⁰⁷Lanoue, A., Boitel-Conti, M., Portais, J. C., Laberche, J. C., Barbotin, J. N., Christen, P., Sangwan-Norreel, B., Kinetic study of littorine rearrangement in *Datura innoxia* hairy roots by ¹³C NMR spectroscopy, *J. Nat. Prod.*, **2002**, *5*, 1131-1135. DOI: 10.1021/np010612c
- ⁷⁰⁸Robins, R. J., Abraham, T. W., Parr, A. J., Eagles, J., Walton, N. J., The Biosynthesis of Tropane Alkaloids in *Datura stramonium:* The Identity of the Intermediates between *N*-Methylpyrrolinium Salt and Tropinone, *J. Am. Chem. Soc.*, **1997**, *119*, 10929-10934. DOI: 10.1021/ja964461p
- ⁷⁰⁹Lee, J-H., Jeong, B-S., Ku, J-M., Jew, S-S., Park, H-G., Total Synthesis of (+)-Hygrine via Asymmetric Phase-Transfer Catalytic Alkylation, *J. Org. Chem.*, **2006**, *71*, 6690-6692. DOI: 10.1021/j00611081
- ⁷¹⁰Ladenburg, A.. Kunstliches Atropin, Berichte der Dtsch. Chem. Gesellschaft, **1879**, *12*, 941-944. <u>https://doi.org/10.1002/cber.187901201241</u>
- ⁷¹¹Dai, C., Snead, D. R., Zhang, P., Jamison, T. F., Continuous-Flow Synthesis and Purification of Atropine with Sequential In-Line Separations of Structurally Similar Impurities, J. Flow Chem., **2015**, 5, 133-138. DOI: 10.1556/1846.2015.00013
- ⁷¹²Nocquet, P-A., Opatz, T., Total Synthesis of (±)-Scopolamine: Challenges of the Tropane, Ring, Eur. J. Org. Chem., 2016, 1156-1164. DOI: 10.1002/ejoc.201501430
- ⁷¹³Mali, P. C., Singh, A. R., Isolation, characterization and evaluation of antimicrobial activity of Withanolide-A of *Withania somnifera, Int. J. Pharmacol. Res.*, **2013**, *3*, 48-52. DOI: 10.7439/ijpr.v3i3.54
- ⁷¹⁴Devkar, S. T., Jagtap, S. D., Katyare, S. S., Hedge, M. V., Estimation of Antioxidant Potential of Individual Components Present in Complex Mixture of Withania somnifera (Ashwagandha) Root Fraction by Thin-Layer Chromatography—2,2-Diphenyl-1-Picrylhdrazyl Method, JPC-J. Planar Chromat., 2014, 27, 157–161. https://doi.org/10.1556/JPC.27.2014.3.2
- ⁷¹⁵Baitharu, I., Jain, V., Deep, S. N., Shroff, S., Sahu, J. K., Naik, P. K., Ilavazhagan, G., Withanolide A Prevents Neurodegeneration by Modulating Hippocampal Glutathione Biosynthesis during Hypoxia, *PLOS ONE*, **2014**, *9*, 17 pages. DOI: 10.1371/journal.pone.0105311
- ⁷¹⁶Dar, N. J., Satti, N. K., Dutt, P., Hamid, A., Ahmad, M., Attenuation of Glutamate-Induced Excitotoxicity by Withanolide-A in Neuron-Like Cells: Role for PI3K/Akt/MAPK Signaling Pathway, *Mol. Neurobiol.*, **2018**, 55, 2725-2739. DOI: 10.1007/s12035-017-0515-5
- ⁷¹⁷Crane, E. A., Heydenreuter, W., Beck, K. R., Strajhar, P., Vomacka, J., Smiesko, M., Mons, E., Barth, L., Neuburger, M., Vedani, A., Odermatt, A., Sieber, S.A., Gademann, K., Profiling withanolide A for therapeutic targets in neurodegenerative diseases, *Bioorg. Med. Chem.*, 2019 Jun 15;27(12):2508-2520. DOI: 10.1016/j.bmc.2019.03.022

- ⁷¹⁸Jana, C. K., Hoecker, J., Woods, T. M., Jessen, H. J., Neuburger, M., Gademann, K., Synthesis of withanolide A, biological evaluation of its neuritogenic properties, and studies on secretase inhibition, *Angew. Chem. Int. Ed. Engl.*, **2011**, *50*, 8407-8411. DOI: 10.1002/anie.201101869
- ⁷¹⁹Liffert, R., Hoecker, J., Jana, C. K., Woods, T. M., Burch, P., Jessen, H. J., Neuburgerb, M., Gademann, K., Withanolide A: synthesis and structural requirements for neurite outgrowth, *Chem. Sci.*, **2013**, *4*, 2851-2857. DOI: 10.1039/c3sc50653c
- ⁷²⁰Hashimoto, T., Kohno, J., Yamada, Y., Epoxidation *in Vivo* of Hyoscyamine to Scopolamine Does Not Involve a Dehydration Step, *Plant Physiol.*, **1987**, *84*, 144-147. DOI: 10.1104/pp.84.1.144
- ⁷²¹Joshi, P., Misra, L., Siddique, A. A., Srivastava, M., Kumar, S., Darokar, M. P., Epoxide group relationship with cytotoxicity in withanolide derivatives from *Withania somnifera*, *Steroids*, **2014**, 79, 19-27. <u>http://dx.doi.org/10.1016/j.steroids.2013.10.008</u>
- ⁷²²Kerchner, A., Frakas, A., Worldwide poisoning potential of *Brugmansia* and *Datura*, *Forensic Toxicol.*, **2020**, *38*, 30-41. <u>https://doi.org/10.1007/s11419-019-00500-2</u>
- ⁷²³Debnath, T., Chakraverty, R., Newer insights into the Psychoactive and Pharmacological Properties of *Datura stramonium* Linn, *Glob. J. Add. Rehab. Med.*, **2017**, *4*, 4 pages. DOI: 10.19080/GJARM.2017.04.555638
- ⁷²⁴Dhanya, C., Rather, S. A., Devipriya, V., Molecular Systematic Study of Two Solanaceous Genera Datura L. and Brugmansia Pres. Based on Its Sequences of NRDNA, *Int. J. Adv. Res.*, **2018**, *6*, 1123-1133. DOI: 10.21474/IJAR01/7916
- ⁷²⁵Elisante, F., Ndakidemi, P. A, Allelopathic effect of *Datura* stramonium on the survival of grass and legume species in the conservation areas, *Am. J. Res. Commun.*, **2014**, *2*, 27-43. <u>http://www.usa-journals.com/wpcontent/uploads/2014/01/Elisante_Vol21.pdf</u>
- ⁷²⁶Qian, D., Zhao, Y., Yang, G., Huang, L., Systematic Review of Chemical Constituents in the Genus *Lycium* (Solanaceae), *Molecules*, **2017**, 22, 911-943. DOI: 10.3390/molecules22060911
- ⁷²⁷Zhang, Y-J., Deng, G-F., Xu, X-R., Wu, S., Li, S., Li, H-B., Chemical Components and Bioactivities of Cape Gooseberry (*Physalis peruviana*), *Int. J. Food Nutr. Saf.*, **2013**, *3*, 15-24. https://www.researchgate.net/publication/285023738
- ⁷²⁸Dom, M., Berghe, W. V., Ostade, X. V., Broad-spectrum antitumor properties of Withaferin A: a proteomic perspective, *RSC Med. Chem.*, **2020**, *11*, 30–50. DOI: 10.1039/c9md00296k
- ⁷²⁹Chan, T. Y., Worldwide Occurrence and Investigations of Contamination of Herbal Medicines by Tropane Alkaloids, *Toxins*, **2017**, *9*, 284-293. DOI: 10.3390/toxins9090284
- ⁷³⁰Albouchi, F., Attia, M., Hanana, M., Hamrouni, L., Ethnobotanical Notes and Phytopharmacologiques on Solanum nigrum Linn. (Family: Solanaceae), Am. J. Phytomed. Clin. Ther., 2018, 6, 9 pages. DOI: 10.21767/2321-2748.100341
- ⁷³¹Gerlach, G. H., *Datura innoxia* A Potential Commercial Source of Scopolamine, *Econ. Bot.*, **1948**, 2, 436-454. DOI: 10.1007/BF02859498
- ⁷³²Raoufa, A. E., El-Wakil, H. E., Abou-Gabal, A. E., Khlifa, H. D., Production of Scopolamine and Hyoscyamine in Calli and Regenerate Cultures of *Datura metel* (L.), *J. App. Sci. Res.*, **2008**, *4*, 1858-1866. <u>https://www.researchgate.net/publication/228774119</u>
- ⁷³³El-Said, A. H., Shebany, Y. M., Hussein, M. A., El-Dawy, E. G., Antimicrobial and L-asparaginase activities of endophytic fungi isolated from *Datura innoxia* and *Hyoscyamus muticus* medicinal plants, *Eur. J. Biol. Res.*, **2016**, 6, 135-144. <u>http://dx.doi.org/10.5281/zenodo.56056</u>
- ⁷³⁴Mazid, M., Khan, T. A., Mohammad, F., Role of secondary metabolites in defense mechanisms of plants, *Biol. Med.*,

Medicinally active components in Solanaceae plant

- ⁷³⁵Jerzykiewicz, J., Alkaloids of Solanaceae (nightshade plants), *Postepy Biochem.*, **2007**, *53*, 280-286. <u>https://www.researchgate.net/publication/5454091</u>
- ⁷³⁶Shonle, I., Bergelson, J., Evolutionary ecology of the tropane alkaloids of *Datura stramonium* L. (*Solanaceae*), *Evolution*, **2000**, *54*, 778-788. DOI: 10.1111/j.0014-3820.2000.tb00079.x
- ⁷³⁷Tapfuma, K. I., Uche-Okereafor, N., Sebola, T. E., Hussan, R., Mekuto, L., Makatini, M. M., Green, E., Mavumengwana, V., Cytotoxic activity of crude extracts from *Datura* stramonium's fungal endophytes against A549 lung carcinoma and UMG87 glioblastoma cell lines and LC-QTOF-MS/MS based metabolite profilin, *BMC Complement*. *Alter. Med.*, **2019**, *19*, 12 pages. <u>https://doi.org/10.1186/s12906-019-2752-9</u>
- ⁷³⁸Linder, S., A Proposal for the Use of Standardized Methods for Chlorophyll Determinations in Ecological and Eco-physiological Investigations, *Physiol. Plant.*, **1974**, *32*, 154-156. DOI: 10.1111/j.1399-3054.1974.tb03743.x
- ⁷³⁹Tait, M. A., Hik, D. S., Is dimethylsulfoxide a reliable solvent for extracting chlorophyll under field conditions?, *Photosynth. Res.*, **2003**, 78, 87–91.DOI: 10.1023/A:1026045624155
- ⁷⁴⁰Goncalves, J. F., Junior, U. M., da Silva, E. A., Evaluation of a portable chlorophyll meter to estimate chlorophyll concentrations in leaves of tropical wood species from Amazonian forest, *Hoehnea*, **2008**, *35*, 185-188. <u>https://doi.org/10.1590/S2236-89062008000200002</u>
- ⁷⁴¹Brito, G. G., Sofiatti, V., Brandao, Z. N., Silva, V. B., Silva, F. M., Silva, D. A., Non-destructive analysis of photosynthetic pigments in cotton plants, *Acta Sci. Agron.*, **2011**, *33*, 671-678. <u>https://doi.org/10.4025/actasciagron.v33i4.10926</u>
- ⁷⁴²Hu, X., Tanaka, A., Tanaka, R., Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples, *Plant Methods*, **2013**, *9*, 13 pages. <u>http://www.plantmethods.com/content/9/1/19</u>
- ⁷⁴³Tanan, T. T., do Nascimento, M. N., Leite, R., Guimaraes, D. S., Spectrophotometric Determinations of Chloroplastidic Pigments in *Physalis angulata* L. Leaves Using Different Methodologies, J. Agric. Sci., 2017, 9, 117-122. DOI: 10.5539/jas.v9n11p117

- ⁷⁴⁴Bibhuti, B., Yadav, A. K., Study the Sensory Attributes and Shelf Life of Developed Digestive Pills from Makoi (Solanum nigrum), J. Food Process Technol., 2016, 7, 5 pages. DOI: 10.4172/2157-7110.1000622
- ⁷⁴⁵Eskandari, M., Assadi, M., Shirzadian, S., Mehregan, I., Ethnobotanical Study and Distribution of the Solanum Section Solanum Species (Solanaceae) in Iran, J. Med. Plants, 2019, 18, 85-98. <u>https://www.researchgate.net/publication/334645320</u>
- ⁷⁴⁶Bibhuti, B., Development and Physico-chemical analysis of digestive pills from *Makoi (Solanum nigrum), IOSR J. Environ. Sci. Toxicol. Food Technol.*, **2016**, *10*, 64-68. DOI: 10.9790/2402-1008016468
- ⁷⁴⁷Zhuang, Y-W., Wu, C-E., Zhou, J-Y., Chen, X., Wu, J., Jiang, S., Peng, Y-Y., Zou, X., Liu, J-Y., Wu, D-P., Gong, T., Qi, M-H., Xue, T., Liu, S-L., Cai, H., Solasodine inhibits human colorectal cancer cells through suppression of the AKT/glycogen synthase kinase-3b/b-catenin pathway, *Cancer Sci.*, 2017, *108*, 2248–2264. DOI: 10.1111/cas.13354
- ⁷⁴⁸Patel, K., Singh, R. B., Patel, D. K., Medicinal significance, pharmacological activities, and analytical aspects of solasodine: A concise report of current scientific literature, J. Acute Dis., **2013**, 92-98. DOI: 10.1016/S2221-6189(13)60106-7
- ⁷⁴⁹Putalun, W., Tanaka, H., Shoyama, Y., Rapid separation of solasodine glycosides by an immunoaffinity column using anti-solamargine monoclonal antibody, *Cytotechnology*, **1999**, *31*, 151-156. DOI: 10.1023/A:1008032524419
- ⁷⁵⁰Khandani, S. K., Mehrabani, M., Sharififar, F., Pardakhty, A., Pournamdari, M., Development of an Efficient Extraction Method for Separating Solasodine, an Steroidal Alkaloid, From an Oily Matrix: A Comparison Between LLE and SPE, *J. Pharmaceut. Res. Int.*, **2019**, *27*, Article: JPRI.48217. DOI: 10.9734/JPRI/2019/v27i230163
- ⁷⁵¹Khandani, S. K., Mehrabani, M., Sharififar, F., Pardakhty, A., Pournamdari, M., Pakravanan, M., Development and Validation of an RP-HPLC Method for Determination of Solasodine, a Steroidal Alkaloid, *J. Young Pharm.*, **2019**, *11*, 21-25. DOI: 10.5530/jyp.2019.11.5
- ⁷⁵²Fuente, F. P., Nocetti, D., Sacristan, C., Ruiz, P., Guerrero, J., Jorquera, G., Uribe, E., Bucarey, J. L., Espinosa, A., Puente, L., *Physalis peruviana* L. Pulp Prevents Liver Inflammation and Insulin Resistance in Skeletal Muscles of Diet-Induced Obese Mice, *Nutrients*, **2020**, *12*, 700-710. DOI: 10.3390/nu12030700

Received: 29.04.2020. Accepted: 04.06.2020.

ECO-FRIENDLY SYNTHESIS OF 1,2,4-TRIAZINE DERIVATIVES

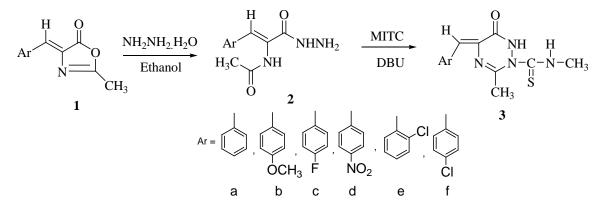
V. Anitha Rani^{[a]*} and Y. Bharathi Kumari^[b]

Keywords: Eco-friendly synthesis; 1,2,4-triazines; 1,8-diazabicyclo[5.4.0]undec-7-ene.

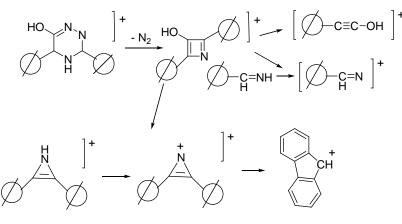
Eco-friendly synthesis of (*Z*)-3-alkyl-5-(benzylidene/substituted benzylidene)-2N-(carbothioamido)-6-oxo-1,2,5,6-tetrahydro-1-NH-1,2,4-triazine derivatives have been developed in 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as solvent without catalyst for 20-30 min at 60-65 °C with good yields.

*Corresponding Authors

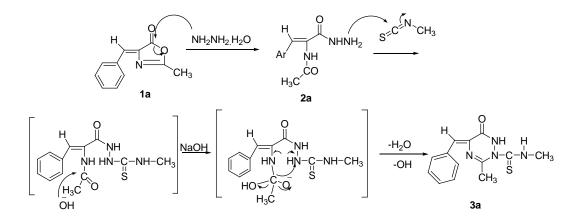
- E-Mail: anitha1810@gmail.com [a] Department of Chemistry, Institute of Aeronautical
- [a] Department of Chemistry, Institute of Aeronauti Engineering, Dundigal, Hyderabad, India
- [b] Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 085, India


INTRODUCTION

1,2,4-Triazines are well known compounds. A large number of 1,2,4-triazine derivatives including 1,2,4-triazin-6-ones were reported in the literature discussing their special aspects in chemistry and medicine.¹⁻⁷ Interest in the biochemical properties of 1,2,4-triazines is high because some 3,5-disubstituted 1,2,4-triazines represent analogues of pyridine nucleobases and a number of antibiotics belong to pyrimido [5,4-e]1,2,4-triazine family. 1,2,4-Triazines are reported as both uncondensed and condensed systems. As reported in the literature, there are a large number of 1,2,4triazines of uncondensed systems having substituent to the carbon atom or nitrogen atom exhibiting profound biological activities. 1,2,4-Triazin-6-ones have exhibited anticancer, antitumor, antibacterial and antifungal, antimicrobial, biological activities of cell lines cytotoxicity, antimalarials, antivirals and herbicides. 1,2,4-Triazine ring system is very significant for its applications as corrosion inhibitors, additives to photographic development baths, UV absorbers for textiles, plastic resins and papers and indicators for volumetric analysis of NH-acids in acetonitriles. The foregoing survey reveals that 1,2,4-triazin-6-ones are characterized by multifarious physiological activities and a scant information regarding synthetic methods is observed. In view of the importance associated with the structural motif, an attempt was made to develop a simple and facile synthesis of substituted 1,2,4-triazin-6-oxo derivatives with high yields, purities and simple processing methods from easily available ecofriendly chemicals. This investigation deals with simple and facile synthesis of (Z)-3-alkyl/aryl-5-(benzylidene/substituted benzylidene)-2-N-(carbothioamido)-6-oxo-1,2,5,6-tetrahyd-ro-1(NH)-1,2,4-triazine derivatives possessing different functional groups attached to triazine ring with a sole view to arrive a new heterocyclic system of high antibacterial activity.


RESULTS AND DISCUSSION

The starting materials, 2-oxazolin-5-one derivatives (1) were synthesized from acetylglycine and different aromatic aldehydes in the presence of acetic anhydride and sodium acetate (Erlenmeyer's synthesis). The acetyl glycine is prepared from glycine and acetyl chloride. The corresponding 2-oxazolin-5-ones (1) were subjected to ring opening reaction with hydrazine hydrate in ethanol at room temperature to produce (Z)-N-[3-hydrazinyl-3-oxo-1phenylprop-1-en-2-yl]acetamide (2). The title compounds, (Z)-3-alkyl/phenyl-5-(benzylidene/substituted benzylidene)-2N-(carbothioamido)-6-oxo-1,2,5,6-tetrahydro-1-NH-1,2,4triazine derivatives (3a-f) have been synthesized in a one pot reaction by cyclocondensation of (Z)-N-[3-hydrazinyl-3oxo-1-phenylprop-1-en-2-yl]acetamides (2a-f) in the presence of methyl isothiocyanate (MITC) in DBU for 20-30 min at 60-65 °C followed by neutralization with CH₃COOH solution in good yields within a short time (Scheme 1).


All isolated 1,2,4-triazin-6-one derivatives (3a-3f) are stable crystalline solids with high melting points whose structure has been established on the basis of spectral and analytical data. The appearance of NH absorptions at 3471 cm⁻¹, absence of stretching absorption peak for NH₂ at 3248 cm⁻¹, appearance of C=O absorption at 1714 cm⁻¹ and C=S absorption at 1270 cm⁻¹ in the IR spectrum of the compounds **3a** confirmed cyclocondensation of **2a** to produce 1,2,4-triazine-6-one derivative 3a. The all 1,2,4triazin-6-oxo derivatives were synthesized in moderate to good yields. The ¹H NMR spectra showed the appearance of signal at δ 2.1 and 2.6 indicate methyl protons of (C-CH₃) and (N-CH₃) groups, two trans olefinic protons were observed at 10.4 along with the signals for aromatic hydrogens at 7.8 and 8.4, signal at 6.8 and 7.4 indicate two -NH group which are D₂O exchangeable. ¹³C NMR confirms the presence C=S group at $\delta = 177$ and C-N linkage at 164 ppm for the title compound **3a**. The fragmentation of all the compounds follows the pattern as given in Scheme 2. It shows that the fragmentation starts with the loss of nitrogen. The IR, NMR and Mass spectral data of the compounds confirm the proposed structure of all the compounds as per the Scheme 2.

Scheme 1. Synthesis of 3a-3f.

Scheme 2. Fragmentation pattern of compounds 3.

Scheme 3. A plausible mechanism for the synthesis of 3a.

Supposed mechanism

Though we have not done any investigation regarding the mechanism of the reaction, a speculative mechanism of the formation of 1,2,4-triazin-6-oxo-derivatives **3a-3f** has been postulated. Initially, nucleophilic addition of hydrazine hydrate to 4-(benzylidene-2-methyloxazolin-5-one (**1a**) produced (*Z*)-N-[3-hydrazinyl-3-oxo-1-phenylprop-1-en-2-yl]acetamide (**2a**). Treatment of (**2a**) with methyl isothiocyanate (MITC) yielded an unstable intermediate (*Z*)-N-[N²–[thiouredo-3-hydrazinyl-3-oxo-1-phenylprop-1-en-2-yl]acetamide, which base hydrolysis produces the title compound (*Z*)-3-alkyl/phenyl-5-(benzylidene/substituted benzylidene)-2N-(carbothioamido)-6-oxo-1,2,5,6-tetrahyd-

ro-1-NH-1,2,4-triazine derivative (**3a**). The hydroxyl ion of the base is nucleophilic and attacks the carbonyl carbon. The electron rich oxygen abstracts the protons from acidic amide groups resulting in elimination of water, followed by cyclisation as depicted in the Scheme 3.

The conversation of 4-(benzylidene-2-methyloxazolin-5ones to the corresponding acetamides **2** is confirmed by spectral data. The IR spectra of **2a** showed the presence of NH-stretching absorptions for NH₂ and NH at 3574 and 3249 cm⁻¹ and absence of stretching absorptions of lactone ring at 3444 cm⁻¹. The ¹H NMR data showed doublet signal for NH₂ at δ 4.0, a singlet at δ 7.0 for NHCO, a triplet for NH-NH₂ at δ 8.4, and a singlet for NH-CO at δ 8.4 ppm which are D_2O exchangeable. The mass spectrum of the compound confirms the molecular weight by appearance of M+ peak at m/z 119.

The cyclocondensation of **2** to **3** is confirmed by IR spectra showing the absence of N-H stretching absorptions of the amino group of hydrazine and presence of N-H stretching of amide group. The ¹H NMR spectra showed the disappearance of signals for NH₂ protons and appearance of D₂O exchangeable signals for NH-CH₃ and NH-N at δ 6.8 and 7.2 ppm, respectively. The ¹³C NMR spectra of the compound **3a** showed signals for the presence of Ar, C=O, C=C, C-N, C=S and O-C at δ 24, 42, 149, 164 and 177 ppm, respectively. Finally, the mass spectrum of the compound **3a** confirms the molecular weight of the compound **3a** confirms the molecular weight of the structure of the title compound. All the 1,2,4-triazin-6-ones were synthesized with good yields and the structure was confirmed by elemental analysis, IR, ¹H NMR, ¹³C NMR and MS data.

Table 1. Synthesis of 2a-2f from 1a and hydrazine hydrate.

No.	Starting material	Product obtained	Time, min	Yield, %*	M.P., ºC
1	1a	2a	60	80	154-156
2	1b	2b	60	80	175-179
3	1c	2c	65	78	208-210
4	1d	2d	60	80	220-222
5	1e	2e	70	75	212-214
6	1f	2 f	60	80	> 220

* Refers to yields of crude products only.

Table 2. Synthesis of 3a-3f from 2a-2f and MITC in DBU.

No.	Starting material	Product obtained	Time, min	Yield %,*	М.Р., ⁰ С
1	2a	3a	20	84	> 220
2	2b	3b	25	84	> 220
3	2c	3c	23	80	> 220
4	2d	3d	24	84	212-214
5	2e	3e	25	79	> 220
6	2f	3f	30	85	191-193

EXPERIMENTAL

Melting points are uncorrected and taken in open capillary tubes in sulphuric acid bath. TLC was run on silica gel-G and visualization was done using UV light. IR spectra were recorded using Perkin – Elmer 1000 instrument in KBr pellets. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ solvent using TMS as an internal standard with Bruker AM-400 spectrometer at 400 and 100 MHz respectively. Mass spectra were recorded on Agilent-LCMS instrument under CI conditions and given by Q+1 values only.

Preparation of 2a-2f

Starting compound (**1a-11**, 10 mM) was added to hydrazine hydrate (15 mM) in EOH and stirred at room temperature for 30 min. The deep yellow colour of the solution changed to light yellow. Solid was separated, washed with H_2O (10 mL), dried and recrystallised from EtOH to afford **2a-2f**.

Preparation of 3a-3f

Equimolar quantities of 2a-2f (10mM) and MITC (10mM) were mixed together in DBU (20 mL). The mixture was heated at 60-65 °C for 20-30 min. The completion of the reaction was checked by TLC. Om completion the reaction mixture was cooled to 20-30 °C and poured into ice-cold water (50 mL). A solid separated out, which was collected, washed with water (10 mL) and dried. The product was recrystallised from ethanol to obtain **3a-3f**.

(Z)-3-alkyl-5-(benzylidene/substituted benzylidene)-2N-(carbothioamido)-6-oxo-1,2,5,6-tetrahydro-1-NH-1,2,4-triazine derivatives (3a-3f)

3a: IR (KBr): 3471 (broad, -NH-N), 3084 (broad, -NH), 1714 (-C=O), 1270 (C=S) cm⁻¹. ¹H NMR (400 MHz, CDCl3/TMS) $\delta = 2.1$ (s, 3H, C-CH₃), $\delta 2.6$ (s, 3H, N-CH₃), $\delta 6.8$ (s, 1H, -NH-CH₃) 7.4-8.4 (m, 6H, Ar-H and s, 2H, =CH-Ar), 10.6 (s, 1H, -NH). ¹³C NMR (CDCl₃) $\delta = 24.66$ (C-CH₃), 42.94 (N-CH₃), 116.79 (Ar-C=C), 120.14-137.69 (Ar), 147.79 (N-C-CH₃), 149.96 (Ar-C=C), 164.01 (C=S), 177. 70 (O=C-N). MS: *m*/*z* 239 (20 %), 260 (10 %), M⁺·1 = 275.

3b: IR (KBr): 3313 (broad, -NH-N), 3249 (broad, -NH) 1656 (-C=O), 1263 (C=S) cm⁻¹. ¹H NMR (400 MHz, CDCl₃/TMS) δ = 2.2 (s, 3H, C-CH₃), δ 2.6 (s, 3H, N-CH₃), δ 3.0 (s, 3H, -CH₃), δ 6.8 (s, 1H, -NH) 7.2-8.3 (m, 5H, Ar-H and s, 2H, =CH-Ar), 10.6 (s, 1H, -NH). ¹³C NMR (CDCl₃) δ = 23.62 (C-CH₃), 43.93 (N-CH₃), 53.93 (-OCH₃), 114.29 (Ar-C=C), 124.13-133.65 (Ar), 146.73 (N-C-CH₃), 149.94 (Ar-C=C), 163.31 (C=S), 176. 30 (O=C-N). MS: *m/z* 273 (10 %), M⁺1 = 305.

3c: IR (KBr): 3445 (broad, -NH), 3051 (broad, -NH), 1724 (-C=O), 1280 (C=S) cm⁻¹. ¹H NMR (400 MHz, CDCl₃/TMS) δ = 2.4 (s, 3H, C-CH₃), δ 2.8 (s, 3H, N-CH₃), δ 6.6 (s, 1H, -NH) 7.4-8.4 (m, 5H, Ar-H and s, 2H, =CH-Ar), 10.4 (s, 1H, -NH). ¹³C NMR (CDCl₃) δ = 23.26 (C-CH₃), 42.24 (N-CH₃), 116.59 (Ar-C=C), 123.15-136. 69 (Ar), 144.49 (N-C-CH₃), 148.96 (Ar-C=C), 163.04 (C=S), 174. 60 (O=C-N). MS: *m*/z 239 (20 %), M⁺·1 = 293.

3d: IR (KBr): 3283 (broad, -NH), 3251 (broad, -NH), 1726 (-C=O), 1257 (C=S) cm⁻¹. ¹H NMR (400 MHz, CDCl₃/TMS) $\delta = 1.8$ (s, 3H, C-CH₃), $\delta 2.3$ (s, 3H, N-CH₃), $\delta 6.6$ (s, 1H, -NH) 7.4-8.4 (m, 5H, Ar-H and s, 2H, =CH-Ar), 10.2 (s, 1H, -NH). ¹³C NMR (CDCl₃) $\delta = 23.63$ (C-CH₃), 41.93 (N-CH₃), 115.39 (Ar-C=C), 121.13-136.62 (Ar), 146.74 (N-C-CH₃), 148.93 (Ar-C=C), 163.04 (C=S), 179.78 (O=C-N). MS: m/z 273 (10%), M⁺.1 = 320

3e: IR (KBr): 3307 (broad, -NH), 3198 (broad, -NH) 1729 (-C=O), 1255 (C=S) cm⁻¹. ¹H NMR (400 MHz, CDCl₃/TMS) $\delta = 1.8$ (s, 3H, C-CH₃), $\delta 2.4$ (s, 3H, N-CH₃), $\delta 6.6$ (s, 1H, -NH) 7.4-8.4 (m, 5H, Ar-H and s, 2H, =CH-Ar), 10.2 (s, 1H, -NH). ¹³C NMR (CDCl₃) $\delta = 23.26$ (C-CH₃), 41.93 (N-CH₃), 113.29 (Ar-C=C), 121.24-135.66 (Ar), 146.76 (N-C-CH₃), 148.94 (Ar-C=C), 163.05 (C=S), 174. 60 (O=C-N). MS: M⁺-1 = 309

3f: IR (KBr): 3300 (broad, -NH), 3280 (broad, -NH), 1710 (-C=O), 1280 (C=S) cm⁻¹. ¹H NMR (400 MHz, CDCl₃/TMS) δ = 2.4 (s, 3H, C-CH₃), δ 2.6 (s, 3H, N-CH₃), δ 6.8 (s, 1H, -NH) 7.4-8.4 (m, 6H, Ar-H and s, 2H, =CH-Ar), 10.6 (s, 1H, -NH). ¹³C NMR (CDCl₃) δ = 23.56 (C-CH₃), 41.54 (N-CH₃), 114.69 (Ar-C=C), 122.24-137.65 (Ar), 146.69 (N-C-CH₃), 148.76 (Ar-C=C), 163.21 (C=S), 176. 40 (O=C-N). MS: M⁺-1 = 309.

CONCLUSION

Eco-friendly synthesis of compounds **3a-3f** has been developed with excellent yields, short time and easy work up process in 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as solvent without catalyst for 20-30 min at 60-65 $^{\circ}$ C.

ACKNOWLEDGEMENT

Authors are very thankful to the authorities of Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad for providing laboratory.

REFERENCES

- ¹Erickson, J. G., "The chemistry of Heterocyclic compounds", Interscience, New York. **1957**, 1, 239.
- ² Howrwitz, J. P., *Heterocyclic compounds*, Wiley, New York, **1961**, *7*, 740.

- ³Repic, O., Maltner, P. G., Shapiro, M. J., Preparation of new 1,2,4-triazines, *J. Heterocycl. Chem.*, **1982**, *19*, 1201. <u>https://doi.org/10.1002/jhet.5570190542</u>
- ⁴Hussaini, A. S., Elsayed, E. H., Radwan, E. M., Synthesis of 2,3,5-trisubstituted-1,2,4-triazine-6-ones as potential antitumor agent, *Der Pharma Chemica*, **2015**, 7, 2014-15. <u>https://www.derpharmachemica.com/pharmachemica/synthesis-of-235trisubstituted124triazine6ones-aspotential-antitumor-agent.pdf</u>
- ⁵Baseer, M. S., Santhosh S. C., Shankariah G. K., Namdev, T. K., Sanjay, A. C., Bhasker, S. D., An efficient synthesis and in vitro antimicrobial activity of 1,2,4-triazin-6-(5H)-one derivatives, *Der Chemica Sinica*, **2010**, 2, 86-91. <u>https://www.imedpub.com/articles/an-efficient-synthesisand-in-vitro-antimicrobial-activity-of-1-2-4triazin65honederivatives.pdf</u>
- ⁶Gucky, T., Frysova, I., Slouka, J., Hajduch, M., Dzubak, P., Cyclocondensation reaction of heterocyclic carbonyl compounds, Part XIII: Synthesis and cytotoxic activity of some 3,7-diaryl-5-(3,4,5-trimethoxyphenyl)pyrazolo[4,3-e]-[1,2,4]triazines, *Eur. J. Med. Chem.*, **2009**, 44, 891-900.

https://doi.org/10.1016/j.ejmech.2008.05.026

⁷Anitha, V. R., Bharathi, Y. K., Green synthesis of 1, 2, 4-triazine-2-substituted benzamide derivatives, *Heterocycl. Lett.*, 2019, 9, 177-184. http://heteroletters.org

> Received: 17.05.2020. Accepted: 08.06.2020

COVID-19: A GLOBAL PANDEMIC

Swapnil R. Sarda,^[a] Sunil U. Tekale,^[b] László Kótai,^[c] Abraham J. Domb^[d] and Rajendra P. Pawar^{[b]*}

Keywords: COVID-19; global pandemic; corona; virus

The novel corona virus-2 (n-CoV-2) identified in the December 2019 which then spread worldwide has become pandemic in the form of Corona virus disease 2019 (COVID-19) and affected the health, economy and the medical system to a significant extent. As on date, around 8.20 million confirmed cases including death of around 443,815 have been reported. The present review deals with the history and origin of the COVID-19, its worldwide pandemic spread, symptoms and preventive measures as an attempt to create awareness of the fatal disease.

*Corresponding Author's E-Mail: rppawar@yahoo.com [a] Department of Chemistry, JES College,

- Jalna, (Maharashtra) India.
- [b] Department of Chemistry, Deogiri College, Aurangabad, (Maharashtra) India.
- [c] Research Centre for Natural Sciences, ELKH, H-1117, Budapest, Hungary.
- [d] School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Israel.

INTRODUCTION

Corona viruses belong to a large family of viruses. Several types of corona viruses are known to cause respiratory infections like Severe Acute Respiratory Syndrome (SARS). Some of them cause the common cold in people; others infect animals, including bats, camels, and cattle. The past few decades have seen endemic outbreaks in the form of respiratory syndrome coronavirus (MERSCoV) and severe acute respiratory syndrome related coronavirus (SARS-CoV)^{1,2} and now another the outbreak comes due to a new strain called the SARS-CoV-2 virus. The virus was firstly detected in Wuhan city of China, in December 2019 and has set off a global pandemic.³

The most recently discovered coronavirus causes coronavirus disease COVID-19 which is affecting people in different ways. Most of the infected people can develop mild to moderate illness and recover without hospitalization. The disease was named as COVID-19 after recommended by the World Health Organization (WHO). Crowded conditions can let viruses an easy spread. Sometimes the virus changes much faster and can start to infect and spread among people. As SARS-CoV-2 has spread both inside and outside China, it has infected people who had no direct contact with animals i.e. the virus is transmitted from human to human contact. It is now spreading worst in the U.S. and around the globe.

As on 16th June 2020, more than 8.20 million confirmed cases resulting in more than 443,815 deaths worldwide have been reported including at least 213 countries. The WHO has declared it a global health emergency at the end of January 2020.

The medical science, public health, economics and infrastructure of whole world have been challenged by the novel corona virus-2 (n-CoV or (COVID-19) pandemic

outbreak. The International Committee on Taxonomy of Viruses renamed the virus SARS-CoV-2.⁴ Coronavirus disease COVID-19 is an ongoing global health emergency.

SARS-CoV-2 is a rapid pandemic due to its highly contagious nature. As the number of cases continues to rise, there is no confirmed medication or vaccine available as on today. Hence the virus poses a threat to the public health. The COVID-19 pandemic is spreading across the globe at an alarming rate. It is more infectious and severe; hence the number of deaths as compared with SARS or MERS is very high.⁵ Only isolation protocols to prevent further transmission can reduce its impact.

HISTORY AND ORIGIN

Corona viruses were firstly discovered in the 1930s when an acute respiratory infection of chickens caused by infectious bronchitis virus (IBV) was observed.⁶ Arthur Schalk and M.C. Hawn described a new respiratory infection of chickens in 1931. In 1940s mouse hepatitis virus (MHV) and transmissible gastroenteritis virus (TGEV) were isolated.⁷ Common cold virus B814 was discovered in the 1960s as Human corona viruses,⁸⁻¹¹ as it caused a common cold.

Later on, researchers found a group of similar human and animal viruses and named them after their crown-like appearance. The name "corona virus" was derived from Latin word "*corona*", meaning "crown" by June Almeida and David Tyrrell who firstly observed and studied human coronaviruses.¹²⁻¹⁵ In the same year research group at the National Institute of Health was able to isolate another member of this group of viruses using organ culture which was named as virus strain C43¹⁶ and observed distinctive club-like spikes such as B814, 229E, and IBV with the electron microscope.^{17,18} A new group of IBV-like viruses came to be known as corona viruses after its distinctive morphological appearance related to the mouse hepatitis virus.¹⁹ A large number of animal corona viruses were identified since 1960s.²⁰

Till 2002; corona virus was treated as simple non-fatal virus. Several cases of SARS caused by corona and their mortally found to be more than 1000 patient as reported in 2003. Four corona viruses namely HKU1, NL63, 229E and

OC43 have been in circulation in humans, and generally cause mild respiratory disease. In 2002-2003 when a β genera new corona virus origin in bats crossed over to humans via the intermediary host of palm civet cats in China. This β -genera new corona virus affected 8422 people mostly in China and Hong Kong as SARS and caused 916 deaths. World health organization (WHO) and centers for disease control and prevention declared as state emergency in 2004. In 2012, several infected patients and deaths were found in Saudi Arabian reports.²¹⁻²⁵ In 2012, due to the Middle East respiratory syndrome coronavirus (MERS-CoV), which was also of bat origin emerged with dromedary camels as the intermediate host; affected 2494 people and caused 858 deaths. A novel SARS coronaviruses in 2003²⁶ resulting in the detection of number of novel corona viruses in humans, animals and wildlife.27-29

Chu DK *et. al* described that animals are the natural reservoirs of the viruses as corona viruses found in bat and avian species.^{30,31} Other human corona viruses have since been identified, including SARS-CoV in 2003, HCoV NL63 in 2004, HCoV HKU1 in 2005, MERS-CoV in 2012, and SARS-CoV-2 in 2019.^{32,33} COVID-19 was first identified and isolated from pneumonia patent in the Wuhan city of China.^{34,35}

Experts say SARS-CoV-2 originated in bats like that the corona viruses behind MERS and SARS started through animals. The epicenter of this ongoing outbreak is in the city of Wuhan in Hubei Province of central China and the Huanan seafood wholesale market was thought to be at least one of the places where SARS-CoV-2 from an unknown animal source might have crossed the species barrier to infect human. In the Wuhan's wet seafood market, a few customers buying fresh meat and fish, including animals were killed on the spot. The first concrete evidence for human-to-human transmission of SARS-CoV-2 was reported by a group of clinicians and scientists from the University of Hong Kong.³⁶

MICROBIOLOGY OF SARS-COV-2

Coronaviruses (family *Coronaviridae*, subfamily *Coronavirinae*) are important pathogens of bird and mammal origin. Corona viruses are positive-sense RNA viruses and are currently classified into four genera:³⁷

- 1) α-coronavirus
- 2) β-coronavirus
- 3) y-coronavirus and
- 4) δ-coronavirus

 α -coronaviruses and β -coronaviruses are found exclusively in mammals, whereas γ -coronaviruses and δ -corona viruses primarily infect the birds.

SARS-CoV-2 is a spherical or pleomorphic enveloped particles containing single-stranded positive-sense. Virus of zoonotic origin is ranging from 60 to 140 nm in diameter associated with a nucleoprotein within a capsid comprised of matrix protein. Spike like projections on its surface afford it a crown like appearance under the electron microscope; hence named as corona-virus. SARS CoV-2 contains four structural proteins, namely envelope (E), spike (S), membrane (M), and nucleocapsid (N). S, M, and E proteins together form the envelope of the virus and are involved in replication of genetic material. N proteins remain associated with the RNA forming a nucleocapsid inside the envelope. Polymers of S proteins remain embedded in the envelope giving it a crown-like appearance.³⁸⁻⁴¹

These viruses are intracellular parasites with lack of their own metabolism and require a host to replicate i.e it is not living. Viruses are nanostructures, typically comprised of proteins, genetic material, and often lipid membrane. Their outer lipid membranes are stable and comprised of fatty acids with hydrophobic interactions between chains.

SPREAD OF COVID-19

In December 2019, adults in Wuhan, capital city of Hubei province local hospitals with sevier pneumonia of unknown cause emerged. On December 31st 2019, China notified the outbreak to the WHO and the virus was identified as a Corona-virus.

However, there is no evidence so far that the origin of SARS-CoV-2 was from the seafood market or anywhere else. Rather, bats are the natural reservoirs of a wide variety of CoVs, including SARS-CoV-like and MERS CoV viruses.⁴²⁻⁴⁴ Environmental samples from the Huanan sea food market were also tested positive, signifying that the virus originated from this place.⁴⁵ The number of cases started increasing exponentially, that human-to-human transmission was occurring and the disease went on spreading.^{46,47}

COVID-19 was analyzed by virus genome sequencing throughout the genome to Bat CoV RaTG13 and showed 96.2 % overall genome sequence identity,⁴⁸ suggesting that bat SARS-CoV-2 might share the same ancestor. Similar residues of receptor were observed in many species by phylogenetic analysis⁴⁹ suggesting the possibility of alternative intermediate hosts, such as turtles, pangolin and snakes.

Large droplets generated during coughing and sneezing by symptomatic patients are transmitted rapidly from person to person. It becomes more dangerous as in the form of transmission through asymptomatic people before onset of symptoms.⁵⁰ The virus can remain viable on surfaces for several days in favorable atmospheric conditions. Infection is acquired either by inhalation of these droplets or touching surfaces contaminated by them or then touching the nose, mouth and eyes. Transmission of SARS-CoV-2 occurs mainly between family members, relatives and friends who comes in contact with patients or incubation carriers.

SYMPTOMS, TRANSMISSION AND PREVENTATION

Close contact between individuals can also result in transmission.⁵¹ This also indicates possible transmission in closed spaces due to elevated aerosol concentrations has a basic multiplying number of SARS-CoV-2 is 2.2. This

suggests that a patient can transmit the infection to two other individuals. Current data suggests that the virus has an incubation period of three to seven days.⁵² COVID-19 virus can survive for up to 72 hours on plastic and stainless steel, less than 4 hours on copper and less than 24 hours on cardboard.

Symptoms of COVID-19 may appear in few days i.e. in 2 days or as long as 14 days. The most common symptoms of COVID-19 are fever or chills, dry cough, shortness of breath or difficulty in breathing, loss of taste or smell, sore throat and tiredness. Other symptoms those are less common and may affect some patients include nasal congestion, headache, conjunctivitis, diarrhea, nausea or vomiting, rashes on skin or discoloration of fingers or toes. People associated with difficulty in breathing/shortness of breath, chest pain/pressure, or loss of speech or movement should seek medical attention immediately and self-isolation and monitoring of their symptoms.

Two kinds of tests are available for COVID-19:

A viral test for current infection: It includes analysis of swabs of the inside of the nose to check the possible infection with SARS-CoV-2, or not that causes COVID-19.

An antibody test for previous infection: It includes blood check by looking for antibodies, which indicate that, is there was a past infection with the virus. For current infection, antibody test was not be used because it can take 1-3 weeks after infection to make antibodies.

The disease spreads primarily from person to person through small droplets from the nose or mouth, which are expelled when a person with COVID-19 coughs, sneezes, or speaks. These droplets are relatively heavy, do not travel far and quickly sink to the ground. People can catch COVID-19 if they breathe in these droplets from a person infected with the virus. This is why it is important to stay at least 1 meter away from others. These droplets can land on objects and surfaces around the person such as tables, doorknobs and handrails. People can become infected by touching these objects or surfaces, followed by touching their eyes, nose or mouth. Thus it is important to wash your hands regularly with soap and water or clean with alcohol-based hand rub. When we wash our hands with soap these hydrophobic interactions are disrupted and the lipid membrane is dissolved, destroying or deactivating the virus. It is not possible to use soap as an internal treatment because it also destroy our own cells. Following precautions have been suggested for protection from COVID-19.....

Clean your hands regularly and thoroughly with soap and water for at least 30 seconds. Use a hand sanitizer that contains at least 70 % ethyl or isopropyl alcohol which kills viruses $(\log_{10} \text{ is } \sim 4.0 \text{ for various corona virus strains})^{60,61}$ Various household or medical disinfectant/cleaning agents including povidone iodide, dimethyldidecylammonium salts, and polyhexanide and their combinations or oxidative/lipid-dissolving agents like hydrogen peroxide, sodium hypochlorite or household washing up agents containing alkyldimethylamine N-oxides and other surfactants were found to effective against enveloped viruses, but the resistivity of various types of corona viruses are different and the contact time needs for reaching completeness of the

disinfection process varies in a wide range, the details can be found in the refs. 60,61

Practicing hand and respiratory hygiene is important at all times. Maintain at least a two meter (2 m) distance between yourself and others, so as to prevent from small liquid droplets from nose or mouth which may contain virus. Avoid touching your eyes, nose, and mouth with unwashed hands because contaminated hands can transfer the virus to your eyes, nose or mouth.

Cover your mouth and nose with a cloth face cover, wear a mask if possible. Cover your mouth and nose with a tissue paper when you cough or sneeze.

Avoid going to crowded places. Stay home and self-isolate.

Clean and disinfect frequently touched surfaces daily.

Avoid public transportation.

Take your temperature if symptoms develop. Be in touch with your doctors.

STATISTICS OF COVID-19

The **COVID-19** a worldwide pandemic of corona virus disease 2019 caused by the SARS-CoV-2 virus. The Epidemic Diseases Act, 1897 invoked in many countries declared it an epidemic due to significant outbreak of COVID-19. Educational institutions and many commercial establishments have been shut down worldwide. As on 16th Jun 2020, more than **8,207,780** confirmed cases including more than **443,815** deaths have been reported worldwide, affecting at least 213 countries (Figure 1 and 2). The WHO has declared this a global health emergency at the end of January 2020.

India currently has the fourth largest number of confirmed cases in Asia with the number of cases 354,161 on 16th June 2020 including more than 11,921 deaths. India observed a 24-hour voluntary public curfew on 22 March 2020 at the instance of the Prime Minister Narendra Modi. Further, the government ordered a nationwide lockdown for 21 days, extended the ongoing nationwide lockdown till 3 May. 1 May, lockdown across the country was further extended till 30 May and afterward till 30 June 2020 with some conditions. Oxford COVID-19 Government Response Tracker (OxCGRT), in its report based on data from 73 countries, reports that the Indian Government has responded more stringently than other countries in tackling the pandemic. The death rate is highest in US and that of India is 2.80% is quit less than other countries.

VACCINE AND TREATMENT

Currently, no vaccine is available to prevent COVID-19. Antibiotics only work on bacterial infections and do not work against viruses. Use of antibiotics only prevents or treats secondary bacterial infections in severely ill COVID-19 patients. Current treatment strategies are aimed at symptomatic care and oxygen therapy. Prophylactic vaccination is required for the future prevention of CoV-related epidemic or pandemic.^{53,54}

Intense global R&D activity has been forced to develop a vaccine against the disease after the genetic sequence of SARS- CoV-2. COVID-19 pandemic is driving evaluation of next generation vaccine. The humanitarian and economic impact of the COVID-19 accelerates the development of vaccine. The first COVID-19 vaccine entered human clinical testing on 16th March 2020 and multiple platforms are under development. Vaccine development is a lengthy and expensive process. Attrition is high, and it typically takes multiple candidates and many years to produce a licensed vaccine. Coronavirus vaccine developed by Oxford University began human safety trials and at the same time an Indian company Serum Institute of India has started to work on making the vaccine locally so as to be ready in case the trial succeeds. This is the sixth coronavirus vaccine to enter the first phase of clinical trials. In this vaccine a gene may be inserted for an important protein of the virus which can lead to build immunity in patients.

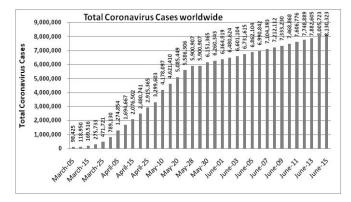


Figure 1. Total coronavirus cases in worldwide

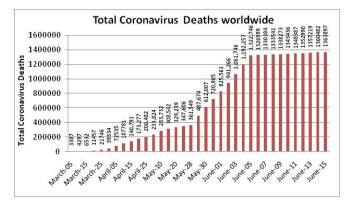


Figure-2. Total coronavirus death in worldwide

Chen from the Beijing Institute of Biotechnology describes that virus which infects human cells delivers genetic material those codes for the SARS-CoV-2 spike protein into the cells. These cells then produce the spike protein and travel to the lymph nodes where they create antibodies by immune system. Antibodies recognize the spike protein and fight off the coronavirus. Vaccine produces virus-specific antibodies and T cells within 14 days.⁵⁵

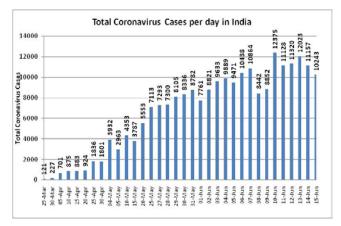


Figure 3. Total coronavirus cases in India /day

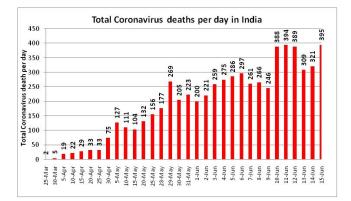


Figure 4. Total coronavirus death in India/day

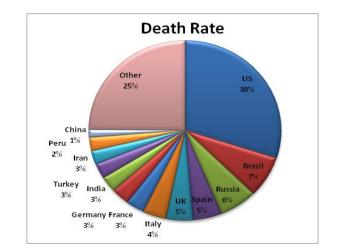


Figure 5. Death rate due to COVID-19

Vaccine of Moderna has already entered clinical trials in the US with mRNA platform. A similar technology is being used for vaccination of other infectious diseases. Promising immune response to the coronavirus in animals, clinical trials for its anti-COVID-19 vaccine by US-based vaccine maker Inovio is also under progress. US drug giant Pfizer has made a funding to vaccine maker BioNTech for developing its mRNA vaccine, expected to go on human trials.

Drug maker J&J, and USA's Biomedical Advanced Research and Development Authority (BARDA) are also started to develop the vaccine, will work on the same platform and technology which was used for developing the vaccine for Ebola. The Department of Biotechnology, Council of Scientific and Industrial Research and ICMR are working on developing a vaccine for COVID-19. The vaccine development is being supported by three Indian industries. Research on therapeutic and drug development has started. Rising Pharma, the US partner of Hyderabad-based Laurus Labs, in collaborative agreement with the Division of Infectious Disease and International Medicine at the University of Minnesota on a clinical trial exploring hydroxychloroquine as a preventive treatment. France is expecting preliminary results in two weeks from a clinical test of hydroxychloroquine and three other drugs remdesivir, lopinavir and ritonavir in combination.

A broad-spectrum antiviral, similar to broadspectrum antibiotics, would rapidly treat newly emerging viral outbreaks [56]. There are two main approaches for treatment of viruses to antivirals, intracellular and extracellular. Intracellular antivirals are drugs which designed to inhibit the intracellular replication of viruses. Remdesivir is a promising candidate for treating SARS-CoV-2, which was originally developed for Ebola⁵⁷ and for HIV^{58,59} in ritonavir and lopinavir combination.

CONCLUSION

In summary, COVID-19 has turned a fatal disease worldwide. The number of active cases and deaths due to the disease are continuously increasing day by day across the entire world. To face the pandemic, the world has utilized a range of measures and although each country has their own approach, included periods of self-isolation or quarantine and lockdown for control the spread of virus. Many crossovers with chemistry and materials are ready to be exploited problem of viruses, but no perfect drug or vaccine exists as on today. Taking own precaution seems to be a better solution in the present scenario.

REFERENCES

- ¹Tavakoli, A., Vahdat, K., Keshavarz, M., Novel coronavirus disease 2019 (COVID-19): An emerging infectious disease in the 21st century, *ISMJ.*, **2020**, 22(6), 432-450. <u>DOI:</u> <u>10.29252/ismj.22.6.432</u>
- ²Al-Tawfiq, J. A., Zumla, A. Memish, Z. A., Travel implications of emerging coronaviruses: SARS and MERS-CoV, *Travel Med.* & Infect. Dis., **2014**, 12(5), 422-428. DOI: <u>10.1016/j.tmaid.2014.06.007.</u>
- ³Wu, J. T., Leung, K., Leung, G. M., Nowcasting and forecasting the potential domestic and international spread of the 2019nCoV outbreak originating in Wuhan, China: A modelling study, *The Lancet*, **2020**, 395(10225), 689-697. DOI: https://doi.org/10.1016/S0140-6736(20)30260-9
- ⁴Wang, C., Liu, Z., Chen, Z., Huang, X., Xu, M., He, T., Zhang, Z., The establishment of reference sequence for SARS-CoV-2 and variation analysis, *J. Med. Virology*, **2020**, *92(6)*, 667-674. DOI: <u>https://doi.org/10.1002/jmv.25762</u>
- ⁵Wu, J. T., Leung, K., Bushman, M., Kishore, N., Niehus, R., de Salazar, P. M., Cowling, B. J., Lipsitch, M., Leung, G. M., Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China, *Nature Med.*, **2020**, 26(4), 506-510. DOI: <u>https://doi.org/10.1038/s41591-020-0822-7</u>

- ⁶Estola, T. "Coronaviruses, a New Group of Animal RNA Viruses". *Avian Diseases.*, **1970**, *14(2)*, 330-336. DOI: <u>10.2307/1588476</u>.
- ⁷McIntosh, K., "Coronaviruses: A Comparative Review". *Curr. Topics in Microbiol. Immun.*, **1974**, *63*, 85-129. DOI: <u>10.1007/978-3-642-65775-7_3.</u>
- ⁸Kahn, J. S., McIntosh, K., History and recent advances in coronavirus discovery, *Pediat. Infect. Dis. J.*, **2005**, 24(11), S223-227. DOI: <u>10.1097/01.inf.0000188166.17324.60</u>
- ⁹Pyrc, K., Berkhout, B., Van Der Hoek, L. Identification of new human coronaviruses, *Expert Rev. Anti-infect. Ther.*, 2007, 5(2), 245-253. DOI: <u>https://doi.org/10.1586/14787210.5.2.245</u>
- ¹⁰Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C., Zhou, J., Liu, W., Bi, Y. and Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses, *Trends Microbiol.*, **2016**, *24(6)*, 490-502. DOI: https://doi.org/10.1016/j.tim.2016.03.003
- ¹¹Tyrrell, D. A. Hunting common cold viruses by some new methods, J. Infect. Diseases, **1970**, 121(5), 561-571. DOI: <u>https://www.jstor.org/stable/30107880</u>
- ¹²Mahase, E., Covid-19: First coronavirus was described in The BMJ in 1965, *BMJ*, **2020**, 369: m1547. DOI: <u>10.1136/bmj.m1547</u>.
- ¹³Kendall, E. J., Bynoe, M. L., Tyrrell, D. A., "Virus isolations from common colds occurring in a residential school", *Brit. Med. J.* **1962**, *2* (5297), 82-86. DOI: 10.1136/bmj.2.5297.82.
- ¹⁴Richmond, C., "David Tyrrell". BMJ: Brit. Med. J. 2005, 330 (7505), 1451-1452. DOI:<u>10.1136/bmj.330.7505.1451.</u>
- ¹⁵Monto, A. S., "Coronaviruses". In Evans AS (ed.).Viral Infections of Humans. Viral Infections of Humans: Epidemiology and Control. Springer US. **1984**, 151-165. DOI:<u>10.1007/978-1-4684-4727-9 7.</u>
- ¹⁶McIntosh, K., Becker, W. B., Chanock, R. M. (December)."Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease". Proc. Nat. Acad. Sci. US **1967**, 58 (6), 2268-2273. DOI:<u>10.1073/pnas.58.6.2268</u>.
- ¹⁷McIntosh, K., Dees, J. H., Becker, W. B., Kapikian, A. Z., Chanock, R. M., Recovery tracheal organ cultures of novel viruses from patients with respiratory disease, *Proc. Nat. Acad. Sci. USA* **1967**, *57 (4)*, 933-940. DOI: <u>10.1073/pnas.57.4.933.</u>
- ¹⁸Albzeirat, M. K., Al-Tarawneh, M. S., Khalid, N., Zulkepli, N. N., Islam, D. M., COVID-19 Story the unknown killer and future studies, *Int. J. Multidis. Sci. Adv. Tech.*, **2020**, *1*(1), 1-8.
- ¹⁹Almeida, J. D., Berry, D. M., Cunningham, C. H., Hamre, D., Hofstad, M. S., Mallucci, L., McIntosh, K., Tyrrell, D. A., "Virology: Coronaviruses", *Nature*, **1968**, *220* (5168), 650. DOI:<u>10.1038/220650b0</u>.
- ²⁰Kumar, D., Malviya, R., Sharma, P. K., Corona Virus: A Review of COVID-19, *EJMO*, **2020**, *4*(1), 8-25, DOI: <u>10.14744/ejmo.2020</u>.
- ²¹Centers for Disease Control and Prevention (CDC). Update: Outbreak of severe acute respiratory syndrome-worldwide, MMWR Morb Mortal Wkly Rep. **2003**, *52(12)*, 241-246.
- ²²Agrawal, A. S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Wang, L., Peng, B. H., Jiang, S., Dimitrov, D. S., Tseng, C. T., Passive transfer of a germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection, *Sci. Rep.*, **2016**, *6*(1), 1-8. <u>https://doi.org/10.1038/srep31629</u>
- ²³World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. http://www.who.int/csr/sars/country/table2004_04_21/en/ind ex.html. Accessed 14 feb 2020.

- ²⁴Peiris, J. S. M., Lai, S. T., Poon, L. L. M., Guan, Y., Yam, L. Y. C., Lim, W., Nicholls, J., Yee, W. K. S., Yan, W. W., Cheung, M. T., Cheng, V. C. C., Chan, K. H., Tsang, D. N. C., Yung, R. W. H., Ng, T. K., Yuen, K. Y. Coronavirus as a possible cause of severe acute respiratory syndrome, *Lancet*, **2003**, *361*, 1319-1325. DOI: <u>10.1016/s0140-6736(03)13077-2</u>.
- ²⁵Balkhy, H. H., Alenazi T. H., Alshamrani, M. M., Baffoe-Bonnie, H., Arabi, Y., Hijazi R., Al-Abdely, H. M., El-Saed, A., Al Johani, S., Assiri, A. M., Bin, Saeed, A., Description of a hospital outbreak of Middle East respiratory syndrome in a large tertiary care hospital in Saudi Arabia, *Infect. Contr. & Hospit. Epidem.*, **2016**, *37(10)*, 1147-55. DOI: <u>https://doi.org/10.1017/ice.2016.132</u>
- ²⁶Yang, Y., Peng, F., Wang, R., Guan, K., Jiang, T., Xu, G., Sun, J., Chang, C., The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China, *J. Autoimm.*, **2020**, 102434. DOI: <u>https://doi.org/10.1016/j.jaut.2020.102434</u>
- ²⁷Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., Thiel, V., Ziebuhr, J., Poon, L. L., Guan, Y., Rozanov, M., Spaan, W. J., Gorbalenya, A. E., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage, *J. Mol. Biol.*, **2003**, *331*, 991-1004. DOI: <u>10.1016/s0022-2836(03)00865-9.</u>
- ²⁸Poon, L. L., Chu, D. K., Chan, K. H., Wong, O. K., Ellis, T. M., Leung, Y. H., Lau, S. K., Woo, P. C., Suen, K. Y., Yuen, K. Y., Guan, Y., Peiris, J. S., Identification of a novel coronavirus in bats, *J. Virol.*, **2005**, *79*, 2001-2009. DOI: <u>10.1128/JVI.79.4.2001-2009.2005</u>.
- ²⁹Wevers, B. A., van der Hoek, L., Recently discovered human coronaviruses, *Clin. Lab Med.*, **2009**, *29*, 715-724. DOI: <u>10.1016/j.cll.2009.07.007</u>.
- ³⁰Chu, D. K., Leung, C. Y., Gilbert, M., Joyner, P. H., Ng, E. M., Tse, T. M., Guan, Y., Peiris, J. S., Poon, L. L., Avian coronavirus in wild aquatic birds, *J. Virol.*, **2011**, *85*, 12815-12820. DOI: <u>10.1128/JVI.05838-11.</u>
- ³¹Woo, P. C., Lau, S. K., Huang, Y., Yuen, K. Y., Coronavirus diversity, phylogeny and interspecies jumping, *Exp. Biol. Med.*, (Maywood) **2009**, *234*, 1117-1127. DOI: <u>10.3181/0903-MR-94.</u>
- ³²Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C., Zhou, J., Liu, W., Bi, Y., Gao, G. F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses, *Trends Microbiol.*, **2016**, 24(6), 490-502. DOI:<u>10.1016/j.tim.2016.03.003.</u>
- ³³Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan, W. A novel coronavirus from patients with pneumonia in China, *New Engl. J. Med.*, **2019**, *382(8)*, 727-733. DOI: 10.1056/NEJMoa2001017.
- ³⁴Ni, L., Zhou, L., Zhou, M., Zhao, J., Wang, D. W., Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19 in Wuhan, *Front. Med.*, **2020**, 1-5. DOI: <u>https://doi.org/10.1007/s11684-020-0757-x</u>
- ³⁵Wu, Z., McGoogan, J. M., Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese center for disease control and prevention, *JAMA*, **2020**, *323*(*13*), 1239-1242. DOI:<u>10.1001/jama.2020.2648</u>
- ³⁶Chan, J. F. W., Yuan, S., Kok, K. H., To, K. K. W., Chu, H., Yang, J., Xing,, F., Liu, J., Yip, C. C. Y., Poon, R. W. S., Tsoi, H. W., Lo, S. K. F., Chan, K. H., Poon, V. K. M., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C. C., Chen, H., Hui, C. K. M., Yuen, K. Y., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster, *Lancet*, **2020**, 395, 10223, 514-523. DOI: <u>https://doi.org/10.1016/S0140-6736(20)30154-9</u>

- ³⁷Wertheim, J. O., Chu, D. K. W., Peiris, J. S. M., Pond, S. L. K., Poon, L. L. M., *J. Virol.*, **2013**, *87(12)*, 7039-7045. DOI: <u>10.1128/JVI.03273-12</u>
- ³⁸Zheng, J., Yamada, Y., Fung, T. S., Huang, M., Chia, R., Liu, D. X., Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture, *Virology*, **2018**, *513*, 65-74. DOI: https://doi.org/10.1016/j.virol.2017.10.003
- ³⁹Goel, S., Hawi, S., Goel, G., Thakur, V. K., Pearce, O., Hoskins, C., Hussain, T., Agrawal, A., Upadhyaya, H. M., Cross, G., Barber, A. H., Resilient and agile engineering solutions to address societal challenges such as coronavirus pandemic, *Mat. Tod. Chem.*, **2020**, 100300. DOI: <u>https://doi.org/10.1016/j.mtchem.2020.100300</u>
- ⁴⁰Mousavizadeh, L., Ghasemi, S., Genotype and phenotype of COVID-19: Their roles in pathogenesis, *J. Microbio. Immun. Infect.*, **2020**, *Article Online* DOI: <u>doi.org/10.1016/j.jmii.03.022</u>.
- ⁴¹Zhou, X., Cong, Y., Veenendaal, T., Klumperman, J., Shi, D., Mari, M., Reggiori, F., Ultrastructural characterization of membrane rearrangements induced by porcine epidemic diarrhea virus infection, *Viruses*, **2017**, *9*(*9*), 251. DOI: <u>https://doi.org/10.3390/v9090251</u>
- ⁴²Hampton, T., Bats may be SARS reservoir, *JAMA*, **2005**, *294(18)*, 2291. DOI: <u>10.1001/jama.294.18.2291</u>
- ⁴³Banerjee, A., Kulcsar, K., Misra, V., Frieman, M., Mossman, K. Bats and coronaviruses, *Viruses*, **2019**, *11(1)*, E41. DOI: <u>https://doi.org/10.3390/v11010041</u>.
- ⁴⁴Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri, G., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T., Zhang, S., Wang, L-F. Bats are natural reservoirs of SARS-like coronaviruses, *Science*, **2005**, *310*(5748), 676-679. DOI: <u>10.1126/science.1118391</u>
- ⁴⁵Singhal T., A review of coronavirus disease-2019 (COVID-19). *Ind. J. Pediatr.*, **2020**, 87, 281-286. DOI: <u>https://doi.org/10.1007/s12098-020-03263-6</u>
- ⁴⁶Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q. Wang, J., Cao, B., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, *Lancet*, **2020**, *395*, 497-506. DOI: <u>https://doi.org/10.1016/ S0140-6736(20)30183-5</u>
- ⁴⁷F. Wu, S. Zhao, B. Yu, Y-M. Chen, W. Wang, Z-G. Song, Y. Hu, Z-W. Tao, J-H. Tian, Yu-Y. Pei, M-L. Yuan, Y-L. Zhang, F-H. Dai, Y. Liu, Q-M. Wang, J-J. Zheng, L. Xu, E. C. Holmes, Y-Z. Zhang A new coronavirus associated with human respiratory disease in China, *Nature*, **2020**, *579*, 265-269. DOI: <u>https://doi.org/10.1038/s41586-020-2008-3.</u>
- ⁴⁸Paraskevis, D., Kostaki, E. G., Magiorkinis, G., Panayiotakopoulos, G., Sourvinos, G., Tsiodras,, S., Fullgenome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event, *Infect. Genet. Evol.*, **2020**, 79, 104212. DOI: <u>10.1016/j.meegid.2020.104212.</u>
- ⁴⁹Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y., Yan, Y., The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-An update on the status, *Military Med. Res.*, **2020**, 7(1), 1-0. DOI: <u>https://doi.org/10.1186/s40779-020-00240-0</u>
- ⁵⁰Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seilmaier, M., München-Schwabing, K., Drosten, C., Vollmar, P., Zwirglmaier, K., Zange, S., Wölfel, R., Hoelscher, M. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, *New Engl. J. Med.*, **2020**, *382*, 970-971. DOI: doi.org/10.1056/NEJMc2001468.

- ⁵¹Ghinai, I., McPherson, T. D., Hunter, J. C., Kirking, H. L., Christiansen, D., Joshi, K., Rubin, R., Morales-Estrada, S., Black, S. R., Pacilli, M., Fricchione, M. J., Chugh, R. K., Walblay, K. A., Ahmed, N. S., Stoecker, W. C., Hasan, N. F., Burdsall, D. P., Reese, H. E., Wallace, M., Wang, C., Moeller, D., Korpics, J., Novosad, S. A., Benowitz, I., Jacobs, M. W., Dasari, V. S., Patel, M. T., Kauerauf, J., Charles, E. M., Ezike, N. O., Chu, V., Midgley, C. M., Rolfes, M. A., Gerber, S. I., Lu, X., Lindstrom, S., Verani, J. R., Layden, J. E., First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA, *Lancet* **2020**, DOI: 10.1016/S0140-6736(20)30607-3.
- ⁵²Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Tu, W., Chen, C., Jin, L., Yang, R., Wang, Q., Zhou, S., Wang, R., Liu, H., Luo, Y., Liu, Y., Shao, G., Li, H., Tao, Z., Yang, Y., Deng, Z., Liu, B., Ma, Z., Zhang, Y., Shi, G., Lam, T. T. Y., Wu, J. T., Gao, G. F., Cowling, B. J., Yang, B., Leung, G. M., Feng, Early transmission dynamics in Wuhan, China, of novel Z., coronavirus-infected pneumonia, *N. Engl. J. Med.*, **2020**, *382*, 1199-1207 DOI: <u>10</u>. <u>1056/NEJMoa2001316</u>.
- ⁵³Rabaan, A. A., Middle East respiratory syndrome coronavirus: Five years later, *Expert Rev. Resp. Med.*, **2017**, *11*(*11*), 901-912. DOI: <u>https://doi.org/10.1080/17476348.2017.1367288</u>
- ⁵⁴Graham R. L., Donaldson E. F., Baric R. S., A decade after SARS: Strategies for controlling emerging coronaviruses, *Nat. Rev. Microbio.*, **2013**, *11(12)*, 836-848. DOI: <u>https://doi.org/10.1038/nrmicro3143</u>
- ⁵⁵Wahid, R., Cannon, M. J., Chow, M., Virus-specific CD⁴⁺ and CD⁸⁺ cytotoxic T-cell responses and long-term T-cell memory in individuals vaccinated against polio. *J. Virol.*, **2005**, *79(10)*, 5988-5995. DOI: <u>10.1128/JVI.79.10.5988-5995.2005</u>
- ⁵⁶Jones, S. T., How materials can beat a virus, *J. Mater. Sci.*, **2020**, *55*, 9148-9151, <u>doi.org/10.1007/s10853-020-04678-4</u>

- ⁵⁷Warren T. K., Jordan R., Lo M. K, Ray A. S., Mackman R. L., Soloveva V., Siegel D., Perron M., Bannister R., Hui H. C., Larson N., Strickley R., Wells J., Stuthman K. S., Van Tongeren S. A., Garza N. L., Donnelly G., Shurtleff A. C., Retterer C. J., Gharaibeh D., Zamani R., Kenny T., Eaton B. P., Grimes E., Welch L. S., Gomba L., Wilhelmsen C. L., Nichols D. K., Nuss J. E., Nagle E. R., Kugelman J. R., Palacios G., Doerffler E., Neville S., Carra E., Clarke M. O., Zhang L., Lew W., Ross B., Wang Q., Chun K., Wolfe L., Babusis D., Park Y., Stray K. M., Trancheva I., Feng J. Y., Barauskas O., Xu Y., Wong P., Braun M. R., Flint M., McMullan L. K., Chen S. S., Fearns R., Swaminathan S., Mayers D. L., Spiropoulou C. F., Lee W. A., Nichol S. T., Cihlar T., Bavari S., Therapeutic efficacy of the small molecule gs-5734 against ebola virus in rhesus monkeys, 2016, 531(7594), 381-385. Nature. https://doi.org/10.1038/nature17180
- ⁵⁸Kaletra, **2020**, https://www.ema.europa.eu/en/medicines/hu man/EPAR/kaletra.
- ⁵⁹Seddon, A. M. Materials science in the time of coronavirus. J Mater Sci. 2020, <u>https://doi.org/10.1007/s10853-020-04694-4</u>
- ⁶⁰Wolff, M. H., Sattar, S. A., Adegbunri, O., Tetro, J., Environmental survival and microbicide inactivation of coronaviruses, Coronaviruses with Special Emphasis on First Insights Concerning SARS ed. by A. Schmidt, M.H. Wolff and O. Weber, 2005. p.201-212.
- ⁶¹Kampf, G., Todt, D., Pfaender, S., Steinmann, E., Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents, *J. Hosp. Infect.*, **2020**, *104*, 246-251. <u>https://doi.org/10.1016/j.jhin.2020.01.022</u>

Received: 07.06.2020 Accepted: 17.06.2020.

ABRAHAM SOLVATION PARAMETER MODEL: PREDICTION OF ENTHALPIES OF VAPORIZATION AND SUBLIMATION OF MONO-METHYL BRANCHED ALKANES USING MEASURED GAS CHROMATOGRAPHIC DATA

Grace Liu^[a], Shrika Eddula^[a], Carina Jiang^[a], Jennifer Huang^[a], Priya Tirumala^[a], Angelina Xu^[a], William E. Acree Jr^{[a]*} and Michael H. Abraham^[b]

Keywords: Chromatographic retention indices; Abraham model; solute descriptors; enthalpy of vaporization; enthalpy of sublimation.

Abraham model L solute descriptors have been determined for 174 additional mono-methyl branched alkanes based on published linear-programmed gas chromatographic retention indices. Standard molar enthalpies of vaporization and sublimation at 298 K are calculated for the 174 mono-methylated alkanes using the reported solute descriptors and our recently published Abraham model correlations. Calculated vaporization and sublimation enthalpies derived from the Abraham model compare very favourably with values based on a popular atom-group additivity model. Unlike the additivity model the Abraham model gives different predicted values for each mono-methyl alkane having a given C_nH_{2n+2} molecular formula.

* Corresponding Authors

Fax: (940) 565-3543 E-Mail: acree@unt.edu

- [a] Department of Chemistry, University of North Texas, Denton, Texas 76203, USA
- [b] Department of Chemistry, University College of London, 20 Gordon Street, London WC1H OAJ, UK

INTRODUCTION

/ __

Gas-liquid chromatographic measurements¹⁻¹⁰ have been used in the indirect determination of both standard molar enthalpies of vaporization, $\Delta H_{vap,298K}$, and standard molar enthalpies of sublimation, $\Delta H_{sub,298K}$, of organic compounds at 298 K. For example, Hamilton¹ determined the $\Delta H_{vap,298K}$ of eleven herbicide esters based on experimental gas chromatographic retention volumes, Vg, measured on a nonpolar SE-30 stationary phase. The method assumed that the ratio of the enthalpy of vaporization of each herbicide ester to that of the reference compound (which in this case was dibutyl phthalate) was independent of temperature. The $\Delta H_{\rm vap,298K}$ of each individual ester herbicide was calculated from the slope of the graph of $ln(V_{g,ester}/V_{g,reference})$ versus the natural logarithm of the vapor pressure of the reference compound at the column temperature T, $ln P_{reference,T}$, in accordance to Eqn. (1).

$$ln\left(\frac{V_{g,ester}}{V_{g,reference}}\right) = \left[1 - \frac{\Delta H_{vap,ester,298K}}{\Delta H_{vap,reference,298K}}\right] ln P_{reference,T} + C (1)$$

Peacock and Fuchs²⁻⁴ developed a method for determining $\Delta H_{\text{vap},298\text{K}}$ based on solution calorimetric measurements of liquid organic compounds being dissolved in the stationary phase solvent. The enthalpy of vaporization was calculated as the difference in the measured enthalpy of solution of the

organic liquid, $\Delta H_{\text{soln},298\text{K}}$, minus the chromatographicallymeasured enthalpy of solution of the gaseous compound in the stationary phase liquid. The later value was determined from the variation in the compound's retention volumes with temperature, and then corrected back to 298 K using liquid-phase and gas-phase heat capacities.

Chickos and coworkers⁵ proposed a method for determination of $\Delta H_{\text{vap},298K}$ based on linear plots of the chromatographically-measured ΔH_{soln} values of gaseous reference compounds in the liquid stationary phase versus the compounds' known $\Delta H_{vap,298K}$ values. Enthalpies of vaporization of additional compounds can then be calculated from the linear mathematical relationship established by the reference compounds. The authors demonstrated the applicability of their method using 102 hydrocarbon and mono-functional hydrocarbon derivatives. Enthalpies of vaporization based on the authors' method differed from published literature values by a standard deviation of 1.27 kJ mol⁻¹. The method was later extended to the determination of $\Delta H_{sub,298K}$ by combining $\Delta H_{vap,298K}$ values measured by correlation gas chromatography with calorimetric enthalpy of fusion, $\Delta H_{\text{fus},298\text{K}}$, adjusted to 298 K.⁶ Numerical values of $\Delta H_{\text{vap},298K}$ and $\Delta H_{\text{sub},298K}$ determined in this fashion depend on the reference compounds used in establishing the ΔH_{soln} versus $\Delta H_{vap,298K}$ mathematical correlation.

Our method of obtaining $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ values is more of a computational method that uses gas chromatographic retention data to calculate Abraham model solute descriptors. Once calculated, the numerical values of the solute descriptors are then used in conjugation with our published Abraham model correlations^{11,12} to calculate the desired $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ values of organic, organometallic and inorganic compounds. The Abraham solvation parameter model is among the most widely used linear free energy relationship in the prediction of solute properties having chemical and biological significance. To date predictive mathematical correlations have been reported for describing solute transfer into more than 130 different organic nonelectrolyte mono-solvents¹³⁻¹⁹ and into more than 100 different ionic liquid solvents.²⁰⁻²⁹ Mathematical correlations have also been developed for predicting enthalpies of solvation of organic vapors and inorganic gases into water and 35 common organic solvents³⁰⁻⁴⁰ blood-to-body tissues/fluids partition coefficients,⁴¹⁻⁴⁵ lethal median concentrations of organic compounds towards fish and other aquatic organisms,⁴⁶⁻⁴⁹ nasal pungency,⁵⁰⁻⁵³ eye irritation thresholds and Draize eye scores,⁵³⁻⁵⁵ and many other solute properties.⁵⁶⁻⁶¹ More recently the Abraham model has been extended to predicting enthalpies of vaporization¹¹ and sublimation¹² and the vapor pressure of organic and organometallic compounds.⁶²

In the present communication we illustrate the application of the Abraham solvation parameter model in predicting $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ values. First, we calculate the Abraham model solute descriptors of mono-methyl branched alkanes from published gas chromatographic retention indices of Krkosova and co-workers.⁶³ Once calculated, the solute descriptors will be substituted into our previously published Abraham model correlations.^{11,12}

$$\Delta H_{\text{vap},298\text{K}} \text{ (kJ mol^{-1})} = 6.100 - 7.363 \ \textbf{\textit{E}} + 9.733 \ \textbf{\textit{S}} \\ + 4.025 \ \textbf{\textit{A}} + 2.123 \ \textbf{\textit{B}} + 9.537 \ \textbf{\textit{L}} - 1.180 \ \textbf{\textit{S}}^{\textbf{-S}} \\ + 77.871 \ \textbf{\textit{A}}^{\textbf{-B}} - 5.781 \ \textbf{\textit{I}}_{\text{amine}} - 14.783 \ \textbf{\textit{I}}_{\text{non-}\textbf{\textit{a}},\boldsymbol{\omega}\text{-diol}} \\ - 17.873 \ \textbf{\textit{I}}_{\boldsymbol{\alpha},\boldsymbol{\omega}\text{-diol}} \tag{2}$$

$$(N = 703, SD = 2.09, R^2 = 0.986, F = 4925.6)$$
 and

$$\Delta H_{\rm sub,298K} \text{ (kJ mol^{-1})} = 13.93 - 16.90 \ \textbf{\textit{E}} + 9.66 \ \textbf{\textit{S}} + 10.02 \ \textbf{\textit{A}} \\ + 1.82 \ \textbf{\textit{B}} + 13.57 \ \textbf{\textit{L}} - 0.30 \ \textbf{\textit{S}} \cdot \textbf{\textit{S}} + 35.43 \ \textbf{\textit{A}} \cdot \textbf{\textit{B}} \\ - 0.05 \ \textbf{\textit{L}} \cdot \textbf{\textit{L}} - 9.09 \ \textbf{\textit{I}}_{\text{OH,adj}} + 17.26 \ \textbf{\textit{I}}_{\text{OH,non}} + 7.37 \ \textbf{\textit{I}}_{\text{NH}}$$
(3)

$$(N = 864, SD = 9.94, R^2 = 0.867, F = 503.2)$$

Thus enabling the estimation of $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ values for those compounds for which solute descriptors are known. Solute descriptors are identified in Eqns. 2 and 3 by the capitalized alphabetical characters, and are defined as follows: the solute excess molar refractivity expressed in units of $(cm^3 mol^{-1})$ / 10(E); the solute dipolarity/polarizability (S); the overall or summation hydrogenbond acidity and basicity (A and B, respectively); and the logarithm of the gas-to-hexadecane partition coefficient at 298 K (L). Both Abraham model correlations use indicator variables (Iamine, INH, Inon-aw-diol, Iaw-diol, IOH,adj, IOH,non) to improve the predictions or organic compounds having amino- and more than one hydroxy-functional group. Mono-methylalkanes do not contain either of these functional groups, so no further discussion of indicator variables is needed. The two mathematical correlations were developed based on $\Delta H_{\text{vap},298K}$ and $\Delta H_{\text{sub},298K}$ values for N =703 and N = 864 compounds, respectively. As indicated by the standard deviation (SD), squared correlations coefficient (R^2) , and Fisher F-statistic (F), both Abraham model correlations provide reasonably accurate mathematical correlations of the $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ data for wide range of organic compounds.

Several earlier publications have illustrated the calculation of Abraham model solute descriptors from either liquidliquid partition coefficients,⁶⁴ or high-performance liquid chromatographic retention data,⁶⁵ or in the case of crystalline nonelectrolyte compounds from saturation solubilities.⁶⁶⁻⁷⁰ The latter papers primarily focused on using the calculated solute descriptors to select organic solvents for recrystallization and/or biphasic partitioning systems for liquid extraction. The intended audience of the solubility studies were chemical engineers and industrial working in the chemical manufacturing sector. Recrystallizations and liquid extractions are commonly used purification methods in chemical syntheses. A more recent publication⁷¹ reported Abraham solute descriptors of terpene esters determined from gas-liquid chromatographic retention data of solutes eluted on several stationary phase liquids. Here the application was to predict the human odor thresholds of the terpene esters. Solute descriptors of terpene hydrocarbons⁷² had been reported previously. There was very little information in the afore-mentioned studies that would attract the attention of chemical thermodynamic experts or computation chemists, which is the intended audience of the current communication. The calculated solute descriptors of mono-methyl branched alkanes will be used to predict thermodynamic properties, namely $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ values. These thermodynamic quantities are required in the calculation of gas-phase standard molar enthalpies of formation from measured enthalpies of combustion, and in describing how the vapour pressure of a compound varies with temperature. Such information is also needed by individuals working in the chemical manufacturing sector.

CALCULATION OF ABRHAM MODEL SOLUTE DESCRIPTORS

Determination of solute descriptors generally involves constructing a series of Abraham model correlations that involve solute transfer between two condensed phases (Eqn. 4) or solute transfer from the gas phase into a condensed phase (Eqn. 5).

Solute property = $c_p + e_p \cdot \boldsymbol{E} + s_p \cdot \boldsymbol{S} + a_p \cdot \boldsymbol{A} + b_p \cdot \boldsymbol{B}$

$$+ v_{\rm p} \cdot \boldsymbol{V}$$
 (4)

Solute property = $c_k + e_k \cdot E + s_k \cdot S + a_k \cdot A + b_k \cdot B$

$$+ l_k \cdot L$$
 (5)

Solute properties used in these computations have included the logarithms of partition coefficients, logarithms of molar solubility ratios, logarithms of chromatographic retention factors, and chromatographic retention indices. Two of the solute descriptors, E and V (McGowan volume), can be reasonably estimated from the solute's molecular structure. For solutes that lack an acidic hydrogen capable of hydrogen-bond formation, the A solute descriptor can be set equal to zero. This leaves either four solute descriptors (S, A, B and L) or three solute descriptors (S, B and L) to be determined from the Abraham model correlations from the measured solute properties. The numerical values of c_p , e_p , s_p , a_p , b_p , v_p , c_k , e_k , s_k , a_k , b_k , and l_k in Eqns. 4 and 5 are known as the solute properties are measured in systems having known values of solvent/process coefficients. The set of Abraham model equations are then solved simultaneously to yield numerical descriptor values for the given solute molecule.

In the case of mono-methyl branched alkane solutes the computation is greatly simplified as E = 0, S = 0, A = 0 and B = 0. Mono-methyl branched alkane solutes possess no excess molar refraction (E = 0) or polarity/polarizability (S = 0), and are not capable of hydrogen-bond formation (A = 0 and B = 0) with surrounding solvent molecules. Only the L solute descriptor remains to be calculated. We calculate the L solute descriptor of the mono-methyl branched alkanes by first establishing a linear relationship between the measured temperature-programmed linear retention indices, RI, and the L solute descriptor based on the values for the n-alkanes and 22 of the 196 compounds studied by Krkosova and coworkers⁶³ for which we have a known L solute descriptor.

 $\boldsymbol{L} = 0.505(0.000) (RI/100) - 0.381(0.007)$ (6)

 $(N = 49, SD = 0.022, R^2 = 1.000, F = 1323009)$

Standard errors in the equation coefficients are given in parenthesis immediately following the respective coefficient. Numerical values for the 49 compounds used in constructing Eqn. (6) are tabulated in Table 1. The derived mathematical relationship then allows us to calculate the L-solute descriptors of the remaining 174 mono-methyl branched alkanes. These calculations are summarized in the last column of Table 1. Examination of the numerical entries reveals that eqn. (6) provides reasonably accurate back-calculation of the known L descriptor values as one might expect from the correlation's small standard deviation, SD = 0.022, and near unity value for the squared correlation coefficient, $R^2 = 1.000$.

 Table 1. Retention Indices, *RI*, and Abraham Model *L* Solute

 Descriptors for n-Alkanes and Mono-methyl Branched Alkanes.

Compound	RI	L value (database)	<i>L</i> value Eqn. 6
Butane	400.00	1.615	1.643
2-Methylpropane	354.77	1.409	1.414
Pentane	500.00	2.162	2.149
2-Methylbutane	466.23	2.013	1.978
Hexane	600.00	2.668	2.655
2-Methylpentane	561.31	2.503	2.459
3-Methylpentane	578.05	2.581	2.544
Heptane	700.00	3.173	3.161
2-Methylhexane	662.48	3.001	2.971
3-Methylhexane	672.19	3.044	3.020
Octane	800.00	3.677	3.667
2-Methylheptane	764.32	3.480	3.486
4-Methylheptane	765.88	3.483	3.494
3-Methylheptane	772.17	3.510	3.526
Nonane	900.00	4.182	4.173
4-Methyloctane	864.06	3.961	3.991
2-Methyloctane	865.00	3.966	3.996
3-Methyloctane	871.89	3.998	4.031
Decane	1000.00	4.686	4.679

			1 1
5-Methylnonane	961.09	4.432	4.482
4-Methylnonane	962.83	4.441	4.491
2-Methylnonane	965.39	4.453	4.504
3-Methylnonane	972.06	4.486	4.538
Undecane	1100.00	5.191	5.185
5-Methyldecane	1058.94	4.963	4.977
4-Methyldecane	1062.04	4.963	4.993
2-Methyldecane	1065.62	4.981	5.011
3-Methyldecane	1072.06	5.037	5.044
Dodecane	1200.00	5.696	5.691
6-Methylundecane	1156.16		5.469
5-Methylundecane	1157.36		5.475
4-Methylundecane	1161.21		5.495
2-Methylundecane	1165.48		5.516
3-Methylundecane	1172.15		5.550
Tridecane	1300.00	6.200	6.197
6-Methyldodecane	1254.15		5.965
5-Methyldodecane	1256.18		5.975
4-Methyldodecane	1260.75		5.998
2-Methyldodecane	1265.36		6.022
3-Methyldodecane	1272.12		6.056
Tetradecane	1400.00	6.705	6.703
7-Methyltridecane	1351.94		6.460
6-Methyltridecane	1352.60		6.463
5-Methyltridecane	1355.43		6.477
4-Methyltridecane	1360.35		6.502
2-Methyltridecane	1365.35		6.528
3-Methyltridecane	1372.33		6.563
Pentadecane	1500.00	7.209	7.209
7-Methyltetradecane	1450.13		6.957
6-Methyltetradecane	1451.63		6.964
5-Methyltetradecane	1454.71		6.980
4-Methyltetradecane	1460.18		7.008
2-Methyltetradecane	1465.37		7.034
3-Methyltetradecane	1472.51		7.070
Hexadecane	1600.00	7.714	7.715
8-Methylpentadecane	1548.19		7.453
7-Methylpentadecane	1548.85		7.456
6-Methylpentadecane	1550.66		7.465
5-Methylpentadecane	1554.24		7.483
4-Methylpentadecane	1559.97		7.512
2-Methylpentadecane	1565.24		7.539
3-Methylpentadecane	1572.67	0.010	7.577
Heptadecane	1700.00	8.218	8.221
8-Methylhexadecane	1646.96		7.953
7-Methylhexadecane	1647.63		7.956
6-Methylhexadecane	1650.07		7.968
5-Methylhexadecane	1653.97		7.988
4-Methylhexadecane 2-Methylhexadecane	1659.91 1665.35		8.018 8.046
3-Methylhexadecane	1665.55	8.073	8.046 8.084
Octadecane	1872.99	8.073 8.722	8.084 8.727
9-Methylheptadecane	1745.40	0.722	8.451
8-Methylheptadecane	1745.55		8.451 8.451
7-Methylheptadecane	1745.55		8.451
6-Methylheptadecane	1740.73		8.473
5-Methylheptadecane	1749.71		8.492
4-Methylheptadecane	1759.94		8.524
j mep adoouno			0.021

Vaporization enthalpy predicition

Section E-Rese	earch paper
----------------	-------------

1 - 171							1 1
2-Methylheptadecane	1765.29		8.551	7-Methyltricosane	2344.25		11.481
3-Methylheptadecane	1773.21	8.573	8.591	6-Methyltricosane	2347.92		11.499
Nonadecane	1900.00	9.226	9.233	5-Methyltricosane	2352.88		11.525
9-Methyloctadecane	1844.03		8.950	4-Methyltricosane	2360.07		11.561
8-Methyloctadecane	1844.56		8.952	2-Methyltricosane	2365.04		11.586
7-Methyloctadecane	1846.51		8.962	3-Methyltricosane	2374.70		11.635
6-Methyloctadecane	1849.34		8.977	Pentacosane	2500.00	12.264	12.269
5-Methyloctadecane	1853.61		8.998	12-Methyltetracosane	2437.35		11.952
4-Methyloctadecane	1859.97		9.030	11-Methyltetracosane	2437.61		11.953
2-Methyloctadecane	1865.28		9.057	10-Methyltetracosane	2438.25		11.957
3-Methyloctadecane	1873.44		9.099	9-Methyltetracosane	2439.74		11.964
Eicosane	2000.00	9.731	9.739	8-Methyltetracosane	2441.52		11.973
10-Methylnonadecane	1942.61		9.449	7-Methyltetracosane	2444.20		11.987
9-Methylnonadecane	1943.01		9.451	6-Methyltetracosane	2447.95		12.006
8-Methylnonadecane	1943.74		9.454	5-Methyltetracosane	2452.97		12.031
7-Methylnonadecane	1945.79		9.465	4-Methyltetracosane	2460.14		12.067
6-Methylnonadecane	1948.99		9.481	2-Methyltetracosane	2465.07		12.092
5-Methylnonadecane	1953.45		9.503	3-Methyltetracosane	2474.86		12.142
4-Methylnonadecane	1959.94		9.536	Hexacosane	2600.00	12.770	12.775
2-Methylnonadecane	1965.23		9.563	13-Methylpentacosane	2536.47		12.454
3-Methylnonadecane	1973.84		9.607	12-Methylpentacosane	2536.54		12.454
Heneicosane	2100.00	10.236	10.245	11-Methylpentacosane	2536.98		12.456
10-Methyleicosane	2041.65		9.950	10-Methylpentacosane	2537.74		12.460
9-Methyleicosane	2042.17		9.952	9-Methylpentacosane	2539.36		12.468
8-Methyleicosane	2043.28		9.958	8-Methylpentacosane	2541.32		12.478
7-Methyleicosane	2045.45		9.969	7-Methylpentacosane	2543.98		12.492
6-Methyleicosane	2048.79		9.986	6-Methylpentacosane	2547.85		12.511
5-Methyleicosane	2053.39		10.009	5-Methylpentacosane	2553.15		12.538
4-Methyleicosane	2060.16		10.043	4-Methylpentacosane	2560.60		12.576
2-Methyleicosane 3-Methyleicosane	2065.34 2074.15		10.070 10.114	2-Methylpentacosane 3-Methylpentacosane	2565.29 2575.45		12.599 12.651
Docosane	2200.00	10.740	10.114	Heptacosane	2373.43	13.276	13.281
11-Methylheneicosane	2140.37	10.740	10.731	13-Methylhexacosane	2635.44	15.270	12.954
10-Methylheneicosane	2140.37		10.449	12-Methylhexacosane	2635.87		12.954
9-Methylheneicosane	2140.40		10.450	11-Methylhexacosane	2636.31		12.959
8-Methylheneicosane	2142.57		10.460	10-Methylhexacosane	2637.35		12.964
7-Methylheneicosane	2144.97		10.473	9-Methylhexacosane	2639.09		12.973
6-Methylheneicosane	2148.36		10.490	8-Methylhexacosane	2641.09		12.983
5-Methylheneicosane	2153.24		10.514	7-Methylhexacosane	2643.84		12.997
4-Methylheneicosane	2160.05		10.549	6-Methylhexacosane	2647.91		13.017
2-Methylheneicosane	2165.23		10.575	5-Methylhexacosane	2653.06		13.043
3-Methylheneicosane	2174.30		10.621	4-Methylhexacosane	2660.71		13.082
Tricosane	2300.00	11.252	11.257	2-Methylhexacosane	2665.30		13.105
11-Methyldocosane	2239.26		10.950	3-Methylhexacosane	2675.72		13.158
10-Methyldocosane	2239.65		10.952	Octacosane	2800.00	13.780	13.787
9-Methyldocosane	2240.71		10.957	14-Methylheptacosane	2734.93		13.458
8-Methyldocosane	2242.27		10.965	13-Methylheptacosane	2735.00		13.458
7-Methyldocosane	2244.66		10.977	12-Methylheptacosane	2735.45		13.460
6-Methyldocosane	2248.15		10.995	11-Methylheptacosane	2736.16		13.464
5-Methyldocosane	2253.04		11.019	10-Methylheptacosane	2737.21		13.469
4-Methyldocosane	2260.03		11.055	9-Methylheptacosane	2739.14		13.479
2-Methyldocosane	2265.06		11.080	8-Methylheptacosane	2741.07		13.489
3-Methyldocosane	2274.34		11.127	7-Methylheptacosane	2743.87		13.503
Tetracosane	2400.00	11.758	11.763	6-Methylheptacosane	2747.82		13.523
12-Methyltricosane	2338.03		11.449	5-Methylheptacosane	2753.22		13.550
11-Methyltricosane	2338.15		11.450	4-Methylheptacosane	2760.86		13.589
2	2550.15						
10-Methyltricosane	2338.69		11.453	2-Methylheptacosane	2765.26		13.611
			11.453 11.459	2-Methylheptacosane 3-Methylheptacosane	2765.26 2776.09		13.611 13.666

14-Methyloctacosane	2834.42		13.961
13-Methyloctacosane	2834.57		13.962
12-Methyloctacosane	2835.14		13.965
11-Methyloctacosane	2835.88		13.969
10-Methyloctacosane	2837.14		13.975
9-Methyloctacosane	2839.07		13.985
8-Methyloctacosane	2841.19		13.995
7-Methyloctacosane	2843.96		14.009
6-Methyloctacosane	2848.04		14.030
5-Methyloctacosane	2853.40		14.057
4-Methyloctacosane	2861.18		14.097
2-Methyloctacosane	2865.70		14.119
3-Methyloctacosane	2876.38		14.173
Triacontane	3000.00	14.794	14.799
15-Methylnonacosane	2933.77		14.464
14-Methylnonacosane	2933.82		14.464
13-Methylnonacosane	2934.26		14.466
12-Methylnonacosane	2934.85		14.469
11-Methylnonacosane	2935.54		14.473
10-Methylnonacosane	2937.00		14.480
9-Methylnonacosane	2938.90		14.490
8-Methylnonacosane	2941.11		14.501
7-Methylnonacosane	2943.93		14.515
6-Methylnonacosane	2948.14		14.537
5-Methylnonacosane	2953.43		14.563
4-Methylnonacosane	2961.56		14.604
2-Methylnonacosane	2965.72		14.626
3-Methylnonacosane	2976.43		14.680

PREDICTION OF STANDARD MOLAR ENTHALPIES OF VAPORIZATION AND SUBLIMATION

The chromatographic retention measurements performed by Krkosova and coworkers⁶³ allowed us to have a complete set of solute descriptors for an additional 180 saturated hydrocarbons. Previously we had only the five solute descriptors (*E*, *S*, *A*, *B*, and *V*) needed for Eqn. (4). Published studies have shown, however, that Eqn. (5) of the Abraham model provides the better set of predicted values for several thermodynamic properties such as enthalpies of vaporization¹¹ and enthalpies of solvation of organic vapours and inorganic gases dissolved both in water and in organic solvents.³⁰⁻⁴⁰ Having a complete set of solute descriptors will provide better applicability for these important thermodynamic quantities.

We illustrate the application of the Abraham model by calculating the enthalpies of vaporization (Eqn. 7) and enthalpies of solvation (Eqn. 8) of the 174 mono-methyl branched alkanes for which we have just determined the L descriptor. For the convenience of the reader we have simplified the predictive expressions to contain only the non-zero terms.

 $\Delta H_{\rm vap,298K} \,(\rm kJ \,\,mol^{-1}) = 6.100 + 9.537 \,\,L \tag{7}$

$$\Delta H_{\rm sub,298K} \,(\rm kJ \, mol^{-1}) = 13.93 + 13.57 \, L - 0.05 \, L^*L \quad (8)$$

Enthalpy of sublimation predictions given in Table 2, start with the C₂₀-compounds as most of the smaller compounds is liquid at 298 K. Predicted values of $\Delta H_{vap,298K}$ are given in Table 3 for all compounds as vaporization enthalpies of compounds that are crystalline at 298 K can be easily determined using the method of correlation gas chromatography.⁵

Table 2. Comparison of the Enthalpies of Sublimation, $\Delta H_{sub,298K}$ (kJ mol⁻¹), Predicted by the Abraham Model Eqn. (6) and the Group-Additivity Method of Naef and Acree (Eqn. 11).

Compound	∆ <i>H</i> _{sub,298K} Eqn. 8	∆ <i>H</i> _{sub,298K} Eqn. 11
10-Methylnonadecane	137.68	140.76
9-Methylnonadecane	137.71	140.76
8-Methylnonadecane	137.76	140.76
7-Methylnonadecane	137.89	140.76
6-Methylnonadecane	138.09	140.76
5-Methylnonadecane	138.38	140.76
4-Methylnonadecane	138.79	140.76
2-Methylnonadecane	139.13	140.76
3-Methylnonadecane	139.68	140.76
10-Methyleicosane	144.00	147.11
9-Methyleicosane	144.03	147.11
8-Methyleicosane	144.10	147.11
7-Methyleicosane	144.24	147.11
6-Methyleicosane	144.45	147.11
5-Methyleicosane	144.75	147.11
4-Methyleicosane	145.18	147.11
2-Methyleicosane	145.50	147.11
3-Methyleicosane	146.06	147.11
11-Methylheneicosane	150.27	153.46
10-Methylheneicosane	150.27	153.46
9-Methylheneicosane	150.32	153.46
8-Methylheneicosane	150.41	153.46
7-Methylheneicosane	150.56	153.46
6-Methylheneicosane	150.77	153.46
5-Methylheneicosane	151.08	153.46
4-Methylheneicosane	151.51	153.46
2-Methylheneicosane	151.84	153.46
3-Methylheneicosane	152.42	153.46
11-Methyldocosane	156.52	159.81
10-Methyldocosane	156.55	159.81
9-Methyldocosane	156.61	159.81
8-Methyldocosane	156.71	159.81
7-Methyldocosane	156.86	159.81
6-Methyldocosane	157.08	159.81
5-Methyldocosane	157.39	159.81
4-Methyldocosane	157.83	159.81
2-Methyldocosane	158.15	159.81
3-Methyldocosane	158.73	159.81
12-Methyltricosane	162.74	166.16
11-Methyltricosane	162.75	166.16
10-Methyltricosane	162.79	166.16
9-Methyltricosane	162.87	166.16

Vaporization enthalpy predicition

8-Methyltricosane	162.97	166.16
7-Methyltricosane	163.14	166.16
6-Methyltricosane	163.37	166.16
5-Methyltricosane	163.68	166.16
4-Methyltricosane	164.13	166.16
2-Methyltricosane	164.44	166.16
3-Methyltricosane	165.05	166.16
12-Methyltetracosane	168.98	172.51
11-Methyltetracosane	168.99	172.51
10-Methyltetracosane	169.03	172.51
9-Methyltetracosane	169.13	172.51
8-Methyltetracosane	169.24	172.51
7-Methyltetracosane	169.40	172.51
6-Methyltetracosane	169.64	172.51
5-Methyltetracosane	169.95	172.51
4-Methyltetracosane	170.40	172.51
2-Methyltetracosane	170.71	172.51
3-Methyltetracosane	171.32	172.51
13-Methylpentacosane	175.17	178.86
12-Methylpentacosane	175.17	178.86
11-Methylpentacosane	175.20	178.86
10-Methylpentacosane	175.25	178.86
9-Methylpentacosane	175.35	178.86
8-Methylpentacosane	175.47	178.86
7-Methylpentacosane	175.64	178.86
6-Methylpentacosane	175.88	178.86
5-Methylpentacosane	176.21	178.86
4-Methylpentacosane	176.67	178.86
2-Methylpentacosane	176.97	178.86
3-Methylpentacosane	177.60	178.86
13-Methylhexacosane	181.33	185.21
12-Methylhexacosane	181.36	185.21
11-Methylhexacosane	181.38	185.21
10-Methylhexacosane	181.45	185.21
9-Methylhexacosane	181.56	185.21
8-Methylhexacosane	181.68	185.21
7-Methylhexacosane	181.85	185.21
6-Methylhexacosane	182.10	185.21
5-Methylhexacosane	182.42	185.21
4-Methylhexacosane	182.90	185.21
2-Methylhexacosane	183.18	185.21
3-Methylhexacosane	183.83	185.21
14-Methylheptacosane	187.50	191.56
13-Methylheptacosane	187.50	191.56
12-Methylheptacosane	187.53	191.56
11-Methylheptacosane	187.57	191.56
10-Methylheptacosane	187.64	191.56
9-Methylheptacosane	187.76	191.56
8-Methylheptacosane	187.88	191.56
7-Methylheptacosane	188.05	191.56
6-Methylheptacosane	188.29	191.56
5-Methylheptacosane	188.63	191.56
4-Methylheptacosane	189.10	191.56

2-Methylheptacosane189.37191.563-Methylheptacosane190.04191.5614-Methyloctacosane193.64197.9113-Methyloctacosane193.65197.9112-Methyloctacosane193.68197.91	
14-Methyloctacosane193.64197.9113-Methyloctacosane193.65197.91	
13-Methyloctacosane 193.65 197.91	
12-Methyloctacosane 193.68 197.91	
11-Methyloctacosane 193.73 197.91	
10-Methyloctacosane 193.80 197.91	
9-Methyloctacosane 193.92 197.91	
8-Methyloctacosane 194.05 197.91	
7-Methyloctacosane 194.22 197.91	
6-Methyloctacosane 194.48 197.91	
5-Methyloctacosane 194.81 197.91	
4-Methyloctacosane 195.28 197.91	
2-Methyloctacosane 195.56 197.91	
3-Methyloctacosane 196.22 197.91	
15-Methylnonacosane 199.74 204.26	
14-Methylnonacosane 199.75 204.26	
13-Methylnonacosane 199.77 204.26	
12-Methylnonacosane 199.81 204.26	
11-Methylnonacosane 199.85 204.26	
10-Methylnonacosane 199.94 204.26	
9-Methylnonacosane 200.06 204.26	
8-Methylnonacosane 200.19 204.26	
7-Methylnonacosane 200.37 204.26	
6-Methylnonacosane 200.63 204.26	
5-Methylnonacosane 200.95 204.26	
4-Methylnonacosane 201.45 204.26	
2-Methylnonacosane 201.70 204.26	
3-Methylnonacosane 202.36 204.26	

Table 3. Comparison of the Enthalpies of Vapoiization, $\Delta H_{vap,298K}$ (kJ mol⁻¹), Predicted by the Abraham Model, Eqn. 7, and the Group-Additivity Method of Naef and Acree, Eqn. 10

Compound	$\Delta H_{ m vap,298K}$ Eqn. 7	∆ <i>H</i> _{vap,298K} Eqn. 10
6-Methylundecane	58.26	59.83
5-Methylundecane	58.32	59.83
4-Methylundecane	58.50	59.83
2-Methylundecane	58.71	59.83
3-Methylundecane	59.03	59.83
6-Methyldodecane	62.99	64.59
5-Methyldodecane	63.09	64.59
4-Methyldodecane	63.31	64.59
2-Methyldodecane	63.53	64.59
3-Methyldodecane	63.86	64.59
7-Methyltridecane	67.71	69.35
6-Methyltridecane	67.74	69.35
5-Methyltridecane	67.88	69.35
4-Methyltridecane	68.11	69.35
2-Methyltridecane	68.35	69.35
3-Methyltridecane	68.69	69.35
7-Methyltetradecane	72.45	74.11

6-Methyltetradecane	72.52	74.11	3-Methyleicosane	102.56	102.67
5-Methyltetradecane	72.67	74.11	11-Methylheneicosane	105.75	107.43
4-Methyltetradecane	72.93	74.11	10-Methylheneicosane	105.76	107.43
2-Methyltetradecane	73.18	74.11	9-Methylheneicosane	105.79	107.43
3-Methyltetradecane	73.53	74.11	8-Methylheneicosane	105.86	107.43
8-Methylpentadecane	77.18	78.87	7-Methylheneicosane	105.98	107.43
7-Methylpentadecane	77.21	78.87	6-Methylheneicosane	106.14	107.43
6-Methylpentadecane	77.30	78.87	5-Methylheneicosane	106.38	107.43
5-Methylpentadecane	77.47	78.87	4-Methylheneicosane	106.70	107.43
4-Methylpentadecane	77.75	78.87	2-Methylheneicosane	106.95	107.43
2-Methylpentadecane	78.00	78.87	3-Methylheneicosane	107.39	107.43
3-Methylpentadecane	78.36	78.87	11-Methyldocosane	110.53	112.19
8-Methylhexadecane	81.94	83.63	10-Methyldocosane	110.55	112.19
7-Methylhexadecane	81.98	83.63	9-Methyldocosane	110.60	112.19
6-Methylhexadecane	82.09	83.63	8-Methyldocosane	110.67	112.19
5-Methylhexadecane	82.28	83.63	7-Methyldocosane	110.79	112.19
4-Methylhexadecane	82.57	83.63	6-Methyldocosane	110.96	112.19
2-Methylhexadecane	82.83	83.63	5-Methyldocosane	111.19	112.19
9-Methylheptadecane	86.69	88.39	4-Methyldocosane	111.53	112.19
8-Methylheptadecane	86.70	88.39	2-Methyldocosane	111.77	112.19
7-Methylheptadecane	86.77	88.39	3-Methyldocosane	112.22	112.19
6-Methylheptadecane	86.90	88.39	12-Methyltricosane	115.29	116.95
5-Methylheptadecane	87.09	88.39	11-Methyltricosane	115.30	116.95
4-Methylheptadecane	87.40	88.39	10-Methyltricosane	115.33	116.95
2-Methylheptadecane	87.65	88.39	9-Methyltricosane	115.39	116.95
9-Methyloctadecane	91.45	93.15	8-Methyltricosane	115.47	116.95
8-Methyloctadecane	91.48	93.15	7-Methyltricosane	115.59	116.95
7-Methyloctadecane	91.57	93.15	6-Methyltricosane	115.77	116.95
6-Methyloctadecane	91.71	93.15	5-Methyltricosane	116.01	116.95
5-Methyloctadecane	91.92	93.15	4-Methyltricosane	116.36	116.95
4-Methyloctadecane	92.22	93.15	2-Methyltricosane	116.60	116.95
2-Methyloctadecane	92.48	93.15	3-Methyltricosane	117.06	116.95
3-Methyloctadecane	92.87	93.15	12-Methyltetracosane	120.09	121.71
10-Methylnonadecane	96.21	97.91	11-Methyltetracosane	120.10	121.71
9-Methylnonadecane	96.23	97.91	10-Methyltetracosane	120.13	121.71
8-Methylnonadecane	96.27	97.91	9-Methyltetracosane	120.20	121.71
7-Methylnonadecane	96.36	97.91	8-Methyltetracosane	120.29	121.71
6-Methylnonadecane	96.52	97.91	7-Methyltetracosane	120.42	121.71
5-Methylnonadecane	96.73	97.91	6-Methyltetracosane	120.60	121.71
4-Methylnonadecane	97.05	97.91	5-Methyltetracosane	120.84	121.71
2-Methylnonadecane	97.30	97.91	4-Methyltetracosane	121.19	121.71
3-Methylnonadecane	97.72	97.91	2-Methyltetracosane	121.42	121.71
10-Methyleicosane	100.99	102.67	3-Methyltetracosane	121.90	121.71
9-Methyleicosane	101.02	102.67	13-Methylpentacosane	124.87	126.47
8-Methyleicosane	101.07	102.67	12-Methylpentacosane	124.87	126.47
7-Methyleicosane	101.17	102.67	11-Methylpentacosane	124.89	126.47
6-Methyleicosane	101.34	102.67	10-Methylpentacosane	124.93	126.47
5-Methyleicosane	101.56	102.67	9-Methylpentacosane	125.01	126.47
4-Methyleicosane	101.88	102.67	8-Methylpentacosane	125.10	126.47
2-Methyleicosane	102.13	102.67	7-Methylpentacosane	125.23	126.47

6-Methylpentacosane 125.42 126.47 5-Methylpentacosane 126.03 126.47 2-Methylpentacosane 126.26 126.47 3-Methylpentacosane 129.65 131.23 12-Methylhexacosane 129.67 131.23 12-Methylhexacosane 129.74 131.23 10-Methylhexacosane 129.74 131.23 9-Methylhexacosane 129.22 131.23 7-Methylhexacosane 130.50 131.23 6-Methylhexacosane 130.50 131.23 7-Methylhexacosane 130.50 131.23 3-Methylhexacosane 130.50 131.23 4-Methylhexacosane 130.90 131.23 3-Methylhexacosane 130.91 131.23 14-Methylhexacosane 131.09 131.23 14-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.45 135.99 14-Methylheptacosane 134.45 135.99 10-Methylheptacosane 134.56 <td< th=""><th></th><th></th><th></th></td<>			
4-Methylpentacosane 126.03 126.47 2-Methylpentacosane 126.75 126.47 3-Methylpentacosane 129.65 131.23 12-Methylhexacosane 129.67 131.23 11-Methylhexacosane 129.67 131.23 10-Methylhexacosane 129.74 131.23 10-Methylhexacosane 129.82 131.23 9-Methylhexacosane 129.92 131.23 7-Methylhexacosane 130.05 131.23 6-Methylhexacosane 130.05 131.23 7-Methylhexacosane 130.50 131.23 2-Methylhexacosane 130.50 131.23 2-Methylhexacosane 130.50 131.23 2-Methylhexacosane 131.09 131.23 3-Methylheptacosane 134.45 135.99 13-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.47 135.99 13-Methylheptacosane 134.47 135.99 14-Methylheptacosane 134.56 135.99 13-Methylheptacosane 134.51 135.99 14-Methylheptacosane 134.51 <td< td=""><td>6-Methylpentacosane</td><td>125.42</td><td>126.47</td></td<>	6-Methylpentacosane	125.42	126.47
2-Methylpentacosane 126.26 126.47 3-Methylpentacosane 126.75 126.47 13-Methylhexacosane 129.65 131.23 12-Methylhexacosane 129.67 131.23 11-Methylhexacosane 129.69 131.23 10-Methylhexacosane 129.74 131.23 9-Methylhexacosane 129.92 131.23 7-Methylhexacosane 130.05 131.23 6-Methylhexacosane 130.05 131.23 7-Methylhexacosane 130.50 131.23 2-Methylhexacosane 130.50 131.23 4-Methylhexacosane 130.66 131.23 2-Methylhexacosane 131.09 131.23 14-Methylheptacosane 134.45 135.99 13-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.47 135.99 14-Methylheptacosane 134.47 135.99 10-Methylheptacosane 134.47 135.99 10-Methylheptacosane 134.74 135.99 10-Methylheptacosane 135.07 <td>5-Methylpentacosane</td> <td>125.67</td> <td>126.47</td>	5-Methylpentacosane	125.67	126.47
3-Methylpentacosane 126.75 126.47 13-Methylpexacosane 129.65 131.23 12-Methylpexacosane 129.69 131.23 10-Methylpexacosane 129.74 131.23 9-Methylpexacosane 129.74 131.23 9-Methylpexacosane 129.82 131.23 7-Methylpexacosane 129.92 131.23 6-Methylpexacosane 130.05 131.23 5-Methylpexacosane 130.50 131.23 4-Methylpexacosane 130.86 131.23 2-Methylpexacosane 131.09 131.23 3-Methylpexacosane 131.99 131.23 14-Methylpexacosane 134.45 135.99 13-Methylpeptacosane 134.45 135.99 14-Methylpeptacosane 134.45 135.99 14-Methylpeptacosane 134.45 135.99 10-Methylheptacosane 134.45 135.99 14-Methylpeptacosane 134.56 135.99 9-Methylheptacosane 134.51 135.99 9-Methylheptacosane 135.07 135.99 9-Methylheptacosane 135.70 1	4-Methylpentacosane	126.03	126.47
13-Methylhexacosane 129.65 131.23 12-Methylhexacosane 129.67 131.23 11-Methylhexacosane 129.69 131.23 10-Methylhexacosane 129.74 131.23 9-Methylhexacosane 129.82 131.23 7-Methylhexacosane 130.05 131.23 6-Methylhexacosane 130.05 131.23 5-Methylhexacosane 130.05 131.23 4-Methylhexacosane 130.05 131.23 2-Methylhexacosane 130.05 131.23 3-Methylhexacosane 130.86 131.23 2-Methylhexacosane 131.09 131.23 3-Methylhexacosane 131.99 131.23 14-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.45 135.99 13-Methylheptacosane 134.56 135.99 14-Methylheptacosane 134.45 135.99 10-Methylheptacosane 134.51 135.99 10-Methylheptacosane 135.07 135.99 9-Methylheptacosane 135.07 135.99 9-Methylheptacosane 135.70 1	2-Methylpentacosane	126.26	126.47
12-Methylhexacosane 129.67 131.23 11-Methylhexacosane 129.69 131.23 10-Methylhexacosane 129.74 131.23 9-Methylhexacosane 129.92 131.23 8-Methylhexacosane 130.05 131.23 6-Methylhexacosane 130.05 131.23 6-Methylhexacosane 130.05 131.23 5-Methylhexacosane 130.50 131.23 4-Methylhexacosane 130.50 131.23 2-Methylhexacosane 131.09 131.23 3-Methylhexacosane 131.59 131.23 14-Methylheptacosane 134.45 135.99 13-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.45 135.99 14-Methylheptacosane 134.47 135.99 10-Methylheptacosane 134.47 135.99 9-Methylheptacosane 135.07 135.99 9-Methylheptacosane 135.07 135.99 9-Methylheptacosane 135.70 135.99 9-Methylheptacosane 135.70 135.99 9-Methylheptacosane 136.43 1	3-Methylpentacosane	126.75	126.47
11-Methylhexacosane129.69131.2310-Methylhexacosane129.74131.239-Methylhexacosane129.82131.238-Methylhexacosane130.05131.236-Methylhexacosane130.05131.235-Methylhexacosane130.50131.232-Methylhexacosane130.50131.232-Methylhexacosane130.50131.232-Methylhexacosane131.09131.233-Methylhexacosane131.09131.2314-Methylheptacosane134.45135.9913-Methylheptacosane134.45135.9912-Methylheptacosane134.47135.9912-Methylheptacosane134.51135.9910-Methylheptacosane134.65135.999-Methylheptacosane134.65135.999-Methylheptacosane135.07135.999-Methylheptacosane135.07135.999-Methylheptacosane135.07135.999-Methylheptacosane135.70135.999-Methylheptacosane135.70135.992-Methylheptacosane135.91135.992-Methylheptacosane139.25140.7513-Methyloctacosane139.25140.7514-Methyloctacosane139.25140.7512-Methyloctacosane139.25140.7512-Methyloctacosane139.27140.7514-Methyloctacosane139.27140.7515-Methyloctacosane139.71140.759-Methyloctacosane139.71140.759-Methyloctacosane<	13-Methylhexacosane	129.65	131.23
10-Methylhexacosane 129.74 131.23 9-Methylhexacosane 129.92 131.23 8-Methylhexacosane 130.05 131.23 7-Methylhexacosane 130.05 131.23 6-Methylhexacosane 130.05 131.23 5-Methylhexacosane 130.05 131.23 4-Methylhexacosane 130.06 131.23 2-Methylhexacosane 131.09 131.23 3-Methylhexacosane 131.59 131.23 14-Methylheptacosane 134.45 135.99 13-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.47 135.99 11-Methylheptacosane 134.47 135.99 10-Methylheptacosane 134.47 135.99 9-Methylheptacosane 134.74 135.99 9-Methylheptacosane 135.07 135.99 9-Methylheptacosane 135.07 135.99 9-Methylheptacosane 135.70 135.99 9-Methylheptacosane 136.43 135.99 9-Methylheptacosane 136.43 135.99 14-Methyloctacosane 139.25 1	12-Methylhexacosane	129.67	131.23
9-Methylhexacosane129.82131.238-Methylhexacosane130.05131.237-Methylhexacosane130.05131.236-Methylhexacosane130.25131.235-Methylhexacosane130.86131.232-Methylhexacosane131.09131.233-Methylhexacosane131.99131.233-Methylhexacosane131.99131.2314-Methylhexacosane134.45135.9913-Methylheptacosane134.45135.9912-Methylheptacosane134.45135.9912-Methylheptacosane134.45135.9911-Methylheptacosane134.56135.999-Methylheptacosane134.65135.999-Methylheptacosane134.74135.999-Methylheptacosane135.07135.999-Methylheptacosane135.07135.999-Methylheptacosane135.07135.999-Methylheptacosane135.07135.999-Methylheptacosane135.07135.999-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane139.25140.7513-Methyloctacosane139.25140.7514-Methyloctacosane139.32140.7515-Methyloctacosane139.71140.7516-Methyloctacosane139.71140.759-Methyloctacosane139.90140.759-Methyloctacosane139.90140.7510-Methyloctacosane139.91140.7512-Methyloctacosane <t< td=""><td>11-Methylhexacosane</td><td>129.69</td><td>131.23</td></t<>	11-Methylhexacosane	129.69	131.23
8-Methylhexacosane 129.92 131.23 7-Methylhexacosane 130.05 131.23 6-Methylhexacosane 130.25 131.23 5-Methylhexacosane 130.86 131.23 4-Methylhexacosane 131.09 131.23 2-Methylhexacosane 131.09 131.23 3-Methylhexacosane 131.99 131.23 14-Methylhexacosane 134.45 135.99 13-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.45 135.99 13-Methylheptacosane 134.45 135.99 14-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.47 135.99 14-Methylheptacosane 134.56 135.99 9-Methylheptacosane 135.07 135.99 9-Methylheptacosane 135.07 135.99 2-Methylheptacosane 135.70 135.99 2-Methylheptacosane 135.70 135.99 2-Methylheptacosane 136.43 135.99 2-Methylheptacosane 136.43 135.99 2-Methylhotacosane 139.25	10-Methylhexacosane	129.74	131.23
7-Methylhexacosane130.05131.236-Methylhexacosane130.25131.235-Methylhexacosane130.50131.234-Methylhexacosane131.09131.232-Methylhexacosane131.09131.233-Methylhexacosane131.59131.2314-Methylheptacosane134.45135.9913-Methylheptacosane134.45135.9913-Methylheptacosane134.45135.9912-Methylheptacosane134.47135.9911-Methylheptacosane134.56135.999-Methylheptacosane134.56135.999-Methylheptacosane134.74135.997-Methylheptacosane135.07135.999-Methylheptacosane135.07135.999-Methylheptacosane135.07135.999-Methylheptacosane135.07135.992-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7514-Methyloctacosane139.21140.7512-Methyloctacosane139.71140.759-Methyloctacosane139.97140.7510-Methyloctacosane139.90140.7511-Methyloctacosane139.90140.752-Methyloctacosane139.90140.753-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane <t< td=""><td>9-Methylhexacosane</td><td>129.82</td><td>131.23</td></t<>	9-Methylhexacosane	129.82	131.23
6-Methylhexacosane 130.25 131.23 5-Methylhexacosane 130.50 131.23 4-Methylhexacosane 131.09 131.23 2-Methylhexacosane 131.09 131.23 3-Methylhexacosane 131.59 131.23 14-Methylheptacosane 134.45 135.99 13-Methylheptacosane 134.45 135.99 13-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.47 135.99 11-Methylheptacosane 134.47 135.99 10-Methylheptacosane 134.56 135.99 9-Methylheptacosane 134.74 135.99 7-Methylheptacosane 135.07 135.99 8-Methylheptacosane 135.07 135.99 9-Methylheptacosane 135.07 135.99 2-Methylheptacosane 135.70 135.99 2-Methylheptacosane 135.70 135.99 2-Methylheptacosane 136.43 135.99 2-Methyloctacosane 139.25 140.75 13-Methyloctacosane 139.25 140.75 14-Methyloctacosane 139.32 <t< td=""><td>8-Methylhexacosane</td><td>129.92</td><td>131.23</td></t<>	8-Methylhexacosane	129.92	131.23
5-Methylhexacosane 130.50 131.23 4-Methylhexacosane 130.86 131.23 2-Methylhexacosane 131.09 131.23 3-Methylhexacosane 131.59 131.23 14-Methylheptacosane 134.45 135.99 13-Methylheptacosane 134.45 135.99 12-Methylheptacosane 134.47 135.99 12-Methylheptacosane 134.47 135.99 11-Methylheptacosane 134.56 135.99 9-Methylheptacosane 134.65 135.99 9-Methylheptacosane 134.74 135.99 7-Methylheptacosane 134.74 135.99 6-Methylheptacosane 135.07 135.99 5-Methylheptacosane 135.70 135.99 2-Methylheptacosane 135.70 135.99 2-Methylheptacosane 136.43 135.99 3-Methylheptacosane 139.25 140.75 13-Methyloctacosane 139.25 140.75 14-Methyloctacosane 139.38 140.75 12-Methyloctacosane 139.37 140.75 14-Methyloctacosane 139.47 <	7-Methylhexacosane	130.05	131.23
4-Methylhexacosane130.86131.232-Methylhexacosane131.09131.233-Methylhexacosane131.59131.2314-Methylheptacosane134.45135.9913-Methylheptacosane134.45135.9912-Methylheptacosane134.47135.9911-Methylheptacosane134.51135.9910-Methylheptacosane134.56135.999-Methylheptacosane134.65135.999-Methylheptacosane134.65135.999-Methylheptacosane134.74135.996-Methylheptacosane135.07135.995-Methylheptacosane135.07135.992-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane136.43135.9914-Methylheptacosane139.25140.7513-Methylheptacosane139.25140.7513-Methyloctacosane139.28140.7514-Methyloctacosane139.38140.7515-Methyloctacosane139.37140.756-Methyloctacosane139.37140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.91140.755-Methyloctacosane139.91140.755-Methyloctacosane139.57140.756-Methyloctacosane139.57140.757-Methyloctacosane139.57140.755-Methyloctacosane139.51140.752-Methyloctacosane <t< td=""><td>6-Methylhexacosane</td><td>130.25</td><td>131.23</td></t<>	6-Methylhexacosane	130.25	131.23
2-Methylhexacosane131.09131.233-Methylhexacosane131.59131.2314-Methylheptacosane134.45135.9913-Methylheptacosane134.45135.9912-Methylheptacosane134.47135.9911-Methylheptacosane134.56135.9910-Methylheptacosane134.56135.999-Methylheptacosane134.65135.999-Methylheptacosane134.74135.997-Methylheptacosane134.74135.996-Methylheptacosane135.07135.995-Methylheptacosane135.07135.992-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane136.43135.993-Methylheptacosane139.25140.7513-Methyloctacosane139.25140.7513-Methyloctacosane139.28140.7512-Methyloctacosane139.28140.7513-Methyloctacosane139.32140.7514-Methyloctacosane139.32140.755-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.755-Methyloctacosane140.76140.755-Methyloctacosane140.76140.755-Methyloctacosane140.76140.7515-Methylonacosane <td< td=""><td>5-Methylhexacosane</td><td>130.50</td><td>131.23</td></td<>	5-Methylhexacosane	130.50	131.23
3-Methylhexacosane131.59131.2314-Methylheptacosane134.45135.9913-Methylheptacosane134.45135.9912-Methylheptacosane134.47135.9911-Methylheptacosane134.51135.9910-Methylheptacosane134.56135.999-Methylheptacosane134.65135.999-Methylheptacosane134.74135.997-Methylheptacosane134.74135.996-Methylheptacosane135.07135.995-Methylheptacosane135.07135.992-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane136.43135.993-Methylheptacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7512-Methyloctacosane139.32140.7512-Methyloctacosane139.32140.755-Methyloctacosane139.37140.756-Methyloctacosane139.71140.757-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.91140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.755-Methyloctacosane140.76140.7515-Methylonacosane	4-Methylhexacosane	130.86	131.23
14-Methylheptacosane134.45135.9913-Methylheptacosane134.47135.9912-Methylheptacosane134.47135.9911-Methylheptacosane134.51135.9910-Methylheptacosane134.56135.999-Methylheptacosane134.65135.998-Methylheptacosane134.74135.997-Methylheptacosane134.74135.996-Methylheptacosane135.07135.995-Methylheptacosane135.07135.995-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane135.70135.993-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7512-Methyloctacosane139.38140.7514-Methyloctacosane139.37140.755-Methyloctacosane139.47140.756-Methyloctacosane139.90140.757-Methyloctacosane139.91140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.752-Methyloctacosane140.76140.753-Methyloctacosane140.76140.7515-Methyloctacosane140.76140.7515-Methylonacosane144.04145.5114-Methylonacosane<	2-Methylhexacosane	131.09	131.23
13-Methylheptacosane134.45135.9912-Methylheptacosane134.47135.9911-Methylheptacosane134.51135.9910-Methylheptacosane134.56135.999-Methylheptacosane134.65135.998-Methylheptacosane134.74135.997-Methylheptacosane134.74135.996-Methylheptacosane135.07135.995-Methylheptacosane135.07135.992-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane136.43135.993-Methylheptacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7513-Methyloctacosane139.32140.7514-Methyloctacosane139.32140.7515-Methyloctacosane139.37140.7510-Methyloctacosane139.71140.758-Methyloctacosane139.71140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.752-Methyloctacosane140.76140.753-Methylonacosane140.76140.7515-Methylonacosane140.76140.7514-Methylonacosane144.04145.5113-Methylonacosane144.07145.5114-Methylonacosane144.07145.5115-Methylonacosane144.09145.5116-Methylnonacosane	3-Methylhexacosane	131.59	131.23
12-Methylheptacosane134.47135.9911-Methylheptacosane134.51135.9910-Methylheptacosane134.56135.999-Methylheptacosane134.65135.998-Methylheptacosane134.74135.997-Methylheptacosane134.74135.996-Methylheptacosane135.07135.995-Methylheptacosane135.07135.992-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane136.43135.993-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.28140.7512-Methyloctacosane139.38140.7511-Methyloctacosane139.38140.759-Methyloctacosane139.71140.756-Methyloctacosane139.71140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.752-Methyloctacosane140.76140.753-Methyloctacosane140.76140.7515-Methyloncacosane140.76140.7515-Methyloncacosane140.76140.7515-Methyloncacosane144.04145.5113-Methyloncacosane144.07145.5114-Methylnonacosane144.09145.5115-Methylnonacosane144.09145.5116-Methylnonacosane<	14-Methylheptacosane	134.45	135.99
11-Methylheptacosane134.51135.9910-Methylheptacosane134.56135.999-Methylheptacosane134.65135.998-Methylheptacosane134.74135.997-Methylheptacosane134.74135.996-Methylheptacosane135.07135.995-Methylheptacosane135.33135.994-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane136.43135.993-Methylheptacosane136.43135.993-Methylheptacosane139.25140.7513-Methyloctacosane139.28140.7512-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.752-Methyloctacosane140.76140.753-Methyloctacosane140.76140.7514-Methyloctacosane140.76140.7515-Methyloctacosane140.76140.7515-Methylonacosane144.04145.5113-Methylonacosane144.07145.5114-Methylnonacosane144.09145.5115-Methylnonacosane144.09145.5116-Methylnonacosane144.09145.5117-Methylnonacosane144.09145.5118-Methylnonacosane <td< td=""><td>13-Methylheptacosane</td><td>134.45</td><td>135.99</td></td<>	13-Methylheptacosane	134.45	135.99
10-Methylheptacosane134.56135.999-Methylheptacosane134.65135.998-Methylheptacosane134.74135.997-Methylheptacosane134.88135.996-Methylheptacosane135.07135.995-Methylheptacosane135.33135.994-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane136.43135.993-Methylheptacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.752-Methyloctacosane140.76140.753-Methyloctacosane140.76140.7515-Methyloctacosane140.76140.7515-Methyloncacosane144.04145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5113-Methylnonacosane144.09145.5113-Methylnonacosane144.09145.5113-Methylnonacosane144.09145.5113-Methylnonacosane144.09145.5113-Methylnonacosane <t< td=""><td>12-Methylheptacosane</td><td>134.47</td><td>135.99</td></t<>	12-Methylheptacosane	134.47	135.99
9-Methylheptacosane134.65135.998-Methylheptacosane134.74135.997-Methylheptacosane134.88135.996-Methylheptacosane135.07135.995-Methylheptacosane135.33135.994-Methylheptacosane135.70135.992-Methylheptacosane135.70135.992-Methylheptacosane136.43135.993-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.32140.7511-Methyloctacosane139.38140.759-Methyloctacosane139.71140.759-Methyloctacosane139.71140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.752-Methyloctacosane140.76140.753-Methyloctacosane140.76140.7515-Methyloctacosane144.04145.5114-Methylnonacosane144.04145.5113-Methylnonacosane144.07145.5113-Methylnonacosane144.09145.5113-Methylnonacosane144.09145.5113-Methylnonacosane144.09145.5113-Methylnonacosane144.09145.5113-Methylnonacosane144.09145.5113-Methylnonacosane1	11-Methylheptacosane	134.51	135.99
8-Methylheptacosane 134.74 135.99 7-Methylheptacosane 134.88 135.99 6-Methylheptacosane 135.07 135.99 5-Methylheptacosane 135.33 135.99 4-Methylheptacosane 135.70 135.99 2-Methylheptacosane 135.70 135.99 2-Methylheptacosane 135.91 135.99 3-Methylheptacosane 136.43 135.99 3-Methylheptacosane 139.25 140.75 13-Methyloctacosane 139.25 140.75 13-Methyloctacosane 139.28 140.75 11-Methyloctacosane 139.32 140.75 9-Methyloctacosane 139.38 140.75 9-Methyloctacosane 139.71 140.75 8-Methyloctacosane 139.71 140.75 6-Methyloctacosane 139.90 140.75 5-Methyloctacosane 139.90 140.75 5-Methyloctacosane 140.76 140.75 2-Methyloctacosane 140.76 140.75 3-Methyloctacosane 140.76 140.75 3-Methyloctacosane 140.76 140.75<	10-Methylheptacosane	134.56	135.99
7-Methylheptacosane134.88135.996-Methylheptacosane135.07135.995-Methylheptacosane135.70135.994-Methylheptacosane135.70135.992-Methylheptacosane135.70135.993-Methylheptacosane136.43135.993-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.71140.756-Methyloctacosane139.71140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.752-Methyloctacosane140.76140.753-Methyloctacosane140.76140.7514-Methyloctacosane140.76140.7515-Methyloctacosane140.76140.7515-Methyloctacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.09145.5114-Methylnonacosane144.09145.5110-Methylnonacosane144.20145.51	9-Methylheptacosane	134.65	135.99
6-Methylheptacosane135.07135.995-Methylheptacosane135.33135.994-Methylheptacosane135.70135.992-Methylheptacosane135.91135.993-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.71140.758-Methyloctacosane139.71140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.16140.752-Methyloctacosane140.76140.7513-Methyloctacosane140.76140.7513-Methyloctacosane141.27140.7515-Methyloctacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.09145.5114-Methylnonacosane144.09145.5110-Methylnonacosane144.09145.5111-Methylnonacosane144.20145.51	8-Methylheptacosane	134.74	135.99
5-Methylheptacosane135.33135.994-Methylheptacosane135.70135.992-Methylheptacosane135.91135.993-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.71140.758-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.16140.754-Methyloctacosane140.76140.755-Methyloctacosane140.76140.7515-Methyloctacosane140.76140.7515-Methylonacosane144.04145.5114-Methylnonacosane144.07145.5112-Methylnonacosane144.07145.5113-Methylnonacosane144.09145.5110-Methylnonacosane144.20145.51	7-Methylheptacosane	134.88	135.99
4-Methylheptacosane135.70135.992-Methylheptacosane135.91135.993-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.47140.758-Methyloctacosane139.71140.757-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.76140.752-Methyloctacosane140.76140.7513-Methyloctacosane140.76140.7514-Methyloctacosane140.76140.7515-Methyloctacosane144.04145.5114-Methylnonacosane144.07145.5112-Methylnonacosane144.07145.5113-Methylnonacosane144.09145.5110-Methylnonacosane144.09145.5110-Methylnonacosane144.20145.51	6-Methylheptacosane	135.07	135.99
2-Methylheptacosane135.91135.993-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.47140.758-Methyloctacosane139.57140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.90140.752-Methyloctacosane140.76140.753-Methyloctacosane140.76140.7514-Methyloctacosane140.76140.7515-Methyloctacosane140.76140.7515-Methyloctacosane144.04145.5113-Methylnonacosane144.07145.5113-Methylnonacosane144.07145.5113-Methylnonacosane144.09145.5110-Methylnonacosane144.09145.5110-Methylnonacosane144.20145.51	5-Methylheptacosane	135.33	135.99
3-Methylheptacosane136.43135.9914-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.47140.758-Methyloctacosane139.57140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.90140.752-Methyloctacosane140.76140.753-Methyloctacosane140.76140.7515-Methyloctacosane140.76140.7515-Methyloctacosane144.04145.5114-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5113-Methylnonacosane144.09145.5110-Methylnonacosane144.20145.51	4-Methylheptacosane	135.70	135.99
14-Methyloctacosane139.25140.7513-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.47140.758-Methyloctacosane139.57140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.16140.752-Methyloctacosane140.76140.753-Methyloctacosane140.76140.7515-Methyloctacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.20145.5110-Methylnonacosane144.20145.51	2-Methylheptacosane	135.91	135.99
13-Methyloctacosane139.25140.7512-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.47140.758-Methyloctacosane139.57140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.16140.754-Methyloctacosane140.76140.752-Methyloctacosane140.76140.753-Methyloctacosane144.04145.5115-Methylnonacosane144.04145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.03145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	3-Methylheptacosane	136.43	135.99
12-Methyloctacosane139.28140.7511-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.47140.758-Methyloctacosane139.57140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane139.90140.755-Methyloctacosane140.16140.754-Methyloctacosane140.76140.753-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methylnonacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	14-Methyloctacosane	139.25	140.75
11-Methyloctacosane139.32140.7510-Methyloctacosane139.38140.759-Methyloctacosane139.47140.758-Methyloctacosane139.57140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane140.16140.754-Methyloctacosane140.54140.752-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methyloctacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	13-Methyloctacosane	139.25	140.75
10-Methyloctacosane139.38140.759-Methyloctacosane139.47140.758-Methyloctacosane139.57140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane140.16140.754-Methyloctacosane140.54140.752-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methylnonacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.09145.5112-Methylnonacosane144.13145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	12-Methyloctacosane	139.28	140.75
9-Methyloctacosane139.47140.758-Methyloctacosane139.57140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane140.16140.754-Methyloctacosane140.54140.752-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methyloctacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	11-Methyloctacosane	139.32	140.75
8-Methyloctacosane139.57140.757-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane140.16140.754-Methyloctacosane140.54140.752-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methylnonacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	10-Methyloctacosane	139.38	140.75
7-Methyloctacosane139.71140.756-Methyloctacosane139.90140.755-Methyloctacosane140.16140.754-Methyloctacosane140.54140.752-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methylnonacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	9-Methyloctacosane	139.47	140.75
6-Methyloctacosane139.90140.755-Methyloctacosane140.16140.754-Methyloctacosane140.54140.752-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methylnonacosane144.04145.5114-Methylnonacosane144.07145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	8-Methyloctacosane	139.57	140.75
5-Methyloctacosane140.16140.754-Methyloctacosane140.54140.752-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methylnonacosane144.04145.5114-Methylnonacosane144.04145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	7-Methyloctacosane	139.71	140.75
4-Methyloctacosane140.54140.752-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methylnonacosane144.04145.5114-Methylnonacosane144.04145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	6-Methyloctacosane	139.90	140.75
2-Methyloctacosane140.76140.753-Methyloctacosane141.27140.7515-Methylnonacosane144.04145.5114-Methylnonacosane144.04145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	5-Methyloctacosane	140.16	140.75
3-Methyloctacosane141.27140.7515-Methylnonacosane144.04145.5114-Methylnonacosane144.04145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	4-Methyloctacosane	140.54	140.75
15-Methylnonacosane144.04145.5114-Methylnonacosane144.04145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	2-Methyloctacosane	140.76	140.75
14-Methylnonacosane144.04145.5113-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	3-Methyloctacosane	141.27	140.75
13-Methylnonacosane144.07145.5112-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51		144.04	145.51
12-Methylnonacosane144.09145.5111-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51			
11-Methylnonacosane144.13145.5110-Methylnonacosane144.20145.51	-	144.07	
10-Methylnonacosane 144.20 145.51		144.09	
	-		
9-Methylnonacosane 144.29 145.51			
	9-Methylnonacosane	144.29	145.51

8-Methylnonacosane	144.40	145.51	
7-Methylnonacosane	144.53	145.51	
6-Methylnonacosane	144.74	145.51	
5-Methylnonacosane	144.99	145.51	
4-Methylnonacosane	145.38	145.51	
2-Methylnonacosane	145.58	145.51	
3-Methylnonacosane	146.10	145.51	

We are unable to find experimental $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ data in the published chemical literature to compare our calculated values against. What we offer in the way of a comparison is to compare our calculated values against the calculated values of a popular group-additivity method⁷³ that has been shown to predict $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ values for a wide range of organic and organometallic compounds to within standard deviations of SD = 4.30 kJ mol⁻¹ (N = 3460 compounds) and SD = 10.33 kJ mol⁻¹ (N = 1866 compounds), respectively. The basic method (Eqn. 9) sums the contributions that each atomic group makes to the given thermodynamic or physical property,

$$Property = \sum_{i} A_{i}a_{i} + \sum_{i} B_{i}b_{i} + C$$
(9)

where A_i is the number of occurrences of the *i*th atom group, B_j is the number of times each special group occurs, a_i and b_j are the numerical values of each atom group and special group, and C is a constant. For both the $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ computations a C_nH_{2n+2} mono-methyl branched alkane would be fragmented into 3 sp³ carbons (with an environment of 3 hydrogen atoms and 1 carbon), 1 sp^3 carbon atom (with an environment of 1 hydrogen atom and 3 carbon atoms), n-4 sp³ carbon atoms (with an environment of 2 hydrogen atoms and 2 carbon atoms), and one special alkane group that is multiplied by the number of carbon atoms in the molecule. Numerical values of the groups values and constant are different for each property. In Eqns. (10) and (11) below we have filled in the numerical group values and constants for predicting $\Delta H_{vap,298K}$ (kJ mol⁻¹) and $\Delta H_{sub,298K}$ (kJ mol⁻¹) of C_nH_{2n+2} mono-methyl branched alkanes:

$$\Delta H_{\text{vap},298K} = 3 x 3.07 + (n-4) x 4.67 + 3.57 + n x 0.09 + 8.61$$
(10)

$$\Delta H_{\text{sub},298\text{K}} = 3 x 5.99 + (n-4) x 6.88 + 2.28 - n x 0.53 + 21.03$$
(11)

Examination of the numerical entries in Tables 2 and 3 reveals that the predictions based on the Abraham model are similar to predictions based on the group-additivity model of Naef and Acree.⁷³ The group-additivity method though is not able to distinguish between the placement of the methyl group within the molecule, and gives the same predicted values for a given molecular formula. In other words, the predicted values of all methylheneicosane molecules are the same. This limitation is a common feature of most group-addivity and group contribution methods. The Abraham model, on the other hand, does provide different predicted values for a given molecular formula, and does not require

fragmentation of the molecule into atom groups or functional groups. Fragmentation of molecules into functional groups can be difficult at times, particularly in the case of more complex molecules having many different functional groups. Moreover, the solute descriptors for a given molecule can be used to predict many other properties of chemical and biological importance, such as vapour pressure, water-to-organic solvent partition coefficients, gasto-water partition coefficients, solubility ratios and the infinite dilution activity coefficients of the compound in water.^{74,75}

CONCLUSION

Numerical values of the Abraham model L solute descriptor have been reported for the first time for 174 different C12-C30 mono-methyl branched alkanes. The numerical values were determined by regression analysis of published linear-programmed gas chromatographic retention indices versus known L solute descriptors of linear alkanes and smaller mono-methylated alkane molecules. Calculated L solute descriptors were used to predict the standard molar enthalpies of vaporization and standard molar enthalpies of sublimation of 174 mono-methyl alkanes at 298 K based on recently published Abraham model correlations.^{11,12} The predicted values compare very favorably with calculated values based on an atom-group additivity model.73 Unlike the additivity model the Abraham model gives different predicted values of $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ for each monomethyl alkane having a given C_nH_{2n+2} molecular formula.

ACKNOWLEDGEMENTS

Shrika Eddula, Carina Jiang, Jennifer Huang, Priya Tirumala, and Angelina Xu thank the University of North Texas's Texas Academy of Math & Science (TAMS) Program for providing them with a TAMS summer research scholarship award.

REFERENCES

- ¹Hamilton, D. J., Gas chromatographic measurement of volatility of herbicide esters, *J. Chromatog.*, **1980**, *195*, 75-83. <u>https://doi.org/10.1016/S0021-9673(00)81544-7</u>
- ²Peacock, L. A. and Fuchs, R., Enthalpy of vaporization measurements by gas chromatography, *J. Am. Chem. Soc.*, **1977**, 99, 5524-5525. <u>https://pubs.acs.org/doi/pdf/10.1021/ja00458a070</u>
- ³Fuchs, R. and Peacock, L. A., Heats of vaporization of esters by the gas chromatography-calorimetry method, *Can. J. Chem.*, **1980**, 58, 2796-2799. <u>https://doi.org/10.1139/v80-447</u>
- ⁴Fuchs, R. and Peacock, L. A., Heats of vaporization and gaseous heats of formation of some five- and six-membered ring alkenes, *Can. J. Chem.*, **1979**, *57*, 2302-4. https://doi.org/10.1139/v79-368
- ⁵Chickos, J. S., Hosseini, S., and Hesse, D. G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, *Thermochim. Acta*, **1995**, 249, 41-61. <u>https://doi.org/10.1016/0040-6031(95)90670-3</u>
- ⁶Chickos, J., Hesse, D., Hosseini, S., Nichols, G., and Webb, P., Sublimation enthalpies at 298.15K using correlation gas

chromatography and differential scanning calorimetry measurements, *Thermochim. Acta*, **1998**, *313*, 101-110. https://doi.org/10.1016/S0040-6031(97)00432-2

- ⁷Siripoltangman, N. and Chickos, J., Vapor pressure and vaporization enthalpy studies of the major components of ginger, α-zingiberene, β-sesquiphellandrene and (-)ar curcumene by correlation gas chromatography, J. Chem. Thermodyn., **2019**, 138, 107-115. <u>https://doi.org/10.1016/j.jct.2019.06.011</u>
- ⁸Umnahanant, P., An examination of vaporization, fusion and sublimation enthalpies of tolazoline using correlation gas chromatography and differential scanning calorimeter, *J. Therm. Anal. Calorim.*, **2019**, *138*, 443-450. <u>https://doi.org/10.1007/s10973-019-08105-y</u>
- ⁹Heberger, K. and Kowalska, T., Determination of heats of vaporization and Gibbs free energies of alkylbenzenes on GC stationary phases of different polarity, *Chromatographia*, **1998**, *48*, 89-94. <u>https://doi.org/10.1007/BF02467523</u>
- ¹⁰Verevkin, S. P., Krasnykh, E. L., Vasiltsova, T. V., and Heintz, A., Determination of ambient temperature vapor pressures and vaporization enthalpies of branched ethers, *J. Chem. Eng. Data*, **2003**, *48*, 591-599. <u>https://doi.org/10.1021/je0255980</u>
- ¹¹Churchill, B., Acree, W. E. Jr., and Abraham, M. H., Development of Abraham model expressions for predicting the standard molar enthalpies of vaporization of organic compounds at 298.15 K, *Thermochim. Acta*, **2019**, *681*, 178372/1-178372/6. <u>https://doi.org/10.1016/j.tca.2019.178372</u>
- ¹²Abraham, M. H. and Acree, W. E. Jr., Estimation of enthalpies of sublimation of organic, organometallic and inorganic compounds, *Fluid Phase Equilib.*, **2020**, *515*, 112575/1-112575/5. <u>https://doi.org/10.1016/j.fluid.2020.112575</u>
- ¹³Abraham, M. H. and Acree, W. E. Jr., Gas-solvent and watersolvent partition of trans-stilbene at 298 K, *J. Mol. Liq.*, 2017, 238, 58-61. <u>https://doi.org/10.1016/j.molliq.2017.04.119</u>
- ¹⁴Qian, E., Wadawadigi, A., Zha, O., Liu, K., Dai, J., Eddula, S., Jiang, C., Zhang, A., Zhu, S., Garcia, E., Acree, W.E. Jr., and Abraham, M. H., Determination of Abraham model correlations for describing solute transfer into the methyl butyrate mono-solvent at 298 K, *Phys. Chem. Liq.*, **2020**, in press. <u>https://doi.org/10.1080/00319104.2019.1660983</u>
- ¹⁵Liu, K., Wang, S., Hart, E., Klein, A., Stephens, T. W., Bates, B., Calzada, J., Garcia, M., Abban-Manesah, J., Acree, W. E. Jr., and Abraham, M. H., Development of Abraham model correlations for solute transfer into 2-ethyl-1-hexanol from both water and the gas phase based on measured solubility ratios, *Phys. Chem. Liq.*, **2020**, *58*, 202-213. <u>https://doi.org/10.1080/00319104.2018.1564306</u>
- ¹⁶Sedov, I. A., Salikov, T. M., Qian, E., Wadawadigi, A., Zha, O., Acree, W. E. Jr., and Abraham, M. H., Abraham model correlations for solute transfer into 2-methyl-2-butanol based on measured activity coefficient and solubility data at 298.15 K, J. Mol. Liq., 2019, 293, 111454/1-111454/10. https://doi.org/10.1016/j.molliq.2019.111454
- ¹⁷Qian, E., Gupta, A., Neal, R., Lee, G., Che, M., Wang, L., Yue, D., Wang, S., Liu, K., Zhang, A., Acree, W. E. Jr. and Abraham, M. H., Abraham model correlations for describing solute transfer into 4-methyl-2-pentanol from both water and the gas phase, J. Mol. Liq., **2019**, 278, 335-341. <u>https://doi.org/10.1016/j.molliq.2019.01.061</u>
- ¹⁸Abraham, M. H., Smith, R. E., Luchtefeld, R., Boorem, A. J., Luo, R., and Acree, W. E. Jr., Prediction of solubility of drugs and other compounds in organic solvents, *J. Pharm. Sci.*, **2010**, *99*, 1500-1515. https://doi.org/10.1002/jps.21922
- ¹⁹Abraham, M. H. and Acree, W. E. Jr., Descriptors for ferrocene and some substituted ferrocenes, *J. Mol. Liq.*, **2017**, *232*, 325-331. https://doi.org/10.1016/j.molliq.2017.02.059

- ²⁰Jiang, B., Horton, M. Y., Acree, W. E., Jr., and Abraham, M. H., Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methyl-morpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations, *Phys. Chem. Liq.*, **2017**, *55*, 358-385 <u>https://doi.org/10.1080/00319104.2016.1218009</u>
- ²¹Mutelet, F., Hussard, C., Baker, G. A., Zhao, H., Churchill, B., and Acree, W. E. Jr., Characterization of the solubilizing ability of short-chained glycol-grafted ammonium and phosphonium ionic liquids, *J. Mol. Liq.*, **2020**, *304*, 112786/1-112786/15. <u>https://doi.org/10.1016/j.molliq.2020.112786</u>
- ²²Rabhi, F., Mutelet, F., Sifaoui, H., Wagle, D. V., Baker, G. A., Churchill, B., and Acree, W. E. Jr., Characterization of the solubilizing ability of tetraalkylammonium ionic liquids containing a pendant alkyl chain bearing a basic N,Ndimethylamino or N,N-dimethylaminoethoxy functionality, *J. Mol. Liq.*, **2019**, *283*, 380-390. https://doi.org/10.1016/j.molliq.2019.03.066
- ²³Mutelet, F., Baker, G. A., Ravula, S., Qian, E., Wang, L., and Acree, W. E. Jr., Infinite dilution activity coefficients and gas-to-liquid partition coefficients of organic solutes dissolved in 1-sec-butyl-3-methylimidazolium bis(trifleoromethylsulfonyl)imide and in 1-tert-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, *Phys. Chem. Liq.*, **2019**, *57*, 453-472. https://doi.org/10.1080/00319104.2018.1491045
- ²⁴Mutelet, F., Ravula, S., Baker, G. A., Woods, D., Tong, X., and Acree, W. E. Jr., Infinite dilution activity coefficients and gas-to-liquid partition coefficients of organic solutes dissolved in 1-benzylpyridinium bis(trifluoromethylsulfonyl)imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoro-methylsulfonyl)imide, J. Solut. Chem., 2018, 47, 308-335. https://doi.org/10.1007/s10953-018-0720-5
- ²⁵Mutelet, F., Djebouri, H., Baker, G. A., Ravula, S., Jiang, B., Tong, X., Woods, D., and Acree, W. E., Jr. Study of benzylor cyclohexyl-functionalized ionic liquids using inverse gas chromatography, *J. Mol. Liq.*, **2017**, *242*, 550-559. <u>https://doi.org/10.1016/j.molliq.2017.07.036</u>
- ²⁶Baelhadj, A. C., Mutelet, F., Jiang, B. and Acree, W. E. Jr. Activity coefficients at infinite dilution for organic solutes dissolved in two 1,2,3-tris(diethylamino)cyclopenylium based room temperature ionic liquids, *J. Mol. Liq.*, **2016**, 223, 89-99. <u>https://doi.org/10.1016/j.molliq.2016.08.028</u>
- ²⁷Mutelet, F., Hussard, C., Baker, G. A., Zhao, H., Churchill, B., and Acree, W. E. Jr., Characterization of the solubilizing ability of short-chained glycol-grafted ammonium and phosphonium ionic liquids, *J. Mol. Liq.*, **2020**, *304*, 112786/1–112786/15. https://doi.org/10.1016/j.molliq.2020.112786
- ²⁸Twu, P., Anderson, J. L., Stephens, T. W., Lu, H., Satish, K., Shan, D., Acree, W. E., Jr. and Abraham, M. H., Determination of the solubilizing character of 1-(2hydroxyethyl)-1-methylimidazolium tris(penta-fluoroethyl)trifluorophosphate based on the Abraham solvation parameter model, *Eur. Chem. Bull.*, **2013**, 2, 954-964. <u>http://dx.doi.org/10.17628/ecb.2013.2.954-964</u>
- ²⁹Jiang, R., Anderson, J. L., Stephens, T. W., Acree, W. E., Jr., and Abraham, M. H., Abraham model correlations for predicting gas-to-liquid partition coefficients and activity coefficients of organic solutes dissolved in 1-(2-methoxyethyl)-1methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, *Eur. Chem. Bull.*, **2013**, *2*, 741-751. http://dx.doi.org/10.17628/ecb.2013.2.741-751
- ³⁰Lu, J. Z, Acree, W. E. Jr., and Abraham, M. H., Abraham model correlations for enthalpies of solvation of organic solutes dissolved in N,N-dimethylacetamide, 2-butanone and tetrahydrofuran (UPATED) at 298.15 K, *Phys. Chem. Liq.*, **2019**, Ahead of Print. https://doi.org/10.1080/00319104.2019.1633528

- ³¹Lu, J. Z., Acree, W. E. Jr., and Abraham, M. H., Abraham model correlations for enthalpies of solvation of organic solutes dissolved in methyl acetate and octane, *Phys. Chem. Liq.*, **2020**, 58, 18-30. <u>https://doi.org/10.1080/00319104.2018.1534234</u>
- ³²Lu, J. Z., Acree, W. E Jr., and Abraham, M. H., Updated Abraham model correlations for enthalpies of solvation of organic solutes dissolved in benzene and acetonitrile, *Phys. Chem. Liq.*, **2019**, *57*, 84-99. https://doi.org/10.1080/00319104.2018.1423565
- ³³Higgins, E., Acree, W. E. Jr., and Abraham, M. H., Development of Abraham model correlations for enthalpies of solvation of organic solutes dissolved in 1,3-dioxolane, *Phys. Chem. Liq.*, **2016**, 54, 786-796. https://doi.org/10.1080/00319104.2016.1161043
- ³⁴Schmidt, A., Zad, M., Acree, W. E. Jr., and Abraham M. H., Development of Abraham model correlations for predicting enthalpies of solvation of nonionic solutes dissolved in formamide, *Phys. Chem. Liq.*, **2016**, *54*: 313-324. <u>https://doi.org/10.1080/00319104.2015.1084882</u>
- ³⁵Hart, E., Grover, D., Zettl, H., Koshevarova, V., Acree, W. E. Jr., and Abraham M. H., Development of Abraham model expressions for predicting the enthalpies of solvation of solutes dissolved in acetic acid, *Phys. Chem. Liq.*, 2016, 54, 141-154. <u>https://doi.org/10.1080/00319104.2015.1079194</u>
- ³⁶Hart, E., Grover, D., Zettl, H., Acree, W. E. Jr., Abraham, M. H., Abraham model enthalpy of solvation correlations for solutes dissolved in dimethyl carbonate and diethyl carbonate, *Phys. Chem. Liq.*, 2015, 53, 732-747. <u>https://doi.org/10.1080/00319104.2015.1042478</u>
- ³⁷Hart, E., Zettl, H., Grover, D., Acree, W. E. Jr., and Abraham, M. H., Abraham model enthalpy of solvation correlations for solutes dissolved in 1-alkanol solvents (C4-C6), *Phys. Chem. Liq.*, **2015**, *53*, 638-659. <u>https://doi.org/10.1080/00319104.2015.1018259</u>
- ³⁸Mintz, C., Clark, M., Burton, K., Acree, W. E. Jr., and Abraham, M. H., Enthalpy of solvation correlations for gaseous solutes dissolved in benzene and in alkane solvents based on the Abraham model, *QSAR Comb. Sci.*, **2007**, *26*, 881-888. <u>https://doi.org/10.1002/qsar.200630152</u>
- ³⁹Mintz, C., Burton, K., Acree, W. E. Jr., and Abraham, M. H., Enthalpy of solvation correlations for gaseous solutes dissolved in linear alkanes (C5-C16) based on the Abraham model, *QSAR Comb. Sci.*, **2008**, 27, 179-186. <u>https://doi.org/10.1002/qsar.200730040</u>
- ⁴⁰Mintz, C., Burton, K., Ladlie, T., Clark, M., Acree, W. E. Jr., and Abraham, M. H., Enthalpy of solvation correlations for organic solutes and gases dissolved in N,Ndimethylformamide and tert-butanol, *J. Mol. Liq.*, **2009**, *144*, 23-31.<u>https://doi.org/10.1016/j.molliq.2008.09.002</u>
- ⁴¹Abraham, M. H., Ibrahim, A., and Acree, W. E Jr., Air to brain, blood to brain and plasma to brain distribution of volatile organic compounds: linear free energy analyses, *Eur. J. Med. Chem.*, **2006**, *41*, 494-502. <u>https://doi.org/10.1016/j.ejmech.2006.01.004</u>
- ⁴²Abraham, M. H., Ibrahim, A., and Acree WE Jr. Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: linear free energy analyses. *Chem. Res. Toxicol.*, **2006**, *19*, 801-808. <u>https://doi.org/10.1021/tx050337k</u>
- ⁴³Abraham, M. H., Ibrahim, A., and Acree, W. E., Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs, *Eur. J. Med. Chem.*, **2007**, *42*, 743-751. <u>https://doi.org/10.1016/j.ejmech.2006.12.011</u>
- ⁴⁴Abraham, M. H., Ibrahim, A., and Acree, W. E., Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs, *Eur. J. Med. Chem.*, **2008**, *43*, 478-485. https://doi.org/10.1016/j.ejmech.2007.04.002

- ⁴⁵Abraham, M. H. and Ibrahim, A., Air to fat and blood to fat distribution of volatile organic compounds and drugs: Linear free energy analyses. *Eur. J. Med. Chem.*, 2006; 41: 1430-1438. <u>https://doi.org/10.1016/j.ejmech.2006.07.012</u>
- ⁴⁶Hoover, K. R., Acree, W. E. Jr., and Abraham, M. H., Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model, *Chem. Rre. Toxicol.*, **2005**, *18*, 1497-505. <u>https://doi.org/10.1021/tx050164z</u>
- ⁴⁷Hoover, K. R., Flanagan, K. B., Acree, W. E. Jr., Abraham, M. H. Chemical toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model, *J. Environ. Eng. Sci.*, **2007**, *6*, 165-174. <u>https://doi.org/10.1139/s06-041</u>
- ⁴⁸Bowen, K. R., Flanagan, K. B., Acree, W. E., Abraham, M. H., Rafols, C, Correlation of the toxicity of organic compounds to tadpoles using the Abraham model, *Sci. Total Environ.*, **2006**, *371*, 99-109. https://doi.org/10.1016/j.scitotenv.2006.08.030
- ⁴⁹Bowen, K. R., Flanagan, K. B., Acree, W. E., Abraham, M. H., Correlating toxicities of organic compounds to select protozoa using the Abraham model, *Sci. Total Environ.*, **2006**, *369*, 109-118.

https://doi.org/10.1016/j.scitotenv.2006.05.008

- ⁵⁰Cometto-Muniz, J. E., Cain, W. S., Abraham, M. H., Determinants for nasal trigeminal detection of volatile organic compounds, *Chem. Senses*, **2005**, *30*, 627-642. <u>https://doi.org/10.1093/chemse/bji056</u>
- ⁵¹Abraham, M. H., Kumarsingh, R., Cometto-Muniz, J. E., and Cain, W. S., An algorithm for nasal pungency thresholds in man, *Arch. Toxicol.*, **1998**, 72, 227-232. <u>https://doi.org/10.1007/s002040050493</u>
- ⁵²Abraham, M. H., Andonian-Haftvan, J., Cometto-Muniz, J. E., Cain, W. S., An analysis of nasal irritation thresholds using a new solvation equation, *Fund. Appl. Toxicol.*, **1996**, *31*, 71-76. <u>https://doi.org/10.1006/faat.1996.0077</u>
- ⁵³Abraham, M. H., Gola, J. M. R., Cometto-Muniz, J. E., and Cain, W. S., The correlation and prediction of VOC thresholds for nasal pungency, eye irritation and odour in humans, *Indoor+Built Environ.*, **2001**, *10*, 252-257. <u>https://doi.org/10.1177/1420326X0101000320</u>
- ⁵⁴Abraham, M. H., Hassanisadi, M., Jalali-Heravi, M., Ghafourian, T., Cain, W. S., Cometto-Muniz, J. E., Draize rabbit eye test compatibility with eye irritation thresholds in humans: A quantitative structure-activity relationship analysis, *Toxicol. Sci.*, 2003, *76*, 384-391. https://doi.org/10.1093/toxsci/kfg242
- ⁵⁵Abraham, M. H., Kumarsingh, R., Cometto-Muniz, J. E., Cain, W. S., Draize eye scores and eye irritation thresholds in man can be combined into one QSAR, *Ann. New York Acad. Sci.*, **1998**, 855, 652-656. <u>https://doi.org/10.1111/j.1749-6632.1998.tb10641.x</u>
- ⁵⁶Abraham, M. H., Acree, W. E. Jr., Mintz, C., and Payne, S., Effect of anesthetic structure on inhalation anesthesia: implications for the mechanism, *J. Pharm. Sci.*, **2008**, *97*, 2373-2384. <u>https://doi.org/10.1002/jps.21150</u>
- ⁵⁷Abraham, M. H. and Acree, W. E Jr., Prediction of convulsant activity of gases and vapors, *Eur. J. Med. Chem/.*, **2009**, 44, 885-890. <u>https://doi.org/10.1016/j.ejmech.2008.05.027</u>
- ⁵⁸Zhao, Y. H., Abraham M. H., Hersey, A., and Luscombe, C. N., Quantitative relationship between rat intestinal absorption and Abraham descriptors, *Eur. J. Med. Chem.*, **2003**, *38*, 939-47. <u>https://doi.org/10.1016/j.ejmech.2003.07.005</u>
- ⁵⁹Zhao, Y. H., Le, J., Abraham, M. H., Hersey, A., Eddershaw, P. J., Luscombe, C. N., Boutina, D., Beck, G., Sherborne, B., Cooper, I., and Platts, J. A., Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors, *J. Pharm. Sci.*, **2001**, *90*, 749-784. <u>https://doi.org/10.1002/jps.1031</u>

- ⁶⁰He, J., Abraham, M. H., Acree, W. E. Jr., and Zhao, Y. H., A linear free energy analysis of PAMPA models for biological systems, *Int. J. Pharm.*, **2015**, 496, 717-22. <u>https://doi.org/10.1016/j.ijpharm.2015.10.064</u>
- ⁶¹Abraham, M. H. and Martins, F., Human skin permeation and partition: General linear free-energy relationship analyses, *J. Pharm. Sci.*, **2004**, *93*, 1508-1523. https://doi.org/10.1002/jps.20070
- ⁶²Abraham, M. H. and Acree, W. E. Jr., Estimation of vapor pressures of liquid and solid organic and organometallic compounds at 298.15 K, *Fluid Phase Equilib.*, **2020**, in press, 112595/1-112595/xx. https://doi.org/10.1016/j.fluid.2020.112595
- ⁶³Krkosova, Z., Kubinec, R., Sojak, L., and Amann, A., Temperature-programmed gas chromatography linear retention indices of all C₄-C₃₀ monomethylalkanes on methylsilicone OV-1 stationary phase, *J. Chromatog. A*, **2008**, *1179*, 59-68. https://doi.org/10.1016/j.chroma.2007.10.081
- ⁶⁴Zissimos, A. M., Abraham, M. H., Barker, M. C., Box, K. J., and Tam, K. Y., Calculation of Abraham descriptors from solvent-water partition coefficients in four different systems; evaluation of different methods of calculation, *J. Chem. Soc.*, *Perkin Trans.* 2, **2002**, 470-477. <u>https://doi.org/10.1039/B110143A</u>
- ⁶⁵Zissimos, A. M., Abraham, M. H., Du, C. M., Valko, K., Bevan, C., Reynolds, D., Wood, J., and Tam, K. Y., Calculation of Abraham descriptors from experimental data from seven HPLC systems; evaluation of five different methods of calculation, *J. Chem. Soc., Perkin Trans.* 2, **2002**, 2001-2010. <u>https://doi.org/10.1039/B206927J</u>
- ⁶⁶Green, C. E., Abraham, M. H., Acree, W. E. Jr., De Fina, K. M., and Sharp, T. L., Solvation descriptors for pesticides from the solubility of solids: diuron as an example, *Pest Manage. Sci.*, **2000**, *56*, 1043-1053. <u>https://doi.org/10.1002/1526-</u> <u>4998(200012)56:12<1043::AID-PS242>3.0.CO;2-6</u>
- ⁶⁷Abraham, M. H., Green, C. E., Acree, W. E., Jr., Correlation and prediction of the solubility of Buckminsterfullerene in organic solvents; estimation of some physicochemical properties, *Perkin 2*, **2000** 281-286. <u>https://doi.org/10.1039/A9074611</u>
- ⁶⁸Abraham, M. H., Green, C. E., Acree, W. E. Jr., Hernandez, C. E., and Roy, L. E., Descriptors for solutes from the solubility of solids: trans-stilbene as an example, *J. Chem. Soc., Perkin Trans.* 2, **1998**, 2677-2682. <u>https://doi.org/10.1039/A8057691</u>
- ⁶⁹Charlton, A. K., Daniels, C. R., Acree, W. E. Jr., and Abraham, M. H., Solubility of crystalline nonelectrolyte solutes in organic solvents: Mathematical correlation of acetylsalicylic acid solubilities with the Abraham general solvation model, J. Solut. Chem., 2003, 32, 1087-1102. https://doi.org/10.1023/B:JOSL.0000023923.12017.a8
- ⁷⁰Charlton, A. K., Daniels, C. R., Wold, R. M., Pustejovsky, E., Acree, W. E. Jr., and Abraham, M. H., Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-nitrobenzoic acid solubilities with the Abraham general solvation model, *J. Mol. Liq.*, **2005**, *116*, 19-28. <u>https://doi.org/10.1016/j.molliq.2004.06.001</u>
- ⁷¹Abraham, M. H., Acree, W. E. Jr., and Cometto-Muniz, J. E., Descriptors for terpene esters from chromatographic and partition measurements: Estimation of human odor detection thresholds, *J. Chromatog. A*, **2020**, *1609*, 460428/1-460428/5.<u>https://doi.org/10.1016/j.chroma.2019.460428</u>
- ⁷²Abraham, M. H., Gola, J. R. M., Gil-Lostes, J., Acree, W. E. Jr., and Cometto-Muniz, J. E., Determination of solvation descriptors for terpene hydrocarbons from chromatographic measurements, *J. Chromatog. A*, **2013**, *1293*, 133-141. <u>https://doi.org/10.1016/j.chroma.2013.03.068</u>

- ⁷³Naef, R. and Acree, W. E. Jr., Calculation of five thermodynamic molecular descriptors by means of a general computer algorithm based on the group-additivity method: standard enthalpies of vaporization, sublimation and solvation, and entropy of fusion of ordinary organic molecules and total phase-change entropy of liquid crystals, *Molecules*, **2017**, 22, 1059/1-1059/41. https://doi.org/10.3390/molecules22071059
- ⁷⁴Abraham, M. H., Acree, W. E. Jr., and Zissimos, A. M., The correlation and prediction of infinite dilution activity coefficients of compounds in water at 298.15 K, *Fluid Phase Equilib.*, **2017**, *449*, 117-129. <u>https://doi.org/10.1016/j.fluid.2017.06.017</u>

⁷⁵Abraham, M. H. and Acree, W. E. Jr., The correlation and prediction of the temperature variation of infinite dilution activity coefficients of compounds in water, *Fluid Phase Equilib.*, **2018**, 455, 1-5. <u>https://doi.org/10.1016/j.fluid.2017.09.026</u>

> Received: 01.06.2020. Accepted: 17.06.2020.