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Abstract. Recently a criterion has been given for determining the weakly formal
Weierstrass non-integrability of polynomial differential systems in C2. Here we ex-
tend this criterion for determining the strongly formal Weierstrass non-integrability
which includes the weakly formal Weierstrass non-integrability of polynomial differen-
tial systems in C2. The criterion is based on the solutions of the form y = f (x) with
f (x) ∈ C[[x]] of the differential system whose integrability we are studying. The results
are applied to a differential system that contains the famous force-free Duffing and the
Duffing–Van der Pol oscillators.
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1 Introduction and statement of the main result

One of the main problems in the qualitative theory of differential systems is the integrability

problem. For differential systems in C2 this problem consists in to determine if the system

has or not an explicit first integral. When this first integral can be expressed as quadratures of

elementary functions we have the so-called Liouville integrability, which is the most studied,

see for instance [16, 30, 31] and references therein. The Liouville integrability is based on the

cofactors of the invariant algebraic curves and the exponential factors (see definitions below).

Some generalizations of the Liouville integrability theory defining the generalized cofactors

have been obtained, see [7, 8, 10, 11, 19, 20, 30, 31].

Some differential systems have an explicit first integral that cannot be expressed as quadra-

tures of elementary functions. Hence these systems are not Liouville integrable. Sometimes

these first integrals can be expressed in terms of special functions, as for instance functions

that are solutions of second order linear differential equations (in [11, 19, 29] several examples

are given). To determine when a differential system is not Liouville integrable is an open

problem, see [25]. A partial answer to this question has been recently given in [23].

BCorresponding author. Email: gine@matematica.udl.cat



2 J. Giné and J. Llibre

In this work we present a criterion to detect the strongly formal Weierstrass non-

integrability which is a generalization of the criterion for detecting weakly formal Weierstrass

non-integrability given in [23]. Finally we apply this new criterion to some differential sys-

tems. Puiseux Weierstrass integrability is a generalization of formal Weierstrass integrability

which includes the Liouville integrability and is based on the Puiseux Weierstrass polynomi-

als, see again [23] and below.

First we provide some preliminary definitions and results.

In this paper we consider polynomial differential systems in the plane C2 that are given

by

ẋ = P(x, y), ẏ = Q(x, y), (1.1)

where the functions P and Q are polynomials in the complex variables x and y. We define by

m = max{deg P, deg Q} the degree of system (1.1) with P(0, 0) = Q(0, 0) = 0. Along the paper

we also consider the associated differential equation

dy

dx
=

Q(x, y)

P(x, y)
, (1.2)

and the associated vector field X = P(x, y)∂/∂x + Q(x, y)∂/∂y.

An invariant algebraic curve of system (1.1) is an invariant curve f = 0 with f ∈ C[x, y], such

that the orbital derivative ḟ = X f = P∂ f /∂x + Q∂ f /∂y vanishes on f = 0. This condition

implies that there exists a polynomial K(x, y) ∈ C[x, y] of degree less than or equal to m − 1

such that

X f = P
∂ f

∂x
+ Q

∂ f

∂y
= K f . (1.3)

This polynomial K is called the cofactor of the curve f (x, y) = 0.

A function of the form e f /g with f and g polynomials is called an exponential factor if there

is a polynomial L of degree at most m − 1 such that

X (e f /g) = P
∂e f /g

∂x
+ Q

∂e f /g

∂y
= L e f /g.

The polynomial L is called the cofactor of the exponential factor e f /g.

A non-locally constant function H : U ⊂ C2 → C is a first integral of system (1.1) in the

open set U if this function is constant on each solution (x(t), y(t)) of system (1.1) contained

in U. In fact if H ∈ C1(U) is a first integral of system (1.1) on U if and only if X H =

P∂H/∂x + Q∂H/∂y ≡ 0 on U. A non-constant function M : U ⊂ C2 → C is an integrating

factor in U if

P
∂M

∂x
+ Q

∂M

∂y
= −

(

∂P

∂x
+

∂Q

∂y

)

M = −div(X )M. (1.4)

This integrating factor M is associated to a first integral H when MP = −∂H/∂y and MQ =

∂H/∂x. Moreover V = 1/M is an inverse integrating factor in U \ {M = 0}.

A polynomial differential system (1.1) has a Liouville first integral H if its associated inte-

grating factor is of the form

M = exp

(

D

E

)

∏
i

Cαi
i , (1.5)

where D, E and the Ci are polynomials in C[x, y] and αi ∈ C, see [3, 17, 30, 31]. The curves

Ci = 0 and E = 0 are invariant algebraic curves of the differential system (1.1), and the
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exponential exp(D/E) is a product of some exponential factors associated to the multiple

invariant algebraic curves of system (1.1) or to the invariant straight line at infinity, see for

instance [2, 4, 5, 15] or Chapter 8 of [10].

The Liouville integrability is based on the existence of algebraic cofactors for the invariant

algebraic curves and for the exponential factors. The first generalization of this theory is to

consider non-algebraic invariant curves but still with algebraic cofactors, see [11]. In [12] a

method for detecting non-algebraic invariant curves for polynomial differential systems was

given. However there exist non-algebraic invariant curves without an algebraic cofactor, see

[20].

Now we are recall the definition of Puiseux Weierstrass integrability introduced in [23].

Let C((x))) be the set of series in fractionary powers in the variable x with coefficients in

C (these series are called Puiseux series), and C[y] the set of the polynomials in the variable y

with coefficients in the ring C. A function of the form

ℓ

∑
i=0

ai(x)yi ∈ C((x))[y] (1.6)

is a Puiseux Weierstrass polynomial in y of degree ℓ, i.e. a polynomial in the variable y with

coefficients in C((x)). Here we have privileged the variable y but of course we can privileged

the variable x instead of the y.

In the next result we provide the expression of the cofactor of an invariant curve y− g(x) =

0 with g(x) being a Puiseux series, for a proof see [23], see also [13].

Proposition 1.1. Let g(x) ∈ C((x)). An invariant curve of the form y − g(x) = 0 of a polynomial

differential system (1.1) of degree m has a Puiseux Weierstrass polynomial cofactor of the form

K(x, y) = km−1(x)ym−1 + · · ·+ k1(x)y + k0(x). (1.7)

A planar autonomous differential system is Puiseux Weierstrass integrable if admits an inte-

grating factor of the form (1.5) where D, E and the Ci’s are Puiseux Weierstrass polynomials.

This definition is a generalization of the Weierstrass integrability given in [19] and studied

in [21, 22, 24, 28]. We remark that by definition that all the Liouvillian integrable systems are

particular cases of the Puiseux Weierstrass integrable systems.

Let C[[x, y]] be the set of all formal power series in the variables x and y with coefficients

in C.

Theorem 1.2. If f ∈ C[[x, y]] then it has a unique decomposition of the form

f = uxs
ℓ

∏
j=1

(y − gj(x)), (1.8)

where gj(x) are Puiseux series and s ∈ Z, s ≥ 0 and u ∈ C[[x, y]] is invertible inside the ring

C[[x, y]].

For a proof of Theorem 1.2 see Corollary 1.5.6 of [1].

We note that a Darboux integrating factor (1.5) is analytic function where it is defined

consequently by Theorem 1.2 it can be written into the form (1.8).

The first aim of this work was to give a necessary condition for detecting the Puiseux

Weierstrass integrability but when gj(x) ∈ C[[x]]] of a polynomial differential system (1.1).



4 J. Giné and J. Llibre

However this has been impossible using only the formal solutions of the form y = f (x) of the

associated differential equation for the reasons that we will see later on.

We say that a polynomial differential system (1.1) is strongly formal Weierstrass integrable if

it has an integrating factor of the form

M(x, y) = α(x)
ℓ

∏
k=1

(y − gk(x))αk , (1.9)

where the functions α(x), gk(x) ∈ C[[x]] for i = 1, . . . , k. Note that the definition of strongly

formal Weierstrass integrability is a generalization of the definition of weakly formal Weier-

strass integrability given in [23], where that the functions α(x) is constant equal to one.

In this work we give a criterion for detecting when a polynomial differential system (1.1)

is not strongly formal Weierstrass integrable with α(x), gk(x) ∈ C[[x]]. This criterion is based

on the following result which provides a necessary condition in order that a polynomial dif-

ferential system (1.1) be strongly formal Weierstrass integrable with α(x), gk(x) ∈ C[[x]].

Our main result is the following one.

Theorem 1.3. Assume that a polynomial differential system (1.1) is strongly formal Weierstrass in-

tegrable with α(x), gk(x) ∈ C[[x]], and let H(x, y) be a first integral provided by the strongly formal

Weierstrass integrability.

(a) Let h(x) ∈ C[[x]] and y = h(x) be an invariant curve of the system such that H(x, y) is defined

on the curve y = h(x). Then there exists an integrating factor M(x, y) of the form (1.9) such

that M(x, h(x)) = 0.

(b) Assume that the origin of system (1.1) is a singular point, and the first integral H(x, y) and

M(x, y) of statement (a) are well-defined at the origin. Then a linear combination of the formal

Weierstrass polynomial cofactors up to order r of the solutions of the form y = f (x) satisfying

Eq := ẋdy/dx − ẏ = 0 must be equal to minus the divergence of system (1.1) up to order r.

Theorem 1.3 is proved in Section 2.

Now we apply Theorem 1.3 to a differential system that contains the force-free Duffing

and Duffing–Van der Pol oscillators. Hence we consider the differential system

ẋ = y, ẏ = −(ζx2 + α)y − (εx3 + σx). (1.10)

This system contains the famous force-free Duffing (ζ = 0, ε 6= 0) and the Duffing–Van der

Pol (ζ 6= 0, ε 6= 0) oscillators that appear in several fields of mathematics, physics, biology,

see [18] and references therein. The Liouville integrability of system (1.10) was studied in [9]

where the following results were established.

Theorem 1.4. System (1.10) with ζ = 0 and ε 6= 0 is Liouvillian integrable if and only if either α = 0,

or σ = 2α2/9.

In the case ζ 6= 0 by a suitable rescaling of the variables for the Duffing–Van der Pol system

we can take ζ = 3 without loss of generality.

Theorem 1.5. System (1.10) with ζ = 3 and ε 6= 0 is Liouvillian integrable if and only if α = 4ε/3

and σ = ε2/3.

Applying Theorem 1.3 to system (1.10) we obtain the following result.



Strongly formal Weierstrass non-integrability for polynomial differential systems 5

Theorem 1.6. System (1.10) can be strongly formal Weierstrass integrable with α(x), gk(x) ∈ C[[x]]

if, and only if, one of the following cases holds:

(a) σ = 2α2/9,

(b) σ 6= 2α2/9, σ 6= 0 and 3αε − 4ζσ = 0,

(c) σ 6= 2α2/9, σ 6= 0 and −21αε2 + 6α2εζ + 24εζσ − 7αζ2σ = 0,

(d) σ 6= 2α2/9, σ = 0 and −6ε(7ε − 2αζ) = 0.

We can see that all the Liouvillian integrable cases given in Theorems 1.4 and 1.5 are

included in Theorem 1.6. In particular the case ζ = 3 with α = 4ε/3 and σ = ε2/3 vanish the

condition −21αε2 + 6α2εζ + 24εζσ − 7αζ2σ = 0.

Theorem 1.6 is proved in Section 3.

The following proposition shows that if a polynomial differential system has a Puiseux

Weierstrass first integral of the form (1.5) then it has an integrating factor of the same form.

Proposition 1.7. If system (1.1) has a Puiseux Weierstrass first integral of the form (1.5), then it has

a Puiseux Weierstrass integrating factor of the form (1.5).

The proof is straightforward because M = (∂H/∂y)/P(x, y) which has the form (1.5). This

proposition was generalized in [17] for non-Liouville integrable systems.

2 Proof of Theorem 1.3

Proof of statement (a) of Theorem 1.3. By assumptions the first integral H(x, y) is defined on the

invariant curve y = h(x). So H(x, h(x)) = c ∈ C, and the first integral H̄(x, y) = H(x, y)− c

satisfies H̄(x, h(x)) = 0. Now we consider the integrating factor M(x, y) associated to the

first integral H̄. Perhaps this inverse integrating factor does not vanish at y = h(x), but we

consider the function M̄ = MF(H̄) being F an arbitrary function of H̄ such that F(0) = 0.

This function M̄ is also an inverse integrating factor of system (1.1) because

X (M̄) = X (MF(H̄)) = X (M)F(H̄) + MX (F(H̄)) = F(H̄)X (M)

= −F(H̄)div(X ) M = −div(X ) MF(H̄) = −div(X ) M̄.

Hence we obtain that M̄(x, h(x)) = 0 because F(0) = 0.

We can repeat this process to obtain an integrating factor that vanish in a finite number of

the solutions of the form y = h(x) such H(x, h(x)) = c ∈ C.

In the proof of statement (b) of Theorem 1.3 we shall need the following result, for a proof

see for instance Proposition 8.4 of [10].

Proposition 2.1. Assume that f ∈ C[x, y] and let f = f n1
1 . . . f nr

r be its factorization into irreducible

factors over C[x, y]. Then for a polynomial system (1.1), f = 0 is an invariant algebraic curve with

cofactor K f if and only if fi = 0 is an invariant algebraic curve for each i = 1, . . . , r with cofactor K fi
.

Moreover K f = n1K f1
+ . . . + nrK fr

.

Proof of statement (b) of Theorem 1.3. We assume that the system is strongly formal Weierstrass

integrable with α(x), gk(x) ∈ C[[x]] this means by definition that the system has an integrating

factor of the form (1.9). Hence we know that a first integral H and an integrating factor
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M of the form given in statement (a) can be found. We compute the solutions y = fi(x)

where fi(x) = ∑
∞
j=0 ajx

j with ai arbitrary coefficients that must satisfy the equation Eq :=

ẋdy/dx − ẏ = 0 up to certain order r. Note that these solutions satisfy that

either M(x, fi(x)) = O(xr), or M(x, fi(x)) = c2 +O(xr),

with c2 6= 0, this case appears when the integrating factor (1.8) has s = 0. The first ones

correspond to the fi(x) that approximate the invariant curves y = gk(x) that appear in the

integrating factor (1.9). For such fi(x) we compute the cofactor Ki up to certain order r though

the equation

X (y − fi(x)) = K̄i(y − fi(x)) +O(xr). (2.1)

Hence these cofactors K̄i of the solutions y − fi(x) are the approximations up to order r of the

cofactors Kk of the invariant curves y − gk(x) of the integrating factor (1.9).

The second ones satisfy

M(x, fi(x)) = α(x)
ℓ

∏
k=1

( fi(x)− gk(x))αk = c2 +O(xr). (2.2)

Hence, since c2 6= 0, M(x, fi(x)) = c2 +O(xr), and from (1.9) we have that α(0) 6= 0. Then up

to order r we have
ℓ

∏
k=1

( fi(x)− gk(x))αk =

[

c2

α(x)

]

r

+O(xr), (2.3)

where here [·]r means up to order r. Consequently y = fi(x) is an approximation up to order

r of the equation
ℓ

∏
k=1

(y − gk(x))αk =
c2

α(x)
. (2.4)

We apply the vector field operator to (2.4) and we obtain

X
(

ℓ

∏
k=1

(y − gk(x))αk

)

= X
(

c2

α(x)

)

= − c2α′(x)

α(x)2
P = −Kα

c2

α(x)
, (2.5)

because X (α(x)) = Kα(x, y)α(x) where Kα is a formal Weierstrass polynomial cofactor. This

happens because α(x) = 0 is an invariant algebraic curve of the vector field X . Indeed, α(x)

is a factor of the integrating factor M(x, y) given in (1.9), and M(x, y) = 0 is an invariant

curve because it satisfies (1.4), and the factors of an invariant curve are also invariant curves.

Moreover we have taken into account that X (α(x)) = α′(x)ẋ = α′(x)P(x, y) and then Kα =

α′(x)P(x, y)/α(x).

In summary from equations (2.4) and (2.5) we have

X
(

ℓ

∏
k=1

(y − gk(x))αk

)

= −Kα

ℓ

∏
k=1

(y − gk(x))αk . (2.6)

Now we apply the vector field operator to (2.3) and we obtain

X
(

ℓ

∏
k=1

( fi(x)− gk(x))αk

)

= X
([

c2

α(x)

]

r

)

+O(xr), (2.7)
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where X (O(xr)) = O(xr−1) P(x, fi(x)) = O(xr). Taking into account equation (2.5) we define

the new cofactor K̃α through the equation

X
([

c2

α(x)

]

r

)

= −K̃α

([

c2

α(x)

]

r

)

(2.8)

which is equation (2.5) taking the lower terms up to r and where K̃α is an approximation up

to r of the cofactor Kα. Therefore from (2.3), (2.7) and (2.8) we obtain an approximation of the

cofactor of α(x) up to order r computing

X
(

∏
ℓ

k=1( fi(x)− gk(x))αk

)

∏
ℓ

k=1( fi(x)− gk(x))αk

= −K̃α +O(xr). (2.9)

By the definition of integrating factor (1.9) and from the extension of the Darboux theory

to Weierstrass functions, see for instance Theorem 3 of [23], we have that

X (M) = −div(X )M. (2.10)

In short the cofactors K̄i of the solutions y − fi(x) passing through the origin are the

approximations up to order r of the cofactors Ki of the solution y = gi(x). By Proposition 2.1

the other solutions y − fi(x) not passing through the origin with cofactor K̃i give by equation

(2.9) an approximation up to order r of the cofactor K̃α of α(x), i.e.

s

∑
i=1

µiK̃i = −K̃α. (2.11)

Therefore, from (2.2), (2.10) and (2.11) we obtain that

ℓ

∑
i=1

λiK̄i +
s

∑
i=1

µiK̃i = −divr(X ) +O(xr+1). (2.12)

This proves statement (b) of the theorem.

In summary, if condition (2.12) is not satisfied then system (1.1) does not admit an inte-

grating factor of the form (1.9) and consequently is not strongly formal Weierstrass integrable.

Hence we have a necessary condition to have strongly formal Weierstrass integrability. Note

that if we have that ∑
ℓ
i=1 λiK̄i + ∑

s
i=1 µiK̃i = O(xr+1) system (1.1) satisfies a necessary condi-

tion to have a first integral of the form (1.9), see for more details statement (i) of Theorem 8.7

of [10].

3 Proof of Theorem 1.6

We apply the criterion provided by statement (b) of Theorem 1.3 to detect if system (1.10) can

be strongly formal Weierstrass integrable, that is, if it can has an inverse integrating factor of

the form (1.9). We propose a solution curve of the form

y = f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + · · ·

Substituting this solution in the first ordinary differential equation Eq := ẋdy/dx − ẏ = 0 we

get an infinite system of equations. First we have studied the case when a0 6= 0, and in this
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case it is easy to see that we find two solutions not passing through the origin but we do not

find any possible integrable case. So we consider the case a0 = 0. In order to determine the

first coefficients we fix up to certain order the developments of f (x) and Eq in power series of

the variable x. If we compute the solutions up to order 6 we obtain the following finite system

of equations

a2(3a1 + α) = 0, a2
1 + a1α + σ = 0,

2a2
2 + 4a1a3 + a3α + ε + a1ζ = 0, 7a3a4 + 7a2a5 + a4ζ = 0,

5a2a3 + 5a1a4 + a4α + a2ζ = 0, 3a2
3 + 6a2a4 + 6a1a5 + a5α + a3ζ = 0.

From the first equation we have two possibilities a2 = 0 or a1 = −α/3. First we take a2 = 0.

The obtained system is compatible and we get two solutions. We denote them y1 and y2 but

we do not write them here due to their long extensions. Now we study the case a1 = −α/3

with a2 6= 0. In this case the equation a2
1 + a1α + σ = 0 takes the form σ − 2α2/9 = 0. Hence

we must impose σ = 2α2/9 in order that the finite system of equations be compatible. Under

this condition we find four more solutions that we denote by y3, y4, y5 and y6, but again we do

not write them here due to their big extensions. We recall that all these solutions pass through

the origin, i.e., yi(0) = 0 for i = 1, . . . , 6. Now we compute their cofactors using equation (2.1),

that we denote by K̄i. Finally we verify if the equation

6

∑
i=1

λiK̄i = −div6X +O(x7),

has any solution, and since it has a solution statement (a) of the theorem follows.

Now we consider the case σ 6= 2α2/9. In this case the solutions yi for i = 3, . . . , 6 do not

exist and we only have the solutions y1 and y2. We compute their cofactors from equation

(2.1), that we denote by K̄1 and K̄2 and we verify if the equation

λ1K̄1 + λ2K̄2 = −div6X +O(x7),

is satisfied. This equation gives a system of three equations. The first one is

α(2 + λ1 + λ2)− (λ1 − λ2)
√

α2 − 4σ = 0. (3.1)

From this condition we can isolate λ1 if σ 6= 0 (we will consider σ = 0 below) and we have

λ1 =
α(2 + λ2) + λ2

√
α2 − 4σ

−α +
√

α2 − 4σ
.

From the second equation we obtain

(

−α + 2
√

α2 − 4σ + λ2

√

α2 − 4σ
)

(3αε − 4ζσ) = 0.

Hence we have two possibilities: If 3αε − 4ζσ = 0 the third equation can vanish choosing the

value of λ2 and this proves statement (b) of the theorem. If −α+ 2
√

α2 − 4σ+ λ2

√
α2 − 4σ = 0

we isolate the value of λ2, i.e.

λ2 =
α − 2

√
α2 − 4σ√

α2 − 4σ
,

and the third equation provides the condition −21αε2 + 6α2εζ + 24εζσ − 7αζ2σ = 0, which

shows statement (c) of the theorem.
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Now we study the case σ = 0. In this case condition (3.1) becomes α(1 + λ2) = 0. Taking

into account that we are in the case σ 6= 2α2/9, we must take λ2 = −1. The second condition

is ε(3 + λ1) = 0. The case ε = 0 gives a trivial integrable case. Hence we must consider

λ1 = −3. In this case the third condition gives −6ε(7ε − 2αζ) = 0 which proves statement (d)

of the theorem. Hence this completes the proof of theorem.

4 Examples

Example 4.1. Consider the differential system

ẋ = y + xy + x2, ẏ = 2y(y + x). (4.1)

This system was studied in [14] where an algorithmic method to determine integrability was

given. Using the method developed in [14] it was shown that system (4.1) has an integrating

factor of the form M(x, y) = ex2/(2y)y−5/2 and the a Liouville first integral

H(x, y) =
e

x2

2y

√
y
+
√

2
∫ x/

√
2y

0
et2

dt.

Now we are going to apply the criterion provided by statement (b) of Theorem 1.3 for de-

tecting if system (4.1) can have an inverse integrating factor of the form (1.9). We propose a

solution curve of the form

y = f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + · · ·

Substituting this solution in the first ordinary differential equation Eq := ẋdy/dx − ẏ = 0 we

get an infinite system of equations. In order to determine the first coefficients we fix up to

certain order the developments of f (x) and Eq in power series in variable x. If we do that up

to order 6 and we solve the finite system of equations we obtain the following solutions.

1) a6 = a5 = a4 = a3 = a2 = a1 = 0,

2) a6 = −1368989−4007
√

150829
607500 , a5 = 781+3

√
150829

750 , a4 = 173−
√

150829
900 ,

a3 = − 2
3 , a2 = 497−

√
150829

70 , a1 = 427−
√

150829
35 , a0 = 427−

√
150829

70 ,

3) a6 = −1368989+4007
√

150829)
607500 , a5 = 781−3

√
150829)

750 , a4 = 173+
√

150829)
900 ,

a3 = − 2
3 , a2 = 497+

√
150829

70 , a1 = 427+
√

150829
35 , a0 = 427+

√
150829

70 .

The solutions correspond to the solution curves

1) y1 = 0 +O(x7),

2) y2 = f2(x) = 427−
√

150829
70 + 427−

√
150829

35 x + 497−
√

150829
70 x2 − 3

2 x3

+ 173−
√

150829)
900 x4 + 781+3

√
150829

750 x5 − 1368989+4007
√

150829
607500 x6 +O(x7),

3) y3 = f3(x) = 427+
√

150829
70 + 427+

√
150829

35 x + 497+
√

150829
70 x2 − 3

2 x3

+ 173+
√

150829)
900 x4 + 781−3

√
150829

750 x5 − 1368989−4007
√

150829
607500 x6 +O(x7),
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respectively. The first one corresponds to the invariant algebraic curve y = 0 whose cofactor

is 2x + 2y. However, in general, we can have an approximation of a solution of the form y =

gk(x) and an approximation of its cofactor. To compute the approximation of the Weierstrass

polynomial cofactor of the solution curve y = 0, since the system is of degree 2, it must be of

the form K̄1 = k0(x) + k1(x)y. Hence we have the equation

∂(y − y1)

∂x
ẋ +

∂(y − y1)

∂y
ẏ = (k0(x) + k1(x)y)(y − y1) +O(x7),

From here we obtain k0 = 2x and k1 = 2.

For determining the cofactors of the other two solutions y = fi(x) for i = 2, 3 we use

equation (2.7) that in this case are

X (y2(x)− y1(x)) = K̃2(x)(y2(x)− y1(x)) +O(x7),

X (y3(x)− y1(x)) = K̃3(x)(y3(x)− y1(x)) +O(x7),

We do not write here the expressions of K̃2 and K̃3 due to their extension but the reader can

compute them straightforward. Now we study if the cofactors K̄1, K̄2 and K̄3 satisfy (2.12), i.e.

λ1K̄1 + µ1K̃2 + µ2K̃3 = −div6X +O(x7),

and this equation has not solution. Hence system (4.1) has not an integrating factor of the

form (1.9), this implies that system (4.1) is not strongly formal Weierstrass integrable.

If we try to see if there is a linear combination that gives zero, then the system has the

unique solution λ1 = µ2 = µ3 = 0. Therefore the system has not a first integral of the form

(1.9).

The conclusion is that system (4.1) is not strongly formal Weierstrass integrable in the

original coordinates (x, y). However we can ask if system (4.1) is strongly formal Weierstrass

integrable after a change of variable. The answer to this question is positive as we will see

below.

System (4.1) after doing the change of variables

z =
x
√

2y
, u =

√
y,

takes the form

u̇ =
√

2u2 + 2uz, ż = 1.

First we rename the new variables of the form u := x and z := y. So the equation associated

to this differential system is the Bernoulli equation dx/dy =
√

2x2 + 2xy, and then its integra-

bility is straightforward. In fact an integrating factor is given by M(x, y) = e−y2
x2 and a first

integral is

H(x, y) =
ey2

x
+
√

2
∫ y

0
et2

dt.

Anyway we are going to apply the necessary condition of strongly formal Weierstrass inte-

grability to this system. Attending to the form of the integrating factor in this case the answer

must be positive.

Hence consider the system of the form

ẋ =
√

2x2 + 2xy, ẏ = 1. (4.2)
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Now we study if system (4.2) is strongly formal Weierstrass integrable. We propose a solution

curve of the form

y = f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + · · ·

Substituting this solution in the ordinary differential equation Eq := ẋdy/dx − ẏ = 0 we get

an infinite system of equations without any solution. Therefore privileging the variable y the

system has no solutions curves. Next we propose a solution curve of the form

x = f (y) = a0 + a1y + a2y2 + a3y3 + a4y4 + a5y5 + · · ·

Substituting this solution in the first ordinary differential equation Eq := ẋdx/dy − ẋ = 0 we

get an infinite system of equations. We determine the first parameters fixing certain order in

the developments of f (y) and Eq in power series of the variable y. If we do that up to order 4

and we solve the finite system of equations we obtain the following solutions.

1) x1 = O(x5),

2) x2 = − i
15

√

225−15
√

15
2 + −15+

√
15

15
√

2
y − i

15

√

15−
√

15
2 y2 −

√
2

45 (6 +
√

15)y3

+ i
450

√

15−
√

15
2 (10 + 3

√
15)y4 +O(x5),

3) x3 = i
15

√

225−15
√

15
2 + −15+

√
15

15
√

2
y + i

15

√

15−
√

15
2 y2 −

√
2

45 (6 +
√

15)y3

− i
450

√

15−
√

15
2 (10 + 3

√
15)y4 +O(x5),

4) x4 = −i

√

15+
√

15
30 − 15+

√
15

15
√

2
y + i

15

√

15+
√

15
2 y2 −

√
2

45 (6 −
√

15)y3

− i
450

√

15+
√

15
2 (10 − 3

√
15)y4 +O(x5),

5) x5 = i

√

15+
√

15
30 − 15+

√
15

15
√

2
y − i

15

√

15+
√

15
2 y2 −

√
2

45 (6 −
√

15)y3

+ i
450

√

15+
√

15
2 (10 − 3

√
15)y4 +O(x5).

Next we compute their Weierstrass polynomial cofactor for the solution curve y1 through the

equation
∂(x − x1)

∂x
ẋ +

∂(x − x1)

∂y
ẏ = (k0(y) + k1(y)x)(x − x1) +O(x5),

which is K̄1 =
√

2x + 2y, and the cofactors of the other solutions through the equations

X (xi(x)− x1(x)) = K̃i(x)(xi(x)− x1(x)) +O(x5),

for i = 2, 3, 4, 5. We do not write here the expressions of these cofactors due to their extension.

Finally we try to see if there is a linear combination of these cofactors equals to minus the

divergence, that is,

λ1K̄1 + µ2K̃2 + µ3K̃3 + µ4K̃4 + µ5K̃5 = −div4X +O(x5),

and this system has the solution λ1 = −2, µ2 = 5/6 −
√

5/3, µ3 = 5/6 −
√

5/3, µ4 = 5/6 +√
5/3 and µ5 = 5/6 +

√
5/3. Hence system (4.2) satisfies the strongly formal Weierstrass

integrability condition and it can have an integrating factor of the form (1.9) as indeed it
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has. Moreover we can also study if the system has a first integral of the form (1.9) using the

equation

λ1K̄1 + µ2K̃2 + µ3K̃3 + µ4K̃4 + µ5K̃5 = O(x5),

and this system has the only solution λ1 = µ2 = µ3 = µ4 = µ5 = 0. Consequently system (4.2)

has not a first integral of the form (1.9).

Example 4.2. In 1944 Kukles [27] studied the following system

ẋ = y, ẏ = −x + Q(x, y), (4.3)

where Q(x, y) = a1x2 + a2xy + a3y2 + a4x3 + a5x2y + a6xy2 + a7y3, giving the conditions in

order that the origin of (4.3) be a center. However some decades later in [6, 26] was proved

that the conditions were uncompleted showing that the origin of the following system has

also a center. Consider the system

ẋ = y, ẏ = −x + x2 − x3

3
− x2y√

2
− 2y2 +

y3

3
√

2
. (4.4)

System (4.4) has an inverse integrating factor of the form

V(x, y) = e−x(1− x
2 )(3

√
2(1 − x) + x(

√
2 x + y))3,

and the following first integral

H(x, y) =
y2(x + 1) + 2

√
2xy(x − 2) + 6(3x − 2) + 2x3 − 10x2

(x(y +
√

2x) + 3
√

2(1 − x))2
ex(1− x

2 ) +
∫

ex(1− x
2 )dx .

The analyticity of this first integral around the origin implies that the origin is a center.

Now we are going to apply the criterion to detect if system (4.1) can have a strongly formal

Weierstrass first integral. We propose a solution curve of the form y = f (x) = ∑i=0 aix
i and

substitute this solution into the differential equation Eq := ẋdy/dx − ẏ = 0 and we get an

infinite system of equations. If we develop up to order 3 and we solve the finite system of

equations we obtain the solutions curves.

1) y1 = ix − ix2 +O(x3),

2) y2 = −ix + ix2 +O(x3),

3) y3,4 = 3
√

2 ±
√

3(4 −
√

6)− (
√

2 +
√

3)x + 1/12
(

6
√

2 − 6
√

3 ±
√

3(4 −
√

6)3/2

∓10
√

3(4 −
√

6)
)

x2 +O(x3),

4) y5,6 = 3
√

2 ±
√

3(4 ∓
√

6) + (−
√

2 +
√

3)x + 1/12
(

6
√

2 + 6
√

3 ±
√

3(4 +
√

6)3/2

∓10
√

3(4 +
√

6)
)

x2 +O(x3).

Now we compute the Weierstrass polynomial cofactor of the first two solutions curves.

These cofactors, as the system is of degree 3 must be of the form K = k0(x) + k1(x)y +

k2(x)y2. Applying equation (2.1) to the solution curves y − f (x) = 0 we obtain the Weierstrass

polynomial cofactors up to order 3 in the variable x

1) K1 = −1/6(6i + 4(−3i +
√

2)x2)− 1/6(12 −
√

2ix +
√

2ix2)y + 1/(3
√

2)y2 +O(x3),
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2) K2 = 1/6(6i − 4(3i +
√

2)x2)− 1/6(12 +
√

2ix −
√

2ix2))y + 1/(3
√

2)y2 +O(x3),

The cofactors of the other solutions must be computed through the equation (2.9) that in this

case are

X
(

(yi(x)− y1(x))(yi(x)− y2(x))
)

= K̃i(x)
(

(yi(x)− y1(x))(yi(x)− y2(x))
)

+O(x3),

for i = 3, 4, 5, 6. We do not write here the expressions of these cofactors due to their extension.

From statement (b) of Theorem 1.3 we study if system (4.4) has a strongly formal

Weierstrass first integral using the equation

λ1K1 + λ2K2 + µ3K3 + µ4K4 + µ5K5 + µ6K6 = O(x3),

and this system has the solution λ1 = λ2 = 0 and

µ6 =
µ5

(

6
√

10 + 5
√

15 − 6
√

24 − 6
√

6 − 15
√

4 −
√

6
)

6
√

10 + 5
√

15 + 6
√

24 − 6
√

6 + 15
√

4 −
√

6
,

µ3 =
µ5

D1

[

24
√

10 + 20
√

15 + 4

√

60 − 15
√

6 + 5

√

40 − 10
√

6

+ 129

√

24 − 6
√

6 + 316

√

4 −
√

6 + 8

√

4 +
√

6

+ 3

√

6(4 +
√

6)− 49

√

10(4 +
√

6)− 40

√

15(4 +
√

6)

]

,

µ4 =
µ5

D2

[

− 6
√

10 − 4
√

15 +

√

60 − 15
√

6 +

√

40 − 10
√

6

− 29

√

24 − 6
√

6 − 71

√

4 −
√

6 +

√

4 +
√

6 +

√

6(4 +
√

6)

+ 11

√

10(4 +
√

6) + 9

√

15(4 +
√

6)

]

,

where we have D1 = 372 + 152
√

6 + 80
√

60 − 15
√

6 + 98
√

40 − 10
√

6 and D2 = 84 + 34
√

6 +

18
√

60 − 15
√

6 + 22
√

40 − 10
√

6. Consequently system (4.4) can have a strong formal

Weierstrass first integral as indeed it has as we have seen before.
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Abstract. We study the problem of existence of periodic solutions for some generalisa-
tions of the relativistic Liénard equation

d

dt

ẋ√
1 − ẋ2

+ f̂ (x, ẋ)ẋ + g(x) = 0 ,

and the prescribed curvature Liénard equation

d

dt

ẋ√
1 + ẋ2

+ f̂ (x, ẋ)ẋ + g(x) = 0 ,

where the damping function depends both on the position and the velocity. In the
associated phase-plane this corresponds to a term of the form f (x, y) instead of the
standard dependence on x alone. By controlling the continuability of the solutions, we
are able to prove the existence of at least a limit cycle in the associated phase-plane
for both cases, moreover we provide results with a prefixed arbitrary number of limit
cycles. Some examples are given to show the applicability of these results.

Keywords: periodic orbits, limit cycles, Liénard relativistic equation, Liénard curvature
equation.

2010 Mathematics Subject Classification: 34C25, 34C07.

1 Introduction

The problem of the existence of periodic solutions for the Liénard differential equations of the
form

ẍ + f (x)ẋ + g(x) = 0 , (1.1)

BCorresponding author. Email: gabriele.villari@unifi.it
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has been widely investigated in the literature and there is an enormous number of papers
originated from the pioneering work by Liénard [7] in 1928. The interested reader can consult
for instance [5, 15, 16] and the references quoted therein.

Recently, particular attention has been given to the study of generalisations of Eq. (1.1) of
the form

d

dt
ϕ(ẋ) + f (x)ẋ + g(x) = 0 , (1.2)

where a nonlinear function ϕ is involved. Once we replace the Newton acceleration ẍ in
Eq. (1.2) by the relativistic one, we get the so called relativistic Liénard equation

d

dt

ẋ√
1 − ẋ2

+ f (x)ẋ + g(x) = 0 , (1.3)

originally introduced and studied in [9, 11]. Similarly, one can study [10] the prescribed curva-

ture equation of Liénard type

d

dt

ẋ√
1 + ẋ2

+ f (x)ẋ + g(x) = 0 . (1.4)

The former models have been studied using a phase-plane analysis. Indeed Eq. (1.3) is
equivalent to the system







ẋ = y√
1+y2

ẏ = − f (x) y√
1+y2

− g(x) ,
(1.5)

while Eq. (1.4) can be rewritten as







ẋ = y√
1−y2

ẏ = − f (x) y√
1−y2

− g(x) .
(1.6)

Let us observe that, at a first glance, Eqs. (1.3) and (1.4) may look similar each other,
however once we pass to the phase-plane it is clear that system (1.6) is defined only in the
strip |y| < 1, while the former in the whole plane. This geometric feature makes the anal-
ysis completely different; indeed in order to obtain a winding trajectory and then apply the
Poincaré–Bendixson Theorem, it is crucial to control the possible blow-up of trajectories when
|y| → 1. To tackle this issue, Eq. (1.4) was studied in [10] in the particular case

d

dt

ẋ√
1 + ẋ2

+ λ f (x)ẋ + g(x) = 0 , (1.7)

where the real positive parameter λ should be taken sufficiently small, exactly to control the
trajectories.

The aim of this paper is to consider the more general case where the term f (x) in Eqs. (1.3)
and (1.4) has been replaced by f (x, ẋ). Let us observe that a particular case involving a term
f (x, ẋ), polynomial in ẋ, has been already investigated in [4] in the classical Liénard problem.
The interested reader can found other cases in [3, 6, 12, 17]. The goal of the present paper is
thus to deal with the following equations

d

dt

ẋ√
1 − ẋ2

+ f̂ (x, ẋ)ẋ + g(x) = 0 , (1.8)
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and
d

dt

ẋ√
1 + ẋ2

+ f̂ (x, ẋ)ẋ + g(x) = 0 . (1.9)

Observe that the first equation can be rewritten in the phase-plane as follows







ẋ = y√
1+y2

ẏ = − f (x, y) y√
1+y2

− g(x) ,
(1.10)

with f (x, y) = f̂ (x, y/
√

1 + y2). In the following we will impose some conditions on f (x, y)

to guaranteed the existence of a winding orbit (e.g. Lemma 3.5), let us however notice that
the above relation between f (x, y) and f̂ (x, ẋ) allows us to conclude that the assumptions on
f̂ can be very mild, because system (1.10), covers more general cases, as well as the following
system (1.11). The second Eq. (1.9) becomes







ẋ = y√
1−y2

ẏ = − f (x, y) y√
1−y2

− g(x) ,
(1.11)

using f (x, y) = f̂ (x, y/
√

1 − y2). In particular, the phase portrait of these two systems will
be studied, and the problem of existence, uniqueness and number of limit cycles will be
investigated.

The structure of the paper is the following. In Section 2 some basic properties of the
above systems will be presented, in particular we will develop further the method presented
in [9, 10] to deal with a case where the number of limit cycles can be completely determined
studying the curves where f (x, y) = 0. The main results will be presented and proved in
Section 3, while in Section 4 some examples will be presented and discussed.

2 Definitions and basic facts

Throughout the paper, we assume the functions f (x, y) and g(x) to be regular enough to
ensure the existence and uniqueness of the associated Cauchy problem. Moreover we assume
xg(x) > 0 for x 6= 0. Therefore (0, 0) is the unique equilibrium point for both systems (1.10)
and (1.11).

The slope of the trajectories of latter systems is given by the following expressions, where
y′ denotes the derivative of y with respect to x:

y′(x) = − f (x, y)− g(x)

√

1 + y2

y
, (2.1)

and

y′(x) = − f (x, y)− g(x)

√

1 − y2

y
. (2.2)

Let us consider the phase-plane system equivalent to the classical Liénard system, Eq (1.1)

{

ẋ = y

ẏ = − f (x)y − g(x) ,
(2.3)
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whose slope is given by

y′ = − f (x)− g(x)

y
. (2.4)

Then one can remark that the main difference between the classical case and the former ones
(1.10) and (1.11), lies on the fact that trajectories of system (2.3) cannot cannot escape to infinity
(i.e. no vertical asymptote is allowed) in any finite interval α < x < β; this is no longer true
for systems (1.10) and (1.11) due to the presence of the function f (x, y). Another difference, as
already mentioned, is that trajectories of system (1.11) are constrained in the horizontal strip
|y| < 1.

Therefore, in the study of Eq. (1.10) in order to avoid the possibility of the existence of
vertical asymptotes some growth restriction on f (x, y) is required, as for instance that in any
finite interval α < x < β there exist two positive constants L and D such that | f (x, y)| < L|y|
for every x in α < x < β and |y| > D. This growth restriction will be easily improved in the
Lemma 3.5. On the other hand when dealing with Eq. (1.11) this lemma is not necessary due
to the fact that solutions are constrained in the horizontal strip |y| < 1.

Continuing our analysis of the phase-plane we can compare the slope (2.1) with the one
of system (2.4), this will allow us to use the former ones to drive the trajectories of the second
one. We eventually conclude that if f (x, y) > f (x) in xy > 0, then trajectories of system
(1.10) “enter” trajectories of system (1.5), while in xy < 0 we have the opposite situation.
More precisely we mean that once a trajectory of system (1.10) transversally crosses a given
orbit of system (1.5), then the former will never intersect the latter again and so it will remain
constrained in a region bounded by the second orbit. This property can be used in order to
prove the intersection of the trajectories with the x-axis for |x| large enough, in fact orbits of
the system (1.10) will be guided by the ones of system (1.5), and this will be used for finding
suitable conditions in order to prove that trajectories of system (1.10) turn clockwise.

When f (x, y) is identically to zero, the system (1.10) becomes the relativistic Duffing system,
namely







ẋ = y√
1+y2

ẏ = −g(x) ,
(2.5)

while system (1.11) becomes the prescribed curvature Duffing system, namely







ẋ = y√
1−y2

ẏ = −g(x) .
(2.6)

The phase-portraits of systems (2.5) and (2.6) has been previously studied in [9, 10], how-
ever we decided to hereby present a short analysis because this will determine a crucial step
in order to study the phase-portrait of systems (1.10) and (1.11).

The first observation is that both systems (2.5) and (2.6) have a Hamiltonian structure for
a suitable function H

{

ẋ = ∂H
∂y (x, y)

ẏ = − ∂H
∂x (x, y) ;

(2.7)

for system (2.5) we should use

Hr(x, y) =
√

1 + y2 − 1 + G(x) , (2.8)
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while for system (2.6)

Hc(x, y) = −
√

1 − y2 + 1 + G(x) , (2.9)

where in both cases G(x) is the integral of g(x), G(x) =
∫ x

0 g(s) ds.
Notice that in the original case of the Liénard system we would have H(x, y) = 1

2 y2 +G(x);
despite the difference, all these Hamiltonian functions will play the same role.

Moreover, it is possible to show that the origin is a global centre for both systems (2.5)
and (2.6) if and only if G(x) diverges to infinity for |x| → ∞, exactly as in the classical case,
while if G(x) is bounded the origin is a local centre. We observe that Hr(x, y) and Hc(x, y)

may be viewed as an energy first integral for both the modified Duffing systems (see [5] for a
discussion of the energy function in the classical case).

Taking Hr(x, y), respectively Hc(x, y), as a Lyapunov function for systems (1.10), respec-
tively (1.11), we obtain, for its time-derivative along the trajectories the relations

dHr

dt
(x, y) =

y
√

1 + y2

(

− f (x, y)
y

√

1 + y2
− g(x)

)

+ g(x)
y

√

1 + y2
= − f (x, y)

y2

1 + y2 , (2.10)

for the system (1.10), while

dHc

dt
=

y
√

1 − y2

(

− f (x, y)
y

√

1 − y2
− g(x)

)

+ g(x)
y

√

1 − y2
= − f (x, y)

y2

1 − y2 , (2.11)

in the case of system (1.11). Therefore, when f (x, y) is positive the trajectories of systems
(1.10) and (1.11) enter trajectories of systems (2.5) and (2.6) respectively, while when f (x, y)

is negative trajectories of system of systems (1.10) and (1.11) exit trajectories of systems (2.5)
and (2.6). This behaviour will be crucial in the following and as a first result we get that if
f (0, 0) < 0 then the origin is a source for both systems (1.10) and (1.11). Let us observe that
the latter result holds true even if f (0, 0) = 0 provided that f (x, y) < 0 sufficiently close to the
origin.

3 Main results

At this point we are able to present a first result, holding for both systems (1.10) and (1.11),
which provides examples of a system with a prescribed number of periodic solutions in the
light of the classical Poincaré example (the interested reader can consult the § 3.3 of the
survey [8]), moreover it shows the flexibility given by the fact that f (x, y) depends on two
variables.

Theorem 3.1. Consider system (1.10)







ẋ = y√
1+y2

ẏ = − f (x, y) y√
1+y2

− g(x) ,

let us assume G(x) → ∞ for |x| → ∞, and let for any fixed integer n and positive increasing

sequence ck

f (x, y) =
n

∏
k=1

(Hr(x, y)− ck) . (3.1)
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Then the system (1.10) exhibits exactly n limit cycles. Moreover their sizes become arbitrarily large as

n increases.

On the other hand if G is bounded, namely G(x) ≤ K, where K < min{G(−∞), G(+∞)}, let

f (x, y) =
n

∏
k=1

(Hr(x, y)− Kdk) , (3.2)

for any positive decreasing sequence dk, d1 < 1, then the system (1.10) admits again exactly n limit

cycles.

Proof. We observe that for unbounded G, once Hr(x, y) = ck (or Kdk in the case of bounded G),
the system (1.10) reduces to the Duffing one (2.4) and it clearly exhibits closed trajectories. The
rest of the proof follows straightforwardly using the signs discussion previously done.

Remark 3.2. A similar result holds for system (1.11). Namely if G is unbounded or bounded
by some K′

> 1 and one chooses

f (x, y) =
n

∏
k=1

(Hc(x, y)− ek) , (3.3)

for any positive decreasing sequence ek, e1 < 1 then the system has n limit cycles. Conversely
if G ≤ K′ ≤ 1, with K′

< min{G(−∞), G(+∞)}, one can take

f (x, y) =
n

∏
k=1

(

Hc(x, y)− K′ek

)

, (3.4)

and again the system exhibits n limit cycles.
The latter result looks more interesting, in fact it allows to prove the existence of limit

cycles without the need for a small parameter as done in Eq. (1.7) to force the solutions to
remain into the horizontal strip.

At this point in order to get the existence of a limit cycle, it is necessary to create a winding
trajectory, being the origin a source because of the assumptions made above. Therefore we
consider again systems (1.10) and (1.11) and present our main results.

3.1 The relativistic case

Theorem 3.3. Consider system (1.10) and let us assume the regularities conditions on f (x, y) and

g(x) given in Section 2. If f (0, 0) < 0, G(x) → ∞ for |x| → ∞, and there exist smooth functions

φ(x) > 0 and ψ(x) < 0 such that:

f (x, φ(x))φ(x) > −φ′(x)φ(x)− g(x)
√

1 + [φ(x)]2 ∀x ≤ α < 0 , (3.5)

and

f (x, ψ(x))ψ(x) < −ψ′(x)ψ(x)− g(x)
√

1 + [ψ(x)]2 ∀x ≥ β > 0 . (3.6)

There exists a positive function T(x) such that

| f (x, y)| ≤ LT(x)|y| ∀x ∈ [α, β] and |y| ≥ D > 0 . (3.7)

Assume then f (x, y) > 0 for x > β and y > 0 and x < α and y < 0.

Then the system (1.10) exhibits at least one stable limit cycle.
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Let us present two preliminary lemmas, upon which the proof of our theorem will be
based. We start with the following lemma which is based on previous results [1, 2, 13, 14].

Lemma 3.4. Let us assume there exist α < 0 and β > 0 and two smooth functions φ(x) and ψ(x)

such that

φ(x) > 0 ∀x ≤ α and ψ(x) < 0 ∀x ≥ β .

Assume moreover

f (x, φ(x))φ(x) > −φ′(x)φ(x)− g(x)
√

1 + [φ(x)]2 ∀x ≤ α , (3.8)

and

f (x, ψ(x))ψ(x) < −ψ′(x)ψ(x)− g(x)
√

1 + [ψ(x)]2 ∀x ≥ β . (3.9)

Then the orbits enter the regions bounded by y = φ(x) for x ≤ α and y = ψ(x) for x ≥ β (see

Fig. 3.1).

Proof. Let us consider the case involving φ(x) being the one for ψ(x) similar. The slope of
system (1.10) is given by

dy

dx
(x) = − f (x, y)− g(x)

√

1 + y2

y
, (3.10)

and thus evaluated on the graph of the function φ(x) gives:

dy

dx
(x)|y=φ(x) = − f (x, φ(x))− g(x)

√

1 + [φ(x)]2

φ(x)

=
1

φ(x)

[

− f (x, φ(x))φ(x)− g(x)
√

1 + [φ(x)]2
]

,
(3.11)

where in the rightmost equality we factorised φ(x).
Recalling the assumption (3.8) and the positiveness of φ(x) for x ≤ α we get:

dy

dx
(x)|y=φ(x) < φ′(x) ∀x ≤ α ,

that is orbits starting on y = φ(x) will enter the region bounded by such curve if x ≤ α.

α
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<latexit sha1_base64="cuWTlrz/krpxD7LcXQno3E2GJVY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquCPYiFLx4rGA/pF1KNs22oUl2SbLisvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHIz8zuPVGkWyXuTxtQXeCRZyAg2VnpIr/vxmFWfzgfliltz50CrxMtJBXI0B+Wv/jAiiaDSEI617nlubPwMK8MIp9NSP9E0xmSCR7RnqcSCaj+bHzxFZ1YZojBStqRBc/X3RIaF1qkIbKfAZqyXvZn4n9dLTFj3MybjxFBJFovChCMTodn3aMgUJYanlmCimL0VkTFWmBibUcmG4C2/vEraFzXPrXl3l5VGPY+jCCdwClXw4AoacAtNaAEBAc/wCm+Ocl6cd+dj0Vpw8plj+APn8wcY54/m</latexit><latexit sha1_base64="cuWTlrz/krpxD7LcXQno3E2GJVY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquCPYiFLx4rGA/pF1KNs22oUl2SbLisvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHIz8zuPVGkWyXuTxtQXeCRZyAg2VnpIr/vxmFWfzgfliltz50CrxMtJBXI0B+Wv/jAiiaDSEI617nlubPwMK8MIp9NSP9E0xmSCR7RnqcSCaj+bHzxFZ1YZojBStqRBc/X3RIaF1qkIbKfAZqyXvZn4n9dLTFj3MybjxFBJFovChCMTodn3aMgUJYanlmCimL0VkTFWmBibUcmG4C2/vEraFzXPrXl3l5VGPY+jCCdwClXw4AoacAtNaAEBAc/wCm+Ocl6cd+dj0Vpw8plj+APn8wcY54/m</latexit><latexit sha1_base64="cuWTlrz/krpxD7LcXQno3E2GJVY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquCPYiFLx4rGA/pF1KNs22oUl2SbLisvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHIz8zuPVGkWyXuTxtQXeCRZyAg2VnpIr/vxmFWfzgfliltz50CrxMtJBXI0B+Wv/jAiiaDSEI617nlubPwMK8MIp9NSP9E0xmSCR7RnqcSCaj+bHzxFZ1YZojBStqRBc/X3RIaF1qkIbKfAZqyXvZn4n9dLTFj3MybjxFBJFovChCMTodn3aMgUJYanlmCimL0VkTFWmBibUcmG4C2/vEraFzXPrXl3l5VGPY+jCCdwClXw4AoacAtNaAEBAc/wCm+Ocl6cd+dj0Vpw8plj+APn8wcY54/m</latexit><latexit sha1_base64="cuWTlrz/krpxD7LcXQno3E2GJVY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquCPYiFLx4rGA/pF1KNs22oUl2SbLisvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHIz8zuPVGkWyXuTxtQXeCRZyAg2VnpIr/vxmFWfzgfliltz50CrxMtJBXI0B+Wv/jAiiaDSEI617nlubPwMK8MIp9NSP9E0xmSCR7RnqcSCaj+bHzxFZ1YZojBStqRBc/X3RIaF1qkIbKfAZqyXvZn4n9dLTFj3MybjxFBJFovChCMTodn3aMgUJYanlmCimL0VkTFWmBibUcmG4C2/vEraFzXPrXl3l5VGPY+jCCdwClXw4AoacAtNaAEBAc/wCm+Ocl6cd+dj0Vpw8plj+APn8wcY54/m</latexit>

y = ψ(x)
<latexit sha1_base64="l0K6f6OfimXKNXr2h+np4Wyo9n4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquCPYiFLx4rGA/pF1KNs22oUl2SbLisvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHIz8zuPVGkWyXuTxtQXeCRZyAg2VnpIr/uxZtWn80G54tbcOdAq8XJSgRzNQfmrP4xIIqg0hGOte54bGz/DyjDC6bTUTzSNMZngEe1ZKrGg2s/mB0/RmVWGKIyULWnQXP09kWGhdSoC2ymwGetlbyb+5/USE9b9jMk4MVSSxaIw4chEaPY9GjJFieGpJZgoZm9FZIwVJsZmVLIheMsvr5L2Rc1za97dZaVRz+MowgmcQhU8uIIG3EITWkBAwDO8wpujnBfn3flYtBacfOYY/sD5/AEpv4/x</latexit><latexit sha1_base64="l0K6f6OfimXKNXr2h+np4Wyo9n4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquCPYiFLx4rGA/pF1KNs22oUl2SbLisvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHIz8zuPVGkWyXuTxtQXeCRZyAg2VnpIr/uxZtWn80G54tbcOdAq8XJSgRzNQfmrP4xIIqg0hGOte54bGz/DyjDC6bTUTzSNMZngEe1ZKrGg2s/mB0/RmVWGKIyULWnQXP09kWGhdSoC2ymwGetlbyb+5/USE9b9jMk4MVSSxaIw4chEaPY9GjJFieGpJZgoZm9FZIwVJsZmVLIheMsvr5L2Rc1za97dZaVRz+MowgmcQhU8uIIG3EITWkBAwDO8wpujnBfn3flYtBacfOYY/sD5/AEpv4/x</latexit><latexit sha1_base64="l0K6f6OfimXKNXr2h+np4Wyo9n4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquCPYiFLx4rGA/pF1KNs22oUl2SbLisvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHIz8zuPVGkWyXuTxtQXeCRZyAg2VnpIr/uxZtWn80G54tbcOdAq8XJSgRzNQfmrP4xIIqg0hGOte54bGz/DyjDC6bTUTzSNMZngEe1ZKrGg2s/mB0/RmVWGKIyULWnQXP09kWGhdSoC2ymwGetlbyb+5/USE9b9jMk4MVSSxaIw4chEaPY9GjJFieGpJZgoZm9FZIwVJsZmVLIheMsvr5L2Rc1za97dZaVRz+MowgmcQhU8uIIG3EITWkBAwDO8wpujnBfn3flYtBacfOYY/sD5/AEpv4/x</latexit><latexit sha1_base64="l0K6f6OfimXKNXr2h+np4Wyo9n4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquCPYiFLx4rGA/pF1KNs22oUl2SbLisvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHIz8zuPVGkWyXuTxtQXeCRZyAg2VnpIr/uxZtWn80G54tbcOdAq8XJSgRzNQfmrP4xIIqg0hGOte54bGz/DyjDC6bTUTzSNMZngEe1ZKrGg2s/mB0/RmVWGKIyULWnQXP09kWGhdSoC2ymwGetlbyb+5/USE9b9jMk4MVSSxaIw4chEaPY9GjJFieGpJZgoZm9FZIwVJsZmVLIheMsvr5L2Rc1za97dZaVRz+MowgmcQhU8uIIG3EITWkBAwDO8wpujnBfn3flYtBacfOYY/sD5/AEpv4/x</latexit>

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

Figure 3.1: The curves y = φ(x) and y = ψ(x) and their relation with the
trajectories of the system (1.10).
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Let us now emphasise some relevant cases obtained by specialising the functions φ and ψ:

• φ(x) = ψ(x) = −g(x), then the condition of the lemma becomes

f (x,−g(x)) > g′(x) +
√

1 + [g(x)]2 ∀x ≤ α < 0 ,

and similarly for x ≥ β > 0.

• φ(x) = ψ(x) = −x, hence

f (x,−x) > 1 +
√

1 + x2 ∀x ≤ α ,

and similarly for x ≥ β > 0.

• φ(x) = k > 0, ψ(x) = −k, then

f (x, k) > −g(x)
√

1 + k2/k ∀x ≤ α < 0 ,

and
f (x,−k) > g(x)

√

1 + k2/k ∀x ≥ β > 0 .

We are now presenting a lemma allowing us to avoid the presence of vertical asymptotes
for the orbits.

Lemma 3.5. Let us assume there exists a positive continuous function T(x) and two positive constants

L and D such that

| f (x, y)| ≤ LT(x)|y| ∀x ∈ [−M, M] and |y| ≥ D . (3.12)

Then any orbit starting on the lines x = ±M cannot escape to infinity (i.e. no vertical asymptote is

allowed).

Proof. Let us notice that using the bound (3.12) we can show that the orbit can be continued
in the future starting from any x0 = −M and y0 ≥ D up to x = M.

We observe that this lemma is necessary once dealing with general f (x, y) as in Eq. (1.10),
on the contrary when such function is actually obtained by f̂ (x, y/

√

1 + y2) the lemma is no
longer necessary because the latter function is bounded for |y| → ∞.

The last ingredient needed to show that orbits turn clockwise is the following lemmas.

Lemma 3.6. Let us assume G(x) is unbounded and f (x, y) > 0 for x > b, for some b > 0, then any

trajectory starting on the vertical line (b, yb), yb > 0, will intersect the positive x-axis.

Proof. The proof is straightforward; it is based on Eq. (2.10) and the properties of the Duffing
system (2.5) which exhibits a global centre because of the assumption on g(x). See Fig. 3.2 for
a geometrical representation of such result.

Let us note that assuming f (x, y) > 0 for x < a, for some a < 0. A similar result can
be used to prove that any trajectory starting from (a, ya), ya < 0, will intersect the negative
x-axis. We can now prove the Theorem 3.3
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x
<latexit sha1_base64="m/xxJ4kD8ilb27fTo7Ez4e1Q0yQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOSFjPY=</latexit>

G(x)
<latexit sha1_base64="nVaShceSH5x9dnWz00kcZR1TRNE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuFeyx4EGPFWwttEvJptk2NMkuSVYsS/+CFw+KePUPefPfmG33oK0PBh7vzTAzL4g508Z1v53C2vrG5lZxu7Szu7d/UD486ugoUYS2ScQj1Q2wppxJ2jbMcNqNFcUi4PQhmFxn/sMjVZpF8t5MY+oLPJIsZASbTLqpPp0PyhW35s6BVomXkwrkaA3KX/1hRBJBpSEca93z3Nj4KVaGEU5npX6iaYzJBI9oz1KJBdV+Or91hs6sMkRhpGxJg+bq74kUC62nIrCdApuxXvYy8T+vl5iw4adMxomhkiwWhQlHJkLZ42jIFCWGTy3BRDF7KyJjrDAxNp6SDcFbfnmVdOo176JWv7usNBt5HEU4gVOoggdX0IRbaEEbCIzhGV7hzRHOi/PufCxaC04+cwx/4Hz+ADtSjaw=</latexit>

x
<latexit sha1_base64="m/xxJ4kD8ilb27fTo7Ez4e1Q0yQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOSFjPY=</latexit>

y
<latexit sha1_base64="YUHCXuBMxIW3Dy9ijNA7owLpa74=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbabt2swm7GyGE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMviAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1lGiGLZYJCLVDahGwSW2DDcCu7FCGgYCO8H0bu53nlBpHskHk8boh3Qs+YgzaqzUTAelsltxFyDrxMtJGXI0BqWv/jBiSYjSMEG17nlubPyMKsOZwFmxn2iMKZvSMfYslTRE7WeLQ2fk0ipDMoqULWnIQv09kdFQ6zQMbGdIzUSvenPxP6+XmFHNz7iME4OSLReNEkFMROZfkyFXyIxILaFMcXsrYROqKDM2m6INwVt9eZ20qxXvulJt3pTrtTyOApzDBVyBB7dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwB5gmM9w==</latexit>

Global centre

x
<latexit sha1_base64="m/xxJ4kD8ilb27fTo7Ez4e1Q0yQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOSFjPY=</latexit>

G(x)
<latexit sha1_base64="nVaShceSH5x9dnWz00kcZR1TRNE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuFeyx4EGPFWwttEvJptk2NMkuSVYsS/+CFw+KePUPefPfmG33oK0PBh7vzTAzL4g508Z1v53C2vrG5lZxu7Szu7d/UD486ugoUYS2ScQj1Q2wppxJ2jbMcNqNFcUi4PQhmFxn/sMjVZpF8t5MY+oLPJIsZASbTLqpPp0PyhW35s6BVomXkwrkaA3KX/1hRBJBpSEca93z3Nj4KVaGEU5npX6iaYzJBI9oz1KJBdV+Or91hs6sMkRhpGxJg+bq74kUC62nIrCdApuxXvYy8T+vl5iw4adMxomhkiwWhQlHJkLZ42jIFCWGTy3BRDF7KyJjrDAxNp6SDcFbfnmVdOo176JWv7usNBt5HEU4gVOoggdX0IRbaEEbCIzhGV7hzRHOi/PufCxaC04+cwx/4Hz+ADtSjaw=</latexit>

x
<latexit sha1_base64="m/xxJ4kD8ilb27fTo7Ez4e1Q0yQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOSFjPY=</latexit>

y
<latexit sha1_base64="YUHCXuBMxIW3Dy9ijNA7owLpa74=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbabt2swm7GyGE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMviAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1lGiGLZYJCLVDahGwSW2DDcCu7FCGgYCO8H0bu53nlBpHskHk8boh3Qs+YgzaqzUTAelsltxFyDrxMtJGXI0BqWv/jBiSYjSMEG17nlubPyMKsOZwFmxn2iMKZvSMfYslTRE7WeLQ2fk0ipDMoqULWnIQv09kdFQ6zQMbGdIzUSvenPxP6+XmFHNz7iME4OSLReNEkFMROZfkyFXyIxILaFMcXsrYROqKDM2m6INwVt9eZ20qxXvulJt3pTrtTyOApzDBVyBB7dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwB5gmM9w==</latexit>

Local centre

K1
<latexit sha1_base64="/+3ufOPnQdHswx6zigvW6zmywIo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgRfBS0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38z89hMqzWP5aCYJ+hEdSh5yRo2VHu76Xr9UdivuHGSVeDkpQ45Gv/TVG8QsjVAaJqjWXc9NjJ9RZTgTOC32Uo0JZWM6xK6lkkao/Wx+6pScW2VAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE9b8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdoQvOWXV0mrWvEuK9X7q3K9lsdRgFM4gwvw4BrqcAsNaAKDITzDK7w5wnlx3p2PReuak8+cwB84nz/FX41t</latexit>

x
<latexit sha1_base64="m/xxJ4kD8ilb27fTo7Ez4e1Q0yQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOSFjPY=</latexit>

G(x)
<latexit sha1_base64="nVaShceSH5x9dnWz00kcZR1TRNE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuFeyx4EGPFWwttEvJptk2NMkuSVYsS/+CFw+KePUPefPfmG33oK0PBh7vzTAzL4g508Z1v53C2vrG5lZxu7Szu7d/UD486ugoUYS2ScQj1Q2wppxJ2jbMcNqNFcUi4PQhmFxn/sMjVZpF8t5MY+oLPJIsZASbTLqpPp0PyhW35s6BVomXkwrkaA3KX/1hRBJBpSEca93z3Nj4KVaGEU5npX6iaYzJBI9oz1KJBdV+Or91hs6sMkRhpGxJg+bq74kUC62nIrCdApuxXvYy8T+vl5iw4adMxomhkiwWhQlHJkLZ42jIFCWGTy3BRDF7KyJjrDAxNp6SDcFbfnmVdOo176JWv7usNBt5HEU4gVOoggdX0IRbaEEbCIzhGV7hzRHOi/PufCxaC04+cwx/4Hz+ADtSjaw=</latexit>

x
<latexit sha1_base64="m/xxJ4kD8ilb27fTo7Ez4e1Q0yQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOSFjPY=</latexit>

y
<latexit sha1_base64="YUHCXuBMxIW3Dy9ijNA7owLpa74=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbabt2swm7GyGE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMviAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1lGiGLZYJCLVDahGwSW2DDcCu7FCGgYCO8H0bu53nlBpHskHk8boh3Qs+YgzaqzUTAelsltxFyDrxMtJGXI0BqWv/jBiSYjSMEG17nlubPyMKsOZwFmxn2iMKZvSMfYslTRE7WeLQ2fk0ipDMoqULWnIQv09kdFQ6zQMbGdIzUSvenPxP6+XmFHNz7iME4OSLReNEkFMROZfkyFXyIxILaFMcXsrYROqKDM2m6INwVt9eZ20qxXvulJt3pTrtTyOApzDBVyBB7dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwB5gmM9w==</latexit>

Local centre

K1
<latexit sha1_base64="/+3ufOPnQdHswx6zigvW6zmywIo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgRfBS0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38z89hMqzWP5aCYJ+hEdSh5yRo2VHu76Xr9UdivuHGSVeDkpQ45Gv/TVG8QsjVAaJqjWXc9NjJ9RZTgTOC32Uo0JZWM6xK6lkkao/Wx+6pScW2VAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE9b8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdoQvOWXV0mrWvEuK9X7q3K9lsdRgFM4gwvw4BrqcAsNaAKDITzDK7w5wnlx3p2PReuak8+cwB84nz/FX41t</latexit>

K2
<latexit sha1_base64="WexvFcOo7RK3DftoiDMYNlM7ebM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgRfBS0X5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYkUBl3321lb39jc2i7sFHf39g8OS0fHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmt5+4NiJWjzhJuB/RoRKhYBSt9HDXr/ZLZbfizkFWiZeTMuRo9EtfvUHM0ogrZJIa0/XcBP2MahRM8mmxlxqeUDamQ961VNGIGz+bnzol51YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xbDmZ0IlKXLFFovCVBKMyexvMhCaM5QTSyjTwt5K2IhqytCmU7QheMsvr5JWteJdVqr3V+V6LY+jAKdwBhfgwTXU4RYa0AQGQ3iGV3hzpPPivDsfi9Y1J585gT9wPn8AxuONbg==</latexit>

Figure 3.2: The global and local centre cases according to the behaviour of G(x)

for |x| → ∞.

Proof. The reader can consult Fig. 3.3 to follow the progress of the proof. Let us consider a
point P(x0, y0), x0 < α and y0 = φ(x0) > 0, in virtue of Lemma 3.4 the trajectory originating
from this point it is bounded away from the x-axis for negative t and it enters the graph of the
function φ(x) and therefore it will intercept the line x = α. From this point on, the trajectory
can intersect the x-axis at some point in between (0, β); on the contrary by virtue of Lemma 3.5
the trajectory will reach the line x = β at some y1 > 0. By Lemma 3.6 the trajectory will be
guided by the trajectories of the Duffing system (2.5) and thus will reach the x-axis at some
point x > β.

Using condition (3.9), again from Lemma 3.4, the trajectory will intersect the line x = β

at the point ψ(β) < y2 < 0. As before, such trajectory can intersect either the negative x-
axis in (α, 0), or it reaches twice the line x = α once for some negative y3 and eventually for
0 < y4 < φ(α). In both cases we produced a winding trajectory, which completes the proof by
recalling that the origin is a source and using the Poincaré–Bendixson Theorem.

α
<latexit sha1_base64="D3dWJmrY3lL2LZ2LgB5cfOecgBE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS+idzCZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlApurO9/e4WNza3tneJuaW//4PCofHzSMirTlDWpEkp3IjRMcMmallvBOqlmmESCtaPx7dxvPzFtuJIPdpKyMMGh5DGnaJ3U6qFIR9gvV/yqvwBZJ0FOKpCj0S9/9QaKZgmTlgo0phv4qQ2nqC2ngs1KvcywFOkYh6zrqMSEmXC6uHZGLpwyILHSrqQlC/X3xBQTYyZJ5DoTtCOz6s3F/7xuZuNaOOUyzSyTdLkozgSxisxfJwOuGbVi4ghSzd2thI5QI7UuoJILIVh9eZ20rqqBXw3uryv1Wh5HEc7gHC4hgBuowx00oAkUHuEZXuHNU96L9+59LFsLXj5zCn/gff4AiH+PDg==</latexit><latexit sha1_base64="D3dWJmrY3lL2LZ2LgB5cfOecgBE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS+idzCZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlApurO9/e4WNza3tneJuaW//4PCofHzSMirTlDWpEkp3IjRMcMmallvBOqlmmESCtaPx7dxvPzFtuJIPdpKyMMGh5DGnaJ3U6qFIR9gvV/yqvwBZJ0FOKpCj0S9/9QaKZgmTlgo0phv4qQ2nqC2ngs1KvcywFOkYh6zrqMSEmXC6uHZGLpwyILHSrqQlC/X3xBQTYyZJ5DoTtCOz6s3F/7xuZuNaOOUyzSyTdLkozgSxisxfJwOuGbVi4ghSzd2thI5QI7UuoJILIVh9eZ20rqqBXw3uryv1Wh5HEc7gHC4hgBuowx00oAkUHuEZXuHNU96L9+59LFsLXj5zCn/gff4AiH+PDg==</latexit><latexit sha1_base64="D3dWJmrY3lL2LZ2LgB5cfOecgBE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS+idzCZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlApurO9/e4WNza3tneJuaW//4PCofHzSMirTlDWpEkp3IjRMcMmallvBOqlmmESCtaPx7dxvPzFtuJIPdpKyMMGh5DGnaJ3U6qFIR9gvV/yqvwBZJ0FOKpCj0S9/9QaKZgmTlgo0phv4qQ2nqC2ngs1KvcywFOkYh6zrqMSEmXC6uHZGLpwyILHSrqQlC/X3xBQTYyZJ5DoTtCOz6s3F/7xuZuNaOOUyzSyTdLkozgSxisxfJwOuGbVi4ghSzd2thI5QI7UuoJILIVh9eZ20rqqBXw3uryv1Wh5HEc7gHC4hgBuowx00oAkUHuEZXuHNU96L9+59LFsLXj5zCn/gff4AiH+PDg==</latexit><latexit sha1_base64="D3dWJmrY3lL2LZ2LgB5cfOecgBE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS+idzCZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlApurO9/e4WNza3tneJuaW//4PCofHzSMirTlDWpEkp3IjRMcMmallvBOqlmmESCtaPx7dxvPzFtuJIPdpKyMMGh5DGnaJ3U6qFIR9gvV/yqvwBZJ0FOKpCj0S9/9QaKZgmTlgo0phv4qQ2nqC2ngs1KvcywFOkYh6zrqMSEmXC6uHZGLpwyILHSrqQlC/X3xBQTYyZJ5DoTtCOz6s3F/7xuZuNaOOUyzSyTdLkozgSxisxfJwOuGbVi4ghSzd2thI5QI7UuoJILIVh9eZ20rqqBXw3uryv1Wh5HEc7gHC4hgBuowx00oAkUHuEZXuHNU96L9+59LFsLXj5zCn/gff4AiH+PDg==</latexit> β

<latexit sha1_base64="3vn/PANuKftz4i6hvWUXPi7vYSQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXYBE8lUQEeyx48VjBtIU2lM120i7dbMLuRCilv8GLB0W8+oO8+W/ctjlo64OBx3szzMyLMikMed63s7G5tb2zW9or7x8cHh1XTk5bJs01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/Hd3G8/oTYiVY80yTBM2FCJWHBGVgp6ERLrV6pezVvAXSd+QapQoNmvfPUGKc8TVMQlM6brexmFU6ZJcImzci83mDE+ZkPsWqpYgiacLo6duZdWGbhxqm0pchfq74kpS4yZJJHtTBiNzKo3F//zujnF9XAqVJYTKr5cFOfSpdSdf+4OhEZOcmIJ41rYW10+YppxsvmUbQj+6svrpHVd872a/3BTbdSLOEpwDhdwBT7cQgPuoQkBcBDwDK/w5ijnxXl3PpatG04xcwZ/4Hz+AMDUjpo=</latexit><latexit sha1_base64="3vn/PANuKftz4i6hvWUXPi7vYSQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXYBE8lUQEeyx48VjBtIU2lM120i7dbMLuRCilv8GLB0W8+oO8+W/ctjlo64OBx3szzMyLMikMed63s7G5tb2zW9or7x8cHh1XTk5bJs01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/Hd3G8/oTYiVY80yTBM2FCJWHBGVgp6ERLrV6pezVvAXSd+QapQoNmvfPUGKc8TVMQlM6brexmFU6ZJcImzci83mDE+ZkPsWqpYgiacLo6duZdWGbhxqm0pchfq74kpS4yZJJHtTBiNzKo3F//zujnF9XAqVJYTKr5cFOfSpdSdf+4OhEZOcmIJ41rYW10+YppxsvmUbQj+6svrpHVd872a/3BTbdSLOEpwDhdwBT7cQgPuoQkBcBDwDK/w5ijnxXl3PpatG04xcwZ/4Hz+AMDUjpo=</latexit><latexit sha1_base64="3vn/PANuKftz4i6hvWUXPi7vYSQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXYBE8lUQEeyx48VjBtIU2lM120i7dbMLuRCilv8GLB0W8+oO8+W/ctjlo64OBx3szzMyLMikMed63s7G5tb2zW9or7x8cHh1XTk5bJs01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/Hd3G8/oTYiVY80yTBM2FCJWHBGVgp6ERLrV6pezVvAXSd+QapQoNmvfPUGKc8TVMQlM6brexmFU6ZJcImzci83mDE+ZkPsWqpYgiacLo6duZdWGbhxqm0pchfq74kpS4yZJJHtTBiNzKo3F//zujnF9XAqVJYTKr5cFOfSpdSdf+4OhEZOcmIJ41rYW10+YppxsvmUbQj+6svrpHVd872a/3BTbdSLOEpwDhdwBT7cQgPuoQkBcBDwDK/w5ijnxXl3PpatG04xcwZ/4Hz+AMDUjpo=</latexit><latexit sha1_base64="3vn/PANuKftz4i6hvWUXPi7vYSQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXYBE8lUQEeyx48VjBtIU2lM120i7dbMLuRCilv8GLB0W8+oO8+W/ctjlo64OBx3szzMyLMikMed63s7G5tb2zW9or7x8cHh1XTk5bJs01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/Hd3G8/oTYiVY80yTBM2FCJWHBGVgp6ERLrV6pezVvAXSd+QapQoNmvfPUGKc8TVMQlM6brexmFU6ZJcImzci83mDE+ZkPsWqpYgiacLo6duZdWGbhxqm0pchfq74kpS4yZJJHtTBiNzKo3F//zujnF9XAqVJYTKr5cFOfSpdSdf+4OhEZOcmIJ41rYW10+YppxsvmUbQj+6svrpHVd872a/3BTbdSLOEpwDhdwBT7cQgPuoQkBcBDwDK/w5ijnxXl3PpatG04xcwZ/4Hz+AMDUjpo=</latexit>

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

−M<latexit sha1_base64="giCOXc8YljQgxbvo7SmB//g4/G8=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0GvXgRopgHJCHMTnqTIbOzy8ysEJb8gRcPinj1j7z5N06SPWhiQUNR1U13lx8Lro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1fKpRsEl1g03AluxQhr6Apv+6GbqN59QaR7JRzOOsRvSgeQBZ9RY6eHsrlcsuWV3BrJMvIyUIEOtV/zq9COWhCgNE1TrtufGpptSZTgTOCl0Eo0xZSM6wLalkoaou+ns0gk5sUqfBJGyJQ2Zqb8nUhpqPQ592xlSM9SL3lT8z2snJrjqplzGiUHJ5ouCRBATkenbpM8VMiPGllCmuL2VsCFVlBkbTsGG4C2+vEwalbJ3Xq7cX5Sq11kceTiCYzgFDy6hCrdQgzowCOAZXuHNGTkvzrvzMW/NOdnMIfyB8/kDD6+NDA==</latexit> M<latexit sha1_base64="LYKb6VVKloxBSLpM78v6ttRQbOI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL16EBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/3iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvUmiyMPJ3AK5+DBFVThDmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP6ZbjNU=</latexit>b
<latexit sha1_base64="YJjhR7RY5hyNtVLBH/MerrmOQ7I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPxi+M6g==</latexit>

a
<latexit sha1_base64="wqZLPcGml9Og5FDdUdFUNWEF4FE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu2XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHxKuM6Q==</latexit>
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P (x0, y0)
<latexit sha1_base64="9ftPhlhVuYk92cTV8I49AlPJC3Q=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8Jmu2mXbjZhdyOG0H/hxYMiXv033vw3btsctPXBwOO9GWbm+TFnStv2t1VYWV1b3yhulra2d3b3yvsHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe3445up33mkUrFI3Os0pm6Ih4IFjGBtpIdm9cmzz1LPPvXKFbtmz4CWiZOTCuRoeuWv/iAiSUiFJhwr1XPsWLsZlpoRTielfqJojMkYD2nPUIFDqtxsdvEEnRhlgIJImhIazdTfExkOlUpD33SGWI/UojcV//N6iQ6u3IyJONFUkPmiIOFIR2j6PhowSYnmqSGYSGZuRWSEJSbahFQyITiLLy+Tdr3mnNfqdxeVxnUeRxGO4Biq4MAlNOAWmtACAgKe4RXeLGW9WO/Wx7y1YOUzh/AH1ucP4TmPvg==</latexit>

Figure 3.3: Scheme of the proof of the Theorem 3.3.
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Let us observe that assuming both Eq. (3.5) and (3.6) is perhaps too restrictive. Indeed one
can prove a similar result relaxing one of the above as the following result shows:

Theorem 3.7. Consider system (1.10) and let us assume the regularities conditions on f (x, y) and

g(x) given in Section 2. If f (0, 0) < 0, G(x) → ∞ for |x| → ∞, and there exists a smooth function

φ(x) such that:

f (x, φ(x))φ(x) > −φ′(x)φ(x)− g(x)
√

1 + [φ(x)]2 ∀x ≤ α , (3.13)

moreover there exists a positive function T(x) such that

| f (x, y)| ≤ LT(x)|y| ∀x ∈ [α, β] and |y| ≥ D > 0 . (3.14)

Assume then f (x, y) > 0 for x > β and every y. Then the system (1.10) exhibits a least 1 stable limit

cycle

The proof is similar to the previous one and therefore it will be omitted. A similar result
clearly holds if one assume Eq. (3.6) and f (x, y) > 0 for x < α and every y.

3.2 The prescribed curvature case

If we consider system (1.11) a lemma similar to 3.5 can be proved with the additional assump-
tion that the orbit should be constrained in the strip |y| < 1; for the same reason, as previously
mentioned, a result similar to Lemma 3.4 will not be interesting in this contest. However a
result similar to the one provided by Theorem 3.3 holds true.

Theorem 3.8. Consider system (1.11) and let us assume the regularities conditions on f (x, y) and

g(x) given in Section 2. If f (0, 0) < 0, G(x) → G∞ ≥ 1 for |x| → ∞ and there exists a smooth

function φ(x) such that:

f (x, φ(x))φ(x) > −φ′(x)φ(x)− g(x)
√

1 + [φ(x)]2 ∀x ≤ α , (3.15)

and φ(α) ≤ 1. f (x, y) > 0 for x < α and all y. Then the system (1.11) exhibits at least one stable

limit cycle provided f (x, y) is sufficiently small for x > α.

The proof is similar to the one of Theorem 3.7 and thus it will be omitted. A similar result
can be stated using the function ψ(x) with ψ(β) ≥ −1. A slight different version of this result
together with its dual version, will require a growth assumption on f (x, y) only in the strip
(α, β)× R and requiring f (x, y) > 0 also for x > β. However this result, even if supported by
numerical evidence similar to the one of Fig. 7 [10], is less appealing for the heavy assumption
on the growth of f (x, y). Moreover, some restrictions on the growth of G(x) seem necessary,
as for instance G(x) < 1 for all x. A detailed discussion on this assumption may be found
in [10].

4 Some examples

The aim of this section is to present some examples of application of the theory developed
so far. The numerical results, in particular the 0-isocline and the orbits, have been realised
using the MATLAB software [18], while the phase-space portraits using the open source Field-

Play [19].
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4.1 Using the 0-isocline for the functions φ(x)and ψ(x)

Let us consider f (x, y) = |y| cos2 y(x2 − 1) and g(x) = x, then the system (1.10) rewrites










ẋ = y√
1+y2

ẏ = − y|y|(cos y)2(x2−1)√
1+y2

− x ,
(4.1)

whose slope is thus (see Eq. (2.1)) given by

y′(x) = −|y|(cos y)2(x2 − 1)− x

√

1 + y2

y
.

Finally the 0-isocline, y0(x), is implicitly given by:

(cos y0(x))2 |y0(x)|y0(x)
√

1 + [y0(x)]2
= − x

x2 − 1
. (4.2)

This function is invariant with respect to the transformation (x, y) → (−x,−y) and thus it
would be enough to study it for y ≥ 0. For a sake of clarity let us define the functions

A(y) = (cos y0(x))2 |y0(x)|y0(x)
√

1 + [y0(x)]2
and B(x) = − x

x2 − 1
,

In the limit x → 0+, we have B(x) → 0+, hence to satisfy the equation A(y) = B(x) we have
y0 → 0+ and (cos y0)2 → 0, that is y0 → π/2 + kπ, for k ∈ N ∪ {0}. On the other hand once
x → 0−, we get B(x) → 0− and thus the only root of A(y) is given by y0 → 0−.

We then consider the case of large x. For x → +∞, B(x) → 0− and thus the unique zero
of A(y) is y0 → 0−. Finally, if x → −∞, B(x) → 0+, hence beside the zero y0 → 0+ we have
also the positive zeros of (cos y0)2, that is y0 → π/2 + kπ, for k ∈ N ∪ {0}.

We observe that f (0, 0) = 0 but f (x, y) < 0 for 0 < x2
< 1 and thus one can prove that

the origin is an unstable equilibrium. The function G(x) = x2/2 and thus it is unbounded
for |x| → ∞. Taking L = 1 and T(x) = 1 − x2 one can obtain | f (x, y)| ≤ LT(x)|y| for all
x ∈ [−1, 1] and y > 0. Finally f (x, y) is positive for |x| > 1. Observe that ẋ > 0 for y > 0 and
thus the 0-isocline is traversed from left to right by the orbits, the latter can thus play the role
of the function φ(x) because it prevents the orbits to grow.

The hypotheses of Theorem 3.3 are met and thus the system will exhibit at least one stable
limit cycle. A numerical integration of (4.1) shows that indeed the limit cycle is unique (see
Fig. 4.1). However we are not able to prove the uniqueness of the limit cycle, and at this stage
this remains a conjecture.

4.2 Using a constant function for φ(x)and ψ(x)

Let us consider f (x, y) = (k2 + x2/2)(sin y − 1/2) + x2, for some k ∈ R, and g(x) = x, then
the system (1.10) rewrites











ẋ = y√
1+y2

ẏ = − y√
1+y2

[(

k2 + x2

2

)

(

sin y − 1
2

)

+ x2
]

− x .
(4.3)
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Figure 4.1: The phase-portrait of the system (1.10) with f (x, y) = |y| cos2 y(x2 −
1) and g(x) = x. On the left panel [18]: the black curves denote the different
branches of the 0-isocline while the blue and red curves are two generic orbits
of the system which accumulate on the (unique) stable limit cycle as provided
by Theorem 3.3. On the right panel [19]: several orbits are traced to better
appreciate a larger view of the phase-portrait; let us observe that the scales of
the two figures are slightly different, this is the reason why the two limit cycles
look different.

One has f (0, 0) = −k2/2 < 0, | f (x, y)| ≤ 3k2/2 + 7x2/4 and thus Lemma 3.5 holds true, and
finally f (x, y) > 0 for |x| large enough, say x2

> 6k2. Once again G(x) → ∞ for |x| → ∞.
Let us finally assume φ(x) = a and ψ(x) = −a, where a = π/2, then conditions (3.5)

and (3.6) are satisfied if

f (x, a) > −x

√
1 + a2

a
and f (x,−a) > x

√
1 + a2

a
.

A direct computation shows that if k2
>

4
5π

√

1 + π2

4 , then the previous conditions are satisfied,
indeed

f (x, a) =
k2

2
+

5
4

x2 ,

and with the chosen bound on k2 we are sure that such parabola never intersects the line
y = −x

√
1+a2

a .

4.3 The curvature case

The last example concerns the prescribed curvature case. We will use that same function
f (x, y) of the first example, that is f (x, y) = |y|(cos 3y)2(x2 − 1). On the other hand for the
g(x) function we will use g(x) = µxe−|x|, where µ < 1, in such a way lim|x|→∞ G(x) = µ < 1
(see section 6 of [10]). Finally to constraint the orbits into the strip |y| < 1 we multiply f (x, y)

by a sufficiently small parameter λ, then the system (1.11) rewrites










ẋ = y√
1−y2

ẏ = −λ
y|y|(cos 3y)2(x2−1)√

1−y2
− µxe−|x| ,

(4.4)
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Figure 4.2: The phase-portrait of the system (1.10) with f (x, y) = (1 +

x2/2)(sin y − 1/2) + x2 and g(x) = x. On the left panel [18]: the dashed black
line denotes the function φ(x) = π/2, while the blue and red curves are two
generic orbits of the system which accumulate on the stable limit cycle as pro-
vided by Theorem 3.3. On the right panel [19]: several orbits are traced to better
appreciate a larger view of the phase-portrait.

whose slope is (see Eq. (2.2)):

y′(x) = −λ|y|(cos 3y)2(x2 − 1)− µxe−|x|
√

1 − y2

y
. (4.5)

Finally the 0-isocline, y0(x), is implicitly given by:

λ(cos 3y0(x))2 |y0(x)|y0(x)
√

1 − [y0(x)]2
= −µxe−|x|

x2 − 1
. (4.6)

The study of the 0-isocline is very similar to the one done in Section 4.1 the main dif-
ferences being now that not all the zeros of (cos 3y)2 should be taken into account because,
only those falling inside the strip |y| < 1 do matter; secondly the positive-y branch stops at
(x, y) = (−1, 1) and the negative one at (x, y) = (1,−1) (see Fig. 4.3 for a numerical example).
One can use again the 0-isocline as function φ(x) and ψ(x) to apply the Theorem 3.8.

Figure 4.3: The phase-portrait of the system (4.4) with f (x, y) =

|y|(cos(3y))2(x2 − 1), g(x) = µxe−|x|, λ = 0.01 and µ = 1/2. On the left
panel [18]: the solid black lines denote the branches of the 0-isocline while
the blue curve a generic orbit of the system which accumulate on the (unique)
stable limit cycle as provided by Theorem 3.8. On the right panel [19]: several
orbits are traced to better appreciate a larger view of the phase-portrait; let us
observe that because of the small parameter λ the system is very close to the
Duffing one which exhibits a global centre (in the strip |y| < 1), therefore it is
hard to visualise the limit cycle for the system we are considering.
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1 Introduction

The Navier–Stokes equations are a widely accepted model for the behavior of viscous incom-

pressible fluids in the presence of convection. However, the classical Navier–Stokes theory is

incapable of describing some physical phenomena for a class of fluids which exhibit certain

microscopic effects arising from the local structure and micro-motions of the fluid elements.

A subclass of these fluids is the micropolar fluids, which exhibit micro-rotational effects and

micro-rotational inertia. Animal blood, liquid crystals, and certain polymeric fluids are a few

examples of fluids which may be represented by the mathematical model of micropolar flu-

ids, so that it is interesting to study the behavior of such fluids. The mathematical model that

describes the movement of these fluids has been introduced by Eringen in [7] (see, also [6]).

In this work we consider an optimal control problem restricted by the 3D micropolar fluid

equations in which a distributed control acts on linear momentum as external source on the

domain. Specifically, we consider Ω ⊂ R
3 be an open bounded domain with smooth bound-

ary ∂Ω and (0, T) a time interval, with T > 0. Then we study an optimal control problem

related to the following system in the space-time domain Q := Ω × (0, T)





∂tu − (ν + νr)∆u + (u · ∇)u +∇p = 2νrcurl w + f,

∂tw − (ca + cd)∆w + (u · ∇)w − (c0 + cd − ca)∇div w + 4νrw = 2νrcurl u + g,

div u = 0,

(1.1)

BCorresponding author. Email: emallea@uta.cl
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where the unknowns are the linear velocity u = u(x, t) ∈ R
3, the velocity of rotation of the

particles w = w(x, t) ∈ R
3 and the pressure p = p(x, t) ∈ R. The functions f and g are given,

and represent external sources of linear and angular momentum of particles, respectively.

The positive real constant ν, νr, c0, ca and cd characterize isotropic properties of the fluid; in

particular, ν is the usual kinematic viscosity and νr, c0, ca and cd are new viscosities related

to the asymmetry of the stress tensor. These constants satisfy c0 + cd > ca. For simplicity

we denote ν1 = ν + νr, ν2 = ca + cd and ν3 = c0 + cd − ca. Without loss generality we can

assume that density of the fluid is equal to one. The symbols ∆, ∇, curl and div denote the

Laplacian, gradient, rotational and divergence operators, respectively; ∂tu and ∂tw stand for

the time derivatives of u and w, respectively. The i-th components of (u · ∇)u and (u · ∇)w

are respectively given by

[(u · ∇)u]i =
3

∑
j=1

uj
∂ui

∂xj
and [(u · ∇)w]i =

3

∑
j=1

uj
∂wi

∂xj
.

When the microrotation viscous effects are not considered, that is, νr = 0, or w = 0, model

(1.1) reduces to the well known incompressible Navier–Stokes system, which have been greatly

studied (see, for instance, the classical text books [17], [18] and [31]).

We complete system (1.1) with initial conditions

u(x, 0) = u0(x), w(x, 0) = w0(x) in Ω (1.2)

and boundary conditions

u = 0, w = 0 on ∂Ω × (0, T). (1.3)

From the mathematical point of view, the initial-value problem (1.1)–(1.3) has been studied

by several authors, and important results on existence of weak solutions and local strong solu-

tions, large time asymptotic behavior, regularity of solutions, and general qualitative analysis,

have been obtained (see [1, 8–11, 20, 26, 27, 33], for instance).

There is an extensive literature devoted to the study of optimal control problems related

with the classical Navier–Stokes equations (see, for instance, [3–5,14–16,25,32] and references

therein). As far as known, the literature related to optimal control problems for micropolar

fluids is scarce. In [29], an optimal control problem associated with themotion of a micropolar

fluid, with applications in the control of the blood pressure, was studied. In [30], in a two-

dimensional domain, the relation between the microrotation and vorticity of the fluid was

analyzed. Also, a boundary control problem for the stationary case with mixed boundary

conditions, including a Navier slip condition on a part of the boundary for the velocity field,

was studied in [22,23]. In [22], for three-dimensional flows with constant density is considered,

while in [23], the 2D case with variable density is studied.

For two-dimensional flows, an existence and uniqueness theorem for a weak solution of

(1.1)–(1.3) has been known for a long time (see [20]). The study for 3D domains is more

complicated. Here we can distinguish two types of solutions: weak and strong solutions.

Under minimal assumptions in the initial data and external forces f and g the existence of

weak solutions for (1.1)–(1.3) can be proved; however, the uniqueness is an open question

(this is similar to what happens with the 3D Navier–Stokes equations). The existence of

weak solutions is not sufficient to carry out the study of the optimal control problem, due

to the lack of regularity of weak solutions. Indeed, we cannot obtain first-order necessary

optimality conditions. To overcome this, following the ideas of Casas [3] and Casas et al. [4],
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we consider a convenient cost functional. Instead of setting the L2-norm of u − ud in the

objective functional as usual, we consider the functional

J(u, w, f) :=
α

6

∫ T

0
‖u(t)− ud(t)‖6

L6 dt +
β

2

∫ T

0
‖w(t)− wd(t)‖2dt +

γ

2

∫ T

0
‖f(t)‖2dt, (1.4)

where α > 0, β, γ ≥ 0, and the functions ud and wd to be fixed more precisely later. The

objective is to minimize J(u, w, f) in a certain set, with (u, w, f) satisfying system (1.1)–(1.3).

From Loayza and Rojas-Medar [19] we deduce that, if (u, w) is a weak solution of (1.1)–(1.3)

such that J(u, w, f) < +∞, then the pair (u, w) is a strong solution. With this formulation we

can prove the existence of an optimal solution and obtain first-order optimality conditions.

The paper is organized as follow: in Section 2 we fix the notation, introduce the functional

spaces to be used and give the definition of weak and strong solutions for system (1.1)–(1.3). In

Section 3 we establish the optimal control problem, proving the existence of a global optimal

solution and we derive the first-order optimality conditions using a Lagrange multipliers

theorem in Banach spaces. Finally, we improve the regularity of Lagrange multipliers.

2 Preliminaries

Through this paper, we will use the Lebesgue space Lp(Ω), 1 ≤ p ≤ +∞, with norm denoted

by ‖ · ‖Lp . In particular, the L2-norm and its inner product will be denoted by ‖ · ‖ and (·, ·),
respectively. We consider the standard Sobolev spaces Wm,p(Ω) = {u ∈ Lp(Ω) : ‖∂αu‖Lp <

+∞, ∀|α| ≤ m}, with norm denoted by ‖ · ‖Wm,p . When p = 2, we write Hm(Ω) := Wm,2(Ω)

and we denote the respective norm by ‖ · ‖Hm . Corresponding functional spaces of vector-

valued functions will be denoted by bold letter; for instance H1(Ω), L2(Ω), and so on. We will

use the Hilbert space H1
0(Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}, which is a Hilbert spaces with

inner-product (u, v)H1
0

:= (∇u,∇v). Also, as usual we define V := {u ∈ C∞
0 (Ω) : div u = 0}

and the spaces

H := The closure of V in L2(Ω), V := The closure of V in H1(Ω).

The spaces H and V are characterized by (see [31]):

H = {u ∈ L2(Ω) : div u = 0 and u · n = 0 on ∂Ω},

V = {u ∈ H1
0(Ω) : div u = 0},

where n denotes the outward unit normal vector to ∂Ω. If X is a Banach space, we denote

by Lp(0, T; X) the space of valued functions in X defined on the interval [0, T] that are inte-

grable in the Bochner sense, and its norm will denoted by ‖ · ‖Lp(X). For simplicity, we will

denotes Lp(Q) := Lp(0, T; Lp(Ω)) for p 6= ∞ and its norm by ‖ · ‖Lp(Q). In the case p = +∞,

L∞(Q) := L∞(Ω × (0, T)) and its respective norm will denoted by ‖ · ‖L∞(Q). Also, we denote

by C([0; T]; X) the space of continuous functions from [0, T] into a Banach space X, and its

norm by ‖ · ‖C(X). The topological dual space of a Banach space X will be denoted by X′, and

the duality for a pair X and X′ by 〈·, ·〉X′ or simply by 〈·, ·〉 unless this leads to ambiguity.

In particular V′ is the dual space of V and the space H−1(Ω) denotes the dual of H1
0(Ω).

Moreover, the letters C, K, C1, K1, . . . , are positive constants, independent of state (u, w) and

control f, but its value may change from line to line.

Now, we give the concept of weak solutions of system (1.1)–(1.3).
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Definition 2.1 (Weak solutions). Let (f, g) ∈ L2(Q) × L2(Q) and (u0, w0) ∈ H × L2(Ω). A

weak solution of (1.1)-(1.3) is a pair (u, w) such that

u ∈ L∞(0, T; H) ∩ L2(0, T; V), ∂tu ∈ L2(0, T; V′), (2.1)

w ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H1
0(Ω)), ∂tw ∈ L2(0, T; H−1(Ω)), (2.2)

and satisfies the following weak formulation

∫ T

0
〈∂tu, v〉+ ν1

∫ T

0
(∇u,∇v) +

∫ T

0
((u · ∇)u, v)

= 2νr

∫ T

0
(curl w, v) +

∫ T

0
(f, v) ∀v ∈ L2(0, T; V), (2.3)

∫ T

0
〈∂tw, z〉+ ν2

∫ T

0
(∇w,∇z) +

∫ T

0
((u · ∇)w, z) + ν3

∫ T

0
(div w, div z) + 4νr

∫ T

0
(w, z)

= 2νr

∫ T

0
(curl u, z) +

∫ T

0
(g, z) ∀z ∈ L2(0, T; H1

0(Ω)), (2.4)

u(0) = u0, w(0) = w0 in Ω, (2.5)

u = w = 0 on ∂Ω × (0, T). (2.6)

Remark 2.2. We consider the usual Stokes operator A :=−P∆ with domain D(A)=H2(Ω)∩V,

where P : L2(Ω) → H is the Leray projector, and the strongly elliptic operator L := −ν2∆ −
ν3∇div with domain D(L) = H2(Ω) ∩ H1

0(Ω), then system (1.1)–(1.3) can be rewritten as

follows





∂tu + νAu + (u · ∇)u = 2νrcurl w + Pf in Q,

∂tw + Lw + (u · ∇)w + 4νrw = 2νrcurl u + g in Q,

div u = 0 in Q,

u(x, 0) = u0(x), w(x, 0) = w0(x) in Ω,

u = 0, w = 0 on ∂Ω × (0, T).

(2.7)

Thus, we have the following equivalent formulation of weak solutions of system (1.1)–(1.3).

Definition 2.3. Let (f, g) ∈ L2(Q)× L2(Q) and (u0, w0) ∈ H × L2(Ω). Find a pair (u, w) such

that

u ∈ L∞(0, T; H) ∩ L2(0, T; V), ∂tu ∈ L2(0, T; V′), (2.8)

w ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H1
0(Ω)), ∂tw ∈ L2(0, T; H−1(Ω)), (2.9)

and satisfies the system





∂tu + νAu + (u · ∇)u = 2νrcurl w + Pf in D(A)′,

∂tw + Lw + (u · ∇)w + 4νrw = 2νrcurl u + g in D(L)′,

u(x, 0) = u0(x) ∈ H,

w(x, 0) = w0(x) in L2(Ω),

u = 0, w = 0 on ∂Ω × (0, T).

(2.10)

We are interested in studying an optimal control problem related the strong solutions of

system (1.1)–(1.3), the following definition is given in this sense.
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Definition 2.4 (Strong solutions). Let (f, g) ∈ L2(Q)× L2(Q) and (u0, w0) ∈ V × H1
0(Ω). We

say that (u, w) is a strong solution of system (1.1)–(1.3) in (0, T) if

u ∈ Xu := {u ∈ L∞(0, T; V) ∩ L2(0, T; H2(Ω)) : ∂tu ∈ L2(Q)}, (2.11)

w ∈ Xw := {w ∈ L∞(0, T; H1
0(Ω)) ∩ L2(0, T; H2(Ω)) : ∂tw ∈ L2(Q)}, (2.12)

and satisfies 



∂tu + νAu + (u · ∇)u = 2νrcurl w + f in L2(Q),

∂tw + Lw + (u · ∇)w + 4νrw = 2νrcurl u + g in L2(Q),

u(x, 0) = u0(x) ∈ V,

w(x, 0) = w0(x) in H1
0(Ω),

u = 0, w = 0 on ∂Ω × (0, T).

(2.13)

The following result is a criterion of regularity that allows us to obtain a strong solution

of system (1.1)–(1.3), the proof can be consulted in [19].

Theorem 2.5. Let (u, w) be a weak solution of (1.1)–(1.3). If, in addition, the initial data (u0, w0)

belongs to V × H1
0(Ω) and

u ∈ L4(0, T; L6(Ω)), (2.14)

then (u, w) is a strong solution of (1.1)–(1.3).

Moreover, there exists a positive constant K := K(‖u0‖V, ‖w0‖H1
0
, ‖f‖L2(Q), ‖g‖L2(Q)) such that

‖(u, w)‖Xu×Xw
≤ K. (2.15)

3 The optimal control problem

In this section we establish the statement of control problem. We formulate the control prob-

lem un such way a that any admissible state is a strong solution of (1.1)–(1.3). Due to the

is no existence result of strong solutions of (1.1)–(1.3), we have to choose a suitable objective

functional.

We suppose that U ⊂ L2(Q) is a nonempty, closed and convex set and we consider the

initial data u0 ∈ V, w0 ∈ H1
0(Ω), and the function f ∈ U describing the distributed control on

the linear momentum equation.

Now, we define the following constrained extremal problem related to PDE system (1.1)–

(1.3):





Find (u, w, f) ∈ Xu × Xw × U such that the functional

J(u, w, f) :=
α

6

∫ T

0
‖u(t)− ud(t)‖6

L6 dt +
β

2

∫ T

0
‖w(t)− wd(t)‖2dt +

γ

2

∫ T

0
‖f(t)‖2dt

is minimized, subject to (u, w, f) be a strong solution of (1.1)–(1.3).

(3.1)

Here (ud, wd) ∈ L10(Q) × L2(Q) represent the desires states (in the proof of Theorem 3.14

below is justified the fact that ud ∈ L10(Q)) and the real numbers α, β and γ measure the cost

of the states and control, respectively. These constants satisfy

α > 0 and β, γ ≥ 0.
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The admissible set for the control problem (3.1) is defined by

Sad = {s = (u, w, f) ∈ Xu × Xw × U : s is a strong solution of (1.1)–(1.3) in (0, T)}.

The functional J defined in (3.1) describes the deviation of the velocity of the fluid u and

the microrotational velocity w from a desired velocity ud and microrotational velocity wd

respectively, plus the control of the control measured in the L2-norm.

Thus, we have the following definition.

Definition 3.1 (Optimal solution). An element s̃ = (ũ, w̃, f̃) ∈ Sad will be called global optimal

solution of problem (3.1) if

J(ũ, w̃, f̃) = min
(u,w,f)∈Sad

J(u, w, f). (3.2)

Remark 3.2. Notice that if (u, w) is a weak solution of (1.1)–(1.3) in (0, T) such that J(u, w, f) <

+∞, then, in particular u ∈ L6(0, T; L4(Ω)); thus by Theorem 2.5 the pair (u, w) is a strong

solution of (1.1)–(1.3) in (0, T) (in sense of Definition 2.4). Due to there is no existence result

of strong solutions, in what follows, we will assume that

Sad 6= ∅. (3.3)

3.1 Existence of global optimal solution

In this subsection we will prove the existence of a global optimal solution of problem (3.1) in

sense of Definition 3.1. Concretely, we will prove the following result.

Theorem 3.3. Let (u0, w0) ∈ V × H1
0(Ω). We assume that either γ > 0 or U is bounded in L2(Q)

and hypothesis (3.3), then the optimal control problem (3.1) has at least one global optimal solution

(ũ, w̃, f̃) ∈ Sad.

Proof. From (3.3) the admissible set Sad 6= ∅. Since functional J is nonnegative, then is

bounded below. Hence there exists the infimum over all the admissible elements s := (u, w, f)

belongs to Sad; that is,

0 ≤ inf
s∈Sad

J(s) < +∞.

Then, by definition of the infimum, there exists a minimizing sequence

{sm}m≥1 := {(um, wm, fm)}m≥1

such that

lim
m→+∞

J(sm) = inf
s∈Sad

J(s).

From definition of Sad, for each m ∈ N, sm is a strong solution of (1.1)–(1.3), then by definition

of J and the assumption γ > 0 or U is bounded in L2(Q) we deduce that

{(um, fm)}m≥1 is bounded in L6(Q)× L2(Q). (3.4)

Also, from estimate (2.15) (given in Theorem 2.5) there exists a positive constant, independent

of m such that

‖(um, wm)‖Xu×Xw
≤ K. (3.5)

Thus, from (3.4), (3.5), and using the fact that U ⊂ L2(Q) is a closed and convex (then is weakly

closed in L2(Q)), we conclude that there exists an element s̃ = (ũ, w̃, f̃) ∈ Xu × Xw × U such
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that, for some subsequence of {sn}m≥1; which, for simplicity, still will denoted by {sm}m≥1,

the following convergences hold (as m → +∞):

um → ũ weak in L2(0, T; H2(Ω)) and weak* in L∞(0, T; V), (3.6)

wm → w̃ weak in L2(0, T; H2(Ω)) and weak* in L∞(0, T; H1
0(Ω)), (3.7)

∂tum → ∂tũ weak in L2(Q), (3.8)

∂twm → ∂tw̃ weak in L2(Q), (3.9)

fm → f̃ weak in L2(Q). (3.10)

Furthermore, from (3.6)–(3.9), the Aubin–Lions lemma (see [18, Théorème 5.1, p. 58]) and

[28, Corollary 4], we deduce the strong convergences

um → ũ in L2(0, T; H1(Ω)) ∩ C([0, T]; L2(Ω)), (3.11)

wm → w̃ in L2(0, T; H1(Ω)) ∩ C([0, T]; L2(Ω)). (3.12)

From (3.11) and (3.12) we have that the pair (um(0), wm(0)) converges to (ũ, w̃) in L2(Ω)×
L2(Ω), and since um(0) = u0 and wm(0) = w0 we conclude that (ũ(0), w̃(0)) = (u0, w0).

Thus, the limit element s̃ satisfies the initial conditions given in (1.2). The convergences (3.6)–

(3.12), and a standard argument allow us to pass to the limit in system (2.3)–(2.6) written by

(um, wm, fm), as m goes to +∞; consequently we have that s̃ = (ũ, w̃, f̃) is a strong solution of

(1.1)–(1.3), that is, s̃ belongs to admissible set Sad. Therefore

lim
m→+∞

J(sm) = inf
s∈Sad

J(s) ≤ J(s̃). (3.13)

Finally, taking into account that the functional J is weakly lower semicontinuous on Sad, we

have

J(s̃) ≤ lim inf
m→+∞

J(sm). (3.14)

Therefore, from (3.13) and (3.14) we deduce (3.2), which implies that optimal control problem

(3.1) has at least global optimal solution.

3.2 Optimality system

In this subsection we will derive the first-order necessary optimality conditions for a local

optimal solution s̃ = (ũ, w̃, f̃) of problem (3.1), using a Lagrange multiplier theorem in Ba-

nach spaces. We will base on a generic result given by Zowe et al. [34] (see, also [32, Chap-

ter 6]). This method has been used by Guillén-González et al. [12,13] in the context of chemo-

repulsion systems and in [21] for other models. In order to introduce the concepts and results

given in [34] we consider the following extremal problem:

min
x∈M

J(x) subject to R(x) = 0, (3.15)

where J : X → R is a functional, R : X → Y is an operator, X and Y are Banach spaces, and

M ⊂ X is a nonempty, closed and convex set. The admissible set for problem (3.15) is given

by

S = {x ∈ M : R(x) = 0}.

The so-called Lagrangian functional L : X × Y′ → R related to problem (3.15) is given by

L(x, λ) := J(x)− 〈λ, R(x)〉Y′ . (3.16)
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Definition 3.4 (Lagrange multiplier). Let x̃ ∈ S be a local optimal solution of (3.15). Suppose

that J and R are Fréchet differentiable in x̃, with derivatives denoted by J′(x̃) and R′(x̃),
respectively. Then, λ ∈ Y′ is called Lagrange multiplier for problem (3.15) at the point x̃ if

{
〈λ, R(x̃)〉Y′ = 0,

L′(x̃, λ)[s] := J′(x̃)[s]− 〈λ, R′(x̃)[s]〉Y′ ≥ 0 ∀s ∈ C(x̃),
(3.17)

where C(x̃) is the conical hull of x̃ in M, that is, C(x̃) = {θ(x − x̃) : x ∈ M, θ ≥ 0}.

Definition 3.5. Let x̃ ∈ S be a local optimal solution of problem (3.15). We say that x̃ is a

regular point if

R′(x̃)[C(x̃)] = Y. (3.18)

The following result guarantees the existence of Lagrange multiplier for problem (3.15);

the proof can be found in [34, Theorem 3.1] and [32, Theorem 6.3, p. 330].

Theorem 3.6. Let x̃ ∈ S be a local optimal solution of problem (3.15). Suppose that J is Fréchet

differentiable in x̃ and R is continuously Fréchet differentiable in x̃. If x̃ is a regular point, then the set

of Lagrange multipliers for (3.15) at x̃ is nonempty.

Now, we will reformulate the optimal control problem (3.1) in the abstract setting (3.15).

We consider the Banach spaces

X := X̂u × X̂w × L2(Q), Y := L2(Q)× L2(Q)× V × H1
0(Ω),

where

X̂u := {u ∈ Xu : u = 0 on ∂Ω × (0, T)}, (3.19)

X̂w := {u ∈ Xw : w = 0 on ∂Ω × (0, T)}, (3.20)

and the operator R = (R1, R2, R3, R4) : X → Y, where

R1 : X → L2(Q), R2(X) → L2(Q), R3 : X → V, R4 : X → H1
0(Ω)

are defined at each point s = (u, w, f) ∈ X by





R1(s) = ∂tu + νAu + (u · ∇)u − 2νrcurl w − Pf,

R2(s) = ∂tw + Lw + (u · ∇)w + 4νrw − 2νrcurl u − g,

R3(s) = u(0)− u0,

R4(s) = w(0)− w0.

(3.21)

Hence, the control problem (3.1) is reformulated as follows

min
s∈M

J(s) subject to R(s) = 0. (3.22)

Notice that M := X̂u × X̂w ×U is a closed convex subset of X and the admissible set is rewritten

as follows

Sad = {s = (u, w, f) ∈ M : R(s) = 0}. (3.23)

Concerning to differentiability of the functional J and constraint operator R we have the fol-

lowing lemmas.
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Lemma 3.7. The functional J is Fréchet differentiable and the Fréchet derivative of J in s̃ = (ũ, w̃, f̃) ∈
X in the direction t = (U, W, F) ∈ X is given by

J′(s̃)[t] = α
∫ T

0

∫

Ω
|ũ − ud|4(ũ − ud) · U + β

∫ T

0

∫

Ω
(w̃ − wd) · W + γ

∫ T

0

∫

Ω
f̃ · F. (3.24)

Lemma 3.8. The operator R is continuously-Fréchet differentiable and the Fréchet derivative of R

in s̃ = (ũ, w̃, f̃) ∈ X, in the direction t = (U, W, F) ∈ X, is the linear and bounded operator

R′(s̃)[t] = (R′
1(s̃)[t], R′

2(s̃)[t], R′
3(s̃)[t], R′

4(s̃)[t]) defined by





R′
1(s̃)[t] = ∂tU + νAU + (U · ∇)ũ + (ũ · ∇)U − 2νrcurl W − PF,

R2(s̃)[t] = ∂tW + LW + (ũ · ∇)W + (U · ∇)w̃ + 4νrW − 2νrcurl U,

R′
3(s̃)[t] = U(0),

R′
4(s̃)[t] = W(0).

(3.25)

Remark 3.9. From Definition 3.5 we conclude that s̃ = (ũ, w̃, f̃) ∈ Sad is a regular point if

given (gu, gw, U0, W0) ∈ Y there exists t = (U, W, F) ∈ X̂u × X̂w × C(f̃) such that

R′(s̃)[t] = (gu, gw, U0, W0), (3.26)

where C(f̃) := {θ(f − f̃) : θ ≥ 0, f ∈ U} is the conical hull of f̃ in U .

Lemma 3.10. Let s̃ = (ũ, w̃, f̃) ∈ Sad, then s̃ is a regular point.

Proof. Due to 0 belongs to C(f̃); then, given (gu, gw, U0, W0) ∈ Y, it is sufficient to show the

existence of (U, W) ∈ X̂u × X̂w such that




∂tU + νAU + (U · ∇)ũ + (ũ · ∇)U − 2νrcurl W = gu in Q,

∂tW + LW + (ũ · ∇)W + (U · ∇)w̃ + 4νrW − 2νrcurl U = gw in Q,

U(0) = U0 in Ω,

W(0) = W0 in Ω.

(3.27)

Since system (3.27) is a linear, we argue in a formal manner, proving that any regular enough

solution is bounded in X̂u × X̂w.

Testing in (3.27)1 by AU we have

1

2

d

dt
‖∇U‖2 + ν1‖AU‖2 = − ((U · ∇)ũ, AU)− ((ũ · ∇)U, AU)

+ 2νr(curl W, AU) + (gu, AU). (3.28)

Now, we will bound the terms of right-side of (3.28). Using the Hölder, Poincaré and Young

inequalities, and taking into account the continuous injection H1(Ω) →֒ Lq(Ω) (q ∈ [1, 6]) we

have

((U · ∇)ũ, AU) ≤ ‖U‖L3‖∇ũ‖L6‖AU‖ ≤ C‖U‖H1‖∇ũ‖L6‖AU ≤ C‖∇U‖‖∇ũ‖L6‖AU‖
≤ ε‖AU‖2 + Cε‖∇ũ‖2

L6‖∇U‖2. (3.29)

From the equivalence 1
2ν
√

3
‖Au‖ ≤ ‖u‖H2 ≤ C‖Au‖ (see [24, Lemma 3.1]) and the known

interpolation inequality in 3D domains ‖u‖L3 ≤ C‖u‖1/2‖∇u‖1/2, we obtain

|((ũ · ∇)U, AU)| ≤ ‖ũ‖L6‖∇U‖L3‖AU‖ ≤ C‖ũ‖L6‖∇U‖1/2‖∇U‖1/2
H1 ‖AU‖

≤ C‖ũ‖L6‖∇U‖1/2‖U‖1/2
H2 ‖AU‖ ≤ C‖ũ‖L6‖∇U‖1/2‖AU‖3/2

≤ ε‖AU‖2 + Cε‖ũ‖4
L6‖∇U‖. (3.30)
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Again using the Hölder and Young inequalities, we have

2νr|(curl W, AU)| ≤ 2νr‖curl W‖‖AU‖ ≤ ε‖AU‖2 + Cε‖curl W‖2

≤ ε‖AU‖2 + Cε‖∇W‖2, (3.31)

|(gu, AU)| ≤ ‖gu‖‖AU‖ ≤ ε‖AU‖2 + Cε‖gu‖2. (3.32)

Thus, replacing (3.29)–(3.32) in (3.28) and choosing ε suitably, we obtain

1

2

d

dt
‖∇U‖2 + C‖AU‖2 ≤ C‖∇ũ‖2

L6‖∇U‖2 + C‖ũ‖4
L6‖∇U‖2 + C‖gu‖2 + C‖∇W‖2. (3.33)

Now, testing in (3.27)2 by −∆W we have

1

2

d

dt
‖∇W‖2 + ν2‖∆W‖2 + ν3(∇div W, ∆W) + 4νr‖∇W‖2

≤ |((ũ · ∇)W, ∆W)|+ |((U · ∇)w̃, ∆W)|+ 2νr|(curl U, ∆W)|+ |(gw, ∆W)|. (3.34)

Applying the Hölder and Young inequalities, we deduce

|((ũ · ∇W), ∆W)| ≤ ‖ũ‖L6‖∇W‖L3‖∆W‖ ≤ C‖ũ‖L6‖∇W‖1/2‖∆W‖3/2

≤ ε‖∆W‖2 + Cε‖ũ‖4
L6‖∇W‖2, (3.35)

|((U · ∇)w̃, ∆W)| ≤ ‖U‖L3‖∇w̃‖L6‖∆W‖
≤ ε‖∆W‖2 + Cε‖∇w̃‖2

L6‖∇U‖2, (3.36)

2νr|(curl U, ∆W)| ≤ 2νr‖∇U‖‖∆W‖ ≤ ε‖∆W‖2 + Cε‖∇U‖2, (3.37)

|(gw, ∆W)| ≤ ε‖∆W‖2 + Cε‖gw‖2. (3.38)

Then, carrying (3.35)–(3.38) to (3.34) and choosing ε suitably, we can obtain

1

2

d

dt
‖∇W‖2 + C‖∆W‖2 + ν3(∇div W, ∆W) + 4νr‖∇W‖2

≤ C‖ũ‖4
L6‖∇W‖2 + C(‖∇w̃‖2

L6 + 1)‖∇U‖2 + C‖gw‖2. (3.39)

Moreover, since operator L = −ν2∆ − ν3∇div is strongly elliptic, we have

(LW,−∆W) ≥ C1‖∆W‖2 − C2‖∇W‖2, (3.40)

where C1 and C2 are positive constant which depend only on ν2, ν3 and ∂Ω (see [19], for more

details). Then, estimates (3.39) and (3.40) implies

1

2

d

dt
‖∇W‖2 + C‖∆W‖2 + 4νr‖∇W‖2 ≤ C(‖ũ‖4

L6 + 1)‖∇W‖2

+ C(‖∇w̃‖2
L6 + 1)‖∇U‖2 + C‖gw‖2. (3.41)

Therefore, from (3.33) and (3.41) we deduce

1

2

d

dt
(‖∇U‖2 + ‖∇W‖2) + (‖AU‖2 + ‖∆W‖2) + 4νr‖∇W‖2

≤ (‖∇ũ‖2
L6 + ‖ũ‖4

L6 + ‖∇w̃‖2
L6 + 1)‖∇U‖2 + C(‖ũ‖4

L6 + 1)‖∇W‖2

+ C(‖gu‖2 + ‖gw‖2). (3.42)

Then, from (3.42) and Gronwall lemma, we can deduce that (U, W) ∈ X̂u × X̂w.
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Now we are able to prove the existence of Lagrange multipliers.

Theorem 3.11. Let s̃ = (ũ, w̃, f̃) ∈ Sad be a local optimal solution for the control problem (3.22).

Then, there exist Lagrange multipliers (λ1, λ2, λ3, λ4) ∈ L2(Q)× L2(Q)× V′ × H−1(Ω) such that

α
∫ T

0

∫

Ω
|ũ − ud|4(ũ − ud) · U + β

∫ T

0

∫

Ω
(w̃ − wd) · W + γ

∫ T

0

∫

Ω
f̃ · F

−
∫ T

0

∫

Ω
(∂tU + νAU + (U · ∇)ũ + (ũ · ∇)U − 2νrcurl W − PF) · λ1

−
∫ T

0

∫

Ω
(∂tW + LW + (ũ · ∇)W + (U · ∇)w̃ + 4νrW − 2νrcurl U) · λ2

−
∫

Ω
U(0) · λ3 −

∫

Ω
W(0) · λ4 ≥ 0, ∀ ∈ (U, W, F) ∈ X̂u × X̂w × C(f̃). (3.43)

Proof. From Lemma 3.10 we have that s̃ = (ũ, w̃, f̃) is a regular point. Therefore, from Theorem

3.6 we deduce that there exist Lagrange multipliers satisfying (3.43).

Theorem 3.11 allows us derive an optimality system for problem (3.22), for this purpose

we consider the following spaces

X̂u0 = {u ∈ X̂u : u(0) = 0}, X̂w0 = {u ∈ X̂w : u(0) = 0}. (3.44)

Corollary 3.12. Let s̃ = (ũ, w̃, f̃) ∈ Sad be a local optimal solution of control problem (3.22). Then

the Lagrange multipliers (λ1, λ2) ∈ L2(Q)× L2(Q) satisfy the system

∫ T

0

∫

Ω
(∂tU + νAU + (U · ∇)ũ + (ũ · ∇)U − 2νrcurl W) · λ1

= α
∫ T

0

∫

Ω
|ũ − ud|4(ũ − ud) · U, (3.45)

∫ T

0

∫

Ω
(∂tW + LW + (ũ · ∇)W + 4νrW − 2νrcurl U) · λ2

= β
∫ T

0

∫

Ω
(w̃ − wd) · W, (3.46)

for all (U, W) ∈ X̂u0 × Ŵw0 , and the optimality condition

γ
∫ T

0

∫

Ω
(f̃ + λ1) · (f − f̃) ≥ 0 ∀f ∈ U . (3.47)

Proof. Notice that Ŵu0 × Ŵw0 is a vector space; then, from (3.43), taking (U, F) = (0, 0) we

have (3.45). Analogously, taking (W, F) = (0, 0) in (3.43), we deduce (3.46). Finally, taking

(U, W) = (0, 0) in (3.43) we obtain

γ
∫ T

0

∫

Ω
f̃ · F +

∫ T

0

∫

Ω
F · λ1 ≥ 0 ∀F ∈ C(f̃). (3.48)

Thus, choosing F = f − f̃ ∈ C(f̃) in (3.48) we have (3.47).
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Remark 3.13. Problem (3.45)–(3.46) corresponds to the concept of the very weak solution of

the parabolic linear problem

− ∂tλ1 − ν1∆λ1 − ũ · ∇λ1 + (∇λ1)
T · ũ + (∇λ2)

T · w̃ +∇q

= 2νrcurl λ2 − α|ũ − ud|4(ũ − ud) in Q, (3.49)

− ∂tλ2 − ν2∆λ2 − ν3∇div λ2 − ũ · ∇λ2 + 4νrλ2

= 2νrcurl λ1 − β(w̃ − wd) in Q, (3.50)

div λ1 = 0 in Q, (3.51)

λ1(T) = 0, λ2(T) = 0 in Ω, (3.52)

λ1 = 0, λ2 = 0 on ∂Ω × (0, T). (3.53)

Now, we will obtain some extra regularity for the Lagrange multipliers (λ1, λ2) provided

by Theorem 3.11.

Theorem 3.14. Let (ũ, w̃, f̃) ∈ Sad be a local optimal solution of problem (3.22). Then, the Lagrange

multipliers (λ1, λ2), provided by Theorem 3.11, satisfy

λ1 ∈ L∞(0, T; V) ∩ L2(0, T; H2(Ω)), ∂tλ1 ∈ L2(Q), (3.54)

λ2 ∈ L∞(0, T; H1
0(Ω)) ∩ L2(0, T; H2(Ω)), ∂tλ2 ∈ L2(Q). (3.55)

Proof. First we will show that the solution of system (3.49)–(3.53) has regularity (3.54)–(3.55).

In fact, let τ := T − t, with t ∈ (0, T), and η1(τ) := λ1(t), η2(τ) := λ2(t). Then, system

(3.49)–(3.53) is equivalent to





∂τη1 − ν1∆η1 − ũ · ∇η1 + (∇η1)
T · ũ + (∇η2)

T · w̃ +∇q

= 2νrcurl η2 − α|ũ − ud|4(ũ − ud) in Q,

∂τη2 − ν2∆η2 − ν3∇div η2 − ũ · ∇η2 + 4νrη2

= 2νrcurl η1 − β(w̃ − wd) in Q,

div η1 = 0 in Q,

η1(T) = 0, η2(T) = 0 in Ω,

η1 = 0, η2 = 0 on ∂Ω × (0, T).

(3.56)

Following similar arguments that in the proof of Lemma 3.10 we can obtain that the unique

solution (η1, η2) of problem (3.56) satisfies

η1 ∈ L∞(0, T; V) ∩ L2(0, T; H2(Ω)), ∂tη1 ∈ L2(Q),

η2 ∈ L∞(0, T; H1
0(Ω)) ∩ L2(0, T; H2(Ω)), ∂tη2 ∈ L2(Q).

Consequently, the unique solution of system (3.49)–(3.53) satisfies the regularity (3.54)–(3.55).

Now, let (λ1, λ2) the unique solution of (3.49)–(3.53); then, it suffices to identify (λ1, λ2) with

(λ1, λ2). For this, we consider the unique solution (U, W) ∈ X̂u × X̂w of problem (3.27) (see

the proof of Lemma 3.10 above) for gu := (λ1 − λ1) ∈ L2(Q) and gw := (λ2 − λ2) ∈ L2(Q).

Then, written (3.49)-(3.52) for (λ1, λ2) instead of (λ1, λ2), and testing the first equation by U
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and the second equation by W, we can obtain

∫ T

0

∫

Ω
(∂tU + νAU + (U · ∇)ũ + (ũ · ∇)U − 2νrcurl W) · λ1

= α
∫ T

0

∫

Ω
|ũ − ud|4(ũ − ud) · U, (3.57)

∫ T

0

∫

Ω
(∂tW + LW + (ũ · ∇)W + 4νrW − 2νrcurl U) · λ2

= β
∫ T

0

∫

Ω
(w̃ − wd) · W. (3.58)

Making the difference between (3.45) for and (3.57), and between (3.46) and (3.58), and then

adding the respective equations, we can deduce

∫ T

0

∫

Ω
(∂tU + νAU + (U · ∇)ũ + (ũ · ∇)U − 2νrcurl W) · (λ1 − λ1)

+
∫ T

0

∫

Ω
(∂tW + LW + (ũ · ∇)W + 4νrW − 2νrcurl U) · (λ2 − λ2) = 0. (3.59)

Therefore, taking into account that (U, W) is the unique solution of (3.27) for (λ1 − λ1) and

(λ2 − λ2), from (3.59) we obtain

‖λ1 − λ1‖2
L2(Q) + ‖λ2 − λ2‖2

L2(Q) = 0,

which implies that (λ1, λ2) = (λ1, λ2) in L2(Q) × L2(Q). Consequently, the regularity of

(λ1, λ2) imply that

λ1 ∈ L∞(0, T; V) ∩ L2(0, T; H2(Ω)), ∂tλ1 ∈ L2(Q),

λ2 ∈ L∞(0, T; H1
0(Ω)) ∩ L2(0, T; H2(Ω)), ∂tλ2 ∈ L2(Q).

Finally, we deduce the optimality system of control problem (3.22).

Corollary 3.15. Let (ũ, w̃, f̃) ∈ Sad be a local optimal solution of problem (3.22). Then, the Lagrange

multipliers (λ1, λ2), with

λ1 ∈ L∞(0, T; V) ∩ L2(0, T; H2(Ω)), ∂tλ1 ∈ L2(Q),

λ2 ∈ L∞(0, T; H1
0(Ω)) ∩ L2(0, T; H2(Ω)), ∂tλ2 ∈ L2(Q).

satisfiy the following optimality system





− ∂tλ1 − ν1∆λ1 − ũ · ∇λ1 + (∇λ1)
T · ũ + (∇λ2)

T · w̃ +∇q

= 2νrcurl λ2 − α|ũ − ud|4(ũ − ud) in Q,

− ∂tλ2 − ν2∆λ2 − ν3∇div λ2 − ũ · ∇λ2 + 4νrλ2

= 2νrcurl λ1 − β(w̃ − wd) in Q,

div λ1 = 0 in Q,

λ1(T) = 0, λ2(T) = 0 in Ω,

λ1 = 0, λ2 = 0 on ∂Ω × (0, T),

γ
∫ T

0

∫

Ω
(f̃ + λ1) · (f − f̃) ≥ 0 ∀f ∈ U .

(3.60)
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Remark 3.16. If γ > 0. Then, from (3.60)6, the fact that the control set U is closed and convex,

and [2, Theorem 5.2, p. 132], we can characterizes the optimal control f̃ as the projection of

−λ1
γ onto U ; that is,

f̃ = Proj
U

(
−λ1

γ

)
.
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Abstract. We consider a nonlinear boundary value problem driven by the (p, 2)-
Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term
(a “concave-convex” problem). Using variational tools (critical point theory) together
with truncation and comparison techniques, we prove a bifurcation type theorem de-
scribing the changes in the set of positive solutions as the parameter λ > 0 varies. We
also show that for every admissible parameter λ > 0, the problem has a minimal posi-
tive solution uλ and determine the monotonicity and continuity properties of the map
λ 7→ uλ.
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we study the

following nonlinear parametric (p, 2)-equation





−∆pu(z)− ∆u(z) + ξ(z)u(z)p−1 = f (z, u(z)) in Ω

∂u

∂np2
= λuτ−1 on ∂Ω

u > 0, λ > 0, 1 < τ < 2 < p < N.

, (Pλ)

In this problem, ∆p denotes the p-Laplace differential operator defined by

∆pu = div
(
|Du|p−2Du

)
for all u ∈ W1,p(Ω), 1 < p < N.

The potential function ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω, ξ 6≡ 0. The reaction term f (z, x)

is a Carathéodory function (that is, for all x ∈ R, z 7→ f (z, x) is measurable and for a.a.

BCorresponding author. Email: scapellato@dmi.unict.it
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z ∈ Ω, x 7→ f (z, x) is continuous). We assume that f (z, ·) is (p − 1)-superlinear satisfying
the Ambrosetti–Rabinowitz condition (the AR-condition for short). In the boundary condition,

∂u
∂np2

denotes the conormal derivative of u corresponding to the (p, 2)-Laplace differential op-
erator. This directional derivative of u, is interpreted via the nonlinear Green’s identity (see
Papageorgiou–Rădulescu–Repovš [21], pp. 34, 35). If u ∈ C1(Ω), then

∂u

∂np2
=

[
|Du|p−2 + 1

] ∂u

∂n

with n(·) being the outward unit normal on ∂Ω. Also λ > 0 is a parameter and τ ∈ (1, 2).
So, in problem (Pλ) we have the competing effects of two nonlinearities of different nature.
One is the reaction term which is superlinear (“convex” nonlinearity) and the other is the
parametric boundary term, which is sublinear (“concave” nonlinearity). Therefore, problem
(Pλ) is a variant of the classical “concave-convex” problem, with the concave term coming
from the boundary condition.

The study of “concave-convex” problems was initiated with the seminal paper of
Ambrosetti–Brezis–Cerami [2] (semilinear Dirichlet equations). Their work was extended to
nonlinear Dirichlet problems driven by the p-Laplacian by García Azorero–Manfredi–Peral
Alonso [7] and Guo-Zhang [9]. In these works the reaction has the special form

x 7→ λxτ−1 + xr−1 for all x ≥ 0,

with λ > 0 (the parameter) and 1 < τ < p < r < p∗,

p∗ =

{
Np

N−p if p < N,

+∞ if N ≤ p.

Recently more general reactions and different boundary conditions were considered by
Papageorgiou–Rădulescu–Repovš [18] (semilinear Robin problems), by Leonardi–Papageorgiou
[12], Marano–Marino–Papageorgiou [14] (nonlinear Dirichlet problems) and by Papageorgiou–
Scapellato [23] (nonlinear Robin problems). In these works the competition phenomena occur
in the reaction of the equation, where we have the presence of concave and convex nonlineari-
ties. Problems with parametric concave boundary term were considered by Hu–Papageorgiou
[11] (semilinear equations), Papageorgiou–Rădulescu [16], Papageorgiou–Rădulescu–Repovš
[20], Sabina de Lis–Segura de Leon [25] (nonlinear problems driven by the p-Laplacian). Fi-
nally we mention the recent work of Papageorgiou–Scapellato [22] where in the reaction we
have the combined effects of linear and superlinear terms.

Our work here extends those of Hu–Papageorgiou [11] and of Sabina de Lis–Segura de
Leon [25].

Using variational tools based on the critical point theory, together with truncation and
comparison techniques, we prove a bifurcation-type result describing in a precise way the set
of positive solutions of problem (Pλ) as the parameter λ > 0 varies. Also we show that for
every admissible λ > 0, problem (Pλ) has a smallest positive solution.

We mention that boundary value problems driven by a combination of differential op-
erators of different nature (such as (p, 2)-equations), arise in many mathematical models of
physical processes. Among the first such examples we mention the Cahn–Hilliard equation
(see [4]) describing the process of separation of binary alloys. More recently, we mention the
works of Benci–D’Avenia–Fortunato–Pisani [3] (quantum physics) and Cherfils–Il’yasov [5]
(reaction-diffusion systems).
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2 Mathematical background – hypotheses

In the study of problem (Pλ), we will use the Sobolev space W1,p(Ω), the Banach space C1(Ω)

and the boundary Lebesgue spaces Ls(∂Ω) (1 ≤ s < ∞).
By ‖ · ‖ we denote the norm of the Sobolev space W1,p(Ω), defined by

‖u‖ =
[
‖u‖

p
p + ‖Du‖

p
p

] 1
p for all u ∈ W1,p(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive (order) cone

C+ =
{

u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω
}

.

We will also use another open cone in C1(Ω) given by

D+ =

{
u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω∩u−1(0)

< 0
}

.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using σ(·),
we can define in the usual way the boundary Lebesgue spaces Ls(∂Ω) (1 ≤ s ≤ ∞). We know
that there exists a unique continuous linear map γ0 : W1,p(Ω) → Lp(∂Ω), known as the trace

map, such that

γ0(u) = u
∣∣∣
∂Ω

for all u ∈ W1,p(Ω) ∩ C(Ω).

So, the trace map extends the notion of boundary values to all Sobolev functions. This map
is compact into Ls(∂Ω) for all 1 ≤ s <

(N−1)p
N−p when p < N and into Ls(Ω) for all 1 ≤ s < ∞

when N ≤ p. Moreover, we have

im γ0 = W
1
p′

,p
(∂Ω)

(
1
p
+

1
p′

= 1
)

,

ker γ0 = W
1,p
0 (Ω).

In what follows for the sake of notational simplicity we drop the use of the trace map. All
restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.

If u, v ∈ W1,p(Ω) with u(z) ≤ v(z) for a.a. z ∈ Ω, then we define

[u, v] = {h ∈ W1,p(Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω},

[u) = {h ∈ W1,p(Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω}.

Given g1, g2 ∈ L∞(Ω), we write g1 ≺ g2 if for every K ⊆ Ω compact we can find cK > 0
such that

cK ≤ g2(z)− g1(z) for a.a. z ∈ K.

Note that if g1, g2 ∈ C(Ω) and g1(z) < g2(z) for all z ∈ Ω, then g1 ≺ g2.
We say that a set S ⊆ W1,p(Ω) is downward directed, if given u1, u2 ∈ S, we can find u ∈ S

such that u ≤ u1, u ≤ u2.
Let 〈·, ·〉 denote the duality brackets for the pair (W1,p(Ω), W1,p(Ω)∗) and let Ap :

W1,p(Ω) → W1,p(Ω)∗ be the nonlinear operator defined by

〈Ap(u), h〉 =
∫

Ω

|Du|p−2(Du, Dh)RN dz for all u, h ∈ W1,p(Ω).
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Proposition 2.1. The operator Ap(·) is bounded (maps bounded sets to bounded sets), continuous,

monotone (hence maximal monotone too) and of type (S)+, that is,

un
w
−→ u in W1,p(Ω) and lim sup

n→∞

〈Ap(un), un − u〉 ≤ 0 ⇒ un → u in W1,p(Ω).

If p = 2, then A2 = A ∈ L (H1(Ω), H1(Ω)∗).

For x ∈ R, we set x± = max{±x, 0}. Then, given u ∈ W1,p(Ω), we define

u±(z) = u(z)± for all z ∈ Ω.

We know that
u± ∈ W1,p(Ω), u = u+ − u−, |u| = u+ + u−.

Finally, if X is a Banach space and ϕ ∈ C1(X, R), then by Kϕ we denote the critical set of
ϕ(·), that is,

Kϕ = {u ∈ W1,p(Ω) : ϕ′(u) = 0}.

Now we introduce our hypotheses on the data of problem (Pλ).

H(ξ): ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω, ξ 6≡ 0.

H( f ): f : Ω × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and

(i) 0 ≤ f (z, x) ≤ ηxr−1 for a.a. z ∈ Ω, all x ≥ 0, with 0 < η, p < r < p∗;

(ii) if F(z, x) =
∫ x

0 f (z, s)ds, then there exist ϑ0 ∈ (p, r) and M > 0 such that

0 < ϑ0F(z, x) ≤ f (z, x)x for a.a. z ∈ Ω, all x ≥ M,

0 < ess inf
Ω

F(·, M).

Remark 2.2. Since we are looking for positive solutions and the above hypotheses concern the
positive semiaxis R+ = [0,+∞), without any loss of generality we may assume that

f (z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. (2.1)

Hypothesis H( f )(i) implies that

lim
x→0+

f (z, x)

xτ−1 = 0 uniformly for a.a. z ∈ Ω. (2.2)

Hypothesis H( f )(ii) is the well known AR-condition (unilateral version due to (2.1)). The
AR-condition implies that

c0xϑ0 ≤ F(z, x) for a.a. z ∈ Ω, all x ≥ M, some c0 > 0

⇒ c0xϑ0−1 ≤ f (z, x) for a.a. z ∈ Ω, all x ≥ M

⇒ f (z, ·) is (p − 1)-superlinear (since ϑ0 > p).

It is an interesting open problem whether we can replace the AR-condition by a less re-
strictive one as in Papageorgiou–Rădulescu [17].

The following functions satisfy hypotheses H( f ). For the sake of simplicity we drop the
z-dependence:

f1(x) =

{
(x+)r−1 + ln(1 + (x+)q−1) if x ≤ 1

xs−1 if 1 < x
with p < r ≤ q < ∞, p < s < p∗,

f2(x) = (x+)r−1 with p < r < p∗.
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In the sequel, by γp : W1,p(Ω) → R we denote the C1-functional defined by

γp(u) = ‖Du‖
p
p +

∫

Ω

ξ(z)|u|p dz for all u ∈ W1,p(Ω).

On account of hypothesis H(ξ) and Lemma 4.11 of Mugnai–Papageorgiou [15], we have

c1‖u‖p ≤ γp(u) for all u ∈ W1,p(Ω), some c1 > 0. (2.3)

3 Positive solutions

We introduce the following sets

L = {λ > 0 : problem (Pλ) admits a positive solution} ,

Sλ = set of positive solutions of (Pλ).

Proposition 3.1. If hypotheses H(ξ), H( f ) hold, then L 6= ∅ and Sλ ⊆ int C+ for all λ > 0.

Proof. For every λ > 0, let ϕλ : W1,p(Ω) → R be the C1-functional defined by

ϕλ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

Ω

F(z, u+)dz −
λ

τ

∫

∂Ω

(u+)τ dσ for all u ∈ W1,p(Ω).

On account of (2.2) and hypothesis H( f )(i), we see that given ǫ > 0, we can find
c2 = c2(ǫ) > 0 such that

F(z, x) ≤ ǫxτ + c2|x|
r for a.a. z ∈ Ω, all x ∈ R.

Then we have

ϕλ(u) ≥
c1

p
‖u‖p − c3 [ǫ‖u‖τ + ‖u‖r + λ‖u‖τ] for some c3 > 0, all u ∈ W1,p(Ω). (3.1)

Here we used (2.3) and the fact that via the trace map the Sobolev space W1,p(Ω) is
embedded continuously (in fact compactly) into Lτ(∂Ω).

For ρ > 0, we let ǫ = 1
2

c1
p

ρp−τ

c3
. Then we have
[

c1

p
ρp−τ − ǫc3

]
ρτ =

1
2

c1

p
ρp. (3.2)

Using (3.2) in (3.1) we obtain

ϕλ(u) ≥
1
2

c1

p
ρp − c3[ρ

r + λρτ] for all u ∈ W1,p(Ω) with ‖u‖ = ρ.

Since p < r, we can choose ρ ∈ (0, 1) small such that

1
2

c1

p
ρp − c3ρr ≥ η > 0.

Then we choose λ0 > 0 small so that

η − λ0c3ρτ ≥
1
2

η > 0

⇒ η − λc3ρτ ≥
1
2

η > 0 for all λ ∈ (0, λ0]

⇒ ϕλ(u) ≥
1
2

η > 0 for all u ∈ W1,p(Ω) with ‖u‖ = ρ, all 0 < λ ≤ λ0. (3.3)
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We introduce the open ball

Bρ = {u ∈ W1,p(Ω) : ‖u‖ < ρ}.

By the Alaoglu and Eberlein-Šmulian theorems, we have that Bρ is sequentially weakly
compact. Also, using the Sobolev embedding theorem and the compactness of the trace map,
we see that ϕλ(·) is sequentially weakly lower semicontinuous. Invoking the Weierstrass–
Tonelli theorem, we can find u0 ∈ W1,p(Ω) such that

ϕλ(u0) = min
[
ϕλ(u) : u ∈ Bρ

]
. (3.4)

Since τ < 2 < p, we see that

ϕλ(u0) < 0 = ϕλ(0) <
1
2

η

⇒ u0 ∈ Bρ \ {0} (see (3.3)). (3.5)

Then from (3.4) and (3.5) it follows that

ϕ′
λ(u0) = 0,

⇒ 〈Ap(u0), h〉+ 〈A(u0), h〉+
∫

Ω

ξ(z)|u0|
p−2u0h dz

=
∫

Ω

f (x, u+
0 )h dz + λ

∫

∂Ω

(u+
0 )

τ−1h dσ for all h ∈ W1,p(Ω). (3.6)

In (3.6) we choose h = −u−
0 ∈ W1,p(Ω). Then

γp(u
−
0 ) + ‖Du−

0 ‖
2
2 = 0

⇒ c1‖u−
0 ‖

p ≤ 0 (see (2.3))

⇒ u0 ≥ 0, u0 6= 0.

From (3.6) we see that u0 ∈ W1,p(Ω) is a positive solution of (Pλ) and we have




−∆pu0(z)− ∆u0(z) + ξ(z)u0(z)p−1 = f (z, u0(z)) for a.a. z ∈ Ω,
∂u0

∂np2
= λuτ−1

0 on ∂Ω.
(3.7)

Proposition 2.10 of Papageorgiou–Rădulescu [17] implies that u0 ∈ L∞(Ω) and then from
Theorem 2 of Lieberman [13], we have that u0 ∈ C+ \ {0}. From (3.7) we see that

∆pu0(z) + ∆u0(z) ≤ ‖ξ‖∞u0(z)
p−1 for a.a. x ∈ Ω

⇒ u0 ∈ int C+ (see Pucci–Serrin [24], pp. 111, 120).

So, we have proved that

(0, λ0] ⊆ L , that is, L 6= ∅,

Sλ ⊆ int C+ for all λ > 0.

Next we show that L is an interval.

Proposition 3.2. If hypotheses H(ξ), H( f ) hold, λ ∈ L and µ ∈ (0, λ), then µ ∈ L .
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Proof. Since λ ∈ L , we can find uλ ∈ Sλ ⊆ int C+ (see Proposition 3.1). We introduce the
following truncations of the data of problem (Pµ):

f̂ (z, x) =

{
f (z, x+) if x ≤ uλ(z)

f (z, uλ(z)) if uλ(z) < x
for all (z, x) ∈ Ω × R, (3.8)

eµ(z, x) =

{
µ(x+)τ−1 if x ≤ uλ(z)

µuλ(z)
τ−1 if uλ(z) < x

for all (z, x) ∈ ∂Ω × R. (3.9)

Both are Carathéodory functions. We set

F̂(z, x) =
∫ x

0
f̂ (z, s)ds, Eµ(z, x) =

∫ x

0
eµ(z, s)ds

and consider the C1-functional ψµ : W1,p(Ω) → R defined by

ψµ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

Ω

F̂(z, u)dz −
∫

∂Ω

Eµ(z, u)dσ for all u ∈ W1,p(Ω).

From (2.3), (3.8) and (3.9), we see that ψµ(·) is coercive. Also it is sequentially weakly lower
semicontinuous. Therefore we can find uµ ∈ W1,p(Ω) such that

ψµ(uµ) = inf
[
ψµ(u) : u ∈ W1,p(Ω)

]
. (3.10)

Let u ∈ int C+ and choose t ∈ (0, 1) small (at least so that tu ≤ uλ, recall that uλ ∈ int C+).
Then since τ < 2 < p, we will have

ψµ(tu) < 0

⇒ ψµ(uµ) < 0 = ψµ(0) (see (3.10))

⇒ uµ 6= 0.

From (3.10) we have

ψ′
µ(uµ) = 0

⇒ 〈Ap(uµ), h〉+ 〈A(uµ), h〉+
∫

Ω

ξ(z)|uµ|
p−2uµh dz

=
∫

Ω

f̂ (z, uµ)h dz +
∫

∂Ω

e(z, uµ)h dσ for all h ∈ W1,p(Ω). (3.11)

In (3.11) first we choose h = −u−
µ ∈ W1,p(Ω). We obtain

γp(u
−
µ ) + ‖Du−

µ ‖
2
2 = 0

⇒ c1‖u−
µ ‖

p ≤ 0 (see (2.3))

⇒ uµ ≥ 0, uµ 6= 0.

Next in (3.11) we choose h = (uµ − uλ)
+ ∈ W1,p(Ω). We have

〈Ap(uµ), (uµ − uλ)
+〉+ 〈A(uµ), (uµ − uλ)

+〉+
∫

Ω

ξ(z)u
p−1
µ (uµ − uλ)

+ dz =

=
∫

Ω

f (x, uλ)(uµ − uλ)
+ dz +

∫

∂Ω

µuτ−1
λ (uµ − uλ)

+ dσ (see (3.8), (3.9))

≤
∫

Ω

f (z, uλ)(uµ − uλ)
+ dz +

∫

∂Ω

λuτ−1
λ (uµ − uλ)

+ dz (since µ < λ)

= 〈Ap(uλ), (uµ − uλ)
+〉+ 〈A(uλ), (uµ − uλ)

+〉+
∫

Ω

ξ(z)u
p−1
λ (uµ − uλ)

+ dz

(since uλ ∈ Sλ)
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⇒ uµ ≤ uλ (see Proposition 2.1).

So we have proved that
uµ ∈ [0, uλ] \ {0}. (3.12)

From (3.11), (3.12), (3.8), (3.9) it follows that

uµ ∈ Sµ ⊆ int C+,

⇒ µ ∈ L .

An interesting byproduct of the above proof is the following corollary.

Corollary 3.3. If hypotheses H(ξ), H( f ) hold, λ ∈ L , uλ ∈ Sλ ⊆ int C+ and µ ∈ (0, λ), then

µ ∈ L and there exists uµ ∈ Sµ ⊆ int C+ such that uµ ≤ uλ.

We can improve this corollary, by imposing an additional mild condition on f (z, ·). So, the
new hypotheses on the reaction f (z, x) are the following:

H( f )′: f : Ω × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω,
hypotheses H( f )′(i), (ii) are the same as the corresponding hypotheses H( f )(i), (ii) and

(i) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function

x 7→ f (z, x) + ξ̂ρxp−1

is nondecreasing on [0, ρ].

Remark 3.4. The extra condition is a one-sided local Lipschitz condition (recall that p > 2). If
f (z, ·) is differentiable for a.a. z ∈ Ω and for every ρ > 0, there exists cρ > 0 such that

f ′x(z, x) ≥ −cρxp−2 for a.a. z ∈ Ω, all x ∈ [0, ρ],

then hypothesis H( f )′(i) is satisfied.

Proposition 3.5. If hypotheses H(ξ), H( f )′ hold, λ ∈ L , uλ ∈ Sλ ⊆ int C+ and µ ∈ (0, λ), then

µ ∈ L and we can find uµ ∈ Sµ ⊆ int C+ such that

uλ − uµ ∈ D+.

Proof. From Corollary 3.3 we already know that µ ∈ L and we can find uµ ∈ Sµ ⊆ int C+

such that
uµ ≤ uλ. (3.13)

Let a : R
N → R

N defined by

a(y) = |y|p−2y + y for all y ∈ R
N .

Evidently a ∈ C1(RN , R
N) (recall that p > 2) and

∇a(y) = |y|p−2
[

I + (p − 2)
y ⊗ y

|y|2

]
+ I

⇒ (∇a(y)ϑ, ϑ)RN ≥ |ϑ|2 for all y, ϑ ∈ R
N . (3.14)
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Observe that
div a(Du) = ∆pu + ∆u for all u ∈ W1,p(Ω). (3.15)

From (3.13), (3.14), (3.15) and the tangency principle of Pucci-Serrin [24], p. 35, we have

uµ(z) < uλ(z) for all z ∈ Ω. (3.16)

Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H( f )′(i). Let ξ̃ρ > ξ̂ρ. We
have

− ∆puµ − ∆uµ +
[
ξ(z) + ξ̃ρ

]
u

p−1
µ

= f (z, uµ) + ξ̂ρu
p−1
µ +

[
ξ̃ρ − ξ̂ρ

]
u

p−1
µ

≤ f (z, uλ) + ξ̂ρu
p−1
λ +

[
ξ̃ρ − ξ̂ρ

]
u

p−1
λ (see (3.13) and hypothesis H( f )′(i))

= −∆puλ − ∆uλ +
[
ξ(z) + ξ̃ρ

]
u

p−1
λ for a.a. z ∈ Ω. (3.17)

On account of (3.16), we see that
[
ξ̃ρ − ξ̂ρ

]
u

p−1
µ ≺

[
ξ̃ρ − ξ̂ρ

]
u

p−1
λ .

Then from (3.17) and Proposition 3.2 of Gasiński–Papageorgiou [8] we have

uλ − uµ ∈ D+.

From Papageorgiou–Rădulescu–Repovš [19] (see the proof of Proposition 7), we know that
Sλ is downward directed. We will use this fact to show that for every λ ∈ L problem (Pλ)
has a smallest positive solution uλ ∈ Sλ, that is, uλ ≤ u for all u ∈ Sλ.

Proposition 3.6. If hypotheses H(ξ), H( f ) hold and λ ∈ L , then problem (Pλ) admits a smallest

positive solution

uλ ∈ int C+.

Proof. Since Sλ is downward directed, using Lemma 3.10, p. 178, of Hu–Papageorgiou [10],
we can find {un}n≥1 ⊆ Sλ decreasing such that

inf
n≥1

un = inf Sλ.

We have

〈Ap(un), h〉+ 〈A(un), h〉+
∫

Ω

ξ(z)u
p−1
n h dz =

∫

Ω

f (z, un)h dz + λ
∫

∂Ω

uτ−1
n h dσ (3.18)

for all h ∈ W1,p(Ω), all n ∈ N.

In (3.18) we choose h = un ∈ W1,p(Ω). Since 0 ≤ un ≤ u1 for all n ∈ N, using (2.3) and
hypothesis H( f )(i), we see that

{un}n≥1 ⊆ W1,p(Ω) is bounded.

From Lieberman [13] (Theorem 2), we see that there exist α ∈ (0, 1) and c4 > 0 such that

un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤ c4 for all n ∈ N.
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Recall that C1,α(Ω) →֒ C1(Ω) compactly. This fact and the monotonicity of the sequence
{un}n≥1 imply that there exists uλ ∈ C1(Ω) such that

un → uλ in C1(Ω) as n → ∞. (3.19)

We need to show that uλ 6= 0. To this end we consider the following auxiliary boundary
value problem 




−∆pu(z)− ∆u(z) + ξ(z)u(z)p−1 = 0 in Ω

∂u

∂np2
= λuτ−1 on ∂Ω

u > 0, λ > 0, τ < 2 < p

. (Qλ)

Claim 1. For every λ > 0 problem (Qλ) admits a unique solution ũλ ∈ int C+.

First we show the existence of a positive solution for problem (Qλ). For this purpose we
introduce the C1-functional βλ : W1,p(Ω) → R defined by

βλ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
λ

τ

∫

∂Ω

(u+)τ dσ for all u ∈ W1,p(Ω).

From (2.3) and since τ < 2 < p, we see that

βλ(·) is coercive.

Also the Sobolev embedding theorem and the compactness of the trace map, imply that

βλ(·) is sequentially weakly lower semicontinuous.

So, we can find ũλ ∈ W1,p(Ω) such that

βλ(ũλ) = min
[

βλ(u) : u ∈ W1,p(Ω)
]

. (3.20)

Since τ < 2 < p, we infer that

βλ(ũλ) < 0 = βλ(0)

⇒ ũλ 6= 0.

From (3.20) we have

β′
λ(ũλ) = 0

⇒ 〈Ap(ũλ), h〉+ 〈A(ũλ), h〉+
∫

Ω

ξ(z)|ũλ|
p−2ũλh dz = λ

∫

∂Ω

(ũ+
λ )

τ−1h dσ

for all h ∈ W1,p(Ω).

Choosing h = −ũ−
λ ∈ W1,p(Ω) and using (2.3), we infer that

ũλ ≥ 0, ũλ 6= 0.

Moreover, as before (see the proof of Proposition 3.1), using the nonlinear regularity theory
of Lieberman [13] (Theorem 2) and the nonlinear maximum principle of Pucci–Serrin [24]
(p. 120), we conclude that

ũλ ∈ int C+. (3.21)
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Now we show the uniqueness of this positive solution of problem (Qλ). To this end, we
consider the integral functional jλ : L1(Ω) → R = R ∪ {+∞} defined by

jλ(u) =

{
1
p‖Du

1
2 ‖

p
p +

1
2‖Du

1
2 ‖2

2 +
1
p

∫
Ω

ξ(z)u
p
2 dz, if u ≥ 0, u

1
2 ∈ W1,p(Ω)

+∞, otherwise.

From Diaz–Saá [6] (Lemma 1), we know that jλ(·) is convex.
Let dom jλ = {u ∈ L1(Ω) : jλ(u) < ∞} (the effective domain of jλ(·)). Let ṽλ be another

positive solution of (Qλ). Reasoning as we did for ũλ, we show that

ṽλ ∈ int C+. (3.22)

Then from (3.21), (3.22) and Proposition 4.1.22, p. 274, of Papageorgiou–Rădulescu–Repovš
[21], we have ũλ

ṽλ
, ṽλ

ũλ
∈ L∞(Ω). Let h = ũ2

λ − ṽ2
λ. For t ∈ [0, 1] we have

ũ2
λ − th ∈ dom jλ and ṽ2

λ + th ∈ dom jλ.

Then jλ(·) is Gâteaux differentiable at ũ2
λ and at ṽ2

λ in the direction h. Moreover, using the
nonlinear Green’s identity, we have

j′λ(ũ
2
λ)(h) =

λ

2

∫

∂Ω

ũτ−2
λ (ũ2

λ − ṽ2
λ)dσ,

j′λ(ṽ
2
λ)(h) =

λ

2

∫

∂Ω

ṽτ−2
λ (ũ2

λ − ṽ2
λ)dσ.

Since jλ(·) is convex, we have that j′λ(·) is monotone. Since τ < 2 we have

0 ≤
λ

2

∫

∂Ω

[
1

ũ2−τ
λ

−
1

ṽ2−τ
λ

]
(ũ2

λ − ṽ2
λ)dσ ≤ 0

⇒ ũλ = ṽλ.

Therefore the positive solution ũλ ∈ int C+ is unique. This proves Claim 1.
This solution provides a lower bound for the elements of Sλ.

Claim 2. ũλ ≤ u for all u ∈ Sλ.

Let u ∈ Sλ ⊆ int C+. We introduce the following Carathéodory function

bλ(z, x) =

{
λ(x+)τ−1 if x ≤ u(z)

λu(z)τ−1 if u(z) < x
for all (x, z) ∈ ∂Ω × R. (3.23)

We set Bλ(z, x) =
∫ x

0 bλ(z, s)ds and consider the C1-functional ϑλ : W1,p(Ω) → R defined
by

ϑλ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

∂Ω

Bλ(z, u)dσ for all u ∈ W1,p(Ω).

From (3.23) and (2.3) it is clear that ϑλ(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ûλ ∈ W1,p(Ω) such that

ϑλ(ûλ) = inf
[
ϑλ(u) : u ∈ W1,p(Ω)

]
. (3.24)
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As before (see Claim 1), since τ < 2 < p, we see that

ϑλ(ûλ) < 0 = ϑλ(0)

⇒ ûλ 6= 0.

From (3.24) we have

ϑ′
λ(ûλ) = 0

⇒ 〈Ap(ûλ), h〉+ 〈A(ûλ), h〉+
∫

Ω

ξ(z)|ûλ|
p−2ûλh dz =

∫

∂Ω

bλ(z, ûλ)h dσ (3.25)

for all h ∈ W1,p(Ω).

As before (see the proof of Proposition 3.2), if in (3.25) we choose first h = −ũ−
λ ∈ W1,p(Ω)

and then h = (ûλ − u)+ ∈ W1,p(Ω) and using (3.23), we show that

ûλ ∈ [0, u] \ {0}. (3.26)

From (3.26), (3.23), (3.25) and Claim 1, it follows that

ûλ = ũλ

⇒ ũλ ≤ u for all u ∈ Sλ (see (3.26)).

This proves Claim 2.
From (3.19) and Claim 2, we have

ũλ ≤ uλ

⇒ uλ 6= 0 and so uλ ∈ Sλ ⊆ int C+, uλ = inf Sλ.

Proposition 3.7. If hypotheses H(ξ), H( f ) hold and 0 < µ < λ ∈ L , then

(a) uµ ≤ uλ;

(b) ũµ ≤ ũλ.

Proof.

(a) Let uλ ∈ int C+ be the minimal positive solution of problem (Pλ) (see Proposition 3.6).
On account of Corollary 3.3, we can find uµ ∈ Sµ ∈ int C+ such that

uµ ≤ uλ

⇒ uµ ≤ uλ recall that uµ ≤ u for all u ∈ Sµ.

(b) Let ẽµ(z, x) be the Carathéodory function defined by

ẽµ(z, x) =

{
µ(x+)τ−1 if x ≤ ũλ(z)

µũλ(z)
τ−1 if ũλ(z) < x

for all (z, x) ∈ ∂Ω × R. (3.27)

We set Ẽµ(z, x) =
∫ x

0 ẽµ(z, s)ds and consider the C1-functional ϕ̃µ : W1,p(Ω) → R defined
by

ϕ̃µ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

∂Ω

Ẽµ(z, u)dz for all u ∈ W1,p(Ω).
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Evidently ϕ̃µ(·) is coercive (see (3.27) and (2.3)) and sequentially weakly lower semicon-
tinuous. So, we can find ûµ ∈ W1,p(Ω) such that

ϕ̃µ(ûµ) = inf
[

ϕ̃µ(u) : u ∈ W1,p(Ω)
]
< 0 = ϕ̃µ(0) (since τ < 2 < p)

⇒ ûµ 6= 0.

We have
〈ϕ̃′

µ(ûµ), h〉 = 0 for all h ∈ W1,p(Ω).

Choosing h = −û−
µ ∈ W1,p(Ω) and h = (ûµ − ũλ)

+ ∈ W1,p(Ω), we obtain

ûµ ∈ [0, ũλ], ûµ 6= 0

⇒ ûµ = ũµ ∈ int C+ (see (3.27) and Claim 1 in the proof of Proposition 3.6)

⇒ ũµ ≤ ũλ.

Let 0 < µ < λ and η0 = η
µ . Then η ≤ λη0. Motivated by hypothesis H( f )(i), we consider

the following auxiliary boundary value problem




−∆pu(z)− ∆u(z) + ξ(z)u(z)p−1 = λη0u(z)r−1 in Ω,
∂u

∂np2
= λuτ−1 on ∂Ω,

u > 0, λ > 0, τ < 2 < p < r.

(Rλ)

Reasoning as in the proofs of Propositions 3.1 and 3.6, we obtain the following result.

Proposition 3.8. If hypothesis H(ξ) holds and λ ∈ L , then problem (Rλ) admits a smallest positive

solution u∗
λ ∈ int C+ and there exists uλ ∈ Sλ ⊆ int C+ such that

ũλ ≤ uλ ≤ u∗
λ.

Let λ∗ = sup L .

Proposition 3.9. If hypotheses H(ξ), H( f ) hold, then λ∗
< ∞.

Proof. Let µ ∈ (0, λ) and set 0 < m̃µ = min
Ω

ũµ (recall that ũµ ∈ int C+). From Propositions 3.8

and 3.7(b), we have
0 < m̃µ ≤ ũλ ≤ u∗

λ.

We have 



−∆pu∗
λ − ∆u∗

λ + ξ(z)(u∗
λ)

p−1 = λη0(u
∗
λ)

r−1 in Ω,
∂u∗

λ

∂np2
= λ(u∗

λ)
τ−1 on ∂Ω,

λ > 0, τ < 2 < p < r.

(3.28)

Let a(z) = η0(u∗
λ(z))

r−2 and d(z) = u∗
λ(z)

τ−2. Then a ∈ L∞(Ω) and d ∈ C(Ω). We rewrite
(3.28) using a(·) and d(·). So, we have





−∆pu∗
λ − ∆u∗

λ + ξ(z)(u∗
λ)

p−1 = λa(z)u∗
λ in Ω,

∂u∗
λ

∂np2
= λd(z)u∗

λ on ∂Ω,

λ > 0.

(3.29)
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Let

Ŵp =

{
w ∈ W1,p(Ω) : k(w) =

∫

Ω

a(z)w dz +
∫

∂Ω

d(z)w dσ = 0
}

.

We have W1,p(Ω) = R ⊕ Ŵp (see Abreu-Madeira [1], Lemma 2.2). Then from (3.29) and
Theorem 1.1 of [1], we have

0 < λ ≤ ĉ inf

[ 1
p γp(w) + 1

2‖Dw‖2
2

k(w)
: w ∈ Ŵp, w 6= 0

]
< ∞ for some ĉ > 0.

This fact combined with Proposition 3.8 implies that we have λ∗
< ∞.

Proposition 3.10. If hypotheses H(ξ), H( f )′ hold and λ ∈ (0, λ∗), then problem (Pλ) admits at least

two positive solutions:

u0, û ∈ int C+, u0 ≤ û, u0 6= û.

Proof. Let ϑ ∈ (λ, λ∗). Using Proposition 3.5 we can find u0 ∈ Sλ ⊆ int C+ and uϑ ∈ Sϑ ⊆

int C+ such that
uϑ − u0 ∈ D+. (3.30)

We introduce the following truncations of the data of (Pλ)

µ̂(z, x) =

{
f (z, u0(z)) if x ≤ u0(z)

f (z, x) if u0(z) < x
for all (z, x) ∈ Ω × R, (3.31)

ŵλ(z, x) =

{
λu0(z)τ−1 if x ≤ u0(z)

λxτ−1 if u0(z) < x
for all (z, x) ∈ ∂Ω × R. (3.32)

These are Carathéodory functions. We set

M̂(z, x) =
∫ x

0
µ̂(z, s)ds and Ŵλ(z, x) =

∫ x

0
ŵλ(z, s)ds

and consider the C1-functional d̂λ : W1,p(Ω) → R defined by

d̂λ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

Ω

M̂(z, u)dz −
∫

∂Ω

Ŵλ(z, u)dσ for all u ∈ W1,p(Ω).

In addition, we introduce the following truncations of µ̂(z, ·) and of ŵλ(z, ·)

µ̂0(z, x) =

{
µ̂(z, x) if x ≤ uϑ(z)

µ̂(z, uϑ(z)) if uϑ(z) < x
for all (z, x) ∈ Ω × R, (3.33)

ŵ0
λ(z, x) =

{
ŵλ(z, x) if x ≤ uϑ(z)

ŵλ(z, uϑ(z)) if uϑ(z) < x
for all (z, x) ∈ ∂Ω × R. (3.34)

These are Carathéodory functions. We set

M̂0(z, x) =
∫ x

0
µ̂0(z, s)ds and Ŵ0

λ(z, x) =
∫ x

0
ŵ0

λ(z, s)ds

and consider the C1-functional d̂ 0
λ : W1,p(Ω) → R defined by

d̂ 0
λ (u) =

1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

Ω

M̂0(z, u)dz −
∫

∂Ω

Ŵ0
λ(z, u)dσ for all u ∈ W1,p(Ω).
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From (3.31), (3.32), (3.33) and (3.34) it is clear that

d̂λ

∣∣∣
[0,uϑ ]

= d̂ 0
λ

∣∣∣
[0,uϑ ]

and d̂ ′
λ

∣∣∣
[0,uϑ ]

=
(
d̂ 0

λ

)′∣∣∣
[0,uϑ ]

. (3.35)

Moreover, we have

K
d̂λ

⊆ [u0) ∩ int C+ (see (3.31), (3.32)) (3.36)

K
d̂ 0

λ
⊆ [u0, uϑ] ∩ int C+ (see (3.33), (3.34)). (3.37)

From (3.35) and (3.36) we see that without any loss of generality we may assume that

K
d̂λ
∩ [0, uϑ] = {u0}. (3.38)

Otherwise we already have a second positive smooth solution of (Pλ) bigger than u0 (see
(3.36)) and so we are done.

From (3.33), (3.34) and (2.3) it is clear that d̂ 0
λ (·) is coercive. Also it is sequentially weakly

lower semicontinuous. So, we can find ũ0 ∈ W1,p(Ω) such that

d̂ 0
λ (ũ0) = min

[
d̂ 0

λ (u) : u ∈ W1,p(Ω)
]

⇒ ũ0 ∈ [u0, uϑ] ∩ int C+ (see (3.37))

⇒ ũ0 ∈ K
d̂λ

(see (3.35))

⇒ ũ0 = u0 (see (3.38)).

From (3.30) and (3.35) it follows that

u0 is a local C1(Ω)-minimizer of dλ

⇒ u0 is a local W1,p(Ω)-minimizer of dλ

(see Papageorgiou–Rădulescu [17], Proposition 2.12).

We assume that K
d̂λ

is finite or otherwise on account of (3.36) we already have an infinity
of positive smooth solutions bigger than u0 and so we are done. Invoking Theorem 5.7.6,
p. 449, of Papageorgiou–Rădulescu–Repovš [21], we can find ρ ∈ (0, 1) small such that

d̂λ(u0) < inf [dλ(u) : ‖u − u0‖ = ρ] = m̂λ. (3.39)

Moreover, on account of hypothesis H( f )′(ii)=H( f )(ii), we have that

d̂λ(·) satisfies the Palais–Smale condition (3.40)

and if u ∈ int C+, then
d̂λ(tu) → −∞ as t → +∞. (3.41)

Then (3.39), (3.40) and (3.41) permit the use of the mountain pass theorem. So, we can find
û ∈ W1,p(Ω) such that

û ∈ K
d̂λ

and m̂λ ≤ dλ(û)

⇒ u0 ≤ û ∈ int C+ (see (3.36)), u0 6= û (see (3.39)), û ∈ Sλ (see (3.31), (3.32)).

Proposition 3.11. If hypotheses H(ξ), H( f ) hold, then λ∗ ∈ L .
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Proof. Let λn ↑ λ∗ as n → ∞. We can find un ∈ Sλn
⊆ int C+, n ∈ N, such that

ϕλn
(un) < 0 for all n ∈ N (see the proof of Proposition 3.2), (3.42)

ϕ′
λn
(un) = 0 for all n ∈ N. (3.43)

From (3.42), (3.43) and hypothesis H( f )(ii) (the AR-condition) we deduce that

{un}n≥1 ⊆ W1,p(Ω) is bounded.

So, we may assume that

un
w
−→ uλ∗ in W1,p(Ω) and un → uλ∗ in Lr(Ω) and in Lp(∂Ω). (3.44)

From (3.43) we have

〈Ap(un), h〉+ 〈A(un), h〉+
∫

Ω

ξ(z)u
p−1
n h dz =

∫

Ω

f (z, un)h dz + λn

∫

∂Ω

uτ−1
n h dσ (3.45)

for all h ∈ W1,p(Ω).

We choose h = un − uλ∗ ∈ W1,p(Ω), pass to the limit as n → ∞ and use (3.44). Then

lim
n→∞

[
〈Ap(un), un − uλ∗〉+ 〈A(un), un − uλ∗〉

]
= 0

⇒ lim sup
n→+∞

[
〈Ap(un), un − uλ∗〉+ 〈A(uλ∗), un − uλ∗〉

]
≤ 0 (since A(·) is monotone)

⇒ lim sup
n→∞

〈Ap(un), un − uλ∗〉 ≤ 0 (see (3.44))

⇒ un → uλ∗ in W1,p(Ω) (see Proposition 2.1). (3.46)

Passing to the limit as n → ∞ in (3.45) and using (3.46), we obtain

〈Ap(uλ∗), h〉+ 〈A(uλ∗), h〉+
∫

Ω

ξ(z)u
p−1
λ∗ h dz =

∫

Ω

f (z, uλ∗)h dz + λ∗
∫

∂Ω

uτ−1
λ∗ h dσ (3.47)

for all h ∈ W1,p(Ω),

ũλ1 ≤ uλ (see Claim 2 in the proof of Proposition 3.6 and Proposition 3.7(b)). (3.48)

From (3.47) and (3.48) we infer that

uλ∗ ∈ Sλ∗ , that is, λ∗ ∈ L .

Therefore we have
L = (0, λ∗].

Next we examine the properties of the minimal solution map λ 7→ uλ from L into C1(Ω).

Proposition 3.12. If hypotheses H(ξ), H( f )′ hold, then the minimal solution map λ 7→ uλ from L

into C1(Ω) is

(a) strictly increasing in the sense that

0 < µ < λ ≤ λ∗ ⇒ uλ − uµ ∈ D+;

(b) left continuous.
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Proof.

(a) Let 0 < µ < λ ≤ λ∗. According to Proposition 3.5, we can find uµ ∈ Sµ ⊆ int C+ such
that

uλ − uµ ∈ D+

⇒ uλ − uµ ∈ D+ (since uµ ≤ u for all u ∈ Sµ).

(b) Let λn ↑ λ ∈ L . We have un = uλn
≤ uλ∗ ∈ int C+ for all n ∈ N. So, from Theorem 2 of

Lieberman [13], we know that there exist α ∈ (0, 1) and c5 > 0 such that

un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤ c5 for all n ∈ N. (3.49)

Exploiting the fact that C1,α(Ω) →֒ C1(Ω) compactly and the monotonicity of {un}n≥1

(see part (a)), from (3.49) we have

un → ûλ in C1(Ω). (3.50)

If ûλ 6= uλ, then we can find z0 ∈ Ω such that uλ(z0) < ûλ(z0). On account of (3.50) we
have

uλ(z0) < un(z0) for all n ≥ n0,

which contradicts part (a). So, we conclude that λ 7→ uλ is left continuous.

The following bifurcation-type theorem describes the dependence on the parameter λ > 0
of the set of positive solutions of (Pλ).

Theorem 3.13. If hypotheses H(ξ), H( f )′ hold, then there exists λ∗
> 0 such that

(a) for all λ ∈ (0, λ∗) problem (Pλ) admits at least two positive solutions

u0, û ∈ int C+, u0 ≤ û, u0 6= û;

(b) for λ = λ∗ problem (Pλ) has at least one positive solution uλ∗ ∈ int C+;

(c) for all λ > λ∗ there are no positive solutions;

(d) for all λ ∈ L = (0, λ∗] problem (Pλ) has a smallest positive solution

uλ ∈ int C+

and the map λ 7→ uλ from L into C1(Ω) is

• strictly increasing, that is, 0 < µ < λ ≤ λ∗ ⇒ uλ − uµ ∈ D+;

• left continuous.
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1 Introduction

In [9, p. 190], Henry obtained the following result about weakly singular Gronwall type in-

equality.

Theorem 1.1. Let a, b, α, β be nonnegative constants with α < 1, β < 1. Suppose that u ∈ L1[0, T]

satisfies

u(t) ≤ at−α + b
∫ t

0
(t − s)−βu(s)ds, a.e. t ∈ (0, T]. (1.1)

Then there is a constant C(b, β, T) such that

u(t) ≤ at−α

1 − α
C(b, β, T), a.e. t ∈ (0, T]. (1.2)

One version of a doubly singular case of Henry is the following, cf. [9, p. 189].

Theorem 1.2. Suppose β > 0, γ > 0, β + γ > 1 and a ≥ 0, b ≥ 0, u is nonnegative and tγ−1u(t) is

locally integrable on 0 ≤ t < T, and u satisfies

u(t) ≤ a + b
∫ t

0
(t − s)β−1sγ−1u(s)ds, a.e. t ∈ [0, T). (1.3)

Then

u(t) ≤ aEβ,γ

(

bΓ(β)
1

β+γ−1 t
)

, (1.4)

where Eβ,γ(z) is given by an infinite series related to the two-parameter Mittag-Leffler function.

BEmail: zhutaoyzu@sina.cn
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Since fractional integral inequality is a well-known tool in the study of fractional differ-

ential equations and evolution equations, Henry’s work was followed by many scholars (for

example, see [6,12–14,19,21–23]). Recently, by the Hölder inequality and a method introduced

by Medved’ [13, 14], Zhu [22] considered the following inequality

Theorem 1.3. Let 0 < T ≤ ∞, β > 0, a(t), b(t) and l(t) be continuous, nonnegative functions on

[0, T), and u(t) be a continuous, nonnegative function on [0, T) with

u(t) ≤ a(t) +
b(t)

Γ(β)

∫ t

0
(t − s)β−1l(s)u(s)ds, (1.5)

then

u(t) ≤
(

A(t) + B(t)
∫ t

0
L(s)A(s) exp

(

∫ t

s
L(τ)B(τ)dτ

)

ds

)
1
p

, (1.6)

where

A(t) = 2p−1ap(t), B(t) = 2p−1

(

b(t)

Γ(β)(q(β − 1) + 1)
1
q

t
β−1+ 1

q

)p

, L(t) = lp(t),

and p, q ∈ (0, ∞) such that 1
q + β > 1 and 1

q +
1
p = 1.

By a reduction to the classical Gronwall inequality, Webb [19] studied the following Gron-

wall type inequality with a double singularity.

Theorem 1.4. Let a, b ≥ 0 and c > 0 be constants. Let 0 < α, β, γ < 1 with α + γ < 1 and

β + γ < 1. Suppose that u(t)tα ∈ L∞
+ [0, T] and u satisfies

u(t) ≤ at−α + b + c
∫ t

0
(t − s)−βs−γu(s)ds, a.e. t ∈ (0, T]. (1.7)

Then we have, for a.e. t ∈ (0, T],

u(t) ≤ at−α + acB1t−α+1−β−γ + ac2B1B2t−α+2(1−β−γ) + . . .

+ (b + acmB1B2 . . . Bmt−α+m(1−β−γ)) exp

(

ct
−β
r1

1 − β − γ
t1−γ

)

,
(1.8)

where m is the smallest positive integer such that m(1 − β − γ) − α ≥ 0, r1 = β
1−γ , and for n ∈

N, Bn = B(1 − β, 1 − α − γ + (n − 1)(1 − β − γ)). In particular, there is an explicit constant

C(b, c, β, γ, T) such that u(t) ≤ at−αC for a.e. t ∈ (0, T].

In this paper, we study the following fractional integral inequalities

u(t) ≤ a(t) + b(t)
∫ t

0
(t − s)β−1s−γl(s)u(s)ds, t ∈ [0,+∞), (1.9)

where γ ≥ 0 and β ∈ (0, 1), and

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0,+∞), (1.10)

where a, b ≥ 0, α > δ ≥ 0 and β ∈ (0, 1). The special cases b(t) ≡ C or γ = 0 of the inequality

(1.9) are proved in Medved’ [13, Theorem 2 and Theorem 3] and Zhu [22, Theorem 2.4 and
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Theorem 2.6]. Medved’ also studied the inequality (1.9) in [13, Theorem 4] and obtained two

different results with exponential functions for different β and γ. The conclusion of Theorem 4

in [13] has a more complicated appearance. Webb [19] obtained several results of inequality

(1.10) for the special case l(t) = t−γ by reducing the inequality (1.10) to the classical Gronwall

inequality. In this paper, we study the inequality (1.9) under the hypothesis β ∈ (0, 1) and

γ ≥ 0. The proof is more simple than Theorem 4 in [13]. We present a new method to study

a integral inequality which was first studied by Willett [20]. By this integral inequality, we

study the inequality (1.9) for the special cases b(t) = t1−β and γ = 1 − β. The conclusion and

the method of proof seem to be new in this case. We also obtain some results of the inequality

(1.10) and examples show our results are improvements on [19].

Fractional differential equations (FDEs) have been of great interest in the past three decades.

It is caused both by the intensive development of the theory of fractional calculus itself and

by the applications in various sciences. Recently, many researchers began to investigate the

existence of solutions of nonlinear fractional differential equations (for example, see [4–6,8,11,

12,18,19,21–24] and references therein). In this paper, we continue to investigate the existence

and uniqueness of global solutions of the following initial value problem

{

D
β
r x(t) = f (t, x(t)) t ∈ (0,+∞), β ∈ (0, 1),

limt→0+ t1−βx(t) = x0,
(1.11)

where D
β
r is the Riemann–Liouville fractional derivative. It should be pointed out that such

global existence results are fundamental in the theory of fractional differential equations and

crucial in stability analysis of fractional differential equations.

The existence and uniqueness of global solutions of the fractional differential equation

(1.11) have been studied by many scholars. For example, under the assumption that f satisfies

an inequality of the form

| f (t, x)| ≤ p(t)ω

( |x|
1 + t2

)

+ q(t),

Kou et al. [11] proved the global existence of solutions of fractional differential equation (1.11)

in a special Banach space

E =

{

x(t)|x(t) ∈ C1−β(0,+∞), lim
t→+∞

t1−βx(t)

1 + t2
= 0

}

.

Trif [18] investigated the global existence of solutions to initial value problems for nonlinear

fractional differential equation (1.11) by constructing a special locally convex space which is

metrizable and complete. Webb [19] proved the existence results of equation (1.11) under

the assumption that nonnegative function f satisfies f (t, x) = t−γg(t, x), where g(t, x) ≤
M(1 + x), M > 0 and 0 ≤ γ < β. Unlike all the previous papers, by new fractional inequality

(1.9) and fixed point theorem, we present the existence and uniqueness results of the fractional

differential equation (1.11). Our result includes the main result of [18, Theorem 4.2]. Finally,

examples are given to illustrate the applicability of our results and can not be solved by

Theorem 4.2 in [18].

2 Preliminaries

In this section, we introduce notations, definitions and preliminary facts which are used

throughout this paper.
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Let β ∈ (0, 1), denote Cβ(0, T] = {x : (0, T] → R and x(t) = t−βy(t) for some y ∈ C[0, T]}.

Let ‖x‖β = sup0<t≤T tβ|x(t)|, then Cβ(0, T] endowed with the norm ‖ · ‖β is a Banach space.

We denote Cβ(0,+∞) = {x : (0,+∞) → R and x(t) = t−βy(t) for some y ∈ C[0,+∞)}.

L
p
Loc[0,+∞) (p ≥ 1) is the space of all real valued functions which are Lebesgue integrable

over every bounded subinterval of [0,+∞).

Definition 2.1. The Riemann–Liouville fractional integral of order β ∈ (0, 1) of a function

f ∈ L1[0, T] is defined by

(Iβ f )(t) =
1

Γ(β)

∫ t

0

f (s)

(t − s)1−β
ds.

Definition 2.2. The Riemann–Liouville fractional derivative of order β ∈ (0, 1) of a function f

where I1−β f is absolutely continuous (AC) is defined by

(D
β
r f )(t) =

d

dt
(I1−β f )(t) =

1

Γ(1 − β)

d

dt

∫ t

0

f (s)

(t − s)β
ds.

Remark 2.3. If f ∈ L1[0, T], then the integral (Iβ f )(t) exists for almost every t ∈ [0, T] and

Iβ f ∈ L1[0, T]. If f ∈ AC[0, T], then D
β
r f exists almost everywhere in [0, T]. If f ∈ Iβ(L1) =

{ f : f = Iβg, g ∈ L1[0, T]}, then I1−β f ∈ AC[0, T]. For more details about fractional calculus,

we refer the reader to the texts [7, 10, 16, 17].

Theorem 2.4 ([3]). Let f (t, x) be a function that is continuous on the set

B =
{

(t, x) ∈ R
2 : 0 < t ≤ T, x ∈ I

}

,

where I ⊆ R denotes an unbounded interval. Suppose a function x : (0, T] → I is continuous and

that both x(t) and f (t, x(t)) are absolutely integrable on (0, T]. Then x(t) satisfies the initial value

problem (1.11) on (0, T] if and only if it satisfies the Volterra integral equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, x(s))ds (2.1)

on (0, T].

Remark 2.5. f is absolutely integrable on (0, T] if f is Riemann integrable on every closed in-

terval [η, T], where η ∈ (0, T], and limη→0+
∫ T

η
| f (t)|dt exists and is finite. From Proposition 2.1

in [3], if f ∈ L1[0, T] is continuous on (0, T], then f is absolutely integrable on (0, T].

Lemma 2.6 ([2, 17]). Suppose ρ ∈ Lq[0, 1]. Then

∫ t

0
(t − s)β−1ρ(s)ds

is continuous on [0, 1], where β ∈ (0, 1) and q >
1
β .

Theorem 2.7 ([1]). Let E be a Banach space, C a closed, convex subset of E and 0 ∈ C. Let F : C → C

be a continuous and completely continuous map, and let the set {x ∈ E : x = λFx for some λ ∈ (0, 1)}
be bounded. Then F has at least one fixed point in E.
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3 Fractional integral inequalities

In this section, we are now to prove some results concerning fractional integral inequalities

(1.9) and (1.10), which can be used to study the global existence of solutions of fractional

differential equation (1.11).

Theorem 3.1. Let β ∈ (0, 1) and γ ≥ 0, a(t) and b(t) be nonnegative and continuous functions

on [0,+∞), l(t) be a nonnegative and continuous function on (0,+∞) and t−γl(t) ∈ L
q
Loc[0,+∞)

(q >
1
β ), and u(t) be a continuous, nonnegative function on [0,+∞) with

u(t) ≤ a(t) + b(t)
∫ t

0
(t − s)β−1s−γl(s)u(s)ds. (3.1)

Then

u(t) ≤
(

A(t) + B(t)
∫ t

0
L(s)A(s) exp

(

∫ t

s
L(τ)B(τ)dτ

)

ds

)
1
q

, t ∈ [0,+∞), (3.2)

where A(t) = 2q−1aq(t), B(t) = 2q−1bq(t)t
qβ−q+

q
p

(pβ−p+1)
q
p

, L(t) = t−qγlq(t) and p ∈ (1,+∞) such that 1
p +

1
q = 1 .

Proof. Since q >
1
β and 1

p +
1
q = 1, then β − 1 + 1

p > 0. From the inequality (3.1) and using the

Hölder inequality, we have

u(t) ≤ a(t) + b(t)
∫ t

0
(t − s)β−1s−γl(s)u(s)ds

≤ a(t) + b(t)

(

∫ t

0
(t − s)p(β−1)ds

)
1
p
(

∫ t

0
(s−γl(s)u(s))qds

)
1
q

= a(t) +
b(t)tβ−1+ 1

p

(pβ − p + 1)
1
p

(

∫ t

0
(s−γl(s)u(s))qds

)
1
q

.

(3.3)

Then

uq(t) ≤ 2q−1aq(t) +
2q−1bq(t)tqβ−q+ q

p

(pβ − p + 1)
q
p

∫ t

0
s−qγlq(s)uq(s)ds.

Let w(t) = uq(t), A(t) = 2q−1aq(t), B(t) = 2q−1bq(t)t
qβ−q+

q
p

(pβ−p+1)
q
p

and L(t) = t−qγlq(t), then

w(t) ≤ A(t) + B(t)
∫ t

0
L(s)w(s)ds.

By the Gronwall–Beesack inequality [15, p. 356], we obtain

w(t) ≤ A(t) + B(t)
∫ t

0
L(s)A(s) exp(

∫ t

s
L(τ)B(τ)dτ)ds.

Thus, we obtain the inequality (3.2) and complete the proof.

Theorem 3.2. Let a, b ≥ 0, α > δ ≥ 0 and β ∈ (0, 1), l(t) be a nonnegative and continuous function

on (0,+∞) and t−αl(t) ∈ L
q
Loc[0,+∞) (q >

1
β ). Suppose that tαu(t) is a continuous, nonnegative

function on [0,+∞) and u(t) satisfies the inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0,+∞). (3.4)
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Then

u(t) ≤ t−α

(

2q−1aq + 2q−1aqB(t)
∫ t

0
L(s) exp

(

∫ t

s
L(τ)B(τ)dτ

)

ds

)
1
q

, t ∈ (0,+∞), (3.5)

where B(t) = 2q−1bqt
qα−qδ+qβ−q+

q
p

(pβ−p+1)
q
p

, L(t) = t−qαlq(t) and p ∈ (1,+∞) such that 1
p +

1
q = 1 .

Proof. Let v(t) = tαu(t), so that v(t) satisfies the inequality

v(t) ≤ a + btα−δ
∫ t

0
(t − s)β−1s−αl(s)v(s)ds, t ∈ [0,+∞). (3.6)

By Theorem 3.1, we obtain the inequality (3.5) and complete the proof.

Lemma 3.3 ([20]). Let 1 ≤ p < ∞, a(t) and b(t) be nonnegative continuous on [0, ∞), l(t) be a non-

negative and continuous function on (0,+∞) and l(t) ∈ L1
Loc[0,+∞). Suppose u(t) is a nonnegative

continuous function on [0,+∞) with

u(t) ≤ a(t) + b(t)

(

∫ t

0
l(s)up(s)ds

)
1
p

, t ∈ [0, ∞). (3.7)

Then

u(t) ≤ a(t) + b(t)

(

∫ t
0 l(s)e(s)ap(s)ds

)
1
p

1 − [1 − e(t)]
1
p

,

where e(t) = exp(−
∫ t

0 l(s)bp(s)ds).

Theorem 3.4. Let a, b ≥ 0, α > δ ≥ 0 and β ∈ (0, 1), l(t) be a nonnegative and continuous function

on (0,+∞) and t−αl(t) ∈ L
q
Loc[0,+∞) (q >

1
β ). Suppose that tαu(t) is a continuous, nonnegative

function on [0,+∞) and u(t) satisfies the inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0,+∞). (3.8)

Then

u(t) ≤ at−α + at−αB(t)

(

∫ t
0 L(s)e(s)ds

)
1
q

1 − [1 − e(t)]
1
q

, t ∈ (0,+∞), (3.9)

where B(t) = bt
α−δ+β−1+ 1

p

(pβ−p+1)
1
p

, L(t) = t−qαlq(t), e(t) = exp(−
∫ t

0 L(s)Bq(s)ds), and p ∈ (1,+∞) such

that 1
p +

1
q = 1 .

Proof. Let v(t) = tαu(t) and using the Hölder inequality, we have

v(t) ≤ a + btα−δ

(

∫ t

0
(t − s)p(β−1)ds

)
1
p
(

∫ t

0
(s−αl(s)v(s))qds

)
1
q

= a +
bt

α−δ+β−1+ 1
p

(pβ − p + 1)
1
p

(

∫ t

0
s−qαlq(s)vq(s)ds

)
1
q

.

(3.10)
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By Lemma 3.3, we get

v(t) ≤ a + aB(t)

(

∫ t
0 L(s)e(s)ds

)
1
q

1 − [1 − e(t)]
1
q

,

where B(t) = bt
α−δ+β−1+ 1

p

(pβ−p+1)
1
p

, L(t) = t−qαlq(t) and e(t) = exp(−
∫ t

0 L(s)Bq(s)ds). Then we obtain

the inequality (3.9) and complete the proof.

In [20], Willett studied the inequality (3.7) by using the Minkowski inequality. Now, we

use a new method to study the inequality (3.7).

Lemma 3.5. Let 1 ≤ p < ∞, a(t) and b(t) be continuous and nonnegative functions on [0, ∞),

nonnegative function l(t) ∈ L
p
Loc[0,+∞), and u(t) be a continuous and nonnegative function with

u(t) ≤ a(t) + b(t)

(

∫ t

0
lp(s)up(s)ds

)
1
p

, t ∈ [0, ∞). (3.11)

Then

u(t) ≤ a(t) + b(t)

(

A(t) exp(
∫ t

0
L(s)ds)

)
1
p

, t ∈ [0, ∞), (3.12)

where A(t) =
∫ t

0 2p−1lp(s)ap(s)ds and L(t) = 2p−1lp(t)bp(t).

Proof. From (3.11), we know

l(t)u(t) ≤ l(t)a(t) + l(t)b(t)

(

∫ t

0
lp(s)up(s)ds

)
1
p

and

∫ t

0
lp(s)up(s)ds ≤

∫ t

0

(

l(s)a(s) + l(s)b(s)

(

∫ s

0
lp(τ)up(τ)dτ

)
1
p

)p

ds

≤
∫ t

0
2p−1lp(s)ap(s) + 2p−1lp(s)bp(s)

∫ s

0
lp(τ)up(τ)dτds.

(3.13)

Let w(t) =
∫ t

0 lp(s)up(s)ds, A(t) =
∫ t

0 2p−1lp(s)ap(s)ds and L(t) = 2p−1lp(t)bp(t), then

w(t) ≤ A(t) +
∫ t

0
L(s)w(s)ds.

Since A(t) is a nondecreasing function and using Gronwall integral inequality, thus we obtain

w(t) ≤ A(t) exp

(

∫ t

0
L(s)ds

)

.

Thus, we obtain the inequality (3.12) and complete the proof.

If we replace b(t) by t1−β and γ by 1 − β in Theorem 3.1, and using Lemma 3.5, we can

obtain the following conclusions under the hypotheses l(t) ∈ L
q
Loc[0,+∞).
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Theorem 3.6. Let β ∈ (0, 1), a(t) be a nonnegative and continuous function on [0,+∞), l(t) be

a nonnegative and continuous function on (0,+∞) and l(t) ∈ L
q
Loc[0,+∞)(q >

1
β ), and u(t) be a

continuous, nonnegative function on [0,+∞) with

u(t) ≤ a(t) + t1−β
∫ t

0
(t − s)β−1sβ−1l(s)u(s)ds. (3.14)

Then

u(t) ≤ a(t) + b(t)

(

A(t) exp

(

∫ t

0
L(s)ds

))
1
q

, t ∈ [0, ∞), (3.15)

where b(t) = 2
1
p t

β−1+ 1
p

(pβ−p+1)
1
p

, A(t) =
∫ t

0 2q−1lq(s)aq(s)ds, L(t) = 2q−1lq(t)bq(t) and p ∈ (1,+∞) such

that 1
p +

1
q = 1.

Proof. Since q >
1
β and 1

p +
1
q = 1, then 1 < p <

1
1−β . From the inequality (3.14) we have

u(t) ≤ a(t) +
∫ t

0

(

t

(t − s)s

)1−β

l(s)u(s)ds

= a(t) +
∫ t

0

(

1

t − s
+

1

s

)1−β

l(s)u(s)ds

≤ a(t) +

(

∫ t

0

(

1

t − s
+

1

s

)p(1−β)

ds

)
1
p (∫ t

0
(l(s)u(s))qds

)
1
q

≤ a(t) +

(

∫ t

0
(t − s)p(β−1) + sp(β−1)ds

)
1
p
(

∫ t

0
(l(s)u(s))qds

)
1
q

= a(t) +
2

1
p t

β−1+ 1
p

(pβ − p + 1)
1
p

(

∫ t

0
lq(s)uq(s)ds

)
1
q

.

(3.16)

Let b(t) = 2
1
p t

β−1+ 1
p

(pβ−p+1)
1
p

. Then by Lemma 3.5, we obtain the inequality (3.15).

Corollary 3.7. Let β ∈ (0, 1) and u0 > 0, l(t) be a nonnegative and continuous function on (0,+∞)

and l(t) ∈ L
q
Loc[0,+∞) (q >

1
β ), and nonnegative function u(t) ∈ C1−β(0,+∞) with

u(t) ≤ u0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1l(s)u(s)ds, t ∈ (0,+∞). (3.17)

Then

u(t) ≤ u0tβ−1 + tβ−1b(t)

(

A(t) exp

(

∫ t

0
L(s)ds

))
1
q

, t ∈ (0,+∞), (3.18)

where b(t) = 2
1
p t

β−1+ 1
p

Γ(β)(pβ−p+1)
1
p

, A(t) =
∫ t

0 2q−1u
q
0lq(s)ds, L(t) = 2q−1lq(t)bq(t) and p ∈ (1,+∞) such

that 1
p +

1
q = 1.

Proof. Since u(t) ∈ C1−β(0,+∞), then v(t) = t1−βu(t) ∈ C[0,+∞) and

v(t) ≤ u0 +
t1−β

Γ(β)

∫ t

0
(t − s)β−1sβ−1l(s)v(s)ds.

By Theorem 3.6, we obtain the inequality (3.18) and complete the proof.
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Remark 3.8. Medved’ studied the inequality (1.9) in [13, Theorem 4] for different β and γ.

If β >
1
2 and γ > 1 − 1

2p (p > 1), then Medved’ obtained the bound of the inequality (1.9).

If β = 1
m+1 and γ > 1 − 1

kq (m ≥ 1, k > 1 and q = m + 2), then Medved’ obtained another

bound. In Theorem 3.1, we study the inequality (1.9) under the hypothesis β ∈ (0, 1) and

γ ≥ 0. The proof of the inequality (1.9) is more simple than Theorem 4 in [13]. Lemma 3.5

and Theorem 3.6 we now discuss seem to be new. For the special b(t) and γ, the hypothesis

in Theorem 3.6 is weaker than that in Theorem 3.1.

Example 3.9. Suppose that t
1
2 u(t) is a continuous, nonnegative function on [0,+∞) and u(t)

satisfies the inequality

u(t) ≤ t−
1
2 + t−

1
3

∫ t

0
(t − s)−

1
3

6
√

s√
1 + s2

u(s)ds, t ∈ (0,+∞). (3.19)

Let p = q = 2, by Theorem 3.2, then we have

u(t) ≤ t−
1
2 (2 + 12t

2
3 exp(6 arctan t)

∫ t

0

s
−2
3

1 + s2
exp(−6 arctan s)ds)

1
2 .

We know

∫ t

0

s
−2
3

1 + s2
exp(−6 arctan s)ds ≤

∫ +∞

0

s
−2
3

1 + s2
ds

=
1

2

∫ 1

0
(1 − u)

−5
6 u

−1
6 du

= π,

(3.20)

where u = 1
1+s2 . Then we obtain

u(t) ≤ t−
1
2

(

2 + 12π exp(3π)t
2
3

)
1
2

, t ∈ (0,+∞).

Example 3.10. Suppose that t
1
3 u(t) is a continuous, nonnegative function on [0,+∞) and u(t)

satisfies the inequality

u(t) ≤ t−
1
3 +

∫ t

0
(t − s)−

1
3 s−

1
3 u(s)ds, t ∈ (0,+∞). (3.21)

Let v(t) = t
1
3 u(t), then

v(t) ≤ 1 + t
1
3

∫ t

0
(t − s)−

1
3 s−

2
3 v(s)ds, t ∈ [0,+∞).

Let p = 8
3 and q = 8

5 , by Theorem 3.6, we have

v(t) ≤ 1 + 18
3
8 t

1
24

(

15

7
2

3
5 t

7
15 exp

(

15

8
36

3
5 t

8
15

))
5
8

= 1 + 36
3
8

(

15

7

)
5
8

t
1
3 exp

(

75

64
36

3
5 t

8
15

)

≤ 1 + 7t
1
3 exp(11t

8
15 )

(3.22)
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and

u(t) ≤ t
−1
3 + 7 exp(11t

8
15 ), t ∈ (0,+∞).

We know t
−2
3 /∈ L

q
Loc[0,+∞) (q >

3
2 ). Thus, Theorem 3.2 can not be applied to Example 3.10.

Using Theorem 3.9 in [19], we know

u(t) ≤ t
−1
3 + B1 exp(6B0t

2
3 ), t ∈ (0,+∞),

where B0 = B( 2
3 , 2

3 ) and B1 = B( 2
3 , 1

3 ) (B(p, q) =
∫ 1

0 (1 − s)p−1sq−1ds is the Beta function). Due

to 8
15 <

2
3 , this indicates that our results are improvements on [19] as t → ∞. Theorem 3.9 of

[19] can also be applied to the inequality (1.10) when l(t) = t−γ.

4 Global solutions of fractional differential equations

In this section, we give the existence and uniqueness results of the initial value problem (1.11).

Lemma 4.1. Suppose f : (0, T] × R → R is a continuous function, and there exist nonnegative

functions l(t), k(t) with tβ−1l(t) ∈ C(0, T]
⋂

Lq[0, T] and k(t) ∈ C(0, T]
⋂

Lq[0, T] (q >
1
β , β ∈

(0, 1)) such that

| f (t, x)| ≤ l(t)|x|+ k(t)

for all (t, x) ∈ (0, T]× R. Then the following Volterra integral equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, x(s))ds (4.1)

has at least one solution in C1−β(0, T].

Proof. Let G : C1−β(0, T] → C1−β(0, T] be the operator defined by

Gx(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, x(s))ds (4.2)

for all x ∈ C1−β(0, T].

Step 1: we show that the operator G is continuous. To see this let xn → x in C1−β(0, T] and we

will show that Gxn → Gx in C1−β(0, T]. Now xn → x implies that there exists r > 0 such that

‖xn‖1−β ≤ r and ‖x‖1−β ≤ r. For each s ∈ (0, T], we have

f (s, xn(s)) → f (s, x(s)).

Using the assumption of f , we get

(t − s)β−1| f (s, xn(s))− f (s, x(s))| ≤ 2(t − s)β−1(rsβ−1l(s) + k(s)).

Since tβ−1l(t) ∈ C(0, T]
⋂

Lq[0, T] and k(t) ∈ C(0, T]
⋂

Lq[0, T], using the Hölder inequality,

then we know the function

s → 2r(t − s)β−1sβ−1l(s) + 2(t − s)β−1k(s)

is integrable for s ∈ [0, t]. By means of the Lebesgue dominated convergence theorem yields

t1−β

∣

∣

∣

∣

∫ t

0
(t − s)β−1[ f (s, xn(s))− f (s, x(s))]ds

∣

∣

∣

∣

→ 0
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as n → +∞. Therefore t1−βGxn(t) → t1−βGx(t) pointwise on [0, T] as n → +∞. If we show

the convergence is uniform then of course G is continuous. Let t1, t2 ∈ [0, T] with t2 < t1.

Then
∣

∣

∣
t
1−β
1 Gx(t1)− t

1−β
2 Gx(t2)

∣

∣

∣

≤
∣

∣

∣

∣

∣

t
1−β
1 − t

1−β
2

Γ(β)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

0
(t2 − s)β−1 f (s, x(s))ds

∣

∣

∣

∣

+
t
1−β
1

Γ(β)

∣

∣

∣

∣

∫ t1

0
(t1 − s)β−1 f (s, x(s))ds −

∫ t2

0
(t2 − s)β−1 f (s, x(s))ds

∣

∣

∣

∣

.

(4.3)

Since

| f (t, x(t))| ≤ l(t)|x(t)|+ k(t) ≤ tβ−1l(t)t1−β|x(t)|+ k(t),

from the assumptions of f , we know f (t, x(t)) ∈ Lq[0, T] (q >
1
β ) when x(t) ∈ C1−β(0, T].

From Lemma 2.6, we obtain
∫ t

0
(t − s)β−1 f (s, x(s))ds

is continuous on [0, T]. As t1 → t2, the right-hand side of the above inequality (4.3) tends to

zero. Now (4.3) together with the fact that t1−βGxn(t) → t1−βGx(t) pointwise on [0, T] implies

that the convergence is uniform. Consequently G : C1−β(0, T] → C1−β(0, T] is continuous.

Step 2: Next we claim that the operator G is completely continuous. To see this let Ω ∈
C1−β(0, T] be bounded and ‖x‖1−β ≤ M for each x ∈ Ω, we will show that t1−βG(Ω) is

uniformly bounded and equicontinuous on [0, T]. The equicontinuity of t1−βG(Ω) on [0, T]

follows essentially the same reasoning as that used to prove (4.3). Also t1−βG(Ω) is uniformly

bounded. Since for t ∈ [0, T], we have

|t1−βGx(t)| ≤ |x0|+
t1−β

Γ(β)

∫ t

0
(t − s)β−1sβ−1l(s)s1−β|x(s)|ds +

t1−β

Γ(β)

∫ t

0
(t − s)β−1k(s)ds

≤ |x0|+
t1−β

Γ(β)

(

∫ t

0
(t − s)p(β−1)ds

)
1
p
(

∫ t

0
(Msβ−1l(s))qds

)
1
q

+
t1−β

Γ(β)

(

∫ t

0
(t − s)p(β−1)ds

)
1
p
(

∫ t

0
kq(s)ds

)
1
q

≤ |x0|+
t

1
p

Γ(β)(p(β − 1) + 1)
1
p

[

(

∫ t

0
(Msβ−1l(s))qds

)
1
q

+

(

∫ t

0
kq(s)ds

)
1
q

]

,

(4.4)

then

‖Gx‖1−β ≤ |x0|+
T

1
p

Γ(β)(p(β − 1) + 1)
1
p

[

(

∫ T

0
(Msβ−1l(s))qds

)
1
q

+

(

∫ T

0
kq(s)ds

)
1
q

]

.

Consequently G : C1−β(0, T] → C1−β(0, T] is completely continuous.

Step 3: If x ∈ C1−β(0, T] is any solution of

x(t) = λ

(

x0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, x(s))ds

)

, t ∈ (0, T]
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for λ ∈ (0, 1). Let v(t) = t1−βx(t) ∈ C[0, T], then

|v(t)| ≤ |x0|+
∣

∣

∣

∣

t1−β

Γ(β)

∫ t

0
(t − s)β−1 f (s, sβ−1v(s))ds

∣

∣

∣

∣

≤ |x0|+
t

1
p

Γ(β)(p(β − 1) + 1)
1
p

(

∫ t

0
kq(s)ds

)
1
q

+
t1−β

Γ(β)

∫ t

0
(t − s)β−1sβ−1l(s)|v(s)|ds.

(4.5)

Consequently, by Theorem 3.1, we can get

|v(t)| ≤
(

A(t) + B(t)
∫ t

0
L(s)A(s) exp

(

∫ t

s
L(τ)B(τ)dτ

)

ds

)
1
q

, t ∈ [0, T],

where

A(t) = 2q−1

(

|x0|+
t

1
p

Γ(β) (p(β − 1) + 1)
1
p

(

∫ t

0
kq(s)ds

)
1
q

)q

,

B(t) =
2q−1t

q
p

Γq(β)(pβ − p + 1)
q
p

,

L(t) = tq(β−1)lq(t)

and p ∈ (1,+∞) such that 1
p +

1
q = 1. Then we get

‖v‖ = ‖x‖1−β ≤
(

A(T) + B(T)
∫ T

0
L(s)A(s) exp

(

∫ T

s
L(τ)B(τ)dτ

)

ds

)
1
q

.

Finally, by applying fixed point Theorem 2.7, the operator G has a fixed point x(t) ∈
C1−β(0, T], which is the solution of the integral equation (4.1).

Lemma 4.2. Let f be as in Lemma 4.1. A function x ∈ C1−β(0, T] is a solution of fractional differential

equation (1.11) if and only if it is a solution of the Volterra integral equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, x(s))ds, t ∈ (0, T]. (4.6)

Proof. Since x ∈ C1−β(0, T] and

| f (t, x(t))| ≤ l(t)|x(t)|+ k(t) = tβ−1l(t)t1−β|x(t)|+ k(t)

with tβ−1l(t)∈C(0, T]
⋂

Lq[0, T] and k(t)∈C(0, T]
⋂

Lq[0, T], then we have x ∈ C(0, T]
⋂

L1[0, T]

and f (t, x(t)) ∈ C(0, T]
⋂

L1[0, T]. By virtue of Theorem 2.4, then we complete the proof.

Theorem 4.3. Suppose f : (0,+∞)× R → R is a continuous function, and there exist nonnegative

functions l(t), k(t) with tβ−1l(t) ∈ C(0,+∞)
⋂

L
q
Loc[0,+∞) and k(t) ∈ C(0,+∞)

⋂

L
q
Loc[0,+∞)

(q >
1
β , β ∈ (0, 1)) such that

| f (t, x)| ≤ l(t)|x|+ k(t)

for all (t, x) ∈ (0,+∞)×R. Then the initial value problem (1.11) has at least one continuous solution

in C1−β(0,+∞).
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Proof. From Lemma 4.1 and Lemma 4.2, We know the equation (1.11) has at least one solution

in C1−β(0, T]. Since T can be chosen arbitrarily constant, then the equation (1.11) has at least

one global solution on (0,+∞). Thus, we complete the proof of Theorem 4.3.

Theorem 4.4. If f : (0,+∞)× R → R is a continuous function, and

| f (t, x)− f (t, y)| ≤ l(t)|x − y|

for all x, y ∈ R and t ∈ (0,+∞), where tβ−1l(t) ∈ C(0,+∞)
⋂

L
q
Loc[0,+∞) and | f (t, 0)| ∈

L
q
Loc[0,+∞) (q >

1
β ). Then equation (1.11) has a unique solution on (0,+∞).

Proof. We know

| f (t, x)| ≤ | f (t, x)− f (t, 0)|+ | f (t, 0)| ≤ l(t)|x|+ | f (t, 0)|.

By Theorem 4.3, we suppose x1(t), x2(t) are two global solutions of equation (1.11). Then

|x1(t)− x2(t)| =
∣

∣

∣

∣

1

Γ(β)

∫ t

0
(t − s)β−1( f (s, x1(s))− f (s, x2(s)))ds

∣

∣

∣

∣

≤ 1

Γ(β)

∫ t

0
(t − s)β−1l(s)|x1(s)− x2(s)|ds

=
1

Γ(β)

∫ t

0
(t − s)β−1sβ−1l(s)s1−β|x1(s)− x2(s)|ds.

(4.7)

Let u(t) = t1−β|x1(t)− x2(t)|, then

u(t) ≤ t1−β

Γ(β)

∫ t

0
(t − s)β−1sβ−1l(s)u(s)ds.

By Theorem 3.1, we can get x1(t) = x2(t). Thus the proof is complete.

Remark 4.5. In [18], Trif proved that the equation (1.11) has a unique solution when continu-

ous function f (t, x) = p(t)x + q(t) for all (t, x) ∈ (0,+∞)× R, where p ∈ Cα(0,+∞) and q ∈
C1−β(0,+∞) with 0 ≤ α < β. Then under the above conclusions, Trif presented the existence

result when f (t, x) ≤ p(t)x + q(t), where p ∈ Cα(0,+∞) and q ∈ C1−β(0,+∞) with 0 ≤ α < β

and 2β − α > 1. In fact, if p ∈ Cα(0,+∞) and q ∈ C1−β(0,+∞), let 1 + α − β <
1
q < β, then

tβ−1 p(t) ∈ C(0,+∞)
⋂

L
q
Loc[0,+∞) and q(t) ∈ C(0,+∞)

⋂

L
q
Loc[0,+∞). Thus, our result in-

cludes the main result of [18, Theorem 4.2]. Theorem 4.11 of [19] also states a global existence

result of the equation (1.11) but with only a sketch of the proof.

Example 4.6.
{

D
3
4
r x(t) = (t

−1
4 + 1)

√

x(t) + t
−1
2 ,

limt→0+ t
3
4 x(t) = 1.

(4.8)

We know

(t
−1
4 + 1)

√

x(t) + t
−1
2 ≤ t

−1
4 + 1

2
|x(t)|+ t

−1
4 + 1

2
+ t

−1
2 . (4.9)

Let q = 5
3 , then t

−1
4 (t

−1
4 +1)

2 ∈ C(0,+∞)
⋂

L
5
3
Loc[0,+∞) and t

−1
4 +1
2 + t

−1
2 ∈ C(0,+∞)

⋂

L
5
3
Loc[0,+∞).

From Theorem 4.3, equation (4.8) has at least one global solution on (0,+∞).

A global solution is proved in [18] under the following hypothesis f (t, x) ≤ p(t)x + q(t),

where p ∈ Cα(0,+∞) and q ∈ C1−β(0,+∞) with 0 ≤ α < β and 2β − α > 1. From (4.9), we

know t
−1
4 +1
2 + t

−1
2 /∈ C 1

4
(0,+∞).
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Example 4.7.






D
3
4
r x(t) = t

−1
3

1+x2(t)
1+x(t)

+ t
−1
2 ,

limt→0+ t
3
4 x(t) = 1.

(4.10)

We know

|1 + x2

1 + x
− 1 + y2

1 + y
| ≤ |x − y|,

where x, y∈ [0,+∞). Since t
−7
12 ∈C(0,+∞)

⋂

L
q
Loc[0,+∞) and t

−1
3 +t

−1
2 ∈C(0,+∞)

⋂

L
q
Loc[0,+∞)

(q >
4
3 ), then from Theorem 4.4, equation (4.10) has a unique global solution on (0,+∞).
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Abstract. Consider the following higher order difference equation

x(n + 1) = f (n, x(n)) + g(n, x(n − k)) + b(n), n = 0, 1, . . .

where f (n, x), g(n, x) : {0, 1, . . . } × [0, ∞) → [0, ∞) are continuous functions in x and
periodic functions with period ω in n, {b(n)} is a real sequence, and k is a nonnegative
integer. We show that under proper conditions, every nonnegative solution of the equa-
tion is quasi-periodic with period ω. Applications to some other difference equations
derived from mathematical biology are also given.

Keywords: difference equations, quasi-periodic solutions, population models.

2010 Mathematics Subject Classification: 39A10, 92D25.

1 Introduction

Consider the following nonlinear difference equation of order k + 1 with forcing term b(n)

x(n + 1) = f (n, x(n)) + g(n, x(n − k)) + b(n), n = 0, 1, . . . (1.1)

where f (n, x), g(n, x) : {0, 1, . . . } × [0, ∞) → [0, ∞) are continuous functions in x and periodic
functions with period ω in n, {b(n)} is a real sequence, and k is a nonnegative integer. Our
aim in the paper is to study the quasi-periodicity of solutions of Eq. (1.1) in the sense that

Definition 1.1. We say that a solution {x(n)} of Eq. (1.1) is quasi-periodic with period ω

if there exist sequences {p(n)} and {q(n)} such that {p(n)} is periodic with period ω and
{q(n)} converges to zero as n → ∞ and x(n) = p(n) + q(n), n = 0, 1, . . .

By using, among others, some methods and ideas related to the linear first-order difference
equation, in the next section we show that under proper conditions every solution of Eq. (1.1)

BCorresponding author. Email: qian@math.msstate.edu
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is quasi-periodic with period ω. More specifically, we show that under proper conditions,
every solution {x(n)} of Eq. (1.1) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is a periodic solution with period ω of the following associated difference equa-
tion of Eq. (1.1) without forcing term

y(n + 1) = f (n, y(n)) + g(n, y(n − k)), n = 0, 1, . . . (1.2)

Existence and global attractivity of periodic solutions of Eq. (1.2) and some other forms have
been studied by numerous authors, see for example [1,3,13,15–17,19,20,22,23,31] and the ref-
erences cited therein. While there has been much progress made in the study of the existence
and global attractivity of periodic solutions of Eq. (1.2), the quasi-periodicity of solutions of
Eq. (1.1) is relatively scarce. In order to study this phenomenon, we note the following recent
result from [15] for the existence of a periodic solution ỹ(t) of Eq. (1.2) (some new results
related to those in [15] have been recently presented in [26]).

Theorem A. Assume that there is a nonnegative periodic sequence {a(n)} with period ω such
that

â =
ω−1

∏
j=0

a(j) < 1 and f (n, y) ≤ a(n)y for n = 0, 1, . . . , ω − 1 and y ≥ 0

and that f (n, y)− a(n)y is nonincreasing in y. Suppose also that g(n, y) is nonincreasing in y

and that there is a positive constant B such that

n+ω−1

∑
i=n

(

n+ω−1

∏
j=i+1

a(j)

)

[ f (i, B)− a(i)B + g(i, B)] ≥ 0, n = 0, 1, . . . , ω − 1 (1.3)

and
1

1 − â

n+ω−1

∑
i=n

(

n+ω−1

∏
j=i+1

a(j)

)

g(i, 0) ≤ B, n = 0, 1, . . . , ω − 1. (1.4)

Then Eq. (1.2) has a nonnegative periodic solution {ỹ(n)} with period ω.

We will make use of this theorem in the next section to guarantee a periodic solution of
Eq. (1.2), a prerequisite for the existence of quasi-periodic solutions of Eq. (1.1). In Section 3,
we show that our main results may be applied to some difference equations derived from
applications.

2 Main results

For the sake of convenience, we adopt the notation ∏
n
i=m ρ(i) = 1 and ∑

n
i=m ρ(i) = 0 whenever

{ρ(n)} is a real sequence and m > n in the following discussion.

The following lemma – which is needed in the proof of our main result – is folklore, and
all the ingredients for its proof can be found in some papers dealing with the linear first-
order difference equation (see, for example, [18] and [23] and the related references therein).
Nevertheless, we will give a proof for the sake of completeness.



Quasi-periodic solutions of nonlinear difference equations 3

Lemma 2.1. Assume that {a(n)} is a nonnegative periodic sequence with period ω and {b(n)} is a

real sequence. If

ω−1

∏
i=0

a(i) < 1 and b(n) → 0 as n → ∞, (2.1)

then
n

∑
i=0

(

n

∏
j=i+1

a(j)

)

b(i) → 0 as n → ∞. (2.2)

Proof. First we show that there is a positive constant A such that

n

∑
i=0

(

n

∏
j=i+1

a(j)

)

≤ A, n = 0, 1, . . . (2.3)

Observe that for any n ≥ 0, there are nonnegative integers m and l such that

n = mω + l, 0 ≤ l ≤ ω − 1.

Then

n

∑
i=0

(

n

∏
j=i+1

a(j)

)

=
mω+l

∑
i=0

(

mω+l

∏
j=i+1

a(j)

)

=
ω−1

∑
i=0

(

mω+l

∏
j=i+1

a(j)

)

+
2ω−1

∑
i=ω

(

mω+l

∏
j=i+1

a(j)

)

+ · · ·+
mω−1

∑
i=(m−1)ω

(

mω+l

∏
j=i+1

a(j)

)

+
mω+l

∑
i=mω

(

mω+l

∏
j=i+1

a(j)

)

=
mω+l

∏
j=ω

a(j)
ω−1

∑
i=0

(

ω−1

∏
j=i+1

a(j)

)

+
mω+l

∏
j=2ω

a(j)
2ω−1

∑
i=ω

(

ω−1

∏
j=i+1

a(j)

)

+ · · ·+
mω+l

∏
j=mω

a(j)
mω−1

∑
i=(m−1)ω

(

mω−1

∏
j=i+1

a(j)

)

+
l

∑
i=0

(

l

∏
j=i+1

a(j)

)

=
mω−1

∏
j=ω

a(j)
mω+l

∏
j=mω

a(j)
ω−1

∑
i=0

(

ω−1

∏
j=i+1

a(j)

)

+
mω−1

∏
j=2ω

a(j)
mω+l

∏
j=mω

a(j)
2ω−1

∑
i=ω

(

ω−1

∏
j=i+1

a(j)

)

+ · · ·+
mω−1

∏
j=mω

a(j)
mω+l

∏
j=mω

a(j)
mω−1

∑
i=(m−1)ω

(

mω−1

∏
j=i+1

a(j)

)

+
l

∑
i=0

(

l

∏
j=i+1

a(j)

)

=

(

ω−1

∏
i=0

a(j)

)m−1
l

∏
i=0

a(j)
ω−1

∑
i=0

(

ω−1

∏
j=i+1

a(j)

)

+

(

ω−1

∏
i=0

a(j)

)m−2
l

∏
i=0

a(j)
ω−1

∑
i=0

(

ω−1

∏
j=i+1

a(j)

)

+ · · ·+
l

∏
i=0

a(j)
ω−1

∑
i=0

(

ω−1

∏
j=i+1

a(j)

)

+
l

∑
i=0

(

l

∏
j=i+1

a(j)

)
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=





(

ω−1

∏
i=0

a(i)

)m−1

+

(

ω−1

∏
i=0

a(j)

)m−2

+ · · ·+ 1





l

∏
i=0

a(j)
ω−1

∑
i=0

(

ω−1

∏
j=i+1

a(j)

)

+
l

∑
i=0

(

l

∏
j=i+1

a(j)

)

=
1 −

(

∏
ω−1
j=0 a(j)

)m

1 − ∏
ω−1
j=0 a(j)

l

∏
j=0

a(j)
ω−1

∑
i=0

(

ω−1

∏
j=i+1

a(j)

)

+
l

∑
i=0

(

l

∏
j=i+1

a(j)

)

.

Thus

n

∑
i=0

(

n

∏
j=i+1

a(j)

)

≤

l

∏
j=0

a(j)

1 −
ω−1
∏
j=0

a(j)

ω−1

∑
i=0

(

ω−1

∏
j=i+1

a(j)

)

+
l

∑
i=0

(

l

∏
j=i+1

a(j)

)

, l = 0, 1, . . . , ω − 1. (2.4)

Let

A1 = max
0≤l≤ω−1

l

∏
j=0

a(j), A2 = max
0≤l≤ω−1

l

∑
i=0

(

l

∏
j=i+1

a(j)

)

and

A =
A1

1 − ∏
ω−1
j=0 a(j)

ω−1

∑
i=0

(

ω−1

∏
j=i+1

a(j)

)

+ A2.

Then from (2.4) we see that (2.3) holds. Next, we show that (2.2) holds. Since b(n) → 0 as
n → ∞, there is a positive constant C(≥ A) such that

|b(n)| ≤ C, n ≥ 0

and for each ǫ > 0, there is a positive integer N1 such that

|b(n)| <
ǫ

2C
, n > N1.

Hence, by noting (2.3), we see that

n

∑
i=N1+1

(

n

∏
j=i+1

a(j)

)

|b(i)| ≤
n

∑
i=N1+1

(

n

∏
j=i+1

a(j)

)

ǫ

2C
≤ A

ǫ

2C
≤ ǫ/2, n > N1.

Since for each t = 1, 2, . . . , N1 + 1, ∏
n
j=t a(j) → 0 as n → ∞, there is a positive integer N2(> N1)

such that
n

∏
j=t

a(j) <
ǫ

2(N1 + 1)C
, n > N2, t = 1, 2, . . . , N1 + 1.

Hence,

N1

∑
i=0

(

n

∏
j=i+1

a(j)

)

|b(i)| ≤
N1

∑
i=0

(

n

∏
j=i+1

a(j)

)

C ≤ (N1 + 1)
ǫ

2(N1 + 1)C
C = ǫ/2, n > N2.
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Then it follows that
∣

∣

∣

∣

∣

n

∑
i=0

(

n

∏
j=i+1

a(j)

)

b(i)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N1

∑
i=0

(

n

∏
j=i+1

a(j)

)

b(i) +
n

∑
i=N1+1

(

n

∏
j=i+1

a(j)

)

b(i)

∣

∣

∣

∣

∣

≤
N1

∑
i=0

(

n

∏
j=i+1

a(j)

)

|b(i)|+
n

∑
i=N1+1

(

n

∏
j=i+1

a(j)

)

|b(i)|

≤
ǫ

2
+

ǫ

2
= ǫ, n > N2

which yields (2.2). The proof is complete.

Now, consider the linear difference equation

u(n + 1) = a(n)u(n) + b(n), n = 0, 1, . . . , (2.5)

where {a(n)} and {b(n)} satisfy the hypotheses in Lemma 2.1. Assume that {u(n)} is a
solution of Eq. (2.5). It is known that the general solution to the equation is

u(n + 1) =

(

n

∏
j=0

a(j)

)

u(0) +
n

∑
i=0

(

n

∏
j=i+1

a(j)

)

b(i), n = 0, 1, . . . ,

which is frequently used in the literature (see, e.g., recent papers [21, 23–25], as well as many
related references therein, where some applications to ordinary and partial difference equa-
tions, as well as many historical facts on the equation and related solvable ones can be found).
Clearly, by noting the periodicity of {a(n)} and (2.1), we see that

(

n

∏
j=0

a(j)

)

u(0) → 0 as n → ∞.

Hence, the following conclusion comes from Lemma 2.1 immediately.

Corollary 2.2. Assume that {a(n)} and {b(n)} satisfy the hypotheses in Lemma 2.1. Then every

solution {u(n)} of Eq. (2.5) converges to zero as n → ∞.

The following corollary is about the difference inequality

v(n + 1) ≤ a(n)v(n) + b(n), n = 0, 1, . . . (2.6)

Assume that {v(n)} is a nonnegative solution of (2.6). Clearly, {v(n)} satisfies

0 ≤ v(n) ≤ u(n), n = 0, 1, · · ·

where {u(n)} is the solution of Eq. (2.5) with u(0) = v(0). Hence, the following conclusion is
a direct consequence of Corollary 2.2.

Corollary 2.3. Assume that {a(n)} and {b(n)} satisfy the hypotheses in Lemma 2.1. Then every

nonnegative solution {v(n)} of (2.6) converges to zero as n → ∞.

The following lemma is straightforward but will be referenced multiple times in the main
result.



6 C. Qian and J. Smith

Lemma 2.4. Suppose f (n, x), g(n, x) are real functions and that {a(n)} is a real sequence, and assume

f (n, x)− a(n)x and g(n, x) are nonincreasing. Then for any y ≥ 0,

f (n, x + y)− f (n, x) ≤ a(n)y

and

f (n, x + y)− f (n, x) + g(n, x + y)− g(n, x) ≤ a(n)y.

Proof. Let y ≥ 0. As f (n, x)− a(n)x is nonincreasing we have

f (n, x + y)− a(n)(x + y) ≤ f (n, x)− a(n)x.

Thus, f(n, x+y)− f(n, x)≤ a(n)y. As g(n, x) is nonincreasing, we see that g(n, x+y)−g(n, x)≤ 0.
Combining the above inequalities completes the proof.

The following theorem is our main result.

Theorem 2.5. Consider Eq. (1.1) and assume that f (n, x) is nondecreasing in x. Suppose that {a(n)}

is a nonnegative periodic sequence with period ω, and {b(n)} is a real sequence such that {a(n)} and

{b(n)} satisfy (2.1), f (n, x) ≤ a(n)x and f (n, x)− a(n)x is nonincreasing in x. Suppose also that

g(n, x) is nonincreasing in x and there is a positive constant B such that (1.3) and (1.4) are satisfied.

Suppose there is a nonnegative sequence {L(n)} with period ω such that

|g(n, x)− g(n, y)| ≤ L(n)|x − y|, n = 0, 1, . . . , ω − 1 (2.7)

and that either

a(n) ≤ 1 and
n+k

∑
i=n

(

n+k

∏
j=i+1

a(j)

)

L(i) < 1, n = 0, 1, . . . , ω − 1 (2.8)

or
n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

L(i) < 1, n = 0, 1, . . . , ω − 1. (2.9)

Then every solution {x(n)} of Eq. (1.1) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0 (2.10)

where {ỹ(n)} is the unique periodic solution of Eq. (1.2) with period ω.

Proof. In view of Theorem A, we know that Eq. (1.2) has a unique periodic solution {ỹ(n)}.
Let z(n) = x(n)− ỹ(n). Then {z(n)} satisfies

z(n + 1) + ỹ(n + 1) = f (n, z(n) + ỹ(n)) + g(n, z(n − k) + ỹ(n − k)) + b(n), n = 0, 1, . . .

Since {ỹ(n)} is a solution of Eq. (1.2), ỹ(n + 1) = f (n, ỹ(n)) + g(n, ỹ(n − k)). Hence, it follows
that

z(n + 1) = f (n, z(n) + ỹ(n))− f (n, ỹ(n))

+ g(n, z(n − k) + ỹ(n − k))− g(n, ỹ(n − k)) + b(n), n = 0, 1, . . . (2.11)

Clearly, to complete the proof of the theorem and show that (2.10) holds, it suffices to show
that every solution {z(n)} of Eq. (2.11) tends to zero as n → ∞. First assume that {z(n)} is
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a nonoscillatory solution of Eq. (2.11). Then {z(n)} is either eventually positive or eventually
negative. We assume that {z(n)} is eventually positive. The proof for the case that {z(n)} is
eventually negative is similar and will be omitted. Hence, there is a positive integer n0 such
that z(n) > 0 for n ≥ n0. Then by noting f (n, x)− a(n)x and g(n, x) are nonincreasing in x, it
follows from Lemma 2.4 and (2.11) that

z(n + 1) ≤ a(n)z(n) + b(n), n ≥ n0 + k

and so by Corollary 2.3, z(n) → 0 as n → ∞.
Next, assume that {z(n)} is an oscillatory solution of Eq. (2.11). Then there is an increasing

sequence {nt} of positive integers such that y(n1) ≤ 0 and for τ = 1, 2, . . . ,

{

y(n) > 0 when n2τ−1 < n ≤ n2τ and

y(n) ≤ 0 when n2τ < n ≤ n2τ+1.
(2.12)

Case 1. Assume that (2.8) holds. Then there is a positive number µ such that

µ < 1 and
n+k

∑
i=n

(

n+k

∏
j=i+1

a(j)

)

L(i) ≤ µ, n = 0, 1, . . .

We show that

z(n) ≤ µ max
n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|, n1 < n ≤ n2. (2.13)

In fact, from (2.12) we see that z(n1) ≤ 0 and z(n) > 0, n1 < n ≤ n2. As f (n, x)− a(n)x is
nonincreasing in x, from Lemma 2.4 we see that f (n, z(n) + ỹ(n))− f (n, ỹ(n)) ≤ a(n)z(n) and
(2.11) becomes

z(n + 1) ≤ a(n)z(n) + g(n, z(n − k) + ỹ(n − k))− g(n, ỹ(n − k)) + b(n).

Then by using (2.7), it follows that when n1 < n ≤ n2,

z(n)=

(

n−1

∏
j=n1

a(j)

)

z(n1)+
n−1

∑
i=n1

(

n−1

∏
j=i+1

a(j)

)

[g(i, z(i − k)+ ỹ(i − k))− g(i, ỹ(i − k))+b(i)]

≤
n−1

∑
i=n1

(

n−1

∏
j=i+1

a(j)

)

|g(i, z(i − k)+ ỹ(i − k))− g(i, ỹ(i − k))|+
n−1

∑
i=n1

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

≤
n−1

∑
i=n1

(

n−1

∏
j=i+1

a(j)

)

L(i)|z(i − k)|+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

(2.14)

Now, consider two cases n2 ≤ n1 + k + 1 and n2 > n1 + k + 1, respectively. When n2 ≤

n1 + k + 1, for any n1 < n ≤ n2, n − k − 1 ≤ n1 and so (2.14) yields

z(n) ≤
n−1

∑
i=n1

(

n−1

∏
j=i+1

a(j)

)

L(i) max
n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

≤
n−1

∑
i=n−k−1

(

n−1

∏
j=i+1

a(j)

)

L(i) max
n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

≤ µ max
n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|.
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Hence, (2.13) holds in this case. Next, consider the case that n2 > n1 + k + 1. When n1 < n ≤

n1 + k + 1, as we have shown above, (2.13) holds. In particular,

z(n1 + k + 1) ≤ µ max
n1−k≤l≤n1

{|z(l)|}+
n1+k

∑
i=0

(

n1+k

∏
j=i+1

a(j)

)

|b(i)|. (2.15)

When n1 + k + 1 < n ≤ n2, by noting z(n − k − 1) > 0, (2.15) holds and Lemma 2.4, (2.11)
yields

z(n) ≤ a(n − 1)z(n − 1) + b(n − 1)

=

(

n−1

∏
j=n1+k+1

a(j)

)

z(n1 + k + 1) +
n−1

∑
i=n1+k+1

(

n−1

∏
j=i+1

a(j)

)

b(i)

≤

(

n−1

∏
j=n1+k+1

a(j)

)(

µ max
n1−k≤l≤n1

{|z(l)|}+
n1+k

∑
i=0

(

n1+k

∏
j=i+1

a(j)

)

|b(i)|

)

+
n−1

∑
i=n1+k+1

(

n−1

∏
j=i+1

a(j)

)

b(i)

≤ µ max
n1−k≤l≤n1

{|z(l)|}+
n1+k

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|+
n−1

∑
i=n1+k+1

(

n−1

∏
j=i+1

a(j)

)

b(i)

= µ max
n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

and so z(n) satisfies (2.13). Hence for any case, (2.13) holds. Then by a similar argument, we
may show that

z(n) ≥ −

[

µ max
n2−k≤l≤n2

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

]

, n2 < n ≤ n3,

and in general,

|z(n)| ≤ µB(t) +
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|, nt < n ≤ nt+1. (2.16)

where
B(t) = max

nt−k≤l≤nt

{|z(l)|}, t = 1, 2, . . .

Since b(n) → 0 as n → ∞, |b(n)| → 0 as n → ∞. Then it follows from Lemma 2.1,

n

∑
i=0

(

n

∏
j=i+1

a(i)

)

|b(i)| → 0 as n → ∞. (2.17)

Hence, from (2.16) we see that if B(t) → 0 as t → ∞, then z(n) → 0 as n → ∞. In the
following, we assume that B(t) 6→ 0 as t → ∞. Then there is a subsequence {B(ts)} of {B(t)}

such that
B(ts) ≥ η, s = 1, 2, . . .

where η is a positive constant.
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By noting (2.17) again, we may choose a positive number δ such that

µ + δ < 1

and a subsequence {ntsr
} of {nts} such that for each r = 1, 2, . . . ,

ntsr+1
− ntsr

≥ 1 + 2k

and
n

∑
i=0

(

n

∏
j=i+1

a(i)

)

|b(i)| < ηδr, n ≥ ntsr
− 1. (2.18)

We claim that
B(t) ≤ B(tsr) for t ≥ tsr , r = 1, 2, . . . (2.19)

In fact, if ntsr+1 − k > ntsr
, we see that when ntsr+1 − k ≤ n ≤ ntsr+1, it follows from (2.16) and

(2.18) that
|z(n)| ≤ µB(tsr) + ηδr ≤ (µ + δr)B(tsr) ≤ B(tsr). (2.20)

If ntsr+1 − k ≤ ntsr
we see that (2.20) holds when ntsr

< n ≤ ntsr+1; while when ntsr+1 − k ≤

n ≤ ntsr
, by noting ntsr

− k < ntsr+1 − k, we see that

|z(n)| ≤ max
ntsr −k≤l≤ntsr

{|z(l)|} = B(tsr).

Hence, from the above discussion we see that for any case when ntsr+1 − k ≤ n ≤ ntsr+1,

|z(n)| ≤ B(tsr)

and so
B(tsr + 1) = max

ntsr +1−k≤l≤ntsr +1

{|z(l)|} ≤ B(tsr).

Then by a similar argument and induction, we may show that for any l ≥ 1,

B(tsr + l) ≤ B(tsr)

that is, (2.19) holds. Then it follows from (2.16) and (2.19) that

|z(n)| ≤ µB(tsr) +
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|, n > nsr . (2.21)

Next, we show that

|z(n)| ≤ (µ + δ)rB(ts1), n > nts1
, r = 1, 2, . . . (2.22)

When r = 1, from (2.18) and (2.21) we see that

|z(n)| ≤ µB(ts1) + ηδ ≤ (µ + δ)B(ts1), n > nts1

which satisfies (2.22) with r = 1. Assume that when r = m, (2.22) holds, that is,

|z(n)| ≤ (µ + δ)mB(ts1), n > ntsm
. (2.23)
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Then from (2.21) and (2.23) we see that when n > ntsm+1
,

|z(n)| ≤ µB(tsm+1) +
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

≤ µ(µ + δ)mB(ts1) + ηδm+1

≤ (µ(µ + δ)m + δm+1)B(ts1)

≤ (µ + δ)m+1B(ts1),

which satisfies (2.22) with r = m + 1. Hence, by induction, (2.22) holds. Clearly, (2.22) implies
that z(n) → 0 as n → ∞.

Case 2. Assume that (2.9) holds. Then there is a positive number ν such that

ν < 1 and
n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

L(i) ≤ ν, n = 0, 1, . . .

We claim that

z(n) ≤ ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|, n1 < n ≤ n2. (2.24)

First, from the proof of Case 1, we see that when n1 < n ≤ n2, (2.14) holds. Next, consider
two cases n2 ≤ n1 + k + ω and n2 > n1 + k + ω, respectively. When n2 ≤ n1 + k + ω, for any
n1 < n ≤ n2, n − k − ω ≤ n1 and so (2.14) yields

z(n) ≤
n−1

∑
i=n1

(

n−1

∏
j=i+1

a(j)

)

L(i) max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

≤
n−1

∑
i=n−k−ω

(

n−1

∏
j=i+1

a(j)

)

L(i) max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

≤ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|.

(2.25)

Hence, (2.24) holds in this case. Next, consider the case that n2 > n1 + k + ω. When n1 < n ≤

n1 + k + ω, as we have shown above, (2.24) holds. Hence, we only need to show that (2.24)
holds also when n1 + k + ω < n ≤ n2. In fact, by noting that when n1 + k + 1 < n ≤ n2,
z(n − k − 1) > 0, and the result of Lemma 2.4, (2.11) yields

z(n) ≤ a(n − 1)z(n − 1) + b(n − 1), n1 + k + 1 < n ≤ n2. (2.26)

Hence, it follows from (2.25) and (2.26) that

z(n1 + k + ω + 1) ≤

(

n1+k+ω

∏
j=n1+k+1

a(j)

)

z(n1 + k + 1) +
n1+k+ω

∑
i=n1+k+1

(

n1+k+ω

∏
j=i+1

a(j)

)

|b(i)|

≤

(

n1+k+ω

∏
j=n1+k+1

a(j)

)(

ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n1+k

∑
i=0

(

n1+k

∏
j=i+1

a(j)

)

|b(i)|

)

+
n1+k+ω

∑
i=n1+k+1

(

n1+k+ω

∏
j=i+1

a(j)

)

|b(i)|



Quasi-periodic solutions of nonlinear difference equations 11

≤ ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n1+k

∑
i=0

(

n1+k+ω

∏
j=i+1

a(j)

)

|b(i)|

+
n1+k+ω

∑
i=n1+k+1

(

n1+k+ω

∏
j=i+1

a(j)

)

|b(i)|

= ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n1+k+ω

∑
i=0

(

n1+k+ω

∏
j=i+1

a(j)

)

|b(i)|

and similarly,

z(n1 + k + ω + 2) ≤ ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n1+k+ω+1

∑
i=0

(

n1+k+ω+1

∏
j=i+1

a(j)

)

|b(i)|

...

z(n2) ≤ ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n2−1

∑
i=0

(

n2−1

∏
j=i+1

a(j)

)

|b(i)|.

Hence for any case, (2.24) holds. Then by a similar argument, we may show that

z(n) ≥ −

[

ν max
n2−k≤l≤n2+ω−1

{|z(l)|}+
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|

]

, n2 < n ≤ n3,

and in general,

|z(n)| ≤ µC(t) +
n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

|b(i)|, nt < n ≤ nt+1.

where
C(t) = max

nt−k≤l≤nt+ω−1
{|z(l)|}, t = 1, 2, . . .

Then by an argument similar to that for Case 1, we may show the following.
If C(t) → 0 as t → ∞, then z(n) → 0 as n → ∞; If C(t) 6→ 0 as t → ∞, then there is a

subsequence {C(ts)} of {C(t)} such that

C(ts) ≥ η, s = 1, 2, . . .

where η is a positive constant. A positive number δ such that

ν + δ < 1

and a subsequence {ntsr
} of {nts} such that for each r = 1, 2, . . . ,

ntsr+1
− ntsr

≥ 1 + 2k

could be chosen such that

n

∑
i=0

(

n

∏
j=i+1

a(i)

)

|b(i)| < ηδr, n ≥ ntsr
− 1

and
|z(n)| ≤ (µ + δ)rC(ts1), n > nts1

, r = 1, 2, . . .

Clearly, the above inequalities imply that z(n) → 0 as n → ∞. The proof is complete.
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When g(n, x) = p(n)h(x), where {p(n)} is a nonnegative periodic sequence with period
ω and h is a nonnegative continuous function, Eq. (1.1) becomes

x(n + 1) = f (n, x(n)) + p(n)h(x(n − k)) + b(n), n = 0, 1, . . . (2.27)

and the following result is a direct consequence of Theorem 2.5.

Corollary 2.6. Consider Eq. (2.27) and assume that f (n, x) is nondecreasing in x. Assume also that

{a(n)} is a nonnegative periodic sequence with period ω and {b(n)} is a real sequence such that

{a(n)} and {b(n)} satisfy (2.1), f (n, x) ≤ a(n)x and that f (n, x) − a(n)x is nonincreasing in x.

Suppose that h is nonincreasing and L-Lipschitz and that there is a positive constant B such that

n+ω−1

∑
i=n

(

n+ω−1

∏
j=i+1

a(j)

)

[ f (i, B)− a(i)B + p(i)h(B)] ≥ 0, n = 0, 1, . . . , ω − 1 (2.28)

and
1

1 −
ω−1
∏
j=0

a(j)

n+ω−1

∑
i=n

(

n+ω−1

∏
j=i+1

a(j)

)

p(i)h(0) ≤ B, n = 0, 1, . . . , ω − 1. (2.29)

Suppose also that either

a(n) ≤ 1 and L
n+k

∑
i=n

(

n+k

∏
j=i+1

a(j)

)

p(i) < 1, n = 0, 1, . . . , ω − 1

or

L
n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

p(i) < 1, n = 0, 1, . . . , ω − 1.

Then every solution {x(n)} of Eq. (2.27) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the equation

y(n + 1) = f (n, y(n)) + p(n)h(y(n − k)), n = 0, 1, . . .

When f (n, x) = a(n)x(n), Eq. (2.27) becomes

x(n + 1) = a(n)x(n) + p(n)h(x(n − k)) + b(n), n = 0, 1, . . . (2.30)

(2.28) is satisfied for any B > 0 and (2.29) holds for B large enough. Thus the following result
is a direct consequence of Corollary 2.6.

Corollary 2.7. Consider Eq. (2.30) and assume that {a(n)} is a nonnegative periodic sequence with

period ω and {b(n)} is a real sequence such that {a(n)} and {b(n)} satisfy (2.1). Suppose also that

h(x) is nonincreasing and L-Lipschitz, and that either

a(n) ≤ 1 and L
n+k

∑
i=n

(

n+k

∏
j=i+1

a(j)

)

p(i) < 1, n = 0, 1, . . . , ω − 1 (2.31)
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or

L
n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

p(i) < 1, n = 0, 1, . . . , ω − 1. (2.32)

Then every solutions {x(n)} of Eq. (2.30) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the equation

y(n + 1) = a(n)y(n) + p(n)h(y(n − k)), n = 0, 1, . . .

In particular, when h(x) ≡ 1, Eq. (2.27) reduces to the first order linear equation

x(n + 1) = a(n)x(n) + p(n) + b(n), n = 0, 1, . . . (2.33)

Since we may choose L = 0, (2.31) and (2.32) hold. Hence, from Corollary 2.7, we have the
following result immediately.

Corollary 2.8. Consider Eq. (2.33) and assume that {a(n)} is a nonnegative periodic sequence with

period ω and {b(n)} is a real sequence such that {a(n)} and {b(n)} satisfy (2.1). Then every solution

{x(n)} of Eq. (2.33) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the equation

y(n + 1) = a(n)y(n) + p(n), n = 0, 1, . . . (2.34)

Remark 2.9. When a(n) ≡ a and p(n) ≡ p are nonnegative constants, Eqs. (2.33) and (2.34)
become

x(n + 1) = ax(n) + p + b(n), n = 0, 1, . . . (2.35)

and
y(n + 1) = ay(n) + p, n = 0, 1, . . . (2.36)

respectively. The nonnegative periodic solution {ỹ(n)} of Eq. (2.36) becomes the nonnegative
equilibrium point ȳ = p

1−a . Then by Corollary 2.8, when a < 1, every nonnegative solution
{x(n)} of Eq. (2.35) converges to ȳ as n → ∞. In fact, in this case, the solution of Eq. (2.35) is

x(n) = anx(0) + p
1 − an

1 − a
+

n−1

∑
i=0

(

n−1

∏
j=i+1

a(j)

)

b(i), n = 1, 2, . . .

By noting (2.1) and Lemma 2.1, we know that ∑
n
i=0

(

∏
n
j=i+1 a(j)

)

b(i) → 0 as n → ∞ and so

x(n) →
p

1 − a
as n → ∞.

Remark 2.10. Clearly, Corollary 2.8 implies that for the equation

x(n + 1) = a(n)x(n) + q(n), n = 0, 1, . . .

where {a(n)} is nonnegative and periodic with period ω, and {q(n)} is nonnegative and
quasi-periodic with period ω, if ∑

ω−1
i=0 a(j) < 1, then every nonnegative solution of the equa-

tion is quasi-periodic with period ω.
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3 Applications

In this section, we apply our results obtained in Section 2 to some equations derived from
mathematical biology. In applications, there are often external factors – known or unknown
– that affect the mathematical model. Two such factors that have been studied in related
models are migration and subsets of populations which become isolated and unchanged by
density-dependent effects, see [11, 27] and references cited therein.

Consider the difference equations

x(n + 1) =
a(n)x2(n)

x(n) + δ(n)
+

ν(n)ρ(n)σ(n)

1 + eβ(n)x(n−k)−α(n)
+ b(n), n = 0, 1, . . . , (3.1)

x(n + 1) = a(n)x(n) + β(n)e−σ(n)x(n−k) + b(n), n = 0, 1, . . . (3.2)

and

x(n + 1) = a(n)x(n) +
β(n)

1 + xγ(n − k)
+ b(n), n = 0, 1, . . . (3.3)

where {a(n)}, {α(n)}, {β(n)}, {ν(n)}, {δ(n)}, {ρ(n)}, {σ(n)} are nonnegative periodic se-
quences with period ω, {b(n)} is a real sequence, γ is a positive constant and k is a nonnega-
tive integer. When a(n) ≡ a, α(n) ≡ α, β(n) ≡ β, ν(n) ≡ ν, δ(n) ≡ δ, ρ(n) ≡ ρ and σ(n) ≡ σ

are nonnegative constants and b(n) ≡ 0, Eqs. (3.1), (3.2) and (3.3) reduce to

x(n + 1) =
ax2(n)

x(n) + δ
+

νρσ

1 + eβx(n−k)−α
, n = 0, 1, . . . , (3.4)

x(n + 1) = ax(n) + βe−σx(n−k), n = 0, 1, . . . (3.5)

and
x(n + 1) = ax(n) +

β

1 + xγ(n − k)
, n = 0, 1, . . . (3.6)

respectively. Eq. (3.4) is derived from a model of the energy cost for new leaf growth in citrus
crops, see [30]. When b(n) 6≡ 0, {b(n)} may represent defoliation that does not occur naturally
or is not considered natural defoliation by the model parameters. A similar equation is given
for the litter mass in perennial grasses, and the results that follow will apply directly to this
model, see [28]. Eq. (3.5) is a discrete version of a model of the survival of red blood cells in
an animal [29], and Eq. (3.6) is a discrete analog of a model that has been used to study blood
cell production [10]. The global attractivity of positive solutions of Eqs. (3.5), (3.6) and some
extensions of them has been studied by numerous authors, see for example [4–7,9, 12, 14] and
references cited therein. When b(n) 6≡ 0, {b(n)} may represent the medical replacement of
blood cells or administration of antibodies, see [2, 8] and references cited therein.

Suppose {b(n)} is quasi-periodic, that is, there exist real sequences {q(n)} and {r(n)}

such that {q(n)} is periodic with period ω, {r(n)} is such that r(n) → 0 as n → ∞, and
b(n) = q(n) + r(n). Then Eqs. (3.1), (3.2) and (3.3) become

x(n + 1) =
a(n)x2(n)

x(n) + δ(n)
+

γ(n)ρ(n)σ(n)

1 + eβ(n)x(n−k)−α(n)
+ q(n) + r(n), n = 0, 1, . . . , (3.7)

x(n + 1) = a(n)x(n) + β(n)e−σ(n)x(n−k) + q(n) + r(n), n = 0, 1, . . . (3.8)

and

x(n + 1) = a(n)x(n) +
β(n)

1 + xγ(n − k)
+ q(n) + r(n), n = 0, 1, . . . (3.9)
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respectively.
First, consider Eq. (3.7). It is of the form of Eq. (1.1) with

f (n, x) =
a(n)x2

x + δ(n)
and g(n, x) =

ν(n)ρ(n)σ(n)

1 + eβ(n)x−α(n)
+ q(n).

As
d f

dx
=

a(n)x(x + 2δ(n))

(x + δ(n))2 , x ≥ 0,

we see that f (n, x) is nondecreasing in x. We next note that

f (n, x)− a(n)x =
−a(n)δ(n)x

x + δ(n)
, x ≥ 0

and
d

dx
( f (n, x)− a(n)x) =

−a(n)δ2(n)

(x + δ(n))2 , x ≥ 0,

thus f (n, x) ≤ a(n)x and f (n, x)− a(n)x is nonincreasing in x. As

dg

dx
= −β(n)ν(n)ρ(n)σ(n)

eβ(n)x−α(n)

(1 + eβ(n)x−α(n))2
, x ≥ 0

and
d2g

dx2 = −β2(n)ν(n)ρ(n)σ(n)
eβ(n)x−α(n)(1 − eβ(n)x−α(n))

(1 + eβ(n)x−α(n))3
, x ≥ 0,

we see that g(n, x) is nonincreasing in x, and for each n,
∣

∣

dg(n,x)
dx

∣

∣ achieves a maximum when

x = α(n)
β(n)

, and
∣

∣

∣

∣

dg(n, x)

dx

∣

∣

∣

∣

x= α(n)
β(n)

=
β(n)ν(n)ρ(n)σ(n)

4
.

Thus g(n, x) is L-Lipschitz with L(n) = β(n)ν(n)ρ(n)σ(n)
4 . Hence, we have the following conclu-

sion from Theorem 2.5.

Corollary 3.1. Assume that

â =
ω−1

∏
j=0

a(j) < 1.

Suppose there exists a positive constant B such that

n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

[

q(i) +
ν(i)ρ(i)σ(i)

1 + eB·β(i)−α(i)
−

B2a(i)δ(i)

B + δ(i)

]

≥ 0, n = 0, 1, . . . , ω − 1

and

1
1 − â

n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

(

ν(i)ρ(i)σ(i)

1 + e−α(i)
+ q(i)

)

≤ B, n = 0, 1, . . . , ω − 1.

Suppose also that either

a(n) ≤ 1 and
n+k

∑
i=n

(

n+k

∏
j=i+1

a(j)

)

β(i)ν(i)ρ(i)σ(i) < 4, n = 0, 1, . . . , ω − 1
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or
n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

β(i)ν(i)ρ(i)σ(i) < 4, n = 0, 1, . . . , ω − 1.

Then every solution {x(n)} of Eq. (3.7) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the following equation

y(n + 1) =
a(n)y2(n)

y(n) + δ(n)
+

γ(n)ρ(n)σ(n)

1 + eβ(n)y(n−k)−α(n)
+ q(n), n = 0, 1, . . .

Next consider Eq. (3.8). It is in the form of Eq. (1.1) with

f (n, x) = a(n)x and g(n, x) = β(n)e−σ(n)x + q(n).

(1.3) is satisfied for any B > 0 and (1.4) holds for B large enough. Observing

dg

dx
= −β(n)σ(n)e−σ(n)x, x ≥ 0,

we see that g(n, x) is nonincreasing in x and

∣

∣

∣

∣

dg

dx

∣

∣

∣

∣

≤ β(n)σ(n) for x ≥ 0,

which implies that for each n, g(n, x) is L-Lipschitz with L(n) = β(n)σ(n). Hence, we have
the following conclusion from Theorem 2.5.

Corollary 3.2. Assume that
ω−1

∏
j=0

a(j) < 1

and that either

a(n) ≤ 1 and
n+k

∑
i=n

(

n+k

∏
j=i+1

a(j)

)

β(i)σ(i) < 1, n = 0, 1, . . . , ω − 1

or
n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

β(i)σ(i) < 1, n = 0, 1, . . . , ω − 1.

Then every solution {x(n)} of Eq. (3.8) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the following equation

y(n + 1) = a(n)y(n) + β(n)e−σ(n)y(n−k) + q(n), n = 0, 1, . . .



Quasi-periodic solutions of nonlinear difference equations 17

Finally, consider Eq. (3.9). It is in the form of (1.1) with

f (n, x) = a(n)x and g(n, x) =
β(n)

1 + xγ
+ q(n).

gain, (1.3) is satisfied for any B > 0 and (1.4) hold for B large enough. Observing that

dg

dx
= −β(n)

γxγ−1

(1 + xγ)2 and
d2g

dx2 = β(n)
γxγ−2((γ + 1)xγ − (γ − 1))

(1 + γ)3

we see that for each n, when γ = 1,
∣

∣

∣

∣

dg

dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

dg

dx

∣

∣

∣

∣

x=0
= β(n) for x ≥ 0

and when γ > 1,
∣

∣

dg
dx

∣

∣ attains its maximum at x∗ =
(γ−1

γ+1

)1/γ and

∣

∣

∣

∣

dg

dx

∣

∣

∣

∣

x=x∗
=

(γ − 1)
γ−1

γ (γ + 1)
γ+1

γ

4γ
β(n), n = 0, 1, . . . , ω − 1.

Hence, g(n, x) is L-Lipschitz with

L(n) =







β(n), γ = 1,

(γ−1)
γ−1

γ (γ+1)
γ+1

γ

4γ β(n), γ > 1.

It follows from Theorem 2.5 that the following conclusion holds.

Corollary 3.3. Assume that
ω−1

∏
j=0

a(j) < 1.

Suppose also that when γ = 1, either

a(n) ≤ 1 and
n+k

∑
i=n

(

n+k

∏
j=i+1

a(j)

)

β(i) < 1, n = 0, 1, . . . , ω − 1

or
n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

β(i) < 1, n = 0, 1, . . . , ω − 1;

when γ > 1, either

a(n) ≤ 1 and
n+k

∑
i=n

(

n+k

∏
j=i+1

a(j)

)

β(i) <
4γ

(γ − 1)
γ−1

γ (γ + 1)
γ+1

γ

, n = 0, 1, . . . , ω − 1

or
n+k+ω−1

∑
i=n

(

n+k+ω−1

∏
j=i+1

a(j)

)

β(i) <
4γ

(γ − 1)
γ−1

γ (γ + 1)
γ+1

γ

, n = 0, 1, . . . , ω − 1.

Then every solution {x(n)} of Eq. (3.9) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution of with period ω of the following equation

y(n + 1) = a(n)y(n) +
β(n)

1 + yγ(n − k)
+ q(n), n = 0, 1, . . .
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[25] S. Stević, Representations of solutions to linear and bilinear difference equations and
systems of bilinear difference equations, Adv. Difference Equ. 2018, Article No. 474, 21 pp.
https://doi.org/10.1186/s13662-018-1930-2; MR3894606; Zbl 07012055



20 C. Qian and J. Smith
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Abstract. In this paper, we consider the existence of a nontrivial solution for the fol-
lowing Schrödinger equations with a magnetic potential A

−∆Au = K(x) f (|u|2)u, in R
N

where N > 3, K is a nonnegative function verifying two kinds of conditions and f is
continuous with subcritical growth. We discuss the above equation with K asymptoti-
cally periodic and K ∈ Lr.
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1 Introduction

In this paper, we consider the existence of a nontrivial solution for the following equation

− ∆Au = K(x) f (|u|2)u, in R
N . (1.1)

where N > 3, K : RN → R is a nonnegative function and f : R → R is continuous with

subcritical growth.

Problem (1.1) is motivated by the following nonlinear Schrödinger equation

(

h

i
∇− A(x)

)2

ψ = K(x) f (|ψ|2)ψ,

where N > 3, h is the Planck constant and A is a magnetic potential of a given magnetic

field B = curl A, and the nonlinear term f is a nonlinear coupling and K is nonnegative.

The function A : RN → RN denotes a magnetic potential and the Schrödinger operator is

defined by

−∆Aψ = −∆ψ + |A|2ψ − 2iA∇ψ − iψ div A, in R
N .

BCorresponding author. Email: jichao@ecust.edu.cn
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This class of problem with the nonlinearity f verifying the condition f ′(0) = 0 is known as

zero mass.

In recent years, much attention has been paid to the nonlinear Schrödinger equations, we

may refer to [6, 13, 23, 25–29]. In particular, we notice that the existence of solutions for the

problems with zero mass and without magnetic field, namely, A ≡ 0 and f ′(0) = 0. In [5],

Alves and Souto investigated the following problem

− ∆u = K(x) f (u), x ∈ R
N , (1.2)

where f is a continuous function with quasicritical growth and K is nonnegative function.

Using the variational method and some technical lemmas, the authors gave the existence of

positive solution for problem (1.2).

In [20], Li, Li and Shi considered a nonlinear Kirchhoff type problem

−
(

a + λ

∫

RN
|∇u|2

)

∆u = K(x) f (u), x ∈ R
N ,

where N > 3, a is a positive constant, λ > 0 is a parameter and K is a potential function.

The authors used a priori estimate and a Pohozaev type identity in the case with constant

coefficient nonlinearity. And in the problem with the variable-coefficient, a cut-off functional

and Pohozaev type identity were used to find Palais–Smale sequences.

In [1], Alves studied a quasilinear equation given by

−∆u + V(x)u − k∆(u2)u = K(x) f (u), x ∈ R
N ,

where N > 1, k ∈ R, V : RN → R is the potential, and f : R → R and K : RN → R are

continuous. The variational methods were used to establish a Berestycki–Lions type result.

For further results about the elliptic equations with zero mass, we may refer to [4, 7, 8, 19, 24].

Inspired by [1,5,20], we would like to consider Schrödinger equations in RN with magnetic

field and zero mass.

Due to the appearance of the magnetic field, the problem cannot be changed into a pure

real-valued problem, hence we should deal with a complex-valued directly, which causes more

new difficulties in employing the methods and some estimates. Thus there are a few results for

the Schrödinger equations with magnetic field than ones for that without the magnetic field.

In [18], Ji and Yin showed the existence of nontrivial solutions for the following Schrödinger

equation

−∆Au + V(x)u = f (|u|2)u, in R
N ,

where N > 3, f has subcritical growth, and the potential V is nonnegative. The solution is

obtained by the variational method combined with penalization technique of del Pino and

Felmer [17] and Moser iteration.

In [15], Chabrowski and Szulkin discussed the semilinear Schrödinger equation

−∆Au + V(x)u = Q(x)|u|2
∗−2u, u ∈ H1

A,V+(RN),

where V changes sign. The authors considered the problem by a min-max type argument

based on a topological linking. For the more results involving the magnetic Schrödinger

equations, we see [2, 3, 9, 11, 12, 16, 25] and the references therein.

In this paper, we consider problem (1.1) with the different function K. First of all, we

assume the potential A verifying
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(A) A ∈ L2
loc(R

N , RN).

In the first case, we propose the following assumptions for function K:

(K1) there exist k0 > 0 such that

K(x) > k0, for ∀x ∈ R
N ,

(K2) there exist a positive continuous periodic function Kp : RN → R

Kp(x + y) = Kp(x), ∀x ∈ R
N and ∀y ∈ Z

N ,

such that

|K(x)− Kp(x)| → 0 as |x| → +∞.

(K3) KP is defined in (K2) such that

K(x) > Kp(x), ∀x ∈ R
N .

In addition, we assume that function f satisfies:

( f 1) there holds

lim
t→0+

f (t)

t
2∗−2

2

= lim
t→+∞

f (t)

t
2∗−2

2

= 0,

where 2∗ = 2N
N−2 and N > 3.

( f 2) function F is defined by F(t) =
∫ t

0 f (s)ds, and

F(t)

t
→ ∞ as t → +∞,

( f 3) function H(t) = t f (t)− F(t) is increasing in t and H(0) = 0.

Now we are in a position to state the first result.

Theorem 1.1. Assume that (A), (K1)–(K3) and ( f 1)–( f 3) hold. Then, problem (1.1) has a nontrivial

solution.

In the second case, we involve that K is positive almost everywhere:

(K4) the Lebesgue measure of {x ∈ RN : K(x) 6 0} is zero.

Then, we state the second result as follows.

Theorem 1.2. Assume that K ∈ L∞(RN)∩ Lr(RN), for some r > 1, satisfies (K4), and (A), ( f 1)–( f 3)

hold. Then, problem (1.1) has a ground state solution.

Remark 1.3. In fact, we consider the second case under a weaker condition than K ∈ Lr(RN).

We only require to suppose that for all R > 0 and any sequence of Borel sets {En} of RN such

that |En| 6 R, for every n, we have

lim
R→+∞

∫

En∩Bc
R(0)

K(x)dx = 0, uniformly in n ∈ N. (1.3)

The paper is organized as follows. In the next section, we state the functional setting and

give some preliminary lemmas. In Section 3, when K verifies the periodic condition, we study

problem (1.1) and establish the existence of a ground state solution. In Section 4, we give the

existence of a nontrivial solution for asymptotically periodic problem, proving Theorem 1.1.

In the last section we consider problem (1.1) with condition (K4) and we prove Theorem 1.2.
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2 Preliminaries

In this section, we outline the variational framework for problem (1.1) and give some prelimi-

nary lemmas. We write

∆Au := (∇+ iA)2u

and

∇Au := (∇+ iA)u.

Let N > 3 and 2∗ = 2N/(N − 2). We denote D1,2
A (RN) the Hilbert space with the scalar

product

〈u, v〉A = Re
∫

RN
(∇u + iA(x)u)(∇v + iA(x)v)dx,

and the norm induced by the product 〈·, ·〉A is

‖u‖A =
(

∫

RN
|∇Au|2dx

)
1
2

=
(

∫

RN
|∇u + iA(x)u|2dx

)
1
2

=
(

∫

RN
(|∇u|2 + |A(x)|2|u|2)dx − 2 Re

∫

RN
iA(x)u∇udx

)
1
2
,

and C∞

0 (RN , C) is dense in D1,2
A (RN) with respect to the norm ‖u‖A. It is easy to know that

D1,2
A (RN) :=

{

u ∈ L2∗(RN , C) : ∇Au ∈ L2(RN , C)
}

.

Furthermore, the following diamagnetic inequality (see [21, Theorem 7.21]) will be used fre-

quently:
∣

∣∇Au(x)
∣

∣ >
∣

∣∇|u(x)|
∣

∣, for ∀u ∈ D1,2
A (RN , C), (2.1)

and it implies that if u(x) ∈ D1,2
A (RN , C), the fact that |u(x)| ∈ D1,2(RN , R) will holds. There-

fore, by Sobolev embedding
∫

RN

∣

∣∇|u|
∣

∣

2
dx > S

( ∫

RN |u|2
∗
dx

)
2

2∗ , the embedding D1,2
A (RN , C) →֒

L2∗(RN , C) is continuous for N > 3.

3 A periodic problem

In the section, we will discuss the existence of a ground state solution for the following equa-

tion
{

−∆Au = Kp(x) f (|u|2)u, in RN ,

u ∈ D1,2
A (RN , C),

(3.1)

where Kp : RN → R is a continuous function verifying the following hypotheses

(K5) for all x ∈ RN and y ∈ ZN ,

Kp(x + y) = Kp(x),

(K6) there is a positive constant k1 > 0 such that

Kp(x) > k1, ∀x ∈ R
N .

In this section, the main result is the following.
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Theorem 3.1. Assume that (A), (K5)–(K6) and ( f 1)–( f 3) hold. Then, problem (3.1) has a nontrivial

solution.

We denote by I : D1,2
A (RN , C) → R the energy functional for the problem (3.1), which is

defined by

I(u) =
1

2
‖u‖2

A −
1

2

∫

RN
Kp(x)F(|u|2)dx, (3.2)

with derivative, for ∀u, v ∈ D1,2
A (RN , C),

I′(u)v = Re
∫

RN
∇Au∇Avdx − Re

∫

RN
Kp(x) f (|u|2)uvdx. (3.3)

The weak solution for (3.1) are the critical points of I. furthermore, we can use ( f 1)–( f 3)

to check that functional I satisfies the geometry of the mountain pass. There is a sequence

(un) ⊂ D1,2
A (RN , C) such that

I(un) → c (3.4)

and
(

1 + ‖un‖A

)

‖I′(un)‖ → 0, (3.5)

where c is the mountain pass level given by

c = inf
γ∈Γ

max
t∈[0,1]

I
(

γ(t)
)

with

Γ =
{

γ ∈ C
(

[0, 1], D1,2
A (RN , C)

)

: γ(0) = 0 and I
(

γ(1)
)

6 0
}

.

This sequence is called as Cerami sequence for I at level c, see [14].

Notice that from ( f 3) one obtains H(s) > 0 for every s ∈ R. Then, we have the next

estimates: by ( f 1), for ∀ε > 0, there exist a τ = τ(ε) and cε > 0 such that

∣

∣s2 f (s2)
∣

∣ 6 ε|s|2
∗
+ cε|s|

pχ{|s|>τ}(s) (3.6)

and, by ( f 3),
∣

∣F(s2)
∣

∣ 6 ε|s|2
∗
+ cε|s|

pχ{|s|>τ}(s) (3.7)

where χ is the characteristic function to the set T = {t ∈ RN : |t| > τ}.

In the proof of Theorem 3.1, we announce a lemma which resembles a classical result

in [22].

Lemma 3.2. Let (un) be a bounded sequence in D1,2
A (RN , C). Then either

(i) there are R, η > 0 and (yn) ⊂ R
N such that

∫

BR(yn)
|un|

2
> η, for all n,

or

(ii)
∫

RN
|ûn|

q → 0, where ûn = unχ{|s|>τ}, ∀q ∈ (2, 2∗) and τ > 0.

Proof. If (i) does not happen, going if necessary to a subsequence, we have

lim
n→+∞

sup
y∈R

∫

BR(y)
|un|

2 = 0.
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Let ψ : C → R be a smooth function such that

0 6 ψ(s) 6 1, ψ(s) = 0 for |s| <
τ

2
and ψ(s) = 1 for |s| > τ,

it is easy to check that the sequence ũn = ψ(un)un belongs to D1,2
A (RN , C) and satisfies

lim
n→+∞

sup
y∈RN

∫

BR(y)
|ũn|

2 = 0.

Hence, by [22],

lim
n→+∞

∫

RN
|ũn|

p = 0, ∀q ∈ (2, 2∗),

from where it follows that

lim
n→+∞

∫

RN
|ûn|

p = 0, ∀q ∈ (2, 2∗) and τ > 0,

finishing the proof.

The next lemma is used to prove that the Cerami sequence is bounded in D1,2
A (RN , C).

Lemma 3.3. There is a positive constant M > 0 such that I(tun) 6 M for every t ∈ [0, 1] and n ∈ N.

Proof. Let tn ∈ [0, 1] be such that I(tnun) = maxt>0 I(tun). If either tn = 0 or tn = 1, we are

done. Thereby, we can assume that tn ∈ (0, 1), and so I′(tnun)tnun = 0. From this

2I(tnun) = 2I(tnun)− I′(tnun)tnun =
∫

RN
Kp(x)H(|tnun|

2).

Once that Kp is positive, it follows that ( f 3)

2I(tnun) 6
∫

RN
Kp(x)H(|un|

2) = 2I(un)− I′(un)un = 2I(un) + on(1).

Since (I(un)) converges to c, so I(tun) is bounded.

Lemma 3.4. The sequence (un) is bounded in D1,2
A (RN , C).

Proof. Suppose by contradiction that ‖u‖A → ∞ and set wn = un

‖un‖A
. Since ‖wn‖A = 1, there

exists w ∈ D1,2
A (RN , C) such that wn ⇀ w in D1,2

A (RN , C). Next, we will show that w = 0. First

of all, notice that

on(1) + 1 =
∫

RN

Kp(x)F(|un|2)

‖un‖2
A

=
∫

RN

Kp(x)F(|un|2)

|un|2
|wn|

2.

By ( f 2), for each M > 0, there is ξ > 0 such that

F(s2)

s2
> M, for |s| > ξ,

hence

on(1) + 1 >

∫

Ω∩{|un|>ξ}

Kp(x)F(|un|2)

|un|2
|wn|

2
> Mk1

∫

Ω∩{|un|>ξ}
|wn|

2,

where Ω =
{

x ∈ RN : w(x) 6= 0
}

. By Fatou’s Lemma

1 > Mk1

∫

Ω

|w|2dx.
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Therefore
∣

∣Ω
∣

∣ = 0, showing that w = 0.

Notice that for each C > 0, one has C
‖un‖A

∈ [0, 1] for n sufficiently large. Thus

I(tnun) > I
( C

‖u‖A
un

)

= I(Cwn) =
C2

2
−

1

2

∫

RN
Kp(x)F

(

C2|wn|
2
)

.

We claim that

lim
n→+∞

∫

RN
Kp(x)F

(

C2|wn|
2
)

= 0. (3.8)

We postpone for minutes the proof of (3.8). But if it were true, we would get

lim
n→+∞

I(tnun) >
C2

2
, for every C > 0,

which is a contradiction with Lemma 3.3, since (I(tnun)) 6 M.

We prove (3.8) by using Lemma 3.2, which gives two alternatives: either

∫

BR(yn)
|wn|

2
> η for some η > 0 and (yn) ∈ Z

N ,

or
∫

RN
|ŵn|

pdx → 0, where ŵn = wnχ{|un|>τ}, p ∈ (2, 2∗) and τ > 0.

By showing the boundedness of (un), we will prove that the first alternative does not hold. If

the first alternative occurs, we define ũn = un(x + yn) and w̃n = ũn

‖un‖A
. These two sequences

satisfy

I(ũn) → c,
(

1 + ‖ũn‖A

)

‖I′(ũn)‖ → 0 and w̃n ⇀ w̃ 6= 0,

which is a contraction compared to what we have written in the beginning of this proof.

Hence, the second alternative holds and

lim
n→+∞

∫

RN
|ŵn|

pdx = 0.

Then

∣

∣Kp(x)F
(

C2|wn|
2
)∣

∣ 6 ‖Kp‖∞

∣

∣F
(

C2|wn|
2
)∣

∣ 6 ‖Kp‖∞

[

εC2∗ |wn|
2∗ + cεC

p|wn|
pχ{C|wn|>δ}

]

,

from where it follows

∣

∣Kp(x)F
(

C2|wn|
2
)∣

∣ 6 ‖Kp‖∞[εC2∗ |wn|
2∗ + cεC

p|wn|
p].

Consequently

∫

RN

∣

∣Kp(x)F
(

C2|wn|
2
)∣

∣dx 6 ‖Kp‖∞

[

εC2∗
∫

RN
|wn|

2∗dx + cεC
p
∫

RN
|wn|

pdx
]

,

showing that

lim
n→+∞

∫

RN

∣

∣Kp(x)F
(

C2|wn|
2
)∣

∣dx = 0,

and the proof is finished.
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Proof of Theorem 3.1. Since (un) is bounded, by applying Lemma 3.2, we have two alternatives,

either

(i) there are R, η > 0 and (yn) ⊂ R
N such that

∫

BR(yn)
|un|

2
> η, for all n,

or

(ii)
∫

RN
|ûn|

q → 0, where ûn = unχ{|s|>τ}, q ∈ (2, 2∗) and τ > 0.

Notice that (ii) does not occur. Otherwise, the inequality

∫

RN

∣

∣Kp(x) f (|un|
2)|un|

2
∣

∣ 6 ‖Kp‖∞

[

ε

∫

RN
|un|

2∗ + cε

∫

RN
|un|

p
]

leads to

lim sup
n→+∞

∫

RN

∣

∣Kp(x) f (|un|
2)|un|

2
∣

∣ = 0,

and so

lim
n→+∞

∫

RN
Kp(x) f (|un|

2)|un|
2 = 0.

The fact that I′(un)un = on(1) imply that ‖un‖A → 0, constituting a contradiction. Since

alternative (i) is true and Kp is periodic, the sequence ũn(x) = un(x + yn) is a Cerami sequence

for I at level c, namely,

I(ũn) → c,
(

1 + ‖ũn‖A

)

‖I′(un)‖ → 0 and ũn ⇀ ũ in D1,2
A (RN , C).

A direct computation indicates that I′(ũ) = 0, and ũ is a nontrivial weak solution for problem

(3.1). Then, we will prove that ũ is a ground state solution for (3.1).we will check that I(ũ)

accords with the mountain pass level. By Fatou’s Lemma,

2c= lim inf
n→+∞

2I(ũn)= lim inf
n→+∞

(

2I(ũn)− I′(ũn)ũn

)

= lim inf
n→+∞

∫

RN
Kp(x)H(|ũn|

2)>
∫

RN
Kp(x)H(|ũ|2).

Since

2I(ũ) = 2I(ũ)− I′(ũ)ũ =
∫

RN
Kp(x)H(|ũ|2)dx,

we can conclude that I(ũ) 6 c. But then, the condition ( f 3) leads to

c = inf
{

I(u) : u ∈ D1,2
A (RN)\{0} and I′(u)u = 0

}

.

It follows that I′(ũ) > c, and so I′(ũ) = c.

4 The proof of Theorem 1.1

In the section, we will discuss the existence of a nontrivial solution for problem (1.1), thus

showing Theorem 1.1. Therefore, we need to prove Lemmas 4.1 and 4.2 below. Hence, we will

presume that the condition (A), (K1)–(K3) and ( f 1)–( f 3) hold.

We recall that u ∈ D1,2
A (RN , C) is a weak solution of problem (1.1), if

Re
∫

RN
∇Au∇Avdx = Re

∫

RN
K(x)F(|u|2)uvdx,
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for all v ∈ D1,2
A (RN , C).

The Energy functional associated to (1.1) is

J(u) =
1

2
‖u‖2

A −
1

2

∫

RN
K(x)F(|u|2)dx, ∀u ∈ D1,2

A (RN , C) (4.1)

with derivative

J′(u)v = Re
∫

RN
∇Au∇Avdx − Re

∫

RN
K(x) f (|u|2)uvdx, ∀u, v ∈ D1,2

A (RN , C). (4.2)

As in the proof of the periodic case, one observes that J satisfying the geometry of the

mountain pass. Therefore, there is a sequence (vn) ⊂ D1,2
A (RN , C) verifying

J(vn) → d and
(

1 + ‖vn‖A

)

‖J′(vn)‖ → 0, (4.3)

where d denotes the mountain pass level correlative of J.

Since I(u) = c, by property (K3), one obtains d 6 c. With loss of generality, we can assume

that K 6≡ Kp, consequently

d 6 max
t>0

J(tu) = J(t0u) < I(t0u) 6 I(u) = c. (4.4)

Lemma 4.1. The sequence (un) is bounded in D1,2
A (RN , C).

Proof. Let tn ∈ [0, 1] be such that J(tnvn) = maxt>0 J(tvn). If either tn = 0 or tn = 1, we are

done. Thereby, we can assume tn ∈ (0, 1), and so J′(tnvn)tnvn = 0. From this

2J(tnvn) = 2J(tnvn)− J′(tnvn)tnvn =
∫

RN
K(x)H

(

t2
n|vn|

2
)

.

Since K is a nonnegative function, from ( f 3),

2J(tnvn) 6
∫

RN
K(x)H

(

|vn|
2
)

= 2J(vn)− J′(vn)vn = 2J(vn) + on(1).

Since (J(vn)) is convergent, so it is bounded.

Suppose by contradiction that ‖vn‖A → ∞. Proving as in Lemma 3.4, the sequence wn =
vn

‖vn‖A
weakly converges to 0 in D1,2

A (RN , C). Since ‖wn‖A = 1, by applying Lemma 3.2, we

have two alternatives, either

(i) there are R, η > 0 and (yn) ⊂ R
N such that

∫

BR(yn)
|wn|

2
> η, for all n,

or

(ii)
∫

RN
|ŵn|

q → 0, where ŵn = wnχ{|s|>τ}, ∀q ∈ (2, 2∗) and τ > 0.

If that (i) occurred, we could define the functions ṽn(x) = vn(x + yn) and w̃n(x) = ṽn(x)

‖(̃v)n‖A
.

These two sequences satisfy

J(ṽn) → d,
(

1 + ‖ṽn‖A

)

‖J′(ṽn)‖ → 0 and w̃n ⇀ w̃ 6= 0,

which contradicts wn ⇀ 0.
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Suppose that (ii) is true. As in the proof of Lemma 3.4

lim
n→+∞

∫

RN
K(x)F

(

C2|wn|
2
)

= 0 (4.5)

for each C > 0, and one has C
‖vn‖A

∈ [0, 1] for n sufficiently large. There is a constant M > 0

such that J(tvn) 6 M for every t ∈ [0, 1] and n ∈ N. Thus

J(tnvn) > J
( C

‖vn‖A
vn

)

= J(Cwn) =
C2

2
−

1

2

∫

RN
K(x)F

(

C2|wn|
2
)

.

By (4.5), one would get

lim
n→+∞

J(tnvn) >
C2

2
, for every C > 0,

which constitutes a contradiction, since
(

J(tnvn)
)

is bounded. Consequently, the sequence

(vn) is bounded.

From the preceding lemma, since the Hilbert space D1,2
A (RN , C) is reflexive, there exists v ∈

D1,2
A (RN , C) and a subsequence of (vn), still denoted by (vn), such that vn ⇀ v in D1,2

A (RN , C).

Lemma 4.2. The weak limit v of (vn) is nontrivial.

Proof. Suppose by contradiction that v ≡ 0. Since

∫

BR

∣

∣K(x)− Kp(x)
∣

∣

∣

∣F(|vn|
2)
∣

∣dx 6 ε

∫

BR

∣

∣K(x)− Kp(x)
∣

∣|vn|
2∗dx +

∫

BR

∣

∣K(x)− Kp(x)
∣

∣|vn|
pdx,

as consequence of v ≡ 0, it follows that

∫

BR

∣

∣K(x)− Kp(x)
∣

∣

∣

∣F(|vn|
2)
∣

∣dx → 0 as n → +∞. (4.6)

On the other hand, from (K2), given ǫ > 0 there exists R = R(ǫ) such that

∣

∣K(x)− Kp(x)
∣

∣ < ǫ, for all |x| > R.

Thus
∫

Bc
R

∣

∣K(x)− Kp(x)
∣

∣

∣

∣F(|vn|
2)
∣

∣dx 6 ǫM (4.7)

where

lim sup
n→+∞

∫

RN

∣

∣F(|vn|
2)
∣

∣dx = M.

From (4.6) and (4.7)

lim
n→+∞

∫

RN

∣

∣K(x)− Kp(x)
∣

∣

∣

∣F(|vn|
2)
∣

∣dx = 0, (4.8)

and

|J(vn)− I(vn)| → 0 as n → +∞.

A similar argument shows that

|J′(vn)vn − I′(vn)vn| → 0 as n → +∞.
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Consequently,

I(vn) = d + on(1) and I′(vn)vn = on(1). (4.9)

Let sn be positive number verifying

I′(snvn)vn = 0. (4.10)

We claim that (sn) converges to 1 as n → +∞. We begin proving that

lim sup
n→+∞

sn 6 1. (4.11)

Suppose by contradiction that, going if necessary to a subsequence, sn > 1 + δ for all

n ∈ N, for some δ > 0. From (4.9),

‖vn‖
2
A =

∫

RN
Kp(x) f (|vn|

2)|vn|
2dx + on(1).

On the other hand, from (4.10),

sn‖vn‖
2
A =

∫

RN
Kp(x) f

(

s2
n|vn|

2
)

sn|vn|
2dx.

Consequently
∫

RN
Kp(x)

[

f
(

s2
n|vn|

2
)

− f
(

|vn|
2
)

]

|vn|
2dx = on(1),

and from ( f 3) combined with (K1)–(K3),

∫

RN

[

f
(

s2
n|vn|

2
)

− f
(

|vn|
2
)

]

|vn|
2dx = on(1). (4.12)

Since (vn) is bounded, by Lemma 3.2 again, we have two alternatives, either

(i) there are R, η > 0 and (yn) ⊂ R
N such that

∫

BR(yn)
|vn|

2
> η, for all n,

or

(ii)
∫

RN
|v̂n|

q → 0, where v̂n = vnχ{|s|>τ}, ∀q ∈ (2, 2∗) and τ > 0.

In case (ii), we derive

lim
n→+∞

∫

RN
f
(

|vn|
2
)

|vn|
2dx = 0,

which implies vn → 0 in D1,2
A (RN , C) that is impossible.

Let (yn) be given by (i), and define ṽn(x) = vn(x + yn). Since

∫

BR(0)
|ṽn|

2dx > η > 0,

there exists ṽ 6= 0 in n D1,2
A (RN , C) such that (vn) is weakly convergent to ṽ in D1,2

A (RN , C).

From (4.12) and ( f 3), Fatou’s Lemma yields,

0 <

∫

RN

[

f
(

(1 + δ)2|ṽn|
2
)

− f
(

|ṽn|
2
)

]

|ṽn|
2dx = 0,
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which is impossible. Hence

lim sup
n→+∞

sn 6 1.

From this, (sn) is bounded. Without loss of generality, we can assume that

lim
n→+∞

sn = s0 6 1.

If s0 < 1, we have that sn < 1 for n large enough. Hence, by Fatou’s Lemma

0 <

∫

RN

[

f
(

|ṽn|
2
)

− f
(

s2
0|ṽn|

2
)

]

|ṽn|
2dx = 0, when s0 > 0,

and

0 <

∫

RN
f
(

|ṽn|
2
)

|ṽn|
2dx = 0, when s0 = 0,

which are impossible. Therefore,

lim
n→+∞

sn = 1. (4.13)

As a consequence of (4.13),

∫

RN
Kp(x)F

(

s2
n|vn|

2
)

dx −
∫

RN
Kp(x)F

(

|vn|
2
)

dx = on(1)

and
(

s2
n − 1

)

‖vn‖
2
A = on(1),

leading to

I(snvn)− I(vn) = on(1).

Then, by(4.9)

c 6 I(snvn) = I(vn) + on(1) = d + on(1).

Taking n → +∞, we find c 6 d, which obtain a contradiction, because, by (4.4), d < c. This

contradiction comes from the assumption that v ≡ 0.

5 The proof of Theorem 1.2

In this section, we mean to prove Theorem 1.2. As the proof in the preceding section, we can

prove that the functional I satisfies the geometry of the mountain pass and there is a Cerami

sequence (un) ∈ D1,2
A (RN , C) satisfying (3.4) and (3.5). Finally, we have proved Lemma 3.3. In

order to check that (un) is bounded in D1,2
A (RN , C), we should show that the (3.8) holds and

proceed as in the proof of Lemma 3.4.

Let Ω, ξ, w, M be defined as in the proof of Lemma 3.4. Notice that
∣

∣Ω
∣

∣ = 0, since

on(1) + 1 >

∫

Ω∩{|un|>ξ}

K(x)F(|un|2)

|un|2
|wn|

2

implies that

1 > M
∫

Ω

K(x)|w|2,

and from (K4), we have w = 0.
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Let us prove the limit (3.8). From ( f 1), for each ε > 0, we have δ > 0 and Cε > 0 such that
∣

∣s2 f (s2)
∣

∣ 6 ε|s|2
∗
+ Cεχ{|s|>δ}, for all s ∈ R

N , (5.1)

and
∣

∣F(s2)
∣

∣ 6 ε|s|2
∗
+ Cεχ{|s|>δ}, for all s ∈ R

N . (5.2)

By Sobolev embedding and (2.1), there exists Ŝ > 0 such that

∫

RN
|v|2

∗
dx 6 Ŝ

(

∫

RN
|∇Av|2dx

)
2∗

2
,

for all v ∈ D1,2
A (RN , C). Observe that ∆n = {x ∈ RN : |Cwn(x)| > δ} is such that

∫

∆n

|wn|
2∗
6 Ŝ.

This implies, besides (5.2), that
∫

|x|>R
K(x)F

(

|Cwn|
2
)

dx 6 εC2∗‖K‖∞

∫

Bc
R(0)

|wn|
2∗dx + Cε

∫

Bc
R(0)∩∆n

K(x)dx,

and from (1.3)

lim
R→+∞

∫

|x|>R
K(x)F

(

|Cwn|
2
)

dx 6 εŜC2∗‖K‖∞, uniformly in n.

On the other hand, for any R > 0, from ( f 1) and Strauss’ compactness lemma (see [10])

lim
n→+∞

∫

|x|6R
K(x)F

(

|Cwn|
2
)

dx = 0,

which shows that (3.8) holds and (un) is bounded in D1,2
A (RN , C).

To prove Theorem 1.2, it is important to show that (un) converges in D1,2
A (RN , C). In this

way we can see that

lim
n→+∞

∫

RN
K(x) f (|un|

2)|un|
2dx =

∫

RN
K(x) f (|u|2)|u|2dx. (5.3)

To verify (5.3), consider En =
{

x ∈ RN : |un(x)| > δ
}

which satisfies supn∈N
|En| < ∞.

From (5.1)
∫

|x|>R
K(x) f (|un|

2)|un|
2dx 6 ε‖K‖∞

∫

Bc
R(0)

|un|
2∗dx + Cε

∫

Bc
R(0)∩En

K(x)dx

and from (1.3)

lim sup
R→+∞

∫

|x|>R
K(x) f (|un|

2)|un|
2dx 6 εŜ‖K‖∞, uniformly in n.

Again, from ( f 1) and Strauss’ compactness lemma

lim
n→+∞

∫

|x|6R
K(x) f (|un|

2)|un|
2dx =

∫

|x|6R
K(x) f (|u|2)|u|2dx,

for all r > 0 fixed, and it shows that (5.3) holds. Since I′(un)un → 0, (5.3) implies that

lim
n→+∞

∫

RN
|∇Aun|

2dx =
∫

RN
K(x) f (|u|2)|u|2dx =

∫

RN
|∇Au|2dx

finishing the proof of Theorem 1.2.



14 Z. Yin and C. Ji

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions and

comments. Chao Ji was partially supported by the Shanghai Natural Science Foundation

(18ZR1409100).

References

[1] C. O. Alves, D. G. Costa, O. H. Miyagaki, Existence of solution for a class of quasilinear

Schrödinger equation in RN with zero-mass, J. Math. Anal. Appl. 477(2019), No. 2, 912–

929. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥♠❛❛✳✷✵✶✾✳✵✹✳✵✸✼; MR3955002; Zbl 1422.35020

[2] C. O. Alves, G. M. Figueiredo, Multiple solutions for a semilinear elliptic equation

with critical growth and magnetic field, Milan J. Math. 82(2014), No. 2, 389–405. ❤tt♣s✿

✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✵✵✵✸✷✲✵✶✹✲✵✷✷✺✲✼; MR3277704; Zbl 1304.35630

[3] C. O. Alves, G. M. Figueiredo, M. F. Furtado, On the number of solu-

tions of NLS equations with magnetics fields in expanding domains, J. Differential

Equations 251(2014), No. 9, 2534–2548. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥❞❡✳✷✵✶✶✳✵✸✳✵✵✸;

MR2825339; Zbl 1234.35236

[4] C. O. Alves, O. H. Miyagaki, A. Pomponio, Solitary waves for a class of generalized

Kadomtsev–Petviashvili equation in RN with positive and zero mass, J. Math. Anal. Appl.

477(2019), No. 1, 523–535. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥♠❛❛✳✷✵✶✾✳✵✹✳✵✹✹; MR3950050;

Zbl 1416.35083

[5] C. O. Alves, M. A. S. Souto, M. Montenegro, Existence of solution for two classes

of elliptic problems in RN with zero mass, J. Differential Equations 252(2012), No. 252,

5735–5750. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥❞❡✳✷✵✶✷✳✵✶✳✵✹✶; MR2902133; Zbl 1243.35011

[6] A. Ambrosetti, M. Badiale, S. Cingolani, Semiclassical states of nonlinear Schrödinger

equations, Arch. Rational Mech. Anal. 140(1997), No. 3, 285–300. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳

✶✵✵✼✴s✵✵✷✵✺✵✵✺✵✵✻✼; MR1486895; Zbl 0779.34042

[7] A. Azzollini, A. Pomponio, On a “zero mass” nonlinear Schrödinger equation,

Adv. Nonlinear Stud. 7(2007), No. 4, 599–627. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✺✶✺✴❛♥s✲✷✵✵✼✲✵✹✵✻;

MR2359527; Zbl 1132.35472

[8] A. Azzollini, A. Pomponio, Compactness results and applications to some “zero mass”

elliptic problems, Nonlinear Anal. 69(2008), No. 10, 3559–3576. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳

✶✵✶✻✴❥✳♥❛✳✷✵✵✼✳✵✾✳✵✹✶; MR2450560; Zbl 1159.35022

[9] S. Barile, G. M. Figueiredo, An existence result for Schrödinger equations with magnetic

fields and exponential critical growth, J. Elliptic Parabol. Equ. 3(2017), No. 1–2, 105–125.

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✹✶✽✵✽✲✵✶✼✲✵✵✵✼✲✾; MR3736850; Zbl 1387.35134

[10] H. Berestycki, P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground

state, Arch. Rational Mech. Anal. 82(1983), No. 4, 313–345. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴

❇❋✵✵✷✺✵✺✺✺; MR0695535; Zbl 0533.35029



Two classes of Schrödinger equations in RN with magnetic field and zero mass 15

[11] D. Bonheure, S. Cingolani, M. Nys, Nonlinear Schrödinger equation: concentra-

tion on circles driven by an external magnetic field, Calc. Var. Partial Differential Equa-

tions 55(1983), No. 4, Art. 82, 33 pp. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✵✵✺✷✻✲✵✶✻✲✶✵✶✸✲✽;

MR3514751; Zbl 1362.35280

[12] D. Bonheure, M. Nys, J. Van Schaftingen, Properties of ground states of non-

linear Schrödinger equations under a weak constant magnetic field, J. Math. Pures

Appl. 9(2019), No. 124, 123–168. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳♠❛t♣✉r✳✷✵✶✽✳✵✺✳✵✵✼;

MR3926043; Zbl 1416.35088

[13] J. Byeon, K. Tanaka, Semiclassical standing waves with clustering peaks for nonlinear

Schrödinger equations, Mem. Amer. Math. Soc. 229(2014), No. 1076, viii+89 pp. ❤tt♣s✿

✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✾✵✴♠❡♠♦✴✶✵✼✻; MR3186497; Zbl 1303.35094

[14] G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit.

Lombardo Accad. Sci. Lett. Rend. A 112(1978), No. 2, 332–336. MR0581298; Zbl 0436.58006

[15] J. Chabrowski, A. Szulkin, On the Schrödinger equation involving a critical Sobolev

exponent and magnetic field, Topol. Methods Nonlinear Anal. 25(2005), No. 1, 3–21. ❤tt♣s✿

✴✴❞♦✐✳♦r❣✴✶✵✳✶✷✼✼✺✴❚▼◆❆✳✷✵✵✺✳✵✵✶; MR2133390; Zbl 1176.35022

[16] P. d’Avenia, C. Ji, Multiplicity and concentration results for a magnetic Schrödinger

equation with exponential critical growth in R2, arXiv:1906.10937[math.AP].

[17] M. del Pino, P. L. Felmer, Local mountain passes for semilinear elliptic problems

in unbounded domains, Calc. Var. Partial Differential Equations 4(1996), No. 2, 121–137.

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✵✵✺✷✻✵✵✺✵✵✸✶; MR1379196; Zbl 0844.35032

[18] C. Ji, Z. Yin, Existence of solutions for a class of Schrödinger eqautions in RN with

magnetic field and vanishing potential, J. Elliptic Parabol. Equ. 5(2019), No. 2, 251–268.

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✹✶✽✵✽✲✵✶✾✲✵✵✵✹✶✲✵; MR4031956; Zbl 07146981

[19] G. B. Li, H. Y. Ye, Existence of positive solutions to semilinear elliptic systems in RN with

zero mass, Acta Math. Sci. Ser. B (Engl. Ed.) 33(2013), No. 4, 913–928. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴

✶✵✳✶✵✶✻✴❙✵✷✺✷✲✾✻✵✷✭✶✸✮✻✵✵✺✵✲✽; MR3072128; Zbl 1299.35129

[20] Y. H. Li, F. Y. Li, J. P. Shi, Existence of positive solutions to Kirchhoff type problems with

zero mass, J. Math. Anal. Appl. 410(2014), No. 1, 361–374. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳

❥♠❛❛✳✷✵✶✸✳✵✽✳✵✸✵; MR3109846; Zbl 1311.35083

[21] E. H. Lieb, M. Loss, Analysis, 2nd edn., Graduate Studies in Mathematics, American

Mathematical Society, RI, 2001. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✾✵✴❣s♠✴✵✶✹; MR1817225

[22] P. L. Lions, The concentration-compactness principle in the calculus of variations. The

locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire 1(1984), No. 4, 223–

283. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❙✵✷✾✹✲✶✹✹✾✭✶✻✮✸✵✹✷✷✲❳; MR0778974; Zbl 0704.49004

[23] P. Pucci, M. Q. Xiang, B. L. Zhang, Existence results for Schrödinger–Choquard–

Kirchhoff equations involving the fractional p-Laplacian, Adv. Calc. Var. 12(2019), No. 3,

253–276. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✺✶✺✴❛❝✈✲✷✵✶✻✲✵✵✹✾; MR3975603; Zbl 07076746



16 Z. Yin and C. Ji

[24] D. Visetti, Multiplicity of solutions of a zero mass nonlinear equation on a Riemannian

manifold, J. Differential Equations 245(2008), No. 9, 2397–2449. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴

❥✳❥❞❡✳✷✵✵✽✳✵✸✳✵✵✷; MR2455770; Zbl 1152.58018
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Abstract. We establish necessary and sufficient conditions for the existence of peri-
odic solutions to second-order nonlinear difference equations of the form ∆2xi + λxi +
∆ f (xi) = ei, i ∈ N, and for a simpler equation with difference-free nonlinearity.
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1 Introduction

The problem of finding periodic solutions for discrete semilinear systems has been studied

in recent years by many authors, with emphasis in a variety of features and with recourse

to several techniques. Among the extensive literature on this kind of problems, let us men-

tion a selection of papers (see also their references) which display also a variety of methods

used: Lyapunov–Schmidt reduction, Brouwer fixed point theorem [1, 11, 12], minimax meth-

ods, critical point theory, Morse theory [3, 8, 10, 13, 15], upper and lower solutions [2, 4, 5].

See also [14] for the analysis of linear eigenvalue theory.

If one considers, in particular, second order scalar difference equations, it turns out that

an interesting feature of periodic problems is that they provide resonance models that may

involve a linear operator whose kernel has dimension one or two. Both settings have been

considered in some of the above mentioned articles. An illustration of peculiarities of such

problems can found in [11].

Our purpose in this paper is to study a problem where, on one hand, we have to deal

with a two-dimensional kernel and, on the other hand, the nonlinear part involves first order

differences. Our motivation goes back to the paper of A. C. Lazer [9], where the existence of

2π-periodic solutions to the resonant problem

u′′ + u +
(

F(u)
)′
= e(t) (1.1)

BCorresponding author. Email: lfrodrigues@fc.ul.pt
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is studied. Here e is continuous, 2π-periodic, and F is C1. Necessary and sufficient conditions

for existence are found, in terms of the size of the projection of e onto the kernel of the

linear part: namely, if a sin t + b cos t appears in the Fourier series of e, then the condition for

existence is found to be

π
√

a2 + b2 < 2
(

F(∞) − F(−∞)
)

. (1.2)

We propose to consider the difference equation whose structure is reminiscent of (1.1). Specif-

ically, we want to give criteria for the existence of N-periodic solutions to the second-order

nonlinear difference equation

∆2xi + λxi + ∆ f (xi) = ei, i ∈ N, (1.3)

where, considering the jump h = 2π
N , we define the difference operators as

∆2xi =
1

h2
(xi+1 − 2xi + xi−1)

and

∆ f (xi) =
1

h

(

f (xi) − f (xi−1)
)

.

In addition, f : R → R is a given function, λ = N2

π2 sin2 π
N is the smallest positive eigenvalue

of −∆2 with N-periodic conditions (which approaches 1 as N grows larger) and e = (ei) is a

N-periodic vector.

Therefore, the underlying linear operator in our discrete system has in fact two-dimen-

sional kernel; on the other hand the nonlinear term contains first order differences. However,

because it appears as a by-product of the method, we deal also with the (simpler) version in

which the nonlinearity is difference-free

∆2xi + λxi + f (xi) = ei, i ∈ N. (1.4)

It is our purpose to relate the existence of periodic solutions to (1.3) – or (1.4) – to some

relationship between f , e and the kernel of the linear operator ∆2 + λ acting on N-periodic

vectors.

We shall proceed by rephrasing the Poincaré–Miranda theorem in appropriate form, so

that it can be used to recover results that correspond to those given by Lazer in [9]. Our

necessary or sufficient conditions for existence are a little more complicated than those in [9]

because the discretization does not allow a sharp statement; they are close to the conditions

in [9] when N is large, but it will be seen that we need to introduce “correcting terms” in the

corresponding inequalities.

Since N-periodic sequences can be identified with vectors in R
N , we henceforth identify

the elements of R
N with such sequences, that may be indexed in Z. It will be convenient to

consider the following norm and the associated inner product in N-dimensional space:

‖x‖ =

√

√

√

√h
N

∑
i=1

x2
i .

It is easy to see that the kernel of the operator ∆2 + λ is 2-dimensional and is spanned by

s and c, with

sj = sin

(

2π j

N

)

and cj = cos

(

2π j

N

)

.
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With the previous definition in mind, we have that s and c are orthogonal and ‖s‖2 =

‖c‖2 = π.

Another useful observation is that the linear operator ∆2 acting on periodic vectors is

symmetric. That is, we can write it in matrix form as the N × N symmetric matrix

N2

4π2















−2 1 0 · · · 1

1 −2 1 · · · 0

0 1 −2 · · · 0
...

...
...

. . .
...

1 0 0 · · · −2















.

Hence, setting

A = ∆2 + λ,

we have
N

∑
i=1

(∆2ai + λai)bi = (Aa) · b = a · (Ab) =
N

∑
i=1

ai(∆
2bi + λbi).

From this, it also follows that the kernel and the image of the operator A are orthogonal

(Im(A) = Ker(A)⊥) and any x ∈ R
N can be written uniquely as x = αs + βc + w, for some

α, β ∈ R and w ∈ M := Im(A).

As already stated, we think of e and the solution x as N-periodic vectors, which are iden-

tified with elements of R
N . We consider the orthogonal projection of e on Ker(A), denoted

by

As + Bc

meaning that

A =
h

π

N

∑
i=1

ei sin

(

2πi

N

)

, B =
h

π

N

∑
i=1

ei cos

(

2πi

N

)

. (1.5)

We also set

f (−∞) = lim
t→−∞

f (t), f (∞) = lim
t→+∞

f (t)

and

m = sup
t∈R

| f (t)|. (1.6)

Before stating the main results, further notation must be introduced. For θ ∈ R consider

the N-periodic vector σj = σj(θ) = sin
(

θ + 2π j
N

)

. Let x+ = max{x, 0}. We introduce the num-

bers αN , βN by

αN = min
θ∈R

h
N

∑
j=1

σ+
j , βN = max

θ∈R

h
N

∑
j=1

σ+
j (1.7)

and we also set

α′
N := 2 cos

π

N
cos

2π

N
. (1.8)

It is easily seen that the sequences αN , βN and α′
N have limit 2 as N → ∞.

In order to simplify the statements and proofs, we shall take N to be a multiple of 4.

This assumption will not appear in the statements.
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Theorem 1.1. Let {ei}i∈N be N-periodic and f : R → R be a continuous function such that f (∞)

and f (−∞) are finite. Then with the notation of (1.5), (1.6) and (1.8):

(i) Suppose that ∀x ∈ R, f (−∞) < f (x) < f (∞). Then if the equation (1.3) has a N-periodic

solution, the condition

π
√

A2 + B2 < 2
(

f (∞) − f (−∞)
)

is satisfied.

(ii) Assume that

π
√

A2 + B2 + 4 m sin
π

N
< α′

N

(

f (∞) − f (−∞)
)

. (1.9)

Then equation (1.3) has a N-periodic solution.

Theorem 1.2. Let {ei}i∈N be N-periodic and f : R → R be a continuous function such that f (∞)

and f (−∞) are finite. With the notation of (1.5), (1.6) and (1.7):

(i) Suppose that ∀x ∈ R, f (−∞) < f (x) < f (∞). Then if the equation (1.4) has a N-periodic

solution, the condition

π
√

A2 + B2 < βN

(

f (∞) − f (−∞)
)

(1.10)

holds.

(ii) Assume that

π
√

A2 + B2 + 8 mπ2/N2
< αN

(

f (∞) − f (−∞)
)

. (1.11)

Then equation (1.4) has a N-periodic solution.

Remark 1.3. In the above conditions (1.9), (1.10), (1.11), we must use the approximations αN ,

βN , α′
N , rather than the constant 2 (the integral of sin+ over a period) that appears in [9].

Moreover, we add “correcting terms” that behave as O(1/N) and O(1/N2), respectively, and

are not needed when one deals with a differential equation. Our conditions make sense for

large values of N.

2 Auxiliary results

We shall use the following elementary formula for “summing by parts”.

Lemma 2.1. Let ai and bi be two N-periodic vectors. Setting ∆ai = ai − ai−1 we have:

N

∑
i=1

∆aibi = −
N

∑
i=1

ai ∆bi+1.

Let us recall the Poincaré–Miranda’s theorem, stated as follows.

Theorem 2.2. Let Li > 0, i=1, . . . , N, Ω =
{

x ∈ R
N : |xi| ≤ Li, i=1, . . . , N

}

and f : Ω → R
N

be continuous satisfying:

fi

(

x1, x2, . . . , xi−1,−Li, xi+1, . . . , xN

)

≥ 0 for 1 ≤ i ≤ N,

fi

(

x1, x2, . . . , xi−1,+Li, xi+1, . . . , xN

)

≤ 0 for 1 ≤ i ≤ N.

Then, f (x) = 0 has a solution in Ω.
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We need slight variations of this statement, where the vector field is defined on a product

of intervals with a ball. Although such versions may be related to the approach of [7], we

include simple proofs for completeness.

In what follows we shall denote by γ the orthogonal projection of R
N = R

N−2 × R
2 onto

the second factor R
2.

Proposition 2.3. Let Li (i=1, . . . , N) and R be positive numbers. Let Ω =
{

x ∈ R
N : |xi| ≤ Li,

i = 1, . . . , N − 2, x2
N−1 + x2

N ≤ R2
}

=
N−2

∏
i=1

[−Li, Li] × BR ⊆ R
N−2 × R

2 and f : Ω → R
N be a

continuous function satisfying:

fi

(

x1, x2, . . . , xi−1,−Li, xi+1, . . . , xN

)

< 0 for 1 ≤ i ≤ N − 2,

fi

(

x1, x2, . . . , xi−1,+Li, xi+1, . . . , xN

)

> 0 for 1 ≤ i ≤ N − 2

and

∀x ∈
N−2

∏
i=1

[−Li, Li] × ∂BR, f (x) · γx > 0.

Then there exists x∗ ∈ Ω such that f (x∗) = 0.

Proof. We use a standard compactness argument to show that there exists ε > 0 such that the

mapping x 7→ x − ε f (x) maps Ω into Ω. The conclusion follows from Brouwer’s fixed point

theorem. In fact, if the claim is not true, we find ǫn ↓ 0 and xn ∈ Ω such that xn − εn f (xn) 6∈ Ω.

Then, considering subsequences if necessary, either there exists i ∈ {1, . . . , n − 2} such that,

say

xni − ǫn fi(xn) > Li

or

‖γxn − εnγ f (xn)‖ > R2.

We may suppose that xn → x. In the first case we obtain xi ≥ Li, that is, xi = Li, and then,

by the continuity of f and the assumption on fi, the first inequality gives a contradiction for

large n. In the second case, setting M = maxz∈Ω ‖ f (z)‖, we have

‖γxn‖2 − 2 ǫnγxn · γ f (xn) + M2ǫ2
n > R2.

The previous argument then gives ‖γx‖ = R and, since by the assumptions limn→∞ γxn ·
γ f (xn) > 0, again a contradiction for large n is obtained.

Proposition 2.3 is a very natural generalization of Poincaré–Miranda’s theorem, as the

dot product condition gives a reasonable notion of the vector field “to point outside” of the

domain. Finally, we state a last version of the result, with a variation of the dot product

condition.

Proposition 2.4. Let Ω be as in the preceding proposition and f : Ω → R
N be a continuous function

satisfying:

fi

(

x1, x2, . . . , xi−1,−Li, xi+1, . . . , xN

)

< 0 for 1 ≤ i ≤ N − 2,

fi

(

x1, x2, . . . , xi−1,+Li, xi+1, . . . , xN

)

> 0 for 1 ≤ i ≤ N − 2

and

∀x ∈
(N−2

∏
i=1

[−Li, Li]

)

× ∂BR, f (x) · ρ(γx) > 0,

where ρ denotes a rotation of angle π
2 in the plane R

2.

Then there exists x∗ ∈ Ω such that f (x∗) = 0.
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Proof. Define g : Ω → R
N by g(x) = f

(

x − γ(x), ρ−1(γ(x))
)

. Then g satisfies the conditions

of the previous proposition. The conclusion follows.

Now let Q, P : R
N → R

N be the orthogonal projections onto Ker(A) and M = Ker(A)⊥,

respectively. Let K : M → M be defined by

K =

(

A∣
∣M

)−1

.

We now write problem (1.3) in operator form as

Ax + G(x) = e

where G : R
N → R

N is the nonlinear map whose i-th component is 1
h

(

f (xi) − f (xi−1)
)

.

Using the orthogonal decomposition x = u + v, with u ∈ Ker(A) and v ∈ M, we obtain

Ax + G(x) = e ⇐⇒ Av + G(u + v) = e

or equivalently

v − K
(

−PG(u + v) + Pe
)

= 0, QG(u + v) − Qe = 0. (2.1)

We can then define V : M × Ker(A) → M × Ker(A) by:

V(v, u) =
(

v − K
(

−PG(u + v) + Pe
)

, QG(u + v) − Qe
)

,

and conclude that:

Proposition 2.5. The periodic problem (1.3) has a solution if and only if there is a solution to

V(v, u) = 0.

3 Proof of Theorem 1.2

We start with some simple remarks and notation. Recall the meaning of the expression

σi = σi(t) = sin

(

t +
2πi

N

)

and set

S+ =
{

i : σi > 0, i = 1, . . . , N
}

, S− =
{

i : σi < 0, i = 1, . . . , N
}

.

Since N is even, there is at most an index i∗ ∈ S+ such that 0 < σi∗ < sin π
N . In such case,

there exists a (unique) j∗ ∈ S− with |σj∗| = σi∗ < sin π
N . In fact it is easy to see that, assuming

without loss of generality that − 2π
N < t ≤ 0, we have i∗ = 1 or i∗ = N

2 . Let us then define

S+∗ = S+\ i∗, S−∗ = S+\ j∗ .

Otherwise, if σi ≥ sin π
N for all i ∈ S+, put

S+∗ = S+, S−∗ = S−.
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We are now ready to present the proof for the case of a difference-free nonlinearity.

The abstract approach is very similar to the one described above, where we replace G with

F : R
N → R

N which is defined component-wise as Fi(x) = f (xi). Hence we consider the

operator problem

Ax + F (x) = e.

As before, finding a periodic solution to (1.2) is equivalent to solving

W(v, u) :=
(

v − K
(

−PF (u + v) + Pe
)

, QF (u + v) − Qe
)

= 0.

Proof. (i) Let x be a solution of (1.4) and consider the orthogonal splitting of e,

e = As + Bc + w,

where A, B ∈ R and w ∈ M. The inner product of equation (1.4) with z = As + Bc yields

F (x) · z = e · z = ‖z‖2 = π(A2 + B2).

On the other hand

F (x) · z = h
N

∑
i=1

f (xi) zi

and there exists ϕ ∈ R such that zi =
√

A2 + B2 sin
(

ϕ + 2πi
N

)

. Hence summing separately over

the sets of indices where the zi are positive and where the zi are negative and using the

definition of βN and the assumption of (i) we obtain

π(A2 + B2) < βN

√

A2 + B2
(

f (∞) − f (−∞)
)

.

(ii) We have to prove that W(v, u) = 0 has a solution, using the analogue of Proposi-

tion 2.5. Suppose that (1.11) holds.

First, we want to show that there exists an L > 0 such that

(∗) If vi = L, then Wi(v, u) > 0 (respectively if vi = −L, then Wi(v, u) < 0), for 1 ≤ i ≤ N−2.

Here of course the vi are coordinates with respect to some basis of M.

To this purpose it suffices to prove that K
(

−PF (u + v) + Pe
)

is bounded.

Since K is linear there is a constant C such that:

‖Kx‖ ≤ C‖x‖, ∀x ∈ R
N .

Since f is bounded, so is F and we have

‖ − F (u + v) + e‖ ≤ C∗ for some C∗ ∈ R.

Since P is an orthogonal projection, it follows then that

∥

∥K
(

−PF (u + v) + e
)∥

∥ ≤ C
∥

∥P
(

−F (u + v) + e
)∥

∥

≤ CC∗.

Therefore we can pick up a positive number L with the property (∗).

Now fix ε such that

π
√

A2 + B2 + 8 mπ2/N2
< αN

(

f (∞) − f (−∞) − 2 ε
)

.
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Consider a ball in Ker(A) with radius R. Let u be on the boundary of the ball, with

u = αs + βc. There exists t ∈ R so that we can write

u =
√

α2 + β2 σ, σi = sin

(

2πi

N
+ t

)

.

In particular R =
√

π(α2 + β2). Let v ∈ M with |vi| ≤ L. Then, with the notation introduced

in the beginning of this section

Q
(

F (u + v) − e
)

· u = F (u + v) · u − e · u

≥ h
N

∑
i=1

f (ui + vi)ui − π
√

A2 + B2
√

α2 + β2

= h ∑
i∈S+∗

f

(

R√
π

σi + vi

)

R√
π

σi + h f

(

R√
π

σi∗ + vi∗

)

R√
π

σi∗

+ h ∑
i∈S−∗

f

(

R√
π

σi + vi

)

R√
π

σi + h f

(

R√
π

σj∗ + vj∗

)

R√
π

σj∗

− π
√

A2 + B2
√

α2 + β2

where the summands that contain h f
(

R√
π

σi∗ + vi∗
)

and h f
(

R√
π

σj∗ + vj∗
)

appear only if i∗ and

j∗ exist.

Let R be so large that

R√
π

sin
π

N
− L > T

where T is such that

f (x) > f (+∞) − ε ∀x ≥ T, f (x) < f (−∞) + ε ∀x ≤ −T.

Hence, using symmetry, in any case the above expression is greater than

R√
π

(

(

f (+∞) − ε
)

h ∑
i∈S+∗

σi −
(

f (−∞) + ε
)

h ∑
i∈S−∗

|σi| − 2 hm
π

N
− π

√

A2 + B2

)

≥

≥ R√
π

(

(

f (+∞) − f (−∞) − 2 ε
)

h ∑
i∈S+∗

σi − 4 m
π2

N2
− π

√

A2 + B2

)

≥ R√
π

(

(

f (+∞) − f (−∞) − 2 ε
)

(

αN − h
π

N

)

− 4 m
π2

N2
− π

√

A2 + B2

)

≥ R√
π

(

(

f (+∞) − f (−∞) − 2 ε
)

αN − 8 m
π2

N2
− π

√

A2 + B2

)

> 0.

By Proposition 2.3, it follows that there is a solution to W(v, u) = 0 and, consequently,

a solution to the periodic problem (1.2).
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4 Proof of the main result

First we list some elementary facts to be used in the sequel.

Lemma 4.1. If σi(t) > sin π
N , then σi+1(t +

π
2 ) < σi(t +

π
2 ). If 0 ≤ σk(t) ≤ sin π

N then

∣

∣

∣

∣

σk+1

(

t +
π

2

)

− σk

(

t +
π

2

)∣

∣

∣

∣

≤ 2 sin
π

N
.

Proof. It suffices to remark that σi+1

(

t + π
2

)

− σi

(

t + π
2

)

= −2 sin π
N sin

(

2πi
N + π

N + t
)

.

Lemma 4.2.
N

∑
i=1

(

σi+1(t) − σi(t)
)+ ≤ 2.

Lemma 4.3. ∑
i∈S+∗

(

σi+1

(

t +
π

2

)

− σi

(

t +
π

2

)

)−

≥ 2 cos
2π

N
cos

π

N
.

Proof. Suppose first that i∗ exists, and to fix ideas i∗=1. Then we may take S+∗={2, . . . , N/2}
and − 2π

N < t < − π
N

(

so that in fact 0 <
2π
N + t < π

N

)

. Then, writing N = 4p and using the el-

ementary formula for sin x − sin y,

∑
i∈S+∗

(

σi+1

(

t +
π

2

)

− σi

(

t +
π

2

)

)−

=
N/2

∑
i=2

[

sin

(

2π(i + 1 + p)

N
+ t

)

− sin

(

2π(i + p)

N
+ t

)

]−

= sin

(

2π(2 + p)

N
+ t

)

− sin

(

2π(N
2 + p + 1)

N
+ t

)

= sin

(

4π + 2πp

N
+ t

)

− sin

(

Nπ + 2π + 2πp

N
+ t

)

= 2 cos

(

3π

N
+ t

)

cos
π

N
.

Since 3π
N + t ∈

[

π
N , 2π

N

]

, the inequality follows.

Now suppose that S+∗ = S+. Then either S+∗ = {1, . . . , N/2} with t = − π
N or S+∗ =

{1, . . . , N/2 − 1} with t = 0. In the first case the sum is 2 − 2
(

1 − cos π
N

)

= 2 cos π
N . In the

second case the sum is equal to 2−
(

1− cos 2π
N

)

= 1+ cos 2π
N . In both cases the result is greater

than 2 cos 2π
N cos π

N .

Remark 4.4. The fact that N is a multiple of 4 yields a simple formulation and proof of the

above lemma.

We now prove Theorem 1.1.

Proof. (i) Let x be a solution to (1.1) and consider again the orthogonal splitting of e,

e = As + Bc + w,

where A, B ∈ R and w ∈ M. The inner product of equation (1.3) with z = As + Bc yields

G(x) · z = e · z = ‖z‖2 = π(A2 + B2).
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On the other hand, by Lemma 2.1,

G(x) · z = −h
N

∑
i=1

f (xi) (zi+1 − zi)

h
.

There exists ϕ ∈ R such that zi =
√

A2 + B2 sin
(

ϕ + 2πi
N

)

. Hence splitting the sum into

−
N

∑
i=1

f (xi) (zi+1 − zi)
+ +

N

∑
i=1

f (xi) (zi+1 − zi)
−

and using the assumptions and Lemma 4.2 we obtain

π(A2 + B2) < 2
√

A2 + B2
(

f (∞) − f (−∞)
)

.

(ii) By Proposition 2.5, we only need to prove that V(v, u) = 0 has a solution, which we

do using Proposition 2.4. Suppose that (1.9) holds.

First, we want to show that there exists an L such that if vi = L, then Vi(v, u) > 0

(respectively if vi = −L, then Vi(v, u) < 0), for 1 ≤ i ≤ N − 2. It suffices then to prove that

K
(

−PG(u + v) + Pe
)

is bounded, and this is done the same way as given in the proof of

Theorem 2.2 (note that G is bounded as well).

Let ε > 0 be such that

(

f (+∞) − f (−∞) − 2 ε
)

α′
N − 4 m sin

π

N
− π

√

A2 + B2 > 0

and fix T > 0 such that

f (x) > f (+∞) − ε ∀x ≥ T, f (x) < f (−∞) + ε ∀x ≤ −T.

Consider now a ball in Ker(∆2 + λ) with radius R so that R√
π

sin π
N − L > T. Let u be

on the boundary of the ball, with u = αs + βc, meaning that R =
√

π(α2 + β2). Consider the

rotation ρ of angle π/2 in this two-dimensional subspace, given by

ρ(u) = −βs + αc.

It is easily seen that, if ui =
R√
π

sin
(

2πi
N + t

)

, then ρ(u)i =
R√
π

sin
(

2πi
N + t + π

2

)

. Then we com-

pute, with |vi| ≤ L:

Q
(

G(u + v) − e
)

· ρ(u) = G(u + v) · ρ(u) − e · ρ(u)

≥ h
N

∑
i=1

∆ f (ui + vi) ρ(u)i − π
√

A2 + B2
√

α2 + β2

= −
N

∑
i=1

f (ui + vi)
(

ρ(u)i+1 − ρ(u)i

)

− π
√

A2 + B2
√

α2 + β2.

Noticing that the σi and the differences ρ(u)i+1 − ρ(u)i have opposite signs (as they lie in

sine graphs misaligned by a translation of π
2 ) we may write

−
N

∑
i=1

f (ui + vi)
(

ρ(u)i+1 − ρ(u)i

)

= ∑
i∈S+

f

(

R√
π

σi + vi

)

(

ρ(u)i+1 − ρ(u)i

)− − ∑
i∈S−

f

(

R√
π

σi + vi

)

(

ρ(u)i+1 − ρ(u)i

)+
.
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Hence

Q
(

G(u + v) − e
)

· ρ(u)

≥ ∑
i∈S+∗

f

(

R√
π

σi + vi

)

(

ρ(u)i+1 − ρ(u)i

)− − ∑
i∈S−∗

f

(

R√
π

σi + vi

)

(

ρ(u)i+1 − ρ(u)i

)+

− m
(

ρ(u)i∗+1 − ρ(u)i∗
)− − m

(

ρ(u)j∗+1 − ρ(u)j∗
)+ − π

√

A2 + B2
√

α2 + β2 .

By Lemmas 4.1 and 4.3 and the definition of α′
N we obtain

Q
(

G(u + v) − e
)

· ρ(u) ≥ R√
π

(

(

f (+∞) − f (−∞) − 2 ε
)

α′
N − 4 m sin

π

N
− π

√

A2+B2
)

> 0.

We then conclude that there exists a solution to V(v, u) = 0 and therefore there exists a

periodic solution to (1.3).

A final remark is in order. The estimates for L and R obtained in the proof of Theorem 1.1

depend on N. However under natural assumptions we can show that norms of the solutions

are kept below some constant. This is so because there exist a priori bounds for the solutions

of (1.3) which do not depend on N. To see this, suppose that e = eN is defined for all N and

that

E := sup
N

‖eN‖ < ∞.

Keeping the notation introduced in section 2, consider a solution x = v + u. Let us decom-

pose v into

v = (c, c, . . . , c) + w

where c ∈ R and w is orthogonal to (1, 1, . . . , 1) (and, of course, to s and c as well). The inner

product of (1.3) with (c, c, . . . , c) yields

λ|c| ≤ E.

The next step consists in proving that w is bounded. In fact the inner product of (1.3) with w

gives

−1

h

N

∑
i=1

(

wi+1wi − 2 w2
i + wi−1wi

)

= λ‖w‖2 +
N

∑
i=1

f (ui + vi) (wi+1 − wi) − e · w + 2π λc‖w‖.

Hence

N

2π

N

∑
i=1

(wi+1 − wi)
2 ≤ λ‖w‖2 + C‖w‖ + m

√

√

√

√N
N

∑
i=1

(wi+1 − wi)2

where C is a constant independent of N. Recall that λ = λN stays close to 1 for large N.

Now we claim that for all w orthogonal to (1, 1, . . . , 1), s and c we have

N

∑
i=1

(wi+1 − wi)
2 ≥ 4 sin2 2π

N

N

∑
i=1

w2
i . (4.1)

Combining this with the previous inequality we conclude that the quantity

N

∑
i=1

|wi+1 − wi|
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is bounded independently of N and therefore (using the fact that w has components with both

signs) it follows that there is a constant L such that, for all N,

|wi| ≤ L, ∀i = 1, . . . , N.

Finally we consider the boundedness of the component u. Assume in addition that there

exists δ > 0 such that

π
√

A2 + B2 + δ < 2
(

f (∞) − f (−∞)
)

for all sufficiently large N (recall that A = AN and B = BN although we omit the subscript).

If the components of u are ui = R sin
(

t+ 2πi
N

)

, we consider ũ with ũi = R sin
(

t+ π
2 + 2πi

N

)

. The

inner product of the second equation in (2.1) with ũ gives

N

∑
i=1

f (ui + vi) (ũi+1 − ũi) = Q e · ũ

or equivalently

N

∑
i=1

f

(

R sin

(

t +
2πi

N

)

+ vi

)

2 sin
π

N
sin

(

2πi

N
+

π

N
+ t

)

= h
N

∑
i=1

ei sin

(

t +
π

2
+

2πi

N

)

,

which implies

ξN
2π

N

N

∑
i=1

f

(

R sin

(

t +
2πi

N

)

+ vi

)

sin

(

2πi

N
+

π

N
+ t

)

≤ π
√

A2 + B2

where ξN → 1 as N → ∞. Given the boundedness of the vi it is not difficult to see that,

for all large N and R sufficiently large, the left-hand side becomes arbitrarily close to

2
(

f (∞) − f (−∞)
)

, a contradiction with the assumption.

For completeness, we provide a

Proof of (4.1). We compute the minimum of the quadratic form ∑
N
i=1(wi+1 − wi)

2 in the unit

sphere (for the standard norm of R
N) of the subspace M′ consisting of vectors orthogonal to

(1, 1, . . . , 1), s and c. Since in the unit sphere

N

∑
i=1

(wi+1 − wi)
2 = 2 − 2

N

∑
i=1

(wi+1wi)

we have only to compute the maximum of 2 ∑
N
i=1(wi+1wi) in the sphere. Now the matrix of

this quadratic form














0 1 0 · · · 0 1

1 0 1 · · · 0 0

0 1 0 · · · 0 0
...

...
...

...
...

1 0 0 · · · 1 0















is symmetric and circulant, hence it shares the same eigenvectors of the matrix for ∆2.

By elementary properties of circulant matrices (see e.g. [6]), the eigenvalues corresponding

to eigenvectors in M′ are the numbers 2 cos
jπ
N , j = 4, . . . , N

2 − 1. The greatest of them is

2 cos 4π
N = 2 − 4 sin2 2π

N . This completes the proof.
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Abstract. In this paper, we consider the following perturbed second-order Hamiltonian
system

−ü(t) + L(t)u = ∇W(t, u(t)) +∇G(t, u(t)), ∀ t ∈ R,

where W(t, u) is subquadratic near origin with respect to u; the perturbation term
G(t, u) is only locally defined near the origin and may not be even in u. By using the
variant Rabinowitz’s perturbation method, we establish a new criterion for guarantee-
ing that this perturbed second-order Hamiltonian system has infinitely many homo-
clinic solutions under broken symmetry situations. Our result improves some related
results in the literature.

Keywords: broken symmetry, Hamiltonian system, homoclinic solutions, subquadratic
potential, Rabinowitz’s perturbation method.
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1 Introduction

Consider the following second-order Hamiltonian system

− ü(t) + L(t)u(t) = ∇W
(
t, u(t)

)
+∇G

(
t, u(t)

)
, ∀ t ∈ R, (1.1)

where u = (u1, u2, . . . , uN) ∈ R
N and L ∈ C(R, R

N×N) is a symmetric matrix-valued function.

As usual, a solution u of problem (1.1) is homoclinic (to 0), if |u(t)| → 0 as |t| → +∞. In

addition, if u 6≡ 0 then u is called a nontrivial homoclinic solution.

When G ≡ 0, (1.1) reduces to the second-order Hamiltonian system

− ü(t) + L(t)u(t) = ∇W
(
t, u(t)

)
, ∀ t ∈ R. (1.2)

In the past twenty years, the existence and multiplicity of homoclinic solutions for problem

(1.2) have been extensively investigated by variational methods. Next we recall some results in

BCorresponding author. Email: mathspaper2012@163.com
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this aspect. For problem (1.2), under the assumption that L(t) and W(t, x) are T-periodic in t,

Rabinowitz [16] proved the existence of homoclinic orbits as a limit of 2kT-periodic solutions

of problem (1.2). Then this trick has been developed to study the existence and multiplicity of

homoclinic solutions for more general Hamiltonian systems (see, e.g., [8, 21, 28]).

When L(t) and W(t, x) are not periodic in t, the problem of existence of homoclinic solu-

tions for (1.2) is quite different from the one just described, since the Sobolev embedding is

no longer compact. To overcome this difficulty, Rabinowitz and Tanaka [17] introduced the

following coercive condition:

(L0) L ∈ C(R, R
N×N) is a positive definite symmetric matrix for all t ∈ R and there is a

continuous function l : R → R such that l(t) > 0 for all t ∈ R and (L(t)u, u) ≥ l(t)|u|2,

∀ u ∈ R
N and l(t) → +∞ as |t| → +∞.

The condition (L0) implies that the self-adjoint operator of −d2/dt2 + L(t) in L2(R, R
N) has a

sequence of eigenvalues λn (counted with multiplicity) and

0 < λ1 < λ2 < · · · < λn < · · · → ∞. (1.3)

Under this assumption on L, they obtained the existence of a nontrivial homoclinic solution

for problem (1.2) by using a variant of the Mountain Pass Theorem without the Palais–Smale

condition. Subsequently, Omana and Willem [13] showed that the Palais–Smale condition is

satisfied under the coercive condition (L0), and they used the usual Mountain Pass Theorem

to prove the same result as in [17]. Since then, the coercive condition (L0) and its variants have

been used in a number of papers, and we refer the readers to [10,23,25–27] and the references

therein.

Assume that W(t, x) is of subquadratic growth as |x| → 0 for all t ∈ R, Ding [6] considered

this case and presented the following condition

(L′
0) there is a constant α < 2 such that

l(t)|t|α−2 → +∞ as |t| → +∞,

where l(t) is given in (L0). The main purpose of (L′
0) is to guarantee some better properties of

Sobolev embedding in the subquadratic case. If W(t, x) is even in x, Ding proved a sequence

of homoclinic solutions for problem (1.2). After the work of Ding [6], there are many papers

concerning the existence of infinitely many homoclinic solutions in the subquadratic case (see,

e.g., [20,22,34,35]). It is worth pointing out that most of these mentioned papers assumed that

W(t, x) is even with respect to x. Actually, the approaches used in these works depend on

the notion of genus for symmetric sets. Therefore, the condition that W(t, x) is even with

respect to x is crucial in the application of these methods. When W(t, x) is not even in x,

the symmetry of the corresponding functional for problem (1.2) is broken. It is natural to ask

whether an infinite number of homoclinic solutions can be maintained in broken symmetry

case, and such a problem is often called perturbation from symmetry problem.

Since 1980s, many scholars have developed different methods to study the perturbation

from symmetry problem for elliptic equations and Hamiltonian systems (see, e.g., [1, 3, 9,

11, 18, 19, 24, 31–33]. If G(t, x) is not even in x, problem (1.1) loses its symmetry under the

assumption that W(t, x) is even in x, and the authors [30] studied the perturbation from

symmetry problem for (1.1). Specifically speaking, when W(t, x) is locally superquadratic as
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|x| → +∞, we obtained an unbounded sequence of homoclinic solutions by means of Bolle’s

perturbation method introduced in [3].

If W(t, x) is subquadratic near origin with respect to x, i.e., limx→0 W(t, x)/|x|2 = +∞

for all t ∈ R, an interesting question is whether the infinite number of homoclinic solutions

persists under symmetry breaking situations. To the best of our knowledge, there are very

few results on this topic. The main purpose of this paper is to give a positive answer to this

question. To be precise, if the non-even perturbation term G is locally defined and satisfies

some growth conditions near the origin, the existence of infinitely many homoclinic solutions

for (1.1) can be preserved. Our tool is a variant of the perturbation method developed by

Rabinowitz in [14]. The main idea of our proof is to introduce a modified functional by subtle

truncation of the original functional, then the nonsymmetric part of this modified functional

can be estimated. Then we can prove that the modified functional has almost the same small

critical values as the original functional. Next we state the main result of this paper.

Theorem 1.1. Let the condition (L0) hold. Moreover, assume that the following condition hold:

(H1) W(t, x) = W1(t, x)+W2(t, x), W1, W2 ∈ C1(R×R
N , R) and there exist a constant 1 < p < 2

such that ∣∣∇W1(t, x)
∣∣ ≤ a(t)|x|p−1, ∀ (t, x) ∈ R × R

N , (1.4)

where a : R → R
+ is a continuous function such that a ∈ L

2
2−p (R);

(H2) W1(t, 0) ≡ 0 and there exist constants C1 > 0, 1 < µ < 2 and α1 > 2 such that

− C1|x|α1 ≤ (∇W1(t, x), x)− µW1(t, x) ≤ 0, ∀ (t, x) ∈ R × R
N ; (1.5)

(H3) there exist constants C2 > 0, 1 < α2 < 2 and α3 > 2 such that

W1(t, x) ≥ b(t)|x|α2 − C2|x|α3 , ∀ (t, x) ∈ R × R
N , (1.6)

where b : R → R
+ is a continuous function such that b ∈ L

2
2−α2 (R);

(H4) W2(t, 0) ≡ 0 and there exist constants C3 > 0 and α4 > 2 such that

|∇W2(t, x)| ≤ C3|x|α4−1, ∀ (t, x) ∈ R × R
N ; (1.7)

(H5) Wi(t, x) = Wi(t,−x), i = 1, 2, ∀ (t, x) ∈ R × R
N ;

(G1) G ∈ C1(R × Br0(0), R), G(t, 0) ≡ 0 and there exist constants C4 > 0 and σ > 2 such that

∣∣∇G(t, x)
∣∣ ≤ C4|x|σ−1, ∀ (t, x) ∈ R × Br0(0), (1.8)

where Br0(0) denotes the open ball in R
N centred at 0 with radius r0;

(G2) there exist constants C5 > 0, β >
2(2−p)
p(σ−2)

and n0 ∈ N such that λn ≥ C5nβ, n ≥ n0, where the

eigenvalues λn are given in (1.3).

Then problem (1.1) has a sequence of homoclinic solutions {un} such that maxt∈R |un(t)| → 0 as

n → ∞.

Notation. Throughout the paper, we denote by Cn various positive constants which may vary

from line to line and are not essential to the proof.
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2 Variational setting and preliminaries

Let

E =

{
u ∈ H1(R, R

N) :
∫

R

[
|u̇(t)|2 +

(
L(t)u(t), u(t)

)]
dt < +∞

}

endowed with the inner product

(u, v) =
∫

R

[(
u̇(t), v̇(t)

)
+

(
L(t)u(t), u(t)

)]
dt.

Then E is a Hilbert space with this inner product and we denote by ‖ · ‖ the induced norm.

As usual, for 1 ≤ ν < +∞, let

‖u‖ν =
( ∫

R

|u(t)|νdt
)1/ν

, u ∈ Lν(R, R
N).

It is evident that E is continuously embedded into H1(R, R
N), so E is continuously embedded

into Lν(R, R
N) for any ν ∈ [2, ∞], i.e., there exists τν > 0 such that

‖u‖ν ≤ τν‖u‖, ∀ u ∈ E. (2.1)

Moreover, E is compactly embedded into Lν
loc(R, R

N) for all ν ∈ [1, ∞].

Next we introduce a useful result proved in Lemma 2.3 of [21] by Tang and Xiao.

Lemma 2.1. For any u ∈ E, the following inequalities hold:

|u(t)| ≤
{∫

∞

t

1√
l(s)

[
|u̇(s)|2 +

(
L(s)u(s), u(s)

)]
ds

}1/2

, t ∈ R, (2.2)

and

|u(t)| ≤
{∫ t

−∞

1√
l(s)

[
|u̇(s)|2 +

(
L(s)u(s), u(s)

)]
ds

}1/2

, t ∈ R. (2.3)

In view of condition (G1) in Theorem 1.1, the perturbation term G is only locally defined,

so we can’t apply the variational methods directly. To overcome this difficulty, we use cut-off

method to modify G(t, x) for x outside a neighbourhood of the origin. In detail, we have the

following lemma.

Lemma 2.2. Suppose that (G1) is satisfied. Then there exists a new function G̃ possessing the following

properties:

(i) G̃ ∈ C1(R × R
N , R), G̃(t, 0) ≡ 0 and

∣∣∇G̃(t, x)
∣∣ ≤ 16C4|x|σ−1, ∀ (t, x) ∈ R × R

N ; (2.4)

(ii) there exists a positive constant r1 ≤ min{r0/2, 1/2} such that

G̃(t, x) = G(t, x), ∀ (t, x) ∈ R × Br1
(0); (2.5)

where Br1
(0) denotes the open ball in R

N centred at 0 with radius r1.
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Proof. Since G(t, 0) = 0, by (1.8) and direct computation we have

|G(t, x)| ≤ C4|x|σ, ∀ (t, x) ∈ R × Br0(0). (2.6)

Choose a constant r1 = min{r0/2, 1/2} and define a cut-off function h ∈ C1(R, R) such that

h(t) = 1 for t ≤ 1, h(t) = 0 for t ≥ 2 and −2 ≤ h′(t) < 0 for 1 < t < 2. Set

{
G̃(t, x) = h

(
|x|2/r2

1

)
G(t, x), ∀ (t, x) ∈ R × B√

2r1
(0),

G̃(t, x) ≡ 0, ∀ (t, x) ∈ R ×
(
R

N\B√
2r1
(0)

)
.

(2.7)

In view of (2.7), for i = 1, 2, . . . , N, we have

∂G̃

∂xi
=

2xi

r2
1

h′
( |x|2

r2
1

)
G(t, x) + h

( |x|2
r2

1

)
∂G

∂xi
, ∀ (t, x) ∈ R × B√

2r1
(0), (2.8)

and ∂G̃/∂xi = 0, ∀(t, x) ∈ R ×
(
R

N\B√
2r1
(0)

)
. By (2.7) and (2.8), G̃ ∈ C1(R × R

N , R),

G̃(t, 0) ≡ 0 and G̃(t, x) = G(t, x), ∀ (t, x) ∈ R × Br1
(0). Moreover, it is easy to verify (2.4) by

(1.8), (2.6) and (2.8).

Next we introduce the following modified Hamiltonian system

− ü(t) + L(t)u(t) = ∇W
(
t, u(t)

)
+∇G̃

(
t, u(t)

)
, ∀ t ∈ R. (2.9)

Let I : E → R be defined by

I(u) =
1

2
‖u‖2 −

∫

R

W1(t, u)dt −
∫

R

W2(t, u)dt −
∫

R

G̃(t, u)dt. (2.10)

Under assumptions (L0), (H1), (H2), (H4) and (G1), I ∈ C1(E, R) and

〈I′(u), v〉 = (u, v)−
∫

R

∇W1(t, u)vdt −
∫

R

∇W2(t, u)vdt −
∫

R

∇G̃(t, u)vdt (2.11)

for all u, v ∈ E. The critical points of I in E are solutions of (2.9). Moreover, by the coercivity

of l, (2.2) and (2.3), these solutions are homoclinic to 0.

Next we introduce a cut-off function ζµ ∈ C∞(R, R) satisfying





ζµ(t) = 1, t ∈ (−∞, A/2],

0 ≤ ζµ(t) ≤ 1, t ∈ (A/2, A/4),

ζµ(t) = 0, t ∈ [A/4, ∞),

|ζ ′µ(t)| ≤ −8A−1, t ∈ R,

(2.12)

where A := (4µ)−1(µ − 2) < 0. Setting T0 := min{T1, T2, T3, 1/2}, where

T1 =

{
2 − µ

8µ
(
C1τα1

α1
+ 10C3τα4

α4
+ 16(10 − 32A−1)C4τσ

σ

)
} 1

α−2

, (2.13)

T2 =





1

12
(
2

α4+4
2 C3τα4

α4
− 2

σ+12
2 C4τσ

σ A−1
)





2
α−2

and T3 =

{
−A

2
σ+18

2 C4τσ
σ

} 2
σ−2

, (2.14)
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α := min{α1, α4, σ} and τα1
, τα4

and τσ are embedding constants given in (2.1). By the defini-

tion of T0, T0 is a fixed positive constant.

With the help of T0 and the cut-off function h introduced in Lemma 2.2, define

kT0
(u) = h

(‖u‖2

T0

)
, ∀ u ∈ E. (2.15)

Lemma 2.3. The functional kT0
defined by (2.15) is of C1(E, R) and

|〈k′T0
(u), u〉| ≤ 8, ∀ u ∈ E.

Proof. By (2.15) and direct calculation we have

〈k′T0
(u), v〉 = 2h′

(‖u‖2

T0

)
(u, v)

T0
, ∀ u, v ∈ E. (2.16)

Assume that un → u0 in E. In view of (2.16), for any v ∈ E, we obtain

∣∣〈k′T0
(un)− k′T0

(u0), v〉
∣∣

= 2

∣∣∣∣h
′
(‖un‖2

T0

)
(un, v)

T0
− h′

(‖u0‖2

T0

)
(u0, v)

T0

∣∣∣∣

≤ 2T0
−1‖v‖

[∣∣∣∣h
′
(‖un‖2

T0

)∣∣∣∣ ‖un − u0‖+
∣∣∣∣h

′
(‖un‖2

T0

)
− h′

(‖u0‖2

T0

)∣∣∣∣ ‖u0‖
]

,

which implies that ‖k′T0
(un)− k′T0

(u0)‖E∗ → 0, n → ∞. So kT0
∈ C1(E, R). By the definition of

h and (2.16), we get |〈k′T0
(u), u〉| ≤ 8, ∀ u ∈ E.

With the help of this functional kT0
, we define a new functional ĪT0

on E by

ĪT0
(u) =

1

2
‖u‖2 −

∫

R

W1(t, u)dt − kT0
(u)

(∫

R

W2(t, u)dt +
∫

R

G̃(t, u)dt

)
, ∀ u ∈ E. (2.17)

By (2.16), ĪT0
∈ C1(E, R) and one can easily check that

〈 Ī′T0
(u), v〉 = (u, v)−

∫

R

∇W1(t, u)vdt − kT0
(u)

(∫

R

∇W2(t, u)vdt +
∫

R

∇G̃(t, u)vdt

)

− 〈k′T0
(u), v〉

(∫

R

W2(t, u)dt +
∫

R

G̃(t, u)dt

)
, ∀ u, v ∈ E. (2.18)

We will give some prior bounds for critical points of ĪT0
based on the corresponding critical

values in the following lemma, which is useful to introduce a modified functional.

Lemma 2.4. Assume that (H2), (H4) and (G1) are satisfied, if u is a critical point of ĪT0
, then

ĪT0
(u) ≤ µ − 2

4µ
‖u‖2. (2.19)

Proof. When u is a critical point of ĪT0
and ‖u‖2

> 2T0, by (2.16) and (2.17), kT0
(u) = 0 and

k′T0
(u) = 0. In view of (2.18) and (2.19), we conclude that

ĪT0
(u) =

1

2
‖u‖2 −

∫

R

W1(t, u)dt, 〈 Ī′T0
(u), u〉 = ‖u‖2 −

∫

R

(∇W1(t, u), u)dt. (2.20)
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By (1.5) and (2.20), we get

ĪT0
(u) = ĪT0

(u)− µ−1〈 Ī′T0
(u), u〉

=
µ − 2

2µ
‖u‖2 + µ−1

∫

R

(
(∇W1(t, u), u)− µW1(t, u)

)
dt

≤ µ − 2

4µ
‖u‖2. (2.21)

If u is a critical point of ĪT0
with ‖u‖2 ≤ 2T0, by Lemma 2.2, Lemma 2.3, (1.5), (1.7), (2.17) and

(2.18) we have

ĪT0
(u) = ĪT0

(u)− µ−1〈 Ī′T0
(u), u〉

≤ µ − 2

2µ
‖u‖2 + C1τα1

α1
‖u‖α1 + 10(C3τα4

α4
‖u‖α4 + 16C4τσ

σ ‖u‖σ). (2.22)

By the definition of T0 and (2.13), we get

C1τα1
α1
‖u‖α1 + 10C3τα4

α4
‖u‖α4 + 16(10 − 32A−1)C4τσ

σ ‖u‖σ
<

2 − µ

4µ
‖u‖2. (2.23)

In both cases, it follows from (2.21)–(2.23) that (2.19) holds.

By the cut-off function ζµ and ĪT0
, define a functional as follows

lµ(u) = ζµ

(
‖u‖−2 ĪT0

(u)
)
, ∀ u ∈ E\{0}. (2.24)

By direct computation, for any u ∈ E\{0} and any v ∈ E,

〈l′µ(u), v〉 = ζ ′µ(θT0
(u))‖u‖−4

(
‖u‖2〈 Ī′T0

(u), v〉 − 2 ĪT0
(u)(u, v)

)
, (2.25)

where θT0
(u) := ‖u‖−2 ĪT0

(u), ∀ u ∈ E\{0}. Under assumptions of Theorem 1.1, it is easy to

check that lµ is continuously differentiable at any u ∈ E\{0}.

By these functionals kT0
and lµ, we can introduce a modified functional JT0

as follows:

JT0
(u) =

1

2
‖u‖2 −

∫

R

W1(t, u)dt − kT0
(u)

∫

R

W2(t, u)dt − ψ(u), ∀ u ∈ E, (2.26)

where

ψ(u) :=

{
kT0

(u) lµ(u) Q(u), u ∈ E \ {0},

0, u = 0,
(2.27)

and Q(u) :=
∫

R
G̃(t, u)dt, ∀ u ∈ E. It follows from (2.1) and (2.4) that

∫

R

|G̃(t, u)|dt ≤ 16C4τσ
σ ‖u‖σ, ∀ u ∈ E. (2.28)

Moreover, it is easy to check that Q ∈ C1(E, R) and

〈Q′(u), v〉 =
∫

R

∇G̃(t, u)vdt, ∀ u, v ∈ E. (2.29)

Next we give a bound on |〈ψ′(u), u〉|, ∀ u ∈ E, which is used to obtain the estimate of

|JT0
(u)− JT0

(−u)|, ∀ u ∈ E. Then we show that JT0
has no critical point with positive critical

value on E.



8 L. Zhang and G. Chen

Lemma 2.5. Assume that (L0), (H1), (H2), (H4), (H5) and (G1) holds. Then

(i) the functional ψ defined by (2.27) is of class C1(E, R) and

|〈ψ′(u), u〉| ≤ 16(9 − 32A−1)C4τσ
σ ‖u‖σ, ∀ u ∈ E; (2.30)

(ii) JT0
∈ C1(E, R) and there exists a constant C6 > 0 independent of u such that

|JT0
(u)− JT0

(−u)| ≤ C6|JT0
(u)| σ

2 , ∀ u ∈ E; (2.31)

(iii) JT0
has no critical point with positive critical value on E and K0 = {0}, where K0 :=

{
u ∈ E :

JT0
(u) = 0, J′T0

(u) = 0
}

.

Proof. For u = 0 and any v ∈ E, by (2.4), (2.15), (2.24) and (2.27) we have

∣∣〈ψ′(0), v〉
∣∣ =

∣∣∣∣limλ→0

ψ(λv)− ψ(0)

λ

∣∣∣∣ ≤ 16C4 lim
λ→0

|λ|σ−1
∫

R

|v(t)|σdt = 0,

so ψ′(0) = 0. Combining (2.16), (2.25), (2.27) and (2.29), for u ∈ E \ {0} and v ∈ E, we obtain

〈ψ′(u), v〉 = 〈k′T0
(u), v〉lµ(u)Q(u) + kT0

(u)〈l′µ(u), v〉Q(u) + kT0
(u)lµ(u)〈Q′(u), v〉. (2.32)

Next we prove ψ′ ∈ C1(E, R). Suppose that un → u0 in E. We consider two possible cases.

Case 1. u0 6= 0. In view of Lemma 2.3, (2.25), (2.29) and (2.32), ψ′(un) → ψ′(u0), n → ∞.

Case 2. u0 = 0. Without loss of generality, we can assume ‖un‖2
< T0. It follows from (2.15)

and (2.16) that k′T0
(un) = 0 and kT0

(un) = 1. Then (2.32) reduces to

〈ψ′(un), v〉 = 〈l′µ(un), v〉Q(un) + lµ(un)〈Q′(un), v〉, ∀ v ∈ E. (2.33)

By (2.25), we can divide 〈l′µ(un), v〉 Q(un) into two parts as follows

〈l′µ(un), v〉 Q(un) = Q1(un, v)− Q2(un, v), (2.34)

where

Q1(un, v) = ζ ′µ(θT0
(un))‖un‖−2〈 Ī′T0

(un), v〉Q(un) ∀ v ∈ E, (2.35)

and

Q2(un, v) = 2ζ ′µ(θT0
(un))‖un‖−4 ĪT0

(un)(un, v)Q(un)

= 2ζ ′µ(θT0
(un))θT0

(un)‖un‖−2(un, v)Q(un) ∀ v ∈ E. (2.36)

In view of (2.12), (2.28), (2.35) and (2.36), we deduce that

|Q1(un, v)| ≤ C7‖ Ī′T0
(un)‖E∗‖un‖σ−2‖v‖, (2.37)

and

|Q2(un, v)| ≤ C8‖un‖σ−1‖v‖. (2.38)

Since k′T0
(un) = 0, kT0

(un) = 1 and un → 0, by (1.4), (1.7), (2.4), (2.18) and (2.29),

‖ Ī′T0
(un)‖E∗ → 0 and ‖Q′(un)‖E∗ → 0, n → ∞. (2.39)
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In combination with (2.24)-(2.25), (2.33), (2.34), (2.37)-(2.39), we have

‖ψ′(un)− ψ′(0)‖E∗ = sup
‖v‖≤1

∣∣〈l′µ(un), v〉Q(un) + lµ(un)〈Q′(un), v〉
∣∣ → 0, n → ∞,

which implies the continuity of ψ′ at 0. So we have ψ ∈ C1(E, R).

If ‖u‖2
> 2T0 or u = 0, by (2.15), (2.16) and (2.26), it is easy to see that 〈ψ′(u), u〉 = 0.

Otherwise, ‖u‖2 ≤ 2T0 and u 6= 0. Arguing similarly as in (2.22), we obtain

| ĪT0
(u)− µ−1〈 Ī′T0

(u), u〉| ≤ 2|A|‖u‖2 + C1τα1
α1
‖u‖α1 + 10(C3τα4

α4
‖u‖α4 + 16C4τσ

σ ‖u‖σ). (2.40)

Since ‖u‖2 ≤ 2T0, by (2.13), (2.23) and (2.40) we get

|〈 Ī′T0
(u), u〉| ≤ µ

(
3|A|‖u‖2 + | ĪT0

(u)|
)
. (2.41)

In combination with (2.12) and (2.25), if θT0
(u) /∈ [A/2, A/4], we have l′µ(u) = 0. Otherwise,

A/2 ≤ θT0
(u) ≤ A/4, then the definition of θT0

imply that

| ĪT0
(u)| ≤ |A|‖u‖2. (2.42)

When ‖u‖2 ≤ 2T0 and u 6= 0, it follows from (2.25), (2.28), (2.41)–(2.42) that

∣∣kT0
(u)〈l′µ(u), u〉Q(u)

∣∣ ≤ −16A−1‖u‖−2
(
| ĪT0

(u)|+ |〈 Ī′T0
(u), u〉|

)
|Q(u)|

≤ −512A−1C4τσ
σ ‖u‖σ. (2.43)

In view of Lemma 2.3, (2.4), (2.12), (2.15), (2.24), (2.28) and (2.29), we have

∣∣〈k′T0
(u), u〉lµ(u)Q(u) + kT0

(u)lµ(u)〈Q′(u), u〉
∣∣ ≤ 144C4τσ

σ ‖u‖σ, ∀ u ∈ E \ {0}. (2.44)

It follows from (2.32), (2.43) and (2.44) that (2.30) holds.

Next we prove (ii). By (1.4), (1.7), Lemma 2.3 and (i) in Lemma 2.5, we deduce that

JT0
∈ C1(E, R) and

〈J′T0
(u), v〉 = (u, v)−

∫

R

∇W1(t, u)vdt − kT0
(u)

∫

R

∇W2(t, u)vdt

− 〈k′T0
(u), v〉

∫

R

W2(t, u)dt − 〈ψ′(u), v〉, ∀ u, v ∈ E. (2.45)

When ‖u‖2
> 2T0 or θT0

(u) > A/4, by (2.15) or (2.24) and (2.27) we have ψT0
(u) = 0. Then

(2.31) holds by (H5) and (2.26). If θT0
(u) ≤ A/4, then the definition of θT0

imply that

| ĪT0
(u)| ≥ |A|

4
‖u‖2. (2.46)

When ‖u‖2 ≤ 2T0 and θT0
(u) ≤ A/4, by (2.13), (2.17), (2.26), (2.28) and (2.46) we get

|JT0
(u)| ≥ | ĪT0

(u)| − 2|Q(u)| ≥ |A|
4

‖u‖2 − 32C4τσ
σ ‖u‖σ ≥ |A|

20
‖u‖2. (2.47)

In view of (H5), (2.15), (2.24), (2.26)–(2.28), we obtain that

|JT0
(u)− JT0

(−u)| ≤ 32C4τσ
σ ‖u‖σ, ∀ u ∈ E. (2.48)

So (2.31) holds by (2.47) and (2.48).
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Next we prove (iii) by contradiction. If u0 is a critical point of JT0
with JT0

(u0) > 0, by (H2),

(H4), (2.26) and (2.27) we have u0 6= 0. Without loss of generality, we assume ‖u0‖2 ≤ 2T0.

Otherwise, (2.15)–(2.16) and (2.32) imply that kT0
(u0) = 0, k′T0

(u0) = 0 and ψ′(u0) = 0. By

(2.26), (2.27) and (2.45), we get

JT0
(u0) =

1

2
‖u0‖2 −

∫

R

W1(t, u0)dt, (2.49)

and

〈J′T0
(u0), u0〉 = ‖u0‖2 −

∫

R

(∇W1(t, u0), u0)dt. (2.50)

In combination with (1.5), (2.49) and (2.50), it is easy to verify that

0 < JT0
(u0) = JT0

(u0)− µ−1〈J′T0
(u0), u0〉

= 2A‖u0‖2 + µ−1
∫

R

(
(∇W1(t, u0), u0)− µW1(t, u0)

)
dt

≤ 2A‖u0‖2
< 0,

which is a contradiction, so ‖u0‖2 ≤ 2T0.

It follows from Lemma 2.3, (2.26)–(2.28), (2.30) and (2.45) that

JT0
(u0) ≤

1

2
‖u0‖2 −

∫

R

W1(t, u0)dt + C3τα4
α4
‖u0‖α4 + 16C4τσ

σ ‖u0‖σ,

and

〈J′T0
(u0), u0〉 ≥ ‖u0‖2 −

∫

R

(∇W1(t, u0), u0)dt − 9C3τα4
α4
‖u0‖α4 − 16(9 − 32A−1)C4τσ

σ ‖u0‖σ.

Since ‖u0‖2 ≤ 2T0, by (1.5), (2.13) and two inequalities above, we have

0 < JT0
(u0) = JT0

(u0)− µ−1〈J′T0
(u0), u0〉

≤ 2A‖u0‖2 + C1τα1
α1
‖u0‖α1 + 10C3τα4

α4
‖u0‖α4 + 16(10 − 32A−1)C4τσ

σ ‖u0‖σ

< A‖u0‖2
< 0,

which is also a contradiction. Moreover, by a similar proof, we have K0 = {0}.

3 Proofs of main results

Lemma 3.1. Suppose that (L0), (H1), (H4) and (G1) are satisfied. Then the functional JT0
satisfies the

Palais–Smale condition.

Proof. First we prove that JT0
is bounded from below. From Hölder’s inequality, (1.4), (2.15),

(2.26) and (2.27), if ‖u‖2
> 2T0,

JT0
(u) ≥ 1

2
‖u‖2 − C9‖u‖p. (3.1)

Since 1 < p < 2, (3.1) implies that JT0
(u) → +∞ as ‖u‖ → +∞.

Next we show that JT0
satisfies the Palais–Smale condition. Let {un}n∈N ⊂ E be a Palais–

Smale sequence, i.e., {JT0
(un)}n∈N is bounded and J′T0

(un) → 0 as n → +∞. Since JT0
is

coercive, {un} is bounded in E. Then there is a positive constant A such that ‖un‖ ≤ A,
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n ∈ N, passing to subsequence, also denoted by {un}, it can be assumed that un ⇀ u0,

n → ∞ for some u0 ∈ E.

Since a ∈ L
2

2−p (R), for any given number ε > 0, we can choose Tε > 0 such that

(∫

|t|>Tε

|a(t)|2/(2−p)dt

)(2−p)/2

< ε. (3.2)

By (1.4) and the Hölder inequality, we have

∫ Tε

−Tε

|∇W1(t, un(t))||un(t)− u0(t)|dt ≤ (τ2 A)p−1‖a‖2/(2−p)

(∫ Tε

−Tε

|un − u0|2dt

)1/2

. (3.3)

By Sobolev embedding theorem, we also get

un → u0 in L2
loc(R, R

N), n → ∞. (3.4)

Consequently, in view of (3.3) and (3.4),

∫ Tε

−Tε

|∇W1(t, un(t))||un(t)− u0(t)|dt → 0, n → ∞. (3.5)

On the other hand, it follows from (1.4), (3.2) and the Hölder inequality that

∫

|t|>Tε

|∇W1(t, un(t))||un(t)− u0(t)|dt

≤
∫

|t|>Tε

|a(t)||un(t)|p−1
(
|un(t)|+ |u0(t)|

)
dt

≤ 2
∫

|t|>Tε

|a(t)|
(
|un(t)|p + |u0(t)|p

)
dt

≤ 2τ
p
2

( ∫

|t|>Tε

|a(t)|2/(2−p)dt
)(2−p)/2

(‖un‖p + ‖u0‖p)

≤ 2τ
p
2 (Ap + ‖u0‖p)ε, n ∈ N. (3.6)

Note that ε is arbitrary, combining (3.5) with (3.6),

∫

R

|∇W1(t, un(t))||un(t)− u0(t)|dt → 0, n → ∞. (3.7)

Since l is coercive, for any given number ε > 0, there exists T′
ε > 0 such that

εl(t) > 1, |t| > T′
ε . (3.8)

It follows from (1.7), (3.4) and the Hölder inequality that

∫ T′
ε

−T′
ε

|∇W2(t, un(t))||un(t)− u0(t)|dt → 0, n → ∞. (3.9)

Since E is continuously embedded into L∞(R, R
N) and ‖un‖ ≤ A, we get

‖un‖∞ ≤ τ∞ A, n ∈ N. (3.10)
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By (L0), (1.7), (3.8) and (3.10), we have
∫

|t|>T′
ε

|∇W2(t, un(t))||un(t)− u0(t)|dt

≤ C3(τ∞ A)α4−2
∫

|t|>T′
ε

|un(t)|
(
|un(t)|+ |u0(t)|

)
dt

≤ 2C3(τ∞ A)α4−2ε
∫

|t|>T′
ε

l(t)
(
|un(t)|2 + |u0(t)|2

)
dt

≤ 2C3(τ∞ A)α4−2ε
∫

|t|>T′
ε

[(
L(t)un(t), un(t)

)
+

(
L(t)u0(t), u0(t)

)]
dt

≤ 2C3(τ∞ A)α4−2(A2 + ‖u0‖2)ε, n ∈ N. (3.11)

Since ε is arbitrary, it follows from (3.9) and (3.11) that
∫

R

|∇W2(t, un(t))||un(t)− u0(t)|dt → 0, n → ∞. (3.12)

By a similar proof as (3.9) and (3.11), we also have
∫

R

|∇G̃(t, un(t))||un(t)− u0(t)|dt → 0, n → ∞. (3.13)

Next we consider the following two possible cases.

Case 1. ‖un‖2
> 2T0 or un = 0. From (2.15), (2.16) and (2.32), kT0

(un) = 0, k′T0
(un) = 0 and

ψ′(un) = 0. Therefore, by (2.45), we have

|〈J′T0
(un), un − u0〉| ≥ ‖un − u0‖2 + (u0, un − u0)−

∫

R

|∇W1(t, un)||un − u0|dt. (3.14)

Case 2. ‖un‖2 ≤ 2T0 and un 6= 0. In combination with (2.16) and (2.28), we get

∣∣〈k′T0
(un), un − u0〉Q(un)

∣∣ ≤ 32C4τσ
σ h′

(‖un‖2

T0

)
(un, un − u0)

T0
‖un‖σ

≤ 2
σ+12

2 C4τσ
σ T

σ−2
2

0

(
‖un − u0‖2 + (u0, un − u0)

)
. (3.15)

In view of (2.12) and (2.24), |l(un)| ≤ 1. Arguing as in (3.15), we also have

∣∣∣〈k′T0
(un), un − u0〉l(un)Q(un)

∣∣∣ ≤ 2
σ+12

2 C4τσ
σ T

σ−2
2

0

(
‖un − u0‖2 + (u0, un − u0)

)
. (3.16)

It follows from (1.7) and (2.10) that
∣∣∣∣〈k′T0

(un), un − u0〉
∫

R

W2(t, un)dt

∣∣∣∣ ≤ 2C3τα4
α4

h′
(‖un‖2

T0

)
(un, un − u0)

T0
‖un‖α4

≤ 2
α4+4

2 C3τα4
α4

T
α4−2

2
0

(
‖un − u0‖2 + (u0, un − u0)

)
. (3.17)

By (2.16) and (2.34), we have
∣∣k′T0

(un)〈l′(un), un − u0〉Q(un)
∣∣ ≤

∣∣Q1(un, un − u0)
∣∣+

∣∣Q2(un, un − u0)
∣∣. (3.18)

In view of (2.12), (2.28) and (2.35), we obtain
∣∣Q1(un, un − u0)

∣∣ = |ζ ′µ(θT0
(un))|‖un‖−2|〈 Ī′T0

(un), un − u0〉||Q(un)|

≤ −2
σ+12

2 A−1C4τσ
σ T

σ−2
2

0

∣∣〈 Ī′T0
(un), un − u0〉

∣∣. (3.19)
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It follows from (2.18), (3.7), (3.12), (3.13), (3.15) and (3.17) that

∣∣〈 Ī′T0
(un), un − u0〉

∣∣ ≤ ‖un − u0‖2 +

∣∣∣∣〈k′T0
(un), un − u0〉

∫

R

W2(t, un)dt

∣∣∣∣

+
∣∣∣〈k′T0

(un), un − u0〉Q(un)
∣∣∣+ on(1)

≤ (C10 + 1)‖un − u0‖2 + on(1). (3.20)

where C10 = 2
α4+4

2 C3τα4
α4

T
α4−2

2
0 − 2

σ+12
2 A−1C4τσ

σ T
σ−2

2
0 .

By (3.19) and (3.20), we obtain

∣∣Q1(un, un − u0)
∣∣ ≤ C11‖un − u0‖2 + on(1), (3.21)

where C11 = −2
σ+12

2 A−1C4τσ
σ T

σ−2
2

0 (C10 + 1). In view of (2.12), (2.28) and (2.36),

∣∣Q2(un, un − u0)
∣∣ ≤ 2|ζ ′µ(θT0

(un))||θT0
(un)|‖un‖−2Q(un)(un, un − u0)

≤ 2
σ+12

2 C4τσ
σ T

σ−2
2

0

(
‖un − u0‖2 + (u0, un − u0)

)
. (3.22)

In combination with (3.18), (3.21) and (3.22), we have

∣∣kT0
(un)〈l′(un), un − u0〉Q(un)

∣∣ ≤
(
C11 + C10

)
‖un − u0‖2 + on(1). (3.23)

By (2.15), (2.24) and (2.29), we conclude that

∣∣kT0
(un)l(un)〈Q′(un), un − u0〉

∣∣ ≤
∫

R

|∇G̃(t, un(t))||un(t)− u0(t)|dt. (3.24)

It follows from (2.32), (3.7), (3.16), (3.23) and (3.24) that

∣∣〈ψ′(un), un − u0〉
∣∣ ≤

(
C11 + 2C10

)
‖un − u0‖2 + on(1). (3.25)

In view of (2.45), (3.7), (3.12), (3.13), (3.17) and (3.25), we get

|〈J′T0
(un), un − u0〉| ≥ ‖un − u0‖2 −

∣∣∣∣〈k′T0
(un), un − u0〉

∫

R

W2(t, un)dt

∣∣∣∣

−
∣∣〈ψ′(un), un − u0〉

∣∣+ on(1)

≥ (1 − C11 − 3C10)‖un − u0‖2 + on(1). (3.26)

By (2.14) and (3.26), we have

|〈J′T0
(un), un − u0〉| ≥ 2−1‖un − u0‖2 + on(1). (3.27)

In both cases, from (3.14) and (3.27), we get un → u0, n → ∞. Thus JT0
satisfies Palais–Smale

condition.

In view of (L0), the self-adjoint operator of −d2/dt2 + L(t) in L2(R, R
N) has a sequence

of eigenvalues λn → ∞. Moreover, the corresponding system of normalized eigenfunctions

{en : n ∈ N} forms an orthogonal basis in E. Hereafter, set En = span{e1, . . . , en} and E⊥
n be

the orthogonal complement of En in E. With the help of the normalized orthogonal sequence

{en}∞

n=1, define some subspaces as follows:

Bn =
{

u ∈ En; ‖u‖ ≤ 1
}

, Sn =
{

u ∈ En; ‖u‖ = 1
}
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and

Sn+1
+ =

{
u = w + sen+1; ‖u‖ = 1, w ∈ Bn, 0 ≤ s ≤ 1

}
.

By these subspaces, we can introduce some continuous maps and minimax sequences of J as

follows

Λn =
{

γ ∈ C(Sn, E); γ is odd
}

, Γn =
{

γ ∈ C(Sn+1
+ , E); γ|Sn ∈ Λn

}
, (3.28)

and

bn = inf
γ∈Λn

max
u∈Sn

JT0
(γ(u)), cn = inf

γ∈Γn

max
u∈Sn+1

+

JT0
(γ(u)). (3.29)

For any δ > 0, set

Γn(δ) =
{

γ ∈ Γn; JT0
(γ(u)) ≤ bn + δ, u ∈ Sn

}
, (3.30)

cn(δ) = inf
γ∈Γn(δ)

max
u∈Sn+1

+

JT0
(γ(u)). (3.31)

By (3.28)–(3.31), it is obvious that bn ≤ cn ≤ cn(δ), n ∈ N. Next we give some useful estimates

for minimax values bn and cn(δ).

Lemma 3.2. Let (L0), (H1), (H3), (H4) and (G1) be satisfied. Then for any n ∈ N, bn < 0.

Proof. By (1.6), for any u ∈ En we have

∫

R

W1(t, u)dt ≥
∫

R

b(t)|u|α2 dt − C2

∫

R

|u|α3 dt. (3.32)

By standard arguments as in [20], for any u ∈ En \ {0}, there exists ε1 > 0 depending on En

such that

meas
{

t ∈ R : b(t)|u|α2 ≥ ε1‖u‖α2

}
≥ ε1. (3.33)

By (1.7), (2.1), (2.15), (2.24), (2.28), (3.32)–(3.33), for any u ∈ En \ {0}, we get

JT0
(u) =

1

2
‖u‖2 −

∫

R

W1(t, u)dt − kT0
(u)

∫

R

W2(t, u)dt − ψ(u)

≤ ‖u‖2 + C12‖u‖α3 + C13‖u‖α4 + C14‖u‖σ − ε2
1‖u‖α2 . (3.34)

In view of (3.34), there exist ǫ(n) > 0 and κ(n) > 0 such that JT0
(κu) < −ǫ, u ∈ Sn. Then we

set γ(u) = κu, u ∈ Sn. By (3.29), we obtain bn < 0.

Lemma 3.3. Assume that (L0), (H1), (H2), (H3), (H4) and (G1) hold. Then for any n ∈ N and any

δ > 0, cn(δ) < 0.

Proof. From (3.30) and (3.31), for fixed n ∈ N, if 0 < δ < δ′, we have Γn(δ) ⊂ Γn(δ′) and

cn(δ) ≥ cn(δ′). So we only need to prove cn(δ) < 0 for any δ ∈ (0, |bn|). For any δ ∈ (0, |bn|),
by (3.29), there exists γ0 ∈ Λn such that maxu∈Sn JT0

(
γ0(u)

)
≤ bn +

δ
2 . By the fact that γ0(Sn)

is a compact set in E, there exists a positive integer m0 such that

max
u∈Sn

JT0

(
(Pm0 ◦ γ0)u

)
≤ bn + δ, (3.35)

where Pm0 denotes the orthogonal projective operator from E to Em0 .

For any c ∈ R, let Jc
T0

= {u ∈ E : JT0
(u) ≤ c}. Choose ε̄ = −(bn + δ)/2 > 0. By

a similar proof as in Lemma 3.2, there exists ρm0+1 > 0 such that if u ∈ B̄(0, ρ0) ∩ Em0+1,
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JT0
(u) ≤ 0, where B(x0, ρ) denotes the open ball of radius ρ centred at x0 in E, and B̄(x0, ρ)

denotes the closure of B(x0, ρ) in E. Since JT0
∈ C1(E, R) and JT0

(0) = 0, dist (0, J−ε̄
T0
) > 0. Set

ρ′0 = min
{

ρ0, dist (0, J−ε̄
T0
)
}

, then ρ′0 > 0. By Deformation Theorem (see Theorem A.4 in [15]),

there exists ε ∈ (0, ε̄) and a continuous map η ∈ C
(
[0, 1]× E, E

)
such that

η(1, u) = u, if JT0
(u) 6∈ [−ε̄, ε̄], (3.36)

and

η
(
1, Jε

T0
\B(0, ρ′0)

)
⊂ J−ε

T0
, (3.37)

where B(0, ρ′0) is a neighbourhood of K0 defined by (iii) in Lemma 2.5.

By (3.28), Pm0 ◦ γ0 ∈ C(Sn, Em0). Since En+1 is a metric space with the norm ‖ · ‖ and Sn

is a closed subset in En+1, there exists an extension P̃m0 ◦ γ0 : En+1 → Em0 of (Pm0 ◦ γ0) by

Dugundji extension theorem (see Theorem 4.1 in [7]); furthermore,

(
(P̃m0 ◦ γ0)En+1

)
⊂ co

(
(Pm0 ◦ γ0)S

n
)
, (3.38)

where the symbol co denotes the convex hull. Since (Pm0 ◦ γ0)Sn is a compact set in Em0 , by

the definition of convex hull, co
(
(Pm0 ◦ γ0)Sn

)
is a bounded set in Em0 . Then there exists a

constant ν such that JT0
(u) ≤ ν, u ∈ co

(
(Pm0 ◦ γ0)Sn

)
. It follows from (3.38) that

JT0

(
(P̃m0 ◦ γ0)u

)
≤ ν, ∀ u ∈ En+1. (3.39)

Next we distinguish two cases.

Case 1. ν ≤ ε. Since P̃m0 ◦ γ0 ∈ C(En+1, Em0), by (3.39) we have

(P̃m0 ◦ γ0)u ∈ Jε
T0,m0

, ∀ u ∈ En+1, (3.40)

where Jε
T0,m0

:= {u ∈ Em0 : JT0
(u) ≤ ε}. Define a map χ as follows:

χ(u) =

{
u, u 6∈ B̄(0, ρ′0) ∩ Em0

u + (ρ′20 − ‖u‖2)1/2em0+1, u ∈ B̄(0, ρ′0) ∩ Em0 .
(3.41)

It is clear that χ ∈ C(Em0 , Em0+1) and

(
χ ◦ (P̃m0 ◦ γ0)

)
u 6∈ B(0, ρ′0), ∀ u ∈ En+1. (3.42)

If u ∈ En+1 and ‖(P̃m0 ◦ γ0)u‖ > ρ′0, in view of (3.40) and (3.41), we get

(
χ ◦ (P̃m0 ◦ γ0)

)
u = (P̃m0 ◦ γ0)u ∈ Jε

m0
. (3.43)

Otherwise, when u ∈ En+1 and ‖(P̃m0 ◦ γ0)u‖ ≤ ρ′0, by (3.41) ‖
(
χ ◦ (P̃m0 ◦ γ0)

)
u‖ = ρ′0. By the

definition of ρ′0 and (3.43), we deduce that

(
χ ◦ (P̃m0 ◦ γ0)

)
u ∈ Jε

T0
, ∀ u ∈ En+1. (3.44)

Define a map H0 : En+1 → E as follows:

H0(·) = η
(

1,
(
χ ◦ (P̃m0 ◦ γ0)

)
(·)

)
. (3.45)
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Next we need to prove H0 ∈ Γn(δ) and maxu∈Sn+1
+

JT0
(H0(u)) < 0. First, it is obvious that

H0 ∈ C(Sn+1
+ , E). Next we prove H0|Sn ∈ Λn. By Dugundji extension theorem, we obtain

(P̃m0 ◦ γ0)u = (Pm0 ◦ γ0)u, ∀ u ∈ Sn. (3.46)

From (3.35), (Pm0 ◦ γ0) u ∈ J−2ε̄
T0

, u ∈ Sn. The definition of ρ′0 and J−2ε̄
T0

⊂ J−ε̄
T0

imply that

‖(Pm0 ◦ γ0) u‖ ≥ ρ′0, ∀ u ∈ Sn. (3.47)

It follows from (3.41), (3.46) and (3.47) that

(
χ ◦ (P̃m0 ◦ γ0)

)
u = χ ◦

(
(Pm0 ◦ γ0) u

)
= (Pm0 ◦ γ0) u, ∀ u ∈ Sn. (3.48)

Since (Pm0 ◦ γ0) u ∈ J−2ε̄
T0

, ∀ u ∈ Sn, in view of (3.35)–(3.36), (3.45) and (3.48)

H0(u) = η
(

1,
(
χ ◦ (P̃m0 ◦ γ0)

)
u
)
= (Pm0 ◦ γ0) u, ∀ u ∈ Sn. (3.49)

which implies that H0|Sn ∈ Λn. Moreover, from (3.30), (3.35) and (3.49), we have H0 ∈
Γn(δ). Since Sn+1 ⊂ En+1, by (3.42) and (3.44), we have

(
χ ◦ (P̃m0 ◦ γ0)

)
u 6∈ B(0, ρ′0), ∀ u ∈

Sn+1
+ and

(
χ ◦ (P̃m0 ◦ γ0)

)
u ∈ Jε

T0
, ∀ u ∈ Sn+1

+ . From (3.37) and (3.45), we deduce that

maxu∈Sn+1
+

JT0
(H0(u)) ≤ −ε < 0, which implies that cn(δ) < 0 by (3.31).

Case 2. ν > ε. Let JT0
|Em0

denote the restriction of JT0
on Em0 . By a similar proof as in

Lemma 2.5 and Lemma 3.1, we can prove that JT0
|Em0

∈ C1(Em0 , R) and satisfies Palais–Smale

condition. Moreover, JT0
|Em0

has no critical point with positive critical values on Em0 . By

Noncritical interval theorem (see Theorem 5.1.6 in [5]), Jε
T0,m0

is a strong deformation retraction

of Jν
T0,m0

. So there exists a map ς such that ς ∈ C(Jν
T0,m0

, Jε
T0,m0

) and ς(u) = u, if u ∈ Jε
T0,m0

.

Define a map from En+1 → E as follows:

H̄0(·) = η
(

1,
(

χ ◦
(
ς ◦ (P̃m0 ◦ γ0)

))
(·)

)
.

By a similar proof as in Case 1, we also obtain H̄0 ∈ Γn(δ) and maxu∈Sn+1
+

JT0
(H̄0(u)) ≤ −ε < 0,

which leads to cn(δ) < 0 by (3.31).

Lemma 3.4. Suppose that (L0), (H1), (H4) and (G1) are satisfied. Then there exists a positive constant

C15 independent of n such that for all n large enough

bn ≥ −C15n
−βp
2−p . (3.50)

Proof. For any γ ∈ Λn (n ≥ 2), when 0 6∈ γ(Sn), the genus Π(γ(Sn)) is well defined and

Π(γ(Sn)) ≥ Π(Sn) = n. From Proposition 7.8 in [15], we have γ(Sn) ∩ E⊥
n−1 6= ∅. Otherwise,

if 0 ∈ γ(Sn), then 0 ∈ γ(Sn) ∩ E⊥
n−1. So for any γ ∈ Λn (n ≥ 2), γ(Sn) ∩ E⊥

n−1 6= ∅. Therefore,

for any γ ∈ Λn (n ≥ 2), we get

max
u∈Sn

JT0
(γ(u)) ≥ inf

u∈E⊥
n−1

JT0
(u). (3.51)

It follows from Hölder inequality, (1.4), (1.7), (2.13), (2.15) and (2.26) that

JT0
(u) ≥ 1

4
‖u‖2 − C16‖u‖p

2 , ∀ u ∈ E. (3.52)
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If u ∈ E⊥
n−1, λn‖u‖2

2 ≤ ‖u‖2. When u ∈ E⊥
n−1, by (3.52) we obtain

JT0
(u) ≥ 1

4
‖u‖2 − C16λ

− p
2

n ‖u‖p. (3.53)

By (3.29), (3.51) and (3.53), for n ≥ 2, we conclude that

bn ≥ inf
t≥0

{1

4
t2 − C16λ

− p
2

n tp
}

= − C17λ
−p

2−p
n , (3.54)

where C17 is a positive constant independent of n and λn. From (G2) in Theorem 1.1 and

(3.54), it is easy to verify that (3.50) holds.

Lemma 3.5. Suppose that cn = bn for n ≥ n0, where n0 ∈ N. Then there exists a positive integer n1

such that

|bn| ≥ C18n
2

2−σ , n ≥ n1, (3.55)

where C18 is a positive constant independent of n.

Proof. For any n ≥ n0 and any ε ∈ (0, |bn|), by (3.29) there exists a map γ1 ∈ Γn such that

max
u∈Sn+1

+

JT0
(γ1(u)) < cn + ε = bn + ε < 0. (3.56)

In view of Sn+1 = Sn+1
+ ∪ (−Sn+1

+ ), γ1 can be continuously extended to Sn+1 as an odd function,

also denoted by γ1, then γ1 ∈ Λn+1. From (3.29), we have

bn+1 ≤ max
u∈Sn+1

JT0
(γ1(u)) = JT0

(γ1(u0)) (3.57)

for some u0 ∈ Sn+1. When u0 ∈ Sn+1
+ , in combination with (3.56) and (3.57), bn+1 ≤

JT0
(γ1(u0)) < bn + ε. We have

bn+1 < bn + ε + C6|bn+1|
σ
2 , (3.58)

where C6 is given in (2.31). Otherwise, u0 ∈ −Sn+1
+ . It follows from (2.31) and (3.56) that

JT0
(γ1(u0)) ≤ JT0

(γ1(−u0)) + C6|JT0
(γ1(u0))|

σ
2

≤ bn + ε + C6|JT0
(γ1(u0))|

σ
2 . (3.59)

Next we consider two possible cases.

Case 1. JT0
(γ1(u0)) ≤ |bn+1|. By (3.57) and (3.59), we get

bn+1 ≤ bn + ε + C6|bn+1|
σ
2 . (3.60)

Case 2. JT0
(γ1(u0)) > |bn+1|. From (3.56), there exists u1 ∈ Sn+1

+ such that

JT0
(γ1(u1)) < bn + ε < 0. (3.61)

In view of JT0
(γ1(u0)) > |bn+1| and JT0

(γ1(u1)) < 0. Since (JT0
◦ γ1) ∈ C(Sn+1, R) and Sn+1 is

a connected space with the norm ‖ · ‖, by the Intermediate Value Theorem (see Theorem 24.3
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in [12]), there exists u2 ∈ Sn+1 such that JT0
(γ1(u2)) = |bn+1|/2. By (3.56), u2 ∈ −Sn+1

+ . From

(2.31) and (3.56), we obtain

JT0
(γ1(u2)) ≤ JT0

(γ1(−u2)) + C6|JT0
(γ1(u2))|

σ
2

< bn + ε + C6|JT0
(γ1(u2))|

σ
2 ,

which implies that

bn+1 ≤ bn + ε + C6|bn+1|
σ
2 . (3.62)

By Lemma 3.2, bn < 0 for any n ∈ N. It follows from (3.58), (3.60) and (3.62) that

|bn| ≤ |bn+1|+ C6|bn+1|
σ
2 , n ≥ n0. (3.63)

Next we show that (3.63) implies (3.55). The proof will be done by induction. First, we

introduce a useful inequality as follows:

(
1 + x

)α0 ≥ 1 +
α0x

2
, x ∈ [0, δ], (3.64)

where α0, δ are positive constants and δ depends on α0. Set α0 = 2(σ − 2)−1. In view of (3.64),

there exists n̄0 ∈ N such that

(
1 +

1

n

) 2
σ−2 ≥ 1 +

1

(σ − 2)n
, n ≥ n̄0. (3.65)

Set

C18 = min

{
n1

2
σ−2 |bn1

|,
( 1

C6(σ − 2)

) 2
σ−2

}
, (3.66)

where n1 := max{n0, n̄0}. We claim (3.55) holds. By (3.66), it is obvious that |bn1
| ≥ C18n1

2
2−σ .

Assume that (3.55) holds for j ≥ n1. Then we only need to prove (3.55) also holds for j + 1. If

not, we have

|bj+1| < C18(j + 1)
2

2−σ . (3.67)

Since (3.55) holds for j, by (2.31), (3.63) and (3.67), we have

C18 j
2

2−σ ≤ |bj| ≤ |bj+1|+ C6|bj+1|
σ
2 < C18(j + 1)

2
2−σ + C6C

σ
2
18(j + 1)

σ
2−σ , (3.68)

When we divide (3.68) by C18(j + 1)
2

2−σ on both sides, in view of (3.66) we get

(
1 +

1

j

) 2
σ−2

< 1 + C6C
σ−2

2
18

1

j + 1
< 1 + C6C

σ−2
2

18

1

j
≤ 1 +

1

(σ − 2)j
,

which contradicts (3.65). So (3.55) holds.

By the fact that bn < 0, (G2), (3.50) and (3.55), it is impossible that cn = bn for all large n.

Next we can construct critical values of JT0
as follows.

Lemma 3.6. Suppose that cn > bn. Then for any δ ∈ (0, cn − bn), cn(δ) given by (3.31) is a critical

value of JT0
.
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Proof. We prove this lemma by contradiction. For any δ ∈ (0, cn − bn), if cn(δ) is not a crit-

ical value of JT0
, define ε̄ = (cn − bn − δ)/2, by Deformation Theorem, there exist a positive

constant ε ∈ (0, ε̄) and η ∈ C([0, 1]× E, E) such that

η(1, u) = u, if JT0
(u) 6∈ [cn(δ)− ε̄, cn(δ) + ε̄], (3.69)

and

η
(
1, J

cn(δ)+ε
T0

)
⊂ J

cn(δ)−ε
T0

. (3.70)

By (3.31), there exists γ2 ∈ Γn(δ) such that

max
u∈Sn+1

+

JT0
(γ2(u)) < cn(δ) + ε. (3.71)

Define

γ̄2(u) = η(1, γ2(u)), u ∈ Sn+1
+ . (3.72)

It is evident that γ̄2 ∈ C(Sn+1
+ , E). Since γ2 ∈ Γn(δ), by (3.30) we have

JT0
(γ2(u)) ≤ bn + δ = cn − 2ε̄ ≤ cn(δ)− 2ε̄, u ∈ Sn. (3.73)

By (3.69), (3.72) and (3.73), we have γ̄2(u) = γ2(u), u ∈ Sn, which yields

γ̄2|Sn
∈ Λn and JT0

(γ̄2(u)) = JT0
(γ2(u)) ≤ bn + δ, u ∈ Sn. (3.74)

In view of (3.74), we obtain γ̄2 ∈ Γn(δ). It follows from (3.70), (3.71) and (3.72) that

max
u∈Sn+1

+

JT0
(γ̄2(u)) = max

u∈Sn+1
+

JT0

(
η(1, γ2(u))

)
≤ cn(δ)− ε,

which contradicts (3.31). So cn(δ) given by (3.31) is a critical value of JT0
.

Proof of Theorem 1.1. Since it is impossible that cn = bn for all large n, we can choose a sub-

sequence {nj} ⊂ N such that cnj
> bnj

. In combination with Lemma 3.3, Lemma 3.4 and

Lemma 3.6, there exists a sequence of critical points {unj
}∞

j=1 of J such that

− C15nj
− βp

(2−p) ≤ bnj
< cnj

≤ cnj
(δj) = JT0

(unj
) < 0, (3.75)

where δj ∈ (0, cnj
− bnj

). In view of (H2), (H4), (2.5), (2.26) and (2.27), unj
6= 0, j ∈ N. Next we

consider the following two possible cases.

Case 1. ‖unj
‖2

> 2T0. Combining (2.15), (2.16) and (2.32), we have kT0
(unj

) = 0, k′T0
(unj

) = 0

and ψ′(unj
) = 0. It follows from (2.17) and (2.45) that

ĪT0
(unj

) =
1

2
‖unj

‖2 −
∫

R

W1(t, unj
)dt, 〈J′T0

(unj
), unj

〉 = ‖unj
‖2 −

∫

R

(∇W1(t, unj
), unj

)dt.

By (1.5) and two equalities above, we get

ĪT0
(unj

) = ĪT0
(unj

)− µ−1〈J′T0
(unj

), unj
〉

= 2A‖unj
‖2 + µ−1

∫

R

(
(∇W1(t, unj

), unj
)− µW1(t, unj

)
)
dt

< A‖unj
‖2. (3.76)
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Case 2. ‖unj
‖2 ≤ 2T0. It follows from Lemma 2.3, (2.17), (2.26)–(2.28) and (2.45) that

ĪT0
(unj

) ≤ 1

2
‖u0‖2 −

∫

R

W1(t, unj
)dt + C3τα4

α4
‖unj

‖α4 + 16C4τσ
σ ‖unj

‖σ,

and

〈J′T0
(unj

), unj
〉 ≥ ‖unj

‖2 −
∫

R

(∇W1(t, unj
), unj

)dt − 9C3τα4
α4
‖unj

‖α4 − 16(9 − 32A−1)C4τσ
σ ‖unj

‖σ.

By (1.5), (2.13), and two equalities above, we obtain

ĪT0
(unj

) = ĪT0
(unj

)− µ−1〈J′T0
(unj

), unj
〉

≤ 2A‖unj
‖2 + C1τα1

α1
‖unj

‖α1 + 10C3τα4
α4
‖unj

‖α4 + 16(10 − 32A−1)C4τσ
σ ‖unj

‖σ

≤ A‖unj
‖2. (3.77)

In both cases, by (2.12), (2.24), (3.76) or (3.77), we get lµ(unj
) = 1 and l′µ(unj

) = 0. Moreover,

it follows from (2.26) and (2.27) that JT0
(unj

) = ĪT0
(unj

) ≤ A‖unj
‖2

< 0, which implies that

‖unj
‖ → 0, j → ∞ by (3.75). So there exists j0 ∈ N such that ‖unj

‖2
< T0, j ≥ j0. By (2.15)-

(2.16), we have kT0
(unj

) = 1 and k′T0
(unj

) = 0 for all j ≥ j0, which leads to {unj
} are also critical

points of I for all j ≥ j0 by (2.5) and (2.11).

Since E is continuously embedded into L∞(R, R
N) and ‖unj

‖ → 0 as j → ∞, then

maxt∈R |unj
(t)| → 0 as j → ∞. Thus, there exists j1 ∈ N such that maxt∈R |unj

(t)| < r1

for all j ≥ j1. Set j2 = max{j0, j1}. By (2.5) and (2.11), unj
are also homoclinic solutions of

problem (1.1) for each j ≥ j2. This completes the proof.

4 Examples

In this section, we give an example to illustrate our result.

Example 4.1. In problem (1.1), let L(t) = t2 + 1 and W(t, x) = a(t) ln(1 + |x|3/2), (t, x) ∈
R × R, where a : R → R

+ is a continuous function such that a(t) ∈ L4(R). Moreover, the

perturbation term G is given by

G(t, x) = b(t)|x|σ−1x, (t, x) ∈ R × (−r2, r2),

where b is a bounded continuous function on R and σ > 8/3. Let W1(t, x) = a(t)|x|3/2 and

W2(t, x) = a(t)
(

ln(1 + |x|3/2)− |x|3/2
)
. Then we choose p = µ = 3/2 and

α1 = α3 = α4 = 3, α2 = 3/2, N = 1.

Since −d2/dt2 + L(t) has eigenvalues λn = 2n + 2 with multiplicity 1 (see [2]), we can choose

β = 1. By Theorem 1.1, problem (1.1) has infinitely many homoclinic solutions. Since the

perturbation term G breaks the symmetry of the energy functional, the results in [20,22,34,35]

cannot be applied to this example.
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