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Abstract. This study is concerned with the p(x)-Laplacian-like problems and arising
from capillarity phenomena of the following type
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where Ω is a bounded domain in R
N with smooth boundary ∂Ω, p ∈ C(Ω), and the

primitive of the nonlinearity f of super-p+ growth near infinity in u and is also allowed
to be sign-changing. Based on a direct sum decomposition of a space W

1,p(x)
0 (Ω), we

establish the existence of infinitely many solutions via variational methods for the above
equation. Furthermore, our assumptions are suitable and different from those studied
previously.
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1 Introduction and main results

The present study is concerned with the existence of infinitely many nontrivial solutions for

the nonlinear eigenvalue problems involving the p(x)-Laplacian-like operators, originated

from a capillary phenomena,
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where Ω is a bounded domain in R
N with smooth boundary ∂Ω, p ∈ C(Ω), λ > 0 is a

parameter and f : Ω × R → R satisfies a Carathéodory condition and the primitive of the

nonlinearity f is allowed to be sign-changing.

Capillarity can be briefly explained by considering the effects of two opposing forces:

adhesion, i.e., the attractive (or repulsive) force between the molecules of the liquid and those

of the container; and cohesion, i.e., the attractive force between the molecules of the liquid.

The study of capillary phenomena has gained some attention recently. This increasing interest

is motivated not only by fascination in naturally-occurring phenomena such as motion of

drops, bubbles and waves but also its importance in applied fields ranging from industrial

and biomedical and pharmaceutical to microfluidic systems.

Recently, problem (P) has begun to receive more and more attention, see, for example,

[2, 7, 8, 11–13, 15]. Let us recall some known results on problem (P). When the the primitive F

of f oscillates at infinity, Shokooh and Neirameh [12] showed the existence of infinitely many

weak solutions for this problem by using Ricceri’s variational principle. For the case of f is p+-

superlinear at infinity, Zhou [15] and Ge [7] both obtained the existence of nontrivial solution

of problem (P) for every parameter λ > 0, under suitable conditions on f . Rodrigues in [11],

by using Fountain Theorem, established the existence of sequence of high energy solutions

for problem (P), by assuming the following assumptions:

(h1) f : Ω × R → R is a Carathéodory function, that is, t → f (x, t) is continuous for a.e.

x ∈ Ω, and x → f (x, t) is Lebesgue measurable for all t ∈ R;

(h2) There exists a positive constant C such that

| f (x, t)| ≤ C(1 + |t|r(x)−1),

for all x ∈ Ω and t ∈ R, where r ∈ C+(Ω) such that 1 < p− ≤ p+ < r− ≤ r(x) < p∗(x)

for all x ∈ Ω, p∗(x) = Np(x)
N−p(x)

if p(x) < N, p∗(x) = +∞ if p(x) ≥ N;

(h3)′ there exist M > 0, µ > p+ such that for |t| ≥ M and a.e. x ∈ Ω,

0 < µF(x, t) ≤ t f (x, t),

where F(x, t) =
∫ t

0 f (x, s)ds;

(h4) f (x,−t) = − f (x, t), for all (x, t) ∈ Ω × R.

Specifically, the author established the following theorem in [11].

Theorem 1.1 ([11, Theorem 4.7]). Suppose that (h1), (h2), (h3)′ and (h4) hold. Then the problem

(P) has an unbounded sequence of weak solutions for every 0 < λ <
2r+

p+ .

Observe that condition (h3)′ plays an important role for showing that any Palais–Smale

sequence is bounded in the work. However, there are some functions which do not satisfy

condition (h3)′, for example,

f (x, u) = |u|p+−2u ln(1 + |u|).

In the present paper, we shall prove the same result as in [11] for problem (P) under more

general assumptions on the nonlinearity, which unifies and significantly improves the result

of [11]. The underlying idea for proving our main result is motivated by the argument used

in [10]. In order to state the main result of this paper, we need the following assumptions:
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(h3) lim
|t|→∞

|F(x,t)|
|t|p+ = +∞ uniformly in x, and there exists r0 > 0 such that

F(x, t) ≥ 0, ∀(x, t) ∈ Ω × R, |t| ≥ r0;

(h5) F (x, t) := 1
p+ f (x, t)t − F(x, t) ≥ 0, and there exist c0 > 0 and σ ∈ C+(Ω) with σ−

>

max{1, N
p− } such that

|F(x, t)|σ(x) ≤ c0|t|p
−σ(x)F (x, t), ∀(x, t) ∈ Ω × R, |t| ≥ r0;

(h6) there exist µ > p+ and θ > 0 such that

µF(x, t) ≤ t f (x, t) + θ|t|p− , ∀(x, t) ∈ Ω × R.

We are now in the position to state our main results.

Theorem 1.2. Suppose that (h1)–(h5) hold. Then for each λ ∈
(

0, 2r+

p+

)

, problem (P) possesses

infinitely many nontrivial solutions.

Theorem 1.3. Suppose that (h1)–(h4) hold. and (h6) hold. Then for each λ ∈
(

0, 2r+

p+

)

, problem (P)

possesses infinitely many nontrivial solutions.

Remark 1.4. It is easy to see that (h3) and (h5) are weaker than (h3)′. In particular, F(x, t)

is allowed to be sign-changing in Theorems 1.2 and Theorems 1.3. The role of (h3)′ is to

ensure the boundedness of the Palais–Smale sequences of the energy functional, it is also

significant to construct the variational framework. This is very crucial in applying the critical

point theory. However, there are many functions which are superlinear at infinity, but do not

satisfy the condition (h3)′ for any µ > p+. For example, set f (x, t) = p+|t|p+−2t ln(1 + t2),

then F(x, t) = |t|p+ ln(1 + t2)− 2|t|p+ t
1+t2 . It is easy to check that f (x, t) satisfy assumptions (h3)

and (h5).

The rest of this paper is organized as follows. In Section 2, we present some necessary

preliminary knowledge on variable exponent Sobolev spaces. In Section 3, the proof of the

main results is given.

2 Preliminaries

In order to discuss problem (P), we need some facts on space W
1,p(x)
0 (Ω) which are called

variable exponent Sobolev space. For this reason, we will recall some properties involving

the variable exponent Lebesgue–Sobolev spaces, which can be found in [3–6,9] and references

therein.

Throughout this paper, we always assume p(x) > 1, p ∈ C(Ω). Set

C+(Ω) = {h ∈ C(Ω) : h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω), we will denote

h− = min
x∈Ω

h(x), h+ = max
x∈Ω

h(x)

and denote by h1 ≪ h2 the fact that infx∈Ω(h2(x)− h1(x)) > 0.



4 Q. M. Zhou and K. Q. Wang

For p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space:

Lp(x)(Ω) =

{

u : u is a measurable real value function
∫

Ω

|u(x)|p(x)dx < +∞

}

,

with the norm |u|Lp(x)(Ω) = |u|p(x) = inf{λ > 0 :
∫

Ω
| u(x)

λ |p(x)dx ≤ 1}, and define the variable

exponent Sobolev space

W1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

with the norm ‖u‖ = ‖u‖W1,p(x)(Ω) = |u|p(x) + |∇u|p(x).

We recall that spaces Lp(x)(Ω) and W1,p(x)(Ω) are separable and reflexive Banach spaces.

Denote by Lq(x)(Ω) the conjugate space of Lp(x)(Ω) with 1
p(x)

+ 1
q(x)

= 1, then the Hölder

type inequality
∫

Ω

|uv|dx ≤
(

1

p−
+

1

q−

)

|u|Lp(x)(Ω)|v|Lq(x)(Ω), u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω) (2.1)

holds. Furthermore, if we define the mapping ρ : Lp(x)(Ω) → R by

ρ(u) =
∫

Ω

|u|p(x)dx,

then the following relations hold

|u|p(x) < 1(= 1,> 1) ⇔ ρ(u) < 1(= 1,> 1), (2.2)

|u|p(x) > 1 ⇒ |u|p
−

p(x)
≤ ρ(u) ≤ |u|p

+

p(x)
, (2.3)

|u|p(x) < 1 ⇒ |u|p
+

p(x)
≤ ρ(u) ≤ |u|p

−

p(x)
. (2.4)

Next, we denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W1,p(x)(Ω). Moreover, we have the

following.

Proposition 2.1 ([6]).

(1) The Poincaré inequality in W
1,p(x)
0 (Ω) holds, that is, there exists a positive constant C such that

|u|p(x) ≤ C|∇u|p(x), ∀u ∈ W
1,p(x)
0 (Ω).

(2) If q ∈ C(Ω) and 1 < q(x) < p∗(x) for any x ∈ Ω, then the embedding from W
1,p(x)
0 (Ω) to

Lq(x)(Ω) is compact and continuous, where p∗(x) = Np(x)
N−p(x)

if p(x) < N or p∗(x) = +∞ if

p(x) ≥ N.

By (1) of Proposition 2.1, we know that |∇u|p(x) and ‖u‖ are equivalent norms on W
1,p(x)
0 (Ω).

We will use |∇u|p(x) to replace ‖u‖ in the following discussions.

Proposition 2.2 ([4]). Let p(x) and q(x) be measurable functions such that p(x) ∈ L∞(Ω) and

1 ≤ p(x)q(x) ≤ ∞ almost every where in Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

|u|p(x)q(x) ≥ 1 ⇒ |u|p
−

p(x)q(x)
≤

∣

∣|u|p(x)
∣

∣

q(x)
≤ |u|p

+

p(x)q(x)
,

|u|p(x)q(x) ≤ 1 ⇒ |u|p
+

p(x)q(x)
≤

∣

∣|u|p(x)
∣

∣

q(x)
≤ |u|p

−

p(x)q(x)
.

In particular, if p(x) = p is a constant, then
∣

∣|u|p
∣

∣

q(x)
= |u|p

pq(x)
.
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Consider the following function:

J(u) =
∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)

)

dx, ∀u ∈ W
1,p(x)
0 (Ω).

We know that J ∈ C1(W
1,p(x)
0 (Ω), R). If we denote A= J′ : W

1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗, then

〈A(u), v〉 =
∫

Ω



|∇u|p(x)−2 +
|∇u|2p(x)−2

√

1 + |∇u|2p(x)



 (∇u,∇v)RN dx,

for all u, v ∈ W
1,p(x)
0 (Ω).

Proposition 2.3 ([11]). Set E = W
1,p(x)
0 (Ω), A is as above, then

(1) A : E → E∗ is a convex, bounded and strictly monotone operator;

(2) A : E → E∗ is a mapping of type (S)+, i.e., un ⇀ u in E and lim supn→∞
〈A(un), un − u〉 ≤ 0,

implies un → u in E;

(3) A : E → E∗ is a homeomorphism.

3 Variational setting and proof of the main results

For each u ∈ E, we define

ϕλ(u) =
∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)

)

dx − λ
∫

Ω

F(x, u)dx. (3.1)

Then we have the following lemma.

Lemma 3.1. If assumptions (h1)–(h2) hold, then ϕ ∈ C1(E, R) and

〈ϕ′
λ(u), v〉 =

∫

Ω



|∇u|p(x)−2 +
|∇u|2p(x)−2

√

1 + |∇u|2p(x)



 (∇u,∇v)RN dx − λ
∫

Ω

f (x, u)vdx (3.2)

for all u, v ∈ E. Moreover, ψ′ : E → E∗ is weakly continuous, where ψ(u) =
∫

Ω
F(x, u)dx.

Proof. To prove ϕλ ∈ C1(E, R) and (3.2), we only need to show that ψ ∈ C1(E, R) and

〈ψ′(u), v〉 =
∫

Ω

f (x, u)vdx, ∀u, v ∈ E.

On the one hand, for any u, v ∈ E and 0 < |t| < 1, by condition (h2), we obtain

| f (x, u + tv)v| ≤ C(1 + |u + tv|r(x)−1)|v|
≤ C(|v|+ 2r+−1|u|r(x)−1|v|+ 2r+−1|v|r(x)).

Note that 1 < p(x) < r(x) < p∗(x), the Hölder inequality implies that

|v|+ 2r+−1|u|r(x)−1|v|+ 2r+−1|v|r(x) ∈ L1(Ω).
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Consequently, by the mean value theorem and the Lebesgue dominated convergence theorem,

there exists 0 < λ < 1 such that

〈ψ′(u), v〉 = lim
t→0

∫

Ω

F(x, u + tv)− F(x, u)

t
dx

= lim
t→0

∫

Ω

f (x, u + λtv)vdx

=
∫

Ω

f (x, u)vdx,

for all u, v ∈ E. Hence ψ is Gateaux differentiable.

It remains to prove that ψ′ is weakly continuous. Assume that un ⇀ u in E. By Proposi-

tion 2.1, we conclude that un → u in Lr(x)(Ω) and un(x) → u(x) a.e. x ∈ Ω. Recalling

‖ψ′(un)− ψ′(u)‖E∗ = sup
‖v‖≤1

|〈ψ′(un)− ψ′(u), v〉|

≤ sup
‖v‖≤1

∫

Ω

| f (x, un)− f (x, u)||v|dx.

Set α := limn→+∞ sup‖v‖≤1

∫

Ω
| f (x, un) − f (x, u)||v|dx. We claim that α = 0. Suppose, by

contradiction, that α > 0. Hence, there exists a sequence {φn} ⊆ E and ‖φn‖ = 1 such that
∣

∣

∫

Ω
| f (x, un)− f (x, u)||φn|dx

∣

∣ >
α
2 for enough large n. By (h2), one has

|( f (x, un)− f (x, u))φn| ≤ C(1 + |un|r(x)−1)|φn|+ C(1 + |u|r(x)−1)|φn|
≤ C(2|φn|+ |un|r(x)−1|φn|+ |u|r(x)−1|φn|).

Using again Hölder inequality, we get 2|φn|+ |un|r(x)−1|φn|+ |u|r(x)−1|φn| ∈ L1(Ω). In view

of [14, Lemma A.1], there exist w1 ∈ L1(Ω) and ξ1, w2 ∈ Lr(x)(Ω) such that

max{|un(x)|, |u(x)|} ≤ |ξ1(x)| and |φn(x)| ≤ min{|w1(x)|, |w2(x)|}.

Therefore, it follows from the Lebesgue dominated convergence theorem that

lim
n→+∞

∫

Ω

| f (x, un)− f (x, u)||φn|dx = 0,

which contradicts with α > 0. Hence, ‖ψ′(un) − ψ′(u)‖E∗ → 0 as n → +∞. The proof is

completed.

Definition 3.2. We say that ϕλ ∈ C1(E, R) satisfies (C)c-condition if any sequence {un} ⊂ E

satisfying

ϕλ(un) → c and ‖ϕ′
λ(un)‖E∗(1 + ‖un‖) → 0 (3.3)

contains a convergent subsequence.

Now, we present the following theorem which will play a crucial role in the proof of Main

Theorems.

Let X be a reflexive and separable Banach space. It is well known that there exist {en} ⊂ X

and {e∗n} ⊂ X∗ such that

(i) 〈e∗n, em〉 = δn,m, where δn,m = 1 for n = m and δn,m = 0 for n 6= m;

(ii) X = span{en : n ∈ N} and X∗ = span{e∗n : n ∈ N}.
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Let Xi = Rei, then X = ⊕i≥1Xi. Now, we define

Yn = ⊕n
i=1Xi and Zn = ⊕i≥nXi. (3.4)

Then we have the following Fountain Theorem.

Lemma 3.3 ([1, 14]). Assume that I ∈ C1(X, R) satisfies (C)c-condition for all c > 0 and I is even.

If for each sufficiently large n ∈ N, there exist ρn > δn > 0 such that the following conditions hold:

(A1) bn := inf{I(u) : u ∈ Zn, ‖u‖ = δn} → +∞ as n → +∞;

(A2) an := inf{I(u) : u ∈ Yn, ‖u‖ = ρn} ≤ 0.

Then the functional I has an unbounded sequence of critical values, i.e., there exists a sequence {un} ⊂
X such that I′(un) = 0 and I(un) → +∞ as n → +∞.

Lemma 3.4. Assume that (h2), (h3) and (h5) hold. Then any (C)c sequence is bounded.

Proof. Let {un} ⊂ E be a (C)c sequence. To complete our goals, arguing by contradiction,

suppose that ‖un‖ → ∞, as n → ∞. Observe that for n large,

c + 1 ≥ ϕλ(un)−
1

p+
〈ϕ′

λ(un), un〉

=
∫

Ω

1

p(x)

(

|∇un|p(x) +
√

1 + |∇un|2p(x)

)

dx − λ
∫

Ω

F(x, un)dx

− 1

p+

∫

Ω



|∇un|p(x) +
|∇un|2p(x)

√

1 + |∇un|2p(x)



 dx +
λ

p+

∫

Ω

f (x, un)undx

≥
∫

Ω

( 1

p(x)
− 1

p+

)

(

|∇un|p(x) +
√

1 + |∇un|2p(x)

)

dx + λ
∫

Ω

F (x, un)dx

≥ λ
∫

Ω

F (x, un)dx.

(3.5)

Since ‖un‖ > 1 for n large, using (3.3) we have

0 = lim
n→∞

c + o(1)

‖un‖p−
= lim

n→∞

ϕλ(un)

‖un‖p−

≥ 1

p+

∫

Ω

(

|∇un|p(x) +
√

1 + |∇un|2p(x)

)

dx

‖un‖p−
− λ

∫

Ω

F(x, un)

‖un‖p−
dx

≥ 2

p+
− λ

∫

Ω

F(x, un)

‖un‖p−
dx,

which implies that
2

p+λ
≤ lim sup

n→∞

∫

Ω

|F(x, un)|
‖un‖p−

dx. (3.6)

For 0 ≤ α < β, let Ωn(α, β) = {x ∈ Ω : α ≤ |un(x)| < β}. Let vn = un

‖un‖ , then ‖vn‖ = 1 and

|vn|r(x) ≤ C0‖vn‖ = C0 for some C0 > 0. Going if necessary to a subsequence, we may assume

that vn ⇀ v in E and

vn → v in Ls(x)(Ω), 1 ≤ s(x) < p∗(x) and vn(x) → v(x) a.e. on Ω. (3.7)
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Now, we consider two possible cases: v = 0 or v 6= 0.

(1) If v = 0, then we have that vn → 0 in Ls(x)(Ω) and vn(x) → 0 a.e. on Ω. Hence, it

follows from (h2) that

∫

Ωn(0,r0)

|F(x, un)|
‖un‖p−

dx ≤ C(r0 + rr
0)meas(Ω)

‖un‖p−
→ 0 as n → +∞, (3.8)

where r = r+ if r0 ≥ 1, r = r− if r0 < 1.

Set σ′(x) = σ(x)
σ(x)−1

. Since σ−
> max{1, N

p− } one sees that 1 < p−σ′(x) < p∗(x). So, vn → 0

in Lp−σ′(x)(Ω) as n → +∞. Hence, we deduce from Proposition 2.2, (h5), (3.5) and (3.7) that

∫

Ωn(r0,+∞)

|F(x, un)|
|un|p−

|vn|p
−

dx

≤ 2

∣

∣

∣

∣

|F(x, un)|
|un|p−

∣

∣

∣

∣

Lσ(x)(Ωn(r0,+∞))

∣

∣|vn|p
− ∣
∣

Lσ′(x)(Ωn(r0,+∞))

≤ 2 max

{(

∫

Ωn(r0,+∞)

|F(x, un)|σ(x)

|un|(p−)σ(x)
dx

)
1

σ+

,

(

∫

Ωn(r0,+∞)

|F(x, un)|σ(x)

|un|(p−)σ(x)
dx

)
1

σ−
}

× max

{

(

∫

Ωn(r0,+∞)
|vn|p

−σ′(x)dx

)
1

(σ′)−
,

(

∫

Ωn(r0,+∞)
|vn|p

−σ′(x)dx

)
1

(σ′)+
}

≤ 2 max

{

(

∫

Ωn(r0,+∞)
F (x, un)dx

)
1

σ+

,

(

∫

Ωn(r0,+∞)
F (x, un)dx

)
1

σ−
}

× max

{

(

∫

Ωn(r0,+∞)
|vn|p

−σ′(x)dx

)
1

(σ′)−
,

(

∫

Ωn(r0,+∞)
|vn|p

−σ′(x)dx

)
1

(σ′)+
}

≤ 2 max

{

(

c0

λ
(c + 1)

)
1

σ+

,

(

c0

λ
(c + 1)

)
1

σ−
}

× max

{

(

∫

Ωn(r0,+∞)
|vn|p

−σ′(x)dx

)
1

(σ′)−
,

(

∫

Ωn(r0,+∞)
|vn|p

−σ′(x)dx

)
1

(σ′)+
}

→ 0, as n → ∞.

(3.9)

Combining (3.8) with (3.9), we get

∫

Ω

|F(x, un)|
‖un‖p−

dx =
∫

Ωn(0,r0)

|F(x, un)|
‖un‖p−

dx +
∫

Ωn(r0,+∞)

|F(x, un)|
‖un‖p−

dx

=
∫

Ωn(0,r0)

|F(x, un)|
‖un‖p−

dx +
∫

Ωn(r0,+∞)

|F(x, un)|
|un|p−

|vn|p
−

dx

→ 0, as n → ∞,

(3.10)

which contradicts (3.6).

(2) If v 6= 0, set Ω 6= := {x ∈ Ω : v(x) 6= 0}, then meas(Ω 6=) > 0. For a.e. x ∈ Ω 6=, we have

lim
n→∞

|un(x)| = +∞. Hence, Ω 6= ⊂ Ωn(r0, ∞) for large n ∈ N. As the proof of (3.8), we also

obtain that
∫

Ωn(0,r0)

|F(x, un)|
‖un‖p+

dx ≤ C(r0 + rr
0)meas(Ω)

‖un‖p+
→ 0, as n → +∞. (3.11)
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It follows from (h2), (h3), (3.11) and Fatou’s Lemma that

0 = lim
n→∞

c + o(1)

‖un‖p+
= lim

n→∞

ϕ(un)

‖un‖p+

≤ lim
n→∞









1

p−

∫

Ω

(

|∇un|p(x) +
√

1 + |∇un|2p(x)

)

dx

‖un‖p+
− λ

∫

Ω

F(x, un)

‖un‖p+
dx









= lim
n→∞









1

p−

∫

Ω

(

|∇un|p(x) +
√

1 + |∇un|2p(x)

)

dx

‖un‖p+

− λ
∫

Ωn(0,r0)

F(x, un)

‖un‖p+
dx − λ

∫

Ωn(r0,+∞)

F(x, un)

‖un‖p+
dx









= lim
n→∞









1

p−

∫

Ω

(

|∇un|p(x) +
√

1 + |∇un|2p(x)

)

dx

‖un‖p+
− λ

∫

Ωn(r0,+∞)

F(x, un)

‖un‖p+
dx









≤ lim
n→∞





1

p−

∫

Ω

(

|∇un|p(x) + 1 + |∇un|p(x)
)

dx

‖un‖p+
− λ

∫

Ωn(r0,+∞)

F(x, un)

‖un‖p+
dx





= lim
n→∞

[

2

p−

∫

Ω
|∇un|p(x)dx

‖un‖p+
− λ

∫

Ωn(r0,+∞)

F(x, un)

‖un‖p+
dx

]

≤ lim sup
n→∞

[

2

p−
− λ

∫

Ωn(r0,+∞)

F(x, un)

‖un‖p+
dx

]

=
2

p−
− lim inf

n→∞
λ
∫

Ωn(r0,+∞)

F(x, un)

|un|p+
|vn|p

+
dx

=
2

p−
− lim inf

n→∞
λ
∫

Ω

F(x, un)

|un|p+
χΩn(r0,+∞)(x)|vn|p

+
dx

≤ 2

p−
− λ

∫

Ω

lim inf
n→∞

F(x, un)

|un|p+
χΩn(r0,+∞)(x)|vn|p

+
dx

→ − ∞, as n → ∞,

(3.12)

which is a contradiction. Thus {un} is bounded in E. The proof is accomplished.

Lemma 3.5. Suppose that (h2), (h3) and (h5) hold. Then any (C)c-sequence of ϕ has a convergent

subsequence in E.

Proof. Let {un} ⊂ E be a (C)c sequence. In view of the Lemma 3.4, the sequence {un} is

bounded in E. Then, up to a subsequence we have un ⇀ u in E. By Proposition 2.2, it follows

that

un → u in Lr(x)(Ω),

{un} is bounded in Lr(x)(Ω).
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It is easy to compute directly that
∫

Ω

| f (x, un)− f (x, u)||un − u|dx

≤
∫

Ω

(| f (x, un)|+ | f (x, u)|)|un − u|dx

≤
∫

Ω

[C(1 + |un|r(x)−1) + C(1 + |u|r(x)−1)]|un − u|dx

≤ 2C
∫

Ω

|un − u|dx + C
∫

Ω

|un|r(x)−1|un − u|dx

+
∫

Ω

|u|r(x)−1|un − u|dx

≤ 2C|un − u|1 + 2C
∣

∣|un|r(x)−1
∣

∣

r′(x)
|un − u|r(x)

+ 2C
∣

∣|u|r(x)−1
∣

∣

r′(x)
|un − u|r(x)

≤ 2C|un − u|1 + 2C max
{

|un|r
+−1

r(x)
, |un|r

−−1
r(x)

}

|un − u|r(x)

+ 2C max
{

|u|r+−1
r(x)

, |u|r−−1
r(x)

}

|un − u|r(x)

→ 0, as n → ∞,

(3.13)

where 1
r(x)

+ 1
r′(x)

= 1. Noting that

〈A(un)− A(u), un − u〉 = 〈ϕ′(un)− ϕ′(u), un − u〉

+
∫

Ω

( f (x, un)− f (x, u))(un − u)dx.
(3.14)

Moreover, by (3.3), one infers

lim
n→∞

〈ϕ′(un)− ϕ′(u), un − u〉 = 0. (3.15)

Finally, the combination of (3.13)–(3.15) implies

lim
n→∞

〈A(un)− A(u), un − u〉 = 0. (3.16)

Since A is of type (S)+ by Lemma 2.3, we obtain un → u in E. The proof is complete.

Lemma 3.6. Suppose that (h2), (h3) and (h6) hold. Then any (C)c-sequence of ϕ has a convergent

subsequence in E.

Proof. Similar to the proof of Lemma 3.5, we only prove that {un} is bounded in E. Suppose

by contradiction that ‖un‖ → ∞ as n → ∞. Let vn = un

‖un‖ , then ‖vn‖ = 1 and |vn|r(x) ≤
C0‖vn‖ = C0 for some C0 > 0. Going if necessary to a subsequence, we may assume that

vn ⇀ v in E,

vn → v in Lr(x)(Ω), 1 ≤ r(x) < p∗(x) and vn(x) → v(x) a.e. on Ω. (3.17)

By (3.1), (3.2) and (h6), one has

c + 1 ≥ ϕλ(un)−
1

µ
〈ϕ′

λ(un), un〉

=
∫

Ω

1

p(x)

(

|∇un|p(x) +
√

1 + |∇un|2p(x)

)

dx − λ
∫

Ω

F(x, un)dx

− 1

µ

∫

Ω



|∇un|p(x) +
|∇un|2p(x)

√

1 + |∇un|2p(x)



 dx +
λ

µ

∫

Ω

f (x, un)undx
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≥
(

1

p+
− 1

µ

)

∫

Ω

(

|∇un|p(x) +
√

1 + |∇un|2p(x)

)

dx − λθ

µ

∫

Ω

|un|p
−

dx

≥ µ − p+

p+µ
‖un‖p− − λθ

µ
|un|p

−

p− ,

for n ∈ N, which implies

1 ≤ λθp+

µ − p+
lim sup

n→∞

|vn|p
−

p− . (3.18)

In view of (3.17), vn → v in Lp−(Ω). Hence, we deduce from (3.18) that v 6= 0. By a similar

reasoning as in the proof of Lemma 3.4 step (2), we can conclude a contradiction. Thus, {un}
is bounded in E. The rest proof is the same as that in Lemma 3.5.

Proof of Theorem 1.2. Let X = E, Yn and Zn be defined by (3.4). Obviously, ϕλ(u) = ϕλ(−u)

by (h4), and Lemma 3.5 implies that ϕλ satisfies the (C)c condition for any λ > 0. Hence, to

prove Theorem 1.2, it remains to verify the conditions (A1) and (A2) in Lemma 3.3.

Verification of (A1). Set βn := supu∈Zn, ‖u‖=1 |u|r(x), where p+ < r− ≤ r(x) < p∗(x) and n ∈
N. We claim that βn → 0 as n → ∞. Indeed, it is obvious that βn ≥ βn+1 ≥ 0. so βn → β ≥ 0

as n → ∞. For each n = 1, 2, . . . , taking un ∈ Zn, ‖un‖ = 1 such that 0 ≤ βn − |un|r(x) ≤ 1
n . As

E is reflexive, {un} has a weakly convergent subsequence, without loss of generality, suppose

un ⇀ u in E. By definition of Zn, one knows that u = 0. Proposition 2.3 implies that un → 0

in Lr(x)(Ω). Thus we have proved that β = 0.

By the above definition of βn, for u ∈ Zn with ‖u‖ > 1, we have

|u|r(x) ≤ βn‖u‖. (3.19)

Moreover, we consider the real function k : R → R, defined by

k(t) =
1

p+
tp− − λCβr−

n tr+ .

Choosing δn = (2Cr+βr−
n )

1
p−−r+ for n ∈ N, it is clear that

k(δn) =
1

p+
δ

p−
n − λCβr−

n δr+

n

= (2Cr+βr−
n )

p−
p−−r+

[

1

p+
− λ

2r+

]

.

(3.20)

Therefore, since r− > p+, λ <
2r+

p+ and βn → 0 as n → +∞, we obtain that

δn → +∞, k(δn) → +∞, as n → +∞. (3.21)

It follows from (h2) that

F(x, t) ≤ C(|t|+ |t|r(x)) ≤ 2C(1 + |t|r(x))

for all (x, t) ∈ Ω ×R. Then, for any u ∈ Zn, assume that ‖u‖ = δn. It follows from (h2), (3.19),
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(3.20) and (3.21) that

ϕλ(u) =
∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)

)

dx − λ
∫

Ω

F(x, u)dx

≥ 2

p+
‖u‖p− − 2λCmeas(Ω)− 2λC

∫

Ω

|u|r(x)dx

≥ 2

p+
‖u‖p− − 2λCmeas(Ω)− 2λC max

{

|u|r+r(x), |u|r
−

r(x)

}

≥ 2

p+
‖u‖p− − 2λCmeas(Ω)− 2λC max

{

βr+

n ‖u‖r+ , βr−
n ‖u‖r−

}

≥ 2

p+
‖u‖p− − 2λCmeas(Ω)− 2λCβr−

n ‖u‖r+

= 2k(δn)− 2λCmeas(Ω) → +∞, as n → +∞.

(3.22)

This gives relation (A1).

Verification of (A2). Assume that (A2) of Lemma 3.3 does not hold for some given n. Then

there exists a sequence {uk} ⊂ Yn such that

‖uk‖ → +∞ as k → +∞ and ϕλ(uk) ≥ 0. (3.23)

Let wk =
uk

‖uk‖ . Then it is obvious that ‖wk‖ = 1. Since dimYn < +∞, there exists w ∈ Yn \ {0}
such that up to a subsequence, ‖wk − w‖ → 0 and wk(x) → w(x) a.e. x ∈ Ω as k → +∞.

If w(x) 6= 0, then |uk(x)| → +∞ as k → +∞. By virtue of (h3), we get limk→+∞

F(x,uk(x))

‖uk‖p+
=

limk→+∞

F(x,uk(x))

|uk(x)|p+ |wk(x)|p+ = +∞, for all x ∈ Ω0 := {x ∈ Ω : w(x) 6= 0}. The estimate in

Lemma 3.4 implies that
∫

Ω0

F(x, uk)

‖uk‖p+
dx → +∞ as k → +∞.

Note that, Ω0 ⊂ Ωn(r0, ∞) for large n ∈ N. Therefore, we have

ϕλ(uk) =
∫

Ω

1

p(x)

(

|∇uk|p(x) +
√

1 + |∇uk|2p(x)

)

dx − λ
∫

Ω

F(x, uk)dx

=
∫

Ω

1

p(x)

(

|∇uk|p(x) +
√

1 + |∇uk|2p(x)

)

dx

− λ
∫

Ωk(0,r0)
F(x, uk)dx − λ

∫

Ωk(r0,+∞)
F(x, uk)dx

≤ 1

p−
‖uk‖p+ + C

∫

Ωk(0,r0)
(r0 + rr

0)dx −
∫

Ωk(r0,+∞)
F(x, uk)dx

≤ 1

p−
‖uk‖p+ + C(r0 + rr

0)meas(Ω)−
∫

Ωk(r0,+∞)∩Ω0

F(x, uk)dx

≤ ‖uk‖p+
(

1

p−
+

C(r0 + rr
0)meas(Ω)

‖uk‖p+
−

∫

Ωk(r0,+∞)∩Ω0

F(x, uk)

‖uk‖p+
dx

)

→ − ∞, as k → +∞,

which is contradiction to (3.23). This gives relation (A2). Hence, all conditions of Lemma 3.3

are satisfied. Namely, for each λ ∈ (0, 2r+

p+ ), problem (P) possesses infinitely many nontrivial

solutions sequence {un} such that ϕλ(un) → +∞ as n → +∞.
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Proof of Theorem 1.3. Let X = E, Yn and Zn be defined by (3.4). We know that ϕλ satisfies the

(C)c condition from Lemma 3.6 and ϕλ(u) = ϕλ(−u). The rest proof is the same as that of

Theorem 1.2.
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Abstract. Global existence, positivity, uniform boundedness and extinction results of
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1 Introduction

We consider the qualitative theory of the Cauchy problem for a system of reaction-diffusion

equations modeling two species interacting with predator–prey relationship. The system in

consideration is

La,ν ≡ ut − auxx − νux = −pu + quv ≡ f (u, v), x ∈ R, t > 0, (1.1)

Lb,µ ≡ vt − bvxx − µvx = +rv − suv ≡ g(u, v), x ∈ R, t > 0, (1.2)

supplemented with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R. (1.3)

The functions u = u(x, t) and v = v(x, t) represent the densities of predators and preys in time

t and at position x, respectively. The coefficient of diffusion a and b are positive constants

which describe the rate of movement of predators and prey respectively. The nonnegative

constants p and r are the coefficients of evolution, and the coefficients q and s are related to

the increase of the density of predators, and the decrease of the density of preys due to the

presence of predators, respectively. The initial conditions u0 and v0 are two bounded and

uniformly continuous functions on R.

BCorresponding author. Email: badraoui.salah@univ-guelma.dz
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For a biomathematical discussion of these factors and for a background of the equations, see

see [10] and [15].

For the modeling of this system see for example [12], page 53: if we have a lack where there

are two species of fish: A, which lives on plants of which there is a plentiful supply, and B (the

predator) which subsists by eating A (the prey), where u = u(x, t) represents the population

of B and v = v(x, t) represents the population of A.

Further, we suppose the domain is unbounded without boundary and no flux boundary con-

ditions, instead of this we can suppose that the initial species distribution are describing by

functions of finite support u0 and v0; namely, the initial conditions are of the form

u(x, 0) = u0(x) for − ∆u < x < ∆u, otherwise u(x, 0) = 0.

v(x, 0) = v0(x) for − ∆v < x < ∆v, otherwise v(x, 0) = 0.

where ∆u and ∆v give the radius of the initially invaded domain, see [16].

The problem could be treated in the realistic two spatial dimension setting, in order to

simplify the mathematics we are to treat it by one dimension space.

When the initial data are continuous, uniformly bounded, and nonnegative, it is shown

that (1.1)–(1.2)–(1.3) has a classical positive global solution. Under some conditions on the

coefficients or on the initial data, we show that this solution is in fact globally bounded.

Moreover, if

• r = 0, p > q ‖v0‖, then v is bounded and u → 0 exponentially as t → ∞.

• p = 0, u0 ≥ k > r/s or u∗
0 = min

{

u−
0 , u+

0

}

> r/s, where u±
0 = limx→±∞ u0(x) then u(t)

is bounded and v → 0 exponentially as t → ∞.

On the other hand, we study the behaviour of (u, v) when x → ±∞ whenever u0 and v0 have

limits at ±∞. We show that u(±∞, t) and v(±∞, t) satisfy an ordinary differential system

(ODS) in t. The qualitative behaviour of solutions to (1.1)–(1.2)–(1.3), as x → ±∞, can then be

obtained from the ODS associated to it [7].

Some systems of predator–prey were studied in bounded domains, see [9, 19] and in

the references therein. Also, some results about global existence of solutions for systems

of reaction-diffusion systems were established in [4, 5, 8, 13, 14].

In the following, u0 and v0 will be taken nonnegative and are elements of the Banach space

X = (BUC(R), ‖·‖), the space of bounded and uniformly continuous functions on R endowed

with the supremum norm ‖u‖ = supx∈R
|u(x)|.

Note here that every continuous function of finite support is a uniformly continuous func-

tion on R.

2 Existence, positivity and a priori bounds

We denote by A1 and A2 the linear operators a(·)xx + ν(·)x and b(·)xx + µ(·)x, respectively. It

is well known that Aj, j = 1, 2, generates an analytic semigroup of contractions on the Banach

space X given explicitly by the expression

[

Sj(t)u
]

(x) =
1√

4παt

∫ +∞

−∞

[

exp

(

−|x + σt − ξ|2
4αt

)]

u(ξ)dξ, (2.1)
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where α = a and σ = ν for j = 1, and α = b and σ = µ for j = 2.

Moreover, for any integer n there is a positive constant c = c(n) such that for any u ∈ X,

any positive t we have DnSj(t)u ∈ X and the estimates

∥

∥DnSj(t)u
∥

∥ ≤ ct−n/2 ‖u‖ , (2.2)

where Dn = dn/(dx)n, and j = 1, 2, holds true [6].

Our first result provides the existence of a global positive solution.

Theorem 2.1. Suppose that u0, v0 ∈ X, there exists a unique global classical nonnegative solution to

the problem (1.1)–(1.2)–(1.3).

Proof. Local existence and uniqueness follow from standard arguments of abstract parabolic

theory or from fixed point arguments involving the heat kernel and the Duhamel principle;

whence, there exists a t0 > 0 such that the problem (1.1)–(1.2)–(1.3) has a unique local mild

solution (u, v) ∈ C ([0, t0] ; X)× C ([0, t0] ; X), i.e.

u(t) = S1(t)u0 +
∫ t

0
S1(t − s) f (u(s), v(s)) ds, t ∈ [0, t0] ,

v(t) = S2(t)v0 +
∫ t

0
S2(t − s)g (u(s), v(s)) ds, t ∈ [0, t0] .

From the Lebesgue theory and the fact the functions (x, y) 7−→ f (x, y) and (x, y) 7−→ g(x, y)

are of class C∞(R2; R) we can conclude that the solution (u, v) ∈ C∞ (]0, T]; X)× C∞ (]0, T]; X)
for all 0 < T < Tmax, and (u(t), v(t)) ∈ C∞ (R; R)× C∞ (R; R) for all t ∈]0, T]; where Tmax is

the maximal time of existence of the solution.

The continuous dependence of the solution on the initial data makes use of the local

existence result and the Gronwall lemma.

The nonnegativity of the solution can be proved as follows: let λ1 = sup{‖u(t)‖, 0 ≤
t ≤ T} and λ2 = sup {‖v(t)‖ , 0 ≤ t ≤ T} where 0 < T < Tmax (Tmax is the maximal time of

existence of (u, v)), and λ0 ≥ sup {r + sλ1, p + qλ2}. The substitutions u = eλ0t ϕ and v = eλ0tψ

transform system (1.1)–(1.2)–(1.3) into

ϕt − aϕxx − νϕx + (p − qv + λ0)ϕ ≡ 0, x ∈ R, 0 < t ≤ T,

ψt − bψxx − µϕx + (−r + su + λ0)ψ ≡ 0, x ∈ R, 0 < t ≤ T,

with

ϕ(x, 0) = e−λ0tu0(x) ≥ 0 and ψ(x, 0) = e−λ0tv0(x) ≥ 0, x ∈ R.

As u, v ∈ C ([0, T] ; X) and p − qv + λ0 ≥ 0 and −r + su + λ0 ≥ 0 for all t ∈ [0, T], we can use

Theorem 9 on page 43 of the maximum principle in [11] to get that ϕ and ψ are nonnegative

which in turn implies the nonnegativity of u and v.

If one can establish the existence of a priori bounds for the solution components u, v on

[0, Tmax[, standard continuation arguments yield global well posedness.

The solution to (1.1)–(1.2)–(1.3) can be written in integral form as follows

u(t) = e−ptS1(t)u0 +
∫ t

0
e−p(t−τ)S1(t − τ)qu(τ)v(τ)dτ, (2.3)

v(t) = e+rtS2(t)u0 −
∫ t

0
e+r(t−τ)S2(t − τ)su(τ)v(τ)dτ. (2.4)
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Using the nonnegativity of (u, v) we get

‖v(t)‖ ≤ ert ‖v0‖ , for all t ≥ 0. (2.5)

Using (2.3) and (2.5) we obtain

‖u(t)‖ ≤ ‖u0‖+ q ‖v0‖
∫ t

0
erτ ‖u(τ)‖ dτ, for all t ≥ 0. (2.6)

Gronwall’s inequality yields

‖u(t)‖ ≤ ‖u0‖ eq‖v0‖k(t), for all t ≥ 0, (2.7)

where

k(t) =

{

1
r

(

ert − 1
)

, if r > 0,

t, if r = 0.

Estimates (2.5) and (2.7) imply that the solution is global, i.e., Tmax = +∞.

3 Boundedness and extinction results

The solution to (1.1)–(1.2)–(1.3) established in Theorem 2.1 is not always bounded as is shown

in the following proposition.

Proposition 3.1. Assume v0 6≡ 0 (v0 is not identically null) and r is sufficiently large, then (u, v) is

unbounded. More precisely, v grows exponentially as t goes to ∞.

Proof. Assume the contrary that (u, v) is a globally bounded solution, i.e., ‖u(t)‖ ≤ C and

‖v(t)‖ ≤ C for any t ≥ 0 and some constant C > 0. As v0 6= 0, there exists a constant δ > 0

such that S2(t)v0 ≥ δ for any t ≥ 0. Furthermore, we use (2.4) to obtain

v(t) ≥
(

δ − sC2/r
)

ert + sC2/r, for all t ≥ 0.

Choosing r > sC2/δ we clearly have ‖v(t)‖ −→ +∞ as t goes to +∞. Whence (u, v) could not

be bounded.

It is now clear that to get bounded solutions we have to impose some restrictions either on

the coefficients of the system or on the initial data.

Theorem 3.2. If u0, v0 ∈ X then we have the estimates

‖v(t)‖ ≤ ‖v0‖ ert, for all t ≥ 0, (3.1)

‖u(t)‖ ≤ e(q‖v0‖erT−p)t ‖u0‖ , for all t ∈ [0, T] . (3.2)

Moreover, if r = 0 and p > q ‖v0‖ we have

lim
t→∞

‖u(t)‖ = 0. (3.3)
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Proof. Setting

u = ϕ exp (−pt) , (3.4)

v = ψ exp (rt) , (3.5)

the system (1.1)–(1.2) becomes

ϕt − aϕxx − νϕx = qert ϕψ, (3.6)

ψt − bψxx − µψx = −se−pt ϕψ, (3.7)

with the initial data satisfying

ϕ0(x) = u0(x), (3.8)

ψ0(x) = v0(x). (3.9)

As ϕ ≥ 0 and ψ ≥ 0, we first have from (3.7) and (3.9)

ψ(t) = S2(t)v0 − s
∫ t

0
S2(t − τ)e−pτ ϕ(τ)ψ(τ)dτ ≤ S2(t)v0 ≤ ‖v0‖ , (3.10)

for all (x, t) ∈ R × [0, T] . Whence v(t) ≤ ‖v0‖ ert, for all t ≥ 0.

Substituting (3.10) into (3.6) yields

ϕt − aϕxx − νϕx ≤ q ‖v0‖ ert ϕ. (3.11)

If we set ϕ = eMtw, where M = q ‖v0‖ erT, then we have over R × [0, T]

wt − awxx − νwx ≤ 0, w(x, 0) = ϕ0(x) = u0(x). (3.12)

Furthermore

w(t) = S1(t)u0 ≤ ‖u0‖ , for all t ≥ 0. (3.13)

Whence ϕ ≤ eMt ‖u0‖ and then

u(t) ≤ eMt ‖u0‖ e−pt = e(q‖v0‖erT−p)t ‖u0‖ , for all t ∈ [0, T] .

Thus we obtain (3.2).

We deduce from (3.1)–(3.2) that if r = 0 and p > q ‖v0‖ we will have

‖v(t)‖ ≤ ‖v0‖ , for all t ≥ 0 and lim
t→∞

‖u(t)‖ = 0.

Theorem 3.3. If r = 0, a ≤ b and ν = µ, then the solution to (1.1)–(1.2) is globally bounded. We

have the estimates

‖v(t)‖ ≤ ‖v0‖ , for all t ≥ 0, (3.14)

and

‖u(t)‖ ≤ ‖u0‖+
q

s

√
b/a ‖v0‖ , for all t ≥ 0. (3.15)
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Proof. Let Y and Z be the solutions to

Yt − aYxx − νYx + pY = uv, Y(x, 0) = 0, (3.16)

and

Zt − bZxx − µZx = uv, Z(x, 0) = 0, (3.17)

respectively, where (u, v) is the solution to (1.1)–(1.2)–(1.3) with r = 0, a ≤ b and µ = ν. Then

(u, v) can be written in terms of (Y, Z) as follows

u(x, t) = e−ptS1(t)u0(x) + qY(x, t), t ≥ 0, (3.18)

v(x, t) = S2(t)v0(x)− sZ(x, t), t ≥ 0. (3.19)

Using the positivity of Z(x, t) we deduce (3.14) from (3.19). By the explicit formulas of Y

and Z:

Y(t) =
∫ t

0
e−p(t−τ)S1(t − τ)u(τ)v(τ)dτ ≤

∫ t

0
S1(t − τ)u(τ)v(τ)dτ, (3.20)

Z(t) =
∫ t

0
S2(t − τ)u(τ)v(τ)dτ. (3.21)

As a ≤ b, ν = µ and (2.1), it is easy (see [1]) to deduce that
√

aS1(t)w ≤
√

bS2(t)w, for all w ∈ X

and then

S1(t)w ≤
√

b

a
S2(t)w, for all t ≥ 0. (3.22)

From (3.20)–(3.22) we obtain

Y(t) ≤
√

b

a

∫ t

0
S2(t − τ)u(τ)v(τ)dτ =

√

b

a
Z(t), for all t ≥ 0. (3.23)

As v is nonnegative, from (3.19) we get

Z(x, t) ≤ 1

s
S2(t)v0, for all t ≥ 0. (3.24)

Using (3.24) in (3.23) we get

Y(t) ≤ 1

s

√

b

a
S2(t)v0, for all t ≥ 0. (3.25)

Finally, from (3.25) in (3.18) we get (3.15).

Theorem 3.4. Assume p = 0 and u0 ≥ r/s for all x ∈ R. Then we have

‖v(t)‖ ≤ ‖v0‖ , for all t ≥ 0. (3.26)

Moreover, if there is a constant k > r/s such that u0 > k for all x ∈ R, then

‖u(t)‖ ≤
(

1 +
q

ks − r
‖u0‖

)

‖v0‖ , for all t ≥ 0, (3.27)

and

‖v(t)‖ ≤ e−(ks−r)t ‖v0‖ , for all t ≥ 0. (3.28)

In particular, v −→ 0 uniformly in x ∈ R as t −→ ∞.
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Proof. For p = 0 and u0 ≥ r/s , from (2.1) we get

u(t) ≥ r/s, for all t ≥ 0. (3.29)

Setting B(t) = r − su(t), we have

vt = [A2 + B(t)] v(t). (3.30)

As the linear operator B(t) is dissipative on X [18], A2 + B(t) generates for each t fixed a

semigroup of contractions. Whence A2 + B(t) generates on X a system of evolution P(t, τ) of

contractions [18]. Whence the solution to (3.17)–(1.3) is

v(t) = P(t, 0)v0, for all t ≥ 0. (3.31)

This implies (3.26).

If u0 ≥ k > r/s , then from (1.1) we get u(t) ≥ k, and consequently r − su(t) ≤ r − ks < 0

for any t ≥ 0. Setting ω := ks − r ( ω > 0), equation (1.2) can be written in the form

v(t) = [A2 + B(t) + ωI] v(t)− ωv(t). (3.32)

The dissipative operator B(t) + ωI generates on X a system of evolution G(t, τ) of contrac-

tions. Consequently, A2 + B(t) generates a system of evolution U(t, τ) given by

U(t, τ) = e−ω(t−τ)G(t, τ).

Hence the solution v(t) of (3.32)–(1.3) can be written in the form

v(t) = U(t, 0)v0 = e−ωtG(t, 0)v0, for all t ≥ 0. (3.33)

This implies estimate (3.13). Using (1.1), (3.33) and Gronwall’s lemma we get (3.15).

In what follows, we denote by C± the closed subspaces of X defined as follows

C± :=

{

u ∈ X such that : lim
x→±∞

u(x) exists

}

.

Lemma 3.5. Let f ∈ C± be such that f+, f− > 0. Then for any ε > 0 there exists t∗ > 0 such that

[

Sj(t) f
]

(x) ≥ f ∗ − ε, for all x ∈ R,

where f ∗ := min ( f+, f−).

Proof. The proof is similar to that of [4, Lemma 5.3].

In what follows we denote u±
0 = limx→±∞ u0(x) and u∗

0 = min
{

u−
0 , u+

0

}

.

Theorem 3.6. Assume p = 0 and u0 ∈ C±. If u∗
0 > r/s, then there exists t∗ > 0 and three positive

constants C1, C2 and ω∗ such that

‖v(t)‖ ≤ C1e−ω∗(t−t∗), for all t ≥ t∗, (3.34)

‖u(t)‖ ≤ C2, for all t ≥ t∗. (3.35)
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Proof. Choose ε > 0 such that u∗
0 − ε > r/s, then by Lemma 3.5, there exists t∗ > 0 such that

[S1(t)u0] (x) ≥ u∗
0 − ε, for any x ∈ R. We then have u(t) ≥ u∗ − ε, for any t ≥ t∗. Using

Theorem 3.4 with initial data (u(t∗), v(t∗)) and k = u∗
0 − ε, ω∗ = ks − r, we then have

‖v(t)‖ ≤ ‖v(t∗)‖ e−ω∗(t−t∗), for all t ≥ t∗.

We get (3.34) by setting C1 = ‖v(t∗)‖.

Now, combining (2.3) and (3.34) we infer

‖u(t)‖ ≤ ‖u0‖+ qC1eω∗t∗
∫ t

0
e−ω∗τ ‖u(τ)‖ dτ, for all t ≥ t∗.

The Gronwall inequality yields

‖u(t)‖ ≤ ‖u0‖ e
qC1
ω∗ eω∗ t∗

= C2, for all t ≥ t∗.

Whence (3.35).

4 Stability of the solution

Definition 4.1. We say that the solution to the problem (1.1)–(1.2)–(1.3) is unconditionally

stable on R+, if for all T > 0 and all ε > 0, there exist δ = δ(T, ε) > 0 such that for all

solution (u, v) with initial condition (u0, v0) to the same problem satisfying ‖u0 − u0‖ < δ and

‖v0 − v0‖ < δ we have ‖u(t)− u(t)‖ < ε and ‖v(t)− v(t)‖ < ε for all t ∈ [0, T].

Proposition 4.2. The solution of the problem (1.1)–(1.2) is unconditionally stable on R+.

Proof. From the integral writin of the solution (u, v) and (u, v) we get

‖u(t)− u(t)‖ ≤ ‖u0 − u0‖+
∫ t

0
{p ‖u(τ)− u(τ)‖+ q ‖u(τ)v(τ)− u(τ)v(t)‖} dτ, (4.1)

‖v(t)− v(t)‖ ≤ ‖v0 − v0‖+
∫ t

0
{r ‖v(τ)− v(τ)‖+ s ‖u(τ)v(τ)− u(τ)v(t)‖} dτ. (4.2)

Setting Φ = (u, v) , Φ = (u, v) , Φ0 = (u0, v0) , Φ0 = (u0, v0) and define

‖Φ(t)‖ = ‖(u(t), v(t))‖ = ‖u(t)‖+ ‖v(t)‖; then from (4.1)–(4.2) we get

∥

∥Φ(t)− Φ(t)
∥

∥ ≤
∥

∥Φ0 − Φ0

∥

∥+ (p + r)
∫ t

0
‖u(τ)− u(τ)‖ dτ

+ (q + s)
∫ t

0
‖u(τ)v(τ)− u(τ)v(t)‖ dτ.

(4.3)

Let ε > 0 and T > 0. As u, v, u, v ∈ C (R+; X); then, they are bounded over [0, T]. Define

‖u‖∞ = sup
t∈[0,T]

‖u(t)‖ , for all u ∈ C
(

R
+; X

)

, (4.4)

then we have

‖uv − uv‖∞ ≤ M
∥

∥Φ(t)− Φ(t)
∥

∥ , for all t ∈ [0, T] , (4.5)

where M = ‖u‖∞ + ‖v‖∞.
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From (4.3) and (4.5) we get

∥

∥Φ(t)− Φ(t)
∥

∥ ≤
∥

∥Φ0 − Φ0

∥

∥+ [p + r + M(q + s)]
∫ t

0

∥

∥Φ(τ)− Φ(τ)
∥

∥ dτ. (4.6)

Using Gronwall inequality we obtain

∥

∥Φ(t)− Φ(t)
∥

∥ ≤
∥

∥Φ0 − Φ0

∥

∥ e[p+r+M(q+s)]t, for all t ∈ [0, T] . (4.7)

The estimate (4.6) gives the stability of the solution to the problem (1.1)–(1.2)–(1.3).

5 Remarks

Remark 5.1. In turns out that if u0, v0 ∈ C+ then the diffusive system for x large will behave

like the system of ordinary differential equations associated to it, and hence, for x large can

be replaced by the latter which is simpler to analyze [7]

dU(t)

dt
= −pU(t) + qU(t)V(t), for all t > 0,

dV(t)

dt
= +rU(t)− sU(t)V(t), for all t > 0,

satisfying the initial data

U(0) = lim
x→+∞

u0(x), V(0) = lim
x→+∞

v0(x),

where

U(t) = lim
x→+∞

u(x, t), V(t) = lim
x→+∞

u(x, t)

This result is based on the fact that if h∈C+ with h+= limx→+∞ h(x), then limx→+∞

[

Sj(t)h
]

(x)=

h+, for j = 1, 2.

The same thing holds if u0, v0 ∈ C−.

Remark 5.2. The same analysis can also be done for x ∈ [0,+∞[ . In this case, the explicit

formula associated to (1.1)–(1.2)–(1.3)

u(t) = e−ptS1(t)u0 +
∫ t

0
e−p(t−τ)S1(t − τ) f (u(τ), v(τ)) dτ,

v(t) = e+rtS2(t)u0 +
∫ t

0
e+r(t−τ)S2(t − τ)g (u(τ), v(τ)) dτ,

will be

u(x, t) =
∫ ∞

0
N1(x, ξ, t)u0(ξ)dξ +

∫ t

0

x

t − τ
K1(x, t − τ)u1(τ)dτ

+
∫ t

0

∫ +∞

0
N1(x, ξ, t − τ) f (u, v)(ξ, τ)dξdτ,

and

v(x, t) =
∫ ∞

0
N2(x, ξ, t)v0(ξ)dξ ++

∫ t

0

x

t − τ
K2(x, t − τ)v1(τ)dτ

+
∫ t

0

∫ +∞

0
N2(x, ξ, t − τ)g(u, v)(ξ, τ)dξdτ,
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where

N1(x, ξ, t) = K1(x − ξ, t)− K1(x + ξ, t), K1(x, t) =
1√

4πat
exp

(

−|x + νt|2
4at

)

,

N2(x, ξ, t) = K2(x − ξ, t)− K2(x + ξ, t), K2(x, t) =
1√

4πbt
exp

(

−|x + µt|2
4bt

)

,

and

u1(t) = u(0, t), v1(t) = v(0, t),

with u1, v1 bounded. These expressions can be deduced from [17, Chapter 3, Section 3].

It will be interesting to perform the same analysis for the case x ∈ [0,+∞[ with other

boundary conditions.

Remark 5.3. For x ∈ R
n (n ≥ 2) and replacing auxx and bvxx in (1.1)–(1.2) by the second order

uniform elliptic operators

L1u =
n

∑
i,j=1

(

aij(x)uxj

)

uxi
, L2u =

n

∑
i,j=1

(

bij(x)vxj

)

vxi
,

the problem deserves to be studied in appropriate functional spaces using the results in

Aronson [2] and [3].
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1 Introduction and main results

This paper was motivated by some works that had appeared in recent years concerning the
following Klein–Gordon equation with Born–Infeld theory on R3:

{

−∆u + [m2 − (ω + φ)2]u = |u|p−2u, x ∈ R3,

∆φ + β∆4φ = 4π(ω + φ)u2, x ∈ R3,
(1.1)

where ∆4φ = div(|∇φ|2∇φ). Such a system deduced by coupling the Klein–Gordon equation

ψtt − ∆ψ + m2ψ − |ψ|p−2ψ = 0

with the Born–Infeld theory

LBI =
b2

4π

(

1 −

√

1 −
1
b2 (|E|2 − |B|2)

)

,

BCorresponding author. Email: linli@ctbu.edu.cn; lilin420@gmail.com
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where ψ = ψ (x, t) ∈ C (x ∈ R3, t ∈ R), m is a real constant and 2 < p < 6, E is the electric
field and B is the magnetic induction field. For more details on the physical aspects of the
problem we refer the readers to see [13] and the references therein.

A few existence results for the system (1.1) have been proved via modern variational meth-
ods under various hypotheses on the nonlinear term. We recall some of them as follows.
d’Avenia and Pisani [13] was pioneered work with this system. They found the existence
of infinitely many radially symmetric solutions for system (1.1) by using Z2-Mountain Pass
Theorem, when 4 < p < 6 and |ω| < |m|. Later, in [21] the range p ∈ (2, 4] was also covered

provided
√

( p
2 − 1

)

|m| > ω > 0. Replacing |u|p−2u by |u|p−2u + |u|4u in problem (1.1), Teng
and Zhang in [26] get that problem

{

−∆u + [m2 − (ω + φ)2]u = |u|p−2u + |u|4u, x ∈ R3,

∆φ + β∆4φ = 4π(ω + φ)u2, x ∈ R3,

has at least a nontrivial solution by using Mountain Pass Theorem, when 4 < p < 6 and
ω < m. Subsequently, replacing |u|p−2u by |u|p−2u + h(x) in problem (1.1), Chen and Li in [9]
get the existence of two nontrivial solutions for nonhomogeneous problem

{

−∆u + [m2 − (ω + φ)2]u = |u|p−2u + h(x), x ∈ R3,

∆φ + β∆4φ = 4π(ω + φ)u2, x ∈ R3,

by using the Ekeland variational principle and the Mountain Pass Theorem, when |m| > ω > 0

and 4 < p < 6 or
√

( p
2 − 1

)

|m| > ω > 0 and 2 < p ≤ 4. Other related results about Klein–

Gordon equation coupled with Born–Infeld theory on R3 can be found in [28] and [29]. By
the way, we should point out that if β = 0 then problem (1.1) becomes

{

−∆u + [m2 − (ω + φ)2]u = |u|p−2u, x ∈ R3,

∆φ = 4π(ω + φ)u2, x ∈ R3,

for the well-known Klein–Gordon–Maxwell equations. Such problems have been intensively
studied in recent years as for example in [6–8, 10–12, 14, 18, 19, 22].

In this paper we consider the following Klein–Gordon equation coupled with Born–Infeld
theory:

{

−∆u +
[

m2 − (ω + φ)2]V(|x|)u = K(|x|) f (u), x ∈ R
2,

∆φ + β∆4φ = 4π(ω + φ)V(|x|)u2, x ∈ R
2,

(1.2)

where ω is a positive frequency parameter, β depends on the so-called Born–Infeld parameter,
m is a real constant, φ : R2 → R and V, K : R2 → R are radial potentials which may
be unbounded, singular at the origin or vanishing at infinity and the nonlinear term f (s) is
allowed to enjoy an critical exponential growth in the sense of the classical Trudinger–Moser
inequality which will be stated later.

The bi-dimensional case is very special and quite delicate, because as we know for domains
Ω ⊂ R2 with finite volume, the Sobolev embedding theorem assures that H1

0(Ω) →֒ Lq(Ω) for
any q ∈ [1,+∞), but, due to a function with a local singularity and this causes the failure of
the embedding that H1

0(Ω) 6 →֒ L∞(Ω). Therefore, and in order to overcome this trouble, the
Trudinger–Moser inequality was established independently by Yudovič [17], Pohožaev [23]
and Trudinger [27], came as a substitute of the Sobolev inequality. It asserts that the existence
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of a constant α > 0 such that H1
0(Ω) →֒ Lφ(Ω), where Lφ(Ω) is the Orlicz space determined

by the Young function φ(t) = eαt2
− 1. Later, Moser in [20] sharpened this result by finding

the best constant α in the embedding above. More precisely, he proved that for any α ≤ 4π,
there exists a constant c0 > 0 such that

sup
‖∇u‖

L2(Ω)≤1

1
|Ω|

∫

Ω

eαu2
dx ≤ c0. (1.3)

Moreover, the constant 4π is sharp in the sense that if α > 4π, then the supremum above will
become infinity.

Throughout this work, the potentials V, K : R2 → R are positive, radial and continuous
functions assuming the following behaviors at the origin and infinity:

(V) There exist real numbers a0 and a∞ with a0, a∞ > −2 such that

lim inf
r→0+

V(r)

ra0
> 0 and lim inf

r→+∞

V(r)

ra∞

> 0;

(K) there exist real numbers b0 and b∞ with b∞ < a∞, b0 > −2 such that

lim sup
r→0+

K(r)

rb0
< ∞ and lim sup

r→+∞

K(r)

rb∞

< ∞.

Hereafter, we say that (V, K) ∈ K if the assumptions (V) and (K) hold.
As we mentioned initially and motivated by the aforementioned works, we consider sys-

tem (1.2) involving unbounded, singular at the origin or decaying to zero at infinity radial
potentials. Recently, much attention has been paid to the Schrödinger equations with po-
tentials with these kinds of behaviors. For example, we can cite [2, 24]. In [24], the authors
studied the existence and multiplicity of solutions for the problem

{

−∆u + V(|x|)u = K(|x|) f (u), x ∈ RN

|u(x)| → 0 as |x| → ∞,

where the nonlinearity considered was f (s) = |s|p−2s, with 2 < p < 2∗ = 2N
N−2 for N ≥ 3

is the limiting exponent in the Sobolev embedding and 2 < p < ∞ if N = 2. Succeeding
this study, Albuquerque et al. in [2] studied the above problem in the critical case suggested
by the so-entitled Trudinger–Moser inequality (1.3). To our best knowledge, there are no
literature addressing the system (1.2) where the potentials V and K have these features and
the nonlinearity f has exponential critical growth in two dimensions. Hence, our results are
new and complement the above results to some extent.

In order to state our results, we need to introduce some notations. If 1 ≤ p < ∞ we define
the weighted Lebesgue spaces

Lp(R2; K) :=
{

u : R
2 → R : u is measurable and

∫

R2
K(|x|)|u|p dx < ∞

}

,

equipped with the norm

‖u‖p;K =

(

∫

R2
K(|x|)|u|p dx

)
1
p

.
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Similarly, we can define Lp(R2; V) with its correspondent norm

‖u‖p;V =

(

∫

R2
V(|x|)|u|p dx

)
1
p

.

We also define the Hilbert space

Y :=
{

u ∈ L2
loc(R

2) : |∇u| ∈ L2(R2) and
∫

R2
V(|x|)u2 dx < ∞

}

endowed with the norm ‖u‖ :=
√

〈u, u〉 induced by the scalar product

〈u, v〉 :=
∫

R2
[∇u∇v + V(|x|)uv]dx. (1.4)

Let C∞

0 (R2) be the set of smooth functions with compact support. Equivalently, the func-
tional space Y can be regarded as the completion of C∞

0 (R2) under the norm ‖ · ‖. Further-
more, the subspace

E := Yrad = {u ∈ Y : u is radial},

which is closed in Y, and thus it is a Hilbert space itself. Also, denote by D the completion of
C∞

0 (R2) with respect to the norm

‖φ‖D :=
(

∫

R2
|∇φ|2 dx

)
1
2

+

(

∫

R2
|∇φ|4 dx

)
1
4

.

Remark 1.1. Under the behavior of V at infinity in the hypothesis (V) we can show that ‖ · ‖
defined above is a norm in Y. In fact, we only need to show that if ‖u‖ = 0, then u ≡ 0.
If
∫

R2 |∇u|2 dx = 0, u is a constant, but since lim inf|x|→∞ |x|−a∞ V(|x|) > 0 we should have
u = 0.

Here, we are interested in the case where the nonlinearity f (s) has maximal growth on
s which allows us to treat the problem (1.2) variationally. It is assumed that f : R → R is
continuous, f (0) = 0 and f behaves like eαs2

as s → ∞.
In order to perform the minimax approach to the problem (1.2), we also need to make some

suitable assumptions on the behavior of f (s). More precisely, we shall assume the following
growth conditions:

( f0) (small order at the origin) lim
s→0+

f (s)

s
= 0;

( f1) (critical exponential growth) there exists α0 > 0 such that

lim
s→∞

| f (s)|

eαs2 = 0, for any α > α0, lim
s→∞

| f (s)|

eαs2 = +∞, for any α < α0;

( f2) (Ambrosetti–Rabinowitz type condition) there exists θ > 2(ω2 + 1) > 2 such that

0 ≤ θF(s) := θ

∫ s

0
f (t)dt ≤ s f (s), ∀s ∈ R;

( f3) there exist ϑ > 2 and µ > 0 such that

F(s) ≥
µ

ϑ
|s|ϑ, ∀s ∈ R.
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In this work, we say that the pair (u, φ) is a weak solution of (1.2) if (u, φ) ∈ Y ×D and it
holds the equalities

∫

R2

(

∇u · ∇v + [m2 − (ω + φ)2]V(|x|)uv
)

dx =
∫

R2
K(|x|) f (u)v dx (1.5)

and

−
∫

R2

(

1
4π

(

(1 + β|∇φ|2)∇φ · ∇η
)

+ V(|x|)(φ + ω)u2η

)

dx = 0, (1.6)

for all v ∈ Y and η ∈ D. We point out that from ( f0) the identically zero function is the trivial
solution of (1.2). We say that a pair (u, φ) is called a ground state solution of system (1.2) if (u, φ)

is a weak solution of (1.2) which has the least energy among all nontrivial weak solutions of
system (1.2).

The main results we provide in this paper is announced below.

Theorem 1.2. Suppose that (V, K) ∈ K and ( f0)–( f3) are satisfied. If |m| > ω > 0, then there exists

µ0 > 0 such that system (1.2) has a nontrivial solution (u0, φ), for all µ > µ0, with u0 nonnegative.

Theorem 1.3. Under the conditions of Theorem 1.2 and supposing that s 7→ f (s)
s is increasing for

s > 0, then the solution obtained in Theorem 1.2 is a ground state.

Remark 1.4. Our interest in ground states solutions is justified by the fact that they in general
exhibit some type of stability and, from a physical point of view, the stability of a standing
wave is a crucial point to establish the existence of stand waves solutions.

Remark 1.5. Our existence result complements the study [4, 10] in the sense that we study
a class of systems with critical exponential growth and involving unbounded, singular or
decaying radial potentials.

We observe that the hypotheses ( f0)–( f3) have been used in many papers to find solutions
using the classical Mountain-Pass Theorem introduced by Ambrosetti and Rabinowitz in the
celebrated paper [5], see for instance [15, 16] and references therein. It is worth pointing out
that when we deal with critical nonlinearities like the exponential at infinity and in the whole
space, the problem becomes much more complicated due to the possible lack of compactness.
There is other considerable difficulty in dealing with systems like (1.2), which we will treat
throughout the text, due to a not very good variational structure since the indefiniteness of
the action associated to this set of equations.

The rest of the paper is arranged as follows. In Section 2, we introduce some auxiliary
embedding results. In Section 3, we establish a variational setting of our problem. Finally,
Section 4 is devoted to the proof of the main results.

2 Some useful auxiliary embedding results

To prove Theorem 1.2 and for the reader’s convenience, we need review some embedding
lemmas and a Trudinger–Moser type inequality built in [3] (see also [2]) where one can refer
to the proofs of these results and related comments.

In the following, Br denotes the open ball in R2 centered at the origin with radius r and
BR \ Br denotes the annulus with interior radius r and exterior radius R. Throughout the
paper, we use C or Ci (i = 0, 1, 2, . . .) to denote (possibly different) positive constants.
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Lemma 2.1 ([2, Lemma 2.1]). Suppose that (V) holds. Then there exist C > 0 and R > 1 such that,

for all u ∈ E, we have

|u(x)| ≤ C‖u‖|x|−
a∞+2

4 , for |x| ≥ R.

For any open set A ⊂ R2 we define W1,2
rad(A; V) =

{

u|A : u ∈ E
}

.

Lemma 2.2 ([25, Lemma 3]). Assume that (V, K) ∈ K. For any fixed 0 < r < R < ∞, the

embeddings

W1,2
rad(BR \ Br; V) →֒ Lp(BR \ Br; K), 1 ≤ p ≤ ∞,

are compact.

Remark 2.3. For R ≫ 1, the embedding

W1,2
rad(BR; V) →֒ W1,2(BR)

is continuous. That last result can be obtained by proceeding exactly as in [24, Lemma 4].

Using the above lemmas, the authors in [3] (see also [2]) have obtained the following crucial
embedding result.

Lemma 2.4 ([3, Lemma 2.4]). Assume that (V, K) ∈ K. Then the embeddings E →֒ Lq(R2; K) are

compact for all 2 ≤ q < ∞.

With the aid of classical Trudinger–Moser inequality (1.3) and that one involving singular
weights obtained by Adimurthi and K. Sandeep in [1, Theorem 2.1] (this used in 2-D), by using
Lemmas 2.1 and 2.4, the authors in [3] established the following Trudinger–Moser inequality
in the functional space E.

Theorem 2.5 ([3, Theorem 1.3]). Assume that (V, K) ∈ K. Then, for any u∈E and α>0, we have

that
(

eαu2
− 1
)

∈L1(R2; K). Moreover, if α<λ :=min{4π, 4π(1 + b0
2 )}, there holds

sup
u∈E: ‖u‖≤1

∫

R2
K(|x|)

(

eαu2
− 1
)

dx < ∞. (2.1)

An immediate consequence of Theorem 2.5 is the following:

Corollary 2.6. Under the assumptions of Theorem 2.5, if u ∈ E is such that ‖u‖ ≤ M <

√

λ
α , then

there exists a constant C = C(M, α) > 0 independent of u such that
∫

R2
K(|x|)

(

eαu2
− 1
)

dx ≤ C.

3 Variational formulation

Since we are interested in solutions (u, φ) such that u is nontrivial nonnegative, it is convenient
to define f (s) = 0 for all s ≤ 0. Let α > α0 and q ≥ 2. From ( f0) and ( f1), for any given ε > 0,
there exists b1 > 0 such that

|F(s)| ≤
ε

2
s2 + b1|s|

q
(

eαs2
− 1
)

, ∀s ∈ R. (3.1)

Given u ∈ E, by (3.1) it yields
∫

R2
K(|x|)F(u)dx ≤

ε

2

∫

R2
K(|x|)u2 dx + b1

∫

R2
K(|x|)|u|q

(

eαu2
− 1
)

dx.



Ground state solution for a nonlinear Klein–Gordon equation in R2 7

From Lemma 2.4, the first integral in right-hand side is finite. Now, let r1, r2 > 1 be such that
1
r1
+ 1

r2
= 1. Hölder’s inequality, Lemma 2.4 and (2.1) imply that

∫

R2
K(|x|)|u|q

(

eαu2
−1
)

dx≤

(

∫

R2
K(|x|)|u|qr1 dx

)
1
r1
(

∫

R2
K(|x|)

(

eαr2u2
−1
)

dx

)
1
r2

,

which is finite, where we have used the elementary inequality

(es − 1)r ≤ ers − 1, (3.2)

for all r ≥ 1, s ≥ 0. Thereby, the energy functional J : E ×D → R associated to system (1.2)
and given by

J(u, φ) :=
1
2

∫

R2

(

|∇u|2 +
[

m2 − (ω + φ)2]V(|x|)u2)dx

−
1

8π

∫

R2
|∇φ|2 dx −

β

16π

∫

R2
|∇φ|4 dx −

∫

R2
K(|x|)F(u)dx

is well-defined. Using standard arguments, one can easily show that J ∈ C1(E ×D, R) and
with the partial derivatives given by

Ju(u, φ)v =
∫

R2

(

∇u · ∇v + [m2 − (ω + φ)2]V(|x|)uv − K(|x|) f (u)v
)

dx

and

Jφ(u, φ)η = −
∫

R2

(

1
4π

(

(1 + β|∇φ|2)∇φ · ∇η
)

+ V(|x|)(φ + ω)u2η

)

dx,

for v ∈ E and η ∈ D. Consequently, the critical points (u, φ) ∈ E ×D of J satisfy (1.5) and
(1.6) for all v ∈ E and η ∈ D.

The functional J has got a strong indefiniteness (unbounded both from below and from
above on infinite dimensional subspace). For this reason the usual tools of the critical point
theory cannot be used in a direct way. So to avoid this difficulty we will need the follow-
ing technical result which proof is based in the ideas introduced by [13, Lemma 3] and [21,
Lemma 2.3].

Lemma 3.1. For any fixed u ∈ E, there exists a unique critical point φ = φu ∈ D for the functional

Eu(φ) :=
∫

R2

[

1
8π

|∇φ|2 +
β

16π
|∇φ|4 +

(

ω +
1
2

φ

)

V(|x|)φu2
]

dx

defined on D (i.e., Eu is the energy functional associated to the second equation in (1.2)). Moreover:

1. φu ≤ 0 and, if u(x) 6= 0, −ω ≤ φu(x);

2. if u is radially symmetric, then φu is radial too.

Proof. We consider the minimizing argument on Eu. Obviously, the functional Eu is well-
defined on D. Furthermore, it is strictly convex, coercive and weakly lower semi-continuous.
Indeed, the coercivity of Eu on D is the following fact that

Eu(φ) =
∫

R2

[

1
8π

|∇φ|2 +
β

16π
|∇φ|4 +

1
2
(ω + φ)2V(|x|)u2 −

1
2

ω2V(|x|)u2
]

dx

≥
∫

R2

[

1
8π

|∇φ|2 +
β

16π
|∇φ|4

]

dx −
ω2

2

∫

R2
V(|x|)u2dx.
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The convexity and weakly lower semi-continuity of Eu on D is obviously true. Hence, there is
a unique minimizer φu of the functional Eu on D, concluding the first part of the lemma. For
the second part, since φu is a critical point of Eu, we get

−
∫

R2

(

1
4π

(

(1 + β|∇φu|
2)∇φu · ∇η

)

+ V(|x|)(φu + ω)u2η

)

dx = 0, (3.3)

for all η ∈ D. Then, if we take η = φ+
u := max{φu, 0}, that is, the positive part of φu, in (3.3),

we obtain
∫

R2

(

|∇φ+
u |

2 + β|∇φ+
u |

4
)

dx = −4π

∫

R2
(ω + φ+

u )φ
+
u V(|x|)u2 dx ≤ 0,

which implies that φ+
u ≡ 0 and, consequently, φu ≤ 0. On the other hand, if we take η =

(ω + φu)
− := max{−(ω + φu), 0}, that is, the negative part of ω + φu, in (3.3), we get

∫

{x∈R2 :φu(x)≤−ω}
|∇φ−

u |
2 dx+

∫

{x∈R2 :φu(x)≤−ω}
β|∇φ−

u |
4 dx

= −4π

∫

{x∈R2:φu(x)≤−ω}
V(|x|)[(φu + ω)−]2u2 dx ≤ 0,

so that (φu + ω)− ≡ 0 where u 6= 0.
Finally, let O(2) denote the group of rotations in R2. Then for every g ∈ O(2) and h :

R2 → R, set Tg(h)(x) := h(gx). It is well-known that

∆Tg(φu) = Tg(∆φu) and ∆4Tg(φu) = Tg(∆4φu).

With this in mind, it is easy to verify that φTg(u) and Tg(φu) are critical point of ETg(u). Hence,
by the uniqueness of the critical point of ETg(u), we infer that

φTg(u) = Tg(φu),

for all g ∈ O(2). In particular, if u is radially symmetric, i.e., u ∈ Y is a fixed point for the
action Tg, φu is radial too and the result follows. This concludes the proof of the lemma.

So, we can consider a C1 functional I : E → R defined by I(u) := J(u, φu), that is,

I(u) =
1
2

∫

R2

(

|∇u|2 +
[

m2 − (ω + φu)
2]V(|x|)u2)dx

−
1

8π

∫

R2
|∇φu|

2 dx −
β

16π

∫

R2
|∇φu|

4 dx −
∫

R2
K(|x|)F(u)dx (3.4)

with Gâteaux derivative given by

I′(u)v =
∫

R2

(

∇u · ∇v +
(

m2 − ω2)V(|x|)uv − 2V(|x|)ωφuuv − V(|x|)φ2
uuv
)

dx

−
∫

R2
K(|x|) f (u)v dx, (3.5)

for all v ∈ E.
After using (3.3) with φu and through simple computation, we deduce

−
∫

R2

(

|∇φu|
2 + β|∇φu|

4
)

dx = 4π

∫

R2
(ω + φu)φuV(|x|)u2 dx. (3.6)
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Therefore, the reduced functional also takes the form

I(u) =
1
2

∫

R2

(

|∇u|2 +
(

m2 − ω2)V(|x|)u2 + V(|x|)φ2
uu2)dx

+
1

8π

∫

R2
|∇φu|

2 dx +
3β

16π

∫

R2
|∇φu|

4 dx −
∫

R2
K(|x|)F(u)dx. (3.7)

Throughout the rest of the paper, and according the convenience, we will use both forms (3.4)
or (3.7). Now, following [6], a pair (u, φ) ∈ E ×D is a critical point for J if and only if u is
a critical point for I with φ = φu. Hence, we will look for its critical points. The next lemma
shows that E actually is, in some sense, a natural constraint for finding weak solutions of
problem (1.2). In fact, it is a symmetric criticality type result.

Lemma 3.2. Assume that (V, K) ∈ K and the hypothesis ( f1) holds. Then, every critical point u ∈ E

of I : E → R is a weak solution to problem (1.2), that is, satisfies (1.5) with φ = φu.

Proof. We will show that if u ∈ E satisfies (1.5) with φ = φu and for all v ∈ E, then (1.5)
holds also true for all v ∈ Y. Let u ∈ E. By Hölder’s inequality, Lemma 2.4 and the growth
assumption ( f1) on nonlinear term f yield a positive constant C = C(‖u‖) such that

∣

∣

∣

∣

∫

R2
K(|x|) f (u)v dx

∣

∣

∣

∣

≤ C‖v‖, ∀v ∈ Y.

Thus, the linear functional Tu : Y → R defined by

Tu(v) :=
∫

R2

(

∇u · ∇v + [m2 − (ω + φu)
2]V(|x|)uv

)

dx −
∫

R2
K(|x|) f (u)v dx,

is well-defined and continuous on Y and so, by the Riesz Representation Theorem in the space
Y with the inner product (1.4), there exists a unique ũ ∈ Y such that Tu(ũ) = ‖ũ‖2 = ‖Tu‖Y′ ,
where Y′ denotes the dual space of Y. Then, by using change of variables, one has for each
v ∈ Y

Tu(gv) = Tu(v) and ‖gv‖ = ‖v‖, for all g ∈ O(2),

whence, applying with v = ũ, one deduce, by uniqueness, gũ = ũ, for all g ∈ O(2), which
means, ũ ∈ E. Hence, since Tu(v) = 0 for all v ∈ E, one has Tu(ũ) = 0, that is, ‖Tu‖Y′ = 0 and
therefore (1.5) with φ = φu ensues. This concludes the proof of the lemma.

In the next lemma, we show that the functional I satisfies the geometric conditions of the
Mountain-Pass Theorem.

Lemma 3.3. Suppose that (V, K) ∈ K and ( f0)–( f2) hold. If |m| > ω > 0, then

1. there exist some constants τ, ρ > 0 such that I(u) ≥ τ provided ‖u‖ = ρ;

2. there exists v ∈ E satisfying ‖v‖ > ρ and I(v) < 0.

Proof. 1. From (3.1), we get

∫

R2
K(|x|)F(u)dx ≤

ε

2

∫

R2
K(|x|)u2 dx + b1

∫

R2
K(|x|)|u|q

(

eαu2
− 1
)

dx.
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Let r1, r2 > 1 be such that 1
r1
+ 1

r2
= 1. By Hölder’s inequality and (3.2), we infer

∫

R2
K(|x|)|u|q

(

eαu2
− 1
)

dx ≤

(

∫

R2
K(|x|) |u|qr1 dx

)
1
r1
(

∫

R2
K(|x|)

(

eαr2u2
− 1
)

dx

)
1
r2

≤ ‖u‖
q
qr1;K

(

∫

R2
K(|x|)

(

e
αr2 M2

(

u
‖u‖

)2

− 1

)

dx

)
1
r2

.

Choosing r2 > 1 sufficiently close to 1 and 0 < M <

(

λ
r2α

)
1
2 , then for ‖u‖ ≤ M, it follows from

Corollary 2.6 that
∫

R2
K(|x|)

(

e
αr2 M2

(

u
‖u‖

)2

− 1

)

dx ≤ C.

Hence, from Lemma 2.4, we deduce that
∫

R2
K(|x|)F(u)dx ≤

C1ε

2
‖u‖2 − C2‖u‖q.

Consequently, since |m| > ω > 0, by (3.7) we have

I(u) ≥

(

min{1, m2 − ω2}

2
−

C1ε

2

)

‖u‖2 − C2‖u‖q

=

(

min{1, m2 − ω2}

2
−

C1ε

2

)

ρ2 − C2ρq

and, choosing ε > 0 sufficiently small such that C3 := min{1,m2−ω2}
2 − C1ε

2 > 0,

I(u) ≥ C3ρ2 − C2ρq.

Inasmuch q > 2, for ρ > 0 small enough, there exists τ > 0 such that

I(u) ≥ τ, for any u ∈ E with ‖u‖ = ρ.

2. By the Ambrosetti–Rabinowitz type condition ( f2), for all δ > 0, there exists a positive
constant C4 = C4(δ) such that F(s) ≥ C4|s|θ − δs2, for all s ∈ R. Let ϕ ∈ C∞

0,rad(R
2) be such

that supp(ϕ) is a compact set of R2. Thus, by (3.4) and Lemma 2.4, we have

I(tϕ) ≤
max{1, m2}

2
t2‖ϕ‖2 − C4tθ

∫

supp(ϕ)
K(|x|)|ϕ|θ dx + δt2

∫

supp(ϕ)
K(|x|)ϕ2 dx

≤

(

max{1, m2}

2
+ C5δ

)

t2‖ϕ‖2 − C4tθ
∫

supp(ϕ)
K(|x|)|ϕ|θ dx

→ − ∞, as t → +∞,

since θ > 2. Therefore, for t large enough and taking v := tϕ we conclude that I(v) < 0 and
the lemma is proved.

Next, we investigate the compactness conditions for the functional I. Recall that (un) ⊂ E

is a Palais–Smale, (P–S) for short, sequence at a level c ∈ R for the functional I if

I(un) → c, I′(un) → 0, as n → +∞,

where the second limit above occurs in the dual space E′. We say that I satisfies the Palais–
Smale compactness condition if any (P–S) sequence has a convergent subsequence.
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Lemma 3.4 (Boundedness). Let (un) ⊂ E be a (P–S) sequence at a level c ∈ R for the functional I.

Then (un) is bounded in E.

Proof. Let (un) ⊂ E be a (P–S) sequence at a level c ∈ R for the functional I. In order to check
that (un) is bounded in E, there are two cases to be considered: either θ > 4 or 2 < θ ≤ 4 and
θ − 2 > 2ω2.

Case 1: θ > 4. Combining (3.5), (3.6), (3.7) and ( f2) together we can estimate

θ(c + 1) + on(1)‖un‖

≥ θ I(un)− I′(un)un

=

(

θ

2
− 1
)

∫

R2

(

|∇un|
2 +

(

m2 − ω2)V(|x|)u2
n

)

dx

+

(

θ

2
+ 1
)

∫

R2
K(|x|)φ2

un
u2

n dx + 2
∫

R2
K(|x|)ωφun u2

n dx

+
θ

8π

∫

R2
|∇φun |

2 dx +
3βθ

16π

∫

R2
|∇φun |

4 dx +
∫

R2
K(|x|)[ f (un)un − θF(un)]dx

≥

(

θ

2
− 1
)

∫

R2

(

|∇un|
2 +

(

m2 − ω2)V(|x|)u2
n

)

dx + 2
∫

R2
K(|x|)(φun + ω)φun u2

n dx

+
θ

8π

∫

R2
|∇φun |

2 dx +
3βθ

16π

∫

R2
|∇φun |

4 dx

=

(

θ

2
− 1
)

∫

R2

(

|∇un|
2 +

(

m2 − ω2)V(|x|)u2
n

)

dx +

(

θ

8π
−

1
2π

)

∫

R2
|∇φun |

2 dx

+

(

3βθ

16π
−

β

2π

)

∫

R2
|∇φun |

4 dx

≥
max{θ − 2, m2 − ω2}

2
‖un‖

2.

Before passing to the next case, we need first to rewrite θ I(u) as follows. By (3.4) and (3.6),
we can write

θ I(un) =
θ

2

∫

R2

(

|∇un|
2 +

(

m2 − ω2)V(|x|)u2
n

)

dx − θ

∫

R2
V(|x|)ωφun u2

n dx

−
θ

2

∫

R2
V(|x|)φ2

un
u2

n dx −
θ

8π

∫

R2
|∇φun |

2 dx −
βθ

16π

∫

R2
|∇φun |

4 dx

−
∫

R2
K(|x|)θF(un)dx

=
θ

2

∫

R2

(

|∇un|
2 +

(

m2 − ω2)V(|x|)u2
n

)

dx −
θ

2

∫

R2
V(|x|)ωφun u2

n dx

+
βθ

16π

∫

R2
|∇φun |

4 dx −
∫

R2
K(|x|)θF(un)dx.

Now, we are able to treat the next case.

Case 2: 2 < θ ≤ 4 and θ − 2 > 2ω2. By using θ I(un) rewritten above, (3.5) and ( f2), we can
estimate

θ(c + 1) + on(1)‖un‖

≥ θ I(un)− I′(un)un

=

(

θ

2
− 1
)

∫

R2

(

|∇un|
2 +

(

m2 − ω2)V(|x|)u2
n

)

dx +
∫

R2
V(|x|)φ2

un
u2

n dx
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−

(

θ

2
− 2
)

∫

R2
V(|x|)ωφun u2

n dx +
βθ

16π

∫

R2
|∇φun |

4 dx

+
∫

R2
K(|x|)[ f (un)un − θF(un)]dx

≥

(

θ

2
− 1
)

∫

R2

(

|∇un|
2 + m2V(|x|)u2

n

)

dx − ω2
∫

R2
V(|x|)u2

n dx

≥

(

max{θ − 2, m2}

2
− ω2

)

‖un‖
2.

In any case, we infer that (un) stays bounded in E, concluding the proof of the lemma.

In view of the mountain-pass geometry of I assured by Lemma 3.3, we introduce the
mountain pass level

cµ := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ τ > 0,

where the set of paths is defined as

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0 and I(γ(1)) < 0} .

With the purpose to verify that I satisfies the Palais–Smale condition in certain levels of
energy we will need the following upper bound for the mountain-pass level cµ:

Lemma 3.5 (Level estimate). Suppose that ( f3) is satisfied with

µ ≥ µ0 := max







µ1,

[

2α0θ(ϑ − 2)‖K‖L1(B1)

λϑ(θ − 2)

]
ϑ−2

2 (2µ1

ϑ

)
ϑ
2







,

where µ1 =
ϑ max{1,m2}

(

4π+‖V‖
L1(B2)

)

2‖K‖
L1(B1)

. Then

cµ <
λ

2α0

(

1
2
−

1
θ

)

. (3.8)

Proof. We shall consider a cut-off function ϕ0 ∈ C∞

0 (R2) verifying

0 ≤ ϕ0 ≤ 1 in R
2, ϕ0 ≡ 1 in B1, ϕ0 ≡ 0 in Bc

2 and |∇ϕ0| ≤ 1 in R
2.

From (3.4) and ( f3), we get

I(ϕ0) ≤
max{1, m2}

2

∫

B2

(

|∇ϕ0|
2 + V(|x|)ϕ2

0
)

dx −
µ1

ϑ

∫

B2

K(|x|)|ϕ0|
ϑ dx

<
max{1, m2}

2

(

4π + ‖V‖L1(B2)

)

−
µ1

ϑ
‖K‖L1(B1)

= 0,

since µ1 =
ϑ max{1,m2}

(

4π+‖V‖
L1(B2)

)

2‖K‖
L1(B1)

. In particular,

max{1, m2}

2

∫

B2

(

|∇ϕ0|
2 + V(|x|)ϕ2

0
)

dx <
µ1

ϑ
‖K‖L1(B1)

. (3.9)
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According to the definition of cµ, (3.4), (3.9) and straightforward manipulations, we deduce
that

cµ ≤ max
t≥0

[

max{1, m2}

2
t2
∫

B2

(

|∇ϕ0|
2 + V(|x|)ϕ2

0
)

dx − tϑ µ

ϑ

∫

B2

K(|x|)|ϕ0|
ϑ dx

]

< max
t≥0

[µ1

ϑ
‖K‖L1(B1)

t2 −
µ

ϑ
‖K‖L1(B1)

tϑ
]

≤
‖K‖L1(B1)

ϑ
max
t≥0

[

µ1t2 − µtϑ
]

=
‖K‖L1(B1)

ϑ
(ϑ − 2)

(

2
µ

)
2

ϑ−2 (µ1

ϑ

)
ϑ

ϑ−2
. (3.10)

Thus, if

µ ≥

[

2α0θ(ϑ − 2)‖K‖L1(B1)

λϑ(θ − 2)

]
ϑ−2

2 (2µ1

ϑ

)
ϑ
2

,

we immediately arrive at estimate (3.8), concluding the proof of the lemma.

Corollary 3.6 (Behavior of the minimax level). The minimax level vanishes, i.e., cµ → 0 as µ →
+∞.

Proof. This can be easily checked as a byproduct from the proof of Lemma 3.5, specifically
estimate (3.10).

Taking into account Lemma 3.3, we may apply the Mountain-Pass Theorem without the
Palais–Smale compactness condition (see [5]) to guarantee the existence of a (P–S) sequence
(un) in E at the level cµ. To obtain the existence of nontrivial solutions to (1.2), the following
technical result will be useful and plays a crucial role in the proof of Theorem 1.2.

Lemma 3.7. The sequence (un) ⊂ E obtained above satisfies

sup
n≥1

‖ f (un)‖2;K < +∞. (3.11)

Proof. We begin the proof estimating the quantity θ I(un). For this aim, similarly was done in
the proof of Lemma 3.4, we also divide our proof into two cases about θ as follows.

Case 1: θ > 4.

θ I(un) = θ I(un)− I′(un)un + on(1)

≥
max{θ − 2, m2 − ω2}

2
‖un‖

2 + on(1) → θcµ, as n → +∞.

Hence, invoking the level estimate (3.8) and Corollary 3.6, for any µ > µ0, it follows that

θcµ

max{θ−2,m2−ω2}
2

<
λ

2α0
.

Case 2: 2 < θ ≤ 4 and θ − 2 > 2ω2.

θ I(un) = θ I(un)− I′(un)un + on(1)

≥

(

max{θ − 2, m2}

2
− ω2

)

‖un‖
2 + on(1) → θcµ, as n → +∞.
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Again, by virtue of (3.8) and Corollary 3.6, for any µ > µ0, it follows that

θcµ

max{θ−2,m2}
2 − ω2

<
λ

2α0
.

Thereby, in any case, we deduce that

lim sup
n→+∞

‖un‖
2
<

λ

2α0
,

and in view of Trudinger–Moser type inequality (2.1) we conclude that

sup
n≥1

∫

R2
K(|x|)

(

e2α0u2
n − 1

)

dx < +∞. (3.12)

On the other hand, by ( f0) and ( f1), and using the fact that 2α0 > α0, there exists a positive
constant C1 such that

| f (un)|
2 ≤ C1

(

u2
n + e2α0u2

n − 1
)

.

Therefore, having in mind that (un) is bounded in L2(R2; K) and (3.12), our lemma immedi-
ately follows.

4 Proof of the main results

In this section, we will prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let (un) ⊂ E be the (P–S) sequence at the level cµ. From Lemma 3.4, (un)

is bounded in E, which implies the weak convergence un ⇀ u0 in E. We shall prove that, up
to a subsequence, un → u0 strongly in E and (u0, φu0) ∈ E ×D is a weak solution of (1.2). Set

I1
n :=

∫

R2
K(|x|) f (un)(un − u0)dx (4.1)

and

I2
n =

∫

R2
K(|x|)φun un(un − u0)dx, I3

n =
∫

R2
K(|x|)φ2

un
un(un − u0)dx. (4.2)

We claim that I1
n, I2

n, I3
n → 0, as n → +∞. Let us to check these convergences in the following

steps:

Step 1: I1
n = on(1), as n → +∞. In fact, by Hölder’s inequality

|I1
n| ≤ ‖ f (un)‖2;K‖un − u0‖2;K.

The compact embedding E →֒ L2(R2; K) implies that un → u0 strongly in L2(R2; K). Conse-
quently,

‖un − u0‖2;K → 0, as n → +∞,

and from (3.11) we get the first convergence.
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Step 2: I2
n, I3

n → 0, as n → +∞. In fact, combining Hölder’s inequality, Lemmas 2.4, 3.1 and
the boundedness of (un) in E, we have

∣

∣I2
n

∣

∣ ≤
∫

R2
K(|x|)|φun ||un||un − u0|dx

≤

(

∫

R2
K(|x|)φ2

un
un

2 dx

)
1
2
(

∫

R2
K(|x|)(un − u0)

2 dx

)
1
2

≤ ω‖un‖2;K‖un − u0‖2;K ≤ ωC1‖un‖‖un − u0‖2;K

≤ C2‖un − u0‖2;K → 0, as n → +∞,

since, again by Lemma 2.4, un → u0 strongly in L2(R2; K). Analogously, I3
n → 0, as n → +∞.

Thus, from (4.1), (4.2) and having in mind that

lim
n→∞

I′(un)(un − u0) = 0,

it leads to
∫

R2

(

∇un · ∇(un − u0) + (m2 − ω2)V(|x|)un(un − u0)
)

dx = on(1).

Now, as an immediate consequence of the weak convergence un ⇀ u0 in E, we have
∫

R2
(∇u0 · ∇(un − u0) + V(|x|)u0(un − u0))dx = on(1).

Combining that last identities, we conclude that un → u0 strongly in E. Since I and I′ are
continuous, then

I′(un) = on(1) → I′(u0) = 0 and I(un) → I(u0) = cµ > 0,

proving that u0 is a nontrivial critical point of the functional I and, consequently, (u0, φu0)

is a solution of (1.2). Finally, it remains to check that u0 is nonnegative. But, it just suffices
to observe that I′(u0)(u

−
0 ) = 0 which leads to ‖u−

0 ‖
2 = 0 and therefore u0 = u+

0 ≥ 0. This
completes the proof.

To finish the paper, we give the end of our proof.

Proof of Theorem 1.3. Our goal is to show that (u0, φu0) is a ground state solution, that is, is a
solution which minimizes the functional J among all the nontrivial solutions of (1.2), namely,
J(u0, φu0) ≤ J(u, φ) for any nontrivial solution (u, φ) of (1.2). In this direction, this aim will
carry out by considering a minimization problem where the constraint is defined by the Nehari
manifold. By a ground state solution of system (1.2) we mean a nontrivial solution (ũ, φũ) ∈
E ×D of (1.2) such that

I(ũ) = min{I(u) : u ∈ E \ {0} is a critical point of I}.

So, let
Mµ := min

u∈N
I(u),

where N is the Nehari manifold

N := {u ∈ E \ {0} : I′(u)u = 0}.
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For this aim, it is sufficient to prove that cµ ≤ Mµ. The Nehari manifold N is closely linked
to the behavior of the function of the form hu : t → I(tu) for t > 0. Such map is known as
fibering map. Let u ∈ N , from (3.4), we find

h′u(t) = t
∫

R2

(

|∇un|
2 +

(

m2 − ω2)V(|x|)u2
n

)

dx − 2t
∫

R2
V(|x|)ωφuu2 dx

− t
∫

R2
V(|x|)φ2

uu2 dx −
∫

R2
K(|x|) f (tu)u dx.

Since I′(u)u = 0, as a direct consequence, we obtain

h′u(t) = t
∫

R2
K(|x|)

[

f (u)

u
−

f (tu)

tu

]

u2 dx,

for t > 0. Taking into account that f (s)/s is increasing for s > 0, we infer that h′u(t) > 0 for
t ∈ (0, 1) and h′u(t) < 0 for t ∈ (1, ∞). Hence, after observing h′u(1) = 0, we conclude that
I(u) = maxt≥0 I(tu). Setting γ(t) := tt0u, for t ∈ [0, 1], where t0 is such that I(t0u) < 0, we
have γ ∈ Γ, and so

cµ ≤ max
t∈[0,1]

I(γ(t)) ≤ max
t≥0

I(tu) = I(u).

Thereby, since u ∈ N is arbitrary cµ ≤ Mµ. This implies that (u0, φu0) is a ground state
solution for (1.2) and, therefore, the proof of Theorem 1.3 is finished.
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1 Introduction

Let us consider the Dirichlet boundary value problem

{

ẍ(t) ∈ F(t, x(t), ẋ(t)), for a.a. t ∈ [0, T],

x(T) = x(0) = 0,
(1.1)

where F : [0, T]× R
n × R

n
⊸ R

n is an upper-Carathéodory multivalued mapping.

Moreover, let a finite number of points 0 = t0 < t1 < · · · < tp < tp+1 = T, p ∈ N, and real

n × n matrices Ai, Bi, i = 1, . . . , p, be given. In the paper, the solvability of the Dirichlet b.v.p.

(1.1) will be investigated in the presence of the following impulse conditions

x(t+i ) = Aix(ti), i = 1, . . . , p, (1.2)

ẋ(t+i ) = Bi ẋ(ti), i = 1, . . . , p, (1.3)

where the notation limt→a+ x(t) = x(a+) is used.

BCorresponding author. Email: valentina.taddei@unimore.it
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By a solution of problem (1.1)–(1.3) we shall mean a function x ∈ PAC1([0, T], R
n) (see Sec-

tion 2 for the definition) satisfying (1.1), for almost all t ∈ [0, T], and fulfilling the conditions

(1.2) and (1.3).

Boundary value problems with impulses have been widely studied because of their ap-

plications in areas, where the parameters are subject to certain perturbations in time. For

instance, in the treatment of some diseases, impulses may correspond to administration of

a drug treatment or in environmental sciences, they can describe the seasonal changes or

harvesting.

While the theory of single valued impulsive problems is deeply examined (see, e.g. [9, 10,

22]), the theory dealing with multivalued impulsive problems has not been studied so much

yet (for the overview of known results see, e.g., the monographs [11, 19] and the references

therein). However, it is worth to study also the multivalued case, since the multivalued prob-

lems come e.g. from single valued problems with discontinuous right-hand sides, or from

control theory.

The most of mentioned results dealing with impulsive problems have been obtained using

fixed point theorems, upper and lower-solutions methods, or using topological and variational

approaches.

In this paper, the existence and the localization of a solution for the impulsive Dirichlet

b.v.p. (1.1)–(1.3) will be studied using a continuation principle. On this purpose, it will be

necessary to embed the original problem into a family of problems and to ensure that the

boundary of a prescribed set of candidate solutions is fixed point free, i.e. to verify so called

transversality condition. This condition can be guaranteed by a bound sets technique that was

described by Gaines and Mawhin in [17] for single valued problems without impulses. Re-

cently, in [25], a bound sets technique for the multivalued impulsive b.v.p. using non strictly

localized bounding (Liapunov-like) functions has been developed. Such a non-strict local-

ization of bounding functions makes parameter sets of candidate solutions “only” positively

invariant.

In this paper, the conditions imposed on the bounding function will be strictly localized

on the boundary of the set of candidate solutions, which eliminates this unpleasant hand-

icap. Both the possible cases will be discussed – problems with an upper semicontinuous

r.h.s. and also problems with an upper-Carathéodory r.h.s. More concretely, in Theorem 4.3

below, the upper semicontinuous case is considered and the transversality condition is ob-

tained reasoning pointwise via a C1-bounding function with a locally Lipschitzian gradient.

In Theorem 5.2, the upper-Carathéodory case and a C2-bounding function will be considered

and the reasoning will be based on a Scorza-Dragoni approximation technique. In fact, even

if the first kind of regularity of the r.h.s. is a special case of the second one, in the first case

the stronger regularity will allow to use C1-bounding functions, while in the second case, C2-

bounding functions will be needed. Moreover, even when using C2-bounding functions, the

more regularity of the r.h.s. allows to obtain the result under weaker conditions. Let us note

that a similar approach was employed for problems with upper semicontinous r.h.s. without

impulses e.g. in [3, 6] and for problems with upper-Carathéodory r.h.s. without impulses e.g.

in [4, 24].

This paper is organized as follows. In the second section, we recall suitable definitions

and statements which will be used in the sequel. Section 3 is devoted to the study of bound

sets and Liapunov-like bounding functions for impulsive Dirichlet problems with an upper

semicontinuous r.h.s. At first, C1-bounding functions with locally Lipschitzian gradients are

considered. Consequently, it is shown how conditions ensuring the existence of bound set
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change in case of C2-bounding functions. In Section 4, the bound sets approach is combined

with a continuation principle and the existence and localization result is obtained in this

way for the impulsive Dirichlet problem (1.1)–(1.3). Section 5 deals with the existence and

localization of a solution of the Dirichlet impulsive problem in case when the r.h.s. is an

upper-Carathéodory mapping. In Section 6, the obtained result is applied to an illustrative

example.

2 Some preliminaries

Let us recall at first some geometric notions of subsets of metric spaces. If (X, d) is an arbitrary

metric space and A ⊂ X, by Int(A), A and ∂A we mean the interior, the closure and the

boundary of A, respectively. For a subset A ⊂ X and ε > 0, we define the set Nε(A) := {x ∈

X | ∃a ∈ A : d(x, a) < ε}, i.e. Nε(A) is an open neighborhood of the set A in X.

For a given compact real interval J, we denote by C(J, R
n) (by C1(J, R

n)) the set of all func-

tions x : J → R
n which are continuous (have continuous first derivatives) on J. By AC1(J, R

n),

we shall mean the set of all functions x : J → R
n with absolutely continuous first derivatives

on J.

Let PAC1([0, T], R
n) be the space of all functions x : [0, T] → R

n such that

x(t) =



























x[0](t), for t ∈ [0, t1],

x[1](t), for t ∈ (t1, t2],
...

x[p](t), for t ∈ (tp, T],

where x[0] ∈ AC1([0, t1], R
n), x[i] ∈ AC1((ti, ti+1], R

n), x(t+i ) = limt→t+i
x(t) ∈ R and ẋ(t+i ) =

limt→t+i
ẋ(t) ∈ R, for every i = 1, . . . , p. The space PAC1([0, T], R

n) is a normed space with

the norm

‖x‖ := sup
t∈[0,T]

|x(t)|+ sup
t∈[0,T]

|ẋ(t)|. (2.1)

In a similar way, we can define the spaces PC([0, T], R
n) and PC1([0, T], R

n) as the spaces of

functions x : [0, T] → R
n satisfying the previous definition with x[0] ∈ C([0, t1], R

n), x[i] ∈

C((ti, ti+1], R
n) or with x[0] ∈ C1([0, t1], R

n), x[i] ∈ C1((ti, ti+1], R
n), for every i = 1, . . . , p,

respectively. The space PC1([0, T], R
n) with the norm defined by (2.1) is a Banach space (see

[23, page 128]).

A subset A ⊂ X is called a retract of a metric space X if there exists a retraction r : X → A,

i.e. a continuous function satisfying r(x) = x, for every x ∈ A. We say that a space X is

an absolute retract (AR-space) if, for each space Y and every closed A ⊂ Y, each continuous

mapping f : A → X is extendable over Y. If f is extendable only over some neighborhood

of A, for each closed A ⊂ Y and each continuous mapping f : A → X, then X is called an

absolute neighborhood retract (ANR-space). Let us note that X is an ANR-space if and only if it

is a retract of an open subset of a normed space and that X is an AR-space if and only if it is a

retract of some normed space (see, e.g. [2]). Conversely, if X is a retract (of an open subset) of

a convex set in a Banach space, then it is an AR-space (ANR-space). So, the space C1(J, R
n),

where J ⊂ R is a compact interval, is an AR-space as well as its convex subsets or retracts,

while its open subsets are ANR-spaces.
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A nonempty set A ⊂ X is called an Rδ-set if there exists a decreasing sequence {An}∞
n=1 of

compact AR-spaces such that

A =
∞
⋂

n=1

An.

The following hierarchy holds for nonempty subsets of a metric space:

compact+convex ⊂ compact AR-space ⊂ Rδ-set, (2.2)

and all the above inclusions are proper. For more details concerning the theory of retracts,

see [14].

We also employ the following definitions from the multivalued analysis in the sequel. Let

X and Y be arbitrary metric spaces. We say that ϕ is a multivalued mapping from X to Y

(written ϕ : X ⊸ Y) if, for every x ∈ X, a nonempty subset ϕ(x) of Y is prescribed. We

associate with F its graph ΓF, the subset of X × Y, defined by

ΓF := {(x, y) ∈ X × Y | y ∈ F(x)}.

Let us mention also some basic notions concerning multivalued mappings. A multivalued

mapping ϕ : X ⊸ Y is called upper semicontinuous (shortly, u.s.c.) if, for each open U ⊂ Y, the

set {x ∈ X | ϕ(x) ⊂ U} is open in X.

Let F : J × R
m
⊸ R

n be an upper semicontinuous multimap and let, for all r > 0, exist

an integrable function µr : J → [0, ∞) such that |y| ≤ µr(t), for every (t, x) ∈ J × R
m, with

|x| ≤ r, and every y ∈ F(t, x). Then if we consider the composition of F with a function

q ∈ PC1([0, T], R
n), the corresponding superposition multioperator PF(q) given by

PF(q) = { f ∈ L1([0, T]; R
m) : f (t) ∈ F(t, q(t)) a.a. t ∈ [0, T]},

is well defined and nonempty (see [12, Proposition 6]).

Let Y be a metric space and (Ω,U , ν) be a measurable space, i.e. a nonempty set Ω equipped

with a σ-algebra U of its subsets and a countably additive measure ν on U . A multivalued

mapping ϕ : Ω ⊸ Y is called measurable if {ω ∈ Ω | ϕ(ω) ⊂ V} ∈ U , for each open set V ⊂ Y.

Obviously, every u.s.c. mapping is measurable.

We say that mapping ϕ : J × R
m
⊸ R

n, where J ⊂ R is a compact interval, is an upper-

Carathéodory mapping if the map ϕ(·, x) : J ⊸ R
n is measurable, for all x ∈ R

m, the map

ϕ(t, ·) : R
m
⊸ R

n is u.s.c., for almost all t ∈ J, and the set ϕ(t, x) is compact and convex, for

all (t, x) ∈ J × R
m.

If X ∩ Y 6= ∅ and ϕ : X ⊸ Y, then a point x ∈ X ∩ Y is called a fixed point of ϕ if x ∈ ϕ(x).

The set of all fixed points of ϕ is denoted by Fix(ϕ), i.e.

Fix(ϕ) := {x ∈ X | x ∈ ϕ(x)}.

For more information and details concerning multivalued analysis, see, e.g., [2, 8, 18, 21].

The continuation principle which will be applied in the paper requires in particular the

transformation of the studied problem into a suitable family of associated problems which

does not have solutions tangent to the boundary of a given set Q of candidate solutions. This

will be ensured by means of Hartman-type conditions (see Section 3) and by means of the

following result based on Nagumo conditions (see [27, Lemma 2.1] and [20, Lemma 5.1]).
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Proposition 2.1. Let ψ : [0,+∞) → [0,+∞) be a continuous and increasing function, with

lim
s→∞

s2

ψ(s)
ds = ∞, (2.3)

and let R be a positive constant. Then there exists a positive constant

B = ψ−1(ψ(2R) + 2R) (2.4)

such that if x ∈ PC1([0, T], R
n) is such that |ẍ(t)| ≤ ψ(|ẋ(t)|), for a.a. t ∈ [0, T], and |x(t)| ≤ R,

for every t ∈ [0, T], then it holds that |ẋ(t)| ≤ B, for every t ∈ [0, T].

Let us note that the previous result is classically given for C2-functions. However, it is easy

to prove (see, e.g., [5]) that the statement holds also for piecewise continuously differentiable

functions.

For obtaining the existence and localization result for the case of upper-Carathéodory

r.h.s., we will need the following Scorza-Dragoni type result for multivalued maps (see [15,

Proposition 5.1]).

Proposition 2.2. Let X ⊂ R
m be compact and let F : [a, b] × X ⊸ R

n be an upper-Carathéodory

map. Then there exists a multivalued mapping F0 : [a, b] × X ⊸ R
n ∪ {∅} with compact, convex

values and F0(t, x) ⊂ F(t, x), for all (t, x) ∈ [a, b]× X, having the following properties:

(i) if u : [a, b] → R
m, v : [a, b] → R

n are measurable functions with v(t) ∈ F(t, u(t)), on [a, b],

then v(t) ∈ F0(t, u(t)), a.e. on [a, b];

(ii) for every ǫ > 0, there exists a closed Iǫ ⊂ [a, b] such that ν([a, b] \ Iǫ) < ǫ, F0(t, x) 6= ∅, for all

(t, x) ∈ Iǫ × X and F0 is u.s.c. on Iǫ × X.

3 Bound sets for Dirichlet problems with upper semicontinuous

r.h.s.

In this section, we consider an u.s.c. multimap F and we are interested in introducing a

Liapunov-like function V, usually called a bounding function, verifying suitable transversality

conditions which assure that there does not exist a solution of the b.v.p. lying in a closed set

K and touching the boundary ∂K of K at some point.

Let K ⊂ R
n be a nonempty open set with 0 ∈ K and V : R

n → R be a continuous function

such that

(H1) V| ∂K = 0,

(H2) V(x) ≤ 0, for all x ∈ K.

Definition 3.1. A nonempty open set K ⊂ R
n is called a bound set for problem (1.1)–(1.3) if

there does not exist a solution x of (1.1)–(1.3) such that x(t) ∈ K, for each t ∈ [0, T], and

x(t0) ∈ ∂K, for some t0 ∈ [0, T].

Firstly, we show sufficient conditions for the existence of a bound set for the second-order

impulsive Dirichlet problem (1.1)–(1.3) in the case of a smooth bounding function V with a

locally Lipschitzian gradient.
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Proposition 3.2. Let K ⊂ R
n be a nonempty open set with 0 ∈ K, F : [0, T] × R

n × R
n
⊸ R

n

be an upper semicontinuous multivalued mapping with nonempty, compact, convex values. Assume

that there exists a function V ∈ C1(Rn, R) with a locally Lipschitzian gradient ∇V which satisfies

conditions (H1) and (H2). Suppose moreover that, for all x ∈ ∂K, t ∈ (0, T) \ {t1, . . . , tp} and

v ∈ R
n with

〈∇V(x), v〉 = 0, (3.1)

the following condition holds

lim inf
h→0−

〈∇V(x + hv), v + hw〉

h
> 0, (3.2)

for all w ∈ F(t, x, v). Then all solutions x : [0, T] → K of problem (1.1) satisfy x(t) ∈ K, for every

t ∈ [0, T] \ {t1, . . . , tp}.

Proof. Let x : [0, T] → K be a solution of problem (1.1). We assume by a contradiction that

there exists t ∈ [0, T] \ {t1, . . . , tp} such that x(t) ∈ ∂K. Since x(0) = x(T) = 0 ∈ K, it must be

t ∈ (0, T).

Let us define the function g in the following way g(h) := V(x(t + h)). Then g(0) = 0

and there exists α > 0 such that g(h) ≤ 0, for all h ∈ [−α, α], i.e., there is a local maximum

for g at the point 0, and g ∈ C1([−α, α], R
n), so ġ(0) = 〈∇V(x(t)), ẋ(t)〉 = 0. Consequently,

x := x(t), v := ẋ(t) satisfy condition (3.1).

Since ∇V is locally Lipschitzian, there exist an open set U ⊂ R
n, with x(t) ∈ U, and a

constant L > 0 such that ∇V|U is Lipschitzian with constant L. We can assume, without loss

of generality, that x(t + h) ∈ U for all h ∈ [−α, α].

Since g(0) = 0 and g(h) ≤ 0, for all h ∈ [−α, 0), there exists an increasing sequence of

negative numbers {hk}
∞
k=1such that h1 > −α, hk → 0− as k → ∞, and ġ(hk) ≥ 0, for each

k ∈ N. Since x ∈ C1([−α, 0], R
n), it holds, for each k ∈ N, that

x(t + hk) = x(t) + hk[ẋ(t) + bk], (3.3)

where bk → 0 as k → ∞.

Since x([−α, 0]) and ẋ([−α, 0]) are compact sets and F is globally upper semicontinuous

with compact values, F(·, x(·), ẋ(·)) must be bounded on [−α, 0], by which ẋ is Lipschitzian

on [−α, 0]. Thus, there exists a constant λ such that, for all k ∈ N,

∣

∣

∣

∣

ẋ(t + hk)− ẋ(t)

hk

∣

∣

∣

∣

≤ λ,

i.e. the sequence
{ ẋ(t+hk)−ẋ(t)

hk

}∞

k=1
is bounded. Therefore, there exist a subsequence, for the

sake of simplicity denoted as the sequence, of
{ ẋ(t+hk)−ẋ(t)

hk

}

and w ∈ R
n such that

ẋ(t + hk)− ẋ(t)

hk
→ w (3.4)

as k → ∞.

Let ε > 0 be given. Then, as a consequence of the regularity assumptions on F and

of the continuity of both x and ẋ on [−α, 0], there exists δ = δ(ε) > 0 such that, for each

h ∈ [−α, 0], h ≥ −δ, it follows that

F(t + h, x(t + h), ẋ(t + h)) ⊂ F(t, x(t), ẋ(t)) + εBn,
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where Bn denotes the unit open ball in R
n centered at the origin. Subsequently, since F is

convex valued, according to the Mean-Value Theorem (See [8], Theorem 0.5.3), there exists

kε ∈ N such that, for each k ≥ kε,

ẋ(t + hk)− ẋ(t)

hk
=

1

−hk

∫ t

t+hk

ẍ(s) ds ∈ F(t, x(t), ẋ(t)) + εBn.

Since F has compact values and ε > 0 is arbitrary,

w ∈ F(t, x(t), ẋ(t)).

As a consequence of property (3.4) , there exists a sequence {ak}
∞
k=1, ak → 0 as k → ∞, such

that

ẋ(t + hk) = ẋ(t) + hk[w + ak], (3.5)

for each k ∈ N. Since hk < 0 and ġ(hk) ≥ 0, in view of (3.3) and (3.5),

0 ≥
ġ(hk)

hk
=

〈∇V(x(t + hk)), ẋ(t + hk)〉

hk

=
〈∇V(x(t) + hk[ẋ(t) + bk]), ẋ(t) + hk[w + ak]〉

hk
.

Since bk → 0 when k → +∞, it is possible to find k0 ∈ N such that, for all k ≥ k0, it holds

that x(t) + ẋ(t)hk ∈ U, because U is open. By means of the local Lipschitzianity of ∇V, for all

k ≥ k0,

0 ≥
ġ(hk)

hk
≥

〈∇V(x(t) + hk ẋ(t)), ẋ(t) + hk[w + ak]〉

hk
− L · |bk| · |ẋ(t) + hk[w + ak]|

=
〈∇V(x(t) + hk ẋ(t)), ẋ(t) + hkw〉

hk
− L · |bk| · |ẋ(t) + hk[w + ak]|+ 〈∇V(x(t) + hk ẋ(t)), ak〉.

Since 〈∇V(x(t) + hk ẋ(t)), ak〉 − L · |bk| · |ẋ(t) + hk[w + ak]| → 0 as k → ∞,

lim inf
h→0−

〈∇V(x(t) + hẋ(t)), ẋ(t) + hw〉

h
≤ 0 (3.6)

in contradiction with (3.2). Thus x(t) ∈ K for every t ∈ [0, T] \ {t1, . . . , tp}.

Remark 3.3. It is obvious that condition (3.2) in Proposition 3.2 can be replaced by the follow-

ing assumption: suppose that, for all x ∈ ∂K, t ∈ (0, T) \ {t1, . . . , tp} and v ∈ R
n satisfying

(3.1) the following condition holds

lim inf
h→0+

〈∇V(x + hv), v + hw〉

h
> 0, (3.7)

for all w ∈ F(t, x, v).

Now, let us focus our attention also to the impulsive points t1, . . . , tp.

Theorem 3.4. Let K ⊂ R
n be a nonempty open set with 0 ∈ K, F : [0, T] × R

n × R
n
⊸ R

n

be an upper semicontinuous multivalued mapping with nonempty, compact, convex values. Assume

that there exists a function V ∈ C1(Rn, R) with a locally Lipschitzian gradient ∇V which satisfies
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conditions (H1) and (H2). Furthermore, assume that Ai, Bi, i = 1, . . . , p, are real n × n matrices

such that Ai, i = 1, . . . , p, satisfy

Ai(∂K) = ∂K, for all i = 1, . . . , p. (3.8)

Moreover, let, for all x ∈ ∂K, t ∈ (0, T) \ {t1, . . . tp} and v ∈ R
n satisfying (3.1), condition (3.2)

holds, for all w ∈ F(t, x, v).

At last, suppose that, for all x ∈ ∂K and v ∈ R
n with

〈∇V(Aix), Biv〉 ≤ 0 ≤ 〈∇V(x), v〉, for some i = 1, . . . , p, (3.9)

the following condition

lim inf
h→0−

〈∇V(x + hv), v + hw〉

h
> 0 (3.10)

holds, for all w ∈ F(ti, x, v). Then K is a bound set for the impulsive Dirichlet problem (1.1)–(1.3).

Proof. Applying Proposition 3.2, we only need to show that if x : [0, T] → K is a solution

of problem (1.1), then x(ti) ∈ K, for all i = 1, . . . , p. As in the proof of Proposition 3.2, we

argue by a contradiction, i.e. we assume that there exists i ∈ {1, . . . , p} such that x(ti) ∈ ∂K.

Following the same reasoning as in the proof of Proposition 3.2, for t = ti, we obtain

〈∇V(x(ti)), ẋ(ti)〉 ≥ 0,

because V(x(ti)) = 0 and V(x(t)) ≤ 0, for all t ∈ [0, T].

Moreover, according to the condition (3.8), V(Ai(x(ti))) = 0 as well, and so we can apply

the same reasoning to the function g̃(h) = V(x(ti + h)) for h > 0 and g̃(0) = V(x(t+i )). Since

x ∈ PC1([0, T], R
n), also g̃ ∈ C1([0, α], R) and g̃(h) ≤ 0 for h > 0 and g̃(0) = 0 imply ˙̃g(0) ≤ 0,

i.e.

0 ≥ 〈∇V(Ai(x(ti))), Bi ẋ(ti)〉.

Therefore, x := x(ti), v := ẋ(ti) satisfy condition (3.9).

Using the same procedure as in the proof of Proposition 3.2, for t = ti, we obtain the

existence of a sequence of negative numbers {hk}
∞
k=1 and of point w ∈ F(ti, x(ti), ẋ(ti)) such

that
ẋ(ti + hk)− ẋ(ti)

hk
→ w as k → ∞.

By the same arguments as in the previous proof, we get

lim inf
h→0−

〈∇V(x(ti) + hẋ(ti)), ẋ(ti) + hw〉

h
≤ 0. (3.11)

Inequality (3.11) is in a contradiction with condition (3.10), which completes the proof.

Remark 3.5. If condition (3.10) holds, for some x ∈ ∂K, v ∈ R
n satisfying (3.9) and w ∈

F(ti, x, v), then, according to the continuity of ∇V,

〈∇V(x), v〉 = 0. (3.12)

Indeed

lim inf
h→0−

〈∇V(x + hv), v + hw〉

h
= lim inf

h→0−

[

〈∇V(x + hv), v〉

h
+ 〈∇V(x + hv), w〉

]

which, since 〈∇V(x), v〉 ≥ 0, can be positive only if (3.12) holds.
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Definition 3.6. A function V : R
n → R satisfying all assumptions of Theorem 3.4 is called a

bounding function for the set K relative to (1.1)–(1.3).

For our main result concerning the existence and localization of a solution of the Dirichlet

b.v.p., we need to ensure that no solution of given b.v.p lies on the boundary ∂Q of a parameter

set Q of candidate solutions. In the following section, it will be shown that if the set Q is

defined as follows

Q := {q ∈ PC1([0, T], R
n) | q(t) ∈ K, for all t ∈ [0, T]} (3.13)

and if all assumptions of Theorem 3.4 are satisfied, then solutions of the b.v.p. (1.1)–(1.3)

behave as indicated.

Proposition 3.7. Let K ⊂ R
n be a nonempty open bounded set with 0 ∈ K, let Q ⊂ PC1([0, T], R

n)

be defined by the formula (3.13) and let F : [0, T] × R
n × R

n
⊸ R

n be an upper semicontinuous

multivalued mapping with nonempty, compact, convex values. Assume that there exists a function

V ∈ C1(Rn, R) with a locally Lipschitzian gradient ∇V which satisfies conditions (H1) and (H2).

Moreover, assume that Ai, Bi, i = 1, . . . , p, are real n × n matrices such that Ai, i = 1, . . . , p, satisfy

(3.8).

Furthermore, suppose that, for all x ∈ ∂K, t ∈ (0, T) \ {t1, . . . , tp} and v ∈ R
n satisfying (3.1),

condition (3.2) holds, for all w ∈ F(t, x, v), and that, for all x ∈ ∂K and v ∈ R
n satisfying (3.9), the

condition (3.10) holds, for all w ∈ F(ti, x, v). Then problem (1.1)–(1.3) has no solution on ∂Q.

Proof. One can readily check that if x ∈ ∂Q, then there exists a point tx ∈ [0, T] such that

x(tx) ∈ ∂K. But then, according to Theorem 3.4, x cannot be a solution of (1.1)–(1.3).

Let us now consider the particular case when the bounding function V is of class C2. Then

conditions (3.2) and (3.10) can be rewritten in terms of gradients and Hessian matrices and

the following result can be directly obtained.

Corollary 3.8. Let K ⊂ R
n be a nonempty open bounded set with 0 ∈ K, let Q ⊂ PC1([0, T], R

n)

be defined by the formula (3.13) and let F : [0, T] × R
n × R

n
⊸ R

n be an upper semicontinuous

multivalued mapping with nonempty, compact, convex values. Assume that there exists a function

V ∈ C2(Rn, R) which satisfies conditions (H1) and (H2). Moreover, assume that Ai, Bi, i = 1, . . . , p,

are real n × n matrices such that Ai, i = 1, . . . , p, satisfy (3.8).

Furthermore, suppose that, for all x ∈ ∂K and v ∈ R
n the following holds:

if 〈∇V(x), v〉 = 0, then 〈HV(x)v, v〉+ 〈∇V(x), w〉 > 0, (3.14)

for all t ∈ (0, T) \ {t1, . . . , tp} and w ∈ F(t, x, v), and fixed i = 1, . . . , n

if 〈∇V(Aix), Biv〉 ≤ 0 ≤ 〈∇V(x), v〉 then 〈HV(x)v, v〉+ 〈∇V(x), w〉 > 0, (3.15)

for all w ∈ F(ti, x, v). Then problem (1.1)–(1.3) has no solution on ∂Q.

Proof. The statement of Corollary 3.8 follows immediately from Remark 3.5 and the fact that

if V ∈ C2(Rn, R), then, for all x ∈ ∂K, t ∈ (0, T), v ∈ R
n and w ∈ F(t, x, v), there exists

lim
h→0

〈∇V(x + hv), v + hw〉

h
= lim

h→0

〈∇V(x + hv), v + hw〉 − 〈∇V(x), v〉

h

= 〈HV(x)v, v〉+ 〈∇V(x), w〉.
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Remark 3.9. In conditions (3.2), (3.10), (3.14) and (3.15), the element v plays the role of the

first derivative of the solution x. If x is a solution of (1.1)–(1.3) such that x(t) ∈ K, for every

t ∈ [0, T], and there exists a continuous increasing function ψ : [0, ∞) → [0, ∞) satisfying

condition (2.3) and such that

|F(t, c, d)| ≤ ψ(|d|), (3.16)

for a.a. t ∈ [0, T] and every c, d ∈ R
n with |c| ≤ R := max{|x| : x ∈ K}, then, according

to Proposition 2.1, it holds that |ẋ(t)| ≤ B, for every t ∈ [0, T], where B is defined by (2.4).

Hence, it is sufficient to require conditions (3.2), (3.10), (3.14) and (3.15) in Proposition 3.2,

Theorem 3.4 and Corollary 3.8 only for all v ∈ R
n with |v| ≤ B and not for all v ∈ R

n.

4 Existence and localization result for the impulsive Dirichlet prob-

lem with upper semi-continuous r.h.s.

In order to obtain the main existence theorem, the bound sets technique described in the

previous section will be combined with the topological method which was developed by

ourselves in [25] for the impulsive boundary value problems. The version of the continuation

principle for problems without impulses can be found e.g. in [7].

Proposition 4.1 ([25, Proposition 2.4]). Let us consider the b.v.p.

{

ẍ(t) ∈ F(t, x(t), ẋ(t)), for a.a. t ∈ [0, T],

x ∈ S,
(4.1)

where F : [0, T] × R
n × R

n
⊸ R

n is an upper-Carathéodory mapping and S is a subset of

PC1([0, T], R
n). Let H : [0, T]× R

4n × [0, 1] ⊸ R
n be an upper-Carathéodory mapping such that

H(t, c, d, c, d, 1) ⊂ F(t, c, d), for all (t, c, d) ∈ [0, T]× R
2n. (4.2)

Assume that

(i) there exists a retract Q of PC1([0, T], R
n), with Q \ ∂Q 6= ∅, and a closed subset S1 of S such

that the associated problem

{

ẍ(t) ∈ H(t, x(t), ẋ(t), q(t), q̇(t), λ), for a.a. t ∈ [0, T],

x ∈ S1

(4.3)

has, for each (q, λ) ∈ Q × [0, 1], a non-empty and convex set of solutions T(q, λ);

(ii) there exists a nonnegative, integrable function α : [0, T] → R such that

|H(t, x(t), ẋ(t), q(t), q̇(t), λ)| ≤ α(t)(1 + |x(t)|+ |ẋ(t)|), for a.a. t ∈ [0, T],

for any (q, λ, x) ∈ ΓT;

(iii) T(Q × {0}) ⊂ Q;

(iv) there exist constants M0 ≥ 0, M1 ≥ 0 such that |x(0)| ≤ M0 and |ẋ(0)| ≤ M1, for all

x ∈ T(Q × [0, 1]);

(v) the solution map T(·, λ) has no fixed points on the boundary ∂Q of Q, for every λ ∈ [0, 1).
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Then the b.v.p. (4.1) has a solution in S1 ∩ Q.

Remark 4.2. The condition that Q is a retract of PC1([0, T], R
n) in Proposition 4.1 can be re-

placed by the assumption that Q is an absolute neighborhood retract and ind(T(·, 0), Q, Q) 6= 0

(see, e.g., [2]). It is therefore possible to assume alternatively that Q is a retract of a convex sub-

set of PC1([0, T], R
n) or of an open subset of PC1([0, T], R

n) together with ind(T(·, 0), Q, Q) 6=0.

The solvability of (1.1) will be now proved, on the basis of Proposition 4.1. Defining

namely the set Q of candidate solutions by the formula (3.13), we are able to verify, for each

(q, λ) ∈ Q × [0, 1), the transversality condition (v) in Proposition 4.1.

Theorem 4.3. Let K ⊂ R
n be a nonempty, open, bounded and convex set with 0 ∈ K and let

us consider the impulsive Dirichlet problem (1.1)–(1.3), where F : [0, T] × R
n × R

n
⊸ R

n is an

upper semicontinuous multivalued mapping, 0 = t0 < t1 < · · · < tp < tp+1 = T, p ∈ N, and

Ai, Bi, i = 1, . . . , p, are real n × n matrices with Ai∂K = ∂K, for all i = 1, . . . , p. Moreover, assume

that

(i) there exists a function β : [0, ∞) → [0, ∞) continuous and increasing satisfying

lim
s→∞

s2

β(s)
ds = ∞

such that

|F(t, c, d)| ≤ β(|d|),

for a.a. t ∈ [0, T] and every c, d ∈ R
n with |c| ≤ R := max{|x| : x ∈ K};

(ii) the problem






















ẍ(t) = 0, for a.a. t ∈ [0, T],

x(T) = x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Bi ẋ(ti), i = 1, . . . , p,

(4.4)

has only the trivial solution;

(iii) there exists a function V ∈ C1(Rn, R), with ∇V locally Lipschitzian, satisfying conditions (H1)

and (H2);

(iv) for all x ∈ ∂K and v ∈ R
n with |v| ≤ β−1(β(2R) + 2R), the inequality

lim inf
h→0−

〈∇V(x + hv), v + hλw〉

h
> 0

holds, for all t ∈ (0, T) \ {t1, . . . , tp}, λ ∈ (0, 1) and w ∈ F(t, x, v) if 〈∇V(x), v〉 = 0 and for

all λ ∈ (0, 1), w ∈ F(ti, x, v) if 〈∇V(Aix), Biv〉 ≤ 0 ≤ 〈∇V(x), v〉.

Then the Dirichlet problem (1.1)–(1.3) has a solution x(·) such that x(t) ∈ K, for all t ∈ [0, T].

Proof. Define

B = β−1(β(2R) + 2R),

S = S1 = Q := {q ∈ PC1([0, T], R
n) | q(t) ∈ K, |q̇(t)| ≤ 2B, for all t ∈ [0, T]}
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and H(t, c, d, e, f , λ) = λF(t, e, f ). Thus the associated problem (4.3) is the fully linearized

problem






















ẍ(t) ∈ λF(t, q(t), q̇(t)), for a.a. t ∈ [0, T],

x(T) = x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Bi ẋ(ti), i = 1, . . . , p.

(4.5)

For each (q, λ) ∈ Q × [0, 1], let T(q, λ) be the solution set of (4.5). We will check now that all

the assumptions of Proposition 4.1 are satisfied.

Since the closure of a convex set is still a convex set, it follows that Q is convex, and hence

a retract of PC1([0, T], R
n). Moreover,

Int Q = {q ∈ PC1([0, T], R
n) | q(t) ∈ K, |q̇(t)| < 2B, for all t ∈ [0, T]} 6= ∅,

since K is nonempty.

Notice now that, for every t ∈ [0, T], c, d ∈ R
n, the inequality

|H(t, e, f , c, d, λ)| = λ|F(t, e, f )| ≤ β(| f |) (4.6)

holds. Hence, denoting z = (c, d, e, f , λ) ∈ R
4n+1, since | f | ≤ |z|, when |z| ≤ r, the monotonic-

ity of β implies that |H(t, c, d, e, f , λ)| ≤ β(r), which ensures, for every q ∈ Q, the existence of

fq ∈ PF(q). Given q ∈ Q, λ ∈ [0, 1], and a L1-selection fq(·) of F(·, q(·), q̇(·)), let us consider

the corresponding single valued linear problem with linear impulses






















ẍ(t) = λ fq(t), for a.a. t ∈ [0, T],

x(T) = x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Bi ẋ(ti), i = 1, . . . , p.

(4.7)

Clearly, for all q ∈ Q and λ ∈ [0, 1],

T(q, λ) = {xλ fq
∈ PC1([0, T], R

n) : xλ fq
is a solution of (4.7), for some fq ∈ PF(q)}.

Using the notation

C :=















B1(T − t1) + A1t1 if p = 1
p

∏
l=1

Bl(T − tp) +
p

∏
k=1

Akt1 +
p

∑
j=2

p

∏
k=j

Ak

j−1

∏
l=1

Bl(tj − tj−1) if p ≥ 2,
(4.8)

it is easy to prove that the initial problem






















ẍ(t) = 0, for a.a. t ∈ [0, T],

x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Bi ẋ(ti), i = 1, . . . , p

has infinitely many solutions given by

x0(t) =























ẋ0(0)t if t ∈ [0, t1],

B1 ẋ0(0)(t − t1) + A1 ẋ0(0)t1 if t ∈ (t1, t2]
[ i

∏
l=1

Bl(t − ti)+
i

∏
k=1

Akt1+
i

∑
j=2

i

∏
k=j

Ak

j−1

∏
l=1

Bl(tj − tj−1)

]

ẋ0(0) if t ∈ (ti, ti+1], 2 ≤ i ≤ p



Impulsive Dirichlet problem for second-order inclusions 13

with ẋ0(0) ∈ R
n. Since x0(T) = 0 if and only if Cẋ0(0) = 0, assumption (ii) holds if and only

if C is regular. Then (4.7) has a unique solution given by

xλ fq
(t) =



























































































































ẋλ fq
(0)t + λ

∫ t

0
(t − τ) fq(τ)dτ if t ∈ [0, t1],

B1 ẋλ fq
(0)(t − t1) + λ

∫ t

t1

(t − τ) fq(τ)dτ + B1(t − t1)λ
∫ t1

0
fq(τ)dτ + A1 ẋλ fq

(0)t1

+ A1λ
∫ t1

0
(t1 − τ) fq(τ)dτ if t ∈ (t1, t2],

i

∏
l=1

Bl ẋλ fq
(0)(t − ti) + λ

∫ t

ti

(t − τ) fq(τ)dτ +
i

∑
r=1

i

∏
l=r

Bl(t − ti)λ
∫ tr

tr−1

fq(τ)dτ

+
i

∏
k=1

Ak ẋλ fq
(0)t1 +

i

∏
k=1

Akλ
∫ t1

0
(t1 − τ) fq(τ)dτ

+
i

∑
j=2

i

∏
k=j

Ak

[ j−1

∏
l=1

Bl ẋλ fq
(0)(tj − tj−1) + λ

∫ tj

tj−1

(tj − τ) fq(τ)dτ

+
k−1

∑
r=1

k−1

∏
l=r

Bl(tj − tj−1)λ
∫ tr

tr−1

fq(τ)dτ

]

if t ∈ (ti, ti+1], 2 ≤ i ≤ p

with

ẋλ fq
(0) = −C−1

(

λ
∫ T

t1

(T − τ) fq(τ)dτ + B1(T − t1)λ
∫ t1

0
fq(τ)dτ + A1λ

∫ t1

0
(t1 − τ) fq(τ)dτ

)

(4.9)

if p = 1 and

ẋλ fq
(0)=−C−1

(

λ
∫ T

tp

(T − τ) fq(τ)dτ +
p

∑
r=1

p

∏
l=r

Bl(T − tp)λ
∫ tr

tr−1

fq(τ)dτ

+
p

∏
k=1

Akλ
∫ t1

0
(t1 − τ) fq(τ)dτ

+
p

∑
j=2

p

∏
k=j

Ak

[

λ
∫ tj

tj−1

(tj − τ) fq(τ)dτ+
k−1

∑
r=1

k−1

∏
l=r

Bl(tj − tj−1)λ
∫ tr

tr−1

fq(τ)dτ

])

(4.10)

if p ≥ 2. Therefore T(q, λ) 6= ∅. Moreover, given x1, x2 ∈ T(q, λ), there exist f 1
q , f 2

q such that

x1 = xλ f 1
q

and x2 = xλ f 2
q
. Since the right-hand side F has convex values, it holds that, for any

c ∈ [0, 1] and t ∈ [0, T], c f 1
q (t) + (1 − c) f 2

q (t) ∈ F(t, q(t), q̇(t)) as well. The linearity of both

the equation and of the impulses yields that cx1 + (1 − c)x2 = xc f 1
q +(1−c) f 2

q
, i.e. that the set of

solutions of problem (4.5) is, for each (q, λ) ∈ Q × [0, 1], convex. Hence assumption (i) of

Proposition 4.1 is satisfied.

Moreover, from (4.6), we obtain that, for every λ ∈ [0, 1], q ∈ Q, x ∈ T(q, λ),

|H(t, x(t), ẋ(t), q(t), q̇(t), λ| ≤ β(|q̇(t)|) ≤ β(2B) ≤ β(2B)(1 + |x(t)|+ |ẋ(t)|), (4.11)

thus also assumption (ii) of the same proposition holds.

The fulfillment of condition (iii) in Proposition 4.1 follows from the fact that, for λ = 0,

problems (4.7) and (4.4) coincide and the latter one has only the trivial solution. Hence,

T(q, 0) = 0 ∈ Int Q, because 0 ∈ K.
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For every λ ∈ [0, 1], q ∈ Q and every solution xλ fq
of (4.7), |xλ fq

(0)| = 0. Moreover,

according to assumption (i) and formulas (4.9) and (4.10),

|ẋλ fq
(0)| ≤ ‖C−1‖

[

β(2B)
1

2
T2 + T2‖B1‖β(2B) +

1

2
T2‖A1‖β(2B)

]

= T2‖C−1‖ · β(2B)

[

1

2
+ ‖B1‖+

1

2
‖A1‖

]

if p = 1 and

|ẋλ fq
(0)| ≤ ‖C−1‖

[

1

2
T2β(2B) + T2

p

∏
l=1

‖Bl‖ · β(2B)

+ T2
p

∏
k=1

‖Ak‖β(2B) + T2
p

∏
l=1

‖Bl‖
p

∏
k=1

‖Ak‖ · β(2B)

]

= T2‖C−1‖ · β(2B)

[

1

2
+

p

∏
l=1

‖Bl‖+
p

∏
k=1

‖Ak‖+
p

∏
l=1

‖Bl‖
p

∏
k=1

‖Ak‖

]

if p ≥ 2. Therefore there exists a constant M1 such that |ẋ(0)| ≤ M1, for all solutions x of (4.5).

Hence, condition (iv) in Proposition 4.1 is satisfied as well.

At last, let us assume that q∗ ∈ Q is, for some λ ∈ [0, 1), a fixed point of the solution

mapping T(·, λ). We will show now that q∗ can not lay in ∂Q. We already proved this property

if λ = 0, thus we can assume that λ ∈ (0, 1). From (4.11), we have, for a.a. t ∈ [0, T], that

|q̈∗(t)| = λ|F(t, q∗(t), q̇∗(t))| ≤ β(|q̇∗(t)|).

Therefore, since |q∗(t)| ≤ R, for every t ∈ [0, T], Proposition 2.1 implies that |q̇∗(t)| ≤ B < 2B,

for every t ∈ [0, T]. Moreover, according to Theorem 3.4 and Remark 3.9, hypotheses (iii) and

(iv) guarantee that q∗(t) ∈ K, for all t ∈ [0, T]. Thus q∗ ∈ Int Q, which implies that condition

(v) from Proposition 4.1 is satisfied, for all λ ∈ [0, 1), and the proof is completed.

Remark 4.4. An easy example of impulses conditions guaranteeing assumption (ii) in Theo-

rem 4.3 are the antiperiodic impulses, i.e. Ai = Bi = −I, for every i = 1, . . . , p. In this case,

the matrix C = (−1)pTI (see [25]) and it is clearly regular. If p = 1 condition (ii) holds also

e.g. for A1 = −I and B1 = I provided T 6= 2t1.

5 Existence and localization result for the impulsive Dirichlet prob-

lem with upper-Carathéodory r.h.s.

In this section, we will study the impulsive Dirichlet b.v.p. (1.1)–(1.3) with an upper-Carathéo-

dory r.h.s. and we will develop the bounding functions method with the strictly localized

bounding functions also in this more general case. The technique which will be applied

for obtaining the final result consists in replacing the original problem by the sequence of

problems with non-strict localized bounding functions which satisfy all the assumptions of

the following result developed by ourselves recently in [25].

Proposition 5.1 ([25, Theorem 4.1 and Remark 4.3]). Let K ⊂ R
n be a nonempty, open, bounded

and convex set with 0 ∈ K and let us consider the impulsive Dirichlet problem (1.1)–(1.3), where

F : [0, T]× R
n × R

n
⊸ R

n is an upper-Carathéodory multivalued mapping, 0 = t0 < t1 < · · · <

tp < tp+1 = T, p ∈ N, and Ai, Bi, i = 1, . . . , p, are real n × n matrices with Ai∂K = ∂K, for all

i = 1, . . . , p. Moreover, assume that
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(i) there exists a function ϕ : [0, ∞) → [0, ∞) continuous and increasing satisfying

lim
s→∞

s2

ϕ(s)
ds = ∞ (5.1)

such that

|F(t, c, d)| ≤ ϕ(|d|), (5.2)

for a.a. t ∈ [0, T] and every c, d ∈ R
n with |c| ≤ R := max{|x| : x ∈ K};

(ii) the problem






















ẍ(t) = 0, for a.a. t ∈ [0, T],

x(T) = x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Bi ẋ(ti), i = 1, . . . , p,

(5.3)

has only the trivial solution;

(iii) there exists a function V ∈ C1(Rn, R), with ∇V locally Lipschitzian, satisfying conditions (H1)

and (H2);

(iv) there exists ε > 0 such that, for all λ ∈ (0, 1), x ∈ K ∩ Nε(∂K), t ∈ (0, T), and v ∈ R
n, with

|v| ≤ ϕ−1(ϕ(2R) + 2R), the following condition

〈HV(x)v, v〉+ 〈∇V(x), w〉 > 0 (5.4)

holds, for all w ∈ λF(t, x, v);

(v) for all i = 1, . . . , p, x ∈ ∂K and v ∈ R
n, with |v| ≤ ϕ−1(ϕ(2R) + 2R) and 〈∇V(x), v〉 6= 0, it

holds that

〈∇V(Aix), Biv〉 · 〈∇V(x), v〉 > 0.

Then the Dirichlet problem (1.1)–(1.3) has a solution x(·) such that x(t) ∈ K, for all t ∈ [0, T].

Approximating the original problem by a sequence of problems satisfying conditions of

Proposition 5.1 and applying the Scorza-Dragoni type result (Proposition 2.2), we are already

able to state the second main result of the paper. The transversality condition is now required

only on the boundary ∂K of the set K and not on the whole neighborhood K ∩ Nε(∂K), as in

Proposition 5.1.

Theorem 5.2. Let K ⊂ R
n be a nonempty, open, bounded and convex set with 0 ∈ K and let

us consider the impulsive Dirichlet problem (1.1)–(1.3), where F : [0, T] × R
n × R

n
⊸ R

n is an

upper Carathéodory multivalued mapping, 0 = t0 < t1 < · · · < tp < tp+1 = T, p ∈ N, and

Ai, Bi, i = 1, . . . , p, are real n × n matrices with Ai∂K = ∂K, for all i = 1, . . . , p. Moreover, assume

that

(i) there exists a function β : [0, ∞) → [0, ∞) continuous and increasing satisfying

lim
s→∞

s2

β(s)
ds = ∞

such that

|F(t, c, d)| ≤ β(|d|),

for a.a. t ∈ [0, T] and every c, d ∈ R
n with |c| ≤ R := max{|x| : x ∈ K};
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(ii) the problem






















ẍ(t) = 0, for a.a. t ∈ [0, T],

x(T) = x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Bi ẋ(ti), i = 1, . . . , p,

(5.5)

has only the trivial solution;

(iii) there exists h > 0 and a function V ∈ C2(Rn, R), with HV(x) positive semidefinite in Nh(∂K),

satisfying conditions (H1), (H2);

(iv) for all x ∈ ∂K and v ∈ R
n, with |v| ≤ β−1(β(2R) + 2R), the inequality

〈∇V(x), w〉 > 0

holds for all t ∈ (0, T) and w ∈ F(t, x, v);

(v) for all i = 1, . . . , p, x ∈ ∂K and v ∈ R
n, with |v| ≤ β−1(β(2R) + 2R) and 〈∇V(x), v〉 6= 0, it

holds that

〈∇V(Aix), Biv〉 · 〈∇V(x), v〉 > 0.

Then the Dirichlet problem (1.1)–(1.3) has a solution x(·) such that x(t) ∈ K, for all t ∈ [0, T].

Proof. Since V ∈ C2(Rn, R), the function x → |∇V(x)| is continuous on the compact set

∂K, and hence there exists k > 0 such that |∇V(x)| > 0 for every x ∈ Nk(∂K). Define δ =

min{h, k}. According to Urysohn’s Lemma, there exists a function µ ∈ C(Rn, [0, 1]) such

that µ ≡ 1 ∈ N δ
2
(∂K) and µ ≡ 0 ∈ R

n \ Nδ(∂K). Take a sequence of positive numbers {ǫm}

decreasing to zero, an open and bounded set G, with K ⊂ G, and L > β−1(β(2R) + 2R).

According to Proposition 2.2 there exist a monotone decreasing sequence {θm} of open subsets

of [0, T] and a measurable multimap F0 : [0, T] × G × {v ∈ R
n : |v| ≤ L} ⊸ R

n such that

ν(θm) ≤ ǫm, F0(t, x, v) ⊂ F(t, x, v) and F0 is u.s.c. on ([0, T] \ θm)× G × {v ∈ R
n : |v| ≤ L} for

every m ∈ N. Trivially ν(∩∞
m=1θm) = 0 and limm→∞ χθm

(t) = 0 for every t /∈ ∩∞
m=1θm.

Define, for each m ∈ N, (t, x, v) ∈ [0, T]× R
n × R

n,

Fm(t, x, v) =







F0(t, x, v) + 2µ(x)β(|v|)χθm
(t) ∇V(x)

|∇V(x)|
if x ∈ G and |v| < L

F(t, x, v) + 2µ(x)β(|v|)χθm
(t) ∇V(x)

|∇V(x)|
, otherwise.

Since δ ≤ k, we have that µ(x) = 0 for x ∈ R
n \ Nδ(∂K) and ∇V(x) 6= 0 in Nδ(∂K), hence

it follows that Fm is well defined. Since µ and β are continuous, V is of class C2, G is open,

F0(t, x, v) ⊂ F(t, x, v), and F is an upper-Carathéodory map, Fm is a Carathéodory map as

well.

Let us now prove that problem























ẍ(t) ∈ Fm(t, x(t), ẋ(t)), for a.a. t ∈ [0, T],

x(T) = x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Bi ẋ(ti), i = 1, . . . , p.

(5.6)

satisfies the assumptions of Proposition 5.1.
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First of all notice that, since 0 ≤ µ(x) ≤ 1, 0 ≤ χθm
(t) ≤ 1, for every x ∈ R

n, t ∈ [0, T], it

holds, according to (i),

|Fm(t, c, d)| ≤ |F(t, c, d)|+ 2β(|d|) ≤ 3β(|d|),

for every (t, c, d) ∈ t × R
n × R

n with |c| ≤ R. Thus condition (i) of Proposition 5.1 is satisfied

by the continuous increasing function ϕ = 3β, since it clearly holds that

lim
s→∞

s2

ϕ(s)
=

1

3
lim
s→∞

s2

β(s)
= ∞.

Moreover, conditions (ii) and (iii) imply the analogous conditions in Proposition 5.1.

Let us now observe that, since ϕ(s) = 3β(s), then ϕ−1(s) = β−1( s
3 ), which is an increasing

function, as inverse of an increasing function. Hence

ϕ−1(ϕ(2R) + 2R) = β−1

(

3β(2R) + 2R

3

)

= β−1

(

β(2R) +
2

3
R

)

≤ β−1(β(2R) + 2R).

Therefore, condition (v) implies the analogous condition of Proposition 5.1. Moreover, for

every λ ∈ (0, 1), x ∈ K ∩ N δ
2
(∂K), t ∈ (0, T), and v ∈ R

n, with |v| ≤ ϕ−1(ϕ(2R) + 2R), w1 ∈

λFm(t, x, v),

〈HV(x)v, v〉+ 〈∇V(x), w1〉 = 〈HV(x)v, v〉+ λ[〈∇V(x), w〉+ 2µ(x)β(|v|)χθm
(t)|∇V(x)|]

= 〈HV(x)v, v〉+ λ[〈∇V(x), w〉+ 2β(|v|)χθm
(t)|∇V(x)|].

Then, if t ∈ [0, T] \ θm

〈HV(x)v, v〉+ 〈∇V(x), w1〉 = 〈HV(x)v, v〉+ λ〈∇V(x), w〉 ≥ λ〈∇V(x), w〉,

with w ∈ F0(t, x, v), because K ∩ N δ
2
(∂K) ⊂ K ⊂ G and ϕ−1(ϕ(2R) + 2R) ≤ β−1(β(2R) +

2R) < L. Since V is of class C2, F0 is u.s.c. on the compact set ([0, T] \ θm)× ∂K × {v ∈ R
n :

|v| ≤ ϕ−1(ϕ(2R) + 2R)}, and F0 is compact valued, condition (iv) implies that there exists

k1 > 0 such that

〈∇V(x), w〉 > 0

for every t ∈ [0, T] \ θm, x ∈ K ∩ Nk1
(∂K), v ∈ R

n : |v| ≤ ϕ−1(ϕ(2R) + 2R), w ∈ F0(t, x, v).

Hence,

〈HV(x)v, v〉+ 〈∇V(x), w1〉 ≥ λ〈∇V(x), w〉 > 0,

for all λ ∈ (0, 1), t ∈ [0, T] \ θm, x ∈ K ∩ Nk1
(∂K), v ∈ R

n : |v| ≤ ϕ−1(ϕ(2R) + 2R), w1 ∈

λFm(t, x, v).

On the other hand, if t ∈ θm, since x ∈ N δ
2
(∂K) and h ≥ δ,

〈HV(x)v, v〉+ 〈∇V(x), w1〉 ≥ λ[〈∇V(x), w〉+ 2β(|v|)|∇V(x)|]

≥ λ[−|w|+ 2β(|v|)]|∇V(x)| ≥ λβ(|v|)|∇V(x)| > 0.

Condition (iv) in Proposition 5.1 follows taking ǫ = min{k1, δ
2}.

Applying Proposition 5.1 we obtain that, for every m ∈ N, there exists a solution xm of

(5.6) such that xm(t) ∈ K and |ẋm(t)| ≤ ϕ−1(ϕ(2R) + 2R), for every t ∈ [0, T]. Hence |ẍm(t)| ≤

ϕ(2R) + 2R for every t ∈ [0, T]. The Ascoli–Arzelà theorem implies that {xm} → x uniformly
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in C1([0, T], R
n) and ẍm → ẍ weakly in L1([0, T], R

n). Thus x(t) ∈ K, |ẋ(t)| ≤ ϕ−1(ϕ(2R)+ 2R)

for every t ∈ [0, T], and x satisfies (1.2)–(1.3). Moreover, since ν(∩∞
n=1θm) = 0,

lim
m→∞

2µ(xm(t))β(|ẋm(t)|)χθm
(t)

∇V(xm(t))

|∇V(xm(t))|
= 0,

for a.a. t ∈ [0, T]. Consequently, a standard limiting argument (see e.g. [28, Theorem 3.1.2])

implies that x is a solution of

ẍ(t) = F0(t, x(t), ẋ(t))

and, since F0(t, x(t), ẋ(t)) ⊂ F(t, x(t), ẋ(t)), a solution of the problem (1.1)–(1.3).

Remark 5.3. Both Theorems 4.3 and 5.2 give an existence result for an impulsive Dirichlet

boundary value problem with a strictly localized bounding function respectively for u.s.c.

and upper-Carathéodory multimap. However Theorem 5.2 does not represent an extension of

Theorem 4.3, since the first one deals with a C2-bounding function, while the second one is

related to a C1-bounding function and can not be easily extended to the Carathéodory case.

In the case when the multivalued mapping F is u.s.c. and the bounding function V is of

class C2, i.e. when it is possible to apply both theorems, conditions of Theorem 4.3 are weaker

than assumptions of Theorem 5.2. In fact, in this case, according to Corollary 3.8, condition

(iv) of the first theorem reads as

〈HV(x)v, v〉+ λ〈∇V(x), w〉 > 0

for every x ∈ ∂K, λ ∈ (0, 1), v ∈ R
n, with |v| ≤ β−1(β(2R) + 2R), and for every t ∈ [0, T] \

{t1, . . . , tp}, w ∈ F(t, x, v) if 〈∇V(x), v〉 6= 0, or for every w ∈ F(ti, x, v) if 〈∇V(Aix), Biv〉 ≤

0 ≤ 〈∇V(x), v〉, which are implied by assumptions (iii) and (iv) of the second theorem.

6 An application of the main result

As an application of Theorem 5.2, let us consider the second-order inclusion

ẍ(t) ∈ a(t)ẋ(t) + h(t, x(t))), for a.a. t ∈ [0, T], (6.1)

together with antiperiodic impulses and Dirichlet boundary conditions

x(t+i ) = −x(ti), i = 1, . . . , p, (6.2)

ẋ(t+i ) = −ẋ(ti), i = 1, . . . , p, (6.3)

x(0) = x(T) = 0, (6.4)

where 0 = t0 < t1 < · · · < tp < tp+1 = T, p ∈ N. Assume that a ∈ L∞([0, T], R), with

‖a‖∞ > 0, and h : [0, T]× R ⊸ R is an upper-Carathédory multivalued mapping with

|h(t, y)| ≤ α(t)g(y)

for some α ∈ L∞([0, T], R), g ∈ C(R, R).

When h is a function, the impulsive Dirichlet boundary value problem associated to the

single valued equation ẍ(t) = a(t)ẋ(t) + h(t, x(t)) represents a generalization of a wide class

of equations which are widely studied in literature (see, e.g., [1, 13, 16, 26, 29]) for its several

applications (including biological phenomena involving thresholds, models describing pop-

ulation dynamics or inspection processes in operations research). Much more rare are the
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results concerning the multivalued case which can be e.g. used for modelling optimal control

problems in economics.

We will show now that, under very general conditions, the Dirichlet multivalued problem

(6.1), (6.4) together with impulse conditions (6.2), (6.3) satisfies all the assumptions of Theorem

5.2. On this purpose, let us consider the nonempty, open, bounded, convex and symmetric

neighbourhood of the origin K = (−k, k), with k to be specified later, and the C2-function

V(x) = 1
2 (x2 − k2) that trivially satisfies conditions (H1) and (H2).

In order to verify condition (i), let us define the continuous and increasing function

β(d) = ‖a‖∞d + ‖α‖∞g, for all d ∈ [0,+∞),

where g = max|x|≤k |g(x)|. The function β obviously satisfies (5.1) and F(t, c, d) := a(t)d +

h(t, c) satisfies (3.16), for all t ∈ [0, T] and all c, d ∈ R, with |c| ≤ k.

Assumption (ii) holds as well since, according to Remark 4.4, the associated homogeneous

problem has only the trivial solution.

Condition (iii) follows from the fact that V̇(x) = x and V̈(x) = 1, for every x ∈ R.

Notice moreover that, whenever xv 6= 0, then (−x)(−v)xv = x2v2
> 0, hence also condi-

tion (v) holds.

Finally, since β−1(d) = 1
‖a‖∞

(d − ‖α‖∞g), we easily get that

β−1(β(2k) + 2k) = 2k

(

1 +
1

‖a‖∞

)

.

Thus condition (iv) reads as

a(t)xv + xw > 0 (6.5)

for every t ∈ [0, T], x with |x| = k, v with |v| ≤ 2k(1 + 1
‖a‖∞

) and w ∈ h(t, x). Taking x = k we

then get w > −a(t)v, for every w ∈ h(t, k). Since the previous condition must hold both for

positive and negative values of v, h(t, k) must take only positive values and the transversality

condition is satisfied if

w > ‖a‖∞2k

(

1 +
1

‖a‖∞

)

= 2k(‖a‖∞ + 1) ∀w ∈ h(t, k).

Similarly,taking x = −k we get that (6.5) is equivalent to w < −a(t)v, for every w ∈ h(t,−k)

which is satisfied only if w is negative. A sufficient condition then becomes

w < −2k(‖a‖∞ + 1) ∀w ∈ h(t,−k).

Thus condition (iv) holds if there exists k > 0 such that for every w1 ∈ h(t, k), w2 ∈ h(t,−k),

w1 > 2k(‖a‖∞ + 1) and w2 < −2k(‖a‖∞ + 1). (6.6)

The previous result can be stated in the form of the following theorem.

Theorem 6.1. Assume that a ∈ L∞([0, T], R), with ‖a‖∞ > 0, h : [0, T] × R ⊸ R is an upper-

Carathédory multivalued mapping with

|h(t, y)| ≤ α(t)g(y),

for some α ∈ L∞([0, T], R), g ∈ C(R, R). Moreover, assume that there exists k > 0 such that, for

every t ∈ [0, T], and w ∈ h(t, k),

w > 2k(‖a‖∞ + 1)
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and that, for every t ∈ [0, T], and w ∈ h(t,−k),

w < −2k(‖a‖∞ + 1).

Then problem (6.1)–(6.4) has a solution x(·) such that |x(t)| ≤ k, for every t ∈ [0, T].

Remark 6.2. Suppose that, in (6.1), h(t, x) = γ(t) + α(t) f (x), where f is an odd semicontin-

uous multimap and α, γ ∈ L∞([0, T], R). Then (6.6) is equivalent to require the existence of

k > 0 such that, for every t ∈ [0, T],

α(t) f (k) > 2k(|a‖∞ + 1)− γ(t).

If α(t) ≥ α > 0, for every t ∈ [0, T], then (6.6) is equivalent to

α f (k) > 2k(‖a‖∞ + 1)− ‖γ−‖∞,

where γ−(t) = min{0, γ(t)}, which holds, e.g., if f is superlinear at infinity, which is true in

many applications. The superlinearity of f at infinity is a sufficient condition also if α(t) ≤

−α < 0, for every t ∈ [0, T]. Notice that the obtained solution is a nonzero function whenever

γ is a nonzero function.
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[25] M. Pavlačková, V. Taddei, A bounding function approach to impulsive Dirichlet prob-

lem with an upper-Carathéodory right-hand side, Electronic J. Differential Equations 2019,

No. 12, 1–18. MR3904853

[26] I. Rachůnková, J. Tomeček, Second order BVPs with state dependent impulses via lower

and upper functions, Cent. Eur. J. Math. 12(2014), No. 1, 128–140. https://doi.org/10.

2478/s11533-013-0324-7

[27] K. Schmitt, R. Thompson, Boundary value problems for infinite systems of second-

order differential equations, J. Differential Equations 18(1975), 277–295. https://doi.org/

10.1016/0022-0396(75)90063-7

[28] I. Vrabie, Compactness methods for nonlinear evolutions, 2nd Edition, Longman, Harlow,

1990.

[29] Z. Zhang, R. Yuan, An application of variational methods to Dirichlet boundary value

problem with impulses, Nonlinear Anal. Real World Appl. 11(2010), No. 1, 155–162. https:

//doi.org/10.1016/j.nonrwa.2008.10.044



Electronic Journal of Qualitative Theory of Differential Equations
2020, No. 14, 1–10; https://doi.org/10.14232/ejqtde.2020.1.14 www.math.u-szeged.hu/ejqtde/

On a nonlocal nonlinear Schrödinger equation with

self-induced parity-time-symmetric potential

Jingjun ZhangB

College of Mathematics, Physics and Information Engineering, Jiaxing University,

No. 56 Yuexiu Road, Jiaxing 314001, China

Received 26 July 2019, appeared 19 February 2020

Communicated by Miklós Horváth

Abstract. We consider the Cauchy problem of a nonlocal nonlinear Schrödinger equa-
tion with self-induced parity-time-symmetric potential. Global existence of solution
and decay estimates are obtained for suitably small initial data when the spatial dimen-
sion d ≥ 2.

Keywords: nonlocal Schrödinger equation, global solution, decay estimate.

2020 Mathematics Subject Classification: 35Q55, 35B08.

1 Introduction

This paper is concerned with a nonlocal nolinear Schrödinger (NLS) equation which reads

iψt(t, x) +
1

2
∆ψ(t, x) + gψ(t, x)ψ(t,Px)ψ(t, x) = 0, (1.1)

where ψ : R ×Rd → C is unknown, ψ is the complex conjugation of ψ, and g is a real constant

(g > 0 and g < 0 denote the focusing and defocusing cases, respectively). In the above

equation, P is a d × d matrix, which denotes a parity transformation with the determinant

satisfying

detP = −1. (1.2)

More precisely, in odd spatial dimensions, Px = −x, that is, the sign of all the coordinates

is changed, while in even spatial dimensions, a parity transformation means that the sign of

only an odd number of coordinates can be reversed. In particular, in one dimensional case,

equation (1.1) reduces to

iψt(t, x) +
1

2
ψxx(t, x) + gψ(t, x)ψ(t,−x)ψ(t, x) = 0, (t, x) ∈ R × R. (1.3)

Note that P is not unique in even dimensions. For example, if d = 2, Px can take as either

Px = (−x1, x2) or Px = (x1,−x2).

BEmail: zjj@zjxu.edu.cn



2 J. Zhang

Equation (1.1) was first derived by Ablowitz and Musslimani [1] in one dimensional

case, and by Sinha and Ghosh [9] in higher dimensional case. In the equation, the self-

induced potential V(t, x) := ψ(t, x)ψ(t,Px) is non-Hermitian but parity-time-symmetric (PT -

symmetric), that is, V(t,Px) = V(t, x). Note that the value of the potential V at x depends not

only on the information of ψ at x, but also on Px, so it is a nonlocal potential. PT -symmetric

condition is weaker than the condition of self-adjointness, however, it was shown by Bender

and Boettcher [3] that non-Hermitian Hamiltonians having PT symmetry may also exhibit

real spectra, hence, a great deal of investigations on PT -symmetric systems are carried out

both theoretically and experimentally. Using a unified two-parameter model, equation (1.1)

can be generalized to vector form [12]. If ψ(t,−x) = ψ(t, x), equation (1.1) reduces to the

classical NLS equation

iψt(t, x) +
1

2
∆ψ(t, x) + g|ψ(t, x)|2ψ(t, x) = 0. (1.4)

When d = 1, Ablowitz and Musslimani [1] showed that the nonlocal NLS equation (1.1) is

an integrable system. Exact soliton solutions were obtained in [1, 2, 6, 8, 9]. In particular, from

the identity (22) in [1], we know the focusing nonlocal NLS equation (1.3) (i.e., g > 0) has the

one-soliton solution

ψ∗(t, x) = ± 2(η1 + η2)eiθ2 ei2gη2
2 te−2

√
gη2x

1 + ei(θ1+θ2)e−i2g(η2
1−η2

2)te−2
√

g(η1+η2)x
,

where the four parameters η1, η2, θ1, θ2 are real, η1, η2 > 0 and η1 6= η2. Note that ψ∗ eventually

develops a singularity in finite time Tn at x = 0,

lim
t→Tn

|ψ∗(t, 0)| = +∞ with Tn =
(2n + 1)π − θ1 − θ2

2g(η2
2 − η2

1)
, n ∈ Z.

In particular, by setting θ1 = θ2 = 0, η1 = ǫ, η2 = 2ǫ, it can be computed that

‖ψ∗(0, x)‖L2(R) . ǫ
1
2 , ‖ψ∗

x(0, x)‖L2(R) . ǫ
3
2 .

This implies that solutions of (1.1) may develop finite time blow up behavior even with H1

small initial data. Therefore, compared to the classical NLS equation (1.4) where we know

global solutions exist with arbitrarily large H1 initial data and possesses a modified scattering

behavior for small initial data [5,7], the nonlocal NLS equation exhibits a completely different

picture in one spatial dimension due to the presence of the nonlocal nonlinearity. So a natural

question is whether such phenomenon still occurs for higher space dimensions. This is the

main motivation of the present work.

In this paper, the notation A . B (A, B ≥ 0) means that there exists a constant C > 0 such

that A ≤ CB. For 1 ≤ p ≤ +∞, Lp(Rd) is the usual Lebesgue space. For s ∈ R, Hs(Rd)

denotes the inhomogeneous Sobolev space equipped with the norm

‖u‖Hs := ‖(1 + |ξ|2)s/2û‖L2 ,

where û = û(ξ) is the Fourier transform of u, namely,

û(ξ) = Fu :=
1

(2π)d/2

∫

Rd
e−ix·ξu(x)dx.

Now, we state the main result of the paper, see Theorems 1.1 and 1.2 below. The initial data

of the equation (1.1) is endowed as

ψ(0, x) = ψ0(x). (1.5)
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Theorem 1.1. Let d ≥ 3, N >
d
2 be an integer. Then there exists a sufficiently small constant ǫ0 > 0

such that if the initial data ψ0 satisfies

‖ψ0‖HN(Rd) + ‖ψ0‖L1(Rd) ≤ ǫ0, (1.6)

then the nonlocal NLS equation (1.1) admits a unique global solution ψ ∈ C(R; HN(Rd)). Moreover,

for all t ∈ R, there hold that

‖ψ(t, x)‖HN(Rd) . ǫ0, ‖ψ(t, x)‖L∞(Rd) .
ǫ0

(1 + |t|)d/2
. (1.7)

Theorem 1.2. Assume d = 2 and the initial data ψ0 satisfies

‖ψ0‖HN(R2) + ‖|x|2ψ0‖L2(R2) ≤ ǫ0, (1.8)

where the integer N > 1 and ǫ0 > 0 is sufficiently small. Then the Cauchy problem (1.1) and (1.5) has

a unique global solution ψ ∈ C(R; HN(R2)) satisfying for all t ∈ R,

‖ψ(t, x)‖HN(R2) + ‖|x|2 f (t, x)‖L2(R2) . ǫ0, ‖ψ(t, x)‖L∞(R2) .
ǫ0

1 + |t| , (1.9)

where f (t, x) := e−
it∆
2 ψ(t, x) is the profile of ψ(t, x).

From the above theorems, we observe that small initial data still leads to global solution

for the nonlocal NLS equation when d ≥ 2, which is different from one dimensional case.

This shows that for long time existence, the dispersive effect dominates the nonlocal effect in

higher dimensions. By using the energy norm and the decay norm, Theorems 1.1 and 1.2 are

proved in Sections 3 and 4, respectively.

Finally, we remark that the total charge N and the Hamiltonian H of the equation (1.1) are

conserved (see [9]), namely, N (t) = N (0) and H(t) = H(0) with

N (t) :=
∫

Rd
ψ(t, x)ψ(t,Px)dx,

H(t) :=
∫

Rd

[1

2
∇ψ(t, x) · ∇ψ(t,Px)− g

2

(
ψ(t, x)ψ(t,Px)

)2]
dx.

Although each term in N and H is real-valued, it is not semipositive-definite. Hence, unlike

the classical NLS equation, it is not known clearly how to use these conserved quantities in

our mathematical analysis, especially in the study of the blow up problems for the nonlocal

NLS equation (1.1). Such issues will be exploited in the further research.

2 Preliminaries

In this section, we collect preparatory materials, including some basic inequalities, linear decay

estimates for the Schrödinger operator and the local well-posedness result. Firstly, from (1.2)

and the definition of the parity transformation P , it is easy to see for any function u(x), there

hold

‖u(Px)‖Lp(Rd) = ‖u(x)‖Lp(Rd), 1 ≤ p ≤ +∞,

F [u(Px)](ξ) = û(Qξ), Q := P−1,

‖u(Px)‖Hs(Rd) = ‖u(x)‖Hs(Rd), s ≥ 0.

(2.1)
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Lemma 2.1. Assume u, v ∈ Hs(Rd) ∩ L∞(Rd) with s ≥ 0, then there holds

‖uv‖Hs . ‖u‖Hs‖v‖L∞ + ‖u‖L∞‖v‖Hs . (2.2)

The proof of this lemma can be found, for example, in [11, Lemma A.8].

Lemma 2.2. There hold that

‖ f ‖L1(R2) . ‖ f ‖1/2
L2(R2)

‖|x|2 f ‖1/2
L2(R2)

, (2.3)

‖ f ‖L4/3(R2) . ‖ f ‖1/2
L2(R2)

‖x f ‖1/2
L2(R2)

. (2.4)

Proof. Let a > 0 be determined later. Using the basic estimate
∫
|x|≥a |x|−4dx . a−2, we deduce

by the Cauchy–Schwarz inequality that

‖ f ‖L1 ≤
∫

|x|≤a
| f (x)| · 1dx +

∫

|x|≥a
|x|2| f (x)| · |x|−2dx . ‖ f ‖L2 a + ‖|x|2 f ‖L2 a−1.

Then (2.3) follows easily if we choose a = ‖|x|2 f ‖1/2
L2 ‖ f ‖−1/2

L2 . Here we may assume ‖ f ‖L2 6= 0,

otherwise the estimate (2.3) holds obviously.

The proof for (2.4) is similar. In fact, using Hölder’s inequality, we have

‖ f ‖4/3
L4/3 ≤

∫

|x|≤b
| f (x)|4/3 · 1dx +

∫

|x|≥b
|x f (x)|4/3 · |x|−4/3

. ‖ f ‖4/3
L2 b2/3 + ‖x f ‖4/3

L2 b−2/3,

which gives the desired estimate (2.4) provided that we set b = ‖x f ‖L2‖ f ‖−1
L2 .

For the Schrödinger operator e
it∆
2 , it is known that (see e.g., [10])

‖e
it∆
2 u‖Lp(Rd) .

1

|t|d( 1
2− 1

p )
‖u‖Lp′ (Rd),

1

p
+

1

p′
= 1, 2 ≤ p ≤ +∞. (2.5)

Using Duhamel’s formula, the solution ψ(t, x) of (1.1) can be expressed by

ψ(t, x) = e
it∆
2 ψ0(x)− ig

∫ t

0
e

i(t−s)∆
2 ψ(s, x)ψ(s,Px)ψ(s, x)ds. (2.6)

Equation (2.6) is the main identity that we will discuss later.

Finally, we end this section with a local well-posedness result.

Proposition 2.3. For any ψ0 ∈ HN(Rd) with N >
d
2 , d ≥ 1, there exists T0 = T0(‖ψ0‖HN ) > 0

such that the Cauchy problem (1.1) and (1.5) has a unique solution ψ ∈ C([0, T0]; HN) satisfying (2.6).

Moreover, if T∗
< +∞ is the maximal existence time for this solution, then

lim sup
t↑T∗

‖ψ(t, x)‖HN = +∞. (2.7)

This proposition can be proved by applying the Banach fixed-point theorem, since the

argument is standard, we skip the details.
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3 Proof of Theorem 1.1

From now on, we focus on the case t ≥ 0 for simplicity. To prove Theorem 1.1, we first

introduce the work space AT as follows,

‖ψ‖AT
:= sup

t∈[0,T)

(
‖ψ(t, x)‖HN(Rd) + (1 + t)

d
2 ‖ψ(t, x)‖L∞(Rd)

)
, (3.1)

where T ∈ (0,+∞]. The result of Theorem 1.1 relies essentially on the following proposition.

Proposition 3.1. Let d ≥ 3, N >
d
2 be an integer and ψ0 ∈ HN(Rd) ∩ L1(Rd). Assume ψ(t, x) ∈

C([0, T]; HN(Rd)) is the solution of (1.1) and (1.5). Then we have

‖ψ‖AT
. ‖ψ0‖HN∩L1 + ‖ψ‖3

AT
, (3.2)

where the implicit constant is independent of T.

Proof. The start point is the identity (2.6). Using Lemma 2.1, (2.1) and the definition of ‖ · ‖AT
,

we have for any t ∈ [0, T],

‖ψ(t, x)‖HN ≤ ‖ψ0(x)‖HN + |g|
∫ t

0
‖ψ(s, x)ψ(s,Px)ψ(s, x)‖HN ds

. ‖ψ0(x)‖HN +
∫ t

0
‖ψ2(s, x)‖HN‖ψ(s,Px)‖L∞ ds

+
∫ t

0
‖ψ2(s, x)‖L∞‖ψ(s,Px)‖HN ds

. ‖ψ0(x)‖HN +
∫ t

0
‖ψ(s, x)‖HN‖ψ(s, x)‖2

L∞ ds

. ‖ψ0(x)‖HN + ‖ψ‖3
AT

∫ t

0
(1 + s)−dds

. ‖ψ0(x)‖HN + ‖ψ‖3
AT

. (3.3)

Next, we turn to estimate the L∞ norm of ψ(t, x). Note that

‖e
it∆
2 ψ0(x)‖L∞ .

1

(1 + t)
d
2

‖ψ0(x)‖L1∩HN , (3.4)

which is a consequence of (2.5) for large t and the Sobolev embedding HN →֒ L∞ for small t.

Hence, using (3.4), (2.1), Lemma 2.1 and Hölder’s inequality, it follows from (2.6) that

‖ψ(t, x)‖L∞ ≤ ‖e
it∆
2 ψ0(x)‖L∞ + |g|

∫ t

0
‖e

i(t−s)∆
2 (ψ2(s, x)ψ(s,Px))‖L∞ ds

.
1

(1 + t)
d
2

‖ψ0(x)‖L1∩HN +
∫ t

0

1

(1 + t − s)
d
2

‖ψ2(s, x)ψ(s,Px)‖L1∩HN ds

.
1

(1 + t)
d
2

‖ψ0(x)‖L1∩HN +
∫ t

0

1

(1 + t − s)
d
2

‖ψ(s, x)‖2
L2‖ψ(s, x)‖L∞ ds

+
∫ t

0

1

(1 + t − s)
d
2

‖ψ(s, x)‖HN‖ψ(s, x)‖2
L∞ ds

.
1

(1 + t)
d
2

‖ψ0(x)‖L1∩HN + ‖ψ‖A3
T

∫ t

0

1

(1 + t − s)
d
2

· 1

(1 + s)
d
2

ds

.
1

(1 + t)
d
2

‖ψ0(x)‖L1∩HN +
1

(1 + t)
d
2

‖ψ‖A3
T
. (3.5)

Therefore, the desired estimate (3.2) follows easily from (3.3) and (3.5).
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Based on Proposition 3.1, we now present the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.3, we know there exists a unique solution ψ to (1.1)

and (1.5) such that ψ ∈ C([0, T∗); HN) with T∗ the maximal existence time of the solution.

In order to obtain Theorem 1.1, we shall show T∗ = +∞ if the initial data is small enough.

Define φ(t) := ‖ψ‖At
for t ≥ 0, where At is given by (3.1). Then from the condition (1.6) and

Proposition 3.1, we obtain

φ(t) ≤ Cǫ0 + Cφ3(t), t ∈ [0, T∗). (3.6)

where C > 1 is independent of T∗.

The bound (1.6) implies φ(0) ≤ ǫ0, then by the continuity of the solution, there exists a

time T such that φ(t) ≤ 2Cǫ0 for all t ∈ [0, T]. Here, C is the same as (3.6). Let

T′ := sup{T; φ(t) ≤ 2Cǫ0 for all t ∈ [0, T]}

Using (3.6) and the continuity of ψ, there holds

φ(T′) ≤ Cǫ0 + Cφ3(T′). (3.7)

Now we claim T′ = T∗ provided that ǫ2
0 ≤ (16C3)−1. Indeed, if T′

< T∗, (3.7) gives

2Cǫ0 ≤ Cǫ0 + 8C4ǫ3
0,

which is a contradiction for sufficiently small ǫ0. Therefore, we conclude that if ǫ0 ≤ (16C3)−
1
2 ,

then φ(T∗) ≤ 2Cǫ0. This bound and the blowup criterion (2.7) in turn yield T∗ = +∞. Hence,

we obtain ψ ∈ C(R+; HN) and the bound (1.7) holds for t ≥ 0. The case t ≤ 0 can be proved

similarly. This ends the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Since the decay rate is only t−1 in dimension two, the argument used in Section 3 can not

be applied to prove Theorem 1.2. Inspired from the work [4, 7] on the method of space-time

resonances, here we would like to work on the space BT defined by

‖ψ‖BT
:= sup

t∈[0,T)

(
‖ψ(t, x)‖HN(R2) + ‖|x|2 f (t, x)‖L2(R2)

)
, (4.1)

where T ∈ (0,+∞], and

f (t, x) := e−
it∆
2 ψ(t, x) (4.2)

is the profile of a solution ψ(t, x) of (1.1). Notice that (4.1) implies

‖x f (t, x)‖L2 ≤ ‖ f (t, x)‖L2 + ‖|x|2 f (t, x)‖L2

= ‖ψ(t, x)‖L2 + ‖|x|2 f (t, x)‖L2

≤ 2‖ψ‖BT
.

(4.3)

Moreover, using (2.3), (2.5), (4.1) and (4.2), we have

‖ψ(t, x)‖L∞(R2) = ‖e
it∆
2 f (t, x)‖L∞(R2) .

1

1 + t
‖ψ‖BT

, t ∈ [0, T], (4.4)

which shows that the decay rate of the solution ψ is bounded by the norm ‖ψ‖BT
.
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Proposition 4.1. Assume ψ(t, x) ∈ C([0, T]; HN(R2)) (N > 1) is the solution of (1.1) with the

initial data satisfying ψ0 ∈ HN(R2) and |x|2ψ0 ∈ L2(R2), then we have x f (t, x), |x|2 f (t, x) ∈
C([0, T]; L2(R2)) and

‖ψ‖BT
. ‖ψ0‖HN + ‖|x|2ψ0‖L2 + ‖ψ‖3

BT
, (4.5)

where the implicit constant is independent of T.

Proof. We first show the continuity for x f (t, x) and |x|2 f (t, x). Recall the definition (4.2), it

follows from (1.1) that

ft(t, x) = ige−
it∆
2 [ψ(t, x)ψ(t,Px)ψ(t, x)]. (4.6)

Using the identity

x(e±
it∆
2 u(x)) = e±

it∆
2 (xu(x))∓ ite±

it∆
2 ∇u(x), (4.7)

which can be verified by taking Fourier transform on both sides of (4.7), then we can obtain

(x f )t = ige−
it∆
2 [xψ(t, x)ψ(t,Px)ψ(t, x)]− gte−

it∆
2 ∇[ψ(t, x)ψ(t,Px)ψ(t, x)].

Integrating this equality with respect to time over [0, t] gives (using also the fact f (0, x) =

ψ0(x), and ψ0 ∈ L2, |x|2ψ0 ∈ L2 implies xψ0 ∈ L2 )

sup
s∈[0,t]

‖x f (s, x)‖L2 ≤ ‖xψ0‖L2 + Ct sup
s∈[0,T]

‖ψ(s, x)‖2
HN sup

s∈[0,t]

‖x f (s, x)‖L2 + Ct2 sup
s∈[0,T]

‖ψ(s, x)‖3
HN .

This implies x f (t, x) ∈ L2 for t ≤ T0 := [2C sups∈[0,T] ‖ψ(s, x)‖2
HN ]

−1. Moreover, with the same

arguments as above, it is easy to obtain

‖x f (t2, x)− x f (t1, x)‖L2 . |t2 − t1| sup
s∈[0,T]

‖ψ(s, x)‖3
HN , t1, t2 ∈ [0, T0],

which gives x f ∈ C([0, T0]; L2). Note that T0 depends only on sups∈[0,T] ‖ψ(s, x)‖HN , so a stan-

dard bootstrap argument clearly yields that the continuity of x f holds in the whole interval

[0, T]. The continuity of |x|2 f can be proved similarly but with more complicated computation,

we thus omit the detailed proof for simplicity.

Next, we prove the bound (4.5). For the HN norm part, one can use (4.4) and similar

treatment as (3.3) to obtain

‖ψ(t, x)‖HN . ‖ψ0‖HN + ‖ψ‖3
BT

∫ t

0
(1 + s)−2ds . ‖ψ0‖HN + ‖ψ‖3

BT
. (4.8)

So it remains to estimate the weighted norm. To this end, we integrate the equation (4.6) with

respect to time and rewrite the resulted identity in the form of Fourier space, then we obtain

(using also (4.2) and (2.1))

f̂ (t, ξ) = f̂ (0, ξ) +
ig

(2π)2

∫ t

0

∫

R2×R2
eisΦ(ξ,η,σ) f̂ (s, ξ − η) f̂ (s, η − σ) f̂ (s,Qσ)dηdσds, (4.9)

where the phase Φ(ξ, η, σ) is given by

Φ(ξ, η, σ) :=
1

2
(|ξ|2 − |ξ − η|2 − |η − σ|2 + |σ|2) = ξ · η − |η|2 + η · σ. (4.10)
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Using Plancharel’s identity, we know ‖|x|2 f ‖L2 = ‖∆ξ f̂ ‖L2 . Now applying ∆ξ to (4.9) and

recalling the fact f (0, x) = ψ0(x), we have

∆ξ f̂ (t, ξ) = ∆ξ ψ̂0 + I1 + I2 + I3 (4.11)

with

I1 := ig(2π)−2
∫ t

0

∫

R2×R2
eisΦ(ξ,η,σ)

∆ξ f̂ (s, ξ − η) f̂ (s, η − σ) f̂ (s,Qσ)dηdσds,

I2 := 2ig(2π)−2
∫ t

0

∫

R2×R2
eisΦ(ξ,η,σ)(is∇ξΦ)∇ξ f̂ (s, ξ − η) f̂ (s, η − σ) f̂ (s,Qσ)dηdσds,

I3 := ig(2π)−2
∫ t

0

∫

R2×R2
eisΦ(ξ,η,σ)(is)2|∇ξΦ|2 f̂ (s, ξ − η) f̂ (s, η − σ) f̂ (s,Qσ)dηdσds.

Note that both I2 and I3 contain growth factor of s. However, the factor will not cause any

difficulty for small s such as s ∈ [0, 1]. Hence, the contribution of the time integral from 0 to 1

in I2 and I3 can be easily estimated by using only the energy bound and the weighted norm.

In the following, we mainly deal with the time integral from 1 to t (still denoted by I2 and I3).

In order to eliminate the growth factor s in the term I2, we use the following crucial relation

for Φ (see (4.10))

∇ξΦ = η = ∇σΦ (4.12)

to integrate by part in σ, then I2 = I2,1 + I2,2 with

I2,1 := −2ig(2π)−2
∫ t

1

∫

R2×R2
eisΦ(ξ,η,σ)∇ξ f̂ (s, ξ − η)∇σ f̂ (s, η − σ) f̂ (s,Qσ)dηdσds,

I2,2 := −2ig(2π)−2
∫ t

1

∫

R2×R2
eisΦ(ξ,η,σ)∇ξ f̂ (s, ξ − η) f̂ (s, η − σ)∇σ f̂ (s,Qσ)dηdσds.

Similarly, using (4.12) to integrate I3 by part twice, then I3 = I3,1 + I3,2 + I3,3 with

I3,1 := ig(2π)−2
∫ t

1

∫

R2×R2
eisΦ(ξ,η,σ) f̂ (s, ξ − η)∆σ f̂ (s, η − σ) f̂ (s,Qσ)dηdσds,

I3,2 := ig(2π)−2
∫ t

1

∫

R2×R2
eisΦ(ξ,η,σ) f̂ (s, ξ − η) f̂ (s, η − σ)∆σ f̂ (s,Qσ)dηdσds,

I3,3 := 2ig(2π)−2
∫ t

1

∫

R2×R2
eisΦ(ξ,η,σ) f̂ (s, ξ − η)∇σ f̂ (s, η − σ)∇σ f̂ (s,Qσ)dηdσds.

Returning back to the physical space and using Hölder’s inequality and (4.4), then

‖I1‖L2 + ‖I3,1‖L2 + ‖I3,2‖L2 .

∫ t

0
‖ψ(t, x)‖2

L∞‖|x|2 f (s, x)‖L2 ds

. ‖ψ‖3
BT

∫ t

0
(1 + s)−2ds

. ‖ψ‖3
BT

. (4.13)

For the remaining terms, we should use the inequality

‖e
is∆

2 (x f (s, x))‖L4 . s−
1
2 ‖ψ‖BT

.
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which follows from (2.4), (2.5) and (4.3), then

‖I2,1‖L2 + ‖I2,2‖L2 + ‖I3,3‖L2 .

∫ t

1
‖ψ(t, x)‖L∞‖e

is∆

2 (x f (s, x))‖2
L4 ds

. ‖ψ‖3
BT

∫ t

1
(1 + s)−2ds

. ‖ψ‖3
BT

. (4.14)

Now, combing (4.11), (4.13) and (4.14) together yields

‖|x|2 f (t, x)‖L2 . ‖|x|2ψ0‖L2 + ‖ψ‖3
BT

. (4.15)

Therefore, the desired bound (4.5) follows immediately from (4.8) and (4.15).

Finally, based on Proposition 4.1, one can argue analogously as the proof of Theorem 1.1

and obtain global existence of solution as stated in Theorem 1.2. The L∞ decay bound in (1.9)

follows also by using (4.4). Since the proof is similar as Theorem 1.1, we thus omit further

details.
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1 Introduction

In this work, we consider the following boundary value problem (BVP for short)

{

CDα
0+u(t) = f (t, u(t), u′(t), CD

β

0+u(t)),

u(0) + u(1) = 0, u′(0) = 0,
(1.1)

where 1 < α < 2, 0 < β < 1, CDα
0+ and CD

β

0+ are Caputo fractional derivatives, f (t, x, y, z)

is singular at the value 0 of its space variables x, y and z. We establish an existence result of

monotone increasing and continuous solution u(t) of BVP (1.1). Since limx→0 f (t, x, y, z) = ∞,

it follows from the condition u(0) + u(1) = 0 that there exists ξ ∈ (0, 1) such that u(ξ) = 0

and thus ξ is a singular point of f .

Throughout the paper, AC[0, 1] and ACk[0, 1] are the set of absolutely continuous func-

tions on [0, 1] and the set of functions having absolutely continuous kth derivatives on [0, 1]

respectively, AC0[0, 1] = AC[0, 1] for k = 0. ‖x‖p =
( ∫ 1

0 |x(t)|pdt
)

1
p is the norm in Lp[0, 1],

1 ≤ p < ∞. The basic space used in this paper is Banach space C1[0, 1] equipped with

the norm ‖x‖∗ = max{‖x‖, ‖x′‖}, here ‖x‖ = maxt∈[0,1] |x(t)|, ‖x′‖ = maxt∈[0,1] |x′(t)|. We

say that a monotone increasing function u ∈ C1[0, 1] is a solution of BVP (1.1) if u satisfies

BCorresponding author. Email: kdxws@163.com
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the boundary conditions in (1.1), u(ξ) = 0 for some ξ ∈ (0, 1), CDα
0+u(t) is continuous on

(0, 1] \ {ξ} and satisfies the equation in (1.1) for t ∈ (0, 1] \ {ξ}.

In recent years, there has been a significant development in ordinary and partial differen-

tial equations involving fractional derivatives due to their wide range of applications in varied

fields of sciences and engineering. Many research papers have appeared recently concerning

the existence of positive solutions for fractional boundary value problems with singularities

on time and/or space variables, see, for example, the papers [8, 10–12, 14, 21, 23] and the ref-

erences therein. In [1–4, 6, 7, 17–20, 22], using techniques of nonlinear analysis such as fixed

point theorems on cones and nonlinear alternatives combined with the methods of regular-

ization and sequential approximation, the authors proved the existence of positive solutions

for singular fractional boundary value problems in which the singularities are with respect to

space variables.

The singular boundary value problem

{

CDα
0+u(t) + f (t, u(t), u′(t), CD

µ

0+u(t)) = 0,

u′(0) = 0, u(1) = 0,

is studied in [2], where 1 < α < 2, 0 < µ < 1, f (t, x, y, z) is positive and may be singular at the

value 0 of its space variables x, y and z. f (t, x, y, z) is a Lq-Carathéodory function on [0, 1]×B
with q >

1
α−1 , B = (0, ∞) × (−∞, 0) × (−∞, 0). An existence result of positive solutions in

space C1[0, 1] is proved by the combination of regularization and sequential techniques with

the Guo–Krasnosel’skii fixed point theorem on cones.

In [17] the author discussed the existence of positive solutions for the singular fractional

boundary value problem

{

Dα
0+u(t) + f (t, u(t), u′(t), D

µ

0+u(t)) = 0,

u(0) = 0, u′(0) = u′(1) = 0,

where 2 < α < 3, 0 < µ < 1, Dα
0+ and D

µ

0+ are the standard Riemann–Liouville fractional

derivatives of order α and µ respectively. The function f (t, x, y, z) is positive and may be

singular at the value 0 of its arguments x, y and z, moreover, f (t, x, y, z) satisfies the local

Carathéodory conditions on [0, 1]× (0, ∞)× (0, ∞)× (0, ∞). By regularization and sequential

techniques and by the Guo–Krasnosel’skii fixed point theorem on cones, positive solutions in

C1[0, 1] are obtained.

Although the singular fractional boundary value problems have been investigated widely,

the solutions allowing negative values of fractional boundary value problems with singular-

ities on space variables are seldom considered. By Schaefer’s fixed point theorem and Vitali

convergence theorem, O’Regan and Staněk in [13] investigated monotone solutions in space

C[0, 1] of the fractional boundary value problem

{

CDα
0+u(t) = f (t, u(t)),

u(0) + u(1) = 0, u′(0) = 0,

where 1 < α < 2, f (t, x) ∈ C([0, 1]× (R\{0})). f (t, x) is nonnegative and may be singular at

x = 0.

Inspired by above works, we prove the existence of monotone increasing solutions for BVP

(1.1). The main tool used in this paper is Schaefer’s fixed point theorem. Our proofs are

based on regularization and sequential techniques. Compared with the existing literature,
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this paper presents the following new features. Firstly, as far as we know, the existence results

of solutions allowing negative values are even less for fractional boundary value problems

with singularities on space variables. Our result compensates for this deficiency to some

extent. Secondly, the significant difference with the problem discussed in [13] lies in that the

nonlinear term f in BVP (1.1) is related to fractional derivatives and permits singularities on

all its space variables. That is to say the problem considered in this paper performs a more

general form. Moreover, the conditions on f in our paper are more general than those in [13].

2 Preliminaries

In this section, we introduce some notations and preliminary facts which are used throughout

this paper.

The Riemann–Liouville fractional integral of order δ > 0 of a function f (t) ∈ L1(a, b) is

defined by (see [9, p. 69])

Iδ
a+ f (t) =

1

Γ(δ)

∫ t

a
(t − s)δ−1 f (s)ds, t > a.

The Riemann–Liouville fractional derivative of order δ > 0 of a continuous function f on

(a, b] is given by (see [9, p. 70])

Dδ
a+ f (t) =

(

d

dt

)n

In−δ
a+ f (t) =

1

Γ(n − δ)

(

d

dt

)n ∫ t

a
(t − s)n−δ−1 f (s)ds,

provided that the right-hand side is pointwise defined on (a, b], where n is the smallest integer

greater than or equal to δ. In particular, for δ = n, Dn
a+ f (t) = f (n)(t).

The Caputo fractional derivative of order δ > 0 of a function f (t) ∈ C(a, b] is defined by

(see [9, p. 91])

CDδ
a+ f (t) = Dδ

a+

[

f (t)−
n−1

∑
k=0

f (k)(a)

k!
(t − a)k

]

,

provided that the right-hand side is pointwise defined on (a, b], where n is the smallest integer

greater than or equal to δ. In particular, for δ = n, CDn
a+ f (t) = f (n)(t).

Remark 2.1. For a function f (t) ∈ L1(a, b), a sufficient condition for the existence of Riemann–

Liouville fractional derivative almost everywhere is that In−δ
a+ f (t) ∈ ACn−1[a, b]. In this case,

the function f is said to have a summable fractional derivative of order δ ([15, Definition 2.4]).

In view of the definition of Caputo fractional derivative, CDδ
a+ f (t) = Dδ

a+ f (t) for δ ∈ N and

CDδ
a+ f (t) = Dδ

a+ f (t)− ∑
n−1
k=0

f (k)(a)
Γ(k−δ+1)

(t − a)k−δ for δ /∈ N (see (2.4.6) in [9]), thus this is also a

sufficient condition for the existence of Caputo fractional derivative. It is worth mentioning

that the solution u(t) in our main result not only has summable fractional derivative CDα
0+u(t)

on [0, 1] but also has continuous fractional derivative CDα
0+u(t) on (0, 1] \ {ξ}. For more details,

see Step 3 in the proof of Theorem 4.1 and Remark 4.2 in Section 4.

Remark 2.2. The following properties are useful for our discussion.

(i) ([9, Lemma 2.8]) Iδ
a+ : C[a, b] → C[a, b] for δ > 0.

(ii) ([9, Lemma 2.3]) If δ > 0, γ > 0, δ + γ > 1 and f ∈ Lp(a, b) (1 ≤ p ≤ ∞), then

Iδ
a+ I

γ
a+ f (t) = I

δ+γ
a+ f (t), t ∈ [a, b].
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(iii) ([9, Theorem 2.2]) If n − 1 < δ ≤ n and f (t) ∈ Cn[a, b], then CDδ
a+ f (t) = In−δ

a+ f (n)(t), t ∈
[a, b].

(iv) ([9, Lemma 2.21]) If δ > 0 and f ∈ C[a, b], then CDδ
a+ Iδ

a+ f (t) = f (t), t ∈ [a, b].

(v) ([17, Lemma 2.1]) Iδ
a+ : L1[a, b] → L1[a, b] for δ ∈ (0, 1) and Iδ

a+ : L1[a, b] → AC[δ]−1[a, b]

for δ ≥ 1, where [δ] means the integral part of δ.

For convenience, in the following discussion we use Iα, CDα and Dα to denote Iα
0+ , CDα

0+

and Dα
0+ , respectively.

A sequence {φn} ⊂ L1[0, 1] is said to have uniformly absolutely continuous integrals on

[0, 1] if for any ǫ > 0, there exists δ > 0 such that if E ⊂ [0, 1] and meas(E) < δ, then
∫

E |φn(t)|dt < ǫ for all n ∈ N (see [5, p. 178]). To prove the main result, we need the following

Vitali convergence theorem and nonlinear alternative.

Lemma 2.3 ([5, pp. 178–179] Vitali convergence theorem). Let {φn} ⊂ L1[0, 1], limn→+∞ φn(t) =

φ(t) for a.e. t ∈ [0, 1] and |φ(t)| < ∞ for a.e. t ∈ [0, 1]. Then the following statements are equivalent.

(1) φ ∈ L1[0, 1] and limn→+∞ ‖φn − φ‖1 = 0.

(2) The sequence {φn} has uniformly absolutely continuous integrals on [0, 1].

Lemma 2.4 ([16, p. 29] Schaefer’s fixed point theorem). Let X be a Banach space and T : X → X

be completely continuous. Then the following alternative holds. Either the equation x = λT(x) has a

solution for every λ ∈ [0, 1] or the set A = {x ∈ X : x = λTx for some λ ∈ (0, 1)} is unbounded.

Denote R0 = R \ {0}, R
+ = [0,+∞) and R

+
0 = (0,+∞). We work with the following

conditions on the function f in (1.1).

(H1) f ∈C([0, 1]×R0×R
+
0 ×R

+
0 ), limx→0 f (t, x, y, z)= limy→0+ f (t, x, y, z)= limz→0+ f (t, x, y, z)=

+∞ and f (t, x, y, z) ≥ mt2−α for (t, x, y, z) ∈ [0, 1]× R0 × R
+
0 × R

+
0 .

(H2) f (t, x, y, z) ≤ ρ(t)g(|x|, y, z) + p(|x|) + q(y, z) for (t, x, y, z) ∈ [0, 1] × R0 × R
+
0 × R

+
0 ,

where ρ(t) is nonnegative on [0, 1], g(x, y, z) ∈ C(R+ × R
+ × R

+) is nonnegative and

nondecreasing in all its arguments, p(x) ∈ C(R+
0 ) is nonnegative and nonincreasing,

q(y, z) ∈ C(R+
0 × R

+
0 ) is nonnegative and nonincreasing in all its arguments.

(H3) limx→+∞
g(x,x,x)

x = 0. p(λx) ≤ λ−σ p(x) for some σ ∈ (0, α−1
2 ) and for any λ ∈ (0, 1],

x ∈ R
+
0 . ρ(t), p(t2) and q(mΓ(3 − α)t, mΓ(3−α)

Γ(3−β)
t2−β) ∈ Lν[0, 1] for some ν ∈ ( 1

α−1 , 1
2σ ).

Remark 2.5. In [13], the nonlinear term satisfies f (t, x) ≤ g(|x|) + A
|x|ν , where A > 0 is a

constant and ν > 0 is a suitable small number. It is easy to verify that the simple function

p(x) = 1
xω for 0 < ω <

α−1
2 fulfils the conditions (H2) and (H3) with ω ≤ σ <

α−1
2 and

ν ∈ ( 1
α−1 , 1

2σ ).

Remark 2.6. By Lemma 2.1 and 2.2 in [2], for any f (t) ∈ Lν[0, 1] with ν >
1

α−1 , Iα−1 f (t) ∈
C[0, 1] and

∣

∣

∫ t
0 (t − s)α−2 f (s)ds

∣

∣ ≤
(

td

d

)
1
µ ‖ f ‖ν, where d = (α − 2)µ + 1 and µ = ν

ν−1 . Thus we

can know easily limt→0+ Iα−1 f (t) = 0. Similarly, Iα f (t) ∈ C[0, 1] and limt→0+ Iα f (t) = 0. The

continuity of Iα f (t) on [0, 1] can also be derived from the continuity of Iα−1 f (t), Remark 2.2

(i) and (ii).
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3 Auxiliary regular problem

This section deals with an auxiliary regular problem. We prove its solvability and give the

properties of its solutions. We also state a necessary lemma and its useful corollary.

Consider the integral equation defined by

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1 fn(s, u(s), u′(s), CDβu(s))ds

− 1

2Γ(α)

∫ 1

0
(1 − s)α−1 fn(s, u(s), u′(s), CDβu(s))ds,

(3.1)

where

fn(t, x, y, z) =











f (t, x, χn(y), χn(z)), x ≥ 1
n ,

n
2

[

f (t, 1
n , χn(y), χn(z))(

1
n + x) + f (t,− 1

n , χn(y), χn(z))(
1
n − x)

]

, |x| ≤ 1
n ,

f (t, x, χn(y), χn(z)), x ≤ − 1
n ,

and

χn(τ) =

{

τ, τ ≥ 1
n ,

1
n , τ ≤ 1

n .

Then the conditions (H1) and (H2) give

(K1) fn ∈ C([0, 1]× R × R × R) and fn(t, x, y, z) ≥ mt2−α for (t, x, y, z) ∈ [0, 1]× R × R × R.

(K2) fn(t, x, y, z) ≤ ρ(t)g(|x| + 1, y + 1, z + 1) + p( 1
n ) + q( 1

n , 1
n ) for (t, x, y, z) ∈ [0, 1] × R ×

R
+ × R

+, fn(t, x, y, z) ≤ ρ(t)g(|x| + 1, y + 1, z + 1) + p(|x|) + q(y, z) for (t, x, y, z) ∈
[0, 1]× R0 × R

+
0 × R

+
0 .

Define an operator Tn by the formula

Tnu(t) =
1

Γ(α)

∫ t

0
(t − s)α−1 fn(s, u(s), u′(s), CDβu(s))ds

− 1

2Γ(α)

∫ 1

0
(1 − s)α−1 fn(s, u(s), u′(s), CDβu(s))ds.

(3.2)

Obviously, the fixed points of Tn are exactly the solutions of integral equation (3.1).

Lemma 3.1. Suppose that (H1) holds. Then Tn : C1[0, 1] → C1[0, 1] is completely continuous.

Proof. Let u∈C1[0, 1]. Using Remark 2.2 (i) and (iii) we have CDβu(t)= 1
Γ(1−β)

∫ t
0 (t−s)−βu′(s)ds

and CDβu(t) ∈ C[0, 1]. Thus, in view of (3.2), Remark 2.2 (i) and (K1) ensure Tnu(t) ∈
C[0, 1]. Moreover, according to (K1), Remark 2.2 (i), (ii) and (iv), we know (Tnu)′(t) =

1
Γ(α−1)

∫ t
0 (t− s)α−2 fn(s, u(s), u′(s), CDβu(s))ds and (Tnu)′(t)∈C[0, 1]. So we have Tn : C1[0, 1]→

C1[0, 1].

Tn is a continuous operator. In fact, let {uk} ⊂ C1[0, 1] be such that limk→+∞ ‖uk − u‖∗ = 0,

then u(t) ∈ C1[0, 1]. Since

|CDβuk(t)−C Dβu(t)| ≤ 1

Γ(1 − β)

∫ t

0
(t − s)−β|u′

k(s)− u′(s)|ds

≤ ‖u′
k − u′‖

Γ(1 − β)

∫ t

0
(t − s)−βds ≤ ‖u′

k − u′‖
Γ(2 − β)

,
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we get ‖CDβuk −C Dβu‖ → 0 and thus ‖ fn(t, uk, u′
k, CDβuk)− fn(t, u, u′, CDβu)‖ → 0 as k →

+∞. Note that

|Tnuk(t)− Tnu(t)|

=

∣

∣

∣

∣

1

Γ(α)

∫ t

0
(t − s)α−1

[

fn(s, uk(s), u′
k(s),

CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))
]

ds

− 1

2Γ(α)

∫ 1

0
(1 − s)α−1

[

fn(s, uk(s), u′
k(s),

CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))
]

ds

∣

∣

∣

∣

≤ 1

Γ(α)

∫ t

0
(t − s)α−1

∣

∣

∣
fn(s, uk(s), u′

k(s),
CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))

∣

∣

∣
ds

+
1

2Γ(α)

∫ 1

0
(1 − s)α−1

∣

∣

∣
fn(s, uk(s), u′

k(s),
CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))

∣

∣

∣
ds

≤ ‖ fn(t, uk, u′
k, CDβuk)− fn(t, u, u′, CDβu)‖

Γ(α)

∫ t

0
(t − s)α−1ds

+
‖ fn(t, uk, u′

k, CDβuk)− fn(t, u, u′, CDβu)‖
2Γ(α)

∫ 1

0
(1 − s)α−1ds

=
‖ fn(t, uk, u′

k, CDβuk)− fn(t, u, u′, CDβu)‖
Γ(α + 1)

(

tα +
1

2

)

≤ 3‖ fn(t, uk, u′
k, CDβuk)− fn(t, u, u′, CDβu)‖

2Γ(α + 1)
,

and

|(Tnuk)
′(t)− (Tnu)′(t)|

=

∣

∣

∣

∣

1

Γ(α − 1)

∫ t

0
(t − s)α−2

[

fn(s, uk(s), u′
k(s),

CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))
]

ds

∣

∣

∣

∣

≤ 1

Γ(α − 1)

∫ t

0
(t − s)α−2

∣

∣

∣
fn(s, uk(s), u′

k(s),
CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))

∣

∣

∣
ds

≤ ‖ fn(t, uk, u′
k, CDβuk)− fn(t, u, u′, CDβu)‖

Γ(α − 1)

∫ t

0
(t − s)α−2ds

=
‖ fn(t, uk, u′

k, CDβuk)− fn(t, u, u′, CDβu)‖
Γ(α)

tα−1

≤ ‖ fn(t, uk, u′
k, CDβuk)− fn(t, u, u′, CDβu)‖

Γ(α)
.

So we obtain limk→+∞ ‖Tnuk − Tnu‖∗ = 0. Therefore, Tn is a continuous operator.

Furthermore, Tn is completely continuous. Suppose that Ω ⊂ C1[0, 1] is bounded and let

Mn = sup{‖ fn(t, u, u′, CDβu)‖, u ∈ Ω}, here Mn is well defined because CDβu(t) ≤ ‖u′‖
Γ(2−β)

.

Then we have

|Tnu(t)| ≤ 1

Γ(α)

∫ t

0
(t − s)α−1

∣

∣ fn(s, u(s), u′(s), CDβu(s))
∣

∣ds

+
1

2Γ(α)

∫ 1

0
(1 − s)α−1

∣

∣ fn(s, u(s), u′(s), CDβu(s))
∣

∣ds

≤ Mn

Γ(α)

∫ t

0
(t − s)α−1ds +

Mn

2Γ(α)

∫ 1

0
(1 − s)α−1ds ≤ 3Mn

2Γ(α + 1)
,
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and

|(Tnu)′(t)| ≤ 1

Γ(α − 1)

∫ t

0
(t − s)α−2

∣

∣ fn(s, u(s), u′(s), CDβu(s))
∣

∣ds

≤ Mn

Γ(α − 1)

∫ t

0
(t − s)α−2ds ≤ Mn

Γ(α)
.

Therefore, Tn(Ω) is bounded. Now we are in the position to prove Tn(Ω) ⊂ C1[0, 1] is an

equicontinuous set. Let t1, t2 ∈ [0, 1] and t1 < t2, then |Tnu(t2)− Tnu(t1)| ≤ Mn

Γ(α)
(t2 − t1) by

the mean value theorem and |(Tnu)′(t)| ≤ Mn

Γ(α)
. Moreover,

|(Tnu)′(t2)− (Tnu)′(t1)|

=
1

Γ(α − 1)

∣

∣

∣

∣

∫ t2

0
(t2 − s)α−2 fn(s, u(s), u′(s), CDβu(s))ds

−
∫ t1

0
(t1 − s)α−2 fn(s, u(s), u′(s), CDβu(s))ds

∣

∣

∣

∣

≤ 1

Γ(α − 1)

∫ t1

0

[

(t1 − s)α−2 − (t2 − s)α−2
] ∣

∣ fn(s, u(s), u′(s), CDβu(s))
∣

∣ds

+
1

Γ(α − 1)

∫ t2

t1

(t2 − s)α−2
∣

∣ fn(s, u(s), u′(s), CDβu(s))
∣

∣ds

≤ Mn

Γ(α − 1)

∫ t1

0

[

(t1 − s)α−2 − (t2 − s)α−2
]

ds +
Mn

Γ(α − 1)

∫ t2

t1

(t2 − s)α−2ds

=
Mn

Γ(α)

(

tα−1
1 − tα−1

2 + 2(t2 − t1)
α−1

)

.

Keeping in mind that the function tα−1 is uniformly continuous on [0, 1], we have Tn(Ω) is

equicontinuous. Consequently, the Arzelà–Ascoli theorem guarantees that Tn is a completely

continuous operator. The proof of Lemma 3.1 is finished.

The next lemma presents the existence of fixed points for the operator Tn.

Lemma 3.2. Assume that the conditions (H1), (H2) and (H3) are satisfied. Then Tn has a fixed point

in C1[0, 1] for any n ∈ N.

Proof. In view of Lemma 2.4 and Lemma 3.1, it is sufficient to prove the set An = {u ∈
C1[0, 1] : u = λTnu for some λ ∈ (0, 1)} is bounded. For any u ∈ An, we have

u(t) =
λ

Γ(α)

∫ t

0
(t − s)α−1 fn(s, u(s), u′(s), CDβu(s))ds

− λ

2Γ(α)

∫ 1

0
(1 − s)α−1 fn(s, u(s), u′(s), CDβu(s))ds,

(3.3)

u′(t) =
λ

Γ(α − 1)

∫ t

0
(t − s)α−2 fn(s, u(s), u′(s), CDβu(s))ds

≥ mλ

Γ(α − 1)

∫ t

0
(t − s)α−2s2−αds

=
mλt

Γ(α − 1)

∫ 1

0
(1 − s)α−2s2−αds = mλΓ(3 − α)t ≥ 0

(3.4)
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by (K1). According to (3.3) and (3.4), one has u(0) + u(1) = 0, u′(0) > 0 on (0, 1]. Thus there

exists ξ ∈ (0, 1) such that u(ξ) = 0. It follows that |u(t)| = |u(t)− u(ξ)| ≤ ‖u′‖|t − ξ| and

hence ‖u‖ ≤ ‖u′‖. Since CDβu(t) ≥ 0 by (3.4) and CDβu(t) ≤ ‖u′‖
Γ(2−β)

, applying the conditions

(H2), (H3) and (K2) we can derive

u′(t)≤ 1

Γ(α − 1)

∫ t

0
(t − s)α−2

[

ρ(s)g(|u(s)|+ 1, u′(s) + 1, CDβu(s) + 1) + p

(

1

n

)

+ q

(

1

n
,

1

n

)]

ds

≤ 1

Γ(α − 1)

∫ t

0
(t − s)α−2

[

ρ(s)g(‖u′‖+ 1, ‖u′‖+ 1,
‖u′‖

Γ(2 − β)
+ 1) + p

(

1

n

)

+ q

(

1

n
,

1

n

)]

ds

≤
g(‖u′‖+ 1, ‖u′‖+ 1, ‖u′‖

Γ(2−β)
+ 1)

Γ(α − 1)

∫ t

0
(t − s)α−2ρ(s)ds +

p( 1
n ) + q( 1

n , 1
n )

Γ(α)

≤ Cg

(

‖u′‖+ 1, ‖u′‖+ 1,
‖u′‖

Γ(2 − β)
+ 1

)

+
p( 1

n ) + q( 1
n , 1

n )

Γ(α)
,

here C = maxt∈[0,1]
1

Γ(α−1)

∫ t
0 (t − s)α−2ρ(s)ds, C is well defined by Remark 2.6 and (H3). In

particular, the inequality

1 ≤
Cg(‖u′‖+ 1, ‖u′‖+ 1, ‖u′‖

Γ(2−β)
+ 1)

‖u′‖ +
p( 1

n ) + q( 1
n , 1

n )

‖u′‖Γ(α)

is fulfilled. The condition limx→+∞
g(x,x,x)

x = 0 in (H3) guarantees that there exists L > 0 such

that
Cg(‖u′‖+ 1, ‖u′‖+ 1, ‖u′‖

Γ(2−β)
+ 1)

‖u′‖ +
p( 1

n ) + q( 1
n , 1

n )

‖u′‖Γ(α)
< 1

for ‖u′‖ > L. Consequently, we obtain ‖u‖ ≤ ‖u′‖ ≤ L for u ∈ An. Therefore, An is bounded

and we complete the proof.

Lemma 3.2 shows that the integral equation (3.1) admits a solution un in C1[0, 1] for any

n ∈ N. The properties of solutions to (3.1) are collected in the following lemma.

Lemma 3.3. Let the conditions (H1), (H2) and (H3) be valid and un be solution of (3.1). Then

(1) un(0) + un(1) = 0, u′
n(0) = 0, u′

n(t) ≥ mΓ(3 − α)t and there exists ξn ∈ (0, 1) such that

un(ξn) = 0.

(2) |un(t)| ≥ mΓ(3−α)
2 |t2 − ξ2

n|.

(3) {un(t), n ∈ N} is a compact subset of C1[0, 1].

(4) There exists a constant l ∈ (0, 1) such that l ≤ ξn < 1 for any n ∈ N.

Proof. Proof of (1). Similar to (3.4), the condition (K1) ensures u′
n(t) ≥ mΓ(3 − α)t. Other

assertions in (1) are obvious so we omit their proofs.

Proof of (2). Using (1), one has easily |un(t)| =
∣

∣

∫ t
ξn

u′
n(s)ds

∣

∣ ≥ mΓ(3 − α)
∣

∣

∫ t
ξn

sds
∣

∣ =
mΓ(3−α)

2 |t2 − ξ2
n|.

Proof of (3). In order to apply the Arzelà–Ascoli theorem, we need to prove {un(t)} is

bounded in C1[0, 1] and {u′
n(t)} is equicontinuous. Firstly, we prove {un(t)} is bounded.

In view of (1), we get

‖un‖ ≤ ‖u′
n‖, CDβun(t) ≥ m

Γ(3 − α)

Γ(1 − β)

∫ t

0
(t − s)−βsds =

mΓ(3 − α)

Γ(3 − β)
t2−β.
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We also know CDβun(t) ≤ ‖u′
n‖

Γ(2−β)
. Thus, for t ∈ (0, 1] \ {ξn}, by (H2), (K2), (1) and (2) we

derive

fn(t, un(t), u′
n(t),

CDβun(t)) ≤ ρ(t)g(|un(t)|+ 1, u′
n(t) + 1, CDβun(t) + 1)

+ p(|un(t)|) + q(u′
n(t),

CDβun(t))

≤ ρ(t)g

(

‖u′
n‖+ 1, ‖u′

n‖+ 1,
‖u′

n‖
Γ(2 − β)

+ 1

)

+ p

(

mΓ(3 − α)

2
|t2 − ξ2

n|
)

+ q

(

mΓ(3 − α)t,
mΓ(3 − α)

Γ(3 − β)
t2−β

)

.

Hence,

u′
n(t) ≤

g(‖u′
n‖+ 1, ‖u′

n‖+ 1, ‖u′
n‖

Γ(2−β)
+ 1)

Γ(α − 1)

∫ t

0
(t − s)α−2ρ(s)ds

+
1

Γ(α − 1)

∫ t

0
(t − s)α−2 p

(

mΓ(3 − α)

2
|s2 − ξ2

n|
)

ds

+
1

Γ(α − 1)

∫ t

0
(t − s)α−2q

(

mΓ(3 − α)s,
mΓ(3 − α)

Γ(3 − β)
s2−β

)

ds.

(3.5)

Furthermore, by (H3) and Remark 2.6, we can let

C1 = max
t∈[0,1]

1

Γ(α − 1)

∫ t

0
(t − s)α−2ρ(s)ds, (3.6)

C2 = max
t∈[0,1]

1

Γ(α − 1)

∫ t

0
(t − s)α−2q

(

mΓ(3 − α)s,
mΓ(3 − α)

Γ(3 − β)
s2−β

)

ds (3.7)

and by the Hölder inequality one has
∫ t

0
(t − s)α−2 p

(

mΓ(3 − α)

2
|s2 − ξ2

n|
)

ds

≤ [(α − 2)µ + 1]−
1
µ

(

∫ t

0
pν

(

mΓ(3 − α)

2
|s2 − ξ2

n|
)

ds

)
1
ν

,

(3.8)

here (α − 2)µ + 1 > 0 and 1
µ + 1

ν = 1, µ is well defined by the choice of ν in condition (H3).

Next we estimate the integral on the right side of (3.8).

∫ t

0
pν

(

mΓ(3 − α)

2
|s2 − ξ2

n|
)

ds

≤
∫ 1

0
pν

(

mΓ(3 − α)

2
|s2 − ξ2

n|
)

ds

=
∫ ξn

0
pν

(

mΓ(3 − α)

2
|s2 − ξ2

n|
)

ds +
∫ 1

ξn

pν

(

mΓ(3 − α)

2
|s2 − ξ2

n|
)

ds

= I1 + I2.

(3.9)

In view of the monotone property of p and (H3), we get

I1 ≤
∫ ξn

0
pν

(

mΓ(3 − α)

2
ξn(ξn − s)

)

ds =
∫ 1

0
ξn pν

(

mΓ(3 − α)

2
ξ2

n(1 − s)

)

ds

≤ Aξ1−2σν
n

∫ 1

0
(p(1 − s))νds ≤ A

∫ 1

0
(p(s))νds ≤ A

∫ 1

0
(p(s2))νds = C3 < +∞,

(3.10)
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where A = 1 if mΓ(3−α)
2 ≥ 1, otherwise A =

(mΓ(3−α)
2

)−σν
.

I2 =
∫ 1

ξn

pν

(

mΓ(3 − α)

2
(s + ξn)(s − ξn)

)

ds

=
∫ 1

0
(1 − ξn)pν

(

mΓ(3 − α)

2
(1 − ξn)s((1 − ξn)s + 2ξn)

)

ds

≤
∫ 1

0
(1 − ξn)pν

(

mΓ(3 − α)

2
(1 − ξn)

2s2

)

ds ≤ A(1 − ξn)
1−2σν

∫ 1

0
(p(s2))νds

≤ A
∫ 1

0
(p(s2))νds = C3 < +∞.

(3.11)

As a result, the inequalities from (3.5) to (3.11) show that for any n ∈ N and t ∈ [0, 1],

u′
n(t) ≤ C1g

(

‖u′
n‖+ 1, ‖u′

n‖+ 1,
‖u′

n‖
Γ(2 − β)

+ 1

)

+
[(α − 2)µ + 1]−

1
µ

Γ(α − 1)
(2C3)

1
ν + C2.

Consequently, similar to the proof in Lemma 3.2, we can conclude that {un(t)} is bounded.

Now it remains to prove that {u′
n(t)} is equicontinuous. Let t1, t2 ∈ [0, 1] be such that

t1 < t2 and L = sup{‖un‖∗, n ∈ N}. Then

|u′
n(t2)− u′

n(t1)| ≤
1

Γ(α − 1)

∫ t1

0

(

(t1 − s)α−2 − (t2 − s)α−2
)

fn(s, un(s), u′
n(s),

CDβun(s))ds

+
1

Γ(α − 1)

∫ t2

t1

(t2 − s)α−2 fn(s, un(s), u′
n(s),

CDβun(s))ds

≤
‖ρ‖νg(L + 1, L + 1, L

Γ(2−β)
+ 1)

Γ(α − 1)

(

∫ t1

0

(

(t1 − s)α−2 − (t2 − s)α−2
)µ

ds

)
1
µ

+
1

Γ(α − 1)

(

∫ t1

0
pν

(

mΓ(3 − α)

2
|s2 − ξ2

n|
)

ds

)
1
ν
(

∫ t1

0

(

(t1 − s)α−2 − (t2 − s)α−2
)µ

ds

)
1
µ

+
1

Γ(α − 1)

(

∫ t1

0
qν

(

mΓ(3 − α)s,
mΓ(3 − α)

Γ(3 − β)
s2−β

)

ds

)
1
ν

·
(

∫ t1

0

(

(t1 − s)α−2 − (t2 − s)α−2
)µ

ds

)
1
µ

+
‖ρ‖νg(L + 1, L + 1, L

Γ(2−β)
+ 1)

Γ(α − 1)

(

∫ t2

t1

(t2 − s)(α−2)µds

)
1
µ

+
1

Γ(α − 1)

(

∫ t2

t1

pν

(

mΓ(3 − α)

2
|s2 − ξ2

n|
)

ds

)
1
ν
(

∫ t2

t1

(t2 − s)(α−2)µds

)
1
µ

+
1

Γ(α − 1)

(

∫ t2

t1

qν

(

mΓ(3 − α)s,
mΓ(3 − α)

Γ(3 − β)
s2−β

)

ds

)
1
ν
(

∫ t2

t1

(t2 − s)(α−2)µds

)
1
µ

.

According to (3.9), (3.10), (3.11) and the condition (H3) we know
∫ t1

0 pν(mΓ(3−α)
2 |s2 − ξ2

n|)ds,
∫ t1

0 qν(mΓ(3 − α)s, mΓ(3−α)
Γ(3−β)

s2−β)ds,
∫ t2

t1
pν(mΓ(3−α)

2 |s2 − ξ2
n|)ds,

∫ t2

t1
qν(mΓ(3 − α)s, mΓ(3−α)

Γ(3−β)
s2−β)ds

are bounded. Furthermore, the relation (x − y)η ≤ xη − yη for x ≥ y ≥ 0, η > 1 ensures that
∫ t1

0

(

(t1 − s)α−2 − (t2 − s)α−2
)µ

ds ≤
∫ t1

0

(

(t1 − s)(α−2)µ − (t2 − s)(α−2)µ
)

ds

=
t
(α−2)µ+1
1 − t

(α−2)µ+1
2 + (t2 − t1)

(α−2)µ+1

(α − 2)µ + 1
.
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In addition,
∫ t2

t1

(t2 − s)(α−2)µds =
(t2 − t1)

(α−2)µ+1

(α − 2)µ + 1
.

Hence we can obtain that {u′
n(t)} is equicontinuous. Consequently, the Arzelà–Ascoli theo-

rem implies that {un(t)} is a compact subset of C1[0, 1].

Proof of (4). Suppose that there exists a subsequence {ξnk
} of {ξn} such that limk→+∞ ξnk

=

0. Since |unk
(0)| = |unk

(0) − unk
(ξnk

)| ≤ ‖u′
nk
‖ξnk

, we have limk→+∞ unk
(0) = 0. Thus,

limk→+∞ unk
(1) = 0 because unk

(0) + unk
(1) = 0, which contradicts unk

(1) − unk
(0) =

∫ 1
0 u′

nk
(s)ds ≥ mΓ(3−α)

2 . Hence, inf{ξn : n ∈ N} > 0. As a result, we arrive at ξn ∈ [l, 1)

for n ∈ N with some l > 0.

We complete the proof of Lemma 3.3.

In order to apply the Vitali convergence theorem in the proof of our main theorem, we

need the following result.

Lemma 3.4. Let the conditions (H1), (H2) and (H3) be satisfied and un be solution of (3.1). Then

{ fn(t, un(t), u′
n(t),

CDβun(t)), n ∈ N} ⊂ C[0, 1] has uniformly absolutely continuous integrals on

[0, 1].

Proof. Let E ⊂ [0, 1] be measurable and L = sup{‖un‖∗, n ∈ N}. Then

∫

E
fn(t, un(t), u′

n(t),
CDβun(t))dt ≤ g

(

L + 1, L + 1,
L

Γ(2 − β)
+ 1

)

∫

E
ρ(t)dt

+
∫

E
p

(

mΓ(3 − α)

2
|t2 − ξ2

n|
)

dt

+
∫

E
q

(

mΓ(3 − α)t,
mΓ(3 − α)

Γ(3 − β)
t2−β

)

dt.

Applying the Hölder inequality, we have

∫

E
ρ(t)dt ≤ (meas(E))

1
µ

(

∫

E
(ρ(t))νdt

)
1
ν

,

∫

E
p

(

mΓ(3 − α)

2
|t2 − ξ2

n|
)

dt ≤ (meas(E))
1
µ

(

∫

E
pν

(

mΓ(3 − α)

2
|t2 − ξ2

n|
)

dt

)
1
ν

,

∫

E
q

(

mΓ(3 − α)t,
mΓ(3 − α)

Γ(3 − β)
t2−β

)

dt ≤ (meas(E))
1
µ

(

∫

E
qν

(

mΓ(3 − α)t,
mΓ(3 − α)

Γ(3 − β)
t2−β

)

dt

)
1
ν

.

Noticing the condition (H3), (3.9), (3.10) and (3.11), we conclude that the sequence { fn(t, un(t),

u′
n(t),

CDβun(t))} has uniformly absolutely continuous integrals on [0, 1].

Corollary 3.5. Let the conditions (H1), (H2) and (H3) hold and un be solution of (3.1). Then

{(t0 − t)α−1 fn(t, un(t), u′
n(t),

CDβun(t)), n ∈ N} ⊂ C[0, t0] has uniformly absolutely continuous

integrals on [0, t0] for any t0 ∈ [0, 1].

The assertion in Corollary 3.5 follows from Lemma 3.4 and the fact

(t0 − t)α−1 fn(t, un(t), u′
n(t),

CDβun(t)) ≤ fn(t, un(t), u′
n(t),

CDβun(t)), t ∈ [0, t0].
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4 Main result

Now we can give the existence result for the singular BVP (1.1).

Theorem 4.1. Assume that the conditions (H1), (H2) and (H3) are valid. Then there exists at least

one increasing function u(t) ∈ C1[0, 1] solving the BVP (1.1).

Proof. For clarity, we divide the proof into several steps.

Step 1: Firstly, Lemma 3.3 and the Bolzano–Weierstrass theorem guarantee that there exist

subsequences {unk
} ⊂ {un}, {ξnk

} ⊂ {ξn} and u ∈ C1[0, 1], ξ ∈ [l, 1] such that limk→+∞ ξnk
= ξ

and limk→+∞ ‖unk
− u‖∗ = 0. Then again by Lemma 3.3, u(ξ) = 0, u(0) + u(1) = 0, u′(0) = 0,

u′(t) > 0 for t ∈ (0, 1] and |u(t)| ≥ mΓ(3−α)
2 |t2 − ξ2|. The last inequality together with u(0) +

u(1) = 0 implies u(1) 6= 0, that is, ξ ∈ [l, 1).

Furthermore, since CDβunk
(t) ≥ mΓ(3−α)

Γ(3−β)
t2−β and limk→+∞ ‖CDβunk

− CDβu‖ = 0, we get

CDβu(t) ≥ mΓ(3−α)
Γ(3−β)

t2−β and thus CDβu(t) > 0 on (0, 1]. Hence, f (t, u(t), u′(t), CDβu(t)) ∈
C((0, 1] \ {ξ}) and

lim
k→+∞

fnk
(t, unk

(t), u′
nk
(t), CDβunk

(t)) = f (t, u(t), u′(t), CDβu(t)), t ∈ (0, 1] \ {ξ}.

Also, we can know f (t, u(t), u′(t), CDβu(t)) ∈ L1[0, 1] by Lemma 2.3 and Lemma 3.4. More-

over, according to Lemma 2.3 and Corollary 3.5, passing to the limit as k → +∞ on both sides

of the equality

unk
(t) =

1

Γ(α)

∫ t

0
(t − s)α−1 fnk

(s, unk
(s), u′

nk
(s), CDβunk

(s))ds

− 1

2Γ(α)

∫ 1

0
(1 − s)α−1 fnk

(s, unk
(s), u′

nk
(s), CDβunk

(s))ds,

we obtain

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, u(s), u′(s), CDβu(s))ds

− 1

2Γ(α)

∫ 1

0
(1 − s)α−1 f (s, u(s), u′(s), CDβu(s))ds, t ∈ [0, 1].

(4.1)

Therefore, u(t) is a solution of integral equation (4.1). Next we prove u(t) is a solution of (1.1).

Step 2: In this step we prove that the right side integral in (4.1) belongs to C1[0, 1] and satisfies

the boundary value conditions in (1.1).

Let L = ‖u‖∗. In view of for any t ∈ (0, 1] \ {ξ},

f (t, u(t), u′(t), CDβu(t)) ≤ g

(

L + 1, L + 1,
L

Γ(2 − β)
+ 1

)

ρ(t) + p

(

mΓ(3 − α)

2
|t2 − ξ2|

)

+ q

(

mΓ(3 − α)t,
mΓ(3 − α)

Γ(3 − β)
t2−β

)

,

this together with (3.9), (3.10), (3.11) and (H3) guarantees that f (t, u(t), u′(t), CDβu(t)) ∈
Lν[0, 1]. Hence Iα f ∈ C[0, 1] and Iα−1 f ∈ C[0, 1] by Remark 2.6. Furthermore, by Re-

mark 2.2 (ii) one has for any t ∈ [0, 1],

D1 Iα f (t, u(t), u′(t), CDβu(t)) = D1 I1 Iα−1 f (t, u(t), u′(t), CDβu(t))

= Iα−1 f (t, u(t), u′(t), CDβu(t)).
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Thus we obtain that the right side integral in (4.1) belongs to C1[0, 1]. Since by Remark 2.6

lim
t→0+

Iα f (t, u(t), u′(t), CDβu(t)) = lim
t→0+

Iα−1 f (t, u(t), u′(t), CDβu(t)) = 0,

we can know easily the right side integral in (4.1) satisfies the boundary value conditions in

BVP (1.1).

Step 3: Now it remains to prove that the Caputo derivative of order α of the right side integral

in (4.1) exists and is continuous on (0, 1] \ {ξ} and satisfies the differential equation in (1.1)

for t ∈ (0, 1] \ {ξ}.

In fact, using the definitions of Caputo fractional derivative and Riemann–Liouville frac-

tional derivative, we have

CDαu(t) = Dα[u(t)− u(0)− u′(0)t]

= Dα

(

1

Γ(α)

∫ t

0
(t − s)α−1 f (s, u(s), u′(s), CDβu(s))ds

)

= Dα Iα f (t, u(t), u′(t), CDβu(t)) =

(

d

dt

)2

I2−α Iα f (t, u(t), u′(t), CDβu(t)).

Thus we need to prove that
(

d
dt

)2
I2−α Iα f (t, u(t), u′(t), CDβu(t)) exists and is continuous on

(0, 1] \ {ξ} and is equal to f (t, u(t), u′(t), CDβu(t)) for t ∈ (0, 1] \ {ξ}.

Firstly, by f ∈ L1[0, 1] and Remark 2.2 (ii), for any t ∈ [0, 1], we have

I2−α Iα f (t, u(t), u′(t), CDβu(t)) = I2 f (t, u(t), u′(t), CDβu(t))

=
∫ t

0
(t − s) f (s, u(s), u′(s), CDβu(s))ds.

Secondly, by f ∈ C((0, 1] \ {ξ}), for any t ∈ (0, 1] \ {ξ}, let ∆t be small enough so that f is

continuous on [t− |∆t|, t+ |∆t|] (for t = 1, f is continuous on [t− |∆t|, t]), then applying mean

value theorem for integrals, we obtain

d

dt

(

∫ t

0
f (s, u(s), u′(s), CDβu(s))ds

)

= lim
∆t→0

∫ t+∆t
0 f (s, u(s), u′(s), CDβu(s))ds −

∫ t
0 f (s, u(s), u′(s), CDβu(s))ds

∆t

= lim
∆t→0

∫ t+∆t
t f (s, u(s), u′(s), CDβu(s))ds

∆t
= f (t, u(t), u′(t), CDβu(t)).

Similarly, d
dt

( ∫ t
0 s f (s, u(s), u′(s), CDβu(s))ds

)

= t f (t, u(t), u′(t), CDβu(t)). As a result we have

d

dt

(

∫ t

0
(t − s) f (s, u(s), u′(s), CDβu(s))ds

)

=
d

dt

(

t
∫ t

0
f (s, u(s), u′(s), CDβu(s))ds

)

− d

dt

(

∫ t

0
s f (s, u(s), u′(s), CDβu(s))ds

)

=
∫ t

0
f (s, u(s), u′(s), CDβu(s))ds,

and hence,
(

d
dt

)2( ∫ t
0 (t − s) f (s, u(s), u′(s), CDβu(s))ds

)

= f (t, u(t), u′(t), CDβu(t)) for any t ∈
(0, 1] \ {ξ}.

We complete the proof of our main result.
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Remark 4.2. In Theorem 4.1, by f ∈ L1[0, 1] and Remark 2.2 (v) we can know I2 f (t, u(t), u′(t),
CDβu(t)) ∈ AC1[0, 1]. Thus the function u(t) defined by (4.1) has summable fractional deriva-

tive and CDαu(t) = f (t, u(t), u′(t), CDβu(t)) for a.e. t ∈ [0, 1]. Furthermore, f ∈ C((0, 1] \ {ξ})
and this ensures CDαu(t) = f (t, u(t), u′(t), CDβu(t)) for any t ∈ (0, 1] \ {ξ}.

5 An example

In this section we give an example to illustrate our result.

Example 5.1. Consider the boundary value problem























CD
3
2 x(t) = (t + 1)2 + | cos t|

[

ln(1 + |x(t)|) + arctan x′(t) + (CD
1
2 x(t))

1
2

]

+ et

|x(t)|
1
8
+ 1

(

x′(t)C D
1
2 x(t)

)
1
10

,

x(0) + x(1) = 0, x′(0) = 0.

(5.1)

Clearly α = 3
2 , β = 1

2 and the nonlinear term is

f (t, x, y, z) = (t + 1)2 + | cos t|
[

ln(1 + |x|) + arctan y + z
1
2

]

+
et

|x| 1
8

+
1

(yz)
1
10

, (t, x, y, z) ∈ [0, 1]× R0 × R
+
0 × R

+
0 .

The conditions (H1), (H2) and (H3) are satisfied with m = mint∈[0,1](t + 1)2 = 1, σ ∈ [ 1
8 , 1

4 ),

ν ∈ (2, 1
2σ ), ρ(t) = (t + 1)2 + | cos t|, g(x, y, z) = 1 + ln(1 + x) + arctan y + z

1
2 , p(x) = e

x1/8 and

q(y, z) = 1
(yz)1/10 . We only verify that p(x) and q(y, z) satisfy the conditions in (H3). Other

conditions are easy to verify and we omit here. First of all, we have p(λx) = λ− 1
8

e
x1/8 ≤

λ−σ e
x1/8 = λ−σ p(x) for λ ∈ (0, 1] and x ∈ R

+
0 . Moreover, ν

4 < 1 and this ensures p(x2) ∈
Lν[0, 1] and q(mΓ(3 − α)x, mΓ(3−α)

Γ(3−β)
x2−β) = (

√
π

3 )−
1
10

1
x1/4 ∈ Lν[0, 1]. As a result, Theorem 4.1

guarantees that the problem (5.1) has an increasing solution.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11671181). The

authors would like to thank the reviewers for their valuable suggestions and useful comments

that have significantly improved the original manuscript.

References
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Abstract. In this paper we consider the existence of antisymmetric solutions for the
quasilinear defocusing Schrödinger equation in H1(RN):

−∆u +
k

2
u∆u2 + V(x)u = g(u),

where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth
and k is a non-negative parameter. By considering a minimizing problem restricted
on a partial Nehari manifold, we prove the existence of antisymmetric solutions via a
deformation lemma.

Keywords: quasilinear Schrödinger equation, antisymmetric solutions, Nehari mani-
fold.
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1 Introduction and main results

In this paper we are interested in the existence of antisymmetric solutions in H1(RN) for the

modified quasilinear Schrödinger equation

− ∆u +
k

2
u∆u2 + V(x)u = g(u) in R

N , (1.1)

where V : R
N → (0, ∞) is a continuous and positive potential function, g : R → R is a

continuous and subcritical function, k ≥ 0 is a parameter. The existence of solutions for (1.1)

is closely related to study of standing waves ω(x, t) = u(x)e−(iEt)/h̄ for the superfluid film

equation arising in the plasma physics (see [9]),

ih̄∂tω = −∆ω + W(x)ω − h̃(|ω|2)ω +
k

2
ω∆ω2, (1.2)

where W(x) is a given potential and h̃(u2)u = g(u) is a real function. So, ω(x, t) will be a

such solution of (1.2) if and only if u(x) solves equation (1.1) with V(x) = W(x)− E.

BCorresponding author. Email: zhou@mat.unb.br
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For the case k = 0, equation (1.1) becomes a semilinear Schrödinger equation. The exis-

tence of positive ground states or least action nodal solutions for the semilinear Schrödinger

equation has been studied widely, we refer the readers to [3,8,24,26] and the references therein

for the literature on nodal solutions of the semilinear Schrödinger equation.

For k = −1, the modified quasilinear Schrödinger equation has received a lot of attention.

The appearance of the quasilinear part u∆u2 makes the problem much more complicated, it is

quite difficult to study the associated energy functional directly in the Sobolev space H1(RN)

and requires one to develop new techniques to apply variational methods. The existence

of a positive ground state solution of equation (1.1) has been proved in [16] and [25] by

introducing a parameter λ in front of the nonlinear term. In [17], by a change of variables,

the authors studied the quasilinear problem was transformed to a semilinear one and the

existence of a positive solution was proved using the Mountain-Pass Lemma in an Orlicz

space. Different from the change of variable methods, in [20] the authors introduced new

perturbation techniques and also proved the existence of solutions for a new kind of critical

problems for the modified quasilinear Schrödinger equation in [21].

The existence of sign-changing solution is an interesting topic i.e. looking for solutions

u with u+, u− 6= 0, where u+(x) = max{u(x), 0} ≥ 0, and u−(x) = min{u(x), 0} ≤ 0,

x ∈ R
N . In [18] the authors proved the existence of sign-changing ground state solution for

(1.1) with k = −1 and g(s) = |s|p−2s, s ∈ R with 3 ≤ p < 22∗ − 1, that is, g having subcritical

growth (22∗ plays the role of critical exponent here), and V is a continuous function such that

0 < V0 = infRN V(x) ≤ lim|x|→∞ V(x) = V∞ with V(x) ≤ V∞ − A/(1 + |x|m), for |x| ≥ M, for

some real constants A, M, m > 0. The perturbation arguments in [21] was successfully applied

to study the existence of multiple nodal solutions for a general class of sub-critical quasilinear

Schrödinger equation in [19].

Also, we would also like to mention [10, 11, 13, 15, 18] and references therein for some

recent progress of the study of the quasilinear Schrödinger equation for k < 0. However, in

[12, 14], the nonlinearity g is permitted to behave in a critical way, under the more restrictive

assumption that V is symmetric radially positive and differentiable continuous function with

V ′(r) ≥ 0 for r ≥ 0. Their approach was based on Mountain Pass Theorem on Nehari

manifolds.

But, for the case k > 0, it seems that there are few work about this type of problems.

The existence results of solutions, we like to mention [1] and the existence of sign-changing

solutions, we like to mention [2].

The existence of τ-antisymmetric solutions, in [5] and [6], the authors proved existence of

τ-antisymmetric solutions for the problem

−∆u + V(x)u = g(u) in R
N ,

by considering the limit problem

−∆u + V∞u = g(u) in R
N .

In [7], the authors showed the existence of τ-antisymmetric solutions for the system
{
−∆u + u = |u|2p−2u + β(x)|v|p|u|p−2u, in R

N ,

−∆v + ω2v = |v|2p−2v + β(x)|u|p|v|p−2v, in R
N

under suitable assumptions by considering the limit problem
{
−∆u + u = |u|2p−2u + β∞|v|p|u|p−2u, in R

N ,

−∆v + ω2v = |v|2p−2v + β∞|u|p|v|p−2v, in R
N ,
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and other additional conditions.

However, for the case k 6= 0, it seems that the existence results of solutions of τ-antisymmetric

solutions to equation (1.1) has not been considered yet. Thus the aim of the present paper is

to study the existence of τ-antisymmetric solution for a quasilinear defocusing Schrödinger

equation.

To state the main results, we may assume that the potential function V is continuous such

that V(x) ≥ V0 > 0 for all x ∈ R
N , and:

(V1) V(τx) = V(x), where τ : R
N → R

N is a nontrivial orthogonal involution that is a linear

orthogonal transformation on R
N such that τ 6= Id and τ2 = Id;

(V2) V is 1-periodic in xi, 1 ≤ i ≤ N;

(V3) V is radially symmetric, i.e. V(x) = V(|x|) and V ∈ L∞(RN);

(V4) lim|x|→∞ V(x) = ∞.

The nonlinearity g is supposed to satisfy:

(G1) g ∈ C(R, R) is such that g(0) = 0 and odd;

(G2) lim|t|→0
g(t)

t = 0 and lim sup|t|→∞

g(t)
|t|q−1 < ∞ for some q ∈ (2, 2∗);

(G3) 0 < θG(s) ≤ sg(s), s 6= 0 for some 2 < θ < 2∗, where G(u) =
∫ u

0 g(t)dt;

(G4) t 7−→ g(t)
tρ , t > 0 is non-decreasing for some ρ > 1.

Our principal result shows the existence of a τ-antisymmetric solution, that is u satisfies

(1.1) and u(τx) = −u(x).

Theorem 1.1. Suppose that (V1) holds and one of (V2), (V3) and (V4) is satisfied and the conditions

(G1)–(G4) hold. Then there exists k0 > 0 such that for each k ∈ (0, k0) equation (1.1) has at least one

τ-antisymmetric solution u ∈ H1(RN) ∩ L∞(RN) with

max
x∈RN

|u(x)| ≤ σ√
k

, where σ =

[(
4 − 1

ρ
−
√

1

ρ2
+

8

ρ

)
/8

]1/2

. (1.3)

The antisymmetric solution found in Theorem 1.1 minimizes the energy functional among

all possible solutions for (1.1), and so we can call it the least action antisymmetric solution.

This work contributes to the literature of modified quasilinear defocusing Schrödinger

equation in the two senses: on the hand, we found an τ-antisymmetric solution instead of a

limit problem, we used several different conditions of the function V; on the other hand, we

just need the function g to be continuous, so we can not use directly Ekeland’s variational

principle.

The paper is organized as follows. In Section 2, we introduce the variational framework

for the quasilinear defocusing Schrödinger equation. In Section 3, establishing some auxil-

iary lemmas and build a homeomorphism between sphere and Nehari manifold. Finally in

Section 4, we prove the existence of τ-antisymmetric solution for (1.1) with subcritical growth

and obtaining a L∞-estimate.
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Notation

We will use the following notations frequently:

• C, C0, C1, C2, . . . denote positive (possibly different) constants.

• BR denotes the open ball centered at the origin with radius R > 0.

• C∞
0 (RN) denotes functions infinitely differentiable with compact support in R

N .

• For 1 ≤ s ≤ ∞, Ls(RN) denotes the usual Lebesgue space with the norms

|u|s :=
( ∫

RN
|u|s
)1/s

, 1 ≤ s < ∞;

|u|∞ := inf{C > 0 : |u(x)| ≤ C almost everywhere in R
N}.

• H1(RN) denotes the Sobolev spaces with usual norm

‖u‖1,2 :=
(
|∇u|22 + |u|22

)1/2
.

• The weak convergence in H1(RN) is denoted by ⇀, and the strong convergence by →.

2 The modified problem

Formally, this equation has a variational structure, that is, by considering

I(u) =
1

2

∫

RN
(1 − k|u|2)|∇u|2 + 1

2

∫

RN
V(x)|u|2 −

∫

RN
G(u),

a function u ∈ H1(RN) is said to be a weak solution of equation (1.1) if it satisfies

∫

RN
(1 − k|u|2)∇u∇ϕ − k

∫

RN
|∇u|2uϕ +

∫

RN
V(x)uϕ =

∫

RN
g(u)ϕ

for all ϕ ∈ H1(RN), which means 〈I′(u), ϕ〉 = 0 for all ϕ ∈ H1(RN).

First, we point out that, under the hypothesis V(x) ≥ V0 > 0 for all x ∈ R
N , the subset

E =

{
u ∈ H1(RN)

∣∣∣
∫

RN
V(x)u2(x) < ∞

}

is a closed subspace of H1(RN). Moreover,

‖u‖2
E =

∫

RN
|∇u|2 +

∫

RN
V(x)u2(x)

defines a norm on E. However, the presence of the second order nonhomogeneous term

u∆u2 prevents us to work directly with the functional I, because it is not even well defined in

general in H1(RN).

In order to prove the main results, we first establish the existence of nontrivial solution for

a modified quasilinear Schrödinger equation. More precisely, we will show the existence of

sign changing solutions for the following quasilinear Schrödinger equations

− div(l2(u)∇u) + l(u)l′(u)|∇u|2 + V(x)u = g(u), x ∈ R
N (2.1)

with l(t) =
√

1 − kt2 for |t| < σ/
√

k for k > 0, where V : R
N → R is a continuous function

and σ > 0 was chosen in (1.3). Clearly, when l(t) =
√

1 − kt2, we derive that (2.1) turns into
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(1.1). Then, by using Morse type L∞-estimate, we will prove that there exist k0 such that for all

k ∈ [0, k0) the solution found verifies the estimate maxRN |u| < σ/
√

k. After that, we conclude

that the solutions obtained are solutions of the original equation (1.1).

For the equation (2.1), we will consider l : R → R defined by

l(t) =





√
1 − kt2, if 0 ≤ t < σ√

k
,

σ3
√

k

kt
√

1 − σ2
+

√
1

ρ
, if t ≥ σ√

k
,

and l(t) = l(−t) for all t ≤ 0. So, it follows from the choice of σ = σ(ρ) > 0 for ρ > 1 in

(1.3) that l ∈ C1(R, (
√

1/ρ, 1)) is an even function and it increases in (−∞, 0) and decreases

in [0,+∞).

Note that (2.1) is the Euler–Lagrange equation associated to the energy functional

Ik(u) =
1

2

∫

RN
l2(u)|∇u|2 + 1

2

∫

RN
V(x)|u|2 −

∫

RN
G(u) (2.2)

for |u| < σ/
√

k.

In the sequel, we will prove the existence of nontrivial antisymmetric critical points u

of (2.2) satisfying supx∈RN |u(x)| ≤ σ/
√

k. This means that it is a nontrivial antisymmetric

solution of (2.1) with l(u) =
√

1 − ku2, and so, a nontrivial antisymmetric solution of (1.1) can

be got from the function l.

In what follows, we set

L(t) =
∫ t

0
l(s)ds, t ∈ R.

By a simple computation, we see that the inverse function L−1(t) exists and it is an odd

function. Moreover, it is very important to note that L, L−1 ∈ C2(R). The lemma below shows

some important properties of the functions l and L−1 that will be used in the later part of the

paper.

Remark 2.1. From assumption (G4), if ρ2 > ρ1 > 1 and g(t)/tρ2 is non-decreasing, then

g(t)/tρ1 is non-decreasing as well. Thus, if g(t)/tρ is non-decreasing for some ρ > 1, we can

assume that ρ is sufficiently close to 1, satisfying

4 +
1

ρ
+

√
1

ρ2
+

8

ρ
>

8√
ρ

and 2 < 2
√

ρ < θ. (2.3)

Throughout the paper, we need the following lemma. Its proof can be found in [1] and [2].

Lemma 2.2. The functions l and L−1 satisfy:

(1) limt→0
L−1(t)

t = 1;

(2) limt→∞
L−1(t)

t =
√

ρ;

(3)
√

1
ρ t ≤ l(t)t ≤ L(t) ≤ t and t ≤ L−1(t) ≤ √

ρt, for all t ≥ 0;

(4) − σ2

1−σ2 ≤ t
l(t)

l′(t) ≤ 0, for all t ≥ 0;

(5) [L−1(t)]δ

l(L−1(t))t
, t > 0 is increasing for δ > 1 and non-decreasing for δ = 1,

(6) L−1(t)
l(L−1(t))tρ , t > 0 is decreasing for ρ > 1 close to 1 and L−1(t)

t , t > 0 is non-decreasing.
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Now, changing variable by

v = L(u) =
∫ u

0
l(s)ds,

we can observe that the functional Ik can be rewritten in the form

Jk(v) =
1

2

∫

RN
|∇v|2 + 1

2

∫

RN
V(x)|L−1(v)|2 −

∫

RN
G(L−1(v)).

From Lemma 2.2, Jk is well defined in H1(RN) and Jk ∈ C1(H1(RN), R) with

〈J′k(v), φ〉 =
∫

RN

[
∇v∇φ + V(x)

L−1(v)

l(L−1(v))
φ − g(L−1(v))

l(L−1(v))
φ

]
, (2.4)

for all v, φ ∈ H1(RN).

Lemma 2.3. If v ∈ H1(RN) is a critical point of Jk, then u = L−1(v) ∈ H1(RN) and additionally it

is a weak solution for (2.1) if supx∈RN |u(x)| ≤ σ/
√

k.

Proof. See [2].

The following embedding result plays an important role in showing that the minimizing

function on the partial Nehari manifold are non-trivial functions.

Proposition 2.4. The function L−1 is such that:

1. the map v 7−→ L−1(v) from
(
E, ‖ · ‖E

)
to
(

Ls(RN), | · |s
)

is continuous for 2 ≤ s ≤ 2∗.

2. under (V4), the above map is compact for 2 ≤ s < 2∗, and under (V3) with N ≥ 2, this map is

compact for 2 < s < 2∗.

Proof. See [2].

3 Auxiliary results

Before stating the auxiliary results, let us point out some consequences of our hypotheses.

Remark 3.1. From assumption (G2), there exists cǫ > 0 such that

g(t)t ≤ ǫ|t|2 + cǫ|t|q ∀ t ∈ R

for each ǫ > 0 given.

Remark 3.2. From assumption (G3), there exists a constant K > 0 such that

G(t) ≥ K|t|θ for all |t| > δ

for each δ > 0 given.

After these, let us associate to the functional Jk the Nehari manifold

N = {v ∈ E\{0} | 〈J′k(v), v〉 = 0}.

In order to find τ-antisymmetric solutions, we look for critical points of the functional Jk on

N τ = {v ∈ N | v(τx) = −v(x)} ⊂ N .
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The involution τ on R
N induces an involution Tτ : E → E given by

Tτ(v(x)) := −v(τ(x)).

We denote by Eτ := {u ∈ E : Tτ(v(x)) = v(x)} the subspace of τ-invariant functions of E, we

have

N τ = N ∩ Eτ.

Now, we are going to introduce the differentiable continuous function hv
k : [0, ∞) → R by

setting hv
k(t) = Jk(tv), that is,

hv
k(t) :=

1

2

∫

RN
|t∇v|2 + 1

2

∫

RN
V(x)|L−1(tv)|2 −

∫

RN
G(L−1(tv)),

for each v ∈ E with v 6= 0.

Lemma 3.3. Assume that (G1)–(G3) hold. If v ∈ Eτ with v 6= 0, then there exist α > 0 such that

〈J′k(αv), v〉 = 0,

that is, αv ∈ N τ, and α ∈ (0, ∞) is a critical point of hv
k .

Proof. It follows from the definition of hv
k , that

∂hv
k(t)

∂t
= t

∫

RN
|∇v|2 +

∫

RN
V(x)

L−1(tv)

l(L−1(tv))
v −

∫

RN

g(L−1(tv))

l(L−1(tv))
v

= 〈J′k(tv), v〉.

(3.1)

So, it follows from Remark 3.1 and (3) of Lemma 2.2, that

〈J′k(tv), tv〉 ≥ t2
∫

RN
|∇v|2 −

∫

RN

g(L−1(tv))

l(L−1(tv))
tv

≥ t2
∫

RN
|∇v|2 −

∫

RN

ǫ|L−1(tv)|2 + cǫ|L−1(tv)|q√
1/ρ|L−1(tv)| |tv|

≥ t2|∇v|22 − ρǫt2|v|22 −
√

ρqcǫtq|v|qq,

which means there exists tm > 0 sufficiently small such that

〈J′k(tmv), tmv〉 > 0,

since q > 2.

On the other hand, it follows from Hypothesis (G3) that

〈J′k(tv), tv〉 ≤ t2
∫

RN
|∇v|2 +

∫

RN
V(x)

L−1(tv)

l(L−1(tv))
(tv)− θ

∫

RN

G(L−1(tv))

l(L−1(tv))L−1(tv)
(tv).

Set δ > 0 such that the set

A = {x ∈ R
N ; |v(x)| ≥ δ} ⊂ R

N

is not empty. By Remark 3.2; l(t) > 1/
√

ρ, t > 0; and (3) of Lemma 2.2, we get

〈J′k(tv), tv〉 ≤ t2
∫

RN
|∇v|2 +√

ρt2
∫

RN
V(x)v2 − θKtθ

∫

A
|v|θ
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for t > 0.

As a consequence, we obtain tM > 0 sufficiently large such that

〈J′k(tMv), tMv〉 < 0,

since θ > 2. Hence, the lemma follows from intermediate value theorem.

Lemma 3.4. If v ∈ N and (G4) hold, then

∂hv
k

∂t
(t) > 0 for 0 < t < 1,

∂hv
k

∂t
(t) < 0 for t > 1,

In particular, hv
k(t) < hv

k(1) = Jk(v) for all t ≥ 0 such that t 6= 1.

Proof. By the facts of l being even and L odd, it is sufficiently to prove the case of that v ≥ 0.

First, it follows from (3.1) that

∂hv
k(t)

∂t
= tρ

{∫

RN

|∇v|2
tρ−1

−
∫

RN

[
g(L−1(tv))

l(L−1(tv))(tv)ρ
− V(x)L−1(tv)

l(L−1(tv))(tv)ρ

]
vρ+1

}
.

Now, by using (G4), (5), (6) of Lemma 2.2, and the monotonicity of l, L−1, we obtain

g(L−1(tv))

l(L−1(tv))(tv)ρ
− V(x)L−1(tv)

l(L−1(tv))(tv)ρ

=
g(L−1(tv))

(L−1(tv))ρ

[
(L−1(tv))

tv

]ρ
1

l(L−1(tv))
− V(x)

L−1(tv)

l(L−1(tv))(tv)ρ

<
g(L−1(v))

(L−1(v))ρ

[
(L−1(v))

v

]ρ
1

l(L−1(v))
− V(x)

L−1(v)

l(L−1(v))(v)ρ

=
g(L−1(v))

l(L−1(v))(v)ρ
− V(x)

L−1(v)

l(L−1(v))(v)ρ

for 0 < t < 1, and in a similar way, we obtain

g(L−1(tv))

l(L−1(tv))(tv)ρ
− V(x)L−1(tv)

l(L−1(tv))(tv)ρ
>

g(L−1(v))

l(L−1(v))(v)ρ
− V(x)L−1(v)

l(L−1(v))(v)ρ

for t > 1.

So, it follows from above informations, and the hypothesis v ∈ N , that

∂hv
k

∂t
(t) > 0 for 0 < t < 1, and

∂hv
k

∂t
(t) < 0 for t > 1. (3.2)

That is, hv
k(t) < hv

k(1) = Jk(v). So, the lemma is proved.

It follows from above informations, that:

Remark 3.5. If v ∈ N , then 1 is an unique critical point of hv
k .
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Remark 3.6. If v ∈ E with v 6= 0, then the critical point α = αv ∈ (0,+∞) of hv
k , given by

Lemma 3.3, is unique.

In fact, by Lemma 3.3 there is α > 0 such that α is a critical point of hv
k . Finally, assume

that α1 and α2 are two critical points of hv
k , then

α2

α1
(α1v) = α2v.

Since α1v ∈ N , then by the Remark 3.5, we have α2/α1 = 1, and so α1 = α2.

The following two lemmas are important to prove our theorem, the proofs can be found

in [2]

Lemma 3.7. Assume that V is continuous such that V(x) ≥ V0 > 0 for all x ∈ R
N and (G1)–(G3)

hold. Then:

(i) for all v ∈ N , we have

Jk(v) ≥
θ − 2

√
ρ

2θ

(∫

RN
|∇v|2 +

∫

RN
V(x)|L−1(v)|2

)
,

(ii) there is γ > 0 such that

∫

RN
|∇v|2 +

∫

RN
V(x)|L−1(v)|2 ≥ γ, for all v ∈ N .

Lemma 3.8. Assume the same hypotheses of Lemma 3.7, and (vn) being a sequence in N . Then

lim inf
n→∞

∫

RN
|L−1(vn)|qdx > 0

for some q ∈ (2, 2∗).

Remark 3.9. By Lemma 3.8 and (3) of Lemma 2.2, there exists a constant γ1 > 0 such that

∫

RN
|vn|q ≥ γ1 > 0.

Lemma 3.10. Assume that (G4) hold. If V ⊂ Sτ is a compact subset of Eτ, then there exists R > 0

such that Jk ≤ 0 on (R+V) \ BR(0), where Sτ := {u ∈ Eτ; ‖u‖E = 1}.

Proof. Arguing by contradiction, suppose there exits un ∈ V and wn = tnun such that Jk(wn) ≥
0 and tn → ∞ as n → ∞.

By the definition of Jk and (3) of Lemma 2.2 have

Jk(wn) ≤
ρ

2
‖wn‖E −

∫

RN
G(L−1(wn)) =

ρ

2
t2
n −

∫

RN
G(L−1(wn)).

Using (G4), we have t 7−→ G(t)
tρ+1 , t > 0 is non-decreasing for some ρ > 1 and

G(L−1(w))

L−1(w)2
→ ∞ uniformly in x as |w| → ∞. (3.3)
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Passing to a subsequence, we may assume that un → u ∈ Sτ. Since |wn(x)| → ∞ if u(x) 6= 0,

it follows from (3) of Lemma 2.2, (3.3) and Fatou’s lemma that

∫

RN

G(L−1(wn))

t2
n

=
∫

RN

G(L−1(wn))u2
n

w2
n

=
∫

RN

G(L−1(wn))

L−1(wn)2

L−1(wn)2

w2
n

u2
n → ∞

Hence

0 ≤ Jk(wn) ≤ t2
n

[
ρ

2
−
∫

RN

G(L−1(wn))

t2
n

]
→ −∞,

a contradiction.

Recall that S is the unit sphere in E and define the mapping m : S → N by setting

m(w) := tww,

where tw is as α in Lemma 3.3. Moreover, ‖m(w)‖E = tw.

Recall that Sτ is the unit sphere in Eτ, and consider the mapping mτ : Sτ → N τ by setting

mτ := m|Sτ .

We shall consider the functional

ψτ
k (w) := Jk(m

τ(w)).

By Lemma 3.3, Lemma 3.4, Remark 3.5, Lemma 3.7 and Lemma 3.10, we have the following

two lemmas, similar to the results in [23].

Lemma 3.11. The mapping mτ is a homeomorphism between Sτ and N τ, and the inverse of mτ is

given by (mτ)−1(u) = u
‖u‖E

.

Lemma 3.12.

(1) ψτ
k ∈ C1(Sτ, R) and

〈(ψτ
k )

′(w), z〉 = ‖mτ(w)‖E〈J′k(m
τ(w)), z〉 for all z ∈ Tw(S

τ) ⊂ Eτ.

(2) If (wn) is a Palais–Smale sequence for ψτ
k , then (mτ(wn)) is a Palais–Smale sequence for Jk. If

(un) ⊂ N τ is a bounded Palais–Smale sequence for Jk, then ((mτ)−1(un)) is a Palais–Smale

sequence for ψτ
k .

(3) w is a critical point of ψτ
k if and only if mτ(w) is a nontrivial critical point of Jk|Eτ . Moreover, the

corresponding values of ψτ
k and Jk coincide and infSτ ψτ

k = infN τ Jk.

(4) If Jk is even, then so is ψτ
k .
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4 Proof of Theorem 1.1

Now, we are ready to prove Theorem 1.1 by applying the auxiliary results in Section 3.

Proof of Theorem 1.1. It follows from Lemma 3.7 that there exists c0 > 0 such that

c0 = inf
w∈N τ

Jk(w).

Moreover, if u0 ∈ N τ satisfies Jk(u0) = c0, then (mτ)−1(u0) ∈ Sτ is a minimizer of ψτ
k and

therefore a critical point of ψτ
k , so that u0 is a critical point of Jk in Eτ by Lemma 3.12. We

will show that there exists a minimizer v ∈ N τ of Jk|N τ . By Ekeland’s variational principle

[27], there exists a sequence (wn) ⊂ Sτ with ψτ
k (wn) → c0 and (ψτ

k )
′(wn) → 0 as n → ∞. Put

un = mτ(wn) ∈ N τ for n ∈ N. Then Jk(un) → c0 and J′k(un) → 0 as n → ∞ by Lemma 3.12 (2).

Claim: (un) ⊂ Eτ is bounded.

In fact, assume by contradiction that ‖un‖ → +∞ up to subsequence, that is,

∫

RN
|∇un|2 +

∫

RN
V(x)u2

n = ‖un‖2
E → ∞.

So, at least one of the two terms goes to infinity. If

(∫

RN
|∇un|2

)1/2

→ ∞,

it would follow from Lemma 3.7 that

Jk(un) ≥
θ − 2

√
ρ

2θ

∫

RN
|∇un|2 → ∞,

which is a contradiction, because (Jk(un)) ⊂ R is bounded. Now, if

∫

RN
V(x)u2

n → ∞,

then it would follow from Lemma 3.7 again and (3) of Lemma 2.2, that

Jk(un) ≥
θ − 2

√
ρ

2θ

∫

RN
V(x)|L−1(un)|2

≥ θ − 2
√

ρ

2θ

∫

RN
V(x)u2

n → ∞,

which is a contradiction again. Hence un ⇀ v after passing to a subsequence.

Claim: v 6= 0 and J′k(v) = 0 in Eτ.

If (V2) is fulfilled, then let yn ∈ R
N satisfy

∫

B1(yn)
u2

ndx = max
y∈RN

∫

B1(y)
u2

ndx.

Using once more that Jk and N τ are invariant under translations of the form u 7−→ u(· −k)

with k ∈ Z
N , we may assume that (yn) is bounded in R

N . If

∫

B1(yn)
u2

ndx → 0 as n → ∞, (4.1)
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then un → 0 in Lp(RN), 2 < p < 2∗, by Lemma 1.21 in [27]. From Proposition 2.4 and (G2),

we infer that ∫

RN

g(L−1(un))un

l(L−1(un))
dx = o(‖un‖E)

as n → ∞, hence

o(‖un‖E) = J′k(un)un =
∫

RN
|∇un|2 +

∫

RN
V(x)

L−1(un)un

l(L−1(un))
−
∫

RN

g(L−1(un))un

l(L−1(un))
dx

=
∫

RN
|∇un|2 +

∫

RN
V(x)

L−1(un)un

l(L−1(un))
− o(‖un‖E)

and therefore ‖un‖E → 0, contrary to Lemma 3.7. It follows that (4.1) cannot hold, so un ⇀

v 6= 0 and J′k(v) = 0.

Suppose that (V3) or (V4) is satisfied. Then it follows from Proposition 2.4, that

L−1(un) → L−1(v) in Lγ(RN) for all γ ∈ (2, 2∗).

Then by Lemma 3.8, we conclude that v 6= 0 and J′k(v) = 0 in Eτ.

Hence, we conclude that v ∈ N τ is a critical point of Jk in Eτ. Now we will show that

Jk(v) = c0. By Lemma 2.2, Fatou’s lemma and since (un) ⊂ Eτ is bounded,

c0 + o(1) = Jk(un)−
1

θ
〈J′k(un), un〉

=
1

2

∫

RN
|∇un|2dx +

1

2

∫

RN
V(x)|L−1(un)|2dx −

∫

RN
G(L−1(un))dx

− 1

θ

∫

RN
|∇un|2dx − 1

θ

∫

RN
V(x)

L−1(un)un

l(L−1(un))
dx +

1

θ

∫

RN

g(L−1(un))un

l(L−1(un))
dx

=
θ − 2

2θ

∫

RN
|∇un|2dx +

1

2

∫

RN
V(x)|L−1(un)|2dx −

√
ρ

θ
V(x)|L−1(un)|2dx

+

√
ρ

θ
V(x)|L−1(un)|2dx − 1

θ

∫

RN
V(x)

L−1(un)un

l(L−1(un))
dx

+
∫

RN

[
1

θ

g(L−1(un))un

l(L−1(un))
− G(L−1(un))

]
dx

=
θ − 2

2θ

∫

RN
|∇un|2dx +

θ − 2
√

ρ

2θ

∫

RN
V(x)|L−1(un)|2dx

+
1

θ

∫

RN
V(x)

[√
ρ|L−1(un)|2 −

L−1(un)un

l(L−1(un))

]
dx

+
∫

RN

[
1

θ

g(L−1(un))un

l(L−1(un))
− G(L−1(un))

]
dx

≥ θ − 2

2θ

∫

RN
|∇v|2dx +

θ − 2
√

ρ

2θ

∫

RN
V(x)|L−1(v)|2dx

+
1

θ

∫

RN
V(x)

[√
ρ|L−1(v)|2 − L−1(v)v

l(L−1(v))

]
dx

+
∫

RN

[
1

θ

g(L−1(v))v

l(L−1(v))
− G(L−1(v))

]
dx + o(1)

= Jk(v)−
1

θ
〈J′k(v), v〉+ o(1) = Jk(v) + o(1).
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On the other hand, since Jk(v) ≥ c0, hence Jk(v) = c0.

Now, by using a quantitative deformation lemma and adapting the arguments in [4, 11],

we are going to show J′k(v) = 0 in E.

Suppose, by contradiction, that J′k(v) 6= 0. Then there exist δ > 0 and ν > 0 such that

‖J′k(w)‖ ≥ ν for every w ∈ E with ‖w − v‖ ≤ 2δ.

Since v 6= 0, we can take L = ‖v‖E > 0 and, without loss of generality, we may assume 6δ < L.

Let I =
[

1
2 , 3

2

]
. Since, 〈J′k(v), v〉 = 0 and by Lemma 3.4,

Jk(tv) < Jk(v) = c0,

holds for t ∈ I with t 6= 1, we obtain that

c̃ = max
∂I

Jk(tv) < c0.

Applying Theorem A.4 in [28] with ǫ = min{(c0 − c̃)/2, νδ/8} and S = B(v, δ), there exists

η ∈ C([0, 1]× E, E) such that

(i) η(θ, u) = u if θ = 0 or if u /∈ J−1
k [c0 − 2ǫ, c0 + 2ǫ] ∩ B(v, 2δ);

(ii) η(1, Jc0+ǫ
k ) ∩ B(v, δ) ⊂ Jc0−ǫ

k ;

(iii) Jk(η(1, w)) ≤ Jk(w) for every w ∈ E, where Ja
k = {w ∈ E; Jk(w) ≤ a},

(iv) η(t, u) is odd in u.

Consequently, we have

max
t∈I

Jk(η(1, tv)) < c0. (4.2)

On the other hand, we claim that there exists t0 ∈ I such that

η(1, t0v) ∈ N τ.

In fact, by (iv) for η, we know η(1, tv) ∈ Eτ for each t. Now we will prove that there exists

t0 ∈ I such that t0v ∈ N . Define ϕ(t) = η(1, tv) and

Ψ(t) = 〈J′k(ϕ(t)), ϕ(t)〉

for t > 0. Since,

‖v − tv‖E = |1 − t|‖v‖E = |1 − t|L ≥ 6δ|1 − t| > 2δ (4.3)

if only if t <
2
3 or t >

4
3 . It follows from property (i) for η and inequality (4.3) that ϕ(t) =

η(1, tv) = tv ∈ Eτ if t ∈ [ 1
2 , 2

3 ) ∪ ( 4
3 , 3

2 ].

Thus,

Ψ( 1
2 ) =

〈
J′k
(

ϕ
(

1
2

))
, ϕ( 1

2 )
〉
=
〈

J′k
(

1
2 v
)

, 1
2 v
〉

,

and it follows from (3.2) that

〈
J′k
(

1
2 v
)

, 1
2 v
〉
= 1

2
∂hv

k
∂t

(
1
2

)
> 0. (4.4)

On the other hand,

Ψ( 3
2 ) = 〈J′k(ϕ( 3

2 )), ϕ( 3
2 )〉 = 〈J′k(

3
2 v), 3

2 v〉,
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and it follows from (3.2) that

〈
J′k
(

3
2 v
)

, 3
2 v
〉
= 3

2
∂hv

k
∂t

(
3
2

)
< 0. (4.5)

Noting that the function Ψ is continuous on I and taking (4.4) and (4.5) into account, we

can apply the intermediate value theorem again to conclude that there exists t0 ∈ I such that

Ψ(t0) = 0. This and (4.2) lead to a contradiction. Hence, we conclude that v is a critical

point of Jk. So, by Lemma 2.3, we just need to show that |u|∞ = |L−1(v)|∞ ≤ σ/
√

k holds to

conclude that u is a solution of problem (1.1).

Now, set ϕ = L−1(v)l(L−1(v)). It follows from Lemma 2.2 that

|ϕ| = |L−1(v)l(L−1(v))| ≤ |v|, and |∇ϕ| =
∣∣∣∣1 +

L−1(v)l′(L−1(v))

l(L−1(v))

∣∣∣∣ |∇v| ≤ |∇v|,

that is, ϕ ∈ H1(RN). So, by taking ϕ as a test function in (2.4), we obtain

∫

RN

[
1 +

L−1(v)l′(L−1(v))

l(L−1(v))

]
|∇v|2 + V(x)|L−1(v)|2 − g(L−1(v))L−1(v) = 0.

As a consequence of (4) of Lemma 2.2, we have
∫

RN
|∇v|2 + V(x)|L−1(v)|2 − g(L−1(v))L−1(v) ≥ 0.

Since v is a critical point of Jk, it follows that

θc0 = θ Jk(v)− 〈J′k(v), L−1(v)l(L−1(v))〉

≥ θ − 2

2

∫

RN
|∇v|2 + V(x)|L−1(v)|2.

Then, by (3) of Lemma 2.2,

‖v‖2
E ≤ 2θc0

θ − 2
. (4.6)

For each m ∈ N and β > 1 given, define

Am = {x ∈ R
N ; |v|β−1 ≤ m} and Bm = R

N\Am,

and

vm =

{
v|v|2(β−1) in Am,

m2v in Bm.

We know vm ∈ H1(RN), vm ≤ vm+1, vm ≤ |v|2β−1, and

∇vm =

{
(2β − 1)|v|2(β−1)∇v in Am,

m2∇v in Bm,

that is, vm can be used as a test function. Besides this, we have
∫

RN
∇v∇vm = (2β − 1)

∫

Am

|v|2(β−1)|∇v|2 + m2
∫

Bm

|∇v|2. (4.7)

Letting

wm =

{
v|v|β−1 in Am,

mv in Bm,
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we obtain w2
m = vvm ≤ |v|2β, wm ≤ wm+1, and

∇wm =

{
β|v|β−1∇v in Am,

m∇v in Bm.

So, ∫

RN
|∇wm|2 = β2

∫

Am

|v|2(β−1)|∇v|2 + m2
∫

Bm

|∇v|2. (4.8)

As a consequence of (4.7) and (4.8), we obtain
∫

RN
[|∇wm|2 −∇v∇vm] = (β − 1)2

∫

Am

|v|2(β−1)|∇v|2. (4.9)

Taking vm as a test function, it follows from (4.7) and (4.9) that

∫

RN
|∇wm|2 +β2

∫

RN
V(x)

L−1(v)

l(L−1(v))
vm

= (β − 1)2
∫

Am

|v|2(β−1)|∇v|2 +
∫

RN
∇v∇vm + β2

∫

RN
V(x)

L−1(v)

l(L−1(v))
vm

≤
[
(β − 1)2

2β − 1
+ 1

] ∫

RN
∇v∇vm ++β2

∫

RN
V(x)

L−1(v)

l(L−1(v))
vm

≤ β2
∫

RN
[∇v∇vm + V(x)

L−1(v)

l(L−1(v))
vm]

= β2
∫

RN

g(L−1(v))

l(L−1(v))
vm.

Now, it follows from Remark 3.1 that

∫

RN
|∇wm|2 + β2

∫

RN
V(x)

L−1(v)

l(L−1(v))
vm

≤ β2
∫

RN

ǫ|L−1(v)|2
|l(L−1(v))L−1(v)| |vm|+ β2

∫

RN

cǫ|L−1(v)|q
|l(L−1(v))L−1(v)| |vm|,

that is,

β2
∫

RN
V(x)

L−1(v)

l(L−1(v))
vm ≥ β2

∫

RN

ǫ|L−1(v)|2
|l(L−1(v))L−1(v)| |vm|,

for ǫ > 0 sufficiently small. So, we have

∫

RN
|∇wm|2 ≤ β2

∫

RN

cǫ|L−1(v)|q
|l(L−1(v))L−1(v)| |vm|

≤ β2
∫

RN
cǫρ

q
2 |v|q−2w2

m.

Then, it follows from the Sobolev inequality that

(∫

Am

|wm|2
∗
) N−2

N

≤ S
∫

RN
|∇wm|2

≤ Sβ2
∫

RN
cǫρ

q
2 |v|q−2w2

m.

The Hölder inequality implies that

(∫

Am

|wm|2
∗
) N−2

N

≤ cǫρ
q
2 Sβ2|v|q−2

2∗

(∫

RN
|wm|2r1

)1/r1

,
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where 1/r1 + (q − 2)/2∗ = 1.

Since, |wm| ≤ |v|β in R
N and |wm| = |v|β in Am, we have

(∫

Am

|v|β2∗
) N−2

N

≤ cǫρ
q
2 Sβ2|v|q−2

2∗

(∫

RN
|v|2βr1

)1/r1

,

which implies, by the Monotone Convergence Theorem, that

|v|β2∗ ≤ β1/β(cǫρ
q
2 S|v|q−2

2∗ )1/2β|v|2βr1
(4.10)

So, taking σ = 2∗/(2r1) and set β = σi, i = 1, 2, . . . , in an iterative way in (4.10), we get

|v|σi2∗ ≤ σ(∑i
j=1 j/σj)(cǫρ

q
2 S|v|q−2

2∗ )(1/2 ∑
i
j=1 1/σj)|v|2∗ ,

that is, by doing i → ∞ and using the limitation of ‖v‖E, given by (4.6), together with the

Sobolev inequality, we get |v|∞ ≤ C0, where C0 > 0 is a real constant independent of k > 0.

Now, it follows from Lemma 2.2-(3) that

|u|∞ = |L−1(v)|∞ ≤ √
ρ|v|∞ ≤ √

ρC0 ≤ σ/
√

k

holds for all k ∈ (0, k0), where k0 > 0 is such that
√

ρC0 ≤ σ/
√

k0. Thus, Lemma 2.3 implies

that problem (1.1) admits a solution.
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Abstract. We will analyze the symmetric positive solutions to the two-point steady state
reaction-diffusion equation:

−u′′ =



















λ

[

u − 1

K
u2 − cu2

1 + u2

]

; x ∈ [L, 1 − L],

λ

[

u − 1

K
u2

]

; x ∈ (0, L) ∪ (1 − L, 1),

−u′(0) +
√

λγu(0) = 0,

u′(1) +
√

λγu(1) = 0,

where λ, c, K, and γ are positive parameters and the parameter L ∈ (0, 1
2 ). The steady

state reaction-diffusion equation above occurs in ecological systems and population
dynamics. The above model exhibits logistic growth in the one-dimensional habitat
Ω0 = (0, 1), where grazing (type of predation) is occurring on the subregion [L, 1 − L].
In this model, u is the population density and c is the maximum grazing rate. λ is a
parameter which influences the equation as well as the boundary conditions, and γ rep-
resents the hostility factor of the surrounding matrix. Previous studies have shown the
occurrence of S-shaped bifurcation curves for positive solutions for certain parameter
ranges when the boundary condition is Dirichlet (γ −→ ∞). Here we discuss the oc-
currence of S-shaped bifurcation curves for certain parameter ranges, when γ is finite,
and their evolutions as γ and L vary.
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1 Introduction

First, we briefly discuss the history of grazing type models. Recently in [5], authors discussed

the following boundary value problem:















−∆u = λ

(

u − u2

K
− cu2

1 + u2

)

; Ω,

∂u

∂η
+
√

λu = 0; ∂Ω,

(1.1)

where ∂u
∂η is the outward normal derivative of u, λ > 0, K > 0, 0 < c < 2, and Ω is a bounded

domain in R
N ; N ≥ 1 with smooth boundary ∂Ω. Here, u is the population density, λ is

a positive parameter, and c is the maximum grazing rate. The term u − 1
K u2 represents a

logistic growth, which means the per capita growth rate is a linear depreciation. The term
cu2

1+u2 represents the rate of grazing by a constant number of grazers (see Figure 1.2). The

authors established the occurrence of S-shaped bifurcation curves when parameters c and K

satisfy certain conditions. Grazing type models apply to many ecological systems arising in

population dynamics such as the dynamics of salmon fish and spruce budworms (see [9] and

[12]).

Figure 1.1: Examples of salmon and spruce budworms

However, it turns out that the grazing presents itself only in an interior patch in many

real-world situations. We refer the reader to [1] for a study in this direction where the authors

studied the following Dirichlet boundary value problem:

−u′′ =

{

λ f̃ (u); x ∈ [L, 1 − L],

λ f (u); x ∈ (0, L) ∪ (1 − L, 1),

u(0) = u(1) = 0,

(1.2)

where f̃ (u) = u − 1
K u2 − cu2

1+u2 and f (u) = u − 1
K u2, which corresponds to the case where

γ → ∞ (see (1.5)). Now, λ, c, and K are positive parameters and the parameter L ∈ (0, 1
2 ). The

authors showed the occurrence of S-shaped bifurcation curves for certain parameter ranges

and numerically obtained the evolution of the bifurcation curves over a range of L-values and

K-values, for a fixed value of c. In particular, for c = 1.5 they showed that occurrence of

S-shaped bifurcation persists for any value of L, if K is chosen to be large enough.

Biologists have recently observed that in the study of grazing models, to better predict

the behavior of the ecological system, it is vital to take the exterior matrix hostility factor into
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Figure 1.2: Grazing.

account. In this paper, we extend the study in [1] to the case when the exterior matrix hostility

is incorporated into the model. We obtain our results via a modified quadrature method and

Mathematica computations.

We now briefly discuss the modeling aspect of the problem. We consider the domain

Ω0 = {lx | x ∈ Ω}, where Ω = (0, 1) and l is a parameter representing the size of the habitat.

We assume that the diffusion rate in the patch Ω0 is D. In the matrix R \ Ω0, we assume that

the diffusion rate is D0, and the death rate is S0.

We will further assume that the population exhibits density dependent dispersal (DDD)

on the boundary ∂Ω0. Defining α(u) as the probability of the population remaining in Ω0

when it reaches the boundary, the resulting model is (see [2, 6, 10, 11]):



















ut = Duxx + h(u); x ∈ Ω0, t > 0,

u(0, x) = u0(x); x ∈ Ω0,

Dα(u)
∂u

∂η
+

√
S0D0

k
[1 − α(u)]u = 0; x ∈ ∂Ω0, t > 0

(1.3)

with the corresponding steady state equation:















−u′′ =
1

D
h(u); x ∈ Ω0,

Dα(u)
∂u

∂η
+

√
S0D0

k
[1 − α(u)]u = 0; x ∈ ∂Ω0,

or equivalently















−u′′ =
l2

D
h(u); x ∈ Ω,

∂u

∂η
+

√
S0D0l

kD

[

1 − α(u)

α(u)

]

u = 0; x ∈ ∂Ω,

(1.4)

where k is a positive parameter related to the movement behavior of the species (see [2], [3]).

Here h(u) represents the reaction term. More precisely, h(u) = u − 1
K u2 in the case of logistic

population growth, whereas in the case of logistic growth with grazing h(u) = u− 1
K u2 − cu2

1+u2 .

Let λ = l2

D and γ =
√

S0D0

k
√

D
. Here γ represents the matrix hostility factor. Then (1.4) reduces to
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Figure 1.3: Grazing region, non grazing regions and exterior matrix.















−u′′ = λh(u); x ∈ (0, 1),

−u′(0) + γ
√

λg(u(0))u(0) = 0,

u′(1) + γ
√

λg(u(1))u(1) = 0,

(1.5)

where g(s) = 1−α(s)
α(s)

.

In this paper, we will study positive solutions of (1.5) which are symmetric about x = 1
2 ,

when α(s) = 1
2 and

h(u) =

{

λ f̃ (u); x ∈ [L, 1 − L],

λ f (u); x ∈ (0, L) ∪ (1 − L, 1)

via a quadrature method. Namely, when K = 10 and c = 1.5 we will study positive solu-

tions of:

−u′′ =

{

λ f̃ (u); x ∈ [L, 1 − L],

λ f (u); x ∈ (0, L) ∪ (1 − L, 1),

−u′(0) + γ
√

λu(0) = 0,

u′(1) + γ
√

λu(1) = 0,

(1.6)

such that u(L−) = u(L+) and u′(L−) = u′(L+) where γ is a parameter related to the matrix

hostility.

Figure 1.4: Shapes of f and f̃ .

In particular, we study the evolution of these steady states of (1.6) with respect to L when

the hostility parameter γ is fixed and vice-versa.

Now we present the following theorem which describes the structure of such positive

solutions.

Let ‖u‖∞ = ρ, u(L) = σ, and u(0) = u(1) = q, F̃(s) :=
∫ s

0 f̃ (t)dt and F(s) :=
∫ s

0 f (t)dt.
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1

2
L 1 - L 1

t

q(ρ)

σ(ρ)
ρ

u(t)

Figure 1.5: Graph of a symmetric solution u to (1.6).

Theorem 1.1. A symmetric solution (as in Figure 1.5) of (1.6) exists if and only if λ, ρ, σ and q

satisfy:

√
λ =

1√
2L

∫ σ

q

dv
√

F(q) + γ2q2

2 − F(v)
=

1√
2( 1

2 − L)

∫ ρ

σ

dv
√

F̃(ρ)− F̃(v)
,

F(q) +
γ2q2

2
− F(σ) = F̃(ρ)− F̃(σ).

In Section 2, we detail the proof of Theorem 1.1. In Section 3, we provide biological implica-

tions and numerical results.

2 Proof of Theorem 1.1

Suppose u > 0 is a solution of (1.6). We first focus on the region (L, 1
2 ). Multiply both sides of

(1.6) by u′ and obtain

[−(u′(x))2

2

]′
= λ

[

F̃(u(x))
]′

.

Next, by integrating, we obtain

u′(x) =
√

2λ
[

F̃(ρ)− F̃(u(x))
]

; x ∈
[

L, 1
2

]

,

and further integration leads to

∫ 1
2

x

u′(s)
√

F̃(ρ)− F̃(u(s))
ds =

∫ 1
2

x

√
2λ ds; x ∈

[

L, 1
2

)

.

Now using the substitution v = u(s) we obtain

∫ u( 1
2 )

u(x)

1
√

F̃(ρ)− F̃(v)
dv =

√
2λ

[

1

2
− x

]

; x ∈
[

L, 1
2

)

.
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Setting x = L we have
∫ ρ

σ

1
√

F̃(ρ)− F̃(v)
dv =

√
2λ

[

1

2
− L

]

.

Further, solving for λ we obtain

λ =





1√
2( 1

2 − L)

∫ ρ

σ

1
√

F̃(ρ)− F̃(v)
dv





2

. (2.1)

We next focus on the region (0, L). Again by the above quadrature method, letting u(0) = q,

by the boundary conditions we get

u′(x) =

√

2λ

[

F(q) +
γ2q2

2
− F(u(x))

]

; x ∈ [0, L].

Integrating on (0, x) we have

∫ u(x)

q

1
√

F(q) + γ2q2

2 − F(v)
dv =

√
2λx; x ∈ [0, L].

Hence substituting x = L and solving for λ yields

λ =





1√
2L

∫ σ

q

1
√

F(q) + γ2q2

2 − F(v)
dv





2

. (2.2)

Now using u′(L−) = u′(L+), (2.1) and (2.2), we obtain:

1√
2L

∫ σ

q

dv
√

F(q) + γ2q2

2 − F(v)
=

1√
2( 1

2 − L)

∫ ρ

σ

dv
√

F̃(ρ)− F̃(v)
, (2.3)

F(q) +
γ2q2

2
− F(σ) = F̃(ρ)− F̃(σ). (2.4)

In fact, given ρ, q and σ satisfy (2.3) and (2.4), we can back track and use the Implicit Function

Theorem to obtain a solution as described in Figure 1.5 with

λ =





1√
2L

∫ σ

q

1
√

F(q) + γ2q2

2 − F(v)
dv





2

.

Hence the proof is complete.

We provide our computational results in the next section.

3 Computational results and biological implications

In [1], authors showed the occurrence of an S-shaped bifurcation curve for (1.2) for certain

parameter ranges when grazing is confined to an interior region of (0, 1). Indeed, they nu-

merically showed that for a fixed c = 1.5, occurrence of an S-shaped bifurcation curve for (1.2)

always happens if K is chosen to be large enough. Namely, they showed that for K ≫ 1 there

exist m1, m2, and m3 such that (1.2) has (see Figure 3.1):
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• no positive solution for λ ∈ (0, m1]

• exactly one positive solution for λ ∈ (m1, m2)

• exactly two positive solutions for λ = m2

• exactly three positive solutions for λ ∈ (m2, m3)

• exactly two positive solutions for λ = m3

• exactly one positive solution for λ ∈ (m3, ∞)

Figure 3.1: Occurrence of S-shaped bifurcation for (1.2).

We will obtain similar results when grazing is restricted to an interior patch, namely for

(1.6). Moreover, we investigate the λ region where multiplicity of positive solutions occurs.

In particular, we fix all parameters with the exception of L and γ, where variations are im-

plemented. First, we consider fixed values of L, namely L = 0.05, 0.30, and 0.45, and we

demonstrate the evolution of the bifurcation diagrams for positive solutions when γ varies.

Next, for γ = 50 (fixed), we demonstrate the evolution of the bifurcation diagrams for positive

solutions when L varies.

We briefly explain how we obtain numerical bifurcation diagrams. Let γ > 0, L > 0,

and M > 0 be fixed, and let xi = i
n+1 ; i = 1, . . . , n + 1 for some n ≥ 1. Letting ρ =

x1, we numerically solve the equations (2.3) and (2.4) simultaneously for σ and q using the

FindRoot command in Mathematica. The values of σ and q are substituted into (2.2) to find

the corresponding value of λ. Repeating this procedure for ρ = xi, i = 2, . . . , n + 1, we obtain

(λ, ρ) points for the bifurcation diagram.

Our research shows the following four cases:

1) For small values of L, multiplicity of positive solutions persists for certain ranges of λ

irrespective of the value of hostility factor.

2) For large values of L, for no ranges of λ multiplicity occurs, regardless of the value of

hostility factor.

3) For intermediate values of L, attainment or elimination of multiplicity regions is possible

depending on the value of hostility factor.

4) For a fixed γ > 0, multiplicity regions persist for small L and multiplicity regions are lost

for large L.
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3.1 Bifurcation diagrams for fixed values of L as γ varies

We closely examine our solutions via extracting the value E(γ), where the non-trivial positive

solution bifurcates from the trivial branch of solutions, as well as the interval (A(γ, L), B(γ, L))

corresponding to the λ region where multiplicity of positive solutions occurs.

For L = 0.05:

Figure 3.2: Bifurcation diagrams for (1.6) where K = 10, c = 1.5, and L = 0.05.

γ E(γ) A(γ, L) B(γ, L) B(γ, L)− A(γ, L)

0.01 0.000411825 0.00459959 0.00848834 0.00388875

5 7.66329 34.9839 54.9993 20.0154

10 8.78401 37.6855 58.2939 20.6084

20 9.38331 39.0397 59.946 20.9063

50 9.75404 39.8512 60.937 21.0858

∞ 10.0055 40.3913 61.597 21.2057

Table 3.1: Varying γ while L = 0.05.
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Figure 3.3: Bifurcation diagrams for (1.6) where K = 10, c = 1.5, and L = 0.30.

γ E(γ) A(γ, L) B(γ, L) B(γ, L)− A(γ, L)

5 7.63138 18.5239 19.2104 0.6865

20 9.35392 22.082 23.2109 1.1289

50 9.72529 22.8384 24.0726 1.2342

Table 3.2: Varying γ while L = 0.30.

Figure 3.4: Bifurcation diagrams for (1.6) where K = 10, c = 1.5, and L = 0.45.

Remark 3.1. Our research concludes that when K = 10 and c = 1.5 there exists L∗, L∗ ∈ (0, 1
2 )

with L∗ < L∗, such that when L < L∗ (grazing in a large subregion), the occurrence of

multiple steady states for a range of λ persists for any hostility factor γ, and when L > L∗

(grazing in a small subregion), for any hostility factor γ, multiplicity of steady states does not

occur for any λ. However, for L ∈ (L∗, L∗), there exists a γ∗(L) > 0 such that multiplicity of

steady states for a range of λ does occur for any hostility factor γ > γ∗(L).
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3.2 Bifurcation diagrams for a fixed value of γ as L varies

For γ = 50:

Figure 3.5: Bifurcation diagrams for (1.6) where K = 10, c = 1.5, and γ = 50.

L E(γ) A(γ, L) B(γ, L) B(γ, L)− A(γ, L)

0.01 12.4772 40.0324 59.6438 19.6114

0.10 9.75354 38.3015 58.4055 20.104

0.20 9.74708 30.9087 40.1478 9.2391

0.30 9.72529 22.8384 24.0726 1.2342

Table 3.3: Varying L while γ = 50.

Remark 3.2. Note that for γ = 50, when K = 10 and c = 1.5 the occurrence of multiple

positive steady states for a range of λ is lost when L is large (grazing in a small subregion).

Furthermore, for any fixed γ > 0, occurrence of multiple positive steady states for a range of

λ are observed for L ≈ 0 and occurrence of multiple positive steady states for any λ is lost for

L large.
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1 Introduction

Oscillation problems represent one of the main themes of qualitative theory of differential

equations. Over many years, a large number of sufficient (or necessary) conditions have been

reported by numerous researchers for the oscillation of solutions of the second-order linear

differential equation

x′′ + c(t)x = 0, t ≥ t0, (1.1)

and equations that generalize it to various directions. Here, the coefficient c is a continuous

real-valued function on [t0, ∞). Since equation (1.1) is linear, all solutions are guaranteed to

exist until an infinite amount of time. For this reason, all nontrivial solutions of (1.1) can be

classified into two groups. A nontrivial solution x of (1.1) is said to be oscillatory if there exists

a divergence sequence {tn} such that x(tn) = 0, and otherwise, it said to be nonoscillatory.

Sturm’s separation theorem ensures that if there is an oscillatory solution of (1.1), then all

nontrivial solutions of (1.1) are oscillatory. Equation (1.1) is often called oscillatory if all

nontrivial solutions of (1.1) are oscillatory.

As an example of the many superior conditions to ensure that equation (1.1) is oscillatory,

we can cite Philos’s criterion as follows.

BEmail: jsugie@riko.shimane-u.ac.jp
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Theorem A. Let H : D
def
=
{

(t, s) : t ≥ s ≥ t0

}

→ R be a continuous function, which is such that

H(t, t) = 0 for t ≥ t0 and H(t, s) > 0 for t > s ≥ t0

and has a continuous and nonpositive partial derivative on D with respect to the second variable.

Moreover, let h : D → [0, ∞) be a continuous function with

−
∂

∂s
H(t, s) = h(t, s)

√

H(t, s) for all (t, s) ∈ D. (1.2)

Then equation (1.1) is oscillatory if

lim sup
t→∞

1

H(t, t0)

∫ t

t0

(

H(t, s)c(s)−
1

4
h2(t, s)

)

ds = ∞. (1.3)

The feature of Theorem A is to use an auxiliary function H that is not directly related to

equation (1.1) in order to examine the oscillation of solutions of (1.1). One thing to note here

is that the domain of h is the same D as that of H. When we choose (t − s)α as the auxiliary

function H, from condition (1.2), the function h becomes α(t − s)(α−2)/2. Hence, in order for

the function h to be continuous on D, the exponent α must be greater than or equal to 2.

As long as α > 1, we can easily confirm that
∫ t

t0
h2(t, s)ds/H(t, t0) tends to 0 as t → ∞ and

tα/H(t, t0) converges to 1 as t → ∞. From Theorem A and these facts, we see that equation

(1.1) is oscillatory if

lim sup
t→∞

1

tα

∫ t

t0

(t − s)αc(s)ds = ∞, (1.4)

where α ≥ 2. In other words, Theorem A can be said to be a partial extension of the criterion

was given by Kamenev [3]:

Theorem B. Equation (1.1) is oscillatory if condition (1.4) holds for some α > 1.

2 Additional condition for generalization

In order for Theorem A to completely cover Theorem B, it needs to change the domain D of h

to D0
def
=
{

(t, s) : t > s ≥ t0

}

and rewrite condition (1.2) to

−
∂

∂s
H(t, s) = h(t, s)

√

H(t, s) for all (t, s) ∈ D0. (2.1)

The reason is that the function α(t − s)(α−2)/2 becomes nonnegative and continuous on D0

provided that α ≥ 0. Of course, even when α is 1, the function h satisfying condition (2.1) is

nonnegative and continuous on D0. From such a consideration, if the domain of h is changed

as described previously, Theorem A may seem to hold in the form as follows:

Proposition C. Let H be the same function as in Theorem A. Suppose that there exists a continuous

function h : D0 → [0, ∞) satisfying condition (2.1). Then equation (1.1) is oscillatory if condition (1.3)

is satisfied.

However, there is an issue to be discussed here. Philos [6] used the method of proof by

contradiction together with the Riccati transformation and integral averaging techniques to

obtain Theorem A. Let x be a nonoscillatory solution of (1.1) and let

w(t) =
x′(t)

x(t)
for t ≥ T,
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where T is a sufficiently large number. Then equation (1.1) becomes

c(t) = −w′(t)− w2(t) for every t ≥ T.

Using this Riccati equation and condition (1.2), we obtain

∫ t

T
H(t, s)c(s)ds = H(t, T)w(T)−

∫ t

T
h(t, s)

√

H(t, s)w(s)ds −
∫ t

T
H(t, s)w2(s)ds

for t ≥ T. The right-hand side of this evaluation is rewritten as follows:

H(t, T)w(T)−
∫ t

T
h(t, s)

√

H(t, s)w(s)ds −
∫ t

T
H(t, s)w2(s)ds

= H(t, T)w(T) +
1

4

∫ t

T
h2(t, s)ds −

1

4

∫ t

T
h2(t, s)ds −

∫ t

T
h(t, s)

√

H(t, s)w(s)ds

−
∫ t

T
H(t, s)w2(s)ds

= H(t, T)w(T) +
1

4

∫ t

T
h2(t, s)ds −

∫ t

T

(

1

2
h(t, s) +

√

H(t, s)w(s)

)2

ds.

In Theorem A, the function h was assumed to be continuous on D; thus, the integral value

∫ t

t0

h2(t, s)ds

(

=
∫ t

T
h2(t, s)ds +

∫ T

t0

h2(t, s)ds

)

exists for each fixed t ≥ t0. Hence, the previous perfect square expression is correct. Even if

the function h is continuous only on D0 included in D, there is a possibility that the integral

value of h2 exists for each fixed value t ≥ t0. For example, consider h(t, s) = α(t − s)(α−2)/2

with α > 1. Then we have

∫ t

t0

h2(t, s)ds =
α2

α − 1
(t − t0)

α−1
< ∞ for each fixed value t ≥ t0.

However, in the case where 0 ≤ α ≤ 1, this integral value does not exist for each fixed value

t ≥ t0. Hence, in this case, it is not possible to use a perfect square expression to obtain the

evaluation as described previously.

We can therefore conclude that Theorems A and B are correct, but Proposition C cannot be

proved simply by changing condition (1.2) to condition (2.1). Proposition C lacks an important

condition that is unnoticeable and it needs to be modified as follows:

Theorem 2.1. Let H be the same function as in Theorem A. Suppose that there exists a continuous

function h : D0 → [0, ∞) satisfying condition (2.1) and

∫ t

t0

h2(t, s)ds < ∞ for each fixed value t ≥ t0. (2.2)

Then equation (1.1) is oscillatory if condition (1.3) is satisfied.

Proof. As mentioned above, we use the contradiction method. Suppose that equation (1.1)

has a nonoscillatory solution x. We may assume without loss of generality that there exists a

T ≥ t0 such that x(t) > 0 for t ≥ T. Using the Riccati transformation

w(t) =
x′(t)

x(t)
for t ≥ T,
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we can rewrite equation (1.1) to

c(t) = −w′(t)− w2(t) for t ≥ T.

Note that H(t, t) = 0. Applying integration by parts together with condition (2.1), we obtain

∫ t

T
H(t, s)c(s)ds = −

∫ t

T
H(t, s)w′(s)ds −

∫ t

T
H(t, s)w2(s)ds

= H(t, T)w(T) +
∫ t

T

(

∂

∂s
H(t, s)

)

w(s)ds −
∫ t

T
H(t, s)w2(s)ds

= H(t, T)w(T)−
∫ t

T

(

h(t, s)
√

H(t, s)w(s) + H(t, s)w2(s)

)

ds (2.3)

for t ≥ T. Using a perfect square expression, we have

h(t, s)
√

H(t, s)w(s) + H(t, s)w2(s) = −
1

4
h2(t, s) +

(

1

2
h(t, s) +

√

H(t, s)w(s)

)2

≥ −
1

4
h2(t, s)

for all (t, s) ∈ D0. The function h is continuous on D0, but not necessarily continuous on D.

For this reason, the integral of h on D may be an improper integral. However, condition (2.2)

guarantees that this integral always converges to a finite value. Hence, we can obtain the

inequality

−
∫ t

T

(

h(t, s)
√

H(t, s)w(s) + H(t, s)w2(s)

)

ds ≤
1

4

∫ t

T
h2(t, s)ds < ∞

for each fixed t ≥ T. Combining (2.3) and this inequality, we get

∫ t

T

(

H(t, s)c(s)−
1

4
h2(t, s)

)

ds ≤ H(t, T)w(T).

Hence, we have

∫ t

t0

(

H(t, s)c(s)−
1

4
h2(t, s)

)

ds =
∫ T

t0

(

H(t, s)c(s)−
1

4
h2(t, s)

)

ds

+
∫ t

T

(

H(t, s)c(s)−
1

4
h2(t, s)

)

ds

≤
∫ T

t0

H(t, s)c(s)ds + H(t, T)w(T).

From the assumption of ∂H(t, s)/∂s, we see that

H(t, t0) ≥ H(t, s) > 0 for t > s ≥ t0.

Hence, we have

1

H(t, t0)

∫ t

t0

(

H(t, s)c(s)−
1

4
h2(t, s)

)

ds ≤
∫ T

t0

H(t, s)

H(t, t0)
c(s)ds +

H(t, T)

H(t, t0)
w(T)

≤
∫ T

t0

c(s)ds + w(T) < ∞

for t > t0. This contradicts condition (1.3). Thus, the proof of Theorem 2.1 is complete.
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3 Discussion

As the auxiliary function H, we choose t − s; namely, the case where the power index α used

in Sections 1 and 2 corresponds to 1. In this case, as already mentioned, all assumptions of

Proposition C are satisfied. Also, condition (1.3) becomes

lim sup
t→∞

1

t

(

∫ t

t0

(t − s)c(s)ds −
1

4

∫ t

t0

1

t − s
ds

)

= ∞ (3.1)

because H(t, s) = t − s and h2(t, s) = 1/(t − s), and

t

H(t, t0)
=

t

t − t0
→ 1 as t → ∞.

There are two integrals in evaluation (3.1). The former is a proper (or normal) integral but the

latter is an improper integral. The latter improper integral diverges to infinity for each fixed

value t > t0 because

∫ t

t0

1

t − s
ds = lim

ε→0+

∫ t−ε

t0

1

t − s
ds = lim

ε→0+

(

ln(t − t0)− ln ε
)

= ∞

for each fixed value t > t0. Hence, this improper integral cannot be defined for any t > t0.

For this reason, the evaluation (3.1) has no meaning.

If the above expression is meaningful and has a finite value, condition (3.1) is identical

with the assumption

lim sup
t→∞

1

t

∫ t

t0

(t − s)c(s)ds = ∞.

This assumption is equivalent to

lim sup
t→∞

1

t

∫ t

t0

∫ s

t0

c(τ)dτds = ∞. (3.2)

Wintner [10] proved that equation (1.1) is oscillatory if

lim
t→∞

1

t

∫ t

t0

∫ s

t0

c(τ)dτds = ∞.

Three years later, Hartman [2] reported that equation (1.1) is oscillatory if

−∞ < lim inf
t→∞

1

t

∫ t

t0

∫ s

t0

c(τ)dτds < lim sup
t→∞

1

t

∫ t

t0

∫ s

t0

c(τ)dτds ≤ ∞.

Even after that, many researchers have continued to improve sufficient conditions for equation

(1.1) to be oscillatory. However, it is not yet settled whether equation (1.1) is oscillatory or not

in the case where condition (3.2) alone is satisfied.

As described in Section 2, Proposition C cannot be proved using a perfect square expres-

sion. The proof becomes incomplete. The above discussion shows that if Proposition C holds,

condition (3.2) is a sufficient condition for equation (1.1) to be oscillatory. But, the author

thinks that it is not possible to judge whether equation (1.1) is oscillatory or not without

adding another condition to condition (3.2), as Hartman [2] showed.
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4 Attention

Li [4] considered a second-order linear differential equation of the self-adjoint form
(

r(t)x′
)′
+ c(t)x = 0, t ≥ t0. (4.1)

Here, the coefficients r and c are continuous real-valued functions on [t0, ∞) and it is assumed

that r(t) > 0 for all t ≥ t0. He gave the following Philos-type oscillation criterion.

Theorem D. Let H and h be the same functions as in Proposition C. Suppose that there exists a

continuous differentiable function f : [t0, ∞) → R such that
∫ t

t0

a(s)r(s)h2(t, s)ds < ∞ for all t ≥ t0 (4.2)

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

(

H(t, s)ψ(s)−
1

4
a(s)r(s)h2(t, s)

)

ds = ∞,

where a(s) = exp
{

− 2
∫ s

f (ξ)dξ
}

and ψ(s) = a(s)
{

c(s)r(s) f 2(s) −
(

r(s) f (s)
)′}

. Then, equation

(4.1) is oscillatory.

Note that if the coefficient r is smooth enough (continuously differentiable more than

twice), then equations (1.1) and (4.1) can be transformed into the form of each other. In fact,

by letting x =
√

r(t)u for any positive and smooth enough function r, equation (1.1) becomes

(

r(t)u′
)′
+

(

c(t)r(t)−

(

r′(t)
)2

4r(t)
+

1

2
r′′(t)

)

u = 0.

Conversely, by changing u =
√

r(t)x, equation (4.1) becomes

u′′ +

(

c(t)

r(t)
+

(

r′(t)
)2

4r2(t)
−

r′′(t)

2r(t)

)

u = 0.

Rogovchenko [7] observed that condition (4.2) appears to be superfluous. Certainly, the

expression of condition (4.2) is incorrect (there is the same mistake in [5]). However, Theo-

rem D does not hold only by deleting condition (4.2), because equation (4.1) contains equation

(1.1). It is necessary to assume the condition
∫ t

t0

a(s)r(s)h2(t, s)ds < ∞ for each fixed value t ≥ t0, (4.3)

which plays the same role as condition (2.2), instead of condition (4.2). By using condition

(4.3), a perfect square expression will have the correct meaning in the proof of Theorem D. We

omit the proof of the result of changing condition (4.2) to condition (4.3).

Philos’s criterion has been improved, extending its applicability to a variety of equations.

For example, those results can be found in studies on nonlinear differential equations in-

cluding the Emden–Fowler equation, half-linear differential equations with and without the

self-adjoint form, damped differential equations with and without time-delay, higher-order

differential equations, matrix differential systems, elliptic partial differential equations, Hamil-

tonian systems, difference equations, dynamic equations and others. When the function h is

continuous on D, there seems to be no problem with the result. However, one needs to pay

close attention to an additional condition when defining the domain of h to D0 and assuming

a condition such as (2.1). Unfortunately, there are mistakes arising from this carelessness in

some previous research papers. For example, Proposition C which is wrong is included in

[1, Corollary 3.3], [8, Theorem 2.1], [9, Theorem 2.1], [11, Theorem 3.4] and [12, Theorem 2.8].
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Abstract. As for the general planar differential systems one of the main problems for
the piecewise linear differential systems is to determine the existence and the maxi-
mum number of crossing limits cycles that these systems can exhibit. But in general to
provide a sharp upper bound on the number of crossing limit cycles is a very difficult
problem. In this work we study the existence of crossing limit cycles and their distribu-
tion for piecewise linear differential systems formed by linear differential centers and
separated by a reducible cubic curve, formed either by a circle and a straight line, or by
a parabola and a straight line.
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1 Introduction and statement of the main results

The discontinuous piecewise differential systems arose from the study of nonlinear oscilla-

tions by Andronov, Vitt and Khaikin in [1]. And nowadays the qualitative theory of the

discontinuous piecewise differential systems is a matter of great interest in the mathematical

community because these systems arise naturally in the modeling of several real phenomena

and processes for instance in electronics, mechanics, economy, biology, neuroscience etc., see

[3, 4, 10, 13, 21, 23] and references quoted therein.

One of the main problems in the qualitative theory of the discontinuous piecewise dif-

ferential systems is to determine the maximum number of crossing limits cycles that these

systems can have and their distribution. In this work we study the crossing limit cycles which

are periodic orbits isolated in the set of all periodic orbits of the piecewise linear differential

system, which only have isolated points of intersection with the discontinuity curve.

We recall that the 16th Hilbert’s problem requests for the maximum number of limit cycles

that can have a polynomial differential system in R2 in function of the degree of the system,

B Corresponding author. Email: jllibre@mat.uab.cat
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see [11,12]. Then the problem of establishing a sharp upper bound on the number of crossing

limits cycles for the class of planar piecewise linear differential systems can be considered

as an extension of the 16th Hilbert’s problem to this class and is in general a very difficult

problem, because there are few developed techniques. In the plane the class of piecewise

linear differential systems separated by a straight line is apparently the simplest class to study,

and has been studied in several papers, see [2, 5–9, 16, 19, 22] but it is still an open problem to

know if three is the maximum number of crossing limit cycles that this class can have.

In particular when the class of piecewise linear differential systems separated by a straight

line is formed by linear differential centers we know that these systems have no crossing limit

cycles, see [15]. However, there are more recent works which study planar discontinuous

piecewise linear differential centers where the curve of discontinuity is not a straight line, see

[18, 20], there it was proved that there are crossing limit cycles in those systems. Moreover in

the paper [14] it was provided the maximum number of crossing limit cycles for piecewise

linear differential centers separated by any conic, then the objective of this work is to study

the existence of crossing limit cycles of the discontinuous piecewise linear differential centers

in R2 separated a reducible cubic curve, formed either by a circle and a straight line, or by a

parabola and a straight line.

In this paper we study the crossing limit cycles of the discontinuous piecewise linear

differential centers separated by such reducible cubic curves which intersect either in two,

or in four, or in six points the discontinuity curve. First we have the crossing limit cycles

which intersect in two points the discontinuity curve. In [15] was proved that the class of

linear differential centers separated by a straight line have no crossing limit cycles, then we

can consider that those two intersection points on the discontinuity curve are on the circle or

on the parabola and these two options were considered in the paper [14]. Second the crossing

limit cycles intersect the discontinuity curve in exactly four points, here we consider that at

least one of the four points is on the straight line, because the case which the four points are

only on the circle or on the parabola was studied in [14]. Finally we have the crossing limit

cycles such that intersect the discontinuity curve in six points.

In this paper we study the crossing limit cycles with four points on discontinuity curve. In

subsection 1.1 we consider the piecewise linear differential systems formed by linear differen-

tial centers separated by the cubic

Σk =
{

(x, y) ∈ R
2 : (x − k)(x2 + y2 − 1) = 0, k ∈ R, k ≥ 0

}

.

And in subsection 1.2 we consider the piecewise linear differential systems formed by linear

differential centers separated by the cubic

Σ̃k =
{

(x, y) ∈ R
2 : (y − k)(y − x2) = 0, k ∈ R

}

.

1.1 Crossing limit cycles intersecting the discontinuity curve Σk

Let F1 be the family of piecewise linear differential centers separated by Σk with k > 1. Let

F2 be the family of piecewise linear differential centers separated by Σk with k = 1. In these

two cases we have the following regions in the plane

R1 ={(x, y) ∈ R
2 : x2 + y2

< 1},

R2 ={(x, y) ∈ R
2 : x2 + y2

> 1 and x < k},

R3 ={(x, y) ∈ R
2 : x2 + y2

> 1 and x > k}.
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Figure 1.1: The regions for the familes F1 and F2.

Figure 1.2: The regions for the familes F3.

And finally let F3 be the family of piecewise linear differential centers separated by Σk with

0 ≤ k < 1. Here we have the following regions in the plane

R1 ={(x, y) ∈ R
2 : x2 + y2

< 1, and x > k},

R2 ={(x, y) ∈ R
2 : x2 + y2

> 1, and x > k},

R3 ={(x, y) ∈ R
2 : x2 + y2

> 1 and x < k},

R4 ={(x, y) ∈ R
2 : x2 + y2

< 1 and x < k}.

In the family F3 we have three types of crossing limit cycles. First crossing limit cy-

cles such that are formed by parts of orbits of the four linear differential centers considered,

namely crossing limit cycles of type 1, see Figure 2.3, second we have crossing limit cycles

which intersect the regions R1, R2 and R4 or crossing limit cycles that intersect the regions

R1, R4 and R3, namely crossing limit cycles of type 2+ or crossing limit cycles of type 2−,

respectively, see Figure 2.4. Without loss of generality we only study the crossing limit cycles

of type 2+ because the analysis for the crossing limit cycles of type 2− is the same, moreover

we observe that these two cases can not occur simultaneously, because the orbits of linear

differential system in the region R4 which are pieces of ellipses would have these ellipses not

nested in contradiction with the fact that the ellipses of a linear center are nested. And finally

we have the crossing limit cycles such that are formed by parts of orbits of the three linear

differential centers in the regions R1, R2 and R3, or crossing limit cycles formed by parts of

orbits of the three linear differential centers in the regions R2, R3 and R4, namely crossing limit

cycles of type 3+ and crossing limit cycles of type 3−, respectively, see Figure 2.5. Without loss

of generality in Theorem 1.1 we study the crossing limit cycles of type 3+ because the study

by the crossing limit cycles of type 3− is the same. We observe that these types of crossing

limit cycles can not appear simultaneously, because the orbits of linear differential system in

the region R3 which are pieces of ellipses would have these ellipses not nested in contradiction

with the fact that the ellipses of a linear center are nested. If we study the piecewise linear dif-

ferential centers in the family F3 which have simultaneously two types of crossing limit cycles
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we observe we would have three possible combinations between the three different crossing

limit cycles types, 1, 2+ and 3+, but we observe that the crossing limit cycles of types 2+ and

3+ can not appear simultaneously, because the orbits of linear differential system in the region

R1 which are pieces of ellipses would have these ellipses not nested in contradiction with the

fact that the ellipses of a linear center are nested. For this same reason there are no piecewise

linear differential centers in F3 with three types of crossing limit cycles simultaneously. Then

in the following theorem we provide examples of piecewise linear differential centers in F3

with crossing limit cycles of types 1, 2+ and 3+ separately and piecewise linear differential

centers in F3 such that have simultaneously crossing limit cycles of types 1 and 2+ or of types

1 and 3+.

Theorem 1.1. The following statements hold.

(a) There are piecewise linear differential systems in F1 and in F2 formed by three linear differential

centers that have four crossing limit cycles, see Figures 2.1 and 2.2.

(b) There are piecewise linear differential systems in F3 that have five crossing limit cycles of type 1,

see Figure 2.3.

(c) There are piecewise linear differential systems in F3 that have four crossing limit cycles of type

2+, see Figure 2.4.

(d) There are piecewise linear differential systems in F3 that have three crossing limit cycles of type

3+, see Figure 2.5.

(e) There are piecewise linear differential systems in F3 that have four crossing limit cycles of type 1

and two crossing limit cycles of type 2+, see Figure 2.6.

(f) There are piecewise linear differential systems in F3 that have four crossing limit cycles of type 1

and one crossing limit cycle of type 3+, see Figure 2.7.

Theorem 1.1 is proved in Section 2.

By the numerical computations made for the families F1,F2 and F3 and the illustrated

examples of Theorem 1.1 we propose the following problem.

Open problem 1. The numbers of crossing limit cycles determined in Theorem 1.1 for the families

F1, F2 and F3 are the maximum numbers of crossing limit cycles in each family.

1.2 Crossing limit cycles intersecting the discontinuity curve Σ̃k

Let F4 be the family of piecewise linear differential centers separated by Σ̃k with k < 0. In this

case, we have following three regions in the plane

R1 ={(x, y) ∈ R
2 : y > x2},

R2 ={(x, y) ∈ R
2 : y < x2 and y > k},

R3 ={(x, y) ∈ R
2 : y < x2 and y < k}.

For this family we have the following Theorem.

Theorem 1.2. There are piecewise linear differential systems in F4 that have four crossing limit cycles

with four points on Σ̃k, see Figure 3.1.
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Figure 1.3: The regions for the familes F4.

Figure 1.4: The regions for the familes F5.

Theorem 1.2 is proved in Section 3.

Let F5 be the family of piecewise linear differential centers separated by Σ̃k with k = 0.

When the discontinuity curve is Σ̃0 we have following four regions in the plane

R1 ={(x, y) ∈ R
2 : y > x2 },

R2 ={(x, y) ∈ R
2 : y < x2 and y > 0, x < 0},

R3 ={(x, y) ∈ R
2 : y < x2 and y < 0},

R4 ={(x, y) ∈ R
2 : y < x2 and y > 0, x > 0}.

Here we have two types of crossing limit cycles, first crossing limit cycles formed by parts

of orbits of the four linear differential centers considered, namely crossing limits cycles of

type 4, see Figure 4.1. Second crossing limit cycles of type 5, see Figure 4.2, which intersect

only three regions, in this case we have two options, first we have the case where the crossing

limit cycles are formed by parts of orbits of the linear differential centers in the regions R1, R3

and R4 and second the crossing limit cycles that intersect only the three regions R1, R2 and R3,

without loss of generality we can consider the first case because the study for the second type

of crossing limit cycles is the same. Here we observe that it is not possible to have crossing

limit cycles of type 5 that satisfy those two cases simultaneously, because the orbits of linear

differential system in the region R3 which are pieces of ellipses would have these ellipses not

nested in contradiction with the fact that the ellipses of a linear center are nested. Therefore

in the following Theorem we study the piecewise linear differential centers in F5 which have

crossing limit cycles of types 4 and 5 separately, and crossing limit cycles of types 4 and 5

simultaneously.
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Theorem 1.3. The following statements hold.

(a) There are piecewise linear differential systems in F5 that have four crossing limit cycles of type 4,

see Figure 4.1.

(b) There are piecewise linear differential systems in F5 that have three crossing limit cycles of type 5,

see Figure 4.2.

(c) There are piecewise linear differential systems in F5 that have simultaneously four crossing limit

cycles of type 4 and two crossing limit cycles of type 5, see Figure 4.3.

Theorem 1.3 is proved in Section 4.

Figure 1.5: The regions for the familes F6.

Let F6 be the family of piecewise linear differential centers separated by Σ̃k with k > 0, in

this case we have the following five regions in the plane

R1 ={(x, y) ∈ R
2 : y < x2 and y > k, x >

√
k},

R2 ={(x, y) ∈ R
2 : y > x2 and y > k},

R3 ={(x, y) ∈ R
2 : y < x2 and y > k, x < −

√
k},

R4 ={(x, y) ∈ R
2 : y < x2 and y < k},

R5 ={(x, y) ∈ R
2 : x2

< y < k}.

Here we have six types of crossing limit cycles. First we have crossing limit cycles such that

are formed by parts of orbits of the four linear differential centers in the regions R1, R2, R5

and R4, or crossing limit cycles formed by parts of orbits of the four linear differential centers

in the regions R2, R3, R4 and R5, namely crossing limit cycles of type 6+ and crossing limit

cycles of type 6−, respectively, see Figure 6.1. In Theorem 1.4 we study the crossing limit

cycles of type 6+ because the study for the case of crossing limit cycles of type 6− is the

same. Second we have crossing limit cycles type 7, see Figure 5.2, which intersect the three

regions R2, R5 and R4. Third we have the crossing limit cycles of type 8, see Figure 5.3, which

intersect the regions R1, R2, R3 and R4. And finally we have the crossing limit cycles such that

are formed by parts of orbits of the three linear differential centers in the regions R1, R2 and

R4, or crossing limit cycles formed by parts of orbits of the three linear differential centers in

the regions R2, R3 and R4, namely crossing limit cycles of type 9+ and crossing limit cycles

of type 9−, respectively, see Figure 5.4. Without loss of generality in Theorem 1.4 we study

the crossing limit cycles of type 9+ because the study by the crossing limit cycles of type 9−

is the same. Then in Theorem 1.4 we study the crossing limit cycles of types 6+, 7, 8 and

9+. In Theorem 1.5 we study the piecewise linear differential centers in the family F6 which



Crossing limit cycles for piecewise linear differential centers 7

have two types of crossing limit cycles simultaneously. And in Theorem 1.6 we study the

piecewise linear differential centers in the family F6 which have three types of crossing limit

cycles simultaneously.

Theorem 1.4. The following statements hold.

(a) There are piecewise linear differential systems in F6 that have five crossing limit cycles of type 6+,

see Figure 5.1.

(b) There are piecewise linear differential systems in F6 that have three crossing limit cycles of type 7,

see Figure 5.2.

(c) There are piecewise linear differential systems in F6 that have four crossing limit cycles of type 8,

see Figure 5.3.

(d) There are piecewise linear differential systems in F6 that have three crossing limit cycles of

type 9+, see Figure 5.4.

Theorem 1.4 is proved in Section 5.

In Theorem 1.5 we would have fifteen possible combinations of pairs between the six

different crossing limit cycles types, namely types 6+, 6−, 7, 8, 9+ and 9−, we will analyze each

one. Piecewise linear differential centers with crossing limit cycles of types 6+ and 6− are

analyzed in statement (a) of Theorem. The study for piecewise linear differential centers with

crossing limit cycles of types 6+ and 7, or 6+ and 8, or 6+ and 9+ is the same for piecewise

linear differential centers with crossing limit cycles of types 6− and 7, or 6− and 8, or 6− and

9−, respectively, and they are in statements (b), (c) and (d) of Theorem 1.5, respectively. The

crossing limit cycles of types 6− and 9+ can not appear simultaneously because the orientation

of these crossing limit cycles in region R4 would not be well defined, similarly happens with

the crossing limit cycles of types 6+ and 9−. Piecewise linear differential centers with crossing

limit cycles of types 7 and 8 are analyzed in statement (e) of Theorem 1.5. It is not possible to

have crossing limit cycles of type 7 and 9+, or 7 and 9− simultaneously, because the orbits of

linear differential system in the region R2 would not be nested. Piecewise linear differential

centers with crossing limit cycles of types 8 and 9+ are analyzed in statement ( f ) of Theorem

1.5, the case where appear crossing limit cycles of types 8 and 9−, simultaneously is the same.

Finally we observe that it is not possible to have simultaneously crossing limit cycles of types

9+ and 9−, because the orbits of linear differential system in the region R4 would not be

nested. Then we only have six cases analyzed in the following Theorem.

Theorem 1.5. The following statements hold.

(a) There are piecewise linear differential systems in F6 that have simultaneously four crossing limit

cycles of type 6+ and four crossing limit cycles of type 6−, see Figure 6.1.

(b) There are piecewise linear differential systems in F6 that have simultaneously four crossing limit

cycles of type 6+ and two crossing limit cycles of type 7, see Figure 6.2.

(c) There are piecewise linear differential systems in F6 that have simultaneously three crossing limit

cycles of type 6+ and four crossing limit cycle of type 8, see Figure 6.3.

(d) There are piecewise linear differential systems in F6 that have simultaneously four crossing limit

cycles of type 6+ and two crossing limit cycles of type 9+, see Figure 6.4.
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(e) There are piecewise linear differential systems in F6 that have simultaneously three crossing limit

cycles of type 7 and four crossing limit cycle of type 8, see Figure 6.5.

(f) There are piecewise linear differential systems in F6 that have simultaneously four crossing limit

cycles of type 8 and two crossing limit cycles of type 9+, see Figure 6.6.

Theorem 1.5 is proved in Section 6.

In Theorem 1.6 we would have twenty possible combinations of triplets between the six

different crossing limit cycles types above, but we have fourteen combinations that include

couples 6+ and 9−, 6− and 9+, 7 and 9±, or 9+ and 9− and as it was said before these

combinations are not possible. Therefore we have six options, first we observed that crossing

limit cycles of types 6+, 6− and 7, or 6+, 6− and 8 can not appear simultaneously because the

orientation of these crossing limit cycles in region R4 would not be well defined. Second we

have that there are piecewise linear differential centers with crossing limit cycles of types 6+, 7

and 8, this case is in statement (a) of Theorem 1.6, the case where appear crossing limit cycles

of types 6−, 7 and 8 is the same. Finally we have the piecewise linear differential centers with

crossing limit cycles of types 6+, 8 and 9+, this case is in statement (b) of Theorem 1.6 and the

case where appear crossing limit cycles of types 6−, 7 and 9− is the same.

Theorem 1.6. The following statements hold.

(a) There are piecewise linear differential systems in F6 that have simultaneously two crossing limit

cycles of type 6+, two crossing limit cycles of type 7 and four crossing limit cycles of type 8, see

Figure 7.1.

(b) There are piecewise linear differential systems in F6 that have simultaneously four crossing limit

cycles of type 6+, three crossing limit cycles of type 8 and two crossing limit cycles of type 9+,

see Figure 7.2.

Theorem 1.6 is proved in Section 7.

Similar to the previous case and by the illustrated examples in previous theorems we

propose the following problem.

Open problem 2. The numbers of crossing limit cycles determined in Theorems 1.2, 1.3, 1.4, 1.5 and

1.6 for the families F4, F5 and F6 are the maximum numbers of crossing limit cycles in each family.

By the previous analysis we observed that it is not possible to have piecewise linear differ-

ential centers in F6 with four, five or six types of crossing limit cycles simultaneously.

2 Proof of Theorem 1.1

In the proof of the theorems will use the following lemma which provides a normal form for

an arbitrary linear differential linear differential center, see a proof in [17].

Lemma 2.1. Through a linear change of variables and a rescaling of the independent variable every

center in R2 can be written

ẋ = −bx − 4b2 + ω
2

4a
y + d, ẏ = ax + by + c, (2.1)

with a 6= 0 and ω > 0. This linear differential system has the first integral

H1(x, y) = 4(ax + by)2 + 8a(cx − dy) + y2
ω

2. (2.2)
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Remark. As we shall see in the proofs of our results in order to find the crossing limit cycles

we must solve equations of the form

H1(x1, y1)− H1(x2, y2) = 0, (2.3)

where H1 is defined in (2.2). Since a 6= 0 the solutions of equation (2.3) do not change if in it

we change the function H1 by the function

H̄(x, y) = 4

(

x +
b

a
y

)2

+ 8

(

c

a
x − d

a
y

)

+
(

ω

a

)2
y2,

because this is equivalent to divide equation (2.3) by the positive constant a2
> 0. Definining

b

a
= b̄,

c

a
= c̄,

d

a
= d̄,

ω

a
= ω̄,

the function H̄(x, y) is a first integral of the differential system

ẋ = −b̄x − 4b̄2 + ω̄
2

4
y + d̄, ẏ = x + b̄y + c̄. (2.4)

Note that system (2.4) is essentially system (2.1) with a = 1. So in what follows we always

will work with systems (2.1) with a = 1. In this way we shall work with systems having one

parameter less and this will simplify a little the computations that will come.

Proof of statement (a) for the family F1 of Theorem 1.1. By Lemma 2.1 we can consider the follow-

ing piecewise linear differential center

ẋ = −b1x − 4b2
1 + ω

2
1

4
y + d1, ẏ = x + b1y + c1, in R1,

ẋ = −b2x − 4b2
2 + ω

2
2

4
y + d2, ẏ = x + b2y + c2, in R2,

ẋ = −b3x − 4b2
3 + ω

2
3

4
y + d3, ẏ = x + b3y + c3, in R3.

(2.5)

And the linear differential centers in (2.5) have the first integrals

Hi(x, y) = 4(x + biy)
2 + 8(cix − diy) + y2

ω
2
i , with i = 1, 2, 3,

respectively. In order to have a crossing limit cycle, which intersects Σk in four different

points p1 = (k, y1), p2 = (x2, y2), p3 = (x3, y3) and p4 = (k, y4), with p2, p3 ∈ S1, where

S1 =
{

(x, y) : x2 + y2 = 1
}

. These points must satisfy the closing equations

e1 = H2(k, y1)− H2(x2, y2) = 0,

e2 = H1(x2, y2)− H1(x3, y3) = 0,

e3 = H2(x3, y3)− H2( k, y4) = 0,

e4 = H3(k, y4)− H3( k, y1) = 0,

x2
2 + y2

2 = 1,

x2
3 + y2

3 = 1.

(2.6)

For to build the example, we will impose the existence of periodic solutions and we will de-

termine the parameters in (2.5) with the established conditions. First we fix the constant
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k = 2 and we assume that there is a real solution, namely q1 = (y1
1, x1

2, y1
2, x1

3, y1
3, y1

4) =

(3, cos (π/2), sin (π/2), cos (−π/3), sin (−π/3),−5/2), then by equations ei with i = 1, 2, 3, 4

in (2.6) we have the parameters

d2 = 1 + b2(3 + 2b2) + c2 +
ω

2
2

2
;

d1 = − 1

16
(−2 +

√
3)(−4 + 4b1(2

√
3 + b1)− 16c1 + ω

2
1);

c2 =
70 − 8

√
3 + 4b2(10 − 5

√
3 + 31b2 − 4

√
3b2) + (31 − 4

√
3)ω2

2

8(−8 +
√

3)
;

d3 =
1

16
(4b3(8 + b3) + ω

2
3),

respectively. Now by the equation e4 we have

y4 =
1

2
(1 − 2y1),

then we suppose that the point q2=(y2
1, x2

2, y2
2, x2

3, y2
3, y2

4)=(3, cos (π/2), sin (π/2), cos (−π/3),

sin (−π/3),−5/2) is also a real solution of system (2.6), then by the equations e1, e2 and e3 in

(2.6) we obtain the following parameters

ω2 = − 2
√

3894 − 523
√

3 + 225
√

15 + 50
√

2(5 +
√

5)

×
(

−635 + 25
√

3 + 675
√

5 − 75
√

15 + 75

√

2(5 +
√

5)

+ 5

(

1468 + 34
√

3 + 100
√

5 − 50
√

15 + 5

√

2(5 +
√

5)(−68 +
√

3 − 8
√

5 +
√

15)

)

b2

+ (−3894 + 523
√

3 + 25
√

5(70 − 9
√

3)− 50

√

2(5 +
√

5))b2
2

)
1
2

;

c1 =
(−2 +

√
3)

√

1

2

(

5 +
√

5
)

(−4 + 8
√

3b1 + 4b2
1 + ω

2
1)

8(−1 +
√

5 − 2
√

2(5 +
√

5)
+

√

6(5 +
√

5)));

b2 = 3.119845..,

respectively. Now we fix the points x2 = cos (4π/7), y2 = sin (4π/7) and by equation e6 we

have

y3 = −
√

1 − x2
3,

then by the equations e1, e2 and e3 we have

y1 = 3.144465..; ω1 = −9.702226..
√

0.042492.. + 0.031501..b1 − 0.042492..b2
1; x3 = 0.365470.., re-

spectively. These conditions generate the real solution q3=(3.144465.., cos (4π/7), sin (4π/7),

0.365470..,−0.930823..,−2.644465..). We build a fourth solution fixing the points x2 =

−0.018219..; y2 = 0.999834..; therefore by the equations e1, e2 and e3 we obtain y1 = 3.012016..;

x3 = 0.489429..; b1 = 0.608380.., respectively. With these conditions we have the real solution

q4 = (3.012016..,−0.018219.., 0.999834.., 0.489429..,−0.872042..,−2.512016..). With these four
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real solutions we determined all the parameters that appear in system (2.6), even more in this

particular case the parameters b3, c3, ω3 ∈ R, then we fix them, b3 = 1; c3 = 1/4; ω3 = 1.

Therefore we obtain the following piecewise linear differential center

ẋ = 0.977474.. − 0.608380..x − 1.451017..y, ẏ = −3.008357.. + x + 0.608380..y, in R1,

ẋ = 9.710162.. − 3.119845..x − 10.075224..y, ẏ = −20.799821.. + x + 3.119845..y, in R2,

ẋ =
37

16
− x − 5

4
y, ẏ =

1

4
+ x + y, in R3.

(2.7)

The linear differential centers in (2.7) have the first integrals

H1(x, y) = x2 + x(−6.016714.. + 1.216760..y) + y(−1.954949.. + 1.451017..y),

H2(x, y) = x2 + x(−41.599643.. + 6.239690..y) + y(−19.420324.. + 10.075224..y),

H3(x, y) = 2x + 4x2 − 37

2
y + 8xy + 5y2,

respectively.

Figure 2.1: Four crossing limit cycles of the discontinuous piecewise linear dif-

ferential (2.7). These limit cycles are traveled in counterclockwise.

In this case system (2.6) is equivalent to system

79.199286.. + x2
2 + 6.940944..y1 − 10.075224..y2

1 − 19.420324..y2 + 10.075224..y2
2

+x2(−41.599643.. + 6.239690..y2) = 0,

x2
2 − x2

3 − 1.954949..y2 + 1.451017..y2
2 + x2(−6.016714.. + 1.216760..y2)

+x3(6.016714.. − 1.216760..y3) + 1.954949..y3 − 1.451017..y2
3) = 0,

79.199286.. + x2
3 − 19.420324..y3 + 10.075224..y2

3

+x3(−41.599643.. + 6.239690..y3) + 6.940944..y4 − 10.075224..y2
4 = 0,

(y1 − y4)

(

−5

2
+ 5y1 + 5y4

)

= 0,

x2
2 + y2

2 = 1, x2
3 + y2

3 = 1.

(2.8)

Taking into account that the solutions qi = (yi
1, xi

2, yi
2, xi

3, yi
3, yi

4) of system (2.8) must satisfy

yi
4 < yi

1 we have that the unique reals solutions are the points q1, q2, q3 and q4 which provide

four crossing limit cycles of the piecewise linear differential center (2.7). See these crossing

limit cycles in Figure 2.1.
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Proof of statement (a) for the family F2 of Theorem 1.1. Following the steps illustrated in the pre-

vious case we obtain a discontinuous piecewise linear differential system which is formed by

the following linear differential centers in each region. First in the region R1 we have

ẋ = 2.185588.. − 3

20
x − 6.201094..y, ẏ = −6.726549.. + x +

3

20
y. (2.9)

This linear differential center has the first integral H1(x, y) = x2 + x (−13.453098.. + 3y/10) +

y(−4.371176.. + 6.201094..y). In the region R2 we consider the linear differential center

ẋ = −0.263120.. − 0.874044..x − 4.914345..y, ẏ = −23.305757.. + x + 0.874044..y, (2.10)

which has the first integral H2(x, y) = x2 + x(−46.611514.. + 1.748088..y) + y(0.526241.. +

4.914345..y). And in the region R3 we have the linear differential center

ẋ =
21

16
− x − 5

4
y, ẏ =

1

4
+ x + y, (2.11)

which has the first integral H3(x, y) = 2x + 4x2 − 21y/2 + 8xy + 5y2. In order to have a

Figure 2.2: Four crossing limit cycles of the discontinuous piecewise linear dif-

ferential formed by (2.9), (2.10) and (2.11) and separated by Σ1. These limit

cycles are traveled in counterclockwise.

crossing limit cycle, which intersects Σ1 in four different points p1 = (1, y1), p2 = (x2, y2),

p3 = (x3, y3) and p4 = (1, y4), with p2, p3 ∈ S1, these points must satisfy the closing equations

given in (2.6). Then for the piecewise linear differential system formed by the centers (2.9),

(2.10) and (2.11) we have that system (2.6) is equivalent to system

45.611514.. + x2
2 − 2.274330..y1 − 4.914345..y2

1 + 0.526241..y2

+4.914345..y2
2 + x2(−46.611514.. + 1.748088..y2) = 0,

x2
2 − x2

3 + x2

(

−13.453098.. +
3

10
y2

)

− 4.371176..y2

+6.201094..y2
2 + x3

(

13.453098.. − 3

10
y3

)

+ 4.371176..y3 − 6.201094..y2
3 = 0,

45.611514.. + x2
3 + 0.526241..y3 + 4.914345..y2

3

+x3(−46.611514.. + 1.748088..y3)− 2.274330..y4 − 4.914345..y2
4 = 0,

(y1 − y4)

(

−5

2
+ 5y1 + 5y4

)

= 0,

x2
2 + y2

2 = 1, x2
3 + y2

3 = 1,

(2.12)
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Therefore the unique real solutions qi = (yi
1, xi

2, yi
2, xi

3, yi
3, yi

4) for system (2.12) that satisfy the

condition yi
4 < yi

1, are the points q1 = (3, cos (π/2), sin (π/2), cos (−π/3), sin (−π/3),−5/2);

q2 = ( 17/5, cos (3π/5), sin (3π/5), cos (−2π/5), sin (−2π/5), −29/10); q3 = (3.294676..,

cos (4π/7), sin (4π/7), 0.362651..,−0.931924..,−2.794676..) and q4 = (1.287554.., 0.814865..,

0.579649.., 0.966364..,−0.257177..,−0.787554), which generated four crossing limit cycles. See

these crossing limit cycles of the piecewise linear differential center formed by (2.9), (2.10) and

(2.11) in Figure 2.2.

Proof of statement (b) of Theorem 1.1. We consider the piecewise linear differential center such

that in the region R1 it has the linear differential center

ẋ = 0.309248.. − 0.237408..x − 0.439335..y, ẏ = −0.478770.. + x + 0.237408..y, (2.13)

this system has the first integral H1(x, y) = x2 + x(−0.957540..+ 0.474817..y) + (−0.618496..+

0.439335..y)y. In the region R2 we have the linear differential center

ẋ = 0.396090.. − 0.335276..x − 0.180370..y, ẏ = −0.861570.. + x + 0.335276..y, (2.14)

which has the first integral H2(x, y) = x2 + x(−1.723140.. + 0.670553..y) + (−0.792181.. +

0.180370..y)y. In the region R3 we have the linear differential center

ẋ = 0.242967.. + 0.112091..x − 0.194871..y, ẏ = 0.375114.. + x − 0.112091..y, (2.15)

this system has the first integral H3(x, y) = x2 + x(0.750229.. − 0.224182..y) + (−0.485935.. +

0.194871..y)y. And in the region R4 we have the linear differential center

ẋ = 0.394133.. + 0.278957..x − 0.25146..y, ẏ = 0.516804.. + x − 0.278957..y, (2.16)

which has the first integral H4(x, y) = x2 + x(1.033609.. − 0.557914..y) − (0.788267..

−0.251469..y)y. In order to have a crossing limit cycle of type 1, which intersects the dis-

Figure 2.3: Five crossing limit cycles of type 1 of the discontinuous piecewise

linear differential system formed by the centers (2.13), (2.14), (2.15) and (2.16).

These limit cycles are traveled in counterclockwise.
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continuity curve Σk in four different points p1 = (k, y1), p2 = (x2, y2), p3 = (k, y3) and

p4 = (x4, y4), with p2, p4 ∈ S1, then these points must satisfy the system

H1(k, y1) = H1(x2, y2),

H2(x2, y2) = H2(k, y3),

H3(k, y3) = H3(x4, y4),

H4(x4, y4) = H4(k, y1),

x2
2 + y2

2 = 1,

x2
4 + y2

4 = 1,

(2.17)

Considering k = 0 and the previous piecewise linear differential center, system (2.17) is equiv-

alent to system

x2
2 + 0.618497..y1 − 0.439336..y2

1 + x2(−0.957541.. + 0.474817..y2)− 0.618497..y2

+0.439336..y2
2 = 0,

4x2
2 − 3.168726..y2 + 0.721481..y2

2 + x2(−6.892562.. + 2.682214..y2) + 3.168726..y3

−0.721481..y2
3 = 0,

x2
4 + 0.485936..y3 − 0.194871..y2

3 + x4(0.750229.. − 0.224183..y4)− 0.485936..y4

+0.194871..y2
4 = 0,

4x2
4 + 3.153071..y1 − 1.005879..y2

1 + x4(4.134439.. − 2.231658..y4)− 3.153071..y4

+1.005879..y2
4 = 0,

x2
2 + y2

2 = 1, x2
4 + y2

4 = 1.

(2.18)

Therefore discontinuous piecewise differential system formed by the linear differential centers

(2.13), (2.14), (2.15) and (2.16) has five crossing limit cycles of type 1, because system (2.18) has

five real solutions qi = (yi
1, xi

2, yi
2, yi

3, xi
4, yi

4), for i = 1, 2, 3, 4, 5 that satisfy the conditions −1 <

yi
1 < 1 < yi

3; xi
2 > 0 and xi

4 < 0. Where q1 = (1/3, cos (π/4), sin (π/4), 5/2, cos (5π/6),

sin (5π/6)); q2 = ( 2/5, cos (27π/10), sin (27π/10), 12/5, cos (81π/100), cos (81π/100));

q3=(1/5, cos (π/5), sin (π/5), 27/10, cos (89π/100), sin (89π/100)); q4=(1/10, cos (3π/20),

sin (3π/20), 57/20, cos (19π/20), sin (19π/20)) and q5 = (0.157052.., 0.843891.., 0.536513..,

2.764619..,−0.962848.., 0.270041..). See these five crossing limit cycles of type 1 in Figure 2.3.

Proof of statement (c) of Theorem 1.1. We consider the following discontinuous piecewise linear

differential system

ẋ = −0.045605.. + 0.048166..x − 0.671455..y, ẏ = −0.418364.. + x − 0.048166..y, in R1,

ẋ = 0.058276.. +
x

100
− 0.178664..y, ẏ = −0.763833.. + x − y

100
, in R2,

ẋ =
901

50000
− x

50
− 901

2500
y, ẏ =

1

10
+ x +

y

50
, in R4.

(2.19)

The linear differential centers in (2.19) have the first integrals

H1(x, y) = x2 + x(−0.836729.. − 0.096332..y) + (0.091210.. + 0.671455..y)y,

H2(x, y) = x2 + x
(

−1.527667.. − y

50

)

+ (−0.116553.. + 0.178664..y)y,

H4(x, y) = 4x2 +
4

25
x(5 + y) +

901y(−1 + 10y)

6250
,



Crossing limit cycles for piecewise linear differential centers 15

Figure 2.4: Four crossing limit cycles of type 2+ of the discontinuous piecewise

linear differential center (2.19). These limit cycles are traveled in counterclock-

wise.

respectively. In order to have a crossing limit cycle of type 2+, which intersects Σk in four

different points p1 = (x1, y1), p2 = (k, y2), p3 = (k, y3) and p4 = (x4, y4), with p1, p4 ∈ S1,

these points must satisfy the system

H1(x1, y1) = H1( k, y2),

H4( k, y2) = H4( k, y3),

H1( k, y3) = H1(x4, y4),

H2(x4, y4) = H2(x1, y1),

x2
1 + y2

1 = 1,

x2
4 + y2

4 = 1.

(2.20)

Then for the piecewise linear differential system (2.19) we have that system (2.20) becomes

4x2
1 + x1(−3.346917.. − 0.385331..y1) + y1(0.364840.. + 2.685822..y1)

+(−0.364840.. − 2.685822..y2)y2 = 0,

(y2 − y3)

(

− 901

6250
+

901

625
(y2 + y3)

)

= 0,

−4x2
4 + y3(0.364840.. + 2.685822..y3) + x4(3.346917.. + 0.385331..y4)

+(−0.364840.. − 2.685822..y4)y4 = 0,

−4x2
1 + 4x2

4 + x1

(

6.110671.. +
2

25
y1

)

+ (0.466214.. − 0.714659..y1)y1

+x4

(

−6.110671.. − 2

25
y4

)

+ (−0.466214.. + 0.714659..y4)y4 = 0,

x2
1 + y2

1 = 1, x2
4 + y2

4 = 1,

(2.21)

where k = 0. Therefore the unique real solutions qi = (xi
1, yi

1, yi
2, yi

3, xi
4, yi

4) for system (2.21)

that satisfy the conditions −1 < yi
3 < yi

2 < 1; xi
1 > 0 and xi

4 > 0 are the points q1 =

(cos (2π/5), sin (2π/5), 8/10,−7/10, cos (−3π/10), sin (−3π/10)); q2=(cos (π/3), sin (π/3),

17/25, −29/50, cos (−π/10), sin (−π/10)); q3 = (cos (41π/100), sin (41π/100), 0.819235..,

−0.719235.., 0.541860.., −0.840468..) and q4 = (0.256532.., 0.966535.., 0.833667.., −0.733667..,

0.508672..,−0.860960..). These four real solutions generated four crossing limit cycles of type

2+. See these crossing limit cycles of the piecewise linear differential center (2.19) in Figure 2.4.
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Proof of statement (d) of Theorem 1.1. We consider the following discontinuous piecewise linear

differential system

ẋ = 1.018312.. +
51

40
x + 9.463668..y, ẏ = −5.008011.. − x − 51

40
y, in R1,

ẋ = 0.712799.. − 0.278320..x − 0.250791..y, ẏ = −1.026464.. + x + 0.278320..y, in R2,

ẋ =
969

1280
+

x

8
− 17

64
y, ẏ =

1

8
+ x − y

8
, in R3.

(2.22)

The linear differential centers in (2.22) have the first integrals

H1(x, y) = 4x2 + x

(

40.064090.. +
51

5
y

)

+ y(8.146500.. + 37.854675..y),

H2(x, y) = x2 + x(−2.052928.. + 0.556641..y) + (−1.425599.. + 0.250791..y)y,

H3(x, y) = x + 4x2 − xy +
17

160
y(−57 + 10y).

respectively. In order to have a crossing limit cycle of type 3+, which intersects the discontinu-

ity curve Σk in four different points p1 = (k, y1), p2 = (x2, y2), p3 = (k, y3) and p4 = (x4, y4),

with p2, p4 ∈ S1, these points must satisfy the system

H2(x1, y1) = H2(k, y2),

H3(k, y2) = H3(k, y3),

H2(k, y3) = H2(x4, y4),

H1(x4, y4) = H1(x1, y1),

x2
1 + y2

1 = 1,

x2
4 + y2

4 = 1,

(2.23)

Considering k = 0, system (2.23) is equivalent to system

4x2
1 + y1(−5.702397.. + 1.003165..y1) + x1(−8.211712.. + 2.226564..y1)

+5.702397..y2 − 1.003165..y2
2 = 0,

(y2 − y3)(−57 + 10y2 + 10y3) = 0,

x2
4 + (1.425599.. − 0.250791..y3)y3 + x4(−2.052928.. + 0.556641..y4)

−1.425599..y4 + 0.250791..y2
4 = 0,

x2
1 − x2

4 + x1

(

10.016022.. +
51

20
y1

)

+ y1(2.036625.. + 9.463668..y1)

+x4

(

−10.016022.. − 51

20
y4

)

+ (−2.036625.. − 9.463668..y4)y4 = 0,

x2
1 + y2

1 = 1, x2
4 + y2

4 = 1.

(2.24)

Therefore discontinuous piecewise differential (2.22) has three crossing limit cycles of type

3+, because system (2.24) has three real solutions qi = (xi
1, yi

1, yi
2, yi

3, xi
4, yi

4), for i = 1, 2, 3 that

satisfy the conditions 0 < xi
4 < xi

1 and 1 < yi
3 < yi

2. Where q1 = (cos (π/5), sin (π/5), 43/10,

7/5 cos(2π/5), sin(2π/5)); q2=(cos(16π/125), sin(16π/125), 447/100, 123/100 cos (9π/50),

cos (9π/50)) and q3 = (cos (17π/100), sin (17π/100), 4.366812.., 1.333187.., 0.242211..,

0.970223..). See these three crossing limit cycles of type 3+ in Figure 2.5.
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Figure 2.5: Three crossing limit cycles of type 3+ of the discontinuous piecewise

linear differential center (2.22). These limit cycles are traveled in counterclock-

wise.

Proof of statement (e) of Theorem 1.1. We consider the following discontinuous piecewise linear

differential system

ẋ = 0.244909.. − 0.132672..x − 0.724279..y, ẏ = −0.471887.. + x + 0.132672..y, in R1,

ẋ = 0.668802.. − 0.514522..x − 0.636209..y, ẏ = −0.985653.. + x + 0.514522..y, in R2,

ẋ = −0.081198.. − 0.207828..x − 0.061343..y, ẏ = −0.124956.. + x + 0.207828..y, in R3,

ẋ = 0.211524.. − 0.634777..x − 0.705080..y, ẏ = −0.356652.. + x + 0.634777..y, in R4.
(2.25)

The linear differential centers in (2.25) have the first integrals

H1(x, y) = x2 + x(−0.943775.. + 0.265344..y) + (−0.489818.. + 0.724279..y)y,

H2(x, y) = x2 + (−1.337605.. + 0.636209..y)y + x(−1.971307.. + 1.029044..y),

H3(x, y) = x2 + x(−0.249913.. + 0.415657..y) + (0.162397.. + 0.061343..y)y,

H4(x, y) = x2 + (−0.423048.. + 0.705080..y)y + x(−0.713304.. + 1.269555..y),

respectively. In order to have crossing limit cycles of types 1 and 2+, simultaneously, such

that the crossing limit cycles of type 1 intersect the discontinuity curve Σ0 in four different

points p1 = (0, y1), p2 = (x2, y2), p3 = (0, y3) and p4 = (x4, y4), with −1 < y1 < 1 < y3 and

x4 < 0 < x2 and p2, p4 ∈ S1; and the crossing limit cycles of type 2+ intersect the discontinuity

curve Σ0 in four different points p5 = (x5, y5), p6 = (0, y6), p7 = (0, y7) and p8 = (x8, y8), with

−1 < y7 < y6 < 1 and x5, x8 > 0, with p5, p8 ∈ S1. These points must satisfy systems (2.17)

and (2.20), respectively. Considering the piecewise linear differential center (2.25) systems
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Figure 2.6: Four crossing limit cycles of type 1 and two crossing limit cycles of

type 2+ (black and magenta) of the discontinuous piecewise linear differential

center (2.25). These limit cycles are traveled in counterclockwise.

(2.17) and (2.20) become

x2
2 + x2(−0.943775.. + 0.265344..y2)− 0.489818..y2 + 0.724279..y2

2

+0.489818..y1 − 0.724279..y2
1 = 0,

4x2
2 − 5.350421..y2 + 2.544838..y2

2 + x2(−7.885229.. + 4.116178..y2)

+5.350421..y3 − 2.544838..y2
3 = 0,

x2
4 − 0.162397..y3 − 0.061343..y2

3 + x4(−0.249913.. + 0.415657..y4)

+0.162397..y4 + 0.061343..y2
4 = 0,

4x2
4 − 1.692192..y4 + 2.820321..y2

4 + x4(−2.853217.. + 5.078222..y4)

+1.692192..y1 − 2.820321..y2
1 = 0,

4x2
5 − 1.959275..y5 + 2.897117..y2

5 + x5(−3.775101.. + 1.061377..y5)

+1.959275..y6 − 2.897117..y2
6 = 0,

(y6 − y7)(−1.692192.. + 2.820321..(y6 + y7)) = 0,

x2
8 + 0.489818..y7 − 0.724279..y2

7 + x8(−0.943775.. + 0.265344..y8)

−0.489818..y8 + 0.724279..y2
8) = 0,

x2
5 − x2

8 − 1.337605..y5 + 0.636209..y2
5 + x5(−1.971307.. + 1.029044..y5)

+x8(1.971307.. − 1.029044..y8) + 1.337605..y8 − 0.636209..y2
8 = 0,

x2
2 + y2

2 = 1, x2
4 + y2

4 = 1, x2
5 + y2

5 = 1, x2
8 + y2

8 = 1.

(2.26)

We have four real solutions qi = (yi
1, xi

2, yi
2, yi

3, xi
4, yi

4, xi
5, yi

5, yi
6, yi

7, xi
8, yi

8) with i = 1, 2, 3, 4, for

system (2.26) that satisfy the above conditions, namely q1 = ( −1/3, cos (−π/6), sin (−π/6),

3/2, cos (2π/3), sin (2π/3), cos (π/3), sin (π/3), 7/10, −1/10, 1, 0); q2 = (−0.654342..,

cos (−π/3), sin (−π/3), 12/5, cos (79π/100), sin (79π/100), cos (11π/50), sin (11π/50),

63/100, −3/100, 0.975733.., 0.216981..); q3 = (−0.447098.., cos (−23π/100), sin (−23π/100),

1.882264.., cos (18π/25), sin (18π/25), −0.654342.., cos (11π/50), sin (11π/50), 63/100,

−3/100, 0.975733.., 0.216981..); q4 = ( −0.305568.., cos (−3π/20), sin (−3π/20), 1.365012..,

−0.441883.., 0.897073.., cos (11π/50), sin (11π/50), 63/100,−3/100, 0.975733.., 0.216981..),

these four solutions generated four crossing limit cycles of type 1 and two crossing limit

cycles of type 2+. See these crossing limit cycles of the piecewise linear differential center

(2.25) in Figure 2.6.
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Here we observed that we obtain a total of six crossing limit cycles between limit cycles of

type 1 and of type 2+, moreover these six crossing limit cycles have the configuration (4, 2),

this is, 4-crossing limit cycle of type 1 and 2-crossing limit cycles of type 2+. Clearly this lower

bound for the maximum number of crossing limit cycles of types 1 and 2+ simultaneously,

could be also obtained with the configurations (3, 3) or (2, 4). But after several numeric com-

putations we could not build a third limit cycle of type 2+, previously fixing two limit cycles

of type 1, so we only get those lower bound with the configuration (4, 2).

Proof of statement (f) of Theorem 1.1. We consider the following discontinuous piecewise linear

differential system

ẋ = 0.078341.. + 0.855624..x + 1.571418..y, ẏ = −0.065526.. − x − 0.855624..y, in R1,

ẋ = 0.496667.. + 0.078616..x − 0.193136..y, ẏ = −0.471461.. + x − 0.078616..y, in R2,

ẋ = 5.276135.. + 0.212817..x − 1.851275..y, ẏ = −5.383865.. + x − 0.212817..y, in R3,

ẋ = 0.484115.. + 0.548314..x − 0.303113..y, ẏ = 0.569064.. + x − 0.548314..y, in R4.
(2.27)

The linear differential centers in (2.27) have the first integrals

H1(x, y) = x2 + y(0.156682.. + 1.571418..y) + x(0.131053.. + 1.711249..y),

H2(x, y) = x2 + x(−0.942922.. − 0.157232..y) + (−0.993334.. + 0.193136..y)y,

H3(x, y) = x2 + x(−10.767731.. − 0.425635..y) + y(−10.552270.. + 1.851275..y),

H4(x, y) = x2 + x(1.138128.. − 1.096628..y) + (−0.968231.. + 0.303113..y)y,

respectively. In order to have crossing limit cycles of types 1 and 3+, simultaneously, such

that the crossing limit cycles of type 1 intersect the discontinuity curve Σ0 in four different

points p1 = (0, y1), p2 = (x2, y2), p3 = (0, y3) and p4 = (x4, y4),with −1 < y1 < 1 < y3 and

x4 < 0 < x2 and p2, p4 ∈ S1; and the crossing limit cycles of type 3+ intersect the discontinuity

curve Σ0 in four different points p5 = (x5, y5), p6 = (0, y6), p7 = (0, y7) and p8 = (x8, y8),

with 1 < y7 < y6, x5, x8 > 0 and p5, p8 ∈ S1, these points must satisfy systems (2.17) and

(2.23), respectively. Considering the piecewise linear differential center (2.27) systems (2.17)

and (2.23) become

−0.524214..x2 − 4x2
2 − 6.844999..x2y2 + (y1 − y2)(0.626729.. + 6.285673..(y1 + y2)) = 0,

−3.771690..x2 + 4x2
2 − 0.628929..x2y2 + (y2 − y3)(−3.973339.. + 0.772547..(y2 + y3)) = 0,

43.070926..x4 − 4x2
4 + 1.702543..x4y4 + (y3 − y4)(−42.209082.. + 7.405102..(y3 + y4)) = 0,

4.552513..x4 + 4x2
4 − 4.386514..x4y4 − (y1 − y4)(−3.872927.. + 1.212454..(y1 + y4)) = 0,

−3.771690..x5 + 4x2
5 − 0.628929..x5y5 + (y5 − y6)(−3.973339.. + 0.772547..(y5 + y6)) = 0,

(y6 − y7)(−42.209082.. + 7.405102..(y6 + y7)) = 0,

3.771690..x8 − 4x2
8 + 0.628929..x8y8 + (y7 − y8)(−3.973339.. + 0.772547..(y7 + y8)) = 0,

−4x2
5 + 4x2

8 + x5(−0.524214.. − 6.844999..y5) + (−0.626729..

−6.285673..y5)y5 + y8(0.626729.. + 6.285673..y8) + x8(0.524214.. + 6.844999..y8) = 0,

x2
2 + y2

2 = 1, x2
4 + y2

4 = 1, x2
5 + y2

5 = 1, x2
8 + y2

8 = 1.
(2.28)

We have four real solutions qi = (yi
1, xi

2, yi
2, yi

3, xi
4, yi

4, x5, y5, y6, y7, x8, y8) with i = 1, 2, 3, 4,

for system (2.28) that satisfy the above conditions, namely q1 = (4/5, 1, 0, 26/5, cos (3π/5),

sin (3π/5), cos (π/5), sin (π/5), 43/10, 7/5, cos (2π/5), sin (2π/5)); q2 = (53/100,
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Figure 2.7: Four crossing limit cycles of type 1 and one crossing limit cycle of

type 3+ (black) of the discontinuous piecewise linear differential center (2.27).

These limit cycles are traveled in counterclockwise.

cos (−13π/100), sin (−13π/100), 557/100, cos (17π/25), sin (17π/25), cos (π/5), sin (π/5),

43/10, 7/5, cos (2π/5), sin (2π/5)); q3 = (1/2, cos (−3π/20), sin (−3π/20), 5.611962..,

cos (17239π/25000), sin (17239π/25000), cos (π/5), sin (π/5), 43/10, 7/5, cos (2π/5),

sin (2π/5)); q4 = (0.993727.., cos (12π/125), sin (12π/125), 4.808026..,−0.066301.., 0.997799..,

cos (π/5), sin (π/5), 43/10, 7/5, cos (2π/5), sin (2π/5)), these four solutions generated four

crossing limit cycles of type 1 and one crossing limit cycle of type 3+. See these crossing limit

cycles of the piecewise linear differential center (2.27) in Figure 2.7.

Here we observed that we obtain a total of five crossing limit cycles between limit cycles of

type 1 and of type 3+, moreover these five crossing limit cycles have the configuration (4, 1),

this is, 4-crossing limit cycle of type 1 and 1-crossing limit cycles of type 3+. In order to obtain

a result similar to the previous statement, this is, an example with a configuration (4, 2), we

tried to build a second cycle of type 3+ but when building this second cycle we lost a cycle of

type 1, so we only got a configuration (3, 2). If we consider the piecewise linear system

Figure 2.8: Three crossing limit cycles of type 1 and two crossing limit cycle

of type 3+ (black and orange) of the discontinuous piecewise linear differential

center (2.29). These limit cycles are traveled in counterclockwise.
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ẋ = −0.128852.. − 0.332114..x − 0.791281..y, ẏ = −0.143708.. + x + 0.332114..y, in R1,

ẋ = 0.597908.. + 0.108856..x − 0.227688..y, ẏ = −0.530777.. + x − 0.108856..y, in R2,

ẋ = 0.716356.. + 0.457342..x − 0.251353..y, ẏ = −0.189975.. + x − 0.457342..y, in R3,

ẋ = 1.857676.. − 4

5
x − 0.688147..y, ẏ = −1.219907.. + x +

4

5
y, in R4.

(2.29)

It is possible verify that we obtain the configuration (3, 2), see Figure 2.8. But after several

numeric computations we could not build a third limit cycle of type 3+, previously fixing two

limit cycles of type 1, so we only get those lower bound by the maximum number of types 1

and 3+, simultaneously, with the configurations (4, 1) and (3, 2).

3 Proof of Theorem 1.2

We consider the following piecewise linear differential center

ẋ = −124.644504.. +
111

50
x − 6.045715..y, ẏ = −148.901657.. + x − 111

50
y, in R1,

ẋ = 0.236087.. + 0.003662..x − 0.009243..y, ẏ = −0.402647.. + x − 0.003662..y, in R2,

ẋ = 1 +
x

5
− 0.102500..y, ẏ = − 9

20
+ x − y

5
, in R3.

(3.1)

The linear differential centers in (3.1) have the first integrals

H1(x, y) = x2 + x

(

−297.803314.. − 111

25
y

)

+ y(249.289008.. + 6.045715..y),

H2(x, y) = x2 + x(−0.805295.. − 0.007324..y) + (−0.472175.. + 0.009243..y)y,

H3(x, y) = x2 + x

(

− 9

10
− 2

5
y

)

+ (−2 + 0.102500..y)y,

respectively.

Figure 3.1: Four crossing limit cycles of the discontinuous piecewise linear dif-

ferential system (3.1). These limit cycles are traveled in counterclockwise.

For piecewise linear differential systems in the family F4 we have crossing limit cycles

which intersect the discontinuity curve Σ̃k in four different points p1 = (x1, x2
1), p2 = (x2, x2

2),
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p3 = (x3, k) and p4 = (x4, k), if these points satisfy the system

H1(x1, x2
1) = H1(x2, x2

2),

H2(x2, x2
2) = H2(x3, k),

H3(x3, k) = H3(x4, k),

H2(x4, k) = H2(x1, x2
1).

(3.2)

Then for the piecewise linear differential centers (3.1) and Σ̃k considering k = −1, system (3.2)

becomes

x1(−1191.213259.. + x1(1001.156032.. + x1 (−44425 + 24.182863..x1)))

+x2(1191.213259.. + x2(−1001.156032.. + (−44425 − 24.182863..x2) x2)) = 0,

−1.925675.. + x2(−3.221182.. + x2(2.111297.. + (−0.029297.. + 0.036973..x2)x2))

+(3.191885.. − 4x3)x3 = 0,

(x3 − x4)

(

−1

2
+ x3 + x4

)

= 0,

1.925675.. + x1(3.221182.. + x1(−2.111297.. + (0.029297.. − 0.036973..x1)x1))

+x4(−3.191885.. + 4x4) = 0.

(3.3)

Taking into account that the solutions (x1, x2, x3, x4) must satisfy x2 < x1 and x3 < x4,

system (3.3) has four real solutions qi = (xi
1, xi

2, xi
3, xi

4), with i = 1, 2, 3, 4. Namely, q1 =

(3,−2,−3/2, 2); q2 = (457/100, −3.753677.., −3.116713.., 3.616713..); q3 = (5.820000..,

−5.115260.., −4.592690.., 5.092690..) and q4 = (41.045251.., −40.667957.., −162.945374..,

163.445374..). Which provide four crossing limit cycles of the piecewise linear differential

center (3.1). See these four crossing limit cycles in Figure 3.1.

Here we observe that there is a duality between the crossing limit cycles that intersect the

discontinuity curve Σ̃−1 and the crossing limit cycles that intersect the discontinuity curve Σ2

for the family F1 studied in statement (a) of Theorem 1.1, where we also got four crossing

limit cycles, see Figures 2.1 and 3.1.

4 Proof of Theorem 1.3

Proof of statement (a) of Theorem 1.3. We consider the following piecewise linear differential

center

ẋ =
11

10
+

4

5
x − 4

5
y, ẏ = 1 + x − 4

5
y, in R1,

ẋ =
17

75
− 3

10
x − 17

150
y, ẏ = −61

20
+ x +

3

10
y, in R2,

ẋ =
1

6
+ x − 25

16
y, ẏ = −1

4
+ x − y, in R3,

ẋ =
133

36
+

x

10
− 7

45
y, ẏ =

543

20
+ x − y

10
, in R4.

(4.1)

The linear differential centers in (4.1) have the first integrals

H1(x, y) = 5x(2 + x)− (11 + 8x)y + 4y2,

H2(x, y) = 150x2 + 17(−4 + y)y + 15x(−61 + 6y),

H3(x, y) = 4x2 − 2x(1 + 4y) +
y

12
(−16 + 75y),

H4(x, y) = 90x2 + 9x(543 − 2y) + 7y(−95 + 2y),
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Figure 4.1: Four crossing limit cycles of type 4 of the discontinuous piecewise

linear differential system (4.1). These limit cycles are traveled in counterclock-

wise.

respectively. In order to have a crossing limit cycle of type 4, which intersects the discontinuity

curve Σ̃0 in four different points p1 = (x1, x2
1), p2 = (x2, x2

2), p3 = (x3, 0) and p4 = (x4, 0),

these points must satisfy system

H1(x1, x2
1) = H1(x2, x2

2),

H2(x2, x2
2) = H2(x3, 0),

H3(x3, 0) = H3(x4, 0),

H4(x4, 0) = H4(x1, x2
1).

(4.2)

Considering the piecewise linear differential center (4.1) system (4.2) becomes

(x1 − x2)(−1 + x1 + x2)(−5 + 2(−1 + x1)x1 + 2(−1 + x2)x2) = 0,

2x2(−915 + x2(82 + x2(90 + 17x2))) + 30(61 − 10x3)x3 = 0,

4(x3 − x4)

(

−1

2
+ x3 + x4

)

= 0,

2x1(−4887 + x1(575 + 2(9 − 7x1)x1)) + 18x4(543 + 10x4) = 0.

(4.3)

In this case we have that the solutions qi = (xi
1, xi

2, xi
3, xi

4) must satisfy xi
2 < 0 < xi

1 and

xi
3 < 0 < xi

4 then we have four real solutions q1 = (3,−2,−3/2, 2); q2 = (4,−3,−2, 5/2);

q3 = (5,−4, 27/10, 16/5) and q4 = (10.440607..,−9.440607..,−19.555603.., 20.055606..) of sys-

tem (4.3), which provide four crossing limit cycles of type 4 of the piecewise linear differential

center (4.1). See these four crossing limit cycles in Figure 4.1.

Here we observe that there is a duality between the crossing limit cycles of type 4 that in-

tersect the discontinuity curve Σ̃0 and the crossing limit cycles that intersect the discontinuity

curve Σ1 for the family F2 studied in statement (a) of Theorem 1.1, where we also got four

crossing limit cycles, see Figures 2.2 and 4.1.

Proof of statement (b) of Theorem 1.3. In this case we consider the following piecewise linear dif-

ferential center
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Figure 4.2: Three crossing limit cycles of type 5 of the discontinuous piecewise

linear differential system (4.4). These limit cycles are traveled in counterclock-

wise.

ẋ = 0.100318.. − 2

5
x + 0.161744..y ẏ = 0.260062.. − x +

2

5
y, in R1,

ẋ = 1 − x − 13

4
y, ẏ = −31

30
+ x + y, in R3,

ẋ = −0.399222.. + 0.378090..x − 0.144616..y, ẏ = −1.020635.. + x − 0.378090..y, in R4.
(4.4)

The linear differential centers in (4.4) have the first integrals

H1(x, y) = x2 + x

(

−0.520124.. − 4

5
y

)

+ (0.200636.. + 0.161744..y)y,

H3(x, y) = −124

15
x − 8y + 9y2 + 4(x + y)2,

H4(x, y) = 4(x − 0.378090..y)2 + 8(−1.020635..x + 0.399222..y) + 0.006657..y2,

respectively. In order to have a crossing limit cycle of type 5, which intersects the discontinuity

curve Σ̃0 in four different points p1 = (x1, x2
1), p2 = (x2, x2

2), p3 = (x3, 0) and p4 = (x4, 0), with

0 < x2 < x1 and 0 < x3 < x4, these points must satisfy system

H1(x1, x2
1) = H1(x2, x2

2),

H4(x2, x2
2) = H4(x3, 0),

H3(x3, 0) = H3(x4, 0),

H4(x4, 0) = H4(x1, x2
1).

(4.5)

Considering the piecewise linear differential center (4.4) system (4.5) becomes

−2.080498..x1 + 4.802546..x2
1 − 3.199999..x3

1 + 0.646977..x4
1

+x2(2.080498.. − 4.802546..x2 + 3.199999..x2
2 − 0.646977..x3

2) = 0,

x2(−2591625737556 + x2(2283329836763 + 50x2(−19201143493 + 3672147700x2)))

−324x3(−7998844869 + 3918560960x3) = 0,

4(x3 − x4)

(

−31

15
+ x3 + x4

)

= 0,

x1(2591625737556 + x1(−2283329836763 + 50(19201143493 − 3672147700x1)x1))

+324x4(−7998844869 + 3918560960x4) = 0.
(4.6)
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In this case system (4.6) has three real solutions qi=(xi
1, xi

2, xi
3, xi

4), where q1=(2, 1/2, 2/5, 5/3);

q2 =(93/50, 63/100, 47/100, 479/300) and q3 =(17/10, 0.785691.., 0.534387.., 1.532279..) which

provide three crossing limit cycles of type 5 of the piecewise linear differential center (4.4).

See these three crossing limit cycles in Figure 4.2.

Proof of statement (c) of Theorem 1.3. We consider the following piecewise linear differential

center

ẋ = 45.736851.. − x

2
− 7.515818..y, ẏ = −1146.321640.. + x +

y

2
, in R1,

ẋ = −0.320594.. − 0.199436..x − 0.051960..y, ẏ = 0.460058.. + x + 0.199436..y, in R2,

ẋ = 2 +
x

20
− 13

200
y, ẏ = −23

4
+ x − y

20
, in R3,

ẋ = −0.457007.. + 0.276952..x − 0.076768..y, ẏ = −4.377702.. + x − 0.276952..y, in R4.

(4.7)

The linear differential centers in (4.7) have the first integrals

H1(x, y) = x2 + x(−2292.643280.. + y) + y(−91.473702.. + 7.515818..y),

H2(x, y) = x2 + x(0.920117.. + 0.398872..y) + (0.641188.. + 0.051960..y)yx2

+ x(0.920117.. + 0.398872..y) + (0.641188.. + 0.051960..y)y,

H3(x, y) = 2x(−23 + 2x)− 2

5
(40 + x)y +

13

50
y2,

H4(x, y) = x2 + x(−8.755405.. − 0.553904..y) + (0.914014.. + 0.076768..y)y,

respectively In order to have crossing limit cycles of type 4 and 5, simultaneously, such that

the crossing limit cycles of type 4 intersect the discontinuity curve Σ̃0 in four different points

p1 = (x1, x2
1), p2 = (x2, x2

2), p3 = (x3, 0) and p4 = (x4, 0), with x2 < 0 < x1 and x3 < 0 < x4,

and the crossing limit cycles of type 5 intersect the discontinuity curve Σ̃0 in four different

points p5 = (x5, x2
5), p6 = (x6, x2

6), p7 = (x7, 0) and p8 = (x8, 0), with 0 < x6 < x5 and

0 < x7 < x8, these points must satisfy systems (4.2) and (4.5), respectively. Considering the

piecewise linear differential center (4.7) systems (4.2) and (4.5) become

x1(−9170.573120.. + x1(−361.894811.. + x1(3.999999.. + 30.063275..x1)))

+x2(9170.573120.. + x2(361.894811.. + (−3.999999.. − 30.063275..x2)x2)) = 0,

x2(3.680468.. + x2(6.564754.. + (1.595489.. + 0.207843..x2)x2))− 3.680468..x3 − 4x2
3 = 0,

(x3 − x4) (−23 + 2x3 + 2x4) = 0,

x1(35.021620.. + x1(−7.656056.. + (2.215618.. − 0.307072..x1)x1))− 35.021620..x4 + 4x2
4 = 0,

x5(−9170.573120.. + x5(−361.894811.. + x5(3.999999.. + 30.063275..x5)))

+x6(9170.573120.. + x6(361.894811.. + (−3.999999.. − 30.063275..x6)x6)) = 0,

x6(−35.021620.. + x6(7.656056.. + (−2.215618.. + 0.307072..x6)x6)) + 35.021620..x7 − 4x2
7 = 0,

(x7 − x8) (−23 + 2x7 + 2x8) = 0,

x5(35.021620.. + x5(−7.656056.. + (2.215618.. − 0.307072..x5)x5))− 35.021620..x8 + 4x2
8 = 0.

(4.8)

In this case system (4.8) has four real solutions qi = (xi
1, xi

2, xi
3, xi

4, x5, x6, x7, x8), that sat-

isfy the necessary conditions to have crossing limit cycles of types 4 and 5. Namely, q1 =

(8,−16/5,−3, 29/2, 6, 3, 16/5, 83/10); q2 = (823/100,−413/100,−96/25, 767/50, 6, 3, 16/5,
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83/10); q3 = (841/100,−4.737905..,−4.516438.., 16.016438.., 6.040228.., 2.934482.., 3.093430..,

8.406569..) and q4 = (429/50, −5.236369.., −5.170738.., 16.670738.., 6.040228.., 2.934482..,

3.093430.., 8.406569..). These solutions provide four crossing limit cycles of type 4 and two

crossing limit cycles of type 5 of the piecewise linear differential center (4.7). See these cross-

ing limit cycles in Figure 4.3. Here we observed that we obtain a total of six crossing limit

cycles between limit cycles of type 4 and of type 5, moreover these six crossing limit cycles

have the configuration (4, 2), this is, 4-crossing limit cycle of type 4 and 2-crossing limit cycles

of type 5. We know that this lower bound for the maximum number of crossing limit cycles

of types 4 and 5 simultaneously, could be also obtained with the configuration (3, 3). But

if we previously fixing two limit cycles of each type after several numeric computations we

could not build a third limit cycle of type 5, then we only get those lower bound with the

configuration (4, 2).

Figure 4.3: Four crossing limit cycles of type 4 and two crossing limit cycles

of type 5 (black and orange) of the discontinuous piecewise linear differential

system (4.7). These limit cycles are traveled in counterclockwise.

5 Proof of Theorem 1.4

Proof of statement (a) of Theorem 1.4. We consider the following piecewise linear differential

center

ẋ = −0.678037.. + 0.111302..x − 0.025436..y, ẏ = −3.106005.. + x − 0.111302..y, in R1,

ẋ = −0.133244.. + 0.232759..x − 0.058573..y, ẏ = −0.290609.. + x − 0.232759..y, in R2,

ẋ = 3.074032.. + 0.434135..x − 2.713559..y, ẏ = −3.035258.. + x − 0.434135..y, in R4,

ẋ = 1.427543.. + 0.059092..x − 0.651180..y, ẏ = −1.450367.. + x − 0.059092..y, in R5.
(5.1)

The linear differential centers in (5.1) have the first integrals

H1(x, y) = x2 + x(−6.212010.. − 0.222604..y) + (1.356074.. + 0.025436..y)y,

H2(x, y) = x2 + x(−0.581218.. − 0.465518..y) + (0.266488.. + 0.058573..y)y,

H4(x, y) = x2 + x(−6.070516.. − 0.868271..y) + y(−6.148064.. + 2.713559..y),

H5(x, y) = x2 + x(−2.900734.. − 0.118185..y) + (−2.855087.. + 0.651180..y)y,

respectively. In order to have a crossing limit cycle of type 6+, which intersects the discontinu-
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Figure 5.1: Five crossing limit cycles of type 6+ of the discontinuous piecewise

linear differential system (5.1). These limit cycles are traveled in counterclock-

wise.

ity curve Σ̃k in four different points p1 = (x1, x2
1), p2 = (x2, k), p3 = (x3, x2

3) and p4 = (x4, k),

these points must satisfy system

H1(x4, k) = H1(x1, x2
1),

H2(x1, x2
1) = H2(x2, k),

H5(x2, k) = H5(x3, x2
3),

H4(x3, x2
3) = H4(x4, k).

(5.2)

Considering piecewise linear differential center (5.1) and k = 4, system (5.2) becomes

−8.012495.. + x1(−2.324875.. + x1(5.065954.. + (−1.862075.. + 0.234292..x1)x1))

+(9.773178.. − 3.999999..x2)x2 = 0,

−1.001459.. + (−3.373476.. + x2)x2 + x3(2.900734.. + x3(1.855087.. + (0.118185..

−0.651180..x3)x3)) = 0,

−75.298768.. + x3(−24.282066.. + x3(−20.592258.. + x3(−3.473086..

+10.854237..x3))) + (38.174413.. − 4x4)x4 = 0,

23.325149.. + x1(24.848040.. + x1(−9.424297.. + (0.890418.. − 0.101747..x1)x1))

+x4(−28.409714.. + 4x4) = 0,

(5.3)

In this case system (5.3) has five real solutions qi = (xi
1, xi

2, xi
3, xi

4) that satisfy the condi-

tions −2 < xi
2 < 2 < xi

1 and −2 < xi
3 < 2 < xi

4. We have q1 = (4,−2/5,−1/5, 7); q2 =

(193/50,−31/100,−1/20, 683/100); q3 = (7/2,−3/25, 9/50, 641/100); q4 = (159/50, 1/100,

3/10, 303/50) and q5 = (4.149236..,−0.507154..,−0.449658.., 7.185104..), which provide five

crossing limit cycles of type 6+ of the piecewise linear differential center (5.1). See these

crossing limit cycles in Figure 5.1.

Here we observe that there is a duality between the crossing limit cycles of type 6+ that

intersect the discontinuity curve Σ̃4 and the crossing limit cycles of type 1 for the family F3

that intersect the discontinuity curve Σ0 studied in statement (b) of Theorem 1.1, where we

also got five crossing limit cycles, see Figures 2.3 and 5.1.



28 J. Jimenez, J. Llibre and J. C. Medrado

Proof of statement (b) of Theorem 1.4. We consider the following piecewise linear differential

center

ẋ = 3 +
x

4
− 17

16
y, ẏ =

21

20
+ x − y

4
, in R2,

ẋ = 3.601959.. − x − 5.323060..y, ẏ = −36

25
+ x + y, in R4,

ẋ =
11827667

24434928
− 91445

6205696
x − 8433175

97739712
y, ẏ =

26369

1108160
+ x +

91445

6205696
y, in R5.

(5.4)

The linear differential centers in (5.4) have the first integrals

H2(x, y) =
2

5
x(21 + 10x)− 2(12 + x)y +

17

4
y2,

H4(x, y) = x2 + x

(

−72

25
+ 2y

)

+ y(−7.203918.. + 5.323060..y),

H5(x, y) = 977397120x2 + 63x(738332 + 457225y) + 10y(−94621336 + 8433175y),

respectively. In order to have a crossing limit cycle of type 7, which intersects the discontinuity

curve Σ̃k in four different points p1 = (x1, k), p2 = (x2, k), p3 = (x3, x2
3) and p4 = (x4, x2

4), these

points must satisfy system

H2(x1, k) = H2(x2, k),

H5(x2, k) = H5(x3, x2
3),

H4(x3, x2
3) = H4(x4, x2

4),

H5(x4, x2
4) = H5(x1, k).

(5.5)

In this case considering k = 4, system (5.5) becomes

Figure 5.2: Three crossing limit cycles of type 7 of the discontinuous piecewise

linear differential system (5.4). These limit cycles are traveled in counterclock-

wise.
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4(x1 − x2)

(

1

10
+ x1 + x2

)

= 0,

−2435545440 + 4032x2(40113 + 242410x2)− x3(46514916 + 5x3(6236752

+5x3(1152207 + 3373270x3))) = 0,

x3

(

−288

25
+ x3(−24.815674.. + x3(8 + 21.292240..x3))

)

+x4

(

−288

25
+ x4(24.815674.. + (−8 − 21.292240..x4)x4)

)

= 0,

2435545440 − 4032x1(40113 + 242410x1) + x4(46514916 + 5x4(6236752

+5x4(1152207 + 3373270x4))) = 0.

(5.6)

System (5.6) has three real solutions qi = (xi
1, xi

2, xi
3, xi

4) that satisfy the conditions −2 <

xi
2 < xi

1 < 2 and −2 < xi
3 < xi

4 < 2. They are q1 = (17/10,−9/5,−8/5, 3/2); q2 =

(8/5,−17/10,−6/5, 6/5) and q3 = (89/50,−47/25,−1.788665.., 1.667136..), which provide

three crossing limit cycles of type 7 of the piecewise linear differential center (5.4). See these

three crossing limit cycles in Figure 5.2.

Proof of statement (c) of Theorem 1.4. We consider the following piecewise linear differential

center

ẋ = −0.228658.. + 0.153388..x − 0.043263..y, ẏ = −1.233713.. + x − 0.153388..y, in R1,

ẋ =
52

5
+ x − 5y, ẏ = 2 + x − y, in R2,

ẋ = −0.208786.. − 0.135584..x − 0.040106..y, ẏ = 1.549735 + x + 0.135584..y, in R3,

ẋ = 2 − x

2
− 5

4
y, ẏ = −41

20
+ x +

y

2
, in R4.

(5.7)

The linear differential centers in (5.7) have the first integrals

H1(x, y) = 15298879995x2 + 5y(1399284923 + 132375500y)− 6x(6291478429 + 782226050y),

H2(x, y) = 4x(4 + x)− 8

5
(52 + 5x)y + 20y2,

H3(x, y) = 57070082030x2 + 15y(1588730299 + 152593500y) + x(176887019081

+ 15475638300y),

H4(x, y) = 4x2 + x

(

−82

5
+ 4y

)

+ y(−16 + 5y),

respectively. In order to have a crossing limit cycle of type 8, which intersects the discontinuity

curve Σ̃k in four different points p1 = (x1, k), p2 = (x2, x2
2), p3 = (x3, x2

3) and p4 = (x4, k), these

points must satisfy system

H2(x1, x2
1) = H2(x2, x2

2),

H3(x2, x2
2) = H3(x3, k),

H4(x3, k) = H4(x4, k),

H1(x4, k) = H1(x1, x2
1).

(5.8)

In this case considering k = 4, system (5.8) becomes
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(x1 − x2)(−1 + 5x1 + 5x2)(−20 + x1(−1 + 5x1) + x2(−1 + 5x2)) = 0,

2

28535041015
(−131946257940 + x2(176887019081 + 5x2(16180207303

+60x2(51585461 + 7629675x2))))−
854345518x3

51046585
− 4x2

3 = 0,

4(x3 − x4)

(

− 1

10
+ x3 + x4

)

= 0,

8

15298879995
(19287869230 + x1(18874435287 − 5x1(2229530461

+10x1(−46933563 + 6618775x1))))−
1196239064x4

80946455
+ 4x2

4 = 0.

(5.9)

System (5.9) has four real solutions qi = (xi
1, xi

2, xi
3, xi

4) that satisfy the conditions xi
3 <

−2 < 2 < xi
4 and xi

2 < −2 < 2 < xi
1. They are q1 = (5/2,−23/10,−13/5, 27/10); q2 =

(29/10, −27/10, −3, 31/10); q3 = (17/5, −16/5, −7/2, 18/5) and q4 = (98/25, −93/25,

−203/50, 104/25) which provide four crossing limit cycles of type 8 of the piecewise linear

differential center (5.7). See these four crossing limit cycles in Figure 5.3.

Here we observe that there is a duality between the crossing limit cycles for family F4 stud-

ied in Theorem 1.2, the crossing limit cycles of type 4 for the family F5 studied in statement

(a) of Theorem 1.3 and crossing limit cycles of type 8 for the family F6 studied in statement

(c) of Theorem 1.4. In these three cases we got four crossing limit cycles. See Figures 3.1, 4.1

and 5.3.

Figure 5.3: Four crossing limit cycles of type 8 of the discontinuous piecewise

linear differential system (5.7). These limit cycles are traveled in counterclock-

wise.

Proof of statement (d) of Theorem 1.4. We consider the following piecewise linear differential

center

ẋ =
243469

1620885
+

1826

77185
x − 9088

324177
y, ẏ = −614289

154370
+ x − 1826

77185
y, in R1,

ẋ = −0.229652.. +
7

5
x − 0.020472..y, ẏ = −1.718896.. + x − 7

5
y, in R2,

ẋ = 1 +
9

10
x − 53

50
y, ẏ = −1

2
+ x − 9

10
y, in R4.

(5.10)



Crossing limit cycles for piecewise linear differential centers 31

Figure 5.4: Three crossing limit cycles of type 9+ of the discontinuous piecewise

linear differential system (5.10). These limit cycles are traveled in counterclock-

wise.

The linear differential centers in (5.10) have the first integrals

H1(x, y) = 21x(−614289 + 77185x)− 2(243469 + 38346x)y + 45440y2,

H2(x, y) = x2 + x

(

−3.437793.. − 14

5
y

)

+ (0.459305.. + 0.020472..y)y,

H4(x, y) = 4

(

x − 9

10
y

)2

+ y2 − 4(x + 2y),

respectively. In order to have a crossing limit cycle of type 9+, which intersects the discontinu-

ity curve Σ̃k in four different points p1 = (x1, x2
1), p2 = (x2, x2

2), p3 = (x3, k) and p4 = (x4, k),

these points must satisfy system

H2(x1, x2
1) = H2(x2, x2

2),

H1(x2, x2
2) = H1(x3, k),

H4(x3, k) = H4(x4, k),

H1(x4, k) = H1(x1, x2
1).

(5.11)

Considering k = 4, system (5.11) becomes

x1

(

−13.751172.. + x1

(

5.837222.. +

(

−23

25
+ 0.081889..x1

)

x1

))

+ x2 (13.751172..

+x2

(

−5.837222.. +

(

−23

25
− 0.081889..x2

)

x2

))

= 0,

x2(12900069 − x2(1133947 − 76692x2 + 45440x2
2))− 3(406904 + 7(628897 − 77185x3)x3) = 0,

4(x3 − x4)

(

−41

5
+ x3 + x4

)

= 0,

x1(12900069 − x1(1133947 − 76692x1 + 45440x2
1))− 3(406904 + 7(628897 − 77185x4)x4) = 0,

(5.12)

And we have that system (5.12) has three real solutions qi = (xi
1, xi

2, xi
3, xi

4) that satisfy the con-

ditions 2 < xi
2 < xi

1 and 2 < xi
3 < xi

4. They are q1=(4, 3, 16/5, 5); q2=(15/4, 33/10, 7/2, 47/10)

and q3 = (41/10, 2.879320.., 3.058075.., 5.141924..) which provide three crossing limit cycles of

type 9+ of the piecewise linear differential center (5.10). See these three crossing limit cycles

in Figure 5.4.
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Here we observe that there is a duality between the crossing limit cycles of type 3+ for

family F3 studied in statement (d) of Theorem 1.1, the crossing limit cycles of type 5 for the

family F5 studied in statement (b) of Theorem 1.3 and crossing limit cycles of type 9+ for the

family F6 studied in statement (d) of Theorem 1.4. In these three cases we got three crossing

limit cycles. See Figures 2.5, 4.2 and 5.4.

6 Proof of Theorem 1.5

Proof of statement (a) of Theorem 1.5. We consider the following discontinuous piecewise linear

differential system

ẋ = 0.751960.. − 0.008805..x − 0.043938..y, ẏ = −1.117055.. + x + 0.008805..y, in R1,

ẋ = −4701043

7161144
− 122761

156650025
x +

91946

31330005
y, ẏ = − 42715283

313300050
− x +

122761

156650025
y, in R2,

ẋ = 0.041424.. − 0.228644..x − 0.115044..y, ẏ = 2.030027.. + x + 0.228644..y, in R3,

ẋ = 6.094659.. − 0.970562..x − 1.475325..y, ẏ = −4.066695 + x + 0.970562..y, in R4,

ẋ = −0.014046.. − 0.011408..x + 0.000796..y, ẏ = −0.900270.. − x + 0.011408..y, in R5.
(6.1)

Figure 6.1: Four crossing limit cycles of type 6+ in the right hand side and

four crossing limit cycles of type 6− in the left hand side, of the discontinu-

ous piecewise linear differential system (6.1). These limit cycles are traveled in

counterclockwise.

The linear differential centers in (6.1) have the first integrals

H1(x, y) = x2 + x(−2.234111.. + 0.017610..y) + (−1.503920.. + 0.043938..y)y,

H2(x, y) = 626600100x2 + x(170861132 − 982088y) + 5y(−164536505 + 367784y),

H3(x, y) = x2 + x(4.060055.. + 0.457288..y) + (−0.082848.. + 0.115044..y)y,

H4(x, y) = x(−5448004792428006890183 + 669831938277330213420x)− 160y

(51029434834312436627 − 8126422570764957500x) + 988220002292252000000y2,

H5(x, y) = 17172023317192110696x2 + x(30918934250652233287 − 391817091205831000y)

+ 6y(−80400672913407451 + 2279188834700000y),



Crossing limit cycles for piecewise linear differential centers 33

respectively. In order to have simultaneously crossing limit cycles of types 6+ and 6−, such

that the crossing limit cycles of type 6+ intersect the discontinuity curve Σ̃k in four different

points p1 = (x1, x2
1), p2 = (x2, k), p3 = (x3, x2

3) and p4 = (x4, k), with −2 < x2 < 2 < x1 and

−2 < x3 < 2 < x4, and the crossing limit cycles of type 6− intersect the discontinuity curve

Σ̃k in four different points p5 = (x5, x2
5), p6 = (x6, k), p7 = (x7, x2

7) and p8 = (x8, k), with

x5 < −2 < x7 < 2 and x6 < −2 < x8 < 2, these points must satisfy systems (5.2) and

H3(x5, x2
5) = H3(x6, k),

H4(x6, k) = H4(x7, x2
7),

H5(x7, x2
7) = H5(x8, k),

H2(x8, k) = H2(x5, x2
5),

(6.2)

respectively. Considering the piecewise linear differential center (6.1) and k = 4, systems (5.2)

and (6.2) become

170861132x1 − 196082425x2
1 − 982088x3

1 + 1838920x4
1 − 60(−54355123 + 2782213x2

+10443335x2
2) = 0,

−1710814021790578824 + 29351665885828909287x2 + 17172023317192110696x2
2

−30918934250652233287x3 − 16689619279711665990x2
3 + 391817091205831000x3

3

−13675133008200000x4
3 = 0,

−5448004792428006890183x3 − 7494877635212659646900x2
3+

1300227611322393200000x3
3 + 988220002292252000000x4

3 + 21(802253250346853687680

−11766397482782575723x4 + 31896758965587153020x2
4) = 0,

−21.250638.. + 8.936444..x1 + 2.015680..x2
1 − 0.070440..x3

1

−0.175755..x4
1 − 8.654682..x4 + 4x2

4 = 0,

−6.037269.. + 16.240221..x5 + 3.668606..x2
5 + 1.829154..x3

5

+0.460177..x4
5 − 23.556840..x6 − 4x2

6 = 0,

16847318257283927441280 + 247094347138434090183x6 − 669831938277330213420x2
6

−5448004792428006890183x7 − 7494877635212659646900x2
7

+1300227611322393200000x3
7 + 988220002292252000000x4

7 = 0,

30918934250652233287x7 + 16689619279711665990x2
7 − 391817091205831000x3

7

+13675133008200000x4
7 − 21(−81467334370979944 + 1397698375515662347x8

+817715396056767176x2
8) = 0,

−170861132x5 + 196082425x2
5 + 982088x3

5 − 1838920x4
5 + 60(−54355123 + 2782213x8

+10443335x2
8) = 0.

(6.3)

We have four real solutions qi = (xi
1, xi

2, xi
3, xi

4, xi
5, xi

6, xi
7, xi

8) with i = 1, 2, 3, 4, for system (6.3)

that satisfy the above conditions namely q1 = (5, 1/2, 9/50, 23/5,−18/5,−9/2,−49/50,−1);

q2=(9/2, 19/20, 91/100, 7/5, 3,−17/5,−303/200, −3/2); q3=(41/10, 1.208958.., 1.176604..,

2.657283..,−2.816357..,−31/10,−1.626433..,−1.613770..), and q4=(51/10, 0.368157.., 0.315951..,

4.829311..,−3.059352..,−7/2,−1.475955..,−1.460360..), these four solutions generated four

crossing limit cycles of type 6+ and four crossing limit cycles of type 6−. See these cross-

ing limit cycles of the piecewise linear differential center (6.1) in Figure 6.1.

Here we obtain a total of eight crossing limit cycles of types 6+ and 6− simultaneously,

with a configuration (4, 4). And observed that it is possible obtain this lower bound with the

configurations (5, 3) or (3, 5), but here we only present the example with the configuration

(4, 4).
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Proof of statement (b) of Theorem 1.5. We consider the following discontinuous piecewise linear

differential system

ẋ = 1.717686.. + 0.650612..x − 0.423688..y, ẏ = 0.850546.. + x − 0.650612..y, in R1,

ẋ = 0.516832.. + 0.082481..x − 0.038759..y, ẏ = 0.179926.. + x − 0.082481..y, in R2,

ẋ = 1.470269.. + 0.406982..x − 3.640154..y, ẏ = −0.122065.. + x − 0.406982..y, in R4,

ẋ = 0.685228.. + 0.043300..x − 0.293631..y, ẏ = 0.017396.. + x − 0.043300..y, in R5.
(6.4)

The linear differential centers in (6.4) have the first integrals

H1(x, y) = x2 + x(1.701093.. − 1.301224..y) + (−3.435373.. + 0.423688..y)y,

H2(x, y) = x2 + x(0.359853.. − 0.164963..y) + (−1.033664.. + 0.038759..y)y,

H4(x, y) = x2 + x(−0.244130.. − 0.813965..y) + y(−2.940538.. + 3.640154..y),

H5(x, y) = x2 + x(0.034792.. − 0.086601..y) + (−1.370456.. + 0.293631..y)y,

respectively. In order to have simultaneously crossing limit cycles of types 6+ and 7, such

that the crossing limit cycles of type 6+ intersect the discontinuity curve Σ̃k in four different

points p1 = (x1, x2
1), p2 = (x2, k), p3 = (x3, x2

3) and p4 = (x4, k), with −2 < x2 < 2 < x1 and

−2 < x3 < 2 < x4, and the crossing limit cycles of type 7 intersect the discontinuity curve

Σ̃k in four different points p5 = (x5, k), p6 = (x6, k), p7 = (x7, x2
7) and p8 = (x8, x2

8), with

−2 < x6 < x5 < 2 and −2 < x7 < x8 < 2 these points must satisfy systems (5.2) and (5.5),

respectively. Considering the piecewise linear differential center (6.4) and k = 4, systems (5.2)

and (5.5) become

14.058034.. + 1.439414..x1 − 0.134656..x2
1 − 0.659853..x3

1 + 0.155036..x4
1

+
6

5
x2 − 4x2

2 = 0,

−0.783728.. − 0.311613..x2 + x2
2 − 0.034792..x3 + 0.370456..x2

3 + 0.086601..x3
3

−0.293631..x4
3 = 0,

−185.921253.. − 0.976522..x3 − 7.762153..x2
3 − 3.255860..x3

3 + 14.560616..x4
3

+13.999964..x4 − 4x2
4 = 0,

−27.849933.. − 6.804375..x1 + 9.741494..x2
1 + 5.204898..x3

1 − 1.694752..x4
1

−14.015217..x4 + 4x2
4 = 0,

4(x5 − x6)

(

− 3

10
+ x5 + x6

)

= 0,

−0.783728.. − 0.311613..x6 + x2
6 − 0.034792..x7 + 0.370456..x2

7

+0.086601..x3
7 − 0.293631..x4

7 = 0,

−0.976522..x7 − 7.762153..x2
7 − 3.255860..x3

7 + 14.560616..x4
7

+x8(0.976522.. + 7.762153..x8 + 3.255860..x2
8 − 14.560616..x3

8) = 0,

−0.783728.. − 0.311613..x5 + x2
5 − 0.034792..x8 + 0.370456..x2

8

+0.086601..x3
8 − 0.293631..x4

8 = 0.

(6.5)

We have four real solutions qi = (xi
1, xi

2, xi
3, xi

4, x5, x6, x7, x8) with i = 1, 2, 3, 4, for system

(6.5) that satisfy the above conditions. We have q1 = (4,−9/5,−19/10, 7/2, 1,−7/10,−9/10,

11/10); q2 = (106/25,−39/20,−1.975633.., 51/10, 1,−7/10,−9/10, 11/10); q3 = (413/100,

−469/250,−1.938820.., 4.420122.., 101/100, −71/100,−941/1000, 1.132764..) and q4 =
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Figure 6.2: Four crossing limit cycles of type 6+ and two crossing limit cycles

of type 7 (black and orange) of the discontinuous piecewise linear differential

system (6.4). These limit cycles are traveled in counterclockwise.

(401/100,−1.805407..,−1.902798.., 3.579564.., 101/100,−71/100,−941/1000, 1.132764..). These

four real solutions generated four crossing limit cycles of type 6+ and two crossing limit cy-

cles of type 7. See these crossing limit cycles of the piecewise linear differential center (6.4) in

Figure 6.2.

Here we observed that we obtain a total of six crossing limit cycles between limit cycles

of type 6+ and of type 7, moreover these six crossing limit cycles have the configuration

(4, 2). We observe that this lower bound for the maximum number of crossing limit cycles of

types 6+ and 7 simultaneously, could be also obtained with the configuration (3, 3). But if we

previously fixing two limit cycles of type 6+ after several numeric computations we could not

build a third limit cycle of type 7, then we only get those lower bound with the configuration

(4, 2).

We can also observe that there is a duality between the case studied in statement (e) of

Theorem 1.1, where we have studied simultaneously crossing limit cycles of types 1 and 2+

and this case, where study the crossing limit cycles of types 6+ and 7, simultaneously. In these

two cases we got the configuration (4, 2). See Figures 2.6 and 6.2.

Figure 6.3: Three crossing limit cycles of type 6+ (purple, green and black) and

four crossing limit cycles of type 8 (orange, blue, magenta and light blue) of the

discontinuous piecewise linear differential system (6.6). These limit cycles are

traveled in counterclockwise.

Proof of statement (c) of Theorem 1.5. We consider the following discontinuous piecewise linear
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differential system

ẋ = 0.212208.. − 0.051128..x − 0.004724..y, ẏ = −3.713538.. + x + 0.051128..y, in R1,

ẋ = 0.592855.. − 0.098217..x − 0.044462..y, ẏ = −1.739750.. + x + 0.098217..y, in R2,

ẋ = −0.324307.. − 0.152006..x − 0.023227..y, ẏ = 2.010345.. + x + 0.152006y, in R3,

ẋ = 5.173755.. − 0.530837..x − 1.789344..y, ẏ = −2.823348.. + x + 0.530837..y, in R4,

ẋ = 0.905547.. +
9

50
x + 0.037591..y, ẏ = −2.213772.. − x − 9

50
y, in R5.

(6.6)

The linear differential centers in (6.6) have the first integrals

H1(x, y) = 92350000x2 + 2y(−19597489 + 218145y) + x(−685890524 + 9443461y),

H2(x, y) = x(−2350427721 + 675507095x) + 2(−400478067 + 66346510x)y + 30034700y2,

H3(x, y) = x2 + x(4.020691.. + 0.304014..y) + (0.648615.. + 0.023227..y)y,

H4(x, y) = 2.248715.. × 1016x2 − 5x(2.539563.. × 1016 − 4.774807.. × 1015y)

+ y(−2.326860.. × 1017 + 4.023727.. × 1016y),

H5(x, y) = − 5.437818.. × 1022x2 + 6x(−4.012698.. × 1022 − 3.262691.. × 1021y)

+ 5(−1.969681.. × 1022 − 4.088345.. × 1020y)y,

respectively. In order to have crossing limit cycles of types 6+ and 8, simultaneously, such

that the crossing limit cycles of type 6+ intersect the discontinuity curve Σ̃k in four different

points p1 = (x1, x2
1), p2 = (x2, k), p3 = (x3, x2

3) and p4 = (x4, k), with −2 < x2 < 2 < x4 and

−2 < x3 < 2 < x1, and the crossing limit cycles of type 8 intersect the discontinuity curve

Σ̃k in four different points p5 = (x5, x2
5), p6 = (x6, x2

6), p7 = (x7, k) and p8 = (x8, k), with

x7 < −2 < 2 < x8 and x6 < −2 < 2 < x5, these points must satisfy systems (5.2) and (5.8),

respectively. Considering the piecewise linear differential center (6.6) and k = 4, systems (5.2)

and (5.8) become

16.125777.. − 13.918004..x1 − 0.742843..x2
1 + 0.785738..x3

1 + 0.177849..x4
1

+10.775049..x2 − 4x2
2 = 0,

31.383400.. + 23.470181..x2 + 4x2
2 − 17.710181..x3 − 11.244381..x2

3 −
36

25
x3

3

−0.150367..x4
3 = 0,

51.042105.. − 22.586789..x3 − 37.390043..x2
3 + 4.246697..x3

3 + 7.157379..x4
3

+5.599999..x4 − 4x2
4 = 0,

−6.488327.. + 29.708306..x1 − 2.302329..x2
1 − 0.409029..x3

1 − 0.018897..x4
1

−28.072189..x4 + 4x2
4 = 0,

−149799272 − 648116680x8 + 92350000x2
8 + 685890524x5 − 53155022x2

5

−9443461x3
5 − 436290x4

5 = 0,

−2350427721x5 − 125449039x2
5 + 132693020x3

5 + 30034700x4
5

+x6(2350427721 + 125449039x6 − 132693020x2
6 − 30034700x3

6) = 0,

−11.864396.. + 16.082766..x6 + 6.594461..x2
6 + 1.216054..x3

6 + 0.092909..x4
6

−20.946982..x7 − 4x2
7 = 0,

(x8 − x7)(−7 + 5x8 + 5x7) = 0.

(6.7)

We have four real solutions qi = (xi
1, xi

2, xi
3, xi

4, xi
5, xi

6, xi
7, xi

8) with i = 1, 2, 3, 4, for system

(6.7) that satisfy the above conditions. We have q1=(7/2,−6/5, 2/5, 19/5, 4,−3,−16/5, 23/5);
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q2 = (18/5,−7/5, 3/10, 199/50, 41/10, −37/10,−3351/1000, 4751/1000); q3 = (71/20,

−1.299400.., 7/20, 3.893976.., 4.132430..,−3.871790..,−17/5, 24/5) and q4=(71/20,−1.299400..,

7/20, 3.893976.., 178349/20000, 108083/10000,−119/10, 133/10). These four real solutions

generated three crossing limit cycles of type 6+ and four crossing limit cycle of type 8. See

these crossing limit cycles of the piecewise linear differential center (6.6) in Figure 6.3.

Here we observed that we obtain a total of seven crossing limit cycles between limit cycles

of type 6+ and of type 8, moreover in this example, the seven crossing limit cycles have the

configuration (3, 4). We observe that this lower bound for the maximum number of crossing

limit cycles of types 6+ and 8 simultaneously, could be also obtained with the configurations

(4, 3). And we obtain a example with this configuration in the proof of statement (b) of

Theorem 1.6 with piecewise linear differential center (7.3), see Figure 7.2.

Figure 6.4: Four crossing limit cycles of type 6+ and two crossing limit cycles

of type 9+ (black and orange) of the discontinuous piecewise linear differential

system (6.8). These limit cycles are traveled in counterclockwise.

Proof of statement (d) of Theorem 1.5. We consider the following discontinuous piecewise linear

differential system

ẋ = −0.478750.. + 0.183274..x − 0.037189..y, ẏ = −4.300673.. + x − 0.183274..y, in R1,

ẋ = 0.122511.. + 0.079715..x − 0.013506..y, ẏ = −1.007263.. + x − 0.079715..y, in R2,

ẋ = −1.261810.. + 0.053348..x − 0.212413..y, ẏ = −4.836606.. + x − 0.053348..y, in R4,

ẋ = 0.060157.. + 0.062627..x − 0.047729..y, ẏ = −0.739728.. + x − 0.062627..y, in R5.
(6.8)

The linear differential centers in (6.8) have the first integrals

H1(x, y) = x2 + x(−8.601346.. − 0.366548..y) + (0.957501401147845‘ + 0.037189..y)y,

H2(x, y) = x2 + x(−2.014527.. − 0.159430..y) + (−0.245022.. + 0.013506..y)y,

H4(x, y) = x2 + x(−9.673213.. − 0.106696..y) + (2.523620.. + 0.212413..y)y,

H5(x, y) = x2 + x(−1.479456.. − 0.125255..y) + (−0.120314.. + 0.047729..y)y,

respectively. In order to have simultaneously crossing limit cycles of types 6+ and 9+, such

that the crossing limit cycles of type 6+ intersect the discontinuity curve Σ̃k in four different

points p1 = (x1, x2
1), p2 = (x2, k), p3 = (x3, x2

3) and p4 = (x4, k), with −2 < x2 < 2 < x4 and

−2 < x3 < 2 < x1, and the crossing limit cycles of type 9+ intersect the discontinuity curve

Σ̃k in four different points p5 = (x5, x2
5), p6 = (x6, x2

6), p7 = (x7, k) and p8 = (x8, k), with

2 < x6 < x5 and 2 < x7 < x8, these points must satisfy systems (5.2) and (5.11), respectively.
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Considering the piecewise linear differential center (6.8) and k = 4, systems (5.2) and (5.11)

become

3.055923.. + x1(−8.058108.. + x1(3.019909.. + (−0.637722.. + 0.054027..x1)x1))

+(10.608997.. − 4x2)x2 = 0,

0.282412.. + (−1.980480.. + x2)x2 + x3(1.479456.. + x3(−0.879685.. + (0.125255..

−0.047729..x3)x3)) = 0,

−53.972411.. + x3(−38.692854.. + x3(14.094480.. + (−0.426786.. + 0.849655..x3)x3))

+(40.4000000.. − 3.999999..x4)x4 = 0,

17.700131.. + x1(34.405384.. + x1(−7.8300056.. + (1.466193.. − 0.148756..x1)x1))

+x4(−40.270159.. + 4x4) = 0,

−8.058108..x5 + 3.019909..x2
5 − 0.637722..x3

5 + 0.054027..x4
5 + x6(8.058108..

−3.019909..x6 + 0.637722..x2
6 − 0.054027..x3

6) = 0,

−17.700131.. − 34.405384..x6 + 7.830005..x2
6 − 1.466193..x3

6 + 0.148756..x4
6

+40.270159..x7 − 4x2
7 = 0,

4(x7 − x8)(−10.100000.. + x7 + x8) = 0,

17.700131.. + 34.405384..x5 − 7.830005..x2
5 + 1.466193..x3

5 − 0.148756..x4
5

−40.270159..x8 + 4x2
8 = 0.

(6.9)

We have four real solutions qi = (xi
1, xi

2, xi
3, xi

4, x5, x6, x7, x8) with i = 1, 2, 3, 4, for system

(6.9) that satisfy the above conditions. We have q1 = (6, 1/2, 4/10, 8, 5, 14/5, 3, 71/10); q2 =

(317/50, 19/100, 1/25, 423/50, 5, 14/5, 3, 71/10); q3 = (291/50, 0.664193.., 3/5, 7.554404..,

487/100, 3.986608.., 3.058022.., 7.041977..) and q4 = (61/10, 0.409425.., 0.293958.., 8.128324..,

487/100, 3.986608.., 3.058022.., 7.041977..) These four real solutions generated four crossing

limit cycles of type 6+ and two crossing limit cycles of type 9+. See these crossing limit cycles

of the piecewise linear differential center (6.8) in Figure 6.4.

Here we obtain a total of six crossing limit cycles between limit cycles of type 6+ and of

type 9+, moreover these six crossing limit cycles have the configuration (4, 2). We observed

that this lower bound for the maximum number of crossing limit cycles of types 6+ and 9+

simultaneously, could be also obtained with the configuration (3, 3). But if we build two cross-

ing limit cycles of type 6+ and two of type 9+, simultaneously, we have that all the parameters

that appear in system (5.11) are determined, where this system is such that generated limit

cycles of type 9+, then it is no possible to build a third crossing limit cycle of type 9+ and

therefore we can not obtain the configuration (3, 3).

Proof of statement (e) of Theorem 1.5. We consider the following discontinuous piecewise linear

differential system

ẋ = −0.147861.. + 0.083875..x − 0.018000..y, ẏ = −3.106437.. + x − 0.083875..y, in R1,

ẋ =
7769951

9492348
+

176465

2373087
x − 204250

2373087
y, ẏ =

6997939

47461740
+ x − 176465

2373087
y, in R2,

ẋ = −0.284659.. − 0.174915..x − 0.046689..y, ẏ = 1.660380.. + x + 0.174915..y, in R3,

ẋ = − 3871251

31913000
+

3

10
x − 4335

31913
y, ẏ = −19

20
+ x − 3

10
y, in R4,

ẋ = 0.206531.. + 0.150466..x − 0.054352..y, ẏ = 0.451143.. + x − 0.150466..y, in R5.
(6.10)
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The linear differential centers in (6.10) have the first integrals

H1(x, y) = (58546435625x2 + 4y(4328392296 + 263466775y)− 15x(24249448597

+ 654747306y),

H2(x, y) = x(6997939 + 23730870x)− 5(7769951 + 705860x)y + 2042500y972,

H3(x, y) = 1.054579.. × 10−58(3.792980.. × 1058x2 + y(2.15949717.. × 1058

+ 1.770939.. × 1057y) + x(1.259558..1059 + 1.326899.. × 1058y)),

H4(x, y) = 4x2 +
2

5
x(19 − 6y) +

3y(129041797 + 722500y)

3989125
,

H5(x, y) = 16x(472818597 + 524021995x)− 75(46176919 + 33641680x)y + 45571250097y2,

respectively. In order to have crossing limit cycles of types 7 and 8, simultaneously, such

that the crossing limit cycles of type 7 intersect the discontinuity curve Σ̃k in four different

points p1 = (x1, k), p2 = (x2, k), p3 = (x3, x2
3) and p4 = (x4, x2

4), with −2 < x2 < x1 < 2 and

−2 < x3 < x4 < 2, and the crossing limit cycles of type 8 intersect the discontinuity curve

Σ̃k in four different points p5 = (x5, x2
5), p6 = (x6, x2

6), p7 = (x7, k) and p8 = (x8, k), with

x6 < −2 < 2 < x5 and x7 < −2 < 2 < x8, these points must satisfy systems (5.5) and (5.8),

respectively. Considering the piecewise linear differential center (6.10) and k = 4, systems

(5.5) and (5.8) become

4(x1 − x2)

(

− 3

10
+ x1 + x2

)

= 0,

−6561675700 − 2527406448x2 + 8384351920x2
2 − 7565097552x3

−4921082995x2
3 + 2523126000x3

3 − 455712500x4
3 = 0,

30317350x3 + 19827751x2
3 − 9573900x3

3 + 2167500x4
3

−x4(30317350 + 19827751x4 − 9573900x2
4 + 2167500x3

4) = 0,

6561675700 + 2527406448x1 − 8384351920x2
1 + 7565097552x4

+4921082995x2
4 − 2523126000x3

4 + 455712500x4
4 = 0,

86116150336 − 403026567315x8 + 58546435625x2
8 + 363741728955x5

−75860004809x2
5 + 9821209590x3

5 − 1053867100x4
5 = 0,

6997939x5 − 15118885x2
5 − 3529300x3

5 + 2042500x4
5 + x6(−6997939

+15118885x6 + 3529300x2
6 − 2042500x3

6) = 0,

−1.030050.. + 8(1.660379.. + 0.284660..x6)x6 + 4(1 + 0.174915..x6)2x2
6

+0.064378..x4
6 + 8(−1.138640.. − 1.660379..x7)− 4(0.699661.. + x7)2 = 0,

−4(x8 − x7)

(

−1

2
+ x8 + x7

)

= 0.

(6.11)

We have four real solutions qi = (xi
1, xi

2, xi
3, xi

4, xi
5, xi

6, xi
7, xi

8) with i = 1, 2, 3, 4, for system (6.11)

that satisfy the above conditions. We have q1 = (1, −7/10,−9/10,−1/10, 37/10, −5/2,

−3, 7/2); q2 = (1,−7/10,−9/10,−1/10, 4, −29/10, −33/10, 19/5); q3 = (11/10, −8/10,

−26/25, 1/10, 21/5, −157/100, −7/2, 4) and q4 = (1.194602.., −0.894602..,−1.147986..,

0.273096.., 87/20,−3.312719..,−3653/1000, 4153/1000). These four real solutions generated

three crossing limit cycles of type 7 and four crossing limit cycle of type 8. See these crossing

limit cycles of the piecewise linear differential center (6.10) in Figure 6.5.

Here we obtain a total of seven crossing limit cycles between limit cycles of type 7 and of

type 8, moreover these seven crossing limit cycles have the configuration (3, 4). By our numer-
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Figure 6.5: Three crossing limit cycles of type 7 (purple, green and black) and

four crossing limit cycles of type 8 of the discontinuous piecewise linear differ-

ential system (6.10). These limit cycles are traveled in counterclockwise.

ical computations we observed that this lower bound for the maximum number of crossing

limit cycles of types 7 and 8 simultaneously, could not be obtained with the configuration

(4, 3), because in the statement (b) of Theorem 1.4 we only got three crossing limit cycle of

type 7.

Proof of statement (f) of Theorem 1.5. We consider the following discontinuous piecewise linear

differential system

ẋ = −0.224106.. + 0.256615..x − 0.075244..y, ẏ = −3.489877.. + x − 0.256615..y, in R1,

ẋ = 33.031408.. − x

2
− 5.321982..y, ẏ = −816.418879.. + x +

y

2
, in R2,

ẋ = −0.151463.. − 0.173662..x − 0.047290..y, ẏ = 0.297861.. + x + 0.173662..y, in R3,

ẋ = 2 +
x

20
− 13

200
y, ẏ = −111

20
+ x − y

20
, in R4.

(6.12)

The linear differential centers in (6.12) have the first integrals

H1(x, y) = x2 + x(−6.979755.. − 0.513231..y) + (0.448213.. + 0.075244..y)y,

H2(x, y) = x2 + x(−1632.837759.. + y) + y(−66.062816.. + 5.321982..y),

H3(x, y) = x2 + x(0.595723.. + 0.347324..y) + (0.302926.. + 0.047290..y)y,

H4(x, y) = 4x2 − 16y +
13

50
y2 − 2

5
x(111 + y),

respectively. In order to have simultaneously crossing limit cycles of types 8 and 9+, such

that the crossing limit cycles of type 8 intersect the discontinuity curve Σ̃k in four different

points p1 = (x1, x2
1), p2 = (x2, x2

2), p3 = (x3, k) and p4 = (x4, k), with x2 < −2 < 2 < x1 and

x3 < −2 < 2 < x4, and the crossing limit cycles of type 9+ intersect the discontinuity curve

Σ̃k in four different points p5 = (x5, x2
5), p6 = (x6, x2

6), p7 = (x7, k) and p8 = (x8, k), with

2 < x6 < x5 and 2 < x7 < x8, these points must satisfy systems (5.8) and (5.11), respectively.

Considering the piecewise linear differential center (6.12) and k = 4, systems (5.8) and (5.11)
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become

−6531.351039..x1 − 260.251264..x2
1 + 4x3

1 + 21.287931..x4
1 + x2(6531.351039..

+260.251264..x2 − 4x2
2 − 21.287931..x3

2) = 0,

−7.873414.. + 2.382895..x2 + 5.211706..x2
2 + 1.389297..x3

2 + 0.189161..x4
2

−7.940084..x3 − 4x2
3 = 0,

4(x3 − x4)

(

−23

2
+ x3 + x4

)

= 0,

11.987037.. + 27.919023..x1 − 5.792854..x2
1 + 2.052924..x3

1 − 0.300976..x4
1

−36.130722..x4 + 4x2
4 = 0

x5(−6531.351039.. + x5(−260.251264.. + x5(4 + 21.287931..x5))) + x6(6531.351039..

+x6(260.251264.. + (−4 − 21.287931..x6)x6)) = 0,

−11.987037.. + x6(−27.919023.. + x6(5.792854.. + (−2.052924.. + 0.300976..x6)x6))

+(36.130722.. − 4x7)x7 = 0,

4(x7 − x8)

(

−23

2
+ x7 + x8

)

= 0,

11.987037.. + x5(27.919023.. + x5(−5.792854.. + (2.052924.. − 0.300976..x5)x5))

+x8(−36.130722.. + 4x8) = 0,

(6.13)

Figure 6.6: Four crossing limit cycles of type 8 and two crossing limit cycles

of type 9+ (black and orange) of the discontinuous piecewise linear differential

system (6.12). These limit cycles are traveled in counterclockwise.

We have four real solutions qi = (xi
1, xi

2, xi
3, xi

4, x5, x6, x7, x8) with i = 1, 2, 3, 4, for system

(6.13) that satisfy the above conditions. We have q1 = (8, −16/5, −3, 29/2, 6, 3, 16/5, 83/10);

q2 = (823/100, −4.136449.., −3.840062.., 15.340062.., 6, 3, 16/5, 83/10); q3 = ( 841/100,

− 4.748093..,−4.516514.., 16.016514..587/100, 3.203924.., 177/50, 199/25) and q4 = (429/50,

− 5.249123..,−5.170790.., 16.670790.., 587/100, 3.203924.., 177/50, 199/25). These four real so-

lutions generated four crossing limit cycles of type 8 and two crossing limit cycles of type 9+.

See these crossing limit cycles of the piecewise linear differential center (6.12) in Figure 6.6.

Here we obtain a total of six crossing limit cycles between limit cycles of type 8 and of type

9+, moreover these six crossing limit cycles have the configuration (4, 2). We observed that

this lower bound for the maximum number of crossing limit cycles of types 8 and 9+ simul-

taneously, could be also obtained with the configurations (3, 3). But if we build two crossing

limit cycles of type 8 and two of type 9+, simultaneously, we have that all the parameters that
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appear in system (5.11) are determined, where this system is such that generated limit cycles

of type 9+, then it is no possible to build a third crossing limit cycle of type 9+ and therefore

we can not obtain the configurations (3, 3).

We can also observe that there is a duality between the case studied in statement (c) of

Theorem 1.3, where we have studied simultaneously crossing limit cycles of types 4 and 5 and

this case, where study the crossing limit cycles of types 8 and 9+, simultaneously. In these

two cases we got the configuration (4, 2). See Figures 4.3 and 6.6.

7 Proof of Theorem 1.6

Proof of statement (a) of Theorem 1.6. We consider the following discontinuous piecewise linear

differential system

ẋ = −0.107128.. + 0.268308..x − 0.095415..y, ẏ = −2.390037.. + x − 0.268308..y, in R1,

ẋ = 0.492346.. + 0.144928..x − 0.061289..y, ẏ = 0.429713.. + x − 0.144928..y, in R2,

ẋ = 1.394400.. + 0.300769..x − 0.091362..y, ẏ = 2.707746.. + x − 0.300769..y, in R3,

ẋ = 0.976917.. + 0.400189..x − 4.241691..y, ẏ = −0.349243.. + x − 0.400189..y, in R4,

ẋ = 0.685228.. + 0.043300..x − 0.293631..y, ẏ = 0.017396.. + x − 0.043300..y, in R5.
(7.1)

The linear differential centers in (7.1) have the first integrals

Figure 7.1: Two crossing limit cycle of type 6+ (magenta and blue), two cross-

ing limit cycles of type 7 (black and orange) and four crossing limit cycles of

type 8 (green, purple, brown and cyan) of the discontinuous piecewise linear

differential system (7.1). These limit cycles are traveled in counterclockwise.

H1(x, y) = x2 + x(−4.780074.. − 0.536616..y) + (0.214257.. + 0.095415..y)y,

H2(x, y) = x2 + x(0.859427.. − 0.289856..y) + (−0.984693.. + 0.061289..y)y,

H3(x, y) = x2 + x(5.415492.. − 0.601538..y) + (−2.788801.. + 0.091362..y)y,

H4(x, y) = x2 + x(−0.698486.. − 0.800378..y) + y(−1.953834.. + 4.241691..y),

H5(x, y) = x2 + x(0.034792.. − 0.086601..y) + (−1.370456.. + 0.293631..y)y,

respectively. In order to have crossing limit cycles of types 6+, 7 and 8 simultaneously, such

that the crossing limit cycles of type 6+ intersect the discontinuity curve Σ̃k in four different
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points p1 = (x1, x2
1), p2 = (x2, k), p3 = (x3, x2

3) and p4 = (x4, k), with −2 < x2 < 2 < x1

and −2 < x3 < 2 < x4, the crossing limit cycles of type 7 intersect the discontinuity curve

Σ̃k in four different points p5 = (x5, k), p6 = (x6, k), p7 = (x7, x2
7) and p8 = (x8, x2

8), with

x5 < −2 < x7 < 2 and x6 < −2 < x8 < 2 and the crossing limit cycles of type 8 intersect

the discontinuity curve Σ̃k in four different points p9 = (x9, x2
9), p10 = (x10, x2

10), p11 = (x11, k)

and p12 = (x12, k), with x10 < −2 < 2 < x9 and x11 < −2 < 2 < x12 these points must satisfy

systems (5.2), (5.5) and (5.8) respectively. Considering the piecewise linear differential center

(7.1) and k = 4, systems (5.2), (5.5) and (5.8) become

11.832571.. + 3.437710..x1 + 0.061227..x2
1 − 1.159427..x3

1 + 0.245157..x4
1

+1.200000..x2 − 3.999999..x2
2 = 0,

−0.783728.. − 0.311613..x2 + x2
2 − 0.034792..x3 + 0.370456..x2

3 + 0.086601..x3
3

−0.293631..x4
3 = 0,

−240.206876.. − 2.793946..x3 − 3.815339..x2
3 − 3.201513..x3

3 + 16.966764..x4
3

+15.600000..x4 − 4x2
4 = 0,

9.534728.. + 19.120296..x1 − 4.857030..x2
1 + 2.146465..x3

1 − 0.381662..x4
1

−27.706159..x4 + 4x2
4 = 0,

4(x5 − x6)(−0.300000.. + x5 + x6) = 0,

−0.783728.. − 0.311613..x6 + x2
6 − 0.034792..x7 + 0.370456..x2

7 + 0.086601..x3
7

−0.293631..x4
7 = 0,

−2.793946..x7 − 3.815339..x2
7 − 3.201513..x3

7 + 16.966764..x4
7 + x8(2.793946..

+3.815339..x8 + 3.201513..x2
8 − 16.966764..x3

8) = 0,

−0.783728.. − 0.311613..x5 + x52 − 0.034792..x8 + 0.370456..x2
8

+0.086601..x3
8 − 0.293631..x4

8 = 0,

−3.437710..x10 − 0.061227..x2
10 + 1.159427..x3

10 − 0.245157..x4
10

+x9(3.437710.. + 0.061227..x9 − 1.159427..x2
9 + 0.245157..x3

9) = 0,

38.773655.. + 21.661968..x10 − 7.155207..x2
10 − 2.406152..x3

10 + 0.365448..x4
10

−12.037359..x11 − 4x2
11 = 0,

4(x11 − x12)(−3.900000.. + x11 + x12) = 0,

2.383682.. − 6.926539..x12 + x2
12 + 4.780074..x9 − 1.214257..x2

9

+0.536616..x3
9 − 0.095415..x4

9 = 0.

(7.2)

We have four real solutions qi = (xi
1, xi

2, xi
3, xi

4, xi
5, xi

6, xi
7, xi

8, xi
9, xi

10, xi
11, xi

12) with i = 1, 2, 3, 4,

for system (7.2) that satisfy the above conditions, namely q1 = (4,−9/5,−19/10, 7/2, 1,

−7/10, −9/10, 11/10, 5, −27/10,−5/2, 32/5); q2 = (2007/500, −181/100, −1.905170..,

3.692535.., 101/100,−71/100,−941/1000, 1.132764.., 511/100,−2.805313..,−139/50, 167/25);

q3 = (2007/500,−181/100,−1.905170.., 3.692535.., 101/100,−71/100,−941/1000, 1.132764..,

26/5, −2.891869..,−3.012824.., 6.912824..) and q4 = (2007/500, −181/100, −1.905170..,

3.692535.., 101/100, −71/100,−941/1000, 1.132764.., 549/10, −52.535582..,−883.528310..,

887.428310..). These four real solutions generated two crossing limit cycles of type 6+, two

crossing limit cycles of type 7 and four crossing limit cycles of type 8. See these crossing limit

cycles of the piecewise linear differential center (7.1) in Figure 7.1.

Here we obtain a total of eight crossing limit cycles between limit cycles of types 6+, 7 and

8, moreover these eight crossing limit cycles have the configuration (2, 2, 4), this is 2-crossing

limit cycles of type 6+, 2-crossing limit cycles of type 7 and 4-crossing limit of type 8. We

observed that this lower bound for the maximum number of crossing limit cycles of types
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6+, 7 and 8 simultaneously, could be also obtained with other configurations. But if we build

two crossing limit cycles of each type we obtain that all parameters of systems (5.2) and (5.5)

are determined, and these systems are such that generated the limit cycles of types 6+ and

7, then we can not build more than two crossing limit cycles of types 6+ or 7 when we have

previously fixed two crossing limit cycles of each type. Then we only obtain the configuration

obtained here, namely (2, 2, 4).

Figure 7.2: Four crossing limit cycles of type 6+ (green, magenta, cyan and

purple), three crossing limit cycles of type 8 (yellow, brown and blue) and two

crossing limit cycles of type 9+ (black and orange) of the discontinuous piece-

wise linear differential system (7.3). These limit cycles are traveled in counter-

clockwise.

Proof of statement (b) of Theorem 1.6. We consider the following discontinuous piecewise linear

differential system

ẋ = −0.312756.. + 0.105676..x − 0.022483..y, ẏ = −4.523476.. + x − 0.105676..y, in R1,

ẋ = −0.158662.. + 0.176712..x − 0.031977..y, ẏ = −1.018470.. + x − 0.176712..y, in R2,

ẋ = 0.893671.. +
x

10
− 0.055338..y, ẏ = 1.647781.. + x − y

10
, in R3,

ẋ = −1.521810.. + 0.129660..x − 0.102089..y, ẏ = −4.531357.. + x − 0.129660..y, in R4,

ẋ = 2.392166.. + 0.863445..x − 1.210282..y, ẏ = 11.457801.. + x − 0.863445..y, in R5.

(7.3)

The linear differential centers in (7.3) have the first integrals

H1(x, y) = x2 + x(−9.046952.. − 0.211353..y) + (0.625512.. + 0.022483..y)y,

H2(x, y) = x2 + x(−2.03694.. − 0.353424..y) + (0.317325.. + 0.031977..y)y,

H3(x, y) = x2 + x
(

3.295563.. − y

5

)

+ (−1.787342.. + 0.055338..y)y,

H4(x, y) = x2 + x(−9.062715.. − 0.259321..y) + (3.043621.. + 0.102089..y)y,

H5(x, y) = x2 + x(22.915603.. − 1.726890..y) + y(−4.784333.. + 1.210282..y),

respectively. In order to have crossing limit cycles of types 6+, 8 and 9+ simultaneously, such

that the crossing limit cycles of type 6+ intersect the discontinuity curve Σ̃k in four different

points p1 = (x1, x2
1), p2 = (x2, k), p3 = (x3, x2

3) and p4 = (x4, k), with −2 < x2 < 2 < x1

and −2 < x3 < 2 < x4, the crossing limit cycles of type 8 intersect the discontinuity curve
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Σ̃k in four different points p5 = (x5, x2
5), p6 = (x6, x2

6), p7 = (x7, k) and p8 = (x8, k), with

x6 < −2 < 2 < x5 and x7 < −2 < 2 < x8 and the crossing limit cycles of type 9+ intersect

the discontinuity curve Σ̃k in four different points p9 = (x9, x2
9), p10 = (x10, x2

10), p11 = (x11, k)

and p12 = (x12, k), with 2 < x10 < x9 and 2 < x11 < x12 these points must satisfy systems

(5.2), (5.8) and (5.11) respectively. Considering the piecewise linear differential center (7.3)

and k = 4, systems (5.2), (5.8) and (5.11) become

−7.123782.. + x1(−8.147767.. + x1(5.269300.. + (−1.413698.. + 0.127911..x1)x1))

+(13.802561.. − 4x2)x2 = 0,

0.227189.. + x2(16.008041.. + x2) + x3(−22.915603.. + x3(3.784333.. + (1.726890..

−1.210282..x3)x3)) = 0,

−55.231640.. + x3(−36.250863.. + x3(16.174485.. + (−1.037284.. + 0.408356..x3)x3))

+

(

202

5
− 4x4

)

x4 = 0,

11.447141.. + x1(36.187810.. + x1(−6.502051.. + (0.845414.. − 0.089933..x1)x1))

+x4(−39.569467.. + 4x4) = 0,

x5(−8.147767.. + x5(5.269300.. + (−1.413698.. + 0.127911..x5)x5)) + x6(8.147767..

+x6(−5.269300.. + (1.413698.. − 0.127911..x6)x6)) = 0,

25.055786.. + x6(13.182255.. + x6(−3.149369.. +

(

−4

5
+ 0.221355..x6

)

x6))

+(−9.982255.. − 4x7)x7 = 0,

4(x7 − x8)

(

−101

10
+ x7 + x8

)

= 0,

11.447141.. + x5(36.187810.. + x5(−6.502051.. + (0.845414.. − 0.089933..x5)x5))

+x8(−39.569467.. + 4x8) = 0,

x10(8.147767.. + x10(−5.269300.. + (1.413698.. − 0.127911..x10)x10))

+x9(−8.147767.. + x9(5.269300.. + (−1.413698.. + 0.127911..x9)x9)) = 0,

−11.447141.. + x10(−36.187810.. + x10(6.502051.. + (−0.845414..

+0.089933..x10)x10)) + (39.569467.. − 4x11)x11 = 0,

4(x11 − x12)

(

−101

10
+ x11 + x12

)

= 0,

2.861785.. + (−9.892366.. + x12)x12 + x9(9.046952.. + x9(−1.625512.. + (0.211353..

−0.022483..x9)x9)) = 0.
(7.4)

We have four real solutions qi = (xi
1, xi

2, xi
3, xi

4, xi
5, xi

6, xi
7, xi

8, xi
9, xi

10, xi
11, xi

12) with i = 1, 2, 3, 4,

for system (7.4) that satisfy the above conditions, namely q1 = (6, 1/2, 2/5, 8, 87/10,−31/10,

−23/10, 62/5, 5, 19/5, 3, 71/10); q2=(317/50, 0.042569.., 1/25, 8.417274.., 861/100,−3.007479..,

−2.117234.., 12.217234.., 5, 19/5, 3, 71/10); q3 = (1479/250,−0.610424..,−1/2, 7.904488..,

883/100,−3.233408..,−2.568105.., 12.668105.., 51/10, 3.582979.., 2.936322.., 7.163677..), and

q4 =(15/2,−1.752776..,−1.049779.., 10.157706.., 883/100,−3.233408..,−2.568105.., 12.668105..,

51/10, 3.582979.., 2.936322.., 7.163677..) these four solutions generated four crossing limit cy-

cles of type 6+, three crossing limit cycles of type 8 and two crossing limit cycle of type 9+.

See these crossing limit cycles of the piecewise linear differential center (7.3) in Figure 7.2.

Here we obtain a total of nine crossing limit cycles between limit cycles of types 6+, 8 and

9+, moreover these nine crossing limit cycles have the configuration (4, 3, 2). We observed

that this lower bound for the maximum number of crossing limit cycles of types 6+, 8 and
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9+ simultaneously, could be also obtained with other configurations. When we build two

crossing limit cycles of each type we obtain that system (5.11) has all parameters determined,

and therefore we can not build a third crossing limit cycle of type 9+. Systems (5.2), (5.8)

which generated the limit cycles of types 8 and 9+ would still have free parameters and it is

possible verify that we can have the configurations (4, 3, 2) or (3, 4, 2). Here we have illustrated

the configuration (4, 3, 2).

Acknowledgements

We thank to the reviewer his/her comments that help us to improve the presentation of this

paper.

The first author is partially supported by CAPES grant number 88881.188516/2018-01.

The second author is supported by the Ministerio de Ciencia, Innovación y Universidades,

Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER) and MDM-2014-0445, the

Agència de Gestió d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 Eu-

ropean Research Council grant MSCA-RISE-2017-777911. The third author is partially sup-

ported by the Brazilian agencies FAPESP (Grants 2013/24541-0 and 2017/03352-6), CAPES

(Grant PROCAD 88881.068462/2014-01), CNPq (Grant 308006/2015-1), FAPEG (29199/2018),

and FAPEG/CNPq (Grant PRONEX 2017-10267000508).

References

[1] A. Andronov, C. E. Chaikin, Theory of oscillations. English language edition edited under the

direction of Solomon Lefschetz, Princeton University Press, Princeton, N.J., 1949. MR0029027

[2] J. C. Artés, J. Llibre, J. C. Medrado, M. A. Teixeira, Piecewise linear differential systems

with two real saddles, Math. Comput. Simulation 95(2014), 13–22. https://doi.org/10.

1016/j.matcom.2013.02.007; MR3127752

[3] S. Coombes, Neuronal networks with gap functions: a study of piecewise linear pla-

nar neuron models, SIAM Appl. Math. 7(2008), 1101–1129. https://doi.org/10.1137/

070707579

[4] M. Di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, Piecewise-smooth dynamical

systems: theory and applications, Applied Mathematical Sciences, Vol. 163, Springer-Verlag,

London, 2008. https://doi.org/10.1007/978-1-84628-708-4; Zbl 1146.37003

[5] E. Freire, E. Ponce, F. Torres, Canonical discontinuous planar piecewise linear systems,

SIAM J. Appl. Dyn. Syst. 11(2012), No. 1, 181–211. https://doi.org/10.1137/11083928X;

MR2902614

[6] E. Freire, E. Ponce, F. Torres, A general mechanism to generate three limit cycles

in planar Fillipov systems with two zones, Nonlinear Dynam. 78(2014), No. 1, 251–263.

https://doi.org/10.1007/s11071-014-1437-7; MR3266440

[7] S. M. Huan, X. S. Yang, On the number of limit cycles in general planar piecewise linear

systems, Disc. Cont. Dyn. Syst. 32(2012), No. 6, 2147–2164. https://doi.org/10.3934/

dcds.2012.32.2147; MR2885803



Crossing limit cycles for piecewise linear differential centers 47

[8] S. M. Huan, X. S. Yang, On the number of limit cycles in general planar piecewise

linear systems of node–node types, J. Math. Anal. Appl. 411(2014), No. 1, 340–353. https:

//doi.org/10.1016/j.jmaa.2013.08.064; MR3118489; Zbl 1323.34022

[9] S. M. Huan, X. S. Yang, Existence of limit cycles in general planar piecewise linear

systems of saddle–saddle dynamics, Nonlinear Anal. 92(2013), 82–95. https://doi.org/

10.1016/j.na.2013.06.017; MR3091110; Zbl 1309.34042

[10] C. Henry, Differential equations with discontinuous right-hand side for planning pro-

cedure, J. Econ. Theory 4(3)(1972), 545–551. https://doi.org/10.1016/0022-0531(72)

90138-X; MR0449534

[11] D. Hilbert, Mathematical problems, Reprinted from Bull. Amer. Math. Soc. 8(1902), 437–

479, in Bull. Amer. Math. Soc. 37(2000), 407–436. https://doi.org/10.1090/S0002-9904-

1902-00923-3; MR 1557926

[12] Yu. Ilyashenko, Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. (N.S.)

39(2002), 301–354. https://doi.org/10.1090/S0273-0979-02-00946-1; MR1898209

[13] V. Krivan, On the Gause predator-prey model with a refuge: a fresh look at the

history, J. Theor. Biol 274(2011), 67–73. https://doi.org/10.1016/j.jtbi.2011.01.016;

MR2974938; Zbl 1331.92128

[14] J. Jimenez, J. Llibre, Crossing limit cycles for a class of piecewise linear differential

centers separated by a conic, preprint, (2019).

[15] J. Llibre, D. D. Novaes, M. A. Teixeira, Maximum number of limit cycles for certain

piecewise linear dynamical systems, Nonlinear Dyn. 82(3)(2015), 1159–1175. https://doi.

org/10.1007/s11071-015-2223-x; MR3412479; Zbl 1348.34065

[16] J. Llibre, E. Ponce, Three nested limit cycles in discontinuous piecewise linear dif-

ferential systems with two zones, Dyn. Contin. Discr. Impul. Syst., Ser. B Appl. Algo-

rithms 19(3)(2012), 325–335. https://doi.org/10.1007/s11071-014-1437-7; MR2963277;

Zbl 1268.34061

[17] J. Llibre, M. A. Teixeira, Piecewise linear differential systems with only centers can

create limit cycles?, Nonlinear Dyn. 91(2018), No. 1, 249–255. https://doi.org/10.1007/

s11071-017-3866-6; MR3740462; Zbl 1390.34081

[18] J. Llibre, M. A. Teixeira, Limit cycles in Filippov systems having a circle as switching

manifold, preprint, (2019).

[19] J. Llibre, M. A. Teixeira, J. Torregrosa, Lower bounds for the maximum number of

limit cycles of discontinuous piecewise linear differential systems with a straight line

of separation, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 23(2013), No. 4, 1350066, 10 pp.

https://doi.org/10.1142/S0218127413500661; MR3063363; Zbl 1270.34018

[20] J. Llibre, X. Zhang, Limit cycles for discontinuous planar piecewise linear differen-

tial systems separated by an algebraic curve, Internat. J. Bifur. Chaos Appl. Sci. En-

grg. 29(2019), No. 2, 1950017, 17 pp. https://doi.org/10.1142/S0218127419500172;

MR3921552; Zbl 07044785



48 J. Jimenez, J. Llibre and J. C. Medrado

[21] O. Makarenkov, J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: a

survey, Phys. D 241(2012), No. 22, 1826–1844. https://doi.org/10.1016/j.physd.2012.

08.002; MR2994324

[22] S. Shui, X. Zhang, J. Li, The qualitative analysis of a class of planar Filippov systems,

Nonlinear Anal. 73(2010), No. 5, 1277–1288. https://doi.org/10.1016/j.na.2010.04.

053; MR2661225; Zbl 1202.34026

[23] D. J. W. Simpson, Bifurcations in piecewise-smooth continuous systems, World Scientific

Series on Nonlinear Science. Series A: Monographs and Treatises, Vol. 70, World Scientific

Publishing Co. Pte. Ltd., Hackensack, NJ, 2010, pp. xv+238. https://doi.org/10.1142/

7612; MR3524764



Electronic Journal of Qualitative Theory of Differential Equations
2020, No. 20, 1–14; https://doi.org/10.14232/ejqtde.2020.1.20 www.math.u-szeged.hu/ejqtde/

A model for spatial spreading and dynamics of fox

rabies on a growing domain

Yue Meng1, Zhigui LinB 1 and Michael Pedersen2

1School of Mathematical Science, Yangzhou University, Yangzhou 225002, PR China
2Department of Applied Mathematics and Computer Science, Technical University of Denmark,

DK 2800, Lyngby, Denmark

Received 12 September 2019, appeared 5 April 2020

Communicated by Sergei Trofimchuk

Abstract. In order to explore the impact of the growth rate of the habitat on the trans-
mission of rabies, we consider a SEI model for fox rabies on a growing spatial domain.
The basic reproduction number is introduced using the next infection operator, spec-
tral analysis and the corresponding eigenvalue problem. The stability of equilibria is
also established using the upper and lower solutions method in terms of this number.
Our results show that a large growth rate of the domain has a negative impact on the
prevention and control of rabies. Numerical simulations are presented to verify our
theoretical results.

Keywords: SEI model, fox rabies, growing domain, basic reproduction number, stabil-
ity.
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1 Introduction

Rabies, an acute infectious disease caused by virus infecting the central nervous system, is

mainly transmitted by direct contact such as biting [3]. Most mammals are susceptible to

the disease, and although only very few human fatalities occur every year, rabies is still a

considerable threat to human beings on account of inefficient treatment and a nearly 100%

mortality rate once it reaches the clinical stage [11]. In order to develop public policies for

prevention and control of rabies, various mathematical models have been established to study

the transmission mechanism of rabies.

The red fox is the main carrier of rabies in Europe [2]. The following SEI model for fox

rabies was proposed and studied by Murray et al. in [17]:















Et = βIS − σE −
[

b + (a − b)N
K

]

E,

It = D∆I + σE − αI −
[

b + (a − b)N
K

]

I,

St = (a − b)S
(

1 − N
K

)

− βIS,

(1.1)
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where S(x, t), E(x, t) and I(x, t) are the densities of susceptible foxes, infected but non-

infectious foxes and rabid foxes at location x and time t, respectively. N = E + I + S is

the total fox population. On account of the random wandering of the rabid foxes, the dif-

fusion coefficient D is introduced in the equation for I. α represents the mortality rate of

the rabid foxes and β is the disease transmission coefficient. We assume that infected foxes

become infectious at the per capita rate σ. a is the birth rate, b is the intrinsic death rate and K

is the environmental carrying capacity. The term (a − b)N
K denotes the depletion of the food

supply by all foxes, where a > b ensures a sustainable population size. All coefficients in the

model (1.1) are nonnegative constants.

Letting W = K − S, model (1.1) becomes















Et = βI(K − W)− σE −
[

b + (a − b)N
K

]

E,

It = D∆I + σE − αI −
[

b + (a − b)N
K

]

I,

Wt = −(a − b)(K − W)
(

1 − N
K

)

+ βI(K − W),

(1.2)

where N = E + I + K − W is the total fox population.

Problems describing ecological models on fixed spatial domains have been extensively

investigated in the literature. However, the habitats of species in nature are not invariable.

Some habitats are affected by climate, temperature and rainfall, and the shifting boundaries

are known, for example the area of Dongting Lake in China changes by season, that is, Dongt-

ing lake covers an average area of 1814 square kilometres in summer while it covers only 568

square kilometres in winter in the period 1996 to 2016, see [12, 15, 16, 18, 22, 26] and references

therein. Some habitats are influenced by the species itself and the boundaries are moving

and unknown. Such boundaries have recently been described by free boundaries, which have

been studied in [9, 13, 23] and [24] for invasive species and in [14] for the transmission of dis-

ease. Domain growth, as one possibility for domain evolution, plays an important role in the

formation of living patterns.

Inspired by the aforementioned works, we consider a SEI model (1.2) on a growing domain

as in [7] and [8]. Let Ωt ⊂ R
2 be a bounded growing domain at time t, and its growing

boundary is denoted ∂Ωt. Also we assume that E(x(t), t), I(x(t), t) and W(x(t), t) are the

densities of the three kinds of fox population at location x(t) ∈ Ωt and time t. Additionally,

the growth of the domain Ωt generates a flow velocity a = ẋ(t), that is, the flow velocity

is identical to the domain velocity. According to the principle of mass conservation and the

Reynolds transport theorem [1], we can formulate the problem on a growing domain related

to (1.2) as



































Et + a · ∇E + E(∇ · a) = βI(K − W)− σE −
[

b + (a − b)N
K

]

E in Ωt,

It − D∆I + a · ∇I + I(∇ · a) = σE − αI −
[

b + (a − b)N
K

]

I in Ωt,

Wt + a · ∇W + W(∇ · a) = −(a − b)(K − W)
(

1 − N
K

)

+ βI(K − W) in Ωt,

E(x(t), t) = I(x(t), t) = W(x(t), t) = 0 on ∂Ωt,

E(x(0), 0) = E0(x), I(x(0), 0) = I0(x), W(x(0), 0) = W0(x) in Ω0.

(1.3)

Here a · ∇E, a · ∇I and a · ∇W are called advection terms related to the transport of material

across ∂Ωt with the flow a, and other extra terms introduced by the growth of the domain Ωt

are the dilution terms E(∇ · a), I(∇ · a) and W(∇ · a) due to the local volume expansion [5].

The null Dirichlet boundary conditions mean that there is no infection outside the growing

domain and on the boundary.
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In order to simplify problem (1.3), we assume that the growth of the domain Ωt is uniform

and isotropic. Biologically, the infected domain Ωt is supposed to grow at the same rate ρ(t)

in all directions as time t increases. Mathematically, we can formulate this as

x(t) = ρ(t)y for all x(t) ∈ Ωt and (y, t) ∈ Ω0 × [0,+∞),

where ρ(t) ∈ C1[0,+∞) is called the growth function and satisfies

ρ(0) = 1, ρ̇(t) > 0, lim
t→∞

ρ(t) = ρ∞ > 1 and lim
t→∞

ρ̇(t) = 0.

By Lagrangian transformations (see e.g. [4]), we define E(x(t), t) = u1(y, t), I(x(t), t) =

u2(y, t) and W(x(t), t) = u3(y, t). Then we have

u1t = Et + a · ∇E, u2t = It + a · ∇I, u3t = Wt + a · ∇W,

a = ẋ(t) = ρ̇(t)y =
ρ̇(t)

ρ(t)
x(t),

∇ · a =
nρ̇(t)

ρ(t)
, ∆I =

1

ρ2(t)
∆u2

and problem (1.3) can be transformed into the following reaction-diffusion model on the fixed

domain Ω0



































u1t = βu2(K − u3)− σu1 −
[

b + (a − b)N
K

]

u1 −
nρ̇(t)
ρ(t)

u1, y ∈ Ω0, t > 0,

u2t −
D

ρ2(t)
∆u2 = σu1 − αu2 −

[

b + (a − b)N
K

]

u2 −
nρ̇(t)
ρ(t)

u2, y ∈ Ω0, t > 0,

u3t = −(a − b)(K − u3)
(

1 − N
K

)

+ βu2(K − u3)−
nρ̇(t)
ρ(t)

u3, y ∈ Ω0, t > 0,

u1(y, t) = u2(y, t) = u3(y, t) = 0, y ∈ ∂Ω0, t > 0,

u1(y, 0) := η1(y), u2(y, 0) := η2(y), u3(y, 0) := η3(y), y ∈ Ω0,

(1.4)

where N = u1 + u2 + K − u3 is the total fox population.

The rest of the paper is organized as follows: Section 2 is devoted to the basic reproduction

number of problem (1.4) as well as its analytic properties. In Section 3, we investigate the

stability of the disease-free steady state. Numerical simulations and the discussion are finally

presented in Sections 4 and 5, respectively.

2 The basic reproduction number

In this section, we first present the principal eigenvalue R∗
0 of the linearized system of problem

(1.4) at (0, 0, 0), then define the basic reproduction number R0 and analyze its properties.

Epidemiologically, the basic reproduction number is a critical threshold that reflects whether

the disease will be spread or disappear.

Problem (1.4) admits a disease-free steady state (0, 0, 0). Linearizing system (1.4) at (0, 0, 0)

and recalling that ρ̇(t) → 0 as t → ∞, we are led to consider the system















ut = βKv − (σ + a)u, y ∈ Ω0, t > 0,

vt −
D∆v
ρ2

∞

= σu − (α + a)v, y ∈ Ω0, t > 0,

wt = (a − b)(u + v − w) + βKv, y ∈ Ω0, t > 0.

(2.1)
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Since the first two equations of (2.1) are decoupled from the last equation, we consider the

following eigenvalue problem















0 = βKψ
R∗

0
− (σ + a)φ, y ∈ Ω0,

−D∆ψ
ρ2

∞

= σφ
R∗

0
− (α + a)ψ, y ∈ Ω0,

φ(y) = ψ(y) = 0, y ∈ ∂Ω0,

(2.2)

which is equivalent to the eigenvalue problem

{

−D∆ψ
ρ2

∞

= σβKψ
(σ+a)(R∗

0)
2 − (α + a)ψ, y ∈ Ω0,

φ(y) = 0, y ∈ ∂Ω0.
(2.3)

Direct calculation shows that the principal eigenvalue of problem (1.4)

R∗
0 =

√

σβK

(σ + a)( D
ρ2

∞

λ1 + α + a)
, (2.4)

where (λ1, ζ(y)) is the principal eigen-pair of the eigenvalue problem

{

−∆ζ = λ1ζ, y ∈ Ω0,

ζ(y) = 0, y ∈ ∂Ω0.
(2.5)

Now we define the basic reproduction number R0. Similarly as in [25] and [27], we write

the first two equations of (2.1) as the following equivalent single equation:

{

Ut = d∆U + FU − VU, y ∈ Ω0, t > 0,

u = v = 0, y ∈ ∂Ω0, t > 0,

where U = (u, v)T, d = (0, D)T,

F =

(

0 βK

0 0

)

,

V =

(

σ + a 0

−σ α + a

)

.

Let X1 = C(Ω0, R
2) and X+

1 := C(Ω0, R
2
+), and let T(t) be the solution semigroup of the

following system on X1

{

Ut = d∆U − VU, y ∈ Ω0, t > 0,

u = v = 0, y ∈ ∂Ω0, t > 0,

and let φ(y) be the density of the initial infectious fox population. Define the next infection

operator L by

L(φ)(y) :=
∫

∞

0
F(y)[T(t)φ](y)dt = F(y)

∫

∞

0
[T(t)φ](y)dt.

Then R0 = r(L), where r(L) is the spectral radius of L. We have the following result, we refer

to Theorem 11.3.3 in [27] for more details:
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Lemma 2.1. R0 = R∗
0 and sign (1 − R0) = sign λ∗, where λ∗ is the principal eigenvalue of the

following eigenvalue problem














0 = βKψ − (σ + a)φ + λφ, y ∈ Ω0,

−D∆ψ
ρ2

∞

= σφ − (α + a)ψ + λψ, y ∈ Ω0,

φ(y) = ψ(y) = 0, y ∈ ∂Ω0.

(2.6)

According to the explicit expression of R0, we can list some properties of R0.

Theorem 2.2. The following assertions hold.

(i) R0(ρ∞, Ω) is a positive and strictly increasing function with respect to Ω, that is, R0(ρ∞, Ω1) ≤

R0(ρ∞, Ω2) provided that Ω1 ⊆ Ω2, with strict inequality if Ω2\Ω1 is a non-empty open set;

(ii) R0(ρ∞, Ω) is a monotonically increasing function with respect to ρ∞, in the sense that

R0(ρ∞, Ω) < R0(ρ∗∞, Ω) provided that ρ∞ < ρ∗∞.

Proof. The proof of the monotonicity in (i) is similar to Corollary 2.3 in [6]. The proof of (ii)

follows directly from (2.4).

Remark 2.3. The basic reproduction number is used as a threshold parameter for the trans-

mission mechanism of the disease and plays a central role in mathematical epidemiology.

Biologically, R0 is the average number of new infections produced by a typical infective indi-

vidual over its infection period. R0 can be obtained by the second generation matrix method

[10] for epidemic models described by spatially-independent systems, and it can be calculated

as the spectral radius of the next-generation operator for models in a constant environment

[25] or in a periodic environment [27].

3 The stability of the disease-free equilibrium

In this section we will investigate the stability of the disease-free equilibrium (0, 0, 0) in terms

of the threshold R0. First we introduce the definition of the pair of coupled upper and lower

solutions.

Definition 3.1. Let (ũ1(y, t), ũ2(y, t), ũ3(y, t)), (û1(y, t), û2(y, t), û3(y, t)) be a pair of (triplets

of) functions in C2,1(Ω0 × (0,+∞))
⋂

C(Ω̄0 × [0,+∞)), satisfying (0, 0, 0) ≤ (û1, û2, û3) ≤

(ũ1, ũ2, ũ3) ≤ (K, K, K). The pair (of triplets) is called coupled upper and lower solutions

of (1.4), if the following relations are satisfied:














































































û1t ≤ βû2(K − ũ3)− σû1 −
[

b + (a − b) û1+ũ2+K−û3
K

]

û1 −
nρ̇(t)
ρ(t)

û1,

û2t −
D

ρ2(t)
∆û2 ≤ σû1 − αû2 −

[

b + (a − b) ũ1+û2+K−û3
K

]

û2 −
nρ̇(t)
ρ(t)

û2,

û3t ≤ −(a − b)(K − û3)
(

1 − û1+û2+K−û3
K

)

+ βû2(K − û3)−
nρ̇(t)
ρ(t)

û3,

ũ1t ≥ βũ2(K − û3)− σũ1 −
[

b + (a − b) ũ1+û2+K−ũ3
K

]

ũ1 −
nρ̇(t)
ρ(t)

ũ1,

ũ2t −
D

ρ2(t)
∆ũ2 ≥ σũ1 − αũ2 −

[

b + (a − b) û1+ũ2+K−ũ3
K

]

ũ2 −
nρ̇(t)
ρ(t)

ũ2,

ũ3t ≥ −(a − b)(K − ũ3)
(

1 − ũ1+ũ2+K−ũ3
K

)

+ βũ2(K − ũ3)−
nρ̇(t)
ρ(t)

ũ3, y ∈ Ω0, t > 0,

û1(y, t) = 0 ≤ ũ1(y, t), û2(y, t) = 0 ≤ ũ2(y, t), û3(y, t) = 0 ≤ ũ3(y, t), y ∈ ∂Ω0, t > 0,

û1(y, 0) ≤ η1(y), û2(y, 0) ≤ η2(y), û3(y, 0) ≤ η3(y), y ∈ Ω0,

ũ1(y, 0) ≥ η1(y), ũ2(y, 0) ≥ η2(y), ũ3(y, 0) ≥ η3(y), y ∈ Ω0.

(3.1)
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R0 is a threshold value for the local stability of the disease-free equilibrium [25]. In the

following we investigate the local stability of the disease-free equilibrium (0, 0, 0) in the two

cases R0 < 1 and R0 > 1.

Theorem 3.2. If R0 < 1, then the disease-free steady state (0, 0, 0) is a locally asymptotically stable

equilibrium for problem (1.4).

Proof. The upper and lower solutions method is used to prove this theorem. Let

(û1, û2, û3)(y, t) = (0, 0, 0), (ũ1, ũ2, ũ3)(y, t) = (εφ(y), εψ(y), εξ(y)), (3.2)

where ε is sufficiently small, φ(y) and ψ(y) are the normalized positive eigenfunctions in

problem (2.2), and ξ(y) satisfies

0 =
(a − b)φ + (a − b + βK)ψ

R0
− (a − b)ξ. (3.3)

Plugging (3.2) back into (3.1), it is easy to verify that the first three inequalities in (3.1)

hold. The fourth inequality becomes

0 ≥ βKψ − σφ −

[

b + (a − b)
εφ + K − εξ

K

]

φ −
nρ̇(t)

ρ(t)
φ.

According to the first equation in (2.2), we only need to prove that

b + (a − b)
εφ + K − εξ

K
+ σ +

nρ̇(t)

ρ(t)
≥ R0(σ + a). (3.4)

Since R0 < 1 and ε is sufficiently small, (3.4) holds and the fourth inequality in (3.1) holds.

The fifth inequality becomes

−
D∆ψ

ρ(t)2
≥ σφ − αψ −

[

b + (a − b)
εψ + K − εξ

K

]

ψ −
nρ̇(t)

ρ(t)
ψ. (3.5)

It is easy to check that ψ(y) = ζ(y), where ζ(y) satisfies (2.5). We have −D∆ψ
ρ2(t)

≥ −D∆ψ
ρ2

∞

due to

∆ψ = ∆ζ = −λ1ζ ≤ 0. We have that (3.5) is satisfied if

−
D∆ψ

ρ2
∞

≥ σφ − αψ −

[

b + (a − b)
εψ + K − εξ

K

]

ψ −
nρ̇(t)

ρ(t)
ψ (3.6)

holds. From the second equation in (2.2), (3.5) becomes

(

1

R0
− 1

)

σφ ≥

{

a −

[

b + (a − b)
εψ + K − εξ

K

]}

ψ −
nρ̇(t)

ρ(t)
ψ. (3.7)

Since R0 < 1 and that the right of (3.7) tends to 0 as ε → 0, the fifth inequality in (3.1) holds

for sufficiently small ε. The sixth inequality in (3.1) is equivalent to

0 ≥ (a − b)(K − εξ)
φ + ψ − ξ

K
+ βφ(K − εξ)−

nρ̇(t)

ρ(t)
. (3.8)

Due to (3.3), (3.8) becomes

(a − b)(1 − R0) +
nρ̇(t)

ρ(t)
≥ −ε

[

(a − b)
φ + ψ − ξ

K
+ βψ

]

. (3.9)
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Since R0 < 1 and ρ̇(t) > 0, (3.8) is also true for sufficiently small ε.

Therefore, the function-pairs

(û1, û2, û3)(y, t) = (0, 0, 0), (ũ1, ũ2, ũ3)(y, t) = (εφ(y), εψ(y), εξ(y))

are the upper and lower solutions of problem (1.4). This implies that the solutions of problem

(1.4) lies between the lower solutions and the upper solutions as long as the initial values

belong to the prescribed intervals. Therefore, given the condition R0 < 1, we can conclude

local stability of the disease-free equilibrium (0, 0, 0).

The next result shows that the disease-free equilibrium (0, 0, 0) is unstable if R0 > 1.

Theorem 3.3. If R0 > 1, then there exists a δ0 > 0 such that any positive solution of problem (1.4)

satisfies lim supt→∞
‖ (u1(·, t), u2(·, t), u3(·, t))− (0, 0, 0) ‖≥ δ0.

Proof. We argue by contradiction and assume that for any δ ∈ (0, K), there exists a Tδ > 0

such that

0 < u1(y, t), u2(y, t), u3(y, t) < δ for all y ∈ Ω0, t ≥ Tδ. (3.10)

We consider the following eigenvalue problem:














0 = βu2(K − δ)− σu1 −
[

b + (a − b)K+3δ
K

]

u1 − δu1 + λu1, y ∈ Ω0,

− D∆u2

(ρ∞−δ)2 = σu1 − αu2 −
[

b + (a − b)K+3δ
K

]

u2 − δu2 + λu2, y ∈ Ω0,

u1 = u2 = 0, y ∈ ∂Ω0.

(3.11)

Problem (3.11) has a principal eigenvalue λ∗
δ and a pair of positive corresponding eigenfunc-

tions (φ∗
δ (y), ψ∗

δ (y)). It is easy to check that ψ∗
δ (y) = ζ(y), where ζ(y) satisfies (2.5). By Lemma

2.1, R0 > 1 implies that λ∗
< 0. Therefore, limδ→0 λ∗

δ = λ∗
< 0. We can fix a small δ0 ∈ (0, K)

such that λ∗
δ0
< 0. Then there exists a T1 > 0 such that

0 < u1(y, t), u2(y, t), u3(y, t) < δ0 for all y ∈ Ω0, t ≥ T1.

Since limt→∞ ρ(t) = ρ∞, there exists a T2 > 0 such that

ρ∞ − δ0 < ρ(t) ≤ ρ∞ for t ≥ T2.

Similarly, the limit limt→∞

n ˙ρ(t)
ρ(t)

= 0 implies that there exists a T3 > 0 such that

n ˙ρ(t)

ρ(t)
< δ0 for t ≥ T3.

Now choose a large T∗ = max{T1, T2, T3}. Note that any positive solution (u1, u2, u3) of the

problem (1.4) satisfies






u1t ≥ βu2(K − δ0)− σu1 −
[

b + (a − b)K+3δ0
K

]

u1 − δ0u1,

u2t −
D∆u2

ρ(t)2 ≥ σu1 − αu2 −
[

b + (a − b)K+3δ0
K

]

u2 − δ0u2,

for all y ∈ Ω0, t ≥ T∗. Define (u1(y, t), u2(y, t)) to be a positive solution of the problem






























u1t = βu2(K − δ0)− σu1 −
[

b + (a − b)K+3δ0
K

]

u1 − δ0u1, y ∈ Ω0, t ≥ T∗,

u2t −
D∆u2

ρ2(t)
= σu1 − αu2 −

[

b + (a − b)K+3δ0
K

]

u2 − δ0u2, y ∈ Ω0, t ≥ T∗,

u1 = u2 = 0, y ∈ ∂Ω0, t ≥ T∗,

u1(y, T∗) = u1(y, T∗), u2(y, T∗) = u2(y, T∗), y ∈ Ω0.

(3.12)
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It then follows from the comparison principle that

(u1(y, t), u2(y, t)) ≥ (u1(y, t), u2(y, t)) > (0, 0) for all y ∈ Ω0, t ≥ T∗. (3.13)

Now we conclude that (u1(y, T∗), u2(y, T∗)) ≥ (µφ∗
δ0
(y), µψ∗

δ0
(y)) in Ω0 for sufficiently

small µ. In fact, since u1(y, T∗), u2(y, T∗), φ∗
δ0
(y) and ψ∗

δ0
(y) are all > 0 for y ∈ Ω0, we have

∂u1(y,T∗)
∂η

∣

∣

∂Ω0
,

∂u2(y,T∗)
∂η

∣

∣

∂Ω0
,

∂φ∗
δ0
(y)

∂η

∣

∣

∂Ω0
and

∂ψ∗
δ0
(y)

∂η

∣

∣

∂Ω0
< 0 by the strong maximum principle [19],

where η is the outer unit normal on ∂Ω0. For y0 ∈ ∂Ω0, there exists a small ε(y0) > 0 such

that
∂u1(y, T∗)

∂η
<

1

2

∂u1(y, T∗)

∂η

∣

∣

∣

∣

∂Ω0

< 0,
∂u2(y, T∗)

∂η
<

1

2

∂u2(y, T∗)

∂η

∣

∣

∣

∣

∂Ω0

< 0,

∂φ∗
δ0
(y)

∂η
<

1

2

∂φ∗
δ0
(y)

∂η

∣

∣

∣

∣

∂Ω0

< 0,
∂ψ∗

δ0
(y)

∂η
<

1

2

∂ψ∗
δ0
(y)

∂η

∣

∣

∣

∣

∂Ω0

< 0

for y∈B(y0, ε(y0))
⋂

Ω0. Set µ1 = min
{ ∂u1(y,T∗)

∂η /
∂φ∗

δ0
(y)

∂η ,
∂u2(y,T∗)

∂η /
∂ψ∗

δ0
(y)

∂η

}

, y∈B(y0, ε(y0))
⋂

Ω0,

then

∂u1(y, T∗)

∂η
≥ µ1

∂φ∗
δ0
(y)

∂η
,

∂u2(y, T∗)

∂η
≥ µ1

∂ψ∗
δ0
(y)

∂η
for y ∈ B(y0, ε(y0))

⋂

Ω0.

By the mean value theorem, we have

u1(y, T∗) ≥ µ1φ∗
δ0
(y), u2(y, T∗) ≥ µ1ψ∗

δ0
(y) for y ∈ B(y0, ε(y0))

⋂

Ω0.

Since ∂Ω0 is bounded, we can find finitely many points yi
0 ∈ ∂Ω0, radii ε(yi

0) > 0 (i = 1, . . . , N)

such that ∂Ω0 ⊂
⋃N

i=1 B(yi
0, ε(yi

0)), hence there exists a small h = mini ε(yi
0) > 0 such that

u1(y, T∗) ≥ µ1φ∗
δ0
(y), u2(y, T∗) ≥ µ1ψ∗

δ0
(y) for y ∈ {y ∈ Ω0| dist(y, ∂Ω0) ≤ h}.

Meanwhile, for any y ∈ {y ∈ Ω0 | dist(y, ∂Ω0) > h}, since u1(y, T∗), u2(y, T∗), φ∗
δ0
(y) and

ψ∗
δ0
(y) are all > 0 , there exists a small µ2 > 0 such that

u1(y,T∗)
φ∗

δ0
(y)

and
u2(y,T∗)
ψ∗

δ0
(y)

≥ µ2 for y ∈ {y ∈

Ω0 | dist(y, ∂Ω0) > h}. Therefore, a sufficiently small µ > 0 satisfying µ ≤ min{µ1, µ2} can

be chosen to make sure (u1(y, T∗), u2(y, T∗)) ≥ (µφ∗
δ0
(y), µψ∗

δ0
(y)) in Ω0.

Set

U1 = µe
−λ∗

δ0
(t−T∗)

φ∗
δ0
(y) and U2 = µe

−λ∗
δ0
(t−T∗)

ψ∗
δ0
(y).

It is easy to verify that (U1(y, t), U2(y, t)) is a positive solution of the problem























U1t = βU2(K − δ0)− σU1 −
[

b + (a − b)K+3δ0
K

]

U1 − δ0U1, y ∈ Ω0, t ≥ T∗,

U2t =
D∆U2

(ρ∞−δ0)2 + σu1 − αU2 −
[

b + (a − b)K+3δ0
K

]

U2 − δ0U2, y ∈ Ω0, t ≥ T∗,

U1 = U2 = 0, y ∈ ∂Ω0, t ≥ T∗,

U1(y, T∗) = µφ∗
δ0
(y), U2(y, T∗) = µψ∗

δ0
(y), y ∈ Ω0.

Recalling that ∆ψ∗
δ0
(y) = ∆ζ(y) = −λ1ζ(y) ≤ 0 yields

U2t ≤
D∆U2

ρ2(t)
+ σu1 − αU2 −

[

b + (a − b)
K + 3δ0

K

]

U2 − δ0U2 for all y ∈ Ω0, t ≥ T∗,

which means that (U1(y, t), U2(y, t)) is a lower solution of problem (3.12), so by the compari-

son principle we have that

(u1(y, t), u2(y, t)) ≥ (U1(y, t), U2(y, t)) for all y ∈ Ω0, t ≥ T∗,
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which together with (3.13) gives

(u1(y, t), u2(y, t)) ≥ (U1(y, t), U2(y, t)) = (µe
−λ∗

δ0
(t−T∗)

φ∗
δ0
(y), µe

−λ∗
δ0
(t−T∗)

ψ∗
δ0
(y)),

for all y ∈ Ω0, t ≥ T∗. But since λ∗
δ0
< 0, u1(y, t) and u2(y, t) tends to ∞ as t goes to ∞, for any

fixed y ∈ Ω0 which contradicts (3.10). The proof is now completed.

4 Numerical simulations

In this section we carry out some numerical simulations in one space dimension to illustrate

our theoretical analysis.

Regarding the domain growth, we choose Ω(t) = (0, x(t)) = (0, ρ(t)y), where ρ(t) =
et

1+ 1
m (et−1)

and y ∈ Ω0 = (0, 1). Then, the domain grows like ρ(t) from initial rate ρ(0) = 1

to the final rate ρ∞ = m with m > 1. To highlight the impacts of the domain growth on the

transmission of rabies, we first fix the following parameters

D = 1, a = 1, b = 0.2, K = 1000, α = 0.01, β = 0.08, σ = 0.05

and subsequently obtain λ1 = π2. Next, we choose a different growth rate ρ(t) for the domain

and study the asymptotic behavior of the solution to the problem (1.4).

Example 4.1. Set m = 1.2 and we have

R0 =

√

√

√

√

σβK

(σ + a)( D
ρ2

1∞

λ1 + α + a)
= 0.64 < 1.

By Theorem 3.2, we know that the disease-free equilibrium of problem (1.4) is stable. One

can see from Fig. 4.1 that the solution (u1(y, t), u2(y, t), u3(y, t)) decays to zero, which consists

with the result of Theorem 3.2.

Example 4.2. Set m = 4 and a direct calculation shows that

R0 =

√

√

√

√

σβK

(σ + a)( D
ρ2

2∞

λ1 + α + a)
= 1.05 > 1.

Theorem 3.3 shows that the disease-free equilibrium (0, 0, 0) is now unstable. It is easily seen

from Fig. 4.2 that (u1, u2, u3) stabilizes to a positive steady state.

Comparing the above two cases, it can be seen that the infected but non-infectious pop-

ulation u1 and rabid population u2 vanish at small growth rate, but spread at large growth

rate.
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Figure 4.1: ρ1(t) = et

1+ 1
1.2 (e

t−1)
. For small growth rate ρ1(t), we have R0 < 1.

The first three graphs show that (u1, u2, u3) decays to zero quickly. The last

two graphs in line 3 are the cross-sectional view (the left) and contour map

(the right) of species u1, respectively. The color bar in the graph of the cross-

sectional view shows the density of the species u1. The contour map shows the

convergence of the temporal solution u1 to the trivial solution (red dashed line).
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Figure 4.2: ρ2(t) = et

1+ 1
4 (e

t−1)
. In this case, the growth rate ρ2(t) is now large

enough to give that R0 > 1. (u1, u2, u3) tends to a positive steady state from

the first three graphs. The last two graphs present the growth of the domain.

The color bar in the graph of the cross-sectional view shows the density of the

species u1. The contour map shows the convergence of the temporal solution u1

to the positive solution (red dashed line).
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5 Discussion

Domain growth plays a significant role in the evolution of a biological population, and this

has drawn much attention recently. In order to explore the impact of the domain growth on

the transmission of fox rabies, we investigate a SEI model for fox rabies with uniform and

isotropic domain growth.

We first transform the SEI model on the growing domain into a reaction-diffusion system

on a fixed domain, and the basic reproduction number R0 is introduced by spectral analysis

and the so-called next infection operator. The relationship between R0 and ρ∞ directly follows

by the explicit expression of R0 which is determined by the variational method. Then, the

stability of the disease-free equilibrium in terms of the threshold value R0 is investigated

by the upper and lower solutions method. It is proved in Theorem 3.2 that if R0 < 1, the

disease-free steady state (0, 0, 0) for the problem (1.4) is locally asymptotically stable, while if

R0 > 1, the disease-free equilibrium (0, 0, 0) is unstable according to Theorem 3.3. Finally our

analytical results are clearly supported by numerical simulations. When R0 < 1, the solution

of (1.4) decays to zero when the domain growth is small (see Fig. 4.1) while when R0 > 1,

the disease-free equilibrium is unstable at a large domain growth (see Fig. 4.2). Our results

show that a large growth of the domain has a negative effect on the stability of disease-free

equilibrium, in the sense that it works against the prevention and control of rabies.

However, we can not derive the existence and uniqueness of the positive equilibrium.

Moreover, all coefficients except ρ(t) are constants in the problem (1.4), but in fact rabies is

mainly affected by spatial heterogeneity and spatial distribution of habitats [20, 21], which

implies that the diffusion coefficient D and the disease transmission coefficient β (and other

constants) depend on the location x. We plan to investigate these problems in the future.
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Abstract. This paper is concerned with the stability problem of the positive equilib-
rium of a Nicholson’s blowflies model with nonlinear density-dependent mortality rate
subject to stochastic perturbations. More specifically, the existence of a unique posi-
tive equilibrium of a Nicholson’s blowflies model described by the delay differential
equation

N′(t) = −
(

a − be−N(t)
)

+ βN(t − τ)e−γN(t−τ)

is first quoted. It is assumed that the underlying model in noisy environments is ex-
posed to stochastic perturbations, which are proportional to the derivation of the state
from the equilibrium point. Then, by utilizing a stability criterion formulated for lin-
ear stochastic differential delay equations, explicit stability conditions are obtained. An
extension to models with multiple delays is also presented.

Keywords: Nicholson’s blowflies model, nonlinear mortality rate, stochastic perturba-
tions, asymptotic stability.
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1 Introduction

Delay differential equations (DDEs) are typically used to describe dynamics of biology and

ecology systems [3, 4]. For example, Gurney et al. [5] proposed the following DDE

N′(t) = −αN(t) + βN(t − τ)e−γN(t−τ) (1.1)

to model the laboratory population of the Australian sheep-blowfly, where N(t) represents

the population size at time t, α is the per capita daily adult mortality rate, β is the maximum

per capita daily egg production rate, 1
γ is the size at which the population reproduces at its

BCorresponding author. Email: hienlv@hnue.edu.vn
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maximum rate and τ > 0 is the generation time (i.e. the time taken from birth to maturity).

This equation is known as the celebrated Nicholson’s blowflies equation.

In the past four decades, Nicholson equation and its extensions have been extensively

studied (see, for example, [2, 7, 12, 14] and the references therein). In particular, Wang et al.

[13] considered a stochastic variant of model (1.1) where the mortality rate α is affected by en-

vironmental noises, α α − σdB(t), which is presented by the following Itô-type differential

equation

dN(t) =
[

−αN(t) + βN(t − τ)e−γN(t−τ)
]

dt + σN(t)dB(t) (1.2)

with initial condition N(s) = φ(s), s ∈ [−τ, 0], φ ∈ C([−τ, 0], [0, ∞)) and φ(0) > 0. Finite ulti-

mate estimations for lim supt→∞ E[N(t)] and lim supt→∞
1
t E
[

∫ t
0 N(s)ds

]

were obtained under

condition α > σ2/2. The results of [13] were later extended to stochastic Nicholson’s blowflies

differential equations with regime switching

dN(t) =
[

−αrt N(t) + βrt N(t − τrt)e
−γrt N(t−τrt )

]

dt + σrt N(t)dB(t) (1.3)

in [17], where (rt)t≥0 is a finite state continuous-time Markov chain. An extension of (1.2) to

include a patch structure was also investigated in recent work [6].

However, the aforementioned works only dealt with stochastic Nicholson-type models

with linear density-dependent mortality rates of the form D(N) = αN with some positive

constant α. As discussed in [2], a model of linear density-dependent mortality rate will only

be most accurate for populations at low densities. In addition, according to marine ecologists,

many models in fishery such as marine protected areas or models of B-cell chronic lympho-

cytic leukemia dynamics are described by Nicholson-type delay differential equations of the

form

N′(t) = −D(N(t)) + βN(t − τ)e−γN(t−τ), (1.4)

where the mortality rate function D(N) is of the forms D(N) = a − be−N (type-I) or D(N) =
aN

b+N (type-II) with positive constants a and b. In the past few years, significant research atten-

tion has been devoted to studies of model (1.4) and its extensions. For example, by utilizing

some reasoning techniques of the so-called fluctuation lemma combining with the method

of using differential and integral inequalities, the problems of existence and global conver-

gence of positive periodic/almost periodic solutions of Nicholson-type models with nonlinear

mortality rates of type-I and type-II were investigated in [15] and [16], respectively. In [11],

a novel approach based on comparison techniques via differential and integral inequalities

and extended Lyapunov functions was developed to establish the existence, uniqueness and

global attractivity of a positive periodic solution of Nicholson-type models with type-I mor-

tality rate function. The proposed approach of [11] can also be utilized to derive conditions

ensuring the global convergence of a unique positive equilibrium of autonomous (constant co-

efficients) Nicholson-type models with type-I mortality rates. However, up to date the study

of Nicholson-type models as (1.4) subject to certain types of stochastic noises has received

considerably less attention. It is noted that in population models, characteristic quantities

as growth rates, environmental capacity, competition coefficients and some other parameters

are always affected by environmental noises due to which model (1.4) is more suitable to be

described by stochastic DDEs [8, 13]. Thus, it is relevent to study model (1.4) and its variants

subject to certain type of stochastic noises. This motivates us for the present investigation.

In this paper, we study the problem of asymptotic stability in probability of a stochastic

extension of model (1.4). Specifically, we consider Nicholson-type model (1.4) with nonlinear
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mortality rate function D(N) = a − be−N for positive scalars a, b and apply the method of Son

et al. [11] to establish the existence of a unique positive equilibrium namely N∗. We then con-

sider the case that model (1.4) is exposed to stochastic perturbations which are proportional to

the derivation of its state from the equilibrium point N∗. This will be represented in the form

of an Itô stochastic differential equation. Based on the linearization method and by utilizing a

stability criterion established for linear stochastic differential delay equations [9, Lemma 2.1],

explicit delay-dependent stability conditions are obtained. The presented result is then also

extended to models with multiple delays.

2 Preliminaries

Consider the following Nicholson-type delay differential equation

N′(t) = −
(

a − be−N(t)
)

+ βN(t − τ)e−γN(t−τ), t > 0, (2.1)

with initial condition

N(s) = φ(s) for s ∈ [−τ, 0] and φ ∈ C([−τ, 0], [0, ∞)), φ(0) > 0, (2.2)

where a, b, β, γ and τ are positive constants. It was shown in [11, Theorem 3.1] that if b > a

the initial value problem (IVP) governed by (2.1)-(2.2) has a unique solution N(t, φ) which is

strictly positive on [0, ∞) and satisfies lim inft→∞ N(t, φ) ≥ ln( b
a ). Moreover, if

β
γe < a < b

then, for any solution N(t, φ) of (2.1)-(2.2), it holds that [11, Proposition 5.1]

ln

(

b

a

)

≤ lim inf
t→∞

N(t, φ) ≤ lim sup
t→∞

N(t, φ) ≤ ln

(

b

a − β
γe

)

. (2.3)

2.1 Positive equilibrium

By substituting N(t) = N∗, a positive equilibrium point of (2.1) is defined by the following

algebraic equation

− a + be−N∗
+ βN∗e−γN∗

= 0. (2.4)

Assume that the parameters β, γ, a and b of model (2.1) satisfy the following condition

β

(

1

γe
+ max

{

1

e2
,

1 − γ ln( b
a )

eγ ln( b
a )

}

)

< a < b. (2.5)

Then, by (2.3), any positive equilibrium point of (2.1) is confined within the range [r1, r2],

where r1 = ln( b
a ) and r2 = ln

(

b

a− β
γe

)

.

Lemma 2.1. Assume that
β

γe < a < b. Then, for any x ∈ [r1, r2], where r1 = ln( b
a ), r2 = ln

(

b

a− β
γe

)

,

it holds that

|1 − γx|e−γx ≤ max

{

1

e2
,

1 − γ ln( b
a )

eγ ln( b
a )

}

.
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Proof. Let ϕ(x) = |1 − γx|e−γx, −∞ < x < ∞. Note that ϕ(x) = (1 − γx)e−γx for x < 1/γ

and ϕ′(x) = γ(γx − 2)e−γx
< 0. Thus, the function ϕ(x) is strictly deceasing on the interval

(−∞, 1/γ). On the other hand, for x > 1/γ, we have ϕ′(x) = γ(2 − γx)e−γx, ϕ′(2/γ) = 0,

ϕ′(x) > 0 for x ∈ (1/γ, 2/γ) and ϕ′(x) < 0 for x > 2/γ. Therefore, ϕ(x) ≤ ϕ(2/γ) = 1
e2 for

any x ≥ 1/γ. This shows that for any x ∈ [r1, r2], we have

ϕ(x) ≤ max

{

1

e2
, ϕ(r1)

}

= max

{

1

e2
,

1 − γ ln( b
a )

eγ ln( b
a )

}

.

The proof of this lemma is now completed.

Lemma 2.2. Let f : R → R be a function defined by f (x) = xe−γx, γ > 0. Then, f (x) ≤ (γe)−1

for all x ∈ R. Moreover, f (x) = (γe)−1 if and only if x = 1/γ.

Proof. The derivative f ′(x) of f (x) is given by

f ′(x) = (1 − γx) e−γx.

Thus, f ′(1/γ) = 0, f ′(x) > 0 for x < 1/γ and f ′(x) < 0 for x > 1/γ. Therefore, the function

f (x) is strictly increasing on the interval (−∞, 1/γ) and decreasing on the interval (1/γ, ∞).

This shows that f (x) attains its maximum f (1/γ) = (γe)−1 at x = 1/γ. Consequently,

f (x) ≤ (γe)−1. The proof is completed.

It is clear that the function Ψ(N) = −a + be−N + βNe−γN is continuous on [r1, r2], Ψ(r1) =

βr1e−γr1 > 0 and Ψ(r2) = β(r2e−γr2 − 1
γe ) < 0 according to Lemma 2.2 and the fact r2 < 1/γ.

Thus, there exists an N∗ ∈ (r1, r2) such that Ψ(N∗) = 0, which is a positive equilibrium of

(2.1). On the other hand, for any N ∈ [r1, r2], by Lemma 2.1, we have be−N ≥ be−r2 = a − β
γe

and |1 − γN|e−γN ≤ max

{

1
e2 ,

1−γ ln( b
a )

eγ ln( b
a )

}

. Therefore,

Ψ′(N) = −be−N + β(1 − γN)e−γN
< 0, ∀N ∈ [r1, r2],

which implies that the function Ψ(N) is strictly decreasing on [r1, r2]. By this, we can conclude

under condition (2.5) that model (2.1) has a unique positive equilibrium point N∗ which is

defined by equation (2.4).

2.2 Stochastic perturbations

Considering that equation (2.1) is affected by some white noise of the environment, which is

proportional to the derivation of N(t) from the equilibrium N∗ [1]. Then, model (2.1) can be

represented by the following Itô stochastic differential equation [9]

dN(t) =
[

−D(N(t)) + βN(t − τ)e−γN(t−τ)
]

dt + σ(N(t)− N∗)dB(t), (2.6)

where D(N) = a − be−N , σ denotes the intensity of the white noise and B(t) is an one-

dimensional Brownian motion defined on a filtered probability space (Ω,F , {Ft}t≥0, P). Note

that the equilibrium point N∗ is also a stationary solution of the stochastic differential equation

(2.6). We now define N(t) = N∗ + x(t) then, by (2.6), we have

dx(t) =
[

−D(x(t) + N∗) + β(N∗ + x(t − τ))e−γ(N∗+x(t−τ))
]

dt + σx(t)dB(t). (2.7)
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Remark 2.3. By similar arguments of [17, Theorem 2.1] and [11, Theorem 3.1], it can be verified

that for any initial function φ ∈ C([−τ, 0], R), Eq. (2.7) possesses a unique solution x(t, φ)

defined on the interval [−τ, ∞).

According to (2.4), we have βN∗e−γN∗
= a − be−N∗

. Therefore,

βN∗e−γ(N∗+x(t−τ)) =
(

a − be−N∗
)

e−γx(t−τ).

This, together with (2.7), leads to

dx(t) =
[

− a + be−N∗
e−x(t) + (a − be−N∗

)e−γx(t−τ)

+ βe−γN∗
x(t − τ)e−γx(t−τ)

]

dt + σx(t)dB(t). (2.8)

The asymptotic stability of the equilibrium N∗ of (2.6) is equivalent to that of the zero solution

x = 0 of (2.8) [10]. Thus, together with (2.8), we consider the following linearized equation at

the zero point

dx̃(t) = [−δx̃(t) + px̃(t − τ)]dt + σx̃(t)dB(t), (2.9)

where δ = be−N∗
and

p = βe−γN∗ − γ(a − be−N∗
) = β(1 − γN∗)e−γN∗

.

Note also that N∗ ≤ r2 < 1/γ, thus δ, p are positive coefficients.

2.3 Auxiliary results

In this section, we present some definitions of stability and auxiliary results which will be

used to derive stability conditions of the positive equilibrium point N∗ of (2.1).

Definition 2.4 ([9]). The zero solution x = 0 of (2.7) is said to be stable in probability if for

any ǫ > 0, η > 0, there exists a δ > 0 such that P
{

supt≥0 |x(t, φ)| > ǫ|F0

}

< η for any initial

function φ ∈ C([−τ, 0], R) with P
{

sups∈[−τ,0] |φ(s)| < δ
}

= 1.

Definition 2.5 ([9]). The linearized Eq. (2.9) is said to be (i) mean square stable (MSS) if

for any given ǫ > 0 there exists a δ = δ(ǫ) > 0 such that for any initial function φ with

sups∈[−τ,0] E|φ(s)|2 < δ, it holds that E|x̃(t, φ)|2 < ǫ for all t ≥ 0, where E{·} denotes the

mathematical expectation on (Ω,F , P); and (ii) asymptotically mean square stable (AMSS) if

it is MSS and any solution x̃(t, φ) of (2.9) satisfies limt→∞ E|x̃(t, φ)|2 = 0.

Remark 2.6. As mentioned in [9,10], the AMSS property of (2.9) implies stability in probability

of the zero solution of nonlinear equation (2.7). This fact will be used to derive stability

conditions for the equilibrium N∗.

In the remaining of this section, let us reformulate an auxiliary result on asymptotic mean

square stability of linear stochastic differential equations from [9]. Consider the following

linear stochastic differential equation

dx = [Ax(t) + Bx(t − τ)]dt + σx(t)dB(t) (2.10)

where A, B, σ, τ ≥ 0 are known constants.
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Lemma 2.7 ([9, Lemma 2.1, p. 44]). The zero solution of (2.10) is asymptotically mean square stable

if and only if

A + B < 0, G−1
>

σ2

2
,

where

G =
2

π

∫ ∞

0

dt

(A + B cos τt)2 + (t + B sin τt)2
.

Moreover,

G =



















Bq−1 sin(qτ)−1
A+B cos(qτ)

for B + |A| < 0, q =
√

B2 − A2,

1+|A|τ
2|A| for B = |A| < 0,

Bq−1 sinh(qτ)−1
A+B cosh(qτ)

for A + |B| < 0, q =
√

A2 − B2,

where sinh(·) and cosh(·) are the hyperbolic sine and hyperbolic cosine functions, respectively.

3 Stability conditions

For given scalars a, b, β, γ and τ, which satisfy condition (2.5), let N∗ be the unique positive

root of (2.4) in the interval [r1, r2]. We denote the following positive constants

δ = be−N∗
and p = β(1 − γN∗)e−γN∗

. (3.1)

We have the following result.

Theorem 3.1. Assume that the condition given in Eq. (2.5) holds. Then, the linearized equation (2.9)

is AMSS if and only if the following condition holds

p cosh
(

τ
√

δ2 − p2
)

− δ

p√
δ2−p2

sinh
(

τ
√

δ2 − p2
)

− 1
> σ2/2, (3.2)

where δ, p are positive constants given in Eq. (3.1).

Proof. As shown in the preceding section, under condition (2.5), the positive root N∗ of (2.4)

exists and is unique. Moreover, we have

−be−N∗
+ β(1 − γN∗)e−γN∗

< 0.

Therefore, Eq. (2.9) is AMSS if and only if (see, Lemma 2.7)

G−1
> σ2/2, (3.3)

where

G =
2

π

∫ ∞

0

dt

(p cos τt − δ)2 + (t + p sin τt)2
. (3.4)

Moreover, the exact value of the constant G can be calculated via elementary functions as

G =
q + δ + pe−qτ

q (q + δ − pe−qτ)
,
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where q =
√

δ2 − p2. Using the fact that cosh(qτ) = sinh(qτ) + e−qτ, q2 − δ2 = −p2, we have

(

q + δ + pe−qτ
)

(p cosh(qτ)− δ)

=
(

q + δ + pe−qτ
)

(p sinh(qτ) + pe−qτ − δ)

= p(q + δ) sinh(qτ) + p2e−qτ
(

sinh(qτ) + e−qτ
)

+ pqe−qτ − δ(q + δ)

= (q + δ)(p sinh(qτ)− q) + pe−qτ (q − p sinh(qτ))

=
(

q + δ − pe−qτ
)

(p sinh(qτ)− q).

Therefore,

G =

p
q sinh(qτ)− 1

p cosh(qτ)− δ
.

This, together with (3.3), leads to condition (3.2). The proof is completed.

Remark 3.2. In a more restrictive case, we assume that

2β(1 − γN∗)e−γN∗
< be−N∗

i.e. δ > 2p, (3.5)

then the equality (3.4) can be estimated as follows

G ≤ 2

π

∫ ∞

0

dt

(δ2 − 2δp) + (t − p)2

=
1

√

δ2 − 2δp

(

1 +
2

π
arctan

p
√

δ2 − 2δp

)

. (3.6)

By (3.3) and (3.6), a sufficient condition for the AMSS of Eq. (2.9) is

√

δ2 − 2δp

1 + 2
π arctan

p√
δ2−2δp

> σ2/2. (3.7)

For Nicholson-type DDEs with multiple delays

N′(t) = −
(

a − be−N(t)
)

+
m

∑
k=1

βkN(t − τk)e
−γk N(t−τk), (3.8)

condition (2.5) is extended to (see [11], Theorem 5.2)

m

∑
k=1

βk

(

1

eγk
+ max

{

1

e2
,

1 − γk ln
(

b
a

)

eγk ln( b
a )

})

< a < b (3.9)

and the positive root N∗ of the equation

− a + b−N∗
+

( m

∑
k=1

βke−γk N∗
)

N∗ = 0 (3.10)

exists and is unique. By a similar process, Eq. (2.9) is now given as

dx̃(t) =

[

−δx̃(t) +
m

∑
k=1

pk x̃(t − τk)

]

dt + σx̃(t)dB(t), (3.11)

where

δ = be−N∗
and pk = βk(1 − γkN∗)e−γk N∗

, k = 1, 2, . . . , m. (3.12)
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Similar to Theorem 3.1, Eq. (3.11) is AMSS if and only if G−1
m > σ2/2, where

Gm =
2

π

∫ ∞

0

dt

(∑m
k=1 pk cos τkt − δ)2 + (t + ∑

m
k=1 pk sin τkt)2

. (3.13)

Unfortunately, the computation of exact value of Gm in (3.13) is still an unsolved problem

[9]. To derive sufficient conditions, we use the estimating method as (3.7). More specifically,

assume that

∆2 = δ2 − 2δ
m

∑
k=1

pk − 4 ∑
1≤i<j≤m

pi pj > 0. (3.14)

Then, we have

(

−δ +
m

∑
k=1

pk cos τkt

)2

+

(

t +
m

∑
k=1

pk sin τkt

)2

= t2 + 2t
m

∑
k=1

pk sin τkt + δ2 − 2δ
m

∑
k=1

pk cos τkt

+

(

m

∑
k=1

pk sin τkt

)2

+

(

m

∑
k=1

pk cos τkt

)2

≥ t2 − 2t
m

∑
k=1

pk + δ2 − 2δ
m

∑
k=1

pk +
m

∑
k=1

p2
k

+ 2 ∑
1≤i<j≤m

pi pj cos(τi − τj)t

≥
(

t −
m

∑
k=1

pk

)2
+ ∆2.

Therefore,

Gm ≤ 2

π

∫ ∞

0

dt
(

t − ∑
m
k=1 pk

)2
+ ∆2

=
1

∆

(

1 +
2

π
arctan

∑
m
k=1 pk

∆

)

.

In summary, we have the following result.

Proposition 3.3. Consider model (3.8) and assume that the derived conditions in Eqs. (3.9) and (3.14)

are fulfilled, where δ and pk, k = 1, 2, . . . , m, are positive constants defined in (3.12). Then, the

linearized equation (3.11) is AMSS if the following condition holds

√

δ2 − 2δ
m

∑
k=1

pk − 4 ∑
1≤i<j≤m

pi pj

1 + 2
π arctan

m

∑
k=1

pk

√

δ2−2δ
m

∑
k=1

pk−4 ∑
1≤i<j≤m

pi pj

>
σ2

2
. (3.15)

Remark 3.4. Clearly, conditions (3.2), (3.7) and (3.15) hold for sufficiently small σ. In other

words, the positive equilibrium N∗ of model (2.1) or (3.8) is stable in probability under small

stochastic perturbations. In this regard, the result of Proposition 3.3 in this paper extends that

of Theorem 5.2 in [11].
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4 Simulations

Consider model (2.1) with β = 1. It can be seen that condition (2.5) holds if and only if

1

γe
+ max

{

1

e2
,

1 − ln κ

κ

}

< a < b, (4.1)

where κ =
(

b
a

)γ
. Since the equation 1−ln κ

κ = 1
e2 has a unique positive root κ∗ ≃ 2.0576,

condition (4.1) holds if and only if

a >

{

1
γe +

1−ln κ
κ if κ ∈ (1, κ∗)

1
γe +

1
e2 if κ ≥ κ∗.

(4.2)

For γ = 0.5, κ = 1.1, a = 1.6 and b = 1.936, Eq. (2.4) has a unique positive root N∗ = 0.4399.

Then, we have δ = 1.247 and p = 0.626. With the delay τ = 2, by condition (3.2), the linearized

equation (2.9) is AMSS if and only if σ2
< 2.0266. Simulation results given in Figure 4.1 are

taken with σ = 1.42 and various initial conditions. It can be seen that all sample trajectories

converge to N∗, which supports the conclusion.

time (s)0 10 20 30

N
(t

)

0.4

0.5

0.7

0.9

N(t)

Figure 4.1: Sample trajectories of N(t)

5 Conclusions

In this paper, a stochastic Nicholson-type blowflies model with nonlinear density-dependent

mortality rate has been investigated. Sufficient conditions have been derived to ensure the

existence of a unique positive equilibrium which is stable in probability subject to stochastic

perturbations of the white noise type. Numerical simulations have been given to illustrate the

effectiveness of the derived stability conditions.
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Abstract. We consider the second-order linear differential equation (x2 − 1)y′′ +
f (x)y′ + g(x)y = h(x) in the interval (−1, 1) with initial conditions or boundary condi-
tions (Dirichlet, Neumann or mixed Dirichlet–Neumann). The functions f , g and h are
analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [−1, 1]. Then,
the two end points of the interval may be regular singular points of the differential
equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is
used to study the space of analytic solutions in Dr of the differential equation, and to
give a criterion for the existence and uniqueness of analytic solutions of the boundary
value problem. This method is constructive and provides the two-point Taylor appro-
ximation of the analytic solutions when they exist.

Keywords: second-order linear differential equations, regular singular point, boundary
value problem, Frobenius method, two-point Taylor expansions.
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1 Introduction

In [6] we considered the second-order linear equation y′′ + f (x)y′ + g(x)y = h(x) in the

interval (−1, 1) with initial conditions or boundary conditions of the type Dirichlet, Neumann

or mixed Dirichlet–Neumann. The functions f , g and h are analytic in a Cassini disk with foci

at x = ±1 containing the interval [−1, 1]. Then, the end points of the interval, where the

boundary data are given, are regular points of the differential equation. The two-point Taylor

expansion of the solution y(x) at the end points ±1 was used to give a criterion for the

existence and uniqueness of analytic solutions of the initial or boundary value problem and

approximate the solutions when they exist. In [1] we have considered problems that have

an extra difficulty: one of the end points of the interval is a regular singular point of the

differential equation, that is, we have considered the equation (x + 1)y′′ + f (x)y′ + g(x)y =

h(x).

�Corresponding author. Email: jl.lopez@unavarra.es
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In this paper we continue our investigation considering problems where both end points

of the interval are regular singular points of the differential equation. We consider initial or

boundary value problems of the form




(x2 − 1)y′′ + f (x)y′ + g(x)y = h(x) in (−1, 1),

B




y(−1)

y(1)

y′(−1)

y′(1)




=

(
α

β

)
,

(1.1)

where f , g and h are analytic in a Cassini disk with foci at x = ±1 containing the interval

[−1, 1] (we give more details in the next section), α, β ∈ C and B is a 2 × 4 matrix of rank

two which defines the initial conditions or the boundary conditions (Dirichlet, Neumann or

mixed).

The consideration of the interval (−1, 1) is not a restriction, as any real interval (a, b) can

be transformed into the interval (−1, 1) by means of an affine change of the independent

variable. The form of the differential equation in (1.1) is not a restriction either: consider

the differential equation (x2 − 1)2u′′(x) + (x2 − 1)F(x)u′(x) + G(x)u(x) = 0, with F and G

analytic at x = ±1. After the change of the dependent variable u = (x − 1)λ(x + 1)µy, with

λ a solution of the equation 4λ(λ − 1) + 2F(1)λ + G(1) = 0 and µ a solution of the equation

4µ(µ − 1) − 2F(−1)µ + G(−1) = 0, the equation may be written in the form (x2 − 1)y′′ +
f (x)y′ + g(x)y = 0, with f and g analytic at x = ±1. On the other hand, the points x = ±1 are

both indeed regular singular points of the differential equation (x2 − 1)y′′ + f (x)y′ + g(x)y =

h(x) when | f (±1)| + |g(±1)| + |h(±1)| 6= 0; if f (±1) = g(±1) = h(±1) = 0, then both,

x = ±1, are regular points, and problem (1.1) is the regular problem analyzed in [6]. If

f (1) = g(1) = h(1) = 0 and | f (−1)|+ |g(−1)|+ |h(−1)| 6= 0, then only one end point is a

regular singular point of the equation, and problem (1.1) has been analyzed in [1]. We omit

these restrictions here and then, the regular case studied in [6] or the cases studied in [1] may

be considered particular cases of the more general one analyzed in this paper.

A standard theorem for the existence and uniqueness of solution of (1.1) is based on the

knowledge of the two-dimensional linear space of solutions of the homogeneous equation

(x2 − 1)y′′ + f (x)y′ + g(x)y = 0 [2, Chapter 4, Section 1]. When f are g are constants or

in some other particular situation, it is possible to find the general solution of the equation

(sometimes via the Green function [2, Chapter 4], [7, Chapters 1 and 3])). But this is not

possible in general situations and that standard criterion for the existence and uniqueness of

solution of (1.1) is not practical. Other well-known criterion for the existence and uniqueness

of solution of (1.1) is based on the Lax–Milgram theorem when (1.1) is an elliptic problem [3].

In any case, the determination of the existence and uniqueness of solution of (1.1) requires a

non-systematic detailed study of the problem, like for example the study of the eigenvalue

problem associated to (1.1) [2, Chapter 4, Section 2], [7, Chapter 7].

When f , g and h are analytic in a disk with center at x = 0 and containing the interval

[−1, 1], we may consider the initial value problem
{
(x2 − 1)y′′ + f (x)y′ + g(x)y = h(x), x ∈ (−1, 1),

y(0) = y0, y′(0) = y′0,
(1.2)

with y0, y′0 ∈ C. Using the Frobenius method we can approximate the solution of this problem

by its Taylor polynomial of degree N ∈ N at x = 0, yN(x) = ∑
N
n=0 ckxk, where the coefficients
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ck are affine functions of c0 = y0 and c1 = y′0. By imposing the boundary conditions given

in (1.1) over yN(x), we obtain an algebraic linear system for y0 and y′0. The existence and

uniqueness of solution to this algebraic linear system gives us information about the existence

and uniqueness of solution of (1.1). This procedure, although theoretically possible, has a

difficult practical implementation since the data of the problem are given at x = ±1, not at

x = 0 (see [6] for further details).

In [6] we improved the ideas of the previous paragraph for the regular case (when f (−1) =

g(−1) = h(−1) = 0) using, not the standard Taylor expansion in the associated initial value

problem (1.2), but a two-point Taylor expansion [4] at the end points x = ±1 directly in the

differential equation and in the boundary conditions. The convergence region for a two-point

Taylor expansion is a Cassini disk (see Figure 2.1), and this Cassini disk avoids the possible

singularities of the coefficient functions located near the interval [−1, 1] more efficiently than

the standard Taylor disk [5].

In this paper we investigate if a two-point Taylor expansion at the end points x = ±1 also

works for the more general problem (1.1), in particular when both, x = −1 and x = 1 are

regular singular points of the equation. Thus, we use the two-point Taylor expansion of the

solution y(x) to give a criterion for the existence and uniqueness of analytic solutions based on

the data of the problem, not based on the knowledge of the general solution of the differential

equation.

The paper is organized as follows. In the next section we introduce some elements of

the theory of two-point Taylor expansions and study the space S of analytic solutions of the

differential equation (x2 − 1)y′′ + f (x)y′ + g(x)y = h(x). In Section 3 we derive the two-point

Taylor expansion at the end points x = ±1 of the functions of S (when S is nonempty). In

Section 4 we give an algebraic characterization of S that we use, in Section 5, to formulate a

criterion of existence and uniqueness of analytic solutions of problem (1.1). Section 6 includes

some illustrative examples and Section 7 a few final remarks. The analysis of this paper paper

follows the same pattern as the analysis of [5].

2 Global analytic solutions of the differential equation

Assume that the coefficient functions f , g and h in (1.1) are analytic in the Cassini disk Dr =

{z ∈ C | |z2 − 1| < r} with foci at z = ±1 and Cassini’s radius r, with r > 1 (see [4]). The

requirement r > 1 assures that the interval [−1, 1] is contained into the Cassini disk Dr (see

Figure 2.1). Then, the three functions f , g and h, admit a two-point Taylor series in Dr of the

form [4],

f (z) =
∞

∑
n=0

[ f 0
n + f 1

n z](z2 − 1)n, g(z) =
∞

∑
n=0

[g0
n + g1

nz](z2 − 1)n, h(z) =
∞

∑
n=0

[h0
n + h1

nz](z2 − 1)n,

(2.1)

where the coefficients of the expansions of f are [4]

f 0
0 :=

f (1) + f (−1)

2
, f 1

0 :=
f (1)− f (−1)

2
,

f 0
n :=

n

∑
k=0

(n + k − 1)!

(n − k − 1)!

(−1)k f (n−k)(1) + (−1)n f (n−k)(−1)

n! k! 2n+k+1
, n = 1, 2, 3, . . . ,

f 1
n :=

n

∑
k=0

(n + k)!

(n − k)!

(−1)k f (n−k)(1)− (−1)n f (n−k)(−1)

n! k! 2n+k+1
, n = 1, 2, 3, . . .

(2.2)
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The coefficients g0
n and g1

n of the expansion of g and the coefficients h0
n and h1

n of the expansion

of h are defined by means of similar formulas. The three expansions in (2.1) converge absolute

and uniformly to the respective functions f , g and h in Dr (see [4]). The regular case analyzed

in [6] corresponds to the particular situation f 0
0 = f 1

0 = g0
0 = g1

0 = h0
0 = h1

0 = 0 (that is

equivalent to f (±1) = g(±1) = h(±1) = 0).

1-1 Re z

Im z

Figure 2.1: The Cassini disk Dr = {z ∈ C | |z2 − 1| < r} with foci at z = ±1 and

radius r > 1 contains the real interval [−1, 1].

As it is argued in [6], when f (±1) = g(±1) = h(±1) = 0, any solution of the differential

equation is analytic in Dr. But the situation is different when | f (1)| + |g(1)| + |h(1)| 6= 0

and/or | f (−1)| + |g(−1)| + |h(−1)| 6= 0 (see [1]) and we need to introduce the following

definition.

Definition 2.1. Denote by Sh the linear space of solutions of the homogeneous equation

(z2 − 1)y′′ + f (z)y′ + g(z)y = 0 that are analytic in Dr. Denote by S the affine space of

solutions of the complete equation (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z) that are analytic in Dr.

From Frobenius theory we know that the critical exponents of the homogeneous diffe-

rential equation (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 at z = −1 are µ1(−1) = 0 and µ2(−1) =

1+ f (−1)/2. When µ2(−1) /∈ Z ( f (−1) /∈ 2Z), one independent solution of the homogeneous

equation is analytic in Dr \ {1} and the other one is not, as it is of the form (z + 1)µ2(−1)a(z)

with a(z) analytic in Dr. When µ2(−1) = 0,−1,−2, . . ., ( f (−1) ∈ −2N), one independent

solution of (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 is analytic in Dr \ {1} and the other one is not, as

it is of the form a1(z) log(z + 1) + (z + 1)µ2(−1)a2(z) with a1(z) and a2(z) analytic in Dr \ {1}.

When µ2(−1) ∈ N ( f (−1) ∈ 2N ∪ {0}), one independent solution of the homogeneous equa-

tion is analytic in Dr \ {1} (and it is canceled µ2(−1) times at z = −1) and the other one

is of the form (z + 1)µ2(−1)a1(z) log(z + 1) + a2(z) with a1(z) and a2(z) analytic in Dr \ {1}.

Therefore, when µ2(−1) ∈ N, may be only one or may be two independent solutions of

(z2 − 1)y′′ + f (z)y′ + g(z)y = 0 analytic at z = −1.

The discussion is similar at the point z = 1 replacing f (−1) by − f (1), that is, µ1(1) = 0

and µ2(1) = 1 − f (1)/2: when f (1) /∈ 2Z, one independent solution of the homogeneous

equation is analytic in Dr \ {−1} and the other one is not. When f (1) ∈ 2N, one independent

solution of (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 is analytic in Dr \ {−1} and the other one is not.

When f (1) ∈ −2N ∪ {0}, one independent solution of the homogeneous equation is analytic

in Dr \ {−1} (and it is canceled µ2(1) times at z = 1) and the other one may be or may

be not analytic in Dr \ {−1}. Therefore, when µ2(1) ∈ N, may be only one or may be two

independent solutions of (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 analytic at z = 1.
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Then, all the possibilities may be summarized as follows: When f (−1) 6= 0, 2, 4, . . . or

f (1) 6= 0,−2,−4, . . ., then the homogeneous equation has only the null solution or a

one-dimensional space of analytic solutions in Dr. When f (−1) = 0, 2, 4, . . . and f (1) =

0,−2,−4, . . . then everything is possible: the homogeneous equation has only the null solu-

tion, it has a one-dimensional space or it has a two-dimensional space of analytic solutions in

Dr.

From the above discussion we conclude that

dim(Sh) =

{
0 or 1 when f (−1) 6= 0, 2, 4, . . . or f (1) 6= 0,−2,−4, . . .

0, 1 or 2 when f (−1) = 0, 2, 4, . . . and f (1) = 0,−2,−4, . . .

On the other hand, it is clear that S = yp + Sh, where yp(z) is a particular solution of

(z2 − 1)y′′ + f (z)y′ + g(z)y = h(z) that is analytic in Dr. The existence of that particu-

lar solution yp(z) is not guaranteed a priori; then, either dim(S) = dim(Sh) or S is empty.

(For example, the general solution of the equation (z2 − 1)y′′ = 1 is y(z) = c1 + c2z +

z log(
√
(1 − z)/(z + 1)) − log(

√
z2 − 1), c1, c2 ∈ C, then dim(Sh) = 2 and S is empty. The

general solution of the equation (z2 − 1)y′′ − y′ = 1 is y(z) = c1 + c2(arcsin z +
√

1 − z2)− z,

c1, c2 ∈ C, then dim(Sh) = dim(S) = 1.)

Once we have a picture of the spaces S and Sh in relation to the values of f (±1), we

introduce the key point in the discussion of the paper. Any function y(z) ∈ S or y(z) ∈ Sh can

be written in the form of a two-point Taylor expansion at the base points z = ±1 (see [4]),

y(z) =
∞

∑
n=0

[an + bnz](z2 − 1)n, z ∈ Dr, (2.3)

where the coefficients an and bn are related to the values of the derivatives of y(z) at z = ±1

in the same form as the coefficients f 0
n and f 1

n of f are related to the derivatives of f at z = ±1

in (2.2). If we can derive the coefficients an and bn from (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z), we

will obtain the functions y ∈ S in the form of a two-point Taylor series (2.3), when the space S

is nonempty. This fact is not guaranteed a priori from the data of the problem. In the regular

case f (±1) = g(±1) = 0, it is guaranteed that the dimension of Sh is two [6]. When only one

of the end points is a regular singular point, then it is guaranteed that the dimension of Sh is,

at least, one (see [1]).

In the more general case analyzed in this paper it is not guaranteed a priori that Sh or S are

nonempty. Then, the existence of one analytic solution in Dr of the initial or boundary value

problem (1.1) is not guaranteed a priori either; nor even when h = 0 (homogeneous case) or in

the regular case f (±1) = g(±1) = h(±1) = 0. In this paper we analyze the size of the spaces

Sh and S and then, the existence and uniqueness of analytic solutions in Dr of the problem

(1.1). We accomplish this task using that any function in S may be written in the form (2.3):

in the remaining of the paper we replace the formal two-point Taylor series (2.3) in (1.1) and

study if it is possible to obtain the coefficients an and bn from the differential equation and the

boundary conditions given in (1.1).

For any function y(z) analytic in Dr, the series (2.3) is absolute and uniformly convergent

in the interval [−1, 1], and we also have [6]

y′(z) =
∞

∑
k=0

{[(2k + 1)bk + 2(k + 1)bk+1] + 2(k + 1)ak+1z} (z2 − 1)k,

y′′(z) =
∞

∑
k=0

2(k + 1) {[(2k + 1)ak+1 + 2(k + 2)ak+2] + [(2k + 3)bk+1 + 2(k + 2)bk+2]z} (z2 − 1)k,

(2.4)
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where the convergence of the series is absolute and uniform in the interval [−1, 1].

3 Two-point Taylor expansion representation of the functions of S

As it happens in the standard Frobenius method for initial value problems, when we replace

f , g and h by their two-point Taylor expansions (2.1) in the differential equation (z2 − 1)y′′ +
f (z)y′ + g(z)y = h(z), and the solution y(z) and its derivatives by their two-point Taylor

expansions (2.3) and (2.4), we find that the coefficients an and bn satisfy, for n = 0, 1, 2, . . ., a

linear system of two recurrences

2(n + 1)[(2n + f 1
0 )an+1 + f 0

0 bn+1] + 2n(2n − 1)an + 2
n−1

∑
k=0

(k + 1)( f 0
n−kbk+1 + f 1

n−kak+1)

+
n

∑
k=0

[
(2k + 1) f 0

n−kbk + 2(k + 1) f 1
n−k−1ak+1 + g0

n−kak + (g1
n−k + g1

n−k−1)bk

]
= h0

n,

2(n + 1)[(2n + f 1
0 )bn+1 + f 0

0 an+1] + 2n(2n + 1)bn + 2
n−1

∑
k=0

(k + 1)( f 0
n−kak+1 + f 1

n−kbk+1)

+
n

∑
k=0

[
(2k + 1) f 1

n−kbk + g0
n−kbk + g1

n−kak

]
= h1

n,

(3.1)

with f 0
−1 = g0

−1 = f 1
−1 = g1

−1 := 0. Then, in general, as it happens in the standard Frobenius

method or in the particular regular boundary problem analyzed in [6], the computation of the

coefficients an and bn involve the previous coefficients a0, b0, . . . , an−1 and bn−1. But we find

here a particularity that we do not find in the standard Frobenius method nor in the regular

problem solved in [6]: in general, for a given n = 0, 1, 2, . . ., we can solve the linear system

(3.1) for an+1 and bn+1 if and only if

∣∣∣∣
2n + f 1

0 f 0
0

f 0
0 2n + f 1

0

∣∣∣∣ 6= 0 ⇔
{

f (−1) ≡ f 0
0 − f 1

0 6= 2n,

f (1) ≡ f 0
0 + f 1

0 6= −2n.

Then, if f (−1)/2 and − f (1)/2 /∈ N ∪ {0}, we can solve the linear system (3.1) for an+1 and

bn+1 for any n = 0, 1, 2, . . . But if f (−1)/2 or − f (1)/2 ≡ n0 ∈ N ∪ {0}, then we can solve

the system (3.1) for an+1 and bn+1 for any n = 0, 1, 2, . . ., except for n = n0. If f (−1)/2 and

− f (1)/2 ∈ N ∪ {0}, then we define n0 ≡ max{ f (−1)/2,− f (1)/2}. For convenience, when

f (−1)/2 /∈ N ∪ {0} and − f (1)/2 /∈ N ∪ {0} we define n0 = −1.

Therefore, in any case, we can solve the linear system (3.1) for an+1 and bn+1 for n =

n0 + 1, n0 + 2, n0 + 3, . . . This means that we obtain all the coefficients an and bn needed

in (2.3) for n = n0 + 2, n0 + 3, n0 + 4, . . ., as a function of the first 2(n0 + 2) coefficients

a0, b0, a1, b1, . . . , an0+1, bn0+1. But these 2(n0 + 2) first coefficients are not totally free, as they

must satisfy the equations (3.1) for n = 0, 1, 2, . . . , n0. These facts impose 2(n0 + 1) lin-

ear restrictions (not all of them necessarily independent) to the 2(n0 + 2) first coefficients

a0, b0, a1, b1, . . . , an0+1, bn0+1. Let us denote these equations by Lk[a0, b0, a1, b1, . . . , an0+1, bn0+1] =

0, k = 1, 2, 3, . . . , 2n0 + 2. In general, these equations are non homogeneous; they are homoge-

neous when h(z) = 0.

In the particular case of the regular problem analyzed in [6] we have that n0 = 0, since

f (±1) = 0. Then, we can obtain from system (3.1) all the coefficients an and bn for n ≥ 2

as a function of the first four coefficients a0, b0, a1 and b1. In this case, the above mentioned
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set of restrictions consists of the equations (3.1) for n = 0. But using that f (±1) = g(±1) =

h(±1) = 0 we see that these equations are the tautology 0 = 0 and then, they do not introduce

any linear dependence between the coefficients a0, b0, a1 and b1.

As a difference with the Frobenius method where we only have one recurrence relation for

the sequence of standard Taylor coefficients, here we have a system of two recurrences (3.1).

But moreover, the computation of the coefficients an, bn for n ≥ n0 + 2 requires the initial seed

a0, b0, a1, b1, . . . , an0+1, bn0+1. These 2n0 + 4 coefficients satisfy the above mentioned 2n0 + 2

equations Lk = 0. This does not mean that the linear space Sh or the affine space S may have

dimension two or more, these spaces have, of course, dimension at most two. It is happening

that, apart from the affine space S of (true) solutions of (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z),

there is a bigger space of formal solutions W defined by

W :=

{
y(z) =

∞

∑
n=0

[an + bnz](z2 − 1)n

∣∣∣∣ an, bn given in (3.1) for n ≥ n0 + 2;

(a0, b0, a1, b1, . . . , an0+1, bn0+1) ∈ C
2n0+4

with Lk[a0, b0, . . . , an0+1, bn0+1] = 0, k = 1, 2, 3, . . . , 2n0 + 2

}
.

Formally, all the two-point Taylor series in W are solutions of (z2 − 1)y′′ + f (z)y′ + g(z)y =

h(z). But not all of them are convergent, only a subset: the affine space S of (true) solutions

of (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z), that may be written in the form

S =

{
y ∈ W

∣∣
∞

∑
n=0

[an + bnz](z2 − 1)n is uniformly convergent in [−1, 1]

}
.

In the following section we derive a more practical characterization of the space S in the form

of two extra linear equations for the coefficients a0, b0, a1, b1, . . . , an0+1, bn0+1. This characteri-

zation allows us to give some more precise information about the size of the space S.

4 Algebraic characterization of the space S

From (3.1) and the discussion below that formula, we see that we may solve (3.1) for (an, bn)

for n ≥ n0 + 2 in the schematic form

an =
n−1

∑
k=0

[An,kak + Bn,kbk] + En,

bn =
n−1

∑
k=0

[Cn,kak + Dn,kbk] + Fn,

(4.1)

where the coefficients An,k, Bn,k, Cn,k and Dn,k are functions of f 0
k , f 1

k , g0
k and g1

k . The coefficients

En,k and Fn,k are functions of h0
k and h1

k , k = 0, 1, 2, . . . , n − 1. For simplicity, we do not detail

here these functions, as the precise value of these coefficients is not needed in the theoretical

discussion. It is not needed either in computation in the particular examples, as it is more

convenient the use of an algebraic manipulator to compute (an, bn), n ≥ n0 + 2, directly from

(3.1).

For a fixed m ∈ N, m ≥ 2n0 + 2, and n = 0, 1, 2, . . . , m − n0 − 1, we define the vectors

vn := (an+n0+2−m, bn+n0+2−m, an+n0+3−m, bn+n0+3−m, . . . , an+n0 , bn+n0 , an+n0+1, bn+n0+1) ∈ C
2m,
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with a−k = b−k = 0 for k ∈ N. In particular, we have

vm−n0−2 = (a0, b0, a1, b1, . . . , am−1, bm−1)

and

v0 = (0, 0, . . . , 0, 0, a0, b0, a1, b1, . . . , an0+1, bn0+1).

For n = 0, 1, 2, . . . , m − n0 − 2, define the (2m)× (2m) matrix

Mn :=




0 0 1 0 0 0 0 . . . 0

0 0 0 1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . 0 1 0

0 0 0 0 0 . . . 0 0 1

0 . . . 0 An+n0+2,0 Bn+n0+2,0 . . . . . . An+n0+2,n+n0+1 Bn+n0+2,n+n0+1

0 . . . 0 Cn+n0+2,0 Dn+n0+2,0 . . . . . . Cn+n0+2,n+n0+1 Dn+n0+2,n+n0+1




.

(4.2)

The only non-null elements of this matrix are the corresponding to the entries mi,i+2 = 1,

i = 1, 2, 3, . . . , 2m − 2, and to the entries m2m−1,k, m2m,k, k = 0, 1, 2, . . . , n + n0 + 1. In particular

we have

M0 =




0 0 1 0 0 0 0 . . . 0

0 0 0 1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . 0 1 0

0 0 0 0 0 . . . 0 0 1

0 . . . 0 An0+2,0 Bn0+2,0 . . . . . . An0+2,n0+1 Bn0+2,n0+1

0 . . . 0 Cn0+2,0 Dn0+2,0 . . . . . . Cn0+2,n0+1 Dn0+2,n0+1




and

Mm−n0−2 =




0 0 1 0 0 0 0 . . . 0

0 0 0 1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . 0 1 0

0 0 0 0 0 . . . 0 0 1

Am,0 Bm,0 Am,1 Bm,1 . . . . . . . . . Am,m−1 Bm,m−1

Cm,0 Dm,0 Cm,1 Dm,1 . . . . . . . . . Cm,m−1 Dm,m−1




.

We also need, for n = 0, 1, 2, . . . , m − n0 − 2, the definition of the vector

cn := (0, 0, . . . , 0, 0, En+2, Fn+2) ∈ C
2m.

Then, the system of recurrences (4.1) (that indeed represents (3.1)) can be written in matrix

form

vn = Mn−1vn−1 + cn−1, n = 1, 2, 3, . . . , m − n0 − 1.

To find the solution of this linear recurrence for the vector vn, we define recurrently the

following matrices

M0 :=M0, Mn := MnMn−1,

C0 :=c0, Cn := MnCn−1 + cn, n = 1, 2, 3, . . . , m − n0 − 2,
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or equivalently,

Mn =
n

∏
k=0

Mn−k, Cn = cn +
n−1

∑
k=0

[Mn · Mn−1 · · · Mk+1]ck, n = 0, 1, 2, 3, . . . , m − n0 − 2.

Then, we find

vm−n0−1 = Mm−n0−2v0 + Cm−n0−2,

or, in an extended form




⋆

⋆

.

.

.
⋆

⋆

am
bm


 =




⋆

⋆

.

.

.
⋆

⋆

B2m−1

B2m


+




⋆ ⋆ ⋆ ⋆ ⋆ ... ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ... ⋆ ⋆

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...
⋆ ⋆ ⋆ ⋆ ⋆ ... ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ... ⋆ ⋆

⋆ ... ⋆ M2m−1,2m−2n0−3 M2m−1,2m−2n0−2 ... M2m−1,2m−1 M2m−1,2m

⋆ ... ⋆ M2m,2m−2n0−3 M2m,2m−2n0−2 ... M2m,2m−1 M2m,2m







0
.
0
a0
b0
.
.

an0+1

bn0+1




,

where Mi,j are the entrances of the last two rows and last 2n0 + 4 columns of the matrix

Mm−n0−2, Bi are the last two components of the vector Cm−n0−2 and the ⋆ denote complex

(unspecified) numbers. The two-point Taylor series of an analytic function in Dr converges in

[−1, 1] if it converges at z = 0 [4]. And it converges at z = 0 if and only if limm→∞(am, bm) =

(0, 0). Then, taking the limit m → ∞ into the above equation we find




⋆

⋆

.

.

.

⋆

⋆

0

0




=




⋆ ⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

⋆ ⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆

⋆ . . . ⋆ H1,1 H1,2 . . . H1,2n0+3 H1,2n0+4

⋆ . . . ⋆ H2,1 H2,2 . . . H2,2n0+3 H2,2n0+4







0

.

0

a0

b0

.

.

an0+1

bn0+1




+




⋆

⋆

.

.

.

⋆

⋆

γ1

γ2




,

where we have denoted

Hi,j := lim
m→∞

M2m+i−2,2m−2n0+j−4, i = 1, 2, j = 1, 2, 3, . . . , 2n0 + 4,

γ1 = lim
m→∞

B2m−1, γ2 = lim
m→∞

B2m.
(4.3)

Then, the two equations that we were looking for are, for k = 1, 2

Hk[a0, b0, . . . , an0+1, bn0+1] := Hk,1a0 + Hk,2b0 + · · ·+ Hk,2n0+3an0+1 + Hk,2n0+4bn0+1 + γk = 0.

(4.4)

Therefore, at this moment, we have found the more practical characterization of the space

S of true solutions of (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z) that we were looking for

S :=

{
y(z) =

∞

∑
n=0

[an + bnz](z2 − 1)n

∣∣∣∣ an, bn given in (3.1) for n ≥ n0 + 2;

(a0, b0, a1, b1, . . . , an0+1, bn0+1) ∈ C
2n0+4 with Lk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0

for k = 1, 2, 3, . . . , 2n0 + 2, and Hk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0 for k = 1, 2

}
.

(4.5)
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In other words, the 2n0 + 4 coefficients a0, b0, a1, b1, . . . , an0+1, bn0+1 of the two-point Taylor

expansion of any function in S must be a solution of the following linear system of 2n0 + 4

equations {
Lk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0, k = 1, 2, 3, . . . , 2n0 + 2,

Hk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0, k = 1, 2.
(4.6)

This system is homogeneous when h = 0 (when h0
n = h1

n = 0) and non-homogeneous when

h 6= 0. Let’s denote (4.6)h the system (4.6) when h = 0. We know that dim(Sh) = 0, 1 or 2.

This means that rank[(4.6)h] = 2n0 + 2, 2n0 + 3 or 2n0 + 4 and then, the homogeneous system

has a one or two-dimensional space of solutions or Sh = {0}. On the other hand, we know

that dim(S) = 1 or 2, or S is empty. This means that there are five possibilities:

(i) rank[(4.6)] = rank[(4.6)h] = 2n0 + 2; then dim(S) = dim(Sh) = 2,

(ii) rank[(4.6)] = rank[(4.6)h] = 2n0 + 3; then dim(S) = dim(Sh) = 1,

(iii) rank[(4.6)] = rank[(4.6)h] = 2n0 + 4; then Sh = {0} and S = {yp},

(iv) rank[(4.6)] = 2n0 + 3 or 2n0 + 4 and rank[(4.6)h] = 2n0 + 2; then dim(Sh) = 2 and S is

empty,

(v) rank[(4.6)] = 2n0 + 4 and rank[(4.6)h] = 2n0 + 3; then dim(Sh) = 1 and S is empty.

Therefore,

• When rank[(4.6)h] = 2n0 + 4, the unique analytic solution in Dr of the homogeneous

equation (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 is the null solution and the complete equation

(z2 − 1)y′′ + f (z)y′ + g(z)y = h(z) has a unique solution analytic in Dr.

• When rank[(4.6)h] = 2n0 + 2 then either, dim(S) = 2 or S is empty.

• When rank[(4.6)h] = 2n0 + 3 then either, dim(S) = 1 or S is empty.

In the regular case we know that dim(S) = 2 (it is proved in [6] that the only two equations

Hk = 0 that define S in this case are linearly independent). But, in general, we need to compute

the above ranks in order to obtain some information about the sizes of S and Sh.

4.1 Polynomial coefficients

When the coefficient functions f and g are polynomials, we can simplify the formulation of

the above existence and uniqueness criterion. In general, the computation of the coefficients

(an, bn) requires a matrix Mn of size (2m)× (2m) with m ≥ n + n0 + 2. This means that we

need matrices of increasing size to compute the coefficients when n increases. In the case of

polynomial coefficients, the situation is different. The recurrences (3.1) are of constant order s

independent of n and the computation of the coefficients an and bn involves only the previous

2s coefficients an−s, bn−s, . . . , an−1 and bn−1. Thus, in this case, we do not need matrices of

increasing size, but matrices of constant size (2s)× (2s).

The recurrence system (3.1) for polynomial coefficients is of the form

an =
n−1

∑
k=n−s

[An,kak + Bn,kbk] + En,

bn =
n−1

∑
k=n−s

[Cn,kak + Dn,kbk] + Fn,
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for a certain s ∈ N, n = n0, n0 + 1, n0 + 2, . . ., with a−k = b−k = 0, k ∈ N. The discussion is

identical to the one developed in the general case analyzed above, but now we can eliminate

the restriction n ≤ m − n0 − 2. Moreover, we can simplify the computations because now, the

size of the matrices Mn does not depend on n. We can now define the matrices Mn of fixed

size (2s)× (2s) in the form

Mn :=




0 0 1 0 0 0 0 . . . 0

0 0 0 1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . 0 1 0

0 0 0 0 0 . . . 0 0 1

An+2,n+2−s Bn+2,n+2−s . . . An+2,0 Bn+2,0 . . . . . . An+2,n+1 Bn+2,n+1

Cn+2,n+2−s Dn+2,n+2−s . . . Cn+2,0 Dn+2,0 . . . . . . Cn+2,n+1 Dn+2,n+1




instead of the form (4.2), with An,−k = Bn,−k = Cn,−k = Dn,−k = 0 for k ∈ N. The computation

of the system (4.6) is identical. The only difference is that now, the matrices Mm are of size

(2s)× (2s) ∀m ∈ N and the vectors Cm ∈ R2s ∀m ∈ N.

5 Existence and uniqueness criterion for the boundary value pro-

blem (1.1)

Once we have the algebraic description (4.5) of the space S of solutions analytic in Dr of the

equation (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z), we focus our attention on the boundary value

problem (1.1) stated in the introduction. We introduce now the two boundary conditions in

order to find an algebraic description of the solutions of (1.1). From (2.3) and (2.4) we have




y(−1)

y(1)

y′(−1)

y′(1)


 = T




a0

b0

a1

b1


 ,

where T is the regular matrix

T =




1 −1 0 0

1 1 0 0

0 1 −2 2

0 1 2 2


 .

(The first four coefficients a0, b0, a1, b1 of the two-point Taylor expansion (2.3) are related to

y(−1), y(1), y′(−1), y′(1) by the matrix T−1). Write the matrix BT, where B is the 2× 4 matrix

defining the boundary condition in (1.1), in the form

BT =

(
R1,1 R1,2 R1,3 R1,4

R2,1 R2,2 R2,3 R2,4

)
.

Then, the boundary value problem (1.1) may be written in the following equivalent form that

stresses the role of the first four coefficients of the two-point Taylor expansion of y(x) in the
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boundary value equations





(x2 − 1)y′′ + f (x)y′ + g(x)y = h(x) in (−1, 1),

R1[a0, b0, a1, b1] := R1,1a0 + R1,2b0 + R1,3a1 + R1,4b1 − α = 0,

R2[a0, b0, a1, b1] := R2,1a0 + R2,2b0 + R2,3a1 + R2,4b1 − β = 0.

(5.1)

When we add the above two algebraic equations R1 and R2 to the set of equations (4.6) that

describe the space S of solutions of (x2 − 1)y′′ + f (x)y′ + g(x)y = h(x), we find that the

coefficients a0, b0, . . . , an0+1, bn0+1 of the two-point Taylor solutions y(x) of (5.1) (if any) are

solutions of the algebraic linear system





Lk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0, k = 1, 2, 3, . . . , 2n0 + 2,

Hk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0, k = 1, 2,

Rk[a0, b0, a1, b1] = 0, k = 1, 2.

(5.2)

The remaining coefficients an, bn for n ≥ n0 + 2 are obtained recursively from (3.1). The

system (5.2) is a linear system of 2n0 + 6 equations with 2n0 + 4 unknowns (in the regular

case, the system reduces to the last 4 equations). The existence and uniqueness of solutions

of the system (5.2) is equivalent to the existence and uniqueness of solution of the problem

(5.1). Then, we can finally formulate the following existence and uniqueness criterion for the

boundary value problem (1.1).

Existence and uniqueness criterion

(i) If the system (5.2) has not a solution, then problem (1.1) has not an analytic solution in Dr.

(ii) If the system (5.2) has a unique solution, then problem (1.1) has a unique analytic solution in

Dr.

(iii) If the system (5.2) has a one-dimensional space of solutions, then problem (1.1) has a one-

dimensional family of analytic solutions in Dr.

(iv) If the system (5.2) has a two-dimensional space of solutions, then problem (1.1) has a two-

dimensional family of analytic solutions in Dr.

Remark 5.1. According to the ranks of (4.6) and (4.6)h we have that

1. If rank[(4.6)] = rank[(4.6)h] = 2n0 + 3, then (iv) is not possible.

2. If rank[(4.6)] = rank[(4.6)h] = 2n0 + 4, then (iii) and (iv) are not possible.

3. If rank[(4.6)] 6= rank[(4.6)h], then only (i) is possible.

Remark 5.2. In practice, the coefficients of the two equations Hk in (5.2) are computed approxi-

mately, as the limits involved in their computation can be computed only approximately (see

(4.3) and (4.4)). Therefore, the above existence and uniqueness criterion for solution of (1.1)

is useful when system (5.2) is well conditioned. In order to determine the rank of system

(5.2) and then, the dimension of the space of solutions, it is convenient to compute the limits

of the determinants of the principal minors. On the other hand, the criterion is construc-

tive as it provides an approximation to the solution of the form (2.3) once the coefficients

(a0, b0, . . . , an0+1, bn0+1) are computed from (5.2).
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Remark 5.3. When − f (1) or f (−1) 6= 0, 2, 4, . . ., the rank of the first 2n0 + 4 equations in (5.2)

is, at least, 2n0 + 3 and (iv) is not possible. When f (±1) = g(±1) = h(±1) = 0 (regular case),

the system (5.2) only consists of the four last equations and the rank of the two equations

Hk = 0, k = 1, 2, is 2. In any other case, the rank of the first 2n0 + 4 equations in the system

(5.2) is not known a priori; it is calculated once we have computed the first 2n0 + 4 equations

of system (5.2).

The key point in the discussion of the dimensions of S and Sh is system (4.6), and the key

point in the discussion of the existence and uniqueness of problem (1.1) is system (5.2). In the

examples of the following section we show how these systems are computed in practice and

how the above criterium of existence and uniqueness may be implemented.

6 Examples

In the examples of this section we explore all the possible situations in relation to the values

of f (1) and f (−1) and the sizes of the spaces S and Sh:

(i) f (−1)/2 and − f (1)/2 ∈ N ∪ {0} and dim(Sh) = 2, S is empty. Example 6.1.

(ii) f (−1)/2 and − f (1)/2 ∈ N ∪ {0} and dim(Sh) =dim(S) = 2. Example 6.2.

(iii) f (−1)/2 or − f (1)/2 /∈ N ∪ {0} and dim(Sh) =dim(S) = 1. Example 6.3.

(iv) f (−1)/2 and − f (1)/2 ∈ N ∪ {0} and dim(Sh) =dim(S) = 1. Example 6.4.

(v) f (−1)/2 or − f (1)/2 /∈ N ∪ {0} and dim(Sh) = 1, S empty. Example 6.5.

(vi) f (−1)/2 and − f (1)/2 ∈ N ∪ {0} and dim(Sh) = 1, S empty. Example 6.6.

(vii) f (−1)/2 or − f (1)/2 /∈ N ∪ {0} and Sh = {0}, S non empty. Example 6.7.

(viii) f (−1)/2 and − f (1)/2 ∈ N ∪ {0} and Sh = {0}, S non empty. Example 6.8.

In all the examples below, the parameters a, b, c, d, ã, b̃, c̃, d̃, C, α and β are arbitrary complex

numbers. The limits in the m index of the sequences (4.3) are approximated by the value of

the sequences at m = 10. We have selected examples for which the general solution of the

differential equation is known; in this way we may check the validity of the existence and

uniqueness criterion of Section 5.

Example 6.1. Consider the boundary value problem




(x2 − 1)y′′ − (x + 1)y′ = 1 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.1)

We have f (x) = −(x + 1), g(x) = 0 and h(x) = 1. As f (−1) = 0 and f (1) = −2, the critical

exponents at the points x = ±1 are µ2(−1) = 1 and µ2(1) = 2 respectively and n0 = 1. For

this example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with

vn = (an, bn), cn = (0, 0), n = 2, 3, . . . , and

Mn =

(
1−2n

2(n+1)
0

− 1
2(n+1)

− 2n+1
2(n+1)

)
.
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System (4.6) is given by 



b0 + 2a1 + 2b1 = −1,

b0 + 2a1 + 2b1 = 0,

−3b1 + 4a2 − 4b2 = 0,

3b1 − 4a2 + 4b2 = 0,

0.028031a2 = 0,

0.165074a2 + 0.358179b2 = 0,

which has no solution. The solution to the homogeneous system (4.6)h is (a1, b1, a2, b2) =

(−b0/2, 0, 0, 0) with a0, b0 ∈ C free parameters. Then, dim(Sh) = 2, but S is empty. This

conclusion is the same one that we obtain from the knowledge of the general solution of the

differential equation in (6.1)

y(x) = c1 + c2x(x − 2) +
1

8
[(x2 − 2x − 3) log(x + 1)− (x − 1)2 log(x − 1)− 2x].

Example 6.2. Consider the boundary value problem





(x2 − 1)y′′ − 2x3y′ + 2(x2 + 1)y = 0 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.2)

We have f (x) = −2x3, g(x) = 2(x2 + 1) and h(x) = 0. As f (−1) = 2 and f (1) = −2, the

critical exponents at the points x = ±1 are µ2(−1) = µ2(1) = 2 respectively and n0 = 1. For

this example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with

vn = (an−1, bn−1, an, bn), cn = (0, 0, 0, 0), n = 2, 3, . . . , and

Mn =




0 0 1 0

0 0 0 1
2n−3

2(n−1)(n+1)
0 − (n−2)(2n−1)

2(n−1)(n+1)
0

0 1
n+1 0 − 2n−1

2(n+1)


 .

System (4.6)=(4.6)h is given by





a0 − a1 = 0,

b0 − 2b1 = 0,

a0 − a1 = 0,

0.015263a1 − 0.030525a2 = 0,

0.150515b1 − 0.35839b2 = 0,

(6.3)

whose solution is (a1, b1, a2, b2) = (a0, b0/2, a0/2, 0.209988b0) with a0, b0 ∈ C free parameters.

As dim(Sh) = dim(S) = 2, the differential equation in (6.2) has a two-dimensional family of

analytic solutions in [−1, 1], which agrees with the fact that the differential equation has two

independent solutions ex2
and

√
πex2

erf(x) + 2x, both of them analytic in [−1, 1].

Now we apply the existence and uniqueness criterion of Section 5: the existence and

uniqueness of solution of (6.2) is equivalent to the existence and uniqueness of solution of the
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linear system given by equations (6.3) and the boundary value conditions written in terms of

the coefficients ak and bk

{
(a + b)a0 + (−a + b + c + d)b0 + (−2c + 2d)a1 + (2c + 2d)b1 = α,

(ã + b̃)a0 + (−ã + b̃ + c̃ + d̃)b0 + (−2c̃ + 2d̃)a1 + (2c̃ + 2d̃)b1 = β,
(6.4)

that, for this example, are given by

{
(a + b − 2c + 2d)a0 + (−a + b + 2c + 2d)b0 = α,

(ã + b̃ − 2c̃ + 2d̃)a0 + (−ã + b̃ + 2c̃ + 2d̃)b0 = β.

Then, problem (6.2) has a unique solution if and only if

(
a + b − 2c + 2d −a + b + 2c + 2d

ã + b̃ − 2c̃ + 2d̃ −ã + b̃ + 2c̃ + 2d̃

)(
a0

b0

)
=

(
α

β

)
. (6.5)

The existence and uniqueness condition obtained with this criterion coincides with the one

provided by the knowledge of the family of analytic solutions of the differential equation

given in (6.2)

y(x, C1, C2) = C1ex2
+ C2(

√
πex2

erf(x) + 2x).

The standard criterion of existence and uniqueness of solution of problem (6.2) depends on

the existence of two complex numbers C1 and C2 that make y(x, C1, C2) compatible with the

boundary conditions in (6.2), that is,

(
(a + b − 2c + 2d)e (−a + b + 2(c + d))

(
2 + e

√
π erf(1)

)

(ã + b̃ − 2c̃ + 2d̃)e (−ã + b̃ + 2(c̃ + d̃))
(
2 + e

√
π erf(1)

)
)(

C1

C2

)
=

(
α

β

)
. (6.6)

It can be checked that (6.5) and (6.6) are equivalent.

Example 6.3. Consider the boundary value problem





(x2 − 1)y′′ + x(1 − 2x2)y′ + 2y = 0 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.7)

In this problem, f (x) = x(1− 2x2), g(x) = 2 and h(x) = 0. We have f (−1) = 1 and f (1) = −1,

so the critical exponents at the points x = ±1 are µ2(−1) = µ2(1) = 3/2 respectively and

n0 = −1.

For this example, the recurrence relations (3.1) may be written in the form vn+1=Mnvn + cn

with vn = (an−1, bn−1, an, bn), cn = (0, 0, 0, 0), n = 2, 3, . . . , and

Mn =




0 0 1 0

0 0 0 1
2(n−1)

(n+1)(2n−1)
0 − 2n2−4n+1

(n+1)(2n−1)
0

0 1
n+1 0 − 2n−1

2(n+1)


 .
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System (4.6) = (4.6)h is given by





a0 − a1 = 0,

b0 − 2b1 = 0,

−a1 + 2a2 = 0,

−2b0 + b1 + 4b2 = 0,

0.009033a1 − 0.018067a2 = 0,

0.111897b1 − 0.266438b2 = 0,

(6.8)

whose solution is (b0, a1, b1, a2, b2) = (0, a0, 0, a0/2, 0), with a0 ∈ C a free parameter. As

dim(Sh) = dim(S) = 1, the differential equation in (6.7) has a one-dimensional family of

analytic solutions in [−1, 1], which agrees with the fact that the differential equation has two

independent solutions, ex2−1 and ex2−1
∫ x

e−t2√
1 − t2dt, and just one of them is analytic in

[−1, 1].

Now we apply the existence and uniqueness criterion of Section 5: the existence and

uniqueness of solution of (6.7) is equivalent to the existence and uniqueness of solution of the

linear system given by equations (6.8) and (6.4), that, for this example, are given by

{
(a + b)a0 + (−2c + 2d)a0 = α,

(ã + b̃)a0 + (−2c̃ + 2d̃)a0 = β.

Then, problem (6.7) has a unique solution if and only if

α

a + b − 2c + 2d
=

β

ã + b̃ − 2c̃ + 2d̃
(6.9)

with a + b − 2c + 2d 6= 0 and ã + b̃ − 2c̃ + 2d̃ 6= 0. The existence and uniqueness condition

obtained with this criterion coincides with the one provided by the knowledge of the family

of analytic solutions of the differential equation given in (6.7)

y(x, C) = Cex2−1.

The standard criterion of existence and uniqueness of solution of problem (6.7) depends on the

existence of a complex number C that makes y(x, C) compatible with the boundary conditions

in (6.7), that is, {
aC + bC − 2cC + 2dC = α,

ãC + b̃C − 2c̃C + 2d̃C = β.
(6.10)

It can be checked that conditions (6.9) and (6.10) are the same.

Example 6.4. Consider the boundary value problem





(x2 − 1)y′′ − 2y = −2 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.11)

We have f (x) = 0, g(x) = −2 and h(x) = −2. As f (−1) = f (1) = 0, the critical exponents

at the points x = ±1 are µ2(−1) = µ2(1) = 1 respectively and n0 = 0. For this example, the
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recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with vn = (an, bn),

cn = (0, 0), n = 1, 2, . . . , and

Mn =

(
− (n−1)(2n+1)

2n(n+1)
0

0 − 2n−1
2n

)
.

System (4.6) and (4.6)h are given, respectively, by




a0 = 1,

b0 = 0,

0.176197b1 = 0,





a0 = 0,

b0 = 0,

0.176197b1 = 0,

(6.12)

whose respective solutions are (a0, b0, b1) = (1, 0, 0) and (a0, b0, b1) = (0, 0, 0) with a1 ∈
C a free parameter. As dim(Sh) = dim(S) = 1, the differential equation in (6.11) has a

one-dimensional family of analytic solutions in [−1, 1], which agrees with the fact

that the homogeneous differential equation has two independent solutions, x2 − 1 and

(x2 − 1) log((x + 1)/(1 − x))− 2x, and just one is analytic in [−1, 1].

Now we apply the existence and uniqueness criterion of Section 5: the existence and

uniqueness of solution of (6.11) is equivalent to the existence and uniqueness of solution of

the linear system given by equations (6.12) and (6.4). Then, problem (6.11) has a unique

solution if and only if

α − a − b

d − c
=

β − ã − b̃

d̃ − c̃
(6.13)

with c 6= d and c̃ 6= d̃.

The existence and uniqueness condition obtained with this criterion coincides with the

one provided by the knowledge of the family of analytic solutions of the differential equation

given in (6.11)

y(x, C) = C(x2 − 1) + 1.

The standard criterion of existence and uniqueness of solution of problem (6.11) depends

on the existence of a complex number C that makes y(x, C) compatible with the boundary

conditions in (6.11), that is,

a + b − 2cC + 2dC = α, ã + b̃ − 2c̃C + 2d̃C = β (6.14)

It can be checked that equations (6.14) and (6.13) are equivalent.

Example 6.5. Consider the boundary value problem




(x2 − 1)y′′ + y′ = x in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

We have f (x) = 1, g(x) = 0 and h(x) = x. As f (−1) = f (1) = 1, the critical exponents at

the points x = ±1 are µ2(−1) = 3/2 and µ2(1) = 1/2 respectively and n0 = −1. For this

example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with

vn = (an, bn), cn = (0, 0), n = 1, 2, . . . , and

Mn =

(
− 2n2

2n2+3n+1
0

n
2n2+3n+1

− 2n+1
2n+2

)
.
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Systems (4.6) and (4.6)h are given, respectively, by




b0 + 2b1 = 0,

2a1 = 1,

0.024569a1 = 0,

−0.132232a1 + 0.336376b1 = 0,





b0 + 2b1 = 0,

2a1 = 0,

0.024569a1 = 0,

−0.132232a1 + 0.336376b1 = 0.

The first system has no solution; the solution of the second one is (b0, a1, b1) = (0, 0, 0) and

a0 ∈ C a free parameter. For this example, dim(Sh) = 1 but S is empty, which agrees with the

fact that the solution to the differential equation is

y(x) = c1

[√
1 − x2 + 2 arctan

(
x√

1 − x2

)]
+ c2

− 2x +
√

1 − x2 arctan

(
x√

1 − x2

)
− 1

2
arctan

(
x√

1 − x2

)2

,

that is not analytic in [−1, 1] for any value of (c1, c2).

Example 6.6. Consider the boundary value problem




(x2 − 1)y′′ + (1 − x)y′ + y = x in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

We have f (x) = 1 − x, g(x) = 1 and h(x) = x. As f (−1) = 2 and f (1) = 0, the critical

exponents at the points x = ±1 are µ2(−1) = 2 and µ2(1) = 1 respectively, and n0 = 1. For

this example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with

vn = (an, bn), cn = (0, 0), n = 2, 3, . . . , and

Mn =


− (2n−1)3

8n(n2−1)
1

8n(n2−1)
(1−2n)2

8n(n2−1)
1+2n+4n2−8n3

8n(n2−1)


 .

System (4.6) is given by 



a0 − 2a1 + b0 + 2b1 = 0,

2a1 − 2b1 = 1,

a2 + b1 + b2 = 0,

a1 + 4a2 + 3b1 + 4b2 = 0,

−0.080292a2 + 0.005407b2 = 0,

0.236021a2 − 0.527175b2 = 0.

This system has no solution. For this example, the solution to the homogeneous system (4.6)h

is (b0, a1, b1, a2, b2) = (−a0, 0, 0, 0, 0) with a0 ∈ C a free parameter. Then, dim(Sh) = 1 but S is

empty, which agrees with the fact that the solution of the differential equation is

y(x) = c1(1 − x) + c2[2 + (1 − x) log(x − 1)]− (x − 1)Li2

(
1 − x

2

)

+ (x − 1) log(1 − x) + log(2)(x − 1) log(x − 1)− (x + 1) log(x + 1)− 1,

that is not analytic in [−1, 1] for any value of (c1, c2). (Here Li2(z) is the polylogarithmic

function.)
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Example 6.7. Consider the boundary value problem




(x2 − 1)y′′ + 4xy′ + 2y = ex in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.15)

We have f (x) = 4x, g(x) = 2 and h(x) = ex. As f (−1) = −4 and f (1) = 4, the critical

exponents at the points x = ±1 are µ2(−1) = µ2(1) = −1 respectively and n0 = −1. For

this example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with

vn = (an, bn), cn = (An, Bn), n = 1, 2, . . . ,

Mn =

(
− 2n+1

2(n+2)
0

0 − 2n+3
2(n+2)

)
,

An =
1

4(n + 1)(n + 2)

n

∑
k=0

(n + k − 1)

k!n!(n − k − 1)!2n+k+1
((−1)ke − (−1)n+1e−1),

and

Bn =
1

4(n + 1)(n + 2)

n

∑
k=0

(n + k − 1)

k!n!(n − k − 1)!2n+k+1
((−1)ke + (−1)n+1e−1).

System (4.6) is given by 



2a0 + 8a1 = cosh 1,

6b0 + 8b1 = sinh 1,

0.056062a1 = 0.002946,

0.429814b1 = 0.004012,

(6.16)

whose solution is (a0, b0, a1, b1) = (0.561323, 0.183421, 0.0525542, 0.00933429). In this case, the

solution to the system (4.6)h is Sh = {0} and S is non empty.

This conclusion is the same that we obtain from the knowledge of the general solution of

the differential equation in (6.15),

y(x) = − ex

1 − x2
+

c1

1 − x2
+

c2x

1 − x2
.

There is only one analytic solution obtained for (c1, c2) = (1, 1).

Now we apply the existence and uniqueness criterion of Section 5: the existence and

uniqueness of solution of (6.15) is equivalent to the existence and uniqueness of solution of

the linear system given by equations (6.16) and (6.4). Then, problem (6.15) has a unique

solution if and only if

{
0.377902a + 0.744745b + 0.0969813c + 0.307198d = α,

0.377902ã + 0.744745b̃ + 0.0969813c̃ + 0.307198d̃ = β.

The same conditions may be obtained from the exact solution.

Example 6.8. Consider the boundary value problem





(x2 − 1)y′′ +
1

4
y = 0 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.17)
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We have f (x) = 0, g(x) = 1/4 and h(x) = 0. As f (−1) = f (1) = 0, the critical exponents

at the points x = ±1 are µ2(−1) = µ2(1) = 1 respectively and n0 = 0. For this example, the

recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with vn = (an, bn),

cn = (0, 0), n = 1, 2, . . . , and

Mn =


− (1−4n)2

16n(1+n)
0

0 − (1+4n)2

16n(1+n)


 .

System (4.6) = (4.6)h is given by 



a0 = 0,

b0 = 0,

0.018792a1 = 0,

0.360749b1 = 0,

(6.18)

whose solution is (a0, b0, a1, b1) = (0, 0, 0, 0). Then, Sh = S = {0} and the unique analytic

solution in (−1, 1) of the differential equation in problem (6.17) is the null solution. This

conclusion is the same one that we obtain from the knowledge of the general solution of

the differential equation in (6.17), since two independent solutions, none of them analytic in

[−1, 1] are

2F1

(
−1

4
,−1

4
,

1

2
, x2

)
, x 2F1

(
1

4
,

1

4
,

3

2
, x2

)
.

Now we apply the existence and uniqueness criterion of Section 5: the existence and

uniqueness of solution of (6.17) is equivalent to the existence and uniqueness of solution of

the linear system given by equations (6.18) and (6.4). Then, problem (6.17) has a unique

solution if and only if α = β = 0.

7 Final remarks

In Section 2 we have detailed the dimensionality of the space Sh of analytic solutions in Dr of

the homogeneous differential equation (z2 − 1)y′′ + f (z)y′ + g(z)y = 0. The dimension of Sh

is: (i) zero or one when f (−1) 6= 0, 2, 4, . . . or f (1) 6= 0,−2,−4, . . .; (ii) zero, one or two when

f (−1) = 0, 2, 4, . . . and f (1) = 0,−2,−4, . . .; (iii) two when f (±1) = g(±1) = 0 (regular case).

We have included the regular case analyzed in [6] as a particular case of the more general

situation analyzed in this paper. The dimension of the space S of analytic solutions in Dr of

the complete differential equation is either, the same as the dimension of Sh, or it is empty. A

complete characterization of this space is given at the end of Section 4 from the study of the

ranks of the algebraic linear systems (4.6) and (4.6)h.

In Section 3 we have derived an algorithm to obtain the two-point Taylor expansion of the

solutions of (1.1) (if any). In Section 5 we have given a straightforward and systematic criterion

for the existence and uniqueness of analytic solutions of the boundary value problem (1.1).

The criterion is very simple and establishes that the existence and uniqueness of solution of

the boundary value problem (1.1) is equivalent to the existence and uniqueness of solution of

the algebraic linear system (5.2). Two equations of this algebraic system are defined by the

limits (4.3), whose exact computation is, in general, difficult. Then, in practice, the entrances

of two of the equations of this algebraic system must be computed approximately and then,

the solution is computed in an approximated form. Also, in practice, we must apply the
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above existence and uniqueness criterion for the solution of (1.1) using the approximate linear

system. Then, the conclusions about the existence and uniqueness of solution are exact unless

the system is ill-conditioned. In this case, the ranks of the coefficient matrix and/or of the

augmented matrix of the system (5.2) sensibly depend on the precision in the computation of

the approximate limits.

Formally, the criterion proposed in this paper is similar to the standard criterion based on

the knowledge of the space of solutions: both criteria relate the existence and uniqueness of

solution of the boundary value problem (1.1) to the existence and uniqueness of a solution

of an algebraic linear system. As a difference with that standard criterion, our criterion does

not require the knowledge of the general solution of the differential equation. This qualitative

difference is essential when the general solution of the equation is not known. In this case,

the standard criterion is not useful, whereas our criterion can always be applied (except in

the case of ill-conditioning before discussed), as we have shown in the examples analyzed in

Section 6.
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Abstract. In this paper we deal with a system of partial differential equations de-
scribing a steady motion of an incompressible magnetohydrodynamic fluid, where the
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suitable norm.

Keywords: strong solutions, existence and uniqueness, incompressible magnetohydro-
dynamics, non-Newtonian fluids.

2020 Mathematics Subject Classification: 35M33, 35A01, 35D30.

1 Introduction and main result

Magnetohydrodynamics (MHD) concerns the interaction of electrically conductive fluids and

electromagnetic fields. The system of partial differential equations in MHD are basically

obtained through the coupling of the dynamical equations of the fluids with the Maxwell’s

equations which is used to take into account the effect of the Lorentz force due to the mag-

netic field, it has spanned a very large range of applications [21, 24, 25]. By neglecting the

displacement current term, a commonly used simplified MHD system could be described by





ut + (u · ∇)u − div τ(Du) +∇p =
1

µ
(∇× b)× b + f , in QT,

bt +
1

µ
curl

(
1

σ
curl b

)
= curl(u × b), in QT,

div u = 0, div b = 0, in QT,

(1.1)

where QT = Ω × (0, T), the unknown functions u = (u1(x, t), u2(x, t), . . . , un(x, t)) denotes

the velocity of the fluid, b = (b1(x, t), b2(x, t), . . . , bn(x, t)) the magnetic field, p = p(x, t)

the pressure and f = ( f1(x, t), f2(x, t), . . . , fn(x, t)) the external force applied to the fluid.

BCorresponding author. Email: wangchangjia@gmail.com
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Also, τ = (τij) is the stress tensor depending on the strain rate tensor Du = 1
2 (∇u +∇uT),

µ > 0 and σ > 0 denotes the permeability coefficient and the electric conductivity coefficient

respectively. For the sake of simplicity, in this work, we take µ = 1 and σ = 1.

Due to the conventional belief that the Navier–Stokes equations are an accurate model for

the motion of incompressible fluids in many practical situations, the majority of the known

work have assumed that the stress tensor τ(Du) is a linear function of the strain rate Du.

In this way we obtain the conventional system for MHD, and this classical model has been

extensively studied. For instance, Duvaut and Lions [7] established the local existence and

uniqueness of a solution in the Sobolev space Hs(RN)(s ≥ N). They also proved the global

existence of a solutions to this system with small initial data. Sermange and Temam [28]

proved the existence of a unique global solution in the two space dimensions. For the zero

magnetic diffusion case, Lin, Xu and Zhang [22] and Xu and Zhang [29] established the global

well-posedness in two and three dimensional space, respectively, under the assumption that

the initial data are sufficiently close to the equilibrium state. The global existence of smooth

solutions was proved by Lei [18] for the ideal MHD with axially symmetric initial datum in

Hs(R3) with s ≥ 2. For more details, one can also refer [3–5,8,9,11,13–16,23] and the reference

cited therein.

In recent years, the flow of non-Newtonian fluids (i.e. the stress tensor τ(Du) being a non-

linear function of Du ) has gained much importance in numerous technological applications.

Further, the motion of the non-Newtonian fluids in the presence of a magnetic field in differ-

ent contexts has been studied by several authors (see [2, 6, 26]). A typical form of the stress

tensor τ(Du) is of some p– structure with Du which were firstly proposed by Ladyzhenskaya

in [19,20]. For the MHD equations of non-Newtonian type (1.1), the known results are limited

and here we only recall two results closely related to ours. In case that τ(Du) = |Du|p−2Du

for p ≥ 5
2 , Samokhin proved in [27] the existence of weak solutions by using Galerkin method

and the monotone theory, which solve the equations in the sense of distributions and satisfy

the following energy inequality

sup
0≤t≤T

(‖u(t)‖2
2 + ‖b(t)‖2

2) + 2
∫ T

0
(‖∇u(t)‖p

p + ‖∇b(t)‖2
2)dt ≤ (‖u0‖2

2 + ‖b0‖2
2).

Later on, Gunzburger and his collaborators considered (1.1) with τ(Du) = (1 + |Du|p−2)Du

for the case of bounded or periodic domains, and they showed the existence and uniqueness

of a weak solutions, see [12] for more details.

In this paper, in a smooth bounded domain Ω ⊂ R
n (n = 2 or 3), we consider a steady

incompressible MHD equations of non-Newtonian fluids described by




−div
[
2µ(1 + |Du|2)

p−2
2 Du

]
+∇p = f − div(u ⊗ u) + (∇× b)× b, x ∈ Ω,

−∆b = (b · ∇)u − (u · ∇)b, x ∈ Ω,

div u = 0, div b = 0, x ∈ Ω,

(1.2)

supplemented by the boundary conditions

u|∂Ω = 0, b · n|∂Ω = 0, (∇× b)× n|∂Ω = 0, (1.3)

where p > 1, n is the unit outward normal vector of ∂Ω.

Remark 1.1. Since u and b are divergence free (i.e. div u = 0, div b = 0), an elementary

computations leads to the formulas

curl curl b = −∆b, curl(u × b) = (b · ∇)u − (u · ∇)b. (1.4)
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The aim of this paper is to prove the existence and uniqueness of strong solutions to

system (1.2)–(1.3) under the assumption that the Lq-norm of the external force field f is small

in a suitable sense. Our approach is based on regularity results for the Stokes problem and

magnetic equation, and a fixed-point argument.

Throughout the paper, for m ∈ N, the standard Lebesgue spaces are denoted by Lq(Ω) and

their norms by ‖ · ‖q, the standard Sobolev spaces are denoted by Wm,q(Ω) and their norms by

‖ · ‖m,q. We also denote by W
m,q
0 (Ω) the closure in Wm,q(Ω) of C∞

0 (Ω). W−1,q(Ω) denotes the

dual of W
1,q
0 (Ω) and their norms by ‖ · ‖−1,q;Ω. For x, y ∈ R we denote (x, y)+ = max{x, y},

x+ = max{x, 0}. We introduce the constants

Sp := (|p − 2|, 2)+, rp :=
1 + (p − 3)+ − (p − 4)+

2
, γp :=

[(p, 3)+ − 2](p,3)+−2

[(p, 3)+ − 1](p,3)+−1
. (1.5)

We also introduce the space

V := {u ∈ C∞

0 (Ω), div u = 0};

Vp := {u ∈ W
1,p
0 (Ω) : div u = 0};

Vm,p := {v ∈ W
1,p
0 (Ω) ∩ Wm,p(Ω) : div v = 0 };

W := {b ∈ W1,2(Ω) : div b = 0 , b · n|∂Ω = 0}.

Also, for q > r > n and δ > 0, let us denote by Bδ the convex set defined by

Bδ :=
{
(ξ, η) ∈ V2,q × (W2,r(Ω) ∩ W) : CE‖∇ξ‖1,q ≤ δ, CẼ‖∇η‖1,r ≤ δ

}
, (1.6)

where CE is the norm of the embedding of W1,q(Ω) into L∞(Ω) and CẼ is the norm of the

embedding of W1,r(Ω) into L∞(Ω), also Cp denotes the Poincaré constant corresponding to

the general Poincaré inequality ‖ · ‖s ≤ Cp‖∇(·)‖s. We consider the space V2,q × W2,r(Ω)

endowed with the norm

‖(ξ, η)‖1,q,r := max{‖∇ξ‖1,q, ‖∇η‖1,r}.

Now, we formulate the main theorem of this paper.

Theorem 1.2. Assume that q > r > n, p > 1, µ > 0, and let f ∈ Lq(Ω). There exist positive

constant C = C(C0, Cp, CE, CẼ, C−1, c2) such that if

C

[
(
1 +

1

µ

)C‖ f‖q

µ
+ Sp

(C‖ f‖q

µ

)2rp
(

1 +
C‖ f‖q

µ

)(p−4)+
]
<

1

4(p−2,1)+
, (1.7)

then, problem (1.2)–(1.3) has a unique strong solution (u, b) ∈ V2,q × W2,r(Ω).

Remark 1.3. As usual, the pressure π has disappeared from the notion of solution. Actually,

the pressure may be recovered by de Rham Theorem at least in L2(Ω), such that the triple

(u, π, b) satisfies equations (1.2)–(1.3) almost everywhere (see [11]).

The rest of our paper is organized as follows: in Section 2, we review some known results

and Section 3 is devoted to proving the main theorem to problem (1.2)–(1.3).
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2 Preliminary lemmas

In this section, we recall some basic facts which will be used later.

Lemma 2.1 ([10, Theorem 6.1, pp. 225]). Let m ≥ −1 be an integer and let Ω be a bounded domain

in R
n (n = 2, 3) with boundary ∂Ω of class Ck with k = (m + 2, 2)+. Then for any ψ ∈ Wm,ρ(Ω),

the following system 



−∆u +∇π = ψ, x ∈ Ω,

div u = 0, x ∈ Ω,

u|∂Ω = 0,

admits a unique solution [u, π] ∈ Wm+2,ρ(Ω)× Wm+1,ρ(Ω). Moreover, the following estimate holds

‖∇u‖m+1,ρ + ‖π‖m+1,ρ/R ≤ Cm‖ψ‖m,ρ,

where Cm = Cm(n, ρ, Ω) is a positive constant.

Lemma 2.2 ([1]). Let rp, γp are given by (1.5) and let G : R
+ → R be defined by

G(δ) = Aδ2 − δ + EδH(δ) + D,

where A, E, D are positive constants and H(x) = x2rp(1 + x)(p−4)+ . Thus, if the following assertion

holds

AD + ED2rp(1 + D)(p−4)+ ≤ γp,

then G possesses at least one root δ0. Moreover, δ0 > D and for every β ∈ [1, 2] the following estimate

holds

β − 1

β
δ0 +

2 − β

β
Aδ2

0 +
2rp + 1 − β

β
Eδ0H(δ0) +

E(p − 4)+

β
δ

2rp+2
0 (1 + δ0)

(p−4)+−1 ≤ D.

Lemma 2.3 ([17]). Let X and Y be Banach spaces such that X is reflexive and X →֒ Y. Let B be a

non-empty, closed, convex and bounded subset of X and let T : B → B be a mapping such that

‖T(u)− T(v)‖Y ≤ K‖u − v‖Y, ∀ u, v ∈ B (0 < K < 1),

then T has a unique fixed point in B.

3 Proof of Theorem 1.2

Our proof relies on a Banach fixed point theorem. Toward this aim, we first reformulate the

problem as follows





−µ∆u +∇p = f − div(u ⊗ u) + (∇× b)× b + div[2µσ(|Du|2)Du], x ∈ Ω,

−∆b = (b · ∇)u − (u · ∇)b, x ∈ Ω,

div u = 0, div b = 0, x ∈ Ω,

u|∂Ω = 0, b · n|∂Ω = 0, (∇× b)× n|∂Ω = 0,

(3.1)

where σ(x) = (1 + x)
p−2

2 − 1.
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Given (ξ, η) ∈ V2,q × W2,r(Ω), we consider the following problem




−µ∆u +∇p = f − div(ξ ⊗ ξ) + (∇× η)× η+ div[2µσ(|Dξ|2)Dξ], x ∈ Ω,

−∆b = (η · ∇)ξ − (ξ · ∇)η, x ∈ Ω,

div u = 0, div b = 0, x ∈ Ω,

u|∂Ω = 0, b · n|∂Ω = 0, (∇× b)× n|∂Ω = 0.

(3.2)

From Lemma 2.1 and Proposition 2.30 in [11], there exists a unique solution (u, b) ∈ V2,q ×
W2,r(Ω) to (3.2). We define the mapping

T : (ξ, η) → (u, b).

Our purpose now is to prove that TBδ0
is a contraction from Bδ0

to itself for some δ0 > 0.

Here Bδ0
is the closed ball defined in (1.6).

Proposition 3.1. Let q > r > n, p > 1, µ > 0, and let f ∈ Lq(Ω). There exists a positive constant

M1 = M1(C0, Cp, CE, CẼ) such that if

M2
1‖ f‖q

µ2
+ M1Sp

(
M1‖ f‖q

µ

)2rp
(

1 +
M1‖ f‖q

µ

)(p−4)+

≤ γp, (3.3)

then T(Bδ0
) ⊆ Bδ0

for some δ0 > 0.

Proof. Let (ξ, η) ∈ Bδ. From Lemma 2.1, u ∈ V2,q and it satisfies

‖∇u‖1,q ≤
C0

µ

(
‖ f‖q + ‖ξ · ∇ξ‖q + ‖(∇× η)× η‖q + ‖div[2µσ(|Dξ|2)Dξ]‖q

)
. (3.4)

Notice that

‖(∇× η)× η‖q ≤ ‖η‖∞‖∇η‖q ≤ CẼ‖η‖1,r‖∇η‖1,r

≤ δ(Cp + 1)‖∇η‖r ≤ δ(Cp + 1)‖∇η‖1,r

≤ (Cp + 1)

CẼ

δ2, (3.5)

reasoning as in [1], we could obtain

‖ξ · ∇ξ‖q + ‖div[2µσ(|Dξ|2)Dξ]‖q ≤
Cp

CE
δ2 +

4µSp

CE
δH(δ). (3.6)

Combining (3.4), (3.5) and (3.6), we get

‖∇u‖1,q ≤
M1

µ

(
‖ f‖q + δ2 + µSpδH(δ)

)
,

where M1 = C0 max
{

1,
Cp

CE
+

(Cp+1)
CẼ

, 4
CE

}
.

On the other hand, by Proposition 2.30 in [11], there exists a constant c1 > 0 such that

‖∇b‖1,r ≤ c1 [‖η · ∇ξ‖r + ‖ξ · ∇η‖r]

≤ c1

[
CẼ‖η‖1,r‖∇ξ‖1,q + CE‖ξ‖1,q‖∇η‖1,r

]

≤ c1

[
CẼ(Cp + 1)‖∇η‖r‖∇ξ‖1,q + CE(Cp + 1)‖∇ξ‖q‖∇η‖1,r

]

≤ c1

[
CẼ(Cp + 1)‖∇η‖1,r

δ

CE
+ CE(Cp + 1)‖∇ξ‖1,q

δ

CẼ

]

≤ c1

[
(Cp + 1)

CE
δ2 +

(Cp + 1)

CẼ

δ2

]

≤ 2M2δ2,

(3.7)
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where M2 = c1 max
{ (Cp+1)

CE
,
(Cp+1)

CẼ

}
. In order to ensure that T(Bδ) ⊆ Bδ, it is enough to show

that

‖∇u‖1,q ≤
M1

µ

(
‖ f‖q + δ2 + µSpδH(δ)

)
≤ δ,

‖∇b‖1,r ≤ 2M2δ2 ≤ δ.

(3.8)

Using Lemma 2.2 with A = M1
µ , E = M1Sp and D =

M1‖ f‖q

µ , there exists δ1 >
M1‖ f‖q

µ such

that
M1

µ

(
‖ f‖q + δ2

1 + µSpδ1H(δ1)
)
≤ δ1,

provided that

AD + ED2rp(1 + D)(p−4)+ ≤ γp,

which holds from the hypothesis (3.3). Also, it holds (β = 2 in Lemma 2.2) that

δ1 ≤ 2M1‖ f‖q

µ
.

On the other hand, we reformulate the inequality (3.8)2 as

2M2δ2 − δ ≤ 0. (3.9)

Due to

∆ = 1 > 0,

we deduce that for some δ, the inequality (3.9) is valid.

Take the constant D to satisfy δ− < D < 2D < δ+, where

δ± =
1

4M2
±
√

1 =
1 ± 4M2

4M2
.

Moreover, given that for every δ ∈ [δ−, δ+], the inequality (3.9) is valid, we can choose δ2 ∈
(δ−, D) such that

2M2δ2
2 ≤ δ2.

In conclusion, we obtain

δ2 <
M1‖ f‖q

µ
< δ1 ≤ 2M1‖ f‖q

µ
.

Thus, taking δ0 = δ1 we obtain that T(Bδ0
) ⊆ Bδ0

.

Proposition 3.2. There is a positive constant m = m(C−1, Cp, c2, CE, CẼ) such that if

m

[(
1 +

1

µ

)
M1‖ f‖q

µ
+ Sp

(
M1‖ f‖q

µ

)2rp
(

1 +
M1‖ f‖q

µ

)(p−4)+
]
<

1

4(p−2,1)+
, (3.10)

then T : Bδ0
→ Bδ0

is a contraction in W
1,q
0 (Ω)× W1,r(Ω).
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Proof. Let (ξ, η), (ξ̂, η̂) ∈ Bδ0
and let (u, b), (û, b̂) be their respective images under T. Then,

from (3.2) we obtain





−µ∆(u − û) +∇(p − p̂) = F, x ∈ Ω,

−∆(b − b̂) = G, x ∈ Ω,

div(u − û) = 0, div(b − b̂) = 0, x ∈ Ω,

(u − û)|∂Ω = 0, (b − b̂) · n|∂Ω = 0, (∇× (b − b̂))× n|∂Ω = 0,

where

F := div(ξ̂ ⊗ ξ̂ − ξ ⊗ ξ) + (∇× η)× η− (∇× η̂)× η̂+ 2µ div[σ(|Dξ|2)Dξ − σ(|Dξ̂|2)Dξ̂],

G := (η · ∇)ξ − (η̂ · ∇)ξ̂ + (ξ̂ · ∇)η̂− (ξ · ∇)η.

Applying Lemma 2.1 with ψ = F we obtain

‖∇(u − û)‖q ≤
C−1

µ
(‖div(ξ̂ ⊗ ξ̂ − ξ ⊗ ξ)‖−1,q + ‖(∇× η)× η− (∇× η̂)× η̂‖−1,q

+ 2µ‖div[σ(|Dξ|2)Dξ − σ(|Dξ̂|2)Dξ̂]‖−1,q).

(3.11)

Notice that

‖(∇× η)× η− (∇× η̂)× η̂‖−1,q

≤ ‖(∇× η)× η− (∇× η̂)× η̂‖r

= ‖(∇× η)× η− (∇× η̂)× η+ (∇× η̂)× η− (∇× η̂)× η̂‖r

≤ ‖∇(η− η̂)‖r‖η‖∞ + ‖∇η̂‖r‖η− η̂‖∞

≤ CẼ‖η‖1,r‖∇(η− η̂)‖r + ‖∇η̂‖1,rCẼ‖η− η̂‖1,r

≤ CẼ(Cp + 1)‖∇η‖r‖∇(η− η̂)‖r + δ0(Cp + 1)‖∇(η− η̂)‖r

≤ CẼ(Cp + 1)‖∇η‖1,r‖∇(η− η̂)‖r + δ0(Cp + 1)‖∇(η− η̂)‖r

≤ δ0(Cp + 1)‖∇(η− η̂)‖r + δ0(Cp + 1)‖∇(η− η̂)‖r,

= 2δ0(Cp + 1)‖∇(η− η̂)‖r,

(3.12)

reasoning as in [1], we obtain

‖div(ξ̂ ⊗ ξ̂ − ξ ⊗ ξ)‖−1,q ≤ C‖(ξ̂ ⊗ ξ̂ − ξ ⊗ ξ)‖q

≤ CCp(C
q
p + 1)

1
q δ0‖∇(ξ − ξ̂)‖q,

(3.13)

2µ‖ div[σ(|Dξ|2)Dξ − σ(|Dξ̂|2)Dξ̂]‖−1,q ≤ Cµ‖ [σ(|Dξ|2)Dξ − σ(|Dξ̂|2)Dξ̂]‖q

≤ CµSpH(2δ0)‖∇(ξ − ξ̂)‖q.
(3.14)

From (3.11)–(3.14) we obtain

‖∇(u − û)‖q ≤ M3

[
2δ0

µ
+ SpH(2δ0)

]
max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}, (3.15)

where M3 = C−1 max
{

CCp(C
q
p + 1)

1
q , 2(Cp + 1), C

}
.
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On the other hand, again by Proposition 2.30 in [11], there exists a constant c2 > 0 such

that

‖∇(b − b̂)‖r ≤ ‖∇(b − b̂)‖1,r

≤ c2

[
‖(η · ∇)ξ − (η̂ · ∇)ξ̂‖r + ‖(ξ̂ · ∇)η̂− (ξ · ∇)η‖r

]

= c2

[
‖(η · ∇)ξ − (η̂ · ∇)ξ + (η̂ · ∇)ξ − (η̂ · ∇)ξ̂‖r

+ ‖(ξ̂ · ∇)η̂− (ξ̂ · ∇)η+ (ξ̂ · ∇)η− (ξ · ∇)η‖r

]

≤ c2

[
‖η− η̂‖∞‖∇ξ‖r + ‖η̂‖∞‖∇(ξ − ξ̂)‖r

+ ‖ξ̂‖∞‖∇(η̂− η)‖r + ‖ξ̂ − ξ‖∞‖∇η‖r

]

≤ c2

[
CẼ‖η− η̂‖1,r‖∇ξ‖r + CẼ‖η̂‖1,r‖∇(ξ − ξ̂)‖r

+ CE‖ξ̂‖1,q‖∇(η̂− η)‖r + CE‖ξ̂ − ξ‖1,q‖∇η‖r

]

≤ c2

[
CẼ(Cp + 1)‖∇(η− η̂)‖r‖∇ξ‖1,q + CẼ(Cp + 1)‖∇η̂‖r‖∇(ξ − ξ̂)‖q

+ CE(Cp + 1)‖∇ξ̂‖q‖∇(η̂− η)‖r + CE(Cp + 1)‖∇(ξ̂ − ξ)‖q‖∇η‖r

]

≤ c2

[
CẼ(Cp + 1)‖∇ξ‖1,q‖∇(η− η̂)‖r + CẼ(Cp + 1)‖∇η̂‖1,r‖∇(ξ − ξ̂)‖q

+ CE(Cp + 1)‖∇ξ̂‖1,q‖∇(η̂− η)‖r + CE(Cp + 1)‖∇η‖1,r‖∇(ξ̂ − ξ)‖q

]

≤ c2

[
CẼ(Cp + 1)

CE
δ0‖∇(η− η̂)‖r + (Cp + 1)δ0‖∇(ξ − ξ̂)‖q

+(Cp + 1)δ0‖∇(η− η̂)‖r +
CE(Cp + 1)

CẼ

δ0‖∇(ξ̂ − ξ)‖q

]

≤ 4M4δ0 max
{
‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r

}
,

(3.16)

where M4 = c2 max{CẼ(Cp+1)
CE

, (Cp + 1),
CE(Cp+1)

CẼ
}.

Combining (3.15) and (3.16), we deduce that

max{‖∇(u − û)‖q, ‖∇(b − b̂)‖r}

≤
(

2M3δ0

µ
+ 4M4δ0 + M3SpH(2δ0)

)
· max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}.

From here, and taking into account that δ0≤ 2M1‖ f‖q

µ , H is nondecreasing, H(4y)≤ 4(p−2,1)+H(y)

and defining m = max{2M3, 4M4}, we get

max{‖∇(u − û)‖q, ‖∇(b − b̂)‖r}

≤ m

[
δ0

µ
+ δ0 + SpH(2δ0)

]
max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}

≤ m

[
2M1‖ f‖q

µ2
+

2M1‖ f‖q

µ
+ Sp4(p−2,1)+H

(
M1‖ f‖q

µ

)]

· max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}
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= m

[(
1 +

1

µ

)
2M1‖ f‖q

µ
+ 4(p−2,1)+Sp

(
M1‖ f‖q

µ

)2rp
(

1 +
M1‖ f‖q

µ

)(p−4)+
]

· max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}

≤ 4(p−2,1)+m

[(
1 +

1

µ

)
M1‖ f‖q

µ
+ Sp

(
M1‖ f‖q

µ

)2rp
(

1 +
M1‖ f‖q

µ

)(p−4)+
]

· max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}. (3.17)

Considering the space Y := W
1,q
0 (Ω) × W1,r(Ω), with norm max{‖∇ · ‖q, ‖∇ · ‖r}, the

inequality (3.17) implies that

‖T
(

ξ̂, η̂
)
− T (ξ, η) ‖Y ≤ 4(p−2,1)+m

[(
1 +

1

µ

)
M1‖ f‖q

µ

+Sp

(
M1‖ f‖q

µ

)2rp
(

1 +
M1‖ f‖q

µ

)(p−4)+
] ∥∥∥

(
ξ̂, η̂

)
− (ξ, η)

∥∥∥
Y

.

From which and hypothesis (3.10), we obtain T : Bδ0
→ Bδ0

is a contraction in W
1,q
0 (Ω) ×

W1,r(Ω).

Proof of Theorem 1.2. Notice that for p ≤ 3, γp = 1/4 = 1/4(p−2,1)+ and for p > 3, γp >

1/4(p−2,1)+ . Thus, by taking C = (M1, m)+ and because of (1.7) implies (3.3) and (3.10),

Propositions 3.1 and Propositions 3.2 yield that the mapping T : Bδ0
→ Bδ0

is a contraction in

W
1,q
0 (Ω)× W1,r(Ω).

Applying Lemma 2.3 with X = V2,q × W2,r(Ω), Y = W
1,q
0 (Ω) × W1,r(Ω) and B = Bδ0

,

we could obtain that T has a unique fixed point in Bδ0
and this implies the original problem

(1.2)–(1.3) has a unique strong solution (u, b) ∈ V2,q × W2,r(Ω).

The proof of Theorem 1.2 is finished.
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Abstract. We are concerned with the Cauchy problem of nonhomogeneous Boussinesq
equations for magnetohydrodynamics convection in R

2. We show that there exists a
unique local strong solution provided the initial density, the magnetic field, and the
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1 Introduction

Consider the following nonhomogeneous Boussinesq system for magnetohydrodynamic con-

vection (Boussinesq-MHD) in R
2:



































ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u)− µ∆u +∇P = b · ∇b + ρθe2,

θt + u · ∇θ = 0,

bt − ν∆b + u · ∇b − b · ∇u = 0,

div u = div b = 0,

(1.1)

where t ≥ 0 is time, x = (x1, x2) ∈ R
2 is the spatial coordinate, and ρ = ρ(x, t), u =

(u1, u2)(x, t), b = (b1, b2)(x, t), θ = θ(x, t), and P = P(x, t) denote the density, velocity,

magnetic field, temperature, and pressure of the fluid, respectively. The coefficients µ and ν

are positive constants. e2 = (0, 1)T, where T is the transpose.

We consider the Cauchy problem for (1.1) with the far field behavior

(ρ, u, θ, b) → (0, 0, 0, 0), as |x| → ∞, (1.2)

BEmail: xzhong1014@amss.ac.cn



2 X. Zhong

and the initial condition

ρ(x, 0) = ρ0(x), ρu(x, 0) = ρ0u0(x), θ(x, 0) = θ0(x), b(x, 0) = b0(x), x ∈ R
2, (1.3)

for given initial data ρ0, u0, θ0, and b0.

The system (1.1) is a combination of the nonhomogeneous Boussinesq equations of fluid

dynamics and Maxwell’s equations of electromagnetism, where the displacement current can

be neglected. The Boussinesq-MHD system models the convection of an incompressible flow

driven by the buoyant effect of a thermal or density field, and the Lorenz force, generated by

the magnetic field of the fluid and the Lorentz force. Specifically, it closely relates to a natural

type of the Rayleigh-Bénard convection, which occurs in a horizontal layer of conductive fluid

heated from below, with the presence of a magnetic field. For more physics background, one

may refer to [7, 14, 16] and references therein.

When ρ is constant, the system (1.1) reduces to the homogeneous Boussinesq-MHD system.

Recently, the well-posedness issue of solutions has attracted much attention. Bian [3] studied

the initial boundary value problem of two-dimensional (2D) viscous Boussinesq-MHD system

and obtained a unique classical solution for H3 initial data. Without smallness assumption on

the initial data, Bian and Gui [4] proved the global unique solvability of 2D Boussinesq-MHD

system with the temperature-dependent viscosity, thermal diffusivity, and electrical conduc-

tivity. Later on, the authors [5] established the global existence of weak solutions with H1

initial data. By imposing a higher regularity assumption on the initial data, they also ob-

tained a unique global strong solution. In [10], Larios and Pei proved the local well-posedness

of solutions to the fully dissipative 3D Boussinesq-MHD system, and also the fully inviscid,

irresistive, non-diffusive Boussinesq-MHD system. Moreover, they also provided a Prodi–

Serrin-type global regularity condition for the 3D Boussinesq-MHD system without thermal

diffusion, in terms of only two velocity and two magnetic components. By Fourier localiza-

tion techniques, Zhai and Chen [20] investigated well-posedness to the Cauchy problem of the

Boussinesq-MHD system with the temperature-dependent viscosity in Besov spaces. Very re-

cently, Liu et al. [13] showed the global existence and uniqueness of strong and smooth large

solutions to the 3D Boussinesq-MHD system with a damping term. Meanwhile, Bian and

Pu [6] proved global axisymmetric smooth solutions for the 3D Boussinesq-MHD equations

without magnetic diffusion and heat convection.

If the fluid is not affected by the Lorentz force (i.e., b = 0), then the system (1.1) becomes

the nonhomogeneous Boussinesq system. The authors [9, 21] studied regularity criteria for

3D nonhomogeneous incompressible Boussinesq equations, while Qiu and Yao [17] showed

the local existence and uniqueness of strong solutions of multi-dimensional nonhomogeneous

incompressible Boussinesq equations in Besov spaces. A blow-up criterion was also obtained

in [17]. We should point out here that the results in [9,17,21] always require the initial density

is bounded away from zero. For the initial density allowing vacuum states, Zhong [22] recently

showed local existence of strong solutions of the Cauchy problem in R
2 by making use of

weighted energy estimate techniques. In this paper, we will investigate the local existence of

strong solutions to the problem (1.1)–(1.3) with zero density at infinity. The initial density is

allowed to vanish and the spatial measure of the set of vacuum can be arbitrarily large, in

particular, the initial density can even have compact support.

Before stating our main result, we first explain the notations and conventions used

throughout this paper. For r > 0, set

Br ,
{

x ∈ R
2 | |x| < r

}

.
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For 1 ≤ p ≤ ∞ and integer k ≥ 0, the standard Sobolev spaces are denoted by:

Lp = Lp(R2), Wk,p = Wk,p(R2), Hk = Hk,2(R2), Dk,p = {u ∈ L1
loc | ∇ku ∈ Lp}.

Our main result can be stated as follows:

Theorem 1.1. Let η0 be a positive constant and

x̄ ,
(

3 + |x|2
)

1
2 log1+η0

(

3 + |x|2
)

. (1.4)

For constants q > 2 and a > 1, we assume that the initial data (ρ0 ≥ 0, u0, θ0 ≥ 0, b0) satisfy














ρ0 x̄a ∈ L1 ∩ H1 ∩ W1,q, θ0 ∈ H1 ∩ W1,q,
√

ρ0u0 ∈ L2, ∇u0 ∈ L2, div u0 = 0,

b0 x̄
a
2 ∈ L2, ∇b0 ∈ L2, div b0 = 0.

(1.5)

Then there exists a positive time T0 > 0 such that the problem (1.1)–(1.3) has a strong solution

(ρ ≥ 0, u, θ ≥ 0, b) on R
2 × (0, T0] satisfying















































































ρ ∈ C([0, T0]; L1 ∩ H1 ∩ W1,q),

ρx̄a ∈ L∞(0, T0; L1 ∩ H1 ∩ W1,q),
√

ρu, ∇u,
√

t
√

ρut,
√

t∇2u ∈ L∞(0, T0; L2),

θ ∈ C([0, T0]; H1 ∩ W1,q),

b, bx̄
a
2 ,∇b,

√
tbt,

√
t∇2b ∈ L∞(0, T0; L2),

∇u ∈ L2(0, T0; H1) ∩ L
q+1

q (0, T0; W1,q),

∇b ∈ L2(0, T0; H1), bt, ∇bx̄
a
2 ∈ L2(0, T0; L2),√

t∇u ∈ L2(0, T0; W1,q),
√

ρut,
√

t∇bx̄
a
2 ,
√

t∇ut,
√

t∇bt ∈ L2(R2 × (0, T0)),

(1.6)

and

inf
0≤t≤T0

∫

BN1

ρ(x, t)dx ≥ 1

4

∫

R2
ρ0(x)dx, (1.7)

for some positive constant N1. Moreover, if θ0 x̄a ∈ H1 ∩W1,q, then the strong solution just established

is unique.

Remark 1.2. When there is no electromagnetic field effect, that is b = 0, (1.1) turns to be the

nonhomogeneous Boussinesq equations, and Theorem 1.1 is the same as that of in [22]. Hence

we generalize the main result of [22] to the nonhomogeneous Boussinesq-MHD system (1.1).

However, compared with [22], for the system (1.1) treated here, the strong coupling between

the velocity field and the magnetic field, such as u · ∇b, as well as strong nonlinearity b · ∇b,

will bring out some new difficulties. To this end, we require b0 x̄
a
2 ∈ L2 and ∇b0 ∈ L2 beyond

the typical hypothesis of b0 ∈ H1. This additional hypothesis is needed in order to obtain the

estimate (3.10), which plays a crucial role in dealing with coupling between the velocity field

and the magnetic field.

The rest of the paper is organized as follows. In Section 2, we collect some elementary

facts and inequalities which will be needed in later analysis. Sections 3 is devoted to the a

priori estimates which are needed to obtain the local existence of strong solutions. The main

result Theorem 1.1 is proved in Section 4.
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2 Preliminaries

In this section, we will recall some known facts and elementary inequalities which will be used

frequently later. First of all, if the initial density is strictly away from vacuum, the following

local existence theorem on bounded balls can be shown by similar arguments as in [19].

Lemma 2.1. For R > 0 and BR = {x ∈ R
2 | |x| < R}, assume that (ρ0, u0, θ0 ≥ 0, b0) satisfies

(ρ0, u0, θ0, b0) ∈ H2(BR), inf
x∈BR

ρ0(x) > 0, div u0 = div b0 = 0. (2.1)

Then there exists a small time TR > 0 and a unique classical solution (ρ, u, P, θ, b) to the following

initial-boundary-value problem






















































ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u)− µ∆u +∇P = b · ∇b + ρθe2,

θt + u · ∇θ = 0,

bt − ν∆b + u · ∇b − b · ∇u = 0,

div u = div b = 0,

(ρ, u, θ, b)(x, t = 0) = (ρ0, u0, θ0, b0), x ∈ BR,

u(x, t) = b(x, t) = 0, x ∈ ∂BR, t > 0,

(2.2)

on BR × (0, TR] such that














(ρ, θ) ∈ C
(

[0, TR]; H2
)

,

(u, b) ∈ C
(

[0, TR]; H2
)

∩ L2
(

0, TR; H3
)

,

P ∈ C
(

[0, TR]; H1
)

∩ L2
(

0, TR; H2
)

,

(2.3)

where we denote Hk = Hk(BR) for positive integer k.

Next, for Ω ⊂ R
2, the following weighted Lm-bounds for elements of the Hilbert space

D̃1,2(Ω) , {v ∈ H1
loc(Ω)|∇v ∈ L2(Ω)} can be found in [12, Theorem B.1].

Lemma 2.2. For m ∈ [2, ∞) and s ∈ (1+ m
2 , ∞), there exists a positive constant C such that for either

Ω = R
2 or Ω = BR with R ≥ 1 and for any v ∈ D̃1,2(Ω),

(

∫

Ω

|v|m
3 + |x|2 (log(3 + |x|2))−sdx

)
1
m

≤ C‖v‖L2(B1) + C‖∇v‖L2(Ω). (2.4)

A useful consequence of Lemma 2.2 is the following crucial weighted bounds for elements

of D̃1,2(Ω), which have been proved in [11, Lemma 2.3].

Lemma 2.3. Let x̄ and η0 be as in (1.4) and Ω be as in Lemma 2.2. Assume that ρ ∈ L1(Ω)∩ L∞(Ω)

is a non-negative function such that
∫

BN1

ρdx ≥ M1, ‖ρ‖L1(Ω)∩L∞(Ω) ≤ M2, (2.5)

for positive constants M1, M2, and N1 ≥ 1 with BN1
⊂ Ω. Then for ε > 0 and η > 0, there is a

positive constant C depending only on ε, η, M1, M2, N1, and η0 such that every v ∈ D̃1,2(Ω) satisfies

‖vx̄−η‖L(2+ε)/η̃(Ω) ≤ C‖√ρv‖L2(Ω) + C‖∇v‖L2(Ω) (2.6)

with η̃ = min{1, η}.
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Next, the following Lp-bound for elliptic systems, whose proof is similar to that of [8,

Lemma 12], is a direct result of the combination of the well-known elliptic theory [1, 2] and a

standard scaling procedure.

Lemma 2.4. For p > 1 and k ≥ 0, there exists a positive constant C depending only on p and k such

that

‖∇k+2v‖Lp(BR) ≤ C‖∆v‖Wk,p(BR)
, (2.7)

for every v ∈ Wk+2,p(BR) satisfying

v = 0 on BR.

3 A priori estimates

Throughout this section, for r ∈ [1, ∞] and k ≥ 0, we denote
∫

· dx =
∫

BR

· dx, Lr = Lr(BR), Wk,r = Wk,r(BR), Hk = Wk,2.

Moreover, for R > 4N0 ≥ 4 with N0 fixed, assume that (ρ0, u0, θ0, b0) satisfies, in addition to

(2.1), that

1

2
≤
∫

BN0

ρ0(x)dx ≤
∫

BR

ρ0(x)dx ≤ 1. (3.1)

Thus Lemma 2.1 yields that there exists some TR > 0 such that the initial-boundary-value

problem (1.1) and (2.2) has a unique classical solution (ρ, u, P, θ, b) on BR × [0, TR] satisfying

(2.3).

Let x̄, η0, a, and q be as in Theorem 1.1, the main aim of this section is to derive the

following key a priori estimate on ψ defined by

ψ(t) , 1 + ‖√ρu‖L2 + ‖∇u‖L2 + ‖θ‖H1∩W1,q + ‖∇b‖L2 + ‖x̄
a
2 b‖L2 + ‖x̄aρ‖L1∩H1∩W1,q . (3.2)

Proposition 3.1. Assume that (ρ0, u0, θ0, b0) satisfies (2.1) and (3.1). Let (ρ, u, P, θ, b) be the solution

to the initial-boundary-value problem (1.1) and (2.2) on BR × (0, TR] obtained by Lemma 2.1. Then

there exist positive constants T0 and M both depending only on µ, ν, η0, q, a, N0, and E0 such that

sup
0≤t≤T0

[

ψ(t) +
√

t
(

‖√ρut‖L2 + ‖∇2u‖L2 + ‖bt‖L2 + ‖∇2b‖L2 + ‖∇bx̄
a
2 ‖L2

)]

+
∫ T0

0

(

‖√ρut‖2
L2 + ‖∇2u‖2

L2 + ‖∇2b‖2
L2 + ‖bt‖2

L2 + ‖∇bx̄
a
2 ‖2

L2

)

dt

+
∫ T0

0

(

‖∇2u‖
q+1

q

Lq + ‖∇P‖
q+1

q

Lq + t‖∇2u‖2
Lq + t‖∇P‖2

Lq

)

dt

+
∫ T0

0

(

t‖∇ut‖2
L2 + t‖∇bt‖2

L2 + t‖∇2bx̄
a
2 ‖2

L2

)

dt ≤ M, (3.3)

where

E0 , ‖√ρ0u0‖L2 + ‖∇u0‖L2 + ‖θ0‖H1∩W1,q + ‖∇b0‖L2 + ‖x̄
a
2 b0‖L2 + ‖x̄aρ0‖L1∩H1∩W1,q .

To show Proposition 3.1, whose proof will be postponed to the end of this subsection, we

begin with the following standard energy estimate for (ρ, u, P, θ, b) and the estimate on the

Lp-norm of the density.
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Lemma 3.2. Under the conditions of Proposition 3.1, let (ρ, u, P, θ, b) be a smooth solution to the

initial-boundary-value problem (1.1) and (2.2). Then for any t ∈ (0, T1],

sup
0≤s≤t

(

‖ρ‖L1∩L∞ + ‖θ‖L2∩L∞ + ‖√ρu‖2
L2 + ‖b‖2

L2

)

+
∫ t

0

(

‖∇u‖2
L2 + ‖∇b‖2

L2

)

ds ≤ C, (3.4)

where (and in what follows) C denotes a generic positive constant depending only on µ, ν, q, a, N0, η0

and E0. T1 is as that of Lemma 3.3.

Proof. 1. Since div u = 0, we deduce from (1.1)1 that

ρt + u · ∇ρ = 0. (3.5)

Define particle path

{

d
dt X(x, t) = u(X(x, t), t),

X(x, 0) = x.

Thus, along particle path, we obtain from (3.5) that

d

dt
ρ(X(x, t), t) = 0,

which implies

ρ(X(x, t), t) = ρ0. (3.6)

Similarly, one derives from (1.1)3 that

θ(X(x, t), t) = θ0. (3.7)

2. Multiplying (1.1)2 by u and then integrating the resulting equation over BR, we have

1

2

d

dt

∫

ρ|u|2dx + µ
∫

|∇u|2dx =
∫

b · ∇b · udx +
∫

ρθe2 · udx. (3.8)

Multiplying (1.1)4 by b and integrating by parts, we arrive at

1

2

d

dt

∫

|b|2dx + ν
∫

|∇b|2dx +
∫

b · ∇b · udx = 0,

which combined with (3.8) and (3.7) implies that

1

2

d

dt

(

‖√ρu‖2
L2 + ‖b‖2

L2

)

+
(

µ‖∇u‖2
L2 + ν‖∇b‖2

L2

)

=
∫

ρθu · e2dx

≤ ‖ρ‖
1
2
L∞‖

√
ρu‖L2‖θ‖L2

≤ C‖√ρu‖2
L2 + C. (3.9)

Thus, Gronwall’s inequality leads to

sup
0≤s≤t

(

‖√ρu‖2
L2 + ‖b‖2

L2

)

+
∫ t

0

(

‖∇u‖2
L2 + ‖∇b‖2

L2

)

ds ≤ C,

which together with (3.6) and (3.7) yields (3.4) and completes the proof of Lemma 3.2.

Next, we will give some spatial weighted estimates on the density and the magnetic.
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Lemma 3.3. Under the conditions of Proposition 3.1, let (ρ, u, P, θ, b) be a smooth solution to the

initial-boundary-value problem (1.1) and (2.2). Then there exists a T1 = T1(N0, E0) > 0 such that for

all t ∈ (0, T1],

sup
0≤s≤t

(

‖ρx̄a‖L1 + ‖bx̄
a
2 ‖2

L2

)

+
∫ t

0
‖∇bx̄

a
2 ‖2

L2 ds ≤ C. (3.10)

Proof. 1. For N > 1, let ϕN ∈ C∞
0 (BN) satisfy

0 ≤ ϕN ≤ 1, ϕN(x) = 1, if |x| ≤ N

2
, |∇ϕN | ≤ CN−1. (3.11)

It follows from (1.1)1 and (3.4) that

d

dt

∫

ρϕ2N0
dx =

∫

ρu · ∇ϕ2N0
dx

≥ −CN−1
0

(

∫

ρdx

)
1
2
(

∫

ρ|u|2dx

)
1
2

≥ −C̃(E0). (3.12)

Integrating (3.12) and using (3.1) give rise to

inf
0≤t≤T1

∫

B2N0

ρdx ≥ inf
0≤t≤T1

∫

ρϕ2N0
dx ≥

∫

ρ0 ϕ2N0
dx − C̃T1 ≥ 1

4
. (3.13)

Here, T1 , min{1, (4C̃)−1}. From now on, we will always assume that t ≤ T1. The combina-

tion of (3.13), (3.4), and (2.6) implies that for ε > 0 and η > 0, every v ∈ D̃1,2(BR) satisfies

‖vx̄−η‖2

L
2+ε

η̃
≤ C(ε, η)‖√ρv‖2

L2 + C(ε, η)‖∇v‖2
L2 , (3.14)

with η̃ = min{1, η}.

2. Noting that

|∇x̄| ≤ (3 + 2η0) log1+η0(3 + |x|2) ≤ C(a, η0)x̄
4

8+a ,

multiplying (1.1)1 by x̄a and integrating by parts imply that

d

dt
‖ρx̄a‖L1 =

∫

ρ(u · ∇)x̄ax̄a−1dx

≤ C
∫

ρ|u|x̄a−1+ 4
8+a dx

≤ C‖ρx̄a−1+ 8
8+a ‖

L
8+a
7+a

‖ux̄−
4

8+a ‖L8+a

≤ C‖ρ‖
1

8+a

L∞ ‖ρx̄a‖
7+a
8+a

L1 (‖√ρu‖L2 + ‖∇u‖L2)

≤ C (1 + ‖ρx̄a‖L1)
(

1 + ‖∇u‖2
L2

)

due to (3.4) and (3.14). This combined with Gronwall’s inequality and (3.4) leads to

sup
0≤s≤t

‖ρx̄a‖L1 ≤ C exp

{

C
∫ t

0

(

1 + ‖∇u‖2
L2

)

ds

}

≤ C. (3.15)

3. Multiplying (1.1)3 by bx̄a and integrating by parts yield

1

2

d

dt
‖bx̄a/2‖2

L2 + ν‖∇bx̄a/2‖2
L2 =

ν

2

∫

|b|2∆x̄adx +
∫

b · ∇u · bx̄adx +
1

2

∫

|b|2u · ∇x̄adx

, Ī1 + Ī2 + Ī3, (3.16)



8 X. Zhong

where

| Ī1| ≤ C
∫

|b|2 x̄a x̄−2 log2(1−η0)(3 + |x|2)dx ≤ C
∫

|b|2 x̄adx,

| Ī2| ≤ C‖∇u‖L2‖bx̄
a
2 ‖2

L4

≤ C‖∇u‖L2‖bx̄
a
2 ‖L2(‖∇bx̄

a
2 ‖L2 + ‖b∇x̄

a
2 ‖L2)

≤ C(‖∇u‖2
L2 + 1)‖bx̄

a
2 ‖2

L2 +
ν

4
‖∇bx̄

a
2 ‖2

L2 ,

| Ī3| ≤ C‖bx̄
a
2 ‖L4‖bx̄

a
2 ‖L2‖ux̄−

3
4 ‖L4

≤ C‖bx̄
a
2 ‖2

L4 + C‖bx̄
a
2 ‖2

L2

(

‖√ρu‖2
L2 + ‖∇u‖2

L2

)

≤ C
(

1 + ‖∇u‖2
L2

)

‖bx̄
a
2 ‖2

L2 +
ν

4
‖∇bx̄

a
2 ‖2

L2 , (3.17)

due to Gagliardo–Nirenberg inequality, (3.4), and (3.14). Putting (3.17) into (3.16), we get after

using Gronwall’s inequality and (3.4) that

sup
0≤s≤t

‖bx̄
a
2 ‖2

L2 +
∫ t

0
‖∇bx̄

a
2 ‖2

L2 ds ≤ C exp

{

C
∫ t

0

(

1 + ‖∇u‖2
L2

)

ds

}

≤ C, (3.18)

which together with (3.15) gives (3.10) and finishes the proof of Lemma 3.3.

Lemma 3.4. Let T1 be as in Lemma 3.3. Then there exists a positive constant α > 1 such that for all

t ∈ (0, T1],

sup
0≤s≤t

(

‖∇u‖2
L2 + ‖∇b‖2

L2

)

+
∫ t

0

(

‖√ρus‖2
L2 + ‖∇2u‖2

L2 + ‖bs‖2
L2 + ‖∇2b‖2

L2

)

ds

≤ C + C
∫ t

0
ψα(s)ds. (3.19)

Proof. 1. It follows from (3.4), (3.10), and (3.14) that for any ε > 0 and any η > 0,

‖ρηv‖
L

2+ε
η̃

≤ C‖ρη x̄
3η̃a

4(2+ε) ‖
L

4(2+ε)
3η̃

‖vx̄
− 3η̃a

4(2+ε) ‖
L

4(2+ε)
η̃

≤ C

(

∫

ρ
4(2+ε)η

3η̃ −1
ρx̄adx

)

3η̃
4(2+ε)

‖vx̄
− 3η̃a

4(2+ε) ‖
L

4(2+ε)
η̃

≤ C‖ρ‖
4(2+ε)η−3η̃

4(2+ε)

L∞ ‖ρx̄a‖
3η̃

4(2+ε)

L1 (‖√ρv‖L2 + ‖∇v‖L2)

≤ C‖√ρv‖L2 + C‖∇v‖L2 , (3.20)

where η̃ = min{1, η} and v ∈ D̃1,2(BR). In particular, this together with (3.4) and (3.14) yields

‖ρηu‖
L

2+ε
η̃
+ ‖ux̄−η‖

L
2+ε

η̃
≤ C (1 + ‖∇u‖L2) , (3.21)

‖ρηθ‖
L

2+ε
η̃
+ ‖θx̄−η‖

L
2+ε

η̃
≤ C (1 + ‖∇θ‖L2) . (3.22)

2. Multiplying (1.1)2 by ut and integrating by parts, one has

µ
d

dt

∫

|∇u|2dx +
∫

ρ|ut|2dx ≤ C
∫

ρ|u|2|∇u|2dx +
∫

b · ∇b · utdx +
∫

ρθ|ut|dx. (3.23)
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We derive from (3.21), Hölder’s inequality, and Gagliardo–Nirenberg inequality that
∫

ρ|u|2|∇u|2dx ≤ C‖√ρu‖2
L8‖∇u‖2

L
8
3

≤ C‖√ρu‖2
L8‖∇u‖

3
2

L2‖∇u‖
1
2

H1

≤ Cψα + ε‖∇2u‖2
L2 , (3.24)

where (and in what follows) we use α > 1 to denote a genetic constant, which may be different

from line to line. For the second term on the right-hand side of (3.23), integration by parts

together with (1.1)5 and Gagliardo–Nirenberg inequality indicates that for any ε > 0,

∫

b · ∇b · utdx = − d

dt

∫

b · ∇u · bdx +
∫

bt · ∇u · bdx +
∫

b · ∇u · btdx

≤ − d

dt

∫

b · ∇u · bdx +
ν−1

2
‖bt‖2

L2 + C‖b‖2
L4‖∇u‖2

L4

≤ − d

dt

∫

b · ∇u · bdx +
ν−1

2
‖bt‖2

L2 + C‖b‖L2‖∇b‖L2‖∇u‖L2‖∇u‖H1

≤ − d

dt

∫

b · ∇u · bdx +
ν−1

2
‖bt‖2

L2 + ε‖∇2u‖2
L2 + Cψα. (3.25)

From Cauchy–Schwarz inequality and (3.4), we have

∫

ρθ|ut|dx ≤ 1

2
‖√ρut‖2

L2 +
1

2
‖ρ‖L∞‖θ‖2

L2 ≤
1

2

∫

ρ|ut|2dx + C. (3.26)

Thus, inserting (3.24)–(3.26) into (3.23) gives

d

dt
B(t) +

1

2
‖√ρut‖2

L2 ≤ ε‖∇2u‖2
L2 +

ν−1

2
‖bt‖2

L2 + Cψα, (3.27)

where

B(t) , µ‖∇u‖2
L2 +

∫

b · ∇u · bdx

satisfies

µ

2
‖∇u‖2

L2 − C1‖∇b‖2
L2 ≤ B(t) ≤ C‖∇u‖2

L2 + C‖∇b‖2
L2 , (3.28)

owing to Hölder’s inequality, Gagliardo–Nirenberg inequality, and (3.4).

3. It follows from (1.1)3 that

ν
d

dt
‖∇b‖2

L2 + ‖bt‖2
L2 + ν2‖∆b‖2

L2

≤ C‖|b||∇u|‖2
L2 + C‖|u||∇b|‖2

L2

≤ C‖b‖L2‖∇2b‖L2‖∇u‖2
L2 + C‖x̄−

a
4 u‖2

L8‖x̄
a
2 ∇b‖L2‖∇b‖L4

≤ ν2

2
‖∆b‖2

L2 + Cψα + C‖x̄
a
2 ∇b‖2

L2 (3.29)

due to (2.7), (3.21), and Gagliardo–Nirenberg inequality. Multiplying (3.29) by ν−1(C1 + 1)

and adding the resulting inequality to (3.27) imply

d

dt

(

B(t) + (C1 + 1)‖∇b‖2
L2

)

+
1

2
‖√ρut‖2

L2 +
ν−1

2
‖bt‖2

L2 +
ν

2
‖∆b‖2

L2

≤ Cψα + C‖x̄
a
2 ∇b‖2

L2 + ε‖∇2u‖2
L2 . (3.30)
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Since (ρ, u, P, θ, b) satisfies the following Stokes system















−µ∆u +∇P = −ρut − ρu · ∇u + b · ∇b + ρθe2, x ∈ BR,

div u = 0, x ∈ BR,

u(x) = 0, x ∈ ∂BR,

(3.31)

applying regularity theory of Stokes system to (3.31) (see [18]) yields that for any p ∈ [2, ∞),

‖∇2u‖Lp + ‖∇P‖Lp ≤ C‖ρut‖Lp + C‖ρu · ∇u‖Lp + C‖|b||∇b|‖Lp + C‖ρθ‖Lp . (3.32)

Hence, we infer from (3.32), (3.4), (3.21), and Gagliardo–Nirenberg inequality that

‖∇2u‖2
L2 + ‖∇P‖2

L2

≤ C‖ρut‖2
L2 + C‖ρu · ∇u‖2

L2 + C‖|b||∇b|‖2
L2 + C‖ρθ‖2

L2

≤ C‖ρ‖L∞‖√ρut‖2
L2 + C‖ρu‖2

L4‖∇u‖2
L4 + C‖b‖2

L4‖∇b‖2
L4 + C‖ρ‖2

L∞‖θ‖2
L2

≤ C‖√ρut‖2
L2 + C‖ρu‖2

L4‖∇u‖L2‖∇u‖H1 + C‖b‖L2‖∇b‖2
L2‖∇b‖H1 + C

≤ C‖√ρut‖2
L2 +

1

4
‖∇2b‖2

L2 +
1

2
‖∇2u‖2

L2 + C
(

1 + ‖∇b‖4
L2 + ‖∇u‖6

L2

)

≤ C‖√ρut‖2
L2 +

1

4
‖∇2b‖2

L2 +
1

2
‖∇2u‖2

L2 + Cψα. (3.33)

Substituting (3.33) into (3.30) and choosing ε suitably small, one gets

d

dt

(

B(t) + (C1 + 1)‖∇b‖2
L2

)

+
1

4
‖√ρut‖2

L2 +
ν−1

2
‖bt‖2

L2 +
ν

4
‖∆b‖2

L2 ≤ Cψα + C‖x̄
a
2 ∇b‖2

L2 .

Integrating the above inequality over (0, t), then we obtain (3.19) from (2.7), (3.28), (3.10), and

(3.33). The proof of Lemma 3.4 is finished.

Lemma 3.5. Let T1 be as in Lemma 3.3. Then there exists a positive constant α > 1 such that for all

t ∈ (0, T1],

sup
0≤s≤t

s
(

‖√ρus‖2
L2 + ‖bs‖2

L2

)

+
∫ t

0
s
(

‖∇us‖2
L2 + ‖∇bs‖2

L2

)

ds ≤ C exp

{

C
∫ t

0
ψαds

}

. (3.34)

Proof. 1. Differentiating (1.1)2 with respect to t gives

ρutt + ρu · ∇ut − µ∆ut = −ρt(ut + u · ∇u)− ρut · ∇u −∇Pt + (b · ∇b)t + (ρθe2)t. (3.35)

Multiplying (3.35) by ut and integrating the resulting equality by parts over BR, we obtain

after using (1.1)1 and (1.1)5 that

1

2

d

dt

∫

ρ|ut|2dx + µ
∫

|∇ut|2dx

≤ C
∫

ρ|u||ut|
(

|∇ut|+ |∇u|2 + |u||∇2u|
)

dx + C
∫

ρ|u|2|∇u||∇ut|dx

+C
∫

ρ|ut|2|∇u|dx +
∫

bt · ∇b · utdx +
∫

b · ∇bt · utdx

+
∫

ρtθe2 · utdx +
∫

ρθte2 · utdx ,
7

∑
i=1

Îi. (3.36)
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It follows from (3.20), (3.21), and Gagliardo–Nirenberg inequality that

Î1 ≤ C‖√ρu‖L6‖√ρut‖
1
2

L2‖
√

ρut‖
1
2

L6

(

‖∇ut‖L2 + ‖∇u‖2
L4

)

+ C‖ρ
1
4 u‖2

L12‖
√

ρut‖
1
2

L2‖
√

ρut‖
1
2

L6‖∇2u‖L2

≤ C(1 + ‖∇u‖2
L2)‖

√
ρut‖

1
2

L2 (‖
√

ρut‖L2 + ‖∇ut‖L2)
1
2

×
(

‖∇ut‖L2 + ‖∇u‖2
L2 + ‖∇u‖L2‖∇2u‖L2 + ‖∇2u‖L2

)

≤ µ

8
‖∇ut‖2

L2 + Cψα‖√ρut‖2
L2 + Cψα + C

(

1 + ‖∇u‖2
L2

)

‖∇2u‖2
L2 . (3.37)

Hölder’s inequality combined with (3.20) and (3.21) leads to

Î2 + Î3 ≤ C‖√ρu‖2
L8‖∇u‖L4‖∇ut‖L2 + C‖∇u‖L2‖√ρut‖

3
2

L6‖
√

ρut‖
1
2

L2

≤ µ

8
‖∇ut‖2

L2 + Cψα‖√ρut‖2
L2 + C

(

ψα + ‖∇2u‖2
L2

)

. (3.38)

Integration by parts together with (1.1)5, Hölder’s and Gagliardo–Nirenberg inequalities indi-

cates that

Î4 + Î5 = −
∫

bt · ∇ut · bdx −
∫

b · ∇ut · btdx

≤ µ

8
‖∇ut‖2

L2 + C‖b‖2
L4‖bt‖2

L4

≤ µ

8
‖∇ut‖2

L2 +
µν

4(C2 + 1)
‖∇bt‖2

L2 + Cψα‖bt‖2
L2 . (3.39)

Integration by parts together with (1.1)1, (1.1)5, Hölder’s inequality, Gagliardo–Nirenberg in-

equality, and (3.7) indicates that

Î6 =
∫

ρu · ∇(θe2 · ut)dx

≤
∫

ρ|u||∇θ||ut|dx +
∫

ρ|u|θ|∇ut|dx

≤ ‖√ρut‖L2‖√ρu‖
L

2q
q−2

‖∇θ‖Lq + ‖∇ut‖L2‖ρu‖L4‖θ‖L4

≤ µ

6
‖∇ut‖2

L2 + Cψα‖√ρut‖2
L2 + Cψα. (3.40)

We get from Hölder’s inequality, (3.4), and (3.21) that

Î7 ≤
∫

ρ|u||∇θ||ut|dx

≤ ‖√ρut‖L2‖√ρu‖
L

2q
q−2

‖∇θ‖Lq

≤ Cψα‖√ρut‖2
L2 + Cψα. (3.41)

Substituting (3.37)–(3.41) into (3.36), we obtain after using (3.33) that

d

dt
‖√ρut‖2

L2 + µ‖∇ut‖2
L2 ≤ Cψα

(

1 + ‖√ρut‖2
L2 + ‖bt‖2

L2

)

+
µν

2(C2 + 1)
‖∇bt‖2

L2 + C
(

1 + ‖∇u‖2
L2

)

‖∇2b‖2
L2 . (3.42)

2. Differentiating (1.1)3 with respect to t shows

btt − bt · ∇u − b · ∇ut + ut · ∇b + u · ∇bt = ν∆bt. (3.43)
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Multiplying (3.43) by bt and integrating the resulting equality over BR yield that

1

2

d

dt

∫

|bt|2dx + ν
∫

|∇bt|2dx

=
∫

b · ∇ut · btdx −
∫

ut · ∇b · btdx +
∫

bt · ∇u · btdx −
∫

u · ∇bt · btdx

,
4

∑
i=1

Si. (3.44)

On the one hand, we deduce from (3.14) and (3.18) that

2

∑
i=1

Si ≤ C‖∇ut‖L2‖bt‖L4‖b‖L4 + C‖∇bt‖L2‖|ut||b|‖L2

≤ C‖bt‖2
L4 + C‖∇ut‖2

L2 +
ν

8
‖∇bt‖2

L2 + C‖|ut||b|‖2
L2

≤ ν

4
‖∇bt‖2

L2 + C‖bt‖2
L2 + C‖∇ut‖2

L2 + C‖ut x̄
− a

4 ‖2
L8‖bx̄

a
2 ‖L2‖b‖L4

≤ ν

4
‖∇bt‖2

L2 + C‖bt‖2
L2 + C‖∇ut‖2

L2 + C‖√ρut‖2
L2 , (3.45)

where one has used the following estimate

sup
0≤s≤t

‖|b|2‖2
L2 +

∫ t

0
‖|∇b||b|‖2

L2 ds ≤ C. (3.46)

Indeed, multiplying (1.1)3 by b|b|2 and integrating by parts lead to

1

4

(

‖|b|2‖2
L2

)

t
+ ν‖|∇b||b|‖2

L2 +
ν

2
‖∇|b|2‖2

L2

≤ C‖∇u‖L2‖|b|2‖2
L4 ≤ C‖∇u‖L2‖|b|2‖L2‖∇|b|2‖L2

≤ ν

4
‖∇|b|2‖2

L2 + C‖∇u‖2
L2‖|b|2‖2

L2 , (3.47)

which together with Gronwall’s inequality and (3.4) gives (3.46).

On the other hand, integration by parts combined with (1.1)5 and Gagliardo–Nirenberg

inequality yields

4

∑
i=3

Si =
∫

bt · ∇u · btdx ≤ C‖bt‖L2‖∇bt‖L2‖∇u‖L2 ≤ ν

4
‖∇bt‖2

L2 + Cψα‖bt‖2
L2 . (3.48)

Inserting (3.45) and (3.48) into (3.44), one has

d

dt
‖bt‖2

L2 + ν‖∇bt‖2
L2 ≤ Cψα

(

‖bt‖2
L2 + ‖√ρut‖2

L2

)

+ C2‖∇ut‖2
L2 . (3.49)

3. From (3.42) multiplied by µ−1(C2 + 1) and (3.49), we get

d

dt

(

µ−1(C2 + 1)‖√ρut‖2
L2 + ‖bt‖2

L2

)

+ ‖∇ut‖2
L2 +

ν

2
‖∇bt‖2

L2

≤ Cψα
(

1 + ‖bt‖2
L2 + ‖√ρut‖2

L2

)

+ C
(

1 + ‖∇u‖2
L2

)

‖∇2b‖2
L2 . (3.50)

Multiplying (3.50) by t, we obtain (3.34) after using Gronwall’s inequality and (3.19). The

proof of Lemma 3.5 is finished.
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Lemma 3.6. Let T1 be as in Lemma 3.3. Then there exists a positive constant α > 1 such that for all

t ∈ (0, T1],

sup
0≤s≤t

s
(

‖∇2u‖2
L2 + ‖∇2b‖2

L2 + ‖∇bx̄
a
2 ‖2

L2

)

+
∫ t

0
s‖∇2bx̄

a
2 ‖2

L2 ds

≤ C exp

{

C exp

{

C
∫ t

0
ψαds

}}

. (3.51)

Proof. 1. Multiplying (1.1)4 by ∆bx̄a and integrating by parts lead to

1

2

d

dt

∫

|∇b|2 x̄adx + ν
∫

|∆b|2 x̄adx

≤ C
∫

|∇b||b||∇u||∇x̄a|dx + C
∫

|∇b|2|u||∇x̄a|dx + C
∫

|∇b||∆b||∇x̄a|dx

+C
∫

|b||∇u||∆b|x̄adx + C
∫

|∇u||∇b|2 x̄adx ,
5

∑
i=1

Ji. (3.52)

Applying (3.10), (3.14), Hölder’s inequality, and Gagliardo–Nirenberg inequality, one gets by

some direct calculations that

J1 ≤ C‖bx̄
a
2 ‖L4‖∇u‖L4‖∇bx̄

a
2 ‖L2

≤ C‖bx̄
a
2 ‖

1
2

L2

(

‖∇bx̄
a
2 ‖L2 + ‖bx̄

a
2 ‖L2

)
1
2 ‖∇u‖

1
2

L2‖∇u‖
1
2

H1‖∇bx̄
a
2 ‖L2

≤ Cψα + C‖∇2u‖2
L2 + Cψα‖∇bx̄

a
2 ‖2

L2 ,

J2 ≤ C‖|∇b|2− 2
3a x̄a− 1

3 ‖
L

6a
6a−2

‖ux̄−
1
3 ‖L6a‖|∇b| 2

3a ‖L6a

≤ Cψα‖∇bx̄
a
2 ‖

6a−2
3a

L2 ‖∇b‖
2
3a

L4 ≤ Cψα‖∇bx̄
a
2 ‖2

L2 + C‖∇b‖2
L4

≤ Cψα‖∇bx̄
a
2 ‖2

L2 +
ν

4
‖∆bx̄

a
2 ‖2

L2 ,

J3 + J4 ≤ ν

4
‖∆bx̄

a
2 ‖2

L2 + C‖∇bx̄
a
2 ‖2

L2 + C‖bx̄
a
2 ‖2

L4‖∇u‖2
L4

≤ ν

4
‖∆bx̄

a
2 ‖2

L2 + C‖∇bx̄
a
2 ‖2

L2

+ C‖bx̄
a
2 ‖L2

(

‖∇bx̄
a
2 ‖L2 + ‖bx̄

a
2 ‖L2

)

‖∇u‖L2‖∇u‖H1

≤ ε‖∆bx̄
a
2 ‖2

L2 + Cψα‖∇bx̄
a
2 ‖2

L2 + Cψα + C‖∇2u‖2
L2 ,

J5 ≤ C‖∇u‖L∞‖∇bx̄
a
2 ‖2

L2 ≤ C

(

ψα + ‖∇2u‖
q+1

q

Lq

)

‖∇bx̄
a
2 ‖2

L2 .

Substituting the above estimates into (3.52) and noting the following fact
∫

|∇2b|2 x̄adx =
∫

|∆b|2 x̄adx −
∫

∂i∂kb · ∂kb∂i x̄
adx +

∫

∂i∂ib · ∂kb∂k x̄adx

≤
∫

|∆b|2 x̄adx +
1

2

∫

|∇2b|2 x̄adx + C
∫

|∇b|2 x̄adx,

we derive that

d

dt

∫

|∇b|2 x̄adx +
ν

2

∫

|∇2b|2 x̄adx

≤ C

(

ψα + ‖∇2u‖
q+1

q

Lq

)

‖∇bx̄
a
2 ‖2

L2 + C
(

‖∇2u‖2
L2 + ψα

)

. (3.53)
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2. We now claim that

∫ t

0

(

‖∇2u‖
q+1

q

Lq + ‖∇P‖
q+1

q

Lq + s‖∇2u‖2
Lq + s‖∇P‖2

Lq

)

ds ≤ C exp

{

C
∫ t

0
ψα(s)ds

}

, (3.54)

whose proof will be given at the end of this proof. Thus, multiplying (3.53) by t, we infer from

(3.10), (3.4), (3.54), and Gronwall’s inequality that

sup
0≤s≤t

(

s‖∇bx̄
a
2 ‖2

L2

)

+
∫ t

0
s‖∇2bx̄

a
2 ‖2

L2 ds ≤ C exp

{

C exp

{

C
∫ t

0
ψαds

}}

. (3.55)

3. It deduces from (1.1)4, (2.7), (3.4), (3.21), Hölder’s inequality, and Gagliardo–Nirenberg

inequality that

‖∇2b‖2
L2 ≤ C‖bt‖2

L2 + C‖|u||∇b|‖2
L2 + C‖|b||∇u|‖2

L2

≤ C‖bt‖2
L2 + C‖ux̄−

a
4 ‖2

L8‖∇bx̄
a
2 ‖L2‖∇b‖L4 + C‖b‖L2‖∇2b‖L2‖∇u‖2

L2

≤ C‖bt‖2
L2 + C‖∇bx̄

a
2 ‖2

L2 + C‖ux̄−
a
4 ‖4

L8‖∇b‖2
L4 + C‖∇2b‖L2‖∇u‖2

L2

≤ C‖bt‖2
L2 + C‖∇bx̄

a
2 ‖2

L2 +
1

4
‖∇2b‖2

L2 + C
(

1 + ‖∇u‖8
L2

) (

1 + ‖∇b‖2
L2

)

, (3.56)

which together with (3.33) gives that

‖∇2u‖2
L2 + ‖∇P‖2

L2 + ‖∇2b‖2
L2 ≤ C

(

‖√ρut‖2
L2 + ‖bt‖2

L2 + ‖∇bx̄
a
2 ‖2

L2

)

+ C
(

1 + ‖∇u‖8
L2

)

(

1 + ‖∇b‖4
L2

)

. (3.57)

Then, multiplying (3.57) by s, one gets from (3.19), (3.34), and (3.55) that

sup
0≤s≤t

(

s‖∇2u‖2
L2 + s‖∇P‖2

L2 + s‖∇2b‖2
L2

)

≤ C exp

{

C exp

{

C
∫ t

0
ψαds

}}

+ C

(

1 +
∫ t

0
ψα(s)ds

)12

≤ C exp

{

C exp

{

C
∫ t

0
ψαds

}}

. (3.58)

4. To finish the proof of Lemma 3.6, it suffices to show (3.54). Indeed, choosing p = q in

(3.32), we deduce from (3.19), (3.20), and Gagliardo–Nirenberg inequality that

‖∇2u‖Lq + ‖∇P‖Lq

≤ C (‖ρut‖Lq + ‖ρu · ∇u‖Lq + ‖|b||∇b|‖Lq + ‖ρθ‖Lq)

≤ C (‖ρut‖Lq + ‖ρu‖L2q‖∇u‖L2q + ‖b‖L2q‖∇b‖L2q + ‖√ρθ‖L2 + ‖∇θ‖L2)

≤ C‖ρut‖
2(q−1)

q2−2

L2 ‖ρut‖
q2−2q

q2−2

Lq2 + Cψα

(

1 + ‖∇2u‖1− 1
q

L2 + ‖∇2b‖1− 1
q

L2

)

≤ C

(

‖√ρut‖
2(q−1)

q2−2

L2 ‖∇ut‖
q2−2q

q2−2

L2 + ‖√ρut‖L2

)

+ Cψα

(

1 + ‖∇2u‖1− 1
q

L2 + ‖∇2b‖1− 1
q

L2

)

, (3.59)
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which together with (3.19) and (3.34) implies that

∫ t

0

(

‖∇2u‖
q+1

q

Lq + ‖∇P‖
q+1

q

Lq

)

ds

≤ C
∫ t

0
s
− q+1

2q
(

s‖√ρut‖2
L2

)

q2−1

q(q2−2)
(

s‖∇ut‖2
L2

)

(q−2)(q+1)

2(q2−2) ds

+ C
∫ t

0
‖√ρut‖

q+1
q

L2 ds + C
∫ t

0
ψα

(

1 + ‖∇2u‖
q2−1

q2

L2 + ‖∇2b‖
q2−1

q2

L2

)

ds

≤ C sup
0≤s≤t

(

s‖√ρut‖2
L2

)

q2−1

q(q2−2)

∫ t

0
s
− q+1

2q
(

s‖∇ut‖2
L2

)

(q−2)(q+1)

2(q2−2) ds

+ C
∫ t

0

(

ψα + ‖√ρut‖2
L2 + ‖∇2u‖2

L2 + ‖∇2b‖2
L2

)

ds

≤ C exp

{

C
∫ t

0
ψαds

}

(

1 +
∫ t

0

(

s
− q3+q2−2q−2

q3+q2−2q + s‖∇ut‖2
L2

)

ds

)

≤ C exp

{

C
∫ t

0
ψαds

}

(3.60)

and

∫ t

0

(

s‖∇2u‖2
Lq + s‖∇P‖2

Lq

)

ds

≤ C
∫ t

0
s‖√ρut‖2

L2 ds + C
∫ t

0

(

s‖√ρut‖2
L2

)

2(q−1)

q2−2
(

s‖∇ut‖2
L2

)

q2−2q

q2−2 ds

+ C
∫ t

0
sψα

(

1 + ‖∇2u‖1− 1
q

L2 + ‖∇2b‖1− 1
q

L2

)2

ds

≤ C
∫ t

0
s‖√ρut‖2

L2 ds + C
∫ t

0
s‖∇ut‖2

L2 ds + C
∫ t

0

(

ψα + s‖∇2u‖2
L2 + s‖∇2b‖2

L2

)

ds

≤ C exp

{

C
∫ t

0
ψαds

}

. (3.61)

One thus obtains (3.54) from (3.60)–(3.61) and finishes the proof of Lemma 3.6.

Lemma 3.7. Let T1 be as in Lemma 3.3. Then there exists a positive constant α > 1 such that for all

t ∈ (0, T1],

sup
0≤s≤t

(‖ρx̄a‖H1∩W1,q + ‖∇θ‖L2∩Lq) ≤ exp

{

C exp

{

C
∫ t

0
ψαds

}}

. (3.62)

Proof. 1. It follows from Sobolev’s inequality and (3.21) that for 0 < δ < 1,

‖ux̄−δ‖L∞ ≤ C(δ)
(

‖ux̄−δ‖
L

4
δ
+ ‖∇(ux̄−δ)‖L3

)

≤ C(δ)
(

‖ux̄−δ‖
L

4
δ
+ ‖∇u‖L3 + ‖ux̄−δ‖

L
4
δ
‖x̄−1∇x̄‖

L
12

4−3δ

)

≤ C(δ)
(

ψα + ‖∇2u‖L2

)

. (3.63)

One derives from (1.1)1 and (1.1)4 that ρx̄a satisfies

(ρx̄a)t + u · ∇(ρx̄a)− aρx̄au · ∇ log x̄ = 0, (3.64)
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which along with (3.63) gives that for any r ∈ [2, q],

d

dt
‖∇(ρx̄a)‖Lr ≤ C (1 + ‖∇u‖L∞ + ‖u · ∇ log x̄‖L∞) ‖∇(ρx̄a)‖Lr

+ C‖ρx̄a‖L∞

(

‖|∇u||∇ log x̄|‖Lr + ‖|u||∇2 log x̄|‖Lr

)

≤ C
(

ψα + ‖∇2u‖L2∩Lq

)

‖∇(ρx̄a)‖Lr

+ C‖ρx̄a‖L∞

(

‖∇u‖Lr + ‖ux̄−
2
5 ‖L4r‖x̄−

3
2 ‖

L
4r
3

)

≤ C
(

ψα + ‖∇2u‖L2∩Lq

)

(1 + ‖∇(ρx̄a)‖Lr + ‖∇(ρx̄a)‖Lq) . (3.65)

Then we derive from (3.65), (3.54), and Gronwall’s inequality that

sup
0≤s≤t

‖ρx̄a‖H1∩W1,q ≤ exp

{

C exp

{

C
∫ t

0
ψαds

}}

. (3.66)

2. Operating ∇ to (1.1)3 and then multiplying |∇θ|r−2∇θ for r ∈ [2, q] gives that

d

dt
‖∇θ‖Lr ≤ C‖∇u‖L∞‖∇θ‖Lr + C‖θ‖L∞‖∇2u‖Lr

≤ C
(

ψα + ‖∇2u‖L2∩Lq

)

‖∇θ‖Lr + Cψα + ‖∇2u‖
q+1

q

L2∩Lq

≤ C

(

ψα + ‖∇2u‖
q+1

q

L2∩Lq

)

(1 + ‖∇θ‖Lr) , (3.67)

which along with Gronwall’s inequality leads to

sup
0≤s≤t

‖∇θ‖L2∩Lq ≤ exp

{

C exp

{

C
∫ t

0
ψαds

}}

. (3.68)

Hence the desired (3.62) follows from (3.66) and (3.68).

Now, Proposition 3.1 is a direct consequence of Lemmas 3.2–3.7.

Proof of Proposition 3.1. It follows from (3.4), (3.19), and (3.62) that

ψ(t) ≤ exp

{

C exp

{

C
∫ t

0
ψαds

}}

.

Standard arguments yield that for M , eCe and T0 , min{T2, (CMα)−1},

sup
0≤t≤T0

ψ(t) ≤ M,

which together with (3.62), (3.19), (3.34), and (3.54) gives (3.3). The proof of Proposition 3.1 is

thus completed.

4 Proof of Theorem 1.1

With the a priori estimates in Section 3 at hand, it is a position to prove Theorem 1.1.
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Proof of Theorem 1.1. Let (ρ0, u0, θ0, b0) be as in Theorem 1.1. Without loss of generality, we

assume that the initial density ρ0 satisfies

∫

R2
ρ0dx = 1,

which implies that there exists a positive constant N0 such that

∫

BN0

ρ0dx ≥ 3

4

∫

R2
ρ0dx =

3

4
. (4.1)

We construct ρR
0 = ρ̂R

0 + R−1e−|x|2 , where 0 ≤ ρ̂R
0 ∈ C∞

0 (R2) satisfies







∫

BN0
ρ̂R

0 dx ≥ 1/2,

x̄aρ̂R
0 → x̄aρ0 in L1(R2) ∩ H1(R2) ∩ W1,q(R2), as R → ∞.

(4.2)

Due to b0 x̄
a
2 ∈ L2(R2) and ∇b0 ∈ L2(R2), we choose bR

0 ∈ {w ∈ C∞
0 (BR) | div w = 0}

satisfying

bR
0 x̄

a
2 → b0 x̄

a
2 , ∇bR

0 → ∇b0 in L2(R2), as R → ∞. (4.3)

Noting that θ0 ∈ H1(R2) ∩ W1,q(R2), we choose θR
0 ∈ C∞

0 (BR) such that

θR
0 → θ0 in H1(R2) ∩ W1,q(R2), as R → ∞. (4.4)

Since ∇u0 ∈ L2(R2), we select vR
i ∈ C∞

0 (BR) (i = 1, 2) such that for i = 1, 2,

lim
R→∞

‖vR
i − ∂iu0‖L2(R2) = 0. (4.5)

We consider the unique smooth solution uR
0 of the following elliptic problem:















−∆uR
0 + ρR

0 uR
0 +∇PR

0 =
√

ρR
0 hR − ∂iv

R
i , in BR,

div uR
0 = 0, in BR,

uR
0 = 0, on ∂BR,

(4.6)

where hR = (
√

ρ0u0) ∗ j 1
R

with jδ being the standard mollifying kernel of width δ.

Extending uR
0 to R

2 by defining 0 outside BR and denoting it by ũR
0 , we claim that

lim
R→∞

(

‖∇(ũR
0 − u0)‖L2(R2) + ‖

√

ρR
0 ũR

0 −√
ρ0u0‖L2(R2)

)

= 0. (4.7)

In fact, it is easy to find that ũR
0 is also a solution of (4.6) in R

2. Multiplying (4.6) by ũR
0 and

integrating the resulting equation over R
2 lead to

∫

R2
ρR

0 |ũR
0 |2dx +

∫

R2
|∇ũR

0 |2dx

≤ ‖
√

ρR
0 ũR

0 ‖L2(BR)‖hR‖L2(BR) + C‖vR
i ‖L2(BR)‖∂iũ

R
0 ‖L2(BR)

≤ 1

2
‖∇ũR

0 ‖2
L2(BR)

+
1

2

∫

BR

ρR
0 |ũR

0 |2dx + C
(

‖hR‖2
L2(BR)

+ ‖vR
i ‖2

L2(BR)

)

,
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which implies
∫

R2
ρR

0 |ũR
0 |2dx +

∫

R2
|∇ũR

0 |2dx ≤ C (4.8)

for some C independent of R. This together with (4.2) yields that there exist a subsequence

Rj → ∞ and a function ũ0 ∈ {ũ0 ∈ H1
loc(R

2)|√ρ0ũ0 ∈ L2(R2),∇ũ0 ∈ L2(R2)} such that






√

ρ
Rj

0 ũ
Rj

0 ⇀
√

ρ0ũ0 weakly in L2(R2),

∇ũ
Rj

0 ⇀ ∇ũ0 weakly in L2(R2).
(4.9)

Next, we will show

ũ0 = u0. (4.10)

Indeed, multiplying (4.6) by a test function πππ ∈ C∞
0 (R2) with div πππ = 0, it holds that

∫

R2
(∂iũ

Rj

0 − v
Rj

i ) · ∂iπππdx +
∫

R2

√

ρ
Rj

0 (

√

ρ
Rj

0 ũ
Rj

0 − hRj) ·πππdx = 0. (4.11)

Let Rj → ∞, it follows from (4.2), (4.5), and (4.9) that
∫

R2
∂i(ũ0 − u0) · ∂iπππdx +

∫

R2
ρ0(ũ0 − u0) ·πππdx = 0, (4.12)

which implies (4.10).

Furthermore, multiplying (4.6) by ũ
Rj

0 and integrating the resulting equation over R
2, by

the same arguments as (4.12), we have

lim
Rj→∞

∫

R2

(

|∇ũ
Rj

0 |2 + ρ
Rj

0 |ũRj

0 |2
)

dx =
∫

R2

(

|∇u0|2 + ρ0|u0|2
)

dx,

which combined with (4.9) leads to

lim
Rj→∞

∫

R2
|∇ũ

Rj

0 |2dx =
∫

R2
|∇ũ0|2dx, lim

Rj→∞

∫

R2
ρ

Rj

0 |ũRj

0 |2dx =
∫

R2
ρ0|ũ0|2dx.

This, along with (4.10) and (4.9), gives (4.7).

Hence, by virtue of Lemma 2.1, the initial-boundary-value problem (2.2) with the ini-

tial data (ρR
0 , uR

0 , θR
0 , bR

0 ) has a classical solution (ρR, uR, PR, θR, bR) on BR × [0, TR]. More-

over, Proposition 3.1 shows that there exists a T0 independent of R such that (3.3) holds for

(ρR, uR, PR, θR, bR).

For simplicity, in what follows, we denote

Lp = Lp(R2), Wk,p = Wk,p(R2).

Extending (ρR, uR, PR, θR, bR) by zero on R
2 \ BR and denoting it by

(

ρ̃R , ϕRρR, ũR, P̃R, θ̃R, b̃R
)

with ϕR satisfying (3.11). First, (3.3) leads to

sup
0≤t≤T0

(

‖
√

ρ̃RũR‖L2 + ‖∇ũR‖L2 + ‖∇θ̃R‖L2∩Lq + ‖∇b̃R‖L2 + ‖b̃R x̄
a
2 ‖L2

)

≤ sup
0≤t≤T0

(

‖
√

ρRuR‖L2(BR) + ‖∇uR‖L2(BR)

+ ‖∇θR‖L2(BR)∩Lq(BR) + ‖∇bR‖L2(BR) + ‖bR x̄
a
2 ‖L2(BR)

)

≤ C, (4.13)
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and

sup
0≤t≤T0

‖ρ̃R x̄a‖L1∩L∞ ≤ C. (4.14)

Similarly, it follows from (3.3) that for q > 2,

sup
0≤t≤T0

√
t

(

‖
√

ρ̃RũR
t ‖L2 + ‖∇2ũR‖L2 + ‖∇2b̃R‖L2 + ‖b̃R

t ‖L2

)

+
∫ T0

0

(

‖
√

ρ̃RũR
t ‖2

L2 + ‖∇2ũR‖2
L2 + ‖∇2b̃R‖2

L2 + ‖∇b̃R x̄
a
2 ‖2

L2

)

dt

+
∫ T0

0

(

‖∇2ũR‖
q+1

q

Lq + t‖∇2ũR‖2
Lq + t‖∇ũR

t ‖2
L2 + t‖∇b̃R

t ‖2
L2

)

dt ≤ C. (4.15)

Next, for p ∈ [2, q], we obtain from (3.3) and (3.62) that

sup
0≤t≤T0

‖∇(ρ̃R x̄a)‖Lp ≤ C sup
0≤t≤T0

(

‖∇(ρR x̄a)‖Lp(BR) + R−1‖ρR x̄a‖Lp(BR)

)

≤ C sup
0≤t≤T0

‖ρR x̄a‖H1(BR)∩W1,p(BR)
≤ C, (4.16)

which together with (3.63) and (3.3) yields

∫ T0

0
‖x̄ρ̃R

t ‖2
Lp dt ≤ C

∫ T0

0
‖x̄|uR||∇ρR|‖2

Lp(BR)
)dt

≤ C
∫ T0

0
‖x̄1−auR‖2

L∞(BR)
‖x̄a∇ρR‖2

Lp(BR)
dt

≤ C. (4.17)

With the estimates (4.13)–(4.17) together with (2.2)1 and (2.2)3, we find that the sequence

(ρ̃R, ũR, P̃R, θ̃R, b̃R) converges, up to the extraction of subsequences, to some limit (ρ, u, P, θ, b)

in the obvious weak sense, that is, as R → ∞, we have

ρ̃R x̄ → ρx̄, θ̃R → θ, in C(BN × [0, T0]), for any N > 0, (4.18)

ρ̃R x̄a
⇀ ρx̄a, weakly * in L∞(0, T0; H1 ∩ W1,q), (4.19)

∇θ̃R
⇀ ∇θ, weakly * in L∞(0, T0; L2 ∩ Lq), (4.20)

b̃R x̄
a
2 ⇀ bx̄

a
2 , weakly * inL∞(0, T0; L2), (4.21)

b̃R
t ⇀ bt, ∇b̃R x̄

a
2 ⇀ ∇bx̄

a
2 , ∇2b̃R

⇀ ∇2b, weakly in L2(R2 × (0, T0)), (4.22)
√

ρ̃RũR
⇀

√
ρu, ∇ũR

⇀ ∇u, ∇b̃R
⇀ ∇b, weakly * in L∞(0, T0; L2), (4.23)

∇2ũR
⇀ ∇2u, weakly in L

q+1
q (0, T0; Lq) ∩ L2(R2 × (0, T0)), (4.24)

√
t∇2ũR

⇀

√
t∇2u, weakly in L2(0, T0; Lq), weakly * in L∞(0, T0; L2), (4.25)

√
tb̃R

t ⇀

√
tbt,

√
t∇2b̃R

⇀

√
t∇2b, weakly * in L∞(0, T0; L2), (4.26)

√
t
√

ρ̃RũR
t ⇀

√
t
√

ρut, weakly * in L∞(0, T0; L2), (4.27)
√

t∇ũR
t ⇀

√
t∇ut,

√
t∇b̃R

t ⇀

√
t∇bt, weakly in L2(R2 × (0, T0)), (4.28)

with

ρx̄a ∈ L∞(0, T0; L1), inf
0≤t≤T0

∫

B2N0

ρ(x, t)dx ≥ 1

4
. (4.29)
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Next, for any function φ ∈ C∞
0 (R2 × [0, T0)), we take φϕR as test function in the initial-

boundary-value problem (2.2) with the initial data (ρR
0 , uR

0 , θR
0 , bR

0 ). Then, letting R → ∞,

standard arguments together with (4.18)–(4.29) show that (ρ, u, P, θ, b) is a strong solution

of (1.1)–(1.3) on R
2 × (0, T0] satisfying (1.6) and (1.7). Indeed, the existence of a pressure P

follows immediately from the (1.1)2 and (1.1)4 by a classical consideration. The proof of the

existence part of Theorem 1.1 is finished.

It remains only to prove the uniqueness of the strong solutions provided that θ0 x̄a ∈
H1 ∩ W1,q. Let (ρ, u, P, θ, b) and (ρ̄, ū, P̄, θ̄, b̄) be two strong solutions satisfying (1.6) and (1.7)

with the same initial data, and denote

Θ , ρ − ρ̄, U , u − ū, Ψ , θ − θ̄, ΦΦΦ , b − b̄.

First, subtracting the mass equation satisfied by (ρ, u, P, θ, b) and (ρ̄, ū, P̄, θ̄, b̄) gives

Θt + ū · ∇Θ + U · ∇ρ = 0. (4.30)

Multiplying (4.30) by 2Θx̄2r for r ∈ (1, ã) with ã = min{2, a} and integrating by parts yield

d

dt

∫

|Θx̄r|2dx ≤ C‖ūx̄−
1
2 ‖L∞‖Θx̄r‖2

L2 + C‖Θx̄r‖L2‖Ux̄−(ã−r)‖
L

2q
(q−2)(ã−r)

‖x̄ã∇ρ‖
L

2q
q−(q−2)(ã−r)

≤ C (1 + ‖∇ū‖W1,q) ‖Θx̄r‖2
L2 + C‖Θx̄r‖L2 (‖∇U‖L2 + ‖√ρU‖L2)

due to Sobolev’s inequality, (1.7), (3.14), and (3.63). This combined with Gronwall’s inequality

shows that for all 0 ≤ t ≤ T0,

‖Θx̄r‖L2 ≤ C
∫ t

0
(‖∇U‖L2 + ‖√ρU‖L2) ds. (4.31)

Similarly to (4.31), one has

‖Ψx̄r‖L2 ≤ C
∫ t

0
(‖∇U‖L2 + ‖√ρU‖L2) ds. (4.32)

Next, subtracting (1.1)2 and (1.1)4 satisfied by (ρ, u, P, θ, b) and (ρ̄, ū, P̄, θ̄, b̄) leads to

ρUt + ρU · ∇U − µ∆U =− ρU · ∇ū − Θ(ūt + ū · ∇ū)−∇(P − P̄)

+ b · ∇ΦΦΦ +ΦΦΦ · ∇b̄ + Θθe2 + ρ̄Ψe2 (4.33)

and

ΦΦΦt − ν∆ΦΦΦ = b · ∇U +ΦΦΦ · ∇ū − u · ∇ΦΦΦ − U · ∇b̄, (4.34)

Multiplying (4.33) by U and (4.34) by ΦΦΦ respectively, and adding the resulting equations

together, we obtain after integration by parts that

d

dt

∫

(

ρ|U|2 + |ΦΦΦ|2
)

dx +
∫

(

µ|∇U|2 + ν|∇ΦΦΦ|2
)

dx

≤ C‖∇ū‖L∞

∫

(

ρ|U|2 + |ΦΦΦ|2
)

dx + C
∫

|Θ||U| (|ūt|+ |ū||∇ū|) dx

+ C
∫

|U| (|Θ|θ + ρ̄|Ψ|) dx −
∫

ΦΦΦ · ∇U · b̄dx −
∫

U · ∇b̄ ·ΦΦΦdx

, C‖∇ū‖L∞

∫

(

ρ|U|2 + |ΦΦΦ|2
)

dx +
4

∑
i=1

Ki. (4.35)
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We first estimate K1. Hölder’s inequality combined with (1.7), (2.6), (3.3), (4.31), and

Young’s inequality yields that for r ∈ (1, ã),

K1 ≤ C‖Θx̄r‖L2‖Ux̄−
r
2 ‖L4

(

‖ūt x̄
− r

2 ‖L4 + ‖∇ū‖L∞‖ūx̄−
r
2 ‖L4

)

≤ C(ε)
(

‖
√

ρ̄ūt‖2
L2 + ‖∇ūt‖2

L2 + ‖∇ū‖2
L∞

)

‖Θx̄r‖2
L2

+ ε
(

‖√ρU‖2
L2 + ‖∇U‖2

L2

)

≤ C(ε)
(

1 + t‖∇ūt‖2
L2 + t‖∇2ū‖2

Lq

)

∫ t

0

(

‖∇U‖2
L2 + ‖√ρU‖2

L2

)

ds

+ ε
(

‖√ρU‖2
L2 + ‖∇U‖2

L2

)

. (4.36)

For the term K2, we derive from Hölder’s inequality, (3.3), and (4.32) that

K2 ≤ C‖Θx̄r‖L2‖Ux̄−
r
2 ‖L4‖θ‖L4‖x̄−

r
2 ‖L∞ + C‖

√

ρ̄‖L∞‖
√

ρ̄U‖L2‖Ψ‖L2

≤ ε
(

‖√ρU‖2
L2 + ‖∇U‖2

L2

)

+ C(ε)‖Θx̄r‖2
L2 + C‖Ψ‖2

L2

≤ ε
(

‖√ρU‖2
L2 + ‖∇U‖2

L2

)

+ C(ε)‖Θx̄r‖2
L2 + C‖Ψx̄r‖2

L2‖x̄−r‖2
L∞

≤ ε
(

‖√ρU‖2
L2 + ‖∇U‖2

L2

)

+ C(ε)
∫ t

0

(

‖∇U‖2
L2 + ‖√ρU‖2

L2

)

ds. (4.37)

We derive from Gagliardo–Nirenberg inequality and (3.46) that

K3 ≤ C‖b̄‖L4‖ΦΦΦ‖L4‖∇U‖L2 ≤ ε‖∇U‖2
L2 + ε‖∇ΦΦΦ‖2

L2 + C(ε)‖ΦΦΦ‖2
L2 . (4.38)

Owing to (1.7), (2.6), and (3.3), K4 can be estimated as follows

K4 ≤C‖Ux̄−a‖L4‖|∇b̄| 1
2 x̄a‖L4‖|∇b̄| 1

2 ‖L4‖ΦΦΦ‖L4

≤C (‖√ρU‖L2 + ‖∇U‖L2) ‖∇b̄x̄
a
2 ‖

1
2

L2‖ΦΦΦ‖L4

≤ε
(

‖√ρU‖2
L2 + ‖∇U‖2

L2

)

+ C(ε)‖∇b̄x̄
a
2 ‖L2‖ΦΦΦ‖2

L4

≤ε
(

‖√ρU‖2
L2 + ‖∇U‖2

L2

)

+ ε‖∇ΦΦΦ‖2
L2 + C(ε)‖∇b̄x̄

a
2 ‖2

L2‖ΦΦΦ‖2
L2 . (4.39)

Denoting

G(t) , ‖√ρU‖2
L2 + ‖ΦΦΦ‖2

L2 +
∫ t

0

(

‖∇U‖2
L2 + ‖∇ΦΦΦ‖2

L2 + ‖√ρU‖2
L2

)

ds,

then substituting (4.36)–(4.39) into (4.35) and choosing ε suitably small lead to

G′(t) ≤ C
(

1 + ‖∇ū‖L∞ + ‖∇b̄x̄
a
2 ‖2

L2 + t‖∇ūt‖2
L2 + ‖∇ū‖2

L2 + t‖∇2u‖2
Lq

)

G(t),

which together with Gronwall’s inequality and (1.6) implies G(t) = 0. Hence, (U, ΦΦΦ)(x, t) =

(0, 0) for almost everywhere (x, t) ∈ R
2 × (0, T). Finally, one can deduce from (4.31)–(4.32)

that Θ(x, t) = 0 and Ψ(x, t) = 0 for almost everywhere (x, t) ∈ R
2 × (0, T).

The proof of Theorem 1.1 is completed.
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Abstract. This paper presents new results on the bifurcation of medium and small limit
cycles from the periodic orbits surrounding a cubic center or from the cubic center that
have a rational first integral of degree 2 respectively, when they are perturbed inside
the class of all discontinuous piecewise cubic polynomial differential systems with the
straight line of discontinuity y = 0.

We obtain that the maximum number of medium limit cycles that can bifurcate from
the periodic orbits surrounding the cubic center is 9 using the first order averaging
method, and the maximum number of small limit cycles that can appear in a Hopf
bifurcation at the cubic center is 6 using the fifth order averaging method. Moreover,
both of the numbers can be reached by analyzing the number of simple zeros of the
obtained averaged functions. In some sense, our results generalize the results in [Appl.
Math. Comput. 250(2015), 887–907], Theorems 1 and 2 to the piecewise systems class.

Keywords: averaging method, center, piecewise differential systems, limit cycle, peri-
odic orbits.
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1 Introduction and main results

One of the main open problems in the qualitative theory of real planar differential systems is

the determination and distribution of limit cycles. There are several methods for studying the

bifurcation of limit cycles. One of the methods is by perturbing a differential system which

has a center. In this case the perturbed system displays limit cycles that bifurcate, either from

some of the periodic orbits surrounding the center, or from the center (having the so-called

Hopf bifurcation), see the book of Christopher–Li [4], and references cited therein.

The problem of bounding the number of limit cycles for planar smooth differential systems

has been exhaustively studied in the last century and is closed related to the 16th Hilbert’s

problem [10, 13]. Solving this problem even for the quadratic case seems to be out of reach at

the present state of knowledge. In the last few years there has been an increasing interest in

BEmail: huangbo0407@126.com
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the study of discontinuous piecewise differential systems, see [3, 7, 11, 14, 18, 21] for instance.

This interest has been mainly motivated by their wider range of application in various fields

of science (e.g., control theory, biology, chemistry, engineering, physics, etc.).

Our goal in this paper is to study the bifurcation of limit cycles for a class of cubic poly-

nomial differential systems having a rational first integral of degree 2. We remark that the

classification of all cubic polynomial differential systems having a center at the origin and a

rational first integral of degree 2 can be found in [17]. Later on, the authors in [16] summa-

rized this classification in six families of cubic polynomial differential systems. In particular

they obtained the class

ẋ = 2y(x + α)2, ẏ = −2(x + α)(αx − y2), (1.1)

where α 6= 0. System (1.1) called class P6 in [16], which has H(x, y) = x2+y2

(α+x)2 as its first integral

with the integrating factor µ(x, y) = 1/(α + x)4. See [16] for the phase portraits of system

(1.1) in the Poincaré disk.

A natural question is: What happens with the periodic orbits (or the center) of the system (1.1)

when it is perturbed inside the class of all smooth cubic polynomial differential systems, or inside

the class of all discontinuous piecewise cubic polynomial differential systems with a straight line of

discontinuity?

In this article we say a medium limit cycle is one which bifurcates from a periodic orbit

surrounding a center, and a small limit cycle is one which bifurcates from a center equilibrium

point. Remark that, for the piecewise cubic polynomial vector fields there are two recent

works, see [8, 9], obtaining at least 18 and 24 small limit cycles, respectively. Our objective in

this paper is to study the maximal number of medium and small limit cycles for the cubic

center (1.1), when they are perturbed inside the class of all discontinuous piecewise cubic

polynomial differential systems with the straight line of discontinuity y = 0. The main results

are based on the averaging method. We remark that the method of averaging is a classic and

mature tool for studying the behaviour of nonlinear differential systems in the presence of a

small parameter. For more details about this method see the book of Sanders, Verhulst and

Murdock [24] and Llibre, Moeckel and Simó [19].

More precisely, we consider the following discontinuous piecewise polynomial differential

systems

(

ẋ

ẏ

)

=

(

2y(x + α)2

−2(x + α)(αx − y2)

)

+ ε



















(

p1(x, y)

q1(x, y)

)

, y > 0,

(

p2(x, y)

q2(x, y)

)

, y < 0,

(1.2)

where

p1(x, y) = ∑
0≤i+j≤3

ai,jx
iyj, q1(x, y) = ∑

0≤i+j≤3

bi,jx
iyj,

p2(x, y) = ∑
0≤i+j≤3

ci,jx
iyj, q2(x, y) = ∑

0≤i+j≤3

di,jx
iyj.

(1.3)

Moveover, we consider the following smooth polynomial differential systems






















ẋ = 2y(x + α)2 +
5

∑
s=1

εsµs(x, y),

ẏ = −2(x + α)(αx − y2) +
5

∑
s=1

εsνs(x, y),

(1.4)
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and the discontinuous piecewise cubic polynomial differential systems

(

ẋ

ẏ

)

=

(

2y(x + α)2

−2(x + α)(αx − y2)

)

+
5

∑
s=1

εs



















(

µs(x, y)

νs(x, y)

)

, y > 0,

(

ψs(x, y)

φs(x, y)

)

, y < 0,

(1.5)

where

µs(x, y) = ∑
0≤i+j≤3

as,i,jx
iyj, νs(x, y) = ∑

0≤i+j≤3

bs,i,jx
iyj,

ψs(x, y) = ∑
0≤i+j≤3

cs,i,jx
iyj, φs(x, y) = ∑

0≤i+j≤3

ds,i,jx
iyj.

The main results of this paper are stated as follows.

Theorem 1.1. For |ε| > 0 sufficiently small the maximum number of medium limit cycles of the

discontinuous piecewise differential system (1.2) is 9 using the first order averaging method, and this

number can be reached.

If ai,j = ci,j and bi,j = di,j (see (1.3)), then the perturbed system (1.2) is smooth. In this case,

we obtain the following corollary of Theorem 1.1.

Corollary 1.2. When ai,j = ci,j and bi,j = di,j, the maximum number of medium limit cycles of system

(1.2) that bifurcate using the first order averaging method is 3 and it is reached.

Remark 1.3. Theorem 1.1 gives the exact upper bound of the number of limit cycles bifurcated

from the periodic orbits of the cubic center (1.1), which is challenging. Theorem 1.1 and

Corollary 1.2 show that the maximum number of limit cycles for the piecewise case is 6 more

than the smooth one. We note that the smooth case of system (1.2) has been studied in

[16, Section 3.3] under the condition a0,0 = b0,0 = c0,0 = d0,0 = 0. Corollary 1.2 shows that

the non-zero constant terms provide no more information on the limit cycles. However, in

the piecewise case, with the non-zero constant terms the perturbed system (1.2) can produce

at least one more limit cycle than the case without them (see Remark 3.1 in Section 3). This

phenomenon coincides with the well-known pseudo-Hopf bifurcation (see [2, 6]).

Theorem 1.4. For |ε| > 0 sufficiently small using the fifth order averaging method, we obtain that

(a) for any real constants as,i,j and bs,i,j (s = 1, . . . , 5, 0 ≤ i + j ≤ 3) with a1,0,0 = b1,0,0 = 0,

system (1.4) has at most 2 small limit cycles bifurcating from the center (1.1), and this number

can be reached;

(b) system (1.5) has at most 6 small limit cycles bifurcating from the center (1.1) under the condition

a1,0,0 = b1,0,0 = c1,0,0 = d1,0,0 = 0, and this number can be reached.

More concretely, we provide in Table 1.1 the maximum number of limit cycles for systems

(1.4) and (1.5) up to the i-th order averaging method for i = 1, . . . , 5.

The outline of this paper is as follows. In Section 2, we introduce the basic theory of

the averaging method for discontinuous piecewise planar differential systems. The averaged

function associated to system (1.2) is obtained in Section 3. Section 4 focuses on the analysis

of the exact upper bound for the number of zeros of the averaged function, and the theory of

Chebyshev systems is used to prove Theorem 1.1. The objective of Section 5 is to study the

small limit cycles of systems (1.4) and (1.5). Finally, we present the explicit formulae of the

i-th order averaged function up to i = 5 in Appendix A for reference.
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Averaging order System (1.4) System (1.5)

1 0 1

2 0 2

3 1 4

4 1 6

5 2 6

Table 1.1: Number of small limit cycles for systems (1.4) and (1.5).

2 Preliminary results

In this section we introduce the basic theory of the averaging method that we shall use in our

study of the cubic center (1.1). The following result is due to Itikawa, Llibre and Novaes [14].

Consider the discontinuous piecewise differential systems of the form

dr

dθ
= r′ =

{

F+(θ, r, ε), if 0 ≤ θ ≤ γ,

F−(θ, r, ε), if γ ≤ θ ≤ 2π,
(2.1)

where

F±(θ, r, ε) =
k

∑
i=1

εiF±
i (θ, r) + εk+1R±(θ, r, ε),

and ε is a real small parameter. The set of discontinuity of system (2.1) is ∑ = {θ = 0} ∪ {θ =

γ} if 0 < γ < 2π. Here F±
i : S1 × D → R for i = 1, . . . , k, and R± : S1 × D × (−ε0, ε0) → R

are Ck functions, being D an open and bounded interval of (0, ∞), ε0 is a small parameter,

and S1 ≡ R/(2π). This last convention implies that the functions involved in system (2.1) are

2π-periodic in the variable θ.

The averaging method consists in defining a collection of functions fi : D → R, called the

i-th order averaged function, for i = 1, 2, . . . , k, which control (their simple zeros control), for

|ε| > 0 sufficiently small, the isolated periodic solutions of the differential system (2.1). In

Itikawa–Llibre–Novaes [14] it has been established that

fi(z) =
y+i (γ, z)− y−i (γ − 2π, z)

i!
, (2.2)

where y±i : S1 × D → R, for i = 1, 2, . . . , k, are defined recurrently by the following integral

equations

y±1 (θ, z) =
∫ θ

0
F±

1 (ϕ, z)dϕ,

y±i (θ, z) = i!
∫ θ

0

(

F±
i (ϕ, z) +

i

∑
ℓ=1

∑
Sℓ

1

b1!b2!2!b2 · · · bℓ!ℓ!bℓ
· ∂LF±

i−ℓ
(ϕ, z)

ℓ

∏
j=1

y±j (ϕ, z)bj

)

dϕ,
(2.3)

where Sℓ is the set of all ℓ-tuples of non-negative integers [b1, b2, . . . , bℓ] satisfying b1 + 2b2 +

· · ·+ ℓbℓ = ℓ and L = b1 + b2 + · · ·+ bℓ. Here, ∂LF(ϕ, z) denotes the Fréchet’s derivative with

respect to the variable z. We remark that, the investigation in this paper is restricted to F0 = 0

in expression (2.3). For the general form of the averaged functions see [20].
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We point out that taking γ = 2π system (2.1) becomes smooth. So the averaging method

described above can also apply to smooth differential systems. In practical terms, the evalu-

ation of the recurrence (2.3) is a computational problem that requires powerful computerized

resources. Usually, the higher the averaging order is, the more complex are the computational

operations to calculate the averaged function (2.2). Recently in [22] the Bell polynomials were

used to provide a relatively simple alternative formula for the recurrence (2.3). And based on

this new formula, an algorithmic approach to revisit the averaging method was introduced in

[12] for the analysis of bifurcation of small limit cycles of planar differential systems. More-

over, we provide an upper bound of the number of zeros of the averaged functions for the

general class of perturbed differential systems (see Theorem 3.1 in [12]).

The following k-th order averaging theorem gives a criterion for the existence of limit

cycles. Its proof can be found in Section 2 of [14].

Theorem 2.1 ([14]). Assume that, for some j ∈ {1, 2, . . . , k}, fi = 0 for i = 1, 2, . . . , j − 1 and

f j 6= 0. If there exists z∗ ∈ D such that f j(z
∗) 6= 0, then for |ε| > 0 sufficiently small, there exists a

2π-periodic solution r(θ, ε) of (2.1) such that r(0, ε) → z∗ when ε → 0.

The following theorem (see Theorem 5.2 of [1] for a proof) provides an approach to trans-

form a perturbed differential system into the standard form (2.1), which can be used to apply

the first order averaging method.

Theorem 2.2 ([1]). Consider the differential system

ẋ = P(x, y) + εp(x, y),

ẏ = Q(x, y) + εq(x, y),
(2.4)

where P, Q, p and q are continuous functions in the variables x and y, and ε is a small parameter.

Suppose that system (2.4)ε=0 has a continuous family of ovals
{

Γh

}

⊂
{

(x, y)|H(x, y) = h, h ∈
(h1, h2)

}

, where H(x, y) is a first integral of (2.4)ε=0, and h1 and h2 correspond to the center and the

separatrix polycycle, respectively. For a given first integral H = H(x, y), assume that xQ(x, y) −
yP(x, y) 6= 0 for all (x, y) in the periodic annulus formed by the ovals {Γh}. Let ρ : (

√
h1,

√
h2)×

[0, 2π) → [0,+∞) be a continuous function such that

H(ρ(R, ϕ) cos ϕ, ρ(R, ϕ) sin ϕ) = R2,

for all R ∈ (
√

h1,
√

h2) and all ϕ ∈ [0, 2π). Then the differential equation which describes the

dependence between the square root of energy R =
√

h and the angle ϕ for system (2.4) is

dR

dϕ
= ε

µ(x2 + y2)(Qp − Pq)

2R(Qx − Py)
+O(ε2), (2.5)

where µ = µ(x, y) is the integrating factor of system (2.4)ε=0 corresponding to the first integral H,

and x = ρ(R, ϕ) cos ϕ and y = ρ(R, ϕ) sin ϕ.

In general, it is not an easy thing to deal with zeros of the averaged function (2.2). The

techniques and arguments to tackle this kind of problem are usually very long and technical.

In what follows we present some effective results on obtaining the lower bound and the upper

bound of the number of zeros for a complicated function. The next result is used to obtain a

lower bound of the number of simple zeros for an averaged function.
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Lemma 2.3 ([5]). Consider n + 1 linearly independent analytical functions fi(x) : A → R, i =

0, 1, . . . , n, where A ⊂ R is an interval. Suppose that there exists k ∈ {0, 1, . . . , n} such that fk(x)

has constant sign. Then there exist n + 1 constants ci, i = 0, 1, . . . , n such that c0 f0(x) + c1 f1(x) +

· · ·+ cn fn(x) has at least n simple zeros in A.

It is important to point out that the classical theory of Chebyshev systems is useful to

provide an upper bound for the number of zeros. Let F = [ f0, . . . , fn] be an ordered set

of functions of class Cn defined in the closed interval [a, b]. We consider only elements in

Span (F ), that is, functions such as f = a0 f0 + a1 f1 + · · ·+ an fn where ai, for i = 0, 1, . . . , n,

are real numbers. When the maximum number of zeros, taking into account its multiplicity,

is n, the set F is called an Extended Chebyshev system (ET-system) in [a, b]. We say that F
is an Extended Complete Chebyshev system (ECT-system) in [a, b], if any set [ f0, f1, . . . , fk],

for k = 0, . . . , n is an ET-system. When all the Wronskians, Wk := W ( f0, f1, . . . , fk) 6= 0 for

0 ≤ k ≤ n in [a, b] the set F is an ECT-system. For more details on ET-systems and ECT-

system, see [15] for instance.

We remark that not always the standard study of ET-systems can be applied to bound

the number of zeros of elements in Span (F ). Here we use an extension of this theory (see

[23]). The following result provides an effective estimation for the number of isolated zeros of

elements in Span (F ) when some Wronskians vanish.

Theorem 2.4 ([23]). Let F = [ f0, f1, . . . , fn] be an ordered set of analytic functions in [a, b]. Assume

that all the νi zeros of the Wronskian Wi are simple for i = 0, 1, . . . , n. Then the number of isolated

zeros for every element of Span (F ) does not exceed

n + νn + νn−1 + 2 (νn−2 + · · ·+ ν0) + λn−1 + · · ·+ λ3,

where λi = min (2νi, νi−3 + · · ·+ ν0), for i = 3, . . . , n − 1.

3 Averaged function associated to system (1.2)

In this section we will get the first order averaged function associated to system (1.2) by using

Theorem 2.1. We remark that the period annulus of the differential system (1.1) is formed

by the ovals {Γh} ⊂ {(x, y)|H(x, y) = h, h ∈ (0, 1)}. By solving implicitly the equation

H(ρ(R, ϕ) cos ϕ, ρ(R, ϕ) sin ϕ) = R2 we obtain the positive function ρ(R, ϕ) given by

ρ(R, ϕ) = −αR(signum(α) + R cos ϕ)

R2 cos2 ϕ − 1

for ϕ ∈ [0, 2π) and R ∈ (0, 1), where signum(α) is the sign function defined by

signum(α) =

{

1, α > 0,

−1, α < 0.

Using Theorem 2.2, we can transform system (1.2) into the form

dR

dϕ
=











ε
−(Qp1−Pq1)
4αR(x+α)5

∣

∣

∣

x=ρ(R,ϕ) cos ϕ,y=ρ(R,ϕ) sin ϕ
+O(ε2), 0 ≤ ϕ ≤ π,

ε
−(Qp2−Pq2)
4αR(x+α)5

∣

∣

∣

x=ρ(R,ϕ) cos ϕ,y=ρ(R,ϕ) sin ϕ
+O(ε2), π ≤ ϕ ≤ 2π.

(3.1)
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Now the discontinuous piecewise differential system (3.1) is under the assumptions of Theo-

rem 2.1. Next, we will study the zeros of the averaged function f : (0, 1) → R given by

f (R) =
∫ π

0

−(Qp1 − Pq1)

4αR(x + α)5

∣

∣

∣

x=ρ(R,ϕ) cos ϕ,y=ρ(R,ϕ) sin ϕ
dϕ

+
∫ 2π

π

−(Qp2 − Pq2)

4αR(x + α)5

∣

∣

∣

x=ρ(R,ϕ) cos ϕ,y=ρ(R,ϕ) cos ϕ
dϕ

=
∫ π

0

A(ϕ; a, b) cos ϕ + B(ϕ; a, b)

2α3(signum(α) · R cos ϕ − 1)
dϕ +

∫ 2π

π

A(ϕ; c, d) cos ϕ + B(ϕ; c, d)

2α3(signum(α) · R cos ϕ − 1)
dϕ,

where

A(ϕ; a, b) = − R3
[

α3(a0,3 − a2,1 − b3,0 + b1,2) + α2(−b0,2 + b2,0 + a1,1)

+ α(−b1,0 − a0,1) + b0,0

]

S3 + signum(α) · R2
[

α3R2(a1,2 − a3,0)

+ α2(R2(a2,0 − a0,2)− a0,2 + a2,0 − b1,1) + α(−R2a1,0 − 2a1,0 + 2b0,1)

+ (R2 + 3)a0,0

]

S2 − R
[

α3R2(a2,1 + b3,0)− α2R2(2a1,1 + b2,0)

+ α(R2(3a0,1 + b1,0) + a0,1 + b1,0)− (R2 + 3)b0,0

]

S + signum(α)

·
[

α3R4a3,0 − α2R2(R2 + 1)a2,0 + αR2(R2 + 3)a1,0 − (R4 + 6R2 + 1)a0,0

]

,

B(ϕ; a, b) = R3[α3(−b0,3 + b2,1 + a1,2 − a3,0) + α2(−b1,1 + a2,0 − a0,2)

+ α(−a1,0 + b0,1) + a0,0]S
4 + signum(α) · R2[α3R2(a0,3 − a2,1)

+ α2((R2 + 1)a1,1 − b0,2 + b2,0)− α((R2 + 2)a0,1 + 2b1,0) + 3b0,0]S
3

− R[α3R2(a1,2 − 2a3,0 + b2,1) + α2R2(−2a0,2 + 3a2,0 − b1,1)

+ α(R2(−4a1,0 + b0,1)− a1,0 + b0,1) + (5R2 + 3)a0,0]S
2

+ signum(α) · [α3R4a2,1 − α2R2((R2 + 1)a1,1 + b2,0)

+ αR2((R2 + 3)a0,1 + 2b1,0)− (3R2 + 1)b0,0]S

− R[α3R2a3,0 − 2α2R2a2,0 + α(3R2 + 1)a1,0 − 4(R2 + 1)a0,0]

with S = sin ϕ, and a = (ai,j), b = (bi,j), c = (ci,j) and d = (di,j), with ai,j, bi,j, ci,j and di,j are

parameters appearing in the perturbed polynomials (1.3).

Computing the above integrals and making the transformation R = 2ω
1+ω2 for 0 < ω < 1

we obtain

f (R)
R= 2ω

1+ω2

=
f̃ (ω)

6α3ω(ω2 + 1)3
=

∑
8
i=0 ki fi(ω)

6α3ω(ω2 + 1)3
, (3.2)

where

f0(ω) = ω2, f1(ω) = ω4, f2(ω) = ω6,

f3(ω) = ω8, f4(ω) = ω5 + ω3, f5(ω) = ω7 + ω,

f6(ω) = ω4 ln

(

1 + ω

1 − ω

)

, f7(ω) = (ω8 + 1) ln

(

1 + ω

1 − ω

)

,

f8(ω) = (ω6 + ω2) ln

(

1 + ω

1 − ω

)

,

(3.3)
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and

k0 =− 3π
(

− α(a1,0 + c1,0)− α(b0,1 + d0,1) + 4(a0,0 + c0,0)
)

,

k1 =− 3π
(

− 3α3(a3,0 + c3,0)− 3α3(b0,3 + d0,3)− α3(a1,2 + c1,2)

− α3(b2,1 + d2,1) + 4α2(a0,2 + c0,2) + 4α2(a2,0 + c2,0)− 6α(a1,0 + c1,0)

− 2α(b0,1 + d0,1) + 12(a0,0 + c0,0)
)

,

k2 =− 3π
(

2α3(a1,2 + c1,2) + 2α3(a3,0 + c3,0)− 2α3(b0,3 + d0,3)− 2α3(b2,1 + d2,1)

− α(a1,0 + c1,0)− α(b0,1 + d0,1) + 4(a0,0 + c0,0)
)

,

k3 = 3πα3
(

(a1,2 + c1,2)− (a3,0 + c3,0)− (b0,3 + d0,3) + (b2,1 + d2,1)
)

,

k4 = signum(α) ·
[

− 2α3(a2,1 − c2,1)− 22α3(a0,3 − c0,3) + 2α3(b1,2 − d1,2)

− 26α3(b3,0 − d3,0) + 8α2(b2,0 − d2,0) + 8α2(a1,1 − c1,1) + 16α2(b0,2 − d0,2)

− 32α(a0,1 − c0,1)− 8α(b1,0 − d1,0) + 26(b0,0 − d0,0)
]

,

k5 = signum(α) ·
[

6α3(a0,3 − c0,3) + 6α3(b1,2 − d1,2)− 6α3(b3,0 − d3,0)

− 6α3(a2,1 − c2,1) + 6(b0,0 − d0,0)
]

,

k6 =− signum(α) · 6α3
(

3(a0,3 − c0,3) + (a2,1 − c2,1)− (b1,2 − d1,2)− 3(b3,0 − d3,0)
)

,

k7 =− signum(α) · 3α3
(

(a0,3 − c0,3)− (a2,1 − c2,1) + (b1,2 − d1,2)− (b3,0 − d3,0)
)

,

k8 = signum(α) · 12α3
(

(a0,3 − c0,3) + (b3,0 − d3,0)
)

.

It follows directly from

∂(k0, k1, k2, k3, k4, k5, k6, k7, k8)

∂(b0,0, a3,0, a1,2, a1,0, a1,1, a2,0, b3,0, a2,1, a0,3)
= signum(α) · 107495424π4α20 6= 0

that the constants k0, k1, · · · , k8 are independent. That is to say, the coefficients of the functions

fi(ω), i = 0, 1, . . . , 8 can be chosen arbitrarily. Moreover, the functions f0(ω), . . . , f8(ω) are

linearly independent. In fact, we obtain the following Taylor expansions in the variable ω

around ω = 0 for these functions:

f0(ω) = ω2, f1(ω) = ω4, f2(ω) = ω6,

f3(ω) = ω8, f4(ω) = ω5 + ω3, f5(ω) = ω7 + ω,

f6(ω) = 2ω5 +
2

3
ω7 +

2

5
ω9 +O(ω11),

f7(ω) = 2ω +
2

3
ω3 +

2

5
ω5 +

2

7
ω7 +

20

9
ω9 +O(ω11),

f8(ω) = 2ω3 +
2

3
ω5 +

12

5
ω7 +

20

21
ω9 +O(ω11).

(3.4)

The determinant of the coefficient matrix of the variables ω, ω2, . . . , ω9 is equal to

8388608/496125. Hence, by Lemma 2.3 it follows that there exists a linear combination of

fi(ω), i = 0, 1, . . . , 8 with at least 8 simple zeros, which means that system (1.2) has at least 8

limit cycles bifurcating from the period orbits surrounding the origin.
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Remark 3.1. We notice that when the constant terms a0,0, b0,0, c0,0, d0,0 are identically zeros.

In a similar way, we can prove that system (1.2) has at least 7 limit cycles bifurcating from the

period orbits surrounding the origin. In fact, k5 + 2k7 = 0 in this case, and the function f̃ (ω)

in (3.2) is a linear combination of 8 linearly independent functions f0, . . . , f4, f6, f7 − 2 f5, f8.

Therefore, by Lemma 2.3, the perturbed system (1.2) with the non-zero constant terms can

produce at least one more limit cycle than the case without them.

Proof of Corollary 1.2. Obviously, when ai,j = ci,j and bi,j = di,j, the coefficients k4, k5, . . . , k8

are identically zeros. It is easy to check that ( f0, . . . , f3) is an ECT-system. Therefore, the

averaged function f in this case has at most 3 simple zeros and this number can be reached.

Hence, by Theorem 2.1, Corollary 1.2 is proved.

In what follows, we first provide an upper bound of the number of zeros of the function

f̃ (ω) in (3.2). We eliminate the logarithmic function by taking the ninth derivative of f̃ (ω)

and obtain

f̃ (9)(ω) =signum(α) · 110592α3

(1 + ω)9(−1 + ω)9
(H1ω8 + H2ω6 + H3ω4 + H2ω2 + H1),

where

H1 =− 14(a2,1 − c2,1) + 14(b1,2 − d1,2) + 8(a0,3 − c0,3)− 83(b3,0 − d3,0),

H2 =− 24(a2,1 − c2,1) + 24(b1,2 − d1,2)− 32(a0,3 − c0,3)− 1988(b3,0 − d3,0),

H3 =76(a2,1 − c2,1)− 76(b1,2 − d1,2) + 48(a0,3 − c0,3)− 4818(b3,0 − d3,0).

As a result of the symmetry of coefficients of the function f̃ (9)(ω) with respect to ω, it is easy

to know that the zeros of the function f̃ (9)(ω) appear in pairs. Recalling this property, we

obtain that f̃ (9)(ω) has at most 2 zeros in (0, 1). Thus, by using Rolle’s theorem and noting

the fact that f̃ (0) = 0, we conclude that f̃ (ω) has at most 2 + 9 − 1 = 10 zeros in (0, 1),

which means that system (1.2) has at most 10 limit cycles bifurcating from the period orbits

surrounding the origin. In next section, we will show that the bound of the number of limit

cycles can be reduced to 9 by Theorem 2.4. Moreover, this number can be reached.

4 Proof of Theorem 1.1

In this section we will study the maximum number of simple zeros of the averaged function

(3.2). The main effort is based largely on algebraic calculations with the theory of Chebyshev

systems used to deal with the Wronskian determinants.

First, we denote by Wi(ω) the Wronskian for the functions f0, f1, . . . , fi depending on ω:

Wi(ω) = W( f0, . . . , fi), i = 0, 1, . . . , 8.

Next, we will show that all the Wronskians have no zeros except W7(ω) which vanishes

at a unique zero in (0, 1), which is simple. Using the expressions in (3.3), we perform the
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calculation and obtain

W0(ω) = ω2, W1(ω) = 2ω5, W2(ω) = 16ω9,

W3(ω) = 768ω14, W4(ω) = 2304ω13(3ω2 − 5),

W5(ω) = 69120ω9(1 − ω2)(3ω6 − 7ω4 − 7ω2 + 35),

W6(ω) = −3317760ω8(ω2 + 1)

(1 − ω2)5
T6(ω),

W7(ω) = −133772083200ω(ω2 + 1)3T7,0(ω)

(1 − ω2)4

(

ln

(

1 + ω

1 − ω

)

− 2ωT7,1(ω)

105(1 − ω2)6T7,0(ω)

)

,

W8(ω) =
821895679180800(ω2 + 1)6

(1 − ω2)10

(

T8,0(ω) · ln

(

1 + ω

1 − ω

)

+
2ωT8,1(ω)

105(1 − ω2)4

)

,

(4.1)

where

T6(ω) = 15ω14 − 195ω12 − 89ω10 + 1149ω8 + 421ω6 − 4305ω4 + 805ω2 − 105 < 0,

T7,0(ω) = 15ω8 − 140ω6 + 1018ω4 − 140ω2 + 15 > 0,

T7,1(ω) = 160ω20 − 8569ω18 + 105687ω16 − 547324ω14 + 1437092ω12 − 2101414ω10

+ 1752730ω8 − 839580ω6 + 210980ω4 − 23625ω2 + 1575,

T8,0(ω) = 35ω8 − 1100ω6 + 2898ω4 − 1100ω2 + 35,

T8,1(ω) = 45477ω14 − 444465ω12 + 1433397ω10 − 2210985ω8 + 1803095ω6

− 745675ω4 + 128975ω2 − 3675,

(4.2)

by Sturm’s theorem. It is easy to judge that Wi(ω) for i = 0, . . . , 6 does not vanish in the open

interval (0, 1). The difficulties mainly focus on the determination of W7(ω) and W8(ω).

Proposition 4.1. W7(ω) has a unique zero in ω ∈ (0, 1) and this zero is simple.

Proof. Denote the function in the parentheses of W7(ω) by Q7(ω), then

Q′
7(ω) =

64ω6(ω2 + 1)(5ω8 + 172ω6 − 1122ω4 + 172ω2 + 5)T6(ω)

105(1 − ω2)7T2
7,0(ω)

has a unique simple zero ω∗ in (0, 1) and can be easily isolated (e.g. by using the command

realroot(%, 1/10000) in Maple) as ω∗ ∈
[

112087
262144 , 14011

32768

]

. It follows that Q7(ω) decreases in

(0, ω∗) and increases in (ω∗, 1). Note also that lim
ω→0+

Q7(ω) = 0 and lim
ω→1−

Q7(ω) = +∞. Thus,

Q7(ω) has a unique simple zero in (0, 1), equivalently, W7(ω) has a simple zero in (0, 1). This

ends the proof.

Proposition 4.2. W8(ω) does not vanish in ω ∈ (0, 1).

Proof. First, using Sturm’s theorem, we get that T8,0(ω) has two simple zeros ω1 and ω2 in

(0, 1) and T8,1(ω) has three simple zeros ω3, ω4 and ω5 in (0, 1), and these zeros can be

respectively isolated as

0.18709157 ≈ ω1 ∈
[

6277751
33554432 , 784719

4194304

]

,

0.64417845 ≈ ω2 ∈
[

337735
524288 , 5403761

8388608

]

,

0.18709131 ≈ ω3 ∈
[

3138871
16777216 , 6277743

33554432

]

,

0.66278355 ≈ ω4 ∈
[

5559831
8388608 , 694979

1048576

]

,

0.75595958 ≈ ω5 ∈
[

792681
1048576 , 6341449

8388608

]

.
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We denote the function in the parenthesis of W8(ω) by Q8(ω), it is easy to verify that Q8(ω1) 6=
0 and Q8(ω2) 6= 0. In order to study the number of zeros of Q8(ω) in (0, 1) we define a

function Z8(ω) as follows

Z8(ω) :=
Q8(ω)

T8,0(ω)
= ln

(

1 + ω

1 − ω

)

+
2ωT8,1(ω)

105(1 − ω2)4T8,0(ω)
, ω ∈ (0, 1)\{ω1, ω2}.

It is obvious that the function Z8(ω) has the following properties (see Fig. 4.1):

lim
ω→ω−

1

Z8(ω) = +∞, lim
ω→ω+

1

Z8(ω) = −∞,

lim
ω→ω−

2

Z8(ω) = −∞, lim
ω→ω+

2

Z8(ω) = +∞.

A direct calculation shows that

Z′
8(ω) =

32768ω8(ω2 + 1)H8(ω)

35(1 − ω2)5T2
8,0(ω)

,

where

H8(ω) =35ω14 + 85ω12 − 129ω10 − 503ω8 − 119ω6 + 1855ω4 − 875ω2 + 35.

Obviously, H8(ω) has two simple zeros ω∗
1 and ω∗

2 in (0, 1) and can be respectively isolated as

0.21002672 ≈ ω∗
1 ∈

[

451028943
2147483648 , 902057887

4294967296

]

,

0.69221454 ≈ ω∗
2 ∈

[

185814925
268435456 , 743259701

1073741824

]

.
(4.3)

Therefore Z8(ω) increases when ω ∈ (0, ω1) ∪ (ω1, ω∗
1) and ω ∈ (ω∗

2 , 1); decreases when

ω ∈ (ω∗
1 , ω2) ∪ (ω2, ω∗

2) (see Fig. 4.1). Notice that

lim
ω→0+

Z8(ω) = 0, lim
ω→1−

Z8(ω) = +∞.

It follows from (4.3) that

Z8(ω
∗
1) ≈ −0.0000126678 < 0, Z8(ω

∗
2) ≈ 1.126483743 > 0.

Taking into account the above results, we conclude that Z8(ω) does not vanish for ω ∈
(0, 1)\{ω1, ω2}. Thus the desired result follows.

Proof of Theorem 1.1. It follows from equation (4.1), Propositions 4.1 and 4.2 that Wi(ω),

i = 0, 1, . . . 6 and W8(ω) do not vanish in the interval (0, 1), and W7(ω) has exactly 1 simple

zero in (0, 1). Thus F = [ f0, f1, . . . , f8] defined in (3.3) satisfies the assumptions of Theorem

2.4, which implies that any linear combination of f0, f1, . . . , f8 can possess at most 9 zeros in

(0, 1), counting with multiplicities. But the authors in [23] do not prove that the upper bound

can be reached in the general cases. In what follows we will show that the upper bound 9 can

be reached in our system.

Following the ideas of [23], we first look for an element in Span (F ) with a zero of the

highest multiplicity, then we perturb it inside Span (F ) in order to have the prescribed con-

figuration of zeros. We remark that since the Wronskian determinant W8(ω) does not vanish,



12 B. Huang

Figure 4.1: The curve Z8(ω) does not vanish for ω ∈ (0, 1)\{ω1, ω2}.

(a) (b)

Figure 4.2: Two cases for G(ω) having 9 zeros in (0, 1) taking into account

multiplicity. In particular ω0 has multiplicity 8.

the averaged function (an element in Span (F )) can not have a zero in (0, 1) with multiplic-

ity 9. Then we try to find an element G(ω) = ∑
7
i=0 ai fi + k f8 ∈ Span (F ), of which has a zero

ω0 ∈ (0, 1) with multiplicity 8. Note that G(ω) has 9 zeros in (0, 1) with ω0 of multiplicity

8 may have two cases as shown in Fig. 4.2. For the generation of such ω0 we provide an

algorithm (Maple program) in Appendix B.

Now let ω0 = 781/10001, K0 = ln
(

1+ω0
1−ω0

)

and k = 108. Consider the function

G(ω) =a0 f0(ω) + a1 f1(ω) + · · ·+ a7 f7(ω) + k f8(ω), ω ∈ (0, 1). (4.4)

By direct calculation we get the power series of G around the point ω0:

G(ω) = e0 + e1(ω − ω0) + · · ·+ e7(ω − ω0)
7 + e8(ω − ω0)

8 + · · · ,

where ei is the linear combination of a0, a1, . . . , a7. We solve the equations

e0 = 0, e1 = 0, . . . , e7 = 0,
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and find the values of a0, a1, . . . , a7 which have the form

ai =
∑

ji
j=0 Li,jK

j
0

k1K0 + k2
, i = 0, . . . , 7, (4.5)

where

k1 = 585397408871072540089139375831993705697245971

45302237853421492432853598362240000000,

k2 =− 916164764498521481287490087182092157549

2097096776449170037730387965998807150160399,

and

ji =











2, i ∈ {0, 1, 2},

1, i ∈ {3, 4, 5, 6},

0, i ∈ {7},

and each Li,j in (4.5) is an integer or rational with high number of digits in numerators and

denominators. We will not write down here the explicit expression of ai for the sake of brevity.

It turns out that

G(ω) = e8(ω − ω0)
8 +O((ω − ω0)

9), ω → ω0, (4.6)

where

e8 = − k3 · (B1K0 + B0)

625678681207969855947716482401 · (k1K0 + k2)
,

with

k3 = 6373960409705365063968756422951747001176840429758709070500,

B1 = 2371833114839857298494412882156005750986234376264757348752800000,

B0 = −371199090602328323784582373340236998424005450432934748931637759,

and e8 ≈ 6.468110730 × 107. On the other hand, the Taylor expansion of G(ω) near ω = 0 is

G(ω) = C1ω +O(ω2), (4.7)

where

C1 =
k4 ·

(

k5K0 − k6

)

55588252797009 · (k1K0 + k2)
≈ −3.242325599

with

k4 = 227096370975140733661254232304854673313104068100000,

k5 = 864359913055284073500033389565682256669487378000,

k6 = 135274953622915880496646897785052547295533923181.

By the way, we would like to point out that our purpose of choosing such a k in (4.4) is to

make the expressions of the numbers e8 and C1 to be relative simple. Equations (4.6) and (4.7)

mean that (i) G has a zero at ω0 with multiplicity 8, (ii) there exists an ε0 with 0 < ε0 < ω0

such that G(ω) is positive in [ε0, ω0), and (iii) G(ω) is negative near ω = 0. Moreover, G(ω)
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is positive in (ω0, 1) because lim
ω→1−

G(ω) = +∞ (otherwise G(ω) would has 10 zeros in (0, 1)

counting multiplicity, which leads to a contradiction).

Fixing the numbers a0, a1, . . . , a7 and k, we consider the function

Gε(ω) = G(ω) +
8

∑
i=0

ε i fi(ω), ω ∈ (0, 1). (4.8)

We note that fi can be extended analytically to [0, 1). Thus there exists a small number

M > 0 such that

Gε(ε0) >
1

2
G(ε0) > 0,

Gε(ω) <
1

2
C1ω < 0, when ω → 0+,

lim
ω→1−

Gε(ω) = +∞,

for all |ε i| < M, i = 0, 1, . . . , 8. Moreover, near ω0 we find

8

∑
i=0

ε i fi(ω) = µ0 + µ1(ω − ω0) + · · ·+ µ8(ω − ω0)
8 + · · · ,

where µi = µi(ε0, ε1, . . . , ε8) is linear combination of ε0, ε1, . . ., ε8. One can directly check that

the matrix of the coefficients of µ0, µ1, . . . , µ8 with respect to ε0, ε1, . . . , ε8 has rank 9, and hence

µ0, µ1, . . . , µ8 are independent.

Consequently, since fi is analytic at ω0 and G(ω) has a zero at ω0 with multiplicity 8, it

follows that there exists some small |ε i| ≪ M (i = 0, 1, . . . 8) (and hence µi is small) such that

Gε has exactly 8 simple zeros in a small enough neighborhood of ω0. In view of (4.8) G(ω)

has an extra zero in (0, ε0). According to the result of [23], this zero is simple. That is to say,

Gε has 9 simple zeros.

Finally, taking into account the above analysis, we see that system (1.2), up to the first

order averaging method, has at most 9 limit cycles, and the upper bound can be reached. The

proof of Theorem 1.1 is finished.

Remark 4.3. If R̄ is a simple zero of the averaged function f (R) (see (3.2)), by Theorem 2.1 we

have a limit cycle R(ϕ, ε) of the differential system (3.1) such that R(0, ε) = R̄+O(ε). Then, go-

ing back through the changes of variables (see (3.1)) we have for the discontinuous piecewise

differential system (1.2) the medium limit cycle (x(t, ε), y(t, ε)) =
(

ρ(R̄, cos θ), ρ(R̄, sin θ)
)

+

O(ε).

5 Proof of Theorem 1.4

In this section, we will present the k-th order averaged functions up to k = 5 associated to

systems (1.4) and (1.5) respectively, and then we use them to prove Theorem 1.4.

5.1 Proof of Theorem 1.4 (a)

In order to analyze the Hopf bifurcation for system (1.4), applying Theorem 2.1, we set γ = 2π

in (2.2) and we introduce a small parameter ε doing the change of coordinates x = εX, y = εY.

After that we perform the polar change of coordinates X = r cos θ, Y = r sin θ, and by doing a
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Taylor expansion truncated at the 5-th order in ε we obtain the following expression for dr/dθ

of the form (2.1):

dr

dθ
=

5

∑
i=0

εiFi(θ, r) +O(ε6), (5.1)

where

F0(θ, r) =
r(a1,0,0 cos θ + b1,0,0 sin θ)

b1,0,0 cos θ − a1,0,0 sin θ − 2rα2
. (5.2)

The explicit expressions of Fi(θ, r) for i = 1, . . . , 5 are quite large so we omit them. To make

F0(θ, r) = 0 we take a1,0,0 = b1,0,0 = 0. From now on, for each j = 1, 2, . . . , 5, we will perform

the calculation of the averaged function f j under the hypothesis fk ≡ 0 for k = 1, . . . , j − 1.

Now computing f1 we obtain

f1(r) = − πr

2α2
(a1,1,0 + b1,0,1).

Clearly equation f1(r) = 0 has no positive zeros. Then the first order averaging theorem does

not provide information about the limit cycles of system (1.4).

To apply the second order averaging theorem we take b1,0,1 = −a1,1,0. Computing f2 we

obtain

f2(r) = − πr

2α3

(

α(a2,1,0 + b2,0,1)− 4a2,0,0

)

.

As for the first function f1, the second one also does not provide information on the bifurcating

limit cycles.

Setting a2,0,0 = α(a2,1,0 + b2,0,1)/4 we get f2(r) = 0, and then we can apply the third order

averaging theorem, and its corresponding function f3 is

f3(r) = − πr

16α5

(

D3,2r2 + D3,0

)

,

where

D3,2 = 2α
(

α2(a1,1,2 + 3a1,3,0 + 3b1,0,3 + b1,2,1)− 4α(a1,0,2 + a1,2,0) + 4a1,1,0

)

,

D3,0 = 8α3(a3,1,0 + b3,0,1)− α2(a1,1,1a2,1,0 + a1,1,1b2,0,1 + 2a2,1,0b1,0,2 + 2b1,0,2b2,0,1 + 32a3,0,0)

+ 4α(a1,0,1a2,1,0 + a1,0,1b2,0,1 + 2a1,2,0b2,0,0 + b1,1,1b2,0,0)− 16a1,1,0b2,0,0.

Then there exists at most one positive simple zero of f3. From Theorem 2.1 it follows that

the third order averaging provides the existence of at most one small limit cycle of system

(1.4) and this number can be reached by Lemma 2.3 (D3,2 and D3,0 are linearly independent

constants). In order to apply the fourth order averaging theorem, we need to have f3(r) = 0

so we let a1,0,2 = D3,2/8α2 + a1,0,2 and a3,0,0 = D3,0/32α2 + a3,0,0. The resulting fourth order

averaged function is

f4(r) = − πr

128α7

(

D4,2r2 + D4,0

)

,
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where

D4,2 = 2α
(

α4(8a2,1,2 + 8b2,2,1 + 24a2,3,0 + 24b2,0,3) + α3(−a1,1,1a1,1,2 − 3a1,1,1a1,3,0 − 3a1,1,1b1,0,3

− a1,1,1b1,2,1 − 2b1,0,2a1,1,2 − 6b1,0,2a1,3,0 − 6b1,0,2b1,0,3 − 2b1,0,2b1,2,1 − 32a2,0,2 − 32a2,2,0)

+ α2(4a1,0,1a1,1,2 + 24a1,0,1a1,3,0 + 12a1,0,1b1,0,3 + 8a1,0,1b1,2,1 − 8a1,1,0a1,2,1 − 8a1,1,0b1,1,2

+ 8b1,0,2a1,2,0 + 8a1,2,0b1,2,0 + 12a1,3,0b1,1,0 + 4b1,0,2b1,1,1 + 4b1,1,0b1,2,1 + 4b1,1,1b1,2,0

+ 24a2,1,0 − 8b2,0,1) + α(−24a1,0,1a1,2,0 − 4a1,0,1b1,1,1 + 20a1,1,0a1,1,1 − 8a1,1,0b1,0,2

− 16a1,1,0b1,2,0 − 24a1,2,0b1,1,0 − 4b1,1,0b1,1,1) + 32a1,1,0b1,1,0

)

,

D4,0 = 64α5(b4,0,1 + a4,1,0) + α4(−8a1,1,1a3,1,0 − 8a1,1,1b3,0,1 − 8a2,1,1a2,1,0 − 16b2,0,2a2,1,0

− 8a2,1,1b2,0,1 − 16b1,0,2a3,1,0 − 16b1,0,2b3,0,1 − 16b2,0,2b2,0,1 − 256a4,0,0)

+ α3(a2
1,1,1a2,1,0 + a2

1,1,1b2,0,1 + 4a1,1,1b1,0,2a2,1,0 + 4a1,1,1b1,0,2b2,0,1 + 4b2
1,0,2a2,1,0

+ 4b2
1,0,2b2,0,1 + 32a1,0,1a3,1,0 + 32a1,0,1b3,0,1 + 64a1,2,0b3,0,0 + 32a2,0,1a2,1,0 + 32a2,0,1b2,0,1

+ 64a2,2,0b2,0,0 + 32b1,1,1b3,0,0 + 32b2,0,0b2,1,1) + α2(−4a1,0,1a1,1,1a2,1,0 − 4a1,0,1a1,1,1b2,0,1

− 8a1,0,1b1,0,2a2,1,0 − 8a1,0,1b1,0,2b2,0,1 + 8a1,2,0a1,1,0a2,1,0 + 8a1,2,0a1,1,0b2,0,1

+ 4a1,1,0b1,1,1a2,1,0 + 4a1,1,0b1,1,1b2,0,1 − 8a1,1,1a1,2,0b2,0,0 − 4a1,1,1b1,1,1b2,0,0

− 16b1,0,2a1,2,0b2,0,0 − 8b1,0,2b1,1,1b2,0,0 − 128a1,1,0b3,0,0 − 96a2,1,0b2,0,0

+ 32b2,0,0b2,0,1) + α(32a1,0,1a1,2,0b2,0,0 + 16a1,0,1b1,1,1b2,0,0 − 16a2
1,1,0a2,1,0

− 16a2
1,1,0b2,0,1 + 32a1,2,0b1,1,0b2,0,0 + 16b1,1,0b1,1,1b2,0,0)− 64a1,1,0b1,1,0b2,0,0.

Then there exists at most one positive simple zero of f4. From Theorem 2.1 it follows that the

fourth order averaging provides the existence of at most one small limit cycle of system (1.4)

and this number can be reached.

Letting a2,0,2 = D4,2/64α4 + a2,0,2 and a4,0,0 = D4,0/256α4 + a4,0,0 we obtain f4(r) = 0, so we

can apply the fifth order averaging theorem, and its corresponding function is of the form

f5(r) =
πr

1024α9

(

D5,4r4 + D5,2r2 + D5,0

)

,

where D5,4 = 64α5(a1,1,2 + a1,3,0 − b1,0,3 − b1,2,1). Here we do not explicitly provide the expres-

sions of D5,2 and D5,0, because they are very long. Moreover D5,4, D5,2 and D5,0 are linearly

independent constants. In fact only D5,2 has the parameter a3,0,2, and D5,0 is the only one

with parameters a5,0,0 and b5,0,1. We claim that D5,4 is also linearly independent of the other

coefficients. Suppose that this is false. Then there exist real numbers m1, m2 not all zero such

that D5,4 = m1D5,0 + m2D5,2. But D5,0 is the only one with the variables a5,0,0 and b5,0,1, so in

order to D5,4 does not present these variables we must set m1 = 0. Since the other function

D5,2 also has variable which uniquely appears in its expression, the same argument holds so

m2 = 0. But then D5,4 ≡ 0, which is a contradiction. Therefore D5,4, D5,2 and D5,0 are linearly

independent constants. Hence f5 has at most two positive simple zeros. From Theorem 2.1 it

follows that the fifth order averaging provides the existence of at most two small limit cycle

of system (1.4) and this number can be reached by Lemma 2.3.

5.2 Proof of Theorem 1.4 (b)

In order to analyze the Hopf bifurcation for this case, applying Theorem 2.1, we set γ = π in

(2.2). By using similar arguments to those presented for the proof of Theorem 1.4 (a), we can
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transform system (1.5) into the form

dr

dθ
=























5

∑
i=1

εiF+
i (θ, r) +O(ε6), if 0 ≤ θ ≤ π,

5

∑
i=1

εiF−
i (θ, r) +O(ε6), if π ≤ θ ≤ 2π,

(5.3)

where

F+
1 (θ, r) =− 1

2α2

[

(

r(a1,0,1 + b1,1,0) sin θ + a2,0,0

)

cos θ

+ r(−a1,1,0 + b1,0,1) sin2 θ + (2αr2 + b2,0,0) sin θ + ra1,1,0

]

,
(5.4)

and F−
1 (θ, r) is an expression by taking a = c, b = d in F+

1 (θ, r). The explicit expressions of

F±
i (θ, r) for i = 2, . . . , 5 are quite large so we omit them here for brevity. We remark that we

have used the condition a1,0,0 = b1,0,0 = c1,0,0 = d1,0,0 = 0 for the vanishing of the unperturbed

terms F+
0 (θ, r) and F−

0 (θ, r).

Now applying Theorem 2.1 we obtain the first order averaged function

f1(r) = − 1

4α2
(Y1,1r + Y1,0) ,

where

Y1,1 = π(a1,1,0 + c1,1,0 + b1,0,1 + d1,0,1), Y1,0 = 4(b2,0,0 − d2,0,0).

It is obvious that the coefficients Y1,1 and Y1,0 are independent. Thus f1(r) can have one

positive zero. From Theorem 2.1 it follows that the first order averaging provides the existence

of at most one small limit cycle of system (1.5) and this number can be reached.

To consider the second order averaging theorem we take d1,0,1 = −Y1,1/π + d1,0,1 and

d2,0,0 = Y1,0/4 + d2,0,0. Computing f2 we obtain

f2(r) = − 1

48α4

(

Y2,2r2 + Y2,1r + Y2,0

)

,

where

Y2,2 = 16α
(

(a1,1,1 − c1,1,1 + 2b1,0,2 − 2d1,0,2 + b1,2,0 − d1,2,0)α − 4(a1,0,1 − c1,0,1)− (b1,1,0 − d1,1,0)
)

,

Y2,1 =− 3π
(

− 4(a2,1,0 + c2,1,0 + b2,0,1 + d2,0,1)α
2 + 16(a2,0,0 + c2,0,0)α

+ a1,1,0(a1,0,1 − c1,0,1) + b1,0,1(a1,0,1 − c1,0,1)− a1,1,0(b1,1,0 − d1,1,0)− b1,0,1(b1,1,0 − d1,1,0)
)

,

Y2,0 = 24
(

2(b3,0,0 − d3,0,0)α
2 − a1,1,0(a2,0,0 + c2,0,0)− b1,0,1(a2,0,0 + c2,0,0) + b2,0,0(b1,1,0 − d1,1,0)

)

.

Since f2(r) can have at most two positive zeros, we conclude that system (1.5) has at most two

small limit cycles and this number can be reached.

To consider the third order averaging theorem we take d1,0,2 = Y2,2/32α2 + d1,0,2, d2,0,1 =

−Y2,1/12πα2 + d2,0,1 and d3,0,0 = Y2,0/48α2 + d3,0,0. Computing f3 we obtain

r f3(r) = − 1

1152α6

(

Y3,4r4 + Y3,3r3 + Y3,2r2 + Y3,1r + Y3,0

)

,
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where

Y3,4 = 72πα2
(

(a1,1,2 + c1,1,2 + 3a1,3,0 + 3c1,3,0 + 3b1,0,3 + 3d1,0,3 + b1,2,1 + d1,2,1)α
2

− 4(a1,0,2 + c1,0,2 + a1,2,0 + c1,2,0)α + 4(a1,1,0 + c1,1,0)
)

,

Y3,0 = 72π(a2,0,0 − c2,0,0)(a2,0,0 + c2,0,0)(a1,1,0 + b1,0,1).

We do not explicitly provide the expressions of Y3,i for i = 1, 2, 3, since they are very long.

Since f3(r) can have at most four positive zeros, we conclude that system (1.5) has at most

four small limit cycles and this number can be reached.

To consider the fourth order averaging theorem, we need to have f3(r) = 0 so we let

d1,0,3 = −Y3,4/216πα4 + d1,0,3, d2,0,2 = Y3,3/768α4 + d2,0,2, d3,0,1 = −Y3,2/288πα4 + d3,0,1, d4,0,0 =

Y3,1/1152α4 + d4,0,0. Note that in order to make Y3,0 = 0, we consider the following three cases.

CASE 1. a2,0,0 = c2,0,0, a2,0,0 6= −c2,0,0 and a1,1,0 6= −b1,0,1.

In this case, computing f4 we obtain

r2 f4(r) = − 1

23040α8

(

Y1
4,6r6 + Y1

4,5r5 + Y1
4,4r4 + Y1

4,3r3 + Y1
4,2r2 + Y1

4,1r + Y1
4,0

)

,

where

Y1
4,6 =− 1536α5

(

8(a1,0,3 − c1,0,3) + 2(a1,2,1 − c1,2,1)− 2(b1,1,2 − d1,1,2)− 3(b1,3,0 − d1,3,0)
)

,

Y1
4,1 =− 720π(a1,1,0 + b1,0,1)c2,0,0

(

− 4(a3,0,0 − c3,0,0)α
2 + (a1,0,1 − c1,0,1)c2,0,0

− 2(a1,1,0 − c1,1,0)b2,0,0 − (b1,1,0 − d1,1,0)c2,0,0

)

,

Y1
4,0 =− 1920(a1,1,0 + b1,0,1)c

3
2,0,0.

We do not explicitly provide the expressions of Y1
4,i for i = 2, 3, . . . , 5, since they are very long.

Then f4(r) can have at most six positive zeros, we conclude that system (1.5) has at most six

small limit cycles and this number can be reached.

To consider the fifth order averaging theorem, we need to have f4(r) = 0 so we let

d1,3,0 = Y1
4,6/4608α5 + d1,3,0, d2,0,3 = −Y1

4,5/4320πα6 + d2,0,3, d3,0,2 = Y1
4,4/15360α6 + d3,0,2,

d4,0,1 = −Y1
4,3/5760πα6 + d4,0,1, d5,0,0 = Y1

4,2/23040α6 + d5,0,0, c2,0,0 = 0. Computing f5 we

obtain

r f5(r) = − 1

5529600α10

(

Y1
5,6r6 + Y1

5,5r5 + Y1
5,4r4 + Y1

5,3r3 + Y1
5,2r2 + Y1

5,1r + Y1
5,0

)

,

where

Y1
5,6 = 115200πα4

(

(−2a1,1,2 − 2c1,1,2 − 3a1,3,0 − 3c1,3,0 + b1,2,1 + d1,2,1)α
2

+ 2(a1,0,2 + c1,0,2 + a1,2,0 + c1,2,0)α − 2(a1,1,0 + c1,1,0)
)

,

Y1
5,0 = 86400π(a1,1,0 + b1,0,1)

(

2(a3,0,0 + c3,0,0)α
2 + b2,0,0(a1,1,0 + c1,1,0)

)

·
(

2(a3,0,0 − c3,0,0)α
2 + b2,0,0(a1,1,0 − c1,1,0)

)

.

We do not explicitly provide the expressions of Y1
5,i for i = 1, 2, . . . , 5, since they are very long.

Then f5(r) can have at most six positive zeros, we conclude that system (1.5) has at most six

small limit cycles and this number can be reached.
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CASE 2. a2,0,0 = −c2,0,0, a2,0,0 6= c2,0,0 and a1,1,0 6= −b1,0,1.

In this case, computing f4 we obtain

r f4(r) = − 1

23040α8

(

Y2
4,5r5 + Y2

4,4r4 + Y2
4,3r3 + Y2

4,2r2 + Y2
4,1r + Y2

4,0

)

,

where

Y2
4,5 =− 1536α5

(

8(a1,0,3 − c1,0,3) + 2(a1,2,1 − c1,2,1)− 2(b1,1,2 − d1,1,2)− 3(b1,3,0 − d1,3,0)
)

,

Y2
4,0 =− 720π(a1,1,0 + b1,0,1)c2,0,0

(

4(a3,0,0 + c3,0,0)α
2 + c2,0,0(a1,0,1 − c1,0,1)

+ 2b2,0,0(a1,1,0 + c1,1,0)− c2,0,0(b1,1,0 − d1,1,0)
)

.

We do not explicitly provide the expressions of Y2
4,i for i = 1, 2, . . . , 4, since they are very long.

Then f4(r) can have at most five positive simple zeros, we conclude that system (1.5) has at

most five small limit cycles and this number can be reached.

To apply the fifth order averaging theorem, we need to have f4(r) = 0 so we let d1,3,0 =

Y2
4,5/4608α5 + d1,3,0, d2,0,3 = −Y2

4,4/4320πα6 + d2,0,3, d3,0,2 = Y2
4,3/15360α6 + d3,0,2, d4,0,1 =

−Y2
4,2/5760πα6 + d4,0,1, d5,0,0 = Y2

4,1/23040α6 + d5,0,0. Note that in order to make Y2
4,0 = 0,

we consider two subcases.

Subcase 1. c2,0,0 = 0 and a3,0,0 6= − 1
4α2

(

c2,0,0(a1,0,1 − c1,0,1) + 2b2,0,0(a1,1,0 + c1,1,0)− c2,0,0(b1,1,0 −
d1,1,0)

)

− c3,0,0.

In this subcase, computing f5 we obtain

r f5(r) = − 1

5529600α10

(

Y2,1
5,6 r6 + Y2,1

5,5 r5 + Y2,1
5,4 r4 + Y2,1

5,3 r3 + Y2,1
5,2 r2 + Y2,1

5,1 r + Y2,1
5,0

)

,

where

Y2,1
5,6 = 115200πα4

(

(−2a1,1,2 − 2c1,1,2 − 3a1,3,0 − 3c1,3,0 + b1,2,1 + d1,2,1)α
2

+ (2a1,0,2 + 2c1,0,2 + 2a1,2,0 + 2c1,2,0)α − 2(a1,1,0 + c1,1,0)
)

,

Y2,1
5,0 = 86400π(a1,1,0 + b1,0,1)

(

2(a3,0,0 + c3,0,0)α
2 + b2,0,0(a1,1,0 + c1,1,0)

)

·
(

2(a3,0,0 − c3,0,0)α
2 + b2,0,0(a1,1,0 − c1,1,0)

)

.

We do not explicitly provide the expressions of Y2,1
5,i for i = 1, 2, . . . , 5, since they are very long.

Then f5(r) can have at most six positive simple zeros, we conclude that system (1.5) has at

most six small limit cycles and this number can be reached.

Subcase 2. c2,0,0 6= 0 and a3,0,0 = − 1
4α2

(

c2,0,0(a1,0,1 − c1,0,1) + 2b2,0,0(a1,1,0 + c1,1,0)− c2,0,0(b1,1,0 −
d1,1,0)

)

− c3,0,0.

As in the Subcase 1, one can compute the expression of f5 as follows:

r f5(r) = − 1

5529600α10

(

Y2,2
5,6 r6 + Y2,2

5,5 r5 + Y2,2
5,4 r4 + Y2,2

5,3 r3 + Y2,2
5,2 r2 + Y2,2

5,1 r + Y2,2
5,0

)

,
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where

Y2,2
5,6 = Y2,1

5,6 ,

Y2,2
5,0 = 21600π(a1,1,0 + b1,0,1)c2,0,0

[

− 32(a4,0,0 + c4,0,0)α
4 + 8

(

− 2b2,0,0(a2,1,0 + c2,1,0)

+ c3,0,0(b1,1,0 − d1,1,0 − a1,0,1 + c1,0,1) + c2,0,0(−a2,0,1 + c2,0,1 + b2,1,0 − d2,1,0)

− 2b3,0,0(a1,1,0 + c1,1,0)
)

α2 +
(

− 4b2,0,0

(

c1,1,0(a1,0,1 + b1,1,0 − c1,0,1 + d1,1,0)

+ 2a1,1,0b1,1,0

)

+ c2,0,0

(

a2
1,0,1 + 2a1,0,1b1,1,0 + 2a1,0,1c1,0,1 − 2a1,0,1d1,1,0

− 4a1,1,0b1,0,1 − 4a1,1,0c1,1,0 − 4b1,0,1c1,1,0 + b2
1,1,0 − 2b1,1,0c1,0,1

+ 2b1,1,0d1,1,0 − 3c2
1,0,1 + 2c1,0,1d1,1,0 − 4c2

1,1,0 − 3d2
1,1,0

)

)]

.

We do not explicitly provide the expressions of Y2,2
5,i for i = 1, 2, . . . , 5, since they are very

long. Then f5(r) can have at most six positive simple zeros, we conclude that system (1.5) has

at most six small limit cycles and this number can be reached.

CASE 3. a1,1,0 = −b1,0,1 and a2
2,0,0 − c2

2,0,0 6= 0.

Since the calculations and arguments are quite similar to those used in the CASE 1, we

just provide the expressions of f4 and f5 as follows:

r f4(r) = − 1

5760α8

(

Y3
4,5r5 + Y3

4,4r4 + Y3
4,3r3 + Y3

4,2r2 + Y3
4,1r + Y3

4,0

)

,

r f5(r) = − 1

23040α10

(

Y3
5,6r6 + Y3

5,5r5 + Y3
5,4r4 + Y3

5,3r3 + Y3
5,2r2 + Y3

5,1r + Y3
5,0

)

,

where

Y3
4,5 =− 384α5

(

8(a1,0,3 − c1,0,3) + 2(a1,2,1 − c1,2,1)− 2(b1,1,2 − d1,1,2)− 3(b1,3,0 − d1,3,0)
)

,

Y3
4,0 =− 360απ(a2

2,0,0 − c2
2,0,0)

(

− α(a2,1,0 + b2,1,0) + 4a2,0,0

)

,

Y3
5,6 = 480πα4

(

(−2a1,1,2 − 2c1,1,2 − 3a1,3,0 − 3c1,3,0 + b1,2,1 + d1,2,1)α
2

+ 2(a1,0,2 + c1,0,2 + a1,2,0 + c1,2,0)α + 2(b1,0,1 − c1,1,0)
)

,

Y3
5,0 = 720πα(a2

2,0,0 − c2
2,0,2)

(

2(a3,1,0 + b3,0,1)α
3 − 8a3,0,0α2 + (−a1,1,1a2,0,0 + 2a1,2,0b2,0,0

− 2a2,0,0b1,0,2 + b1,1,1b2,0,0)α + 4(a1,0,1a2,0,0 + b1,0,1b2,0,0)
)

.

We do not explicitly provide the expressions of Y3
4,i for i = 1, 2, . . . , 4 and Y3

5,j for j = 1, 2, . . . , 5,

since they are very long. Then f5(r) can have at most six positive simple zeros, we conclude

that system (1.5) has at most six small limit cycles and this number can be reached.

Using the results of Sections 5.1 and 5.2, we complete the proof of Theorem 1.4.

In summary, we give a remark for the averaging method that we are using in Section 5.

We know that if the averaged functions f j = 0 for j = 1, . . . , k − 1 and fk 6= 0, and r̄ is a simple

zero of fk, then by Theorem 2.1 there is a limit cycle r(θ, ε) of the differential system (5.3)

such that r(0, ε) = r̄ +O(ε). Then, going back through the changes of variables (x = εr cos θ,

y = εr sin θ) we have for the discontinuous piecewise differential system (1.5) the limit cycle

(x(t, ε), y(t, ε)) = ε
(

r̄ cos θ, r̄ sin θ
)

+O(ε2), which tends to the origin of system (1.5) when the

parameter ε → 0. In other words, this limit cycle is a small limit cycle bifurcating from the

origin, i.e., is a limit cycle coming by a Hopf bifurcation.
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A Fifth order averaging formulae

fi(z) =
y+i (γ, z)− y−i (γ − 2π, z)

i!
, for i = 1, . . . , 5,

where

y±1 (θ, z) =
∫ θ

0
F±

1 (ϕ, z)dϕ,

y±2 (θ, z) =
∫ θ

0

(

2F±
2 (ϕ, z) + 2∂F±

1 (ϕ, z)y±1 (ϕ, z)
)

dϕ,

y±3 (θ, z) =
∫ θ

0

(

6F±
3 (ϕ, z) + 6∂F±

2 (ϕ, z)y±1 (ϕ, z)

+ 3∂2F±
1 (ϕ, z)y±1 (ϕ, z)2 + 3∂F±

1 (ϕ, z)y±2 (ϕ, z)
)

dϕ,

y±4 (θ, z) =
∫ θ

0

(

24F±
4 (ϕ, z) + 24∂F±

3 (ϕ, z)y±1 (ϕ, z) + 12∂2F±
2 (ϕ, z)y±1 (ϕ, z)2

+ 12∂F±
2 (ϕ, z)y±2 (ϕ, z) + 12∂2F±

1 (ϕ, z)y±1 (ϕ, z)y±2 (ϕ, z)

+ 4∂3F±
1 (ϕ, z)y±1 (ϕ, z)3 + 4∂F±

1 (ϕ, z)y±3 (ϕ, z)
)

dϕ,

y±5 (θ, z) =
∫ θ

0

(

120F±
5 (ϕ, z) + 120∂F±

4 (ϕ, z)y±1 (ϕ, z) + 60∂2F±
3 (ϕ, z)y±1 (ϕ, z)2

+ 60∂F±
3 (ϕ, z)y±2 (ϕ, z) + 60∂2F±

2 (ϕ, z)y±1 (ϕ, z)y±2 (ϕ, z)

+ 20∂3F±
2 (ϕ, z)y±1 (ϕ, z)3 + 20∂F±

2 (ϕ, z)y±3 (ϕ, z)

+ 20∂2F±
1 (ϕ, z)y±1 (ϕ, z)y±3 (ϕ, z) + 15∂2F±

1 (ϕ, z)y±2 (ϕ, z)2

+ 30∂3F±
1 (ϕ, z)y±1 (ϕ, z)2y±2 (ϕ, z) + 5∂4F±

1 (ϕ, z)y±1 (ϕ, z)4

+ 5∂F±
1 (ϕ, z)y±4 (ϕ, z)

)

dϕ.
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B Algorithm for generating ω0

Algorithm 1

Input: a function G =
7

∑
i=0

ai fi(ω) + k f8(ω)

Output: a zero ω0 of G with multiplicity 8

1: with(RandomTools);

2: Ω:=Generate(list(rational(range=0..1,denominator=10001),500));

3: for ω0 in Ω do

4: G1 := subs(ω − ω0 = s, convert(series(G, ω = ω0, 9), polynom));

5: e0 := tcoeff(G1, s);

6: for i from 1 to 8 do

7: ei := coeff(G1, si);

8: S0 := solve({seq(ej = 0, j = 0..7)}, {seq(aj, j = 0..7)});
9: A := normal(subs(S0, e8)/k);

10: G2 := convert(series(subs(S0, G), ω = 0, 2), polynom);

11: B := normal(coeff(G2, ω)/k);

12: if signum(evalf(A)) − signum(limit(subs(S0, G), ω = 1, left)/signum(k)) = 0 and

signum(evalf(AB)) < 0 then

13: return ω0;

The following result is one output of Algorithm 1:

781

10001
,

834

10001
,

515

10001
,

878

10001
,

622

10001
,

740

10001
.
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Abstract. Let N ≥ 2 be an integer. For each real number s ∈ (0, 1) we denote by (−∆)s

the corresponding fractional Laplace operator. First, we investigate the eigenvalue prob-
lem (−∆)su = λV(x)u on R

N , where V : R
N → R is a given function. Under suitable

conditions imposed on V we show the existence of an unbounded, increasing sequence
of positive eigenvalues. Next, we perturb the above eigenvalue problem with a frac-
tional (t, p)-Laplace operator, when t ∈ (0, 1) and p ∈ (1, ∞) are such that t < s and
s − N/2 = t − N/p. We show that when the function V is nonnegative on R

N , the set
of eigenvalues of the perturbed eigenvalue problem is exactly the unbounded interval
(λ1, ∞), where λ1 stands for the first eigenvalue of the initial eigenvalue problem.
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problem, Nehari manifold.
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1 Introduction

Let N ≥ 2 be an integer. For each real numbers p ∈ (1, ∞) and s ∈ (0, 1) and each function

u : R
N → R we define the nonlocal operator

(−∆p)
su(x) := 2 lim

ǫց0

∫

|x−y|≥ǫ

|u(x)− u(y)|p−2(u(x)− u(y))

|x − y|N+sp
dy, x ∈ R

N . (1.1)

For p = 2 the above definition reduces to the linear fractional Laplacian denoted by (−∆)s.

For that reason we will refer to (−∆p)s as being a fractional (s, p)-Laplacian operator which is a

nonlinear operator when p ∈ (1, ∞) \ {2}.

1.1 Statement of the problem and motivation

The main goal of this paper is to study an eigenvalue problem for the fractional Laplacian

operator on R
N and a perturbed version of this problem when we perturb the fractional

Laplacian by a nonlinear fractional (t, p)-Laplacian . More precisely, first we will study the

eigenvalue problem

(−∆)s u(x) = µV(x)u(x), ∀ x ∈ R
N , (1.2)

BEmail: andreigrecu.cv@gmail.com



2 A. Grecu

where s ∈ (0, 1) is a given real number, µ is a real parameter and V : R
N → R is a function

that may change sign and which satisfies the hypothesis

(Ṽ) V ∈ L1
loc

(
R

N
)

, V+ = V1 + V2 6= 0, V1 ∈ L
N
2s

(
R

N
)

and limx→y |x − y|2sV2(x) = 0, for all

y ∈ R
N and lim|x|→∞ |x|2sV2(x) = 0.

Remark 1.1. Note that there exists functions V : R
N → R such that V 6∈ L

N
2s

(
R

N
)

but

limx→y |x − y|2sV(x) = 0, for all y ∈ R
N and lim|x|→∞ |x|2sV(x) = 0. Indeed, simple compu-

tations show that we can take V(x) = |x|−2s(1 + |x|2s)−1[ln(2 + |x|−2s)]−(2s)/N , if x 6= 0 and

V(0) = 1.

Next, we will study a perturbation of problem (1.2), namely

(−∆)s u(x) +
(
−∆p

)t
u(x) = λV(x)u(x), ∀ x ∈ R

N , (1.3)

under the assumption

0 < t < s < 1 and s − N

2
= t − N

p
, (1.4)

where λ is a real parameter and V : R
N → [0, ∞) is a function satisfying the hypothesis (Ṽ).

Note that in the case of problem (1.3) we have V = V+.

A first motivation in studying problems of type (1.2) comes from the paper by Szulkin

& Willem [21] where a similar equation was investigated in the case when the fractional

Laplacian (−∆)s is replaced by the classical Laplace operator ∆. In particular, we note that

assumption (Ṽ) imposed here to the weight function V is suggested by condition (H) from

[21]. At the same time we recall that some generalizations of the results from [21] to the

case when the Laplace operator ∆ is replaced by a more general class of degenerate elliptic

operators of type div(|x|α∇), with α ∈ (0, 2), was studied by Mihăilescu & Repovš in [18]. In

the case of nonlocal operators, problems of type (1.2) were mainly investigated on bounded

domains under the homogeneous Dirichlet boundary condition. Among the results obtained

in this direction we recall the recent articles by Franzina & Palatucci [13], Lindgren & Lindqvist

[15], Brasco, Parini & Squassina [3], Del Pezzo & Quass [5], Ferreira & Pérez-Llanos [11],

Fărcăs, eanu [8], Del Pezzo, Ferreira & Rossi [4], Ercole, Pereira, & Sanchis [7]. Much less

papers were devoted to the study of problem (1.2) on the whole Euclidian space R
N . Here we

just recall the study by Frank, Lenzmann, & Silvestre from [12] where the issue of the existence

and uniqueness of bounded radial solutions which vanishes at infinity for problems of type

(1.2) was considered. More precisely, in [12, Theorem 2.1] it is showed that if u(x) = u(|x|) is

a radial and bounded solution of (1.2) which vanishes at infinity then u(0) = 0 implies u ≡ 0,

provided that the weight function V is radial and non-decreasing on R
N and V ∈ C0,γ(RN)

for some real number γ > max{0, 1 − 2s}.

Regarding the problem (1.3) we recall that it was studied on bonded domains form the

Euclidian space R
N under the homogeneous Dirichlet boundary condition by Fărcăs, eanu,

Mihăilescu, & Stancu-Dumitru in [10], in the case when V ≡ 1. In particular, we note that

assumption (1.4) imposed here is suggested by condition (3) from [10]. We point out that in

the case when the nonlocal operators from equation (1.3) are replaced by the corresponding

differential operators (Laplacian and p-Laplacian) the resulting problem was analysed by Mi-

hăilescu & Stancu-Dumitru in [19], while in the case of bounded domains similar results were
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obtained in [1, 9, 16, 17] under different boundary conditions. Thus, in particular, the results

from this paper complement to the case of nonlocal operators some earlier results obtained in

the case of differential operators.

The rest of the paper is organized as follows: in the next two subsections we introduce the

natural function space setting where problems (1.2) and (1.3) will be studied and we point out

the main results of the paper; in Section 2 we state and prove an auxiliary result that will be

useful for the analysis of the main results; the last two sections are devoted to the proofs of

the main results.

1.2 Fractional Sobolev spaces

In this subsection we introduce the natural function spaces where we will study equations

(1.2) and (1.3) and we will recall some of their properties which will be useful in our analysis.

For more details we refer the reader to the book by Grisvard [14] and to the papers [2, 3, 5, 6].

First, by [3, p. 1814] we recall that the natural setting for equations involving the operator(
−∆p

)t
is the fractional Sobolev space Dt,p

0 (RN) defined as the closure of C∞
0 (RN) under the

norm

‖u‖t,p :=

(∫

RN

∫

RN

|u(x)− u(y)|p
|x − y|N+tp

dxdy

)1/p

.

The above function space is a reflexive Banach space. Moreover, in the particular case when

p = 2 the function space Dt,2
0 (RN) is a Hilbert space.

From the above discussion it follows easily that the natural function space where we will

study equation (1.2) will be the Hilbert space Ds,2
0 (RN). On the other hand, we note that

in equation (1.3) are involved two nonlocal operators, (−∆)s and
(
−∆p

)t
, respectively. The

natural function space where we analyse problems involving (−∆)s is the fractional Sobolev

space Ds,2
0 (RN), while the function space where we study problems involving Dt,p

0 (RN) is

the fractional Sobolev space Dt,p
0 (RN). Thus, in the case of equation (1.3) we should decide

which of the spaces Ds,2
0 (RN) and Dt,p

0 (RN) is the natural function space where we can seek

solutions for the problem. A key condition in this case is assumption (1.4), which in view of

[14, Theorem 1.4.4.1] assures that

Ds,2
0 (RN) ⊂ Dt,p

0 (RN). (1.5)

Thus, the natural function space where we should study problem (1.3) is again the Hilbert

space Ds,2
0 (RN).

Next, note that by [6, Theorem 6.5] there exists a positive constant C = C(N, s) such that

‖u‖L2∗s (RN) ≤ C ‖u‖s,2 , (1.6)

where 2∗s := 2N
N−2s is the so called fractional critical exponent. Consequently, the space Ds,2

0 (RN)

is continuously embedded in L2∗s (RN).

Further, we point out that a Hardy-type inequality can be established on the fractional

Sobolev spaces. More precisely, by [2, Theorem 6.3] (see also [20]) we know that there exists a

positive constant C = C(N, s) such that

C
∫

RN

u(x)2

|x|2s
dx ≤

∫

RN

∫

RN

|u(x)− u(y)|2
|x − y|N+2s

dxdy, ∀ u ∈ C∞
0

(
R

N
)

. (1.7)
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1.3 The main results

In this subsection we make precise the concept of eigenvalue for the equations (1.2) and (1.3)

and we present the main results of this paper.

Definition 1.2. We say that µ ∈ R is an eigenvalue of problem (1.2), if there exists u ∈
Ds,2

0 (RN) \ {0} such that

∫

RN

∫

RN

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x − y|N+2s
dxdy = µ

∫

RN
V(x)u(x)ϕ(x) dx, (1.8)

for all ϕ ∈ Ds,2
0 (RN). Furthermore, u from the above relation will be called an eigenfunction

corresponding to the eigenvalue µ.

The main result concerning problem (1.2) is given by the following theorem

Theorem 1.3. Assume that condition (Ṽ) is fulfilled. Then problem (1.2) has an unbounded, increasing

sequence of positive eigenvalues.

Definition 1.4. We say that λ ∈ R is an eigenvalue of problem (1.3), if there exists u ∈
Ds,2

0 (RN) \ {0} such that

∫

RN

∫

RN

(1 + |u(x)− u(y)|p−2)(u(x)− u(y))(ϕ(x)− ϕ(y))

|x − y|N+tp
dxdy

= λ

∫

RN
V(x)u(x)ϕ(x) dx ,

(1.9)

for all ϕ ∈ Ds,2
0 (RN). Furthermore, u from the above relation will be called an eigenfunction

corresponding to the eigenvalue λ.

Assume that V : R
N → [0, ∞) is a function which satisfies condition (Ṽ) and define

λ1 := inf
u∈C∞

0 (RN)\{0}

‖u‖2
s,2∫

RN
V(x)u2 dx

. (1.10)

The main result regarding problem (1.3) is given by the following theorem.

Theorem 1.5. Assume that V : R
N → [0, ∞) is a function which satisfies condition (Ṽ). Under

assumption (1.4), the set of eigenvalues of problem (1.3) is the open interval (λ1, ∞). Moreover, the

corresponding eigenfunctions can be chosen to be non-negative.

Remark. A simple analysis of the proof of Theorem 1.3 shows that in the case when function

V satisfies V(x) ≥ 0, for all x ∈ R
N , then λ1 defined in relation (1.10) is the smallest eigenvalue

of problem (1.2).

2 An auxiliary result

In this section we prove an auxiliary result which will play an important role in our subsequent

analysis. More precisely, we prove the following lemma.
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Lemma 2.1. Assume that condition (Ṽ) holds true. Then the functional T : Ds,2
0 (RN) → R,

T(u) :=
∫

RN
V+(x)u2 dx

is weakly continuous.

Proof. First, we show that the mapping Ds,2
0 (RN) ∋ u →

∫
RN V1(x)u2 dx is weakly continuous.

Let {un} ⊂ Ds,2
0 (RN) be a sequence which converges weakly to u ∈ Ds,2

0 (RN). Using the

fact that Ds,2
0 (RN) is continuously embedded in L2∗s (RN), we find that {un} converges weakly

to u in L2∗s (RN) = L
2N

N−2s (RN). We infer that {u2
n} converges weakly to u2 in L

N
N−2s (RN).

Define W : L
N

N−2s (RN) → R by

W(ξ) :=
∫

RN
V1(x)ξ dx, ∀ξ ∈ L

N
N−2s (RN).

Clearly, W is linear. Since V1 ∈ L
N
2s (RN) by Hölder’s inequality we deduce that W is also

continuous. Using the above pieces of information we find that

lim
n→∞

W(un) = W(u),

meaning that the mapping Ds,2
0 (RN) ∋ u →

∫
RN V1(x)u2 dx is weakly continuous.

In order to finish the proof, we shall prove that the mapping Ds,2
0 (RN)∋u→

∫
RN V2(x)u2 dx

is also weakly continuous. Again, let {un} ⊂ Ds,2
0 (RN) be a sequence which converges weakly

to u ∈ Ds,2
0 (RN). Let ǫ > 0 arbitrary but fixed.

By hypothesis (Ṽ) we deduce that there exists R > 0 such that

|x|2sV2(x) ≤ ǫ, ∀ x ∈ R
N \ BR(0), (2.1)

where BR(0) is the open ball centered at the origin of radius R.

Since {un} converges weakly to u in Ds,2
0 (RN) we deduce that {un} is bounded in Ds,2

0 (RN).

Thus,

d := C max

{
sup

n
‖un‖s,2 , ‖u‖s,2

}
< +∞ ,

where C is the constant given by relation (1.7).

Using relations (1.7) and (2.1) we find

∫

RN\BR(0)
V2(x)u2

n dx ≤ ǫ

∫

RN\BR(0)

u2
n

|x|2s
dx ≤ ǫ

C
‖un‖2

s,2 ≤ ǫd2 . (2.2)

Analogously, ∫

RN\BR(0)
V2(x)u2 dx ≤ ǫ

C
‖u‖2

s,2 ≤ ǫd2 . (2.3)

Recalling again hypothesis (Ṽ) and using a compactness argument we find that BR(0) is

covered by a finite number of closed balls Br1
(x1), Br2(x2), . . . , Brk

(xk) such that for each j ∈
{1, . . . , k} we have

|x − xj|2sV2(x) ≤ ǫ, ∀ x ∈ Brj
(xj). (2.4)

Next, we see that there exists r > 0 such that for each j ∈ {1, . . . , k} the following relation

holds

|x − xj|2sV2(x) ≤ ǫ

k
, ∀ x ∈ Br(xj).
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Again, by relation (1.7) we get

∫

Ω
V2(x)u2

n dx ≤ ǫd2 and
∫

Ω
V2(x)u2 dx ≤ ǫd2 , (2.5)

where Ω := ∪k
i=1Br(xj). Finally, by relation (2.4) we infer that V2 ∈ L∞(BR(0) \ Ω). Since

BR(0) \ Ω is bounded we deduce that V2 ∈ L
N
2s (BR(0) \ Ω). Repeating the same arguments

used in the first part of the proof we get

lim
n→∞

∫

BR(0)\Ω
V2(x)u2

n dx =
∫

BR(0)\Ω
V2(x)u2 dx. (2.6)

By (2.2), (2.3), (2.5) and (2.6) we deduce that the mapping Ds,2
0 (RN) ∋ u →

∫
RN V2(x)u2 dx is

weakly continuous. Thus, the proof of the lemma is complete.

3 Proof of Theorem 1.3

The conclusion of Theorem 1.3 will follow from the results of Propositions 3.1 and 3.2 below.

First, we consider the following minimization problem

(P1) minimize
u∈Ds,2

0 (RN)

∫

RN

∫

RN

|u(x)− u(y)|2
|x − y|N+2s

dxdy, under restriction
∫

RN
V(x)u2 dx = 1.

Proposition 3.1. Under the hypothesis (Ṽ), problem (P1) has a solution e1 ≥ 0. Moreover, e1 is an

eigenfunction of problem (1.2) having its corresponding eigenvalue

µ1 :=
∫

RN

∫

RN

|e1(x)− e1(y)|2
|x − y|N+2s

dxdy. (3.1)

Proof. Let {un}n ⊂ Ds,2
0 (RN) be a minimizing sequence of problem (P1), i.e.,

lim
n→∞

∫

RN

∫

RN

|un(x)− un(y)|2
|x − y|N+2s

dxdy = inf
w∈Ds,2

0 (RN)

∫

RN

∫

RN

|w(x)− w(y)|2
|x − y|N+2s

dxdy

and ∫

RN
V(x)u2

n dx = 1, ∀ n ≥ 1.

It follows that {un} is bounded in Ds,2
0 (RN) and consequently there exists u ∈ Ds,2

0 (RN) such

that un converges weakly to u in Ds,2
0 (RN). Since Ds,2

0 (RN) is a Hilbert space by the weakly

lower semicontinuity of the norm ‖·‖s,2 we get

∫

RN

∫

RN

|u(x)− u(y)|2
|x − y|N+2s

dxdy ≤ lim inf
n→∞

∫

RN

∫

RN

|un(x)− un(y)|2
|x − y|N+2s

dxdy

= inf
w∈Ds,2

0 (RN)

∫

RN

∫

RN

|w(x)− w(y)|2
|x − y|N+2s

dxdy.

On the other hand, using the fact that V(x) = V+(x)− V−(x) we deduce that

∫

RN
V−(x)u2

n dx =
∫

RN
V+(x)u2

n dx − 1, ∀ n ≥ 1.
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Fatou’s lemma and Lemma 2.1 yield

∫

RN
V−(x)u2 dx ≤ lim inf

n→∞

∫

RN
V−(x)u2

n dx =
∫

RN
V+(x)u2 dx − 1,

or

1 ≤
∫

RN
V(x)u2 dx. (3.2)

Define

e1 :=
u

(∫
RN V(x)u2 dx

)1/2
.

It is easy to check that ∫

RN
V(x)e2

1 dx = 1.

Furthermore, using relation (3.2) we get

∫

RN

∫

RN

|e1(x)− e1(y)|2
|x − y|N+2s

dxdy =
∫

RN

∫

RN

∣∣∣∣
u(x)

(
∫

RN V(z)u2 dz)
1/2 − u(y)

(
∫

RN V(z)u2 dz)
1/2

∣∣∣∣
2

|x − y|N+2s
dxdy

=
1∫

RN V(z)u2 dz

∫

RN

∫

RN

|u(x)− u(y)|2
|x − y|N+2s

dxdy

≤
∫

RN

∫

RN

|u(x)− u(y)|2
|x − y|N+2s

dxdy

≤ inf
w∈Ds,2

0 (RN)

∫

RN

∫

RN

|w(x)− w(y)|2
|x − y|N+2s

dxdy.

This shows that e1 is a solution of problem (P1). Moreover, it is easy to see that |e1| is also

a solution of problem (P1) and consequently we can assume that e1 ≥ 0. Next, for each

ϕ ∈ Ds,2
0 (RN) we define f : R → R by

f (ǫ) =

∫

RN

∫

RN

|e1(x)− e1(y) + ǫ(ϕ(x)− ϕ(y))|2
|x − y|N+2s

dxdy
∫

RN
V(x) (e1(x) + ǫϕ(x))2 dx

.

Clearly, f is of class C1 and f (0) ≤ f (ǫ), for all ǫ ∈ R. Hence, 0 is a minimum point of f and

thus,

f ′(0) = 0,

or

∫

RN

∫

RN

(e1(x)− e1(y))(ϕ(x)− ϕ(y))

|x − y|N+2s
dxdy

∫

RN
V(x)e1(x)2 dx

=
∫

RN

∫

RN

|e1(x)− e1(y)|2
|x − y|N+2s

dxdy
∫

RN
V(x)e1(x)ϕ(x) dx.

Since ϕ ∈ Ds,2
0 (RN) has been chosen arbitrarily we deduce that the above relation holds true

for each ϕ ∈ Ds,2
0 (RN). Taking into account that

∫
RN V(x)e2

1 dx = 1 it follows that µ1 defined

in (3.1) is an eigenvalue of problem (1.2) with the corresponding eigenfunction e1. Thus, the

proof is complete.
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Next, in order to find other eigenvalues of problem (1.2) we solve the following minimiza-

tion problems

(Pn)

minimize
u∈Ds,2

0 (RN)

∫

RN

∫

RN

|u(x)− u(y)|2
|x − y|N+2s

dxdy, under restrictions
∫

RN
V(x)u2 dx = 1 and

∫

RN

∫

RN

(ek(x)− ek(y))(u(x)− u(y))

|x − y|N+2s
dxdy = 0, ∀ k ∈ {1, . . . , n − 1},

where ek represents the solution of problem (Pk), for k ∈ {1, . . . , n − 1}.

Proposition 3.2. Assume that the hypothesis (Ṽ) is fulfilled. Then, for every n ≥ 2 problem (Pn) has

a solution en. Moreover, en is an eigenvector of problem (1.2) corresponding to the eigenvalue

µn :=
∫

RN

∫

RN

|en(x)− en(y)|2
|x − y|N+2s

dxdy.

Furthermore, limn→∞ µn = ∞.

Proof. The existence of en can be obtained in the same manner as in proof of Theorem 1.3, but

replacing Ds,2
0 (RN) with its closed subspace

Xn :=

{
u∈Ds,2

0 (RN) :
∫

RN

∫

RN

(ek(x)− ek(y))(u(x)− u(y))

|x − y|N+2s
dxdy = 0, for k ∈ {1, . . . , n− 1}

}
.

Next, following the lines of the proof of Theorem 1.3 we find the existence of en ∈ Xn which

verifies

∫

RN

∫

RN

(en(x)− en(y))(ϕ(x)− ϕ(y))

|x − y|N+2s
dxdy = µn

∫

RN
V(x)en(x)ϕ(x) dx, ∀ ϕ ∈ Xn, (3.3)

where

µn :=
∫

RN

∫

RN

|en(x)− en(y)|2
|x − y|N+2s

dxdy

and ∫

RN
V(x)e2

n dx = 1.

We note that for each u ∈ Xn we have
∫

RN
V(x)uek dx = 0, ∀ k ∈ {1, . . . , n − 1}.

and ∫

RN
V(x)ejek dx = δj,k, ∀ j, k ∈ {1, . . . , n − 1}.

Hence, for each v ∈ Ds,2
0 (RN) we have

∫

RN
V(x)

[
v −

n−1

∑
j=1

(∫

RN
V(x)vej dx

)
ej

]
ek dx = 0, ∀ k ∈ {1, . . . , n − 1},

or ∫

RN

∫

RN

(ek(x)− ek(y))(ψ(x)− ψ(y))

|x − y|N+2s
dxdy = 0, ∀ k ∈ {1, . . . , n − 1},
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where ψ(x) := v(x)− ∑
n−1
j=1

(∫
RN V(y)vej dy

)
ej(x). This implies that ψ ∈ Xn.

Thus, for each v ∈ Ds,2
0 (RN) relation (3.3) holds true for ϕ = ψ. On the other hand,

∫

RN

∫

RN

(en(x)− en(y))(ek(x)− ek(y))

|x − y|N+2s
dxdy = µk

∫

RN
V(x)enek dx = µn

∫

RN
V(x)enek dx = 0,

for all k ∈ {1, . . . , n − 1}. The above pieces of information yield

∫

RN

∫

RN

(en(x)− en(y))(v(x)− v(y))

|x − y|N+2s
dxdy = µn

∫

RN
V(x)en(x)v(x) dx, ∀ v ∈ Ds,2

0 (RN),

which implies that

µn :=
∫

RN

∫

RN

|en(x)− en(y)|2
|x − y|N+2s

dxdy

is an eigenvalue of problem (1.2) with the corresponding eigenfunction en.

Next, we point out that by construction {en}n is an orthonormal sequence in Ds,2
0 (RN) and

{µn}n is an increasing sequence of positive real numbers. We prove that limn→∞ µn = ∞.

Indeed, let the sequence fn := en√
µn

. Then { fn}n is an orthonormal sequence in Ds,2
0 (RN)

and

‖ fn‖2
s,2 =

1

µn

∫

RN

∫

RN

|en(x)− en(y)|2
|x − y|N+2s

dxdy = 1, ∀ n.

Consequently, { fn}n is bounded in Ds,2
0 (RN) and, therefore, there exists f ∈ Ds,2

0 (RN) such

that { fn}n converges weakly to f in Ds,2
0 (RN).

Let m be a positive integer. For each n > m we have

〈 fn, fm〉s,2 :=
∫

RN

∫

RN

( fn(x)− fn(y))( fm(x)− fm(y))

|x − y|N+2s
dxdy = 0.

Passing to the limit as n → ∞ we find that

〈 f , fm〉s,2 = 0, ∀ m.

Since the above relation holds for each positive integer m, we can pass to the limit as m → ∞

and we find that ‖ f ‖s,2 = 0. This means that f = 0 and thus, { fn}n converges weakly to 0 in

Ds,2
0 (RN). Lemma 2.1 assures us that

lim
n→∞

∫

RN
V+(x) f 2

n dx = 0. (3.4)

On the other hand, for each n we have

1

µn
=

1

µn

∫

RN

∫

RN

| fn(x)− fn(y)|2
|x − y|N+2s

dxdy =
∫

RN
V(x) f 2

n dx ≤
∫

RN
V+(x) f 2

n dx.

Combining the above estimate with relation (3.4) we find that limn→∞ µn = +∞.

The proof of Proposition 3.2 is complete.
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4 Proof of Theorem 1.5

The proof of Theorem 1.5 will be a simple consequence of Propositions 4.1, 4.2, 4.3 and 4.8

stated below in this section.

We recall that through this section we will assume that V(x) ≥ 0, for all x ∈ R
N , and

conditions (1.4) and (Ṽ) hold true. Simple computations show that condition (1.4) implies

p > 2. For each 0 < t < s < 1 and p > 2 we define

ν1 := inf
u∈C∞

0 (RN)\{0}

1

2
‖u‖2

s,2 +
1

p
‖u‖p

t,p

1

2

∫

RN
V(x)u2 dx

. (4.1)

Proposition 4.1. λ1 = ν1.

Proof. First, it is clear that λ1 ≤ ν1. Next, for each u ∈ C∞
0 (RN) and each θ > 0 we have

ν1 ≤

1

2
‖θu‖2

s,2 +
1

p
‖θu‖p

t,p

1

2

∫

RN
V(x)(θu)2 dx

=

1

2
‖u‖2

s,2 +
θp−2

p
‖u‖p

t,p

1

2

∫

RN
V(x)u2 dx

. (4.2)

Letting θ → 0+ and passing to the infimum over u ∈ C∞
0 (RN) in the right hand-side of the

above relation we deduce that ν1 ≤ λ1. The proof of this proposition is complete.

Proposition 4.2. For each λ ∈ (−∞, λ1], problem (1.3) has no nontrivial solutions.

Proof. First, note that if we assume that for some λ ≤ 0 problem (1.3) has a nontrivial solution

denoted by u, then testing in relation (1.9) with ϕ = u we get a contradiction. Thus, for any

λ ∈ (−∞, 0] problem (1.3) does not have nontrivial weak solutions.

Next, let λ ∈ (0, λ1). Assume by contradiction that there exists u ∈ Ds,2
0 (RN) \ {0} a weak

solution of problem (1.3). Taking ϕ = u in (1.9) and by the definition of λ1 we get

λ

∫

RN
V(x)u(x)2 dx = ‖u‖2

s,2 + ‖u‖p
t,p ≥ λ1

∫

RN
V(x)u(x)2 dx,

a contradiction. It follows that problem (1.3) does not posses nontrivial weak solutions for

any parameter λ ∈ (0, λ1).

In order to complete the proof of the proposition, we shall show that λ1 cannot be an

eigenvalue of problem (1.3). Again, if we assume by contradiction that there exists u ∈
Ds,2

0 (RN) \ {0} such that (1.9) holds with λ = λ1, then letting ϕ = u in (1.9) and by the

definition of λ1 we get

‖u‖2
s,2 + ‖u‖p

t,p = λ1

∫

RN
V(x)u(x)2 dx ≤ ‖u‖2

s,2 ,

which is equivalent with u ≡ 0, a contradiction. Thus, for λ = λ1 problem (1.3) does not have

nontrivial solutions and thus, the proof of this proposition is now complete.

Proposition 4.3. For each λ ∈ (λ1, ∞) problem (1.3) has a nontrivial solution.
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In order to prove Proposition 4.3, for each λ > λ1 we define the energy functional corre-

sponding to problem (1.3) as Jλ : Ds,2
0 (RN) \ {0} → R given by

Jλ(u) :=
1

2
‖u‖2

s,2 +
1

p
‖u‖p

t,p −
λ

2

∫

RN
V(x)u(x)2 dx.

Using standard arguments one can deduce that Jλ ∈ C1(Ds,2
0 (RN), R) with the derivative

given by

〈J′λ(u), w〉 =
∫

RN

∫

RN

(u(x)− u(y))(w(x)− w(y))

|x − y|N+2s
dxdy − λ

∫

RN
V(x)u(x)w(x) dx.

+
∫

RN

∫

RN

|u(x)− u(y)|p−2(u(x)− u(y))(w(x)− w(y))

|x − y|N+tp
dxdy.

We note that problem (1.3) possesses a nontrivial weak solution for a certain λ if and

only if Jλ possesses a non-trivial critical point. Since we cannot establish the coercivity of Jλ

on Ds,2
0 (RN) we cannot apply the Direct Method in the Calculus of Variations in order to find

critical points for this functional. For that reason we will study the functional Jλ on a subset

of Ds,2(RN), the so-called Nehari manifold defined by

Nλ :=
{

u ∈ Ds,2
0 (RN) \ {0} : 〈J′λ(u), u〉 = 0

}

=

{
u ∈ Ds,2

0 (RN) \ {0} : ‖u‖2
s,2 + ‖u‖p

t,p = λ

∫

RN
V(x)u(x)2 dx

}
.

Note that if u ∈ Nλ then

Jλ(u) =

(
1

p
− 1

2

)
‖u‖p

t,p < 0 (4.3)

and

λ

∫

RN
V(x)u(x)2 dx > ‖u‖2

s,2 . (4.4)

Lemma 4.4. Nλ 6= ∅.

Proof. Since λ > λ1, we infer that there exists ϕ ∈ Ds,2
0 (RN) \ {0} for which

‖ϕ‖2
s,2 < λ

∫

RN
V(x)ϕ(x)2 dx.

Then there exists θ > 0 such that θϕ ∈ Nλ, i.e.

θ2 ‖ϕ‖2
s,2 + θp ‖ϕ‖p

t,p = λθ2
∫

RN
V(x)ϕ(x)2 dx,

which holds true with

θ =




λ

∫

RN
V(x)ϕ(x)2 dx − ‖ϕ‖2

s,2

‖ϕ‖p
t,p




1
p−2

,

which completes the proof.
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Set

mλ := inf
v∈Nλ

Jλ(v).

Note that by (4.3) we know that mλ < 0. We show that mλ can be achieved on Nλ.

Lemma 4.5. Every minimizing sequence of functional Jλ on Nλ is bounded in Ds,2
0 (RN) and

Dt,p
0 (RN).

Proof. Let {un}n ⊂ Nλ be a minimizing sequence Jλ on Nλ. We prove that
{
‖un‖2

s,2

}
n

is a

bounded sequence. Assume the contrary that ‖un‖2
s,2 → ∞, as n → ∞. Next, let wn := un

‖un‖s,2
.

Therefore ‖wn‖s,2 = 1 for each n, which means that {wn}n is bounded in Ds,2
0 (RN). Thus,

there exists w ∈ Ds,2
0 (RN) such that wn converges weakly to w in Ds,2

0 (RN).

Since un ∈ Nλ, for each n, by (4.4) we deduce that λ
∫

RN V(x)w2
n dx > 1. Passing to the

limit as n → ∞ and taking into account Lemma 2.1, we obtain that

λ

∫

RN
V(x)w2 dx ≥ 1. (4.5)

On the other hand, since un ∈ N≥ and p > 2, we get

‖wn‖p
t,p = ‖un‖2−p

s,2

(
λ

∫

RN
V(x)w2

n dx − 1

)
→ 0, as n → ∞.

The above relation implies that wn converges strongly to 0 in Dt,p
0 (RN) and, consequently

w = 0, which represents a contradiction with (4.5). It follows that
{
‖un‖s,2

}
n

is bounded.

Since un ∈ Nλ, by relation (4.3) we deduce that

Jλ(un) =

(
1

p
− 1

2

)
‖un‖p

t,p =

(
1

2
− 1

p

)(
‖un‖2

s,2 −
∫

RN
V(x)u2

n dx

)
.

Since
{
‖un‖s,2

}
n

is a bounded sequence and using the weak continuity of the mapping

Ds,2
0 (RN) ∋ u →

∫
RN V(x)u2 dx given by Lemma 2.1, we deduce that

{
‖un‖t,p

}
n

is also a

bounded sequence, and thus, the proof is complete.

Lemma 4.6. mλ ∈ (−∞, 0).

Proof. We already know that mλ < 0. Let {un}n ⊂ Nλ be a minimizing sequence Jλ on Nλ (in

other words, {un}n is a minimizer of mλ). Using the previous lemma we deduce the existence

of a positive constant C such that ‖un‖2
s,2 ≤ C and ‖un‖p

t,p ≤ C, for each positive integer n.

Since p > 2 we have

Jλ(un) =

(
1

p
− 1

2

)
‖un‖p

t,p ≥
(

1

p
− 1

2

)
C > −∞.

Thus, mλ is bounded from below by the constant
(

1
p − 1

2

)
C, which implies that mλ ∈ (−∞, 0).

This completes the proof of this lemma.

Lemma 4.7. There exists u ∈ Nλ such that Jλ(u) = mλ.
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Proof. Let {un}n ⊂ Nλ be a minimizing sequence for Jλ on Nλ, i.e.

Jλ(un) =

(
1

p
− 1

2

)
‖un‖p

t,p → mλ as n → ∞.

By Lemma 4.5, we have that Nλ is bounded in Ds,2
0 (RN) and Dt,p

0 (RN). We deduce that there

exists a function u ∈ Ds,2
0 (RN) such that un converges weakly to u in Ds,2

0 (RN) and also in

Dt,q
0 (RN). Then

‖u‖2
s,2 ≤ lim inf

n→∞
‖un‖2

s,2 .

By Lemma 1 we deduce that

λ

∫

RN
V(x)un(x)2 dx → λ

∫

RN
V(x)u(x)2 dx as n → ∞.

Using the above pieces of information we obtain

Jλ(u) =

(
1

2
− 1

p

)(
‖u‖2

s,2 − λ

∫

RN
V(x)u2 dx

)

≤
(

1

2
− 1

p

)
lim inf

n→∞

(
‖un‖2

s,2 − λ

∫

RN
V(x)u2

n dx

)

= lim inf
n→∞

Jλ(un) = mλ < 0. (4.6)

By the above calculus we deduce that

‖u‖2
s,2 < λ

∫

RN
V(x)u2 dx,

which implies that certainly u 6≡ 0. Since un ∈ Nλ for every n, we have

‖un‖2
s,2 + ‖un‖p

t,p = λ

∫

RN
V(x)u2

n dx.

Passing to the limit as n → ∞ in the above relation and by weakly convergence of un to u in

Ds,2
0 (RN) and Dt,p

0 (RN) and also by Lemma 2.1, we get

‖u‖2
s,2 + ‖u‖p

t,p ≤ λ

∫

RN
V(x)u(x)2 dx. (4.7)

In order to finish the proof, we show that the above relation is actually an equality. Assume

by contradiction that the inequality in (4.7) is strict, i.e.

‖u‖2
s,2 + ‖u‖p

t,p < λ

∫

RN
V(x)u2 dx. (4.8)

Set

θ :=




λ

∫

RN
V(x)u2 dx − ‖u‖2

s,2

‖u‖p
t,p




1
p−2

.

Since u ∈ Nλ we have that θu ∈ Nλ. By (4.8) it is clear that θ > 1. Since p > 2 we deduce that

Jλ(θu) =

(
1

2
− 1

p

)
θ2

(
‖u‖2

s,2 − λ

∫

RN
V(x)u2 dx

)

<

(
1

2
− 1

p

)(
‖u‖2

s,2 − λ

∫

RN
V(x)u2 dx

)
= Jλ(u)

≤ lim inf
n→∞

Jλ(un) = mλ,
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a contradiction. Thus, relation (4.8) cannot hold true. Therefore, relation (4.7) holds as an

equality which implies that u ∈ Nλ. By relation (4.6) we know that Jλ(u) ≤ mλ, and thus

Jλ(u) = mλ. Thus, the proof is complete.

We are now ready to complete the proof of Proposition 4.1. Let uλ be the minimizer of Jλ

over Nλ given by Lemma 4.7, i.e.

Jλ(uλ) = mλ.

Since uλ ∈ Nλ, we have

‖uλ‖2
s,2 + ‖uλ‖p

t,p = λ

∫

RN
V(x)u2

λ dx

and

‖uλ‖2
s,2 < λ

∫

RN
V(x)u2

λ dx.

We consider ϕ ∈ Ds,2
0 (RN) is arbitrary but fixed, and δ > 0 is sufficiently small such that for

each ǫ ∈ (−δ, δ) the function uλ + ǫϕ 6≡ 0 in R
N and

‖uλ + ǫϕ‖2
s,2 < λ

∫

RN
V(x)|uλ + ǫϕ|2 dx.

Define θ : (−δ, δ) → (0, ∞) as

θ(ǫ) :=




λ

∫

RN
V(x)|uλ + ǫϕ|2 dx − ‖uλ + ǫϕ‖2

s,2

‖uλ + ǫϕ‖p
t,p




1
p−2

.

We observe that θ(ǫ)(uλ + ǫϕ) ∈ Nλ and θ is a differentiable as a composition of some differ-

entiable functions. Since uλ ∈ Nλ we infer that θ(0) = 1. Next, let γ : (−δ, δ) → R be given by

γ(ǫ) := Jλ(θ(ǫ)(uλ + ǫϕ)). Clearly, γ ∈ C1(−δ, δ) and mλ = γ(0) ≤ γ(ǫ), for each ǫ ∈ (−δ, δ).

Thus, we have

0 = γ′(0) = 〈J′(θ(0)uλ), θ′(0)uλ + θ(0)ϕ〉
= θ′(0)〈J′(uλ), uλ〉+ 〈J′(uλ), ϕ〉
= 〈J′(uλ), ϕ〉,

where the last equality holds because uλ ∈ Nλ.

Since ϕ ∈ Ds,2
0 (RN) was arbitrarily chosen we deduce that the last relation holds true

for each ϕ ∈ Ds,2
0 (RN) and thus, uλ is a nontrivial critical point of Jλ, and consequently a

nontrivial weak solution of equation (1.3). The proof of Proposition 4.1 is now complete.

Proposition 4.8. If u ∈ Nλ is the minimizer of Jλ over Nλ, given by Lemma 4.7, then |u| is also a

minimizer of Iλ over Nλ.

Proof. For each ξ ∈ Ds,2
0 (RN) and for any x, y ∈ R

N we have

|ξ(y)− ξ(x)| ≥ | |ξ(y)| − |ξ(y)| |,

and

|ξ(y)− ξ(x)| > | |ξ(y)| − |ξ(y)| |, if ξ(x)ξ(y) < 0.

Using this, it follows that

‖ |ξ| ‖2
s,2 ≤ ‖ξ‖2

s,2 and ‖ |ξ| ‖p
t,p ≤ ‖ξ‖p

t,p ∀ξ ∈ Ds,2
0 (RN).
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By the above relation we deduce that

Jλ(|u|) ≤ Jλ(u). (4.9)

In what follows we will prove that Jλ(|u|) ≥ Jλ(u). We distinguish two cases. First, if |u| ∈ Nλ

then taking into account that p > 2 we get

Jλ(|u|) =
(

1

p
− 1

2

)
‖|u|‖p

t,p ≥
(

1

p
− 1

2

)
‖u‖p

t,p = Jλ(u).

The above estimate and relation (4.9) yield Jλ(|u|) = Jλ(u) = mλ and everything is done.

Next, let us assume that |u| /∈ Nλ. Then

‖|u|‖2
s,2 + ‖|u|‖p

t,p < λ

∫

RN
V(x)u2 dx.

Set

θ :=




λ

∫

RN
V(x)u2 dx − ‖|u|‖2

s,2

‖|u|‖p
t,p




1
p−2

.

Since p > 2 we have that θ ∈ (1, ∞) and also θ|u| ∈ Nλ. We have that

mλ ≤ Jλ(θ|u|) =
(

1

p
− 1

2

)
‖|u|‖p

t,p θp

=

(
1

2
− 1

p

)(
‖|u|‖2

s,2 − λ

∫

RN
V(x)u2 dx

)
θ2

<

(
1

2
− 1

p

)(
‖|u|‖2

s,2 − λ

∫

RN
V(x)u2 dx

)

≤
(

1

2
− 1

p

)(
‖u‖2

s,2 − λ

∫

RN
V(x)u2 dx

)
= Jλ(u) = mλ,

which is a contradiction. Thus, |u| ∈ Nλ. It follows that |u| is also a minimizer of Jλ over Nλ.

Acknowledgements

The results of this paper are part of my Ph.D. Thesis which I am completing at the University

of Craiova.

References
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Abstract. In this paper, we show the existence of infinitely many radial nodal solutions
for the following Dirichlet problem involving mean curvature operator in Minkowski
space







−div

(

∇y√
1−|∇y|2

)

= λh(y) + g(|x|, y) in B,

y = 0 on ∂B,

where B = {x ∈ R
N : |x| < 1} is the unit ball in R

N , N ≥ 1, λ ≥ 0 is a parameter,
h ∈ C(R) and g ∈ C(R+ × R). By bifurcation and topological methods, we prove the
problem possesses infinitely many component of radial solutions branching off at λ = 0
from the trivial solution, each component being characterized by nodal properties.

Keywords: infinitely many radial solutions, mean curvature operator, Minkowski
space, topological method, bifurcation.
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1 Introduction

The purpose of this paper is to deal with radial nodal solutions for the following 0-Dirichlet

problem with mean curvature operator in the Minkowski space

−div

(

∇y
√

1 − |∇y|2

)

= λh(y) + g(|x|, y) in B,

y = 0 on ∂B,

(1.1)

where B = {x ∈ R
N : |x| < 1} is the unit ball in R

N , N ≥ 1, λ ≥ 0 is a parameter,

h(y) ≃ |y|q−2y, 1 < q < 2 near y = 0 and g is of higher order with respect to h at y = 0. This

kind of problems are originated from differential geometry or classical relativity.

BCorresponding author. Email: xmannwnu@126.com
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For example, let

L
N+1 := {(x, t) : x ∈ R

N , t ∈ R}

be the flat Minkowski space, endowed with the Lorentzian metric

N

∑
j=1

dx2
j − dt2.

It is known (see [4, 28]) that the study of spacelike submanifolds of codimension one in L
N+1

with prescribed mean extrinsic curvature leads to Dirichlet problems of the type

−div

(

∇u
√

1 − |∇u|2

)

= H(x, u) in Ω,

u = 0 on ∂Ω,

(1.2)

where Ω is a bounded domain in R
N and the nonlinearity H : Ω × R → R is continuous.

There are a large amount of papers in the literature on the existence, multiplicity and

qualitative properties of solutions for this type of problems, see [1–3, 7, 11, 12, 14, 16, 25, 26, 31].

It is worth pointing out that the starting point of this type of problems is the seminal paper

[9] which prove the Bernstein’s property for entire solutions of the maximal (i.e., zero mean

curvature) hypersurface equation. Bartnik and Simon [4] proved the existence of one strictly

spacelike solution when λ = 1 and H is bounded, this always can be seen as an important

universal existence result of (1.2). For the case N = 1, the existence and multiplicity of positive

solutions of the Dirichlet problem for the quasilinear ordinary differential equation

−
(

u′
√

1 − u′2

)′
= H(x, u), x ∈ (0, 1),

u(0) = u(1) = 0

have been extensively studied by Coelho et al. [10] via variational or topological methods.

For the special case Ω is a ball, by using upper and lower solutions, Leray–Schauder degree

arguments and critical point theory for convex, lower semicontinuous perturbations of C1-

functionals, Bereanu, Jebelean, and Torres [5, 6] obtained some nonexistence, existence and

multiplicity results of classical positive radial solutions of (1.2). Ma, Gao and Lu [24] con-

cerned with the global structure of radial positive solutions of (1.2) by using global bifurcation

techniques, and extended the results of [5, 6] to more general cases, all results, depending on

the behavior of nonlinear term H near 0. Later, Ma and Xu [27] studied the global behavior of

positive solutions of (1.2) with Ω is a general domain in R
N .

However, few results on the existence of radial nodal solutions [15], even positive solutions,

have been established for problem with mean curvature operator on general domain. In this

paper, we will show an existence result of infinitely many radial nodal solutions for Dirichlet

problem (1.1) by bifurcation and topological methods. For the applications of nodal solutions,

see Kurth [20] and Lazer and McKenna [21].

Our study is motivated by some recent works on one-dimensional prescribed mean curva-

ture problems with concave-convex nonlinearities, see [19, 34].
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Setting, as usual |x| = r and y(x) = u(r), the problem (1.1) reduces to the mixed boundary

value problem

Au = λh(u) + g(r, u), r ∈ (0, 1),

u′(0) = u(1) = 0,
(1.3)

where

Au = − 1

rN−1
(rN−1φ1(u

′))′, (1.4)

and

φ1(s) =
s√

1 − s2
, s ∈ R,

note that φ1 : (−1, 1) → R is an odd, increasing homeomorphism and φ1(0) = 0. Throughout

we assume λ ≥ 0, h ∈ C(R), g ∈ C(R+ × R) and satisfy the following conditions:

(A1) h ∈ C(R, R) with sh(s) > 0 for s 6= 0, lim
s→0

h(s)
s = ∞;

(A2) lim
s→0

g(r,s)
s = 0 uniformly for r ∈ [0, 1].

Let X = {u ∈ C1[0, 1] : u′(0) = u(1) = 0} with the norm ‖u‖ := ‖u′‖∞, and let E = R × X.

In the sequel by a solution of (1.1) we mean a pair (λ, u) ∈ E, such that u ∈ C1[0, 1],

maxr∈[0,1] |u′(r)| < 1, rN−1φ1(u
′) ∈ C1[0, 1], and satisfies (1.1). These are strong strictly space-

like solutions of (1.1) according to the terminology of [4, 9, 18, 31].

The main result of this paper is the following.

Theorem 1.1. Let (A1) and (A2) hold. Then the point (λ, u) = (0, 0) is a bifurcation point for

problem (1.1). More precisely, there are infinitely many unbounded component (i.e., closed connected

sets) Γk ⊂ E of solutions of (1.1) branching off from (0, 0), such that

(i) If (λ, u) ∈ Γk and λ > 0, then u 6= 0.

(ii) If (λ, u) ∈ Γk, then u has exactly k − 1 simple zeros in the interval (0, 1).

(iii) There exists a constant ρ0 ∈ (0, 1/2) such that if ρ ∈ (0, ρ0], and (λ, u) ∈ Γk with ‖u‖ = ρ,

then λ > λ(ρ) > 0.

As an immediate consequence we get:

Corollary 1.2. There exists λ∗ > 0 such that problem (1.1) has infinitely many radial nodal solutions

for any λ ∈ (0, λ∗).

Remark 1.3. It is easy to find that (A2) yields that

g(r, 0) = 0 uniformly for r ∈ [0, 1].

Otherwise, from the continuity of g, we get lims→0
g(r,s)

s = ∞ for some r ∈ [0, 1], this is a

contradiction.

Remark 1.4. Let (λ, u) be a solution of (1.3), then it follows from |u′(r)| < 1 that

‖u‖∞ < 1.

This leads to the bifurcation diagrams mainly depend on the behavior of h = h(s) and g =

g(r, s) near s = 0. This is a significant difference between the Minkowski-curvature problems

and the p-Laplacian problems.
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Remark 1.5. If g(r, s) ≡ 0 for all r ∈ [0, 1], then

lim
s→0

g(r, s)

s
= 0 uniformly for r ∈ [0, 1].

Clearly, Theorem 1.1 improves some well-known existence results of positive solutions [5] and

radial nodal solutions [15] for related problems.

The rest of the paper is arranged as follows. In Section 2, we show the property of the

superior limit of a sequence of components and obtain a topological degree jumping result.

Finally in Section 3, we prove our main result and give an example to illustrate our main

result.

2 Some preliminary results

2.1 Superior limit and component

The following results are somewhat scattered in Ma and An [22, 23].

Definition 2.1 ([22,23]). Let X be a Banach space and {Cn : n = 1, 2, . . . } be a family of subsets

of X. Then the the superior limit D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ X : there exist {ni} ⊂ N and xni
∈ Cni

such that xni
→ x}.

Definition 2.2 ([22, 23]). A component of a set M means a maximal connected subset of M.

Lemma 2.3 ([22, Lemma 2.4], [23, Lemma 2.2]). Assume that

(i) there exist zn ∈ Cn, n = 1, 2, . . . , and z∗ ∈ X, such that zn → z∗;

(ii) limn→∞ rn = ∞, where rn = sup{‖x‖ : x ∈ Cn};

(iii) for every R > 0,
(

∪∞
n=1 Cn

)

∩ BR is a relative compact set of X, where

BR = {x ∈ X : ‖x‖ ≤ R}.

Then there exists an unbounded component C in D with z∗ ∈ C.

2.2 Topological degree jumping result

Let us introduce the eigenvalue problem

−(rN−1u′)′ = λrN−1u, r ∈ (0, 1),

u′(0) = u(1) = 0.
(2.1)

From [29] with p = 2 or [32, p. 269], we have the following result.

Lemma 2.4. Problem (2.1) has infinitely many simple real eigenvalues, which can be arranged in the

increasing order

0 < λ1 < λ2 < · · · < λk < · · · → +∞ as k → +∞,

and no other eigenvalues. Moreover, the algebraic multiplicity of λk is 1, and the eigenfunction ϕk has

exactly k − 1 simple zeros in (0, 1).
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For any t ∈ (0, 1], we consider the following auxiliary problem

− 1

rN−1

(

rN−1 u′
√

1 − tu′2

)′
= f (r), r ∈ (0, 1),

u′(0) = u(1) = 0

(2.2)

for a given f ∈ C[0, 1]. Letting v =
√

tu, problem (2.2) is equivalent to

− 1

rN−1

(

rN−1 v′√
1 − v′2

)′
=

√
t f (r), r ∈ (0, 1),

v′(0) = v(1) = 0.

(2.3)

By Theorem 3.6 of [4], we know that there exists a unique strictly spacelike solution v ∈ C1[0, 1]

to problem (2.3) which is denoted by ψ(
√

t f ). So u = v√
t

is the unique solution of problem

(2.2).

For a given b ∈ C[0, 1], we also consider the following auxiliary problem

− 1

rN−1

(

rN−1u′)′ = b(r), r ∈ (0, 1),

u′(0) = u(1) = 0.
(2.4)

It is well known that problem (2.4) has a solution u for every given b ∈ C[0, 1]. Let φ(b)

denote the unique solution to problem (2.4). It is easy to check that φ : C[0, 1] → X is linear

and completely continuous.

Therefore, for any given f ∈ C[0, 1], let us define G : [0, 1]× C[0, 1] → X by

G(t, f ) =







ψ(
√

t f )√
t

, t ∈ (0, 1],

φ( f ), t = 0.
(2.5)

From the Lemma 2.3 of [14], we have G is completely continuous.

For any fixed λ, consider the following problem

− 1

rN−1

(

rN−1 u′
√

1 − u′2

)′
= λu, r ∈ (0, 1),

u′(0) = u(1) = 0.

(2.6)

Clearly, problem (2.6) is equivalent to the operator equation

u = ψ(λu) := ψλ(u).

From Lemma 2.3 of [14], we see that ψλ : X → X is completely continuous. And we can also

obtain the following topological degree jumping result.

Lemma 2.5. For any r > 0, we have that

deg(I − ψλ, Br(0), 0) =

{

1, if λ ∈ (0, λ1),

(−1)k, if λ ∈ (λk, λk+1), k ∈ N.
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Proof. It is not difficult to show that I − ψλ is a nonlinear compact perturbation of the identity.

Thus, the Leray–Schauder degree deg(I −ψλ, Br(0), 0) is well defined for arbitrary r-ball Br(0)

and λ 6= λk. From the invariance of the degree under homotopies we obtain that

deg(I − ψλ, Br(0), 0) = deg(I − G(1, λ·), Br(0), 0)

= deg(I − G(0, λ·), Br(0), 0)

= deg(I − λφ, Br(0), 0).

Since φ is compact and linear, by [13, Lemma 3.1] or [17, Theorem 8.10], we have that

deg(I − λφ, Br(0), 0) =

{

1 if λ ∈ (0, λ1),

(−1)k if λ ∈ (λk, λk+1), k ∈ N,

and accordingly,

deg(I − ψλ, Br(0), 0) =

{

1 if λ ∈ (0, λ1),

(−1)k if λ ∈ (λk, λk+1), k ∈ N.

3 Proof of the main result

Before proving the Theorem 1.1, we state the following lemmas.

Lemma 3.1. Assume that (A1) and (A2). Let (λ, u) be a solution of problem (1.3). If u has a double

zero, then u ≡ 0.

Proof. Assume on the contrary that there exists a solution (λ, u), λ > 0, of (1.3) and u has a

double zero. Let τ ∈ [0, 1] be a double zero of u. Integrating the equation of (1.3) over [τ, r],

we have
u′(r)

√

1 − (u′(r))2
= − 1

rN−1

∫ r

τ
sN−1

(

λh(u(s)) + g(s, u(s))
)

ds.

If τ = 0, then for r ∈ [0, 1], from (A1) and the fact

|u′(r)| < 1,

it follows that

|u′(r)| ≤ 1

rN−1

∫ r

0
sN−1|g(s, u)|ds ≤ r

N
|g(s, u)|.

Recalling (A2), there exists a constant M > 0 such that |g(s, u)| ≤ M|u| for any s ∈ [0, 1] and

u ∈ [−1, 1]. Using the boundary conditions u′(0) = u(1) = 0, we get

|u′(r)| ≤ Mr

N
|u| ≤ Mr

N

∫ r

1
|u′(s)|ds.

By the Gronwall–Bellman inequality [8], we obtain u′(r) ≡ 0 on [0, 1]. Therefore, u(r) ≡ 0 on

[0, 1].

If τ > 0, we first assume that r ∈ [0, τ]. Since

u(r) = −
∫ r

τ
φ−1

1

(

1

tN−1

∫ t

τ
sN−1

(

λ h(u(s)) + g(s, u(s))
)

ds

)

dt
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for all r ∈ [0, τ], where φ−1
1 is the inverse function of φ1, namely

φ−1
1 (s) =

s√
1 + s2

, s ∈ R.

It is easy to check that φ−1
1 is increasing. Hence, by (A1), we have

u(r) =
∫ τ

r
φ−1

1

(

1

tN−1

∫ t

τ
sN−1 (λ h(u(s)) + g(s, u(s))) ds

)

dt

=
∫ τ

r
φ−1

1

(

1

tN−1

∫ τ

t
sN−1 (−λ h(u(s))− g(s, u(s))) ds

)

dt

≤
∫ τ

r
φ−1

1

(

1

tN−1

∫ t

τ
sN−1g(s, u(s))ds

)

dt

=
∫ τ

r

1
tN−1

∫ t
τ sN−1g(s, u(s))ds

√

1 +
(

1
tN−1

∫ t
τ sN−1g(s, u(s))ds

)2
dt,

since 0 ≤ r
t ≤ 1 and N ≥ 1, this implies

rN−1|u(r)| ≤
∫ τ

r

∫ t

τ
sN−1|g(s, u(s))|dsdt ≤ M

∫ τ

r
sN−1|u(s)|ds.

By Gronwall–Bellman inequality, we have rN−1|u(r)| ≡ 0 on [0, τ]. And accordingly, u(r) ≡ 0

on (0, τ]. This fact together with the continuity of u, we conclude that u(r) ≡ 0 on [0, τ].

Similarly, if τ > 0 and r ∈ [τ, 1], then by Gronwall–Bellman inequality again, we can get

u(r) ≡ 0 on [τ, 1] and the proof is completed.

Lemma 3.2. There exists ρ0 > 0 such that any nontrivial solution u of

Au = g(r, u), r ∈ (0, 1),

u′(0) = u(1) = 0
(3.1)

satisfies ‖u‖ > ρ0.

Proof. Assume, by contradiction, that there is a sequence {un} of solutions of (3.1) and such

that un 6= 0 and ‖un‖ → 0. For all n ∈ N, let vn = un

‖un‖ . Then ‖vn‖ = ‖v′n‖∞ = 1, consequently,

‖vn‖∞ is bounded. By the Ascoli–Arzelà theorem, there exists a subsequence of {vn} which

uniformly converges to v ∈ C[0, 1]. We again denote the subsequence by {vn}. For any un, we

have

− 1

rN−1

(

rN−1 u′
n

√

1 − u′2
n

)′

= g(r, un), r ∈ (0, 1),

u′
n(0) = un(1) = 0.

(3.2)

Multiplying both sides of (3.2) by ‖un‖−1, we have

− 1

rN−1

(

rN−1 v′n
√

1 − u′2
n

)′

=
g(r, un)

un
vn, r ∈ (0, 1),

v′n(0) = vn(1) = 0.
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Since ‖un‖ → 0 implies ‖un‖∞ → 0. From (A2) and Lebesgue’s dominated convergence

theorem, we conclude that

− 1

rN−1

(

rN−1v′
)′

= 0, r ∈ (0, 1),

v′(0) = v(1) = 0,

which means that v ≡ 0 contradicting with ‖v‖ = 1.

Proof of Theorem 1.1. Theorem 1.1 cannot be proved using standard bifurcation techniques

by linearization. Actually, from (A1), we have known the nonlinear term h has infinite deriva-

tive at u = 0. To overcome this problem we shall employ a limiting procedure. Let us define

a function h̃ : R → R by setting

h̃(s) =















h(s), 0 ≤ |s| ≤ 1,

linear, 1 < |s| < 2,

0, |s| ≥ 2,

and define a function g̃ : [0, 1]× R → R by setting, for r ∈ [0, 1],

g̃(r, s) =















g(r, s), 0 ≤ |s| ≤ 1,

linear, 1 < |s| < 2,

0, |s| ≥ 2.

Observe that, within the context of positive solutions, problem (1.3) is equivalent to the same

problem with h, g replaced by h̃, g̃. Indeed, if u is a positive solution, then ‖u′‖∞ < 1 and

hence ‖u‖∞ < 1. Clearly, h̃ and g̃ satisfy all the properties assumed in the statement of the

theorem. In the sequel, we shall replace h, g with h̃ and g̃, however, for the sake of simplicity,

the modified functions h̃, g̃ will still be denoted by h, g. Next, for any δ ∈ (0, 1), let us define

hδ by setting

hδ(s) =







h(δ)

δ
s, 0 ≤ |s| ≤ δ,

h(s), |s| > δ.

Obviously,

lim
δ→0

hδ(s) = h(s), (hδ)0 = lim
s→0

hδ(s)

s
=

h(δ)

δ
> 0. (3.3)

This together with (A1) implies that

lim
δ→0

(hδ)0 = ∞. (3.4)

Let us consider the approximated problems

Au = λhδ(u) + g(r, u), r ∈ (0, 1),

u′(0) = u(1) = 0,
(3.5)

where A is given by (1.4).

Define

Fδ(λ, u) = λhδ(u) + g(r, u) +
1

rN−1

(

rN−1 u′
√

1 − u′2

)′
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for any (λ, u) ∈ R × X and fixed δ > 0. Then, from Remark 1.3, and by a simple calculation,

we have that

(Fδ)u(λ, 0)v = lim
t→0

Fδ(λ, tv)− Fδ(λ, 0)

t

= λ
h(δ)

δ
v +

1

rN−1

(

rN−1v′
)′

.

(3.6)

Let λk,δ = λk · δ
h(δ)

. Then from (3.6), it follows that if (λk,δ, 0) is a bifurcation point of problem

(3.5), then λk is an eigenvalue of problem (2.1).

For any γ ∈ [0, 1], we consider the following problem

Au = λhδ(u) + γg(r, u), r ∈ (0, 1),

u′(0) = u(1) = 0.
(3.7)

Then problem (3.7) is equivalent to

u = ψ(λhδ(u) + γg(r, u)) := Fδ,λ(γ, u).

From [14, Lemma 2.3], it follows that Fδ,λ : [0, 1] × X → X is completely continuous. In

particular, Hδ,λ := Fδ,λ(1, ·) : X → X is completely continuous.

By (A2) and an argument similar to that of Lemma 2.5, we can show that the Leray–

Schauder degree deg(I − Fδ,λ(γ, ·), Br(0), 0) is well defined for λ ∈ (0, ∞) \ {λk}. From the

invariance of the degree under homotopies we obtain that

deg(I − Hδ,λ, Br(0), 0) = deg(I − Fδ,λ(1, ·), Br(0), 0)

= deg(I − Fδ,λ(0, ·), Br(0), 0)

= deg

(

I − ψ

(

λ
h(δ)

δ
·
)

, Br(0), 0

)

.

So by Lemma 2.5, we have that

deg(I − Hδ,λ, Br(0), 0) =















1, if λ ∈
(

0,
δ

h(δ)
λ1

)

,

(−1)k, if λ ∈
(

δ

h(δ)
λk,

δ

h(δ)
λk+1

)

, k ∈ N.

Denote

̥δ = {(λ, u) : (λ, u) ∈ [0, ∞)× X, u is a solution of (3.5)}R×X
.

Then by a variant of the global bifurcation theorem of Rabinowitz [30], or index jump principle

of Zeidler [33], for any δ > 0, there exists a maximal closed connected set Sk,δ in ̥δ such that

(λk,δ, 0) ∈ Sk,δ and at least one of the following conditions holds:

(i) Sk,δ is unbounded in R × X;

(ii) Sk,δ ∩ (R\{λk,δ} × {0}) 6= ∅.
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Since (0, 0) is the only solution of (3.5) for λ = 0 and 0 is not the eigenvalue of eigenvalue

problem (2.1), therefore Sk,δ ∩ (R\{λk,δ} × {0}) = ∅. Recalling Remark 1.4, we get Sk,δ is

unbounded in λ-direction for each fixed δ.

Combining this and (3.3) and (3.4) and using Lemma 2.3, it follows that for each k ∈ N,

there exists a component Γk in lim sup Sk,δ which joins (0, 0) to infinity in λ-direction.

In the following, we will prove the properties (i)–(iii) of Theorem 1.1, respectively.

(i) Let δ0 be a positive constant such that λ h(δ0)
δ0

> λ1. Let us consider (λ, u) ∈ S1,δ, with λ > 0

and δ ∈ (0, δ0].

Fixing ε > 0 small, from (A1) and (A2), we obtain there exists c = c(λ) > 0 such that

λhδ(s) + g(r, s) > (λ1 + ε)s, ∀s ∈ (0, c].

Hence, we obtain if ‖u1‖∞ ≤ c, then u1 satisfies

Au1 > (λ1 + ε)u1.

From [6], we have u1 is an upper solution of the eigenvalue problem

Au = (λ1 + ε)s. (3.8)

On the other hand, it is easy to verify that u2 ≡ 0 is a lower solution of (3.8). Therefore,

[6, Proposition 1] yields the existence of a positive solution u ∈ X of the eigenvalue problem

(3.8). However, this is a contradiction, because λ1 + ε is not the first eigenvalue of (2.1).

This shows that if (λ, u) ∈ S1,δ, with λ > 0 and δ ∈ (0, δ0], then ‖u‖∞ > c(λ). Passing to

the limit as δ → 0 it follows that if (λ, u) ∈ Γ1 then ‖u‖∞ ≥ c(λ).

When we consider Γk with k > 1 the argument is similar. If (λ, u) ∈ Sk,δ, then there exists

at least one interval Ik with length 1/k where u has constant sign. Therefore if we restrict the

discussion to the interval Ik and replace λ1 by the first eigenvalue of (2.1) on the interval Ik,

then we can get the same contradiction as before.

(ii) From (i), we have for any (λ, u) ∈ Γk, if λ > 0, then u 6= 0.

Let {(λn, un)} ⊆ Sk,n be a sequence, converging to (λ, u) in R × X. First, if k = 1, then

we have un > 0 in [0, 1), therefore u ≥ 0, moreover, the strong Maximum Principle yields that

u > 0 in [0, 1).

Next, if k > 1, then let {xn} and {yn} be two consecutive zeros of un with xn → ξ and

yn → η. Obviously, u(ξ) = u(η) = 0. We claim that ξ 6= η. Otherwise, there exists a third

sequence {zn} such that u′
n(zn) = 0 and limn→∞ zn = ξ. Therefore, we can find a u, it is a

solution of

Au = λh(u) + g(r, u),

and satisfies

u(ξ) = u′(ξ) = 0.

However, from Lemma 3.1, we know this is impossible. Therefore, we conclude that for any

(λ, u) ∈ Γk and λ > 0, u has exactly k − 1 simple zeros in the interval (0, 1).
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(iii) Suppose on the contrary that there exists a sequence {(λn, un)} ⊆ Sk,n such that λn → 0,

un → u and ‖un‖ = ρ ≤ ρ0. Passing to the limit we find that u 6= 0 is a solution of (3.1) and u

satisfies ‖u‖ ≤ ρ0, however this contradicts Lemma 3.2.

Example 3.3. Let us consider the following Dirichlet problem with mean curvature operator

in the Minkowski space

−div

(

∇u
√

1 − |∇u|2

)

= λh(u) + g(r, u), r = |x| < 1,

u = 0, r = |x| = 1,

(3.9)

where

h(u) =

{√
u, u ≥ 0,

−
√
−u, u < 0,

and

g(r, u) =

{

u2, u ≥ 0,

−u2, u < 0.

Obviously, q = 3
2 and all assumptions of Theorem 1.1 are valid. Therefore, from Theorem 1.1,

we know there are infinitely many unbounded component of radial nodal solutions of (3.9)

branching off from (0, 0).
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Abstract. We study the following class of double-phase nonlinear eigenvalue problems

−div [φ(x, |∇u|)∇u + ψ(x, |∇u|)∇u] = λ f (x, u)

in Ω, u = 0 on ∂Ω, where Ω is a bounded domain from R
N with smooth boundary

and the potential functions φ and ψ have (p1(x); p2(x)) variable growth. The main
results of this paper are to prove the existence of a continuous spectrum consisting in
a bounded interval in the near proximity of the origin, the fact that the multiplicity of
every eigenvalue located in this interval is at least two and to establish the existence
of infinitely many solutions for our problem. The proofs rely on variational arguments
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theorem and energy estimates.
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1 Introduction

The recent study of various mathematical models described by variational problems with non-

standard variable growth conditions is motivated by many phenomena that arise in applied

sciences. For instance, in some cases, to describe the behavior of some materials which are not

homogeneous the classical theory of Lp(Ω) and W1,p(Ω) Lebesgue and Sobolev spaces has

proven its limitation.

An example of such type of materials are the thermorheological and electrorheological

fluids. For a good description from the partial differential equations point of view of these

types of materials we refer to V. Rădulescu [23] and V. Rădulescu, D. Repovš [24]. We remark

also that the variable exponent analysis for some nonlinear problems plays a crucial role in

the development of robotics, aircraft and airspace and the image restoration.

BEmail: uta.vasi@yahoo.com
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In this paper we are interested in the study of a class of non-autonomous eigenvalue

problems with a variable (p1(x); p2(x))-grow rate condition, which are described by the fact

that the associated energy density changes its ellipticity and growth properties according to

the point.

Our study is based on some new type of non-homogeneous differential operators devel-

oped by I. H. Kim and Y. H. Kim [12], which allow us to analyze some problems that imply

the possibility of lack of uniform convexity. In this paper we extend the results of I. H. Kim

and Y. H. Kim by studying a double-phase problem. Moreover, for the best of our knowledge

for this type of operators it is not established yet the possibility of existence and multiplic-

ity for some eigenvalues in the near proximity of the origin, even in the simpler case when

the differential operator is driven by only one potential function. This paper also aim to ex-

tend the spectral analysis for this kind of problems made by S. Baraket, S. Chebbi, N. Chorfi,

V. Rădulescu in [2].

Therefore we consider the following double-phase nonlinear eigenvalue problem:

{

−div [φ(x, |∇u|)∇u + ψ(x, |∇u|)∇u] = λ f (x, u), in Ω,

u = 0, on ∂Ω,
(Pλ)

where Ω is a bounded domain in R
N with Lipschitz boundary and λ ∈ R is a real parameter.

The study of these types of problems was motivated by the fact that we may need to model

a composite that changes its hardening exponent according to the point. For more details

about integral functionals with nonstandard (p, q)-growth conditions, we refer to P. Marcellini

[13, 14]. These types of problems was also studied by G. Mingione et al. [3, 6, 7], where the

associated energies are of type

u 7→
∫

Ω

(

|∇u|p1(x) + a(x)|∇u|p2(x)
)

dx (1.1)

and

u 7→
∫

Ω

[

|∇u|p1(x) + a(x)|∇u|p2(x) log(e + |x|)
]

dx, (1.2)

where p1(x) ≤ p2(x), p1 6= p2, for all x ∈ Ω and a(x) ≥ 0.

These problems describe the behavior of two materials with variable power hardening

exponents p1(x) and p2(x) and the coefficient a(x) dictates the geometry of a composite of

the two materials.

As we mentioned before our nonhomogeneous differential operator corresponds to the

type of double-phase operators, fact that is induced by the presence of the potential functions

φ and ψ. In order to make a better connection with the work of Mingione et al., we remark

that our potential functions φ and ψ may behave as it follows

• φ(x, t) = tp(x)−2, case in which we can also embed the description given by (1.1) for the

fact that our operators extends the case when

−div [φ(x, |∇u|)∇u + ψ(x,∇u)∇u]=−div
[

a(x)|∇u|p1(x)−2∇u + b(x)|∇u|p2(x)−2∇u
]

,

for some functions a(x), b(x) ∈ L∞(Ω)+;

• φ(x, t) = (1 + |t|2) p(x)−2
2 , case in which we obtain the generalized mean curvature opera-

tor;
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• φ(x, t) =
(

1 + tp(x)√
1+t2p(x)

)

tp(x)−2, case in which we obtain the corresponding differential

operator that describe the capillary phenomenon.

For this cases, in order to obtain the description given by (1.2) we have to analyze the

following differential operator:

−div [φ(x, |∇u|)∇u + a(x)ψ(x, |∇u|) log(e + |x|)∇u] .

As we mentioned before the main results of this paper is to establish the fact that for

every λ > 0 small enough we have two different solutions and the fact that our problem

(Pλ) admits a sequence of solutions with higher and higher energies provided only by the

restriction λ > 0. The first solution is obtained as a local minimum near the origin. To this

end we refer to [9,17] and [24, Chapter 2] for more details about the method used to point out

this type of solutions. Our second solution is obtained as a mountain pass critical point. For

a comprehensive study of this type of solutions we refer to the following works of P. Pucci,

J. Serrin [21, 22], P. Pucci, V. Rădulescu [19]. The third type of solutions is obtained as high

energy solutions by employing the fountain theorem. For more details about this critical point

technique we refer to the following works: [10, 12, 25, 28].

Also more details about existence and nonexistence results related to variable exponent

equations can be found in the following works [4, 11], while more critical point techniques

and qualitative analysis for double-phase operators can be found in [1, 5, 20].

Moreover, we make a parallel between the techniques used to point out our results and be-

tween our methods and some other techniques used so far to describe some spectral properties

of these types of operators. For more details we mention the following works [2, 12, 26, 27].

Also in the final part of this paper are given some examples and remarks in order to

illustrate the validity of the general results obtained throughout this work.

2 The functional framework

Throughout this section we will introduce the necessary information about the functional

framework that we will need in the study of problem (Pλ). To this end we will give a brief

description of variable exponent Lebesgue and Sobolev spaces. Most of the following proper-

ties and results can be found in the following books by J. Musielak [18], L. Diening, P. Hästö,

P. Harjulehto, M. Růžička [8], V. Rădulescu, D. Repovš [24].

First we assume that Ω ⊆ R
N is a bounded domain with smooth boundary. Let

C+(Ω) =

{

p ∈ C(Ω) : min
x∈Ω

p(x) > 1

}

,

and for any continuous function p : Ω → (1,+∞), we have

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

For any p ∈ C+(Ω), with p < +∞ we define the variable exponent Lebesgue space as if

follows

Lp(x)(Ω) =

{

u : Ω → R a measurable function :
∫

Ω

|u(x)|p(x)dx < ∞

}

,
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which endowed with the following Luxemburg norm

|u|p(x) = inf

{

µ > 0 :
∫

Ω

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

becomes a Banach space. For any 1 < p(x) < +∞ as defined before, Lp(x)(Ω) is reflexive, uni-

formly convex Banach space, and moreover for any measurable bounded exponent p, Lp(x)(Ω)

is separable.

Remark 2.1. This space is a special case of an Orlicz–Musielak space and its dual space is

defined as Lp′(x)(Ω), where p′(x) is the conjugate exponent of p(x), in the sense that 1
p(x)

+
1

p′(x)
= 1.

If p and q are two variable exponents and p(x) ≤ q(x) for almost all x ∈ Ω, with |Ω| < ∞,

then there exists the following continuous embedding

Lq(x)(Ω) →֒ Lp(x)(Ω),

where by |Ω| we denote the Lebesgue measure of Ω.

Let u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) then the following Hölder type inequality occurs:

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

≤
(

1

p−
+

1

p′−

)

|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.1)

A crucial role in manipulating the variable exponent Lebesgue spaces is played by the

modular function associated to these types of spaces. We define the modular of Lp(x)(Ω) by

the function ρp(x) : Lp(x)(Ω) → R such that

ρp(x)(u) =
∫

Ω

|u(x)|p(x)dx.

If p(x) 6≡ constant in Ω and u, (un)n ∈ Lp(x)(Ω), then the following relations hold true:

|u|p(x) < 1 ⇒ |u|p
+

p(x)
≤ ρp(x)(u) ≤ |u|p

−

p(x)
, (2.2)

|u|p(x) > 1 ⇒ |u|p
−

p(x)
≤ ρp(x)(u) ≤ |u|p

+

p(x)
, (2.3)

|u|p(x) = 1 ⇒ ρp(x)(u) = 1, (2.4)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (2.5)

We define in what follows the variable exponent Sobolev space W1,p(x)(Ω) by

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

.

On W1,p(x)(Ω) we can define the following equivalent norms:

‖u‖p(x) = |u|p(x) + |∇u|p(x)

and

‖u‖ = inf

{

µ > 0 :
∫

Ω

(

∣

∣

∣

∣

∇u(x)

µ

∣

∣

∣

∣

p(x)

+

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)
)

dx ≤ 1

}

.
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Since our problem necessitates that the function u = 0 on ∂Ω, we define the associated

space W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖p(x) as it follows

W
1,p(x)
0 (Ω) =

{

u; u|∂Ω = 0, u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

.

Taking account of [12] for p ∈ C+(Ω) it holds true the following Poincaré type inequality

|u|p(x) ≤ C|∇u|p(x), (2.6)

for C > 0 a constant which depends on p and Ω.

Remark 2.2. If Ω ⊂ R
N is a bounded domain, and the function p which dictates the variable

exponent is global log-Hölder continuous the norm |∇u|p(x) is equivalent with ‖u‖p(x) on

W
1,p(x)
0 (Ω).

Remark 2.3. If p− > 1, the spaces W1,p(x)(Ω) and W
1,p(x)
0 (Ω) are reflexive, uniformly convex

Banach spaces. Furthermore if p is measurable and bounded then our spaces are separable.

Remark 2.4 ([24]). If p, q, r ∈ C+(Ω) with p+ < N, and p(x) < r(x) < q(x) < p∗(x) = Np(x)
N−p(x)

,

for any x ∈ Ω, then the following embeddings hold true

W
1,r(x)
0 (Ω) →֒ W

1,p(x)
0 (Ω) (continuous embedding),

W
1,p(x)
0 (Ω) →֒ Lq(x)(Ω) (continuous and compact embedding).

3 Basic hypotheses and auxiliary results

In this section we will establish the main conditions imposed on the potential functions φ and

ψ which drive us to our double-phase differential operator from the problem (Pλ) and some

auxiliary results that will help us pointing out our solutions.

We assume that:

(S1) φ, ψ : Ω × [0, ∞) → [0, ∞) and

– φ(·, t), ψ(·, t) are measurable on Ω for all t ≥ 0;

– φ(x, ·), ψ(x, ·) are locally absolutely continuous on [0, ∞) for almost all x ∈ Ω.

(S2) There exist some functions v1 and v2 such that v1 ∈ Lp′1(x)(Ω) and v2 ∈ Lp′2(x)(Ω) and a

constant ξ > 0 such that

– |φ(x, |t|)t| ≤ v1(x) + ξ|t|p1(x)−1,

– |ψ(x, |t|)t| ≤ v2(x) + ξ|t|p2(x)−1

for almost all x ∈ Ω, and all t ∈ R
N .

(S3) There is a strictly positive constant c such that the following statements are verified for

almost all x ∈ Ω and all t > 0:

– φ(x, t) ≥ ctp1(x)−2 and t
∂φ
∂t + φ(x, t) ≥ ctp1(x)−2,

– ψ(x, t) ≥ ctp2(x)−2 and t
∂ψ
∂t + ψ(x, t) ≥ ctp2(x)−2.
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Let us now impose some conditions on the reaction term (right-hand side) of the problem

(Pλ). We define f : Ω × R → R as a Carathéodory function (i.e. f (·, z) is measurable for all

z ∈ R and f (x, ·) is continuous for almost all x ∈ Ω) satisfying the following hypotheses:

(R1) z f (x, z) ≥ 0 for almost all (x, z) ∈ Ω × R, and there exists a function m ∈ L∞(Ω) \ {0},

m(x) ≥ m−
> 0, where m− is a constant, for all x ∈ Ω such that

| f (x, z)| ≤ m(x)|z|q(x)−1 for almost all x ∈ Ω, all z ∈ R.

(R2) There exist some strictly positive constants A and η such that

0 < ηF(x, z) ≤ z f (x, z) for almost all x ∈ Ω, z ∈ R \ {0},

where F(x, z) =
∫ z

0
f (x, t)dt, η > p+2 and |z| > A.

By hypothesis (R1) we obtain that

(R3) F(x, z) ≤ m(x)

q(x)
|z|q(x) for all (x, z) ∈ Ω × R.

(R4) There exists a constant CF > 0 such that

|z|q(x) ≤ CFF(x, z), for all (x, z) ∈ Ω × R.

Now we assume that p1, p2, q ∈ C+(Ω). Our variable exponents exhibits the following

behavior
{

1 < q− < p−1 ≤ p1(x) ≤ p+1 < p−2 ≤ p2(x) ≤ p+2 ,

p+2 < p∗1(x) and q+ < p∗1(x),
(3.1)

where p∗1(x) = Np1(x)
N−p1(x)

is the critical Sobolev exponent, for all x ∈ Ω.

Remark 3.1. At this point we do not have any information on the behavior of the quantity

sup
x∈Ω

q(x), beside the fact that it is a subcritical exponent.

Remark 3.2. Taking account on the relation (3.1) and the embedding theorems for variable

exponent Lebesgue and Sobolev spaces we will choose W = W
1,p2(x)
0 (Ω) as functional space

for the solutions of problem (Pλ), and for the simplicity of the writing by ‖ · ‖ we will denote

the norm associated to W
1,p2(x)
0 (Ω) (‖ · ‖p2(x)).

Definition 3.3. We say that u ∈ W \ {0} is a weak solution of the problem (Pλ) if

∫

Ω

[φ(x, |∇u|)∇u∇ϕ + ψ(x, |∇u|)∇u∇ϕ] dx = λ
∫

Ω

f (x, u)ϕdx

for all ϕ ∈ W.

In order to establish the desired spectral properties for our problem we define the energy

functional associated to the problem (Pλ) as it follows

Tλ : W → R,

Tλ(u) = S(u)− λR(u),
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where

S(u) =
∫

Ω

S0(x, |∇u|)dx, with S0(x, t) =
∫ t

0
φ(x, s)sds +

∫ t

0
ψ(x, s)sds

and

R(u) =
∫

Ω

F(x, u)dx.

An important role in the analysis made by using the energy functional Tλ is played by the

fact that the part of the functional driven by our double-phase operator (left-hand side of the

problem) satisfy the following hypothesis

(S4) For all x ∈ Ω, all t ∈ R
N , the following estimate holds true:

0 ≤ [φ(x, |t|) + ψ(x, |t|)] |t|2 ≤ ωS0(x, |t|),

for a constant ω > 1.

Remark 3.4. We can observe that the functional Tλ is of class C1(W, R) (for more details we

refer to [12, Lemmas 3.2, 3.4] and [2, Section 4]).

In order to reveal the eigenvalues associated to our differential operator we will point out

that the critical points of the energy functional Tλ are weak solutions for the problem (Pλ), so

they are eigenfunctions to their corresponding eigenvalues denoted by λ.

Firstly we need to prove some useful properties related by the geometry of the energy

functional Tλ.

Proposition 3.5. There exists λφ,ψ > 0 such that for any 0 < λ < λφ,ψ there exist two strictly

positive constants r and δ such that Tλ(u) ≥ δ > 0 for any u ∈ W with ‖u‖ = r.

Proof. We will compute first the part of the energy functional driven by the differential oper-

ator in the left-hand side of the problem (Pλ).

S(u) =
∫

Ω

S0(x, |∇u|)dx

≥ 1

ω

∫

Ω

φ(x, |∇u|)|∇u|2 + ψ(x, |∇u|)|∇u|2dx

≥ 1

ω

∫

Ω

c
(

|∇u|p1(x) + |∇u|p2(x)
)

dx

≥ c

ω

(

∫

Ω

|∇u|p1(x)dx +
∫

Ω

|∇u|p2(x)dx

)

. (3.2)

Taking account of the relation (3.1) we have the following continuous embeddings

W = W
1,p2(x)
0 (Ω) →֒ W

1,p1(x)
0 (Ω)

W
1,p1(x)
0 (Ω) →֒ Lq(x)(Ω).

Therefore we have the following inequalities

|u|q(x) < C1‖u‖p1(x) (3.3)

‖u‖p1(x) < C2‖u‖, (3.4)
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where C1 > 0, C2 > 0 are some constants.

Combining (3.3) and (3.4) we obtain

|u|q(x) < C1‖u‖p1(x) < C1 · C2‖u‖.

Now, let r ∈ (0, 1) be fixed such that r < min
{

1
C1C2

, 1
C1

}

, therefore we have that

‖u‖p1(x) < 1,

|u|q(x) < 1,
for all u ∈ W, with ‖u‖ = r. (3.5)

Moreover, using the properties described by relations (2.2) and (3.2), we obtain that

S(u) ≥ c

ω

(

‖u‖p+1
p1(x)

+ ‖u‖p+2

)

≥ c

ω
‖u‖p+2 . (3.6)

We proceed now to compute the second part of our energy functional, driven by the

reaction term, using assumptions (R1) and (R3) we obtain that:

R(u) =
∫

Ω

F(x, u)dx

≤
∫

Ω

m(x)

q(x)
|u|q(x)dx

≤ ‖m‖∞

q−

∫

Ω

|u|q(x)dx. (3.7)

Taking account of relation (3.5) and the property described by (2.2) we have that
∫

Ω

|u|q(x)dx < |u|q
−

q(x)
.

Using the continuous embedding for variable exponent Lebesgue and Sobolev spaces dic-

tated by hypothesis (3.1) and relation (3.7) we obtain that

R(u) ≤ ‖m‖∞

q−
(C1 · C2)

q−‖u‖q− . (3.8)

Hence taking account of (3.6) and (3.8) we have that:

Tλ(u) = S(u)− λR(u)

≥ c

ω
‖u‖p+2 − λ

‖m‖∞

q−
(C1 · C2)

q−‖u‖q−

=
c

ω
rp+2 − λ

‖m‖∞

q−
C

q−

3 rq−

= rq−
(

c

ω
rp+2 −q− − λ

‖m‖∞

q−
C

q−

3

)

, (3.9)

where C3 = C1 · C2.

Using the inequality (3.9) we find that for every

λ ∈
(

0,
c

ω
rp+2 −q− · q−

C
q−

3 ‖m‖∞

)
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we can find a constant δ = δ
(

c
ω rp+2 −q− · q−

C
q−
3 ‖m‖∞

)

> 0 such that

Tλ(u) ≥ δ > 0

for any u ∈ W, with ‖u‖ = r.

Hence the proposition is proved.

Remark 3.6. So, further on we will denote λφ,ψ by the quantity

λφ,ψ =
c

ω
rp+2 −q− · q−

C
q−

3 ‖m‖∞

. (3.10)

Remark 3.7. We also can observe that our energy functional satisfies one of the geometric

hypotheses of the mountain pass theorem, that is the existence of a mountain near the origin.

Proposition 3.8. There exists h ∈ W, with h > 0 such that

Tλ(th) < 0,

provided by a t > 0 sufficiently small.

Proof. We proceed first to compute the part of the energy functional which is driven by the

double-phase operator from the left-hand side of the problem (Pλ).

Using (S2), Hölder’s inequality for variable exponent Lebesgue and Sobolev spaces and

the fact that t ∈ (0, 1) is sufficiently small, we have that

S(th) ≤ 2Cφ|v1|p′1(x)‖th‖p−1
p1(x)

+
ξ

p−1
‖th‖p−1

p1(x)
+ 2Cψ|v2|p′2(x)‖th‖p−2 +

ξ

p−2
‖th‖p−2

≤ tp−1 C̃1, (3.11)

where Cφ, Cψ > 0 are two constants that depend on the potential functions φ, ψ and on the

continuous embeddings

W
1,p1(x)
0 (Ω) →֒ Lp1(x)(Ω)

W
1,p2(x)
0 (Ω) →֒ W

1,p1(x)
0 (Ω),

and

C̃1 =

(

2Cφ|v1|p′1(x) +
ξ

p−1

)

‖h‖p−1
p1(x)

+

(

2Cψ|v2|p′2(x) +
ξ

p−2

)

‖h‖p−2 . (3.12)

In what follows we will compute the second part of the energy functional.

Using hypotheses (R1), (R3) and (R4) there exists a constant CF > 0 such that F(x, u) ≥
1

CF
|u|q(x), with CF ≥ q+

m− , where m− = min{m(x) : x ∈ Ω, m(x) 6= 0}.

Let us consider CF = q+

m− + 1, and so we have that

F(x, u) ≥ m−

q+ + m− |u|q(x). (3.13)

Hypothesis (3.1) implies the fact that q− < p−1 . Let α0 > 0 be such that

q− + α0 < p−1 .
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Since q ∈ C(Ω) we obtain the fact that there exists an open set Ω0 ⊂ Ω such that

|q(x)− q−| < α0 for all x ∈ Ω0,

therefore we can say that

q(x) < q− + α0 < p−1 for all x ∈ Ω0.

Consider h ∈ C∞
0 (Ω) be such that supp(h) ⊃ Ω0, h(x) = 1 for all x ∈ Ω0 and 0 ≤ h ≤ 1

in Ω.

Now taking account of relation (3.13) one have that

R(th) =
∫

Ω

F(x, th)dx

≥ m−

q+ + m−

∫

Ω

tq(x)|h|q(x)dx

≥ m−

q+ + m− tq−+α0

∫

Ω0

|h|q(x)dx. (3.14)

Now combining relations (3.11) and (3.14) we obtain that

Tλ(th) ≤ C̃1tp−1 − λtq−+α0
m−

q+ + m−

∫

Ω0

|h|q(x)dx. (3.15)

Hence, taking account of relation (3.15) we obtain that

Tλ(th) < 0

provided by t < s
1

p−
1
−q−−α0 , where

0 < s < min

{

1,
λC̃2

C̃1

}

with C̃2 = m−
q++m−

∫

Ω0
|h|q(x)dx and C̃1 as defined by relation (3.12).

Now taking account of the fact that

∫

Ω0

|h|q(x)dx ≤
∫

Ω

|h|q(x)dx ≤
∫

Ω

|h|q−dx,

and by the continuous embedding W →֒ Lq−(Ω), and the properties of the modular function

for variable exponent Lebesgue space (relations (2.2)–(2.5)) we can affirm that

‖h‖ > 0 and
∫

Ω

|∇h|p1(x)dx > 0,
∫

Ω

|∇h|p2(x)dx > 0,

and this completes the proof of our proposition.

Remark 3.9. We can observe that our energy functional does not satisfy the second geometrical

condition of the mountain pass theorem, in the sense that there exists a valley near the origin,

but it is not as far away as required. Hence the mountain pass theorem can not be applied at

this moment, but it can be applied if we impose some additional conditions on the growing

behavior of the reaction term. We will analyze this fact later on this paper.
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4 Multiple types of solutions

We can state now our first result.

Theorem 4.1. Assume that condition (3.1) is satisfied and hypotheses (S1)–(S4), (R1), (R3), (R4)

hold true. Then for p+2 < N, for all x ∈ Ω, there exists λφ,ψ > 0 such that any λ with 0 < λ < λφ,ψ

is an eigenvalue for problem (Pλ).

Proof. We proceed now to prove our first result. Let λφ,ψ be as declared in relation (3.10) and

consider λ ∈ (0, λφ,ψ). In what follows we will denote by B(0, r) = {u ∈ W : ‖u‖ < r} the

ball centered in the origin with r radius from W.

Using Proposition 3.5, we have that

inf
u∈∂B(0,r)

Tλ(u) > 0. (4.1)

Also by Proposition 3.8 we have that there exists h ∈ W such that Tλ(th) < 0, provided by

t > 0 sufficiently small. Furthermore by relation (3.3), (3.4) and (2.2) we have that

Tλ(u) ≥
c

ω
‖u‖p+2 − λ

‖m‖∞

q−
C

q−

3 ‖u‖q− .

Therefore we can say that there exists a constant c0 such that

−∞ < c0 := inf
B(0,r)

Tλ < 0.

Taking account of the above relations let ε > 0 be such that ε < inf∂B(0,r) Tλ − infB(0,r) Tλ, by

applying the Ekeland’s variational principle ([9]) to the functional Tλ : B(0, r) → R we obtain

the existence of a function uε ∈ B(0, r) such that

Tλ(uε) ≤ inf
B(0,r)

Tλ + ε

Tλ(uε) ≤ Tλ(u) + ε‖u − uε‖, u 6= uε.

Therefore we have that

Tλ(uε) ≤ inf
B(0,r)

Tλ + ε ≤ inf
B(0,r)

Tλ + ε < inf
∂B(0,r)

Tλ,

thus we have obtained that ‖uε‖ < r. Now, let E be the energy functional defined on B(0, r)

as it follows

E : B(0, r) → R

E(u) = Tλ(u) + ε‖u − uε‖. (4.2)

Now using relation (4.2) we have that

E(uε) = Tλ(uε) < Tλ(u) + ε‖u − uε‖ = E(u), u 6= uε. (4.3)

So far, taking a look at relation (4.3) it turns out that uε is a minimum point for E, therefore,

using arguments from [2, 12, 17] we have that

E(uε + tϕ)− E(uε)

t
≥ 0 (4.4)
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for t > 0 small and every ϕ, with ‖ϕ‖ < 1.

Relation (4.4) yields the fact that

Tλ(uε + tϕ)− Tλ(uε)

t
+ ε‖ϕ‖ ≥ 0.

We let t → 0 and we obtain that

〈T′
λ(uε), ϕ〉 > −ε‖ϕ‖

〈T′
λ(uε), ϕ〉 > −ε

which yields to the fact that ‖T′
λ(uε)‖ ≤ ε.

Therefore we get the existence of a sequence (vn)n ⊂ B(0, r) such that

Tλ(vn) → c0 and T′
λ(vn) → 0. (4.5)

Since (vn)n ⊂ B(0, r) it yields that

‖vn‖ ≤ r, for every n ∈ N, (4.6)

hence the sequence (vn)n is bounded in W. As a consequence we can find an element v0 such

that (passing eventually to a subsequence)

vn ⇀ v0 in W.

By the fact that W is compactly embedded in Lq(x)(Ω) we get that vn → v0 in Lq(x)(Ω).

Using [24, Lemma 21, Chapter 3] and some arguments from the proof of [12, Lemma 3.5] we

have that R′(u) is compact therefore we have that

lim
n→∞

R(vn) = R(v0)

lim
n→∞

〈R′(vn), vn − v0〉 = 0
(4.7)

It only remains to show that

lim
n→∞

S(vn) = S(v0).

Using relation (4.5) we have that

lim
n→∞

〈T′
λ(vn), vn − v0〉 = 0. (4.8)

Using (4.7) and (4.8) we can obtain that

lim
n→∞

〈S′(vn)− S′(v0), vn − v0〉 ≤ lim
n→∞

〈T′
λ(vn), vn − v0〉 = 0,

thus using [12, Lemma 3.4] we get that

vn → v0 in W. (4.9)

Hence by relations (4.9) and (4.7) combined with relation (4.5) we obtain the fact that

Tλ(v0) = c0 < 0 and T′
λ(v0) = 0.

We conclude by pointing out that v0 is a nontrivial weak solution of problem (Pλ) and

every λ ∈ (0, λφ,ψ) is an eigenvalue of our problem.
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Let us assume now that the hypotheses of Theorem 4.1 are fulfilled and moreover we have

more knowledge about the variable growth of the reaction term; namely the following relation

holds true:

1 < q− < p−1 ≤ p1(x) ≤ p+1 < p−2 ≤ p2(x) ≤ p+2 < q+ < p∗1(x), (4.10)

for all x ∈ Ω.

Remark 4.2. Taking account of the relation (4.10) we still can not prove the fact that our energy

functional Tλ is coercive, so we can not apply the so called Direct Method in the Calculus of

Variations in order to point out our eigenvalues. This method have been applied on this types

of operators in the following works: [2, 12, 27].

Using the new information given by relation (4.10) about the growth behavior of the reac-

tion term we can obtain the following property for our energy functional.

Proposition 4.3. Suppose that hypotheses (S1)–(S4), (R1)–(R4) and (4.10) hold true, then we can

find some element θ ∈ W such that

Tλ(tθ) < 0,

provided by t sufficiently large.

Proof. Using similar arguments as in the proof of Proposition 3.8 and keeping in mind that t

is sufficiently large we obtain that

S(tθ) =
∫

Ω

S0(x, |∇(tθ)|)dx

≤ 2Cφ|v1|p′1(x)‖tθ‖p+1
p1(x)

+
ξ

p−1
‖tθ‖p+1

p1(x)
+ 2Cψ|v2|p′2(x)‖tθ‖p+2 +

ξ

p−2
‖tθ‖p+2

≤ C̃θtp+2 , (4.11)

where C̃θ =
(

2Cφ|v1|p′1(x) +
ξ

p−1

)

‖θ‖p+1
p1(x)

+
(

2Cψ|v2|p′2(x) +
ξ

p−2

)

‖θ‖p+2 .

Hypothesis (4.10) implies that p+2 < q+. Thinking similarly as in the proof of Proposi-

tion 3.8 we obtain the existence of a constant α1 > 0 such that p+2 + α1 < q+. By the fact that

p2, q ∈ C(Ω) it follows that there exists an open set Ω1 ⊂ Ω such that |q+ − q(x)| < α1 for all

x ∈ Ω1. Therefore we obtain that

p+2 < q+ − α1 < q(x) (4.12)

for all x ∈ Ω1.

Now let θ ∈ C∞
0 (Ω) by such that supp(θ) ⊃ Ω1, θ(x) = 1 for all x ∈ Ω1 and 0 ≤ θ ≤ 1 in

Ω, taking account of relation (3.13) combined with hypothesis (R2) we have that

F(x, tθ) ≥ m−

η + m− |tθ|q(x).

Therefore by relation (4.12) and the properties of θ described before we obtain that

R(tθ) ≥ m−

η + m−

∫

Ω

tq(x)|θ|q(x)dx

≥ m−

η + m− tq+−α1

∫

Ω1

|θ|q(x)dx. (4.13)
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Hence taking use of relations (4.11) and (4.13) we obtain that

Tλ(tθ) ≤ tp+2 C̃θ −
m−

η + m− tq+−α1

∫

Ω1

|θ|q(x)dx.

Letting t → ∞ and keeping in mind that p+2 < q+ − α1 we have that

lim
t→∞

Tλ(tθ) = −∞.

Reasoning as in the end of the proof of Proposition 3.8 we have that ‖θ‖ > 0, ‖θ‖p1(x) > 0

and so our proof is complete.

Remark 4.4. Comparing the results of Proposition 3.8 and Proposition 4.3, we can observe

that for the new growth conditions imposed by relation (4.10) the energy functional Tλ fulfills

the second geometrical condition of the mountain pass theorem, namely we can find a valley

far away of the origin as required.

In order to obtain our second result we need to require a slightly more restrictive condition

(S4), namely:

(S′
4) 0 ≤ [φ(x, |t|) + ψ(x, |t|)] |t|2 ≤ p+2 S0(x, |t|), for all x ∈ Ω, all t ∈ R

N .

Of course we can observe that (S′
4) implies (S4).

We state now our second result.

Theorem 4.5. Assume that condition (4.10) holds true and hypotheses (S1)–(S3), (S′
4), (R1)–(R4)

are fulfilled. Then for every λ ∈ (0, λφ,ψ) the problem (Pλ) has a mountain pass type solution.

Proof. Taking account of Propositions 3.5 and 4.3, we have that our energy functional has a

mountain pass geometry.

Since Tλ(0) = 0, employing the mountain pass theorem we obtain the existence of a

sequence (wn)n ⊂ W such that

Tλ(wn) → c1 > 0 and T′
λ(wn) → 0 in W−1,p′2(x)(Ω) as n → ∞, (4.14)

namely a Palais–Smale sequence for the energy level c1.

By the fact that R′ is compact and S′ is of type (S+), using the fact that the space W is

reflexive it suffices to prove that (wn)n is bounded in W. To this end we argue by contradiction

and suppose that ‖wn‖ → ∞ (passing eventually to a subsequence).

Using hypotheses (S′
4), (R2) and the fact that we assumed ‖wn‖ → ∞ we obtain that

Tλ(wn)−
1

η
〈T′

λ(wn), wn〉 =
∫

Ω

S0(x, |∇wn|)−
1

η
[φ(x, |∇wn|)∇wn + ψ(x, |∇wn|)∇wn]∇wndx

+ λ
∫

Ω

[

1

η
f (x, wn)wn − F(x, wn)

]

dx

≥
∫

Ω

(

1 − p+2
η

)

S0(x, |∇wn|)dx + λ
∫

Ω

[

1

η
f (x, wn)wn − F(x, wn)

]

dx.

Let us define now

CA = sup

{∣

∣

∣

∣

1

η
f (x, z)z − F(x, z)

∣

∣

∣

∣

: x ∈ Ω, |z| ≤ A

}

.
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Hence by assumption (R2) we have that

(

1 − p+2
η

)

∫

Ω

S0(x, |∇wn|)dx ≤ Tλ(wn)−
1

η
〈T′

λ(wn), wn〉

− λ
∫

{x∈Ω: |wn(x)|>A}

[

1

η
f (x, wn)wn − F(x, wn)

]

dx + λCA|Ω|

≤ Tλ(wn)−
1

η
〈T′

λ(wn), wn〉+ λCA|Ω|,

where by |Ω| we denotes the Lebesgue measure of the domain Ω.

Since we supposed that ‖wn‖ → ∞, for a sufficiently large n we get that ‖wn‖ > 1, and by

assumptions (S3), (S′
4) and relation (2.3) we have that

(

1 − p+2
η

)

c

p+2
‖wn‖p−2 ≤ Tλ(wn) +

1

η
‖T′

λ(wn)‖W−1,p′2(x)(Ω)
· ‖wn‖+ λCA|Ω|.

Now by the fact that η > p+2 and p−2 > 1 we obtain a contradiction.

Therefore we have proved that there exists a Palais–Smale sequence for the energy level

c1 > 0, which is bounded. So passing eventually to a subsequence (labeled for the ease

of writing with the same notation) (wn)n and taking account the fact that the space W is

reflexive we can find an element w0 such that wn ⇀ w0 in W. Now, with the same arguments

as in the final part of the proof for Theorem 4.1 we have that

Tλ(w0) = c1 > 0 and T′
λ(w0) = 0.

Hence for every λ ∈ (0, λφ,ψ) we can find a mountain pass type solution of the problem

(Pλ).

In the final part of this section we will present our last existence result, that is, the existence

of infinitely many high-energy weak solutions of the problem (Pλ).

In order to prove our last result we first remind the following result.

Lemma 4.6 ([10]). Let W be a reflexive and separable Banach space, then there are {ej} ⊂ W and

{e∗j } ⊂ W∗ such that

W = span{ej : j = 1, 2, . . . } and W∗ = span{e∗j : j = 1, 2, . . . }

with

〈e∗i , ej〉 =
{

1, if i = j

0, if i 6= j.

For the simplicity of the notation we will take use of the following:

Wj = span{ej}, Yk =
k
⊕
j=1

Wj, Zk =
∞

⊕
j=k

Wj.

We state now our multiplicity result.

Theorem 4.7. Suppose that hypotheses (S1)–(S3), (S′
4), (R1)–(R4) and relation (4.10) hold true. If

f (x,−z) = − f (x, z) for almost all x ∈ Ω, all z ∈ R and λ > 0, then the problem (Pλ) admits a

sequence of solutions (±un)n such that Tλ(un) → ∞ as n → ∞.
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Proof. In order to point out the sequence of solutions for the problem (Pλ) we will reveal the

fact that our energy functional Tλ possesses a sequence (±un)n ⊂ W of critical points with

higher and higher energies. To this end we have to prove the fact that functional Tλ is an even

functional, and there are some constants γk > ϑk > 0 such that for k ∈ N large enough:

(i) inf{Tλ(u) : u ∈ Zk, ‖u‖ = ϑk} → ∞ as k → ∞

(ii) max{Tλ(u) : u ∈ Yk, ‖u‖ = γk} ≤ 0

(iii) Tλ satisfies the Palais–Smale condition for every c > 0.

As the energy functional Tλ is even and with the same arguments as in the proof of

Theorem 4.5 we can prove that Tλ satisfies the Palais–Smale condition for c > 0, it only

remains to verify condition (i) and (ii).

Verification of (i): Let ak := sup{|u|q(x) : ‖u‖ = 1, u ∈ Zk}. From a straightforward compu-

tation, taking use of [25, proof of Theorem 3.2] we obtain that ak → 0 as k → ∞.

Let u ∈ Zk with ‖u‖ = ϑk > 1, where ϑk will be specified later. By hypothesis (S3), (S′
4)

and (2.3) we obtain that

Tλ(u) =
∫

Ω

S0(x, |∇u|)dx − λ
∫

Ω

F(x, u)dx

≥ c

p+2

(

∫

Ω

|∇u|p1(x)dx + ‖u‖p−2

)

− λ
∫

Ω

F(x, u)dx

≥ c

p+2
‖u‖p−2 − λ‖m‖∞

q−

∫

Ω

|u|q(x)dx

(using hypothesis (R3))

≥ c

p+2
‖u‖p−2 − λ‖m‖∞

q−
max

{

|u|q
−

q(x)
, |u|q

+

q(x)

}

.

Taking account of the continuous embedding W →֒ Lq(x)(Ω), we obtain that:

Tλ(u) ≥
c

p+2
‖u‖p−2 − λ‖m‖∞

q−
max

{

C
q−

3 ‖u‖q− , C
q+

3 ‖u‖q+
}

≥ c

p+2
‖u‖p−2 − λ‖m‖∞C

q
3

q−
‖u‖q+

(

where C
q
3 = max

{

C
q−

3 , C
q+

3

})

≥ c

p+2
‖u‖p−2 − λ‖m‖∞C

q
3

q−
a

q+

k ‖u‖q+ .

Due to a straightforward computation, we can choose

ϑk =

(

λ‖m‖∞C
q
3

q−
· p+2

c
a

p+2
k

) 1

p−2 −q+

. (4.15)

It is easy to remark that by the fact that p−2 < q+ and ak → 0 as k → ∞ we obtain ϑk → ∞.

Now taking ϑk as defined in relation (4.15) we obtain that

Tλ(u) → ∞ as k → ∞,
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and so condition (i) is verified.

Verification of (ii): Let u ∈ Yk and ‖u‖ = γk > 1, where γk will be defined later. Using

hypothesis (S2) we get that

Tλ(u) ≤ 2Cγ,φ|v1|p′1(x) max
{

‖u‖p−1
p1(x)

, ‖u‖p+1
p1(x)

}

+
ξ

p−1
max

{

‖u‖p−1
p1(x)

, ‖u‖p+1
p1(x)

}

+ 2Cγ,ψ|v2|p′2(x)‖u‖p+2 +
ξ

p−2
‖u‖p+2 − λ

∫

Ω

F(x, u)dx,

where Cγ,φ > 0 and Cγ,ψ > 0 are some constants.

Taking account of relation (3.4) we obtain that

Tλ(u) ≤ C̃γ‖u‖p+2 − λ
∫

Ω

F(x, u)dx, (4.16)

where C̃γ =
(

2Cγ,φ|v1|p′1(x)Cp1
+ ξ

p−1
Cp1

)

+
(

2Cγ,ψ|v2|p′2(x) +
ξ

p−2

)

and Cp1
= max

{

C
p−1
2 , C

p+1
2

}

.

Using hypothesis (R2) we can find two constants C4 > 0 and C5 > 0 such that

F(x, z) ≥ C4|z|η − C5. (4.17)

In what follows using relations (4.16) and (4.17) we obtain that

Tλ(u) ≤ C̃γ‖u‖p+2 − λC4

∫

Ω

|u|ηdx + λC5|Ω|.

Taking use by the fact that we work on a finite dimensional space (dim Yk < ∞), by the

fact that the assumption (R2) implies that η > p+2 and |Ω| < ∞ we obtain:

Tλ(u) ≤ C̃γ‖u‖p+2 + C6|Ω| − C7‖u‖η

for some constants C6 > 0, C7 > 0.

Now letting ‖u‖ → ∞ we have that

lim
‖u‖→∞

Tλ(u) = −∞. (4.18)

Choosing γk > ϑk > 0 and keeping in mind relation (4.18) we obtain that

max{Tλ(u) : u ∈ Yk, ‖u‖ = γk} ≤ 0,

for every γk large enough.

In order to complete our proof we only have to apply the fountain theorem (for more

details we refer to [10, Theorem 4.8], [25, Theorem 6.1], [28, Lemma 3.3]) and the proof is

fulfilled.

As the definition of our double-phase differential operator is general, in what follows we

will give some specific examples in order to illustrate our results.
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Example 4.8. Consider the following weight coefficient functions a, b : Ω → R, with a, b ∈
L∞(Ω)+ for all x ∈ Ω. Suppose there exist a constant Ca,b > 0 such that a(x), b(x) ≥ Ca,b for

all x ∈ Ω. Let f : Ω × R → R be a Carathéodory function which satisfy the assumptions

(R1) − (R4), (4.10) then the results of Theorems 4.1, 4.5 hold true for the following class of

Dirichlet problems:







−div
[

a(x)|∇u|p1(x)−2∇u + b(x)|∇u|p2(x)−2∇u
]

= λ f (x, u), in Ω,

u = 0, on ∂Ω.

It is easy to check the fact that our differential operator satisfy hypotheses (S1)–(S3),

(S′
4). Moreover if the reaction function f is odd in respect to the second argument (that

is, f (x,−z) = − f (x, z)) then Theorem 4.7 holds also true.

Example 4.9. As we stated in the first section of this paper our potential functions φ and ψ

generalize the following type of differential operator

A(x, |z|) =



1 +
|z|p(x)

√

1 + |z|2p(x)



 |z|p(x)−2 (4.19)

corresponding to the differential operator which describes the capillary phenomenon, so we

obtain the following class of double-phase problems:



































−div

[

(

|∇u|p1(x)−2 + |∇u|2p1(x)−2

(1+|∇u|2p1(x))
1/2

)

∇u

+

(

|∇u|p2(x)−2 + |∇u|2p2(x)−2

(1+|∇u|2p2(x))
1/2

)

∇u

]

= λ f (x, u), in Ω,

u = 0, on ∂Ω.

If hypotheses (4.10), (R1)–(R4) hold true, then the results of Theorems 4.1 and 4.5 hold

true for this class of problems. Moreover if the reaction term is odd in respect with the second

argument (that is, f (x,−z) = − f (x, z)) for all (x, z) ∈ Ω × R then this class of problems

admits infinitely many nontrivial weak solutions with higher and higher energies.

By simple computations we could verify that the potential function of type A from relation

(4.19) satisfies the assumptions (S1)–(S3), (S′
4). For a thorough proof of the validity of our

example we can associate the following energy functional to our problem Eλ : W
1,p(x)
0 (Ω) → R

defined by

Eλ(u) =
∫

Ω

1

p1(x)

[

|∇u|p1(x) +
(

1 + |∇u|2p1(x)
)1/2

]

dx

+
∫

Ω

1

p2(x)

[

|∇u|p2(x) +
(

1 + |∇u|2p2(x)
)1/2

]

dx − λ
∫

Ω

F(x, u)dx

and recalculate the computations for this functional energy.

In what follows we will construct an example of a reaction function for our problems. As

we can observe by relation (4.10) the reaction term variable growth is very general and in

order to use an explicit defined nonlinearity in the right-hand side of the problem (Pλ) we

have to impose some eloquent conditions.
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By relation (4.10) we have that 1 < q(x) < p∗1(x) for all x ∈ Ω. Similarly with the details

used in the proof of Proposition 3.8 and 4.3 we may find some functions r1 : Ω0 → (1, ∞) such

that r1(x) = q(x) for all x ∈ Ω0 and r2 : Ω1 → (1, ∞) such that r2(x) = q(x) for all x ∈ Ω1

(where Ω0 ∩ Ω1 = ∅). So by relation (4.10) we can state that

1 < r−1 ≤ r+1 < p−1 ≤ p+1 < p−2 ≤ p+2 < r−2 ≤ r+2 < p∗1(x)

for all x ∈ Ω, where

r−1 = min
x∈Ω0

r1(x) and r+1 = max
x∈Ω0

r1(x)

and

r−2 = min
x∈Ω1

r2(x) and r+2 = max
x∈Ω1

r2(x).

So our reaction function may be defined as

f (x, z) =

{

m(x)|z|r1(x)−2z, if x ∈ Ω0,

m(x)|z|r2(x)−2z, if x ∈ Ω1.

We can deduce the fact that f (x, z) has a |z|r1(x)−1 growth near the origin and |z|r2(x)−1

growth near +∞. For more details we refer to the proof of Proposition 3.8 and 4.3 and to

[15, Lemma 2]. Also some good examples of this type of reaction nonlinearity can be find

in [16]. This last restriction is necessary in order that our function to satisfy the Ambrosetti–

Rabinowitz type condition (R2) (for example we could take η = r−2 ).

We also need to impose some particular conditions on the weight function m : Ω → [0, ∞):

(m1) m ∈ L∞(Ω);

(m2) there exist a constant m− such that m(x) ≥ m−
> 0 for all x ∈ Ω0 ∪ Ω1 and m(x) = 0

for all x ∈ Ω \
(

Ω0 ∪ Ω1

)

.

Remark 4.10. For this particular restrictions we can observe that function f defined as above

satisfies hypotheses (R1)–(R4) and so, our existence theorems hold true.

5 Final remarks

(i) For every λ ∈ (0, λφ,ψ) problem (Pλ) has at least two different solutions. Indeed, suppose

that solutions given by Theorem 4.1 and Theorem 4.5 coincide (v0 = w0), we get that

Tλ(w0) = c1 > 0 > c0 = Tλ(v0),

which is a contradiction. So the multiplicity of every eigenvalue λ ∈ (0, λφ,ψ) is at least

two.

(ii) We point out that hypothesis (R2) plays a crucial role in the proof of our results. This

hypothesis is an Ambrosetti–Rabinowitz type condition which implies that our reaction

function f (x, ·) has at least a (η − 1)-polynomial growth near +∞.

(iii) Theorems 4.5 and 4.7 have a strong dependency on hypothesis (R2) whilst the results of

Theorem 4.1 hold true using only the weaker hypothesis (R3).
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We may consider the following functions:

• f1(x, z) = |z|η−1

• f2(x, z) = |z|p+2 −1 ln(1 + |z|)
• f3(x, z) = |z|q(x)−2z

Only the function f1 satisfy the Ambrosetti–Rabinowitz condition. We can also remark

the fact that the results of Theorem 4.1 hold true if f (x, u) = m(x)|u|q(x)−2u, with m

defined as in relation (R1).

(iv) For our results to hold true we can not use superlinear nonlinearities with slower growth

near +∞. This type on nonlinearity is represented by function f2.

(v) It is easy to observe the fact that we have a strong connection between the first and the

second type of solutions, whilst the third type of solutions (high-energy solutions) does

not depend on the condition that parameter λ ∈ (0, λφ,ψ) but only on the fact that λ > 0.

(vi) Moreover using hypothesis (4.10) instead of (3.1) we can find some information about

the existence of some ground state solutions of problem (Pλ) (that is, solutions which

minimizes the functional of the action in the set of all weak solutions), which lie on some

Nehari manifold. To this end we refer to [1, 26].
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[2] S. Baraket, S. Chebbi, N. Chorfi, V. Rădulescu, Non-autonomous eigenvalue problems

with variable (p1, p2)-growth, Adv. Nonlinear Stud. 17(2017), 781–792. https://doi.org/

10.1515/ans-2016-6020; Zbl 1372.35205

[3] P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals borderline cases

and related function classes, St. Petersburg Math. J. 27(2016), 347–379. https://doi.org/

10.1090/spmj/1392; MR3570955

[4] M. Boureanu, P. Pucci, V. Radulescu, Multiplicity of solutions for a class of anisotropic

elliptic equations with variable exponent, Complex Var. Elliptic Equ. 56(2011), 755–767.

https://doi.org/10.1080/17476931003786709; Zbl 1229.35086
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Abstract. In this paper, we shall study unilateral global bifurcation phenomenon for
the following homogeneous Kirchhoff type problem

{
−
(∫ 1

0 |u′|
2

dx
)

u′′ = λu3 + h(x, u, λ) in (0, 1),

u(0) = u(1) = 0.

As application of bifurcation result, we shall determine the interval of λ in which there
exist nodal solutions for the following homogeneous Kirchhoff type problem

{
−
(∫ 1

0 |u′|
2

dx
)

u′′ = λ f (x, u) in (0, 1),

u(0) = u(1) = 0,

where f is asymptotically cubic at zero and infinity. To do this, we also establish
a complete characterization of the spectrum of a homogeneous nonlocal eigenvalue
problem.

Keywords: bifurcation, spectrum, nonlocal problem, nodal solution, regularity results.
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1 Introduction

Consider the following problem



−
(∫ 1

0 |u′|2 dx
)

u′′ = λu3 + h(x, u, λ) in (0, 1),

u(0) = u(1) = 0,
(1.1)

where λ is a nonnegative parameter and h : (0, 1)×R
2 → R is a continuous function satisfying

lim
s→0

h(x, s, λ)

s3
= 0 (1.2)

BCorresponding author. Email: daiguowei@dlut.edu.cn
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uniformly for all x ∈ (0, 1) and λ on bounded sets.

The problem (1.1) is related to the stationary problem of a model introduced by Kirchhoff

in 1883 to describe the transversal oscillations of a stretched string [16]. Some important and

interesting results can be found, for example, in [1, 4, 12, 13, 15, 19, 25]. Recently, there are

many mathematicians studying the problem (1.1), see [5, 6, 8, 17, 20, 21, 22, 24, 26] and the

references therein. A distinguishing feature of problem (1.1) is that the first equation contains

a nonlocal coefficient
∫ 1

0 |u′|2 dx, and hence the equation is no longer a pointwise identity,

which raises some essential difficulties to the study of this kind of problems. In particular, the

bifurcation theory of [11, 23] does not work on it.

As shown in [3], the following problem



−
(∫ 1

0 |u′|2 dx
)

u′′ = λu3 in (0, 1),

u(0) = u(1) = 0
(1.3)

possesses infinitely many eigenvalues 0 < µ1 < µ2 < · · · < µk → +∞, all of which are simple.

The eigenfunction ϕk corresponding to µk has exactly k − 1 simple zeros in (0, 1). Let S+
k

denote the set of functions in E := C1
0 [0, 1] which have exactly k − 1 interior nodal (i.e. non-

degenerate) zeros in (0,1) and are positive near x = 0, and set S−
k = −S+

k , and Sk = S+
k ∪ S−

k . It

is clear that S+
k and S−

k are disjoint and open in E. Finally, let Φ
±
k = R × S±

k and Φk = R × Sk

under the product topology. The first main result of this paper is the following theorem.

Theorem 1.1. The pair (µk, 0) is a bifurcation point of (1.1). Moreover, there are two distinct un-

bounded continua in R × H1
0(0, 1), C

+
k and C

−
k , consisting of the bifurcation branch Ck emanating

from (µk, 0), such that C ν
k ⊆

(
{(µk, 0)} ∪ Φν

k

)
, ν ∈ {+,−}.

It is well known that the index formula of an isolated zero is very important in the study

of bifurcation phenomena for semi-linear differential equations. However, problem (1.1) is

nonlinear. In order to overcome this difficulty, we study the following auxiliary homogeneous

eigenvalue problem 


−
(∫ 1

0 |u′|2 dx
)p/2

u′′ = λ|u|pu in (0, 1),

u(0) = u(1) = 0,
(1.4)

where p ∈ [0, 2]. We study the spectral structure, and establish an index formula via a suitable

homotopic deformation from a general p ∈ [0, 2] to p = 0 for problem (1.4). Let λ1(p)

denote the first eigenvalue of (1.4). As shown in [9], λ1(p) > 0 is simple, isolated, the unique

principal eigenvalue of (1.4), and is continuous with respect to p. Our second main result is

the following theorem.

Theorem 1.2. The set of all eigenvalues of (1.4) is formed by a sequence

0 < λ1(p) < λ2(p) < · · · < λk(p) → +∞.

Every λk(p) is simple, continuous with respect to p and the corresponding one dimensional space of

solutions of (1.4) with λ = λk(p) is spanned by a function having precisely k bumps in (0, 1). Each

k-bump solution is constructed by the reflection and compression of the eigenfunction ϕ1 associated

with λ1(p).

Based on Theorem 1.1, we study the existence of nodal solutions for the following problem



−
(∫ 1

0 |u′|2 dx
)

u′′ = λ f (x, u) in (0, 1),

u(0) = u(1) = 0.
(1.5)
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We assume that f satisfies the following conditions

(f1) f : (0, 1)× R → R is a continuous function such that f (x, s)s > 0 for all x ∈ (0, 1) and

any s 6= 0.

(f2) there exist f0, f∞ ∈ (0,+∞) such that

lim
s→0+

f (x, s)

s3
= f0, lim

s→+∞

f (x, s)

s3
= f∞

uniformly with respect to all x ∈ (0, 1).

The last main theorem of this paper is the following result.

Theorem 1.3. Assume that f satisfies (f1)–(f2). Then the pair (µk/ f0, 0) is a bifurcation point of

(1.5) and there are two distinct unbounded continua in R × H1
0(0, 1), C

+
k and C

−
k , emanating from

(µk/ f0, 0), such that C ν
k ⊆

(
{(µk/ f0, 0)} ∪ Φν

k

)
and links (µk/ f0, 0) to (µk/ f∞, ∞).

The rest of this paper is arranged as follows. In Section 2, we establish the spectrum of

problem (1.4). In Section 3 and 4, we give the proofs of Theorem 1.1 and 1.3, respectively.

2 Spectrum of (1.4)

Let X be the usual Sobolev space H1
0(0, 1) with the norm ‖u‖ =

( ∫ 1
0 |u′|2 dx

)1/2
. For any

α ∈ (0, 1], we use Cα[0, 1] to denote all the real functions such that

‖u‖α := sup
x,y∈[0,1],x 6=y

|u(x)− u(y)|

|x − y|α
< +∞.

Firstly, we have the following regularity result.

Proposition 2.1. Any weak solution u ∈ X of problem (1.4) is also a classical solution, i.e., u ∈

C2[0, 1] satisfying (1.4).

Proof. Let u be a nontrivial weak solution of problem (1.4) and

f (x) =
λ|u(x)|pu(x)

‖u‖p
.

Note that

H1
0(0, 1) =

{
u ∈ AC[0, 1] : u′ ∈ L2(0, 1) and u(0) = u(1) = 0

}
.

Then it is obvious that f ∈ L2(0, 1), in fact continuous by the compact embedding X →֒

C1/2[0, 1]. According to the definition of weak solution, we have

−

(∫ 1

0

∣∣u′
∣∣2 dx

) p
2

u′′ = λ|u|pu

in the sense of distribution. It follows that

u′(x) = u′ (0)−
∫ x

0
f (t) dt.



4 F. Liu, H. Luo and G. Dai

Note that

u(x) =
∫ x

0
u′(t) dt.

So, we have that

u(x) =
∫ x

0

(
u′ (0)−

∫ t

0
f (τ) dτ

)
dt = u′ (0) x −

∫ x

0

∫ t

0
f (τ) dτ dt.

Then, in view of f ∈ C[0, 1], we get that u ∈ C2[0, 1] and satisfies (1.4).

Lemma 2.2. If (λ, u) is a solution of (1.4) and u has a double zero, then u ≡ 0.

Proof. Let u be a solution of (1.4) and x∗ ∈ [0, 1] be a double zero. If ‖u‖ = 0, the conclusion

is obvious. Next, we assume that ‖u‖ 6= 0. We note that

u(x) = −
λ

‖u‖p

∫ x

x∗

∫ s

x∗
|u|pu dτ ds.

Firstly, we consider x ∈ [0, x∗]. Then

|u(x)| =

∣∣∣∣−
λ

‖u‖p

∫ x

x∗

∫ s

x∗
|u|pu dτ ds

∣∣∣∣ ≤
∣∣∣∣

λ

‖u‖p

∫ x

x∗

∫ x

x∗
|u|pu dτ ds

∣∣∣∣

=

∣∣∣∣
λ

‖u‖p (x − x∗)
∫ x

x∗
|u|pu dτ

∣∣∣∣

≤
λ

‖u‖p

∫ x∗

x
|u|p+1 dτ ≤

λ‖u‖
p
∞

‖u‖p

∫ x∗

x
|u| dτ ≤ λ

∫ x∗

x
|u| dτ.

By the Gronwall–Bellman inequality [7, Lemma 2.2], we get u ≡ 0 on [0, x∗]. Similarly, we can

get u ≡ 0 on [x∗, 1] and the proof is completed.

Lemma 2.3. Each nontrivial solution (λ, u) of (1.4) has a finite number of zeros.

Proof. Suppose, on the contrary, that u has a sequence zeros xn. Since [0, 1] is compact, up to

a subsequence, there exists x0 ∈ [0, 1] such that limn→+∞ xn = x0. By the continuity of u, we

have that u (x0) = limn→+∞ u (xn) = 0. So, we have that

u′ (x0) = lim
n→+∞

u (xn)− u (x0)

xn − x0
= 0.

Thus, x0 is a double zero of u. By Lemma 2.2, we get that u ≡ 0, which is a contradiction.

Let J be a strict sub-interval of I. Let λ1(J) denote the first eigenvalue




−
(∫ 1

0 |u′|2 dx
)p/2

u′′ = λ|u|pu in J,

u(x) = 0 on ∂J,

where p ∈ [0, 2].

Lemma 2.4. λ1(I) verifies the strict monotonicity property with respect to the domain I, i.e. if J is a

strict subinterval of I, then λ1(I) < λ1(J).



Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations 5

Proof. Let ϕ1 with ‖ϕ1‖ = 1 be the eigenfunction of (1.4) on J corresponding to λ1(J), and

denote by ϕ̃1 the extension by zero on I. Then we have that

1

λ1(J)
=
∫

J
|ϕ1|

p+2 dx =
∫

I
|ϕ̃1|

p+2 dx < sup
u∈X,‖u‖=1

∫ 1

0
|u|p+2 dx =

1

λ1(I)
.

The last strict inequality holds from the fact that ϕ̃1 vanishes in I \ J so cannot be an eigen-

function corresponding to the principal eigenvalue λ1(I).

Proof of Theorem 1.2. Let ϕ1 be a positive eigenfunction corresponding to λ1(p). It follows from

the symmetry of (1.4) and Theorem 3.1 of [9] (or Theorem 2.4 of [18]) that ϕ1(x) = ϕ1(1 − x)

for x ∈ [0, 1], i.e. ϕ1 is even with respect to 1/2. For any k ≥ 2, set

ϕk(x) =





ϕ1(kx), x ∈
[
0, 1

k

]
,

−ϕ1(kx − 1), x ∈
[

1
k , 2

k

]
,

...
...

(−)k ϕ1(kx − k + 1), x ∈
[

k−1
k , 1

]
.

Then ϕk is an eigenfunction of (1.4) associated with the eigenvalue λk(p) = kp+2λ1(p). Clearly,

the continuity of λ1(p) implies that λk(p) is continuous with respect to p.

On the other hand, let u = u(x) be an eigenfunction of (1.4) associated with some eigen-

value λ∗ > λ1(p). According to Theorem 3.1 of [9], u changes sign in (0, 1). Lemmas 2.2

and 2.3 imply that u ∈ Sk for some k ≥ 2. Without loss of generality, we may assume that

u′(0) > 0. Let

0 < τ1 < τ2 < · · · < τk−1 < 1

denote the zeros of u in (0, 1). Without loss of generality, we may assume that τ1 ≤ 1/k.

Applying Lemma 2.4 on [0, 1/k], we have that λ∗ ≥ λk. By Lemma 2 of [2], there exist integers

p and q, 1 ≤ p ≤ k − 1, 1 ≤ q ≤ k − 1, such that

τp ≤
1

q + 1
<

1

q
≤ τp+1.

Applying Lemma 2.4 on
[
τp, τp+1

]
, we have that λ∗ ≤ λk. So we have that λ∗ = λk. Fur-

thermore, if τ1 < 1/k, we have that λ∗ > λk; if τ1 > 1/k, we have that λ∗ < λk. Thus we

have τ1 = 1/k and u = c1ϕk(x) for x ∈ [0, 1/k]. Similarly, we can obtain that τi = i/k and

u = ci ϕk(x) for x ∈ [(i − 1)/k, i/k], 2 ≤ i ≤ k − 1. Let us normalize u as u′(0) = ϕ′
k(0). It

follows that c1 = 1. Hence ϕ′
k

(
1
k

)
= c2ϕ′

k

(
1
k

)
. So we have c2 = 1. Similarly, one has ci = 1 for

all 3 ≤ i ≤ k − 1. Therefore, we have that u(x) = ϕk(x), x ∈ [0, 1].

3 Global bifurcation

Consider the following auxiliary problem



−
(∫ 1

0 |u′|2 dx
)p/2

u′′ = f (x) in (0, 1),

u(0) = u(1) = 0
(3.1)

for any p ∈ [0, 2] and a given f ∈ X∗. We have shown in [9] that problem (3.1) has a unique

weak solution. Let us denote by Rp( f ) the unique weak solution of (3.1). Then Rp : X∗ → X
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is a continuous operator. Since the embedding of X →֒ L∞(0, 1) is compact, the restriction

of Rp to L1(0, 1) is a completely continuous (i.e., continuous and compact) operator. From

the obvious modification of Lemma 4.2 of [9], we can get the following compactness and

continuity of the operator Rp with respect to p and f .

Lemma 3.1. The operator R : [0, 2]× L1(0, 1) → L∞(0, 1) defined by R(p, f ) = Rp( f ) is completely

continuous.

Now, we consider (1.4) again. Clearly, u is a weak solution of (1.4) if and only if u ∈ X,

λ ∈ [0,+∞) satisfy

u = Rp (λ|u|
pu) = λ

1
p+1 Rp (|u|

pu) := Tλ
p (u).

For any u ∈ X, we define

Kp(u) = |u|pu.

Then we see that Kp(u) ∈ L1(0, 1). We claim that Kp : X →֒ L1(0, 1) is continuous. Assume

that un → u in X. Since embedding X →֒ C[0, 1] is compact, we have un → u in C[0, 1]. It

follows that un(x) → u(x) for any x ∈ [0, 1]. So, we have that Kp (un) → Kp(u) in L1(0, 1).

Since Rp : L1(0, 1) → X is a compact, we have that Tλ
p = λ

1
p+1 Rp ◦ Kp : X → X is completely

continuous. Thus the Leray–Schauder degree

degX

(
I − Tλ

p , Br(0), 0
)

is well-defined for arbitrary r-ball Br(0) and λ 6= λk(p). It is well known that

degX

(
I − Tλ

0 , Br(0), 0
)
= (−1)β,

where β is the number of eigenvalues of problem (1.4) with p = 0 less than λ. As far as the

general p, we can compute it through the deformation along p.

Proposition 3.2. Let r > 0 and p ∈ [0, 2]. Then

degX

(
I − Tλ

p , Br(0), 0
)
=

{
1, if λ ∈ (0, λ1(p)) ,

(−1)k, if λ ∈ (λk(p), λk+1(p)) .

Proof. If λ ∈ (0, λ1 (p)), the conclusion has done in [9]. So we only need to prove the case

λ ∈ (λk (p) , λk+1 (p)). Since p → λk(p) is continuous, we can define a continuous function

χ : [0, 2] → R such that λk(p) < χ(p) < λk+1(p) and λ = χ (p). Set

d(p) = degX

(
I − T

χ(p)
p , Br(0), 0

)
.

We shall show that d(p) is constant in [0, 2].

Define Sp : L∞(0, 1) → X by Sp(u) = Rp(χ(p)|u|pu). We see that Sp(u) = χ
1

p+1 (p)Rp ◦

Kp(u), where Kp(u) = |u|pu. By the definition of Kp, we can easily verify that Kp : L∞(0, 1) →

L1(0, 1) is continuous. Since Rp : L1(0, 1) → X is a compact, we get that Sp : L∞(0, 1) → X is

completely continuous. Also we have that T
χ(p)
p = Sp ◦ i where i : X → L∞(0, 1) is the usual

inclusion. From Lemma 2.4 of [14], we obtain that

d(p) = degL∞

(
I − i ◦ Sp, Ωs, 0

)
for p ∈ [0, 2] ,
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where Ωs is any open bounded set in L∞(0, 1) containing 0. It is not difficult to verify that

the operator ϕ : [0, 2] × L∞(0, 1) → L1(0, 1) defined by ϕ(p, u) = |u|pu is continuous. This

fact, the continuity of χ(p) and Lemma 3.1 imply that (p, u) 7→ Rp (χ(p)|u|pu) = (i ◦ Sp)(u) :

[0, 2] × L∞(0, 1) → L∞(0, 1) is completely continuous. Since λk(p) < χ(p) < λk+1(p) for

any p ∈ [0, 2], we have that u − Rp (χ(p)|u|pu) 6= 0 on ∂Ωs. The invariance of the Leray–

Schauder degree under a compact homotopy follows that d(p) ≡ constant for p ∈ [0, 2]. So,

d (p) = d(0) = (−1)k, as desired.

In particular, we have the following corollary.

Corollary 3.3. Let r > 0. Then

degX

(
I − Tλ

2 , Br(0), 0
)
=

{
1, if λ ∈ (0, µ1) ,

(−1)k, if λ ∈ (µk, µk+1) ,

where µk is the k-th eigenvalue of (1.3).

Clearly, the pair (λ, u) is a solution of (1.1) if and only if (λ, u) satisfies

u = R2

(
λu3 + h(x, u, λ)

)
:= Gλ(u).

It is easy to see that Gλ : X → X is completely continuous and Gλ(0) = 0, ∀λ ∈ [0,+∞). µk is

the λk. Let X0 be any complement of span {ϕk} in X.

Theorem 3.4. The pair (µk, 0) is a bifurcation point of (1.1). Moreover, there are two distinct continua

in R × X, C
+
k and C

−
k , consisting of the bifurcation branch Ck emanating from (µk, 0), which contain

{(µk, 0)} and each of them satisfies one of the following non-excluding alternatives:

1. it is unbounded in R × X;

2. it contains a pair
(
µj, 0

)
with j 6= k;

3. it contains a point (λ, y) ∈ R × (X0 \ {0}).

Proof. We use the abstract bifurcation result of [10] to prove this theorem. An operator L

defined on X is called homogeneous if L(cu) = cL(u) for any c ∈ R and u ∈ X. It is not

difficult to verify that L(λ) := Tλ
2 : X → X is homogeneous and completely continuous.

Let h̃(x, u, λ) = max0≤|s|≤u |h(x, s, λ)| for all x ∈ (0, 1) and λ on bounded sets, then h̃ is

nondecreasing with respect to u and

lim
u→0+

h̃(x, u, λ)

u3
= 0. (3.2)

Further it follows from (3.2) that

h(x, u, λ)

‖u‖3
≤

h̃(x, |u|, λ)

‖u‖3
∞

≤
h̃ (x, ‖u‖∞, λ)

‖u‖3
∞

→ 0 as ‖u‖ → 0 (3.3)

uniformly for x ∈ (0, 1) and λ on bounded sets. Let

H(λ, u) = Gλ(u)− L(λ)u.

By (3.3), we can easily verify that H : R × X → X is completely continuous with H = o(‖u‖)

near u = 0 uniformly on bounded λ intervals. Noting Corollary 3.3, the desired conclusions

can be obtained by applying Theorem 1 of [10].
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By an argument similar to that of Proposition 2.1, we can get the following regularity

result.

Proposition 3.5. Any weak solution u ∈ X of problem (1.1) is also a classical solution, i.e., u ∈

C2(0, 1) ∩ C1,α[0, 1] satisfying (1.1) and u(0) = u(1) = 0.

Lemma 3.6. If (λ, u) is a solution of (1.1) and u has a double zero, then u ≡ 0.

Proof. Let u be a solution of (1.1) and x∗ ∈ [0, 1] be a double zero. If ‖u‖ = 0, the conclusion

is done. Next, we assume that ‖u‖ 6= 0. We note that

u(x) =
−1

‖u‖2

∫ x

x∗

∫ s

x∗

(
λu3 + h(x, u, λ)

)
dτ ds.

Firstly, we consider x ∈ [0, x∗]. Then

|u(x)| ≤
1

‖u‖2

∫ x∗

x

∣∣λu3 + h(x, u, λ)
∣∣ dτ,

≤
‖u‖2

∞

‖u‖2

∫ x∗

x

(
|λ|+

∣∣∣∣
h(τ, u(τ), λ)

u(τ)

∣∣∣∣
)
|u(τ)| dτ.

In view of (1.2), for any ε > 0, there exists a constant δ > 0 such that

|h(x, s, λ)| ≤ ε|s|

uniformly with respect to all x ∈ (0, 1) and fixed λ when |s| ∈ [0, δ]. Hence,

|u(x)| ≤
∫ x∗

x

(
|λ|+ ε + max

s∈[δ,‖u‖∞]

∣∣∣∣
h(τ, s, λ)

s3

∣∣∣∣
)
|u(τ)| dτ.

By the Gronwall–Bellman inequality [7], we get u ≡ 0 on [0, x∗]. Similarly, we can get u ≡ 0

on [x∗, 1] and the proof is complete.

Proof of Theorem 1.1. Lemma 3.1 of [10] implies that there exists a bounded open neighbor-

hood Ok of (µk, 0) such that
(
C ν

k ∩Ok

)
⊆
(
Φν

k ∪ {(µk, 0)}
)

or
(
C ν

k ∩Ok

)
⊆
(
Φ

−ν
k ∪ {(µk, 0)}

)
.

Without loss of generality, we assume that
(
C ν

k ∩Ok

)
⊆
(
Φν

k ∪ {(µk, 0)}
)
.

Next, we show that C ν
k ⊆

(
Φν

k ∪ {(µk, 0)}
)
. Suppose C ν

k 6⊆
(
Φν

k ∪ {(µk, 0)}
)
. Then there

exists (µ, u) ∈ C ν
k ∩

(
R × ∂Sν

k

)
such that (µ, u) 6= (µk, 0) and (λn, un) → (µ, u) with (λn, un) ∈

C ν
k ∩

(
R × Sν

k

)
. Since u ∈ ∂Sν

k , by Lemma 3.6, u ≡ 0. Let vn := un/ ‖un‖, then vn should be a

solution of the following problem

v = R2

(
λnv3 +

h (x, un, λn)

‖un(x)‖3

)
. (3.4)

By (3.3), (3.4) and the compactness of R2 we obtain that for some convenient subsequence

vn → v0 6= 0 as n → +∞. Now v0 verifies the equation

−
∫ 1

0

∣∣v′
∣∣2 dxv′′ = µv3

and ‖v0‖ = 1. Hence µ = µj, for some j 6= k. Hence v0 ∈ Sj which is an open set in X, and

as a consequence for some n large enough, un ∈ Sj, and this is a contradiction. Thus, we have

that

C
ν
k ⊆ (Φν

k ∪ {(µk, 0)}) .
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Furthermore, by an argument similar to the above, we can easily show that Ck ∩ (R × {0}) =

{(µk, 0)}. So Theorem 1 of [10] implies that Ck is unbounded.

We claim that both C
+
k and C

−
k are unbounded. Introduce the following auxiliary problem




−
(∫ 1

0 |u′|2 dx
)

u′′ = λu3 + h̃(x, u, λ) in (0, 1),

u(0) = u(1) = 0,

where h̃ is defined by

h̃(x, u, λ) =

{
h(x, u, λ), if u′(0) > 0,

−h(x,−u, λ), if u′(0) < 0.

The previous argument shows that an unbounded continuum C̃k bifurcates from (µk, 0) and

can be split into C̃
+
k and C̃

−
k with C̃ ν

k connected, C̃ ν
k ⊆

(
{(µk, 0)} ∪

(
R × Sν

k

))
. It is easy

to see that C̃
−
k = −C̃

+
k . It follows that both C̃

+
k and C̃

−
k are unbounded. It is clear that

C̃
+
k ⊆ C

+
k . Therefore C

+
k must be unbounded. A symmetric argument shows that C

−
k is also

unbounded.

4 Nodal solutions

In this section, we apply Theorem 1.1 to study the existence of nodal solutions for (1.5).

Proof of Theorem 1.3. Let g : (0, 1)× R → R be a continuous function such that

f (x, s) = f0s3 + g(x, s)

with

lim
s→0

g(x, s)

s3
= 0 uniformly with respect to all x ∈ (0, 1). (4.1)

From (4.1), we can see that λg satisfies the assumptions of (1.2). Now, using Theorem 1.1, we

have that there are two distinct unbounded continua, C
+
k and C

−
k emanating from (µk/ f0, 0),

such that

C
ν
k ⊂ ({(µk/ f0, 0)} ∪ Φ

ν
k) .

It is sufficient to show that C ν
k joins (µk/ f0, 0) to (µk/ f∞, ∞). Let (ξn, un) ∈ C ν

k where

un 6≡ 0 satisfies |ξn|+ ‖un‖ → +∞. Proposition 5.1 of [8] implies that (0,0) is the only solution

of (1.5) for λ = 0, we have C ν
k ∩ ({0} × X) = ∅. It follows that ξn > 0 for all n ∈ N.

Next we show that un is one-signed in some interval (α, β) ⊆ (0, 1) with α < β. Let

0 < τ(1, n) < τ(2, n) < · · · < τ(k − 1, n) < 1

denote the zeros of un in (0, 1). Let τ(0, n) = 0 and τ(k, n) = 1. Then, after taking a subse-

quence if necessary,

lim
n→+∞

τ(l, n) = τ(l, ∞), l ∈ {0, 1, . . . , k}.

We claim that there exists l0 ∈ {0, 1, . . . , k} such that

τ (l0, ∞) < τ (l0 + 1, ∞) .
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Otherwise, we have that

1 = Σ
k−1
l=0 (τ(l + 1, n)− τ(l, n)) → Σ

k−1
l=0 (τ(l + 1, ∞)− τ(l, ∞)) = 0.

This is a contradiction. Let (α, β) ⊂ (τ (l0, ∞) , τ (l0 + 1, ∞)) with α < β. For all n sufficiently

large, we have (α, β) ⊂ (τ (l0, n) , τ (l0 + 1, n)). So un does not change its sign in (α, β).

We claim that there exists a constant M such that ξn ∈ (0, M] for n ∈ N large enough. On

the contrary, we suppose that limn→+∞ ξn = +∞. Since (ξn, un) ∈ C ν
k , it follows that

‖un‖
2 u′′

n + ξnan(x)u3
n = 0 in (0, 1),

where

an(x) =

{
f (x,un)

u3
n

, if un(x) 6= 0,

f0, if un(x) = 0.

From (f1)–(f2), we can see that
f (x,un)

un
≥ σ for some σ > 0 and all x ∈ (0, 1), n ∈ N. So, we have

that ξnan(x) = +∞ for all x ∈ (0, 1). Applying Theorem 4.1 of [3] on [α, β] with g(x) ≡ µ1, we

have that un must change its sign in (α, β) for n large enough. This is a contradiction.

Therefore, we get that

‖un‖ → +∞ as n → +∞.

Let h : (0, 1)× R → R be a continuous function such that

f (x, s) = f∞s3 + h(x, s)

with

lim
|s|→+∞

h(x, s)

s3
= 0, lim

|s|→0

h(x, s)

s3
= f0 − f∞ uniformly with respect to all x ∈ (0, 1).

Then (ξn, un) satisfies

un = R2

(
ξn f∞u3

n + h (x, un)
)

.

Dividing the above equation by ‖un‖ and letting un = un/ ‖un‖, we get that

un = R2

(
ξn f∞u3

n +
h (x, un)

‖un‖
3

)
.

Let

h̃(x, u) = max
0≤|s|≤u

|h(x, s)| for any x ∈ (0, 1),

then h̃ is nondecreasing with respect to u. Define

h(x, u) = max
u/2≤|s|≤u

|h(x, s)| for any x ∈ (0, 1).

Then we can see that

lim
u→+∞

h(x, u)

u3
= 0 and h̃(x, u) ≤ h̃

(
x,

u

2

)
+ h(x, u).

It follows that

lim sup
u→+∞

h̃(x, u)

u3
≤ lim sup

u→+∞

h̃
(
x, u

2

)

u3
= lim sup

u/2→+∞

h̃
(
x, u

2

)

8
(

u
2

)3
.
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So we have

lim
u→+∞

h̃(x, u)

u3
= 0. (4.2)

Further it follows from (4.2) that

h (x, un)

‖un‖
3

≤
h̃ (x, |un|)

‖un‖
3

≤
h̃ (x, ‖un‖∞

)

‖un‖
3

≤ c3 h̃ (x, c ‖un‖)

c3 ‖un‖
3

→ 0 as n → +∞

uniformly for x ∈ (0, 1).

By the compactness of R2 we obtain that

− ‖u‖2 u′′ = µ f∞u3,

where u = limn→+∞ un and µ = limn→+∞ ξn, again choosing a subsequence and relabel-

ing it if necessary. It follows from u = limn→+∞ un and the triangle inequality that ‖u‖ =

limn→+∞ ‖un‖. Since ‖un‖ ≡ 1, we obtain that ‖u‖ = 1. It is clear that u ∈ C ν
k . Theorem 1.2 of

[3] shows that µ = µk/ f∞. Therefore, C joins (µk/ f0, 0) to (µk/ f∞, ∞).

From Theorem 1.3, we can easily get the following corollary.

Corollary 4.1. Assume that f satisfies (f1)–(f2). Then for

λ ∈

(
µk

f0
,

µk

f∞

)
∪

(
µk

f∞

,
µk

f0

)
,

problem (1.5) possesses at least two solutions u+
k and u−

k such that u+
k has exactly k − 1 simple zeros

in (0, 1) and is positive near 0, and u−
k has exactly k − 1 simple zeros in (0, 1) and is negative near 0.
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Abstract. In this paper, we investigate the following Schrödinger equation

−∆u + V(x)u = λ f (u) in R
N ,

where N ≥ 3, λ > 0, V is an asymptotically periodic potential and the nonlinearity term
f (u) is only locally defined for |u| small and satisfies some mild conditions. By using
Nehari manifold and Moser iteration, we obtain the existence of positive solutions for
the equation with sufficiently large λ.
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1 Introduction

In recent years, many researchers consider the following Schrödinger equation

− ∆u + V(x)u = f (x, u), in R
N , (1.1)

where N ≥ 3, V is a given potential and f ∈ C(RN × R, R). Knowledge of the solutions of
Eq. (1.1) has a great importance for studying standing wave solutions for

ih
∂Ψ

∂t
= −h2∆Ψ + W(x)Ψ − f (x, Ψ), for all x ∈ Ω, (NLS)

where h > 0, W is the real-valued potential and Ω is a domain in R
N . Eq. (NLS) is one of

the main objects of the quantum physics, because it appears in problems involving nonlinear
optics, plasma physics and condensed matter physics.

Eq. (1.1) has been researched intensively, see [1,3,5,7,10,11,13,14,19,21,22,28] and references
therein. In the above works, we observe that many interesting conditions on f have been
studied. Notice that, it seems necessary that the condition can be assumed on f at infinity,
that is, f is assumed to be subcritical (or critical) at infinity, i.e.,

BCorresponding author. Email: tangcl@swu.edu.cn
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( f0) 0 ≤ lim|s|→+∞
f (x,s)s
|s|2∗ < +∞ uniformly for x ∈ R

N ,

where the number 2∗ is denoted by 2N
N−2 and called the critical Sobolev exponent for the

embedding of H1(RN) into Lp(RN). This aim is to ensure that the associated energy functional
would be well defined and of class C1 on H1(RN), and then its critical points are precisely
the solutions of Eq. (1.1) by using variational methods. Certainly, many researchers tried to
seek some suitable conditions to replace ( f0). If there does not exist an assumption on f at
infinity, can it be proved that there exists a nontrivial solution for Eq. (1.1)? Mathematically
this problem is interesting. Accordingly, Costa and Wang [9] have considered the following
equation

−∆u = λ f (u), in Ω,

where λ > 0 is a parameter, Ω is a bounded smooth domain in R
N(N ≥ 3), and f : R → R is

a function of class C1 satisfying the following conditions:

( f1) f (−u) = − f (u) for any |u| ≤ δ (for some δ > 0);

( f2) there exists γ ∈ (2, 2∗) such that lim sup|s|→0
f (s)s
|s|γ = 0;

( f3) there exists β ∈ (2, 2∗) such that lim inf|s|→0
f (s)s
|s|β > 0;

( f4) there exists µ ∈ (2, 2∗) such that s f (s) ≥ µF(s) > 0 for all |s| small, where F(s) =∫ s
0 f (t)dt.

Motivated by Costa and Wang [9], do Ó et al. [12] have studied the following equation

− ∆u + V(x)u = λ f (u) in R
N , (P)

where V satisfies (V1)–[(V2) or (V3)],

(V1) V ∈ C(RN , R) and infx∈RN V(x) > 0,

(V2) V(x) → ∞ as |x| → ∞, or more generally, for every M > 0, meas{x ∈ R
N : V(x) ≤

M} < +∞,

(V3) the function [V(x)]−1 belongs to L1(RN),

and f : R → R is a function of class C1 satisfying ( f ′1)− ( f ′2) and ( f4),

( f ′1) there exists p ∈ (2, 2∗) such that lim sup|s|→0
f (s)s
|s|p < +∞,

( f ′2) there exists q ∈ (2, 2∗) such that lim inf|s|→0
F(s)
|s|q > 0, where F(s) =

∫ s
0 f (t)dt.

Further results for related problems can be found in [8, 15, 23, 24] and references therein.
Inspired by the above works, we are concerned with the existence of positive solutions for

asymptotically periodic Eq. (P) with a locally defined nonlinearity term, namely V satisfies
(V4),

(V4) there exists a 1-periodic function V∞(x) ∈ L∞(RN) such that 0 ≤ V(x) ≤ V∞(x),
infx∈RN V∞(x) > 0 and V(x)− V∞(x) ∈ F1, where

F1 := {h(x) : for any ε > 0, meas{x ∈ B1(y) : |h(x)| ≥ ε} → 0 as |y| → ∞} ,
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and f satisfies ( f5)–( f6),

( f5) f ∈ C(R, R) and there exist p > 2, δ ∈ (0, 1) such that the function s 7→ f (s)
sp−1 is nonde-

creasing and f (s) > 0 on (0, δ],

( f6) there exists q ∈ (2, 2∗) such that lim infs→0+
F(s)
sq > 0, where F(s) =

∫ s
0 f (t)dt.

As is well known, if f were assumed to be superlinear and subcritical (or critical) at infinity,
then the associated energy functional

I(u) = 1
2

∫

RN
(|∇u|2 + V(x)u2)dx − λ

∫

RN
F(u)dx

would be of class C1 on H1(RN) and has the mountain pass geometry. Classically, it is a
minimax principle that shows the mountain pass level is a critical level of the functional (see
[4,5,26]). Here, the assumptions ( f5)–( f6) we make on the nonlinearity f (u) refer solely to its
behavior in a neighborhood of u = 0, and we will show that they suffice for the existence of a
positive solution of Eq. (P) when λ is large enough. Exactly we give our main result.

Theorem 1.1. Assume that N ≥ 3, (V4) and ( f5)–( f6) hold. Then there exists λ1 > 0 such that

Eq. (P) has a positive solution for λ ≥ λ1.

Remark 1.2. In this paper, we study the existence of positive solutions for Schrödinger equa-
tions with the assumptions of Theorem 1.1 that has never been investigated. For the case
where the nonlinear term is only locally defined for |u| small, we should point out that we
refer [8, 9, 12, 15] for references in this direction. Costa and Wang [9] considered Eq. (P) in
bound domain. do Ó et al. [12] considered Eq. (P) when V was coercive potential or sat-
isfied that [V(x)]−1 belongs to L1(RN). Li and Zhong [15] studied the Kirchhoff equation
when the nonlinearity term was sub-linear growth. Chu and Liu [8] investigated quasi-linear
Schrödinger equations in the radial space. In these papers, they have the compactness and get
certain solutions easily. However, in our cases we do not have compact embedding, which is
the main difficulty in this paper. Due to this difficult, the methods in [8, 9, 12, 15] fail in our
case, so we will use a different way to overcome the lack of compactness.

We now make some comments on the key ingredients of the analysis in this paper. Fol-
lowing the idea of [8, 9, 12, 15], we first extend the nonlinear term f and introduce a modified
nonlinear Schrödinger equation. Next, we show by variational methods that the modified
nonlinear Schrödinger equation possesses a positive ground state solution. Finally, our ap-
proach is inspired by the results of [2, 6, 9, 12, 26] and is based on the fact that we can show a
priori bound of the form

|u|∞ < Cλ−β, β > 0,

for a class of solutions for the modified nonlinear Schrödinger equation.

The organization of this paper is as follows. In the next section we reserve for setting the
framework and establishing some preliminary results. Theorem 1.1 is proved in Section 3.
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2 Preliminaries

From now on, we will use the following notations.

• H1(RN) is the usual Sobolev space endowed with the usual norm

‖u‖2
H =

∫

RN
(|∇u|2 + u2)dx.

• Lp(RN) is the usual Lebesgue space endowed with the norm

|u|pp =
∫

RN
|u|pdx and |u|∞ = ess sup

x∈RN

|u(x)| for all p ∈ [1, + ∞).

• E :=
{

u ∈ L2(RN) : |∇u| ∈ L2(RN) and
∫

RN V(x)u2dx < +∞
}

has the norm

‖u‖2 =
∫

RN
(|∇u|2 + V(x)u2)dx.

• meas Ω denotes the Lebesgue measure of the set Ω.

• u± := max{±u, 0} and K := {u ∈ E : u+ 6= 0}.

• 〈·, ·〉 denotes action of dual.

• Br(y) := {x ∈ R
N : |x − y| ≤ r} and Br := {x ∈ R

N : |x| ≤ r}.

• C denotes a positive constant and is possibly various in different places.

We work in the space E and recall some facts that the norms ‖ · ‖ and ‖ · ‖H are equivalent
and E →֒ Ls(RN) for any s ∈ [2, 2∗] is continuous. The proof can be done similarly to that in
[19] and details are omitted here. We start by observing that ( f5)− ( f6) imply that p ≤ q and

| f (s)s| ≤ C|s|p, for any |s| ≤ δ.

In order to prove our main result via variational methods, we need to modify and extend f (u)

for outside a neighborhood of u = 0 to get f̃ (u). We set

f̃ (s) :=





0, s ≤ 0,

f (s), 0 < s ≤ δ,

C1sp−1, δ < s,

and fix C1 > 0 such that f̃ ∈ C(R, R
+). Combining with the definition of f̃ , one can easily

obtain the following lemma.

Lemma 2.1. Suppose that ( f5) hold. Then

(a) lims→+∞
F̃(s)
s2 = +∞, where F̃(s) =

∫ s
0 f̃ (t)dt,

(b) there exists C > 0 such that | f̃ (s)s| ≤ C|s|p and |F̃(s)| ≤ C|s|p for all s ∈ R,

(c) there exists µ ∈ (2, p) such that the function s 7→ f̃ (s)
sµ−1 is strictly increasing on (0,+∞),
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Now let us consider the modified equation of Eq. (P) given by
{
−∆u + V(x)u = λ f̃ (u),

u ∈ E.
(P̃)

The corresponding energy functional

Ĩ(u) = 1
2

∫

RN
(|∇u|2 + V(x)u2)dx − λ

∫

RN
F̃(u)dx

is of class C1 by a standard argument and whose derivative is given by

〈Ĩ ′(u), v〉 =
∫

RN
(∇u · ∇v + V(x)uv)dx − λ

∫

RN
f̃ (u)vdx, v ∈ E.

Formally, critical points of Ĩ are solutions of Eq. (P̃). We note that critical points of Ĩ with
L∞-norm less than or equal to δ are also solutions of the original Eq. (P). We recall the Nehari
manifold

N :=
{

u ∈ E \ {0} : 〈Ĩ ′(u), u〉 = 0
}
=
{

u ∈ K : 〈Ĩ ′(u), u〉 = 0
}

,

and set
c := inf

u∈N
Ĩ(u).

Lemma 2.2. Suppose that (V4) and ( f5) hold. Then

(a) for any u ∈ K , there exists a unique tu > 0 such that tuu ∈ N . Moreover, the maximum of Ĩ(tu)
for t > 0 is achieved at tu,

(b) there exists ρ > 0 such that ‖u‖ ≥ ρ for all u ∈ N ,

(c) the functional I is bounded from below on N by a positive constant.

Proof. (a) For any u ∈ K, we define

Ψ(t) := Ĩ(tu) = t2

2

∫

RN
(|∇u|2 + V(x)u2)dx − λ

∫

RN
F̃(tu)dx, t ∈ (0,+∞).

It follows from (b) of Lemma 2.1 and the Sobolev inequality that
∫

RN
F̃(tu)dx ≤ C

∫

RN
|tu|pdx ≤ Ctp‖u‖p.

Thus one has

Ψ(t) ≥ t2

2
‖u‖2 − λCtp‖u‖p.

Then there exists t0 > 0 such that Ψ(t0) > 0. We set Ω = {x ∈ R
N : u(x) > 0}. Combining (a)

in Lemma 2.1 with Fatou’s lemma, we have

lim inf
t→∞

∫

Ω

F̃(tu)

(tu)2 u2dx = +∞.

Hence

lim sup
t→∞

Ψ(t)

t2 =
1
2
‖u‖2 − λ lim inf

t→∞

∫

Ω

F̃(tu)

t2 dx =
1
2
‖u‖2 − λ lim inf

t→∞

∫

Ω

F̃(tu)

(tu)2 u2dx = −∞.
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One could deduce Ψ(t) → −∞ as t → +∞. So there exists tu > 0 such that Ψ(tu) =

maxt>0 Ψ(t) and Ψ′(tu) = 0, i.e., Ĩ(tuu) = maxt>0 Ĩ(tu) and tuu ∈ N . Suppose that there
exists t1 > t2 > 0 such that tiu ∈ N , i = 1, 2, one has

∫

Ω

f̃ (t1u)u2

t1u
dx =

∫

Ω

f̃ (t2u)u2

t2u
dx,

which contradicts (c) of Lemma 2.1. Thus we can conclude that tu is unique.
(b) For any u ∈ N , combining the Sobolev embedding and (b) of Lemma 2.1, one obtains

‖u‖2 = λ
∫

RN
f̃ (u)udx ≤ Cλ

∫

RN
|u|pdx ≤ Cλ‖u‖p. (2.1)

It follows from (2.1) that there exists ρ > 0 independent of u such that

ρ ≤ ‖u‖.

(c) Also from (b) of Lemma 2.1 and the Sobolev inequality, we have

Ĩ(u) ≥ 1
2
‖u‖2 − Cλ‖u‖p.

Since p > 2, there exists σ > 0 such that Ĩ(u) ≥ σ2

4 > 0 for ‖u‖ = σ > 0. For any v ∈ N , there
exists t′ > 0 such that t′‖v‖ = σ. Combining with (a)-(b) of Lemma 2.2, one obtains

Ĩ(v) ≥ Ĩ(t′v) ≥ σ2

4
.

This completes the proof.

From Lemmas 2.1–2.2, one can easily know (see also [19, 26])

c = inf
u∈N

Ĩ(u) = inf
u∈K

sup
t>0

Ĩ(tu) = min
γ∈Γ

max
t∈[0,1]

Ĩ(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, Ĩ(γ(t)) < 0}. Notice that, c > 0 from (c) of Lemma 2.2.
In order to prove our results, we introduce the following equation

−∆u + V∞(x)u = λ f̃ (u), (P∞)

and it follows from [16, 19, 26, 27] that Eq. (P∞) has a positive ground state solution ω. From
Lemma 2.2 and (V4), there exists a unique tω > 0 such that tωω ∈ N and

c ≤ Ĩ(tωω) ≤ Ĩ∞(tωω) ≤ Ĩ∞(ω) := c∞, (2.2)

where Ĩ∞ is the energy functional associated with Eq. (P∞).

Lemma 2.3. Suppose that (V4) and ( f5) hold. If u ∈ N and Ĩ(u) = c, then u is a nontrivial solution

of Eq. (P̃).

Proof. Inspired by the method in [18], one supposes by contradiction that u is not a nontrivial
solution of Eq. (P̃). Then there exists φ ∈ E such that

〈Ĩ ′(u), φ〉 =
∫

RN
(∇u · ∇φ + V(x)uφ)dx − λ

∫

RN
f̃ (u)φdx < −1.
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Let ε ∈ (0, 1) be small enough. Then

〈Ĩ ′(tu + sφ), φ〉 ≤ −1
2

, for any |t − 1| ≤ ε, |s| ≤ ε. (2.3)

We set a curve
γ(t) = tu + sτ(t)φ, t > 0,

where τ ∈ C(R, [0, 1]) is a smooth cut-off function such that τ(t) = 1 for |t − 1| ≤ ε
2 , τ(t) = 0

for |t− 1| ≥ ε. Obviously, γ is a continuous. We can claim that Ĩ(γ(t)) < c for any t ∈ (0,+∞).
Indeed, it follows from Lemma 2.2 that Ĩ(γ(t)) = Ĩ(tu) < Ĩ(u) = c for |t − 1| ≥ ε. When

|t − 1| < ε, owing to Φ(s) := Ĩ(tu + sτ(t)φ) is of C1 on [0, ε], there exists s̄ ∈ (0, ε) such that

Ĩ(tu + sτ(t)φ) = Ĩ(tu) + 〈Ĩ ′(tu + s̄τ(t)φ), ετ(t)φ〉 ≤ Ĩ(tu)− 1
2

ετ(t) < c,

where the inequality holds from (2.3). Hence Ĩ(γ(t)) < c for any t ∈ (0,+∞).
We denote J (u) = 〈Ĩ ′(u), u〉. According to Lemma 2.2 and the definition of γ , we have

J (γ(1 − ε)) = J ((1 − ε)u) > 0 and J (γ(1 + ε)) = J ((1 + ε)u) < 0. By the continuity of
t 7→ J (γ(t)) there exists t′ ∈ (1 − ε, 1 + ε) such that J (γ(t′)) = 0. Thus γ(t′) ∈ N and
Ĩ(γ(t′)) < c, which is a contradiction. This completes the proof.

Lemma 2.4. Suppose that (V4) and ( f5) hold. Then the Cerami sequence for Ĩ at level m > 0 (shortly:

(Ce)m sequence) is bounded in E.

Proof. We recall the (Ce)m sequence {un}, that is,

Ĩ(un) → m, ‖Ĩ ′(un)‖(1 + ‖un‖) → 0.

Then
o(1) = 〈Ĩ ′(un), u−

n 〉 = −‖u−
n ‖2.

Consequently we could deduce that {u+
n } is also a (Ce)m sequence. For the sake of con-

venience, we denote u+
n by un. By a contradiction, we assume that ‖un‖ → +∞ and set

vn = un

‖un‖ . Obviously up to a subsequence, there exists a nonnegative function v ∈ E

such that vn → v ∈ E, vn → v ∈ L2
loc(R

N) and vn(x) → v(x) a.e. in R
N . We denote

Ω1 = {x ∈ R
N : v(x) > 0}. If meas Ω1 > 0, Fatou’s lemma and (a) of Lemma 2.1 imply

lim inf
n→∞

∫

RN

F̃(un)

u2
n

v2
ndx ≥ lim inf

n→∞

∫

Ω1

F̃(un)

u2
n

v2
ndx = +∞.

Then

0 = lim sup
n→∞

Ĩ(un)

‖un‖2 =
1
2
− λ lim inf

n→∞

∫

RN

F̃(un)

u2
n

v2
ndx = −∞,

which is a contradiction. Thus v = 0. We denote

α := lim
n→∞

sup
z∈RN

∫

B1(z)
v2

ndx. (2.4)

If α = 0, we have vn → 0 in Lp(RN) from the Lions lemma [17, 26]. Combining with (b) of
Lemma 2.1, we obtain

∫
RN F̃(2

√
mvn)dx = o(1). By the continuity of Ĩ , there exists tn ∈ [0, 1]
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such that Ĩ(tnun) = maxt∈[0,1] Ĩ(tun). Since ‖un‖ → +∞, one has 2
√

m
‖un‖ ≤ 1 as n large enough.

We observe that

Ĩ(tnun) + o(1) ≥ Ĩ
(

2
√

m

‖un‖
un

)
+ o(1) = 2m‖vn‖2 − λ

∫

RN
F̃(2

√
mvn)dx + o(1)

= 2m + o(1).

In view of Ĩ(un) → m and (a) of Lemma 2.2, we can see that tn ∈ (0, 1) and 〈Ĩ ′(tnun), tnun〉 =
0 as n large enough. Hence by Lemma 2.3 in [20], one has

m = Ĩ(un) + o(1)

= Ĩ(un)−
1
µ
〈Ĩ ′(un), un〉+ o(1)

=

(
1
2
− 1

µ

) ∫

RN

(
|∇un|2 + V(x)u2

n

)
dx + λ

∫

RN

(
1
µ

f̃ (un)un − F̃(un)

)
dx + o(1)

≥ µ − 2
2µ

t2
n

∫

RN

(
|∇un|2 + V(x)u2

n

)
dx + λ

∫

RN

1
µ

f̃ (tnun) tnun − F̃ (tnun) dx + o(1)

= Ĩ(tnun)−
1
µ
〈Ĩ ′(tnun), tnun〉+ o(1)

= Ĩ(tnun) + o(1)

≥ 2m + o(1),

which is a contradiction.
If α > 0, there exists {zn} ⊂ R

N such that
α

2
≤
∫

B1(zn)
v2

ndx.

If {zn} is bounded, there exists R > 0 such that
α

2
≤
∫

BR

v2
ndx.

which is a contradiction with vn → 0 in L2
loc(R

N). Then {zn} is unbounded, up to a subse-
quence, |zn| → ∞. We set wn(x) := vn(x + zn), where wn satisfies

α

2
≤
∫

B1

w2
ndx,

up to a subsequence, there exists w ∈ E such that wn ⇀ w in E, wn → w in L2
loc(R

N) and
wn(x) → w(x) a.e. in R

N . Evidently, meas Ω2 > 0 where Ω2 = {x ∈ R
N : w(x) > 0}. In fact

wn(x) = un(x+zn)
‖un‖ . Also from Fatou’s lemma and (a) of Lemma 2.1, one obtains

lim inf
n→∞

[
1

‖un‖2

∫

RN
F̃(un)dx

]
= lim inf

n→∞

[
1

‖un‖2

∫

RN
F̃ (un (x + zn)) dx

]

≥ lim inf
∫

Ω2

F̃ (un (x + zn))

[un(x + zn)]2
w2

ndx

= +∞.

Hence

0 = lim sup
n→∞

Ĩ(un)

‖un‖
=

1
2
− λ lim inf

n→∞

[
1

‖un‖2

∫

RN
F̃(un)dx

]
= −∞,

which is a contradiction. In a word, the (Ce)m sequence {un} is bounded in E.
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Proposition 2.5. Suppose that (V4) and ( f5) hold. Then Eq. (P̃) has a positive ground state solution.

Proof. Notice that 0 < c ≤ c∞. Therefore, one of the two cases occurs:

Case 1. c = c∞. It follows from (2.2) that

c∞ ≤ Ĩ(tωω) ≤ Ĩ∞(tωω) ≤ Ĩ∞(ω) = c∞.

Then ω is also a positive ground state solution of Eq. (P̃) from Lemma 2.3.

Case 2. 0 < c < c∞. We see easily Ĩ satisfies the mountain pass geometry. From the
mountain pass theorem [25, 26] and Lemma 2.4, there exists a nonnegative and bounded
sequence {un} ∈ E such that

Ĩ(un) → c, ‖Ĩ ′(un)‖(1 + ‖un‖) → 0.

Then there exists a nonnegative function u ∈ E such that up to a subsequence, un ⇀ u

in E, un → u in L2
loc(R

N) and un(x) → u(x) a.e. in R
N . For any ϕ ∈ C∞

0 (RN), one has
0 = 〈Ĩ ′(un), ϕ〉+ o(1) = 〈Ĩ ′(u), ϕ〉, i.e., u is a nonnegative solution of Eq. (P̃). If u 6= 0 in E,
combining Lemma 2.3 in [20] with Fatou’s lemma one obtains

c = Ĩ(un) + o(1)

= Ĩ(un)−
1
µ
〈Ĩ ′(un), un〉+ o(1)

=

(
1
2
− 1

µ

) ∫

RN

(
|∇un|2 + V(x)u2

n

)
dx + λ

∫

RN

(
1
µ

f̃ (un)un − F̃(un)

)
dx + o(1)

≥
(

1
2
− 1

µ

) ∫

RN

(
|∇u|2 + V(x)u2) dx + λ

∫

RN

(
1
µ

f̃ (u)u − F̃(u)

)
dx + o(1)

= Ĩ(u)− 1
µ
〈Ĩ ′(u), u〉+ o(1)

= Ĩ(u) + o(1). (2.5)

At the same time, one knows c ≤ Ĩ(u) from the definition of c and u ∈ N . Applying the
strongly maximum principle, we could deduce that u is a positive ground state solution of
Eq. (P̃).

We assume that u = 0 (otherwise we complete the proof). Then there exists α ≥ 0 such
that

lim
n→∞

sup
z∈RN

∫

B1(z)
|un|2dx = α.

Indeed, if α = 0, applying the Lions lemma [17, 26] we obtain

un → 0 in Lp(RN). (2.6)

Hence Ĩ(un) → 0 as n → ∞ from (b) in Lemma 2.1, which contradicts c > 0. Then there exists
{zn} ⊂ R

N such that
∫

B1(zn)
|un|2dx ≥ α

2 > 0.

If {zn} is bounded, there exists R > 0 such that
∫

BR(0)
|un|2dx ≥ α

2 > 0, which is a contra-

diction with un → 0 in L2
loc(R

N). Then {zn} is unbounded. After extracting a subsequence if
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necessary, we have

(i) |zn| → +∞,

(ii) un(·+ zn) ⇀ v 6= 0 in E.

From Lemma 2.4 in [19], we have

0 = 〈Ĩ ′(un), ϕ(· − zn)〉+ o(1)

=
∫

RN
[∇un · ∇ϕ(· − zn) + V(x)un ϕ(x − zn)] dx − λ

∫

RN
f̃ (un)ϕ(x − zn)dx + o(1)

=
∫

RN
[∇un · ∇ϕ(· − zn) + V∞(x)un ϕ(x − zn)] dx − λ

∫

RN
f̃ (un)ϕ(x − zn)dx + o(1)

= 〈Ĩ ′
∞(v), ϕ〉+ o(1).

Then v is a nontrivial solution of Eq. (P∞). Notice that, also from [19], we obtain

c = Ĩ(un)−
1
µ
〈Ĩ ′(un), un〉+ o(1)

=

(
1
2
− 1

µ

) ∫

RN

(
|∇un|2 + V(x)u2

n

)
dx + λ

∫

RN

(
1
µ

f̃ (un)un − F̃(un)

)
dx + o(1)

=

(
1
2
− 1

µ

) ∫

RN

(
|∇un|2 + V∞(x)u2

n

)
dx

+ λ
∫

RN

[
1
µ

f̃ (un(·+ zn))un(·+ zn)− F̃(un(·+ zn))

]
dx + o(1)

= Ĩ∞ (un(·+ zn))−
1
µ
〈Ĩ ′

∞ (un(·+ zn)) , un(·+ zn)〉+ o(1)

= Ĩ∞(v) + o(1)

≥ c∞ + o(1),

which is a contradiction.
In conclusion, whether Case 1 occurs or Case 2 occurs, we can prove Proposition 2.5.

3 Proof of Theorem 1.1

Lemma 3.1. Suppose that (V4) and ( f5) hold. If u is a critical point of Ĩ , then u ∈ L∞(RN).

Furthermore, there exists a positive constant C independent of λ such that

|u|∞ ≤ Cλ
1

2∗−p

(∫

RN
|∇u|2dx

) 2∗−2
2(2∗−p)

.

Proof. We prove the result by using the Moser iteration. For each k > 0, we define

uk(x) =

{
u(x), if |u(x)| ≤ k,

±k, if ± u(x) > k.

For β > 1, we use ϕk = |uk|2(β−1)u as a test function in 〈Ĩ ′(u), ϕk〉 to obtain
∫

RN
|uk|2(β−1)|∇u|2dx + 2(β − 1)

∫

RN
|uk|2(β−2)uuk∇u · ∇ukdx

+
∫

RN
V(x)|uk|2(β−1)u2dx = λ

∫

RN
f̃ (u)|uk|2(β−1)udx. (3.1)
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Then we use the Sobolev inequality to yield

β2
∫

RN

(
|uk|2(β−1)|∇u|2dx + 2(β − 1)|uk|2(β−2)uuk∇u · ∇uk

)
dx

≥
∫

RN
|uk|2(β−1)|∇u|2 + (β − 1)2|uk|2(β−2)u2|∇uk|2 + 2(β − 1)|uk|2(β−2)uuk∇u · ∇ukdx

≥
∫

RN

∣∣∣∇
(
|uk|β−1u

)∣∣∣
2

dx

≥ C

(∫

RN

∣∣∣|uk|β−1u
∣∣∣
2∗

dx

) 2
2∗

, (3.2)

where we also have used the facts that u2|∇uk|2 ≤ u2
k |∇u|2 and β > 1. From (b) in Lemma 2.1,

we deduce
∫

RN
f̃ (u)|uk|2(β−1)udx ≤ C

∫

RN
|u|p|uk|2(β−1)dx. (3.3)

Combining (3.1), (3.2) and (3.3), we obtain

(∫

RN

∣∣∣|uk|β−1u
∣∣∣
2∗

dx

) 2
2∗

≤ Cβ2λ
∫

RN
|u|p−2|uk|2(β−1)u2dx

≤ Cβ2λ

(∫

RN
|u|2∗dx

) p−2
2∗
(∫

RN

∣∣∣|uk|2(β−1)u2
∣∣∣

2∗
2∗−p+2

dx

) 2∗−p+2
2∗

.

Letting k → ∞, we have

|u|β·2∗ ≤
(
Cβ2λ

) 1
2β

(∫

RN
|∇u|2dx

) p−2
4β

|u| 2·2∗β
2∗−p+2

. (3.4)

To carry out an iteration process, we set

βm =

(
2∗ − p + 2

2

)m+1

, m = 0, 1, . . .

Then we have
2 · 2∗βm

2∗ − p + 2
= 2∗βm−1.

By (3.4), one obtains

|u|βm·2∗ ≤
(
Cβ2

mλ
) 1

2βm

(∫

RN
|∇u|2dx

) p−2
4βm

|u| 2·2∗βm
2∗−p+2

= (Cλ)
1

2βm β
1

βm
m

(∫

RN
|∇u|2dx

) p−2
4βm

|u|βm−1·2∗ .

By the Moser iteration, we have

|u|βm·2∗ ≤ (Cλ)∑
m
i=0

1
2βi

m

∏
i=0

β
1
βi
i

(∫

RN
|∇u|2dx

) p−2
4 ∑

m
i=0

1
βi |u|2∗ . (3.5)



12 G.-D. Li, Y.-Y. Li and C.-L. Tang

Since β0 =
(

2∗−p+2
2

)
> 1 and βi = βi+1

0 , we observe that

m

∑
i=0

1
βi

=
m

∑
i=0

1

βi+1
0

,
m

∏
i=0

β
1
βi
i =

m

∏
i=0

(
βi+1

0

) 1
βi+1

0 = (β0)
∑

m
i=0

i+1
βi+1

0 .

One can easily see
∞

∑
i=0

i + 1

βi+1
0

= β∗
< +∞,

∞

∑
i=0

1

βi+1
0

=
2

2∗ − p
.

Letting m → ∞ in (3.5), we conclude that u ∈ L∞(RN) and

|u|∞ ≤ Cλ
1

2∗−p β
β∗

0

(∫

RN
|∇u|2dx

) p−2
2(2∗−p)

|u|2∗ ≤ Cλ
1

2∗−p

(∫

RN
|∇u|2dx

) 2∗−2
2(2∗−p)

. (3.6)

This completes the proof.

Proof of Theorem 1.1. By proposition 2.5, Eq. (P̃) has a positive ground solution u. Combining
the Sobolev embedding and (b) of Lemma 2.1, one obtains

c = Ĩ(u)− 1
µ
〈Ĩ ′(u), u〉 ≥

(
1
2
− 1

µ

)
‖u‖2. (3.7)

We can see that there exists v ∈ K ∩ L∞(RN) such that |v|∞ < 1. Since ( f6), there exists C > 0
independent of λ such that

F̃(tv) ≥ C|tv|q, t ∈ [0, 1].

At the same time there exists λ0 > 0 such that Ĩ(v) < 0 for λ ≥ λ0. Then from the definition
of c, we have

c ≤ max
t∈[0,1]

Ĩ(tv)

= max
t∈[0,1]

t2

2

∫

RN
(|∇v|2 + V(x)v2)dx − λ

∫

RN
F̃(tv)dx

≤ max
t∈[0,1]

t2

2

∫

RN
(|∇v|2 + V(x)v2)dx − Ctqλ

∫

RN
|v|qdx

≤ Cλ
− 2

q−2 . (3.8)

Combining (3.6), (3.7) and (3.8), we have

|u|∞ ≤ Cλ
1

2∗−p ‖u‖
2∗−2
2∗−p ≤ Cλ

1
2∗−p λ

1
2−q · 2∗−2

2∗−p .

Since p, q ∈ (2, 2∗), there exists λ1 ≥ λ0 such that

|u|∞ ≤ Cλ
2∗−q

(2∗−p)(2−q)

1 ≤ δ.

Therefore, from the definition of f̃ , we can conclude that u is also a positive solution of Eq. (P)
for λ ≥ λ1. This completes the proof of Theorem 1.1.
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Abstract. We consider the multiplicity of solutions of a class of quasilinear Schrödinger
equations involving the p-Laplacian:

−∆pu + V(x)|u|p−2u + ∆p(u
2)u = K(x) f (x, u), x ∈ R

N ,

where ∆pu = div(|∇u|p−2∇u), 1 < p < N, N ≥ 3, V, K belong to C(RN) and f is an
odd continuous function without any growth restrictions at large. Our method is based
on a direct modification of the indefinite variational problem to a definite one. Even for
the case p = 2, the approach also yields new multiplicity results.

Keywords: quasilinear Schrödinger equations, variational methods, Brezis–Kato type
estimates.
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1 Introduction

In this study, the multiplicity of solutions for the quasilinear elliptic problem

− ∆pu + V(x)|u|p−2u + τ∆p(u
2)u = K(x) f (x, u), x ∈ R

N , (1.1)

will be analyzed, where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, 1 < p < N, τ ∈ R, f is a

continuous function and is only p-sublinear in a neighborhood of u = 0, V and K belong to

C(RN), satisfying

(VK) for all x ∈ RN , 0 < V0 ≤ V(x), 0 < K(x) ≤ K1 and

W(x) := K(x)p/(p−q)V(x)q/(q−p) ∈ L1(RN) (q will be defined in ( f1)).
BCorresponding author. Email: chenhuangmath111@163.com
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For p = 2, quasilinear Schrödinger equations (QSE) are widely used in non-Newtonian

fluids, reaction-diffusion problems and other physical phenomena. It should be noted that

the solutions of problem (1.1) are closely related to solutions of the nonlinear Schrödinger

equations:

i∂tz = −∆z + Ṽ(x)z − l(x, |z|2)z + τ[∆ρ(|z|2)]ρ′(|z|2)z, (1.2)

where z : RN ×R → C, K : RN → R is a given potential, τ is a real constant, ρ is a real function

and l : RN × R → R. They have been derived as models of many physical phenomena

corresponding to various types of the function ρ. For example, when ρ(s) = 1, one has the

classical stationary semilinear Schrödinger equation [3, 12]. If ρ(s) = s, the equations of fluid

mechanics, plasma physics and dissipative quantum mechanics are established [4, 11]. When

ρ(s) = (1 + s)1/2, the equation models the propagation of a high-irradiance laser in a plasma

and the self-channeling of a high-power ultrashort laser in matter [13]; problem (1.2) is related

to condensed matter theory. For more information on the physical background, please refer

to [4, 5, 18].

In what follows, we discuss the case of ρ(s) = s and p = 2. A standing wave of problem

(1.2) is a solution of the form z(x, t) = exp(−iEt)u(x) where E ∈ R. It is also called stationary

waves. It is generally known that z is a standing wave solution for problem (1.2) when and

only when u is a solution for the quasilinear elliptic problem (1.1), where V(x) = Ṽ(x)− E

indicates the new potential.

When τ = 0, equation (1.1) degenerates into a semilinear equation (i.e., the nonlinear

Schrödinger equation), which has been widely studied using the variational method for the

past 30 years, see [14]. Obviously, if τ 6= 0, the energy functional of the quasilinear term

τ
∫

RN u2|∇u|2dx is not well defined in H1(RN). Therefore, the energy functional I of (1.1) is

not a C1 functional.

When τ < 0, scholars have obtained a large number of existence and multiplicity results

for equation (1.1) based on variational methods. For instance, Poppenberg, Schmitt and Wang

proved the existence of positive solutions with a constrained minimization argument in [19]

for the first time. By utilizing variable substitution and converting the quasilinear problem

(1.1) into a semilinear one in an Orlicz space framework, Liu et al. in [15] obtained a general

existence result. Colin et al. in [6] adopted the same method of variable substitution but chose

the classical Sobolev space H1(RN). For further results, please refer to [8, 16, 21, 22, 25].

When τ > 0, in [1], Alves et al. introduced a substitution of variables u = G−1(v), where

g(t) =





√
1 − τt2 if 0 ≤ t < 1√

3τ
,

1
3
√

2τt
+ 1√

6
if t ≥ 1√

3τ
,

g(t) = g(−t) for all t ≤ 0 and G(s) =
∫ s

0 g(t)dt. Given a sufficiently small τ > 0, the authors

proved that there exists a solution of

−∆u + V(x)u + τ∆(u2)u = |u|q−2u, x ∈ R
N ,

where 2 < q < 2∗. Wang et al. [23] investigated the existence of solutions for QSE with

critical growth nonlinearities. [2] with potential V vanishing at infinity and the superlinear

nonlinearities, [24] with f (t) = λ|t|q−2t + |t|i−2t for q ≥ 22∗, 4 < i < 22∗ and λ > 0 small

enough, [20] with potential V being large at infinity and nonlinearities being superlinear or

asymptotically linear at infinity.
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Now, from [1], two natural questions arise:

(Q1) Can the appropriate variational framework for problem (1.1) with τ = 1 (not small

enough) be established?

(Q2) When τ = 1, if the nonlinearity |t|q−2t with q > 2 is replaced by q < 2 or a more

general sublinear term f (x, t) in problem (1.1), will this problem possess infinitely many

solutions?

Regarding the question (Q1), our earlier work [9] studied the existence of a positive so-

lution for problem (1.1) with τ = 1 under a local superlinear growth condition. Our aim in

this work is to seek clear answers to question (Q2). Therefore, we will be mainly interested

in the existence of infinitely many solutions for the following general QSE involving local

p-sublinear nonlinearities:

− ∆pu + V(x)|u|p−2u + ∆p(u
2)u = K(x) f (x, u), x ∈ R

N , (1.3)

where 1 < p < N, N ≥ 3, V and K satisfy condition (VK). We remark that our results are

new also in the case p = 2. Next, we suppose that the nonlinearity f is continuous and meets

the following conditions that describe its behavior only in a neighborhood of the origin:

( f1) there exist δ > 0, 1 ≤ q < p and C > 0 such that f ∈ C(RN × [−δ, δ], R), f is odd in t

and

| f (x, t)| ≤ C|t|q−1, uniformly in x ∈ R
N ;

( f2) there exist x0 ∈ RN and r0 > 0 such that

lim inf
t→0

(
inf

x∈Br0
(x0)

F(x, t)

|t|p

)
> −∞

and

lim sup
t→0

(
inf

x∈Br0
(x0)

F(x, t)

|t|p

)
= +∞,

where Br0(x0) ⊂ RN and

F(x, t) =
∫ t

0
f (x, s)ds.

Remark 1.1. We do not need any growth condition on f at infinity. There exist many functions

satisfying ( f1) and ( f2), for example

(i) f (x, u) = |u|q−1sgn u with q ∈ (1, p);

(ii) f (x, u) = Q(x)|u|q−1sgn u + P(x)|u|i−1sgn u, where 1 < q < p, i ≥ p∗ := pN
N−p , Q(x) and

P(x) are bounded Hölder continuous functions on RN and Q(x0) > 0 at some x0 ∈ RN .

Remark 1.2. Although problem (1.3) is not a standard elliptic equation, we can still give the

definition of the weak solution of problem (1.3). Suppose that conditions (VK), ( f1) and ( f2)

are satisfied. A weak solution of problem (1.3) is a function u ∈ X (X will be defined in

Section 2) such that
∫

RN
(1 − 2p−1|u|p)|∇u|p−2∇u∇ϕdx − 2p−1

∫

RN
|∇u|p|u|p−2uϕdx +

∫

RN
V(x)|u|p−2uϕdx

=
∫

RN
K(x) f (x, u)ϕdx, for all ϕ ∈ C∞

0 (RN).
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From a variational perspective, we give a formally Lagrangian functional of (1.3):

J(u) =
1

p

∫

RN
(1 − 2p−1|u|p)|∇u|pdx +

1

p

∫

RN
V(x)|u|pdx −

∫

RN
K(x)F(x, u)dx,

which is not well defined in W1,p(RN). For this reason, conventional variational methods

cannot be applied directly. Problems such as (1.3) become interesting and challenging in this

dilemma. First, because of our lack of information about the function f at infinity, the term∫
RN K(x)F(x, u)dx may not be well defined. Second, the presence of

∫
RN (1− 2p−1|u|p)|∇u|pdx

makes us unable to work in a classical Sobolev space. Third, ensuring the positiveness of the

principal part, i.e.,
∫

RN (1 − 2p−1|u|p)|∇u|pdx > 0, is also difficult.

Drawing lessons from the work of Costa and Wang [7], our earlier work [9] and the vari-

ant symmetric mountain pass lemma [10, 17], we can obtain infinitely many solutions for a

modified functional with modifications made on the nonlinearity and the principal part of the

Lagrangian functional J. Then, we obtain Brezis–Kato type estimates for these critical points

of the modified functional. After fine estimates of the solutions for the modified problems

we can show that some of these solutions for the modified problems give rise to solutions of

problem (1.3) with desired properties.

We now proceed to present our main result.

Theorem 1.3. Suppose that conditions (VK), ( f1) and ( f2) are satisfied. Then problem (1.3) possesses

a sequence of weak solutions un ∈ X with un → 0 strongly in X, un → 0 strongly in L∞(RN) and

J(un) → 0.

Remark 1.4. Since problem (1.3) is not a standard elliptic equation, conventional critical point

theory is not directly applicable. Hence, some fundamental results for elliptic equations are

not expected. For instance, without the symmetric condition regarding nonlinearity, the exis-

tence of solutions for problem (1.3) may not be proved.

The remainder of this paper is arranged as follows. In Section 2, the problem is refor-

mulated. We provide the variational framework for the reformulated problem in Section 3.

Section 4 is devoted to discussing the reformulated problem in detail via a cut-off technique,

Morse L∞-estimation and proving Theorem 1.3.

In what follows, C denotes positive generic constants.

2 Reformulation

Define X =
{

u ∈ W1,p(RN) |
∫

RN V(x)|u|pdx < ∞
}

endowed with the norm

‖u‖ =

(∫

RN
(|∇u|p + V(x)|u|p)dx

)1/p

.

As usual, the norms of Ls(RN)(s ≥ 1) are denoted by ‖ · ‖s.

For fixed δ > 0 in ( f1), set d(t) ∈ C(R) as a cut-off function satisfying :

d(t) =

{
1, if |t| ≤ δ

2 ,

0, if |t| ≥ δ,

d(−t) = d(t) and 0 ≤ d(t) ≤ 1 for t ∈ R. Define

f̃ (x, t) = d(t) f (x, t), for all x ∈ R
N , t ∈ R
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and

F̃(x, t) =
∫ t

0
f̃ (x, s)ds.

Inspired by [7, 9], a modified QSE can be established:

− div(hp(u)|∇u|p−2∇u) + hp−1(u)h′(u)|∇u|p + V(x)|u|p−2u = K(x) f̃ (x, u), x ∈ R
N , (2.1)

where h(s) : [0,+∞) → R satisfying

h(s) =

{
(1 − 2p−1sp)1/p if 0 ≤ s < ( 21−p

3 )1/p,
1
s (

21−p

3 )2/p + ( 21−p

3 )1/p if s ≥ ( 21−p

3 )1/p,

and h(s) = h(−s) for s < 0. It deduces that h(s) ∈ C1(R, (( 21−p

3 )1/p, 1]) and decreases in

[0,+∞). And then, we define

H(t) =
∫ t

0
h(s)ds.

Obviously, H(t) is an odd function, and there exists an inverse function H−1(t). Moreover,

H(t) has the following attributes, the similar proofs of which can be found in [9].

Lemma 2.1.

(i) lim
t→0

H−1(t)
t = 1;

(ii) lim
t→+∞

H−1(t)
t = ( 3

21−p )
1/p;

(iii) |t| ≤ |H−1(t)| ≤ ( 3
21−p )

1/p|t|, for all t ∈ R;

(iv) t
h(t)

h′(t) ≤ 0, for all t ∈ R.

Our goal is proving that (2.1) has a sequence of weak solutions {un} satisfying ‖un‖L∞ <

min{δ/2, ( 21−p

3 )1/p}, in this situation

h(un) = (1 − 2p−1|un|p)1/p and f̃ (x, un) = f (x, un).

Thus, they are also the weak solutions of (1.3).

To find the weak solutions of (2.1) with desired properties, we focus on a Lagrangian

functional defined by

J̃(u) =
1

p

∫

RN
hp(u)|∇u|pdx +

1

p

∫

RN
V(x)|u|pdx −

∫

RN
K(x)F̃(x, u)dx. (2.2)

Taking the change of variable

v = H(u),

it is clear that functional J̃ can be written as follows:

I(v) =
1

p

∫

RN
|∇v|pdx +

1

p

∫

RN
V(x)|H−1(v)|pdx −

∫

RN
K(x)F̃(x, H−1(v))dx. (2.3)

From the definition of F̃(x, t), we deduce

|F̃(x, t)| ≤ C|t|q, for all x ∈ R
N and t ∈ R,
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where 1 ≤ q < p. This together with Lemma 2.1 implies that

∣∣∣∣
∫

RN
K(x)F̃(x, H−1(v))dx

∣∣∣∣ ≤ C
∫

RN
K(x)|H−1(v)|qdx

≤ C

(∫

RN
W(x)dx

) (p−q)
p
(∫

RN
V(x)|v|pdx

) q
p

≤ C‖v‖q.

(2.4)

From the above estimation and Lemma 2.1, we obtain

I(v) is well defined in X.

Then, it is standard to see that I ∈ C1(X, R) and for all ϕ ∈ X

I′(v)ϕ =
∫

RN
|∇v|p−2∇v∇ϕdx +

∫

RN
V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
ϕdx

−
∫

RN
K(x)

f̃ (x, H−1(v))

h(H−1(v))
ϕdx.

Lemma 2.2. Suppose that conditions (VK) and ( f1) are satisfied. If v ∈ X is a critical point of I, then

u = H−1(v) ∈ X and u is a weak solution for (2.1).

Proof. From v ∈ X and Lemma 2.1, we have u = H−1(v) ∈ X. By v being a critical point for I,

we deduce that

∫

RN
|∇v|p−2∇v∇ϕdx +

∫

RN
V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
ϕdx

−
∫

RN
K(x)

f̃ (x, H−1(v))

h(H−1(v))
ϕdx, for all ϕ ∈ X.

Taking ϕ = h(u)ψ as the text function, where u = H−1(v) and ψ ∈ C∞
0 (RN), we obtain

∫

RN
|∇v|p−2∇v∇uh′(u)ψdx +

∫

RN
|∇v|p−2∇v∇ψh(u)dx +

∫

RN
V(x)|u|p−2uψdx

−
∫

RN
K(x) f̃ (x, u)ψdx = 0.

or

∫

RN

(
−div(hp(u)|∇u|p−2∇u) + hp−1(u)h′(u)|∇u|p + V(x)|u|p−2u − K(x) f̃ (x, u)

)
ψdx = 0.

This ends the proof.

Therefore, for the weak solutions of (2.1), we only need to discuss the existence of the weak

solutions of the following problem:

− ∆pv + V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
= K(x)

f̃ (x, H−1(v))

h(H−1(v))
, x ∈ R

N . (2.5)
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3 Clark’s theorem

Denote

Γ = {A ⊂ X \ {0} | A is closed,−A = A}.

Let A ∈ Γ, define

γ(A) = min{n ∈ N | there exists an odd, continuous φ : A → R
n \ {0}},

If such a minimum does not exist, then we define γ(A) = +∞. Moreover, set γ(∅) = 0.

In order to prove Theorem 1.3, we introduce the following Clark’s theorem due to [10].

Proposition 3.1. Let X be a Banach space and Φ ∈ C1(X, R) be an even functional with Φ(0) = 0.

Assume that Φ satisfies the following.

(i) Φ is bounded from below and satisfies the Palais–Smale condition.

(ii) For all k ∈ N, Γk = {A ∈ Γ|γ(A) ≥ k}, there exists a Ak ∈ Γk such that supv∈Ak
Φ(v) < 0.

Then, at least one of the following conclusions holds.

(i) There exists a critical point sequence {vk} such that Φ(vk) < 0 and vk → 0 strongly in X.

(ii) There exist two critical point sequences {vk} and {wk} such that Φ(vk) = 0, vk 6= 0, vk → 0

strongly in X, Φ(wk) < 0, limk→∞ Φ(wk) = 0 and {wk} converges to a non-zero limit.

The following lemma plays a fundamental role in verifying Proposition 3.1. In the proof

of this lemma, we adapt some arguments of dealing with the Schrödinger–Poisson systems in

[26] and the elliptic problem in [10].

Lemma 3.2. Suppose that (VK), ( f1) and ( f2) hold. Then for all k ∈ N, there exists Ak ∈ Γ such

that genus γ(Ak) = k and supv∈Ak
I(v) < 0.

Proof. Without loss of generality, we may assume that x0 = 0 in condition ( f2). Let Q be the

cube

Q := {x = (x1, x2, . . . , xN) | |xi| ≤ r0/2, i = 1, 2, . . . , N},

where r0 is chosen in condition ( f2). Obviously, Q ⊂ Br0(0). From ( f2) and Lemma 2.1-(iii),

we can find two sequences δn → 0, Mn → ∞(δn, Mn > 0) and a positive constant α such that

F(x, t)

|t|p ≥ −α, for all x ∈ Q and |t| ≤ δ (3.1)

and
F(x, H−1(δn))

|H−1(δn)|p
≥ Mn for all x ∈ Q and n ∈ N. (3.2)

Next, for any k ∈ N fixed, we shall construct a Ak ∈ Γ which satisfies genus γ(Ak) = k

and supv∈Ak
I(v) < 0.

Firstly, let k ∈ N be fixed and m ∈ N is the smallest integer that satisfies mN ≥ k. Then,

by planes parallel to each face of Q, we can equally divide cube Q into mN small cubes. Set

them by Qi with 1 ≤ i ≤ mN . It is well known that the length of the edge of Qi is d = r0/m.

Furthermore, for each 1 ≤ i ≤ k, let Ui be a cube in Qi such that Ui has the same center as that

of Qi, the faces of Ui and Qi are parallel, and the length of the edge of Ui is d
2 .
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Define a cut-off function µ ∈ C∞
0 (R) such that 0 ≤ µ ≤ 1, µ(x) = 1 for s ∈ [− d

4 , d
4 ] and

µ(x) = 0 for s ∈ R \ [− d
2 , d

2 ]. Denote

ν(x) := µ(x1)µ(x2) . . . µ(xN), for all x = (x1, x2, . . . , xN) ∈ R
N .

For each 1 ≤ i ≤ k, let

νi(x) = ν(x − yi), for all x ∈ R
N ,

where yi ∈ RN is the center of both Qi and Ui. Obviously, for all 1 ≤ i ≤ k, we have

supp νi ⊂ Qi (3.3)

and

νi(x) = 1, for all x ∈ Ui, 0 ≤ νi(x) ≤ 1, for all x ∈ R
N . (3.4)

Denote

Dk :=

{
(e1, e2, . . . , ek) ∈ R

k | max
1≤i≤k

|ei| = 1

}

and

Lk :=

{
k

∑
i=1

eiνi | (e1, e2, . . . , ek) ∈ Dk

}
.

It is well known that using an odd mapping, Dk is homeomorphic to the unit sphere in Rk.

Thus, γ(Dk) = k. And then, since the mapping L : Dk → Lk defined by

L(e1, e2, . . . , ek) =
k

∑
i=1

eiνi, for all (e1, e2, . . . , ek) ∈ Dk,

is an odd homeomorphism, this deduces γ(Dk) = γ(Lk) = k. Due to the compactness of Lk,

there exits a constant Ck > 0 such that

‖v‖ ≤ Ck, for all v ∈ Lk. (3.5)

For v = ∑
k
i=1 eiνi ∈ Lk and any t ∈ (0, 1

2 (
21−p

3 )1/pδ), by Lemma 2.1-(iii), the definition of F̃ and

the fact that |H−1(teiνi)| < δ
2 for all 1 ≤ i ≤ k, we have

I(tv) ≤ tp

p

∫

RN
|∇v|pdx +

3 · 2p−1tp

p

∫

RN
V(x)|v|pdx −

k

∑
i=1

∫

Qi

K(x)F̃(x, H−1(teiνi))dx

≤ 3 · 2p−1tp

p
‖v‖p −

k

∑
i=1

∫

Qi

K(x)F(x, H−1(teiνi))dx.

(3.6)

From the definition of Dk, there exists iv ∈ [1, k] such that |eiv
| = 1. Then, we rewrite the term

∑
k
i=1

∫
Qi

K(x)F(x, H−1(teiνi))dx in (3.6) as follows:

∫

Uiv

K(x)F(x, H−1(teiv
νiv

))dx +
∫

Qiv\Uiv

K(x)F(x, H−1(teiv
νiv

))dx

+ ∑
i 6=iv

∫

Qi

K(x)F(x, H−1(teiνi))dx. (3.7)

From Lemma 2.1-(2), (3.1) and (3.4), we deduce
∫

Qiv\Uiv

K(x)F(x, H−1(teiv
νiv

))dx + ∑
i 6=iv

∫

Qi

K(x)F(x, H−1(teiνi))dx ≥ − 3

21−p
αrN

0 K1tp. (3.8)
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Choosing t = δn ∈ (0, 1
2 (

21−p

3 )1/pδ) in (3.6), by using F(x, t) is even for |t| ≤ δ, Lemma 2.1-(iii),

(3.2) and (3.5)–(3.8), we obtain

I(δnv) ≤ 3 · 2p−1

p
C

p
k δ

p
n +

3

21−p
αrN

0 K1δ
p
n −

∫

Uiv

K(x)F(x, H−1(δneiv
νiv

))dx

≤ 3 · 2p−1

p
C

p
k δ

p
n +

3

21−p
αrN

0 K1δ
p
n − C

dN Mn

2N
|H−1(δn)|p

≤ δ
p
n

(
3 · 2p−1

p
C

p
k +

3

21−p
αrN

0 K1 − C
dN Mn

2N

)
.

(3.9)

Note that Mn → ∞ as n → ∞, there exists an n0 ∈ N such that for n ≥ n0, we obtain

3 · 2p−1

p
C

p
k +

3

21−p
αrN

0 K1 − C
dN Mn

2N
< 0.

Choosing

Ak := {δn0 v | v ∈ Lk},

we deduce that Ak satisfies

γ(Ak) = γ(Lk) = k and sup
v∈Ak

I(v) < 0.

Next, we show a compactness result for the functional I.

Lemma 3.3. Provided that assumptions (VK) and ( f1) hold, then I is bounded from below and satisfies

the Palais–Smale condition.

Proof. Let v ∈ X. Then, from (2.4), we have

∣∣∣∣
∫

RN
K(x)F̃(x, H−1(v))dx

∣∣∣∣ ≤ C‖v‖q.

Therefore, we obtain

I(v) =
1

p

∫

RN
|∇v|pdx +

1

p

∫

RN
V(x)|H−1(v)|pdx −

∫

RN
K(x)F̃(x, H−1(v))dx

≥ 1

p
‖v‖p − C‖v‖q.

Note that 1 < q < p, we can derive that I is bounded from below and I is coercive.

Next, we shall prove that I satisfies the Palais–Smale conditions. For {vn} ⊂ X, such that

|I(vn)| ≤ c and I′(vn) → 0.

By I being coercive, we have the sequence {vn} bounded in X. Up to subsequence, we obtain

vn ⇀ v weakly in X, vn → v strongly in L
q
loc(R

N) and vn → v a.e. on R
N .
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Consider

〈I′(vn)− I′(v), vn − v〉

=
∫

RN
(|∇vn|p−2∇vn − |∇v|p−2∇v)(∇vn −∇v)dx

+
∫

RN
V(x)

(
|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
− |H−1(v)|p−2 H−1(v)

h(H−1(v))

)
(vn − v)dx

−
∫

RN
K(x)

(
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

)
(vn − v)dx

≥ C
∫

RN
|∇vn −∇v|pdx

+
∫

RN
V(x)

(
|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
− |H−1(v)|p−2 H−1(v)

h(H−1(v))

)
(vn − v)dx

−
∫

RN
K(x)

(
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

)
(vn − v)dx

:= C
∫

RN
|∇vn −∇v|pdx + I1 − I2,

(3.10)

where we use the elementary inequalities:

(|a|p−2a − |b|p−2b)(a − b) ≥
{

C(|a|+ |b|)p−2|a − b|2, for a, b ∈ RN if 1 < p < 2,

C|a − b|p, for a, b ∈ RN if p ≥ 2.

Firstly, we will show that

I1 ≥ 0. (3.11)

In fact, a direct computation shows that second derivative of the function

G(t) = |H−1(t)|p for t ∈ R

satisfies the equality

G′′(t) =

(
(p − 1)g(H−1(t))− g′(H−1(t))H−1(t)

g(H−1(t))

)
|H−1(t)|p−2

g2(H−1(t))
> 0 for t ∈ R \ {0},

which implies that G is a convex function. From this, we obtain

(G′(t)− G′(s))(t − s) ≥ 0, for all t, s ∈ R,

that is

I1 =
∫

RN
V(x)

(
|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
− |H−1(v)|p−2 H−1(v)

h(H−1(v))

)
(vn − v)dx ≥ 0.
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Secondly, for any R > 0, we estimate I2 as follows:

∫

RN
K(x)

∣∣∣∣∣
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

∣∣∣∣∣ |vn − v|dx

≤ C
∫

RN\BR(0)
K(x)

(
|H−1(vn)|q−1 + |H−1(v)|q−1

)
(|vn|+ |v|)dx

+ C
∫

BR(0)

(
|vn|q−1 + |v|q−1

)
|vn − v|dx

≤ C
∫

RN\BR(0)
K(x) (|vn|q + |v|q) dx + C

∫

BR(0)

(
|vn|q−1 + |v|q−1

)
|vn − v|dx

≤ C‖W(x)‖(p−q)/p

L1(RN\BR(0))

(
‖V(x)v

p
n‖q/p

L1(RN\BR(0))
+ ‖V(x)vp‖q/p

L1(RN\BR(0))

)

+ C
(
‖vn‖q−1

Lq(BR(0))
+ ‖v‖q−1

Lq(BR(0))

)
‖vn − v‖Lq(BR(0))

≤ C‖W(x)‖(p−q)/p

L1(RN\BR(0))
+ C‖vn − v‖Lq(BR(0)),

it follows that

lim
n→∞

∫

RN
K(x)

(
f̃ (x, H−1(vn))

h(H−1(vn))
− f̃ (x, H−1(v))

h(H−1(v))

)
(vn − v)dx = 0.

From the above estimate, (3.10) and (3.11), we get

∫

RN
|∇vn −∇v|pdx = on(1) (3.12)

and

I1 =
∫

RN
V(x)

(
|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
− |H−1(v)|p−2 H−1(v)

h(H−1(v))

)
(vn − v)dx

= on(1).

(3.13)

It is easy to say (3.13) can also be expressed as

∫

RN
V(x)|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
vndx =

∫

RN
V(x)|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
vdx

+
∫

RN
V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
(vn − v)dx

+ on(1).

Since vn ⇀ v weakly in X,

∫

RN
V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
(vn − v)dx = on(1),

and so,

∫

RN
V(x)|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
vndx =

∫

RN
V(x)|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
vdx

+ on(1).

(3.14)
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Recalling that

|H−1(t)| ≤
(

3

21−p

)1/p

|t| and

(
21−p

3

)1/p

< h(H−1(vn)) ≤ 1 for all t ∈ R.

From this, we know V(x)
p−1

p |H−1(vn)|p−2 H−1(vn)
h(H−1(vn))

is bounded sequence in L
p

p−1 (RN). Thus,

∫

RN
V(x)|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
vdx

=
∫

RN
V(x)(p−1)/p|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
V(x)1/pvdx

=
∫

RN
V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
vdx + on(1).

(3.15)

It follows from (3.14) and (3.15) that

∫

RN
V(x)|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
vndx =

∫

RN
V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
vdx

+ on(1).

(3.16)

By Lemma 2.1, we have

V(x)|H−1(vn)|p ≤
(

3

21−p

)1/p

V(x)|H−1(vn)|p−2 H−1(vn)

h(H−1(vn))
vn.

Then, using the above discussions together with Lebesgue’s Theorem, we obtain
∫

R3
V(x)|H−1(vn)|pdx =

∫

R3
V(x)|H−1(v)|pdx + on(1). (3.17)

On the other hand, by (H−1(t))′ ≤
(

3
21−p

)1/p
(for all t ∈ R), we obtain

|H−1(vn − v)| = H−1(|vn − v|)
≤ H−1(|vn|+ |v|)

≤ H−1(|vn|) +
(

3

21−p

)1/p

|v|,

which implies

V(x)|H−1(vn − v)|p ≤ 2pV(x)

(
|H−1(vn)|p +

(
3

21−p

)1/p

|v|p
)

.

From the last inequality, (3.17) and Lebesgue’s Theorem, we get
∫

RN
V(x)|H−1(vn − v)|pdx = on(1). (3.18)

Finally, combing (3.12) and (3.18), we have
∫

R

(|∇(vn − v)|p + V(x)|vn − v|p) dx ≤
∫

R

(
|∇(vn − v)|p + V(x)|H−1(vn − v)|p

)
dx

= on(1),

which concludes the proof of the lemma.
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4 Proof of Theorem 1.3

In this section, we firstly study Brezis–Kato type estimates of the critical points of I.

Lemma 4.1. Assume that {vk} ⊂ X is a critical point sequence of I satisfying vk → 0 strongly in X.

Then, vk → 0 strongly in L∞(RN).

Proof. Let v ∈ X be a weak solution of (2.5), i.e.,

∫

RN
|∇v|p−2∇v∇ϕdx +

∫

RN
V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
ϕdx

−
∫

RN
K(x)

f̃ (x, H−1(v))

h(H−1(v))
ϕdx, for all ϕ ∈ C∞

0 (RN). (4.1)

Set T > 0, and denote

vT =





−T, if v ≤ −T,

v, if − T < v < T,

T, if v ≥ T.

Taking ϕ = |vT|p(η−1)vT as the text function, where η > 1 to be determined later, we obtain

∫

RN
|vT|p(η−1)|∇v|p−2∇v∇vTdx + p(η − 1)

∫

RN
|vT|p(η−1)−1|∇v|p−2∇v∇vTdx

+
∫

RN
V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
|vT|p(η−1)vTdx =

∫

RN
K(x)

f̃ (x, H−1(v))

h(H−1(v))
|vT|p(η−1)vTdx.

By using the facts

p(η − 1)
∫

RN
|vT|p(η−1)−1|∇v|p−2∇v∇vTdx ≥ 0,

∫

RN
V(x)|H−1(v)|p−2 H−1(v)

h(H−1(v))
|vT|p(η−1)vTdx ≥ 0

and Lemma 2.1-(iii), we have

1

ηp

∫

RN
|∇|vT|η |pdx ≤ C

∫

RN
f̃ (x, H−1(v))|v|p(η−1)+1dx ≤ C

∫

RN
|v|pη+q−pdx. (4.2)

On the other hand, it follows from the Sobolev inequality that

S

ηp
‖vT‖pη

ηp∗ ≤
1

ηp

∫

RN
|∇|vT|η |pdx, (4.3)

where S = inf{
∫

RN |∇v|pdx |
∫

RN |v|p∗dx = 1}. In what follows, by (4.2) and (4.3), we get

1

ηp
‖vT‖pη

ηp∗ ≤ C
∫

RN
|v|pη+q−pdx. (4.4)

From Fatou’s lemma, sending T → ∞ in (4.4), it follows that

‖v‖ηp∗ ≤ (Cη)1/η ‖v‖(pη+q−p)/pη
pη+q−p . (4.5)
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Let us define ηk = p∗ηk−1+p−q
p , where k = 1, 2, . . . and η0 = p∗+p−q

p . We show the first step

of Moser’s iteration as follows:

‖v‖η1 p∗ ≤ (Cη1)
1/η1 ‖v‖(pη1+q−p)/pη1

pη1+q−p

≤ (Cη1)
1/η1 (Cη0)

1/η0·(pη1+q−p)/pη1 ‖v‖(pη0+q−p)/pη0·(pη1+q−p)/pη1
pη0+q−p .

(4.6)

Without loss of generality, we may assume C > 1. For i < j, we have

(Cηi)
(pηj+q−p)/(pηj) ≤ Cηi. (4.7)

From (4.6) and (4.7), we have

‖v‖η1 p∗ ≤ (Cη1)
1/η1 (Cη0)

1/η0 ‖v‖(pη0+q−p)/pη0·(pη1+q−p)/pη1
pη0+q−p .

Then by Moser’s iteration method we get

‖v‖pηk+1+q−p ≤ exp

(
k

∑
i=0

ln(Cηi)

ηi

)
‖v‖µk

p∗ ,

where µk = ∏
k
i=0

pηi+q−p
pηi

. Sending k → ∞, we deduce that

‖v‖∞ ≤ exp

(
∞

∑
i=0

ln(Cηi)

ηi

)
‖v‖µ

p∗ ,

where µ = ∏
∞
i=0

pηi+q−p
pηi

(0 < µ < 1) and exp
(

∑
∞
i=0

ln(Cηi)
ηi

)
is a positive constant. This,

together with the Sobolev embedding theorem, shows that if {vk} is a critical point sequence

of J satisfying vk → 0 strongly in X as k → ∞, then vk → 0 strongly in L∞(RN). This completes

the proof.

Proof of Theorem 1.3. It is well known that I is an even functional with I(0) = 0. In addition,

by Lemma 3.3, Lemma 3.2 and Proposition 3.1, the functional I possesses a sequence of critical

points {vn} such that I(vn) → 0 and vn → 0 strongly in X. Recall that the weak solutions of

(2.1) with an L∞-norm not more than min{δ/2, ( 21−p

3 )1/p} are also weak solutions of problem

(1.3). Then, by Lemma 4.1, this {vn} is a sequence of weak solutions for (2.5) with vn → 0

strongly in L∞(RN). Letting un = H−1(vn), from Lemma 2.2, there exists n∗ ∈ N such that un

is a weak solution of (1.3) for each n ≥ n∗. This ends the proof.
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Abstract. We shall consider weak solutions of initial-boundary value problems for
semilinear and nonlinear parabolic differential equations for t ∈ (0, ∞) with certain
nonlocal terms. We shall prove theorems on the number of solutions and certain qual-
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1 Introduction

It is well known that mathematical models in several applications are functional differential

equations of one variable (e.g. delay equations). In the monograph by Jianhong Wu [7] semi-

linear evolutionary partial functional differential equations and applications are considered,

where the book is based on the theory of semigroups and generators. In the monograph by

A. L. Skubachevskii [6] linear elliptic functional differential equations (equations with non-

local terms and nonlocal boundary conditions) and applications are considered. A nonlocal

boundary value problem, arising in plasma theory, was considered by A. V. Bitsadze and

A. A. Samarskii in [1].

It turned out that the theory of pseudomonotone operators is useful to study nonlinear

(quasilinear) partial functional differential equations (both stationary and evolutionary equa-

tions) and to prove existence of weak solutions (see [2, 4]).

In [5] we considered some nonlinear parabolic functional differential equations for t ∈

(0, T) (T < ∞) and proved existence of several weak solutions of initial-boundary boundary

value problems.

In the present work we shall prove existence of weak solutions of some parabolic functional

equations for t ∈ (0, ∞) and show certain qualitative properties of the solutions (boundedness

and stabilization as t → ∞).

BEmail: simonl@cs.elte.hu
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First we remind the reader of the definition of weak solutions of initial-boundary value

problems of nonlinear parabolic (functional) differential equation for t ∈ (0, T) and t ∈ (0, ∞)

with zero initial and boundary conditions.

Let Ω ⊂ R
n be a bounded domain with sufficiently smooth boundary, 1 < p < ∞. Denote

by W1,p(Ω) the usual Sobolev space of real valued functions with the norm

‖u‖W1,p(Ω) =

[

∫

Ω
(|Du|p + |u|p)

]1/p

.

Further, let V ⊂ W1,p(Ω) be a closed linear subspace containing C∞
0 (Ω), V⋆ the dual space of

V, the duality between V⋆ and V will be denoted by 〈·, ·〉.

Denote by Lp(0, T; V) the Banach space of functions u : (0, T) → V (V ⊂ W1,p(Ω) is a

closed linear subspace) with the norm

‖u‖Lp(0,T:V) =

[

∫ T

0
‖u(t)‖

p
Vdt

]1/p

(1 < p < ∞).

The dual space of Lp(0, T; V) is Lq(0, T; V⋆) where 1/p + 1/q = 1. (See, e.g. [8].) Let A :

Lp(0, T; V) → Lq(0, T; V⋆) be a given (nonlinear) operator and F ∈ Lq(0, T; V⋆).

Weak solutions of

Dtu + A(u) = F (1.1)

for t ∈ (0, T) with zero initial and boundary condition is a function u ∈ Lp(0, T; V) satisfying

Dtu ∈ Lq(0, T; V⋆), (1.1) and u(0) = 0. (For p ≥ 2, u ∈ Lp(0, T; V) and Dtu ∈ Lq(0, T; V⋆)

imply u ∈ C([0, T]; L2(Ω)) thus the initial condition makes sense.)

Consider first the particular case (without functional terms) A = Ã where

〈[Ã(u)](t), v〉 =
∫

Ω

[

n

∑
j=1

aj(t, x, u, Du)Djv + a0(t, x, u, Du)v

]

dx (1.2)

for all v ∈ V, almost all t ∈ [0, T]. By using the theory of monotone operators the following

existence and uniqueness theorem is proved. (See, e.g., [3, 4, 8].)

(C1) The functions aj : (0, T) × Ω × R
n+1 → R (j = 0, 1, . . . , n) satisfy the Carathéodory

conditions, i.e. (t, x) 7→ aj(t, x, ξ) is measurable for all ξ ∈ R
n+1 and ξ 7→ aj(t, x, ξ) is

continuous for a.a. (t, x).

(C2) There exist a constant c1 and a function k1 ∈ Lq((0, T)× Ω) (1/p + 1/q = 1, p ≥ 2) such

that

|aj(t, x, ξ)| ≤ c1[1 + |ξ|p−1] + k1(t, x),

j = 0, 1, . . . , n, for a.a. (t, x) ∈ (0, T)× Ω, each ξ ∈ R
n+1.

(C3) The inequality
n

∑
j=0

[aj(t, x, ξ)− aj(t, x, ξ⋆)](ξ j − ξ⋆j ) ≥ c2|ξ − ξ⋆|p

holds with come constant c2 > 0.

Theorem 1.1. Assume (C1)–(C3). Then for any F ∈ Lq(0, T; V⋆) there exists a unique u ∈ Lp(0, T; V)

weak solution of (1.1) with A = Ã which depends on F continuously.
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A more general case is when [A(u)](t) is depending not only on u(t) and (Du)(t), then

(1.1) is a functional equation. By using the theory of pseudomonotone operators, one can

prove existence of solutions for t ∈ [0, T] in this more general case. (See, e.g., [4].)

Now we formulate a theorem on weak solutions of (1.1) for t ∈ (0, ∞). The set L
p
loc(0, ∞; V)

consists of all functions f : (0, ∞) → V for which the restriction f |(0,T) belongs to Lp(0, T; V)

for each finite T > 0. Furthermore, by using the notations QT = (0, T)× Ω, Q∞ = (0, ∞)× Ω

denote by LP
loc(Q∞) the set of functions f : Q∞ → R for which f |QT

∈ Lp(QT) with arbitrary

T > 0. Assume that

(C∞1) Functions aj : Q∞ × R
n+1 satisfy the Carathéodory conditions.

(C∞2) There exist a constant c1 and a function k1 ∈ Lq(Ω) such that

|aj(t, x, ξ)| ≤ c1|ξ|
p−1 + k1(x).

(C∞3) For a.a. (t, x) ∈ Q∞, all ξ, ξ⋆ ∈ R
n+1

n

∑
j=0

[aj(t, x, ξ)− aj(t, x, ξ⋆)](ξ j − ξ⋆) ≥ c2|ξ − ξ⋆|p

with some constant c2 > 0.

Theorem 1.2. Assume (C∞1)–(C∞3). Then for arbitrary F ∈ L
q
loc(0, ∞; V⋆) there is a unique u ∈

L
p
loc(0, ∞; V) such that u′ ∈ L

q
loc(0, ∞; V⋆) and

Dtu(t) + [Ã(u)](t) = F(t) for a.a. t ∈ (0, ∞), u(0) = 0

with the operator Ã defined in (1.2).

If ‖F(t)‖V⋆ is bounded for a.a. t ∈ (0, ∞) then for a solution u, ‖u(t)‖L2(Ω) is bounded and

∫ T2

T1

‖u(t)‖
p
Vdt ≤ c3(T2 − T1) with some constant c3. (1.3)

Now we formulate a theorem on the stabilization of u(t) as t → ∞.

Theorem 1.3. Assume that the assumptions of the above theorem are satisfied. Further, there exist

Carathéodory functions aj,∞ : Ω × R
n+1 → R, a continuous function Φ : (0, ∞) → (0, ∞) and

F∞ ∈ V⋆ such that

|aj(t, x, ξ)− aj,∞(x, ξ)| ≤ Φ(t)(|ξ|p−1 + 1), where lim
∞

Φ = 0, (1.4)

‖F(t)− F∞‖V⋆ ≤ Φ(t) for a.a. t > 0. (1.5)

Then

lim
t→0

‖u(t)− u∞‖L2(Ω) = 0, lim
T→∞

∫ T+a

T−a
‖u(t)− u∞‖

p
Vdt = 0 (1.6)

for arbitrary fixed a > 0 where u∞ ∈ V is the unique solution z ∈ V to

n

∑
j=1

∫

Ω
aj,∞(x, z, Dz)Djvdx +

∫

Ω
a0,∞(x, z, Dz)vdx = 〈F∞, v〉, v ∈ V.

(For the proofs, see, e.g., [4].)

By using the above results, we shall consider parabolic functional equations (equations

containing some nonlocal terms) of certain particular type. In Section 2 equations with real

valued functionals and in Section 3 equations with certain operators will be studied.
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2 Parabolic equations with real valued functionals, applied to the

solution

Case 1. First consider a semilinear parabolic functional equation for t ∈ (0, ∞)

Dtu + B̃u = Dtu −
n

∑
j,k=1

Dj[ajk(t, x)Dku] + a0(t, x)u = k(M(u))F1 + F2 (2.1)

(i.e. the elliptic operator Ã in (1.2) is linear), where M : L2(0, T0; V) → R is a given linear

continuous functional (T0 < ∞), V ⊂ W1,2(Ω), k : R → R is a given continuous function,

F1, F2 ∈ L2
loc(0, ∞; V⋆). Further, ajk, a0 ∈ L2

loc((0, ∞)× Ω), ajk = akj and the functions ajk satisfy

the uniform ellipticity condition

c1|ξ|
2 ≤

n

∑
j,k=1

ajk(t, x)ξ jξk + a0(t, x)ξ2
0 ≤ c2|ξ|

2

for all ξ = (ξ0, ξ1, . . . , ξn) ∈ R
n+1, x ∈ Ω, t ∈ (0, ∞) with some positive constants c1, c2.

Remark 2.1. The linear continuous functional M : L2(0, T0; V) → R may have the form

M(u) =
∫ T0

0

∫

Ω

[

K0(t, x)u(t, x) +
n

∑
j=1

Kj(t, x)Dju(t, x)

]

dxdt (2.2)

where K0, K1 ∈ L2((0, T0)× Ω).

According to Theorem 1.2, for arbitrary F ∈ L2
loc(0, ∞; V⋆) there is a unique solution u ∈

L2
loc(0, ∞; V) of

Dtu + B̃u = F,

denoted by u = (Dt + B̃)−1F.

Theorem 2.2. A function u ∈ L2
loc(0, ∞; V) is a weak solution of (2.1) if and only if λ = Mu satisfies

the equation

λ = k(λ)M[(Dt + B̃)−1F1] + M[(Dt + B̃)−1F2]. (2.3)

and

u = k(λ)(Dt + B̃)−1F1 + (Dt + B̃)−1F2. (2.4)

Proof. By Theorem 1.2 function u ∈ L2
loc(0, ∞; V) is a weak solution of (2.1) if and only if

u = k(M(u))(Dt + B̃)−1F1 + (Dt + B̃)−1F2,

thus

M(u) = k(M(u))M[(Dt + B̃)−1F1 + (Dt + B̃)−1F2]

which implies the theorem.

Corollary 2.3. The number of weak solutions of (2.1) (with zero initial-boundary conditions) equals

the number of solutions λ of equation (2.3). Consequently, it is easy to show that for any natural

number N or for N = ∞ one can choose functions k such that (2.1) has exactly N solutions.
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Remark 2.4. If we know the values of M[(Dt + B)−1F1] and M[(Dt + B)−1F2] then by using

some numerical procedure one can calculate the λ roots of (2.3). Further, it is easy to show

simple sufficient conditions on M[(Dt + B)−1F1], M[(Dt + B)−1F2] and the function k which

imply that (2.3) has zero, exactly one (two or three) roots.

From Theorem 1.3 it directly follows

Theorem 2.5. If there exist measurable functions aj,k,∞, a0,∞ ∈ L∞(Ω) and F1,∞, F2,∞ ∈ V⋆ such that

|a0(t, x)− a0,∞(x)| ≤ Φ(t), |aj,k(t, x)− aj,k,∞(x)| ≤ Φ(t), where lim
∞

Φ = 0,

‖F1(t)− F1,∞‖V⋆ ≤ Φ(t), ‖F2(t)− F2,∞‖V⋆ ≤ Φ(t) for a.a. t > 0

then we have (1.6) where u∞ ∈ V is the unique solution z ∈ V to

n

∑
j,k=1

∫

Ω
aj,k,∞(x)(Djz)(Dkv)dx +

∫

Ω
a0,∞(x)zvdx = 〈k(M(u))F1,∞, v〉+ 〈F2,∞, v〉, v ∈ V.

Case 2. Now consider nonlinear parabolic functional equations of the form

Dtu + [lM(u))]γ Ã(u) = [lM(u))]βF, t ∈ (0, ∞), u(0) = 0 (2.5)

where the nonlinear operator Ã has the form (1.2) and has the property

Ã(µu) = µp−1Ã(u), for all µ > 0 with some p ≥ 2 (2.6)

(e.g. Ã(u) = −△pu + c0u|u|p−2 with c0 > 0 has this property), further, M : Lp(0, T0; V) → R

(V ⊂ W1,p(Ω)) is (homogeneous) functional with the property

M(µu) = µσ M(u) for all µ > 0 with some σ > 0; (2.7)

l is a given positive continuous function and the numbers β, γ satisfy

γ = β(2 − p), β > 0.

A simple calculation shows

Theorem 2.6. A function u ∈ L
p
loc(0, ∞; V) satisfies (2.5) in weak sense if and only if

ũ = [l(M(u))]−βu satisfies Dtũ + Ã(ũ) = F.

This theorem implies

Theorem 2.7. A function u ∈ L
p
loc(0, ∞; V) is a weak solution of (2.5) with zero initial and boundary

condition if and only if λ = M(u) satisfies the equation

λ = [l(λ)]βσ M[B−1
0 (F)] and u = [l(λ)]βB−1

0 (F) (2.8)

where B0 is defined by B0(u) = Dtu + Ã(u), i.e. B−1
0 (F) is the unique weak solution of (1.1) (with

A = Ã and zero initial and boundary condition). If F ∈ L∞(0, ∞; V⋆) then ‖u(t)‖L2(Ω) is bounded

and (1.3) holds.
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Corollary 2.8. The number of weak solutions of (2.5) equals the number of roots of (2.8). Further,

assuming M[B−1
0 (F)] > 0, for arbitrary N = 1, 2, . . . , ∞ one can construct a continuous positive

function l such that (2.5) has exactly N solutions, in the following way. Let g : R → R be a

continuous function such that g(λ) + λ > 0 for all λ ∈ R and g has N real roots. Then for

l(λ) =

[

g(λ) + λ

M(B−1
0 (F))

]1/(βσ)

(2.5) has N weak solutions.

Remark 2.9. An example for functional M with property (2.7) is integral operator

M(u) =
∫ T

0

∫

Ω
K(t, x)|u(t, x)|σdtdx.

By Theorems 1.3 and 2.6 one obtains

Theorem 2.10. If the assumptions (1.4), (1.5) are satisfied then we have (1.6) where u∞ ∈ V is the

unique solution z ∈ V to

n

∑
j=1

∫

Ω
aj,∞(x, z, Dz)Djvdx +

∫

Ω
a0,∞(x, z, Dz)vdx

= (l(λ))β〈F∞, v〉 = [l(M(u))]β〈F∞, v〉, v ∈ V.

3 Parabolic equations with nonlocal operators

Now consider partial functional equations of the form

Dtu + Ã(u) = C(u) (3.1)

where Ã is nonlinear differential operator (1.2) satisfying (C∞1)–(C∞3) (or Ã = B̃ is a uni-

formly elliptic linear differential operator (see (2.1)) and C : L
p
loc(0, ∞; V) → L

p
loc(0, ∞; V⋆) is a

given (possibly nonlinear) operator. Clearly, u ∈ L
p
loc(0, ∞; V) satisfies (3.1) if and only if

u = (Dt + Ã)−1[C(u)] =: G(u) (3.2)

where G : L
p
loc(0, ∞; V) → L

p
loc(0, ∞; V) is a given (possibly nonlinear) operator, i.e. u is a fixed

point of G. Then

C(u) = (Dt + Ã)[G(u)]. (3.3)

Now we consider three particular cases for G.

Case 1. The operator G is defined by

[G(u)](t, x) = (Lu)(t, x) + F(t, x) =
∫ ∞

0

∫

Ω
K(t, τ, x, y)u(τ, y)dτdy + F(t, x) (3.4)

where K ∈ L2((0, ∞)× (0, ∞)× Ω × Ω); u, F ∈ L2((0, ∞)× Ω).

By using (3.1) and (3.3) we find
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Theorem 3.1. If K and F are sufficiently smooth and “good” then the solution u ∈ L2(0, ∞)× Ω) of

(3.2) with the operator (3.4) belongs to L
p
loc(0, ∞; V), Dtu belongs to L

q
loc(0, ∞; V⋆) (in the linear case

Ã = B̃, p = q = 2), u(0) = 0 and the equation (3.1) has the form

Dtu + (Ã(u))(t, x) =
∫ ∞

0

∫

Ω
DtK(t, τ, x, y)u(τ, y)dxdy + DtF(t, x)

+ Ãx

[

∫ ∞

0

∫

Ω
K(t, τ, x, y)u(τ, y)dτdy + F(t, x)

]

. (3.5)

In the linear case Ã = B̃

Dtu + (B̃u)(t, x) =
∫ ∞

0

∫

Ω
DtK(t, τ, x, y)u(τ, y)dxdy + DtF(t, x)

+
∫ ∞

0

∫

Ω
B̃xK(t, τ, x, y)u(τ, y)dτdy + B̃xF(t, x). (3.6)

(ÃxK(t, τ, x, y) denotes the differential operator Ã applied to x 7→ K(t, τ, x, y) and B̃xF(t, x) denotes

the differential operator B̃ applied to x 7→ F(t, x).)

Further, if 1 is an eigenvalue of the linear integral operator L : L2((0, ∞)Ω) → L2((0, ∞)Ω) with

multiplicity N then (for certain functions F) (3.6) may have N “linearly independent” solutions.

The proof is similar to the previous ones.

Remark 3.2. The value of solution u at some time t is connected with the values of u for all

t ∈ (0, ∞) (and for all t ∈ [0, T0] if K(t, τ, x, y) = 0 for τ > T0).

By using (3.2), (3.4) and the Cauchy–Schwarz inequality, one obtains

Theorem 3.3. Assume that there exist sufficiently smooth K∞ ∈ L2((0, ∞)× Ω × Ω) = L2(Q) and

F∞ ∈ L2(Ω) such that

lim
t→∞

‖K(t, τ, x, y)− K∞(τ, x, y)‖L2(Q) = 0,

lim
t→∞

‖F(t, x)− F∞(x)‖L2(Ω) = 0.

Then

lim
t→∞

‖u(t, x)− u∞(x)‖L2(Ω) = 0,

where

u∞(x) =
∫ ∞

0

∫

Ω
K∞(τ, x, y)u(τ, y)dτdy + F∞(x)

and u∞ satisfies

[Ã(u∞)](x) = Ãx

[

∫ ∞

0

∫

Ω
K∞(τ, x, y)u(τ, y)dτdy + F∞(x)

]

.

Case 2. Now consider operators G of the form

G(u) = Lu + h(Pu)F + H, t ∈ (0, ∞) (3.7)

where operator L is defined by

(Lu)(t, x) =
∫ t

0

∫

Ω
K(t, τ, x, y)u(τ, y)dτdy,
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K ∈ L2((0, ∞)× (0, ∞)× Ω × Ω), u ∈ L2((0, ∞)× Ω) and the kernel K has the same smooth-

ness property as in Theorem 3.1, P : L2(0, T0; V) → R is a linear continuous functional

(T0 < ∞), h : R → R is a given continuous function and F, H ∈ L2((0, ∞)× Ω), DtF, DtH ∈

L2((0, ∞) × Ω). In this case the integral operator L is of Volterra type and so (I − L)−1 :

L2((0, ∞)× Ω) → L2((0, ∞)× Ω) exists.

Theorem 3.4. If Ã = B̃ (i.e. Ã is linear) then equation (3.1) has the form

Dtu + B̃u =
∫ t

0

∫

Ω
[DtK(t, τ, x, y) + B̃xK(t, τ, x, y)]u(τ, y)dτdy

+
∫

Ω
K(t, t, x, y)u(t, y)dy + h(Pu)(Dt + B̃)F + (Dt + B̃)H, u(0, x) = 0. (3.8)

Further, u ∈ L2((0, ∞) × Ω) is a weak solution of (3.8) if and only if u = h(λ)[(I − L)−1F] +

(I − L)−1H where λ is a root of the equation

λ = h(λ)P[(I − L)−1F] + P[(I − L)−1H]. (3.9)

Thus the number of solutions of (3.8) equals the number of the roots of (3.9).

Proof. Equation (3.8) is fulfilled if and only if

u(t, x) =
∫ t

0

∫

Ω
K(t, τ, x, y)u(τ, y)dτdy + h(Pu)F(t, x) + H(t, x), (3.10)

i.e.

(I − L)u = h(Pu)F + H, u = h(Pu)[(I − L)−1F] + (I − L)−1H. (3.11)

Let uλ = h(λ)(I − L)−1F + (I − L)−1H then

P(uλ) = h(λ)P[(I − L)−1F] + P[(I − L)−1H].

Consequently, (3.11) (and so (3.8)) is satisfied if and only if λ = Pu satisfies (3.9).

Corollary 3.5. If P[(I − L)−1F] 6= 0 then for arbitrary N (= 0, 1, . . . , ∞) we can construct h such

that (3.8) has N solutions, in the following way. Let g : R → R be a continuous functions having N

zeros. Then (3.8) has N solutions if

h(λ) =
g(λ) + λ − P[(I − L)−1H]

P[(I − L)−1F]
.

Remark 3.6. The linear functional P : L2(0, T0; V) → R may have the form (2.2).

By (3.10) and the Cauchy–Schwarz inequality we obtain

Theorem 3.7. Assume that there exist sufficiently smooth F∞, H∞ ∈ L2(Ω) and K∞ ∈ L2((0, ∞)×

Ω × Ω) such that

lim
t→∞

‖F(t, x)− F∞(x)‖L2(Ω) = 0, lim
t→∞

‖H(t, x)− H∞(x)‖L2(Ω) = 0,

lim
t→∞

∫

Ω

[

∫ t

0

∫

Ω
[K(t, τ, x, y)− K∞(τ, x, y)]2dτdy

]

dx = 0.

Then

lim
t→∞

‖u(t, x)− u∞(x)‖L2(Ω) = 0,
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where

u∞(x) =
∫ ∞

0

∫

Ω
K∞(τ, x, y)u(τ, y)dτdy + h(λ)F∞(x) + H∞(x),

λ = P(u) and u∞ satisfies

(B̃u∞)(x) =
∫ ∞

0

∫

Ω
B̃x[K∞(τ, x, y)]u(τ, y)dτdy + h(λ)(B̃F∞)(x) + (B̃H∞)(x).

Case 3. Finally, consider the case

[G(u)](t, x) = P̂(M̂u(t))F(t, x), (t, x) ∈ (0, ∞)× Ω

where

(M̂u))(t) =
∫ t

0

∫

Ω
M̃(τ, y)u(τ, y)dτdy, M̃ ∈ C([0, ∞]× Ω),

P̂ : R → R is a given continuously differentiable function, P̂(0) = 0, F is sufficiently smooth,

F(0, x) = 0, F(t, x) = 0 for x ∈ ∂Ω.

Theorem 3.8. In this case the partial functional equation (with possibly nonlinear operator Ã) (1.2)

has the form

Dtu + Ã(u) = P̂′(M̂u(t))F
∫

Ω
M̃(t, y)u(t, y)dy + P̂(M̂u(t))DtF

+ Ãx[P̂(M̂u(t))F], u(0, x) = 0, u(t, x) = 0 for x ∈ ∂Ω (3.12)

which is satisfied if and only if

u(t, x) = P̂(M̂u(t))F(t, x). (3.13)

Then v(t) = M̂u(t) satisfies the separable differential equation

v′(t) =
∫

Ω
M̃(t, y)u(t, y)dy = P̂(v(t))

∫

Ω
M̃(t, y)F(t, y)dy and v(0) = 0. (3.14)

Conversely, if v satisfies (3.14) then u(t, x) = P̂(v(t))F(t, x) satisfies (3.13).

Proof. Clearly, (3.12) is equivalent with (3.13). If u satisfies (3.13) then for

v(t) = (M̂u)(t) =
∫ t

0

∫

Ω
M̃(τ, y)u(τ, y)dτdy (3.15)

we have by (3.13)

v′(t) =
∫

Ω
M̃(t, y)u(t, y)dy = P̂((M̂u)(t))

∫

Ω
M̃(t, y)F(t, y)dy

= P̂(v(t))
∫

Ω
M̃(t, y)F(t, y)dy and, clearly, v(0) = 0.

Conversely, if v satisfies (3.14) then for

u(t, x) = P̂(v(t))F(t, x) (3.16)

we have u(x, 0) = 0, u(t, x) = 0 for x ∈ Ω and by v(0) = 0

(M̂u)(t) =
∫ t

0

∫

Ω
M̃(τ, y)u(τ, y)dτdy

= P̂(v(t))
∫ t

0

∫

Ω
M̃(τ, y)F(τ, y)dτdy =

∫ t

0
v′(τ)dτ = v(t),

thus by (3.16)

u(t, x) = P̂((M̂u)(t))F(t, x).
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Theorem 3.9. Assume that P̂(w) > 0 for w > 0 and P̂(0) = 0, further,

Q̂(v) =
∫ v

0

dw

P̂(w)
< ∞, lim

v→∞
Q̂(v) = ∞;

F(0, y) = 0 for all y ∈ Ω,
∫

Ω
M̃(t, y)F(t, y)dy > 0 for all t > 0.

Then we obtain for the solution of (3.14) v = 0 (v identically 0) and

v(t) = Q̂−1

[

∫ t

0

∫

Ω
M̃(τ, y)F(τ, y)dydτ

]

and, consequently, we have solutions u = 0 and

u(t, x) = P̂(v(t))F(t, x) = P̂

{

Q̂−1

[

∫ t

0

∫

Ω
M̃(τ, y)F(τ, y)dydτ

]}

F(t, x). (3.17)

Proof. By the assumptions on P̂, Q̂ is strictly monotone increasing, Q̂ maps from R to R,

Q̂(0) = 0, limv→∞ Q̂(v) = ∞, thus

v(t) = Q̂−1

[

∫ t

0

∫

Ω
M̃(τ, y)F(τ, y)dydτ

]

, t ≥ 0

is a solution of (3.14). By the previous theorem, function u, defined by (3.17) and u = 0 are

solutions of (3.13) and (3.12).

By using the continuity of functions P̂ and Q̂−1, we obtain

Theorem 3.10. Assume that there exist F∞ ∈ L2(Ω) and c0 ∈ R such that

lim
t→∞

∫

Ω
|F(t, y)− F∞(y)|

2dy = 0, (3.18)

lim
t→∞

∫ t

0

∫

Ω
|M̃(τ, y)F(τ, y)dydτ = c0. (3.19)

Then for the nonzero solution u we have

lim
t→∞

‖u(t, x)− u∞(x)‖L2(Ω) = 0

where

u∞(x) = P̂(Q̂−1(c0))F∞(x).

Remark 3.11. If there exists M̃∞ ∈ L2(Ω) such that

lim
t→∞

∫

Ω

[

∫ t

0
M̃(τ, y)dτ − M̃∞(y)

]

dy = 0

then (3.18) implies (3.19) with c0 =
∫

Ω
M̃∞(y)F∞(y)dy.
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Abstract. Some aspects concerning chaos and minimal sets in discontinuous dynamical
systems are addressed. The orientability dependence of trajectories sliding trough some
variety is exploited and new phenomena emerging from this situation are highlighted.
In particular, although chaotic flows and nontrivial minimal sets are not allowed for
smooth vector fields in the plane, the existence of such objects for some classes of vector
fields is verified. A characterization of chaotic flows in terms of orientable minimal sets
is also provided. The main feature of the dynamical systems under study is related to
the non uniqueness of trajectories in some zero measure region as well as the orientation
of orbits reaching such region.

Keywords: vector fields, piecewise smooth vector fields, chaos, minimal sets.
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1 Introduction

Dynamical systems have become one of the most promising areas of mathematics since its

strong development started by Poincaré (see [22]). The main reason for this is due to the fact

that several applied sciences from economy and biology to engineering and statistical mechan-

ics benefited of dynamical systems’ tools. In the last case, for instance, ergodic theory plays

an important role, we mention for short Poincaré recurrence theorem as well as the concepts

of chaos and entropy. In fact, while a mathematical object models a concrete phenomena, such

modeling is in fact no more than an theoretical approximation of an real event and invariably

ignores some important features of it. Is therefore mandatory to search for news methods and

tools that are not only more realistic but also feasible in theory.

In this direction have emerged within the theory of dynamical system a set of methods

which is now widely known by piecewise smooth vector fields (PSVFs, for short). For a formal

introduction to PSVFs see [14]. The main advantage of PSVFs over the classical theory of

BCorresponding author. Email: tiagocarvalho@usp.br
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dynamical system is the fact that they provide a more accurate approach by allowing non

smoothness or discontinuities of the vector field defining the system. Indeed, several prob-

lems involving impact, friction or abrupt changes of certain regime can be modeled or at least

approximated by PSVFs, in the sense that the transition from one kind of behavior to another

one can be idealized as a discrete and instantaneous transition. A non exhaustive list of ap-

plications of such theory involves the relay systems, the control theory, the stick-slip process,

the dynamics of a bouncing ball and the antilock braking system (ABS), see those and other

applications in [2–4, 11, 12, 15, 16, 18, 19] and references therein.

The main aspect of PSVFs concerns non uniqueness of solutions on some zero measure

variety and consequent amalgamation of orbits under such region, which split the phase por-

trait into two or more pieces. That leads to the behavior known as sliding motion, characterized

by the collapse of distinct trajectories which combine to slide on the common frontier of each

dynamic. Under this scenario some behavior strange to the classical theory of dynamical sys-

tems may occur, so the study of new objects and the validation of known results is mandatory

when one investigate PSVFs. For instance, we mention the Peixoto‘s Theorem (see [21]), the

Closing Lemma (see [8]) and the Poincaré–Bendixson Theorem (see [5]), which posses ana-

logues version in the context of PSVFs (see also [10,13,17]). We also mention that the study of

PSVFs may take into account orientability of trajectories. This is because the collision of any

particular trajectory to the boundary region and subsequent sliding occurs in different ways

when considering forward or backward time.

This paper is addressed to some particular features of PSVFs. Indeed, we take into ac-

count aspects of chaotic PSVFs and how this concept relates to minimal sets. To do this, the

definitions of both chaos e minimal sets are refined to consider the role of orientation and we

provide a definitive characterization of chaotic PSVFs involving such objects.

Let med(W) be the Lebesgue measure of a set W. The first main result of the paper states

that a PSVF Z is chaotic on the set W if, and only if, Z is positive chaotic and negative chaotic on W.

The second main result of the paper states that if Z is chaotic on the set W and med(W) > 0

then W is positive minimal and negative minimal. In order to prove these results we present and

prove some other results which are indispensable to main results but also important on their

own. For instance, we provide a sufficient condition for a Lebesgue measure subset of R
2

to be chaotic, which elucidates the richness of PSVFs. Other considerations and results are

presented timely throughout the text.

The paper is organized as follows: in Section 2 we provide the first statements around the

subject of PSVFs, particularly considering minimal sets for PSVFs and their chaotic behavior.

In Section 3 we state and prove the main results of the paper and some consequences of

them. In Section 4 we provide a discussion around the results of the paper and present some

examples and counterexamples contextualizing the results.

2 Preliminaries

2.1 Piecewise smooth vector fields

Consider two smooth vector fields X and Y and a codimension one manifold Σ ⊂ R
2 that

separates the plane in two regions Σ+ and Σ−. A PSVF Z is a vector field defined in R
2 and
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given by

Z(x, y) =

{
X(x, y), for (x, y) ∈ Σ+,

Y(x, y), for (x, y) ∈ Σ−.
(2.1)

Since Σ is a codimension one manifold, there exists a function f such that Σ = f−1(0) and 0

is a regular value of f . As consequence, Σ+ = {q ∈ R
2 | f (q) ≥ 0} and Σ− = {q ∈ R

2 | f (q) ≤
0}. The trajectories of Z are solutions of q̇ = Z(q) and we accept it to be multi-valued at

points of Σ. We will call Ω the set of all PSVFs defined in R
2. The basic results of differential

equations in this context were stated by Filippov in [14], that we summarize next. Indeed,

consider the Lie derivatives X. f (p) = 〈∇ f (p), X(p)〉 and Xi. f (p) =
〈
∇Xi−1. f (p), X(p)

〉
,

i ≥ 2, where 〈., .〉 is the usual inner product in R
2. We distinguish the following regions on

the discontinuity set Σ:

(i) Σc ⊆ Σ is the sewing region if (X. f )(Y. f ) > 0 on Σc. Moreover, when X. f (p) > 0 and

Y. f (p) > 0, we say that p ∈ Σc+ and when X. f (p) < 0 and Y. f (p) < 0, we say that

p ∈ Σc−.

(ii) Σe ⊆ Σ is the escaping region if (X. f ) > 0 and (Y. f ) < 0 on Σe.

(iii) Σs ⊆ Σ is the sliding region if (X. f ) < 0 and (Y. f ) > 0 on Σs.

The sliding vector field associated to Z ∈ Ω is the vector field Zs tangent to Σs and defined

at q ∈ Σs by Zs(q) = m − q with m being the point of the segment joining q + X(q) and

q +Y(q) such that m − q is tangent to Σs. It is clear that if q ∈ Σs then q ∈ Σe for (−Z) and we

can define the escaping vector field Ze on Σe associated to Z by Ze = −(−Z)s. We will use the

notation ZΣ to both, Zs and Ze.

We say that q ∈ Σ is a Σ-regular point if it is a sewing point or a regular point of the Filippov

vector field. Lastly, any point q ∈ Σp is called a pseudo-equilibrium of Z and it is characterized

by ZΣ(q) = 0. Any q ∈ Σt is called a tangential singularity (or also tangency point) and it is

characterized by (X. f (q))(Y. f (q)) = 0. If there exist an orbit of the vector field X|Σ+ (respec.

Y|Σ−) reaching q ∈ Σt in a finite time, then such tangency is called a visible tangency for X

(resp. Y); otherwise we call q an invisible tangency for X (resp. Y).

We may also distinguish a particular tangential singularity called two-fold, which is a com-

mon tangency q of both X and Y (that is, X. f (q) = Y. f (q) = 0) satisfying X2. f (q)), Y2. f (q)) 6=
0. A two-fold is called visible if it is a visible tangency for X and Y. A visible two fold

singularity is called a singular tangency point and all other p ∈ Σt is called a regular tangency

point.

Definition 2.1. The local trajectory (orbit) φZ(t, p) of a PSVF given by (2.1) through p ∈ R
2 is

defined as follows:

(i) For p ∈ Σ+\Σ and p ∈ Σ−\Σ the trajectory is given by φZ(t, p) = φX(t, p) and φZ(t, p) =

φY(t, p) respectively, where t ∈ I : the maximal interval of existence of the corresponding

trajectory before it hits Σ.

(ii) For p ∈ Σc+ and taking the origin of time at p, the trajectory is defined as φZ(t, p) =

φY(t, p) for t ∈ I ∩ {t ≤ 0} and φZ(t, p) = φX(t, p) for t ∈ I ∩ {t ≥ 0}. For the case

p ∈ Σc− the definition is the same reversing time. Again, I is the maximal interval of

existence of the corresponding trajectory before it hits Σ again.
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(iii) For p ∈ Σe and taking the origin of time at p, the trajectory is defined as φZ(t, p) =

φZΣ(t, p) for t ∈ I ∩ {t ≤ 0} and φZ(t, p) is either φX(t, p) or φY(t, p) or φZΣ(t, p) for

t ∈ I ∩ {t ≥ 0}. For p ∈ Σs the definition is the same reversing time. Here, I is

the maximal interval of existence of the corresponding trajectory of φX(t, p) or φY(t, p)

before it hits Σ again or φZΣ(t, p) before it leaves Σ.

(iv) For p a regular tangency point and taking the origin of time at p, the trajectory is defined

as φZ(t, p) = φ1(t, p) for t ∈ I ∩ {t ≤ 0} and φZ(t, p) = φ2(t, p) for t ∈ I ∩ {t ≥ 0}, where

each φ1, φ2 is either φX or φY or φZT . Here, I is the maximal interval of existence of the

corresponding trajectory of φX(t, p) or φY(t, p) before it hits Σ again or φZΣ(t, p) before

it leaves Σ.

(v) For p a singular tangency point, φZ(t, p) = p for all t ∈ R.

Definition 2.2. Let φ1
Z and φ2

Z two distinct local trajectories. Suppose that there exists a com-

mon point q ∈ φ1
Z ∩ φ2

Z. We say that φ1
Z ∪ φ2

Z preserves orientation if there exists an interval

I, with 0 ∈ I, such that: (i) φ1
Z(0, q) = φ2

Z(0, q), (ii) φ1
Z(t, .) is well defined for t ∈ I ∩ {t ≤ 0}

and (iii) φ2
Z(t, .) is well defined for t ∈ I ∩ {t ≥ 0}.

Remark 2.3. Note that the point q of the previous definition is such that q ∈ Σ. In fact, it is

enough to observe that there is uniqueness of trajectories in points belonging to R
2\Σ.

Definition 2.4. A global trajectory (orbit) ΓZ(t, p0) of Z ∈ Ω passing through p0 when t = 0,

is a union ΓZ(t, p0) = ∪i∈Θ{σi(t, pi); ti ≤ t ≤ ti+1} of preserving-orientation local trajectories

σi(t, pi) satisfying σi(ti, pi) = pi ∈ Σ and σi(ti+1, pi) = pi+1 ∈ Σ, here Θ ⊂ Z. A maximal

trajectory ΓZ(t, p0) is a maximal trajectory that cannot be extended to any others global tra-

jectories by joining local ones, that is, if Γ̃Z is a global trajectory containing ΓZ then Γ̃Z = ΓZ.

In this case, we call I = (τ−(p0), τ+(p0)) the maximal interval of the solution ΓZ. A maximal

trajectory is a positive (respectively, negative) maximal trajectory if we restrict the previous

definition to t ≥ 0 (resp. t ≤ 0).

Definition 2.5. A maximal trajectory ΓZ(t, p0) has a positive (respectively, negative) peri-

odic trajectory passing through p0 if there exists T+ > 0 (respectively, T− > 0) such that

φZ(t + k T+, p0) = φZ(t, p0) for all integer k > 0 (respectively, φZ(t + k T−, p0) = φZ(t, p0) for

all integer k < 0). A maximal trajectory ΓZ(t, p0) has a periodic trajectory passing through

p0 if it has coincident positive and negative periodic trajectories passing through p0 in such a

way that T+ = T−.

Definition 2.6. Consider Z = (X, Y) ∈ Ω. A closed (connected) union of trajectories ∆ of Z

is a:

(i) pseudo-cycle if ∆ ∩ Σ 6= ∅ and it does not contain neither equilibrium nor pseudo-

equilibrium.

(ii) pseudo-graph if ∆ ∩ Σ 6= ∅ and it is a union of equilibria, pseudo equilibria and orbit-

arcs of Z joining these points.

2.2 Minimal sets and chaotic PSVFs

One of the most important facts concerning PSVFs is the orientation of its trajectories. Indeed,

it is very important, for instance, for the concept of invariance or defining the flow associated
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to the Filippov vector field. In the smooth theory of vector fields this distinction does not play

an important role since we have uniqueness of trajectories. In this direction, we should verify

if such distinction is also necessary when defining minimal sets and chaotic PSVFs. Indeed,

these concepts do not play the same role by considering positive and negative times. As far as

the authors know, the role of orientability under this context have not be treated in literature

about PSVFs, although the concept of chaos and minimality have been discussed before, for

instance, in [5], [6] and [10]. We start doing some adaptations to the definitions of invariance

and minimality.

Definition 2.7. A set A ⊂ R
2 is positive invariant (respectively, negative invariant) if for each

p ∈ A and all positive maximal trajectory Γ
+
Z (t, p) (respectively, negative maximal trajectory

Γ
−
Z (t, p)) passing through p it holds Γ

+
Z (t, p) ⊂ A (respectively, Γ

−
Z (t, p) ⊂ A). A set A ⊂ R

2 is

invariant for Z if it is positive and negative invariant.

Definition 2.8. Consider Z ∈ Ω. A non-empty set M ⊂ R
2 is minimal (respectively, either

positive minimal or negative minimal) for Z if it is compact, invariant (respectively, either

positive invariant or negative invariant) for Z and does not contain proper compact invariant

(respectively, either does not contain proper compact positive invariant or proper compact

negative invariant) subsets.

Next we present the definitions concerning chaotic PSVFs. As commented before, we need

to distinguish between forward and backward time or assuming both possibilities. The notion

of chaos we take into account is that based on Devaney. So, the first aspect to be considered

is related to topological transitivity.

Definition 2.9. System (2.1) is topologically transitive on an invariant set W if for every pair

of nonempty, open sets U and V in W, there exist q+, q− ∈ U, Γ
+
Z (., q+), Γ

−
Z (., q−) maximal

trajectories and t+0 > 0 > t−0 such that Γ
+
Z (t

+
0 , q+) and Γ

−
Z (t

−
0 , q−) ∈ V.

Definition 2.10. System (2.1) is topologically positive transitive (respectively, topologically

negative transitive) on a positive invariant (respectively, negative invariant) set W if for every

pair of nonempty, open sets U and V in W, there exist q ∈ U, Γ
+
Z (t, q) a positive (respectively,

Γ
−
Z (t, q) a negative) maximal trajectory and t0 > 0 (resp., t0 < 0) such that Γ

+
Z (t0, q) ∈ V (resp.,

Γ
−
Z (t0, q) ∈ V).

Remark 2.11. A direct consequence of the two previous definitions is that:

Z is topologically transitive on W if, and only if, Z is simultaneously topologically positive

transitive and topologically negative transitive on W.

Analogously to the definition of topologically transitive systems, the definition of sensitive

dependence for PSVFs is inspired in the classical Devaney concept of chaos.

Definition 2.12. System (2.1) exhibits sensitive dependence on a compact invariant set W if

there is a fixed r > 0 satisfying r < diam(W) such that for each x ∈ W and ε > 0 there exist

y+, y− ∈ Bε(x) ∩ W and maximal trajectories Γ+
x , Γ−

x , Γ
+
y+ and Γ

−
y− passing through x, y+ and

y−, respectively, satisfying

dH(Γ
+
x (t), Γ

+
y+(t)) = sup

a∈Γ
+
x (t),b∈Γ

+
y+

(t)

d(a, b) > r,

dH(Γ
−
x (t), Γ

−
y−(t)) = sup

a∈Γ
−
x (t),b∈Γ

−
y− (t)

d(a, b) > r,

where diam(W) is the diameter of W and d is the Euclidean distance.
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Associated to the previous definition we give the next one, where the orientation of the

trajectories of Z is also considered:

Definition 2.13. System (2.1) exhibits sensitive positive dependence (resp., sensitive negative

dependence) on a compact positive invariant (resp., negative invariant) set W if there is a fixed

r > 0 satisfying r < diam(W) such that for each x ∈ W and ε > 0 there exist a y ∈ Bε(x) ∩ W

and positive (resp., negative) maximal trajectories Γ+
x and Γ+

y (resp., Γ−
x and Γ−

y ) passing

through x and y, respectively, satisfying

dH(Γ
+
x (t), Γ

+
y (t)) = sup

a∈Γ
+
x (t),b∈Γ

+
y (t)

d(a, b) > r,

(resp., dH(Γ
−
x (t), Γ

−
y (t)) = sup

a∈Γ
−
x (t),b∈Γ

−
y (t)

d(a, b) > r),

where diam(W) is the diameter of W and d is the Euclidean distance.

Remark 2.14. A direct consequence of the two previous definitions is that:

Z exhibits sensitive dependence on W if, and only if, Z exhibits simultaneously sensitive

positive dependence and sensitive negative dependence on W.

In this paper we will consider the notations stated in the following table.

Table of abbreviations

Topologically transitive TT

Topologically positive transitive TPT

Topologically negative transitive TNT

Sensitive dependence SD

Sensitive positive dependence SPD

Sensitive negative dependence SND

We should mention, as observed in [10], that Definitions 2.9 and 2.12 coincide with the

definitions of topological transitivity and sensible dependence of smooth vector fields for

single-valued flows, so these definitions are natural extension for a set-valued flow. Lastly,

in what follows we introduce the definition of chaos and orientable chaos in the piecewise

smooth context. Note that the concept for chaos in the paper is inspired by Devaney for a

deterministic flow, but the systems of differential equations discussed in the article define

non-deterministic flows:

Definition 2.15. System (2.1) is chaotic (resp., either positive chaotic or negative chaotic) on

a compact invariant (resp., either positive invariant or negative invariant) set W if it is TT and

exhibits SD (resp., either TPT and exhibits SPD or TNT and exhibits SND) on W.

Remark 2.16. A direct consequence of the previous definition is that:

A PSVF Z is chaotic on W if, and only if, Z is positive chaotic and negative chaotic on W.
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3 Main results

In this Section we present and prove the main results of the paper.

Proposition 3.1. Let A be the set of pseudo cycles Γ of Z = (X, Y) such that Γ ∩ (Σe ∪ Σs) = ∅ and

Γ has at least a visible two-fold singularity. The elements Γ of A are chaotic for Z.

In Figure 4.5 we exhibit an element Γ ⊂ A. In fact, the elements Γ ⊂ A are obtained by

the concatenation of orbits of X and Y, without using orbits of ZΣ.

Proof of Proposition 3.1. Let A, B open sets relative to Γ. Since Γ is a pseudo-cycle, given points

pA ∈ A and pB ∈ B, there exists a trajectory of Z connecting them (for positive and negative

times). So Γ is topologically transitive.

On the other hand, given x, y ∈ A, there exists a trajectory passing through x and another

trajectory passing through y such that each one of them follows a distinct path after the visible

two-fold singularity of Γ. So Γ has sensitive dependence.

Therefore, Γ is chaotic.

Remark 3.2. By the previous proposition, we conclude the existence of trivial minimal sets

presenting chaotic behavior.

Remark 3.3. An analogous of result of Remarks 2.11, 2.14 and 2.16 does not hold for minimal

sets. Indeed, while sets which are both positive and negative minimal are also minimal, the

converse is not true. The Example 2 of [6] exemplify this situation.

The most part of the results obtained in [5] and [6] takes into account sets having positive

Lebesgue measure. Indeed, in almost every approach concerning ergodic aspects of PSVFs,

this is the interesting case. We cite, for instance, the existence of non-trivial minimal sets and

planar chaotic PSVFs, as shown in the papers cited previously. In this direction we state the

next result.

Lemma 3.4. Let K ⊂ R
2 be a compact invariant set and Z a PSVF presenting a finite number of

critical points and a finite number of tangency points with Σ in K. If med(K) = 0 and K 6∈ A then Z

is not chaotic on K.

We recall that A is the set of pseudo-cycles having a visible two-fold singularity which

does not connect to any sliding or escaping segment (see Proposition 3.1). Also, the saturation

of a set M by a vector field W is the set

W(M) = {φW(t, p) | p ∈ M and t ∈ I}

where I is the maximal interval of existence of the W-trajectory passing through p.

Proof. First, suppose that K ∩ Σ ⊂ Σc ∪ Σt and take p ∈ K. Consequently, φZ(t, p)
t→∞−−→

L ∈ ω(p) ⊂ K, since K is compact. Here ω(p) denotes the ω-limit set of the point p.

Thus, by using the Poincaré–Bendixson Theorem for PSVFs (see [5]) we get that L is a

(pseudo-)equilibrium, a (pseudo-)graph or (pseudo-)cycle which does not belongs to A since

L ⊂ K and K 6∈ A by hypothesis. In any case, it is trivial to see that Z is not chaotic on K since

Z does not exhibits SD on K.

Now consider the case where K ∩ (Σs ∪ Σe) 6= ∅ and suppose that there exist a PSVF Z

which is chaotic on K. Take p ∈ K ∩ (Σs ∪ Σe) and Vp ⊂ R
2 a neighborhood of p. Consider the
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sets V+
p = {φ+

t (p) ∩ Vp | φ+
t is a positive trajectory of Z passing through p} and V−

p defined

analogously for the negative trajectory. Observe that med(V+
p ∪ V−

p ) > 0, since using the

Definition 2.1, in this case the saturation of K ∩ (Σs ∪ Σe) (for either positive or negative times)

contain an open set U ⊂ Vp satisfying 0 < med(U) < med(V+
p ∪ V−

p ). Consequently there

exist a point q ∈ V+
p ∪ V−

p such that q 6∈ K, because otherwise V+
p ∪ V−

p ⊂ K and then

med(K) > med(V+
p ∪V−

p ) > 0 (see Figure 3.1). As consequence, K is not invariant, producing

a contradiction.

Vp

p Σs

U

Figure 3.1: The neighborhood Vp of p. The filled region correspond to V−
p , and in this

case V+
p = Vp ∩ Σ. Observe that it has positive Lebesgue measure.

In the proof of the next Theorem 3.6 we will use the following remark.

Remark 3.5. A direct consequence of Definition 2.15 is that

Let Z a chaotic PSVF on W. Then Z is chaotic on every compact invariant proper subset

W̃ ⊂ W.

In [6], among other results, the authors prove that, if a compact invariant set W satisfying

med(W) > 0 is simultaneously positive and negative minimal for a PSVF Z, then Z is chaotic

on W. Now, we prove the converse of this important theorem. Observe that, due to Lemma 3.4,

we must impose a condition demanding the positive Lebesgue measure of the considered set.

Theorem 3.6. If Z is chaotic on the compact invariant set W, med(W) > 0, Z has a finite number

of critical points and a finite number of tangency points with Σ in W, then W is positive minimal and

negative minimal for Z.

Proof. According to Remark 2.16, Z is positive chaotic on W. So, W is compact, non-empty and

positive invariant. Suppose that W is not positive minimal. In this case, there exists a proper

subset W̃ of W with the previous three properties. Moreover, by Remark 3.5 and Lemma 3.4,

we get med(W̃) > 0 or med(W̃) = 0 and W̃ ⊂ A. Of course W̃ is not dense in W since W̃ is

compact and W̃ 6= W. Therefore there exists an open set A ⊂ W such that A ∩ W̃ = ∅. First

suppose that med(W̃) > 0 and let B ⊂ W̃ be an open set of W. In this case, using the open sets
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A and B, we have that Z is not TPT. But this is a contradiction with the fact that Z is chaotic

on W. On the other hand, if med(W̃) = 0 we get W̃ ⊂ A and therefore W̃ is a curve on W.

Let I(W̃) the region delimited by W̃ which is clearly invariant and notice that med(I(W̃)) > 0

since med(W̃) = 0. So we can take open sets B ⊂ I(W̃) and A ⊂ W \
(
W̃ ∪ I(W̃)

)
to lead

again to a contradiction with the fact that Z is chaotic on W. Therefore, W is positive minimal

for Z.

An analogous argument proves that W is negative minimal for Z.

Next corollary is a straightforward consequence of Theorem 3.6, but it is very important

once it provides a ultimate answer about the relation between chaotic systems and minimal

sets.

Corollary 3.7. If Z is chaotic on W, med(W) > 0, Z has a finite number of critical points and a finite

number of tangency points with Σ in W, then W is minimal for Z.

Proof. It is enough to use Theorem 3.6 and Definition 2.8.

We remark that the converse is not true, as observed in [6].

The next two corollaries are also consequences of Theorem 3.6. Their proofs, analogously,

are quite trivial although the results can find applications.

Corollary 3.8. If med(W) > 0, Z has a pseudo equilibria on W and a finite number of tangency

points with Σ in W then Z is not chaotic on W.

Proof. It is not difficult to see that a pseudo equilibria is neither positive nor negative minimal

for Z since there exists trajectories of X and Y hitting it in finite (positive or negative) time.

So, W is not positive or negative minimal. Therefore the proof follows straightforward from

Theorem 3.6.

Remark 3.9. A consequence of the proof of Theorem 3.6 is that

If Z is positive (resp. negative) chaotic on W, med(W) > 0, Z has a finite number of tangency

points with Σ in W then W is positive (resp. negative) minimal.

The next result provide a sufficient condition in order to a PSVF Z be chaotic on an in-

variant compact set W. Additionally, it guarantee that under suitable hypotheses the periodic

trajectories of Z are dense in W.

Theorem 3.10. Let Z be a PSVF and W a compact positive (resp. negative) invariant set satisfying

med(W) > 0. Given x, y ∈ W, assume that there exist a positive (resp. negative) trajectory φ+
t

(resp. φ−
t ) connecting x and y. Then Z is positive (resp. negative) chaotic on W and the positive (resp.

negative) periodic trajectories of Z are dense in W.

We shall prove the last result in forward time, obtaining positive chaos and dense trajecto-

ries. The proof for trajectories in backward time is completely similar.

Proof. Since med(W) > 0, let U and V be nonempty open sets in W and pU , pV points of

U and V, respectively. By hypotheses there exist a positive trajectory φ+
t connecting pU and

pV in forward time. Since U and V are arbitrary it follows that W is topologically positive

transitive. On the other hand, let dW be the diameter of W and take r = dW/2, so clearly there

exists a, b ∈ W such that d(a, b) > r. Now consider x ∈ W, ε > 0 and fix y ∈ Bε(x)∩W. Again,

by hypotheses there exists positive trajectories φ+
a (t, x) and φ+

b (t, x) satisfying φ+
a (0, x) =
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φ+
b (0, x) = x and values ta, tb > 0 such that φ+

a (ta, x) = a and φ+
b (tb, x) = b so Z exhibits

sensitive positive dependence on W. At last, the density of positive periodic trajectories is

straightforward from the fact that any point x ∈ W can be connected to itself by a positive

trajectory.

Theorem 3.10 leads to the next corollary.

Corollary 3.11. Let Z be a PSVF and W satisfying med(W) > 0 a compact invariant set on which

any two points can be connected simultaneously by positive and negative trajectories. Then Z is chaotic

on W and its periodic trajectories are dense in W.

Proof. Since every pair of points in W can be connected simultaneously by positive and nega-

tive trajectories of Z, by Theorem 3.10, the PSVF Z is both positive and negative chaotic on Z.

So, by Remark 2.16, we get that Z is chaotic on W. Moreover, since the positive and negative

periodic trajectories of Z are dense in W, the density of the periodic trajectories of Z on W is

straightforward.

4 Discussions

We observed throughout the paper a closed relation between PSVFs presenting minimal sets

or chaotic behavior. However, in order to observe the richness of such relation we introduced

new concepts by considering the orientation of the trajectories in time. By one hand, according

to Theorem 14 of [6], every PSVF having a positive and negative non trivial minimal set K is

chaotic on K. On the other hand, in this paper, due to Remark 2.16 and 3.6 we get the

equivalence. Putting those and other results of this paper together, we get the following

diagram:

Z is pos. and

neg. chaotic on W
⇔ Z is chaotic

on W
⇔ W is pos. and

neg. min. for Z
⇒ W is min.

for Z

We note by observing the previous diagram that it could exist some minimal set which is

not chaotic for the PSVF, as the authors observed in [5]. Other aspects of that diagram are

presented in what follows:

Orientable chaotic sets which are not chaotic: Consider the PSVF:

ccZǫ(x, y) = (ẋ, ẏ) =
1

2

(
(−1,−2x − x2(4x + 3) + (1 + ǫ)x(3x + 2))

+ sgn(y) (3,−2x + x2(4x + 3)− (1 + ǫ)x(3x + 2))
) (4.1)

or, equivalently,

Zǫ(x, y) =

{
X(x, y) = (1,−2x) if y ≥ 0,

Yǫ(x, y) = (−2,−x2(4x + 3) + (1 + ǫ)x(3x + 2)) if y ≤ 0,
(4.2)

with ǫ ∈ R an arbitrarily small parameter. In [6] the authors proved that Z0 has a chaotic set

given (see Figure 4.1) by

Λ = {(x, y) ∈ R
2 | − 1 ≤ x ≤ 1 and x4/2 − x2/2 ≤ y ≤ 1 − x2}. (4.3)
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Σe ΣsΣc Σc
Σ−1 1

Figure 4.1: Chaotic set Λ.

Taking ǫ < 0 (resp., ǫ > 0) in (4.2) the PSVF Zǫ has a negative chaotic (resp., positive

chaotic) set Λ̃. We construct such a set for the case ε < 0. Indeed call p2 the two-fold located

at the origin and p1 the first intersection of the backward trajectory of p2 with Σ. From p1

it can be concatenated a regular arc of trajectory of X which again intersects Σ in backward

time at a point p4. Finally, call p3 the continuation of p4 through the trajectory of Y until

reaching Σ. Hence the set Λ̃ is the region bounded by p̂1 p2 ∪ p̂2 p3 ∪ p̂3 p4 ∪ p̂4 p1, where â b

is the orbit-arc connecting the points a and b, see the shadowed region in Figure 4.2 (resp.,

Figure 4.3). Moreover, when ǫ 6= 0, Λ̃ is not a chaotic set. This happens because Λ̃ is not an

invariant set; it is only negative invariant (resp., positive invariant).

p1p2

p3p4

Figure 4.2: Negative chaotic set Λ̃.

p1p2
p3

p4

Figure 4.3: Positive chaotic set Λ̃.

Remark 4.1. The previous paragraph remains true if we change the word chaotic by the word

minimal. A complete bifurcation analysis of the family (4.2) is given in [8].

The sets given in Figures 4.2 and 4.3 are orientable chaotic and orientable minimal sets.

Despite of this, it is easy to exhibit examples of orientable minimal sets that are not orientable

chaotic.

Orientable chaotic sets and orientable minimality: Consider the PSVF

Z(x, y) = (X(x, y), Y(x, y)) = ((−1, 3x2 − 3), (1,−(9/4) + 3(−1 + x)x)).

Such PSVF has a periodic orbit (see Figure 4.4) which is a negative minimal set. However, Z

is not a negative chaotic PSVF on the periodic orbit since it does not present SPD.

Observe that, in the last example the Lebesgue measure of the periodic orbit is null. How-

ever, it is not difficult to exhibit a minimal set W for some PSVF, with med(W) > 0, in such

way that W is neither positive chaotic nor negative chaotic. Indeed, Example 2 of [6] satis-

fies these properties. In other words, in general minimality does not imply chaoticity. The

converse, on the other hand, is true, as proved in Section 3.
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− 3
2 − 1

2

−1 1

3
2

2

Figure 4.4: Periodic orbit (for positive time).

Trivial chaos: In PSVFs the route to chaos is not hard. In fact, here we show that a chaotic

behavior can be achieved by trivial minimal sets.

Consider the PSVF Z = (X, Y) where X(x, y) = (1, 4x(1 − x2)) and Y(x, y) =

(−1, 4x(1 − x2)). The phase portrait is pictured in Figure 4.5. Take Λ = Λ1 ∪ Λ2, where

Λ1 (respectively, Λ2) is the trajectory of X (respectively, Y) passing through p1 = (−
√

2, 0). It

is easy to see that Λ is a trivial minimal set (a pseudo-cycle) and it is a chaotic set for Z.

p1 0−1 1

Γ1

Γ2

Figure 4.5: Trivial minimal set which is chaotic for Z.

The previous example illustrates a more general result, stated in Proposition 3.1.

We finish this section highlighting two particular conclusions from the results of the paper:

(i) although the chaoticity of a PSVF Z under a set W implies that W is minimal for Z, the

converse is false according to Example 2 of [6];

(ii) if Z is positive chaotic on W then W is positive minimal for Z (see Remark 3.9), but the

converse is false since we can exhibit positive minimal sets that are not positive chaotic

(see Example 4 in [5]). Analogously for negative chaotic/minimal.
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1 Introduction

The second part of the sixteenth problem of Hilbert still persists as a research area. It aims to

find the maximum number of limit cycles of the differential system:

ẋ =
dx

dt
= P(x, y),

ẏ =
dy

dt
= Q(x, y),

(1.1)

where P and Q are polynomials.

Several articles and books have been published on the analysis of the existence, number

and stability of limit cycles of equation (1.1) (see for instance [5, 6, 8, 9, 15, 18]).

Generally, the exact analytical expressions of limit cycles for a given differential system are

unknown, except in specific cases.

This paper is a contribution in the direction of determining the number of limit cycles and

giving their explicit form.

Motivated by some publications [1–4,7,11–14,16], we will exhibit polynomial vector fields,

where just by choosing the components of the system satisfying certain conditions, we can

conclude directly the number and the explicit form of limit cycles.

BCorresponding author. Email: saben21@yahoo.fr
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2 Introductory concepts

Let us recall some useful notions.

For U ∈ R [x, y] , the algebraic curve U = 0 is called an invariant curve of the polynomial

system (1.1), if for some polynomial K ∈ R [x, y], called the cofactor of the algebraic curve, we

have

P(x, y)
∂U

∂x
+ Q(x, y)

∂U

∂y
= KU. (2.1)

Simple analysis of equation (2.1) shows that when max(deg P, deg Q) = n, the degree of

the cofactor K is at most n − 1 and that the curve U = 0 is formed by trajectories of the system

(1.1).

The curve Ω =
{

(x, y) ∈ R
2, U(x, y) = 0

}

is a non-singular curve of system (1.1), if the

equilibrium points of the system that satisfy

P(x, y) = 0,

Q(x, y) = 0
(2.2)

are not contained on the curve Ω.

A limit cycle Γ = {(x (t) , y (t)) , t ∈ [0, T]} is a T-periodic solution isolated with respect to

all other possible periodic solutions of the system.

A T-periodic solution Γ is a hyperbolic limit cycle if
∫ T

0 div( Γ)dt is different from zero.

By using the method of characteristics to solve partial differential equations, we conclude

that, the solution of equation

α
∂ f

∂x
+ β

∂ f

∂y
= 0 (2.3)

is

f (x, y) = Φ(βx − αy), (2.4)

where α, β are nonzero reals and Φ is an arbitrary function.

The solution of the equation

α
∂ f

∂x
+ β

∂ f

∂y
= γ (2.5)

is the function f solving the equation

Ψ(βx − αy, γx − α f ) = 0, (2.6)

where α, β, γ are nonzero reals and Ψ is an arbitrary function. In the polynomial case

f (x, y) =
γ

α
x +

n

∑
k=0

ck (βx − αy)k (2.7)

or

f (x, y) =
γ

β
y +

n

∑
k=0

ck (βx − αy)k (2.8)

the solution of the equation

x
∂ f

∂x
+ y

∂ f

∂y
= f (2.9)
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is the function f solving the equation

Ψ

(

x

f
,

y

f

)

= 0. (2.10)

In the polynomial case it can be taken as

f (x, y) = ax + by. (2.11)

Colin Christopher in his article [7] gives the following theorem.

Theorem 2.1. Let U = 0 be a non-singular algebraic curve of degree m, and D a first degree polyno-

mial, chosen so that the line D = 0 lies outside all bounded components of U = 0. Choose the constants

α and β so that αDx + βDy 6= 0, then the polynomial vector field of degree m,

ẋ = αU + DUy,

ẏ = βU − DUx

(2.12)

has all the bounded components of U = 0 as hyperbolic limit cycles. Furthermore, the vector field has

no other limit cycles.

Our contribution is a generalization, which consists in introducing polynomial functions

to system (2.12) and in the study of the existence of limit cycles.

3 The main result

We start by adding a polynomial function of any degree to system (2.12), which becomes,

ẋ = αU + (ax + by + Φ(βx − αy))Uy,

ẏ = βU − (ax + by + Φ(βx − αy))Ux

(3.1)

and we show that system (3.1) has all the bounded components of U = 0 as hyperbolic limit

cycles if the conditions of Theorem 1 of [7] are satisfied.

Theorem 3.1. Let U = 0 be a non-singular algebraic curve of degree m, and Φ a polynomial function

of degree n, chosen so that the curve ax + by + Φ(βx − αy) = 0 lies outside all bounded components

of U = 0. Choose the constants a and b so that aα + bβ 6= 0, then the polynomial vector field of degree

m + n − 1,
{

ẋ = αU + (ax + by + Φ(βx − αy))Uy,

ẏ = βU − (ax + by + Φ(βx − αy))Ux

has all the bounded components of U = 0 as hyperbolic limit cycles.

Proof. Let Γ be the curve of U = 0.

Note that Γ is a non-singular curve of system (3.1) and the curve ax + by + Φ(βx − αy) = 0

lies outside all bounded components of Γ.

To show that all the bounded components of Γ are hyperbolic limit cycles of system (3.1),

we will prove that Γ is an invariant curve of the system (3.1), and
∫ T

0 div(Γ)dt 6= 0 (see for

instance Perko [17]).
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i) Γ is an invariant curve of the system (3.1):

dU

dt
= Ux

(

αU + (ax + by + Φ(βx − αy))Uy

)

+ Uy (βU − (ax + by + Φ(βx − αy))Ux)

=
(

αUx + βUy

)

U

where the cofactor is K(x, y) = αUx + βUy.

ii)
∫ T

0 div(Γ)dt is nonzero.

To see this, first note that
∫ T

0
div(Γ)dt =

∫ T

0
K(x(t), y(t))dt, (3.2)

see for instance Giacomini & Grau [10]. Then one has
∫ T

0
K(x(t), y(t))dt =

∮

Γ

αUx

−(ax + by + Φ(βx − αy))Ux
dy +

∮

Γ

βUy

(ax + by + Φ(βx − αy))Uy
dx

=
∮

Γ

α

−(ax + by + Φ(βx − αy))
dy +

∮

Γ

β

(ax + by + Φ(βx − αy))
dx.

Let ω = βx − αy. By applying Green’s formula we obtain
∮

Γ

β

(ax + by + Φ(ω))
dx −

∮

Γ

α

(ax + by + Φ(ω))
dy

=
∫ ∫

int(Γ)





∂
(

β
(ax+by+Φ(ω))

)

∂y
+

∂
(

α
(ax+by+Φ(ω))

)

∂x



 dxdy

=
∫ ∫

int(Γ)





−β
(

b + ∂Φ
∂ω (−α)

)

(ax + by + Φ(ω))2
+

−α
(

a + ∂Φ
∂ω (β)

)

(ax + by + Φ(ω))2



 dxdy

= −
∫ ∫

int(Γ)





β
(

b + ∂Φ
∂ω (−α)

)

(ax + by + Φ(ω))2
+

α
(

a + ∂Φ
∂ω (β)

)

(ax + by + Φ(ω))2



 dxdy

= −
∫ ∫

int(Γ)

(

βb + αa

(ax + by + Φ(ω))2

)

dxdy,

where int(Γ) denotes the interior of Γ.

As αa + βb 6= 0,
∫ T

0 K(x(t), y(t))dt is nonzero.

Remark 3.2. When Φ(βx − αy) is constant, we find ourselves in the case of Cristopher’s

theorem (i.e. Theorem 2.1).

When Φ(βx − αy) is of first degree, the line ax + by + c = 0 in Christopher’s theorem will

be replaced by the line (a + β)x + (b − α)y + d = 0.

Example 3.3 (Quintic system with exactly one limit cycle). Let α = 1, β = 2, a = 1, b = 2,

Φ(βx − αy) = Φ(2x − y) = (2x − y)2 + 1.

The system

ẋ = x4 + y2 − 4y − 3x + 5 + (x + 2y + (2x − y)2 + 1) (2y − 4) ,

ẏ = 2
(

x4 + y2 − 4y − 3x + 5
)

− (x + 2y + (2x − y)2 + 1)
(

4x3 − 3
) (3.3)

admits one hyperbolic limit cycle represented by the curve x4 + y2 − 4y − 3x + 5 = 0. See

Figure 3.1.
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Figure 3.1: Limit cycle of system (3.3).

Remark 3.4. Let us consider the system

ẋ = αU + f (x, y)Uy,

ẏ = βU − f (x, y)Ux,
(3.4)

where U and f are C1 functions on an open subset V of R
2. To have all the bounded compo-

nents of U = 0 as limit cycles it is necessary that f satisfies the partial differential equation

α
∂ f

∂x
+ β

∂ f

∂y
= γ, where γ 6= 0. (3.5)

In the polynomial case f (x, y) = γ
α x + Φ(βx − αy) or f (x, y) = γ

β y + Φ(βx − αy), which

are just particular cases of Theorem 3.1.

Example 3.5 (Quintic system with exactly two limit cycles). Let α = 1, β = −1, γ = 3,

f (x, y) = 3x + (x + y)2.

The system

ẋ = x3 − 2xy2 + 10xy − 15x + y4 − 10y3 + 35y2 − 50y + 30

+
(

(x + y)2 + 3x
)

(

4y3 − 30y2 − 4xy + 10x + 70y − 50
)

,

ẏ = 2
(

x3 − 2xy2 + 10xy − 15x + y4 − 10y3 + 35y2 − 50y + 30
)

−
(

(x + y)2 + 3x
)

(

3x2 − 2y2 + 10y − 15
)

(3.6)

admits two hyperbolic limit cycles represented by the curve x3 − 2xy2 + 10xy − 15x + y4 −

10y3 + 35y2 − 50y + 30 = 0. See Figure 3.2.
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Figure 3.2: Limit cycles of system (3.6).
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1 Introduction

Let Ω be a bounded domain in R
3 with a smooth boundary Γ := ∂Ω, Ω1 ⊂ R

3 be a subdomain

of Ω with a smooth boundary Σ := ∂Ω1 and Ω1 ⊂ Ω. Assume that Ω2 = Ω \ Ω1 is connected.

Obviously, Γ ∩ Σ = ∅ and ∂Ω2 = Γ ∪ Σ. In the present paper we study the existence of

solutions for the following Kirchhoff-type transmission problem





α

(∫

Ω1

g2(u)|∇u|2
) [

−div
(

g2(u)∇u
)
+ g(u)g′(u)|∇u|2

]
= f (u) + λφ(u), in Ω1,

β

(∫

Ω2

g2(v)|∇v|2
) [

−div
(

g2(v)∇v
)
+ g(v)g′(v)|∇v|2

]
= h(v) + λψ(v), in Ω2,

v = 0, on Γ,

u = v, on Σ,

α

(∫

Ω1

g2(u)|∇u|2
)

∂u

∂ν
= β

(∫

Ω2

g2(v)|∇v|2
)

∂v

∂ν
, on Σ,

(1.1)

where λ ∈ R+ := [0, ∞) and ν is the unit outward normal vector to ∂Ω1. This system is a

modified version of Kirchhoff-type transmission problem because the appearance of nonlocal

terms
∫

Ω1
g2(u)|∇u|2 and

∫
Ω2

g2(v)|∇v|2.

BCorresponding author. E-mail: fyli@sxu.edu.cn.
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There are two motivations for studying equation (1.1). The first one is the generalized

quasilinear Schrödinger equations. The second one is the classical Kirchhoff-type transmission

problem.

In 2015, Deng, Peng, and Yan in [9] researched the generalized quasilinear Schrödinger

equations

− div
(

g2(u)∇u
)
+ g(u)g′(u)|∇u|2 + V(x)u = f (x, u), x ∈ R

N , (1.2)

where N > 3, the potential function V ∈ C(RN) and f ∈ C(RN × R). If we take g2(t) =

1 +
[
(l(t2))′

]2
/2 for t ∈ R and l being a suitable function defined on R+, then the equation

(1.2) turns into

− ∆u + V(x)u − ∆[l(u2)]l′(u2)u = f (x, u), x ∈ R
N . (1.3)

Solutions of (1.3) is related to the existence of solitary wave solutions for the following quasi-

linear Schrödinger equation

i∂tz = −∆z + V(x)z − f (x, z)− ∆[l(|z|2)]l′(|z|2)z, x ∈ R
N . (1.4)

This quasilinear version of Schrödinger equations is derived from several models of various

physical phenomena. The equation (1.4) is called the superfluid film equation in plasma

physics when l(t) = t for t ∈ R+, see [13] or [14, 15]. If l(t) = (1 + t)1/2 for t ∈ R+, the

equation (1.4) was used for the self-channeling of a high-power ultrashort laser in matter, see

[4,5,7,24]. In mathematics, many results about the equation (1.3) with l(t) = tα for some α > 1

have been obtained, see [1, 2, 6, 8, 10, 18–20, 22, 23, 29–31] and the references therein. Equation

(1.3) with a general l was studied in the recent papers [9, 25]. We can see that the equation

(1.2) is more general and more practical than the equation (1.3).

If we choose g(t) = 1 for t ∈ R and λ = 0, then the equation (1.1) becomes the classical

Kirchhoff-type transmission problem




−α

(∫

Ω1

|∇u|2
)

∆u = f (u), in Ω1,

−β

(∫

Ω2

|∇v|2
)

∆v = h(v), in Ω2,

v = 0, on Γ,

u = v, on Σ,

α

(∫

Ω1

|∇u|2
)

∂u

∂ν
= β

(∫

Ω2

|∇v|2
)

∂v

∂ν
, on Σ.

(1.5)

It is well known that this problem is related to the stationary analogue of the problem




utt − α

(∫

Ω1

|∇u|2
)

∆u = f (u), x ∈ Ω1, t > 0,

vtt − β

(∫

Ω2

|∇v|2
)

∆v = g(v), x ∈ Ω2, t > 0,

v = 0, on Γ,

u = v, on Σ,

α

(∫

Ω1

|∇u|2
)

∂u

∂ν
= β

(∫

Ω2

|∇v|2
)

∂v

∂ν
, on Σ,

u(0) = u0, ut(0) = u1, x ∈ Ω1,

v(0) = v0, vt(0) = v1, x ∈ Ω2,

(1.6)
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which models the transverse vibrations of a membrane composed of two different materials

in Ω1 and Ω2. According to [21], we call the problem (1.6) a transmission problem because the

boundary conditions u = v and α
( ∫

Ω1
|∇u|2

)
∂u
∂ν = β

( ∫
Ω2

|∇v|2
)

∂v
∂ν on Σ. This transmission

problem (1.6) arises in physics and biology phenomena, such as in the study of electromag-

netic processes in ferromagnetic media with different dielectric constants [3], and in thinking

about the population distribution of subjects living in an environment composed of different

ecological media. In 2003, Ma and Muñoz Rivera [21] discussed the existence and nonexistence

of positive solution to the Kirchhoff-type transmission problem (1.5) by using minimization

arguments with f and g having subcritical growth. In [16], Li, Zhang, Zhu, and Liang investi-

gated the existence of the ground-state solutions to the following Kirchhoff-type transmission

problem with critical perturbation





−α

(∫

Ω1

|∇u|2
)

∆u = f (u) + λu5, in Ω1,

−β

(∫

Ω2

|∇v|2
)

∆v = g(v) + λv5, in Ω2,

v = 0, on Γ,

u = v, on Σ,

α

(∫

Ω1

|∇u|2
)

∂u

∂ν
= β

(∫

Ω2

|∇v|2
)

∂v

∂ν
, on Σ.

(1.7)

Here, we will establish the existence of ground-state solutions to Kirchhoff-type transmis-

sion problem with more general g and more general perturbation terms φ and ψ. To obtain the

existence of ground-state solutions to the more general Kirchhoff-type transmission problem

(1.1), we assume that four pairs of functions (α, g, f ), (β, g, h), (α, g, φ), and (β, g, ψ) belong to

the set A, where a pair of functions (α, g, f ) is said to belongs to A, if (α, g, f ) satisfies the

following assumptions

(A0) α ∈ C1(R+) is an increasing function and α(0) > 0;

(A1) there exists γ ∈ (0, 2) such that [α(s)− α(0)]/sγ is decreasing on (0, ∞);

(G) g ∈ C1(R, R+) is even with g′(s) > 0 for s ∈ R+ and g(0) = 1;

(F0) f ∈ C1(R, R) and lims→0 f (s)/s = 0;

(F1) there exists l f ∈ R such that

lim
|s|→∞

f (s)

g(s)G5(s)
= l f ,

where G(s) =
∫ s

0 g(t)dt for s ∈ R. And if l f = 0, we call that f has a quasicritical

growth; if l f 6= 0, we call that f has a critical growth;

(F2) f (s)/(g(s)|G(s)|2γG(s)) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0), and

lim|s|→∞ F(s)/|G(s)|2γ+2 = ∞, where F(s) =
∫ s

0 f (t)dt for s ∈ R and γ is as in (A1).

Remark 1.1. Assuming that g satisfies (G) and γ ∈ (0, 2), let f (s) = g(s)|G(s)|2γG(s) ln |G(s)|
and φ(s) = g(s)(G(s))5 for s ∈ R. Then f and φ satisfy (F0), (F1), and (F2).

Example 1.2. Let α(s) = 1 + s2 for s ∈ R+, and for γ ∈ (0, 2), define g(s) = s2 + 1, f (s) =

(s2 + 1)
∣∣s3/3 + s

∣∣2γ (
s3/3 + s

)
ln

∣∣s3/3 + s
∣∣, φ(s) = (s2 + 1)

(
s3/3 + s

)5
for s ∈ R. Then

(α, g, f ) and (α, g, φ) belong to A.
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Example 1.3. For a, b > 0, let α(s) = a + bs for s ∈ R+, and for γ ∈ (0, 2), define g(s) =√
2s2 + 1,

f (s) =

√
2

4

√
2s2 + 1

∣∣∣
√

2s
√

2s2 + 1 + ln
(√

2s +
√

2s2 + 1
)∣∣∣

2γ (√
2s
√

2s2 + 1

+ ln
(√

2s +
√

2s2 + 1
))

× ln
∣∣∣
√

2s
√

2s2 + 1 + ln
(√

2s +
√

2s2 + 1
)∣∣∣ ,

φ(s) =
√

2
4

√
2s2 + 1

[√
2s
√

2s2 + 1 + ln
(√

2s +
√

2s2 + 1
)]5

for s ∈ R. Then (α, g, f ) and

(α, g, φ) belong to A.

Remark 1.4. We know that the critical exponent of equation (1.7) is 6 which has a significant

influence on the properties of the solution. The critical exponent of equation (1.1) is different

for different g and the critical exponent depends on G6. This is an interesting phenomenon.

For example, when g(s) =
√

2s2 + 1 for s ∈ R, the critical exponent is 12; when g(s) = s2 + 1

for s ∈ R, the critical exponent is 18.

For any given subdomain D of R
3, the standard norm on Lp(D) is denoted by | · |p,D for

p ∈ [1, ∞). Let H1(Ω1) and H1(Ω2) be the usual Sobolev spaces. Then H1(Ω1)× H1(Ω2) is

also a Sobolev space with the norm

‖(u, v)‖ =
(
|∇u|22,Ω1

+ |u|22,Ω1
+ |∇v|22,Ω2

+ |v|22,Ω2

)1/2
, (u, v) ∈ H1(Ω1)× H1(Ω2). (1.8)

Our analysis is based on the following Sobolev space

E = {(u, v) ∈ H1(Ω1)× H1
Γ(Ω2) : u = v on Σ},

where

H1
Γ(Ω2) = {v ∈ H1(Ω2) : v = 0 on Γ}.

In [21] Ma and Muñoz Rivera established the following lemma which gave the definition of

norm for the Sobolev space E.

Lemma 1.5 ([21, Lemma 1]). E is a closed subspace of H1(Ω1)× H1(Ω2), and

‖(u, v)‖E =
(
|∇u|22,Ω1

+ |∇v|22,Ω2

)1/2
, (u, v) ∈ E,

defines also a norm on E, which is equivalent to the standard norm (1.8).

Remark 1.6. From Lemma 1.5, we know that the space E is embedded into Lp(Ω1)× Lq(Ω2)

for all p, q ∈ [1, 6], and these embeddings are compact for all p, q ∈ [1, 6). In particular, for

each p = q ∈ [1, 6], there exists νp > 0 such that

|(u, v)|p :=
(
|u|pp,Ω1

+ |v|pp,Ω2

)1/p
6 νp‖(u, v)‖E, (u, v) ∈ E. (1.9)

In order to solve the transmission problem (1.1), due to the appearance of nonlocal terms∫
Ω1

g2(u)|∇u|2 and
∫

Ω2
g2(v)|∇v|2, the potential working space seems to be

E0 =

{
(u, v) ∈ E :

∫

Ω1

g2(u)|∇u|2 < ∞,
∫

Ω2

g2(v)|∇v|2 < ∞

}
.
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Obviously, E0 may not be a linear space under the assumed condition of (G). To avoid this

drawback, we gave a change of variables,

(u, v) =
(

G−1(u1), G−1(v1)
)

, (u1, v1) ∈ E,

which is motivated by [9, 25]. According to the properties of g, G, and G−1 which will

be given in Section 2, if (u1, v1) ∈ E, then (u, v) = (G−1(u1), G−1(v1)) ∈ E (see Remark

2.3),
∫

Ω1
g2(u)|∇u|2 =

∫
Ω1

g2(G−1(u1))|∇G−1(u1)|2 = |∇u1|22 < ∞, and
∫

Ω2
g2(v)|∇v|2 =∫

Ω2
g2(G−1(v1))|∇G−1(v1)|2 = |∇v1|22 < ∞. Thus, it follows from the change of variables that

E can be used as the working space and the transmission problem (1.1) turns into





−α

(∫

Ω1

|∇u1|2
)

g(G−1(u1))∆u1 = f (G−1(u1)) + λφ(G−1(u1)), in Ω1,

−β

(∫

Ω2

|∇v1|2
)

g(G−1(v1))∆v1 = h(G−1(v1)) + λψ(G−1(v1)), in Ω2,

v1 = 0, on Γ,

u1 = v1, on Σ,

α

(∫

Ω1

|∇u1|2
)

∂u1

∂ν
= β

(∫

Ω2

|∇v1|2
)

∂v1

∂ν
, on Σ.

(1.10)

Furthermore, we can prove that if (u1, v1) ∈ E ∩
(

H2
loc(Ω1)× H2

loc(Ω2)
)

is a strong solution to

the equation (1.10), then (u, v) = (G−1(u1), G−1(v1)) ∈ E ∩
(

H2
loc(Ω1)× H2

loc(Ω2)
)

is a strong

solution to the equation (1.1). Here, we call that (u, v) ∈ E ∩
(

H2
loc(Ω1)× H2

loc(Ω2)
)

is a strong

solution to the transmission problem (1.10) or (1.1) if the first two equations in (1.10) or (1.1)

hold in the sense of almost everywhere. Actually, we only need to verify that for any an

open bounded set D ⊂ R
3 if u1 ∈ H2(D), then G−1(u1) ∈ H2(D)(see Lemma 4.2). Moreover,

because of the continuity of g, G, and G−1, to obtain a strong solution to the transmission

problem (1.10), it suffices to seek for the weak solution to the following transmission problem




−α

(∫

Ω1

|∇u1|2
)

∆u1 =
f (G−1(u1))

g(G−1(u1))
+ λ

φ(G−1(u1))

g(G−1(u1))
, in Ω1,

−β

(∫

Ω2

|∇v1|2
)

∆v1 =
h(G−1(v1))

g(G−1(v1))
+ λ

ψ(G−1(v1))

g(G−1(v1))
, in Ω2,

v1 = 0, on Γ,

u1 = v1, on Σ,

α

(∫

Ω1

|∇u1|2
)

∂u1

∂ν
= β

(∫

Ω2

|∇v1|2
)

∂v1

∂ν
, on Σ.

(1.11)

In fact, if (u1, v1) ∈ E is a weak solution to the transmission problem (1.11), then it should

satisfy, for all (w1, z1) ∈ E,

α
(
|∇u1|22,Ω1

) ∫

Ω1

∇u1 · ∇w1 + β
(
|∇v1|22,Ω2

) ∫

Ω2

∇v1 · ∇z1

=
∫

Ω1

f (G−1(u1))

g(G−1(u1))
w1 +

∫

Ω2

h(G−1(v1))

g(G−1(v1))
z1 + λ

∫

Ω1

φ(G−1(u1))

g(G−1(u1))
w1 + λ

∫

Ω2

ψ(G−1(v1))

g(G−1(v1))
z1.

Hence, u1 ∈ H1(Ω1) weakly solves the equation

−α
(
|∇u1|22,Ω1

)
∆u1 = a(x)(1 + u1), in Ω1,



6 Y. Zhang, Z. Liang, X. Zhu and F. Li

with

a(x) =
1

1 + u1(x)

(
f (G−1(u1))

g(G−1(u1))
+ λ

φ(G−1(u1))

g(G−1(u1))

)
=:

1

1 + u1(x)

(
f̃ (u1) + λφ̃(u1)

)
,

where f̃ (s) := f (G−1(s))
g(G−1(s))

and φ̃(s) := φ(G−1(s))
g(G−1(s))

for s ∈ R. The condition (F2) implies that

a ∈ L3/2
loc (Ω1). By the Brézis–Kato theorem, see also [26, Lemma B.3, p. 244] , we know that u1 ∈

L
q
loc(Ω1) for any q ∈ [1, ∞). Theorem 8.8 in [11, p. 183] shows that u1 ∈ H1(Ω1) ∩ H2

loc(Ω1)

and

−α
(
|∇u1|22,Ω1

)
∆u1 = f̃ (u1) + λφ̃(u1), a.e. x ∈ Ω1.

Similarly, we can prove that v1 ∈ H1
Γ
(Ω2) ∩ H2

loc(Ω1) such that

−β
(
|∇v1|22,Ω2

)
∆v1 = h̃(v1) + λψ̃(v1), a.e. x ∈ Ω2,

where h̃(s) = h(G−1(s))
g(G−1(s))

and ψ̃(s) = ψ(G−1(s))
g(G−1(s))

for s ∈ R. So the problem (1.11) holds in the sense

of almost everywhere and (u1, v1) ∈
(

H1(Ω1) ∩ H2
loc(Ω1)

)
×

(
H1

Γ
(Ω2) ∩ H2

loc(Ω2)
)

is a strong

solution to the equation. Here, let (u, v) = (G−1(u1), G−1(v1)). Then (u, v) is a strong solution

to the transmission problem (1.1). For the convenience, removing the subscripts of u1, v1 , we

rewrite (1.11) as the following transmission problem




−α

(∫

Ω1

|∇u|2
)

∆u =
f (G−1(u))

g(G−1(u))
+ λ

φ(G−1(u))

g(G−1(u))
, in Ω1,

−β

(∫

Ω2

|∇v|2
)

∆v =
h(G−1(v))

g(G−1(v))
+ λ

ψ(G−1(v))

g(G−1(v))
, in Ω2,

v = 0, on Γ,

u = v, on Σ,

α

(∫

Ω1

|∇u|2
)

∂u

∂ν
= β

(∫

Ω2

|∇v|2
)

∂v

∂ν
, on Σ.

(1.12)

In the following, we make our efforts to find the weak solution to the transmission problem

(1.12). To this end, we define the energy functional I : E → R associated with the transmission

problem (1.12)

Iλ(u, v) =
1

2
A
(
|∇u|22,Ω1

)
+

1

2
B
(
|∇v|22,Ω2

)
−

∫

Ω1

F(G−1(u))−
∫

Ω2

H(G−1(v))

− λ
∫

Ω1

Φ(G−1(u))− λ
∫

Ω2

Ψ(G−1(v)), (u, v) ∈ E,

where A(s) =
∫ s

0 α(t)dt, B(s) =
∫ s

0 β(t)dt for s ∈ R+, and H(s) =
∫ s

0 h(t)dt, Φ(s) =
∫ s

0 φ(t)dt,

Ψ(s) =
∫ s

0 ψ(t)dt for s ∈ R. It can be verified that Iλ is of class C1. And for all (u, v), (w, z) ∈ E,

〈I′λ(u, v), (w, z)〉 = α(|∇u|22,Ω1
)
∫

Ω1

∇u · ∇w + β(|∇v|22,Ω2
)
∫

Ω2

∇v · ∇z −
∫

Ω1

f (G−1(u))

g(G−1(u))
w

−
∫

Ω2

h(G−1(v))

g(G−1(v))
z − λ

∫

Ω1

φ(G−1(u))

g(G−1(u))
w − λ

∫

Ω2

ψ(G−1(v))

g(G−1(v))
z.

Let F̃(s) = F(G−1(s)), H̃(s) = H(G−1(s)), Φ̃(s) = Φ(G−1(s)), and Ψ̃(s) = Ψ(G−1(s)) for

s ∈ R. Then, for all (u, v), (w, z) ∈ E, we have that

Iλ(u, v) =
1

2
A
(
|∇u|22,Ω1

)
+

1

2
B
(
|∇v|22,Ω2

)
−

∫

Ω1

F̃(u)−
∫

Ω2

H̃(v)− λ
∫

Ω1

Φ̃(u)− λ
∫

Ω2

Ψ̃(v),
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and

〈I′λ(u, v), (w, z)〉 = α
(
|∇u|22,Ω1

) ∫

Ω1

∇u · ∇w + β
(
|∇v|22,Ω2

) ∫

Ω2

∇v · ∇z

−
∫

Ω1

f̃ (u)w −
∫

Ω2

h̃(v)z − λ
∫

Ω1

φ̃(u)w − λ
∫

Ω2

ψ̃(v)z. (1.13)

Then we say that (u, v) ∈ E is a weak solution to the transmission problem (1.12) if and only

if (u, v) is a critical point of the functional Iλ in E, i.e., I′λ(u, v) = 0. To sum up, it suffices to

seek a critical point of the functional Iλ in E to achieve a strong solution to the transmission

problem (1.1).

Now, we state our main results through the following theorems.

Theorem 1.7. Assume that (α, g, f ), (β, g, h) ∈ A with l f = lh = 0, (α, g, φ), (β, g, ψ) ∈ A with

lφ, lψ 6= 0, and φ(s)s > 0, ψ(s)s > 0 for s 6= 0. Then there exists λ0 > 0 such that both the problem

(1.12) and (1.1) have a ground-state solution (uλ, vλ) for all λ ∈ [0, λ0). Furthermore, it holds that

(uλ, vλ) → (u0, v0) in E as λ → 0, where (u0, v0) is a ground-state solution to the problem (1.1) with

λ = 0.

Corollary 1.8. Let Ω2 = ∅, α(s) = 1, g(s) =
√

1 + 2s2, f (s) = |s|q−2, and φ(s) = |s|10s for s ∈ R.

Then the following equation has a ground-state solution uλ for all λ ∈ [0, λ0),

{
−∆u − ∆(u2)u = |u|q−2u + λ|u|10u, in Ω,

u = 0, on ∂Ω,
(1.14)

where q ∈ (4, 12). Furthermore, it holds that uλ → u0 in H1
0(Ω) as λ → 0, where u0 is a ground-state

solution to the above problem with λ = 0.

Remark 1.9. According to [8], for a single quasilinear Schrödinger equation (1.14) in a bounded

domain in R
3, there exists a suitable energy level c∗ such that if c(λ) < c∗, then the associated

energy functional satisfies the (PS)c(λ) condition, where c∗ = S3/6 and S is the best Sobolev

constant for D1,2(R3) →֒ L6(R3). However, a large amount of calculations is required to prove

that c(λ) < c∗ by verifying

sup
t∈R+

Iλ(tuǫ) < c∗,

where uǫ is a modification of U and U attains the best Sobolev constant S. In this paper to

avoid this difficulty, we adopt the perturbation method from [12, 32].

Remark 1.10. Let g(s) = 1 and φ(s) = ψ(s) = s5 for s ∈ R. Then by Theorem 1.7, we have

that the transmission problem (1.1) also has a ground-state solution, which has been achieved

in [16]. Thus, Theorem 1.7 could be regarded as a generalization of Theorem 1.1 in [16].

This paper is organized as follows. We give some preliminaries in Section 2. Theorem 1.7 is

proved in Section 3. Throughout this paper we denote Ci for i ∈ N := {1, 2, . . . } as constants

which can be different from line to line.

2 Preliminaries

In this section we first give some properties of the functions α, g, f̃ , and A, G, G−1, F̃ via the

following lemmas.
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Lemma 2.1.

(i) Assume that α satisfies the condition (A0). Then A(s) > α(0)s for s ∈ R+.

(ii) Assume that α satisfies the conditions (A0) and (A1). Then [A(s) − α(0)s]/sγ+1, α(s)s −
(γ + 1)A(s) + γα(0)s, and A(s)/sγ+1 are decreasing on (0, ∞). Furthermore, we have that

(γ + 1)A(s)− α(s)s > γα(0)s, s ∈ R+, (2.1)

and

α′(s)s 6 γ[α(s)− α(0)] < γα(s), s ∈ R+. (2.2)

Lemma 2.2. The functions g, G, and G−1 have the following properties under the assumption of (G):

(i) G and G−1 are both odd, and

t 6 G(t) 6 g(t)t, t ∈ R+, s/g(G−1(s)) 6 G−1(s) 6 s, s ∈ R+;

(ii) lims→0 G−1(s)/s = 1 and lims→∞ G−1(s)/s = 1/g(∞), where g(∞) = lims→∞ g(s);

(iii) G−1(s)/
[
|s|2γsg(G−1(s))

]
is nonincreasing on (0, ∞) and nondecreasing on (−∞, 0);

(iv) [G−1(s)]2 − G−1(s)s/g(G−1(s)) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0);

(v) if f is a continuous function and (F2) holds, then f (G−1(s))s/[(2γ+ 2)g(G−1(s))]− F(G−1(s))

is increasing on (0, ∞) and decreasing on (−∞, 0).

Proof. (i), (ii), and (iv) can be derived from [17, (1), (2), and (4) of Lemma 2.2]. As for (iii),

because g is even, we need only to prove that the conclusion holds on (0, ∞). In fact, since

[G(t)/t]2γ+1g(t) is nondecreasing on (0, ∞), [G(t)]2γ+1g(t)/t is also nondecreasing on (0, ∞),

and then G−1(s)/[s2γ+1g(G−1(s))] is nonincreasing on (0, ∞).

Finally, we prove that (v) holds. Indeed, since f (t)/[g(t)|G(t)|2γG(t)] is nondecreasing on

(0, ∞) and nonincreasing on (−∞, 0), according to [17, Lemma A.1], f (t)G(t)/[(2γ+ 2)g(t)]−
F(t) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0), and then f (G−1(s))s/[(2γ +

2)g(G−1(s))]− F(G−1(s)) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0), that is,

(v) holds. The proof is complete.

Remark 2.3. Let (u, v) ∈ E. Then it follows from g(t) > 1 for t ∈ R+, and (i) of Lemma 2.2

that (G−1(u), G−1(v)) ∈ E.

Lemma 2.4. Assume that g satisfies (G) and f satisfies (F0), (F1), and (F2). Let f̃ (s) = f (G−1(s))
g(G−1(s))

for

s ∈ R. Then f̃ has the following properties:

(F′
0) f̃ ∈ C1(R) and lims→0 f̃ (s)/s = 0;

(F′
1)

lim
|s|→∞

f̃ (s)

s5
= l f ;

(F′
2) f̃ (s)/(|s|2γs) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0), and

lim
|s|→∞

F̃(s)/|s|2γ+2 = ∞.
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From [16], the function f̃ possesses some other properties as mentioned in the following

Remark 2.5. With those properties, we know that Lemmas 2.6–2.8 hold.

Remark 2.5. It follows from (F′
2) and [17, Lemma A.1] that f̃ (s)s− 2(γ+ 1)F̃(s) is nondecreas-

ing on R+ and nonincreasing (−∞, 0], and then

f̃ (s)s − 2(γ + 1)F̃(s) > 0, s ∈ R, (2.3)

and

f̃ ′(s)s − (2γ + 1) f̃ (s) > 0, s ∈ R+. (2.4)

Lemma 2.6. Suppose that f satisfies the conditions (F0) and (F1) and g satisfies the conditions (G).

Then for each u ∈ H1(Ω), one has that

lim
t→0

∫

Ω1

f̃ (tu)u

t
= 0.

Lemma 2.7. Suppose that f satisfies the conditions (F0) and (F1) and g satisfies the conditions (G). If

un ⇀ u 6= 0 in H1(Ω) and |tn| → ∞, then

lim
n→∞

∫

Ω

f̃ (tnun)un

|tn|2γtn
= ∞.

Lemma 2.8. Suppose that f satisfies the conditions (F0) and (F1) and g satisfies the conditions (G).

Then for each u ∈ H1(Ω) and u 6= 0, it holds that

lim
|t|→∞

∫

Ω1

f̃ (tu)u

|t|2γt
= ∞.

3 Existence and convergence of ground-state solutions

In this section, assuming that the all conditions of Theorem 1.7 hold, we will establish the

existence of ground-state solutions to the problems (1.12) and complete the proof of Theo-

rem 1.7. First, we verify that the functional Iλ has a mountain pass geometric structure and

the functional I0 satisfies the Palais–Smale (PS for short) condition.

For each λ ∈ R+, let

Γλ = {γ ∈ C([0, 1], E) : γ(0) = 0, Iλ(γ(1)) < 0}

and define

c(λ) = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)).

Lemma 3.1. Γλ 6= ∅ and c(λ) > 0 for λ ∈ R+.

Proof. For any given ε ∈
(
0,
[
2(1 + λ)ν2

2

]−1
min{α(0), β(0)}

)
and p ∈ (2γ + 2, 6], we obtain

from (F′
0) and (F′

1) that there exists Cε,p, Cε > 0 such that

| f̃ (s)|, |h̃(s)| 6 ε
[
|s|+ |s|5

]
+ Cε,p|s|p−1, s ∈ R, (3.1)

|F̃(s)|, |H̃(s)| 6 ε
(
s2 + s6

)
+ Cε,p|s|p, s ∈ R,

|φ̃(s)|, |ψ̃(s)| 6 ε|s|+ Cε|s|5, s ∈ R, (3.2)

|Φ̃(s)|, |Ψ̃(s)| 6 εs2 + Cεs
6, s ∈ R,
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where F̃(s) =
∫ s

0 f̃ (t)dt, H̃(s) =
∫ s

0 h̃(t)dt, Φ̃(s) =
∫ s

0 φ̃(t)dt, and Ψ̃(s) =
∫ s

0 ψ̃(t)dt for s ∈ R.

Then it follows from the Sobolev inequality (1.11) that for (u, v) ∈ E,

∣∣∣∣
∫

Ω1

F̃(u) +
∫

Ω2

H̃(v)

∣∣∣∣ 6 εν2
2‖(u, v)‖2

E + εν6
6‖(u, v)‖6

E + ν
p
p Cε,p‖(u, v)‖p

E,

and ∣∣∣∣
∫

Ω1

Φ̃(u) +
∫

Ω2

Ψ̃(v)

∣∣∣∣ 6 εν2
2‖(u, v)‖2

E + ν6
6Cε‖(u, v)‖6

E.

Thus, combining this and (i) of Lemma 2.1, we have that for (u, v) ∈ E,

Iλ(u, v)

=
1

2
A
(
|∇u|22,Ω1

)
+

1

2
B
(
|∇v|22,Ω2

)
−

∫

Ω1

F̃(u)−
∫

Ω2

H̃(v)− λ

[∫

Ω1

Φ̃(u) +
∫

Ω2

Ψ̃(v)

]

>
1

2

[
α(0)|∇u|22,Ω1

+ β(0)|∇v|22,Ω2

]
− (1 + λ)εν2

2‖(u, v)‖2
E

− ν
p
p Cε,p‖(u, v)‖p

E − (ε + λCε)ν
6
6‖(u, v)‖6

E

>

(
1

2
min{α(0), β(0)} − (1 + λ)εν2

2

)
‖(u, v)‖2

E − ν
p
p Cε,p‖(u, v)‖p

E − (ε + λCε)ν
6
6‖(u, v)‖6

E.

Hence, letting ρ > 0 small enough, it is easy to see that inf{Iλ(u, v) : ‖(u, v)‖E = ρ} > 0.

Next, for each (u, v) ∈ E \ {0}, according to (ii) of Lemma 2.1, the following limits exist

a∞ := lim
t→∞

A
(

t2|∇u|22,Ω1

)

2t2γ+2
∈ R+, b∞ := lim

t→∞

B
(

t2|∇v|22,Ω2

)

2t2γ+2
∈ R+.

For any given M > (a∞ + b∞)
[
(1 + λ)

(
|u|2γ+2

2γ+2,Ω1
+ |v|2γ+2

2γ+2,Ω2

)]−1
, it follows from (F′

2) and

(F′
0) that there exists C > 0 such that

F̃(s), H̃(s), Φ̃(s), Ψ̃(s) > M|s|2γ+2 − C, s ∈ R.

Thus, we have that

Iλ(t(u, v)) 6
1

2
A
(
t2|∇u|22,Ω1

)
+

1

2
B
(
t2|∇v|22,Ω2

)
− M(1 + λ)t2γ+2

[
|u|2γ+2

2γ+2,Ω1
+ |v|2γ+2

2γ+2,Ω2

]

+ C(1 + λ)[|Ω1|+ |Ω2|]

= t2γ+2




A
(

t2|∇u|22,Ω1

)

2t2γ+2
+

B
(

t2|∇v|22,Ω2

)

2t2γ+2
−M(1 + λ)

[
|u|2γ+2

2γ+2,Ω1
+ |v|2γ+2

2γ+2,Ω2

]

+
C(1 + λ)

t2γ+2
[|Ω1|+ |Ω2|]




→ − ∞, t → ∞.

The proof is complete.

Lemma 3.2. For each λ ∈ R+, any PS sequence of the functional Iλ is always bounded. Particularly,

for λ = 0, the functional I0 satisfies the PS condition.
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Proof. As for the boundedness of PS sequence, one only needs to observe that (2.1) and (2.3)

imply the AR condition. Here for the completeness, we sketch out the proof. Assume that

λ ∈ R+, c ∈ R, and {(un, vn)} is a (PS)c sequence of Iλ. Then according to (2.1) and (2.3), for

sufficiently large n we have that

c + 1 + ‖(un, vn)‖E > Iλ(un, vn)−
1

2γ + 2
〈I′λ(un, vn), (un, vn)〉

=
1

2
A(|∇un|22,Ω1

)− 1

2γ + 2
α(|∇un|22,Ω1

)|∇un|22,Ω1

+
1

2
B(|∇vn|22,Ω2

)− 1

2γ + 2
β(|∇vn|22,Ω2

)|∇vn|22,Ω2

+
∫

Ω1

[
1

2γ + 2
f̃ (un)un − F̃(un)

]
+

∫

Ω2

[
1

2γ + 2
h̃(vn)vn − H̃(vn)

]

+ λ
∫

Ω1

[
1

2γ + 2
φ̃(un)un − Φ̃(un)

]
+ λ

∫

Ω2

[
1

2γ + 2
ψ̃(vn)vn − Ψ̃(vn)

]

>
γα(0)

2γ + 2
|∇un|22,Ω1

+
γβ(0)

2γ + 2
|∇vn|22,Ω2

>
γ

2γ + 2
min{α(0), β(0)}‖(un, vn)‖2

E. (3.3)

It follows that {(un, vn)} is bounded in E.

Now, we illustrate that the functional I0 satisfies the PS condition. In fact, let {(un, vn)} be

a PS sequence of I0. First, from the above conclusion we can get the boundedness of {(un, vn)}
in E . Without loss of generality, there exists (u, v) ∈ E such that (un, vn) ⇀ (u, v) as n → ∞.

Owing to (3.1) and the compact embedding E →֒ Lp(Ω1) × Lp(Ω2) for p ∈ [1, 6), we can

derive that

lim
n→∞

∫

Ω1

f̃ (un)(un − u) = 0, lim
n→∞

∫

Ω2

h̃(vn)(vn − v) = 0. (3.4)

Thus, similarly to Lemma 3.2 in [16], we can prove that ‖(un − u, vn − v)‖2
E → 0. The proof is

complete.

It follows from the mountain pass theorem that the following corollary holds.

Corollary 3.3.

Kc(0) := {(u, v) ∈ E : I′0(u, v) = 0, I0(u, v) = c(0)} 6= ∅. (3.5)

Define

Nλ =
{
(u, v) ∈ E \ {0} : 〈I′λ(u, v), (u, v)〉 = 0

}
, d(λ) = inf

Nλ

Iλ. (3.6)

We now prove that Nλ 6= ∅ and provide some properties of the mapping d(·).

Lemma 3.4. Let (u, v) ∈ E\{0}.

(i) For each λ ∈ R+, there exists a unique t(λ) > 0 such that t(λ)(u, v) ∈ Nλ, 〈I′λ(t(u, v)), t(u, v)〉
> 0 for t ∈ (0, t(λ)), 〈I′λ(t(u, v)), t(u, v)〉 < 0 for t ∈ (t(λ), ∞), and Iλ(t(λ)(u, v)) =

maxt∈R+ Iλ(t(u, v)).

(ii) The function t(·) : R+ → (0, ∞) is continuously differentiable and

t′(λ) =

∫
Ω1

φ̃(t(λ)u)t(λ)u +
∫

Ω2
ψ̃(t(λ)v)t(λ)v

W1(t(λ), (u, v))
, (3.7)
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where W1 is defined by

W1(t, (u, v)) = − 2γt
[
α
(
t2|∇u|22,Ω1

)
|∇u|22,Ω1

+ β(t2|∇v|22,Ω2
)|∇v|22,Ω2

]

+ 2t3
[
α′(t2|∇u|22,Ω1

)|∇u|42,Ω1
+ β′(t2|∇v|22,Ω2

)|∇v|42,Ω2

]

+ (2γ + 1)

[∫

Ω1

f̃ (tu)u +
∫

Ω2

h̃(tv)v

]
−

∫

Ω1

f̃ ′(tu)tu2 −
∫

Ω2

h̃′(tv)tv2

+ (2γ + 1)λ

[∫

Ω1

φ̃(tu)u +
∫

Ω2

ψ̃(tv)v

]
− λ

∫

Ω1

φ̃′(tu)tu2 − λ
∫

Ω2

ψ̃′(tv)tv2.

Particularly, t(·) is decreasing on R+.

Proof. (i) Let (u, v) ∈ E\{0} and λ ∈ R+ be fixed, and let w(t) = Iλ(t(u, v)) for t ∈ R+. Then

w ∈ C1(R+) and we have that for t > 0,

w′(t) = 〈I′λ(t(u, v)), (u, v)〉

= tα
(
t2|∇u|22,Ω1

)
|∇u|22,Ω1

+ tβ
(
t2|∇v|22,Ω2

)
|∇v|22,Ω2

−
∫

Ω1

f̃ (tu)u −
∫

Ω2

h̃(tv)v

− λ

[∫

Ω1

φ̃(tu)u +
∫

Ω2

ψ̃(tv)v

]
. (3.8)

By applying (A0) and Lemma 2.6, we obtain that w′(t) > 0 for small t > 0. And by applying

(ii) of Lemma 2.1 and Lemma 2.8, we obtain that w′(t) < 0 for t large. Thus, there must be

some t(λ) > 0 such that w′(t(λ)) = 0. Therefore, t(λ)(u, v) ∈ Nλ.

Furthermore, we can also derive the uniqueness of t(λ). In fact, suppose by contradiction

there are t1, t2 ∈ (0, ∞) with t1 < t2 such that w′(t1) = w′(t2) = 0. Then we have that




α
(

t2
1|∇u|22,Ω1

)

t
2γ
1

−
α
(

t2
2|∇u|22,Ω1

)

t
2γ
2


 |∇u|22,Ω1

+




β
(

t2
1|∇v|22,Ω2

)

t
2γ
1

−
β
(

t2
2|∇v|22,Ω2

)

t
2γ
2


 |∇v|22,Ω2

=
∫

Ω1

[
f̃ (t1u)

t
2γ+1
1

− f̃ (t2u)

t
2γ+1
2

]
u +

∫

Ω2

[
h̃(t1v)

t
2γ+1
1

− h̃(t2v)

t
2γ+1
2

]
v

+ λ
∫

Ω1

[
φ̃(t1u)

t
2γ+1
1

− φ̃(t2u)

t
2γ+1
2

]
u + λ

∫

Ω2

[
ψ̃(t1v)

t
2γ+1
1

− ψ̃(t2v)

t
2γ+1
2

]
v,

which is absurd in view of (A1), (F′
2), and t1 < t2.

(ii) Let us define a function W(t, λ) = 〈I′λ(t(u, v)), (u, v)〉 for (t, λ) ∈ (−1, ∞)2. Then

W(t(λ), λ) = 0 for λ ∈ R+ and by calculation we know that for (t, λ) ∈ (−1, ∞)2,

∂W

∂t
(t, λ) = α

(
t2|∇u|22,Ω1

)
|∇u|22,Ω1

+ β
(
t2|∇v|22,Ω2

)
|∇v|22,Ω2

+ 2t2
[
α′ (t2|∇u|22,Ω1

)
|∇u|42,Ω1

+ β′ (t2|∇v|22,Ω2

)
|∇v|42,Ω2

]

−
∫

Ω1

f̃ ′(tu)u2 −
∫

Ω2

h̃′(tv)v2 − λ

[∫

Ω1

φ̃′(tu)u2 +
∫

Ω2

ψ̃′(tv)v2

]
(3.9)

and
∂W

∂λ
(t, λ) = −

∫

Ω1

φ̃(tu)u −
∫

Ω2

ψ̃(tv)v.
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Moreover, it follows from (3.9), (3.8), (2.2), and (2.4) that for λ ∈ R+,

∂W

∂t
(t(λ), λ) =

∂W

∂t
(t(λ), λ)− 2γ + 1

t(λ)
W(t(λ), λ)

= − 2γ
[
α
(
t2(λ)|∇u|22,Ω1

)
|∇u|22,Ω1

+ β
(
t2(λ)|∇v|22,Ω2

)
|∇v|22,Ω2

]

+ 2t2
[
α′ (t2|∇u|22,Ω1

)
|∇u|42,Ω1

+ β′ (t2|∇v|22,Ω2

)
|∇v|42,Ω2

]

+
1

t(λ)

∫

Ω1

[
(2γ + 1) f̃ (t(λ)u)− f̃ ′(t(λ)u)t(λ)u

]
u

+
1

t(λ)

∫

Ω2

[
(2γ + 1)h̃(t(λ)v)− h̃′(t(λ)u)t(λ)v

]
v

+
λ

t(λ)

∫

Ω1

[
(2γ + 1)φ̃(t(λ)u)− φ̃′(t(λ)u)t(λ)u

]
u

+
λ

t(λ)

∫

Ω2

[
(2γ + 1)ψ̃(t(λ)v)− ψ̃′(t(λ)u)t(λ)v

]
v

< 0.

Hence, the implicit function theorem and (i) imply that t(·) : R+ → (0, ∞) is continuously

differentiable and (3.7) holds. Particularly, recall that φ(s)s > 0 and ψ(s)s > 0 for s 6= 0, so

t′(λ) < 0 for λ ∈ R+. Thus, t(·) is decreasing on R+.

Lemma 3.5. For each µ > 0, it holds that ρµ := infλ∈[0,µ] dist(0, Nλ) > 0.

Proof. Let λ ∈ [0, µ] and (u, v) ∈ Nλ. Then for each ε ∈
(
0,
[
(1 + µ)ν2

2

]−1
min{α(0), β(0)}

)
, it

follows from (3.6), (3.1), and (3.2) with p = 5, and the Sobolev embedding theorem that

min{α(0), β(0)}‖(u, v)‖2
E

6 α(0)|∇u|22,Ω1
+ β(0)|∇v|22,Ω2

6 α
(
|∇u|22,Ω1

)
|∇u|22,Ω1

+ β
(
|∇v|22,Ω2

)
|∇v|22,Ω2

=
∫

Ω1

f̃ (u)u +
∫

Ω2

h̃(v)v + λ

[∫

Ω1

φ̃(u)u +
∫

Ω2

ψ̃(v)v

]

6 (1 + λ)ε
[
|u|22,Ω1

+ |v|22,Ω2

]
+ (ε + λCε)

[
|u|66,Ω1

+ |v|66,Ω2

]
+ Cε,p

[
|u|pp,Ω1

+ |v|pp,Ω2

]

6 (1 + µ)εν2
2‖(u, v)‖2

E + (ε + λCε + Cε,6)ν
6
6‖(u, v)‖6

E.

Thus, there exists a positive number σ independent of λ such that ‖(u, v)‖E > σ for (u, v) ∈
Nλ. Hence, ρµ > σ.

Subsequently, we will obtain a minimax characterization of d(·) given by the following

lemma.

Lemma 3.6. d(λ) = c(λ) = inf(u,v)∈E\{0} maxt∈R+ Iλ(t(u, v)) for λ ∈ R+.

This lemma can be achieved from (i) of Lemma 3.4 and Lemma 3.1. Here we omit the

proof, and for the concrete process readers can refer Lemma 3.6 in [16].

According to the above lemma, since c(·) is nonincreasing on R+, we know that d(·) is

nonincreasing on R+ and d(λ) 6 d(0) for λ ∈ R+. Similarly, to establish the right continuity

of c(·) at λ = 0, it suffices to prove that d(·) is continuous at λ = 0 from the right.

Lemma 3.7. limλ→0 d(λ) = d(0).
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Proof. Let {λn} ⊂ (0, µ] satisfy λn → 0 as n → ∞. Then for any given ε ∈ (0, d(0)) it follows

from the definition of d(λn) that there exists (un, vn) ∈ Nλn
such that for all n,

Iλn
(un, vn) 6 d(λn) + ε. (3.10)

We note that as in (3.3), for fixed λ ∈ [0, µ],

γ

2γ + 2
min{α(0), β(0)}‖(u, v)‖2

E 6 Iλ(u, v), (u, v) ∈ Nλ.

Then it follows from (3.10) that for all n,

‖(un, vn)‖2
E 6

2γ + 2

γ min{α(0), β(0)} (d(λn) + ε) <
4(γ + 1)d(0)

γ min{α(0), β(0)} .

Hence, there exist (u, v) ∈ E and a subsequence of {(un, vn)}, still denoted by {(un, vn)},

satisfying that (un, vn) ⇀ (u, v). Particularly, it holds that (u, v) 6= 0. Otherwise, by (1.13),

(3.4), and the fact that λn → 0, one can conclude that

min{α(0), β(0)}‖(un, vn)‖2
E

6 α
(
|∇un|22,Ω1

)
|∇un|22,Ω1

+ β
(
|∇vn|22,Ω2

)
|∇vn|22,Ω2

=
∫

Ω1

f̃ (un)un +
∫

Ω2

h̃(vn)vn + λn

[∫

Ω1

φ̃(un)un +
∫

Ω2

ψ̃(vn)vn

]
→ 0.

This contradicts the fact that {‖(un, vn)‖E} has a positive lower bound which can be derived

from Lemma 3.5.

For (un, vn) ∈ Nλn
chosen above, by 〈I′0(un, vn), (un, vn)〉 > 〈I′λn

(un, vn), (un, vn)〉 = 0 and

(i) of Lemma 3.4, there exists a unique tn(0) > 1 such that tn(0)(un, vn) ∈ N0. Therefore,

0 6 d(0)− d(λn) 6 I0(tn(0)(un, vn))− Iλn
(un, vn) + ε. (3.11)

It follows from Lemma 3.4 that there exists tn(λ) > 0 such that tn(λ)(un, vn) ∈ Nλ. Let us

define gn(λ) = Iλ(tn(λ)(un, vn)) for λ ∈ R+. Then the fact tn(λ)(un, vn) ∈ Nλ implies that

g′n(λ) = 〈I′λ(tn(λ)(un, vn)), (un, vn)〉t′n(λ)−
[∫

Ω1

Φ̃(tn(λ)un) +
∫

Ω2

Ψ̃(tn(λ)vn)

]

= −
[∫

Ω1

Φ̃(tn(λ)un) +
∫

Ω2

Ψ̃(tn(λ)vn)

]
, λ ∈ R+.

Thus, it follows from (ii) of Lemma 3.4 that

I0(tn(0)(un, vn))− Iλn
(un, vn)

= gn(0)− gn(λn)

= −
∫ λn

0
g′n(s)ds

=
∫ λn

0

[∫

Ω1

Φ̃(tn(s)un) +
∫

Ω2

Ψ̃(tn(s)vn)

]
ds

6 λn

(
t2
n(0)

[
|un|22,Ω1

+ |vn|22,Ω2

]
+ Cεt

6
n(0)

[
|un|66,Ω1

+ |vn|66,Ω2

])
. (3.12)

By (3.11), (3.12), and the Sobolev embedding theorem, to establish that d(λ) → d(0) as

λ → 0, it suffices to prove that {tn(0)} is bounded. We assume toward a contradiction that
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there exists a subsequence {ni} of {n} such that si := tni
(0) → ∞ as i → ∞. Then by the fact

that tni
(0)(uni

, vni
) ∈ N0 for all i and (1.13), we have that

α
(

s2
i |∇uni

|22,Ω1
|
)

s
2γ
i

|∇uni
|22,Ω1

+
β
(

s2
i |∇vni

|22,Ω2
|
)

s
2γ
i

|∇vni
|22,Ω2

=
∫

Ω1

f̃ (siuni
)

s
2γ+1
i

uni
+

∫

Ω2

h̃(sivni
)

s
2γ+1
i

vni
. (3.13)

Moreover, it follows from (uni
, vni

) ⇀ (u, v) 6= 0 and Lemma 2.7 that the right-hand side of

(3.13) converges to infinity. This contradicts the fact that the limit superior of the left-hand

side is finite by (A1). Hence, {tn(0)} is bounded. The proof is complete.

We now establish the existence of ground-state solutions to the problem (1.1). Motivated

by [16,32], we first study the distance between any (PS)c(λ) sequence of Iλ and a compact set

Kc(0) defined in (3.5). Here, the existence of a (PS)c(λ) sequence can be derived from Lemma

3.1 and a general minimax principle [28, Theorem 2.8, p. 41]. The compactness of Kc(0) follows

directly from the fact that I0 satisfies the PS condition.

Lemma 3.8. For each λ ∈ R+, let {(uλ
n , vλ

n)} be any (PS)c(λ) sequence of Iλ. Then

lim
λ→0

lim sup
n→∞

dist
(
(uλ

n , vλ
n), Kc(0)

)
= 0.

Proof. It just needs to repeat the proof of Lemma 3.8 in [16].

Finally, we prove Theorem 1.7.

Proof of Theorem 1.7. For each λ ∈ R+, let {(uλ
n , vλ

n)} be a (PS)c(λ) sequence of Iλ. We note

that {(uλ
n , vλ

n)} is bounded by Lemma 3.2. Then there exist a subsequence of {(uλ
n , vλ

n)}, still

denoted by {(uλ
n , vλ

n)}, and (uλ, vλ) ∈ E such that (uλ
n , vλ

n) ⇀ (uλ, vλ) as n → ∞. We will try

to find a λ0 > 0 such that (uλ, vλ) 6= 0 for λ ∈ [0, λ0). In fact, since c(0) 6= 0 and Kc(0) is

compact, it holds that

δ0 := dist(0, Kc(0)) = min
(u,v)∈Kc(0)

‖(u, v)‖E > 0.

Moreover, according to Lemma 3.8, for any given ε0 ∈ [0, δ0), there exists a λ0 = λ(ε0)

such that when λ ∈ (0, λ0), there is some nλ := n(λ) such that dist((uλ
n , vλ

n), Kc(0)) 6 ε0

for all n > nλ. Fixing λ ∈ (0, λ0) and by the compactness of Kc(0), there exists a sequence

{(wλ
n , zλ

n)} ⊂ Kc(0) such that ‖(uλ
n , vλ

n) − (wλ
n , zλ

n)‖E 6 ε0 for all n > nλ. Furthermore, for a

subsequence of {(wλ
n , zλ

n)}, still denoted by {(wλ
n , zλ

n)}, and some (wλ, zλ) ∈ Kc(0), it holds that

(wλ
n , zλ

n) → (wλ, zλ) as n → ∞. Hence, we have that (uλ
n , vλ

n) ∈ Bε0(wλ, zλ) for sufficiently large

n. Thus, (uλ, vλ) ∈ Bε0(wλ, zλ) because Bε0(wλ, zλ) is weakly closed. Therefore, ‖(uλ, vλ)‖E >

‖(wλ, zλ)‖E − ε0 > δ0 − ε0 > 0, that is, (uλ, vλ) 6= 0.

We now prove that I′λ(uλ, vλ) = 0 and Iλ(uλ, vλ) = d(λ), that is, (uλ, vλ) is a ground-state

solution to the problem (1.1). Without loss of generality, we may assume that the sequence

{(uλ
n , vλ

n)} satisfies that
(
|∇uλ

n |22,Ω1
, |∇vλ

n |22,Ω2

)
→ (a, b) as n → ∞ for some (a, b) ∈ R

2
+ \ {0}.

For all (u, v) ∈ E, let

Iλ,(a,b)(u, v)

=
1

2

[
α(a)|∇u|22,Ω1

+ β(b)|∇v|22,Ω2

]
−

∫

Ω1

F̃(u)−
∫

Ω2

H̃(v)− λ

[∫

Ω1

Φ̃(u) +
∫

Ω1

Ψ̃(v)

]
.
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Then I′λ,(a,b)(u
λ
n , vλ

n) → 0. Hence, I′λ,(a,b)(uλ, vλ) = 0. We claim that
(
|∇uλ|22,Ω1

, |∇vλ|22,Ω2

)
=

(a, b). In fact, it would follow from (uλ
n , vλ

n) ⇀ (uλ, vλ) that |∇uλ|22,Ω1
6 a and |∇vλ|22,Ω2

6 b,

and then

〈I′λ(uλ, vλ), (uλ, vλ)〉 6 〈I′λ,(a,b)(uλ, vλ), (uλ, vλ)〉 = 0.

Since (uλ, vλ) 6= 0, which is obtained on the above paragraph, by (i) of Lemma 3.4 there exists

a unique t(λ) ∈ (0, 1] such that t(λ)(uλ, vλ) ∈ Nλ. Furthermore, the monotonicity obtained

in Lemma 2.1 and Remark 2.5, the weak lower continuity of norm, Fatou’s lemma, and the

choice of {(uλ
n , vλ

n)} imply that

d(λ) 6 Iλ(t(λ)(uλ, vλ))−
1

2γ + 2
〈I′λ(t(λ)(uλ, vλ)), t(λ)(uλ, vλ)〉

=
1

2
A
(
|t(λ)∇uλ|22,Ω1

)
− 1

2γ + 2
α
(
|t(λ)∇uλ|22,Ω1

)
|t(λ)∇uλ|22,Ω1

+
1

2
B
(
|t(λ)∇vλ|22,Ω2

)
− 1

2γ + 2
β
(
|t(λ)∇vλ|22,Ω2

)
|t(λ)∇vλ|22,Ω2

+
∫

Ω1

[
1

2γ + 2
f̃ (t(λ)uλ)t(λ)uλ − F̃(t(λ)uλ)

]

+
∫

Ω2

[
1

2γ + 2
h̃(t(λ)vλ)t(λ)vλ − H̃(t(λ)vλ)

]

+ λ
∫

Ω1

[
1

2γ + 2
φ̃(t(λ)uλ)t(λ)uλ − Φ̃(t(λ)uλ)

]

+ λ
∫

Ω2

[
1

2γ + 2
ψ̃(t(λ)vλ)t(λ)vλ − Ψ̃(t(λ)vλ)

]

6
1

2
A
(
|∇uλ|22,Ω1

)
− 1

2γ + 2
α
(
|∇uλ|22,Ω1

)
|∇uλ|22,Ω1

+
1

2
B
(
|∇vλ|22,Ω2

)
− 1

2γ + 2
β
(
|∇vλ|22,Ω2

)
|∇vλ|22,Ω2

+
∫

Ω1

[
1

2γ + 2
f̃ (uλ)uλ − F̃(uλ)

]
+

∫

Ω2

[
1

2γ + 2
h̃(vλ)vλ − H̃(vλ)

]

+ λ
∫

Ω1

[
1

2γ + 2
φ̃(uλ)uλ − Φ̃(uλ)

]
+ λ

∫

Ω2

[
1

2γ + 2
ψ̃(vλ)vλ − Ψ̃(vλ)

]

6 lim inf
n→∞

[
1

2
A
(
|∇uλ

n |22,Ω1

)
− 1

2γ + 2
α
(
|∇uλ

n |22,Ω1

)
|∇uλ

n |22,Ω1

]

+ lim inf
n→∞

[
1

2
B
(
|∇vλ

n |22,Ω2

)
− 1

2γ + 2
β
(
|∇vλ

n |22,Ω2

)
|∇vλ

n |22,Ω2

]

+ lim inf
n→∞

∫

Ω1

[
1

2γ + 2
f̃ (uλ

n)u
λ
n − F̃(uλ

n)

]
+ lim inf

n→∞

∫

Ω2

[
1

2γ + 2
h̃(vλ

n)v
λ
n − H̃(vλ

n)

]

+ λ lim inf
n→∞

∫

Ω1

[
1

2γ + 2
φ̃(uλ

n)u
λ
n − Φ̃(uλ

n)

]
+ λ lim inf

n→∞

∫

Ω2

[
1

2γ + 2
ψ̃(vλ

n)v
λ
n − Ψ̃(vλ

n)

]

6 lim
n→∞

[
Iλ(u

λ
n , vλ

n)−
1

2γ + 2
〈I′λ(u

λ
n , vλ

n), (u
λ
n , vλ

n)〉
]

= c(λ) = d(λ).
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Thus, there exists a subsequence {(uλ
ni

, vλ
ni
)} of {(uλ

n , vλ
n)} such that

1

2
A
(
|∇uλ|22,Ω1

)
− 1

2γ + 2
α
(
|∇uλ|22,Ω1

)
|∇uλ|22,Ω1

= lim
i→∞

[
1

2
A
(
|∇uλ

ni
|22,Ω1

)
− 1

2γ + 2
α
(
|∇uλ

ni
|22,Ω1

)
|∇uλ

ni
|22,Ω1

]

=
1

2
A(a)− 1

2γ + 2
α(a)a

and

1

2
B
(
|∇vλ|22,Ω2

)
− 1

2γ + 2
β
(
|∇vλ|22,Ω2

)
|∇vλ|22,Ω2

= lim
i→∞

[
1

2
B
(
|∇vλ

ni
|22,Ω2

)
− 1

2γ + 2
β
(
|∇vλ

ni
|22,Ω2

)
|∇vλ

ni
|22,Ω2

]

=
1

2
B(b)− 1

2γ + 2
B(b)b.

It follows from the monotonicity of (γ+ 1)A(s)− α(s)s and (γ+ 1)B(s)+ β(s)s that (|∇uλ|22,Ω1
,

|∇vλ|22,Ω2
) = (a, b) holds, and then (uλ

n , vλ
n) → (uλ, vλ) in E. Moreover, since Iλ is continuously

differentiability, one can also conclude that I′λ(uλ, vλ) = 0 and Iλ(uλ, vλ) = c(λ) = d(λ). Thus,

(uλ, vλ) is a ground-state solution to the problem (1.1).

Finally, we will end the proof of Theorem 1.7 by proving that (uλ, vλ) → (u0, v0) as λ → 0,

where (u0, v0) is a ground-state solution to (1.1) with λ = 0. Actually, let {λn} ⊂ [0, λ0) such

that λn → 0 as n → ∞. Then as a consequence of the fact that (uλn
, vλn

) is a ground-station

solution to (1.1) with λ = λn, it hold that I′λn
(uλn

, vλn
) = 0 and Iλn

(uλn
, vλn

) = c(λn). By

Lemma 3.7, similar to (3.3), we have that as n → ∞,

c(0) + o(1) = c(λn)

= Iλn
(uλn

, vλn
)− 1

2γ + 2
〈I′λn

(uλn
, vλn

), (uλn
, vλn

)〉

>
γ

2γ + 2
min{α(0), β(0)}‖(uλn

, vλn
)‖2

E.

This yields that {(uλn
, vλn

)} is bounded in E. Hence, it follows from the Sobolev embedding

theorem that as n → ∞,

I0(uλn
, vλn

) = Iλn
(uλn

, vλn
) + λn

[∫

Ω1

Φ̃(uλn
) +

∫

Ω1

Ψ̃(vλn
)

]
→ c(0),

and

〈
I′0(uλn

, vλn
), (w, z)

〉
=

〈
I′λn

(uλn
, vλn

), (w, z)
〉
+ λn

[∫

Ω1

φ̃(uλn
)w +

∫

Ω1

ψ̃(vλn
)z

]

= λn

[∫

Ω1

φ̃(uλn
)w +

∫

Ω1

ψ̃(vλn
)z

]

= o(1)‖(w, z)‖E, (w, z) ∈ E.

Thus, {(uλn
, vλn

)} is a (PS)c(0) sequence of I0 in E, and then by Lemma 3.2, there exists a sub-

sequence of {(uλn
, vλn

)}, still denoted by {(uλn
, vλn

)}, and (u0, v0) ∈ E such that (uλn
, vλn

) →
(u0, v0) and I0(u0, v0) = c(0), that is, (u0, v0) is a ground-state solution to (1.1) with λ = 0.

The proof is complete.
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4 Appendix

In this section, some regular properties of compound functions will be proved.

Lemma 4.1. Assume that f ∈ C2(R) and f ′, f ′′ ∈ L∞(R). If u ∈ W2,p(Ω) and 2(N − p) < N,

then f (u) ∈ W2,p(Ω) and

Dα( f (u)) =





f ′(u)Dαu, |α| 6 1,

f ′′(u)(D1u)2 + f ′(u)Dαu, α = (2, 0, 0, . . . ),

. . .

Proof. According to [27, Theorem 2.5.1, p. 70], we have that f (u) ∈ W1,p(Ω) and D( f (u)) =

f ′(u)Du. When |α| 6 1, we have that Dα( f (u)) ∈ Lp(Ω). Assume that |α| = 2, without loss

of generality, let α = (2, 0, . . . , 0). Then we could calculate D1( f (u)) as follows. Actually, for

any given φ ∈ C∞
0 (Ω), because f (u) ∈ W1,p(Ω) and D1φ ∈ C∞

0 (Ω), we have that

∫

Ω

f (u)Dαφ = −
∫

Ω

D1( f (u))D1φ = −
∫

Ω

f ′(u)D1uD1φ. (4.1)

Let g(s) = f ′(s) for s ∈ R. Since f ∈ C2(R) and f ′′ ∈ L∞(R), then g ∈ C1(R) and

g′ ∈ L∞(R). Thus, g(u) ∈ W1,p(Ω). It follows from the weak derivative product formula

that g(u)D1u ∈ W1,p(Ω) and D1(g(u)D1u) = D1(g(u))D1u + g(u)Dαu = g′(u)(D1u)2 +

g(u)Dαu = f ′′(u)(D1u)2 + f ′(u)Dαu. Moreover, (4.1) can be written

∫

Ω

f (u)Dαφ = −
∫

Ω

(g(u)D1u)D1φ =
∫

Ω

D1(g(u)D1u)φ =
∫

Ω

[
f ′′(u)(D1u)2 + f ′(u)Dαu

]
φ.

Thus, Dα( f (u)) = f ′′(u)(D1u)2 + f ′(u)Dαu.

Next, we prove Dα( f (u)) ∈ Lp(Ω). In fact, because f ′, f ′′ ∈ L∞(RN) and Dαu ∈ Lp(Ω), we

need only illustrate (D1u)2 ∈ Lp(Ω), that is, D1u ∈ L2p(Ω). In fact, since D1u ∈ W1,p(Ω) and

2p < Np/(N − p), it follows from the Sobolev embedding theorem that W1,p(Ω) →֒ L2p(Ω),

and then D1u ∈ L2p(Ω). The proof is complete.

Lemma 4.2. Assume that there exists M > 0 such that |g′(s)/g3(s)| 6 M for s ∈ R. If u ∈ H2(D),

then G−1(u) ∈ H2(D), where D ⊂ R
3 is an open domain with ∂D ∈ C1.

Proof. Let f (s) = G−1(s) for s ∈ R. Then the conclusion holds by Lemma 4.1.
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Abstract. We consider the Dirichlet problem for a class of quasilinear elliptic systems in
domain with irregular boundary. The principal part satisfies componentwise coercivity
condition and the nonlinear terms are Carathéodory maps having Morrey regularity in
x and verifying controlled growth conditions with respect to the other variables. We
have obtained boundedness of the weak solution to the problem that permits to apply
an iteration procedure in order to find optimal Morrey regularity of its gradient.
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1 Introduction

We are interested in the regularity properties of a kind of quasilinear elliptic operators with

discontinuous data acting in a bounded domain Ω, with irregular boundary ∂Ω. Precisely, we

consider the following Dirichlet problem

{
div

(
A(x)Du + a(x, u)

)
= b(x, u, Du), x ∈ Ω

u(x) = 0, x ∈ ∂Ω .
(1.1)

Here Ω ⊂ R
n, n ≥ 2 is a bounded Reifenberg-flat domain, the matrix A = {A

αβ
ij (x)}

α,β≤n
i,j≤N of the

coefficients is essentially bounded in Ω, and the non linear terms

a(x, u) = {aα
i (x, u)}α≤n

i≤N and b(x, u, z) = {bi(x, u, z)}i≤N

are Carathéodory maps, i.e., they are measurable in x ∈ Ω for all u ∈ R
N , z ∈ M

N×n and

continuous in (u, z) for almost all x ∈ Ω. Since we are going to study the weak solutions of

BCorresponding author. Email: lsoftova@unisa.it
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(1.1) we need to impose controlled growth conditions on the nonlinear terms in order to ensure

convergence of the integrals in the definition (2.6). For this aim we suppose that (cf. [17, 33])

aα
i (x, u) = O(ϕ1(x) + |u|

n
n−2 ),

bi(x, u, z) = O(ϕ2(x) + |u|
n+2
n−2 + |z|

n+2
n )

for n > 2. In the particular case n = 2, the powers of |u| could be arbitrary positive numbers,

while the growth of |z| is subquadratic.

Our aim is to study the dependence of the solution from the regularity of the data and to

obtain Calderón–Zygmund type estimate in an optimal Morrey space.

There are various papers dealing with the integrability and regularity properties of differ-

ent kind of quasilinear and nonlinear differential operators. Namely, it is studied the question

how the regularity of the data influences on the regularity of the solution. In the scalar case N = 1

the celebrated result of De Giorgi and Nash asserts that the weak solution of linear elliptic and

parabolic equations with only L∞ coefficients is Hölder continuous [12].

Better integrability can be obtained also by the result of Gehring [16] relating to functions

satisfying the inverse Hölder inequality. Later Giaquinta and Modica [18] noticed that certain

power of the gradient of a function u ∈ W1,p satisfies locally the reverse Hölder inequal-

ity. Modifying Gehring’s lemma they obtained better integrability for the weak solutions of some

quasilinear elliptic equations. Their pioneer works have been followed by extensive research ded-

icated to the regularity properties of various partial differential operators using the Gehring–

Giaquinta–Modica technique, called also a “direct method” (cf. [3, 27, 28] and the references

therein.) Recently the method of A-harmonic approximation permits to study the regularity with-

out using Gehring’s lemma (see for example [1]).

The theory for linear divergence form operators defined in Reifenberg’s domain was de-

veloped firstly in [8, 10]. In [4, 5] the authors extend this technique to quasilinear uniformly

elliptic equations in the Sobolev–Morrey spaces. Making use of the Adams inequality [2] and

the Hartmann–Stampacchia maximum principal they obtain Hölder regularity of the solution

while in [7] it is obtained generalized Hölder regularity for regular and nonregular nonlinear

elliptic equations.

Concerning nonlinear nonvariational operators we can mention the results of

Campanato [11] related to basic systems of the form F(D2u) = 0 in the Morrey spaces. Af-

terwards Marino and Maugeri in [24] have contributed to this theory with their own research

on the boundary regularity of the solutions of basic systems. Imposing differentiability of the

operator F they obtain, via immersion theorems, Morrey regularity of the second derivatives

D2u ∈ L
2,2− 2

q , q > 2. These studies have been extended in [15] to nonlinear equations of a

kind F(x, D2u) without any differentiability assumptions on F. It is obtained global Morrey

regularity via the Korn trick and the near operators theory of Campanato. Moreover, in the

variational case it is established a Caccioppoli-type inequality for a second-order degenerate

elliptic systems of p-Laplacian type [14]. Exploiting the classical Campanato’s approach and

the hole-filling technique due to Widman, it is proved a global regularity result for the gradient

of u in the Morrey and Lebesgue spaces.

In the present work we consider quasilinear systems in divergence form with a principal

part satisfying componentwise coercivity condition. This condition permits to apply the results of

[29,33] that gives L∞ estimate of the weak solution. In addition the controlled growth conditions

imposed on the nonlinear terms allow to apply the integrability result from [31]. Making

use of step-by-step technique we show optimal Morrey regularity of the gradient depending

explicitly on the regularity of the data.
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In what follows we use the standard notation:

• Ω is a bounded domain in R
n, with a Lebesgue measure |Ω| and boundary ∂Ω;

• Bρ(x) ⊂ R
n is a ball, Ωρ(x) = Ω ∩ Bρ(x) with ρ ∈ (0, diam Ω], x ∈ Ω;

• M
N×n is the set of N × n-matrices;

• u = (u1, . . . , uN) : Ω → R
N , Dαuj = ∂uj/∂xα,

|u|2 = ∑
j≤N

|uj|2, Du = {Dαuj}α≤n
j≤N ∈ M

N×n, |Du|2 = ∑
α≤n
j≤N

|Dαuj|2;

• For u ∈ Lp(Ω; R
N) we write ‖u‖p,Ω instead of ‖u‖Lp(Ω;RN);

• The spaces W1,p(Ω; R
N) and W

1,p
0 (Ω; R

N) are the classical Sobolev spaces as they are

defined in [19].

Throughout the paper the standard summation convention on repeated upper and lower

indexes is adopted. The letter C is used for various positive constants and may change from

one occurrence to another.

2 Definitions and auxiliary results

In [34] Reifenberg introduced a class of domains with rough boundary that can be approxi-

mated locally by hyperplanes.

Definition 2.1. The domain Ω is (δ, R) Reifenberg-flat if there exist positive constants R and

δ < 1 such that for each x ∈ ∂Ω and each ρ ∈ (0, R) there is a local coordinate system

{y1, . . . , yn} with the property

Bρ(x) ∩ {yn > δρ} ⊂ Ωρ(x) ⊂ Bρ(x) ∩ {yn > −δρ}. (2.1)

Reifenberg arrived at this concept of flatness in his studies on the Plateau problem in

higher dimensions and he proved that such a domain is locally a topological disc when δ is

small enough, say δ < 1/8. It is easy to see that a C1-domain is a Reifenberg flat with δ → 0 as

R → 0. A domain with Lipschitz boundary with a Lipschitz constant less than δ also verifies

the condition (2.1) if δ is small enough, say δ < 1/8, (see [10, Lemma 5.1]). But the class of

Reifenberg’s domains is much more wider and contains domains with fractal boundaries. For

instance, consider a self-similar snowflake Sβ. It is a flat version of the Koch snowflake Sπ/3

but with angle of the spike β such that sin β ∈ (0, 1/8). This kind of flatness exhibits minimal

geometrical conditions necessary for some natural properties from the analysis and potential

theory to hold. For more detailed overview of these domains we refer the reader to [35] (see

also [8, 27] and the references therein).

In addition (2.1) implies the (A)-property (cf. [17, 28]). Precisely, there exists a positive

constant A(δ) < 1/2 such that

A(δ)|Bρ(x)| ≤ |Ωρ(x)| ≤ (1 − A(δ))|Bρ(x)| (A)

for any fixed x ∈ ∂Ω, ρ ∈ (0, R) and δ ∈ (0, 1). This condition excludes that Ω may have

sharp outward and inward cusps. As consequence, the Reifenberg domain is W1,p-extension

domain, 1 ≤ p ≤ ∞, hence the usual extension theorems, the Sobolev and Sobolev-Poincaré

inequalities are still valid in Ω up to the boundary.
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Definition 2.2. A real valued function f ∈ Lp(Ω) belongs to the Morrey space Lp,λ(Ω) with

p ∈ [1, ∞), λ ∈ (0, n), if

‖ f ‖p,λ;Ω =

(
sup
Bρ(x)

1

ρλ

∫

Ωρ(x)
| f (y)|p dy

)1/p

< ∞

where Bρ(x) ranges in the set of all balls with radius ρ ∈ (0, diam Ω] and x ∈ Ω.

In [25] Morrey obtained local Hölder regularity of the solutions to second order elliptic

equations. His new approach consisted in estimating the growth of the integral function

g(ρ) =
∫
Bρ

|Du(y)|pdy via a power of the radius of the same ball, i.e., Cρλ with λ > 0.

Although he did not talk about function spaces, his paper is considered as the starting point

for the theory of the Morrey spaces Lp,λ.

The family of the Lp,λ spaces is partially ordered (cf. [30]).

Lemma 2.3. For 1 ≤ r′ ≤ r′′ < ∞ and σ′, σ′′ ∈ [0, n) the following embedding holds

Lr′′σ′′
(Ω) →֒ Lr′,σ′

(Ω) iff
n − σ′

r′
≥

n − σ′′

r′′
.

Furthermore, we have the continuous inclusion

L
nr′

n−σ′ (Ω) →֒ Lr′,σ′
(Ω) .

For x ∈ R
n, Iα is the Riesz potential operator whose convolution kernel is |x|α−n, 0 < α < n.

Suppose that f is extended as zero in R
n and consider its Riesz potential

Iα f (x) =
∫

Rn

f (y)

|x − y|n−α
dy.

In [2] Adams obtained the following inequality.

Lemma 2.4. Let f ∈ Lr,σ(Rn), then Iα : Lr,σ → Lr∗σ ,σ is continuous and

‖Iα f ‖Lr∗σ ,σ(Rn) ≤ C‖ f ‖Lr,σ(Rn), (2.2)

where C depends on n, r, σ, |Ω|, and r∗σ is the Sobolev–Morrey conjugate

r∗σ =

{
(n−σ)r
n−σ−r if r + σ < n

arbitrary large number if r + σ ≥ n.
(2.3)

The nonlinear terms a(x, u) and b(x, u, z) satisfy controlled growth conditions

|a(x, u)| ≤ Λ(ϕ1(x) + |u|
2∗

2 ), (2.4)

ϕ1 ∈ Lp,λ(Ω), p > 2, p + λ > n, λ ∈ [0, n),

|b(x, u, z)| ≤ Λ
(

ϕ2(x) + |u|2
∗−1 + |z|2

(2∗−1)
2∗
)
, (2.5)

ϕ2 ∈ Lq,µ(Ω), q >
2∗

2∗ − 1
, 2q + µ > n, µ ∈ [0, n)

with a positive constant Λ. Here 2∗ is te Sobolev conjugate of 2, i.e. 2∗ = 2n
n−2 if n > 2 and it is

arbitrary large number if n = 2 (cf. [17, 22, 31, 33]).
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A weak solution to (1.1) is a function u ∈ W1,2
0 (Ω; R

N) satisfying

∫

Ω
A

αβ
ij (x)Dβuj(x)Dαχi(x)dx +

∫

Ω
aα

i (x, u(x))Dαχi(x)dx

+
∫

Ω
bi(x, u(x), Du(x))χi(x)dx = 0, j = 1, . . . , N

(2.6)

for all χ ∈ W1,2
0 (Ω; R

N) where the convergence of the integrals is ensured by (2.4) and (2.5).

3 Main result

The general theory of elliptic systems does not ensure boundedness of the solution if we

impose only growth conditions as (2.4) and (2.5) (see for example [21, 23]). For this goal we

need some additional structural restrictions on the operator as componentwise coercivity similar

to that imposed in [23, 29, 32, 33].

Suppose that ‖A‖∞,Ω ≤ Λ0 and for each fixed i ∈ {1, . . . , N} there exist positive constants

θi and γ(Λ0) such that for |ui| ≥ θi we have





γ|zi|2 − Λ|u|2
∗
− Λϕ1(x)2 ≤

n

∑
α=1

(
A

αβ
ij (x)z

j
β + aα

i (x, u)
)

zi
α

bi(x, u, z) sign ui(x) ≥ −Λ
(

ϕ2(x) + |u|2
∗−1 + |zi|2

2∗−1
2∗

) (3.1)

for a.a. x ∈ Ω and for all z ∈ M
N×n. The functions ϕ1 and ϕ2 are as in (2.4) and (2.5).

Theorem 3.1. Let u ∈ W1,2
0 (Ω; R

N) be a weak solution of the problem (1.1) under the conditions

(2.1), (2.4), (2.5) and (3.1). Then

u ∈ W1,r
0 ∩ L∞(Ω; R

N) with r = min{p, q∗µ} .

Moreover

|Du| ∈ Lr,ν(Ω) with ν = min

{
n +

r(λ − n)

p
, n +

r(µ − n)

q∗µ

}
(3.2)

where q∗µ is the Sobolev–Morrey conjugate of q (see (2.3)).

Remark 3.2. If we take a bounded weak solution of (1.1) u ∈ W1,r
0 ∩ L∞(Ω; R

N) we can substitute

the coercivity condition (3.1) with a uniform ellipticity condition. In this case we may suppose the

principal coefficients to be discontinuous with small discontinuity controlled by their BMO modulus.

Precisely, we suppose that

sup
0<ρ≤R

sup
y∈Ω

−
∫

Ωρ(y)
|A

αβ
ij (x)− A

αβ
ij Ωρ(y)

|2 dx ≤ δ2,

A
αβ
ij Ωρ(y)

= −
∫

Ωρ(y)
A

αβ
ij (x) dx,

where δ ∈ (0, 1) is the same parameter as in (2.1). The small BMO successfully substitute the VMO in

the study of PDEs with discontinuous coefficients, harmonic analysis and integral operators studying,

geometric measure analysis and differential geometry (see [4,6,8,20,28,33] and the references therein).

A higher integrability result for such kind of operators can be found in [13, 28, 31] for equations and

systems, respectively.
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Proof. The essential boundedness of the solution follows by [29] (see also [32, 33]). Precisely,

there exists a constant depending on n, Λ, p, q, ‖ϕ1‖Lp(Ω), ‖ϕ2‖Lq(Ω) and ‖Du‖L2(Ω) such that

‖u‖∞,Ω ≤ M . (3.3)

Let the solution and the functions ϕ1 and ϕ2 be extended as zero outside Ω. By the Defini-

tion 2.2 we have that ϕ1 ∈ Lp(Ω) and ϕ2 ∈ Lq(Ω). In [17] Giaquinta show that there exists

an exponent r̃ > 2 such that u ∈ W1,̃r
loc(Ω; R

N). His approach is based on the reverse Hölder

inequality and a version of Gehring’s lemma. Since the Cacciopoli-type inequalities hold up to

the boundary, this method can be carried out up to the boundary and it is done in [17, Chap-

ter 5] for the Dirichlet problem in Lipschitz domain (see also [3, 11, 13, 31]). In [9] the authors

have shown that an inner neighborhood of (δ, R)-Reifenberg flat domain is a Lipschitz domain

with the (δ, R)-Reifenberg flat property.

Lemma 3.3. ([9]) Let Ω be a (δ, R)-Reifenberg flat domain for sufficiently small δ > 0. Then for any

0 < ε < R
5 the set Ωε = {x ∈ Ω : dist (x, ∂Ω) > ε} is a Lipschitz domain satisfying (2.1).

This lemma permits us to extend the results of [17, Chapter 5] in Reifenberg-flat domains.

Further |Du| belongs at least to Lr0(Ω) with r0 = min{p, q∗} >
n

n+2 (cf. [31]).

Let n > 2 and u ∈ W1,r0
0 (Ω; R

N) ∩ L∞(Ω; R
N) be a solution to (1.1). Our first step is to

improve its integrability. Fixing that solution in the nonlinear terms we obtain linear problem

{
Dα

(
A

αβ
ij (x)Dβuj(x)

))
= fi(x)− Dα Aα

i (x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(3.4)

where we have used the notion

fi(x) = bi(x, u, Du), Aα
i (x) = aα

i (x, u).

By (2.4), (2.5) and (3.3) we get

|Aα
i (x)| ≤ Λ

(
ϕ1(x) + |u(x)|

n
n−2

)
(3.5)

that gives Aα
i (x) ∈ Lp,λ(Ω) with p > 2 and p + λ > n. Analogously

| fi(x)| ≤ Λ
(

ϕ2(x) + |u|
n+2
n−2 + |Du|

n+2
n

)
. (3.6)

Since |Du| ∈ Lr0(Ω) we get |Du|
n+2

n ∈ L
r0n
n+2 (Ω) that gives fi ∈ Lq1(Ω) where q1 = min{q, r0n

n+2}.

Let Γ be the fundamental solution of the Laplace operator. Recall that the Newtonian

potential of fi(x) is given by

N fi(x) =
∫

Ω
Γ(x − y) fi(y) dy, ∆N fi(x) = fi(x) for a.a. x ∈ Ω

and by [19, Theorem 9.9] we have that N fi ∈ W2,q1(Ω). Denote by

Fα
i (x) = DαN fi(x) = C(n)

∫

Ω

(x − y)α fi(y)

|x − y|n
dy for a.a. x ∈ Ω

and Fi = (F1
i , . . . , Fn

i ) = gradN fi. Hence div Fi = fi and

{
Dα

(
A

αβ
ij (x)Dβuj(x)

))
= Dα(Fα

i (x)− Aα
i (x)), x ∈ Ω

u(x) = 0, x ∈ ∂Ω.
(3.7)
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By (3.5) and (3.6) we get

|Fα
i (x)− Aα

i (x)| ≤ C(n, Λ)
∫

Ω

ϕ2(y) + |u(y)|
n+2
n−2 + |Du(y)|

n+2
n

|x − y|n−1
dy

+ Λ
(

ϕ1(x) + |u(x)|
n

n−2

)

≤ C
(

1 + ϕ1(x) + I1 ϕ2(x) + I1|Du(x)|
n+2

n

)
(3.8)

with a constant depending on n, Λ, and ‖u‖∞,Ω. By (2.2) we get

‖I1 ϕ2‖L
q∗µ ,µ

(Ω)
≤ C‖ϕ2‖Lq,µ(Ω)

‖I1|Du|
n+2

n ‖
L
(

r0n
n+2 )

∗
(Ω)

≤ C‖ |Du|
n+2

n ‖
L

r0n
n+2 (Ω)

≤ C‖Du‖
n+2

n

Lr0 (Ω)

where q∗µ is the Sobolev–Morrey conjugate of q and

(
r0n

n + 2

)∗

=





r0n

n + 2 − r0
if r0 < n + 2 ,

arbitrary large number if r0 ≥ n + 2 .

Hence Fα
i − Aα

i ∈ Lr1(Ω) with r1 = min{p, q∗µ, ( r0n
n+2 )

∗}. If r1 = min{p, q∗µ} then we have the

assertion, otherwise r1 = ( r0n
n+2 )

∗ and we consider two cases:

1. r0 = p that leads to p > ( pn
n+2 )

∗ which is impossible;

2. r0 = q∗ and we consider two sub-cases:

2a) q∗ ≥ n+ 2 which means that r1 is arbitrary large number and we arrive to contradiction

with the assumption r1 < min{p, q∗µ};

2b) q∗ < n + 2 hence r1 = q∗n
n+2−q∗ .

Applying [10, Theorem 1.7] to the linearized system (3.7) we get that for each matrix function

F − A ∈ Lr1(Ω; M
N×n), with r1 = q∗n

n+2−q∗ holds u ∈ W1,r1
0 ∩ L∞(Ω; R

N) with the estimate

‖Du‖r1,Ω ≤ C‖F − A‖r1,Ω.

Here A(x) = {Aα
i (x)}α≤n

i≤N and F(x) = {Fα
i (x)}α≤n

i≤N . Let us note that this estimate is valid for

each solution of (3.7) including u.

Repeating the above procedure for u ∈ W1,r1(Ω; R
N) ∩ L∞(Ω; R

N) we get that

|Du| ∈ Lr2(Ω) r2 = min
{

p, q∗µ,
( r1n

n + 2

)∗}
.

If r2 = min{p, q∗µ} then we have the assertion, otherwise r2 = ( r1n
n+2 )

∗
> r1 and we repeat

the arguments of the previous case. In such a way we get an increasing sequence of indexes

{rk}k≥0. After k′ iterations we obtain rk′ ≥ min{p, q∗µ} and

‖Du‖r,Ω ≤ C‖F − A‖r,Ω with r = min{p, q∗µ}. (3.9)

The second step consists of showing that the gradient lies in a suitable Morrey space. Sup-

pose that |Du| ∈ Lr,θ(Ω) with arbitrary θ ∈ [0, n). Direct calculations give |Du|
n+2

n ∈ L
rn

n+2 ,θ(Ω)

(
1

ρθ

∫

Bρ

|Du|
n+2

n
rn

n+2 dx

) n+2
rn

=

(
1

ρθ

∫

Bρ

|Du|r dx

) n+2
rn

≤ ‖Du‖
n+2

n
r,θ;Ω.
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Keeping in mind (3.8) and (2.2) we get

I1|Du|
n+2

n ∈ L( nr
n+2 )

∗
θ ,θ(Ω)

while ϕ1 ∈ Lp,λ(Ω) and I1ϕ2 ∈ Lq∗µ,µ(Ω).

Further by the Hölder inequality we get the estimates

(
1

ρ
n− n−λ

p r

∫

Bρ

ϕ1(x)r dx

) 1
r

≤ C(n)‖ϕ1‖p,λ;Ω,


 1

ρ
n− n−µ

q∗µ
r

∫

Bρ

(I1 ϕ2(x))r dx




1
r

≤ C(n)‖I1ϕ2‖q∗µ,µ;Ω

that implies ϕ1 ∈ L
r,n− n−λ

p r(Ω) and I1ϕ2 ∈ L
r,n− n−µ

q∗µ
r
(Ω).

Concerning the potential I1|Du|
n+2

n we consider two cases:

1. n − θ ≤ rn
n+2 then

(
nr

n+2

)∗
θ

is arbitrary large number and we can take it such that

I1|Du|
n+2

n ∈ Lr(Ω);

2. n − θ >
rn

n+2 then by the embedding between the Morrey spaces we have

L( nr
n+2 )

∗
θ ,θ(Ω) ⊂ Lr,r−2+θ n+2

n (Ω) .

Then

|Fα
i − Aα

i | ∈ L
r,min{r−2+θ n+2

n ,n− n−λ
p r,n− n−µ

q∗µ
r}
(Ω)

which implies via [6, Theorem 5.1] that the gradient of the solution of the linearized prob-

lem satisfies

|Du| ∈ L
r,min{r−2+θ n+2

n ,n− n−λ
p r,n− n−µ

q∗µ
r}
(Ω) .

In order to determine the optimal θ we use step-by-step arguments starting with the result

obtained in the first step and taking as θ0 = 0. Suppose that

r − 2 < min

{
n −

n − λ

p
r, n −

n − µ

q∗µ
r

}
,

otherwise we have the assertion.

Repeating the above procedure with u such that |Du| ∈ Lr,θ1(Ω) with θ1 = r − 2 we obtain

|Du| ∈ Lr,θ2(Ω)

with

θ2 = min

{
r − 2 + θ1

n + 2

n
, n −

n − λ

p
r, n −

n − µ

q∗µ
r

}
.

If θ2 = min{n − n−λ
p r, n − n−µ

q∗µ
r} we have the assertion, otherwise we take

θ2 = r − 2 + θ1
n + 2

n
= (r − 2)

(
1 +

n + 2

n

)
.
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Iterating we obtain an increasing sequence {θk = (r − 2)∑
k−1
i=0 (

n+2
n )i}k≥1. Then there exists an

index k′′ for which

r − 2 + θk′′
n + 2

n
≥ min

{
n −

n − λ

p
r, n −

n − µ

q∗µ
r

}

that gives the assertion.

If n = 2 then the growth conditions have the form

|a(x, u)| ≤ Λ(ϕ1(x) + |u|κ),

ϕ1 ∈ Lp,λ(Ω), p > 2, p + λ > n, λ ∈ [0, n),
(3.10)

|b(x, u, z)| ≤ Λ
(

ϕ2(x) + |u|κ−1 + |z|2−ǫ
)
,

ϕ2 ∈ Lq,µ(Ω), q > 1, 2q + µ > n, µ ∈ [0, n)
(3.11)

with κ > 1 arbitrary large number and ǫ > 0 arbitrary small.

Fixing again the solution u ∈ W1,r0
0 (Ω; R

N) ∪ L∞(Ω; R
N) in the nonlinear terms and using

the Lemma 2.3 and Lemma 2.4 we obtain

Fα
i − Aα

i ∈ Lr1(Ω), r1 = min
{

p, q∗µ,
( r0

2 − ǫ

)∗}
.

If r1 =
( r0

2−ǫ

)∗
then the only possible value for r0 is r0 = q∗ and hence r1 = 2q∗

2(2−ǫ)−q∗
, otherwise

we rich to contradiction. Then by [10] we get |Du| ∈ Lr1(Ω).

Repeating the above procedure with u ∈ W1,r1
0 ∩ L∞(Ω; R

N) we obtain that

|Du| ∈ Lr2(Ω), r2 = min
{

p, q∗µ,
( r1

2 − ǫ

)∗}
.

If

r2 =
( r1

2 − ǫ

)∗
< min{p, q∗µ}

we repeat the same procedure obtaining an increasing sequence {rk}k≥0. Hence there exist an

index k0 such that rk0
≤ min{p, q∗µ} that gives the assertion.

To obtain Morrey’s regularity we take |Du| ∈ Lr,θ(Ω) with arbitrary θ ∈ [0, 2). Hence

|Du|2−ǫ ∈ L
r

2−ǫ ,θ(Ω). By Lemma 2.3 and Lemma 2.4 we obtain

ϕ1 ∈ Lp,λ(Ω) ⊂ L
r,2− 2−λ

p r(Ω)

I1 ϕ2 ∈ Lq∗µ,µ(Ω) ⊂ L
r,2− 2−µ

q∗µ
r
(Ω)

I1|Du|2−ǫ ∈ L( r
2−ǫ )

∗
θ ,θ(Ω) ⊂ Lr,r−2(1−ǫ)+θ(2−ǫ)(Ω).

Hence the Calderón–Zygmund estimate for the linearized problem (see [6]) gives

|Du| ∈ L
r,min{2− 2−λ

p r,2− 2−µ

q∗µ
r,r−2(1−ǫ)+θ(2−ǫ)}

(Ω) .

To determine the precise Morrey space we apply the step-by-step procedure.

1. Since the last term is minimal when θ = 0 than we start with an this initial value θ0 = 0.

Suppose that

r − 2(1 − ǫ) < min

{
2 −

2 − λ

p
r, 2 −

2 − µ

q∗µ
r

}
< 2

(otherwise we have the assertion) and denote θ1 = r − 2(1 − ǫ).
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2. Take |Du| ∈ Lr,θ1(Ω). The above procedure gives |Du| ∈ Lr,θ2(Ω) with

θ2 = min

{
2 −

2 − λ

p
r, 2 −

2 − µ

q∗µ
, r − 2(1 − ǫ) + θ1(2 − ǫ)

}
.

If θ2 = r − 2(1− ǫ) + θ1(2− ǫ) (otherwise we have the assertion) then we continue with the

same procedure obtaining the sequence defined by recurrence

θ0 = 0, θk = r − 2(1 − ǫ) + θk−1(2 − ǫ).

3. Since r > 2, hence the sequence is increasing and there exists an index k such that

θk ≥ min

{
2 −

2 − λ

p
r, 2 −

2 − µ

q∗µ
r

}

which is the assertion.

Corollary 3.4. Let the conditions of Theorem 3.1 hold. Then

ui ∈ C0,α(Ω) with α = min

{
1 −

n − λ

p
, 1 −

n − µ

q∗µ

}
,

and for any ball Bρ(z) ⊂ Ω we have

osc
Bρ(z)

ui ≤ Cρα ∀ i = 1, . . . , N .

Proof. By (3.2) we have that for each ball Bρ(z) ⊂ Ω

∫

Bρ(z)
|Dui(y)| dy ≤ Cρn− n−ν

r .

Then for any x, y ∈ Bρ(z) and for each fixed i = 1, . . . , N we have

|ui(x)− ui(y)| ≤ 2|ui(x)− ui
Bρ(z)

| ≤ C
∫

Bρ(z)

Dui(y)

|x − y|n−1
dy

≤ C
∫ ρ

0

∫

Bt(z)
|Dui(y)| dy

dt

tn
≤ Cρ1− n−ν

r .
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Abstract. Oscillation of solutions of even order half-linear differential equations of the
form

D(αn, . . . , α1)x + q(t)|x|β sgn x = 0, t ≥ a > 0, (1.1)

where αi, 1 ≤ i ≤ n, and β are positive constants, q is a continuous function from [a, ∞)
to (0, ∞) and the differential operator D(αn, . . . , α1) is defined by

D(α1)x =
d

dt

(

|x|α1 sgn x
)

and

D(αi, . . . , α1)x =
d

dt

(

|D(αi−1, . . . , α1)x|αi sgn D(αi−1, . . . , α1)x
)

, i = 2, . . . , n,

is proved in the case where α1 · · · αn = β through reduction to the problem of oscillation
of solutions of some lower order differential equations associated with (1.1).

Keywords: half-linear differential equation, oscillation test.
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1 Introduction

Consider differential equations of the form

D(αn, . . . , α1)x + q(t)|x|β sgn x = 0, t ≥ a > 0, (1.1)

where n ≥ 2 is an even integer, α1, α2, . . . , αn and β are positive constants, q : [a, ∞) →
(0, ∞), a > 0, is a continuous function and the differential operator D(αn, . . . , α1)x is defined
recursively by

D(α1)x =
d

dt

(

|x|α1 sgn x
)
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2 J. Jaroš

and

D(αi, . . . , α1)x =
d

dt

(

|D(αi−1, . . . , α1)x|αi sgn D(αi−1, . . . , α1)x
)

, i = 2, . . . , n.

It is convenient to denote by C(αj, . . . , α1)[t0, ∞), 1 ≤ j ≤ n, the set of continuous functions
x : [t0, ∞) → R such that D(αi, . . . , α1)x, i = 1, . . . , j, exist and are continuous on [t0, ∞).

A function x(t) from C(αn, . . . , α1)[t0, ∞) is called a solution of equation (1.1) on [t0, ∞) if it
satisfies (1.1) at each t ∈ [t0, ∞). We restrict our consideration to the so called proper solutions
of (1.1), i.e., solutions which are not trivial in any neighborhood of infinity. Such a solution is
called oscillatory if it has an unbounded set of zeros, and it is called nonoscillatory otherwise.

It is known that for any nonoscillatory solution x(t) of (1.1) there exist a t0 ≥ a and an odd
integer l, 1 ≤ l ≤ n − 1, such that for t ≥ t0

x(t)D(αj, . . . , α1)x(t) > 0 for j = 1, . . . , l, (1.2)

and
(−1)n+jx(t)D(αj, . . . , α1)x(t) < 0 for j = l + 1, . . . , n, (1.3)

(see Naito [19]). Functions belonging to C(αn, . . . , α1)[t0, ∞) and satisfying (1.2) and (1.3) for
t ≥ t0, will be called nonoscillatory functions of Kiguradze’s degree l. We denote by Nl the set
of all nonoscillatory solutions of equation (1.1) which are of degree l. The elements of N1

(resp. Nn−1) will be called nonoscillatory solutions of the minimal (resp. maximal) Kiguradze’s
degree.

Existence and asymptotic behavior of positive solutions of nonlinear differential equations
of the form (1.1) in the case where the exponents satisfied either β < α1 · · · αn or β > α1 · · · αn

were studied by Naito in [18,19] (for some particular cases see also [7,8,11–13,16,17,20–22,24,
25]), but the important special case in which β = α1 · · · αn seems to remain untouched until
now. As far as we know, the paper by Došlý et al. [4] devoted to the study of nonoscillation
of solutions of higher order half-linear differential equations of the form

n

∑
k=0

(−1)k

(

rk(t)
∣

∣x(k)
∣

∣

α sgn x(k)
)(k)

= 0,

where rk, 0 ≤ k ≤ n, are continuous functions with rn(t) > 0 in the interval under considera-
tion, is the only work on the subject.

Recently, the present author in [6] gave an oscillation criterion which (when specialized to
equation (1.1)) says that all solutions of (1.1) are oscillatory if there exists an ε ∈ (0, 1] such
that

∫ ∞

a
tα2···αn+α3···αn+···+(1−ε)αn q(t)dt = ∞. (1.4)

The result is sharp in the sense that if ε = 0 in (1.1)), then equation (1.1) may have nonoscil-
latory solutions. On the other hand, the above criterion does not apply to such an important
special case of (1.1) as the nonlinear Euler-type differential equation

D(αn, . . . , α1)x +
γ

tα2···αn+α3···αn+···+αn+1 |x|
α1···αn sgn x = 0, t ≥ a > 0, (1.5)

where γ > 0 is a constant.
Thus, our main purpose here is to obtain criteria which would be more sensitive to oscilla-

tory behaviour of solutions of equations of the form (1.1) and would apply also to higher order
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half-linear equations of the Euler type. Our approach is based on reduction of the problem
of oscillation of equation (1.1) to the problem of oscillation of solutions of some lower order
equations and inequalities. In the linear case this approach was used successfully by various
authors in [1, 2, 5, 9, 10, 14, 15, 23].

2 Preliminaries

We begin with some preparatory results which will be needed in the sequel.

Lemma 2.1. Let α > 0 and y ∈ C(α)[t0, ∞) be such that either

y(t)D(α)y(t) > 0 for t ≥ t0, (2.1)

or

y(t)D(α)y(t) < 0 for t ≥ t0 (2.2)

and
∫ ∞

t0

|D(α)y(t)|dt < ∞. (2.3)

Then y ∈ C1[t0, ∞), i.e., the usual derivative y′(t) exists and is continuous on [t0, ∞).

Proof. We will assume that y(t) > 0 on [t0, ∞). (The proof in the case y(t) < 0 for t ≥ t0 is
similar and is omitted.)

If y satisfies (2.1), then we can integrate D(α)y(t) from t0 to t and raise the result to the
power 1/α to get

y(t) =

[

y(t0)
α +

∫ t

t0

D(α)y(s)ds

]
1
α

, t ≥ t0. (2.4)

Similarly, if y satisfies (2.2) and (2.3), then D(α)y(t) < 0 for t ≥ t0 implies that y(∞)α =

limt→∞ y(t)α exists as a nonnegative finite number and after integration of D(α)y(t) from
t(≥ t0) to ∞ we arrive at

y(t) =

[

y(∞)α −
∫ ∞

t
D(α)y(s)ds

]
1
α

, t ≥ t0. (2.5)

From (2.4) (resp. (2.5)) it is clear that in both cases the function y(t) is continuously differen-
tiable on [t0, ∞).

Remark 2.2. Repeated application of Lemma 2.1 shows that if y is a nonoscillatory solution
of equation (1.1) on an interval [t0, ∞), then y and D(αi, . . . , α1)y, i = 1, . . . , n − 1, are contin-
uously differentiable functions, that is,

d

dt
y(t) and

d

dt

[

D(αi, . . . , α1)y(t)
]

, i = 1, . . . , n − 1,

exist and are continuous on [t0, ∞).

To formulate and prove our next lemma, we define the numbers ri(k), 1 ≤ i ≤ n − 1 and
k = 0, 1, . . . , i, by

ri(0) = 1 and ri(k) =
1

αi−k+1
ri(k − 1) + 1 for k = 1, . . . , i. (2.6)

We also set
ri := ri(i) = 1 +

1
α1

+
1

α1α2
+ · · ·+

1
α1α2 · · · αi

.
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Lemma 2.3. If y ∈ C(αl , . . . , α1)[t0, ∞) satisfies D(αi, . . . , α1)y(t) > 0, i = 0, . . . , l and

D(αl+1, . . . , α1)y(t) < 0 for t ≥ t0, then

(t − t0)D(αl−k, . . . , α1)y(t) ≤ rl(k)
[

D(αl−k−1, . . . , α1)y(t)
]αl−k , k = 0, 1, . . . , l − 1, (2.7k)

for t ≥ t0.

Proof. Since D(αl , . . . , α1)y(t) is decreasing for t ≥ t0, integrating on [t0, t] we obtain

(t − t0)D(αl , . . . , α1)y(t) ≤
∫ t

t0

D(αl , . . . , α1)y(s)ds =
∫ t

t0

(

[D(αl−1, . . . , α1)y(s)]
αl
)′

ds

=
[

D(αl−1, . . . , α1)y(t)
]αl −

[

D(αl−1, . . . , α1)y(t0)
]αl

≤
[

D(αl−1, . . . , α1)y(t)
]αl , (2.8)

which gives inequality (2.7k) for k = 0. Next, since by the remark after Lemma 2.1,
D(αl−1, . . . , α1)y(t) is continuously differentiable function, we can express (2.8) explicitly as

αl(t − t0)
[

D(αl−1, . . . , α1)y(t)
]αl−1(

D(αl−1, . . . , α1)y(t)
)′
≤

[

D(αl−1, . . . , α1)y(t)
]αl ,

or, equivalently,

[

(t − t0)D(αl−1, . . . , α1)y(t)
]′
≤

1 + αl

αl
D(αl−1, . . . , α1)y(t), (2.9)

for t ≥ t0. Integrating (2.9) from t0 to t we obtain

(t − t0)D(αl−1, . . . , α1)y(t) ≤
1 + αl

αl

[

D(αl−2, . . . , α1)y(t)
]αl−1 , t ≥ t0, (2.10)

which is (2.7k) for k = 1.
Repeated application of the above procedure yields (2.7k) also for k = 2, . . . , l − 1 where

D(αj, . . . , α1)y(t) for j = 0 should be interpreted as y(t).

The following comparison lemma will play an important role in our later discussions. For
the proof see Naito [19].

Lemma 2.4. Let l ∈ {1, 3, . . . , n − 1} be a fixed odd number and let the differential inequality

D(αn, . . . , α1)y + q(t)|y|α1···αn sgn y ≤ 0, t ≥ a > 0, (2.11)

where q : [a, ∞) → (0, ∞) is a continuous function, have a positive solution y(t) of degree l for t ≥ t0.

Then there exists a positive solution x(t) of equation (1.1) which has the same degree l.

3 Reduction to the existence of solutions of minimal degree

Define numbers Ri, 1 ≤ i ≤ n − 1, by

R1 = 1 and Ri =

(

1
ri(i − 1)

)
1

α1
(

1
ri(i − 2)

)
1

α1α2
· · ·

(

1
ri(1)

)
1

α1 ···αi−1
, i = 2, . . . , n − 1,

where ri(k), k = 0, 1, . . . , i, are given by (2.6).
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Theorem 3.1. Eq. (1.1) has a nonoscillatory solution of the Kiguradze’s degree l, 1 ≤ l ≤ n − 1, if and

only if the differential equation

D(αn, . . . , αl)z + R
β
l (t − t0)

(rl−1−1)βq(t)|z|αl ···αn sgn z = 0, t ≥ t0, (3.1l)

has a nonoscillatory solution of the Kiguradze’s degree 1.

Proof. (Necessity.) Suppose that (1.1) has a nonoscillatory solution x(t) whose Kiguradze’s
degree is l, 1 ≤ l ≤ n − 1. We may assume that x(t) is positive and satisfies (1.2) and (1.3) on
[t0, ∞). If we chain the inequalities (2.7k), k = 1, . . . , l − 1, together, we obtain

x(t) ≥ Rl(t − t0)
rl−1−1[D(αl−1, . . . , α1)x(t)

]
1

α1 ···αl−1 , t ≥ t0. (3.2)

Substituting this inequality into (1.1), we obtain that x(t) satisfies the inequality

D(αn, . . . , α1)x(t) + Rα1···αn

l (t − t0)
(rl−1−1)α1···αn q(t)

[

D(αl−1, . . . , α1)x(t)
]αl ···αn ≤ 0.

Put y(t) = D(αl−1, . . . , α1)x(t). Then the function y(t) satisfies

D(αn, . . . , αl)y(t) + Rα1···αn

l (t − t0)
(rl−1−1)α1···αn q(t)|y(t)|αl ···αn sgn y(t) ≤ 0, t ≥ t0, (3.3)

and its Kiguradze’s degree is 1. By Lemma 2.4, the corresponding differential equation (3.1l)
has a positive solution z(t) of the same degree 1.

(Sufficiency.) Let (3.1l) have a nonoscillatory solution z(t) of degree 1. We may assume that
z(t) > 0 for t ≥ t0. Then the function

w(t) =
(

Rl/Rl−1
)

(

∫ t

t0

(

∫ s1

t0

. . .
(

∫ sl−2

t0

z(sl−1)dsl−1

)
1

αl−1
. . . ds2

)
1

α2
ds1

)
1

α1
(3.4)

satisfies
D(αl−1, . . . , α1)w(t) =

(

Rl/Rl−1
)α1···αl−1 z(t)

and since z(t) has degree 1, the function w(t) satisfies

D(αk, . . . , α1)w(t) > 0 for k = 1, . . . , l,

and
(−1)n+kD(αk, . . . , α1)w(t) < 0 for k = l + 1, . . . , n.

Hence, w(t) is a function having degree l for t ≥ t0. Since z(t) is increasing, from (3.4) we
obtain

w(t) ≤
(

Rl/Rl−1
)

z(t)1/(α1···αl−1)

(

∫ t

t0

(

∫ s1

t0

. . .
(

∫ sl−2

t0

dsl−1

)
1

αl−1
. . . ds2

)
1

α2
ds1

)
1

α1

= Rl(t − t0)
rl−1−1z(t)1/(α1···αl−1).

Now, as a consequence of the relation

rl(k) = rl−1(k − 1) +
1

αl−k+1 · · · αl
, k = 1, . . . , l,
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we get rl(k) ≥ rl−1(k − 1), k = 1, . . . , l, which implies

(

Rl/Rl−1
)α1···αl−1 ≤ 1.

Thus,

D(αn, . . . , α1)w(t) =
(

Rl/Rl−1
)α1···αl−1 D(αn, . . . , αl)z(t) ≤ D(αn, . . . , αl)z(t)

and so for t ≥ t0,

D(αn, . . . , α1)w(t) + q(t)w(t)α1···αn ≤ D(αn, . . . , αl)z(t) + Rα1···αn

l (t − t0)
(rl−1−1)α1···αn q(t)z(t)αl ···αn

showing that w(t) is a solution of (2.11) for t ≥ t0 since z(t) is a solution of (3.1l). Finally, by
Lemma 2.4, there exists a positive solution x(t) of (1.1) of degree l. This completes the proof
of the theorem.

Remark 3.2. If l = n − 1, then (3.1l) reduces to the second-order equation

D(αn, αn−1)z + R
β
n−1(t − t0)

(rn−2−1)βq(t)|z|αn−1αn sgn z = 0. (3.1n−1)

From Theorem 3.1 it follows that if (3.1n−1) is nonoscillatory, then equation (1.1) is nonoscilla-
tory, too. (More precisely, it has a nonoscillatory solution of the maximal degree l = n − 1.)

However, if l < n − 1, then equations (3.1l) are of orders greater than 2 and it may not be
an easy matter to determine whether or not (3.1l) has a nonoscillatory solutions of degree 1.

Thus, we proceed further and associate with (1.1) a set of half-linear differential equations
all of which are of the second order.

For this purpose we assume that the integrals

I1(q) =
∫ ∞

a
q(t)dt,

I2(q) =
∫ ∞

a

(

∫ ∞

t
q(s)ds

)
1

αn

dt,

...

In−l−1(q) =
∫ ∞

a

(

∫ ∞

sl+3

. . .
(

∫ ∞

sn−1

q(s)ds

)
1

αn

. . . dsl+4

)
1

αl+3
dsl+3, 1 ≤ l ≤ n − 2,

converge and define continuous functions ρ0(t), . . . , ρn−l−1(t) by

ρ0(t) = q(t), ρk(t) =

[

∫ ∞

t
ρk−1(s)ds

]
1

αn−k+1
, k = 1, . . . , n − l − 1. (3.5)

The following theorem is the main result of this paper.

Theorem 3.3. Suppose that (1.1) has a nonoscillatory solution x(t) which is of degree l, 1 ≤ l ≤ n− 1,
for t ≥ t0. Then, the second order half-linear differential equation

D(αl+1, αl)z + R
α1···αl+1
l (t − t0)

(rl−1−1)α1···αl+1 ρn−l−1(t)|z|
αlαl+1 sgn z = 0, t ≥ t0, (3.6l)

has a nonoscillatory solution of degree 1.
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Proof. Suppose that equation (1.1) has an eventually positive solution x(t) which is of degree
l, 1 ≤ l ≤ n − 1, for t ≥ t0. (If x(t) is a solution which is eventually negative, the proof is
similar and is omitted.)

By Theorem 3.1, there exists a positive solution z(t) of the lower order differential equation
(3.1l) which is of degree 1, i.e., it satisfies for t ≥ t0

D(αl)z(t) > 0 and (−1)n+jD(αj, . . . , αl)z(t) < 0 for j = l + 1, . . . , n. (3.7)

Integrating (3.1l) from t to ∞ and using (3.7), we get

D(αn−1, . . . , αl)z(t) ≥ R
α1···αn−1
l

(

∫ ∞

t
(s − t0)

(rl−1−1)α1···αn q(s)z(s)αl ···αn ds

)1/αn

, t ≥ t0.

Continuing in this fashion and using the fact that z(t) and (t − t0)(rl−1−1)α1···αn are increasing
functions for t ≥ t0, we obtain

−
[

D((αl+1, αl)z(t)
]αl+2

≥ R
α1···αl+1
l (t − t0)

(rl−1−1)α1···αl+1 z(t)αlαl+1αl+2

(

∫ ∞

t

(

. . .
(

∫ ∞

sn−1

q(s)ds

)
1

αn

. . .
)

1
αl+3

dsl+2

)

,

or, equivalently,

D(αl+1, αl)z(t) + R
α1···αl+1
l (t − t0)

(rl−1−1)α1···αl+1 ρn−l−1(t)z(t)
αlαl+1 ≤ 0, t ≥ t0, (3.8)

where ρn−l−1(t) is defined by (3.5). Thus, by Lemma 2.4, the differential equation (3.6l) has a
positive solution of degree 1 as claimed. The proof of the theorem is complete.

As an immediate consequence of Theorem 3.3 we get the following oscillation result.

Corollary 3.4. If all of the second order half-linear differential equations (3.6l), l = 1, 3, . . . , n − 1, are

oscillatory, then all solutions of the n-th order differential equation (1.1) are oscillatory.

Example 3.5. Consider the Euler-type nonlinear differential equation

D(αn, . . . , α1)x + γt−(α2···αn+α3···αn+···+αn+1)|x|α1···αn sgn x = 0, t ≥ 1, (3.9)

where n is an even integer and α1, . . . , αn and γ are positive constants.
To simplify notation and formulation of our results for equation (3.9), we define the num-

bers qi and Qi, i = 1, . . . , n, by

q1 = 0, qi = αi(qi−1 + 1) for i = 2, . . . , n, (3.10)

and

Q1 = 1, Qi =

(

1
qi

)
1
αi
(

1
qi+1

)
1

αiαi+1
. . .

(

1
qn−1

)
1

αi ···αn−1
(

1
qn

)
1

αi ···αn

, i = 2, . . . , n. (3.11)

It is a matter of easy computation to verify that if q(t) = γt−qn−1, γ > 0, then the functions
ρn−l−1 defined by (3.5) become

ρn−l−1(t) = γ1/(αl+2···αn)Ql+2t−ql+1+1, l = 1, . . . , n − 3, (3.12)
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and the second order half-linear differential equations (3.6l) associated with (3.9) reduce re-
spectively to

(

|z′|αl+1 sgn z′
)′
+ γ1/(α1···αn)R

α1···αl+1
l Ql+2t−ql+1−1|z|αl+1 sgn z = 0, t ≥ 1, (3.13l)

if 1 ≤ l ≤ n − 3, and
(

|z′|αn sgn z′
)′
+ γRα1···αn

n−1 t−qn−1|z|αn sgn z = 0, t ≥ 1, (3.14)

if l = n − 1.
If we apply the well-known result which says that all solutions of the generalized second

order Euler differential equation
(

|z′|α sgn z
)′
+ λt−α−1|z|α sgn z = 0, t ≥ 1, (3.15)

are oscillatory if and only if

λ >

(

α

α + 1

)α+1

, (3.16)

(see, for example, [3]), then we get that for oscillation of all solutions of equation (3.7) it is
sufficient that

γ1/(αl+2···αn)R
α1···αl+1
l Ql+2 >

(

αl+1

αl+1 + 1

)αl+1+1

, l = 1, 3, . . . , n − 3, (3.17l)

and

γRα1···αn

n−1 >

(

αn

αn + 1

)αn+1

. (3.18)

Example 3.6. Consider the fourth order half-linear differential equation

D(α4, α3, α2, α1)x + q(t)|x|α1α2α3α4 sgn x = 0, t ≥ a > 0, (3.19)

where αi, 1 ≤ i ≤ 4, are positive constants and q : [a, ∞) → (0, ∞) is continuous function.
Second order equations associated with (3.19) are

(

|z′|α2 sgn z′
)′
+

(

∫ ∞

t

(

∫ ∞

s
q(τ)dτ

)1/α4

ds

)1/α3

|z|α2 sgn z = 0, t ≥ t0, (3.20)

and

(

|z′|α4 sgn z′
)′
+

(

α2α3

1 + α3 + α2α3

)α2α3α4( α3

1 + α3

)α3α4
(

t− t0
)(1+α2)α3α4 q(t)|z|α4 sgn z = 0, t ≥ t0.

(3.21)
From Corollary 3.4 we know that oscillation of both equations (3.20) and (3.21) implies

oscillation of all solutions of equation (3.19).
This occurs, for example, if for some ε ∈ (0, 1]

∫ ∞

a
t1−ε

(

∫ ∞

t

(

∫ ∞

s
q(τ)dτ

)1/α4

ds

)1/α3

dt = ∞ (3.22)

and
∫ ∞

a
t(1+α2)α3α4+1−εq(t)dt = ∞, (3.23)

(see [6]).
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4 Reduction to the existence of solutions of maximal degree

In the last section we indicate an alternative way how to obtain the set of second-order equa-
tions (3.6l) associated with the even order half-linear differential equation (1.1). Here, the
problem of the existence of nonoscillatory solutions of an arbitrary degree l of equation(1.1)
is converted into the problem of the existence of solutions of the maximal Kiguradze’s degree
of certain lower order half-linear differential equation.

Theorem 4.1. If the n-th order equation (1.1) has a nonoscillatory solution of degree l, then the (l + 1)-
order differential equation

D(αl+1, . . . , α1)z(t) + ρn−l−1(t)|z(t)|
α1···αl+1 sgn z(t) = 0, t ≥ t0, (4.1l)

has a nonoscillatory solution of the same degree l.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) which is of Kiguradze’s degree l.
We may suppose that x(t) is eventually positive and satisfies (1.2) and (1.3) on [t0, ∞), t0 ≥ a.

If l = n − 1, then the proof is trivial because (4.1n−1) is the same as (1.1).
Let 1 ≤ l < n − 1. Integrating (1.1) from t(≥ t0) to ∞, we get

D(αn−1, . . . , α1)x(t) ≥

(

∫ ∞

t
q(s)x(s)α1···αn ds

)1/αn

, t ≥ t0.

Continuing in this way, we finally arrive at

− D(αl+1, . . . , α1)x(t)

≥

(

∫ ∞

t

(

∫ ∞

sl+2

. . .
(

∫

sn−1

q(s)x(s)α1···αn ds

)1/αn

. . . dsl+3

)1/αl+3

dsl+2

)1/αl+2

(4.2)

for t ≥ t0. Since x(t) is increasing for t ≥ t0, from (4.2) it follows that

D(αl+1, . . . , α1)x(t) + ρn−l−1(t)x(t)α1···αn ≤ 0, t ≥ t0.

Application of Lemma 2.4 shows that (4.1l) has a positive solution z(t) which satisfies (1.2)
and (1.3) with n replaced by l + 1. The proof of the theorem is complete.

If we estimate x(t) from below as in the proof of Theorem 3.1 and substitute it into (4.1l),
we obtain

D(αl+1, . . . , α1)x(t) + R
α1···αl+1
l (t − t0)

(rl−1−1)α1···αl+1 ρn−l−1(t)
[

D(αl−1, . . . , α1)x(t)
]αlαl+1 ≤ 0

(4.3)
for t ≥ t0. Let y(t) be given by

y(t) =
[

D(αl−1, . . . , α1)x(t)
]αl .

Then y(t) satisfies the second order differential inequality
(

|y′(t)|αl+1 sgn y′(t)
)′
+ R

α1···αl+1
l (t − t0)

(rl−1−1)α1···αl+1 ρn−l−1(t)|y(t)|
αl+1 sgn y(t) ≤ 0, t ≥ t0,

and, by Lemma 2.4, there exists a nonoscillatory solution z(t) (of degree 1) of the correspond-
ing differential equation
(

|z′(t)|αl+1 sgn z′(t)
)′
+ R

α1···αl+1
l (t − t0)

(rl−1−1)α1···αl+1 ρn−l−1(t)|z(t)|
αl+1 sgn z(t) = 0, t ≥ t0,

(4.4l)
which is the same as (3.6l).
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Abstract. In this paper, we prove that the relativistic Liénard-type equation

d
dt


 ẋ |ẋ|p−2

(
1 − |ẋ|p

) p−1
p


+ f (x) ẋ + g (x) = 0, p > 1,

and its special case, relativistic Van der Pol-type equation, have a periodic solution.
Our results are inspired by the results obtained by Mawhin and Villari [Nonlinear Anal.
160(2017), 16–24] and extend their results to this more general case.

Keywords: closed orbits, periodic solutions, limit cycles, relativistic Liénard-type equa-
tions.
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1 Introduction

In 1926, Van der Pol [16] considered the equation

ẍ + µ
(

x2 − 1
)

ẋ + x = 0, µ 6= 0, (1.1)

to obtain the results about relaxation oscillations which are important in physics and engineer-
ing problems. In 1928, Liénard [9] gave a more general description of relaxation oscillations
for the equation

ẍ + f (x) ẋ + g (x) = 0, (1.2)

where g (x) is positive when x > 0 and negative when x < 0, f (x) is negative for small
values of |x| and positive for large values of |x|. In point of fact, he takes g(x) = x. The more
general form was first dealt with by Levinson and Smith [8]. The equations (1.1) and (1.2) are
known as Van der Pol and Liénard equations, respectively. Since the appearance of Van der

BEmail: mfahri@gazi.edu.tr
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Pol and Liénard’s fundamental papers, various proofs and generalizations or improvements
have appeared in the literature. For example, in 1942, Levinson and Smith [8] obtained the
relaxation oscillations for a more general equation

ẍ + f (x, ẋ) ẋ + g (x) = 0,

where g (x) is positive when x > 0 and negative when x < 0, f (x, ẋ) is damping coefficient
which for large |x| is positive and for small |ẋ| and |x| is negative.

In the last ten years, the study of the existence and multiplicity of periodic solutions of
second order equations where ẍ, with ẋ denoting the derivative of x with respect to t, is
replaced by a relativistic acceleration d

dt

( ẋ√
1−ẋ2

)
has been considered by many authors [2, 12,

13, 15]. To the best of our knowledge, this is the first paper using a generalized relativistic
acceleration

d
dt


 ẋ |ẋ|p−2

(
1 − |ẋ|p

) p−1
p




to study the following problems. It should be noted that the definition of the generalized
relativistic acceleration is given by the generalizations chosen in the numerator and the de-
nominator, and this choice of the denominator will be clear in the following Section 2. It is
easy to see that the inverse of the generalized curvature operator

Φp (v) =
v |v|p−2

(
1 − |v|p

) p−1
p

, v ∈ (−1, 1) ,

is

Φ
−1
q (v) =

v |v|q−2

(
1 + |v|q

) q−1
q

, v ∈ R, (1.3)

where 1
p + 1

q = 1 and
∣∣Φ−1

q

∣∣ < 1. In the literature, the authors obtained some results for
equations with relativistic acceleration by using various methods [1–3, 6, 10–12].

More recently, Fujimoto and Yamaoka [7] and Pérez-González et al. [13] have obtained
the results about the existence and uniqueness of limit cycles of the Liénard-type differential
equations of forms

d
dt

(φ (ẋ)) + f (x) φ (ẋ) + g (x) = 0

and

d
dt

(ϕ (ẋ)) + f (x)ψ (ẋ) + g (x) = 0

involving the curvature operators, respectively.
The aim of this paper is to obtain new results about the existence and uniqueness of limit

cycles for the generalized relativistic Liénard equations of the form

d
dt


 ẋ |ẋ|p−2

(
1 − |ẋ|p

) p−1
p


+ f (x) ẋ + g (x) = 0, p > 1, (1.4)

where the continuous functions f and g satisfy some conditions, inspired by Mawhin and
Villari [12].
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2 Relativistic duffing and Liénard-type equations

We now consider the relativistic Liénard-type equation (1.4), with xg (x) > 0 and g(0) = 0, so
that (0, 0) is an equilibrium. Solutions of Eq. (1.4) must of course be such that |ẋ(t)| < 1 for
all t ∈ R, so that, instead of considering the usual phase plane R

2, one is a priori restricted to
the strip R × (−1, 1). A way to avoid this difficulty is to make a change of variable

y =
ẋ |ẋ|p−2

(
1 − |ẋ|p

) p−1
p

, p > 1, |ẋ| < 1,

which is equivalent to

ẋ =
y |y|q−2

(
1 + |y|q

) q−1
q

,
1
p
+

1
q
= 1, y ∈ R,

from (1.3). Then, Eq. (1.4) can be written as a pair of first order equations

ẋ =
y |y|q−2

(
1 + |y|q

) q−1
q

, ẏ = − f (x)
y |y|q−2

(
1 + |y|q

) q−1
q

− g (x) . (2.1)

On the other hand, Eq. (1.4) can be rewritten in the form below

d
dt


 ẋ |ẋ|p−2

(
1 − |ẋ|p

) p−1
p

+ F (x)


+ g (x) = 0,

where F(x) =
∫ x

0 f (s)ds. If we make the change of variable

y =
ẋ |ẋ|p−2

(
1 − |ẋ|p

) p−1
p

+ F (x) , p > 1, |ẋ| < 1,

then we have

ẋ =
(y − F (x)) |y − F (x)|q−2

(
1 + |y − F (x)|q

) q−1
q

,
1
p
+

1
q
= 1, (y − F (x)) ∈ R,

from (1.3). Thus, Eq. (1.4) can be written as a pair of first order equations

ẋ =
(y − F (x)) |y − F (x)|q−2

(
1 + |y − F (x)|q

) q−1
q

, ẏ = −g (x) . (2.2)

From this follows immediately the following regularity result.

Lemma 2.1. If q > 2, f : R → R is continuous, and g : R → R locally Lipschitzian, the Cauchy
problem for Eq. (1.4) or (2.1) or (2.2) is locally uniquely solvable.

Proof. It suffices to notice that F is of class C1, and apply standard results [5] to system (2.2).
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Note that for 1 < q ≤ 2, the first equation of system (2.2) does not satisfy the locally
Lipschitz conditions at the origin, and this case will be discussed below.

We now consider the corresponding Duffing-type equation, for which f ≡ 0,

d
dt


 ẋ |ẋ|p−2

(
1 − |ẋ|p

) p−1
p


+ g (x) = 0, (2.3)

and the system (2.1) reduces to

ẋ =
y |y|q−2

(
1 + |y|q

) q−1
q

, ẏ = −g (x) . (2.4)

We observe that the system (2.4) has the Hamiltonian structure

ẋ =
∂H
∂y

(x, y) , ẏ = −∂H
∂x

(x, y) ,

where the Hamiltonian function H (x, y) is given by

H (x, y) =
(
1 + |y|q

) 1
q − 1 + G (x)

and the function G(x) is the integral of g(x), G (x) =
∫ x

0 g (s) ds. It is well known that the
level curves of the function H (x, y) are its solutions. If we consider the level curve

(
1 + |y|q

) 1
q − 1 + G (x) = C (2.5)

in the dynamical interpretation as motion of a particle, the first term represents its kinetic en-
ergy and (2.5) expresses the law of conservation of energy as applied to the particle. Note

that the constant 1 from
(
1 + |y|q

) 1
q is subtracted in order that, for |y| small, the result

(
1 + |y|q

) 1
q − 1 is close to the classical expression y2

2 .
Now, we mention a result given by Rebelo [14].

Theorem A ([14, Theorem 1]). If the initial value (x0, y0) is not an equilibrium, that is, that
∇H (x0, y0) 6= (0, 0), the Cauchy problem for Eq. (2.3) or (2.4) is locally uniquely solvable.

We observe that in virtue of this result for system (2.4) Lemma 2.1 holds also for 1 < q ≤ 2
if the initial value is not the origin.

It is easy to see that the origin (0, 0) of our (x, y)-phase plane is a global center for the
system (2.4) if and only if G(x) → +∞ as |x| → ∞ as in the classical case. The time rate of
change of H along a solution trajectory is given by

∂H
∂t

(x, y) =
∂H
∂x

(x, y)
dx
dt

+
∂H
∂y

(x, y)
dy
dt

= g (x)
y |y|q−2

(
1 + |y|q

) q−1
q

− y |y|q−2

(
1 + |y|q

) q−1
q


 f (x)

y |y|q−2

(
1 + |y|q

) q−1
q

+ g (x)




= − f (x)


 y |y|q−2

(
1 + |y|q

) q−1
q




2

.
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Therefore, at points where f (x) is positive, the trajectories of system (2.1) enter trajectories
of system (2.4), while, at points where f (x) is negative, the trajectories of system (2.1) exit
trajectories of system (2.4). In virtue of this result, being f (0) < 0, the unique equilibrium
(0, 0) for system (2.1) and system (2.4) as well, is a source. Therefore, for both systems, the
Cauchy problem is uniquely solvable in future also for 1 < q ≤ 2 and this completes the result
of Lemma 2.1. Moreover, the slope of the trajectories of system (2.1) is given by the following
expression, where y′ denotes the derivative of y with respect to x,

y′ (x) =
ẏ
ẋ
= − f (x)− g (x)

(
1 + |y|q

) q−1
q

y |y|q−2 , (2.6)

and the 0-isocline, namely the curve in which ẏ = 0, is given by

y |y|q−2

(
1 + |y|q

) q−1
q

= − g (x)
f (x)

.

At this point, we need to prove the existence of a winding trajectory for system (2.1) in order
to apply the Poincaré–Bendixson theorem [5].

3 The relativistic Van der Pol-type equation

At first, we discuss the relativistic Van der Pol-type equation

d
dt


 ẋ |ẋ|p−2

(
1 − |ẋ|p

) p−1
p


+ µ

(
x2 − 1

)
ẋ + x = 0, (3.1)

where p > 1 and µ 6= 0, although interesting results, and in particular the existence of limit
cycles, can be proved in a similar way for Eq. (1.4). Notice the case where µ < 0 is reduced to
the case where µ > 0 by changing t into −t, so that we can assume without loss of generality
that µ > 0.

For this particular equation, system (2.1) becomes

ẋ =
y |y|q−2

(
1 + |y|q

) q−1
q

, ẏ = −µ
(

x2 − 1
) y |y|q−2

(
1 + |y|q

) q−1
q

− x, (3.2)

and the 0-isocline is given by

y |y|q−2

(
1 + |y|q

) q−1
q

= − x
µ (x2 − 1)

. (3.3)

Observe first that for f (x) = µ(x2 − 1), f (0) = −1 < 0 and hence the origin of the phase
plane is a source.

The 0-isocline in the classical Van der Pol equation is given by

y = − x
µ (x2 − 1)

. (3.4)
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Of course, points of (3.3) only correspond to those x for which − x
µ(x2−1) ∈ (−1, 1), i.e., as

easily shown, to the x belonging to the set

(−∞,−x2) ∪ (−x1, x1) ∪ (x2,+∞),

where

x1 = − 1
2µ

+

√
1

4µ2 + 1 ∈ (0, 1) , x2 =
1

2µ
+

√
1

4µ2 + 1 ∈ (1,+∞) .

Hence, (3.3) can be seen as ‘stretching’ the restriction of (3.4) to R × (−1, 1) to R
2 (see Figs.

3.1 and 3.2).
We know that define γ+ (S) as the positive semi-trajectory starting from S, and assume

that γ+ (S) moves around the origin and intersects again the y-axis in the same half-plane of
S at a point R = (0, yR). Clearly, such semi-trajectory is winding if |yR| < |yS|, unwinding
if |yR| > |yS|, and a cycle if |yR| = |yS| [4]. At this point, arguing in the same way as in the
classical case considered in [17], we are able to produce a winding trajectory. As the origin is
a source, we can apply the Poincaré–Bendixson theorem [5] and get the existence of at least
one limit cycle for (3.2).

We assume that Λ1 is the graph of the function

y |y|q−2

(
1 + |y|q

) q−1
q

= − x
µ (x2 − 1)

for x ∈ (−∞,−x2). In this case, from (1.3), the function

y1(x) = − x |x|p−2

(
|µ (x2 − 1)|p − |x|p

) p−1
p

,
1
p
+

1
q
= 1, (3.5)

is an increasing positive function. Similarly, we define that Λ2 is the graph of (3.3) for x ∈
(x2,+∞) and so the function y2 (x) given by (3.5) is an increasing negative function. Then, we
get

lim
x→−x−2

y1 (x) = +∞, lim
x→x+2

y2 (x) = −∞,

lim
x→−∞

y1 (x) = 0, lim
x→+∞

y2 (x) = 0.

From the assumptions in [17], we can choose a point γ in the curve Λ1 whose abscissa xγ is
to the left of −x2 and whose ordinate is larger than the values which y1 (x) takes for x < xγ.
We now define the function

G (x, y) = −µ
(
x2 − 1

) y |y|q−2

(
1 + |y|q

) q−1
q

− x.

Since

d
dy


 y |y|q−2

(
1 + |y|q

) q−1
q


 =

(q − 1) |y|q−2

(
1 + |y|q

) 2q−1
q

> 0

for q > 1 and y ∈ R\ {0}, the function y|y|q−2

(1+|y|q)
q−1

q
is an increasing function of y and so

ẏ = G(x, y) is a decreasing function of y for each fixed x 6∈ [−1, 1]. The trajectory which passes
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through the point γ comes from ‘infinity’ without intersecting the x-axis before reaching the
point γ = (xγ, y1(xγ)) in the curve Λ1. Since

y′ (x) =
ẏ
ẋ
= −µ(x2 − 1)− x

(
1 + |y|q

) q−1
q

y |y|q−2 (3.6)

gives the slope of tangent to the path of (3.2) passing through the point (x, y), the trajectory
does not have vertical asymptotes and, being bounded away from the x-axis, it must cross the
y-axis. By an analogous argument, we can claim that the trajectory, after entering the x > 0
half-plane, either will cross the x-axis on the interval (0, x2], or will cross the line x = x2. In
the latter case, y(x) will decrease after x = x2. Since the inequality

|x|+ µ
(
x2 − 1

)
> |x| > x2 > 0 for |x| > x2 (3.7)

holds, the trajectory does not have a horizontal asymptote and it must eventually cross the
x-axis for x > x2. From (3.6), the trajectory must meet the y-axis at some y < 0.

Afterwards, as a consequence of (3.7) again, the trajectory cuts the x-axis either on the
−x2 < x < 0 segment, or at some x ≤ −x2. In the latter case, the trajectory may cut the curve
Λ1, but the ordinate of crossing point must be smaller than supx∈(−∞,xγ)

y1 (x). Eventually, the
trajectory must remain below the graph Λ1, and so it is bounded.

Similarly, y2 (x) is bounded to corresponding treatment which starts from a point δ ∈ Λ2

with abscissa xδ > x2. Thus, we have found that starting at t = 0 from a point γ (or δ), the
state (x (t) , y (t)) moves for t > 0 along a bounded trajectory. The limit set is compact and
non-empty. Since the only critical point (the origin) is repulsive, we can conclude that the
limit set must be a cycle. Therefore, there exists at least one periodic solution for (3.1).

Figure 3.1: Classical Van der Pol equation for p = 2. Vertical asymptotes points
are −1 and 1.
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Figure 3.2: Relativistic Van der Pol-type equation for p > 1. Vertical asymptotes
points are ±x1 and ±x2.*

As a result of the above, the following result is given.

Theorem 3.1. For each µ 6= 0, Eq. (3.1) has a least one nontrivial periodic solution.

4 The relativistic Liénard-type equation

Following the strategy used in reference [12], we return to system (2.1) and first compare
the slope of the relativistic Liénard-type system (2.6) with the slope of the classical Liénard
system, namely

y′ (x) = − f (x)− g (x)
y

.

Now, we show that a direct comparison of the slopes at the same point (x, y). Since we have

|y|q < |y|
q

q−1 + |y|q+
q

q−1 for q > 1 and all y ∈ R\ {0}, we get

1 <

(
1 + |y|q

)
|y|

q
q−1

|y|q and so 1 <

(
1 + |y|q

) q−1
q |y|

|y|q−1 .

Without loss of generality, we may take y > 0. The case when y is negative can similarly be
dealt with. It is easy to see that while we have

− f (x)− g (x)
y

> f (x)− g (x)

(
1 + |y|q

) q−1
q

y |y|q−2

when x > 0, we have

− f (x)− g (x)
y

< f (x)− g (x)

(
1 + |y|q

) q−1
q

y |y|q−2

*Figures 3.1 and 3.2 are taken from the reference [12, p. 20].
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when x < 0. Therefore, if xy > 0, the trajectories of system (2.1) enter the trajectories of the
classical Liénard system

ẋ = y, ẏ = − f (x) y − g (x) , (4.1)

while if xy < 0, the trajectories of system (2.1) exit the trajectories of system (4.1). So, when
xy > 0, the trajectories of (2.1) are guided by those of (4.1). The question is then the inter-
section of a positive semitrajectory with the x-axis, because in this way one can prove that
trajectories are clockwise and then apply the Poincaré–Bendixson theorem [5].

When F(x) is bounded from below for x positive large enough and bounded from above
for x negative large enough, Villari [18] has proved that the condition

lim sup
x→+∞

(G (x) + F (x)) = +∞ (4.2)

is necessary and sufficient in order that a positive semitrajectory starting with a nonnegative
y intersects the x-axis, and that the condition

lim sup
x→−∞

(G (x)− F (x)) = +∞

is necessary and sufficient in order that a positive semitrajectory starting with a nonpositive y
intersects the x-axis. The results are proved in the Liénard plane but hold as well in the phase
plane.

More general situations have been considered by Villari and Zanolin in [19], that we shall
adapt to the present situation. Likewise in [19], given f : R → R continuous, F(x) =∫ x

0 f (s)ds, g : R → R continuous, we define Γ+ : R → R by

Γ+ =
∫ x

0

(
1 + F+ (s)

)−1
g (s) ds,

where F+(x) = max{0, F(x)}. We also define G(x) =
∫ x

0 g(s)ds.

Theorem 4.1. Assume that the following conditions hold.

(1) f : R → R is continuous, g : R → R is locally Lipschitzian, xg(x) > 0 for x 6= 0, and f (0) < 0.

(2) There exists a > 0 such that f (x) > 0 when x > a,

lim
x→+∞

G(x) = K < +∞, lim
x→+∞

F(x) = +∞.

(3) There exists 0 < γ < 4 such that

lim sup
x→−∞

(γΓ+ (x)− F (x)) = +∞.

Then Eq. (1.4) has at least a stable limit cycle.

Proof. Notice that Assumption 2 rules the behavior of f and g for x > 0 and Assumption 3
for x < 0. We first consider the behavior of a trajectory when x > 0. Let K > 0 be such
that G(x) < K for all x ∈ R, according to the second condition in Assumption 2. We define
H : R

2 → R

H (x, y) :=
(
1 + |y|q

) 1
q − 1 + G (x)
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and consider the corresponding curve of equation

K =
(
1 + |y|q

) 1
q − 1 + G (x) . (4.3)

It intersects the y-axis at the point
(
0,−

[
(K + 1)q − 1

] 1
q
)
. On the other hand, as G(x) < K

for all x ∈ R the curve with Eq. (4.3) does not intersect the x-axis. For a > 0 given in
Assumption 2, the curve with Eq. (4.3) intersects the line x = a at the point of ordinate

y = −β := −
{[

(K + 1)− G (a)
]q − 1

} 1
q .

When G(x) → K, this expression tends to 0, as expected. Following an argument that ap-
peared in [4] and [18] and a slope comparison, we observe that the negative semi-trajectory
γ− (P) with P = (a,−β) does not intersect the x-axis. On the other hand, as its slope is
bounded, the semi-trajectory γ+ (P) intersects the y-axis, say at point Q = (0, y) with y < 0.

We now consider the behavior of a trajectory when x < 0. For the classical Liénard system

ẋ = y − F(x), ẏ = −g(x),

we know from [19] that if Assumption 3 holds, then the positive semi-trajectory γ̂+ (Q) start-
ing from some point Q = (γ,−β) with γ ∈ (0, 4) given in Assumption 3 and β > 0 intersects
the vertical isocline, and therefore the x-axis at some point R = (x̂, 0). The interesting case is
the one where f (x) is eventually negative, which corresponds to the last condition in Assump-
tion 2. Hence, by definition of Γ+, G(x) must dominate F(x). Using a comparison argument,
the positive semi-trajectory γ+ (Q) of (2.1) must intersect the x-axis at some point S = (x, 0),
with x̂ < x < 0. Now, as its slope is bounded, the semi-trajectory γ∗ (S) must intersect the
y-axis at some point (0, y) with y > 0 and, in virtue of (4.2), eventually intersects the x-axis at
some point (x, 0) with x > 0.

Therefore γ(P) is winding. The origin being a source because of the last condition in
Assumption 1, we apply the Poincaré–Bendixson theorem [5] and obtain the existence of a
stable limit cycle. Like in [19], a ‘dual’ result holds if the conditions for x > 0 and x < 0 are
inverted, whose statement is left to the reader.

Remark 4.2. It is easy to see that if we take p = 2 in our results, then they reduce to that
of [12].
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Abstract. In this paper we study the behaviour of the solutions of the following cyclic
system of difference equations with maximum:

xi(n + 1) = max
{

Ai,
xi(n)

xi+1(n − 1)

}

, i = 1, 2, . . . , k − 1,

xk(n + 1) = max
{

Ak,
xk(n)

x1(n − 1)

}

where n = 0, 1, 2, . . . , Ai, i = 1, 2, . . . , k, are positive constants, xi(−1), xi(0), i =
1, 2, . . . , k, are real positive numbers. Finally for k = 2 under some conditions we find
solutions which converge to periodic six solutions.

Keywords: difference equations with maximum, equilibrium, eventually equal to equi-
librium, periodic solutions.
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1 Introduction

Max operators play an important role in the study of some problems in automatic control
(see [16, 17]). This fact was one, among others, which motivated some authors to consider
differences equations with maximum (see [1–7, 10–15, 20, 21, 23–37, 40–42, 45–47]).

In the beginning, majority of the papers in the topic studied special cases of difference
equations in the following form:

yn+1 = max
{

A0

yn
,

A1

yn−1
, . . . ,

Ak

yn−k

}

, n = 0, 1, 2, . . . ,

where k is a natural number, whereas the coefficients Aj, j = 0, 1, . . . , k, are real numbers (see,
for example, [2, 5, 7, 12–15, 23, 45–47]).

The study of positive solutions of the following difference equation with maximum

xn+1 = max
{

A

xn
,

B

xn−2

}

, n = 0, 1, 2, . . . ,

BCorresponding author. Email: gpapas@env.duth.gr



2 A. Stoikidis and G. Papaschinopoulos

conducted in [14] showed that a suitable change of variables transforms it to the difference
equation with maximum of the form:

yn+1 = max
{

D,
yn

yn−1

}

(1.1)

where D = AB−1, which suggested the investigation of the equation. Among other things,
[14] studied the periodicity of positive solutions of equation (1.1).

This also naturally suggested investigations of difference equations in the following form:

yn+1 = max
{

D,
yn−k

yn−m

}

, n = 0, 1, 2, . . . ,

where k and m are nonnegative integers (for some important results on the difference equation
see [1]), which was soon after publication of [1] continued in a comprehensive study of the
following difference equation

yn+1 = max

{

D,
y

p
n−k

y
q
n−m

}

, n = 0, 1, 2, . . . ,

and its natural generalizations, by S. Stević and his collaborators (see, for example, [10,11,25–
31, 35–37, 40, 42]).

On the other hand, equation (1.1) suggested also studying of the corresponding close-to-
symmetric systems of difference equations (some related rational ones had been previously
studied for example in [18, 19]).

In [6] the authors studied the periodicity of the positive solutions of the system of differ-
ence equations with maximum which is a close-to-symmetric cousin of equation (1.1) :

xn+1 = max
{

A,
yn

xn−1

}

,

xn+1 = max
{

B,
xn

yn−1

}

,

where n = 0, 1, 2, . . . , and the initial values x−1, x0, y−1, y0 are positive real numbers.
Some other results on systems of difference equations with maximum can be found in

[21, 24, 33–35, 37, 42]. Recall also that many difference equations and systems with maximum
are connected with periodicity (see, e.g., [3–5, 12, 29, 32, 34, 41, 45–47]), a typical characteristic
of positive solutions of the equations and systems. For some results on the boundedness
character of difference equations and systems with maximum see [1, 3, 13, 20, 40]. The paper
[1] is interesting since it also considers real solutions to a difference equations with maximum,
unlike great majority of other ones.

On the third side, in [8] Iričanin and Stević suggested investigation of cyclic systems of
difference equations, which later motivated some further investigations in the direction (see,
for example, [9, 22, 38]).

In what follows we use the following convention (see [8]). If i and j are integers such that
i = j (mod k), then we will regard that Ai = Aj and xi(n) = xj(n). For example, we identify
the number A0 with Ak, and identify the sequence xk+1(n) with x1(n) (the convention is used
in the systems which follows).
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Motivated by above mentioned facts, in this paper we study the behaviour of the solutions
of the following cyclic system of difference equations with maximum:

xi(n + 1) = max
{

Ai,
xi(n)

xi+1(n − 1)

}

, i = 1, 2, . . . , k, (1.2)

where n = 0, 1, 2, . . . , the coefficients Ai, i = 1, 2, . . . , k, are positive constants, and the initial
values xi(−1), xi(0), i = 1, 2, . . . , k, are positive real numbers. Moreover for k = 2 under some
conditions we find solutions which converge to periodic six solutions.

2 Study of system (1.2)

First we study the existence of equilibrium point for (1.2).

Proposition 2.1. Consider system (1.2) where Ai, i = 1, 2, . . . , k, are positive constants and xi(−1),
xi(0), i = 1, 2, . . . , k, are positive real numbers. Then the following statements are true:

I. Suppose that

Ai > 1, i = 1, 2, . . . , k. (2.1)

Then (1.2) has a unique equilibrium (x1, x2, . . . , xk) = (A1, A2, . . . , Ak).

II. Suppose that there exists an r, r ∈ {1, 2, . . . , k} such that

(Ar − 1)(Ar+1 − 1) < 0. (2.2)

Then (1.2) has no equilibrium.

III. Let

0 < Ai < 1, i = 1, 2, . . . , k (2.3)

be satisfied. Then system (1.2) has a unique equilibrium (x1, x2, . . . , xk) = (1, 1, . . . , 1).

Proof. I. We consider the system of algebraic equations

xi = max
{

Ai,
xi

xi+1

}

, i = 1, 2, . . . , k. (2.4)

We would like to point out that in (2.4) we use the following convention: if i and j are integers,
then we regard that xi = xj if i = j (mod k) (see the previous section). Since xi ≥ Ai > 1,
i = 1, 2, . . . , k it is obvious that

xi 6=
xi

xi+1
, i = 1, 2, . . . , k.

From this it easily follows that system (2.4) has a unique solution

(x1, x2, . . . , xk) = (A1, A2, . . . , Ak).

II. Suppose that there exists r ∈ {1, 2, . . . , k} such that inequalities (2.2) hold. Then either

Ar < 1, Ar+1 > 1 (2.5)

or
Ar > 1, Ar+1 < 1 (2.6)
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are satisfied.
Suppose firstly that (2.5) hold. From (2.4) we get

xr = max
{

Ar,
xr

xr+1

}

. (2.7)

Relations (2.4) and (2.5) imply that xr+1 ≥ Ar+1 > 1. Hence we have

xr

xr+1
≤ xr

Ar+1
< xr

and so from (2.7) we take xr = Ar. Moreover, from (2.4) we get

xr−1 = max
{

Ar−1,
xr−1

xr

}

= max
{

Ar−1,
xr−1

Ar

}

≥ xr−1

Ar

which is a contradiction since 0 < Ar < 1, r = 1, 2, . . . , k. So (1.2) has no equilibrium.
Assume now that (2.6) is satisfied. Suppose that there exists a j ∈ {1, 2, . . . , r} such that

Aj < 1. Let s = max{j : Aj < 1, j ∈ {1, 2, . . . , r}}. Then it is obvious that

As < 1, As+1 > 1. (2.8)

Then arguing as in the case where (2.5) hold, system (1.2) has no equilibrium. Assume that
there exists a j ∈ {r + 2, r + 3, . . . , k} such that Aj > 1. Let v = min{j : Aj > 1, j ∈
{r + 2, r + 3, . . . , k}}. Then we get

Av−1 < 1, Av > 1. (2.9)

So, arguing again as above we have that (1.2) has no equilibrium.
Finally suppose that

Aj > 1, j = 1, 2, . . . , r, Av < 1, v = r + 1, r + 2, . . . , k. (2.10)

Then since from (2.10) A1 > 1 we take xk
x1

≤ xk
A1

< xk. Thus we get from (2.4)

xk = max
{

Ak,
xk

x1

}

= Ak < 1. (2.11)

Moreover, from (2.4), (2.10) and (2.11) it holds,

xk−1 = max
{

Ak−1,
xk−1

xk

}

= max
{

Ak−1,
xk−1

Ak

}

≥ xk−1

Ak
> xk−1

which is a contradiction and so (1.2) has no equilibrium.
III. We claim that there exists r ∈ {1, 2, . . . , k} such that

xr

xr+1
≥ 1. (2.12)

Suppose on the contrary that

xi

xi+1
< 1, i = 1, 2, . . . , k,
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(recall that for i = k it means xk
x1

< 1). Then we get

1 =
x1

x2

x2

x3
· · · xk

x1
< 1

which is not true.
Therefore there exists an r such that (2.12) holds. From (2.3), (2.7) and (2.12) we have

xr =
xr

xr+1
.

Hence xr+1 = 1. In addition from (2.4) we take

1 = xr+1 = max
{

Ar+1,
xr+1

xr+2

}

= max
{

Ar+1,
1

xr+2

}

.

Then from (2.3) it is obvious that xr+2 = 1. Working inductively we take xj = 1, j = r +

1, . . . , k. From (2.4) we get

1 = xk = max
{

Ak,
xk

x1

}

= max
{

Ak,
1
x1

}

and so x1 = 1. Then we get

1 = x1 = max
{

A1,
1
x2

}

.

Then since (2.3) is satisfied it is obvious that x2 = 1. Working inductively we take xj = 1, j =

1, 2, . . . , r. This completes the proof of the proposition.

Proposition 2.2. Suppose that (2.1) is satisfied. Then every solution of (1.2) is eventually equal to the

unique equilibrium of (1.2) (x1, x2., , , , xk) = (A1, A2, . . . , Ak).

Proof. Let (x1(n), x2(n), . . . , xk(n)) be an arbitrary solution of (1.2). From (1.2) we get

xi(n) ≥ Ai, i = 1, 2, . . . , k. (2.13)

Let s ∈ {1, 2, . . . , k}. We prove that there exists an ms ≥ 3 such that

xs(ms) = As. (2.14)

Suppose on the contrary that for all n ≥ 3

xs(n) > As. (2.15)

Then from (1.2), (2.13) and (2.15) we take for n ≥ 3

xs(n) = max
{

As,
xs(n − 1)

xs+1(n − 2)

}

=
xs(n − 1)

xs+1(n − 2)
≤ xs(n − 1)

As+1
.

Then we take

xs(3) ≤
xs(2)
As+1

, xs(4) ≤
xs(2)
A2

s+1
, . . . , xs(n) ≤

xs(2)
An−2

s+1

.

Since from (2.1) As+1 > 1 there exists an n0 ≥ 3 such that

xs(2)
An−2

s+1

< As, n ≥ n0
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which implies that xs(n) < As, n ≥ n0. This contradicts to (2.15) and so there exists a ms ≥ 3
such that (2.14) holds. From (1.2) we have

xs(ms + 1) = max
{

As,
xs(ms)

xs+1(ms − 1)

}

. (2.16)

In addition relations (2.1), (2.14) imply that

xs(ms)

xs+1(ms − 1)
≤ As

As+1
< As

and so from (2.16) it holds
xs(ms + 1) = As.

Working inductively we can prove that

xs(n) = As, n ≥ ms. (2.17)

So, if m = max {m1, m2, . . . , mk} we have that xi(n) = Ai, i = 1, 2, . . . , k, for n ≥ m. This
completes the proof of the proposition.

In the following proposition we prove that all solutions of (1.2) are unbounded if (2.2) are
satisfied.

Proposition 2.3. Consider system (1.2). Suppose that there exists an r ∈ {1, 2, . . . , k} such that (2.2)
hold. Then all the solutions of system (1.2) are unbounded.

Proof. Let (x1(n), x2(n), . . . , xk(n)) be an arbitrary solution of system (1.2).
Suppose firstly that there exists an r ∈ {1, 2, . . . , k} such that (2.5) is satisfied. Then since

Ar+1 > 1, and using the same argument in the proof of relations (2.14) and (2.17) we can prove
that there exists an nr ≥ 3 such that

xr(n) = Ar, n ≥ nr. (2.18)

Then from (1.2) and (2.18) we obtain

xr−1(nr + 2) = max
{

Ar−1,
xr−1(nr + 1)

xr(nr)

}

≥ xr−1(nr + 1)
xr(nr)

=
xr−1(nr + 1)

Ar
,

and working inductively

xr−1(nr + 3) ≥ xr−1(nr + 1)
A2

r

, . . . , xr−1(nr + n) ≥ xr−1(nr + 1)
An−1

r

.

Since Ar < 1 we have that lim
n→∞

xr−1(n) = ∞. So, the solution of (1.2) is unbounded.

Finally suppose that (2.6) hold. If there exists either an s such that (2.8) hold or a v such that
(2.9) are satisfied, then arguing as in the case (2.18) we take that the solution is unbounded.
Suppose that (2.10) are satisfied. Therefore since A1 > 1, arguing as in (2.17) we take that
there exists an nk such that

xk(n) = Ak, n ≥ nk

and so using the same argument as above we take

xk−1(nk + n) ≥ xk−1(nk + 1)
An−1

k

.

Thus since Ak < 1 it holds and so limn→∞xk−1(n) = ∞. This completes the proof of the
proposition.
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In the next proposition we find unbounded solutions for the system (1.2) in the case where
(2.3) hold and k is an even number.

Proposition 2.4. Consider system (1.2) where k is an even number and let condition (2.3) hold. Let

(x1(n), x2(n), . . . , xk(n)) be a solution of (1.2). Suppose that there exists an s, s ∈ {0, 1, . . . , } such

that either

x2r(s)

x2r+1(s − 1)
> 1,

x2r(s)

x2r+1(s − 1)x2r+1(s)
> 1, r = 1, 2, . . . ,

k − 2
2

,

x2r−1(s)

x2r(s − 1)
< A2r−1, x2r(s) > 1, r = 1, 2, . . . ,

k

2
,

xk(s)

x1(s − 1)
> 1,

xk(s)

x1(s − 1)x1(s)
> 1

(2.19)

or

x2r−1(s)

x2r(s − 1)
> 1,

x2r−1(s)

x2r(s − 1)x2r(s)
> 1, x2r−1(s) > 1, r = 1, 2, . . . ,

k

2
,

x2r(s)

x2r+1(s − 1)
< A2r, r = 1, 2, . . . ,

k − 2
2

,

xk(s)

x1(s − 1)
< Ak,

xk(s)

x1(s − 1)x1(s)
< Ak

(2.20)

are satisfied. Then if (2.19) holds we get

lim
n→∞

x2r(n) = ∞, x2r−1(n) = A2r−1, n ≥ s + 1, r = 1, 2, . . . ,
k

2
(2.21)

and if (2.20) is satisfied we have

lim
n→∞

x2r−1(n) = ∞, x2r(n) = A2r, n ≥ s + 1, r = 1, 2, . . . ,
k

2
. (2.22)

Proof. Suppose that the conditions in (2.19) are satisfied. Then form (1.2) and (2.19) we get

x2r−1(s + 1) = max
{

A2r−1,
x2r−1(s)

x2r(s − 1)

}

= A2r−1, r = 1, 2, . . . ,
k

2
,

x2r(s + 1) = max
{

A2r,
x2r(s)

x2r+1(s − 1)

}

=
x2r(s)

x2r+1(s − 1)
> 1, r = 1, 2, . . . ,

k − 2
2

,

xk(s + 1) = max
{

Ak,
xk(s)

x1(s − 1)

}

=
xk(s)

x1(s − 1)
> 1.

Moreover,

x2r−1(s + 2) = max
{

A2r−1,
x2r−1(s + 1)

x2r(s)

}

= max
{

A2r−1,
A2r−1

x2r(s)

}

= A2r−1,

x2r(s + 2) = max
{

A2r,
x2r(s + 1)
x2r+1(s)

}

= max
{

A2r,
x2r(s)

x2r+1(s)x2r+1(s − 1)

}

=
x2r(s)

x2r+1(s − 1)x2r+1(s)
> 1,

xk(s + 2) = max
{

Ak,
xk(s + 1)

x1(s)

}

=
xk(s)

x1(s)x1(s − 1)
> 1.
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In addition

x2r−1(s + 3) = max
{

A2r−1,
x2r−1(s + 2)
x2r(s + 1)

}

= max
{

A2r−1,
A2r−1

x2r(s + 1)

}

= A2r−1,

x2r(s + 3) = max
{

A2r,
x2r(s + 2)

x2r+1(s + 1)

}

= max
{

A2r,
x2r(s)

x2r+1(s)x2r+1(s − 1)A2r+1

}

=
x2r(s)

x2r+1(s − 1)x2r+1(s)A2r+1
> 1,

xk(s + 3) = max
{

Ak,
xk(s + 2)
x1(s + 1)

}

=
xk(s)

x1(s)x1(s − 1)A1
> 1.

Working inductively we can prove that

x2r−1(s + v) = A2r−1, v = 1, 2, . . . , r = 1, 2, . . . ,
k

2
,

x2r(s + v) =
x2r(s)

x2r+1(s − 1)x2r+1(s)Av−2
2r+1

, v = 2, 3, . . . , r = 1, 2, . . . ,
k − 2

2
,

xk(s + v) =
xk(s)

x1(s)x1(s − 1)Av−2
1

.

Then (2.21) is true if inequalities (2.19) hold. Similarly we can prove that if inequalities (2.20)
are satisfied, then (2.22) hold. This completes the proof of the proposition.

Now we find solutions of system (1.2) where k = 2 which converge to period six solutions.
A related situation appears in [33]. For simplicity we set

x1(n) = xn, x2(n) = yn.

We use a product-type system of difference equations, which is solvable. There has been some
considerable recent interest on solvable product-type systems of difference equations (see, for
example, [39, 43, 44], and the related references therein).

Proposition 2.5. Consider system

xn+1 = max
{

A,
xn

yn−1

}

, yn+1 = max
{

B,
yn

xn−1

}

(2.23)

where A, B are positive constants which satisfy

0 < A < 1, 0 < B < 1.

Let ǫ be a positive number such that

0 < ǫ < min{1 − A, 1 − B}. (2.24)

Let (xn, yn) be a solution of (2.23) such that

x0

y0
=

(

x−1

y−1

)λ

, λ =
1 −

√
5

2
(2.25)

and

Cn ≥ r = max
{

A

1 − ǫ
,

B

1 − ǫ

}

, (2.26)
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where

Cn =















































(x0y0)1/2, when n = 6k,

( x0y0
x−1y−1

)1/2, when n = 6k + 1,

(x−1y−1)
−1/2, when n = 6k + 2,

(x0y0)−1/2, when n = 6k + 3,

( x0y0
x−1y−1

)−1/2, when n = 6k + 4,

(x−1y−1)
1/2, when n = 6k + 5.

Then there exists an n0 such that for n ≥ n0 (xn, yn) the form

xn = Cn

(

x−1

y−1

)
1
2 λn+1

, yn = Cn

(

x−1

y−1

)− 1
2 λn+1

(2.27)

and so (xn, yn) tends to a period six solution of (2.23).

Proof. First of all we prove that there exist x0, x−1, y0, y−1 such that (2.26) is satisfied. It is
obvious that 0 < r < 1 since (2.24) holds. We choose a number θ such that

0 < −r +
√

r < θ < 1 − r. (2.28)

Let now numbers v, w be such that

r < r + θ < v < (r + θ)−1
< r−1, r < r + θ < w < (r + θ)−1

< r−1. (2.29)

From (2.28) we get r < (r + θ)2. So,

r < (r + θ)2
<

v

w
< (r + θ)−2

< r−1.

Then if we choose x0, x−1, y0, y−1, such that the numbers

v = (x0y0)
1/2, w = (x−1y−1)

1/2

satisfy inequalities (2.29), relation (2.26) is true.
We consider the system of difference equations

xn+1 =
xn

yn−1
, yn+1 =

yn

xn−1
, n = 0, 1, 2, . . . (2.30)

Let (xn, yn) be a solution of (2.30) which satisfies (2.25) and (2.26). Then we get

xn+4 =
x2

n+3xn

xn+2

which implies that
ln xn+4 − 2 ln xn+3 + ln xn+2 − ln xn = 0.

By setting
zn = ln xn (2.31)

we get
zn+4 − 2zn+3 + zn+2 − zn = 0. (2.32)
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The characteristic equation of (2.32) is the following

p4 − 2p3 + p2 − 1 = (p2 − p − 1)(p2 − p + 1) = 0. (2.33)

Then zn has the form

zn = d1µn + d2λn + d3 cos
(nπ

3

)

+ d4 sin
(nπ

3

)

, (2.34)

where µ = 1+
√

5
2 , λ = 1−

√
5

2 , d1, d2, d3, d4 are constants.
If we set

wn = ln yn (2.35)

from (2.30) we get

wn = zn+1 − zn+2 = d1(1 − µ)µn+1 + d2(1 − λ)λn+1

+ d3

(

cos
(

(n + 1)π
3

)

− cos
(

(n + 2)π
3

))

+ d4

(

sin
(

(n + 1)π
3

)

− sin
(

(n + 2)π
3

))

= − d1µn − d2λn + d3 cos
(nπ

3

)

+ d4 sin
(nπ

3

)

.

(2.36)

From (2.34) and (2.36) we get

z−1 = d1µ−1 + d2λ−1 + d3
1
2
− d4

√
3

2
,

z0 = d1 + d2 + d3,

w−1 = −d1µ−1 − d2λ−1 + d3
1
2
− d4

√
3

2
,

w0 = −d1 − d2 + d3.

(2.37)

From (2.37) we have

d1 =
1 +

√
5

8
√

5

(

2(z0 − w0)− (1 −
√

5)(z−1 − w−1)
)

,

d2 =

(

1
4
− 1

4
√

5

)

(z0 − w0)−
1

2
√

5
(z−1 − w−1),

d3 =
z0 + w0

2
,

d4 =

√
3

6
(−2(z−1 + w−1) + z0 + w0) .

(2.38)

Relation (2.25) implies that

2(z0 − w0)− (1 −
√

5)(z−1 − w−1) = 2(ln x0 − ln y0)− (1 −
√

5)(ln x−1 − ln y−1)

= 2
(

ln
x0

y0
− λ ln

x−1

y−1

)

= 0

and so d1 = 0.
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From (2.25), (2.34), (2.36), (2.38) we get

zn =
1
2
(z−1 − w−1)λ

n+1 +
z0 + w0

2
cos

nπ

3
+

√
3

6

(

−2(z−1 + w−1) + z0 + w0

)

sin
nπ

3

wn = − 1
2
(z−1 − w−1)λ

n+1 +
z0 + w0

2
cos

nπ

3
+

√
3

6

(

−2(z−1 + w−1) + z0 + w0

)

sin
nπ

3
.

By using (2.31) and (2.35) we get

ln xn =
1
2

ln
(

x−1

y−1

)

λn+1 +
1
2

ln(x0y0) cos
nπ

3
+

√
3

6
(−2 ln(x−1y−1) + ln(x0y0)) sin

nπ

3
,

ln yn = − 1
2

ln
(

x−1

y−1

)

λn+1 +
1
2

ln(x0y0) cos
nπ

3
+

√
3

6
(−2 ln(x−1y−1) + ln(x0y0)) sin

nπ

3
.

From this and by some standard algebraic calculations we can easily prove that the relations
in (2.27) are satisfied, with the constants Cn as defined in above.

Since |λ| < 1 it is obvious that

lim
n→∞

(

x−1

y−1

)
1
2 λn+1

= 1, lim
n→∞

(

x−1

y−1

)− 1
2 λn+1

= 1.

Then if ǫ is a positive number which satisfy (2.24) there exists a n0 such that for n ≥ n0

(

x−1

y−1

)
1
2 λn+1

> 1 − ǫ,
(

x−1

y−1

)− 1
2 λn+1

> 1 − ǫ. (2.39)

Therefore using (2.27), (2.39) we get for n ≥ n0

xn ≥ max
{

A

1 − ǫ
,

B

1 − ǫ

}

(1 − ǫ) = max{A, B},

yn ≥ max
{

A

1 − ǫ
,

B

1 − ǫ

}

(1 − ǫ) = max{A, B}.
(2.40)

Then from (2.30) and (2.40) we have that (xn, yn) is a bounded solution of (2.23) where for
n ≥ n0 satisfies system (2.30). This completes the proof of the proposition.
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[8] B. Iričanin, S. Stević, Some systems of nonlinear difference equations of higher order
with periodic solutions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13(2006),
No. 3–4, 499–508. MR2220850
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[27] S. Stević, Boundedness character of a class of difference equations, Nonlinear Anal.

70(2009), 839–848. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳♥❛✳✷✵✵✽✳✵✶✳✵✶✹
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1 Introduction

In this paper we study the following system:















−∆pu = λa(x)|v|β1−1v in Ω;

−∆qv = µb(x)|u|β2−1u in Ω;

u = v = 0 on ∂Ω,

(1.1)

where β1, β2 > 0 with β1β2 = (p − 1)(q − 1), (λ, µ) ∈ R
2, p, q ∈ (1, ∞), Ω is a bounded

domain in R
n with a C2-boundary and a and b are bounded functions on Ω satisfying

ess inf
x∈Ω

a(x) > 0 and ess inf
x∈Ω

b(x) > 0. (1.2)

The p-Laplacian operator ∆p : W
1,p
0 (Ω) → W

−1, p
p−1 (Ω) is defined by

〈−∆pu, v〉 =
∫

Ω

|∇u|p−2∇u∇vdx,

where W
−1, p

p−1 (Ω) is the dual space of W
1,p
0 (Ω).

BCorresponding author. Email: edirjrleite@ufv.br



2 E. Leite

Consider the classical problem

{

−∆pu = f (x) in Ω;

u = 0 on ∂Ω.
(1.3)

Notice that, if f ∈ L∞(Ω), then problem (1.3) admits a unique weak solution (−∆p)−1( f ) :=

u ∈ W
1,p
0 (Ω). In this case, there exists α ∈ (0, 1) such that u ∈ C1,α(Ω) (see [12, 18, 24, 35]).

Thus, (−∆p)−1 : L∞(Ω) → C1,α′
0 (Ω) is continuous and bounded for α′ = α and compact

whenever 0 < α′
< α. Moreover, the (weak and strong) comparison principles related to the

p-Laplacian operator (see [6–10,15–19,31,34]) shows that (−∆p)−1 is order preserving, that is,
for all f , g ∈ L∞(Ω), f ≤ g in Ω implies (−∆p)−1 f ≤ (−∆p)−1g and it is also strictly order
preserving, i.e., f ≤ ( 6≡) g and g ( 6≡) ≥ 0 in Ω imply

(−∆p)
−1 f < (−∆p)

−1g in Ω and
∂(−∆p)−1g

∂ν
<

∂(−∆p)−1 f

∂ν
on ∂Ω,

where ν ≡ ν(y0) denotes the exterior unit normal to ∂Ω at y0 ∈ ∂Ω. More generally, we have

(−∆p)
−1 : W

−1, p
p−1 (Ω) → Lp(Ω)

is well defined, compact and order preserving, when p > 2 (see [18, Corollary 8]).

By weak maximum principle in Ω means that for any weak solution u ∈ W
1,p
0 (Ω) to

{

−∆pu = f (x) in Ω;

u ≥ 0 on ∂Ω,

with f ≥ 0 in Ω implies that u ≥ 0 in Ω. Besides, the strong maximum principle is said to hold
in Ω if, in addition, u > 0 in Ω whenever f 6≡ 0 in Ω. The validity of the (weak and strong)
maximum principles related to the p-Laplacian operator was established in [34, 36]. Later, the
paper [18] generalizes such results for operators involving the p-Laplacian. More generally, in
[15] the authors showed an anti-maximum principle for a class of strictly cooperative elliptic
systems.

In 1994, López-Gómez and Molina-Meyer [27] made a fairly complete characterization on
maximum principles for linear second order elliptic operators and, more generally, in the
context of cooperative systems. More recently, in [23] the authors established the connection
between maximum principle for Lane–Emden systems and their principal spectral curves. We
refer to [26] for a more detailed discussion of the maximum principle for elliptic problems
and cooperative systems involving linear second order elliptic operators.

We shall introduce a bit of notation. Here X stands for the space
[

C1
0(Ω)

]2
, X+ is given by

{(u, v) ∈ X : u ≥ 0 and v ≥ 0 in Ω}, and X̊+ is the topological interior of X+ in X. Then, X̊+

is nonempty and given by:

{

(u, v) ∈ X : u, v > 0 in Ω and
∂u

∂ν
,

∂v

∂ν
< 0 on ∂Ω

}

.

Let (u, v) in W
1,p
0 (Ω)× W

1,q
0 (Ω). The weak formulation of (1.1) is given by

λ
∫

Ω

a(x)|v|β1−1vΦdx =
∫

Ω

|∇u|p−2∇u∇Φdx (1.4)
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and
µ
∫

Ω

b(x)|u|β2−1uΨdx =
∫

Ω

|∇v|q−2∇v∇Ψdx

for any (Φ, Ψ) ∈ (C1
0(Ω))2.

We say that (λ, µ) ∈ R
∗
+ × R

∗
+ = (0, ∞)2 is an eigenvalue of (1.1) if the system admits a

nontrivial weak solution (ϕ, ψ) in W
1,p
0 (Ω) × W

1,q
0 (Ω) which is called an eigenfunction cor-

responding to (λ, µ). We also say that (λ, µ) is a principal eigenvalue if admits a positive
eigenfunction (ϕ, ψ). Finally, the couple (λ, µ) is said to be simple in X̊+ if for any eigenfunc-

tions (ϕ, ψ), (ϕ̃, ψ̃) ∈ X̊+, there exists θ > 0 such that ϕ̃ = θϕ and ψ̃ = θµ
1

β2 ψ in Ω.
During the past decades, the system (1.1) has been extensively studied in the case p = q =

2. For example, we can list the papers [4, 11, 14, 20, 28, 32], where several results on existence,
nonexistence and uniqueness of nontrivial solutions have been developed when β1β2 6= 1.
The case β1β2 = 1 was treated in Montenegro [29]. Namely, the author proved that the set
of principal eigenvalues (λ, µ) of the system (1.1) is nonempty and determines a curve in
the cartesian plane which satisfies some properties as simplicity, continuity, monotonicity and
local isolation. We also refer to [30] where a biparameter elliptic system was considered.

For the general case p, q > 1, we refer to [5] when β1β2 > (p − 1)(q − 1) and [7] when
β1β2 = (p − 1)(q − 1). For instance, Cuesta and Takáč [7] showed that the set of principal
eigenvalues of (1.1) is given by

C1(a, b, Ω) :=
{

(λ, µ) ∈ (R∗
+)

2 : λ
1√

β1(p−1) µ
1√

β2(q−1) = Λ
′(a, b, Ω)

}

for some Λ
′(a, b, Ω) > 0, satisfying:

(a) (Uniqueness) (λ, µ) ∈ C1(a, b, Ω) if and only if (λ, µ) ∈ R+ × R+ is a principal eigen-
value of the problem (1.1);

(b) (Simplicity in X̊+) The principal curve C1(a, b, Ω) is simple in X̊+, i.e., (λ, µ) is simple in
X̊+ for all (λ, µ) ∈ C1(a, b, Ω);

(c) (Simplicity in X) Let (ϕ, ψ) ∈ X be an eigenfunction associated to (λ, µ) ∈ C1(a, b, Ω).
So, either (ϕ, ψ) ∈ X̊+ or (−ϕ,−ψ) ∈ X̊+.

Let R1(a, b, Ω) be the open region in the first quadrant below C1(a, b, Ω), that is,

R1(a, b, Ω) =

{

(λ, µ) ∈ (R∗
+)

2 : λ
1√

β1(p−1) µ
1√

β2(q−1)
< Λ

′(a, b, Ω)

}

.

We say that the principal curve C1(a, b, Ω) is locally isolated above (or below) if for each
(λ1, µ1) ∈ C1(a, b, Ω), there is ε = ε(λ1, µ1) > 0 such that the system (1.1) does not have any
eigenvalue in Bε(λ1, µ1) ∩R1(a, b, Ω)

c
(or Bε(λ1, µ1) ∩R1(a, b, Ω)).

Theorem 1.1. Let p, q ∈ (1, ∞), Ω be a bounded domain in R
n with a C2-boundary, β1, β2 > 0 be

such that β1β2 = (p − 1)(q − 1) and a, b, ã and b̃ be functions in L∞(Ω) satisfying (1.2) in Ω. Then,

the curve C1(a, b, Ω) to the system (1.1) satisfies:

(i) (Strict monotonicity with respect to the domain) Let D be a bounded domain in R
n with a C2-

boundary, such that D ⊂ Ω. Then, Λ
′(a, b, Ω) < Λ

′(a, b, D);
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(ii) (Monotonicity with respect to the weights) Suppose that a ≤ ã and b ≤ b̃ in Ω. Then,

Λ
′(a, b, Ω) ≥ Λ

′(ã, b̃, Ω). Moreover, if (a, b) 6≡ (ã, b̃) then Λ
′(a, b, Ω) > Λ

′(ã, b̃, Ω);

(iii) (Local isolation above) The curve C1(a, b, Ω) is locally isolated above;

(iv) (Local isolation below) The system (1.1) does not admit any eigenvalues in R1(a, b, Ω). In

particular, the curve C1(a, b, Ω) is locally isolated below;

(v) (Continuity of the principal eigenvalue with respect to the weight functions a and b) Let (ak)k≥1

and (bk)k≥1 be sequences of weight functions in L∞(Ω) which are positive in Ω. Assume that

ak → a and bk → b uniformly in Ω. If a, b > 0 in Ω, then Λ
′(ak, bk, Ω) → Λ

′(a, b, Ω).

Note that the part (i) of Theorem 1.1 is essential for establish the Harnack inequality
associated to the system (1.1). A very important application of Harnack inequality is the
obtention of principal eigenvalues associated to the problems in general domains. Parts (ii)
and (v) of Theorem 1.1 are important tools to furnish a min–max type characterization for
principal curves associated to the problems whose solutions are not usually classical.

Now, we show an explicit lower estimate for principal eigenvalues of system (1.1) in terms
of the Lebesque measure of Ω, more specifically, a counterpart of [2, Theorem 10.1] to degen-
erate elliptic systems. More recently, it was proved in [23] for Lane–Emden systems involving
second order uniformly elliptic operators. Their proof use in a crucial way the celebrated
Faber–Krahn inequality due to Faber [13] and Krahn [22]. We present now some essential
ingredients:

For 1 ≤ p < n, we use the sharp Sobolev inequality for any u ∈ W
1,p
0 (Ω),

‖u‖Lp∗ (Ω) ≤ cn,p‖∇u‖Lp(Ω), (1.5)

where p∗ = np
n−p and an explicit formula of cn,p depending only on n and p was proved in

[1, 33].
For p = n and u ∈ W

1,p
0 (Ω), we have

‖u‖Lη(Ω) ≤ C(n)|Ω|
1
η ‖∇u‖Lp(Ω), (1.6)

where C(n) > 0, 1 ≤ η < ∞ and | · | stands for the Lebesgue measure of R
n.

For p > n, there is a constant C(n, p) > 0 such that

‖u‖L∞(Ω) ≤ C(n, p)|Ω|−
1

p∗ ‖∇u‖Lp(Ω), (1.7)

for all u ∈ W
1,p
0 (Ω).

Consider now the nonlinear eigenvalue problem

{

−∆pu − λ|u|p−2u = 0 in Ω;

u = 0 on ∂Ω.

In [25], the author proved that the first eigenvalue λ1,p(Ω) has the following properties, it is
strictly positive, simple in any bounded connected Ω and characterized by

λ1,p(Ω) = min
ϕ∈W

1,p
0 (Ω)\{0}

∫

Ω
|∇ϕ(x)|pdx

∫

Ω
|ϕ(x)|pdx

.
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By the Cheeger’s constant (see [3, 21]), we have

λ1,p(B1) ≥
(

n

p

)p

, (1.8)

where B1 is the unit ball of R
n.

Faber–Krahn inequality for the first eigenvalue of −∆p. Let 1 < p < ∞ and Ω be a open set
in R

n with finite Lebesgue measure. Then,

λ1,p(Ω) ≥ λ1,p(B1)|B1|
p
n |Ω|−

p
n .

Our main result gives an explicit lower estimate for principal eigenvalues of system (1.1)
in terms of the measure of Ω and the weighted functions a and b.

Precisely, we have:

Theorem 1.2. Let (λ, µ) be a principal eigenvalue of (1.1). Suppose β1 ≥ β2, p ≤ q and |Ω| ≤ 1.

(i) For 1 < p < n, q < p∗ and

q − 1 ≤ β1 <
np − n + p

n − p
,

there exists an explicit constant C = C(p, q, β1, β2, n, a, b) > 0 such that

λ + µ
p(q−1)

qβ2 ≥ C

(

n

q

)pθp

|B1|θp
p
n |Ω|−θp

p
n , (1.9)

where
1

β1 + 1
=

θp

p
+

1 − θp

p∗
;

(ii) For p = q = n and q − 1 ≤ β1 < ∞, the estimate (1.9) holds with

1
β1 + 1

=
θp

p
+

1 − θp

2(β1 + 1)
;

(iii) For n < p and q − 1 ≤ β1 < ∞, there is an explicit constant C = C(p, q, β1, β2, n, a, b) > 0
such that

λ + µ
p(q−1)

qβ2 ≥ C

(

n

q

)

θq β1 p

p−1

|B1|θp
p
n |Ω|−θp

p
n , (1.10)

where θp = p
β1+1 and θq =

q
β1+1 ;

(iv) For n = p < q and q − 1 ≤ β1 < ∞, we have (1.10) holds, with

1
β1 + 1

=
θp

p
+

1 − θp

2(β1 + 1)
and θq =

q

β1 + 1
.

In particular,

lim
|Ω|↓0

Λ
′(a, b, Ω) = ∞.

Using the ideas of the proof of Theorem 1.2, we obtain the following result:
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Theorem 1.3. Let (λ, µ) be a principal eigenvalue of (1.1). Suppose β1 ≤ β2, p ≤ q and |Ω| ≤ 1.

(i) For 1 < p < n, q < p∗ and

(p − 1)(q − 1)(n − p)

np − n + p
< β1 ≤ p − 1,

there exists an explicit constant C = C(p, q, β1, β2, n, a, b) > 0 such that

λ
q(p−1)

pβ1 + µ ≥ C

(

n

q

)rq

|B1|r
q
n |Ω|−r

q
n , (1.11)

where r := min
{

θp, θq
β2

q−1

}

,

1
β2 + 1

=
θp

p
+

1 − θp

p∗

and


















1
β2+1 =

θq

q +
1−θq

q∗ if 1 < q < n;
1

β2+1 =
θq

q +
1−θq

p∗ if q = n;

θq =
q

β2+1 if q > n;

(ii) For p = q = n and 0 < β1 ≤ p − 1, the estimate (1.11) holds with r = θq
β2

q−1 and

1
β2 + 1

=
θq

q
+

1 − θq

2(β2 + 1)
;

(iii) For n < p and 0 < β1 ≤ p − 1, there is an explicit constant C = C(p, q, β1, β2, n, a, b) > 0
such that

λ
q(p−1)

pβ1 + µ ≥ C

(

n

q

)sq

|B1|r
q
n |Ω|−r

q
n , (1.12)

where s := max
{

θp, θq
β2

q−1

}

, θp = p
β2+1 and θq =

q
β2+1 ;

(iv) For n = p < q and 0 < β1 ≤ p − 1, we have (1.12) holds, with

1
β2 + 1

=
θp

p
+

1 − θp

2(β2 + 1)
and θq =

q

β2 + 1
.

In particular,

lim
|Ω|↓0

Λ
′(a, b, Ω) = ∞.

Note that, supposing p ≤ q, we get an explicit lower estimate for principal eigenvalues of
system (1.1) for the range on β1 and β2,

(p − 1)(q − 1)(n − p)

np − n + p
< β1, β2 ≤ p − 1 and q − 1 ≤ β1, β2 <

np − n + p

n − p

for 1 < p < n and 0 < β1, β2 ≤ p − 1 and q − 1 ≤ β1, β2 < ∞ for p ≥ n. In particular, the
result holds for all hyperbole β1β2 = (p − 1)(q − 1) if p = q ≥ n. The problem remains open
in other remaining cases (see Figure 1.1). Clearly, the case q < p follows similarly.

Our approach is inspired by the papers [2, 7, 23, 29]. By mean of topological arguments,
strong maximum principle, Hopf’s lemma and (weak and strong) comparison principles re-
lated to the p-Laplacian operator, we prove five properties of C1(a, b, Ω) which will be pre-
sented in Section 2. In Section 3, by using the Faber–Krahn inequality for the first eigenvalue
of −∆p, variational characterization of λ1,p(Ω), Hölder, Young, interpolation and Sobolev
inequalities, we show Theorem 1.2.
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(a) Case 1 < p < n and p ≤ q < p∗ (b) Case p ≥ n and p ≤ q

Figure 1.1: Couples (β1, β2).

2 Proof of Theorem 1.1

In this section we provide some essential properties satisfied by the principal curve C1(a, b, Ω)

which is organized into five propositions.
We first show the strict monotonicity of the principal eigenvalues with respect to the do-

main stated in the part (i) of Theorem 1.1. Precisely:

Proposition 2.1. Let D and Ω be two bounded domain in R
n with a C2-boundary, such that D ⊂ Ω

and C1(a, b, Ω) and C1(a, b, D) principal curves. Then, Λ
′(a, b, Ω) < Λ

′(a, b, D).

Proof. Assume by contradiction that Λ
′(a, b, Ω) ≥ Λ

′(a, b, D). Let (λ1, µ1) ∈ C1(a, b, Ω) and

(λ̃1, µ̃1) ∈ C1(a, b, D) be such that λ1
µ1

= λ̃1
µ̃1

. Thus, λ1 ≥ λ̃1 and µ1 ≥ µ̃1. Let (ϕ, ψ), (ϕ̃, ψ̃) be

positive eigenfunctions associated to the principal eigenvalues (λ1, µ1), (λ̃1, µ̃1), respectively.
Define

c := min
{

min
x∈D

ϕ(x), min
x∈D

ψ(x)

}

> 0.

We claim that ϕ ≥ ϕ̃ and ψ ≥ ψ̃ in D. In fact, assume by contradiction that ϕ < ϕ̃ or
ψ < ψ̃ somewhere in D. In this case, the set Γ := {γ > 0 : ϕ > γϕ̃ and ψ > γωψ̃ in D} is
upper bounded, where ω := p−1

β1
. In addition, the positivity of ϕ and ψ in D imply that Γ is

nonempty. Define 0 < γ := sup Γ < 1. It is clear that ϕ ≥ γϕ̃ and ψ ≥ γωψ̃ in D, with ϕ 6≡ γϕ̃

and ψ 6≡ γωψ̃ in D. Moreover, ϕ ≥ γϕ̃ + c and ψ ≥ γωψ̃ + c on ∂D. So, we get
{

−∆p(γϕ̃ + c) = −∆p(γϕ̃) = λ̃1a(x)(γωψ̃)β1 ≤ ( 6≡) λ1a(x)ψβ1 = −∆p(ϕ)

−∆q(γ
ωψ̃ + c) = −∆q(γ

ωψ̃) = µ̃1b(x)(γϕ̃)β2 ≤ ( 6≡) µ1b(x)ψβ2 = −∆q(ψ)
in D.

Then, applying the weak comparison principle to each above equation (see [18] or [34, Lemma
3.1]), we derive ϕ ≥ γϕ̃ + c and ψ ≥ γωψ̃ + c in D. Thus, ϕ > γϕ̃ and ψ > γωψ̃ in D. So,
we can find 0 < ε < 1 such that ϕ > (γ + ε)ϕ̃ and ψ > (γ + ε)ωψ̃ in D, contradicting the
definition of γ. Therefore, ϕ ≥ ϕ̃ and ψ ≥ ψ̃ in D. Note that (κϕ̃, κωψ̃), κ > 0, are also
eigenfunctions associated to (λ̃1, µ̃1). Then, ϕ ≥ κϕ̃ and ψ ≥ κωψ̃ in D for all κ > 0; and from
there we arrive at a contradiction. This concludes the desired proof.
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We now show the monotonicity of principal eigenvalues with respect to the weights which
corresponds to the part (ii) of Theorem 1.1.

Proposition 2.2. Let a, b, ã and b̃ be functions in L∞(Ω) satisfying (1.2) such that a ≤ ã and b ≤ b̃

in Ω. Then, Λ
′(a, b, Ω) ≥ Λ

′(ã, b̃, Ω). Moreover, if (a, b) 6≡ (ã, b̃) then Λ
′(a, b, Ω) > Λ

′(ã, b̃, Ω).

Proof. Assume by contradiction that Λ
′(a, b, Ω)<Λ

′(ã, b̃, Ω). Let (λ1(a, b), µ1(a, b))∈C1(a, b, Ω)

and (λ1(ã, b̃), µ1(ã, b̃)) ∈ C1(ã, b̃, Ω) be such that λ1(a,b)
µ1(a,b) =

λ1(ã,b̃)
µ1(ã,b̃)

. Thus,

λ1(a, b) < λ1(ã, b̃) and µ1(a, b) < µ1(ã, b̃).

Let (ϕ, ψ) and (ϕ̃, ψ̃) be positive eigenfunctions associated to the principal eigenvalues

(λ1(a, b), µ1(a, b)) and (λ1(ã, b̃), µ1(ã, b̃)),

respectively. Consider the set Γ = {γ > 0 : ϕ̃ > γϕ and ψ̃ > γωψ in Ω}, where ω := p−1
β1

. Note
that Γ is upper bounded, and by strong maximum principle (see [18, 34, 36]) Γ is nonempty.
Define γ = sup Γ > 0. Note that, ϕ̃ ≥ γϕ and ψ̃ ≥ γωψ in Ω.

Since (−∆p)−1 and (−∆q)−1 are strictly order preserving, we can find 0 < ε < 1 such that
ϕ̃ > (γ + ε)ϕ and ψ̃ > (γ + ε)ωψ in Ω which clearly contradicts the definition of γ. Therefore,
Λ

′(a, b, Ω) ≥ Λ
′(ã, b̃, Ω).

Finally, assume that (a, b) 6≡ (ã, b̃). Arguing again by contradiction, assume that

Λ
′(a, b, Ω) = Λ

′(ã, b̃, Ω).

Let (ϕ, ψ) and (ϕ̃, ψ̃) be positive eigenfunctions corresponding to the principal eigenvalues
(λ1(a, b), µ1(a, b)) = (λ1(ã, b̃), µ1(ã, b̃)). Proceeding similarly to the first part of the proof, we
obtain Λ

′(a, b, Ω) > Λ
′(ã, b̃, Ω). This ends the proof.

The two next propositions are dedicated the local isolation above and below the principal
curve C1(a, b, Ω). These correspond to the parts (iii) and (iv) of Theorem 1.1, respectively.
Precisely:

Proposition 2.3. The curve C1(a, b, Ω) is locally isolated above.

Proof. Assume by contradiction that the claim is false. Thus, there are (λ1, µ1) ∈ C1(a, b, Ω)

and a sequence of eigenvalues ((λk, µk))k≥1 contained in Bεk
(λ1, µ1)∩R1(a, b, Ω)

c
, where εk →

0 with εk > 0 for all k ∈ N. Let (ϕk, ψk) an eigenfunction associated to (λk, µk); that is, a weak
solution of the system















−∆p ϕk = λka(x)|ψk|β1−1ψk in Ω;

−∆qψk = µkb(x)|ϕk|β2−1 ϕk in Ω;

ϕk = ψk = 0 on ∂Ω,

where at least one of −ϕk or −ψk does not belong to X̊+. Define the functions

uk :=
ϕk

‖ψk‖
β1

p−1

L∞(Ω)

, ũk :=
ϕk

‖ϕk‖L∞(Ω)
, ṽk :=

ψk

‖ψk‖L∞(Ω)
and vk :=

ψk

‖ϕk‖
β2

q−1

L∞(Ω)

.
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Then, we have 0 ≤ |ũk|, |ṽk| ≤ 1 in Ω. Therefore, the right-hand side of the following
system















−∆puk = λka(x)|ṽk|β1−1ṽk in Ω;

−∆qvk = µkb(x)|ũk|β2−1ũk in Ω;

ϕk = ψk = 0 on ∂Ω;

(2.1)

is uniformly bounded in (L∞(Ω))2. It follows the sequences (uk)k≥1 and (vk)k≥1 are bounded
in C1,α

0 (Ω), by regularity and, in addition, also bounded in L∞(Ω); i.e., there exists a constant
C > 0 such that ‖uk‖L∞(Ω), ‖vk‖L∞(Ω) ≤ C for all k ∈ N. Therefore, ‖ϕk‖L∞(Ω) is uniformly
bounded if, and only if, ‖ψk‖L∞(Ω) is uniformly bounded.

First, we assume that, both ‖ϕk‖L∞(Ω) and ‖ψk‖L∞(Ω) are uniformly bounded. Applying

the regularity result in C1,α
0 (Ω), we get (ϕk)k≥1 and (ψk)k≥1, are bounded in C1,α

0 (Ω). Since Ω

is bounded, by Arzelà–Ascoli Theorem, up to a subsequence, we derive the convergence

ϕk → ϕ and ψk → ψ in C1
0(Ω) as k → ∞. (2.2)

Thus, (ϕ, ψ) ∈ (C1
0(Ω))2 is a weak solution of the system















−∆p ϕ = λ1a(x)|ψ|β1−1ψ in Ω;

−∆qψ = µ1b(x)|ϕ|β2−1ϕ in Ω;

ϕ = ψ = 0 on ∂Ω.

By simplicity in X property (c), we must have either (ϕ, ψ) ∈ X̊+ or (−ϕ,−ψ) ∈ X̊+. If
(ϕ, ψ) ∈ X̊+, from the convergence in (2.2), we obtain (ϕk, ψk) ∈ X̊+ for k sufficiently large.
So, by uniqueness property (a), we have (λk, µk) ∈ C1(a, b, Ω) for k large enough, contradicting
that (λk, µk) ∈ R1(a, b, Ω)

c
for all k ∈ N. Then, we must have (−ϕ,−ψ) ∈ X̊+. We now

obtain (−ϕk,−ψk) ∈ X̊+ for k sufficiently large, by convergence in (2.2). But this contradicts
our hypothesis that at least one of −ϕk or −ψk doesn’t belong to X̊+ for all k ∈ N.

Now, we assume that, ‖ϕk‖L∞(Ω) → ∞ and ‖ψk‖L∞(Ω) → ∞ as k → ∞. For a subsequence
indicated again by ((ϕk, ψk))k≥1, there is a function (ϕ̃, ψ̃) ∈ (C1

0(Ω))2, such that ‖ϕ̃‖L∞(Ω) =

‖ψ̃‖L∞(Ω) = 1,
ũk → ϕ̃ and ṽk → ψ̃ in C1

0(Ω) as k → ∞. (2.3)

Moreover, there are λ̃, µ̃ ∈ R such that λ̃β2 µ̃p−1 = 1,

‖uk‖β2

L∞(Ω)
→ µ̃ and ‖vk‖β1

L∞(Ω)
→ λ̃ as k → ∞.

Letting k → ∞ in problem (2.1), we obtain (ϕ̃, ψ̃) ∈ (C1
0(Ω))2 is a weak solution of the problem















−∆p ϕ̃ = λ1λ̃a(x)|ψ̃|β1−1ψ̃ in Ω;

−∆qψ̃ = µ1µ̃b(x)|ϕ̃|β2−1 ϕ̃ in Ω;

ϕ̃ = ψ̃ = 0 on ∂Ω.

Therefore, (λ1λ̃, µ1µ̃) ∈ C1(a, b, Ω). By simplicity in X property (c), we must have either
(ϕ̃, ψ̃) ∈ X̊+ or (−ϕ̃,−ψ̃) ∈ X̊+. Again, we obtain a contradiction in an analogous way,
instead of convergence in (2.2), we invoke convergence in (2.3). This ends the proof.

Proposition 2.4. The system (1.1) does not admit any eigenvalues in R1(a, b, Ω). In particular, the

curve C1(a, b, Ω) is locally isolated below.
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Proof. Arguing by contradiction, assume that the system (1.1) has an eigenvalue (λ, µ) ∈
R1(a, b, Ω). Let (λ1, µ1) ∈ C1(a, b, Ω) be such that µ

λ = µ1
λ1

. So, we have λ < λ1 and µ < µ1.
Consider a positive eigenfunction (ϕ, ψ) corresponding to (λ1, µ1) and an eigenfunction (u, v)

to (λ, µ). Now, we can assume that u or v is positive somewhere in Ω. Otherwise, we take
(−u,−v) in place of (u, v). Consider the set Γ = {γ > 0 : ϕ > γu and ψ > γωv in Ω}, where
ω := p−1

β1
. Notice that Γ is upper bounded. Moreover, by strong maximum principle, Γ is

nonempty. Define the positive number γ = sup Γ. Note that, ϕ ≥ γu and ψ ≥ γωv in Ω.
Since λ < λ1, µ < µ1 and (−∆p)−1 and (−∆q)−1 are strictly order preserving, we can find

0 < ε < 1 such that ϕ > (γ + ε)u and ψ > (γ + ε)ωv in Ω. But this contradicts the definition
of γ. This concludes the proof.

The last proposition establishes the continuity of the principal eigenvalue with respect to
the weight functions a and b which corresponds to the part (v) of Theorem 1.1.

Proposition 2.5. Let (ak)k≥1 and (bk)k≥1 be sequences of weight functions in L∞(Ω) which are

positive in Ω. Assume that ak → a and bk → b uniformly in Ω. If a, b > 0 in Ω, then Λ
′(ak, bk, Ω) →

Λ
′(a, b, Ω).

Proof. Given a fixed number r0>0, let (λ1(a, b), µ1(a, b))∈C1(a, b, Ω) and (λ1(ak, bk), µ1(ak, bk))∈
C1(ak, bk, Ω) be such that

λ1(a, b)

µ1(a, b)
=

λ1(ak, bk)

µ1(ak, bk)
=

1
r0

, for all k ∈ N. (2.4)

By definitions of Λ
′(ak, bk, Ω) and Λ

′(a, b, Ω) and equalities in (2.4), it suffices to prove only
that λ1(ak, bk) → λ1(a, b) as k → ∞. Assume by contradiction that there is a number ε > 0
such that

|λ1(ak, bk)− λ1(a, b)| ≥ ε

for k ∈ N. Without loss of generality, we can assume

λ1(ak, bk)− λ1(a, b) ≥ ε .

Since a and b are positive on Ω, we can define δ ∈ R to be such that

0 < δ <
ε

λ1(a, b) + ε
min

{

inf
x∈Ω

a(x), inf
x∈Ω

b(x)

}

.

By uniform convergence of the sequences (ak)k≥1 and (bk)k≥1, up to a subsequence, we can
assume without loss of generality that

ak(x) ≥ a(x)− δ, bk(x) ≥ b(x)− δ

for all x ∈ Ω and k ∈ N. Let (ϕk, ψk) and (ϕ, ψ) be positive eigenfunctions associated to the
principal eigenvalues

(λ1(ak, bk), µ1(ak, bk)) and (λ1(a, b), µ1(a, b)) ,

respectively. Then, by strong maximum principle, the usual set Γ = {γ > 0 : ϕk > γϕ and ψk >

γωψ in Ω} is nonempty and upper bounded, where ω := p−1
β1

. Set γ := sup Γ > 0. Using the
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definitions of r0, ε and δ and the above inequalities, we get

−∆p(γϕ) = λ1(a, b)a(x)(γωψ)β1

= (λ1(a, b) + ε)(a(x)− δ)(γωψ)β1 + (−εa(x) + λ1(a, b)δ + εδ)(γωψ)β1

< λ1(ak, bk)ak(x)ψ
β1
k = −∆p(ϕk) ;

−∆q(γ
ωψ) = µ1(a, b)b(x)(γϕ)β2

= r0(λ1(a, b) + ε)(b(x)− δ)(γϕ)β2 + r0(−εb(x) + λ1(a, b)δ + εδ)(γϕ)β2

< r0λ1(ak, bk)bk(x)ϕ
β2
k = µ1(ak, bk)bk(x)ϕ

β2
k = −∆q(ψk);

and ϕk = γϕ = ψk = γωψ = 0 on ∂Ω. Applying the strong comparison principle to each
above equation (see [7, Theorem A.1]), we derive

ϕk > γϕ, ψk > γωψ in Ω and
∂ϕk

∂ν
<

∂γϕ

∂ν
,

∂ψk

∂ν
<

∂γωψ

∂ν
on ∂Ω.

Then, ϕk > (γ + ε)ϕ and ψk > (γ + ε)ωψ in Ω for 0 < ε < 1. But this contradicts the definition
of γ, and so concluding the proof.

3 Proof of Theorem 1.2

We first prove the case 1 < p, q < n. Let (ϕ, ψ) denote a principal eigenfunction corresponding
to (λ, µ). Since

−∆p ϕ = λa(x)ψβ1

in the weak sense, then applying the equality (1.4) with Φ = ϕ, we obtain

λ
∫

Ω

a(x)ψβ1 ϕdx =
∫

Ω

|∇ϕ|pdx.

Moreover, by using Hölder and Young inequalities, we get
∫

Ω

a(x)ψβ1 ϕdx ≤ ‖a‖L∞(Ω)

(

1
p
‖ϕ‖p

Lβ1+1(Ω)
+

p − 1
p

‖ψ‖pβ1/(p−1)
Lβ1+1(Ω)

)

.

Consequently,

λD1

(

‖ϕ‖p

Lβ1+1(Ω)
+ ‖ψ‖pβ1/(p−1)

Lβ1+1(Ω)

)

≥
∫

Ω

|∇ϕ|pdx, (3.1)

where

D1 = max
{

1
p
‖a‖L∞(Ω),

p − 1
p

‖a‖L∞(Ω),
1
q
‖b‖L∞(Ω),

q − 1
q

‖b‖L∞(Ω)

}

.

Similarly, it follows from
−∆qψ = µb(x)ϕβ2

in the weak sense that

µ‖b‖L∞(Ω)|Ω|
β1−β2
β1+1

(

q − 1
q

‖ϕ‖qβ2/(q−1)
Lβ1+1(Ω)

+
1
q
‖ψ‖q

Lβ1+1(Ω)

)

≥
∫

Ω

|∇ψ|qdx.

Now, since |Ω| ≤ 1 and p(q−1)
qβ2

≥ 1, we have

(D1µ)
p(q−1)

qβ2 D2

(

‖ϕ‖p

Lβ1+1(Ω)
+ ‖ψ‖pβ1/(p−1)

Lβ1+1(Ω)

)

≥
(

∫

Ω

|∇ψ|qdx

)

p(q−1)
qβ2

, (3.2)
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where D2 = 2
p(q−1)

qβ2
−1. Thus, adding up (3.1) and (3.2) inequalities shows that

λ + µ
p(q−1)

qβ2 ≥ 1
D3





∫

Ω
|∇ϕ|pdx +

(∫

Ω
|∇ψ|qdx

)

p(q−1)
qβ2

‖ϕ‖p

Lβ1+1(Ω)
+ ‖ψ‖pβ1/(p−1)

Lβ1+1(Ω)



 ,

where D3 = max
{

D2D
p(q−1)

qβ2
1 , D1

}

.
On the other hand, by interpolation inequality, inequality (1.5) and variational characteri-

zation of λ1,p(Ω), we obtain

∫

Ω
|∇ϕ|pdx

‖ϕ‖p

Lβ1+1(Ω)

≥
(

cn,p
)(θp−1)p

λ1,p(Ω)θp ,

where
1

β1 + 1
=

θp

p
+

1 − θp

p∗

and
(∫

Ω
|∇ψ|qdx

)

p(q−1)
qβ2

‖ψ‖pβ1/(p−1)
Lβ1+1(Ω)

≥
(

cn,q
)(θq−1)

pβ1
p−1 λ1,q(Ω)

θq
pβ1

(p−1)q ,

where
1

β1 + 1
=

θq

q
+

1 − θq

q∗
.

Furthermore, by Faber-Krahn inequality for the first eigenvalue of −∆p and inequality (1.8),
we get

λ1,p(Ω) ≥ λ1,p(B1)|B1|
p
n |Ω|−

p
n ≥

(

n

p

)p

|B1|
p
n |Ω|−

p
n .

Then, using that p ≤ q, |Ω| ≤ 1 and β1 ≥ p − 1, we obtain

λ1,p(Ω)θp , λ1,q(Ω)
θq

pβ1
(p−1)q ≥

(

n

q

)pθp

|B1|θp
p
n |Ω|−θp

p
n .

Therefore,

λ + µ
p(q−1)

qβ2 ≥ C

(

n

q

)pθp

|B1|θp
p
n |Ω|−θp

p
n ,

where C = 1
D3

min
{

(cn,p)(θp−1)p, (cn,q)
(θq−1)

pβ1
p−1

}

.
The rest of proof is analogue, by using interpolation inequality with θp and θq appropriate

and instead of inequality (1.5), we invoke inequalities (1.6) and (1.7). This concludes the proof
of the theorem.
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Abstract. In this paper, we study the following quasilinear Schrödinger equation of the
form

−∆pu + V(x)|u|p−2u −
[
∆p(1 + u2)α/2

] αu

2(1 + u2)(2−α)/2
= k(u), x ∈ R

N ,

where p-Laplace operator ∆pu = div(|∇u|p−2∇u) (1 < p ≤ N) and α ≥ 1 is a param-
eter. Under some appropriate assumptions on the potential V and the nonlinear term
k, using some special techniques, we establish the existence of a nontrivial solution in
C

1,β
loc (R

N) (0 < β < 1), we also show that the solution is in L∞(RN) and decays to zero
at infinity when 1 < p < N.

Keywords: quasilinear Schrödinger equation, variational method, mountain-pass theo-
rem, p-Laplace operator.
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1 Introduction

In this work, we are interested in the existence of nontrivial solution to the following quasi-
linear Schrödinger equation

− ∆pu + V(x)|u|p−2u −
[
∆p(1 + u2)α/2

] αu

2(1 + u2)(2−α)/2
= k(u), x ∈ R

N , (1.1)

where p-Laplace operator ∆pu = div(|∇u|p−2∇u) (1 < p ≤ N) and α ≥ 1 is a parameter. V

is a positive continuous potential and k(u) is a nonlinear term of subcritical type.
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Such equations arise in various branches of mathematical physics. For instance, solutions
of equation (1.1), in the case p = 2 and α = 1 are closed related to the existence of solitary
wave solutions for quasilinear Schrödinger equations

izt = −∆z + W(x)z − k̃(|z|2)z − ∆l(|z|2)l′(|z|2)z, x ∈ R
N , (1.2)

where z : R × RN → C, W : RN → R is a given potential, k̃, l : R+ → R are real functions.
The form of (1.2) has been derived as models of several physical phenomena corresponding to
various types of l. For instance, the case l(s) = s models the time evolution of the condensate
wave function in super-fluid film [15, 16], and is called the superfluid film equation in fluid
mechanics by Kurihara [15]. In the case l(s) = (1 + s)1/2, problem (1.2) models the self-
channeling of a high-power ultra short laser in matter, the propagation of a high-irradiance
laser in a plasma creates an optical index depending nonlinearly on the light intensity and
this leads to interesting new nonlinear wave equation (see [2, 4, 8, 28]). For more physical
motivations and more references dealing with applications, we refer the reader to [1, 13, 17,
25–27] and references therein.

It is well known that, via the ansatz z(t, x) = exp(−iEt)u(x), where E ∈ R and u is a real
function, (1.2) can be reduced to the following elliptic equation

− ∆u + V(x)u −
[
∆(l(u2))

]
l′(u2)u = k(u), x ∈ R

N , (1.3)

where V(x) = W(x)− E and k(u) = k̃(u2)u.
If we take l(s) = s in (1.3), then we obtain the superfluid film equation in plasma physics

− ∆u + V(x)u −
[
∆(u2)

]
u = k(u), x ∈ R

N . (1.4)

Clearly, when p = 2 and α = 2, equation (1.1) turns into equation (1.4). Equation (1.4)
has been paid much attention in the past two decades. Many existence and multiplicity re-
sults of nontrivial solutions have been established by differential methods such as constrained
minimization argument, changes of variables, Nehari method, a dual approach, perturbation
method, see [7, 12, 14, 20–24, 26, 29, 31] and references therein.

If we take l(s) = (1 + s)1/2 in (1.3), then we get the equation

− ∆u + V(x)u −
[
∆(1 + u2)1/2

] u

2(1 + u2)1/2 = k(u), x ∈ R
N , (1.5)

which models the self-channeling of a high-power ultrashort laser in matter. Obviously, equa-
tion (1.1) turns into (1.5) for the case p = 2 and α = 1.

The existence of positive solutions for (1.5) has been studied recently. In [32], by a change
of variables and the Ambrosetti–Rabinowitz mountain-pass theorem, the authors proved that
(1.5) has a positive solution. They assume that the potential V ∈ C(RN , R) and the nonlinear-
ity k : R → R is Hölder continuous and satisfy the following conditions:

(V1) V(x) ≥ V0 > 0, for all x ∈ RN ;

(V2) lim|x|→∞ V(x) = V(∞) < ∞ and V(x) ≤ V(∞), for all x ∈ RN ;

(H1) k(s) = 0 if s ≤ 0;

(H2) k(s) = o(s) as s → 0+;

(H3) There exists 2 < θ < 2∗ such that |k(s)| ≤ C(1 + |s|θ−1);

(H4) There exists µ >

√
6 such that 0 < µK(s) ≤ sk(s) for all s > 0, where K(s) =

∫ s
0 k(t)dt.

In [5], by a dual approach, the authors studied the existence of positive solution for the fol-
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lowing equation

− ∆u + Ku −
[
∆(1 + u2)α/2

] αu

2(1 + u2)(2−α)/2
= |u|q−1u + |u|p−1u, x ∈ R

N , (1.6)

where K > 0, N ≥ 3, α ≥ 1 and 2 < q + 1 < p + 1 < α2∗. Similar works can be found in
[3, 6, 18, 22] and reference therein.

However, to the best of our knowledge, in all works mentioned above, there are no exis-
tence results in the literature on the case p 6= 2, α ≥ 1 and the nonlinear term becomes general
function. Motivated by the works mentioned above and [5,7,20,22,31,32], our purpose in this
paper is to study the existence of nontrivial weak solutions of (1.1) under some assumptions
on the potential V(x) and nonlinear term k(s).

Definition 1.1. We say that u : RN → R is a weak solution of (1.1) if u ∈ W1,p(RN)∩ L∞
loc(R

N)

and
∫

RN

[
1 +

αp|u|p
2(1 + u2)(2−α)p/2

]
|∇u|p−2∇u∇ψdx

+
αp

2

∫

RN

[
1 + (α − 1)u2

]

(1 + u2)1+(2−α)p/2
|∇u|p|u|p−2uψdx

=
∫

RN
η(x, u)ψdx, ∀ψ ∈ C∞

0 (RN),

(1.7)

where η(x, u) = k(u)− V(x)|u|p−2u.

In such a case, we can deduce formally that the Euler–Lagrange functional associated with
the equation (1.1) is

J(u) =
1
p

∫

RN

[
1 +

αp|u|p
2(1 + u2)(2−α)p/2

]
|∇u|pdx +

1
p

∫

RN
V(x)|u|pdx −

∫

RN
K(u)dx,

where K(s) =
∫ s

0 k(t)dt.

For (1.1), due to the appearance of the nonlocal term
∫

RN
αp|u|p

2(1+u2)(2−α)p/2 |∇u|pdx, J may be
not well defined. To overcome this difficulty, enlightened by [7, 20, 32], we make a change of
variables as

v = H(u) =
∫ u

0
h(t)dt, (1.8)

where h(t) =
[
1 + αp|t|p

2(1+t2)(2−α)p/2

]1/p
, t ∈ R. Since H(t) is strictly increasing on R, the inverse

function H−1(t) of H(t) exists. Then after the change of variables, J(u) can be written by

F (v) = J(H−1(v)) =
1
p

∫

RN
|∇v|pdx +

1
p

∫

RN
V(x)|H−1(v)|pdx −

∫

RN
K(H−1(v))dx. (1.9)

According to Lemma 2.1 and our hypotheses on V(x) and k(s) below, it is clear that F is well
defined in W1,p(RN) and F ∈ C1. The Euler–Lagrange equation associated to the functional
F is

− ∆pv =
η(x, H−1(v))

h(H−1(v))
, x ∈ R

N . (1.10)

In Proposition 2.2, we will show the relationship between the solutions of (1.10) and the
solutions of (1.1).

Throughout this paper, let 1 < p ≤ N, α ≥ 1. Besides, we assume that the potential
V(x) ∈ C(RN , R) and satisfies (V1)− (V2), the nonlinearity k(s) ∈ C(R, R) and satisfies the
following conditions:
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(K1) k is odd and k(s) = o(|s|p−2s) as s → 0;

(K2) There exists a constant C > 0 such that

|k(s)| ≤ C(1 + |s|θ−1), ∀s ∈ R,

where αp < θ < αp∗ if 1 < p < N and θ > αp if p = N;

(K3) There exists µ ≥ T̃(p, α)p such that 0 < µK(s) ≤ sk(s) for all s > 0,
where K(s) =

∫ s
0 k(t)dt, T̃(p, α) = 1 + T(p, α) and

T(p, α) = sup
t≥0

th′(t)
h(t)

= sup
t≥0

αptp
[
1 + (α − 1)t2

]

(1 + t2)
[
2(1 + t2)(2−α)p/2 + αptp

] > 0. (1.11)

Our main result is the following.

Theorem 1.2. Let 1 < p ≤ N, α ≥ 1. Suppose (V1)–(V2) and (K1)–(K2) hold. Then (1.1) admits a

nontrivial weak solution u ∈ C
1,β
loc (R

N) (0 < β < 1) provided that one of the following conditions is

satisfied:

(a) (K3) holds with µ > T̃(p, α)p;

(b) (K3) holds with µ = T̃(p, α)p = 2p and p < θ < p∗ if 1 < p < N or θ > p if p = N in (K2).

Furthermore, if 1 < p < N, then u ∈ L∞(RN) and u(x) → 0 as |x| → ∞.

Remark 1.3. It is not difficult to verify that T(p, α) = α − 1 if α ≥ 2 and α − 1 ≤ T(p, α) < 1 if
1 ≤ α < 2. If p = 2, then T(p, α) = T(2, α), which equals to the T(α) in [5]. If p = 2 and α = 1,
we obtain T(2, 1) = 5 − 2

√
6. Thus, µ ≥ T̃(2, 1)2 = (1 + T(2, 1))2 ≈ 2.202 in (K3) is better

than µ > 2
√

6 ≈ 2.449 in (H4). If p = 2 and α = 2, we have T̃(2, 2)2 = 4, which coincides with
that in [7]. Therefore, our conclusion in Theorem 1.2 can be viewed as an extension result in
[5, 7, 20, 32].

The organization of this paper is as follows. In Section 2, we give some properties of H(t)

and some preliminary results. In Section 3, we present an auxiliary problem and some related
results. In Section 4, we complete the proof of Theorem 1.2.

Throughout this paper, C and Ci stand for positive constants which may take different
values at different places. BR denotes the open ball centered at the origin and radius R > 0,
C∞

0 (RN) denotes functions infinitely differentiable with impact support in RN . For 1 ≤ p ≤ ∞,
Lp(RN) denotes the usual Lebesgue space with the norms

‖u‖p =
( ∫

RN
|u|pdx

)1/p
, 1 ≤ p < ∞;

‖u‖∞ = inf
{

M > 0 : |u(x)| ≤ M almost everywhere in R
N
}

.

W1,p(RN) denotes the Sobolev spaces modelled in Lp(RN) with its usual norm

‖u‖ =
( ∫

RN
(|∇u|p + |u|p)dx

)1/p
.

〈·, ·〉 denotes the duality pairing between X and its dual X∗. The weak (strong) convergence
in X is denoted by ⇀ (→), respectively.
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2 Preliminaries

We first give some properties of the change of variables H : R → R defined by (1.8), which
will be used frequently in the sequel of the paper.

Lemma 2.1. For functions h, H and H−1, the following properties hold:

(1) H is odd, strictly increasing, invertible and C2 in R;

(2) 0 < (H−1)′(t) ≤ 1, ∀t ∈ R;

(3) |H−1(t)| ≤ |t|, ∀t ∈ R;

(4) limt→0
H−1(t)

t = 1;

(5) limt→+∞

(
H−1(t)

)α

t =





p

√
2
3 , α = 1,

p
√

2, α > 1;

(6) h(H−1(t))H−1(t) ≤ T̃(p, α)t ≤ T̃(p, α)h(H−1(t))H−1(t), ∀t ≥ 0;

(7) h(H−1(t))
(

H−1(t)
)2 ≤ T̃(p, α)tH−1(t) ≤ T̃(p, α)h(H−1(t))

(
H−1(t)

)2, ∀t ∈ R;

(8) |H−1(t)| ≤ C|t|1/α for some C > 0 and ∀t ∈ R;

(9) There exists C > 0 such that

|H−1(t)| ≥
{

C|t|, |t| ≤ 1,

C|t|1/α, |t| ≥ 1.

Proof. By the definition of H, it is easy to verify that (1)–(4) hold.

(5) If α > 1, since

h(t) =

[
1 +

αptp

2(1 + t2)(2−α)p/2

]1/p

=

[
1 +

αptp

2(1 + t2)p/2 (1 + t2)(α−1)p/2)

]1/p

, t > 0,

one has h(t) ∼ ( αp

2 tp(α−1))1/p = α
p√2

tα−1 as t → +∞. Moreover, H(t) =
∫ t

0 h(s)ds ∼ 1
p√2

tα as

t → +∞. Remember the fact H−1(t) is the inverse of H(t), so we get H−1(t) ∼ ( p
√

2t)1/α as

t → +∞, which implies limt→+∞
(H−1(t))α

t = p
√

2. If α = 1, the result is obvious since h(t) is an
increasing bounded function when t > 0.

(6) Denote g1(t) = h(H−1(t))H−1(t)− t, t ≥ 0. Obviously g1(0) = 0. Since α ≥ 1, one has

g′1(t) =
H−1(t)h′(H−1(t))

h(H−1(t))

=
αp(H−1(t))p

[
1 + (α − 1)(H−1(t))2

]
(
1 + (H−1(t))2

) [
2
(
1 + (H−1(t))2

)(2−α)p/2
+ αp(H−1(t))p

] ≥ 0, ∀t ≥ 0,

which implies
h(H−1(t))H−1(t) ≥ t, ∀t ≥ 0.
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Consequently,
T̃(p, α)t ≤ T̃(p, α)h(H−1(t))H−1(t), ∀t ≥ 0.

Set g2(t) = T̃(p, α)t − h(H−1(t))H−1(t), t ≥ 0. Clearly g2(0) = 0. By virtue of H−1(t) ≥
0, t ≥ 0 and (1.11), we can deduce that

g′2(t) = T(p, α)− H−1(t)h′(H−1(t))

h(H−1(t))

= T(p, α)− sh′(s)
h(s)

|s=H−1(t)

≥ 0, ∀t ≥ 0,

which implies
h(H−1(t))H−1(t) ≤ T̃(p, α)t, ∀t ≥ 0.

(7) Since tH−1(t) ≥ 0, ∀t ∈ R, utilizing (6), we have

h(H−1(t))
(

H−1(t)
)2 ≤ T̃(p, α)tH−1(t) ≤ T̃(p, α)h(H−1(t))

(
H−1(t)

)2, ∀t ∈ R.

It is not difficult to verify that (8) and (9) are right from (1), (4) and (5).

Under the hypotheses (V1)–(V2) and (K1)–(K3), we readily derive that F ∈ C1(W1,p(RN))

and

〈F ′(v), ω〉 =
∫

RN
|∇v|p−2∇v∇ωdx −

∫

RN

η(x, H−1(v))

h(H−1(v))
ωdx

for v, ω ∈ W1,p(RN). Thus, the critical points of F correspond exactly to the weak solutions of
(1.10). The following results characterize the relationship between the solutions of (1.10) and
(1.1).

Proposition 2.2.

(i) If v ∈ W1,p(RN) ∩ L∞
loc(R

N) is a critical point of the functional F , then u = H−1(v) is a weak

solution of (1.1);

(ii) if v is a classical solution of (1.10), then u = H−1(v) is a classical solution of (1.1).

Proof. (i) It is easy to see that |u|p = |H−1(v)|p ≤ |v|p and |∇u|p = |(H−1)′(v)|p|∇v|p ≤
|∇v|p. Hence, u ∈ W1,p(RN) ∩ L∞

loc(R
N). Since v is a critical point of F , we get

∫

RN
|∇v|p−2∇v∇ωdx =

∫

RN

η(x, H−1(v))

h(H−1(v))
ωdx, ∀ω ∈ W1,p(RN). (2.1)

Note that

∇v = H′(u)∇u = h(u)∇u =

(
1 +

αp|u|p
2(1 + u2)(2−α)p/2

)1/p

∇u. (2.2)

For all ψ ∈ C∞
0 (RN), one can achieve

h(H−1(v))ψ = h(u)ψ =

(
1 +

αp|u|p
2(1 + u2)(2−α)p/2

)1/p

ψ ∈ W1,p(RN),
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and

∇
(

h(H−1(v))ψ
)
= h′(u)ψ∇u + h(u)∇ψ

=
αp

2

(
1 +

αp|u|p
2(1 + u2)(2−α)p/2

)(1−p)/p
(
1 + (α − 1)u2

)

(1 + u2)1+(2−α)p/2
|u|p−2uψ∇u

+

(
1 +

αp|u|p
2(1 + u2)(2−α)p/2

)1/p

∇ψ.

(2.3)

Letting ω = h(H−1(v))ψ in (2.1) and combining (2.2)–(2.3) enable us to deduce (1.7), which
means that u = H−1(v) is a weak solution of (1.1).

(ii) From

∆pv =
N

∑
i=1

∂

∂xi

(
|∇v|p−2 ∂v

∂xi

)
=

N

∑
i=1

∂

∂xi

(
hp−1(u)|∇u|p−2 ∂u

∂xi

)
,

we deduce that

∆pv = hp−1(u)
N

∑
i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
+ |∇u|p−2

N

∑
i=1

∂u

∂xi

∂

∂xi

(
hp−1(u)

)

= hp−1(u)∆pu + (p − 1)hp−2(u)h′(u)|∇u|p

=

(
1 +

αp|u|p
2(1 + u2)(2−α)p/2

)(p−1)/p

∆pu

+

(
1 +

αp|u|p
2(1 + u2)(2−α)p/2

)−1/p (p − 1)αp
(
1 + (α − 1)u2

)

2(1 + u2)1+(2−α)p/2
|u|p−2u|∇u|p.

Consequently,
(

1 +
αp|u|p

2(1 + u2)(2−α)p/2

)(p−1)/p

∆pu

+

(
1 +

αp|u|p
2(1 + u2)(2−α)p/2

)−1/p (p − 1)αp
(
1 + (α − 1)u2

)

2(1 + u2)1+(2−α)p/2
|u|p−2u|∇u|p

= −
(

1 +
αp|u|p

2(1 + u2)(2−α)p/2

)−1/p

η(x, u),

that is,

∆pu +
αp|u|p

2(1 + u2)(2−α)p/2
∆pu +

(p − 1)αp
(
1 + (α − 1)u2

)

2(1 + u2)1+(2−α)p/2
|u|p−2u|∇u|p = −η(x, u). (2.4)

Noticing that

αp|u|p
2(1 + u2)(2−α)p/2

∆pu +
(p − 1)αp

(
1 + (α − 1)u2

)

2(1 + u2)1+(2−α)p/2
|u|p−2u|∇u|p

=
[
∆p(1 + u2)α/2

] αu

2(1 + u2)(2−α)/2
.

This together with the (2.4) derive

−∆pu −
[
∆p(1 + u2)α/2

] αu

2(1 + u2)(2−α)/2
= η(x, u).

The proof is finished.
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3 Auxiliary problem

To prove the main result, we employ the results [9] for the equation

− ∆pv = g(v), x ∈ R
N . (3.1)

The energy functional associated to (3.1) is

I(v) =
1
p

∫

RN
|∇v|pdx −

∫

RN
G(v)dx,

where G(s) =
∫ s

0 g(t)dt. Obviously, I ∈ C1(W1,p(RN)) under the assumptions on g(s) below:

(G0) g is odd and g ∈ C(R, R);

(G1) −∞ < lim inf
s→0

g(s)
|s|p−2s

≤ lim sup
s→0

g(s)
|s|p−2s

= −σ < 0 if 1 < p < N,

−∞ < lim
s→0

g(s)
|s|N−2s

= −σ < 0 if p = N;

(G2) When 1 < p < N, lim
s→∞

|g(s)|
|s|p∗−1 = 0, where p∗ = Np

N−p ; when p = N, for some positive

constants C and β0, that

|g(s)| ≤ C
[
exp

(
β0|s|N/(N−1))− SN−2(β0, s)

]

for all |s| ≥ R > 0, where

SN−2(β0, s) =
N−2

∑
k=0

βk
0

k!
|s|kN/(N−1);

(G3) There exists ξ > 0 such that G(ξ) > 0.

We recall that a solution v(x) of (3.1) is said to be a least energy solution (or ground state solution)

if and only if

I(v) = a, where a = inf{I(w) : w ∈ W1,p(RN) \ {0} is a solution of (3.1)}. (3.2)

Theorem 3.1 ([9, Theorem 1.4]). Let 1 < p ≤ N and suppose (G0)–(G2) hold. Then setting

Λ =
{

γ ∈ C
(
[0, 1], W1,p(RN)

)
: γ(0) = 0, I(γ(1)) < 0

}
, b = inf

γ∈Λ
max
0≤t≤1

I(γ(t)),

we have Λ 6= ∅ and b = a. Furthermore, for each least energy solution w of (3.1), there exists a path

γ ∈ Λ such that w ∈ γ([0, 1]) and

max
t∈[0,1]

I(γ(t)) = I(w).

Theorem 3.2 ([9, Theorem 1.6]). Let 1 < p ≤ N and assume that (G0)–(G3) are satisfied, then

equation (3.1) has a least energy solution v which is positive.

Theorem 3.3 ([9, Theorem 1.8]). Assume that all conditions of Theorem 3.1 hold, then there exist

λ > 0 and δ > 0 such that I(v) ≥ λ‖v‖p if ‖v‖ ≤ δ.
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Lemma 3.4. Assume that (V1)–(V2) and (K1)–(K2) are satisfied, then the functional F has a

mountain-pass geometry.

Proof. Let the energy functionals corresponding to the equations −∆pv = m0(v) and −∆pv =

m∞(v) be

F0(v) =
1
p

∫

RN
|∇v|pdx +

1
p

∫

RN
V0|H−1(v)|pdx −

∫

RN
K(H−1(v))dx,

F∞(v) =
1
p

∫

RN
|∇v|pdx +

1
p

∫

RN
V(∞)|H−1(v)|pdx −

∫

RN
K(H−1(v))dx,

respectively, where

m0(v) =
1

h(H−1(v))

[
k(H−1(v))− V0|H−1(v)|p−2H−1(v)

]
,

m∞(v) =
1

h(H−1(v))

[
k(H−1(v))− V(∞)|H−1(v)|p−2H−1(v)

]
.

Notice that F0(v) ≤ F (v) ≤ F∞(v) for all v ∈ W1,p(RN).
Now, we claim that m0 and m∞ satisfy (G0)–(G2).
Obviously, m0 and m∞ satisfy (G0).
By use of k(s) = o(|s|p−2s) as s → 0 and Lemma 2.1 (4), we derive that

lim
s→0

m0(s)

|s|p−2s
= −V0 < 0, lim

s→0

m∞(s)

|s|p−2s
= −V(∞) < 0, if 1 < p < N,

and

lim
s→0

m0(s)

|s|N−2s
= −V0 < 0, lim

s→0

m∞(s)

|s|N−2s
= −V(∞) < 0, if p = N.

Hence, m0 and m∞ satisfy (G1).
Similarly to the argument in the proof of Lemma 2.1 (5), we can show that

lim
s→∞

|H−1(s)|α−1

h(H−1(s))
=





p

√
2
3 , α = 1,

p√2
α , α > 1.

(3.3)

When 1 < p < N, it follows from (K2) and Lemma 2.1 (2), (3), (8) that

|m0(s)| ≤
1

h(H−1(s))
(C + C|H−1(s)|θ−1 + V0|H−1(s)|p−1)

≤ C + C
|H−1(s)|θ−1

h(H−1(s))
+ V0|s|p−1

= C + C|H−1(s)|θ−α |H−1(s)|α−1

h(H−1(s))
+ V0|s|p−1

≤ C + C|s|(θ−α)/α |H−1(s)|α−1

h(H−1(s))
+ V0|s|p−1,

(3.4)

where αp < θ < αp∗. Combining (3.3) and (3.4), we can deduce

lim
s→∞

|m0(s)|
|s|p∗−1 = 0.
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On the other hand, when p = N, applying (K2) and Lemma 2.1 (2), (3), we conclude that

|m0(s)| ≤ C1 + C2|s|θ−1.

Then there exist positive constants C and β0 such that

|m0(s)| ≤ C
[
exp

(
β0|s|N/(N−1))− SN−2(β0, s)

]

for all |s| ≥ R > 0, where SN−2(β0, s) = ∑
N−2
k=0

βk
0

k! |s|kN/(N−1). Therefore, m0 satisfies (G2).
Analogously, m∞ also satisfies (G2).

Based upon Theorem 3.3, there exist λ1 > 0 and δ1 > 0 such that

F (v) ≥ F0(v) ≥ λ1‖v‖p if ‖v‖ ≤ δ1.

Moreover, for the functional F∞, by virtue of Theorem 3.1, we obtain that there exists e ∈
W1,p(RN) with ‖e‖ > δ1 such that F∞(e) < 0, which implies F (e) < 0. Thus Γ 6= ∅, where

Γ =
{

γ ∈ C
(
[0, 1], W1,p(RN)

)
: γ(0) = 0, F (γ(1)) < 0

}
.

The proof is complete.

Remark 3.5. By (K3), for any given s0 > 0, there exists C > 0 depending on s0 such that
K(s) ≥ Csµ for all s ≥ s0. Particularly, we have lims→+∞ K(s)/sp = +∞. Thus, there exists
ξ > 0 such that M0(ξ) > 0 and M∞(ξ) > 0, where

M0(s) =
∫ s

0
m0(t)dt = K(H−1(s))− V0

p
|H−1(s)|p,

M∞(s) =
∫ s

0
m∞(t)dt = K(H−1(s))− V(∞)

p
|H−1(s)|p.

Hence, m0 and m∞ also satisfy (G3). Taking advantage of Theorem 3.2, the equations

−∆pv = m0(v) and − ∆pv = m∞(v), x ∈ R
N

have least energy solutions in W1,p(RN) which are positive.

4 Proof of Theorem 1.2

Since F has the mountain-pass geometry, we know (see [10]) that for the constant

c = inf
γ∈Γ

max
t∈[0,1]

F (γ(t)) > 0,

where
Γ =

{
γ ∈ C

(
[0, 1], W1,p(RN)

)
: γ(0) = 0, F (γ(1)) < 0

}
,

there exists a Cerami sequence {vn} for F at the level c, that is,

F (vn) → c and ‖F ′(vn)‖(1 + ‖vn‖) → 0 as n → ∞. (4.1)

Lemma 4.1. Assume that (V1)–(V2) and (K1)–(K3) are satisfied. Let {vn} ⊂ W1,p(RN) be a Cerami

sequence for F at the level c > 0, then {vn} is bounded in W1,p(RN).
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Proof. First, we will prove that if {vn} satisfies

∫

RN
|∇vn|pdx +

∫

RN
V(x)|H−1(vn)|pdx ≤ C (4.2)

for some constant C > 0, then it is bounded in W1,p(RN). In fact, we only need to verify that∫
RN |vn|pdx is bounded. We start splitting

∫

RN
|vn|pdx =

∫

{x:|vn(x)|≤1}
|vn|pdx +

∫

{x:|vn(x)|>1}
|vn|pdx.

Note that µ ≥ T̃(p, α)p ≥ αp, then it follows from Lemma 2.1 (9) and Remark 3.5 that there
exists C > 0 such that K(H−1(s)) ≥ C|s|p for all |s| > 1. Consequently,

∫

{x:|vn(x)|>1}
|vn|pdx ≤ C−1

∫

{x:|vn(x)|>1}
K(H−1(vn))dx ≤ C−1

∫

RN
K(H−1(vn))dx. (4.3)

Using Lemma 2.1 (9) again, we derive that

∫

{x:|vn(x)|≤1}
|vn|pdx ≤ C−p

∫

{x:|vn(x)|≤1}
|H−1(vn)|pdx

≤ C−pV−1
0

∫

RN
V(x)|H−1(vn)|pdx.

(4.4)

Combining (4.1)–(4.4), we can achieve that {vn} is bounded in W1,p(RN).
Next, we will show that (4.2) holds. By (4.1), we obtain

1
p

∫

RN
|∇vn|pdx +

1
p

∫

RN
V(x)|H−1(vn)|pdx −

∫

RN
K(H−1(vn))dx = c + on(1), (4.5)

and for all ψ ∈ W1,p(RN),

〈F ′(vn), ψ〉 =
∫

RN
|∇vn|p−2∇vn∇ψdx +

∫

RN
V(x)

|H−1(vn)|p−2H−1(vn)

h(H−1(vn))
ψdx

−
∫

RN

k(H−1(vn))

h(H−1(vn))
ψdx.

(4.6)

Denote ψn = h(H−1(vn))H−1(vn), taking advantage of Lemma 2.1 (6), one can find |ψn| ≤
T̃(p, α)|vn| and

|∇ψn| =
[

1 +
αptp[1 + (α − 1)t2]

(1 + t2)
(
2(1 + t2)(2−α)p/2 + αptp

) |t=|H−1(vn)|

]
|∇vn| ≤ T̃(p, α)|∇vn|.

Thus, ‖ψn‖ ≤ T̃(p, α)‖vn‖. By choosing ψ = ψn in (4.6), we deduce that

∫

RN

[
1 +

αptp[1 + (α − 1)t2]

(1 + t2)
(
2(1 + t2)(2−α)p/2 + αptp

) |t=|H−1(vn)|

]
|∇vn|pdx

+
∫

RN
V(x)|H−1(vn)|pdx −

∫

RN
k(H−1(vn))H−1(vn)dx

= 〈F ′(vn), ψn〉 = on(1).

(4.7)
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Combining (4.5), (4.7) and (K3), one has

∫

RN

{
1
p
− 1

µ

[
1 +

αptp[1 + (α − 1)t2]

(1 + t2)
(
2(1 + t2)(2−α)p/2 + αptp

) |t=|H−1(vn)|

]}
|∇vn|pdx

+

(
1
p
− 1

µ

) ∫

RN
V(x)|H−1(vn)|pdx

≤ c + on(1).

(4.8)

If µ > T̃(p, α)p in (K3), by virtue of (1.11), it follows that
[
µ − T̃(p, α)p

]

pµ

∫

RN
|∇vn|pdx +

T(p, α)

µ

∫

RN
V(x)|H−1(vn)|pdx ≤ c + on(1),

which implies that (4.2) holds and hence {vn} is bounded. If µ = T̃(p, α)p = 2p, applying
Remark 1.3, we derive α = 2. In this case, we can apply the estimate (4.8) to derive

1
2p

∫

RN

|∇vn|p
1 + 2p−1|H−1(vn)|p

dx +
1

2p

∫

RN
V(x)|H−1(vn)|pdx ≤ c + on(1). (4.9)

Set un = H−1(vn), we get that

|∇vn|p =
(

1 + 2p−1|H−1(vn)|p
)
|∇un|p. (4.10)

According to (V1) and (4.9)–(4.10), it holds that

1
2p

min{1, V0}‖un‖p ≤ 1
2p

∫

RN
|∇un|pdx +

1
2p

∫

RN
V(x)|un|pdx ≤ c + on(1).

This implies {un} is bounded in W1,p(RN). The conditions (K1)–(K2) yield that

K(s) ≤ |s|p + C|s|θ . (4.11)

Combining the condition (b) in Theorem 1.2 with (4.11), we can apply Sobolev embedding
theorem to achieve that

∫
RN K(H−1(vn))dx =

∫
RN K(un)dx is bounded. Thus, utilizing (4.5),

we derive (4.2), which implies {vn} is bounded in W1,p(RN). The proof is finished.

4.1 Existence of nontrivial critical points for F

According to Lemma 4.1, {vn} is a bounded Cerami sequence in W1,p(RN). Since W1,p(RN)

is a reflexive Banach space, up to a subsequence, still denoted by {vn}, such that vn ⇀ v. We
assert that F ′(v) = 0. In fact, since C∞

0 (RN) is dense in W1,p(RN), we only need to verify that
〈F ′(v), ψ〉 = 0 for all ψ ∈ C∞

0 (RN). Note that

〈F ′(vn), ψ〉 − 〈F ′(v), ψ〉

=
∫

RN
(|∇vn|p−2∇vn − |∇v|p−2∇v)∇ψdx

+
∫

RN

[ |H−1(vn)|p−2H−1(vn)

h(H−1(vn))
− |H−1(v)|p−2H−1(v)

h(H−1(v))

]
V(x)ψdx

−
∫

RN

[ k(H−1(vn))

h(H−1(vn))
− k(H−1(v))

h(H−1(v))

]
ψdx.
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Remember the fact that vn → v in L
q
loc(R

N) for q ∈ [1, p∗) if 1 < p < N and q ≥ 1 if p = N, by
virtue of the Lebesgue dominated convergence theorem and (K1)–(K2), we derive that for all
ψ ∈ C∞

0 (RN),
〈F ′(vn), ψ〉 − 〈F ′(v), ψ〉 → 0 as n → ∞.

Since F ′(vn) → 0 as n → ∞, the desired result is obtained immediately.
Now we will prove that v 6= 0. Assume on the contrary that v = 0. The argument will be

divided into the following three steps.

Step 1. We claim that {vn} is also a Cerami sequence for the functional F∞, which defined in
Lemma 3.4, at the level c.

Indeed, since V(x) → V(∞) as |x| → ∞, vn → 0 in L
p
loc(R

N) and Lemma 2.1 (3), one can
get that

F∞(vn)−F (vn) =
1
p

∫

RN

(
V(∞)− V(x)

)
|H−1(vn)|pdx

≤ 1
p

∫

RN

(
V(∞)− V(x)

)
|vn|pdx → 0,

and

‖F ′
∞(vn)−F ′(vn)‖ = sup

‖ψ‖≤1
|〈F ′

∞(vn), ψ〉 − 〈F ′(vn), ψ〉|

≤ sup
‖ψ‖≤1

∫

RN
|vn|p−1|V(∞)− V(x)||ψ|dx

≤
( ∫

RN
|vn|p|V(∞)− V(x)|p/(p−1)dx

)(p−1)/p
→ 0

as n → ∞, which implies

‖F ′
∞(vn)‖(1 + ‖vn‖) ≤ ‖F ′

∞(vn)−F ′(vn)‖(1 + ‖vn‖) + ‖F ′(vn)‖(1 + ‖vn‖) → 0

as n → ∞.

Step 2. We claim that for all R > 0,

lim
n→∞

sup
y∈RN

∫

BR(y)
|vn|pdx = 0 (4.12)

cannot occur. Assume on the contrary that (4.12) occurs, that is, {vn} vanish, then by the
Lions compactness lemma [19], we have vn → 0 in Lq(RN) for any q ∈ (p, p∗) if 1 < p < N

and q > p if p = N. It follows from (K1)− (K2) that for any ε > 0, there exists Cε > 0 such
that

0 ≤ k(H−1(s))H−1(s) ≤ ε|H−1(s)|p + Cε|H−1(s)|θ , ∀s ∈ R. (4.13)

In view of (4.13) and Lemma 2.1 (3), (8), for any v ∈ W1,p(RN), one can get
∫

RN
k(H−1(v))H−1(v)dx ≤ ε

∫

RN
|v|pdx + Cε

∫

RN
|v|θdx, (4.14)

∫

RN
k(H−1(v))H−1(v)dx ≤ ε

∫

RN
|v|pdx + Cε

∫

RN
|v|θ/αdx. (4.15)

If µ = T̃(p, α)p = 2p, we use inequality (4.14) , if µ > T̃(p, α)p, we use inequality (4.15),
we just think about the case µ > T̃(p, α)p because the other one is similar. Since θ/α ∈ (p, p∗)
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if 1 < p < N and θ/α > p if p = N. Combining Lemma 2.1 (6) and (4.15) enable us to deduce
that for any ε > 0,

lim
n→∞

∫

RN

k(H−1(vn))

h(H−1(vn))
vndx ≤ lim

n→∞

∫

RN
k(H−1(vn))H−1(vn)dx

≤ lim
n→∞

(
ε
∫

RN
|vn|pdx + Cε

∫

RN
|vn|θ/αdx

)

≤ ε lim
n→∞

∫

RN
|vn|pdx,

which implies

lim
n→∞

∫

RN

k(H−1(vn))

h(H−1(vn))
vndx = 0, lim

n→∞

∫

RN
k(H−1(vn))H−1(vn)dx = 0. (4.16)

Combining the first limit in (4.16) with the fact 〈F ′(vn), vn〉 → 0 as n → ∞, we get

∫

RN
|∇vn|pdx +

∫

RN
V(x)

|H−1(vn)|p−2H−1(vn)

h(H−1(vn))
vndx → 0 (4.17)

as n → ∞. Based upon (4.17) and Lemma 2.1 (7), we derive
∫

RN
|∇vn|pdx +

∫

RN
V(x)|H−1(vn)|p → 0 (4.18)

as n → ∞. According to the second limit in (4.16) and (K3), we deduce that

lim
n→∞

∫

RN
K(H−1(vn))dx = 0. (4.19)

limn→∞ F (vn) = 0 is obtained immediately from (4.18) and (4.19), we get a contradiction since
limn→∞ F (vn) = c > 0. Thus, {vn} does not vanish and there exist τ, R > 0 and {yn} ⊂ RN

such that
lim
n→∞

∫

BR(yn)
|vn|pdx ≥ τ > 0. (4.20)

Step 3. Set ṽn(x) = vn(x + yn). Since {vn} is a Cerami sequence for F∞, it is easy to verify that
{ṽn} is also a Cerami sequence for F∞. Arguing as in the case of {vn}, up to a subsequence,
still denoted by {ṽn}, we have ṽn ⇀ ṽ with F ′

∞(ṽ) = 0. Since ṽn → ṽ in Lp(BR), by (4.20), we
derive that ∫

BR

|ṽ|pdx = lim
n→∞

∫

BR

|ṽn|pdx = lim
n→∞

∫

BR(yn)
|vn|pdx ≥ τ > 0,

which implies ṽ 6= 0.
Make use of Lemma 2.1 (7), we get

|H−1(ṽn)|p −
|H−1(ṽn)|p−2H−1(ṽn)

h(H−1(ṽn))
ṽn ≥ 0, ∀n ∈ N.

On the other hand, in view of Lemma 2.1 (6) and (K3), it can be deduced that

k(H−1(ṽn))

h(H−1(ṽn))
ṽn − pK(H−1(ṽn)) ≥

k(H−1(ṽn))H−1(ṽn)

T̃(p, α)
− pK(H−1(ṽn)) ≥ 0, ∀n ∈ N.
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Note that ṽn is a Cerami sequence for F∞, by Fatou’s lemma, straightforward computations
generate that

pc = lim inf
n→∞

[
pF∞(ṽn)− 〈F ′

∞(ṽn), ṽn〉
]

≥ lim inf
n→∞

∫

RN
V(∞)

[
|H−1(ṽn)|p −

|H−1(ṽn)|p−2H−1(ṽn)

h(H−1(ṽn))
ṽn

]
dx

+ lim inf
n→∞

∫

RN

[
k(H−1(ṽn))

h(H−1(ṽn))
ṽn − pK(H−1(ṽn))

]
dx

≥
∫

RN
V(∞)

[
|H−1(ṽ)|p − |H−1(ṽ)|p−2H−1(ṽ)

h(H−1(ṽ))
ṽ

]
dx

+
∫

RN

[
k(H−1(ṽ))

h(H−1(ṽ))
ṽ − pK(H−1(ṽ))

]
dx

= pF∞(ṽ)− 〈F ′
∞(ṽ), ṽ〉

= pF∞(ṽ).

Thus, ṽ 6= 0 is a critical point of F∞ satisfying F∞(ṽ) ≤ c.
In view of Step 3, we derive that the least energy level a∞ for F∞ satisfies a∞ ≤ c. Denoting

ω̂ as a least energy solution of the equation −∆pv = m∞(v) (see Remark 3.5). Applying
Theorem 3.1 to the functional F∞, there exists a path γ ∈ C

(
[0, 1], W1,p(RN)

)
such that γ(0) =

0, F∞(γ(1)) < 0, ω̂ ∈ γ([0, 1]) and

max
t∈[0,1]

F∞(γ(t)) = F∞(ω̂).

If V(x) ≡ V(∞), we prove the desired conclusion. So we assume that V(x) 6≡ V(∞), we have

F (γ(t)) < F∞(γ(t)), ∀t ∈ (0, 1]

and hence
c ≤ max

t∈[0,1]
F (γ(t)) < max

t∈[0,1]
F∞(γ(t)) = F∞(ω̂) = a∞ ≤ c.

We get a contradiction. Therefore, v is a nontrivial critical point of F .

4.2 L
∞-estimate and decay to zero at infinity

Let v ∈ W1,p(RN) be a nontrivial weak solution of (1.10), then for all ω ∈ W1,p(RN), it holds
that

∫

RN
|∇v|p−2∇v∇ωdx +

∫

RN
V(x)

|H−1(v)|p−2H−1(v)

h(H−1(v))
ωdx =

∫

RN

k(H−1(v))

h(H−1(v))
ωdx. (4.21)

Assume that 1 < p < N. Without loss of generality, we suppose that v ≥ 0. Otherwise, we
work with the positive and negative parts of v. For each m ≥ 1, define

vm =

{
v, if 0 ≤ v ≤ m,

m, if v ≥ m,

ζm = v
p(r−1)
m v, φm = vvr−1

m
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with r > 1 which will be given later. Choosing ζm as a test function in (4.21). Note that

k(H−1(v)) ≤ V0

2
(H−1(v))p−1 + C(H−1(v))θ−1

and (V1), we can deduce

∫

RN
v

p(r−1)
m |∇v|pdx + p(r − 1)

∫

RN
v

p(r−1)−1
m v|∇v|p−2∇vm∇vdx

≤ C
∫

RN

(H−1(v))θ−1

h(H−1(v))
vv

p(r−1)
m dx.

Noticing ∇vm∇v ≥ 0 in RN , using Lemma 2.1 (6) and (8), one has

∫

RN
v

p(r−1)
m |∇v|pdx ≤ C

∫

RN
vθ/αv

p(r−1)
m dx = C

∫

RN
vθ̂−pφ

p
mdx, (4.22)

where θ̂ = θ/α. It follows from the Gagliardo–Nirenberg inequality [11] and (4.22) that

( ∫

RN
φ

p∗
m dx

)p/p∗

≤ C1

∫

RN
|∇φm|pdx

≤ C12p−1
( ∫

RN
v

p(r−1)
m |∇v|pdx + (r − 1)p

∫

RN
vpv

p(r−2)
m |∇vm|pdx

)

≤ C12p−1rp
∫

RN
v

p(r−1)
m |∇v|pdx

≤ C2rp
∫

RN
vθ̂−pφ

p
mdx.

According to the Hölder inequality, one sees that

( ∫

RN
φ

p∗
m dx

)p/p∗

≤ C2rp
( ∫

RN
vp∗dx

)(θ̂−p)/p∗( ∫

RN
φ

pp∗/(p∗−θ̂+p)
m dx

)(p∗−θ̂+p)/p∗

.

As 0 ≤ φm ≤ vr, the continuity of the embedding W1,p(RN) →֒ Lp∗(RN) leads to

( ∫

RN
(vvr−1

m )p∗dx
)p/p∗

≤ C3rp‖v‖θ̂−p
( ∫

RN
vrpp∗/(p∗−θ̂+p)dx

)(p∗−θ̂+p)/p∗

,

that is, ( ∫

RN
(vvr−1

m )p∗dx
)p/p∗

≤ C3rp‖v‖θ̂−p‖v‖pr
rλ∗ (4.23)

with λ∗ = pp∗/(p∗ − θ̂ + p) and r = p∗/λ∗ = 1+ (p∗ − θ̂)/p > 1. By virtue of Fatou’s lemma,
we conclude from (4.23) that

‖v‖rp∗ ≤
(
C3rp‖v‖θ̂−p

)1/pr‖v‖rλ∗

or

‖v‖rp∗ ≤ A1/rr1/r‖v‖rλ∗ (4.24)

with A > 0 and Ap = C3‖v‖θ̂−p.
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We now use the classical Moser’s iteration scheme to prove v ∈ L∞(RN). For each k =

0, 1, 2, . . . , we define rk+1λ∗ := p∗rk with r0 = r. Clearly, we have rk = rk+1 ↑ +∞ as k → ∞.
Employing the previous argument for r1, we get from (4.24) that

‖v‖r1 p∗ ≤ A1/r1r1/r1
1 ‖v‖r1λ∗

= A1/r1r1/r1
1 ‖v‖rp∗

≤ A1/r+1/r1r1/rr1/r1
1 ‖v‖p∗ .

By iteration scheme, we have
‖v‖rk p∗ ≤ ASk eTk‖v‖p∗ (4.25)

with Sk = ∑
k
i=0

1
ri
= ∑

k
i=0

1
ri+1 and Tk = ∑

k
i=0

lnri
ri

= ∑
k
i=0

(i+1)lnr
ri+1 . Recall r = p∗/λ∗

> 1, we get

lim
k→∞

Sk = p/(p∗ − θ̂), lim
k→∞

Tk = rlnr/(r − 1)2.

Letting k → ∞ in (4.25) and by the Sobolev embedding theorem, we can deduce that v ∈
L∞(RN) and

‖v‖∞ ≤ Ap/(p∗−θ̂)rr/(r−1)2‖v‖p∗

≤ C
1/(p∗−θ̂)
3 ‖v‖(θ̂−p)/(p∗−θ̂)rr/(r−1)2‖v‖p∗

≤ C4‖v‖(p∗−p)/(p∗−θ̂).

In the case p = N, [30, Theorem 1] enables us to derive that v is locally bounded in RN .
By a result in [33], we conclude that v ∈ C

1,β
loc (R

N)(0 < β < 1) for 1 < p ≤ N.
Next, when 1 < p < N, we will show that v(x) → 0 as |x| → ∞. Since v ∈ L∞(RN), it

follows from (V1), (K2), Lemma 2.1 (8) and (4.21) that
∫

RN
|∇v|p−2∇v∇ψdx ≤ C

∫

RN
(1 + |v|p−1)ψdx

for all ψ ∈ C∞
0 (RN), ψ ≥ 0. Applying [34, Theorem 1.3], one sees that for any x ∈ RN ,

sup
y∈B1(x)

v(y) ≤ C‖v‖Lp(B2(x)).

In particular, v(x) ≤ C‖v‖Lp(B2(x)). Since

‖v‖Lp(B2(x)) → 0 as |x| → ∞,

one has v(x) → 0 as |x| → ∞.
We conclude that u = H−1(v) is a nontrivial weak solution of (1.1) in C

1,β
loc (R

N)(0 < β < 1)
by Proposition 2.2. Since |u| = |H−1(v)| ≤ |v|, we get that u(x) → 0 as |x| → ∞, which
finalizes the proof of Theorem 1.2.
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1 Introduction

We consider the following p-biharmomic equations with clamped Dirichlet boundary condi-
tions {

△2
pu = µ|u|r−2u

|x|s
+ f (x, u) in Ω,

u = ∂u
∂n = 0 on ∂Ω

(PD)

and p-biharmomic equations with hinged Navier boundary conditions

{
△2

pu = µ|u|r−2u
|x|s

+ f (x, u) in Ω,

u = △u = 0 on ∂Ω

(PNa)

where Ω ⊂ R
N(N ≥ 3) is a smooth bounded domain, 0 ∈ Ω, 2 < 2p < N, p ≤ r < p∗(s) =

(N−s)p
N−2p ≤ p∗(0) := p∗, µ ≥ 0.

Since Lazer and McKenna [11] provided a model for discussing the traveling waves in sus-
pension bridges, existence and multiple of solutions for nonlinear biharmonic equations and
p-biharmonic equations have been studied under the framework of nonlinear functional anal-
ysis. Bhakta [4] studied existence, multiplicity and qualitative properties of entire solutions

BCorresponding author. Email: wangvh@163.com
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of the p-biharmonic equations with Hardy term. Huang and Liu [16] obtained sign-changing
solutions for p-biharmonic equations with Hardy potential. Bueno et al. [5] get multiplicity
of solutions for p-biharmonic problems with with concave-convex nonlinearities. Wang and
Zhao [25] studied the existence and multiplicity of solutions of p-biharmonic type equations
with critical growth. On this topic, we also refer to [3, 6, 22, 26] and references therein.

Ghoussoub and Yuan [14] obtained multiple solutions for −△pu = µ |u|
r−2u
|x|s

+ λ|u|q−2u

with homogeneous Dirichlet boundary conditions in W
1,p
0 (Ω). Perera and Zou [23] studied

the multiplicity, and bifurcation results for p-Laplacian problems involving critical Hardy–
Sobolev exponents in W

1,p
0 (Ω). One of the starting points of this paper is to generalize the

part results in [14, 23] to the fourth-order elliptic equation.

Definition 1.1. The function u in W
2,p
0 (Ω) is called a weak solution of Problem (PD), if

∫

Ω

[
|△u|p−2△u△φ−

µ|u|r−2uφ

|x|s
− f (x, u)φ

]
dx = 0 for any φ ∈W

2,p
0 (Ω);

u in W
1,p
0 (Ω) ∩W2,p(Ω) is said to be a weak solution of Problem (PNa), in case

∫

Ω

[
|△u|p−2△u△φ−

µ|u|r−2uφ

|x|s
− f (x, u)φ

]
dx = 0, ∀φ ∈W

1,p
0 (Ω) ∩W2,p(Ω).

Since Problem (PNa) is handled similarly to Problem (PD), we discuss the problem (PD)
and only give a simple explanation for Problem (PNa).

The starting point for the variational methods of the questions (PD) and (PNa) is the
following Sobolev–Hardy inequality (we refer to Lemma 2.2 in Section 2). Let 2 < 2p < N,
r ≤ p∗(s), then

(∫

Ω

|u|r

|x|s
dx

) 1
r

.

(∫

Ω

|△u|pdx

) 1
p

, ∀u ∈ C∞

0 (Ω \ {0})

Therefore, we may define

µs,r(Ω) = inf
u∈W

2,p
0 (Ω)

u 6=0

∫
Ω
|△u|pdx

(
∫

Ω

|u|r

|x|s
dx)

p
r

and

µ̃s,r(Ω) = inf
u∈W

1,p
0 (Ω)∩W2,p(Ω)

u 6=0

∫
Ω
|△u|pdx

(
∫

Ω

|u|r

|x|s
dx)

p
r

.

We replace |u|q−2u in [14,23] by a more general nonlinear perturbation f (x, t), and we im-
pose naturally some structural conditions on the nonlinear term f (x, t), so that the associated
Euler-Lagrange functional is expected to have some mountain pass geometry and compact-
ness results. Specifically, we consider the following assumptions:

f 1) f : Ω×R → R is continuous and f (x, 0) = 0 for all x ∈ Ω;

f 2) lim|t|→+∞

F(x,t)
tp = +∞ uniformly on x ∈ Ω, where F(x, t) =

∫ t
0 f (x, τ)dτ;

f 3) lim sup|t|→0
pF(x,t)
|t|p

< λ1(or λ̃1) uniformly on x ∈ Ω, where λ1 > 0 is the first eigen-

value of the operator △2
p in Ω with homogeneous Dirichlet boundary conditions (or

homogeneous Navier boundary conditions);
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(SCPI) f (x, t) has subcritical polynomial growth, i.e.

lim
|t|→+∞|

f (x, t)

|t|p∗−1 = 0.

The critical point theory is based on the existence of some linking structure and defor-
mation lemmas. To obtain such deformation results, some compactness condition of the
functional is necessary. In order to get compactness, the standard approach is to apply the
Ambrosetti–Rabinowitz conditions ((A–R) for short) to f (x, t) and F(x, t) due to Ambrosetti–
Rabinowitz [1]:

(A–R) ∃ R0 > 0, θ > p such that 0 < θF(x, s) ≤ s f (x, s) for any (|s|, x) in [R0,+∞)×Ω.

The main role of (A–R) condition is to ensure the boundedness of Palais–Smale or Cerami
sequence of Euler–Lagrange functional associated to Eq. (PD) and (PNa). But (A–R) condition
is a relatively restrictive eliminating many nonlinearities, for example, f (x, t) = t log t2. The
absence of (A–R) condition in the second order elliptic equation goes back to Costa, Magalhães
[7], Miyagaki, Souto [24], Li, Yang [19] and Liu [20], and was improved by Mugnai and
Papageorgiou [21]. On this topic, we also refer to [2, 8, 13, 17] and references therein. Inspired
by [19, 21], we assume the following conditions (without the (A–R) condition):

f 4) There exist C∗ ≥ 0, θ ≥ 1 such that

H(x, t) ≤ θH(x, τ) + C∗ ∀t, τ ∈ R, 0 < |t| < |τ|, ∀x ∈ Ω,

where H(x, t) = 1
p t f (x, t)− F(x, t).

Theorem 1.2. Assume that f (x, t) satisfies (f1)–(f3) and (SCPI) condition. Then

• Problem (PD) admits at least a nontrivial weak solution u ∈W
2,p
0 (Ω);

• Problem (PNa) admits at least a nontrivial weak solution u ∈W
1,p
0 (Ω) ∩W2,p(Ω).

For convenience, we first define the Euler–Lagrange functional Iµ as follows:

Iµ(u) =
1
p

∫

Ω

|△u|pdx−
µ

r

∫

Ω

|u|r

|x|s
dx−

∫

Ω

F(x, u)dx,

where F(x, t) =
∫ t

0 f (x, τ)dτ.
Additionally if we assume that f (x, t) is an odd function in t, then we can prove the

existence of infinitely many weak solutions to Problem (PD) and (PNa). Specifically, we can
get the following results:

Theorem 1.3. Suppose that (f1)–(f3) hold and

f5) there exist a, b > 0 and q ∈ (p, p∗) such that

(SCP) | f (x, t)| ≤ a + b|t|q−1 for any (x, t) ∈ Ω×R;

f6) f (x,−t) = − f (x, t), ∀(x, t) ∈ Ω×R,

in addition, if p = r, then
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• Problem (PD) possesses a sequence of solutions {un} ∈ W
2,p
0 (Ω) such that Iµ(un) → +∞

provided 0 ≤ µ < µs,r(Ω);

• Problem (PNa) contains a sequence of solutions {un} ∈W
1,p
0 (Ω)∩W2,p(Ω) such that Iµ(un)→

+∞ in case 0 ≤ µ < µ̃s,r(Ω).

This paper is organized as follows: Section 2 is devoted to review some necessary math-
ematical knowledge about function spaces, embedding and associated functional settings. In
Section 3, we gets the existence of solution to Eq. (PD) and (PNa) under g(x, t) with A–R
condition. In Section 4, we obtain the multiplicity of Eq. (PD) and (PNa). Section A is an
appendix.

2 Functional framework

In this paper, W
2,p
0 (Ω) and W

1,p
0 (Ω) ∩W2,p(Ω) are equipped with norm

‖u‖ =

(∫

Ω

|△u|pdx

) 1
p

,

then W
2,p
0 (Ω) and W

1,p
0 (Ω) ∩W2,p(Ω) are all Banach space.

Davies [9] extends the Rellich inequality to Lp spaces. But we only need one special case
here.

Lemma 2.1 ([9, Corollary 14]). For any p ∈ (1, N
2 ) and u ∈ C∞

0 (Ω \ {0}), the following inequality

∫

Ω

|△u|pdx ≥

(
(p− 1)N(N − 2p)

p2

)p ∫

Ω

|u|p

|x|2p
dx

is established.

Next, we will prove the corresponding Sobolev–Hardy inequality in the space W2,p(Ω).
Our method is derived from the proof method of Lemma 2.1 in [28] and Lemma 3.2 in [14].

Lemma 2.2 (Sobolev–Hardy inequality). Suppose that 2 < 2p < N, then

(1) If 0 < r < p∗(s), there exists a constant C > 0 such that

(∫

Ω

|u|r

|x|s
dx

) 1
r

≤ C

(∫

Ω

|△u|pdx

) 1
p

(2.1)

for any u ∈W
1,p
0 (Ω) ∩W2,p(Ω).

(2) If p ≤ r < p∗(s), then the map u→ u

|x|
s
r

is compact from W
1,p
0 (Ω) ∩W2,p(Ω) to Lr(Ω).

Proof. (1) When s = 0 or s = 2p, (2.1) is Sobolev’s inequality or Rellich’s inequality, respec-
tively. Since p∗(s) ≥ p, we only need to consider the scenario of 0 < s < 2p. According to
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Rellich’s inequality, Sobolev’s inequality and Hölder’s inequality, we can get

∫

Ω

|u|p
∗(s)

|x|s
dx =

∫

Ω

|u|
s
2

|x|s
|u|p

∗(s)− s
2 dx

≤

(∫

Ω

|u|p

|x|2p
dx

) s
2p
(∫

Ω

|u|p
∗
dx

) 2p−s
2p

≤

(
p2

(p− 1)N(N − 2p)

) s
2
(∫

Ω

|△u|pdx

) s
2p

S2

(∫

Ω

|△u|pdx

) 2p−s
2p ·

p∗

p

= C1

(∫

Ω

|△u|pdx

) N−s
N−2p

,

where

C1 =

(
p2

(p− 1)N(N − 2p)

) s
2

S2, S2 = inf
u∈W

1,p
0 (Ω)∩W2,p(Ω)

u 6=0

∫
Ω
|△u|pdx

(
∫

Ω
|u|p∗dx)

p
p∗

is the corresponding optimal Sobolev constant.

(2) Let {un} be a bounded sequence in W
1,p
0 (Ω) ∩W2,p(Ω), then there is a convergent subse-

quence of {un} (still represented by {un}) such that

un ⇀ u weakly in W
1,p
0 (Ω) ∩W2,p(Ω),

un → u strongly in Lr(Ω), p ≤ r < p∗(s).

On the other hand,
∫

Ω

|un − u|r

|x|s
dx ≤ C

∫

Bδ(0)

|un − u|r

|x|s
dx + C‖un − u‖r

Lr(Ω), where Bδ(0) = B(0, δ).

In the light of Hölder’s inequality, we have

∫

Ω

|un − u|r

|x|s
dx ≤ C

(∫

Ω

|un − u|p
∗
dx

) r
p∗
(∫

Bδ(0)
|x|
− p∗s

p∗−r dx

)1− r
p∗

+ C‖un − u‖r
Lr(Ω)

≤ C

(
δ
− p∗s

p∗−r
+N

)1− r
p∗

+ C‖un − u‖r
Lr(Ω).

Considering p ≤ r < p∗(s) and N− p∗s
p−r > 0 and let δ→ 0, n→ ∞, we can get immediately

inequalities ∫

Ω

|un − u|r

|x|s
dx → 0.

In order to study Eq. (PD) and (PNa), we need to discuss some properties of operator △2
p

on W2,p(Ω) ∩W
1,p
0 (Ω).

Proposition 2.3. For any bounded Ω in R
N and any p in (1,+∞), △2

p satisfies the following prop-

erties:

1) ([10]) △2
p : W2,p(Ω) ∩W

1,p
0 (Ω)→ (W2,p(Ω) ∩W

1,p
0 (Ω))∗ is a hemicontinuous operator;

2) △2
p is a bounded continuous and uniformly convex coercive operator;

3) △2
p : W2,p(Ω) ∩W

1,p
0 (Ω)→ (W2,p(Ω) ∩W

1,p
0 (Ω))∗ is homeomorphic.
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Proof. 2) Obviously, △2
p is bounded continuously coercive. And the strict monotonicity of △2

p

can be derived from the following inequality [15, Lemma 5.1 and Lemma 5.2]:
Let x, y ∈ R

N and 〈·, ·〉 is the usual inner product in R
N , then

〈|x|p−2x− |y|p−2y, x− y〉 ≥





Cp|x− y|p if p ≥ 2,

Cp
|x−y|2

(|x|+|y|)2−p if 1 < p < 2.
(2.2)

3) Applying the Browder–Minty theorem, 1) and 2), we known that △2
p is surjection. Similar

to [12, Lemma 3.1 (iii)], it is not difficult to prove △2
p is a homeomorphism.

Remark 2.4. If △2
p is an operator from W

2,p
0 (Ω) to (W2,p

0 (Ω))∗, Proposition 2.3 is also valid
[18, Proposition 2.1].

Since f (x, t) satisfies the condition (SCPI), Iµ(u) is well-posed on W2,p(Ω) and is C1, the
weak solution to the problem (PD) is the critical point of Iµ(u) in W

2,p
0 (Ω). Because the

boundary condition △u|∂Ω ≡ 0 in Problem (PNa) is not included in natural space W
1,p
0 (Ω) ∩

W2,p(Ω), so Problem (PNa) must be considered in another way. Specifically, we need the
regularity of the critical point to Iµ(u) in space W

1,p
0 (Ω) ∩W2,p(Ω) to ensure this boundary

condition.

Proposition 2.5 ([26], Proposition 4.7). Suppose that f (x, t) satisfies the condition (SCPI) and

|µ| ≤ µ̃s,r(Ω), every critical point u of Iµ satisfies △u|∂Ω ≡ 0 in the sense of the trace in W
1,p
0 (Ω)

∩W2,p(Ω).

3 Proof of Theorem 1.2

In order to use Theorem A.2 to study Eq. (PD) and (PNa), we need to verify that the functionals
Iµ satisfies the mountain pass geometry structure and compactness conditions.

Lemma 3.1. Let f satisfies conditions (f1)–(f3) and (SCPI). Then the functional Iµ satisfies mountain

pass geometry:

1. Iµ(0) = 0.

2. There exist positive constants ρ and η such that Iµ(u)|∂Bρ
≥ η.

3. There exists e with ‖e‖ > ρ such that Iµ(e) < 0.

Proof. 1. Iµ(0) = 0 is straightforward by the condition (f 1). For 2, it follows from (f 3) and
(SCPI) that there exist C2, λ such that

F(x, t) ≤
1
p
(λ1 − λ)|t|p + C2|t|

p∗ for any (x, t) in Ω×R.

Considering the Sobolev embedding theorem and Lemma 2.2, we obtain

Iµ(u) =
1
p

∫

Ω

|△u|pdx−
µ

r

∫

Ω

|u|r

|x|s
dx−

∫

Ω

F(x, u)dx

≥
1
p

(
1−

λ1 − λ

λ1

)
‖u‖p −

µ

r
Cr‖u‖r − C2‖u‖

p∗

≥
λ

pλ1
‖u‖p −

µ

r
(µs,r(Ω))−

r
p ‖u‖r − C2‖u‖

p∗ ,
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where C is the constant in Lemma 2.2.

Thanks to λ > 0 , p ≤ r and p < p∗, we may take an enough small positive ρ and a positive
constant η such that Iµ(u)|∂Bρ

≥ η.

Next, we give the proof of 3. According to the condition (f 2), for all M > 0, there is δ > 0
such that F(x, t) > M|t|p for all (x, t) in Ω̄× [−δ, δ]c.

On the other hand, considering the continuity of F, we may get

m := min
(x,t)∈Ω̄×[−δ,δ]

F(x, t) ≤ F(x, 0) = 0.

Therefore, we take M >
‖u‖p

p‖u‖
p

Lp
> 0 especially, then there is an A > 0 such that

F(x, t) ≥ M|t|p − A for any (x, t) in Ω̄×R. (3.1)

Hence,

Iµ(tu) =
1
p

∫

Ω

|△tu|pdx−
µ

r

∫

Ω

|tu|r

|x|s
dx−

∫

Ω

F(x, tu)dx

≤
1
p
|t|p

∫

Ω

|△u|pdx−
µ

r
|t|r

∫

Ω

|u|r

|x|s
dx−

∫

Ω

(M|t|p|u|p − A)dx

= |t|p(
1
p
‖u‖p −M‖u‖

p
Lp)−

µ

r
|t|r

∫

Ω

|u|r

|x|s
dx + A|Ω|.

Thence limt→+∞ Iµ(tu) = −∞.

Lemma 3.2. Assume that f satisfies (f1)–(f4) and (SCPI), then the energy functional Iµ satisfies the

Cerami condition for all c in R.

Proof. Let {un}∞
n be in W

2,p
0 (Ω) such that

Iµ (un)→ c

and
(

1 + ‖un‖W
2,p
0

) ∥∥I′ (un)
∥∥
(W

2,p
0 )∗
→ 0,

that is to say,

1
p

∫

Ω

|△un|
pdx−

µ

r

∫

Ω

|un|r

|x|s
dx−

∫

Ω

F(x, un)dx → c, (3.2)

and
(

1 + ‖un‖W
2,p
0

)
sup
‖ϕ‖=1

∣∣〈I′(un), ϕ〉
∣∣→ 0. (3.3)
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Step 1. The sequence {un} is bounded in W
2,p
0 (Ω).

For if not, i.e. ‖un‖ → +∞ as n → +∞. Let vn =: un

‖un‖
, then ‖vn‖ = 1 (Bounded). Hence, up

to a subsequence, vn ⇀ v in W
2,p
0 (Ω). Therefore,

vn → v in Lq(Ω), q < p∗,

vn(x)→ v(x) a.e. in Ω,
vn

|x|
s
r

→
v

|x|
s
r

in Lr(Ω), r < p∗(s).

We discuss v in two cases.

Case (i): If v 6= 0, then let Ω 6= := {x ∈ Ω : v(x) 6= 0}.

|un(x)| = |vn(x)|‖un‖ → +∞ a.e. in Ω 6=.

Since Iµ(un)→ c, we get Iµ(un)

‖un‖
→ 0, i.e.

o(1) =
1
p
−

µ

r

∫

Ω

|u|r

|x|s‖un‖p
dx−

∫

Ω 6=

F(x, un)

‖un‖p
dx−

∫

Ω\Ω 6=

F(x, un)

‖un‖p
dx. (3.4)

In accordance to (f 2), we have

F(x, un)

‖un‖p
=

F(x, un)

|un|p
·
|un|p

‖un‖p
=

F(x, un)

|un|p
|vn|

p → +∞ a.e. in Ω 6= as n→ +∞,

which implies
∫

Ω 6=

F(x,un)
‖un‖p dx → +∞.

We claim that ∫

Ω\Ω 6=

F (x, un)

‖un‖
p dx > −

K

‖un‖
p

∣∣Ω \Ω 6=

∣∣ (3.5)

for some positive constant K.
In fact, from the condition (f 2), we get lim|t|→+∞ F(x, t) = +∞ uniformly in x ∈ Ω̄, which

implies
F(x, t) ≥ −K for any (x, t) in Ω̄×R. (3.6)

(The proof for (3.6) is similar to the process of deriving the inequality (3.1) by the condition
(f 2). These details are omitted and left to the reader.)

From the inequality (3.6), we may obtain the inequality (3.5).
Since ‖un‖ → +∞, combining (3.5) and (3.6), we get

Iµ(un)

‖u‖p
=

1
p
−

µ

r‖u‖p

∫

Ω

|u|r

|x|s
dx−

∫

Ω 6=

F(x, un)

‖un‖p
dx−

∫

Ω\Ω 6=

F (x, un)

‖un‖
p dx

≤
1
p
−

∫

Ω 6=

F(x, un)

‖un‖p
dx−

∫

Ω\Ω 6=

F (x, un)

‖un‖
p dx

→ −∞,

which contradicts inequality (3.4).

Case (ii): When v ≡ 0. Because t 7→ Iµ(tun) is continuous in [0, 1], thence for all n in N there
exists tn in [0, 1] such that

Iµ(tnun) = max
t∈[0,1]

Iµ(tun). (3.7)
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According to the condition (SCPI), for any R > 0, there exists C3 > 0 such that

F(x, t) ≤ C3|t|+
|t|p

∗

Rp∗
for all (x, t) in Ω×R.

Owing to R
‖un‖

in [0, 1] for n large enough, we get

Iµ (tnun) = max
t∈[0,1]

Iµ (tun) ≥ Iµ

(
R

un

‖un‖

)
= Iµ (Rvn)

and

Iµ (Rvn) =
1
p

∫

Ω

|△Rvn|
pdx−

µ

r

∫

Ω

|Rvn|r

|x|s
dx−

∫

Ω

F(x, Rvn)dx

≥
1
p

Rp −
µ

r
Rr

∫

Ω

|vn|r

|x|s
dx− C3R

∫

Ω

|vn|dx−
∫

Ω

|vn|
p∗dx. (3.8)

Due to vn ⇀ v ≡ 0 in W
2,p
0 (Ω), then

∫
Ω
|vn(x)|dx → 0,

∫
Ω

|vn|r

|x|s
dx → 0 and

∫
Ω
|vn(x)|p∗ dx <

C(Ω). Therefore, let n→ +∞ in (3.8), and then let R→ +∞, we have

Iµ (tnun) ≥ Iµ (Rvn)→ +∞ as n→ +∞. (3.9)

In addition, it is not difficult to infer that 0 < tn < 1 from Iµ(0) = 0 and Iµ(un)→ c < +∞ as
n→ +∞.

Furthermore, in the light of (3.7), we have d
dt (Iµ(tun))|t=tn = 0. Therefore,

〈I′µ(tnun), tnun〉 = tn〈I
′
µ(tnun), un〉

= tn
d

dτ
(Iµ(tnun + τun))|τ=0

= tn
d

dτ
(Iµ(tun + τun))|τ=0,t=tn

= tn
d

dt
(Iµ(tun + τun))|t=tn,τ=0

= tn
d

dt
(Iµ(tun))|t=tn = 0.

And considering the condition (f 4), we have

1
θ

Iµ(tnun) =
1
θ

(
Iµ(tnun)−

1
p
〈I′µ(tnun), tnun〉

)

=
1
θ

µ

(
1
p
−

1
r

)
|tn|

r
∫

Ω

|un|r

|x|s
dx

+
1
θ

∫

Ω

(
1
p

f (x, tnun) tnun − F (x, tnun)

)
dx

=
1
θ

µ

(
1
p
−

1
r

)
|tn|

r
∫

Ω

|un|r

|x|s
dx +

1
θ

∫

Ω

H(x, tnun)dx

=
1
θ

µ

(
1
p
−

1
r

)
|tn|

r
∫

Ω

|un|r

|x|s
dx +

1
θ

∫

Ω

(θH(x, un) + C∗)dx

= µ

(
1
p
−

1
r

)(
|tn|r

θ
− 1

) ∫

Ω

|un|r

|x|s
dx

+ Iµ(un)−
1
p
〈I′µ(un), un〉+

C∗
θ
|Ω|
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≤ Iµ(un)−
1
p
〈I′µ(un), un〉+

C∗
θ
|Ω|

→ c +
C∗
θ
|Ω|.

Thence,
lim sup

n→+∞

Iµ(tnun) ≤ θc + C∗|Ω| < +∞,

which is contradictive to (3.7).

Step 2. {un} admits a convergent subsequence in W
2,p
0 (Ω).

Since {un} is bounded in the reflexive Bananch space W
2,p
0 (Ω), up to a subsequence, un ⇀ u

in W
2,p
0 (Ω). Therefore,

un → u in Lq(Ω), q < p∗,

un(x)→ u(x) a.e. in Ω,
un

|x|
s
r

→
u

|x|
s
r

in Lr(Ω), r < p∗(s),

|un|
r−2 un

|x|s
⇀
|u|r−2u

|x|s
weakly in Lr(Ω), r < p∗(s).

According to the condition (SCPI), for every ε > 0, there is a C(ε) > 0 such that | f (x, t)| ≤

C(ε) + ε|t|p
∗−1 for any (x, t) in Ω×R. Therefore, we get
∣∣∣∣
∫

Ω

f (x, un) (un − u)dx

∣∣∣∣ ≤ C(ǫ)
∫

Ω

|un − u|dx + ǫ
∫

Ω

|un − u| |un|
p∗−1 dx

≤ C(ǫ)
∫

Ω

|un − u|dx

+ ǫ

(∫

Ω

|un|
p∗ dx

) p∗−1
p∗

(∫

Ω

|un − u|p
∗

dx

) 1
p∗

≤ C(ǫ)
∫

Ω

|un − u|dx + ǫC(Ω).

In line with un ⇀ u in W
2,p
0 (Ω),

∫
Ω
|un − u|dx → 0, and the arbitrariness of ǫ, we may infer

that ∫

Ω

f (x, un) (un − u)dx → 0.

On the other hand, ∫

Ω

|un|r−2un

|x|s
(un − u)dx → 0.

Hence,

0← 〈I′un
, un − u〉

=
∫

Ω

|△un|
p−2△un(△un −△u)dx

− µ
∫

Ω

|un|r−2un

|x|s
(un − u)dx−

∫

Ω

f (x, un) (un − u)dx

=
∫

Ω

|△un|
p−2△un(△un −△u)dx + o(1).
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Therefore, ∫

Ω

|△un|
p−2△un(△un −△u)dx → 0,

which implies that u → u strongly in W
2,p
0 (Ω), that is to say, the functional Iµ satisfies the

Cerami condition for any c in R.

Proof of Theorem 1.2. According to Theorem A.2, Lemma 3.1 and Lemma 3.2, we know that
Problem (PD) admits a nontrivial weak solution in W

2,p
0 (Ω).

From Proposition 2.5, we obtain Lemma 3.1 and Lemma 3.2 when W
2,p
0 (Ω) is replaced by

W
1,p
0 (Ω) ∩W2,p(Ω). Hence Problem (PNa) has also a nontrivial weak solution in W

1,p
0 (Ω) ∩

W2,p(Ω).

4 Proof of Theorem 1.3

In this section, we apply Theorem A.3 to prove Theorem 1.3. First of all, because W
2,p
0 (Ω) is a

Banach space, we formulate Yk and Zk as in (A.1). The condition (f 6) means Iµ(−u) = −Iµ(u).
Since the condition (SCP) indicates the condition (SCPI), Iµ contents the Cerami condition for
any c in R under Lemma 3.2. Here, we mimic part of the proof of Theorem 3.7 in [27] and
Theorem 1.2 in [2].

In order to estimate A6) in Theorem 1.3, we need the following lemma.

Lemma 4.1.

βk = sup
u∈Zk
‖u‖=1

‖u‖Lq → 0 as k→ ∞

provided 1 ≤ q < p∗.

Proof. Zk+1 =
⊕

j≥k+1 Xj ⊂
⊕

j≥k Xj = Zk suggests 0 ≤ βk+1 ≤ βk, thence limk→+∞ βk = b ≥ 0.
According to the definition of supper bound, for any k > 0, there exists uk in Zk with ‖u‖Lq >

βk

2 on ∂B1(0) in W
2,p
0 (Ω). Since W

2,p
0 (Ω) is a real, reflexive, and separable Banach space, we

can extract a subsequence of {uk} (still denoted for {uk}) such that uk ⇀ u weakly in W
2,p
0 (Ω),

i.e. 〈uk, ϕ〉 → 〈u, ϕ〉 for any ϕ in (W
2,p
0 (Ω))∗.

Since each Zk is convex and closed, hence it is closed for the weak topology, which implies

u ∈
+∞⋂

k=1

Zk = {0}.

Therefore, according to Sobolev embedding theorem, we have

0 <
βk

2
< uk → 0 in Lq(Ω) as k→ +∞.

Proof of Theorem 1.3. Rewrite (3.1) to the form we need here: For some k > 0, there exist Ck > 0
and Ak > 0 such that

F(x, t) ≥ Ck|t|
p − Ak for every (x, s) in Ω×R.

Step 1. For any k ∈ N, there exists ρk > 0 such that

ak = max
u∈Yk
‖u‖=ρk

Iµ(u) ≤ 0.
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In fact, all norms on Yk are equivalent since Yk is finite dimensional, hence there exist two
positive constants Ck,p and C̃k,p such that

C
1
p

k,p‖u‖Lp ≤ ‖u‖ ≤ C̃
1
p

k,p‖u‖Lp for all u ∈ Yk.

Therefore, for all u in Yk, we have

Iµ(u) =
1
p

∫

Ω

|△u|pdx−
µ

r

∫

Ω

|u|r

|x|s
dx−

∫

Ω

F(x, u)dx

≤
1
p
‖u‖p −

µ

r

∫

Ω

|u|r

|x|s
dx− Ck‖u‖

p
Lp + Ak|Ω|

≤
1
p
‖u‖p − ‖u‖p + Ak|Ω| −

µ

r

∫

Ω

|u|r

|x|s
dx

≤
1− p

p
‖u‖p + Ak|Ω|.

Thence, we choose u in Yk with ‖u‖ = ρk > 0 large enough and obtain

Iµ(u) ≤ 0.

Step 2. There exists rk in (0, ρk) such that

bk = inf
u∈Zk
‖u‖=rk

Iµ(u)→ +∞, as k→ ∞.

Indeed, (SCP) implies that there exists C′ > 0 such that

|F(x, t)| ≤ C′ (1 + |t|q) .

Hence, for any u in Zk, we get

Iµ(u) =
1
p

∫

Ω

|△u|pdx−
µ

r

∫

Ω

|u|r

|x|s
dx−

∫

Ω

F(x, u)dx

≥
1
p
‖u‖p −

µ

r

∫

Ω

|u|r

|x|s
dx− C′‖u‖

q
Lq − C′|Ω|

≥
1
p
‖u‖p −

µ

r

∫

Ω

|u|r

|x|s
dx− C′‖

u

‖u‖
‖

q
Lq‖u‖q − C′|Ω|

≥
1
p
‖u‖p −

µ

r
(µs,r(Ω))−

r
p ‖u‖r − C′β

q
k‖u‖

q − C′|Ω|

=

[
1
p

(
1−

µ

µs,r(Ω)

)
− C′β

q
k‖u‖

q−p

]
‖u‖p − C′|Ω|.

According to Lemma 4.1, limk→+∞ βk = +∞. Let rk =
( µs,r(Ω)C′qβ

q
k

µs,r(Ω)−µ

)− 1
q−p , then limk→+∞ rk =

+∞. If for u ∈ Zk with ‖u‖ = rk, then we have

Iµ(u) ≥

(
1
p
−

1
q

)(
1−

µ

µs,r(Ω)

)
r

p
k − C′|Ω| → +∞, as k→ +∞,

which yields Step 2.

Remark 4.2. If p < r, we seem impossible to get Iµ(u) → +∞, as k → +∞. Therefore, in a
sense, p = r are sharp.
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Appendix A

The machinery of the critical point theory is based on the existence of a linking structure and
deformation lemmas. Generally speaking, it is necessary that some compactness condition
of the functional in order to derive such deformation results. We use the famous Cerami
condition:

Definition A.1 (Cerami (C) condition). Let X be a real Banach space with its dual space X∗

and J ∈ C1(X, R). For c ∈ R we say that J satisfies the (C)c condition if for any sequence
{xn} ⊂ X with J (xn) → c and (1 + ‖xn‖X) ‖J′ (xn)‖X∗ → 0, then the sequence {xn} admits a
subsequence strongly convergent in X.

Theorem A.2 (Mountain Pass Theorem with Cerami condition [8]). Assume that X is a real

Banach space and J ∈ C1(X, R) satisfies the (C)c condition for any c ∈ R, J(0) = 0, and, in addition,

A1) There exist positive constants r and η such that J(u)|∂Br
≥ η;

A2) There exists an u0 ∈ X with ‖u0‖ > ρ such that J (u0) ≤ 0.

Then c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≥ α is a critical value of J, where

Γ =
{

γ ∈ C0([0, 1], X) : γ(0) = 0, γ(1) = u0
}

.

Let X be a reflexive and separable Banach space, then there exist sequences
{

ej

}
⊂

X and
{

ϕj

}
⊂ X∗ with

A3) 〈ϕi, ei〉 = δi,j, where δi,j =

{
1, if i = j;

0, if i 6= j;

A4) span
{

ej

}∞

j=1 = X and spanw∗
{

ϕj

}∞

j=1 = X∗.

Let Xj = Rej, then X =
⊕

j≥1 Xj. And we define

Yk =
k⊕

j=1

Xj and Zk =
⊕

j≥k

Xj (A.1)

Theorem A.3 (Fountain Theorem with Cerami condition [2]). Suppose that ϕ ∈ C1(X, R) satis-

fies the (C)c condition for all c ∈ R and ϕ(u) = ϕ(−u). If for any k ∈ N, there exists ρk > rk such

that

A5) ak = max
u∈Yk
‖u‖=ρk

ϕ(u) ≤ 0;

A6) bk = inf
u∈Zk
‖u‖=rk

ϕ(u)→ +∞, as k→ ∞,

then ϕ possesses an unbounded sequence of critical values.



14 W. Wang

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.
11771423, 11871452) and National Science Foundation of Jiangsu Higher Education Institu-
tions of China, No. 19KJD100007.

The author wishes to express his thanks to Professor Peihao Zhao from the School of
Mathematics and Statistics in Lanzhou University for giving a guide to nonlinear functional
analysis. And the author would like to express his gratitude to the anonymous reviewers for
careful reading and helpful suggestions.

References

[1] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and
applications, J. Funct. Anal. 14(1973), 349–381. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴✵✵✷✷✲✶✷✸✻✭✼✸✮
✾✵✵✺✶✲✼; MR0370183; Zbl 0273.49063

[2] C. T. Anh, B. K. My, Existence of solutions to △λ-Laplace equations without the
Ambrosetti–Rabinowitz condition, Complex Var. Elliptic Equ. 61(2016), No. 1, 137–150.
❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✽✵✴✶✼✹✼✻✾✸✸✳✷✵✶✺✳✶✵✻✽✼✻✷; MR3428858; Zbl 1336.35164

[3] F. Bernis, J. García Azorero, I. Peral, Existence and multiplicity of nontrivial solutions
in semilinear critical problems of fourth order, Adv. Differential Equations 1(1996), No. 2,
219–240. MR1364002; Zbl 0841.35036

[4] M. Bhakta, Entire solutions for a class of elliptic equations involving p-biharmonic oper-
ator and Rellich potentials, J. Math. Anal. Appl. 423(2015), 1570–1579. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴
✴✶✵✳✶✵✶✻✴❥✳❥♠❛❛✳✷✵✶✹✳✶✵✳✵✽✵; MR3278215; Zbl 1307.35021

[5] H. Bueno, L. Paes-Leme, H. Rodrigues, Multiplicity of solutions for p-biharmonic prob-
lems with critical growth, Rocky Mountain J. Math. 48(2018), 425–442. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴
✶✵✳✶✷✶✻✴❘▼❏✲✷✵✶✽✲✹✽✲✷✲✹✷✺; MR3810206; Zbl 1391.35131

[6] M. Chaharlang, M. Razani, Abdolrahman, A fourth order singular elliptic problem
involving p-biharmonic operator, Taiwanese J. Math. 23(2019), 589–599. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴
✶✵✳✶✶✻✺✵✴t❥♠✴✶✽✵✾✵✻; MR3952242; Zbl 1418.35123

[7] D. G. Costa, C. A. Magalhães, Variational elliptic problems which are nonquadratic at
infinity, Nonlinear Anal. 23(1994), 1401–1412. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴✵✸✻✷✲✺✹✻❳✭✾✹✮
✾✵✶✸✺✲❳; MR1306679; Zbl 0820.35059

[8] D. G. Costa, C. A. Magalhães, Existence results for perturbations of the p-Laplacian,
Nonlinear Anal. 24(1995), 409–418. MR1312776; Zbl 0818.35029

[9] E. B. Davies, A. M. Hiniz, Explicity constant for Rellich inequality in Lp(Ω), Math. Z.

227(1998), 511–523. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴P▲✵✵✵✵✹✸✽✾; MR1612685; Zbl 0903.58049

[10] P. Drábek, M. Ôtani, Global bifurcation result for the p-biharmonic operator, Electron. J.

Differential Equations 2001, No. 48, 1–17. MR1846664; Zbl 0983.35099

[11] A. Lazer, P. McKenna, Large-amplitude periodic oscillations in suspension bridges:
some new connections with nonlinear analysis, SIAM Rev. 32(1990), 537–578. ❤tt♣s✿

✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✸✼✴✶✵✸✷✶✷✵; MR1084570; Zbl 0725.73057



p-biharmonic equation with Hardy–Sobolev exponent and without the AR-condition 15

[12] X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems,
Nonlinear Anal. 58(2001), 749–760. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❙✵✸✻✷✲✺✹✻❳✭✵✷✮✵✵✶✺✵✲✺;
MR1954585

[13] M. F. Furtado, E. D. Silva, Nonquadraticity condition on superlinear problems, in: A. N.
Carvalho et al. (Eds.), Contributions to Nonlinear Elliptic Equations and Systems, Progress
in Nonlinear Differential Equations and Their Applications, Vol. 86, Springer Interna-
tional Publishing, Switzerland, 2015. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲✸✲✸✶✾✲✶✾✾✵✷✲✸❴

✶✻; MR3494902; Zbl 1336.35006

[14] N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical
Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352(2000), 5703–5743. ❤tt♣s✿✴✴
❞♦✐✳♦r❣✴✶✵✳✶✵✾✵✴❙✵✵✵✷✲✾✾✹✼✲✵✵✲✵✷✺✻✵✲✺; MR1695021; Zbl 0956.35056

[15] R. Glowinski, A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires,
Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9(1975),
No. R-2, 41–76. MR0388811; Zbl 0368.65053

[16] Y. Huang, X. Liu, Sign-changing solutions for p-biharmonic equations with Hardy poten-
tial, J. Math. Anal. Appl. 412(2014), 142–154. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❙✵✷✺✷✲✾✻✵✷✭✶✼✮
✸✵✵✷✺✲✺; MR3145789; Zbl 1399.35182

[17] L. Iturriaga, M. A. Souto, P. Ubilla, Quasilinear problems involving changing-
sign nonlinearities without an Ambrosetti–Rabinowitz-type condition, Proc. Edinb. Math.

Soc. (2) 57(2014), 755–762. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✼✴❙✵✵✶✸✵✾✶✺✶✸✵✵✵✻✻✼; MR3251758;
Zbl 1315.35070

[18] A. E. Khalil, S. Kellati, A. Touzani, On the spectrum of the p-biharmonic operator,
in: Proceedings of the 2002 Fez Conference on Partial Differential Equations, Electron. J. Dif-
fer. Equ. Conf., Vol. 9, Southwest Texas State Univ., San Marcos, TX, 2002, pp. 161–170.
MR1976693

[19] G. Li, C. Yang, The existence of a nontrivial solution to a nonlinear elliptic bound-
ary value problem of p-Laplacian type without the Ambrosetti–Rabinowitz condi-
tion, Nonlinear Anal. 72(2010), 4602–4613. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳♥❛✳✷✵✶✵✳✵✷✳✵✸✼;
MR2639208; Zbl 1190.35104

[20] S. Liu, On superlinear problems without Ambrosetti–Rabinowitz condition, Nonlinar

Anal. 73(2010), 788–795. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳♥❛✳✷✵✶✵✳✵✹✳✵✶✻; MR2653749

[21] D. Mugnai, N. S. Papageorgiou, Wang’s multiplicity result for superlinear (p, q)-
equations without the Ambrosetti–Rabinowitz condition, Trans. Amer. Math. Soc.

366(2014), No. 9, 4919–4937. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✾✵✴❙✵✵✵✷✲✾✾✹✼✲✷✵✶✸✲✵✻✶✷✹✲✼;
MR3217704; Zbl 1300.35017

[22] M. Pérez-Llanos, A. Primo, Semilinear biharmonic problems with a singular term,
J. Differential Equations 257(2014), 3200–3225. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥❞❡✳✷✵✶✹✳✵✻✳
✵✶✶; MR3258136; Zbl 1301.35053



16 W. Wang

[23] K. Perera, W. Zou, p-Laplacian problems involving critical Hardy–Sobolev exponents,
NoDEA Nonlinear Differential Equations Appl. 25(2018), Paper No. 25, 16 pp. ❤tt♣s✿✴✴❞♦✐✳
♦r❣✴✶✵✳✶✵✵✼✴s✵✵✵✸✵✲✵✶✽✲✵✺✶✼✲✼; MR3810517; Zbl 1401.35109

[24] O. H. Miyagaki, M. A. S. Souto, Superlinear problems without Ambrosetti and Ra-
binowitz growth condition, J. Differential Equations 245(2008), 3628–3638. ❤tt♣s✿✴✴❞♦✐✳
♦r❣✴✶✵✳✶✵✶✻✴❥✳❥❞❡✳✷✵✵✽✳✵✷✳✵✸✺; MR2462696; Zbl 1158.35400

[25] W. Wang, P. Zhao, Nonuniformly nonlinear elliptic equations of p-biharmonic type,
J. Math. Anal. Appl. 348(2008), 730–738. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥♠❛❛✳✷✵✵✽✳✵✼✳✵✻✽;
MR2445772; Zbl 1156.35045

[26] W. Wang, The variational solutions for quasilinear elliptic equation of fourth order (in Chinese),
Master’s thesis, Lanzhou University, 2008.

[27] M. Willem, Minimax theorems, Birkhäuser, Boston, 1996. ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴

✾✼✽✲✶✲✹✻✶✷✲✹✶✹✻✲✶; MR1400007

[28] Y. Yao, R. Wang, Y. Shen, Nontrivial solution for a class of semilinear biharmonic equa-
tion involving critical exponents, Acta Math. Sci. Ser. B (Engl. Ed.) 27(2007), 509–514.
❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❙✵✷✺✷✲✾✻✵✷✭✵✼✮✻✵✵✺✵✲✷; MR2339390; Zbl 1150.35046



Electronic Journal of Qualitative Theory of Differential Equations
2020, No. 43, 1–17; https://doi.org/10.14232/ejqtde.2020.1.43 www.math.u-szeged.hu/ejqtde/

Variational differential inclusions without

ellipticity condition

Zhenhai LiuB 1, 2, Roberto Livrea3, Dumitru Motreanu2,4 and

Shengda Zeng2,5

1Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for
Nationalities, Nanning 530006, Guangxi Province, P. R. China

2Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data
Processing, Yulin Normal University, Yulin 537000, P.R. China

3Department of Mathematics and Computer Science, University of Palermo,
Via Archirafi 34, 90123, Palermo, Italy

4Department of Mathematics, Université de Perpignan,
52 Avenue Paul Alduy, 66860, Perpignan, France

5Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science,
ul. Lojasiewicza 6, 30348 Krakow, Poland

Received 17 April 2020, appeared 27 June 2020

Communicated by Petru Jebelean

Abstract. The paper sets forth a new type of variational problem without any ellipticity
or monotonicity condition. A prototype is a differential inclusion whose driving oper-
ator is the competing weighted (p, q)-Laplacian −∆pu + µ∆qu with µ ∈ R. Local and
nonlocal boundary value problems fitting into this nonstandard setting are examined.

Keywords: variational problem, hemivariational inequality, lack of ellipticity, compet-
ing (p, q)-Laplacian, local and nonlocal operators.

2020 Mathematics Subject Classification: 49J40, 35J87.

1 Introduction

Let X and Y be Banach spaces and let j : X → Y be a linear compact map. There are given

on X a Gâteaux differentiable function F : X → R with its Gâteaux differential DF : X → X∗

and on Y a locally Lipschitz function Φ : Y → R whose generalized directional derivative is

denoted Φ0 : Y × Y → R. With these data we formulate the following problem in the form of

a hemivariational inequality: find u ∈ X such that

〈DF(u), w〉+ Φ0(ju; jw) ≥ 0, ∀w ∈ X. (1.1)

Problem (1.1) qualifies as a hemivariational inequality due to the presence of the term

Φ0(ju; jw). This problem is equivalent to the differential inclusion

−DF(u) ∈ j∗∂Φ(ju),

BCorresponding author. Email: zhhliu@hotmail.com
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where the notation ∂Φ(u) stands for the generalized gradient of Φ at u ∈ X and j∗ denotes the

adjoint operator of j. The hemivariational inequalities provide accurate modeling of contact

phenomena involving nonconvex and nonsmooth mechanical processes. For an extensive

study on applications of hemivariational inequalities we cite [10, 13, 14],

Problem (1.1) has a variational structure, which is nonsmooth, whose associated energy

functional I : X → R is

I = F + Φ ◦ j. (1.2)

There is a huge literature devoted to variational problems, smooth or nonsmooth, mainly

employing minimax techniques based on critical point theory (see, e.g., [11], [3], [10, Chapter

3]). Since F is only Gâteaux differentiable, no available result can be applied to problem (1.1)

and its corresponding energy functional I in (1.2).

The main novelty of the present work is represented by the fact that we don’t assume any

ellipticity condition on the leading term DF(u) in (1.1). In order to highlight this essential

aspect, let us consider a particular situation in (1.1) related to boundary value problems with

discontinuous nonlinearities. Their study was initiated by Chang [3].

For a fixed µ ∈ R, we state the quasilinear differential inclusion

{

−∆pu + µ∆qu ∈ [ f (u), f (u)] in Ω

u = 0 on ∂Ω
(1.3)

on a bounded domain Ω ⊂ R
N with the boundary ∂Ω. Here ∆p and ∆q denote the p-Laplacian

and the q-Laplacian, respectively, with 1 < q < p < +∞, and for a function f ∈ L∞
loc(R) we

set

f (s) = lim
δ→0

ess inf
|τ−s|<δ

f (τ), ∀s ∈ R (1.4)

and

f (s) = lim
δ→0

ess sup
|τ−s|<δ

f (τ), ∀s ∈ R. (1.5)

If the function f is continuous, then the interval [ f (u(x)), f (u(x))] reduces to the singleton

f (u(x)) and (1.3) becomes the quasilinear Dirichlet equation

{

−∆pu + µ∆qu = f (u) in Ω,

u = 0 on ∂Ω.
(1.6)

An important case in problems (1.3) and (1.6) is when µ = 0 with the p-Laplacian ∆p as

driving operator. Another important case is when µ = −1, where the quasilinear equation is

governed by the (p, q)-Laplacian ∆p + ∆q. We emphasize that the behavior of −∆p + µ∆q with

µ > 0 is completely different with respect to the one of −∆p + µ∆q with µ ≤ 0, the latter being

an elliptic operator. In the case of −∆p + µ∆q with µ > 0 the ellipticity is lost as can be easily

seen: for u = λu0 with a nonzero u0 ∈ W
1,p
0 (Ω) and a number λ > 0 the expression

〈−∆pu + µ∆u, u〉 = λp‖∇u0‖
p
p − µλq‖∇u0‖

q
q

is positive for λ large and negative for λ small. Therefore the leading operator in (1.3) is a

competing (p, q)-Laplacian when µ > 0. This makes (1.3), thus (1.1), a nonstandard problem

where a sort of hyperbolic feature is incorporated.
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We further discuss a nonlocal counterpart of problem (1.3), namely

{

−∆pu + µ(−∆)s
qu ∈ [ f (u), f (u)] in Ω

u = 0 in R
N \ Ω

(1.7)

on a bounded domain Ω ⊂ R
N with Lipschitz boundary ∂Ω, where f ∈ L∞

loc(R) with (1.4),

(1.5) as above, and a parameter µ ∈ R. Inclusion (1.7) is driven by the nonlocal operator

formed with the ordinary p-Laplacian ∆p and the (negative) s-fractional q-Laplacian (−∆)s
q,

taking 0 < s < 1 and 1 < q < p < +∞, with sq < N. The differential operator −∆p + µ(−∆)s
q

is the optimal fractional substitute for the (p, q)-Laplacian −∆p − µ∆q as noticed below in

Remark 5.2. Likewise in the case of fractional p-Laplacian (see, e.g., [15]), a motivation for

studying it comes from the theory of Markov processes. In this respect, we refer to [8, Example

1.2.1] describing a typical Markovian symmetric form. A brief survey of the nonlocal setting

related to (1.7) can be found in Section 2. If the function f is continuous, (1.7) reduces to the

equation
{

−∆pu + µ(−∆)s
qu = f (u) in Ω

u = 0 in R
N \ Ω.

(1.8)

In the nonlocal problems (1.7) and (1.8) the ellipticity is preserved if µ ≥ 0, but not if µ < 0

for which the usual methods fail to apply.

The natural notion of solution (in the weak sense) to problem (1.1) is apparent: any u ∈ X

for which inequality (1.1) holds whenever w ∈ X. Since we do not assume any elliptic-

ity/monotonicity condition upon the principal part of (1.1) or any compactness condition of

Palais–Smale type on I in (1.2) or that I be sequentially weakly lower semicontinuous (as ba-

sically is required in [1]), in order to establish the solvability of equation (1.1) we need to relax

the notion of solution to fit the specific character of problem (1.1).

Definition 1.1. A function u ∈ X is called a generalized solution to (1.1) if there exists a sequence

{un}n≥1 ⊂ X with the properties:

(S1) un ⇀ u in X as n → ∞;

(S2) lim supn→∞ F(un) ≤ F(u);

(S3) lim inf
n→∞

〈DF(un), v − un〉+ Φ0(ju; jv − ju) ≥ 0, ∀v ∈ X.

Remark 1.2. The idea of weakening the notion of solution to cover more general frames is fre-

quent (see, e.g., [12, p. 183]). Different situations where the solution is a limit of (approximate)

solutions are discussed in [16, 17].

Remark 1.3. Every solution to (1.1) is a generalized solution in the sense of Definition 1.1.

It suffices to take the constant sequence un = u. For the converse assertion, additional as-

sumptions should be imposed, for instance that the differential DF : X → X∗ be completely

sequentially continuous (i.e., un ⇀ u implies DFun → DFu). A key role might have property

(S2) in Definition 1.1 as will be illustrated for problems (1.3), (1.6), (1.7), (1.8).

Our main result stated as Theorem 3.2 in Section 3 provides the existence of a general-

ized solution to problem (1.1). The approach relies on minimization of the energy functional

I in (1.2) on finite dimensional subspaces of X belonging to a Galerkin basis. Denoting by

{vn}n≥1 ⊂ X the resulting minimizing sequence of I, in a further step we construct through
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Ekeland’s variational principle (see [6, 7]) applied to I and {vn}n≥1 a second minimizing se-

quence {un}n≥1 ⊂ X of I, with finer properties, that will be shown to comply with Definition

1.1. The proof is concluded by a passing to the limit process.

The abstract result in Theorem 3.2 for problem (1.1) is applied in two different directions.

First, we establish the existence of a generalized solution to the local quasilinear differential

inclusion with discontinuities (1.3), in particular (1.6) (see Theorem 4.2). Second, we obtain the

existence of a generalized solution to the nonlocal quasilinear inclusion (1.7), in particular (1.8)

(see Theorem 5.1). In both cases, a special attention is paid to clarify when the generalized

solution is a weak solution.

2 Mathematical background

Our approach on problem (1.1) relies on two fundamental tools: Galerkin basis and Ekeland’s

variational principle. For easy reference we recall some basic material.

A Galerkin basis of a Banach space X is a sequence {Xn}n≥1 of vector subspaces of X for

which

(i) dim(Xn) < ∞, ∀n;

(ii) Xn ⊂ Xn+1, ∀n;

(iii)
∞
⋃

n=1

Xn = X.

If X is separable, there exists a Galerkin basis of X. For an extensive use of Galerkin bases to

various existence theorems we refer to [12, 16, 17].

We shall apply Ekeland’s Variational Principle (see [6, 7]) in the following form.

Theorem 2.1. Assume that the functional I : X → R is lower semicontinuous and bounded from

below on a Banach space X. If {vn}n≥1 is a minimizing sequence of I, then there exists a sequence

{un}n≥1 in X with the properties:

(a) I(un) ≤ I(vn) for all n;

(b) ‖un − vn‖ → 0 as n → ∞;

(c) for all n ≥ 1, it holds

I(w) > I(un)−
1

n
‖w − un‖, ∀w ∈ X, w 6= un.

Next we outline some prerequisites of nonsmooth analysis regarding the subdifferentia-

bility of locally Lipschitz functions (for more details we recommend [4] and also [3, 10]). A

function Φ : Y → R on a Banach space Y is called locally Lipschitz if for every u ∈ Y one can

find a neighborhood U of u in Y and a constant Lu > 0 such that

|Φ(v)− Φ(w)| ≤ Lu‖v − w‖, ∀v, w ∈ U.

The generalized directional derivative of a locally Lipschitz function Φ at u ∈ Y in the direc-

tion v ∈ Y is defined as

Φ0(u; v) := lim sup
w→u, t→0+

1

t
(Φ(w + tv)− Φ(w))
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and the generalized gradient of Φ at u ∈ Y is the set

∂Φ(u) :=
{

u∗ ∈ Y∗ : 〈u∗, v〉 ≤ Φ0(u; v), ∀v ∈ Y
}

.

A continuous and convex function Φ : Y → R is locally Lipschitz and its generalized gradient

∂Φ : Y → 2Y∗
coincides with the subdifferential of Φ in the sense of convex analysis.

We need these notions in connection with the nonsmooth problems (1.3), (1.6), (1.7), (1.8).

Let f : R → R satisfy f ∈ L∞
loc(R) for which we set

g(s) =
∫ s

0
f (t)dt for all s ∈ R (2.1)

and note that g : R → R is locally Lipschitz. Then the generalized gradient ∂g(s) of g at s ∈ R

is the compact interval in R expressed by

∂g(s) = [ f (s), f (s)], (2.2)

where f (s) and f (s) are defined in (1.4) and (1.5), respectively.

We also address a few things about the operators in the Dirichlet problems (1.3), (1.6), (1.7),

(1.8). Given 1 < q < p < +∞, we denote p′ = p
p−1 and q′ = q

q−1 and consider the Sobolev

spaces W
1,p
0 (Ω) and W

1,q
0 (Ω) endowed with the norms ‖∇u‖p and ‖∇u‖q, respectively, where

‖ · ‖r stands for the usual Lr-norm. The negative p-Laplacian −∆p : W
1,p
0 (Ω) → W−1,p′(Ω) is

defined by

〈−∆pu, ϕ〉 =
∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx for all u, ϕ ∈ W

1,p
0 (Ω).

This operator is strictly monotone and continuous, so pseudomonotone. If p = 2 we retrieve

the ordinary Laplacian operator. Similarly, we have the definition of the negative q-Laplacian

−∆q : W
1,q
0 (Ω) → W−1,q′(Ω). By virtue of the embedding W

1,p
0 (Ω) →֒ W

1,q
0 (Ω), the differential

operator −∆p + µ∆q driving inclusion (1.3) and equation (1.6) is well posed in W
1,p
0 (Ω). There

exists a constant k > 0 such that

‖∇u‖q ≤ k‖∇u‖p, ∀u ∈ W
1,p
0 (Ω). (2.3)

By a weak solution to problem (1.3) with f ∈ L∞
loc(R) we mean a u ∈ W

1,p
0 (Ω) for which it

holds f (u), f (u) ∈ Lp′(Ω) and

∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx − µ

∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

≥
∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx for all ϕ ∈ W

1,p
0 (Ω) (2.4)

or equivalently

∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx − µ

∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

≤
∫

Ω
max{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx for all ϕ ∈ W

1,p
0 (Ω). (2.5)

The equivalence between (2.4) and (2.5) arises by replacing ϕ ∈ W
1,p
0 (Ω) with −ϕ. For the

Dirichlet equation (1.6), the ordinary notion of weak solution is recovered. If f : R → R is
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continuous, then u ∈ W
1,p
0 (Ω) is a weak solution to equation (1.6) provided f (u) ∈ Lp′(Ω)

and
∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx − µ

∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

=
∫

Ω
f (u(x))ϕ(x)dx for all ϕ ∈ W

1,p
0 (Ω). (2.6)

This follows readily from (2.4) (or (2.5)), (1.4) and (1.5).

Finally, we sketch the framework of nonlocal problems (1.7) and (1.8). The fractional

Sobolev space Ws,q(Ω) of differentiability order s ∈ (0, 1) and summability exponent 1 < q <

+∞ for a bounded domain Ω ⊂ R
N with a Lipschitz continuous boundary ∂Ω is introduced

as

Ws,q(Ω) :=

{

u ∈ Lq(Ω) :
∫

Ω

∫

Ω

|u(x)− u(y)|q

|x − y|N+qs
dxdy < ∞

}

,

which is a separable and reflexive Banach space endowed with the norm

‖u‖Ws,q(Ω) :=

(

‖u‖
q
q +

CN,q,s

2

∫

Ω

∫

Ω

|u(x)− u(y)|q

|x − y|N+qs
dxdy

)
1
q

,

with a normalization constant CN,q,s > 0. If sq < N, the embedding Ws,q(Ω) →֒ Lν(Ω) is

continuous for all 1 ≤ ν ≤ q∗s , and compact for all 1 ≤ ν < q∗s , with q∗s = Np/(N − sq) called

the fractional critical exponent (see [5, Theorem 6.5, Corollary 7.2]). Under the conditions

0 < s < 1, 1 < q < p < +∞ and sq < N, the embeddings W1,p(Ω) →֒ W1,q(Ω) →֒ Ws,q(Ω)

are continuous and thus for a constant C = C(N, s, q) ≥ 1 one has

‖u‖Ws,q(Ω) ≤ C‖u‖W1,q(Ω), ∀u ∈ W1,p(Ω). (2.7)

(see [5, Proposition 2.2])).

The closed linear subspace

W
s,q
0 (Ω) := {u ∈ Ws,q(RN) : u = 0 a.e. in R

N \ Ω}

can be endowed with the equivalent norm (determined by the Gagliardo seminorm)

‖u‖W
s,q
0 (Ω) :=

(

CN,q,s

2

)
1
q

[u]Ds,q(RN) :=

(

CN,q,s

2

∫

Ω

∫

Ω

|u(x)− u(y)|q

|x − y|N+qs
dxdy

)
1
q

becoming a uniformly convex Banach space with the dual W−s,q′(Ω).

The (negative) s-fractional q-Laplacian is the nonlinear operator (−∆)s
q : W

s,q
0 (Ω) →

W−s,q′(Ω) defined for all u, v ∈ W
s,q
0 (Ω) by

〈(−∆)s
q(u), v〉 =

CN,q,s

2

∫

RN

∫

RN

|u(x)− u(y)|q−2(u(x)− u(y))(v(x)− v(y))

|x − y|N+sq
dx dy (2.8)

(see [5, 15] for more insight).

Along the pattern of the corresponding local problems, u ∈ W
1,p
0 (Ω) is called a weak

solution to inclusion (1.7) with 0 < s < 1, 1 < q < p < +∞, sq < N and f ∈ L∞
loc(R) provided

f (u), f (u) ∈ Lp′(Ω) and
∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

+ µ
CN,q,s

2

∫

RN

∫

RN

|u(x)− u(y)|q−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x − y|N+qs
dxdy

≥
∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx for all ϕ ∈ W

1,p
0 (Ω), (2.9)
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where we set u = ϕ = 0 outside Ω. If f : R → R is continuous, u ∈ W
1,p
0 (Ω) is a weak

solution to the nonlocal equation (1.8) provided f (u) ∈ Lp′(Ω) and

∫

Ω
|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx

+ µ
CN,q,s

2

∫

RN

∫

RN

|u(x)− u(y)|q−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x − y|N+qs
dxdy

=
∫

Ω
f (u(x))ϕ(x)dx for all ϕ ∈ W

1,p
0 (Ω). (2.10)

3 Existence of a generalized solution

In order to simplify the presentation, we denote by the same symbol ‖ · ‖ different norms

that occur below. The meaning will be clear from the context. Our hypotheses on the data in

problem (1.1) are as follows:

(H1) The Banach space X is separable and reflexive, and j : X → Y is a linear compact map from X

to a Banach space Y.

(H2) The function F : X → R is Gâteaux differentiable, continuous, and the function Φ : Y → R is

locally Lipschitz such that

I = F + Φ ◦ j is bounded from below on X (3.1)

and I is coercive on every finite dimensional subspace of X, i.e., if X0 is a finite dimen-

sional subspace of X, then I(u) → +∞ as ‖u‖ → ∞ with u ∈ X0.

(H3) The set

{v ∈ X : 〈DF(v), v〉 ≤ Φ0(jv;−jv)}

is bounded in X.

The next example shows that the coercivity on every finite dimensional subspace in hy-

pothesis (H2) is a condition weaker than the coercivity on the whole space.

Example 3.1. Let X be a separable Hilbert space. Fix an orthonormal basis {em}m≥1 of X.

Then every vector u ∈ X can be written uniquely as u = ∑
∞
m=1 xm(u)em, with xm(u) ∈ R, and

there holds ‖u‖2 = ∑
∞
m=1 xm(u)2. The functional J : X → R given by

J(u) =
∞

∑
m=1

1

m2
|xm(u)|

is well defined. It is coercive on each finite dimensional subspace X1 of X since corresponding

to X1 there is an integer m1 such that

J(u) =
m1

∑
m=1

1

m2
|xm(u)|, ∀u ∈ X1.

For un = nen we have ‖un‖ = n and J(un) =
1
n , so J is not coercive on X.

Now we state our existence result for problem (1.1).
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Theorem 3.2. Assume that conditions (H1)–(H3) hold. Then problem (1.1) admits at least one

generalized solution in the sense of Definition 1.1.

Proof. We construct a special minimizing sequence {vn}n≥1 ⊂ X of the functional I in (1.2).

The construction is done through a Galerkin basis {Xn}n≥1 of X, which exists because the

Banach space X is separable as known from assumption (H1).

It follows from (3.1) that for every n the functional I|Xn obtained restricting I to Xn is

bounded from below on Xn. Due to the coercivity of I on Xn as guaranteed by assumption

(H2), any minimizing sequence of I|Xn is bounded. Since I|Xn is also continuous and Xn is

finite dimensional (note requirement (i) in the definition of Galerkin basis in Section 2), there

exists vn ∈ Xn satisfying

I(vn) = min
v∈Xn

I(v). (3.2)

Then (3.2) implies

I(vn + t(v − vn)) ≥ I(vn), ∀t > 0, ∀v ∈ Xn,

which reads as

1

t
(F(vn + t(v − vn))− F(vn)) +

1

t
(Φ(jvn + t(jv − jvn))− Φ(jvn)) ≥ 0.

Passing to the limit as t → 0 and then setting v = 0 lead to

〈DF(vn), vn〉 ≤ Φ0(jvn;−jvn), ∀n. (3.3)

On account of hypothesis (H3), we can infer from (3.3) that the sequence {vn} is bounded

in X. In view of the reflexivity of X (see hypothesis (H1)), along a relabeled subsequence we

have

vn ⇀ u in X (3.4)

for some u ∈ X. We shall show that u is a generalized solution to (1.1).

From condition (ii) in the definition of Galerkin basis (see Section 2) and (3.2), for every n

we can write

I(vn) = min
v∈Xn

I(v) ≥ min
v∈Xn+1

I(v) = I(vn+1) ≥ inf
v∈X

I(v).

Therefore the sequence {I(vn)} is nonincreasing and bounded due to (3.1). Set

l := lim
n→∞

I(vn) = inf
n≥1

I(vn).

We claim that

lim
n→∞

I(vn) = inf
w∈X

I(w). (3.5)

In order to prove (3.5), we argue by contradiction supposing that

l > inf
v∈X

I(v).

So, there exists ŵ ∈ X such that I(ŵ) < l. By the continuity of I, there exists an open

neighborhood U of ŵ in X such that

I(w) < l, ∀w ∈ U. (3.6)
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Then through condition (iii) in the definition of Galerkin basis (see Section 2) we derive

U ∩

(

∞
⋃

n=1

Xn

)

6= ∅.

Hence there exists w̃ ∈ U ∩ Xñ for some ñ. Recalling that vñ is a minimizer of I|Xñ
(see (3.2)),

from (3.6) we get the contradiction

min
v∈Xñ

I(v) ≤ I(w̃) < l ≤ min
v∈Xñ

I(v).

The obtained contradiction ensures the validity of (3.5).

Now we construct another minimizing sequence {un} of I in (1.2) that will satisfy condi-

tions (S1)–(S3) in Definition 1.1. To this end we notice from (3.1) that we can apply Theo-

rem 2.1 (Ekeland’s Variational Principle, see [6, 7]) to the functional I in (1.2). Through this

result, using the minimizing sequence {vn}n≥1, we can find a sequence {un}n≥1 in X with the

properties (a), (b), (c) in Theorem 2.1. From property (a) and (3.5) it is clear that

lim
n→∞

I(un) = inf
v∈X

I(v), (3.7)

so {un}n≥1 is a minimizing sequence of the functional I. Consequently, from (3.7) it turns out

lim
n→∞

I(un) ≤ I(u), (3.8)

with u ∈ X in (3.4). By property (b) in Theorem 2.1 and (3.4) we infer that

un ⇀ u in X, (3.9)

thus condition (S1) in Definition 1.1 is verified.

Using the compactness of the map j : X → Y and the weak convergence in (3.9), we note

that (3.8) amounts to saying that

lim sup
n→∞

F(un) + Φ(j(u)) = lim sup
n→∞

(F(un) + Φ(j(un)))

≤ F(u) + Φ(j(u)).

This proves property (S2) in Definition 1.1.

Insert w = un + t(v − un) in assertion (c) of Theorem 2.1, with t > 0 and an arbitrary

v ∈ X, finding that

1

t
(F(un + t(v − un))− F(un)) +

1

t
(Φ(jun + t(jv − jun))− Φ(jun)) ≥ −

1

n
‖v − un‖. (3.10)

The Gâteaux differentiability of F yields

lim
t→0

1

t
(F(un + t(v − un))− F(un)) = 〈DF(un), v − un〉, (3.11)

while the definition of generalized directional derivative Φ0 of Φ (see Section 2) shows

lim sup
t→0

1

t
(Φ(jun + t(jv − jun))− Φ(jun)) ≤ Φ0(jun; jv − jun). (3.12)
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Letting t → 0 in (3.10), by making use of (3.11) and (3.12), we arrive at

〈DF(un), v − un〉+ Φ0(jun; jv − jun) ≥ −
1

n
‖v − un‖. (3.13)

Notice that (3.9) and the compactness of j : X → Y yield

jun → ju in Y. (3.14)

Then the upper semicontinuity of the generalized directional derivative Φ0 and the strong

convergence in (3.14) give

lim sup
n→∞

Φ0(jun; jv − jun) ≤ Φ0(ju; jv − ju). (3.15)

Letting n → ∞ in (3.13) and taking into account (3.15) as well as the boundedness of the

sequence {un}n≥1 we find that

lim inf
n→∞

〈DF(un), v − un〉

= lim inf
n→∞

(〈DF(un), v − un〉+ Φ0(jun; jv − jun)− Φ0(jun; jv − jun))

≥ lim inf
n→∞

(〈DF(un), v − un〉+ Φ0(jun; jv − jun)) + lim inf
n→∞

(−Φ0(jun; jv − jun))

≥ − lim sup
n→∞

Φ0(jun; jv − jun) ≥ −Φ0(ju; jv − ju), ∀v ∈ X.

Thus we are led to

lim inf
n→∞

〈DF(un), v − un〉+ Φ0(ju; jv − ju) ≥ 0, ∀v ∈ X,

which is just property (S3) in Definition 1.1. Therefore u ∈ X is a generalized solution to

problem (1.1). The proof is complete.

We illustrate the applicability of Theorem 3.2 with verifiable growth conditions.

Corollary 3.3. (i) Assume that the Gâteaux differentiable, continuous function F : X → R and the

locally Lipschitz function Φ : Y → R satisfy

F(v) ≥ a‖v‖r − a0 for all v ∈ X, (3.16)

with constants a > 0, a0 > 0, r > 0, and

Φ(w) ≥ −b‖w‖σ − b0 for all w ∈ Y, (3.17)

with constants b > 0, b0 > 0 and σ ∈ (0, r). Then condition (H2) holds true.

(ii) Assume that the Gâteaux differentiable, continuous function F : X → R, the linear compact

map j : X → Y and the locally Lipschitz function Φ : Y → R satisfy

〈DF(v), v〉 ≥ ã‖v‖r̃ − ã0 for all v ∈ X, (3.18)

with constants ã > 0, ã0 > 0, r̃ > 0, and

〈ξ, jv〉 ≥ −b̃‖jv‖σ̃ − b̃0 for all v ∈ X and ξ ∈ ∂Φ(jv), (3.19)

with constants b̃ > 0, b̃0 > 0 and σ̃ ∈ (0, r̃). Then condition (H3) is fulfilled.
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Proof. (i) From (3.16) and (3.17), we estimate the functional I in (1.2) from below

I(v) = F(v) + Φ(jv) ≥ a‖v‖r − a0 − b‖j‖σ‖v‖σ − b0

for all v ∈ X. Since r > σ, we infer that (3.1) holds true. Moreover, the preceding estimate

entails

I is coercive on X, i.e., I(u) → +∞ as ‖u‖ → ∞,

which ensures that condition (H2) is verified.

(ii) We are going to show that the set

X0 := {v ∈ X : 〈DF(v), v〉 ≤ Φ0(jv;−jv)}

is bounded in X. On the basis of (3.18) and (3.19), for every v ∈ X0 we obtain

ã‖v‖r̃ − ã0 ≤ 〈DF(v), v〉 ≤ Φ0(jv;−jv) = max{〈ξ,−jv〉 : ξ ∈ ∂Φ(jv)}

= −min{〈ξ, jv〉 : ξ ∈ ∂Φ(jv)} ≤ b̃‖jv‖σ̃ + b̃0 ≤ b̃‖j‖σ̃‖v‖σ̃ + b̃0.

Taking into account that σ̃ < r̃, the boundedness of the set X0 in X follows.

Remark 3.4. Conditions (3.16), (3.17), (3.18) and (3.19) are compatible offering a large range

of applicability for Theorem 3.2.

4 Local boundary value problems without ellipticity

In this section we focus on the boundary value inclusion with discontinuities (1.3), which

extends the Dirichlet equation (1.6). For 1 < q < p < +∞ and µ ∈ R, we shall show that

problem (1.3), so a fortiori (1.6), is a special case of problem (1.1) treated in Section 3. The

principal point is that the leading operator −∆p + µ∆q exhibits a competing (p, q)-Laplacian

if µ is positive, thus the ellipticity fails.

We assume to be fulfilled:

(H) f the function f : R → R is measurable and there exist constants c > 0 and σ ∈ (1, p)

such that

| f (t)| ≤ c(1 + |t|σ−1) for a.e. t ∈ R.

From assumption (H) f it follows that f ∈ L∞
loc(R), hence the functions f : R → R and

f : R → R introduced in (1.4) and (1.5), respectively, are well-defined.

The notion of generalized solution to problem (1.1) introduced in Definition 1.1 reads in

the case of (1.3) as follows: u ∈ W
1,p
0 (Ω) is a generalized solution to (1.3) if there exists a

sequence {un}n≥1 ⊂ W
1,p
0 (Ω) such that

(S′
1) un ⇀ u in W

1,p
0 (Ω);

(S′
2)

lim sup
n→∞

[

1

p
‖∇un‖

p
p −

µ

q
‖∇un‖

q
q

]

≤
1

p
‖∇u‖

p
p −

µ

q
‖∇u‖

q
q; (4.1)

(S′
3) lim inf

n→∞
〈−∆pun + µ∆qun, ϕ〉 ≥

∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx, ∀ϕ ∈ W

1,p
0 (Ω).



12 Z. Liu, R. Livrea, D. Motreanu and S. Zeng

Passing from (S3) in Definition 1.1 to formulation (S′
3) is based on the Aubin–Clarke Theorem

for an integral functional (see [4, Theorem 2.7.5]).

Remark 4.1. If f is continuous, then the interval [ f (u(x)), f (u(x))] reduces to the singleton

f (u(x)) and (S′
3) becomes

(S̃′
3) −∆pun + µ∆qun ⇀ f (u) in W−1,p′(Ω), i.e.,

lim
n→∞

〈−∆pun + µ∆qun, ϕ〉 =
∫

Ω
f (u(x))ϕ(x)dx, ∀ϕ ∈ W

1,p
0 (Ω).

Indeed, (S′
3) entails

lim inf
n→∞

〈−∆pun + µ∆qun, ϕ〉 ≥
∫

Ω
f (u(x))ϕ(x)dx, ∀ϕ ∈ W

1,p
0 (Ω).

Changing ϕ into −ϕ produces

lim sup
n→∞

〈−∆pun + µ∆qun, ϕ〉 ≤
∫

Ω
f (u(x))ϕ(x)dx, ∀ϕ ∈ W

1,p
0 (Ω),

whence the result.

If q = 2 < p < +∞, from (S′
1) and the linearity of the Laplacian ∆ we deduce that (S̃′

3)

requires −∆pun ⇀ −µ∆u + f (u) in W−1,p′(Ω).

Now we state our result on problems (1.3) and (1.6).

Theorem 4.2. Assume that condition (H) f holds. Then, for every µ ∈ R, problem (1.3) admits at least

one generalized solution. Every generalized solution is a weak solution provided µ ≤ 0. In particular,

problem (1.6) with f continuous possesses at least a generalized solution, which is a weak solution when

µ ≤ 0.

Proof. Our goal is to apply Theorem 3.2 by means of Corollary 3.3. To this end we choose

X = W
1,p
0 (Ω), which is a separable and reflexive Banach space. Further, we take Y = Lp(Ω)

and let j : W
1,p
0 (Ω) → Lp(Ω) be the inclusion map. By Rellich–Kondrachov Theorem j is

compact. Therefore assumption (H1) is satisfied.

With a fixed µ ∈ R, define the functional F : W
1,p
0 (Ω) → R as

F(v) =
1

p
‖∇v‖

p
p −

µ

q
‖∇v‖

q
q for all v ∈ W

1,p
0 (Ω).

It is clear that F : W
1,p
0 (Ω) → R is continuously differentiable, so Gâteaux differentiable and

continuous. By (2.3), Young’s inequality and p > q, we infer that

F(v) ≥
1

p
‖∇v‖

p
p −

|µ|k

q
‖∇v‖

q
p ≥

1

2p
‖∇v‖

p
p − a0 for all v ∈ W

1,p
0 (Ω),

with a constant a0 > 0. Hence condition (3.16) is verified with r = p.

Next we consider the function g : R → R in (2.1) corresponding to f : R → R in the

right-hand side of (1.3). Thanks to assumption (H) f , g : R → R is locally Lipschitz and in

turn the functional Φ : Lp(Ω) → R given by

Φ(v) = −
∫

Ω
g(v(x)) dx for all v ∈ Lp(Ω) (4.2)
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is locally Lipschitz. Precisely, Φ is Lipschitz continuous on the bounded subsets of Lσ(Ω) and

we use the continuous embedding Lp(Ω) →֒ Lσ(Ω) with σ < p.

Hypothesis (H) f implies

|Φ(v)| ≤
∫

Ω
|g(v(x))|dx ≤ c‖v‖1 +

c

σ
‖v‖σ

σ ≤ c|Ω|
1
σ′ ‖v‖σ +

c

σ
‖v‖σ

p

≤ c0(1 + ‖v‖σ
σ), ∀v ∈ Lp(Ω),

with a constant c0 > 0 and σ′ = σ/(σ − 1). We derive (3.17) due to the continuous embedding

Lp(Ω) →֒ Lσ(Ω). By Corollary 3.3 part (i), condition (H2) is fulfilled.

We note that

〈DF(v), v〉 = ‖∇v‖
p
p − µ‖∇v‖

q
q for all v ∈ X,

so condition (3.18) is satisfied with r̃ = p because p > q. Pick any v ∈ W
1,p
0 (Ω) and ξ ∈ ∂Φ(jv),

with Φ in (4.2). The Aubin–Clarke Theorem (see [4, Theorem 2.7.5]) and (2.2) guarantee that

ξ ∈ Lp′(Ω) and

− ξ(x) ∈ ∂g(v(x)) = [ f (v(x)), f (v(x))] for a.e. x ∈ Ω. (4.3)

Then by (4.2), (H) f , (4.3) (see also (1.4), (1.5)) and the continuous embedding Lp(Ω) →֒ Lσ(Ω),

we infer that

〈ξ, jv〉 =
∫

Ω
ξ(x)jv(x)dx ≥ −

∫

Ω
|ξ(x)||jv(x)|dx

≥ −
∫

Ω
c(1 + |jv(x)|σ−1)|jv(x)|dx

≥ −b̃‖jv‖σ − b̃0 for all v ∈ W
1,p
0 (Ω) and ξ ∈ ∂Φ(jv),

with constants b̃ > 0 and b̃0 > 0. This confirms the validity of (3.19) with σ̃ = σ. From

Corollary 3.3 part (ii), assumption (H3) holds true.

We are in a position to apply Theorem 3.2, which ensures the existence of a generalized

solution to problem (1.3) in the sense of Definition 1.1. Specifically, we find u ∈ W
1,p
0 (Ω) and

a sequence {un}n≥1 ⊂ W
1,p
0 (Ω) satisfying (S′

1), (S
′
2) and

lim inf
n→∞

〈−∆pun + µ∆qun, ϕ〉+ Φ0(u; ϕ) ≥ 0, ∀ϕ ∈ W
1,p
0 (Ω), (4.4)

with Φ in (4.2). By the Aubin–Clarke Theorem applied to Φ in (4.2), (H) f and (2.2), we find

Φ0(u; ϕ) ≤
∫

Ω
max[−∂g(u(x))ϕ(x)]dx

= −
∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx, ∀ϕ ∈ W

1,p
0 (Ω). (4.5)

At this point it is enough to insert (4.5) in (4.4) to get that (S′
3) holds, which proves the first

part of Theorem 4.2.

Suppose that u ∈ W
1,p
0 (Ω) is a generalized solution to problem (1.3) with µ ≤ 0. We note

from property (ii) in Definition 1.1 that

lim sup
n→∞

[

1

p
‖∇un‖

p
p −

µ

q
‖∇un‖

q
q

]

≤
1

p
‖∇u‖

p
p −

µ

q
‖∇u‖

q
q; .
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On the other hand, using the weak lower semicontinuity of the norm in conjunction with

µ ≤ 0 and (i) of Definition 1.1, it turns out

lim sup
n→∞

[

1

p
‖∇un‖

p
p −

µ

q
‖∇un‖

q
q

]

≥
1

p
lim sup

n→∞

‖∇un‖
p
p −

µ

q
lim inf

n→∞
‖∇un‖

p
p

≥
1

p
lim sup

n→∞

‖∇un‖
p
p −

µ

q
‖∇u‖

q
q.

By a simple comparison we are led to

lim sup
n→∞

‖∇un‖p ≤ ‖∇u‖p,

which implies the strong convergence un → u in W
1,p
0 (Ω) because the space W

1,p
0 (Ω) is uni-

formly convex (see, e.g., [2, Proposition 3.32]). On the basis of the strong convergence un → u,

we can utilize the continuity of −∆p : W
1,p
0 (Ω) → W−1,p′(Ω) and −∆q : W

1,q
0 (Ω) → W−1,q′(Ω)

with q < p, to pass to the limit in (S′
3) obtaining (2.4). This amounts to saying that u is a weak

solution of (1.3). Since (2.6) is a particular case of (2.4), the proof is complete.

5 Nonlocal boundary value problems without ellipticity

This section deals with the nonlocal boundary value problem with discontinuities (1.7) and

its particular case (1.8) under the conditions 0 < s < 1, 1 < q < p < +∞, sq < N and µ ∈ R,

thus allowing that the local operator −∆p and the nonlocal operator (−∆)s
q be competing.

The function f : R → R in the right-hand side of (1.7) and (1.8) is required to satisfy

condition (H) f in Section 4. Subsequently, we use the notation in Section 2, in particular

the associated functions f : R → R and f : R → R have the meaning in (1.4) and (1.5),

respectively.

We rely on the continuous embedding W
1,p
0 (Ω) →֒ W

s,q
0 (Ω). As in (2.7), there is a constant

C > 0 such that

‖u‖W
s,q
0 (Ω) ≤ C‖∇u‖p, ∀u ∈ W

1,p
0 (Ω) (5.1)

making the sum −∆pu + µ(−∆)s
qu well defined for u ∈ W

1,p
0 (Ω) in problems (1.7) and (1.8).

In accordance with Definition 1.1, by a generalized solution to nonlocal problem (1.7) we

mean any u ∈ W
1,p
0 (Ω) for which one can find a sequence {un}n≥1 ⊂ W

1,p
0 (Ω) satisfying

(S′′
1 ) un ⇀ u in W

1,p
0 (Ω);

(S′′
2 ) lim sup

n→∞

[

1

p
‖∇un‖

p
p +

µ

q
‖un‖

q

W
s,q
0 (Ω)

]

≤
1

p
‖∇u‖

p
p +

µ

q
‖u‖

q

W
s,q
0 (Ω)

; (5.2)

(S′′
3 ) lim inf

n→∞
〈−∆p(un) + µ(−∆)s

q(un), ϕ〉

≥
∫

Ω
min{ f (u(x))ϕ(x), f (u(x))ϕ(x)}dx, ∀ϕ ∈ W

1,p
0 (Ω).

Here (S′′
3 ) is obtained from (S3) in Definition 1.1 by applying the Aubin–Clarke Theorem (see

[4, Theorem 2.7.5]).

Our result on the nonlocal problems (1.7) and (1.8) is as follows.
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Theorem 5.1. Assume that condition (H) f holds. Then, for every µ ∈ R, problem (1.7) admits at

least one generalized solution, which is a weak solution provided µ ≥ 0. In particular, this is valid for

problem (1.8) with f continuous.

Proof. In order to address Theorem 3.2 and Corollary 3.3, we choose: X = W
1,p
0 (Ω), Y = Lp(Ω)

and j : W
1,p
0 (Ω) → Lp(Ω) be the inclusion map, which is compact. Consequently, assumption

(H1) is verified.

For a fixed µ ∈ R, we introduce the functional F : W
1,p
0 (Ω) → R by

F(v) =
1

p
‖∇u‖

p
p +

µ

q
‖u‖

q

W
s,q
0 (Ω)

for all v ∈ W
1,p
0 (Ω).

This is possible thanks to (5.1). Using (2.8), it is seen that F is continuously differentiable with

the differential

〈DF(u), v〉 = 〈−∆p(un) + µ(−∆)s
q(un), v〉, ∀u, v ∈ W

1,p
0 (Ω).

By (5.1), Young’s inequality and p > q, we find the estimate

F(v) ≥
1

p
‖∇v‖

p
p −

|µ|

q
‖v‖

q

W
s,q
0 (Ω)

≥
1

2p
‖∇v‖

p
p − a0 for all v ∈ W

1,p
0 (Ω),

with a constant a0 > 0. Condition (3.16) is thus verified with r = p.

Consider the function Φ : Lp(Ω) → R introduced in (4.2). Taking into account (H) f ,

condition (3.19) was already checked in the proof of Theorem 4.2. Gathering (3.16) and (3.19),

we are able to refer to Corollary 3.3, which yields that Theorem 3.2 can be applied. A reasoning

similar to the one in the proof of Theorem 4.2 enables us to conclude that there exists a

generalized solution to problem (1.7) and thus (1.8).

The last step in the proof is to show that any generalized solution of problems (1.7) and

(1.8) is a weak solution provided µ ≥ 0. We argue on the basis of assertion (S′′
2 ) in the

definition of generalized solution. Given a generalized solution u ∈ W
1,p
0 (Ω) of problem (1.7)

with µ ≥ 0, we compare inequality (5.2) in the definition of generalized solution and the

following inequality derived from weak lower semicontinuity of the norm (note (S′′
1 ))

lim sup
n→∞

[

1

p
‖∇un‖

p
p +

µ

q
‖un‖

q

W
s,q
0 (Ω)

]

≥
1

p
lim sup

n→∞

‖∇un‖
p
p +

µ

q
lim inf

n→∞
‖un‖

q

W
s,q
0 (Ω)

≥
1

p
lim sup

n→∞

‖∇un‖
p
p +

µ

q
‖u‖

q

W
s,q
0 (Ω)

to deduce that

lim sup
n→∞

‖∇un‖p ≤ ‖∇u‖p.

In view of the uniform convexity of the space W
1,p
0 (Ω), property (S′′

1 ) entitles the strong con-

vergence un → u in W
1,p
0 (Ω). From here and (S′′

3 ), through the continuity of −∆p : W
1,p
0 (Ω) →

W−1,p′(Ω) and (−∆)s
q : W

s,q
0 (Ω) → W−s,q′(Ω), we reach in the limit (2.9). Therefore u is a weak

solution to nonlocal problem (1.7). If f is continuous, we get (2.10), which completes the proof.

Remark 5.2. As established in [9], one always has W
s,p
0 (Ω) 6⊂ W

s,q
0 (Ω). For this reason we

cannot replace −∆p by the nonlocal operator (−∆)s
p in problems (1.7) and (1.8).
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Abstract. In this paper we introduce a new concept of antiprincipal solutions at infinity
for symplectic systems on time scales. This concept complements the earlier notion
of principal solutions at infinity for these systems by the second author and Šepitka
(2016). We derive main properties of antiprincipal solutions at infinity, including their
existence for all ranks in a given range and a construction from a certain minimal
antiprincipal solution at infinity. We apply our new theory of antiprincipal solutions at
infinity in the study of principal solutions, and in particular in the Reid construction of
the minimal principal solution at infinity. In this work we do not assume any normality
condition on the system, and we unify and extend to arbitrary time scales the theory
of antiprincipal solutions at infinity of linear Hamiltonian differential systems and the
theory of dominant solutions at infinity of symplectic difference systems.
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1 Introduction

In this paper we focus on symplectic dynamic system

x∆ = A(t)x + B(t)u; u∆ = C(t)x +D(t)u, t ∈ [a, ∞)T, (S)

where T is a time scale, that is, T is a nonempty closed subset of R. We assume that T is
unbounded from above and bounded from below with a := min T and [a, ∞)T := [a, ∞) ∩ T.
The coefficients A(t), B(t), C(t), D(t) of system (S) are real piecewise rd-continuous n × n
matrices on [a, ∞)T such that the 2n × 2n matrices

S(t) :=
(

A(t) B(t)
C(t) D(t)

)

, J :=
(

0 I
−I 0

)

BCorresponding author. Email: hilscher@math.muni.cz
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satisfy the identity

ST(t)J + J S(t) + µ(t) ST(t)J S(t) = 0, t ∈ [a, ∞)T,

where µ(t) is the graininess function of T. Solutions of (S) are piecewise rd-continuously
∆-differentiable functions, i.e., they are continuous on [a, ∞)T and their ∆-derivative is piece-
wise rd-continuous on [a, ∞)T. Basic theory of dynamic equations on time scales, includ-
ing the theory of symplectic dynamic systems, are covered for example in the monographs
[6, 7]. Advanced topics about symplectic systems on time scales, such as the theory of Ric-
cati matrix dynamic equations, quadratic functionals, oscillation theorems, Rayleigh princi-
ple and their applications e.g. in the optimal control theory can be found in the references
[1, 11, 13, 15–17, 28–30]. Our particular interest is connected with the theory of principal and
antiprincipal solutions of (S) at infinity, which was initiated by Došlý in [9] for system (S)
satisfying a certain eventual normality or controllability assumption. In 2016 the second au-
thor and Šepitka provided in [22] a generalization of the concept of the principal solution at
infinity to a possibly abnormal (or uncontrollable) system (S), see also [18–21].

In the present paper we continue in this investigation by introducing the corresponding
theory of antiprincipal solutions of (S) at infinity in the absence of the eventual normality or
controllability assumption (Definition 4.1). Note that these solutions are also called nonprinci-
pal solutions at infinity in the context of the reference [9], or dominant solutions at infinity in
the context of the references [2,10,24,25]. We present three sets of results about the antiprinci-
pal solutions of (S) at infinity. The first set of results is devoted to their basic properties, such
as the invariance with respect to the considered interval (Theorem 4.3), a characterization in
terms of the limit of the associated S-matrix (Theorem 4.4), and the invariance with respect to
a certain relation between conjoined bases (Theorems 4.6 and 4.7). The second set of results
is devoted to the existence of antiprincipal solutions of (S) at infinity (Theorem 5.3), which
requires to derive as main tools an important characterization of minimal conjoined bases
of (S) on a given interval (Theorem 5.1) and a characterization of the T-matrices associated
with conjoined bases of (S) (Theorem 5.2). The third set of results is devoted to applications
of antiprincipal solutions of (S) at infinity, in particular in the connection with the so-called
minimal antiprincipal solutions of (S) at infinity (Theorems 6.3, 6.4, and 6.6) and maximal
antiprincipal solutions of (S) at infinity (Theorems 6.5 and 6.6). These are, respectively, the
antiprincipal solutions of (S) at infinity with the smallest and the largest possible rank (see
Section 4).

The main condition on system (S) is the assumption of its nonoscillation, i.e., every con-
joined basis (X, U) of (S) is assumed to be nonoscillatory. This means that for every (X, U)

there exists a point α ∈ [a, ∞)T such that (X, U) has no focal points in the real interval (α, ∞),
which is according to [14, Definition 4.1] formulated as

Ker X(s) ⊆ Ker X(t) for all t, s ∈ [α, ∞)T with t ≤ s, (1.1)

X(t) [Xσ(t)]† B(t) ≥ 0 for all t ∈ [α, ∞)T. (1.2)

Condition (1.1) means that the kernel of X(t) is nonincreasing on the time scale interval
[α, ∞)T. Hence, the point α can be chosen large enough, so that the set Ker X(t) is constant on
[α, ∞)T. Noninvertible matrix functions, such as X(t) above or S(t) defined in (3.1) below, then
naturally occur in our theory. For this reason we utilize the Moore–Penrose pseudoinverse
matrices as the principal tool for their investigation (see Remark 2.1).

The theory of antiprincipal solutions at infinity for linear Hamiltonian differential systems
and the theory of dominant solutions at infinity for symplectic difference systems were devel-
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oped in [20, 23] and [10, 24], respectively. The present work is not a mere unification of those,
however. Working on arbitrary time scales we also provide a clarification of incomplete or
missing arguments in several results compared with the corresponding original continuous
time or discrete time statements (see the proofs of Proposition 3.18 and Theorems 3.4, 5.1,
and 6.5). This paper together with [22] can be regarded as a starting point for a unified Stur-
mian theory for Hamiltonian and symplectic dynamic systems on time scales, whose first
steps were taken in [5, 9] about twenty years ago. Recent progress in the continuous and dis-
crete Sturmian theory, where antiprincipal solutions (or dominant solutions) at infinity play
a fundamental role, is documented in the papers [25–27]. We strongly believe that future
development in this unified Sturmian theory will benefit from the results obtained in the
presented work (see also Section 7).

The paper is organized as follows. In Section 2 we briefly recall some results from matrix
analysis, which we directly use later in this paper. In Section 3 we provide basic results about
symplectic systems on time scales, which form the base for the definition of an antiprincipal
solution of (S) at infinity. In Section 4 we introduce the notion of an antiprincipal solution
at infinity for system (S) and include its main properties, which are connected to the relation
being contained for conjoined bases of (S). In Section 5 we derive the existence of antiprincipal
solutions at infinity for a nonoscillatory system (S), including the existence of antiprincipal
solutions at infinity with arbitrary given rank and pointing out the essential role played by
the minimal antiprincipal solutions of (S) at infinity. In Section 6 we focus on applications
of the presented theory of antiprincipal solutions at infinity, in particular in the theory of
principal solutions of (S) and in the Reid construction of the minimal principal solution of (S)
at infinity. Finally, in Section 7 we comment about the results of this paper in the context of
some open problems.

2 Notation and matrix analysis

In this section we introduce basic notation and recall some properties of the Moore–Penrose
pseudoinverse matrices, which we will use later. For a real matrix M we denote by Im M,
Ker M, rank M, MT, M−1, M† the image, kernel, rank (i.e., the dimension of the image),
transpose, inverse (if M is a square invertible matrix), and the Moore–Penrose pseudoinverse
of M (see its definition below), respectively. For a symmetric matrix M ∈ Rn×n we write
M ≥ 0 or M > 0 if M is positive semidefinite or positive definite, respectively. If M1 and
M2 are two real symmetric n × n matrices, then we write M1 ≤ M2 when M2 − M1 ≥ 0,
respectively we write M1 < M2 when M2 − M1 > 0. The identity matrix will be denoted by I.

Furthermore, let V and W be linear subspaces in Rn. We denote by V ⊕ W the direct sum
of the subspaces V and W, and by V⊥ the orthogonal complement of the subspace V in Rn.
By PV we denote the orthogonal projector onto the subspace V. Then the n × n matrix PV is
symmetric, idempotent, and positive semidefinite.

In our approach it is essential to use the properties of the Moore–Penrose pseudoinverse.
First we recall its definition via the following four properties, which will often be used in our
calculations. Let M be a real m × n matrix. A real n × m matrix M† satisfying the equalities

MM† M = M, M† MM† = M†, M† M = (M† M)T, MM† = (MM†)T (2.1)

is called the Moore–Penrose pseudoinverse of the matrix M. We will use the following
properties of the Moore–Penrose pseudoinverse, which can be found e.g. in [3, 4, 8] and [14,
Lemma 2.1]. These properties play an essential role in our theory.
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Remark 2.1. For any matrix M ∈ Rm×n there exists a unique matrix M† ∈ Rn×m satisfying
the identities in (2.1). Moreover, the following properties hold.

(i) (M†)T = (MT)†, (M†)† = M, and Im M† = Im MT, Ker M† = Ker MT.

(ii) The matrix MM† is the orthogonal projector onto Im M, and the matrix M† M is the
orthogonal projector onto Im MT.

(iii) Let {Mj}
∞

j=1 be a sequence of m × n matrices such that Mj → M for j → ∞. Then
the limit of M†

j for j → ∞ exists if and only if there exists an index j0 ∈ N such that
rank Mj = rank M for all j ≥ j0. In this case limj→∞ M†

j = M†.

(iv) Let M(t) be an m × n matrix function defined on the interval [a, ∞)T such that M(t) →
M for t → ∞. Then the limit of M†(t) for t → ∞ exists if and only if there exists
a point t0 ∈ [a, ∞)T such that rank M(t) = rank M for all t ∈ [t0, ∞)T. In this case
limt→∞ M†(t) = M†.

(v) Let M1 and M2 be symmetric and positive semidefinite matrices such that M1 ≤ M2.
Then inequality M†

2 ≤ M†
1 holds if and only if Im M1 = Im M2, or equivalently if and

only if rank M1 = rank M2.

(vi) If M is symmetric positive and semidefinite, then also M† is symmetric and positive
semidefinite. That is, if M ≥ 0, then also M† ≥ 0.

(vii) For any matrices M and N with suitable dimensions, the pseudoinverse of their product
is given by

(MN)† = (PIm MT N)† (M PIm N)
† = (M† MN)† (MNN†)†. (2.2)

(viii) Let M(t) be an m× n piecewise rd-continuously ∆-differentiable matrix function defined
on [a, ∞)T such that the kernel of M(t) is constant on [a, ∞)T. Then the matrix function
M†(t) is also piecewise rd-continuously ∆-differentiable on [a, ∞)T and

[M†(t)]∆ M(t) = −[M†(t)]σ M∆(t) = −[Mσ(t)]† M∆(t), t ∈ [a, ∞)T. (2.3)

The following proposition covers a special property of orthogonal projectors, which we
will use later, see the proof of Theorem 5.2 and [19, Theorem 9.2] for details.

Proposition 2.2. Let P∗, P, P̃ ∈ Rn×n be arbitrary orthogonal projectors satisfying

Im P∗ ⊆ Im P, Im P∗ ⊆ Im P̃, rank P = rank P̃.

Then there exists an invertible matrix E ∈ Rn×n such that EP∗ = P∗ and Im EP = Im P̃.

According to Remark 2.1(ii), the Moore–Penrose pseudoinverse can be conveniently used
for the construction of the orthogonal projectors onto the image of XT(t) or onto the image
of X(t) of a matrix function X : [a, ∞)T → Rn×n. In particular, the following two orthogonal
projectors play important role in our theory. Define

P(t) := PIm XT(t) = X†(t) X(t), R(t) := PIm X(t) = X(t) X†(t), t ∈ [a, ∞)T. (2.4)

Note that from the defining properties of Moore–Penrose pseudoinverse in (2.1) we get

P(t) X†(t) = X†(t), X†(t) R(t) = X†(t), t ∈ [a, ∞)T. (2.5)
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Remark 2.3. We will often work with matrix functions X : [a, ∞)T → Rn×n with constant
kernel on some interval [α, ∞)T. In this case the associated orthogonal projector P(t) de-
fined in (2.4) is constant on [α, ∞)T, since Rn = [Ker X(t)]⊥ ⊕ Ker X(t), where the subspace
[Ker X(t)]⊥ = Im XT(t) is constant on [α, ∞)T. In this case we denote by P the corresponding
constant orthogonal projector in (2.4), i.e., we define

P := P(t) for t ∈ [α, ∞)T, where Ker X(t) is constant. (2.6)

3 Results on symplectic systems on time scales

In this section we collect basic information about symplectic systems on time scales and their
conjoined bases. We split this section into three subsections, separating the introductory part
and two slightly more advanced (yet still preparatory) parts.

3.1 Basic preparatory results

In this subsection we recall the facts, which need to be understood for the definition of an an-
tiprincipal solution at infinity. The results in this subsection are not new, most of them can
be found in [22], where they were presented in a slightly different logical order and, in some
cases, with incomplete arguments. In particular, we present full details about the monotonicity
of the S-matrices for conjoined bases of (S), which yield a correct definition of the associated
T-matrix. The latter matrix is the cornerstone of our investigation of antiprincipal solutions of
(S) at infinity.

A solution (X, U) of (S) is a conjoined basis, if XT(t)U(t) is a symmetric matrix and
rank(XT(t), UT(t))T = n at some and hence at any t ∈ [α, ∞)T. For any two solutions (X, U)

and (X̄, Ū) of (S) their Wronskian matrix N := XT(t) Ū(t)− UT(t) X̄(t) is constant on [a, ∞)T.
Two conjoined bases (X, U) and (X̄, Ū) are called normalized, if their constant Wronskian ma-
trix N satisfies N = I. A conjoined basis (X, U) of (S) is called nonoscillatory, if there exists
α ∈ [a, ∞)T such that (X, U) has no focal points in the real interval (α, ∞), i.e., if conditions
(1.1) and (1.2) hold. We say that the system (S) is nonoscillatory if every conjoined basis of (S)
is nonoscillatory.

Let (X, U) be a conjoined basis of system (S). For simplicity we say that (X, U) has constant
kernel on an interval [α, ∞)T if the matrix X(t) has constant kernel on this interval. Similarly,
we say that (X, U) has rank r on [α, ∞)T, if the matrix X(t) has rank r on this interval. Note
that if the system (S) is nonoscillatory, then the kernel (and hence also the rank) of any of
its conjoined bases is eventually constant. If (X, U) is a conjoined basis of (S) with constant
kernel on some interval [α, ∞)T, then it is convenient to work with the so-called S-matrix
corresponding to (X, U) on [α, ∞)T. It is defined by

S(t) :=
∫ t

α
[Xσ(s)]† B(s) [X†(s)]T ∆s, t ∈ [α, ∞)T. (3.1)

Note that the definition of the matrix S(t) is correct, since according to Remark 2.1(viii) the
matrix function X† is piecewise rd-continuously ∆-differentiable on [α, ∞)T, so that X† is
continuous on [α, ∞)T and (Xσ)† = (X†)σ is rd-continuous on [α, ∞)T. This implies that the
function (Xσ)† B (X†)T is piecewise rd-continuous (hence ∆-integrable) on [α, ∞)T. Moreover,
according to [14, Lemma 3.1] the matrix

X(t) [Xσ(t)]† B(t) is symmetric on [α, ∞)T. (3.2)
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Proposition 3.1. Let (X, U) be a conjoined basis of the system (S) with constant kernel on [α, ∞)T.
Then the corresponding S-matrix given by (3.1) is symmetric.

Proof. Directly from the definition of S(t) and using the fact that P(t) is constant and hence
P(t) = P = Pσ(t) on [α, ∞)T, we get for t ∈ [α, ∞)T

S(t) =
∫ t

α
[Xσ(s)]† B(s) [X†(s)]T ∆s

(2.5)
=
∫ t

α
Pσ(s) [Xσ(s)]† B(s) [X†(s)]T ∆s

=
∫ t

α
P(s) [Xσ(s)]† B(s) [X†(s)]T ∆s

(2.4)
=
∫ t

α
X†(s) X(s) [Xσ(s)]† B(s) [X†(s)]T ∆s. (3.3)

The latter expression together with (3.2) proves the result.

Next we present a statement about the relation between Im S(t) and Im P.

Lemma 3.2. Let (X, U) be a conjoined basis of the system (S) with constant kernel on [α, ∞)T and let
the matrices P and S(t) be defined by (2.6) and (3.1). Then

Im S(t) ⊆ Im P for all t ∈ [α, ∞)T. (3.4)

Proof. Fix t ∈ [α, ∞)T and let u ∈ Im S(t). Then there exists v ∈ Rn such that S(t) v = u. From
(3.3) we get S(t) = PS(t). Then u = PS(t) v and hence u ∈ Im P.

Remark 3.3. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T. If we use
the symmetry of S(t) on [α, ∞)T and Remark 2.1(v), then the inclusion of the sets in (3.4) from
the previous lemma can be equivalently written as

PS(t) = S(t) = S(t) P or PS†(t) = S†(t) = S†(t) P, t ∈ [α, ∞)T. (3.5)

The next theorem is fundamental for the definition of an antiprincipal solution of (S) at
infinity and we display its proof with full details. In the theorem the so-called T-matrix
corresponding to the conjoined basis (X, U) is introduced.

Theorem 3.4. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T and no focal
points in (α, ∞) and let the matrix S(t) given by (3.1). Then the limit of S†(t) as t → ∞ exists.
Moreover, the matrix T defined by

T := lim
t→∞

S†(t) (3.6)

is symmetric, positive semidefinite, i.e., T ≥ 0, and there exists β ∈ [α, ∞)T such that

rank T ≤ rank S(t) ≤ rank X(t) for all t ∈ [β, ∞)T. (3.7)

Proof. First we show that the limit of S†(t) exists. According to Proposition 3.1, the matrix
S(t) is symmetric. The constant kernel of the conjoined basis (X, U) on [α, ∞)T guarantees
that P(t) = P is constant on [α, ∞)T. Since the conjoined basis (X, U) has no focal points in
(α, ∞), we get for t ∈ [α, ∞)T

S∆(t) = [Xσ(t)]† B(t) [XT(t)]†
(3.3)
= X†(t) X(t) [Xσ(t)]† B(t) [XT(t)]†

(1.2)
≥ 0.

This means that matrix S(t) is nondecreasing on [α, ∞)T, i.e.,

S(t1) ≤ S(t2) for all t1, t2 ∈ [α, ∞)T such that t1 < t2. (3.8)
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Since S(α) = 0, we get
S(t) ≥ 0, t ∈ [α, ∞)T. (3.9)

This implies that Im S(t) is eventually constant, i.e., there exists β ∈ [α, ∞)T such that

Im S(t1) = Im S(t2) for all t1, t2 ∈ [β, ∞)T. (3.10)

Now we use Remark 2.1(v), where we put M1 := S(t1) and M2 := S(t2) for t1, t2 ∈ [β, ∞)T.
The symmetry of S(t) on [α, ∞)T and conditions (3.8), (3.9) and (3.10) on [β, ∞)T imply that

S†(t2) ≤ S†(t1) for all t1, t2 ∈ [β, ∞)T such that t1 < t2, (3.11)

i.e., the matrix S†(t) is nonincreasing on [β, ∞)T. By (3.9) and Remark 2.1(vi) we then get

S†(t) ≥ 0 for all t ∈ [β, ∞)T. (3.12)

This implies that the limit of S†(t) for t → ∞ exists and the matrix T in (3.6) is correctly
defined. Finally, matrix T is symmetric and positive semidefinite as the limit of matrices with
the same properties. Condition (3.7) then follows from inclusion (3.4) and from the inclusion
Im T ⊆ Im S†(t) = Im S(t) on [β, ∞)T derived from (3.11) together with (3.12).

Remark 3.5. The proof of the Theorem 3.4 reveals some properties of the S-matrix correspond-
ing to a conjoined basis (X, U) of (S) with constant kernel on [α, ∞)T and no focal points in
(α, ∞). Namely,

(i) the matrix S(t) is nondecreasing on [α, ∞)T,

(ii) the set Im S(t) is nondecreasing on [α, ∞)T and eventually constant, i.e., there exists
β ∈ [α, ∞)T such that Im S(t) is constant on [β, ∞)T,

(iii) the set Ker S(t) = [Im S(t)]⊥ is nonincreasing on [α, ∞)T and eventually constant.

In the next part we define the order of abnormality of system (S) in the same way as
in [14, 22]. For any α ∈ [a, ∞)T denote by Λ[α, ∞)T the linear space of n-vector functions
u : [α, ∞)T → Rn such that B(t) u(t) = 0 and u∆ = D(t) u(t) on [α, ∞)T. The number
d[α, ∞)T := dim Λ[α, ∞)T is called the order of abnormality of system (S) on the interval [α, ∞)T.
The limit

d∞ := lim
t→∞

d[t, ∞)T (3.13)

is then called the maximal order of abnormality of the system (S). Note that this definition is
correct since limit in (3.13) exists and equals to max{d[t, ∞)T, t ∈ [α, ∞)T}. This can be seen
from the fact that a solution (x ≡ 0, u) of (S) on [α, ∞)T is also the solution of (S) on [β, ∞)T

for any β ∈ (α, ∞)T. Then Λ[α, ∞)T ⊆ Λ[β, ∞)T for α, β ∈ [a, ∞)T with α < β and hence,
the function d[t, ∞)T as a function of t is nondecreasing on [a, ∞)T. Then the integer values
d[t, ∞)T and d∞ satisfy

0 ≤ d[t, ∞)T ≤ d∞ ≤ n, t ∈ [a, ∞)T. (3.14)

In a similar way we define the order of abnormality d[α, t]T of system (S) on the interval [α, t]T.
Then, obviously, the relation d[α, ∞)T = limt→∞ d[α, t]T holds.

In addition, denote by Λ0[α, ∞)T the subspace of Rn of the initial values u(α) of the ele-
ments u ∈ Λ[α, ∞)T. Then dim Λ0[α, ∞)T = dim Λ[α, ∞)T = d[t, ∞)T. This auxiliary subspace
will be used e.g. in Proposition 3.18 when dealing with minimal conjoined bases of (S).
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3.2 Additional preparatory results

In this subsection we recall several results, which we will use in order to derive the properties
of antiprincipal solutions of (S) at infinity. We consider a conjoined basis (X, U) with constant
kernel on [α, ∞)T and no focal points in (α, ∞). We also consider the associated matrix S(t)
defined in (3.1), for which Im S(t) is constant on some interval [β, ∞)T with β ∈ [α, ∞)T, see
Remark 3.5. The following additional properties of the matrices S(t) and T are proven in
[22, Theorem 3.2].

Proposition 3.6. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T and let
matrices P, R(t), S(t) be defined in (2.6), (2.4), and (3.1). Then

(i) Im [U(t)(I − P)] = Ker R(t) and hence R(t)U(t) = R(t)U(t)P on [α, ∞)T,

(ii) Rσ(t)B(t) = B(t) and B(t) R(t) = B(t) on [α, ∞)T.

If in addition (X, U) has no focal points in (α, ∞) and if T is defined in (3.6), then

(iii) PT = T = TP and PT† = T† = T†P.

On the intervals [β, ∞)T, where the subspace Im S(t) is constant, we can define the associ-
ated constant orthogonal projector

PS∞ := PS(t), t ∈ [β, ∞)T, PS(t) := PIm S(t) = S(t) S†(t) = S†(t) S(t). (3.15)

From (3.5) we can see that the following inclusions

Im S(t) ⊆ Im PS∞ ⊆ Im P, t ∈ [β, ∞)T, (3.16)

hold. By using the symmetry of S(t), the inclusions in (3.16) can be written as

PS∞ S(t) = S(t) = S(t) PS∞, t ∈ [β, ∞)T, PPS∞ = PS∞ = PS∞P. (3.17)

Finally, using the definition of Moore–Penrose pseudoinverse in (2.1) and observing the limit

T = lim
t→∞

S†(t) = lim
t→∞

S†(t) S(t) S†(t) = PS∞

(

lim
t→∞

S†(t)
)

= PS∞ T,

we obtain the equalities

PS∞ T = T = TPS∞, i.e., Im T ⊆ Im PS∞. (3.18)

By the principal solution of (S) at the point α ∈ [a, ∞)T, denoted by (X̂[α], Û[α]), we mean
the conjoined basis of (S) satisfying the initial conditions X̂[α](α) = 0 and Û[α](α) = I. The
following important result provides an information about any conjoined basis of (S) through
the properties of the principal solution (X̂[α], Û[α]). It is proven as a part of [22, Proposition 3.9].

Lemma 3.7. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T and no focal
points in (α, ∞). Let the matrices P, R(t), S(t), PS∞ be defined by (2.6), (2.4), (3.1), (3.15). Then the
principal solution (X̂[α], Û[α]) satisfies for all t ∈ [α, ∞)T the following properties:

X̂[α](t) = X(t) S(t) XT(α), (3.19)

rank S(t) = rank X̂[α](t) = n − d[α, t]T, (3.20)

rank PS∞ = n − d[α, ∞)T, (3.21)

Λ0[α, ∞)T = Im [X†T(α) (I − PS∞)]⊕ Im [U(α) (I − P)], (3.22)

n − d[α, ∞)T ≤ rank X(t) ≤ n. (3.23)
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Remark 3.8. From Theorem 3.4 and (3.20) it follows that 0 ≤ rank T ≤ n− d∞ for the T-matrix
associated with an arbitrary conjoined basis (X, U) of (S) with constant kernel on [α, ∞)T and
no focal points in (α, ∞).

The next two results contain additional properties of the matrices S(t) and T, which are
proven in [22, Propositions 5.5 and 5.6] and, with a slightly different formulation, in [22,
Remark 5.7] (see also the proof of [10, Proposition 6.105] in the discrete case).

Proposition 3.9. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T and no focal
points in (α, ∞). Let S(t) and T be defined in (3.1) and (3.6). If d[α, ∞)T = d∞, then there exists
β ∈ [α, ∞)T such that

S†(t) ≥ T ≥ 0 and rank [S†(t)− T] = n − d∞ on [β, ∞)T. (3.24)

Proposition 3.10. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T and no focal
points in (α, ∞), where the point α ∈ [a, ∞)T is that d[α, ∞)T = d∞. Then

Im [PS∞ − S(β) S†(t)] = Im PS∞ = Im [PS∞ − S(β) S†(t)]T, β, t ∈ [α, ∞)T, t ≥ β, (3.25)

Im [PS∞ − S(t) T] = Im PS∞ = Im [PS∞ − S(t) T]T, t ∈ [α, ∞)T. (3.26)

The following relation is a useful tool for the construction of conjoined bases of (S) with
certain desired properties from a conjoined basis of (S), which the same properties already
has. This relation is studied in [22, Section 4] in more details. For this purpose we also recall
the concept of equivalent solutions (X1, U1) and (X2, U2) of (S) on some interval [α, ∞)T, which
is defined by the property X1(t) = X2(t) on [α, ∞)T.

Definition 3.11. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T and no
focal points in (α, ∞) and let the matrices P and PS∞ be defined by (2.6) and (3.15). Consider
an orthogonal projector P∗ satisfying

Im PS∞ ⊆ Im P∗ ⊆ Im P. (3.27)

We say that a conjoined basis (X∗, U∗) of (S) is contained in (X, U) on [α, ∞)T with respect to
P∗, or that (X, U) contains (X∗, U∗) on [α, ∞)T with respect to P∗, if the solutions (X∗, U∗) and
(XP∗, UP∗) are equivalent, that is, if X∗(t) = X(t) P∗ on [α, ∞)T.

It should be stressed that the relation in Definition 3.11 is between a conjoined basis (X, U)

of (S) with constant kernel on [α, ∞)T and no focal points in (α, ∞) and an arbitrary conjoined
basis (X∗, U∗). This means that if we say that a conjoined basis (X, U) contains a conjoined
basis (X∗, U∗) on [α, ∞)T, then we automatically suppose that (X, U) has constant kernel on
[α, ∞)T and no focal points in (α, ∞). The following proposition is proven in [22, Propo-
sition 4.2] and it shows that the conjoined basis (X∗, U∗) from Definition 3.11 inherits the
properties of (X, U) on the interval [α, ∞)T.

Proposition 3.12. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T and no focal
points in (α, ∞) and assume that a conjoined basis (X∗, U∗) of (S) is contained in (X, U) on [α, ∞)T

with respect to an orthogonal projector P∗ satisfying (3.27).

(i) Then (X∗, U∗) has also constant kernel on [α, ∞)T and no focal points in (α, ∞). Moreover, the
matrix P∗ is then the associated orthogonal projector defined in (2.6) for (X∗, U∗), i.e., P∗ =

PIm XT
∗ (t) = X†

∗(t) X∗(t) on [α, ∞)T.
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(ii) If S(t) and S∗(t) are the S-matrices corresponding to the conjoined bases (X, U) and (X∗, U∗)

on [α, ∞)T, then S(t) = S∗(t) on [α, ∞)T.

The next proposition from [22, Theorem 5.1] guarantees the existence of a conjoined basis
of (S) with constant kernel on [α, ∞)T and no focal points in (α, ∞), which has any given rank
between the numbers n − d∞ and n. We will use it later in the construction of antiprincipal
solutions of (S) with a desired rank. Note that the conjoined bases with the given rank r are
constructed by the relation being contained in Definition 3.11.

Proposition 3.13. Assume that there exists a conjoined basis of (S) with constant kernel on [α, ∞)T

and no focal points in (α, ∞). Then for any integer r between n − d∞ and n there exists a conjoined
basis (X, U) of (S), which has constant kernel on [α, ∞)T and no focal points in (α, ∞) too, such that
rank X(t) = r on [α, ∞)T.

For the investigation of all solutions (or conjoined bases) of (S) it is important to choose
a suitable fundamental matrix of system (S). When one conjoined basis (X, U) of (S) is given,
it turns out that it is possible to complete it to a fundamental matrix of (S) by a specific
conjoined basis (X̄, Ū). Some of the properties of this conjoined basis (X̄, Ū) were presented
in [22, Proposition 3.3 and Remarks 3.4 and 3.5]. We include some additional properties based
on the discrete time results in [25, Proposition 3.5] or in [10, Proposition 6.67].

Proposition 3.14. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T, let the
matrices P and S(t) defined by (2.6) and (3.1). Then there exists a conjoined basis (X̄, Ū) of (S) such
that (X, U) and (X̄, Ū) satisfy

(i) the Wronskian N := XT(t) Ū(t)− UT(t) X̄(t) ≡ I on [a, ∞)T, and

(ii) X†(α) X̄(α) = 0.

Moreover, such a conjoined basis (X̄, Ū) then satisfies

(iii) X†(t) X̄(t) P = S(t) for all t ∈ [α, ∞)T,

(iv) X̄(t) P = X(t) S(t) and Ū(t) P = U(t) S(t) + X†T(t) + U(t) (I − P) X̄T(t) X†T(t) for all
t ∈ [α, ∞)T (in particular X̄(α) P = 0), and the solution (X̄P, ŪP) of (S) is uniquely determined
by (X, U),

(v) Ker X̄(t) = Im [P − PS(t)] = Im P ∩ Ker S(t) for all t ∈ [α, ∞)T,

(vi) the function X̄(t) is uniquely determined by (X, U),

(vii) P̄(t) = I − P + PS(t) for all t ∈ [α, ∞)T, where P̄(t) := X̄†(t) X̄(t),

(viii) S†(t) = X̄†(t) X(t) PS(t) = X̄†(t) X(t) P̄(t) for all t ∈ [α, ∞)T,

(ix) Im X̄(α) = Im [I − R(α)] and Im X̄T(α) = Im(I − P),

(x) the matrix X(α)− X̄(α) is invertible with [X(α)− X̄(α)]−1 = X†(α)− X̄†(α),

(xi) X̄†(α) = −(I − P)UT(α).

If in addition the conjoined basis (X, U) has no focal points in (α, ∞), then

(xii) X(t) X̄T(t) ≥ 0 for all t ∈ [α, ∞)T.
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Proof. The properties (i)–(iii) and (vi) are shown in [22, Proposition 3.3], property (iv) is shown
in [22, Remark 3.5]. The remaining properties (v) and (vii)–(xii) can be proven analogously to
the discrete case, see the proof of [22, Proposition 6.67].

The following result from [22, Proposition 3.6] shows important properties of two con-
joined bases of (S), which are mutually representable in terms of symplectic fundamental
matrices involving the conjoined bases from Proposition 3.14.

Proposition 3.15. Let (X1, U1) and (X2, U2) be conjoined bases of (S) with constant kernel on [α, ∞)T

and no focal points in (α, ∞) and let P1 and P2 be the constant orthogonal projectors defined in (2.6)
through the functions X1 and X2, respectively. Let the conjoined basis (X2, U2) be expressed in terms
of (X1, U1) via the matrices M1 and N1, and let the conjoined basis (X1, U1) be expressed in terms of
(X2, U2) via the matrices M2 and N2, i.e.,

(

X2(t)
U2(t)

)

=

(

X1(t) X̄1(t)
U1(t) Ū1(t)

)(

M1

N1

)

,
(

X1(t)
U1(t)

)

=

(

X2(t) X̄2(t)
U2(t) Ū2(t)

)(

M2

N2

)

on [α, ∞)T, where (X̄1, Ū1) and (X̄2, Ū2) are the conjoined bases of (S) satisfying the properties in
Proposition 3.14 with respect to (X1, U1) and (X2, U2), respectively. If the equality Im X1(α) =

Im X2(α) is satisfied, then

(i) the matrices MT
1 N1 and MT

2 N2 are symmetric and N2 = −NT
1 ,

(ii) the matrices M1 and M2 are invertible and M2 = M−1
1 ,

(iii) the inclusions Im N1 ⊆ Im P1 and Im N2 ⊆ P2 hold.

Moreover, the matrices M1 and N1 do not depend on the choice of (X̄1, Ū1), and the matrices M2 and
N2 do not depend on the choice of (X̄2, Ū2).

The following properties are from [22, Remark 3.7] and they complement the results in
Proposition 3.15 about the representation matrices Mi and Ni (for i ∈ {1, 2}).

Remark 3.16. With the notation in Proposition 3.15, let us define the matrices

L1 := X†
1(α) X2(α), L2 := X†

2(α) X1(α).

Then following properties hold for i ∈ {1, 2}:

LiL3−i = Pi, L3−i = L†
i , Li = Pi Mi, Ni = Pi Ni, (3.28)

Pi is the projector onto Im Li, LT
i Ni = MT

i PiNi = MT
i Ni is symmetric, (3.29)

X3−i(t) = Xi(t) [Li + Si(t) Ni], Mi + Si(t) Ni is invertible, t ∈ [α, ∞)T, (3.30)

[Li + Si(t) Ni]
† = L3−i + S3−i(t) N3−i, Im [Li + Si(t) Ni] = Im Pi, t ∈ [α, ∞)T, (3.31)

S3−i(t) = [Li + Si(t) Ni]
†Si(t) L†T

i , t ∈ [α, ∞)T, (3.32)

where the matrix Si(t) is defined in (3.1) via the matrix Xi(t).
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3.3 Minimal conjoined bases and their properties

In this subsection we focus on minimal conjoined bases of (S). A conjoined basis (X, U)

with constant kernel on [α, ∞)T and no focal points in (α, ∞) is called minimal on [α, ∞)T, if
rank X(t) = n − d[α, ∞)T holds for all t ∈ [α, ∞)T. These special conjoined bases have the
smallest possible rank according to estimate (3.23). They are used in order to derive many
properties of other conjoined bases of (S). Note that if (X, U) is a minimal conjoined basis of
(S) on the interval [α, ∞)T, then necessarily the abnormality of (S) on [α, ∞)T is maximal, i.e.,
d[α, ∞)T = d∞ holds. This follows from (3.14) and from estimate (3.23), since the rank of X(t)
is constant on [α, ∞)T.

The following property will be used in the proof of Theorem 5.1 and it reveals a connec-
tion between orthogonal projectors P and PS∞ for a minimal conjoined basis (X, U) of (S).
The stated equality P = PS∞ actually characterizes the property of (X, U) being a minimal
conjoined basis of (S) on [α, ∞)T, as mentioned (without the proof) in [22, Remark 5.3.]. In
order to highlight its importance we state it separately and provide the details of its proof.

Lemma 3.17. Let (X, U) be a conjoined basis of (S) on [α, ∞)T with constant kernel on [α, ∞)T and
no focal points in (α, ∞), let the matrices P and PS∞ defined by (2.6) and (3.15), and assume that
d[α, ∞)T = d∞. Then (X, U) is a minimal conjoined basis of (S) on [α, ∞)T if and only if

P = PS∞. (3.33)

Proof. Let (X, U) be a minimal conjoined basis of (S) on [α, ∞)T, so that (X, U) has constant
kernel on [α, ∞)T and no focal points in (α, ∞). From Lemma 3.2 it follows that

Im S(t) ⊆ Im P = Im XT(t), t ∈ [α, ∞)T, (3.34)

and from Remark 3.5 we know that Im S(t) is nondecreasing on [α, ∞)T. Moreover, from
equation (3.21) in Lemma 3.7 we get rank PS∞ = n − d∞ = limt→∞ rank S(t). Now from the
fact that (X, U) is a minimal conjoined basis we get rank X(t) = n − d∞ = rank XT(t) on
[α, ∞)T, which together with the inclusion (3.34) shows that

Im S(t) = Im XT(t) for t ∈ (α, ∞)T. (3.35)

This proves (3.33), since P is the orthogonal projector onto Im XT(t) on [α, ∞)T and PS∞ is
the orthogonal projector onto Im S(t) on (α, ∞)T. Conversely, let (3.33) hold. Then by the
definition of P(t) in (2.4) and by Lemma 3.7 we have

rank X(t)
(2.4)
= rank P

(3.33)
= rank PS∞

(3.21)
= n − d∞, t ∈ [α, ∞)T.

This shows that (X, U) is a minimal conjoined basis on [α, ∞)T.

In the next result we present important properties of some special conjoined bases of (S)
and their S-matrices, which are based on formulas (3.20) and (3.22) in Lemma 3.7 and on
the properties of the Moore–Penrose pseudoinverse in Remark 2.1. These properties hold, in
particular, for minimal conjoined bases of (S). We note that the formulation is slightly more
general than in [22, Proposition 5.4], which we comment in the proof.
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Proposition 3.18. The following properties of conjoined bases of (S) hold.

(i) Let (X, U) be a conjoined basis of (S) with constant kernel on the interval [α, ∞)T and with
rank X(t) = n − d∞ on [α, ∞)T. Let P be the associated projector defined in (2.6). Then
d[α, ∞)T = d∞ and

Λ0[α, ∞)T = Im [U(α) (I − P)], Im X(α) =
(

Λ0[α, ∞)T

)⊥. (3.36)

Consequently, the initial subspace Im X(α) does not depend on the choice of the conjoined basis
(X, U) of (S) with constant kernel and minimal rank on [α, ∞)T.

(ii) Let (X1, U1) and (X2, U2) be two conjoined bases of (S) with constant kernel on the interval
[α, ∞)T and with rank X1(t) = n − d∞ = rank X2(t) on [α, ∞)T. Let S1(t) and S2(t) be the
associated matrices defined in (3.1). If β ∈ [α, ∞)T is a point such that

rank S1(t) = n − d[α, ∞)T = rank S2(t), t ∈ [β, ∞)T,

then for i ∈ {1, 2} we have

S†
3−i(t) = LT

i S†
i (t) Li + LT

i Ni, t ∈ [β, ∞)T, (3.37)

where the matrices Li and Ni are from Proposition 3.15 and Remark 3.16.

Proof. These results are proven in [22, Proposition 5.4], where it is in addition assumed that
the conjoined basis (X, U) in part (i) has no focal points in the interval (α, ∞) (so that it is
a minimal conjoined basis on [α, ∞)T) and that the conjoined bases (X1, U1) and (X2, U2) in
part (ii) have no focal points in the interval (α, ∞) (so that they are minimal conjoined bases
on [α, ∞)T). We emphasize that this additional assumption on no focal points of (X, U) or
(X1, U1), (X2, U2) in the interval (α, ∞) is not needed for deriving the statements in (3.36) and
(3.37), since the proofs actually follow only the continuous time case in [18, Theorems 5.15
and 5.17].

The last result of this subsection shows that for all minimal conjoined bases (X, U) of (S)
on [α, ∞)T the first component of the associated conjoined basis (X̄, Ū) (that is, the matrix X̄)
is the same up to a right constant nonsingular multiple.

Lemma 3.19. Let (X1, U1) and (X2, U2) be minimal conjoined bases of (S) on [α, ∞)T and let (X̄1, Ū1)

and (X̄2, Ū2) be their associated conjoined bases from Proposition 3.14. Then there exists a constant
invertible matrix K such that

X̄2(t) = X̄1(t)K, t ∈ [α, ∞)T.

Proof. The proof is analogous to the proof of the continuous case in [23, Lemma 1] or to the
proof of the discrete case in [24, Lemma 7.9] or [10, Lemma 6.100]. The details are therefore
omitted.

4 Antiprincipal solutions at infinity

In this section we introduce the main notion of this paper, i.e., an antiprincipal solution of
(S) at infinity. This definition is based on the basic results about the matrices S(t) and T in
Subsection 3.1. We then derive several properties of antiprincipal solutions at infinity with the
aid of Subsections 3.2 and 3.3. The results in this section are new in the time scales setting
and they extend and unify their corresponding continuous and discrete time counterparts, as
we emphasize by providing particular references with each statement.
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Definition 4.1. A conjoined basis (X, U) of (S) is said to be an antiprincipal solution at infinity
with respect to the interval [α, ∞)T if

(i) the order of abnormality of (S) on the interval [α, ∞)T is maximal, i.e.,

d[α, ∞)T = d∞, (4.1)

(ii) the conjoined basis (X, U) has constant kernel on [α, ∞)T and no focal points in (α, ∞),

(iii) the matrix T defined in (3.6) corresponding to (X, U) satisfies rank T = n − d∞.

Remark 4.2. By Theorem 3.4 we know that the limit of S†(t) exists for all conjoined bases
(X, U) of (S) with constant kernel on [α, ∞)T and no focal points in (α, ∞). Therefore the
definition of an antiprincipal solution of (S) at infinity using the corresponding T-matrix is
possible. Note that so far we do not know anything about the existence of limit S(t) itself. In
addition, according to Remark 3.8 the rank of the matrix T of an antiprincipal solution of (S)
at infinity is maximal possible.

Let (X, U) be an antiprincipal solution of (S) at infinity with respect to the interval [α, ∞)T.
By (3.21) and (3.23) together with property (4.1) from the above definition we obtain that
n − d∞ ≤ rank X(t) ≤ n for all t ∈ [α, ∞)T. Denote by r the rank of (X, U) near infinity, i.e.,
r := rank X(t) for t ∈ [α, ∞)T. If r = n − d∞, then (X, U) is called a minimal antiprincipal
solution at infinity, which we denote by (Xmin, Umin). If r = n, then (X, U) is called a maximal
antiprincipal solution at infinity, which we denote by (Xmax, Umax). In this case the matrix
Xmax(t) is invertible for all t ∈ [α, ∞)T. Such minimal and maximal antiprincipal solutions of
(S) at infinity will be considered e.g. in Theorems 5.3, 6.4 and 6.5 or in Remark 6.7.

The next theorem shows that the definition of an antiprincipal solution does not depend
on the choice of point α ∈ [a, ∞)T determining the interval [α, ∞)T, on which we impose
the conditions (i) and (ii) in Definition 4.1. For this reason the term “with respect to interval
[α, ∞)T” will be dropped in the terminology of antiprincipal solutions of (S) at infinity in some
situations. This statement is a unification of [20, Theorem 5.5] in the continuous case and of
[24, Proposition 4.4] in the discrete case, see also [10, Proposition 6.125].

Theorem 4.3. Every antiprincipal solution of (S) at infinity with respect to the interval [α, ∞)T is
also an antiprincipal solution of (S) at infinity with respect to the interval [β, ∞)T for all β ∈ (α, ∞)T.

Proof. Let (X, U) be an antiprincipal solution of (S) at infinity with respect to the interval
[α, ∞)T and let β ∈ (α, ∞)T be a given point. Since d[t, ∞)T is a nondecreasing function in the
argument t, we get d[β, ∞)T ≥ d[α, ∞)T = d∞. This implies d[β, ∞)T = d∞. The property

(X, U) has constant kernel on [β, ∞)T and no focal point in (β, ∞) (4.2)

holds trivially since β > α. In order to prove that (X, U) is an antiprincipal solution of (S) at
infinity with respect to the interval [β, ∞)T, we need to show that the associated matrices

Sβ(t) :=
∫ t

β
[Xσ(s)]† B(s) [X†(s)]T ∆s, t ∈ [β, ∞)T, Tβ := lim

t→∞

S†
β(t),

satisfy the relation rank Tβ = n − d∞. By (4.2) and Theorem 3.4 we know that matrix Tβ,
being defined as the above limit, exists. We will show that Im Tβ = Im T, which will imply
the desired equality for the rank of Tβ. Note that, with the aid of S(t) defined in (3.1), the
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matrix Sβ(t) can be easily expressed as Sβ(t) = S(t)− S(β) for all t ∈ [β, ∞)T. Using (3.17)
and S(β) = S(β) PS∞ = S(β) S†(t) S(t) on [β, ∞)T we then obtain

Sβ(t) = S(t)− S(β) = PS∞ S(t)− S(β) S†(t) S(t) = [PS∞ − S(β) S†(t)] S(t), t ∈ [β, ∞)T.

Then by Remark 2.1(vii) and using (3.25) we obtain

S†
β(t)

(2.2)
=
(

PS∞ S(t)
)† (

[PS∞ − S(β) S†(t)] PS∞

)†
= S†(t) [PS∞ − S(β) S†(t)]† (4.3)

for all t ∈ [β, ∞)T, see also the proof of [22, Proposition 6.4]. Moreover, by (3.25) and (3.26) in
Proposition 3.10 together with (3.21) we know that

rank [PS∞ − S(β) S†(t)] = n − d∞ = rank [PS∞ − S(β) T], t ∈ [β, ∞)T.

Then by Remark 2.1(iv) the limit of the pseudoinverse [PS∞ − S(β) S†(t)]† for t → ∞ exists
and is equal to [PS∞ − S(β) T]†. Therefore, we obtain that

Tβ = lim
t→∞

S†
β(t)

(4.3)
= lim

t→∞

S†(t) [PS∞ − S(β) S†(t)]† = T [PS∞ − S(β) T]†. (4.4)

Equality (4.4) implies that Im Tβ ⊆ Im T. On the other hand, by (3.26) in Proposition 3.10 and
Remark 2.1(ii) we can express the matrix T as

T
(3.18)
= TPS∞

(3.26)
= T [PS∞ − S(t) T]† [PS∞ − S(t) T]

(4.4)
= Tβ [PS∞ − S(t) T]

for all t ∈ [β, ∞)T. This yields that Im T ⊆ Im Tβ, and hence we proved Im T = Im Tβ.
Consequently, rank Tβ = rank T = n − d∞, which completes the proof.

In the next theorem we show that an antiprincipal solution of (S) at infinity is character-
ized by the property of the existence of the limit of S(t) for t → ∞. It is a unification of
[24, Theorem 4.3] or [10, Theorem 6.124] in the discrete case and of [20, Theorem 5.3 and
Remark 5.4] in the continuous case. We will see important applications of this result in the
proofs of Proposition 4.5 and of Theorems 6.4 and 6.5.

Theorem 4.4. Let (X, U) be a conjoined basis of (S) with constant kernel on [α, ∞)T and no focal
points in (α, ∞), let the matrices S(t) and T be given by (3.1) and (3.6), and assume that d[α, ∞)T =

d∞. Then the following statements are equivalent.

(i) The conjoined basis (X, U) is an antiprincipal solution of (S) at ∞.

(ii) The limit of S(t) for t → ∞ exists.

(iii) The condition limt→∞ S(t) = T† holds.

Proof. We divide the proof into three steps. First we show that (i)⇒ (ii). Let (X, U) be an an-
tiprincipal solution at infinity. By Theorem 3.4 we know that the limit of S†(t) for t → ∞ exists
and is equal to T. In addition,

rank S(t)
(3.20)
= rank X̂[α](t)

(3.20)
= n − d[α, ∞) = n − d∞ = rank T, (4.5)

holds for all sufficiently large t ∈ [α, ∞)T by Lemma 3.7 and by the assumption that (X, U)

is an antiprincipal solution of (S) at infinity. Therefore, by Remark 2.1(iv) with M(t) := S†(t)
and M := T we conclude that the limit of [S†(t)]† = S(t) for t → ∞ exists.
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Next we prove the implication (ii)⇒ (iii). Suppose that the limit of S(t) for t → ∞ exists
and let us denote this limit by S∞. From Theorem 3.4 we know that limit T of S†(t) for t → ∞

also exists. Moreover, by Remark 2.1(i) and (4.5) we know that

rank S†(t) = rank S(t)
(4.5)
= n − d∞ = rank T

for all sufficiently large t ∈ [α, ∞)T. Now by using Remark 2.1(iv) in which we put M(t) :=
S†(t) and M := T we conclude that the limit of S(t) for t → ∞ exists with

S∞ = lim
t→∞

S(t) = lim
t→∞

[S†(t)]† = T†.

Finally, we prove the implication (iii)⇒ (i). Suppose that limt→∞ S(t) = T†. Since by Theo-
rem 3.4 we also know that limt→∞ S†(t) = T, it follows from Remark 2.1(iv) that there exists
β ∈ [α, ∞)T such that rank S(t) = rank T† holds for all t ∈ [β, ∞)T. Then from (3.20) in
Lemma 3.7 together with the assumptions of the theorem we get rank S(t) = rank S†(t) =

n − d∞ for all t ∈ [β, ∞)T. Therefore, considering the symmetry of T, we get rank T =

rank T† = n − d∞, which proves that (X, U) is an antiprincipal solution of (S) at infinity.

Our next result shows that the property of being an antiprincipal solution of (S) at infinity
is preserved under the multiplication by a constant nonsingular matrix.

Proposition 4.5. Let (X, U) be an antiprincipal solution of (S) at infinity with respect to the interval
[α, ∞)T. Then for every invertible n × n matrix M the solution (XM, UM) of (S) is also an antiprin-
cipal solution at infinity with respect to the interval [α, ∞)T and the rank of (XM, UM) is the same as
the rank of (X, U).

Proof. The solution (X̃, Ũ) := (XM, UM) is obviously a conjoined basis of (S) with the same
rank as (X, U). Since Ker X(t) is constant on [α, ∞)T, then also Ker X̃(t) = Ker [X(t) M] is
constant on [α, ∞)T. Moreover, by (2.2) in Remark 2.1(vii) we have

X̃†(t) = [X(t) M]† = (PM)†X†(t), t ∈ [α, ∞)T. (4.6)

This yields that for t ∈ [α, ∞)T we have

X̃(t) [X̃σ(t)]†B(t)
(4.6)
= X(t)M(PM)†[Xσ(t)]†B(t) = X(t)PM(PM)†PMM−1[Xσ(t)]†B(t)

= X(t)PMM−1[Xσ(t)]†B(t) = X(t) [Xσ(t)]†B(t) ≥ 0,

showing that the conjoined basis (X̃, Ũ) has no focal points in (α, ∞). For the matrix S̃(t) in
(3.1) associated with (X̃, Ũ) we have

S̃(t) :=
∫ t

α
[X̃σ(s)]† B(s) [X̃†(s)]T ∆s

(4.6)
= (PM)† S(t) [(PM)†]T, t ∈ [α, ∞)T. (4.7)

Since the limit of S(t) as t → ∞ exists and is equal to T† by Theorem 4.4(iii), then the limit

lim
t→∞

S̃(t)
(4.7)
= (PM)† T† [(PM)†]T

also exists. Therefore, by Theorem 4.4(ii) again (now applied to (X, U) := (X̃, Ũ)) the con-
joined basis (X̃, Ũ) is an antiprincipal solution of (S) at infinity.
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The following two theorems show that the relation “to be contained in” or “to contain” (in
Definition 3.11) preserves the property of being an antiprincipal solution of (S) at infinity. It
is a unification of [20, Theorem 5.7] in the continuous case and of [24, Proposition 4.6] in the
discrete case, see also [10, Proposition 6.127].

Theorem 4.6. Let (X, U) be an antiprincipal solution of (S) at infinity with respect to the interval
[α, ∞)T. Then every conjoined basis, which is contained in (X, U) on [α, ∞)T, is also an antiprincipal
solution of (S) at infinity with respect to the interval [α, ∞)T.

Proof. From the assumptions of the theorem we directly get d[α, ∞)T = d∞. Let (X∗, U∗)

be a conjoined basis of (S), which is contained in (X, U) on [α, ∞)T. The conjoined basis
(X∗, U∗) has constant kernel on [α, ∞)T and no focal points in (α, ∞) due to Proposition 3.12(i),
because (X, U) possess the same properties. Finally according to Proposition 3.12(ii) we get
that the S-matrices corresponding to (X, U) and (X∗, U∗) coincide, i.e., S(t) = S∗(t) on [α, ∞)T.
Therefore the limit T∗ := limt→∞ S†

∗(t) exists and equals to T. This yields that rank T∗ =

rank T = n − d∞, which proves that (X∗, U∗) is also an antiprincipal solution of (S) at infinity
with respect to the interval [α, ∞)T.

Theorem 4.7. Let (X, U) be an antiprincipal solution of (S) at infinity with respect to the interval
[α, ∞)T. Then every conjoined basis with constant kernel on [α, ∞)T and no focal points in (α, ∞),
which contains (X, U) on [α, ∞)T, is also an antiprincipal solution of (S) at infinity with respect to
the interval [α, ∞)T.

Proof. From the assumptions of the theorem we directly get d[α, ∞)T = d∞. Denote by (X∗, U∗)

the conjoined basis with constant kernel on [α, ∞)T and no focal points in (α, ∞), which
contains (X, U) on the interval [α, ∞)T. Then by Proposition 3.12(ii), applied to (X, U) :=
(X∗, U∗) and (X∗, U∗) := (X, U), we obtain the equality S∗(t) = S(t) on [α, ∞)T. This implies
that for the T-matrices corresponding to (X∗, U∗) and (X, U) the equality T∗ = T also holds.
Therefore, rank T∗ = rank T = n − d∞ holds and (X∗, U∗) is an antiprincipal solution of (S) at
infinity with respect to [α, ∞)T.

5 Existence of antiprincipal solutions at infinity

In this section we prove the existence of antiprincipal solutions at infinity for a nonoscilla-
tory system (S). We show the existence of such solutions (Theorem 5.3) for any rank in the
admissible range given by estimate (3.23) in Lemma 3.7. As a main tool for this construction
we derive (Theorem 5.2, through Theorem 5.1) a characterization of the T-matrices associated
with conjoined bases of a nonoscillatory system (S).

Our first result describes all minimal conjoined bases of (S) on some interval [α, ∞)T. It is
a generalization to arbitrary time scales of [20, Theorem 4.4 and Remark 4.5] for the continuous
case and of [24, Theorem 3.4] for the discrete case, see also [10, Theorem 6.106].

Theorem 5.1. Let (X, U) be a minimal conjoined basis of (S) on [α, ∞)T, let PS∞ and T defined by
(3.15) and (3.6), and assume that d[α, ∞)T = d∞. Then a solution (X̃, Ũ) is a minimal conjoined basis
on [α, ∞)T if and only if there exist matrices M, N ∈ Rn×n such that

X̃(α) = X(α) M, Ũ(α) = U(α) M + X†T(α) N, (5.1)

M is nonsingular, MT N = NT M, Im N ⊆ Im PS∞, (5.2)

NM−1 + T ≥ 0. (5.3)
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In this case the matrix T̃ in (3.6) corresponding to (X̃, Ũ) satisfies

T̃ = MTTM + MT N, rank T̃ = rank(NM−1 + T). (5.4)

Proof. Let (X, U) be the conjoined basis of (S) from the assumptions of the theorem, that is,
(X, U) has constant kernel on [α, ∞)T, no focal points in (α, ∞), and rank X(t) = n − d∞ on
[α, ∞)T. Assume first that (X̃, Ũ) is also a minimal conjoined basis of (S) on [α, ∞)T. Then
rank X̃(t) = n − d∞ = rank X(t) and from (3.36) in Proposition 3.18(i) we obtain

Im X̃(α) =
(

Λ0[α, ∞
)

T
)⊥ = Im X(α). (5.5)

Applying now Proposition 3.15, where we put (X, U) = (X1, U1) and (X̃, Ũ) = (X2, U2) on
[α, ∞)T, we get that there exist matrices M, N ∈ Rn×n such that

• M is nonsingular by Proposition 3.15(ii),

• MT N = NT M by Proposition 3.15(i),

• Im N ⊆ Im P = Im PS∞ by Proposition 3.15(iii) and Lemma 3.17.

This which proves the properties in (5.2). Moreover, the mutual representation between (X̃, Ũ)

and (X, U), which we use here, is provided by the relation

(

X̃(t)
Ũ(t)

)

=

(

X(t) X̄(t)
U(t) Ū(t)

)(

M
N

)

, t ∈ [α, ∞)T, (5.6)

where (X̄, Ū) is the conjoined basis chosen according to Proposition 3.14. In particular,

X†(α) X̄(α) = 0 (5.7)

holds. Let R(t) and R̃(t) be the orthogonal projectors defined in (2.4), which are associated
respectively with (X, U) and (X̃, Ũ). Then from (5.5) we get R(α) = R̃(α). Now from (5.6)
for t = α we get that X̃(α) = X(α) M + X̄(α) N. Multiplying this equality by X†(α) from
the left, using (5.7), and R̃(α) X̃(α) = X̃(α) derived from the definition of the Moore–Penrose
pseudoinverse, we get that X̃(α) = X(α) M. Similarly, condition (5.6) for t = α gives that
Ũ(α) = U(α) M + Ū(α) N. Now using the information that (X, U) and (X̄, Ū) are normalized
we get Ū(α) XT(α)− U(α) X̄T(α) = I. Multiplying this equality by X†T(t) N from the right,
and using PN = PS∞N = N derived from the property Im N ⊆ Im P = Im PS∞, we get
Ū(α) N = X†T(α) N. This together with the previous part implies that (5.1) holds. Let T and
T̃ be, respectively, the matrices defined in (3.6) corresponding to the minimal conjoined bases
(X, U) and (X̃, Ũ) on [α, ∞)T. Then from Proposition 3.18(ii) and Remark 3.16 (where we put
(X1, U1) := (X, U), T1 := T and (X2, U2) := (X̃, Ũ), T2 := T̃ and consider t → ∞) we obtain

T̃ = LT
1 TL1 + LT

1 N
(3.28)
= MTP TPM + MT N

(3.29)
= MTTM + MT N, (5.8)

This together with the existence of M−1 implies that

NM−1 + T = MT−1T̃M−1 ≥ 0, (5.9)

since T̃ ≥ 0 by Theorem 3.4. Therefore, condition (5.3) holds. From inequality (5.9) we then
conclude that rank T̃ = rank NM−1 + T, which together with (5.8) shows (5.4).
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Conversely, assume that (X̃, Ũ) is a solution of (S) and let M, N ∈ Rn×n be such that (5.1),
(5.2), and (5.3) hold. First we will show that (X̃, Ũ) is a conjoined basis of (S), i.e., we will
show that the solution (X̃, Ũ) satisfies the condition on the symmetry of X̃T(t) Ũ(t) and the
condition on rank(X̃T(t), ŨT(t))T = n at some point t ∈ [α, ∞)T. The symmetry of X̃T(t) Ũ(t)
can be seen by using (5.1), by the symmetry of MT N and XT(t)U(t) as a property of the
conjoined basis (X, U), and by the relation

MTX†(t) X(t) N = MTPN
(5.2)
= MT N, t ∈ [a, ∞)T. (5.10)

More precisely, we have

X̃T(α) Ũ(α)
(5.1)
= MTXT(α) [U(α) M + X†T(α) N]

(5.10)
= MTXT(α)U(α) M + MT N,

where the last matrix is symmetric for all t ∈ [a, ∞)T. The condition on the rank of the
matrix (X̃T(t), ŨT(t))T is also satisfied, since it follows again from (5.1) together with the fact
that rank(XT(t), UT(t))T = n on [α, ∞)T, and from the fact that the subspaces Im X(α) and
Im X†T(α) are equal. Thus, (X̃, Ũ) is a conjoined basis of (S). Next we will show that (X̃, Ũ) is
a minimal conjoined basis of (S) on [α, ∞)T. This means to prove, according to the definition,
that (X̃, Ũ) has constant kernel on [α, ∞)T, the rank of X̃(t) is equal to n − d∞ on [α, ∞)T, and
(X̃, Ũ) has no focal points in (α, ∞). Let S(t) be the matrix in (3.1) corresponding to (X, U) on
[α, ∞)T and let (X̃, Ũ) be expressed in terms of (X, U) as in Proposition 3.15 (where we put
(X1, U1) = (X, U) and (X2, U2) = (X̃, Ũ)). More precisely, (X̃, Ũ) is represented as

(

X̃(t)
Ũ(t)

)

= Φ(t)
(

M
N

)

, Φ(t) :=
(

X(t) X̄(t)
U(t) Ū(t)

)

, t ∈ [α, ∞)T, (5.11)

that is, (X̄1, Ū1) := (X̄, Ū), M1 := M, and N1 := N in Proposition 3.15. We will show that
M = M and N = N by using the fact that the matrix Φ(t) is symplectic as a fundamental
matrix of (S). Thus, we can express its inverse as Φ

−1(t) = −J Φ
T(t)J and evaluate it in

(5.11) at t = α to get

(

M
N

)

= Φ
−1(α)

(

X̃(α)

Ũ(α)

)

=

(

ŪT(α) −X̄T(α)

−UT(α) XT(α)

)

(

X̃(α)

Ũ(α)

)

. (5.12)

Using the fact that Wronskian of (X, U) and (X̃, Ũ) equals to the identity matrix and using
that (X̃, Ũ) now satisfies condition (5.1), equality (5.12) implies that

M = ŪT(α) X(α) M − X̄T(α) [U(α) M + X†T(α) N]

= [ŪT(α) X(α)− X̄T(α)U(α)] M − X̄T(α) X†T(α) N = M − [X†(α) X̄(α)]T N
(5.7)
= M.

Considering now the symmetry of XT(t)U(t) and the third condition in assumption (5.2) in
the form PS∞ N = N we get PN = PS∞ N = N, since (X, U) is a minimal conjoined basis of
(S) on [α, ∞)T. Therefore, from (5.12) we get

N = −UT(α) X(α) M + XT(α) [U(α) M + X†T(α) N]

= [XT(α)U(α)− UT(α) X(α)] M + XT(α) X†T(α) N = X†(α) X(α) N = PN = N.

From Remark 3.16 and equation (3.30) we then obtain

X̃(t) = X(t) [PS∞ M + S(t) N] = X(t) [PS∞ M + S(t) N], t ∈ [α, ∞)T. (5.13)
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Note that equation (5.13) is valid when the kernel of the first basis (X, U) is constant on
[α, ∞)T, which is now satisfied, and there is no requirement on the kernel of the second basis
(X̃, Ũ), analogically to discrete case, see [10, Remark 6.70(iii)]. Now we show that also (X̃, Ũ)

has constant kernel on [α, ∞)T. More precisely, we show that Ker X̃(t) = Ker(PS∞ M) on
[α, ∞)T in the following two steps.

(i) We show that Ker(PS∞ M) ⊆ Ker X̃(t) on [α, ∞)T. Let u ∈ Ker PS∞ M be given, i.e.,
PS∞ Mu = 0. Multiplying the last equality by X(t) [I + S(t) NM−1] from the left and
using

NM−1PS∞ = MT−1NTPS∞ = MT−1NT = NM−1

derived from (5.2), we get

X̃(t) u
(5.13)
= X(t) [PS∞ + S(t) N] u = X(t) [I + S(t) NM−1] PS∞ Mu = 0

for all t ∈ [α, ∞)T. Thus, u ∈ Ker X̃(t) on [α, ∞)T.

(ii) We show that Ker X̃(t) ⊆ Ker(PS∞ M) on [α, ∞)T. Let v ∈ Ker X̃(t) on [α, ∞)T and set
w := PS∞ Mv. Our aim now is to show that w = 0. By (5.13) we get

X(t) [w + S(t) NM−1w] = 0, t ∈ [α, ∞)T. (5.14)

Multiplying (5.14) by X†(t) from the left, using PS∞w = w derived from the properties
of any orthogonal projector, and from (3.17) we get

w = −S(t) NM−1w, t ∈ [α, ∞)T, (5.15)

which implies that

w ∈ Im S(t)
(3.35)
= Im X†(t) = Im P

(3.33)
= Im PS∞, t ∈ [α, ∞)T, (5.16)

where we used that (X, U) is a minimal conjoined basis of (S) on [α, ∞)T. Moreover,
from w = PS∞w and the above derived results we obtain for t ∈ [α, ∞)T

wTS†(t)w
(5.15)
= −wTS†(t) S(t) NM−1w = −wTPS∞ NM−1PS∞w.

Considering (5.3), which can be rewritten as −NM−1 ≤ T, we get

wTS†(t)w = −wTPS∞ NM−1PS∞w ≤ wTPS∞ TPS∞w
(3.18)
= wT Tw

for t ∈ [α, ∞)T, which implies that

wT[S†(t)− T]w ≤ 0, t ∈ [α, ∞)T.

But according to Proposition 3.9 the inequality S†(t) ≥ T ≥ 0 holds for large t, so that
w ∈ Ker [S†(t)− T] for large t. But since Im S(t) = Im PS∞ = Im P for t ∈ (α, ∞)T and
(3.18) holds, we derive by using Proposition 3.10 the equality of kernels

Ker [S†(t)− T] = Ker [S(t) S†(t)− S(t) T] = Ker [P∞ − S(t) T]
(3.26)
= Ker PS∞

on (α, ∞)T, which implies that w ∈ Ker PS∞. This together with w ∈ Im PS∞ from (5.16)
implies that w = 0. Thus, PS∞ Mv = 0, which proves that v ∈ Ker(PS∞ M).
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The proof of the equality Ker X̃(t) = Ker(PS∞ M) on [α, ∞)T is now complete. It follows that

rank X̃(t) = rank(PS∞ M) = rank PS∞ = n − d∞, t ∈ [α, ∞)T.

Thus, the conjoined basis (X̃, Ũ) has constant kernel on [α, ∞)T and the lowest possible rank
n − d∞ on [α, ∞)T. It remains to prove that (X̃, Ũ) has no focal points in the interval (α, ∞).
Since P = PS∞ and d[α, ∞)T = d∞, we have Im S(t) ≡ Im PS∞ on the interval (a, ∞)T. Recall
that S(α) = 0. Since Ker X̃(t) is constant on [α, ∞)T, the matrix

S̃(t) :=
∫ t

α
[X̃σ(s)]† B(s) [X̃†(s)]T ∆s, t ∈ [α, ∞)T, (5.17)

is symmetric and, by (3.32) in Remark 3.16, the formula

S̃(t) = [PM + S(t) N]†S(t) MT−1P̃, t ∈ [α, ∞)T,

holds. Then, by (3.37) in Proposition 3.18(ii), the pseudoinverse of S̃(t) has the form

S̃†(t) = MTS†(t) M + MT N, t ∈ (α, ∞)T. (5.18)

Note that if the point α is right-scattered, then formula (5.18) holds for t ∈ [σ(α), ∞)T only.
Since by Proposition 3.9 the matrix function S†(t) is nonincreasing on (α, ∞)T, it follows
from (5.18) that the matrix function S̃†(t) is nonincreasing on (α, ∞)T as well and hence, by
Remark 2.1(v), the the matrix function S̃(t) is nondecreasing on (α, ∞)T. Moreover,

S̃†(t)
(5.18)
= MTS†(t) M + MT N

(3.24)
≥ MTTM + MT N

(5.3)
≥ 0, t ∈ (α, ∞)T.

Therefore, in view of Remark 2.1(vi) we also have

S̃(t) ≥ 0, t ∈ (α, ∞)T. (5.19)

From the already established monotonicity of S̃(t) on (α, ∞)T it now follows that S̃∆(t) ≥ 0
on (α, ∞)T. Then with the aid of Proposition 3.6(ii) (applied to (X, U) := (X̃, Ũ)) we get

X̃(t) [X̃σ(t)]† B(t) = X̃(t) [X̃σ(t)]† B(t) R̃(t) = X̃(t) [X̃σ(t)]† B(t) [X̃†(t)]TX̃T(t)
(5.17)
= X̃(t) S̃∆(t) X̃T(t) ≥ 0, t ∈ (α, ∞)T. (5.20)

This shows that the conjoined basis (X̃, Ũ) has no focal points in the interval (α, ∞) if the point
α is right-dense, and no focal points in the interval (σ(α), ∞) if the point α is right-scattered.
However, in the latter situation (that is, for σ(α) > α) we know by property (5.19) at t = σ(α)

that S̃σ(α) ≥ 0, so that in this case

S̃∆(α) = [S̃σ(α)− S̃(α)]/µ(α)
(5.17)
= S̃σ(α)/µ(α) ≥ 0.

As in (5.20) we then conclude that (X̃, Ũ) has no focal points in the interval (α, σ(α)] when α

is right-scattered. This proves that (X̃, Ũ) has no focal points in the interval (α, ∞) and hence,
it is a minimal conjoined basis of (S) on [α, ∞)T. The proof is complete.

The next theorem serves as a criterion for the classification of all T-matrices, which cor-
respond to conjoined bases of (S) with constant kernel on some interval [α, ∞)T and no focal
points in (α, ∞). It is a unification of the continuous and discrete cases in [20, Theorem 4.9
and Corollary 4.11] and [24, Theorem 3.5], see also [10, Theorem 6.107 and Remark 6.108].
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Theorem 5.2. Assume that (S) is nonoscillatory. Then D ∈ Rn×n is a T-matrix of some conjoined
basis (X, U) of (S) with constant kernel on [α, ∞)T and no focal points in (α, ∞) and with d[α, ∞)T =

d∞ if and only if
the matrix D is symmetric, D ≥ 0, and rank D ≤ n − d∞. (5.21)

Moreover, (X, U) can be chosen to be a minimal conjoined basis of (S) on [α, ∞)T.

Proof. First we prove that the result holds for minimal conjoined bases of (S) on [α, ∞)T. Let D
be a T-matrix of a minimal conjoined basis (X, U) on an interval [α, ∞)T with d[α, ∞)T = d∞.
Then according to Theorem 3.4 the matrix D is symmetric and D ≥ 0. Note that by equation
(3.21) in Lemma 3.7 we have rank P = rank PS∞ = n − d∞. The inclusion in (3.18) implies that
rank D ≤ n − d∞.

Conversely, assume that D is a symmetric matrix with D ≥ 0 and rank D ≤ n − d∞. We
will show through Theorem 5.1 that D is the T-matrix of some minimal conjoined basis of (S)
on some interval [α, ∞)T satisfying d[α, ∞)T = d∞. First, we show that there exists a minimal
conjoined basis (Xmin, Umin) of (S) on [α, ∞)T. Then, using this conjoined basis, we will con-
struct another one denoted by (X̃, Ũ) (via Theorem 5.1), such that its associated matrix T̃ is
equal to D. Since we assume that system (S) is nonoscillatory, then every conjoined basis of (S)
is nonoscillatory and by Proposition 3.13 (with r := n − d∞) there exists a minimal conjoined
basis (Xmin, Umin) of (S) on [α, ∞)T. Then by Proposition 3.18(i) condition d[α, ∞)T = d∞

holds. The assumption rank D ≤ n − d∞ guarantees that there exists an orthogonal projector
Q with rank Q = n − d∞ such that

Im D ⊆ Im Q. (5.22)

Then by Lemma 3.7 condition (3.21) holds, i.e., rank PS∞ = n − d∞ = rank Q. Moreover, by
Proposition 2.2 (where we put P∗ := 0) there exists an invertible matrix E ∈ Rn×n satisfying
Im EPS∞ = Im Q, i.e., Im PS∞ = Im E−1Q. In particular, the equality PS∞ E−1Q = E−1Q holds.
Define the matrices M, N ∈ Rn×n by

M := ET, N := E−1D − TET, (5.23)

where T is the matrix in (3.6) corresponding to (Xmin, Umin). We will show that the matrices
M and N satisfy conditions (5.2) and (5.3) from Theorem 5.1, i.e., the following four properties
of matrices M and N hold:

(i) The matrix M is invertible. This follows from the definition of M in (5.23).

(ii) The matrix MT N is symmetric. This follows from the symmetry of D and T and from
the calculation MT N = E(E−1D − TET) = D − E TET.

(iii) The inclusion Im N ⊆ Im PS∞ holds, since

N = E−1D − TET (5.22)
= E−1QD − TET = PS∞ E−1QD − TET

(3.18)
= PS∞E−1QD − PS∞ TET = PS∞(E−1QD − TET) = PS∞N.

(iv) The matrix NM−1 + T is positive semidefinite, since D ≥ 0 and

NM−1 + T = (E−1D − TET) ET−1 + T = E−1DET−1 ≥ 0.
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Consider now the conjoined basis (X̃, Ũ) of (S) on [a, ∞)T with the initial conditions at the
point α given by (5.1), where matrices M and N are given in (5.23) above. Then by Theorem 5.1
the solution (X̃, Ũ) is a minimal conjoined basis of (S) on [α, ∞)T and, moreover, its associated
T̃ satisfies (5.4). This yields that

T̃
(5.4)
= MTTM + MT N

(5.23)
= E TET + E(E−1D − TET) = D.

Therefore, we showed that the matrix D is the T-matrix of the minimal conjoined basis (X̃, Ũ)

on [α, ∞)T.
The general statement of the theorem now follows from Proposition 3.12(ii). Let (X, U)

be a conjoined basis of (S) with constant constant kernel on [α, ∞)T and no focal points in
(α, ∞) and with d[α, ∞)T = d∞. Let (X∗, U∗) be a minimal conjoined basis on [α, ∞)T, which
is contained in (X, U) on [α, ∞)T. Note that such a minimal conjoined basis always exists
by [22, Theorem 4.3] (with the choice P∗ := PS∞). Then by the first part of the proof the
matrix D := T∗ in (3.6) associated with (X∗, U∗) satisfies the conditions in (5.21). But by
Proposition 3.12(ii) the matrices S∗(t) and S(t) coincide on the interval [α, ∞)T, so that T∗ = T
and hence, the matrix T satisfies (5.21) as well.

Next we derive the existence of antiprincipal solutions at infinity with any admissible rank
r for a nonoscillatory system (S), see the continuous case in [20, Theorem 5.8] and the discrete
case in [24, Theorem 4.7] or in [10, Theorem 6.128]. It can also be viewed as a counterpart of
[22, Theorem 6.8] regarding the principal solutions of (S) at infinity. The most important part
consists of the existence of a minimal antiprincipal solution of (S) at infinity. This property
will also be used later in Section 6 in the applications of antiprincipal solutions at infinity.

Theorem 5.3. Assume that system (S) is nonoscillatory. Then there exists a minimal antiprincipal
solution of (S) at infinity. Moreover, in this case for any integer r between n − d∞ and n there exists
an antiprincipal solution (X, U) of (S) at infinity with the rank of X(t) equal to r for large t.

Proof. Assume that system (S) is nonoscillatory and let D ∈ Rn×n be an arbitrary symmetric
and positive semidefinite matrix with rank D = n − d∞. Let α ∈ [a, ∞)T be large enough
so that d[α, ∞)T = d∞ holds. According to Theorem 5.2, there exists a minimal conjoined
basis (Xmin, Umin) on [α, ∞)T such that its corresponding matrix T is equal to D. By Defini-
tion 4.1, this conjoined basis is an antiprincipal solution of (S) at infinity with respect to the
interval [α, ∞)T, since rank T = rank D = n − d∞ due to above choice of D. In addition, since
rank Xmin(t) = n − d∞ on [α, ∞)T, we get that (Xmin, Umin) is a minimal antiprincipal solution
of (S) at infinity, which proves the first part of the theorem. Furthermore, choose any integer
r between n − d∞ and n. Then by Proposition 3.13, using the already established existence
of (Xmin, Umin), there exists a conjoined basis (X, U) of (S) with rank X(t) = r on [α, ∞)T,
which contains (Xmin, Umin) on [α, ∞)T. Then by Theorem 4.7 we know that the conjoined
basis (X, U) is also an antiprincipal solution of (S), having also the desired rank r.

Remark 5.4. On special time scales T, which consist of disjoint closed intervals and/or iso-
lated points, see [22, Section 7] and [28, Section 6], the converse statement in Theorem 5.3 also
holds. That is, on such special time scales the existence of an antiprincipal solution at infinity
implies the nonoscillation of system (S).
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6 Applications of antiprincipal solutions at infinity

In this section we derive further properties of principal and antiprincipal solutions of system
(S) at infinity. First we recall the definition and basic properties of principal solutions of (S) at
infinity, which are a natural counterpart to antiprincipal solutions at infinity, when comparing
the rank of their associated T-matrices.

According to [22, Definition 6.1], a conjoined basis (X̂, Û) of (S) is a principal solution
at infinity, if there exists α ∈ [a, ∞)T such that (X̂, Û) has constant kernel on [α, ∞)T and
no focal points in (α, ∞) and its associated matrix T̂ defined in (3.6) through X̂(t) satisfies
T̂ = 0. If rank X̂(t) = n − d∞ or rank X̂(t) = n on [α, ∞)T, then (X̂, Û) is called a minimal
principal solution at infinity or a maximal principal solution at infinity, respectively. According to
[22, Theorem 6.6], if system (S) is nonoscillatory, then the minimal principal solution exists and
is unique up to a constant right invertible multiple. Complying with the previous notation,
we will denote this (unique) minimal principal solution of (S) at infinity by (X̂min, Ûmin). The
result of [22, Theorem 6.9] then shows that the minimality property of the rank of X̂min(t) on
[α, ∞)T and the uniqueness property of (X̂min, Ûmin) are in fact equivalent conditions.

The following result shows a construction of the minimal principal solution of (S) at in-
finity from an arbitrary minimal conjoined basis of (S). This construction is used in the proof
of [22, Theorem 6.6] in order to establish the uniqueness of the minimal principal solution at
infinity. For our future reference we present it as a separate statement.

Theorem 6.1. Assume that system (S) is nonoscillatory. Suppose that α ∈ [a, ∞)T is such that
d[α, ∞) = d∞ and there exists a conjoined basis of (S) with constant kernel on [α, ∞)T and no focal
points in (α, ∞). Then a solution (X̂, Û) of (S) is a minimal principal solution at infinity if and only if

(

X̂(t)
Û(t)

)

=

(

X(t)
U(t)

)

−

(

X̄(t)
Ū(t)

)

T, t ∈ [α, ∞)T, (6.1)

for some minimal conjoined basis (X, U) of (S) on [α, ∞)T, where (X̄, Ū) is the conjoined basis of (S)
from Proposition 3.14 associated with (X, U) and T is the matrix defined in (3.6).

Proof. Let α ∈ [a, ∞)T be as in the statement. If (X̂, Û) is a minimal principal solution of (S) at
infinity with respect to the interval [α, ∞)T, then the corresponding matrix T̂ in (3.6) satisfies
T̂ = 0 and (X̂, Û) is a minimal conjoined basis on [α, ∞)T. Formula (6.1) then holds with
(X, U) := (X̂, Û). Conversely, if (X, U) is a minimal conjoined basis of (S) on [α, ∞)T and
define the solution (X̂, Û) of (S) by (6.1). Then in the proof of [22, Theorem 6.6] it is shown
that (X̂, Û) is a minimal conjoined basis on [α, ∞)T. Moreover, by (3.37) in Proposition 3.18(ii)
(with (X1, U1) := (X, U), (X2, U2) := (X̂, Û), L1 := X†(α) X̂(α) = P, and N1 := −T) its
associated matrix Ŝ(t) in (3.1) satisfies

Ŝ†(t) = S†(t)− T, t ∈ [α, ∞)T. (6.2)

Taking the limit for t → ∞ in (6.2) and using that S†(t) → T for t → ∞ we obtain that
Ŝ†(t) → T̂ = 0 for t → ∞, i.e., (X̂, Û) is a minimal principal solution of (S) at infinity with
respect to the interval [α, ∞)T.

Remark 6.2. In [22, Theorem 6.7] it is shown that the minimal principal solution (X̂min, Ûmin)

of (S) at infinity can be determined from an arbitrary minimal conjoined basis (X, U) of (S)
on the interval [α, ∞)T by the initial conditions

X̂min(α) = X(α), Ûmin(α) = U(α)− [X†(α)]T T,
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In the following considerations we will use an estimate for the maximal interval, on which
the minimal principal solution (X̂min, Ûmin) at infinity has constant kernel and no focal points.
Thus, we define the point α̂min ∈ [α, ∞)T as

α̂min :=

{

inf α ∈ [a, ∞)T, (X̂min, Ûmin) has constant kernel on [α, ∞)T

and no focal points in (α, ∞)

}

. (6.3)

Moreover, by estimate (3.23) and by rank X̂min(t) = n − d∞ on [α, ∞)T we obtain

d[α̂min, ∞)T = d∞ = d[α, ∞)T for every α ∈ [α̂min, ∞)T. (6.4)

In the next theorem we use minimal antiprincipal solutions of (S) at infinity for a charac-
terization of all antiprincipal solutions of (S) at infinity through the relation being contained.
It is a unification of the continuous case in [20, Theorem 5.11] and the discrete case in [24, The-
orem 4.11(ii)], see also [10, Theorem 6.131(ii)].

Theorem 6.3. Assume that system (S) is nonoscillatory, let α̂min ∈ [a, ∞)T be defined in (6.3). Then
a solution (X, U) of (S) is an antiprincipal solution at infinity if and only if (X, U) is a conjoined
basis of (S), which contains some minimal antiprincipal solution of (S) at infinity on [α, ∞)T for some
α ∈ [α̂min, ∞)T.

Proof. Let (X̂min, Ûmin) be the minimal principal solution of (S) at infinity. Then condition
(6.4) holds. Let (X, U) be an antiprincipal solution of (S) at infinity with respect to the interval
[α, ∞)T. Due to Theorem 4.3 we may assume that α ∈ [α̂min, ∞)T. By Proposition 3.13, there ex-
ists a conjoined basis (Xmin, Umin) of (S) with constant kernel on [α, ∞)T and no focal points in
(α, ∞) and, moreover, with rank Xmin = n − d∞ on [α, ∞)T such that (Xmin, Umin) is contained
in (X, U). From Theorem 4.7 it then follows that (Xmin, Umin) is also an antiprincipal solution
of (S) at infinity. Conversely, let (X, U) be a conjoined basis of (S), which contains some min-
imal antiprincipal solution (Xmin, Umin) of (S) at infinity on [α, ∞)T for some α ∈ [α̂min, ∞)T.
Then by Definition 4.1 (applied to (Xmin, Umin)) we know that d[α, ∞)T = d∞. Therefore, by
Theorem 4.6 we conclude that (X, U) is also an antiprincipal solution of (S) at infinity with
respect to the interval [α, ∞)T.

The following result shows that principal solutions at finite points α for sufficiently large
α ∈ [a, ∞)T are examples of minimal antiprincipal solutions of (S) at infinity. It is a unification
of the continuous case in [18, Proposition 5.15] and the discrete case in [24, Theorem 5.10],
see also [10, Theorem 6.143]. We recall from Lemma 3.7 that the principal solution of (S) at
the point α ∈ [a, ∞)T, denoted by (X̂[α], Û[α]), is the solution of (S) with the initial conditions
X̂[α](α) = 0 and Û[α](α) = I.

Theorem 6.4. Assume that system (S) is nonoscillatory. Let the point α̂min be defined in (6.3). Then
for every α ∈ [α̂min, ∞)T the principal solution (X̂[α], Û[α]) is a minimal antiprincipal solution of (S)
at infinity.

Proof. From [22, Theorem 6.6] we know that when system (S) is nonoscillatory, then there
exists the minimal principal solution (X̂min, Ûmin) of (S) at infinity, which we denote for sim-
plicity by (X, U) := (X̂min, Ûmin) in this proof. Consider its associated matrices P, PS∞, S(t),
and T defined in (2.6), (3.15), (3.1), and (3.6). Choose a point β ∈ [α̂min, ∞)T such that Im S(t)
is constant on [β, ∞)T. Then from (3.20) and (3.19) in Lemma 3.7 we get

rank X[α](t) = rank S(t) = rank PS∞

(3.33)
= rank P = rank X(t) = n − d∞, t ∈ [β, ∞)T,
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so that (X̂[α], Û[α]) is a minimal conjoined basis on [β, ∞)T, and

X̂[α](t) = X(t) S(t) XT(α) t ∈ [β, ∞)T.

By checking the four properties in (2.1) of the Moore–Penrose pseudoinverse it follows that

[X̂[α](t)]† = [X†(α)]TS†(t) X†(t), t ∈ [β, ∞)T. (6.5)

Since the image of S(t) is constant on [β, ∞)T, hence the kernel of S(t) is constant on [β, ∞)T,
it follows by formula (2.3) in Remark 2.1(viii) that

[S†(t)]∆S(t) = −[Sσ(t)]†S∆(t), t ∈ [β, ∞)T. (6.6)

Multiplying this equation by the matrix S†(t) from the right and using the definition of the
constant orthogonal projector PS∞ in (3.15) we obtain

[S†(t)]∆ = [S†(t) PS∞]
∆ = [S†(t)]∆ PS∞

(3.15)
= [S†(t)]∆S(t) S†(t)

(6.6)
= −[Sσ(t)]† S∆(t) S†(t), t ∈ [β, ∞)T. (6.7)

Consider now the matrix Ŝ[α]
β (t) in (3.1) associated with the principal solution (X̂[α], Û[α]) on

the interval [β, ∞)T, namely,

Ŝ[α]
β (t) :=

∫ t

β
[X̂[α](s)]σ †B(s) [X̂[α](s)]† T

∆s, t ∈ [β, ∞)T. (6.8)

Then by using (6.5), (6.7), and (6.8) we obtain for t ∈ [β, ∞)T

Ŝ[α]
β (t)

(6.5)
=
∫ t

β
[X†(α)]T [S†(s)]σ [X†(s)]σB(s) [X†(s)]TS†(s) X†(α)∆s,

= [X†(α)]T
(

∫ t

β
[S†(s)]σ S∆(s) S†(s)∆s

)

X†(α),

(6.7)
= −[X†(α)]T

(

∫ t

β
[S†(s)]∆ ∆s

)

X†(α) = [X†(α)]T [S†(β)− S†(t)] X†(α). (6.9)

Now using the fact that (X, U) is the principal solution of (S) at infinity (i.e., T = 0), we get
from (6.9) that the limit of Ŝ[α]

β (t) as t → ∞ exists and

lim
t→∞

Ŝ[α]
β (t) = [X†(α)]T [S†(β)− T] X†(α) = [X†(α)]TS†(β) X†(α).

This implies through Theorem 4.4(ii) that (X̂[α], Û[α]) is an antiprincipal solution of (S) at
infinity. Since we have already proved that (X̂[α], Û[α]) is a minimal conjoined basis on [β, ∞)T,
it follows that (X̂[α], Û[α]) is a minimal antiprincipal solution of (S) at infinity.

In the following result we present another example of antiprincipal solutions of (S) at
infinity. It is a unification of the continuous case in [23, Proposition 1] and the discrete case in
[24, Proposition 7.5], see also [10, Proposition 6.155].

Theorem 6.5. Assume that system (S) is nonoscillatory and let (X, U) be a minimal conjoined basis
of (S) on an interval [α, ∞)T satisfying d[α, ∞)T = d∞. Then the associated conjoined basis (X̄, Ū)

from Proposition 3.14 is a maximal antiprincipal solution of (S) at infinity.
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Proof. Let the conjoined bases (X, U) and (X̄, Ū) be as in the assumptions of the theorem.
Let P, S(t), PS∞ be the matrices in (2.6), (3.1), (3.15) corresponding to (X, U). Since (X, U)

is a minimal conjoined basis of (S) on [α, ∞)T, we have P = PS∞ by Lemma 3.17. Moreover,
d[α, ∞)T = d∞ it follows that Im S(t) ≡ Im PS∞ on (α, ∞)T. Therefore, by Proposition 3.14(v)
we then derive for all t ∈ (α, ∞)T that

Ker X̄(t) = Im P ∩ Ker S(t) = Im PS∞ ∩ [ Im S(t)]⊥ ≡ Im PS∞ ∩ ( Im PS∞)
⊥ = {0}.

This shows that the matrix X̄(t) is invertible on (α, ∞)T, in particular its kernel is constant on
(α, ∞)T. Fix any β ∈ (α, ∞)T. We will show that (X̄, Ū) has no focal points in the interval
(β, ∞). Recall that the matrix S†(t) is nonincreasing on [β, ∞)T and that, by Remark 2.1(viii)
or by (6.7),

− [Sσ(t)]† S∆(t) S†(t) = [S†(t)]∆ ≤ 0, t ∈ [β, ∞)T. (6.10)

Moreover, by Proposition 3.14(viii) we obtain for t ∈ [β, ∞)T the equality

S†(t) X†(t) = X̄−1(t) X(t) PS∞ X†(t) = X̄−1(t) X(t) PX†(t) = X̄−1(t) R(t). (6.11)

Then by Proposition 3.6(ii) and by (6.11) with (6.10) we deduce that

[X̄σ(t)]−1B(t) X̄T−1(t) = [X̄σ(t)]−1Rσ(t)B(t) R(t) X̄T−1(t)
(6.11)
= [S†(t)]σ [X†(t)]σ B(t) [X†(t)]TS†(t) = [S†(t)]σS∆(t) S†(t)

(6.10)
= −[S†(t)]∆ ≥ 0, t ∈ [β, ∞)T, (6.12)

and consequently

X̄(t) [X̄σ(t)]−1B(t) = X̄(t) [X̄σ(t)]−1B(t) X̄T−1(t) X̄T(t)
(6.12)
≥ 0, t ∈ [β, ∞)T.

This proves that (X̄, Ū) has no focal points in the interval (β, ∞) and hence, it is a maximal
conjoined basis on [β, ∞)T. It remains to show that (X̄, Ū) is an antiprincipal solution of (S)
at infinity. According to (3.1), we define the associated matrix S̄(t) by

S̄(t) :=
∫ t

β
[X̄σ(s)]−1B(s) X̄T−1(s)∆s, t ∈ [β, ∞)T. (6.13)

Then by using (6.12) in (6.13) we get

S̄(t)
(6.12)
= −

∫ t

β
[S†(t)]∆ ∆s = S†(β)− S†(t), t ∈ [β, ∞)T. (6.14)

This implies that the limit

lim
t→∞

S̄(t)
(6.14)
= lim

t→∞

[S†(β)− S†(t)] = S†(β)− T

exists. By Theorem 4.4(ii) (applied to (X, U) := (X̄, Ū)) it then follows that the conjoined basis
(X̄, Ū) is an antiprincipal solution of (S) at infinity. The proof is complete.

In our next result we utilize antiprincipal solutions of (S) at infinity in the Reid construction
of the minimal principal solution (X̂min, Ûmin) of (S) at infinity. It is a unification of the
continuous case in [23, Theorem 1] and the discrete case in [24, Theorem 7.3], see also [10,
Theorem 6.153].
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Theorem 6.6. Assume that system (S) is nonoscillatory. Let (X, U) be a minimal conjoined basis of
(S) on an interval [α, ∞)T satisfying d[α, ∞)T = d∞ and let β ∈ [α, ∞)T be such that the associated
conjoined basis (X̄, Ū) from Proposition 3.14 is a maximal antiprincipal solution of (S) at infinity with
respect to the interval [β, ∞)T. Then for all τ ∈ [β, ∞)T the solutions (Xτ, Uτ) of (S) given by the
initial conditions

Xτ(τ) = 0 and Uτ(τ) = −[X̄−1(τ)]T (6.15)

are conjoined bases of (S) satisfying
(

X̂min(t), Ûmin(t)
)

= lim
τ→∞

(

Xτ(t), Uτ(t)
)

, t ∈ [a, ∞)T. (6.16)

Proof. Let P, PS∞, S(t), and T be the matrices in (2.6), (3.15), (3.1), and (3.6) associated with
(X, U). Then P = PS∞ by Lemma 3.17 and by Proposition 3.14(viii) we get

S†(t) = X̄−1(t) X(t) PS∞ = X̄−1(t) X(t) P = X̄−1(t) X(t), t ∈ [β, ∞)T. (6.17)

Fixed a point τ ∈ [β, ∞)T. From (6.16) it follows that the solution (Xτ, Uτ) is a conjoined basis
of (S). Let us represent (Xτ, Uτ) in terms of (X, U) by using Proposition 3.15, i.e.,

(

Xτ(t)
Uτ(t)

)

= Z(t)
(

Mτ

Nτ

)

, Z(t) :=
(

X(t) X̄(t)
U(t) Ū(t)

)

, t ∈ [a, ∞)T, (6.18)

where the matrix Z(t) is symplectic, i.e., Z−1(t) = −J ZT(t)J . Then the matrix −Mτ is the
Wronskian of (X̄, Ū) and (Xτ, Uτ), and the matrix Nτ is the Wronskian of (X, U) and (Xτ, Uτ).
Evaluating these Wronskians at the point τ we obtain

Mτ = −[X̄T(τ)Uτ(τ)− ŪT(τ) Xτ(τ)]
(6.15)
= I,

Nτ = XT(τ)Uτ(τ)− UT(τ) Xτ(τ)
(6.15)
= −XT(τ) [X̄−1(τ)]T

(6.17)
= −[S†(τ)]T = −S†(τ).

This shows that the limits of Mτ and Nτ for τ → ∞ exist and

lim
τ→∞

Mτ = I, lim
τ→∞

Nτ = − lim
τ→∞

S†(τ) = −T. (6.19)

Therefore, the limit of (Xτ, Uτ) for τ → ∞ also exists and by (6.18) it is equal to the solution
(

X̂(t)
Û(t)

)

:= lim
τ→∞

(

Xτ(t)
Uτ(t)

)

(6.18)
= lim

τ→∞
Z(t)

(

Mτ

Nτ

)

(6.19)
= Z(t)

(

I
−T

)

, t ∈ [a, ∞)T. (6.20)

In fact, since rank(I,−T)T = n and the matrix T is symmetric, the solution (X̂, Û) defined in
(6.20) is a conjoined basis of (S). By Theorem 6.1 we then conclude that (X̂, Û) is the minimal
principal solution of (S) at infinity, i.e., (X̂, Û) = (X̂min, Ûmin).

The following three comments complement the construction of (X̂min, Ûmin) in Theo-
rem 6.6.

Remark 6.7. The initial conditions in (6.15) show that the conjoined basis (Xτ, Uτ) is a constant
nonsingular multiple of the principal solution (X̂[τ], Û[τ]) of (S) at the point τ, namely

(Xτ, Uτ) =
(

X̂[τ]M, Û[τ]M
)

, M := −X̄T(τ).

Then, in view of Theorem 6.4 and Proposition 4.5, we may conclude that for all τ ∈ [a, ∞)T

with τ ≥ max{α̂min, β} the conjoined bases (Xτ, Uτ) in Theorem 6.6 are minimal antiprincipal
solutions of (S) at infinity.
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Remark 6.8. The limit formula for (X̂, Û) in (6.20) shows, how this construction depend on
the chosen initial conditions of (Xτ, Uτ) in (6.15). More precisely, let us consider instead of
(6.15) the initial conditions Xτ(τ) = 0 and Uτ(τ) = Kτ, where Kτ are invertible matrices for
all τ ∈ [β, ∞)T. Then the matrices Mτ and Nτ from the representation in (6.18) satisfy

Mτ = −X̄T(τ)Kτ, Nτ = XT(τ)Kτ
(6.17)
= S†(τ) X̄T(τ)Kτ,

where we used the fact that the matrix X̄(τ) is invertible. This shows that for t ∈ [a, ∞)T the
limit of (Xτ(t), Uτ(t)) as τ → ∞ exists if and only the limit

M∞ := lim
τ→∞

X̄T(τ)Kτ

exists, and in this case the limiting solution (X̂, Û) in (6.20) is equal to (X̂min M∞, Ûmin M∞).

Remark 6.9. The construction in Theorem 6.6 does not depend on the chosen minimal con-
joined basis (X, U) on [α, ∞)T. More precisely, suppose that we start with another minimal
conjoined basis (X∗, U∗) of (S) on [α, ∞)T and denote by (X̄∗, Ū∗) its associated conjoined basis
from Proposition 3.14. Let us we represent (X∗, U∗) in terms of (X, U) and (X̄, Ū) as

(

X∗(t)
U∗(t)

)

= Z(t)
(

M
N

)

, t ∈ [a, ∞)T,

where the fundamental matrix Z(t) is given in (6.18) and the matrix M is invertible (see
Proposition 3.15 with (X2, U2) := (X∗, U∗), (X1, U1) := (X, U), and M1 := M). Then by using
Lemma 3.19 we have X̄∗(t) = X̄(t) MT−1 on [α, ∞)T. Similarly to (6.15) we now consider for
τ ∈ [β, ∞)T the conjoined bases (X∗τ, U∗τ) given by the initial conditions

X∗τ(τ) = 0 and U∗τ(τ) = −[X̄−1
∗ (τ)]T = −[X̄−1(τ)]T M.

Then (X∗τ, U∗τ) = (Xτ M, Uτ M) on [a, ∞)T and we derive that

lim
τ→∞

(

X∗τ(t), U∗τ(t)
)

= lim
τ→∞

(

Xτ(t) M, Uτ(t) M
)

=
(

X̂min(t) M, Ûmin(t) M
)

, t ∈ [a, ∞)T,

i.e., this modified construction leads to a constant nonsingular multiple of the minimal prin-
cipal solution (X̂min, Ûmin) of (S) at infinity given in (6.16).

7 Concluding remarks

In this paper we developed the theory of antiprincipal solutions at infinity for nonoscillatory
symplectic dynamic systems on time scales. The motivation for this study comes from the the-
ory of principal solutions at infinity for these systems, and from the corresponding theory of
antiprincipal or dominant solutions at infinity, which exists in the continuous or discrete time
setting. Our main results include in particular a characterization of antiprincipal solutions of
(S) at infinity in terms of the limit of its associated S-matrix (Theorem 4.4), a characterization
of minimal conjoined bases of (S) on a given interval [α, ∞)T in terms of the initial conditions
at α (Theorem 5.1), the existence of antiprincipal solutions of (S) at infinity (Theorem 5.3),
and several additional properties or applications of antiprincipal solutions of (S) at infinity
(presented in Theorems 6.4, 6.5, and 6.6).

Note that, unlike in the continuous or discrete cases, the existence of a nonoscillatory
conjoined basis of (S) does not (so far) imply the nonoscillation of system (S) on arbitrary time
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scale T, see Remark 5.4. The reason is a nonexisting pointwise definition of the multiplicity
of a focal point for general time scales. We believe that this problem might be solved by using
the comparative index theory, see [12] or [10, Chapter 3], in combination with the theory of
principal and antiprincipal solutions of symplectic systems on time scales. This is a work in
progress.
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Abstract. We use many classical results known for the self-adjoint second-order linear
equation and extend them for a three-term even order linear equation with a delay ap-
plied to coefficients. We derive several conditions concerning the oscillation and the ex-
istence of positive solutions. Our equation for a choice of parameter is disconjugate,
and for a different choice can have positive and oscillatory solutions at the same time.
However, it is still, in a sense, disconjugate if we use a weaker definition of oscillation.
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1 Introduction

This paper is divided into two parts. In the first part, we analyse the linear second-order
homogeneous difference equation with a delay in a coefficient

an−kyn−1 + bnyn + anyn+1 = 0, n ∈ Z. (1.1)

Equations with a delay in term yn−1 are usually considered. Nevertheless, we did not find
a situation where the considered delay is in the coefficient an. This may be because Eq. (1.1)
for k = 1 is often discussed together with its self-adjoint form △(pn△yn) + qnyn+1 = 0.

Properties of this special case were discussed many times. Some necessary and sufficient
conditions for the equation to be oscillatory were derived in [6, 8, 10, 19, 20, 22, 29] and for
a matrix case in [7]. Properties of eventually positive solutions were observed in [28]. Minimal
solutions of the special case were discussed in [14]. Recessive solutions and their connection
to oscillation were discussed in [27], for a matrix case in [3], and for nonoscillatory symplectic
systems in [33]. Notion of generalized zero was developed in [15] and the Sturm comparison
theorem on Z together with the existence of a recessive solutions was discussed in [2, 5].
Many classic results about this special case can be found in [21]. Boundedness and growth of
the special case were investigated in [30,31]. Generalization of the special case were considered

BEmail: jekl@mail.muni.cz



2 J. Jekl

for example in [24–26, 32]. If we consider a continuous case, criteria for oscillation can be
found, for example, in [11], and the existence of a principal solution of a 2n-order self-adjoint
equation was recently discussed in [34]. Some ideas about how to extend the results for
the fourth-order equation can be found in [9].

In Section 2, we would like to extend the results from [14], where the special case is also
considered. The results from [14] were already extended in [12, 13, 17] and for the time scales
in [18], but there was used the symmetrical case for k = 1. Arbitrary choice of k ∈ Z will lead
to the generalization of some already known results.

We derive equivalent conditions for which the equation has a positive solution, and later
through the deriving of a suitable version of the Sturm comparison theorem, we will get
criteria of disconjugacy for Eq. (1.1). These results will be used in Section 3 as a tool, as well.

In Section 3 we analyse the linear even order homogeneous difference equation with a de-
lay in a coefficient

an−kHyn + bn+Hyn+H + an+Hyn+2H = 0, n ∈ Z, (1.2)

which is a generalization of Eq. (1.1). For k = 0 we get a equation discussed in [16]. We can
assume that results obtained in Section 2 can be extended for Eq. (1.2) in the similar way as
in [16].

We derive conditions under which Eq. (1.2) can or cannot have positive or eventually
positive solutions. We also discuss a situation when Eq. (1.2) has recessive and dominant
solutions. Among others, we use a combination of ideas as were established in [19, 27]. We
find that Eq. (1.2) can have both positive and sign-changing solutions. A situation where
an equation has oscillatory and nonoscillatory solutions at the same time was discussed for
example in [1]. The same situation can appear in our equation, but we use a weaker version
of oscillation to avoid this situation.

2 Second-order linear coefficient delayed equation

Let real valued sequences an, bn satisfy an < 0, bn > 0, for every n ∈ Z. In the first part we
study the equation

an−kyn−1 + bnyn + anyn+1 = 0, k ∈ Z. (2.1)

If we consider a solution yn of Eq. (2.1), then we have a solution xn = (−1)nyn of the equa-
tion

an−kxn−1 + dnxn + anxn+1 = 0,

where sequence dn < 0 for every n. In a similar sense if we consider the equation

cn−pxn−1 + bnxn + cn+lxn+1 = 0,

where cn < 0 for every n. Then we can take an = cn+l and this will result in Eq. (2.1) for
k = −l − p.

There is a natural relation of Eq. (2.1) to the infinite matrix operator, whose truncations for
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n ≤ p, n, p ∈ Z, are the matrices

dn,p =



















bn an 0 . . . 0

an−k+1 bn+1 an+1
. . .

...

0 an−k+2 bn+2
. . .

...
... 0

. . . . . . ap−1

0 . . . . . . ap−k bp



















and we denote their determinants by Dn,p = det(dn,p). Note that for k = 1 is dn,p symmetrical.
For simplification of formulas, we take Di+1,i = 1 and Di+j,i = 0 for any i ∈ Z and j > 1,

as well as ∏
i−1
i xi = 1. Moreover, we will use recurrence relations

Dn,p = bnDn+1,p − an−k+1anDn+2,p, (2.2)

Dn,p = bpDn,p−1 − ap−kap−1Dn,p−2, (2.3)

for n ≤ p.

Lemma 2.1. Let n < p and real vectors X = (xn, . . . , xp)T, B = (y, 0 . . . , 0, z)T, then the equation

dn,pX = B,

implies

xhDn,p = yDh+1,p

h

∏
j=n+1

(−aj−k) + zDn,h−1

p−1

∏
j=h

(−aj), (2.4)

where n ≤ h ≤ p.

Proof. The proof follows from the Cramer’s rule. Signs at −aj and −aj−k follow from compar-
ing the sign and number of terms in a given product.

Lemma 2.2. Let
Di,j > 0, for i ≤ j, (2.5)

and let x1
n, x2

n be two solutions of Eq. (2.1), which satisfy x1
m = x2

m for some m ∈ Z. If also x1
h > x2

h
(respectively x1

h = x2
h) for some h > m, then it holds that x1

j > x2
j (respectively x1

j = x2
j ) for all j > m.

Proof. Obviously, two solutions x1
n, x2

n of Eq. (2.1) have to also satisfy Lemma 2.1 where

y = −am−k+1x1
m = −am−k+1x2

m,

z1 = −ah−1x1
h > −ah−1x2

h = z2.

Where for i ∈ {1, 2} we have Xi =
(

xi
m+1, . . . , xi

h−1

)T
and Bi = (y, 0 . . . , 0, zi)T. Together with

(2.5), we obtain from (2.4) that

x1
j Dm+1,h−1 = yDj+1,h−1

j

∏
i=m+2

(−ai−k) + z1Dm+1,j−1

h−2

∏
i=j

(−ai)

> yDj+1,h−1

j

∏
i=m+2

(−ai−k) + z2Dm+1,j−1

h−2

∏
i=j

(−ai) = x2
j Dm+1,h−1,

holds for all n < j < h and thus x1
j > x2

j . Taking x1
j < x2

j for some j > h leads to a contradiction
with x1

h > x2
h in the same manner. Therefore, x1

j > x2
j for all j > m. The case of x1

h = x2
h follows

analogously.
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Similarly, we get a version of Lemma 2.2 for some h < m and all j < m. It means that if
two solutions of Eq. (2.1) are equal at two points, then they are equal everywhere.

Lemma 2.3. Assume (2.5), then for any h < p it holds that

1
bh

<

Dh+1,p

Dh,p
<

bh−1

ah−kah−1
, (2.6)

and the sequence xp =
Dh+1,p

Dh,p
is increasing for any h where h < p.

Proof. Because of (2.2) we get

Dh,p = bhDh+1,p − ah−k+1ahDh+2,p < bhDh+1,p,

which implies the left inequality of (2.6). Further, we compute

0 < Dh−1,p = bh−1Dh,p − ah−kah−1Dh+1,p,

ah−kah−1Dh+1,p < bh−1Dh,p,
Dh+1,p

Dh,p
<

bh−1

ah−kah−1
,

which implies the right inequality in (2.6).
In the second part of the proof, we will proceed by induction. First, we assume p = h + 1

and we get

Dh+1,h+2

Dh,h+2
− Dh+1,h+1

Dh,h+1
=

Dh,h+1Dh+1,h+2 − Dh+1,h+1Dh,h+2

Dh,h+2Dh,h+1

=
ah−k+1ah−k+2ahah+1

Dh,h+2Dh,h+1
> 0.

Next, again by (2.2), we get

Dh,p

Dh+1,p
− Dh,p+1

Dh+1,p+1
= ah−k+1ah

(

Dh+2,p+1

Dh+1,p+1
− Dh+2,p

Dh+1,p

)

> 0,

by the induction assumption, which together with (2.5) results in

Dh,p

Dh+1,p
>

Dh,p+1

Dh+1,p+1
,

Dh+1,p

Dh,p
<

Dh+1,p+1

Dh,p+1
.

Therefore, the sequence is increasing and the proof is complete.

Similarly, using (2.3), we get for n < h that

1
bh

<
Dn,h−1

Dn,h
<

bh+1

ah−k+1ah
,

and the sequence xn =
Dn,h−1

Dn,h
is decreasing for any h which n < h.
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Now, thanks to Lemma 2.3, we can define the sequences

c+n = lim
p→∞

Dn+1,p

Dn,p
,

c−n = lim
p→−∞

Dp,n−1

Dp,n
,

and

u(j, n) =















1, j = n,

∏
j−1
h=n(−ah)c

−
h , n < j,

∏
n−1
h=j (−ah−k+1)c

+
h+1, n > j.

Notice that by Lemma 2.3 together with ai < 0 for every i, we get that u(j, n) > 0 for any j, n.

Definition 2.4. We say that a solution un of Eq. (2.1) is minimal on [j+ 1, ∞)∩Z if any linearly
independent solution vn of Eq. (2.1) such that uj = vj satisfies uk < vk for every k ≥ j + 1.
The minimal solution on (−∞, j − 1] ∩ Z is defined analogously.

Lemma 2.5. Assume (2.5), then αn = u(j, n) is a positive minimal solution of Eq. (2.1) on the interval
[j + 1, ∞) ∩ Z and also on the interval (−∞, j − 1] ∩ Z.

Proof. Using Lemma 2.1 with y = −aj−k+1 and z = 0 we obtain that

vn(j, p) =















1, n = j,

∏
n−1
h=j (−ah−k+1)

Dn+1,p
Dj+1,p

, j + 1 ≤ n ≤ p,

0, n = p + 1,

is a solution on the interval [j + 1, p]∩Z. Moreover, it holds that u(j, n) = limp→∞ vn(j, p) and
so αn = u(j, n) is a solution on the interval [j + 1, ∞) ∩ Z, where αj = u(j, j) = 1.

Next, we assume that there is a positive solution vn such that vj = αj and which is also
linearly independent on αn. Then we know that vp+1 > vp+1(j, p) = 0 and vj = vj(j, p) = 1,
for every p. Therefore, due to Lemma 2.2, we know that vn > vn(j, p) for all p. Because
αn = limp→∞ vn(j, p), we get that vn ≥ αn. But vn is linearly independent and, again by
Lemma 2.2, this inequality must hold strictly, i.e. vn > αn.

Similarly, we get that αn = u(j, n) is a solution on interval (−∞, j − 1] ∩ Z using function

vn(j, m) =















1, n = j,

∏
j−1
h=n(−ah)

Dm,n−1
Dm,j−1

, m ≤ n ≤ j − 1,

0, n = m − 1.

Further, we will use the following notation. We define

u+
n =















1, n = 0,

u(0, n), n ∈ N,

u(n, 0)−1, −n ∈ N,

and u−
n =















1, n = 0,

u(n, 0)−1, n ∈ N,

u(0, n), −n ∈ N.

Lemma 2.6. Assume (2.5), then u±
n are positive solutions of Eq. (2.1) on Z.
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Proof. From Lemma 2.5 we know, that u+
n is a solution on N. Moreover, for arbitrary n, B ∈

N ∪ {0}, n < B, it holds
u(−B, 0) = u(−B,−n)u(−n, 0),

and so

u+
−n =

1
u(−n, 0)

=
u(−B,−n)
u(−B, 0)

.

Using Lemma 2.5 we obtain that u+
n is a solution on interval [−B + 1, ∞) ∩ Z. Because B

is arbitrary, we have that u+
n is a solution on Z. The second part involving u−

n is done in
the similar way.

Theorem 2.7. Condition (2.5) holds if and only if there is a positive solution of Eq. (2.1).

Proof. The sufficiency of (2.5) comes directly from Lemma 2.6. For the second part, we assume
the existence of a positive solution un. Then, using Lemma 2.1 for arbitrary n, n < p, with
y = −an−kun−1, z = −apup+1, we get from (2.4) that

unDn,p = −an−kun−1Dn+1,p − apup+1

p−1

∏
j=n

(−aj).

If we put p = n + 1, then because Dn+1,n+1 = bn+1 > 0 we obtain that the right-hand side
is positive which implies the positivity of Dn,n+1 > 0. Next, by induction we obtain that if
Dn+1,p > 0, then also Dn,p > 0 through the same procedure. Therefore, the condition (2.5) is
satisfied.

We emphasize that for k = 1 is dn,p symmetrical, thus condition (2.5) gives the positive
definiteness of all dn,p. Now we recall the definitions of generalized zero and disconjugacy.

Definition 2.8. Solution yn has a generalized zero at n0 if yn0 = 0 or yn0−1yn0 < 0.

Definition 2.9. The given difference equation is disconjugate on an interval I if every nontriv-
ial solution has at most one generalized zero on I.

Lemma 2.10. Let Eq. (2.1) be disconjugate on interval [a, b] then the boundary value problem

an−kyn−1 + bnyn + anyn+1 = 0,

yn1 = A, yn2 = B,

where a ≤ n1 < n2 ≤ b and A, B ∈ R, has an unique solution.

Proof. General solution of Eq. (2.1) is

yn = Cz1
n + Dz2

n,

for some linearly independent z1
n and z2

n. The boundary conditions result in the system

Cz1
n1
+ Dz2

n1
= A,

Cz1
n2
+ Dz2

n2
= B.

We see that the boundary value problem has a solution whenever

det
(

z1
n1

z2
n1

z1
n2

z2
n2

)

6= 0.
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Now assume that this determinant is equal to zero. Then there would exist constants C, D ∈ R

such that

Cz1
n1
+ Dz2

n1
= 0,

Cz1
n2
+ Dz2

n2
= 0.

Thus, yn1 = yn2 = 0. This contradicts that Eq. (2.1) is disconjugate.

Theorem 2.11. Let Eq. (2.1) be disconjugate on Z, then (2.5) holds.

Proof. We will show that Di,i+k−1 > 0 by induction on k ∈ N for arbitrary i. Because bi > 0
we have that Di,i > 0.

Let yn be a solution of

an−kyn−1 + bnyn + anyn+1 = 0,

yi−1 = 0, yi+k+1 = 1,

and assume that Di,i+k−1 > 0. By Lemma 2.10, we know that such yn exists and it must satisfy
system

di,i+ky = b,

where y = (yi, . . . , yi+k)
T, b = (0, . . . , 0,−ai+k). Now, using Lemma 2.1 we get that

yi+kDi,i+k = −ai+kDi,i+k−1.

By disconjugacy we know that yi+k > 0 and together with the assumption Di,i+k−1 > 0 we see
that Di,i+k > 0, as well.

Corollary 2.12. Let Eq. (2.1) be disconjugate on Z, then there exists a positive solution of Eq. (2.1).

Proof. This is a direct consequence of Theorem 2.7.

The natural question is whether the converse statement is valid as well. We will solve this
problem by formulating an appropriate version of Sturm’s comparison theorem. Nevertheless,
it can be solved using Theorem 2.7 and Lemma 2.6 together with u±

n being minimal solutions
as well. Note that we have two separate situations where u+

n = u−
n and u+

n 6= u−
n .

Lemma 2.13. If yn is a nontrivial solution of Eq. (2.1) such that yn0 = 0, then yn0−1yn0+1 < 0.

Proof. If yn is a nontrivial solution and yn0 = 0 for some n0 ∈ Z, then yn0−1 6= 0 6= yn0+1.
The rest follows from yn being a solution of Eq. (2.1).

Lemma 2.14. Assume (2.5). If a nontrivial solution yn of Eq. (2.1) has two generalized zeros at n1

and n2, then any other linearly independent solution has a generalized zero in [n1, n2].

Proof. Without loss of generality assume that there are not other generalized zeros of yn on
(n1, n2). Now by contradiction, we assume that yn > 0 on (n1, n2) and that there is a linearly
independent solution zn such that zn > 0 on [n1, n2] and zn1−1 ≥ 0, i.e. it does not have
a generalized zero on [n1, n2]. We consider some n0 from (n1, n2) and we can find K ∈ R

such that Kzn0 = yn0 . Because yn2 ≤ 0 and it has to hold that yn1 = 0 or yn1−1 < 0 we can
use Lemma 2.2 to get that Kzn > yn. Moreover, un = Kzn − yn is also a solution of Eq. (2.1)
and un0 = 0, un > 0 for n 6= n0. Finally, un0−1un0+1 > 0 gives us a contradiction with
Lemma 2.13.
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Theorem 2.15. Eq. (2.1) is disconjugate on Z if and only if it has a positive solution on Z.

Proof. We already have the first part from Corollary 2.12. Next, assume that Eq. (2.1) has
a positive solution. By Theorem 2.7 we know, that (2.5) holds and so does Lemma 2.14.
However, because we have a positive solution, then by Lemma 2.14, we know that there
cannot be a solution with more than one generalized zero.

3 Even order linear coefficient delayed equation

In this section we will focus on the equation

an−kHyn + bn+Hyn+H + an+Hyn+2H = 0, (3.1)

for n ∈ Z, with the parameters H ∈ N, k ∈ Z.

Lemma 3.1. If ai < 0 for every i and there is a subsequence bnl such that bnl ≤ 0 for nl → ∞ then
Eq. (3.1) cannot have an eventually positive solution (i.e. a solution yn, where yn > 0 for all n ≥ N,
for some N ∈ Z).

Proof. Suppose that there exist an eventually positive solution yn. It implies

anl−k·Hynl + bnl+Hynl+H + anl+Hynl+2H < 0,

for nl → ∞. This is a contradiction with yn being a solution of Eq. (3.1).

Similar statement holds even if nl → −∞ and yn > 0 for all n ≤ N for some N ∈ Z.
Because of this, we will again assume that aj < 0, bj > 0 for every j.

Theorem 3.2. The following statements are true.

1. Let H be an even number, then Eq. (3.1) has a solution yn if and only if it has a solution (−1)nyn.

2. Let H be an odd number, then Eq. (3.1) cannot have a solution (−1)n pn where pn > 0 for all
|n| ≥ N and some N ∈ N.

Proof. For the first part, it suffices to use zn = (−1)nyn in Eq. (3.1) and the rest follows from
H being even.

To prove the second part, we suppose that Eq. (3.1) has a solution (−1)n pn. Then we have
that

an−k·H pn + bn+H(−1)H pn+H + an+H pn+2H = 0.

For |n| sufficiently large, the terms are negative, hence the left-hand side cannot be equal zero
and such a solution cannot exist.

Corollary 3.3. Let H be an even number, then Eq. (3.1) has at least on solution, which is not eventually
positive.

Proof. Assume that all solutions of Eq. (3.1) are eventually positive. Then there is a solution
yn, which is positive for n greater than some N. However, because H is an even number,
then (−1)nyn is also a solution of Eq. (3.1) and is not eventually positive. Thus we arrive to
a contradiction.
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We obtain further generalization if we let pk
n be real sequences and consider a linear equa-

tion
m

∑
k=0

pk
nyn+2k = 0. (3.2)

Then Eq. (3.2) has a solution, which is not eventually positive.
We see that, in some cases, the studied equation cannot have a positive solution. Later

we show that there is an equation that has positive and sign-changing solutions at the same
time, which is a case that for k = 0 cannot occur. For this reason, it is more useful to focus on
the situation when the equation has a positive solution. Nevertheless, we start by reminding
us of the lemma, which can be found in [21].

Lemma 3.4. Let us consider the equation

m

∑
k=0

pk
nun+k = 0, (3.3)

where pk
n, k ∈ {0, . . . , m}, are real sequences, for some m ∈ N. If Eq. (3.3) has a solution un, then

Eq. (3.3) has another solution in the form vnun, where vn solves the equation

m−1

∑
k=0

(

k

∑
i=0

pi
nun+i

)

△vn+k = 0. (3.4)

Proof. We expand the sum ∑
m
k=0 pk

nvn+kun+k by Abel’s summation formula and use the fact
that un is a solution of Eq. (3.3) to obtain Eq. (3.4).

Assume that we have a solution un of Eq. (3.1) and using Lemma 3.4 we obtain other
solution as vnun, where vn solves

an−k·Hun

H−1

∑
j=0

△vn+j + (an−k·Hun + bn+Hun+H)
H−1

∑
j=0

△vn+H+j = 0.

Using the substitution zn = vn+H − vn we get using un being a solution of Eq. (3.1) that

0 = an−kHunzn + (an−k·Hun + bn+Hun+H)zn+H = an−kHunzn − an+Hun+2Hzn+H. (3.5)

Whenever un 6= 0 for all n, then the solution of Eq. (3.5) is

zn =
D ∏

−k−1
j=1 an+jH

unun+H ∏
0
j=−k an+jH

,

for some D ∈ R. Finally, we can use the fact that zn = vn+H − vn. Hence,

vn = −
∞

∑
g=0

zn+gH, (3.6)

vn =
∞

∑
g=1

zn−gH.

Definition 3.5. We say that a solution un of Eq. (3.1) is minimal on [µ, ∞) ∩ Z if any linearly
independent solution vn of Eq. (3.1) with uµ = vµ, . . . , uµ+H−1 = vµ+H−1 satisfies vn > un, for
every n ≥ µ + H.
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Theorem 3.6. Let Eq. (3.1) have a positive solution un on Z, which is minimal on an interval [l, ∞),
where l ∈ Z. Then for every µ ∈ Z it holds

∞

∑
g=0

∏
g−k−1
j=g+1 (−aµ+jH)

uµ+gHuµ+(g+1)H ∏
g
j=g−k(−aµ+jH)

= ∞. (3.7)

Proof. Assume that for some µ ∈ Z the sum in (3.7) is finite. Since un is a positive solution, by
(3.6) we know that also

wn =







un ∑
∞
g=0

∏
g−k−1
j=g+1 (−an+jH)

un+gHun+(g+1)H ∏
g
j=g−k(−an+jH)

, n ≡ µ(mod H),

un, n 6≡ µ(mod H),

is a positive solution.
Next, we introduce

w∗
n =

wn

wµ
uµ, when n ≡ µ(mod H).

Therefore, w∗
n is also a solution where values of w∗

n and un are equal for H consecutive indices
around µ. Because the sum in (3.7) is finite, we get

lim inf
n→∞

w∗
n

un
=

uµ

wµ
lim
n→∞

∞

∑
g=0

∏
g−k−1
j=g+1 (−an+jH)

un+gHun+(g+1)H ∏
g
j=g−k(−an+jH)

= 0.

It means that from some N > l we have w∗
N < uN which is a contradiction with un being

a minimal solution on [l, ∞).

Through similar means as were used in [27], we can deduce the following statements. But
first, we have to define a generalization of Casoratian as

ωn,µ = det
(

uµ+nH vµ+nH

uµ+(n+1)H vµ+(n+1)H

)

.

Lemma 3.7. Let un, vn be two solutions of Eq. (3.1), then ωn,µ satisfies for all µ ∈ Z the equation

ωn+1,µ =
−aµ+(n−k)H

−aµ+(n+1)H
ωn,µ.

Proof. Because un, vn are solutions of (3.1) we have

ωn,µ = det

(

− aµ+(n+1)H
aµ+(n−k)H

uµ+(n+2)H − aµ+(n+1)H
aµ+(n−k)H

vµ+(n+2)H

uµ+(n+1)H vµ+(n+1)H

)

= (−1)

(

−
aµ+(n+1)H

aµ+(n−k)H

)

ωn+1,µ =
−aµ+(n+1)H

−aµ+(n−k)H
ωn+1,µ.

Hence, we can compute for some D ∈ R that

ωn,µ =
D

∏
n
j=n−k

(

−aµ+jH
)

n−k

∏
j=n+2

(

−aµ+(j−1)H

)

.

Note that if for some ωn,µ is D < 0, we get by swapping values of un and vn on the set
{µ + jH|j ∈ Z} that un and vn are still solutions of Eq. (3.1) and D > 0.
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Theorem 3.8. If Eq. (3.1) has two independent eventually positive solutions, then there are two inde-
pendent eventually positive solutions un, vn for which limn→∞

un
vn

= 0. Moreover, for arbitrary µ ∈ Z

sufficiently large

∞

∑
n

∏
n−k
j=n+2(−aµ+(j−1)H)

uµ+nHuµ+(n+1)H ∏
n
j=n−k(−aµ+jH)

= ∞, (3.8)

∞

∑
n

∏
n−k
j=n+2(−aµ+(j−1)H)

vµ+nHvµ+(n+1)H ∏
n
j=n−k(−aµ+jH)

< ∞. (3.9)

Proof. We can expect that un, vn are linearly independent, eventually positive and also that in
ωn,µ is D < 0, for all µ. Considering µ sufficiently large we have

△
(

uµ+nH

vµ+nH

)

=
uµ+nHvµ+(n+1)H − uµ+(n+1)Hvµ+nH

vµ+nHvµ+(n+1)H

=
D

vµ+nHvµ+(n+1)H ∏
n
j=n−k

(

−aµ+jH
)

n−k

∏
j=n+2

(

−aµ+(j−1)H

)

. (3.10)

Hence, (3.10) is negative, therefore uµ+nH
vµ+nH

is strictly decreasing in n, but uµ+nH
vµ+nH

is also positive

and thus bounded from below. We have that limn→∞
uµ+nH
vµ+nH

= Lµ ≥ 0. In case that for some µ is

Lµ > 0, we replace un by un − Lµvn, for n ∈ {µ + jH|j ∈ Z}. Hence, un will still be a solution
and we get that limn→∞

un
vn

= 0.
Moreover, by summing equality (3.10) we obtain

D
n−1

∑
g=k

1
vµ+gHvµ+(g+1)H ∏

g
j=g−k

(

−aµ+jH
)

g−k

∏
j=g+2

(

−aµ+(j−1)H

)

=
uµ+nH

vµ+nH
− uµ+kH

vµ+kH
,

n→∞−−−→ D
∞

∑
g=k

1
vµ+gHvµ+(g+1)H ∏

g
j=g−k

(

−aµ+jH
)

g−k

∏
j=g+2

(

−aµ+(j−1)H

)

= −uµ+kH

vµ+kH
,

which confirms the validity of (3.9). Using the unboundedness of vµ+nH
uµ+nH

, we get (3.8).

Corollary 3.9. Let for some µ be

∞

∑
n

∏
n−k
j=n+2(−aµ+(j−1)H)

∏
n
j=n−k(−aµ+jH)

= ∞,

and every solution of Eq. (3.1) be eventually bounded, then Eq. (3.1) has at most one linearly indepen-
dent eventually positive solution.

Proof. Suppose that Eq. (3.1) has two such solutions. Then from Theorem 3.8 there has to be
a solution vn such that 0 < vn < M for n sufficiently large and some M. Moreover, for ν

sufficiently large and satisfying ν ≡ µ (mod H) we get from (3.9) that

∞ >

∞

∑
n

∏
n−k
j=n+2(−aν+(j−1)H)

vν+nHvν+(n+1)H ∏
n
j=n−k(−aν+jH)

>
1

M2

∞

∑
n

∏
n−k
j=n+2(−aν+(j−1)H)

∏
n
j=n−k(−aν+jH)

.

Which is a contradiction.
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As an example we consider the equation

− 1
2

yn + yn+2 −
1
2

yn+4 = 0. (3.11)

It has two solutions un = K, vn = Kn of eventually one sigh as well as two sign changing
ones (−1)nun, (−1)nvn. Moreover, it holds that

∞

∑
∏

n−k
j=n+2(−aµ+2(j−1))

uµ+2nuµ+2(n+1) ∏
n
j=n−k(−aµ+2j)

= ∞,

∞

∑
∏

n−k
j=n+2(−aµ+2(j−1))

vµ+2nvµ+2(n+1) ∏
n
j=n−k(−aµ+2j)

< ∞,

where ai ≡ −1/2 and we can choose k arbitrarily. According to [16] Eq. (3.11) has a minimal
solution on intervals [2, ∞) and (−∞,−2].

We define the Riccati transformation through the substitution

sn =
bn+Hyn+H

(−an−kH)yn
, and qn =

anan−kH

bnbn+H
, (3.12)

to obtain

an−k·Hyn + bn+Hyn+H + an+Hyn+2H = 0,
an−k·Hyn

bn+Hyn+H
+ 1 +

an+Hyn+2H

bn+Hyn+H
= 0,

− 1
sn

+ 1 −
an+Han−(k−1)H

bn+Hbn+2H
sn+H = 0,

qn+Hsn+H +
1
sn

= 1. (3.13)

We emphasize that qn > 0 for all n.

Theorem 3.10. Eq. (3.13) has a positive solution if and only if Eq. (3.1) has also a positive solution.

Proof. First, if Eq. (3.1) has a positive solution yn then via the transformation sn = bn+Hyn+H
(−an−kH)yn

we can see that sn is also a positive solution of Eq. (3.13).
Second, if sn is a positive solution of Eq. (3.13) then we can consider the initial conditions

yN = 1, . . . , yN+H−1 = 1 for some N ∈ Z and the recurrence relation

yn+H =
(−an−kH)sn

bn+H
yn.

Then, for n ≥ N, yn is a positive solution of Eq. (3.1). The rest of yn is computed through
the relation

yn =
bn+Hyn+H

(−an−kH)sn
.

Note that the Theorem 3.10 holds even if we consider eventually positive solutions instead
of positive ones. Moreover, at this place, we can see a connection to Theorem 3.2. If H is an
even number, then solutions yn and (−1)nyn give the same positive solution sn of Eq. (3.13).
For H being an odd number, the existence of a solution (−1)nyn would give a solution sn of
Eq. (3.13) that is eventually negative. Nevertheless, such sn cannot exist.
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Lemma 3.11. Let qn ≥ pn > 0 and let sn be a positive solution of

qn+Hsn+H +
1
sn

= 1

on [N, ∞), where N ∈ Z. Then the equation

pn+Hun+H +
1

un
= 1,

has a solution un such that un ≥ sn > 1 on [N, ∞).

Proof. If sn is a positive solution, then also qn+Hsn+H > 0, and so 1
sn

= 1 − qn+Hsn+H < 1
implies that sn > 1 on [N, ∞).

Now we consider initial conditions such that uN ≥ sN , . . . , uN+H−1 ≥ sN+H−1 and we get
that if un ≥ sn then

pn+Hun+H = 1 − 1
un

= qn+Hsn+H +
1
sn

− 1
un

≥ qn+Hsn+H.

Therefore, un+H ≥ qn+Hsn+H
pn+H

≥ sn+H and the statement of the lemma holds by induction.

Theorem 3.12. If qn of (3.12) satisfy 1/(4 − ε) ≤ qn for some ε > 0 and for all n sufficiently large,
then Eq. (3.1) cannot have an eventually positive solution.

Proof. If ε ≥ 4 it would mean that bnbn+H
anan−kH

≤ (4 − ε) ≤ 0, however because ai < 0, bi > 0 this
cannot be true. Here the statement shadows Lemma 3.1.

Now we know that ε < 4 and assume that (3.1) has an eventually positive solution. Then
there is an eventually positive solution sn of Eq. (3.13). By Lemma 3.11 we have that the equa-
tion

un+H

4 − ε
+

1
un

= 1, (3.14)

has a solution un ≥ sn > 1 on some [N, ∞), for a sufficiently large N. If we take a positive
sequence given by xN = 1, . . . , xN+H−1 = 1, and xn+H = unxn√

4−ε
, then also un =

√
4 − ε xn+H

xn
and

by substituting into (3.14) we get that xn is a positive solution of

xn+2H −
√

4 − εxn+H + xn = 0, (3.15)

for n ≥ N. This is a contradiction because Eq. (3.15) does not have an eventually positive
solution. In fact Eq. (3.15) has constant coeficients and we can find all its solutions through
the characteristic polynomial and de Moivre’s formula. They are cos nθk and sin nθk where
θk =

(

arctan ε
4−ε + 2kπ

)

/H, for k = 0, . . . , H − 1.

Remark 3.13. We discussed eventually positive solutions, which are positive as n → ∞. We
can discuss the same situation if n → −∞ by taking these results and rewriting Eq. (3.1) ap-
propriately. We emphasize that if an equation does not have and eventually positive solution,
hence it even does not have a positive solution. If an equation has a positive solution, it is also
an eventually positive solution.

Theorem 3.14. If qn of (3.12) satisfy qn ≤ 1/4, for all n, then Eq. (3.1) has a positive solution.
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Proof. First, let sn be a solution of Eq. (3.13). If sN ≥ 2 for some N then qN+HsN+H = 1 − 1
sN

≥
1/2. Therefore, because 1/qn ≥ 4, we have sN+H ≥ 1

2qN+H
≥ 1/2 · 4 = 2. By induction, we

know that sn ≥ 2, for all n ∈ {N + lH|l ∈ [0, ∞) ∩ Z}.
Second, let again sn be a solution of Eq. (3.13). If 0 < sN+H ≤ 2 for some N then 1

sN
=

1 − qN+HsN+H ≥ 1 − 1/4 · 2 = 1/2 and therefore sN ≤ 2. But also 1/sN > 0 implies that
sN > 0. By induction, we know that 0 < sn ≤ 2 for all n ∈ {N + lH|l ∈ (−∞, 1] ∩ Z}.

Finally, let sn be a solution of Eq. (3.13) together with initial conditions sN = 2, . . . ,
sN+H−1 = 2, for some N ∈ Z. From previous two parts we have, that sn is a positive so-
lution of Eq. (3.13) on Z and by Theorem 3.10 we know that Eq. (3.1) has also a positive
solution.

Corollary 3.15. If bn ≥ max{−an−Hλ,−4an−kH/λ} for some λ > 0 then Eq. (3.1) has a positive
solution.

Proof. The assumption of the corollary implies that bn ≥ −4an−kH/λ and bn+H ≥ −anλ. It
follows that bnbn+H ≥ 4anan−kH and the rest is due to Theorem 3.14.

We can connect Eq. (2.1) with Eq. (3.1) for H = 1 by shifting it. In the first part, the equiv-
alence condition for Eq. (2.1) to have a positive solution was formulated. One could probably
obtain similar relation by extension of the results of [16] for Eq. (3.1).

Moreover, it remains a question how this connects to qn. By Theorem 3.12 we know that
if Eq. (3.1) has a positive solution, then surely qn ≤ 1/4 for n sufficiently large. But we can
ask whether Eq. (3.1) can have a positive solution even if qn > 1/4 for some n and how
Condition (2.5) connects to it.

Using again Eq. (3.11), we see that qn = 1/4 and so by Theorem 3.14, we know that this
equation has a positive solution.

Theorem 3.16. If Eq. (3.1) has a solution yn such that yµ+nH is a positive sequence for some µ ∈ Z,
then for every other solution ȳn of Eq. (3.1), the sequence ȳµ+nH must have at most one generalized
zero (from Definition 2.8) on Z.

Proof. Consider the substitution xp = yµ+(p+1)H in Eq. (3.1) and by taking n = µ+ pH, Eq. (3.1)
changes into

aµ+(p−k)Hyµ+pH + bµ+(p+1)Hyµ+(p+1)H + aµ+(p+1)Hyµ+(p+2)H = 0.

Now if we take ãp = aµ+(p+1)H, b̃p = bµ+(p+1)H, it transforms into

ãp−k−1xp−1 + b̃pxp + ãpxp+1 = 0,

which corresponds to Eq. (2.1) and so by Theorem 2.15 we know that this equation is discon-
jugate.

To further refine results obtained in Theorem 3.16, we formulate the definition of the sep-
arately nonoscillatory solution. However, let us first recall the following definition, which can
be found, for example, in [4].

Definition 3.17. A nontrivial solution yn of self-adjoint difference equation of order 2m has
a generalized zero of order m at n0 + 1 if yn0 6= 0, yn0+1 = · · · = yn0+m−1 = 0, and
(−1)myn0 yn0+m ≥ 0.



Even order equation with delay in coefficient 15

This definition corresponds to Definition 2.8 if m = 1. Nevertheless, for our purposes
we need a combination of Definitions 2.8 and 3.17. We start by defining for some p ∈ N

equivalence relation x ∼ y on Z such that x ∼ y if and only if x = y+ jp for some j ∈ Z. From
this equivalence we obtain equivalence classes A1(p), . . . , Ap(p) ⊆ Z such that i ∈ Ai(p). Of
course A1(1) = Z.

Next, we define on a linearly ordered set S for x ∈ S function

ρ(x) = max{y ∈ S|y < x}.

Definition 3.18. Solution yn of a given difference equation has n0 a generalized zero on a lin-
early ordered set S if yn is nontrivial on S and for n0 ∈ S is yn0 = 0 or yρ(n0)yn0 < 0 provided
that ρ(n0) exists. Solution yn is nonoscillatory on Ai(p) ∩ I provided that yn has on Ai(p) ∩ I
only finitely many generalized zeros.

For example, recall again Eq. (3.11), which is of the fourth-order and has a solution

yn =

{

1, n even,

0, n odd.

Such solution has infinitely many generalized zeros with respect to both Definition 2.8 and
3.17. On the other hand, such solution does not have a generalized zero on Ai(2) for both
i = 1 (here yn is positive) and i = 2 (here yn is trivial). Another solution of Eq. (3.11) is zn = 1
which does not have a generalized zero under any Definition of 2.8, 3.17 and 3.18.

Definition 3.19. Solution yn of a given difference equation is separately i-nonoscillatory on
I(p) if there is a set J ⊆ {1, . . . , p}, |J| = i, such that yn is nonoscillatory on Aj(p) ∩ I for all
j ∈ J. If all solutions of the equation are separately i-nonoscillatory on I(p), then this equation
is called separately i-nonoscillatory on I(p).

In this paper, we consider for I only Z or [N, ∞) as well as p = H, because they make
the most sense to us. We assume that we could get some interesting or strange results for
a different choice of I and p. Moreover, with the choice of p = 1 and I = [N, ∞), we get
the usual definition of nonoscillatory solutions used for second-order linear equations through
generalized zeros of Definition 2.8. Such solutions are eventually positive or negative. Hence,
if a solution is separately nonoscillatory on I(1), then it is also separately nonoscillatory on
I(p).

Corollary 3.20. Assume there is a set J ⊆ {1, . . . , H}, |J| = i such that qn of (3.12) satisfies
qn ≤ 1/4, for all n ∈ Aj(H) and j ∈ J, then Eq. (3.1) is separately i-nonoscillatory on Z(H).

Proof. By the proof of Theorem 3.14 we know that Eq. (3.1) has a solution which is positive on
Aj(H), j ∈ J. Hence, by Theorem 3.16 we know that every solution is nonoscillatory on Aj,
where j ∈ J.

Theorem 3.21. If there is a subsequence qnl of qn such that qnl ≥ 1 for nl → ∞, nl ∈ Ai(H) and
some i ∈ {1, . . . , H}, then Eq. (3.1) cannot have yn a nonoscillatory solution on Ai(h) ∩ [N, ∞), for
some N ∈ N.

Proof. Suppose that there is such a solution, then we can assume that it is positive on I =

Ai(H)∩ [N, ∞) for N sufficiently large. Therefore, Eq. (3.13) has a solution sn such that sn > 0
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on I. Moreover, by definition qn > 0 for all n and if n ∈ Ai(H), then also n + H ∈ Ai(H).
Hence,

qn+Hsn+H +
1
sn

= 1,

and we have that 1/sn < 1 on I, thus sn > 1 on I. Nevertheless, for the same reason
qn+Hsn+H < 1 on I and so qn < 1, for all n ≥ N + H, n ∈ I. That is a contradiction with
our assumption.

In such a case, equation cannot be separately H-nonoscillatory on I(H) where I = [N, ∞).

Corollary 3.22. If

lim sup
n→∞

1
n

n

∑
j=1

qi+jH > 1,

then Eq. (3.1) cannot have yn a nonoscillatory solution on Ai(H) ∩ [N, ∞) for some N ∈ N.

Proof. Suppose there is such a solution. Then by Theorem 3.21, qn < 1 on Ai(H) ∩ [N, ∞), for
N sufficiently large and let m ∈ Ai(H) ∩ [N, ∞) be arbitrary. Then it holds ∑

n
j=1 qm+jH < n

and also 1
n ∑

n
j=1 qi+jH < 1 + C

n , for some C ∈ R. Therefore,

lim sup
n→∞

1
n

n

∑
j=1

qi+jH ≤ 1,

which is a contradiction.

Theorem 3.23. If Eq. (3.1) has a solution yn > 0 on Ai(H) ∩ [N, ∞) and ∏
n
j=1

bi+jH

(−ai+jH)
is a bounded

sequence, then yn is bounded on Ai(H) ∩ [N, ∞).

Proof. Taking zn = yn+H
yn

on I = Ai(H)∩ [N, ∞), for N sufficiently large, we can see that zn > 0
is a solution of the equation

(−an−kH)
1
zn

+ (−an+H)zn+H = bn+H,

on I. Because all the terms are positive, it holds that (−an+H)zn+H < bn+H on I. Let M ∈ I be
arbitrary and we have

yM+nH

yM+H
=

n−1

∏
j=1

yM+(j+1)H

yM+jH
=

n−1

∏
j=1

zM+jH <

n−1

∏
j=1

bM+jH

(−aM+jH)
.

Hence, yM+nH < yM+H ∏
n−1
j=1

bM+jH

(−aM+jH)
for all n ∈ N is giving us the result.

Corollary 3.24. If Eq. (3.1) has a positive solution yn and ∏
n
j=1

bi+jH

(−ai+jH)
, ∏

1
j=−n

bi+jH

(−ai+(j−k)H)
are

bounded sequences for every i ∈ {1, . . . , H}, then yn is bounded on Z.

Proof. By Theorem 3.23 we see that yn is bounded on all Ai(H) ∩ [N, ∞) for n → ∞. Via
the same way, we can see that

bn+H > (−an−kH)
1
zn

= (−an−kH)
yn

yn+H
,

for every n and similarly we see that yn is bounded even for n → −∞.
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Corollary 3.25. If ∏
n
j=1

bi+jH

(−ai+jH)
is a bounded sequence for every i ∈ {1, . . . , H} and for some µ ∈ Z

is
∞

∑
n

∏
n−k
j=n+2(−aµ+(j−1)H)

∏
n
j=n−k(−aµ+jH)

= ∞,

then Eq. (3.1) has at most one linearly independent eventually positive solution.

Proof. Suppose that there are two such solutions. Then by Theorem 3.23, they are bounded as
n → ∞. Using the proof of Corollary 3.9, we get a contradiction.

It is posible to extend previous ideas to other equations. As an example, we consider
the equation

cn−1anyn + bn+1yn+1 + cn+1an+1yn+2 = 0.

It would result in similar but more complicated statements. However, our results can be
extended even more in a similar fashion, how [23] extends the results of [27]. It should also be
possible to find other criteria of separate oscillation shadowing the approach used for the case
of H = 1, k = 0.
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Abstract. In the paper, new single-condition criteria for the oscillation of all solu-
tions to a second-order half-linear delay differential equation in noncanonical form are
obtained, relaxing a traditionally posed assumption that the delay function is nonde-
creasing. The oscillation constant is best possible in the sense that the strict inequality
cannot be replaced by the nonstrict one without affecting the validity of the theorem.
This sharp result is new even in the linear case and, to the best of our knowledge, im-
proves all the existing results reporting in the literature so far. The advantage of our
approach is the simplicity of the proof, only based on sequentially improved mono-
tonicities of a positive solution.
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1 Introduction

Consider the second-order half-linear delay differential equation of the form

(

r(t)
(

y′(t)
)α
)′

+ q(t)yα(τ(t)) = 0, t ≥ t0 > 0, (1.1)

where we assume that α > 0 is a quotient of odd positive integers; functions r, q, and τ are

continuous positive functions, τ(t) ≤ t and limt→∞ τ(t) = ∞. Without further mentioning, we

will assume that (1.1) is in so-called noncanonical form, i.e.,

π(t0) :=
∫

∞

t0

dt

r1/α(t)
< ∞.

By a solution of Eq. (1.1) we mean any differentiable function y which does not vanishes

eventually such that r(y′)α is differentiable, satisfying (1.1) for sufficiently large t. As is cus-

tomary, a solution y(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor

BCorresponding author. Email: jozef.dzurina@tuke.sk



2 J. Džurina and I. Jadlovská

eventually negative. Otherwise, it is said to be nonoscillatory. The equation itself is termed

oscillatory if all its solutions oscillate.

The oscillation theory of second-order functional differential equations has attracted a

great portion of attention, which is evidenced by extensive research in the area. For a compact

summary of the most recent results and appearing open problems, the reader is referred to

the recent monographs the monographs by Agarwal et al. [2–5], Došlý and Řehák [12] Győri

and Ladas [16], and Saker [22].

In the paper, we obtain new single-condition criteria for the oscillation of all solutions to

(1.1) with unimprovable constants. This sharp result is new even in the linear case and, to the

best of our knowledge, improves all the existing results reported in the literature so far. In the

linear case, we also formulate analogous results for canonical equations.

The structure of the paper is the following. In Section 2, we revise the oscillatory properties

of various useful equations serving as models for comparison of the obtained results. In

Section 3, main results of the paper are stated, and their proofs are given in Section 4.

2 Comparison equations in the oscillation theory

Euler-type differential equations have been of utmost importance in the oscillation theory

since Sturm’s pioneering work in 1863. Till now, they are commonly used to examine the

sharpness of general criteria derived by different methods. The optimal scenario is when the

obtained criterion gives a sharp result for the Euler-type equation; or at least it is closer to it

for a given set of parameters, compared to another one. Perhaps the most familiar one is the

second-order linear Euler equation

y′′(t) +
q0

t2
y(t) = 0 (2.1)

which is oscillatory if and only if

q0 >
1

4
. (2.2)

In 1893, A. Kneser [17] firstly used Sturmian methods and (2.1) to show that the linear equation

y′′(t) + q(t)y(t) = 0

is oscillatory if

lim inf
t→∞

t2q(t) >
1

4

and nonoscillatory if

lim sup
t→∞

t2q(t) <
1

4
.

For our purposes, we consider, as a particular case of (1.1), the generalized Euler-type

half-linear ordinary differential equation

(

r(t)
(

y′(t)
)α
)′

+
q0

r1/α(t)πα+1(t)
yα(t) = 0, q0 > 0. (2.3)

It is well-known that (2.3) is oscillatory if and only if its characteristic equation

c1(m) := αmα(1 − m) = q0
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has no real roots what happens if

q0 > max{c1(m) : 0 < m < 1} = c1

(

α

α + 1

)

=

(

α

α + 1

)α+1

, (2.4)

cf. [2, Remark 3.7.1] or [12]. If condition (2.4) fails, then (2.3) has a nonoscillatory solution

y(t) = πm(t). As an immediate consequence of the Sturmian comparison theorem and the

above result concerning (2.3), we get the following version of the classical Kneser oscillation

and nonoscillation criterion for the noncanonical equation

(

r(t)
(

y′(t)
)α
)′

+ q(t)yα(t) = 0. (2.5)

Proposition 2.1. Suppose that

lim inf
t→∞

r1/α(t)πα+1(t)q(t) >

(

α

α + 1

)α+1

. (2.6)

Then (2.5) is oscillatory. If

lim sup
t→∞

r1/α(t)πα+1(t)q(t) <

(

α

α + 1

)α+1

,

then (2.5) is nonoscillatory.

As another important particular case of (1.1), we consider the linear Euler-type equation

with proportional delay, namely,

(

r(t)y′(t)
)′
+

q0

r(t)π2(t)
y(kt) = 0, 0 < k ≤ 1, (2.7)

where r(t) = tp+1, p > 0. By a simple change of variables

s =
1

π(t)
and y(t) =

u(s)

s
, (2.8)

(2.7) can be rewritten as

u′′(s) +
q0

kps2
u(kps) = 0. (2.9)

By transforming (2.9) into a constant-coefficient-constant-delay equation, Kulenović [18]

showed that (2.9) is oscillatory if and only if the associated characteristic equation

c2(m) := m(1 − m)kmp = q0

has no real root what happens if

q0 > max{c2(m) : 0 < m < 1} = c2(mmax), (2.10)

where

mmax =
−
√

r2 + 4 + r + 2

2r
, r = −p ln k.

It is well-known that the Sturmian comparison theorem fails to extend to the more general

equation
(

r(t)y′(t)
)′
+ q(t)y(τ(t)) = 0 (2.11)
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due to the delayed argument. For delay differential equations, Kusano and Naito established

an alternative comparison principle [19] in the sense that oscillation of the studied differential

equation can be deduced from the oscillation of a simpler one. Using their result [19, Theo-

rem 3] for (2.7), one can conclude that the equation
(

tp+1y′(t)
)′

+ q(t)y(kt) = 0, p > 0, 0 < k ≤ 1, (2.12)

is oscillatory if

lim inf
t→∞

t1−pq(t)

p2
> max{c2(m) : 0 < m < 1}.

As a generalized version of (2.7), we consider

(

r(t)y′(t)
)′
+

q0

r(t)π2(t)
y(τ(t)) = 0, (2.13)

with the constant ratio π(τ(t))/π(t) = λ. It can be verified by a direct substitution that (2.13)

has a nonoscillatory solution y(t) = πm(t) if

q0 ≤ max{c3(m) : 0 < m < 1},

where

c3(m) := m(1 − m)λ−m.

The “only if” part here is difficult to prove because the transformation to a constant-coefficient-

constant-delay form is obviously impossible. To the best of the authors’ knowledge, there is

no oscillation criterion for (2.11) which would be sharp for (2.13).

Finally, we consider the most general Euler-type half-linear delay differential equation
(

r(t)
(

y′(t)
)α
)′

+
q0

r1/α(t)πα+1(t)
yα(τ(t)) = 0, q0 > 0, t ≥ t0, (2.14)

where the functions r and τ are general and such that π(τ(t))/π(t) = λ. Note that (2.14)

includes both (2.3) and (2.13) as particular cases. As previously, we find that (2.14) has a

nonoscillatory solution y(t) = πm(t) if there is a positive root of the equation

c4(m) := αmα(1 − m)λ−αm = q0, (2.15)

what happens if

q0 ≤ max{c4(m) : 0 < m < 1}. (2.16)

In the paper, we will show that (2.16) is not only sufficient but necessary for the existence of

nonoscillatory solution of (2.14). Before that, we conclude the introductory section by revising

briefly different approaches and oscillation results available for the equation (1.1). Here, it is

important to stress that all below-mentioned results require that τ is a nondecreasing function.

Because of its simpler structure of nonoscillatory solutions, (1.1) has been mostly studied in

canonical form and much less efforts have been undertaken for noncanonical equations. Since

Trench canonical theory [24] fails to extend to half-linear equations, a common approach

in the literature for investigation of such equations consists in extending known results for

canonical ones, see [1, 11, 13–15, 20, 21, 23, 25]. In 2017, Džurina and Jadlovská [9] revised a

variety of existing results by removing a traditionally imposed condition and obtained several

one-condition oscillation criteria for (1.1).

In general, there are two main factors contributing to the oscillatory behavior of (1.1): the

second-order nature of the equation and the presence of the delay; mostly treated indepen-

dently by an application of one of the following methods:
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1. using comparison with a second-order half-linear ordinary differential equation, directly

or indirectly via generalized Riccati generalized inequality

u′(t) + q(t) + αr−1/α(t)u(α+1)/α(t) ≤ 0, (2.17)

2. using comparison with a second-order linear differential equation; by employing lin-

earization techniques,

3. using comparison with a first-order linear delay differential equation; where the delay

is essential, but the information about the second-order nature of the equation is lost.

Another method based on the weighted Hardy inequality was presented in [8]. Any of works

[1, 8, 11, 13–15, 20, 21, 23, 25], employing the methods (1) or (2) gives at best

q0 >

(

α

α + 1

)α+1

for the Euler equation (2.14) with r(t) = tα+1 and τ(t) = kt, k ∈ (0, 1], which is sharp only

in the ordinary case (2.3). Here, it is easy to see that the influence of the delay is completely

lost. Some improvement was recently made by present authors [10] under assumption that

π(τ(t))/π(t) ≥ λ > 1, which yields

λq0 q0 >

(

α

α + 1

)α+1

.

On the other hand, the method (3) employed in [7] requires

q1/α
0 ln

1

k
>

1

e
.

for (2.14) with r(t) = tα+1 to be oscillatory.

The purpose of the paper is to obtain the best-possible single-condition oscillation criterion

for (1.1), where both the above-mentioned factors jointly contribute. The ideas partly exploit

the very recent ones from [6] for the linear equation
(

r(t)y′(t)
)′
+ q(t)y(τ(t)) = 0. (2.18)

Theorem A (See [6, Theorem 3.4]). Assume that τ(t) is nondecreasing, τ(t) < t,
∫

∞

t0

q(s)π(s)ds = ∞, (2.19)

and there exists a constant β0 > 0 such that

q(t)π2(t)r(t) ≥ β0

eventually. If there exists n ∈ N, such that βn < 1 for n = 0, 1, 2, . . . , n − 1, and

lim inf
t→∞

∫ t

τ(t)
q(s)τ(s) >

1 − βn

e
,

where

βn :=
β0λβn−1

1 − βn−1

for n ∈ N and λ satisfying
π(τ(t))

π(t)
≥ λ

eventually, then (2.18) is oscillatory.
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Our newly obtained results (Theorems 3.1 and 3.4) can be regarded as a natural extension

of the oscillation part of Proposition 2.1 to a half-linear delay differential equation. Their

advantage over the known results is threefold: first of all, Theorem 3.1 involves the oscillation

constant which is optimal for the most general Euler-type comparison equation (2.14), and

hence unimprovable. Secondly, in contrast with related works [1,7,8,10,11,13–15,20,21,23,25],

we relaxed the assumption that τ is nondecreasing. Thirdly, our results in a special case α = 1

improve Theorem A in several ways:

1. we use the limit inferior of quantities q(t)π2(t)r(t) and π(τ(t))/π(t) in definitions of

corresponding constants, which is less-restrictive to apply;

2. we show that the iteration process can be omitted in final criteria;

3. our results do not require τ(t) < t nor the monotonicity of τ, as we have already men-

tioned.

3 Main results

In this section, we state the main results of the paper.

Theorem 3.1. Let

λ∗ := lim inf
t→∞

π(τ(t))

π(t)
< ∞. (3.1)

If

lim inf
t→∞

r1/α(t)πα+1(t)q(t) > max{c(m) := αmα(1 − m)λ−αm
∗ : 0 < m < 1}, (3.2)

then (1.1) is oscillatory.

Corollary 3.2. By some computations, one has

max{c(m) : 0 < m < 1} = c(mmax),

where

mmax =











α

α + 1
, for λ∗ = 1

−
√

(αr + α + 1)2 − 4α2r + αr + α + 1

2αr
, for λ∗ 6= 1 and r = ln λ∗,

and c(m) is defined by (3.2).

Remark 3.3. It is easy to verify that for τ(t) = t, condition (3.2) reduces to (2.6). In view of

(2.16), it is clear that condition (3.2) is sharp in the sense that the strict inequality cannot be re-

placed by the nonstrict one without affecting the validity of the theorem. Hence, Theorem 3.1

can be viewed as a sharp extension of Kneser oscillation criterion (2.6) to a delay half-linear

equation.

For the remaining case when (3.1) is violated, we have the following result.

Theorem 3.4. Let

lim
t→∞

π(τ(t))

π(t)
= ∞. (3.3)

If

lim inf
t→∞

r1/α(t)πα+1(t)q(t) > 0,

then (1.1) is oscillatory.
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In the linear case α = 1, it is possible to transfer the oscillation property from (1.1) to the

canonical equation
(

r̃(t)x′(t)
)′
+ q̃(t)x(τ(t)) = 0, t ≥ t0 > 0, (3.4)

where r̃ and q̃ are continuous positive functions, and

R(t) =
∫ t

t0

ds

r̃(s)
→ ∞ as t → ∞.

Theorem 3.5. Let

δ∗ := lim inf
t→∞

R(t)

R(τ(t))
< ∞.

If

lim inf
t→∞

r̃(t)q̃(t)R(t)R(τ(t)) > max{m(1 − m)δ−m
∗ : 0 < m < 1},

then (3.4) is oscillatory.

Theorem 3.6. Let

lim
t→∞

R(t)

R(τ(t))
= ∞.

If

lim inf
t→∞

r̃(t)q̃(t)R(t)R(τ(t)) > 0,

then (3.4) is oscillatory.

4 Auxiliary lemmas and proofs of main results

Let us define

β∗ := lim inf
t→∞

1

α
r1/α(t)πα+1(t)q(t). (4.1)

The arguments in the proofs are based on the existence of positive β∗, which is also necessary

for the validity of Theorems 3.1 and 3.4. Then, for arbitrary fixed β ∈ (0, β∗) and λ ∈ [1, λ∗),
there is a t1 ≥ t0, such that

1

α
q(t)r1/α(t)πα+1(t) ≥ β and

π(τ(t))

π(t)
≥ λ on [t1, ∞). (4.2)

In the sequel, we assume that all functional inequalities hold eventually, that is, they are

satisfied for all t large enough.

Lemma 4.1. Let β∗ > 0. If (1.1) has an eventually positive solution y, then

(i) y is eventually decreasing with limt→∞ y(t) = 0;

(ii) y/π is eventually nondecreasing.

Proof. (i). By [9, Theorem 1], the conclusion applies if

∫

∞

t0

1

r1/α(t)

(

∫ t

t0

q(s)ds

)1/α

dt = ∞. (4.3)
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Indeed, by simple computations, we see that

∫ t

t1

1

r1/α(u)

(

∫ u

t1

q(s)ds

)1/α

du ≥ α
√

β

∫ t

t1

1

r1/α(u)

(

∫ u

t1

α

r1/α(s)πα+1(s)
ds

)1/α

du

= α
√

β

∫ t

t1

1

r1/α(u)

(

1

πα(u)
− 1

πα(t1)

)1/α

du

with β defined by (4.2). Since π−α(t) → ∞ as t → ∞, for any ℓ ∈ (0, 1) and t large enough, we

have π−α(t)− π−α(t1) ≥ ℓαπ−α(t) and hence

∫ t

t1

1

r1/α(u)

(

∫ u

t1

q(s)ds

)1/α

du ≥ ℓ
α
√

β

∫ t

t1

1

r1/α(u)π(u)
du = ℓ

α
√

β ln
π(t1)

π(t)
→ ∞ as t → ∞.

(ii). Using the fact that r1/αy′ is nondecreasing, we obtain

y(t) ≥ −
∫

∞

t

1

r1/α(s)
r1/α(s)y′(s)ds ≥ −r1/α(t)y′(t)π(t),

i.e.
( y

π

)′
=

r1/αy′π + y

r1/απ2
≥ 0.

The proof is complete.

Remark 4.2. Compared to the original Lemma statement used in [9, Theorem 1], we replaced

the integral condition (4.3) by the requirement of positive β∗. In Theorem A, condition (2.19)

was used to arrive at the same conclusion.

To improve the (i)-part of Lemma 4.1, we define a sequence {βn} by

β0 = α
√

β∗

βn =
β0λ

βn−1
∗

α
√

1 − βn−1

, n ∈ N.
(4.4)

By induction, it is easy to show that if for any n ∈ N, βi < 1, i = 0, 1, 2, . . . , n, then βn+1 exists

and

βn+1 = ℓnβn > βn, (4.5)

where ℓn is defined by

ℓ0 =
λ

β0
∗

α
√

1 − β0

ℓn+1 = λ
β0(ℓn−1)
∗ α

√

1 − βn

1 − ℓnβn
, n ∈ N0.

Lemma 4.3. Let β∗ > 0 and λ∗ < ∞. If (1.1) has an eventually positive solution y, then for any

n ∈ N0 y/πβn is eventually decreasing.

Proof. Let y be a positive solution of (1.1) on [t1, ∞) where t1 ≥ t0 is such that y(τ(t)) > 0 and

(4.2) holds for t ≥ t1. Integrating (1.1) from t1 to t, we have

− r(t)
(

y′(t)
)α

= −r(t1)
(

y′(t1)
)α

+
∫ t

t1

q(s)yα(τ(s))ds. (4.6)
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By (i) of Lemma 4.1, y is decreasing and so y(τ(t)) ≥ y(t) for t ≥ t1. Therefore,

−r(t)
(

y′(t)
)α ≥ −r(t1)

(

y′(t1)
)α

+
∫ t

t1

q(s)yα(s)ds ≥ −r(t1)
(

y′(t1)
)α

+ yα(t)
∫ t

t1

q(s)ds.

Using (4.2) in the above inequality, we get

−r(t)
(

y′(t)
)α ≥ −r(t1)

(

y′(t1)
)α

+ βyα(t)
∫ t

t1

α

r1/α(s)πα+1(s)
ds

≥ −r(t1)
(

y′(t1)
)α

+ β
yα(t)

πα(t)
− β

yα(t)

πα(t1)
.

(4.7)

From (i)-part of Lemma 4.1, we have that limt→∞ y(t) = 0. Hence, there is a t2 ∈ [t1, ∞) such

that

−r(t1)
(

y′(t1)
)α − β

yα(t)

πα(t1)
> 0, t ≥ t2.

Thus,

− r(t)
(

y′(t)
)α

> β
yα(t)

πα(t)
(4.8)

or

−r1/α(t)y′(t)π(t) > α
√

βy(t) = ε0β0y(t),

where ε0 = α
√

β/β0 is an arbitrary constant from (0, 1). Therefore,

(

y

π
α
√

β

)′

=
r1/αy′π

α
√

β + α
√

βπ
α
√

β−1y

r1/απ2 α
√

β
=

π
α
√

β−1
(

α
√

βy + πr1/αy′
)

r1/απ2 α
√

β
≤ 0, t ≥ t2. (4.9)

Integrating (1.1) from t2 to t and using that y/π
α
√

β is decreasing, we have

−r(t)
(

y′(t)
)α ≥ −r(t2)

(

y′(t2)
)α

+

(

y(τ(t))

π
α
√

β(τ(t))

)α
∫ t

t2

q(s)πα α
√

β(τ(s))ds

≥ −r(t2)
(

y′(t2)
)α

+

(

y(t)

π
α
√

β(t)

)α
∫ t

t2

q(s)

(

π(τ(s))

π(s)

)α α
√

β

πα α
√

β(s)ds.

By virtue of (4.2), we see that

−r(t)
(

y′(t)
)α ≥ − r(t2)

(

y′(t2)
)α

+ β

(

y(t)

π
α
√

β(t)

)α
∫ t

t2

α
(

π(τ(s))
π(s)

)α α
√

β

r1/α(s)πα+1−α α
√

β(s)
ds

≥ − r(t2)
(

y′(t2)
)α

+
β

1 − α
√

β
λα α

√
β

(

y(t)

π
α
√

β(t)

)α
∫ t

t2

α(1 − α
√

β)

r1/α(s)πα+1−α α
√

β(s)
ds

= − r(t2)
(

y′(t2)
)α

+
β

1 − α
√

β
λα α

√
β

(

y(t)

π
α
√

β(t)

)α(

1

πα(1− α
√

β)(t)
− 1

πα(1− α
√

β)(t2)

)

.

(4.10)
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Now, we claim that limt→∞ y(t)/π
α
√

β(t) = 0. It suffices to show that there is ε > 0 such that

y/π
α
√

β+ε is eventually decreasing. Since π(t) tends to zero, there is a constant

ℓ ∈





α

√

1 − α
√

β

λ
α
√

β
, 1





and a t3 ≥ t2 such that

1

πα(1− α
√

β)(t)
− 1

πα(1− α
√

β)(t2)
> ℓ

α 1

πα(1− α
√

β)(t)
, t ≥ t3.

Using the above inequality in (4.10) yields

−r(t)
(

y′(t)
)α ≥ ℓαβ

1 − α
√

β
λα α

√
β

(

y(t)

π(t)

)α

,

i.e.,

− r1/αy′(t) ≥
(

α
√

β + ε
) y(t)

π(t)
, (4.11)

where

ε = α
√

β





ℓλ
α
√

β

α

√

1 − α
√

β
− 1



 > 0.

Thus, from (4.11),
(

y

π
α
√

β+ε

)′

≤ 0, t ≥ t3,

and hence the claim holds. Therefore, for t4 ∈ [t3, ∞),

−r(t2)
(

y′(t2)
)α − β

1 − α
√

β
λα α

√
β

(

y(t)

π
α
√

β(t)

)α
1

πα−α α
√

β(t2)
> 0, t ≥ t4.

Turning back to (4.10) and using the above inequality,

−r(t)
(

y′(t)
)α ≥ − r(t2)

(

y′(t2)
)α

+
β

1 − α
√

β
λα α

√
β

(

y(t)

π(t)

)α

− β

1 − α
√

β
λα α

√
β

(

y(t)

π
α
√

β(t)

)α
1

πα−α α
√

β(t2)

>
β

1 − α
√

β
λα α

√
βyα,

or

−r1/αy′π >

α
√

β

α

√

1 − α
√

β
λ

α
√

βy = ε1β1y, t ≥ t4,

where

ε1 = α

√

β(1 − α
√

β∗)

β∗(1 − α
√

β)

λ
α
√

β

λ
α
√

β∗
∗
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is arbitrary constant from (0, 1) approaching 1 if β → β∗ and λ → λ∗. Hence,

( y

πε1β1

)′
< 0, t ≥ t4.

By induction, one can show that for any n ∈ N0 and t large enough,

( y

πεnβn

)′
< 0,

where εn given by

ε0 = α

√

β

β∗

εn+1 = ε0
α

√

1 − βn

1 − εnβn

λεnβn

λ
βn
∗

, n ∈ N0

is arbitrary constant from (0, 1) approaching 1 if β → β∗ and λ → λ∗. Finally, we claim that

from any n ∈ N0, y/πεn+1βn+1 decreasing implies that that y/πβn is decreasing as well. To see

this, we use that from (4.5) and the fact that εn+1 is arbitrarily close to 1,

εn+1βn+1 > βn.

Hence, for t large enough,

−r1/αy′π > εn+1βn+1y > βny

and so for any n ∈ N0 and t large enough,

( y

πβn

)′
< 0.

The proof is complete.

Now, we are prepared to give straightforward proofs of the main results.

Proof of Theorem 3.1. Assume that y is an eventually positive solution of (1.1). Lemmas 4.1

and 4.3 ensure that (y/π)′ ≥ 0 and (y/πβn)′ < 0 for any n ∈ N0 and t large enough. This is

the case when

βn < 1 for any n ∈ N0.

Hence the sequence {βn} defined by (4.4) is increasing and bounded from above, and so there

exists a finite limit

lim
n→∞

βn = m,

where m is the smaller positive root of the equation

c(m) = lim inf
t→∞

r1/α(t)πα+1(t)q(t). (4.12)

However, by (3.2), equation (4.12) cannot have positive solutions. This contradiction concludes

the proof. �
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Proof of Theorem 3.4. Let y be a positive solution of (1.1) on [t1, ∞) where t1 ≥ t0 is such that

y(τ(t)) > 0 for t ≥ t1. In view of (3.3), for any M > 0 there is sufficiently large t such that

π(τ(t))

π(t)
≥ M1/ α

√
β. (4.13)

Proceeding as in the proof of Lemma 4.3, we show that y/π
α
√

β is decreasing eventually, say

for t ≥ t2 ≥ t1. Using this monotonicity in (4.6), we have

−r(t)
(

y′(t)
)α

= −r(t2)
(

y′(t2)
)α

+
∫ t

t2

q(s)yα(τ(s))ds

≥ −r(t2)
(

y′(t2)
)α

+ Mαβyα(t)
∫ t

t2

α

r1/α(s)πα+1(s)
ds > Mα

(

y(t)

π(t)

)α

,

from which we deduce that y/πM is decreasing. Since M is arbitrary, we get a contradiction

with (ii)-part of Lemma 4.1 upon which y/π is nondecreasing. The proof is complete. �

Proof of Theorem 3.5. It can be directly verified that the canonical equation (3.4) is equivalent

to a noncanonical equation (1.1) with α = 1,

r(t) = r̃(t)R2(t)

q(t) = q̃(t)R(t)R(τ(t))

and

y(t) =
x(t)

R(t)
.

Here,

π(t) =
∫

∞

t

ds

r̃(s)R2(s)
=

1

R(t)
.

Then the conclusion immediately follows from Theorem 3.1. �

Proof of Theorem 3.6. Using the equivalent noncanonical representation of (3.4) as in the

proof of Theorem 3.5, the conclusion follows from Theorem 3.4. �
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1 Introduction

In this paper, we consider a boundary value problem (BVP) consisting of a second order

difference equation

− ∆(r(t − 1)∆u(t − 1)) = f (t, u(t)), t ∈ [2, N]Z, (1.1)

and a pair of mixed periodic boundary conditions (BCs)

u(0) = u(N), r(0)∆u(0) = −r(N)∆u(N), (1.2)

where

• N ≥ 2 is an integer and [a, b]Z denotes the discrete interval {a, . . . , b} for any integers a

and b with a ≤ b;

• ∆ is the forward difference operator defined by ∆u(t) = u(t + 1)− u(t);

• r(t) > 0, t ∈ [0, N]Z; and

BCorresponding author. Email: min.wang@kennesaw.edu
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• f : [2, N]Z × R → R is odd and continuous with respect to the second variable, i.e.

f (t,−x) = − f (t, x) and f (t, ·) ∈ C(R), t ∈ [2, N]Z.

By a solution of BVP (1.1), (1.2), we mean a function u : [0, N + 1]Z → R that satisfies (1.1)

and (1.2).

BVPs with various BCs have been widely studied for decades due to both theoretic impor-

tance and extensive applications in science and engineering areas. Great effort has been made

to study the existence, multiplicity, and uniqueness of solutions of BVPs, see for example

[4–11, 13–18] and references therein for some recent advances in this area.

Recently, Kong and Wang [15] studied the existence and multiplicity of solutions of the

mixed periodic BVP

− ∆2u(t − 1) = f (u(t)), t ∈ [2, N]Z, (1.3)

u(0) = −u(N), ∆u(0) = ∆u(N), (1.4)

by using the critical point theory. In that work, the asymmetry at the boundaries of the domain

caused by the mixed periodic BC (1.4) was the major obstacle in the construction of a suitable

functional for applying the variational technique. As the result, a particular Banach space and

an associated functional were proposed to overcome the asymmetry of the mixed periodic BC

(1.4). The reader is referred to [15, Lemma 2.3] for the details. We want to point out that there

was a typo in Eq. (1.1) in [15] where the domain was mistakenly written as t ∈ [1, N]Z, which

should be replaced by t ∈ [2, N]Z as seen in Eq. (1.3) above. The reason why we propose

t ∈ [2, N]Z will be explained in Remark 2.5 below.

Clearly, Eq. (1.1) covers Eq. (1.3) as a special case and BC (1.2) and BC (1.4) are closely

related to each other. So BVP (1.1), (1.2) is parallel to BVP (1.3), (1.4) but more general.

Moreover, BC (1.2) leads to an asymmetry at the boundaries as well. This obstacle must be

first eliminated to construct the functional. We will use an idea similar to [15] to overcome this

difficulty and further apply the variational arguments and the critical point theory to study

the existence of multiple solutions of BVP (1.1), (1.2). This will be the first contribution of this

paper.

Once the multiplicity of solutions is proven, it is natural to raise a new question: Which

solution is the “right” one (in the sense that some pre-defined criteria are met)? This question is

practical in applications as there is a common need to identify a particular solution follow-

ing certain pre-defined criteria, among all the solutions, due to constraints or demands of

particular circumstances. In this paper, a framework to derive the necessary conditions for a

particular solution of BVP (1.1), (1.2) following a set of pre-defined criteria, i.e. a target solu-

tion, will be presented. To the best of our knowledge, this type of questions have not been

considered in the literature on BVPs. Our work will fill the void and be applicable to other

problems with multiple solutions. This will be the second contribution of this paper.

The remainder of this paper is organized as follows. The Banach space, the functional, and

the needed lemmas are given in Section 2; criteria on the existence of multiple solutions are

proven in Section 3; the necessary conditions of the target solutions are derived in Section 4;

and three examples are given in Section 5 to demonstrate the applications of our results.

2 Preliminary

We first introduce a few definition and lemmas needed to prove our existence results.
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Definition 2.1. Assume H is a real Banach space. We say that a functional J ∈ C1(H, R) satis-

fies the Palais–Smale (PS) condition if every sequence {un} ⊂ H, such that J(un) is bounded

and J′(un) → 0 as n → ∞, has a convergent subsequence. The sequence {un} is called a PS

sequence.

The following version of Clark’s Theorem is taken from [19] and will play a key role in

proving our existence theorem.

Lemma 2.2 ([19, Theorem 9.1]). Let H be a real Banach space with 0 the zero of H, Sn−1 be the

(n − 1)-dimensional unit sphere, and J ∈ C1(H, R) with J even, bounded from below and satisfying

the PS condition. Suppose J(0) = 0, and there is a set K ⊂ H such that K is homeomorphic to Sn−1

by an odd map, and supK J < 0. Then J possesses at least n distinct pairs of critical points.

In the sequel, we let H be defined by

H = {u : [0, N + 1]Z → R | u(0) = u(N), u(1) = 0, r(0)∆u(0) = −r(N)∆u(N)} . (2.1)

Remark 2.3. By (2.1), we see that any u ∈ H must satisfy

u(0) = u(N), u(1) = 0, u(N + 1) =
r(0) + r(N)

r(N)
u(N). (2.2)

So H is isomorphic to R
N−1. Then, equipped with the norm ‖u‖ =

(

∑
N
t=1 u2(t)

)
1
2 , H is an

N − 1 dimensional Banach space. When we write the vector u = (0, u(2), . . . , u(N)) ∈ R
N , we

always imply that u can be extended as a vector in H so that (2.2) holds, i.e., u can be extended

to the vector
(

u(N), 0, u(2), . . . , u(N),
r(0) + r(N)

r(N)
u(N)

)

.

Moreover, for any u ∈ H, when we write u = (0, u(2), . . . , u(N)) ∈ R
N , we mean that u have

been extended in the above sense.

Let f̃ : [1, N]Z × R → R and F̃ : [1, N]Z × R → R be defined by

f̃ (t, x) =















0, t = 1,

f (t, x), t ∈ [2, N − 1]Z,

f (N, x) + 2r(0)x, t = N,

(2.3)

and

F̃(t, x) =
∫ x

0
f̃ (t, s)ds, t ∈ [1, N]Z, (2.4)

resectively. It is clear that f̃ (t, x) and F̃(t, x) are continuous in x and f̃ (t, x) is odd in x if f (t, x)

is odd in x.

Define J : H → R by

J(u) =− 1

2

N

∑
t=1

r(t − 1)(∆u(t − 1))2 +
N

∑
t=1

F̃(t, u(t)). (2.5)

Lemma 2.4. If u ∈ H is a critical point of J, then u is a solution of BVP (1.1), (1.2).
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Proof. By (2.3)–(2.5), for any u ∈ H,

J(u) =− 1

2

N

∑
t=1

r(t − 1)(∆u(t − 1))2 +
N

∑
t=2

∫ u(t)

0
f (t, s)ds + 2

∫ u(N)

0
r(0)sds.

Then J is continuously differentiable and its derivative J′(u) at u ∈ H is given by

〈J′(u), v〉 = −
N

∑
t=1

r(t − 1)∆u(t − 1)∆v(t − 1) +
N

∑
t=2

f (t, u(t))v(t) + 2r(0)u(N)v(N) (2.6)

for any v ∈ H.

By the summation by parts formula and (2.1),

N

∑
t=1

r(t − 1)∆u(t − 1)∆v(t − 1) = r(N)∆u(N)v(N)− r(0)∆u(0)v(0)

−
N

∑
t=1

∆(r(t − 1)∆u(t − 1))v(t)

= − 2r(0)∆u(0)v(0)−
N

∑
t=1

∆(r(t − 1)∆u(t − 1))v(t)

= 2r(0)u(N)v(N)−
N

∑
t=2

∆(r(t − 1)∆u(t − 1))v(t). (2.7)

Then by (2.6) and (2.7), we have 〈J′(u), v〉 = ∑
N
t=2 [∆(r(t − 1)∆u(t − 1)) + f (t, u(t))] v(t). This

completes the proof of the lemma.

Remark 2.5. Below, we provide some justification why we introduce the space H and the

functional J as given above and why Eq. (1.1) is defined on [2, N]Z instead of [1, N]Z. To see

this, assume Eq. (1.1) is defined on [1, N]Z, and as in the traditional way, let

H̃ = {u : [0, N + 1]Z → R | u satisfies the BCs (1.2)}

and

J̃(u) = −1

2

N

∑
t=1

r(t − 1)(∆u(t − 1))2 +
N

∑
t=1

∫ u(t)

0
f (t, s)ds.

Then, if u ∈ H̃ is a critical point of J̃(u), by summation by parts formula and (1.2), we have

〈 J̃′(u), v〉 =−
N

∑
t=1

r(t − 1)∆u(t − 1)∆v(t − 1) +
N

∑
t=1

f (t, u(t))v(t)

=− 2r(N)∆u(N)v(N) +
N

∑
t=1

[∆(r(t − 1)∆u(t − 1)) + f (t, u(t))]v(t)

for any v ∈ H. Since v ∈ H̃ is arbitrary, u satisfies (1.1) at t ∈ [1, N − 1]Z. However, u satisfies

Eq. (1.1) at t = N only if ∆u(N) = 0. Then the BCs (1.2) now become

u(0) = u(N), ∆u(0) = ∆u(N) = 0,

which is very restrictive and is a special case of the periodic BCs studied in the literature, for

example, in [12, 16]. We do not have an interest in such a simple case. In this work, in order
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to make u satisfy Eq. (1.1) at t = N without introducing the extra assumption ∆u(N) = 0,

unlike the traditional way, we introduce a modification, f̃ , of the function f , as given in (2.3),

and the corresponding functional J in (2.5). In addition to the BCs, we also impose an extra

condition u(1) = 0 in our working space H defined by (2.1). Then, as seen in Lemma 2.4, any

critical point u ∈ H of J satisfies Eq. (1.1) for all t ∈ [2, N − 1]Z and the BCs

u(0) = u(N), u(1) = 0, r(0)∆u(0) = −r(N)∆u(N).

That is, u is a solution of BVP (1.1), (1.2) with the property that u(1) = 0. This type of

problems are new and are worthy of our studies. The above explanations also explain why

we only require Eq. (1.1) to be defined on [2, N]Z. We propose Eq. (1.3) in [15] due to a similar

reason.

Remark 2.6. Lemma 2.5 offers a general setting to study the BVPs with mixed periodic BCs.

With the functional defined by (2.5), other variational techniques may be applied as well, see,

for example, [1, 3].

Next, let us consider an equivalent form of J. Let

A =















r(0)+r(1) −r(1) 0 ... 0 −r(0)

−r(1) r(1)+r(2) −r(2) ... 0 0

0 −r(2) r(2)+r(3) ... 0 0

. . . . . .

−r(0) 0 0 ... −r(N−1) r(N−1)+r(0)















N×N

. (2.8)

Then it can be verified by direct computation that for any u ∈ H,

J(u) = −1

2
uAuT +

N

∑
t=1

F̃(t, u(t)), (2.9)

where (·)T denotes the transpose.

Matrix A has been studied in [16]. Some needed conclusions are summarized in the

following lemma. The reader is referred to [16] for the details.

Lemma 2.7. Let A be defined by (2.8) with r(t) > 0, t ∈ [0, N − 1]Z. Then

(a) A is positively semi-definite with Rank(A) = N − 1.

(b) A has N nonnegative eigenvalues 0 = λ0 < λ1 ≤ · · · ≤ λN−1 with the associated orthonormal

eigenvectors {η0, . . . , ηN−1}, where η0 =
(

√
N

N ,
√

N
N , . . . ,

√
N

N

)

.

(c) Let ‖ · ‖ denote the standard Euclidean norm of R
N . For any u ∈ R

N , uAuT ≤ λN−1‖u‖2; for

any u ∈ span{η2, . . . , ηN−1}, uAuT ≥ λ1‖u‖2.

Similary to [16, Lemma 3.1], we can prove the following lemma.

Lemma 2.8. Assume there exists a constant β > λN−1 such that

lim
x→∞

f (t, x)

x
≥ β, t ∈ [2, N]Z. (2.10)

Then J satisfies the PS condition.
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Proof. Let {un}∞
n=1 ⊂ H be any sequence with {J(un)} bounded and J′(un) → 0 as n → ∞.

For any un, by (2.6), (2.5), and (2.9),

〈J′(un), un〉 = −
N

∑
t=1

r(t − 1)(∆un(t − 1))2 +
N

∑
t=2

f (t, un(t))un(t) + 2r(0)(un(N))2

= − un AuT
n +

N

∑
t=2

f (t, un(t))un(t) + 2r(0)(un(N))2.

Then by Lemma 2.7,

N

∑
t=2

f (t, un(t))un(t) + 2r(0)(un(N))2 = 〈J′(un), un〉+ un AuT
n

≤ 〈J′(un), un〉+ λN−1‖un‖2. (2.11)

On the other hand, by the oddity of f and (2.10), there exists constant C > 0 such that

f (t, un(t))un(t) ≥
(

β + λN−1

2

)

(un(t))
2 − C, t ∈ [2, N]Z.

Hence

N

∑
t=2

f (t, un(t))un(t) + 2r(0)(un(N))2 ≥
(

β + λN−1

2

)

‖un‖2 − NC. (2.12)

By (2.11) and (2.12),

(

β − λN−1

2

)

‖un‖2 ≤ 〈J′(un), un〉+ NC ≤ ‖J′(un)‖‖un‖+ NC.

Since (β − λN−1) /2 > 0 and J′(un) → 0 as n → ∞, {un} is bounded. Therefore, the PS

condition holds.

3 Existence of solutions

In this section, we consider the existence of multiple solutions of BVP (1.1), (1.2).

Theorem 3.1. Let 0 = λ0 < λ1 ≤ · · · ≤ λN−1 be the eigenvalues of A defined by (2.8) respectively.

Assume that f (t, x) is continuous and odd in its second variable x, and satisfies (2.10) for some β >

λN−1. If in addition there exists a constant µ < λm, m ∈ [1, N − 1]Z, such that

lim
x→0

f (t, x)

x
≤ µ, t ∈ [2, N − 1]Z, and lim

x→0

f (N, x)

x
+ 2r(0) ≤ µ. (3.1)

Then BVP (1.1), (1.2) has at least 2N − 2m distinct solutions.

Remark 3.2. In (3.1), when N = 2, we have [2, N − 1]Z = ∅. Then, the first limit disappears.

Proof. By Lemma 2.8, J satisfies the PS condition. Since f is odd in x, by (2.3) and (2.4), F̃(t, x)

is even in x.

Let {η0, . . . , ηN−1} be the orthonormal eigenvectors of A defined in Lemma 2.7, X =

span{η1, . . . , ηN−1}, and Y = span{η0}. Then it is easy to see that R
N = X ⊕ Y. By (2.1),
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H ∩ Y = 0, so H = X. For any u ∈ H, there exist b1, . . . , bN−1 ∈ R such that u = ∑
N−1
i=1 biηi

and ‖u‖2 = ∑
N−1
i=1 b2

i . By (2.9) and Lemma 2.7, for any u ∈ H,

J(u) = − 1

2
uAuT +

N

∑
t=1

F̃(t, u(t)) = −1

2

N−1

∑
i=1

λib
2
i +

N

∑
t=1

F̃(t, u(t))

≥ − 1

2
λN−1

N−1

∑
i=1

b2
i +

N

∑
t=1

F̃(t, u(t)) = −1

2
λN−1‖u‖2 +

N

∑
t=1

F̃(t, u(t)).

Similar to the proof of Lemma 2.8, there exists C̃ > 0 such that

N

∑
t=1

F̃(t, u(t)) ≥
(

β + λN−1

4

)

‖u‖2 − NC̃, u ∈ H.

Therefore, infu∈H J(u) > −∞, i.e. J is bounded below.

By (3.1), there exist ρ > 0 and 0 < D < λm such that for any x ∈ [−ρ, ρ],

∫ x

0
f (t, s)ds ≤ D

2
x2, t ∈ [2, N − 1] and

∫ x

0
f (N, s)ds + r(0)x2 ≤ D

2
x2. (3.2)

Let K = {u ∈ span{ηm, . . . , ηN−1} ⊂ H | ‖u‖ = ρ}. It is clear that K is homeomorphic

to SN−m−1 by an odd map Γ : K → X defined by Γu = u
ρ . By (2.9), (2.3), (2.4), (3.2), and

Lemma 2.7, for any u ∈ K,

J(u) = − 1

2
uAuT +

N

∑
t=1

F̃(t, u(t)) = −1

2

N−1

∑
i=m

λib
2
i +

N

∑
t=1

F̃(t, u(t))

≤ − 1

2
λm

N−1

∑
i=1

b2
i +

N

∑
t=1

F̃(t, u(t)) = −1

2
λm‖u‖2 +

N

∑
t=1

F̃(t, u(t)) ≤ D − λm

2
ρ2

< 0.

Therefore, supK J < 0. By Lemma 2.2, J possesses at least N − m distinct pairs of critical

points. Hence BVP (1.1), (1.2) has at least 2N − 2m solutions by Lemma 2.4.

The following corollary is an immediate conclusion of Theorem 3.1.

Corollary 3.3. Assume that f (t, x) is continuous and odd in its second variable x, and satisfies

lim inf
x→∞

min
t∈[2,N]Z

f (t, x)

x
= ∞

and

max

{

lim sup
x→0

max
t∈[2,N−1]Z

f (t, x)

x
, lim sup

x→0

f (N, x)

x
+ 2r(0)

}

< λm, (3.3)

where λm is the mth positive eigenvalue of A following the increasing order. Then BVP (1.1), (1.2) has

at least 2N − 2m distinct solutions.

A note similar to Remark 3.2 applies to Eq. (3.3) in Corollary 3.3.



8 L. Kong and M. Wang

4 Necessary conditions of the target solution

In this section, we investigate how to identify a target solution among multiple solutions

following a set of pre-defined criteria. The main idea is to find the target solution by solving

an optimization problem (OP) with constraints.

Let I be a subset of [0, N + 1]Z and u∗ : I → R be a function defined on I. Assume the

pre-defined criteria is given as a performance index, or objective function, L : R
N+2 → R

defined by

L(u) = ∑
t∈I

(u(t)− u∗(t))2. (4.1)

We need to find a particular solution of BVP (1.1), (1.2) that minimizes the objective function

L. In other words, BVP (1.1), (1.2) is the constraints of the OP.

We first introduce some auxiliary functions to simplify the notations. Define G : R
N+2 ×

[2, N]Z → R, B0 : R
N+2 → R, B1 : R

N+2 → R, and B2 : R
N+2 → R by

G(u, t) = r(t)u(t + 1)− (r(t) + r(t − 1))u(t) + r(t − 1)u(t − 1) + f (t, u(t)),

B0(u) = u(1), B1(u) = u(0)− u(N), and

B2(u) = r(0)u(1)− r(0)u(0) + r(N)u(N + 1)− r(N)u(N).

It is easy to verify that BVP (1.1), (1.2) is equivalent to the following system consisting of N + 2

equations

G(u, t) = 0, t ∈ [2, N]Z, (4.2)

B0(u) = 0, (4.3)

B1(u) = 0, (4.4)

B2(u) = 0. (4.5)

In the sequel, we use Eq. (4.2)–(4.5) as the constraints and solve the OP (4.1), (4.2)–(4.5) by

the Lagrange multiplier method, see for example [2]. Clearly, N + 2 Lagrange multipliers are

needed. Let θ : [0, N + 1] → R be the Lagrange multipliers and Φ : R
N+2 × R

N+2 → R be

defined by

Φ(u, θ) = ζL(u) +
N

∑
t=2

θ(t + 1)G(u, t) + θ(0)B0(u) + θ(1)B1(u) + θ(2)B2(u), (4.6)

where ζ > 0 is a parameter. Then by the Lagrange multiplier method, we obtain the following

necessary conditions for the target solution.

Theorem 4.1. A target solution of BVP (1.1), (1.2) subject to L must satisfy Eq. (4.2)–(4.5) and

∂Φ(u, θ)

∂u(t)
= 0, t ∈ [0, N + 1]Z.

Remark 4.2. The value of ζ in (4.6) does not impact the theoretic result in Theorem 4.1. How-

ever, numerical experiments reveal that the value of ζ impacts the performance of numerical

optimization algorithms. This is the main reason to introduce the parameter ζ.
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5 Examples

In this section, we will demonstrate the applications of our results by considering the BVP

− ∆2u(t − 1) = (u(t))3, t ∈ [2, 10]Z, (5.1)

u(0) = u(10), ∆u(0) = −∆u(10). (5.2)

Let r(t) ≡ 1 on [0, N]Z and f (t, x) ≡ x3. It is easy to verify that

A =





2 −1 0 ... 0 −1
−1 2 −1 ... 0 0
0 −1 2 ... 0 0
...

...
...

...
...

...
−1 0 0 ... −1 2





10×10

,

lim
x→∞

f (x)

x
= ∞, and lim

x→0

f (x)

x
= 0.

Computing the eigenvalues of A with Matlab, we have λ4 < 2 < λ5. Hence all the conditions

of Corollary 3.3 are satisfied. Therefore, BVP (5.1), (5.2) has at least 10 solutions.

Next, we choose different objective functions to demonstrate the applications of Theo-

rem 4.1.

Example 5.1. We first consider a solution of BVP (5.1), (5.2) that minimizes the objective

function

L1(u) =
6

∑
t=4

(u(t)− 1)2.

Let ζ = 2. By Theorem 4.1, the target solution u must satisfy the following system

u(t − 1)− 2u(t) + u(t + 1) + (u(t))3 = 0, t ∈ [2, 10]Z, (5.3)

u(1) = 0 (5.4)

u(0)− u(10) = 0, (5.5)

− u(0) + u(1)− u(10) + u(11) = 0, (5.6)

Θ̃(u, θ, t) + Φ̃(u, θ, t) = 0, t ∈ [0, 11]Z, (5.7)

where

Θ̃(u, θ, 0) := θ(1)− r(0)θ(2), (5.8)

Θ̃(u, θ, 1) := θ(0) + r(0)θ(2) + r(1)θ(3), (5.9)

Θ̃(u, θ, 2) := (3(u(2))2 − (r(1) + r(2)))θ(3) + r(2)θ(4), (5.10)

Θ̃(u, θ, t) := r(t − 1)θ(t) + (3(u(t))2 − (r(t − 1) + r(t)))θ(t + 1)

+ r(t)θ(t + 2), t = [3, 9]Z, (5.11)

Θ̃(u, θ, 10) := − θ(1)− r(10)θ(2) + r(9)θ(10) + (3(u(10))2 − (r(9) + r(10)))θ(11), (5.12)

Θ̃(u, θ, 11) := r(10)θ(2) + r(10)θ(11), (5.13)

and

Φ̃(u, θ, t) := 4(u(t)− 1), t ∈ [4, 6]Z, (5.14)

Φ̃(u, θ, t) := 0, otherwise. (5.15)
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Note that by (4.2)–(4.5), Eq. (5.3)–(5.6) are equivalent to BVP (5.1), (5.2); Θ̃ defined by (5.8)–

(5.13) are the partial derivatives of

N

∑
t=2

θ(t + 1)G(u, t) + θ(0)B0(u) + θ(1)B1(u) + θ(2)B2(u)

in (4.6) with respect to u(t), t ∈ [0, 11]Z; and Φ̃ defined by (5.14) and (5.15) are the partial

derivatives of ζL(u) in (4.6) with respect to u(t), t ∈ [0, 11]Z.

System (5.3)–(5.7) is solved with Matlab. The graph of the numerical solution u1 subject to

L1 is given in Figure 5.1. Clearly, the behavior of u1 is consistent with our expectation.

Figure 5.1: Numerical solution u1 subject to L1.

Example 5.2. For the comparison purpose, we also consider the solution of BVP (5.1), (5.2)

that minimizes the objective function

L2(u) =
6

∑
t=4

(u(t) + 1)2.

Let ζ = 2. By Theorem 4.1, the target solution must satisfy Eq. (5.3)–(5.7) with

Φ̃(u, θ, t) := 4(u(t) + 1), t ∈ [4, 6]Z,

Φ̃(u, θ, t) := 0, otherwise.

The graph of the numerical solution u2 subject to L2 is given in Figure 5.2.

Example 5.3. In this example, we seek a solution of BVP (5.1), (5.2) that minimizes the objective

function

L3(u) =
9

∑
t=7

(u(3)− 10)2.
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Figure 5.2: Numerical solution u2 subject to L2.

Figure 5.3: Numerical solution u3 subject to L3.

Let ζ = 1. By Theorem 4.1, the target solution must satisfy Eq. (5.3)–(5.7) with

Φ̃(u, θ, t) := 2(u(t)− 10), t ∈ [7, 9]Z,

Φ̃(u, θ, t) := 0, otherwise.

The graph of the numerical solution u3 subject to L3 is given in Figure 5.3.

Remark 5.4. Examples 5.1, 5.2, and 5.3 found three different solutions from the same BVP

following different criteria. These examples demonstrated the effectiveness of Theorem 4.1.

This idea can also be extended to the objective functions of other forms as well as other BVPs

with multiple solutions.
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1 Introduction and statement of the main results

Looking for traveling waves to nonlinear evolution equations has long been the major problem

for mathematicians and physicists. These solutions may well describe various phenomena in

physics and other fields and thus they may give more insight into the physical aspects of

the problems. Many methods for obtaining traveling wave solutions have been established

[4–6,19,20,25,26] with more or less success. When the degree of the nonlinearity is high most

of the methods fail or can only lead to a kind of special solution and the solution procedures

become very complex and do not lead to an efficient way to compute them.

In this paper we will focus on obtaining algebraic traveling wave solutions to the modified

Korteweg–de Vries–Burgers equation (mKdVB) of the form

auxxx + buxx + dunux + ut = 0 (1.1)

where n = 1, 2 and a, b, d are real constants with abd 6= 0. When n = 1 is the well-known

Korteweg–de Vries–Burgers equation (KdVB) that has been intensively investigated. When

n = 2 we will call it modified Korteweg–de Vries–Burgers equation (mKdVB). These equations

are widely used in fields as solid-states physics, plasma physics, fluid physics and quantum

field theory (see, for instance [12, 31] and the references therein). They mainly appear when

seeking the asymptotic behavior of complicated systems governing physical processes in solid

and fluid mechanics.

BEmail: cvalls@math.tecnico.ulisboa.pt
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An special attention is done to the KdVB, often considered as a combination of the Burgers

equation and KdV equation since in the limit a → 0, the equation reduces to the Burgers

equation (named after its use by Burgers [2] for studying the turbulence in 1939), and taking

the limit as b → 0 we get the KdV equation (first suggested by Korteweg and de Vries [18]

who used it as a nonlinear model to study the change of forms of long waves advancing in a

rectangular channel).

The KdVB equation is the simplest form of the wave equation in which the nonlinear

term uux, the dispersion uxxx and the dissipation uxx all occur. It arises from many physical

context such as the undulant bores in a shallow water [1, 16], the flow of liquids containing

gas bubbles [27], the propagation of waves in an elastic tube filled with a viscous fluid [15],

weakly nonlinear plasma waves with certain dissipative effects [9, 11], the cascading down

process of turbulence [7] and the atmospheric dynamics [17].

It is nonintegrable in the sense that its spectral problem is nonexistent. The existence of

traveling wave solutions for the (KdVB) was obtained by the first time in [29] and after that

many other papers computing the traveling wave of the KdVB appeared (see for instance

[10, 13, 14, 21, 25, 28, 30]), but most of them did not obtain all the possible traveling wave

solutions. However, regardless the attention done to the (KdVB), nothing is known for the

existence of traveling wave solutions for the (mKdVB). This is due to the presence of high

nonlinear terms. In this paper we will fill in this gap. We will use a method that will supply

the already known traveling wave solution for the (KdVG) and will allows us to prove that

there are no traveling wave solutions for the KdVG (i.e., equation (1.1) with n = 2).

As explained above, there are various approaches for constructing traveling wave solu-

tions, but these methods become more and more useless as the degree of the nonlinear terms

increase. However, in [8] the authors gave a technique to prove the existence of traveling

wave solutions for general n-th order partial differential equations by showing that traveling

wave solutions exist if and only if the associated n-dimensional first order ordinary differen-

tial equation has some invariant algebraic curve. In this paper we will consider only the case

of 2-nd order partial differential equations.

More precisely, consider the 2-nd order partial differential equations of the form

∂2u

∂x2
= F

(

u,
∂u

∂x
,

∂u

∂t

)

, (1.2)

where x and t are real variables and F is a smooth map. The traveling wave solutions of

system (1.2) are particular solutions of the form u = u(x, t) = U(x − ct) where U(s) satisfies

the boundary conditions

lim
s→−∞

U(s) = A and lim
s→∞

U(s) = B, (1.3)

where A and B are solutions, not necessarily different, of F(u, 0, 0) = 0. Note that U(s) has to

be a solution, defined for all s ∈ R, of the 2-nd order ordinary differential equation

U
′′
= F(U, U′,−cU′) = F̃(U, U′), (1.4)

where U(s) and the derivatives are taken with respect to s. The parameter c is called the speed

of the traveling wave solution.

We say that u(x, t) = U(x − ct) is an algebraic traveling wave solution if U(s) is a non-

constant function that satisfies (1.3) and (1.4) and there exists a polynomial p such that

p(U(s), U′(s)) = 0.
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As pointed out in [8] the term algebraic traveling wave means that the waves that we will

find correspond to the algebraic curves on the phase plane and do not refer to traveling waves

that approach to the constant boundary conditions (1.3) algebraically fast. The traveling wave

solutions correspond to homoclinic (when A = B) or heteroclinic (when A 6= B) solutions of

the associated two-dimensional system of ordinary differential equations. In many cases the

critical points where this invariant manifolds start and end are hyperbolic. To motivate the

definition of algebraic traveling wave solutions initiated in [8] and used in the present paper,

we recall that when F is sufficiently regular, using normal form theory, in a neighborhood of

these critical points, this manifold can be parameterized as ϕ(eλs) for some smooth function

ϕ, where λ is one of the eigenvalues of the critical points.

Note that this definition of algebraic traveling wave revives the interest in the well-known

and classic problem of finding invariant algebraic curves. Invariant algebraic curves are the

main objects used in several subjects with special emphasis in integrability theory. The search

and computation of these objects have been intensively investigated. However to determine

the properties and number of them for a given planar vector field is very difficult in particular

because there is no bound a priori on the degree of such curves. However in the present

paper we will be able to characterize completely the algebraic traveling wave solutions of

the Korteweg–de Vries–Burgers equation and of the Generalized Korteweg–de Vries–Burgers

equation under some additional assumptions on the constants. We recall that for irreducible

polynomials we have the following algebraic characterization of invariant algebraic curves:

Given an irreducible polynomial of degree n, g(x, y), we have that g(x, y) = 0 is an invariant

algebraic curve for the system x′ = P(x, y), y′ = Q(x, y) for P, Q ∈ C[x, y], if there exists a

polynomial K = (x, y) of degree at most n − 1, called the cofactor of g such that

P(x, y)
∂g

∂x
+ Q(x, y)

∂g

∂y
= K(x, y)g. (1.5)

The main result that we will use is the following theorem, see [8] for its proof.

Theorem 1.1. The partial differential equation (1.2) has an algebraic traveling wave solution if and

only if the first order differential system

{

y′1 = y2,

y′2 = Gc(y1, y2),

where

Gc(y1, y2) = F̃(y1, y2)

has an invariant algebraic curve containing the critical points (A, 0)and (B, 0) and no other critical

points between them.

The main result is, with the techniques in [8], obtain all algebraic traveling wave solutions

of the (KdVB) and (mKdVB), i.e., all explicit traveling wave solutions of the equation (1.1)

when n = 1 and when n = 2.

Theorem 1.2. The following holds for system (1.1):

(i) If n = 1 (KdVB), it has the algebraic traveling wave solution

u(x, t) = − 12b2

25da

( 1

1 + κ1eb(x−vt)/(5a)

)2
+

6b2

25da
+

v

d
,
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where

v2 =
36b4 − 1250da3κ2

625a2
,

being κ1, κ2 arbitrary constants with κ1 > 0.

(ii) If n = 2 (mKdVB), it has no algebraic traveling wave solutions.

The proof of Theorem 1.2 is given in Section 3 when n = 1 and in Section 4 when n = 2. In

section 2 we have included some preliminary results that will be used to prove the results in

the paper. The technique used in the paper is very powerful and has been used successfully

in the papers [23, 24].

2 Preliminary results

In this section we introduce some notions and results that will be used during the proof of

Theorem 1.2.

The first result based on the previous works of Seidenberg [22] was stated and proved

in [3]. In the next theorem we included only the results from [3] that will be used in the paper.

Theorem 2.1. Let g(x, y) = 0 be an invariant algebraic curve of a planar system with corresponding

cofactor K(x, y). Assume that p = (x0, y0) is one of the critical points of the system. If g(x0, y0) 6= 0,

then K(x0, y0) = 0. Moreover, assume that λ and µ are the eigenvalues of such critical point. If either

µ 6= 0 and λ and µ are rationally independent or λµ < 0, or µ = 0, then either K(x0, y0) = λ, or

K(x0, y0) = µ, or K(x0, y0) = λ + µ (that we write as K(x0, y0) ∈ {λ, µ, λ + µ}).

A polynomial g(x, y) is said to be a weight homogeneous polynomial if there exist s =

(s1, s2) ∈ N2 and m ∈ N such that for all µ ∈ R \ {0},

g(µs1 x, µs2 y) = αmg(x, y),

where R denotes the set of real numbers, and N the set of positive integers. We shall refer to

s = (s1, s2) to the weight of g, m the weight degree and x = (x1, x2) 7→ (αs1 x, αs2 y) the weight

change of variables.

We first note that if there exists a solution of the form u(x, t) = U(x − ct) then substituting

in (1.1) and performing one integration yield

U′′ = −βU′ − γUn+1 + δU + θ,

where β = b/a, γ = d/(a(n + 1)), δ = c/a and θ is the integration constant. Therefore, we

will look for the invariant algebraic curves of the system

x′ = y,

y′ = −βy − γxn+1 + δx + θ,
(2.1)

where x(s) = U(s) and β, γ, δ, θ ∈ R with βγδ 6= 0.

When n = 1, the solution of γx2 − δx − θ = 0, that is,

x1,2 =
δ

2γ
∓
√

δ2 + 4γθ

2γ
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must be real, otherwise there would be no algebraic traveling wave solutions. Therefore,

δ2 + 4γθ ≥ 0. Set x = x + x1, and y = y. Then we rewrite system (2.1) with n = 1 in the

variables (x, y) as

x′ = y,

y′ = −βy − γ(x + x1)
2 + δ(x + x1) + θ

= −βy − γx2 − 2γx1x − γx2
1 + δx + δx1 + θ

= −βy − γx2 + δx,

(2.2)

where δ = δ − 2γx1 =
√

δ2 + 4γθ.

When n = 2, the solution of γx3 − δx − θ = 0 has at least one real solution, that we denote

by x1. Set x = x + x1, and y = y. Then we rewrite system (2.1) with n = 2 in the variables

(x, y) as

x′ = y,

y′ = −βy − γ(x + x1)
3 + δ(x + x1)− θ

= −βy − γx3 − 3γx1x2 − 3γx2
1x − γx3

1 + δx + δx1 − θ

= −βy − γx3 − γx2 + δx,

(2.3)

where γ = 3γx1 and δ = δ − 3γx2
1.

3 Proof of Theorem 1.2 with n = 1

In this section we consider system (2.1) with n = 1. By the results in Section 2 this is equivalent

to work with system (2.2).

Theorem 3.1. System (2.2) has an invariant algebraic curve g(x, y) = 0 if and only if

β = ±5
√

δ√
6

.

Moreover, if β = 5
√

δ/
√

6 then

g(x, y) =
y2

2
−

√
2√
3

√
δ

γ
(δ − γx)y +

x

3γ
(δ − γx)2,

and if β = −5
√

δ/
√

6 then

g(x, y) =
y2

2
+

√
2√
3

√
δ

γ
(δ − γx)y +

x

3γ
(δ − γx)2.

System (2.2) with δ = γ is system (15) in [24]. Proceeding exactly as in the proof of

Theorem 2 in [24] (with δ instead of γ when needed) we get the proof of Theorem 3.1. So, the

proof of Theorem 3.1 will be omitted.

Proof of Theorem 1.2. Consider first the case β = 5
√

δ√
6

. It follows from Theorem 3.1 that the

invariant algebraic curve is

g(x, y) =
y2

2
−

√
2√
3

√
δ

γ
(δ − γ)y +

x

3γ
(δ − γx)2.
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The branch of g(x, y) = 0 that contains the origin is

y =

√
2√

3γ
(δ − γx)

(

√

δ −
√

δ − γx

)

.

Since x′ = y we obtain

x′ =

√
2√

3γ
(δ − γx)

(

√

δ −
√

δ − γx

)

=

√
2δ

3/2

√
3γ

(

1 − γ

δ
x
)

(

1 −
√

1 − γ

δ
x

)

.

Set U(s) = x(s) = x(s) + x1 and take W(s) =
√

1 − γ

δ
(U(s)− x1) Then

W ′(s) = −γ

δ

U′(s)

2
√

1 − γ

δ
(U(s)− x1)

= −
√

δ√
6

W(s)(1 − W(s)).

Its non-constant solutions that are defined for all s ∈ R are

W(s) =
1

1 + κe
√

δs/
√

6
, κ > 0.

Hence,

U(s) = x1 +
δ

γ

(

1 −
(

1

1 + κe
√

δs/
√

6

)2
)

, κ > 0.

This, together with the definition x1, δ, δ, γ and β, yields the traveling wave solution in the

statement of the theorem.

If we take the branch of g(x, y) = 0 that does not contain the origin then

y =

√
2√

3γ
(δ − γx)

(

√

δ +
√

δ − γx

)

Proceeding exactly as above we get that

W(s) =
1

1 − κe
√

δs/
√

6
, κ > 0,

which is not a global solution. So, in this case there are no traveling wave solutions.

Now take β = − 5
√

δ√
6

. It follows from Theorem 3.1 that the invariant algebraic curve is

g(x, y) =
y2

2
+

√
2√
3

√
δ

γ
(δ − γ)y +

x

3γ
(δ − γx)2.

The branch of g(,y) = 0 that contains the origin is

y = −
√

2√
3γ

(δ − γx)

(

√

δ −
√

δ − γx

)

Since x′ = y we obtain

x′ = −
√

2√
3γ

(δ − γx)

(

√

δ −
√

δ − γx

)

= −
√

2δ
3/2

√
3γ

(

1 − γ

δ
x

)(

1 −
√

1 − γ

δ
x

)
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Set U(s) = x(s) = x(s) + x1 and take W(s) =
√

1 − γ

δ
(U(s)− x1). Then

W ′(s) =
γ

δ

U′(s)

2
√

1 − γ

δ
(U(s)− x1)

=

√
δ√
6

W(s)(1 − W(s)).

Its nonconstant solutions that are defined for all s ∈ R are

W(s) =
1

1 + κe−
√

δs/
√

6
, κ > 0.

Hence

U(s) = x1 +
δ

γ

(

1 −
(

1

1 + κe−
√

δs/
√

6

)2
)

, κ > 0.

This, together with the definition x1, δ, δ, γ and β, yields the traveling wave solution in the

statement of the theorem.

If we take the branch of g(x, y) = 0 that does not contain the origin then

y = −
√

2√
3γ

(δ − γx)

(

√

δ +
√

δ − γx

)

.

Proceeding exactly as above we get that

W(s) =
1

1 − κe−
√

δs/
√

6
, κ > 0,

which is not a global solution. So, in this case there are no traveling wave solutions and

concludes the proof of the theorem.

4 Proof of Theorem 1.2 with n = 2

In this section we consider system (2.1) with n = 2. By the results in Section 2 this is equivalent

to work with system (2.3).

The proof of Theorem 1.2 with n = 2 follows directly from the following theorem that

states that system (2.3) has no invariant algebraic curves.

Theorem 4.1. System (2.3) has no invariant algebraic curve.

Proof of Theorem 4.1. Let g = g(x, y) = 0 be an invariant algebraic curve of system (2.3) with

cofactor K. We write both g and K in their power series in the variable y as

K(x, y) =
2

∑
j=0

Kj(x)yj, g =
ℓ

∑
j=0

gj(x)yℓ,

for some integer ℓ and where Kj is a polynomial in x of degree j. Without loss of generality,

since g 6= 0 we can assume that gℓ = gℓ(x) 6= 0. Moreover, note that if system (2.3) has an

invariant algebraic curve then

y
∂g

∂x
−
(

βy + γx3 + γx2 − δx
)∂g

∂y
= Kg. (4.1)
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We compute the coefficient of y2+ℓ in (4.1) and we get

gℓK2 = 0, that is K2 = 0

because gℓ 6= 0. So, K(x) = K0(x) + K1(x)y. Computing the coefficient of yℓ+1 in (4.1) we

obtain

g′ℓ(x) = K1gℓ

which yields gℓ = κe
∫

K1(x) dx, for κ ∈ C \ {0}. Since gℓ must be a polynomial then K1 = 0.

This implies that K(x) = K0(x) that we write as

K(x) = K0(x) =
2

∑
j=0

k jx
j, k j ∈ R.

Now, equation (1.5) writes as

y
∂g

∂x
− (βy + γx3 + γx2 − δx)

∂g

∂y
=

m

∑
j=0

k jx
jg.

We introduce the weight-change of variables of the form

x = µ−2X, y = µ−4Y, t = µ2τ.

In this form, system (2.3) becomes

X′ = Y,

Y′ = −γX3 − µ2βY − µ2γX2 + δµ4X,

where the prime denotes derivative in τ. Now let

G(X, Y) = µN g(µ−2X, µ−4Y)

and

K = µ2K = µ2(k0 + k1µ−2X + µ−4X2) = µ2k0 + k1X + µ−2X2,

where N is the highest weight degree in the weight homogeneous components of g in the

variables x and y, with weight (2, 4).

We note that G = 0 is an invariant algebraic curve of system (2.3) with cofactor µ2K.

Indeed
dG

dτ
= µN dg

dτ
= µNµ2Kg = µNKG.

Assume that G = ∑
ℓ
i=0 Gi where Gi is a weight homogeneous polynomial in X, Y with weight

degree ℓ− i for i = 0, . . . , ℓ and ℓ ≥ N. Obviously

g = G|µ=1.

From the definition of invariant algebraic curve we have

Y
ℓ

∑
i=0

µi ∂Gi

∂X
−
(

γX3 + µ2βY + µ2γX2 − δµ4X
)

ℓ

∑
i=0

∂Gi

∂Y

= (µ2k0 + k1X + µ−2k2X2)
ℓ

∑
i=0

µiGi.

(4.2)
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Computing the terms with µ−2 we get that k2 = 0. Now the terms with µ0 in (4.2) become

L[G0] = k1G0, L = Y
∂

∂X
− γX3 ∂

∂Y
. (4.3)

The characteristic equations associated with the first linear partial differential equation of

system (2.3) are
dX

dY
= −γ

Y

X3
.

This system has the general solution u = Y2/2+ γX4/4 = κ, where κ is a constant. According

with the method of characteristics we make the change of variables

u =
Y2

2
+

γ

4
X4, v = X. (4.4)

Its inverse transformation is

Y = ±
√

2u − 2γv4/2, X = v. (4.5)

In the following for simplicity we only consider the case Y = +
√

2u − γv4/2. Under changes

(4.4) and (4.5), equation (4.3) becomes the following ordinary differential equation (for fixed u)

√

2u − γv4/2
dG0

dv
= k1G0,

where G0 is G0 written in the variables u, v. In what follows we always write θ to denote a

function θ = θ(X, Y) written in the (u, v) variables, that is, θ = θ(u, v). The above equation

has the general solution

G0 = uℓF0(u) exp

(

k1√
2u

2F1

(

1

2
,

1

4
,

5

4
,

γv4

4u

))

,

where F0 is an arbitrary smooth function in the variable u and

2F1(a, b, c, y) =
∞

∑
k=0

a(a + 1) · · · (a + k − 1)

b(b + 1) · · · (b + k − 1)c(c + 1) · · · (c + k − 1)

xk

k!
(4.6)

is the hypergeometric function that is well defined if b, c are not negative integers. In particu-

lar, it is a polynomial if and only if a is a negative integer. Note that in this case 2F1 is never a

polynomial. Since

G0(X, Y) = F0(u) = F0(Y
2/2 + γX4/4)

in order that G0 is a weight homogeneous polynomial of weight degree ℓ, since X and Y have

weight degrees 2 and 4, respectively, we get that G0 should be of weight degree N = 8ℓ and

that k1 = 0. Hence,

G0 = aℓ

(

Y2

2
+ γ

X4

4

)ℓ

, aℓ ∈ R \ {0}.

Computing the terms with µ in (4.2) using G0 we get

L[G1] = 0.
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By the transformations in (4.4) and (4.5) and working in a similar way as we did to solve G0

we get the following ordinary differential equation

√

2u − γv4/2
dG1

dv
= 0,

that is G1 = G1(u). Since G1 is a weight homogeneous polynomial of weight degree N − 1 =

8ℓ− 1 and u has even weight degree, we must have G1 = 0 and so G1 = 0.

Computing the terms with µ2 in (4.2) using the expression of G0 and the fact that G1 = 0

we get

L[G2] = βaℓℓY
2

(

Y2

2
+ γ

X4

4

)ℓ−1

+ γaℓℓX2Y

(

Y2

2
+ γ

X4

4

)ℓ−1

+ k0aℓ

(

Y2

2
+ γ

X4

4

)ℓ

= βaℓℓ

(

2

(

Y2

2
+ γ

X4

4

)

− 2

3
γX4

)(

Y2

2
+ γ

X4

4

)ℓ−1

+ γaℓℓX2Y

(

Y2

2
+ γ

X4

4

)ℓ−1

+k0aℓ

(

Y2

2
+ γ

X4

4

)ℓ

= aℓ(2βℓ+ k0)

(

Y2

2
+ γ

X4

4

)ℓ

− 1

2
βaℓℓγX4

(

Y2

2
+ γ

X4

4

)ℓ−1

+ γaℓℓX2Y

(

Y2

2
+ γ

X4

4

)ℓ−1

.

By the transformations in (4.4) and (4.5) and working in a similar way to solve G0 we get the

following ordinary differential equation

√

2u − γv4/2
dG2

dv
= aℓ(2βℓ+ k0)u

ℓ − 1

2
βaℓℓγv4uℓ−1 + γaℓℓv2

√

2u − γv4/2uℓ−1.

Integrating this equation with respect to v we get

G2 = F2(u) +
βℓuℓ−1

6
v
√

2u − γv4/2 +
γaℓℓ

3
v3uℓ−1

+
1

3
√

2
uℓ−1/2v(4βℓ+ 3k0) 2F1

(

1

2
,

1

4
,

5

4
,

γv4

8u

)

,

where F2 is a smooth function in the variable u and 2F1 is the hypergeometric function in-

troduced in (4.6). Here, 2F1 is never a polynomial. Since G2 should be a polynomial in the

variable X we must have that

4βℓ+ 3k0 = 0, that is k0 = −4βℓ

3
.

Now we apply Theorem 2.1. We recall that k0 is a constant, k0 6= 0, and that in view of

Theorem 2.1, g must vanish in the critical points of system (2.3), which are (0, 0) and (ψ+, 0)

and (ψ−, 0) where

ψ± =
−γ ±

√

γ2 + 4δγ

2γ
.

Moreover, the critical point (0, 0) has the eigenvalues

λ+ = −β

2
+

√

β2 + 4δ

2
and λ− = −β

2
−

√

β2 + 4δ

2
,
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the critical point (ψ+, 0) has the eigenvalues

µ+ = −β

2
+

√

β2 + 4T+

2
and µ− = −β

2
−
√

β2 + 4T+

2

being

T+ =

(

γ −
√

γ2 + 4δγ

)

√

γ2 + 4δγ

2γ
,

and the critical point (ψ−, 0) has the eigenvalues

ν+ = −β

2
+

√

β2 + 4T−
2

and ν− = −β

2
−
√

β2 + 4T−
2

being

T− =

(

−γ −
√

γ2 + 4δγ

)

√

γ2 + 4δγ

2γ

We consider different cases.

Case 1: δγ > 0 and γ < 0. In this case both (ψ+, 0) and (ψ−, 0) are saddles. In view of

Theorem 2.1 we must have that

k0 ∈ {µ+, µ−, µ+ + µ−} = {µ+, µ−,−β} and k0 ∈ {ν+, ν−, ν+ + ν−} = {ν+, ν−,−β}.

Note that if k0 = −β then

−4βℓ

3
= −β, that is β

3 − 4ℓ

3
= 0,

which is not possible because β 6= 0 and ℓ is an integer with ℓ ≥ 1. So, k0 ∈ {µ+, µ−} and

k0 ∈ {ν+, ν−}. The only possibility is that γ = 0. In this case

−4βℓ

3
= −β

2
±

√

β2 − 8δ

2

which yields

β = ±3
√

−δ√
14

.

Moreover the eigenvalues on (0, 0) are λ+ and λ−. If β2 + 4δ < 0 then λ+ and λ− would

be rationally independent and in view of Theorem 2.1, then k0 ∈ {λ+, λ−, λ+ + λ−} =

{λ+, λ−,−β}. But then this would imply that

√

−δ(i
√

47 ± (8ℓ+ 3)) = 0,

which is not possible. Hence, β2 + 4δ > 0. However

β2 + 4δ =
47δ

14
< 0

and so this case is not possible.
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Case 2: δγ > 0 and γ > 0. In this case (0, 0) is a saddle. In view of Theorem 2.1 we must

have that k0 ∈ {λ+, λ−, λ+ + λ−} = {λ+, λ−,−β}. As in Case 1 we cannot have k0 = −β. So,

imposing that k0 ∈ {λ+, λ−} we conclude that

β = ± 3
√

δ

2
√

ℓ(3 + 4ℓ)
.

Moreover if β2 + 4T+ < 0 we would have that µ+ and µ− are rationally independent and so

k0 ∈ {µ+, µ−,−β}. However, µ+ = λ+ (respectively µ− = λ−) if and only if

γ =
3i
√

δγ
√

2
,

which is not possible. So β2 + 4T+ > 0. Equivalently, if β2 + 4T− < 0 we would have that ν−

and ν− are rationally independent and so k0 ∈ {ν+, ν−,−β}. However, ν+ = λ+ (respectively

ν− = λ−) if and only if

γ =
3i
√

δγ
√

2
,

which is not possible. So β2 + 4T− > 0. This implies that

9δ

2ℓ(3 + 4ℓ)
>

2

γ

√

γ2 + 4δγ

(

γ +
√

γ2 + 4δγ

)

and

9δ

2ℓ(3 + 4ℓ)
>

2

γ

√

γ2 + 4δγ

(

−γ +
√

γ2 + 4δγ

)

or, in short,

9δ

2ℓ(3 + 4ℓ)
>

2

γ

√

γ2 + 4δγ

(

|γ|+
√

γ2 + 4δγ

)

= 8δ +
2

γ

(

|γ|
√

γ2 + 4δγ + γ2

)

,

being |γ| the absolute value of γ. Note that this in particular implies that

−δ(64ℓ2 + 48ℓ− 9)

2ℓ(3 + 4ℓ)
>

2

γ

(

|γ|
√

γ2 + 4δγ + γ2

)

> 0,

which is not possible because δ > 0 and ℓ ≥ 1. So, this case is not possible.

Case 3: δγ < 0 and γ < 0. In this case (0, 0) is a saddle. In view of Theorem 2.1 we must

have that k0 ∈ {λ+, λ−, λ+ + λ−} = {λ+, λ−,−β}. As in case 1 we cannot have k0 = −β. So,

imposing that k0 ∈ {λ+, λ−} we conclude that

β = ± 3
√

δ

2
√

ℓ(3 + 4ℓ)
.

Now we assume that γ ≤ 0 (otherwise we will do the argument with T− instead of T+). Since

T+ is a saddle we must have k0 ∈ {µ+, µ−, µ+ + µ−} = {µ+, µ−,−β}. Proceeding as in Case 2,

we cannot have k0 = −β and equating it to either µ+ or µ− we obtain that

γ =
3i
√

δγ
√

2
= −

3
√

|δγ|
√

2
,
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Now proceeding as in Case 1 we have that µ+ = ν+ (respectively µ− = ν−) if and only if γ = 0,

which in this case is not possible because then δ = δ and δγ 6= 0. So, β2 + 4T− > 0, otherwise

we would have that ν+ and ν− would be rationally independent and so k0 ∈ {ν+, ν−,−β}
which we already shown that it is not possible. So, β2 + 4T− > 0. However, using that

µ+ = λ+ and µ− = λ− (that is, T+ = δ) we get that

γ

√

γ2 + 4δγ = 2γδ + γ2 + 4δγ

and so

β2 + 4T− =
9δ

4(ℓ(3 + 4ℓ))
− 4

2γ
(2γ2 + 10δγ) =

9δ

4(ℓ(3 + 4ℓ))
+

2

γ
|δγ|

=
9δ

4(ℓ(3 + 4ℓ))
− 2δ =

δ

4(ℓ(3 + 4ℓ))
(9 − 24ℓ− 32ℓ2) < 0,

because ℓ ≥ 1. In short, this case is not possible.

Case 4: δγ < 0 and γ > 0. We consider the case γ ≥ 0 because the case γ < 0 is the

same working with T− instead of T+. Since γ ≥ 0 we have that T+ is a saddle. In view of

Theorem 2.1 we must have that k0 ∈ {λ+, λ−, λ+ + λ−} = {λ+, λ−,−β}. As in Case 1 we

cannot have k0 = −β. So, imposing that k0 ∈ {λ+, λ−} we conclude that

β = ± 3
√

T+

2
√

ℓ(3 + 4ℓ)
.

Now proceeding as in Case 1, it follows from Theorem 2.1 that we have either µ+ = ν+

(respectively µ− = ν−) in the case in which β2 + 4T− < 0 (because they will be rationally

independent), or β2 + 4T− > 0. In the first case, proceeding as in Case 1 we must have γ ≥ 0.

Assume first that γ > 0. Then,

β2 + 4T− =
1

4ℓ(3 + 4ℓ)
(9T+ + 16ℓ(3 + 4ℓ)T−)

=
1

8γℓ(3 + 4ℓ)

(

γ

√

γ2 + 4δγ(9 − 16ℓ(3 + 4ℓ)

)

−
(

√

γ2 + 4δγ

)2

(9 + 16ℓ(3 + 4ℓ))) < 0,

which is not possible. So, γ = 0. Then

β = ± 3
√

−4δ√
2
√

ℓ(3 + 4ℓ)
.

Note that

β2 + 4δ =
9

2ℓ(3 + 4ℓ)
|δ| − 4|δ| = |δ|

2ℓ(3 + 4ℓ)
(9 − 8ℓ(3 + 4ℓ)) < 0.

So, again proceeding as in Case 1 we must have k0 ∈ {λ+, λ−}. Imposing it we conclude that

δ = 0 which is not possible because δ = δ 6= 0 whenever γ = 0. This concludes the proof of

the theorem.
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5 Conclusions

In this paper we have characterized completely the algebraic traveling wave solutions of

the Korteweg–de Vries–Burgers equation and of the Generalized Korteweg–de Vries–Burgers

equation under some additional assumptions on the constants. The importance of this method

is that can be used to completely characterize the algebraic traveling wave solutions of other

well-known partial differential equations of any order provided that we are able to obtain the

so-called Darboux polynomials. We emphasize that all the methods up to moment are not

definite in the sense that if they do not work we cannot conclude that the system does not

have traveling wave solutions, whereas in this method, if it fails, we can guarantee that there

are not.

The cases of the Generalized Korteweg–de Vries–Burgers equation with n ≥ 3 is unap-

proachable right now due to the fact that we are not able to compute the resulting Darboux

polynomials, so these cases remain open.
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1 Introduction and main results

Mawhin and Willem [9] investigated the second order Hamiltonian system

{
−ẍ(t)− m2ω2x(t) = ∇xV(t, x(t)), a.e. t ∈ [0, T],

x(0)− x(T) = ẋ(0)− ẋ(T) = 0,
(1.1)

where T > 0, ω = 2π
T , m ∈ {0, 1, 2, . . . }, V ∈ C([0, T]× R

n, R),∇xV denotes the gradient of V

with respect to x,∇xV ∈ C([0, T]× R
n, R

n), and for each x ∈ R
n, V(t, x) is periodic in t with

period T. Using the dual least action principle and the perturbation technique, the Authors,

in theirs excellent book [9], proved some existence theorems of solutions for problem (1.1)

with subquadratic convex or concave potential. Recently, using the reduction method, the

perturbation argument and the least action principle, Tang and Wu [12] proved an abstract

critical point theorem without the compactness assumptions which generalizes the results

in [7]. As a main application, they successively obtained some existence theorems of problem

BEmail: mlsong2004@163.com
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(1.1) with m = 0 and subquadratic convex potential or k(t)-concave potential, which unify and

generalize some earlier results in [9,13,14,16,17]. Later on, applying the abstract critical point

theory established in [12], Ye [15] proved some existence theorems of problem (1.1), where

m ≥ 1 and the potential is convex and satisfies conditions which are more general than the

subquadratic conditions in [9]. In this paper we reconsider in the framework of the operator

equations some theorems proved in [9, 12, 15].

Let X be a real infinite-dimensional separable Hilbert space with inner product (·, ·)X and

the corresponding norm ‖ · ‖X. Let A : D(A) ⊂ X → X be an unbounded linear self-adjoint

operator with σ(A) = σd(A) bounded from below. Hence, there is an orthonormal basis

{ej}
∞
j=1 of X and λ1 ≤ λ2 ≤ · · · such that Aej = λjej, D(A) =

{
∑

∞
j=1 cjej|∑

∞
j=1 λ2

j c2
j < ∞

}
. In

addition, let Z ≡ D(|A|
1
2 ) =

{
∑

∞
j=1 cjej|∑

∞
j=1 |λj|c

2
j < ∞

}
equipped with the norm ‖x‖2

Z =

‖x‖2 = ∑
∞
j=1(1 + |λj|)c

2
j . For any x = ∑

∞
j=1 cjej ∈ Z, y = ∑

∞
j=1 djej ∈ Z, we can define a bilinear

form

a(x, y) =
∞

∑
j=1

λjcjdj.

Note that (Ax, y)X = a(x, y) if x ∈ D(A), y ∈ Z, this shows that a(x, y) is the extension

of (Ax, y)X on Z. Moreover, let Ls(X) be the usual space consisting of bounded symmetric

operators in X. For given B ∈ Ls(X), we define

νA(B) = dim ker(A − B),

iA(B) = ∑
λ<0

νA(B + λId),

as introduced by Dong, see Definition 7.1.1 in [5] or Definition 3.1.1 and Proposition 3.1.4 in

[4]. We consider the following operator equation

Ax − B1x = ∇Φ(x), (1.2)

where B1 ∈ Ls(X), νA(B1) 6= 0, and Φ satisfies

(Φ0) Φ ∈ C1(Z, R) is weakly continuous with weakly continuous derivative, that is, xn ⇀

x0 in Z implies that Φ(xn) → Φ(x0) and Φ′(xn) → Φ′(x0). Moreover, for every x ∈ Z there

exists ∇Φ(x) ∈ X such that Φ′(x)y = (∇Φ(x), y)X for all y ∈ Z.

Let X1 be a nontrivial subspace of X. For B1, B2 ∈ Ls(X) we write B1 ≤ B2 with respect to

X1 if and only if (B1x, x)X ≤ (B2x, x)X for all x ∈ X1; we write B1 < B2 w.r.t. X1 if and only if

(B1x, x)X < (B2x, x)X for all x ∈ X1\{θ}. If X1 = X, then we just write B1 ≤ B2 or B1 < B2. In

addition, we write B1 < B2 properly if and only if B1 ≤ B2 and B1 < B2 w.r.t. ker(A − B) for

all B ∈ Ls(X).

Our main results can be stated as follows.

Theorem 1.1. Assume that Φ satisfies (Φ0) and

(Φ1) Φ is convex in X;

(Φ2) Φ and Φ′ are bounded in Z;

(Φ3) Φ(x) → +∞ as ‖x‖ → ∞ with x ∈ ker(A − B1);

(Φ4) there exist c > 0 and B2 ∈ Ls(X) with B2 ≥ B1 and B2 > B1 w.r.t. ker(A − B1), νA(B2) 6= 0

and iA(B2) = iA(B1) + νA(B1), such that

Φ(x) ≤
1

2
((B2 − B1)x, x)X + c (1.3)
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for all x ∈ X, and

Φ(x)−
1

2
((B2 − B1)x, x)X → −∞ (1.4)

as ‖x‖ → ∞, where x = x̃ + x with x ∈ ker(A − B2) and ‖x̃‖ is bounded.

Then problem (1.2) has a solution in Z.

Theorem 1.2. The conclusion of Theorem 1.1 still holds if we replace (Φ4) with

(Φ′
4) there exist c > 0 and B2 ∈ Ls(X) with B2 ≥ B1 and B2 > B1 w.r.t. ker(A − B1), νA(B2) = 0

and iA(B2) = iA(B1) + νA(B1), such that

Φ(x) ≤
1

2
((B2 − B1)x, x)X + c (1.5)

for all x ∈ X.

Theorem 1.3. The conclusion of Theorem 1.1 still holds if we replace (Φ1) and (Φ4) with

(Φ′
1) Φ is (B2 − B1)-concave, that is, −Φ(x) + 1

2 ((B2 − B1)x, x)X is convex in X.

(Φ′′
4 ) there exists B2 ∈ Ls(X) with B2 ≥ B1 and B2 > B1 w.r.t. ker(A− B1), iA(B1) = 0, νA(B2) 6= 0

and iA(B2) = iA(B1) + νA(B1), such that

− Φ(x) +
1

2
((B2 − B1)x, x)X → +∞ (1.6)

as ‖x‖ → ∞ with x ∈ ker(A − B2), respectively.

Theorem 1.4. The conclusion of Theorem 1.1 still holds if we replace (Φ1) and (Φ4) with (Φ′
1),

(Φ′′′
4 ) there exists B2 ∈ Ls(X) with B2 ≥ B1 and B2 > B1 w.r.t. ker(A − B1), iA(B1) = 0, νA(B2) =

0, such that

iA(B2) = iA(B1) + νA(B1),

respectively.

The paper is organized as follows. In Section 2, we first recall a critical point theorem as

given in [12]. Then, following [4, 5], we recall some useful conclusions of index theory for

linear self-adjoint operator equations. Finally, we quote a lemma in [3], which shows that (1.2)

possesses a variational structure. In Section 3, we prove Theorems 1.1–1.4. In Section 4, we

investigate their applications to second order Hamiltonian systems with generalized periodic

boundary conditions and Sturm–Liouville boundary conditions. The corresponding results in

[9, 12, 15] are special cases of these results.

2 Preliminaries

In order to prove our main results, we recall first two lemmas due to Tang and Wu [12].

Lemma 2.1 ([12, Theorem 1.1]). Suppose that X1 and X2 are reflexive Banach spaces, I ∈ C1(X1 ×

X2, R). I(x1, ·) is weakly upper semi-continuous for all x1 ∈ X1 and I(·, x2) : X1 → R is convex for

all x2 ∈ X2, and I ′ is weakly continuous. Assume that

I(θ, x2) → −∞ (2.1)
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as ‖x2‖ → +∞ and, for every M > 0

I(x1, x2) → +∞ (2.2)

as ‖x1‖ → +∞ uniformly for ‖x2‖ ≤ M. Then I has at least one critical point.

Lemma 2.2 ([12, Lemma 5.1]). Suppose that H is a real Hilbert space, f : H × H → R is a bilinear

functional. Then g : H → R given by

g(x) = f (x, x), ∀x ∈ H

is convex if and only if

g(x) ≥ 0, ∀x ∈ H.

Now we also recall some definitions and propositions in [4, 5].

Definition 2.3 ([5, Page 108]). For any B ∈ Ls(X), we define

ψa,B(x, y) = a(x, y)− (Bx, y)X, ∀x, y ∈ Z.

For any x, y ∈ Z if ψa,B(x, y) = 0 we say that x and y are ψa,B-orthogonal. For any two

subspaces Z1 and Z2 of Z if ψa,B(x, y) = 0 for any x ∈ Z1, y ∈ Z2 we say that Z1 and Z2 are

ψa,B-orthogonal.

Proposition 2.4 ([5, Proposition 7.2.1]). For any B ∈ Ls(X), the space Z has a ψa,B-orthogonal

decomposition

Z = Z+
a (B)⊕ Z0

a(B)⊕ Z−
a (B)

such that ψa,B is positive definite, null and negative definite on Z+
a (B), Z0

a(B) and Z−
a (B) respectively.

Moreover, Z0
a(B) and Z−

a (B) are finitely dimensional.

Definition 2.5 ([5, Definition 7.2.1]). For any B ∈ Ls(X), we define νa(B) = dim Z0
a(B), ia(B) =

dim Z−
a (B).

Proposition 2.6.

(1) For any B ∈ Ls(X), we have

νA(B) = νa(B), iA(B) = ia(B), ker(A − B) = Z0
a(B).

([5], Proposition 7.2.2 (i))

(2) For any B1, B2 ∈ Ls(X), if B1 ≤ B2 with respect to Z−
a (B1), then ia(B1) ≤ ia(B2); if B1 ≤

B2 with respect to Z−
a (B1) ⊕ Z0

a(B1), then ia(B1) + νa(B1) ≤ ia(B2) + νa(B2); if B1 < B2

with respect to Z0
a(B1) and B1 ≤ B2 with respect to Z−

a (B1), then ia(B1) + νa(B1) ≤ ia(B2).

([5], Proposition 7.2.2 (ii))

(3) For any B1, B2 ∈ Ls(X), if B1(t) ≤ B2(t) and B1(t) < B2(t) properly, then

ia(B2)− ia(B1) = ∑
λ∈[0,1)

νa(B1 + λ(B2 − B1)).

([5], Proposition 7.2.2 (iii))
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(4) (Poincaré inequality.) For any B ∈ Ls(X), if ia(B) = 0, then

ψa,B(x, x) ≥ 0, ∀x ∈ Z.

And the equality holds if and only if x ∈ Z0
a(B). ([5], Proposition 7.2.2 (v))

(5) For any B1, B2 ∈ Ls(X), if B1 ≤ B2 and B1 < B2 w.r.t. ker(A − B1) and iA(B2) =

iA(B1) + νA(B1), then Z = Z−
a (B1)⊕ Z0

a(B1)⊕ Z0
a(B2)⊕ Z+

a (B2), and (−ψa,B1
(x1, x1))

1
2 +

(ψa,B2
(x2, x2))

1
2 is an equivalent norm on Z for x = x1 + x2 with x1 ∈ Z−

a (B1), x2 ∈

Z+
a (B2). In particular, for any B1 ∈ Ls(X), then Z = Z−

a (B1) ⊕ Z0
a(B1) ⊕ Z+

a (B1) and

(−ψa,B1
(x1, x1))

1
2 + (ψa,B1

(x2, x2))
1
2 is also an equivalent norm on Z for x = x1 + x2 with

x1 ∈ Z−
a (B1), x2 ∈ Z+

a (B1).

Proof. We only prove (5). Let Z1 = Z−
a (B1) ⊕ Z0

a(B1), Z2 = Z0
a(B2) ⊕ Z+

a (B2). Noticing that

ψa,B1
(x, x) ≥ ψa,B2

(x, x) for all x ∈ Z, ψa,B1
(x, x) ≤ 0 for all x ∈ Z1 and ψa,B2

(x, x) ≥ 0 for all

x ∈ Z2, if x ∈ Z1
⋂

Z2 then ψa,B2
(x, x) = 0 = ψa,B1

(x, x), which shows that x ∈ Z0
a(B2)

⋂
Z0

a(B1).

By B1 ≤ B2 and B1 < B2 w.r.t. ker(A − B1), we have 0 = ψa,B1
(x, x) > ψa,B2

(x, x) = 0 provided

x ∈ Z0
a(B2)

⋂
Z0

a(B1)\{θ}. This is a contradiction, which implies that Z1
⋂

Z2 = {θ}. It

remains to prove that Z = Z1 + Z2. By Proposition 2.4, we have Z = Z2 ⊕ Z−
a (B2) and for any

x ∈ Z there exists a unique pair (x1, x2) ∈ Z2 × Z−
a (B2) such that x = x1 + x2. Let {ej}

k
j=1 be

a basis of Z1, ej = e2
j + e−j with e2

j ∈ Z2, e−j ∈ Z−
a (B2) for j = 1, 2, · · · , k = iA(B1) + νA(B1). By

iA(B2) = iA(B1) + νA(B1) = k, in order to prove {e−j }
k
j=1 is a basis of Z−

a (B2) we only need to

show that {e−j }
k
j=1 is linear independent. In fact, otherwise there exist not all zero constants

c1, . . . , ck such that ∑
k
j=1 cje

−
j = 0. This leads to ∑

k
j=1 cjej ∈ Z1

⋂
Z2, a contradiction. The linear

independent shows that there exist constants {αj}
k
j=1 such that x2 = ∑

k
j=1 αje

−
j . And hence

x = x1 + x2 = x = x1 + ∑
k
j=1 αje

−
j = ∑

k
j=1 αjej +

(
x1 − ∑

k
j=1 αje

2
j

)
.

Similar to the proof of Proposition 7.2.2 (iv) in [5], we can prove that (−ψa,B1
(x1, x1))

1
2 +

(ψa,B2
(x2, x2))

1
2 is an equivalent norm on Z for x = x1 + x2 with x1 ∈ Z−

a (B1), x2 ∈ Z+
a (B2),

and (−ψa,B1
(x1, x1))

1
2 + (ψa,B1

(x2, x2))
1
2 is also an equivalent norm on Z for x = x1 + x2 with

x1 ∈ Z−
a (B1), x2 ∈ Z+

a (B1).

Finally, let us consider the functional I defined by

I(x) = −
1

2
a(x, x) +

1

2
(B1x, x)X + Φ(x), (2.3)

for every x ∈ Z. Under assumption (Φ0), from Theorem 1.2 in [9] it is easy to verify that

I ∈ C1(Z, R) is weakly upper semi-continuous on Z and I′ is weakly continuous with

I′(x)y = −a(x, y) + (B1x, y)X + Φ′(x)y, (2.4)

for every x, y ∈ Z.

The following important lemma is an immediate conclusion of Lemma 2.1 in [3].

Lemma 2.7. Assume that (Φ0) holds. Then a critical point of I(x) is a solution for problem (1.2).

3 Proofs of the Theorems

In this section, we present the proof of Theorems 1.1–1.4.
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Proof of Theorem 1.1. By νA(B1) 6= 0, B1 ≤ B2 and B1 < B2 w.r.t. ker(A − B1) and iA(B2) =

iA(B1) + νA(B1), we have Z = Z−
a (B1)⊕ Z0

a(B1)⊕ Z0
a(B2)⊕ Z+

a (B2) via (5) of Proposition 2.6.

Set X1 = Z−
a (B1)⊕ Z0

a(B1), X2 = Z0
a(B2)⊕ Z+

a (B2) = Z+
a (B1), x ∈ Z, x = x1 + x2 with x1 ∈ X1

and x2 ∈ X2. Next, we divide the proof into three steps.

Step 1. We show that I(·, x2) : X1 → R is convex for all x2 ∈ X2. By (Φ1), it is obvious that

Φ(x1 + x2) is convex in x1 ∈ X1. From Definition 2.3 and Proposition 2.4 we can see that for

every x1 ∈ X1,

−
1

2
ψa,B1

(x1, x1) = −
1

2
a(x1, x1) +

1

2
(B1x1, x1)X ≥ 0,

which implies that − 1
2 ψa,B1

(x1, x1) is convex in x1 ∈ X1 via Lemma 2.2. Hence, for every

x2 ∈ X2,

I(x1 + x2) = −
1

2
a(x1 + x2, x1 + x2) +

1

2
(B1(x1 + x2), x1 + x2)X + Φ(x1 + x2)

= −
1

2
ψa,B1

(x1, x1) + Φ(x1 + x2)−
1

2
ψa,B1

(x2, x2)

is convex in x1 ∈ X1.

Step 2. By contradiction, we prove that (2.2) of Lemma 2.1 holds. Assume that (2.2) of Lemma

2.1 does not hold. Then there exist M > 0, c0 > 0 and two sequences {x1,n} ⊂ X1 and

{x2,n} ⊂ X2 with ‖x1,n‖ → +∞ as n → ∞ and ‖x2,n‖ ≤ M for all n such that

I(x1,n + x2,n) ≤ c0, ∀n ∈ N. (3.1)

For x1 ∈ X1, write x1 = x−1 + x0
1, where x−1 ∈ Z−

a (B1) and x0
1 ∈ Z0

a(B1). We consider the

functional Φ|Z0
a (B1). By (Φ0), we easily see that Φ|Z0

a (B1) is weakly lower semi-continuous on

Z0
a(B1). Using (Φ3), by the least action principle (see Theorem 1.1 in [9]), Φ|Z0

a (B1) has a

minimum at some x0
1,0 ∈ Z0

a(B1) for which

0 = Φ′(x0
1,0)x0

1 = (∇Φ(x0
1,0), x0

1)X, ∀x0
1 ∈ Z0

a(B1).

By assumption (Φ0) and the convexity of Φ, we have

Φ(x1 + x2)− Φ(x0
1,0) ≥ (∇Φ(x0

1,0), x−1 + x2 + x0
1 − x0

1,0)X

= (∇Φ(x0
1,0), x−1 + x2)X,

and then, from ‖x‖X ≤ ‖x‖ for all x ∈ Z,

Φ(x1 + x2) ≥ Φ(x0
1,0)− ‖∇Φ(x0

1,0)‖X · ‖x−1 + x2‖X

≥ Φ(x0
1,0)− ‖∇Φ(x0

1,0)‖X · (‖x−1 ‖+ ‖x2‖)

= c1 − c2 · (‖x−1 ‖+ ‖x2‖)

where c1 = Φ(x0
1,0), c2 = ‖∇Φ(x0

1,0)‖X ≥ 0. Rewrite x1,n = x−1,n + x0
1,n, where x−1,n ∈ Z−

a (B1)

and x0
1,n ∈ Z0

a(B1). By (3.1), we have

c0 ≥ I(x1,n + x2,n)

= −
1

2
ψa,B1

(x−1,n, x−1,n)−
1

2
ψa,B1

(x2,n, x2,n) + Φ(x1,n + x2,n)

≥ −
1

2
ψa,B1

(x−1,n, x−1,n)−
1

2
ψa,B1

(x2,n, x2,n) + c1 − c2 · (‖x−1,n‖+ ‖x2,n‖).
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From (Φ4) and (5) of Proposition 2.6, we know that (−ψa,B1
(x−1 , x−1 ))

1
2 is an equivalent norm

on Z for x−1 ∈ Z−
a (B1) and (ψa,B1

(x2, x2))
1
2 is an equivalent norm on Z for x2 ∈ Z+

a (B1). This

means that there exist c3 > 0 and c4 > 0 such that

c0 ≥ I(x1,n + x2,n)

≥
c2

3

2
‖x−1,n‖

2 −
c2

4

2
‖x2,n‖

2 + c1 − c2 · (‖x−1,n‖+ ‖x2,n‖)

≥
c2

3

2
‖x−1,n‖

2 −
c2

4M2

2
+ c1 − c2 · (‖x−1,n‖+ M)

via ‖x2,n‖ ≤ M, which shows that {‖x−1,n‖} is bounded. Combining this with assumption (Φ2)

and the convexity of Φ, we see that there exist c5 > 0 and c6 = sup
n

Φ(−x−1,n − x2,n) such that

c0 ≥ I(x1,n + x2,n)

= −
1

2
ψa,B1

(x−1,n, x−1,n)−
1

2
ψa,B1

(x2,n, x2,n) + Φ(x1,n + x2,n)

≥
(c3c5)2

2
−

c2
4M2

2
+ 2Φ

(
1

2
x0

1,n

)
− Φ(−x−1,n − x2,n)

≥
(c3c5)2

2
−

c2
4M2

2
+ 2Φ

(
1

2
x0

1,n

)
− c6.

By (Φ3), we know that {‖x0
1,n‖} is also bounded. This contradicts the fact that ‖x−1,n‖ +

‖x0
1,n‖ ≥ ‖x1,n‖ → +∞ as n → ∞. Therefore (2.2) of Lemma 2.1 holds.

Step 3. We check that (2.1) of Lemma 2.1 holds. If not, there exist a constant c7 and a sequence

{x2,n} in X2 such that ‖x2,n‖ → +∞ as n → ∞ and

I(x2,n) ≥ c7 (3.2)

for all n. For x2 ∈ X2, write x2 = x0
2 + x+2 , where x0

2 ∈ Z0
a(B2) and x+2 ∈ Z+

a (B2). Notice that

νs
M(B2) 6= 0 and X2 = Z0

a(B2)⊕ Z+
a (B2). Let x2,n = x0

2,n + x+2,n, x0
2,n ∈ Z0

a(B2), x+2,n ∈ Z+
a (B2).

Then by (1.3) of (Φ4), (3.2), Definition 2.3 and Proposition 2.4, we have

c7 ≤ I(x2,n)

≤ −
1

2
a(x0

2,n + x+2,n, x0
2,n + x+2,n) +

1

2
(B2(x0

2,n + x+2,n), x0
2,n + x+2,n)X + c

= −
1

2
ψa,B2

(x+2,n, x+2,n) + c

which implies that {x+2,n} is bounded since (−ψa,B1
(x1, x1))

1
2 + (ψa,B2

(x2, x2))
1
2 is an equivalent

norm on Z for x = x1 + x2 with x1 ∈ Z−
a (B1) and x2 ∈ Z+

a (B2), where x1 = θ. Since

‖x2,n‖ ≤ ‖x0
2,n‖+ ‖x+2,n‖, we have ‖x0

2,n‖ → ∞ as n → +∞. By x2,n ∈ X2 = Z0
a(B2)⊕ Z+

a (B2),

we have ψa,B2
(x2,n, x2,n) ≥ 0 for all n via Proposition 2.4. From ‖x0

2,n‖ → ∞ as n → +∞ we

have

I(x2,n) ≤ Φ(x2,n)−
1

2
((B2 − B1)x2,n, x2,n)X → −∞

via (1.4) of (Φ4), which contradicts (3.2). Hence (2.1) of Lemma 2.1 holds.

By Lemma 2.1, I has at least one critical point. Hence problem (1.2) has at least one

solution in Z via Lemma 2.7. The proof is complete.
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Proof of Theorem 1.2. By νA(B1) 6= 0, B1 ≤ B2 and B1 < B2 w.r.t. ker(A − B1) and iA(B2) =

iA(B1) + νA(B1), we have Z = Z−
a (B1)⊕ Z0

a(B1)⊕ Z0
a(B2)⊕ Z+

a (B2) via (5) of Proposition 2.6.

Note that νA(B2) = 0, we have Z0
a(B2) = {θ}, which implies that Z = Z−

a (B1) ⊕ Z0
a(B1) ⊕

Z+
a (B2) and Z+

a (B2) = Z+
a (B1). Set X1 = Z−

a (B1) ⊕ Z0
a(B1), X2 = Z+

a (B2) = Z+
a (B1), x ∈

Z, x = x1 + x2 with x1 ∈ X1 and x2 ∈ X2.

Let us follow the proof of Theorem 1.1 until (3.2). For x2,n ∈ Z+
a (B2) = Z+

a (B1), by (1.5) of

(Φ′
4), (3.2), Definition 2.3 and Proposition 2.4, we have

c7 ≤ I(x2,n)

≤ −
1

2
a(x2,n, x2,n) +

1

2
(B2x2,n, x2,n)X + c

= −
1

2
ψa,B2

(x2,n, x2,n) + c.

Since (−ψa,B1
(x1, x1))

1
2 + (ψa,B2

(x2, x2))
1
2 is an equivalent norm on Z for x = x1 + x2 with

x1 ∈ Z−
a (B1) and x2 ∈ Z+

a (B2), where x1 = θ, we have ψa,B2
(x2,n, x2,n) → +∞ via ‖x2,n‖ → ∞

as n → +∞. Thus, we have

I(x2,n) ≤ −
1

2
ψa,B2

(x2,n, x2,n) + c → −∞

as n → +∞, which contradicts (3.2). Hence (2.1) of Lemma 2.1 holds.

By Lemma 2.1, I has at least one critical point. Hence problem (1.2) has at least one

solution in Z via Lemma 2.7. The proof is complete.

Proof of Theorem 1.3. We apply Lemma 2.1. Consider the functional I1 defined by

I1(x) = −I(x) =
1

2
a(x, x)−

1

2
(B1x, x)X − Φ(x), (3.3)

for every x ∈ Z. Under assumption (Φ0), it is easy to verify that I1 ∈ C1(Z, R) and I′1 is

weakly continuous.

Note that iA(B1) = 0, we have Z−
a (B1) = {θ}. By νA(B1) 6= 0, B1 ≤ B2 and B1 < B2 w.r.t.

ker(A − B1) and iA(B2) = iA(B1) + νA(B1), we have Z = Z0
a(B1)⊕ Z0

a(B2)⊕ Z+
a (B2) via (5) of

Proposition 2.6. Set X1 = Z0
a(B2)⊕ Z+

a (B2) = Z+
a (B1), X2 = Z0

a(B1), x ∈ Z, x = x1 + x2 with

x1 ∈ X1 and x2 ∈ X2. From Definition 2.3 and Proposition 2.4, we have

I1(x) = I1(x1 + x2) =
1

2
a(x1, x1)−

1

2
(B1x1, x1)X − Φ(x1 + x2),

for every x ∈ Z. Thus, I1(x1, ·) is weakly upper semi-continuous for all x1 ∈ X1 via Φ ∈

C1(Z, R) is weakly continuous.

Next, we still divide the proof into three steps.

Step 1. We show that I1(·, x2) : X1 → R is convex for all x2 ∈ X2. By (Φ′
1), it is obvious that

−Φ(x1 + x2) +
1
2 ((B2 − B1)(x1 + x2), x1 + x2)X is convex in x1 ∈ X1. From Definition 2.3 and

Proposition 2.4 we know that for every x1 ∈ X1,

1

2
ψa,B2

(x1, x1) =
1

2
a(x1, x1)−

1

2
(B2x1, x1)X ≥ 0,

which shows that 1
2 ψa,B2

(x1, x1) is convex in x1 ∈ X1 via Lemma 2.2. Hence, for every x2 ∈ X2,

I1(x1 + x2) =
1

2
a(x1 + x2, x1 + x2)−

1

2
(B1(x1 + x2), x1 + x2)X − Φ(x1 + x2)

=
1

2
ψa,B2

(x1, x1)− Φ(x1 + x2) +
1

2
((B2 − B1)(x1 + x2), x1 + x2)X +

1

2
ψa,B2

(x2, x2)
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is convex in x1 ∈ X1.

Step 2. By contradiction, we verify that (2.2) of Lemma 2.1 holds. If (2.2) of Lemma 2.1 does

not hold, there exist M > 0, c8 > 0 and two sequences {x1,n} ⊂ X1 and {x2,n} ⊂ X2 with

‖x1,n‖ → +∞ as n → ∞ and ‖x2,n‖ ≤ M for all n such that

I1(x1,n + x2,n) ≤ c8, ∀n ∈ N. (3.4)

For x1 ∈ X1, write x1 = x0
1 + x+1 , where x0

1 ∈ Z0
a(B2) and x+1 ∈ Z+

a (B2). Let us consider the

functional

ϕ(x) = −Φ(x) +
1

2
((B2 − B1)x, x)X

for all x ∈ X. By (Φ0) and (Φ′
1), we easily see that ϕ ∈ C1(Z, R) and ϕ is weakly lower

semi-continuous on Z0
a(B2). Using (1.6) of (Φ′′

4 ), by the least action principle (see Theorem 1.1

in [9]), ϕ has a minimum at some x0
1,0 ∈ Z0

a(B2) for which

0 = ϕ′(x0
1,0)x0

1 = −(∇Φ(x0
1,0), x0

1)X + ((B2 − B1)x0
1,0, x0

1)X, ∀x0
1 ∈ Z0

a(B2).

By ϕ ∈ C1(Z, R) and the (B2 − B1)-concavity of Φ, we have

ϕ(x1 + x2)− ϕ(x0
1,0)

≥ −(∇Φ(x0
1,0), x+1 + x2 + x0

1 − x0
1,0)X + ((B2 − B1)x0

1,0, x+1 + x2 + x0
1 − x0

1,0)X

= −(∇Φ(x0
1,0), x+1 + x2)X + ((B2 − B1)x0

1,0, x+1 + x2)X,

and then, from ‖x‖X ≤ ‖x‖ for all x ∈ Z,

ϕ(x1 + x2) ≥ ϕ(x0
1,0)− (‖∇Φ(x0

1,0)‖X + ‖(B2 − B1)x0
1,0‖X) · ‖x+1 + x2‖X

≥ ϕ(x0
1,0)− (‖∇Φ(x0

1,0)‖X + ‖(B2 − B1)x0
1,0‖X) · (‖x+1 ‖+ ‖x2‖)

= c9 − c10 · (‖x+1 ‖+ ‖x2‖)

where c9 = ϕ(x0
1,0), c10 = ‖∇Φ(x0

1,0)‖X + ‖(B2 − B1)x0
1,0‖X ≥ 0. Rewrite x1,n = x+1,n + x0

1,n,

where x+1,n ∈ Z+
a (B2) and x0

1,n ∈ Z0
a(B2). By (3.4), we have

c8 ≥ I1(x1,n + x2,n) =
1

2
ψa,B2

(x1,n + x2,n, x1,n + x2,n)

+
1

2
((B2 − B1)(x1,n + x2,n), x1,n + x2,n)X − Φ(x1,n + x2,n)

=
1

2
ψa,B2

(x+1,n, x+1,n) +
1

2
ψa,B2

(x2,n, x2,n) + ϕ(x1,n + x2,n)

≥
1

2
ψa,B2

(x+1,n, x+1,n) +
1

2
ψa,B2

(x2,n, x2,n) + c9 − c10 · (‖x+1,n‖+ ‖x2,n‖).

From (Φ′′
4 ) and (5) of Proposition 2.6, we know that (ψa,B2

(x, x))
1
2 is an equivalent norm on Z

for x ∈ Z+
a (B2). Noticing that −ψa,B2

(x, x) > 0 for all x ∈ Z−
a (B2)\{θ}, so (−ψa,B2

(x, x))
1
2 is a

norm on Z−
a (B2), which is equivalent to ‖ · ‖Z = ‖ · ‖ because of the finiteness of the subspace

Z−
a (B2). This means that there exist c11 > 0 and c12 > 0 such that

c8 ≥ I1(x1,n + x2,n)

≥
c2

11

2
‖x+1,n‖

2 −
c2

12

2
‖x2,n‖

2 + c9 − c10 · (‖x+1,n‖+ ‖x2,n‖)

≥
c2

11

2
‖x+1,n‖

2 −
c2

12M2

2
+ c9 − c10 · (‖x+1,n‖+ M)
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via ‖x2,n‖ ≤ M, which shows that {‖x+1,n‖} is bounded. Combining this with assumption (Φ2)

and the (B2 − B1)-concavity of Φ, we see that there exist c13 > 0 and c14 = supn ϕ(−x+1,n − x2,n)

such that

c8 ≥ I1(x1,n + x2,n)

=
1

2
ψa,B2

(x+1,n, x+1,n) +
1

2
ψa,B2

(x2,n, x2,n) + ϕ(x1,n + x2,n)

≥
(c11c13)

2

2
−

c2
12M2

2
+ 2ϕ

(
1

2
x0

1,n

)
− ϕ(−x+1,n − x2,n)

≥
(c11c13)

2

2
−

c2
12M2

2
+ 2ϕ

(
1

2
x0

1,n

)
− c14.

By (1.6) of (Φ′′
4 ), we know that {‖x0

1,n‖} is also bounded. This contradicts the fact that ‖x+1,n‖+

‖x0
1,n‖ ≥ ‖x1,n‖ → +∞ as n → ∞. Therefore (2.2) of Lemma 2.1 holds.

Step 3. By X2 = Z0
a(B1), we have I1(x2) = −Φ(x2) for all x2 ∈ X2. Thus, (2.1) of Lemma 2.1

holds via (Φ3).

By Lemma 2.1, I1 has at least one critical point. Hence problem (1.2) has at least one

solution in Z via Lemma 2.7. The proof is complete.

Proof of Theorem 1.4. we still consider the functional I1 defined by (3.3). Under assumption

(Φ0), it is easy to verify that I1 ∈ C1(Z, R) and I′1 is weakly continuous.

By νA(B1) 6= 0, B1 ≤ B2 and B1 < B2 w.r.t. ker(A − B1) and iA(B2) = iA(B1) + νA(B1), we

have Z = Z−
a (B1)⊕ Z0

a(B1)⊕ Z0
a(B2)⊕ Z+

a (B2) via (5) of Proposition 2.6. Note that iA(B1) = 0

and νA(B2) = 0, we have Z−
a (B1) = Z0

a(B2) = {θ}, which implies that Z = Z0
a(B1)⊕ Z+

a (B2),

Z−
a (B2) = Z0

a(B1) and Z+
a (B2) = Z+

a (B1). Set X1 = Z+
a (B2) = Z+

a (B1), X2 = Z0
a(B1), x ∈ Z, x =

x1 + x2 with x1 ∈ X1 and x2 ∈ X2.

From the proof of Theorem 1.3, it is not difficult to see that we only need to verify the

validity of (2.2) in Lemma 2.1. If (2.2) of Lemma 2.1 does not hold, there exist M > 0, c15 > 0

and two sequences {x1,n} ⊂ X1 and {x2,n} ⊂ X2 with ‖x1,n‖ → +∞ as n → ∞ and ‖x2,n‖ ≤ M

for all n such that

I1(x1,n + x2,n) ≤ c15, ∀n ∈ N. (3.5)

We consider the functional

ϕ(x) = −Φ(x) +
1

2
((B2 − B1)x, x)X

for all x ∈ X. By (Φ0) and (Φ′
1), we easily see that ϕ ∈ C1(Z, R). From the (B2 − B1)-concavity

of Φ, we have

ϕ(x1 + x2)− ϕ(θ) ≥ −(∇Φ(θ), x1 + x2)X + ((B2 − B1)θ, x1 + x2)X

= −(∇Φ(θ), x1 + x2)X,

and then, from ‖x‖X ≤ ‖x‖ for all x ∈ Z,

ϕ(x1 + x2) ≥ ϕ(θ)− ‖∇Φ(θ)‖X · ‖x1 + x2‖X

≥ ϕ(θ)− ‖∇Φ(θ)‖X(‖x1‖+ ‖x2‖).

From (Φ′′′
4 ) and (5) of Proposition 2.6, we know that (ψa,B2

(x, x))
1
2 is an equivalent norm on Z

for x ∈ Z+
a (B2). Noticing that −ψa,B2

(x, x) > 0 for all x ∈ Z−
a (B2)\{θ}, so (−ψa,B2

(x, x))
1
2 is a
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norm on Z−
a (B2), which is equivalent to ‖ · ‖Z = ‖ · ‖ because of the finiteness of the subspace

Z−
a (B2). Combining (3.5), we know that there exist c16 > 0 and c17 > 0 such that

c15 ≥ I1(x1,n + x2,n)

=
1

2
ψa,B2

(x1,n, x1,n) +
1

2
ψa,B2

(x2,n, x2,n) + ϕ(x1,n + x2,n)

≥
c2

16

2
‖x1,n‖

2 −
c2

17M2

2
+ ϕ(θ)− ‖∇Φ(θ)‖X(‖x1,n‖+ M),

which shows that {‖x1,n‖} is bounded. This contradicts the fact that ‖x1,n‖ → +∞ as n → ∞.

Therefore (2.2) of Lemma 2.1 holds. The proof is complete.

4 Applications to the second order Hamiltonian systems

In this section, we consider the applications of the main results to the second order Hamilto-

nian systems satisfying two boundary value conditions including generalized periodic bound-

ary value conditions and Sturm-Liouville boundary value conditions. For more details about

Hamiltonian systems, we refer to the excellent books [6, 8, 9, 11] and the papers [1, 2, 10].

4.1 Second order Hamiltonian systems satisfying generalized periodic boundary
value conditions

As a first example, we consider a generalized periodic boundary value problem

−ẍ − B̄1(t)x = ∇xV(t, x) a.e. t ∈ [0, 1], (4.1)

x(1) = Mx(0), ẋ(1) = Nẋ(0), (4.2)

where B̄1(t)∈ L∞([0, 1], Ls(Rn))= {B(t)= (bjk)n×n|bjk(t)= bkj(t), t∈ [0, 1], bjk(t) ∈ L∞([0, 1])},

M, N ∈ GL(n) = {A = (ajk)n×n |ajk ∈ R and det(A) 6= 0}, and MNT = In, where In is the

unit matrix of order n, and ∇xV(t, x) denotes the gradient of V(t, x) for x ∈ R
n. We suppose

that V : [0, 1]× R
n → R satisfies the following condition:

(H0) V(t, x) is measurable in t for every x ∈ R
n and continuously differentiable in x for a.e.

t ∈ [0, 1].

Moreover, there exist a(·) ∈ C(R+, R
+) and b(t) ∈ L1([0, 1], R

+) such that

|V(t, x)| ≤ a(|x|)b(t) and |∇xV(t, x)| ≤ a(|x|)b(t)

for all x ∈ R
n and a.e. t ∈ [0, 1], where R

+ = [0,+∞).

Let X = L2([0, 1], R
n). Define A1 : D(A1) → X by (A1x)(t) = −ẍ(t) where D(A1) = {x ∈

H2([0, 1], R
n)|x satisfies (4.2)}. Set (B1x)(t) = B̄1(t)x(t) with D(B1) = X. From Corollary

1.21 in [3], we know that A1 is self-adjoint in X and σ(A1) = σd(A1) ⊂ [0,+∞). Define

iM(B̄1) = iA1
(B1), νM(B̄1) = νA1

(B1), that is, νM(B̄1) is the dimension of the solution subspace

of (4.1)–(4.2) with V(t, x) ≡ 0 and iM(B̄1) = ∑λ<0 νM(B̄1 + λIn).

Assume that νM(B̄1) 6= 0. Meanwhile, set Z1 = {x ∈ H1([0, 1], R
n)|x(1) = Mx(0)}. Then,

from Corollary 1.21 in [3] again, we have Z1 = D(|A1|
1
2 ).
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Remark 4.1 ([5, Remark 7.1.3], [4, Example 2.4.3]). Let α1 ≤ α2 ≤ · · · ≤ αn be the eigenvalues

of a constant n × n symmetric matrix B. Then

iIn(B) = #{k : αk > 0}+ 2
n

∑
k=1

#{j ∈ N : 4(jπ)2
< αk}, (4.3)

νIn(B) = #{k : αk = 0}+ 2
n

∑
k=1

#{j ∈ N : 4(jπ)2 = αk}, (4.4)

i−In(B) = 2
n

∑
k=1

#{j ∈ N : ((2j − 1)π)2
< αk},

ν−In(B) = 2
n

∑
k=1

#{j ∈ N : ((2j − 1)π)2 = αk},

where #E denotes the number of elements in a set E. For η∈ R\{±1, 0} with λ0= arccos 2
η−1+η

,

we have

iη In(B) =
n

∑
k=1

#{j ∈ N : (2jπ + λ0)
2
< αk}+

n

∑
k=1

#{j ∈ N : (2π − λ0 + 2jπ)2
< αk},

νη In(B) =
n

∑
k=1

#{j ∈ N : (2jπ + λ0)
2 = αk}+

n

∑
k=1

#{j ∈ N : (2π − λ0 + 2jπ)2 = αk}.

In particular, formulae (4.3) and (4.4) were given first by Mawhin and Willem in [9].

In addition, set

Φ(x) =
∫ 1

0
V(t, x)dt, ∀x ∈ Z1.

Then, Φ ∈ C1(Z1, R) is weakly continuous with weakly continuous derivative and for every

x ∈ Z1,

Φ′(x)y =
∫ 1

0
(∇xV(t, x), y)dt, ∀y ∈ Z1

because of (H0). Hence, (Φ0) holds. Moreover, for each x ∈ Z1, we can write the norm

‖x‖2 =
∫ 1

0
[|ẋ(t)|2 + |x(t)|2]dt.

Let ‖ · ‖∞ be the norm of C([0, 1], R
n). Then, there is a constant δ0 > 0 such that

|x| ≤ ‖x‖∞ ≤ δ0‖x‖ (4.5)

for any x ∈ Z1. By (4.5) and (H0), we can verify that (Φ2) holds.

For any B̄1(t), B̄2(t) ∈ L∞([0, 1],Ls(Rn)), we write B̄1 ≤ B̄2 if B̄1(t) ≤ B̄2(t) for a.e. t ∈ [0, 1]

and define B̄1 < B̄2 if B̄1 ≤ B̄2 and B̄1(t) < B̄2(t) on a subset of (0, 1) with positive measure.

Now, the following four results hold.

Theorem 4.2. Assume that V(t, x) satisfies (H0) and

(H1) V(t, x) is convex in x for a.e. t ∈ [0, 1];

(H2)
∫ 1

0 V(t, x)dt as ‖x‖ → ∞ with x ∈ ker(A1 − B̄1);
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(H3) there exist γ(t) ∈ L1([0, 1], R
+) and B̄2(t) ∈ L∞([0, 1],Ls(Rn)) with B̄2 > B̄1, νM(B̄2) 6= 0

and iM(B̄2) = iM(B̄1) + νM(B̄1), such that

V(t, x) ≤
1

2
((B̄2(t)− B̄1(t))x, x) + γ(t) (4.6)

for all x ∈ R
n and a.e. t ∈ [0, 1], and

meas

{
t ∈ [0, 1]

∣∣∣V(t, x)−
1

2
((B̄2(t)− B̄1(t))x, x) → −∞ as ‖x‖ → ∞

}
> 0, (4.7)

where x = x̃ + x ∈ Z1 with x ∈ ker(A1 − B̄2) and ‖x̃‖ is bounded.

Then problem (4.1)–(4.2) has a solution in Z1.

Proof. Clearly, (H0) implies that (Φ0) and (Φ2) hold, (H1) implies that (Φ1) holds, and (H2)

implies that (Φ3). We need only to show that (Φ4) follows from (H3). First, since B̄2 > B̄1,

then exists E0 ⊂ [0, 1] with measE0 > 0 such that B̄2(t) > B̄1(t) for all t ∈ E0 and B̄2(t) ≥ B̄1(t)

for all t ∈ [0, 1]\E0. Hence

((B̄2 − B̄1)x, x)X =
∫ 1

0
((B̄2(t)− B̄1(t))x(t), x(t))dt

≥
∫

E0

((B̄2(t)− B̄1(t))x(t), x(t))dt > 0

for all x ∈ ker(A1 − B̄1), because x(t) ∈ ker(A1 − B̄1) only has finite zeros. This implies that

B̄2 ≥ B̄1 and B̄2 > B̄1 w.r.t. ker(A1 − B̄1). Next, by (4.6), we have

Φ(x) =
∫ 1

0
V(t, x)dt ≤

1

2

∫ 1

0
((B̄2(t)− B̄1(t))x(t), x(t))dt +

∫ 1

0
γ(t)dt

=
1

2
((B̄2 − B̄1)x, x)X + c

for all x ∈ X, where c =
∫ 1

0 γ(t)dt, which shows that (1.3) of (Φ4) holds. Finally, set E1 ={
t ∈ [0, 1]

∣∣ V(t, x)− 1
2 ((B̄2(t)− B̄1(t))x, x) → −∞ as ‖x‖ → ∞

}
, where x = x̃ + x ∈ Z1 with

x ∈ ker(A1 − B̄2) and ‖x̃‖ is bounded. Thus, by (4.7) and measE1 > 0, we have

Φ(x)−
1

2
((B̄2 − B̄1)x, x)X

=
∫ 1

0
[V(t, x)−

1

2
((B̄2(t)− B̄1(t))x, x)]dt

≤
∫

E1

[V(t, x)−
1

2
((B̄2(t)− B̄1(t))x, x)]dt +

∫ 1

0
γ(t)dt → −∞

as ‖x‖ → ∞ with x = x̃ + x, x ∈ ker(A1 − B̄2) and ‖x̃‖ is bounded, which implies that (1.4)

of (Φ4) holds. Now, we can apply Theorem 1.1 to conclude that the system (4.1)− (4.2) has

a solution in Z1.

Remark 4.3. In particular, set B̄1(t) ≡ m2(2π)2, B̄2(t) = (m + 1)2(2π)2, m ∈ {0, 1, 2, . . . } and

M = In. Then, Z1 = {x ∈ H1([0, 1], R
n)|x(1) = x(0)}, σ(A1) = {(2mπ)2|m ∈ N} and

ker(A1 − B̄1) = {a cos(2mtπ) + b sin(2mtπ)|a, b ∈ R
n}. Hence, the following problem

−ẍ(t)− m2(2kπ)2x(t) = ∇xV(t, x(t)), x(0)− x(1) = ẋ(0)− ẋ(1) = 0
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has a solution via Theorems 4.2. In addition, for the interval [0, T] considered in second order

Hamiltonian systems satisfying periodic boundary value conditions, if T = 1, in Theorem 3.1

(m = 0) of [12] and Theorem 1.1 (m 6= 0) of [15], assume that V(t, x) satisfies (H0), (H1), (H2),

and

(H3,1) there exists γ(t) ∈ L1([0, 1], R
+) such that

V(t, x) ≤
2m + 1

2
(2π)2|x|2 + γ(t) (4.8)

for all x ∈ R
n and a.e. t ∈ [0, 1], and

meas

{
t ∈ [0, 1]

∣∣∣V(t, x)−
2m + 1

2
(2π)2|x|2 → −∞ as |x| → ∞

}
> 0, (4.9)

then the conclusion of Theorem 4.2 is also true. In fact, set B̄2(t) = (m + 1)2(2π)2, x = x̃ + x ∈

Z1 with x ∈ ker(A1 − (m + 1)2(2π)2). If ‖x̄‖ → ∞ and ‖x̃‖ is bounded, we can obtain that

|x| → ∞ via the proof of Theorem 1.1 in [15]. From (4.9), we know that (4.7) holds. Noticing

that iIn((m + 1)2(2π)2) = νIn(m
2(2π)2) + iIn(m

2(2π)2), we have (H3) holds via (H3,1). So

Theorem 4.2 generalizes in Theorem 3.1 (m = 0) of [12] and Theorem 1.1 (m 6= 0) of [15]. By

the remarks in [12] and [15] we can see that Theorem 4.2 also generalizes the corresponding

theorems in [9] as T = 1.

Theorem 4.4. The conclusion of Theorem 4.2 still holds if we replace (H3) with

(H′
3) there exist α(t) ∈ L∞([0, 1], R

+), γ(t) ∈ L1([0, 1], R
+) and B̄3(t) ∈ L∞([0, 1],Ls(Rn)) with

B̄3 > B̄1, νM(B̄3) 6= 0 and iM(B̄3) = iM(B̄1) + νM(B̄1), such that α(t)In ≤ B̄3(t)− B̄1(t) for

a.e. t ∈ [0, 1] with

meas
{

t ∈ [0, 1]
∣∣∣0 < α(t)In < B̄3(t)− B̄1(t)

}
> 0, (4.10)

and

V(t, x) ≤
1

2
α(t)|x|2 + γ(t) (4.11)

for a.e. t ∈ [0, 1] and for all x ∈ R
n.

Proof. Similarly to the proof of Theorem 4.2, We need only to show that (Φ′
4) follows from

(H′
3). Set B̄2(t) = B̄1(t) + α(t)In, we have B̄2(t) ∈ L∞([0, 1],Ls(Rn)) via α(t) ∈ L∞([0, 1], R

+)

and B̄2(t) ≥ B̄1(t). By (4.10), we have B̄2 ≥ B̄1 and B̄2 > B̄1 w.r.t. ker(A1 − B̄1) and B̄3 ≥ B̄2 and

B̄3 > B̄2 w.r.t. ker(A1 − B̄2) via the similar proof in Theorem 4.2. From (2) of Proposition 2.6,

we can find that

iM(B̄1) + νM(B̄1) = iM(B̄3) ≥ iM(B̄2) + νM(B̄2) ≥ iM(B̄2) ≥ iM(B̄1) + νM(B̄1),

which implies that iM(B̄2) = iM(B̄1) + νM(B̄1) and νM(B̄2) = 0. Again by (4.11), we have

Φ(x) =
∫ 1

0
V(t, x)dt ≤

1

2

∫ 1

0
((B̄2(t)− B̄1(t))x(t), x(t))dt +

∫ 1

0
γ(t)dt

=
1

2
((B̄2 − B̄1)x, x)X + c

for all x ∈ X, where c =
∫ 1

0 γ(t)dt. This shows that (Φ′
4) holds. Next, we can apply Theo-

rem 1.2 to conclude that the system (4.1)–(4.2) has a solution in Z1.
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Remark 4.5. In particular, set B̄1(t) ≡ m2(2π)2, B̄2(t) = (m + 1)2(2π)2, m ∈ {0, 1, 2, . . . } and

M = In. Then, the following problem

−ẍ(t)− m2(2kπ)2x(t) = ∇xV(t, x(t)), x(0)− x(1) = ẋ(0)− ẋ(1) = 0

has a solution via Theorems 4.4. In addition, as T = 1, in Theorem 3.3 (m = 0) of [12] and

Theorem 1.10 (m 6= 0) of [15], assume that V(t, x) satisfies (H0), (H1), (H2), and

(H′
3,1) there exist γ(t), α(t) ∈ L1([0, 1], R

+) with
∫ 1

0 α(t)dt < 12(2m+1)
(m+1)2 , such that (4.11) holds.

Then the conclusion of Theorem 4.4 is also true.

Obviously, α(t) ∈ L∞([0, 1], R
+) ⊂ L1([0, 1], R

+). But, for α(t) ∈ L∞([0, 1], R
+), we

have
∫ 1

0 α(t)dt <
12(2m+1)
(m+1)2 6⇒ 0 < α(t) < (2m + 1)(2π)2 and 0 < α(t) < (2m + 1)(2π)2 6⇒

∫ 1
0 α(t)dt < 12(2m+1)

(m+1)2 . Indeed, if

α(t) =




(2m + 1)(2π)2, x ∈ [0, 1

(2m+1)(2π)2 ],

0, x ∈ ( 1
(2m+1)(2π)2 , 1],

then
∫ 1

0 α(t)dt = 1 ≤ 12(2m+1)
(m+1)2 as m ≤ 22 and α(t) ≥ (2m + 1)(2π)2 for x ∈ [0, 1

(2m+1)(2π)2 ]; if
12(2m+1)
(m+1)2 < α(t) < (2m + 1)(2π)2, then

∫ 1
0 α(t)dt >

12(2m+1)
(m+1)2 . So Theorem 4.4 is a new result

and, in some sence, it represent a development of Theorem 3.3 (m = 0) of [12] and Theorem

1.10 (m 6= 0) of [15].

Theorem 4.6. The conclusion of Theorem 4.2 still holds if we replace (H1) and (H3) with

(H′
1) V(t, ·) is (B̄2(t)− B̄1(t))-concave, that is, −V(t, x) + 1

2 ((B̄2(t)− B̄1(t))x, x) is convex in x

for a.e. t ∈ [0, 1].

(H′′
3 ) there exists B̄2(t) ∈ L∞([0, 1],Ls(Rn)) with B̄2 > B̄1, iM(B̄1) = 0, νM(B̄2) 6= 0 and

iM(B̄2) = iM(B̄1) + νM(B̄1), such that

∫ 1

0

(
−V(t, x) +

1

2
((B̄2(t)− B̄1(t))x, x)

)
dt → +∞ (4.12)

as ‖x‖ → ∞ with x ∈ ker(A1 − B̄2),

respectively.

The proof Theorem 4.6 is similar to that of Theorem 4.2. Here we omit it.

Remark 4.7. In particular, set B̄1(t) ≡ 0, B̄2(t) = (2π)2 and M = In. Then, the following

problem

−ẍ(t) = ∇xV(t, x(t)), x(0)− x(1) = ẋ(0)− ẋ(1) = 0

has a solution via Theorems 4.6. In addition, as T = 1, then Theorem 4.6 reduces to Theo-

rem 5.2 in [12].

Theorem 4.8. The conclusion of Theorem 4.2 still holds if we replace (H1) and (H3) with

(H′′
1 ) V(t, ·) is β(t)-concave, that is, −V(t, x) + 1

2 β(t)|x|2 is convex in x for a.e. t ∈ [0, 1].
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(H′′′
3 ) there exist β(t) ∈ L∞([0, 1], R

+) and B̄3(t) ∈ L∞([0, 1],Ls(Rn)) with B̄3 > B̄1, iM(B̄1) = 0,

νM(B̄3) 6= 0 and iM(B̄3) = iM(B̄1) + νM(B̄1), such that β(t) ≤ B̄3(t) − B̄1(t) for a.e.

t ∈ [0, 1] with

meas
{

t ∈ [0, 1]
∣∣∣ 0 < β(t) < B̄3(t)− B̄1(t)

}
> 0, (4.13)

respectively.

The proof Theorem 4.8 is similar to that of Theorem 4.4. Here we omit it.

Remark 4.9. In particular, set B̄1(t) ≡ 0, B̄2(t) = (2π)2 and M = In. Then, the following

problem

−ẍ(t) = ∇xV(t, x(t)), x(0)− x(1) = ẋ(0)− ẋ(1) = 0

has a solution via Theorems 4.8. Moreover, as T = 1, then Theorem 4.8 reduces to Theorem 5.1

of [12] as k(t) ∈ L∞([0, 1], R
+).

In addition, as T = 1, in Theorem 1.4 of [12], assume that V(t, x) satisfies (H0), (H2), and

(H′′
1,1) there exist β(t) ∈ L1([0, 1], R

+) with
∫ 1

0 β(t)dt < 12, such that V(t, ·) is β(t)-concave.

Then the conclusion of Theorem 4.8 is also true.

Obviously, β(t) ∈ L∞([0, 1], R
+) ⊂ L1([0, 1], R

+). But, for β(t) ∈ L∞([0, 1], R
+), we have∫ 1

0 β(t)dt < 12 6⇒ 0 < β(t) < (2π)2 and 0 < β(t) < (2π)2 6⇒
∫ 1

0 β(t)dt < 12. Indeed, if

β(t) =




(2π)2, x ∈ [0, 1

(2π)2 ],

0, x ∈ ( 1
(2π)2 , 1],

then
∫ 1

0 β(t)dt = 1 and β(t) ≥ (2π)2 for x ∈ [0, 1
(2π)2 ]; if 12 < β(t) < (2π)2, then

∫ 1
0 β(t)dt >

12. So Theorem 4.8 is a new result and, in some sence, it represent a development of The-

orem 1.4 of [12]. By the remarks in [12] we can see that Theorem 4.8 also generalizes the

corresponding theorems in [9, 14, 16, 17] as T = 1.

4.2 Second order Hamiltonian systems satisfying Sturm–Liouville boundary
value conditions

As a second example, we consider Sturm–Liouville boundary value problem

−ẍ − B̃1(t)x = ∇xV(t, x), (4.14)

x(0) cos α − ẋ(0) sin α = 0, (4.15)

x(1) cos β − ẋ(1) sin β = 0, (4.16)

where B̃1 ∈ L∞([0, 1],Ls(Rn)) , ∇xV(t, x) denotes the gradient of V(t, x) for x ∈ R
n and

0 ≤ α < π, 0 < β ≤ π. We suppose that V : [0, 1]× R
n → R satisfies (H0).

Let X = L2([0, 1], R
n). Define A2 : D(A2) → X by (A2x)(t) = −ẍ(t) with D(A2) = {x ∈

H2([0, 1], R
n)|x satisfies (4.15) and (4.16)}. Set (B1x)(t) = B̃1(t)x(t) with D(B1) = X. From

Proposition 1.17 in [3], we know that A2 is self-adjoint in X and σ(A2) = σd(A2) is bounded

from below. Define iα,β(B̃1) = iA1
(B1), να,β(B̃1) = νA1

(B1), that is, να,β(B̃1) is the dimension of

the solution subspace of (4.14)–(4.16) with V(t, x) ≡ 0.
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Assume that να,β(B̃1) 6= 0. Meanwhile, set

Z2 =





{x ∈ H1([0, 1], R
n)|x(1) = 0}, α = 0, β ∈ (0, π);

{x ∈ H1([0, 1], R
n)|x(0) = 0}, α ∈ (0, π), β = π;

{x ∈ H1([0, 1], R
n)|x(1) = x(0) = 0}, α = 0, β = π;

H1([0, 1], R
n), α, β ∈ (0, π).

Then, from Proposition 1.17 in [3] again, we have Z2 = D(|A1|
1
2 ). Moreover, set

Φ(x) =
∫ 1

0
V(t, x)dt, ∀x ∈ Z2.

Then, Φ ∈ C1(Z2, R) is weakly continuous with weakly continuous derivative and for every

x ∈ Z2,

Φ′(x)y =
∫ 1

0
(∇xV(t, x), y)dt, ∀y ∈ Z2

because of (H0). Hence, (Φ0) holds. Further, for each x ∈ Z2, we can write the norm

‖x‖2 =
∫ 1

0
[|ẋ(t)|2 + |x(t)|2]dt.

By (4.5) and (H0), we can verify that (Φ2) holds. Then, the following four results hold. Since

their proofs are similar to Theorems 4.2–4.8, and we omit them here.

Theorem 4.10. Assume that V(t, x) satisfies (H0), (H1), (H2) and (H3) with B̄1, B̄2 and A1 replaced

with B̃1, B̃2 and A2 respectively, then problem (4.14)–(4.16) has a solution in Z2.

Theorem 4.11. The conclusion of Theorem 4.10 still holds if we replace (H3) and B̄3 with (H′
3) and

B̃3, respectively.

Theorem 4.12. The conclusion of Theorem 4.10 still holds if we replace (H1) and (H3) with (H′
1) and

(H′′
3 ), respectively.

Theorem 4.13. The conclusion of Theorem 4.10 still holds if we replace B̄3, (H1) and (H3) with B̃3,

(H′′
1 ) and (H′′′

3 ), respectively.

Remark 4.14. In particular, set B̃1(t) ≡ π2 In and α = 0, β = π. Then, Z2 = H1
0 , σ(A2) =

{k2π2|k ∈ N\{0}} and ker(A2 − B̃1) = {a sin tπ | a ∈ R
n}. Hence, the following problem

−ẍ(t) = ∇xV(t, x(t)), x(0) = x(1) = 0

has a solution via Theorems 4.10–4.13 respectively, where B̃2(t) ≡ 4π2 In = B̃3(t).
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Abstract. In this article, we study the following quasilinear Schrödinger equation

−∆u − µ
u

|x|2 + V(x)u − (∆(u2))u = f (x, u), x ∈ R
N ,

where V(x) is a given positive potential and the nonlinearity f (x, u) is allowed to be
sign-changing. Under some suitable assumptions, we obtain the existence of infinitely
many nontrivial solutions by a change of variable and Symmetric Mountain Pass The-
orem.

Keywords: quasilinear Schrödinger equation, Hardy potential, Mountain Pass Theo-
rem.

2020 Mathematics Subject Classification: 35J20, 35J60.

1 Introduction and main results

In this paper, we consider the following equation

− ∆u − µ
u

|x|2 + V(x)u − (∆(u2))u = f (x, u), x ∈ R
N , (1.1)

where N ≥ 3, 0 ≤ µ < µ̄ := (N−2)2

4 , V(x) ∈ C(RN , R) is a given potential and f ∈
C(RN × R, R) .

For problem (1.1), if µ = 0, f (x, u) = f (u), then (1.1) becomes

− ∆u + V(x)u − (∆(u2))u = f (u), x ∈ R
N . (1.2)

Recently, the existence of solutions for (1.2) has drawn much attention, see for example [5, 7,
19, 21, 22, 25]. Particularly, it was established the existence of both one-sign and nodal ground
states of soliton type solutions in [21] by Nehari method. Furthermore, using a constrained
minimization argument, the existence of a positive ground state solution has been proved in
[25]. Later, by using a change of variables, [19] and [7] studied the existence of solutions in

BCorresponding author. Email: lrxcsu@163.com
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different working spaces with different classes of nonlinearities. For more results we can refer
to [18, 20, 23, 33, 34].

Moreover, if we take µ ≡ 0 in (1.1), we have

− ∆u + V(x)u − (∆(u2))u = f (x, u), x ∈ R
N . (1.3)

In [39], Zhang and Tang proved there are infinitely many solutions of quasilinear Schrödinger

equation with sign-changing potential by Mountain Pass Theorem. When f (x, u) = |u|2∗(s)−2u
|x|s ,

where 0 ≤ s < 2 and 2∗(s) = 2(N−s)
N−2 is the critical Sobolev–Hardy exponents, the problem

(1.3) was studied in [10,12]. If f (x, u) = λ|u|q−2u + |u|p−2u
|x|s , the authors in [40] have proved the

existence of solutions by using a change of variable.
Recently, great attention has been attracted to the study of the following problem

− ∆u − µ
u

|x|2 + V(x)u = f (x, u), x ∈ R
N . (1.4)

This class of quasilinear equations are often referred as modified nonlinear Schrödinger equa-
tions, whose solutions are related to the existence of standing wave solutions. For example,
by use of variational method, Kang and Deng in [13] proved the existence of solutions for

V(x) = 0 and f (x, u) = |u|2∗(s)−2u
|x|s + K(x)|u|r−2u. Using the similar method, Li in [14] proved

the existence of nontrivial solutions for V(x) = 0 and f (x, u) = |u|2∗(s)−2u
|x|s + K(x)|u|r−2u + λu.

In [4], Cao and Zhou studied the problem (1.4) with V(x) ≡ 1 and general subcritical non-
linearity f (x, u), they obtained the existence and multiplicity of positive solutions in some
different conditions, their method relies upon the proof of Tarantello in [30]. Under certain
conditions, using Ekeland’s variational principle, Chen and Peng in [6] obtained the existence
of a positive solution with V(x) ≡ 1 and nonlinearity λ( f (x, u) + h(x)). For more results
about (1.4), we can refer to [9, 11, 29] and the references therein.

As regards other relevant papers, we mention here [8,15–17,27,28,31,35,38]. Motivated by
facts mentioned above, in this paper, we study the existence of infinitely many solutions for
problem (1.1) by Mountain Pass Theorem. Before giving the main result of this paper, we give
the assumptions of the potential V(x) and the nonlinear term f (x, u) as follows, firstly

(V1) V ∈ C(RN , R) and inf
x∈RN

V(x) = V0 > 0;

(V2) for any L > 0, there exists a constant ϑ > 0 such that

lim
|y|→∞

meas{x ∈ R
N : |x − y| ≤ ϑ, V(x) ≤ L} = 0;

(F0) f ∈ C(RN × R, R) and there exist constants c1, c2 > 0 and 4 < p < 22∗ such that

| f (x, u)| ≤ c1|u|+ c2|u|p−1, ∀(x, u) ∈ R
N × R;

(F1) lim
|u|→∞

F(x,u)
u4 = ∞ uniformly in x, and there exists a0 ≥ 0 such that F(x, u) ≥ 0 for all

(x, u) ∈ R
N × R and |u| ≥ a0, where F(x, u) =

∫ u
0 f (x, s)ds;

(F2) F̃(x, u) := 1
4 f (x, u)u − F(x, u) ≥ 0 and there exist c0 > 0 and σ ∈

(

max{1, 2N
N+2}, 2

)

such
that

|F(x, u)|σ ≤ c0|u|2σ F̃(x, u)

for all (x, u) ∈ R
N × R with u large enough;
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(F3) f (x, u) = − f (x,−u) for all (x, u) ∈ R
N × R.

Now, we are ready to state the main result of this paper.

Theorem 1.1. Assume that (V1)–(V2), (F0)–(F3) are satisfied, then problem (1.1) has infinitely many

nontrivial solutions {un} such that ‖un‖ → ∞ and I(un) → ∞(I will be defined later).

Remark 1.2 (see [30]). It follows from (F1) and (F2) that

F̃(x, u) ≥ 1
c0

( |F(x, u)|
|u|2

)σ

→ ∞, (1.5)

uniformly in x as |u| → ∞.

This paper is organized as follows. In Section 2, we will introduce the variational setting
for the problem and some preliminary results. In Section 3, we give the proof of main result.

Notations. In what follows we will adopt the following notations

• C, Ci, i = 1, 2, 3, . . . denote possibly different positive constants which may change from
line to line;

• For 1 ≤ p < ∞, Lp(RN) denotes the usual Lebesgue spaces with norms

‖u‖p =

(

∫

RN
|u|pdx

)1/p

, 1 ≤ p < ∞;

• H1(RN) denotes the Sobolev spaces modeled in L2(RN) with norm

‖u‖H1 =

(

∫

RN
|∇u|2 + |u|2dx

)1/2

.

• BR denotes the open ball centered at the origin and radius R > 0.

2 Variational setting and preliminary results

Before establishing the variational setting for problem (1.1), we give our working space firstly.
Under the assumption (V1) we define

E :=
{

u ∈ H1(RN) :
∫

RN
V(x)u2dx < ∞

}

,

then E is a Hilbert space equipped with the inner product and norm

(u, v) =
∫

RN

(

∇u∇v − µ
uv

|x|2 + V(x)uv

)

dx, ‖u‖ = (u, u)1/2.

In view of (V1) and for u ∈ E, the following norm

‖u‖E =

(

∫

RN
(|∇u|2 + V(x)u2)dx

)
1
2

is equivalent to the classic one in H1(RN).
Now, let us recall the Hardy inequality, which is the main tool and allows us to deal with

Hardy-type potentials.
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Lemma 2.1 (see [1]). Assume that 1 < p < N and u ∈ W1,p(RN), then

∫

RN

|u|p
|x|p dx ≤

(

p

(N − p)

)p ∫

RN
|∇u|pdx.

Thus, by Lemma 2.1, ‖u‖ is well defined. In fact

∫

RN

(

|∇u|2 − µ
u2

|x|2
)

dx

≥
∫

RN

(

|∇u|2 − µ
4

(N − 2)2 |∇u|2
)

dx

=

(

1 − µ
4

(N − 2)2

)

∫

RN
|∇u|2dx

>

(

1 − (N − 2)2

4
4

(N − 2)2

)

∫

RN
|∇u|2dx

= 0.

(2.1)

Lemma 2.2. Assume that 0 ≤ µ < µ̄ = (N−2)2

4 , then there exist C1, C2 > 0 such that

C1‖u‖2
E ≤ ‖u‖2 ≤ C2‖u‖2

E,

for any u ∈ H1(RN).

Proof. For µ ≥ 0, we have

‖u‖2 =
∫

RN

(

|∇u|2 − µ
u2

|x|2 + V(x)u2
)

dx

≤
∫

RN
(|∇u|2 + V(x)u2)dx

= ‖u‖2
E.

(2.2)

On the other hand, since 0 ≤ µ < µ̄ = (N−2)2

4 , we can get

1 ≥ 1 − 4µ

(N − 2)2 > 0.

Then, we have

‖u‖2 =
∫

RN

(

|∇u|2 − µ
u2

|x|2 + V(x)u2
)

dx

≥
∫

RN

(

|∇u|2 − 4µ

(N − 2)2 |∇u|2 + V(x)u2
)

dx

≥
(

1 − 4µ

(N − 2)2

)

∫

RN
(|∇u|2 + V(x)u2)dx

=

(

1 − 4µ

(N − 2)2

)

‖u‖2
E.

(2.3)

It follows from (2.2) and (2.3) that

C1‖u‖2
E ≤ ‖u‖2 ≤ C2‖u‖2

E.
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As we all known, under the assumption (V1), the embedding E →֒ Lr(RN) is continuous
for r ∈ [2, 2∗] and E →֒ Lr

loc(R
N) is compact for [2, 2∗) i.e. there is a constant dr > 0 such that

‖u‖s ≤ dr‖u‖E, ∀u ∈ E, r ∈ [2, 2∗].

From this, by Lemma 2.2, there is C3 > 0 such that

‖u‖r ≤ dr‖u‖E ≤ C3‖u‖, ∀u ∈ E, r ∈ [2, 2∗].

Furthermore, under the assumptions (V1) and (V2), we have the following compactness
lemma due to [3] (see also [2, 41]).

Lemma 2.3. Assume that (V1) and (V2) hold, the embedding E →֒ Lr(RN) is compact for 2 ≤ r < 2∗.

In order to solve problem (1.1), we define the energy functional I : E → R given by

I(u) =
1
2

∫

RN
(1 + 2|u|2)|∇u|2dx − 1

2

∫

RN

µ

|x|2 u2dx +
1
2

∫

RN
V(x)u2dx −

∫

RN
F(x, u)dx.

It is well known that I is not well defined in E. To overcome this difficulty, we make the
change of variables by v = h−1(u), where h is defined by

h′(t) =
1

√

1 + 2|h(t)|2
on [0, ∞),

and
h(−t) = −h(t) on (−∞, 0].

Therefore, after the change of variables, from I(u) we obtain the following functional

J(v) := I(h(v))

=
1
2

∫

RN
|∇v|2dx − 1

2

∫

RN

µ

|x|2 h2(v)dx +
1
2

∫

RN
V(x)h2(v)dx −

∫

RN
F(x, h(v))dx.

(2.4)

It is easy to check that J is well defined on E. Under our hypotheses, J ∈ C1(E, R) and

〈J′(v), φ〉 =
∫

RN
∇v∇φdx −

∫

RN

µ

|x|2 h(v)h′(v)φdx

+
∫

RN
V(x)h(v)h′(v)φdx −

∫

RN
f (x, h(v))h′(v)φdx.

(2.5)

for all φ ∈ E.
Moreover, the critical points of J are the weak solutions of the following equation

− ∆v =
1

√

1 + 2|h(v)|2

(

f (x, h(v))− V(x)h(v) +
µ

|x|2 h(v)

)

in R
N . (2.6)

We also observe that if v is a critical point of the functional J, then u = h(v) is a critical point
of the functional I, i.e. u = h(v) is a solution of (1.1).

Now, let us recall some properties of the change of variables h : R → R.

Lemma 2.4. (see [24]) The function h(t) and its derivative satisfy the following properties

(h1) h is uniquely defined, C∞ and invertible;
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(h2) |h′(t)| ≤ 1 for all t ∈ R;

(h3) |h(t)| ≤ |t| for all t ∈ R;

(h4)
h(t)

t → 1 as t → 0;

(h5)
h(t)√

t
→ 2

1
4 as t → ∞;

(h6)
h(t)

2 ≤ th′(t) ≤ h(t) for all t > 0;

(h7)
h2(t)

2 ≤ th(t)h′(t) ≤ h2(t) for all t ∈ R;

(h8) |h(t)| ≤ 2
1
4 |t| 1

2 for all t ∈ R;

(h9) there exists a positive constant C such that

|h(t)| ≥
{

C|t|, |t| ≤ 1

C|t| 1
2 , |t| ≥ 1;

(h10) for each α > 0, there exists a positive constant C(α) such that

|h(αt)|2 ≤ C(α)|h(t)|2;

(h11) |h(t)h′(t)| ≤ 1√
2
.

For convenience of our proof, we give the following basic and important definition.

Definition 2.5 (see [36]). Assume that J ∈ C1(E, R), sequence {un} ⊂ E is called (C)c se-
quence if

J(vn) → c and (1 + ‖vn‖)J′(vn) → 0.

If any (C)c sequence has a convergent subsequence, we say J satisfies Cerami condition at
level c.

Lemma 2.6. Assume that (V1), (V2), (F0)–(F2) hold, then any (C)c-sequence of J is bounded in E for

each c ∈ R.

Proof. Let {vn} ⊂ E be a (C)c-sequence of J, we have

J(vn) → c, (1 + ‖vn‖)J′(vn) → 0 as n → ∞. (2.7)

Then, there is a constant C4 > 0 such that

J(vn)−
1
4
〈J′(vn), vn〉 ≤ C4. (2.8)

Let

‖vn‖2
h :=

∫

RN

(

|∇vn|2 −
µ

|x|2 h2(vn) + V(x)h2(vn)

)

dx.

First, we prove that there exists C5 > 0 such that

‖vn‖2
h ≤ C5. (2.9)
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On the contrary, we suppose that

‖vn‖2
h → ∞.

Taking h̃(vn) =
h(vn)
‖vn‖h

, then ‖h̃(vn)‖ ≤ 1. Passing to a subsequence, we assume that

h̃(vn) ⇀ ν in E,

h̃(vn) → ν in Lr(RN), 2 ≤ r < 2∗,

and

h̃(vn) → ν a.e. on R
N .

From (2.4) and (2.7), we have

lim
|n|→∞

∫

RN

|F(x, h(vn))|
‖vn‖2

h

dx =
1
2

. (2.10)

On the other hand, set ξn = h(vn)
h′(vn)

, then there exists C6 > 0 such that ‖ξn‖ ≤ C6‖vn‖. Since
{vn} is a (C)c sequence of J, by (2.8) we have

C6 ≥ J(vn)−
1
4
〈J′(vn), ξn〉

=
1
4

∫

RN

(

|∇h(vn)|2 −
µ

|x|2 h2(vn) + V(x)h2(vn)

)

dx

+
∫

RN

(

1
4

f (x, h(vn))h(vn)− F(x, h(vn))

)

dx

=
1
4
‖h(vn)‖2 +

∫

RN
F̃(x, h(vn))dx

≥
∫

RN
F̃(x, h(vn))dx.

(2.11)

Take l(a) = inf{F̃(x, h(vn)) | x ∈ R
N , |h(vn)| ≥ a}, for a ≥ 0. By (1.5), we have l(a) → ∞ as

a → ∞. For 0 ≤ b1 < b2, let

Bn(b1, b2) = {x ∈ R
N : b1 ≤ |h(vn(x))| < b2}.

Combining with (2.11) that

C6 ≥
∫

Bn(0,a)
F̃(x, h(vn))dx +

∫

Bn(a,∞)
F̃(x, h(vn))dx

≥
∫

Bn(0,a)
F̃(x, h(vn))dx + l(a)meas{Bn(a, ∞)},

from this we get meas{Bn(a, ∞)} → 0 as a → ∞ uniformly in n. Hence, for r ∈ [2, 2∗) and
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(h11), there exist C, C7 > 0 such that

∫

Bn(a,∞)
h̃r(vn)dx ≤

(

∫

Bn(a,∞)
h̃22∗(vn)dx

)
r

22∗
(

meas{Bn(a, ∞)}
)

22∗−r
22∗

=
1

‖vn‖r
h

(

∫

Bn(a,∞)
h22∗(vn)dx

)
r

22∗
(

meas{Bn(a, ∞)}
)

22∗−r
22∗

≤ C

‖vn‖r
h

(

∫

Bn(a,∞)
|∇h2(vn)|2dx

)
r
4
(

meas{Bn(a, ∞)}
)

22∗−r
22∗

≤ C6

‖vn‖r
h

(

∫

Bn(a,∞)
|∇vn|2dx

)
r
4
(

meas{Bn(a, ∞)}
)

22∗−r
22∗

≤ C7‖vn‖−r/2
h

(

meas{Bn(a, ∞)}
)

22∗−r
22∗ → 0,

(2.12)

as a → ∞ uniformly in n.
If ν = 0, then h̃(vn) → 0 in Lr(RN), 2 ≤ r < 2∗. For any 0 < ε <

1
8 , there exist a1, L large

enough, such that

∫

Bn(0,a1)

|F(x, h(vn))|
|h(vn)|2

|h̃(vn)|2dx ≤
∫

Bn(0,a1)

c1|h(vn)|2 + c2|h(vn)|p
|h(vn)|2

|h̃(vn)|2dx

≤ (c1 + c2a
p−2
1 )

∫

Bn(0,r1)
|h̃(vn)|2dx

≤ (c1 + c2a
p−2
1 )

∫

RN
|h̃(vn)|2dx

< ε,

(2.13)

for n > L. Set τ′ = σ
σ−1 , since σ ∈

(

max{1, 2N
N+2}, 2

)

, then 2τ′ ∈ (2, 22∗). Thus, by (F2) and
(2.12) we have

∫

Bn(a1,∞)

|F(x, h(vn))|
|h(vn)|2

|h̃(vn)|2dx

≤
(

∫

Bn(a1,∞)

( |F(x, h(vn))|
|h(vn)|2

)σ

dx

)
1
σ
(

∫

Bn(a1,∞)
|h̃(vn)|2τ′

dx

)
1
τ′

≤ c
1
σ
0

(

∫

Bn(a1,∞)
F̃(x, h(vn))dx

)
1
σ
(

∫

Bn(a1,∞)
|h̃(vn)|2τ′

dx

)
1
τ′

≤ C8

(

∫

Bn(a1,∞)
|h̃(vn)|2τ′

dx

)
1
τ′

< ε.

(2.14)

From (2.13) and (2.14), we can get

∫

RN

|F(x, h(vn))|
‖vn‖2

h

dx =
∫

Bn(0,a1)

|F(x, h(vn))|
|h(vn)|2

|h̃(vn)|2dx +
∫

Bn(a1,∞)

|F(x, h(vn))|
|h(vn)|2

|h̃(vn)|2dx

< 2ε <
1
4

,

for n > L, which contradicts (2.10).
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If ν 6= 0, then meas{B} > 0, where B = {x ∈ R
N : ν 6= 0}. For x ∈ B, we have |h(vn)| → ∞

as n → ∞. Hence B ⊂ Bn(a0, ∞) for n ∈ N large enough, where a0 is given in (F1). By (F1),
we have

F(x, h(vn))

|h(vn)|4
→ ∞ as n → ∞.

Using Fatou’s Lemma, then

∫

B

F(x, h(vn))

|h(vn)|4
dx → ∞ as n → ∞. (2.15)

We see from (2.7) and (2.15)

0 = lim
n→∞

c + o(1)
‖vn‖2

h

= lim
n→∞

J(vn)

‖vn‖2
h

= lim
n→∞

1
‖vn‖2

h

(

1
2

∫

RN

(

|∇vn|2 −
µ

|x|2 h2(vn) + V(x)h2(vn)
)

dx −
∫

RN
F(x, h(vn))dx

)

= lim
n→∞

(

1
2
−

∫

Bn(0,a0)

F(x, h(vn))

|h(vn)|2
|h̃(vn)|2dx −

∫

Bn(a0,∞)

F(x, h(vn))

|h(vn)|2
|h̃(vn)|2dx

)

≤ 1
2
+ lim sup

n→∞

(

(c1 + c2a
p−2
0 )

∫

RN
|h̃(vn)|2dx −

∫

Bn(a0,∞)

F(x, h(vn))

|h(vn)|2
|h̃(vn)|2dx

)

≤ C9 − lim inf
n→∞

∫

B

F(x, h(vn))

|h(vn)|4
|h(vn)h̃(vn)|2dx

= −∞,

which is a contradiction. Hence, (2.9) holds.
In order to prove that {vn} is bounded, we only need to show that there is C10 > 0 such

that
‖vn‖2

h ≥ C10‖vn‖2. (2.16)

Arguing indirectly, for a subsequence, we assume ‖vn‖2
h

‖vn‖2 → 0, where vn 6= 0 (if not, the result

is obvious). Take ξn,1 = vn

‖vn‖ , ηn,1 = h2(vn)
‖vn‖2 , then

∫

RN

(

|∇ξn,1|2 −
µ

|x|2 ηn,1(x) + V(x)ηn,1(x)

)

dx → 0. (2.17)

It follows from (h3) that

∫

RN

(

|∇ξn,1|2 −
µ

|x|2 ηn,1(x) + V(x)ηn,1(x)

)

dx

=
∫

RN

(

|∇ξn,1|2 −
µ

|x|2
h2(vn)

‖vn‖2 + V(x)ηn,1(x)

)

dx

≥
∫

RN

(

|∇ξn,1|2 −
µ

|x|2
v2

n

‖vn‖2 + V(x)ηn,1(x)

)

dx

=
∫

RN

(

|∇ξn,1|2 −
µ

|x|2 ξ2
n,1 + V(x)ηn,1(x)

)

dx

≥ 0.

(2.18)
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Combining (2.1), (2.17) and (2.18), we

∫

RN

(

|∇ξn,1|2 −
µ

|x|2 ξ2
n,1 + V(x)ηn,1(x)

)

dx → 0.

Hence

∫

RN

(

|∇ξn,1|2 −
µ

|x|2 ξ2
n,1

)

dx → 0,
∫

RN
V(x)ηn,1(x)dx → 0 and

∫

RN
V(x)ξ2

n,1dx → 1.

Similar to the idea of [37], let Bn = {x ∈ R
N : |vn(x)| ≥ C11}, where C11 > 0 is independent

of n. We suppose that for ε > 0, meas{Bn} < ε. If not, there exists ε′ > 0 and {vni
} ⊂ {vn}

such that
meas{x ∈ R

N : |vni
(x)| ≥ i} ≥ ε′,

where i > 0 is a integer. Set Bni
= {x ∈ R

N : |vni
(x)| ≥ i}. From (2.1), (h3) and (h9) we have

‖vni
‖2

h =
∫

RN

(

|∇vni
|2 − µ

|x|2 h2(vni
) + V(x)h2(vni

)

)

dx

≥
∫

RN

(

|∇vni
|2 − µ

|x|2 v2
ni
+ V(x)h2(vni

)

)

dx

>

∫

RN
V(x)h2(vni

)dx

> Ciε′ → ∞.

as i → ∞, which is a contradiction. For constants C12, C13 > 0, it follows |vn(x)| ≤ C12, (h9)

and (h10) that
C

C2
12

v2
n ≤ h2

(

1
C12

vn

)

≤ C13h2(vn).

Hence

∫

RN\Bn

V(x)ξ2
n,1dx ≤ C14

∫

RN\Bn

V(x)
h2(vn)

‖vn‖
dx

≤ C14

∫

RN
V(x)ηn,1(x)dx → 0,

(2.19)

where C14 > 0 is a constant. For another, by absolute continuity of integral, there exists ε > 0
such that

∫

B′
V(x)ξ2

n,1dx ≤ 1
2

, (2.20)

where B′ ⊂ R
N and meas{B′} < ε. By (2.19) and (2.20), we have

∫

RN
V(x)ξ2

n,1dx =
∫

RN\Bn

V(x)ξ2
n,1dx +

∫

Bn

V(x)ξ2
n,1dx ≤ 1

2
+ o(1).

We can get a contradiction. Hence (2.16) holds. Combining (2.9) with (2.16), we complete the
proof of this lemma.

Lemma 2.7. Assume that (V1), (V2), (F0)–(F2) hold, then J satisfies (C)c-condition.
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Proof. Lemma 2.6 implies that {vn} is bounded in E. For a subsequence, we can assume that
vn ⇀ v in E. From Lemma 2.3, vn → v in Lr(RN) for all 2 ≤ r < 2∗ and vn → v a.e. on R

N .
First, we claim that there exists C15 > 0 such that

∫

RN

(

|∇(vn − v)|2 +
(

V(x)− µ

|x|2
)

(h(vn)h
′(vn)− h(v)h′(v))

)

(vn − v)dx ≥ C15‖vn − v‖2
E

(2.21)
Indeed, we may assume vn 6= v (otherwise the conclusion is trivial). Set

ξn,2 =
vn − v

‖vn − v‖ and ηn,2 =
h(vn)h′(vn)− h(v)h′(v)

vn − v
,

we argue by contradiction and assume that

∫

RN

(

|∇ξn,2|2 −
µ

|x|2 ηn,2(x)ξ2
n,2 + V(x)ηn,2(x)ξ2

n,2

)

dx → 0. (2.22)

Since
d

dt
(h(t)h′(t)) = h(t)h′′(t) + (h′(t))2 =

1
(1 + 2h2(t))2 > 0,

h(t)h′(t) is strictly increasing and for each C16 > 0, there is δ1 > 0 such that

d

dt
(h(t)h′(t)) ≥ δ1,

at |t| ≤ C16. From this, we see that ηn,2(x) is positive. On the other hand, for vn > v, there
exists θ ∈ (v, vn) such that

ηn,2 =
h(vn)h′(vn)− h(v)h′(v)

vn − v
=

d

dt
(h(θ)h′(θ)) =

1
(1 + 2h2(θ))2 ≤ 1.

Similarly, we can prove the case vn < v.
Hence,

ηn,2(x) ≤ 1 for all vn 6= v. (2.23)

It follows from (2.1), (2.22) and (2.23) that

0 ≤
∫

RN

(

|∇ξn,2|2 −
µ

|x|2 ξ2
n,2 + V(x)ηn,2(x)ξ2

n,2

)

dx

≤
∫

RN

(

|∇ξn,2|2 −
µ

|x|2 ηn,2(x)ξ2
n,2 + V(x)ηn,2(x)ξ2

n,2

)

dx

→ 0.

Then, we have

∫

RN

(

|∇ξn,2|2 −
µ

|x|2 ξ2
n,2

)

dx → 0,
∫

RN
V(x)ηn,2(x)ξ2

n,2dx → 0,

and
∫

RN
V(x)ξ2

n,2dx → 1.

By a similar fashion as (2.19) and (2.20), we can conclude a contradiction.
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On the other hand, by (h2), (h3), (h8), (h11), (F0) and (1.5), there is C17 > 0 such that
∣

∣

∣

∣

∫

RN
( f (x, h(vn))h

′(vn)− f (x, h(v))h′(v))(vn − v)dx

∣

∣

∣

∣

≤
∫

RN
C17(|vn|+ |vn|

p
2 −1 + |v|+ |v|

p
2 −1)|vn − v|dx

≤ C17(‖vn‖2 + ‖v‖2)‖vn − v‖2 +

(

‖vn‖
p−2

2
p
2

+ ‖v‖
p−2

2
p
2

)

‖vn − v‖ p
2

= o(1).

(2.24)

Therefore, by (2.21) and (2.24), we have

o(1) = 〈J′(vn)− J′(v), vn − v〉

=
∫

RN

(

|∇(vn − v)|2 + (V(x)− µ

|x|2 )(h(vn)h
′(vn)− h(v)h′(v))(vn − v)

)

dx

−
∫

RN
( f (x, h(vn))h

′(vn)− f (x, h(v))h′(v))(vn − v)dx

≥ C15‖vn − v‖+ o(1).

This implies that ‖vn − v‖ → 0 as n → ∞. Thus, the proof is complete.

To prove our main result in this paper, we need the following lemma.

Lemma 2.8 (Symmetric Mountain Pass Theorem [26]). Let X be an infinite dimensional Banach

space, X = Y
⊕

Z, where Y is finite dimensional. If Ψ ∈ C1(X, R) satisfies (C)c-condition for all

c > 0, and

(I1) Ψ(0) = 0, Ψ(−u) = u for all u ∈ X;

(I2) there exist constants ρ, α > 0 such that Ψ |∂Bρ∩Z
≥ α;

(I3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such that Ψ(u) ≤ 0 on

X̃ \ BR;

then Ψ possesses an unbounded sequence of critical values.

3 Proof of Theorem 1.1

Let {ei} is a total orthonormal basis of E and define Xi = Rei, then E =
⊕

∞

i=1 Xi. Let

Yj =
i

⊕

i=1

Xi, Zj =
∞
⊕

j+1

Xi, j ∈ Z,

then E = Yj
⊕

Zj and Yj is finite-dimensional. Similar to Lemma 3.8 in [36], we have the
following lemma.

Lemma 3.1 ([36]). Under assumptions (V1) and (V2), for 2 ≤ r < 2∗,

β j(r) := sup
u∈Zj,‖v‖=1

‖v‖r → 0, j → ∞.
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Before going further, we need to show that there exists C18 > 0 such that

∫

RN

(

|∇v|2 − µ

|x|2 h2(v) + V(x)h2(v)

)

dx ≥ C18‖v‖2, ∀v ∈ Sρ, (3.1)

where Sρ = {v ∈ E : ‖v‖ = ρ}. Indeed, by a similar argument as (2.16), we can get this
conclusion. Moreover, by Lemma 3.1, we can choose an integer κ ≥ 1 such that

‖v‖2
2 ≤ C18

4c1
‖v‖, ‖v‖

p
2
p
2
≤ C18

4c2
‖v‖

p
2 , ∀v ∈ Zκ. (3.2)

Lemma 3.2. Assume that (V1), (V2) and (F0) hold, then there exist constants ρ, α > 0 such that

J|Sρ∩Zκ
≥ α.

Proof. For any v ∈ Zκ with ‖v‖ = ρ < 1, by (h3), (h8), (3.1) and (3.2), we have

J(v) =
1
2

∫

RN

(

|∇v|2 − µ

|x|2 h2(v) + V(x)h2(v)

)

dx −
∫

RN
F(x, h(v))dx

≥ C18

2
‖v‖2 −

∫

RN
(c1|h(v)|2 + c2|h(v)|p)dx

≥ C18

2
‖v‖2 −

∫

RN
(c1|v|2 + c2|v|

p
2 )dx

≥ C18

2
‖v‖2 − C18

4
‖v‖2 − C18

4
‖v‖

p
2

=
C18

4
‖v‖2

(

1 − ‖v‖
p−4

2

)

> 0.

since p ∈ (4, 22∗). This completes the proof.

Lemma 3.3. Assume that (V1), (V2), (F0) and (F1) hold, for any finite dimensional subspace Ẽ ⊂ E,

there is R = R(Ẽ) > 0 such that

J(v) ≤ 0, ∀v ∈ Ẽ \ BR.

Proof. For any finite dimensional subspace Ẽ ⊂ E, there is a positive integral number κ such
that Ẽ ⊂ Yκ. Suppose to the contrary that there is a sequence {vn} ⊂ Ẽ such that ‖vn‖ → ∞

and J(vn) > 0. Hence

1
2

∫

RN

(

|∇vn|2 −
µ

|x|2 h2(vn) + V(x)h2(vn)

)

dx >

∫

RN
F(x, h(vn))dx. (3.3)

Jointly with (h3), we have
∫

RN F(x, h(vn))dx

‖vn‖2 <
1
2

. (3.4)

Set ηn = vn

‖vn‖ . Then up to a subsequence, we can assume that

ηn ⇀ η in E,

ηn → η in Lr(RN) for 2 ≤ r < 2∗

and

ηn → η a.e. on R
N .
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Set A1 = {x ∈ R
N : η(x) 6= 0} and A2 = {x ∈ R

N : η(x) = 0}. If meas{A1} > 0, then by (F1),
(h5) and Fatou’s Lemma, we have

∫

A1

F(x, h(vn))

‖vn‖2 dx =
∫

A1

F(x, h(vn))

h4(vn)

h4(vn)

v2
n

η2
ndx → ∞.

By (F0) and (F1), there exists C19 > 0 such that

F(x, t) ≥ −C19t2, ∀(x, t) ∈ R
N × R.

Hence
∫

A2

F(x, h(vn))

‖vn‖2 dx ≥ −C19

∫

A2

h2(vn)

‖vn‖2 dx ≥ −C19

∫

A2

η2
ndx.

Since ηn → η in L2(RN), it is clear that

lim inf
n→∞

∫

A2

F(x, h(vn))

‖vn‖2 dx = 0.

Consequently,

lim
n→∞

∫

RN

F(x, h(vn))

‖vn‖2 dx = ∞.

By (3.4) we obtain 1
2 > ∞, a contradiction. This shows meas{A1} = 0 i.e. η(x) = 0 a.e. on R

N .
By the equivalency of all norms in Ẽ, there exists C > 0 such that

‖v‖2
2 ≥ C‖v‖2, ∀v ∈ Ẽ.

Hence

0 = lim
n→∞

‖ηn‖2
2 ≥ C lim

n→+∞
‖ηn‖2 = C,

a contradiction. This completes the proof.

Now, we prove our main result.

Proof of Theorem 1.1. Let Ψ = J, X = E, Y = Yκ and Z = Zκ. Obviously, J(0) = 0 and (F3)

implies that J is even. By Lemma 2.7, 3.2 and Lemma 3.3, all conditions of Lemma 2.5 are
satisfied. Thus, problem (2.6) has infinitely many nontrivial solutions sequence {vn} such that
J(vn) → ∞ as n → ∞. Namely, problem (1.1) also has infinitely many solutions sequence {un}
such that I(un) → ∞ as n → ∞.
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we deal with the

following nonlinear boundary value problem





−∆pu(z) + ξ(z)|u(z)|p−2u(z) = f (z, u(z)) in Ω,
∂u

∂np
= β(z)|u|q−2u on ∂Ω.

(1.1)

with 1 < q < p.

In this problem, ∆p denotes the p-Laplace differential operator defined by

∆pu = div
(
|Du|p−2Du

)
for all u ∈ W1,p(Ω), 1 < p < N.

This problem has three special features which make its study interesting. The first feature

is that the potential coefficient ξ ∈ L∞(Ω) is indefinite (that is, sign changing) and so the left

hand side of the problem is noncoercive. The second feature is that the forcing term f (z, x)

which is a Carathéodory function (that is, for all x ∈ R, z 7→ f (z, x) is measurable and for

a.a. z ∈ Ω, x 7→ f (z, x) is continuous) asymptotically as x → ±∞ is resonant with respect to

BCorresponding author. Email: scapellato@dmi.unict.it
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the principal eigenvalue of the differential operator u 7→ −∆pu + ξ(z)|u|p−2u with Neumann

boundary condition. So, the problem is resonant and as it is well-known such problems are

more difficult to deal with. The third feature is that combined with the resonant reaction,

we have a concave boundary term (since β(z) ≥ 0 for all z ∈ ∂Ω and 1 < q < p). There-

fore problem (1.1) is a variant of the classical concave-convex problem, in which the convex

((p − 1)-superlinear) term is replaced by a resonant ((p − 1)-linear) term and the concave con-

tribution comes from the boundary condition. Problems with such competition phenomena,

were studied recently by Abreu–Madeira [1], Hu–Papageorgiou [6], Papageorgiou–Rădulescu

[9], Papageorgiou–Scapellato [12] and Sabina de Lis–Segura de Leon [14]. All these works deal

with parametric problems. The presence of a parameter in the problem, makes the analysis

easier, since by varying and restricting the parameter, we are able to satisfy the relevant geom-

etry in order to apply the minimax theorems of critical point theory. In our problem there is

no parameter. In addition, in all the aforementioned works the reaction is (p − 1)-superlinear

and so do not cover the resonant case treated here.

In the boundary condition, ∂u
∂np

denotes the conormal derivative of u ∈ W1,p(Ω). It is

interpreted using the nonlinear Green’s identity (see [11, p. 35]) and if u ∈ W1,p(Ω)∩ C0,1(Ω),

then
∂u

∂np
= |Du|p−2(Du, n)RN = |Du|p−2 ∂u

∂n
,

with n(·) being the outward unit normal on ∂Ω.

Using variational tools based on the critical point theory together with critical groups

(Morse theory), we show that problem (1.1) has at least three nontrivial smooth solutions.

2 Mathematical background – hypotheses

The study of problem (1.1), uses the Sobolev space W1,p(Ω), the Banach space C1(Ω) and the

boundary Lebesgue spaces Lτ(∂Ω), 1 ≤ τ < ∞.

By ‖ · ‖ we denote the norm of the Sobolev space W1,p(Ω). We have

‖u‖ =
[
‖u‖

p
p + ‖Du‖

p
p

] 1
p for all u ∈ W1,p(Ω).

The Banach space C1(Ω) is ordered using the positive (order) cone

C+ =
{

u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω
}

.

Also by σ(·) we denote the (N − 1)-dimensional Hausdorff (surface) measure on ∂Ω. Us-

ing this measure, we can define the boundary Lebesgue spaces Lτ(∂Ω), 1 ≤ τ < ∞. By

γ0 : W1,p(Ω) → Lp(∂Ω) we denote the trace map. This map is linear, compact and γ0(u) = u|∂Ω

for all u ∈ W1,p(Ω) ∩ C(Ω). So, the trace map defines boundary values for all Sobolev func-

tions. In the sequel, we drop the use of the trace map γ0(·) and all restrictions of Sobolev

functions on ∂Ω, are interpreted in the sense of traces.

Let 〈·, ·〉 denote the duality brackets for the pair (W1,p(Ω), W1,p(Ω)∗) and consider the

map A : W1,p(Ω) → W1,p(Ω)∗ to be the nonlinear operator defined by

〈A(u), h〉 =
∫

Ω

|Du|p−2(Du, Dh)RN dz for all u, h ∈ W1,p(Ω).
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From Gasiński–Papageorgiou [5] (p. 279), we have that this map is:

• monotone, continuous (hence maximal monotone too) and maps bounded sets to

bounded sets;

• it is of type (S)+, that is,

un
w
−→ u in W1,p(Ω) and lim sup

n→∞

〈A(un), un − u〉 ≤ 0

imply that

un → u in W1,p(Ω) as n → ∞.

Let ξ ∈ L∞(Ω) and consider the following nonlinear eigenvalue problem





−∆pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in Ω,
∂u

∂np
= 0 on ∂Ω.

(2.1)

We say that λ̂ ∈ R is an eigenvalue, if (2.1) admits a nontrivial solution û ∈ W1,p(Ω) known

as an eigenfunction corresponding to the eigenvalue λ̂.

Problem (2.1) was studied by Fragnelli–Mugnai–Papageorgiou [3] (Robin problem) and

Mugnai–Papageorgiou [8] (Neumann problem), who proved that there is a smallest eigenvalue

λ̂1 ∈ R with the following properties:

(a) λ̂1 is isolated, that is, if σ̂(p) denotes the spectrum of (2.1), then we can find ǫ > 0 small

such that (λ̂1, λ̂1 + ǫ) ∩ σ̂(p) = ∅.

(b) λ̂1 is simple, that is, if û, v̂ ∈ W1,p(Ω) are eigenfunctions corresponding to λ̂1, then

û = ϑv̂ for some ϑ ∈ R \ {0}.

(c) If γ(u) = ‖Du‖
p
p +

∫

Ω

ξ(z)|u|p dz for all u ∈ W1,p(Ω), then

λ̂1 = inf

[
γ(u)

‖u‖
p
p

: u ∈ W1,p(Ω), u 6= 0

]
. (2.2)

In (2.2) the infimum is realized on the corresponding one dimensional eigenspace (see

(b)). Then, it follows that the elements of this eigenspace have fixed sign. By û1 ∈ W1,p(Ω)

we denote the positive, Lp-normalized (that is, ‖û1‖p = 1) eigenfunction corresponding to λ̂1.

The nonlinear regularity theory of Lieberman [7] and the nonlinear maximum principle (see,

for example, Gasiński–Papageorgiou [4], p. 738), imply that û1 ∈ intC+. We mention that λ̂1

is the only eigenvalue with eigenfunctions of constant sign. All other eigenvalues have nodal

(that is, sign changing) eigenfunctions. Note that using the Ljusternik–Schnirelmann minimax

scheme, we can generate a whole strictly increasing sequence {λ̂k}k≥1 of eigenvalues such that

λ̂k → +∞ as k → +∞. We do not know if this sequence exhausts σ̂(p).

Let X be a Banach space and ϕ ∈ C1(X, R), c ∈ R. We introduce the following two sets

ϕc = {u ∈ X : ϕ(u) ≤ c},

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).
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Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ N0. By Hk(Y1, Y2) we

denote the kth-relative singular homology group for the pair (Y1, Y2) with integer coefficients.

If u ∈ Kϕ is isolated and c = ϕ(u), then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U, ϕc ∩ U \ {u}) for all k ∈ N0,

with U being a neighborhood of u such that ϕc ∩ U ∩ Kϕ = {u}. The excision property of

singular homology, implies that the above definition is independent of the isolating neighbor-

hood.

Finally, we fix some basic notation. Given x ∈ R, we set x± = max{±x, 0}. Then, for

u ∈ W1,p(Ω), we define u±(z) = u(z)± for all z ∈ Ω. We have

u± ∈ W1,p(Ω), u = u+ − u−, |u| = u+ + u−.

If u, v ∈ W1,p(Ω) and u ≤ v, then

[u, v] =
{

h ∈ W1,p(Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω

}
.

Our hypotheses on the data of problem (1.1) are the following:

H0: ξ ∈ L∞(Ω), β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) > 0 for all z ∈ ∂Ω.

H1: f : Ω × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and

(i) | f (z, x)| ≤ a(z)[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω);

(ii) if F(z, x) =
∫ x

0 f (z, s)ds, then lim
x→±∞

pF(z, x)

|x|p
≤ λ̂1(p) uniformly for a.a. z ∈ Ω;

(iii) there exists τ ∈ (q, p) such that

0 < γ0 ≤ lim inf
x→±∞

f (z, x)x − pF(z, x)

|x|τ
uniformly for a.a. z ∈ Ω;

(iv) there exist δ0 > 0, ĉ > ‖ξ−‖∞ and µ ∈ [q, p) such that

ĉ|x|p ≤ F(z, x) for a.a. z ∈ Ω, all |x| ≤ δ0

and

µF(z, x)− f (z, x)x ≥ 0 for a.a. z ∈ Ω, all |x| ≤ δ0.

Remarks 2.1. Hypotheses H1(i),(ii), imply that the reaction f (z, ·) is (p − 1)-linear as x →

±∞ and the problem is resonant with respect to λ̂1(p). Note that the resonance condition

(hypothesis H1(ii)) is formulated in terms of the primitive F(z, x) which is more general.

3 Solutions of constant sign

In this section, we prove the existence of two nontrivial smooth solutions of constant sign (one

positive and the other negative).
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To this end, let η > ‖ξ‖∞ and consider the following two C1-functionals ϕ± : W1,p(Ω) → R

defined by

ϕ+(u) =
1

p
‖Du‖

p
p +

1

p

∫

Ω

[ξ(z) + η]|u|p dz −
1

q

∫

∂Ω

β(z)(u+)q dσ −
∫

Ω

[
F(z, u+) +

η

p
(u+)p

]
dz,

ϕ−(u) =
1

p
‖Du‖

p
p +

1

p

∫

Ω

[ξ(z) + η]|u|pdz +
1

q

∫

∂Ω

β(z)(u−)qdσ −
∫

Ω

[
F(z,−u−)−

η

p
(u−)p

]
dz,

for all u ∈ W1,p(Ω).

We show that these functionals are coercive.

Proposition 3.1. If hypotheses H0, H1 hold, then the functionals ϕ±(·) are both coercive.

Proof. We do the proof for ϕ+(·), the proof for ϕ−(·) being similar.

We argue by contradiction. So, suppose that ϕ+(·) is not coercive. Then we can find a

sequence {un}n≥1 ⊆ W1,p(Ω) such that

‖un‖ → ∞ and ϕ(un) ≤ M1 for some M1 > 0, all n ∈ N. (3.1)

Then we have

M1 ≥ ϕ+(un)

=
1

p

[
‖Du+

n ‖
p
p +

∫

Ω

ξ(z)(u+
n )

p dz

]
+

1

p

[
‖Du−

n ‖
p
p +

∫

Ω

[ξ(z) + η](u−
n )

p dz

]
−

−
1

q

∫

∂Ω

β(z)(u+
n )

q dσ −
∫

Ω

F(z, u+
n )dz

≥
1

p

[
‖Du+

n ‖
p
p +

∫

Ω

ξ(z)(u+
n )

p dz

]
−

1

q

∫

∂Ω

β(z)(u+
n )

q dσ −
∫

Ω

F(z, u+
n )dz (3.2)

(since η > ‖ξ‖∞).

We will use (3.2) to show that {u+
n }n≥1 ⊆ W1,p(Ω) is bounded. We proceed indirectly. So,

suppose that at least for a subsequence, we have

‖u+
n ‖ → ∞ as n → ∞. (3.3)

Let yn = u+
n

‖u+
n ‖

, n ∈ N. We have ‖yn‖ = 1, yn ≥ 0 for all n ∈ N and so we may assume that

yn
w
−→ y in W1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω); y ≥ 0. (3.4)

From (3.2) we have

1

p

[
‖Dyn‖

p
p +

∫

Ω

ξ(z)y
p
n dz

]
−

1

q‖u+
n ‖p−q

∫

∂Ω

β(z)y
q
n dσ −

∫

Ω

F(z, u+
n )

‖u+
n ‖p

dz ≤
M1

‖u+
n ‖p

, (3.5)

for all n ∈ N

Hypothesis H1(i) implies that

|F(z, x)| ≤ c1[1 + |x|p] for a.a. z ∈ Ω, all x ∈ R, some c1 > 0,

⇒

{
F(·, u+

n (·))

‖u+
n ‖p

}

n≥1

⊆ L1(Ω) is uniformly integrable.
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Then, by the Dunford–Pettis theorem (see Papageorgiou–Winkert [13], Theorem 4.1.18,

p. 289), we have that
{ F(·,u+

n (·))
‖u+

n ‖p

}
n≥1

⊆ L1(Ω) is relatively weakly compact. Then, by the

Eberlein–Smulian theorem and by passing to a subsequence if necessary, we have

F(·, u+
n (·))

‖u+
n ‖p

w
−−→

1

p
ϑ(·)y(·)p in L1(Ω) as n → ∞ (3.6)

with ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂1(p) for a.a. z ∈ Ω

(see hypothesis H1(ii) and Aizicovici–Papageorgiou–Staicu [2], proof of Proposition 16).

We return to (3.5), pass to the limit as n → ∞ and use (3.4), (3.3), (3.6) and the fact that

q < p, to obtain

‖Dy‖
p
p +

∫

Ω

ξ(z)yp dz ≤
∫

Ω

ϑ(z)yp dz. (3.7)

First suppose that ϑ 6≡ λ̂1(p) (see (3.6)). Then from (3.7) and Mugnai–Papageorgiou [8]

(Lemma 4.11), we have

c2‖y‖p ≤ 0 for some c2 > 0,

⇒ y = 0. (3.8)

Then from (3.5), (3.7), (3.8), (3.4) and (3.6), we obtain

‖Dun‖p → 0,

⇒ yn → 0 in W1,p(Ω),

a contradiction since ‖yn‖ = 1 for all n ∈ N.

Next we suppose that ϑ(z) = λ̂1(p) for a.a. z ∈ Ω. Then from (3.7) and (2.2), we have that

y = µû1(p) with µ ≥ 0 (recall that y ≥ 0).

If µ = 0, then y = 0 and as above, we show that

yn → 0 in W1,p(Ω),

a contradiction to the fact that ‖yn‖ = 1 for all n ∈ N. So, suppose µ > 0. Then y ∈ int C+.

This implies that

u+
n (z) → +∞ for a.a. z ∈ Ω. (3.9)

From (3.2) we have

M1 ≥
1

p

∫

Ω

[
λ̂1(p)(u+

n )
p − pF(z, u+

n )
]

dz −
1

q

∫

∂Ω

β(z)(u+
n )

q dσ

(see (3.7), (2.2) and recall that η > ‖η‖∞),

⇒
M1

‖u+
n ‖τ

≥
1

p

∫

Ω

[
λ̂1(p)(u+

n )
p − pF(z, u+

n )
]

(u+
n )p

y
p
n dz −

1

q‖u+
n ‖p−q

∫

∂Ω

β(z)y
q
n dσ, (3.10)

for all n ∈ N.

On R̊+ = (0, ∞) we have

d

dx

[
F(z, x)

xp

]
=

f (z, x)xp − pxp−1F(z, x)

x2p
=

f (z, x)x − pF(z, x)

xp+1
.
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On account of hypothesis H1(iii), we can find γ1 ∈ (0, γ0) and M2 > 0 such that

f (z, x)x − pF(z, x)

xp+1
≥

γ1

xp+1−τ
for a.a. z ∈ Ω, all x ≥ M2,

⇒
d

dx

[
F(z, x)

xp

]
≥

γ1

xp+1−τ
for a.a. z ∈ Ω, all x ≥ M2,

⇒
F(z, v)

vp
−

F(z, x)

xp
≥

γ1

p − τ

[
1

xp−τ
−

1

vp−τ

]
for a.a. z ∈ Ω, all v ≥ x ≥ M2.

Passing to the limit as v → ∞ and since F(z,v)
vp → 1

p λ̂1(p) as v → +∞, we obtain

λ̂1(p)

p
−

F(z, x)

xp
≥

γ1

p − τ
·

1

xp−τ
for a.a. z ∈ Ω, all x ≥ M2,

⇒
λ̂1(p)xp − pF(z, x)

xτ
≥

pγ1

p − τ
for a.a. z ∈ Ω, all x ≥ M2,

⇒ lim inf
x→+∞

λ̂1(p)xp − pF(z, x)

xτ
≥

pγ1

p − τ
> 0 uniformly for a.a. z ∈ Ω. (3.11)

Returning to (3.10), passing to the limit as n → ∞ and using (3.9), (3.11) and Fatou’s

lemma, we obtain

0 ≥ lim inf
n→∞

∫

Ω

[
λ̂1(p)(u+

n )
p − pF(z, u+

n )
]

(u+
n )p

y
p
n dz > 0

(recall that q < p and see (3.3)),

a contradiction. We infer that

{u+
n }n≥1 ⊆ W1,p(Ω) is bounded. (3.12)

From (3.1) and (3.12), we have

1

p

[
‖Du−

n ‖
p
p +

∫

Ω

[ξ(z) + η](u−
n )

p dz

]
≤ M3 for some M3 > 0, all n ∈ N,

⇒ c3‖u−
n ‖

p ≤ M3 for some c3 > 0, all n ∈ N,

⇒ {u−
n } ⊆ W1,p(Ω) is bounded. (3.13)

From (3.12) and (3.13) it follows that

{un}n≥1 ⊆ W1,p(Ω) is bounded,

which contradicts (3.1). This proves that ϕ+(·) is coercive.

In a similar fashion we show that ϕ−(·) is coercive too.

Now we are ready to produce the two constant sign solutions.

Proposition 3.2. If hypotheses H0, H1 hold, then problem (1.1) has at least two constant sign smooth

solutions

u0 ∈ intC+ and v0 ∈ −intC+.
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Proof. From Proposition 3.1 we know that ϕ+(·) is coercive. Also by the Sobolev embedding

theorem and the compactness of the trace map, we see that ϕ+(·) is sequentially weakly lower

semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find u0 ∈ W1,p(Ω) such that

ϕ+(u0) = min
[

ϕ+(u) : u ∈ W1,p(Ω)
]

. (3.14)

Since û1(p) ∈ int C+, we can choose t ∈ (0, 1) small such that

0 < tû1(p)(z) ≤ δ0 for all z ∈ Ω,

with δ0 > 0 as in hypothesis H1(iv). We have

0 ≤ F(z, tû1(p)(z)) for a.a. z ∈ Ω. (3.15)

Then we have

ϕ+(tû1(p)) ≤
tp

p
λ̂1(p)−

tq

q

∫

∂Ω

β(z)û1(p)q dσ (see (3.15)).

Since q < p, choosing t ∈ (0, 1) even smaller if necessary, we have

ϕ+(tû1(p)) < 0,

⇒ ϕ+(u0) < 0 = ϕ+(0) (see (3.14)),

⇒ u0 6= 0.

From (3.14), we have

ϕ′
+(u0) = 0,

⇒ 〈A(u0), h〉+
∫

Ω

[ξ(z) + η]|u0|
p−2u0h dz

=
∫

∂Ω

β(z)(u+
0 )

q−1h dσ +
∫

Ω

[ f (z, u+
0 ) + η(u+

0 )
p−1]h dz for all h ∈ W1,p(Ω). (3.16)

In (3.16) we choose h = −u−
n ∈ W1,p(Ω) and obtain

‖Du−
0 ‖

p
p +

∫

Ω

[ξ(z) + η](u−
0 )

p dz = 0,

⇒ c4‖u−
0 ‖

p ≤ 0 for some c4 > 0 (since η > ‖ξ‖∞),

⇒ u0 ≥ 0, u0 6= 0.

Then from (3.16) we have





−∆pu0(z) + ξ(z)u0(z)p−1 = f (z, u0(z)) for a.a. z ∈ Ω,
∂u0

∂np
= β(z)u

q−1
0 on ∂Ω.

(3.17)

From (3.17) and Proposition 2.10 of Papageorgiou–Rădulescu [10] (see also Theorem 4.1

of Winkert [15]), we have that u0 ∈ L∞(Ω). Then Theorem 2 of Lieberman [7], implies that

u0 ∈ C+ \ {0}.
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Let ρ = ‖u0‖∞. We can find ξ̂ρ > 0 such that f (z, x)x + ξ̂ρ|x|p ≥ 0 for a.a. z ∈ Ω, all

|x| ≤ ρ. Then from (3.17) we have

− ∆pu0(z) +
[
ξ(z) + ξ̂ρ

]
u0(z)

p−1 ≥ 0 for a.a. z ∈ Ω (see hypothesis H1(iv)),

⇒ ∆pu0(z) ≤
[
‖ξ‖∞ + ξ̂ρ

]
u0(z)

p−1 for a.a. z ∈ Ω,

⇒ u0 ∈ intC+ (by the nonlinear maximum principle; see [4, p. 738]).

Similarly working this time with the functional ϕ−(·), we obtain a negative solution v0 ∈

− int C+ for problem (1.1).

It is easy to check that

Kϕ+ ⊆ int C+ ∪ {0} and Kϕ− ⊆ (− int C+) ∪ {0}.

So, we may assume that

Kϕ+ = {0, u0} and Kϕ− = {0, v0}, (3.18)

or otherwise we already have a third nontrivial smooth solution which in fact has fixed sign.

So, we are done. In the next section we produce a third nontrivial smooth solution for prob-

lem (1.1).

4 Three nontrivial solutions

Starting from (3.18), we introduce the following truncation-perturbation of f (z, ·) (as before

η > ‖ξ‖∞):

f̂ (z, x) =





f (z, v0(z)) + η|v0(z)|p−2v0(z) if x < v0(z),

f (z, x) + η|x|p−2x if v0(z) ≤ x ≤ u0(z),

f (z, u0(z)) + ηu0(z)p−1 if u0(z) < x.

(4.1)

We also consider the positive and negative truncations of f̂ (z, x), namely the functions

f̂±(z, x) = f̂ (z,±x±). (4.2)

It is clear that f̂ and f̂± are all three Carathéodory functions. We see that

F̂(z, x) =
∫ x

0
f̂ (z, s)ds and F̂±(z, x) =

∫ x

0
f̂±(z, s)ds.

We also introduce similar truncations of the boundary term:

ĝ(z, x) =





β(z)|v0(z)|q−2v0(z) if x < v0(z),

β(z)|x|q−2x if v0(z) ≤ x ≤ u0(z),

β(z)u0(z)q−1 if u0(z) < x,

for all (z, x) ∈ ∂Ω × R. (4.3)

We also consider the positive and negative truncations of g(z, ·), namely the functions

ĝ±(z, x) = ĝ(z,±x±). (4.4)
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Evidently ĝ and ĝ± are all three Carathéodory functions on ∂Ω × R. We set

Ĝ(z, x) =
∫ x

0
ĝ(z, s)ds and Ĝ±(z, x) =

∫ x

0
ĝ±(z, s)ds.

We introduce the C1-functionals ψ̂, ψ̂± : W1,p(Ω) → R defined by

ψ̂(u) =
1

p
‖Du‖

p
p +

1

p

∫

Ω

[ξ(z) + η]|u|p dz −
∫

Ω

F̂(z, u)dz −
∫

∂Ω

Ĝ(z, u)dσ,

ψ̂±(u) =
1

p
‖Du‖

p
p +

1

p

∫

Ω

[ξ(z) + η]|u|p dz −
∫

Ω

F̂±(z, u)dz −
∫

∂Ω

Ĝ±(z, u)dσ,

for all u ∈ W1,p(Ω).

Finally, let ϕ : W1,p(Ω) → R be the energy (Euler) functional for problem (1.1) defined by

ϕ(u) =
1

p
‖Du‖

p
p +

1

p

∫

Ω

ξ(z)|u|p dz −
∫

Ω

F(z, u)dz −
1

q

∫

∂Ω

β(z)|u|q dσ for all u ∈ W1,p(Ω).

We have that ϕ ∈ C1(W1,p(Ω)). Also

Kϕ = set of solutions of problem (1.1), (4.5)

while from (4.3), (4.4) and the nonlinear regularity theory [7], we have

Kψ̂ ⊆ [v0, u0] ∩ C1(Ω), Kψ̂+
⊆ [0, u0] ∩ C+, Kψ̂−

⊆ [v0, 0] ∩ C+. (4.6)

Note that

ϕ|[v0,u0] = ψ̂|[v0,u0] and ϕ′|[v0,u0] = ψ̂′|[v0,u0], (4.7)

ϕ|[0,u0] = ϕ+|[0,u0] = ψ̂+|[0,u0] and ϕ′|[0,u0] = ϕ′
+|[0,u0] = ψ̂′

+|[0,u0], (4.8)

ϕ|[v0,0] = ϕ−|[v0,0] = ψ̂−|[v0,0] and ϕ′|[v0,0] = ϕ′
−|[v0,0] = ψ̂′

−|[v0,0]. (4.9)

From (4.5) we see that we may assume that Kϕ is finite or otherwise we already have an

infinity of nontrivial smooth solutions for problem (1.1) and so we are done. Combining this

fact with (4.6) and (4.7), we see that Kψ̂ is finite too. Moreover, from (3.18), (4.6), (4.8), (4.9) we

infer that

Kψ̂ ⊆ [v0, u0] ∩ C1(Ω) is finite, Kψ̂+
= {0, u0}, Kψ̂−

= {0, v0}. (4.10)

These observations permit the consideration of the critical groups of ϕ and ψ̂ at u = 0 and

for these groups we have the following result.

Proposition 4.1. If hypotheses H0, H1 hold, then Ck(ϕ, 0) = Ck(ψ̂, 0) for all k ∈ N0.

Proof. Recall that we assume that Kϕ is finite. We consider the homotopy ĥ(t, u) defined by

ĥ(t, u) = tψ̂(u) + (1 − t)ϕ(u) for all (t, u) ∈ [0, 1]× W1,p(Ω).

Suppose we could find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W1,p(Ω) such that

tn → t ∈ [0, 1], un → 0 in W1,p(Ω), ĥ′u(tn, un) = 0 for all n ∈ N. (4.11)
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From the equation in (4.11), we have




−∆pun(z) + [ξ(z) + tnη]|un(z)|p−2un(z)

= tn f̂ (z, un(z)) + (1 − tn) f (z, un(z)) for a.a. z ∈ Ω,
∂un

∂np
= tn ĝ(z, un) + (1 − tn)β(z)|un|

q−2un on ∂Ω.

(4.12)

From (4.12) and Proposition 2.10 of Papageorgiou-Rădulescu [10], we can find c5 > 0 such

that

‖un‖∞ ≤ c5 for all n ∈ N.

Then from Theorem 2 of Lieberman [7], we see that there exist α0 ∈ (0, 1) and c6 > 0 such

that

un ∈ C1,α0(Ω) and ‖un‖C1,α0 (Ω) ≤ c6 for all n ∈ N. (4.13)

From (4.13), the compact embedding of C1,α0(Ω) into C1(Ω) and (4.11) we infer that

un → 0 in C1(Ω) as n → ∞. (4.14)

Then, on account of (4.14), we can find n0 ∈ N such that

un ∈ [v0, u0], for all n ≥ n0,

⇒ {un}n≥n0 ⊆ Kϕ (see (4.7) and (4.10)),

which contradicts our assumption that Kϕ is finite. Therefore (4.11) can not occur and then

the homotopy invariance property of critical groups (see Papageorgiou–Rădulescu–Repovš

[11, Theorem 6.3.6, p. 505]), implies that

Ck(ϕ, 0) = Ck(ψ̂, 0) for all k ∈ N0.

Next we compute the critical groups of ϕ at u = 0.

Proposition 4.2. If hypotheses H0, H1 hold, then Ck(ϕ, 0) = 0 for all k ∈ N0.

Proof. On account of hypotheses H1(i),(iv), we have

F(z, x) ≥ −c7|x|
r for a.a. z ∈ Ω, all x ∈ R, (4.15)

with c7 > 0 and r > p. Then, using (4.15), for every u ∈ W1,p(Ω) and every t > 0, we have

ϕ(tu) ≤ tpc8‖u‖p + trc9‖u‖r − tq
∫

∂Ω

β(z)|u|q dσ for some c8, c9 > 0.

Note that
∫

∂Ω
β(z)|u|q dσ > 0. Therefore since q < p < r, we can find t∗ = t∗(u) ∈ (0, 1) such

that

ϕ(tu) < 0 for all t ∈ (0, t∗). (4.16)

Let u ∈ W1,p(Ω) with 0 < ‖u‖ ≤ 1, ϕ(u) = 0 and ϑ ∈ (µ, p). We have

d

dt
ϕ(tu)

∣∣∣∣∣
t=1

= 〈ϕ′(u), u〉 (by the chain rule)

= 〈A(u), u〉+
∫

Ω

ξ(z)|u|p dz −
∫

Ω

f (z, u)u dz −
∫

∂Ω

β(z)|u|q dσ

=

[
1 −

ϑ

p

]
‖Du‖

p
p +

[
1 −

ϑ

p

] ∫

Ω

ξ(z)|u|p dz +

[
ϑ

q
− 1

] ∫

∂Ω

β(z)|u|q dσ

+ (ϑ − µ)
∫

Ω

F(z, u)dz +
∫

Ω

[µF(z, u)− f (z, u)u] dz (4.17)

(since ϕ(u) = 0).



12 N. S. Papageorgiou, A. Scapellato

By hypothesis H1(iv), we have that

F(z, x) ≥ ĉ|x|p for a.a. z ∈ Ω, all |x| ≤ δ0. (4.18)

Combining (4.18) with hypothesis H1(i) we have that

F(z, x) ≥ ĉ|x|p − c10|x|
r for a.a. z ∈ Ω, all x ∈ R, (4.19)

for some c10 > 0.

In addition, hypotheses H1(i),(iv) imply that

µF(z, x)− f (z, x)x ≥ −c11|x|
r for a.a. z ∈ Ω, all x ∈ R, some c11 > 0. (4.20)

We return to (4.17) and use (4.18), (4.19), (4.20) and obtain

d

dt
ϕ(tu)

∣∣∣∣∣
t=1

≥ c12‖Du‖
p
p +

[
ĉ − ‖ξ−‖∞

]
‖u‖

p
p − c13‖u‖r

for some c12, c13 > 0 (recall that q < µ < ϑ).

But by hypothesis H1(iv) we have that ĉ > ‖ξ−‖∞. So, from the above inequality, we have

d

dt
ϕ(tu)

∣∣∣∣∣
t=1

≥ c14‖u‖p − c13‖u‖r for some c14 > 0.

Since p < r, we can find ρ ∈ (0, 1) small such that

d

dt
ϕ(tu)

∣∣∣∣∣
t=1

> 0 for all u ∈ W1,p(Ω) with < ‖u‖ ≤ ρ, ϕ(u) = 0. (4.21)

Consider a u ∈ W1,p(Ω) as in (4.21), namely that

0 < ‖u‖ < ρ and ϕ(u) = 0.

We show that

ϕ(tu) ≤ 0 for all t ∈ [0, 1]. (4.22)

Suppose that (4.22) is not true. Then we can find t0 ∈ (0, 1) such that ϕ(t0u) > 0. Since

ϕ(u) = 0 and ϕ(·) is continuous, by Bolzano’s theorem, we can find t̂ ∈ (t0, 1] such that

ϕ(t̂u) = 0. We set

t∗ = min
{

t̂ ∈ (t0, 1] : ϕ(tu) = 0
}
> t0 > 0.

We have

ϕ(tu) > 0 for all t ∈ [t0, t∗). (4.23)

If v = t∗u, then 0 < ‖v‖ ≤ ρ and ϕ(v) = 0. So, from (4.21) we have

d

dt
ϕ(tu)

∣∣∣∣∣
t=1

> 0. (4.24)

On the other hand

d

dt
ϕ(tu)

∣∣∣∣∣
t=1

= t∗
d

dt
ϕ(tu)

∣∣∣∣∣
t=t∗

= t∗ lim
t→(t∗)−

ϕ(tu)

t − t∗
≤ 0 (see (4.23)). (4.25)
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Comparing (4.24) and (4.25), we have a contradiction. This proves (4.22).

Recall that Kϕ is finite. So, we can always choose ρ ∈ (0, 1) small so that Kϕ ∩ Bρ = {0}

(recall that Bρ = {u ∈ W1,p(Ω) : ‖u‖ < ρ}). Consider the continuous deformation h0 :

[0, 1]× (ϕ0 ∩ Bρ) → ϕ0 ∩ Bρ defined by

h0(t, u) = (1 − t)u for all (t, u) ∈ [0, 1]× (ϕ0 ∩ Bρ).

On account of (4.22) this deformation is well-defined and shows that ϕ0 ∩ Bρ is contractible

in itself.

Let u ∈ Bρ with ϕ(u) > 0. We claim that there is a unique t(u) ∈ (0, 1) such that

ϕ(t(u)u) = 0. (4.26)

The existence of such t(u) ∈ (0, 1) follows from (4.16) and Bolzano’s theorem. For the

uniqueness, suppose we could find 0 < t1 < t2 < 1 such that

ϕ(t1u) = ϕ(t2u) = 0. (4.27)

Consider the function

η(t) = ϕ(tt2u) for all t ∈ [0, 1].

From (4.27) and (4.22), it follows that that t = t1
t2
∈ (0, 1) is a maximizer of η(·). Therefore

we have

d

dt
η(t)

∣∣∣∣∣
t=

t1
t2

= 0,

⇒
d

dt
ϕ(tt1u)

∣∣∣∣∣
t=1

= 0,

which contradicts (4.21). So, t(u) ∈ (0, 1) satisfying (4.26) is unique. Therefore we have

ϕ(tu) < 0 for t ∈ (0, t(u)) and ϕ(tu) > 0 if t ∈ (t(u), 1]. (4.28)

Then we introduce the function λ : Bρ \ {0} → [0, 1] defined by

λ(u) =

{
1 if u ∈ Bρ \ {0}, ϕ(u) ≤ 0,

t(u) if u ∈ Bρ \ {0}, ϕ(u) > 0.

It is easy to see that λ(·) is continuous. So, if we consider the map k : Bρ \ {0} →

(ϕ0 ∩ Bρ) \ {0} defined by

k(u) =

{
u if u ∈ Bρ \ {0}, ϕ(u) ≤ 0,

λ(u)u if u ∈ Bρ \ {0}, ϕ(u) > 0,

then k(·) is continuous and k|(ϕ0∩Bρ)\{0} = identity. It follows that (ϕ0 ∩ Bρ) \ {0} is a retract

of Bρ \ {0}, which is contractible. Therefore (ϕ0 ∩ Bρ) \ {0} is contractible and so we have

Hk(ϕ0 ∩ Bρ, (ϕ0 ∩ Bρ) \ {0}) = 0 for all k ∈ N0 (see [11], p. 469),

⇒ Ck(ϕ, 0) = 0 for all k ∈ N0.
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Corollary 4.3. If hypotheses H0, H1 hold, then Ck(ψ̂, 0) = 0 for all k ∈ N0.

Now we are ready for the multiplicity theorem. It is interesting to point out that the

solutions we produce are ordered.

Theorem 4.4. If hypotheses H0, H1 hold, then problem (1.1) has at least three nontrivial smooth

solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1(Ω), v0 ≤ y0 ≤ u0.

Proof. From Proposition 3.2 we already have two nontrivial constant sign solutions

u0 ∈ intC+ and v0 ∈ −intC+.

Claim: u0 ∈ intC+ and v0 ∈ −intC+ are local minimizers of ψ̂(·).

From (4.1), (4.2), (4.3) and (4.4), we see that ψ̂+(·) is coercive. Also, it is sequentially weakly

lower semicontinuous. So, we can find ũ0 ∈ W1,p(Ω) such that

ψ̂+(ũ0) = min
[
ψ̂+(u) : u ∈ W1,p(Ω.)

]
(4.29)

Let u ∈ intC+. Since u0 ∈ intC+, we can find t ∈ (0, 1) small such that

0 ≤ tu ≤ min{u0, δ0}

(see Papageorgiou–Rădulescu–Repovš [11], Proposition 4.1.22, p. 274). Then, since µ < p, we

have

ψ̂+(tu) < 0 for t ∈ (0, 1) small,

⇒ ψ̂+(ũ0) < 0 = ψ̂+(0) (see (4.29)),

⇒ ũ0 6= 0,

⇒ ũ0 = u0 (see (4.10) and (4.29)).

Note that ψ̂
∣∣
C+

= ψ̂+

∣∣
C+

. Since u0 ∈ intC+, it follows that

u0 is a local C1(Ω)-minimizer of ψ̂(·),

⇒ u0 is a local W1,p(Ω)-minimizer of ψ̂(·)

(see Papageorgiou–Rădulescu [10, Proposition 2.12]).

Similarly for v0 ∈ − int C+ using this time the functional ψ−(·).

This proves the claim.

Without any loss of generality we may assume that

ψ̂(v0) ≤ ψ̂(u0).

From (4.10), the Claim and Theorem 5.7.6, p. 449, of Papageorgiou–Rădulescu–Repovš

[11], we know that we can find ρ ∈ (0, 1) small such that

ψ̂(v0) ≤ ψ̂(u0) < inf
[
ψ̂(u) : ‖u − u0‖ = ρ

]
= m̂ρ, ‖v0 − u0‖ > ρ. (4.30)

Since ψ̂(·) is coercive, from Proposition 5.1.15, p. 369, of Papageorgiou–Rădulescu–Repovš

[11], we have that

ψ̂(·) satisfies the Palais–Smale condition. (4.31)
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Then (4.30) and (4.31) permit the use of the mountain pass theorem. So, we can find

y0 ∈ W1,p(Ω) such that

y0 ∈ Kψ̂ ⊆ [v0, u0] ∩ C1(Ω) (see (4.10)) and m̂ρ ≤ ψ̂(y0) (see (4.30)). (4.32)

From (4.30) and (4.32), we have that

y0 6= u0 and y0 6= v0.

Moreover, since y0 is a critical point of ψ̂ of mountain pass type, from Corollary 6.6.9, p. 533,

of Papageorgiou–Rădulescu–Repovš [11], we have

C1(ψ̂, y0) 6= 0. (4.33)

On the other hand, from Corollary 4.3, we have

Ck(ψ̂, 0) = 0 for all k ∈ N0. (4.34)

Comparing (4.33) and (4.34) we infer that y0 6= 0. Therefore y0 ∈ C1(Ω) is the third nontrivial

solution of (1.1) and v0(z) ≤ y0(z) ≤ u0(z) for all z ∈ Ω.
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1 Introduction

Let I = (a, b) where −∞ ≤ a < b ≤ +∞. The differential operator

Lu =
1

ρ

(

−(pu′)′ + qu
)

, x ∈ I = (a, b), (1.1)

was the first to be studied from the point of view of the properties of its spectrum, in particular,

the discreteness of the spectrum. Recall that the spectrum of an operator A acting in a Hilbert

space H is discrete if it consists only of eigenvalues of finite multiplicity [2]. Operator (1.1) is

studied in the space L2(I, ρ) of functions that are square integrable on I with positive weight ρ.

In the case (a, b) = (−∞, ∞), and ρ = 1 the operator Lu = −u′′+ qu has discrete spectrum,

if [3] limx→∞ q(x) = +∞. It is a sufficient condition. A. M. Molchanov obtained [11] the

following necessary and sufficient condition: for any δ > 0

lim
x→∞

∫ x+δ

x
q(x)dx = +∞. (1.2)

Note that Molchanov studied an operator in the n-dimensional space Rn. Here we consider

only the case when q = 0. In this case for the operator*

Lu(x) := − 1

ρ(x)
(p(x)u′)′, x ∈ I = (a, b), (1.3)

BEmail: labovski@gmail.com
*sign := means equal by definition
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a necessary and sufficient condition is obtained by I. Kac and M. G. Krein [6]. However,

the result in [6] is formulated in such a way that equivalence with the form proposed below

(Theorem 2.4) is not obvious (see section 7). Note also that the method in [6] pursued other

goals, and is more complicated. We use some method (see Lemma 5.2) close to the Glazman

splitting method [5]. The essential point here is a simpler proof of necessity (Lemma 4.1). As

test functions, sections G(x, s) of the Green function were chosen, where s → a or s → b. This

simplifies the proof of necessity (see below two-sided estimates (4.5) and (4.6)).

In this regard, we have to note the result of M. Sh. Birman [1, p. 148], [5, p. 93] for an

even-order equation on semiaxis [0, ∞). For the operator L0u = −(1/ρ)u′′ this condition has

the following form

lim
s→∞

s
∫

∞

s
ρ(x) dx = 0. (1.4)

It is assumed that
∫

∞

0 ρ(x) dx < ∞. If
∫ 1

0 ρ(x) dx = ∞, the condition

lim
s→0

s
∫ 1

s
ρ(x) dx = 0 (1.5)

together with (1.4) guarantees [10] discreteness of spectrum of −(1/ρ)u′′. The result of pre-

sented article was announced in [9] for a more general functional differential operator of the

form

Lu(x) := − 1

ρ(x)
(p(x)u′)′ +

∫ b

a
u(s)r(x, ds), x ∈ I = (a, b).

For simplicity, we omit the integral term here.

2 Assumptions. Conditions of discreteness

For the operator (1.3) assume that the functions p(x) and ρ(x) are measurable and positive

almost everywhere on a finite or infinite interval I := (a, b), −∞ ≤ a < b ≤ ∞. Assume that

1/p and ρ are locally on I integrable, that is, for any s1, s2, a < s1 < s2 < b

∫ s2

s1

dx

p(x)
< ∞,

∫ s2

s1

ρ(x) dx < ∞.

Definition 2.1. If for some s ∈ I = (a, b)

∫ s

a
ρ(x) dx = ∞,

∫ s

a

dx

p(x)
< ∞ (2.1)

then L has singularity at the point x = a by ρ(x). If for some s ∈ I = (a, b)

∫ s

a

dx

p(x)
= ∞,

∫ s

a
ρ(x) dx < ∞ (2.2)

say that L has singularity at the point x = a by p(x). Similarly, we can define the singularity

at the right end of the interval.

Only one type of singularity at each end of the interval is allowed. It is clear that the sin-

gularity at the right end of the interval can be considered similarly to the left end. Moreover,

the singularity at the right end can be reduced to the singularity at the left end by the change
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of variable x = −x′. Therefore, one could consider the singularity only at the left end of the

interval. Assuming that

∫ b

s

dx

p(x)
< ∞ and

∫ b

s
ρ(x) dx < ∞ (a < s < b) (2.3)

and letting

Φ1(s) :=
∫ s

a

dx

p(x)

∫ b

s
ρ(x) dx, Φ2(s) :=

∫ s

a
ρ(x) dx

∫ b

s

dx

p(x)

we have the following theorem.

Theorem 2.2. For the spectrum of operator (1.3) to be discrete, it is necessary and sufficient that at

least one of relations

lim
s→a

Φ1(s) = 0 or lim
s→a

Φ2(s) = 0

be true.

Remark 2.3. If there is a singularity, then one of the integrals Φ1(s) or Φ2(s) does not exist.

Therefore, only one type of singularity is allowed.

However, it is more convenient to represent Theorem 2.2 in a simpler form (Theorem 2.4

below). For this, we consider both types of singularities at different ends of the interval si-

multaneously. The essence of the content of Theorem 2.2 will not change. So, we assume

that
∫ b

s
ρ(x) dx < ∞,

∫ s

a

dx

p(x)
< ∞, a < s < b (2.4)

but
∫ s

a
ρ(x) dx = ∞,

∫ b

s

dx

p(x)
= ∞. (2.5)

Let

Φ(s) :=
∫ s

a

dx

p(x)

∫ b

s
ρ(x) dx. (2.6)

Theorem 2.2 takes the following form.

Theorem 2.4. For discreteness of the spectrum of the operator (1.3), it is necessary and sufficient that

lim
s→a

Φ(s) = lim
s→b

Φ(s) = 0.

Proof. It follows from Lemma 5.3 and Section 3.

To simplify the notation, assume that a = 0 and b = l ≤ ∞ (l is the length of a string). We

use also the boundary condition

u(0) = 0. (2.7)

Condition (2.7) is not essential for the study of discreteness. It affects the estimate of the first

eigenvalue (lower boundary of the spectrum).
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3 Variational method

We use the following form of the variational method [8]. In the space L2(I, ρ) of square

integrable functions the scalar product is defined by ( f , g) :=
∫

I f (x)g(x)ρ(x) dx. Here I =

(a, b) = (0, l), l ≤ ∞. The bilinear form

[u, v] :=
∫ l

0
p(x)u′(x)v′(x) dx (3.1)

serves as a scalar product in Hilbert space W of all locally absolutely continuous on [0, l)

functions satisfying the boundary condition (2.7). Let T : W → L2(I, ρ) be defined by the

equality Tu(x) = u(x). Note that T(W) is dense in L2(I, ρ). The equation in variational form

[u, v] = ( f , Tv) (∀v ∈ W), (3.2)

f ∈ L2(I, ρ) with respect to u has unique solution u = T∗ f . Equation (3.2) is equivalent to

equation Lu = f , where L := (T∗)−1.

If form [u, v] is defined by (3.1), operator L can be represented by (1.3) under boundary

conditions u(0) = 0, pu′∣
∣

x=l
= 0. Thus, eigenvalue problem

Lu = λTu

has the representation

− 1

ρ
(pu′)′ = λu, u(0) = 0, pu′∣

∣

x=l
= 0. (3.3)

Discreteness of spectrum of operator L is equivalent to compactness of the operator T. If

T is compact, the eigenvalue problem (3.3) has a system eigenfunctions un that forms an

orthogonal basis in the space W. The system Tun forms an orthogonal basis in L2(I, ρ).

4 Auxiliary inequalities

Let u ∈ W and

Au :=
∫

I

|u(s)u′(s)|
ω(s)

ds,

where the positive parameter function ω will be defined below. By the Cauchy inequality

A2
u ≤

∫

I

u(s)2

ω(s)2

ds

p(s)
·
∫

I
p(s)u′(s)2 ds = Bu · [u, u], (4.1)

where Bu :=
∫

I
u(s)2

ω(s)2
ds

p(s)
. Hence and since u(0) = 0

Bu = 2
∫

I

ds

ω(s)2 p(s)

∫ s

0
u(x)u′(x) dx = 2

∫

I
u(x)u′(x)dx

∫ l

x

ds

ω(s)2 p(s)
.

Let the function ω be chosen so that

∫ l

x

ds

ω(s)2 p(s)
=

1

ω(x)
− 1

ω(l)
≤ 1

ω(x)
. (4.2)
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Then Bu ≤ 2
∫

I
|u(x)u′(x)|

ω(x)
dx = 2Au. From here and (4.1) A2

u ≤ 2Au[u, u] and

Au ≤ 2[u, u]. (4.3)

From (4.2) we obtain − 1
ω2 p

= − 1
ω2 ω′ and

ω(s) =
∫ s

0

dx

p(x)
. (4.4)

Lemma 4.1. Let 0 < c < l, 0 < d < l. The following inequalities hold:

sup
s∈[0,c]

(

Φ(s)−
∫ s

0

dx

p(x)

∫ l

c
ρ dx

)

≤ sup
‖u‖≤1

(Tu, Tu)[0,c] ≤ 4 sup
s∈[0,c]

Φ(s), (4.5)

sup
s∈[d,l)

Φ(s) ≤ sup
‖u‖≤1

(Tu, Tu)[d,l] ≤ Φ(d) + 4 sup
s∈[d,l)

Φ(s). (4.6)

Proof. The left inequality of (4.5). Let s ∈ (0, c], ω :=
∫ s

0
dx

p(x)
and

u(x) :=











1√
ω

∫ x

0

dt

p(t)
, if 0 ≤ x ≤ s,

√
ω, if s < x < l.

Then [u, u] =
∫ s

0 p(x)(u′)2 = 1
ω

∫ s
0 p(x) dx

p(x)2 = 1,

(Tu, Tu)[0,c] ≥
∫ c

s
u2ρ dx = ω

∫ c

s
ρ dx = Φ(s)−

∫ s

0

dx

p(x)

∫ l

c
ρ dx.

The left inequality of (4.6). Let s ∈ [d, l), ω and u be defined by the same equalities. Then

[u, u] = 1,

(Tu, Tu)[d,l) ≥
∫ l

s
u2ρ dx = ω

∫ l

s
ρ dx = Φ(s).

The right inequality of (4.5). Let ‖u‖ ≤ 1. By virtue of (4.3) and (4.4)

∫ c

0
(u(x))2ρ(x) dx =

∫ c

0

(

2
∫ x

0
u(s)u′(s) ds

)

ρ(x) dx

= 2
∫ c

0

u(s)u′(s)
ω(s)

(

ω(s)
∫ c

s
ρ(x) dx

)

ds

≤ 2 sup
0<s<c

Φ(s)
∫ c

0

u(s)u′(s)
ω(s)

ds ≤ 2 sup
0<s<c

Φ(s)Au ≤ 4 sup
0<s<c

Φ(s).

The right inequality of (4.6). Let ‖u‖ ≤ 1. We have

∫ l

d
(u(x))2ρ(x) dx =

∫ l

d
ρ(x)

(

(u(d))2 + 2
∫ x

d
u(s)u′(s) ds

)

dx.

Since

(u(d))2 =

(

∫ d

0
u′(s) ds

)2

≤
∫ d

0
p(s)(u′(s))2 ds

∫ d

0

ds

p(s)
≤

∫ d

0

ds

p(s)

we have

(u(d))2
∫ l

d
ρ dx ≤ Φ(d).
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For the second term, in view (4.3)

∫ l

d

(

2
∫ x

d
u(s)u′(s) ds

)

ρ(x) dx = 2
∫ l

d

u(s)u′(s)
ω(s)

(

ω(s)
∫ l

s
ρ(x) dx

)

ds

≤ 2 sup
d<s<l

Φ(s)
∫ d

0

u(s)u′(s)
ω(s)

ds ≤ 2 sup
d<s<l

Φ(s)Au ≤ 4 sup
d<s<l

Φ(s).

5 Boundedness and compactness

The boundedness of operator T and its action from space W to space L2(I, ρ) are necessary

for further investigation of the spectrum. The compactness of operator T, as mentioned in

Section 3, is equivalent to the discreteness of the spectrum of operator (1.3).

5.1 Boundedness

Since

(Tu, Tu) =
∫ l

0
u2ρ dx = 2

∫ l

0
ρ(x) dx

∫ x

0
u(s)u′(s) ds = 2

∫ l

0

u(s)u′(s)
ω(s)

ω(s)
∫ l

s
ρ(x) dx ds,

by virtue of (4.3) and (2.6)

(Tu, Tu) ≤ 4[u, u] sup
s∈(0,l)

ω(s)
∫ l

s
ρ(x) dx = 4[u, u] sup

s∈(0,l)

Φ(s). (5.1)

So, the boundedness of function Φ(s) guarantees the boundedness of operator T. It seems

this is necessary condition. Let λ0 be the lower boundary of spectrum of L. It satisfies the

representation

(λ0)
−1 = sup

u 6=0

(Tu, Tu)

[u, u]
.

From (5.1) we have the estimate

(λ0)
−1 ≤ 4 sup Φ(s).

5.2 Compactness

• Let (Tu, Tu)∆ :=
∫

∆
u2ρ dx. Below we will use ∆ = [0, c] and ∆ = [d, l).

Below we use the following compactness criterion [4, p. 268], [7, p. 318].

Theorem 5.1 (I. Gelfand). For the relative compactness of the set A in a Banach space E, it is necessary

and sufficient that for any sequence fn of linear functionals converging on each element of a Banach

space E, the convergence is uniform on the set A.

The following statement is closed to the localization principle [5].

Lemma 5.2. The condition

lim
c→0

sup
‖u‖≤1

(Tu, Tu)[0,c] = 0
∧

lim
d→l

sup
‖u‖≤1

(Tu, Tu)[d,l) = 0 (5.2)

is a necessary and sufficient condition for compactness of T.
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Proof. Necessity. Suppose ∃σ > 0, ∃cn → 0, ∃un such that ‖un‖ = 1 and

(Tun, Tun)∆n
> σ,

where ∆n := [0, cn]. Let fn = χ∆n
1

‖Tun‖∆n
Tun (χ∆n

is the characteristic function of the set ∆n).

Since

( fn, z)2 ≤ 1

‖Tun‖2
∆n

∫ cn

0
u2

nρ dx
∫ cn

0
z2ρ dx =

∫ cn

0
z2ρ dx → 0

( fn, z) converges for any z ∈ L2(I, ρ). But the following contradicts Theorem 5.1:

( fn, Tun) =
1

‖Tun‖∆n

∫ cn

0
u2

nρ dx =

√

∫ cn

0
u2

nρ dx >

√
σ.

The necessity of the second condition in (5.2) is proved in exactly the same way.

Sufficiency. Let fn ∈ L2(I, ρ) be a sequence such that ( fn, z) → 0 for any z ∈ L2(I, ρ). We

have to show that fn(Tu) = ( fn, Tu) → 0 uniformly on [u, u] ≤ 1. First,

(

∫ c

0
fn(x)u(x)ρ(x) dx

)2

≤
∫ c

0
fn(x)2ρ(x) dx

∫ c

0
u(x)2ρ(x) dx ≤ C

∫ c

0
u(x)2ρ(x) dx.

From here and by virtue of (5.2)

lim
c→0

∫ c

0
fn(x)u(x)ρ(x) dx = 0

uniformly on the set {(u, n) : [u, u] ≤ 1, n = 1, 2, . . .}. Similarly,

lim
d→l

∫ l

d
fn(x)u(x)ρ(x) dx = 0

uniformly on the set {(u, n) : [u, u] ≤ 1, n = 1, 2, . . .}.

Therefore, it suffices to establish for any α, β ∈ (0, l) uniform on [u, u] ≤ 1 convergence of

the sequence
∫ β

α
fn(x)u(x)ρ(x) dx. We have

∫ β

α
fn(x)u(x)ρ(x) dx =

∫ β

α
fn(x)

(

u(α) +
∫ x

α
u′(s) ds

)

ρ(x) dx.

The first term converges uniformly since
∫ β

α
fn(x)ρ(x) dx converges and

(u(α))2 =

(

∫ α

0
u′(x) dx

)2

≤
∫ α

0
p(x)(u′(x))2 dx

∫ α

0

dx

p(x)
≤ [u, u]

∫ α

0

dx

p(x)
.

Let us estimate the second term:
(

∫ β

α
fn(x)

(

∫ x

α
u′(s) ds

)

ρ(x) dx

)2

=

(

∫ β

α
u′(s) ds

∫ β

s
fn(x)ρ(x) dx

)2

≤
∫ β

α
p(s)(u′(s))2 ds

∫ β

α
(ϕn(s))

2 ds ≤
∫ l

α
(ϕn(s))

2 ds,

where ϕn(s) = (p(s))−1/2
∫ β

s fn(x)ρ(x) dx. Note, that ϕn(s) = ( fn, zs) where zs(x) = 0, if

x /∈ [s, l], and zs(x) = (p(s))−1/2, if x ∈ [s, l]. Thus ϕn(s) = ( fn, zs) → 0 for all s ∈ I.

Since

(ϕn(s))
2 ≤ 1

p(s)

∫ β

s
ρ(x) dx

∫ β

s
( fn(x))2ρ(x) dx ≤ ‖ fn‖2 1

p(s)

∫ β

s
ρ(x) dx

by virtue of the Lebesgue theorem
∫ β

α
(ϕn(s))2 ds → 0.
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Lemma 5.3. The condition lims→0 Φ(s) = 0 and lims→l Φ(s) = 0 is a necessary and sufficient

condition for compactness of the operator T.

Proof. It follows from Lemma 5.2 and from inequalities (4.5) and (4.6). For example, consider

in detail the proof of the necessity of condition lims→0 Φ(s) = 0. The compactness of operator

T implies (5.2). Suppose lims→0 Φ(s) = 0 is not true. Then there are ε > 0 and sn → 0 such

that Φ(sn) ≥ ε. Let c > 0. For some sn < c

Φ(sn)−
∫ sn

0

dx

p(x)

∫ l

c
ρ(x)dx ≥ ε/2.

From (4.5) we have sup‖u‖≤1(Tu, Tu)[0,c] ≥ ε/2. Since c is arbitrary, this contradicts (5.2).

The other three statements are proved similarly.

6 Example. Laguerre polynomials

Consider equation xy′′+(1− x)y′+ ny = 0 generating the Laguerre polynomials. Multiplying

by e−x, we get

(xe−xy′)′ + ne−xy = 0.

In this case p(x) = xe−x, ρ(x) = e−x. Let’s verify the discreteness conditions for the interval

(0, ∞). At the point x = 0 it is
∫ 1

s

dx

p(x)

∫ s

0
ρ(x) dx → 0

when s → 0. It is so since
∫ s

0 e−x dx = O(s) and
∫ 1

s
ex

x dx ∼
∫ 1

s
dx
x = − ln s.

At the x = ∞ we have to check
∫ s

1

dx

p(x)

∫

∞

s
ρ(x) dx → 0,

when s → ∞, that is
∫ s

1
ex

x dx · e−s → 0. For arbitrary ε > 0 take A > 0 such that 1/A < ε/2.

Then
∫ s

1

ex

x
dx · e−s ≤

∫ A

1

ex

x
dx · e−s + ε/2.

7 Criterion formulation in the article by Krein and Kac

Article [6] discusses equation

y′′ + λρy = 0, 0 ≤ x < L,

in which the generalized density is considered to be the derivative dM/dx, L ≤ +∞. L is

considered the length of the string, and M is its mass.

Spectrum discreteness criterion: for the spectrum of the string to be discrete, it is necessary

and sufficient that in case L = ∞ condition

lim
x→∞

x(M(∞)− M(x)) = 0

is fulfilled, and in case M(L) = ∞ the dual condition

lim
x→L

M(x)(L − x).

In the first case, it is assumed that M(L) < ∞, and in the second L < ∞.
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1 Introduction

Throughout the paper we denote:

• Θ and I the d × d zero and identity matrix, respectively;

• Z
b
a := {a, a + 1, . . . , b} for a, b ∈ Z ∪ {±∞}, a ≤ b;

• An empty sum ∑
b
i=az (i) = 0 and an empty product ∏

b
i=az (i) = 1 for integers a < b,

where z (i) is a given function which does not have to be defined for each i ∈ Z
a
b in this

case;

• ∆x (k) = x (k + 1)− x (k) is the forward difference operator;

In the present paper we consider the following discrete systems with delay,

x (k + 1) = Ax (k) + Bx (k − m) + f (k) , k ≥ 0, (1.1)

where m ≥ 1 is a fixed integer, k ∈ Z
∞
0 , A, B are constant d × d matrices, x : Z

∞
−m → R

d is an
unknown solution, C is a constant d × d matrix and f : Z

∞
0 → R

d is a function.
Let ϕ : Z

0
−m → R

d be a function. We consider an initial value problem

x (k) = ϕ (k) , k ∈ Z
0
−m. (1.2)
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We recall that the initial problem (1.1), (1.2) has a unique solution in Z
∞
−m.

In 2006, J. Diblik and D. Ya. Khusainov published two papers [2,3] on a matrix representa-
tion of solutions of linear discrete systems with a single delay using so called delayed discrete
matrix exponential. In [8, 9] the concept of discrete matrix delayed exponential is extended
to two matrices with a representation derived of solutions to systems with two delayed lin-
ear terms. Along these lines, [21] presents rather general results giving a representation of
solutions to discrete systems with multiple delayed terms assuming that matrices of these
terms pairwise permute, while the paper by the author [15] treats the case of non-permutable
matrices. The results of these papers are widely used. These basic results of these papers are
widely used to deal with control theory, iterative learning control and stability analysis for
time-delay equations; see for example, [1, 4, 5, 7, 11–14, 16, 18–20, 22, 23] and references therein.

In the paper [6] is an open problem formulated - to prove that the case of non-permutable
matrice can be treated with the method of Z-transform. This paper gives positive answer to
this problem in the case of two matrices. Representation of solutions is derived by means of
newly defined delayed perturbation of matrix exponential using the Z-transform where the
existence of inverse of the matrix A is not assumed (the assumption of regularity of matrix A

plays important role in [15]).
The Z-transform is a mathematical device similar to a generating function which provides

an alternate method for solving linear difference equations as well as certain summation equa-
tions. The Z-transform is important in the analysis and design of digital control systems.
Note that in [21] the Z-transform is applied to the following multiple delayed linear discrete
systems with permutable matrices:

x (k + 1) = x (k) +
m

∑
j=1

Bjx
(

k − mj

)

+ f (k) , k ≥ 0

x (k) = ϕ (k) , k ∈ Z
0
−m,

where B1, . . . , Bm are pairwise permutable matrices.
Motivated by [21] we apply the Z-transform to study the problem (1.1), (1.2) assuming

that the linear parts A, B in (1.1) are given by pairwise nonpermutable matrices. This does
not allow to change the order when multiplying matrices and problem becomes much more
difficult.

2 Delayed perturbation of discrete matrix exponential

The main tool in our study is the Z-transform defined as

Z { f (k)} (z) =
∞

∑
k=0

f (k)

zk

for z ∈ R and an exponentially bounded function f : Z
∞
0 → R

d such that ‖ f (k)‖ ≤ c1ck
2 for

all k ∈ Z
∞
0 and some constants c1, c2 ∈ R

+. Note that if f is exponentially bounded, then
Z { f (k)} (z) exists for all z sufficiently large. The Z-transform is considered component-
wisely. σ is the Heaviside step function defined as

σ (t) =

{

0, t < 0,

1, t ≥ 0.

The next lemma gathers up some features of the Z-transform.
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Lemma 2.1 ([10]). The following equalities are true for sufficiently large z ∈ R and exponentially

bounded functions f , g:

1. Z {a f (k) + bg (k)} = aZ { f (k)}+ bZ {g (k)} , a, b ∈ R;

2. Z−1
{

z−l
}

(k) = δ (l, k) for l ∈ Z
∞
0 , where δ is the Kronecker delta,

δ (l, k) =

{

1, k = l,

0, k 6= l.

3. Z−1 {F (z) G (z)} (k) = ( f ∗ g) (k). Here the convolution operator ∗ is given by

( f ∗ g) (k) =
k

∑
j=0

f (j) g (k − j) ;

The next lemma is a corollary of the latter one.

Lemma 2.2. The following identities are true for sufficiently large z ∈ R :

Z−1
{

(

(zI − A)−1 B
)j

(zI − A)−1
}

(k) = Q (k − 1; j) , (2.1)

Z−1
{

1
zmj+γ

(

(zI − A)−1 B
)j

(zI − A)−1
}

(k) = Q (k − mj − γ − 1; j) , (2.2)

where

Q (k; 0) = Akσ (k) , Q (k; j) =
k

∑
l=j

Ak−l BQ (l − 1; j − 1) σ (k − j) .

Proof. To prove the formula (2.1) we recall the following identity

(I − C)j
∞

∑
k=0

(

k + j − 1
j − 1

)

Ck = I, ‖C‖ < 1.

Using this formula, we have

(zI − A)−j =
1
zj

∞

∑
k=0

(

k + j − 1
j − 1

)

1
zk

Ak.

We use the mathematical induction. For j = 0, we have

Z−1
{

(zI − A)−1
}

= Z−1
{

1
z1

}

∗ Z−1

{

∞

∑
l=0

1
zl

Al

}

= (δ (1, ·) ∗ A·) (k) =
k

∑
l=0

δ (1, l) Ak−l = Ak−1σ (k − 1) = Q (k − 1; 0) . (2.3)

For j = 1, we have

Z−1
{

(zI − A)−1 B (zI − A)−1
}

(k) = Z−1
{

(zI − A)−1 B
}

∗ Z−1
{

(zI − A)−1
}

(k)

=
{

A·−1σ (· − 1) B ∗ Q (· − 1; 0)
}

(k) =
k

∑
j=0

Ak−j−1σ (k − j − 1) BAj−1σ (j − 1)

=
k−1

∑
j=1

Ak−j−1BAj−1σ (k − 2) =: Q (k − 1; 1) .
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For j = 2, we get

Z−1
{

(zI − A)−2 B2 (zI − A)−1
}

(k)

= Z−1
{

(zI − A)−1 B
}

∗ Z−1
{

(zI − A)−1 B (zI − A)−1
}

(k)

=
{

A·−1σ (· − 1) B ∗ Q (· − 1; 1) σ (· − 2)
}

(k)

=
k

∑
j=0

Ak−j−1σ (k − j − 1) BQ (j − 1; 1) σ (j − 2)

=
k−1

∑
j=2

Ak−j−1σ (k − j − 1) BQ (j − 1; 1) σ (j − 2)

=
k−1

∑
j=2

Ak−j−1BQ (j − 1; 1) σ (k − 3) =: Q (k − 1; 2) .

Now, suppose that it holds for j = n. Then convolution property yields

Z−1
{

(zI − A)−(n+1) Bn+1 (zI − A)−1
}

(k)

=
(

Z−1
{

(zI − A)−1 B
}

∗ Z−1
{

(zI − A)−n Bn (zI − A)−1
})

(k)

=
{

A·−1σ (· − 1) B ∗ Q (· − 1, n)
}

(k) =
k

∑
j=0

Ak−j−1σ (k − j − 1) BQ (j − 1; n) σ (j − n − 1)

=
k−1

∑
j=n+1

Ak−j−1σ (k − j − 1) BQ (j − 1; n) := Q (k − 1; n + 1) .

what was to be proved.
The identity (2.2) is obvious:

Z−1
{

1
zmj+γ

(

(zI − A)−1 B
)j

(zI − A)−1
}

(k)

= Z−1
{

1
zmj+γ

}

∗ Z−1
{

(

(zI − A)−1 B
)j

(zI − A)−1
}

= (δ (mj + γ, ·) Q (· − 1; j) σ (· − j − 1))

=
k

∑
s=0

δ (mj + γ, s) Q (k − s − 1; j) σ (k − s − j − 1)

= Q (k − mj − γ − 1; j) .

Lemma 2.3. Let m ≥ 1, A, B be a constant d × d matrices, ϕ : Z
0
−m → R

d be given function.

Assume that f : Z
∞
0 → R

d is exponentially bounded. Then the solution of Cauchy problem (1.1), (1.2)
is exponentially bounded.

For given matrices A, B and delay m, we define delayed perturbation of discrete matrix
exponential XA,B

m (k) by the following definition.

Definition 2.4. Let m ≥ 1, A, B be a constant d × d matrices. Delayed perturbation of discrete
matrix exponential is defined as

XA,B
m (k) =

⌊ k+m
m+1⌋

∑
j=0

Q (k + m − mj; j) : Z
∞
0 → R

d×d,
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where

Q (k; j) =















0, j ∈ Z
−1
−∞,

Akσ (k) , j = 0,

∑
k
l=j Ak−l BQ (l − 1; j − 1) σ (k − j) , j ∈ Z

∞
1 .

(2.4)

Remark 2.5. It should be stressed out that Q (k; j) was used in [17] to define delayed pertur-
bation of Mittag-Leffler functions. Using the definition (2.4) of Q (k; j) one may show that

j = 0 j = 1 j = 2 j = 3 · · · j = p,
Q (0, j) I Θ Θ

Q (1, j) A B Θ Θ · · · Θ,
Q (2, j) A2 AB + BA B2 Θ · · · Θ,
Q (3, j) A3 A (AB + BA) + BA2 AB2 + B (AB + BA) B3 · · · Θ,

· · ·

· · · · · · · · · · · · · · · Θ,
Q (p, j) Ap · · · · · · · · · · · · Bp.

From the above table, it is easily seen that, in the case of commutativity AB = BA, we have
Q (k; j) :=

(

k

j

)

Ak−jBjσ (k − j) , k, j ∈ Z
∞
0 .

3 Representation of a solution

Below using the Z-transform we prove the main result of the paper on the representation
of solution of the problem (1.1), (1.2) in terms of the delayed perturbation of discrete matrix
exponential.

Theorem 3.1. Let m ≥ 1, A, B be a constant d × d matrices, ϕ : Z
0
−m → R

d be given function.

Assume that f : Z
∞
0 → R

d is exponentially bounded. The solution x(k) of the Cauchy problem (1.1),
(1.2) has the following form

x (k) = XA,B
m (k − m) ϕ (0) +

−1

∑
i=−m

XA,B
m (k − 1 − 2m − i) Bϕ (i) +

k

∑
i=1

XA,B
m (k − m − i) f (i − 1) ,

for k ∈ Z
∞
−m.

Proof. We recall that existence of Z-transform of f (k) and x (k) is guaranteed by Lemma 2.3.
Thus we may apply the Z-transform to the equation (1.1) to get

∞

∑
k=0

x (k + 1)
zk

= A
∞

∑
k=0

x (k)

zk
+ B

∞

∑
k=0

x (k − m)

zk
+

∞

∑
k=0

f (k)

zk
,

z (X (z)− ϕ (0)) = AX (z) +
B

zm

(

X (z) +
−1

∑
k=−m

ϕ (k)

zk

)

+ F (z) ,

(

zI − A −
B

zm

)

X (z) = zϕ (0) +
B

zm

−1

∑
k=−m

ϕ (k)

zk
+ F (z)

X (z) = z

(

zI − A −
B

zm

)−1

ϕ (0) +
(

zI − A −
B

zm

)−1 −1

∑
k=−m

B
ϕ (k)

zk+m

+

(

zI − A −
B

zm

)−1

F (z) . (3.1)
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On the other hand, for sufficiently large z ∈ R so that
∥

∥ (zI − A)−1 B
zm

∥

∥ < 1

(

zI − A −
B

zm

)−1

=

(

I − (zI − A)−1 B

zm

)−1

(zI − A)−1

=
∞

∑
j=0

1
zmj

(

(zI − A)−1 B
)j

(zI − A)−1 . (3.2)

From (3.1) and (3.2) it follows that

X (z) =
∞

∑
j=0

z

zmj

(

(zI − A)−1 B
)j

(zI − A)−1 ϕ (0)

+
∞

∑
j=0

1
zmj

(

(zI − A)−1 B
)j

(zI − A)−1
−1

∑
k=−m

B
ϕ (k)

zk+m

+
∞

∑
j=0

1
zmj

(

(zI − A)−1 B
)j

(zI − A)−1 F (z) ,

for sufficiently large z. Taking the inverse Z-transform, we have

x (k) = A0 (k) +
−1

∑
i=−m

Ai (k) + A f (k) ,

where

A0 (k) = Z−1

{

∞

∑
j=0

1
zmj

(

(zI − A)−1 B
)j 1

z−1 (zI − A)−1 ϕ (0)

}

(k) ,

Ai (k) = Z−1

{

∞

∑
j=0

1
zmj

(

(zI − A)−1 B
)j 1

zi+m
(zI − A)−1 Bϕ (i)

}

(k) , i ∈ Z
−1
−m,

A f (k) = Z−1

{

∞

∑
j=0

1
zmj

(

(zI − A)−1 B
)j

(zI − A)−1 F (z)

}

(k) .

By Lemma 2.2, we have

x (k) =
⌊ k

m+1⌋

∑
j=0

Q (k − jm; j) ϕ (0) +
−1

∑
i=−m

⌊ k−i
m+1+1⌋

∑
j=0

Q (k − jm − i − m − 1; j) Bϕ (i)

+
k

∑
l=1

⌊ k−l
m+1⌋

∑
j=0

Q (k − l − jm; j) f (l − 1) .

Lemma 3.2. Matrix Q (k; j) has the following properties

(i) Q (k + 1; j) = AQ (k; j) + BQ (k; j − 1) , k, j ∈ Z
∞
0 .

(ii) If AB = BA, then we have

Q (k; j) :=
(

k

j

)

Ak−jBjσ (k − j) , k, j ∈ Z
∞
0 .
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Proof. (i) follows directly from the definition (2.4) of Q (k; j). To show (ii) we use the definition
of Q (k; j) :

Q (k, 0) = Akσ (k) , Q (k; j) =
k

∑
l=j

Ak−l BQ (l − 1; j − 1) σ (k − j) , j ≥ 1.

For j = 0, 1, we have

Q (k, 0) = Akσ (k) , Q (k, 1) =
k

∑
l=1

Ak−l BAl−1 = kAk−1B =

(

k

1

)

Ak−1B.

Assume that it is true for j = n, and let us prove it for j = n + 1 :

Q (k; n + 1) =
k

∑
l=n+1

Ak−l BQ (l − 1; n) σ (k − n − 1)

=
k

∑
l=n+1

Ak−l B

(

l − 1
n

)

Al−1−nBnσ (k − n − 1) σ (l − n − 1)

= Ak−n−1Bn+1
k

∑
l=n+1

(

l − 1
n

)

σ (k − n − 1)

=

(

k

n + 1

)

Ak−n−1Bn+1σ (k − n − 1) .

Lemma 3.3. We have the following special cases:

(i) If A = I, then XA,B
m (k) = eBk

m ;

(ii) If B = Θ, then XA,Θ
m (k) = Ak+m.

Proof. It follows

Q (k − jm; j) =

(

k − jm

j

)

Ak−jm−jBj

(i) It follows that

X I,B
m (k) =

⌊ k+m
m+1⌋

∑
j=0

Q (k + m − mj; j) =
⌊ k+m

m+1⌋

∑
j=0

(

k + m − jm

j

)

Bj = eBk
m .

(ii) B = Θ :

XA,Θ
m (k) =

⌊ k+m
m+1⌋

∑
j=0

Q (k + m − mj; j) =
⌊ k+m

m+1⌋

∑
j=0

(

k + m − jm

j

)

Ak+m−jm−jBj = Ak+m.

Lemma 3.4 ([21]). Let l ∈ Z
∞
0 . k ∈ Z

l(m+1)
(l−1)(m+1)+1 if and only if

l =

⌊

k − 1
m + 1

⌋

+ 1 =

⌊

k + m

m + 1

⌋

.
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Proof. Indeed, for this l,

(l − 1) (m + 1) + 1 =

⌊

k − 1
m + 1

⌋

(m + 1) + 1 ≤ k

and

l (m + 1) =
⌊

k + m

m + 1

⌋

(m + 1) =
⌈

k

m + 1

⌉

(m + 1) ≥ k.

On the other hand, if k ∈ Z
l(m+1)
(l−1)(m+1)+1 for some l ∈ Z

∞
0 , then l ≤ k+m

m+1 and k
m+1 ≤ l. Hence,

l ≤
⌊

k+m
m+1

⌋

and
⌈

k
m+1

⌉

≤ l, i.e. l =
⌊

k+m
m+1

⌋

.

Using this lemma, one can easily show that

XA,B
m (k) =















Θ, k ∈ Z
−m−1
−∞ ,

Ak+m +
l

∑
j=1

Q (k + m − mj; j) , k ∈ Z
l(m+1)
(l−1)(m+1)+1, l ∈ Z

∞
0 .

Lemma 3.5. XA,B
m (k) is a solution of

XA,B
m (k + 1) = AXA,B

m (k) + BXA,B
m (k − m) ,

XA,B
m (k) = Ak+m, k ∈ Z

0
−m, XA,B

m (k) = Θ, k ∈ Z
−m−1
−∞ .

Proof. By Lemma 3.2, we have

XA,B
m (k + 1) =

⌊ k+1+m
m+1 ⌋

∑
j=0

Q (k + 1 + m − mj; j)

=
⌊ k+m

m+1⌋

∑
j=0

AQ (k + m − mj; j) +
⌊ k+1+m

m+1 ⌋

∑
j=1

BQ (k + m − mj; j − 1)

= AXA,B
m (k) + B

⌊ k+m
m+1⌋

∑
j=0

Q (k − mj; j)

= AXA,B
m (k) + BXA,B

m (k − m) .

It should be stressed out that the assumption on the exponential boundedness of the func-
tion f can be omitted.

Theorem 3.6. The solution of initial value problem (1.1), (1.2) can be written in the following form

x (k) = XA,B
m (k − m) ϕ (0) +

−1

∑
i=−m

XA,B
m (k − 1 − 2m − i) Bϕ (i)

+
k

∑
i=1

XA,B
m (k − m − i) f (i − 1) , k ∈ Z

∞
0 . (3.3)

Proof. If k ∈ Z
m−1
0 , then k − m ∈ Z

1
−m and

XA,B
m (k − 1 − 2m − i) =

{

Θ, i ∈ Z
−1
k−m, (k − 1 − 2m − i ≤ −m − 1)

Ak, i ∈ Z
k−m−1
−m (−m ≤ k − 1 − 2m − i ≤ 0) .
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Thus (3.3) gives

x (k) = Ak ϕ (0) +
k−m−1

∑
i=−m

Ak−1−m−iBϕ (i) +
k

∑
i=1

Ak−i f (i − 1)

and

x (k + 1) = Ak+1 ϕ (0) +
k−m

∑
i=−m

Ak−m−iBϕ (i) +
k+1

∑
i=1

Ak+1−i f (i − 1)

= A

(

Ak ϕ (0) +
k−m−1

∑
i=−m

Ak−1−m−iBϕ (i) +
k

∑
i=1

Ak−i f (i − 1)

)

+ Bϕ (k − m) + f (k)

= Ax (k) + Bϕ (k − m) + f (k) .

For k ∈ Z
∞
m :

x (k + 1) = XA,B
m (k + 1 − m) ϕ (0) +

−1

∑
i=−m

XA,B
m (k − 2m − i) Bϕ (i)

+
k+1

∑
i=1

XA,B
m (k + 1 − m − i) f (i − 1)

= AXA,B
m (k − m) ϕ (0) + BXA,B

m (k − 2m) ϕ (0)

+ A
−1

∑
i=−m

XA,B
m (k − 1 − 2m − i) Bϕ (i) + B

−1

∑
i=−m

XA,B
m (k − 1 − 3m − i) Bϕ (i)

+ A
k

∑
i=1

XA,B
m (k − m − i) f (i − 1) + B

k

∑
i=1

XA,B
m (k − 2m − i) f (i − 1)

+ XA,B
m (−m) f (k)

= Ax (k) + Bx (k − m) + f (k) .

For k ∈ Z
−1
−m :

x (k) = XA,B
m (k − m) ϕ (0) +

−1

∑
i=−m

XA,B
m (k − 1 − 2m − i) Bϕ (i)

+
k

∑
i=1

XA,B
m (k − m − i) f (i − 1) .

4 Conclusion

The paper solves a problem of representation of solution for discrete linear delay system
using the delayed perturbation of discrete matrix exponential. In [2,3] discrete delayed matrix
exponential is suggested to express solutions of delayed equations with first-order differences:
x (k + 1) = Ax (k) + Bx (k − m) + f (k). These results are obtained under the commutativity
of A and B, and under the condition det A 6= 0. Commutativity condition was omitted in [15].
In this paper we drop the condition of existence of a matrix A−1. The result has been obtained
by defining the new delayed perturbation of discrete matrix exponential and employing the
Z-transform.
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One possible direction in which to generalise the results of this paper is by looking at
higher-order linear delay difference equations. It would be interesting to see how the theorems
proved above can be extended to these cases. Another direction in which we would like to
extend is to consider the classical, fractional and discrete linear systems containing multiple
delays.

Acknowledgement

The author would like to thank the editor and the reviewers for their valuable suggestions
and useful comments that have improved the original manuscript.

References

[1] J. Diblík, Relative and trajectory controllability of linear discrete systems with constant
coefficients and a single delay, IEEE Trans. Automat. Control 64(2019), 2158–2165. https:
//doi.org/10.1109/TAC.2018.2866453; MR3951061; Zbl 07082446

[2] J. Diblík, D. Ya. Khusainov, Representation of solutions of linear discrete systems with
constant coefficients and pure delay, Adv. Difference Equ. 2006, Art. ID 80825, 13 pp. https:
//doi.org/10.1155/ade/2006/80825; MR2238982; Zbl 1139.39027

[3] J. Diblík, D. Ya. Khusainov, Representation of solutions of discrete delayed system
x(k + 1) = Ax(k) + Bx(k − m) + f (k) with commutative matrices, J. Math. Anal. Appl.

318(2006), No. 1, 63–76. https://doi.org/10.1016/j.jmaa.2005.05.021; MR2210872;
Zbl 1094.39002

[4] J. Diblík, K. Mencáková, Solving a higher-order linear discrete equation, in: Proceedings,

16th Conference on Applied Mathematics Aplimat 2017, Bratislava, 2017, pp. 445–453.

[5] J. Diblík, K. Mencáková, Solving a higher-order linear discrete systems, Mathematics,

Information Technologies and Applied Sciences 2017. Post-conference proceedings of extended

versions of selected papers, University of Defence, Brno, 2017, pp. 77–91; available online at
http://mitav.unob.cz/data/MITAV2017Proceedings.pdf.

[6] J. Diblík, K. Mencáková, Representation of solutions to delayed linear discrete
systems with constant coefficients and with second-order differences, Appl. Math.

Lett. 105(2020), No. 106309, 7 pp. https://doi.org/10.1016/j.aml.2020.106309;
MR4074107; Zbl 1436.39003

[7] J. Diblík, K. Mencáková, A note on relative controllability of higher-order linear delayed
discrete systems, IEEE Trans. Automat. Control, published online. https://doi.org/10.
1109/TAC.2020.2976298

[8] J. Diblík, B. Morávková, Discrete matrix delayed exponential for two delays and
its property, Adv. Difference Equ. 2013, 2013:139, 18 pp. https://doi.org/10.1186/

1687-1847-2013-139; MR3068650; Zbl 1390.39003

[9] J. Diblík, B. Morávková, Representation of the solutions of linear discrete systems with
constant coefficients and two delays, Abstr. Appl. Anal. 2014, Art. ID 320476, 19 pp. https:
//doi.org/10.1155/2014/320476; MR3198178; Zbl 07022165



Delayed linear difference equations 11

[10] U. Graf, Applied Laplace transforms and z-transforms for scientists and engineers. A computa-

tional approach using a Mathematica package, Birkhäuser, Basel, 2004. https://doi.org/10.
1007/978-3-0348-7846-3; MR2062351; Zbl 1063.65142
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Abstract. We address the existence of periodic orbits for periodic eco-epidemiological
system with disease in the prey for two distinct families of models. For the first one,
we use Mawhin’s continuation theorem in a wide general system that includes some
models discussed in the literature, and for the second family we obtain a sharp result
using a recent strategy that relies on the uniqueness of periodic orbits in the disease-free
space.
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1 Introduction

Eco-epidemiological models are ecological models that include infected compartments. In
many situations, these models describe more accurately the real ecological system than models
where the disease is not taken into account.

There is already a large number of works concerning eco-epidemiological models. To
mention just a few recent works, we refer [4] where a mathematical study on disease per-
sistence and extinction is carried out; [2] where the authors study the global stability of a
delayed eco-epidemiological model with Holling-type III functional response, and [11] where
an eco-epidemiological model with harvesting is considered.

One of the main concerns when studying eco-epidemiological models is to determine
conditions under which one can predict if the disease persists or dies out. In mathematical
epidemiology, these conditions are usually given in terms of the so called basic reproduc-
tion number R0, defined in [5] for autonomous systems as the spectral radius of the next
generation matrix.

In [3], R0 was introduced for the periodic models, and later on, in [16], the definition of
R0 was adapted to the study of periodic patchy models. In the recent article [6] the theory
in [16] was used in the study of persistence of the predator in general periodic predator-prey
models.
BCorresponding author. Email: helder@ubi.pt
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When persistence is guaranteed, the obtention of conditions that assure the existence of
periodic orbits for periodic eco-epidemiological models is an important issue in the deepening
of the description of these models since these orbits correspond to situations where possibly
there is some equilibrium in the described ecological system, reflected in the fact that the
behaviour of the theoretical model is the same over the years. In [13] it was proved that there
is an endemic periodic orbit for the periodic version of the model considered in [18] when
the infected prey is permanent and some additional conditions are fulfilled, partially giving a
positive answer to a conjecture in this last paper.

The models in [18] and [13] assume that there is no predation on uninfected preys. In
spite of that, this assumption is not suitable for the description of many eco-epidemiological
models. The main purpose of this paper is to present some results on the existence of an
endemic periodic orbit for periodic eco-epidemiological systems with disease in the prey that
generalize the systems in [18] and [13] by including in the model a general function corre-
sponding to the predation of uninfected preys. Two slightly distinct families of models will
be considered separately, one of them in section 2 and the other is section 4. The proof of the
main result in section 2 relies on Mawhin’s continuation theorem. Following the approach
in [13], we begin by locating the components of possible periodic orbits for the one parame-
ter family of systems that arise in Mawhin’s result, allowing us to check that the conditions
of that theorem are fulfilled. Although the main steps in our proof correspond to the ones
in [13], several additional nontrivial arguments are needed in our case. Additionally, there is
also a substantial difference between our approach and the one in [13, 18]. In fact, we take
as a departure point some prescribed behaviour of the uninfected subsystem, corresponding
to the dynamics of preys and predators in the absence of disease: we will assume in this
work that we have global asymptotic stability of solutions of some special perturbations of
the bidimensional predator-prey system (the system obtained by letting I = 0 in the first and
third equations in (1.1)). Thus, when applying our results to particular situations, one must
verify that the underlying uninfected subsystem satisfies our assumptions. On the other hand,
our approach allows us to construct an eco-epidemiological model from a previously studied
predator-prey model (the uninfected subsystem) that satisfies our assumptions. This approach
has the advantage of highlighting the link between the dynamics of the eco-epidemiological
model and the dynamics of the predator-prey model used in its construction. For the family
of systems in section 4, we were able to obtain a sharp result using a recent strategy available
in the literature instead of Mawhin’s continuation theorem.

Considering what was said, as a generalization of the model studied in [13], a periodic
version of the general non-autonomous model introduced in [18], we consider the following
periodic eco-epidemiological model:





S′ = Λ(t)− µ(t)S − a(t) f (S, I, P)P − β(t)SI,

I′ = β(t)SI − η(t)g(S, I, P)I − c(t)I,

P′ = h(t, P) + γ(t)a(t) f (S, I, P)P + θ(t)η(t)g(S, I, P)I,

(1.1)

where S, I and P correspond, respectively, to the susceptible prey, infected prey and predator.
In our model h(t, P) correspond to the vital dynamics of predators in the absence of this prey.

In this work we consider two different scenarios: in the first one we will take

h(t, P) = (r(t)− b(t)P)P. (1.2)

When r(t) > 0 for all t, we obtain a model with linear vital dynamics of susceptible prey
in the absence of predators and disease and with logistic vital dynamics of predators in the



Periodic orbits for periodic eco-epidemiological systems with infected prey 3

absence of the considered prey. This model generalizes [18]. When r(t) < 0 for all t, we
obtain a model with a classical vital dynamics of the predators as in the family of Lotka–
Volterra models considered in [6]. In the second scenario we consider a linear vital dynamics
for predators by taking

h(t, P) = Υ(t)− ζ(t)P. (1.3)

This model has no periodic solutions on the axis, allowing us to use a different set of ar-
guments to establish the existence of an endemic periodic orbit. Note that, when h is given
by (1.2), there is space in our model for the possibility that predators survive in the absence of
this prey. In fact, when r(t) is nonnegative, predator have a logistic behaviour. A possible bio-
logical interpretation is that predators in this ecosystem possess different sources of food and,
in the absence of the prey in this model, the behaviour of the predator population is logistic.
When r(t) is nonpositive we obtain a usual behaviour for predators in the absence of preys.
When h is given by (1.3) predators always survive in the absence of the prey considered in the
model and we also interpret this fact as in the corresponding situation for the first scenario.

In the first scenario, for technical reasons, we have to make the restriction g(S, I, P) =

P, while in the second scenario we let g be a general function that satisfies some natural
assumptions.

In the first situation, r(t) and b(t) are parameters related to the vital dynamics of the
predator population that include the intra-specific competition between predators. This vital
dynamics is assumed to follow a logistic law when r(t) > 0 for all t > 0 and that is similar to
the vital dynamics of predator in a family of Lotka–Volterra models considered in [6] when
r(t) < 0 for all t > 0. In both scenarios Λ(t) is the recruitment rate of the prey population,
µ(t) is the natural death rate of the prey population, a(t) is the predation rate of susceptible
prey, β(t) is the incidence rate, η(t) is the predation rate of infected prey, c(t) is the death rate
in the infective class (c(t) > µ(t)), γ(t) is the rate of converting susceptible prey into predator
(biomass transfer), θ(t) is the rate of converting infected prey into predator. It is assumed that
only susceptible preys S are capable of reproducing, i.e, the infected prey is removed by death
(including natural and disease-related death) or by predation before having the possibility of
reproducing.

2 Eco-epidemiological models with classical or logistic vital dynam-

ics for predators

In this section we let g(S, I, P) = P and h(t, P) = (r(t) − b(t)P)P, obtaining a model that
generalizes the model in [13] by considering a function that corresponds to the predation of
uninfected preys:





S′ = Λ(t)− µ(t)S − a(t) f (S, I, P)P − β(t)SI,

I′ = β(t)SI − η(t)PI − c(t)I,

P′ = (r(t)− b(t)P)P + γ(t)a(t) f (S, I, P)P + θ(t)η(t)PI.

(2.1)

Given an ω-periodic function f , we will use throughout the paper the notations f ℓ =

inft∈(0,ω] f (t), f u = supt∈(0,ω] f (t) and f̄ = 1
ω

∫ ω
0 f (s) ds. We will assume the following struc-

tural hypothesis concerning the parameter functions and the function f appearing in our
model:
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S1) The real valued functions Λ, µ, a, β, η, c, γ, θ and b are periodic with period ω, nonnega-
tive and continuous; the real valued function r is periodic with period ω and continuous
and can be nonnegative or nonpositive;

S2) Function f is nonnegative and C1;

S3) Function x 7→ f (x, y, z) is nondecreasing;

S4) Functions z 7→ f (x, y, z) and y 7→ f (x, y, z) are nonincreasing;

S5) For all (x, y, z) we have

f (x, y, z) + z
∂ f

∂z
(x, y, z) > 0, η + a

∂ f

∂y
(x, y, z) > 0 and θη + γa

∂ f

∂y
(x, y, z) > 0;

S6) Λ̄ > 0, µ̄ > 0 and b̄ > 0;

S7) There is α > 1 and K > 0 such that f (x, 0, 0) 6 Kxα.

Note that our functional response must depend on I to be able to include functional response
functions with saturation, that must depend on the total population of preys (see [1, 14]).
Our setting includes several of the most common functional responses for the functional re-
sponse function f , including, among others, f (S, I, P) = kS (Holling-type I), f (S, I, P) =

kS/(1 + m(S + I)) (Holling-type II), f (S, I, P) = kSα/(1 + m(S + I)α) (Holling-type III),
f (S, I, P) = kS/(a+ b(S+ I)+ c(S+ I)2) (Holling-type IV), f (S, I, P) = kS/(a+ b(S+ I)+ cP)

(Beddington–De Angelis), f (S, I, P) = kS/(a + b(S + I) + cP + d(S + I)P) (Crowley–Martin).
Also note that conditions S3), S4) are natural from a biological perspective and naturally are
satisfied by the usual functional responses considered in the literature. Conditions S5) and S7)
are satisfied by most of the usual functional response functions.

To formulate our next assumptions we need to consider two auxiliary equations and one
auxiliary system. First, for each λ ∈ (0, 1], we need to consider the following equations:

x′ = λ(Λ(t)− µ(t)x) (2.2)

and
z′ = λ(r(t)− b(t)z)z. (2.3)

Note that, if we identify x with the susceptible prey population, equation (2.2) gives the be-
haviour of the susceptible preys in the absence of infected preys and predator and identifying
z with the predator population, equation (2.3) gives the behaviour of the predator in the ab-
sence of preys.

Equation (2.2) is a linear equation that was considered in countless papers on epidemi-
ological models and equation (2.3) was already studied in [8]. These equations have a well
known behaviour, given in the following lemmas:

Lemma 2.1. For each λ ∈ (0, 1] there is a unique ω-periodic solution of equation (2.2), x∗λ(t), that is

globally asymptotically stable in R+.

Lemma 2.2. If the function r is nonnegative, for each λ ∈ (0, 1] there is a unique ω-periodic solution

of equation (2.3), z∗λ(t), that is globally asymptotically stable in R+. If the function r is nonposi-

tive for each λ ∈ (0, 1] the zero solution of equation (2.3), that we still denote by z∗λ(t), is globally

asymptotically stable in R+
0 .
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For each λ ∈ (0, 1], we also need to consider the next family of systems, which corresponds
to behaviour of the preys and predators in the absence of infected preys (system (1.1) with
I = 0, S = x and P = z):

{
x′ = λ(Λ(t)− µ(t)x − a(t) f (x, ε3, z)z − ε1x),

z′ = λ(γ(t)a(t) f (x, ε4, z) + r(t)− b(t)z + ε2)z.
(2.4)

We now make our last structural assumption on system (1.1):

S9) For each λ ∈ (0, 1] and each ε1, ε2, ε3, ε4 > 0 sufficiently small, system (2.4) has a unique
ω-periodic solution, (x∗λ,ε1,ε2,ε3,ε4

(t), z∗λ,ε1,ε2,ε3,ε4
(t)), with

x∗λ,ε1,ε2,ε3,ε4
(t) > 0 and z∗λ,ε1,ε2,ε3,ε4

(t) > 0,

that is globally asymptotically stable in the set

{(x, z) ∈ (R+
0 )

2 : x > 0 ∧ z > 0}.

We assume that (ε1, ε2, ε3, ε4) 7→ (x∗λ,ε1,ε2,ε3,ε4
(t), z∗λ,ε1,ε2,ε3,ε4

(t)) is continuous.

Denoting x∗λ = x∗λ,0,0,0,0 and z∗λ = z∗λ,0,0,0,0, we introduce the numbers

R0 =
β̄Λ̄/µ̄

c̄ + η̄r̄/b̄
, Rλ

0 =
βx∗λ

c + ηz∗λ
and R̃0 = inf

λ∈(0,1]
Rλ

0 (2.5)

Before presenting our main result we have to consider the averaged system corresponding
to (2.1): 




S′ = Λ − µS − a f (S, I, P)P − βSI,

I′ = βSI − ηPI − cI,

P′ = (r − bP)P + γa f (S, I, P)P + θηPI.

(2.6)

The number R0 is the basic reproductive number of (2.6) when f ≡ 0 (see [13, 18]). We now
present our main result.

Theorem 2.3. If R̃0 > 1, conditions S1) to S9) hold and there is a unique equilibrium of the averaged

system (2.6) in (R+)3, the interior of the first octant, then system (1.1) possesses an endemic periodic

orbit of period ω.

Our proof relies on an application of Mawhin’s continuation theorem. We will proceed in
several steps. Firstly, in subsection 2.1, we consider a one parameter family of systems and
obtain uniform bounds for the components of any periodic solution of these systems. Next,
in subsection 2.2 we make a suitable change of variables in our family of systems to establish
the setting where we will apply Mawhin’s continuation Theorem. Finally, in subsection 2.3,
we use Mawhin’s continuation Theorem to obtain our result.

2.1 Uniform persistence for the periodic orbits of a one parameter family of sys-
tems.

In this section, to obtain uniform bounds for the components of any periodic solution of the
family of systems that we can obtain multiplying the right hand side of (1.1) by λ ∈ (0, 1], we
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need to consider the auxiliary system





S′
λ = λ(Λ(t)− µ(t)Sλ − a(t) f (Sλ, Iλ, Pλ)Pλ − β(t)Sλ Iλ),

I′λ = λ(β(t)Sλ Iλ − η(t)Pλ Iλ − c(t)Iλ),

P′
λ = λ(γ(t)a(t) f (Sλ, Iλ, Pλ)Pλ + θ(t)η(t)Pλ Iλ + r(t)Pλ − b(t)P2

λ).

(2.7)

We will consider separately each of the several components of any periodic orbit.

Lemma 2.4. Let x∗λ(t) be the unique solution of (2.2). There is L1 > 0 such that, for any λ ∈ (0, 1]
and any periodic solution (Sλ(t), Iλ(t), Pλ(t)) of (2.7) with initial conditions Sλ(t0) = S0 > 0,

Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0, we have Sλ(t) + Iλ(t) 6 x∗λ(t) 6 Λu/µℓ and Sλ > L1, for all

t ∈ R.

Proof. Let (Sλ(t), Iλ(t), Pλ(t)) be some periodic solution of (2.7) with initial conditions
Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0. Since c(t) > µ(t), we have, by
the first and second equations of (2.7),

(Sλ + Iλ)
′
6 λΛ(t)− λµ(t)Sλ − λc(t)Iλ 6 λΛ(t)− λµ(t)(Sλ + Iλ).

Since, by Lemma 2.1, equation (2.2) has a unique periodic orbit, x∗λ(t), that is globally asymp-
totically stable, we conclude that Sλ(t) + Iλ(t) 6 x∗λ(t) for all t ∈ R. Comparing equation (2.2)
with equation x′ = λΛu − λµℓx, we conclude that x∗λ(t) 6 Λu/µℓ.

Using conditions S3) and S4), by the third equation of (2.7), we have

P′
λ 6 λ(r(t) + γ(t)a(t) f (x∗λ(t), 0, 0) + θ(t)η(t)x∗λ(t)− b(t)Pλ)Pλ 6 (Θu − bℓPλ)Pλ,

where function Θ is given by

Θ(t) = max
t∈[0,ω]

{r(t), 0}+ γ(t)a(t) f (x∗λ(t), 0, 0) + θ(t)η(t)x∗λ(t).

Thus, comparing with equation (2.3) and using Lemma 2.2, we get Pλ(t) 6 P∗
λ(t) 6 Θu/bℓ.

Using the bound obtained above, since −β(t)Sλ(t) > −β(t)x∗λ(t), we have, by conditions S3),
S4) and S7),

S′
λ = λΛ(t)− λµ(t)Sλ − λa(t) f (Sλ, Iλ, Pλ)Pλ − λβ(t)Sλ Iλ

> λΛ
ℓ −

(
λµu + λau f (Sλ, 0, 0)

Sλ

Θu

bℓ
+ λβu(x∗λ)

u

)
Sλ

> λΛ
ℓ −

(
λµu + λauK((x∗λ)

u)α−1
Θ

u/bℓ + λβu(x∗λ)
u
)

Sλ.

According to computations above we have x∗λ(t) 6 Λu/µℓ and thus

Sλ(t) >
λΛℓ

λµu + λauK(Λu/µℓ)α−1Θu/bℓ + λβuΛu/µℓ
=: L1.

Lemma 2.5. Let z∗λ(t) be the unique solution of (2.3). There is L2 > 0 such that, for any λ ∈ (0, 1]
and any periodic solution (Sλ(t), Iλ(t), Pλ(t)) of (2.7) with initial conditions Sλ(t0) = S0 > 0,

Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0, we have z∗λ(t) 6 Pλ(t) 6 L2, for all t ∈ R.
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Proof. Let λ ∈ (0, 1] and (Sλ(t), Iλ(t), Pλ(t)) be any periodic solution of (2.7) with initial con-
ditions Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0. We have

P′
λ = λPλ(γ(t)a(t) f (Sλ, Iλ, Pλ) + θ(t)η(t)Iλ + r(t)− b(t)Pλ) > (λr(t)− λb(t)Pλ)Pλ.

Comparing the previous inequality with equation (2.3) and using Lemma 2.2, we get Pλ(t) >

z∗λ(t). Using the computations in proof of the previous lemma, we have Pλ(t) 6 L1 and we
take L2 = L1.

Lemma 2.6. Let R̃0 > 1. There are L3, L4 > 0 such that, for any λ ∈ (0, 1] and any periodic

solution (Sλ(t), Iλ(t), Pλ(t)) of (2.7) with initial conditions Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and

Pλ(t0) = P0 > 0, we have L3 6 Iλ(t) 6 L4, for all t ∈ R.

Proof. We will first prove that there is ε1 > 0 such that, for any λ ∈ (0, 1], we have

lim sup
t→+∞

Iλ(t) > ε1. (2.8)

By contradiction, assume that (2.8) does not hold. Then, for any ε > 0, there must be λ > 0
such that Iλ(t) < ε for all t ∈ R. We have

{
S′

λ 6 λΛ(t)− λµ(t)Sλ − λa(t) f (Sλ, ε, Pλ)Pλ,

P′
λ 6 λ(γ(t)a(t) f (Sλ, 0, Pλ) + r(t)− b(t)Pλ + λεθuηu)Pλ

and {
S′

λ > λΛ(t)− λµ(t)Sλ − λa(t) f (Sλ, 0, Pλ)Pλ − ελβuSλ,

P′
λ > λ(γ(t)a(t) f (Sλ, ε, Pλ) + r(t)− b(t)Pλ)Pλ.

By condition S9), we conclude that

x∗λ,ελβu,0,0,ε(t) 6 Sλ(t) 6 x∗λ,0,ελθuηu,ε,0(t)

and
z∗λ,ελβu,0,0,ε(t) 6 Pλ(t) 6 z∗λ,0,ελθuηu,ε,0(t).

Thus, using condition S9), we have

I′λ = λ(β(t)Sλ − η(t)Pλ − c(t))Iλ

> (λβ(t)x∗λ,ελβu,0,0,ε(t)− λη(t)z∗λ,0,ελθuηu,ε,0(t)− λc(t))Iλ

> (λβ(t)x∗λ(t)− λη(t)z∗λ(t)− λc(t)− ϕ(ε))Iλ,

(2.9)

where ϕ is a nonnegative function such that ϕ(ε) → 0 as ε → 0 (notice that, by continuity,
we can assume that ϕ is independent of λ and, by periodicity of the parameter functions, it is
independent of t).

Integrating in [0, ω] and using (S9)), we get

0 =
1
ω

(ln Iλ(ω)− ln Iλ(0)) =
1
ω

∫ ω

0
I′λ(s)/Iλ(s) ds

> λ
(

βx∗λ − c̄ − ηz∗λ
)
+ ϕ(ε) = λ(c̄ + ηz∗λ)(R

λ
0 − 1) + ϕ(ε)

and since
Rλ

0 > inf
ℓ∈(0,1]

Rℓ
0 = R̃0 > 1,
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we have a contradiction. We conclude that (2.8) holds. Next we will prove that there is ε2 > 0
such that, for any λ ∈ (0, 1], we have

lim inf
t→+∞

Iλ(t) > ε2. (2.10)

Assuming by contradiction that (2.10) does not hold, we conclude that there is a sequence
(λn, Iλn

(sn), Iλn
(tn)) ⊂ (0, 1]×R+

0 ×R+
0 such that sn < tn, tn − sn 6 ω,

Iλn
(sn) = 1/n, Iλn

(tn) = ε2/2 and Iλn
(t) ∈ (1/n, ε2/2), for all t ∈ (sn, tn).

Since λn 6 1, by Lemma 2.4 we have

I′λn
= (λnβ(t)Sλn

− λnη(t)Pλn
− λnc(t))Iλn

6 βu
Λ

u Iλn
/µℓ

and thus

ln(ε2n/2) = ln(Iλn
(tn)/Iλn

(sn)) =
∫ tn

sn

I′λn
(s)/Iλn

(s) ds 6 βu
Λ

uω/µℓ,

which is a contradiction since the sequence (ln(ε2n/2))n∈N goes to +∞ as n → +∞, and thus
is not bounded.

We conclude that there is ε2 > 0 such that (2.10) holds. Letting L3 = ε2, we obtain
Iλ(t) > L3 for all λ ∈ (0, 1].

Since Iλ(t) 6 Sλ(t)+ Iλ(t), by Lemma 2.4, we can take L4 = L2 and the result is established.

2.2 Setting where Mawhin’s continuation theorem will be applied.

To apply Mawhin’s continuation theorem to our model we make the change of variables:
S(t) = eu1(t), I(t) = eu2(t) and P(t) = eu3(t). With this change of variables, system (1.1)
becomes 




u′
1 = Λ(t)e−u1 − a(t) f (eu1 , eu2 , eu3)eu3−u1 − β(t)eu2 − µ(t),

u′
2 = β(t)eu1 − η(t)eu3 − c(t),

u′
3 = γ(t)a(t) f (eu1 , eu2 , eu3) + θ(t)η(t)eu2 − b(t)eu3 + r(t).

(2.11)

Note that, if (u∗
1(t), u∗

2(t), u∗
3(t)) is an ω-periodic solution of (2.11) then (eu1(t), eu2(t), eu3(t)) is

an ω-periodic solution of system (1.1).
To define the operators in Mawhin’s theorem (see appendix A), we need to consider the

Banach spaces (X, ‖ · ‖) and (Z, ‖ · ‖) where X and Z are the space of ω-periodic continuous
functions u : R→ R

3:

X = Z = {u = (u1, u2, u3) ∈ C(R, R
3) : u(t) = u(t + ω)}

and
‖u‖ = max

t∈[0,ω]
|u1(t)|+ max

t∈[0,ω]
|u2(t)|+ max

t∈[0,ω]
|u3(t)|.

Next, we consider the linear map L : X ∩ C1(R, R
3) → Z given by

Lu(t) =
du(t)

dt
(2.12)
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and the map N : X → Z defined by

N u(t) =




Λ(t)e−u1(t) − a(t) f (eu1 , eu2 , eu3)eu3(t)−u1(t) − β(t)eu2(t) − µ(t)

β(t)eu1(t) − η(t)eu3(t) − c(t)

γ(t)a(t) f (eu1 , eu2 , eu3) + θ(t)η(t)eu2(t) − b(t)eu3(t) + r(t)


 . (2.13)

In the following lemma we show that the linear map in (2.12) is a Fredholm mapping of
index zero

Lemma 2.7. The linear map L in (2.12) is a Fredholm mapping of index zero.

Proof. We have

kerL =

{
(u1, u2, u3) ∈ X ∩ C1(R, R

3) :
dui(t)

dt
= 0, i = 1, 2, 3

}

=
{
(u1, u2, u3) ∈ X ∩ C1(R, R

3) : ui is constant, i = 1, 2, 3
}

and thus kerL can be identified with R3. Therefore dim kerL = 3. On the other hand

ImL =

{
(z1, z2, z3) ∈ Z : ∃ u ∈ X ∩ C1(R, R

3) :
dui(t)

dt
= zi(t), i = 1, 2, 3

}

=

{
(z1, z2, z3) ∈ Z :

∫ ω

0
zi(s) ds = 0, i = 1, 2, 3

}
.

and any z ∈ Z can be written as z = z̃ + α, where α = (α1, α2, α3) ∈ R3 and z̃ ∈ ImL. Thus the
complementary space of ImL consists of the constant functions. Thus, the complementary
space has dimension 3 and therefore codim ImL = 3.

Given any sequence (zn) in ImL such that

zn = ((z1)n, (z2)n, (z3)n) → z = (z1, z2, z3),

we have, for i = 1, 2, 3 (note that z ∈ Z since Z is a Banach space and thus it is integrable in
[0, ω] since it is continuous in that interval),

∫ ω

0
zi(s) ds =

∫ ω

0
lim

n→+∞
(zi)n(s) ds = lim

n→+∞

∫ ω

0
(zi)n(s) ds = 0.

Thus, z ∈ ImL and we conclude that ImL is closed in Z. Thus L is a Fredholm mapping of
index zero.

Consider the projectors P : X → X and Q : Z → Z given by

Pu(t) =
1
ω

∫ ω

0
u(s)ds and Qz(t) =

1
ω

∫ ω

0
z(s)ds.

Note that Im P = kerL and that ker Q = Im(I − Q) = ImL.
Consider the generalized inverse of L, K : ImL → D ∩ ker P, given by

Kz(t) =
∫ t

0
z(s)ds −

1
ω

∫ ω

0

∫ r

0
z(s) ds dr
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the operator QN : X → Z given by

QN u(t) =




1
ω

∫ ω

0
Λ(s)e−u1(s) − a(s) f (eu1(s), eu2(s), eu3(s))eu3(s) − β(s)eu2(s) ds − µ

1
ω

∫ ω

0
β(s)eu1(s) − η(s)eu3(s) ds − c

1
ω

∫ ω

0
γ(s)a(s) f (eu1(s), eu2(s), eu3(s))eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s) ds + r




and the mapping K(I − Q)N : X → D ∩ ker P given by

K(I − Q)N u(t) = B1(t)− B2(t)− B3(t),

where

B1(t) =




∫ t

0
Λ(s)e−u1(s) − a(s) f (eu1 , eu2 , eu3)eu3(s) − β(s)eu2(s) − µ(s) ds

∫ t

0
β(s)eu1(s) − η(s)eu3(s) − c(s) ds

∫ t

0
γ(s)a(s) f (eu1 , eu2 , eu3)eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s)dt + r(s) ds




,

B2(t) =




1
ω

∫ ω

0

∫ r

0
Λ(s)e−u1(s) − a(s) f (eu1 , eu2 , eu3)eu3(s) − β(s)eu2(s) − µ(s) ds dr

1
ω

∫ ω

0

∫ r

0
β(s)eu1(s) − η(s)eu3(s) − c(s) ds dr

1
ω

∫ ω

0

∫ r

0
γ(s)a(s) f (eu1 , eu2 , eu3)eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s) + r(s) ds dr




,

and

B3(t) =

(
t

ω
−

1
2

)




∫ ω

0
Λ(s)e−u1(s) − a(s) f (eu1 , eu2 , eu3)eu3(s) − β(s)eu2(s) − µ(s) ds

∫ ω

0
β(s)eu1(s) − η(s)eu3(s) − c(s) ds

∫ ω

0
γ(s)a(s) f (eu1 , eu2 , eu3)eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s) + r(s) ds




.

The next lemma shows that N is L-compact in the closure of any open bounded subset of its
domain.

Lemma 2.8. The map N is L-compact in the closure of any open bounded set U ⊆ X.

Proof. Let U ⊆ X be an open bounded set and U its closure in X. Then, there is M > 0 such that, for any
u = (u1, u2, u3) ∈ U, we have that |ui(t)| 6 M, i = 1, 2, 3. Letting QN u = ((QN )1u, (QN )2u, (QN )3u),
we have

|(QN )1u(t)| 6 eM
(

Λ̄ + ā f (eM, 0, 0) + β̄
)
+ µ̄,

|(QN )2u(t)| 6 eM(β̄ + η̄) + c,

|(QN )3u(t)| 6 eM
(

γa f (eM, 0, 0) + θη + b̄
)
+ r

and we conclude that QN (U) is bounded.
Let now

K(I − Q)N u = ((K(I − Q)N )1u, (K(I − Q)N )2u, (K(I − Q)N )3u) .
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Let B ⊂ X be a bounded set. Note that the boundedness of B implies that there is M such that |ui| < M,
for all i = 1, 2, 3, and all u = (u1, u2, u3) ∈ B. It is immediate that {K(I − Q)N u : u ∈ B} is pointwise
bounded. Given u = (u1, u2, u3)n∈N ∈ B we have

(K(I − Q)N )1u(t)− (K(I − Q)N )1u(v)

=
∫ t

v
Λ(s)e−u1(s) − a(s) f (eu1(s), eu2(s), eu3(s))eu2(s) − β(s)eu2(s) − µ(s) ds

−
t − v

ω

∫ ω

0
Λ(s)e−u1(s) − a(s) f (eu1(s), eu2(s), eu3(s))eu2(s) − β(s)eu2(s) − µ(s) ds

6 2(t − v)
[
eM(Λu + au f (eM, 0, 0) + βueM) + µM

]
,

(2.14)

and similarly

(K(I − Q)N )2u(t)− (K(I − Q)N )2u(v) 6 2(t − v)
[
eM(βu + ηu) + cu

]
(2.15)

and

(K(I − Q)N )3u(t)− (K(I − Q)N )3u(v))

6 2(t − v)
[
(γuau f (eM, 0, 0) + θuηu + bu)eM + ru

]
.

(2.16)

By (2.14), (2.15) and (2.16), we conclude that {K(I − Q)N u : u ∈ B} is equicontinuous. Therefore,
by the Ascoli–Arzelà theorem, K(I − Q)N (B) is relatively compact. Thus the operator K(I − Q)N is
compact.

We conclude that N is L-compact in the closure of any bounded set contained in X.

2.3 Application of Mawhin’s continuation theorem.

In this section we will construct the set where, applying Mahwin’s continuation theorem, we will find
the periodic orbit in the statement of our result.

Consider the system of algebraic equations:





Λe−u1 − a f (eu1 , eu2 , eu3)eu3−u1 − βeu2 − µ = 0,

βeu1 − ηeu3 − c = 0,

γa f (eu1 , eu2 , eu3) + θηeu2 − beu3 + r = 0.

(2.17)

Note that, by hypothesis, the system above has a unique solution on the interior of the first octant.
Denote this solution by p∗(t) = (p∗1 , p∗2 , p∗3). Note also that, by the second equation, we get

ηeu3 = βeu1 − c. (2.18)

By Lemmas 2.4, 2.5 and 2.6, there is a constant M0 > 0 such that ‖uλ(t)‖ < M0, for any t ∈ [0, ω]
and any periodic solution uλ(t) of (2.7). Let

U = {(u1, u2, u3) ∈ X : ‖(u1, u2, u3)‖ < M0 + ‖p∗‖}. (2.19)

Conditions M1. and M2. in Mawhin’s continuation theorem (see Appendix A) are fulfilled in the set
U defined in (2.19).

Using the notation v = (ep∗1 , ep∗2 , ep∗3 ), the Jacobian matrix of the vector field corresponding to (2.17)
computed in (p∗1 , p∗2 , p∗3) is

J =




−a
∂ f
∂S (v) ep∗3 −β ep∗2 −µ −β ep∗2 −a

∂ f
∂I (v) ep∗3+p∗2−p∗1 −a

∂ f
∂P (v) e2p∗3−p∗1 −a f (v) ep∗3−p∗1

β ep∗1 0 −η ep∗3

γa
∂ f
∂S (v) ep∗1 θη ep∗2 +γa

∂ f
∂I (v) ep∗2 γa

∂ f
∂P (v) ep∗3 −b ep∗3


 .
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Thus

det J(p∗1 , p∗2 , p∗3)

= − β ep∗1

(
−β ep∗2

(
γa

∂ f

∂P
(v) ep∗3 −b ep∗3

)
+

(
a

∂ f

∂P
(v) e2p∗3−p∗1 +a f (v) ep∗3−p∗1

)
θη ep∗2

)

− β ep∗1

(
−a

∂ f

∂I
(v) ep∗2+p∗3−p∗1

(
γa

∂ f

∂P
(v) ep∗3 −b ep∗3

)
+

(
a

∂ f

∂P
(v) e2p∗3−p∗1 +a f (v) ep∗3−p∗1

)
γa

∂ f

∂I
(v) ep∗2

)

+ η ep∗3

((
−a

∂ f

∂S
(v) ep∗3 −β ep∗2 −µ

)
θη ep∗2 +β ep∗2 γa

∂ f

∂S
(v) ep∗1

)

+ η ep∗3

((
−a

∂ f

∂S
(v) ep∗3 −β ep∗2 −µ

)
γa

∂ f

∂I
(v) ep∗2 +a

∂ f

∂I
(v) ep∗2+p∗3−p∗1 γa

∂ f

∂S
(v) ep∗1

)

= − β ep∗1

(
−

(
β + a

∂ f

∂I
(v) ep∗3−p∗1

)
ep∗2

(
γa

∂ f

∂P
(v) ep∗3 −b ep∗3

)

+

(
a

∂ f

∂P
(v) e2p∗3−p∗1 +a f (v) ep∗3−p∗1

)(
θη + γa

∂ f

∂I
(v)

)
ep∗2

)

+ η ep∗3

((
−a

∂ f

∂S
(v) ep∗3 −β ep∗2 −µ

)(
θη + γa

∂ f

∂I
(v)

)
ep∗2

+

(
β ep∗2 +a

∂ f

∂I
(v) ep∗2+p∗3−p∗1

)
γa

∂ f

∂S
(v) ep∗1

)
.

Taking into account S5) and (2.18), we have

det J(p∗1 , p∗2 , p∗3) = − β ep∗1

(
−

β

η

(
η + a

∂ f

∂I
(v)−

ac

β

∂ f

∂I
(v) e−p∗1

)
ep∗2

(
γa

∂ f

∂P
(v) ep∗3 −b ep∗3

)

+a ep∗3−p∗1

(
∂ f

∂P
(v) ep∗3 + f (v)

)(
θη + γa

∂ f

∂I
(v)

)
ep∗2

)

+ η ep∗3

((
−a

∂ f

∂S
(v) ep∗3 −β ep∗2 −µ

)(
θη + γa

∂ f

∂I
(v)

)
ep∗2

+
β

η

(
η + a

∂ f

∂I
(v)−

ac

β

∂ f

∂I
(v) e−p∗1

)
ep∗2 γa

∂ f

∂S
(v) ep∗1

)
< 0.

Let I : ImQ → kerL be an isomorphism. Thus

deg(IQN , U ∩ kerL, 0) = det J(p∗1 , p∗2 , p∗3) 6= 0 (2.20)

and condition M3) in Mawhin’s continuation theorem (see appendix A) holds. Taking into account
Lemma 2.6, the proof of Theorem 2.3 is completed.

3 Examples.

In this section we present some examples to illustrate the main result in the previous section.

3.1 A model with Holling-type I functional response.

Letting f (S, I, P) = S (Holling-type I functional response) in system (2.1), we obtain the model:




S′ = Λ(t)− µ(t)S − a(t)SP + β(t)SI,

I′ = β(t)SI − η(t)PI − c(t)I,

P′ = (r(t)− b(t)P)P + γ(t)a(t)SP + θη(t)PI.

(3.1)

Since f (S, I, P) = S, conditions S2) to S5) are trivially satisfied and S7) is satisfied with K = α = 1. We
obtain the following corollary.
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Corollary 3.1. Assume that that conditions S1), S6) and S9) hold. If R̃0 > 1, β b − γ aη > 0 and

R0 > 1 + aη
γ Λ

µ(r η + b c)
+ a

β r + γa c

µ(b β − γ aη)
(3.2)

then system (3.1) possesses an endemic periodic orbit of period ω.

Proof. Consider the system of algebraic equations





Λe−u1 − aeu3 − βeu2 − µ = 0,

βeu1 − ηeu3 − c = 0,

γaeu1 + θηeu2 − beu3 + r = 0.

(3.3)

By the second and third equations we get

eu1 =
η eu3 +c

β
and eu2 =

β b − γ aη

β θη
eu3 −

β r + γa c

β θη
.

Notice that by hypothesis β b − γ aη > 0 and the right hand side of the second equation is positive as
long as eu3 > (β r + c γa)/(β b − γ aη). Using the first equation we get

β Λ

η eu3 +c
−

(
a +

β b − γ aη

θ η

)
eu3 +

β r + γa c

θ η
− µ = 0.

Taking into account that we must have eu3 > (β r + c γa)/(β b − γ aη), we consider the function F :
[(β r + c γa)/(β b − γ aη),+∞[→ R given by

F(x) =
β Λ

ηx + c
−

(
a +

β b − γ aη

θ η

)
x +

β r + γa c

θ η
− µ.

It is immediate that F is decreasing and that, by the hypothesis in our corollary, we have

F

(
β r + c γa

β b − γ aη

)
= µ

(
R0 − 1 −

aη γ Λ

µ(r η + b c)
− a

β r + γa c

µ(b β − γ aη)

)
> 0

and limx→+∞ F(x) = −∞. We conclude that there is x0 ∈ [(β r + c γa)/(β b − γ aη),+∞[ such that
F(x0) = 0. This implies that there is a unique solution of (3.3). The result follows now from Theo-
rem 2.3.

We now assume that the real valued functions Λ, µ, r, b, γ and a are constant and positive.
Model (3.1) becomes 




S′ = Λ − µS − aSP + β(t)SI,

I′ = β(t)SI − η(t)PI − c(t)I,

P′ = (r − bP)P + γaSP + θη(t)PI.

(3.4)

We have the following corollary.

Corollary 3.2. Assume that that conditions S1) and S6) hold. If R̃0 > 1, bβ − γaη > 0, Λ < µ2/a and

R0 > 1 +
a

µ

(
ηγ Λ

r η + b c
+

β r + γa c

b β − γ aη

)

then system (3.4) possesses an endemic periodic orbit of period ω.
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Proof. We begin by noticing that system (2.4) becomes in our context

{
x′ = λ(Λ − µx − axz − ε1x),

z′ = λ(r − bz + γax + ε2)z.
(3.5)

System (3.5) has two equilibriums: E1 = (Λ/(µ + ε1), 0) and

E2 =

(√
V2 + 4Λγa2/b − V

2γa2/b
,

√
V2 + 4Λγa2/b − V

2γa2/b
+ r + ε2

)
,

where V = µ + ε1 + a(r + ε2)/b. It is easy to check that E2 is locally attractive and that E1 is a saddle
point whose stable manifold coincides with the x-axis. If 0 < α < (r + ε2)/b then, in the line z = α the
flow points upward. Additionally, if Λ < µ(µ + ε1)/a, in the line x = µ/a the flow points to the left
and the x-coordinate of E1 is less than µ/a. Thus the region R = {(x, z) ∈ R2 : 0 6 x 6 µ/a ∧ z > α} is
positively invariant. Since the divergence of the vector field is given by −µ − ε1 + ε2 − (a + 2b)z + γax,
we conclude that it is null on the line z = −µ−ε1+ε2

a+2b + γa
a+2b x. Thus the divergence of the vector field

doesn’t change sign on the region R and this forbids the existence of a periodic orbit on R. There
is also no periodic orbit on (R+

0 )
2 \ R since there is no additional equilibrium in (R+

0 )
2. Since E2 is

locally asymptotically stable, there is no homoclinic orbit connecting E2 to itself. Therefore, the ω-limit
of any orbit in (R2)+ must be the equilibrium point E2 and the global asymptotic stability of (3.5) for
sufficiently small ε1, ε2 > 0 follows. We conclude that condition S9) holds.

To do some simulation, we consider the following particular set of parameters: Λ = 0.1; µ = 0.6;
β(t) = 20(1 + 0.9 cos(2πt)); η(t) = 0.7(1 + 0.7 cos(π + 2πt)); c(t) = 0.1; r = 0.2; b = 0.3; θ = 10,
γ(t) = 0.1 and a = 3. We obtain the model





S′ = 0.1 − 0.6S − 20(1 + 0.9 cos(2πt))SI − 3SP,

I′ = 20(1 + 0.9 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I,

P′ = (0.2 − 0.3P)P + 7(1 + 0.7 cos(π + 2πt))PI + 0.3SP.

(3.6)

Notice that, for our model, Λ = 0.1 > 0.012 = µ2/a, bβ − γaη = 3.99 > 0, R0 ≈ 5.88 > 1 + 1.86
and R̃0 ≈ 24.8 > 1, and thus the conditions in Corollary 3.1 are fulfilled. Considering the initial
condition (S0, I0, P0) = (0.03567, 0.02047, 0.88021) we obtain the periodic orbit in Figure 3.1. Although
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Figure 3.1: Periodic orbit for model (3.6)

our theoretical result doesn’t imply the attractivity of the periodic solution, the simulations carried out
suggest that this is the case.

3.2 A model with no predation on susceptible preys.

Letting f ≡ 0 in system (1.1), and still assuming that the real valued functions Λ, µ, β, η, c, γ, r, θ and
b are periodic with period ω, nonnegative, continuous and also that Λ̄ > 0, µ̄ > 0, r̄ > 0 and b̄ > 0, we
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obtain the periodic model considered in [13, 18]:





S′ = Λ(t)− µ(t)S − β(t)SI,

I′ = β(t)SI − η(t)PI − c(t)I,

P′ = (r(t)− b(t)P)P + θ(t)η(t)PI.

(3.7)

In [18], the authors refer that the assumption that predator mainly eats the infected prey (that is
modelled by assuming that no predation on uninfected preys occur) is in accordance with the fact that
the infected individuals are less active and can be caught more easily, or that infection modifies the
behavior of the preys in such a way that they start living in parts of the habitat which are accessible to
the predator. Some examples available in the literature are also provided in [18]: as an example of a
situation where infected individuals can be caught more easily, the authors cite [10], where it is showed
that wolf attacks on moose on Isle Royale in Lake Superior are more successful if the moose are heavily
infected with a lungworm; as an example of a situation where the behavior of the prey individuals is
modified, favoring predation, the authors cite [7].

Note that conditions S2) to S5) and S7) are trivially satisfied since f ≡ 0. Also note that system (2.4)
becomes in this context {

x′ = λ(Λ(t)− µ(t)x − ε1x),

z′ = λ(r(t)− b(t)z + ε2)z.
(3.8)

and, by Lemmas 1 to 4 in [18] we conclude that condition S9) holds in this setting. Note also that
condition (3.2) becomes R0 > 1 and condition b β − γ aη 6 0 is trivially satisfied since we can take
γ = 0 or a = 0. We obtain the following corollary that recovers the result in [13]:

Corollary 3.3. If R̃0 > 1 and R0 > 1 hold, then system (3.7) possesses an endemic periodic orbit of period ω.

4 Eco-epidemiological models with linear vital dynamics for preda-

tors

In this section we let h(t, P) = Υ(t)− ζ(t)P, obtaining the following model:





S′ = Λ(t)− µ(t)S − a(t) f (S, I, P)P − β(t)SI,

I′ = β(t)SI − η(t)g(S, I, P)I − c(t)I,

P′ = Υ(t)− ζ(t)P + γ(t)a(t) f (S, I, P)P + θ(t)η(t)g(S, I, P)I.

(4.1)

To establish the existence of an endemic periodic orbit for system (4.1) we assume the following natural
conditions:

R1) The real valued functions Λ, µ, a, β, η, c, Υ, ζ, γ and θ are periodic with period ω, nonnegative
and continuous;

R2) Functions y 7→ f (x, y, z) and z 7→ f (x, y, z) is nonincreasing; function x 7→ f (x, y, z) is nonde-
creasing;

R3) Functions x 7→ g(x, y, z), y 7→ g(x, y, z) are nonincreasing; function z 7→ g(x, y, z) is nondecreas-
ing;

R4) Function f is C1;

R5) Λ̄ > 0, µ̄ > 0, Ῡ > 0 and ζ̄ > 0.

Note that our setting includes several of the most common functional responses for both functions
f and g: f (S, I, P) = kS and g(S, I, P) = kP (Holling-type I), f (S, I, P) = kS/(1 + m(S + I)) and
g(S, I, P) = kP/(1 + m(S + I)) (Holling-type II), f (S, I, P) = kSα/(1 + m(S + I)α) and g(S, I, P) =
kPα/(1 + m(S + I)α) (Holling-type III), f (S, I, P) = kS/(a + b(S + I) + c(S + I)2) and g(S, I, P) =
kP/(a + b(S + I) + c(S + I)2) (Holling-type IV), f (S, I, P) = kS/(a + b(S + I) + cP) and g(S, I, P) =
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kP/(a + b(S + I) + cP) (Beddington–De Angelis), f (S, I, P) = kS/(a + b(S + I) + cP + d(S + I)P) and
g(S, I, P) = kP/(a + b(S + I) + cP + d(S + I)P) (Crowley–Martin). Also note that conditions S3), S4)
are natural from a biological perspective and naturally are satisfied by the usual functional responses
considered in the literature. Conditions S5) and S7) are satisfied by most of the usual functional
response functions.

We also need to consider the following auxiliary system that corresponds to perturbations of the
disease-free system for (4.1):

{
x′ = Λ(t)− µ(t)x − a(t) f (x, ε3, z)z − ε1x,

z′ = Υ(t)− ζ(t)z + γ(t)a(t) f (x, ε4, z)z + ε2z.
(4.2)

We now make our last structural assumption on system (4.1):

R5) For each ε1, ε2, ε3, ε4 > 0 sufficiently small, system (4.2) has a unique ω-periodic solution

(x∗ε1,ε2,ε3,ε4
(t), z∗ε1,ε2,ε3,ε4

(t)),

with
x∗ε1,ε2,ε3,ε4

(t) > 0 and z∗ε1,ε2,ε3,ε4
(t) > 0,

that is globally asymptotically stable in the set

{(x, z) ∈ (R+
0 )

2 : x > 0 ∧ z > 0}.

We assume that (ε1, ε2, ε3, ε4) 7→ (x∗ε1,ε2,ε3,ε4
(t), z∗ε1,ε2,ε3,ε4

(t)) is continuous.

To obtain the basic reproductive number for our model we consider the ordering (I, S, P) instead of
(S, I, P), so that the infected compartment becomes the first one and the uninfected compartments
became the last ones. Our new notation corresponds to the one in [12]. With this ordering, the
functions F , V+ and V− in [12] become respectively

F (t, (I, S, P)) = (β(t)SI, 0, 0),

V+(t, (I, S, P)) = (0, 0, Υ(t) + γ(t)a(t) f (S, I, P)P + θ(t)η(t)g(S, I, P)I)

and
V−(t, (I, S, P)) = (η(t)g(S, I, P)I + c(t)I, µ(t)S + a(t) f (S, I, P)P + β(t)SI, ζ(t)P).

Having identified F and V we can compute the matrices F(t) and V(t) in [12] that in our context
reduce to one dimensional matrices (that we identify with real numbers). In fact, we have

F(t) =
∂

∂I
(β(t)SI)|(x∗(t),0,z∗(t)) = β(t)x∗(t)

and

V(t) =
∂

∂I
(η(t)g(S, P, I)I + c(t)I)|(x∗(t),0,z∗(t)) = η(t)g(x∗(t), 0, z∗(t)) + c(t).

The evolution operator W(s, t, λ) associated with the linear ω-periodic parametric system w′ =
(−V(t) + F(t)/λ)w is easily seen to be given by

W(s, t, λ) = e−
∫ t

s β(r)x∗(r)/λ−c(r)−η(r)g(x∗(r),0,z∗(r)) dr

and thus

W(ω, 0, λ) = 1 ⇔ βx∗/λ − c − ηg(x∗, 0, z∗) = 0 ⇔ λ =
βx∗

c + ηg(x∗, 0, z∗)
.

Define

R0 =
βx∗

c + ηg(x∗, 0, z∗)
. (4.3)

Note that our system satisfies conditions (A1) to (A7) in [6].
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Theorem 4.1. Assume conditions R1) to R5). If R0 > 1, then model (4.1) has an endemic periodic orbit in
(R+

0 )
3.

The proof of our theorem adapts to our situation the strategy in [6,12]. It will be developed in two
steps: using a result derived in [12], we obtain persistence of the infective prey in subsection 4.1 and
then, using a Poincaré map, we establish the existence of a periodic orbit in subsection 4.2.

4.1 Uniform persistence

The first step in the proof of Theorem 4.1 is to establish the persistence of all the compartments in our
model. To do so we will use Theorem 2 in [12]. Note first that, as long as α3 max{θ, γ} < α2 < α1, we
have

〈(S′, I′, P′), (α1, α2, α3)〉 = α1 (Λ(t)− µ(t)S − a(t) f (S, I, P)P − β(t)SI)

+α2 (β(t)SI − η(t)g(S, I, P)I − c(t)I)

+α3 (Υ(t)− ζ(t)P + γ(t)a(t) f (S, I, P)P + θ(t)η(t)g(S, I, P)I)

< α1Λ
u + α3Υ

u − min{µℓ + cℓ + ζℓ}(α1S + α2 I + α3P).

(4.4)

Thus, defining

K =
α1Λu + α3Υu

min{µℓ + cℓ + ζℓ}
,

we conclude 〈(S′, I′, P′), (α1, α2, α3)〉 < 0 when α1S + α2 I + α3P < K and that the set

K = {(S, I, P) ∈ (R+
0 )

3 : α1S + α2 I + α3P ≤ K} (4.5)

is forward invariant for the flow of system (4.1). Additionally, letting W = α1S + α2 I + α3P, t0 > 0 and
W0 = α1S(t0) + α2 I(t0) + α3P(t0), by (4.4) we have for t > t0

W(t) < K − (K − W0) e−min{µℓ+cℓ+ζℓ}(t−t0)

and thus lim supt→+∞
W(t) < K. We conclude that K is an absorbing set for the flow. Thus the set K

satisfies assumption (A8) in [6].
Let now (S(t), I(t), P(t)) be a solution of (4.1) such that I(t) 6 ε, for t > 0. Since, by the first and

third equations in (4.1), we have
{

S′ > Λ(t)− µ(t)S − a(t) f (S, 0, P)P − βuSε,

P′ > Υ(t)− ζ(t)P + γ(t)a(t) f (S, ε, P)P

and {
S′ 6 Λ(t)− µ(t)S − a(t) f (S, ε, P)P,

P′ 6 Υ(t)− ζ(t)P + γ(t)a(t) f (S, 0, P)P + θuηuPε,

condition R5), allows us to conclude that for sufficiently large t > 0 we have S(t) > x∗βuε,0,0,ε(t) >

x∗(t)− σ1(ε) and P(t) 6 z∗0,θuηuε,ε,0(t) 6 z∗(t) + σ2(ε) with σ1(ε), σ2(ε) → 0 as ε → 0. Thus, taking into
account R2) and R3), if I(t) 6 ε we have

I′ = β(t)SI − η(t)g(S, I, P)I − c(t)I

>

(
β(t)x∗(t)− βℓσ1(ε)− η(t)g(x∗(t)− σ1(ε), 0, z∗(t) + σ2(ε))− c(t)

)
I

> (F(t)/λ(ε)− V(t)) I

where λ :]0, ε∗[→ R, well-defined when we take ε∗ > 0 sufficiently small, is given by

λ(ε) = max
t∈ ]0,ε[

β(t)x∗(t)

β(t)x∗(t)− βℓσ1(ε) + η(t)g(x∗(t), 0, z∗(t))− η(t)g(x∗(t)− σ1(ε), 0, z∗(t) + σ2(ε))
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and we can immediately see that λ(ε) → 1 as ε → 0.
By Theorem 2 in [12], we conclude that the infective prey is uniformly strong persistent in sys-

tem (4.1). The uniform strong persistence of the susceptible prey and the predator, in our situa-
tion, is a consequence of the uniform strong persistence of the infectives. In fact, given δ > 0, if
lim supt→+∞

S(t) < δ for some solution (S(t), I(t), P(t)) then I′ 6 (βuδ − cℓ)I. Thus, if we had a
solution such that δ < cℓ/βu it would follow that I(t) → 0, contradicting the uniform persistence of
I. Therefore S is uniformly weak persistent. By Theorem 1.3.3 in [17], we conclude that S must be
uniformly strong persistent. Finally, the uniform strong persistence of P is a consequence of the bound
P′ > Υℓ − ζuP.

4.2 Existence of a periodic orbit

Next, to establish the existence of a positive periodic orbit for (4.1) we use the following result.

Theorem 4.2 ([17, Theorem 1.3.6]). Let τ : X → X be a continuous map with τ(X0) ⊂ X0 that is point
dissipative, compact and uniform persistent with respect to (X0, ∂X0). Then there exists a global attractor A0
for S in X0 that attracts strongly bounded sets in X0 and S has a coexistence state x0 ∈ A0.

To apply this result to our model we let X = (R+
0 )

3, X0 = K and S = τ, where τ : (R+
0 )

3 → (R+
0 )

3

ia a time-ω map associated to our system and given by τ(S0, I0, P0) = (S(ω), I(ω), P(ω)), where
(S(t), I(t), P(t)) is the solution of (4.1) such that (S(0), I(0), P(0)) = (S0, I0, P0).

Since the bounded set K is an absorbing set for the flow of (4.1), we conclude that τ is point
dissipative. It is immediate that τ is compact and, by the discussion in subsection 4.1, we conclude that
τ is uniformly persistent with respect to (K, ∂K). Therefore, Theorem 4.2 allows us to conclude that
τ has a coexistence state in K. This coexistence state is a periodic orbit of our system contained in K.
This established our result.

A Mawhin’s continuation theorem

In this appendix we state Mawhin’s continuation theorem [9, Part IV]. Let X and Z be Banach spaces.

Definition A.1. A linear map L : D ⊆ X → Z is called a Fredholm mapping of index zero if

1. dim kerL = codim ImL 6 ∞;

2. ImL is closed in Z.

Given a Fredholm mapping of index zero L : D ⊆ X → Z it is well known that there are continuous
projectors P : X → X and Q : Z → Z such that:

1. Im P = kerL;

2. ker Q = ImL = Im(I − Q);

3. X = kerL⊕ ker P;

4. Z = ImL⊕ Im Q.

It follows that L|D⋂
ker P : (I − P)X → ImL is invertible. We denote the inverse of that map by K.

Definition A.2. A continuous mapping N : X → Z is called L-compact on U ⊂ X, where U is an open
bounded set, if

1. QN(U) is bounded;

2. K(I − Q)N : U → X is compact.

Note that, since Im Q is isomorphic to ker L, there is an isomophism I : ImQ → kerL. We are now
prepared to state the Mawhin’s continuation theorem.
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Theorem A.3 (Mawhin’s continuation theorem). Let X and Z be Banach spaces and let U ⊂ X be an open
set. Assume that L : D ⊆ X → Z is a Fredholm mapping of index zero and let N : X → Z be L-compact on U.
Additionally, assume that

M1) for each λ ∈ (0, 1) and x ∈ ∂U ∩ D we have Lx 6= λN x;

M2) for each x ∈ ∂U ∩ kerL we have QN x 6= 0;

M3) deg(IQN , U ∩ kerL, 0) 6= 0.

Then the operator equation Lx = N x has at least one solution in D ∩ U.
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Abstract. In this paper we study the integrability of a few families of the complex cubic
system. We have obtained necessary and sufficient conditions for existence of a local
analytic first integral. Sufficiency of the obtained conditions was proven using differ-
ent methods: time-reversibility, Darboux integrability and others. Using the obtained
results on integrability of complex cubic system, we have obtained results for corre-
sponding real cubic systems. Then the study of bifurcation of limit cycles from each
component of the center variety of real system was performed.
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1 Introduction

One of the main problems of qualitative theory is the problem of integrability. The integrabil-

ity is not often seen phenomena, but never the least less important. A first integral determines

the phase portrait of the plane system and for higher dimensional systems first integral can

be used to reduce the dimension of the system, hence the importance. This problem can be

linked to another problem of qualitative theory, the problem of distinguishing between a cen-

ter or a focus. The so-called center problem goes back to Dulac [19], who published in year

1908 a paper on integrability of real quadratic ones. The integrability problem for quadratic

system is resolved by Dulac, Kapteyn and others, see [19, 30–32, 39, 48, 50, 51]. Since the pub-

lication of Dulac’s work, a lot of studies have been made on higher degrees systems, real

and complex systems. The integrability conditions for some cubic systems were presented in

[4, 14, 17, 18, 22, 36–38, 43, 47] and for results on higher degree systems see [5, 6, 8, 23, 24, 45].

When the systems that contain a center are known, there appears the question: “What

is the bound of the number of limit cycles that can bifurcate from the center under small

perturbation of parameters of the system?” This is a part of the 16th Hilbert’s problem, one of

the twenty-three problems introduced by David Hilbert in 1900. It is stated as: “What is the

maximum number of limit cycles of system ẋ = Pn, ẏ = Qn, where Pn and Qn are polynomial

of degree n or less? What are possible relative positions of the limit cycles?”

BEmail: masa.dukaric@gmail.com
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In attempt to solve this open Hilbert’s problem, the cyclicity problem became one of the

main problems in the qualitative theory of differential equations (survey by J. Li, [34]).

The beginning of the study of cyclicity problem goes back to Bautin, who introduced the

concept of cyclicity [3]. In the seminar paper of Bautin it was proven that the minimal bound

on the number of limit cycles of quadratic system is 3. Since then a lot of studies were made

on this problem. For quadratic systems it was believed for some time that there are only 3

limit cycles that can bifurcate, but some examples of quadratic systems with 4 limit cycles

were constructed [7, 49]. Due to the faulty proof of Dulac on the fixed number of limit cycles

of fixed polynomial system, see [19], was his statement a big uncertainty for some time. But

one step closer to reviling the correctness of it were Chicone and Shafer [9] in year 1983, where

it was proven that a fixed quadratic system has a finite number of limit cycles in any bounded

region. The result was extended to the whole phase plane by Bamón [2] and Romanovski

[42]. Dulac’s Theorem for an arbitrary polynomial system was then proven by Ecalle [20] and

Il’yaschenko [27]. Even though a lot of studies on this problem is done, the question on the

uniform bound on the number of limit cycles in polynomial systems of fixed degree remains

unknown. For more results on cyclicity see [25, 26, 28, 33, 44, 46, 52–55, 57].

In this paper we present results of integrability of a complex family of cubic polynomial

systems of the following form

ẋ = x − a10x2 − a20x3 − a11x2y − a02xy2 − a−13y3,

ẏ = −y + b01y2 + b3,−1x3 + b20x2y + b11xy2 + b02y3.
(1.1)

The computations for the general family (1.1) were complicated, hence we studied four differ-

ent subfamilies of it. We explore integrability of the systems (1.1) where

1) a−13 = b3,−1 = 1, 2) a−13 = b3,−1 = 0, 3) a−13 = 1, b3,−1 = 0,

4) a−13 = 0, b3,−1 = 1.
(1.2)

By choosing these specific subfamilies we enable determination of general conditions for inte-

grability of complex systems of the form (1.1). In our case it is only necessary to study three

of four cases, since the involution aij ↔ bji transforms case 3) into case 4). As it will be shown

in Section 3, obtained conditions for these subsystems can be transformed to more general

system, where a−13 and b3,−1 are arbitrary. The approach is describe into details in the same

section.

The main result of this paper is presented here.

Theorem 1.1. The system (1.1) is integrable if and only if one of the following conditions holds:

1. a11 = a−13 = a02 = b11 = b02 = 0,

2. a11 = a−13 = a02 = b11 = b3,−1 = b20 = 0,

3. a11 = a20 = b11 = b3,−1 = b20 = 0,

4. a11 − b11 = a−13 = b3,−1 = a20 + b20 = a02 + b02 = 0,

5. a11 − b11 = a2
20a−13 − b2

02b3,−1 = a02b02b3,−1 − a20b20a−13 = a02a20 − b20b02 = a2
02b3,−1 −

b2
20a−13 = a2

10b02 − a20b2
01 = a2

10a−13b20 − a02b2
01b3,−1 = a2

10a20a−13 − b02b2
01b3,−1 = a2

10a02 −
b2

01b20 = a4
10a−13 − b4

01b3,−1 = 0,
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6. a11 = a10 = b01 = b11 = 3a−13b3,−1 + 4b20b02 = a20 + 3b20 = 3a02 + b02 = 0,

7. a11 − b11 = a10 = b01 = a02 − 3b02 = 3a20 − b20 = 0.

Using obtained components of center variety of complex system (1.1), we have computed

the center variety of the general real system which complexification is complex systems (1.1),

Theorem 4.1. In Section 4 we have researched the cyclicity of each real component.

2 Preliminaries

Let us study the system

u̇ = au + bv + f1(u, v),

v̇ = cu + dv + f2(u, v).
(2.1)

The behavior of the nondegenerate singular point at the origin of two-dimensional systems

(2.1) is the same as for the linearized system of (2.1), that is the system

u̇ = au + bv, v̇ = cu + dv,

except in the case of center. In the case of two purely imaginary eigenvalues of the linearized

system the singularity can be either a focus or a center. In that case some additional study

needs to be done.

The important theorem, which is the link between the center-focus problem and the inte-

grability problem, studied in this paper, is the Poincaré–Lyapunov Theorem [35, 40].

It states the following:

Theorem 2.1. The system

u̇ = λu − v + P̃(u, v) = λu − v +
n

∑
j+k=2

Ajkujvk,

v̇ = u + λv + Q̃(u, v) = u + λv +
n

∑
j+k=2

Bjkujvk.

(2.2)

on R2 has a center in the origin if and only if it there exists the a formal first integral of the form

ψ(u, v) = u2 + v2 + · · ·
By transformation x = u + iv the real system can be transformed to

ẋ = ix + P

(

(x + x)

2
,
(x − x)

2i

)

+ iQ

(

(x + x)

2
,
(x − x)

2i

)

= i(x + X1(x, x)).

The complex system obtained after (complex) time transformation idt = dτ is

ẋ = λx + i

(

x −
n

∑
p+q=2

apqxp+1 x̄q

)

. (2.3)

The system (2.3) for λ = 0, with x̄ → y, āpq → bqp and after time rescaling is written as

ẋ = x −
n

∑
p+q=2

apqxp+1yq = P1(x, y),

ẏ = −y +
n

∑
p+q=2

bqpxqyq = Q1(x, y),

(2.4)
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where P1(x, y) and Q1(x, y) are polynomials of degree at most n.

The system (2.4) is locally analytically integrable if and only if it admits a formal first integral

in the form

ψ(x, y) = xy + ∑
l+m≥3

vl−1,m−1xlym. (2.5)

Since the first integral is constant on any solution, it is obvious that it needs to satisfy

Xψ(x, y) = ∂ψ
∂x P1 +

∂ψ
∂y Q1 ≡ 0.

The construction of the first integral in the form (2.5) yields a series for which Xψ(x, y)

reduces to

Xψ(x, y) =
∂ψ

∂x
P1 +

∂ψ

∂y
Q1 := ∑

k1+k2≥2

gk1,k2
xk1 yk2 . . . (2.6)

The coefficients gk1,k2
of series (2.6) can be obtain with some computations from

Xψ(x, y) =

(

y + ∑
l+m≥3

lvl−1,m−1xl−1ym

)(

x −
n

∑
p+q=2

apqxp+1yq

)

+

(

x + ∑
l+m≥3

mvl−1,m−1xlym−1

)(

−y +
n

∑
p+q=2

bqpxqyq

) (2.7)

and are of the form

gk1,k2
= (k1 − k2)vk1,k2

−
k1+k2−1

∑
s1+s2=0,
s1,s2≥−1

((s1 + 1)ak1−s1,k2−s2
− (s2 + 1)bk1−s1,k2−s2

)vs1,s2 . (2.8)

In order for the series ψ(x, y) to be a first integral each coefficient gk1,k2
must be equal to zero.

By step-by-step construction of series (2.5), we see that for k1 6= k2 the coefficients vl,m can

be chosen so that gk1,k2
= 0. But when k1 = k2 = i this is not the case and gk1,k2

depends on

previous vl,m. The polynomial of coefficients of the system (2.4) appearing in (2.6),

gi,i =
2k−1

∑
s1+s2=0,
s1,s2≥−1

((s1 + 1)ak−s1,k−s2
− (s2 + 1)bk−s1,k−s2

)vs1,s2 ,

is called i-th focus quantity and the ideal B = 〈g1,1, g2,2, . . .〉 is called the Bautin ideal. The ideal

generated by the first k focus quantities is denoted by Bk. The variety of the ideal B, V(B), is

called the center variety.

The ideals B1,B2, . . . form the ascending chain of ideals,

B1 ⊆ . . . ⊆ Bk−1 ⊆ Bk ⊆ . . . , and by the Hilbert Basis Theorem, this chain stabilizes at some k.

Hence in order to obtain subfamilies of the system (1.1) which are locally integrable it is

necessary to compute irreducible decomposition of V(Bk), where k is the number for which

the ascending chain of Bk stabilizes. For obtained conditions it remains to be shown that these

conditions are sufficient, i.e. find the first integral of the form (2.5). For more detailed on this

see [1, 44].

From obtained center variety of any polynomial family one can produce, using different

approaches, a bound for the cyclicity of the system. An efficient computational technique

which we used in this paper and which allows estimation of the generic cyclicity of a family

of centers was described in the paper by Christopher [10].
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Before the formulation of the theorem presented in [10], let us explain some notations and

give some additional definitions.

Denote with (λ, (A, B)) the coefficient string (λ, A20, . . . , B0n) and with E((λ, (A, B))) the

space of parameters of the family (2.2). For the family (2.3) the coefficient string is (λ, a) =

(λ, ap1q1
, . . . , aplql

), where l is the number of coefficients of the system (2.3) and E((λ, a)) is the

space of parameters. By gR

kk the polynomial obtained by substitution of coefficients bji with

aij in the polynomial gkk is denoted and let BR

k be the ideal BR

k = 〈gR

11, gR
22, . . . , gR

kk〉.
Since the parameters of the system (2.2) and of the system (2.3) are connected, the defini-

tion is given for the complex system (2.3).

Definition 2.2. For parameters (λ, a), let n((λ, a), ǫ) denote the number of limit cycles of

the corresponding system (2.3) that lie wholly within an ǫ-neighborhood of the origin. The

singularity at the origin for the system (2.3) with fixed coefficients (λ∗, a∗) ∈ E((λ, a)) has

cyclicity c with respect to the space E((λ, a)), if there exist positive constant δ0 and ǫ0 such that

for every pair ǫ and δ satisfying 0 < ǫ < ǫ0 and 0 < δ < δ0,

max {n((λ, a), ǫ) : |(λ, a)− (λ∗, a∗)| < δ} = c.

The approach for the estimation of the number of limit cycles of our system was based on

the following theorem by C. Christopher [10]:

Theorem 2.3. Suppose that s is a point on the center variety and that rank Jp(BR

k ) = k. Then s lies

on a component of the center variety of codimension at least k and there are bifurcations of (2.3) which

produce k limit cycles locally from the center corresponding to the parameter value s.

If furthermore, we know that s lies on a component of the center variety of codimension k, then s is

smooth point of the variety, and the cyclicity of the center for the parameter value s is exactly k − 1.

In the latter case, k − 1 is also the cyclicity of generic point on this component of the center variety.

3 Results on integrability

Before presenting the main results on integrability we recall some important methods used

approaching the problem of integrability.

The so-called Darboux method is based on Darboux factors and using them we can some-

times construct the Darboux integrals, more on this can be found in [11, 12, 44].

Definition 3.1. A nonconstant polynomial f (x, y) ∈ C[x, y] is called a Darboux factor of system

(2.4) if there exists a polynomial K(x, y) ∈ C[x, y] such that

X f =
∂ f

∂x
P1 +

∂ f

∂y
Q1 = K f . (3.1)

The polynomial K(x, y) is called a cofactor of f (x, y) and it has degree at most n.

If sufficient number of Darboux factors are found, then so-called Darboux first integral can

be constructed.

Let f1, . . . , fs be Darboux factors such that αj ∈ C for 1 ≤ j ≤ s. A first integral of system

(2.4) of the form

H = f α1
1 . . . f αs

s

is called a Darboux first integral of system (2.4).
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For two specific systems of the form (2.4), Hamiltonian system and time-reversible system, it

is known that the singularity of the origin is a center, see [44].

We recall that: System (2.4) is a Hamiltonian system if there is a function H : C2 → C called

Hamiltonian, such that P1 = −Hy and Q1 = Hx.

Clearly, the Hamiltonian is a first integral of the system.

The definition of time-reversibility of the system is the following.

Definition 3.2. The system dz
dt = F(z), where z = (x, y) ∈ C2, is time-reversible if there exists

a transformation T(x, y) = (γx, γ−1y), for γ ∈ C \ {0}, such that

d(Tz)

dt
= F(Tz).

In the proofs of the following theorems the results of [29] on time-reversibility of the cubic

systems will be important.

Next we present the results on integrability of system (1.1).

Theorem 3.3. System (1.1) with a−13 = b3,−1 = 1 is integrable if and only if one of the following

conditions holds:

1. a11 − b11 = b01 = a10 = a02 − 3b02 = 3a20 − b20 = 0,

2. a11 − b11 = a20 + b02 = a02 + b20 = a2
10 + b2

01 = 0,

3. a11 − b11 = a20 − b02 = a02 − b20 = a10 − b01 = 0,

4. a11 − b11 = a20 − b02 = a02 − b20 = a10 + b01 = 0,

5. a11 = b11 = a10 = b01 = a20 + 3b20 = 3a02 + b02 = 4b20b02 + 3 = 0.

Proof. The computation of necessary conditions

With the computer algebra system Mathematica we were able to compute first nine non-

zero focus quantities using algorithm presented in [44]. Due to the large size of the focus

quantities, we present here only two

g11 = a01a10 + a11 − b01b10 − b11;

g22 = (24a2
01a2

10 + 24a01a10a11 + 6a2
01a20 + 3a02a20 + 2a10a−12a20

− 18a01a2
10b01 − 18a10a11b01 − 3a01a20b01 − 27a2

01a10b10

+ 3a02a10b10 − 27a01a11b10 + 2a2
10a−12b10 + 5a−12a20b10

+ 21a11b01b10 + 18a10b2
01b10 + 3a10b02b10 + 3a10a−12b2

10

+ 27a01b01b2
10 − 24b2

01b2
10 − 6b02b2

10 − 2a−12b3
10 − 21a01a10b11

+ 18a10b01b11 + 27a01b10b11 − 24b01b10b11 + 2a10a−12b20

− 3a01b01b20 − 3b02b20 − 3a−12b10b20 + 2a3
01b2,−1 + 3a01a02b2,−1

− 4a11a−12b2,−1 + 2a10a−13b2,−1 − 3a2
01b01b2,−1 − 2a02b01b2,−1

− 2a01b2
01b2,−1 − 5a01b02b2,−1 − 2b01b02b2,−1 − a−13b10b2,−1

+ 4a−12b11b2,−1 + a01a−12b3,−1 − 2a−12b01b3,−1)/3.

To obtain the necessary conditions for system to be integrable, the irreducible decomposi-

tion of integrability variety, V(B9) needs to computed. The irreducible decomposition was

computed using Singular [15] routine ♠✐♥❆ss●❚❩ [16].
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Since the computation of irreducible decomposition is difficult, in many cases it is nec-

essary to work in modular arithmetics instead of over the field of rational numbers. Since

the obtained ideals have rational coefficients, the rational reconstruction needs to be done.

For more informations on rational reconstruction algorithm see [53]. Working with modular

arithmetics sometimes produces wrong conditions or do not produces all conditions, some

can be lost. For this reason additional few steps need to be done.

The approach which can be used to check the conditions was suggested in [41].

The irreducible decomposition was computed over four different characteristics; 7919,

32003, 100109 and 104729. The approach described in [41] was not done completely, but

in many cases computations are difficult even for more capable computers. But with high

probability the list of conditions of Theorem 3.3 is complete.

The existence of the analytic first integral

Now we prove that under each of the conditions of Theorem 3.3 the system has a first

integral.

Case 1. The system under conditions a11 − b11 = b01 = a10 = a02 − 3b02 = 3a20 − b20 = 0 is

ẋ = x − a20x3 − b11x2y − a02xy2 − y3,

ẏ = −y + x3 + b11xy2 + 3a20x2y +
a02

3
y3.

It is a Hamiltonian system. The first integral is ψ(x, y) = xy − x4

4 − y4

4 − a20x3y − b11
2 x2y2 −

a02
3 xy3.

Case 2. Conditions a11 − b11 = a20 + b02 = a02 + b20 = a2
10 + b2

01 = 0 satisfy the conditions for

time-reversible cubic system written in [44], hence the system is time-reversible.

Case 3 and Case 4. systems are of form

ẋ = x − a10x2 − a20x3 − a11x2y − a02xy2 − y3,

ẏ = −y ± a10 + x3 + a11xy2 + a02x2y + a20y3.

The system, the same as in Case 2, is time-reversible, since it satisfies the conditions for time-

reversible cubic system.

Case 5. The conditions a11 = b11 = a10 = b01 = a20 + 3b20 = 3a02 + b02 = 4b20b02 + 3 = 0 yield

the system

ẋ = x − 9

4b02
x3 +

b02

3
xy2 − y3,

ẏ = x3 − y − 3

4b02
x2y + b02y3.

We obtain three Darboux factors of this system, one of degree four,

l1(x, y) = 1 − 3

2b02
x2 +

b2
02

9
x4 − 9

4b2
02

xy − 4b2
02

9
xy +

2b02

3
x3y − 2b02

3
y2 +

3

2
x2y2

+
3

2b02
xy3 +

9

16b2
02

y4,
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and two of degree six,

l2(x, y) = 1 − 9

2b02
x2 +

81

16b2
02

x4 − b02

3
x6 + 2b02x3y − 3

2
x5y − 2b02y2 +

3

2
x2y2

− 9

4b02
x4y2 +

9

2b02
xy3 − 9

8b2
02

x3y3 − 2b2
02

9
x3y3 + b2

02y4 − b02x2y4

− 3

2
xy5 +− 3

4b02
y6

and

l3(x, y) = 1 − 9x2

4b02
− 216b2

02xy

81 + 16b4
02

− b02y2 +
54b2

02x4

81 + 16b4
02

+
9

2
x2y2 +

54b2
02y4

81 + 16b4
02

+
b02(243 + 16b4

02)x3y

81 + 16b4
02

+
27(27 + 16b4

02)xy3

4b02(81 + 16b4
02)

− 8b5
02x6

3(81 + 16b4
02)

− 24b4
02x5y

81 + 16b4
02

− 90b3
02x4y2

81 + 16b4
02

− 180b2
02x3y3

81 + 16b4
02

− 405b02x2y4

2(81 + 16b4
02)

− 243xy5

2(81 + 16b4
02)

− 243y6

8b02(81 + 16b4
02)

.

Two of these three Darboux factors construct the first integral

ψ(x, y) = C(l3
1 l2 − l3

1 l−1
2 ) = xy + . . . ,

where C =
6b2

02

81+16b4
02

and 81 + 16b4
02 6= 0.

In case 81 + 16b4
02 = 0, the first integral is of form

ψ(x, y) =
1

4
(4 − 4(−1)

3
4 x2 + ix4 − 4(−1)

1
4 x3y + 4(−1)

1
4 y2 + 6x2y2 + 4(−1)

3
4 xy3 − iy4).

Theorem 3.4. The system (1.1) with a−13 = b3,−1 = 0 is integrable if and only if one of the following

conditions holds:

1. a11 = b11 = b20 = a20 = 0,

2. a11 = b11 = b20 = a02 = 0,

3. a11 = b11 = b02 = a02 = 0,

4. a11 − b11 = a02a20 − b20b02 = a20b2
01 − a2

10b02 = a2
10a02 − b2

01b20 = 0,

5. a11 − b11 = a20 + b20 = a02 + b02 = 0.

Proof. The computation of necessary conditions The computation of irreducible decomposition

of variety of ideal B9 with additional conditions a−13 = b3,−1 = 0, was not too extensive and

difficult, hence it was done over the field of rational numbers. This way conditions of Theorem

3.4 were obtained.

The existence of the analytic first integral

The system (1.1) with a−13 = b3,−1 = 0 is Lotka–Volterra system, which was studied in [18].

Case 1. The system under conditions a11 = b11 = b20 = a20 = 0 is equivalent to the system of

Case 4 of Theorem 1.4 in [18].
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Case 2. Conditions a11 = b11 = b20 = a02 = 0 yield the Case 3 of Theorem 1.4 in [18].

Case 3. Conditions a11 = b11 = b02 = a02 = 0 yield the system that is equivalent to the system

of Case 5 of Theorem 1.4 in [18].

Case 4. The Case 4 is Case 2 of Theorem 1.4 in [18].

Case 5. Conditions a11 − b11 = a20 + b20 = a02 + b02 = 0 are conditions of Case 1 of Theorem

1.4 in [18].

Theorem 3.5. The system (1.1) with a−13 = 1 and b3,−1 = 0 is integrable if and only if one of the

following conditions holds:

1. a11 − b11 = b20 = a20 = a10 = 0,

2. a11 = b11 = b20 = a20 = 0,

3. a11 − b11 = a10 = b01 = 3a20 − b20 = a02 − 3b02 = 0,

4. a11 = b11 = a20 + 3b20 = b01 = b02 = a02 = a10 = 0.

Proof. The computation of necessary conditions

The conditions were obtained similar as in case of Theorem 3.3.

The existence of the analytic first integral

Case 1. The corresponding system for conditions a11 − b11 = b20 = a20 = a10 = 0 is

ẋ = x − a11x2y − a02xy2 − y3,

ẏ = −y + b01y2 + a11xy2 + b02y3.

This system is time-reversible, hence integrable.

Case 2. In this case system is of the form

ẋ = x − a10x2 − a02xy2 − y3,

ẏ = −y + b01y2 + b02y3.

Darboux factors found for this system are

l1(x, y) = y, l2,3(x, y) =
1

2

(

2 − b01y ±
√

b2
01 + 4b02y

)

,

but using them we were not able to construct Darboux first integral or Darboux integrating

factor. For this reason we looked for a first integral of the form ψ(x, y) = ∑
∞
k=1 fk(x)yk. The

function fk(x) is defined by recursive differential equation

(k − 2)b02 fk−2(x) + (k − 1)b01 fk−1(x)− k fk(x)− f ′k−3(x)+

− a02x f ′k−2(x) + x(1 − a10x) f ′k(x) = 0. (3.2)

Using induction we show that for every odd number, k = 2n− 1, is f2n−1(x) = pn(x)
(−1+a10x)2n−1

and for every even number, k = 2n, is f2n(x) = pn(x)
(−1+a10x)2n .

Proving first the assumption for odd numbers.
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For k = 1: f1(x) = −x
(−1+a10x)

. Let us assume that the assumption holds for all l < 2n − 1.

We need to show that it holds for 2n − 1. Using assumptions in (3.2) for every l < 2n − 1 we

obtain differential equation

pn(x)

x(−1 + a10x)2n−1
=

(2n − 1)

x(−1 + a10x)
f2n−1(x) + f ′2n−1(x),

which has solution

f2n−1(x) =
x2n−1

(−1)2n−1(−1 + a10x)2n−1

∫

(−1)2n−1 pn(x)(−1 + a10x)2n−1

x2n(−1 + a10x)2n−1
dx

=
x2n−1

(−1 + a10x)2n−1

∫

pn(x)

x2n
dx =

x2n−1

(−1 + a10x)2n−1

pn(x)

x2n−1
=

pn(x)

(−1 + a10x)2n−1
.

In the same way this can be proven for even numbers k.

For k = 2: f2(x) = b01x
(−1+a10x)2 and

pn(x)

x(−1 + a10x)2n
=

2n

x(−1 + a10x)
f2n(x) + f ′2n(x)

needs to hold. Solving this differential equation we obtain f2n(x) = pn(x)
(−1+a10x)2n , as needed.

Case 3. The system corresponding to conditions a11 − b11 = a10 = b01 = 3a20 − b20 = a02 −
3b02 = 0 is

ẋ = x − b11x2y − b20

3
x3 − 3b02xy2 − y3,

ẏ = −y + b11xy2 + b20x2y + b02y3.

This is Hamiltonian system and the first integral is

ψ(x, y) = xy − b20

3
x3y − b11

2
x2y2 − b02xy3 − y4

4
.

Case 4. The system in this case is

ẋ = x − a20x3 − y3,

ẏ = y(−1 +
a20

3
x2).

Darboux factors of this system are l1(x, y) = y, l2(x, y) = x − y3

4 and two Darboux factors of

degree six,

l3(x, y) =
1

9
(9 − 18a20x2 + 9a20x4 + 18a20xy3 − 2a2

20x3y3 − 3a20y6)

and

l4(x, y) =
1

6
(6 − 6a20x2 + 6a20xy3 − a20y6).

Using three of four Darboux factors we obtain first integral

ψ(x, y) = l1l2l
− 1

3
3 = xy + · · ·
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Studying integrability of the systems of higher degrees is difficult, mostly because of com-

putation of irreducible decomposition. Due to these problem we splitted the research of the

system (1.1) to four cases, as explained before in Section 1. The fact is that by the involution

of parameters aij ↔ bji we can transforms case 3) of (1.2), where additional conditions are

a−13 = 1 and b3,−1 = 0, into case 4), where a−13 = 0 and b3,−1 = 1. Hence only three of four

cases needed to be studied. In theorems 3.3, 3.4 and 3.5 the obtained results are presented

and in the proofs all procedures of obtaining these conditions are explained into details.

By fixing some coefficients and splitting the study of the system (1.1), the general condi-

tions of integrability of this system were not obtained. But as it will be explained here the

general conditions of integrability of the system (1.1) can be computed using conditions of

Theorems 3.3, 3.4 and 3.5.

The main theory behind obtaining the general results is the elimination theory. More on

this theory can be read in [13, Chapter 3] or [44, Chapter 1.3]. Before explaining the whole

procedure for obtaining the general conditions, some important facts on the elimination theory

need to be given.

Definition 3.6. Let I = 〈 f1, . . . , fm〉 be ideal in k[x1, . . . , xn] (with the implicit ordering of the

variables x1 > x2 > . . . > xn) and fix l ∈ {0, 1, . . . , n − 1}. The l-th elimination ideal of I is the

ideal Il = I ∩ k[xl+1, xl+2, . . . , xn]. Any point (al+1, . . . , an) ∈ V(Il) is called partial solution of the

system { f = 0; f ∈ I}.

Geometrically, the elimination is the projection of V(I) ⊂ kn on the lower dimensional

subspace kn−l .

The method for computing the elimination ideal Il is provided in the following theorem.

Theorem 3.7. Fix the lexicographic term order on the ring k[x1, . . . , xn] with x1 > x2 > · · · > xn

and let G be a Gröbner basis for an ideal I of k[x1, . . . , xn] with respect to this order. Then for every l,

0 ≤ l ≤ n − 1, the set Gl := G ∩ k[xl+1, . . . , xn] is a Gröbner basis for the l-th elimination ideal Il .

The procedure of obtaining the general results is based on the following observations.

Taking the variables

x1 → ax, y1 → by

changes the system (1.1) into the system

ẋ1 = x1 − α10x2
1 − α20x3

1 − α01x1y1 − α11x2
1y1 − α−12y2

1 − α02x1y2
1 − α−13y3

1,

ẏ1 = −y1 + β2,−1x2
1 + β3,−1x3

1 + β10x1y1 + β02x2
1y1 + β01y2

1 + β11x1y2
1 + β02y3

1,
(3.3)

where

α10 =
a10

a
, β2,−1 =

bb21

a2
,

α20 =
a20

a2
, β3,−1 =

bb3,−1

a3
,

α01 =
a01

b
, β10 =

b10

a
,

α11 =
a11

ab
, β20 =

b20

a2
,

α−12 =
aa−12

b2
, β01 =

b01

b
,
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α02 =
a02

b2
, β11 =

b11

ab
,

α−13 =
aa−13

b3
, β02 =

b02

b2
.

The focus quantities of both systems, (1.1) and (3.3), are different only by the constant fac-

tor. This constant factor does not make a difference for the center variety, hence the irreducible

decomposition of both varieties generates the same conditions.

As it is seen from the system (3.3), each nonzero coefficient can be rescaled so that obtained

coefficient is equal to 1. Similar, coefficients can be set equal to zero.

Hence by splitting our studies as presented in Section 1, the general results were not lost.

These can be obtained with the approach described below.

For the case 1), where a−13 = b3,−1 = 1, the coefficients α−13 and β3,−1 need to fulfil

α−13 = ab−3 and β3,−1 = a−3b, with additional restrictions a 6= 0 and b 6= 0. These additional

restrictions can be written in the term of polynomial as 1 − wa, respectively 1 − vb. The other

conditions of Theorem 3.3 change regarding ai,j = αi,ja
−ibj and bi,j = βi,ja

−ibj, where i, j ∈
{−1, . . . , 3}. This way ideals I1, . . . , I5 ∈ C[w, v, a, b, A, B], where A = {a10, a20, a11, a02, a−13}
and B = {b01, b02, b11, b20, b3,−1} are formed,

I1 = 〈1 − wa, 1 − vb, ab(a11 − b11), bb01, aa10, b2(a02 − 3b02), a2(3a20 − b20),

− a + b3a−13,−b + a3b3,−1〉
I2 = 〈1 − wa, 1 − vb, ab(a11 − b11), a2a20 + b2b02, b2a02 + a2b20, a2a2

10 + b2b2
01,

− a + b3a−13,−b + a3b3,−1〉
I3 = 〈1 − wa, 1 − vb, ab(a11 − b11), a2a20 − b2b02, b2a02 − a2b20, aa10 − bb01,

− a + b3a−13,−b + a3b3,−1〉
I4 = 〈1 − wa, 1 − vb, ab(a11 − b11), a2a20 − b2b02, b2a02 − a2b20, aa10 + bb01,

− a + b3a−13,−b + a3b3,−1〉
I5 = 〈1 − wa, 1 − vb, aba11, abb11, aa10, bb01, a2(a20 + 3b20), b2(3a02 + b02,

3 + 4a2b2b02b20,−a + b3a−13,−b + a3b3,−1〉.

Similar we obtain ideals I6, . . . , I10 from conditions of Theorem 3.4. Ideals I11, . . . , I14 were

gained from Theorem 3.5 and I15, . . . , I18 by involution of coefficients in conditions of Theo-

rem 3.5.

From the obtained ideals I1, . . . , I18 we eliminate, using Singular routine ❡❧✐♠✐♥❛t❡, vari-

ables w, v, a and b. The elimination ideals are

J′1 = I1 ∩ C[a10, a20, a11, a02, a−13, b01, b02, b11, b20, b3,−1], . . . , J′18.

Then we compute irreducible decomposition (Singular routine ♠✐♥❆ss●❚❩) of each obtained

eliminated ideal, gaining ideals J1, . . . , J18:

J1 = 〈b01, a11 − b11, 3a20 − b20, a02 − 3b02, a10〉,
J2 = 〈a11 − b11, a2

20a−13 − b2
02b3,−1, a02b02b3,−1 − a20a−13b20, a02a20 − b20b02,

a2
02b3,−1 − a−13b2

20, a2
10b02 − a20b2

01, a2
10a−13b20 − a02b2

01b3,−1,

a2
10a20a−13 − b2

01b02b3,−1, a2
10a02 − b2

01b20, a4
10a−13 − b4

01b3,−1〉,
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J3 = 〈a11 − b11, a2
20a−13 − b2

02b3,−1, a02b02b3,−1 − a20a−13b20, a02a20 − b20b02,

a2
02b3,−1 − a−13b2

20, a2
10b02 − a20b2

01, a2
10a−13b20 − a02b2

01b3,−1,

a2
10a20a−13 − b2

01b02b3,−1, a2
10a02 − b2

01b20, a4
10a−13 − b4

01b3,−1〉,
J4 = 〈a11 − b11, a2

20a−13 − b2
02b3,−1, a02b02b3,−1 − a20a−13b20, a02a20 − b20b02,

a2
02b3,−1 − a−13b2

20, a2
10b02 − a20b2

01, a2
10a−13b20 − a02b2

01b3,−1,

a2
10a20a−13 − b2

01b02b3,−1, a2
10a02 − b2

01b20, a4
10a−13 − b4

01b3,−1〉,
J5 = 〈b11, b01, a11, 3a−13b3,−1 + 4b20b02, a20 + 3b20, 3a02 + b02, a10〉, . . .

By computing intersection of obtained ideals Ji, J = ∩18
i=1 Ji (Singular routine ✐♥t❡rs❡❝t) and

then using Singular routine ♠✐♥❆ss●❚❩ to compute irreducible decomposition of V(J), we

obtain list of conditions from Theorem 1.1. For more details on this approach see [21].

4 Cyclicity of components of the center variety

In this section we will presented results connected to cyclicity of the specific family of real

cubic system.

The researched real system was obtained from the complex system (1.1) by setting

a10 = A10 + iB10, b01 = A10 − iB10, a20 = A20 + iB20, b02 = A20 − iB20,

a02 = A02 + iB02, b20 = A02 − iB02, a11 = A11 + iB11, b11 = A11 − iB11,

a−13 = A−13 + iB−13, b3,−1 = A−13 − iB−13.

(4.1)

In the same way, by setting (4.1), the real center variety was obtained from the center variety

presented in Theorem 1.1. The studied real system is of the form

ẋ = i(x − (A10x2 + A20x3 + A11x2 x̄ + A02xx̄2 + A−13 x̄3)

− i(B10x2 + B20x3 + B11x2 x̄ + B02xx̄2 + B−13 x̄3)).
(4.2)

Theorem 4.1. The center variety in R10 of the real system (4.2) consists of the following irreducible

components:

1) 3B20 + B02 = B11 = B10 = 3A20 − A02 = A10 = 0,

2) B20 − 3B02 = B11 = B10 = A20 + 3A02 = A11 = A10 = A2
−13 + B2

−13 − 4A2
02 − 4B2

02 = 0,

3) B11 = A02B20 + A20B02 = A2
02B−13 − 2A−13 A02B02 − B−13B2

02 = A20A02B−13 − 2A−13A20B02

+ B−13B20B02 = A2
20B−13 + 2A−13A20B20 − B−13B2

20 = 2A10A02B10 + A2
10B02 − B2

10B02

= 2A10A20B10 − A2
10B20 + B2

10B20 = A2
10A02B−13 − A02B2

10B−13 − 2A2
10A−13B02 + 2A−13B2

10B02

+ 2A10B10B−13B02 = A2
10A20B−13 − A20B2

10B−13 + 2A2
10A−13B20 − 2A−13B2

10B20

− 2A10B10B−13B20 = 2A02B3
10B−13 + 4A2

10A−13B10B02 − 4A−13B3
10B02 + A3

10B−13B02

− 5A10B2
10B−13B02 = 2A20B3

10B−13 − 4A2
10A−13B10B20 + 4A−13B3

10B20 − A3
10B−13B20

+ 5A10B2
10B−13B20 = 4A3

10A−13B10 − 4A10A−13B3
10 + A4

10B−13 − 6A2
10B2

10B−13 + B4
10B−13 = 0,

4) B20 − B02 = B−13 = B11 = A02 + A20 = A−13 = 0,

5) B02 = B−13 = B11 = A02 = A11 = A−13 = 0.

The dimension of these components is 5, 3, 5, 5, 4, respectively.
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Proof. The center variety of the real system (4.2) was obtain from complex variety of Theo-

rem 1.1. The change of coefficients in the way as written at (4.1) and then by elimination of

complex unit i from obtained ideals produced the conditions of Theorem 4.1. The conditions

4), 5), 6), 7) of Theorem 1.1 yield conditions 4), 3), 2), 1) of this theorem and the condition 5)

was obtain from 2). The other obtained conditions are subvarieties of 3), 4) and 5).

As we can see from 1), 4) and 5) the number of parameters in these components is equal

to 5, 5 and 6. Hence the dimension is 5, 5 and 4, since the number of all parameters is 10 and

5 (respectively 5 and 4) parameters are free.

The dimension of remaining components is not obvious as in three cases before. By the

Theorem 2 of [13, Chapter 3.3] the upper bound of dimension can be determine from obtained

rational parametrization. For the case 2) the parametrization is

B10 = A10 = B11 = A11 = f0 = 0, A02 = f1(u1, u2, u3)/g2(u3),

B02 = f2(u1, u2, u3)/g2(u3), A20 = f3(u1, u2, u3)/g2(u3),

B20 = f4(u1, u2, u3)/g2(u3), B−13 = f5(u1, u2, u3)/(g1(u2)g2(u3)),

A−13 = f6(u1, u2, u3)/(g1(u2)g2(u3)),

where
f1(u1,u2, u3) = u1(1 − u2

3), f2(u1, u2, u3) = 2u1u3,

f3(u1, u2, u3) = −3u1(1 − u2
3), f4(u1, u2, u3) = 6u1u3,

f5(u1, u2, u3) = −u1(u2 + u3)(−1 + u2u3),

f6(u1, u2, u3) =
1

2
u1(−1 − u2 − u3 + u2u3)(−1 + u2 + u3 + u2u3),

g1(u2) = 1 + u2
2, g2(u3) = 1 + u2

3

and the components dimension is less or equal three, since these functions depends on three

variables, u1, u2 and u3. To know if the dimension is exactly three, Jacobian of the functions

f0(u1, u2, u3), . . . , f6(u1, u2, u3) needs to be computed. The Jacobian in some arbitrary point,

u1 = 1, u2 = 4, u3 = 2, is three, hence the dimension is equal to three.

In the same way we obtain the dimension for component 3). The parametrization is

B11 = f0 = 0, B10 = f1(u1, u2, u3, u4, u5) = u1,

A10 = f2(u1, u2, u3, u4, u5) = u2, A20 = f3(u1, u2, u3, u4, u5) = u3,

B20 = f4(u1, u2, u3, u4, u5)/(g3(u1, u2)g4(u1, u2)),

A02 = f5(u1, u2, u3, u4, u5) = u4, B02 = f6(u1, u2, u3, u4, u5)/(g3(u1, u2)g4(u1, u2)),

A−13 = f7(u1, u2, u3, u4, u5)/(( f1(u1) f2(u2)g3(u1, u2)g4(u1, u2))),

where
f4(u1, u2, u3, u4, u5) = −2u1u2u3, f6(u1, u2, u3, u4, u5) = u4,

f7(u1, u2, u3, u4,u5) = −2u1u2u4, g3(u1, u2) = u1 − u2,

g4(u1, u2) = u1 + u2.

The dimension of this component is less or equal five and the Jacobian of f1(u1, u2, u3, u4, u5),

. . . , f7(u1, u2, u3, u4, u5) in random point u1 = 4, u2 = 6, u3 = 2, u4 = 1, u5 = 2 is five, hence the

dimension of this component of center variety is five.

Theorem 4.2. Let us define polynomials F1 = A2
20B−13 + 2A−13A20B20 − B−13B2

20, F2 = (A02B−13 −
B02A−13)(B02B−13 + A02A−13), F3 = 3A2

02 + 2A02A2
10 − 8A02A20 + 2A2

10A20 − 3A2
20 − 2A02B2

10 −
2A20B2

10, F4 = (A2
10 + B2

10)(A02 + B02)(A02 − B02) and F5 = A2
10B20 − B2

10B20 − 2A10A20B10.
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There are bifurcations of the system (4.2) which produce 3 limit cycles locally from the center

corresponding to the parameter value p1, where p1 is a component 1) with F1(p1) 6= 0 of R10. The

cyclicity of a generic point p2 of component 2) with F2(p2) 6= 0 and of point p4 with F4(p4) 6= 0 is 5.

For the component 3) with F3(p3) 6= 0 the cyclicity is 4 and 6 for the component 5) with F5(p5) 6= 0.

Proof. Component 1) We choose an arbitrary point p = (A10, B10, A20, B20, A02, B02, A11, B11,

A−13, B−13) of this component, (0, 0, 1, 1, 3,−3, 2, 0, 1, 1), the rank of the Jacobian of the fo-

cus quantities, rank J
(k)
p = 3, is equal to three. By Theorem 2.3 the cyclicity of a generic point

of this component is three.

Component 2) For the random point p = (0, 0,−3, 3, 1, 1, 0, 0,−
√

7, 1) the rank of the Jacobian

is five, rank J
(k)
p = 5, hence five limit cycles can bifurcate for these systems.

Component 3) The rank of Jacobian of the focus quantities at the point p, where p =

(2, 1, 3
4 , 1,− 3

4 , 1, 1, 0, 7
24 , 1) of the component 3) is equal to four, rank J

(4)
p = 4.

Component 4) For the point p = (1, 1,−2, 3, 2, 3, 1, 0, 0, 0) of the component 4) there can bifur-

cate up to five limit cycles, since the rank of Jacobian at the point p is five, rank J
(5)
p = 5.

Component 5) The cyclicity of the component 5) is six, since the rank of Jacobian of the focus

quantities at the point p = (2, 3, 1, 1, 0, 0, 0, 0, 0, 0) of this component is six, rank J
(k)
p = 6.

5 Conclusions

The main results in this paper are on integrability and cyclicity of cubic system. The compu-

tation of necessary conditions for system of the form (1.1) were difficult. It was impossible

to compute over the field of rational numbers. To overcome the difficulties we have splitted

our system into four subsystems, solved the integrability problem and from the integrability

conditions for these subsystems we have reconstructed integrability variety of general system

(1.1). From the results on integrability of complex cubic system, where seven conditions were

obtained, see Theorem 1.1, we have obtained the conditions of associated real cubic systems.

Results are presented in Thereom 4.1. For each of five obtained components of integrability

variety of a real systems we studied the number of limit cycles that can bifurcate from it. It

was shown that maximum limit cycles that can bifurcate from system (4.2) under some spe-

cific conditions is six. This number is, in comparison to result from Żołądek [56], where he

proven that there are up to eleven limit cycles appearing, small.
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Abstract. In this paper, we study the existence of ground state solutions for the fol-
lowing nonlinearly coupled systems of Choquard type with lower critical exponent by
variational methods

{
−∆u + V(x)u = (Iα ∗ |u|

α
N +1)|u|

α
N −1u + p|u|p−2u|υ|q, in R

N ,

−∆υ + V(x)υ = (Iα ∗ |υ|
α
N +1)|υ|

α
N −1υ + q|υ|q−2υ|u|p, in R

N .

Where N ≥ 3, α ∈ (0, N), Iα is the Riesz potential, p, q ∈
(
1,
√

N
N−2

)
and Np +

(N + 2)q < 2N + 4, N+α
N is the lower critical exponent in the sense of Hardy–

Littlewood–Sobolev inequality and V ∈ C(RN , (0, ∞)) is a bounded potential function.
As far as we have known, little research has been done on this type of coupled systems
up to now. Our research is a promotion and supplement to previous research.

Keywords: nonlinearly coupled systems, lower critical exponent, Choquard type equa-
tion, ground state solutions, variational methods.
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1 Introduction and main result

We are interested in the following nonlinearly coupled systems of Choquard type with lower

critical exponent

{
−∆u + V(x)u = (Iα ∗ |u|

α
N +1)|u|

α
N −1u + p|u|p−2u|υ|q, in R

N ,

−∆υ + V(x)υ = (Iα ∗ |υ|
α
N +1)|υ|

α
N −1υ + q|υ|q−2υ|u|p, in R

N .
(1.1)

Where the dimension N ≥ 3 of R
N is given and function Iα : R

N \ {0} → R is a Riesz potential

of order α ∈ (0, N) defined for each x ∈ R
N \ {0},

Iα(x) =
Γ(N−α

2 )

Γ( α
2 )π

N
2 2α|x|N−α

,

BCorresponding author. Email: anran0200@163.com
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Γ denotes the classical Gamma function, ∗ represents the convolution product on R
N , p, q ∈

(
1,
√

N
N−2

)
and Np + (N + 2)q < 2N + 4, V ∈ C(RN , (0, ∞)) is a bounded potential function.

More precisely, we make the following assumptions on V,

(V1) V0 := inf
x∈RN

V(x) > 0;

(V2) V(x) < lim
|y|→∞

V(y) = V∞ < ∞.

For the following Choquard equation

− ∆u + V(x)u = (Iα ∗ |u|
p)|u|p−2u, in R

N , (1.2)

when N = 3, α = 2, p = 2 and V is a positive constant, this equation appears in several physi-

cal contexts, such as standing waves for the Hartree equation, the description of the quantum

physics of a polaron at rest by S. I. Pekar in [13] and the modeling of an electron trapped in its

own hole in 1976 in the work of Choquard, as a certain approximation to Hartree–Fock theory

of one–component plasma (see [4]). In some particular cases, this equation is also known as

the Schrödinger–Newton equation, which was introduced by R. Penrose [14] in his discussion

on the selfgravitational collapse of a quantum mechanical wave function. The existence and

uniqueness of positive solutions for equation (1.2) with N = 3, V(x) ≡ 1, α = 2 and p = 2 was

firstly obtained by E. H. Lieb in [4]. Later, P. L. Lions [6, 7] got the existence and multiplicity

results of normalized solution on the same topic. Since then, the existence and qualitative

properties of solutions for equation (1.2) have been widely studied by variational methods in

the recent decades. For related topics, we refer the reader to the recent survey paper [12].

To study equation (1.2) variationally, the well-known Hardy–Littlewood–Sobolev inequal-

ity is the starting point. Particularly, V. Moroz and J. Van Schaftingen [9] established the exis-

tence, qualitative properties and decay estimates of ground state solutions for the autonomous

case of equation (1.2) with N+α
N < p <

N+α
N−2 and V(x) ≡ 1. In view of the Pohožaev identity

[9–11], Choquard equation (1.2) with V is a positive constant has no nontrivial smooth H1 so-

lution when either p ≤ N+α
N or p ≥ N+α

N−2 . Usually, N+α
N is called the lower critical exponent and

N+α
N−2 is the upper critical exponent for Choquard equation in the sense of Hardy–Littlewood–

Sobolev inequality. The upper critical exponent plays a similar role as the Sobolev critical

exponent in the local semilinear equations. C. O. Alves, S. Gao, M. Squassina and M. Yang[1]

established the existence of ground states for a type of critical Choquard equation with con-

stant coefficients and also studied the existence and multiplicity of semi–classical solutions

and characterized the concentration behavior by variational methods. G. Li and C. Tang [8]

obtained a positive ground state solution for Choquard equation with upper critical exponent

when the nonlinear perturbation satisfies the general subcritical growth conditions. The lower

critical exponent seems to be a new feature for Choquard equation, which is related to a new

phenomenon of “bubbling at infinity” (for more details see [10]).

J. Van Schaftingen and J. Xia [15] studied the ground state solutions of the following

Choquard equation with lower critical exponent and coercive potential V,

− ∆u + V(x)u = (Iα ∗ |u|
α
N +1)|u|

α
N −1u, in R

N . (1.3)

Later, J. Van Schaftingen and J. Xia [16] also obtained a ground state solution for the following

Choquard equation with lower critical exponent and a local nonlinear perturbation

− ∆u + u = (Iα ∗ |u|
α
N +1)|u|

α
N −1u + f (x, u), in R

N . (1.4)
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For the autonomous case f (x, u) = f (u) satisfies some superlinear assumptions, the existence

and symmetry of ground state for equation (1.4) were also got. Furthermore, they derived

a ground state solution of equation (1.4) for the nonautonomous case f (x, u) = K(x)|u|q−2u

with q ∈ (2, 2 + 4
N ) and K ∈ L∞(RN) satisfying infx∈RN K(x) = K∞ = lim|x|→∞ K(x) > 0.

As we mentioned above, all the results in the literature are concerned with a single equa-

tion. More recently, P. Chen and X. Liu [2] obtained the existence of ground state solu-

tions for the following linearly coupled systems of Choquard type with subcritical exponent

p ∈ (N+α
N , N+α

N−2 ), {
−∆u + u = (Iα ∗ |u|

p)|u|p−2u + λυ, in R
N ,

−∆υ + υ = (Iα ∗ |υ|
p)|υ|p−2υ + λu, in R

N .

Later, M. Yang, J. de Albuquerque, E. Silva and M. Silva [19] obtained the existence of positive

ground state solutions for the following linearly coupled systems of Choquard type

{
−∆u + u = (Iα ∗ |u|

p)|u|p−2u + λυ, in R
N ,

−∆υ + υ = (Iα ∗ |υ|
q)|υ|q−2υ + λu, in R

N .
(1.5)

when the exponents satisfy one of case 1, case 2 and case 3, and also obtained that there is no

nontrivial solution for system (1.5) in case 4, where

case 1, N+α
N < p <

N+α
N−2 and q = N+α

N−2 ,

case 2, p = N+α
N and N+α

N < q <
N+α
N−2 ,

case 3, p = N+α
N and q = N+α

N−2 ,

case 4, p, q ≤ N+α
N or p, q ≥ N+α

N−2 .

Motivated by [2, 15, 16, 19], in this paper, we will study the existence of ground state solu-

tions for system (1.1). Our main result reads as followed.

Theorem 1.1. Let N ≥ 3, α ∈ (0, N), p, q ∈
(
1,
√

N
N−2

)
, Np + (N + 2)q < 2N + 4 and V satisfies

(V1), (V2), then system (1.1) admits at least one ground state solution.

Remark 1.2. The assumption Np + (N + 2)q < 2N + 4 is mainly used to get the energy

estimate of c0 in Lemma 2.6. In particular, p, q ∈
(
1, N+2

N+1

)
satisfy our assumptions on p, q.

The method used to prove Theorem 1.1 is as follows. Firstly, we establish the variational

framework for system (1.1). Let H1(RN) denote the normal Sobolev space equipped with the

norm

‖u‖ :=
( ∫

RN
(|∇u|2 + |u|2)dx

) 1
2
.

Define X = H1(RN)× H1(RN) equipped with norm

‖(u, v)‖ = (‖u‖2 + ‖v‖2)
1
2 .

Similar to H1(RN), X is a Hilbert space and satisfies

X →֒ Lp(RN)× Lp(RN), p ∈ [2, 2∗], where 2∗ =
2N

N − 2
.
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By Hardy–Littlewood–Sobolev inequality and Sobolev embedding theorem, the energy func-

tional associated to system (1.1)

JV(u, v) =
1

2

∫

RN
(|∇u|2 + V(x)|u|2)dx +

1

2

∫

RN
(|∇v|2 + V(x)|v|2)dx

−
N

2(N + α)

∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N +1dx −

N

2(N + α)

∫

RN
(Iα ∗ |v|

α
N +1)|v|

α
N +1dx

−
∫

RN
|u|p|v|qdx

is C1(X, R) and

〈J′V(u, v), (φ, ϕ)〉 =
∫

RN
(∇u∇φ + V(x)uφ)dx +

∫

RN
(∇v∇ϕ + V(x)vϕ)dx

−
∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N −1uφ)dx −

∫

RN
(Iα ∗ |v|

α
N +1|v|

α
N −1vϕ)dx

− p
∫

RN
|v|q|u|p−2uφdx − q

∫

RN
|u|p|v|q−2vϕdx, for (φ, ϕ) ∈ X.

Thus, any critical point of JV is a weak solution of system (1.1). As usual, a nontrivial solution

(u, v) ∈ X of system (1.1) is called a ground state solution if

JV(u, v) = cV
g := inf{JV(u, v) : (u, v) ∈ X \ {(0, 0)} and J′V(u, v) = 0}.

Secondly, in the process of finding ground state solutions for system (1.1), the following

limiting problem plays a significant role

{
−∆u + V∞u = (Iα ∗ |u|

α
N +1)|u|

α
N −1u + p|u|p−2u|υ|q, in R

N ,

−∆v + V∞υ = (Iα ∗ |υ|
α
N +1)|υ|

α
N −1υ + q|υ|q−2υ|u|p, in R

N .
(1.6)

Compared with the autonomous system (1.6), the potential V in system (1.1) breaks down

the invariance under translations in R
N , then we cannot use the translation-invariant

concentration–compactness argument. The strategy to prove Theorem 1.1 is a comparison of

the energy of the functional JV with the functional JV∞
associated to system (1.6). On the one

hand, we construct a Palais–Smale sequence {(un, vn)} of JV∞
at the level c0 defined in (2.4),

that is, a sequence {(un, vn)} in X such that JV∞
(un, vn) → c0 and J′V∞

(un, vn) → 0 as n → ∞.

On the other hand, we prove that up to translations the sequence {(un, vn)} converges to a

nontrivial solution (u, v) of system (1.6). Then, in the same way we obtain a (PS)cV
sequence of

JV . Furthermore, by the equivalent characterization of c0, we can show that cV < c0 under the

assumptions on the potential V. Based on cV < c0, the compactness maintains and a ground

state solution for system (1.1) is obtained.

The rest of the paper is organized as follows. We give some preliminaries in Section 2. We

obtain a ground state solution for system (1.6) in Section 3. Theorem 1.1 is proved in Section 4.

2 Preliminary

In this section, we first provide some preliminary results.

The following well-known Hardy–Littlewood–Sobolev inequality will be frequently used

in this paper.
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Lemma 2.1 (Hardy–Littlewood–Sobolev inequality, [5]). Let p, q > 1, α ∈ (0, N), 1 ≤ r < s < ∞

and s ∈ (1, N
α ) such that

1

p
+

1

q
= 1 +

α

N
,

1

r
−

1

s
=

α

N
.

(i) Let f ∈ Lp(RN) and g ∈ Lq(RN), we have

∣∣∣
∫

RN

∫

RN

f (x)g(y)

|x − y|N−α
dxdy

∣∣∣ ≤ C(N, α, p)‖ f ‖Lp(RN)‖g‖Lq(RN).

(ii) For any f ∈ Lr(RN), Iα ∗ f ∈ Ls(RN) and

‖Iα ∗ f ‖Ls(RN) ≤ C(N, α, r)‖ f ‖Lr(RN).

By Hardy–Littlewood–Sobolev inequality mentioned above and the classical Sobolev em-

bedding theorem, we obtain

∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N +1dx ≤ C(N, α)

( ∫

RN
|u|2dx

) α
N +1

. (2.1)

This inequality can be restated as the following minimization problem

S = inf

{∫

RN
|u|2dx : u ∈ H1(RN) and

∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N +1dx = 1

}
.

By Theorem 4.3 in [5], the infimum S is achieved by a function u ∈ H1(RN) if and only if

u(x) = A

(
ε

ε2 + |x − a|2

) N
2

, x ∈ R
N , (2.2)

for some given constants A ∈ R, and a ∈ R
N , ε ∈ (0, ∞). The form of the minimizers in (2.2)

suggests that a loss of compactness in equation (1.3) with V is a positive constant may occur

by both of translations and dilations.

First, we recall that pointwise convergence of a bounded sequence implies weak conver-

gence.

Lemma 2.2 ([18, Proposition 5.4.7]). Let N ≥ 3, q ∈ (1, ∞) and {un} be a bounded sequence in

Lq(RN). If un(x) → u(x) almost everywhere in R
N as n → ∞, then un ⇀ u weakly in Lq(RN).

Similarly as in [3], we can get the following lemma.

Lemma 2.3. Assume that {un} ⊂ H1(RN) is a sequence satisfying that un ⇀ u in H1(RN), then

for any ϕ ∈ H1(RN),

lim
n→∞

∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N −1un ϕdx =

∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N −1uϕdx.

Proof. For the reader’s convenience, we give a complete proof here. Up to a subsequence, {un}

is bounded in H1(RN), un ⇀ u in H1(RN) and un(x) → u(x) a.e. in R
N . By Sobolev’s em-

bedding theorem, {un} is bounded in L2(RN) ∩ L2∗(RN), the sequence {|un|
N+α

N } is bounded

in L
2N

N+α (RN). Then by Lemma 2.2

|un|
α
N +1

⇀ |u|
α
N +1, in L

2N
N+α (RN).
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|un|
α
N −1un ϕ → |u|

α
N −1uϕ, in L

2N
N+α (RN), for any ϕ ∈ H1(RN).

By Lemma 2.1, the Riesz potential defines a linear continuous map from L
2N

N+α (RN) to

L
2N

N−α (RN). We know that,

Iα ∗ (|un|
α
N −1un ϕ) → Iα ∗ (|u|

α
N −1uϕ), in L

2N
N−α (RN).

Thus, ∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N −1un ϕdx −

∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N −1uϕdx

=
∫

RN
|un|

α
N +1(Iα ∗ (|un|

α
N −1un ϕ)dx −

∫

RN
|u|

α
N +1(Iα ∗ (|u|

α
N −1uϕ)dx

=
∫

RN
|un|

α
N +1(Iα ∗ (|un|

α
N −1un ϕ)− Iα ∗ (|u|

α
N −1uϕ))dx

+
∫

RN
(|un|

α
N +1 − |u|

α
N +1)(Iα ∗ (|u|

α
N −1uϕ))dx

→ 0, as n → ∞.

(2.3)

The proof is complete.

Lemma 2.4 ([17, Lemma 1.21]). Let r0 > 0 and s ∈ [2, 2∗). If {un} is bounded in H1(RN) and

sup
y∈RN

∫

B(y,r0)
|un|

s → 0, as n → ∞,

then un → 0 in Lt(RN) for t ∈ (2, 2∗).

Lemma 2.5. The functional JV∞
satisfies the following properties:

(1) there exists ρ > 0 such that inf(u,v)∈X, ‖(u,v)‖=ρ JV∞
(u, v) > 0;

(2) for any (u, v) ∈ X\{(0, 0)}, it holds limt→∞ JV∞
(tu, tv) = −∞.

Proof. (1) By (2.1) and the classical Sobolev inequality, we can deduce that

JV∞
(u, v) ≥

1

2
min{1, V∞}(‖u‖2 + ‖v‖2)−

N

2(N + α)

∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N +1dx

−
N

2(N + α)

∫

RN
(Iα ∗ |v|

α
N +1)|v|

α
N +1dx −

∫

RN
|u|p|v|qdx

≥
1

2
min{1, V∞}‖(u, v)‖2 − C1(‖u‖

2α
N +2 + ||v||

2α
N +2)−

∫

RN
(|u|2p + |v|2q)dx

≥
1

2
min{1, V∞}‖(u, v)‖2 − C1‖(u, v)‖

2α
N +2 − C2‖(u, v)‖2p − C3‖(u, v)‖2q,

where C1, C2 are positive constants. Since p, q > 1 and α > 0, we have that

inf
(u,v)∈X, ‖(u,v)‖=ρ

JV∞
(u, v) > 0,

provided that ρ > 0 is sufficiently small.
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(2) For any (u, v) ∈ X\{(0, 0)}, we have

JV∞
(tu, tv) ≤

t2

2
max{1, V∞}(‖u‖2 + ‖v‖2)−

Nt
2α
N +2

2(N + α)

∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N +1dx

−
Nt

2α
N +2

2(N + α)

∫

RN
(Iα ∗ |v|

α
N +1)|v|

α
N +1dx − tp+q

∫

RN
|u|p|v|qdx

≤
t2

2
max{1, V∞}‖(u, v)‖2 −

Nt
2α
N +2

2(N + α)
(
∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N +1dx

+
∫

RN
(Iα ∗ |v|

α
N +1)|v|

α
N +1dx).

Then the conclusion (2) follows.

By the classical Mountain Pass theorem [17], we have a minimax description at the energy

level c0 defined by

c0 = inf
γ∈Γ

max
t∈[0,1]

JV∞
(γ(t)), (2.4)

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = (0, 0), JV∞
(γ(1)) < 0}.

Lemma 2.6. Let N ≥ 3, α ∈ (0, N), p, q ∈
(
1,
√

N
N−2

)
and Np + (N + 2)q < 2N + 4, then

c0 < c∗ := α
2(N+α)

(V∞S)
N
α +1.

Proof. We first show that c0 ≤ c1, where

c1 = inf
(u,v)∈X\{(0,0)}

max
t≥0

JV∞
(tu, tv).

Indeed, for any (u, v) ∈ X\{(0, 0)}, by Lemma 2.5 (2), there exists tu,v > 0 such that

JV∞
(tu,vu, tu,vv) < 0.

Hence, by (2.4), we have

c0 ≤ max
τ∈[0,1]

JV∞
(τtu,vu, τtu,vv) ≤ max

t≥0
JV∞

(tu, tv). (2.5)

It leads to c0 ≤ c1.

By the representation formula (2.2) for the optimal functions of Hardy–Littlewood–Sobolev

inequality, for each ε > 0, we set

U(x) = A(1 + |x|2)−
N
2 , x ∈ R

N ,

Uε(x) = ε
N
2 U(εx) and Vε(x) = ε

N+β
2 U(εx), where β ∈

(N(p+q−2)
2−q ,

4−N(p+q−2)
q

)
. For each ε > 0

the function Uε satisfies
∫

RN
|Uε|

2dx = S and
∫

RN
(Iα ∗ |Uε|

α
N +1)|Uε|

α
N +1dx = 1.

Through direct computations, we have that

∫

RN
|Vε|

2dx = εβ
∫

RN
|U|2dx,

∫

RN
(Iα ∗ |Vε|

α
N +1)|Vε|

α
N +1dx = ε

β(N+α)
N ,
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∫

RN
|∇Uε|

2dx = ε2
∫

RN
|∇U|2dx,

∫

RN
|∇Vε|

2dx = εβ+2
∫

RN
|∇U|2dx.

For every ε > 0, we now consider the function ξε : [0, ∞) → R defined by

ξε(t) := JV∞
(tUε, tVε) = g(t) + hε(t) + fε(t), t ∈ [0, ∞),

where the functions g, hε, fε : [0, ∞) → R are defined by

g(t) =
1

2
V∞St2 −

N

2(N + α)
t

2α
N +2,

hε(t) =
t2

2

∫

RN
|∇Vε|

2dx +
t2

2
V∞

∫

RN
|Vε|

2dx −
Nt

2(N+α)
N

2(N + α)

∫

RN
(Iα ∗ |Vε|

α
N +1)|Vε|

α
N +1dx,

fε(t) =
t2

2

∫

RN
|∇Uε|

2dx − tp+q
∫

RN
|Uε|

p|Vε|
qdx.

Since ξε(t) > 0 whenever t > 0 is small enough, limt→0 ξε(t) = 0 and limt→∞ ξε(t) = −∞, for

each ε > 0 there exists tε > 0 such that

ξε(tε) = max
t≥0

ξε(t).

By the definition of the function g, we have

c1 ≤ max
t≥0

ξε(t) = ξε(tε) = g(tε) + hε(tε) + fε(tε) ≤ g(t∗) + hε(tε) + fε(tε), (2.6)

where t∗ = (V∞S)
N
2α satisfies that

g(t∗) = max
t≥0

g(t) =
α

2(N + α)
V

N
α +1

∞ S
N
α +1 = c∗.

Since ξ ′ε(tε) = 0, we have

ε2
∫

RN
|∇U|2dx + εβ+2

∫

RN
|∇U|2dx + εβ

∫

RN
|U|2dx + V∞S

= t
2α
N
ε + t

2α
N
ε

∫

RN
(Iα ∗ |Vε|

α
N +1)|Vε|

α
N +1dx + (p + q)t

p+q−2
ε

∫

RN
|Uε|

p|Vε|
qdx

≥ t
2α
N
ε .

(2.7)

Hence, we have lim supε→0 t
2α
N
ε ≤ V∞S, which is equivalent to lim supε→0 tε ≤ V

N
2α

∞ S
N
2α . Notice

that

t
2α
N
ε

∫

RN
(Iα ∗ |Vε|

α
N +1)|Vε|

α
N +1dx + (p + q)t

p+q−2
ε

∫

RN
|Uε|

p|Vε|
qdx

= ε
β(N+α)

N t
2α
N
ε + (p + q)ε

N(p+q−2)+βq
2 t

p+q−2
ε

∫

RN
|U|p+qdx,

we can obtain that

lim
ε→0

(
t

2α
N
ε

∫

RN
(Iα ∗ |Vε|

α
N +1)|Vε|

α
N +1dx + (p + q)t

p+q−2
ε

∫

RN
|Uε|

p|Vε|
qdx

)
= 0. (2.8)

Then (2.7) and (2.8) imply lim infε→0 t
2α
N
ε ≥ V∞S. Therefore, limε→0 t

2α
N
ε = V∞S. It leads to

limε→0 tε = t∗.
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We now observe that

fε(tε) + hε(tε) ≤
1

2
εβ+2t2

ε

∫

RN
|∇U|2dx +

1

2
ε2t2

ε

∫

RN
|∇U|2dx

+
1

2
εβt2

ε V∞

∫

RN
|U|2dx − ε

N(p+q−2)+βq
2 t

p+q−2
ε

∫

RN
|U|p+qdx.

Since p, q ∈
(
1,
√

N
N−2

)
, Np + (N + 2)q < 2N + 4 and β ∈

(N(p+q−2)
2−q ,

4−N(p+q−2)
q

)
, through

direct computations, we can get that
N(p+q−2)+βq

2 < min{β, 2}. Thus

fε(tε) + hε(tε) < 0, when ε > 0 is small enough.

Then it follows from (2.6) that c1 < c∗ and thus c0 < c∗ in view of (2.5).

3 Existence of ground state solutions for the limiting problem (1.6)

In this section, we will prove that the limiting problem (1.6) admits at least one ground state

solution.

Before giving a complete proof, we state the following lemmas, which will be frequently

used in the sequel proofs. Set

‖(u, v)‖V∞
=

(∫

RN
(|∇u|2 + V∞u2)dx +

∫

RN
(|∇v|2 + V∞v2)dx

) 1
2

.

Define

cV∞

g := inf{JV∞
(u, v) : (u, v) ∈ X \ {(0, 0)} and J′V∞

(u, v) = 0}.

Lemma 3.1. If {(un, vn)} is a sequence in X such that

lim inf
n→∞

‖(un, vn)‖V∞
> 0, and lim

n→∞
〈Φ′(un, vn), (un, vn)〉 = 0,

where the functional Φ : X → R is defined by

Φ(u, v) =
1

2
‖(u, v)‖2

V∞
−

N

2(N + α)

(∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N +1dx +

∫

RN
(Iα ∗ |v|

α
N +1)|v|

α
N +1dx

)
,

then lim infn→∞ Φ(un, vn) ≥ c∗.

Proof. From lim
n→∞

〈Φ′(un, vn), (un, vn)〉 = 0, we observe that

‖(un, vn)‖
2
V∞

=
∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx +

∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N +1dx + on(1).

By the assumption lim infn→∞ ‖(un, vn)‖V∞
> 0 and (2.1), we can deduce that

lim inf
n→∞

∫

RN
(|un|

2 + |vn|
2)dx > 0.

It follows from the definition of S that∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx +

∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N +1dx + on(1)

≥
∫

RN
(V∞|un|

2 + V∞|vn|
2)dx

≥ V∞S

[(∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx

) N
N+α

+

(∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N +1dx

) N
N+α

]

≥ V∞S

(∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx +

∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N +1dx

) N
N+α

,
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which leads to

lim inf
n→∞

‖(un, vn)‖
2
V∞

= lim inf
n→∞

(∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx +

∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N +1dx

)

≥ (V∞S)
N
α +1.

(3.1)

Therefore,

Φ(un, vn) = Φ(un, vn)−
N

2(N + α)
〈Φ′(un, vn), (un, vn)〉+ on(1)

=
α

2(N + α)
‖un, vn‖

2
V∞

+ on(1).
(3.2)

Then combine (3.1) with (3.2),

lim inf
n→∞

Φ(un, vn) = lim inf
n→∞

α

2(N + α)
‖un, vn‖

2
V∞

≥
α

2(N + α)
(V∞S)1+ N

α = c∗.

The proof is complete.

Lemma 3.2. Let {(un, vn)} be a bounded (PS)c sequence with c ∈ (0, c∗) for functional JV∞
, then up to

a subsequence and translations, the sequence {(un, vn)} converges weakly to some (u, v) ∈ X\{(0, 0)}

such that

J′V∞
(u, v) = 0 and JV∞

(u, v) ∈ (0, c].

Proof. First we show that

lim sup
n→∞

1

2

∫

RN
(|un|

2p + |vn|
2q)dx > 0. (3.3)

Otherwise, up to a subsequence, we have

lim sup
n→∞

∫

RN
|un|

p|vn|
qdx ≤ lim sup

n→∞

∫

RN
(|un|

2p + |vn|
2q)dx = 0. (3.4)

Since lim
n→∞

〈J′V∞
(un, vn), (un, vn)〉 = 0, we have

‖(un, vn)‖
2
V∞

=
∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx +

∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N +1dx + on(1).

While, JV∞
(un, vn) → c > 0, n → ∞, together with (3.4) and (2.1), imply that

lim inf
n→∞

‖(un, vn)‖V∞
> 0.

Then we deduce from Lemma 3.1 that

c = lim inf
n→∞

JV∞
(un, vn)

= lim inf
n→∞

Φ(un, vn)− lim sup
n→∞

∫

RN
|un|

p|vn|
qdx

= lim inf
n→∞

Φ(un, vn)

≥ c∗,
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which contradicts with the fact c ∈ (0, c∗). Thus (3.3) holds. It implies that

lim sup
n→∞

∫

RN
|un|

2pdx > 0, or lim sup
n→∞

∫

RN
|vn|

2qdx > 0.

By the Lions inequality (Lemma 1.21 in [17]),

∫

RN
|un|

sdx ≤ C

(∫

RN
|∇un|

2 + |un|
2

)
dx

(
sup

y∈RN

∫

B1(y)
|un|

sdx

)1− 2
s

,

∫

RN
|vn|

sdx ≤ C

(∫

RN
|∇vn|

2 + |vn|
2

)
dx

(
sup

y∈RN

∫

B1(y)
|vn|

sdx

)1− 2
s

,

where s ∈ (2, 2∗). Then there exists sequences of points {yn} ∈ R
N such that

lim sup
n→∞

∫

B1(yn)
|un|

2pdx > 0, or lim sup
n→∞

∫

B1(yn)
|vn|

2qdx > 0.

Thus we have

lim sup
n→∞

∫

B1(yn)
(|un|

2p + |vn|
2q)dx > 0. (3.5)

Define ũn := un(· + yn), ṽn := vn(· + yn). Since the functional JV∞
is invariant under

translations, the sequence {(ũn, ṽn)} ⊂ X is also a bounded (PS)c sequence of JV∞
. Then by

(3.5) there exists some (u, v) ∈ X\{(0, 0)} such that

(ũn, ṽn) ⇀ (u, v) in X.

ũn ⇀ u, ṽn ⇀ v in H1(RN),

ũn → u, ṽn → v in Lr
loc(R

N), r ∈ [1, 2∗),

ũn(x) → u(x), ṽn(x) → v(x), a.e. x ∈ R
N .

Since 1 < p, q <

√
N

N−2 implies that 2 < 2p, 2q, 2pq < 2∗, we have

∫

RN
|ṽn|

2q|ũn|
2(p−1)dx ≤

( ∫

RN
|ṽn|

2pqdx
) 1

p
( ∫

RN
|ũn|

2pdx
) p−1

p
< ∞.

That is to say {|ṽn|q|ũn|p−2ũn} is bounded in L2(RN). Then by Proposition 5.4.7 in [18],

|ṽn|
q|ũn|

p−2ũn ⇀ |ṽ|q|ũ|p−2ũ, in L2(RN).

Since φ ∈ H1(RN) ⊂ L2(RN),

∫

RN
|ṽn|

q|ũn|
p−2ũnφdx →

∫

RN
|ṽ|q|ũ|p−2ũφdx, n → ∞. (3.6)

Similarly, we can also get

∫

RN
|ũn|

p|ṽn|
q−2ṽn ϕdx →

∫

RN
|ũ|p|ṽ|q−2ṽϕdx, n → ∞. (3.7)
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We now claim that J′V∞
(u, v) = 0. For any (φ, ϕ) ∈ X, by Lemma 2.3, (3.6) and (3.7), we

have

〈J′V∞
(un, vn), (φ(x − yn), ϕ(x − yn))〉

=
∫

RN
(∇un · ∇φ(x − yn) + V∞unφ(x − yn) +∇vn · ∇ϕ(x − yn) + V∞vn ϕ(x − yn))dx

−
∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N −1unφ(x − yn)dx −

∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N −1vn ϕ(x − yn)dx

−
∫

RN
|vn|

q|un|
p−2unφ(x − yn)dx −

∫

RN
|un|

p|vn|
q−2vn ϕ(x − yn)dx

=
∫

RN
(∇ũn · ∇φ + V∞ũnφ +∇ṽn · ∇ϕ + V∞ṽn ϕ)dx

−
∫

RN
(Iα ∗ |ũn|

α
N +1)|ũn|

α
N −1ũnφdx −

∫

RN
(Iα ∗ |ṽn|

α
N +1)|ṽn|

α
N −1ṽn ϕdx

−
∫

RN
|ṽn|

q|ũn|
p−2ũnφdx −

∫

RN
|ũn|

p|ṽn|
q−2ṽn ϕdx

= 〈J′V∞
(u, v), (φ, ϕ)〉+ on(1).

Thus J′V∞
(u, v) = 0.

By the Fatou lemma,

JV∞
(u, v) = JV∞

(u, v)−
1

2
〈J′V∞

(u, v), (u, v)〉

=
α

2(N + α)

∫

RN
((Iα ∗ |u|

α
N +1)|u|

α
N +1 + (Iα ∗ |v|

α
N +1)|v|

α
N +1)dx

+
( p + q

2
− 1
) ∫

RN
|u|p|v|qdx

≤ lim inf
n→∞

( α

2(N + α)

∫

RN
((Iα ∗ |ũn|

α
N +1)|ũn|

α
N +1 + (Iα ∗ |ṽn|

α
N +1)|ṽn|

α
N +1)dx

+
( p + q

2
− 1
) ∫

RN
|ũn|

p|ṽn|
qdx
)

= lim inf
n→∞

(
JV∞

(ũn, ṽn)−
1

2
〈J′V∞

(ũn, vn), (ũn, ṽn)〉
)

= c.

Thus JV∞
(u, v) ≤ c.

We finally conclude that

JV∞
(u, v) = JV∞

(u, v)−
1

2
〈J′V∞

(u, v), (u, v)〉

=
α

2(N + α)

∫

RN
((Iα ∗ |u|

α
N +1)|u|

α
N +1 + (Iα ∗ |v|

α
N +1)|v|

α
N +1)dx

+
( p + q

2
− 1
) ∫

RN
|u|p|v|qdx

> 0.

(3.8)

Therefore, the lemma follows.

By Lemma 2.5 and Mountain Pass theorem, there exists a Palais–Smale sequence {(un, vn)}

of JV∞
at the energy level c0. It then follows lemma 2.6 that c0 ∈ (0, c∗). The sequence {(un, vn)}
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is bounded in X. In fact, by taking µ ∈
(
2, min

{ 2(N+α)
N , p + q

}]
, we can get

c0 + on(1) = JV∞
(un, vn)−

1

µ
〈J′V∞

(un, vn), (un, vn)〉

=

(
1

2
−

1

µ

)
‖(un, vn)‖

2
V∞

+

(
1

µ
−

N

2(N + α)

)(∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx +

∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N +1dx

)

+

(
p + q

µ
− 1

) ∫

RN
|un|

p|vn|
qdx

≥

(
1

2
−

1

µ

)
‖(un, vn)‖

2
V∞

.

Thus {(un, vn)} is bounded in X. Up to a subsequence if necessary, there exists (u, v) ∈ X

such that

(un, vn) ⇀ (u, v) in X, (un(x), vn(x)) → (u(x), v(x)) a.e. in R
N .

Then Lemma 3.2 infers that (u, v) is a nontrivial critical point of functional JV∞
and JV∞

(u, v) ∈

(0, c0].

Let{(zn, wn)} be a sequence of nontrivial critical points of JV∞
such that

lim
n→∞

JV∞
(zn, wn) = cV∞

g .

It is easy to see that cV∞

g ≤ c0 < c∗. By using the same arguments as above, we can get that

{(zn, wn)} is bounded in X. In view of 〈J′V∞
(zn, wn), (zn, wn)〉 = 0, it follows that {‖(zn, wn)‖}

has a positive lower bound, which together with (3.8) implies that cV∞

g > 0. Therefore,

{(zn, wn)} is a (PS)cV∞
g

sequence of JV∞
with cV∞

g ∈ (0, c0]. It follows from Lemma 3.2 that

up to a sequence of {(zn, wn)} and translations,

(zn, wn) ⇀ (z, w) 6= 0 in X, as n → ∞, J′V∞
(z, w) = 0 and JV∞

(z, w) ∈ (0, cV∞

g ].

Furthermore, by the definition of cV∞

g , we conclude that JV∞
(z, w) = cV∞

g . Hence, (z, w) is a

ground state solution of system (1.6). �

4 Proof of Theorem 1.1

Lemma 4.1. For any solution (u, v) ∈ X\{(0, 0)} of system (1.6), the function JV∞
(tu, tv), t ≥ 0

achieves its unique strict global maximum at t = 1, that is to say

JV∞
(u, v) = max

t≥0
JV∞

(tu, tv) > JV∞
(tu, tv), for t ≥ 0 and t 6= 1.

Proof. Let (u, v) ∈ X\{(0, 0)} be a solution of system (1.6), for every t ≥ 0, we have

JV∞
(tu, tv) =

t2

2

∫

RN
(|∇u|2 + V∞|u|

2 + |∇v|2 + V∞|v|
2)dx

−
N

2(N + α)
t

2α
N +2

∫

RN
((Iα ∗ |u|

α
N +1)|u|

α
N +1 + (Iα ∗ |v|

α
N +1)|v|

α
N +1)dx

− tp+q
∫

RN
|u|p|v|qdx

=
A

2
t2 −

BN

2(N + α)
t

2α
N +2 − Ctp+q,

(4.1)
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where

A :=
∫

RN
(|∇u|2 + V∞|u|

2 + |∇v|2 + V∞|v|
2)dx;

B :=
∫

RN
((Iα ∗ |u|

α
N +1)|u|

α
N +1 + (Iα ∗ |v|

α
N +1)|v|

α
N +1)dx;

C :=
∫

RN
|u|p|v|qdx.

By (4.1), it is easy to get that JV∞
(tu, tv) ∈ C1([0, ∞), R) and limt→∞ JV∞

(tu, tv) = −∞. Thus

JV∞
(tu, tv) can achieve its global maximum. Since 0 = 〈J′V∞

(u, v), (u, v)〉 = A − B − (p + q)C,

by a direct calculation, we can get that t = 1 is the only point such that
dJV∞

(tu,tv)
dt = 0. Then

JV∞
(tu, tv) achieves the unique strict global maximum at t = 1.

Lemma 4.2. Assume (V1), (V2) hold, then there exists a (PS)cV
sequence for JV with 0 < cV < cV∞

g .

Proof. Firstly, we claim that there exists (u0, v0) ∈ X such that JV(u
0, v0) < 0. Indeed, for any

(u, v) ∈ X\{(0, 0)}, we have JV(u, v) < JV∞
(u, v). In view of (4.1), by taking u0 = tu, v0 = tv

with t large enough, where (u, v) is a ground state solution of system (1.6). Then we get that

JV(u
0, v0) < JV∞

(u0, v0) < 0.

Similar to Lemma 2.5, we see that the functional JV also enjoys the Mountain Pass geome-

try. Then we have a minimax description at cV . We show that

cV := inf
γ∈Υ

max
t∈[0,1]

JV(γ(t)) > max{JV(0, 0), JV(u
0, v0)},

where

Υ = {γ ∈ C([0, 1], X) : γ(0) = (0, 0), γ(1) = (u0, v0)}.

In fact, (V1), (V2) and (2.1) imply that

JV(u, v) ≥
1

2
min{1, V(x)}(‖u‖2 + ‖v‖2)− C1

(
‖u‖

2(N+α)
N + ‖v‖

2(N+α)
N

)
−

1

2

∫

RN
(|u|2p + |v|2q)dx

≥
1

2
min{1, V(x)}‖(u, v)‖2 − C1‖(u, v)‖

2(N+α)
N − C2‖(u, v)‖2p − C3‖(u, v)‖2q,

where C1, C2 are positive constants. Since p, q ∈
(
1,
√

N
N−2

)
, JV has a strict local minimum at

0 and then cV > 0.

Next, we show that cV < cV∞

g . Let (u, v) be the ground state solution of system (1.6)

mentioned above. From the proof of Lemma 4.1 and by using (V2), we see that

cV∞

g = JV∞
(u, v) = max

t≥0
JV∞

(tu, tv) > max
t≥0

JV(tu, tv) ≥ cV .

The proof is complete.

Proof of Theorem 1.1. The proof is divided into four steps.
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Step 1. Let {(un, vn)} be a (PS)cV
sequence of functional JV with 0 < cV < cV∞

g . Then take

µ ∈
(
2, min

{ 2(N+α)
N , p + q

}]
, we have

cV + on(1) = JV(un, vn)−
1

µ
〈J′V(un, vn), (un, vn)〉

=
(1

2
−

1

µ

) ∫

RN
(|∇un|

2 + V(x)|un|
2 + |∇vn|

2 + V(x)|vn|
2)dx

+
( 1

µ
−

N

2(N + α)

) ∫

RN
((Iα ∗ |un|

α
N +1)|un|

α
N +1 + (Iα ∗ |vn|

α
N +1)|vn|

α
N +1)dx

+
( p + q

µ
− 1
) ∫

RN
|un|

p|vn|
qdx

≥
(1

2
−

1

µ

) ∫

RN
(|∇un|

2 + V(x)|un|
2 + |∇vn|

2 + V(x)|vn|
2)dx.

Thus (V1) and (V2) imply that {(un, vn)} is bounded in X. Therefore, there exists (u, v) ∈ X

such that up to a subsequence if necessary,

(un, vn) ⇀ (u, v) weakly in X, (un(x), vn(x)) → (u(x), v(x)), for almost every x ∈ R
N .

By a similar argument as in the proof of Lemma 3.2, we see that there exists {yn} ⊂ R
N such

that

lim sup
n→∞

∫

B1(yn)
(|un|

2p + |vn|
2q)dx > 0. (4.2)

Step 2. We can claim that {yn} is bounded in R
N . In fact, suppose that for a subsequence still

denoted by {yn} such that

lim
n→∞

|yn| → ∞, (4.3)

we define zn(·) = un(· + yn), wn(·) = vn(· + yn), then {(zn, wn)} is bounded in X, and

by (4.2) (zn, wn) ⇀ (z, w) 6= (0, 0). In the following, we will show that J′V∞
(z, w) = 0 and

JV∞
(z, w) ≤ cV , which contradict that cV < cV∞

g . Hence {yn} is bounded.

In order to prove J′V∞
(z, w) = 0, by (4.3), (V1), (V2) and Hölder inequality, for any (φ, ϕ) ∈

X, we have

∣∣∣
∫

RN
(V(x + yn)− V∞)(zn(x)φ(x) + wn(x)ϕ(x))dx

∣∣∣

≤
∣∣∣
∫

B|yn |/2

(V(x + yn)− V∞)(zn(x)φ(x) + wn(x)ϕ(x))dx
∣∣∣

+
∣∣∣
∫

RN\B|yn |/2

(V(x + yn)− V∞)(zn(x)φ(x) + wn(x)ϕ(x))dx
∣∣∣

≤ sup
B|yn |/2

|V(x + yn)− V∞|(|zn|L2(RN)|φ|L2(RN) + |wn|L2(RN)|ϕ|L2(RN))

+ C
(
|zn|L2(RN)

( ∫

RN\B|yn |/2

|φ|2dx
) 1

2
+ |wn|L2(RN)

( ∫

RN\B|yn |/2

|ϕ|2dx
) 1

2
)

= on(1).

(4.4)
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Thus Lemma 2.3 and (4.4) imply that

〈J′V(un, vn), (φ(x − yn), ϕ(x − yn))〉

=
∫

RN
(∇un(x)∇φ(x − yn) + V(x)un(x)φ(x − yn))dx

−
∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N −1unφ(x − yn)dx

+
∫

RN
(∇vn(x)∇ϕ(x − yn) + V(x)vn(x)ϕ(x − yn))dx

−
∫

RN
(Iα ∗ |vn|

α
N +1|vn|

α
N −1vn ϕ(x − yn))dx

− p
∫

RN
|vn|

q|un|
p−2unφ(x − yn)dx − q

∫

RN
|un|

p|vn|
q−2vn ϕ(x − yn)dx

=
∫

RN
(∇zn(x)∇φ(x) + V(x + yn)zn(x)φ(x))dx

+
∫

RN
(∇wn(x)∇ϕ(x) + V(x + yn)wn(x)ϕ(x))dx

−
∫

RN
(Iα ∗ |zn|

α
N +1)|zn|

α
N −1znφdx −

∫

RN
(Iα ∗ |wn|

α
N +1)|wn|

α
N −1wn ϕdx

− p
∫

RN
|wn|

q|zn|
p−2znφdx − q

∫

RN
|zn|

p|wn|
q−2wn ϕdx

= 〈J′V∞
(zn, wn), (φ, ϕ)〉+

∫

RN
(V(x + yn)− V∞)(zn(x)φ(x) + wn(x)ϕ(x))dx

= 〈J′V∞
(z, w), (φ, ϕ)〉+ on(1).

(4.5)

Then from (4.5) we deduce that J′V∞
(z, w) = 0.

To prove JV∞
(z, w) ≤ cV , by the Fatou lemma, we have

JV∞
(z, w) = JV∞

(z, w)−
1

2
〈J′V∞

(z, w), (z, w)〉

=
α

2(N + α)

∫

RN
((Iα ∗ |z|

α
N +1)|z|

α
N +1 + (Iα ∗ |w|

α
N +1)|w|

α
N +1)dx

+
( p + q

2
− 1
) ∫

RN
|z|p|w|qdx

≤ lim inf
n→∞

[
α

2(N + α)

( ∫

RN
(Iα ∗ |zn|

α
N +1)|zn|

α
N +1dx+

∫

RN
(Iα ∗ |wn|

α
N +1)|wn|

α
N +1dx

)
+
( p + q

2
− 1
) ∫

RN
|zn|

p|wn|
qdx

]

= lim inf
n→∞

[
α

2(N + α)

( ∫

RN
(Iα ∗ |un|

α
N +1)|un|

α
N +1dx

+
∫

RN
(Iα ∗ |vn|

α
N +1)|vn|

α
N +1dx

)
+
( p + q

2
− 1
) ∫

RN
|un|

p|vn|
qdx

]

= lim inf
n→∞

(JV(un, vn)−
1

2
〈J′V(un, vn), (un, vn)〉) = cV .

(4.6)

Therefore, JV∞
(z, w) ≤ cV .

Step 3. We show that (u, v) obtained in step 1 is a nontrivial solution of (1.1) and JV(u, v) ∈

(0, cV ]. By the classical Sobolev embedding theorem, (4.2) and step 2, we have (u, v) 6= (0, 0).

In view of Lemma 2.3, Lemma 3.2, (V1) and (V2), we can show that (u, v) is a critical point of
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JV . Similarly to the proof of (4.6), we have JV(u, v) ≤ cV . Direct calculation gives that

JV(u, v) = JV(u, v)−
1

2
〈J′V(u, v), (u, v)〉

=
α

2(N + α)

( ∫

RN
(Iα ∗ |u|

α
N +1)|u|

α
N +1dx +

∫

RN
(Iα ∗ |v|

α
N +1)|v|

α
N +1dx

)

+
( p + q

2
− 1
) ∫

RN
|u|p|v|qdx

> 0.

Thus 0 < JV(u, v) ≤ cV < cV∞

g .

Step 4. We show that there exists a ground state solution of system (1.1). By Step 3 and the

definition of cV
g , we see that cV

g < cV∞

g . Let {(zn, wn)} be a sequence of nontrivial critical points

of JV satisfying JV(zn, wn) → cV
g as n → ∞. By using the same arguments as in Step 1, we

can show that {(zn, wn)} is bounded in X. In view of 〈J′V(zn, wn), (zn, wn)〉 = 0, it follows

that {‖(zn, wn)‖X} has a positive lower bound. By similar arguments as step 1, we can show

that cV
g > 0. Therefore, {(zn, wn)} is a (PS)cV

g
sequence of functional JV with 0 < cV

g < cV∞

g .

Repeating Step 1–Step 3, we obtain some (z, w) ∈ X \ {(0, 0)} such that J′V(z, w) = 0 and

JV(z, w) ≤ cV
g . Thus (z, w) is a ground state solution of system (1.1). The proof of Theorem 1.1

is complete.
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Abstract. In this paper we establish an invariant set bifurcation theory for the nonau-
tonomous dynamical system (ϕλ, θ)X,H generated by the evolution equation

ut + Au = λu + p(t, u), p ∈ H = H[ f (·, u)] (0.1)

on a Hilbert space X, where A is a sectorial operator, λ is the bifurcation parameter,
f (·, u) : R → X is translation compact, f (t, 0) ≡ 0 and H[ f ] is the hull of f (·, u). Denote
by ϕλ := ϕλ(t, p)u the cocycle semiflow generated by the system. Under some other
assumptions on f , we show that as the parameter λ crosses an eigenvalue λ0 ∈ R of
A, the system bifurcates from 0 to a nonautonomous invariant set Bλ(·) on one-sided
neighborhood of λ0. Moreover,

lim
λ→λ0

HXα (Bλ(p), 0) = 0, p ∈ P,

where HXα(·, ·) denotes the Hausdorff semidistance in Xα (here Xα (α ≥ 0) defined
below is the fractional power spaces associated with A).

Our result is based on the pullback attractor bifurcation on the local central invariant
manifolds Mλ

loc(·).

Keywords: stability of pullback attractors, local invariant manifolds, nonautonomous
invariant set bifurcations.
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1 Introduction

Invariant set bifurcation theory of autonomous dynamical systems has been extremely well

developed [1, 6, 16, 17, 19, 23–27, 30–32]. A relatively simpler but important case is that of

bifurcations from equilibria, including bifurcation to multiple equilibria (static bifurcation)

and to periodic solutions (Hopf bifurcation) (see among others, [6, 27]). Ma and Wang [23]

and Sanjurjio [31] developed a local attractor bifurcation theory. Roughly speaking, if the

trivial equilibrium e of an autonomous system changes from an attractor to a repeller on the

BCorresponding author. Email: xwju@cauc.edu.cn
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local center manifold of the equilibrium when the bifurcation parameter λ crosses a critical

value λ0, then the system bifurcates a compact invariant set K which is an attractor of the

system restricted to the center manifold. Chow and Hale [6] started to discuss stability and

bifurcation phenomena associated with more general invariant sets, e.g. periodic orbits. Using

Conley index theory, Rybakowski [30] and Li and Wang [19] developed global bifurcation

theorems to discuss bifurcation phenomena of nonlinear autonomous evolution equations.

The study of invariant set bifurcation for nonautonomous dynamical system has also re-

ceived a lot of attention. Langa et al. [18] presented a collection of examples to illustrate

bifurcation phenomena in nonautonomous ordinary differential equations. Carvalho et al. [4]

studied the structure of the pullback attractor for a nonautonomous version of the Chafee–

Infante equation, and investigated the bifurcations that this attractor undergoes as bifurcation

parameter varies. In [28], Rasmussen introduced various concepts of bifurcation and tran-

sition for nonautonomous systems, corresponding to different time domains. And several

examples were presented to illustrate these definitions.

The main aim of the paper is to develop a counterpart for the classical autonomous invari-

ant set bifurcation patterns of Ma and Wang [23] and Sanjurjio [31] in the context of nonau-

tonomous invariant set bifurcation. Unlike autonomous dynamical systems for which forward

dynamics is studied, pullback dynamics is much more natural than the more familiar forward

dynamics for nonautonomous dynamical systems. But this makes it very difficult to extend

the invariant set bifurcation theory of autonomous systems to nonautonomous systems when

pullback dynamics is considered. Our approach in the paper is to treat a nonautonomous

system as a cocycle semiflow over a suitable base space. One of the advantage of a cocycle

semiflow approach is that the synchronizing solutions or the other synchronizing behaviors

with the nonautonomous driving force can be studied [12,14,15]. Moreover, in the framework

of a cocycle semiflow, the base spaces are compact in many important cases. For example, if

the nonlinearity f of (0.1) is periodic (resp. quasiperiodic, almost periodic, local almost pe-

riodic) in the time variable t, then the base space H is compact. Based on the compactness

of the base spaces, we can establish the equivalence between pullback attraction of cocycle

semiflow and forward attraction of the associated autonomous semiflow. This device makes

the dynamics of such a nonautonomous system appear like those of an autonomous system.

Without the compactness assumption on the base spaces, the upper semicontinuity of

global pullback attractors for nonautonomous systems was obtained in Caraballo and Langa

[2]. However, compact forward invariant sets of the perturbed systems are required to guar-

antee the existence of perturbed pullback attractors. In the paper, we suppose that the base

spaces of cocycle semiflows considered are compact. As a result, after introducing the no-

tion of (local) pullback attractors (see Definition 2.6), we can establish a general result on the

stability of local pullback attractors as the perturbation parameter is varied. Based on this

result, a local pullback attractor bifurcation theory can be developed. This can be regarded as

a generalization of autonomous attractor bifurcation theory in [23] for nonautonomous cases.

Finally, we study the bifurcation of invariant sets for the cocycle semiflow ϕλ generated by the

nonautonomous nonlinear evolution equation (0.1). We first construct a local central invariant

manifold Mλ
loc(·) for ϕλ as λ near λ0. Under further assumptions on f to ensure that 0 is a

pullback attractor for ϕλ0
, we then restrict ϕλ to Mλ

loc(·) and obtain a pullback attractor bifur-

cation on Mλ
loc(·) as λ crosses λ0. It leads to an invariant set bifurcation for ϕλ. It is worth

mentioning that if 0 is not an attractor but a repeller for ϕλ0
, our result still holds. Denote by
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Bλ(·) the bifurcated invariant set. We further know that

lim
λ→λ0

HXα(Bλ(p), 0) = 0, p ∈ P.

This paper is organized as follows. In Section 2, we present respectively some basic facts

in autonomous and nonautonomous dynamical systems which will be required in the rest of

the work. Section 3 deals with the stability of pullback attractors as bifurcation parameter

varies. In Section 4, we establish an invariant set bifurcation theory for (0.1). We illustrate

the main results with an example in Section 5. Finally, Section 6 contains the proofs of two

propositions presented earlier in the paper.

2 Preliminaries

In this section we introduce some basic definitions and notions [7, 8].

Let X be a complete metric space with metric d(·, ·). Given M ⊂ X, we denote M and

int M the closure and interior of any subset M of X, respectively. A set U ⊂ X is called a

neighborhood of M ⊂ X, if M ⊂ int U. For any ρ > 0, denote by

BX(M, ρ) := {x ∈ X : d(x, M) < ρ}

the ρ-neighborhood of M in X, where d(x, M) = infy∈M d(x, y).

The Hausdorff semidistance in X is defined as

HX(M, N) = sup
x∈M

d(x, N), ∀ M, N ⊂ X.

2.1 Semiflows and attractors

Let R+ = [0, ∞). A continuous mapping S : R+ × X → X is called a semiflow on X, if it

satisfies

i) S(0, x) = x for all x ∈ X; and

ii) S(t + s, x) = S(t, S(s, x)) for all x ∈ X and t, s ∈ R+.

Let S be a given semiflow on X. As usual, we will rewrite S(t, x) as S(t)x.

A set B ⊂ X is called invariant (resp. positively invariant) under S if S(t)B = B (resp.

S(t)B ⊂ B) for all t ≥ 0.

Let B and C be subsets of X. We say that B attracts C under S, if

lim
t→∞

HX(S(t)C, B) = 0.

Definition 2.1. A compact subset A ⊂ X is called an attractor for S, if it is invariant under S

and attracts one of neighborhood of itself.

It is well known that if U is a compact positively invariant set of S, then the omega-limit

set ω(U) :=
⋂

T≥0

⋃

t≥T S(t)U is an attractor of S. The definition of the attraction basin of the

attractor and other properties can be found in [10, 22, 30].
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2.2 Cocycle semiflows and pullback attractors

A nonautonomous system consists of a “base flow” and a “cocycle semiflow” that is in some

sense driven by the base flow.

A base flow {θt}t∈R := {θ(t)}t∈R is a flow on a metric space P such that θtP = P for all

t ∈ R.

Definition 2.2. A cocycle semiflow ϕ on the phase space X over θ is a continuous mapping

ϕ : R+ × P × X → X satisfying

• ϕ(0, p, x) = x,

• ϕ(t + s, p, x) = ϕ(t, θs p, ϕ(s, p, x)) (cocycle property).

Remark 2.3. If we replace R+ by R in the above definition, then ϕ is called a cocycle flow

on X.

We usually denote ϕ(t, p)x := ϕ(t, p, x). Then {ϕ(t, p)}t≥0, p∈P can be viewed as a family

of continuous mappings on X.

For convenience in statement, a family of subsets {Bp}p∈P of X is called a nonautonomous

set in X. Let B(·) = {Bp}p∈P be a nonautonomous set. For convenience, we will rewrite Bp as

B(p), called the p-section of B(·). We also denote B the union of the sets B(p)× {p} (p ∈ P),

i.e.,

B =
⋃

p∈P

B(p)× {p}.

Note that B is a subset of X × P.

A nonautonomous set B(·) is said to be closed (resp. open, compact), if each section B(p)

is closed (resp. open, compact) in X. A nonautonomous set U(·) is called a neighborhood of

B(·), if B(p) ⊂ int U(p) for each p ∈ P.

A nonautonomous set B(·) is said to be invariant (resp. forward invariant) under ϕ if for

t ≥ 0,

ϕ(t, p)B(p) = B(θt p), p ∈ P.

(resp. ϕ(t, p)B(p) ⊂ B(θt p), p ∈ P.)

Let B(·) and C(·) be two nonautonomous subsets of X. We say that B(·) pullback attracts

C(·) under ϕ if for any p ∈ P,

lim
t→∞

HX(ϕ(t, θ−t p)C(θ−t p), B(p)) = 0.

Let ϕ be a given cocycle semiflow on X with driving system θ on base space P. The

(autonomous) semiflow Φ := {Φ(t)}t≥0 on Y := P × X, given by

Φ(t)(p, x) = (θt p, φ(t, p)x), t ≥ 0,

is called the skew product semiflow associated to ϕ.

The following fundamental result studies the relationship between the pullback attraction

of ϕ and attraction of Φ. The proof is given in the Appendixes.

Proposition 2.4. Let (ϕ, θ)X,P be a nonautonomous system, and let Φ be the skew-product flow asso-

ciated to ϕ. Let K(·) and B(·) be two nonautonomous sets. Suppose P and KP :=
⋃

p∈P K(p) ⊂ X

are both compact. Then K(·) pullback attracts B(·) through ϕ if and only if K :=
⋃

p∈P K(p)× {p}

attracts B :=
⋃

p∈P B(p)× {p} through Φ.
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Remark 2.5. The special case that K(·) is a global pullback attractor was considered in Theo-

rem 15.7 and Theorem 15.8 of [5].

Definition 2.6. Let (ϕ, θ)X,P be a nonautonomous system. A nonautonomous set A(·) is called

a (local) pullback attractor for ϕ if it is compact, invariant and pullback attracts a neighbor-

hood U(·) of itself.

The local pullback attractor defined here, very similar to the notion of a past attractor

in Rasmussen [29], can be seen as a nature generalization of the local attractor from the

autonomous theory. Similar to the case of autonomous systems, if U(·) is a compact forward

invariant set of ϕ, then the omega-limit set ω(U)(·) defined as

ω(U)(ω) =
⋂

T≥0

⋃

t≥T

ϕ(t, θ−tω)U(θ−tω), ω ∈ Ω

is a pullback attractor of ϕ. For instance, consider the following simple system on X = R:

x′(t) = −3x + p(t)x3, p ∈ H[h], (2.1)

where h(t) = 2 + sin t and H[h] is its hull which is the closure for the uniform convergence

topology of the set of t-translates of h. The translation map θt : H → H given by θt p(s) =

p(t + s) defines a flow on H. Then the unique solution of (2.1) define a cocycle flow on X

given by ϕ(t, p)x0 = x(t, 0; p; x0). Since

1

2

d

dt
x2 = −3x2 + p(t)x4 ≤ −3(x2 − x4) < 0

provided that |x| ≤ 1/2. Therefore [−1/2, 1/2] is a forward invariant set of ϕ and it is

pullback attracted by the pullback attractor 0. It is worth noting that 0 is only a local pullback

attractor. Indeed,
1

2

d

dt
x2 = −3x2 + p(t)x4 ≥ −3x2 + x4

> 0

provided that |x| ≥ 2. Thus 0 is only a local pullback attractor of ϕ.

In general, it is difficult to define the attraction basin of a pullback attractor. Fortunately,

under the assumptions of Proposition 2.4, we can define the pullback attraction basin of a

pullback attractor A(·). Specifically, we have

Definition 2.7. Let (ϕ, θ)X,P be a nonautonomous system, and let Φ be the skew-product

flow associated to ϕ. Suppose P is compact. Let A(·) be a pullback attractor of ϕ such that

AP :=
⋃

p∈P A(p) is compact. Then the pullback attraction basin of A(·) can be given by

B(A)(·) = {x(·) : A attracts ① under Φ},

where x(·) is any singleton nonautonomous set in X and ① =
⋃

p∈P{p} × x(p).

3 Stability of pullback attractors

We now establish a result on the stability of pullback attractors under a small perturbation. In

fact, we prove a continuity result with respect to the Hausdorff semi-distance.

Let X be a Banach space with norm ‖ · ‖, and let A be a sectorial operator on X. Pick a

number a > 0 such that

Re σ(A + aI) > 0.
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Denote Λ = A + aI. For each α ≥ 0, define the fractional power space as Xα = D(Λα), which

is equipped with the norm ‖ · ‖α defined by

‖x‖α = ‖Λαx‖, x ∈ Xα.

Note that the definition of Xα is independent of the choice of the number a. If A has compact

resolvent, the inclusion Xα′ →֒ Xα is compact for α′
> α ≥ 0.

Let ϕλ0
(λ0 ∈ R) be a given cocycle semiflow on X with driving system θ on base space P.

For δ > 0, denote Iλ0
(δ) := (λ0 − δ, λ0 + δ). Assume that ϕλ, λ ∈ Iλ0

(δ) is a small perturbation

of the given flow ϕλ0
based on P. Let us make the following assumptions:

(H1): The base space P is compact.

(H2): For every T > 0 and compact subset B of X, we have

lim
λ→λ0

‖ϕλ(t, p)x − ϕλ0
(t, p)x‖α = 0, (3.1)

uniformly with respect to (t, x) ∈ [0, T]× B and p ∈ P.

Under the assumptions (H1), (H2), we can get a result on the stability of pullback attractors.

Theorem 3.1. Let Aλ0
(·) := {Aλ0

(p)}p∈P be an attractor of the cocycle semiflow ϕλ0
which pullback

attracts a neighborhood U(·) of itself. Let

U :=
⋃

p∈P

U(p)× {p} and Aλ0
:=

⋃

p∈P

Aλ0
(p)× {p}.

Assume U is a compact neighborhood of Aλ0
in Y = X × P, then under the assumptions (H1), (H2),

the following statements hold.

(❛) There exists a small δ > 0 such that for each λ ∈ Iλ0
(δ), ϕλ has a pullback attractor Aλ(·) such

that

lim
λ→λ0

HX(Aλ(p),
⋃

p∈H

Aλ0
(p)) = 0. (3.2)

(❜) In addition, if U(·) is forward invariant, then

lim
λ→λ0

HX(Aλ(p), Aλ0
(p)) = 0. (3.3)

Proof. (❛) By the compactness of U, we know that Aλ0 P :=
⋃

p∈P Aλ0
(p) is compact. Since

Aλ0
(·) pullback attracts U(·) and P is compact, by Proposition 2.4, Aλ0

attracts U through

Φλ0
. Since U is a neighborhood of Aλ0

, one knows that Aλ0
is an attractor of Φλ0

. By the

assumption (H2), for any compact set B ⊂ X, we have that

lim
λ→λ0

HY(Φλ(t)(x, p), Φλ0
(t)(x, p)) = lim

λ→λ0

‖ϕλ(t, p)x − ϕλ0
(t, p)x‖α = 0 (3.4)

uniformly with respect to t ∈ [0, T] and (x, p) ∈ B× P. Then by the stability of the autonomous

attractors [21, Theorem 4.1], there exists a δ > 0 (independent of p ∈ P) such that for each

λ ∈ Iλ0
(δ) := (λ0 − δ, λ0 + δ), Φλ has an attractor Aλ contained in U. Moreover,

lim
λ→λ0

HY(Aλ, Aλ0
) = 0. (3.5)
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Write Aλ as
⋃

p∈P Aλ(p)× {p}, λ ∈ Iλ0
(δ). Using Proposition 2.4 again, we have that Aλ(·)

pullback attracts U(·) through ϕλ, i.e., Aλ(·) is a pullback attractor of ϕλ. (3.2) is a direct

consequence of (3.5).

To complete the proof of (❜), we shall prove (3.3) by contradiction. Thus, let us assume

that there exist σ > 0 and a sequence λj → λ0, as j → ∞, xj ∈ Aλj
(p) such that

dX(xj, x) > σ, for all x ∈ Aλ0
(p). (3.6)

Note that

xj = ϕλj
(n, θ−n p)xn

j , for some xn
j ∈ Aλj

(θ−n p).

Similar to the argument in (❛), we can assume that Aλj
(p) ⊂ U(p), thus xj ∈ U(p). By the

compactness of U(p), there exists a subsequence of xj (still denoted by xj) which converges

to some x0 ∈ U(p). Now, for each fixed n we have xn
j ∈ U(θ−n p) so that there is a further

subsequence of xn
j (still denoted by xn

j ) which converges to some xn
0 ∈ U(θ−n p). On the other

hand, for any given ν > 0, we can use the assumption (H2) and the continuity of ϕ(n, θ−n p)

to show that for j large enough,

3d(ϕλj
(n, θ−t p)xn

j , ϕλ0
(n, θ−t p)xn

0 )

≤ d(ϕλj
(n, θ−t p)xn

j , ϕλ0
(n, θ−t p)xn

j ) + d(ϕλ0
(n, θ−t p)xn

j , ϕλ0
(n, θ−t p)xn

0 )

≤ ν + ν.

Then, for each fixed n ∈ N,

x0 = lim
j→∞

xj = lim
j→∞

ϕλj
(n, θ−n p)xn

j = ϕλ0
(n, θ−n p)xn

0 .

Since U(p) is forward invariant, we have

x0 ∈
⋂

n∈N

ϕλ0
(n, θ−n p)U(θ−n p) = Aλ0

(p),

which contradicts (3.6). The proof is complete.

The main contribution of Theorem 3.1 is the existence of pullback attractor Aλ(·) for ϕλ

as λ near λ0, while the argument of the upper semicontinuity of pullback attractors is an

adaptation of that of [2].

The conditions of the following results may be easier to be verified in applications.

Corollary 3.2. Let Aλ0
(·) := {Aλ0

(p)}p∈P be an attractor of the cocycle semiflow ϕλ0
and U ⊂ X

be a compact forward invariant neighborhood of Aλ0
(·). Then under the assumptions (H1), (H2), there

exists a small δ > 0 such that for each λ ∈ Iλ0
(δ), ϕλ has a pullback attractor Aλ(·) satisfying

lim
λ→λ0

HX(Aλ(p), Aλ0
(p)) = 0.

4 Invariant set bifurcation for nonautonomous nonlinear evolution

equations

Based on the general result of the stability of pullback attractors, in the section we can establish

some results on invariant set bifurcation for nonautonomous dynamical systems.



8 X. Ju and A. Qi

4.1 Problem and mathematical setting

From now on, we assume X is a Hilbert space with inner product (·, ·). We will consider and

study invariant set bifurcation of the evolution equation

ut + Au = λu + f (t, u) (4.1)

on X, where λ ∈ R is a bifurcation parameter, the nonlinearity f : R × Xα → X is bounded

continuous mapping satisfying

(F1)

f (t, u) = o(‖u‖α), as ‖u‖α → 0 (4.2)

uniformly on t ∈ R. Moreover, there is β > 0 such that

(( f (t, u), u) ≤ −β · κ(u) (4.3)

for t ∈ R and u ∈ Xα, where κ : X → R+ is a nonnegative function satisfying that

κ(u) = 0 if and only if u = 0.

Denote k(ρ) the Lipschitz constant of f (t, ·) in BXα(ρ). Then by (4.2),

lim
ρ→0

k(ρ) = 0

and

‖ f (t, u1)− f (t, u2)‖ ≤ k(ρ)‖u1 − u2‖α, ∀ u1, u2 ∈ BXα(ρ). (4.4)

Denote Cb(R, X) the set of bounded continuous functions from R to X. Equip Cb(R, X)

with either the uniform convergence topology generated by the metric

r(h1, h2) = sup
t∈R

‖h1(t)− h2(t)‖,

or the compact-open topology generated by the metric

r(h1, h2) =
∞

∑
n=1

1

2n
·

maxt∈[−n,n] ‖h1(t)− h2(t)‖

1 + maxt∈[−n,n] ‖h1(t)− h2(t)‖
.

Let f (·, u) ∈ Cb(R, X) be the function in (4.1). Define the hull of f (·, u) as follows

H := H[ f (·, u)] = { f (τ + ·, u) : τ ∈ R} Cb(R,X).

In application, f (·, u) is often taken as a periodic function, quasiperiodic function, almost peri-

odic function, local almost periodic function [7,20] or uniformly almost automorphic function

[33]. In this case, the hull H is a compact metric space. Accordingly, the translation group θ

on H is given by

θτ p(·, u) = p(τ + ·, u), t ∈ R, p ∈ H.

Instead of (3.2), we will consider the more general cocycle system in Xα (where α ∈ [0, 1)):

ut + Au = λu + p(t, u), p ∈ H. (4.5)
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Proposition 4.1 ([11]). Let A and p be given as above. Assume that p is locally Hölder continuous

in t. Then for each u0 ∈ Xα, there is a T > t0 such that (4.5) has a unique solution u(t) =

uλ(t, t0; u0, p) on [t0, T) satisfying

u(t) = e−A(t−t0)x0 +
∫ t

t0

e−A(t−s)[λu(s) + p(s, u(s))]ds, t ∈ [t0, T). (4.6)

For convenience, from now on we always assume that the unique solution (4.6) is globally

defined. Define

ϕλ(t, p)u := uλ(t, 0; u, p), u ∈ Xα, p ∈ H.

Then ϕλ is a cocycle semiflow on Xα driven by the base flow θ on H.

Remark 4.2. Note that for each p ∈ H, u(t) is a p-solution of ϕλ on an interval J if and only if

it solves the equation (4.5) on J.

4.2 Local invariant manifolds

Let λ0 ∈ R be an isolated eigenvalue of A. Suppose that

(F2) there is a η > 0 such that the spectrum

σ(A) ∩ {z ∈ C : λ0 − η < Re z < λ0 + η} = λ0.

Denote Aλ := A − λ. Then for λ ∈ Iλ0
(η/4) := (λ0 − η/4, λ0 + η/4), the spectrum σ(Aλ)

has a decomposition σ(Aλ) = σc ∪ σ+ ∪ σ−, where

σc = {λ0 − λ}, σ+ = σ(Aλ) ∩ {Re λ > 0} and σ− = σ(Aλ) ∩ {Re λ < 0}.

Accordingly, the space X has a direct sum decomposition: X = Xc ⊕ X+ ⊕ X−. Denote

X± = X+ ⊕ X− and

Xα
i := Xi ∩ Xα, i = c,+,−,±.

Note that Xα
c is finite dimensional.

Under the assumptions on A and f , we can construct a local invariant manifold for ϕλ,

λ ∈ Iλ0
(η/8).

Proposition 4.3. Suppose the assumptions (F1), (F2) hold. Then there exists ̺ > 0 such that the

cocycle semiflow ϕλ, λ ∈ Iλ0
(η/8) has a local invariant manifold Mλ

loc(·) := {Mλ
loc(p)}p∈H in Xα

which is represented as

Mλ
loc(p) = {y + ξλ

p(y) : y ∈ BXα
c
(̺)},

where ξ ·p(·) : Iλ0
(η/8)× BXα

c
(̺) → Xα

± is a Lipschitz continuous mapping satisfying that

ξλ
p(0) = 0 and ‖ξλ

p(y)− ξλ
p(z)‖α ≤ L1‖y − z‖α (4.7)

and

‖ξλ1
p (y)− ξλ2

p (y)‖α ≤ L2|λ1 − λ2|, (4.8)

where L1 > 0 is independent of p ∈ P and λ ∈ Iλ0
(η/8), and L2 > 0 is independent of p ∈ P and

y ∈ BXα
c
(̺).

The proof of the above proposition is given in the Appendixes.
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4.3 Invariant set bifurcation

Firstly, let us restrict the equation (4.5) on the invariant manifold Mλ
loc(·), λ ∈ Iλ0

(η/8).

Specifically, we study the finite dimensional equation

yt + (λ0 − λ)y = p(t, y + ξλ
θt p(y)), y ∈ BXα

c
(̺), p ∈ H. (4.9)

Denote φλ, λ ∈ Iλ0
(η/8) the cocycle flow on BXα

c
(̺) with driving system θ on the base space

H generated by (4.9).

We first say that the condition (H2) (in Section 3) holds for the cocycle flow φλ, λ ∈

Iλ0
(η/8). Specifically, we have the following result.

Lemma 4.4. For every T > 0, we have

lim
λ→λ0

‖φλ(t, p)y − φλ0
(t, p)y‖α = 0, (4.10)

uniformly with respect to (t, y) ∈ [0, T]× BXα
c
(̺) and p ∈ P.

Proof. For λ ∈ Iλ0
(η/8), denote yλ(t) := φλ(t, p)y and v(t) = yλ(t)− yλ0

(t), then v satisfies

vt + (λ0 − λ)yλ = p(t, yλ + ξλ
θt p(yλ))− p(t, yλ0

+ ξλ0
θt p(yλ0

)). (4.11)

Note that ‖yλ‖ ≤ ρ and

‖p(t, yλ + ξλ
θt p(yλ))− p(t, yλ0

+ ξλ0
θt p(yλ0

))‖

≤ k(ρ)
(

(L1 + 1)‖v‖α + L2|λ − λ0|
)

≤ C′
(

‖v‖2 + (λ − λ0)
2
)

for some constant C′,

(4.12)

where ρ > 0 is the bound of u ∈ Mλ
loc(·), which is independent of λ by (4.6). Taking the inner

product of the equation (4.11) with v and using (4.12) to obtain that there is a constant C > 0

being independent of λ such that

d

dt
‖v‖2 ≤ C

(

‖v‖2 + (λ − λ0)
2
)

.

Applying the classical Gronwall lemma to get that

‖v(t)‖2 ≤
(

eCt − 1
)

(λ − λ0)
2,

Lemma 4.5. Under the assumptions (F1), (F2), y = 0 is locally asymptotically stable for φλ0
. Therefore

0 is a pullback attractor of φλ0
.

Proof. Since Xα
c is finite dimensional, all the norms on Xα

c are equivalent. Hence for conve-

nience, we equip Xα
c the norm ‖ · ‖ of X in the following argument.

Note that φλ0
is generated by the equation

yt = p(t, y + ξλ0
θt p(y)), y ∈ BXα

c
(̺), p ∈ H. (4.13)

Taking the inner product of the equation (4.13) with y + ξλ0
θt p(y) in X, using the fact that

(y, ξλ0
θt p(y)) = 0 and the assumption (F1), it yields

1

2

d

dt
‖y‖2 =

(

p
(

t, y + ξλ0
θt p(y)

)

, y + ξλ0
θt p(y)

)

≤ −β · κ
(

y + ξλ0
θt p(y)

)

.
(4.14)
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It is clear that κ
(

y + ξλ0
θt p(y)

)

= 0 if and only if y = 0. Therefore limt→∞ ‖y‖ = 0. The proof is

complete.

Henceforth we will suppose that

(F3) The hull H is a compact metric space.

We then obtain a pullback attractor bifurcation theory for φλ as λ crosses λ0.

Theorem 4.6. Under the assumptions (F1), (F2) and (F3), the cocycle semiflow φλ bifurcates from

(0, λ0) a pullback attractor Aλ(·) for λ > λ0, and

lim
λ→λ+

0

HXα
c
(Aλ(p), {0}) = 0. (4.15)

Proof. Recall from Lemma 4.5 that 0 is a pullback attractor for φλ0
and it pullback attracts

BXα
c
(̺) for sufficiently small ̺ > 0. The bounded set BXα

c
(̺) ⊂ Xα

c is compact due to Xα
c being

finite dimensional. Moreover, BXα
c
(̺) is forward invariant under φλ0

. Then by Theorem 3.1,

there is a η′ ∈ (0, η/8) such that for each λ ∈ Iλ0
(η′), the cocycle semiflow φλ has a pullback

attractor Aλ(·) and (4.15) holds.

In the following, we prove that 0 /∈ Aλ(·) for λ ∈ I+λ0
(η′) := (λ0, λ0 + η′), which completes

the proof.

Let λ ∈ I+λ0
(η′) be fixed, and let w(t) = y(−t). Then w(t) satisfies

wt − (λ0 − λ)w = −p(−t, w + ξλ
θ−t p(w)). (4.16)

Taking the inner product of the equation (4.16) with w in Xα, we have

1

2

d

dt
‖w‖2 − (λ0 − λ)‖w‖2 = −(p(t, w + ξλ

θ−t p(w)), w). (4.17)

Since

‖p(t, u)‖ ≤ k(‖u‖α)‖u‖α and ‖ξλ
θ−t p(w)‖α ≤ L1‖w‖α,

we have

‖p(−t, w + ξλ
θ−t p(w))‖ ≤ k(‖w + ξλ

θ−t p(w)‖α)‖w + ξλ
θ−t p(w)‖α

≤ k(‖w + ξλ
θ−t p(w)‖α) (‖w‖α + L1‖w‖α)

≤ k(‖w + ξλ
θ−t p(w)‖α) · (1 + L1)‖w‖α

≤ [(1 + L1)ck(‖w + ξλ
θ−t p(w)‖α)] · ‖w‖

≤
1

2
(λ − λ0)‖w‖, for sufficiently small ‖w‖α.

(4.18)

We get from (4.17) and (4.18) that

d

dt
‖w‖2 ≤ −(λ − λ0)‖w‖2

for sufficiently small ‖w‖α, which shows for fixed λ ∈ I+λ0
(η′), 0 locally asymptotically stable

for the cocycle flow generated by the equation (4.16). In other words, 0 is a repeller of φλ when

λ ∈ I+λ0
(η′) and repels a neighborhood of 0 in Xα

c . This implies that 0 /∈ Aλ(·), λ ∈ I+λ0
(η′).

The proof is complete.
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We are now in position to give and prove the main result of this paper.

Theorem 4.7. Under the assumptions (F1), (F2) and (F3), the cocycle semiflow ϕλ bifurcates from

(0, λ0) an invariant compact set Bλ(·) for λ > λ0, and for each p ∈ P,

lim
λ→λ+

0

HX(Bλ(p), {0}) = 0. (4.19)

Proof. Let Aλ(·) be the bifurcated attractor obtained in Theorem 4.6. Define Bλ(·) by

Bλ(p) = {y + ξλ
p(y) : y ∈ Aλ(p)}, p ∈ H. (4.20)

We know from Theorem 4.6 that 0 /∈ Bλ(·) and Bλ(·) ⊂ Mλ
loc(·). Based on the compactness

of Aλ(p) and the continuity of ξλ
p(y) in y, we can directly derive the compactness of Bλ(p). So

Bλ(·) is compact.

We claim that Bλ(·) is invariant under ϕλ. Indeed, let p ∈ P and y + ξλ
p(y) ∈ Bλ(p). Since

φλ(t, p)y ∈ Aλ(θt p), t ≥ 0, by the invariance of Mλ
loc(·), we have

ϕλ(t, p)(y + ξλ
p(y)) = φλ(t, p)y + ξλ

θt p(φλ(t, p)y) ∈ Bλ(θt p),

which shows

ϕλ(t, p)Bλ(p) ⊂ Bλ(θt p), t ≥ 0.

On the other hand, for any y + ξλ
θt p(y) ∈ Bλ(θt p), t ≥ 0. Using the invariance of Aλ(·), there

is a y′ ∈ Aλ(p) such that y = φλ(t, p)y′. Then

y + ξλ
θt p(y) = φλ(t, p)y′ + ξλ

θt p(φλ(t, p)y′)

= ϕλ(t, p)(y′ + ξλ
θt p(y

′)) ∈ ϕ(t, p)Bλ(p),

which shows

Bλ(θt p) ⊂ ϕλ(t, p)Bλ(p), t ≥ 0.

Therefore Bλ(·) is invariant under ϕλ.

Finally, (4.19) is an immediately consequence of (4.15) and (4.7).

We now give a result which parallels Theorem 4.7.

Corollary 4.8. Let the assumptions (F1), (F2), (F3) hold, but replace (4.3) by the assumption that

( f (t, u), u) ≥ β · κ(u).

Then the cocycle semiflow ϕλ bifurcates from (0, λ0) an invariant compact set Bλ(·) for λ < λ0, and

for each p ∈ P,

lim
λ→λ−

0

HX(Bλ(p), {0}) = 0. (4.21)

Proof. Let λ ∈ Iλ0
(η/8). Consider the following equation

zt − (λ0 − λ)z = −p(−t, z + ξλ
θ−t p(z)), z ∈ BXα

c
(̺), p ∈ H. (4.22)

Denote by φ−
λ be the cocycle flow generated by (4.22). Then φ−

λ be the inverse flow of φλ.

Repeating the argument of Lemma 4.4, Lemma 4.5 and Theorem 4.6 (replacing φλ by φ−
λ )

to show φ−
λ bifurcates from (0, λ0) a pullback attractor Rλ(·) for λ < λ0, and

lim
λ→λ−

0

HXα
c
(Rλ(p), {0}) = 0.

It is clear that Rλ(·) is also an invariant set of φλ. Define a set Bλ(·) by

Bλ(p) = {y + ξλ
p(y) : y ∈ Rλ(p)}, p ∈ H.

Similar to Theorem 4.7, we can show Bλ(·) is an invariant set of ϕλ and (4.21) holds.
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5 An example

Consider the nonautonomous system

{

ut − ∆u = λu ± h(t)u3, t > 0, x ∈ Ω;

u = 0, t > 0, x ∈ ∂Ω,
(5.1)

where Ω is a bounded domain in R3 with smooth boundary, h is a function such that h(t) ≥

δ > 0 for some δ > 0.

Denote by A the operator −∆ associated with the homogeneous Dirichlet boundary con-

dition. Then A is a sectorial operator on X = L2(Ω) with compact resolvent, and D(A) =

H2(Ω)
⋂

H1
0(Ω). Note that A has eigenvalues 0 < µ1 < µ2 < · · · < µk < · · · . Denote

V = H1
0(Ω). By (·, ·) and | · | we denote the usual inner product and norm on H, respectively.

The inner product and norm on V, denoted by ((·, ·)) and ‖ · ‖, respectively, are defined as

((u, v)) =
∫

Ω
∇u · ∇vdx, ‖u‖ =

(

∫

Ω
|∇u|2dx

)1/2

for u, v ∈ V.

The system (5.1) can be written into an abstract equation on X:

ut + Au = λu ± h(t)u3.

Define the hull H := H[h(·)u3]. By the assumption on h, it is clear that

(p(t, u), u) ≥ δ
∫

Ω
u4dx, p ∈ H.

Consider the cocycle system:

ut + Au = λu ± p(t, u), p ∈ H. (5.2)

Denote ϕ±
λ := ϕ±

λ (t, p)u the cocycle semiflow on H1
0(Ω) driven by the base flow (translation

group) θ on H.

Since all the hypotheses in the main theorem above are fulfilled, we obtain some interesting

results concerning the dynamics of the perturbed system. In particular,

Theorem 5.1. Suppose H is compact. Then the cocycle semiflow ϕ−
λ (resp. ϕ+

λ ) bifurcates from (0, µk),

k = 1, 2, · · · an invariant compact set B−
λ (·) for λ > λ0 (resp. B+

λ (·) for λ < λ0) and for each p ∈ P,

lim
λ→λ+

0

HX(B−
λ (p), {0}) = 0.

(

resp. lim
λ→λ−

0

HX(B+
λ (p), {0}) = 0.

)
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6 Appendixes

6.1 Relationship between the pullback attraction of ϕ and the attraction of Φ

Proof of Proposition 2.4. Necessity: By the compactness of P, one finds that

lim
t→∞

HY (Φ(t)B, P × KP) = lim
t→∞

HX (ϕ(t, p)B(p), KP)

≤ lim
t→∞

sup
p∈P

HX (ϕ(t, p)B(p), KP)

= lim
t→∞

sup
p∈P

HX (ϕ(t, θ−t p)B(θ−t p), KP)

= 0.

This means the compact set P × KP attracts B through Φ. Therefore the omega-limit set ω(B)

of B exists and attracts B.

In the following, we prove ω(B) ⊂ K, which completes the necessity. For this purpose,

define a nonautonomous set B̃(·) as follows

B̃(p) :=
⋃

s≥0

ϕ(s, θ−s p)B(θ−s p), p ∈ P.

It is clear that B(·) ⊂ B̃(·). We first say B̃(·) is forward invariant. Indeed, for any t ≥ 0 and

p ∈ P,

ϕ(t, p)B̃(p) = ϕ(t, p)
⋃

s≥0

ϕ(s, θ−s p)B(θ−s p)

⊂
⋃

s≥0

ϕ(t, p) ◦ ϕ(s, θ−s p)B(θ−s p)

=
⋃

s≥0

ϕ(t + s, θ−(t+s) ◦ θt p)B(θ−(t+s) ◦ θt p)

⊂
⋃

s≥0

ϕ(s, θ−s ◦ θt p)B(θ−s ◦ θt p) = B̃(θt p).

(6.1)

So B̃(·) is forward invariant, which implies the omega-limit set ω(B̃)(·) of B̃(·) is the maximal

invariant set in B̃(·). Furthermore, for any p ∈ P,

ω(B̃)(p) =
⋂

τ≥0

⋃

t≥τ

ϕ(t, θ−t p)B̃(θ−t p)

=
⋂

τ≥0

⋃

t≥τ

ϕ(t, θ−t p)
⋃

s≥0

ϕ(s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂

τ≥0

⋃

t≥τ

ϕ(t, θ−t p)
⋃

s≥0

ϕ(s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂

τ≥0

⋃

t≥τ

⋃

s≥0

ϕ(t, θ−t p) ◦ ϕ(s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂

τ≥0

⋃

t≥τ

⋃

s≥0

ϕ(t + s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂

τ≥0

⋃

t≥τ

ϕ(t, θ−t p)B(θ−t p)

= ω(B)(p),
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where the third “=” holds since for each fixed t ≥ 0 and p ∈ P, ϕ(t, θ−t p) is a continuous

map on X. It follows that ω(B)(·) is the maximal forward invariant set in B̃(·). Therefore

C :=
⋃

p∈P

(

{p} × ω(B)(p)
)

is the maximal invariant set in B̃ :=
⋃

p∈P

(

{p} × B̃(p)
)

. By the

forward invariance of B̃(·),

ϕ(t)B̃ = ϕ(t)
⋃

p∈P

(

{p} × B̃(p)
)

⊂
⋃

p∈P

ϕ(t)
(

{p} × B̃(p)
)

=
⋃

p∈P

(

{θt p} × ϕ(t, p)B̃(p)
)

⊂ (by (6.1)) ⊂
⋃

p∈P

(

{θt p} × B̃(θt p)
)

= B̃, t ≥ 0,

i.e. B̃ is positively invariant under ϕ. Then ω(B̃) is the maximal invariant set in B̃. Recall that

C is also the maximal invariant set in B̃, we have

ω(B) ⊂ ω(B̃) = C.

Finally, by the assumption that K(·) attracts B(·), one knows that ω(B)(·) ⊂ K(·), and thus

C ⊂ K, which shows

ω(B) ⊂ K.

Sufficiency: In a very similar way as above, we can prove the sufficiency.

By the compactness of P,

lim
t→∞

HX (ϕ(t, θ−t p)B(θ−t p), KP)] ≤ lim
t→∞

sup
p∈P

HX (ϕ(t, p)B(p), KP)

= lim
t→∞

sup
p∈P

HY (Φ(t)B, P × KP)

= lim
t→∞

HY (Φ(t)B, P × KP)

= 0,

which implies ω(B)(·) exists and pullback attracts B(·).

To complete the proof, it suffices to show ω(B)(·) ⊂ K(·). We first define a set

B̂ =
⋃

s≥0

Φ(s)B.

Then B̂ is positively invariant and

ω(B̂) = ω(B).

This implies that Ω(B) is the maximal invariant set in B̂. Write ω(B) :=
⋃

p∈P{p}×C(p), then

C(·) is the maximal invariant set in B̂(·), where B̂(·) is the set defined by B̂ :=
⋃

p∈P{p}× B̂(p).

By the positive invariance of B̂, one also knows that B̂(·) is forward invariant. This implies

ΩB̂(·) is the maximal invariant set in B̂(·). We then have that ω(B)(·) ⊂ ω(B̂)(·) = C(·). We

learn from the condition ω(B) ⊂ K that C(·) ⊂ K(·). In summary, ω(B)(·) ⊂ K(·), which

completes the sufficiency. �
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6.2 Construction of local invariant manifold

Let M > 0. For µ ≥ 0, define a Banach space as

Xµ =

{

u ∈ C(R; Xα) : sup
t∈R

e−µ|t|‖x(t)‖α < M

}

,

which is equipped with the norm ‖ · ‖Xµ
,

‖x‖Xµ
= sup

t∈R

e−µ|t|‖x(t)‖α, ∀ x ∈ Xµ.

Let Aλ = A − λ. Write σ(Aλ) = σ− ∪ σc ∪ σ+, where

σc = {λ0 − λ},

σ− = σ(Aλ) ∩ {Re λ < 0}, σ+ = σ(Aλ) ∩ {Re λ > 0}.

According to the spectral decomposition, the space X has a direct sum decomposition: X =

X− ⊕ Xc ⊕ X+. Denote X± := X−
⋃

X+. Note that each Xi, i = −,+,±, c is independent of λ.

Let

Πi : X → Xi, i = −,+,±, c

be the projection from X to Xi. Denote Aλ
i = Aλ|Xi

. By the assumption (F2), we deduce that

if λ ∈ (λ0 − η/4, λ0 + η/4) then for α ∈ [0, 1),

‖Aαe−Aλ
−t‖ ≤ e

3η
4 t, ‖e−Aλ

−t‖ ≤ e−
3η
4 t, t ≤ 0, (6.2)

‖Aαe−Aλ
+tΠ+A−α‖ ≤ e−

3η
4 t, ‖Aαe−Aλ

+t‖ ≤ t−αe−
3η
4 t, t > 0, (6.3)

‖Aαe−Aλ
c t‖ ≤ e

η
4 |t|, ‖e−Aλ

c t‖ ≤ e
η
4 |t|, t ∈ R. (6.4)

Proof of Proposition 4.3. The proof of the existence result for a local invariant manifold is an

adaptation of the corresponding result in Chicone and Latushkin [9]. Here we give the details

for completeness and the reader’s convenience. The main aim of the proof is to show the

Lipschitz continuity of ξλ
p(y) in λ and y, respectively.

Let χ : R → R be a smooth function such that

χ(z) =







1, |z| ≤ 1/2;

0, |z| ≥ 1.

For ρ > 0, one can then define a smooth function such that

pρ(t, u) = χ

(

‖u‖α

ρ

)

p(t, u).

Select suitable χ such that

‖pρ(t, u)− pρ(t, v)‖ ≤ k(ρ)‖u − v‖, (6.5)

where k(ρ) is the local Lipschitz constant of f given in (4.4). Instead of (4.5), we consider the

truncated system

ut + Au = λu + pρ(t, u), p ∈ H. (6.6)
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Suppose that ρ is so small that

Mρ := k(ρ)
∫ ∞

0

(

2 + τ−α
)

e−
η
4 τdτ < 1. (6.7)

Let u ∈ Xη/2. By simple computations, we know that u is the solution of (6.6) if and only

if it solves the integral equation

u(t) = e−Aλ
c tΠcu(0) +

∫ t

0
e−Aλ

c (t−τ)Πc pρ(τ, u(τ))dτ

+
∫ t

−∞
e−Aλ

+(t−τ)Π+pρ(τ, u(τ))dτ

−
∫ ∞

t
e−Aλ

−(t−τ)Π−pρ(τ, u(τ))dτ.

(6.8)

Take a ˜̺ > 0 small enough so that

˜̺ <
(

1 − Mρ

)

M. (6.9)

Let p ∈ H and λ ∈ Iλ0
(η/8) be fixed. For each y ∈ BXα

c
( ˜̺), one can use the righthand side of

equation (6.8) to define a contraction mapping T := Ty on Xη/2 as follows:

T u(t) = e−Aλ
c ty +

∫ t

0
e−Aλ

c (t−τ)Πc pρ(τ, u(τ))dτ

+
∫ t

−∞
e−Aλ

+(t−τ)Π+pρ(τ, u(τ))dτ

−
∫ ∞

t
e−Aλ

−(t−τ)Π−pρ(τ, u(τ))dτ.

We first verify that T maps Xη/2 into itself.

For notational convenience, we write

0 ∧ t = min{0, t}, 0 ∨ t = max{0, t}, for t ∈ R.

Let u ∈ Xη/2. By (6.2)–(6.4) and (6.5) we have

‖T u(t)‖α ≤ e
η
4 |t|‖y‖α +

∫ 0∨t

0∧t
e

η
4 |t−τ|k(ρ)‖u(τ)‖αdτ

+
∫ t

−∞
(t − τ)−αe−

3η
4 (t−τ)k(ρ)‖u(τ)‖αdτ

+
∫ ∞

t
e

3η
4 (t−τ)k(ρ)‖u(τ)‖αdτ.

(6.10)

It is trivial to verify that

e−
η
2 |t|

∫ 0∨t

0∧t
e

η
4 |t−τ|k(ρ)‖u(τ)‖αdτ =

∫ 0∨t

0∧t
e−

η
4 |t−τ|

[

e−
η
2 |τ|k(ρ)‖u(τ)‖α

]

dτ. (6.11)

Observing that

e−
η
2 |t| = e−

η
2 |(t−τ)+τ| ≤ e

η
2 |t−τ|e−

η
2 |τ|,
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by (6.9), (6.10) and (6.11) we find that

e−
η
2 |t|‖T x(t)‖α ≤ e−

η
4 |t|‖y‖α +

∫ 0∨t

0∧t
e−

η
4 |t−τ|

[

e−
η
2 |τ|k(ρ)‖u(τ)‖α

]

dτ

+
∫ t

−∞
(t − τ)−αe

η
2 |t−τ|e−

3η
4 (t−τ)

[

e−
η
2 |τ|k(ρ)‖u(τ)‖α

]

dτ

+
∫ ∞

t
e

η
2 |t−τ|e

3η
4 (t−τ)

[

e−
η
2 |τ|k(ρ)‖u(τ)‖α

]

dτ

= e−
η
4 |t|‖y‖α +

∫ 0∨t

0∧t
e−

η
4 |t−τ|

[

e−
η
2 |τ|k(ρ)‖u(τ)‖α

]

dτ

+
∫ t

−∞
(t − τ)−αe−

η
4 (t−τ)

[

e−
η
2 |τ|k(ρ)‖u(τ)‖α

]

dτ

+
∫ ∞

t
e

η
4 (t−τ)

[

e−
η
2 |τ|k(ρ)‖u(τ)‖α

]

dτ

≤ ‖y‖α + Mρ‖u‖Xη/2
< M, ∀ t ∈ R.

(6.12)

Hence T u ∈ Xη/2.

Next, we check that T is contractive. Indeed, in a quite similar fashion as above, it can be

shown that for any u, u′ ∈ Xη/2,

e−
η
2 |t|‖T u(t)− T u′(t)‖α ≤ k(ρ)

∫ 0∨t

0∧t
e−

η
4 |t−τ|

(

e−
η
2 |τ|‖u(τ)− u′(τ)‖α

)

dτ

+ k(ρ)
∫ t

−∞
(t − τ)−αe−

η
4 (t−τ)

(

e−
η
2 |τ|‖u(τ)− u′(τ)‖α

)

dτ

+ k(ρ)
∫ ∞

t
e

η
4 (t−τ)

(

e−
η
2 |τ|‖u(τ)− u′(τ)‖α

)

dτ

≤

(

k(ρ)
∫ ∞

0

(

2 + τ−α
)

e−
η
4 τdτ

)

‖u − u′‖Uη/2

:= Mρ‖u − u′‖Xη/2
, ∀ t ∈ R.

(6.13)

Thus

‖T u − T u′‖Xη/2
≤ Mρ‖u − u′‖Xη/2

.

The conditon (6.7) then asserts that T is contractive.

Thanks to the Banach fixed-point theorem, T has a unique fixed point γ
y
p,λ ∈ Xη/2 which

is precisely a full solution of (4.5) with Πcγ
y
p,λ(0) = y and solves the integral equation

γ
y
p,λ(t) = e−Aλ

c ty +
∫ t

0
e−Aλ

c (t−τ)Πc pρ(τ, γ
y
p,λ(τ))dτ

+
∫ t

−∞
e−Aλ

+(t−τ)Π+pρ(τ, γ
y
p,λ(τ))dτ

−
∫ ∞

t
e−Aλ

−(t−τ)Π−pρ(τ, γ
y
p,λ(τ))dτ.

(6.14)
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For y, z ∈ BXα
c
( ˜̺) and t ∈ R, similarly to (6.13), by (6.14) we have

e−
η
2 |t|‖γ

y
p,λ(t)− γz

p,λ(t)‖α

≤ e−
η
4 |t|‖y − z‖α + k(ρ)

∫ 0∨t

0∧t
e−

η
4 |t−τ|

(

e−
η
2 |τ|‖γ

y
p,λ(τ)− γz

p,λ(τ)‖α

)

dτ

+ k(ρ)
∫ t

−∞
(t − τ)−αe−

η
4 (t−τ)

(

e−
η
2 |τ|‖γ

y
p,λ(τ)− γz

p,λ(τ)‖α

)

dτ

+ k(ρ)
∫ ∞

t
e

η
4 (t−τ)

(

e−
η
2 |τ|‖γ

y
p,λ(τ)− γz

p,λ(τ)‖α

)

dτ

≤‖y − z‖α + Mρ‖γ
y
p,λ − γz

p,λ‖Xη/2
.

Hence

‖γ
y
p,λ − γz

p,λ‖Xη/2
≤

M

1 − Mρ
‖y − z‖α,

which implies that

‖γ
y
p,λ(0)− γz

p,λ(0)‖α ≤
M

1 − Mρ
‖y − z‖α. (6.15)

For each p ∈ H and λ ∈ Iλ0
(η/8), define a mapping from Xα

c to Xα
us as

ξλ
p(y) :=

∫ 0

−∞
eAλ

+τΠ+pρ(τ, γ
y
p,λ(τ))dτ

−
∫ ∞

0
eAλ

−τΠ−pρ(τ, γ
y
p,λ(τ))dτ, y ∈ BXα

c
( ˜̺).

(6.16)

Setting t = 0 in (6.14) leads to

γ
y
p,λ(0) = y + ξλ

p(y), y ∈ BXα
c
( ˜̺). (6.17)

We conclude from (6.15), (6.16) and (6.17) that ξλ
p(·) : BXα

c
( ˜̺) → Xα

us is a Lipschitz continuous

mapping uniformly on p and λ. More specifically, let

L1 :=
M

1 − Mρ
+ 1.

Then for each y, z ∈ BXα
c
( ˜̺),

‖ξλ
p(y)− ξλ

p(z)‖α ≤ ‖γ
y
p,λ(0)− γz

p,λ(0)‖α + ‖y − z‖α

≤ L1‖y − z‖α.

Since γ
y
p,λ ≡ 0 is a full solution of (6.6), we have ξλ

p(0) ≡ 0, and thus

lim
‖y‖α→0

‖ξλ
p(y)‖α = 0

uniformly on p ∈ H and λ ∈ Iλ0
(η/8).

Take a sufficiently small ̺ > 0 such that

‖y + ξλ
p(y)‖ ≤

ρ

2
, y ∈ BXα

c
(̺).

Define for each p ∈ H the p-section as

Mλ
loc(p) = {y + ξλ

p(y) : y ∈ BXα
c
(̺)}.
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By the definition of pρ, Mλ
loc(·) := {Mλ

loc(p)}p∈H is a local invariant manifold of the cocycle

semiflow ϕλ, λ ∈ Iλ0
(η/8) generated by (4.5). And for each p ∈ H, the section Mλ

loc(p) is

homeomorphic to BXα
c
(̺).

In the last part, we show ξ ·p(y) : Iλ0
(η/8) → Xα

us is Lipschitz uniformly on y ∈ BXα
c
(̺) and

p ∈ P. Indeed, for λ1, λ2 ∈ Iλ0
(η/8) with λ1 ≤ λ2, we have for t ∈ R that

‖e−A
λ1
c t − e−A

λ2
c t‖ ≤ ‖e−A

λ1
c t‖ ·

∣

∣1 − e−(λ2−λ1)t
∣

∣

≤ e
η
4 |t| ·

∣

∣1 − e−(λ2−λ1)t
∣

∣.

Then for t ∈ R,

e−
η
2 |t|

∫ t

0
‖e−A

λ1
c (t−τ)p(τ, γ

y
p,λ1

(τ))− e−A
λ2
c (t−τ)pρ(τ, γ

y
p,λ2

(τ))‖dτ

≤
∫ t

0
e−

η
4 |t−τ|k1(ρ)

(

e−
η
2 |τ|‖γ

y
p,λ1

(τ)− γ
y
p,λ2

(τ)‖α

)

dτ

+
∫ t

0
e−

η
4 |t−τ| · k1(ρ)

∣

∣1 − e−(λ2−λ1)(t−τ)
∣

∣ ·
(

e−
η
2 |τ|‖γ

y
p,λ2

(τ)‖α

)

dτ

≤ k(ρ)
∫ t

0
e−

η
4 |t−τ|

(

e−
η
2 |τ|‖γ

y
p,λ1

(τ)− γ
y
p,λ2

(τ)‖α

)

dτ

+ k(ρ)M
∫ t

0
e−

η
4 |t−τ|

∣

∣1 − e−(λ2−λ1)(t−τ)
∣

∣dτ.

(6.18)

We can apply very similar arguments to get that

e−
η
2 |t|

∫ t

−∞
‖e−A

λ1
s (t−τ)pρ(τ, γ

y
p,λ1

(τ))− e−A
λ2
s (t−τ)pρ(τ, γ

y
p,λ2

(τ))‖dτ

≤ k(ρ)
∫ t

−∞
(t − τ)αe−

η
4 (t−τ)

(

e−
η
2 |τ|‖γ

y
p,λ1

(τ)− γ
y
p,λ2

(τ)‖α

)

dτ

+ k(ρ)M
∫ t

−∞
(t − τ)αe−

η
4 (t−τ)

∣

∣1 − e−(λ2−λ1)(t−τ)
∣

∣dτ

(6.19)

and

e−
η
2 |t|

∫ ∞

t
‖e−A

λ1
u (t−τ)p(τ, γ

y
p,λ1

(τ))− e−A
λ2
u (t−τ)p(τ, γ

y
p,λ2

(τ))‖dτ

≤ k(ρ)
∫ ∞

t
e

η
4 (t−τ)

(

e−
η
2 |τ|‖γ

y
p,λ1

(τ)− γ
y
p,λ2

(τ)‖α

)

dτ

+ k(ρ)M
∫ ∞

t
e

η
4 (t−τ)

∣

∣1 − e−(λ2−λ1)(t−τ)
∣

∣dτ.

(6.20)

By (6.18), (6.19) and (6.20), we derive that

e−
η
2 |t|‖γ

y
p,λ1

(t)− γ
y
p,λ2

(t)‖α

≤ e−
η
2 |t|

∫ t

0
‖e−A

λ1
c (t−τ)p(τ, γ

y
p,λ1

(τ))− e−A
λ2
c (t−τ)p(τ, γ

y
p,λ2

(τ))‖dτ

+ e−
η
2 |t|

∫ t

−∞
‖e−A

λ1
s (t−τ)p(τ, γ

y
p,λ1

(τ))− e−A
λ2
s (t−τ)p(τ, γ

y
p,λ2

(τ))‖dτ

+ e−
η
2 |t|

∫ ∞

t
‖e−A

λ1
u (t−τ)p(τ, γ

y
p,λ1

(τ))− e−A
λ2
u (t−τ)p(τ, γ

y
p,λ2

(τ))‖dτ

≤ k(ρ)
∫ ∞

0
(2 + t−α)e−

η
4 tdt · sup

t∈R

e−
η
2 |t|‖γ

y
p,λ1

(t)− γ
y
p,λ2

(t)‖α

+ k(ρ)M
∫ ∞

0
(2 + t−α)e−

η
4 t
(

e(λ2−λ1)t − 1
)

dt.

(6.21)
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It follows that

‖ξλ1
p (y)− ξλ2

p (y)‖α = ‖uλ1
(0)− uλ2

(0)‖α

≤ sup
t∈R

e−
η
2 |t|‖γ

y
p,λ1

(t)− γ
y
p,λ2

(t)‖α

≤
k1(ρ)M

1 − Mρ

∫ ∞

0
(2 + t−α)e−

η
4 t
(

e(λ2−λ1)t − 1
)

dt

≤
k1(ρ)M

1 − Mρ

∫ ∞

0
(2 + t−α)t e−[ η

4 −(λ2−λ1)]tdt · |λ1 − λ2|,

where the differential mean value is applied to e(λ2−λ1)t − 1 to get the last term. It is clear that

the integral
∫ ∞

0
(2 + t−α)t e−[ η

4 −(λ2−λ1)]tdt =
∫ ∞

0
(2t + t1−α) e−[ η

4 −(λ2−λ1)]tdt

converges. Therefore

ξλ1
p (y)− ξλ2

p (y)‖ ≤ L2|λ1 − λ2|,

where

L2 :=
k1(ρ)M

1 − Mρ

∫ ∞

0
(2t + t1−α) e−[ η

4 −(λ2−λ1)]tdt,

and thus ξ ·p(y) is Lipschitz continuous on Iλ0
(η/8) uniformly on p ∈ P and y ∈ BXα

c
(̺).
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Abstract. For an arbitrary noninvertible evolution family on the half-line and for
ρ : [0, ∞) → [0, ∞) in a large class of rate functions, we consider the notion of a ρ-
dichotomy with respect to a family of norms and characterize it in terms of two ad-
missibility conditions. In particular, our results are applicable to exponential as well as
polynomial dichotomies with respect to a family of norms. As a nontrivial application
of our work, we establish the robustness of general nonuniform dichotomies.

Keywords: admissibility, dichotomies with growth rates, robustness.
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1 Introduction

Among many methods used to study the asymptotic behavior of nonautonomous systems,

one of the most famous is the so-called admissibility method. This line of research in the

context of differential equations has a long history that goes back to the pioneering work of

Perron [26]. The main idea of Perron’s work was to characterize the asymptotic properties of

the linear differential equation

ẋ(t) = A(t)x(t), t ∈ J,

in terms of the (unique) solvability in O(J, X) of the equation

ẋ(t) = A(t)x(t) + f (t), t ∈ J,

for each test function f ∈ I(J, X), where J ∈ {[0, ∞), R}. Here X is a Banach space, while

I(J, X) – the input-space and O(J, X) – the output space are suitably constructed function

spaces. The milestones of this theory were grounded in the sixtieth in the remarkable works of

Massera and Schäffer [18–20] and respectively in the seventies in the outstanding monographs

of Coppel [10] and Daleckı̆i and Kreı̆n [11].

BCorresponding author. Email: ddragicevic@math.uniri.hr
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Since then various authors obtained valuable contributions to this line of the research.

For the results dealing with characterizations of uniform exponential behavior in terms of

appropriate admissibility properties, we refer to the works of Huy [15], Latushkin, Randolph

and Schnaubelt [16], Van Minh, Räbiger and Schnaubelt [22], Van Minh and Huy [23], Preda,

Pogan and Preda [28, 29] as well as Sasu and Sasu [31–35]. For contributions dealing with

various concepts of nonuniform exponential behavior, we refer to [4, 5, 17, 21, 27, 30, 36] and

references therein. For a detailed description of this line of the research, we refer to [6].

We point out that all the above works deal with exponential behavior. Although this type

of behavior has a somewhat privileged role due to its connections with the hyperbolic smooth

dynamics, it is certainly not the only type of behavior that appears in the qualitative study

of nonautonomous differential equations. To the best of our knowledge, the study of di-

chotomies with not necessarily exponential rates of expansion and contraction was initiated

by Muldowney [24] and Naulin and Pinto [25]. More recently, in the context of nonuniform

asymptotic behavior such dichotomies have been studied by Barreira and Valls [1,3] and Bento

and Silva [8,9]. A special emphasis was devoted to the so-called polynomial dichotomies [2,7].

A complete characterization of polynomial dichotomies in terms of admissibility for evolution

families was obtained by Dragičević [12] (see also [13] for related results in the case of discrete

time) by building on the work of Hai [14], who considered polynomial stability.

The main objective of the present paper is to obtain similar results to that in [12] but

for a much wider class of dichotomies. More precisely, for a large class of rate functions

ρ : [0, ∞) → [0, ∞), we introduce the notion of a ρ-dichotomy with respect to a family of

norms. We then obtain a complete characterization of this concept in terms of appropriate

admissibility conditions. We point out that our results are new even in the particular case of

uniform ρ-dichotomies. Indeed, although the proofs use the somewhat standard techniques,

the major task accomplished in the present paper was to formulate appropriate admissibility

conditions for the general dichotomies we study. In addition, the obtained results are new

even for the class of polynomial dichotomies since in comparison to [12], we do not require

that our evolution family exhibits polynomial bounded growth property. Consequently, we

need to impose two admissibility conditions (rather than just one as in [12]) to characterize

polynomial dichotomies. We stress that in the present paper we also use different admissibility

spaces from those in [12].

The paper is organized as follows. In Section 2 we introduce the class of dichotomies we

study as well as input and output spaces we are going to use. In Section 3, we show that the

existence of ρ-dichotomies yields two types of admissibility properties. Then, in Section 4 we

obtain a converse result by showing that those admissibility properties imply the existence

of a ρ-dichotomy. Finally, in Section 5 we apply those results to establish the robustness of

ρ-dichotomies.

2 Preliminaries

2.1 Generalized dichotomies

Let X = (X, ‖·‖) be an arbitrary Banach space and let B(X) be the Banach algebra of all

bounded linear operators on X. A family T = {T(t, s)}t≥s≥0 of operators in B(X) is said to

be an evolution family on X if the following properties hold:

• T(t, t) = Id, for t ≥ 0;
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• T(t, s)T(s, τ) = T(t, τ), for t ≥ s ≥ τ ≥ 0;

• for all s ≥ 0 and x ∈ X the mapping t 7→ T(t, s)x is continuous on [s, ∞) and the

mapping t 7→ T(s, t)x is continuous on [0, s].

In this paper we always assume that T = {T(t, s)}t≥s≥0 is an evolution family on X and

let ρ : [0, ∞) → [0, ∞) be a strictly increasing function of class C1 such that

ρ(0) = 0 and lim
t→∞

ρ(t) = ∞.

In particular, observe that ρ is bijective. Furthermore, assume that {‖·‖t}t≥0 is a family of

norms on X such that:

• there exist C > 0 and ε ≥ 0 with

‖x‖ ≤ ‖x‖t ≤ Ceερ(t)‖x‖, for x ∈ X and t ≥ 0; (2.1)

• the mapping t 7→ ‖x‖t is continuous for each x ∈ X.

We say that the evolution family T admits a ρ-dichotomy with respect to the family of

norms ‖·‖t, t ≥ 0, if there exists a family {P(t)}t≥0 of projections on X satisfying

T(t, s)P(s) = P(t)T(t, s), for t ≥ s ≥ 0, (2.2)

such that

T(t, s)|Ker P(s) : Ker P(s) → Ker P(t) is invertible for all t ≥ s ≥ 0, (2.3)

and there exist constants λ, D > 0 such that:

• for x ∈ X and t ≥ s ≥ 0,

‖T(t, s)P(s)x‖t ≤ De−λ(ρ(t)−ρ(s))‖x‖s; (2.4)

• for x ∈ X and 0 ≤ t ≤ s,

‖T(t, s)(Id − P(s))x‖t ≤ De−λ(ρ(s)−ρ(t))‖x‖s, (2.5)

where

T(t, s) :=

(

T(s, t)|Ker P(t)

)−1

: Ker P(s) → Ker P(t),

for 0 ≤ t ≤ s.

In the following we recall the concept of ρ-nonuniform exponential dichotomy for evolution

families (see [1,3]) and establish its connection with the notion of ρ-dichotomy with respect to

a family of norms. An evolution family T is said to admit a ρ-nonuniform exponential dichotomy

if there exists a family {P(t)}t≥0 of projections on X satisfying (2.2) and (2.3), and there exist

constants λ, D > 0 and ε ≥ 0 such that

‖T(t, s)P(s)‖ ≤ De−λ(ρ(t)−ρ(s))+ερ(s), for t ≥ s ≥ 0, (2.6)

and

‖T(t, s)(Id − P(s))‖ ≤ De−λ(ρ(s)−ρ(t))+ερ(s), for 0 ≤ t ≤ s. (2.7)
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The concept of ρ-nonuniform exponential dichotomy includes as a special case the usual

exponential behavior when ρ(t) = t. Also, for ρ(t) = ln(t + 1) we obtain the concept of nonuni-

form polynomial dichotomy introduced independently by Barreira and Valls [2] and Bento and

Silva [7], and more general for ρ(t) =
∫ t

0 µ(t)dt, where µ : [0, ∞) → (0, ∞) is a continuous

function such that limt→∞

∫ t
0 µ(t)dt = ∞, we obtain the nonuniform version of the generalized

dichotomy in the sense of Muldowney [24].

Proposition 2.1. The following statements are equivalent:

1. T admits a ρ-nonuniform exponential dichotomy;

2. T admits a ρ-dichotomy with respect to a family of norms ‖ · ‖t, t ≥ 0 such that t 7→ ‖x‖t is

continuous for each x ∈ X.

Proof. Assume that T admits a ρ-nonuniform exponential dichotomy. For t ≥ 0 and x ∈ X,

set

‖x‖t = sup
τ≥t

eλ(ρ(τ)−ρ(t))‖T(τ, t)P(t)x‖+ sup
τ∈[0,t]

eλ(ρ(t)−ρ(τ))‖T(τ, t)(Id − P(t))x‖.

A simple computation shows that (2.1) holds for C = 2D. Moreover, by repeating the argu-

ments in the proof of [6, Proposition 5.6], one can show that t 7→ ‖x‖t is continuous for each

x ∈ X. Furthermore, for t ≥ s ≥ 0 and x ∈ X we have

‖T(t, s)P(s)x‖t = sup
τ≥t

eλ(ρ(τ)−ρ(t))‖T(τ, s)P(s)x‖

= sup
τ≥t

e−λ(ρ(t)−ρ(s))eλ(ρ(τ)−ρ(s))‖T(τ, s)P(s)x‖

≤ e−λ(ρ(t)−ρ(s)) sup
τ≥s

eλ(ρ(τ)−ρ(s))‖T(τ, s)P(s)x‖

≤ e−λ(ρ(t)−ρ(s))‖x‖s,

and thus (2.4) holds. Similarly, one can prove (2.5). Hence, the evolution family T admits a

ρ-dichotomy with respect to the family of norms ‖ · ‖t, t ≥ 0, defined above.

Conversely, assume that T admits a ρ-dichotomy with respect to a family of norms ‖ · ‖t

on X satisfying (2.1) for some C > 0 and ε ≥ 0. For t ≥ s ≥ 0 and x ∈ X we have

‖T(t, s)P(s)x‖ ≤ ‖T(t, s)P(s)x‖t

≤ De−λ(ρ(t)−ρ(s))‖x‖s

≤ DCeερ(s)e−λ(ρ(t)−ρ(s))‖x‖,

and thus (2.6) holds. Similarly, one can show (2.7). Therefore, the evolution family T admits

a ρ-nonuniform exponential dichotomy.

2.2 Admissible spaces

Let Y1 be the space of all Bochner measurable functions x : [0, ∞) → X such that

‖x‖1 :=
∫ ∞

0
‖x(t)‖t dt < ∞,
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identifying functions that are equal Lebesque-almost everywhere. It is easy to show that

(Y1, ‖·‖1) is a Banach space (see [4, Theorem 1]). Moreover, consider the space Y∞ of all

continuous functions x : [0, ∞) → X such that

‖x‖∞ := sup
t≥0

‖x(t)‖t < ∞.

One can easily prove that (Y∞, ‖·‖∞) is a Banach space. For a closed subspace Z ⊂ X, YZ
∞ is

the space of all x ∈ Y∞ such that x(0) ∈ Z. Obviously, YZ
∞ is a closed subspace of Y∞, therefore

it is also a Banach space.

We consider another Banach function space (Y′
∞, ‖·‖′∞), which consists of all Bochner mea-

surable functions x : [0, ∞) → X such that

‖x‖′∞ := ess sup
t≥0

‖x(t)‖t < ∞,

where ess sup is taken with respect to the Lebesgue measure on [0, ∞).

3 From dichotomy to admissibility

In this section we show that the existence of a ρ-dichotomy with respect to a family of norms

for an evolution family T = {T(t, s)}t≥s≥0 yields the admissibility of the pairs
(

YZ
∞, Y1

)

,
(

YZ
∞, Y′

∞

)

for a certain closed subspace Z ⊂ X.

Proposition 3.1. Assume that the evolution family T admits a ρ-dichotomy with respect to a family

of norms ‖·‖t, t ≥ 0, and set Z = Ker P(0). Then, for each y ∈ Y1 there exists a unique x ∈ YZ
∞ such

that

x(t) = T(t, s)x(s) +
∫ t

s
T(t, τ)y(τ) dτ, for t ≥ s ≥ 0. (3.1)

Proof. Take an arbitrary y ∈ Y1. For t ≥ 0, set

x(t) =
∫ t

0
T(t, s)P(s)y(s) ds −

∫ ∞

t
T(t, s)(Id − P(s))y(s) ds.

It follows from (2.4) and (2.5) that

‖x(t)‖t ≤
∫ t

0
‖T(t, s)P(s)y(s)‖t ds +

∫ ∞

t
‖T(t, s)(Id − P(s))y(s)‖t ds

≤ D
∫ t

0
e−λ(ρ(t)−ρ(s))‖y(s)‖s ds + D

∫ ∞

t
e−λ(ρ(s)−ρ(t))‖y(s)‖s ds

≤ D
∫ t

0
‖y(s)‖s ds + D

∫ ∞

t
‖y(s)‖s ds = D ‖y‖1,

for every t ≥ 0, and thus x ∈ Y∞. On the other hand, it is easy to check that x(0) ∈ Z.

Therefore, x ∈ YZ
∞. Moreover, for t ≥ s ≥ 0 we have

x(t)− T(t, s)x(s) =
∫ t

0
T(t, τ)P(τ)y(τ) dτ − T(t, s)

∫ s

0
T(s, τ)P(τ)y(τ) dτ

−
∫ ∞

t
T(t, τ)(Id − P(τ))y(τ) dτ

+T(t, s)
∫ ∞

s
T(s, τ)(Id − P(τ))y(τ) dτ

=
∫ t

s
T(t, τ)P(τ)y(τ) dτ +

∫ t

s
T(t, τ)(Id − P(τ))y(τ) dτ

=
∫ t

s
T(t, τ)y(τ) dτ,
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and therefore we conclude that (3.1) holds. In order to establish the uniqueness, it is sufficient

to consider the case when y = 0. Let x ∈ YZ
∞ such that

x(t) = T(t, s)x(s), for t ≥ s ≥ 0.

Then, from (2.5) we have

‖x(0)‖0 = ‖(Id − P(0))x(0)‖0 = ‖T(0, t)(Id − P(t))x(t)‖0

≤ De−λρ(t)‖x(t)‖t

≤ De−λρ(t)‖x‖∞,

for every t ≥ 0. Passing to the limit when t → ∞, we conclude that x(0) = 0, which implies

that x = 0.

Proposition 3.2. Assume that the evolution family T admits a ρ-dichotomy with respect to a family

of norms ‖·‖t, t ≥ 0, and set Z = Ker P(0). Then, for each y ∈ Y′
∞ there exists a unique x ∈ YZ

∞ such

that

x(t) = T(t, s)x(s) +
∫ t

s
ρ′(τ)T(t, τ)y(τ) dτ, for t ≥ s ≥ 0. (3.2)

Proof. Take y ∈ Y′
∞. For t ≥ 0, set

x(t) =
∫ t

0
ρ′(s)T(t, s)P(s)y(s) ds −

∫ ∞

t
ρ′(s)T(t, s)(Id − P(s))y(s) ds.

It follows from (2.4) and (2.5) that

‖x(t)‖t ≤
∫ t

0
ρ′(s)‖T(t, s)P(s)y(s)‖t ds +

∫ ∞

t
ρ′(s)‖T(t, s)(Id − P(s))y(s)‖t ds

≤ D
∫ t

0
ρ′(s)e−λ(ρ(t)−ρ(s))‖y(s)‖s ds + D

∫ ∞

t
ρ′(s)e−λ(ρ(s)−ρ(t))‖y(s)‖s ds

≤ D‖y‖′∞

(

∫ t

0
ρ′(s)e−λ(ρ(t)−ρ(s)) ds +

∫ ∞

t
ρ′(s)e−λ(ρ(s)−ρ(t)) ds

)

≤
2D

λ
‖y‖′∞, for every t ≥ 0.

Since x(0) ∈ Z, we conclude that x ∈ YZ
∞. A simple computation shows that (3.2) holds. The

uniqueness part can be established as in the proof of Proposition 3.1.

4 From admissibility to dichotomy

The aim of this section is to prove that the admissibility of the pairs
(

YZ
∞, Y1

)

,
(

YZ
∞, Y′

∞

)

for

a closed subspace Z ⊂ X yields the existence of a ρ-dichotomy with respect to the family of

norms {‖·‖t}t≥0. More precisely, our goal is to establish the following result.

Theorem 4.1. Assume that there exists a closed subspace Z ⊂ X such that:

(i) for each y ∈ Y1 there exists a unique x ∈ YZ
∞ satisfying (3.1);

(ii) for each y ∈ Y′
∞ there exists a unique x ∈ YZ

∞ satisfying (3.2).

Then, the evolution family T admits a ρ-dichotomy with respect to the family of norms ‖·‖t, t ≥ 0.
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Proof. Let

TZ : D(TZ) ⊂ YZ
∞ → Y1, TZx = y,

where

D(TZ) =
{

x ∈ YZ
∞ : there exists y ∈ Y1 satisfying (3.1)

}

.

Furthermore, let

T′
Z : D(T′

Z) ⊂ YZ
∞ → Y′

∞, T′
Zx = y,

where

D(T′
Z) =

{

x ∈ YZ
∞ : there exists y ∈ Y′

∞ satisfying (3.2)
}

.

Lemma 4.2. The operators TZ : D(TZ) → Y1, T′
Z : D(T′

Z) → Y′
∞ are well-defined, linear and closed.

Proof of the lemma. Assume that x ∈ YZ
∞ and y1, y2 ∈ Y1 such that

x(t) = T(t, τ)x(τ) +
∫ t

τ
T(t, s)yi(s) ds,

for t ≥ τ ≥ 0 and i ∈ {1, 2}. Hence,

∫ t

τ
T(t, s)(y1(s)− y2(s)) ds = 0, for t > τ ≥ 0.

Dividing by t − τ and letting t − τ → 0, it follows from the Lebesgue differentiation theorem

that

y1(t) = y2(t) for almost every t ≥ 0.

We conclude that y1 = y2 in Y1. Thus, TZ is well-defined and, by definition it is linear.

We now show that TZ is closed. Let (xn)n∈N be a sequence in D(TZ) converging to x ∈ YZ
∞

such that yn = TZxn converges to y ∈ Y1. Then, for t ≥ τ ≥ 0 we have that

x(t)− T(t, τ)x(τ) = lim
n→∞

(xn(t)− T(t, τ)xn(τ)) = lim
n→∞

∫ t

τ
T(t, s)yn(s) ds.

On the other hand, we have

∥

∥

∥

∥

∫ t

τ
T(t, s)yn(s) ds −

∫ t

τ
T(t, s)y(s) ds

∥

∥

∥

∥

≤ M
∫ t

τ
‖yn(s)− y(s)‖ ds

≤ M
∫ t

τ
‖yn(s)− y(s)‖s ds

≤ M‖yn − y‖1,

where M = M(t, τ) = sup{‖T(t, s)‖ : s ∈ [τ, t]} is finite by the Banach–Steinhaus theorem.

Since yn → y in Y1, we conclude that

lim
n→∞

∫ t

τ
T(t, s)yn(s) ds =

∫ t

τ
T(t, s)y(s) ds,

and therefore (3.1) holds. We conclude that x ∈ D(TZ) and TZx = y. Therefore, TZ is a closed

linear operator. Similarly, one can show that T′
Z is well-defined, linear and closed.
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By the assumption in Theorem 4.1, the linear operators TZ, T′
Z are bijective, and by pre-

vious lemma and the Closed Graph Theorem they have bounded inverse GZ : Y1 → YZ
∞ and

G′
Z : Y′

∞ → YZ
∞, respectively.

For τ ≥ 0, set

S(τ) =

{

v ∈ X : sup
t≥τ

‖T(t, τ)v‖t < ∞

}

and U(τ) = T(τ, 0)Z.

Clearly, S(τ) and U(τ) are subspaces of X for each τ ≥ 0.

Lemma 4.3. For τ ≥ 0, we have that

X = S(τ)⊕ U(τ). (4.1)

Proof of the lemma. Let τ ≥ 0 and take v ∈ X. Set

g(s) = χ[τ,τ+1](s)T(s, τ)v, s ≥ 0.

Clearly, g ∈ Y1. Since TZ is invertible, there exists h ∈ D(TZ) ⊂ YZ
∞ such that TZh = g. It

follows from (3.1) that

h(t) = T(t, τ)(h(τ) + v) for t ≥ τ + 1.

Since h ∈ Y∞, we conclude that h(τ) + v ∈ S(τ). Similarly, it follows from (3.1) that

h(τ) = T(τ, 0)h(0).

Since h(0) ∈ Z, we have that h(τ) ∈ U(τ) and thus

v = (h(τ) + v) + (−h(τ)) ∈ S(τ) + U(τ).

We have proved that X = S(τ) + U(τ).

Take now v ∈ S(τ) ∩ U(τ). Then, there exists z ∈ Z such that v = T(τ, 0)z. We consider a

function h : [0, ∞) → X, defined by

h(t) = T(t, 0)z for t ≥ 0.

Clearly, h ∈ YZ
∞. Since h(t) = T(t, s)h(s) for all t ≥ s ≥ 0, it follows that TZh = 0 and thus

h = 0. We conclude that v = h(τ) = 0, and hence S(τ) ∩ U(τ) = {0}. This completes the

proof of the lemma.

Let P(τ) : X → S(τ) and Q(τ) : X → U(τ) be the projections associated with the decom-

position (4.1), with P(τ) + Q(τ) = Id. Observe that (2.2) holds. Indeed, observe that

T(t, τ)S(τ) ⊂ S(t) and T(t, τ)U(τ) ⊂ U(t), for t ≥ τ ≥ 0.

Hence, we have that for every x ∈ X and t ≥ τ ≥ 0,

P(t)T(t, τ)x = P(t)T(t, τ)P(τ)x + P(t)T(t, τ)Q(τ)x = T(t, τ)P(τ)x.

We conclude that (2.2) holds.

Lemma 4.4. For t ≥ τ ≥ 0, the restriction T(t, τ)|U(τ) : U(τ) → U(t) is invertible.
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Proof of the lemma. Let t ≥ τ ≥ 0 and take x ∈ U(t). Then, there exists z ∈ Z such that

x = T(t, 0)z. Since T(τ, 0)z ∈ U(τ) and x = T(t, τ)T(τ, 0)z, we conclude that T(t, τ)|U(τ) is

surjective.

Let now x ∈ U(τ) such that T(t, τ)x = 0. Take z ∈ Z such that x = T(τ, 0)z. We define

u : [0, ∞) → X by u(s) = T(s, 0)z, s ≥ 0. Since u(s) = 0 for s ≥ t, we have that u ∈ YZ
∞ and

TZu = 0. Consequently, u = 0 and x = u(τ) = 0. This proves that T(t, τ)|U(τ) is also injective.

The proof of the lemma is completed.

Lemma 4.5. There exists M > 0 such that

‖P(τ)v‖τ ≤ M‖v‖τ, for all v ∈ X and τ ≥ 0. (4.2)

Proof of the lemma. Take v ∈ X and τ ≥ 0 . Moreover, given h > 0, we define a function

gh : [0, ∞) → X by

gh(t) =
1

h
χ[τ,τ+h](t)T(t, τ)v.

Clearly, gh ∈ Y1 and thus there exists xh ∈ D(TZ) such that TZxh = gh. We have

‖P(τ)v‖τ = ‖xh(τ) + v‖τ ≤ ‖xh(τ)‖τ + ‖v‖τ ≤ ‖GZgh‖∞ + ‖v‖τ.

Moreover,

‖GZgh‖∞ ≤ ‖GZ‖ · ‖gh‖1 = ‖GZ‖
1

h

∫ τ+h

τ
‖T(t, τ)v‖t dt.

Letting h → 0, we obtain

‖P(τ)v‖τ ≤ (1 + ‖GZ‖) ‖v‖τ,

and we conclude that (4.2) holds for M = 1 + ‖GZ‖.

Lemma 4.6. There exist constants λ, D > 0 such that

‖T(t, τ)v‖t ≤ De−λ(ρ(t)−ρ(τ))‖v‖τ, for t ≥ τ ≥ 0 and v ∈ S(τ). (4.3)

Proof of the lemma. Fix τ ≥ 0 and let v ∈ S(τ). We consider the function

u : [0, ∞) → X, u(t) = χ[τ,∞)(t)T(t, τ)v.

Moreover, for any fixed h > 0, we define two functions ϕh : [0, ∞) → R and gh : [0, ∞) → X by

ϕh(t) =















0, 0 ≤ t ≤ τ,
1
h (t − τ), τ ≤ t ≤ τ + h,

1, t ≥ τ + h,

and

gh(t) =
1

h
χ[τ,τ+h](t) T(t, τ)v, t ≥ 0.

It is easy to show that gh ∈ Y1, ϕhu ∈ D(TZ) and TZ(ϕhu) = gh. We have

sup
t≥τ+h

‖u(t)‖t = sup
t≥τ+h

‖ϕh(t)u(t)‖t ≤ ‖ϕhu‖∞ = ‖GZgh‖∞

≤ ‖GZ‖ · ‖gh‖1

= ‖GZ‖
1

h

∫ τ+h

τ
‖u(s)‖s ds.
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Hence, letting h → 0 we obtain the inequality

‖u(t)‖t ≤ ‖GZ‖ · ‖v‖τ, for every t ≥ τ.

Thus,

‖T(t, τ)v‖t ≤ ‖GZ‖ · ‖v‖τ, for every t ≥ τ. (4.4)

Let us take t ≥ τ and v ∈ S(τ) such that T(t, τ)v 6= 0, thus T(s, τ)v 6= 0 for all s ∈ [τ, t].

Let us consider x, y : [0, ∞) → X defined by

y(s) = χ[τ,t](s)
T(s, τ)v

‖T(s, τ)v‖s
, s ≥ 0,

and

x(s) =















0, 0 ≤ s ≤ τ,
∫ s

τ
ρ′(r) T(s,τ)v

‖T(r,τ)v‖r
dr, τ < s ≤ t,

∫ t
τ

ρ′(r) T(s,τ)v
‖T(r,τ)v‖r

dr, s > t.

Note that y ∈ Y′
∞ and ‖y‖′∞ = 1. Furthermore, since v ∈ S(τ) we get that

‖x(s)‖s ≤
∫ t

τ

ρ′(r)

‖T(r, τ)v‖r
dr ‖T(s, τ)v‖s ≤ at,τ,v sup

r≥τ

‖T(r, τ)v‖r < ∞,

for all s ≥ τ, where

at,τ,v =
∫ t

τ

ρ′(r)

‖T(r, τ)v‖r
dr < ∞,

and thus x ∈ YZ
∞. It is straightforward to show that T′

Zx = y. Consequently,

‖x‖∞ = ‖G′
Zy‖∞ ≤ ‖G′

Z‖ · ‖y‖′∞ = ‖G′
Z‖.

Therefore,

‖G′
Z‖ ≥ ‖x‖∞ ≥ ‖x(t)‖t = ‖T(t, τ)v‖t

∫ t

τ

ρ′(r)

‖T(r, τ)v‖r
dr. (4.5)

From (4.4) it follows that

1

‖T(r, τ)v‖r
≥

1

‖GZ‖ · ‖v‖τ
, for all r ∈ [τ, t],

and thus, from (4.5) we get

‖G′
Z‖ · ‖GZ‖ · ‖v‖τ ≥ ‖T(t, τ)v‖t (ρ(t)− ρ(τ)), for t ≥ τ and v ∈ S(τ).

Consequently,

(t − τ)
∥

∥

∥
T
(

ρ−1(t), ρ−1(τ)
)

v
∥

∥

∥

ρ−1(t)
≤ ‖G′

Z‖ · ‖GZ‖ · ‖v‖ρ−1(τ),

for t ≥ τ and v ∈ S
(

ρ−1(τ)
)

. Let N0 ∈ N∗ such that N0 > e‖G′
Z‖ · ‖GZ‖, and let t ≥ τ + N0.

Then,

N0

∥

∥

∥
T
(

ρ−1(t), ρ−1(τ)
)

v
∥

∥

∥

ρ−1(t)
≤ (t − τ)

∥

∥

∥
T
(

ρ−1(t), ρ−1(τ)
)

v
∥

∥

∥

ρ−1(t)

≤ ‖G′
Z‖ · ‖GZ‖ · ‖v‖ρ−1(τ),
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which implies that there exists N0 ∈ N∗ such that

‖T(ρ−1(t), ρ−1(τ))v‖ρ−1(t) ≤
1

e
‖v‖ρ−1(τ), (4.6)

for t ≥ τ with t − τ ≥ N0 and v ∈ S
(

ρ−1(τ)
)

. Take an arbitrary t ≥ τ with t − τ ≥ N0 and

write t − τ in the form

t − τ = kN0 + r, k = k(t, τ) ∈ N∗ and r = r(t, τ) ∈ [0, N0).

Observing that

T
(

ρ−1(t), ρ−1(τ)
)

= T
(

ρ−1(t), ρ−1(τ + kN0)
) k−1

∏
j=0

T
(

ρ−1(τ + (k − j)N0), ρ−1(τ + (k − j − 1)N0)
)

,

it follows from (4.4) and (4.6) that

‖T
(

ρ−1(t), ρ−1(τ)
)

v‖ρ−1(t) ≤ ‖GZ‖ e−k ‖v‖ρ−1(τ)

≤ e ‖GZ‖ e
− 1

N0
(t−τ)

‖v‖ρ−1(τ),

and thus (4.3) holds with λ = 1/N0 and D = e ‖GZ‖. The proof of the lemma is completed.

Lemma 4.7. There exist λ, D > 0 such that

‖T(t, τ)v‖t ≤ De−λ(ρ(τ)−ρ(t))‖v‖τ, for 0 ≤ t ≤ τ and v ∈ U(τ). (4.7)

Proof of the lemma. Take τ > 0 and z ∈ Z. We define a function u : [0, ∞) → X by

u(t) = T(t, 0)z, for t ≥ 0.

For sufficiently small h > 0, we define ψh : [0, ∞) → R,

ψh(t) =















1, 0 ≤ t ≤ τ − h,

− t−τ
h , τ − h ≤ t ≤ τ,

0, t ≥ τ.

Finally, we consider

gh : [0, ∞) → X, gh = −
1

h
χ[τ−h,τ] u.

It is easy to check that gh ∈ Y1, ψhu ∈ D(TZ) and TZ(ψhu) = gh. Hence,

sup
t∈[0,τ−h]

‖u(t)‖t = sup
t∈[0,τ−h]

‖ψh(t)u(t)‖t ≤ ‖ψhu‖∞ = ‖GZgh‖∞

≤ ‖GZ‖ · ‖gh‖1

= ‖GZ‖ ·
1

h

∫ τ

τ−h
‖u(s)‖s ds.

Letting h → 0, we get

‖u(t)‖t ≤ ‖GZ‖ · ‖u(τ)‖τ, for 0 ≤ t ≤ τ,
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which implies

‖T(t, 0)z‖t ≤ ‖GZ‖ · ‖T(τ, 0)z‖τ, for z ∈ Z and 0 ≤ t ≤ τ. (4.8)

Take now z ∈ Z \ {0} and 0 ≤ t ≤ τ. We define x, y : [0, ∞) → X by

y(s) =

{

− T(s,0)z
‖T(s,0)z‖s

, 0 ≤ s ≤ τ,

0, s > τ,

and

x(s) =

{

∫ τ

s ρ′(r) T(s,0)z
‖T(r,0)z‖r

dr, 0 ≤ s ≤ τ,

0, s > τ.

Observe that y ∈ Y′
∞ and ‖y‖′∞ = 1. Moreover, x ∈ YZ

∞ and it is easy to check that T′
Zx = y.

Hence,

‖x‖∞ = ‖G′
Zy‖∞ ≤ ‖G′

Z‖.

Consequently, for each 0 ≤ s ≤ τ we have

‖G′
Z‖ ≥ ‖T(s, 0)z‖s

∫ τ

s
ρ′(r)

1

‖T(r, 0)z‖r
dr.

Letting τ → ∞, we conclude that

‖G′
Z‖ ≥ ‖T(s, 0)z‖s

∫ ∞

s
ρ′(r)

1

‖T(r, 0)z‖r
dr for s ≥ 0 and z ∈ Z \ {0}. (4.9)

Take now 0 ≤ t ≤ τ and z ∈ Z \ {0}. It follows from (4.8) and (4.9) that

1

‖T(ρ−1(t), 0)z‖ρ−1(t)
≥

1

‖G′
Z‖

∫ ∞

ρ−1(t)
ρ′(r)

1

‖T(r, 0)z‖r
dr

≥
1

‖G′
Z‖

∫ ρ−1(τ)

ρ−1(t)
ρ′(r)

1

‖T(r, 0)z‖r
dr

≥
1

‖G′
Z‖

∫ ρ−1(τ)

ρ−1(t)
ρ′(r)

1

‖GZ‖ · ‖T(ρ−1(τ), 0)z‖ρ−1(τ)
dr

=
τ − t

‖G′
Z‖ · ‖GZ‖

·
1

‖T(ρ−1(τ), 0)z‖ρ−1(τ)

and thus

(τ − t)‖T(ρ−1(t), 0)z‖ρ−1(t) ≤ ‖GZ‖ · ‖G′
Z‖ · ‖T(ρ−1(τ), 0)z‖ρ−1(τ).

We conclude that there exists N0 ∈ N∗ such that

‖T(ρ−1(t), 0)z‖ρ−1(t) ≤
1

e
‖T(ρ−1(τ), 0)z‖ρ−1(τ),

for z ∈ Z and 0 ≤ t ≤ τ such that τ − t ≥ N0. Hence,

‖T(ρ−1(t), ρ−1(τ))v‖ρ−1(t) ≤
1

e
‖v‖ρ−1(τ),

for v ∈ U(ρ−1(τ)) and 0 ≤ t ≤ τ such that τ − t ≥ N0. By arguing as in the proof of

Lemma 4.6, we find that there exist λ, D > 0 such that

‖T(ρ−1(t), ρ−1(τ))v‖ρ−1(t) ≤ De−λ(τ−t)‖v‖ρ−1(τ),

for v ∈ U(ρ−1(τ)) and 0 ≤ t ≤ τ, which readily implies the conclusion of the lemma.
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In order to complete the proof of the theorem, it is sufficient to observe that (4.2), (4.3)

and (4.7) imply that (2.4) and (2.5) hold.

Remark 4.8. It is worth observing that in order to deduce the existence of a ρ-dichotomy we

imposed two admissibility conditions. In the following two examples we will illustrate that

this was necessary.

Example 4.9. We consider an evolution family T = {T(t, s)}t≥s≥0 given by

T(t, s) = Id, t ≥ s ≥ 0.

Furthermore, take Z = {0} and let ‖·‖t = ‖·‖ for t ≥ 0. Then for each y ∈ Y1, the unique

x ∈ YZ satisfying (3.1) is given by

x(t) =
∫ t

0
T(t, s)y(s) ds =

∫ t

0
y(s) ds, t ≥ 0.

Thus, the first assumption of Theorem 4.1 is fulfilled. On the other hand, T obviously doesn’t

admit a ρ-dichotomy with respect to the family of norms ‖·‖t, t ≥ 0.

The following example is a simple modification of [12, Example 1].

Example 4.10. Let X = R with the standard Euclidean norm |·|. Furthermore, let ‖·‖t = |·| for

t ≥ 0 and take Z = {0}. Furthermore, let ρ(t) = ln(1 + t) for t ≥ 0. We consider the sequence

(An)n∈N of operators on X (which can of course be identified with numbers) given by

An =

{

n if n = 2l for some l ∈ N,

0 otherwise.

Furthermore, for t ≥ s ≥ 0 we define

T(t, s) =

{

A⌊t⌋−1 · · · A⌊s⌋, ⌊t⌋ ≥ ⌊s⌋+ 1,

1, ⌊t⌋ = ⌊s⌋.

Then, T = {T(t, s)}t≥s≥0 is an evolution family. By arguing as in [12, Example 1], it is easy

to check that the second assumption of Theorem 4.1 is satisfied and T doesn’t admit a ρ-

dichotomy with respect to the family of norms ‖·‖t, t ≥ 0.

5 Robustness of generalized dichotomies

In this section we apply our main results to prove that the concept of ρ-dichotomy with respect

to a family {‖·‖t}t≥0 of norms on X persist under sufficiently small linear perturbations. As a

consequence, we establish the robustness property of ρ-nonuniform exponential dichotomy.

Theorem 5.1. Assume that the evolution family {T(t, s)}t≥s≥0 admits a ρ-dichotomy with respect to

a family {‖·‖t}t≥0 of norms on X satisfying

‖x‖ ≤ ‖x‖t ≤ Ceερ(t)‖x‖, for x ∈ X and t ≥ 0,

for some C > 0 and ε ≥ 0, such that the mapping t 7→ ‖x‖t is continuous for each x ∈ X. If

B : [0, ∞) → B(X) is a strongly continuous operator-valued function such that

‖B(t)‖ ≤ δe−(ε+a)ρ(t)ρ′(t), t ≥ 0, (5.1)
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for some a > 0 and sufficiently small δ > 0, then the perturbed evolution family {U(t, s)}t≥s≥0

satisfying

U(t, s) = T(t, s) +
∫ t

s
T(t, τ)B(τ)U(τ, s) dτ, t ≥ s ≥ 0, (5.2)

admits a ρ-dichotomy with respect to the family of norms ‖·‖t, t ≥ 0.

Proof. Since {T(t, s)}t≥s≥0 admits a ρ-dichotomy with respect to the family of norms ‖·‖t,

t ≥ 0, it follows from Proposition 3.1 and Proposition 3.2 that there exists a closed subspace

Z ⊂ X such that the operators

TZ : D(TZ) ⊂ YZ
∞ → Y1 and T′

Z : D(T′
Z) ⊂ YZ

∞ → Y′
∞,

defined in the proof of Theorem 4.1, are invertible and closed. We consider the graph norms:

‖x‖TZ
:= ‖x‖∞ + ‖TZx‖1, x ∈ D(TZ),

and

‖x‖T′
Z

:= ‖x‖∞ + ‖T′
Zx‖′∞, x ∈ D(T′

Z).

Since TZ, T′
Z are closed, it follows that (D(TZ), ‖ · ‖TZ

),
(

D(T′
Z), ‖ · ‖T′

Z

)

are Banach spaces.

Furthermore,

TZ : (D(TZ), ‖ · ‖TZ
) → (Y1, ‖ · ‖1)

and

T′
Z :

(

D(T′
Z), ‖ · ‖T′

Z

)

→
(

Y′
∞, ‖ · ‖′∞

)

are bounded linear operators, denoted simply by TZ and T′
Z, respectively.

We consider the linear operators D : D(TZ) → Y1, D′ : D(T′
Z) → Y′

∞ defined by

(Dx)(t) = B(t)x(t) and (D′x)(t) =
1

ρ′(t)
B(t)x(t), for t ≥ 0.

One can easy check that these operators are well-defined. Furthermore, for each x ∈ D(TZ)

we have

‖Dx‖1 =
∫ ∞

0
‖B(t)x(t)‖t dt

≤ C
∫ ∞

0
eερ(t)‖B(t)x(t)‖ dt

≤ δC
∫ ∞

0
e−aρ(t) ρ′(t) ‖x(t)‖ dt

≤
δC

a
‖x‖∞,

and thus

‖Dx‖1 ≤
δC

a
‖x‖TZ

, x ∈ D(TZ). (5.3)

On the other hand, for x ∈ D(T′
Z) we get

‖(D′x)(t)‖t =
1

ρ′(t)
‖B(t)x(t)‖t

≤
1

ρ′(t)
Ceερ(t)‖B(t)x(t)‖

≤ δ Ce−aρ(t)‖x(t)‖

≤ δ C ‖x‖T′
Z
,
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for all t ≥ 0, hence

‖D′x‖′∞ ≤ δ C ‖x‖T′
Z
, x ∈ D(T′

Z). (5.4)

We define now the linear operators

UZ : D(UZ) → Y1, UZx = y,

where D(UZ) is the set of all functions x ∈ YZ
∞ such that there exists y ∈ Y1 satisfying

x(t) = U(t, s)x(s) +
∫ t

s
U(t, τ)y(τ) dτ, for t ≥ s ≥ 0,

and respectively,

U′
Z : D(U′

Z) → Y′
∞, U′

Zx = y,

where D(U′
Z) is the set of all functions x ∈ YZ

∞ such that there exists y ∈ Y′
∞ satisfying

x(t) = U(t, s)x(s) +
∫ t

s
ρ′(τ)U(t, τ)y(τ) dτ, for t ≥ s ≥ 0.

Lemma 5.2. We have:

D(TZ) = D(UZ) and TZ = UZ + D, (5.5)

and respectively,

D(T′
Z) = D(U′

Z) and T′
Z = U′

Z + D′. (5.6)

Proof of the lemma. Take x ∈ D(UZ), that is x ∈ YZ
∞ such that there exists y ∈ Y1 with UZx = y.

Then, for t ≥ s ≥ 0 we have

x(t) = U(t, s)x(s) +
∫ t

s
U(t, τ)y(τ) dτ

= T(t, s)x(s) +
∫ t

s
T(t, τ)B(τ)U(τ, s)x(s) dτ +

∫ t

s
T(t, τ)y(τ) dτ

+
∫ t

s

∫ t

τ
T(t, r)B(r)U(r, τ)y(τ) dr dτ

= T(t, s)x(s) +
∫ t

s
T(t, r)y(r) dr +

∫ t

s
T(t, r)B(r)U(r, s)x(s) dr

+
∫ t

s

∫ r

s
T(t, r)B(r)U(r, τ)y(τ) dτ dr

= T(t, s)x(s) +
∫ t

s
T(t, r) (y(r) + B(r)x(r)) dr,

thus x ∈ D(TZ) and

TZx = y + Dx = (UZ + D)x.

Reversing the arguments, we conclude that (5.5) holds. Similarly, one can prove (5.6).

Now, we continue the proof of the theorem. From (5.5) and (5.3) we have

‖(UZ − TZ)x‖1 = ‖Dx‖1 ≤
δC

a
‖x‖TZ

, for all x ∈ D(TZ) = D(UZ),

which implies that UZ : D(UZ) → Y1 is bounded. Since TZ is invertible, we obtain that UZ

is also invertible for sufficiently small δ > 0. Similarly, one can show that U′
Z is invertible

for sufficiently small δ > 0. By Theorem 4.1 we conclude that the perturbed evolution family

{U(t, s)}t≥s≥0 admits a ρ-dichotomy with respect to the family of norms ‖ · ‖t, t ≥ 0.
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From Proposition 2.1 and Theorem 5.1 we are able now to establish the robustness property

of ρ-nonuniform exponential dichotomy.

Corollary 5.3. Assume that T = {T(t, s)}t≥s≥0 admits a ρ-nonuniform exponential dichotomy. If

B : [0, ∞) → B(X) is a strongly continuous operator-valued function satisfying (5.1) for some a > 0

and sufficiently small δ > 0, then the perturbed evolution family satisfying (5.2) admits also a ρ-

nonuniform exponential dichotomy.

Remark 5.4. We stress that the robustness of ρ-nonuniform exponential dichotomies was es-

tablished in [3, Theorem 1] using different techniques. However, we point out that we establish

robustness under a wider class of perturbations than those considered in [3, Theorem 1]. On

the other hand, we consider a smaller class of rate functions ρ.
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1 Introduction

The principal objective of this article is to put on a firm mathematical foundation the exis-

tence, uniqueness, and global asymptotic stability of an equilibrium of a Cohen–Grossberg–

Hopfield-type neural network [9,20,21] motif endowed with multiple distributed time delays.

The neural network model studied in this article falls within the class of so-called static neural

network models with S-type distributed delays [31, 32]. We characterise, in a rigorous man-

ner, the delay-independent global asymptotic stability of the unique equilibrium using only

the notion of M-matrices [3, 12] and the technique of Lyapunov functionals. Let us begin by

recalling that the idea of an artificial neural network equipped with signal transmission time

delays was first studied by Marcus et al. [27], and since then, the research area has blossomed.

Marcus et al. [27] studied a certain class of Hopfield and Cohen–Grossberg [9, 20, 21] artifi-

cial neural networks, and demonstrated that the introduction of discrete signal transmission

time delays in the neuronal responses induced sustained oscillations and chaos in the emer-

gent network dynamics. In the electronic implementation of analog artificial neural networks,

BEmail: Ncube.Israel@gmail.com
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signal transmission time delays are a consequence of the finite switching speed of individ-

ual amplifiers (neurons) in the network [8, 27]. It is well-known that time delays abound in

biological neuronal networks [10, 25, 27] and in electronic artificial neural networks [27]. Dis-

crete time delays are a good first approximation in mathematical models of simple neural

network circuits comprised of only a small number of units or neurons [8, 34]. Such neural

network circuits are characterised by a compact network structure, with negligible spatial ex-

tent effects. However, the undisputed biophysical reality is that biological neuronal networks

are characterised by an intricate spatial structure of parallel neural pathways in the form of

axons (or bundles of axons) of varying thicknesses and lengths. As these neural pathways

are known to conduct signals between various neurons, it is self-evident that a biophysically

reasonable mathematical modelling paradigm for neuronal networks is one that incorporates

signal transmission time delays in which the time delays are distributed rather than discrete.

Artificial neural networks incorporating discrete time delays have been widely studied in the

literature [2, 18, 26, 30, 33]. The problem of neuronal networks endowed with distributed time

delays has received some attention in the literature in recent times (see [5, 8, 11, 29, 34] and

references therein). Nonetheless, the dynamics of artificial neuronal networks endowed with

distributed time delays remain largely poorly understood today. In this article, much of our

analysis is inspired by the work of Zhang et al. [34] and Chen [8], who studied a special

class of Cohen–Grossberg–Hopfield artificial neural networks endowed with distributed time

delays, and whose work in turn was a further development of the results of [13] and [14]

who had previously established global asymptotic stability results for a class of additive neu-

ral networks without any time delays. Extending the results of Gopalsamy et al. [16] and

Hofbauer et al. [19], Campbell [4] established delay independent local and global asymptotic

stability results for a certain class of additive neural networks endowed with multiple discrete

time delays using technical machinery from matrix theory and the method Lyapunov func-

tionals. Wang et al. [32] studied the asymptotic robust stability of the static neural network

model endowed with so-called S-type finitely distributed time delays, by employing the frame-

work of Lebesgue–Stieltjes integrals. Oliveira [31] studied the global asymptotic stability of

a general class of retarded functional differential equations using ideas from matrix theory

and Lebesgue–Stieltjes integration, and avoided employing the well-known technique of Lya-

punov functionals. Of particular interest, Oliveira [31] studied the existence and the global

asymptotic stability of an equilibrium point in the case of two neural network models with

finitely distributed time delays without using the technique of Lyapunov functionals, namely,

the Cohen–Grossberg and the static models.

Our work in this article draws much of its technical motivation from [4, 6, 16, 19, 31]. In

particular, we consider the infinitely distributed time-delayed Hopfield-type network [6,20,21]

of n artificial neurons described by the system

x′k(t) = −xk(t) + gk

(
n

∑
j=1

akj

∫ ∞

0
xj(t − u) fkj(u)du

)
, k = 1, . . . , n , (1.1)

where akj ∈ R, k, j = 1, . . . , n, and the nonlinearity gk is responsible for modulating the activity

of the kth neuron. It is clear that the system (1.1) is a generalisation of the static neural network

model [31, equation (3), page 82] with multiple general infinitely distributed time delays, and

devoid of any external input signals. Construction of a phase space for infinitely distributed

time delay systems such as (1.1) is a little nuanced and technically delicate. Let ρ > 0 be a

fixed real number. An appropriate (see [6], and references contained therein) phase space for

systems with infinite time delays, such as (1.1), is the Banach space Cn := C0,ρ ((−∞, 0], R
n)
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comprising of all continuous R
n-valued functions ψ(θ) such that the function eρθψ(θ), θ ∈

(−∞, 0], is bounded, uniformly continuous, and satisfies ([23, page 102], [6])

lim
θ→−∞

eρθψ(θ) = 0 . (1.2)

Furthermore, the Banach space Cn is equipped with the weighted sup-norm ([23, page 102],

[6])

‖ψ‖∞,ρ := sup
θ∈(−∞,0]

eρθ |ψ(θ)| . (1.3)

We assume the following hypotheses on the nonlinearity gk [4].

(H1) gk ∈ C2(R), g′k(u) > 0, supu∈R
g′k(u) = g′k(0) = 1;

(H2) gk(0) = 0, limu→±∞ gk(u) = ±1.

Without loss of generality, we adopt throughout this article the specific gk given by the hyper-

bolic tangent function

gk(x) = tanh(γx), γ > 0 . (1.4)

We assume that the time delay kernels fkj : [0, ∞) 7→ [0, ∞), for k, j = 1, . . . , n, are continuous

functions satisfying the constraints

∫ ∞

0
fkj(s)ds = 1 ,

∫ ∞

0
s fkj(s)ds < ∞ , and fkj = f jk , ∀k, j = 1, . . . , n . (1.5)

The usual initial conditions associated with (1.1) are given by [8, 34]

xk(θ) = φk(θ) , θ ∈ (−∞, 0] , k = 1, . . . , n , (1.6)

where the φk are bounded continuous functions on (−∞, 0]. The linearisation of (1.1) about

its trivial equilibrium is given by

x′k(t) = −xk(t) +
n

∑
j=1

ℓkj

∫ t

−∞
xj(s) fkj(t − s)ds , k = 1, . . . , n , (1.7)

where ℓkj := g′k(0)akj = akj ∈ R, k, j = 1, . . . , n, are constants. With respect to (1.7), let R
n ∋

x 7→ (x1, . . . , xn)T and denote the interconnection matrix by A := (ℓkj) = (akj), k, j = 1, . . . , n.

The goal of the present article is to characterise the existence and uniqueness of an equilib-

rium of (1.1) on one hand, and the global asymptotic stability of this equilibrium on the other.

We do so by appealing to the well-known Banach’s contraction mapping principle and by

constructing an appropriate Lyapunov functional, and employing arguments from the theory

of M-matrices [3, 12].

2 Existence and uniqueness of the equilibrium

In this section, we establish sufficient conditions for the existence and uniqueness of an equi-

librium point of the system (1.1). The approach adopted here hinges on Banach’s contraction

mapping theorem, and is largely motivated by the inspirational work of [16] and [4].



4 I. Ncube

Theorem 2.1. If

β := max
1≤j≤n

(
n

∑
k=1

∣∣akj

∣∣
)

< 1 , (2.1)

then the system of algebraic equations

xk = gk

(
n

∑
j=1

akjxj

)
, k = 1, . . . , n (2.2)

admits a unique solution.

Proof. For calculational convenience, let vk := xk, k = 1, . . . , n, so that (2.2) becomes

vk = gk

(
n

∑
j=1

akjvj

)
:= Gk(v1, . . . , vn) , k = 1, . . . , n . (2.3)

Our goal is to establish the existence of fixed points of the map G : R
n 7→ R

n defined by

G := (G1(v), . . . , Gn(v)), with v := (v1, . . . , vn). From the hypotheses (H1) and (H2), we have

that

− 1 ≤ gk

(
n

∑
j=1

akjvj

)
≤ 1 , k = 1, . . . , n . (2.4)

This observation implies that the set D defined by

D := {(x1, . . . , xn) ∈ R
n | − 1 ≤ xk ≤ 1, k = 1, . . . , n} (2.5)

is invariant with respect to the mapping G [4, 16]. In what follows, we establish that G is a

contraction mapping on D. By Banach’s contraction mapping principle, it will follow that G

has a unique fixed point. First, let v := (v1, . . . , vn) and u := (u1, . . . , un). We begin by noting

from (2.3) that

‖G(v)− G(u)‖ =
n

∑
k=1

|Gk(v)− Gk(u)|

=
n

∑
k=1

∣∣∣∣∣gk

(
n

∑
j=1

akjvj

)
− gk

(
n

∑
j=1

akjuj

)∣∣∣∣∣

≤
n

∑
k=1

∣∣g′k(θk)
∣∣

n

∑
j=1

∣∣akj

∣∣ ∣∣vj − uj

∣∣

=
n

∑
k=1

ck

n

∑
j=1

∣∣akj

∣∣ ∣∣vj − uj

∣∣

=
n

∑
j=1

(
n

∑
k=1

ck

∣∣akj

∣∣
)
∣∣vj − uj

∣∣

≤ β
n

∑
j=1

∣∣vj − uj

∣∣

= β ‖v − u‖ ,

(2.6)

where
n

∑
j=1

akjuj ≤ θk ≤
n

∑
j=1

akjvj , k = 1, . . . , n , ck := g′k(θk) ∈ (0, 1] ,
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and

β := max
1≤j≤n

(
n

∑
k=1

ck

∣∣akj

∣∣
)

= max
1≤j≤n

(
n

∑
k=1

∣∣akj

∣∣
)

< 1 (2.7)

by hypothesis. Without loss of generality, and by recourse to hypothesis (H1), we have here

set ck = 1, ∀k = 1, . . . , n. Consequently, G is a contraction on D, and by Banach’s contraction

mapping principle, it has a unique fixed point, say v∗ := (v∗1 , . . . , v∗n), such that

v∗k = gk

(
n

∑
j=1

akjv
∗
j

)
, k = 1, . . . , n .

Thus, (1.1) has a unique equilibrium point. This completes the proof.

3 Global asymptotic stability of the equilibrium

We now establish the global asymptotic stability of the equilibrium x∗ := (x∗1 , . . . , x∗n) of (1.1)

by recourse to the theory of M-matrices, and by constructing an appropriate Lyapunov func-

tional. Let yk(t) := xk(t)− x∗k , k = 1, . . . , n. From the hypothesis (H1) and Lagrange’s Mean

Value Theorem, there exists

ϑk ∈
(

n

∑
j=1

akjx
∗
j ,

n

∑
j=1

akj

∫ ∞

0
yj(t − u) fkj(u)du +

n

∑
j=1

akjx
∗
j

)
, k = 1, . . . , n , (3.1)

such that

gk

(
n

∑
j=1

akj

∫ ∞

0
yj(t − u) fkj(u)du +

n

∑
j=1

akjx
∗
j

)
− gk

(
n

∑
j=1

akjx
∗
j

)

= g′k (ϑk)
n

∑
j=1

akj

∫ ∞

0
yj(t − u) fkj(u)du , (3.2)

for k = 1, . . . , n. It is important to stress the fact that ϑk identified in (3.1) is not a constant – it

depends on the solution yj, j = 1, . . . , n, and the time t. By virtue of the coordinate translation

yk(t) := xk(t)− x∗k , k = 1, . . . , n, and (3.2), the system (1.1) transforms to

y′k(t) = −yk(t) + gk

(
n

∑
j=1

akj

∫ ∞

0

(
yj(t − u) + x∗j

)
fkj(u)du

)
− gk

(
n

∑
j=1

akjx
∗
j

)
,

k = 1, . . . , n, (3.3)

which subsequently leads to the linearisation

y′k(t) = −yk(t) + ck

n

∑
j=1

akj

∫ ∞

0
yj(t − u) fkj(u)du, k = 1, . . . , n , (3.4)

where ck := g′k(ϑk) ∈ (0, 1], ∀k = 1, . . . , n, by the hypothesis (H1). We note that ck depends on

t, and this observation has some consequential ramifications as will be shown in the analysis

to come. Now, borrowing some of the notation of [4], let A := (akj), |A| := (|akj|), K :=

−I + A, and K̂ := −I + |A|, where I is the n × n identity matrix. Sufficient conditions for

the local asymptotic stability of the equilibrium x∗ := (x∗1 , . . . , x∗n) of (1.1) can be established
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in a manner analogous to that presented in [4, Theorem 2.6 and Corollary 2.7, page 6], and

are given in [6]. To prepare the groundwork for the analysis to follow, we note that the off-

diagonal entries of the matrix −K̂ are less than or equal to zero, which means that it is a

Z-matrix. The matrix −K̂ is expressible in the form

−K̂ :=




1 − |a11| −|a12| −|a13| · · · −|a1n|
−|a21| 1 − |a22| −|a23| · · · −|a2n|
−|a31| −|a32| 1 − |a33| · · · −|a3n|

...
...

...
. . .

...

−|an1| −|an2| −|an3| · · · 1 − |ann|




=




1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




−




|a11| |a12| |a13| · · · |a1n|
|a21| |a22| |a23| · · · |a2n|
|a31| |a32| |a33| · · · |a3n|

...
...

...
. . .

...

|an1| |an2| |an3| · · · |ann|




:= sI − B ,

(3.5)

where B is the non-negative matrix given by

B :=




|a11| |a12| |a13| · · · |a1n|
|a21| |a22| |a23| · · · |a2n|
|a31| |a32| |a33| · · · |a3n|

...
...

...
. . .

...

|an1| |an2| |an3| · · · |ann|




, (3.6)

s := 1 > 0, and I is the n × n identity matrix. The following lemma will be instrumental in

the proof of our main result in the present Section.

Lemma 3.1. If −K̂ is a Z-matrix and ρ(B) < 1, then −K̂ is a non-singular M-matrix.

Proof. That −K̂ is a Z-matrix is trivial. Suppose that ρ(B) < 1. Since −K̂ = I − B, the result

follows [12, page 129, Theorem 5.1.1.].

As an example to amplify the implication of Lemma 3.1, consider n = 2 populations of

artificial neurons, with a11 = a22 = 0, a12 = 2, and a21 = 1. Then, we have that

A = (akj) =

(
a11 a12

a21 a22

)
=

(
0 2

1 0

)

=⇒ −K̂ =

(
1 −2

−1 1

)
=

(
1 0

0 1

)
−
(

0 2

1 0

)
:= I − B , (3.7)

where ρ(B) =
√

2 > 1. Hence, the matrix −K̂ in this example is not a non-singular M-

matrix for the simple reason that it does not satisfy at least one of the hypotheses stipulated

in Lemma 3.1. In the view of Lemma 3.1, we arrive at our main result in the present Section.

Theorem 3.2. If −K̂ is a non-singular M-matrix, then the system (1.1) has a unique globally asymp-

totically stable equilibrium.
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Proof. Assume that −K̂ is a non-singular M-matrix. That is, assume that −K̂ = I − B is a

Z-matrix and that ρ(B) < 1 [12, page 129, Theorem 5.1.1.]. It is well-known that if the spectral

radius of a matrix is less than 1, then the matrix has a norm which is less than 1 [22, page 347,

Lemma 5.6.10]. Since B =
(∣∣aij

∣∣), i, j = 1, . . . , n, the maximum column sum matrix norm of B

is given by [22]

|||B|||1 = max
1≤j≤n

(
n

∑
i=1

∣∣aij

∣∣
)

< 1 , (3.8)

which is identical to the hypothesis of Theorem 2.1.

Now, since −K̂ := I − |A| is a non-singular M-matrix from Lemma 3.1, it follows [3, 12]

that ∃ ξ j > 0, j = 1, . . . , n, such that

− ξ j +
n

∑
k=1

|akj|ξk < 0 , j = 1, . . . , n . (3.9)

Consider the Lyapunov functional V(t) = V(y)(t) defined by [4, 8, 32, 34]

V(y)(t) :=
n

∑
k=1

ξk

{
|yk(t)|+

n

∑
j=1

|akj|
∫ ∞

0
fkj(s)

(∫ t

t−s
|yj(τ)|dτ

)
ds

}
. (3.10)

Computing the upper Dini derivative of (3.10) along the solutions of the nonlinear system

(3.3) yields

D+V(t) =
n

∑
k=1

ξk

{
sgn(yk(t))y

′
k(t) +

n

∑
j=1

|akj|
∫ ∞

0
fkj(s)

(
|yj(t)| − |yj(t − s)|

)
ds

}

=
n

∑
k=1

ξk

{
−sgn(yk(t))yk(t) + sgn(yk(t))gk

(
n

∑
j=1

akj

∫ ∞

0

(
yj(t − u) + x∗j

)
fkj(u)du

)

−sgn(yk(t))gk

(
n

∑
j=1

akjx
∗
j

)
+

n

∑
j=1

|akj|
∫ ∞

0
fkj(s)

(
|yj(t)| − |yj(t − s)|

)
ds

}

≤
n

∑
k=1

ξk

{
−|yk(t)|+

∣∣∣∣∣gk

(
n

∑
j=1

akj

∫ ∞

0

(
yj(t − u) + x∗j

)
fkj(u)du

)
− gk

(
n

∑
j=1

akjx
∗
j

)∣∣∣∣∣

+
n

∑
j=1

|akj|
∫ ∞

0
|yj(t)| fkj(s)ds −

n

∑
j=1

|akj|
∫ ∞

0
|yj(t − s)| fkj(s)ds

}

≤
n

∑
k=1

ξk

{
−|yk(t)|+

n

∑
j=1

|akj|
∫ ∞

0
|yj(t − u)| fkj(u)du +

n

∑
j=1

|akj||yj(t)|

−
n

∑
j=1

|akj|
∫ ∞

0
|yj(t − u)| fkj(u)du

}

=
n

∑
k=1

ξk

{
−|yk(t)|+

n

∑
j=1

|akj||yj(t)|
}

=
n

∑
k=1

(−ξk|yk(t)|) +
n

∑
k=1

n

∑
j=1

(
|ajk|ξ j|yk(t)|

)

=
n

∑
k=1

(
−ξk +

n

∑
j=1

|ajk|ξ j

)
|yk(t)| ≤ µ

n

∑
k=1

|yk(t)| < 0 ,
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where, by virtue of the condition (3.9),

µ := max
1≤k≤n

{
−ξk +

n

∑
j=1

|ajk|ξ j

}
< 0 . (3.11)

Hence, the trivial equilibrium of (3.3) is globally asymptotically stable [24, corollary 5.2, page

30]. Therefore, the equilibrium x∗ := (x∗1 , . . . , x∗n) of (1.1) is globally asymptotically stable (see

[1, 4, 17] and [15, pages 4-5]). This completes the proof.

4 A numerical example

We give a numerical example to illustrate an application of Theorem 3.2. Consider n = 2

populations of artificial neurons, with a11 = a22 = 1
2 , a12 = 1

16 , and a21 = 1. Thus, we have that

A =

(
a11 a12

a21 a22

)
=

(
1
2

1
16

1 1
2

)

⇒ −K̂ = I − |A| =
(

1
2 − 1

16

−1 1
2

)
=

(
1 0

0 1

)
−
(

1
2

1
16

1 1
2

)
:= I − B , (4.1)

with ρ(B) = 3
4 < 1. That −K̂ is a Z-matrix is trivial. This observation, in conjunction with

the fact that ρ(B) < 1, implies that −K̂ is a non-singular M-matrix by Lemma 3.1. For the

specified interconnection matrix A, the system (1.1) condenses to





x′1(t) = −x1(t) + g1

(
2

∑
j=1

a1j

∫ ∞

0
xj(t − u) f1j(u)du

)
,

x′2(t) = −x2(t) + g2

(
2

∑
j=1

a2j

∫ ∞

0
xj(t − u) f2j(u)du

)
,

(4.2)

with the initial conditions given in (1.6) for n = 2. Since −K̂ is a non-singular M-matrix, we

are guaranteed by Theorem 3.2 that the system (4.2) admits a unique globally asymptotically

stable equilibrium. For the sake of completeness, we establish the existence and uniqueness

of an equilibrium of (4.2). Now, since ρ(B) < 1, it follows that there exists a matrix norm

such that |||A||| < 1 [22, page 347, Lemma 5.6.10]. To characterise such a norm, we proceed

in the manner adumbrated below. Let J := P−1AP = diag
(

1
4 , 3

4

)
be the Jordan form of A,

with P :=
(

− 1
4

1
4

1 1

)
, and let D := I be the 2 × 2 identity matrix. Note that the matrix A

has eigenvalues λ1 := 1
4 and λ2 := 3

4 . The two columns of P are the eigenvectors of A.

The eigenspace for λ1 = 1
4 is spanned by u :=

(
− 1

4
1

)
whilst that for λ2 = 3

4 is spanned by

v :=
(

1
4
1

)
. Now, define a norm by |||A||| :=

∣∣∣∣∣∣D−1P−1 APD
∣∣∣∣∣∣

p
=
∣∣∣∣∣∣P−1AP

∣∣∣∣∣∣
p
, where |||·|||p

denotes the induced p-norm. In other words,

|||A||| := sup
x 6=0

‖Ax‖p

‖x‖p

, (4.3)

where the two norms ‖ · ‖p on the right hand side denote the usual p-norm for vectors. When

p = 1, |||A||| is identical to the maximum column sum of the entrywise absolute value of
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A. For the matrix P in this example, we have that P−1 AP = diag
(

1
4 , 3

4

)
, and consequently,

|||A||| = max1≤j≤2

(
∑

2
i=1 |aij|

)
= 3

4 < 1; this last inequality matches the hypothesis (2.1) of

Theorem 2.1. Hence, the existence and uniqueness of an equilibrium of the system (4.2) is

guaranteed.
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Abstract. We establish the existence of positive solutions for the singular quasilinear
Schrödinger equation
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−∆u − ∆(u2)u = h(x)u−γ + f (x, u) in Ω,

u(x) = 0 on ∂Ω,

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, 1 < γ,

h ∈ L1(Ω) and h > 0 almost everywhere in Ω. The function f may change sign on
Ω. By using the variational method and some analysis techniques, the necessary and
sufficient condition for the existence of a solution is obtained.
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1 Introduction

In this paper we study the existence of solution for the following quasilinear Schrödinger
equation















−∆u − ∆(u2)u = h(x)u−γ + f (x, u) in Ω,

u > 0 in Ω,

u(x) = 0 on ∂Ω,

(P)

where Ω ⊂ R
N(N ≥ 3) is a bounded domain with smooth boundary ∂Ω, 1 < γ, h ∈ L1(Ω),

h > 0 almost everywhere (a.e.) in Ω and f : Ω × R −→ R is a Carathéodory function. We
assume that the function f satisfies one of the following conditions:

( f )1 f (x, s) = b(x)sp, where p ∈ (0, 1), b ∈ L∞(Ω) and b+ = max {b, 0} 6≡ 0.

BCorresponding author. Email: ricardoalveslima8@gmail.com
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( f )2 f (x, s) = −b(x)s22∗−1, where b ∈ L∞(Ω) and b ≥ 0 a.e. in Ω.

We say that a function u ∈ H1
0(Ω) is a weak solution (solution, for short) of (P) if u > 0

a.e. in Ω, and, for every ϕ ∈ H1
0(Ω),

hu−γ ϕ ∈ L1(Ω) (1.1)

and
∫

Ω

[(1 + 2u2)∇u∇ϕ + 2u|∇u|2 ϕ] =
∫

Ω

h(x)u−γ ϕ +
∫

Ω

f (x, u)ϕ.

Consider the following quasilinear Schrödinger equation

− ∆u − ∆(u2)u = g(x, u) in Ω, (1.2)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω. When g : Ω × R −→ R is a

continuous function, recently, there appeared some works dealing with (1.2), see for example
[1,17,18] and its references. In these works the nonlinearity is non-singular, and so the authors
were able to combine the dual approach of [4] with classic results of variational methods to
prove their main results.

When g is singular, problems of type (1.2) was studied by Do Ó–Moameni [6], Liu–Liu–
Zhao [16], Wang [26] and Dos Santos–Figueiredo–Severo [24]. In [6] the authors studied the
problem















−∆u − 1
2 ∆(u2)u = λ|u|2u − u − u−γ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where Ω is a ball in R
N centered at the origin, 0 < γ < 1 and N ≥ 2. They showed that

problem (1.3) has a radially symmetric solution u ∈ H1
0(Ω) for λ ∈ I, where I is an open

interval.
Liu–Liu–Zhao in [16] considered the problem















−∆su − s
2s−1 ∆(u2)u = h(x)u−γ + λup in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.4)

where N ≥ 3, ∆s is the s-Laplacian operator, 2 < 2s < p + 1 < ∞, 0 < γ and h ≥ 0 is
a nontrivial measurable function satisfying the following condition: there exist a function
φ0 ≥ 0 in C1

0(Ω) and q > N such that hφ
−γ
0 ∈ Lq(Ω). The authors used sub-supersolution

method, truncation arguments and variational methods to prove the existence of a λ∗ > 0
such that problem (1.4) has at least two solutions for λ ∈ (0, λ∗).

Wang in [26], by using minimax methods and some analysis techniques, showed the exis-
tence and uniqueness of solutions to the problem















−∆u − ∆(u2)u = h(x)u−γ − up−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where N ≥ 3, γ ∈ (0, 1), p ∈ [2, 22∗], h ∈ L
22∗

22∗−1+γ (Ω) and h > 0 a.e. in Ω.
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In [24], Dos Santos–Figueiredo–Severo studied the problem














−∆u − ∆(u2)u = h(x)u−γ + z(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.5)

where N ≥ 3, h is a nonnegative function, γ > 0 is a constant and the nonlinearity
z : Ω × R −→ R is continuous and satisfies some conditions. By using sub-supersolution
method, truncation arguments and the Mountain Pass Theorem they showed the existence of
two solutions. We would like to emphasize that for the authors to use the sub-supersolution
method, the following assumption was very important: there exist φ0 ∈ C1

0(Ω), φ0 ≥ 0, and
q > N such that hφ

−γ
0 ∈ Lq(Ω). Furthermore, we note that our assumption on the function h

is different (see (1.7) below), because it does not guarantee that hv
−γ
0 ∈ Lq(Ω) for some q > N.

Singular elliptic problems has been studied extensively in recent years, see [5, 7, 11–14, 21–
23, 25] and the references therein. Especially, Sun in [25] considered the problem















−∆u = h(x)u−γ + b(x)up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.6)

where Ω ⊂ R
N(N ≥ 3) is a bounded domain with smooth boundary ∂Ω, b ∈ L∞(Ω) is a non-

negative function, 0 < p < 1 < γ, h ∈ L1(Ω) and h > 0 a.e. in Ω. By using variational methods
the author showed that the existence of H1

0(Ω)–solutions of (1.6) is related to a compatibility
hypothesis between on the couple (h(x), γ). More precisely, problem (1.6) has a solution in
H1

0(Ω) if and only if there exists v0 ∈ H1
0(Ω) such that

∫

Ω

h(x)|v0|1−γ
< ∞. (1.7)

Motivated by above results, our main purpose in this paper is to investigate the existence
of H1

0(Ω)-solutions for problem (P). We shall show that the compatibility condition (1.7) on
the couple (h(x), γ) is also optimal for the existence of weak solutions to problem (P). Under
additional assumption on the function h we show that the solutions of (P) belong to C1,α(Ω)

for some α ∈ (0, 1), and as a consequence we obtain uniqueness of solution.
Before giving our main results, we need an additional assumption. The function d(x) =

d(x, ∂Ω) denotes the distance from a point x ∈ Ω to the boundary ∂Ω, where Ω = Ω ∪ ∂Ω is
the closure of Ω ⊂ R

N .
We introduce the following assumption:

(bh) b ≥ 0 a.e. in Ω and there exist constants c > 0 and β ∈ (0, 1) such that

h(x) ≤ cdγ−β(x), ∀x ∈ Ω. (1.8)

Our first result is the following.

Theorem 1.1. If ( f )1 holds, then:

a) problem (P) admits a solution u ∈ H1
0(Ω) if and only if there exists a function v0 ∈ H1

0(Ω)

satisfying (1.7);
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b) under the additional assumption (bh) the solution u obtained in a) belongs to C1,α(Ω) for some

α ∈ (0, 1). In particular, problem (P) has a unique solution in H1
0(Ω).

It is worth pointing out that there are some differences between problems (P) and (1.5).
We give one in the following example.

Example 1.2. Let Ω0 be an open set with Ω0 ⊂ Ω and β, p ∈ (0, 1). Then the functions
h(x) = dγ−β(x), x ∈ Ω and f (x, s) = (2χ

Ω0
(x) − 1)sp, (x, s) ∈ Ω × R satisfy (1.7) and ( f )1,

respectively (see Remark 3.3). Here we denote by χ
Ω0

the characteristic function of Ω0. We
claim that the functions h and f do not satisfy the assumption (h1) in [24]. To see this let
y ∈ ∂Ω and k, s > 0. Since limx→y −kh(x) = limx→y −kdγ−β(x) = 0, we can find ǫ > 0 such
that

f (x, s) = −sp
< −kh(x) for every x ∈ {x ∈ Ω : |x − y| < ǫ} \Ω0.

This proves the claim.

Regularity results for singular elliptic equations have been studied in Giacomoni–
Schindler–Takáč [8], Giacomoni–Saoudi [9] and Marino–Winkert [19] in the particular con-
text of weak singularity, that is γ ∈ (0, 1). Specifically, in [8] the C1,α(Ω) regularity is proved.
In the present paper, we consider the opposite situation where γ > 1 (namely, strong singu-
larity) and give conditions on h which guarantee the C1,α(Ω) regularity of weak solutions of
(P). We observe that due to the difference between the types of singularities, and also due to
the structure of problem (PA) below, the regularity result of [8] can not be applied to prove
Theorem 1.1-b).

Now we state our second result.

Theorem 1.3. Suppose ( f )2 holds. Then problem (P) admits a unique solution u ∈ H1
0(Ω) if and

only if there exists a function v0 ∈ H1
0(Ω) satisfying (1.7).

To prove the existence of a solution for problem (P), we use the method of changing vari-
ables developed in Colin–Jeanjean [4]. With this approach, the energy functional associated to
the new problem has nonhomogeneous terms (see problem (PA)) and some difficulties arise.
For example, the techniques used by the works mentioned above do not apply directly here.
In order to deal with these difficulties, we make a careful analysis of the fiber maps associated
to the energy functional associated to the new problem and we will approach it in a new way.

We emphasize that Theorem 1.1 extends the main result of Sun [25] (see Theorem 1.2 in
[25]), in the sense that we consider the operator Lu = −∆u − ∆(u2)u instead of the Laplacian
operator and the potential b may change sign on Ω. As far as we know, the regularity of
solution (and consequently the uniqueness) obtained in Theorem 1.1-b) is new. Also, Theorem
1.3 extends Theorem 1.1 of Wang [26] in the sense that we consider the case γ > 1.

The paper is organized as follows. In the next section we reformulate problem (P) into
a new one which finds its natural setting in the Sobolev space H1

0(Ω) and we prove some
important lemmas. In section 3, we give the proof of Theorem 1.1. In section 4, we prove The-
orem 1.3 and in the Appendix we prove some properties of the positive solutions of problem
−∆u − ∆(u2)u = h(x)u−γ + λb(x)up in Ω, where the parameter λ ≥ 0 varies.

Notation. Throughout the paper we make use of the following notation:

• c, C denote positive constants, which may vary from line to line.

• H1
0(Ω) denotes the Sobolev space equipped with the norm ‖u‖ =

(∫

Ω
|∇u|2dx

)2.
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• Ls(Ω), 1 ≤ s ≤ ∞, denotes the Lebesgue space with the norms ‖u‖s =
(∫

Ω
|∇u|sdx

)1/s,
for 1 ≤ p < ∞, ‖u‖∞ = inf {C > 0 : |u(x)| ≤ C a.s. in Ω}.

• For 0 < α ≤ 1, C1,α(Ω) denotes the space of Hölder functions with exponent α. The
norm of C1,α(Ω) is denoted by | · |1,α.

• We denote by φ1 the L∞-normalized (that is, |φ1|∞ = 1) positive eigenfunction of (−∆,
H1

0(Ω)).

• If B is a measurable set in R
N , we denote by χB the characteristic function of B.

2 Reformulation of the problem and preliminaries

The natural energy functional corresponding to the problem (P) is the following:

J(u) =
1
2

∫

Ω

(1 + 2u2)|∇u|2 + 1
γ − 1

∫

Ω

h(x)|u|1−γ −
∫

Ω

F(x, u), u ∈ D(J),

where

D(J) =

{

u ∈ H1
0(Ω) :

∫

Ω

h(x)|u|1−γ
< ∞

}

and F(x, s) =
∫ s

0 f (x, t)dt.
However, this functional is not well defined, because

∫

Ω
u2|∇u|2dx is not finite for all

u ∈ H1
0(Ω), hence it is difficult to apply variational methods directly. In order to overcome

this difficulty, we use the following change of variables introduced by [4], namely, v := g−1(u),
where g is defined by







g′(t) = 1

(1+2|g(t)|2)
1
2

in [0, ∞),

g(t) = −g(−t) in (−∞, 0].

We list some properties of g, whose proofs can be found in Liu [15].

Lemma 2.1. The function g satisfies the following properties:

(1) g is uniquely defined, C∞ and invertible;

(2) g(0) = 0;

(3) 0 < g′(t) ≤ 1 for all t ∈ R;

(4) 1
2 g(t) ≤ tg′(t) ≤ g(t) for all t > 0;

(5) |g(t)| ≤ |t| for all t ∈ R;

(6) |g(t)| ≤ 21/4|t|1/2 for all t ∈ R;

(7) (g(t))2 − g(t)g′(t)t ≥ 0 for all t ∈ R;

(8) There exists a positive constant C such that |g(t)| ≥ C|t| for |t| ≤ 1 and |g(t)| ≥ C|t|1/2 for

|t| ≥ 1;

(9) g′′(t) < 0 when t > 0 and g′′(t) > 0 when t < 0;

(10) the functions (g(t))1−γ and (g(t))−γ are decreasing for all t > 0;
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(11) the function (g(t))pt−1 is decreasing for all t > 0;

(12) |g(t)g′(t)| < 1/
√

2 for all t ∈ R.

Proof. We only prove (10) and (11). From g(t), g′(t) > 0 for t > 0 and γ > 1, we obtain
[

(g(t))1−γ
]′

= (1 − γ)(g(t))−γg′(t) < 0, ∀t > 0

and
[

(g(t))−γ
]′
= −γ(g(t))−γ−1g′(t) < 0, ∀t > 0,

which imply that (g(t))1−γ and (g(t))−γ are decreasing for all t > 0. Therefore, (10) has been
proved.
(11) Using the fact that p < 1 and (4) we find

[

(g(t))pt−1
]′

= p(g(t))p−1g′(t)t−1 − (g(t))pt−2

= p(g(t))p−1(g′(t)t)t−2 − (g(t))pt−2

< t−2
[

(g(t))p−1g(t)− (g(t))p
]

= 0,

for all t > 0. Hence the function (g(t))pt−1 is decreasing for all t > 0. The lemma is proved.

After a change of variable v = g−1(u), we define an associated problem














−∆v = [h(x)(g(v))−γ + f (x, g(v))] g′(v) in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω.

(PA)

We say that a function v ∈ H1
0(Ω) is a weak solution (solution, for short) of (PA) if v > 0

a.e. in Ω, and, for every ϕ ∈ H1
0(Ω),

h(x)(g(v))−γg′(v)ϕ ∈ L1(Ω)

and
∫

Ω

∇v∇ϕ =
∫

Ω

h(x)(g(v))−γg′(v)ϕ +
∫

Ω

f (x, g(v))g′(v)ϕ.

It is easy to see that problem (PA) is equivalent to our problem (P), which takes u = g(v)

as its solutions.
The energy functional associated with problem (PA) is defined as

Φ(v) =
1
2

∫

Ω

|∇v|2 + 1
γ − 1

∫

Ω

h(x)|g(v)|1−γ −
∫

Ω

F(x, g(v)), v ∈ D(Φ),

if D(Φ) 6= ∅, where

D(Φ) =

{

v ∈ H1
0(Ω) :

∫

Ω

h(x)|g(v)|1−γ
< ∞

}

and F(x, s) =
∫ s

0 f (x, t)dt.
We shall justify that Φ is well defined by showing that D(Φ) 6= ∅. We first remark that if

v0 satisfies (1.7), then |v0| satisfies (1.7), too. Hence, without loss of generality we can assume
that v0 > 0 a.e. in Ω.

We have the following lemma.
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Lemma 2.2. Let v be Lebesgue measurable and suppose that v > 0 a.e. in Ω. The following statements

are equivalent:

(a)
∫

Ω

h(x)|v|1−γ
< ∞;

(b)
∫

Ω

h(x)(g(v))−γg′(v)v < ∞;

(c)
∫

Ω

h(x)(g(v))1−γ
< ∞.

In particular, if condition (1.7) holds, then D(Φ) 6= ∅.

Proof. (a) ⇒ (b): First, we decompose Ω as Ω = A1 ∪ A2, where

A1 = {x ∈ Ω : |v(x)| ≤ 1} and A2 = {x ∈ Ω : |v(x)| > 1} .

It is easy to see that

h(x)(g(v))−γg′(v)v = h(x)(g(v))−γg′(v)vχA1 + h(x)(g(v))−γg′(v)vχA2 ,

thus
∫

Ω

h(x)(g(v))−γg′(v)v < ∞

if and only if

h(x)(g(v))−γg′(v)vχA1 ∈ L1(Ω) and h(x)(g(v))−γg′(v)vχA2 ∈ L1(Ω). (2.1)

Let us show that (2.1) holds, and consequently that
∫

Ω
h(x)(g(v))−γg′(v)v < ∞. Indeed,

by Lemma 2.1 (4), (8) we have

|h(x)(g(v(x)))−γg′(v(x))v(x)| ≤ h(x)(g(v(x)))1−γ

≤ C1−γh(x)v1−γ(x), ∀x ∈ A1

and
|h(x)(g(v(x)))−γg′(v(x))v(x)| ≤ h(x)(g(v(x)))1−γ

≤ C1−γh(x)v(1−γ)/2(x)

≤ C1−γh(x), ∀x ∈ A2,

which shows (2.1), because h|v|1−γ, h ∈ L1(Ω).
(b) ⇒ (c): By Lemma 2.1 (4) we obtain

∫

Ω

h(x)(g(v))1−γ =
∫

Ω

h(x)(g(v))−γg(v) ≤ 2
∫

Ω

h(x)(g(v))−γg′(v)v < ∞.

(c) ⇒ (a): From Lemma 2.1 (5) we find

∫

Ω

h(x)|v|1−γ ≤
∫

Ω

h(x)(g(v))1−γ
< ∞.

The proof of the lemma is completed.
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From now on we will assume (1.7) and as a consequence, by Lemma 2.2 we obtain D(J) 6=
∅ and D(Φ) 6= ∅. Moreover D(J) = D(Φ).

The fact that we are looking for positive solutions leads us to introduce the sets

V+ =
{

v ∈ H1
0(Ω) \ {0} : v ≥ 0

}

and
D+(J) = {v ∈ V+ : v ∈ D(J)} .

For each v ∈ D+(J) we define the fiber map φv : (0, ∞) → R by

φv(t) := Φ(tv) =
t2

2

∫

Ω

|∇v|2 + 1
γ − 1

∫

Ω

h(x)(g(tv))1−γ −
∫

Ω

F(x, g(tv)).

In what follows, we will study the main properties of the fiber maps.

Lemma 2.3. If v ∈ D+(J), then φv ∈ C1((0, ∞), R).

Proof. It is clear that Γ̃ ∈ C1((0, ∞), R), where

Γ̃(t) =
t2

2

∫

Ω

|∇v|2 −
∫

Ω

F(x, g(tv)).

Therefore, it is sufficient to show that Γ ∈ C1((0, ∞), R), where Γ is defined by

Γ(t) =
∫

Ω

h(x)(g(tv))1−γ.

Let t > 0. For every s > 0, by the Mean Value Theorem there exists a measurable function
θ = θ(s, x) ∈ (0, 1) such that t + θ(s, x)s → t as s → 0 and

Γ(t + s)− Γ(t) = (1 − γ)
∫

Ω

h(x)(g((t + θs)v))−γg′((t + θs)v)sv.

Since, by Lemma 2.1(9), (10), the function g−γg′ is decreasing on (0, ∞) it follows that

(g((t + θs)v))−γg′((t + θs)v) ≤ (g(tv))−γg′(tv) a.e. in Ω.

Furthermore, as a consequence of Lemma 2.2 we have h(g(tv))−γg′(tv)v ∈ L1(Ω). Hence,
applying the Lebesgue’s dominated convergence theorem we obtain

Γ
′(t) = lim

s→0

Γ(t + s)− Γ(t)

s
= (1 − γ)

∫

Ω

h(x)(g(tv))−γg′(tv)v,

that is, Γ is differentiable at t. Finally, using Lemma 2.2 and the Lebesgue’s dominated con-
vergence theorem we deduce that the function Γ′ : (0, ∞) −→ R defined by

Γ
′(t) = (1 − γ)

∫

Ω

h(x)(g(tv))−γg′(tv)v,

is continuous, namely, Γ ∈ C1((0, ∞), R). The proof is complete.

Our next result deals with the existence of global minima of φv, for every v ∈ D+(J).

Lemma 2.4. If v ∈ D+(J), then there exists a t(v) > 0 such that

φv(t(v)) = inf
t>0

φv(t).
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Proof. We only give here the proof for the case in which ( f )1 holds. The case that ( f )2 holds
is similar.

First, we claim that
lim
t→0

φv(t) = ∞ and lim
t→∞

φv(t) = ∞. (2.2)

In fact, by Lemma 2.1 (5) we have
∫

Ω

h(x)(g(tv))1−γdx ≥ t1−γ
∫

Ω

h(x)|v|1−γ

and

tp+1
∫

Ω

|b(x)||v|p+1 ≥
∣

∣

∣

∣

∫

Ω

b(x)(g(tv))p+1
∣

∣

∣

∣

≥ 0,

whence
lim
t→0

∫

Ω

h(x)(g(tv))1−γdx = ∞ and lim
t→0

∫

Ω

b(x)(g(tv))p+1 = 0.

Since γ > 1, we deduce from this that limt→0 φv(t) = ∞. Moreover, one has

lim
t→∞

φv(t) ≥ lim
t→∞

t2
[

‖v‖2 − tp−2 ‖b‖∞

p + 1

∫

Ω

|v|p+1dx

]

= ∞,

that is, limt→∞ φv(t) = ∞.
Finally, from the continuity of φv and (2.2) we deduce that there exists a t(v) > 0 such that

φv(t(v)) = inft>0 φv(t). This concludes the proof of the lemma.

The following pictures give the possible graphs of the fiber maps.

φv

t0
t(v)

a)

φv

t0 t(v)

b)

Figure 2.1: Possible graphs of the fiber maps.

Motivated by [25], we define the following constraint sets

N1 =

{

v ∈ V+ : ‖v‖2 −
∫

Ω

f (x, g(v))g′(v)v ≥
∫

Ω

h(x)(g(v))−γg′(v)v
}

and

N2 =

{

v ∈ V+ : ‖v‖2 −
∫

Ω

f (x, g(v))g′(v)v =
∫

Ω

h(x)(g(v))−γg′(v)v
}

.

Observe that if v is a solution of (PA) then v ∈ N2 and N2 ⊂ N1.
It should be noted that for γ > 1, N2 is not closed as usual (certainly not weakly closed).
We prove that every function in D+(J) may be projected on the set N2. In particular,

N1 6= ∅.
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Lemma 2.5. For any v ∈ D+(J) we have t(v)v ∈ N2.

Proof. From Lemma 2.4 we infer that t(v) is a global minimum of φv and hence, by Lemma 2.3
one has φ′

v(t(v)) = 0. Thus

0 = t(v)φ′
v(t(v))

= ‖t(v)v‖2 −
∫

Ω

h(x)(g(t(v)v))−γg′(t(v)v)(t(v)v)−
∫

Ω

f (x, t(v)v)g′(t(v)v)(t(v)v) = 0,

namely, t(v)v ∈ N2 ⊂ N1. The proof is complete.

We end this section with the following lemmas, which will be used to prove the regularity
of the solutions.

Lemma 2.6. Let Ω be a bounded domain in R
N with smooth boundary ∂Ω. Let u ∈ L1

loc(Ω) and

assume that, for some k ≥ 0, u satisfies, in the sense of distributions,

{

−∆u + ku ≥ 0 in Ω

u ≥ 0 in Ω.

Then either u ≡ 0, or there exists ǫ > 0 such that u(x) ≥ ǫd(x, ∂Ω), x ∈ Ω.

Proof. See Brezis–Nirenberg [3, Theorem 3].

Lemma 2.7. Let a ∈ L1(Ω) and suppose that there exist constants δ ∈ (0, 1) and C > 0 such that

|a(x)| ≤ Cφ−δ
1 (x), for a.e. x ∈ Ω. Then, the problem

{

−∆u = a in Ω

u = 0 on ∂Ω,

has a unique solution u ∈ H1
0(Ω). Furthermore, there exist constants α ∈ (0, 1) and M > 0 depending

only on C, α, Ω such that u ∈ C1,α(Ω) and |u|1,α < M.

Proof. See Hai [11, Lemma 2.1, Remark 2.2].

Remark 2.8. For future use we recall that there exist constants l1, l2 > 0 such that

l1d(x, ∂Ω) ≤ φ1(x) ≤ l2d(x, ∂Ω), x ∈ Ω,

where φ1 is the first eigenfunction of (−∆, H1
0(Ω)).

Lemma 2.9. Let ψj : Ω × (0, ∞) −→ [0, ∞), j = 1, 2 are measurable functions such that

ψ1(x, s) ≤ ψ2(x, s) for all (x, s) ∈ Ω × (0, ∞),

and for each x ∈ Ω, the function s 7−→ ψ1(x, s)s−1 is decreasing on (0, ∞). Furthermore let u, v ∈
H1(Ω), with u ∈ L∞(Ω), u > 0, v > 0 on Ω are such that

−∆u ≤ ψ1(x, u) and − ∆v ≥ ψ2(x, v) on Ω.

If u ≤ v on ∂Ω and ψ1(·, u) (or ψ2(·, u)) belongs to L1(Ω), then u ≤ v on Ω.

Proof. See Mohammed [20, Theorem 4.1].
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3 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. First, we shall show the existence of a global
minimum of Φ on N1. For this purpose, we need the following lemma.

Lemma 3.1. The set N1 is not empty and the functional Φ is coercive on N1.

Proof. Since (1.7) holds, Lemmas 2.2 and 2.5 imply N1 6= ∅. We now show that Φ is coercive
on N1. Indeed, for every v ∈ N1,

Φ(v) =
1
2

∫

Ω

|∇v|2 + 1
γ − 1

∫

Ω

h(x)(g(v))1−γ − 1
p + 1

∫

Ω

b(x)(g(v))p+1

≥ 1
2

∫

Ω

|∇v|2 − ‖b‖∞

p + 1

∫

Ω

(g(v))p+1,

and from Lemma 2.1 (5) and Sobolev embedding we obtain

Φ(v) ≥ 1
2

∫

Ω

|∇v|2 − ‖b‖∞

p + 1

∫

Ω

|v|p+1 ≥ ‖v‖2

2
− C

‖v‖p+1

p + 1
,

for some constant C > 0. Since p ∈ (0, 1) one infers that Φ is coercive on N1.

As an immediate consequence of Lemma 3.1, we can deduce that

J1 = inf
v∈N1

Φ(v) and J2 = inf
v∈N2

Φ(v)

are well defined with J1, J2 ∈ R and J2 ≥ J1.
We now prove that the infimum of Φ on N1 is attained.

Lemma 3.2. There exists v ∈ N2 such that J1 = Φ(v) = J2.

Proof. Let {vn} ⊂ N1 be a minimizing sequence for Φ. From Lemma 3.1 the sequence {vn} ⊂
N1 is bounded and then, up to subsequences, there exists v ∈ H1

0(Ω) such that















vn ⇀ v in H1
0(Ω),

vn −→ v in Ls(Ω) for all s ∈ (0, 2∗),

vn −→ v a.e. in Ω.

Since vn > 0 a.e. in Ω, we have v ≥ 0 a.e. in Ω, that is, v ∈ V+. From the definition of N1

and Lemma 2.1 (3), (4), (5) it follows that for some constant C one has

1
2

∫

Ω

h(x)(g(vn))
1−γ ≤

∫

Ω

h(x)(g(vn))
−γg′(vn)vn

≤ ‖vn‖2 −
∫

Ω

b(x)(g(vn))
pg′(vn)vn

≤ ‖vn‖2 +
∫

Ω

|b(x)||vn|p+1

≤ ‖vn‖2 + c||vn||p+1

≤ C.
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Therefore, using Fatou’s lemma we get
∫

Ω
θ(x) ≤ C < ∞, where

θ(x) =

{

h(x)(g(v(x)))1−γ, if v(x) 6= 0

∞, if v(x) = 0.

Since g(0) = 0 (by Lemma 2.1 (2)) and
∫

Ω
θ(x) < ∞, it follows that v > 0 a.e. in Ω. Thus,

using Fatou’s lemma again, we obtain

0 <

∫

Ω

h(x)(g(v))−γg′(v)v ≤ C

and this jointly with Lemma 2.2 imply that v ∈ D+(J). As a consequence, Lemmas 2.4 and 2.5
apply yielding a global minimum t(v) > 0 such that φv(t(v)) = inft>0 φv(t) and t(v)v ∈ N2.
Furthermore, we have

J1 = lim
n→∞

Φ(vn) = lim inf
n→∞

Φ(vn)

= lim inf
n→∞

[

1
2

∫

Ω

|∇vn|2 +
1

γ − 1

∫

Ω

h(x)g(vn)
1−γ − 1

p + 1

∫

Ω

b(x)(g(vn))
p+1

]

≥ lim inf
n→∞

[

1
2

∫

Ω

|∇vn|2
]

+ lim inf
n→∞

[

1
γ − 1

∫

Ω

h(x)(g(vn))
1−γ

]

− 1
p + 1

∫

Ω

b(x)(g(v))p+1

≥ 1
2

∫

Ω

|∇v|2 + 1
γ − 1

∫

Ω

h(x)(g(v))1−γ − 1
p + 1

∫

Ω

b(x)(g(v))p+1 = φv(1)

≥ φv(t(v)) = Φ(t(v)v)

≥ J2

≥ J1.

Hence
J1 = φv(1) = Φ(v) = J2,

that is, φv(1) = φv(t(v)) = inft>0 φv(t). This implies φ′
v(1) = 0 and consequently v ∈ N2 ⊂ N1.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. a) Necessity. Suppose that u ∈ H1
0(Ω) is a solution of (P), by taking ϕ = u

in (1.1), we have
∫

Ω

h(x)|u|1−γ
< ∞.

Sufficiency. Let v be the global minimum obtained in Lemma 3.2. We will prove that v is a
solution of (PA). Let ϕ ∈ H1

0(Ω), ϕ ≥ 0. Applying Lemma 2.1 (10) we find

∫

Ω

h(x)(g(v + ǫϕ))1−γ ≤
∫

Ω

h(x)(g(v))1−γ
< ∞ ∀ǫ > 0,

namely, v+ ǫϕ ∈ D+(J) for every ǫ > 0. Then, from Lemmas 2.4 and 2.5 there exists a t(ǫ) > 0
such that φv+ǫϕ(t(ǫ)) = inft>0 φv+ǫϕ(t) and t(ǫ)(v + ǫϕ) ∈ N2. Therefore

Φ(v + ǫϕ) = φv+ǫϕ(1) ≥ φv+ǫϕ(t(ǫ)) = Φ(t(ǫ)(v + ǫϕ)) ≥ J2 = Φ(v),
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that is,
∫

Ω

h(x)(g(v + ǫϕ))1−γ − h(x)(g(v))1−γ

1 − γ

≤ ‖v + ǫϕ‖2 − ‖v‖2

2
−

∫

Ω

b(x)(g(v + ǫϕ))p+1 − b(x)(g(v))p+1

p + 1
.

Thus, dividing both sides of the above inequality by ǫ > 0, passing to the limit inferior as
ǫ −→ 0 and using Fatou’s Lemma, we have

∫

Ω

h(x)(g(v))−γg′(v)ϕ =
∫

Ω

lim inf
h(x)(g(v + ǫϕ))1−γ − h(x)(g(v))1−γ

1 − γ

≤
∫

Ω

∇v∇ϕ −
∫

Ω

b(x)(g(v))pg′(v)ϕ. (3.1)

Finally, we can use an argument inspired by Graham–Eagle [10] to show that v is a solution
of (PA). Since v ∈ N2, one has

‖v‖2 −
∫

Ω

b(x)(g(v))pg′(v)v −
∫

Ω

h(x)(g(v))−γg′(v)v = 0.

For arbitrary ϕ ∈ H1
0(Ω) and ǫ > 0, set Ψ = (v + ǫϕ)+ and

Ω
ǫ
1 = {x ∈ Ω : b(x) < 0 and v(x) + ǫϕ(x) < 0} .

Then, inserting Ψ into (3.1) and using v ∈ N2, we obtain that

0 ≤
∫

Ω

∇v∇Ψ −
∫

Ω

b(x)(g(v))pg′(v)Ψ −
∫

Ω

h(x)(g(v))−γg′(v)Ψ

=
∫

[v+ǫϕ≥0]
∇v∇(v + ǫϕ)− b(x)(g(v))pg′(v)(v + ǫϕ)− h(x)(g(v))−γg′(v)(v + ǫϕ)

=

(

∫

Ω

−
∫

[v+ǫϕ<0]

)

∇v∇(v + ǫϕ)− b(x)(g(v))pg′(v)(v + ǫϕ)− h(x)(g(v))−γg′(v)(v + ǫϕ)

= ‖v‖2 −
∫

Ω

b(x)(g(v))pg′(v)v −
∫

Ω

h(x)(g(v))−γg′(v)v

+ ǫ

[

∫

Ω

∇v∇ϕ − b(x)(g(v))pg′(v)ϕ − h(x)(g(v))−γg′(v)ϕ

]

−
∫

[v+ǫϕ<0]
∇v∇(v + ǫϕ)− b(x)(g(v))pg′(v)(v + ǫϕ)− h(x)(g(v))−γg′(v)(v + ǫϕ)

≤ ǫ

[

∫

Ω

∇v∇ϕ − b(x)(g(v))pg′(v)ϕ − h(x)(g(u))−γg′(v)ϕ

]

− ǫ
∫

[v+ǫϕ<0]
∇v∇ϕ + ǫ

∫

Ωǫ
1

b(x)(g(v))pg′(v)ϕ.

Since the measure of the domains of integration [v + ǫϕ < 0] and Ωǫ
1 tends to zero as ǫ → 0,

we then divide the above expression by ǫ > 0 to obtain

0 ≤
∫

Ω

∇v∇ϕ − b(x)(g(v))pg′(v)ϕ − h(x)(g(v))−γg′(v)ϕ,

as ǫ → 0. Replacing ϕ by −ϕ we conclude:
∫

Ω

∇v∇ϕ − b(x)(g(v))pg′(v)ϕ − h(x)(g(v))−γg′(v)ϕ = 0, ∀ϕ ∈ H1
0(Ω),
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and therefore v is a solution of (PA). This means that u = g(v) is a solution of problem (P).
We complete the proof of a).

b) Suppose that v is a solution of (PA). We will show that v ∈ C1,α(Ω) and hence, as g ∈ C∞

we get u = g(v) ∈ C1,α(Ω). Since v 6≡ 0 satisfies in the sense of distributions
{

−∆v ≥ 0 in Ω,

v ≥ 0 in Ω,

we can apply Lemma 2.6 yielding a ǫ > 0 such that

v(x) ≥ ǫd(x, ∂Ω), x ∈ Ω,

ǫd(x, ∂Ω) < 1, x ∈ Ω. (3.2)

Then, by (1.8) and Lemma 2.1 (3), (8), (10) there exist constants c, C > 0 and β ∈ (0, 1)
such that

|h(x)(g(v))−γg′(v)| ≤ h(x)(g(ǫd(x, ∂Ω)))−γ ≤ h(x)C(ǫd(x, ∂Ω))−γ

≤ Ccdγ−β(x, ∂Ω)d−γ(x, ∂Ω)

= Cd−β(x, ∂Ω)

≤ Cφ
−β
1 (x) (3.3)

for every x ∈ Ω, and hence h(g(v))−γg′(v) ∈ L1(Ω). Thus, by Lemma 2.7 there exists a
solution Ψ1 ∈ C1,α1(Ω), for some α1 ∈ (0, 1), of the problem















−∆w = h(x)(g(v))−γg′(v) in Ω,

w > 0 in Ω,

w = 0 on ∂Ω.

Next, we prove that the problem














−∆w = b(x)(g(v))pg′(v) in Ω,

w > 0 in Ω,

w = 0 on ∂Ω,

(3.4)

has a unique solution Ψ2 ∈ C1,α2(Ω), for some α2 ∈ (0, 1).
Let δ := 1 − p ∈ (0, 1). From (3.2) and Lemma 2.1 (8), (12) we have

|b(x)gp(v(x))g′(v(x))| ≤ ‖b‖∞g−δ(v(x))(g(v(x))g′(v(x))) ≤ Cφ−δ
1 (x),

that is,
|b(x)gp(v(x))g′(v(x))| ≤ Cφ−δ

1 (x),

for every x ∈ Ω and some constant C > 0. Therefore, by Lemma 2.7 problem (3.4) has a
unique solution Ψ2 ∈ C1,α2(Ω), for some α2 ∈ (0, 1).

We claim that v = Ψ1 + Ψ2. Indeed, using the fact that Ψ1, Ψ2 and v are solutions, we find
∫

Ω

∇v∇ϕ =
∫

Ω

[

h(x)(g(v))−γg′(v) + b(x)(g(v))pg′(v)
]

ϕ =
∫

Ω

∇(Ψ1 + Ψ2)∇ϕ,



Quasilinear Schrödinger equation with singular nonlinearity 15

for every ϕ ∈ H1
0(Ω). Therefore, v = Ψ1 +Ψ2, and then v ∈ C1,α(Ω), where α := min{α1, α2} ∈

(0, 1). Thus, the claim follows, and consequently u = g(v) ∈ C1,α(Ω) showing the regularity
of the solutions of (P).

Finally, we show the uniqueness of solution to (P). For this purpose, we show the unique-
ness of solution to (PA). Let v1 and v2 be two solutions of (PA). We will prove that v1 ≤ v2 in
Ω. First, let us set

j(x, s) := h(x)(g(s))−γg′(s) + b(x)(g(s))pg′(s).

Fix x ∈ Ω. According to Lemma 2.1 (9), (10), (11), the function s 7−→ j(x, s)s−1 is decreasing
on (0, ∞). Moreover, from (3.3) one has

0 ≤ j(x, vi) ≤ Cφ
−β
1 (x) + b(x)(g(vi(x)))pg′(vi(x)), x ∈ Ω,

hence j(x, vi) ∈ L1(Ω) for i = 1, 2. Thus, we can use Lemma 2.9 with ψi = j (i = 1, 2), u = v1

and v = v2 to get v1 ≤ v2 in Ω. Similarly we get v2 ≤ v1 in Ω, thus v1 = v2. This concludes
the proof of the theorem.

Remark 3.3. If (1.8) holds, then problem (P) has a solution. Indeed, choose v0 = φ1 ∈ H1
0(Ω).

From Remark 2.8 and (1.8) we have h|φ1|1−γ ≤ cl
β−γ
1 |φ1|1−β ∈ L1(Ω). Theorem 1.1 a) then

guarantees the existence of a solution of (P).

4 Proof of Theorem 1.3

In this section, we assume ( f )2, that is, f (x, s) = −b(x)s22∗−1 with 0 ≤ b ∈ L∞(Ω) and b 6≡ 0.
Since the embedding H1

0(Ω) →֒ L2∗(Ω) is not compact, the proof of Lemma 3.2 can not be
applied directly here. In order to overcome this difficulty, we use the Brezis–Lieb Theorem
(see [2]).

Now, we have

Φ(v) =
1
2

∫

Ω

|∇v|2 + 1
γ − 1

∫

Ω

h(x)(g(v))1−γ +
1

22∗

∫

Ω

b(x)(g(v))22∗ ,

for v ∈ D(J). From (1.7) and Lemmas 2.2 and 2.5, one has N1 6= ∅.
We will show the following.

Lemma 4.1. The functional Φ is coercive on N1

Proof. For every v ∈ N1, we have Φ(v) ≥ 1
2‖v‖2 and hence, Φ is coercive on N1.

As an immediate consequence of Lemma 4.1, we can deduce that

J1 = inf
v∈N1

Φ(v) and J2 = inf
v∈N2

Φ(v)

are well defined with J1, J2 ∈ R and J2 ≥ J1.
Next, we prove the following lemma.

Lemma 4.2. There exists v ∈ N2 such that J1 = Φ(v) = J2.
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Proof. Let {vn} ⊂ N1 be a minimizing sequence for Φ. From Lemma 4.1 the sequence {vn} ⊂
N1 is bounded in H1

0(Ω), so in L2∗(Ω) too, and then, up to subsequences, there exists v ∈
H1

0(Ω) such that














vn ⇀ v in H1
0(Ω),

vn −→ v in Ls(Ω) for all s ∈ (0, 2∗),

vn −→ v a.s. in Ω.

As a consequence, by Lemma 2.1 (6), there exists a constant C > 0 such that

∫

Ω

b(x)(g(vn))
22∗ =

∫

Ω

[

b
1

2∗
]2∗

[

(g(vn))
2]2∗ ≤ ‖b‖∞K22∗

0

∫

Ω

|vn|2
∗ ≤ C.

Moreover, b(x)(g(vn))22∗ −→ b(x)(g(v))22∗ a.s. in Ω. Hence, by virtue of the Brezis–Lieb
Theorem (see [2]) it follows that

∫

Ω

b(x)(g(vn))
22∗ =

∫

Ω

b(x)(g(v))22∗ +
∫

Ω

b(x)|(g(vn))
22∗ − (g(v))22∗ |+ o(1)

≥
∫

Ω

b(x)(g(v))22∗ + o(1).
(4.1)

We can repeat the arguments used in Lemma 3.2 to prove the following.

• v > 0 a.e. in Ω and
∫

Ω

h(x)(g(v))−γg′(v)v < ∞;

• there exists t(v) > 0 such that t(v)v ∈ N2.

Then, by (4.1) and the Fatou’s lemma we find

J1 = lim Φ(vn)

= lim inf
[

1
2

∫

Ω

|∇vn|2 +
1

γ − 1

∫

Ω

h(x)(g(vn))
1−γ +

1
22∗

∫

Ω

b(x)(g(vn))
22∗

]

≥ 1
2

∫

Ω

|∇v|2 + 1
γ − 1

∫

Ω

h(x)(g(v))1−γ +
1

22∗

∫

Ω

b(x)(g(v))22∗

= φv(1)

≥ φv(t(v)) = Φ(t(v)v) ≥ J2 ≥ J1.

Hence
J1 = φv(1) = Φ(v) = J2,

that is, φv(1) = φv(t(v)) = inft>0 φv(t). This implies φ′
v(1) = 0 and consequently v ∈ N2 ⊂ N1.

This ends the proof.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Necessity. Repeating the argument used to prove the corresponding claim
in Theorem 1.1 a), the result follows.

Sufficiency. Let v be the global minimum obtained in Lemma 4.2. We will prove that v is a
solution of (PA). Let ϕ ∈ H1

0(Ω), ϕ ≥ 0 and ǫ > 0. We can repeat the arguments used in
Theorem 1.1 a) to prove the following.

• h(· )(g(v + ǫϕ))1−γ ∈ L1(Ω);
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• there exists a t(ǫ) > 0 such that φv+ǫϕ(t(ǫ)) = inft>0 φv+ǫϕ(t) and t(ǫ)(v + ǫϕ) ∈ N2;

•
∫

Ω
h(x)(g(v))−γg′(v)ϕ ≤

∫

Ω
∇v∇ϕ +

∫

Ω
b(x)(g(v))22∗−1g′(v)ϕ.

From this information, as in Theorem 1.1 a), we can apply an argument inspired by Graham-
Eagle [10] to get

0 ≤ ‖v‖2 +
∫

Ω

b(x)(g(v))22∗−1g′(v)v −
∫

Ω

h(x)(g(v))−γg′(v)v

+ ǫ

[

∫

Ω

∇v∇ϕ + b(x)(g(v))22∗−1g′(v)ϕ − h(x)(g(v))−γg′(v)ϕ

]

−
∫

[v+ǫϕ<0]
∇v∇(v + ǫϕ) + b(x)(g(v))22∗−1g′(v)(v + ǫϕ)− h(x)(g(v))−γg′(v)(v + ǫϕ)

≤ ǫ

[

∫

Ω

∇v∇ϕ + b(x)(g(v))22∗−1g′(v)ϕ − h(x)(g(v))−γg′(v)ϕ

]

− ǫ
∫

[v+ǫϕ<0]
∇v∇ϕ + b(x)(g(v))22∗−1g′(v)ϕ,

for every ϕ ∈ H1
0(Ω).

Since the measure of the domain of integration [v + ǫϕ < 0] tends to zero as ǫ → 0, we
then divide the above expression by ǫ > 0 to obtain

0 ≤
∫

Ω

∇v∇ϕ − b(x)(g(v))pg′(v)ϕ − h(x)(g(v))−γg′(v)ϕ,

as ǫ → 0. Replacing ϕ by −ϕ we conclude:
∫

Ω

∇v∇ϕ − b(x)(g(v))pg′(v)ϕ − h(x)(g(v))−γg′(v)ϕ = 0, ∀ϕ ∈ H1
0(Ω),

and therefore v is a solution of (PA). This means that u = g(v) is a solution of problem (P).
Finally, we show the uniqueness of solution to (P). For this purpose, we show the unique-

ness of solution to (PA). Let v1 and v2 be two solutions of (PA). We will prove that v1 = v2

in Ω. First, let us set

j(x, t) = −b(x)(g(t))22∗−1g′(t) + h(x)(g(t))−γg′(t),

for x ∈ Ω and t > 0. Note that j(., t) is decreasing by virtue of Lemma 2.1 (9), (10). Thus,

‖v1 − v2‖2 =
∫

Ω

(j(x, v1)− j(x, v2))(v1 − v2) < 0,

which yields v1 = v2. Hence, problem (PA) has a unique solution. The proof of the theorem is
complete.

Appendix A

Consider the problem














−∆u − ∆(u2)u = h(x)u−γ + λb(x)up in Ω,

u > 0 in Ω,

u(x) = 0 on ∂Ω,

(Pλ)
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where λ ≥ 0, 0 < p < 1, 0 ≤ b ∈ L∞(Ω) and b 6≡ 0.
This appendix is devoted to the study of some properties of the solutions of (Pλ). From

now on we assume (1.7) holds. Therefore, by Theorem 1.1 problem (Pλ) has a solution, which
we denote by uλ.

The main result of this appendix is stated next.

Theorem A.1. The following properties are valid:

a) uλ ≥ u0 in Ω for every λ > 0.

b) uλ −→ u0 in H1
0(Ω) as λ −→ 0.

In order to prove Theorem A.1, we consider the problem














−∆v = h(x)(g(v))−γg′(v) + λb(x)(g(v))pg′(v) in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω,

(Dλ)

and denote by vλ = g−1(uλ) the solution obtained in the proof of Theorem 1.1.
Let Φλ the energy functional associated to (Dλ). For each λ ≥ 0, let us set

Nλ =

{

v ∈ V+ : ||v||2 −
∫

Ω

λb(g(v))pg′(v)v ≥
∫

Ω

h(x)(g(v))−γg′(v)v
}

.

We can now state the key lemma for proving Theorem A.1.

Lemma A.2. The following properties hold true:

a) vλ ≥ v0 in Ω.

b) vλ −→ v0 in H1
0(Ω) as λ −→ 0.

c) lim
λ→0

Φλ(vλ) = Φ0(v0) > 0.

d) If (1.8) holds, then the function [0, ∞) ∋ λ 7−→ Φλ(vλ) is continuous and decreasing.

Proof. a) Using the fact that v0 and vλ are solutions of (D0) and (Dλ), respectively, and Lemma
2.1 (9), (10) we have

−‖(vλ − v0)
−‖2 =

∫

Ω

((g(vλ))
−γg′(vλ)− (g(v0))

−γg′(v0) + λb(x)(g(vλ))
pg′(vλ))(vλ − v0)

−

≥
∫

Ω

((g(vλ))
−γg′(vλ)− (g(v0))

−γg′(v0))(vλ − v0)
−

=
∫

{vλ<v0}
((g(vλ))

−γg′(vλ)− (g(v0))
−γg′(v0))(vλ − v0)

− ≥ 0.

As a consequence one has ‖(vλ − v0)−‖ = 0, which implies vλ ≥ v0 in Ω.

b) Let {λn} ⊂ (0, ∞) be a sequence such that λn → 0 and denote by vλn
= vn. We claim that

{vn} is bounded in H1
0(Ω). Indeed, since {vn} ⊂ Nλn

it follows that

‖vn‖2 =
∫

Ω

h(x)(g(vn))
−γg′(vn)vn + λn

∫

Ω

b(g(vn))
pg′(vn)vn.
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Thus, from Lemma 2.1 (4), (5), (10) and vn ≥ v0 in Ω we get

‖vn‖2 ≤
∫

Ω

h(x)(g(vn))
1−γ + λn

∫

Ω

b(x)(g(vn))
p+1

≤
∫

Ω

h(x)(g(v0))
1−γ + λn

∫

Ω

b(x)|vn|p+1

≤
∫

Ω

h(x)(g(v0))
1−γ + λnC‖vn‖p+1

and hence {vn} is bounded in H1
0(Ω), because 0 < p < 1.

Therefore, there exists ψ ∈ H1
0(Ω), ψ ≥ 0 such that, up to a subsequence, we have















vn ⇀ ψ in H1
0(Ω),

vn → ψ in Ls(Ω) for all s ∈ (0, 2∗),

vn → ψ a.s. in Ω.

As in the proof of Lemma 3.2, we derive that ψ > 0 in Ω. This implies that

h(x)(g(vn))
−γg′(vn)(vn − ψ) → 0 a.s. in Ω,

and by virtue of Lemma 2.1 (4), (9), (10) and vn ≥ v0 in Ω one finds

|h(x)(g(vn))
−γg′(vn)(vn − ψ)| ≤ h(x)(g(vn))

1−γ + h(x)(g(vn))
−γg′(vn)ψ

≤ h(x)(g(v0))
1−γ + h(x)(g(v0))

−γg′(v0)ψ,

where
h(x)(g(v0))

1−γ + h(x)(g(v0))
−γg′(v0)ψ ∈ L1(Ω),

because v0 is a solution of (D0). Hence, by the Lebesgue’s dominated convergence theorem
we get

∫

Ω

h(x)(g(vn))
−γg′(vn)(vn − ψ) −→ 0. (A.1)

As a consequence of (A.1) we have

lim
n→∞

(vn, vn − ψ) = lim
n→∞

∫

Ω

∇vn∇(vn − ψ) =

= lim
n→∞

[

∫

Ω

h(x)(g(vn))
−γg′(vn)(vn − ψ) + λn

∫

Ω

b(x)(g(vn))
pg′(vn)(vn − ψ)

]

= 0,

and since vn ⇀ ψ, it follows that

lim
n→∞

‖vn − ψ‖2 = lim
n→∞

(vn, vn − ψ)− lim
n→∞

(ψ, vn − ψ) = 0,

namely, vn −→ ψ in H1
0(Ω) as n → ∞.

To end the proof of b), it is sufficient to show that ψ = v0. Indeed, because vn is a solution
of (Dλn

) one has
∫

Ω

∇vn∇ϕ =
∫

Ω

h(x)(g(vn))
−γg′(vn)ϕ + λn

∫

Ω

b(x)(g(vn))
pg′(vn)ϕ, (A.2)
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for all ϕ ∈ H1
0(Ω). Moreover, from v0 ≤ vn in Ω and Lemma 2.1 (9), (10) we find

h(x)(g(vn))
−γg′(vn)ϕ −→ h(x)(g(ψ))−γg′(ψ)ϕ a.s. in Ω,

and

|h(x)(g(vn))
−γg′(vn)ϕ| ≤ h(x)(g(v0))

−γg′(v0)ϕ.

Therefore, letting n → ∞ in (A.2), and by using Lebesgue’s dominated convergence theorem
we obtain

∫

Ω

∇ψ∇ϕ =
∫

Ω

h(x)(g(ψ))−γg′(ψ)ϕ,

for every ϕ ∈ H1
0(Ω). This means that ψ is a solution of (D0), and by uniqueness of solutions

of (D0) we deduce that ψ = v0. This ends the proof of b).

c) From a) and b) it follows that vλ ≥ v0 for all λ > 0 and vλ −→ v0 in H1
0(Ω) as λ → 0.

Thus, reasoning as in b), and by using Lebesgue’s dominated convergence theorem we get
limλ→0 Φλ(vλ) = Φ0(v0).

d) We can argue as in b) to show that the function is continuous. In order to prove that it is
decreasing, let 0 ≤ λ < µ. Then,

Φλ(vλ) > Φµ(vλ) ≥ Φµ(tµ(vλ)vλ) ≥ Φµ(vµ),

that is, the function [0, ∞) ∋ λ 7−→ Φλ(vλ) is decreasing. We complete the proof of the
lemma.

λ0

Φλ(vλ)

Φ0(v0)

Figure A.1: Graph of function [0, ∞) ∋ λ 7−→ Φλ(vλ).

We are now in a position to prove Theorem A.1.

Proof of Theorem A.1. a) Let uλ = g(vλ) and u0 = g(v0). By Lemma A.2 a) we have vλ ≥ v0 in
Ω, for every λ ≥ 0. So, by virtue of Lemma 2.1 (3) we find

uλ = g(vλ) ≥ g(v0) = u0 in Ω.

This finishes the proof of a).

b) We first observe that ∇uλ = g′(vλ)∇vλ, for each λ ≥ 0. Then, as a consequence of the
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inequality (x + y)2 ≤ 2(x2 + y2), for x, y ≥ 0, and Lemma 2.1(3) we get

∫

Ω

|∇uλ −∇u0|2 =
∫

Ω

|g′(vλ)∇vλ − g′(v0)∇v0|2

≤
∫

Ω

(g′(vλ)|∇vλ −∇v0|+|g′(vλ)− g′(v0)||∇v0|)2

≤ 2
∫

Ω

(g′(vλ))
2|∇vλ −∇v0|2 + 2

∫

Ω

|g′(vλ)− g′(v0)|2|∇v0|2

≤ 2
∫

Ω

|∇vλ −∇v0|2 + 2
∫

Ω

|g′(vλ)− g′(v0)|2|∇v0|2.

Hence, it is sufficient to prove that
∫

Ω

|∇vλ −∇v0|2 −→ 0 and
∫

Ω

|g′(vλ)− g′(v0)|2|∇v0|2 −→ 0, as λ → 0.

We already know (see Lemma A.2 b)) that
∫

Ω
|∇vλ −∇v0|2 −→ 0 as λ → 0. Moreover, as

g′(t) ≤ 1 for every t ≥ 0, we can apply Lebesgue’s dominated convergence to infer that

∫

Ω

|g′(vλ)− g′(v0)|2|∇v0|2 −→ 0 as λ → 0.

This completes the proof of Theorem A.1.
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Abstract. This paper is concerned with the existence and uniqueness of positive solu-
tions for the fourth order Kirchhoff type problem







u′′′′(x)−
(

a + b
∫ 1

0 (u
′(x))2dx

)

u′′(x) = λ f (u(x)), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where a > 0, b ≥ 0 are constants, λ ∈ R is a parameter. For the case f (u) ≡ u, we use an
argument based on the linear eigenvalue problems of fourth order equations and their
properties to show that there exists a unique positive solution for all λ > λ1,a, here λ1,a

is the first eigenvalue of the above problem with b = 0; for the case f is sublinear, we
prove that there exists a unique positive solution for all λ > 0 and no positive solution
for λ < 0 by using bifurcation method.
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1 Introduction

Consider the following nonlinear fourth order Kirchhoff type problem







u′′′′(x)−
(

a + b
∫ 1

0 (u
′(x))2dx

)

u′′(x) = λ f (u(x)), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.1)

where a > 0, b ≥ 0 are constants, λ ∈ R is a parameter, f : R → R is continuous. Due to the

presence of the integral term (b
∫ 1

0 (u
′(x))2dx)u′′(x), the equation is not a pointwise identity

and therefore is a nonlocal integro-differential problem.

Problem (1.1) describes the bending equilibrium of an extensible beam of length 1 which

is simply supported at two endpoints x = 0 and x = 1. The right side term λ f (u) in equation

BEmail: wjx19860420@163.com
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stands for a force exerted on the beam by the foundation. In fact, (1.1) is related to the

stationary problem associated with

∂2u

∂t2
+

EI

ρA

∂4u

∂x4
−
(

H

ρ
+

E

2ρL

∫ L

0

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dx

)

∂2u

∂x2
= 0, (1.2)

which was proposed by Woinowsky-Krieger [29] as a model for the deflection of an extensible

beam of length L with hinged ends. In (1.2), u = u(x, t) is the lateral displacement at the space

coordinate x and the time t; the letters H, E, ρ, I and A denote, respectively, the tension in the

rest position, the Young elasticity modulus, the density, the cross-sectional moment of inertia

and the cross-sectional area. The nonlinear term in the brackets is a correction to the classical

Euler-Bernoulli equation

∂2u

∂t2
+

EI

ρA

∂4u

∂x4
= 0,

which does not consider the changes of the tension induced by the variation of the length

during the deflection. This kind of correction was proposed by Kirchhoff [9] to generalize

D’Alembert’s equation with clamped ends. For this reason (1.1) is often called a Kirchhoff

type beam equation. Other problems involving fourth-order equations of Kirchhoff type can

be found in [7, 19].

In the study of problem (1.1) and its generalizations, the nonlocal term under the integral

sign causes some mathematical difficulties which make the study of the problem particularly

interesting. The existence and multiplicity of solutions for (1.1) and its multi-dimensional

case have been studied by several authors, see [13,15–18,27,28,30] and the references there in.

Meanwhile, numerical methods of (1.1) have been developed in [3, 4, 20, 21, 23, 25, 26, 32].

In [15–17], by using variational methods, Ma considered existence and multiplicity of

solutions for (1.1) with λ ≡ 1 under different nonlinear boundary conditions. In [18], based

on the fixed point theorems in cones of ordered Banach spaces, Ma studied existence and

multiplicity of positive solutions results for (1.1) with right side term f (x, u, u′) in equation.

For multi-dimensional case of (1.1) with λ ≡ 1, Wang et al. studied the existence and

multiplicity of nontrivial solutions by using the mountain pass theorem and the truncation

method in [27, 28]; for a kind of problem similar to (1.1) in R
3, Xu and Chen [30] established

the existence and multiplicity of negative energy solutions based on the genus properties in

critical point theory, and very rencently, Mao and Wang [13] studied the existence of nontrivial

mountain-pass type of solutions via the Mountain Pass lemma.

It is worth noticing that, in the above mentioned research work, the uniqueness of solutions

for the problem has not been discussed. As far as the author knows, there are very few

results on the uniqueness of solutions for problem (1.1). In [3], when the right side term

λ f (u(x)) = g(x) is nonpositive, Dang and Luan proved that problem (1.1) has a unique

solution by reducing the problem to a nonlinear equation and proposed an iterative method

for finding the solution. Very recently, by using contraction mapping principle, Dang and

Nguyen [4] obtained a uniqueness result for (1.1) in multi-dimensional case with the right

side term λ f (u(x)) = g(x, u) is bounded. To the best of our knowledge, apart from the two

works mentioned above, there is no other result on the uniqueness of solutions for nonlocal

integro-differential problem (1.1).

Motivated by the above described works, the object of this paper is to study the existence

and uniqueness of positive solutions for (1.1), and our main tool is bifurcation method. It

should be emphasized that, global bifurcation phenomena for fourth order problem (1.1) with
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b = 0 have been investigated in [10, 14, 24], and [1, 5, 8, 11, 12] studied second order Kirch-

hoff type problem by using the bifurcation theory, but as far as we know, the bifurcation

phenomena for fourth order Kirchhoff problem (1.1) has not been discussed.

Concretely, in the present paper we are concerned with problem (1.1) under the two cases:

f (u) ≡ u or f is sublinear. For f (u) ≡ u, (1.1) can be seen as a nonlinear eigenvalue problem,

we use an argument based on the linear eigenvalue problems of fourth order equations and

their properties to show that there exists a unique positive solution for all λ > λ1,a, where λ1,a

is the first eigenvalue of (1.1) with b = 0; for the case f is sublinear, such as f (u) = c1up + c2uq

(c1, c2 ≥ 0, 0 < p, q < 1 , see Remark 4.1), we prove that there exists a unique positive solution

for all λ > 0 and no positive solution for λ < 0 by using bifurcation method.

The rest of the paper is arranged as follows: In Section 2, as preliminaries, we first construct

the operator equation corresponding to (1.1). In Section 3, we deal with the case f (u) ≡ u

based on the linear eigenvalue problem of fourth order equations and their properties. Finally,

for the case f is sublinear, we discuss the existence and uniqueness of positive solutions for

(1.1) by using bifurcation method in Section 4.

2 Preliminaries

Let P := {u ∈ C[0, 1] : u(x) ≥ 0, ∀ x ∈ [0, 1]} be the positive cone in C[0, 1] and let U :=

P ∪ (−P). A solution to problem (1.1) is a function u ∈ C4[0, 1] which satisfies the equation

and boundary conditions, and moreover, if u ∈ C4[0, 1] ∩ P we call u a positive solution.

Proposition 2.1. For each g ∈ C[0, 1], there exists a solution u ∈ C4[0, 1] to the problem
{

u′′′′(x)− (a + b
∫ 1

0 (u
′(x))2dx)u′′(x) = g(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(2.1)

and if g ∈ U, then u is unique. Moreover, the operator T : U → U defined by

T(g) := u

is positive and compact.

Proof. First, when g ≡ 0, we prove that (2.1) has only a unique solution u ≡ 0. Assume that u

is a solution of (2.1) with g ≡ 0, set w = −u′′, then by (2.1) we have
{

−w′′(x) + (a + b
∫ 1

0 (u
′(x))2dx)w(x) = 0, x ∈ (0, 1),

w(0) = w(1) = 0,
(2.2)

{

−u′′(x) = w(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(2.3)

We claim that the solution of (2.2) is w ≡ 0. In fact, suppose on the contrary that w 6≡ 0 is a

solution of (2.2), and without loss of generality, w(τ) = max{w(x)|x ∈ [0, 1]} > 0 for some τ ∈
(0, 1), then we have w′′(τ) ≤ 0, which contradicts with w′′(τ) = (a+ b

∫ 1
0 (u

′(x))2dx)w(τ) > 0.

Substituting w ≡ 0 in (2.3), u ≡ 0 is an immediate conclusion.

Next, we prove the existence and uniqueness of solutions for (2.1) with g 6= 0. For any

constant R ≥ 0, let uR stands for the unique solution of the linear fourth order problem
{

u′′′′(x)− (a + bR)u′′(x) = g(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(2.4)
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then

uR(x) =
∫ 1

0

∫ 1

0
G1(x, t)G2,R(t, s)g(s)dsdt, x ∈ [0, 1], (2.5)

u′′
R(x) = −

∫ 1

0
G2,R(x, t)g(t)dt, x ∈ [0, 1], (2.6)

here

G1(x, t) =

{

t(1 − x), 0 ≤ t ≤ x ≤ 1,

x(1 − t), 0 ≤ x ≤ t ≤ 1,
(2.7)

and

G2,R(t, s) =







sinh(
√

a+bRt) sinh(
√

a+bR(1−s))√
a+bR sinh

√
a+bR

, 0 ≤ t ≤ s ≤ 1,

sinh(
√

a+bRs) sinh(
√

a+bR(1−t))√
a+bR sinh

√
a+bR

, 0 ≤ s ≤ t ≤ 1,
(2.8)

are Green functions of
{

−u′′(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(2.9)

and
{

−w′′(t) + (a + bR)w(t) = 0, t ∈ (0, 1),

w(0) = w(1) = 0,
(2.10)

respectively. Since 0 ≤ G1(x, t) ≤ G1(x, x) and 0 ≤ G2,R(t, s) ≤ G2,R(t, t) ≤ (sinh
√

a
2 )2

√
a sinh

√
a
, then by

(2.5)–(2.8) we have that there exist two positive constants C1 and C1 such that

‖uR‖∞ ≤ C1‖g‖∞, ‖u′′
R‖∞ ≤ C2‖g‖∞. (2.11)

Multiplying the equation in (2.4) by uR and integrating it over [0, 1], based on boundary

conditions and integration by parts we obtain

∫ 1

0
(u′

R(x))2dx =

∫ 1
0 g(x)uR(x)dx −

∫ 1
0 (u

′′
R(x))2dx

a + bR
. (2.12)

Now to get a solution of (2.1), we only need to find R such that

R = y(R) :=

∫ 1
0 g(x)uR(x)dx −

∫ 1
0 (u

′′
R(x))2dx

a + bR
=
∫ 1

0
(u′

R(x))2dx, (2.13)

that is, find a fixed point of R = y(R). Obviously, y(0) > 0. On the other hand, by (2.11) we

have

|y(R)| =

∣

∣

∣

∫ 1
0 g(x)uR(x)dx −

∫ 1
0 (u

′′
R(x))2dx

∣

∣

∣

a + bR
≤ C1‖g‖2

∞ + C2
2‖g‖2

∞

a
≤ C. (2.14)

This concludes the existence of fixed point for R = y(R) which yields a solution u of (2.1) in

C4[0, 1].

Now, we show that if g ∈ U, the solution of (2.1) is unique. Without loss of generality, we

assume on the contrary that for some g ∈ P, there exist two solutions u 6= v. By (2.5) and

(2.6), we have

u ≥ 0, u′′ ≤ 0; v ≥ 0, v′′ ≤ 0. (2.15)
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Since u and v satisfy the equation in (2.1), we have

u′′′′(x)− v′′′′(x)−
[

a + b
∫ 1

0
(u′(x))2dx

]

(u′′(x)− v′′(x))

− b

[

∫ 1

0
(u′(x))2dx −

∫ 1

0
(v′(x))2dx

]

v′′(x) = 0. (2.16)

Set w = −(u′′ − v′′). If
∫ 1

0 (u
′(x))2dx =

∫ 1
0 (v

′(x))2dx, then (2.2) holds for w = −(u′′ − v′′)

and consequently we can obtain u ≡ v arguing as above. If we assume that
∫ 1

0 (u
′(x))2dx >

∫ 1
0 (v

′(x))2dx, then by (2.16) and (2.15) we have

u′′′′(x)− v′′′′(x)−
[

a + b
∫ 1

0
(u′(x))2dx

]

(u′′(x)− v′′(x)) ≤ 0, (2.17)

that is

− w′′(x) +

[

a + b
∫ 1

0
(u′(x))2dx

]

w(x) ≤ 0. (2.18)

We claim that (2.18) implies w ≤ 0. In fact, suppose on the contrary that w(τ) = max{w(x)|x ∈
[0, 1]} > 0 for some τ ∈ (0, 1), then w′′(τ) ≤ 0. This contradicts with (2.18) with x = τ. On

the other hand, based on boundary conditions and integration by parts, from the assumption

∫ 1

0
(u′(x))2dx −

∫ 1

0
(v′(x))2dx =

∫ 1

0
[u′(x) + v′(x)][u′(x)− v′(x)]dx

= −
∫ 1

0
(u(x) + v(x))(u′′(x)− v′′(x))dx

=
∫ 1

0
(u(x) + v(x))w(x)dx > 0.

(2.19)

Since (2.15) guarantees that u(x) + v(x) ≥ 0, then (2.19) contradicts with w ≤ 0. The unique-

ness of solutions for (2.1) is proved.

At the end, let T : U → C[0, 1] be the operator defined by Tg = u, where u is the solution

of (2.1). By (2.5) and the positiveness of Green functions G1(x, t), G2,R(t, s) in (2.7) and (2.8),

we conclude that T is a positive operator, that is T : U → U. Now, we show that T is compact.

Without loss of generality, let B ⊆ P be any bounded set. Combining (2.5) with (2.11) we

can see that TB is a bounded set in P; On the other hand, (2.6) with (2.11) imply that TB

is bounded in C2[0, 1] and then we can deduce that TB is equicontinuous. Consequently, by

Arzelà–Ascoli theorem we have that T : P → P is a completely continuous operator. Therefore

T : U → U is a compact operator and the proof is completed.

Remark 2.2. When g(x) is nonpositive, Dang and Luan [3] proved that problem (2.1) has a

unique solution by reducing the problem to a nonlinear equation. Compared with [3], our

proof in 2.1 is more concise.

3 Nonlinear eigenvalue problem

In this section, we study (1.1) with f (u) ≡ u, that is the nonlinear eigenvalue problem

{

u′′′′(x)− (a + b
∫ 1

0 (u
′(x))2dx)u′′(x) = λu(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(3.1)
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The solutions of (3.1) are closely related to the following linear eigenvalue problem:

{

u′′′′(x)− Au′′(x) = λu(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(3.2)

In [6], Del Pino and Manásevich proposed that: a pair of constants (λ, A) such that (3.2) pos-

sesses a nontrivial solution will be called an eigenvalue pair, and the corresponding nontrivial

solution will be called an eigenfunction. Furthermore, they proved that the eigenvalue pair

(λ, A) of (3.2) must satisfy

λ

(kπ)4
− A

(kπ)2
= 1, for some k ∈ N,

and the corresponding eigenfunction is ϕk = c sin kπx(c 6= 0 is an arbitrary constant).

Now, given a positive constant A, we use λ1,A to denote the principal eigenvalue of prob-

lem (3.2), then we have the following results:

Lemma 3.1. (i) If A1, A2 are positive constants such that A1 < A2, then λ1,A1
< λ1,A2

.

(ii) Let B, C be two fixed positive constants. Consider the map

λ1(µ) := λ1,B+µC, µ ≥ 0,

then λ1(·) is a continuous and strictly increasing function and

λ1(0) = λ1,B, lim
µ→+∞

λ1(µ) = +∞.

Proof. By [6], we know that the principal eigenvalue λ1,A of (3.2) satisfy

λ1,A

π4
− A

π2
= 1, (3.3)

and the corresponding first eigenfunction is ϕ1(x) = c sin πx, where c 6= 0 is an arbitrary

constant. According to (3.3), λ1,A = (1 + A
π2 )π

4, then (i) and (ii) are immediate consequences.

By using Lemma 3.1, we prove the following results on the nonlinear eigenvalue problem

(3.1).

Theorem 3.2. Problem (3.1) has a positive solution uλ if and only if λ ∈ (λ1,a,+∞), moreover, the

solution uλ is unique and satisfying

lim
λ→λ1,a

‖uλ‖∞ = 0, lim
λ→+∞

‖uλ‖∞ = +∞. (3.4)

Proof. Assume that u is a positive solution of (3.1), then
∫ 1

0 (u
′(x))2dx > 0, consequently by

Lemma 3.1 (i) we have

λ = λ
1,a+b

∫ 1
0 (u

′(x))2dx
> λ1,a.

To any λ ∈ (λ1,a,+∞), by Lemma 3.1 (ii), there exists a unique t0(λ) > 0 such that

λ1,a+bt0
= λ,

moreover,

lim
λ→λ1,a

t0(λ) = 0, lim
λ→+∞

t0(λ) = +∞. (3.5)



Existence and uniqueness of positive solutions for Kirchhoff type beam equations 7

For the fixed t0, take appropriate principal eigenfunction ϕ1(x) = c sin πx(c > 0) of (3.2)

associated to λ1,a+bt0
such that

∫ 1

0
(ϕ′

1(x))2dx = t0. (3.6)

Then it is easy to see that uλ = ϕ1 > 0 is a positive solution of (3.1).

To prove the uniqueness, we assume that there exist two positive solutions u 6= v, since

λ = λ
1,a+b

∫ 1
0 (u

′(x))2dx
= λ

1,a+b
∫ 1

0 (v
′(x))2dx

,

then Lemma 3.1 (ii) guarantees that
∫ 1

0 (u
′(x))2dx =

∫ 1
0 (v

′(x))2dx and u is proportional to v,

which implies that u = v.

Finally, we prove (3.4). Since the unique positive solution of (3.1) is uλ = ϕ1(x) = cλ sin πx,

where cλ is a positive constant depending on λ, then by (3.6) and (3.5), we have

lim
λ→λ1,a

∫ 1

0
(u′

λ(x))2dx = lim
λ→λ1,a

∫ 1

0
[(cλ sin πx)′]2dx = lim

λ→λ1,a

1

2
c2

λπ2 → 0, (3.7)

and similarly

lim
λ→+∞

∫ 1

0
(u′

λ(x))2dx = lim
λ→+∞

1

2
c2

λπ2 → ∞, (3.8)

that is

lim
λ→λ1,a

cλ → 0, lim
λ→+∞

cλ → +∞, (3.9)

then (3.4) is an immediate consequence.

4 The sublinear case

In this section, we study (1.1) when the nonlinear term f is sublinear which means that f

satisfying:

(H1) f : R → R is continuous, f (s) > 0 for all s > 0, f (0) = 0 and f0 := lim
s→0+

f (s)
s = +∞;

(H2) f∞ := lim
s→+∞

f (s)
s = 0.

The main tool we will use in this section is global bifurcation theory.

We first state some notation. Let X := {u ∈ C2[0, 1] : u(0) = u(1) = u′′(0) = u′′(1) = 0}
with the norm ‖u‖X = max{‖u‖∞, ‖u′‖∞, ‖u′′‖∞}. Bρ := {u ∈ X : ‖u‖X < ρ}. For any u ∈ X,

denote u+ = max{u, 0}. Define the operator F : R × X 7→ X by

F(λ, u)(x) := T(λ f (u+(x))), (4.1)

where T is the operator defined in Proposition 2.1. Obviously, if u is a nonnegative solution

of (1.1), then u satisfies

u = F(λ, u). (4.2)

On the other hand, if u is a solution of (4.2), we show that u must be a nonnegative solution

of (1.1). In fact, by (H1) we have f (u+) ≥ 0 for any u ∈ C[0, 1]. Then the positiveness of

the operator T yields that the solution of (4.2) must be nonnegative or nonpositive according

to λ ≥ 0 or λ ≤ 0. If we assume that the latter happens, that is, u(x) ≤ 0, ∀x ∈ [0, 1], then
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f (u+) ≡ 0 and consequently (4.2) implies that u ≡ 0. From the above discussion, u is a

nonnegative solution of (1.1) if and only if (4.2) holds.

Since the map from X into U := P ∪ (−P) defined by u 7→ λ f (u+) is continuous, and

C4[0, 1]∩ X is compactly imbedded in X, then by Proposition 2.1, the operator F : R × X 7→ X

as in (4.1) is completely continuous. In order to prove the main result of this section, we need

the following lemmas.

Lemma 4.1. For any fixed λ < 0, there exists a number ρ > 0 such that

deg(I − F(λ, ·), Bρ(0), 0) = 1.

Proof. First, we claim that there exists δ > 0 such that

u 6= tF(λ, u) = tT(λ f (u+)) for all u ∈ Bδ, u 6= 0 and t ∈ [0, 1].

Suppose on the contrary that there exists a sequence {un} in X \ 0 with ‖un‖X −→ 0 and {tn}
in [0, 1] such that

un = tnF(λ, un) = tnT(λ f (u+
n )),

that is

u′′′′
n (x)−

(

a + b
∫ 1

0
(u′

n(x))2dx

)

u′′
n(x) = tnλ f (u+

n (x)) ≤ 0, x ∈ (0, 1). (4.3)

Set wn = −u′′
n , then by (4.3) we can get an inequality for wn similar to (2.18), which can deduce

that wn ≤ 0. Consequently, −u′′
n = wn ≤ 0 and un(0) = un(1) = 0 guarantee that un ≤ 0,

which implies f (u+
n ) ≡ 0 according to (H1). Then by Proposition 2.1, (4.3) has only a unique

solution un ≡ 0, a contradiction with un ∈ X \ 0.

Take ρ ∈ (0, δ], according to the homotopy invariance of topological degree and the nor-

malization property, we have

deg(I − F(λ, ·), Bρ(0), 0) = deg(I, Bρ(0), 0) = 1.

Lemma 4.2. For any fixed λ > 0, there exists a number ρ > 0 such that

deg(I − F(λ, ·), Bρ(0), 0) = 0.

Proof. First, take a ψ ∈ X, ψ > 0, we claim that there exists δ > 0 such that

u 6= T(λ f (u+) + tψ) for all u ∈ Bδ, u 6= 0 and t ∈ [0, 1].

Suppose on the contrary that there exists a sequence {un} in X \ 0 with ‖un‖X −→ 0 and {tn}
in [0, 1] such that

un = T(λ f (u+
n ) + tnψ),

that is

u′′′′
n (x)−

(

a + b
∫ 1

0
(u′

n(x))2dx

)

u′′
n(x) = λ f (u+

n (x)) + tnψ(x), x ∈ (0, 1), (4.4)

Since tnψ(x) > 0, ∀x ∈ (0, 1), from the similar argument in Lemma 4.1 we have that un(x) >

0, ∀x ∈ (0, 1).
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On the other hand, ‖un‖X −→ 0 implies that

∫ 1

0
(u′

n(x))2dx ≤ C

for some positive constant C. Hence, according to Lemma 3.1 we have that

λ
1,a+b

∫ 1
0 (u

′
n(x))2dx

≤ λ1,a+bC =: Λ.

Fix this value of Λ, since ‖un‖∞ −→ 0, then according to (H1), for n large we have that

λ f (u+
n (x)) > Λun(x), ∀x ∈ (0, 1). Combining this with u′′

n(x) ≤ 0, ∀x ∈ [0, 1] we can conclude

that for any x ∈ (0, 1) the following inequality holds

u′′′′
n (x)− (a + bC)u′′

n(x) ≥ u′′′′
n (x)−

(

a + b
∫ 1

0
(u′

n(x))2dx

)

u′′
n(x)

= λ f (u+
n (x)) + tnψ(x) > Λun(x),

which implies that λ1,a+bC > Λ, a contradiction.

Take ρ ∈ (0, δ], since the equation u − T(λ f (u) + ψ) = 0 has no solution in Bρ(0), then

according to the homotopy invariance of topological degree we have

deg(I − F(λ, ·), Bρ(0), 0) = deg(I − T(λ f (·) + ψ), Bρ(0), 0) = 0.

Now, we are ready to consider the bifurcation of positive solutions of (1.1) from the line of

trivial solutions {(λ, 0) ∈ R × X : λ ∈ R}.

Theorem 4.3. Assume that (H1) and (H2) hold. Then from (0, 0) there emanate an unbounded

continuum C0 of positive solutions of (4.2) in R × X.

Proof. First, we show that (0, 0) is a bifurcation point from the line of trivial solutions {(λ, 0) ∈
R × X : λ ∈ R} for the equation (1.1). In fact, this can be obtained following from a simple

modification of the global bifurcation theorem of Rabinowitz [22, Theorem 1.3], and the similar

arguments has been used in [2, Proposition 3.5] Suppose on the contrary that (0, 0) is not a

bifurcation point for (4.2), then there is a neighborhood of (0, 0) containing no nontrivial

solutions of (4.2). In particular there exists a small ǫ > 0 such that there are no solutions of

(4.2) on [−ǫ, ǫ]× ∂Bǫ(0). Then deg(I − F(λ, ·), Bǫ(0), 0) is well defined for λ ∈ [−ǫ, ǫ] and, by

the homotopy invariance property of degree we have

deg(I − F(λ, ·), Bǫ(0), 0) ≡ constant, ∀λ ∈ [−ǫ, ǫ],

which is a contradict with Lemma 4.1 and 4.2.

Then according to Rabinowitz’s global bifurcation theorem, an continuum C0 of positive

solutions of (4.2) emanates from (0, 0), and either

(i) C0 is unbounded in R × X, or

(ii) C0 ∩ [(R \ 0)× {0}] 6= ∅.

To prove the unboundedness of C0, we only need to show that the case (ii) cannot occur,

that is: C0 can not meet (λ, 0) for any λ 6= 0. It is easy to see that for λ < 0 problem (1.1)

does not possess a positive solution. For the case λ > 0, we assume on the contrary that there

exist some λ0 > 0 and a sequence of parameters {λn} and corresponding positive solutions
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{un} of (1.1) such that λn −→ λ0 and ‖un‖X −→ 0. Since ‖un‖∞ −→ 0, then by (H1), for fixed

ε ∈ (0, λ0) there exists n0 ∈ N such that when n > n0 we have

u′′′′
n (x)−

(

a + b
∫ 1

0
(u′

n(x))2dx

)

u′′
n(x)

= λn f (un(x)) ≥ (λ0 − ε) f (un(x)) > Λun(x), ∀x ∈ (0, 1),

where Λ is defined as in Lemma 4.2. Now, we can get a contradiction in a similar way that in

the proof of Lemma 4.2.

The main result of this section is following:

Theorem 4.4. Assume that (H1) and (H2) hold, then (1.1) has a positive solution if and only if λ > 0.

In addition, if f is monotone increasing and there exists α ∈ (0, 1) such that

f (τs) ≥ τα f (s) (4.5)

for any τ ∈ (0, 1) and s > 0, then the positive solution of (1.1) is unique.

Proof. By Theorem 4.3, there exists an unbounded continuum C0 ∈ R × X of positive solutions

of (1.1). We will show that ‖u‖X is bounded for any fixed λ > 0, that is, C0 can not blow up

at finite λ ∈ (0,+∞). To do this, we first prove ‖u‖∞ is bounded for any fixed λ > 0. Assume

on the contrary that there exist λ0 > 0 and a sequence of parameters {λn} and corresponding

positive solutions {un} of (1.1) such that λn −→ λ0, ‖un‖∞ −→ ∞. Since

u′′′′
n (x)−

(

a + b
∫ 1

0
(u′

n(x))2dx

)

u′′
n(x) = λn f (un), (4.6)

divide (4.6) by ‖un‖∞ and set vn = un

‖un‖∞
, then we get

v′′′′n (x)−
(

a + b
∫ 1

0
(u′

n(x))2dx

)

v′′n(x) = λn
f (un(x))

‖un‖∞

. (4.7)

Multiplying (4.7) by vn and integrating it over [0, 1], based on boundary conditions and inte-

gration by parts we obtain

∫ 1

0
(v′n(x))2dx =

∫ 1
0 λn

f (un(x))
‖un‖∞

vn(x)dx −
∫ 1

0 (v
′′
n(x))2dx

a + b
∫ 1

0 (u
′
n(x))2dx

. (4.8)

Since ‖vn‖∞ ≡ 1, {λn} is bounded and (H2) guarantees that
f (un(x))
‖un‖∞

−→ 0 as n −→ ∞, then

(4.8) implies

0 ≤
∫ 1

0
(v′n(x))2dx ≤

∫ 1
0 λn

f (un(x))
‖un‖∞

vn(x)dx

a
−→ 0 as n −→ ∞,

that is ‖v′n‖∞ −→ 0. By the boundary conditions vn(0) = vn(1) = 0, there exist ξn ∈ (0, 1)

such that vn(x) =
∫ x

ξn
v′n(t)dt, ∀x ∈ [0, 1]. Combining this with ‖v′n‖∞ −→ 0 we can conclude

that ‖vn‖∞ −→ 0. This contradicts ‖vn‖∞ ≡ 1, and then we get the boundedness of ‖u‖∞.

Next, we show that the boundedness of ‖u‖∞ can deduce the boundedness of ‖u′‖∞ and

‖u′′‖∞. Since

u′′′′(x)−
(

a + b
∫ 1

0
(u′(x))2dx

)

u′′(x) = λ f (u(x)), (4.9)
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multiplying (4.9) by u and integrating it over [0, 1], similarly we can obtain

∫ 1

0
(u′(x))2dx =

∫ 1
0 λ f (u(x))u(x)dx −

∫ 1
0 (u

′′(x))2dx

a + b
∫ 1

0 (u
′(x))2dx

≤
∫ 1

0 λ f (u(x))u(x)dx

a
. (4.10)

(4.10) implies that ‖u′‖∞ is bounded, and consequently, ‖u′′‖∞ is bounded too. According to

the definition of ‖u‖X, the above conclusion means that ‖u‖X is bounded for any fixed λ > 0.

Combining this with the unboundedness of C0, we conclude that sup{λ| (λ, u) ∈ C0} = ∞,

then for any λ > 0 there exists a positive solution for (1.1).

Now, we prove that if f is monotone increasing and satisfies (4.5), then (1.1) has only a

unique positive solution. Assume that there exist two positive solutions u 6= v corresponding

to some fixed λ > 0. If
∫ 1

0 (u
′(x))2dx =

∫ 1
0 (v

′(x))2dx = R > 0, consider the problem







ω′′′′(x)−
(

a + b
∫ 1

0 (u
′(x))2dx

)

ω′′(x) = λ f (ω(x)), x ∈ (0, 1),

ω(0) = ω(1) = ω′′(0) = ω′′(1) = 0,
(4.11)

and its corresponding integral operator H : P → P given by

H(ω) = T(λ f (ω)) = λ
∫ 1

0

∫ 1

0
G1(x, t)G2,R(t, s) f (ω(s))dsdt.

By the monotonicity of f and (4.5), H is an increasing α-concave operator according to [31,

Definition 2.3], then by [31, Theorem 2.1, Remark 2.1], the operator equation H(ω) = ω has a

unique solution, which is also the unique positive solution of (4.11). That is, u = v.

If we assume that
∫ 1

0 (u
′(x))2dx >

∫ 1
0 (v

′(x))2dx, since v′′ ≤ 0, we have

v′′′′(x)−
(

a + b
∫ 1

0
(u′(x))2dx

)

v′′(x)

≥ v′′′′(x)−
(

a + b
∫ 1

0
(v′(x))2dx

)

v′′(x) = λ f (v(x)), (4.12)

which means that v is actually an upper solution of (4.11). Constructing an iterative sequence

vn+1 = Hvn, n = 0, 1, 2, . . ., where v0 = v, then (4.12) and the monotonicity of f guarantee that

{vn} is decreasing. Moreover, by [31, Theorem 2.1, Remark 2.1], {vn} must converge to the

unique solution u of (4.11), and consequently we have

0 ≤ u(x) ≤ v(x), ∀x ∈ [0, 1]. (4.13)

On the other hand, based on boundary conditions and integration by parts, from the assump-

tion
∫ 1

0 (u
′(x))2dx >

∫ 1
0 (v

′(x))2dx we have that

∫ 1

0
(u′(x))2dx −

∫ 1

0
(v′(x))2dx =

∫ 1

0
[u′(x) + v′(x)][u′(x)− v′(x)]dx

= −
∫ 1

0
(u(x)− v(x))(u′′(x) + v′′(x))dx > 0,

(4.14)

since −(u′′(x) + v′′(x)) ≥ 0 following from (2.15), then (4.14) contradicts with (4.13). This

concludes the proof.
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Remark 4.5. If c1, c2 are nonnegative constants satisfying c2
1 + c2

2 6= 0, 0 < p, q < 1, then it is

easy to check that the function

f (u) = c1up + c2uq

is increasing and satisfies (H1),(H2) and (4.5). Consequently, Theorem 4.4 guarantees that the

problem

{

u′′′′(x)− (a + b
∫ 1

0 (u
′(x))2dx)u′′(x) = λ(c1up(x) + c2uq(x)), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

has a positive solution if and only if λ > 0, moreover, the positive solution is unique.
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Abstract. We study some properties of the range of the relativistic pendulum opera-
tor P , that is, the set of possible continuous T-periodic forcing terms p for which the
equation Px = p admits a T-periodic solution over a T-periodic time scale T. Writ-
ing p(t) = p0(t) + p, we prove the existence of a nonempty compact interval I(p0),
depending continuously on p0, such that the problem has a solution if and only if
p ∈ I(p0) and at least two different solutions when p is an interior point. Furthermore,
we give sufficient conditions for nondegeneracy; specifically, we prove that if T is small
then I(p0) is a neighbourhood of 0 for arbitrary p0. The results in the present paper
improve the smallness condition obtained in previous works for the continuous case
T = R.
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1 Introduction

The T-periodic problem for the forced relativistic pendulum equation on time scales reads

Px(t) := (ϕ(x∆(t)))∆ + ax∆(t) + b sin x(t) = p0(t) + s, t ∈ T, (1.1)

where a, b > 0 and s are real numbers, T is an arbitrary T-periodic nonempty closed subset

of R for some T > 0, ϕ : (−c, c) → R is the relativistic operator

ϕ(x) :=
x

√

1 − x2

c2

with c > 0 and p0 is continuous and T-periodic in T, with zero average. In this work, we are

concerned with the set of all possible values of s such that (1.1) admits a T-periodic solution.

The time scales theory was introduced in 1988, in the PhD thesis of Stefan Hilger [12],

as an attempt to unify discrete and continuous calculus. The time scale R corresponds to

BCorresponding author. Email: pamster@dm.uba.ar
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the continuous case and, hence, yields results for ordinary differential equations. If the time

scale is Z, then the results apply to standard difference equations. However, the generality

of the set T produces many different situations in which the time scales formalism is useful

in several applications. For example, in the study of hybrid discrete-continuous dynamical

systems, see [6].

In the past decades, periodic problems involving the relativistic forced pendulum differen-

tial equation for the continuous case T = R were studied by many authors, see [3,4,8,14,18,19].

In particular, the works [3, 19] are concerned with the so-called solvability set, that is, the set

I(p0) of values of s for which (1.1) has at least one T-periodic solution. We remark that prob-

lem (1.1) is 2π-periodic and, consequently, if x is a T-periodic solution then x + 2kπ is also a

T-periodic solution for all k ∈ Z. For this reason, the multiplicity results for (1.1) usually refer

to the existence of geometrically distinct T-periodic solutions, i.e. solutions not differing by a

multiple of 2π.

For the standard pendulum equation with a = 0, the solvability set was analyzed in the

pioneering work [9], where it was proved that I(p0) ⊂ [−b, b] is a nonempty compact interval

containing 0. Moreover, I(p0) depends continuously on p0. These results were partially ex-

tended to the relativistic case in [8]; however, the method of proof in both works is variational

and, consequently, cannot be applied to the case a > 0. This latter situation was studied in

[11] for the standard pendulum and in [19] for the relativistic case. An interesting question,

stated already in [9] is whether or not the equation may be degenerate, namely: is there any

p0 such that I(p0) reduces to a single point? Many works are devoted to this problem and,

for the classical pendulum, nondegeneracy has been proved for an open and dense subset

of C̃T, the space of zero-average T-periodic continuous functions. However, the question for

arbitrary p0 remains unsolved. For a survey on the pendulum equation and open problems

see for example [15].

The purpose of this work is to extend the results in [3] and [19] to the context of time

scales. To this end, we prove in the first place that the set I(p0) is a nonempty compact interval

depending continuously on p0. The method of proof is inspired in a simple idea introduced in

[11] for the standard pendulum equation, which basically employs the Schauder Theorem and

the method of upper and lower solutions. Moreover, by a Leray–Schauder degree argument

it shall be proved that if s is an interior point of I(p0), then the problem admits at least two

geometrically distinct periodic solutions.

Furthermore, sufficient conditions shall be given in order to guarantee that 0 ∈ I(p0). We

recall that, when a 6= 0, this is not trivial even in the continuous case T = R. For the classical

pendulum equation, there exist well known examples with 0 /∈ I(p0) for arbitrary values of

T; for the relativistic case, it was proved in [3] that, if cT <

√
3π, then 0 ∈ I(p0)◦. In a

very recent paper (see [10]), this bound was improved in terms of a, b and ‖p0‖L1 , yielding

the uniform condition cT ≤ 2π. It is worth noticing that, however, the problem is still open

for large values of T. As we shall see, a slight improvement of the previous bound can be

deduced from the results in the present paper. Specifically, we shall prove the existence of

T∗ with cT∗
> π such that if T ≤ T∗ then 0 ∈ I(p0) and it is an interior point when the

inequality is strict. An inferior bound for T∗ can be characterized as a zero of a real function;

for the continuous case T = R, it is easily shown that the bound obtained in [4] is improved;

furthermore, it is numerically seen that cT∗
> 6.318, thus improving also the bound in [10].

We remark that the computation is independent of p0: in other words, if T < T∗, then the

range of the operator P contains a set of the form C̃T + [−ε, ε] for some ε > 0.

We highlight that our paper is devoted to equations on time scales that involve a ϕ-
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laplacian of relativistic type, for which the literature is scarce. For example, in [17], the

existence of heteroclinic solutions for a family of equations on time scales that includes the

unforced relativistic pendulum is proved. However, to our knowledge there are no papers

concerned with periodic solutions and, more precisely, the solvability set for equations with a

singular ϕ-laplacian on time scales.

This work is organized as follows. In Section 2, we establish the notation, terminology

and preliminary results which will be used throughout the paper. In Section 3 we prove that

the set I(p0) is a nonempty compact interval depending continuously on p0, and that two

geometrically distinct T-periodic solutions exist when s is an interior point. Finally, Section 4

is devoted to find sufficient conditions in order to guarantee that 0 ∈ I(p0) and improve the

condition obtained in [3] for the continuous case.

2 Notation and preliminaries

For the reader’s convenience, let us firstly recall some basic definitions concerning time-scales

that shall be used in this work. For a more detailed exposition, see e.g. [6, 7].

A time scale T is a nonempty closed subset of R, with the induced topology. Throughout

this work, we shall assume that T is T-periodic for some fixed T > 0, namely that T + T = T.

For a, b ∈ T with a ≤ b, we shall denote [a, b]T := [a, b] ∩ T.

The forward jump operator σ : T → T is defined by

σ(t) := inf {s ∈ T : s > t} .

A point t ∈ T is called right scattered if σ(t) > t, and right dense otherwise. A function u is

delta differentiable at t ∈ T if there exists a number (denoted by u∆(t)) with the property that

given any ǫ > 0 there is a neighbourhood U of t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0)

such that
∣

∣(u(σ(t))− u(s))− u∆(t) (σ(t)− s)
∣

∣ ≤ ǫ |σ(t)− s|

for all s ∈ U. Thus, we call u∆(t) the delta derivative of u at t. Moreover, we say that u is

delta differentiable on T provided that u∆(t) exists for all t ∈ T. Note that for T = R, we have

u∆ = u′, the usual derivative, and for T = Z we have that u∆(t) = ∆u(t) = u(t + 1)− u(t).

A function U : T → R is called a ∆-antiderivative of u : T → R provided U∆(t) = u(t)

holds for all t ∈ T. It is not difficult to prove that every continuous u has a ∆-antiderivative,

which is unique up to a constant term. Thus, the ∆-integral from t0 to t of u is well defined by
∫ t

t0
u(s)∆s = U(t)− U(t0) for all t ∈ T.

Let CT = CT (T, R) be the Banach space of all continuous T-periodic real functions on T

endowed with the uniform norm

‖x‖∞ = sup
T

|x(t)| = sup
[0,T]

T

|x(t)|

and let C̃T be the subspace of those elements of CT having zero average. By C1
T = C1

T (T, R)
we shall denote the Banach space of all continuous T-periodic functions on T that are ∆-

differentiable functions with continuous ∆-derivatives, endowed with the standard norm

‖x‖1 = sup
[0,T]

T

|x(t)|+ sup
[0,T]

T

|x∆(t)|.
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Equation (1.1) can be written as

(ϕ(x∆(t)))∆ = f (t, x(t), x∆(t)), t ∈ T, (2.1)

where f : T × R × R → R is the continuous function given by f (t, u, v) := p0(t) + s −
au − b sin(u). A function x ∈ C1

T is said to be a solution of (2.1) if ϕ(x∆) ∈ C1
T and verifies

(ϕ(x∆(t)))∆ = f (t, x(t), x∆(t)) for all t ∈ T. We remark that necessarily ‖x‖∞ < c.

For x ∈ CT, the average, the maximum value and the minimum value of x shall be denoted

respectively by x, xmax and xmin, namely

x :=
1

T

∫ T

0
x(t)∆t, xmax := max

t∈[0,T]T
x(t) xmin := min

t∈[0,T]T
x(t).

2.1 Upper and lower solutions and degree

Let us define T-periodic lower and upper solutions for problem (2.1) as follows.

Definition 2.1. A lower T-periodic solution α (resp. upper solution β) of (2.1) is a function

α ∈ C1
T with

∥

∥α∆
∥

∥

∞
< c such that ϕ(α∆) is continuously ∆-differentiable and

(

ϕ
(

α∆(t)
))∆

≥ f (t, α(t), α∆(t)) (resp.
(

ϕ
(

β∆(t)
))∆

≤ f (t, β(t), β∆(t))) (2.2)

for all t ∈ T. Such lower (upper) solution is called strict if the inequality (2.2) is strict for all

t ∈ T.

It is worth recalling the problem of finding T-periodic solutions of (2.1) over the closure of

the set

Ωα,β := {x ∈ C1
T : α(t) ≤ x(t) ≤ β(t) for all t}

can be reduced to a fixed point equation x = M f (x), where M f : Ωα,β → C1
T is a compact

operator that can be defined according to the nonlinear version of the continuation method

(see e.g. [16]), namely

M f (x) := x + N f x + K(N f x − N f x),

where N f is the Nemitskii operator associated to f and K : C̃T → C̃T is the (nonlinear) compact

operator given by Kξ = x, with x ∈ C1
T the unique solution of the problem (ϕ(x∆(t)))∆ = ξ(t)

with zero average. We recall, for the reader’s convenience, that the definition of K based upon

the existence, easy to prove, of a (unique) completely continuous map φ : CT → R satisfying
∫ T

0 ϕ−1(h + φ(h))∆t = 0 for all h ∈ CT. For the purposes of the present paper, we shall only

need the following result, which is an adaptation of Theorem 3.7 in [1]:

Theorem 2.2. Suppose that (2.1) has a T-periodic lower solution α and an upper solution β such that

α(t) ≤ β(t) for all t ∈ T. Then problem (1.1) has at least one T-periodic solution x with α(t) ≤
x(t) ≤ β(t) for all t ∈ T. If furthermore α and β are strict, then degLS(I − M f , Ωα,β(0), 0) = 1,

where degLS stands for the Leray–Schauder degree.

3 The solvability set I(p0)

In this section, we shall prove that the solution set I(p0) is a nonempty compact set; further-

more, employing the method of upper and lower solutions it shall be verified that I(p0) is

an interval depending continuously on p0. Finally, the excision property of the degree will

be employed to verify that if s is an interior point of I(p0), then the problem has at least 2

geometrically different T-periodic solutions.
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Theorem 3.1. Assume that p0 ∈ CT has zero average. Then, there exist numbers d(p0) and D(p0),

with −b ≤ d(p0) ≤ D(p0) ≤ b, such that (1.1) has at least one T-periodic solution if and only if

s ∈ [d(p0), D(p0)]. Moreover, the functions d, D : C̃T → R are continuous.

Proof. For the reader’s convenience, we shall proceed in several steps.

Step 1 (An associated integro-differential problem). Observe that if x ∈ C1
T is a solution of (1.1),

then, ∆-integration over [0, T]T yields s = b
T

∫ T
0 sin(x(t))∆t. Therefore, it proves convenient to

consider the integro-differential Dirichlet problem

{

(ϕ(x∆(t)))∆ + ax∆(t) + b sin x(t) = p0(t) + s(x), t ∈ (0, T)T

x(0) = x(T),
(3.1)

with s(x) := b
T

∫ T
0 sin(x(t))∆t. By Schauder’s fixed point theorem, it is straightforward to

prove that for each r ∈ R there exists at least one solution x ∈ C([0, T]T) of (3.1) such that

x(0) = x(T) = r.

Step 2 (I(p0) is is nonempty and bounded). Let x be a solution of (3.1) such that x(0) =

x(T) = r, then integration over [0, T]T yields

ϕ(x∆(T))− ϕ(x∆(0)) + b
∫ T

0
sin x(t)∆t = Ts(x),

and hence ϕ(x∆(T)) = ϕ(x∆(0)). It follows that x may be extended in a T-periodic fashion to

a solution of (1.1) with s = s(x). In other words,

I(p0) = {s(x) : x is a solution of (3.1) for some r ∈ [0, 2π]} 6= ∅.

Moreover, it is clear from definition that |s(x)| ≤ b, so I(p0) ⊂ [−b, b].

Step 3 (I(p0) is connected). Assume that s1, s2 ∈ I(p0) are such that s1 < s2, and let x1 and

x2 be T-periodic solutions of (1.1) for s1 and s2, respectively. Then for any s ∈ (s1, s2) it is

verified that x1 and x2 are strict upper and a lower solutions of (1.1), respectively. Replacing

x1 by x1 + 2kπ, with k the first integer such that x2 < x1 + 2kπ and applying Theorem 2.2 with

α = x2 and β = x1 + 2kπ, we conclude that problem (1.1) has at least one T-periodic solution,

whence s ∈ I(p0).

Step 4 (I(p0) is closed). Let {sn} ⊂ I(p0) converge to some s, and let xn ∈ C1
T be a

solution of (1.1) for sn. Without loss of generality, we may assume that xn(0) ∈ [0, 2π].

Because
∥

∥x∆
n

∥

∥

∞
< c, by Arzelà–Ascoli theorem there exists a subsequence (still denoted

{xn}) that converges uniformly to some x. Furthermore, from (1.1) we deduce the exis-

tence of a constant C independent of n such that |(ϕ(x∆
n (t)))

∆| ≤ C for all t. We claim

that ϕ(x∆
n ) is also uniformly bounded, that is, ‖x∆

n ‖∞ is bounded away from c. Indeed,

otherwise passing to a subsequence we may suppose for example that ϕ(x∆
n )max → +∞.

Because ϕ(x∆
n (t1)) − ϕ(x∆

n (t0)) ≤ C(t1 − t0) for all t1 > t0, we deduce from periodicity

that ϕ(x∆
n )max − ϕ(x∆

n )min ≤ CT and, consequently, ϕ(x∆
n )min → +∞. This implies that

(x∆
n )min → c, which contradicts the fact that x∆

n has zero average. Using Arzelà-Ascoli again,

we may assume that ϕ(x∆
n ) converges uniformly to some function v and, from the identity

xn(t) = xn(0) +
∫ t

0 x∆
n (ξ)∆ξ we deduce that x ∈ C1

T and x∆ = ϕ−1(v). Now integrate the

equation for each n and take limit for n → ∞ to obtain

ϕ(x∆(t)) = ϕ(x∆(0)) +
∫ t

0
[s + p0(ξ)− b sin(x(ξ))]∆ξ − a[x(t)− x(0)].
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In turn, this implies that x is a solution of (3.1) with s(x) = s; hence, I(p0) is closed and the

proof is complete.

Step 5 (continuous dependence on p0). Let {pn
0}n∈N ⊂ C̃T be a sequence that converges to

some p0. We shall prove that D(pn
0) → D(p0); the proof for d is analogous. Similarly to Step

4, it is seen that if a subsequence of {D(pn
0)} converges to some D, then the problem for p0

with s = D admits a solution and, consequently, D ≤ D(p0). Thus, it suffices to prove that

lim infn→∞ D(pn
0) ≥ D(p0). Indeed, otherwise, passing to a subsequence we may suppose that

D(pn
0) → D < D(p0). Fix η > 0 such that D + η < D(p0) and let x be a T-periodic solution of

(1.1) for s = D(p0). Take n large enough such that

p0(t) + D(p0) > pn
0(t) + D + η > pn

0(t) + D(pn
0) ∀ t ∈ [0, T]T

and let xn be a T-periodic solution of (1.1) for pn
0 and s = D(pn

0). The previous inequalities

imply that x and xn are respectively a lower and an upper solution of the problem for pn
0 and

s = D + η and, without loss of generality, we may assume that x < xn. Thus, (1.1) has a

T-periodic solution for pn
0 and s = D + η > D(pn

0), a contradiction.

The following theorem establishes the existence of at least two geometrically different T-

periodic solutions to problem (1.1) when s is an interior point.

Theorem 3.2. Assume that p0 ∈ CT has zero average. If s ∈ (d(p0), D(p0)), then the problem (1.1)

has at least two geometrically different T-periodic solutions.

Proof. For s ∈ (d(p0), D(p0)), let s1 := d(p0) < s < D(p0) := s2 and let x1, x2 be as in Step 3

of the previous proof. Then x1 and x2 are strict upper and lower solutions for s, respectively.

Due to the 2π-periodicity of (1.1), we may assume that x2 < x1 and x2 + 2π 6≤ x1 and,

consequently, Ωx2,x1
and Ωx2+2π,x1+2π are disjoint open subsets of Ωx2,x1+2π. From Theorem

2.2 and the excision property of the Leray–Schauder degree, we deduce the existence of three

different solutions y1, y2, y3 ∈ C1
T such that

x2(t) < y1(t) < x1(t),

x2(t) + 2π < y2(t) < x1(t) + 2π

x2(t) < y3(t) < x1(t) + 2π

for all t ∈ T. If y2 = y1 + 2π, then y3 6= y1, y1 + 2π and the conclusion follows.

4 Sufficient conditions for 0 ∈ I(p0)

In this section, we shall obtain conditions guaranteeing that 0 belongs to the solvability set.

Even in the continuous case, this is not clear when a 6= 0 since, as it is well known, counter-

examples exist for the classical pendulum equation for arbitrary periods. In the relativistic

case, however, it was proved that 0 ∈ I(p0) when T is sufficiently small and counter-examples

for large values of T are not yet known. Here, as mentioned in the introduction, we shall im-

prove the bounds for T obtained in previous works for T = R. The results shall be expressed

in terms of k(T), the optimal constant of the inequality

‖x − x‖∞ ≤ k‖x∆‖∞, x ∈ C1
T.
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For instance, for arbitrary T it is readily seen that k(T) ≤ T
2 , because x∆ has zero average and

hence, due to periodicity,

xmax − xmin ≤
∫ tmax

tmin

[x∆(t)]+∆t ≤
∫ T

0
[x∆(t)]+∆t =

1

2

∫ T

0
|x∆(t)|∆t.

We recall that, in the continuous case, the (optimal) Sobolev inequality ‖x−x‖∞≤
√

T
12‖x′‖2

implies that k(R) ≤ T
2
√

3
.

The main result of this section reads as follows.

Theorem 4.1. Assume that ck(T) < π and define the function

ψ(δ) := 2δ cos(δ) + (cT − 2δ) cos (ck(T)) .

If ψ(δ) ≥ 0 for some δ ∈ (0, π
2 ), then 0 ∈ I(p0). Furthermore, if the previous inequality is strict, then

0 ∈ I(p0)◦.

Before proceeding to the proof, it is worth to recall that, from Theorem 4.1 and Example

5.3 in [2], in order to prove the existence of T-periodic solutions for s = 0 it suffices to verify

that the equation




x∆(t)
√

1 − x∆(t)2

c2





∆

= λ[p0(t)− ax∆(t)− b sin x(t)] (4.1)

has no T-periodic solutions with average ±π
2 . For example, if x ∈ C1

T is a solution of (4.1)

such that x = π
2 , then it follows from the definition of k(T) that, for all t ∈ T,

∣

∣

∣
x(t)− π

2

∣

∣

∣
≤ ck(T).

In particular, if ck(T) ≤ π
2 , then x(t) ∈ [0, π] for all t ∈ T and, upon integration of equation

(4.1), we deduce:

0 = b
∫ T

0
sin(x(t))∆t > 0.

The same contradiction is obtained also if x = −π
2 . For example, the condition cT ≤ π is

sufficient for arbitrary T and, in the continuous case, the condition cT ≤
√

3π is retrieved.

However, the previous bound ck(T) ≤ π
2 can be improved, as we shall see in the following

proof.

Proof of Theorem 4.1. From the preceding discussion, it may be assumed that π
2 < ck(T) < π.

Suppose that x is a solution of (4.1) such that x = π
2 , then

x(t) ∈
[π

2
− ck(T),

π

2
+ ck(T)

]

⊂
(

−π

2
,

3π

2

)

for all t ∈ T and hence

sin x(t) ≥ − sin(A) > −1, where A = ck(T)− π

2
.

Fix δ ∈ (0, π
2 ) and consider the set

Cδ =
{

t ∈ [0, T]T :
∣

∣

∣x(t)− π

2

∣

∣

∣ ≤ δ
}

.
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Then

0 =
∫ T

0
sin(x(t))∆t ≥

∫

Cδ

(sin(x(t)) + sin(A))∆t − T sin(A)

≥
[

sin(
π

2
− δ) + sin(A)

]

m(Cδ)− T sin(A)

= cos(δ)m(Cδ)− [T −m(Cδ)] sin A,

(4.2)

where m(Cδ) is the measure of the set Cδ associated to the ∆-integral, namely m(Cδ) =
∫

Cδ
∆t.

Clearly, a contradiction is obtained when the latter term of (4.2) is positive.

Moreover, notice that if x(t0) ≤ π
2 and t1 > t0 is such that x(t1) ≥ π

2 + δ, then

δ ≤ x(t1)− x(t0) =
∫ t1

t0

x∆(s)∆s < c(t1 − t0).

In the same way, if t0 < t1 are such that x(t0) ≥ π
2 and x(t1) ≤ π

2 − δ, then c(t1 − t0) > δ. Thus,

by periodicity, we deduce that m(Cδ) >
2δ
c . The same conclusions are obtained if x = −π

2 ;

hence, a sufficient condition for the existence of at least one T-periodic solution is that, for

some δ ∈ (0, π
2 ),

cos(δ)
2δ

c
≥

(

T − 2δ

c

)

sin A

or, equivalently, that ψ(δ) ≥ 0. Note, furthermore, that if the inequality is strict, then a

contradiction is still obtained as in (4.2) if we add a small parameter s to the function p0 in

(4.1).

Remark 4.2. It is seen that ψ reaches its maximum at the unique δ∗ ∈ (0, π
2 ) such that

cos(δ∗)− δ∗ sin(δ∗) = cos (ck(T)) . (4.3)

Thus, replacing (4.3) in ψ, a somewhat explicit condition on T reads:

2(δ∗)2 sin(δ∗) + cT cos (ck(T)) ≥ 0.

An immediate corollary is the following:

Corollary 4.3. There exists a constant T∗ with cT∗
> π such that 0 ∈ I(p0) for all p0 ∈ C̃T if

T ≤ T∗ and it is an interior point if T < T∗. For the particular case T = R, it is verified that

cT∗
>

√
3π.

Proof. For arbitrary T, we know already that k(T) ≤ T
2 , then a sufficient condition when

cT ∈ (π, 2π) is the existence of δ ∈ (0, π
2 ) such that Ψ(δ, T) ≥ 0, where

Ψ(δ, T) := 2δ cos(δ) + (cT − 2δ) cos

(

cT

2

)

.

The result now follows trivially from the fact that Ψ(δ, π
c ) = 2δ cos(δ). The proof is similar for

T = R, now taking

Ψcont(δ, T) := 2δ cos(δ) + (cT − 2δ) cos

(

cT

2
√

3

)

.
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Remark 4.4. A more quantitative version of the previous corollary follows from the fact that

the function Ψ is strictly decreasing with respect to T when cT ∈ (π, 2π) and arbitrary δ ∈
(0, π

2 ). In particular, observe that if Ψ(δ, T̂) ≥ 0 for some T̂ ∈ (π
c , 2π

c ) and some δ ∈ (0, π
2 ),

then Ψ(δ, T) > 0 for T ∈ (π
c , T̂). Thus, a lower bound for T∗ is given by the unique value of

T ∈ (π
c , 2π

c ) such that

max
δ∈[0, π

2 ]
Ψ(δ, T) = 0.

Analogous conclusions are obtained when T = R using Ψcont instead of Ψ.

4.1 Numerical examples and final remarks

As shown in Corollary 4.3, the bound thus obtained always improves the simpler one ck(T) ≤
π
2 and, in particular, it guarantees that if the latter inequality is satisfied then 0 is in fact an

interior point of I(p0). In the continuous case, an easy numerical computation gives the

sufficient condition cT ≤ 6.318, slightly better than the bound cT ≤ 2π deduced from [10]

(see Figure 1). For arbitrary T, numerical experiments show that 0 ∈ I(p0)◦ for cT ≤ 4.19, as

shown in Figure 2.

Figure 4.1: Graph of ψ for T = R with cT = 6.318

Figure 4.2: Graph of ψ for k(T) = T
2 and cT = 4.19

Remark 4.5. An estimation of the constant k(T) could be obtained analogously to the continu-

ous case as shown for example in [13]. Let {en}n∈Z ⊂ CT be an orthonormal basis of L2(0, T)T
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with e0 ≡ 1√
T

and En be a primitive of en such that En = 0. Writing x∆ = ∑n 6=0 anen, it follows

that

‖x − x‖∞ =

∣

∣

∣

∣

∣

∑
n 6=0

anEn

∣

∣

∣

∣

∣

≤ ‖x∆‖L2

√

∑
n 6=0

‖En‖2
∞ ≤ ‖x∆‖∞

√

T ∑
n 6=0

‖En‖2
∞.

When T = R, taking the usual Fourier basis one has that ‖En‖∞ =
√

T
2πn and the value k(R) ≤

T
2
√

3
is obtained from the well known equality ∑n∈N

1
n2 = π2

6 .

Remark 4.6. As mentioned in the introduction, Theorem 4.1 allows to compute an inferior

bound for the length of the solvability interval which does not depend on p0, provided that

T is small enough. In some obvious cases, inferior bounds are obtained for arbitrary T: for

example, if ‖p0‖∞ < b then [−ε, ε] ⊂ I(p0) for ε = b − ‖p0‖∞. This is readily verified taking

α = π
2 and β = 3π

2 as lower and upper solutions.
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1 Introduction

We investigate the global solvability and blow-up in finite time for semilinear heat equation

ut = ∆u + α(t) f (u) for x ∈ Ω, t > 0, (1.1)

with nonlinear boundary condition

∂u(x, t)

∂ν
= β(t)g(u) for x ∈ ∂Ω, t > 0, (1.2)

and initial datum

u(x, 0) = u0(x) for x ∈ Ω, (1.3)

where Ω is a bounded domain in R
n for n ≥ 1 with smooth boundary ∂Ω, ν is the unit exterior

normal vector on the boundary ∂Ω. Here f (u) and g(u) are nonnegative continuous functions

for u ≥ 0, α(t) and β(t) are nonnegative continuous functions for t ≥ 0, u0(x) ∈ C1(Ω),

u0(x) ≥ 0 in Ω and satisfies boundary condition (1.2) as t = 0. We will consider nonnegative

classical solutions of (1.1)–(1.3).

BCorresponding author. Email: gladkoval@mail.ru
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Blow-up problem for parabolic equations with reaction term in general form were consid-

ered in many papers (see, for example, [1, 2, 8, 9, 14, 21, 27] and the references therein). For the

global existence and blow-up of solutions for linear parabolic equations with β(t) ≡ 1 in (1.2),

we refer to previous studies [16,17,22,24–26]. In particular, Walter [24] proved that if g(s) and

g′(s) are continuous, positive and increasing for large s, a necessary and sufficient condition

for global existence is
∫ +∞ ds

g(s)g′(s)
= +∞.

Some papers are devoted to blow-up phenomena in parabolic problems with time-

dependent coefficients (see, for example, [4–6, 18–20, 28]). So, it follows from results of Payne

and Philippin [20] blow-up of all nontrivial solutions for (1.1)–(1.3) with β(t) ≡ 0 under the

conditions (2.15) and

f (s) ≥ z(s) > 0, s > 0,

where z satisfies
∫ +∞

a

ds

z(s)
< +∞ for any a > 0

and Jensen’s inequality
1

|Ω|
∫

Ω

z(u) dx ≥ z

(

1

|Ω|
∫

Ω

u dx

)

. (1.4)

In (1.4), |Ω| is the volume of Ω.

The aim of our paper is study the influence of variable coefficients α(t) and β(t) on the

global existence and blow-up of classical solutions of (1.1)–(1.3).

This paper is organized as follows. Finite time blow-up of all nontrivial solutions is proved

in Section 2. In Section 3, we present the global existence of solutions for small initial data.

2 Finite time blow-up

In this section, we give conditions for blow-up in finite time of all nontrivial solutions of

(1.1)–(1.3).

Before giving our main results, we state a comparison principle which has been proved in

[7,23] for more general problems. Let QT = Ω × (0, T), ST = ∂Ω × (0, T), ΓT = ST ∪ Ω × {0},

T > 0.

Theorem 2.1. Let v(x, t), w(x, t) ∈ C2,1(QT) ∩ C1,0(QT ∪ ΓT) satisfy the inequalities:

vt − ∆v − α(t) f (v) < wt − ∆w − α(t) f (w) in QT,

∂v(x, t)

∂ν
− β(t)g(v) <

∂w(x, t)

∂ν
− β(t)g(w) on ST,

v(x, 0) < w(x, 0) in Ω.

Then

v(x, t) < w(x, t) in QT.

The first our blow-up result is the following.

Theorem 2.2. Let g(s) be a nondecreasing positive function for s > 0 such that

∫ +∞ ds

g(s)
< +∞ (2.1)
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and
∫ +∞

0
β(t) dt = +∞. (2.2)

Then any nontrivial nonnegative solution of (1.1)–(1.3) blows up in finite time.

Proof. We suppose that u(x, t) is a nontrivial nonnegative solution which exists in QT for

any positive T. Then for some T > 0 there exists (x, t) ∈ QT such that u(x, t) > 0. Since

ut − ∆u = α(t) f (u) ≥ 0, by strong maximum principle u(x, t) > 0 in QT \ Qt. Let u(x⋆, t⋆) = 0

in some point (x⋆, t⋆) ∈ ST \ St. According to Theorem 3.6 of [11] it yields ∂u(x⋆, t⋆)/∂ν < 0,

which contradicts the boundary condition (1.2). Thus, u(x, t) > 0 in QT ∪ ST \ Qt. Then there

exists t0 > t such that β(t0) > 0 and

min
Ω

u(x, t0) > 2σ, (2.3)

where σ is a positive constant.

Let GN(x, y; t − τ) denote the Green’s function for the heat equation given by

ut − ∆u = 0 for x ∈ Ω, t > 0

with homogeneous Neumann boundary condition. We note that the Green’s function has the

following properties (see, for example, [12, 13]:

GN(x, y; t − τ) ≥ 0, x, y ∈ Ω, 0 ≤ τ < t, (2.4)
∫

Ω

GN(x, y; t − τ) dy = 1, x ∈ Ω, 0 ≤ τ < t, (2.5)

GN(x, y; t − τ) ≥ c1, x, y ∈ Ω, t − τ ≥ ε, (2.6)

|GN(x, y; t − τ)− 1/|Ω|| ≤ c2 exp[−c3(t − τ)], x, y ∈ Ω, t − τ ≥ ε,
∫

∂Ω

GN(x, y; t − τ) dSy ≤ c4√
t − τ

, x ∈ Ω, 0 < t − τ ≤ ε,

for some small ε > 0. Here by ci (i ∈ N) we denote positive constants.

Now we introduce conditions on several auxiliary comparison functions. We suppose that

h(s) ∈ C1((0,+∞)) ∩ C([0,+∞)), h(s) > 0 for s > 0, h′(s) ≥ 0 for s > 0, g(s) ≥ h(s) and

∫ +∞ ds

h(s)
< +∞.

Let ξ(t) be a positive continuous function for t ≥ t0 such that

∫ +∞

t0

ξ(t) dt <
σ

2
(2.7)

and γ(t) be a positive continuous function for t ≥ t0 such that γ(t0) = β(t0)h(2σ) and

∫ t

t0

γ(τ)
∫

∂Ω

GN(x, y; t − τ) dSy dτ <
σ

2
for x ∈ Ω, t ≥ t0. (2.8)

We consider the following problem


















vt = ∆v − ξ(t) for x ∈ Ω, t > t0,

∂v(x, t)

∂ν
= β(t)h(v)− γ(t) for x ∈ ∂Ω, t > t0,

v(x, t0) = 2σ for x ∈ Ω.

(2.9)
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To find lower bound for v(x, t) we represent (2.9) in equivalent form

v(x, t) = 2σ
∫

Ω

GN(x, y; t) dy −
∫ t

t0

∫

Ω

GN(x, y; t − τ)ξ(τ) dy dτ

+
∫ t

t0

∫

∂Ω

GN(x, y; t − τ) (β(τ)h(v)− γ(τ)) dSy dτ.

(2.10)

Using (2.7), (2.8) and the properties of the Green’s function (2.4), (2.5), we obtain from (2.10)

v(x, t) ≥ 2σ −
∫ t

t0

ξ(τ) dτ −
∫ t

t0

γ(τ)
∫

∂Ω

GN(x, y; t − τ)dSy dτ > σ. (2.11)

As in [22] we put

m(t) =
∫

Ω

∫ +∞

v(x,t)

ds

h(s)
dx.

We observe that m(t) is well defined and positive for t ≥ t0. Since v(x, t) is the solution of

(2.9), we get

m′(t) = −
∫

Ω

vt

h(v)
dx = −

∫

Ω

∆v

h(v)
dx + ξ(t)

∫

Ω

dx

h(v)

= −
∫

Ω

div

( ∇v

h(v)

)

dx −
∫

Ω

h′(v)‖∇v‖2

h2(v)
dx + ξ(t)

∫

Ω

dx

h(v)
.

Applying the inequality h′(v) ≥ 0, Gauss theorem, the boundary condition in (2.9) and (2.11),

we obtain for t ≥ t0

m′(t) ≤ −
∫

∂Ω

1

h(v)

∂v

∂ν
dS + ξ(t)

|Ω|
h(σ)

≤ −|∂Ω|β(t) + |Ω|ξ(t) + |∂Ω|γ(t)
h(σ)

. (2.12)

Due to (2.2), (2.6)–(2.8) m(t) is negative for large values of t. Hence v(x, t) blows up in finite

time T0. Applying Theorem 2.1 to v(x, t) and u(x, t) in QT \ Qt0 for any T ∈ (t0, T0), we prove

the theorem.

Remark 2.3. If u0(x) is positive in Ω we can obtain an upper bound for blow-up time of the

solution. We put t0 = 0 and v(x, 0) = u0(x)− ε in (2.9) for ε ∈ (0, min
Ω

u0(x)). Integrating

(2.12) over [0, T], we have

m(t) ≤ m(0)− |∂Ω|
∫ T

0
β(t) dt +

∫ T

0

|Ω|ξ(t) + |∂Ω|γ(t)
h(σ)

dt.

Since m(t) > 0 and ε, ξ(t), γ(t) are arbitrary we conclude that the solution of (1.1)–(1.3) blows

up in finite time Tb, where Tb ≤ T and

∫

Ω

∫ +∞

u0(x)

ds

h(s)
dx = |∂Ω|

∫ T

0
β(t) dt.

Remark 2.4. We note that (1.1)–(1.3) with u0(x) ≡ 0 may have trivial and blow-up solutions

under the assumptions of Theorem 2.2. Indeed, let the conditions of Theorem 2.2 hold, α(t) ≡
0, β(t) ≡ 1 and g(u) = up, u ∈ [0, γ] for some γ > 0 and 0 < p < 1. As it was proved in [3],

problem (1.1)–(1.3) has trivial and positive for t > 0 solutions and last one blows up in finite

time by Theorem 2.2.
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To prove next blow-up result for (1.1)–(1.3) we need a comparison principle with unstrict

inequality in the boundary condition.

Theorem 2.5. Let δ > 0 and v(x, t), w(x, t) ∈ C2,1(QT) ∩ C1,0(QT ∪ ΓT) satisfy the inequalities:

vt − ∆v − α(t) f (v) + δ < wt − ∆w − α(t) f (w) in QT,

∂v(x, t)

∂ν
≤ ∂w(x, t)

∂ν
on ST,

v(x, 0) < w(x, 0) in Ω.

Then

v(x, t) ≤ w(x, t) in QT.

Proof. Let τ be any positive constant such that τ < T and a positive function γ(x) ∈ C2(Ω)

satisfy the following inequality
∂γ(x)

∂ν
> 0 on ∂Ω.

For positive ε we introduce

wε(x, t) = w(x, t) + εγ(x). (2.13)

Obviously,

v(x, 0) < wε(x, 0) in Ω,
∂v(x, t)

∂ν
<

∂wε(x, t)

∂ν
on Sτ.

Moreover,

vt − ∆v − α(t) f (v) < wεt − ∆wε − α(t) f (wε) in Qτ,

if we take ε so small that

δ > ε∆γ + α(t)[ f (w + εγ)− f (w)] in Qτ.

Applying Theorem 2.1 with β(t) ≡ 0, we obtain

v(x, t) < wε(x, t) in Qτ.

Passing to the limit as ε → 0 and τ → T, we prove the theorem.

Theorem 2.6. Let f (s) > 0 for s > 0,

∫ +∞ ds

f (s)
< +∞ (2.14)

and
∫ +∞

0
α(t) dt = +∞. (2.15)

Then any nontrivial nonnegative solution of (1.1)–(1.3) blows up in finite time.

Proof. We suppose that u(x, t) is a nontrivial nonnegative solution which exists in QT for any

positive T. In Theorem 2.2 we proved (2.3). Let ξ(t) be a positive continuous function for

t ≥ t0 such that

max
[σ,2σ]

f (s)
∫ +∞

t0

ξ(t) dt < σ. (2.16)
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We consider the following auxiliary problem
{

v′(t) = α(t) f (v)− ξ(t) f (v), t > t0,

v(t0) = 2σ.
(2.17)

We prove at first that

v(t) > σ for t ≥ t0. (2.18)

Suppose there exist t1 and t2 such that

t2 > t1 ≥ t0, v(t1) = 2σ, v(t2) = σ,

and

v(t) > σ for t ∈ [t0, t2) and v(t) ≤ 2σ for t ∈ [t1, t2].

Integrating the equation in (2.17) over [t1, t2], we have due to (2.16)

v(t2) ≥ −max
[σ,2σ]

f (s)
∫ t2

t1

ξ(t) dt + v(t1) > σ.

A contradiction proves (2.18).

From (2.17) we obtain
∫ v(t)

2σ

ds

f (s)
=

∫ t

t0

[α(τ)− ξ(τ)] dτ. (2.19)

By (2.14)–(2.16) the left side of (2.19) is finite and the right side of (2.19) tends to infinity as

t → ∞. Hence the solution of (2.17) blows up in finite time T0. Applying Theorem 2.5 to v(t)

and u(x, t) in QT \ Qt0 for any T ∈ (t0, T0), we prove the theorem.

Remark 2.7. If u0(x) is positive in Ω we can obtain an upper bound for blow-up time of the

solution. Taking t0 = 0, we conclude from (2.19) that the solution of (1.1)–(1.3) blows up in

finite time Tb, where Tb ≤ T and
∫ +∞

min
Ω

u0(x)

ds

f (s)
=

∫ T

0
α(t) dt.

Remark 2.8. Theorem 2.6 does not hold if f (s) is not positive for s > 0. To show this we

suppose that f (u1) = 0 for some u1 > 0, β(t) ≡ 0, u0(x) = u1. Then problem (1.1)–(1.3) has

the solution u(x, t) = u1.

Remark 2.9. We note that (2.14) is necessary condition for blow-up of solutions of (1.1)–(1.3)

with β(t) ≡ 0. Let f (s) > 0 for s > 0 and
∫ +∞ ds

f (s)
= +∞.

Then any solution of (1.1)–(1.3) is global. Indeed, let u(x, t) be a nontrivial solution of (1.1)–

(1.3). Then there exist t0 ≥ 0 and x ∈ Ω such that u(x, t0) > 0.

We consider the following problem






v′(t) = (α(t) + ξ(t)) f (v), t > t0,

v(t0) > max
Ω

u(x, t0) > 0,
(2.20)

where ξ(t) is some positive continuous function for t ≥ t0. Obviously, v(t) is global solution

of (2.20). Applying Theorem 2.5 to u(x, t) and v(t) in QT \ Qt0 for any T > t0, we prove the

theorem.
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Remark 2.10. Problem (1.1)–(1.3) with u0(x) ≡ 0 may have trivial and blow-up solutions under

the assumptions of Theorem 2.6. Indeed, let the conditions of Theorem 2.6 hold, β(t) ≡ 0,

f (s) be a nondecreasing Hölder continuous function on [0, ǫ] for some ǫ > 0 and

∫ ǫ

0

ds

f (s)
< +∞.

As it was proved in [15], problem (1.1)–(1.3) has trivial and positive for t > 0 solutions and

last one blows up in finite time by Theorem 2.6.

3 Global existence

To formulate global existence result for problem (1.1)–(1.3) we suppose:

f (s) is a nonnegative locally Hölder continuous function for s ≥ 0, (3.1)

there exists p > 0 such that f (s) is a positive nondecreasing function for s ∈ (0, p), (3.2)
∫

0

ds

f (s)
= +∞, lim

s→0

g(s)

s
= 0, (3.3)

∫ +∞

0
(α(t) + β(t)) dt < +∞ (3.4)

and there exist positive constants γ, t0 and K such that γ > t0 and

∫ t

t−t0

β(τ)dτ√
t − τ

≤ K for t ≥ γ. (3.5)

Theorem 3.1. Let (3.1)–(3.5) hold. Then problem (1.1)–(1.3) has bounded global solution for small

initial datum.

Proof. It is well known that problem (1.1)–(1.3) has a local nonnegative classical solution

u(x, t). Let y(x, t) be a solution of the following problem



















yt = ∆y, x ∈ Ω, t > 0,

∂y(x, t)

∂ν
= ξ(t) + β(t), x ∈ ∂Ω, t > 0,

y(x, 0) = 1, x ∈ Ω,

(3.6)

where ξ(t) is a positive continuous function that satisfies (3.4), (3.5) with β(t) = ξ(t). Accord-

ing to Lemma 3.3 of [10] there exists a positive constant Y such that

1 ≤ y(x, t) ≤ Y, x ∈ Ω, t > 0.

Due to (3.2), (3.3) for any a ∈ (0, p), there exist ε(a) and a positive continuous function η(t)

such that

0 < ε(a) <
a

Y
,

∫

∞

0
η(t) dt < ∞ and

∫ a

εY

ds

f (s)
> Y

∫

∞

0
(α(t) + η(t)) dt

for any ε ∈ (0, ε(a)). Now for any T > 0 we construct a positive supersolution of (1.1)–(1.3) in

QT in such a form that

u(x, t) = εz(t)y(x, t),
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where function z(t) is defined in the following way

∫ εYz(t)

εY

ds

f (s)
= Y

∫ t

0
(α(τ) + η(τ)) dτ.

It is easy to see that εYz(t) < a and z(t) is the solution of the following Cauchy problem

z′(t)− 1

ε
(α(t) + η(t)) f (εYz(t)) = 0, z(0) = 1.

After simple computations it follows that

ut − ∆u − α(t) f (u) = εz′y + εzyt − εz∆y − α(t) f (εzy)

≥ α(t)( f (εYz(t))− f (εzy)) + η(t) f (εYz(t)) > 0, x ∈ Ω, t > 0,

and

∂u(x, t)

∂ν
− β(t)g(u) = εz(t)(ξ(t) + β(t))− β(t)g(εz(t)y(x, t))

> εz(t)β(t)

[

1 − g(εz(t)y(x, t))

εz(t)y(x, t)
y(x, t)

]

≥ 0

for small values of a. Thus, by Theorem 2.1 there exists bounded global solution of (1.1)–(1.3)

for any initial datum satisfying the inequality

u0(x) < ε.

Remark 3.2. We suppose that g(s) is a nondecreasing positive function for s > 0, f (s) > 0 for

s > 0 and (2.1), (2.14) hold. Then by Theorem 2.2 and Theorem 2.6 (3.4) is necessary for global

existence of solutions of (1.1)–(1.3).

Let for any a > 0 g(s) > δ(a) > 0 if s > a. Then arguing in the same way as in the proof

of Lemma 3.3 of [10] it is easy to show that (3.5) is necessary for the existence of nontrivial

bounded global solutions of (1.1)–(1.3).
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Abstract. This paper is concerned with the existence and stability of traveling fronts
with convex polyhedral shape for nonlocal delay diffusion equations. By using the
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1 Introduction

Recently, the study on the nonplanar traveling fronts of reaction-diffusion equations/systems

has attracted an increasing attention and many types of nonplanar traveling fronts have been

observed. See [5, 6, 9, 10, 14, 15, 28, 31] for V-shaped traveling fronts, see [9, 10, 23, 32] for cylin-

drically symmetric traveling fronts; see [4, 11, 16, 21, 22, 34] for pyramidal shaped traveling

fronts and see [17–19, 23–27, 33] for other related works on multidimensional traveling fronts.

It is well known that time delay and nonlocality play very important roles in the study of the

population dynamics in biological and epidemiological models. Traveling fronts of reaction-

diffusion equations with time delay in one or multidimensional spaces have been extensively

studied, see [7, 8, 12, 20, 29, 30, 35]. Nevertheless, a very little attention has been paid to the

study of nonplanar traveling fronts for reaction-diffusion equation with delay. As far as we

know, Bao and Huang [1] proved that there exists two-dimensional V-shaped traveling fronts

of bistable reaction-diffusion equation with delay, also see [3] for the existence of pyramidal

traveling fronts. In [2], the author and Bao have established the existence of N-dimensional

pyramidal traveling fronts of nonlocal delayed diffusion equation for N ≥ 3 and see [13] for

asymptotic stability of such pyramidal traveling fronts in the three-dimensional whole space.

BEmail: liujia@chd.edu.cn



2 J. Liu

Motivated by [19, 23], in the current paper, we consider the existence, uniqueness and

stability of three-dimensional traveling fronts with convex polyhedral shape for the following

nonlocal delayed diffusion equation

∂u

∂t
(x, y, z, t) = D∆u(x, y, z, t)− du(x, y, z, t) +

∫

R

b (u(x, y, z1, t − τ)) f (z − z1)dz1, (1.1)

where D > 0 and d > 0 denote the diffusion rate and death rate of the adult population,

respectively, τ ≥ 0 is the maturation time for the species, b(·) is related to the birth function.

The convolution in space term represents the nonlocal interaction in one direction and the

kernel function f (·) ∈ C∞(R, R) satisfies

f (x) ≥ 0,
∫

R

f (y)dy = 1 and
∫

R

eλy f (y)dy < +∞ for some λ ≥ 0. (1.2)

Assume that

(A1) b(·) ∈ C1(R, R) and there exists a constant K > 0 such that b(0) = dK − b(K) = 0;

(A2) b′(u) ≥ 0 for u ∈ [0, K] and d > C max{b′(0), b′(K)} for some constant C > 1;

(A3) there exits u∗ ∈ (0, K) such that du∗ − b(u∗) = 0, b′(u∗) > d and du − b(u) 6= 0 for

u ∈ (0, u∗) ∪ (u∗, K).

By assumption (A1), (1.1) has at least two spatially homogeneous equilibria 0 and K and (1.1)

is of nonlocal bistable structure if b(u) satisfies (A1)–(A3). It is known from [12] that, under

the assumption (A1)–(A3), there exists a unique solution pair (c, U) of (1.1) satisfying

DU′′(ξ)− dU(ξ)− cU′(ξ) +
∫

R

b(U(ξ − cτ − y)) f (y)dy = 0

and

U(−∞) = 0, U(+∞) = K,

where U(·) is the monotone increasing wave profile and c ∈ R is the speed. Moreover,

following from Wang et al. [30], if (A1)–(A3) hold, there exist positive constants β1 and C1

such that

max
{

U(−ξ), |U(ξ)− 1|, |U′(±ξ)|, |U′′(±ξ)|
}
≤ C1e−β1ξ , ∀ ξ ≥ 0.

Define

[0, K]C :=
{

φ ∈ C(R3 × [−τ, 0], R) : 0 ≤ φ(x, y, z, r) ≤ K, r ∈ [−τ, 0]
}

.

Due to the effect of nonlocality in (1.1), the solution travel towards z direction. Set z1 =

z + st and u(x, y, z, t) = w(x, y, z1, t). For simplicity, we still denote w(x, y, z1, t) by w(x, y, z, t).

Substituting w into (1.1), we have

{
∂w
∂t = D∆w − s ∂w

∂z − dw +
∫

R
b(w(x, y, z − sτ − z1, t − τ)) f (z1)dz1,

w(x, y, z, r) = φ(x, y, z, r), (x, y, z) ∈ R
3, r ∈ [−τ, 0].

(1.3)

Let w(x, y, z, t; φ) be the solution of (1.3) with w(x, y, z, r) = φ(x, y, z, r) ∈ [0, K]C. Hereafter,

we always assume s > c > 0. The objective of this paper is to seek for the solution V(x, y, z) ∈
[0, K]C of

L[V] := −D∆V + s
∂V

∂z
+ dV −

∫

R

b
(
V(x′, z − sτ − z1)

)
f (z1)dz1 = 0 in R

3. (1.4)
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Let

m∗ =

√
s2 − c2

c
.

Given n ≥ 3, assume that {θj}1≤j≤n satisfies

0 < θ1 < θ2 < · · · < θn < 2π and max
1≤j≤n

(θj+1 − θj) < π,

where θn+1 = θ1 + 2π. Given sj with

min
1≤j≤n

sj ≥ 0 for 1 ≤ j ≤ n.

Then

µj :=
1√

1 + m2∗




m∗ cos θj

m∗ sin θj

−1




is the unit normal vector of a surface {z = m∗(x cos θj + y sin θj)}. Putting

hj(x, y) := m∗(x cos θj + y sin θj − sj),

h(x, y) := max
1≤j≤n

hj(x, y) = m∗ max
1≤j≤n

(x cos θj + y sin θj − sj). (1.5)

Then {(x, y, z) ∈ R
3| − z ≥ h(x, y)} is a convex polyhedron. If (s1, ..., sn) = (0, 0, ..., 0), the

polyhedron becomes a pyramid in R
3.

Define

Θ := max
2≤j≤n−1

sj sin(θj+1 − θj−1)− sj−1 sin(θj+1 − θj)− sj+1 sin(θj − θj−1)

sin(θj+1 − θj) + sin(θj − θj−1)− sin(θj+1 − θj−1)
. (1.6)

For j = 1, 2, . . . , n, define

Ωj := {(x, y) ∈ R
2 | h(x, y) = hj(x, y), h(x, y) ≥ m∗Θ}.

We note that Ωj 6= ∅ for all 1 ≤ j ≤ n. Here Ω1, . . . , Ωn are located counterclockwise.

Set

Sj = {(x, y, z) ∈ R
3 | −z = hj(x, y), (x, y) ∈ Ωj}, j = 1, . . . , n.

Let

Γj = {(x, y, z) ∈ R
3 | −z = hj(x, y) = hj+1(x, y) ≥ m∗Θ}, j = 1, . . . , n

be a part of an edge of a polyhedron {(x, y, z) ∈ R
3 | −z ≥ h(x, y)}. If (s1, . . . , sn) = (0, . . . , 0)

and Θ = 0, Γj and ∪n
j=1Γj stand for an edge and the set of all edges of a pyramid, respectively.

For each γ > 0, we define

D(γ) := {(x, y, z) ∈ R
3 | dist((x, y, z),∪n

j=1Γj) > γ}.

Define

v− (x, y, z) = U
( c

s
(z + h (x, y))

)
= max

16j6n
U
( c

s

(
z + hj (x, y)

))
.
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Theorem 1.1. Let s > c > 0 and h(x, y) be given by (1.5). Under the assumption (A1)–(A3), there

exists a solution V(x, y, z) of (1.4) such that

lim
γ→∞

sup
(x,y,z)∈D(γ)

∣∣∣V(x, y, z)− U
( c

s
(z + h(x, y))

)∣∣∣ = 0, (1.7)

0 < U
( c

s
(z + h(x, y))

)
< V(x, y, z) < K for all (x, y, z) ∈ R

3,

lim
R→∞

sup
|z+h(x,y)|>R

|Vz(x, y, z)| = 0,

inf
δ≤V(x,y,z)≤K−δ

Vz(x, y, z) > 0 for δ > 0 small

and

lim
R→∞

sup
|x|>R

∣∣∣∣V(x, y, z)− max
1≤j≤n

Ej(x − Xj(ρ), y − Yj(ρ), z + m∗ρ)

∣∣∣∣ = 0,

where Ej is the two-dimensional V-shaped traveling front defined by (2.4) in Section 2 and ρ ∈ (Θ, ∞).

Theorem 1.2. Let V(x, y, z) be given by Theorem 1.1, ŝ = max1≤j≤n sj > 0, Ṽ is the pyramidal

traveling front given in Theorem 2.3, Xj(−ŝ), Yj(−ŝ) and Xj(ρ), Yj(ρ) satisfy h(Xj(−ŝ), Yj(−ŝ)) =

−m∗ ŝ and h(Xj(ρ), Yj(ρ)) = m∗ρ for ρ ∈ (Θ, ∞), respectively. If the initial value φ ∈ C(R3 ×
[−τ, 0], R) satisfies φ(x, y, z, r) ≥ v−(x, y, z) and

max
1≤j≤n

Ṽ(x − Xj(−ŝ), y − Yj(−ŝ), z − m∗ ŝ)

≤φ(x, y, z, r) ≤ min
1≤j≤n

Ṽ(x − Xj(ρ), y − Yj(ρ), z + m∗ρ),

then the solution w(x, y, z, t; φ) of (1.3) satisfies

lim
t→∞

sup
x∈R3

|w(x, y, z, t; φ)− V(x, y, z)| = 0.

Note that the set {(x, y, z) ∈ R
3| − z ≥ h(x, y)} is a convex polyhedron for given h(x, y)

in (1.5). Then V(x, y, z) given in Theorem 1.1 is called traveling front with convex polyhe-

dral shape associated with z = h(x, y). Since the polyhedron becomes a pyramid in R
3 if

(s1, . . . , sn) = (0, 0, . . . , 0), then traveling front with convex polyhedral shape V(x, y, z) be-

comes the pyramidal shape traveling front when sj = 0 (j = 1, 2, . . . , n). Theorem 1.2 implies

that such traveling front V(x, y, z) is also asymptotically stable and uniquely determined by

(1.4) and (1.7).

The rest of this paper is organized as follows. In Section 2, we state some preliminaries

on the V-form traveling fronts and pyramidal traveling fronts. We study the existence and

asymptotic stability of traveling fronts with convex polyhedral shape in Section 3.

2 Preliminary

In this section, we recall some results established in [2] and [13] including comparison princi-

ple, the existence and stability of V-form fronts and pyramidal traveling front in two dimen-

sional space and three dimensional space, respectively.

Let X = BUC(R3, R) be the Banach norm of all bounded and uniformly continuous

functions from R
3 to R with the usual supremum | · |X, and X+ = {φ ∈ X : φ(x, y, z) ≥
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0, ∀(x, y, z) ∈ R
3}. Let φ ∈ [−δ0, K + δ0]C = {φ ∈ C : φ(x, y, z, s) ∈ [−δ0, K + δ0], s ∈

[−τ, 0], (x, y, z) ∈ R
3} for some δ0 > 0.

Then, from [2, Theorem 2.1], we have the following existence and comparison theorem.

Theorem 2.1. Assume that (A1)–(A3) hold. Then for any φ ∈ [−δ0, K + δ0]C , (1.3) has a unique mild

solution w(x, y, z, t; φ) on [0, ∞) with −δ0 ≤ w(x, y, z, t; φ) ≤ K + δ0 for (x, y, z, t) ∈ R
3 × [−τ, ∞),

and w(x, y, z, t; φ) is a classical solution of (1.3) for (x, y, z, t) ∈ R
3 × [τ, ∞). Moreover, suppose that

w+(x, y, z, t) and w−(x, y, z, t) are supersolution and subsolution of (1.3) on R
3 × R

+, respectively,

and satisfy −δ0 ≤ w±(x, y, z, t) ≤ K + δ0 for t ∈ [−τ, ∞) and (x, y, z) ∈ R
N , and w−(x, y, z, s) ≤

w+(x, y, z, s) for any (x, y, z) ∈ R
3 and s ∈ [−τ, 0]. Then there holds w+(x, y, z, t) ≥ w−(x, y, z, t)

for (x, y, z) ∈ R
3, t ≥ 0.

Next, we state the existence and stability of V-form front of nonlocal delayed diffusion

equation in two-dimensional space, see [2, 13].

Let ŵ(ξ, η, t; φ̂) be the solution of

{
∂ŵ
∂t − D(ŵξξ + ŵηη) + sŵη − dŵ +

∫
R

b(ŵ(ξ, η − sτ − η1, t − τ)) f (η1)dη1 = 0,

ŵ(ξ, η, r) = φ̂(ξ, η, r), (ξ, η) ∈ R
2, r ∈ [−τ, 0].

(2.1)

Theorem 2.2. (See [2, Corollary 3.1]) For any s > c, there exists a solution V̂(ξ, η) satisfying

− V̂ξξ − V̂ηη + sV̂η + dV̂ −
∫

R

b(V̂(ξ, η − sτ − η1)) f (η1)dη1 = 0 (2.2)

for any (ξ, η) ∈ R
2. Moreover, there hold

V̂(ξ, η) > U
( c

s
(η + m∗|ξ|)

)
for (ξ, η) ∈ R

2

and

lim
R→∞

sup
ξ2+η2>R2

∣∣∣V̂(ξ, η)− U
( c

s
(η + m∗|ξ|)

)∣∣∣ = 0.

One also has

inf
δ≤V̂(ξ,η)≤K−δ

V̂η(ξ, η) > 0 for any δ ∈ (0, δ∗]

and

V̂(ξ + ξ0, η) ≤ V̂(ξ, η + η0) ∀(ξ, η) ∈ R
2, ξ0, η0 ∈ R with η0 ≥ m∗|ξ0|.

The solution ŵ(ξ, η, t; φ) of (2.1) satisfies

lim
t→∞

‖ŵ(ξ, η, t; φ)− V̂(ξ, η)‖L∞(R2) = 0

for any initial value φ(ξ, η, r) ∈ [0, K]C satisfying φ̂(ξ, η, r) ≥ v−(ξ, η) and

lim
γ→∞

sup
(ξ,η)∈D(γ),r∈[−τ,0]

|φ̂(ξ, η, r)− v−(ξ, η)| = 0.

Set

pj(x, y) := m∗(x cos θj + y sin θj),

p(x, y) = max
1≤j≤n

hj(x, y) = m∗ max
1≤j≤n

(x cos θj + y sin θj) (2.3)
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and

k j := cos

(
θj+1 − θj

2

)
> 0, φj :=

θj+1 + θj

2
, 1 ≤ j ≤ n.

Define

Ej(x, y, z) :=V̂

(
x sin φj − y cos φj,

z − m∗k j(x sin φj + y cos φj)√
m2∗k2

j + 1

)
. (2.4)

It is easy to check that every Ej(x, y, z) is a V-shaped traveling front with speed s√
1+m2∗k2

j

> 0

for any 1 ≤ j ≤ n, that is, Ej(x, y, z) satisfies (2.2) in Theorem 2.2. By [2, Theorem 1.1] and

[13, Theorem 1.2], we have the following existence and stability of pyramidal traveling front

Ṽ(x, y, z) associated with a pyramid z = p(x, y).

Theorem 2.3. Assume that (A1)–(A3) hold true. Let s > c > 0 and p(x, y) be given by (2.3). Then

there exists a solution Ṽ(x, y, z) of (1.4) with

lim
γ→∞

sup
(x,y,z)∈D(γ)

∣∣∣Ṽ(x, y, z)− U
( c

s
(z + p(x, y))

)∣∣∣ = 0,

U
( c

s
(z + p(x, y))

)
< Ṽ(x, y, z) < K for all (x, y, z) ∈ R

3,

∂Ṽ

∂z
(x, y, z) > 0 for all (x, y, z) ∈ R

3,

lim
R→∞

sup
|z+p(x,y)|≥R

|Ṽz(x, y, z)| = 0 and inf
δ≤Ṽ(ξ,η)≤K−δ

Ṽη(x, y, z) > 0 for any δ ∈ (0, δ∗].

Suppose that the initial value φ(x, y, z, r) ∈ C(R3 × [−τ, 0], R) satisfies φ(x, y, z, r) ≥ v−(x, y, z)

and

lim
γ→+∞

sup
(x,y,z)∈D(γ),r∈[−τ,0]

|φ(x, y, z, r)− Ṽ(x, y, z)| = 0,

then the solution w(x, y, z, t; φ) of (1.3) satisfies

lim
t→∞

sup
x∈R3

|w(x, y, z, t; φ)− Ṽ(x, y, z)| = 0.

Furthermore, by [13], we have the following useful lemmas.

Lemma 2.4. Let Ṽ(x, y, z) be as in Theorem 2.3 associated with pyramid z = p(x, y). Then one has

lim
R→∞

sup
|x|≥R

|Ṽ(x, y, z)− max
1≤j≤n

Ej(x, y, z)| = 0,

max
1≤j≤n

Ej(x, y, z) < Ṽ(x, y, z) for all (x, y, z) ∈ R
3

and

lim
γ→∞

sup
x∈D(γ),t∈[0,T]

∣∣∣∣max
1≤j≤n

Ej(x, y, z)− U
( c

s
(z + p(x, y))

)∣∣∣∣ = 0.

Lemma 2.5 (See [13, Lemma 3.1]). There exist a positive constant ρ sufficiently large and a positive

constant β small enough such that for any 0 < δ <
δ∗
2 e−βτ, the function

w+(x, y, z, t) := Ṽ(x, y, z + ρδ(1 − e−βt)) + δe−βt

is a supersolution of (1.3) and the function

w−(x, y, z, t) := Ṽ(x, y, z − ρδ(1 − e−βt))− δe−βt

is a subsolution of (1.3) for any (x, y, z) ∈ R
3 and t ≥ 0, where Ṽ(x, y, z) be as in Theorem 2.3.
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3 Traveling front with polyhedral shape

In this section, we study the existence and asymptotic stability of traveling fronts with convex

polyhedral shape of (1.1) and prove Theorems 1.1–1.2.

We first recall that {(x, y, z) ∈ R
3| − z ≥ h(x, y)} is a convex polyhedron. For any ζ ∈ R

and 1 ≤ j ≤ n, let (Xj(ζ), Yj(ζ)) be defined by

hj(Xj(ζ), Yj(ζ)) = hj+1(Xj(ζ), Yj(ζ)) = m∗ζ.

Direct computations give

(
Xj(ζ)

Yj(ζ)

)
=

1

sin(θj+1 − θj)

(
(ζ + sj) sin θj+1 − (ζ + sj+1) sin θj

−(ζ + sj) cos θj+1 + (ζ + sj+1) cos θj

)
.

As point in [23], a set {(x, y) ∈ R
2|h(x, y) ≤ ζ} is either an empty set or a nonempty con-

vex closed set in R
2. By [23, Lemma 3.1], the set {(x, y) ∈ R

2|h(x, y) ≤ m∗ρ} is a con-

vex n−polygon in the x − y plane with vertices {(Xj(ρ), Yj(ρ))}1≤j≤n for any fixed number

ρ ∈ (0,+∞).

Proof of Theorem 1.1. Since h(Xj(ρ), Yj(ρ)) = m∗ρ for all 1 ≤ j ≤ n, then we obtain

h(x, y) ≤ m∗ρ + p(x − Xj(ρ), y − Yj(ρ))

for all (x, y) ∈ R
N , 1 ≤ j ≤ n, where h(x, y) and p(x, y) are defined in (1.5) and (2.3),

respectively. Set

v−(x, y, z) = U
( c

s
(z + h(x, y))

)
= max

1≤j≤n
U
( c

s
(z + hj(x, y))

)
.

Note that the function v−(x, y, z) is a subsolution of (1.4) and the pyramidal traveling front

Ṽ(x, y, z) defined in Theorem 2.3 is a solution of (1.4). Thus, we have

v−(x, y, z) < Ṽ(x − Xj(ρ), y − Yj(ρ), z + m∗ρ)

for all (x, y, z) ∈ R
3 and 1 ≤ j ≤ n. This shows that

min
1≤j≤n

Ṽ(x − Xj(ρ), y − Yj(ρ), z + m∗ρ)

is a supersolution of (1.4) for all (x, y, z) ∈ R
3. Define

V(x, y, z) := lim
t→∞

w(x, y, z, t; v−), ∀(x, y, z) ∈ R
3.

Then the function V(x, y, z) ∈ C2(R3) is a solution of (1.4). As a result of the comparison

principle (see Theorem 2.1), we have

v−(x, y, z) < V(x, y, z) ≤ min
1≤j≤n

Ṽ(x − Xj(ρ), y − Yj(ρ), z + m∗ρ) (3.1)

for all (x, y, z) ∈ R
3. On the other hand, since

max{hj(x, y), hj+1(x, y)} ≤ h(x, y) in R
2, ∀1 ≤ j ≤ n,
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then

U
( c

s
(z + max{hj(x, y), hj+1(x, y)})

)
≤ v−(x, y, z), (x, y, z) ∈ R

3, ∀1 ≤ j ≤ n.

We consider the left-hand side and the right hand side as an initial value of (1.3), respectively.

Then Theorem 2.1 yields that

w
(

x, y, z, t; U
( c

s
(z + max{hj(x, y), hj+1(x, y)})

))
≤ w(x, y, z, t; v−(x, y, z)) (3.2)

for all 1 ≤ j ≤ n. Note that

hj(x, y) = pj(x − Xj(ρ), y − Yj(ρ)) + m∗ρ.

Recall that Ej (1 ≤ j ≤ n) is defined by (2.3). Let t → ∞ in (3.2), by Lemma 2.4, we obtain

Ej(x − Xj(ρ), y − Yj(ρ), z + m∗ρ) ≤ V(x, y, z), (x, y, z) ∈ R
3.

This together with (3.1), there is

max
1≤j≤n

Ej(x − Xj(ρ), y − Yj(ρ), z + m∗ρ) ≤V(x, y, z) ≤ min
1≤j≤n

Ṽ(x − Xj(ρ), y − Yj(ρ), z + m∗ρ)

for all (x, y, z) ∈ R
3. By Theorem 2.2 and 2.3, we then have

lim
R→∞

sup
|x|>R

∣∣∣∣V(x, y, z)− max
1≤j≤n

Ej(x − Xj(ρ), y − Yj(ρ), z + m∗ρ)

∣∣∣∣ = 0 (3.3)

and

0 < U
( c

s
(z + h(x, y))

)
< V(x, y, z) < K for all (x, y, z) ∈ R

3.

We use the Schauder interior estimate to the following equation

(
∂

∂t
− D

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ s

∂

∂z

)
(V − Ej)

= −d(V − Ej) +
∫

R

b(V(x, y, z − sτ − z1)) f (z1)dz −
∫

R

b(Ej(x, y, z − sτ − z1)) f (z1)dz.

Then by Theorems 2.2–2.3 and (3.3), we obtain

inf
δ≤V(x,y,z)≤K−δ

Vz(x, y, z) > 0 for δ > 0 small.

Note that |z + h(x, y)| → ∞ implies dist((x, y, z), Γj) → ∞ for 1 ≤ j ≤ n. Then we have

lim
γ→∞

sup
(x,y,z)∈D(γ)

∣∣∣V(x, y, z)− U
( c

s
(z + h(x, y))

)∣∣∣ = 0.

By the interpolation ‖ · ‖C1 ≤ 2
√
‖ · ‖C0‖ · ‖C2 and the fact

lim
R→∞

sup
|z+h(x,y)|≥R

∣∣∣Uz

( c

s
(z + h(x, y))

)∣∣∣ = 0,

we get

lim
R→∞

sup
|z+h(x,y)|>R

|Vz(x, y, z)| = 0.

This completes the proof.
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In the following, we show that the traveling front V(x, y, z) with convex polyhedral shape

is asymptotically stable.

Proof of Theorem 1.2. Set

ŝ := max
1≤j≤n

sj ≥ 0.

Then there holds

− m∗ ŝ + p(x − Xj(−ŝ), y − Yj(−ŝ)) ≤ h(x, y) for 1 ≤ j ≤ n. (3.4)

It then follows that

U
( c

s
(z − m∗ ŝ + p(x − Xj(−ŝ), y − Yj(−ŝ)))

)
≤ U

( c

s
(z + h(x, y))

)
for 1 ≤ j ≤ n. (3.5)

Consider the left-hand side and the right-hand side of (3.5) as initial values of (1.3) and let

t → ∞, we obtain

Ṽ(x − Xj(−ŝ), y − Yj(−ŝ), z − m∗ ŝ) ≤ V(x, y, z) for (x, y, z) ∈ R
3, 1 ≤ j ≤ n. (3.6)

Together with (3.5) and (3.6), we have

max
1≤j≤n

Ṽ(x − Xj(−ŝ), y − Yj(−ŝ), z − m∗ ŝ)

≤ V(x, y, z) ≤ min
1≤j≤n

Ṽ(x − Xj(ρ), y − Yj(ρ), z + m∗ρ) (3.7)

for all (x, y, z) ∈ R
3.

For all (x, y, z) ∈ R
3, set

V∗(x, y, z) := lim
t→∞

w

(
x, y, z, t; min

1≤j≤n
Ṽ(x − Xj(ρ), y − Yj(ρ), z + m∗ρ)

)
.

Then the comparison principle gives that

V(x, y, z) ≤ V∗(x, y, z) ≤ min
1≤j≤n

Ṽ(x − Xj(ρ), y − Yj(ρ), z + m∗ρ).

By (3.3) and Theorem 2.3, we have

lim
R→∞

sup
|x|≥R

|V∗(x, y, z)− V(x, y, z)| = 0.

It then follows the similar way in [23] that, there holds V∗(x, y, z) ≡ V(x, y, z). This implies

lim
t→∞

∥∥∥∥w

(
x, y, z, t; min

1≤j≤n
Ṽ(x − Xj(ρ), y − Yj(ρ), z + m∗ρ)

)
− V(x, y, z)

∥∥∥∥
L∞(R3)

= 0.

Using the similar process to max1≤j≤n Ṽ(x − Xj(−ŝ), y − Yj(−ŝ), z − m∗ ŝ), we also have

lim
t→∞

∥∥∥∥w

(
x, y, z, t; max

1≤j≤n
Ṽ(x − Xj(−ŝ), y − Yj(−ŝ), z − m∗ ŝ)

)
− V(x, y, z)

∥∥∥∥
L∞(R3)

= 0.

Note that for any fixed (x, y, z) ∈ R
3 and t > 0, w(x, y, z, t; ·) is continuous mapping in X. By

the continuity of w(x, y, z, t; ·) and Theorems 2.1–2.3, we obtain

lim
t→∞

‖w(x, y, z, t; φ)− V(x, y, z)‖L∞ = 0.

The proof is completed.
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Furthermore, V(x, y, z) also enjoys the following properties, which can be proved by the

similar ways as that in [23, Lemma 3.3–3.5] and we omit them here.

Lemma 3.1. Let V(x, y, z) be as in Theorem 1.1. Then there holds

(i) Let h(x, y) be defined in (1.5), h(x, y)=max1≤j≤n hj(x, y)=m∗ max1≤j≤n(x cos θj+y sin θj−sj)

with min1≤j≤n sj ≥ 0. Define V(x, y, z) be the traveling front of polyhedral-shape associated

with h(x, y). If h(x, y) ≥ h(x, y) for any (x, y) ∈ R
2, then V(x, y, z) ≥ V(x, y, z) for all

(x, y, z) ∈ R
3.

(ii) One has ∂V
∂ν (x, y, z) > 0 in R

3 for

ν =
1√

1 + t2
1 + t2

2




t1

t2

1


 with

√
t2
1 + t2

2 ≤ 1

m∗
.

(iii) If h(x, y) = h(|x|, |y|), then there holds V(x, y, z) = V(|x|, |y|, z) for all (x, y, z) ∈ R
3 and

Vx(x, y, z) > 0 for (x, y, z) ∈ (0, ∞)× R
2,

Vx(0, y, z) = 0 for (y, z)R2,

Vy(x, y, z) > 0 for (x, y, z) ∈ R × (0, ∞)× R,

Vy(x, 0, z) = 0 for (x, z) ∈ R
2.
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Abstract. A Leslie–Gower predator–prey system with cross-diffusion subject to Neu-
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1 Introduction

In ecological systems, the interaction of predator and prey has abundant dynamical features

although the investigations on predator-prey models has improved and lasted for several

decades, which are based on the pioneering works of Lotka and Volterra [34]. Moreover, more

realistic models are proposed in view of laboratory experiments and observations. Leslie and

Gower [17] first proposed the following predator–prey model














du

dt
= u(a1 − u− c1v),

dv

dt
= v

(

b1 −
d1v

u

)

,
(1.1)

where u(t) and v(t) represent the densities of prey and predators at time t, respectively; the

parameters a1, b1 c1 and d1 are positive constants; the term d1v/u is called the Leslie–Gower
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terms, which measures the loss in the predator population due to rarity of its favorite food.

System (1.1) is regarded as a prototypical predator-prey system in the ecological studies. But

the interaction terms in (1.1) are unbounded, which is not reasonable in the real world. By

using Holling type II functional response [13] in both prey and predator interaction terms, a

Leslie–Gower predator–prey system with saturated functional responses is obtained and takes

the form (see [4]):














du

dt
= u(a1 − b1u− c1v

u + k1
),

dv

dt
= v

(

a2 −
c2v

u + k2

)

.

(1.2)

The model (1.2) is based on the biological fact that if the predator v is more capable of switch-

ing from its favorite food (the prey u) to other food options, then it has better ability to survive

when the prey population is low; here a1 and a2 are the growth rates per capita of prey u and

predator v, respectively; b1 measures the strength of intraspecific competition among individ-

uals of species u, and it is related to the carrying capacity of the prey; c1 is the maximum value

of the per capita reduction rate of u due to v, and c2 is the maximum growth per capita of v

due to predation of u; k1 and k2 measure the extent to which environment provides protection

to prey u and predator v, respectively.

Non-monotonic responses appear at the microbial level; when the nutrient concentration

reaches at a high level an inhibitory effect of the specific growth rate can occur [3, 6]. This

may frequently be noticed when micro-organisms are used for waste decomposition or for

water purification. Andrews [3] suggested a response function p(u) = mu
k1+k2u+u2 , known as

Monod–Haldane response function, to model such an inhibitory effect at high concentrations.

In particular, Sokol and Howell [31] derived a simplified Monod–Haldane type p(u) = mu
k1+u2 .

A Leslie-Gower predator-prey system with a Monod–Haldane functional response takes the

form:














du

dt
= u

(

a1 − b1u− mv

k1 + u2

)

,

dv

dt
= v

(

a2 −
dv

k2 + u2

)

.

(1.3)

In mathematical ecology, population may be distributed non-homogeneously, and the

predators and preys naturally develop strategies for survival. Thus, we may introduce dif-

fusive structure, which can be illustrated as different concentration levels of predators and

preys causing different movements. Diffusion means the movement of individuals from a

higher to a lower concentration region, while cross diffusion implies the population fluxes

of one species owing to the presence of the other species. In this paper, our concern is the

following system with cross-diffusion rates











































∂u

∂t
= d1∆u + u

(

a− u− v

1 + u2

)

in Ω× (0, ∞),

∂v

∂t
= ∆[(d2 + βu)v] + v

(

b− v

1 + u2

)

in Ω× (0, ∞),

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω× (0, ∞),

u(x, 0) = ϕ(x) ≥ 0, v(x, 0) = ψ(x) ≥ 0, in Ω,

(1.4)

whose corresponding ordinary differential equations (ODEs) is (1.3) with all the parameters

b1, m, k1 and k2 equal to 1. Here ∆ denotes the Laplacian operator on RN (N ≥ 1), Ω is a
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connected bounded open domain in RN , with a smooth boundary ∂Ω, n is the outward unit

normal vector on ∂Ω. The homogeneous Neumann boundary condition means that the two

species have zero flux across the boundary ∂Ω. The diffusion terms dj, j = 1, 2 stand for

natural dispersive force of movement of an individual, while β describes the mutual interfer-

ences between individuals and is usually referred as the cross-diffusion pressure measuring

the situation that the prey keeps away from the predator; a and b are the growth rates per

capita of prey u and predator v. The parameters a, b, d1 and d2 are positive constants and β is

non-negative constant.

In some cases, the quantity v is not influenced by any cross diffusion in the sense that

the coefficient β in the second equation of (1.4) vanishes, that is, we ignore the population

migration of predators due to the presence of preys. In this situation, Li et al. [20] considered

the following reaction-diffusion system in the one-dimensional space domain Ω = (0, π):































∂u

∂t
= ∆u + u

(

a− u− v

1 + u2

)

in Ω× (0, ∞),

∂v

∂t
= d∆v + v

(

b− v

1 + u2

)

in Ω× (0, ∞),

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω× (0, ∞),

(1.5)

where d is the relative diffusion rate of predator v when the diffusion rate of prey is rescaled

to 1. Li et al. [20] studied the Hopf bifurcation and steady-state bifurcation by taking d as the

bifurcation parameter and described both the global structure of the steady-state bifurcation

from simple eigenvalues and the local structure of the steady-state bifurcation from double

eigenvalues by using space decomposition and the implicit function theorem.

The presence of the cross-diffusion term causes more abundant dynamic behaviors. For

example, the effect of cross diffusion on dynamics of predator-prey models has been studied

in [5, 7, 22, 24, 30, 35, 37, 43, 44, 47]. The relevant discussion is a bit difficult and requires more

techniques than for models without cross-diffusion. In [5, 24, 43, 44], the researchers mainly

obtained the non-existence and existence of non-constant positive steady-states (patterns) and

showed cross diffusion can create non-constant steady states. Gambino et al. [7] analyzed the

linear stability of the positive equilibrium of a competitive Lotka–Volterra system, and showed

the cross-diffusion is the key mechanism for the formation of spatial patterns through Turing

bifurcation. Liu et al. [22] not only obtained the global existence result of solutions under an

appropriate parameter condition, but also gave explicit parameter ranges of the existence of

non-constant positive steady-states.

For system (1.4), we first discuss the influence of the cross-diffusion coefficient β on the

global existence of the solution. As far as global existence is concerned, many researchers

have some relevant works, for example, [22, 26, 33, 41]. Wu et al. [41] and Tao [33] analyzed

the predator-prey model with prey-taxis and discussed the effect of the prey-taxis term on

the global existence of solutions of the system. Mu et al. [26] studied the global existence of

classical solutions to a parabolic-parabolic chemotaxis system, but there are strict restrictions

on functions in the system. Liu et al. [22] investigated the global existence of solutions of a

parabolic-elliptic two-species competition model with cross diffusion.

Next, for a predator-prey system, what we are interested in is whether the various species

can exist and takes the form of non-constant time-independent positive solutions. In [5, 8, 24,

25, 43, 44], the authors have established the existence of stationary patterns in some predator-

prey models in the presence of self-diffusion and cross-diffusion. Our results are a little
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different from theirs. We not only prove the existence of non-constant solution of system (1.4)

when the cross-diffusion β is sufficiently large, but also we find infinitely many intervals of

d1 > 0 near zero such that (1.4) admits at least one nonconstant solution if d1 belongs to such

intervals. Moreover, researchers have paid more attention to Hopf bifurcation and steady state

bifurcation (cf. [9,10,15,18,19,36,42,46]), and investigated some predator-prey models without

cross diffusion term. Only a few works [23, 45] have concentrated on the Bogdanov–Takens

bifurcation phenomena of diffusive predator-prey systems with delay effect. In this paper,

we study the Bogdanov–Takens bifurcation by regarding the cross-diffusion term β as one of

bifurcation parameters.

The organization of the remaining part of the paper is as follows. In Section 2 we prove

the global existence and boundedness results of solutions to (1.4) and in Section 3 we obtain

a priori bounds of nonnegative steady state solutions. In Section 4 we deal with the non-

existence of non-constant positive steady states for sufficient large diffusion coefficient and

consider the existence of non-constant positive steady states for a small range of diffusion

coefficient and sufficient large cross-diffusion coefficient by using the Leray–Schauder degree

theory. Section 5 is devoted to the local and global stability of homogeneous steady states.

Center manifold reduction and normal form theory are employed in Section 6 not only to

discuss the existence of Hopf bifurcation but also to determine the Hopf bifurcation direction

and the stability of bifurcating time-periodic solutions. In Section 7 we observe that system

(1.4) exhibits Bogdanov–Takens bifurcation phenomena. Finally in Section 8, some conclusions

are presented and numerical simulations are carried out to illustrate some previous theoretical

results.

For convenience, we introduce the following notations. Let Hk(Ω) (k ≥ 0) be the Sobolev

space of the L2-functions f defined on Ω whose derivatives f (n) (n = 1, . . . , k) also belong to

L2(Ω). Denote the spaces X = {φ ∈ H2(Ω)| ∂φ
∂n = 0 on ∂Ω} and Y = L2(Ω). For a space Z,

we also define the complexification of Z to be ZC , Z⊕ iZ = {x1 + ix2|x1, x2 ∈ Z}. Define an

inner product on the complex-valued Hilbert space Y2
C

by

〈u, v〉 =
∫

Ω
u(s)Tv(s)ds for u, v ∈ Y

2
C

. (1.6)

2 Global existence and boundedness

In this section, we employ the method in [40] to obtain the global existence and boundedness

of solutions of model (1.4). We need to establish some priori estimates. It is clear that the local

existence of solutions to (1.4) was established by Amann [1]. This result can be summarized

as follows.

Lemma 2.1. For each fixed p > N, assume that the initial data (ϕ, ψ) ∈ (W1,p(Ω))2 satisfies

ϕ ≥ 0 and ψ ≥ 0, then there exists a positive constant Tmax (the maximal existence time) such that

(ϕ, ψ) determines a unique nonnegative classical solution (u(x, t), v(x, t)) of system (1.4) satisfying

(u, v) ∈ (C([0, Tmax), W1,p(Ω)) ∩ C2,1(Ω̄× (0, Tmax)))2 and

0 ≤ u(x, t) ≤ c , max

{

max
Ω̄

ϕ(x), a

}

, v(x, t) ≥ 0 (2.1)

for all (x, t) ∈ Ω̄× [0, Tmax).

Proof. (i) The local existence of the solution to (1.4) follows from [1]. Denote by Tmax the

maximal existence time of the solution. Next, we shall prove (2.1). On account of (1.4), we
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know that v(x, t) satisfies


























∂v

∂t
= ∆[(d2 + βu)v] + v

(

b− v

1 + u2

)

in Ω× (0, ∞),

∂v

∂n
= 0 on ∂Ω× (0, ∞),

v(x, 0) = ψ(x) ≥ 0 in Ω.

(2.2)

Clearly, v ≡ 0 is a sub-solution to problem (2.2). Hence, we can apply the maximum principle

for parabolic equations to obtain that v(x, t) ≥ 0. Similarly, we can obtain u(x, t) ≥ 0. Also

from (1.4) and v ≥ 0, we obtain that


























∂u

∂t
= d1∆u + u

(

a− u− v

1 + u2

)

≤ u(a− u) in Ω× (0, ∞),

∂u

∂n
= 0 on ∂Ω× (0, ∞),

u(x, 0) = ϕ(x) ≥ 0 in Ω.

Then from comparison principle of parabolic equations, it is easy to verify u(x, t) ≤ c, where

c is given in (2.1). This completes the proof of Lemma 2.1.

The above lemma means that, in the space W1,p(Ω) each pair of the initial values ϕ and

ψ can determine a unique nonnegative classical solution (u(x, t), v(x, t)), which is twice con-

tinuously differentiable with respect to x ∈ Ω and continuously differentiable with respect to

t ∈ [0, Tmax). Moreover, u(·, t), v(·, t) ∈ W1,p(Ω) can be regarded as a continuous mapping

with respect to t ∈ [0, Tmax).

According to Amann’s results [2], we need to establish the L∞ bound of (u, v) in order

to show its global existence. Based on Lemma 2.1, it is enough to establish the L∞ bound of

v(x, t). Firstly, we shall show that the solution v(x, t) is bounded in L1(Ω). In the proof, we

need to use the following elementary inequality [39].

Lemma 2.2. Assume that z(t) ≥ 0 satisfy

{

z′(t) ≤ −a1zr(t) + a2z(t) + a3, t > 0,

z(0) = z0,

where a1, a2, a3 > 0 and r > 1. Then there exist constants c1(a1, a2, a3, r) and c2(z0) such that

z(t) ≤ max{c1(a1, a2, a3, r), c2(z0)}.

Lemma 2.3. There exists a constant C0 > 0 such that the second component of the solution of (1.4)

satisfies the following estimate
∫

Ω
v(x, t)dx ≤ C0 for all t ∈ (0, Tmax). (2.3)

Proof. Let

U(t) =
∫

Ω
u(x, t)dx, V(t) =

∫

Ω
v(x, t)dx.

Then we have

U̇(t) + V̇(t) =
∫

Ω
(au + bv)dx−

∫

Ω

(

u2 +
uv

1 + u2
+

v2

1 + u2

)

dx.
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In view of Lemma 2.1, we know that 0 ≤ u(x, t) ≤ c for all (x, t) ∈ Ω̄× [0, Tmax) and hence

that

u2 +
uv

1 + u2
+

v2

1 + u2
≥ (u + v)2

2(1 + u2)
≥ (u + v)2

2(1 + c2)
,

which, together with the Hölder inequality, implies that

U̇(t) + V̇(t) ≤
∫

Ω
r(u + v)dx−

∫

Ω

(u + v)2

2(1 + c2)
dx

≤ r
∫

Ω
(u + v)dx− 1

2(1 + c2)|Ω|

[

∫

Ω
(u + v)dx

]2

= r[U(t) + V(t)]− [U(t) + V(t)]2

2(1 + c2)|Ω|
with r = max{a, b}. It follows from Lemma 2.2 that there exists a positive constant M such

that U(t) + V(t) ≤ M for all t ∈ (0, Tmax), and hence that there exists a positive constant C0

such that (2.3) holds. The proof is completed.

Secondly, we will establish Lp estimates for v(x, t) by using a weight function φ(u) similar

to that in [32,38,41]. We now present some basic inequalities which will be used in the sequel

(see [14, 27]). In several places we shall need the following Poincaré’s inequality:

‖u‖1,p ≤ C4(‖∇u‖p + ‖u‖q) for all u ∈W1,p(Ω)

with arbitrary p > 1 and q > 0. Also, an essential role will be played by Gagliardo-Nirenberg

interpolation inequality

‖u‖p ≤ C3‖u‖η
1,q‖u‖

1−η
m for all u ∈W1,p(Ω),

which holds for all 1 ≤ p, q ≤ ∞ satisfying p(n− q) < nq and all m ∈ (0, p) with

η =

n
m − n

p
n
m + 1− n

q

∈ (0, 1).

Lemma 2.4. Let (u(x, t), v(x, t)) be a solution of (1.4), then for every p ∈ [2, ∞), there exists a

positive constant E > 0 such that

‖v(x, t)‖p ≤ E for t ∈ (0, Tmax)

if

β ∈
[

0,
d1d2

2
√

2(d1 + d2)pc

]

. (2.4)

Proof. Let

α =
d1d2(p− 1)

4(d1 + d2)2 pc2
, (2.5)

and consider a weight function

φ(u(x, t)) = eαu2(x,t) when 0 ≤ u(x, t) ≤ c. (2.6)

Denote φ(u(x, t)) by φ(u), then we have

1 ≤ φ(u) = eαu2 ≤ eαc2
= h and , 1 ≤ φ′(u) = 2αueαu2 ≤ 2αceαc2

, 0 ≤ u ≤ c. (2.7)
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It follows from system (1.4) that

1

p

d

dt

∫

Ω
vpφ(u)dx =

∫

Ω
vp−1φ(u)

∂v

∂t
dx +

1

p

∫

Ω
vpφ′(u)

∂u

∂t
dx

=
∫

Ω
vp−1φ(u)[∆(d2 + βu)v]dx +

∫

Ω
vpφ(u)

(

b− v

1 + u2

)

dx

+
1

p

∫

Ω
vpφ′(u)

[

d1∆u + u

(

a− u− v

1 + u2

)]

dx

≤ − (p− 1)
∫

Ω
vp−2(d2 + βu)φ(u)|∇v|2dx

− (p− 1)β
∫

Ω
vp−1φ(u)∇u · ∇vdx−

∫

Ω
vp−1φ′(u)(d2 + βu)∇u · ∇vdx

− β
∫

Ω
vpφ′(u)|∇u|2dx + b

∫

Ω
vpφ(u)dx− d1

∫

Ω
vp−1φ′(u)∇u · ∇vdx

− d1

p

∫

Ω
vpφ′′(u)|∇u|2dx +

ac

p

∫

Ω
vpφ′(u)dx,

which implies that

1

p

d

dt

∫

Ω
vpφ(u)dx + (p− 1)d2

∫

Ω
vp−2φ(u)|∇v|2dx +

d1

p

∫

Ω
vpφ′′(u)|∇u|2dx

≤ −
∫

Ω
(d2 + βu)vp−1φ′(u)∇u · ∇vdx− β(p− 1)

∫

Ω
vp−1φ(u)∇u · ∇vdx

− d1

∫

Ω
vp−1φ′(u)∇u · ∇vdx + b

∫

Ω
vpφ(u)dx +

ac

p

∫

Ω
vpφ′(u)dx.

(2.8)

In virtue of (2.7), we know that φ′(u), φ(u) > 0. Combining with v(x, t) ≥ 0, it is easy to see

that

− (d1 + d2)
∫

Ω
vp−1φ′(u)∇u · ∇vdx

≤
∫

Ω

√

φ(u)d2(p− 1)v
p−2

2 |∇v|√
2

·
√

2(d1 + d2)v
p
2 φ′(u)|∇u|

√

φ(u)d2(p− 1)
dx.

Furthermore, using Young’s inequality, we obtain

− (d1 + d2)
∫

Ω
vp−1φ′(u)∇u · ∇vdx

≤ d2(p− 1)

4

∫

Ω
vp−2φ(u)|∇v|2dx +

(d1 + d2)2

d2(p− 1)

∫

Ω
vp φ′2(u)

φ(u)
|∇u|2dx.

(2.9)

Similar to the above, we obtain

− β(p− 1)
∫

Ω
vp−1φ(u)∇u · ∇vdx

≤ d2(p− 1)

4

∫

Ω
vp−2φ(u)|∇v|2dx +

β2(p− 1)

d2

∫

Ω
vpφ(u)|∇u|2dx.

(2.10)

Together with 0 ≤ u ≤ c, we similarly have

− β
∫

Ω
uvp−1φ′(u)∇u · ∇vdx

≤ d2(p− 1)

4

∫

Ω
vp−2φ(u)|∇v|2dx +

β2(p− 1)

d2

∫

Ω
u2vp φ′2(u)

φ(u)
|∇u|2dx

≤ d2(p− 1)

4

∫

Ω
vp−2φ(u)|∇v|2dx +

β2(p− 1)c2

d2

∫

Ω
vp φ′2(u)

φ(u)
|∇u|2dx.

(2.11)
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Substituting (2.9), (2.10) and (2.11) into (2.8), we have

1

p

d

dt

∫

Ω
vpφ(u)dx +

d2(p− 1)

4

∫

Ω
vp−2φ(u)|∇v|2dx +

d1

p

∫

Ω
vpφ′′(u)|∇u|2dx

≤
[

(d1 + d2)2

d2(p− 1)
+

β2c2(p− 1)

d2

]

∫

Ω
vp φ′2(u)

φ(u)
|∇u|2dx

+
β2(p− 1)

d2

∫

Ω
vpφ(u)|∇u|2dx + b

∫

Ω
vpφ(u)dx +

ac

p

∫

Ω
vpφ′(u)dx.

(2.12)

Clearly,

φ′2(u)
φ(u)

= 4α2u2φ(u) and φ′′(u) = (2α + 4α2u2)φ(u).

By a direct calculation, we obtain

2a2(u)

a1(u)
≤ 4(d1 + d2)2c2 p

d1d2(p− 1)
α = 1,

4a3(u)

a1(u)
≤ 2β2(p− 1)p

d1d2α
=

8β2c2 p2(d1 + d2)2

d2
1d2

2

≤ 1,

4a4(u)

a1(u)
≤ 4c2β2 p(p− 1)

d1d2
=

4p(p− 1)

d1d2
· d2

1d2
2

8p2(d1 + d2)2
=

d1d2(p− 1)

2p(d1 + d2)2
< 1,

(2.13)

for 0 ≤ u ≤ c, where β and α satisfy (2.4) and (2.5) respectively, and

a1(u) =
d1

p
φ′′(u),

a2(u) =
(d1 + d2)2

d2(p− 1)
· φ′2(u)

φ(u)
,

a3(u) =
β2(p− 1)

d2
φ(u),

a4(u) =
β2c2(p− 1)

d2
· φ′2(u)

φ(u)
.

Therefore,

β2(p− 1)

d2

∫

Ω
vpφ(u)|∇u|2dx +

(d1 + d2)2

d2(p− 1)

∫

Ω
vp φ′2(u)

φ(u)
|∇u|2dx

+
β2c2(p− 1)

d2

∫

Ω
vp φ′(u)2

φ′(u)
|∇u|2dx ≤ d1

p

∫

Ω
vpφ′′(u)|∇v|2dx.

(2.14)

It follows from (2.14) that (2.12) is simplified to be

1

p

d

dt

∫

Ω
vpφ(u)dx +

d2(p− 1)

4

∫

Ω
vp−2φ(u)|∇v|2 ≤ C1

∫

Ω
vpφ(u)dx, (2.15)

where C1 = (bp + 2αac2)/p. By the Gagliardo–Nirenberg and Poincaré’s inequality and (2.7)
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and (2.3), we have
∫

Ω
vpφ(u)dx ≤ h

∫

Ω
vpdx = h‖v

p
2 ‖2

2 ≤ C2‖v
p
2 ‖2η

1,2‖v
p
2 ‖2(1−η)

2
p

≤ hC3

(

C4

(

2

p

))2η
(

‖∇v
p
2 ‖2 + ‖v

p
2 ‖
)2η
‖v

p
2 ‖2(1−η)

2
p

= hC3

(

C4

(

2

p

))2η
(

‖∇v
p
2 ‖2 + ‖v‖

p
2
1

)2η

‖v‖p(1−η)
1

≤ C5

(

‖∇v
p
2 ‖2

2 + 1
)η

,

(2.16)

where

η =
pn− n

2− n + pn
∈ (0, 1).

Now from (2.7) and (2.16), we have
∫

Ω
vp−2φ(u)|∇v|2dx ≥

∫

Ω
vp−2|∇v|2dx =

4

p2

∫

Ω

∣

∣∇v
p
2 |2dx

≥ 4

p2C
1
η

5

(

∫

Ω
vpφ(u)dx

) 1
η

− 4

p2
.

(2.17)

Hence from (2.15) and (2.17) we obtain

1

p

d

dt

∫

Ω
vpφ(u)dx ≤ −d2(p− 1)

p2C
1
η

5

(

∫

Ω
vpφ(u)dx

) 1
η

+ C1

∫

Ω
vpφ(u)dx +

d2(p− 1)

p2

for all t ∈ (0, Tmax), where 1
η > 1. By using Lemma 2.2 and (2.7), we conclude that there exists

E > 0 such that

‖v(·, t)‖p ≤
(

∫

Ω
vpφ(u)dx

) 1
p

≤ E for t ∈ (0, Tmax),

which is the desired result.

Finally, we establish the L∞ bound of v(x, t) using Lemma 2.4.

Lemma 2.5. If β satisfies (2.4) and let (u(x, t), v(x, t)) be a solution of (1.4). Then there exists a

positive constant A such that

‖v(·, t)‖∞ ≤ A for t ∈ (0, Tmax).

Proof. Define

f (u, v) = u

(

a− u− v

1 + u2

)

, g(u, v) = βv∆u + v

(

b− v

1 + u2

)

for (u, v) ∈ (C([0, Tmax), W1,p(Ω) ∩ C2,1(Ω̄× (0, Tmax)))2. It follows from Lemmas 2.4 and 2.1

that there exists a positive constant A1 such that

‖ f ‖Lp(Ω) ≤ A1 < +∞ for all t ∈ (0, Tmax). (2.18)

In virtue of (2.18) and the first equation of system (1.4) and the Lp-estimate for parabolic

equations, we obtain

‖u(·, t)‖W2
p(Ω) ≤ A1 for all t ∈ (0, Tmax). (2.19)
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This, together with the Sobolev embedding theorem (see [16]), yields

‖∇u(·, t)‖L∞(Ω) ≤ A1 for all t ∈ (0, Tmax). (2.20)

We now turn to the second equation of (1.4), which can be rewritten as the non-divergence

form:
∂v

∂t
= (d2 + βu)∆v + 2β∇u · ∇v + g(u, v). (2.21)

In virtue of Lemmas 2.4 and 2.1 and (2.19), we have

‖g(u, v)‖Lp(Ω) ≤ A1 and ‖d2 + βu‖L∞(Ω) ≤ A1 for all t ∈ (0, Tmax). (2.22)

Using (2.21), (2.20) and (2.22) and the Lp-estimate for parabolic equations, we have

‖v(·, t)‖W2
p(Ω) ≤ A1 for all t ∈ (0, Tmax).

Again, taking p to be sufficiently large and combing with the Sobolev embedding theorem

(see [16]), we have

‖v(·, t)‖L∞(Ω) ≤ A for all t ∈ (0, Tmax).

Hence, this proof is completed.

Obviously, from Lemmas 2.1 and 2.5 and [2], we conclude that Tmax = ∞ and ‖v(·, t)‖∞ +

‖v(·, t)‖∞ ≤ M(ϕ, ψ) for all t ∈ [0, ∞), where M(ϕ, ψ) depends on the initial value (ϕ, ψ).

Notice that in the proof of Lemma 2.1, for any positive constant ε0, there exists t1 > 0 such

that

‖u(·, t)‖L∞ ≤ a + ε0 for all t ∈ (t1, ∞). (2.23)

Hence we can replace c by a + ε0 for t ∈ (t1, ∞). Similarly in Lemma 2.3, C0 can be chosen to

be independent of (ϕ, ψ). So
∫

Ω
u(x, t) ≤ C0 for t ∈ (t2, ∞) with t2 > t1. Again in the proof of

Lemmas 2.4 and 2.5, we can also replace c by a + ε0 and then we can find t0 > t2 such that

‖v(·, t)‖p ≤ E for all t ∈ (t0, ∞)

and

‖v(·, t)‖∞ ≤ A for all t ∈ (t0, ∞) (2.24)

if

β ∈
[

0,
d1d2

2
√

2(d1 + d2)pa

]

, (2.25)

where E and A are independent of (ϕ, ψ). In view of (2.23) and (2.24), there exists a constant

M1 such that

‖v(·, t)‖∞ + ‖v(·, t)‖∞ ≤ M1 for all t ∈ (t0, ∞),

where M1 is independent of (ϕ, ψ). Therefore, we have the following theorem.

Theorem 2.6. Suppose that p > N and β satisfies (2.4), then every initial value (ϕ, ψ) ∈ (W1,p(Ω))2

satisfying ϕ(x) ≥ 0 and ψ(x) ≥ 0 for all x ∈ Ω, determines a unique global classical solution

(u(x, t), v(x, t)) of system (1.4), which satisfies (u, v) ∈ (C([0, ∞); W1,p(Ω)) ∩ C2,1(Ω× [0, ∞)))2.

Moreover, (u, v) is uniformly bounded in Ω× (0, ∞), that is, there exists a constant M(ϕ, ψ) > 0,

depending on the initial (ϕ, ψ), such that ‖u(·, t)‖∞ + ‖v(·, t)‖∞ ≤ M for all t ∈ [0, ∞). Furthermore,

if β satisfies (2.25), then there exist two positive constants M1, independent of (ϕ, ψ), and t0 > 0, such

that ‖u(·, t)‖∞ + ‖v(·, t)‖∞ ≤ M1 for all t ∈ (t0, ∞).
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3 A priori estimates

Steady-state solutions of (1.4) satisfy the following system:











































d1∆u + u

(

a− u− v

1 + u2

)

= 0 in Ω,

∆[(d2 + βu)v] + v

(

b− v

1 + u2

)

= 0 in Ω,

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω,

u(x, 0) = ϕ(x) ≥ 0, v(x, 0) = ψ(x) ≥ 0, in Ω.

(3.1)

It is easy to see that system (1.4) has a positive constant steady-state solution e = (u∗, v∗)T if

and only if a > b, where u∗ = θ , a− b, v∗ = b(1 + θ2).

Next, we study the asymptotic behavior of positive solutions of (3.1) as d1 is small or β

is sufficiently large. For the first step of the asymptotic analysis, we derive a priori positive

upper and lower bounds for positive solutions to (3.1).

Lemma 3.1. Suppose that (u, v) is a solution of (3.1) and a 6= b, then there exists a positive constant

Č such that (u, v) satisfies

Č ≤ u(x) ≤ a,
d2b

d2 + β
≤ v(x) ≤ κ ,

b

d2
(d2 + βa)(1 + a2)

for all x ∈ Ω̄.

Proof. Let x0 ∈ Ω̄ be a maximum point of u, i.e., u(x0) = maxx∈Ω̄ u(x). Then by using the

maximum principle [24] to the first equation of (3.1), one has a − u(x0) − v(x0)
1+u2(x0)

≥ 0 and

hence u ≤ a.

By setting w = (d2 + βu)v, we can reduce the second equation of (3.1) with the boundary

condition to














∆w + v

(

b− v

1 + u2

)

= 0 in Ω,

∂w

∂n
= 0 on ∂Ω.

(3.2)

Let x1 ∈ Ω̄ be a maximum point of w, i.e., w(x1) = maxx∈Ω̄ w(x). Applying the maximum

principle [24] to (3.2), we get v(x1) ≤ b(1 + u2(x1)) = b(1 + a2). Note that 0 ≤ u(x1) ≤ a

and v(x1) ≤ b(1 + a2), then we have maxΩ̄ w(x) = w(x1) ≤ b(d2 + βa)(1 + a2), which in turn

implies that

max
Ω̄

v(x) ≤ 1

d2
max

Ω̄
w(x) =

1

d2
[d2 + βu(x1)]v(x1) ≤

b

d2
(d2 + βa)(1 + a2) = κ.

To obtain the lower bound for v, we define w(y0) = minΩ̄ w(x). Similarly, applying the

maximum principle [24] to (3.2) yields v(y0) ≥ b(1 + u2(y0)). According to the definition of

w, we obtain

min
Ω̄

v ≥ minΩ̄ w

d2 + β maxΩ̄ u
=

w(y0)

d2 + βu(x0)
=

d2 + βu(y0)

d2 + βu(x0)
v(y0) ≥

d2b

d2 + βa
.
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Now, denote u(y1) = minΩ̄ u(x) for some y1 ∈ Ω̄. It follows from the maximum principle [24]

that

u(y1) ≥ a− v(y1)

1 + u2(y1)
. (3.3)

Note that
v(y1)

1 + u2(y1)
≤ v(y1) ≤ max

Ω̄
v(x) ≤ κ. (3.4)

This, together with (3.3) and (3.4), implies that

u(y1) ≥ a− v(y1)

1 + u2(y1)
≥ a− κ.

If a > κ then u(x) ≥ a− κ for all x ∈ Ω and hence the proof of Lemma 3.1 is completed.

In what follows, we shall show that u(x) ≥ Č in the case where a ≤ κ. Let

c1(x) = a− u(x)− v(x)

1 + u2(x)
,

then

|c1(x)| ≤ 2a + κ.

From Harnack’s inequality (see [21]), there exists a positive constant C∗ such that

max
Ω̄

u(x) ≤ C∗min
Ω̄

u(x).

Hence, it remains to prove that there is a positive constant ε such that maxΩ̄ u(x) > ε. Suppose

this is not true, then there exists a sequence {(d1n, d2n, βn)}∞
n=1 such that the corresponding

positive solutions (un, vn) of problem (3.1) with (d1, d2, β) = (d1n, d2n, βn) satisfy maxΩ̄ un → 0

as n→ ∞.

From the Sobolev embedding theorem and elliptic estimates, there exists a subsequence

of {(un, vn)T}∞
n=1, which we still denote by {(un, vn)}∞

n=1, such that un → u∞ and vn → v∞ in

C2(Ω) as n→ ∞. From the assumption, we have u∞ ≡ 0 and (u∞, v∞) satisfies (3.1). Then the

second equation of (3.1) implies

−d2∆v∞ = v∞(b− v∞) in Ω,
∂v

∂n
= 0 on ∂Ω.

By the property of solutions of the logistic equation and min vn ≥ d2b/(d2 + β), we have

v∞ = b. Denote by ũn = un/‖un‖L∞ the L∞ normalization of un. Then by dividing the first

equation of (3.1) by ‖un‖L∞ , we know that {ũn} forms a sequence of positive solutions of

− d1∆ũn = ũn

(

a− un −
vn

1 + u2
n

)

in Ω,
∂ũn

∂n
= 0 on ∂Ω. (3.5)

Note that ‖ũn‖L∞ = 1 for n ∈ N, then it follows from the elliptic regularity theory and the

Sobolev embedding theorem that there exists a nonnegative function ũ∞ ∈ C1(Ω̄) such that

limn→∞ ũn = ũ∞ in C1(Ω̄). This, combining with ‖ũ∞‖L∞ = 1, yields that ũ∞ > 0. On the

other hand, by integrating the first equation in (3.5) over Ω, we observe that

∫

Ω
ũn

(

a− un −
vn

1 + u2
n

)

dx = 0.

Let n → ∞, and note that ũ∞ > 0, u∞ = 0 and v∞ = b, then we have a = b, which contradicts

our assumption. Therefore, we complete the proof of Lemma 3.1.
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4 Existence/nonexistence of nonconstant solutions

Throughout the remaining part of this paper, we always assume that a > b.

Lemma 4.1. Every sequence {(un, vn)}∞
n=1 of positive solutions of (3.1) with a > b and d1 = d1n →

∞ as n→ ∞ satisfies

‖un − u∗‖L∞ + ‖vn − v∗‖L∞ → 0 as n→ ∞,

where e = (u∗, v∗) is the unique positive constant solution.

Proof. For fixed a, b, β and Ω, Lemma 3.1 and standard regularity arguments tell that

{(un, vn)}∞
n=1 has a convergent subsequence, which we still denote by {(un, vn)}∞

n=1. Ac-

cording to the argument by Lou and Ni [24], we can obtain a positive constant K, which is

independent of n, such that

‖un − ūn‖L∞ ≤ K

d1n
with ūn =

1

|Ω̄|

∫

Ω
undx

for n ∈ N. Together with Lemma 3.1, we can find a constant ū ∈ [0, a] such that limn→∞ un = ū

uniformly in Ω̄. Lemma 3.1 and the standard Lp-estimate for elliptic equations mean that

both {un}∞
n=1 and {vn}∞

n=1 are uniformly bounded in W2,p(Ω). Thus, the usual compactness

argument implies

lim
n→∞

un = ū in C1(Ω̄), (4.1)

passing to subsequence. We can similarly get a nonnegative function v̄ such that

lim
n→∞

vn = v̄ in C1(Ω̄), (4.2)

passing to a subsequence. By setting n → ∞ in the weak form of the second equation of (3.1)

and using the elliptic regularity theory, we know that v̄ satisfies

(d2 + βū)∆v̄ = v̄

(

b− v̄

1 + ū2

)

in C1(Ω̄),
∂v̄

∂n
= 0 on ∂Ω̄.

Since ū ∈ [0, a] is constant, the well-known property of the logistic equation implies that v̄ is

also constant and satisfies

v̄ = 0 or b− v̄

1 + ū2
= 0. (4.3)

Integrating the first equation of (3.1) yields

∫

Ω
un

(

a− un − b− vn

1 + u2
n

)

dx = 0, n ∈ N. (4.4)

By (4.1) and (4.2), letting n→ ∞ in (4.4) implies

ū = 0 or a− ū− v̄

1 + ū2
= 0

because ū and v̄ are constants. Suppose for contradiction that a− ū− v̄
1+ū2 6= 0. Hence (4.1)

and (4.2) imply a− un − vn

1+u2
n
6= 0 in Ω for sufficiently large n ∈ N. Together with un > 0 in

Ω, we obtain
∫

Ω
un

(

a− un −
vn

1 + u2
n

)

dx 6= 0

for sufficiently large n ∈ N. However, this contradicts (4.4). Then we obtain a− ū− v̄
1+ū2 = 0.

Using a similar argument, we have b− v̄
1+ū2 = 0. Therefore, (ū, v̄) = (u∗, v∗).
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Theorem 4.2. For any fixed (d2, β, a, b, Ω) satisfying a > b, there exists a large positive constant D

such that (3.1) with d1 ≥ D has no nonconstant solutions.

Proof. Assume that (u, v) is a non-negative solution of (3.1) and denote

ū =
1

|Ω|
∫

Ω
udx, v̄ =

1

|Ω|
∫

Ω
vdx.

Then, multiplying u− ū the first equation in (3.1) by and integrating over Ω yield

d1

∫

Ω
|∇u|2dx =

∫

Ω
u(a− u− v

1 + u2
)(u− ū)dx

=
∫

Ω

(

a− u− ū− v

1 + u2
+

ūv̄(u + ū)

(1 + u2)(1 + ū2)

)

(u− ū)2dx

−
∫

Ω

ū(u− ū)(v− v̄)

1 + u2
dx

≤
∫

Ω
(a + 2a2κ)(u− ū)2dx +

ū

2

[

∫

Ω

(u− ū)2

1 + u2
dx +

∫

Ω

(v− v̄)2

1 + u2
dx

]

≤
(

3a

2
+ 2a2κ

)

∫

Ω
(u− ū)2dx +

a

2

∫

Ω
(v− v̄)2dx,

(4.5)

where the last inequality comes from Lemma 3.1. Recall the Poincaré–Wirtinger inequality

λ1‖U − Ū‖2
L2 ≤ ‖∇U‖2

L2 for any U ∈ H1(Ω), where λ1 is the least positive eigenvalue of −∆

with homogeneous Neumann boundary condition on ∂Ω. Then it follows from (4.5) that
[

1− a

λ1d1

(

3

2
+ 2aκ

)]

‖∇u‖2
L2 ≤

a

2λ1d1
‖∇v‖2

L2 . (4.6)

Similarly, multiplying by v − v̄ the second equation of (3.1) and integrating the resulting

expression lead us to
∫

Ω
(d2 + βu)|∇v|2dx =

∫

Ω
v

(

b− v

1 + u2

)

(v− v̄)dx− β
∫

Ω
v∇u · ∇vdx

=
∫

Ω

(

b− v

1 + u2
− v̄

1 + u2

)

(v− v̄)2dx

+
∫

Ω

v̄2(u− ū)(v− v̄)(u + ū)

(1 + u2)(1 + ū2)
dx− β

∫

Ω
v∇u · ∇vdx.

By Lemma 3.1 and Young’s inequality, for any ε > 0, one can find a positive constant K such

that
∫

Ω
(d2 + βu)|∇v|2dx ≤

∫

Ω

(

b− v

1 + u2
− v̄

1 + u2

)

(v− v̄)2dx

+ 2aκ2

[

∫

Ω

K

ε
(u− ū)2dx +

∫

Ω
ε(v− v̄)2dx

]

+ βκ

[

∫

Ω

K

ε
|∇u|2dx +

∫

Ω
ε|∇v|2dx

]

,

(4.7)

where κ is the positive number given in Lemma 3.1. Then the Poincaré–Wirtinger inequality

implies
[

1− εκ

(

2aκ

d2λ1
+

β

d2

)]

‖∇v‖2
L2

≤ 1

d2

∫

Ω

(

b− v

1 + u2
− v̄

1 + u2

)

(v− v̄)2dx +
κK

ε

(

2aκ

d2λ1
+

β

d2

)

‖∇u‖2
L2 .

(4.8)
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Note that

b− v

1 + u2
− v̄

1 + u2
= b− v̄

1 + ū2
−
(

v̄

1 + u2
− v̄

1 + ū2

)

− v

1 + u2
,

then it follows from Lemma 4.1 that

b− v

1 + u2
− v̄

1 + u2
< ε if d1 > 0 is sufficiently large. (4.9)

Thus, when d1 > 0 is large, (4.6) and (4.8) enable us to find a positive constant K1 such that

‖∇u‖2
L2 ≤

K1

d1
‖∇u‖2

L2 ,

which implies that u is a constant if d1 is large enough. Combining with (4.8) and (4.9), we

deduce that (u, v) is a constant solution if d1 > 0 is sufficiently large. Then the proof of

Theorem 4.2 is completed.

Remark 4.3. The conclusion of Theorem 4.2 is still valid in the case where β = 0, that is, for

any fixed (d2, a, b, Ω) with a > b, there exists a large positive constant D such that (3.1) with

β = 0 and d1 ≥ D has no nonconstant solutions.

Recall that −∆ under Neumann boundary condition has eigenvalues 0 = λ0 < λ1 < · · · <
λn < · · · with limn→∞ λn = +∞. Let Si be the eigenspace associated with λi with multiplicity

ni. Let φij, 1 ≤ j ≤ ni, be the normalized eigenfunctions corresponding to λi. Then the set

{φij| i ≥ 0, 1 ≤ j ≤ ni} forms a complete orthonormal basis of the Lebesgue space L2(Ω) of

integrable functions defined on Ω, φ0(x) > 0 for all x ∈ Ω. Let Xij = {cφij| c ∈ R2}, and

{φij| 1 ≤ j ≤ dimSi} be an orthonormal basis of Si. For i ≥ 0, it can be observed that

X =
∞
⊕

i=1

Xi and Xi =
dimSi
⊕

j=1

Xij. (4.10)

Next, we study the linearization of (3.1) at (u∗, v∗), where e = (u∗, v∗) is the unique

positive constant solution of (1.4). Let Φ(U) = (d1u, d2v + βuv)T and

G(U) =









u

(

a− u− v

1 + u2

)

v

(

b− v

1 + u2

)









for U = (u, v)T. Then (3.1) can be rewritten as







−∆Φ(U) = G(U) in Ω,

∂U

∂n
= 0 on ∂Ω.

(4.11)

Define

X
+ = {U ∈ X | u > 0, v > 0 on Ω̄}

and

B =

{

U ∈ X

∣

∣

∣

∣

1

C
< u < C,

1

C
< v < C

}

,

where C is a positive constant whose existence is guaranteed by Lemma 3.1. Note that the

derivative ΦU(U) of Φ(U) with respect to U is a positive operator for all non-negative U, then
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Φ−1
U (U) exists and is a positive operator as well. Hence, U is a positive solution to (4.11) if

and only if

F(U) , U − (I − ∆)−1
{

Φ−1
U (U)[G(U) +∇UΦUU(U)∇UT] + U

}

= 0 in X
+,

where (I − ∆)−1 is the inverse of I − ∆ in X. As F(·) is a compact perturbation of the identity

operator, the Leray–Schauder degree deg(F(·), 0, B) is well-defined if F(U) 6= 0 on ∂B. Note

that

DU F(e) = I − (I − ∆)−1{Φ−1
U (e)GU(e) + I},

and that the index of F at e is defined as index(F(·), e) = (−1)γ provided that DU F(e) is

invertible, where γ = ∑ mµ and mµ is the multiplicity of any negative eigenvalue µ of DU F(e);

see [28] for more details.

We now consider the eigenvalues of DU F(e). First, for every integer i ≥ 0 and 1 ≤ j ≤
dimSi, Xij is invariant under DU F(e), and µ is an eigenvalue of DU F(e) on Xij if and only if

it is an eigenvalue of the matrix

I − 1

1 + λi

[

Φ−1
U (e)GU(e) + I

]

=
1

1 + λi

[

λi I −Φ−1
U (e)GU(e)

]

.

Thus, DU F(e) is invertible if and only if, for all i ≥ 0, the above matrix is nonsingular. To

calculate γ, we first define

H(λ) = det{λI −Φ−1
U (e)GU(e)}. (4.12)

If H(λi) 6= 0, then for each 1 ≤ j ≤ dimSi, the number of negative eigenvalues of DU F(e) on

Xij is odd if and only if H(λi) < 0. In conclusion, we have the following lemma (see [29]),

which gives the explicit formula of calculating the index.

Lemma 4.4. If a > b and H(λi) 6= 0 for all i ≥ 0, then

index(F(·), e) = (−1)γ with γ = ∑
i≥0,H(λi)<0

ni(λi),

where ni(λi) is the algebraic multiplicity of λi.

To facilitate our computation of index(F(·), e), we will consider the sign of H(λi). Notice

that our aim is to investigate the effect of the cross-diffusion coefficient β and diffusion coeffi-

cient d1 on the existence of stationary patterns. Then we will concentrate on the dependence

of H(λi) on β and d1. Note that

λI −Φ−1
U (e)GU(e) =





λ− 2θ2b
d1(1+θ2)

+ θ
d1

θ
d1(1+θ2)

− βθb(1+θ2)
d1(d2+βθ)

+ 2βθ2b2

d1(d2+βθ)
− 2bθ2

d2+βθ λ− βθb
d1(d2+βθ)

+ b
d2+βθ



 .

Then, we have

H(λ) = λ2 −
[

βθb

d1(d2 + βθ)
+

2θ2b

d1(1 + θ2)
− θ

d1
− b

d2 + βθ

]

λ +
bθ

d1(d2 + βθ)
. (4.13)

If

Λ(β, d1) ,

[

βθb

d1(d2 + βθ)
+

2θ2b

d1(1 + θ2)
− θ

d1
− b

d2 + βθ

]2

− 4bθ

d1(d2 + βθ)
> 0,
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then H(λ) = 0 has two roots λ = λ+(β, d1) and λ = λ−(β, d1), where

λ±(β, d1) =
1

2

[

βθb

d1(d2 + βθ)
+

2θ2b

d1(1 + θ2)
− θ

d1
− b

d2 + βθ
±
√

Λ(β, d1)

]

.

We first consider the dependence of H(λ) on β. When β is large enough, we have Λ > 0 and

the two roots of H(λ) satisfy

lim
β→∞

λ−(β, d1) = 0

and

lim
β→∞

λ+(β, d1) =
(1 + 3θ2)b− θ(1 + θ2)

d1(1 + θ2)
, λ̄ if b >

(1 + θ2)θ

1 + 3θ2
. (4.14)

Thus, we have the following existence result about the non-constant steady state solution:

Theorem 4.5. Assume that a > b, b >
(1+θ2)θ
1+3θ2 and λ̄ ∈ (λn, λn+1) for some n ≥ 1 and ∑

n
i=1 ni(λi)

is odd, then there exists a positive number β∗ such that system (3.1) with β ≥ β∗ has at least one

non-constant positive solution.

Proof. In virtue of (4.14) and λ̄ ∈ (λn, λn+1), there exists a positive constant β∗ such that, if

β ≥ β∗ then

0 < λ−(β, d1) < λ1 and λ+(β, d1) ∈ (λn, λn+1). (4.15)

We argue by contradiction. Assume that system (3.1) with β ≥ β∗ has no non-constant

positive solutions. For s ∈ [0, 1], define

Ψ(s, U) = ((sd1 + (1− s)d∗1)u, (d2 + sβu)v)T,

where d∗1 is a positive constant such that d∗1 ≥ D and 2θ2b
d∗1(1+θ2)

− θ
d∗1
− b

d2
< 0. Obviously,

Ψ(1, ·) = Φ(·). Consider the following system







−∆Ψ(s, U) = G(U) in Ω,

∂U

∂n
= 0 on ∂Ω.

(4.16)

Then U is a positive non-constant solution of (3.1) if and only if it is a solution to (4.16) with

s = 1. It is obvious that e is the unique constant positive solution of (4.16) for all 0 ≤ s ≤ 1. U

is a positive solution of (4.16) if and only if

F (s, U) , U − (I − ∆)−1
{

Ψ−1
U (s, U)[G(U) +∇UΨs,UU(U)∇UT] + U

}

= 0 in X
+.

It is obvious that F (1, U) = F(U). Remark 4.3 says that F (0, U) = 0 has only one positive

solution e in X+. By a direct computation, we have

DUF (s, e) = I − (I − ∆)−1{Ψ−1
U (s, e)GU(e) + I}.

In particular,

DUF (0, e) = I − (I − ∆)−1{Ψ−1
U (0, e)GU(e) + I},

DUF (1, e) = I − (I − ∆)−1{Φ−1
U (e)GU(e) + I} = DU F(e),

where ΨU(0, ·) = diag(d∗1 , d2). From the previous analysis, we know that the key point is to

determine the sign of

H(s, λ) = det{λI −Ψ−1
U (s, e)GU(e)}. (4.17)
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By direction calculation, we have H(0, λ) = λ2 −
(

2θ2b
d∗1(1+θ2)

− θ
d∗1
− b

d2

)

λ + bθ
d∗1 d2

and hence

H(0, λi) > 0 for all i ≥ 0.

Clearly, H(1, λ) = H(λ). Therefore, in view of (4.14) and (4.15), we can get










H(λ0) = H(0) > 0,

H(λi) < 0 when 1 ≤ i ≤ n,

H(λi) > 0 when i ≥ n + 1.

Therefore, zero is not an eigenvalue of λi I −Φ−1
U (e)GU(e) for all i ≥ 0, and

∑
i≥1,H(λi)<0

dim Si =
n

∑
i=1

ni(λi), which is odd.

Thanks to Lemma 4.4, we have

index(F (1, ·), e) = (−1)γ = (−1)∑
n
i=1 ni(λi) = −1,

index(F (0, ·), e) = (−1)γ = (−1)0 = 1.

Now, by Lemma 3.1, we know that every positive solution of system (3.1) lies in B and

F (t, ·) 6= 0 on ∂B. So deg(F (s, ·), B, 0) is well defined. By the homotopy invariance of

topological degree, we have

deg(F (1, ·), B, 0) = deg(F(0, ·), B, 0). (4.18)

On the other hand, from our assumption, both equations F (1, e) = 0 and F (0, e) = 0 have

only one positive solution e in B, then we have

deg(F (1, ·), B, 0) = index(F (1, ·), e) = −1,

deg(F (0, ·), B, 0) = index(F (0, ·), e) = 1,

which is a contradiction with (4.18). So the proof is completed.

Next we consider the dependence of H(λ) on d1. From the previous analysis, it follows

that the roots of H(λ) = 0 are all negative if 2θb
1+θ2 +

βb
d2+βθ − 1 < 0 and Λ(β, d1) > 0. So, in this

case, we can’t obtain the existence of non-constant positive solutions by using the method of

degree theory.

We begin with the case 2θb
1+θ2 +

βb
d2+βθ − 1 > 0. By straightforward computations, one can

get Λ(β, d1) > 0 and the two roots of H(λ) = 0 satisfy 0 < λ−(β, d1) < λ+(β, d1) if d1 ∈ (0, d∗)
and 2θb

1+θ2 +
βb

d2+βθ > 1, where

d∗ =

{

1

b

√

θb(d2 + βθ)

(

−1 +

√

(

βb

d2 + βθ
+

2θb

1 + θ2

)

)}2

.

Furthermore, one can verify that λ−(β, d1) is monotone increasing and λ+(β, d1) is monotone

decreasing with respect to d1 ∈ (0, d∗). Moreover, λ+(β, d1) and λ−(β, d1) satisfy

lim
d1→0

λ−(β, d1) =
b

(d2 + βθ)

(

−1 +
2θb

1 + θ2
+

βb

d2 + βθ

)−1

, η,

lim
d1→0

λ+(β, d1) = +∞,

lim
d1→d∗

λ−(β, d1) = lim
d1→d∗

λ+(β, d1) =
b

(d2 + βθ)

(

−1 +

√

2θb

1 + θ2
+

βb

d2 + βθ

)−1

.
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In order to state the structure of nonconstant solutions, we introduce the following two natural

numbers j0 and k0 by

j0 , min

{

j ∈ N

∣

∣

∣

∣

∣

b

(d2 + βθ)

(

−1 +
2θb

1 + θ2
+

βb

d2 + βθ

)−1

< λj

}

,

k0 , min







k ∈ N

∣

∣

∣

∣

∣

∣

b

(d2 + βθ)

(

−1 +

√

2θb

1 + θ2
+

βb

d2 + βθ

)−1

≤ λk







(≥ j0).

Since λ+(β, d1) is monotone decreasing with respect to d1 and limd1→0 λ+(β, d1) = +∞,

there are positive numbers

d1k = sup{d1 > 0| λ+(β, d1) > λk} for k = k0, k0 + 1, . . . . (4.19)

Solving λ+(β, d1) = λk for d1, we get the solution d1k (k = k0, k0 + 1, . . .) with

d1k =

(

−1 +
2θb

1 + θ2
+

βb

d2 + βθ
− bθ

λk(d2 + βθ)

)(

λk +
b

d2 + βθ

)−1

.

Therefore, the sequence {d1k}∞
k=k0

defined by (4.19) satisfies

0← · · · < d1k < · · · < d1k0+1 < d1k0
< d∗ , d1k0−1. (4.20)

If k0 > j0, we define

d̃1j , inf{d1 > 0| λ−(β, d1) > λj} for j = j0, j0 + 1, · · · , k0 − 1.

Similarly, it follows from λ−(β, d1) = λj that d̃1j = d1j. Hence the monotone increasing

property of λ−(β, d1) for d1 ∈ (0, d∗) induces the monotone increasing property of {d̃1j}k0−1
j=j0

as

(d̃j0−1 ,)0 < d̃j0 < d̃j0+1 < · · · < d̃k0−1 < d∗.

Therefore, we have the following conclusions:

Theorem 4.6. Assume that a > b and 2θb
1+θ2 +

βb
d2+βθ > 1, then the following (i) and (ii) hold true:

(i) In case where k0 > j0, there exists at least one nonconstant solution of (3.1) provided that

d1 ∈ (d̃1j, d̃1j+1) ∩ (d1k+1, d1k) and ∑
k
i=j+1 ni(λi) is odd or d1 ∈ (d1k+1, d1k) ∩ (d̃k0−1, d∗) and

∑
k
i=k0

ni(λi) is odd.

(ii) In case where k0 = j0, there exists at least one nonconstant solution of (3.1) provided that

d1 ∈ (d1k+1, d1k) and ∑
k
i=k0

ni(λi) is odd.

Proof. In the case where 2θb
1+θ2 +

βb
d2+βθ > 1, suppose for contradiction that there is no noncon-

stant solution of (3.1). According to Lemma 3.1, we know every positive solution of system

(3.1) lies in B and F(U) 6= 0 on ∂B. Then the homotopy invariance of topological degree

implies

deg(F(·), B, 0) is constant for all d1 > 0. (4.21)

In view of Theorem 4.2, we recall that if d1 ≥ D, then F(U) = 0 has a unique solution e in

X+. Therefore, we know that

deg(F(·), B, 0) = index(F(·), e) for d1 ≥ D.
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It is easy to verify that λ+(β, d1) is monotone decreasing with respect to d1 and satisfies

limd1→∞ λ+(β, d1) = 0. Together with H(λ0) > 0 and λ−(β, d1) < λ+(β, d1), we obtain

H(λi) > 0 for all i ≥ 0 when d1 is sufficiently large. It follows from Lemma 4.4 that if d1 > 0

is large enough,

deg(F(·), B, 0) = index(F(·), e) = (−1)γ = (−1)0 = 1. (4.22)

On the other hand, if d1 ∈ (d̃1j, d̃1j+1) ∩ (dk+1, dk), then (4.19) and (4.20) imply that λj <

λ−(β, d1) < λj+1 and λ+(β, d1) > λk. Hence, if k0 > j0, we can get











H(λ0) = H(0) > 0,

H(λi) < 0 when j + 1 ≤ i ≤ k,

H(λi) > 0 when i ≥ k.

By Lemma 4.4, we have

index(F(·), e) = (−1)γ = (−1)∑
k
i=j+1 ni(λi).

If ∑
k
i=j+1 ni(λi) is odd , then

deg(F(·), B, 0) = index(F(·), e) = (−1)γ = (−1)∑
k
i=j+1 ni(λi) = −1,

which is a contradiction with (4.22). Consequently, by the contradiction argument, we ob-

tain at least one nonconstant solution if d1 ∈ (d̃1j, d̃1j+1) ∩ (dk+1, dk) and ∑
k
i=j+1 ni(λi) is

odd. Similarly, we have λ(k0 − 1) < λ−(β, d1) < λ−(β, d∗) ≤ λ(k0) and λ+(β, d1) > λ(k)

if d1 ∈ (d̃k0−1, d∗) ∩ (dk+1, dk). Therefore,











H(λ0) = H(0) > 0,

H(λi) < 0, when k0 ≤ i ≤ k,

H(λi) > 0, when i ≥ k

if k0 > j0. Through similar calculations, we can get a contradiction with (4.22) if ∑
k
i=k0

ni(λi)

is odd. So the proof for the statement (i) is completed. The proof for statement (ii) can be

carried out by a similar manner.

Remark 4.7. In particular, assume that j0 = k0 = 1, namely,

b

(d2 + βθ)

(

−1 +

√

2θb

1 + θ2
+

βb

d2 + βθ

)−1

≤ λ1.

If a > b and
2θb

1 + θ2
+

βb

d2 + βθ
> 1,

then there exists a sequence {d1k}∞
j=0 such that 0 ← · · · < d1k < · · · < d12 < d11 and (3.1)

admits at least one nonconstant solution if d1 ∈ (d1k+1, d1k) and ∑
k
i=1 ni(λi) is odd.
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5 Stability of the positive constant solution

In this section, we firstly analyze the stability of the positive constant steady-state solution by

eigenvalue analysis. And then, we will investigate the global stability of the positive constant

steady-state solution. To investigate the local dynamical behavior of system (1.4) near the

positive constant solution e, we need to consider the linearized operator Lα1,β of (1.4) with

respect to (u, v) at (u∗, v∗). Note that

Lα1,β =

[

d1∆ + α1 −α2

βb(1 + θ2)∆ + α3 (d2 + βθ)∆− b

]

,

where

θ = a− b, α1 = −θ +
2bθ2

1 + θ2
, α2 =

θ

1 + θ2
, α3 = 2b2θ.

The characteristic equation is Lα1,β(φ̃1, φ̃2) = σ(φ̃1, φ̃2). Let φ̃1 = ∑0≤i≤∞ ai ϕi, φ̃2 =

∑0≤i≤∞ bi ϕi. Notice that {ϕi}∞
i=0 is a complete orthogonal base of X. Substituting them into

the characteristic equation yields

∑
0≤i≤∞

M(σ, α1, β, λi)(ai, bi)
T ϕi = 0,

where

M(σ, α1, β, λi) =

[ −d1λi + α1 − σ −α2

−βb(1 + θ2)λi + α3 −(d2 + βθ)λi − b− σ

]

.

To investigate the stability of the positive steady-state solution, it suffices to study the charac-

teristic equation detM(σ, α1, β, λi) = 0, that is,

σ2 − Ti(α1, β)σ + Di(α1, β) = 0, i = 0, 1, 2, . . . , (5.1)

where
Ti(α1, β) = − (d1 + d2 + βθ)λi + α1 − b,

Di(α1, β) = d1(d2 + βθ)λ2
i + [bd1 − (d2 + βθ)α1 − bβ(1 + θ2)α2]λi + bθ.

It is easy to know that two solutions of equation (5.1) have negative real parts if Ti(α1, β) < 0

and Di(α1, β) > 0 for all i ≥ 0. Thus, we have the following results.

Lemma 5.1. If a > b, then all eigenvalues of Lα1,β have negative real parts, or equivalently, the

homogenous steady-state e = (θ, b(1 + θ2)) is locally asymptotically stable, provided that one of the

following conditions is satisfied:

(i) either α1 < −b or −b < α1 < 0 and β <
bd1−d2α1

(α1+b)θ
or 0 < α1 < min{b, bd1

d2
} and β ≤ bd1−d2α1

(α1+b)θ
;

(ii) 0 < α1 < min{b, bd1
d2
} and β >

bd1−d2α1

(α1+b)θ
and [(bd1 − d2α1)− (α1 + b)βθ]2 < 4d1(d2 + βθ)bθ;

(iii) d1 < d2 and d1b
d2

< α1 < b and [(bd1 − d2α1)− (α1 + b)βθ]2 < 4d1(d2 + βθ)bθ.

Now, we consider the global stability of e.

Lemma 5.2. If a > b, 2b(a + c) < 1 and β ≤ 2
c

√

d1d2θ
b(1+θ2)

, then e is globally asymptotically stable.
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Proof. We discuss the global stability of e by Lyapunov method. Define

L(u(x, t), v(x, t)) =
∫

Ω

∫ u

u∗

ξ − u∗

ξ
dξdx +

∫

Ω

∫ v

v∗

η − u∗

η
dηdx.

Then

L′(t) =
∫

Ω

u− u∗

u

∂u

∂t
dx +

∫

Ω

v− v∗

v

∂v

∂t
dx

= d1

∫

Ω

u− u∗

u
∆udx +

∫

Ω

v− v∗

v
[∆(d2 + βu)v]dx

+
∫

Ω
(u− u∗)

(

a− u− v

1 + u2

)

dx +
∫

Ω
(v− v∗)

(

b− v

1 + u2

)

dx

, I1 + I2,

where

I1 = −d1

∫

Ω

u∗

u2
|∇u|2dx−

∫

Ω
(d2 + βu)

v∗

v2
|∇v|2dx− β

∫

Ω

v∗

v
|∇u||∇v|dx

I2 = −
∫

Ω
(u− u∗)

(

u− u∗ +
v

1 + u2
− v∗

1 + (u∗)2

)

dx−
∫

Ω
(v− v∗)

(

v

1 + u2
− v∗

1 + (u∗)2

)

dx.

It is easy to see that 4d1(d2 + βu)u∗ ≥ β2u2v∗ when β ≤ 2
c

√

d1d2θ
b(1+θ2)

. Hence, we have I1 ≤ 0.

Further computation gives

I2 = −
∫

Ω

[

(u− u∗)2 − (u− u∗)
(

v

1 + u2
− v∗

1 + u2
+

v∗

1 + u2
− v∗

1 + (u∗)2

)]

dx

−
∫

Ω
(v− v∗)

(

v

1 + u2
− v∗

1 + u2
+

v∗

1 + u2
− v∗

1 + (u∗)2

)

dx

=
∫

Ω

(

−1 +
2v∗(u + u∗)

(1 + (u∗)2)(1 + u2)

)

(u− u∗)2dx−
∫

Ω

1

1 + u2
(v− v∗)2dx

+
∫

Ω

(

2v∗(u + u∗)
(1 + (u∗)2)(1 + u2)

− 1

1 + u2

)

(u− u∗)(v− v∗)dx

=
∫

Ω

(

−1 +
2b(u + u∗)

1 + u2

)

(u− u∗)2dx−
∫

Ω

1

1 + u2
(v− v∗)2dx

+
∫

Ω

(

2b(u + u∗)− 1

1 + u2

)

(u− u∗)(v− v∗)dx.

Clearly,

2b(u + u∗)
1 + u2

< 1 and

(

1− 2b(u + u∗)
1 + u2

)

4

1 + u2
>

(

2b(u + u∗)− 1

1 + u2

)2

if 2b(a + c) < 1. Therefore, we have I2 < 0. It follows from the above arguments that if the

conditions of Lemma 5.2 are satisfied, then L′(t) < 0 along all trajectories in the first quadrant

except (u∗, v∗). Therefore e = (u∗, v∗) is globally asymptotically stable.

6 Hopf bifurcation

This section is devoted to the Hopf bifurcation at the nontrivial steady-state solution e =

(u∗, v∗)T of (1.4) with a > b. To be more precise, as a pair of simple complex conjugate
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eigenvalues of the linearization around e = (u∗, v∗)T cross the imaginary axis of the complex

plane, the nontrivial steady-state solution e = (u∗, v∗)T of (1.4) loses stability and a branch of

small-amplitude limit cycles emerges from e = (u∗, v∗)T. Throughout this section, we always

assume that

(H1) a > b, λi is a simple eigenvalues of the linear operator −∆ subject to the homoge-

neous boundary condition ∂
∂n u on ∂Ω, ϕi is the eigenvector associated with λi satisfying

∫

Ω
ϕ2

i (x)dx = 1.

In what follows, by choosing the cross-diffusion coefficient β as the bifurcation parameter,

we shall analyze the occurrence of Hopf bifurcation, the Hopf bifurcation direction and the

stability of bifurcating time-periodic solutions. It follows from [11, 12] that system (1.4) with

a > b undergoes Hopf bifurcation near β = βi at the nontrivial steady-state solution e =

(u∗, v∗)T, where βi ∈ (0, ∞) satisfies

Ti(α1, βi) = 0,
∂

∂β
Ti(α1, βi) 6= 0, Di(α1, βi) > 0,

and

Tj(α1, βi) 6= 0, Dj(α1, βi) 6= 0 for all i 6= j.

Note that Ti(α1, β) is monotone decreasing with respect to β, then it is easy to see that Ti(α1, ·)
has exactly one zero

βi ,
α1 − b− (d1 + d2)λi

θλi
,

which is positive when α1 > b + (d1 + d2)λi. Obviously, Tj(α1, βi) 6= 0 for j 6= i. More-

over, Di(α1, βi) = −α2
1 + 2α1d1λi + b2 + b(d1 + d2)λi + bθ − d2

1λ2
i . Hence, it is easy to see that

Di(α1, βi) > 0 if bθ > d2λ2
i + b(d2 − d1)λi and α1 < d1λi +

√

b(d1 + d2)λi + bθ + b2. Next, we

only need to verify Dj(α1, βi) 6= 0 for all j 6= i. Obviously,

Dj(α1, βi) = −
λj

λi
α2

1 +

(

d1λ2
j

λi
+ d1λj

)

α1 −
bd1λ2

j

λi
− d2

1λ2
j + 2bd1λj + bd2λj +

b2λj

λi
+ bθ.

Therefore, we have Dj(α1, βi) < 0 for all j 6= i if ℜ < 0 and Dj(α1, βi) 6= 0 for all j 6= i if ℜ > 0

and α1 6= α±1 , where

ℜ =
d2

1λ4
j

λ2
i

+ d2
1λ2

j +
4λj

λi

[

−
bd1λ2

j

λi
− 1

2
d2

1λ2
j + (2d1 + d2)bλj +

b2λj

λi
+ bθ

]

and

α±1 =
d1(λj + λi)λj ± λi

√
ℜ

2λj
.

Therefore, we shall consider Hopf bifurcation under the following assumptions:

(H2) bθ > d2λ2
i + b(d2 − d1)λi and b + (d1 + d2)λi < α1 < d1λi +

√

b(d1 + d2)λi + bθ + b2;

(H3) Either ℜ < 0 or ℜ > 0 and α1 6= α±1 .

For convenience, we call a Hopf bifurcation forward if there exist periodic solutions when

parameter value β > βi; and backward if β < βi. Under assumptions (H1), (H2) and (H3),
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Lα1,βi
has exactly one pair of purely imaginary eigenvalues ±iωi with associated eigenvec-

tors qi and q̄i, where ωi =
√

Di(α1, βi), qi = ρi ϕi, and the nonzero vector ρi ∈ C2 satisfies

M(iωi, α1, βi, λi)ρi = 0. It follows that ρi = (α2,−d1λi + α1 − iωi)
T. Moreover, there exist a

neighborhood N1(βi)× N2(iωi) of (βi, iωi) in R+ ×C and a continuously differentiable func-

tion σ: N1(βi) → N2(iωi) such that σ(βi) = ±iωi and that the only eigenvalue of Lα1,β in

N2(iωi) is σ(β). Moreover, as β varies such that Ti(α1, β) decreases and passes through 0,

σ(β) varies from a complex number with a positive real part to a purely imaginary number

and then to a complex number with a negative real part. This implies that a codimension one

Hopf bifurcation for (1.4) occurs at β = βi. Namely, in every neighborhood of (U, β) = (e, βi)

there is a unique branch of time-periodic spatially non-homogeneous solutions Uβ(t, x), which

tends to e as β→ βi. The period Tβ of Uβ(t, x) satisfies that Tβ → 2π/ωi as β→ βi.

Under assumptions (H1), (H2) and (H3), −iωi is also an eigenvalue of L∗α1,βi
with an

associated eigenvector pi = ρ∗i ϕi, where ρ∗i ∈ C2 \ {0} satisfies

MT(−iωi, α1, βi, λi)ρ
∗
i = 0

and ρ̄∗i · ρi = 1 and ρ∗i · ρi = 0. Then, we have ρ∗i =
(−b−(d2+βi)λi+iωi

2iα2ωi
, 1

2iωi

)T
. Next, we consider

the bifurcation direction and stability of the bifurcating periodic solutions at β = βi according

to [11,12]. Denote by G
2 = (G2

1,G2
2)

T, and G
3 = (G3

1,G3
2)

T the second- and third-order Fréchet

derivatives of ∆Φ(U)+G(U) with respect to U at e = (u∗, v∗), respectively. A straightforward

computation yields

G
2
1(ξ, ζ) = 2

(

−1 +
3bθ(1− θ2)

(1 + θ2)2

)

ξ1ζ1 +
θ2 − 1

(1 + θ2)2
(ξ1ζ2 + ξ2ζ1),

G
2
2(ξ, ζ) = ∆[β(ξ1ζ2 + ξ2ζ1)]−

2

1 + θ2
ξ2ζ2 +

4bθ

1 + θ2
(ξ1ζ2 + ξ2ζ1) +

2b2(1− 3θ2)

1 + θ2
ξ1ζ1

G
3
1(ξ, ζ, ς) =

6b(1− 6θ2 + θ4)

(1 + θ2)3
ξ1ζ1ς1 +

2θ(3− θ2)

(1 + θ2)3
(ξ1ζ1ς2 + ξ2ζ1ς1 + ξ1ζ2ς1),

G
3
2(ξ, ζ, ς) =

4b(1− 3θ2)

(1 + θ2)2
(ξ1ζ1ς2 + ξ1ζ2ς1 + ξ2ζ1ς1)

+
4θ

(1 + θ2)2
(ξ2ζ2ς1 + ξ1ζ2ς2 + ξ2ζ1ς2) +

24b2θ(θ2 − 1)

(1 + θ2)2
ξ1ζ1ς1

for all ξ = (ξ1, ξ2)T, (ζ1, ζ2)T and ς = (ς1, ς2)T ∈ X. It is well known that the following

quantity determines the direction and stability of bifurcating periodic orbits Uβ(t, x) (see [11,

12])

Υi =
i

2ωi

(

g11g20 − 2|g11|2 −
|g02|2

3

)

+
g21

2
, (6.1)

where
g20 = 〈pi,G

2(qi, qi)〉,
g11 = 〈pi,G

2(qi, q̄i)〉,
g02 = 〈pi,G

2(q̄i, q̄i)〉,
g21 = 〈pi,G

3(qi, qi, q̄i)〉+ 2〈pi,G
2(W11, qi)〉+ 〈pi,G

2(W20, q̄i)〉,
and

W20 = [2iωi −Lα1,βi
]−1
[

G
2(qi, qi)− 〈pi,G

2(qi, qi)〉qi − 〈 p̄i,G
2(qi, qi)〉q̄i

]

,

W11 = − [Lα1,βi
]−1
[

G
2(qi, q̄i)− 〈pi,G

2(qi, q̄i)〉qi − 〈 p̄i,G
2(qi, q̄i)〉q̄i

]

.

Therefore, we obtain the following result.
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Theorem 6.1. In addition to assumptions (H1), (H2) and (H3), a Hopf bifurcation for (1.4) occurs at

β = βi if a > b. Namely, when a > b, in a neighborhood of (U, β) = (e, βi) there is a branch of

periodic solutions Uβ(x, t) satisfying Uβ(x, t)→ e as β→ βi. The period Tβ of Uβ(x, t) satisfies that

Tβ → 2π/ω∗ as β → βi. Moreover, the bifurcation is backward (respectively, forward) if Re(Υi) <

0 (respectively,> 0).

Obviously, in Theorem 6.1, if λi is not the principal eigenvalue of the linear operator −∆

subject to the homogeneous boundary condition ∂
∂n u = 0 on ∂Ω, then the Hopf bifurcating

periodic solutions Uβ(x, t) is spatially nonhomogeneous and unstable. However, if λi is the

principal eigenvalue λ0 = 0, then the associated eigenvector ϕ0 can be a positive constant func-

tion on Ω. In this case, assumption (H1) is obviously satisfied and α1 − b is sufficiently close

to zero. Hence, we can regard b as a bifurcation parameter. Obviously, we have T0(α1, β) = 0,

Tj(α1, β) < 0 and D0(α1, β) = bθ > 0, Dj(α1, β) > 0 for all j ∈ N if b = b∗ ,
θ(1+θ2)

θ2−1
and one of

the following conditions is satisfied

(A1) θ > 1 and d1 − d2 − 2βθ ≥ 0;

(A2) θ > 1, d1 > d2 and d1 − d2 − 2βθ < 0 and b(d1 − d2 − 2βθ)2
< 4d1(d2 + βθ)θ;

(A3) θ > 1 and d1 < d2 and b(d1 − d2 − 2βθ)2
< 4d1(d2 + βθ)θ.

It is easy to evaluate σ(b) at b = b∗ to get Reσ′(b∗) = θ2−1
2(1+θ2)

> 0. Thus, it remains to calculate

the direction of Hopf bifurcation and the stability of bifurcating periodic orbits bifurcating

from (U, b) = (e, b∗). In virtue of (6.1), we have

Re(Υ0) =
3θ3(2− 3θ2 + 6θ4 − θ6)

2(1 + θ2)4(θ2 − 1)
.

Corollary 6.2. Under one of conditions (A1)-(A3), if a > b then in every neighborhood of (U, b) =

(e, b∗) there is a branch of spatially homogeneous periodic solutions Ub(x, t) satisfying Ub(x, t)→ e as

b → b∗ and the Hopf bifurcation is forward (respectively, backward) and the bifurcation periodic solu-

tions are orbitally asymptotically stable (respectively, unstable) if 2− 3θ2 + 6θ4− θ6
< 0 (respectively,

> 0), where b∗ ,
θ(1+θ2)

θ2−1
.

7 Bogdanov–Takens bifurcation

Apart from the occurrence of Hopf bifurcation discussed so far, codimension 2 bifurcation

such as Bogdanov–Takens bifurcation is also possible in system (1.4). In order to discuss

codimension 2 bifurcation, in addition to taking β as a bifurcation parameter, we need another

parameter. It is easy to see that Ti(α1, β) depends on (β, α1 θ, b) and Di(α1, β) on (β, b, α1,

α2 θ). More precisely, α1 depends on θ and b, α2 on θ. For convenience, we choose α1 and

β as bifurcation parameters. In this section, we investigate the Bogdanov–Takens bifurcation

at the nontrivial steady-state solution e = (u∗, v∗)T of (1.4) under the condition (H1) and the

following assumption

(H4) Ti(α1, β) = 0, Di(α1, β) = 0, Tj(α1, β) 6= 0, Dj(α1, β) 6= 0 for j 6= i.

That is, the Bogdanov–Takens bifurcation is a bifurcation in a two-parameter family of system

(1.4) at which e = (u∗, v∗)T has a zero eigenvalue of geometric multiplicity one and algebraic
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multiplicity two. Assume that α1 > b + (d1 + d2)λi and bθ > d2λ2
i + b(d2 − d1)λi, then the

only choice of (α1, β) satisfying assumption (H4) is (α∗1 , β∗), where

α∗1 = d1λi +
√

b(d1 + d2)λi + bθ + b2, β∗ =
α1 − b− (d1 + d2)λi

θλi
.

Clearly, if j 6= i, we have Tj(α
∗
1 , β∗) 6= 0. Furthermore,

Dj(α
∗
1 , β∗) =

(

1− λj

λi

)(

bd1λj + bθ − d1λj

√

b(d1 + d2)λi + bθ + b2

)

Hence, it is easy to see that Dj(α
∗
1 , β∗) 6= 0 for all j 6= i if

√

b(d1 + d2)λi + bθ + b2 6= b + bθ
d1λj

.

Therefore, we have the following result:

Theorem 7.1. Under the assumption (H1), if a > b and
√

b(d1 + d2)λi + bθ + b2 6= b + bθ
d1λj

and

bθ > d2λ2
i + b(d2 − d1)λi, then near (α1, β) = (α∗1 , β∗) system (1.4) has a Bogdanov–Takens singu-

larity at the positive constant steady-state solution e = (u∗, v∗)T .

Under assumptions (H1) and (H4), Lα∗1 ,β∗ has exactly a zero eigenvalue of geometric mul-

tiplicity one and algebraic multiplicity two. Let P be the subspace of Lα∗1 ,β∗ associated with

zero eigenvalues. Let Φ = (φ1, φ2) = (c1 ϕi, c2 ϕi) be a basis for P, and Ψ = (ψ1, ψ2)T =

(d1ϕi, d2 ϕi)
T be the basis for the dual space P∗ in X, such that 〈ψj, φs〉 = δjs, where δjs is the

Kronecker delta. Obviously,

M(0, α∗1 , β∗, λi)c1 = 0 and M(0, α∗1 , β∗, λi)c2 = c1,

MT(0, α∗1 , β∗, λi)d2 = 0 and MT(0, α∗1 , β∗, λi)d2 = d1,

where

c1 =

(

1,
−d1λi + α∗1

α2

)T

, c2 =

(

0,− 1

α2

)T

,

and

d1 = (1, 0)T, d2 = ((d2 + β∗θ)λi + b,−α2)
T.

Thus, 〈Ψ, Φ〉 = Id2 and Φ̇ = BΦ, where

B =

[

0 1

0 0

]

.

We adopt the framework of [11], we rewrite system (1.4) as

dU

dt
= L(α1, β, U)U + F(α1, β, U), (7.1)

where

F(α1, β, U) =









u

(

a− u− v

1 + u2

)

− d1∆u− α1u− α2v

v

(

b− v

1 + u2

)

− βb(1 + θ2)∆u− α3u− (d2 + βθ)∆v + bv









.

We decompose X = Xc + Xs, with Xc , {zΦ|z ∈ R2}, Xs , {U ∈ X|〈Ψ, U〉 = 0}. For any

U = (u, v)T ∈ X, there exist z ∈ R and y = (y1, y2) ∈ Xs such that U = e + Φz + y. Then

system (7.1) is reduced to the following system in (z, y) coordinates:
{

dz
dt = Bz + 〈Ψ, F(e + Φz + y, α1, β)〉,
dy
dt = L(α1, β)y + H(z1, z2, y),

(7.2)
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where

H(z1, z2, y) = F(e + Φz + y, α1, β)− 〈Ψ, F(e + Φz + y, α1, β)〉.
According to [11], the normal form of Bogdanov–Takens bifurcation under conditions (H1)

and (H4) is given by











dz1

dt
= z2,

dz2

dt
= C10(α1, β)z1 + C01(α1, β)z2 + C20(α

∗
1 , β∗)z2

1 + C11(α
∗
1 , β∗)z1z2,

(7.3)

where

C10(α1, β) = 〈ψ2,L1
α1

φ1α1 + L1
βφ1β〉

= [(d2 + β∗θ)λi + b](α1 − α∗1) + [b(1 + θ2)λiα2 + θ(α∗1 − d1λi)λi](β− β∗),

C01(α1, β) = 〈ψ2,L1
α1

φ2α1 + L1
βφ2β〉+ 〈ψ1,L1

α1
φ1α1 + L1

β(φ1)β〉 = α1 − α∗1 − θλi(β− β∗),

C20(α
∗
1 , β∗) = 〈ψ2,G2(φ1, φ1)〉,

C11(α
∗
1 , β∗) = 〈ψ1,G2(φ1, φ1)〉+ 〈ψ2,G2(φ1, φ2)〉.

For convenience, we denote

G̃ =

[

(d2 + β∗θ)λi + b b(1 + θ2)α2λi + θ(α∗1 − d1λi)λi

1 −θλi

]

.

It is easy to see that detG̃ > 0. Therefore, we have the following conclusion.

Theorem 7.2. Under assumptions (H1) and (H4), if a > b and C20C11 6= 0, then system (7.1)

undergoes a Bogdanov–Takens bifurcation. More precisely, if C20C11 < 0, then, in the (C10, C01)

bifurcation diagram, the Hopf bifurcation curve Γ1 and the homoclinic bifurcation curve Γ2 lie in the

region W. Both the homoclinic loop and the periodic orbit are unstable, where

W = {(C10, C01)|C10 > 0 and C01 < 0}

Γ1 =

{

(α1, β)

∣

∣

∣

∣

C01(α1, β) =
C11

C20
C10(α1, β) + h.o.t, C10(α1, β) > 0

}

Γ2 =

{

(α1, β)

∣

∣

∣

∣

C01(α1, β) = δ
√

C10(α1, β)C10(α1, β) + h.o.t, C10(α1, β) > 0

}

and δ is a continuous and differentiable function satisfying δ(0) = 6C11
7C20

.

8 Conclusions and numerical simulations

In this paper, we have shown that all solutions of system (1.4) exist globally and are uniformly

bounded if β satisfies (2.4). But we don’t know whether the solution of system (1.4) can

blow up in a finite time or exists globally if (2.4) does not hold. This is a problem filled

with challenge. Next, this paper presents the existence of the non-constant positive steady

states of system (1.4). In view of Theorems 4.5 and 4.6, we see that system (1.4) has a non-

constant positive steady state if either the diffusion coefficient d1 is small or the cross-diffusion

coefficient β is large. This implies the predator and prey species may coexist in the interacting

habit nonuniformly if the predator disperses quickly from a high density of prey to a low
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density one, or the prey move slowly from a higher to a lower concentration region. Our

theoretical analysis shows that the cross-diffusion phenomenon has the potential to play an

important role in the coexistence information. From the biological point of view, our analysis

gives a theoretical support for studying coexistence phenomena of reaction-diffusion systems

with cross-diffusion.

Sections 6 and 7 show that system (1.4) is capable of producing much more abundant

dynamics than the corresponding ODEs. For example, system (1.4) may have multiple bi-

furcation under certain conditions, and both Hopf bifurcation and homoclinic bifurcation are

possible. According to Section 7, we know that the ODEs associated with (1.4) (i.e., with

d1 = d2 = β = 0) cannot show Bogdanov–Takens singularity, but system (1.4) can show

Bogdanov–Takens singularity (see Theorem 7.1); this indicates that diffusion plays a funda-

mental role in producing a rich dynamics and even Bogdanov–Takens bifurcation phenomena.

Meanwhile, the existence and properties of the spatially nonhomogeneous Hopf bifurcation

of system (1.4) (i.e., λi 6= λ0) are established in Theorem 6.1, and Corollary 6.2 is devoted to

spatially homogeneous Hopf bifurcation of system (1.4) (i.e., λi = λ0).

Finally, we present some numerical simulations to support and supplement our analytic

results given in the previous sections. For the spatially homogeneous model (1.4), it follows

from Corollary 6.2 that e is locally asymptotically stable if a > b, b <
θ(1+θ2)

θ2−1
and one of

conditions (A1)–(A3) is satisfied, and is unstable if θ > 1 and b >
θ(1+θ2)

θ2−1
. In addition,

when b passes through θ(1+θ2)
θ2−1

from the left of θ(1+θ2)
θ2−1

, e will lose its stability and a family of

periodic solutions bifurcate from the interior equilibrium e. It also follows from Corollary 6.2

that the direction of Hopf bifurcation is forward and the bifurcating periodic solutions are

asymptotically stable if 2− 3θ2 + 6θ4 − θ6
< 0. For system (1.4) with Ω = (0, 2π) and initial

values u(x, t) = cos2 x
π and v(x, t) = cos2 x

π , if we fix θ = 2.4, then the critical point θ(1+θ2)
θ2−1

=

3.4084 and 2− 3θ2 + 6θ4 − θ6 = −7.3174 < 0. Next, we can choose the following three sets of

parameter values, which satisfy conditions (A1)–(A3) respectively:

(P1) d1 = 3, d2 = 1, β = 0.3;

(P2) d1 = 3, d2 = 1, β = 1;

(P3) d1 = 3, d2 = 5, β = 0.5.

Obviously, if the values of a and b are fixed, the mathematical phenomena described by

the above three sets of parameters are quite similar. Without loss of generality, we illustrate

our analytical results by numerical simulations only under the condition (P1). If a = 5.55 and

b = 3.15 < 3.4084, then the positive constant solution e is locally asymptotically stable (see

Figure 8.1). Choose a = 5.81, b = 3.41 > 3.4084, then we see that a limit cycle arises out of

Hopf bifurcation around e (see Figure 8.2). Lemma 5.2 tells us the positive constant solution

e is globally asymptotically stable if

a > b, 2b(a + c) < 1 and β ≤ 2
c

√

d1d2θ
b(1+θ2)

.

Here, for system (1.4) with Ω = (0, 2π), we choose d1 = d2 = 1, a = 1.5, b = 0.15 β = 2.38,

and initial values u(x, t) = cos2 x
π , v(x, t) = cos2 x

π , then c = a = 1.5, β <
2
c

√

d1d2θ
b(1+θ2)

=

2.3809 and 2b(a + c) = 0.9. Thus, as depicted in Figure 8.3, the positive constant solution e

is globally asymptotically stable. Nevertheless, we do not know whether the conclusion of

Lemma 5.2 holds true if the value b does not satisfy 2b(a + c) < 1. Therefore, we just find
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a sufficient condition ensuring the global asymptotical stability of the positive steady-state

solution e. However, when a > b, we can get the critical value b∗ of the parameter b by fixing

the value of θ. It follows from Corollary 6.2 that the positive steady-state solution e is locally

asymptotically stable if b < b∗ and will lose its stability when b passes b∗ from the left of b∗.

(i) (ii)

Figure 8.1: The solutions of model (1.4) tends to a positive steady state with

parameters b = 3.15 < 3.4084 and a = 5.55.

(i) (ii)

Figure 8.2: The solutions of model (1.4) with b = 3.41 > 3.4084 and a = 5.81

tends to a positive spatially homogeneous time-periodic orbit.
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Figure 8.3: The positive steady-state solution e = (1.35, 0.4234) of model (1.4)

with parameters a = 1.5 b = 0.15 and β = 2.38 is globally asymptotically stable

.
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1 Introduction

We study the existence and qualitative properties of traveling-wave solutions to the scalar

diffusion-convection-reaction equation

ρt + f (ρ)x = (D(ρ)ρx)x + g(ρ), t ≥ 0, x ∈ R. (1.1)

Here ρ = ρ(t, x) is the unknown variable and takes values in the interval [0, 1]. The convective

term f satisfies the condition

(f) f ∈ C1[0, 1], f (0) = 0.

The requirement f (0) = 0 is not a real assumption, since f is defined up to an additive

constant; we denote h(ρ) = ḟ (ρ), where with a dot we intend the derivative with respect to

the variable ρ (or ϕ later on). About the diffusivity D and the reaction term g we consider two

different scenarios, where the assumptions are made on the pair D, g; we assume either

(D1) D ∈ C1[0, 1], D > 0 in (0, 1) and D(1) = 0,

BCorresponding author. Email: luisa.malaguti@unimore.it
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(g0) g ∈ C0[0, 1], g > 0 in (0, 1], g(0) = 0,

or else

(D0) D ∈ C1[0, 1], D > 0 in (0, 1) and D(0) = 0,

(g01) g ∈ C0[0, 1], g > 0 in (0, 1), g(0) = g(1) = 0.

In the above notation, the numbers suggest where it is mandatory that the corresponding

function vanishes. Notice that (D1) leaves open the possibility for D to vanish or not at 0, and

(D0) for D at 1. We refer to Figure 1.1 for a graphical illustration of these assumptions. Notice

that the product Dg always vanishes at both 0 and 1 under both set of assumptions.

ρ

f

1 ρ

D

(D1)
(D0)

1 ρ

g
(g0)

(g01)

1

Figure 1.1: Typical plots of the functions f , D and g. In the plots of D and

g, solid or dashed lines depict pairs of functions D and g that are considered

together in the following. The possibility that D vanishes at the other extremum

is left open.

We also require the following condition on the product of D and g:

lim sup
ϕ→0+

D(ϕ)g(ϕ)

ϕ
< +∞, (1.2)

which is equivalent to D(ϕ)g(ϕ) ≤ Lϕ, for some L > 0 and ϕ in a right neighborhood of 0.

In (1.1), the notation ρ = ρ(t, x) suggests a density; this is indeed the case. Recently,

the modeling of collective movements has attracted the interest of several mathematicians

[9,10,22]. This paper is partly motivated by such a research stream and carries on the analysis

of a scalar parabolic model begun in [5–7]. Indeed, if f (ρ) = ρv(ρ), where the velocity v is an

assigned function, then equation (1.1) can be understood as a simplified model for a crowd

walking with velocity v along a straight path with side entries for other pedestrians, which

are modeled by g; here ρ is understood as the crowd normalized density. Assumption (g01),

for instance, means that pedestrians do not enter if the road is empty (g(0) = 0, modeling

an aggregative behavior) or if it is fully occupied (g(1) = 0, because of lack of space). If

the diffusivity is small, then the diffusion term accounts for some “chaotic” behavior, which

is common in crowds movements. In this framework, D may degenerate at the extrema of

the interval where it is defined [2, 4, 20]; for more details we refer to [6]. The assumption

(g0) is better motivated by population dynamics. In this case g is a growth term which, for

instance, increases with the population density ρ. We refer to [19] for analogous modelings in

biology. Anyhow, apart from the above possible applications, equation (1.1) is a quite general

diffusion-convection-reaction equation that deserves to be fully understood.
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A traveling-wave solution is, roughly speaking, a solution to (1.1) of the form ρ(t, x) =

ϕ(x − ct), for some profile ϕ = ϕ(ξ) and constant wave speed c, see [11] for general informa-

tion. In this case the profile must satisfy, in some sense, the equation

(

D(ϕ)ϕ′)′ + (c − h(ϕ)) ϕ′ + g(ϕ) = 0, (1.3)

where ′ denotes the derivative with respect to ξ. We consider in this paper non-constant,

monotone profiles, and focus on the case they are decreasing. As a consequence, we aim at

determining solutions to (1.3) whose values at ±∞ are the zeroes of the function g and then

satisfy either

ϕ(−∞) = 1, ϕ(+∞) = 0, (1.4)

or simply

ϕ(+∞) = 0, (1.5)

according to we make assumption (g01) or (g0). The former profiles are called wavefronts, the

latter are semi-wavefronts; precise definitions are provided in Definition 2.1. Notice that in both

cases the equilibria may be reached for a finite value of the variable ξ as a consequence of the

degeneracy of D at those points. These solutions represent single-shape smooth transitions

between the two constant densities 0 and 1. The interest of wavefronts lies in the fact that

they are viscous approximations of shock waves to the inviscid version of equation (1.1), i.e.,

when D = 0. Semi-wavefronts lack of this motivation but are nevertheless meaningful for ap-

plications [6]; moreover, wavefronts connecting “nonstandard” end states can be constructed

by pasting semi-wavefronts [7]. At last, we point out that assumption (1.2) is usual in this

framework, when looking for decreasing profiles, see e.g. [1].

If D(ρ) ≥ 0, the existence of solutions to the initial-value problem for (1.1) is more or

less classical [24]; however, the fine structure of traveling waves reveals a variety of different

patterns. We refer to [15,16], respectively, for the cases where D is non degenerate, i.e., D > 0,

and for the degenerate case, where D can vanish at either 0 or 1. The main results of those

papers is that there is a critical threshold c∗, depending on both f and the product Dg, such

that traveling waves satisfying (1.4) exist if and only if c ≥ c∗. The smoothness of the profiles

depend on f , D and c but not on g. In both papers the source term satisfies (g01); see [5,6] for

the case when g has only one zero.

The case when D changes sign, which is not studied in this paper, also has strong motiva-

tions: we quote [13,21] for biological models and [7] for applications to collective movements.

Several results about traveling waves have been obtained in [7, 8, 12–14].

In this paper we study semi-wavefronts and wavefronts for (1.1), thus completing the

analysis of [5, 6]. We prove that in both cases there is a threshold c∗ such that profiles only

exists for c ≥ c∗; we also study their regularity and strict monotonicity, namely whether they

are classical (i.e., C1) or sharp (and then reach an equilibrium at a finite ξ in a no more than

continuous way). We strongly rely on [15, 16] and exploit some recent results obtained in

[18]. Several examples are scattered throughout the paper to show that our assumptions are

necessary in most cases.

This research has some important novelties. First, we give a refined estimate for c∗, which

allows to better understand the meaning of this threshold. Second, we improve a result

obtained in [16] about the appearance of wavefronts with a sharp profile. Third, in the case

of semi-wavefronts, we show that for any speed c ≥ c∗ there exists a family of profiles with

speed c. This phenomenon does not show up in [5, 6].
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The main tool to investigate (1.3) is the analysis of singular first-order problems as















ż(ϕ) = h(ϕ)− c − D(ϕ)g(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(ϕ) < 0, ϕ ∈ (0, 1),

z(0) = 0.

(1.6)

Problem (1.6) is deduced by problem (1.3)–(1.5) by the singular change of variables z(ϕ) :=

D(ϕ)ϕ′, where the right-hand side is understood to be computed at ϕ−1(ϕ), see e.g. [6, 15].

Notice that ϕ−1 exists by the assumption of monotony of ϕ.

On the other hand, the analysis of problem (1.6) is fully exploited in the forthcoming paper

[3], which deals with the case in which D changes sign. In that paper we show that there still

exist wavefronts joining 1 with 0, which travel across the region where D is negative; they are

constructed by pasting two semi-wavefronts obtained in the current paper. Similar results in

the case g = 0 are proved in [7].

Here is an account of the paper. In Section 2 we provide some basic definitions and

state our main results. The analysis of problem (1.6) and of other related singular problems

occupies Sections 3 to 8. Then, in Sections 9 and 10 we exploit such results to construct

semi-wavefronts and wavefronts, respectively; there, we prove our main results.

2 Main results

We give some definitions on traveling waves and their profiles. Let I ⊆ R be an open interval.

Definition 2.1. Assume f , D, g ∈ C[0, 1]. Consider a function ϕ ∈ C(I) with values in [0, 1],

which is differentiable a.e. and such that D(ϕ)ϕ ′ ∈ L1
loc(I); let c be a real constant. The

function ρ(x, t) := ϕ(x − ct), for (x, t) with x − ct ∈ I, is a traveling-wave solution of equation

(1.1) with wave speed c and wave profile ϕ if, for every ψ ∈ C∞

0 (I),

∫

I

(

D (ϕ(ξ)) ϕ′(ξ)− f (ϕ(ξ)) + cϕ(ξ)
)

ψ′(ξ)− g (ϕ(ξ))ψ(ξ) dξ = 0. (2.1)

Definition 2.1 can be made more precise. Below, monotonic means that ϕ(ξ1) ≤ ϕ(ξ2) (or

ϕ(ξ1) ≥ ϕ(ξ2)) for every ξ1 < ξ2 in the domain of ϕ; in (iii) we assume g(0) = g(1) = 0, while

in (iv) we only require that g vanishes at the point which is specified by the semi-wavefront.

A traveling-wave solution is

(i) global if I = R and strict if I 6= R and ϕ is not extendible to R;

(ii) classical if ϕ is differentiable, D(ϕ)ϕ′ is absolutely continuous and (1.3) holds a.e.; sharp

at ℓ if there exists ξℓ ∈ I such that ϕ(ξℓ) = ℓ, with ϕ classical in I \ {ξℓ} and not

differentiable at ξℓ;

(iii) a wavefront if it is global, with a monotonic, non-constant profile ϕ satisfying either (1.4)

or the converse condition;

(iv) a semi-wavefront to 1 (or to 0) if I = (a, ∞) for a ∈ R, the profile ϕ is monotonic, non-

constant and ϕ(ξ) → 1 (respectively, ϕ(ξ) → 0) as ξ → ∞; a semi-wavefront from 1 (or

from 0) if I = (−∞, b) for b ∈ R, the profile ϕ is monotonic, non-constant and ϕ(ξ) → 1

(respectively, ϕ(ξ) → 0) as ξ → −∞.
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In (iv) we say that ϕ connects ϕ(a+) (1 or 0) with 1 or 0 (resp., with ϕ(b−)).
The smoothness of a profile depends on the degeneracy of D, see [11]. More precisely,

assume (f), and either (D1), (g0) or (D0), (g01); let ρ be any traveling-wave solution of (1.1)

with profile ϕ defined in I and speed c. Then ϕ is classical in each interval J ⊂ I where

D (ϕ(ξ)) > 0 for ξ ∈ J, and ϕ ∈ C2 (J). Profiles are determined up to a space shift.

Our first main result concerns semi-wavefronts.

Theorem 2.2. Assume (f), (D1), (g0) and (1.2). Then, there exists c∗ ∈ R, which satisfies

max

{

sup
ϕ∈(0,1]

f (ϕ)

ϕ
, h(0) + 2

√

lim inf
ϕ→0+

D(ϕ)g(ϕ)

ϕ

}

≤ c∗ ≤ 2

√

sup
ϕ∈(0,1]

D(ϕ)g(ϕ)

ϕ
+ sup

ϕ∈(0,1]

f (ϕ)

ϕ
, (2.2)

such that (1.1) has strict semi-wavefronts to 0, connecting 1 to 0, if and only if c ≥ c∗.

Moreover, if ϕ is the profile of one of such semi-wavefronts, then it holds that

ϕ′(ξ) < 0 for any 0 < ϕ(ξ) < 1. (2.3)

For a fixed c > c∗, the profiles of Theorem 2.2 are not unique. This lack of uniqueness

is not due only to the action of space shifts but, more intimately, to the non-uniqueness of

solutions to problem (1.6) that is proved in Proposition 5.1 below. Roughly speaking, these

profiles depend on a parameter b ranging in the interval [β(c), 0], for a suitable threshold

β(c) ≤ 0. As a conclusion, the family of profiles can be precisely written as

ϕb = ϕb(ξ), for b ∈ [β(c), 0]. (2.4)

Moreover, β(c) < 0 if c > c∗ and β(c) → −∞ as c → +∞. The threshold β(c) essentially

corresponds to the minimum value that the quantity D(ϕb)ϕ′
b achieves when ϕb reaches 1, for

b ∈ [β(c), 0]. This loss of uniqueness is a novelty if we compare Theorem 2.2 with analogous

results in [5, 6]. In particular, in [6, Theorem 2.7] the assumptions on the functions D and g

are reversed: both of them are positive in (0, 1) with D(0) = 0 < g(0), D(1) > 0 = g(1); in

[5, Theorem 2.3] D and g are still positive in (0, 1) but the vanishing conditions are D(1) =

0 = g(1). In both cases the profiles exist for every c ∈ R and are unique. The different results

are due to the nature of the equilibria of the dynamical systems of (1.3).

The estimates (2.2) deserve some comments. The left estimate improves analogous bounds

(see [18] for a comprehensive list) by including the term supϕ∈(0,1] f (ϕ)/ϕ ≥ h(0) on the left-

hand side. This improvement looks more significative if we also assume ˙(Dg)(0) = 0, as we

do in the Theorem 2.3. In this case (2.2) reduces to

sup
ϕ∈(0,1]

f (ϕ)

ϕ
≤ c∗ ≤ 2

√

sup
ϕ∈(0,1]

D(ϕ)g(ϕ)

ϕ
+ sup

ϕ∈(0,1]

f (ϕ)

ϕ
. (2.5)

which can be written with obvious notation as

ccon ≤ c∗ ≤ cdr + ccon,

where the indexes label velocities related to the convection or diffusion-reaction components.

In (2.5) the same term, accounting for the dependence on f , occurs in both the lower and upper
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bound. This symmetry, which shows the shift of the critical threshold as a consequence of the

convective term f , occurs in none of the previous estimates.

The meaning of cdr is known since [1]; we comment on ccon. In the diffusion-convection

case (i.e., when g = 0), there exist profiles connecting ℓ ∈ (0, 1] to 0 if and only if

sℓ(ϕ) :=
f (ℓ)

ℓ
ϕ > f (ϕ), for ϕ ∈ (0, ℓ), (2.6)

see [11, Theorem 9.1]. The quantity ccon then represents the maximal speed that can be reached

by the profiles connecting ℓ to 0, for ℓ ∈ (0, 1]. Condition (2.6) is also necessary and sufficient

in the purely hyperbolic case (i.e., when also D = 0) in order that the equation ut + f (u)x = 0

admits a shock wave of speed f (ℓ)/ℓ with ℓ as left state and 0 as right state. This is not

surprising since the viscous profiles approximate the shock wave and converge to it in the

vanishing viscosity limit. Indeed, condition (2.6) does not depend on D.

The presence of the positive reaction term g satisfying (g01) (if (g0) holds we only have

semi-wavefronts, but the same bounds still hold) does not allow profile speeds to be less than

ccon: assuming that z satisfies (1.6), by the positivity of both D and g we deduce

c ≥ sup
ϕ∈(0,1]

(

f (ϕ)

ϕ
− z(ϕ)

ϕ

)

≥ ccon. (2.7)

Then, ccon now becomes a bound for the minimal speed of the profiles. The bound (2.7) is strict

(i.e., there is a gap between ccon and c∗) if ˙(Dg)(0) > 0; this occurs for instance if D(0) > 0

and ġ(0) > 0 and follows by integrating (1.6)1 from 0 to ϕ and (2.2), see Remark 5.6. If f = 0,

then the corresponding strict bound c∗ > 0 occurs for any positive and continuous D and g:

if c∗ = 0 then z should be an increasing function by (3.11), a contradiction.

In some cases, semi-wavefronts are sharp at 0. We refer to Corollary 9.4 for a detailed

account of the behavior of the profiles when they reach the equilibrium.

We now present our result on wavefronts; we assume that D and g satisfiy (D0) and (g01).

The goal is to extend results contained in [16, Theorems 2.1 and 6.1] regarding the existence

and, more importantly, the regularity of wavefronts of Equation (1.1). In particular, the next

theorem has the merit to derive the classification of wavefronts under (D0), merely, without

additional assumptions (which were instead required in [16, Theorems 2.1 and 6.1]). Notice

that in the following result we require that D vanishes at 0; this assumption leads to improve

not only the left-hand bound (2.2) on c∗ by (2.5), but also the right-hand bound, by means of

a recent integral estimate provided in [18].

Theorem 2.3. Assume (f), (D0) and (g01) and (1.2). Then there exists c∗, satisfying

sup
ϕ∈(0,1]

f (ϕ)

ϕ
≤ c∗ ≤ sup

ϕ∈(0,1]

f (ϕ)

ϕ
+ 2

√

sup
ϕ∈(0,1]

1

ϕ

∫ ϕ

0

D(σ)g(σ)

σ
dσ, (2.8)

such that Equation (1.1) admits a (unique up to space shifts) wavefront, whose wave profile ϕ satisfies

(1.4), if and only if c ≥ c∗. Moreover, we have ϕ′(ξ) < 0, for 0 < ϕ(ξ) < 1, and

(i) if c > c∗, then ϕ is classical at 0;

(ii) if c = c∗ and c∗ > h(0), then ϕ is sharp at 0 and if it reaches 0 at ξ0 ∈ R then

lim
ξ→ξ−0

ϕ′(ξ) =







h(0)−c∗

Ḋ(0)
< 0 if Ḋ(0) > 0,

−∞ if Ḋ(0) = 0.
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As in analogous cases [6], Theorem 2.3 provides no information about the smoothness of

the profiles when c = c∗ = h(0). We show in Remark 10.1 that in such a case profiles may be

either sharp or classical.

3 Singular first-order problems

Here we begin the analysis of problem (1.6). First, we consider, for c ∈ R, the problem
{

ż(ϕ) = h(ϕ)− c − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(ϕ) < 0, ϕ ∈ (0, 1),
(3.1)

where we assume

q ∈ C0[0, 1] and q > 0 in (0, 1). (3.2)

We point out that the differential equation (3.1)1 generalizes (1.6)1 since the assumptions on

q are a bit less strict than the ones on Dg, under (D1)–(g0) or (D1)–(g01). In the following

lemma we prove that a solution of (3.1) can be extended continuously up to the boundary.

Lemma 3.1. Assume (3.2). If z ∈ C1(0, 1) is a solution of (3.1), then it can be extended continuously

to the interval [0, 1].

Proof. Since q/z < 0 in (0, 1), then for any 0 < ϕ < ϕ1 < 1 the function

ϕ →
∫ ϕ1

ϕ

q(σ)

z(σ)
dσ

is strictly increasing. Hence, we can pass to the limit as ϕ → 0+ in the expression

z(ϕ) = z(ϕ1)−
∫ ϕ1

ϕ
(h(σ)− c) dσ +

∫ ϕ1

ϕ

q(σ)

z(σ)
dσ, (3.3)

which is obtained by integrating (3.1)1 in (ϕ, ϕ1). Then z(0+) exists and necessarily lies in

[−∞, 0] because of (3.1)2. If z(0+) = −∞, then by passing to the limit for ϕ → 0+ in (3.3) we

find a contradiction, since the last integral converges as ϕ → 0+. Hence, z(0+) ∈ (−∞, 0].

For z(1−) the proof is even simpler: by integrating (3.1)1 in (ϕ2, ϕ), for 0 < ϕ2 < ϕ < 1, we

obtain (3.3) with ϕ2 replacing ϕ1. As before, we deduce that z(1−) exists. Also, since the last

integral in (3.3) is now positive, we get z(ϕ) > z(ϕ2) +
∫ ϕ

ϕ2
(h(σ)− c) dσ, for any ϕ ∈ (ϕ2, 1).

This directly rules out the alternative z(1−) = −∞ and concludes the proof.

We now summarize [6, Lemmas 4.1 and 4.3] in a version for our purposes, by also exploit-

ing Lemma 3.1. These tools were obtained in [6] under stricter assumptions on q, but it is easy

to verify that they also apply to the current case, in virtue of (3.2). For µ < 0 and σ ∈ (0, 1] or

σ ∈ [0, 1), they deal with the systems
{

ż(ϕ) = h(ϕ)− c − q(ϕ)
z(ϕ)

, ϕ < σ,

z(σ) = µ,

{

ż(ϕ) = h(ϕ)− c − q(ϕ)
z(ϕ)

, ϕ > σ,

z(σ) = µ.
(3.4)

A function η ∈ C1(σ1, σ2), for 0 ≤ σ1 < σ2 ≤ 1, is an upper-solution of (3.1)1 in (σ1, σ2) if

η̇(ϕ) ≥ h(ϕ)− c − q(ϕ)

η(ϕ)
for any σ1 < ϕ < σ2. (3.5)

The upper-solution η is said strict if the inequality in (3.5) is strict. A function ω ∈ C1(σ1, σ2)

is a (strict) lower-solution of (3.1)1 in (σ1, σ2) if the (strict) inequality in (3.5) is reversed.
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Lemma 3.2. Assume (3.2) and consider equation (3.1)1; the following results hold.

1. Set µ < 0. Then,

(a) let σ ∈ (0, 1]; then problem (3.4)1 admits a unique solution z ∈ C0[0, σ] ∩ C1(0, σ);

(b) let σ ∈ [0, 1); then problem (3.4)2 admits a unique solution z ∈ C0[σ, δ] ∩ C1(σ, δ), for

some maximal σ < δ ≤ 1. Moreover, either δ = 1 or z(δ) = 0.

2. Set 0 ≤ σ1 < σ2 ≤ 1; let z be a solution of (3.1) in (σ1, σ2). It holds that:

(a) if η is a strict upper-solution of (3.1)1 in (σ1, σ2), then

(i) if η(σ2) ≤ z(σ2) < 0, then η < z in (σ1, σ2);

(ii) if 0 > η(σ1) ≥ z(σ1) then η > z in (σ1, σ2); moreover, if η is defined in [0, 1], then z

must be defined in [σ1, 1] and η > z in (σ1, 1);

(b) if ω is a strict lower-solution of (3.1)1 in (σ1, σ2), then

(i) if 0 > ω(σ2) ≥ z(σ2), then ω > z in (σ1, σ2); moreover, if ω is defined in [0, 1], then

z must be defined in [0, σ2] and ω > z in (0, σ2);

(ii) if ω(σ1) ≤ z(σ1) < 0 then ω < z in (σ1, σ2).

ϕ

z
1σ1 σ2

z
η

η

ϕ

z
1σ1 σ2

z

ω

ω

Figure 3.1: An illustration of Lemma 3.2 (2). Left: supersolutions η; right:

subsolutions ω.

In the context of equations as (3.1)1, proper limit arguments are often needed.

Lemma 3.3. Assume (3.2). Let {cn}n be a sequence of real numbers and c ∈ R such that cn → c as

n → ∞. Let zn ∈ C0[0, 1]∩ C1(0, 1) satisfy (3.1) corresponding to cn. If {zn}n is increasing and there

exists v ∈ C0[0, 1] such that

zn(ϕ) ≤ v(ϕ) < 0 for any n ∈ N and ϕ ∈ (0, 1), (3.6)

then zn converges (uniformly on [0, 1]) to a solution z̄ ∈ C0[0, 1] ∩ C1(0, 1) of (3.1).

The same conclusion holds if {zn}n is decreasing and there exists w ∈ C0[0, 1] such that

zn(ϕ) ≥ w(ϕ) for any n ∈ N and ϕ ∈ (0, 1).

Proof. Take first {zn}n increasing. From (3.6), we can define z̄ = z̄(ϕ) as

lim
n→∞

zn(ϕ) =: z̄(ϕ), ϕ ∈ (0, 1).

It is obvious that z1 ≤ z̄ ≤ v < 0 in (0, 1). By integrating (3.1)1, we have

zn(ϕ)− zn(ϕ0) =
∫ ϕ

ϕ0

{

h(σ)− cn +
q(σ)

−zn(σ)

}

dσ for any ϕ0, ϕ ∈ (0, 1).
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Since, for every σ ∈ (0, 1), the sequence {q(σ)/(−zn(σ))}n is increasing, then the Monotone

Convergence Theorem implies that

z̄(ϕ)− z̄(ϕ0) =
∫ ϕ

ϕ0

{

h(σ)− c − q(σ)

z̄(σ)

}

dσ for any ϕ0, ϕ ∈ (0, 1),

where all the involved quantities are finite. This tells us that z̄ is absolutely continuous in

every compact interval [a, b] ⊂ (0, 1). By differentiating, we then obtain that z̄ ∈ C1(0, 1)

satisfies (3.1). From Lemma 3.1, we also have that z̄ ∈ C0[0, 1]. To conclude that zn converges

to z̄ uniformly on [0, 1], it only remains to prove that

z̄(0+) = lim
n→∞

zn(0) and z̄(1−) = lim
n→∞

zn(1). (3.7)

Indeed, if (3.7) holds, then {zn}n turns out to be a monotone sequence of continuous functions

converging pointwise to z̄ ∈ C0[0, 1] on a compact set. Then, by Dini’s monotone convergence

theorem (see [23, Theorem 7.13]), zn must converge uniformly to z̄ on [0, 1]. We prove only

(3.7)1 since (3.7)2 follows as well. If zn(0) → 0, as n → ∞, then z̄(0+) = 0, because zn ≤ z̄ < 0

in (0, 1). Hence (3.7)1 is verified. If instead zn(0) → µ < 0, we argue as follows. Consider

δ ∈ R such that cn > δ, for any n ∈ N, and let η = η(ϕ) satisfy

{

η̇(ϕ) = h(ϕ)− δ − q(ϕ)
η(ϕ)

, ϕ > 0,

η(0) = µ.
(3.8)

By Lemma 3.2 (1.b) such an η exists, in its maximal-existence interval [0, σ), for some σ ∈ (0, 1].

Moreover, we have

η̇(ϕ) > h(ϕ)− cn −
q(ϕ)

η(ϕ)
, ϕ ∈ (0, σ).

Hence, in (0, σ), η is a strict upper-solution of (3.1)1 with c = cn and zn(0) ≤ η(0) < 0. Thus,

Lemma 3.2 (2.a.ii) implies that zn ≤ η in (0, σ). By passing to the pointwise limit, for n → ∞,

it is clear that z̄ ≤ η in (0, σ). Since z̄, η are continuous up to ϕ = 0, then z̄(0+) ≤ µ. On the

other hand we have z̄(0+) ≥ µ because zn ≤ z̄ in (0, 1) and zn, z̄ ∈ C0[0, 1]. Then z̄(0+) = µ

and this concludes the proof of (3.7)1.

Consider {zn}n decreasing. By adapting the arguments used in the first part of this proof,

we can show that zn converges pointwise in (0, 1) to z̄ ∈ C0[0, 1] ∩ C1(0, 1) satisfying (3.1). As

before we need (3.7) to conclude. To this end, we again observe that similarly to the case of

{zn}n increasing, we have (3.7) if both zn(0) → µ < 0 and zn(1) → ν < 0. Instead, the proofs

of either (3.7)1 when zn(0) → 0 and (3.7)2 when zn(0) → 0 are now more subtle. We provide

them both. First, since zn < 0 in (0, 1), observe that requiring that zn(0) → 0 (or zn(1) → 0)

corresponds to have zn(0) = 0 (or zn(1) = 0), for every n ∈ N.

Take zn(0) = 0, for n ∈ N. Let n ∈ N and for ϕ ∈ (0, 1), let σϕ ∈ (0, ϕ) be defined by

żn(σϕ) =
zn(ϕ)

ϕ
.

Take δ1 ∈ R such that δ1 > cn, for each n ∈ N. By using (3.1)1 and the fact that q/zn < 0 in

(0, 1), we deduce, for any ϕ ∈ (0, 1),

zn(ϕ)

ϕ
= żn(σϕ) > h(σϕ)− cn > inf

ϕ∈(0,1)
h(ϕ)− δ1 =: C < 0. (3.9)
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The sign of C is due to cn ≥ h(0), for n ∈ N; otherwise, it would not be possible to have zn

satisfying (3.1) and zn(0) = 0. Inequality (3.9) implies that zn(ϕ) > Cϕ for ϕ ∈ (0, 1). Hence,

letting n → ∞, this leads to z̄(ϕ) ≥ Cϕ, for ϕ ∈ (0, 1). Passing to the limit as ϕ → 0+ gives

z̄(0+) ≥ 0, which in turn implies that z̄(0+) = 0. Thus, (3.7)1 is verified.

Lastly, let zn(1) = 0, for any n ∈ N. Fix ε > 0 and consider η2 = η2(ϕ) such that

{

η̇2(ϕ) = h(ϕ)− δ − q(ϕ)
η2(ϕ)

, ϕ > 0,

η2(1) = −ε < 0,
(3.10)

where δ ∈ R is such that δ < cn, for any n ∈ N. Such an η2 exists and is defined and

continuous in [0, 1], because of Lemma 3.2 (1.a) and Lemma 3.1. Take an arbitrary n ∈ N.

From 0 = zn(1) > η2(1), it follows that η2 < zn in [σn, 1], for some σn > 0, with zn(σn) < 0.

Thus, since

η̇2(ϕ) > h(ϕ)− cn −
q(ϕ)

η2(ϕ)
, ϕ ∈ (0, 1),

then η2 is a strict upper-solution of (3.1)1 with c = cn in (0, σn) and η2(σn) < zn(σn) < 0. An

application of Lemma 3.2 (2.a.i) implies that η2 < zn in (0, σn). Thus, zn > η2 in (0, 1), for

any n ∈ N. By passing to the pointwise limit, as n → ∞, we then have z̄(ϕ) ≥ η2(ϕ), for

ϕ ∈ (0, 1). By the continuity of both z̄ and η2 at ϕ = 1, we obtain 0 ≥ z̄(1−) ≥ −ε. Since ε > 0

is arbitrary, we deduce that necessarily z̄(1−) = 0.

Because of Lemmas 3.1 and 3.3, in the following we always mean solutions z to problem

(3.1), and analogous ones, in the class C[0, 1] ∩ C1(0, 1), without any further mention.

Motivated by Lemma 3.1, in the next sections we focus the following problem, where the

boundary condition is given on the left extremum of the interval of definition:















ż(ϕ) = h(ϕ)− c − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(ϕ) < 0, ϕ ∈ (0, 1),

z(0) = 0.

(3.11)

Problem (3.11) is exploited for semi-wavefronts. The value of z(1) is not prescribed; from (3.11)2,

we have z(1) ≤ 0. The extremal case z(1) = 0 is needed in the study of wavefronts:















ż(ϕ) = h(ϕ)− c − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(ϕ) < 0, ϕ ∈ (0, 1),

z(0) = z(1) = 0.

(3.12)

4 The singular problem with two boundary conditions

Problems (3.11) and (3.12) have solutions only when c is larger than a critical threshold c∗. In

this section we first give a new estimate to c∗ under mild conditions on q; then, we obtain a

result of existence and uniqueness of solutions to (3.12) if c ≥ c∗. Recalling (D1), (g0) and (1.2)

and (D0)–(g01), throughout the next sections we need to strengthen the assumptions (3.2) of

Section 3; for commodity we gather them all here below. We assume

(q) q ∈ C0[0, 1], q > 0 in (0, 1), q(0) = q(1) = 0 and lim sup
ϕ→0+

q(ϕ)

ϕ
< +∞.
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We improve, as in [18, Theorem 3.1], a well-known result [1, 11, 15]. If q is differentiable at

0, in [18, Theorem 3.1] it is proved that Problem (3.11) has a solution if

c > sup
ϕ∈(0,1]

f (ϕ)

ϕ
+ 2

√

sup
ϕ∈(0,1]

1

ϕ

∫ ϕ

0

q(σ)

σ
dσ. (4.1)

The last assumption in (q) is weaker than the differentiability of q at 0 and our result below is

less stronger than the one in [18]. It is an open problem whether the existence of solutions to

Problem (3.12) under (4.1) can be achieved by only assuming lim supϕ→0+ q(ϕ)/ϕ < +∞.

Lemma 4.1. Assume (q). Then Problem (3.12) admits a solution if

c > sup
ϕ∈(0,1]

f (ϕ)

ϕ
+ 2

√

sup
ϕ∈(0,1]

q(ϕ)

ϕ
. (4.2)

Proof. We follow [18, Theorem 3.1]. By (4.2) we see that there exists K > 0, ε > 0 so that

K2 +

(

sup
ϕ∈(0,1]

f (ϕ)

ϕ
− c

)

K + sup
ϕ∈(0,1]

q(ϕ)

ϕ
< −εK < 0 for ϕ ∈ (0, 1].

For every τ > 0, we get, for any ϕ > τ,

1

ϕ − τ

∫ ϕ

τ

q(s)

s
ds =

q(sϕ,τ)

sϕ,τ
≤ sup

ϕ∈(0,1]

q(ϕ)

ϕ
,

where sϕ,τ ∈ (τ, ϕ) is given by the Mean Value Theorem. As a consequence, for any τ > 0,

K2 +

(

sup
ϕ∈(0,1]

f (ϕ)

ϕ
+ ε − c

)

K +
1

ϕ − τ

∫ ϕ

τ

q(s)

s
ds < 0 for every ϕ ∈ (τ, 1].

A continuity argument in [18] implies that there exists τ such that for any τ < τ we have

f (ϕ)− f (τ)

ϕ − τ
≤ f (ϕ)

ϕ
+ ε ≤ sup

ϕ∈(0,1]

f (ϕ)

ϕ
+ ε, ϕ ∈ (τ, 1],

and thus, for such values of τ, it must hold

K2 +

(

f (ϕ)− f (τ)

ϕ − τ
− c

)

K +
1

ϕ − τ

∫ ϕ

τ

q(s)

s
ds < 0 for every ϕ ∈ (τ, 1].

This implies that the function ητ = ητ(ϕ), defined for ϕ ∈ [τ, 1] by

ητ(ϕ) := −Kτ +
∫ ϕ

τ

{

h(σ)− c − q(σ)

−Kσ

}

dσ,

is an upper-solution of (3.11)1 such that ητ(ϕ) < −Kϕ, for ϕ ∈ (τ, 1], and ητ(τ) = −Kτ < 0.

Arguments based on Lemma 3.2 (2.a.ii) imply that it results defined in [τ, 1] a function zτ

which solves (3.4)2 with µ = −Kτ; we extend continuously zτ to [0, τ] by zτ(ϕ) = −Kϕ, for

ϕ ∈ [0, τ]. This gives a family {zτ}τ>0 of decreasing functions as τ → 0+ (in the sense that

zτ1
≤ zτ2 in [0, 1] for 0 < τ1 < τ2). After some manipulations of the differential equation in

(3.4)2, based on the sign of q/zτ and on ητ(ϕ) < −Kϕ, for ϕ ∈ (τ, 1], we deduce that

f (ϕ)− cϕ ≤ zτ(ϕ) ≤ −Kϕ, ϕ ∈ [0, 1].

Hence, applying Lemma 3.3 in each interval (a, b) ⊂ [0, 1] we finally deduce that z̄, the limit

of zτ for τ → 0+, solves (3.11)1, z̄ < 0 in (0, 1) and z̄(0) = 0. Hence, z̄ is a solution of (3.11).

Finally, as observed in [18], an application of [17, Lemma 2.1] implies the conclusion.
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We now give a result about solutions to (3.12); see Figure 5.1 on the left.

Proposition 4.2. Assume (q). Then, there exists c∗ satisfying

h(0) + 2

√

lim inf
ϕ→0+

q(ϕ)

ϕ
≤ c∗ ≤ 2

√

sup
ϕ∈(0,1]

q(ϕ)

ϕ
+ sup

ϕ∈(0,1]

f (ϕ)

ϕ
, (4.3)

such that there exists a unique z satisfying (3.12) if and only if c ≥ c∗.

Proof. The result, apart from the refined estimate (4.3) is proved in [17, Proposition 1]. Estimate

(4.3) follows from Lemma 4.1 and supϕ∈(0,1] f (ϕ)/ϕ ≤ maxϕ∈[0,1] h(ϕ).

5 The singular problem with left boundary condition

Now we face problem (3.11). We always assume (q) and refer to the threshold c∗ introduced

in Proposition 4.2; we denote by z∗ the corresponding unique solution to (3.12). See Figure 5.1

on the left for an illustration of Proposition 5.1.

ϕ

z
z0

zb b

zβ(c) β(c)

1 z

z∗

ẑϕ0

1ϕ0

ẑϕ0(1)

Figure 5.1: Left: an illustration of Propositions 4.2 and 5.1, for fixed c > c∗.

Solutions to (3.11) are labelled according to their right-hand limit: z0 occurs in

the former proposition, zb in the latter. Right: the functions ẑϕ0 and z∗ in Step

(i) of Proposition 5.1.

Proposition 5.1. Assume (q). For every c > c∗, there exists β = β(c) < 0 satisfying

β ≥ f (1)− c, (5.1)

such that problem (3.11) with the additional condition z(1) = b < 0 admits a unique solution z if and

only if b ≥ β.

In the above proposition, the threshold case c = c∗ is a bit more technical; we shall prove

in Proposition 6.3 that β(c∗) = 0 under some further assumptions.

Proof of Proposition 5.1. For any c > c∗, we define the set Ac as

Ac := {b < 0 : (3.11) admits a solution with z(1) = b}.

We show that Ac = [β, 0), for some β = β(c) < 0, by dividing the proof into four steps.

Step (i): Ac 6= ∅. We claim that there exists ẑ which satisfies (3.11) and ẑ(1) < 0. Take

ϕ0 ∈ (0, 1) and consider the following problem, see Figure 5.1 on the right,

{

ż(ϕ) = h(ϕ)− c − q(ϕ)
z(ϕ)

,

z(ϕ0) = z∗(ϕ0).
(5.2)
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Lemma 3.2 (1) implies the existence of a solution ẑϕ0 of (5.2) defined in its maximal-existence

interval (0, δ), for some ϕ0 < δ ≤ 1. Since ẑϕ0 satisfies (5.2)1 and c > c∗, then

˙̂zϕ0(ϕ) = h(ϕ)− c∗ − q(ϕ)

ẑϕ0(ϕ)
+ (c∗ − c) < h(ϕ)− c∗ − q(ϕ)

ẑϕ0(ϕ)
, ϕ ∈ (0, δ).

This implies that ẑϕ0 is a strict lower-solution of (3.11)1 with c = c∗. From Lemma 3.2 (2.b),

this and ẑϕ0(ϕ0) = z∗(ϕ0) < 0 imply that

z∗ < ẑϕ0 in (0, ϕ0) and ẑϕ0 < z∗ in (ϕ0, δ). (5.3)

Since z∗ < ẑϕ0 < 0 in (0, ϕ0), we get ẑϕ0(0
+) = 0. Since ẑϕ0 < z∗ in (ϕ0, δ), we obtain that

ẑϕ0(δ
−) ≤ z∗(δ−). Thus δ = 1, otherwise ẑϕ0(δ) < 0, in contradiction with the fact that (0, δ)

is the maximal-existence interval of ẑϕ0 .

From Lemma 3.1, ẑϕ0(1) ∈ R. It remains to prove that ẑϕ0(1) < 0. From what we observed

above, it follows that z∗ > ẑϕ0 in (ϕ0, 1). Hence, for any ϕ ∈ (ϕ0, 1), we have

ż∗(ϕ)− ˙̂zϕ0(ϕ) = c − c∗ +
q(ϕ)

z∗(ϕ)ẑϕ0(ϕ)

(

z∗ − ẑϕ0

)

(ϕ) >
q(ϕ)

z∗(ϕ)ẑϕ0(ϕ)

(

z∗ − ẑϕ0

)

(ϕ) > 0.

This implies that (z∗ − ẑϕ0) is strictly increasing in (ϕ0, 1) and hence

−ẑϕ0(1) = z∗(1)− ẑϕ0(1) > z∗(ϕ0)− ẑϕ0(ϕ0) = 0,

which means ẑϕ0(1) < 0. Thus, ẑϕ0(1) ∈ Ac.

Step (ii): if b ∈ Ac then [b, 0) ⊂ Ac. Suppose that there exists b ∈ Ac and let zb be the solution

of (3.11) and zb(1) = b. Take b < b1 < 0. For Lemma 3.2 (1.a) there exists zb1
defined in (0, 1)

satisfying (3.11)1 and zb1
(1) = b1 < 0.

We claim that zb < zb1
in (0, 1). If not, then zb(ϕ0) = zb1

(ϕ0) =: y0 < 0, for some

ϕ0 ∈ (0, 1). Without loss of generality we can assume zb < zb1
in (ϕ0, 1]. We denote by

fc(ϕ, y) = h(ϕ) − c − q(ϕ)/y the right-hand side of the differential equation in (3.11); the

function fc is continuous in [0, 1]× (−∞, 0) and locally Lipschitz-continuous in y. Hence, zb

and zb1
are two different solutions of

{

y′ = fc(ϕ, y), ϕ ∈ (ϕ0, 1),

y(ϕ0) = y0,

which contradicts the uniqueness of the Cauchy problem. Thus, zb < zb1
< 0 in (0, 1). Since

zb satisfies (3.11)3 then zb1
(0+) = 0 and hence b1 ∈ Ac.

Step (iii): infAc ∈ R. Suppose that z satisfies Equation (3.11)1. As already observed, this

implies ż(ϕ) > h(ϕ)− c, ϕ ∈ (0, 1). Thus, for any ϕ ∈ (0, 1),

z(ϕ) = z(ϕ)− z(0) ≥
∫ ϕ

0
h(σ)− c dσ = f (ϕ)− cϕ. (5.4)

This implies that z(1) ≥ f (1)− c. Define β = β(c) by

β := infAc.

Thus, β ≥ f (1)− c > −∞, which also proves (5.1).
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z

y

zn
z̄

1

bn

β
y(1)

z

z1

z2

ẑc2

1ϕ0

ẑc2 (1)

β(c1)

Figure 5.2: Left: the functions zn, y and z̄ in Step (iv) of Proposition 5.1. Right:

the functions z1, z2 and ẑc2 in the proof of (i) of Corollary 5.3.

Step (iv): β ∈ Ac. Let {bn}n ⊂ Ac be a strictly decreasing sequence such that bn → β+.

Since bn ∈ Ac, each bn is associated with a solution zn of (3.11) and zn(1) = bn. From the

uniqueness of the solution of Cauchy problem for (3.11)1, the sequence zn is decreasing.

For any given δ < β, let y be defined by

{

ẏ(ϕ) = h(ϕ)− c − q(ϕ)
y(ϕ)

, ϕ < 1

y(1) = δ < β.

Such a y exists and is defined in [0, 1] from Lemma 3.2 (1.a). Also, bn > δ, for any n ∈ N.

Thus, for any n ∈ N, zn ≥ y in [0, 1]. Lemma 3.3 implies that there exists z̄ satisfying (3.1)

such that zn → z̄ uniformly in [0, 1] (see Figure 5.2 on the left). In particular, we deduce that

z̄(0) = 0 and z̄(1) = β. Hence, we conclude that β ∈ Ac.

Putting together Steps (i)–(iv), we conclude that Ac = [β, 0). �

The monotonicity of solutions of (3.11) now follows. We omit the proof since it is quite

standard, once that Lemma 3.2 (2) is given. (See [6, Lemma 5.1].)

Corollary 5.2 (Monotonicity of solutions). Assume (q). Let c2 > c1 ≥ c∗ and assume that z1 and

z2 satisfy (3.11) with c = c1 and c = c2, respectively. Then, if z1(1) ≤ z2(1) it occurs that z1 < z2 in

(0, 1).

A monotony property of β(c) now follows.

Corollary 5.3. Under (q) we have:

(i) β(c2) < β(c1) for every c2 > c1 > c∗;

(ii) β(c) → −∞ as c → +∞.

Proof. To prove (i), let z1 be a solution of (3.11) corresponding to c = c1 and such that z1(1) =

b1 ∈ Ac1
. As a consequence of Lemma 3.2 (1.a), the problem

{

ż(ϕ) = h(ϕ)− c2 − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(1) = b1 < 0,

admits a (unique) solution z2 defined in [0, 1]. From the monotonicity of solutions given by

Corollary 5.2, we have z1 < z2 < 0 in (0, 1). Since z1(0) = 0, then we have z2(0) = 0. Thus,

Ac1
⊆ Ac2 and hence β(c1) ≥ β(c2). To prove β(c1) > β(c2) we argue as follows.
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For any ϕ0 ∈ (0, 1) we can repeat the same arguments as in Step (i) of Proposition 5.1, by

replacing c with c2 and z∗ with z1 in (5.2). Thus, the problem

{

ż(ϕ) = h(ϕ)− c2 − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(ϕ0) = z1(ϕ0) < 0,

admits a unique solution ẑc2 defined in [0, 1], because necessarily any solution of the last

problem must be bounded from above by z2, see Figure 5.2 on the right. Moreover, by applying

Lemma 3.2 (2.b.ii), ẑc2 < z1 in (ϕ0, 1), which implies that ẑc2(1) < z1(1), since

˙̂zc2(ϕ)− ż1(ϕ) = c1 − c2 +
q(ϕ)

z1(ϕ)ẑc2(ϕ)
(ẑc2(ϕ)− z1(ϕ)) < 0 for any ϕ ∈ (ϕ0, 1).

Since β(c2) ≤ ẑc2(1) < z1(1) = b1 then we proved (i) since b1 is arbitrary in Ac1
.

Finally, we prove (ii). For c > c∗, let zc be the solution of (3.11) such that zc(1) = β(c). For

any fixed c1 > c∗, we have zc < zc1
in (0, 1), if c > c1. Thus, for any c > c1,

żc(ϕ) = h(ϕ)− c +
q(ϕ)

−zc(ϕ)
< h(ϕ)− c +

q(ϕ)

−zc1
(ϕ)

, ϕ ∈ (0, 1).

In particular, since zc1
< 0 in (0, 1], then, for any 0 < δ < 1, there exists M > 0 such that

q(ϕ)/(−zc1
(ϕ)) ≤ M for any ϕ ∈ (δ, 1]. Thus, for any ϕ ∈ (δ, 1),

zc(ϕ) ≤ zc(δ) + f (ϕ)− f (δ) + (M − c) (ϕ − δ) < f (ϕ)− f (δ) + (M − c) (ϕ − δ),

which implies β(c) = zc(1) ≤ f (1)− f (δ) + (M − c)(1 − δ). This proves (ii).

We now collect some consequences of (5.4) and Lemma 4.1, concerning a sharper estimate

to c∗. To the best of our knowledge these estimates are new and we provide some comments.

Corollary 5.4. Assume (q). It holds that

c∗ ≥ max

{

sup
ϕ∈(0,1]

f (ϕ)

ϕ
, h(0) + 2

√

lim inf
ϕ→0+

q(ϕ)

ϕ

}

. (5.5)

Proof. Formula (5.4) in Step (iii) implies that f (ϕ) < cϕ, for ϕ ∈ (0, 1). Thus, f (ϕ) ≤ c∗ϕ, for

ϕ ∈ (0, 1). This implies c∗ ≥ supϕ∈(0,1]
f (ϕ)

ϕ , which, together with (4.3) implies (5.5).

Remark 5.5. Lemma 4.1 and Corollary 5.4 imply that, under (q), the threshold c∗ verifies

(2.2). Moreover, make the assumption q̇(0) = 0, which is valid if q = Dg under (D1), with

D(0) = 0, (g0) or under (D0) and (g01). In this case, the estimates in (2.8) hold true. Indeed,

the assumptions on q are covered by [18, Theorem 3.1] and hence it follows that

c∗ ≤ sup
ϕ∈(0,1]

f (ϕ)

ϕ
+ 2

√

sup
ϕ∈(0,1]

1

ϕ

∫ ϕ

0

q(σ)

σ
dσ.

The bound from above in (2.8) is then proved. The bound from below in (2.8) is instead due

directly to (5.5), because of q̇(0) = 0.

Remark 5.6. We can now make precise the statement following formula (2.7) about the gap

between ccon and c∗. If ccon is obtained at some ϕ ∈ (0, 1], then the sup in the right-hand

side of (2.7) is strictly larger than ccon because z < 0 in (0, 1). Then c∗ > ccon. Otherwise, if

supϕ∈(0,1] f (ϕ)(ϕ) = h(0), then ccon = h(0) and by (5.5) we still deduce c∗ > ccon.
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6 Further existence and non-existence results

Propositions 4.2 and 5.1 completely treat the existence of solutions of (3.12) and (3.11), respec-

tively, in the cases c ≥ c∗ and c > c∗. In this section, we investigate the remaining cases and

show that such propositions are somehow optimal.

We now deal with the following problem, where c ∈ R but, differently from (3.11), the

boundary condition is imposed on the right extremum of the interval of definition:














ζ̇(ϕ) = h(ϕ)− c − q(ϕ)
ζ(ϕ)

, ϕ ∈ (0, 1),

ζ(ϕ) < 0, ϕ ∈ (0, 1),

ζ(1) = 0.

(6.1)

The differential equation in (3.11) and (6.1) is the same; it inherits the properties of the dy-

namical system underlying (1.3). For slightly more regular functions g, the dynamical system

has a center or a node at (0, 0) and a saddle at (1, 0). The corresponding results, Proposition

5.1 and Lemma 6.1, differ as in Lemma 3.2 (1).

Moreover, while in problem (3.11) the threshold c∗ discriminated the existence of solutions,

for problem (6.1) solutions will be proved to exist for every c ∈ R; instead, the threshold c∗

enters into the problem to discriminate whether solutions reach 0 or not (see Figure 6.1).

A related behavior was pointed out in [6, Theorem 2.6]. On the contrary, the monotonicity

properties stated in Corollary 5.2 and in Lemma 6.1 are the same.

ϕ

ζ

ζc1

ζc2(0)
ζc2

1

Figure 6.1: An illustration of Lemma 6.1. Here, c1 ≥ c∗ while c2 < c∗ and

ζc2(0) < 0.

Lemma 6.1. Assume (q). For any c ∈ R, Problem (6.1) admits a unique solution ζc. If c ≥ c∗ then

ζc(0) = 0 and if c < c∗ then ζc(0) < 0. Moreover, we have:

(i) if c2 > c1 then ζc2 > ζc1
in (0, 1);

(ii) it holds that z∗(ϕ) = limc→c∗ ζc(ϕ) for any ϕ ∈ [0, 1].

Proof. The existence and uniqueness was proved in [6, Theorem 2.6], while the monotonicity

as stated in (i) was given in [6, Lemma 5.1]. It remains to prove (ii). We show that

lim
δ→0+

ζc∗−δ(ϕ) = lim
δ→0+

ζc∗+δ(ϕ) = z∗(ϕ) for ϕ ∈ [0, 1].

For any ϕ ∈ [0, 1], by (i) we have

ζc∗−δ2
(ϕ) < ζc∗−δ1

(ϕ) < z∗(ϕ) < ζc∗+δ1
(ϕ) < ζc∗+δ2

(ϕ) for any 0 < δ1 < δ2. (6.2)

Lemma 3.3 and (6.2) imply that there exist two functions w, w ∈ C0[0, 1] ∩ C1 (0, 1) so that

w(ϕ) = limδ→0+ ζc∗+δ(ϕ) and w(ϕ) = limδ→0+ ζc∗−δ(ϕ), ϕ ∈ [0, 1], and that both w and w

satisfy (3.1) with c = c∗. Since w(1) = w(1) = 0, both of them then solve (6.1). By the

uniqueness of solutions of (6.1) it follows that w = w = z∗.
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Remark 6.2. Note that, because of the uniqueness stated in Lemma 6.1, it follows that, for any

c ≥ c∗, the solution z given by Proposition 4.2 corresponds to ζc of Lemma 6.1. Moreover, for

c < c∗ fixed, there exists a bound from below for ζc(0) < 0. We have

ζc(0) ≥ −1 − Ac, for Ac := max
{

max
ϕ∈[0,1]

h(ϕ)− c, 0
}

+ max
ϕ∈[0,1]

q(ϕ) > 0.

Indeed, the function η(ϕ) := Ac (ϕ − 1)− 1, for ϕ ∈ [0, 1], is a strict upper-solution of (6.1)1.

Therefore, if ζc(ϕ0) ≤ η(ϕ0), for some ϕ0 ∈ (0, 1), then ζc < η in (ϕ0, 1) by Lemma 3.2 (2.a.ii),

which is in contradiction with ζc(1) = 0 > η(1). Thus, ζc(0) ≥ η(0) = −Ac − 1. Notice that,

for c ≥ max h, Ac = max q does not depend on c, while Ac → ∞, as c → −∞.

We now show that β(c∗) = 0 under some additional conditions. First, we assume (also for

future reference) that q̇(0) exists:

q̇(0) = lim
ϕ→0+

q(ϕ)

ϕ
∈ [0, ∞). (6.3)

Proposition 6.3. Assume (q), (6.3) and also

∫

0

q(σ)

σ2
dσ < +∞ and c∗ > h(0). (6.4)

Then Problem (3.11) with c = c∗ admits a unique solution z, which satisfies z(1) = 0.

Notice that (6.4)1 above strengthens the last condition in (q) and is satisfied if q̇(ϕ) = O(ϕα)

for ϕ → 0+, for some α > 0; in any case it implies q̇(0) = 0 by (6.3).

ϕ

z

z∗

ζc(0)

ζcy∗

z∗c

1

Figure 6.2: The functions z∗, ζc, y∗ and z∗c , for c < c∗.

Proof of Proposition 6.3. Suppose, by contradiction, that there exists y∗ which solves (3.11) with

c = c∗ and y∗(1) < 0; observe that

z∗ > y∗ in (0, 1]. (6.5)

We show that y∗ is an upper bound for the family of functions {z∗c}c<c∗ defined as follows,

see Figure 6.2. For any c < c∗, let ζc be the solution of (6.1), given in Lemma 6.1. Consider the

initial-value problem
{

ż(ϕ) = h(ϕ)− c∗ − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(0) = ζc(0) < 0.
(6.6)

By Lemma 3.2 (1.b), problem (6.6) admits a unique solution z∗c in [0, δ] for some δ ≤ 1. More-

over, since z∗c (0) < 0 and z∗c satisfies (6.6), then z∗c < y∗ in [0, δ). Thus, if δ < 1 then we have

−∞ < z∗c (δ) < y∗(δ) < 0; again by Lemma 3.2 (1.b) we deduce δ = 1. Then

y∗ > z∗c in [0, 1). (6.7)
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By both Lemma 6.1 (ii) and (6.7) we now find a contradiction, which implies that such a

y∗ cannot exist. For this, for any c < c∗, define ηc by

ηc(ϕ) = ζc(ϕ)− z∗c (ϕ), ϕ ∈ [0, 1].

Since z∗c is a strict lower-solution of (3.11)1, then Lemma 3.2 (2.b.ii) implies ηc > 0 in (0, 1). We

claim that, for any fixed ϕ0 ∈ (0, 1], ηc(ϕ0) is uniformly bounded from below for c close to c∗.

Indeed, for any 0 < δ < (z∗ − y∗)(ϕ0), we clearly have, by (6.7) and (6.5),

ηc(ϕ0) > ζc(ϕ0)− y∗(ϕ0) = (ζc − z∗) (ϕ0) + (z∗ − y∗) (ϕ0) > (ζc − z∗) (ϕ0) + δ.

Thus, in virtue of Lemma 6.1 (ii), for any c sufficiently close to c∗, we have

ηc(ϕ0) ≥
δ

2
> 0, (6.8)

which proves our claim. On the other hand, define k = k(ϕ) > 0 by

k(ϕ) :=
q(ϕ)

(z∗y∗) (ϕ)
, ϕ ∈ (0, 1).

From assumptions (6.3) and (6.4)2 we deduce ż∗(0) = h(0)− c∗ < 0 because of [6, Proposi-

tion 5.2]. Also, by (6.5) we deduce that y∗z∗ > z∗2 in (0, 1]. Thus,

k(ϕ) <
q(ϕ)

ϕ2

(

ϕ

z∗(ϕ)

)2

=
q(ϕ)

ϕ2

{

1

(c∗ − h(0))2
+ o(1)

}

for ϕ → 0+.

This leads to
∫ ϕ0

0
k(σ) dσ =: M < +∞

by means of (6.4)1. Since ζc and z∗c satisfy (3.11)1 with c < c∗ and c = c∗, respectively, and

since ζcz∗c > z∗y∗ by the monotonicity stated in Lemma 6.1 and (6.7), then

η̇c(ϕ) = c∗ − c − q(ϕ)

ζc(ϕ)z∗c (ϕ)
(z∗c (ϕ)− ζc(ϕ)) < c∗ − c + k(ϕ)ηc(ϕ),

for ϕ ∈ (0, 1). After some straightforward manipulations, this gives

d

dϕ

(

ηc(ϕ)e−
∫ ϕ

0 k(σ) dσ
)

≤ (c∗ − c) e−
∫ ϕ

0 k(σ) dσ, ϕ ∈ (0, 1).

By integrating in (0, ϕ0) (where ϕ0 is the point for which (6.8) holds) we obtain

0 < ηc(ϕ0) ≤ (c∗ − c) e
∫ ϕ0

0 k(σ) dσ
∫ ϕ0

0
e−
∫ σ

0 k(s) ds dσ ≤ (c∗ − c) eM ϕ0, (6.9)

since e−
∫ σ

0 k(s) ds ≤ 1, for any 0 < σ < ϕ0, because of k > 0. Since M does not depend on c,

from (6.9), we conclude that ηc(ϕ0) → 0, for c → c∗. This contradicts (6.8). �
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We notice that if q = Dg, with D ∈ C1[0, 1], then (6.4)1 follows if we have both D(0) = 0

and there exists L ≥ 0 such that g(ϕ) ≤ Lϕα for any ϕ in a right neighborhood of 0 and some

α > 0. The next remark deals with (6.4)2.

Remark 6.4. First, from (4.3), we have c∗ ≥ supϕ∈(0,1]
f (ϕ)

ϕ ≥ h(0). We show that the case

c∗ = h(0) can indeed occur and then (6.4)2 is a real assumption. Set, for ϕ ∈ (0, 1),

q(ϕ) = ϕ3 (1 − ϕ) , h(ϕ) = 3ϕ (ϕ − 1) , (6.10)

and z(ϕ) = ϕ2 (ϕ − 1). Direct computations show that z satisfies (3.11) with c = 0 = h(0).

Hence, c∗ = h(0), because of c∗ ≥ h(0).

Second, in the spirit of [16, Theorems 1.2 and 1.3], which concerns a similar case, we claim

that (6.4)2 occurs if there exists δ > 0 such that h(ϕ) ≥ h(0) for all ϕ ∈ [0, δ]. Indeed, if z is

a solution of (3.11) with c = c∗, then from (3.11)1 we have ż(ϕ) > h(ϕ)− c∗ ≥ h(0)− c∗, for

ϕ ∈ (0, δ). This implies h(0)− c∗ ≤ infϕ∈(0,δ) ż(ϕ) < 0, because of (3.11)2 and (3.11)3, which

proves our claim.

Lastly, we show by a counter-example that the conclusion of Proposition 6.3 fails when

(6.4)1 holds but (6.4)2 does not. Consider, for ϕ ∈ [0, 1], q(ϕ) = ϕ4 (1 − ϕ) and y∗(ϕ) = −ϕ2.

Clearly, y∗ < 0 in (0, 1) and y∗(0) = 0. Furthermore, we have

ẏ∗(ϕ) +
q(ϕ)

y∗(ϕ)
= −2ϕ − ϕ2 (1 − ϕ) , ϕ ∈ (0, 1).

This implies that y∗ satisfies (3.11)1 with h(ϕ) = −2ϕ − ϕ2 (1 − ϕ) and c = 0. As a conse-

quence, by c∗ ≥ h(0) = 0, we deduce c∗ = h(0) = 0. Thus, we proved that there exists q

satisfying (6.4)1 such that (3.11) with c = c∗ = h(0) admits a solution y∗ 6= z∗.

Proposition 6.5. Assume (q). For no c < c∗ problem (3.11) admits solutions.

Proof. Take c < c∗ and assume by contradiction that problem (3.11) has a solution z. If ζ = ζc

is the solution to (6.1) given by Lemma 6.1, then ζ(0) < 0, by Proposition 4.2. Then ζ(ϕ0) =

z(ϕ0) =: y0 < 0, for some ϕ0 ∈ (0, 1); see Figure 6.3. This contradicts the uniqueness of the

Cauchy problem associated to (6.1)1. The proof is concluded.

ϕ

z

z

ζ(0)

ζ

z(1)

1ϕ0

Figure 6.3: The functions z and ζ.

7 The behavior of z near 1

In this section and in the next one we investigate the behavior of the solutions z to (3.11) at 1

and 0. We now deal with the former case. We suppose that, analogously to (6.3),

q̇(1) ∈ (−∞, 0]. (7.1)
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Proposition 7.1. Assume (q) and (7.1); consider c ≥ c∗ and let z be a solution of (3.11). Then, ż(1)

exists and it holds that

(i) if z(1) ∈ [β, 0), then ż(1) = h(1)− c;

(ii) if z(1) = 0, then

ż(1) =







1
2

[

h(1)− c +
√

(h(1)− c)2 − 4q̇(1)

]

if q̇(1) < 0,

max {0, h(1)− c} if q̇(1) = 0.
(7.2)

Proof. In case (i), we only need to take the limit for ϕ → 1− in (3.11)1.

In case (ii), the proof of the existence of ż(1) is analogous to the proof of [16, Lemma 2.1],

even if in that paper there is the further assumption q̇(1) = 0. In the current case, ż(1) must

coincide with one of the roots of the equation γ2 − (h(1)− c) γ + q̇(1) = 0, which are

r± :=
h(1)− c ±

√

(h(1)− c)2 − 4q̇(1)

2
.

A direct check shows that the right-hand side of (7.2) corresponds exactly to r+. Thus, if we

prove that ż(1) = r+ then we conclude the proof.

If q̇(1) < 0, the fact that r− < 0 implies necessarily that µ = r+, because of ż(1) ≥ 0.

Let q̇(1) = 0. Since we do not yet know whether ż is continuous at 1 (see Remark 9.2),

we argue as follows. For any ϕ ∈ (0, 1), by the Mean Value Theorem there exists σϕ ∈ (ϕ, 1)

satisfying ż(σϕ) =
z(ϕ)
ϕ−1 . By the definition of ż(1) it then follows that

lim
ϕ→1−

ż(σϕ) = ż(1) and lim
ϕ→1−

z(σϕ)

σϕ − 1
= ż(1). (7.3)

From (3.11)1, the sign conditions in (3.2)2 and (3.11)2 imply that

ż(σϕ) > h(σϕ)− c, ϕ ∈ (0, 1). (7.4)

By (7.3), passing to the limit as ϕ → 1− gives ż(1) ≥ h(1)− c, because of the continuity of h

at 1. Moreover, since ż(1) ≥ 0 it holds that ż(1) ≥ max {0, h(1)− c} = r+. This concludes the

proof, since it necessarily follows that ż(1) = r+ also in this case.

Remark 7.2. We prove in Remark 9.2 that z ∈ C1(0, 1] under the assumptions of Proposition

7.1. We now show that (7.1) is necessary for the existence of ż(1). We define

q(ϕ) = ϕ3 (1 − ϕ)

[

(sin (log (1 − ϕ)) + 2)2 + 2 cos (log (1 − ϕ)) +
1

2
sin (2 log (1 − ϕ))

]

,

for ϕ ∈ [0, 1]. The function q satisfies (q), while q̇(1) does not exist. Direct computations show

that the function z = z(ϕ) defined by z(ϕ) = − (2 + sin(log(1 − ϕ))) (1 − ϕ) ϕ2 satisfies (3.11)

with c = 0 and h(ϕ) = ϕ(ϕ − 1) [cos(log(1 − ϕ)) + 3 sin(log(1 − ϕ)) + 6]. It is easy to verify

that ż(1) does not exist.
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8 The behavior of z near 0

For ϕ0 ∈ (0, 1) we consider the problem, see Figure 8.1 on the left,
{

ż(ϕ) = h(ϕ)− c − q(ϕ)
z(ϕ)

, ϕ ∈ (0, 1),

z(ϕ0) = z∗(ϕ0).
(8.1)

Lemma 8.1. Assume (q). Fix c > c∗. For every ϕ0 ∈ (0, 1) there is a unique solution ẑϕ0 ∈
C[0, 1] ∩ C1 (0, 1) to problem (8.1). We have ẑϕ0(0) = 0, and also

ẑϕ0 < z∗ in (ϕ0, 1] and ẑϕ0 ≥ zβ in (0, 1], (8.2)

where zβ is the solution to (3.11) with zβ(1) = β. If 0 < ϕ1 < ϕ0 then ẑϕ1
< ẑϕ0 in (0, 1].

Proof. The existence and uniqueness of solutions is proved by Step (i) in the proof of Propo-

sition 5.1. Inequality (8.2)1 follows from the arguments contained in Step (i) of the proof of

Proposition 5.1, while (8.2)2 is obvious.

If 0 < ϕ1 < ϕ0 then ẑϕ1
(ϕ0) < ẑϕ0(ϕ0), because ẑϕ1

< z∗ in (ϕ1, 1] and ϕ0 ∈ (ϕ1, 1]. The

monotony follows by the uniqueness of solutions to the Cauchy problem associated to (3.11)1.

The regularity of ẑϕ0 follows from both (8.1)1 and Lemma 3.1; directly from (8.2)2, we deduce

ẑϕ0(0) = 0.

ϕ

z

z∗

1

ẑϕ0

ϕ0

ẑϕ1

ϕ1

ẑ β̂

zβ β

ϕ

z

zb
b

s+
s∗+

s∗−

s−

z∗
zβ̂

β̂
zβ β(c)

1

Figure 8.1: Left: the functions ẑϕ0 , ẑ and zβ in Lemma 8.1. Right: an illustration

of Proposition 8.2 for fixed c > c∗. Solutions are labelled according to their

right-hand limit; s± denote the slope of the tangent of z at 0. The dashed curve

is the plot of z∗.

For every c > c∗, by the monotonicity of {ẑϕ0}ϕ0 and (8.2)2, Lemma 3.3 implies that there

exists ẑ ∈ C0[0, 1] ∩ C1 (0, 1) which solves (3.1) such that

ẑ(ϕ) = lim
ϕ0→0+

ẑϕ0(ϕ), ϕ ∈ [0, 1] . (8.3)

Such a ẑ satisfies zβ ≤ ẑ ≤ z∗ in (0, 1) by (8.2) and then (3.11). Define β̂ ∈ [β, 0) by

β̂ := ẑ(1). (8.4)

In the following result we assume again (6.3). We shall prove in Remark 8.3 that such a

condition is necessary for the existence of ż(0). From (4.3) and (6.3) we deduce (h(0)− c)2 −
4q̇(0) ≥ 0 for any c ≥ c∗; we can then denote

s±(c) :=
h(0)− c

2
±

√

(h(0)− c)2 − 4q̇(0)

2
, for c ≥ c∗.
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The next proposition generalizes [6, Proposition 5.2] to the case of a more generic q, and,

more deeply, to the case z(1) < 0. It is worth noting that this latter case reveals the behavior

detected by (8.6), and shown in Figure 8.1 on the right, which was not contained in [6].

Proposition 8.2. Assume (q) and (6.3). If c ≥ c∗ and z is a solution of (3.11), then, ż(0) exists.

Moreover, it holds that

ż(0) =

{

s+(c) if c > c∗ and z(1) > β̂,

s−(c∗) if c = c∗,
(8.5)

and, if c∗ > h(0),

ż(0) = s−(c) if c > c∗ and z(1) ∈ [β, β̂]. (8.6)

Proof. Arguing as in the proof of [6, Proposition 5.2], we deduce that ż(0) exists for c ≥ c∗ and

is one of the root of the equation γ2 − (h(0)− c) γ + q̇(0) = 0. Then ż(0) ∈ {s−(c), s+(c)} for

every c ≥ c∗. Straightforward computations give

s−(c) < s−(c∗) ≤ s+(c
∗) ≤ s+(c) ≤ 0 for any c > c∗ (8.7)

and h(0)− c ≤ s−(c), for any c ≥ c∗. We denote s∗± := s±(c∗).

Take c > c∗. Let ẑϕ0 and ẑ be defined as in the beginning of Section 8, see Figure 8.1 on

the left. If z(1) > β̂ then z(1) > ẑϕ1
(1), for some ϕ1 ∈ (0, 1), because of (8.3). Thus, z > ẑϕ1

in (0, 1]. We observed in (5.3) that ẑϕ1
> z∗ in (0, ϕ1). Thus, z > z∗ in (0, ϕ1) and hence

ż(0) ≥ ż∗(0). Since s−(c) < s∗− ≤ 0 by (8.7), we deduce ż(0) = s+(c). This proves (8.5)1.

Now, we prove (8.5)2. If z = z∗, then (8.5)2 was obtained in [6, Proposition 5.2] under some

specific assumptions on q. Since the relevant ones were (3.2) and (6.3), we deduce that (8.5)2

occurs also in the current case. If z = y∗ is a solution of (3.11), different from z∗ (such a y∗

can exist, as we proved in Remark 6.4, since (6.4) does not necessarily follow), then y∗ < z∗

in (0, 1] by Proposition 4.2. Since ẏ∗(0) ∈ {s∗−, s∗+} and ż∗(0) = s∗− then we have ẏ∗(0) = s∗−.

Hence, (8.5)2 holds.

It remains to prove (8.6) under the additional condition h(0)− c∗ < 0. By β ≤ z(1) ≤ β̂

we have z ≤ ẑ and hence z < z∗, which implies ż(0) ≤ ż∗(0). Since, under the additional

condition h(0)− c∗ < 0, we have s∗− < s∗+ and since we proved that ż∗(0) = s∗−, we conclude

that ż(0) = s−(c), which is (8.6). This concludes the proof.

Remark 8.3. Now, we prove that (6.3) is necessary for the existence of ż(0). For ϕ ∈ [0, 1]

define q(ϕ) = ϕ(1 − ϕ)4 (2 + sin (log ϕ)) (3 − cos (log ϕ)− sin (log ϕ)). The function q satis-

fies (q), while q̇(0) does not exist, since lim infϕ→0+ q(ϕ)/ϕ < lim supϕ→0+ q(ϕ)/ϕ. Direct

computations show that the function z(ϕ) = − (2 + sin (log ϕ)) (1 − ϕ)2 ϕ solves (3.11) with

c = 0 and h(ϕ) = 2 (2 + sin (log ϕ)) (1 − ϕ) ϕ − 5 (1 − ϕ)2. Clearly, ż(0) does not exists.

We now show that, under the assumptions of Proposition 6.3, the threshold β̂(c) defined in

(8.4) and occurring in Proposition 8.2 coincides with the threshold β(c) introduced in Propo-

sition 5.1. It is an open problem whether the two thresholds differ without assuming (6.3) and

(6.4).

Proposition 8.4. Assume (q), (6.3), (6.4) and c > c∗. Then β(c) = β̂(c).

Proof. Consider ε > 0 and let zε be the solution of

{

żε(ϕ) = h(ϕ)− c − q(ϕ)
zε(ϕ)

, ϕ > 0,

zε(0) = −ε < 0.
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Lemma 3.2 (1.b) implies that zε exists and it is defined in its maximal-existence interval [0, δ],

for some 0 < δ ≤ 1. By the uniqueness of solutions of the Cauchy problem associated to

(3.1)1, we have necessarily zε < zβ in [0, δ], where zβ was defined in the statement of Lemma

8.1. Since zβ(δ) < 0 then δ = 1.

We claim that zε converges for ε → 0+ to both ẑ and zβ, where ẑ is defined in (8.3), see

Figure 8.1 on the left. From the uniqueness of the limit, it follows that ẑ and zβ coincides and

hence that β = β̂. To prove the claim, consider

ηε(ϕ) := ẑ(ϕ)− zε(ϕ), ϕ ∈ [0, 1].

Since ẑ ≥ zβ > zε in [0, 1], then ηε > 0 in [0, 1]. Moreover, ηε(0) = ε. We have

η̇ε(ϕ) =
q(ϕ)

zε(ϕ)ẑ(ϕ)
ηε(ϕ), ϕ ∈ (0, 1).

Thus,
η̇ε(ϕ)

ηε(ϕ)
=

q(ϕ)

zε(ϕ)ẑ(ϕ)
, ϕ ∈ (0, 1)

and hence, for any 0 < τ < ϕ,

log (ηε(ϕ))− log (ηε(τ)) =
∫ ϕ

τ

q(s)

zε(s)ẑ(s)
ds ≤

∫ 1

τ

q(s)

zβ(s)ẑ(s)
ds. (8.8)

Notice, from (6.4)2 it follows that we can apply (8.6) with q̇(0) = 0 (because of (6.3)) and obtain

zβ(s)ẑ(s) = (h(0)− c)2 s2 + o(s2), as s → 0+. Hence, from (6.4)1,

sup
τ>0

∫ 1

τ

q(s)

zβ(s)ẑ(s)
ds =: C < +∞.

From (8.8), by taking the limit as τ → 0+ we deduce ηε(ϕ) ≤ εeC, ϕ ∈ [0, 1), and then

lim
ε→0+

zε(ϕ) = ẑ(ϕ), ϕ ∈ [0, 1). (8.9)

We now apply Lemma 3.3 to deduce that zε converges (uniformly on [0, 1]) to a solution z̄ of

(3.1)1 in (0, 1) such that z̄ < 0 in (0, 1) and z̄(0) = 0. Since zε < zβ and zβ lies below every

solution of (3.1), by the very definition of zβ, we conclude that z̄ coincides with zβ, that is

limε→0+ zε(ϕ) = zβ(ϕ), ϕ ∈ [0, 1]. From this formula and (8.9) we clearly have zβ = ẑ.

9 Strongly non-unique strict semi-wavefronts

We now apply the previous results to study semi-wavefronts of Equation (1.1) when D and g

satisfy (D1), (g0) and (1.2); in particular, we prove Theorem 2.2 and Corollary 9.4. Indeed, all

the results obtained in Sections 4–8 apply when we set

q := Dg, (9.1)

since such q fulfills (q). Throughout this section, by c∗ we always intend the threshold given

by Proposition 4.2 for q as in (9.1), for which it holds (2.2), as observed in Remark 5.5.
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Lemma 9.1. Assume (D1), (g0) and (1.2). Consider c ≥ c∗ and let z be the solution of (3.12) when

(9.1) occurs. Then, it holds that

lim
ϕ→1−

D(ϕ)

z(ϕ)
=











h(1)−c−
√

(h(1)−c)2−4Ḋ(1)g(1)
2g(1)

if Ḋ(1) < 0,

min
{

0, h(1)−c
g(1)

}

if Ḋ(1) = 0.

(9.2)

Proof. First, observe that Proposition 7.1 applies to the current case.

If either Ḋ(1) < 0 or Ḋ(1) = 0 and c < h(1), then ż(1) > 0, by (7.2), because q̇(1) =

Ḋ(1)g(1). As a consequence, we have

lim
ϕ→1−

D(ϕ)

z(ϕ)
= lim

ϕ→1−

D(ϕ)
ϕ−1

z(ϕ)
ϕ−1

=
Ḋ(1)

ż(1)
,

which, together with (7.2), implies both (9.2)1 and the first half of (9.2)2.

If Ḋ(1) = 0 and c ≥ h(1), we need a refined argument based on strict upper- and lower-

solutions of (3.11)1. We split the proof in two subcases.

(i) Assume first Ḋ(1) = 0 and c > h(1). Fix ε > 0 and define ω = ω(ϕ) by

ω(ϕ) := − g(1)

c − h(1) + εg(1)
D(ϕ), for ϕ ∈ (0, 1). (9.3)

First, we observe that ω < 0 in (0, 1). Moreover, we get

ω̇(ϕ) = − g(1)

c − h(1) + εg(1)
Ḋ(ϕ),

which in turn implies ω̇(1) = 0, since Ḋ(1) = 0. Now, if we compute the right-hand side of

(3.11)1 applied to ω, we obtain

h(ϕ)− c − D(ϕ)g(ϕ)

ω(ϕ)
= h(ϕ)− c +

g(ϕ) [c − h(1) + εg(1)]

g(1)
, for ϕ ∈ (0, 1),

which tends to εg(1) > 0 as ϕ → 1−. Hence, there exists σ ∈ (0, 1) such that

ω̇(ϕ) < h(ϕ)− c − D(ϕ)g(ϕ)

ω(ϕ)
, ϕ ∈ [σ, 1), (9.4)

that is, ω is a (strict) lower-solution of (3.11)1 in [σ, 1).

Since ż(1) = 0, we can take a sequence {ϕn}n ⊂ (σ, 1), with ϕn → 1 as n → ∞, such that

ż(ϕn) → 0 as follows. Let {σn}n ⊂ (σ, 1) be such that σn → 1. For any n ∈ N, the Mean Value

Theorem implies that there exists ϕn ∈ (σn, 1) for which it holds ż(ϕn) = z(σn)
σn−1 . Since the

sequence in the right-hand side of this last identity tends to ż(1) = 0, as n → ∞, we obtained

the desired {ϕn}n. With this in mind, from (3.11)1, we obtain

lim
n→∞

D(ϕn)g(ϕn)

z(ϕn)
= h(1)− c, (9.5)

and then

lim
n→∞

ω(ϕn)

z(ϕn)
=

c − h(1)

c − h(1) + εg(1)
= 1 − εg(1)

c − h(1) + εg(1)
< 1.
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Hence, there exists n such that ω(ϕn) > z(ϕn) for n ≥ n. Without loss of generality we assume

that n = 1. We claim that

ω(ϕ) > z(ϕ), for ϕ ∈ (ϕ1, 1). (9.6)

We reason by contradiction, see Figure 9.1. Suppose that there exists ϕ̃ ∈ (ϕ1, 1) such

that ω(ϕ̃) ≤ z(ϕ̃). There exists n ∈ N for which ϕ̃ ∈ (ϕn, ϕn+1). Since ω(ϕn) > z(ϕn) and

ω(ϕn+1) > z(ϕn+1), the existence of such a ϕ̃ implies that the function (ω − z) in (ϕn, ϕn+1)

admits a non-positive minimum at ϕ̃2 ∈ (ϕn, ϕn+1), that is ω̇(ϕ̃2) = ż(ϕ̃2) and ω(ϕ̃2) ≤ z(ϕ̃2).

Thus, from (3.11)1 and (9.4) we have that

h(ϕ̃2)− c − (Dg)(ϕ̃2)

z(ϕ̃2)
= ż(ϕ̃2) = ω̇(ϕ̃2) < h(ϕ̃2)− c − (Dg)(ϕ̃2)

ω(ϕ̃2)
,

which in turn implies 1/z(ϕ̃2) > 1/ω(ϕ̃2) because of (Dg)(ϕ̃2) > 0. Hence, z(ϕ̃2) < ω(ϕ̃2)

which contradicts the existence of ϕ̃2. Then (9.6) is proved. At last, we have

D(ϕ)

z(ϕ)
>

D(ϕ)

ω(ϕ)
= − c − h(1)

g(1)
− ε, ϕ ∈ (ϕ1, 1). (9.7)

ϕ

z

z

ω

ϕn ϕn+1 1ϕ1 ϕ̃2ϕ̃

Figure 9.1: A detail of the plots of functions ω and z in case (i).

Analogously, for ε > 0 small enough to satisfy c > h(1) + εg(1), we define η = η(ϕ) by

η(ϕ) := − g(1)

c − h(1)− εg(1)
D(ϕ), ϕ ∈ (0, 1).

By arguing as above when we considered ω in (9.3), we deduce that η is a (strict) upper-

solution of (3.11)1 in [σ2, 1) for some σ2 ∈ (0, 1). Proceeding as we did to obtain (9.7), we now

get η(ϕ) < z(ϕ) for ϕ ∈ (ϕ1, 1), for some ϕ1 > σ2. Thus,

D(ϕ)

z(ϕ)
<

D(ϕ)

η(ϕ)
= − c − h(1)

g(1)
+ ε, ϕ ∈ (ϕ1, 1). (9.8)

Finally, putting together (9.7) and (9.8), since ε > 0 is arbitrary, we deduce

lim
ϕ→1−

D(ϕ)

z(ϕ)
=

h(1)− c

g(1)
. (9.9)

Thus, we proved (9.2)2 with c > h(1).

(ii) Now, we consider the case Ḋ(1) = 0 and c = h(1). Fix ε > 0. Set

ω(ϕ) := −D(ϕ)

ε
, ϕ ∈ (0, 1), (9.10)
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which coincides with (9.3) in the current case. By proceeding exactly as in the case (ii), we

obtain (9.3) for ω defined as in (9.10), namely 0 > ω(ϕ) > z(ϕ), for ϕ ∈ (ϕ1, 1), for some

ϕ1 ∈ (0, 1). This implies, as in (9.7),

0 >
D(ϕ)

z(ϕ)
>

D(ϕ)

ω(ϕ)
= −ε, ϕ ∈ (ϕ1, 1). (9.11)

Then (9.11) implies D(ϕ)/z(ϕ) → 0− as ϕ → 1−, which is (9.2)2 in the case c = h(1).

Remark 9.2. Let c ≥ c∗ and z be any solution of (3.11). We infer that z ∈ C1(0, 1]. In fact, if

z(1) = b < 0, in the proof of case (i) of Proposition 7.1 we already checked that this is true,

since limϕ→1− ż(ϕ) = ż(1). If z(1) = 0, from (9.2) it follows that the right-hand side of (3.11)1

still has a finite limit, as ϕ → 1−. As observed, this means that z ∈ C1(0, 1].

We now prove Theorem 2.2.

Proof of Theorem 2.2. We first prove that there exists a semi-wavefront to 0 of (1.1) if c ≥ c∗.

For q = Dg, consider one of the solutions z = z(ϕ) of (3.11), provided by Propositions 4.2 and

5.1. Consider the Cauchy problem
{

ϕ′ = z(ϕ)
D(ϕ)

,

ϕ(0) = 1
2 .

(9.12)

The right-hand side of (9.12)1 is of class C1 in a neighborhood of 1
2 , and then there exists a

unique solution ϕ in its maximal-existence interval (a, ξ0), for −∞ ≤ a < ξ0 ≤ ∞. Since

z(ϕ)/D(ϕ) < 0 for ϕ ∈ (0, 1), we deduce that ϕ is decreasing and then limξ→a+ ϕ(ξ) = 1,

limξ→ξ−0
ϕ(ξ) = 0. By (9.12)1, the profile ϕ satisfies (1.3) in (a, ξ0). We show that, if ξ0 ∈ R,

we can extend ϕ and obtain a solution of (1.3), in the sense of Definition 2.1, defined in the

half-line (a,+∞).

Assume ξ0 ∈ R and set ϕ(ξ) = 0, for any ξ ≥ ξ0. The new function (which without any

ambiguity we still call ϕ) is clearly of class C0(a,+∞) ∩ C2 ((a,+∞) \ {ξ0}) and is a classical

solution of (1.3) in (a,+∞) \ {ξ0}. Moreover, observe that, as a consequence of both the fact

that z satisfies (3.11)3, and (9.12)1, we have

lim
ξ→ξ−0

D (ϕ(ξ)) ϕ′(ξ) = 0. (9.13)

This implies that D(ϕ)ϕ′ ∈ L1
loc(a,+∞).

To show that ϕ is a solution of (1.3) according to Definition 2.1, it remains to prove (2.1).

For this purpose, consider ψ ∈ C∞

0 (a,+∞), and let a < ξ1 < ξ2 < ∞ be such that ψ(ξ) = 0, for

any ξ ≥ ξ2 or ξ ≤ ξ1. Our goal is then to prove the following:

∫ ξ2

ξ1

(

D (ϕ) ϕ′ − f (ϕ) + cϕ
)

ψ′ − g(ϕ)ψ dξ = 0. (9.14)

Identity (9.14) is obvious if ξ2 < ξ0, since ϕ solves (1.3) in (a, ξ0). Assume ξ2 ≥ ξ0. In the

interval (ξ0, ξ2) we have ϕ = 0, and since g(0) = f (0) = 0 we deduce

∫ ξ2

ξ0

(

D (ϕ) ϕ′ − f (ϕ) + cϕ
)

ψ′ − g(ϕ)ψ dξ = 0. (9.15)
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In the interval (ξ1, ξ0) we have, by (9.13),

∫ ξ0

ξ1

(

D (ϕ) ϕ′ − f (ϕ) + cϕ
)

ψ′ − g(ϕ)ψ dξ

= lim
ε→0+

∫ ξ0−ε

ξ1

(

D (ϕ) ϕ′ − f (ϕ) + cϕ
)

ψ′ − g(ϕ)ψ dξ

= lim
ε→0+

((

D (ϕ) ϕ′ − f (ϕ) + cϕ
)

ψ
)

(ξ0 − ε) = 0.

(9.16)

Thus, identities (9.15) and (9.16) imply (9.14).

At last, we claim that a ∈ R, i.e., that ϕ is strict. For this, it is sufficient to prove

lim
ξ→a+

ϕ′(ξ) < 0. (9.17)

We stress that the case limξ→a+ ϕ′(ξ) → −∞, for short ϕ′(a+) = −∞, is included in (9.17). To

prove (9.17), we notice that, from (9.12),

lim
ξ→a+

ϕ′(ξ) = lim
ϕ→1−

z(ϕ)

D(ϕ)
.

Thus, (9.17) easily follows from either a direct check, in the case z(1) < 0, or the application

of Lemma 9.1, in the case z(1) = 0. This concludes the first part of the proof.

Conversely, we prove that if there exists a semi-wavefront ϕ to 0 defined in (a,+∞), then

c ≥ c∗. Let b̄ be defined by

b̄ := sup {ξ > a : ϕ(ξ) > 0} ∈ (a,+∞]. (9.18)

We have 0 < ϕ < 1 in
(

a, b̄
)

and so ϕ is a classical solution of (1.3) in
(

a, b̄
)

. We claim that

lim
ξ→b̄−

D (ϕ(ξ)) ϕ′(ξ) = 0. (9.19)

Suppose b̄ ∈ R. Take ξ1 > a and ξ2 > b̄. By choosing, in Definition 2.1, ψ ∈ C∞

0 (a,+∞) with

support in (ξ1, ξ2) such that ψ(b̄) 6= 0, (2.1) reads as (passing to the limit in the integral as in

(9.16))

0 =
∫ ξ2

ξ1

(

D (ϕ) ϕ′ + cϕ − f (ϕ)
)

ψ′ − g (ϕ)ψ dξ

=
∫ b̄

ξ1

(

D (ϕ) ϕ′ + cϕ − f (ϕ)
)

ψ′ − g (ϕ)ψ dξ =
(

D(ϕ)ϕ′) (b̄−)ψ(b̄).

Then we got (9.19) in this case. If b̄ = +∞, by integrating (1.3) in [η, ξ] ⊂ (ā,+∞), we have

D (ϕ(ξ)) ϕ′(ξ)

= D (ϕ(η)) ϕ′(η)− c (ϕ(ξ)− ϕ(η)) + ( f (ϕ(ξ))− f (ϕ(η)))−
∫ ξ

η
g (ϕ(σ)) dσ. (9.20)

Since the function

ξ 7→
∫ ξ

η
g(ϕ(σ)) dσ



28 D. Berti, A. Corli and L. Malaguti

is increasing (because g > 0 in (0, 1)), then limξ→∞
D (ϕ(ξ)) ϕ′(ξ) = ℓ for some ℓ ∈ [−∞, 0].

If ℓ < 0, then, ϕ′(ξ) tends either to some negative value or to −∞ as ξ → +∞. In both cases,

this contradicts the boundedness of ϕ, and so (9.19) is proved.

We show now (2.3). Suppose by contradiction that (2.3) does not occur, there exists

ξ0 ∈ (a, b̄), with 0 < ϕ(ξ0) < 1, such that ϕ′(ξ0) = 0. Then (1.3) implies ϕ′ ′(ξ0) =

−g (ϕ(ξ0)) /D (ϕ(ξ0)) < 0 and hence ξ0 is a local maximum point of ϕ. It is plain to see

that, in turn, this implies that there exists a < ξ1 < ξ0 which is a local minimum point of ϕ.

From what we said about ξ0, we necessarily have ϕ(ξ1) = ϕ′(ξ1) = 0.

Take ξ ∈ (ξ1, b̄). Integrating (1.3) in [ξ1, ξ] gives (9.20) with ξ1 replacing η. By passing to

the limit for ξ → b̄−, from (9.19) we obtain the contradiction 0 < 0. This proves (2.3).

From (2.3), we can define the function z = z(ϕ), for ϕ ∈ (0, 1), by

z(ϕ) := D(ϕ)ϕ′ (ξ(ϕ)) , (9.21)

where ξ = ξ(ϕ) is the inverse function of ϕ. Again by (2.3), it follows also that z < 0 in (0, 1).

From (9.19), we clearly have z(0+) = 0; furthermore, a direct computation shows that z solves

equation (1.6)1. Thus, z solves problem (1.6), which is (3.11) with q = Dg. At last, Proposition

6.5 implies c ≥ c∗.

Remark 9.3. The proof of Theorem 2.2 provides a formula for ϕ′(a+). If z(1) < 0, then

ϕ′(a+) = −∞. If z(1) = 0, Lemma 9.1 leads to

lim
ξ→a+

ϕ′(ξ) =















2g(1)

h(1)−c−
√

(h(1)−c)2−4Ḋ(1)g(1)
if Ḋ(1) < 0,

g(1)
h(1)−c

if Ḋ(1) = 0 and c > h(1),

−∞ if Ḋ(1) = 0 and c ≤ h(1).

(9.22)

We now investigate the qualitative properties of the profiles when they reach the equi-

librium 0. The classification is complete, apart from some cases corresponding to c∗ =

h(0), when further assumptions are needed, see Remark 10.1. Below the existence of the

limξ→a+ D (ϕ(ξ)) ϕ′(ξ) is a consequence of the definition (9.21) and Lemma 3.1.

Corollary 9.4. Under the assumptions of Theorem 2.2, let c ≥ c∗ and ϕ be a strict semi-wavefront to

0 of (1.1), connecting 1 to 0, defined in its maximal-existence interval (a,+∞). Then, for c > c∗, there

exists β̂(c) ∈ [β(c), 0] such that the following results hold.

(i) D(0) > 0 implies that ϕ is classical and strictly decreasing.

(ii) D(0) = 0, c > c∗ and

lim
ξ→a+

D (ϕ(ξ)) ϕ′(ξ) > β̂(c), (9.23)

imply that ϕ is classical; moreover, ϕ reaches 0 at some ξ0 > a if

c > h(0) + lim sup
ϕ→0+

g(ϕ)

ϕ
. (9.24)

(iii) D(0) = 0, c∗ > h(0) and

either c = c∗ or lim
ξ→a+

D (ϕ(ξ)) ϕ′(ξ) ≤ β̂(c) (9.25)
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imply that ϕ is sharp at 0 (reached at some ξ0 > a) with

lim
ξ→ξ−0

ϕ′(ξ) =







h(0)−c

Ḋ(0)
< 0 if Ḋ(0) > 0,

−∞ if Ḋ(0) = 0.
(9.26)

Notice that β is related to the existence of the semi-wavefronts while β̂ deals with their

smoothness (see Figure 9.2). The two thresholds coincide under the assumptions of Proposi-

tion 8.4.

ρ

ϕ
1

a ρ

ϕ
1

ξ0
a ρ

ϕ
1

ξ0
a

Figure 9.2: Examples of profiles occurring in Corollary 9.4. From the left to the

right, they depict, respectively, what stated in Parts (i), (ii) and (iii).

Proof of Corollary 9.4. Define ξ0 := sup {ξ > a : ϕ(ξ) > 0} ∈ (a,+∞]. We assume without loss

of generality that a < 0 < ξ0 and ϕ(0) = 1/2. Let z be the function defined in (9.21). Notice,

1 = D(ϕ)ϕ′/z(ϕ) if ϕ ∈ (0, 1). Thus, for any ξ > 0, it follows that

ξ =
∫ ξ

0

D (ϕ(s))

z (ϕ(s))
ϕ′(s)ds =

∫ ϕ(ξ)

1/2

D(σ)

z(σ)
dσ =

∫ 1/2

ϕ(ξ)

D(σ)

−z(σ)
dσ.

Therefore, ξ0 ∈ R if and only if it holds that

∫ 1/2

0

D(σ)

−z(σ)
dσ := lim

ϕ→0+

∫ 1/2

ϕ

D(σ)

−z(σ)
dσ < +∞. (9.27)

For c > c∗, let β̂(c) be given by (8.4).

We prove (i). By Proposition 8.2 we know that ż(0) exists and it is finite; since D(0) > 0

we deduce that (9.27) does not hold. Then, ξ0 = +∞ and so ϕ is strictly decreasing. This, and

the fact that ϕ is of class C2 when ϕ ∈ (0, 1), imply ϕ ∈ C2(a,+∞), hence ϕ is classical. Part

(i) is hence showed.

Assume D(0) = 0. In this case, Formula (6.3) holds with q̇(0) = 0 and ż(0) exists by

Proposition 8.2.

We show (ii). Since (9.23) holds then (8.5) reads as ż(0) = 0. We treat separately the cases

Ḋ(0) > 0 or Ḋ(0) = 0. Suppose that Ḋ(0) > 0. Therefore,

lim
ξ→ξ−0

ϕ′(ξ) =
ż(0)

Ḋ(0)
= 0 (9.28)

and hence ϕ (not necessarily strictly monotone) is classical. Suppose then D(0) = Ḋ(0) = 0.

Fix ε > 0 and define η(ϕ) := −εD(ϕ), ϕ ∈ (0, 1). We have

η̇(ϕ)− h(ϕ) + c +
D(ϕ)g(ϕ)

η(ϕ)
→ −h(0) + c > 0, as ϕ → 0+.
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Therefore η is a strict upper-solution of (1.6)1 in (0, δ], for some δ > 0. Also, since ż(0) = 0,

there exists a sequence {ϕn}n, with δ ≥ ϕn → 0+, such that ż(ϕn) → 0. From (1.6)1, this

implies that

lim
n→∞

εD(ϕn)

−z(ϕn)
= ε lim

n→∞

ż(ϕn) + c − h(ϕn)

g(ϕn)
= ∞.

Hence, −η(δ1) = εD(δ1) > −z(δ1), for some 0 < δ1 ≤ δ small enough. An application of

Lemma 3.2 (2.a.i) then gives

z(ϕ) > −εD(ϕ), ϕ ∈ (0, δ1]. (9.29)

This clearly implies that

0 >
z(ϕ)

D(ϕ)
> −ε, ϕ ∈ (0, δ1].

Since ε > 0 is arbitrary, then we have ϕ′(ξ) → 0 for ξ → ξ−0 and hence ϕ is classical, that is we

showed the first part of (ii). Define η(ϕ) := −ϕD(ϕ). We have, for any ϕ ∈ (0, 1),

η̇(ϕ)− h(ϕ) + c +
D(ϕ)g(ϕ)

η(ϕ)
= −Ḋ(ϕ)ϕ − D(ϕ)− h(ϕ) + c − g(ϕ)

ϕ
.

Thus, by means of (9.24), we get

lim inf
ϕ→0+

[

η̇(ϕ)− h(ϕ) + c +
D(ϕ)g(ϕ)

η(ϕ)

]

= c − h(0)− lim sup
ϕ→0+

g(ϕ)

ϕ
> 0.

Therefore, η is a strict upper-solution of (1.6)1 in (0, δ], for some δ > 0. Furthermore, taking

the same sequence ϕn → 0+ as above such that ż(ϕn) → 0, as n → ∞, then we have

lim inf
n→∞

D(ϕn)ϕn

−z(ϕn)
= lim inf

n→∞

ż(ϕn) + c − h(ϕn)

g(ϕn)/ϕn
=

c − h(0)

lim supn→∞
g(ϕn)/ϕn

> 1,

since (9.24) holds. Thus, as in (9.29), we deduce that D(ϕ)ϕ > −z(ϕ) in (0, δ], after choosing

0 < δ ≤ 1/2 small enough. Hence,

∫ 1/2

0

D(σ)

−z(σ)
dσ >

∫ δ

0

dσ

σ
= +∞,

which concludes the proof of (ii), by means of (9.27).

We show (iii). By (8.5), (8.6), c∗ > h(0) and (9.25) we obtain ż(0) = h(0)− c < 0. Then,

D(σ)

−z(σ)
=

Ḋ(0) + o(1)

c − h(0) + o(1)
as σ → 0+,

and consequently (9.27) is verified. Thus, ξ0 ∈ R. Furthermore, from (9.21),

lim
ξ→ξ−0

ϕ′(ξ) = lim
ϕ→0+

z(ϕ)/ϕ

D(ϕ)/ϕ
=

h(0)− c

Ḋ(0)
∈ [−∞, 0),

which implies that ϕ is sharp at 0 and that (9.26) holds. �
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10 New regularity classification of wavefronts

In this section we prove Theorem 2.3. Analogously to Section 9, but now thanks to assump-

tions (D0)–(g01), we apply results of Sections 4–8 to the case q = Dg.

Proof of Theorem 2.3. We first show that wavefronts are allowed if and only if c ≥ c∗ for c∗

satisfying (2.8); the proof is mostly contained in the proof of Theorem 2.2. Then, we prove (i)

and (ii), by exploiting some of the arguments in the proof of Corollary 9.4.

Set q = Dg. Clearly, q satisfies (q), with in particular q̇(0) = 0. By Proposition 4.2, Problem

(3.12) admits a unique solution z if and only if c ≥ c∗ where for c∗ it holds (4.3). As observed

in Remark 5.5, since (D0) and (g01) hold true, in this case c∗ satisfies (2.8).

To the solution z there is associated the solution ϕ = ϕ(ξ) of the problem

{

ϕ′ = z(ϕ)
D(ϕ)

,

ϕ(0) = 1
2 .

(10.1)

Such a ϕ exists and satisfies (10.1)1 in some maximal interval (ξ1, ξ0), so that

lim
ξ→ξ+1

ϕ(ξ) = 1 and lim
ξ→ξ−0

ϕ(ξ) = 0.

Also, ϕ satisfies (1.3) in (ξ1, ξ0). As discussed in the proof of Theorem 2.2, if ξ0 ∈ R, then

ϕ can be extended continuously to a solution of (1.3) in (ξ0,+∞), by setting ϕ(ξ) = 0, for

ξ ≥ ξ0. Since g(1) = 0, it also holds that if ξ1 ∈ R then we can extend ϕ to a solution of (1.3)

in (−∞, ξ1), by setting ϕ(ξ) = 1 for ξ ≤ ξ1. Thus, we can always consider ϕ satisfying weakly

(1.3) in R; moreover ϕ solves (10.1)1 in (ξ1, ξ0) with

ξ1 = inf {ξ ∈ R : ϕ(ξ) < 1} ∈ [−∞, 0), ξ0 = sup {ξ ∈ R : ϕ(ξ) > 0} ∈ (0,+∞],

and it is constant in R \ (ξ1, ξ0). Thus, we showed that if c ≥ c∗ then there exists a wavefront

ϕ whose profile satisfies (1.4).

By reasoning as in the proof of Theorem 2.2, also the converse implication holds. In-

deed, if ϕ is a profile of a wavefront satisfying (1.4), then the function z defined by z(ϕ) :=

D(ϕ)ϕ′ (ϕ−1(ϕ)
)

, 0 < ϕ < 1, is a solution of (3.12). Thus, c ≥ c∗.

We prove (i). Assume c > c∗. From (8.5) in Proposition 8.2, we have ż(0) = 0. Hence, if

Ḋ(0) 6= 0 then it holds

lim
ξ→ξ−0

ϕ′(ξ) = lim
ϕ→0+

z(ϕ)

D(ϕ)
= 0. (10.2)

If Ḋ(0) = 0, then we argue as in the proof of Corollary 9.4, see (9.29), to show that, for any

ε > 0 there exists δ ∈ (0, 1) such that z(ϕ) > −εD(ϕ), ϕ ∈ (0, δ]. Hence,

lim
ξ→ξ−0

ϕ′(ξ) = lim
ϕ→0+

z(ϕ)

D(ϕ)
≥ −ε.

Since ϕ′ < 0 in (ξ1, ξ0) and ε is arbitrarily small, it follows again (10.2).

We prove now (ii). By (8.5)2, from c = c∗ > h(0) we have ż(0) = h(0)− c∗ < 0. Then,

D(σ)

−z(σ)
=

Ḋ(0) + o(1)

c − h(0) + o(1)
as σ → 0+,
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and consequently (9.27) is verified. Thus, ξ0 ∈ R. Furthermore, from (9.21),

lim
ξ→ξ−0

ϕ′(ξ) = lim
ϕ→0+

z(ϕ)/ϕ

D(ϕ)/ϕ
=

h(0)− c∗

Ḋ(0)
∈ [−∞, 0),

and thus the conclusions hold. �

Remark 10.1 (Case c = c∗ = h(0)). Part (i) and (ii) of Theorem 2.3 do not cover the case

c = c∗ = h(0). The following discussion shows that, to classify the behavior in that case,

further assumptions are needed. More precisely, either a classical and a sharp wavefront can

indeed occur under (D0) and (g01). Take q and h as in (6.10) in Remark 6.4. There, we proved

that in this case it holds c∗ = h(0) = 0. Consider

{

D1(ϕ) = ϕ2,

g1(ϕ) = ϕ(1 − ϕ),

{

D2(ϕ) = ϕ,

g2(ϕ) = ϕ2(1 − ϕ).

Clearly, D1 and g1 satisfy (D0) and (g01) and so D2 and g2. Also, since D1g1 = q = D2g2, then

c∗1 = c∗2 = h(0) = 0, where c∗1 and c∗2 are the thresholds given by Proposition 4.2 associated

with D1g1 and D2g2, respectively. Define, for ξ ∈ R,

ϕ1(ξ) :=

{

1 − eξ

2 , ξ < log(2),

0, otherwise,
and ϕ2(ξ) :=

1

1 + eξ
.

Direct computations show that ϕ1 and ϕ2 are two wave profiles defining two wavefronts, both

of them associated with c = h(0). Plainly, ϕ1 is sharp at ξ = log(2) while ϕ2 is classical.
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1 Introduction

Ulam type stability concept is quite significant in realistic problems in many applications in
numerical analysis, optimization, biology and economics etc. This type of stability guaran-
tees that there is a close exact solution. Recently, several authors extended and discussed
Ulam type stability to fractional differential equations. The Ulam type stability is well stud-
ied recently for Caputo fractional differential equations. For example, about Caputo frac-
tional differential equations we refer [8, 12], for Caputo fractional differential equations with
impulses [14], about Caputo fractional differential equations with delays see, for example,
[2, 13], for ψ-Hilfer fractional derivative and a constant delay [11]. Note that in the case of

BCorresponding author. Email: agarwal@tamuk.edu
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the Riemann–Louisville (RL) fractional derivative only the case without any delays is studied
(see, for example, [3, 7, 13, 16]).

In addition, many real world processes and phenomena are characterized by the influence
of past values of the state variable on the recent one and this leads to the inclusion of delays in
the models. The analysis of RL delay fractional differential equations is rather complex (ana-
lytical solution computation, controllability analysis, etc.) and a very small class of equations
could be solved in explicit form. It requires theoretical proofs of methods guarantee existence
of enough close function to the unknown solution. One of these types of method is Ulam type
stability. According to our knowledge this type of stability is not studied for nonlinear RL
fractional differential equations with delays.

The main goal of the paper is to study scalar nonlinear RL fractional differential equations
with a constant delay, to obtain some sufficient conditions for uniqueness and existence and
to study Ulam type stability. The present paper is organized as follows. In Section 2, some
notations and results about fractional calculus are given. In Section 3, an existence result,
based on the Banach contraction principle, for the studied problem is presented. In Section 4,
we prove three types of Ulam–Hyers stability results for the given RL fractional differential
equation with a constant delay. Finally, in the last section, we illustrate the application of some
of th obtained results on two fractional biological models: fractional generalization of Lasota–
Ważewska model and fractional generalization of the logistic equation with a biological delay
depending on the mechanistic details of the model.

2 Preliminary notes on fractional derivatives and equations

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout the paper. Let T : 0 < T < ∞, J̄ = [0, T], J = (0, T], τ > 0 be given (the delay).

There exists a natural number N such that Nτ < T ≤ (N + 1)τ holds, i.e. J =

∪N−1
k=0 (kτ, (k + 1)τ] ∪ (Nτ, T]. To be easier for the notation without lose of generalization we

could assume that T = (N + 1)τ and then J = ∪N
k=0(kτ, (k + 1)τ].

By C(J,R) we denote the set of all continuous function with the norm ‖x‖ = sup{|x(t)| :
t ∈ J}.

By C0 we denote the set of all functions x ∈ C([−τ, 0],R) with the norm ‖x‖0 = sup{|x(t)| :
t ∈ [−τ, 0]}.

We consider the weighted space of functions Cγ(J) = {y ∈ J → R : tγy(t) ∈ C(J,R)}

with the norm ‖y‖Cγ
= supt∈J |t

γy(t)|.
Note C(J,R), Cγ(J) are Banach spaces.
In this paper we will use the following definitions for fractional derivatives and integrals:

• Riemann–Liouville fractional integral of order q ∈ (0, 1) [9]

0 I
q
t m(t) =

1
Γ(q)

∫ t

0

m(s)

(t − s)1−q
ds, t ∈ J̄,

where Γ(·) is the Gamma function.

• Riemann–Liouville fractional derivative of order q ∈ (0, 1) [9]

RL
0 D

q
t m(t) =

d

dt

(

0 I
1−q
t m(t)

)

=
1

Γ (1 − q)

d

dt

∫ t

0
(t − s)−q m(s)ds, t ∈ J̄.
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We will give fractional integrals and RL fractional derivatives of some elementary functions
which will be used later:

Proposition 2.1 ([5]). The following equalities are true:

RL
t0

D
q
t (t − t0)

β =
Γ(1 + β)

Γ(1 + β − q)
(t − t0)

β−q,

t0 I
q
t (t − t0)

β =
Γ(β + 1)

Γ(1 + β + q)
(t − t0)

β+q,

t0 I
1−q
t (t − t0)

q−1 = Γ(q),

RL
t0

D
q
t (t − t0)

q−1 = 0.

The definitions of the initial condition for fractional differential equations with RL deriva-
tives are based on the following result:

Proposition 2.2 ([9, Lemma 3.2]). Let q ∈ (0, 1), t0, T ≥ 0 : t0 < T ≤ ∞ and m ∈ Lloc
1 ([t0, T],R).

(a) If there exists a.e. a limit limt→t0+[(t − t0)q−1m(t)] = c, then there also exists a limit

t0 I
1−q
t m(t)|t=t0 := lim

t→t0+
t0 I

1−q
t m(t) = cΓ(q).

(b) If there exists a.e. a limit t0 I
1−q
t m(t)|t=t0 = b and if the limit limt→t0+[(t − t0)1−qm(t)] exists,

then

lim
t→t0+

[(t − t0)
1−qm(t)] =

b

Γ(q)
.

In the case of a scalar linear RL fractional differential equation we have the following
result:

Proposition 2.3 ([9, Example 4.1]). The solution of the Cauchy type problem

RL
a D

q
t x(t) = λx(t) + f (t), a I

1−q
t x(t)|t=a = b

has the following form [9, formula (4.1.14)]

x(t) =
b

(t − a)1−q
Eq,q(λ(t − a)q) +

∫ t

a
(t − s)q−1Eq,q(λ(t − s)q) f (s)ds (2.1)

where Ep,q(z) = ∑
∞
j=0

zj

Γ(jp+q)
is the Mittag-Leffler function with two parameters (see, for example,

[9]).

Proposition 2.4. The inequality

∫ t

0
(t − s)q−1Eq,q(a(t − s)q)ds ≤

1
|a|

(Eq(|a|t
q)− 1) (2.2)

holds.
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Proof.

∫ t

0
(t − s)q−1Eq,q(a(t − s)q)ds =

∫ t

0
sq−1Eq,q(asq)ds =

∫ t

0
sq−1

∞

∑
n=0

(asq)n

Γ((n + 1)q)
ds

=
∞

∑
n=0

an
∫ t

0 s(n+1)q−1ds

Γ((n + 1)q)
=

∣

∣

∣

∣

∣

∞

∑
n=0

ant(n+1)q

(n + 1)qΓ((n + 1)q)

∣

∣

∣

∣

∣

≤
∞

∑
n=1

|an−1|tnq

Γ(nq + 1)

≤
1
|a|

∞

∑
n=0

(|a|tq)n

Γ(nq + 1)
−

1
|a|

=
1
|a|

(Eq(|a|t
q)− 1).

From Proposition 2.3 and Proposition 2.2 (a) we obtain the following result for the weighted
form of the initial condition:

Proposition 2.5. The solution of the Cauchy type problem

RL
a D

q
t x(t) = λx(t) + f (t), lim

t→a+

(

(t − a)1−qx(t)
)

= C

has the following form

x(t) =
C Γ(q)

(t − a)1−q
Eq,q(λ(t − a)q) +

∫ t

a
(t − s)q−1Eq,q(λ(t − s)q) f (s)ds. (2.3)

Proposition 2.6 ([9]). For q ∈ (0, 1) the following properties

0 ≤ Eq,q(−λtq) ≤
1

Γ(q)
, t ≥ 0, λ ≥ 0,

lim
t→0+

Eq,q(−λtq) = Eq,q(0) =
1

Γ(q)

hold.

Proposition 2.7 ([17, Corollary 2]). Let a(t) be a nondecreasing function on J, g(t) be a nonegative,

nondecreasing continuous function on J, and

u(t) ≤ a(t) + g(t)
∫ t

0
(t − s)β−1u(s)ds, t ∈ J.

Then u(t) ≤ a(t)Eβ(g(t)Γ(β)tβ), t ∈ J.

3 Statement of the problem

Consider the initial value problem (IVP) for a nonlinear system of fractional differential equa-
tions with constant delay and q ∈ (0, 1)

RL
0 D

q
t x(t) = ax(t) + bx(t − τ) + f (t, x(t), x(t − τ)) for t ∈ J,

x(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(

t1−qx(t)
)

= g(0)

(3.1)

where RL
0 D

q
t denotes the RL fractional derivative, a, b ∈ R are constants, τ > 0 is the constant

delay, the functions f : J ×R → R → R, g ∈ C0.
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First, we will consider the partial linear case of (3.1) without a delay, i.e.

RL
0 D

q
t x(t) = ax(t) + σ(t, x(t)) for t ∈ J,

lim
t→0+

(

t1−qx(t)
)

= x0.
(3.2)

where a ∈ R is a constant, σ ∈ C(J,R) , q ∈ (0, 1).

Lemma 3.1 ([9]). The linear initial value problem (3.2) has the following integral representation for a

solution

x(t) = tq−1x0Γ(q)Eq,q(atq) +
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)σ(s, x(s))ds, t ∈ J.

We consider also the integral presentation (see [1]) of a special case of (3.1), i.e. we will con-
sider the non-homogeneous scalar linear Riemann–Liouville fractional differential equations
with a constant delay

RL
0 D

q
t x(t) = Ax(t) + Bx(t − τ) + σ(t) for t ∈ J, (3.3)

with the initial conditions
x(t) = g(t), t ∈ [−τ, 0], (3.4)

lim
t→0+

(

t1−qx(t)
)

= g(0) (3.5)

where σ ∈ C(R+,R), g ∈ C([−τ, 0],R), A, B are real constants.

Lemma 3.2 ([1]). The solution of the IVP (3.3), (3.4), (3.5) is given by

x(t)=











































g(t) t ∈ (−τ, 0]

g(0)Γ(q)Eq,q(Atq)tq−1 +
∫ t

0 (t − s)q−1Eq,q(A(t − s)q)
(

Bg(s − τ) + σ(s)
)

ds t ∈ (0, τ]

g(0)Γ(q)Eq,q(Atq)tq−1 +
∫ t

0 (t − s)q−1Eq,q(A(t − s)q)σ(s)ds

+B ∑
n−1
i=0

∫ (i+1)τ
iτ (t − s)q−1Eq,q(A(t − s)q)x(s − τ)ds

+B
∫ t

nτ
(t − s)q−1Eq,q(A(t − s)q)x(s − τ)ds

for t ∈ (nτ, (n + 1)τ], n = 1, 2, . . . , N.

We will consider the assumptions:

(A1) The function f ∈ C( J̄ ×R
2,R) and there exist constants K, L > 0 such that

| f (t, u1, v1)− f (t, u2, v2)| ≤ K|u1 − u2|+ L|v1 − v2|, t ∈ J̄, u1, u2, v1, v2 ∈ R.

(A2) The function g ∈ C0.

4 Existence and integral presentation of the solution

Now we will study the existence of the solution of (3.1) and its presentation, based on
Lemma 3.2. We will use the Banach contraction principle.
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Lemma 4.1. Let the assumptions (A1), (A2) be satisfied and q ∈ [0.5, 1).
Then the operator Ω : C1−q(J) → C1−q(J) where

Ω(y(t))=







































g(0)Γ(q)Eq,q(atq)tq−1

+
∫ t

0(t− s)q−1Eq,q(a(t− s)q)
(

bg(s−τ)+ f (s, y(s), g(s−τ))
)

ds, t ∈ (0, τ]

g(0)Γ(q)Eq,q(atq)tq−1

+
∫ τ

0 (t− s)q−1Eq,q(a(t− s)q)
(

bg(s−τ)+ f (s, y(s), g(s − τ))
)

ds

+
∫ t

τ
(t− s)q−1Eq,q(a(t− s)q)

(

by(s−τ)+ f (s, y(s), y(s−τ))
)

ds, t ∈ (τ, T].

(4.1)

Proof. Let y ∈ C1−q(J). We will prove the inclusion

∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

by(s − τ) + f (s, y(s), y(s − τ))
)

ds ∈ C1−q(J) for t ∈ J.

Let t ∈ (0, τ] then according to assumption (A1) and Proposition 2.1 with β = q − 1 we get
∣

∣

∣

∣

t1−q
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

bg(s − τ) + f (s, y(s), g(s − τ))
)

ds

∣

∣

∣

∣

≤ Kt1−q
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)|y(s)|ds

+ Lt1−q
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)|g(s − τ)|ds

+ t1−q
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)| f (s, 0, 0)|ds

+ |b|‖g‖0t1−q
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)ds

≤ KSt1−q
∫ t

0
(t − s)q−1sq−1|s1−qy(s)|ds +

(

L‖g‖0 + C
) tS

q

≤
KStqΓ2(q)

Γ(2q)
‖y‖C1−q

+
(

(L + |b|)‖g‖0 + C
)St

q
.

(4.2)

where C = supt∈J | f (t, 0, 0)|, S = supt∈J Eq,q(atq).

Let t > τ. Then according to assumption (A1), equality
∫ t

τ
(s−τ)q−1

(t−s)1−q ds = Γ2(q)
Γ(2q)

(t− τ)2q−1 (see

Proposition 2.1 with β = q − 1, t0 = τ ) and t1−q(t − τ)2q−1 ≤ tq it follows
∣

∣

∣

∣

t1−q
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

by(s − τ) + f (s, y(s), y(s − τ))
)

ds

∣

∣

∣

∣

≤ t1−qS
∫ t

0
(t − s)q−1(|b|+ L)|y(s − τ)|ds + t1−qKS

∫ t

0
(t − s)q−1|y(s)|ds +

t

q
SC

≤ t1−qS
∫ τ

0
(t − s)q−1(|b|+ L)|g(s − τ)|ds + t1−qS

∫ t

τ
(t − s)q−1(b + L)|y(s − τ)|ds

+
t

q
SC + SK‖y(s)‖C1−q

tqΓ2(q)

Γ(2q)
≤

t − (t − τ)qt1−q

q
S(|b|+ L)‖g‖0

+ S(|b|+ L)‖y(s)‖C1−q

t1−q(t − τ)2q−1Γ2(q)

Γ(2q)
+

t

q
SC + SK‖y(s)‖C1−q

tqΓ2(q)

Γ(2q)

≤
t

q
S((b + L)‖g‖0 + C) + S(|b|+ L + K)‖y(s)‖C1−q

tqΓ2(q)

Γ(2q)
, t > τ.

(4.3)
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From inequalities (4.2) and (4.3) it follows

∣

∣

∣

∣

t1−q
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

by(s − τ) + f (s, y(s), y(s − τ))
)

ds

∣

∣

∣

∣

≤
T

q
S((|b|+ L)‖g‖0 + C) + S(|b|+ L + K)‖y(s)‖C1−q

TqΓ2(q)

Γ(2q)
.

(4.4)

Therefore, the integrals exist and Ωy(t) ∈ C1−q(J).

Remark 4.2. Note the restriction q ∈ [0.5, 1) is necessary to prove the inequality (4.3) and it is
deeply connected with the presence of the delay.

Lemma 4.3. Suppose (A1) and (A2) hold and q ∈ [0.5, 1).

(i) If the function y ∈ C1−q(J) is a solution of IVP (3.1) then it is a fixed-point of the operator Ω

defined by (4.1).

(ii) If the function y ∈ C1−q(J) is a fixed-point of the operator Ω with y(t) = g(t), t ∈ [−τ, 0] then

it is a solution of IVP (3.1).

Proof. (i) Let the function y ∈ C1−q(J) be a solution of IVP (3.1). We will use an induction to
prove the function y is a fixed point of the operator Ω.

Let t ∈ (0, τ]. Then y satisfies the initial value problem (3.2) with σ(t, x) = bg(t − τ) +

f (t, x, g(t − τ)) and x0 = g(0). From Lemma 3.1 it follows Ω(y(t)) = y(t), t ∈ (0, τ].
Let t ∈ (τ, 2τ]. Then y satisfies the initial value problem (3.2) with σ(t, x) = by(t − τ) +

f (t, x, y(t − τ)) and x0 = g(0). From Lemma 3.1 it follows Ω(y(t)) = y(t), t ∈ (τ, 2τ].
By induction it follows the solution y is a fixed point of the operator Ω.

(ii) Let y ∈ C1−q(J) be a fixed-point of the operator Ω with y(t) = g(t), t ∈ [−τ, 0].
Then from Lemma 4.1, inequalities (4.2), (4.3) and Proposition 2.6 we obtain that

lim
t→0+

(

t1−qΩ(y(t))
)

= g(0). (4.5)

Therefore, the function y solves the IVP (3.1).

Remark 4.4. If the conditions of Lemma 4.3 are satisfied, and y ∈ C1−q(J) is a fixed-point
of the operator Ω, then we can spread the definition of y over the entire interval [−τ, T] by
y(t) = g(t), t ∈ [−τ, 0] and then y is a solution of IVP (3.1).

Theorem 4.5 (Existence result). Let q ∈ [0.5, 1) and the assumption (A1) and (A2) be satisfied and

the inequality

α = (K + L + |b|)
TqΓ2(q)

Γ(2q)
sup
t∈J

Eq,q(atq) < 1 (4.6)

holds.
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Then the initial value problem (3.1) has a unique solution y ∈ C1−q(J) satisfying the integral

presentation

y(t) =



















































g(t), t ∈ [−τ, 0]

g(0)Γ(q)Eq,q(atq)tq−1 + b
∫ t

0 (t − s)q−1Eq,q(a(t − s)q)g(s − τ)
)

ds

+
∫ t

0 (t − s)q−1Eq,q(a(t − s)q) f (s, y(s), g(s − τ))ds, t ∈ (0, τ]

g(0)Γ(q)Eq,q(atq)tq−1 +
∫ t

0 (t − s)q−1Eq,q(a(t − s)q) f (s, y(s), y(s − τ))ds

+b ∑
n−1
i=0

∫ (i+1)τ
iτ (t − s)q−1Eq,q(a(t − s)q)y(s − τ)ds

+b
∫ t

nτ
(t − s)q−1Eq,q(a(t − s)q)y(s − τ)ds

for t ∈ (nτ, (n + 1)τ], n = 1, 2, . . . , N

(4.7)

Proof. According to Lemma 4.1 the operator Ω : C1−q(J) → C1−q(J).
We will prove the operator Ω has an unique fixed point in C1−q(J).
Let y, y∗ ∈ C1−q(J) and t ∈ (0, τ]. Then we obtain

|t1−q[Ω(y(t))− Ω(y∗(t))]|

≤ t1−q
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)| f (s, y(s), g(s − τ))− f (s, y∗(s), g(s − τ))|ds

≤ t1−qKS
∫ t

0
(t − s)q−1sq−1|s1−q(y(s)− y∗(s))|ds

≤ t1−qKS‖y − y∗‖C1−q

∫ t

0
(t − s)q−1sq−1ds

≤
KSTqΓ2(q)

Γ(2q)
‖y − y∗‖C1−q

≤ α‖y − y∗‖C1−q
.

(4.8)

Let y, y∗ ∈ C1−q(J) and t > τ. Then we obtain
∣

∣

∣
t1−q[Ω(y(t))− Ω(y∗(t)]

∣

∣

∣

≤ t1−q
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)| f (s, y(s), y(s − τ))− f (s, y∗(s), y∗(s − τ))|ds

+ t1−q|b|
∫ t

τ
(t − s)q−1Eq,q(a(t − s)q)|y(s − τ)− y∗(s − τ)|ds

≤ Kt1−qS
∫ t

0
(t − s)q−1|y(s)− y∗(s)|ds

+ t1−q(L + |b|)S
∫ t

τ
(t − s)q−1(s − τ)q−1|(s − τ)1−q(y(s − τ)− y∗(s − τ))|ds

≤ KS‖y − y∗‖C1−q

tqΓ2(q)

Γ(2q)
+ (L + |b|)S‖y − y∗‖C1−q

t1−q(t − τ)2q−1Γ2(q)

Γ(2q)

≤ (K + L + |b|)
StqΓ2(q)

Γ(2q)
‖y − y∗‖C1−q

≤ α‖y − y∗‖C1−q
.

(4.9)

Therefore
‖Ω(y)− Ω(y∗)‖C1−q

≤ α‖y − y∗‖C1−q
. (4.10)

According to Lemma 4.3 it follows the claim of Theorem 4.5.

Corollary 4.6. Let the assumptions (A1), (A2) are satisfied with a ≤ 0, q ∈ [0.5, 1) and

(K + L + |b|)TqΓ(q) < Γ(2q). (4.11)

Then the initial value problem (3.1) has a unique solution y ∈ C1−q(J).
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The proof follows from Theorem 4.5 and Proposition 2.6.
In the case of an equation without a delay we obtain the following corollary.

Corollary 4.7. Let τ = 0, a = b = 0, q ∈ (0, 1), the function f ∈ C(J ×R,R) and there exists a

constant K > 0 such that | f (t, u1)− f (t, u2)| ≤ K|u1 − u2|, t ∈ J, u1, u2 ∈ R and

KTqΓ(q) < Γ(2q). (4.12)

Then the reduced initial value problem

RL
0 D

q
t x(t) = f (t, x(t)), t ∈ J, lim

t→0+

(

t1−qx(t)
)

= x0 (4.13)

has a unique solution y ∈ C1−q(J).

Note in the case without a delay it follows from the proof of Theorem 4.5 that we do not
need the restriction q ∈ [0.5, 1).

Remark 4.8. Note the result of Corollary 4.7 coincides the result of [3, Theorem 3.4] with
L = 0.

5 Ulam type stability

Let ε > 0 and Φ ∈ C( J̄, [0, ∞)) be non-decreasing and such that for any t ∈ J̄ the inequality
∫ t

0 (t − s)q−1Φ(s)ds < ∞ holds.

Definition 5.1 ([10]). The equation (3.1) is Ulam–Hyers stable if there exists a real number
c f > 0 such that for each ε > 0 and for each solution y ∈ C1−q(J) of the inequalities

∣

∣

∣

RL
0 D

q
t y(t)− ay(t)− by(t − τ)− f (t, y(t), y(t − τ))

∣

∣

∣
≤ ε for t ∈ J,

y(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(

t1−qx(t)
)

= g(0)

(5.1)

there exists a solution x ∈ C1−q(J) of the problem (3.1) with

|x(t)− y(t)| ≤ ε c f for t ∈ J. (5.2)

Definition 5.2 ([10]). The problem (3.1) is Ulam–Hyers–Rassias stable with respect to Φ if
there exists a real number c f > 0 such that for each ε > 0 and for each solution y ∈ C1−q(J) of
the inequality

∣

∣

∣

C
0 D

q
t y(t)− ay(t)− by(t − τ)− f (t, y(t), y(t − τ))

∣

∣

∣
≤ εΦ(t) for t ∈ J,

y(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(

t1−qx(t)
)

= g(0)

(5.3)

there exists a solution x ∈ C1−q(J) of the problem (3.1) with

|y(t)− x(t)| ≤ ε c f Φ(t), t ∈ J. (5.4)
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Definition 5.3 ([10]). The problem (3.1) is generalized Ulam–Hyers–Rassias stable with respect
to Φ if there exists a real number c f > 0 such that for each solution y ∈ C1−q(J) of the
inequality

∣

∣

∣

C
0 D

q
t y(t)− ay(t)− by(t − τ)− f (t, y(t), y(t − τ))

∣

∣

∣
≤ Φ(t) for t ∈ J,

y(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(

t1−qx(t)
)

= g(0)

(5.5)

there exists a solution x ∈ C1−q(J) of the problem (3.1) with

|y(t)− x(t)| ≤ c f Φ(t), t ∈ J. (5.6)

Remark 5.4. If the function f ∈ C(J ×R
2,R) then the function y ∈ C1−q(J) is a solution of the

inequality (5.1) iff there exist a function G ∈ C1−q(J) which depends on y such that

(i) ‖G(t)‖ ≤ ε;

(ii) C
0 D

q
t y(t) = ay(t) + by(t − τ) + f (t, y(t), y(t − τ)) + G(t) for t ∈ J

with initial conditions y(t) = g(t), t ∈ [−τ, 0], limt→0+
(

t1−qx(t)
)

= g(0).

Remark 5.5. If the function f ∈ C( J̄ ×R
2,R) then the function y ∈ C1−q(J) is a solution of the

inequality (5.5) iff there exist a function G ∈ C1−q(J) which depends on y such that

(i) |G(t)| ≤ Φ(t) for t ∈ J;

(ii) C
0 D

q
t y(t) = ay(t) + by(t − τ) + f (t, y(t), y(t − τ)) + G(t) for t ∈ J

with initial conditions y(t) = g(t), t ∈ [−τ, 0], limt→0+
(

t1−qx(t)
)

= g(0).

Note we have a similar remark for inequality (5.3).
Based on Remark 5.4 and Definition 5.1 we get the following result.

Lemma 5.6. Let the conditions of Theorem 4.5 be satisfied. If y ∈ C1−q(J) is a solution of inequalities

(5.1) then it satisfies the following integral-algebraic inequalities

∣

∣

∣

∣

∣

y(t)− g(0)Γ(q)Eq,q(atq)tq−1

−
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

bg(s − τ) + f (s, y(s), g(s − τ))
)

ds

∣

∣

∣

∣

∣

≤
ε

|a|
(Eq(|a|t

q)− 1), t ∈ (0, τ]

∣

∣

∣

∣

∣

y(t)− g(0)Γ(q)Eq,q(Atq)tq−1

−
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

by(s − τ) + f (s, y(s), y(s − τ))
)

ds

∣

∣

∣

∣

∣

≤
ε

|a|
(Eq(|a|t

q)− 1), t ∈ (τ, T].

(5.7)
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Proof. Let y ∈ C1−q(J) be a solution of inequalities (5.1). According to Remark 5.5 it satisfies
the IVP

C
0 D

q
t y(t) = ay(t) + by(t − τ) + f (t, y(t), y(t − τ)) + G(t) for t ∈ J,

y(t) = g(t) for t ∈ [−τ, 0],

lim
t→0+

(

t1−qx(t)
)

= g(0).

(5.8)

Then according to Lemma 4.3 (i) y(t) is a fixed-point of the operator Ω defined by (4.1),
where f (t, x, y) is replaced by f (t, x, y) + G(t).

Let t ∈ (0, τ]. Apply the inequalities |G(t)| ≤ ε and (2.2) and obtain

∣

∣

∣

∣

∣

y(t)− g(0)Γ(q)Eq,q(atq)tq−1 −
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

bg(s − τ) + f (s, y(s), g(s − τ))
)

ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0
(t − s)q−1Eq,q(a(t − s)q)G(s)ds

∣

∣

∣

∣

≤
ε

|a|
(Eq(|a|t

q)− 1).

The proof for t ∈ (τ, T] is similar and we omit it.

Now we will study Ulam type stability of problem (3.1).

Theorem 5.7 (Stability results). Assume the conditions of Theorem 4.5 are satisfied.

(i) Suppose for any ε > 0 the inequality (5.1) has at least one solution. Then problem (3.1) is

Ulam–Hyers stable.

(ii) Suppose there exists a nondecreasing function Φ ∈ C( J̄, [0, ∞)) such that for any t ∈ J̄ the

inequality
∫ t

0 (t − s)q−1Φ(s)ds ≤ ΛΦΦ(t) holds where ΛΦ > 0 is a constant and for any ε > 0
the inequality (5.3) has at least one solution. Then problem (3.1) is Ulam–Hyers–Rassias stable

with respect to Φ.

(iii) If there exists a nondecreasing function Φ ∈ C( J̄, [0, ∞)) such that for any t ∈ J̄ the inequality
∫ t

0 (t − s)q−1Φ(s)ds ≤ ΛΦΦ(t) holds, ΛΦ > 0 is a constant, and inequality (5.5) has at least

one solution then problem (3.1) is generalized Ulam–Hyers–Rassias stable with respect to Φ.

Proof. According to Theorem 4.5 the problem (3.1) has an unique solution x ∈ C1−q(J) for
which the integral presentation (4.7) holds.

(i) Let ε > 0 be an arbitrary number and y ∈ C1−q(J) be a solution of the inequality (5.1).
Therefore, the integral inequalities (5.7) hold.

Denote

Q = (K + L + |b|)CEq(Γ(q)KCτq)
τq

q
, C = max

t∈J
Eq,q(atq),

and

Mk+1 = M(1 + Q)k, k = 0, 1, 2, . . . , N, M =
1
|a|

(Eq(|a|T
q)− 1).
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Let t ∈ (0, τ] be an arbitrary fixed point. According to Lemma 5.6, Theorem 4.5, inequality
(5.7) and equality (4.7) we obtain

|x(t)− y(t)|

≤

∣

∣

∣

∣

∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

f (s, x(s), g(s − τ))− f (s, y(s), g(s − τ))
)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0
(t − s)q−1Eq,q(a(t − s)q)G(s)ds

∣

∣

∣

∣

≤
ε

|a|
(Eq(|a|t

q)− 1) + KC
∫ t

0
(t − s)q−1|x(s)− y(s)|ds

≤ εM + KC
∫ t

0
(t − s)q−1|x(s)− y(s)|ds.

(5.9)

According to Proposition 2.7 we get

|x(t)− y(t)| ≤ εMEq(Γ(q)KCtq), t ∈ [0, τ], (5.10)

and

|x(t)− y(t)| ≤ εMEq(Γ(q)KCτq) = εM1, t ∈ [0, τ], (5.11)

Let t ∈ (τ, 2τ] be an arbitrary fixed point. According to Lemma 5.6, Theorem 4.5, inequal-
ities (5.7), (5.11) and (2.2) we obtain

|x(t)− y(t)|

≤

∣

∣

∣

∣

∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

f (s, x(s), x(s − τ))− f (s, y(s), y(s − τ))
)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

b
∫ t

τ
(t − s)q−1Eq,q(a(t − s)q)

(

x(s − τ)− y(s − τ)
)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0
(t − s)q−1Eq,q(a(t − s)q)G(s)ds

∣

∣

∣

∣

≤
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

K|x(s)− y(s)|+ L|x(s − τ)− y(s − τ)|
)

ds

+ ε|b|M1C
∫ t

τ
(t − s)q−1ds + εM

≤ KC
∫ t

τ
(t − s)q−1|x(s)− y(s)|ds + εMEq(Γ(q)KCτq)(L + |b|)C

(t − τ)q

q
+ εM

+ εMEq(Γ(q)KCτq)KC
τq

q

≤ εM(1 + Q) + KC
∫ t

τ
(t − s)q−1|x(s)− y(s)|ds.

(5.12)

According to Proposition 2.7 we get

|x(t)− y(t)| ≤ εM(1 + Q)Eq(Γ(q)KCtq) = εM2Eq(Γ(q)KC(t − τ)q), t ∈ (τ, 2τ]. (5.13)

and

|x(t)− y(t)| ≤ εM2Eq(Γ(q)KCτq), t ∈ (τ, 2τ]. (5.14)
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Let t ∈ (2τ, 3τ] be an arbitrary fixed point. According to Lemma 5.6, Theorem 4.5, in-
equalities (5.9), (5.11) and (5.14) we obtain

|x(t)− y(t)|

≤
∫ t

0
(t − s)q−1Eq,q(a(t − s)q)

(

K|x(s)− y(s)|+ L|x(s − τ)− y(s − τ)|
)

ds

+ |b|
∫ t

τ
(t − s)q−1Eq,q(a(t − s)q)|x(s − τ)− y(s − τ)|ds

+

∣

∣

∣

∣

∫ t

0
(t − s)q−1Eq,q(a(t − s)q)G(s)ds

∣

∣

∣

∣

≤ KC
∫ t

0
(t − s)q−1|x(s)− y(s)|ds + (L + |b|)C

∫ 2τ

τ
(t − s)q−1|x(s − τ)− y(s − τ)|ds

+ (L + |b|)C
∫ t

2τ
(t − s)q−1|x(s − τ)− y(s − τ)|ds + εM

≤ KC
∫ t

2τ
(t − s)q−1|x(s)− y(s)|ds + εM(1 + Q)2.

(5.15)

According to Proposition 2.7 we get

|x(t)− y(t)| ≤ εM(1 + Q)2Eq(Γ(q)KCtq) = εM3Eq(Γ(q)KC(t − 2τ)q), t ∈ (2τ, 3τ] (5.16)

and
|x(t)− y(t)| ≤ εM3Eq(Γ(q)KCτq), t ∈ (2τ, 3τ]. (5.17)

Continuing the induction process we prove

|x(t)− y(t)| ≤ εMk+1Eq(Γ(q)KCτq), t ∈ (kτ, (k + 1)τ], k = 0, 1, 2, . . . , N. (5.18)

Inequality (5.18) proves the claim (i) with c f = M(1 + Q)NEq(Γ(q)KCτq).

(iii) Let y ∈ C1−q(J) be a solution of the inequality (5.5) with the function Φ(t) defined in the
condition (iii) of Theorem 5.7.

Denote
Q = (K + L + |b|)CΛΦEq(Γ(q)KCτq), C = max

t∈J
Eq,q(atq),

and
Mk+1 = M(1 + Q)k, k = 0, 1, 2, . . . , N, M = CΛΦ.

Similar to the case (i) we use an induction to prove the inequality

|x(t)− y(t)| ≤ Mk+1Eq(Γ(q)KCτq)Φ(t), t ∈ (kτ, (k + 1)τ], k = 0, 1, 2, . . . , N. (5.19)

Therefore, the problem (3.1) is generalized Ulam–Hyers–Rassias stable with respect to Φ

with c f = CΛΦ(1 + Q)nEq(Γ(q)KCτq).

(ii) The proof is similar to the one in (i).

6 Applications to some biological models

In this section we will apply the obtained results to some biological models and their fractional
generalizations.
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Model 1. The investigation of blood cell dynamics is connected with formulating and studyig
mathematical methods and models, numerical results, schemes to estimate parameters and
prognosticate optimal treatments to particular diseases. In order to describe the survival of
red blood cells in animals, Ważewska-Czyżewska and Lasota proposed in [15] the following
delayed equation x′(t) = −γx(t) + βe−αx(t−τ) where x(t) represents the number of red blood
cells at time t, γ > 0 is the death probability for a red blood cell, a and β are positive constants
related to the production of red blood cells per unit time and τ is the time delay between the
production of immature red blood cells and their maturation for release in circulating blood
stream. The well known Lasota–Ważewska model was extended and generalized by many
authors. Now we will consider one fractional generalization.

Consider the following fractional generalization of the mentioned above model:

RL
0 D

q
t x(t) = βe−αx(t−τ) − γx(t), t ∈ J (6.1)

with the initial conditions (3.4), (3.5), where q ∈ [0.5, 1), x is the number of red blood cells,
β > 0 is the demand for oxygen, τ > 0 is the time required for erythrocytes to attain maturity,
γ > 0 is the cell destruction rate.

In this case a = −γ, b = 0, f (t, x, y) = βe−αy and | f (t, x, y)− f (t, u, v)| = |βe−αy − βe−αv| ≤

βα|y − v|, i.e. the condition (A1) is satisfied with K = 0, L = βα.
If βαTΓ(q) < Γ(2q) then according to Theorem 4.5 the initial value problem (6.1), (3.4),

(3.5) has an unique solution x ∈ C1−q(J) satisfying the integral presentation

x(t) = g(0)Γ(q)Eq,q(−γtq)tq−1 + β

∫ t

0
(t − s)q−1Eq,q(−γ(t − s)q)e−αx(s−τ)ds, t ∈ (0, T]. (6.2)

Consider the partial case of q = 0.8, β = 0.05, α = 0.9,, γ = 0.01, and τ = 2, T = 12,
g(t) = t2. Then the inequality 0.9(0.05)Γ(0.8)12 < Γ(1.6) holds and therefore the model (6.1)
has a solution satisfying the integral presentation

x(t) = 0.05
∫ t

0
(t − s)−0.2E0.8,0.8(−0.5(t − s)0.8)e−0.9x(s−2)ds, t ∈ (0, 12].

Consider the function y(t) = t2. Then RL
0 D0.8

t t2 = Γ(3)
Γ(2.2) t1.2 and the inequality

∣

∣

∣

∣

Γ(3)
Γ(2.2)

t1.2 − 0.05e−0.9(t−2)2
+ 0.01t2

∣

∣

∣

∣

≤ 3.5t + 0.0015 for t ∈ [0, 12], (6.3)

holds (see Figure 6.1a).
Consider Φ(t) = 3.5t + 0.0015. Then

∫ t
0 (t − s)−0.2(3.5s + 0.0015)ds ≤ ΛΦ(3.5t + 0.0015)

with ΛΦ = 5.5 (see Figure 6.1b).
According to Theorem 5.7(iii) the solution x(t) of (6.1) satisfies

∣

∣

∣
x(t)− t2

∣

∣

∣
≤ 39.9618t + 0.0199809, t ∈ [0, 12]

where c f = CΛΦ(1 + Q)4Eq(0) = 5.5(1.2475)4 = 13.3206, C = maxt∈[0,12] E0.8,0.8(−0.01t0.8) =

1, Q = (K + L + |b|)CΛΦEq(Γ(q)KCτq = 0.2475.



Existence and Ulam type stability fractional differential equations with delay 15

2 4 6 8 10 12

10

20

30

40

»Difference»

FHtL
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∣

∣ and the function
Φ(t) = 3.5t + 0.0015 on [0, 12].
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(b) Graph of the fractional integral of the func-
tion Φ(t) = 3.5t + 0.0015 and the function
ΛΦΦ(t) on [0, 12].

Figure 6.1: Model 1.

Model 2. Consider the logistic equation where the effect of a biological delay depends on
the mechanistic details of the model. For example, suppose that a period of time τ elapses
between egg laying and hatching. Let us consider the case of and constant harvesting rate
µ > 0 ([6]): N′(t) = BN(t − τ)e−δτ

(

1− N(t)
A

)

− µN(t), where δ is egg mortality and e−δτ could
be the birth rate (given as a fraction). Hatchlings were produced by parents alive τ time ago,
but complete for sites with individuals alive at their dispersal and recruitment. It has a zero
equilibrium.

Now, consider the fractional generalization of the model with q ∈ (0, 1):

RL
0 D

q
t N(t) = BN(t − τ)e−δτ

(

1 −
N(t)

A

)

− µN(t) (6.4)

with the initial conditions
N(t) = g(t), t ∈ [−τ, 0], (6.5)

lim
t→0+

(

t1−qN(t)
)

= g(0) (6.6)

Note (6.4) has a zero equilibrium.
In this case f (t, x, y) = − B

A eδτxy and a = −µ, b = Be−δτ. Then | f (t, x, y) − f (t, u, v)| =
B
A e−δτ|xy− uv| ≤ B

A e−δτ|x(y− u) +U(x − v)| ≤ K|x − v|+ L|y− u| with K = B
A e−δτ max v and

L = B
A e−δτ max x. We will consider the case N ≤ W, W ∈ (0, A]. Therefore, K = L = B

A We−δτ.

According to Theorem 4.5 if α =
( 2

A W + 1
)

Be−δτ TΓ(q)
Γ(2q)

< 1 then (6.4) has a solution in C1−q

satisfying the integral presentation

N(t)=



























g(0)Γ(q)Eq,q(−µtq)tq−1

+
∫ t

0 (t − s)q−1Eq,q(−µ(t − s)q)
(

Beδτg(s − τ)− B
A e−δτ N(s)N(s − τ)

)

ds, t ∈ (0, τ]

g(0)Γ(q)Eq,q(−µtq)tq−1 − B
A e−δτ

∫ t
0 (t − s)q−1Eq,q(−µ(t − s)q)N(s)N(s − τ)ds

+Be−δτ
∫ t

0 (t − s)q−1Eq,q(−µ(t − s)q)N(s − τ)ds, t ∈ (nτ, (n + 1)τ], n = 1, 2, . . .

Consider the partial case B = 0.07, δ = 0.1, T = 6, q = 0.8, τ = 2, β = 2, A = 100, W =

30, µ = 0.1 and N ≤ 1. Then α ≈ 0.716881 < 1 and K = L = 0.07
100 30e−0.02 = 0.0205842,

a = −0.1, b = 0.07e−0.2. According to Theorem 4.5 the equation (6.4) has a solution.
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Consider the function y(t) = t2. Because RL
0 D0.8

t t2 = Γ(3)
Γ(1.5) t1.2 the inequality

∣

∣

∣

∣

Γ(3)
Γ(3 − 0.8)

t2−0.8 − 0.07(t − 2)2e−0.2
(

1 −
t2

100

)

+ 0.1t2
∣

∣

∣

∣

≤ 4.5t, t ∈ [0, 12].

holds (see Figure 6.2a).
Consider Φ(t) = 4.5t. The inequality

∫ t
0 (t − s)0.8−14.5sds ≤ ΛΦ(4.5t) holds with ΛΦ = 5.2

(see Figure 6.2b).

2 4 6 8 10 12

10

20

30

40

50

»Difference»

FHtL

(a) Graph of the difference
∣

∣

Γ(3)
Γ(3−0.8) t2−0.8 −
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)
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∣

∣ and the
function Φ(t) = 4.5t on [0, 12].
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(b) Graph of the fractional integral of the func-
tion Φ(t) = 4.5t and the function ΛΦΦ(t) on
[0, 12].

Figure 6.2: Model 2.

According to Theorem 5.7(iii) the solution N(t) of (6.4) satisfies

∣

∣

∣
N(t)− t2

∣

∣

∣
≤ 37.5892t, t ∈ [0, 12]

since c f = 5.2(1 + Q)41.04604 = 5.5(1.2475)4 = 8.35315, C = maxt∈[0,12] E0.8,0.8(−0.1t0.8) = 1,
Q = (0.0205842 + 0.0205842 + 0.07e−0.2)5.2E0.8(Γ(0.8)0.0205842 20.8) = 0.535671.
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1 Introduction

The main aim of the present paper is to establish a positive topological entropy for impulsive

differential equations via the associated Poincaré translation operators along their trajectories.

We will present, under natural assumptions, the relationship for the topological entropies of

given impulsive maps and their compositions with the Poincaré operators, from which a pos-

itive topological entropy of the composition, determining chaos for the impulsive differential

equations, is implied by the one of the impulsive map. On tori, the Ivanov theorem (see

BEmail: jan.andres@upol.cz
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[13, 17]), using effectively the asymptotic Nielsen number (which is in difference to topolog-

ical entropy a homotopy invariant), is applied for the lower estimate of topological entropy.

Moreover, this application can be expressed on tori in terms of the Lefschetz numbers which

are significantly easier for calculations.

Although various sorts of chaos have been already investigated for impulsive differential

equations (see e.g. [1, 5, 6, 18, 24], and the references therein), as far as we know, a topological

entropy has been examined, with only a few exceptions like [3], exclusively for non-impulsive

differential equations and dynamical systems (see e.g. [11, 14, 22, 25, 27], and the references

therein). That is why we would like, besides other things, to eliminate here this handicap.

For this goal, we will firstly recall Bowen’s definition of a topological entropy [7], jointly

with its basic properties. We will also recall the Ivanov theorem [13] and its consequences

on tori. For the systems of ordinary differential equations on R
n and R

n/Z
n, we will define

the associated Poincaré translation operators along the trajectories and point out the relation-

ship between Carathéodory periodic solutions and periodic points of the Poincaré operators.

Before a separate formulation of the main theorems about a positive topological entropy for

impulsive differential equations on Euclidean spaces and tori, we will deduce mentioned cru-

cial relationship for topological entropies of impulsive maps and their compositions with the

Poincaré operators. The obtained results will be illustrated by simple examples and com-

mented by concluding remarks.

2 Preliminaries

Although the topological entropy, which is a central notion of our paper, was defined by

Bowen [7] (cf. also [2, p. 188], [23, pp. 369–370]) for uniformly continuous maps, we will

restrict ourselves (from the practical reasons) to a subclass of continuous maps on compact

metric spaces. For more details about the topological entropy, see e.g. [19].

Definition 2.1. Let (X, d) be a compact metric space and f : X → X be a continuous map.

A set S ⊂ X is called (n, ε)-separated for f , for a positive integer n and ε > 0, if for every

pair of distinct points x, y ∈ S, x 6= y, there is at least one k with 0 ≤ k < n such that

d
(

f k(x), f k(y)
)

> ε. Then, denoting the number of different orbits of length n by

r(n, ε, f ) := max {#S : S ⊂ X is an (n, ε)-separated set for f } ,

where #S stands for the cardinality (i.e. the number of elements) of S, the topological entropy

h( f ) of f is defined as

h( f ) := lim
ε→0

[

lim sup
n→∞

1

n
log(r(n, ε, f ))

]

.

It will be convenient to recall the following properties of topological entropy. The first

lemma justifies Definition 2.1 in the sense that the metric d in the notation of h( f ) can be

omitted.

Lemma 2.2 (cf. e.g. [19, Proposition 3.1.2], [26, Corollary 7.5.2]). If X is a compact metrisable

space and d′ is any metric on X, then h( f ) = hd′( f ) holds for any continuous map f : X → X, where

hd′( f ) denotes the topological entropy of f on X calculated with any specific metric d′.

Lemma 2.3 (cf. e.g. [2, Lemma 4.1.10], [23, Theorem IX.1.3]). Let f be a continuous map on X.

Assume X = X1 ∪ · · · ∪ Xk is a decomposition into disjoint closed invariant subsets which are a
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positive distance apart. Then

h( f ) = max
j=1,...,k

h

(

f
∣

∣

Xj

)

.

Lemma 2.4 (cf. e.g. [2, Lemma 4.1.5], [23, Theorem IX.1.4]). Let f be a continuous map on a

compact metric space X. Let Ω ⊂ X be the nonwandering points of f , i.e. the points p ∈ Ω such that,

for every neighbourhood U of p, there is an integer n > 0 such that f n(U)∩U 6= ∅. Then the entropy

h( f ) of f equals the entropy of f restricted to its nonwandering set Ω, namely h( f ) = h
(

f
∣

∣

Ω

)

.

Lemma 2.5 (cf. e.g. [23, Theorem IX.1.5]). Let f be a continuous map on a compact metric space X

for which the nonwandering set Ω consists of a finite number of periodic orbits. Then the topological

entropy h( f ) of f is zero, h( f ) = 0. In particular, the same is true, provided
⋂∞

j=0 f j(X) is finite (see

e.g. [2, p. 194]).

Before formulating the following lemma, let us recall that a map s : X → Y is uniformly

finite to one if s−1(y) has a finite number of points for each y ∈ Y, and there is a bound on the

number of elements in s−1(y) which is independent of y ∈ Y.

Lemma 2.6 (cf. e.g. [23, Theorem IX.1.8]). Assume that f : X → X and g : Y → Y are continuous

maps, where (X, d) and (Y, d′) are compact metric spaces with metrics d and d′, respectively. Assume

s : X → Y is a semi-conjugacy from f to g, i.e. (i) s is continuous, (ii) s is “onto”, (iii) s ◦ f = g ◦ s,

that is uniformly finite to one. Then h( f ) = h(g).

If X is a compact polyhedron, then we can apply in the form of proposition the following

Jiang’s slight generalization (see [17]) of the Ivanov theorem [13], for the lower estimate of the

topological entropy. For the definition and properties of the Nielsen number, which is unlike

to topological entropy a homotopy invariant, see e.g. [9, 15].

Proposition 2.7. Suppose X is a compact polyhedron and, in particular (for our needs), the torus

X = R
n/Z

n. Let f : X → X be a continuous map. Then for any continuous map g : X → X

homotopic to f (i.e. g ∼ f ), the topological entropy h(g) satisfies h(g) ≥ log N∞( f ), where

N∞( f ) := max

{

1, lim sup
m→∞

(

N( f m)
)

1
m

}

is the asymptotic Nielsen number of f and N( f m) is the standard Nielsen number of the m-th iterate

of f . Thus, if N∞( f ) > 1, then

h(g) ≥ lim sup
m→∞

1

m
log N( f m) > 0

holds for any g ∼ f .

Remark 2.8. For the torus X = R
n/Z

n, we have still (see [8])

N( f ) = |λ( f )| ,

where λ( f ) denotes the Lefschetz number of f (for its definition and properties, see e.g. [9]), by

which the inequality

h(g) ≥ log N∞( f ) (2.1)

can be rewritten into

h(g) ≥ log max

{

1, lim sup
m→∞

|λ( f m)|
1
m

}

, (2.2)

which is significantly easier for verification.
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Hence, if

lim sup
m→∞

|λ( f m)|
1
m > 1,

then

h(g) ≥ lim sup
m→∞

1

m
log |λ( f m)| > 0

holds for any g ∼ f .

If, in particular, f : R
n/Z

n → R
n/Z

n is an endomorphism defined by an integer matrix

A, whose eigenvalues are λ1, . . . , λn, then (see e.g. [16, Example, p. 192])

N∞( f ) =











1, if λ( f ) = 0

∏
|λk |>1

|λk| , otherwise,
(2.3)

and λ( f ) = det(I − A) = Πn
k=1(1 − λk), where λ( f ) stands for the Lefschetz number of f .

Now, consider the vector differential equation

x′ = F(t, x), (2.4)

where F : R × R
n → R

n is the Carathéodory mapping such that F(t, x) ≡ F(t + ω, x), for some

given ω > 0, i.e.

(i) F(·, x) : [0, ω] → R
n is measurable, for every x ∈ R

n,

(ii) F(t, ·) : R
n → R

n is continuous, for almost all (a.a.) t ∈ [0, ω].

Let, furthermore (2.4) satisfy a uniqueness condition and all solutions of (2.4) entirely exist on

the whole line (−∞, ∞).

By a (Carathéodory) solution x(·) of (2.4), we understand a locally absolutely continuous

function, i.e. x ∈ ACloc(R, R
n), which satisfies (2.4) for a.a. t ∈ R.

We can associate to (2.4) the Poincaré translation operator Tω : R
n → R

n along its trajectories

as follows:

Tω(x0) := {x(ω) : x(·) is a solution of (2.4) such that x(0) = x0} . (2.5)

It is well known (see e.g. [20, Chapter 1.1] that Tω is a homeomorphism such that Tk
ω = Tkω,

for every k ∈ N.

Assuming still that

F(t, . . . , xj, . . . ) ≡ F(t, . . . , xj + 1, . . . ), j = 1, . . . , n, (2.6)

where x = (x1, . . . , xn), we can also consider (2.4) on the torus R
n/Z

n, which can be endowed

with the metric

d̂(x, y) := min {dEucl(a, b) : a ∈ [x], b ∈ [y]} ,

for all x, y ∈ R
n/Z

n, where dEucl(a, b) :=
√

∑
n
j=1(aj − bj)2, for all a, b ∈ R

n.

The associated Poincaré translation operator T̂ω : R
n/Z

n → R
n/Z

n along the trajectories of

(2.4), considered on R
n/Z

n, takes the form T̂ω := τ ◦ Tω, where Tω was defined in (2.5), and

τ : R
n → R

n/Z
n, x → [x] := {y ∈ R

n : (y − x) ∈ Z
n} is the natural (canonical) projection. It is
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well known (see e.g. [10, Chapter XVII]) that T̂ω is also a homeomorphism such that T̂k
ω = T̂kω,

for every k ∈ N. In particular, for n = 1, T̂ω is an orientation-preserving homeomorphism.

One can easily detect the one-to-one correspondence between the kω-periodic solutions of

(2.4), i.e. x(t) ≡ x(t + kω) but x(t) 6≡ x(t + jω) for j < k, and k-periodic points of Tω, i.e

x0 = Tk
ω(x0) but x0 6= T

j
ω(x0) for j < k, where x0 = x(0) and j, k are positive integers.

The same correspondence holds between kω-periodic solutions x̂(·) := τ ◦ x(·) of (2.4),

considered on R
n/Z

n, and k-periodic points x̂0 = τ ◦ x0 of T̂ω := τ ◦ Tω, where x̂0 = x̂(0).

The impulsive differential equations, i.e. the differential equations (2.4) with impulses

at t = tj := jω, j ∈ Z, will be considered separately on the spaces R
n and R

n/Z
n. Their

solutions will be also understood in the same Carathéodory sense, i.e. x ∈ AC[tj, tj+1], j ∈ Z.

3 Topological entropy for impulsive differential equations on R
n

Consider the vector impulsive differential equation

{

x′ = F(t, x), t 6= tj := jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(3.1)

where F : R × R
n → R is the Carathéodory mapping such that F(t, x) ≡ F(t + ω, x), equation

(2.4) satisfies a uniqueness condition and a global existence of all its solutions on (−∞, ∞). Let,

furthermore, I : R
n → R

n be a compact continuous impulsive mapping such that K0 := I(Rn)

and I(K0) = K0.

Proposition 3.1. Let Tω : R
n → R

n be the associated Poincaré translation operator along the trajec-

tories of (2.4), defined in (2.5), such that K1 := Tω(K0) and K0 ⊂ K1. Then the equality

h
(

I
∣

∣

K1
◦ Tω

∣

∣

K0

)

= h
(

I
∣

∣

K0

)

(3.2)

holds for the topological entropies h of the maps I
∣

∣

K1
◦ Tω

∣

∣

K0
: K0 → K0 and I

∣

∣

K0
: K0 → K0.

Proof. We have the diagram

K0

Tω

��

Tω
// K1

I
// K0

Tω

��

K1
I

// K0

Tω

OO

Tω
// K1,

where K0, K1 ⊂ R
n are compact subsets, and Tω

∣

∣

K0
: K0 → K1 is (i) continuous, (ii) “onto”

and uniformly finite to one, (iii) Tω

∣

∣

K0
◦
(

I
∣

∣

K1
◦ Tω

∣

∣

K0

)

=
(

Tω

∣

∣

K0
◦ I

∣

∣

K1

)

◦ Tω

∣

∣

K0
, i.e. it is a

semi-conjugacy.

Thus, applying Lemma 2.6, we obtain that

h
(

I
∣

∣

K1
◦ Tω

∣

∣

K0

)

= h
(

Tω

∣

∣

K0
◦ I

∣

∣

K1

)

.

Endowing K0, K1 with the respective metrics d, d′, where

d(x, y) := dEucl(x, y), for all x, y ∈ K0,

d′(x, y) := dEucl (Tω(x), Tω(y)) , for all x, y ∈ K0,

d′(x′, y′) := dEucl

(

x′, y′
)

, for all x′ (= Tω(x)) , y′ (= Tω(y)) ∈ K1,
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we can write in this notation that

h
(

Tω

∣

∣

K0
◦ I

∣

∣

K1

)

= hd′

(

I
∣

∣

K1

)

, resp. h
(

I
∣

∣

K1
◦ Tω

∣

∣

K0

)

= hd′

(

I
∣

∣

K1

)

, (3.3)

where the lower index d′ denotes the respective metric.

We can also write that

hd′

(

I
∣

∣

K1

)

= hd′

(

I
∣

∣

Tω(K0)

)

= hd′

(

I
∣

∣

K0

)

. (3.4)

Furthermore, since the topological entropy of given continuous maps on compact metric

spaces does not depend, according to Lemma 2.2, on the used metrics, we get still that

hd′

(

I
∣

∣

K0

)

= h
(

I
∣

∣

K0

)

. (3.5)

Summing up the relations (3.3)–(3.5), we arrive at (3.2), as claimed.

Remark 3.2. It can be readily seen from (3.2) that a positive topological entropy holds for

I
∣

∣

K1
◦ Tω

∣

∣

K0
, when h

(

I
∣

∣

K0

)

> 0 and K0 ⊂ K1, which is a rather implicit condition. Since K1 \ K0

is the wandering set for I, condition (3.2) is in a certain sense sharp (cf. also (3.3)). On the

other hand, if K0 contains only a finite number of periodic orbits for I
∣

∣

K0
, then according to

Lemma 2.5, h
(

I
∣

∣

K0

)

= 0, by which also h
(

I
∣

∣

K1
◦ Tω

∣

∣

K0

)

= 0.

Corollary 3.3. Consider the scalar impulsive differential equation, i.e. (3.1) for n = 1. If [a, b] ⊂
[Tω(a), Tω(b)] holds for the Poincaré translation operator Tω along the trajectories of (2.4), defined in

(2.5), where [a, b] = I([a, b]), then condition (3.2) takes the form

h
(

I
∣

∣

[Tω(a),Tω(b)]
◦ Tω

∣

∣

[a,b]

)

= h
(

I
∣

∣

[a,b]

)

. (3.6)

Proof. Since Tω : R → R must be, under a uniqueness condition, strictly increasing, we have

that K1 = [Tω(a), Tω(b)], where K0 = [a, b]. In this notation, K0 ⊂ K1, and condition (3.2) takes

the form (3.6).

Definition 3.4. We say that the vector impulsive differential equation (3.1) exhibits chaos in

the sense of a positive topological entropy h if h
(

I
∣

∣

K1
◦ Tω

∣

∣

K0

)

> 0 holds for the composition of

the associated Poincaré translation operator Tω along the trajectories of (2.4), defined in (2.5),

with the compact impulsive mapping I : R
n → R

n, where K0 := I(Rn) and K1 := Tω(K0).

Theorem 3.5. The vector impulsive differential equation (3.1) exhibits, under the above assumptions,

chaos in the sense of Definition 3.4, if I(K0) = K0 and K0 ⊂ K1, where K0 := I(Rn) and K1 :=

Tω(K0), jointly with h
(

I
∣

∣

K0

)

> 0.

Proof. The proof follows directly from the inequality (3.2) in Proposition 3.1.

Corollary 3.6. The scalar (n = 1) impulsive differential equation (3.1) exhibits, under the above

assumptions, chaos in the sense of Definition 3.4, provided h
(

I
∣

∣

[a,b]

)

> 0 holds, jointly with I(R) =

I([a, b]) = [a, b] ⊂ [Tω(a), Tω(b)].

Proof. The proof follows directly from the equality (3.6) in Corollary 3.3, where K0 = [a, b] and

K1 = [Tω(a), Tω(b)].

The following simple illustrative examples demonstrate an application of Corollary 3.6 to

scalar (n = 1) linear and semi-linear impulsive differential equations.
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Example 3.7. Consider the linear impulsive equation






x′ = p(t)x + q(t), t 6= tj := jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(3.7)

where p, q : R → R are measurable functions such that p(t) ≡ p(t + ω), q(t) ≡ q(t + ω), and

the compact (continuous) impulsive function I : R → R satisfies I(R) = [a, b] and I([a, b]) =

[a, b].

Since the general solution of x′ = p(t)x + q(t) reads

x(t) = x(0) e
∫ t

0 p(s)ds +
∫ t

0
e
∫ t

s p(r)dr q(s)ds,

the required inclusion [a, b] ⊂ [Tω(a), Tω(b)] in Corollary 3.6 takes the form

a ≥ a e
∫

ω

0 p(t)dt +
∫

ω

0
e
∫

ω

s p(r)dr q(s)ds,

b ≤ b e
∫

ω

0 p(t)dt +
∫

ω

0
e
∫

ω

s p(r)dr q(s)ds.

Specially, for a = 0, b = 1:

0 ≥
∫

ω

0
e
∫

ω

s p(r)dr q(s)ds, 1 ≤ e
∫

ω

0 p(t)dt +
∫

ω

0
e
∫

ω

s p(r)dr q(s)ds.

In order to satisfy the first inequality, we can assume that q(t) ≤ 0, for a.a. t ∈ [0, ω]. The

second inequality can be then more restrictively rewritten into

e
∫

ω

0 p(t)dt ≥ 1 +

∣

∣

∣

∣

∫

ω

0
e
∫

ω

0 p(r)dr q(s)ds

∣

∣

∣

∣

.

Denoting P :=
∣

∣

∫

ω

0 p(t)dt
∣

∣ and Q :=
∣

∣

∫

ω

0 q(t)dt
∣

∣, we can rewrite it finally as

eP(1 − Q) ≥ 1, resp. Q ≤ eP −1

eP
,

jointly with q(t) ≤ 0, for a.a. t ∈ [0, ω].
(3.8)

Specially, for p(t) ≡ p > 0, we can require that

Q ≤ epω −1

epω
and q(t) ≤ 0,

for a.a. t ∈ [0, ω], or −p e−pω ≤ q(t) ≤ 0, for a.a. t ∈ [0, ω].

Thus, the linear impulsive equation (3.7) exhibits chaos in the sense of Definition 3.4,

provided (3.8) holds jointly with h
(

I
∣

∣

[0,1]

)

> 0.

The last inequality is satisfied, for instance, for the 1-periodically extended tent map I(x) ≡
I(x + 1), where

I(x) :=







2x, for x ∈
[

0, 1
2

]

,

2(1 − x), for x ∈
[

1
2 , 1

]

,

because I(R) = I([0, 1]) = [0, 1] and (cf. (3.6))

h
(

I
∣

∣

[Tω(0),Tω(1)]
◦ Tω

∣

∣

[0,1]

)

= h
(

I
∣

∣

[0,1]

)

= log 2.

For the last inequality, see e.g. [19, Corollary 15.2.14].
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Example 3.8. Consider the semi-linear impulsive equation







x′ = p(t, x)x + q(t, x), t 6= tj := jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(3.9)

where p, q : R
2 → R are Carathéodory functions such that p(t, x) ≡ p(t + ω, x), q(t, x) ≡

q(t + ω, x), and the compact (continuous) impulsive function I : R → R satisfies I(R) = [a, b]

and I([a, b]) = [a, b].

Since the solutions x0(·), x1(·) of x′ = p(t, x)x + q(t, x) such that x0(0) = 0, x1(0) = 1 can

be implicitly expressed as

x0(t) =
∫ t

0
e
∫ t

s p(r,x0(r))dr q(s, x0(s))ds,

x1(t) = e
∫ t

0 p(s,x1(s))ds +
∫ t

0
e
∫ t

s p(r,x1(r))dr q(s, x1(s))ds,

one can proceed in a similar way as in Example 3.7.

Hence, the required inclusion [0, 1] ⊂ [Tω(0), Tω(1)] (for a = 0, b = 1) in Corollary 3.6

takes this time the form

0 ≥
∫

ω

0
e
∫

ω

s p(r,x0(r))dr q(s, x0(s))ds,

1 ≤ e
∫

ω

0 p(t,x1(t))dt +
∫

ω

0
e
∫

ω

s p(r,x1(r))dr q(s, x1(s))ds.

In order to satisfy the first inequality, we can assume that q(t, x) ≤ 0, for a.a. t ∈ [0, ω] and

all x ∈ R. The second inequality can be then more restrictively rewritten into

e
∫

ω

0 p(t,x1(t))dt ≥ 1 +

∣

∣

∣

∣

∫

ω

0
e
∫

ω

s p(r,x1(r))dr q(s, x1(s))ds

∣

∣

∣

∣

.

Assuming still the existence of real constants p0, p1, q1 such that

0 < p0 ≤ p(t, x) ≤ p1 and |q(t, x)| ≤ q1, for a.a. t ∈ [0, ω] and all x ∈ R,

we still require that

q1 ≤ ep0ω −1

ω ep1ω
,

i.e. jointly with q(t, x) ≤ 0,

− ep0ω −1

ω ep1ω
≤ q(t, x) ≤ 0, for a.a. t ∈ [0, ω] and all x ∈ R, (3.10)

where 0 < p0 ≤ p(t, x), for a.a. t ∈ [0, ω] and all x ∈ R.

Thus, the semi-linear impulsive equation (3.9) exhibits chaos in the sense of Definition 3.4,

provided (3.10) holds jointly with h
(

I
∣

∣

[0,1]

)

> 0. This inequality can be satisfied like in Exam-

ple 3.7, for instance, for the 1-periodically extended tent map.

Now, we would like to apply Theorem 3.5 to the nonlinear vector impulsive differential

equation (3.1).
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Example 3.9. Consider (3.1), where F and I are as above, and assume that

{

f j(t, . . . , xj, . . . ) > 0 holds for all xj ≥ bj, j = 1, . . . , n,

f j(t, . . . , xj, . . . ) < 0 holds for all xj ≤ aj, j = 1, . . . , n,
(3.11)

uniformly for a.a. t ∈ [0, ω] and all the remaining components of x = (x1, . . . , xn), where

F(t, x) = ( f1(t, x), . . . , fn(t, x))T and
(

I(Rn) =
)

K0 := [a1, b1]× · · · × [an, bn], I(K0) = K0.

Since, in view of (3.11), the inequalities xj(ω, aj) ≤ aj and xj(ω, bj) ≥ bj, j = 1, . . . , n, hold

for all the components of the solutions x(·, a) and x(·, b) such that x(0, a) = a and x(0, b) = b,

where a = (a1, . . . , an), b = (b1, . . . , bn), the particular inclusion K0 ⊂ K1 is satisfied, where

K0 := [a1, b1]× · · · × [an, bn] and K1 := Tω(K0).

Thus, the vector impulsive equation (3.1) exhibits, according to Theorem 3.5, chaos in the

sense of Definition 3.4, provided (3.11) holds jointly with h
(

I
∣

∣

K0

)

> 0, where K0 := [a1, b1]×
· · · × [an, bn]. This inequality can be satisfied, for instance when K0 := [0, 1]n (i.e. for [aj, bj] =

[0, 1], j = 1, . . . , n), for the Cartesian product I of 1-periodically extended tent maps, because

I ([0, 1]n) = [0, 1]n and (see e.g. [26])

h
(

I
∣

∣

K1
◦ Tω

∣

∣

[0,1]n

)

= h
(

I
∣

∣

[0,1]n

)

= n log 2.

Remark 3.10. Observe that condition (3.11) imposed on the equations (3.7) and (3.9) takes the

simple forms p(t) + q(t) > 0, q(t) < 0, for a.a. t ∈ [0, ω], resp. p(t, 1) + q(t, 1) > 0, q(t, 0) < 0,

for a.a. t ∈ [0, ω].

4 Topological entropy for impulsive differential equations on

R
n/Z

n

Consider (3.1) and assume additionally that (2.6) holds jointly with

I(. . . , xj, . . . ) ≡ I(. . . , xj + 1, . . . ) (mod 1), j = 1, . . . , n, (4.1)

where x = (x1, . . . , xn).

Because of the commutative diagram

R
n

τ

��

Tω
// R

n I
//

τ

��

R
n

τ

��

R
n/Z

n T̂ω
// R

n/Z
n Î

// R
n/Z

n,

where τ is the natural (canonical) projection, T̂ω := τ ◦ Tω : R
n/Z

n → R
n/Z

n, where

Tω : R
n → R

n is the Poincaré translation operator along the trajectories of (2.4), defined in

(2.5), and Î = τ ◦ I : R
n/Z

n → R
n/Z

n, where I : R
n → R

n is the impulsive mapping in (3.1),

we can advantageously consider (3.1) on the torus R
n/Z

n, in the metric

d̂ : R
n/Z

n × R
n/Z

n →
[

0,

√
n

2

]

,

where d̂(x, y) := min {dEucl(a, b) : a ∈ [x], b ∈ [y]}.
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Since T̂ω is well known (see e.g. [10, Chapter XVII]) to be a homeomorphism and, in

particular for n = 1, even an orientation-preserving homeomorphism, the composition

Î ◦ Tω := Î ◦ T̂ω : R
n/Z

n → R
n/Z

n

is continuous in
(

R
n/Z

n, d̂
)

.

We can therefore give the following analogy of Proposition 3.1 on R
n/Z

n.

Proposition 4.1. The equality

h
(

Î ◦ Tω

)

= h
(

Î
)

(4.2)

holds, under the above assumptions and Î (Rn/Z
n) = R

n/Z
n, for the topological entropies h of the

maps Î ◦ Tω : R
n/Z

n → R
n/Z

n and Î : R
n/Z

n → R
n/Z

n in
(

R
n/Z

n, d̂
)

.

Proof. We can proceed analogously, but (since R
n/Z

n is compact and Î is “onto”) in a simpler

way, as in the proof of Proposition 3.1.

We have the diagram

R
n/Z

n

T̂ω

��

T̂ω
// R

n/Z
n Î

// R
n/Z

n

T̂ω

��

R
n/Z

n Î
// R

n/Z
n

T̂ω

OO

T̂ω
// R

n/Z
n,

where T̂ω : R
n/Z

n → R
n/Z

n is a homeomorphism and “onto”.

Thus, according to Lemma 2.6, we obtain that

h
(

Î ◦ T̂ω

)

= h
(

T̂ω ◦ Î
)

.

Endowing R
n/Z

n with the new metric d̂′, where

d̂′(x, y) := d̂
(

T̂ω(x), T̂ω(y)
)

, for all x, y ∈ R
n/Z

n,

we have that

h
(

Î ◦ Tω

)

= h
(

T̂ω ◦ I
)

= hd̂′( Î),

where the lower index d̂′ denotes the respective metric. Furthermore, we get still, according

to Lemma 2.2,

hd̂′( Î) = h( Î),

and, after all, that

h
(

Î ◦ Tω

)

= h( Î),

i.e. (4.2), as claimed.

Definition 4.2. We say that the vector impulsive differential equation (3.1) exhibits on R
n/Z

n

(cf. also (2.6), (4.1)) chaos in the sense of a positive topological entropy h if h
(

Î ◦ Tω

)

> 0 holds for

the map Î ◦ Tω : R
n/Z

n → R
n/Z

n in (Rn/Z
n, d̂), defined above.

Theorem 4.3. The vector impulsive differential equation (3.1) exhibits on R
n/Z

n, under the above

assumptions and additionally (2.6), (4.1), jointly with Î(Rn/Z
n) = R

n/Z
n, chaos in the sense of

Definition 4.2, provided h( Î) > 0 holds for the impulsive mapping Î : R
n/Z

n → R
n/Z

n in the

metric d̂.
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Proof. The proof follows directly from the equality (4.2) in Proposition 4.1.

The following corollary can help us to calculate effectively the topological entropy h( Î),

and to ensure chaos for (3.1) on R
n/Z

n (cf. [6, Theorem 5.2]).

Corollary 4.4. Let Î : R
n/Z

n → R
n/Z

n be defined by an integer matrix A, whose eigenvalues are

λ1, . . . , λn. Then

h( Î) = ∑
|λk |>1

log |λk|

holds for the topological entropy of Î, provided ∏
n
k=1(1 − λk) 6= 0. Therefore, if

∑
|λk |>1

log |λk| > 0 and
n

∏
k=1

(1 − λk) 6= 0,

then (3.1) exhibits on R
n/Z

n under (2.6) chaos in the sense of Definition 4.2.

Proof. The first assertion is well known (see e.g. [26, p. 203] and cf. the preliminaries in Sec-

tion 2). The second part is, on this basis, an immediate consequence of Theorem 4.3.

Example 4.5. As an illustrative example of the application of Corollary 4.4, let us consider

(3.1) on R
2/Z

2 (i.e. for n = 2), when assuming (2.6). Let Î : R
2/Z

2 → R
2/Z

2 be defined by

the integer matrix A, whose real eigenvalues are one, say λ1, of modulus |λ1| > 1 and the

other, say λ2, with |λ2| < 1. For instance, A can take the form,

A =

(

1 1

2 1

)

,

because λ1 = 1 +
√

2, λ2 = 1 −
√

2, and so (1 − λ1)(1 − λ2) = −2, and
∣

∣λ1

∣

∣ =
∣

∣1 +
√

2
∣

∣ > 1,

|λ2| =
∣

∣1 −
√

2
∣

∣ < 1.

Then h( Î) = log |λ1|) = log(1 +
√

2) > 0, and (3.1) exhibits on R
2/Z

2, according to

Corollary 4.4, chaos in the sense of Definition 4.2.

Observe that since λ( Î) = (1 − λ1)(1 − λ2) 6= 0 holds for the Lefschetz number, we obtain

according to (2.3) that N∞( Î) = |λ1| = 1 +
√

2, and subsequently (see (2.1)) h( Î) ≥ log |λ1| >
0, with the same conclusion for (3.1).

Theorem 4.3 can be modified by means of Proposition 2.7 as follows.

Theorem 4.6. Consider, under the above assumptions and (2.6), (4.1), jointly with Î(Rn/Z
n) =

R
n/Z

n, the vector impulsive differential equation (3.1) on R
n/Z

n. Assume that the impulsive map-

ping Î : R
n/Z

n → R
n/Z

n is homotopic to a continuous map f : R
n/Z

n → R
n/Z

n such that

N∞( f ) > 1, i.e. (see (2.2))

lim sup
m→∞

|λ( f m)|
1
m > 1,

where λ( f m) stands for the Lefschetz number of the m-th iterate of f .

Then h( Î) ≥ lim supm→∞
1
m log N( f m) > 0 holds, where N( f m) denotes the Nielsen number

of the m-th iterate of f , and subsequently equation (3.1) exhibits on R
n/Z

n chaos in the sense of

Definition 4.2.

Proof. The proof follows directly from Theorem 4.3, on the basis of Proposition 2.7 and Re-

mark 2.8.
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Example 4.7. Consider the scalar (n = 1) impulsive differential equation (3.1) on R/Z, when

assuming (2.6). Let Î : R/Z → R/Z be the doubling impulsive mapping, where

Î :=

{

2x, for x ∈
[

0, 1
2

]

,

2x − 1, for x ∈
[

1
2 , 1

]

.

Since one can easily check that (see e.g. [6])

N( Îk) =
∣

∣

∣
λ( Îk)

∣

∣

∣
=

∣

∣

∣
1 − 2k

∣

∣

∣
, k ∈ N,

holds for the Nielsen and Lefschetz numbers, we obtain that

N∞( Î) = lim sup
m→∞

∣

∣λ( Îm)
∣

∣

1
m = lim sup

m→∞

|1 − 2m|
1
m > 1.

Thus, applying Theorem 4.6, h( Î) > 0 holds, and (3.1) exhibits on R/Z chaos in the sense of

Definition 4.2.

According to Corollary 4.4, we have h( Î) = log 2, and the same conclusion.

Remark 4.8. Observe that if I : [0, 1] → [0, 1] is the standard tent map defined in Example 3.7,

resp. its 1-periodic extension, then Î := τ ◦ I : R/Z → R/Z takes the same form as I. Thus,

h( Î) = log 2, which is sufficient for the application of Theorem 4.3. On the other hand,

N( Îk) =
∣

∣

∣
λ( Îk)

∣

∣

∣
= 1, k ∈ N,

holds this time, which excludes the application of Theorem 4.6.

Example 4.9. Consider the scalar linear impulsive equation (3.7) with p(t) ≡ 0, i.e.
{

x′ = q(t), t 6= tj := jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(4.3)

where q : R → R is a measurable function such that q(t) ≡ q(t + ω) and 1
ω

∫

ω

0 q(t)dt = 0.

(i) One can easily check that (4.3) exhibits, according to Theorem 3.5, chaos in the sense

of Definition 3.4, provided the continuous impulsive function I : R → R is compact,

I(K0) = K0 and such that h(I
∣

∣

K0
) > 0, where K0 := I(R).

(ii) Furthermore, (4.3) exhibits on R/Z, according to Theorem 4.3, chaos in the sense of

Definition 4.2, provided the continuous impulsive function I : R → R satisfies I(x) ≡
I(x + 1)(mod 1), Î(R/Z) = R/Z, and h( Î) > 0, where Î := τ ◦ I : R/Z → R/Z.

(iii) At last, (4.3) exhibits on R/Z, according to Theorem 4.6, chaos in the sense of Def-

inition 4.2, provided the continuous impulsive function I : R → R satisfies I(x) ≡
I(x + 1)(mod 1), Î(R/Z) = R/Z, and Î is homotopic to f : R/Z → R/Z (i.e. Î ∼ f )

such that

lim sup
m→∞

|λ( f m)|
1
m > 1,

where λ( f m) stands for the Lefschetz number of the m-th iterate of f .

Remark 4.10. One can easily check that since for the 1-periodically extended tent map I : R →
[0, 1], defined in Example 3.7, h(I

∣

∣

[0,1]
) = h( Î) = log 2 (> 0) and lim supm→∞

∣

∣λ( Îm)
∣

∣

1
m = 1,

Theorem 3.5 and 4.3 apply in (i),(ii), while Theorem 4.6 does not apply in (iii). On the other

hand, since for the doubling map I := 2x : R → R, we have I(R) = R, h( Î) = log 2 and

lim supm→∞

∣

∣λ( Îm)
∣

∣

1
m = lim supm→∞ |1 − 2m|

1
m > 1, Theorems 4.3 and 4.6 apply in (ii), (iii),

while Theorem 3.5 does not apply in (i).



Topological entropy for impulsive differential equations 13

5 Concluding remarks

It is well known that (see e.g. the main theorem in [21]), for continuous maps on compact in-

tervals, a positive topological entropy is equivalent with Devaney’s chaos on a closed invariant

subset, i.e. (i) topological transitivity, (ii) density of periodic points, (iii) sensitive dependence

on initial conditions. Moreover, transitivity implies period six (see e.g. [12]), and subsequently

(in view of the celebrated Sharkovsky cycle coexistence theorem, cf. e.g. [2, Theorem 2.1.1]) the

coexistence of 2k-periodic points, for every k ∈ N. Reversely, the existence of a periodic point

with period k 6= 2n, n ∈ N ∪ {0}, implies according to the theorem of Boven and Franks (see

e.g. [2, Theorem 4.4.20]), a positive topological entropy, and subsequently Devaney’s chaos on

a closed invariant subset. The same, except the information about period six, but “only” with

period k 6= 2n, n ∈ N ∪ {0}, is true for continuous maps on a circle, provided they possess a

fixed point (see e.g. [2]).

Thus, many results for scalar (n = 1) impulsive differential equations about Devaney’s

chaos and the coexistence of periodic solutions with various periods, including those of the

type k 6= 2n, n ∈ N ∪ {0}, can be also interpreted in terms of a positive topological entropy.

In higher (n > 1) dimensions, the situation is more delicate. Nevertheless, the coexistence

of infinitely many periodic solutions is also there, in view of Lemma 2.5, a necessary condition

for a positive topological entropy.

Under the assumptions of Corollary 4.4, we are able to prove like in [4, Theorem 4.3] the

coexistence of kω-periodic (mod 1) solutions of (3.1), for infinitely many k ∈ N, including

those for k 6= 2n, n ∈ N ∪ {0}.

In this light, at least the results about topological entropy for impulsive differential equa-

tions, obtained in higher dimensions, seem to be original.
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Abstract. In this paper we present some existence and uniqueness results for solutions
of second order boundary value problems, which are functions of bounded variation
along with their derivatives. To this end, we apply fixed point theorems to an equivalent
nonlinear perturbed Hammerstein integral equation. Here we consider non- standard
boundary conditions like coupled boundary conditions, uncoupled boundary condi-
tions, or integral-type boundary conditions. We also prove an abstract result concern-
ing the spectral radii of some general classes of operators which applies to all boundary
value problems mentioned above. The abstract results are throughout illustrated by a
large number of examples.

Keywords: boundary value problem, bounded variation, spectral radius.
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1 Nonlocal boundary value problems

It is well known that nonlinear boundary value problems (BVPs) are closely related to Ham-

merstein integral equations, while nonlinear initial value problems (IVPs) are closely related

to Volterra–Hammerstein integral equations. Since a linear Volterra operator has often spec-

tral radius zero, solutions of IVPs are usually much easier to obtain than solutions of BVPs.

During the last decades, so-called nonlocal BVPs have found growing attention, mainly

in view of their generality and applicability. In a very general formulation, a second-order

BCorresponding author. Email: jurgen@dmuw.de
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nonlinear equation with nonlocal boundary conditions has the form [7]

x′′(t) + p(t)x′(t) + q(t)x(t) + r(t)g(t, x(t)) = 0 (0 ≤ t ≤ 1),

ax(0)− bx′(0) = α[x], cx(1) + dx′(1) = β[x].
(1.1)

Here p, q, r : [0, 1] → R and g : [0, 1]× R → R are given functions, and α, β : C[0, 1] → R

are linear functionals which are expressed by Riemann–Stieltjes integrals. The well-known

multi-point BVPs are a special case of the problem (1.1).

Many important contributions to this problem have been given during the last 20 years

by Webb [5–16], and Webb with Infante [2–4, 17–22]. While there is a vast literature on con-

tinuously differentiable solutions, considerably less is known on solutions with derivatives of

bounded variation, although such solutions (e.g., monotone or convex solutions) have some

interest in applications. An exception is the recent paper [1], where the authors prove, un-

der suitable hypotheses, the existence of a continuous solution of bounded variation of the

equation

x(t) = α[x]v(t) + β[x]w(t) + λ

∫ 1

0
k(t, s)g(s, x(s)) ds (0 ≤ t ≤ 1), (1.2)

building on a variant of Krasnosel’skij’s fixed point principle. We will study a similar equation

and look for solutions with derivatives of bounded variation.

So in this paper we are going to consider the classical space BV equipped with the usual

norm

‖x‖BV =
∣

∣x(0)
∣

∣+ Var(x; [0, 1]), (1.3)

where Var(x; [0, 1]) denotes the total Jordan variation of x on the interval [0, 1], as well as the

higher order space

BVm := {x ∈ BV : x′, x′′, . . . , x(m) ∈ BV},

equipped with the natural norm

‖x‖BVm =
∣

∣x(0)
∣

∣+
m

∑
k=1

‖x(k)‖BV .

Observe that there is a peculiarity in the spaces BVm for m ≥ 1. Given x ∈ BVm, the

derivative x(m) belongs to BV and so can have only removable discontinuities or jumps; how-

ever, the well-known Darboux intermediate value theorem excludes such discontinuities. So

the inclusion BVm ⊆ Cm holds, although the analogous “zero level” inclusion BV ⊆ C is of

course far from being true.

We will also need the space ACm of all functions which have absolutely continuous deriva-

tives up to order m, equipped with the norm inherited from BVm. By the classical Vitali–

Banach–Zaretskij theorem, the relation with the other spaces is then given by

ACm ⊂ BVm ⊂ Cm (m ≥ 1), AC ⊂ BV ∩ C ⊂ C, (1.4)

where all inclusions are strict. In what follows, we will look for solutions x ∈ ACm−1 of an

m-th order nonlinear differential equation with nonlocal boundary conditions, with a partic-

ular emphasis on examples which illustrate how far our sufficient solvability conditions are

from being necessary. If there are more than one sufficient condition we will also show their

independence, in the sense that none of them implies the others.
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2 Boundary value problems with BV data

To begin with, let us discuss the second order equation

x′′(t) + λg(t, x(t)) = 0 (0 ≤ t ≤ 1), (2.1)

subject to the coupled boundary conditions

x(0) = α[x], x(1) = β[x], (2.2)

where α, β : BV → R are given linear functionals. This means that we take p(t) = q(t) ≡ 0,

r(t) ≡ 1, a = c = 1, and b = d = 0 in (1.1). Occasionally, we will also consider more general

data. Throughout this paper we suppose that the nonlinearity g in (2.1) satisfies the three

hypotheses

(H1) g(·, u) is measurable for all u ∈ R;

(H2) for each R > 0 there exists aR ∈ L∞[0, 1] such that |g(t, u)| ≤ aR(t) for 0 ≤ t ≤ 1 and

|u| ≤ R;

(H3) g(t, ·) ∈ C(R) for almost all t ∈ [0, 1].

In the sequel we refer to the problem (2.1)/(2.2) by the symbol (BVP). In order to solve this

problem, we consider along with (BVP) the Hammerstein integral equation

x(t) = Ax(t) + λ

∫ 1

0
κ(t, s)g(s, x(s)) ds (0 ≤ t ≤ 1), (2.3)

where

κ(t, s) =

{

s(1 − t) for 0 ≤ s ≤ t ≤ 1,

t(1 − s) for 0 ≤ t < s ≤ 1

is the usual Green’s function of the second order derivative, and A is a linear operator (to be

specified below) from BV into itself. The bridge between (2.3) and our (BVP) is built by our

first result

Proposition 2.1. Let A : BV → BV be defined by

Ax(t) := (1 − t)α[x] + tβ[x] (0 ≤ t ≤ 1). (2.4)

Then the following holds.

(a) Every function x ∈ BV solving (2.3) belongs to AC1 and solves (BVP) almost everywhere on [0, 1].

(b) If, in addition, g is continuous on [0, 1]×R, then every solution x of (2.3) is of class C2 and solves

(BVP) everywhere on [0, 1].

(c) Conversely, if x ∈ AC1 solves (BVP) almost everywhere on [0, 1], then x is a solution of the

integral equation (2.3).

Proof. (a) Assume that (2.3) is satisfied for some x ∈ BV and some λ ∈ R. First observe that

h(s) := g(s, x(s)) belongs to L∞ because of our hypotheses (H1)/(H2)/(H3). Moreover, the

function ϕ : [0, 1] → R defined by

ϕ(t) :=
∫ 1

0
κ(t, s)g(s, x(s)) ds = (1 − t)

∫ t

0
sh(s) ds − t

∫ t

1
(1 − s)h(s) ds
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belongs to AC with

ϕ′(t) = −
∫ t

0
sh(s) ds −

∫ t

1
(1 − s)h(s) ds

for almost all t ∈ [0, 1]. But since the right hand side is again in AC we conclude that ϕ ∈ AC1.

Moreover,

ϕ′′(t) = −th(t)− (1 − t)h(t) = −h(t)

for almost all t ∈ [0, 1]. In addition, by the definition (2.4) of A the function Ax is affine and

hence of class C2 with (Ax)′′ = 0. From (2.3) it follows that

x(t) = Ax(t) + λϕ(t) (0 ≤ t ≤ 1);

in particular, this shows that (2.1) holds indeed almost everywhere in [0, 1]. Moreover, since

ϕ(0) = ϕ(1) = 0, Ax(0) = α[x], and Ax(1) = β[x] the first part of the proof is complete.

(b) If, in addition, g is continuous, then so must be x′′ which means that x is of class C2

and solves (BVP) everywhere on [0, 1].

(c) Putting h(t) = g(t, x(t)) as before and integrating (2.1) twice over [0, t] we obtain

x(t) = x(0) + x′(0)t − λ

∫ t

0
(t − s)h(s) ds.

Evaluating this at t = 1 yields

x′(0) = β[x]− α[x] + λ

∫ 1

0
(1 − s)h(s) ds

which gives the desired result.

Observe that the problem discussed in Proposition 2.1 is of the form (1.2) with v(t) = 1− t

and w(t) = t. The inclusions (1.4) suggest that we cannot expect the solution of (2.3) to lie in

BV2, unless the function g is continuous.

Proposition 2.1 shows that the problem of solving (BVP) may be reduced to finding solu-

tions x ∈ BV of the Hammerstein equation (2.3). Of course, the structure of (2.3) suggests to

use fixed point theorems, such as the Banach–Caccioppoli contraction mapping principle, the

Schauder fixed point principle, or the Krasnosel’skij fixed point principle which is a combi-

nation of both. To this end, we have to make sure that the two functionals α, β ∈ BV∗ behave

in such a way that the norm ‖An‖BV→BV of the iterates An of the operator (2.4) shrinks below

1 for some n ∈ N, and the integral operator in (2.3) is compact. Two conditions which fulfill

the first requirement are given in the following

Theorem 2.2. Assume that the two functionals α, β ∈ BV∗ satisfy one of the conditions

‖α‖BV∗ + ‖α − β‖BV∗ < 1 (2.5)

or

α[e0] = β[e0] = 0,
∣

∣α[e1]− β[e1]
∣

∣ < 1, (2.6)

where

ek(t) := tk (0 ≤ t ≤ 1, k = 0, 1, 2, . . . ). (2.7)

Then for each R > 0 there is some ρ > 0 such that (BVP) has, for fixed λ ∈ (−ρ, ρ), a solution

x ∈ AC1 satisfying ‖x‖BV ≤ R. If, in addition, g is continuous on [0, 1] × R, then every such

solution is of class C2.
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Proof. Define A as in Proposition 2.1, that is, Ax = α[x](e0 − e1) + β[x]e1. Since α and β are

supposed to be bounded and linear, so is A. We show for either of the two options (2.5)

and (2.6) that there is some n ∈ N such that ‖An‖BV→BV < 1. Once this is done, standard

solvability results for (2.3) give the claim. By Proposition 2.1, the solution x belongs to AC1,

has the correct boundary values according to (2.2), and satisfies (2.1) almost everywhere. If g

is continuous, it follows easily from Proposition 2.1 (b) that x is then of class C2.

So we claim that ‖An‖BV→BV < 1 for some n ∈ N provided that α and β satisfy (2.5) or

(2.6). Let us start with (2.5). For any x ∈ BV we have

‖Ax‖BV = ‖α[x]e0 + (β[x]− α[x])e1‖BV ≤ ‖e0‖BV

∣

∣α[x]
∣

∣+ ‖e1‖BV

∣

∣β[x]− α[x]
∣

∣

≤ ‖α‖BV∗‖x‖BV + ‖α − β‖BV∗‖x‖BV ,

since ‖e0‖BV = ‖e1‖BV = 1. Consequently,

‖A‖BV→BV ≤ ‖α‖BV∗ + ‖α − β‖BV∗ < 1,

by (2.5), showing that A is a contraction. In this case, we may take n = 1.

We now assume that α and β satisfy option (2.6). Note that in this case, Ae0 = 0. By

induction, we first prove that the iterates of A are given by

An+2x = (α[e1](e0 − e1) + β[e1]e1)(β[e1]− α[e1])
n(β[x]− α[x]) (2.8)

for x ∈ BV and n ∈ N0, where we set 00 := 1. First, using (2.6) we get

A(Ax) = A(α[x](e0 − e1) + β[x]e1) = α[x]A(e0 − e1) + β[x]Ae1

= α[x](α[e0](e0 − e1) + β[e0]e1) + (β[x]− α[x])(α[e1](e0 − e1) + β[e1]e1)

= (α[e1](e0 − e1) + β[e1]e1)(β[x]− α[x]),

and this is (2.8) for n = 0. Moreover,

β[Ax]− α[Ax] = (β − α)[α[x](e0 − e1) + β[x]e1]

= (β − α)[e0 − e1]α[x] + (β − α)[e1]β[x] = (β[e1]− α[e1])(β[x]− α[x]).

From this we deduce that if (2.8) has been proved for some n ∈ N0, then

An+3x = An+2(Ax) = (α[e1](e0 − e1) + β[e1]e1)(β[e1]− α[e1])
n(β[Ax]− α[Ax])

= (α[e1](e0 − e1) + β[e1]e1)(β[e1]− α[e1])
n+1(β[x]− α[x]).

By induction, (2.8) is established. As a consequence we get for n ≥ 2

‖An‖BV→BV ≤ ‖α[e1](e0 − e1) + β[e1]e1‖BV

∣

∣β[e1]− α[e1]
∣

∣

n−2
(‖α‖BV∗ + ‖β‖BV∗).

Since
∣

∣β[e1]− α[e1]
∣

∣ < 1, by (2.6), and this is the only term depending on n, we find some

n ∈ N such that ‖An‖BV→BV < 1 as claimed.

To illustrate the applicability of Theorem 2.2, we give now two examples. In the first

example condition (2.5) works, but (2.6) does not, while in the second example condition (2.6)

works, but (2.5) does not. Recall that we impose throughout the hypotheses (H1)/(H2)/(H3)

on g.
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Example 2.3. Consider the BVP















x′′(t) + λg(t, x(t)) = 0 (0 ≤ t ≤ 1),

x(0) = 1
7 x

(

1
2

)

+ 1
6 x

(

2
3

)

,

x(1) = 1
7 x

(

1
4

)

+ 1
6 x

(

4
5

)

.

(2.9)

The functionals

α[x] := 1
7 x

(

1
2

)

+ 1
6 x

(

2
3

)

, β[x] := 1
7 x

(

1
4

)

+ 1
6 x

(

4
5

)

are obviously linear and bounded on BV and satisfy

∣

∣α[x]
∣

∣ ≤ 1
7‖x‖∞ + 1

6‖x‖∞ ≤ 13
42‖x‖BV

where ‖ · ‖∞ denotes the supremum norm, and

∣

∣α[x]− β[x]
∣

∣ =
∣

∣

1
7

[

x
(

1
2

)

− x
(

1
4

)]

+ 1
6

[

x
(

2
3

)

− x
(

4
5

)]∣

∣

≤ 1
7 Var(x; [0, 1]) + 1

6 Var(x; [0, 1]) ≤ 13
42‖x‖BV .

Consequently,

‖α‖BV∗ + ‖α − β‖BV∗ ≤ 13
21 < 1,

which means that α and β satisfy option (2.5) of Theorem 2.2. We conclude that (2.9) has

for small
∣

∣λ
∣

∣ an AC1-solution. On the other hand, α and β do not satisfy option (2.6), as

α[e0] = β[e0] = 13/42 6= 0.

Example 2.4. Consider the BVP















x′′(t) + λg(t, x(t)) = 0 (0 ≤ t ≤ 1),

x(0) = 3x
(

1
2

)

− 3x
(

2
3

)

,

x(1) = 2x
(

1
4

)

− 2x
(

4
5

)

.

(2.10)

The functionals

α[x] := 3x
(

1
2

)

− 3x
(

2
3

)

, β[x] := 2x
(

1
4

)

− 2x
(

4
5

)

are obviously linear and bounded on BV and satisfy

α[e0] = β[e0] = 0,
∣

∣α[e1]− β[e1]
∣

∣ =
∣

∣

3
2 − 2 − 1

2 +
8
5

∣

∣ = 3
5 < 1,

which means that α and β satisfy option (2.6) of Theorem 2.2. We conclude that (2.10) has for

small
∣

∣λ
∣

∣ an AC1-solution. On the other hand, α and β do not satisfy option (2.5), because

‖χ[0,1/2]‖BV = 1 + 1 = 2, α[χ[0,1/2]] = 3,

and so ‖α‖BV∗ ≥ 3/2 > 1.
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3 A refinement of Theorem 2.2

The preceding two examples show that the crucial conditions (2.5) and (2.6) in Theorem 2.2

are independent. As one could expect, there exist BVPs where neither (2.5) nor (2.6) can be

used. Here is a simple example.

Example 3.1. Consider the BVP















x′′(t) + λg(t, x(t)) = 0 (0 ≤ t ≤ 1),

x(0) = x
(

1
3

)

+ x
(

2
3

)

,

x(1) = − 1
2 x

(

1
3

)

− 1
2 x

(

2
3

)

.

(3.1)

The functionals

α[x] := x
(

1
3

)

+ x
(

2
3

)

, β[x] := − 1
2 x

(

1
3

)

− 1
2 x

(

2
3

)

are obviously linear and bounded on BV. However, α[e0] = 2 6= 0, so option (2.6) cannot be

used. The same relation shows that ‖α‖BV∗ ≥ 2, and so option (2.5) cannot be used either.

In view of Example 3.1 the question arises how to generalize the ideas of Theorem 2.2

in order to cover a larger range of applications. Due to the special structure of the linear

operator (2.4) it is possible to give an exact formula for its spectral radius. For this purpose

we prove now an abstract result about the spectral radius of an even slightly more general

class of operators which might be of interest on its own.

Proposition 3.2. Let (X, ‖ · ‖) be a Banach space, v, w ∈ X fixed, and α, β ∈ X∗. Define A : X → X

by

Ax := α[x]v + β[x]w (x ∈ X). (3.2)

Then the matrix

A :=

(

α[v] β[v]

α[w] β[w]

)

∈ R
2×2 (3.3)

and the operator A have the same spectral radius.

Proof. We first show that R(A) ≤ R(A), where R denotes the spectral radius, by means of

the classical Gel’fand formula. The iterates of A can be written in the form

Anx = αn[x]v + βn[x]w (x ∈ X),

where αn, βn ∈ X∗ satisfy for all x ∈ X the linear recursions

α1[x] := α[x], αn+1[x] = αn[v]α[x] + αn[w]β[x] (3.4)

and

β1[x] := β[x], βn+1[x] = βn[v]α[x] + βn[w]β[x]. (3.5)

Indeed, once the formula for An has been established, we get

An+1x = An(Ax) = αn[Ax]v + βn[Ax]w

= (αn[v]α[x] + αn[w]β[x])v + (βn[v]α[x] + βn[w]β[x])w

= αn+1[x]v + βn+1[x]w.
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Plugging v and w for x into the recursion formulas (3.4) and (3.5) we see that the four

numbers αn[v], αn[w], βn[v] and βn[w] in turn satisfy the matrix recursions Bn+1 = ABn,

where

Bk :=

(

αk[v] βk[v]

αk[w] βk[w]

)

.

Thus, B1 = A and, more generally, Bk = Ak. Setting

M := max {‖v‖ ‖α‖X∗ , ‖v‖ ‖β‖X∗ , ‖w‖ ‖α‖X∗ , ‖w‖ ‖β‖X∗} ,

our recursion for An+1 implies

‖An+1‖X→X ≤ ‖v‖
(∣

∣αn[v]
∣

∣ ‖α‖X∗ +
∣

∣αn[w]
∣

∣ ‖β‖X∗
)

+ ‖w‖
(∣

∣βn[v]
∣

∣ ‖α‖X∗ +
∣

∣βn[w]
∣

∣ ‖β‖X∗
)

≤ M
(∣

∣αn[v]
∣

∣+
∣

∣αn[w]
∣

∣+
∣

∣βn[v]
∣

∣+
∣

∣βn[w]
∣

∣

)

≤ 2M‖Bn‖∞ = 2M‖An‖∞,

where ‖ · ‖∞ denotes the row sum norm of a matrix. Taking the n-th root in this estimate,

Gel’fand’s formula yields

R(A) = lim
n→∞

‖An+1‖1/n
X→X ≤ lim

n→∞
(2M‖An‖∞)

1/n = R(A).

We now prove the reverse estimate and distinguish the two cases when the set {v, w} is

linearly dependent or linearly independent in X.

1st case: Assume w = λv for some λ ∈ R. In this case the matrix (3.3) reads

A =

(

α[v] β[v]

λα[v] λβ[v]

)

,

so R(A) =
∣

∣α[v] + λβ[v]
∣

∣. Moreover, the functional γ := α + λβ ∈ X∗ satisfies

Ax = γ[x]v, A2x = γ[v]γ[x]v,

A3x = γ[v]2γ[x]v, . . . , Anx = γ[v]n−1γ[x]v

for all n ∈ N and x ∈ X. In case v = o we also have w = o, hence R(A) = R(A) = 0. We

therefore assume v 6= o. If γ[x] = 0 for all x ∈ X we have α = −λβ which implies, on the one

hand, Ax = 0, hence R(A) = 0, and

A =

( −λβ[v] β[v]

−λ2β[v] λβ[v]

)

= β[v]

( −λ 1

−λ2 λ

)

hence R(A) = 0, on the other. So suppose that there is some y ∈ X with ‖y‖ = 1 and γ[y] 6= 0.

Then from our recursion formula for the iterates of A we conclude that

‖An‖X→X ≥ ‖Any‖ =
∣

∣γ[v]
∣

∣

n−1∣
∣γ[y]

∣

∣‖v‖.

Consequently,

R(A) = lim
n→∞

‖An‖1/n
X→X ≥

∣

∣γ[v]
∣

∣ =
∣

∣α[v] + λβ[v]
∣

∣ = R(A)

as claimed.
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2nd case: Assume w 6= µv for all µ ∈ R. We use the fact that the spectral radius of an

operator A : X → X on a real space X coincides with the spectral radius of its complexification

AC : XC → XC. Recall that XC := {x + iy : x, y ∈ X} is equipped with the norm

‖x + iy‖XC
:= max

0≤t≤2π
‖(cos t)x + (sin t)y‖,

and AC is defined by AC(x + iy) := Ax + iAy. Similarly, the functionals α and β are complexi-

fied by putting

αC[x + iy] := α[x] + iα[y], βC[x + iy] := β[x] + iβ[y].

Note that ‖AC‖XC→XC
= ‖A‖X→X, ‖αC‖X∗

C
= ‖α‖X∗ , and ‖βC‖X∗

C
= ‖β‖X∗ . The relation

(3.2) translates then into complexifications in the form

ACz = αC[z]v + βC[z]w (z ∈ XC).

Let now λ ∈ C be an eigenvalue of AT with eigenvector u = (u1, u2) ∈ C2. This means

that uTA = λuT, i.e. in components,

α[v]u1 + α[w]u2 = λu1, β[v]u1 + β[w]u2 = λu2.

Since {v, w} is linearly independent in X, by hypothesis, we find x, y ∈ X such that

Ax = Re(u1)v + Re(u2)w, Ay = Im(u1)v + Im(u2)w.

The element z := x + iy ∈ XC satisfies then

ACz = AC(x + iy) = Ax + iAy = vu1 + wu2.

But from u = (u1, u2) 6= (0, 0) we conclude that ACz 6= o, hence

AC(ACz) = αC[ACz]v + βC[ACz]w = (u1α[v] + u2α[w])v + (u1β[v] + u2β[w])w

= λ(u1v + u2w) = λACz.

Since AzC 6= o, we conclude that ACz ∈ XC is an eigenvector of AC corresponding to the

eigenvalue λ. This implies that R(A) ≥ R(AT) = R(A) which completes the proof.

Let us illustrate Proposition 3.2 by two simple examples, the first being one-dimensional,

the second infinite dimensional, which we collect in the following

Example 3.3. The simplest case is of course X = R. Then we have Ax = (vα + wβ)x, where x,

v, w, α, and β are all real numbers, and A represents a straight line with slope vα + wβ. Since

Anx = (vα + wβ)nx, the linear map A has the spectral radius
∣

∣vα + wβ
∣

∣. On the other hand,

the matrix (3.3) is here

A =

(

α[v] β[v]

α[w] β[w]

)

=

(

vα vβ

wα wβ

)

which has the two eigenvalues 0 and vα + wβ, and therefore the same spectral radius as A.

A slightly less trivial example reads as follows. In the space X = C[0, 1], let A be given by

(3.2), where v(t) ≡ 1, α[x] := x(0), w(t) := t, and β[x] := x(1). A trivial calculation shows

then that

Anx(t) = x(0) + ((n − 1)x(0) + x(1))t, ‖An‖X→X = n + 1.
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Consequently, the linear operator A has spectral radius 1. On the other hand, the matrix

(3.3) is here

A =

(

α[v] β[v]

α[w] β[w]

)

=

(

1 1

0 1

)

which has the double eigenvalue 1, and therefore the same spectral radius as A.

The following refinement of Theorem 2.2 is now an immediate consequence of Proposition

3.2.

Theorem 3.4. Let α, β ∈ BV∗ be bounded linear functionals satisfying

R(A) < 1, (3.6)

where A denotes the matrix (3.3), R(A) its spectral radius, and

v(t) := e1(1 − t) = 1 − t, w(t) := e1(t) = t.

Then for each R > 0 there is some ρ > 0 such that (BVP) has, for fixed λ ∈ (−ρ, ρ), a solution

x ∈ AC1 satisfying ‖x‖BV ≤ R. If, in addition, g is continuous on [0, 1]×R, then every such solution

is of class C2.

Proof. The argument is similar as in the proof of Theorem 2.2. Accordingly, we only have to

show that the operator A in (3.2) satisfies ‖An‖BV→BV < 1 for some n ∈ N. But this is clear,

since (3.6) in combination with Proposition 3.2 yields R(A) < 1.

We point out that Theorem 2.2 is completely covered by Theorem 3.4. Indeed, in the proof

of Theorem 2.2 we have shown that each of the hypotheses (2.5) or (2.6) implies that R(A) < 1,

and so also R(A) < 1, by Proposition 3.2, with A given by (3.3). Moreover, Theorem 3.4 has

several advantages. First, it does not use the operator norm ‖ · ‖BV→BV , but the spectral radius,

which is invariant when passing to an equivalent norm. For example, if we replace the norm

(1.3) by the (larger, but equivalent) norm

|||x|||BV = ‖x‖∞ + Var(x; [0, 1]) = sup
0≤t≤1

∣

∣x(t)
∣

∣+ Var(x; [0, 1]),

we must impose in Theorem 2.2, instead of (2.5), the stronger condition

|||α|||BV∗ + 2|||α − β|||BV∗ < 1,

because in this norm we have |||ek|||BV = 2. Second, condition (3.6) is easier to verify than the

conditions imposed in Theorem 2.2. Third, Theorem 3.4 covers more cases than Theorem 2.2,

as we show now by means of an example.

Example 3.5. Consider again the BVP (3.1) from Example 3.1. As we have seen there, neither

(2.5) nor (2.6) applies to this BVP. On the other hand, taking into account the form of the

functionals α and β and the definition of v and w used in Theorem 3.4 we get here






















α[v] = v
(

1
3

)

+ v
(

2
3

)

= 1,

β[v] = − 1
2 v

(

1
3

)

− 1
2 v

(

2
3

)

= − 1
2

α[w] = w
(

1
3

)

+ w
(

2
3

)

= 1,

β[w] = − 1
2 w

(

1
3

)

− 1
2 w

(

2
3

)

= − 1
2 .

So in this case the matrix A has the eigenvalues 0 and 1/2, which shows that Theorem 3.4

applies, while Theorem 2.2 does not.
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We may summarize our discussion as follows. In all examples discussed so far we im-

posed, similarly as in (1.1), boundary conditions of the form

x(0) = ax(σ1)− bx(σ2), x(1) = cx(τ1) + dx(τ2), (3.7)

where σ1, σ2, τ1, τ2 ∈ (0, 1) are fixed. Theorem 3.4 applies to equation (2.1) with these boundary

conditions if and only if

R(M) < 1, (3.8)

where M = M(a, b, c, d, σ1, σ2, τ1, τ2) is the matrix

M =

(

a(1 − σ1)− b(1 − σ2) c(1 − τ1) + d(1 − τ2)

aσ1 − bσ2 cτ1 + dτ2

)

. (3.9)

For instance, in Example 3.1 we have a = 1, b = −1, c = d = −1/2, σ1 = τ1 = 1/3, and

σ2 = τ2 = 2/3, which gives

M =

(

1 −1/2

1 −1/2

)

and implies the solvability of (3.1), as we have seen in Example 3.5. On the other hand, since

condition R(M) < 1 is both necessary and sufficient, we may easily construct a BVP which

is not covered even by Theorem 3.4.

Example 3.6. Consider the BVP
{

x′′(t) + λg(t, x(t)) = 0 (0 ≤ t ≤ 1),

x(0) = ax
(

1
2

)

, x(1) = cx
(

1
2

)

.
(3.10)

The functionals

α[x] := ax
(

1
2

)

, β[x] := cx
(

1
2

)

are obviously linear and bounded on BV. Since b = d = 0, σ1 = τ1 = 1/2, the matrix (3.9) is

here

M =
1

2

(

a c

a c

)

.

Since this matrix has spectral radius
∣

∣a+ c
∣

∣/2, Theorem 3.4 applies to the BVP (3.10) if and

only if −2 < a + c < 2.

We point out that condition (3.8) is necessary for the applicability of Theorem 3.4, but not

for the existence of a solution x ∈ AC1 of (BVP). This is illustrated by the following

Example 3.7. Consider the BVP
{

x′′(t)− 2(1 + 2t2)x(t) = 0 (0 ≤ t ≤ 1),

x(0) = e−1/4x
(

1
2

)

, x(1) = e3/4x
(

1
2

)

.
(3.11)

Obviously, the nonlinearity g(t, u) = (2 + 4t2)u satisfies (H1)/(H2)/(H3). In the notation

of (3.7) we have here a = e−1/4, c = e3/4, b = d = 0, and σ1 = τ1 = 1/2. Consequently, the

matrix (3.9) reads

M =
1

2

(

e−1/4 e3/4

e−1/4 e3/4

)

which has spectral radius

R(M) =
1 + e

2e1/4
> 1.

So Theorem 3.4, let alone Theorem 2.2, does not apply. Nevertheless, it is easy to check that

x(t) := et2
is an (even analytic) solution of the boundary value problem (3.11).
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4 Integral type boundary conditions

Theorem 3.4 applies not only to “pointwise” boundary conditions like (3.7), but also to

“global” boundary conditions of the form

x(0) =
∫ 1

0
k0(s)x(s) ds, x(1) =

∫ 1

0
k1(s)x(s) ds, (4.1)

where k0, k1 ∈ L1 are given. The functionals α and β are defined here by the integrals in (4.1),

and so Theorem 3.4 applies if and only if R(M) < 1, where M = M(k0, k1) is the matrix

M =









∫ 1

0
k0(s)(1 − s) ds

∫ 1

0
k1(s)(1 − s) ds

∫ 1

0
k0(s)s ds

∫ 1

0
k1(s)s ds









. (4.2)

We illustrate this by another simple example which contains a free parameter c ∈ R.

Example 4.1. Consider the BVP







x′′(t) + λg(t, x(t)) = 0 (0 ≤ t ≤ 1),

x(0) =
∫ 1

0
x(s) ds, x(1) = c

∫ 1

0
x(s) ds,

(4.3)

where g satisfies (H1)/(H2)/(H3). Here we have k0(s) ≡ 1 and k1(s) ≡ c, so the matrix

M = M(1, c) becomes

M =









∫ 1

0
k0(s)(1 − s) ds

∫ 1

0
k1(s)(1 − s) ds

∫ 1

0
k0(s)s ds

∫ 1

0
k1(s)s ds









=
1

2

(

1 c

1 c

)

.

Since this matrix has spectral radius (c + 1)/2, we may guarantee the solvability of problem

(4.3) for small
∣

∣λ
∣

∣ if −3 < c < 1.

5 A higher order problem

The theory developed in the preceding sections may be applied to other similar boundary

value problems than those we have considered in the examples so far. For instance, we can

modify our constructions to cover a third order problem like

{

x′′′(t) + λg(t, x(t)) = 0 (0 ≤ t ≤ 1),

x′(0) = α[x], x′(1) = β[x]
(5.1)

with α, β ∈ BV∗ as before. We do not state a formal theorem, since we do not want the reader

to get drowned in too many technicalities, but just sketch an outline of the idea, because the

arguments are similar as those used before.

We are looking for solutions x ∈ AC2 that satisfy the differential equation in (5.1) almost

everywhere in [0, 1] and have the correct boundary values x′(0) = α[x] and x′(1) = β[x]. In

order to find such a solution we solve the integral equation

x(t) = Ax(t) + λ

∫ t

0

∫ 1

0
κ(τ, s)g(s, x(s)) ds dτ (0 ≤ t ≤ 1) (5.2)
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in the space BV, where κ is the same Green’s function as before, and the linear operator

A : BV → BV is again given by (3.2), where now

v(t) := −1

2
e2(1 − t) = −1

2
(1 − t)2, w(t) :=

1

2
e2(t) =

1

2
t2.

For x ∈ AC2 the outer integral in (5.2) defines a differentiable function. Similarly as in

Proposition 2.1 one may show that any function x ∈ BV satisfying (5.2) is a solution in AC2

to the boundary value problem (5.1), and vice versa. Note that for the first derivative of a

solution x of (5.2) we have

x′(t) = (1 − t)α[x] + tβ[x] + λ

∫ 1

0
κ(t, s)g(s, x(s)) ds (0 ≤ t ≤ 1), (5.3)

and so indeed x′(0) = α[x] and x′(1) = β[x].

Now, in order to solve (5.2) we can use Fubini’s Theorem to reduce the double integral to

a single one and transform the integral equation into

x(t) = Ax(t) + λ

∫ 1

0
κ̂(t, s)g(s, x(s)) ds (0 ≤ t ≤ 1), (5.4)

where

κ̂(t, s) :=
∫ t

0
κ(τ, s) dτ =

{

1
2 s(2t − t2 − s) for 0 ≤ s ≤ t ≤ 1,
1
2 t2(1 − s) for 0 ≤ t ≤ s ≤ 1.

Consequently, under the hypotheses of Theorem 3.4 (with v and w as above), we may solve

(5.2) and therefore also (5.1) exactly as we solved (BVP). Instead of going into details, let us

close this section with an example.

Example 5.1. Consider the third order BVP

{

x′′′(t)− 4t(2t2 + 3)x(t) = 0 (0 ≤ t ≤ 1),

x′(0) = 0, x′(1) = 2e3/4x
(

1
2

)

.
(5.5)

Here the integral equation (5.4) is

x(t) = e3/4x
(

1
2

)

t2 + 2
∫ t

0
s2(2t − t2 − s)(2s2 + 3)x(s) ds + 2t2

∫ 1

t
(1 − s)s(2s2 + 3)x(s) ds.

A somewhat cumbersome, but straightforward calculation shows that x(t) = et2
is a solu-

tion. However, if we are only interested in the existence of a solution without constructing it

explicitly, we may use Proposition 2.1 and calculate the spectral radius of the matrix

A =

(

α[v] β[v]

α[w] β[w]

)

=
e3/4

4

(

0 −1

0 1

)

,

which turns out to be e3/4/4 < 1. So in contrast to Example 3.7 we may now apply Theo-

rem 3.4.
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6 Initial value problems with BV data

To conclude, let us briefly discuss the second order equation (2.1), but now subject to the

uncoupled initial conditions

x(0) = α[x], x′(0) = β[x], (6.1)

where α, β : BV → R are given linear functionals. Here we do not repeat all the results which

are parallel to those for boundary value problems, but rather point out the differences. In the

sequel we refer to the problem (2.1)/(6.1) by the symbol (IVP).

In order to solve this problem, we consider along with (IVP) the Hammerstein–Volterra

integral equation

x(t) = Ax(t) + λ

∫ t

0
ν(t, s)g(s, x(s)) ds (0 ≤ t ≤ 1), (6.2)

where the Volterra kernel is given by

ν(t, s) =

{

s − t for 0 ≤ s ≤ t ≤ 1,

0 for 0 ≤ t < s ≤ 1,

and A : BV → BV is a linear operator. The following is then a perfect analogue to Proposi-

tion 2.1.

Proposition 6.1. Let A : BV → BV be defined by

Ax(t) := α[x] + tβ[x] (0 ≤ t ≤ 1). (6.3)

Then the following holds:

(a) Every function x ∈ BV solving (6.2) belongs to AC1 and solves (IVP) almost everywhere on [0, 1].

(b) If, in addition, g is continuous on [0, 1]×R, then every solution x of (6.2) is of class C2 and solves

(IVP) everywhere on [0, 1].

(c) Conversely, if x ∈ AC1 solves (IVP) almost everywhere on [0, 1], then x is a solution of the integral

equation (6.2).

The proof is very similar to that of Proposition 2.1, with the difference that we now define

the function ϕ : [0, 1] → R by

ϕ(t) :=
∫ 1

0
ν(t, s)g(s, x(s)) ds =

∫ t

0
(s − t)h(s) ds

and use the fact that ϕ ∈ AC1 with ϕ(0) = ϕ′(0) = 0.

The sufficient condition (2.5) imposed in Theorem 2.2 becomes now even easier: since Ax

is, for fixed x ∈ BV, a straight line joining the points (0, α[x]) and (1, α[x] + β[x]), we can

calculate its BV norm explicitly and obtain

‖Ax‖BV =
∣

∣Ax(0)
∣

∣+ Var(Ax; [0, 1]) =
∣

∣α[x]
∣

∣+
∣

∣β[x]
∣

∣ ≤ (‖α‖BV∗ + ‖β‖BV∗)‖x‖BV .

Thus, the estimate

‖α‖BV∗ + ‖β‖BV∗ < 1 (6.4)
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which is parallel to (2.5) now guarantees that ‖A‖BV→BV < 1 and makes it possible to apply

Krasnosl’skij’s fixed point principle to (6.2) for sufficiently small
∣

∣λ
∣

∣.

Of course, as in Section 2 we could easily find specific IVPs to illustrate the applicability of

(6.4). Instead, it is more interesting to compare (2.5) and (6.4). It is tempting to think that (2.5)

implies (6.4), or vice versa. But no such implication is true, as the following two examples

show.

Example 6.2. Define two functionals α, β ∈ BV∗ by

α[x] := β[x] := 1
2 x

(

1
2

)

.

Then ‖α‖BV∗ = ‖β‖BV∗ = 1/2 and ‖α − β‖BV∗ = 0. Thus, condition (2.5) is fulfilled, while

condition (6.4) is violated.

Example 6.3. On the other hand, if we define α, β ∈ BV∗ by

α[x] := 1
3 x

(

1
2

)

, β[x] := − 1
3 x

(

1
2

)

,

it is easy to see that condition (2.5) is violated, while condition (6.4) is fulfilled.

We now jump to Theorem 3.4 and see how it looks like in the setting of (IVP). Since the

structure of the linear operator A in (6.3) is covered by Proposition 3.2, we have a general

method to calculate the spectral radius of A. Accordingly, the following analogue to Theorem

3.4 holds true.

Theorem 6.4. Let α, β ∈ BV∗ be bounded linear functionals satisfying (3.6), where A denotes the

matrix (3.3) for v := e0 and w := e1. Then for each R > 0 there is some ρ > 0 such that (IVP) has,

for fixed λ ∈ (−ρ, ρ), a solution x ∈ AC1 satisfying ‖x‖BV ≤ R. If, in addition, g is continuous on

[0, 1]× R, then every such solution is of class C2.

Since the argument is similar, we skip the proof of Theorem 6.4. Instead, let us go back to

Example 6.2, where condition (6.4) fails. Even worse, it is clear that Ax = α[x]e0 + β[x]e1 =

α[x](e0 + e1) cannot be a contraction in BV, because ‖Ae0‖BV = 1. However, we have

R

(

α[e0] β[e0]

α[e1] β[e1]

)

= R

(

1/2 1/2

1/4 1/4

)

=
3

4
< 1,

and so Theorem 6.4 tells us that the IVP in Example 6.2 has as a solution x ∈ AC1 for small
∣

∣λ
∣

∣.

Finally, let us look at an initial value condition which corresponds to the very general

boundary condition (3.7). Its analogue has the form

x(0) = ax(σ1)− bx(σ2), x′(0) = cx(τ1) + dx(τ2), (6.5)

where σ1, σ2, τ1, τ2 ∈ (0, 1) are fixed. Theorem 6.4 applies to equation (2.1) with these initial

conditions if and only if

R(N ) < 1, (6.6)

where N = N (a, b, c, d, σ1, σ2, τ1, τ2) is the matrix

N =

(

a − b c + d

aσ1 − bσ2 cτ1 + dτ2

)

. (6.7)

In the next example we show that neither of the conditions R(M) < 1 or R(N ) < 1

implies the other, where M is given by (3.9).
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Example 6.5. Let σ1 := 1/3, σ2 := 2/3, and c = d := 0 which means that we consider both the

BVP
{

x′′(t) + λg(t, x(t)) = 0 (0 ≤ t ≤ 1),

x(0) = ax
(

1
3

)

− bx
(

2
3

)

, x(1) = 0,
(6.8)

and simultaneously the IVP

{

x′′(t) + λg(t, x(t)) = 0 (0 ≤ t ≤ 1),

x(0) = ax
(

1
3

)

− bx
(

2
3

)

, x′(0) = 0.
(6.9)

Then

M =
1

3

(

2a − b 0

a − 2b 0

)

, N =
1

3

(

3a − 3b 0

a − 2b 0

)

.

The matrix M has spectral radius
∣

∣2a − b
∣

∣/3, the matrix N has spectral radius
∣

∣a − b
∣

∣.

Consequently, for a := −1/2 and b := −5/2 we have R(M) = 1/2, but R(N ) = 2 (which

ensures the solvability of (6.8), but not of (6.9)). For a := 11/2 and b := 5, however, it is exactly

the other way round.

At this point the same warning as in Section 3 is in order. Condition (6.6) is necessary and

sufficient for the applicability of Theorem 6.4, but only sufficient for the solvability of (IVP).

This is illustrated by our final

Example 6.6. Consider the IVP







x′′(t) + 4
(

4t2x(t) +
√

1 − x(t)2
)

(0 ≤ t ≤ 1),

x(0) =
√

2x
(√

π/8
)

, x′(0) = 0.
(6.10)

Clearly, the nonlinearity g(t, u) = 4(4t2u +
√

1 − u2) satisfies (H1)/(H2)/(H3). In the no-

tation of (6.5) we have here a =
√

2, b = c = d = 0, and σ1 =
√

π/8. Consequently, the matrix

(6.7) reads

N =

(
√

2 0√
π/2 0

)

(6.11)

which has spectral radius

R(N ) =
√

2 > 1,

so Theorem 6.4 does not apply. Nevertheless, it is easy to check that x(t) := cos(2t2) is an

(even analytic) solution of the initial value problem (6.10).
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1 Introduction

Fourth-order boundary value problems with integral boundary conditions arises in the math-

ematical modeling of viscoelastic and inelastic flows, thermos-elasticity, deformation of beams

and plate deflection theory [12, 14, 22].

In [2], Cabada and Enguiça characterized the inverse positive character of operator u(4) +

M u coupled with the, so called, clamped beam boundary conditions

u(4)(t) + Mu(t) = σ(t), t ∈ I := [0, 1] (1.1)

u(0) = u(1) = u′(0) = u′(1) = 0. (1.2)

BCorresponding author. Email: alberto.cabada@usc.gal
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Using oscillation theory [23], on [2] are obtained the exact values on the real parameter

M ∈ (−m4
1, m4

0), for which the related Green’s function gM is strictly positive in (0, 1)× (0, 1).

To be concise, m1
∼= 4.73004 is the first positive root of equation

cos m cosh m = 1,

and −m4
1 coincides with the first negative eigenvalue of operator u(4) coupled to boundary

conditions (1.2).

Moreover, m0 ≈ 5.553 is the smaller positive solution of equation

tanh
m√

2
= tan

m√
2

, (1.3)

and, as it is showed at [4], m4
0 is the first positive eigenvalue of operator u(4) coupled to

boundary conditions u(0) = u′(0) = u′′(0) = u(1) = 0.

These results have been extended in [7] (and further in [8]) for any n-th order linear differ-

ential operator.

The existence of positive solutions for nonlinear problems are deduced by using the upper

and lower solutions method and fixed point theorems in cones. In those cases, the nonlinearity

depends only on the function u. For these problems the dependence on the second derivative

of their nonlinearity has taken less attention.

In this work we will study the existence of positive solution of a more general fourth order

problem related to clamped beam:

u(4)(t) + Mu(t) = f (t, u(t), u′′(t)), t ∈ I, (1.4)

subject to the perturbed functional boundary conditions:

u(1) = u′(0) = u′(1) = 0, u(0) = λ
∫ 1

0
u(s)ν(s) ds. (1.5)

Where M ∈ (−m4
1, 4π4), ν ∈ L1(I) is a positive weight function a.e. on (0, 1) and λ is

a positive parameter bounded from above by a constant that will be introduced later. We

suppose that the function f satisfy the following regularity assumption

(H0) f : I × [0, ∞)× R → [0, ∞) is a continuous function.

Equation (1.4) models the stationary states of the deflection of an elastic beam. The bound-

ary conditions (1.5) can be thought of as having the end at 1 clamped, and having some mech-

anism at end 0 that controls the displacement according to feedback from devices measuring

the displacements along parts of the beam.

This paper is a continuation of the work done in [5] for problem

u(4)(t) + Mu(t) + f (t, u(t)) = 0, t ∈ I,

subject to the perturbed functional boundary conditions:

u(0) = u′(0) = u′′(0) = 0, u(1) = λ
∫ 1

0
u(s) ds.

A standard approach to study positive solutions of a boundary value problem such as

(1.4)–(1.5) consists of finding the corresponding Green’s function GM and seek solutions as
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fixed points of the Hammerstein integral equations with kernel GM. The majority of methods

are based on classical fixed point index theory and Krasnoselskii’s fixed point theorem in a

cone. The majority of authors work in a suitable cone K in a Banach space which is made using

the property of Green’s function. Sometimes the Green’s function associated to this integral

equation can change its sign. In theses cases, the authors should work in a cone smaller than

K (see [17–19, 21]). The construction of a such cone requires more concise properties of the

Green’s function (see [3, 6, 13]).

We note that in our problem, the nonlinearity f depends on the second order derivatives.

Using the classical Krasnoselskii’s expansion/contraction theorem, we need to study the sign

of the second order derivative of the Green’s function and look for a nonnegative function φ

such that

(C1)
∣∣ ∂2GM

∂t2 (t, s)
∣∣ ≤ φ(s), (t, s) ∈ I × I,

and

(C2)
∂2GM

∂t2 (t, s) ≥ c φ(s), (t, s) ∈ [a, b]× I,

for some [a, b] ⊂ I and c ∈ (0, 1).

In our case, the explicit form of second derivative of Green’s function ∂2GM

∂t2 is very com-

plicated and the previous inequalities ((C1) and (C2)) become hard to be checked. So, we

apply an extension of Krasnoselskii’s fixed point theorem that was used in [15,16,20,24]. With

this result, we do not need to prove the inequalities (C1) and (C2). Here we need only the

conditions (C1) and (C2) for the Green’s function GM. As far as we know, Problem (1.4)–(1.5)

have not been previously studied. At the end of this paper, some examples are given to show

that the theoretical results can be computed.

This paper is organized as follows. In Section 2, we introduce some basic definitions and

lemmas to prove our main results and through this section we prove that the Green’s function

associated to (1.1), (1.5) satisfies some suitable properties. In Section 3, we show the existence

of at least one positive solution. In section 4, some examples are presented to illustrate our

main results.

2 Preliminaries and Green’s function properties

In this section we introduce some preliminary results which will be used along the paper.

First, we provide some background definitions cited from cone theory in Banach spaces. After

that, we introduce some definitions and properties of the Green’s function GM related to

problem (1.1), (1.5).

Definition 2.1. Let E be a real Banach space. A nonempty convex closed set P ⊂ E is said to

be a cone provided that

(i) αu ∈ P for all u ∈ P and all α ≥ 0;

(ii) u, −u ∈ P implies u = 0.

In the sequel, we enunciate the a fixed point theorem due to Guo and Ge [16].

Lemma 2.2 ([16, Theorem 2.1]). Let E be a Banach space and P ⊂ E a cone. Suppose α, β : E →
[0, ∞) are two continuous convex functionals satisfying

α(µu) = |µ|α(u), β(µu) = |µ|β(u), u ∈ E, µ ∈ R
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and ‖u‖ ≤ N max{α(u), β(u)}, for u ∈ E and α(u1) ≤ α(u2) for u1, u2 ∈ P, u1 ≤ u2, where N > 0

is a constant.

Let r2 > r1 > 0, L > 0 be constants and Ωi = {u ∈ E : α(u) < ri, β(u) < L}, i = 1, 2. be two

bounded open sets in E. Set Di = {u ∈ E : α(u) = ri}. Assume that T : P → P is a completely

continuous operator satisfying

(C1) α(Tu) < r1, u ∈ D1 ∩ P; α(Tu) > r2, u ∈ D2 ∩ P,

(C2) β(Tu) < L, u ∈ P,

(C3) there is a p ∈ (Ω2 ∩ P) \ {0} such that α(p) 6= 0 and α(u + µp) ≥ α(u) for all u ∈ P and

µ ≥ 0.

Then T has at least one fixed point in (Ω2 \ Ω1) ∩ P.

Moreover, we enunciate the following result concerning the expression of the Green’s

function gM, related to the linear Problem (1.1), (1.5). The proof can be found in [1, 2]. To

this end, we introduce the following condition:

M < 0 and cos
(

4
√
−M

)
cosh

(
4
√
−M

)
= 1. (2.1)

Lemma 2.3. Let σ ∈ C(I) and M ∈ R. Then problem (1.1)–(1.2) has a unique solution if and only if

(2.1) does not hold.

In such a case, it is given by the following expression:

u(t) =
∫ 1

0
gM(t, s)σ(s) ds.

Here, for M = −m4
< 0, we have

gM(t, s) =

{
g1(t, s, m) if 0 ≤ s ≤ t ≤ 1

g1(s, t, m) if 0 ≤ t ≤ s ≤ 1,

with

g1(t, s, m) =
1

8m3 ((1 + e2m) cos(m)− 2em)

×
{

e−m(4s+t)
(
−2emt cos(mt) + e2mt + 1

)((
e5ms − em(3s+2)

)
cos(m)

+ e3sm+m − e5sm+m + e4ms
(
−1 + e2m

)
cos(m − ms) + e5ms sin(m)

+ em(3s+2) sin(m)− 2e4sm+m sin(ms)− e4ms sin(m − ms)− e4sm+2m sin(m − ms)
)

− 2em(s−t) + 2em(t−s)
((

1 + e2m
)

cos(m)− 2em
)

+ e−m(4s+t)
((

e5ms + em(3s+2)
)

cos(m)− e3sm+m − e5sm+m − 2e4sm+m cos(ms)

+ e4ms cos(m − ms) + e4sm+2m cos(m − ms)− e5ms sin(m) + em(3s+2) sin(m)

+ e4ms sin(m − ms)− e4sm+2m sin(m − ms)
) (

2emt sin(mt)− e2mt + 1
)

− 4 sin(m(t − s)
((

1 + e2m
)

cos(m)− 2em
)}

.
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If M = 0, it is given by

g0(t, s) = −1

6

{
s2(t − 1)2(2ts + s − 3t) if 0 ≤ s ≤ t ≤ 1,

t2(s − 1)2(2ts + t − 3s) if 0 < t ≤ s ≤ 1.

Moreover, when M = m4
> 0 it follows the expression

gM(t, s) =

{
g2(t, s, m) if 0 ≤ s ≤ t ≤ 1

g2(s, t, m) if 0 ≤ t ≤ s ≤ 1,

g2(t, s, m) =
e
−m(−6+3s+t)√

2

2
√

2m3
(

1 + e2
√

2m + 2e
√

2m
(
−2 + cos

(√
2m

)))
{
− 2

(
−1 + e

√
2mt

)

×
((

e
√

2m(−2+s) − e2
√

2m(−1+s)
)

cos

(
m(−2 + s)√

2

)
+
(
−e

√
2m(−2+s) + e2

√
2m(−1+s)

)

× cos

(
ms√

2

)
+

(
e
√

2m(−2+s) − e
√

2m(−1+s) + e2
√

2m(−1+s) − e
√

2m(−3+2s)
)

× sin

(
ms√

2

))
sin

(
mt√

2

)
+

((
e
√

2m(−2+s) + e2
√

2m(−1+s)
)

cos

(
m(−2 + s)√

2

)

+
(
−2e

√
2m(−2+s) + e

√
2m(−1+s) − 2e2

√
2m(−1+s) + e

√
2m(−3+2s)

)
cos

(
ms√

2

)

+
(
−e

√
2m(−2+s) + e2

√
2m(−1+s)

)
sin

(
m(−2 + s)√

2

)
+

(
e
√

2m(−1+s) − e
√

2m(−3+2s)
)

× sin

(
ms√

2

))((
−1 + e

√
2mt

)
cos

(
mt√

2

)
−

(
1 + e

√
2mt

)
sin

(
mt√

2

))}
.

Using the expressions given in Lemma 2.3, coupled to the definition of a Green’s function

[8] and, as a particular case of [8, Theorem 2.14 and Theorem 5.1], we deduce the following

properties for function gM:

Corollary 2.4. Assuming that condition (2.1) does not hold. Then, function gM, defined in Lemma 2.3,

satisfies the following properties:

1. gM is symmetric, that is gM(t, s) = gM(s, t), for all t, s ∈ I.

2. gM(0, s) = ∂gM

∂t (0, s) = gM(1, s) = ∂gM

∂t (1, s) = 0, for all s ∈ I.

3. gM(t, 1) = ∂gM

∂s (t, 1) = gM(t, 0) = ∂gM

∂s (t, 0) = 0, for all t ∈ I.

Moreover, if M ∈ (−m4
1, m4

0) the following inequalities are fulfilled:

4. gM(t, s) > 0 for all t, s ∈ (0, 1).

5.
∂2gM

∂t2 (0, s) > 0 and
∂2gM

∂t2 (1, s) > 0, for all s ∈ (0, 1).

6.
∂2gM

∂s2 (t, 1) > 0 and
∂2gM

∂s2 (t, 0) > 0, for all t ∈ (0, 1).

To obtain the expression of the solution of Problem (1.1),(1.5), we must study the solution

of a suitable non-homogeneous boundary value problem as follows
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Lemma 2.5 ([2, Theorem 3.12]). The following problem:




u(4)(t) + Mu(t) = 0, t ∈ I,

u(1) = u′(0) = u′(1) = 0,

u(0) = 1,

(2.2)

has no solution if and only (2.1) holds.

In any other case, it has a unique solution, denoted by wM, which is given by the following expres-

sion:

wM(t) =





cos
(

mt√
2

)
cosh

(
m(t−2)√

2

)
− sin

(
mt√

2

)
sinh

(
m(t−2)√

2

)

cos
(√

2m
)
+ cosh

(√
2m

)
− 2

+

(
cos(m(t−2)√

2
)− 2 cos( mt√

2
)
)

cosh
(

mt√
2

)

cos
(√

2m
)
+ cosh

(√
2m

)
− 2

+
sin

(
m(t−2)√

2

)
sinh

(
mt√

2

)

cos
(√

2m
)
+ cosh

(√
2m

)
− 2

if m > 0 and M = m4,

(t − 1)2(1 + 2t) if M = 0,

− cos(m − mt) + cosh(m)(cos(mt)− cosh(mt))

2 cos(m) cosh(m)− 2

+
cos(m) cosh(mt)− sin(mt) sinh(m)

2 cos(m) cosh(m)− 2

+
(sin(m) + sinh(m)) sinh(mt))

2 cos(m) cosh(m)− 2
if m > 0 and M = −m4.

(2.3)

In [2, Theorem 3.12] it is proved that if M > 0, then wM(t) > 0 for all t ∈ [0, 1) if and only

M ∈ (0, 4π4]. It is obvious that w0(t) > 0 for all t ∈ [0, 1).

To study the sign in the negative case, M = −m4, we must introduce the concept of

disconjugate equation given in [10].

Definition 2.6. Let ak ∈ Cn−k(I) for k = 1, . . . , n. The general n-th order linear differential

equation u(n)(t) + a1(t) u(n−1)(t) + · · ·+ an−1(t) u′(t) + an(t) u(t) = 0 defined on any arbitrary

interval [a, b] is said to be disconjugate on an interval J ⊂ [a, b] if every non trivial solution

has, at most, n − 1 zeros on J, multiple zeros being counted according to their multiplicity.

Moreover, we use the characterization for an equation to be disconjugate given in [9, The-

orem 2.1] for a general nth order linear equation. Next, we enunciate the particular case for

operator u(4) + M u.

Lemma 2.7. The linear equation u(4)(t) + M u(t) = 0 is disconjugate on the interval I if and only if

M ∈ (−m4
1, m4

0).

As a consequence, due to the continuity of the expression of wM with respect to M, since

w′′
0 (1) = 6, we have that if there is some M̄ ∈ (−m4

1, 0) for which wM̄ takes some negative

values on (0, 1), then it must exists M∗ ∈ (M̄, 0) such that one of the two following situations

holds:
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There is t0 ∈ (0, 1) such that wM∗(t0) = w′
M∗(t0) = wM∗(1) = w′

M∗(1) = 0,

which contradicts Lemma 2.7, or

wM∗(1) = w′
M∗(1) = w′′

M∗(1) = 0.

But, in this last case, we have that

w′′
−m4(1) =

m2(cos(m)− cosh(m))

cos(m) cosh(m)− 1
,

which never takes the value zero for m > 0.

Therefore, if M ∈ (−m4
1, 0) then wM(t) > 0 for all t ∈ [0, 1).

From the expression of w′′
M(1) we have that wM < 0 in a neighborhood of t = 1 for M

smaller and close enough to −m4
1.

Now, suppose that there is some M1 < −m4
1 for wich wM1

> 0 on [0, 1). Let −m4
1 < M2 < 0,

we have that for all t ∈ [0, 1), the following property is fulfilled:

w
(4)
M2

(t)− w
(4)
M1

(t) = −M2 (wM2
− wM1

)(t)− (M2 − M1)wM1
(t) < −M2 (wM2

− wM1
)(t).

Now, since wM2
− wM1

satisfies the boundary conditions (1.2), from Corollary 2.4, we de-

duce that 0 < wM2
< wM1

on (0, 1). But this contradicts the fact that

lim
M→−m4+

1

{wM(t)} = +∞, for all t ∈ (0, 1).

So, we have proved the following result:

Lemma 2.8. wM > 0 on [0, 1) if and only if M ∈ (−m4
1, 4π4).

Now, by denoting

CM =
∫ 1

0
wM(τ)ν(τ) dτ, (2.4)

we are in a position to obtain the explicit expression of the Green’s function related to the

equation (1.1) coupled to boundary conditions (1.5). The result is the following.

Lemma 2.9. Let σ ∈ L1(I), λ > 0 and M ∈ R be such that (2.1) does not hold. Then problem




u(4)(t) + Mu(t) = σ(t), t ∈ I,

u′(0) = u(1) = u′(1) = 0,

u(0) = λ
∫ 1

0
u(s)ν(s) ds

(2.5)

has a unique solution if and only if

λ CM 6= 1.

In such a case, it is given by the following expression

uM(t) =
∫ 1

0
GM(t, s)σ(s) ds

where

GM(t, s) = gM(t, s) +
λwM(t)

1 − λCM

∫ 1

0
gM(τ, s)ν(τ) dτ, (2.6)

wM and CM are defined in (2.3) and (2.4) respectively and gM is showed in Lemma 2.3.
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Proof. Since (2.1) does not hold, we have that Problems (1.1)–(1.2) and (2.2) are uniquely solv-

able. Let vM and wM be the unique solutions of each problem respectively. Then, it is clear

that

uM(t) = vM(t) + λ wM(t)
∫ 1

0
uM(s)ν(s) ds

is the unique solution of problem (2.5).

As a consequence, for all t ∈ I, the following equalities are fulfilled:

uM(t) =
∫ 1

0
gM(t, s)σ(s) ds + λwM(t)

∫ 1

0
uM(s)ν(s) ds. (2.7)

Let AM =
∫ 1

0 uM(τ)ν(τ) dτ, then, from the previous equality, we deduce that

AM =
∫ 1

0

∫ 1

0
gM(τ, s)ν(τ)σ(s) ds dτ + λAM

∫ 1

0
wM(τ)ν(τ) dτ

or, which is the same,

AM =

∫ 1

0
σ(s)

∫ 1

0
gM(τ, s)ν(τ) dτ ds

1 − λ
∫ 1

0 wM(τ)ν(τ) dτ
.

Replacing this value in (2.7), we arrive at the following expression for function uM:

uM(t) =
∫ 1

0
gM(t, s)σ(s) ds + λwM(t)

∫ 1

0
σ(s)

∫ 1

0
gM(τ, s)ν(τ) dτ ds

1 − λ
∫ 1

0 wM(τ)ν(τ) dτ
,

and the proof is concluded.

Assuming that (2.1) does not hold, let zM be the unique solution of the following boundary

value problem:

z(4)(t) + Mz(t) = ν(t) t ∈ I, z(0) = z(1) = z′(0) = z′(1) = 0, (2.8)

which is given by the following expression

zM(t) =
∫ 1

0
gM(t, s)ν(s) ds.

Moreover, if M ∈ (−m4
1, m4

0), since ν(t) > 0 a.e. t ∈ (0, 1), from Corollary 2.4, we have that

zM(t) > 0 for all t ∈ (0, 1), z′′M(0) > 0 and z′′M(1) > 0.

We point out that, by direct computations, it is possible to obtain the explicit expression of

function zM for any particular choice of function ν.

A careful analysis of the Green’s function GM allows us to deduce the following result:

Theorem 2.10. Let GM(t, s) be the Green’s function related to problem (1.1), (1.5) given by expression

(2.6). Then if M ∈ (−m4
1, 4π4) and λ ∈ (0, 1/CM) we have that GM(t, s) > 0 for all (t, s) ∈

(0, 1)× (0, 1). Moreover there exist R > 0 and h ∈ C(I), such that h(1) = 0 and h > 0 on [0, 1), for

which the following inequalities are fulfilled:

h(t)
λ

1 − λ CM
zM(s) ≤ GM(t, s) ≤ R

λ

1 − λ CM
zM(s), for all (t, s) ∈ I × I. (2.9)
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Proof. First, notice that 4π4
< m4

0. So, since M ∈ (−m4
1, 4π4) we have, from Corollary 2.4,

that gM > 0 on (0, 1) × (0, 1) and, as a direct consequence of λ ∈ (0, 1/CM) and the fact

that wM > 0 on [0, 1) for all M ∈ (−m4
0, 4π4) (Lemma 2.8), we conclude, from (2.6), that

GM(t, s) > 0 for all (t, s) ∈ (0, 1)× (0, 1).

Now, we denote by

ϕ(t, s) =
GM(t, s)

GM(0, s)
=

1 − λCM

λ

gM(t, s)
∫ 1

0
gM(s, r)ν(r) dr

+ wM(t). (2.10)

It is clear that function ϕ is continuous on [0, 1]× (0, 1), ϕ(0, s) = 1 and ϕ(1, s) = 0 for all

s ∈ I.

Using the properties of gM showed in Lemma 2.3 and those of zM previously explained,

by means of L’Hôpital’s rule, we deduce, for all t ∈ (0, 1):

lim
s→0+

gM(t, s)
∫ 1

0
gM(s, r)ν(r) dr

= lim
s→0+

gM(t, s)

zM(s)
= lim

s→0+

∂2gM

∂s2 (t, s)

z′′M(s)
=

∂2gM

∂s2 (t, 0)

z′′M(0)
> 0.

Thus,

lim
s→0+

ϕ(t, s) =
1 − λCM

λ




∂2gM

∂s2 (t, 0)

z′′M(0)


+ wM(t) := l1(t) > 0 for all t ∈ [0, 1).

Analogously, if t ∈ (0, 1), we have

lim
s→1−

gM(t, s)
∫ 1

0
gM(s, r)ν(r) dr

= lim
s→1−

gM(t, s)

zM(s)
= lim

s→1−

∂2gM

∂s2 (t, s)

z′′M(s)
=

∂2gM

∂s2 (t, 1)

z′′M(1)
> 0

and

lim
s→1−

ϕ(t, s) =
1 − λCM

λ




∂2gM

∂s2 (t, 1)

z′′M(1)


+ wM(t) := l2(t) > 0 for all t ∈ [0, 1).

The limits l1(t) and l2(t) exist and are finite, so ϕ has removable discontinuities at s = 0, 1,

and we can extend it to a function ϕ̃ ∈ C(I × I).

Therefore h(t) = mins∈[0,1] ϕ̃(t, s) is a continuous function such that

h(1) = 0 and 0 < h(t) ≤ ϕ̃(t, s) ≤ R for all (t, s) ∈ [0, 1)× [0, 1],

where R = max(t,s)∈I×I ϕ̃(t, s).

Corollary 2.11. Let GM(t, s) be Green’s function related to problem (1.1), (1.5) given by expression

(2.6). Then if M ∈ (−m4
1, 4π4) and λ ∈ (0, 1/CM) we have that for all positive constant δ ∈ (0, 1)

there exists γ(δ) ∈ (0, 1) for which the following inequality is fulfilled:

γ(δ)
λ

1 − λ CM
zM(s) ≤ GM(t, s), for all (t, s) ∈ [0, δ]× I. (2.11)

Proof. The result follows from the fact that function h is continuous on I and strictly positive

on [0, 1).
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3 Existence of positive solutions

In this section, we are concerned with the existence of positive solutions of the boundary value

problem (1.4)–(1.5). Firstly, we shall give a result of completely continuous operator. Then, we

shall derive the existence results. Consider the vectorial space

E = {u ∈ C2(I); u′(0) = u′(1) = 0}

with the weighted norm ‖u‖ = ‖u‖∞ + ‖u′′‖∞.

Since, for any u ∈ E, and all t ∈ I, it is satisfied that

u′(t) =
∫ t

0
u′′(s) ds.

We deduce that

‖u‖ ≤ ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ ≤ ‖u‖∞ + 2 ‖u′′‖∞ ≤ 2 ‖u‖,

we have that ‖ · ‖ is an equivalent norm to the usual one in E. As consequence, E is a Banach

Space with the weighted norm ‖ · ‖.

The following result is a direct consequence of the results showed in previous sections.

Let T the operator from E to E defined by

(T u)(t) =
∫ 1

0
GM(t, s) f (s, u(s), u′′(s)) ds. (3.1)

Lemma 3.1. Assume that f satisfies condition (H0), then, u ∈ C2(I) is a solution of (1.4)–(1.5) if

and only if u is a fixed point of operator T defined on (3.1).

Now, by considering function h and constant R, obtained in Theorem 2.10, we look for the

fixed points of operator T at the following cone,

K =

{
u ∈ C2(I) and u(t) ≥ h(t)

R
‖u‖∞ for all t ∈ I

}
. (3.2)

Lemma 3.2. If condition (H0) is fulfilled, then operator T : K → K, defined in (3.1), is completely

continuous.

Proof. From the non-negativeness of functions f and GM we deduce that (T u)(t) ≥ 0 for all

t ∈ I and u ∈ K. Using that GM ∈ C2(I × I), from the continuity of function f we deduce

the completely continuous character of operator T as a direct application of Arzelà–Ascoli

Theorem [11].

Let u ∈ K, by (2.9), we have that the following inequalities are fulfilled for all t ∈ I

(T u)(t) =
∫ 1

0
GM(t, s) f (s, u(s), u′′(s)) ds

≥ h(t)
λ

1 − λ CM

∫ 1

0
zM(s) f (s, u(s), u′′(s)) ds

≥ h(t)

R

∫ 1

0
max

t∈I
{GM(t, s)} f (s, u(s), u′′(s)) ds

≥ h(t)

R
max

t∈I

∫ 1

0
GM(t, s) f (s, u(s), u′′(s)) ds

=
h(t)

R
‖T u‖∞.
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Moreover, from Corollary 2.4, (2), we have that

(T u)′(0) = (T u)′(1) = 0,

and, as a consequence, T u ∈ K for all u ∈ K and the proof is complete.

In the sequel, for any pair δ, γ satisfying (2.11) we introduce the following cone as follows:

Kδ
γ =

{
u ∈ K and mint∈[0,δ] u(t) ≥ γ

R
‖u‖∞

}
. (3.3)

As in the proof of Lemma 3.2, one can verify the following result.

Lemma 3.3. Assuming condition (H0), we have that T(Kδ
γ) ⊂ Kδ

γ.

Define the convex functionals α(u) = ‖u‖∞, β(u) = ‖u′′‖∞. Then, we have that

‖u‖ ≤ 2 max{α(u), β(u)},

α(µu) = |µ|α(u), β(µu) = |µ|β(u), u ∈ E, µ ∈ R,

and since for all u ∈ K, it is satisfied that u ≥ 0 on I, we have that if u1, u2 ∈ K are such that

u1 ≤ u2 on I, then α(u1) ≤ α(u2).

In the following, we introduce the positive constants:

m = max
t∈I

∫ δ

0
GM(t, s) ds, (3.4)

M1 = max
t∈I

∫ 1

0
GM(t, s) ds (3.5)

and

M2 = max
t∈I

∫ 1

0

∣∣∣∣
∂2GM

∂t2
(t, s)

∣∣∣∣ ds. (3.6)

We suppose that there are L > b >
γ
R b > c > 0 such that f satisfies the following growth

conditions:

(H1) f (t, u, v) < c
M1

, for (t, u, v) ∈ I × [0, c]× [−L, L],

(H2) f (t, u, v) ≥ b
m , for (t, u, v) ∈ I × [ γ

R b, b]× [−L, L],

(H3) f (t, u, v) < L
M2

, for (t, u, v) ∈ I × [0, b]× [−L, L].

Theorem 3.4. Assume that conditions (H0)–(H3) are fulfilled. Then the boundary value problem

(1.4)–(1.5) has at least one positive solution u satisfying

c < ‖u‖∞ < b, ‖u′′‖∞ < L.

Proof. Take

Ω1 = {u ∈ E : ‖u‖∞ < c, ‖u′′‖∞ < L}, Ω2 = {u ∈ E : ‖u‖∞ < b, ‖u′′‖∞ < L}

two boundary open sets in E, and

D1 = {u ∈ E : ‖u‖∞ = c}, D2 = {u ∈ E : ‖u‖∞ = b}.
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As in [16], we define the following double truncated continuous function as follows:

f ∗(t, u, v) =

{
f (t, u, v) if (t, u, v) ∈ I × [0, b]× R,

f (t, b, v) if (t, u, v) ∈ I × [b, ∞)× R,

and

f1(t, u, v) =





f ∗(t, u,−L) if (t, u, v) ∈ I × [0, ∞)× (−∞,−L],

f ∗(t, u, v) if (t, u, v) ∈ I × [0, ∞)× [−L, L],

f ∗(t, u, L) if (t, u, v) ∈ I × [0, ∞)× [L, ∞).

As a direct consequence, we have that f1 satisfies the following properties:

(H1
1) f1(t, u, v) < c

M1
, for (t, u, v) ∈ I × [0, c]× R,

(H1
2) f1(t, u, v) ≥ b

m , for (t, u, v) ∈ I × [ γ
R b, ∞)× R,

(H1
3) f1(t, u, v) < L

M2
, for (t, u, v) ∈ I × [0, ∞)× R.

Now, we define the operator

(T1 u)(t) =
∫ 1

0
GM(t, s) f1(s, u(s), u′′(s)) ds,

whose fixed points coincide with the solutions of problem

u(4)(t) + Mu(t) = f1(t, u(t), u′′(t)), t ∈ I, (3.7)

coupled to boundary conditions (1.5).

As in Lemmas 3.2 and 3.3 it is not difficult to verify that T1 : Kδ
γ → Kδ

γ is a completely

continuous operator.

Let p = 1
2 b ∈ (Ω2 ∩ Kδ

γ) \ {0}. It is easy to see that α(u + µp) ≥ α(u) for all u ∈ Kδ
γ and

µ ≥ 0.

In view of (H1) and α(u) = c, u ∈ D1 ∩ Kδ
γ, we have that

α(T1u) = max
t∈I

∣∣∣∣
∫ 1

0
GM(t, s) f1(s, u(s), u′′(s)) ds

∣∣∣∣ < max
t∈I

∫ 1

0
GM(t, s)

c

M1
ds ≤ c.

Hence, α(T1u) < c.

Therefore, using (H2) and the fact that u(s) ≥ γ
R α(u) for all s ∈ [0, δ], we have for all

u ∈ D2 ∩ Kδ
γ the following inequality is fulfilled

α(T1u) = max
t∈I

∣∣∣∣
∫ 1

0
GM(t, s) f1(s, u(s), u′′(s)) ds

∣∣∣∣ > max
t∈I

∫ δ

0
GM(t, s)

b

m
ds ≥ b.

Hence, α(T1u) > b.

β(T1u) = max
t∈I

∣∣∣∣
∫ 1

0

∂2GM

∂t2
(t, s) f1(s, u(s), u′′(s)) ds

∣∣∣∣ < max
t∈I

∫ 1

0

∣∣∣∣
∂2GM

∂t2
(t, s)

∣∣∣∣
L

M2
ds ≤ L.

Hence, β(T1u) < L.

Therefore, u is a positive solution for the boundary value problem (3.7), (1.5) satisfying

c < ‖u‖∞ < b, ‖u′′‖∞ < L.

From the definition of function f1, we conclude that the obtained solutions are also solu-

tions of (1.4)–(1.5) and the proof is complete.
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4 Examples

In the sequel, we will obtain the different bounds and results for the particular case when

M = 0 and ν(t) = 1 for all t ∈ I. That is, we want to prove the existence of positive solutions

of the problem:

L0u(t) = u(4)(t) = f (t, u(t), u′′(t)), t ∈ [0, 1] (4.1)

subject to the boundary conditions:

u(1) = u′(0) = u′(1) = 0, u(0) = λ
∫ 1

0
u(s) ds. (4.2)

It is immediate to verify that

C0 :=
∫ 1

0
(t − 1)2(1 + 2t)dt =

1

2
.

As a consequence: 0 < λ < 2.

Now, let us obtain the correspondent δ, γ and R. The expression of the related Green’s

function is given in Lemma 2.3.

Using the notation in Theorem 2.10, we have

ϕ̃(t, s) =





φ1(t, s) if 0 < s < t < 1,

ψ1(t) if s = 0,

ψ2(t) if s = 1,

φ2(t, s) if 0 < t ≤ s < 1.

So we have

φ1(t, s) =
(−1 + t)2

(
−4(s + 2st)− 4t(−3 + λ) + λ + s2(1 + 2t)λ

)

(−1 + s)2λ
,

φ2(t, s) =
2t3(−2 + λ) + 2st2(−3 + 2t)(−2 + λ) + s2(−1 + t)2(1 + 2t)λ

s2λ
,

ψ1(t) =
(−1 + t)2(−4t(−3 + λ) + λ)

λ

and

ψ2(t) = 1 +
t2(12 − 9λ + 4t(−3 + 2λ))

λ
.

It is clear that

∂ϕ̃

∂s
(t, s) =





∂φ1(t,s)
∂s if 0 < s < t < 1,

0 if s = 0 or s = 1,
∂φ2(t,s)

∂s if 0 < t ≤ s < 1,

where
∂φ1(t, s)

∂s
= −2(−1 + t)2(1 + s + 2(−2 + s)t)(−2 + λ)

(−1 + s)3λ

and

∂φ2(t, s)

∂s
= −2t2(−3s + 2(1 + s)t)(−2 + λ)

s3λ
.
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Let α1(t) =
4t−1
2t+1 and α2(t) =

2t
3−2t , it is obvious that

∂φ1(t, s)

∂s
= 0 if and only if s = α1(t)

and
∂φ2(t, s)

∂s
= 0 if and only if s = α2(t).

• If t ∈ [0, 1
4 ], in this case φ1(t, ·) is decreasing on [0, t] and φ2(t, ·.) is decreasing on [t, 1] .

In this case for all t ∈ [0, 1
4 ], maxs∈I ϕ̃(t, s) = ψ1(t) and h(t) = mins∈I ϕ̃(t, s) = ψ2(t).

• If t ∈ [ 1
4 , 1

2 ], α1(t) ∈ [0, t] in this case φ1(t, ·) is increasing on [0, α1(t)] and it is decreasing

on [α1(t), t] and φ2(t, ·.) is decreasing on [t, 1]. Then for all t ∈ [ 1
4 , 1

2 ] we have

max
s∈I

ϕ̃(t, s) = φ1(t, α1(t)) =
(−1 + t)(1 + 2t)(−2 + 4t(−1 + λ)− λ)

2λ
(4.3)

and

h(t) = min
s∈I

ϕ̃(t, s) = min {ψ1(t), ψ2(t)} = ψ2(t). (4.4)

• If t ∈ [ 1
2 , 3

4 ], α2(t) ∈ [t, 1] in this case φ2(t, ·.) is increasing on [t, α2(t)] and is decreasing

on [α2(t), 1] and φ1(t, ·) is increasing on [0, t]. Then for all t ∈ [ 1
2 , 3

4 ] we have

max
s∈I

ϕ̃(t, s) = φ2(t, α2(t)) =
2λ + t(−3 + 2t)(−6 + 4t + 3λ)

2λ
(4.5)

and

h(t) = min
s∈I

ϕ̃(t, s) = min {ψ1(t), ψ2(t)} = ψ1(t). (4.6)

• If t ∈ [ 3
4 , 1], in this case φ1(t, ·) is increasing on [0, t] and φ2(t, ·.) is increasing on [t, 1].

In this case for all t ∈ [ 3
4 , 1], maxs∈I ϕ̃(t, s) = ψ2(t) and h(t) = ψ1(t).

In conclusion we obtain

max
s∈I

ϕ̃(t, s) =





ψ1(t) if t ∈
[
0, 1

4

]
,

φ1(t, α1(t)) if t ∈
[

1
4 , 1

2

]
,

φ2(t, α2(t)) if t ∈
[

1
2 , 3

4

]
,

ψ2(t) if t ∈
[

3
4 , 1

]
,

and

min
s∈I

ϕ̃(t, s) =

{
ψ2(t) if t ∈

[
0, 1

2

]
,

ψ1(t) if t ∈
[

1
2 , 1

]
.

Let R1 = maxt∈[ 1
4 , 1

2 ]
φ1(t, α1(t)), R2 = maxt∈[ 1

2 , 3
4 ]

φ2(t, α2(t)), R3 = maxt∈[0, 1
4 ]

ψ1(t) and R4 =

maxt∈[ 3
4 ,1] ψ2(t). We deduce that R = max(t,s)∈I×I ϕ̃(t, s) = max {R1, R2, R3, R4} and

γ = min
t∈[0,δ]

h(t) =

{
min {1, ψ2(δ)} if δ ∈

(
0, 1

2

]
,

min {1, ψ1(δ)} if δ ∈
[

1
2 , 1

)
.

Choosing δ = 0.9 and λ = 1. By computation we obtain
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R = max {1.6875, 1, 1.6875, 1} = 1.6875, γ = mint∈[0,δ] h(t) = 0.082, γ
R = 0.0485926.

By simple calculation, we have that M2 = maxt∈I

∫ 1
0

∣∣∣ ∂2G0

∂t2 (t, s)
∣∣∣ ds ≈ 0.1, m =

maxt∈I

∫ δ
0 G0(t, s) ds ≈ 0.00417006 and M1 = maxt∈I

∫ 1
0 G0(t, s) ds ≈ 0.0042.

Example 4.1. Let

f (t, u, v) =
t

100
+ 4.71241u + 0.000416894 u3 + (0.00521618 + 0.000125066 u2)

|v|
90

.

Choosing b = 60, γ
R b = 2.91556, γ

Rm = 11.6527, c = 0.5 and L = 400. By simple calculation,

f satisfy (H0) and we have that:

f (t, u, v) ≤ 2.38958 <
c

M1
= 119.048 for all (t, u, v) ∈ I × [0, c]× [−L, L],

f (t, u, v) ≥ 13.7496 >
γ

Rm
= 11.6527 for all (t, u, v) ∈ I ×

[γ

R
b, b

]
× [−L, L]

and

f (t, u, v) ≤ 374.828 <
L

M2
= 4000 for all (t, u, v) ∈ I × [0, b]× [−L, L].

With the use of Theorem 3.4, the boundary value problem (1.4)–(1.5) has at least one

positive solution u satisfying

0.5 < ‖u‖∞ < 60, ‖u′′‖∞ < 400.

Example 4.2. Let

f (t, u, v) = a(t)u + b(t)u3 + c(t)|v|α, α ∈ (0, 1)

where

a(t) =





t + 10 if t ∈ [0, 1
2 ],

−t + 11 if t ∈ [ 1
2 , 3

4 ],

3t + 8 if t ∈ [ 3
4 , 1],

b(t) =

{
et if t ∈ [0, 1

2 ],

2e
1
2 t if t ∈ [ 1

2 , 1]

and

c(t) =





(
10−3

9

)α
1

2α
if t ∈ [0, 1

2 ],
(

10−3

9

)α

tα if t ∈ [ 1
2 , 1].

For this we have, for all t ∈ [0, 1], 10 ≤ a(t) ≤ 11, 1 ≤ b(t) ≤ 2e
1
2 and

(
10−3

9

)α 1
2α ≤ c(t) ≤(

10−3

9

)α
. Choosing c = 1, b = 30, γ

R b = 1.457778 and L = 9 × 103. By simple calculation, we

have that:

f (t, u, v) ≤ 15.2974 <
c

M1
= 238.09 for all (t, u, v) ∈ I × [0, c]× [−L, L],

f (t, u, v) ≥ 17.6757 >
γ

Rm
= 11.6527 for all (t, u, v) ∈ I ×

[γ

R
b, b

]
× [−L, L]

and

f (t, u, v) ≤ 89361.9486 <
L

M2
= 90000 for all (t, u, v) ∈ I × [0, b]× [−L, L].

With the use of Theorem 3.4, the boundary value problem (1.4)–(1.5) has at least one

positive solution u satisfying

1 < ‖u‖∞ < 30, ‖u′′‖∞ < 9 × 103.
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1 Introduction

Some time ago one of the authors proposed a method for treating the boundary integral

equation of the first kind arising when you impose the Dirichlet condition for Laplace equation

to a simple layer potential [2]. This method hinges on the theory of reducible operators and

on the theory of differential forms, it does not use the theory of pseudodifferential operators

and could be considered as an extension to higher dimensions of Muskhelishvili’s method

(see [3]). Later, this approach was extended to different BVPs for several partial differential

equations and systems in simply and multiple connected domains (see [5] and the references

therein).

Recently we have showed how to use this approach to solve the Dirichlet problem for

the n-dimensional Helmholtz equation by means of a simple layer potential [6]. The aim of

the present paper is to continue that investigation, showing how our method could be used

to solve the Neumann problem for the same equation by means of a double layer potential.

To this end, we make use of some fundamental results given by Colton and Kress in their

celebrated monograph [7], in particular on the description of the traces on the boundary of

eigensolutions of Dirichlet or Neumann problems. Colton and Kress proved their results in

BCorresponding author. Email: cialdea@email.it
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spaces of continuous functions on a C2 boundary. As already remarked in [6], the same results

can be established under more general assumptions by nowadays standard arguments in

potential theory (see, e.g., [10]). In particular, they hold in Lp spaces on a Lyapunov boundary.

When we consider their results, we shall always refer to them under these more general

hypotheses.

Differently from [7], here we consider the Neumann problem with data in Lp(Σ) and we

obtain that the solution can be represented as a double layer potential with density in the

Sobolev space W1,p(Σ).

We shall consider domains in Rn, with n ≥ 3. In principle our method could be applied

also for n = 2 with some appropriate modifications, as to change fundamental solution and

radiation condition (see [7, pp. 106–107]).

The paper is organized as follows. After summarizing notations and definitions in Sec-

tion 2, we collect some preliminary results in Section 3. We mention that we prove a regularity

result for the eigensolutions of a certain integral equation (see Proposition 3.2) without using

the usual regularity properties of the double layer potential (see [8] for recent results in this

direction and for an extensive bibliography). Our approach seems to be simpler and it is a

consequence of some of our previous results on Laplace equation.

In the short Section 4 we recall the main result we have obtained in [6] for the Dirichlet

problem. Section 5 is devoted to the main result of the present paper: we prove that the

Neumann problem with data in Lp(Σ) (1 < p < ∞) can be represented by a double layer

potential with density in W1,p(Σ) if and only if the data satisfies some necessary orthogonality

conditions.

2 Notations and definitions

From now on Ω will be a bounded domain (open connected set) of Rn (n ≥ 3) whose bound-

ary Σ is a Lyapunov hypersurface (i.e. Σ has a uniformly Hölder continuous normal field

of some exponent λ ∈ (0, 1]), and such that Rn \ Ω is connected; ν(x) = (ν1(x), . . . , νn(x))

denotes the outwards unit normal vector at the point x = (x1, . . . , xn) ∈ Σ. The Euclidean

norm for elements of Rn is denoted by | · |.

Now fix 1 < p < ∞. By Lp(Σ) we denote the space of p-integrable complex-valued

functions defined on Σ. By L
p
h(Σ) we mean the space of the differential forms of degree h ≥ 1

whose components belong to Lp(Σ).

The Sobolev space W1,p(Σ) can be defined as the space of functions in Lp(Σ) such that

their weak differential belongs to L
p
1(Σ).

If u is an h-form in Ω, the symbol du denotes the differential of u, while ∗u denotes the

dual Hodge form. Finally, we write ∗
Σ

w = w0 if w is an (n − 1)-form on Σ and w = w0dσ.

Besides the theory of differential forms, the method we use hinges on the theory of re-

ducible operators. Here we recall that, given two Banach spaces E and F, a continuous linear

operator S : E → F can be reduced on the left if there exists a continuous linear operator

S′ : F → E such that S′S = I + T, I being the identity operator on E and T a compact operator

on E. An operator S reducible on the right can be defined analogously. If S can be reduced (on

the left or right), then its range is closed and, as a consequence the equation Sα = β admits a

solution if and only if 〈γ, β〉 = 0, for any γ ∈ F∗ such that S∗γ = 0, where S∗ is the adjoint

of S. For more details we refer the readers, e.g., to [9] or [11].
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We consider the n-dimensional Helmholtz equation

∆u + k2u = 0 (2.1)

where k ∈ C \ {0}, Im(k) ≥ 0, u : Ω → C, and ∆ is the Laplace operator. The fundamental

solution of (2.1) is given by

Φ(x) =
i

4

(

k

2π|x|

)(n−2)/2

H
(1)
(n−2)/2

(k|x|)

where H
(1)
µ is the Hankel function of the first kind of order µ (see, e.g., [1, p. 42]). In what

follows it will be useful to consider the auxiliary function

h(x) = Φ(x)− s(x) (x ∈ R
n \ {0}) ,

where s is the fundamental solution of −∆, i.e. for n ≥ 3 and x ∈ Rn \ {0},

s(x) =
1

(n − 2)ωn
|x|2−n

(

ωn =
2πn/2

Γ(n/2)

)

.

We observe that (see [12, Lemma A.5, p. 571])

|∇h(x)| ≤ c|x|3−n, ∀ x ∈ R
n \ {0}. (2.2)

Hence, from (2.2), and recalling that |∇s(x)| ≤ c1|x|1−n, immediately we get

|∇Φ(x)| ≤ c2|x|
1−n . (2.3)

Moreover,
∣

∣

∣

∣

∂2h(x)

∂xj∂xl

∣

∣

∣

∣

≤ c|x|2−n, ∀ x ∈ R
n \ {0}, j, l = 1, . . . , n. (2.4)

As we shall see, we are interested to solve the Neumann problem related to the Helmholtz

equation (2.1) in the class of potentials defined as follows.

Definition 2.1. We say that a function w belongs to the space Dp if and only if there exists

ψ ∈ W1,p(Σ) such that w can be represented by means of a double layer potential with density

ψ, i.e.

w(x) =
∫

Σ
ψ(y)

∂Φ

∂νy
(x − y) dσy, x ∈ Ω .

We also recall the following class of functions used in [6].

Definition 2.2. We say that a function u belongs to the space S p if and only if there exists

ϕ ∈ Lp(Σ) such that u can be represented by means of a simple layer potential with density

ϕ, i.e.

u(x) =
∫

Σ
ϕ(y)Φ(x − y) dσy, x ∈ Ω . (2.5)

We shall distinguish by indices + and − the nontangential limit obtained by approaching

the boundary Σ from Rn \ Ω and Ω, respectively (see, e.g. [10, p. 293]).

We remark that by 〈 f , g〉 we denote the bilinear form

∫

Σ
f g dσ .
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3 Preliminary results

Let us introduce the integral operators:

K : Lp(Σ) → Lp(Σ) , Kϕ(x) = 2
∫

Σ
ϕ(y)

∂Φ

∂νy
(x − y) dσy

and its adjoint

K∗ : Lq(Σ) → Lq(Σ) , K∗ ψ(x) = 2
∫

Σ
ψ(y)

∂Φ

∂νx
(x − y) dσy .

where 1 < p < ∞ and 1
p +

1
q = 1. K and K∗ are adjoint operators with respect to the duality

〈ψ, Kϕ〉 = 〈K∗ψ, ϕ〉.

Moreover, K and K∗ are compact operators because of (2.3).

Here, we are interested in the kernels of the operators I ± K and I ± K∗, where I is the

identity operator on the relevant Lebesgue space. To this end, let us denote by U0 the space of

solutions of














u ∈ C1,λ(Ω) ∩ C2(Ω),

∆u + k2u = 0 in Ω,
∂u

∂ν
= 0 on Σ

and by V0 the space of solutions of















u ∈ C1,λ(Ω) ∩ C2(Ω),

∆u + k2u = 0 in Ω,

u = 0 on Σ .

Note that U0 = {0} (resp. V0 = {0}) whenever k2 is not an interior Neumann eigenvalue

(resp. an interior Dirichlet eigenvalue).

It is known that (see [7, Theorem 3.17])

N (I + K) =
{

u|Σ : u ∈ U0

}

(3.1)

and that (see [7, Theorem 3.22])

N (I − K∗) =

{

∂v

∂ν

∣

∣

∣

Σ
: v ∈ V0

}

. (3.2)

Let dim N (I +K) = mN and dim N (I −K) = mD. Note that, mN = 0 if k2 is not an interior

Neumann eigenvalue, while mD = 0 whenever k2 is not an interior Dirichlet eigenvalue.

Moreover

dim N (I + K) = dim N (I + K∗) and dim N (I − K) = dim N (I − K∗) .

We have also the following lemma.

Lemma 3.1. N (I ± K) ⊥ N (I ∓ K∗).
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Proof. If α ∈ N (I ± K) and β ∈ N (I ∓ K∗), then

〈α, β〉 = 〈∓Kα, β〉 = ∓〈α, K∗β〉 = −〈α, β〉 ,

and hence 〈α, β〉 = 0.

The next proposition shows that the functions in N (I − K) belong to the Sobolev space

W1,p(Σ). As said in the introduction, this result could be deduced by regularizing properties

of the double layer potential, but here we use a different approach which seems to be simpler.

Proposition 3.2. Let ζ ∈ Lp(Σ) be a solution of the equation ζ −Kζ = 0. Then ζ belongs to W1,p(Σ).

Proof. Since ζ ∈ N (I − K), the potential

v(x) =
∫

Σ
ζ(y)

∂Φ

∂νy
(x − y) dσy

satisfies the condition v− = 0 on Σ.

We can write the equation ζ − Kζ = 0 as

−
1

2
ζ(x) +

∫

Σ
ζ(y)

∂s

∂νy
(x − y) dσy = T(x),

where

T(x) = −
∫

Σ
ζ(y)

∂h

∂νy
(x − y) dσy .

Thanks to (2.2) and (2.4), the function T belongs to W1,p(Σ). Therefore the harmonic

function

a(x) =
∫

Σ
ζ(y)

∂s

∂νy
(x − y) dσy

satisfies the boundary condition a = T on Σ. As proved in [2], the function a can be repre-

sented as a simple layer potential with density A ∈ Lp(Σ):

a(x) =
∫

Σ
A(y) s(x − y) dσy .

This implies that there exists the normal derivative ∂a/∂ν almost everywhere on Σ and it

belongs to Lp(Σ) (see [2, pp. 182–183]). It follows that the function ζ satisfies the condition

∂

∂νx

∫

Σ
ζ(y)

∂s

∂νy
(x − y) dσy =

∂a

∂ν
(x)

on Σ.

Thanks to [4, p.29] we can say that there exists a solution ζ0 ∈ W1,p(Σ) of this equation,

since the right-hand side has zero mean value on Σ. Therefore

∂

∂νx

∫

Σ
(ζ(y)− ζ0(y))

∂s

∂νy
(x − y) dσy = 0

on Σ and the potential
∫

Σ
(ζ(y)− ζ0(y))

∂s

∂νy
(x − y) dσy

has to be constant in Ω. It follows ζ = ζ0 + c and this completes the proof.
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In the following theorem we collect some useful results contained in [7, Theorems 3.18

and 3.23].

Theorem 3.3.

(i) Let {λ1, . . . , λmN
} be a basis of N (I + K∗) and define

uj(x) =
∫

Σ
λj(y)Φ(x − y) dσy x ∈ R

n \ Σ , j = 1, . . . , mN .

Then

λj = −
∂uj

∂ν+
on Σ , j = 1, . . . , mN ,

and the functions

ρj = −uj,+ on Σ , j = 1, . . . , mN

form a basis of N (I + K).

Moreover, the determinant of the matrix (〈ρj, λl〉)j,l=1,...,mN
is nonzero.

(ii) Let {ζ1, . . . , ζmD
} be a basis of N (I − K) and define

vj(x) =
∫

Σ
ζ j(y)

∂Φ

∂νy
(x − y) dσy x ∈ R

n \ Σ , j = 1, . . . , mD .

Then

ζ j = vj,+ on Σ , j = 1, . . . , mD ,

and the functions

µj =
∂vj

∂ν+
on Σ , j = 1, . . . , mD (3.3)

form a basis of N (I − K∗).

Moreover, the determinant of the matrix (〈µj, ζl〉)j,l=1,...,mD
is nonzero.

Remark 3.4. Thanks to the Lyapunov property of the double layer potential (see [7, Theo-

rem 2.21]), (3.3) is equivalent to

µj =
∂vj

∂ν−
on Σ , j = 1, . . . , mD . (3.4)

4 The Dirichlet problem

In this section we describe the main lines of the method applied in [6] to the Dirichlet problem















u ∈ Sp,

∆u + k2u = 0 in Ω,

u = f on Σ , f ∈ W1,p(Σ) .

(4.1)

First, we imposed the boundary condition to (2.5), obtaining

∫

Σ
ϕ(y)Φ(x − y) dσy = f (x), x ∈ Σ . (4.2)
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Then, taking the exterior differential d of both sides of the integral equation of the first kind

(4.2), we get the singular integral equation

Sϕ(x) = d f (x), a.e. x ∈ Σ , (4.3)

where

Sϕ(x) =
∫

Σ
ϕ(y)dx[Φ(x − y)]dσy .

The singular integral operator S : Lp(Σ) → L
p
1(Σ) can be reduced on the left by the singular

integral operator J
′

: L
p
1(Σ) −→ Lp(Σ) defined as

J′ψ(z) = ∗
Σ

∫

Σ
ψ(x) ∧ dz[sn−2(z, x)], z ∈ Σ,

with

sn−2(x, y) = ∑
j1<...<jn−2

s(x − y)dxj1 . . . dxjn−2 dyj1 . . . dyjn−2

being the Hodge double (n − 2)-form (see [6, Theorem 2]).

Therefore, the range of S is closed and equation (4.3) has a solution ϕ ∈ Lp(Σ) if and only

if
∫

Σ
γ ∧ d f = 0

for every γ ∈ W
1,q
n−2(Σ) (q = p/(p − 1))(∗) such that dγ = ∂v

∂ν dσ, for all v ∈ V0 (see [6,

Theorem 4]).

Using the above results, we proved the representability theorem for the Dirichlet problem

via simple layer potentials, rewritten here in a new form.

Theorem 4.1. Let f ∈ W1,p(Σ). There exists a solution of (4.1) if and only if f satisfies the compati-

bility conditions
∫

Σ
f µj dσ = 0 for every j = 1, . . . , mD . (4.4)

Proof. From [6, Theorem 5] it follows that there exists a solution of (4.1) if and only if f satisfies

the compatibility conditions

∫

Σ
f

∂v

∂ν
dσ = 0 for all v ∈ V0 . (4.5)

Conditions (4.5) and (4.4) are equivalent because of (3.2), Theorem 3.3-(ii), and (3.4).

5 The Neumann problem

In this section we consider the Neumann problem















w ∈ Dp,

∆w + k2w = 0 in Ω,
∂w

∂ν
= g on Σ,

(5.1)

(∗)By W
1,q
n−2(Σ) we denote the space of differential forms of degree n − 2 whose coefficients belong to W1,q(Σ).
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where g ∈ Lp(Σ) satisfies
∫

Σ
gu dσ = 0, ∀ u ∈ U0 . (5.2)

Observe that conditions (5.2) are necessary for the solvability of the problem (5.1) because of

Green’s formulas.

Moreover, conditions (5.2) can be rewritten as

∫

Σ
gρj dσ = 0, j = 1, . . . , mN . (5.3)

We begin by stating some preliminary results.

Proposition 5.1. Consider u ∈ S p with density ϕ ∈ Lp(Σ) and let W0 ∈ Dp with density u:

W0(x) =
∫

Σ
u(y)

∂Φ

∂νy
(x − y) dσy, x ∈ Ω .

Then
∂W0

∂ν
(x) = −

1

4
ϕ(x) +

1

4
K∗ 2 ϕ(x) . (5.4)

for almost every x ∈ Σ.

Proof. First observe that u solves equation (2.1), and hence (see [7, Theorem 3.1])

u(x) =
∫

Σ

{

Φ(x − y)
∂u

∂ν
(y)− u(y)

∂Φ

∂νy
(x − y)

}

dσy, x ∈ Ω .

Moreover, for u the following jump relation holds (see [7, Theorem 2.19])

∂u

∂ν−
(x) = lim

y→x

y∈ν−x

∂u

∂ν
(y) =

1

2
ϕ(x) +

∫

Σ
ϕ(y)

∂Φ

∂νx
(x − y) dσy,

almost everywhere on Σ. We have also

∂W0

∂ν
(x) =

∂

∂ν

{

−u(x) +
∫

Σ
Φ(x − y)

∂u

∂ν
(y)dσy

}

= −
∂u

∂ν
(x) +

∂

∂νx

∫

Σ
Φ(x − y)

∂u

∂ν
(y)dσy

=

(

1

2
− 1

)

∂u

∂ν
(x) +

∫

Σ

∂u

∂ν
(y)

∂Φ

∂νx
(x − y) dσy

= −
1

2

{

1

2
ϕ(x) +

∫

Σ
ϕ(y)

∂Φ

∂νx
(x − y) dσy

}

+
∫

Σ

{

1

2
ϕ(y)+

∫

Σ
ϕ(z)

∂Φ

∂νy
(y − z) dσz

}

∂Φ

∂νx
(x − y) dσy

= −
1

4
ϕ(x) +

∫

Σ
ϕ(z) dσz

∫

Σ

∂Φ

∂νy
(y − z)

∂Φ

∂νx
(x − y) dσy.

Hence formula (5.4) is proved.

Lemma 5.2. The Fredholm equation

− ϕ + K∗ 2 ϕ = 4g , (5.5)
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where g ∈ Lp(Σ), admits a solution ϕ ∈ Lp(Σ) if and only if conditions
∫

Σ
gρj dσ = 0, j = 1, . . . , mN (5.6)

and
∫

Σ
gζi dσ = 0, i = 1, . . . , mD (5.7)

are satisfied.

Proof. Assume that (5.6) and (5.7) are satisfied and rewrite equation (5.5) as

(I + K∗)(−I + K∗)ϕ = 4g.

Observe that the equation (I + K∗)γ = 4g admits a solution because of (5.6). Denote by γ0

such a solution and consider

(−I + K∗)ϕ = γ0. (5.8)

The last equation is solvable if and only if 〈γ0, ζi〉 = 0 for every ζi ∈ N (I − K), i = 1, . . . , mD.

We have

〈γ0, ζi〉 = 〈γ0, Kζi〉 = 〈K∗γ0, ζi〉 = −〈γ0, ζi〉+ 〈4g, ζi〉 ,

and then, thanks to (5.7),

〈γ0, ζi〉 = 〈2g, ζi〉 = 0, i = 1, . . . , mD.

This shows that there exists a solution ϕ of (5.8). Therefore ϕ satisfies (5.5).

Conversely, if ϕ is such that (5.5) holds, we have

(−I + K∗)(I + K∗)ϕ = 4g.

In particular, 4g ∈ R(I − K∗) = N (I − K)⊥, and then conditions (5.7) are satisfied. On the

other hand, (I + K∗)(−I + K∗)ϕ = 4g, hence 4g ∈ R(I + K∗) = N (I + K)⊥, and then all

conditions in (5.6) hold.

Lemma 5.3. Given ψ ∈ W1,p(Σ) there exist ϕ ∈ Lp(Σ) and c1, . . . , cmD
∈ C such that

ψ(x) =
∫

Σ
ϕ(y)Φ(x − y) dσy +

mD

∑
i=1

ciζi(x), x ∈ Σ . (5.9)

The vector (c1, . . . , cmD
) is the unique solution of the system

mD

∑
i=1

ci〈ζi, µj〉 = 〈ψ, µj〉 , j = 1, . . . , mD . (5.10)

Proof. Let ψ ∈ W1,p(Σ). In view of Proposition 3.2 the function ψ − ∑
mD
i=1 ciζi belongs to

W1,p(Σ) for any c1, . . . , cmD
. Thanks to Theorem 4.1, there exists ϕ ∈ Lp(Σ) satisfying (5.9) if

and only if
∫

Σ

(

ψ −
mD

∑
i=1

ciζi

)

µjdσ = 0, j = 1, . . . , mD ,

that is, (c1, . . . , cmD
) is solution of system (5.10). Note that the constants c1, . . . , cmD

are

uniquely determined since the determinant of the matrix (〈µj, ζl〉)j,l=1,...,mD
is nonzero (see

Theorem 3.3).
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Theorem 5.4. There exists a solution of (5.1) if and only if g satisfies (5.2).

Proof. Assume that g satisfies (5.2). Let (c1, . . . , cmD
) be the solution of the system

mD

∑
i=1

ci

∫

Σ
µiζ jdσ =

∫

Σ
gζ jdσ , j = 1, . . . , mD (5.11)

and consider the potential

w(x) =
∫

Σ

(

∫

Σ
ϕ(z)Φ(y − z)dσz

)

∂Φ

∂νy
(x − y)dσy +

mD

∑
i=1

ci

∫

Σ
ζi(y)

∂Φ

∂νy
(x − y) dσy , x ∈ Ω ,

where ϕ ∈ Lp(Σ) has to be determined. By imposing the boundary condition we obtain

∂

∂νx

∫

Σ

(

∫

Σ
ϕ(z)Φ(y − z)dσz

)

∂Φ

∂νy
(x − y)dσy +

mD

∑
i=1

ci
∂

∂νx

∫

Σ
ζi(y)

∂Φ

∂νy
(x − y) dσy

= −
1

4
ϕ(x) +

1

4
K∗ 2ϕ(x) +

mD

∑
i=1

ciµi(x) = g(x) , x ∈ Σ ,

because of (5.4), (3.3), and (3.4). Then w satisfies the boundary conditions if and only if

−ϕ + K∗ 2ϕ = 4

(

g −
mD

∑
i=1

ciµi

)

on Σ .

By virtue of Lemma 5.2, there exists a solution ϕ ∈ Lp(Σ) of this equation if and only if

∫

Σ

(

g −
mD

∑
i=1

ciµi

)

ρjdσ = 0, j = 1, . . . , mN (5.12)

and
∫

Σ

(

g −
mD

∑
i=1

ciµi

)

ζ jdσ = 0, j = 1, . . . , mD . (5.13)

Conditions (5.12) are satisfied because

∫

Σ

(

g −
mD

∑
i=1

ciµi

)

ρjdσ = −
mD

∑
i=1

ci

∫

Σ
µiρjdσ = 0

thanks to (5.3) and Lemma 3.1. On the other hand, conditions (5.13) hold in view of (5.11).

Conversely, let w ∈ Dp be a solution of (5.1) with density ψ ∈ W1,p(Σ). From Lemma 5.3,

ψ can be written as in (5.9). Therefore,

−ϕ + K∗ 2 ϕ + 4
mD

∑
i=1

ciµi = 4g on Σ .

Now we consider u ∈ U0. From (3.1), u|Σ ∈ N (I + K) and, from Lemma 3.1,
∫

Σ
µiu dσ = 0.

On the other hand, −ϕ + K∗ 2ϕ ∈ R(I + K∗) = N (I + K)⊥, and hence we have that
∫

Σ
(−ϕ + K∗ 2 ϕ)u dσ = 0.

Accordingly,

∫

Σ
4gu dσ =

∫

Σ
(−ϕ + K∗ 2 ϕ)u dσ + 4

mD

∑
i=1

ci

∫

Σ
µiu dσ = 0

and condition (5.2) is fulfilled.
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1 Introduction

In this paper we study the boundary value problem (BVP) on the half-line for difference

equation with the Euclidean mean curvature operator

∆

(
ak

∆xk√
1 + (∆xk)2

)
+ bkF(xk+1) = 0, (1.1)

subject to the conditions

xm = c, xk > 0, ∆xk ≤ 0, lim
k→∞

xk = 0, (1.2)

BCorresponding author. Email: dosla@math.muni.cz
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where m ∈ Z
+ = N ∪ {0}, k ∈ Zm := {k ∈ Z : k ≥ m} and c ∈ (0, ∞).

Throughout the paper the following conditions are assumed:

(H1) The sequence a satisfies ak > 0 for k ∈ Zm and

∞

∑
j=m

1

aj
< ∞.

(H2) The sequence b satisfies bk ≥ 0 for k ∈ Zm and

∞

∑
j=m

bj

∞

∑
i=j

1

ai
< ∞.

(H3) The function F is continuous on R, F(u)u > 0 for u 6= 0, and

lim
u→0+

F(u)

u
< ∞. (1.3)

When modeling real life phenomena, boundary value problems for second order differ-

ential equations play important role. The BVP (1.1)–(1.2) originates from the discretization

process for searching radial solutions, which are globally positive and decaying, for PDE with

Euclidean mean curvature operator. By globally positive solutions we mean solutions which

are positive on the whole domain Zm. The Euclidean mean curvature operator arises in the

study of some fluid mechanics problems, in particular capillarity-type phenomena for com-

pressible and incompressible fluids.

Recently, discrete BVPs, associated to equation (1.1), have been widely studied, both in

bounded and unbounded domains, see, e.g., [2] and references therein. Many of these papers

can be seen as a finite dimensional variant of results established in the continuous case. For

instance, we refer to [5–7, 21] for BVPs involving mean curvature operators in Euclidean and

Minkowski spaces, both in the continuous and in the discrete case. Other results in this

direction are in [8, 9], in which the multiplicity of solutions of certain BVPs involving the

p-Laplacian is examined. Finally, in [12, 14] for second order equations with p-Laplacian the

existence of globally positive decaying Kneser solutions, that is solutions x such that xn > 0,

∆xn < 0 for n ≥ 1 and limn→∞ xn = 0, is examined.

Several approaches have been used in literature for treating the above problems. Especially,

we refer to variational methods [22], the critical point theory [9] and fixed point theorems on

cones [24, 25].

Here, we extend to second order difference equations with Euclidean mean curvature

some results on globally positive decaying Kneser solutions stated in [12] for equations with

p-Laplacian and bn < 0.

This paper is motivated also by [13], in which BVPs for differential equation with the Eu-

clidean mean curvature operator on the half-line [1, ∞) have been studied subjected to the

boundary conditions x(1) = 1 and limt→∞ x(t) = 0. The study in [13] is accomplished by

using a linearization device and some properties of principal solutions of certain disconju-

gate second-order linear differential equations. Here, we consider the discrete setting of the

problem studied in [13]. However, the discrete analogue presented here requires different

technique. This is caused by a different behavior of decaying solutions as well as by peculiari-

ties of the discrete setting which lead to a modified fixed point approach. Jointly with this, we
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prove new Sturm comparison theorems and new properties of recessive solutions for linear

difference equations. Our existence result is based on a fixed point theorem for operators

defined in a Fréchet space by a Schauder’s linearization device. This method is originated

in [10], later extended to the discrete case in [20], and recently developed in [15]. This tool

does not require the explicit form of the fixed point operator T and simplifies the check of

the topological properties of T on the unbounded domain, since these properties become an

immediate consequence of a-priori bounds for an associated linear equation. These bounds

are obtained in an implicit form by means of the concepts of recessive solutions for second

order linear equations. The main properties and results which are needed in our arguments,

are presented in Sections 2 and 3. In Section 4 the solvability of the BVP (1.1)–(1.2) is given, by

assuming some implicit conditions on sequences a and b. Several effective criteria are given,

too. These criteria are obtained by considering suitable linear equations which can be viewed

as Sturm majorants of the auxiliary linearized equation. In Section 5 we compare our results

with those stated in the continuous case in [13]. Throughout the paper we emphasize some

discrepancies, which arise between the continuous case and the discrete one.

2 Discrete versus continuous decay

Several properties in the discrete setting have no continuous analogue. For instance, for a

positive sequence x we always have

∆xk

xk
=

xk+1

xk
− 1 > −1.

In the continuous case, obviously, this does not occur in general, and the decay can be com-

pletely different. For example, if x(t) = e−2t then x′(t)/x(t) = −2 for all t. Further, the ratio

x′/x can be also unbounded from below, as the function x(t) = e−et
shows.

Another interesting observation is the following. If two positive continuous functions x, y

satisfy the inequality
x′(t)
x(t)

≤ M
y′(t)
y(t)

, t ≥ t0,

then there exists K > 0 such that x(t) ≤ KyM(t) for t ≥ t0. This is not true in the discrete case,

as the following example illustrates.

Example 2.1. Consider the sequences x, y given by

xk =
1

22k
, yk =

1

22k+2
.

Then
xk+1

xk
=

1

22k
,

yk+1

yk
=

1

22k+2
,

and
∆xk

xk
=

1

22k
− 1 ≤ 1

2
− 1 = −1

2
≤ 1

2

(
1

22k+2
− 1

)
=

1

2

∆yk

yk
.

On the other hand, the inequality xk ≤ Ky1/2
k is false for every value of K > 0. Indeed,

xk√
yk

=
22k+1

22k
= 22k

which is clearly unbounded.
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The situation in the discrete case is described in the following two lemmas.

Lemma 2.2. Let x, y be positive sequences on Zm such that M ∈ (0, 1) exists, satisfying

∆xk

xk
≤ M

∆yk

yk
(2.1)

for k ∈ Zm. Then 1 + M∆yk/yk > 0 for k ∈ Zm, and

xk ≤ xm

k−1

∏
j=m

(
1 + M

∆yj

yj

)
.

Proof. First of all note that, from M ∈ (0, 1) and the positivity of y, we have

1 + M
∆yk

yk
= 1 + M

yk+1

yk
− M > 0, k ∈ Zm.

From (2.1) we get
xk+1

xk
≤ 1 + M

∆yk

yk
,

and taking the product from m to k − 1, k > m, we obtain

xk

xm
=

xm+1

xm

xm+2

xm+1
· · · xk

xk−1
≤

k−1

∏
j=m

(
1 + M

∆yj

yj

)
.

From the classical theory of infinite products (see for instance [19]) the infinite product

P = ∏
∞
k=m(1 + qk) of real numbers is said to converge if there is N ∈ Zm such that 1 + qk 6= 0

for k ≥ N and

Pn =
n

∏
k=N

(1 + qk)

has a finite and nonzero limit as n → ∞.

In case −1 < qk ≤ 0, {Pn} is a positive nonincreasing sequence, thus P being divergent (not

converging to a nonzero number) means that

lim
n→∞

n

∏
k=N

(1 + qk) = 0. (2.2)

Moreover, the convergence of P is equivalent to the convergence of the series ∑
∞
k=N ln(1 + qk)

and this is equivalent to the convergence of the series ∑
∞
k=N qk. Indeed, if ∑

∞
k=m qk is conver-

gent, then limk→∞ qk = 0 and hence,

lim
k→∞

ln(1 + qk)

qk
= 1,

i.e., ln(1 + qk) ∼ qk as k → ∞. Since summing preserves asymptotic equivalence, we get that

∑
∞
k=m ln(1 + qk) converges. Similarly, we obtain the opposite direction.

Therefore, in case −1 < qk ≤ 0, (2.2) holds if and only if ∑
∞
k=N qk diverges to −∞.

The following holds.

Lemma 2.3. Let y be a positive nonincreasing sequence on Zm such that limk→∞ yk = 0. Then, for

any M ∈ (0, 1),

lim
k→∞

k

∏
j=m

(
1 + M

∆yj

yj

)
= 0.
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Proof. From the theory of infinite products it is sufficient to show that

∞

∑
j=m

∆yj

yj
= −∞. (2.3)

We distinguish two cases:

1) there exists N > 0 such that yk+1/yk ≥ N for k ∈ Zm;

2) infk∈Zm
yk+1/yk = 0.

As for the former case, from the Lagrange mean value theorem, we have

−∆ ln yk = −∆yk

ξk
≤ − ∆yk

yk+1
= −∆yk

yk
· yk

yk+1
≤ − ∆yk

Nyk
,

where ξk is such that yk+1 ≤ ξk ≤ yk for k ∈ Zm. Summing the above inequality from m to

n − 1, n > m, we get

ln ym − ln yn ≤ − 1

N

n−1

∑
j=m

∆yj

yj
.

Since limn→∞ yn = 0, letting n → ∞ we get (2.3).

Next we deal with the case infk∈Zm
yk+1/yk = 0. This is equivalent to

lim inf
k→∞

∆yk

yk
= lim inf

k→∞

yk+1

yk
− 1 = −1,

which implies (2.3), since ∑
k
j=m ∆yj/yj is negative nonincreasing.

3 A Sturm-type comparison theorem for linear equations

The main idea of our approach is based on an application of a fixed point theorem and on

global monotonicity properties of recessive solutions of linear equations. To this goal, in this

section we prove a new Sturm-type comparison theorem for linear difference equations.

Consider the linear equation

∆(rk∆yk) + pkyk+1 = 0, (3.1)

where pk ≥ 0 and rk > 0 on Zm. We say that a solution y of equation (3.1) has a generalized

zero in n if either yn = 0 or yn−1yn < 0, see e.g. [1, 3]. A (nontrivial) solution y of (3.1) is said

to be nonoscillatory if ykyk+1 > 0 for all large k. Equation (3.1) is said to be nonoscillatory if all

its nontrivial solutions are nonoscillatory. It is well known that, by the Sturm type separation

theorem, the nonoscillation of (3.1) is equivalent to the existence of a nonoscillatory solution

see e.g. [2, Theorem 1.4.4], [3].

If (3.1) is nonoscillatory, then there exists a nontrivial solution u, uniquely determined up

to a constant factor, such that

lim
k→∞

uk

yk
= 0,

where y denotes an arbitrary nontrivial solution of (3.1), linearly independent of u. Solution

u is called recessive solution and y a dominant solution, see e.g. [4]. Recessive solutions can be

characterized in the following ways (both these properties are proved in [4]):
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(i) A solution u of (3.1) is recessive if and only if

∞

∑
j=m

1

rjujuj+1
= ∞.

(ii) For a recessive solution u of (3.1) and any linearly independent solution y (i.e. dominant

solution) of (3.1), one has
∆uk

uk
<

∆yk

yk
eventually. (3.2)

Along with equation (3.1) consider the equation

∆(Rk∆xk) + Pkxk+1 = 0 (3.3)

where Pk ≥ pk ≥ 0 and 0 < Rk ≤ rk on Zm; equation (3.3) is said to be a Sturm majorant of

(3.1).

From [2, Lemma 1.7.2], it follows that if (3.3) is nonoscillatory, then (3.1) is nonoscillatory

as well. In this section we always assume that (3.3) is nonoscillatory.

The following two propositions are slight modifications of results in [16]. They are prepara-

tory to the main comparison result.

Proposition 3.1 ([16, Lemma 2]). Let x be a positive solution of (3.3) on Zm and y be a solution of

(3.1) such that ym > 0 and rm∆ym/ym ≥ Rm∆xm/xm. Then

yk > 0 and
rk∆yk

yk
≥ Rk∆xk

xk
, for k ∈ Zm.

Moreover, if y, ȳ are solutions of (3.1) such that yk > 0, k ∈ Zm, and ȳm > 0, ∆ȳm/ȳm > ∆ym/ym,

then

ȳk > 0 and
∆ȳk

ȳk
>

∆yk

yk
, for k ∈ Zm.

Proposition 3.2 ([16, Theorem 3]). If a recessive solution v of (3.1) has a generalized zero in N ∈ Zm

and has no generalized zero in (N, ∞), then any solution of (3.3) has a generalized zero in (N − 1, ∞).

The following lemma is an improved version of [16, Theorem 1].

Lemma 3.3. Let u, v be recessive solutions of (3.1) and (3.3), respectively, satisfying uk > 0, vk > 0

for k ∈ Zm. Then
rk∆uk

uk
≤ Rk∆vk

vk
for k ∈ Zm. (3.4)

Proof. By contradiction, assume that there exists N ∈ Zm such that rN∆uN/uN > RN∆vN/vN .

Let y be a solution of (3.1) satisfying yN > 0 and rN∆yN/yN = RN∆vN/vN . Then rN∆yN/yN <

rN∆uN/uN , (which implies that y is linearly independent with u) and from Proposition 3.1 we

get yk > 0, ∆yk/yk < ∆uk/uk for k ∈ ZN , which contradicts (3.2).

Lemma 3.4. Let x be a positive solution of (3.3) on Zm. Then there exists a recessive solution u of

(3.1), which is positive on Zm.
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Proof. Let u be a recessive solution of (3.1), whose existence is guaranteed by nonoscillation of

majorant equation (3.3). By contradiction, assume that there exists N ∈ Zm such that

uN 6= 0, uNuN+1 ≤ 0.

Then u cannot have a generalized zero in (N + 1, ∞). Indeed, if u has a generalized zero in

M ∈ ZN+2, then by the Sturm comparison theorem on a finite interval (see e.g., [2, Theo-

rem 1.4.3], [3, Theorem 1.2]), every solution of (3.3) has a generalized zero in (N, M], which

is a contradiction with the positivity of x. Applying now Proposition 3.2, we get that any

solution of (3.3) has a generalized zero in (N, ∞) which again contradicts the positivity of x

on Zm.

The next theorem is, in fact, the main statement of this section and it plays an important

role in the proof of Theorem 4.1.

Theorem 3.5. Let x be a positive solution of (3.3) on Zm. Then there is a recessive solution u of (3.1),

which is positive on Zm and satisfies

rk∆uk

uk
≤ Rk∆xk

xk
, k ∈ Zm. (3.5)

In addition, if x is decreasing (nonincreasing) on Zm, then u is decreasing (nonincreasing) on Zm.

Proof. Let x be a positive solution of (3.3) on Zm. From Lemma 3.4, there exist a recessive

solution u of (3.1) and a recessive solution v of (3.3), which are both positive on Zm. We claim

that
∆vk

vk
≤ ∆xk

xk
for k ∈ Zm. (3.6)

Indeed, suppose by contradiction that there is N ∈ Zm such that ∆xN/xN < ∆vN/vN . Then,

in view of Proposition 3.1, ∆xk/xk < ∆vk/vk for k ∈ ZN , which contradicts (3.2). Combining

(3.6) and (3.4), we obtain (3.5). The last assertion of the statement is an immediate consequence

of (3.5).

Taking p = P and r = R in Theorem 3.5, we get the following corollary.

Corollary 3.6. If (3.3) has a positive decreasing (nonincreasing) solution on Zm, then there exists a

recessive solution of (3.3) which is positive decreasing (nonincreasing) on Zm.

We close this section by the following characterization of the asymptotic behavior of reces-

sive solutions which will be used later.

Lemma 3.7. Let
∞

∑
j=m

1

rj
< ∞ and

∞

∑
j=m

pj

∞

∑
i=j+1

1

ri
< ∞.

Then (3.1) is nonoscillatory. Moreover, for every d 6= 0, (3.1) has an eventually positive, nonincreasing

recessive solution u, tending to zero and satisfying

lim
k→∞

uk

∑
∞
j=k r−1

j

= d.

Proof. It follows from [11, Lemma 2.1 and Corollary 3.6]. More precisely, the result [11,

Lemma 2.1] guarantees limk→∞ rk∆uk = −d < 0. Now, from the discrete L’Hospital rule,

we get

lim
k→∞

uk

∑
∞
j=k r−1

j

= lim
k→∞

∆uk

−r−1
k

= d.
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4 Main result: solvability of BVP

Our main result is the following.

Theorem 4.1. Let (Hi), i=1,2,3, be satisfied and

Lc = sup
u∈(0,c]

F(u)

u
. (4.1)

If the linear difference equation

∆

(
ak√

1 + c2
∆zk

)
+ Lcbkzk+1 = 0, (4.2)

has a positive decreasing solution on Zm, then BVP (1.1)–(1.2) has at least one solution.

Effective criteria, ensuring the existence of a positive decreasing solution of (4.2), are given

at the end of this section.

From this theorem and its proof we get the following.

Corollary 4.2. Let (Hi), i = 1, 2, 3, be satisfied. If (4.2) has a positive decreasing solution on Zm for

c = c0 > 0, then (1.1)–(1.2) has at least one solution for every c ∈ (0, c0].

To prove Theorem 4.1, we use a fixed point approach, based on the Schauder–Tychonoff

theorem on the Fréchet space

X = {u : Zm → R}
of all sequences defined on Zm, endowed with the topology of pointwise convergence on Zm.

The use of the Fréchet space X, instead of a suitable Banach space, is advantageous especially

for the compactness test. Even if this is true also in the continuous case, in the discrete case

the situation is even more simple, since any bounded set in X is relatively compact from the

discrete Arzelà–Ascoli theorem. We recall that a set Ω ⊂ X is bounded if the sequences in

Ω are equibounded on every compact subset of Zm. The compactness test is therefore very

simple just owing to the topology of X, while in discrete Banach spaces can require some

checks which are not always immediate.

Notice that, if Ω ⊂ X is bounded, then Ω∆ = {∆u, u ∈ Ω} is bounded, too. This is a

significant discrepancy between the continuous and the discrete case; such a property can

simplify the solvability of discrete boundary value problems associated to equations of order

two or higher with respect to the continuous counterpart because a-priori bounds for the first

difference

∆xn = xn+1 − xn

are a direct consequences of a-priori bounds for xn, and similarly for higher order differences.

In [20, Theorem 2.1], the authors proved an existence result for BVPs associated to func-

tional difference equations in Fréchet spaces (see also [20, Corollary 2.6], [15, Theorem 4] and

remarks therein). That result is a discrete counterpart of an existence result stated in [10, The-

orem 1.3] for the continuous case, and reduces the problem to that of finding good a-priori

bounds for the unknown of a auxiliary linearized equation.

The function

Φ(v) =
v√

1 + v2
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can be decomposed as

Φ(v) = vJ(v),

where J is a continuous function on R such that limv→0 J(v) = 1. This suggests the form of an

auxiliary linearized equation. Using the same arguments as in the proof of [20, Theorem 2.1],

with minor changes, we have the following.

Theorem 4.3. Consider the (functional) BVP

{
∆(an∆xn J(∆xn)) = g(n, x), n ∈ Zm,

x ∈ S,
(4.3)

where J : R → R and g : Zm × X → R are continuous maps, and S is a subset of X.

Let G : Zm ×X
2 → R be a continuous map such that G(k, q, q) = g(k, q) for all (k, q) ∈ Zm ×X.

If there exists a nonempty, closed, convex and bounded set Ω ⊂ X such that:

a) for any u ∈ Ω the problem

{
∆(an J(∆un)∆yn) = G(n, y, u), n ∈ Zm,

y ∈ S,
(4.4)

has a unique solution y = T(u);

b) T(Ω) ⊂ Ω;

c) T(Ω) ⊂ S,

then (4.3) has at least one solution.

Proof. We briefly summarize the main arguments, for reader’s convenience, which are a minor

modification of the ones in [20, Theorem 2.1].

Let us show that the operator T : Ω → Ω is continuous with relatively compact image.

The relatively compactness of T(Ω) follows immediately from b), since Ω is bounded. To

prove the continuity of T in Ω, let {uj} be a sequence in Ω, uj → u∞ ∈ Ω, and let vj = T(uj).

Since T(Ω) is relatively compact, {vj} admits a subsequence (still indicated with {vj}) which

is convergent to v∞, with v∞ ∈ S from c). Since J, G are continuous on their domains, we

obtain

0 = ∆(an J(∆u
j
n)∆v

j
n)− G(n, vj, uj) → ∆(an J(∆u∞

n )∆v∞
n )− G(n, v∞, u∞)

as j → ∞. The uniqueness of the solution of (4.4) implies v∞ = T(u∞), and therefore T is

continuous. By the Schauder–Tychonoff fixed point theorem, T has at least one fixed point in

Ω, which is clearly a solution of (4.3).

Proof of Theorem 4.1. Let z be the recessive solution of (4.2) such that zm = c, zk > 0, ∆zk ≤ 0,

k ∈ Zm; the existence of a recessive solution with these properties follows from Corollary 3.6.

Further, from Lemma 3.7, we have limk→∞ zk = 0.

Define the set Ω by

Ω =

{
u ∈ X : 0 ≤ uk ≤ c

k−1

∏
j=m

(
1 + M

∆zj

zj

)
, k ∈ Zm

}
,
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where X is the Fréchet space of all real sequences defined on Zm, endowed with the topology

of pointwise convergence on Zm, and M = 1/
√

1 + c2 ∈ (0, 1). Clearly Ω is a closed, bounded

and convex subset of X.

For any u ∈ Ω, consider the following BVP




∆

(
ak√

1 + (∆uk)2
∆yk

)
+ bk F̃(uk+1)yk+1 = 0, k ∈ Zm,

y ∈ S

(4.5)

where

F̃(v) =
F(v)

v
for v > 0, F̃(0) = lim

v→0+

F(v)

v

is continuous on R
+, due to assumption (1.3), and

S =

{
y ∈ X : ym = c, yk > 0, ∆yk ≤ 0 for k ∈ Zm,

∞

∑
j=m

1

ajyjyj+1
= ∞

}
.

Since 0 ≤ uk ≤ c, for every u ∈ Ω, we have −c ≤ ∆uk ≤ c, and so (∆uk)
2 ≤ c2. Therefore,

1√
1 + (∆uk)2

≥ 1√
1 + c2

for every u ∈ Ω and k ∈ Zm. Further F̃(uk+1) ≤ Lc for u ∈ Ω, and hence (4.2) is Sturm

majorant for the linear equation in (4.5). Let ŷ = ŷ(u) be the recessive solution of the equation

in (4.5) such that ŷm = c. Then ŷ is positive nonincreasing on Zm by Theorem 3.5, and, in view

of ŷm = c and the uniqueness of recessive solutions up to the constant factor, ŷ is the unique

solution of (4.5). Define the operator T : Ω → X by (T u)k = ŷk for u ∈ Ω.

From Theorem 3.5, we get

ak∆ŷk

ŷk
≤ ak∆ŷk

ŷk

√
1 + (∆uk)2

≤ ak M∆zk

zk
≤ 0,

which implies ∆ŷk/ŷk ≤ M∆zk/zk, k ∈ Zm. By Lemma 2.2,

ŷk ≤ c
k−1

∏
j=m

(
1 + M

∆zj

zj

)
, k ∈ Zm,

which yields T (Ω) ⊆ Ω.

Next we show that T (Ω) ⊆ S. Let y ∈ T (Ω). Then there exists {uj} ⊂ Ω such that {T uj}
converges to y (in the topology of X). It is not restrictive to assume {uj} → ū ∈ Ω since Ω is

compact. Since T uj =: ŷj is the (unique) solution of (4.5), we have ŷ
j
m = c, ŷ

j
k > 0 and ∆ŷ

j
k ≤ 0

on Zm for every j ∈ N. Consequently, ym = c, yk ≥ 0, ∆yk ≤ 0 for k ∈ Zm. Further, since

F̃ is continuous, y is a solution of the equation in (4.5) for u = u. Suppose now that there is

T ∈ Zm such that yT = 0. Then clearly ∆yT = 0 and by the global existence and uniqueness

of the initial value problem associated to any linear equation, we get y ≡ 0 on Zm, which

contradicts to ym = c > 0. Thus yk > 0 for all k ∈ Zm.

We have just to prove that ∑
∞
j=m(ajyjyj+1)

−1 = ∞. In view of Lemma 3.7, there exists N > 0

such that yk ≤ N ∑
∞
j=k a−1

j on Zm. Noting that

∆

(
1

∑
∞
j=k a−1

j

)
=

1

ak ∑
∞
j=k a−1

j ∑
∞
j=k+1 a−1

j

,
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we obtain

k−1

∑
j=m

1

ajyjyj+1

≥
k−1

∑
j=m

1

N2aj ∑
∞
i=j a−1

i ∑
∞
i=j+1 a−1

i

=
1

N2

k−1

∑
j=m

∆

(
1

∑
∞
i=j a−1

i

)

=
1

N2

(
1

∑
∞
j=k a−1

j

− 1

∑
∞
j=m a−1

j

)
→ ∞ as k → ∞.

Thus y ∈ S, i.e., T (Ω) ⊆ S. By applying Theorem 4.3, we obtain that the problem





∆

(
ak

∆xk√
1 + (∆xk)2

)
+ bkF(xk+1) = 0, k ∈ Zm,

x ∈ S

has at least a solution x̄ ∈ Ω. From the definition of the set Ω,

xk ≤ c
k−1

∏
j=m

(
1 + M

∆zj

zj

)

and since M ∈ (0, 1) and limk→∞ zk = 0, we have

lim
k→∞

k−1

∏
j=m

(
1 + M

∆zj

zj

)
= 0

by Lemma 2.3. Thus x̄k → 0 as k → ∞, and x̄ is a solution of the BVP (1.1)–(1.2).

Proof of Corollary 4.2. Assume that (4.2) has a positive decreasing solution for c = c0 > 0,

and let c1 ∈ (0, c0). Then equation (4.2) with c = c0 is a Sturm majorant of (4.2) with c = c1,

and from Theorem 3.5, equation (4.2) with c = c1 has a positive decreasing solution. The

application of Theorem 4.1 leads to the existence of a solution of (1.1)–(1.2) for c = c1.

Effective criteria for the solvability of BVP (1.1)–(1.2) can be obtained by considering as a

Sturm majorant of (4.2) any linear equation that is known to have a global positive solution.

In the continuous case, a typical approach to obtaining global positivity of solutions for

equation

(t2y′)′ + γy = 0, t ≥ 1, (4.6)

where 0 < γ ≤ 1/4, is based on the Sturm theory. In virtue of the transformation x = t2y′,
this equation is equivalent to the Euler equation

x′′ +
γ

t2
x = 0, t ≥ 1, (4.7)

whose general solutions are well-known.

In the discrete case, various types of Euler equations are considered in the literature, see,

e.g. [18, 23] and references therein. It is somehow problematic to find a solution for some

natural forms of discrete Euler equations in the self-adjoint form (3.1).

Here our aim is to deal with solutions of Euler type equations.

Lemma 4.4. The equation

∆
(
(k + 1)2∆xk

)
+

1

4
xk+1 = 0 (4.8)

has a recessive solution which is positive decreasing on N.
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Proof. Consider the sequence

yk =
k−1

∏
j=1

2j + 1

2j
, k ≥ 1,

with the usual convention ∏
0
j=1 uj = 1. One can verify that y is a positive increasing solution

of the equation

∆2yk +
1

2(k + 1)(2k + 1)
yk+1 = 0 (4.9)

on N.

Set xk = ∆yk. Then x is a positive decreasing solution of the equation

∆(2(k + 1)(2k + 1)∆xk) + xk+1 = 0 (4.10)

on N. Obviously,

2(k + 1)(2k + 1) ≤ 4(k + 1)2, k ≥ 1,

thus (4.10) is a Sturm majorant of (4.8). By Theorem 3.5, (4.8) has a recessive solution which

is positive decreasing on N.

Equation (4.8) can be understand as the reciprocal equation to the Euler difference equation

∆2uk +
1

4(k + 1)2
uk+1 = 0, (4.11)

i.e., these equations are related by the substitution relation uk = d∆xk, d ∈ R, where u satisfies

(4.11) provided x is a solution of (4.8). The form of (4.11) perfectly fits the discretization of the

differential equation (4.7) with γ = 1/4, using the usual central difference scheme.

Corollary 4.5. Let (Hi), i = 1, 2, 3, be satisfied and Lc be defined by (4.1). The BVP (1.1)–(1.2) has at

least one solution if there exists λ > 0 such that for k ≥ 1

ak ≥ 4λ(k + 1)2,
√

1 + c2 Lc bk ≤ λ. (4.12)

Proof. Consider the equation (4.8). By Lemma 4.4, it has a positive decreasing solution on N.

The same trivially holds for the equivalent equation

∆
(
4λ(k + 1)2∆xk

)
+ λxk+1 = 0. (4.13)

Since (4.12) holds, (4.13) is a Sturm majorant of (4.2), and by Theorem 3.5, equation (4.2) has a

positive decreasing solution on N. Now the conclusion follows from Theorem 4.1.

Remark. Note that the sequence b does not need to be bounded. For example, consider as a

Sturm majorant of (4.2) the equation

∆
(
λk2k+1∆xk

)
+ λ2k+1xk+1 = 0, k ≥ 0.

One can check that this equation has the solution xk = 2−k. This leads to the conditions

ak ≥ λk2k+1,
√

1 + c2 Lc bk ≤ λ2k+1 for k ≥ 0

ensuring the solvability of the BVP (1.1)–(1.2).
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Another criteria can be obtained by considering the equation

∆
(
λk3∆xk

)
+ λ

k2 + 3k + 1

k + 2
xk+1 = 0, k ≥ 1

having the solution xk = 1/k. This comparison with (4.2) leads to the conditions

ak ≥ λk3,
√

1 + c2 Lc bk ≤ λ
k2 + 3k + 1

k + 2
for k ≥ 1 .

The following example illustrates our result.

Example 4.6. Consider the BVP





∆
(
(k + 1)2Φ(∆xk)

)
+

| sin k|
4
√

2 k
x3

k+1 = 0, k ≥ 1,

x1 = c, xk > 0, ∆xk ≤ 0, lim
k→∞

xk = 0.

(4.14)

We have Lc = c2, ak = (k + 1)2, and bk = | sin k|
4
√

2 k
. Conditions in (4.12) are fulfilled for any

c ∈ (0, 1] when taking λ = 1/4. Indeed,

ak = (k + 1)2 = 4λ(k + 1)2

and √
1 + c2Lcbk =

√
1 + c2c2bk ≤

√
2bk ≤

1

4
| sin k| ≤ 1

4
= λ.

Corollary 4.5 now guarantees solvability of the BVP (4.14) for any c ∈ (0, 1].

5 Comments and open problems

It is interesting to compare our discrete BVP with the continuous one investigated in [13].

Here the BVP for the differential equation with the Euclidean mean curvature operator





(
a(t)

x′√
1 + x′2

)′
+ b(t)F(x) = 0, t ∈ [1, ∞),

x(1) = 1, x(t) > 0, x′(t) ≤ 0 for t ≥ 1, lim
t→∞

x(t) = 0,
(P)

has been considered. Sometimes solutions of differential equations satisfying the condition

x(t) > 0, x′(t) ≤ 0 , t ∈ [1, ∞),

are called Kneser solutions and the problem to find such solution is called Kneser problem.

The problem (P) has been studied under the following conditions:

(C1) The function a is continuous on [1, ∞), a(t) > 0 in [1, ∞), and

∫ ∞

1

1

a(t)
dt < ∞.

(C2) The function b is continuous on [1, ∞), b(t) ≥ 0 and

∫ ∞

1
b(t)

∫ ∞

t

1

a(s)
dsdt < ∞.
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(C3) The function F is continuous on R, F(u)u > 0 for u 6= 0, and such that

lim sup
u→0+

F(u)

u
< ∞. (5.1)

The main result for solvability of (P) is the following. Note that the principal solution for

linear differential equation is defined similarly as the recessive solution, see e.g. [13, 17].

Theorem 5.1 ([13, Theorem 3.1]). Let (Ci), i = 1, 2, 3, be verified and

L = sup
u∈(0,1]

F(u)

u
.

Assume

α = inf
t≥1

a(t)A(t) > 1,

where

A(t) =
∫ ∞

t

1

a(s)
ds.

If the principal solution z0 of the linear equation

(
a(t)z′

)′
+

α√
α2 − 1

L b(t)z = 0, t ≥ 1,

is positive and nonincreasing on [1, ∞), then the BVP (P) has at least one solution.

It is worth to note that the method used in [13] does not allow that α = 1 and thus

Theorem 5.1 is not immediately applicable when a(t) = t2. In [13] there are given several

effective criteria for the solvability of the BVP (P) which are similar to Corollary 4.5. An

example, which can be viewed as a discrete counterpart, is the above Example 4.6.

Open problems.

(1) The comparison between Theorem 4.1 for the discrete BVP and Theorem 5.1 for the con-

tinuous one, suggests to investigate the BVP (1.1)–(1.2) on times scales.

(2) In [13], the solvability of the continuous BVP has been proved under the weaker assump-

tion (5.1) posed on F. This is due to the fact that the set Ω is defined using a precise lower

bound which is different from zero. It is an open problem if a similar estimation from below

can be used in the discrete case and assumption (1.3) can be replaced by (5.1).

(3) Similar BVPs concerning the existence of Kneser solutions for difference equations with

p-Laplacian operator are considered in [12] when bk < 0 for k ∈ Z
+. It should be interesting

to extend the solvability of the BVP (1.1)–(1.2) to the case in which the sequence b is negative

and in the more general situation when the sequence b is of indefinite sign.
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class of quasilinear problems with weights. We consider one dimensional problems on
an interval which may be finite or infinite. In particular, when the interval is infinite,
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1 Introduction

We consider the following quasilinear Dirichlet problem with weights






−
(

ρ(t)|u′(t)|p−2u′(t)
)′
= σ(t) f (t, u(t)), t ∈ (a, b),

lim
t→a+

u(t) = lim
t→b−

u(t) = 0 ,
(1.1)

with p > 1, ρ = ρ(t) and σ = σ(t), t ∈ (a, b) are positive weight functions that are measurable

and finite everywhere in (a, b), where −∞ ≤ a < b ≤ ∞ and f = f (t, s) : (a, b) × R → R

BCorresponding author. Email: pdrabek@kma.zcu.cz
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is continuous. Here we allow the weights ρ and σ to be singular (details are forthcoming in

Section 2).

Study of the one dimensional model, such as (1.1), is often helpful to capture the qualitative

behavior of the solution in the presence of the weights ρ and σ. Moreover, they provide

insights for study of more complex models in higher dimension. Therefore, in this paper we

present a careful analysis of the one dimensional problem (1.1), and at the end, also apply the

obtained results to study the radially symmetric solutions to a class of problems in the higher

dimensional case.

In Section 2, we formulate basic assumptions on weight functions ρ and σ and introduce

an appropriate functional setting to study (1.1). In Section 3, we prove a general sub- and

supersolution result, Theorem 3.1, using monotone iteration methods. In Section 4 and Sec-

tion 5, we study two auxiliary problems, solutions of which are used in the construction of

sub- and supersolution in order to apply Theorem 3.1. In particular, main results of Section 4

are Theorem 4.3 and Theorem 4.4, and similarly main results of Section 5 are Theorem 5.2 and

Theorem 5.3. The asymptotic estimates derived in these theorems are utilized in the construc-

tion of a well ordered pair of sub- and supersolution. We obtain rather sharp decay estimates

of the first eigenfunction of the p-Laplacian operator with weights in Section 4. These esti-

mates are expressed in terms of the singularity or the degeneracy of the weight ρ, and are of

independent interest. In Section 6, we consider the special case (a, b) = (1,+∞) and weight

functions ρ and σ to be of “power type behavior” both near 1 and near +∞. Corollary 6.2

is the special case of Theorem 4.3 and Theorem 4.4, where the asymptotics are expressed in

terms of the powers of these weight functions ρ and σ. Similarly, Corollary 6.3 is the special

case of Theorem 5.2 and Theorem 5.3. In Section 7, we consider an application of our one di-

mensional results obtained thus far to a radially symmetric Dirichlet problem for quasilinear

PDEs on annular type domains or exterior domains in R
N . In these cases, PDEs transform

to special cases of (1.1) with a > 0 and b ≤ +∞. Therefore, we can reformulate the previous

existence result, Corollary 7.2, and asymptotic analysis, Corollaries 7.3–7.6. Two illustrative

examples are provided in Section 8. In particular, first we consider a special form of (1.1),

and under appropriate assumptions on f , we construct a suitable pair of sub- and superso-

lution to guarantee the existence of a positive solution with prescribed decay rate at a and

b, see Theorem 8.1. Second, we consider an analogous radially symmetric Dirichlet problem

for a class of quasilinear PDEs, see Theorem 8.3. When the weights, ρ and σ, have power

type behavior, we show that for certain powers, our positive solution cannot satisfy the Hopf

maximum principle at the boundary, see Remark 8.5.

2 Notation and functional setting

Let p > 1, p′ = p
p−1 and, ρ = ρ(t) and σ = σ(t), t ∈ (a, b) be positive weight functions that are

measurable and finite everywhere in (a, b), where −∞ ≤ a < b ≤ ∞. We define the following

spaces which will be used throughout the paper. Let

Y := Lp(a, b; σ) be the set of all measurable functions u = u(t) in (a, b) satisfying

‖u‖Y := ‖u‖p,σ =

(

∫ b

a
σ(t)|u(t)|pdt

)
1
p

< +∞ ;

C∞

0 (a, b) be the set of all smooth functions with a compact support in (a, b);
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X := W
1,p
0 (a, b; ρ) be the closure of C∞

0 (a, b) with respect to the norm

‖u‖X := ‖u‖1,p,ρ =

(

∫ b

a
ρ(t)|u′(t)|pdt

)
1
p

;

XL := W
1,p
L (a, b; ρ) be the set of all functions u = u(t) in (a, b) such that for every compact

interval I ⊂ (a, b), u is absolutely continuous on I, limt→a+ u(t) = 0 and ‖u‖X < ∞;

XR := W
1,p
R (a, b; ρ) is defined analogously, except requiring limt→b− u(t) = 0.

Properties of function spaces:

If σ ∈ L1
loc(a, b), then C∞

0 (a, b) is dense in Y. If σ1−p′ ∈ L1
loc(a, b), then Y is a uniformly

convex Banach space. If ρ1−p′ ∈ L1
loc(a, b), then X, XL, XR are uniformly convex Banach spaces,

and ρ ∈ L1
loc(a, b) implies that X = XR ∩ XL. See [8, 11] and [13] for details.

Next two theorems establish sufficient conditions for continuous and compact embeddings

between the above defined weighted Sobolev and Lebesgue spaces. The proofs can be found

in the book [13, Chapter 1].

Proposition 2.1. Let

sup
a<t<b

(

∫ b

t
σ(τ)dτ

)(

∫ t

a
ρ1−p′(τ)dτ

)p−1

< ∞ . (2.1)

Then XL, X →֒ Y (continuous embedding). Let

sup
a<t<b

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

< ∞ . (2.2)

Then XR, X →֒ Y.

Proposition 2.2. Let

lim
t→a+

t→b−

(

∫ b

t
σ(τ)dτ

)(

∫ t

a
ρ1−p′(τ)dτ

)p−1

= 0 . (2.3)

Then XL, X →֒→֒ Y (compact embedding). Let

lim
t→a+

t→b−

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

= 0 . (2.4)

Then XR, X →֒→֒ Y.

Unless specified otherwise, we always assume that ρ and σ satisfy either (2.3) or (2.4).

For the sake of brevity, we use the same notation for all generic positive constants. In order

to avoid confusion, the reader is kindly asked to check the exact meaning of these constants

separately in every section.
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3 Monotone iterations

A function u ∈ X is called a weak solution of (1.1) if the integral identity

∫ b

a
ρ(t)|u′(t)|p−2u′(t)φ′(t)dt =

∫ b

a
σ(t) f (t, u(t))φ(t)dt (3.1)

holds for all test functions φ ∈ X with both integrals in (3.1) being finite.

In fact, if ρ and σ are continuous functions in (a, b) then a weak solution u ∈ X of (1.1) is

regular in the following sense (see [9]):

u ∈ C1(a, b), ρ|u′|p−2u′ ∈ C1(a, b), the equation (1.1) holds

at every point and the boundary conditions are satisfied

}

. (3.2)

A function u ∈ X, such that u ∈ C1(a, b), ρ|u′|p−2u′ ∈ C1(a, b), is called a subsolution of

(1.1), if for all t ∈ (a, b) we have

−
(

ρ(t)|u′(t)|p−2u′(t)
)′
≤ σ(t) f (t, u(t)), t ∈ (a, b) .

A supersolution u ∈ X of (1.1) is defined analogously with the reverse inequality. Note that

u, u ∈ X implies that

lim
t→a+

u(t) = lim
t→b−

u(t) = lim
t→a+

u(t) = lim
t→b−

u(t) = 0 .

We state the following existence theorem.

Theorem 3.1. Let u, u ∈ X be sub- and supersolutions of (1.1) respectively, and u ≤ u in (a, b).

Assume that there exist constants C0 > 0 and η > 0 such that the following hold:

(H1) | f (t, s)| ≤ C0|s|p−1 for all t ∈ (a, b) and all s ∈ R;

(H2) the function s 7→ f (t, s)+η|s|p−2s is increasing on the interval
[

mint∈(a,b) u(t), maxt∈(a,b) u(t)
]

for all t ∈ (a, b).

Then there exist a minimal weak solution umin and a maximal weak solution umax of (1.1) such

that

u ≤ umin ≤ umax ≤ u in (a, b) .

Proof. Let F(z)(t) := σ(t)
(

f (t, z(t)) + η|z(t)|p−2z(t)
)

, z ∈ Y. By (H1), Hölder’s inequality

and the continuity of the Nemytskii operator, F : Y → X∗ (the dual of X) is a continuous map.

For z ∈ Y, consider the following quasilinear Dirichlet problem







−
(

ρ(t)|u′(t)|p−2u′(t)
)′
+ ησ(t)|u(t)|p−2u(t) = F(z)(t), t ∈ (a, b),

lim
t→a+

u(t) = lim
t→b−

u(t) = 0 .
(3.3)

Then (3.3) has a unique weak solution u ∈ X. Indeed, (3.3) understood in the weak sense is

equivalent to the operator equation

Jη(u) = F(z) (3.4)

where Jη : X → X∗ is strictly monotone, continuous and weakly coercive operator. Therefore

(3.4) has a unique solution (see [5, Sec. 12.3]) and hence (3.3) has a unique weak solution.
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By [8, Lemma 3.3], J−1
η : X∗ → X is continuous. Therefore, T := J−1

η ◦ F : Y → X is

continuous and by the compact embedding X →֒→֒ Y, T : Y → Y is also compact. It is

straight forward to check that u = T(u) if and only if u ∈ X is a weak solution of problem

(1.1).

To complete the proof, we show that T is order preserving (monotone increasing) operator

on the order interval [u, u] ⊂ X, and u ≤ T(u) and u ≥ T(u), i.e., u and u are sub- and

supersolutions of T, respectively, see [10, Section 6.3].

Indeed, let z1, z2 ∈ Y satisfying u ≤ z1 ≤ z2 ≤ u, and let ui = T(zi), i = 1, 2. Then

−
[

(

ρ(t)|u′
2(t)|

p−2u′
2(t)

)′
−
(

ρ(t)|u′
1(t)|

p−2u′
1(t)

)′
]

+ ησ(t)
[

|u2(t)|
p−2u2(t)− |u1(t)|

p−2u1(t)
]

= σ(t)
(

f (t, z2(t)) + η|z2(t)|
p−2z2(t)

)

− σ(t)
(

f (t, z1(t)) + η|z1(t)|
p−2z1(t)

)

≥ 0 (3.5)

in (a, b), by the assumption (H2). We claim u1 ≤ u2 in (a, b). Suppose not. Then by continuity

of u1 and u2, there is a nonempty open interval (a1, b1) ⊆ (a, b) such that u2(t) < u1(t), t ∈

(a1, b1), limt→a1,b1
(u2(t)− u1(t)) = 0. Now, multiply (3.5) in (a1, b1) by u2 − u1, integrate from

a1 to b1, perform integration by parts in the first two integrals and use limt→a1,b1
(u2(t) −

u1(t)) = 0 to get

∫ b1

a1

ρ(t)
(

|u′
2(t)|

p−2u′
2(t)− |u′

1(t)|
p−2u′

1(t)
)′
(u′

2(t)− u′
1(t))dt

+ η
∫ b1

a1

σ(t)
(

|u2(t)|
p−2u2(t)− |u1(t)|

p−2u1(t)
)

(u2(t)− u1(t))dt ≤ 0 .

This contradicts the fact that s 7→ |s|p−2s is strictly increasing. Hence u1 ≤ u2. A similar

argument as above yields u ≤ T(u) and u ≥ T(u). Hence Theorem 3.1 holds.

In the next two sections, we investigate special forms of (1.1) whose solutions are used in

the construction of an ordered pair of sub- and supersolution in Section 8.

4 Asymptotic analysis of principal eigenfunction

We consider the following quasilinear eigenvalue problem with weights







−
(

ρ(t)|u′(t)|p−2u′(t)
)′
= λσ(t)|u(t)|p−2u(t), t ∈ (a, b),

lim
t→a+

u(t) = lim
t→b−

u(t) = 0 .
(4.1)

We define eigenvalues and eigenfunctions associated with (4.1) in the usual way.

Taking advantage of the compact embedding, X →֒→֒ Y, from Proposition 2.2, we can

construct a sequence of variational eigenvalues and corresponding eigenfunctions of (4.1)

using the Lusternik–Schnirelman “inf-sup” argument provided ρ and σ satisfy (2.3) or/and

(2.4). In particular, we have the following assertions concerning the principal eigenvalue λ1

and associated principal eigenfunction ϕ1 ∈ X.

Proposition 4.1. Let (2.3) or (2.4) hold. Then

λ1 := inf
u 6=0
u∈X

∫ b
a ρ(t)|u′(t)|pdt
∫ b

a σ(t)|u(t)|pdt
> 0
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is the principal eigenvalue of (4.1), and the infimum is achieved at a unique ϕ1 ∈ X, ϕ1 > 0 in (a, b),

‖ϕ1‖Y = 1. Moreover, if ρ and σ are continuous weight functions, ϕ1 enjoys regularity properties

(3.2).

The proof follows from standard arguments, see for example, [1–3, 8, 12, 14].

Remark 4.2. It follows from Rolle’s theorem, from the positivity of ϕ1 and from the equation

(

ρ(t)|ϕ′
1(t)|

p−2 ϕ′
1(t)

)′
= −λ1σ(t)ϕ

p−1
1 (t) (< 0), t ∈ (a, b) , (4.2)

that there exist ã, b̃ ∈ (a, b), ã ≤ b̃, such that ϕ′
1(ã) = ϕ′

1(b̃) = 0, ϕ′
1(t) > 0 for all t ∈ (a, ã) and

ϕ′
1(t) < 0 for all t ∈ (b̃, b). Notice that it is possible to have ã = b̃. This is the case, when, e.g.,

ρ = σ = 1 and −∞ < a < b < +∞.

For certain classes of reaction terms f , the principal eigenfunction ϕ1 or its suitable mod-

ifications very often serve as positive subsolutions to problem (1.1). To establish the ordering

between subsolution and supersolution, behavior of subsolution near the boundary of the do-

main plays a crucial rule. Therefore, the goal of this section is to study asymptotic properties

of ϕ1(t) as t → a+ and t → b−.

Theorem 4.3. Let ρ and σ be continuous in (a, b) and, ã be as in Remark 4.2. Further, assume

(i) there exist c > 0, ε ∈ (0, p − 1) such that for all t ∈ (a, ã)

(

∫ b

t
σ(τ)dτ

)(

∫ t

a
ρ1−p′(τ)dτ

)ε

≤ c (4.3)

and

(ii)

lim
t→b−

(

∫ b

t
σ(τ)dτ

)(

∫ t

a
ρ1−p′(τ)dτ

)p−1

= 0 . (4.4)

Then there exist a ∈ (a, ã), c1, c2, c̃2 > 0 such that for all t ∈ (a, a) we have

c1

∫ t

a
ρ1−p′(τ)dτ ≤ ϕ1(t) ≤ c2

∫ t

a
ρ1−p′(τ)dτ , (4.5)

and

c1ρ1−p′(t) ≤ ϕ′
1(t) ≤ c̃2ρ1−p′(t) . (4.6)

Theorem 4.4. Let ρ and σ be continuous in (a, b) and, b̃ be as in Remark 4.2. Further, assume

(i) there exist d > 0, ε ∈ (0, p − 1) such that for all t ∈ (b̃, b)

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)ε

≤ d (4.7)

and

(ii)

lim
t→a+

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

= 0 . (4.8)
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Then there exist b ∈ (b̃, b), d1, d2, d̃2 > 0 such that for all t ∈ (b, b) we have

d1

∫ b

t
ρ1−p′(τ)dτ ≤ ϕ1(t) ≤ d2

∫ b

t
ρ1−p′(τ)dτ (4.9)

and

d1ρ1−p′(t) ≤ −ϕ′
1(t) ≤ d̃2ρ1−p′(t) . (4.10)

Remark 4.5. Condition (4.3) implies that for any t ∈ (a, b) we have

σ ∈ L1(t, b) and ρ1−p′ ∈ L1(a, t) .

Similarly, condition (4.7) implies that for any t ∈ (a, b) we have

σ ∈ L1(a, t) and ρ1−p′ ∈ L1(t, b) .

Remark 4.6. ε < p − 1 implies that (4.3) and (4.4) yield

lim
t→a+

(

∫ b

t
σ(τ)dτ

)(

∫ t

a
ρ1−p′(τ)dτ

)p−1

= 0 . (4.11)

Similarly, (4.7) and (4.8) yield

lim
t→b−

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

= 0 . (4.12)

Since (4.4) and (4.11) are nothing but (2.3), the assumptions of Theorem 4.3 guarantee that

ϕ1 ∈ X exists, it is well defined, and satisfies the properties specified in Proposition 4.1. Also,

since (4.8) and (4.12) are nothing but (2.4), similar conclusion can be drawn for Theorem 4.4

as well.

Remark 4.7. Estimate (4.9) can be found in [7] but its proof contains small gaps. Most gaps

are filled in [6] for weights associated with the radial symmetric PDE case, cf. Section 7 of this

paper. For completeness, we provide very careful and detailed proof for the general case of

weights ρ and σ near the left end point a ≥ −∞ of the interval (a, b). The case of the right end

point b ≤ +∞ is similar.

Proof of Theorem 4.3. Let ϕ1 ∈ X be the normalized (‖ϕ1‖Y = 1) and positive principal

eigenfunction, the existence of which follows from Proposition 4.1.

We first establish inequalities in (4.6). Integrating (4.2) from τ ∈ (a, ã) to ã and using

Remark 4.2, we get,

ρ(τ)|ϕ′
1(τ)|

p−2ϕ′
1(τ) = −λ1

∫ τ

ã
σ(θ)ϕ

p−1
1 (θ)dθ ,

and hence

ϕ′
1(τ) = λ

p′−1
1 ρ1−p′(τ)

(

∫ ã

τ
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

. (4.13)

Choose a ∈ (a, ã). Then

c1 := λ
p′−1
1

(

∫ ã

a
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

≤ λ
p′−1
1

(

∫ ã

a
σ(θ)dθ

) 1
p(p−1)

(

∫ b

a
σ(θ)ϕ

p
1(θ)dθ

)
1
p

< ∞ .
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Thus for t ∈ (a, a), we get from (4.13)

ϕ′
1(t) ≥ λ

p′−1
1 ρ1−p′(t)

(

∫ ã

a
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

= c1ρ1−p′(t) ,

establishing the left inequality in (4.6).

We assume for a moment that the right inequality in (4.5) holds and derive from here the

right inequality in (4.6). Indeed, using the right inequality from (4.5) in (4.13), for τ ∈ (a, a),

we get

ϕ′
1(τ) ≤ c2λ

1−p′

1 ρ1−p′(τ)

(

∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(θ1)dθ1

)p−1

dθ

)p′−1

(4.3)

≤ c
1
ε c2λ

1−p′

1 ρ1−p′(τ)





∫ ã

τ
σ(θ)

(

∫ b

θ
σ(θ1)dθ1

)− p−1
ε

dθ





p′−1

=
c

1
ε c2λ

1−p′

1 ρ1−p′(τ)
(

p−1
ε − 1

)p′−1





∫ ã

τ

d

dθ

(

∫ b

θ
σ(θ1)dθ1

)1− p−1
ε

dθ





p′−1

=
c

1
ε c2λ

1−p′

1 ρ1−p′(τ)
(

p−1
ε − 1

)p′−1





(

∫ b

ã
σ(θ1)dθ1

)1− p−1
ε

−

(

∫ b

τ
σ(θ1)dθ1

)1− p−1
ε





p′−1

≤
c

1
ε c2λ

1−p′

1
(

p−1
ε − 1

)p′−1

(

∫ b

ã
σ(θ1)dθ1

)
1

p−1−
1
ε

ρ1−p′(τ) = c̃2ρ1−p′(τ) ,

where

c̃2 :=
c

1
ε c2λ

1−p′

1
(

p−1
ε − 1

)p′−1

(

∫ b

ã
σ(θ1)dθ1

)
1

p−1−
1
ε

< ∞.

The right inequality in (4.6) follows.

Next, we prove the left inequality in (4.5). For t ∈ (a, a), we integrate (4.13) from a to t, we

get

ϕ1(t) =
∫ t

a
ϕ′

1(τ)dτ = λ
p′−1
1

∫ t

a
ρ1−p′(τ)

(

∫ ã

τ
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

dτ

≥ λ
p′−1
1

(

∫ ã

a
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1 (∫ t

a
ρ1−p′(τ)dτ

)

= c1

∫ t

a
ρ1−p′(τ)dτ

and the left inequality of (4.5) follows.

It remains to prove the right inequality in (4.5). This is the most profound part of the proof.

We choose t ∈ (a, a) and integrate (4.13) from a to t. Then applying Hölder’s inequality and
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using
( ∫ b

a σ(θ)ϕ
p
1(θ)dθ

)
1
p = ‖ϕ1‖Y = 1, we get

ϕ1(t) = λ
p′−1
1

∫ t

a
ρ1−p′(τ)

(

∫ ã

τ
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

dτ

≤ λ
p′−1
1

∫ t

a
ρ1−p′(τ)

(

∫ ã

τ
σ(θ)ϕ

p
1(θ)dθ

) 1
p
(

∫ ã

τ
σ(θ)dθ

)

p′−1
p

dτ

≤ λ
p′−1
1

(

∫ b

a
σ(θ)ϕ

p
1(θ)dθ

)
1
p
∫ t

a
ρ1−p′(τ)

(

∫ ã

τ
σ(θ)dθ

)

p′−1
p

dτ

= λ
p′−1
1

∫ t

a
ρ1−p′(τ)I

p′−1
1 (τ)dτ , (4.14)

where

I1(τ) :=

(

∫ ã

τ
σ(θ)dθ

) 1
p

.

We integrate (4.13) again from a to t ∈ (a, a) and use (4.14) to get

ϕ1(t) = λ
p′−1
1

∫ t

a
ρ1−p′(τ)

(

∫ ã

τ
σ(θ)ϕ

p−1
1 (θ)dθ

)p′−1

dτ

≤ λ
p′−1
1

∫ t

a
ρ1−p′(τ)

(

∫ ã

τ
σ(θ)

(

λ
p′−1
1

∫ θ

a
ρ1−p′(θ1)I

p′−1
1 (θ1)dθ1

)p−1

dθ

)p′−1

dτ

= k2

∫ t

a
ρ1−p′(τ)I

p′−1
2 (τ)dτ ,

where k2 := λ
(p′−1)+(p′−1)2(p−1)
1 and

I2(τ) :=
∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(θ1)I

p′−1
1 (θ1)dθ1

)p−1

dθ .

By induction, for n = 3, 4, . . . , we get

ϕ1(t) ≤ kn

∫ t

a
ρ1−p′(τ)I

p′−1
n (τ)dτ , (4.15)

where kn := λ
(p′−1)+(n−1)(p′−1)2(p−1)
1 and

In(τ) :=
∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(θn−1)I

p′−1
n−1 (θn−1)dθn−1

)p−1

dθ .

It suffices to show that there exist K > 0 and n0 ∈ N, such that for all τ ∈ (a, a) we actually

have

In0(τ) ≤ K . (4.16)

Indeed, once (4.16) is established, then (4.15) and (4.16) would imply the right inequality in

(4.5) with c2 := kn0 Kp′−1 > 0. Therefore, we concentrate on the proof of (4.16) with certain

K > 0 and n0 ∈ N.

We start with the estimate of I2 (we will denote by a1, a2, . . . the generic positive constants).

I2(τ) =
∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(θ1)I

p′−1
1 (θ1)dθ1

)p−1

dθ
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=
∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(θ1)

(

∫ ã

θ1

σ(τ1)dτ1

) 1
p(p−1)

dθ1

)p−1

dθ

≤
∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(θ1)

(

∫ b

θ1

σ(τ1)dτ1

)
1

p(p−1)

dθ1

)p−1

dθ

(4.3)

≤ a1

∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(θ1)

(

∫ θ1

a
ρ1−p′(τ1)dτ1

)− ε
p(p−1)

dθ1

)p−1

dθ

= a1

∫ ã

τ
σ(θ)

(

∫ θ

a

d

dθ1

(

1

1 − ε
p(p−1)

)

(

∫ θ1

a
ρ1−p′(τ1)dτ1

)1− ε
p(p−1)

dθ1

)p−1

dθ

= a1

∫ ã

τ
σ(θ)

(

1

1 − ε
p(p−1)

(

∫ θ

a
ρ1−p′(τ1)dτ1

)1− ε
p(p−1)

)p−1

dθ

≤ a2

∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(τ1)dτ1

)p−1− ε
p

dθ . (4.17)

Notice that the last inequality holds thanks to ε < p(p − 1). It follows from (4.3) that

(

∫ θ

a
ρ1−p′(τ1)dτ1

)p−1− ε
p

≤ a3

(

∫ b

θ
σ(τ1)dτ1

)
1
p−

p−1
ε

. (4.18)

Therefore (4.17) and (4.18) yield

I2(τ) ≤ a4

∫ ã

τ
σ(θ)

(

∫ b

θ
σ(τ1)dτ1

)
1
p−

p−1
ε

dθ

= a4

∫ ã

τ

d

dθ





−1
1
p +

ε−p+1
ε





(

∫ b

θ
σ(τ1)dτ1

)
1
p+

ε−p+1
ε

dθ

=
a4

1
p +

ε−p+1
ε





(

∫ b

τ
σ(τ1)dτ1

)
1
p+

ε−p+1
ε

−

(

∫ b

ã
σ(τ1)dτ1

)
1
p+

ε−p+1
ε



 . (4.19)

We may assume, without loss of generality, that

ε 6=
p

p + 1
(p − 1) i.e.,

1

p
+

ε − p + 1

ε
6= 0 .

Therefore, one of the following two cases occurs.

Case 1: ε <
p

p+1 (p − 1), i.e., 1
p +

ε−p+1
ε < 0. Then it follows from (4.19) that there exists K > 0

such that

I2(τ) ≤ −
a4

1
p +

ε−p+1
ε

(

∫ b

ã
σ(τ1)dτ1

)
1
p+

ε−p+1
ε

≤ K ,

i.e., (4.16) holds with n0 = 2 and the proof is complete.

Case 2: ε >
p

p+1 (p − 1), i.e., 1
p +

ε−p+1
ε > 0. Then it follows from (4.19) that

I2(τ) ≤
a4

1
p +

ε−p+1
ε

(

∫ b

τ
σ(τ1)dτ1

)
1
p+

ε−p+1
ε

= a5

(

∫ b

τ
σ(τ1)dτ1

)
1
p+

ε−p+1
ε

. (4.20)
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We continue our iterations:

I3(τ) =
∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(θ2)I

p′−1
2 (θ2)dθ2

)p−1

dθ

(4.20)

≤ a6

∫ ã

τ
σ(θ)





∫ θ

a
ρ1−p′(θ2)

(

∫ b

θ2

σ(τ1)dτ1

)
1

p(p−1)
+ ε−p+1

ε(p−1)

dθ2





p−1

dθ

(4.3)

≤ a7

∫ ã

τ
σ(θ)





∫ θ

a
ρ1−p′(θ2)

(

∫ θ2

a
ρ1−p′(τ1)dτ1

)− ε
p(p−1)

− ε−p+1
p−1

dθ2





p−1

dθ

= a7

∫ ã

τ
σ(θ)





∫ θ

a

1

1 − ε
p(p−1)

− ε−p+1
ε(p−1)

d

dθ2

(

∫ θ2

a
ρ1−p′(τ1)dτ1

)1− ε
p(p−1)

− ε−p+1
p−1

dθ2





p−1

dθ

= a7

∫ ã

τ
σ(θ)





1

1 − ε
p(p−1)

− ε−p+1
ε(p−1)

(

∫ θ

a
ρ1−p′(τ1)dτ1

)1− ε
p(p−1)

− ε−p+1
p−1





p−1

dθ

≤ a8

∫ ã

τ
σ(θ)

(

∫ θ

a
ρ1−p′(τ1)dτ1

)2p−2− ε
p−ε

dθ .

Notice that ε ∈ (0, p − 1) and p > 1 yield the last inequality thanks to ε <
2p

p+1 (p − 1), i.e.,

1 − ε
p(p−1)

− ε−p+1
p−1 > 0. It follows from (4.3) that

(

∫ θ

a
ρ1−p′(τ1)dτ1

)2p−2− ε
p−ε

≤ a9

(

∫ b

θ
σ(τ1)dτ1

)
1
p+1− 1

ε (2p−2)

.

Therefore,

I3(τ) ≤ a10

∫ ã

τ
σ(θ)

(

∫ b

θ
σ(τ1)dτ1

)
1
p+1− 1

ε (2p−2)

dθ

= a10

∫ ã

τ

d

dθ





−1
1
p + 2

ε−p+1
ε





(

∫ b

θ
σ(τ1)dτ1

)
1
p+2

ε−p+1
ε

dθ

=
a10

1
p + 2

ε−p+1
ε





(

∫ b

τ
σ(τ1)dτ1

)
1
p+2

ε−p+1
ε

−

(

∫ b

ã
σ(τ1)dτ1

)
1
p+2

ε−p+1
ε



 . (4.21)

Without loss of generality, we may assume ε 6= 2p
2p+1 (p− 1). Therefore, we distinguish between

two cases again.

Case 1: ε <
2p

2p+1 (p − 1) i.e., 1
p + 2

ε−p+1
ε < 0. Then it follows from (4.21) that there exists K > 0

such that

I3(τ) ≤ −
a10

1
p + 2

ε−p+1
ε

(

∫ b

ã
σ(τ1)dτ1

)
1
p+2

ε−p+1
ε

≤ K ,

i.e., (4.16) holds with n0 = 3 and the proof is complete.

Case 2: ε >
2p

2p+1 (p − 1) i.e., 1
p + 2

ε−p+1
ε > 0. Then it follows from (4.21) that

I3(τ) ≤
a10

1
p + 2

ε−p+1
ε

(

∫ b

τ
σ(τ1)dτ1

)
1
p+2

ε−p+1
ε
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and we continue iterations.

Repeating the argument n times, we may assume without loss of generality, that ε 6=
np

np+1 (p − 1). We have then two different cases.

Case 1: ε <
np

np+1 (p − 1) i. e., 1
p + n

ε−p+1
ε < 0. Then there exists K > 0 such that

In+1(τ) ≤ −
a11

1
p + n

ε−p+1
ε

(

∫ b

ã
σ(τ1)dτ1

)
1
p+n

ε−p+1
ε

≤ K ,

i.e., (4.16) holds with n0 = n and the proof is complete.

Case 2: ε >
np

np+1 (p − 1) i.e., 1
p + n

ε−p+1
ε > 0. Then

In+1(τ) ≤
a11

1
p + n

ε−p+1
ε

(

∫ b

τ
σ(τ1)dτ1

)
1
p+n

ε−p+1
ε

and we continue iterations.

Notice that for a given ε ∈ (0, p − 1), the second case does not occur after finite number

of steps due to limn→∞

np
np+1 = 1. Therefore the proof is complete after a finite number of

iterations. This completes the proof of Theorem 4.3.

The proof of Theorem 4.4 follows by using analogous arguments.

5 Asymptotic analysis of an auxiliary function

A suitable multiple of the solution e = e(t) of the auxiliary Dirichlet problem







−
(

ρ(t)|u′(t)|p−2u′(t)
)′
= σ(t), t ∈ (a, b),

lim
t→a+

u(t) = lim
t→b−

u(t) = 0
(5.1)

with σ ∈ X∗ serves as a positive supersolution of the problem (1.1). If we interpret (5.1) in the

weak sense, then it is equivalent to the operator equation

J(u) = σ (5.2)

where J : X → X∗ is strictly monotone, continuous and weakly coercive operator. Therefore,

there exists unique e = e(t) ∈ X which is a solution of (5.2) and hence a weak solution of

(5.1). Moreover, when σ = σ(t) and ρ = ρ(t) are continuous in (a, b) then the solution e enjoys

regularity properties (3.2) of Section 3.

Moreover, since σ > 0 in (a, b), it follows from (5.1) that e(t) > 0 in (a, b). In addition,

there exist ãe, b̃e ∈ (a, b), ãe ≤ b̃e such that e′(ãe) = e′(b̃e) = 0, e′(t) > 0 for all t ∈ (a, ãe) and

e′(t) < 0 for all t ∈ (b̃e, b).

Remark 5.1. Notice that σ ∈ L1(a, b) is a sufficient condition for σ ∈ X∗. Also observe that

σ ∈ L1(a, b) implies that (4.3) and (4.7) hold for an arbitrary ε ∈ (0, p − 1).

The following assertion is a counterpart of Theorem 4.3.
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Theorem 5.2. Let σ, ρ be continuous in (a, b), σ ∈ L1(a, b) and ρ1−p′ ∈ L1(a, t) for any t ∈ (a, b).

Let ãe be associated with e = e(t), and ε ∈ (0, p − 1). Then there exist ae ∈ (a, ãe), c1, c2, c̃2 > 0 such

that for all t ∈ (a, ae), we have

c1

∫ t

a
ρ1−p′(τ)dτ ≤ e(t) ≤ c2

(

∫ t

a
ρ1−p′(τ)dτ

)1− ε
p−1

(5.3)

and

c1ρ1−p′(t) ≤ e′(t) ≤ c̃2
d

dt

(

∫ t

a
ρ1−p′(τ)dτ

)1− ε
p−1

. (5.4)

Similarly, the following assertion is a counterpart of Theorem 4.4.

Theorem 5.3. Let σ, ρ be continuous in (a, b), σ ∈ L1(a, b) and ρ1−p′ ∈ L1(t, b) for any t ∈ (a, b).

Let b̃e be associated with e = e(t), and ε ∈ (0, p − 1). Then there exist be ∈ (b̃e, b), d1, d2, d̃2 > 0 such

that for all t ∈ (be, b), we have

d1

∫ b

t
ρ1−p′(τ)dτ ≤ e(t) ≤ d2

(

∫ b

t
ρ1−p′(τ)dτ

)1− ε
p−1

(5.5)

and

d1ρ1−p′(t) ≤ −e′(t) ≤ d̃2
d

dt

(

∫ b

t
ρ1−p′(τ)dτ

)1− ε
p−1

. (5.6)

Proof of Theorem 5.2. It follows by directly integrating the equation in (5.1) from ãe to t ∈

(a, ae) with ae < ãe that

e′(t) = ρ1−p′(t)

(

∫ ãe

t
σ(τ)dτ

)p′−1

≥ c1ρ1−p′(t) , (5.7)

with c1 :=
( ∫ ãe

ae
σ(τ)dτ

)p′−1
, i.e., the left inequality in (5.4) holds. Now, integrating the equal-

ity in (5.7) from a to t ∈ (a, ae) yields

e(t) =
∫ t

a
e′(τ)dτ =

∫ t

a
ρ1−p′(τ)

(

∫ ãe

τ
σ(θ)dθ

)p′−1

dτ

≥

(

∫ ãe

ae

σ(θ)dθ

)p′−1 ∫ t

a
ρ1−p′(τ)dτ = c1

∫ t

a
ρ1−p′(τ)dτ

and the left inequality in (5.3) follows.

In view of Remark 5.1, the condition (4.3) is satisfied for any ε ∈ (0, p− 1). For ε ∈ (0, p− 1)

arbitrary, and for t ∈ (a, ae), we have

e′(t) = ρ1−p′(t)

(

∫ ãe

t
σ(τ)dτ

)p′−1

≤ ρ1−p′(t)

(

∫ b

t
σ(τ)dτ

)p′−1

(4.3)

≤ cp′−1ρ1−p′(t)

(

∫ t

a
ρ1−p′(τ)dτ

)−ε(p′−1)

= c̃2
d

dt

(

∫ t

a
ρ1−p′(τ)dτ

)1− ε
p−1

, (5.8)

where c̃2 := cp′−1

1− ε
p−1

. Thus the right inequality in (5.4) holds. Finally, integrating (5.8) from a to

t ∈ (a, ae), we establish the right inequality in (5.3). Indeed,

e(t) =
∫ t

a
e′(τ)dτ ≤

∫ t

a
c̃2

d

dτ

(

∫ τ

a
ρ1−p′(θ)dθ

)1− ε
p−1

dτ = c2

(

∫ t

a
ρ1−p′(τ)dτ

)1− ε
p−1

,

where c2 := cp′−1. The proof of Theorem 5.2 is complete.

The proof of Theorem 5.3 is similar.
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6 Weight functions of special type

Here we consider the case a = 1, b = +∞ and the following pair of continuous weight

functions ρ and σ defined on (1,+∞):

ρ(t) =















(t − 1)α1 , t ∈ (1, 2) ,

1, t ∈ [2, 10] ,
(

10
t

)α∞

, t ∈ (10,+∞) ,

and σ(t) =















(t − 1)β1 , t ∈ (1, 2) ,

1, t ∈ [2, 10] ,
(

10
t

)β∞

, t ∈ (10,+∞) .

(6.1)

The weight functions ρ and σ have “power type behavior” prescribed by α1 and β1 near a = 1

and by α∞ and β∞ near b = +∞. The following assertion is an immediate consequence of

(6.1), (2.3) and (2.4).

Lemma 6.1. Condition (2.3) holds if and only if

α1 < min{β1 + p, p − 1} and β∞ > max{α∞ + p, 1} . (6.2)

Condition (2.4) holds if and only if

β1 > max{α1 − p,−1} and α∞ < min{β∞ − p, 1 − p} . (6.3)

In particular,

(6.2) ⇒ XL, X →֒→֒ Y and (6.3) ⇒ XR, X →֒→֒ Y .

In this section, we discuss an application of Theorems 4.3, 4.4, 5.2 and 5.3. At first, we

concentrate on assumptions (4.3) and (4.7) and interpret an asymptotic behavior of ϕ1 given

by (4.5), (4.6), (4.9) and (4.10) in terms of α1, α∞, β1 and β∞.

Corollary 6.2. Let us assume that (6.2) holds and ϕ1 ∈ X be the principal eigenfunction of (4.1) with

ρ and σ given by (6.1). Then there exist a > 1, c1, c̃1, c2, c̃2 > 0 such that for all t ∈ (1, a) we have

c1(t − 1)1−
α1

p−1 ≤ ϕ1(t) ≤ c2(t − 1)1−
α1

p−1

and

c̃1(t − 1)−
α1

p−1 ≤ ϕ′
1(t) ≤ c̃2(t − 1)−

α1
p−1 .

Similarly, assume that (6.3) holds. Then there exist b > 1, d1, d̃1, d2, d̃2 > 0 such that for all t ∈

(b,+∞) we have

d1t
1+ α∞

p−1 ≤ ϕ1(t) ≤ d2t
1+ α∞

p−1

and

d̃1t
α∞

p−1 ≤ −ϕ′
1(t) ≤ d̃2t

α∞

p−1 .

Proof. The proof consists of verifying the assumptions of Theorem 4.3 and Theorem 4.4 in

the case of the weight functions, ρ and σ, given by (6.1). Indeed, if we assume (6.2) then we

distinguish between two cases. In the case β1 ≥ −1 the condition (4.3) holds with arbitrary

ε ∈ (0, p − 1), and in the case β1 < −1 we can take any ε ∈
( (p−1)(β1+1)

α1−p+1 , p − 1
)

. Similarly, if

we assume (6.3), condition (4.7) holds with arbitrary ε ∈ (0, p − 1) in the case β∞ ≥ 1, and any

ε ∈
( (p−1)(1−β∞)

1−p−α∞

, p − 1
)

in the case β∞ < 1.
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Secondly, we discuss the asymptotic behavior of solution e of (5.1). Notice that in order to

guarantee σ ∈ L1(1,+∞), we must assume β1 > −1 and β∞ > 1. Then condition (6.2) reduces

to

α1 < p − 1 and β∞ > max {α∞ + p, 1} (6.4)

and condition (6.3) reduces to

β1 > max{α1 − p,−1} and α∞ < 1 − p . (6.5)

Corollary 6.3. Let us assume that (6.4) holds and e ∈ X is a weak solution of (5.1) with ρ and σ

given by (6.1). Let ε ∈ (0, p − 1) be arbitrary. Then there exist ae > 1, c1, c̃1, c2, c̃2 > 0 such that for

all t ∈ (1, ae) we have

c1(t − 1)1−
α1

p−1 ≤ e(t) ≤ c2(t − 1)

(

1−
α1

p−1

)(

1− ε
p−1

)

and

c̃1(t − 1)−
α1

p−1 ≤ e′(t) ≤ c̃2(t − 1)

(

1−
α1

p−1

)(

1− ε
p−1

)

−1
.

Similarly, assume that (6.5) holds, and ε ∈ (0, p − 1) is arbitrary. Then there exist be > 1, d1, d̃1, d2,

d̃2 > 0 such that for all t ∈ (be,+∞) we have

d1t
1+ α∞

p−1 ≤ e(t) ≤ d2t

(

1+ α∞

p−1

)(

1− ε
p−1

)

and

d̃1t
α∞

p−1 ≤ −e′(t) ≤ d̃2t

(

1+ α∞

p−1

)(

1− ε
p−1

)

−1
.

Remark 6.4. With obvious modifications we can derive analogous assertions if a, b ∈ R (i.e.,

(a, b) is a bounded interval), a = −∞, b ∈ R (i.e., (a, b) = (−∞, b) is bounded above) and

a = −∞, b = +∞ (i.e., (a, b) = R).

7 Application to partial differential equations

In this section, we will apply the one dimensional results obtained thus far to study the

radially symmetric solutions to a class of quasilinear PDEs satisfying Dirichlet boundary con-

ditions. Our results in this section are valid in various domains in R
N with N ≥ 2 such as

BR :=
{

x ∈ R
N : |x| < R

}

⊂ R
N where BR is a ball if R < +∞ and entire R

N if R = +∞, or

AR2
R1

:=
{

x ∈ R
N : R1 < |x| < R2

}

for 0 < R1 < R2 ≤ +∞

where AR2
R1

is an annular domain if R2 < +∞ and an exterior domain if R2 = +∞.

Here we focus on radially symmetric solutions to the boundary value problem:

{

−div
(

v(|x|)|∇u(|x|)|p−2∇u(|x|)
)

= w(|x|) f (|x|, u(|x|)), x ∈ AR2
R1

u(x) = 0, x ∈ ∂AR2
R1

,
(7.1)

where v and w are positive continuous weight functions. After substitution r = |x|, the above

problem transforms to






−
(

rN−1v(r)|u′(r)|p−2u′(r)
)′
= rN−1w(r) f (r, u(r)), r ∈ (R1, R2),

lim
r→R1

u(r) = lim
r→R2

u(r) = 0 ,
(7.2)
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where f : (R1, R2)× R → R is as in Section 3. The problem (7.2) corresponds to (1.1) with the

following change of notation:

t = r, a = R1, b = R2, ρ(t) = rN−1v(r), σ(t) = rN−1w(r) .

We say that a radially symmetric function u = u(|x|), x ∈ AR2
R1

, is a weak solution of prob-

lem (7.1) if the function u = u(r), r ∈ (R1, R2), is a weak solution of problem (7.2) in the

sense mentioned at the beginning of Section 3. Similarly, using corresponding notions from

Section 3, we can define radially symmetric sub- and supersolutions to (7.1).

Natural spaces to study the radially symmetric solutions to problem (7.1) are Sobolev and

Lebesgue spaces X and Y of all radially symmetric functions with norms depending on v and

w, respectively. More precisely, let v1−p′ , w1−p′ , v, w ∈ L1
loc(AR2

R1
). Then X and Y are uniformly

convex Banach spaces and C∞

0 (AR2
R1
) is dense in both X and Y. A radial function u ∈ Y if and

only if u = u(r) is a measurable function in (R1, R2) satisfying

‖u‖Y =

(

∫ R2

R1

rN−1w(r)|u(r)|pdr

)
1
p

< ∞ .

Similarly, a radial function u ∈ X if and only if u = u(r) is absolutely continuous on every

compact subinterval of (R1, R2), lim
r→R1

u(r) = lim
r→R2

u(r) = 0 and

‖u‖X =

(

∫ R2

R1

rN−1v(r)|u′(r)|pdr

)
1
p

< ∞ .

Obvious change of the notation in (2.1)–(2.4) leads to the following sufficient conditions for

continuous and compact embeddings X →֒ Y and X →֒→֒ Y, respectively.

Proposition 7.1.

(A) Let either

sup
R1<r<R2

(

∫ R2

r
τN−1w(τ)dτ

)(

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)p−1

< ∞

or

sup
R1<r<R2

(

∫ r

R1

τN−1w(τ)dτ

)(

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)p−1

< ∞

hold. Then X →֒ Y.

(B) Let either

lim
r→R1,R2

(

∫ R2

r
τN−1w(τ)dτ

)(

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)p−1

= 0 (7.3)

or

lim
r→R1,R2

(

∫ r

R1

τN−1w(τ)dτ

)(

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)p−1

= 0 (7.4)

hold. Then X →֒→֒ Y.

As a consequence of this compact embedding, the following result follows from Theo-

rem 3.1.
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Corollary 7.2. Let u ∈ X and u ∈ X be subsolution and supersolution of (7.2), respectively, and u ≤

u in (R1, R2). Let f : (R1, R2)× R → R be as in Section 3. Then there exist a minimal weak solution

umin ∈ X and a maximal weak solution umax ∈ X of (7.2) which satisfy u ≤ umin ≤ umax ≤ u in

(R1, R2).

Next, let us consider the eigenvalue problem






−
(

rN−1v(r)|u′(r)|p−2u′(r)
)′

= λrN−1w(r)|u(r)|p−2u(r), r ∈ (R1, R2),

lim
r→R1

u(r) = lim
r→R2

u(r) = 0 .
(7.5)

Under the assumption (7.3) or (7.4) the principal eigenvalue of (7.5),

λ1 := inf
u 6=0
u∈X

∫ R2

R1
rN−1v(r)|u′(r)|pdr

∫ R2

R1
rN−1w(r)|u(r)|pdr

> 0

is achieved at a unique ϕ1 ∈ X, ϕ1 > 0 in (R1, R2) and ‖ϕ1‖Y = 1. Asymptotic estimates

of ϕ1 for r → R1 and r → R2 follow from Theorem 4.3 and Theorem 4.4. Indeed, Let R1 <

R̃1 ≤ R̃2 < R2 be such that ϕ′
1(R̃1) = ϕ′

1(R̃2) = 0 and ϕ′
1(r) > 0 in (R1, R̃1) and ϕ′

1(r) < 0 in

(R̃2, R2). The existence of R̃1 and R̃2 are explained in Remark 4.2. Then due to Theorem 4.3

and Theorem 4.4, we have:

Corollary 7.3. Let c > 0, ε ∈ (0, p − 1) be such that for all r ∈ (R1, R̃1)

(

∫ R2

r
τN−1w(τ)dτ

)(

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)ε

≤ c

and

lim
r→R2

(

∫ R2

r
τN−1w(τ)dτ

)(

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)p−1

= 0 .

Then there exist R1 ∈ (R1, R̃1), c1, c2, c̃2 > 0 such that for all r ∈ (R1, R1) we have

c1

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ ≤ ϕ1(r) ≤ c2

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

and

c1r
1−N
p−1 v1−p′(r) ≤ ϕ′

1(r) ≤ c̃2r
1−N
p−1 v1−p′(r) .

Let d > 0, ε ∈ (0, p − 1) be such that for all r ∈ (R̃2, R2)

(

∫ r

R1

τN−1w(τ)dτ

)(

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)ε

≤ d

and

lim
r→R1

(

∫ r

R1

τN−1w(τ)dτ

)(

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)p−1

= 0 .

Then there exist R2 ∈ (R̃2, R2), d1, d2, d̃2 > 0 such that for all r ∈ (R2, R2) we have

d1

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ ≤ ϕ1(r) ≤ d2

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

and

d1r
1−N
p−1 v1−p′(r) ≤ −ϕ′

1(r) ≤ d̃2r
1−N
p−1 v1−p′(r) .



18 M. Chhetri, P. Drábek and R. Shivaji

Next, we consider the case R1 = 1, R2 = +∞, i.e., AR2
R1

= B
c
1 is exterior of unit ball centered

at the origin. Let us consider continuous radial weights v and w defined on (1,+∞) as follows:

v(r) =















(r − 1)α1 , r ∈ (1, 2),

1, r ∈ [2, 10],
(

10
r

)α∞

, r ∈ (10,+∞);

w(r) =















(r − 1)β1 , r ∈ (1, 2),

1, r ∈ [2, 10],
(

10
r

)β∞

, r ∈ (10,+∞) .

(7.6)

Similarly to Section 6, we can now reformulate the sufficient conditions in Proposition 7.1. We

also express conditions stated in Corollary 7.3 in terms of α1, α∞, β1 and β∞. Clearly, now also

the dimension N ≥ 2 will be involved in these conditions. Indeed, condition (7.3) holds if and

only if

α1 < min {β1 + p, p − 1} and β∞ > max {α∞ + p, N} (7.7)

and condition (7.4) holds if and only if

β1 > max {α1 − p,−1} and α∞ < min {β∞ − p, N − p} . (7.8)

In particular, the compact embedding X →֒→֒ Y holds if either (7.7) or (7.8) holds. Since v

and w are continuous, ϕ1(r) is regular in the sense of (3.2) from Section 3.

Next, we formulate asymptotic behavior of ϕ1, see Corollary 7.3, in the language of powers

α1, α∞, β1 and β∞.

Corollary 7.4. If (7.7) holds, then there exist R1 > 1, c1, c̃1, c2, c̃2 > 0 such that for all r ∈ (1, R1) we

have

c1(r − 1)1−
α1

p−1 ≤ ϕ1(r) ≤ c2(r − 1)1−
α1

p−1

and

c̃1(r − 1)−
α1

p−1 ≤ ϕ′
1(r) ≤ c̃2(r − 1)−

α1
p−1 .

If (7.8) holds, then there exist R2 > 1, d1, d̃1, d2, d̃2 > 0 such that for all r ∈ (R2,+∞) we have

d1r
1+ α∞+1−N

p−1 ≤ ϕ1(r) ≤ d2r
1+ α∞+1−N

p−1

and

d̃1r
α∞+1−N

p−1 ≤ −ϕ′
1(r) ≤ d̃2r

α∞+1−N
p−1 .

While the asymptotics near 1 corresponds to the asymptotics in the first part of Corol-

lary 6.2, the asymptotics near +∞ is affected by an additional term “rN−1”.

Similarly, we can study the asymptotic properties of the weak solution e(r) to the following

auxiliary problem






−
(

rN−1v(r)|u′(r)|p−2u′(r)
)′

= rN−1w(r), r ∈ (R1, R2),

lim
r→R1

u(r) = lim
r→R2

u(r) = 0 .
(7.9)

In fact, we can formulate an analogue of Theorem 5.2 and Theorem 5.3.

Corollary 7.5. Let rN−1w(r) ∈ L1(R1, R2). Given ε ∈ (0, p− 1) arbitrary, there exist R
e
1 ∈ (R1, R2),

c1, c2, c̃2 > 0 such that for all r ∈ (R1, R
e
1) we have

c1

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ ≤ e(r) ≤ c2

(

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)1− ε
p−1
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and

c1r
1−N
p−1 v1−p′(r) ≤ e′(r) ≤ c̃2

d

dr

(

∫ r

R1

τ
1−N
p−1 v1−p′(τ)dτ

)1− ε
p−1

.

Similarly, given ε ∈ (0, p − 1) arbitrary, there exist R
e
2 ∈ (R1, R2), d1, d2, d̃2 > 0 such that for all

r ∈ (R
e
2, R2) we have

d1

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ ≤ e(r) ≤ d2

(

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)1− ε
p−1

and

d1r
1−N
p−1 v1−p′(r) ≤ −e′(r) ≤ d̃2

d

dr

(

∫ R2

r
τ

1−N
p−1 v1−p′(τ)dτ

)1− ε
p−1

.

If v and w are given by (7.6) then w ∈ L1(B
c
1) requires β1 > −1 and β∞ > N. In particular,

(7.7) reduces to

α1 < p − 1 and β∞ > max{α∞ + p, N} (7.10)

and (7.8) reduces to

β1 > max{α1 − p,−1} and α∞ < N − p . (7.11)

Note that (4.3) holds for arbitrary ε ∈ (0, p − 1) in this special case. Then the asymptotic

estimates for e and e′ read as follows.

Corollary 7.6. Given ε ∈ (0, p − 1) arbitrary, there exist R
e
1 > 1, c1, c̃1, c2, c̃2 > 0 such that for all

r ∈ (1, R
e
1) we have

c1(r − 1)1−
α1

p−1 ≤ e(r) ≤ c2(r − 1)

(

1−
α1

p−1

)(

1− ε
p−1

)

and

c̃1(r − 1)−
α1

p−1 ≤ e′(r) ≤ c̃2(r − 1)

(

1−
α1

p−1

)(

1− ε
p−1

)

−1
.

Similarly, given ε ∈ (0, p − 1) arbitrary, there exist R
e
2 > 1, d1, d̃1, d2, d̃2 > 0 such that for all

r ∈ (R
e
2,+∞) we have

d1r
1+ α∞+1−N

p−1 ≤ e(r) ≤ d2r

(

1+ α∞+1−N
p−1

)(

1− ε
p−1

)

(7.12)

and

d̃1r
α∞+1−N

p−1 ≤ −e′(r) ≤ d̃2r

(

1+ α∞+1−N
p−1

)(

1− ε
p−1

)

−1
.

Remark 7.7. Let us emphasize the importance of asymptotic estimates presented above. We

will utilize them later for constructing an ordered pair of sub- and supersolution for problem

(7.1). Since modifications of ϕ1 and e will serve as a subsolution and a supersolution, respec-

tively, the estimates above will allow to compare the resulting subsolution and a supersolution

near the finite boundary and near infinity.

Remark 7.8. We compare our results for (7.9) with R2 = +∞ and corresponding results of

Bidaut-Véron and Pohozaev [4, Prop. 2.6, (ii)]. Let N > p. Consider v and w as given in

(7.6) with α1 = α∞ = β1 = 0 and β∞ > N. Then the left inequality in (7.12) coincides with

the lower estimate from [4], the first inequality in (2.34). Let N ≤ p. The second inequality
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in (2.34) from [4] implies that any possible nonnegative weak solution of equation in (7.9)

cannot decay to zero as r → +∞, i.e., (7.9) does not have a weak solution. On the other hand,

choosing now α1 = β1 = 0, α∞ < N − p, β∞ > N, problem (7.9) has a positive weak solution

satisfying decay asymptotic estimates presented above. This says that a sufficiently singular

diffusion coefficient v(r) could guarantee the existence of a weak solution having prescribed

decay at infinity.

8 Examples

We will discuss some examples to demonstrate our general existence result from Theorem 3.1

and the use of asymptotics obtained for the eigenfunction ϕ1 and the auxiliary function e

in Section 4 and Section 5, respectively. For simplicity, we consider f (t, s) = f (s), where

f : [0,+∞) → R is C1 and satisfies the following additional assumptions:

(H3) there exists a constant K > 0 such that lims→0
f (s)
sp−1 = K;

(H4) there exists r0 > 0 such that f (s)(r0 − s) > 0 for all s > 0, s 6= r0.

We observe that since f is C1, (H3)–(H4) imply that f satisfies (H1)–(H2).

We consider the following one dimensional quasilinear problem






−
(

ρ(t)|u′(t)|p−2u′(t)
)′
= λσ(t) f (u(t)), t ∈ (1,+∞),

lim
t→1+

u(t) = lim
t→+∞

u(t) = 0
(8.1)

where λ > 0 is a parameter.

Then we prove the following result.

Theorem 8.1. Let the weight functions ρ and σ be as in (6.1) with α1 , β1 , α∞ , β∞ satisfying (6.4)

and (6.5). Let p > 1 and (H3)–(H4) hold. Then for any λ >
λ1
K , there exist a minimal weak solution

umin and a maximal weak solution umax of (8.1). Moreover, given ε ∈ (0, p − 1), there exist constants

C > 1, C1, C2 > 0 such that for all t ∈ (1, C) we have

C1(t − 1)1−
α1

p−1 ≤ umin(t) ≤ umax(t) ≤ C2(t − 1)

(

1−
α1

p−1

)(

1− ε
p−1

)

.

Similarly, given ε ∈ (0, p− 1), there exist constants D > 1, D1, D2 > 0 such that for all t ∈ (D,+∞)

we have

D1t
1+ α∞

p−1 ≤ umin(t) ≤ umax(t) ≤ D2t

(

1+ α∞

p−1

)(

1− ε
p−1

)

.

Proof. In order to apply Theorem 3.1, we construct a suitable pair of well ordered sub- and

supersolution of (8.1). We will first construct a positive supersolution of (8.1) with the help

of the auxiliary function e > 0, weak solution of (5.1). Let u := (λA0)
1

p−1 e, where A0 :=

sups≥0 f (s) > 0. Then

−
(

ρ(t)|u′(t)|p−2u′(t)
)′
= λA0σ(t) ≥ λσ(t) f (u) .

Now we construct a positive subsolution of (8.1) using the eigenfunction ϕ1 > 0 corresponding

to the principal eigenvalue λ1 of (4.1). Note that continuity, and decay properties, (4.5) and

(4.9), of the eigenfunction ϕ1 imply that ‖ϕ1‖∞ < +∞. First, we consider a function

G(s) := λ1sp−1 − λ f (s) for s ≥ 0 .
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Using hypothesis (H3), we see that G(s) = λ1sp−1 − λKsp−1 − o(sp−1) . Let λ >
λ1
K be fixed.

Then there exists sλ > 0 such that for any s ∈ (0, sλ), we have G(s) < 0. For m ≤ sλ

‖ϕ1‖∞

, we

show that u := mϕ1 is a subsolution of (8.1). Indeed, it follows from the discussion above and

the fact that σ(t) > 0 in (1,+∞)

−
(

ρ(t)|u′(t)|p−2u′(t)
)′
= λ1σ(t)mp−1 ϕ

p−1
1 ≤ λσ(t) f (mϕ1) = λσ(t) f (u) .

Now using the decay estimates in Corollary 6.2 of the eigenfunction ϕ1 and Corollary 6.3 of

the auxiliary function e at the end points of the interval (1,+∞), we can adjust the constant

m ≈ 0 so that u ≤ u in (1,+∞). Then by Theorem 3.1, there exist a minimal weak solution

umin and a maximal weak solution umax of (8.1) such that

0 < u ≤ umin ≤ umax ≤ u in (1,+∞) ,

and enjoy the regularity properties (3.2). This completes the proof.

Remark 8.2. We observe that the rates of decay of positive weak solutions obtained in Theo-

rem 8.1 are independent of the nonlinearity f .

Next, we consider radially symmetric positive solutions of the following PDE in dimension

N > 1

{

−div
(

v(|x|)|∇u(|x|)|p−2∇u(|x|)
)

= λw(|x|) f (u(|x|)), x ∈ A+∞

1 ⊂ R
N ,

u(x) = 0, x ∈ ∂A+∞

1 ,
(8.2)

where λ > 0 is a parameter, f is as above, and A+∞

1 = B
c
1 is the exterior of a unit ball. We

obtain the counterpart of Theorem 8.1 below.

Theorem 8.3. Let the weight functions v and w be as in (7.6) with α1 , β1 , α∞ , β∞ satisfying (7.10)

and (7.11). Let p > 1 and (H3)–(H4) hold. Then for any λ >
λ1
K , there exist a minimal weak solution

umin and a maximal weak solution umax of (8.2). Moreover, given ε ∈ (0, p − 1), there exist constants

C > 1, C1, C2 > 0 such that for all |x| ∈ (1, C) we have

C1 (|x| − 1)
1−

α1
p−1 ≤ umin(|x|) ≤ umax(|x|) ≤ C2 (|x| − 1)

(

1−
α1

p−1

)(

1− ε
p−1

)

. (8.3)

Similarly, given ε ∈ (0, p − 1), there exist constants D > 1, D1, D2 > 0 such that for all |x| ∈

(D,+∞) we have

D1|x|
1+ α∞+1−N

p−1 ≤ umin(|x|) ≤ umax(|x|) ≤ D2|x|

(

1+ α∞+1−N
p−1

)(

1− ε
p−1

)

.

Proof. Substituting r = |x|, (8.2) transforms to







−
(

rN−1v(r)|u′(r)|p−2u′(r)
)′
= λrN−1w(r) f (u(r)), r ∈ (1,+∞),

lim
r→1+

u(r) = lim
r→+∞

u(r) = 0 .
(8.4)

Observe that (8.4) is a special case of (8.1) with ρ(t) = tN−1v(t) and σ(t) = tN−1w(t) for

t ∈ (1,+∞). Then the proof follows by repeating the constructions in the proof of Theorem 8.1.
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Remark 8.4. We observe again that the rates of decay of positive weak solutions obtained

in Theorem 8.3 are independent of the nonlinearity f . However, the decay rate at infinity

depends on the dimension N > 1.

Remark 8.5. Notice that it follows from (7.10) that α1 < p− 1. If α1 ∈ (0, p− 1) then 1− α1
p−1 <

1 and hence the left inequality in (8.3) yields that ∂u
∂~n = +∞ on ∂B1, where ~n denotes the outer

unit normal vector of ∂B1. On the other hand, if α1 < 0 then we can choose ε ∈ (0, p − 1)

so that (1 − α1
p−1 )(1 − ε

p−1 ) > 1 and then the right inequality in (8.3) yields that ∂u
∂~n = 0 on

∂B1. Therefore, if α1 ∈ (−∞, 0) ∪ (0, p − 1), any weak solution u of (8.2) violates the Hopf

maximum principle on ∂B1, cf. [15, Thm. 5].
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Abstract. We consider a family of three point n− 2, 1, 1 conjugate boundary value prob-
lems for nth order nonlinear ordinary differential equations and obtain conditions in
terms of uniqueness of solutions imply existence of solutions. A standard hypothe-
sis that has proved effective in uniqueness implies existence type results is to assume
uniqueness of solutions of a large family of n−point boundary value problems. Here,
we replace that standard hypothesis with one in which we assume uniqueness of solu-
tions of large families of two and three point boundary value problems. We then close
the paper with verifiable conditions on the nonlinear term that in fact imply global
uniqueness of solutions of the large family of three point boundary value problems.

Keywords: uniqueness implies existence, nonlinear interpolation, ordinary differential
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1 Introduction

In a seminal paper, [23], Lasota and Opial proved that for second order ordinary differential

equations, global existence and uniqueness of solutions of initial value problems and unique-

ness of solutions of two point conjugate (Dirichlet) boundary value problems implies existence

of solutions of two point conjugate boundary value problems. A vast study of problems re-

ferred to as uniqueness implies existence for higher order (n−th order) nonlinear problems

was initiated. Following this work many related results were obtained; see for example,

[3,8,9,15,19,21,22,24]. Henderson and many different co-authors have obtained analogous re-

sults for nonlocal boundary value problems, [2,14,16], for example, as well as boundary value

problems for finite difference equations [11–13] for example, and boundary value problems

BCorresponding author. Email: peloe1@udayton.edu
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for dynamic equations on time scales [17, 18], for example. Recently, these types of results

were gathered in the monograph [4].

The results for n-th order problems, referred to above, all assumed a baseline unique

solvability criterion for n-point Dirichlet type boundary conditions (n-point conjugate type

boundary conditions.) Recently, the authors [5] revisited these uniqueness implies existence

arguments with the baseline of a unique solvability criterion for two-point n − 1, 1 conjugate

type boundary conditions. In this paper, we continue to develop the ideas initiated in [5] and

begin with a baseline of unique solvability for two-point n − 1, 1 conjugate type boundary

conditions and unique solvability criterion for two-point n − 2, 1, 1 conjugate type boundary

conditions.

Let n ≥ 2 denote an integer and let a < T1 < T2 < T3 < b. Let ai ∈ R, i = 1, . . . , n.

Throughout this work, we shall consider the ordinary differential equation

y(n)(t) = f (t, y(t), . . . , y(n−1)(t)), t ∈ [T1, T3], (1.1)

where f : (a, b)× R
n → R, or the ordinary differential equation

y(n)(t) = f (t, y(t)), t ∈ [T1, T3], (1.2)

where f : (a, b)× R → R. We shall consider three point boundary value problems for either

(1.1) or (1.2) with the boundary conditions, for j ∈ {1, 2},

y(i−1)(T1) = ai, i = 1, . . . , n − 2, y(T2) = an−1, y(j−1)(T3) = an, (1.3)

and we shall consider two point boundary value problems for either (1.1) or (1.2) with the

boundary conditions, for j ∈ {1, 2},

y(i−1)(T1) = ai, i = 1, . . . , n − 1, y(j−1)(T2) = an. (1.4)

For expository reasons only we state the n−point conjugate boundary conditions,

y(Ti) = ai, i ∈ {1, . . . , n}, (1.5)

where a < T1 < · · · < Tn < b.

The intent of this work is to show that under the assumptions of uniqueness of solutions

of the boundary value problems (1.1), (1.3) and of the boundary value problems (1.1), (1.4),

then there exists a solution of the boundary value problem (1.1) with boundary conditions

(1.3) in the case j = 1.

With respect to (1.1), common assumptions for the types of results that we consider are:

(A) f (t, y1, . . . , yn) : (a, b)× R
n → R is continuous;

(B) Solutions of initial value problems for (1.1) are unique and extend to (a, b);

With respect to (1.2), the assumptions (A) and (B) are replaced, respectively, by

(A′) f (t, y) : (a, b)× R → R is continuous;

(B′) Solutions of initial value problems for (1.2) are unique and extend to (a, b).
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There are two main purposes of this work. The first purpose is to obtain uniqueness

of solutions for the boundary value problems (1.1), (1.3) and (1.1), (1.4) implies existence of

solutions for the family of two-point boundary value problems (1.1), (1.3) in the case j = 1,

and the primary tool will be a modification of the original sequential compactness argument

provided by Lasota and Opial [23]. The second purpose is to obtain verifiable hypotheses that

imply the uniqueness of solutions for the boundary value problems (1.2), (1.3) and (1.2), (1.4);

hence, as a corollary, these verifiable hypotheses imply existence of solutions for the family

of two-point boundary value problems (1.1), (1.3) in the case j = 1. And as it turns out, the

existence will be global in T2 < T3 < b.

In Section 2, we remind the reader of a generalized mean value theorem for higher order

derivatives that is commonly used in interpolation theory. It is this generalized mean value

theorem that allows the Lasota and Opial argument [23] to be modified. Then in Section 3, we

shall consider the general ordinary differential equation (1.1) with the boundary conditions

(1.3) or (1.4). It is in Section 3 where we carry out the first main purpose of this work; in

particular we produce hypotheses such that uniqueness of solutions for the boundary value

problems (1.1), (1.3) and (1.1), (1.4) implies existence of solutions for the family of two-point

boundary value problems (1.1), (1.3) in the case j = 1.

To implement the results in the literature cited above or likewise for the main result in

Section 3, bounds on T3 − T1 are often required so that the contraction mapping principle can

be employed to obtain the appropriate uniqueness criteria. This has led to the concept of best

interval lengths for Lipschitz equations [6, 10, 20]. So in Section 4, to carry out the second

purpose of this work to produce verifiable hypotheses, we consider the ordinary differential

equation (1.2) with boundary conditions (1.3) or (1.4) and we assume f satisfies a Lipschitz

condition in y. We construct Green’s functions and estimates so that the contraction mapping

principle can apply. Then in Section 5, we impose monotonicity hypotheses on f (in addition

to the Lipschitz assumption) to produce the verifiable hypotheses to fulfill the second purpose

of the article. In doing so, we obtain a type of global uniqueness implies existence result as

will be discussed further in Section 5.

We state three further common assumptions, two of which are used throughout the paper.

(C) Solutions of the n−point boundary value problems (1.1), (1.5) are unique if they exist.

(D) Solutions of the two-point boundary value problems (1.1), (1.4) are unique if they exist.

(E) Solutions of the three point boundary value problems (1.1), (1.3) are unique if they exist.

We do not assume Condition (C) in this work; we state it to clearly see the contrast between

this work and those cited in the first paragraph.

2 A review of divided differences

Lasota and Opial [23] literally employed the mean value theorem to construct a sequential

compactness argument for the the second order conjugate boundary value problem. To mod-

ify that construction, we introduce a divided difference construction that is employed to derive

an error bound for interpolating polynomials. An extension of the mean value theorem is the

result. For the sake of self containment, we provide the following details. We refer the reader

to the text by Conte and de Boor [1]. Let t0, . . . , ti denote i + 1 distinct real numbers and let



4 P. Eloe, J. Henderson and J. Neugebauer

z : R → R. Define z[tl ] = z(tl), l = 0, . . . , i and if tl , . . . , tk+1 denote k − l + 2 distinct points,

define

z[tl , . . . , tk+1] =
z[tl+1, . . . , tk+1]− z[tl , . . . , tk]

tk+1 − tl
.

The following theorem is obtained by repeated applications of Rolle’s theorem to the differ-

ence of z and the polynomial that interpolates z at the i + 1 distinct points t0, . . . , ti ; a proof

can be found in [1, Theorem 2.2].

Theorem 2.1. Assume z(t) is a real-valued function, defined on [a, b] and i times differentiable in

(a, b). If t0, . . . , ti are i + 1 distinct points in [a, b], then there exists

c ∈ (min{t0, . . . , ti}, max{t0, . . . , ti})

such that

z[t0, . . . , ti] =
z(i)(c)

i!
.

In Section 3, we shall set h > 0 and choose t0 = T, t1 = T + h, . . . , ti = T + ih to be equally

spaced. In this setting

z[T, T + h, . . . , T + ih] =
∑

i
l=0(−1)i−l(i

l)z(T + lh)

i!hi
.

For example, if i = 1, Theorem 2.1 is the mean value theorem and if i = 2, there exists

c ∈ (T, T + 2h) such that

z(T)− 2z(T + h) + z(T + 2h)

2!h2
=

z′′(c)

2!
.

So, in general there exists c ∈ (T1, T1 + ih) such that

∑
i
l=0(−1)i−l(i

l)z(T + ih)

hi
= z(i)(c). (2.1)

3 Uniqueness of solutions implies existence of solutions

In this section we consider the families of boundary value problems (1.1), (1.3) and (1.1), (1.4).

We shall provide two preliminary results, Lemma 3.1 and Theorem 3.3, one addressing the

continuous dependence of solutions of (1.1) on initial conditions and another addressing the

continuous dependence of solutions of (1.1) on two point boundary conditions.

We state the first lemma without proof. See [7, page 14].

Lemma 3.1. Assume that with respect to (1.1), Conditions (A) and (B) are satisfied. Then, given a

solution y of (1.1), given t0 ∈ (a, b), given any compact interval [c, d] ⊂ (a, b), and given ǫ > 0, there

exists δ > 0 such that if z is a solution of (1.1) satisfying |y(i−1)(t0)− z(i−1)(t0)| < δ, i = 1, . . . , n,

then |y(i−1)(t)− z(i−1)(t)| < ǫ, i = 1, . . . , n, for all t ∈ [c, d].

For the sake of self-containment, we also state the Brouwer invariance of domain theorem.

Theorem 3.2. If U ⊂ R
k is open, φ : U → R

k is one-to-one and continuous on U , then φ is a

homeomorphism and φ(U ) is open in R
k.
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In [5], the authors employed the Brouwer invariance of domain theorem to prove continu-

ous dependence of solutions on the boundary conditions (1.4); in particular, they proved the

following theorem.

Theorem 3.3. Assume that with respect to (1.1) Conditions (A), (B), and (D) are satisfied. Let j ∈

{1, 2}.

(i) Given any a < T1 < T2 < b, and any solution y of (1.1), there exists ǫ > 0 such that if

|T11 − T1| < ǫ, |y(i−1)(T1) − yi1| < ǫ, i = 1, . . . , n − 1, and |T21 − T2| < ǫ |y(j−1)(T2) −

yn1| < ǫ, then there exists a solution z of (1.1) such that z(i−1)(T11) = yl1, i = 1, . . . , n − 1,

z(j−1)(T21) = yn1.

(ii) If T1k → T1, T2k → T2, yik → yi, i = 1, . . . , n and zk is a sequence of solutions of (1.1)

satisfying z
(i−1)
k (T1k) = yik, i = 1, . . . , n − 1, z

(j−1)
k (T2k) = ynk, then for each i ∈ {1, . . . , n},

z
(i−1)
k converges uniformly to y(i−1) on compact subintervals of (a, b).

Here, we shall employ the Brouwer invariance of domain theorem to prove continuous

dependence of solutions on the boundary conditions (1.3).

Theorem 3.4. Assume that with respect to (1.1) Conditions (A), (B), and (E) are satisfied. Let j ∈

{1, 2}.

(i) Given any a < T1 < T2 < T3 < b, and any solution y of (1.1), there exists ǫ > 0 such that if

|T11 − T1| < ǫ, |y(i−1)(T1)− yi1| < ǫ, i = 1, . . . , n − 2, |T21 − T2| < ǫ, and |T31 − T3| < ǫ,

|y(T2) − y(n−1)1| < ǫ, |y(T3) − yn1| < ǫ, then there exists a solution z of (1.1) such that

z(i−1)(T11) = yl1, i = 1, . . . , n − 2, z(T21) = y(n−1)1, and z(j−1)(T31) = yn1.

(ii) If T1k → T1, T2k → T2, T3k → T3, yik → yi, i = 1, . . . , n and zk is a sequence of solutions of

(1.1) satisfying z
(i−1)
k (T1k) = yik, i = 1, . . . , n − 2, zk(T2k) = y(n−1)k, z

(j−1)
k (T3k) = ynk, then

for each i ∈ {1, . . . , n}, z
(i−1)
k converges uniformly to y(i−1) on compact subintervals of (a, b).

Proof. Let j ∈ {1, 2}. Define U ⊂ R
n+3 to be the open set

U = {(T1, T2, T3, c1, . . . , cn) : a < T1 < T2 < T3 < b, ci ∈ R, i = 1, . . . , n}.

Let t0 ∈ (a, b). Define φ : U → R
n+3 by

φ(T1, T2, T3, c1, . . . , cn) = (T1, T2, T3, y(T1), . . . , y(n−3)(T1), y(T2), y(j−1)(T3)),

where y is the unique solution of (1.1) satisfying the initial conditions y(i−1)(t0) = ci, i =

1, . . . , n. Then by Lemma 3.1, φ is continuous on U .

To see that φ is a 1 − 1 map on U let

(t1, t2, t3, c1, . . . , cn), (s1, s2, s3, d1, . . . , dn) ∈ U

and assume

φ(t1, t2, t3, c1, . . . , cn) = φ(s1, s2, s3, d1, . . . , dn).

By the definition of φ, ti = si, i = 1, 2, 3. It follows by Condition (E) that ci = di, i = 1, . . . , n,

since if y, z are solutions of (1.1) and y(i−1)(T1) = z(i−1)(T1), i = 1, . . . , n − 2, y(T2) = z(T2),

y(j−1)(T3) = z(j−1)(T3), then y ≡ z on (a, b); in particular, ci = y(i−1)(t0) = z(i−1)(t0) = di,

i = 1, . . . , n. Apply Brouwer’s invariance of domain theorem to obtain that φ(U ) is open in

R
n+3 which proves (i), and to obtain that φ−1 is continuous on U which proves (ii).
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Finally we state the uniqueness implies existence theorem proved by the authors in [5].

Theorem 3.5. Assume that with respect to (1.1), Conditions (A), (B), and (D) are satisfied. Then for

each a < T1 < T2 < b, ai ∈ R, i = 1, . . . , n, the two point boundary value problem (1.1), (1.4) has a

solution.

We are now in a position to adapt the method of Lasota and Opial [23] and show that the

uniqueness of solutions of the boundary value problems (1.1), (1.3) and (1.1), (1.4) implies the

existence of solutions of the boundary value problem (1.1), (1.3) for j = 1.

Theorem 3.6. Assume that with respect to (1.1), Conditions (A), (B), (D) and (E) are satisfied. Then

for each a < T1 < T2 < T3 < b, ai ∈ R, i = 1, . . . , n, then for j = 1, the three point boundary value

problem (1.1), (1.3) has a solution.

Proof. Let m ∈ R and denote by y(t; m) the solution of the two-point boundary value problem

(1.1), with boundary conditions

y(i−1)(T1; m) = ai, i = 1, . . . , n − 2, y(n−2)(T1; m) = m, y(T2) = an−1.

Let

Ω = {p ∈ R : there exists m ∈ R with y(T3; m) = p}.

So the theorem is proved by showing Ω = R. By Theorem 3.5, Ω 6= ∅, so the theorem is

proved by showing Ω is opened and closed. That Ω is open follows from Theorem 3.4.

To show Ω is closed, let p0 denote a limit point of Ω and without loss of generality let pk

denote a strictly increasing sequence of reals in Ω converging to p0. Assume y(T3; mk) = pk

for each k ∈ N1. It follows by the uniqueness of solutions, Condition (E), that

y(j−1)(t; mk1
) 6= y(j−1)(t; mk2

), t ∈ (T2, b), (3.1)

for each j ∈ {1, 2}, if k1 < k2 and in particular,

y(t; m1) < y(t; mk) t ∈ (T2, b), (3.2)

for each k.

Either y′(T3; mk) ≤ 0 infinitely often or y′(T3; mk) ≥ 0 infinitely often. Relabel if necessary

and assume y′(T3; mk) ≤ 0 or y′(T3; mk) ≥ 0 for each k. Finally note that (3.1) implies that we

may assume y′(T3; mk) < 0 or y′(T3; mk) > 0 for each k.

We first assume the case y′(T3; mk) < 0 for each k. Find T3 < T4 < b such that y′(t; m1) ≤ 0,

for t ∈ [T3, T4]. Then y(t; m1) is decreasing on [T3, T4]. By (3.2), if t ∈ [T3, T4] and k ≥ 1, then

L = y(T4; m1) ≤ y(t; m1) ≤ y(t; mk). (3.3)

Fix k and find T3 < T4k ≤ T4 such that y′(t; mk) < 0 on [T3, T4k]. Then y(t; mk) is decreasing

on [T3, T4k]; in particular

L ≤ y(T4k; m1) < y(T4k; mk) ≤ y(t; mk) ≤ y(T3; mk) ≤ p0 (3.4)

for t ∈ [T3, T4k].

The observation employed by Lasota and Opial [23] is

0 >
y(T4k; mk)− y(T3; mk)

T4k − T3
≥

L − p0

T4k − T3
≥

L − p0

T4 − T3
= K1. (3.5)
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Apply the mean value theorem (or (2.1) in the case i = 1 to the left hand side of (3.5), to see

that

Sk1 = {t ∈ [T3, T4k] : K1 − 1 ≤ y′(t; mk) < 0} 6= ∅;

by the continuity of y′(t; mk), there exists a closed interval of positive length,

I1 = [T3k1, T4k1] ⊂ Sk1 ⊂ [T3, T4k].

To outline an induction argument in i, the order of the derivative y(i−1), set h = T4k1−T3k1
2

and consider
y(T3k1; mk)− 2y(T3k1 + h; mk) + y(T3k1 + 2h; mk)

h2
.

Then, continuing to observe that y(t, mk) is decreasing on I1,

y(T31; mk)− 2y(T31 + h) + y(T31 + 2h)

h2
≥

2(L − p0)

h2
=

23(L − p0)

(T4k1 − T3k1)2
≥

23(L − p0)

(T4 − T3)2
= K2

and
y(T31; mk)− 2y(T31 + h) + y(T3 + 2h)

h2
≤

2(p0 − L)

h2
≤ −K2.

In particular,
∣

∣

∣

y(T31; mk)− 2y(T31 + h) + z(T31 + 2h)

h2

∣

∣

∣
≤ K2.

Apply (2.1) in the case i = 2 and the set

Sk2 = {t ∈ [T3k1, T4k1] : |y′′(t; mk)| ≤ −K2 + 1} 6= ∅

and contains a closed interval of positive length

I2 = [T3k2, T4k2] ⊂ Sk2 ⊂ [T3k1, T43k1] ⊂ [T3, T4].

The induction hypothesis is then, for i ∈ {2, . . . n − 2} assume there exist T3ki < T4ki such

that Ii = [T3ki, T4ki] ⊂ [T3k(i−1), T4k(i−1)] ⊂ [T3, T4] and

|y(i)(t; mk)| ≤ −Ki + 1, t ∈ Ii

where

Ki =
ii2i−1(L − p0)

(T4 − T3)i
.

Set h = T4ki−T3ki
i+1 . Then,

∣

∣

∣

∑
i+1
l=0(−1)i+1−l(i+1

l )y(T3ki + lh)

hi+1

∣

∣

∣
≥

(i + 1)i+12i(L − p0)

(T4ki − T3ki)i+1
≥

(i + 1)i+12i(L − p0)

(T4 − T3)i+1
= −Ki+1.

Apply (2.1) in the case i + 1 and the set,

Sk(i+1) = {t ∈ [T3ki, T4ki] : |y(i+1)(t; mk)| ≤ −Ki+1 + 1} 6= ∅

and contains a closed interval of positive length

Ii+1 = [T3(i+1), T4(i+1)] ⊂ [T3i, T4i] ⊂ [T3, T4].
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Recall, k is fixed. For this fixed k, choose tk ∈ In−1. Then

(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk)) ∈ [T3, T4]× [L, p0]× Πn−1
i=1 [−Ki − 1, Ki + 1].

The set on the righthand side is a compact subset of R
n+1 and independent of k. Perform this

process for each k and generate a sequence

{(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk))}
∞
k=1 ⊂ [T3, T4]× [L, p0]× Πn−1

i=1 [−Ki − 1, Ki + 1].

In particular, there exists a convergent subsequence (relabeling if necessary)

{(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk))} → (t0, c1, . . . , cn)

where t0 ∈ [T3, T4]. Since t0 ∈ (a, b) and by the continuous dependence of solutions of initial

value problems, Lemma 3.1, y(t; mk) converges in Cn−1[T1, T3] to a solution, say z(t), of the

initial value problem (1.1), with initial conditions, y(i−1)(t0) = ci, i = 1, . . . , n. Thus, p0 = z(T3)

which implies p0 ∈ Ω and Ω is closed. This completes the proof if y′(T3; mk) < 0 for each k.

If y′(T3; mk) > 0 for each k, find T2 < T4 < T3 such that y′(t; m1) ≥ 0, for t ∈ [T4, T3]. Then

L = y(T4; m1) < y(T4; mk) ≤ y(t; mk) ≤ p0, T4 ≤ t ≤ T3,

and the above argument can be modified to apply on [T4, T3]. This completes the proof.

4 Local uniqueness of solutions

In this section, we state conditions on f (t, y) such that solutions of a boundary value problem

(1.2), (1.3) are unique, if they exist, for T3 − T1 sufficiently small. The ideas here are not new

and the result we state is standard, but the estimates that are employed are possibly new and

the construction is provided for the sake of self containment. Assume that f : (a, b)×R
n → R

is continuous and that there exists a positive constant, P such that

| f (t, y)− f (t, z)| ≤ P|y − z| (4.1)

for all (t, y), (t, z) ∈ (a, b)× R.

We require specific estimates for the Green’s function for the boundary value problem

(1.2), (1.3) for each j = 1, 2.

For j = 1, the Green’s function, G(1; t, s) for the boundary value problem (1.2), (1.3) has

the following representation. If T1 ≤ s ≤ T2,

G(1; t, s) =











(t−T1)
n−2

(T3−T2)(n−1)!
[ (T2−s)n−1(t−T3)

(T2−T1)n−2 + (T3−s)n−1(T2−t)
(T3−T1)n−2 ], T1 ≤ t ≤ s ≤ T2,

(t−T1)
n−2

(T3−T2))(n−1)!
[ T2−s)n−1(t−T3)

(T2−T1)n−2 + (T3−s)n−1(T2−t)
(T3−T1)n−2 ] + (t−s)n−1

(n−1)!
, T1 ≤ s ≤ t ≤ T3,

and if T2 ≤ s ≤ T3,

G(1; t, s) =











(t−T1)
n−2(T3−s)n−1(T2−t)

(T3−T2)(T3−T1)n−2(n−1)!
, T1 ≤ t ≤ s ≤ T2,

(t−T1)
n−2(T3−s)n−1(T2−t)

(T3−T2)(T3−T1)n−2(n−1)!
+ (t−s)n−1

(n−1)!
, T1 ≤ s ≤ t ≤ T3.
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The Green’s function is constructed in the following way. If (1.1) or (1.2) is a nonhomoge-

nous linear equation, then the general solution is

y(t) =
n

∑
i=1

ci(t − T1)
i−1 +

∫ t

T1

(t − s)n−1

(n − 1)!
f (s)ds.

The homogeneous boundary conditions at T1 imply ci = 0, i = 1, . . . , n − 2. The homogeneous

boundary conditions at T2 and T3 imply











0 = cn−1 + cn(T2 − T1) +
∫ T2

T1

(T2−s)n−1

(T2−T1)n−2(n−1)!
f (s)ds,

0 = cn−1 + cn(T3 − T1) +
∫ T3

T1

(T3−s)n−1

(T3−T1)n−2(n−1)!
f (s)ds.

We now seek a bound on |G(1; t, s)| on [T1, T3]× [T1, T3]. The term (T3 − T2) in the common

denominator is apparently problematic. We provide algebraic details to show the term is not

problematic. First note that if T1 ≤ s, then usual calculus methods imply that the function

h(α) =
(α − s)n−1

(α − T1)n−2

is increasing in α for s ≤ α. In particular,

(T2 − s)n−1

(T2 − T1)n−2
<

(T3 − s)n−1

(T3 − T1)n−2
.

If T1 ≤ t ≤ T2,

(T2 − s)n−1

(T2 − T1)n−2
(t − T3) >

(T3 − s)n−1

(T3 − T1)n−2
(t − T3)

=
(T3 − s)n−1

(T3 − T1)n−2
(t − T2) +

(T3 − s)n−1

(T3 − T1)n−2
(T2 − T3).

So,

(T2 − s)n−1

(T2 − T1)n−2
(t − T3) +

(T3 − s)n−1

(T3 − T1)n−2
(T2 − t) >

(T3 − s)n−1

(T3 − T1)n−2
(T2 − T3).

Similarly, if T2 ≤ t ≤ T3,

(T2 − s)n−1

(T2 − T1)n−2
(t − T3) +

(T3 − s)n−1

(T3 − T1)n−2
(T2 − t) <

(T2 − s)n−1

(T2 − T1)n−2
(T2 − T3).

Keeping in mind that the function h(α) is increasing we have, for T1 ≤ s ≤ T2, T1 ≤ t ≤ T3,

∣

∣

∣

(T2 − s)n−1

(T2 − T1)n−2
(t − T3) +

(T3 − s)n−1

(T3 − T1)n−2
(T2 − t)

∣

∣

∣
≤

(T3 − s)n−1

(T3 − T1)n−2
(T3 − T2). (4.2)

Now with the help of (4.2) it is now clear to see that

|G(1; t, s)| ≤
2(T3 − T1)

n−1

(n − 1)!
, (t, s) ∈ [T1, T2]× [T1, T2]. (4.3)
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For j = 2, to construct the Green’s function, G(2; t, s), we solve a similar system of two

equations to compute cn−1 and cn for the boundary value problem (1.2), (1.4) and obtain the

following representation. Let D = (T3 − T1) + (n − 2)(T3 − T2). Define

g(t, s) =
(T2 − s)n−1

(n − 1)!(T2 − T1)n−2
(−(n − 1)(T3 − T1) + (n − 2)(t − T1))

+
(T3 − s)n−2

(n − 2)!(T3 − T1)n−3
(T2 − t).

If T1 ≤ s ≤ T2,

G(2; t, s) =











(t−T1)
n−2g(t,s)
D , T1 ≤ t ≤ s ≤ T2,

(t−T1)
n−2g(t,s)
D + (t−s)n−1

(n−1)!
, T1 ≤ s ≤ t ≤ T3,

and if T2 ≤ s ≤ T3,

G(2; t, s) =











(t−T1)
n−2(T3−s)n−2

D(n−2)!(T3−T1)n−3 (T2 − t), T1 ≤ t ≤ s ≤ T2,

(t−T1)
n−2(T3−s)n−2

D(n−2)!(T3−T1)n−3 (T2 − t) + (t−s)n−1

(n−1)!
, T1 ≤ s ≤ t ≤ T3.

Now the term T3 − T2 in D is not problematic since D > T3 − T1.

To bound |G(2; t, s)|, we keep in mind that h(α) is increasing and write

| − (n − 1)(T3 − T1) + (n − 2)(t − T1)| = |(n − 2)(t − T3)− (T3 − T1)| ≤ (n − 1)(T3 − T1).

Then,
∣

∣

∣

∣

∣

(T2 − s)n−1

(n − 1)!(T2 − T1)n−2
(−(n − 1)(T3 − T1) + (n − 2)(t − T1))

∣

∣

∣

∣

∣

≤
(T3 − T1)

n−1

(n − 2)!

and
∣

∣

∣

∣

∣

(T3 − s)n−2

(n − 2)!(T3 − T1)n−3
(T2 − t)

∣

∣

∣

∣

∣

≤
(T3 − T1)

n−1

(n − 2)!
.

Thus,

|G(2; t, s)| ≤
(2n − 1)(T3 − T1)

n−1

(n − 1)!
, (t, s) ∈ [T1, T2]× [T1, T2]. (4.4)

For each a < T1 < T2 < T3 < b, consider the usual Banach space C[T1, T3] with norm

‖y‖ = max
T1≤t≤T3

|y(t)|.

For each j ∈ {1, 2}, define the fixed point operator T(j; ·) : C[T1, T3] → C[T1, T3] by

T(j; y)(t) = pcj(t) +
∫ T3

T1

G(j; t, s) f (s, y(s))ds,

where pcj denotes the n − 1 order polynomial satisfying the boundary conditions (1.3). Then

(4.1), (4.3) and (4.4) are readily employed to see that if y, z ∈ C[T1, T3], then for T1 ≤ t ≤ T3,

|T(j; y)(t)− T(j; z)(t)| ≤
∫ T3

T1

|G(j; t, s)|| f (s, y(s)− f (s, z(s))|ds (4.5)

≤ max

{

2(T3 − T1)
n

(n − 1)!
,
(2n − 1)(T3 − T1)

n

(n − 1)!

}

P‖y − z‖.
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Choose

δ =

(

(n − 1)!

(2n − 1)P

)
1
n

= min

{

(

(n − 1)!

2P

)
1
n

,

(

(n − 1)!

(2n − 1)P

)
1
n

}

and assume |T3 − T1| < δ. Then the each fixed point map T(j; ·) for j ∈ {1, 2} is a contraction

map on C[T1, T3].

Theorem 4.1. Assume that f : (a, b)× R
n → R is continuous and that there exists positive constant

P such that f satisfies (4.1) for all (t, y), (t, z) ∈ (a, b)× R
n. Assume |T3 − T1| < δ where

δ =

(

(n − 1)!

(2n − 1)P

)
1
n

.

Then for each j ∈ {1, 2} there exists a unique solution of the boundary value problem (1.2), (1.3).

The following information about the boundary value problem (1.2), (1.4) will be required

in the next section so we state it here. For each j ∈ {1, 2}, it was shown in [5] that the

corresponding Green’s function G(j; t, s) for the boundary value problem (1.2), (1.4) has the

following representation and satisfies the following estimate:

G(j; t, s) =











− (t−T1)
n−1(T2−s)n−j

(n−1)!(T2−T1)n−j , T1 ≤ s ≤ t ≤ T2,

− (t−T1)
n−1(T2−s)n−j

(n−1)!(T2−T1)n−j + (t−s)n−1

(n−1)!
, T1 ≤ s ≤ t ≤ T2.

(4.6)

Note that for each i ∈ {1, . . . , n},

|G(j; t, s)| ≤
2|(T2 − T1)|

n−1

(n − 1)!
, (t, s) ∈ [T1, T2]× [T1, T2]. (4.7)

5 A type of global uniqueness of solutions implies existence of so-

lutions for n = 3

In this section we consider the boundary value problem (1.2), (1.3) or the boundary value

problem (1.2), (1.4), for j ∈ {1, 2} in the specific case that n = 3. We assume f continues to

satisfy a Lipschitz condition in y; we shall also impose a new monotonicity condition on f .

We shall assume that f is monotone decreasing in y for t ∈ (T1, T2) and that f is monotone

increasing in y for t ∈ (T2, T3). Since the monotonicity of f depends on T2, beginning with

Theorem 5.2 we shall assume that T2 is fixed and f is a function of (T2; t, y). For sake of

exposition, we shall also assume that T1 is fixed.

For j ∈ {1, 2}, we first briefly address the local uniqueness of solutions for the boundary

value problem, (1.2), (1.4). Continuing in the framework of the contraction mapping principle,

employ the Banach space B = C[T1, T2] with the usual supremum norm. Then the fixed point

operator

T (j; y)(t) = pc(t) +
∫ T2

T1

G(j; t, s) f (s, y(s))ds,

maps B into B if f is continuous and fixed points are 3 times continuously differentiable. By

the estimates obtained in the preceding section, if each operator T(j; y) is a contraction map,

then each operator T (j; y) is a contraction map.
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Theorem 5.1. Assume that f : (a, b) × R → R is continuous and assume there exists a positive

constant, P, such that

| f (t, y)− f (t, z)| ≤ P|y − z|

for all (t, y), (t, z) ∈ (a, b)× R. Assume a < T1 < T2 < T3 < b and and T3 − T1 < δ where

δ =

(

(3 − 1)!

(6 − 1)P

)
1
3

.

Then for each j ∈ {1, 2} there exists a unique solution of the boundary value problem (1.2), (1.3) and

there exists a unique solution of the boundary value problem (1.2), (1.4).

In the next result, we assume, in addition, that f is increasing in y and we prove a type of

global uniqueness of solutions of the boundary value problem (1.2), (1.3). By global, we mean

that although there is a constraint on T2 − T1, there is no local constraint on T3 − T2.

Theorem 5.2. Assume a < T1 < T2 < b and assume T1 and T2 are fixed. Assume that f : (a, b)×

R → R is continuous and assume there exists a positive constant, P, such that

| f (t, y)− f (t, z)| ≤ P|y − z|

for all (t, y), (t, z) ∈ (a, b)× R. Assume a < T1 < T2 < T3 < b. Set

δ =

(

(3 − 1)!

(6 − 1)P

)
1
3

and assume T2 − T1 < δ. Assume

f (t, y) ≥ f (t, z), t ∈ (T1, T2], y < z, (5.1)

f (t, y) ≤ f (t, z), t ∈ [T2, b), y < z.

Then solutions of the boundary value problem (1.2), (1.3) are unique if they exist.

Proof. Assume for the sake of contradiction that y1 and y2 are distinct solutions of the bound-

ary value problem (1.2), (1.3). We first argue that there exists T4 ∈ (T1, T2) ∪ (T2, T3) such

that (y1 − y2)(T4) = 0. So, for the sake of contradiction, assume y1 − y2 is of constant sign on

(T1, T2) ∪ (T2, T3) and without loss of generality assume (y1 − y2)(t) > 0 for T2 < t < T3. Set

u(t) = (y1 − y2)(t) and so u(t) > 0 on (T2, T3).

To obtain the contradiction, we shall consider multiple cases.

First assume u(t) < 0 on (T1, T2). Then by (5.1), u′′′(t) > 0 on (T1, T2) ∪ (T2, T3). Thus,

u′′ is monotone increasing on (T1, T3). Apply Rolle’s theorem to u which satisfies u(T1) =

0, u(T2) = 0, u(T3) = 0 to obtain T11, T12 and T21 satisfying

T1 < T11 < T2 < T12 < T3, T11 < T21 < T12

such that

u′(T1i) = 0, i = 1, 2, u′′(T21) = 0.

Since u′′ is monotone, there are no other roots of u′′ or u′ in (T1, T3). Since u′′ is monotone

increasing, u′′(t) > 0 for T21 < t, this in turn implies u′ is increasing for T21 < t. As T21 < T12,

this implies u′(T3) > 0 which contradicts the hypothesis u(t) > 0 on (T2, T3).
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Second, assume u(t) > 0 on (T1, T2). So now, u′′′(t) < 0 on (T1, T2), u′′′(t) > 0 on (T2, T3).

In particular, u′′ is decreasing on (T1, T2) and increasing on (T2, T3). We know u′′ has at least

one root in [T1, T3] by Rolle’s theorem and u′′ has at most two roots in [T1, T3] by the mono-

tonicity property we have just observed on u′′. Three more cases to consider are introduced.

Assume u′′ has precisely one root, T21 ∈ [T1, T3]. By Rolle’s theorem, T21 ∈ [T1, T3] and u′

has precisely two roots, T11, T12 in [T1, T3] satisfying

T1 < T11 < T21 < T12 < T3.

Since u′′ is decreasing on (T1, T2) and increasing on (T2, T3) it must be the case that T21 ≤ T2.

(If T21 = T2, then T21 is a repeated root. The argument works here too, so we are not counting

multiplicity in the assumption u′′ has precisely one root.) In particular, u′′(t) > 0, on [T1, T21).

Thus u′ is increasing on [T1, T21) and u′(T11) = 0, where T11 < T21. From here, we conclude

u′(T1) < 0. This yields a contradiction because it is assumed that u(t) > 0 on (T1, T2).

We now come to the possibility that u′′ has two distinct roots, T21 < T22 in [T1, T3]. By

Rolle’s theorem, either T11 < T21 or T22 < T21. These are the final two cases to consider.

Assume T11 < T21. Now T11 has been generated by Rolle’s theorem and u′′ has no roots

in (T1, T21]. So we can conclude that u′(T1) 6= 0. So u′′ is decreasing on (T1, T2) again implies

u′′(t) > 0 on [T1, T21). This in turn implies u′ is increasing on (T1, T21) and so u′(t) < 0 on

[T1, T11). We conclude that u′(T1) < 0 contradicts u(t) > 0 on (T1, T2).

For the final case, assume T22 < T12. Due due the monotone nature of u′′ it is clear

that u′′(t) > 0 on (T1, T21) ∪ (T22, T3) and u′′(t) < 0 on (T21, T22). (It could be the case that

T1 = T21. In this case, u′′(t) < 0 on (T1, T22) and u′′(t) > 0 on (T22, T3).) Regardless, u′′(t) > 0

on (T22, T3), which implies u′ is increasing on (T22, T3). Finally, T22 < T12 implies u′(T3) > 0.

This produces the final contradiction since it is assume throughout that u(t) > 0 on (T1, T2).

Thus there exists T4 ∈ (T1, T2) ∪ (T2, T3) such that y1(T4) = y2(T4). It is clear by Theorem

4.1 in the case n = 3 and the hypothesis |T2 − T1| < δ that T4 /∈ (T1, T2). So, T4 ∈ (T2, T3).

Let

S = {t ∈ (T2, T3) : (y1 − y2)(t) = 0}.

We have just shown S 6= ∅. Let τ = inf S. If τ > T2, argue that (y1 − y2)(τ) = 0. This follows

by continuity if τ is a limit point of S and by definition if τ is an isolated point of S. Thus if

τ > T1, y1 and y2 are distinct solutions of a boundary value problem (1.2), (1.3) for T3 = τ.

Apply the argument that employed four cases to conclude there exists T4 ∈ (T2, τ) such that

(y1 − y2)(T3) = 0; in particular, the assumption that τ = inf S > T1 is false.

So, inf S = T2. Find T ∈ S such that 0 < T − T1 < δ. Then Theorem 5.1 implies y1 ≡ y2 on

[T1, T]. Now Condition (B) implies y1 ≡ y2 on (a, b).

We close the article with a corollary, which represents the main result addressing the

second purpose of this work.

Corollary 5.3. Assume a < T1 < T2 < b and assume T1 and T2 are fixed. Assume that f :

(a, b)× R → R is continuous and assume there exists a positive constant, P, such that

| f (t, y)− f (t, z)| ≤ P|y − z|

for all (t, y), (t, z) ∈ (a, b)× R. Assume a < T1 < T2 < T3 < b. Set

δ =

(

(3 − 1)!

(6 − 1)P

)
1
3
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and assume T2 − T1 < δ. Assume f satisfies (5.1). Assume that with respect to (1.2), Conditions (A′)

and (B′) are satisfied. Then for j = 1, and for each T2 < T3 < b, the three point boundary value

problem (1.2), (1.3) has a solution.
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1 Introduction

We are interested in the following singular Boundary Value Problem (BVP) for second-order

differential equations with non-local boundary conditions involving integrals:





u′′(t) + f (t, u(t), u′(t)) = 0, t ∈ [0, 1],

θu(0)− αu′(0) =
∫ 1

0 g1(s)u(s)ds,

γu(1) + βu′(1) =
∫ 1

0 g2(s)u(s)ds,

(1.1)

where the parameters θ, α, β > 0, γ ≥ 0. The nonlinear function f is continuous, non-negative

on [0, 1]× (0, ∞)× (0, ∞) and may be singular at zero on its space variables.

BCorresponding author. Email: wfeng@trentu.ca
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When γ = 0, BVP (1.1) reduces to the problem studied in [17]. It also includes the anti-

symmetric boundary conditions u(0) = u′(0), u(1) = −u′(1) [13]. The local singular BVP

studied in [16] is a special case of the boundary conditions of (1.1) when γ = 0, and g1 = g2 =

0 as well. Similar boundary conditions have been studied for fractional differential equations

in [2] which assumed that θ = γ and α = −β.

In the study of BVPs and their applications, nonlocal boundary conditions usually involve

discrete multi-point boundary conditions. Previously, the following three-point BVPs have

been extensively studied [3–5, 10, 12]:

u(0) = 0, u(1) = αu(η),

or

u′(0) = 0, u(1) = αu(η),

where 0 < η < 1, α is a parameter. Later, the boundary conditions were further extended

to involve integrals and functionals [7–9, 13–15]. In particular, in [14], existence of multiple

positive solutions for nonlocal BVPs involving various integral conditions were obtained for

the case that the nonlinear function f does not involve the first-order derivative. On the other

side, results on non-existence of positive solutions for different types of nonlocal BVPs were

discussed in [11].

Our main result on the existence of positive solutions of BVP (1.1) is proved by using the

similar techniques that were applied in [17] and originally developed by Webb and Infante

[13]. The idea is to restrict the singular function f to a subset [0, 1] × [ρ1, ∞) × [ρ2, ∞) of

[0, 1]× (0, ∞)× (0, ∞), where ρ1, ρ2 > 0 are properly selected such that problem (1.1) can be

converted to the following perturbed Hammerstein integral operator of the form

Fu(t) =
∫ 1

0
G(t, s) f (s, u(s), u′(s))ds + r(t)η[u] + w(t)ξ[u], (1.2)

where η[u] and ξ[u] are positive linear functionals on C[0, 1], r and w satisfy certain upper

bound conditions. Then existence of a positive solution for problem (1.1) is equivalent to a

fixed point problem for the operator F.

For convenience, we give the following definition of an order cone P in a Banach space

and the well-known Krasnosel’skii–Guo fixed point theorem on a cone P that will be applied

to prove the existence result in Section 3.

Definition 1.1. A cone P in a Banach space X is a closed convex set such that λx ∈ P for every

x ∈ P and for all λ ≥ 0, and satisfying P ∩ (−P) = {0}.

For any r > 0, we denote Ωr = {x ∈ X : ‖x‖ < r} and ∂Ωr = {x ∈ X : ‖x‖ = r}.

Theorem 1.1 (Krasnosel’skii–Guo [6]). Let T : P → P be a compact map. Assume that there

exist two positive constants r, R with r 6= R such that

‖Tu‖ ≤ ‖u‖ for every u ∈ P with ‖u‖ = r,

and

‖Tu‖ ≥ ‖u‖ for every u ∈ P with ‖u‖ = R.

Then there exists u0 ∈ P such that Tu0 = u0 and min{r, R} ≤ ‖u0‖ ≤ max{r, R}.

In Section 2, we first prove some properties of the Green’s function G in (1.2) that are

essential in the construction of the cone for our proof.
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2 Preliminaries

Let h1(t) = γ(1 − t) + β, h2(t) = α + θt and m = θγ + θβ + αγ. The following assumption

ensures that problem (1.1) is non-resonant [5]:

(H1)

(
m −

∫ 1

0
g1(s)h1(s)ds

)(
m −

∫ 1

0
g2(s)h2(s)ds

)
−

∫ 1

0
g1(s)h2(s)ds

∫ 1

0
g2(s)h1(s)ds 6= 0.

This condition implies that BVP (2.1) has only the trivial solution:




u′′(t) = 0, t ∈ [0, 1],

θu(0)− αu′(0) =
∫ 1

0 g1(s)u(s)ds,

γu(1) + βu′(1) =
∫ 1

0 g2(s)u(s)ds.

(2.1)

Under condition (H1), BVP (1.1) can be converted to a fixed point problem for the nonlinear

operator F in (1.2), where G is the Green’s function of the problem




u′′(t) + y(t) = 0, t ∈ [0, 1],

θu(0)− αu′(0) = 0,

γu(1) + βu′(1) = 0,

(2.2)

r and w are the unique solutions of




u′′(t) = 0, t ∈ [0, 1],

θu(0)− αu′(0) = 1,

γu(1) + βu′(1) = 0,

(2.3)

and 



u′′(t) = 0, t ∈ [0, 1],

θu(0)− αu′(0) = 0,

γu(1) + βu′(1) = 1,

(2.4)

respectively. By calculation, we can find that r(t) = h1(t)
m , w(t) = h2(t)

m , and

G(t, s) =





h2(s)h1(t)

m
, 0 ≤ s ≤ t ≤ 1,

h2(t)h1(s)

m
, 0 ≤ t ≤ s ≤ 1.

(2.5)

Condition (H1) is equivalent to
(

1 −
∫ 1

0
g1(s)r(s)ds

)(
1 −

∫ 1

0
g2(s)w(s)ds

)
−

∫ 1

0
g1(s)w(s)ds

∫ 1

0
g2(s)r(s)ds 6= 0. (2.6)

Lemma 2.1. Let Φ(s) = G(s, s), then

c0Φ(s) ≤ G(t, s) ≤ Φ(s), for 0 < t, s < 1,

where

c0 =





α
α+θ , γ = 0 or

(
γ 6= 0, and

β
γ − α

θ ≥ 1
)

,
β

β+γ , γ 6= 0,
β
γ − α

θ ≤ −1,
αβ

(α+θ)(γ+β)
, γ 6= 0, −1 <

β
γ − α

θ < 1.

(2.7)
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Proof: For both cases of 0 ≤ s ≤ t ≤ 1 and 0 ≤ t ≤ s ≤ 1, we can easily verify that

G(t, s) ≤ G(s, s) from the inequalities: h1(t) ≤ h1(s) for 0 ≤ s ≤ t ≤ 1 and h2(t) ≤ h2(s) for

0 ≤ t ≤ s ≤ 1. Now consider

c0G(s, s) =
c0(−θγs2 + (γθ + βθ − αγ)s + α(γ + β))

m
.

(1) If γ = 0,

c0G(s, s) =
c0(θs + α)

θ
<

c0(θ + α)

θ
=

α

θ
≤

(α + θt (or s))

θ
= G(t, s).

(2) If γ 6= 0, let h(s) := −θγs2 + (γθ + βθ − αγ)s + α(γ + β). Then h has the critical point:

s0 =
1

2
+

1

2

(
β

γ
−

α

θ

)
.

Assume that
β
γ − α

θ ≥ 1, max{h(s), s ∈ [0, 1]} = h(1),

c0G(s, s) ≤
c0(α + θ)β

m
≤

c0(α + θ)(β + γ(1 − t (or s)))

m

≤
(α + θs (or t))(γ + β − γt (or s))

m
= G(t, s).

On the other hand, if
β
γ − α

θ ≤ −1, max{h(s), s ∈ [0, 1]} = h(0),

c0G(s, s) ≤
c0α(γ + β)

m
≤

c0(α + θs (or t))(γ + β)

m

≤
(α + θs (or t))(γ + β − γt (or s))

m
= G(t, s).

In the case of −1 <
β
γ − α

θ < 1, we have −αγ < γθ − βθ,

max{h(s), s ∈ [0, 1]} = α(γ + β) +
(γθ + βθ − αγ)2

4θγ
< α(γ + β) + θγ.

Therefore,

c0h(s) < c0(α(γ + β) + θγ) =
α

α + θ

(
αβ +

βθγ

γ + β

)

< αβ < (α + θs (or t))(γ + β − γt (or s)),

and

c0G(s, s) <
(α + θs (or t))(γ + β − γt (or s))

m
= G(t, s).

The following simple property of the constant c0 will be useful in the sequel.

Property 2.2. Let c0 be defined as (2.7). Then c0 ≤ min
{

α
α+θ ,

β
γ+β

}
.

Proof: If γ = 0, it is true since c0 = α
α+θ < 1. It is also clear for the case of γ 6= 0 and

−1 <
β
γ − α

θ < 1. Assume that γ 6= 0 and
β
γ − α

θ ≥ 1. Then
β
γ >

α
θ implies γ

β+γ <
θ

α+θ . Hence

c0 = α
α+θ <

β
β+γ . Similarly, it can be shown that c0 = β

β+γ <
α

α+θ with the assumption of
β
γ − α

θ ≤ −1.
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3 Main result

Let C1[0, 1] be the Banach space of continuously differentiable functions with the norm ‖u‖ =

max {‖u‖∞, ‖u′‖∞} and ‖u‖∞ = max{|u(t)| : t ∈ [0, 1]}. Following similar approaches of

[13, 17], we consider the BVP for f̃ , the restriction of f on [0, 1] × [ρ1, ∞] × [ρ2, ∞], where

ρ1 > 0, ρ2 > 0: 



u′′(t) + f̃ (t, u(t), u′(t)) = 0, t ∈ [0, 1],

θu(0)− αu′(0) =
∫ 1

0 g1(s)u(s)ds,

γu(1) + βu′(1) =
∫ 1

0 g2(s)u(s)ds.

(3.1)

If u0 is a positive solution of the regular BVP (3.1), then u0(t) ≥ ρ1 > 0 and u′
0(t) ≥ ρ2, so u0

is a positive solution of (1.1). In addition to (H1), we introduce more assumptions on function

f̃ and the coefficients θ, α, γ and β that appear in (3.1). Let

l1 =
∫ 1

0
g1(s)ds, l2 =

∫ 1

0
g2(s)ds,

and m = θ(γ + β) + αγ as defined in Section 2. Assume there exist 0 < r < R and K, k > 0

such that:

(H2) c0 min
{

1, α
θ

}
r ≥ ρ1 and c min

{
1, α

θ

}
r ≥ ρ2;

(H3)
f̃ (t,u,v)

R ≤ K ≤ 2(m−βl1−αl2−θl2)
θγ+2(θ+α)β

for (t, u, v) ∈ [0, 1]×
[
Rc0 min

{
1, α

θ

}
, R

]
× [Rc min

{
1, α

θ

}
, R];

(H4)
f̃ (t,u,v)

r ≥ k ≥
2(m−c0β min{1, α

θ }l1−c0(α+θ)min{1, α
θ }l2)

(2α+θ)β
for (t, u, v) ∈ [0, 1]× [rc0 min

{
1, α

θ

}
, r]×

[rc min
{

1, α
θ

}
, r];

(H5) (θl2 − γl1)min
{

1, α
θ

}
r − RKγ(θ + α) > 0.

Of conditions (H2)–(H4), the constant c is defined as

c :=
−RKγ(θ + α) + (θl2 − γl1)min

{
1, α

θ

}
r

(α + θ)(γ + β)RK + [(γ + β)l1 + (α + θ)l2] R
.

Since

θl2 − γl1 < (γ + β)l1 + (α + θ)l2, min
{

1,
α

θ

}
r < R,

We have

(θl2 − γl1)min
{

1,
α

θ

}
r − RKγ(θ + α) < (α + θ)(γ + β)RK + [(γ + β)l1 + (α + θ)l2] R.

Condition (H5) implies that 0 ≤ c < 1.

Theorem 3.1. Under the assumptions (H1)–(H5), the regular BVP (3.1) has a positive solution

u satisfying

c0 min
{

1,
α

θ

}
r ≤ u(t) ≤ R,

and

c min
{

1,
α

θ

}
r ≤ u′(t) ≤ R.
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Proof: Similar as (1.2), we consider

(F̃u)(t) =
∫ 1

0
G(t, s) f̃ (s, u(s), u′(s))ds + r(t)

∫ 1

0
g1(s)u(s)ds + w(t)

∫ 1

0
g2(s)u(s)ds (3.2)

and its derivative

(F̃u)′(t) =
∫ t

0

−γ(α + θs)

m
f̃ (s, u(s), u′(s))ds +

∫ 1

t

θ(γ + β − γs)

m
f̃ (s, u(s), u′(s))ds

−
γ

m

∫ 1

0
g1(s)u(s)ds +

θ

m

∫ 1

0
g2(s)u(s)ds.

Define the cone P of C1[0, 1] as

P =
{

u ∈ C1[0, 1] : u(0) ≥
α

θ
‖u′‖∞, u′(t) ≥ c‖u‖∞, u(t) ≥ c0‖u‖∞, t ∈ [0, 1]

}
. (3.3)

Notice that the constant c in P involves the upper bound RK and the lower bound rk of f̃ on

the closed subsets. If u ∈ P, then

u(t) ≥ c0‖u‖∞ ≥ c0u(0) ≥ c0
α

θ
‖u′‖∞.

Hence

u(t) ≥ max
{

c0‖u‖∞, c0
α

θ
‖u′‖∞

}

≥ c0 min
{

1,
α

θ

}
max

{
‖u‖∞, ‖u′‖∞

}
= c0 min

{
1,

α

θ

}
‖u‖.

Also

u′(t) ≥ c‖u‖∞ ≥ c
α

θ
‖u′‖∞.

Therefore

u′(t) ≥ c max
{
‖u‖∞,

α

θ
‖u′‖∞

}
≥ c min

{
1,

α

θ

}
‖u‖.

Let

Ω1 = {u ∈ C1[0, 1] : ‖u‖ < r} and Ω2 = {u ∈ C1[0, 1] : ‖u‖ < R}.

We show that F̃ : P ∩ (Ω2 \ Ω1) → P. If u ∈ P ∩ (Ω2 \ Ω1), then F̃u ∈ C1[0, 1], and

c0‖F̃u‖∞ ≤ c0

∫ 1

0
G(s, s) f̃ (s, u(s), u′(s))ds + c0

β + γ

m

∫ 1

0
g1(s)u(s)ds

+ c0
α + θ

m

∫ 1

0
g2(s)u(s)ds

≤
∫ 1

0
G(t, s) f̃ (s, u(s), u′(s))ds +

β + γ(1 − t)

m

∫ 1

0
g1(s)u(s)ds

+
α + θt

m

∫ 1

0
g2(s)u(s)ds

= F̃u(t). (3.4)

Next, conditions (H3) and (H4) imply that f (t, u, v)≤RK for (t, u, v)∈ [0, 1]×[Rc0 min{1, α
θ}, R]×[

Rc min{1, α
θ }, R

]
and f (t, u, v) ≥ rk for (t, u, v) ∈ [0, 1]×

[
rc0 min

{
1, α

θ

}
, r
]
×
[
rc min

{
1, α

θ

}
, r
]
.
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For u ∈ P ∩ (Ω2 \ Ω1), we obtain that

(F̃u)′(t) =
∫ t

0

−γ(α + θs)

m
f̃ (s, u(s), u′(s))ds +

∫ 1

t

θ(γ + β − γs)

m
f̃ (s, u(s), u′(s))ds

−
γ

m

∫ 1

0
g1(s)u(s)ds +

θ

m

∫ 1

0
g2(s)u(s)ds

≥ RK
−γ(α + θ)

m
+ rk

∫ 1

t

θ(γ + β − γs)

m
ds +

∫ 1

0

−γg1(s) + θg2(s)

m
u(s)ds

≥ RK
−γ(α + θ)

m
+ rk

θ(γ + β)

m
(1 − t)− rk

θγ

2m
(1 − t2) +

θl2 − γl1
m

r min
{

1,
α

θ

}

=
rkθγ

2m
t2 −

rkθ(γ + β)

m
t − RK

−γ(α + θ)

m
+

rkθ(γ + β)

m
− rk

θγ

2m

+
θl2 − γl1

m
r min

{
1,

α

θ

}
= H(t). (3.5)

If γ = 0, then

H(t) = −
rkθβ

m
t +

rkθβ

m
+

θl2
m

r min
{

1,
α

θ

}
.

H is decreasing for t ∈ [0, 1]. The minimum occurs at t = 1. When γ 6= 0, H is a quadratic

function with the critical point
γ+β

γ > 1. For t ∈ [0, 1], the minimum also occurs at t = 1.

Hence

(F̃u)′(t) ≥ H(1) =
−RKγ(α + θ) + (θl2 − γl1)r min{1, α

θ }

m
. (3.6)

On the other hand,

c‖F̃u‖∞ ≤ c
∫ 1

0

(α + θ)(γ + β)

m
f̃ (s, u(s), u′(s))ds + c

γ + β

m

∫ 1

0
g1(s)u(s)ds

+ c
α + θ

m

∫ 1

0
g2(s)u(s)ds

≤ c

[
RK

(α + θ)(γ + β)

m
+

(γ + β)R

m
l1 +

(α + θ)R

m
l2

]

=
−RKγ(θ + α) + (θl2 − γl1)min

{
1, α

θ

}
r

m
. (3.7)

From (3.6) and (3.7), we have

(F̃u)′(t) ≥ c‖F̃u‖∞ ≥ 0, t ∈ [0, 1]. (3.8)

The non-negative property of (F̃u)′ ensures that

α

θ
‖(F̃u)′‖∞ =

α

θ
max
t∈[0,1]

(F̃u)′(t)

≤
∫ 1

0

α(γ + β − γs)

m
f̃ (s, u(s), u′(s))ds −

αγ

θm

∫ 1

0
g1(s)u(s)ds +

α

m

∫ 1

0
g2(s)u(s)ds

≤
∫ 1

0

α(γ + β − γs)

m
f̃ (s, u(s), u′(s))ds +

γ + β

m

∫ 1

0
g1(s)u(s)ds +

α

m

∫ 1

0
g2(s)u(s)ds

= F̃u(0). (3.9)

Combining (3.4), (3.8) and (3.9), we obtain that F̃ maps P ∩ (Ω2 \ Ω1) to P.
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Next, for u ∈ P ∩ ∂Ω2, ‖u‖ = R,

Rc0 min
{

1,
α

θ

}
≤ u(t) ≤ R and Rc min

{
1,

α

θ

}
≤ u′(t) ≤ R.

‖F̃u(t)‖∞ = F̃u(1)

=
∫ 1

0
G(1, s) f̃ (s, u(s), u′(s))ds +

β

m

∫ 1

0
g1(s)u(s)ds

+
α + θ

m

∫ 1

0
g2(s)u(s)ds

≤ KR
∫ 1

0
G(1, s)ds +

βR

m
l1 +

(α + θ)R

m
l2

= KR

(
αβ

m
+

θβ

2m

)
+

βRl1 + (α + θ)Rl2
m

,

and

‖(F̃u)′(t)‖∞ ≤
∫ 1

0

θ(γ + β − γs)

m
f̃ (s, u(s), u′(s))ds −

γ

m

∫ 1

0
g1(s)u(s)ds

+
θ

m

∫ 1

0
g2(s)u(s)ds

≤ KR
∫ 1

0

α(γ + β − γs)

m
ds +

θl2
m

R

=
KR( θγ

2 + θβ) + θl2

m
.

Thus, (H3) implies

‖(F̃u)(t)‖ = max
{
‖Fu‖∞, ‖(F̃u)′‖∞

}

≤
K( θγ

2 + θβ + αβ) + βl1 + (α + θ)l2
m

R

≤ R = ‖u‖.

For u ∈ P ∩ ∂Ω1, ‖u‖ = r,

rc0 min
{

1,
α

θ

}
≤ u(t) ≤ r and rc min

{
1,

α

θ

}
≤ u′(t) ≤ r.

From (H4), we obtain

‖F̃u‖ ≥ ‖F̃u‖∞

≥
∫ 1

0
G(1, s) f̃ (s, u(s), u′(s))ds +

β

m

∫ 1

0
g1(s)u(s)ds +

α + θ

m

∫ 1

0
g2(s)u(s)ds

≥ kr
∫ 1

0
G(1, s)ds +

βrc0 min
{

1, α
θ

}
l1

m
+

(α + θ)rc0 min
{

1, α
θ

}
l2

m

≥ kr

(
αβ

m
+

θβ

2m

)
+

βrc0 min
{

1, α
θ

}
l1 + (α + θ)rc0 min

{
1, α

θ

}
l2

m

=
k(αβ + θβ

2 ) + (β min
{

1, α
θ

}
l1 + (α + θ)min

{
1, α

θ

}
l2)c0

m
r

≥ r = ‖u‖.

It can be shown that F̃ is compact on P ∩ (Ω2 \ Ω1) following the standard arguments. Theo-

rem 1.1 ensures that F̃ has a fixed point in P ∩ (Ω2 \ Ω1).
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4 Examples

We construct two examples to illustrate applications of Theorem 3.1. Example 4.1 represents a

group of BVPs satisfying the conditions of Theorem 3.1 but results of [17] can not be applied.

Example 4.3 shows that it is possible for BVPs satisfying all conditions of Theorem 3.1 to have

multiple solutions including negative solutions.

Example 4.1. Consider the boundary value problem





u′′(t) + (0.5t + 1)
(

0.01
u(t)

+ 0.0001
u′(t)

)
= 0, t ∈ [0, 1],

u(0)− u′(0) =
∫ 1

0 g1(s)u(s)ds,

0.01u(1) + 4u′(1) =
∫ 1

0 g2(s)u(s)ds,

(4.1)

where the parameters α = θ = 1, β = 4, γ = 0.01. Let g1, g2 be selected such that l1 = 1
16 and

l2 = 1. We can find that c0 = 0.5, m = 4.02. For example, for g1(s) = s
8 , g2(s) = 2s, we can

verify that (H1) is true. Let R = 2 and r = 0.1. Condition (H3) is satisfied if

f (t, u, v)

2
≤ K < 0.22 <

m − βl1 − (α + θ)l2
θγ
2 + θβ + αβ

< 0.23,

for (t, u, v) ∈ [0, 1]× [1, 2]× [2c, 2], where c = −0.04K+0.09375
16.04K+4.50125 . Since c is decreasing with respect

to K, by calculation, we have c ≥ 0.011. From

1

2
(0.5t + 1)

(
0.01

u
+

0.0001

v

)
< 0.01, for (t, u, v) ∈ [0, 1]× [1, 2]× [2c, 2],

we know that (H3) and (H5) are valid for K ∈ [0.01, 0.22].

To find k satisfying condition (H4), we calculate that

0.5 >
m − c0

(
β min

{
1, α

θ

}
l1 + (α + θ)min

{
1, α

θ

}
l2
)

θβ
2 + αβ

> 0.49.

As
f (t,u,v)

r ≥ 1.01 for (t, u, v) ∈ [0, 1]× [0.05, 0.1]× [0.1c, 0.1], (H4) is satisfied for k ∈ [0.50, 1.01].

By Theorem (3.1), BVP (3.8) has a positive solution u ∈ C1[0, 1] such that 0.05 ≤ ρ1 ≤ u(t) ≤ 2

and 0.0011 ≤ ρ2 ≤ u′(t) ≤ 2.

Remark 4.2. More generally, for all α = θ, β = 4, γ = 0.01, l2 = 1, the calculation of Example

4.1 works as long as l1 is small enough. The extreme case is g1(s) = 0. Then the first boundary

condition is reduced to u(0)− u′(0) = 0. We can verify that c0 = 0.5, m = 4.02α. Select the

same values of R and r as that of Example 4.1, we can find the intervals for K ∈ [0.01, 0.25]

and k ∈ [0.51, 1.01]. The solution and its derivative are still in the same range as obtained in

Example 4.1.

Example 4.3. The following problem is in the form of BVP (1.1):





u′′(t) + ln(t+2)
104(t+2)2u(t)

+ 1
104(t+2)3u′(t)

+ 0.98u′(t)
t+2 = 0,

u(0)− u′(0) = ξ1

∫ 1
0 su(s)ds,

10−4u(1) + u′(1) = ξ2

∫ 1
0 su(s)ds,

(4.2)
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where θ = α = 1, γ = 10−4, β = 1, g1(s) = ξ1s and g2(s) = ξ2s. Select ξ1 = 4 ln 2−2
3−ln 729+ln 256 ,

ξ2 = 3 ln 3+104

7500(3−ln 729+ln 256)
, then 0.1979 < l1 < 0.1980, 0.3413 < l2 < 0.3414. It is easy to find

that c0 = 1
2 , and m = 1.0002. Let r = 0.02, R = 1, we can verify that all conditions (H1)-

(H5) are satisfied. In fact, equation (4.2) is exact, we can find that u1(t) = 0.1 ln(t + 2) and

u2(t) = −0.1 ln(t + 2) are two solutions of problem (4.2). This shows the existence of multiple

and negative solutions.

Different from Example 4.3, Example 4.1 cannot be solved analytically. In order to validate

this result of Example 4.1, we use the sinc-collocation numerical method based on the deriva-

tive interpolation to obtain a numerical solution of BVP (4.1). The sinc-collocation method is

a highly efficient numerical technique with exponential rate of convergence. The details of

the approach can be found in [1]. The numerical algorithm is coded in Python. The graphs

of the obtained solutions u and u′ for both cases of g1(s) = 0 and g1(s) = s
8 are depicted in

Figures 4.1 and 4.2 respectively. Clearly they all satisfy the bounds obtained from Example

4.1.

Figure 4.1: Numerical solution of BVP (4.1) (g1 = 0, g2 = 2s)

Figure 4.2: Numerical solution of BVP (4.1) (g1 = s
8 , g2 = 2s)
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1 Introduction

The nonlinear delay differential equation

x′(t) = −µ
(

x(t)− f (x(t − τ))
)

, t > 0, (1.1)

with µ, τ > 0 and f : I ⊂ R → I, has been widely studied in the literature because of its

multiple applications in, for example, biology, physics or economics [1,2,14,17]. In the case of

f being monotone, the dynamics are well understood, see [8, 9, 18] and references therein. In

particular, it is known that chaotic dynamics cannot occur [15]. The natural generalization of

BCorresponding author. Email: dfranco@ind.uned.es
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the previous case, in which f changes monotonicity once, is more complicated and may lead

to chaotic behaviour [10].

In this paper, f is assumed to be unimodal. More specifically, we impose that the following

condition holds for f .

(U) f : (a, b) ⊂ R → (a, b) is differentiable, with −∞ ≤ a < b ≤ +∞; satisfies that there is a

unique x∗ such that f ′(x) > 0 if a ≤ x < x∗, f ′(x∗) = 0, and f ′(x) < 0 if x∗ < x < b; and

that there exists K ∈ (x∗, b) such that f (K) = K, f (x) > x for x ∈ (a, K), and f (x) < x

for x ∈ (K, b).

Notice that if condition (U) holds, then K is the unique fixed point for the map f , i.e. f (K) = K,

and therefore the constant function x(t) = K is a positive equilibrium of the delay equa-

tion (1.1). Moreover, we empshasise that assuming that the fixed point K belongs to (x∗, b) is

not restrictive for our purpose of studying the asymptotic behaviour of equation (1.1), since

if K belongs to the interval (a, x∗), then all the solutions of the delay equation are known to

converge to K; see, for example [16].

Whenever condition (U) holds, we denote the image by f of the point where the maximum

of f is attained and the image by f of this maximum by β and α, respectively, that is,

β := f (x∗) and α := f (β). (1.2)

With the notation in (1.2), we introduce an additional assumption on f .

(L) Condition (U) holds and f ( f (x∗)) > x∗.

A well-known approach for investigating equation (1.1) comprises studying the behaviour of

the related difference equation

xn+1 = f (xn), x0 ∈ (a, b), (1.3)

see, for example, [7, 13]. Using that approach and taking advantage of the properties of

unimodal maps it is possible to show that if (L) holds, then for any solution x(t) of (1.1) with

initial condition in C([−τ, 0], (a, b)) there exists t0 > 0 such that x(t) ∈ [α, β] for t ≥ t0; and we

informally say that the interval [α, β] contains the global attractor of the equation (1.1). Thus,

if (L) holds, then the interval [α, β] contains the global attractor of (1.1) independently of the

delay τ. Moreover, complicated dynamics cannot occur for equation (1.1) since the ω-limit set

of any solution is the positive equilibrium {K} or a periodic orbit. We refer the reader to [16]

for a proof of these results in the particular case of (a, b) = (0,+∞).

The interval [α, β] might not be the sharpest, that is, it might have a proper subinterval

which contains the global attractor of (1.1). Therefore, an interesting problem stated in [16]

is to try to estimate this sharpest attracting interval—or even better to calculate it—when

condition (L) holds. Here, we deal with such a problem.

In [11], Liz and Röst consider the same problem and showed that when f satisfies (L)

and has negative Schwarzian derivative, then the sharpest interval containing the attractor of

equation (1.1) can be determined and the following dichotomy result holds.

Theorem 1.1 (Theorem 6 in [11]). Assume that condition (L) holds and, further, that f satisfies the

following condition.
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(S) f is three times differentiable and (S f )(x) < 0 on the interval [α, β], where S f denotes the

Schwarzian derivative of f , defined by

(S f )(x) =
f ′′′(x)

f ′(x)
−

3

2

(

f ′′(x)

f ′(x)

)2

.

Then exactly one of the following holds:

1. f ′(K) ≥ −1 and the global attractor of (1.1) for all values of the delay τ is {K}.

2. f ′(K) < −1 and the sharpest invariant and attracting interval containing the global attractor

of (1.1) for all values of the delay τ is [ᾱ, β̄], where {ᾱ, β̄} is the unique nontrivial 2-cycle (i.e.,

ᾱ = f (β̄) and β̄ = f (ᾱ)) of the map f in [α, β].

Remark 1.2. We note that Theorem 1.1 as stated above is, in fact, a slightly generalized version

of Theorem 6 in [11], which follows from the ideas in [11]. Specifically, the result by Liz and

Röst is stated for the particular case in which a = 0 and b = +∞. Moreover, their condition (U)

imposes f ′′(x) > 0 on (0, x∗), but this is just to guarantee that f has a unique positive fixed

point. We note that under the conditions in [11], f : [0,+∞) → [0,+∞) is continuous and

satisfies f (0) = 0 and f (x) > 0 for x > 0, hence, the restriction to the open interval (0,+∞)

that we consider in Theorem 1.1 is well defined. Finally, note that the initial condition in [11]

is a nonzero and nonnegative real function on [−τ, 0] and consequently all the solutions are

strictly positive for t > 0, as remarked there. Hence, there is no loss of generality in assuming

the initial condition to be strictly positive as we do here.

As the authors of [11] highlighted, the function f appearing in important examples of

equation (1.1), including the Mackey–Glass and Nicholson’s blowflies models [6, 12], does

have negative Schwarzian derivative. Nevertheless, it is not hard to find situations where (S)

does not hold and, therefore, Theorem 1.1 is not applicable. Hence, it is interesting to look for

results extending and complementing Theorem 1.1.

In order to obtain such results, without the assumption that f has negative Schwarzian

derivative, we instead take advantage of a consequence of (L), namely, that f|(α,β) is strictly

decreasing. In this case, the recent method presented in [4, 5] for studying the dynamics of

difference equations is applicable, and we employ it to establish a dichotomy result for (1.1)

by studying (1.3). Proposition 2.6 is the key technical ingredient for the difference equations

we consider, and our main result is Theorem 3.2. The latter result has the same conclusions of

Theorem 1.1, but different hypotheses.

Interestingly, the proof of Proposition 2.6 uses the second inequality in the Hermite–

Hadamard inequality for a strictly convex function h : [a, b] → R,

h

(

a + b

2

)

<
1

b − a

∫ b

a
h(x)dx <

h(a) + h(b)

2
, (1.4)

to show that certain function, intimately linked to the dynamics of the difference equation,

is strictly increasing. Whereas, for guaranteeing that such a function has a strict global

minimum—enough for obtaining the first conclusion in Theorem 1.1—one needs to invoke

the first inequality in (1.4).

In recognition of the current special volume, Professor Webb is a world-expert on the use

of topological tools in the study of nonlinear problems. Indirectly, fixed point index theory

applied to the study of differential equations plays a role in this paper. Indeed, this is one
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of the tools used by Mallet-Paret and Nussbaum in [13] to prove the existence of slowly

oscillating periodic solutions. The properties of those slowly oscillating periodic solutions

underpin [11, Proposition 5], which we invoke in the proof of our main result.

The rest of the paper is organized as follows. The next section contains the preliminaries:

notation and some stability results for difference equations. Section 3 contains our main

results. Finally, last section of the paper includes some examples to illustrate these main

results and compare them with Theorem 1.1.

2 Preliminaries

2.1 Notation

As usual N and R denote the positive integers (natural numbers) and real numbers, respec-

tively. Furthermore, R+ :=
{

r ∈ R : r ≥ 0
}

.

Let I ⊂ R be an interval (bounded or unbounded) and f a continuous map from I to itself.

We denote

f (0) := id, f (n+1) = f ◦ f (n), n ≥ 1, n ∈ N ,

with id denoting the identity map; i.e., id(x) = x for all x ∈ I.

We let Cn(J, I) denote the space of functions ξ : J → I with n continuous derivatives and, to

simplify the notation, Cn((a, b), R) is denoted by Cn(a, b) := Cn((a, b), R) when no confusion

is possible. We do not explicitly indicate the domains of the identity and constant functions.

They are assumed to be the largest sets for which the corresponding expressions make sense.

We say that x(t; ξ) is a solution of the differential equation (1.1) with f ∈ C(R) and initial

condition ξ ∈ C([−τ, 0], R) if x(·; ξ) ∈ C([−τ,+∞), R), x(· ; ξ)|(0,+∞) ∈ C1(0,+∞), it satisfies

the differential equation (1.1) for t > 0 and x(s; ξ) = ξ(s) for s ∈ [−τ, 0]. The method of steps,

e.g., see [17], shows that there exists a unique solution of the differential equation (1.1) for any

f ∈ C(R) and initial condition ξ ∈ C([−τ, 0], R). Moreover, if f ∈ C(I, I) and ξ ∈ C([−τ, 0], I),

then the invariance principle (see [7, Theorem 2.1]) guarantees that the unique solution of (1.1)

satisfies x(t; ξ) ∈ I for all t ∈ [−τ,+∞).

2.2 Stability of difference equations

In this section, we study stability properties of the difference equation

yn+1 = yn + g(yn), y0 ∈ dom g , (2.1)

with g ∈ G, where

G :=
∪

−∞≤a<b≤∞

G(a, b) ,

and

G(a, b) :=
{

g ∈ C1(a, b) : a < id+g < b, g′ < 0, 0 ∈ g
(

(a, b)
)}

.

Here g
(

(a, b)
)

denotes the image of (a, b) under g. It is clear that for each g ∈ G∗ the difference

equation (2.1) is well defined and there exists a unique yg ∈ (a, b) such that g(yg) = 0. In

particular, yg is a unique equilbrium of (2.1). We use the usual definitions of stability, local

asymptotic stability and global asymptotic stability for the equilibrium yg of the difference

equation (2.1). From now on, G.A.S. stands for globally asymptotically stable and L.A.S. for

locally asymptotically stable. We state what we understand by a global repeller.
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Definition 2.1. We say that yg is a a global repeller for the difference equation (2.1) if the

sequence ((id+g)(n)(y))n has no accumulation points in (a, b) for any y ∈ (a, b) \ yg.

Next, we define a function to study the stability properties of the equilibrium of (2.1),

which was introduced in [5].

Definition 2.2. For each g ∈ G, set bg := min{− inf g, sup g}. The function σg : (−bg, bg) →

(0,+∞) is defined by

σg(u) =







g−1(−u)−g−1(u)
u if u ̸= 0 ,

−2
g′(yg)

if u = 0 .

The following remark will be very useful in this section.

Remark 2.3. Since (g−1)′ is continuous, σg satisfies

σg(u) =
1

u

∫ u

−u
−
(

g−1
)′
(s)ds ∀ u ∈ (0, bg).

The function σg is continuous, even and positive. Moreover, y ∈ dom g \ yg satisfies

(id+g)(2)(y) = y if, and only if, u = g−1(y) ∈ dom σg satisfies σ(u) = σ(−u) = 1, see [5]. In

other words, the nontrivial period-2 solutions of (2.1) correspond to the symmetric intersec-

tions of the graph of σg with the the graph of the constant function with value 1.

Our next result shows that the stability properties of yg are intimately linked to the relative

position of the function σg with respect to the constant function with value 1.

Theorem 2.4. Let g ∈ G. The following statements hold for the unique equilibrium yg of (2.1):

a) yg is L.A.S. if σg(0) > 1, and it is unstable if σg(0) < 1.

b) yg is G.A.S. if, and only if, σg(u) > 1 for all u ∈ (−bg, bg) \ {0}.

c) If σg(u) ≥ 1 for all u in a neighbourhood of u = 0, then yg is stable.

d) If σg(u) < 1 for all u in a punctured neighbourhood of u = 0, then yg is unstable.

e) yg is a global repeller if, and only if, σg(u) < 1 for all u ∈ (−bg, bg) \ {0}.

f) If σg(u) > 1 for all u in a punctured neighbourhood of u = 0, then yg is L.A.S.

Proof. The proof of statements a)–d) can be found in [5]. Similar ideas can be used to prove

statements e) and f). Indeed, the reader just needs to reverse the inequalities in the proof of b)

and to invoke [5, Proposition 4.d] to obtain the proof of e); whereas reversing the inequalities

in d) and invoking [5, Proposition 3.a] gives the proof of f).

Our next result illustrates how Theorem 2.4 can be used to obtain sufficient conditions for

the (in)stability of the equilibrium yg of the difference equation (2.1).

Proposition 2.5. Let g ∈ G. The following statements hold.

a) If g′(y) < −2 for all y ∈ (a, b)\{yg}, then yg is a global repeller for (2.1).

b) If g′(y) > −2 for all y ∈ (a, b)\{yg}, then yg is G.A.S. for (2.1).
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Proof. To prove statement a), we argue that

σg(u) < 1 ∀ u ∈ (0, bg) , (2.2)

and invoke statement e) of Theorem 2.4, combined with the property that σg is an even func-

tion.

For which purpose, recalling that

(

g−1
)′
(u) =

1

g′(g−1(u))
∀ u ∈ (−bg, bg) ,

our hypothesis on g in statement a) implies that

−
(

g−1
)′
(u) <

1

2
∀ u ∈ (−bg, bg)\{0} .

Therefore, recalling Remark 2.3,

σg(u) =
1

u

∫ u

−u
−
(

g−1
)′
(s)ds < 1 ∀ u ∈ (0, bg) ,

and so (2.2) holds.

The proof of statement b) is similar, and argue that

σg(u) > 1 ∀ u ∈ (0, bg) ,

which, when combined with statement b) of Theorem 2.4, proves the claim.

Proposition 2.6. Let g ∈ G. The following statements hold.

a) If
(

g−1
)′

is strictly convex or strictly concave, then the difference equation (2.1) has at most one

nontrivial period-2 solution.

b) If
(

g−1
)′

is strictly convex and g′(yg) ≤ −2, then yg is a global repeller for (2.1).

c) If
(

g−1
)′

is strictly concave and g′(yg) ≥ −2, then yg is G.A.S. for (2.1).

Noting that

(g−1)′′′(u) =
3(g′′(y))2 − g′(y)g′′′(y)

(g′(y))5
∀ u = g(y), y ∈ (a, b) ,

a sufficient condition for strict convexity (concavity) of
(

g−1
)′

in the case that g ∈ C3(dom g)

is that

3(g′′)2 − g′g′′′ (2.3)

is negative (positive).

Proof of Proposition 2.6. We claim that if g−1 is strictly convex (concave), then the function σg

is strictly decreasing (increasing) on the interval (0, bg). Assuming this, strict monotonicity

of σg implies that there is at most one solution of 1 = σg(u) in (0, bg), and so invoking the

properties of σg recalled after Definition 2.2, we conclude that (2.1) has at most one nontrivial

period-2 solution, proving statement a).
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Thus, if
(

g−1
)′

is strictly convex, then Remark 2.3 and an application of the second

Hermite–Hadamard inequality in (1.4) yields

u
d

du
σg(u) = u

d

du

(

−1

u

∫ u

−u
(g−1)′(s)ds

)

=
1

u

∫ u

−u
(g−1)′(s)ds −

(

(g−1)′(−u) + (g−1)′(u)
)

< 0 ∀ u ∈ (0, bg) ,

that is, σ′
g < 0 and so σg is strictly decreasing on (0, bg).

Analogously, if (g−1)′ is strictly concave, then −(g−1)′ is strictly convex and so

−u
d

du
σg(u) = u

d

du

(

−1

u

∫ u

−u
−(g−1)′(s)ds

)

=
1

u

∫ u

−u
−(g−1)′(s)ds −

(

− (g−1)′(−u) +−(g−1)′(u)
)

< 0 ∀ u ∈ (0, bg) .

that is, σ′
g > 0. We conclude that σg is strictly increasing on (0, bg). The proof of statement a)

is complete.

Under the hypotheses in statement b), that (2.2) holds is clear upon noting that σg(0) =

−2/g′(yg) ≤ 1 and that we have just shown in proof of statement a) that σg is strictly in-

creasing on the interval (0, bg). Invoking statement e) of Theorem 2.4 completes the proof of

statement b).

Reasoning analogous to that used in the proof of statement b) proves statement c), and so

we omit the details.

Remark 2.7.

(i) If
(

g−1
)′

is strictly convex, then using the first Hermite–Hadamard inequality in (1.4)

gives

σg(u) =
−1

u

∫ u

−u
(g−1)′(s)ds < −2(g−1)′(0) =

−2

g′(yg)
= σg(0) ∀ u ∈ (0, bg) ,

and, consequently, σg attains a global maximum at 0. Hence, statement b) in Proposi-

tion 2.6 may be proven by statement e) of Theorem 2.4 directly together with the first

inequality in the Hermite–Hadamard inequality, instead of the second inequality as was

done above. A similar comment is valid for statement c) of Proposition 2.6.

(ii) Assume that bg = +∞. Since

(

g−1
)′
(u) =

1

g′(g−1(u))
< 0 ∀ u ∈ (−∞,+∞) ,

as g is strictly decreasing, it follows that −
(

g−1
)′
(u) > 0. In particular, if

(

g−1
)′

is

convex in R, then −
(

g−1
)′

is concave and positive in R, and hence must be constant.

Therefore,
(

g−1
)′

cannot be strictly convex. This implies that (2.3) cannot be negative.

In light of the above, when bg = +∞, statement b) of Proposition 2.6 cannot be applied.

We finish the section by showing how Theorem 2.4 and Proposition 2.6 can be used to

study a particular type of positive difference equation via topological conjugacy. We define

C :=
∪

−∞≤a<b≤∞

C(a, b) and C+ :=
∪

0≤a<b≤∞

C+(a, b),
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with C+(J) = {d ∈ C(J) : d > 0}, and define T : C+ → C by T(d) = ln ◦ d ◦ exp. Clearly, T is

bijective, with inverse T−1 : C → C+ given by T−1(g) = exp ◦ g ◦ ln. Define

D := T
−1(G) =

∪

0≤a<b≤∞

D(a, b) ,

with

D(a, b) :=
{

d ∈ C1(a, b) : a < id ·d < b, d′ < 0, 1 ∈ d
(

(a, b)
)}

,

and consider the difference equation

xn+1 = xnd(xn), x0 ∈ dom d , (2.4)

where d ∈ D. Note that for each d ∈ D there exists a unique xd ∈ dom d such that d(xd) = 1,

and consequently xd is an equilibrium of (2.4).

A routine calculation shows that x = (xn) is a solution of (2.1) if, and only if, z = ex is

a solution of (2.4), where g and d are related by d = T−1(g). Therefore, stability properties

of (2.4) may be studied by applying Theorem 2.4 and Proposition 2.6 to the transformed

version (2.4).

3 Sharpest interval containing the attractor

We will make use of the following result (see [7, Theorems 2.2 and 2.3]).

Lemma 3.1. If there exists an interval I0 ⊂ I such that

inf I0 ≤ lim inf
n→+∞

f (n)(x) ≤ lim sup
n→+∞

f (n)(x) ≤ sup I0 ∀ x ∈ I ,

then the solutions of (1.1) satisfy

inf I0 ≤ lim inf
t→+∞

x(t, ξ) ≤ lim sup
t→+∞

x(t, ξ) ≤ sup I0 ∀ τ > 0, ∀ ξ ∈ C([−τ, 0], I) .

In particular, if K is G.A.S. for the difference equation (1.3), then

lim
t→+∞

x(t; ξ) = K ∀ τ > 0, ∀ ξ ∈ C([−τ, 0], I) .

The following theorem is the main result of this paper. It provides a partial answer to

the problem of finding the sharpest attracting interval for the delay-differential equation (1.1)

under condition (L) by establishing a dichotomy, in the flavour of that of Theorem 1.1.

Theorem 3.2. Assume that (L) holds, that f is three times differentiable and satisfies

3( f ′′)2 − ( f ′ − 1) f ′′′ > 0 , (3.1)

on the interval (α, β). Then exactly one of the following holds:

1. f ′(K) ≥ −1 and the global attractor of (1.1) for all values of the delay τ is {K}.

2. f ′(K) < −1 and the sharpest invariant and attracting interval containing the global attractor

of (1.1) for all values of the delay τ is [ᾱ, β̄], where {ᾱ, β̄} is the unique nontrivial 2-cycle of the

map f in [α, β].
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Proof. Using condition (L), it is not hard, but tedious since several cases need to be considered,

to see that for any x0 ∈ I there exists n ∈ N such that f (n)(x0) ∈ (α, β), and f ([α, β]) ⊂ [α, β).

Define g := f − id. We claim that g belongs to G(α, β). To see this, note that g is strictly

decreasing in [α, β] since f is. Also, note that

g(x) + x = f (x) ∈ (α, β) ∀ x ∈ (α, β)

and, since f ([α, β]) ⊂ [α, β),

f (β)− β < 0 < f (α)− α,

so 0 ∈ g
(

(α, β)
)

, and we have that g ∈ G(α, β).

Assume first that f ′(K) ≥ −1. Using that for any x0 ∈ I there exists n ∈ N such that

f (n)(x0) ∈ (α, β) and invoking the second part of Lemma 3.1, it is enough to show that K is

G.A.S. for the difference equation (2.1). And this follows from the second part of Proposi-

tion 2.6 after noting that g′(K) ≥ −2, because f ′(K) ≥ −1, and that the function in (2.3) is

positive, because (3.1) holds.

Assume now that f ′(K) < −1. Since f ([α, β]) ⊂ [α, β), by a celebrated result of Coppel [3],

f has at least one nontrivial 2-cycle {ᾱ, β̄} with [ᾱ, β̄] ( [α, β]. Moreover, by Proposition 2.6, it

is the unique nontrivial 2-cycle contained in [α, β].

Next, invoking [11, Lemma 2], [ᾱ, β̄] is an attracting and forward invariant interval for

the map f . Therefore, by Lemma 3.1, the interval [ᾱ, β̄] contains the global attractor of (1.1).

Finally, using [11, Proposition 5] we see that any closed subinterval of [ᾱ, β̄] does not contain

the global attractor of (1.1) for all τ > 0 because we can find slowly oscillating periodic

solutions of (1.1) taking values as close as desired to ᾱ and β̄.

It is interesting to note that the previous result is based on rewriting the difference equa-

tion (1.3) in the form (2.1). In Theorem 3.2, we have used the natural choice g = f − id.

However, this transformation is not the unique and any topologically conjugate difference

equation of (1.1) belonging to model (2.1) will give a different condition on f for the validity

of the dichotomy. In particular, if f is positive and x 7→ f (x)/x is decreasing, then we obtain

the following result from the topological conjugacy described at the end of Section 2.

Proposition 3.3. Assume that (L) holds, that d(x) := f (x)/x is three times differentiable with d′ < 0,

and that

3(g′′)2 − g′g′′′ > 0 ,

on the interval (ln α, ln β), where g := ln ◦d ◦ exp. Then the conclusions of Theorem 3.2 hold.

4 Examples

This section provides several examples demonstrating the applicability of Theorem 3.2 and

Proposition 3.3. The first example shows that Theorem 3.2 can be applied in situations where

Theorem 1.1 can not.

Example 4.1. Consider equation (1.1) with f : (0, 1) → (0, 1) given by

f (x) =
19

20
x(1 − x)(5 − 4x + 2x3). (4.1)

The graph of f is plotted in Panel A in Figure 4.1. Using Sturm’s Theorem, it is easy to see

that neither f nor f − 1 have any real roots in the open interval (0, 1). Moreover, f (1/2) =
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1.0 B
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sign(3( f ′′)2−( f ′−1) f ′′′)
2

sign(S f )
10

f

Figure 4.1: Panel A shows the graph of f (x) = 19
20 x(1 − x)(5 − 4x + 2x3). Ob-

serve that condition (U) holds. Also note that f ( f (x∗)) > x∗ and condition (L)

holds. Panel B shows, in the interval [α, β], the graphs of scaled versions of

the sign function composed with, respectively, the Schwarzian derivative of f

and 3( f ′′)2 − ( f ′ − 1) f ′′′. Observe that the sign of 3( f ′′)2 − ( f ′ − 1) f ′′′ remains

positive, meanwhile S f changes sign in the interval [α, β].

247/320 ∈ (0, 1). Hence, f is well-defined. On the other hand, f ′(x) = − 19
20 (10x4 − 8x3 −

12x2 + 18x − 5) and so f ′(0) = 19
4 > 1. Moreover, invoking again Sturm’s Theorem, f ′ has

exactly one real root x∗ (which one can calculate explicitly since f ′ is a polynomial of degree

4) in the interval (0, 1). At x∗ ≈ 0.3966 the function f attains a local maximum because

f (0+) = f (1−) = 0. Solving the equation f (x) = x, we find that f has a unique solution

K ∈ (0, 1), which again can be explicitly calculated, with K ≈ 0.6441; and so x∗ < K. Thus, f

satisfies the unimodal condition (U) with a = 0 and b = 1. Observe in Panel A in Figure 4.1

that condition (L) holds for f because x∗ < α = f ( f (x∗)).

Panel B in Figure 4.1 illustrates that Theorem 1.1 cannot be used to study the behaviour of

equation (1.1) with f given by (4.1). Indeed, we observe that the condition (S) is violated, i.e.,
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0.5

β̄

ᾱ

t

b

b

b

Figure 4.2: The figure shows three different solutions of equation 1.1 with µ =

1, τ = 25 and f as in (4.1). The initial condition is a constant function ξ ∈

C([−τ, 0], R), namely, in the blue curve ξ = 0.2, the red curve ξ = 0.9, and the

black curve ξ = 0.5. The pink region is determined by the 2-cycle ᾱ, β̄. Observe

how the three solutions are asymptotically trapped in this region.

the Schwarzian derivative, S f , is not negative in the interval [α, β]. In contrast, the function

3( f ′′)2 − ( f ′ − 1) f ′′′ has positive sign (again this is easily verified using Sturm’s Theorem in

the interval [0, 1], which contains the interval [α, β]). Thus, f satisfies the assumptions of

Theorem 3.2.

Since f ′(K) ≈ −1.1390, invoking Theorem 3.2 we conclude that the sharpest invariant and

attracting interval containing the attractor of equation (1.1) for all values of the delay τ is

determined by the unique nontrivial 2-cycle {ᾱ, β̄} of f in the interval [α, β]. Numerically, we

find that ᾱ ≈ 0.4269 and β̄ ≈ 0.8013.

In Figure 4.2, we plot three solutions of equation (1.1) with f as in (4.1), µ = 1, τ = 25 and

different constant initial conditions. Observe that all the solutions asymptotically take values

in the interval determined by the 2-cycle {ᾱ, β̄} as the result predicts. Moreover, observe that

as t → ∞ the solutions oscillate in a range that it is close to the length of the interval [ᾱ, β̄]. ♢

The next example shows that Proposition 3.3 can be applied in situations where the as-

sumptions in Theorem 1.1, and in Theorem 3.2, do not hold.

Example 4.2. Consider equation (1.1) with f : (0, 1) → (0, 1) given by

f (x) =
3

10
x

(

1 −
1

10
ln(x)

)15

. (4.2)

Differentiating, we have

f ′(x) =
3

10

(

1 −
ln (x)

10

)15

−
9

20

(

1 −
ln (x)

10

)14

= −
3(ln (x)− 10)14 (ln (x) + 5)

1016
.

Therefore, f has a critical point at x∗ = e−5 ∈ (0, 1). Moreover,

f ′′(x) = −
9(ln (x)− 10)13 (ln (x) + 4)

2 · 1015x
,
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0.5

1.0

f

sign(3( f ′′)2−( f ′−1) f ′′′)
10

sign(S f )
5

Figure 4.3: Graphs of the function f (x) = 3
10 x(1 − 1

10 ln(x))15 (red curve), and

the graphs of scaled versions of the sign function composed with, respectively,

the Schwarzian derivative of f (blue curve) and 3( f ′′)2 − ( f ′ − 1) f ′′′ (green

curve). Observe that at the fixed point K, S f is positive and 3( f ′′)2 − ( f ′ − 1) f ′′′

is negative. Since x∗ ∈ [α, β], the assumptions of Theorem 1.1 and Theorem 3.2

are not satisfied.

and so f ′′(x∗) < 0. Noting that f (0+) = 0 and f (1−) = 3/10, we conclude that f is well-

defined and unimodal in the interval (0, 1). Now, note that f is convex in the interval (0, e−4)

and limx→0+ f (x)/x = +∞. Consequently, f has a unique fixed point K in the interval (0, 1)

and it satisfies x∗ < K. This shows that (U) hold for (4.2)

Next, we obtain that

β = f (x∗) =
43046721e−5

327680
≈ 0.8852 ,

and

α = f ( f (x∗)) =
129140163e−5

3276800

(

1 −
1

10
ln

(

43046721e−5

327680

))15

≈ 0.3185 .

Recalling that x∗ = e−5, we have that condition (L) holds. In this case, neither Theorem 1.1

nor Theorem 3.2 can be used because the Schwarzian derivative and the function 3( f ′′)2 −

( f ′ − 1) f ′′′ do not satisfy the sign restrictions in the interval [α, β], cf. Figure 4.3.

Nevertheless, Proposition 3.3 holds. We need to verify that

d(x) =
f (x)

x
=

3

10

(

1 −
1

10
ln(x)

)15

is decreasing, which is trivial, and g(x) = ln ◦d ◦ exp satisfies 3(g′′)2 − g′g′′′ > 0 in the interval

[ln α, ln β]. Deriving, we obtain

3(g′′(x))2 − g′(x)g′′′(x) =
225

(x − 10)4
, (4.3)

and 3(g′′(x))2 − g′(x)g′′′(x) is positive in the interval [ln α, ln β].
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0

0.5
K

t

b

Figure 4.4: The figure shows three solutions of equation 1.1 with µ = 1 and f

as in (4.2). The initial condition is a constant function ξ ∈ C([−τ, 0], R), namely,

ξ = 0.2, but the delay τ is different. For the blue curve we fixed τ = 20, for the

black curve τ = 50, and for the red curve τ = 100. Observe how independently

of τ the three solutions tend to K.

Computing the derivative of f at its fixed point K, we obtain that this derivative is greater

than −1 (approx. −0.3843). By Proposition 3.3 for any initial condition ξ ∈ C([−τ, 0], (0, 1))

the solutions of (1.1) tend to K as t tends to +∞, with independence of the size of the delay

τ > 0 and the value of µ > 0 as Figure 4.4 illustrates. ♢

Probably, the most famous representatives of equation (1.1) are the Nicholson’s blowflies

equation and the Mackey–Glass equation. In the Nicholson’s blowflies equation f is given by

f (x) =
1

µ
xe−x, (4.4)

whereas in the Mackey–Glass equation f is given by

f (x) =
1

µ

ax

1 + xb
, a > 0, b ≥ 1. (4.5)

Both (4.4) and (4.5) have negative Schwarzian derivative, and therefore Theorem 1.1 can be

used to study them. This was illustrated in [11, Section 3] with a couple of examples. We notice

that Proposition 3.3 can be used to obtain the same conclusions as in those examples. Indeed,

d(x) = f (x)/x is decreasing both for (4.4) and (4.5). Therefore, to invoke Proposition 3.3 we

need to check that g(x) = ln ◦d ◦ exp satisfies 3(g′′)2 − g′g′′′ > 0 in the interval (ln α, ln β).

The following examples show that the inequality holds not only in the interval (ln α, ln β) but

in the whole R.

Example 4.3. Nicholson’s blowflies equation. In this case, g(x) = ln(1/µ)− ex and trivially

3(g′′)2 − g′g′′′ = 2e2x
> 0 . ♢

Example 4.4. The Mackey–Glass equation. In this case, g(x) = ln(a/µ)− ln(1+ ebx) and after

some straightforward calculations we obtain that

3(g′′)2(x)− g′(x)g′′′(x) =
b4e2bx(2 + ebx)

(1 + ebx)4
> 0 . ♢
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Abstract. Let u satisfy an inhomogeneous wave equation such as

u′′(t) + A2u(t) = h(t), u(0) = f , u′(0) = g.

We show that in many cases, the limit as t → ∞ of 1
t

∫ t
0 u(s)ds exists, and can be

calculated explicitly.
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1 Introduction

The mean ergodic theorem (MET) deals with the asymptotic behavior of semigroups govern-

ing
du

dt
= Au, u(0) = f (1.1)

and cosine functions governing

d2u

dt2
= A2u, u(0) = f , u′(0) = 0. (1.2)

The conclusion is that the unique mild solution u of (1.1) and of (1.2) both satisfy

lim
t→∞

1

t

∫ t

0
u(s)ds (1.3)

BCorresponding author. Email: jgoldste@memphis.edu
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exists and equals P f , where P is a suitable projection onto the null space of A. Of course, some

hypotheses are necessary, including the uniform boundedness of the solution semigroup or

cosine function.

Our goal here is to obtain analogous results for solutions of the corresponding inhomoge-

neous problems
du

dt
= Au + h(t), u(0) = f , (1.4)

d2u

dt2
= A2u + h(t), u(0) = f ,

du

dt
(0) = g. (1.5)

For (1.5) the ergodic limits do not always exist.

2 First order equations

Let A generate a uniformly bounded strongly continuous (or (C0)) group {etA : t ∈ R} ⊂

L(X) on a Banach space X. For f ∈ X and h ∈ L1(R, X), the unique mild solution of (1.4) is

given by the strongly continuous function

u(t) = etA f +
∫ t

0
e(t−s)Ah(s)ds, t ∈ R. (2.1)

For background on semigroups and cosine functions, see e.g. Goldstein [4]. The mild solution

u is a strong solution in C1(R, X) provided f ∈ D(A) and either h ∈ C1(R, X) or both h and

Ah belong to C(R, X). We will assume h ∈ L1(R, X) (or maybe h ∈ L1(R+, X), R
+ = [0, ∞)

since we study (1.3)).

Let X0 := N(A) + R(A), with N and R denoting null space and range, respectively. For

f ∈ N(A), etA f = f for all t ∈ R, while for f = Ag ∈ R(A),

1

t

∫ t

0
esA f ds =

1

t

∫ t

0

d

ds
(esAg)ds =

etAg − g

t
→ 0

as t → ∞, whence N(A) ∩ R(A) = {0}. Then the MET says that 1
t

∫ t
0 esA f ds → P f (strong

convergence) as t → ∞, for all f = f1 + f2 ∈ N(A) + R(A) =: X0 and P f = f1 where P is the

projection of X0 onto N(A) = N(A) along R(A).

Note that P is bounded because

‖P‖ ≤ sup
t∈R

‖etA‖ = M < ∞.

Also, X0 = X if X is reflexive. Moreover P is an orthogonal projection if X = H is a Hilbert

space and M = 1, i.e., {etA : t ∈ R} is a (C0) unitary group. For the final term in (2.1),

∫ t

0
e(t−s)Ah(s)ds = etA

∫ t

0
e−sAh(s)ds,

k(t) :=
∫ t

0
e−sAh(s)ds →

∫ ∞

0
e−sAh(s)ds =: k0 (2.2)

as t → ∞, and

∥

∥

∥

∥

etA

[

∫ t

0
e−sAh(s)ds − k0

]∥

∥

∥

∥

=

∥

∥

∥

∥

etA
∫ ∞

t
e−sAh(s)ds

∥

∥

∥

∥

→ 0 (2.3)
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as t → ∞ by the uniform boundedness of {etA} and (2.2). Thus

1

τ

∫ τ

0

(

∫ t

0
e(t−s)Ah(s)ds

)

dt =
1

τ

∫ τ

0
etAk0dt + o(1)

converges as τ → ∞ to Pk0 by the MET and (2.3).

This proves

Theorem 2.1. Let {etA : t ∈ R} be a uniformly bounded (C0) group on X, let X0 = N(A) + R(A),

and P0 be the (bounded) projection of X0 onto N(A) along R(A). Let h ∈ L1(R, X). Let u, given by

(2.1), be the unique mild solution of (1.4). Then

lim
t→∞

1

t

∫ t

0
u(s)ds = P( f + k0)

where P is the projection of X0 onto N(A) along R(A) and

k0 =
∫ ∞

0
e−sAh(s)ds.

3 Second order case

In 1963, W. Littman [6] showed that the initial value problem for the wave equation ∂2u
∂t2 = ∆u

for t ∈ R and x ∈ R
n is wellposed (in the sense of existence, uniqueness and continuous

dependence on the initial conditions) on a space based on Lp(Rn) iff p = 2 when n ≥ 2.

Earlier, K. Friedrichs had pointed out that wave propagation was intimately related to energy

considerations, so again, Hilbert space was the optimal context for the study of waves. Still,

some special equations can be studied in an Lp context, so we start this section in Hilbert

space and later consider Banach spaces as well.

Let B generate a uniformly bounded (C0) group on a Hilbert space H1 = (H, 〈·, ·〉). Then

there is as equivalent inner product 〈〈·, ·〉〉 such that on H2 = (H, 〈〈·, ·〉〉), B is a skewadjoint

operator. This 1947 result is due to B. Sz.-Nagy [7]; cf. also [4]. Thus there is a bijective

bounded linear operator V : H1 → H2 with bounded inverse such that

etB|H1
= V−1(etB|H2

)V

and {etB|H2
: t ∈ R} is a (C0) unitary group on H2. Then the P in Theorem 2.1 is an orthogonal

projection in the H2 context.

The selfadjoint operator L = iB on H2 determines the cosine function C given by

C(t) = cos(tL) =
1

2
(eitL + e−itL), t ∈ R (3.1)

(see p.118 of [4]). The corresponding sine function can be defined by

sin(tL) =
1

2i
(eitL − e−itL), t ∈ R.

By a (now commonly accepted) abuse of notation, we define the modified sine function S(t)

(and omit the adjective “modified”) by

S(t) =
1

2i
(eitL − e−itL)L−1 (3.2)
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provided L is injective. But since sin(λ)
λ → 1 as λ → 0, we can use the spectral theorem

and the functional calculus to define S(t) by (3.2) on R(L) and S(t) = tP on N(A), because

v(t) = S(t)g is the unique solution of

v′′ + L2v = 0, v(0) = 0, v′(0) = g

for g ∈ N(L). It is easy to see that

S(t) f =
∫ t

0
C(s) f ds, (3.3)

and this can be used to define S(t) ∈ L(H2) for t ∈ R. The unique mild solution of

u′′ + L2u = h(t), u(0) = f , u′(0) = g (3.4)

is given by

u(t) = C(t) f + S(t)g +
∫ t

0
S(t − s)h(s)ds. (3.5)

It is a strong C2(R, H2) solution provided f ∈ D(L2), g ∈ D(L) and h ∈ C1(R, H2).

Now suppose A = iL generates a uniformly bounded (C0) group on a Banach space X.

Then (3.1) and (3.3) define C and S, and (3.5) gives the unique mild solution of (3.4).

Now let A be as in Theorem 2.1, so that (3.4) becomes

u′′ = A2u + h(t), u(0) = f , u′(0) = g. (3.6)

We next state the analogue of Theorem 2.1 for second order equations.

Theorem 3.1. Let A, X0, P be as in Theorem 2.1. Let u, defined by (3.5), be the unique mild solution

of (3.6), where we assume (1 + t)h(t) ∈ L1(R+, X), f ∈ D(A) and g ∈ X0. Let k1 =
∫ ∞

0 Ph(s)ds ∈

N(A). If k1 6= −Pg, then

lim
t→∞

∥

∥

∥

∥

1

t

∫ t

0
u(s)ds

∥

∥

∥

∥

= ∞,

so that the ergodic limit limt→∞
1
t

∫ t
0 u(s)ds fails to exist. If k1 = −Pg, k0 =

∫ ∞

0 sPh(s)ds and if

lim
t→∞

t

(

Pg +
∫ t

0
Ph(s)ds

)

= k2 ∈ N(A) (3.7)

exists, then

lim
t→∞

1

t

∫ t

0
u(s)ds = P f + k2 − k0.

Proof. The unique mild solution of (3.6) is

u(t) =
3

∑
j=1

uj(t) := C(t) f + S(t)g +
∫ t

0
S(t − s)h(s)ds. (3.8)

By the MET for cosine functions,

lim
t→∞

1

t

∫ t

0
u1(s)ds = P f .

Now assume (I − P)g, (I − P)h(s) ∈ R(A) for each s ≥ 0. Then

u2(t) = S(t)Ag1 =
1

2
(etA − e−tA)g1
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and
1

t

∫ t

0
u2(t)dt → 0

as t → ∞ by the MET for semigroups. Furthermore, we can approximate (I − P)u3(t) in

L1(R+, X) by a sequence of the form

∫ t

0
S(t − s)Ah̃n(s)ds

where h̃n(s) ∈ D(A) and h̃n ∈ L1(R+, X). We omit writing the subscript n. Then

∫ t

0
S(t − s)Ah̃(s)ds =

∫ t

0

1

2

(

e(t−s)A − e(s−t)A
)

h̃(s)ds

=
1

2

[

etA
∫ t

0
e−sAh̃(s)ds − e−tA

∫ t

0
esAh̃(s)ds

]

=
1

2

(

etAl− − e−tAl+
)

+ o(1)

as t → ∞ where

l± =
∫ ∞

0
e∓sAh̃(s)ds ∈ R(A).

Then

1

τ

∫ τ

0

∫ t

0
S(t − s)Ah̃(s)ds =

1

2τ

∫ τ

0

(

etAl− − e−tAl+
)

dt + o(1)

→ 0

by the MET for semigroups. This completes the portion of the proof dealing with (I − P)u(t).

Now we consider Pu(t), using (3.8). Then

Pu(t) = C(t)P f + S(t)Pg +
∫ t

0
S(t − s)Ph(s)ds

= C(t)P f + tPg +
∫ t

0
(t − s)Ph(s)ds

since S(t) = tP on N(A). Next

1

t

∫ t

0
Pu1(s)ds =

1

t

∫ t

0
C(s)P f ds → P f

as t → ∞, and

w(t) := Pu2(t) + Pu3(t) = tPg + t
∫ t

0
Ph(s)ds −

∫ t

0
sPh(s)ds

= t

(

Pg +
∫ t

0
Ph(s)ds

)

−
∫ ∞

0
sPh(s)ds + o(1) (3.9)

as t → ∞. Let

k1 =
∫ ∞

0
Ph(s)ds, k0 =

∫ ∞

0
sPh(s)ds. (3.10)

If Pg + k1 6= 0, then ‖w(t)‖ → ∞ as t → ∞, whence

∥

∥

∥

∥

1

t

∫ t

0
w(s)ds

∥

∥

∥

∥

→ ∞, as t → ∞.
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Thus
∥

∥

∥

∥

1

t

∫ t

0
u(s)ds

∥

∥

∥

∥

→ ∞, as t → ∞.

Now suppose Pg +
∫ ∞

0 Ph(s)ds = 0 and

lim
t→∞

t
(

Pg +
∫ t

0
Ph(s)ds

)

= k2 ∈ N(A)

exists in X. Then

lim
t→∞

1

t

∫ t

0
Pu(s)ds = P( f + l) = P f + k2 − k0

by (3.9), (3.10). Theorem 3.1 now follows.

4 Examples

We conclude with some examples. The first is the Wentzell wave equation on a bounded

domain Ω in R
n.

Consider the wave equation

∂2u

∂t2
= ∆u, x ∈ Ω, t ∈ R, (4.1)

with initial conditions

u(x, 0) = f (x),
∂u

∂t
(x, 0) = g(x) (4.2)

and dynamic boundary conditions

∂2u

∂t2
− β

∂u

∂n
− γu + qβ∆LBu = 0, x ∈ Ω, t ∈ R, (4.3)

where Ω is a C2+ε bounded domain in R
n with boundary ∂Ω, ε > 0, 0 < β ∈ C1(∂Ω),

0 ≤ γ ∈ C(∂Ω), q ∈ [0, ∞), and ∆LB is the Laplace–Beltrami operator on ∂Ω. Assuming (4.1)

holds for x ∈ ∂Ω, then one can replace ∂2u
∂t2 by tr(∆u) in (4.3) and (4.3) then becomes a Wentzell

boundary condition

tr(∆u)− β
∂u

∂n
− γu + qβ∆LBu = 0

on ∂Ω. Let

X2 = L2(Ω, dx)⊕ L2(∂Ω,
dS

β(x)
),

S0 =

[

∆ 0

−β ∂
∂n −γ + qβ∆LB

]

,

D(S0) =
{

U =
[ u

tr(u)

]

=: u ∈ C2(Ω)
}

, S1 = S0. Then S1 = S∗
1 ≥ εI on X2 for some ε > 0, and

∂2U

∂t2
+ S1U = h(x, t)

is the inhomogeneous Wentzell wave equation corresponding to (4.1)–(4.3). See [1–3].

The operator S1 has a compact resolvent and has an orthonormal basis {ϕk}
∞
k=0 of eigen-

functions corresponding to eigenvalues 0 < λ0 < λ1 ≤ λ2 ≤ · · · → ∞, with λ0 a simple eigen-

value and ϕ0 > 0 in Ω, the “ground state eigenfunction”. Now let A = i(S1 − λ0)
1
2 , so that iA
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is selfadjoint on X2 and N(A) = span{ϕ0}, a one dimensional space. For F =
[

f1

f2

]

∈ X2, PF is

the constant function with value 〈F, ϕ0〉X2
=

∫

Ω
f1(x)ϕ0(x)dx +

∫

∂Ω
f2(x)ϕ0(x) dS

β(x)
. Theorem

3.1 applies. The initial condition ∂u
∂t (0) = g ∈ X2 is in R(A) iff 〈g, ϕ0〉X2

= 0. The ergodic

limits of Theorem 3.1 will all exist if the limit (3.7) exists, that is,

lim
t→∞

t

(

〈g, ϕ0〉X2
+

∫ t

0
〈h(s), ϕ0〉X2

ds

)

(4.4)

exists. Since
∫ ∞

0 〈h(s), ϕ0〉X2
ds exists, the existence of (4.4) means, when

∫ ∞

0
〈h(s), ϕ0〉X2

ds = −〈g, ϕ0〉X2
,

that the integral in (4.4) converges fast enough as t → ∞.

For non Hilbert space examples, we look at the one dimensional wave equation,

∂2u

∂t2
=

∂2u

∂x2
+ h(x, t), u(x, 0) = f (x), ut(x, 0) = g(x) (4.5)

for x, t ∈ R. Let w ∈ BUC(R) be a weight function which satisfies 0 < ε ≤ w(x) ≤ 1
ε < ∞ for

all x ∈ R. Let Xp = Lp(R, w(x)dx), X∞ = BUCw(R) with norm ‖ f ‖w∞
= supx∈R

| f (x)|w(x).

Let A = d
dx , etA f (x) = f (x + t). The unique mild solution of (4.5) in Xp, 1 ≤ p ≤ ∞, is

u(x, t) =
1

2

(

f (x + t) + f (x − t)
)

+
1

2

∫ x+t

x−t
g(s)ds +

1

2

∫ t

0

∫ x+t−s

x−t+s
h(r, x)drds.

Then A generates a uniformly (C0) group on Xp which is not isometric if w 6= constant.
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1 Introduction

The fractional calculus is a generalization of ordinary differentiation and integration to ar-

bitrary non-integer orders. Fractional differential equations arise in various fields of science

and engineering. Indeed, we can find numerous applications in control theory of dynamical

systems, chaotic dynamics, fractals, optics, and signal processing, fluid flow, viscoelasticity,

polymer science, rheology, physics, chemistry, biology, astrophysics, cosmology, thermody-

namics, mechanics, and other fields. For further details and applications, see, for example,

[8, 24, 28, 29]. For some fundamental results on the theory of fractional calculus and fractional

ordinary and partial differential equations, we refer to the reader to the books [1, 2, 21, 25, 35],

the articles [5, 6, 17], and the references therein.

Impulsive differential equations describe observed evolution processes of several real world

phenomena in a natural manner, and exhibit several new phenomena such as noncontinua-

bility and merging of solutions, rhythmical beating, etc. Dynamic processes associated with

BCorresponding author. Email: John-Graef@utc.edu



2 A. I. N. Malti, M. Benchohra, J. R. Graef and J. E. Lazreg

sudden changes in their states are governed by impulsive differential equations. This theory

models many phenomena in control theory, population dynamics, medicine, and economics.

Recently, fractional differential equations with impulse effects have also received considerable

attention, for example, the monographs by Abbas et al. [3] Benchohra et al. [13], Lakshmikan-

tham et al. [26], Samoilenko and Perestyuk [30], and the papers of Benchohra et al. [9, 16, 19],

Chang et al. [20], Henderson et al. [23], and Wang et al. [32], as well as the references cited

therein.

On the other hand, boundary value problems for fractional differential equations have re-

ceived considerable attention because they occur in the mathematical modeling of a variety of

physical processes; see for example [6,7,11,12,34]. In [10,14,15,18], the authors give existence

and uniqueness results for some classes of implicit fractional order differential equations.

Recently, in [27, 31] the authors introduce the exponential fractional calculus and give

some existence and uniqueness results for solutions of initial and boundary value problems

for fractional differential equations involving Caputo-exponential fractional derivatives (as

defined in the next section).

The main goal of this paper is to study existence and uniqueness results for solutions

to a more general class of impulsive boundary value problem (BVP for short) given by the

following nonlinear implicit fractional-order differential equation:

e
cDα

tk
̟(t) = f (t, ̟(t), e

cDα
tk

̟(t)), for each t ∈ Jk ⊆ J, k = 0, 1, . . . , m, (1.1)

∆̟|t=tk
= Ik

(
̟
(
t−k
))

, k = 1, . . . , m, (1.2)

c1̟(a) + c2̟(b) = c3, (1.3)

where a = t0 < t1 < . . . < tm < tm+1 = b, e
cDα

a+ denotes the Caputo-exponential fractional

derivative of order α, 0 < α ≤ 1, J = [a, b], J0 = [a, t1], Jk = (tk, tk+1], k = 1, 2, . . . , m,

f : J × R × R → R is a given function, c1, c2, c3 are real constants with c1 + c2 6= 0, ∆̟|t=tk
=

̟
(
t+k
)
− ̟

(
t−k
)
, and ̟

(
t+k
)
= limh→0+ ̟(tk + h) and ̟

(
t−k
)
= limh→0− ̟(tk + h) represent

the right and left hand limits of ̟(t) at t = tk, respectively.

The present paper is organized as follows. In Section 2, some notations are introduced

and we recall some preliminary concepts about Caputo-exponential fractional derivatives and

some auxiliary results. In Section 3, two results on the impulsive boundary value problem

(1.1)–(1.3) are presented: the first one is based on the Banach contraction principle and the

second one on Schaefer’s fixed point theorem. In the last section, we give two examples to

illustrate the applicability of our main results.

2 Preliminaries

In this section, we introduce notations, definitions, and lemmas that are useful in the next

section. Let J := [a, b] such that a < b. By C := C(J, R) we denote the Banach space of all

continuous functions ̟ from J into R with the supremum norm

‖̟‖∞ = sup
t∈J

|̟(t)|.

As usual, AC(J) denote the space of absolutely continuous function from J into R. We

denote by ACn
e (J) the space

ACn
e (J) :=

{
̟ : J → R : eDn−1̟(t) ∈ AC(J), eD = e−t d

dt

}
,
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where n = [α] + 1, with [α] the integer part of α.

In particular, if 0 < α ≤ 1, then n = 1 and AC1
e (J) := ACe(J).

Definition 2.1 ([27, 31]). The exponential fractional integral of order α > 0 of a function

h ∈ L1(J, E) is defined by

(e Iα
a h)(t) :=

1

Γ(α)

∫ t

a

(
et − es

)α−1
h(s)esds, for each t ∈ J,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =
∫ ∞

0
tξ−1e−tdt, ξ > 0.

Definition 2.2 ([27, 31]). Let α > 0 and h ∈ ACn
e (J). The exponential fractional derivatives of

Caputo type of order α is defined by

(e
cDα

a h)(t) :=
1

Γ(n − α)

∫ t

a

(
et − es

)n−α−1
(

e−s d

ds

)n

h(s)
ds

e−s
, for each t ∈ J,

where n = [α] + 1. In particular, if α = 0, then

(
e
cD0

(·)h
)
(t) := h(t).

Lemma 2.3 ([27, 31]). Let α > 0, n = [α] + 1, and h ∈ ACn
e (J). Then we have the formula

e Iα
a (

e
cDα

a h)(t) = h(t)−
n−1

∑
k=0

(es − ea)k

k!
eDkh(a).

Lemma 2.4. Let α > 0, and h ∈ ACn
e (J). Then the differential equation

e
cDα

a h(t) = 0

has the solution

h(t) = η0 + η1(e
s − ea) + η2(e

s − ea)2 + . . . + ηn−1(e
s − ea)n−1,

where ηi ∈ R, i = 0, 1, 2, . . . , n − 1, and n = [α] + 1.

Lemma 2.5. Let α > 0, and h ∈ ACn
e (J). Then

e Iα
a (

e
cDα

a h) (t) = h(t) + η0 + η1(e
s − ea) + η2(e

s − ea)2 + . . . + ηn−1(e
s − ea)n−1,

for some ηi ∈ R, i = 0, 1, 2, . . . , n − 1, and n = [α] + 1.

Theorem 2.6 ([22] (Banach’s fixed point theorem)). Let C be a non-empty closed subset of a Banach

space X; then any contraction mapping F of C into itself has a unique fixed point.

Theorem 2.7 ([22] (Schaefer’s fixed point theorem)). Let X be a Banach space and Θ : X → X be

a completely continuous operator. If the set

ε = {̟ ∈ X : ̟ = λΘ̟, for some λ ∈ (0, 1)}

is bounded, then Θ has fixed point.
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3 Main results

Consider the set of functions

PC(J, R) = {̟ : J → R | ̟ ∈ C ((tk, tk+1], R) , k = 0, . . . , m, and there exist

̟(t+k ) and ̟(t−k ), k = 1, . . . , m, with ̟(t−k ) = ̟(tk)
}

.

This set, together with the norm

‖̟‖PC = sup
t∈J

|̟(t)|,

is a Banach space. Let J0 = [a, t1] and Jk = (tk, tk+1] for k = 1, . . . , m.

Now, let us start by defining what we mean by a solution of the problem (1.1)–(1.3).

Definition 3.1. A function ̟ ∈ PC (J, R) ∩ (∪m
k=0ACe (Jk, R)) is said to be a solution of (1.1)–

(1.3) if ̟ satisfies the equation e
cDα

a+̟(t) = f (t, ̟(t), e
cDα

a+̟(t)), on Jk and the conditions

∆̟|t=tk
= Ik

(
̟
(
t−k
))

, for k = 1, . . . , m,

c1̟(a) + c2̟(b) = c3.

To prove the existence of solutions to (1.1)–(1.3), we need the following auxiliary lemmas.

Lemma 3.2. Let 0 < α ≤ 1 and let ϕ : J → R be continuous. A function ̟ is a solution of the

integral equation

̟(t) =





−1
c1+c2

[
c2

m

∑
i=1

Ii

(
̟
(
t−i
))

+ c2

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1 ϕ(s)

Γ(α)
esds

+c2

∫ b

tm

(
eb − es

)α−1 ϕ(s)

Γ(α)
esds − c3

]
+
∫ t

a

(
et − es

)α−1 ϕ(s)

Γ(α)
esds,

if t ∈ [a, t1],

−1
c1+c2

[
c2

m

∑
i=1

Ii

(
̟
(
t−i
))

+ c2

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1 ϕ(s)

Γ(α)
esds

+c2

∫ b

tm

(
eb − es

)α−1 ϕ(s)

Γ(α)
esds − c3

]
+

k

∑
i=1

Ii

(
̟
(
t−i
))

+
k

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1 ϕ(s)

Γ(α)
esds +

∫ t

tk

(
et − es

)α−1 ϕ(s)

Γ(α)
esds,

if t ∈ (tk, tk+1],

(3.1)

where k = 1, . . . , m, if and only if, ̟ is a solution of the fractional BVP

e
cDα

tk
̟(t) = ϕ(t), t ∈ Jk, (3.2)

∆̟|t=tk
= Ik

(
̟
(
t−k
))

, for k = 1, . . . , m, (3.3)

c1̟(a) + c2̟(b) = c3. (3.4)

Proof. Assume that ̟ satisfies (3.2)–(3.4). If t ∈ [a, t1], then

e
cDα

a ̟(t) = ϕ(t).
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By Lemma 2.5,

̟(t) = η0 +
e Iα

a ϕ(t) = η0 +
1

Γ(α)

∫ t

a

(
et − es

)α−1
ϕ(s)esds.

If t ∈ (t1, t2], then by Lemma 2.5 we obtain

̟(t) = ̟
(
t+1
)
+

1

Γ(α)

∫ t

t1

(
et − es

)α−1
ϕ(s)esds

= ∆̟|t=t1
+ ̟

(
t−1
)
+

1

Γ(α)

∫ t

t1

(
et − es

)α−1
ϕ(s)esds

= I1

(
̟
(
t−1
))

+

[
η0 +

1

Γ(α)

∫ t1

a

(
et1 − es

)α−1
ϕ(s)esds

]

+
1

Γ(α)

∫ t

t1

(
et − es

)α−1
ϕ(s)esds

= η0 + I1

(
̟
(
t−1
))

+
1

Γ(α)

∫ t1

a

(
et1 − es

)α−1
ϕ(s)esds

+
1

Γ(α)

∫ t

t1

(
et − es

)α−1
ϕ(s)esds.

If t ∈ (t2, t3], then by Lemma 2.5 we have

̟(t) = ̟
(
t+2
)
+

1

Γ(α)

∫ t

t2

(
et − es

)α−1
ϕ(s)esds

= ∆̟|t=t2 + ̟
(
t−2
)
+

1

Γ(α)

∫ t

t2

(
et − es

)α−1
ϕ(s)esds

= I2

(
̟
(
t−2
))

+

[
η0 + I1

(
̟
(
t−1
))

+
1

Γ(α)

∫ t1

a

(
et1 − es

)α−1
ϕ(s)esds

+
1

Γ(α)

∫ t2

t1

(
et2 − es

)α−1
ϕ(s)esds

]
+

1

Γ(α)

∫ t

t2

(
et − es

)α−1
ϕ(s)esds

= η0 +
[
I1

(
̟
(
t−1
))

+ I2

(
̟
(
t−2
))]

+

[
1

Γ(α)

∫ t1

a

(
et1 − es

)α−1
ϕ(s)esds

+
1

Γ(α)

∫ t2

t1

(
et2 − es

)α−1
ϕ(s)esds

]
+

1

Γ(α)

∫ t

t2

(
et − es

)α−1
ϕ(s)esds.

Repeating this process, the solution ̟(t) for t ∈ (tk, tk+1], where k = 1, . . . , m, can be written as

̟(t) = η0 +
k

∑
i=1

Ii

(
̟
(
t−i
))

+
1

Γ(α)

k

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
ϕ(s)esds

+
1

Γ(α)

∫ t

tk

(
et − es

)α−1
ϕ(s)esds.

It is clear that

̟(a) = η0
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and

̟(b) = η0 +
m

∑
i=1

Ii

(
̟
(
t−i
))

+
1

Γ(α)

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
ϕ(s)esds

+
1

Γ(α)

∫ b

tm

(
eb − es

)α−1
ϕ(s)esds.

Hence, by applying the boundary conditions c1̟(a) + c2̟(b) = c3, we see that

c3 = η0(c1 + c2) + c2

m

∑
i=1

Ii

(
̟
(
t−i
))

+
c2

Γ(α)

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
ϕ(s)esds

+
c2

Γ(α)

∫ b

tm

(
eb − es

)α−1
ϕ(s)esds.

Then,

η0 =
−1

c1 + c2

[
c2

m

∑
i=1

Ii

(
̟
(
t−i
))

+
c2

Γ(α)

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
ϕ(s)esds

+
c2

Γ(α)

∫ b

tm

(
eb − es

)α−1
ϕ(s)esds − c3

]
.

Thus, if t ∈ (tk, tk+1], where k = 1, . . . , m, then

̟(t) =
−1

c1 + c2

[
c2

m

∑
i=1

Ii

(
̟
(
t−i
))

+
c2

Γ(α)

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
ϕ(s)esds

+
c2

Γ(α)

∫ b

tm

(
eb − es

)α−1
ϕ(s)esds − c3

]
+

k

∑
i=1

Ii

(
̟
(
t−i
))

+
1

Γ(α)

k

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
ϕ(s)esds +

1

Γ(α)

∫ t

tk

(
et − es

)α−1
ϕ(s)esds.

Conversely, assume that ̟ satisfies the impulsive fractional integral equation (3.1).

If t ∈ [a, t1] then c1̟(a) + c2̟(b) = c3, and using the fact that e
cDα

a is the left inverse of e Iα
a

gives
e
cDα

a ̟(t) = ϕ(t), for each t ∈ [a, t1].

If t ∈ (tk, tk+1] for k = 1, . . . , m, then, by using the fact that e
cDα

tk
C = 0, where C is a constant,

and e
cDα

tk
is the left inverse of e Iα

tk
, we have

e
cDα

tk
̟(t) = ϕ(t), for each t ∈ (tk, tk+1].

Also, we can easily show that

∆̟|t=tk
= Ik

(
̟
(
t−k
))

, k = 1, . . . , m.

Now, we state and prove our first existence result for the problem (1.1)–(1.3); it is based on

the Banach contraction principle. The following hypotheses will be used in the sequel.

(H1) The function f : J × R × R → R is continuous.
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(H2) There exist constants k1 > 0 and 0 < k2 < 1 such that

| f (t, ̟1, ω1)− f (t, ̟2, ω2)| ≤ k1|̟1 − ̟2|+ k2|ω1 − ω2|,

for any ̟1, ̟2, ω1, ω2 ∈ R and t ∈ J.

(H3) There exists a constant ξ > 0 such that

|Ik(̟1)− Ik(̟2)| ≤ ξ|̟1 − ̟2|,

for each ̟1, ̟2 ∈ R and k = 1, 2, . . . , m.

Set

γ =
k1

1 − k2
, µ1 =

|c2|
|c1 + c2|

+ 1 and µ2 =
γ (m + 1)

(
eb − ea

)α

Γ (α + 1)
.

Theorem 3.3. Assume that (H1)–(H3) are satisfied. If

µ1 (mξ + µ2) < 1, (3.5)

then the boundary value problem (1.1)–(1.3) has a unique solution on J.

Proof. To transform the problem (1.1)–(1.3) into a fixed point problem, consider the operator

Θ : PC(J, R) → PC(J, R) defined by

Θ(̟)(t) =
−1

c1 + c2

[
c2

m

∑
i=1

Ii

(
̟
(
t−i
))

+
c2

Γ(α)

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
ϕ(s)esds

+
c2

Γ(α)

∫ b

tm

(
eb − es

)α−1
ϕ(s)esds − c3

]
+ ∑

a<tk<t

Ik

(
̟
(
t−k
))

(3.6)

+
1

Γ(α) ∑
a<tk<t

∫ tk

tk−1

(
etk − es

)α−1
ϕ(s)esds +

1

Γ(α)

∫ t

tk

(
et − es

)α−1
ϕ(s)esds,

where ϕ ∈ C(J, R) satisfies

ϕ(t) = f (t, ̟(t), ϕ(t)).

It is clear that solutions of problem (1.1)–(1.3) are the fixed points of the operator Θ. Now, for

̟1, ̟2 ∈ PC(J, R) and for each t ∈ J, we have

|Θ(̟1)(t)− Θ(̟2)(t)| ≤
|c2|

|c1 + c2|

[
m

∑
i=1

∣∣Ii

(
̟1

(
t−i
))

− Ii

(
̟2

(
t−i
))∣∣

+
1

Γ(α)

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
es|ϕ1(s)− ϕ2(s)|ds

+
1

Γ(α)

∫ b

tm

(
eb − es

)α−1
es|ϕ1(s)− ϕ2(s)|ds

]

+ ∑
a<tk<t

|Ik

(
̟1

(
t−k
))

− Ik

(
̟2

(
t−k
))

|

+
1

Γ(α) ∑
a<tk<t

∫ tk

tk−1

(
etk − es

)α−1
es|ϕ1(s)− ϕ2(s)|ds

+
1

Γ(α)

∫ t

tk

(
et − es

)α−1
es|ϕ1(s)− ϕ2(s)|ds,
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where ϕ1, ϕ2 ∈ C(J, R) are such that

ϕ1(t) = f (t, ̟1(t), ϕ1(t)) and ϕ2(t) = f (t, ̟2(t), ϕ2(t)).

By (H2), we have

|ϕ1(s)− ϕ2(s)| = | f (t, ̟1(t), ϕ1(t))− f (t, ̟2(t), ϕ2(t))|
≤ k1|̟1(t)− ̟2(t)|+ k2|ϕ1(t)− ϕ2(t)|,

so

|ϕ1(s)− ϕ2(s)| ≤ γ |̟1(s)− ̟2(s)| . (3.7)

Hence, for each t ∈ J,

|Θ(̟1)(t)− Θ(̟2)(t)| ≤
|c2|

|c1 + c2|

[
m

∑
k=1

ξ
∣∣̟1

(
t−k
)
− ̟2

(
t−k
)∣∣

+
γ

Γ(α)

m

∑
k=1

∫ tk

tk−1

(
etk − es

)α−1
es |̟1(s)− ̟2(s)| ds

+
γ

Γ(α)

∫ b

tm

(
eb − es

)α−1
es |̟1(s)− ̟2(s)| ds

]

+
m

∑
i=1

ξ
∣∣̟1

(
t−i
)
− ̟2

(
t−i
)∣∣

+
γ

Γ(α)

m

∑
k=1

∫ tk

tk−1

(
etk − es

)α−1
es |̟1(s)− ̟2(s)| ds

+
γ

Γ(α)

∫ t

tk

(
et − es

)α−1
es |̟1(s)− ̟2(s)| ds

≤ |c2|
|c1 + c2|

[
mξ +

γm
(
eb − ea

)α

Γ(α + 1)
+

γ
(
eb − ea

)α

Γ(α + 1)

]
‖̟1 − ̟2‖PC

+

[
mξ +

γm
(
eb − ea

)α

Γ(α + 1)
+

γ
(
eb − ea

)α

Γ(α + 1)

]
‖̟1 − ̟2‖PC

=

( |c2|
|c1 + c2|

+ 1

)[
mξ +

γ (m + 1)
(
eb − ea

)α

Γ(α + 1)

]
‖̟1 − ̟2‖PC .

Thus,

‖Θ(̟1)− Θ(̟2)‖PC ≤ µ1 (mξ + µ2) ‖̟1 − ̟2‖PC .

By (3.5), the operator Θ is a contraction. Hence, by Banach’s contraction principle, Θ has a

unique fixed point that is a unique solution of (1.1)–(1.3).

Our second existence result is based on Schaefer’s fixed point theorem (Theorem 2.7

above). Let us introduce the following condition:

(H4) There exist constants ξ̃, Ĩ > 0 such that

|Ik(̟)| ≤ ξ̃|̟|+ Ĩ,

for each ̟ ∈ R and k = 1, 2, . . . , m.
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Notice that (H4) is weaker than condition (H3).

Theorem 3.4. Assume that conditions (H1), (H2), and (H4) hold. If

µ1

(
mξ̃ + µ2

)
< 1, (3.8)

then the problem (1.1)–(1.3) has at least one solution on J.

Proof. We shall use Schaefer’s fixed point theorem to prove that Θ, defined by (3.6), has at

least one fixed point on J. The proof will be given in several steps.

Step 1: Θ is continuous. Let {vn} be a sequence such that vn → v in PC(J, R). Then, for each

t ∈ J,

|Θ(vn)(t)− Θ(v)(t)| ≤ |c2|
|c1 + c2|

[
m

∑
i=1

∣∣Ii

(
vn

(
t−i
))

− Ii

(
v
(
t−i
))∣∣

+
1

Γ(α)

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
es|ϕn(s)− ϕ(s)|ds

+
1

Γ(α)

∫ b

tm

(
eb − es

)α−1
es|ϕn(s)− ϕ(s)|ds

]

+ ∑
a<tk<t

|Ik

(
vn

(
t−k
))

− Ik

(
v
(
t−k
))

|

+
1

Γ(α) ∑
a<tk<t

∫ tk

tk−1

(
etk − es

)α−1
es|ϕn(s)− ϕ(s)|ds

+
1

Γ(α)

∫ t

tk

(
et − es

)α−1
es|ϕn(s)− ϕ(s)|ds,

(3.9)

where ϕn, ϕ ∈ C(J, E) satisfy

ϕn(t) = f (t, vn(t), ϕn(t)) and ϕ(t) = f (t, v(t), ϕ(t)) .

By (H2), we have

|ϕn(t)− ϕ(t)| = | f (t, vn(t), ϕn(t))− f (t, v(t), ϕ(t))|

≤ k1 |vn(t)− v(t)|+ k2 |ϕn(t)− ϕ(t)| .

Then,

|ϕn(t)− ϕ(t)| ≤ γ |vn(t)− v(t)| .

Since vn → v, we have ϕn(t) → ϕ(t) as n → ∞ for each t ∈ J. Let δ > 0 be such that, for each

t ∈ J, we have |ϕn(t)| ≤ δ and |ϕ(t)| ≤ δ. Then,

(et − es)α−1es|ϕn(s)− ϕ(s)| ≤ (et − es)α−1es[|ϕn(s)|+ |ϕ(s)|]
≤ 2δ(et − es)α−1es

and

(etk − es)α−1es|ϕn(s)− ϕ(s)| ≤ (etk − es)α−1es[|ϕn(s)|+ |ϕ(s)|]
≤ 2δ(etk − es)α−1es.
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For each t ∈ J, the functions s → 2δ(et − es)α−1es and s → 2δ(etk − es)α−1es are integrable on

[a, t]. Then, the Lebesgue dominated convergence theorem and (3.9) imply that

|Θ(vn)(t)− Θ(v)(t)| → 0 as n → ∞,

and so

‖Θ(un)− Θ(u)‖PC → 0 as n → ∞.

Therefore, Θ is continuous.

Step 2: Θ maps bounded sets into bounded sets in PC(J, R). It suffices to show that for any δ > 0,

there exists a positive constant ℓ such that, for any v ∈ Bδ =
{

v ∈ PC(J, R) : ‖v‖PC ≤ δ
}

, we

have ‖Θ(v)‖PC ≤ ℓ. Now for each t ∈ J,

|Θ(v)(t)| ≤ |c2|
|c1 + c2|

[
m

∑
i=1

∣∣Ii

(
v
(
t−i
))∣∣+ 1

Γ(α)

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
es |ϕ(s)| ds

+
1

Γ(α)

∫ b

tm

(
eb − es

)α−1
es |ϕ(s)| ds

]
+

|c3|
|c1 + c2|

+ ∑
a<tk<t

∣∣Ik

(
v
(
t−k
))∣∣

+
1

Γ(α) ∑
a<tk<t

∫ tk

tk−1

(
etk − es

)α−1
es |ϕ(s)| ds

+
1

Γ(α)

∫ t

tk

(
et − es

)α−1
es |ϕ(s)| ds,

(3.10)

where ϕ ∈ C(J, R) satisfies

ϕ(t) = f (t, v(t), ϕ(t)) .

By (H2), for each t ∈ J we have

|ϕ(t)| = | f (t, v(t), ϕ(t))− f (t, 0, 0) + f (t, 0, 0)|

≤ | f (t, v(t), ϕ(t))− f (t, 0, 0)|+ | f (t, 0, 0)|

≤ k1 |v|+ k2 |ϕ(t)|+ f̃ .

Thus,

|ϕ(t)| ≤ γ |v|+ f̃
1−k2

. (3.11)

From this and (3.10), for any v ∈ Bδ, we have

|Θ(v)(t)| ≤ |c2|
|c1 + c2|

[
m
(

ξ̃ |v|+ Ĩ
)
+ m

(
γ |v|+ f̃

1 − k2

) (
eb − ea

)α

Γ(α + 1)

+

(
γ |v|+ f̃

1 − k2

) (
eb − ea

)α

Γ(α + 1)

]
+

|c3|
|c1 + c2|

+ m
(

ξ̃ |v|+ Ĩ
)

+ m

(
γ |v|+ f̃

1 − k2

) (
eb − ea

)α

Γ(α + 1)
+

(
γ |v|+ f̃

1 − k2

) (
eb − ea

)α

Γ(α + 1)

=

( |c2|
|c1 + c2|

+ 1

)[
m
(

ξ̃ |v|+ Ĩ
)
+

(
γ |v|+ f̃

1 − k2

)
(m + 1)

(
eb − ea

)α

Γ(α + 1)

]
+

|c3|
|c1 + c2|
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≤
( |c2|
|c1 + c2|

+ 1

)[
m
(

ξ̃δ + Ĩ
)
+

(
γδ +

f̃

1 − k2

)
(m + 1)

(
eb − ea

)α

Γ(α + 1)

]
+

|c3|
|c1 + c2|

= µ1

[
m
(

ξ̃δ + Ĩ
)
+

(
δ +

f̃

k1

)
µ2

]
+

|c3|
|c1 + c2|

=: ℓ,

which implies that ‖Θ(v)‖PC ≤ ℓ.

Step 3: Θ maps bounded sets into equicontinuous sets in PC(J, R). Let τ1, τ2 ∈ J with τ1 < τ2, Bδ

be a bounded set in PC(J, R) as in Step 2, and let v ∈ Bδ. Then, we have

|Θ(v)(τ2) − Θ(v)(τ1)|

≤ 1

Γ(α)

∫ τ1

a

∣∣∣
[
(eτ2 − es)α−1 − (eτ1 − es)α−1

]
es
∣∣∣ |ϕ(s)| ds

+
1

Γ(α)

∫ τ2

τ1

∣∣∣(eτ2 − es)α−1 es
∣∣∣ |ϕ(s)| ds + ∑

τ1<tk<τ2

∣∣Ik

(
v
(
t−k
))∣∣

+
1

Γ(α) ∑
τ1<tk<τ2

∫ tk

tk−1

∣∣∣
(
etk − es

)α−1
es
∣∣∣ |ϕ(s)| ds

≤
(

γ |v|+ f̃

(1 − k2)

)
1

Γ (α + 1)

[
(eτ1 − ea)α − (eτ2 − ea)α

+2 (eτ2 − eτ1)α]+ (τ2 − τ1)

[(
ξ̃ |v|+ Ĩ

)
+

(
γ |v|+ f̃

(1 − k2)

) (
eb − ea

)α

Γ (α + 1)

]

≤
(

γδ +
f̃

(1 − k2)

)
1

Γ (α + 1)

[
(eτ1 − ea)α − (eτ2 − ea)α

+2 (eτ2 − eτ1)α]+ (τ2 − τ1)

[(
ξ̃δ + Ĩ

)
+

(
γδ +

f̃

(1 − k2)

) (
eb − ea

)α

Γ (α + 1)

]
.

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As a consequence of

the steps 1 to 3 together with the Ascoli–Arzelà theorem, we conclude that Θ : PC(J, R) →
PC(J, R) is completely continuous.

Step 4: A priori bounds. It remain to show that the set

ε = {v ∈ PC(J, R) : v = λΘ(v), for some λ ∈ (0, 1)}

is bounded. Let v ∈ ε; then v = λΘ(v) for some 0 < λ < 1. Thus, for each t ∈ J, we have

v(t) =
−λ

c1 + c2

[
c2

m

∑
i=1

Ii

(
v
(
t−i
))

+
c2

Γ(α)

m

∑
i=1

∫ ti

ti−1

(
eti − es

)α−1
ϕ(s)esds

+
c2

Γ(α)

∫ b

tm

(
eb − es

)α−1
ϕ(s)esds − c3

]
+ λ ∑

a<tk<t

Ik

(
v
(
t−k
))

+
λ

Γ(α) ∑
a<tk<t

∫ tk

tk−1

(
etk − es

)α−1
ϕ(s)esds +

λ

Γ(α)

∫ t

tk

(
et − es

)α−1
ϕ(s)esds.
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From (3.11) and (H4), for each t ∈ J, we obtain

|v(t)| ≤ |c2|
|c1 + c2|

[
m
(

ξ̃ |v|+ Ĩ
)
+ m

(
γ |v|+ f̃

1 − k2

) (
eb − ea

)α

Γ(α + 1)

+

(
γ |v|+ f̃

1 − k2

) (
eb − ea

)α

Γ(α + 1)

]
+

|c3|
|c1 + c2|

+ m
(

ξ̃ |v|+ Ĩ
)

+ m

(
γ |v|+ f̃

1 − k2

) (
eb − ea

)α

Γ(α + 1)
+

(
γ |v|+ f̃

1 − k2

) (
eb − ea

)α

Γ(α + 1)

=

( |c2|
|c1 + c2|

+ 1

)[
m
(

ξ̃ |v|+ Ĩ
)
+

(
γ |v|+ f̃

1 − k2

)
(m + 1)

(
eb − ea

)α

Γ(α + 1)

]
+

|c3|
|c1 + c2|

≤
( |c2|
|c1 + c2|

+ 1

)(
mξ̃ +

γ (m + 1)
(
eb − ea

)α

Γ (α + 1)

)
|v|

+

( |c2|
|c1 + c2|

+ 1

)(
mĨ +

f̃ (m + 1)
(
eb − ea

)α

(1 − k2) Γ (α + 1)

)
+

|c3|
|c1 + c2|

≤ µ1

(
mξ̃ + µ2

)
|v|+ µ1

(
mĨ +

f̃ µ2

k1

)
+

|c3|
|c1 + c2|

.

Thus,
[
1 − µ1

(
mξ̃ + µ2

)]
‖v‖PC ≤ µ1

(
mĨ +

f̃ µ2

k1

)
+

|c3|
|c1 + c2|

.

By using condition (3.8), it follows that

‖v‖PC ≤

[
µ1

(
mĨ + f̃ µ2

k1

)
+ |c3|

|c1+c2|

]

[
1 − µ1

(
mξ̃ + µ2

)] =: M.

This shows that the set ε is bounded. As a consequence of Schaefer’s fixed point theorem, Θ

has at least one fixed point which in turn is a solution of (1.1)–(1.3).

Remark 3.5. Often times using different techniques of proof for the same type of result neces-

sitates requiring different hypotheses. It interesting to point out here that we have also been

able to obtain both Theorems 3.3 and 3.4 above with no changes in conditions by using the

Nonlinear Alternative of Leray–Schauder type.

Remark 3.6. Our results for the boundary value problem (1.1)–(1.3) remain true for the fol-

lowing cases:

• Initial value problem: c1 = 1, c2 = 0 and c3 arbitrary.

• Terminal value problem: c1 = 0, c2 = 1 and c3 arbitrary.

• Anti-periodic problem: c1 = c2 6= 0 and c3 = 0.

However, our results are not applicable to the periodic problem, i.e., the case c1 = 1, c2 = −1,

and c3 = 0.
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4 Examples

In this section, we will give two examples to illustrate our main results.

Example 4.1. Consider the impulsive boundary value problem for the nonlinear implicit frac-

tional differential equation

e
cD

1
2
tk

̟(t) =
e−

√
t+9 sin t

7 (t2 + 1)

(√
3 + |̟(t)|+

∣∣∣∣ecD
1
2
tk

̟(t)

∣∣∣∣
) , for each t ∈ J0 ∪ J1, (4.1)

∆̟|t= π
2
=

2
∣∣̟(π

2
−)
∣∣

3 +
∣∣̟(π

2
−)
∣∣ , (4.2)

̟(0) + ̟(π) = 13, (4.3)

where J0 =
[
0, π

2

]
, J1 = (π

2 , π], m = 1, α = 1
2 , a = 0, b = π, c1 = c2 = 1, c3 = 13,

f (t, ̟, ω) =
e−

√
t+9 sin t

7 (t2 + 1)
(√

3 + |̟|+ |ω|
) ,

and

I1(̟) =
|̟|

19 + |̟| .

Now, for each t ∈ [0, π] and for any ̟1, ̟2, ω1, ω2 ∈ R, we can show that

| f (t, ̟1, ω1)− f (t, ̟2, ω2)| ≤
1

21e3
(|̟1 − ̟2|+ |ω1 − ω2|)

and

|I1(̟1)− I1(̟2)| ≤
1

19
|̟1 − ̟2| .

Thus, for k1 = k2 = 1
21e3 and ξ = 1

19 we have that

µ1 (mξ + µ2) =

( |c2|
|c1 + c2|

+ 1

)[
mξ +

k1 (m + 1)
(
eb − ea

)α

(1 − k2) Γ(α + 1)

]

=
3

2

[
1

19
+

2
√

eπ−1
21e3(

1 − 1
21e3

)
Γ( 3

2 )

]

=
3

2

[
1

19
+

4
√

eπ − 1

(21e3 − 1)
√

π

]

≈ 0.1168003443

< 1.

Hence, conditions (H1)–(H3) and (3.5) are satisfied. As a consequence of Theorem 3.3, the

problem (4.1)–(4.3) has a unique solution on [0, π].

Example 4.2. Consider the problem

e
cD

1
2
tk

̟(t) =

e−
√

t+16

(
2 + |̟(t)|+

∣∣∣∣ecD
1
2
tk

̟(t)

∣∣∣∣
)

179 (t2 + 1)

(
1 + |̟(t)|+

∣∣∣∣ecD
1
2
tk

̟(t)

∣∣∣∣
) , for each t ∈ J0 ∪ J1, (4.4)
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∆̟|t= 1
4
=

5
∣∣∣̟( 1

4

−
)
∣∣∣+ 1

20 +
∣∣∣̟( 1

4

−
)
∣∣∣

, (4.5)

̟(0) = −̟(1), (4.6)

where J0 =
[
0, 1

4

]
, J1 = ( 1

4 , 1], m = 1, α = 1
2 , a = 0, b = 1, c1 = c2 = 1, c3 = 0,

f (t, ̟, ω) =
e−

√
t+16 (2 + |̟|+ |ω|)

179 (t2 + 1) (1 + |̟|+ |ω|) , for each t ∈ J0 ∪ J1,

and

I1(̟) =
5 |̟|+ 1

20 + |̟| .

Now, for each t ∈ [0, 1] and for any ̟1, ̟2, ω1, ω2 ∈ R, we can show that

| f (t, ̟1, ω1)− f (t, ̟2, ω2)| ≤
1

179e4
(|̟1 − ̟2|+ |ω1 − ω2|)

and

|I1(̟)| ≤ 1

4
|̟|+ 1

20
.

Thus, for k1 = k2 = 1
179e4 and x̃i = 1

4 , we have

µ1

(
mξ̃ + µ2

)
=

( |c2|
|c1 + c2|

+ 1

)[
mξ +

k1 (m + 1)
(
eb − ea

)α

(1 − k2) Γ(α + 1)

]

=
3

2

[
1

4
+

2
√

e−1
179e4(

1 − 1
179e4

)
Γ( 3

2 )

]

=
3

2

[
1

4
+

4
√

e − 1

(179e4 − 1)
√

π

]

=
3

8
+

4
√

e − 1

(179e4 − 1)
√

π

≈ 0.3753057

< 1.

Hence, conditions (H1), (H2), (H4), and (3.8) are satisfied, so by Theorem 3.4 the problem

(4.4)–(4.6) has at least one solution on [0, 1].
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1 Introduction

In this short paper we investigate the somewhat puzzling connection between the existence of

an explicit travelling wave solution and the travelling wave with minimal speed in a monos-

table reaction-diffusion equation. More precisely, there are examples in the literature (see

below) where the explicitly computable travelling wave solution is the solution with minimal

speed. Moreover, for parameter-dependent problems with a parameter-dependent family of

explicit solutions, there are many cases where in fact there is a switching between the minimal

speed being given by this explicit solution for some parameters, while for others it is given

by the so-called linear speed, defined as the minimal value for which the problem linearised

about the unstable steady state has a suitable eigenvalue. For a particular set of equations,

of a type encountered in applications, we formulate sufficient conditions for each of these

phenomena to occur.

BCorresponding author. Email: m.grinfeld@strath.ac.uk



2 E. Crooks and M. Grinfeld

The plan of the paper is as follows. In this section, we introduce scalar monostable

reaction-diffusion equations, define what we mean by a minimal speed, and discuss the linear

(pulled) and the non-linear (pushed) regimes.

In Section 2, we define the set of exactly solvable equations and prove a result connecting

the minimal wave speed and the speed of an explicit travelling wave solution.

Finally, in Section 3 we consider conditions for the exchange of minimality between the

linear minimal speed and the speed of an explicit travelling wave solution.

Our proofs exploit two main tools: the variational principle due to Hadeler and Rothe [4]

and the integrability characterisations of the minimal speed proved by Lucia, Muratov and

Novaga in [6].

We consider reaction-diffusion equations of the form

ut = uxx + f (u, β), (1.1)

where β ∈ R is a parameter, and f is a monostable nonlinearity, i.e.,

f (0, β) = f (1, β) = 0, f ′(0, β) > 0, f ′(1, β) < 0, f (u, β) > 0 for u ∈ (0, 1).

In the travelling wave frame z = x − ct, c ≥ 0, setting U(z) = u(x, t), and denoting

derivatives with respect to z by primes, (1.1) becomes

− cU′ = U′′ + f (U). (1.2)

We seek monotone fronts connecting 1 and 0, i.e., solutions U(z) of (1.2) with U′(z) < 0

and

lim
z→−∞

U(z) = 1 and lim
z→∞

U(z) = 0.

Linearisation around the rest point with U = 0 shows that there cannot be any monotone

fronts connecting 1 and 0 for c < cl := 2
√

f ′(0). Phase plane analysis shows that there exists

cmin ≥ cl such that there exists a monotone front for all c ≥ cmin ≥ cl . Determining cmin is

often of interest in applications, see e.g. [2] for a discussion.

Definition 1.1. If cmin = cl , we say that we are in the case of linear selection mechanism (“pulled

case”) and if cmin > cl , of nonlinear selection mechanism (“pushed case”).

Frequently, the basis of analysis of monotone fronts in the scalar monostable case (1.2) is

the following construction: As U(z) is a monotone solution, its derivative is a well-defined

function of U. Set F(U) := −U′. Note that F(U) is non-negative. Also, F(0) = F(1) = 0.

Now,

F(U)′ = (−U′)′ = −U′′.

On the other hand, by the chain rule,

F(U)′ =
dF

dU
U′ = − dF

dU
F.

Hence the problem of solving U′′+ cU′+ f (U) = 0 with the conditions that limz→−∞ U(z) = 1

and limz→∞ U(z) = 0 is equivalent to solving

F
dF

dU
− cF + f (U) = 0, F(0) = F(1) = 0. (1.3)

Using this construction, we have the Hadeler–Rothe variational principle [4]:
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cmin = inf
g∈G

sup
0<U<1

{

g′(U) +
f (U)

g(U)

}

, (1.4)

where

G =
{

g ∈ C1([0, 1]) | g(U) > 0 for 0 < U < 1, g(0) = 0, g′(0) > 0
}

. (1.5)

2 Exact solvability

We are interested in the situation when (1.2) has a solution U(z) that can be determined by

quadratures. A sufficient condition is:

Lemma 2.1. The travelling wave equation of (1.3) with speed c = A(β)/
√

B(β) is solvable by

quadratures if f can be written in the form

f (u, β) = h(u)
(

A(β)− B(β)h′(u)
)

, h ∈ C1([0, 1]), (2.1)

where h(0) = h(1) = 0, h(u) ≥ 0, h′(0) > 0 (without loss of generality h′(0) = 1), A(β) > B(β) >

0, and for all u ∈ [0, 1], A(β)− B(β)h′(u) > 0.

Proof. In this case a solution of (1.3) is F(U) = γh(U) with

γ =
√

B(β), (2.2)

from which U and c can be computed by quadratures.

We introduce notation for the speeds of the explicit fronts in Lemma 2.1:

cnl(β) :=
A(β)
√

B(β)
. (2.3)

We will describe as the solvable case the situation in which the nonlinearity f (u, β) satis-

fies the conditions of Lemma 2.1. In the solvable case, we have that

cl = 2
√

A(β)− B(β). (2.4)

Note that the fact that A(β) > B(β) follows from the conditions of Lemma 2.1.

Of course, by the definition of minimal speed, we always have that

cmin(β) ≤ cnl(β) =
A(β)
√

B(β)
. (2.5)

3 Minimality exchange

In this section, for a nonlinearity f (u, β) of solvable type, we investigate conditions under

which there exists a value β∗, such that for values β to one side of β∗, cmin(β) = cl(β), and

for values of β to the other side of β∗, cmin(β) = cnl(β), so that at β∗ minimality is exchanged

between cl(β) and cnl(β). This is what we call a minimality exchange. Examples, two of

which we outline below, are discussed in [4, 6] and the isotropic case of [2], which is also

investigated in [3, 8].
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First note that for a minimality exchange, the graphs of cl(β) and cnl(β) must clearly

intersect. Therefore the equation

2
√

A(β)− B(β) =
A(β)
√

B(β)

must have a solution, which is equivalent to demanding the existence of β∗ such that A(β∗) =
2B(β∗).

Hence, for instance, in any equation (1.1) with solvable f (u, β) such that A(β) = 2B(β)+ 1,

there can never be a minimality exchange between the linear and the nonlinear speeds.

Before continuing with the analysis, we present two concrete examples of minimality ex-

change. In [4, Eq. (27)], Hadeler and Rothe consider the nonlinearity

f (u, β) = u(1 − u)(1 + βu), β ≥ −1,

which can be put into the framework of Lemma 2.1 by setting h(u) = u(1 − u), so that

f (u, β) = h(u)(A(β)− B(β)h′(u)),

where

A(β) = 1 +
β

2
, B(β) =

β

2
.

The solution of A(β) = 2B(β) is therefore β∗ = 2, the nonlinear speed is

cnl(β) =
2 + β
√

2β
,

and it is shown in [4] that a minimality exchange occurs at β = β∗, with cmin(β) = cl(β) for

β < β∗ and cmin(β) = cnl(β) for β > β∗.

Our second example is given by the isotropic case of [2], where

f (u, β) =
sin(πu)

2π
[1 − β cos(πu)] ,

which fits into the framework of Lemma 2.1 by setting h(u) = sin(πu)
π , so that

f (u, β) = h(u)(A(β)− B(β)h′(u)),

where

A(β) =
1

2
B(β) =

β

2
.

The equation A(β) = 2B(β) then has solution β∗ = 1
2 , the nonlinear speed is

cnl(β) =
1

√

2β
,

and it is proved in [2, 3] that here too, a minimality exchange occurs at β = β∗, again with

cmin(β) = cl(β) for β < β∗ and cmin(β) = cnl(β) for β > β∗.

We now establish our general results, starting with a sufficient condition for nonlinear

selection.

Lemma 3.1. For all β such that A(β) < 2B(β), cmin(β) = cnl(β).
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Proof. For any c > 0, denote by H1
c (R) the completion of C∞

0 (R) with respect to the norm

‖u‖1,c = ‖u‖c + ‖ux‖c, where ‖u‖2
c =

∫

R

ecxu2(x) dx.

If U(z) is an explicit travelling front with −U′ = F(U) = γh(U), we have

lim
z→∞

U′(z)
U(z)

= lim
z→∞

−γ
h(U(z))

U(z)
= −γ h′(0) = −γ.

Hence for those values of the parameter β for which cnl(β) < 2γ, U ∈ H1
cnl(β)(R) and hence

for such β, by Corollary 2.7 of [6] (see also Proposition 2 of [2]), c(β) is the (nonlinear) minimal

wave speed. The claim then follows by (2.2) and (2.3).

We note that this lemma can also be obtained by the methods of [1]. To formulate our next

results, we set

L = max
u∈(0,1)

h′(u) ≥ 1.

We adapt some arguments from [2].

Proposition 3.2. If A(β) > 2LB(β),

cmin(β) ≤ 2
√

L
√

A(β)− LB(β), (3.1)

and in particular,

cmin(β) 6= cnl(β).

Proof. Recall from Hadeler and Rothe [4] (see also [2], equation (11)) that

cmin(β) = inf
g∈Λ

sup
U∈(0,1)

{

g′(U) +
f (U, β))

g(U)

}

, (3.2)

where

Λ =
{

g ∈ C1([0, 1]) : g(U) > 0 if U ∈ (0, 1), g(0) = 0, g′(0) > 0
}

. (3.3)

Hence taking g(U) = νh(U), ν > 0, yields that

cmin(β) ≤ inf
ν>0

sup
U∈(0,1)

{

νh′(U) +
A(β)

ν
− B(β)

ν
h′(U)

}

.

To understand

sup
U∈(0,1)

{(

ν − B(β)

ν

)

h′(U) +
A(β)

ν

}

,

there are two cases:

(i) ν2 ≤ B(β): Then

sup
U∈(0,1)

{(

ν − B(β)

ν

)

h′(U) +
A(β)

ν

}

=
A(β)− lB(β)

ν
+ lν,

which is monotone decreasing in ν, so

inf
ν≤
√

B(β)

sup
U∈(0,1)

{(

ν − B(β)

ν

)

h′(U) +
A(β)

ν

}

=
A(β)
√

B(β)
.
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(Note that this recovers the estimate (2.5) for cmin(β).)

(ii) ν2 ≥ B: Then

sup
U∈(0,1)

{(

ν − B(β)

ν

)

h′(U) +
A(β)

ν

}

=
A(β)− LB(β)

ν
+ Lν := q(ν).

Since A(β)− B(β)h′(u) > 0 for all u ∈ [0, 1], it follows that A(β)− LB(β) > 0. So differenti-

ating q(ν) gives that its global minimum for ν ∈ (0, ∞) occurs at

ν0 :=

√

A(β)− LB(β)

L
.

There are two possibilities: (a) If

A(β)− LB(β)

L
≤ B(β),

the function q(ν) reaches its minimum over [
√

B(β), ∞) at the point ν =
√

B(β), so that

inf
ν≥
√

B(β)

sup
U∈(0,1)

{(

ν − B(β)

ν

)

h′(U) +
A(β)

ν

}

=
A(β)
√

B(β)
,

in which case we again just recover the estimate (2.5) for cqmin(β).

(b) On the other hand, if
A(β)− LB(β)

L
> B(β),

that is, A(β) > 2LB(β), we have that

cmin(β) ≤ inf
ν>

√
B

sup
U∈(0,1)

{(

ν − B(β)

ν

)

h′(U) +
A(β)

ν

}

= q(ν0) = 2
√

L
√

A(β)− LB(β). (3.4)

Comparison of q(ν0) in (3.4) with cnl(β) then shows that cmin(β) 6= cnl(β) if A(β) >

2LB(β).

Now we can formulate sufficient conditions for minimality exchange. Below we say that

a solution β∗ of the equation A(β) = 2B(β) is non-degenerate if the graphs of the functions

A(·) and 2B(·) intersect transversely at β∗. The following result applies in all the examples

in [2, 4] mentioned above and covers the general case when h(u) is concave and there is a

non-degenerate solution to A(β) = 2B(β).

Theorem 3.3. Suppose there is a non-degenerate solution β∗ to the equation A(β) = 2B(β). Then if

L = h′(0) = 1,

there is a minimality exchange at β = β∗.

Proof. Since if A(β) < 2B(β) we have that cmin(β) = cnl(β) by Lemma 3.1, and since by (3.4)

with L = 1, for all A(β) > 2B(β), cmin(β) = cl(β), non-degeneracy of the solution β∗ of

A(β) = 2B(β) implies that there is an exchange of minimality at β∗.
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Theorem 3.3 fully characterises minimality exchange when L = 1, that is, when h′(u)
attains its supremum L at u = 0, which holds in particular when h is concave. If L > 1, how-

ever, the situation is less clear. Lemma 3.1 clearly still implies that cmin(β) = cnl(β) > cl(β),

so in particular nonlinear selection holds, if A(β) < 2B(β), and linear selection holds, with

cmin(β) = cnl(β) = cl(β) if A(β) = 2B(β), but whether it is possible to have again nonlinear

selection for some β with A(β) > 2B(β), either with the minimal speed corresponding to

the explicit solution or another value, is not obvious. The estimate (3.4) only applies when

A(β) > 2LB(β), and even in that range, (3.4) is no longer sufficient to imply linear selection if

L > 1.

In Theorem 3.6 below, we present a result complementary to Theorem 3.3 that makes no

assumption on h beyond the hypotheses in Lemma 2.1, but instead imposes monotonicity

conditions on the dependence of A and B on β. This yields a partial answer to what happens

when L > 1 and A(β) > 2B(β). We begin with the following preliminary result, based on

[6, Theorem 2.8], which forms the basis for the alternative sufficient condition for minimality

exchange in Theorem 3.6.

Lemma 3.4. Suppose that A(β) and B(β) are each non-decreasing in β, and A(β) − B(β) is non-

increasing in β. If cmin(β1) > cl(β1) and β2 > β1, then

cmin(β2) > cl(β2).

that is, if nonlinear selection holds for some β1, nonlinear selection also holds for any β2 > β1,

Proof. We draw on Theorem 2.8 of Lucia, Muratov and Novaga [6], which says that cmin(β) >

cl(β) if and only if there exists c > cl(β) and u ∈ H1
c (R) such that

Φ
β
c [u] :=

∫

R

ecx

(

1

2
u2

x −
∫ u

0
f (s, β) ds

)

dx ≤ 0, (3.5)

where H1
c (R) is as defined in the proof of Lemma 3.1.

First note that it follows from [6, Theorem 2.8] that since cmin(β1) > cl(β1), there exists

c > cl(β1) and u ∈ H1
c (R) such that Φ

β1
c [u] ≤ 0. Then

Φ
β1
c [u] =

∫

R

ecx

(

1

2
u2

x −
∫ u

0
f (s, β1)ds

)

dx

=
∫

R

ecx

(

1

2
u2

x −
∫ u

0
h(s)(A(β1)− B(β1)h

′(s))ds

)

dx

=
∫

R

ecx

(

1

2
u2

x − A(β1)
∫ u

0
h(s) ds − B(β1)

2
h(u)2

)

dx

≤ 0,

as h(0) = 0, and since β2 > β1 and A(·) and B(·) are non-decreasing, we have A(β2) ≥ A(β1)

and B(β2) ≥ B(β1), so that

Φ
β2
c [u] ≤ Φ

β1
c [u] ≤ 0,

since h(s) > 0 for 0 < s < 1. Moreover, A(·)− B(·) is non-increasing, so

cl(β2) = 2
√

A(β2)− B(β2) ≤ 2
√

A(β1)− B(β1) = cl(β1),

and hence

c > cl(β1) ≥ cl(β2).

Thus c > cl(β2) and Φ
β2
c [u] ≤ 0, and hence [6, Theorem 2.8] implies that cmin(β2) > cl(β2).
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The following is an immediate consequence of Lemma 3.4.

Corollary 3.5. Suppose that A(β) and B(β) are each non-decreasing in β, and that A(β)− B(β) is

non-increasing in β. If cmin(β2) = cl(β2) for some β2 and β1 < β2, then cmin(β1) = cl(β1).

We can now prove our second set of sufficient conditions for minimality exchange.

Theorem 3.6. Suppose that A(β) and B(β) are each non-decreasing in β, and A(β)− B(β) is non-

increasing in β. If there is a non-degenerate solution β∗ to the equation A(β) = 2B(β), then there is a

minimality exchange at β = β∗, with cmin(β) = cl(β) for β ≤ β∗ and cmin(β) = cnl(β) > cl(β) for

β > β∗.

Proof. Note first that A(β) − 2B(β = [A(β) − B(β)] − B(β) is non-increasing in β, so since

the graphs of A(·) and 2B(·) intersect transversally at β∗, it follows that A(β) > 2B(β) when

β < β∗, whereas A(β) < 2B(β) when β > β∗. Lemma 3.1 then implies that cmin(β) = cnl(β)

when β > β∗, whereas Corollary 3.5 implies that linear selection holds when β < β∗.

Note that for the two concrete examples of minimality exchange discussed in Section 3,

both Theorem 3.3 and Theorem 3.6 apply.

An example of a solvable problem for which Theorem 3.6 applies but Theorem 3.3 does

not, is given by taking A = 1, B = β/2 and h(u) = e2uu(1 − u), which is not concave. Then

L = 1.52218, cl =
√

4 − 2β, cnl =
√

2/β, cl(β) = cnl(β) at β∗ = 1, and Theorem 3.6 ensures

that there is minimality exchange at β∗ = 1.

4 Conclusions

In this article we have focussed on a class of parameter-dependent monostable reaction-

diffusion equations with explicit travelling-wave solutions and used this class to explore the

phenomenon of minimality exchange, when the minimal wave speed switches from a linearly

determined value to the speed of the explicitly determined front as a parameter changes. Two

alternative sets of sufficient conditions for minimality exchange are proved, in Theorems 3.3

and 3.6. Why there should be such an exchange, not only from linear selection to nonlinear

selection, but to nonlinear selection given by an explicit solution, is quite puzzling at first sight.

Our framework here provides insight into why minimality exchange of this type occurs, and

includes concrete examples from [2–4, 6]. The proofs draw on various tools for determining

whether there is linear or nonlinear selection - in particular, ideas developed previously in

the special case of an isotropic liquid-crystal model [2], as well as general results from [4, 6].

Some additional interesting material about minimal wave speeds is given in [3, Section 10.1.1],

including Theorem 10.12, which provides sufficient criteria that can be used to identify cases

when a given explicit solution has the minimal wave speed, and the examples that follow.

As suggested by the anonymous referee, instead of considering in (2.1) a nonlinearity

parameterised by β, as was also done in [4, 6, 8] and in many examples in [3], our methods

could have been used to treat a two-parameter system f (u, A, B) = h(u)(A − Bh′(u)) to map

out domains of linear and nonlinear speed selection in the (A, B) plane.

We have treated one class of parameter-dependent solvable equations that includes impor-

tant special cases, but clearly there are many further solvability results for explicit travelling-

wave solutions in the literature. See, for instance, [3, Chapter 13] and [7]. In addition, the

change of variables G := 1/F converts (1.3) into an Abel equation, for which certain classes

of explicit solutions can be found using tools such as the Chiellini integrability condition and
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the Lemke transformation (see, for example, [5] and the references therein). It would be inter-

esting to expand and develop the approach introduced here to cover a larger range of explicit

solutions to obtain further insight into the mechanisms for minimality exchange.
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Abstract. The equation

x′′(t) = a(t, x(t)) + b(t, x) + d(t, x)e(x′(t))

is considered, where a : R
2 → R, b, d : R × C(R, R) → R, e : R → R are continuous,

and a, b, d are T-periodic with respect to t. Using the Leray–Schauder degree theory we
prove that a sign condition, in which a dominates b, is sufficient for the existence of a
T-periodic solution. The main theorem is applied to the equation of the forced damped
pendulum.

Keywords: Leray–Schauder degree, forced damped pendulum.
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1 Introduction

Second order differential equations of the type

x′′ = h(t, x, x′)

are basic models in mechanics: h is the resultant force acting on the system. When h is T-

periodic with respect to t then it is an important problem to find conditions for the existence

of T-periodic answer, T-periodic motions of the system. A simple model is the periodically

forced damped mathematical pendulum

x′′ + g(t, x, x′) + a sin x = e(t), (1.1)

where e is T-periodic, g is T-periodic with respect to t and satisfies the following Nagumo-

type condition: there exists a constant C such that every possible solution x of (1.1) satisfying

sup[0,T] |x| < 3π/2 has the property |x′(t)| < C (t ∈ R). H. W. Knobloch [8] proved that if

BEmail: hatvani@math.u-szeged.hu
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sup[0,T] |e| < a, then equation (1.1) has T-periodic solutions. J. Mawhin and M. Willem [10,12]

extended this result to more general equations.

In the practice many important technical models connected with the pendulum are de-

scribed by more general differential equations than (1.1). As particular cases we will con-

sider in detail the mathematical pendulum with periodically vibrating suspension point and

a functional differential equation model. The equations cannot be handled by Knobloch’s

or by Mawhin’s and Willem’s extensions. We extend the Leray–Schauder method for more

general pendulum-like equations, i.e., differential equations containing a main part satisfying

the same sign condition as the sine function in the pendulum equation but admitting also

periodic perturbations.

In this paper we introduce a wide class of pendulum-like differential equations admitting

a variety of perturbations including ordinary and functional terms even with unbounded

delays. The proof of the existence of periodic solutions is based upon the Leray–Schauder

continuation method [5, 6, 9, 10].

2 The main theorem and its proof

For a fixed T > 0 we will use the standard notations:

C := {ϕ : R → R | ϕ is continuous};

C1 := {ψ : R → R | ψ is continuously differentiable};

CT := {ϕ ∈ C : ϕ is T-periodic}, C1
T := {ψ ∈ C1 : ψ is T-periodic}.

If ϕ ∈ C is bounded, ψ ∈ C1, and ψ, ψ′ are bounded on R, then define

‖ϕ‖0 := sup
t∈R

|ϕ(t)|, ‖ψ‖1 := max

{

sup
t∈R

|ψ(t)|; sup
t∈R

|ψ′(t)|

}

.

Consider the equation

x′′(t) = a(t, x(t)) + b(t, x) + d(t, x)e(x′(t)), (2.1)

where functions a : R × R → R; b, d : R × C → R; e : R → R are continuous, and e(0) = 0.

Moreover, we suppose that for every fixed u ∈ R, ϕ ∈ C functions t 7→ a(t, u), b(t, ϕ), d(t, ϕ)

are T-periodic.

Functions a, b, d, e generate the following operators:

A : C → C, ϕ 7→ Aϕ, (Aϕ)(t) := a(t, ϕ(t));

B : C → C, ϕ 7→ Bϕ, (Bϕ)(t) := b(t, ϕ);

D : C → C, ϕ 7→ Dϕ, (Dϕ)(t) := d(t, ϕ);

De : C1 → C, ψ 7→ Deψ, (Deψ)(t) := d(t, ψ)e(ψ′(t)).

For R > 0, S > 0 given we define the subset

CT(−R, S) := {ϕ ∈ CT : −R ≤ ϕ(t) ≤ S (t ∈ R)}.

By the use of the notations f : R × C1 → R, F : C1 → C,

f (t, ψ) := a(t, ψ(t)) + b(t, ψ) + d(t, ψ)e(ψ′(t)),

Fψ := f (·, ψ) = a(·, ψ(·)) + b(·, ψ) + d(·, ψ)e(ψ′(·)) = Aψ + Bψ + Deψ
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equation (2.1) can be rewritten in the shortened form

x′′(t) = f (t, x) = Fx(t). (2.2)

Theorem 2.1. Suppose that there exist positive constants R, S and a continuous nondecreasing func-

tion φ : (0, ∞) → (0, ∞) such that

a(t, S) > sup{|b(t, ϕ)| : ϕ ∈ CT(−R, S)} =: β−R,S(t),(i)

a(t,−R) < −β−R,S(t) (t ∈ R);

(ii) operators B and D map bounded sets of CT into bounded sets of CT;

(iii)
∫

∞

1

u

φ(u)
du = ∞, |e(u)| ≤ φ(|u|) (u ∈ R)

hold.

Then there exists a T-periodic solution x ∈ CT(−R, S) of (2.1).

Proof. We use the Leray–Schauder degree for completely continuous perturbation of the iden-

tity operator [5, 6, 9, 10, 13]. We suppose that the reader is familiar with the definition of the

Brouwer degree and the Leray–Schauder degree and their most basic properties (see, e.g., [4]).

Now we sketch the main steps of the proof. We find an open bounded set Ω ⊂ C1
T and a

family of mappings Mλ : Ω → C1
T (λ ∈ [0, 1]) having the following properties:

(a) if x is a fixed point of M1 in Ω, then x is the desired periodic solution of (2.1), i.e.,

x ∈ CT(−R, S), and x is a solution of (2.1);

(b) the function

M∗ : Ω × [0, 1] → C1
T, M∗(ψ, λ) = Mλψ

is completely continuous;

(c) if ϕ ∈ ∂Ω and λ ∈ [0, 1], then ϕ 6= Mλ ϕ;

(d) if I : C → C is the identity operator and d[I − Mλ, Ω, 0] denotes the Leray–Schauder

degree of Mλ with respect to Ω, then d[I − M0, Ω, 0] 6= 0.

Then an application of basic theorems of the theory of the Leray–Schauder degree yields the

assertion of the theorem.

For the definition of Ω ⊂ C1
T we need a Nagumo-type result [13] for the family of equations

x′′(t) = λ f (t, x) (λ ∈ [0, 1]) (2.3)

associated with (2.2).

Lemma 2.2. Suppose that conditions (i)–(iii) in Theorem 2.1 are satisfied. Then there is a K > 1 such

that for any λ ∈ [0, 1] and for an arbitrary solution x ∈ CT(−R, S) of (2.3) the inequality

|x′(t)| ≤ K − 1 (t ∈ R)

holds.
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Proof. Consider an arbitrary solution x ∈ CT(−R, S) of (2.1). By conditions (ii) and (iii) there

exist constants K1 and K2 independent of λ ∈ [0, 1] and the solution x such that

|x′′(t)| ≤ max{|a(s, u)| : 0 ≤ s ≤ T,−R ≤ u ≤ S}+ K1 + K2φ(|x′(t)|) (0 ≤ t ≤ T).

Let us define

φ̃(v) := K1 + K2φ(v) (v > 0).

Then
v

φ̃(v)
≥

1

2K2

v

φ(v)
,

provided that φ(v) ≥ K1/K2. The Nagumo–Hartman Lemma [7, Lemma XII. 5.1] and condi-

tion (iii) of the theorem imply the existence of the desired K.

Now we can define the basic set Ω and the homotopy mapping Mλ for the Leray–Schauder

degree. Let K be the constant associated with R, S by Lemma 2.2 and consider the set

Ω := ΩR,S,K :=
{

ψ ∈ C1
T : −R < ψ(t) < S, |ψ′(t)| < K (t ∈ [0, T])

}

. (2.4)

This set is open and bounded in C1
T.

To define the family of mappings Mλ : Ω → C1
T (λ ∈ [0, 1]) we need further notation. The

mean value operator P : CT → CT is defined by

(Pϕ)(t) :=
1

T

∫ T

0
ϕ(t)dt (ϕ ∈ CT).

Introduce the subspace CT,I−P := {ϕ ∈ CT : Pϕ = 0} and the operator of the primitivation

H : CT,I−P → CT,I−P ∩ C1
T by

(Hϕ)(t) :=
∫ t

0
ϕ(s)ds −

1

T

∫ T

0

(

∫ t

0
ϕ(s)ds

)

dt.

It is easy to see that

d

dt
(H (I − P) ϕ) (t) = ϕ(t)− Pϕ (ϕ ∈ CT). (2.5)

Now for λ ∈ [0, 1] we define the mapping:

Mλ : Ω → C1
T, Mλψ := M∗(ψ, λ), (2.6)

where

M∗ : C1
T × [0, 1] → C1

T, M∗(ψ, λ) := Pψ − PFψ + λH2(I − P)Fψ. (2.7)

Property (a) is a consequence of the following lemma.

Lemma 2.3. For λ ∈ (0, 1] a function ψ ∈ C1
T is a fixed point of Mλ, i.e., ψ = Mλψ if and only if ψ

is a T-periodic solution of (2.3).

Function ψ ∈ C1
T is a fixed point of M0 if and only if

ψ = Pψ and PFPψ = 0. (2.8)
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Proof. Suppose that λ ∈ (0, 1] is fixed, and ψ ∈ C1
T is a fixed point of Mλ:

ψ = Pψ − PFψ + λH2(I − P)Fψ. (2.9)

Applying functional P to both sides we get PFψ = 0. By (2.9) ψ is two times differentiable

and we obtain ψ′′(t) = λ f (t, ψ) (t ∈ R), which means that ψ is a solution of (2.3).

On the other hand, if ψ is a T-periodic solution of (2.3) then

Pψ′′ =
1

T

∫ T

0
ψ′′(t)dt =

1

T

(

ψ′(T)− ψ′(0)
)

= 0,

consequently PFψ = 0, and we can write

ψ′′(t) = λ{ f (t, ψ)− PFψ}.

Integrating this equality we obtain

ψ′(t) = ψ′(0) + λ
∫ t

0
( f (s, ψ)− PFψ)ds,

which, together with the definition of H, gives

ψ′ = ψ′(0) +
λ

T

∫ T

0

(

∫ t

0
( f (s, ψ)− PFψ)ds

)

dt + λH(I − P)Fψ.

Apply functional P to both sides of this equality. Since Pψ′ = 0 we have

ψ′(0) +
λ

T

∫ T

0

(

∫ t

0
( f (s, ψ)− PFψ)ds

)

dt = 0,

therefore ψ′ = λH(I − P)Fψ. Integration yields

ψ = const. + λH2(I − P)Fψ.

From the definition of H there follows const. = Pψ, which, together with PFψ = 0, shows that

ψ is a fixed point of Mλ, i.e., (2.9) holds.

Now we turn to the proof of the second statement of the lemma concerning the case λ = 0.

Suppose that ψ ∈ C1
T is a fixed point of M0 = P − PF, i.e.,

ψ = Pψ − PFψ. (2.10)

Obviously, ψ = Pψ and, consequently, (2.8) holds.

On the other hand, if (2.8) holds, then

ψ = Pψ = Pψ + PFPψ = Pψ + PFψ = M0ψ.

In other words, ψ is a fixed point of M0.

Step (b) is contained in the following lemma.

Lemma 2.4. Under the conditions of Theorem 2.1 function M∗ is completely continuous on the set

Ω × [0, 1], provided that the norm |||·||| in Ω × [0, 1] is defined by

|||(ψ, λ)||| := ‖ψ‖1 + |λ| ((ψ, λ) ∈ Ω × [0, 1]).
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Proof. The continuity of M∗ follows from the conditions on a, b, d, e. In fact, to this property

it is enough to prove the continuity of F : C1
T → CT. Obviously, A, B, D : C1

T → CT are

continuous. For De : C1
T → CT, let us fix a ψ ∈ C1

T and consider the sets

Q :=
{

ψ ∈ C1
T : ‖ψ − ψ‖1 ≤ 1

}

⊂ C1
T,

Q1 :=

{

v ∈ R : min
[0,T]

ψ
′
(t)− 1 ≤ v ≤ max

[0,T]
ψ
′
(t) + 1

}

⊂ R.

There are constants K0, K1 such that

|d(t, ψ)| ≤ K0 if ‖ψ − ψ‖1 ≤ 1, 0 ≤ t ≤ T,

|e(ψ
′
(t))| ≤ K1 if 0 ≤ t ≤ T.

Let ε > 0 be arbitrary. Function e is uniformly continuous on Q1, and D is continuous at ψ.

Therefore there is a δ (0 < δ < 1) such that‖ψ − ψ‖1 < δ and v1, v2 ∈ Q1, |v1 − v2| < δ imply

‖Dψ − Dψ‖0 <
ε

2K1
, |e(v1)− e(v2)| <

ε

2K0
.

If ‖ψ − ψ‖1 < δ, then

|d(t, ψ)e(ψ′(t))− d(t, ψ)e(ψ
′
(t))|

≤ |d(t, ψ)||e(ψ′(t))− e(ψ
′
(t))|+ |d(t, ψ)− d(t, ψ)||e(ψ

′
(t))|

≤ K0
ε

2K0
+ K1

ε

2K1
= ε,

i.e., De is continuous.

Finally, we prove that M∗ maps Ω × [0, 1] into a precompact set in C1. It is easy to see

that ‖Hϕ‖1 ≤ (2T + 1)‖ϕ‖0 (ϕ ∈ CT,I−P). Continuity of a, e and condition (ii) in Theorem 2.1

imply the existence of K2, K3 such that

|||(ψ, λ)||| ≤ K2, ‖Fψ‖0 ≤ K3 ((ψ, λ) ∈ Ω × [0, 1]).

Therefore

‖M∗(ψ, λ)‖0 ≤ ‖ψ‖0 + ‖Fψ‖0 + 2(2T + 1)2‖Fψ‖0

≤ K2 + (1 + 2(2T + 1)2)K3 ((ψ, λ) ∈ Ω × [0, 1]).

On the other hand,

‖M∗(ψ, λ)′‖0 ≤ ‖λH(I − P)Fψ‖0

≤ 2(2T + 1)‖Fψ‖0 ≤ 2(2T + 1)K3,

‖M∗(ψ, λ)′′‖0 ≤ ‖λ(Fψ − PFψ)‖0

≤ 2‖Fψ‖0 ≤ K3 ((ψ, λ) ∈ Ω × [0, 1]),

consequently the elements of M∗(Ω × [0, 1]) ⊂ C1
T are uniformly bounded and equicontin-

uous. By the Arzelà–Ascoli Theorem [7, Selection Theorem I.2.3] M∗(Ω × [0, 1]) is precom-

pact.

In general, step (c) is the biggest challenge in proofs of Leray–Schauder type; it depends

most strongly on the specialities of the differential equation.
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Lemma 2.5. Under the conditions of Theorem 2.1, if ψ ∈ Ω is a fixed point of Mλ for some λ ∈ [0, 1],

then ψ 6∈ ∂Ω.

Proof. Suppose that the statement is not true, i.e., ψ ∈ ∂Ω. If λ ∈ (0, 1], then by Lemma 2.3 ψ

is a solution of (2.3). According to Lemma 2.2 there exists at least one τ ∈ [0, T) such that the

function t 7→ r(t) := ψ2(t) (t ∈ R) has a total maximum at t = τ, therefore r′(τ) = ψ′(τ) = 0,

r′′(τ) ≤ 0, and either ψ(τ) = S or ψ(τ) = −R. Condition (i) implies that either

r′′(τ) = 2ψ(τ)ψ′′(τ) = 2λψ(τ){a(τ, ψ(τ)) + b(τ, ψ)}

≥ 2λ|ψ(τ)|{a(τ, ψ(τ))sign(ψ(τ))− β−R,S(τ)}

= 2λS{a(τ, S)− β−R,S(τ)} > 0,

(2.11)

or

r′′(τ) ≥ 2λR{−a(τ,−R)− β−R,S(τ)} > 0. (2.12)

Both of them contradict r′′(τ) ≤ 0.

If λ = 0, then from (2.8) we know that ψ(t) ≡ ψ0 = const. and

m(ψ0) :=
1

T

∫ T

0
(a(t, ψ0) + b(t, ψ0))dt = 0. (2.13)

On the other hand, we also know that either ψ0 = S or ψ0 = −R. In the first case from

condition (i) we get

|a(t, ψ0) + b(t, ψ0)| > a(t, S)− β−R,S(t) > 0 (t ∈ R), (2.14)

which contradicts (2.13). The second case is similar.

Lemma 2.6. Under conditions of Theorem 2.1,

d[I − M0, Ω, 0] = d[m, (−R, S), 0], (2.15)

and the Brower degree on the right-hand side is equal to 1.

Proof. (2.15) is a consequence of (2.8). By virtue of condition (i) we have

m(−R) =
1

T

∫ T

0
(a(t,−R) + b(t,−R))dt

<
1

T

∫ T

0
(a(t,−R) + β−R,S(t))dt < 0,

m(S) =
1

T

∫ T

0
(a(t, S) + b(t, S))dt

<
1

T

∫ T

0
(a(t, S)− β−R,S(t))dt > 0.

But d[m, (−R, S), 0] depends only on m(−R) and m(S), and for the linear function connecting

m(−R) and m(S) the degree is equal to 1, so d[m, (−R, S), 0] = 1.

Lemmas 2.3–2.4–2.5 make it possible to apply the theorem of invariance of the Leray–

Schauder degree with respect to homotopy to the mapping M∗ defined by (2.7), consequently

d[I − M1, Ω, 0] = d[m, (−R, S), 0] = 1.

On the basis of the Kronecker Existence Theorem [13] and Lemma 2.3 this means that (2.1)

has a T-periodic solution x ∈ CT(−R, S).
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3 Applications

3.1 The forced mathematical pendulum with vibrating suspension point

The mathematical pendulum is one of the most important model equations in the nonlinear

mechanics (see, e.g., [2]). When it is under the action of an outer periodic force then its

motions are described by the equation

ϕ′′ +
g

l
sin ϕ = q(t) (3.1)

where ϕ denotes the angle between the direction vertically downward and the rod of the

pendulum measured anticlockwise, l is the length of the rod, g denotes the constant of gravity,

and q : R → R is a T-periodic continuous function. A great number of papers have been

devoted to the problem of finding T-periodic solutions of the equation (see an excellent history

and literature in [11]). H. W. Knobloch [8], using the degree theory and taking also some

damping, proved that the equation

ϕ′′ + |ϕ′|ϕ′ +
g

l
sin ϕ = q(t) (3.2)

has at least one T-periodic solution, provided that

‖q‖∞ := max
[0,T]

|q(t)| <
g

l
. (3.3)

Using the same technique, J. Mawhin and M. Willem [12] could guarantee multiple periodic

solutions.

In the technical practice it often happens that the suspension point of the rod is vibrating

in the plane of the motions of the pendulum. Consider now the case of the vibration

x0(t) = Ue1 cos ωt, y0(t) = Ue2 sin ωt (t ∈ R),

where the x-axis is directed vertically downward, U > 0 is the amplitude, ω := mπ/T is the

frequency of the vibration; m ∈ N and the unit vector (e1, e2) ∈ R
2 are fixed. It can be seen

that Lagrange’s equation of motion of the second kind has the form

ϕ′′ −
U

l
ω sin ωt(e1 cos ϕ + e2 sin ϕ)ϕ′

+

(

g

l
+

U

l
ω2e1 cos ωt

)

sin ϕ −
U

l
ω2e2 cos ωt cos ϕ

= b1(t, ϕ)− d(t, ϕ)e(ϕ′).

(3.4)

Here the force function b1 : R × R → R is continuous, the function b1(·, u) is T-periodic,

d : R × R → R, e : R → R are continuous, d(·, ϕ) is T-periodic, and e(0) = 0. Introduce the

notation

V := max

{

|b1(t, u)| : 0 ≤ t ≤ T,
π

2
≤ u ≤

3π

2

}

.

Corollary 3.1. Suppose that there exists a continuous function φ : (0, ∞) → (0, ∞) (φ(r) ≥ r) such

that the condition (iii) in Theorem 2.1 is satisfied. If

Uω2 + Vl < g, (3.5)

then equation (3.4) has a T-periodic solution ϕ such that π/2 ≤ ϕ(t) ≤ 3π/2 (t ∈ R).
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Proof. In the new variable θ := ϕ − π equation (3.4) has the form

θ′′ = −
U

l
ω sin ωt(e1 cos θ + e2 sin θ)θ′ +

(

g

l
+

U

l
ω2e1 cos ωt

)

sin θ

−
U

l
ω2e2 cos ωt cos θ + b1(t, θ + π)− d(t, θ + π)e(θ′).

(3.6)

There are constants c1, c2 such that
∣

∣

∣

∣

U

l
ω sin ωt(e1 cos θ + e2 sin θ)θ′

∣

∣

∣

∣

+ |d(t, θ + π)e(θ′)| ≤ c1|θ
′|+ c2φ(|θ′|) ≤ (c1 + c2)φ(|θ

′|),

so condition (iii) in Theorem 2.1 is satisfied. We can choose a(t, u) := (g/l) sin u, R :=

π/2, S := 3π/2. Then β−R,S(t) ≡ V and we apply Theorem 2.1 to equation (3.6) to get

the corollary.

Condition (3.5) can be considered as a generalization of (3.3) to (3.6). In Knobloch’s special

case (3.5) gives (3.3).

3.2 A second order integro-differential equation with unbounded delay

Consider the equation

x′′(t) = a(t, x(t)) +
∫

∞

−∞

k(t, s)x(s)ds + d1(t, xt)e(x′(t)) + p(t), (t ∈ R) (3.7)

where k : R
2 → R is continuous, k(t+ T, s+ T) ≡ k(t, s) (t, s ∈ R), d1 : R×C((−∞, 0]; R) → R

is continuous, d1(t + T, χ) ≡ d1(t, χ) (χ ∈ C((−∞, 0]; R)), p : R → R is continuous and T-

periodic. We used the standard notation xt(τ) := x(t + τ) (t ∈ R, τ ≤ 0).

Equation (3.7) can be considered as a perturbation of the pendulum equation (3.1). As

we will see in the following corollary, function sin will be replaced by a function a satisfying

a sign condition like the sine function and dominating the other terms in the equation. By

example of (3.7) we would like to illuminate that our main result Theorem 2.1 is robust in

the sense that it makes possible a variety of applications where different types of equations

appear such as functional differential equations even with unbounded delays. Actually, such

equations can occur among others in mechanics (see, e.g., [1, 4.3. Examples]) and population

dynamics [3].

The following corollary is a direct consequence of Theorem 2.1.

Corollary 3.2. Suppose that there exists a continuous function φ : (0, ∞) → (0, ∞) such that the

condition (iii) in Theorem 2.1 is satisfied. If there are positive constants R, S such that

a(t, S) > max{R, S}
∫

∞

−∞

|k(t, s)|ds + ‖p‖0 =: β−R,S(t),

a(t,−R) < −β−R,S(t) (t ∈ R),
(3.8)

and d1 transforms every bounded set contained in R ×C((0, ∞]; R) into a bounded set of R, then there

exists a T-periodic solution x ∈ CT(−R, S) of (3.7).
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−div

(

∇u
√

1 − |∇u|2

)

= λu(1 − a|u|q) in Ω, u|∂Ω = 0, (a ≥ 0 < q),

when λ ∈ (0, ∞), in terms of the spectrum of the classical Laplacian. Beforehand,
we obtain multiplicity of solutions for parameterized and non-parameterized Dirichlet
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1 Introduction and preliminaries

In this paper we deal with the Dirichlet boundary value problem
{

−M(u) = λg(u) in Ω,

u|∂Ω = 0,
(1.1)

where Ω is a bounded domain in R
N (N ≥ 2) with boundary ∂Ω of class C2, λ > 0 is a real

parameter, g : R → R is an odd continuous function and M stands for the mean curvature
operator in Minkowski space:

M(u) = div

(

∇u
√

1 − |∇u|2

)

.
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2 P. Jebelean and C. S, erban

Problems involving the operator M are originated in differential geometry and relativity.
These are related to maximal and constant mean curvature spacelike hypersurfaces (spacelike
submanifolds of codimension one in the flat Minkowski space L

N+1 :={(x, t) : x ∈ R
N , t ∈ R}

endowed with the Lorentzian metric ∑
N
j=1(dxj)

2 − (dt)2, where (x, t) are the canonical coordi-
nates in R

N+1) having the property that the trace of the extrinsic curvature is zero, respectively,
constant. On the other hand, assuming that a spacelike hypersurface in L

N+1 is the graph of
a smooth function u : Ω → R with Ω a domain in

{

(x, t) : x ∈ R
N , t = 0

}

≃ R
N , the (strictly)

spacelike condition implies |∇u| < 1 and u satisfies an equation of type

M(u) = H(x, u) in Ω,

where H is a prescribed mean curvature function. If H is continuous and bounded, it has
been shown in [4] that the above equation subjected to a Dirichlet condition has at least one
solution. More recently, the existence of additional solutions, such as of mountain pass type,
was obtained in [5, 6] and the existence of Filippov type solutions for discontinuous Dirichlet
problems involving the operator M was established in [7]. For other recent developments of
the subject, we refer the reader to [2, 3, 9–11, 15, 16] and the references therein.

As in [10], by a solution of (1.1) we mean a function u ∈ C0,1(Ω), such that ‖∇u‖∞ < 1,
which vanishes on ∂Ω and satisfies

∫

Ω

∇u · ∇w
√

1 − |∇u|2
dx = λ

∫

Ω
g(u)w dx, (1.2)

for every w ∈ W1,1
0 (Ω). Here and below, ‖ · ‖∞ stands for the usual sup-norm on L∞(Ω). As

shown in [10, Remark 2], if u is a solution of (1.1), in the sense of the previous definition, then
u ∈ W2,r(Ω) for all finite r ≥ 1 and satisfies the equation a.e. in Ω. Reciprocally, since, for
p > N, one has

W2,p(Ω) ⊂ C1(Ω) ⊂ W1,∞(Ω) = C0,1(Ω),

it is straightforward to check that if a function u ∈ W2,p(Ω) for some p > N, with ‖∇u‖∞ < 1
satisfies the equation a.e. in Ω and vanishes on ∂Ω, then it is a solution of (1.1).

This study is mainly motivated by the result obtained in [17] concerning the multiplicity
of T-periodic solutions for the equation with relativistic operator:

−

(

u′

√

1 − |u′|2

)′

= λg1(u) in [0, T]; (1.3)

by ga we denote the Fisher–Kolmogorov type nonlinearity ga(t) = t(1 − a|t|q), ∀ t ∈ R (a ≥

0 < q). This type of nonlinearities was originally motivated by models in biological population
dynamics and led to the reaction-diffusion equation

∂u
∂t

−
∂2u
∂x2 = u(1 − u2),

referred to as the classical Fisher–Kolmogorov equation [12, 13, 18]. Also, higher-order equations
of type

uiv − pu′′ = u(q(t)− r(t)u2), (with q, r positive functions)

which corresponds, if p > 0, to the extended Fisher–Kolmogorov equations are models for phase
transitions and other bistable phenomena (see e.g. [8, 20–23, 27]). So, in [17, Theorem 2.1] it is
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shown that if λ > 4π2m3/T2 for some m ≥ 2, then equation (1.3) subjected to periodic bound-
ary conditions has at least m − 1 distinct pairs of non-constant solutions. By comparison, in
the case of the Dirichlet problem for the parametrized equation

−M(u) = λga(u) in Ω,

we obtain (see Theorem 2.5) a complete description of the existence/non-existence and mul-
tiplicity of distinct pairs of nontrivial solutions when λ ∈ (0, ∞), in terms of the eigenvalues
of the classical −∆. It is worth to point out that the multiplicity part of the result relies on a
Clark type theorem for the general problem (1.1) (see Theorem 2.2). Moreover, this theorem
enables us to derive existence of finitely or infinitely many solutions to Dirichlet problems for
non-parametrized equations having the form

−M(u) = f (u) in Ω,

with odd continuous f : R → R, by controlling the asymptotic behavior of the primitive of f
near the origin (see Corollary 2.3).

We conclude this introductory part by briefly recalling some notions and results in the
frame of Szulkin’s critical point theory [26], which will be needed in the sequel. Let (Y, ‖ · ‖)
be a real Banach space and I : Y → (−∞,+∞] be a functional of the type

I = F + ψ, (1.4)

where F ∈ C1(Y, R) and ψ : Y → (−∞,+∞] is convex, lower semicontinuous and proper
(i.e., D(ψ) := {u ∈ Y : ψ(u) < +∞} 6= ∅). A point u ∈ Y is said to be a critical point of I if
u ∈ D(ψ) and if it satisfies the inequality

〈F ′(u), v − u〉+ ψ(v)− ψ(u) ≥ 0 ∀ v ∈ D(ψ).

It is straightforward to see that each local minimum of I is necessarily a critical point of I
[26, Proposition 1.1]. A sequence {un} ⊂ D(ψ) is called a (PS)-sequence if I(un) → c ∈ R and

〈F ′(un), v − un〉+ ψ(v)− ψ(un) ≥ −εn‖v − un‖ ∀ v ∈ D(ψ),

where εn → 0. The functional I is said to satisfy the (PS) condition if any (PS)-sequence has a
convergent subsequence in Y.

Let Σ be the collection of all symmetric subsets of Y \ {0} which are closed in Y. The genus
(Krasnoselskii) of a nonempty set A ∈ Σ is defined as being the smallest integer k with the
property that there exists an odd continuous mapping h : A → R

k \ {0}; in this case we write
γ(A) = k. If such an integer does not exist, γ(A) = +∞. Also, if A ∈ Σ is homeomorphic
to Sk−1 (k − 1 dimension unit sphere in the Euclidean space R

k) by an odd homeomorphism,
then γ(A) = k (see e.g. [25, Corollary 5.5]). For properties and more details of the notion
of genus we refer the reader to [24, 25]. Denoting by Γ ⊂ 2Y the collection of all nonempty
compact symmetric subsets of Y, considered with the Hausdorff–Pompeiu distance, we set

Γj := cl{A ∈ Γ : 0 6∈ A, γ(A) ≥ j}.

The following is an immediate consequence of [26, Theorem 4.3].

Theorem 1.1. Let I be of type (1.4) with F and ψ even. Also, suppose that I is bounded from below,
satisfies the (PS) condition and I(0) = 0. If

inf
A∈Γm

sup
v∈A

I(v) < 0,

then the functional I has at least m distinct pairs of nontrivial critical points.
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2 Main results

Using the ideas from [5], we introduce the variational formulation for problem (1.1). Accord-
ingly, let

K0 := {u ∈ W1,∞(Ω) : ‖∇u‖∞ ≤ 1, u|∂Ω = 0}.

The convex set K0 is compact in C(Ω) [5, Lemma 2.2]. The functional Ψ : C(Ω) → (−∞,+∞]

defined by

Ψ(u) =







∫

Ω
[1 −

√

1 − |∇u|2]dx, for u ∈ K0,

+∞, for u ∈ C(Ω) \ K0

is convex and lower semicontinuous [5, Lemma 2.4]. Also, it is easy to see that

Ψ(u) ≤
∫

Ω
|∇u|2, ∀ u ∈ K0. (2.1)

Let the C1-functional Gλ : C(Ω) → R be given by

Gλ(u) = −λ
∫

Ω
G(u)dx,

where

G(t) =
∫ t

0
g(τ)dτ.

Then, the energy functional Iλ : C(Ω) → (−∞,+∞] associated to problem (1.1) is

Iλ = Ψ + Gλ

and it has the structure required by Szulkin’s critical point theory. Also, by the compactness
of K0 ⊂ C(Ω) it is easy to see that Iλ satisfies the (PS) condition.

From [5, Theorem 2.1], one has the following:

Proposition 2.1. If a function uλ ∈ C(Ω) is a critical point of Iλ, then it is a solution of problem
(1.1). Moreover, Iλ is bounded from below and attains its infimum at some uλ ∈ K0, which is a critical
point of Iλ and hence, a solution of (1.1).

We briefly recall some classical spectral aspects of the operator −∆ in the Sobolev space
H1

0(Ω) - which is seen as being endowed with the usual scalar product

(u, v)1 =
∫

Ω
∇u · ∇v dx, for all u, v ∈ H1

0(Ω).

A real number λ∆ ∈ R is called an eigenvalue of −∆ in H1
0(Ω), if problem

{

−∆u = λ∆u in Ω,

u|∂Ω = 0

has a nontrivial weak solution ϕ, i.e. there exists ϕ ∈ H1
0(Ω) \ {0} such that

∫

Ω
∇ϕ · ∇v dx = λ∆

∫

Ω
ϕv dx, for all v ∈ H1

0(Ω).
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The solution ϕ is called eigenfunction corresponding to the eigenvalue λ∆. It is known that
there exists a sequence of eigenvalues 0 < λ∆

1 < λ∆
2 ≤ · · · ≤ λ∆

j ≤ · · · (going to +∞) and a
sequence of corresponding eigenfunctions {ϕj}j∈N defining an orthonormal basis of H1

0(Ω).
Also, since ∂Ω is of class C2 one has that each eigenfunction ϕj belongs to H2(Ω) and by a
bootstrap argument combining a standard regularity result [14, Theorem 9.15] and the Sobolev
embedding theorem [1, Theorem 4.12] we get that ϕj actually belongs to W2,p(Ω) with some
p > N. Therefore, ϕj belongs to C1(Ω) and hence |∇ϕj| ∈ C(Ω) for all j ∈ N.

Theorem 2.2. If λ > 2λ∆
m for some m ∈ N and

lim inf
t→0+

2G(t)
t2 ≥ 1, (2.2)

then problem (1.1) has at least m distinct pairs of nontrivial solutions.

Proof. We apply Theorem 1.1 with Y = C(Ω) and I = Iλ. Set

c1(m) :=

(

m

∑
j=1

‖∇ϕj‖
2
∞

)
1
2

and c2(m) :=

(

m

∑
j=1

‖ϕj‖
2
∞

)
1
2

.

Since λ > 2λ∆
m, we can choose ε ∈ (0, 1) so that λ > 2λ∆

m/(1 − ε) and by virtue of (2.2), there
exists δ > 0 such that

2G(t) ≥ (1 − ε)t2 as |t| ≤ δ. (2.3)

Consider the finite dimensional space

Xm := span {ϕ1, ϕ2, . . . , ϕm} ,

equipped with the norm

‖α1ϕ1 + · · ·+ αm ϕm‖Xm
=
(

α2
1 + · · ·+ α2

m
)

1
2 .

and let Am(ρ) be the subset of C(Ω) defined by

Am(ρ) := {v ∈ Xm : ‖v‖Xm = ρ} ,

where ρ is a positive number ≤ min
{

1
c1(m)

, δ
c2(m)

}

. Then, it is easy to see that the odd mapping

H : Am(ρ) → Sm−1 defined by

H

(

m

∑
k=1

αk ϕk

)

=

(

α1

ρ
, . . . ,

αm

ρ

)

is a homeomorphism between Am(ρ) and Sm−1 and so, γ(Am(ρ)) = m. Hence, Am(ρ) ∈ Γm ⊂

2C(Ω).

Let v = ∑
m
k=1 αk ϕk ∈ Am(ρ). Clearly, v|∂Ω = 0 and we have

|∇v| ≤
m

∑
k=1

|αk||∇ϕk| ≤

(

m

∑
k=1

α2
k

)1/2( m

∑
k=1

|∇ϕk|
2

)1/2

≤ ρc1(m).
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Therefore, as ρ was chosen ≤ 1/c1(m), one get ‖∇v‖∞ ≤ 1, meaning that v ∈ K0. On the
other hand, using that {ϕj}j∈N is orthonormal in H1

0(Ω), one has

∫

Ω
v2dx ≥

ρ2

λ∆
m

and
∫

Ω
|∇v|2dx = ρ2. (2.4)

Then, from

|v| ≤

(

m

∑
k=1

α2
k

)1/2( m

∑
k=1

|ϕk|
2

)1/2

≤ ρc2(m) ≤ δ,

together with (2.1), (2.3) and (2.4), we estimate Iλ as follows

Iλ(v) = Ψ(v) + Gλ(v) ≤
∫

Ω
|∇v|2dx −

λ

2
(1 − ε)

∫

Ω
v2dx

≤ ρ2
(

1 −
λ(1 − ε)

2λ∆
m

)

= ρ2 2λ∆
m − λ(1 − ε)

2λ∆
m

< 0.

This yields
inf

A∈Γm

sup
v∈A

Iλ(v) ≤ sup
v∈Am(ρ)

Iλ(v) < 0

and, since Iλ is bounded from below, the proof is accomplished by Theorem 1.1 and Proposi-
tion 2.1.

The above theorem can be applied to derive multiplicity of nontrivial solutions for au-
tonomous non-parameterized Dirichlet problems having the form

{

−M(u) = f (u) in Ω,

u|∂Ω = 0,
(2.5)

where the mapping f : R → R is odd and continuous. We set F(t) =
∫ t

0 f (τ)dτ (t ∈ R).

Corollary 2.3.

(i) If

lim inf
t→0+

F(t)
t2 > λ∆

m (2.6)

for some m ∈ N, then problem (2.5) has at least m distinct pairs of nontrivial solutions.

(ii) If

lim
t→0+

F(t)
t2 = +∞, (2.7)

then problem (2.5) has infinitely many distinct pairs of nontrivial solutions.

Proof. (i) By (2.6), there exists λ such that

lim inf
t→0+

2F(t)
t2 ≥ λ > 2λ∆

m

and the result follows from Theorem 2.2 with g(t) = f (t)/λ.

(ii) This is immediate from (i) and (2.7).
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Example 2.4.

(i) For any m ∈ N and ε > 0, problem

{

−M(u) = 2(λ∆
m + ε) sin u in Ω,

u|∂Ω = 0

has at least m distinct pairs of nontrivial solutions.

(ii) If α ∈ (0, 1), then problem

{

−M(u) = |u|α−1u in Ω,

u|∂Ω = 0

has infinitely many distinct pairs of nontrivial solutions.

Now, we study existence/non-existence and multiplicity of nontrivial solutions for Dirich-
let problems involving Fisher-Kolmogorov nonlinearities:

{

−M(u) = λu(1 − a|u|q) in Ω,

u|∂Ω = 0,
(2.8)

where a ≥ 0 and q > 0 are constants. Notice, in this case one has

G(t) =
t2

2
− a

|t|q+2

q + 2
, ∀ t ∈ R (2.9)

and

Iλ(u) = Ψ(u)− λ
∫

Ω

[

u2

2
− a

|u|q+2

q + 2

]

dx, u ∈ C(Ω). (2.10)

The next theorem will invoke the constant

aΩ :=
diam(Ω)

2
,

where diam(Ω) stands for the diameter of Ω. Using the mean value theorem, it is straightfor-
ward to check that any solution u of a problem of type (1.1) satisfies

‖u‖∞ < aΩ. (2.11)

Theorem 2.5.

(i) If λ > 2λ∆
m, for some m ≥ 2, then problem (2.8) has at least m distinct pairs of nontrivial

solutions.

(ii) If λ > λ∆
1 , then problem (2.8) has at least one pair of nontrivial solutions (uλ,−uλ), with uλ

a minimizer of the corresponding Iλ. In addition, if a ∈ [0, a−q
Ω
), one may suppose that uλ > 0

on Ω.

(iii) If λ ∈ (0, λ∆
1 ], the only solution of (2.8) is the trivial one.
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Proof. (i) This follows from Theorem 2.2 and (2.9).

(ii) Let ϕ1 > 0 be an eigenfunction of −∆ in H1
0(Ω) corresponding to the first eigenvalue λ∆

1
and set

ψ1 :=
ϕ1

‖∇ϕ1‖∞

.

As ϕ1 ∈ C1(Ω), it is clear that ψ1 ∈ K0 \ {0}. Since

λ∆
1 =

∫

Ω
|∇ψ1|

2 dx
∫

Ω
ψ2

1 dx
,

we have (as observed in [19]):

lim
t→0+

∫

Ω

[

1 −
√

1 − |t∇ψ1|2
]

dx

1
2

∫

Ω
(tψ1)

2dx
= lim

t→0+

∫

Ω

t|∇ψ1|
2

√

1 − |t∇ψ1|2
dx

t
∫

Ω
ψ2

1 dx
= λ∆

1 . (2.12)

Now, let λ > λ∆
1 and let us fix some ε > 0 with λ∆

1 < λ − ε. On account of (2.12), there
exists tλ,ε ∈ (0, 1) such that

∫

Ω

[

1 −
√

1 − |t∇ψ1|2
]

dx

1
2

∫

Ω
(tψ1)

2dx
< λ − ε, ∀ t ∈ (0, tλ,ε). (2.13)

Next, from (2.13) and taking t∗λ,ε ∈ (0, tλ,ε) with

λa
(t∗λ,εψ1(x))q

q + 2
<

ε

2
, ∀ x ∈ Ω,

we estimate Iλ in (2.10) as follows

Iλ(t
∗
λ,εψ1) = Ψ(t∗λ,εψ1)− λ

∫

Ω

[

(t∗λ,εψ1)
2

2
− a

(t∗λ,εψ1)
q+2

q + 2

]

dx

=
∫

Ω

[

1 −
√

1 − |∇(t∗λ,εψ1)|2
]

dx − λ
∫

Ω

[

(t∗λ,εψ1)
2

2
− a

(t∗λ,εψ1)
q+2

q + 2

]

dx

<
λ − ε

2

∫

Ω
(t∗λ,εψ1)

2dx −
λ

2

∫

Ω
(t∗λ,εψ1)

2dx + λ
∫

Ω
a
(t∗λ,εψ1)

q+2

q + 2
dx

=
∫

Ω
(t∗λ,εψ1)

2

[

λa
(t∗λ,εψ1)

q

q + 2
−

ε

2

]

dx < 0 = Iλ(0).

From Proposition 2.1 we infer that, if λ > λ∆
1 , the even functional Iλ attains its infimum at

some uλ ∈ K0 \ {0}, hence problem (2.8) has a pair of nontrivial solutions (uλ,−uλ). Since
|uλ| is still a minimizer of Iλ, it also solves (2.8) and, taking into account (2.11), we obtain

−M(|uλ|) = λ|uλ|(1 − a|uλ|
q) ≥ λ|uλ|

(

1 − a aq
Ω

)

.

Then, since |uλ| > 0 in a subset of Ω having positive measure, from [11, Lemma 2.6] it follows
that actually |uλ| > 0 in the whole Ω.
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(iii) Assume, by contradiction, that for such a λ, a function u is a nontrivial solution of (2.8).
On account of (1.2), one gets

λ
∫

Ω
u2(1 − a|u|q) dx =

∫

Ω

|∇u|2
√

1 − |∇u|2
dx ≥

∫

Ω
|∇u|2 dx ≥ λ∆

1

∫

Ω
u2 dx. (2.14)

If a > 0, we have

0 > −λa
∫

Ω
|u|q+2 dx ≥ (λ∆

1 − λ)
∫

Ω
u2 dx ≥ 0,

i.e. a contradiction. In the case a = 0, if λ < λ∆
1 , as above we obtain the contradiction

0 ≥ (λ∆
1 − λ)

∫

Ω
u2 dx > 0.

Also, if λ = λ∆
1 , from (2.14) (with a = 0) we have that

∫

Ω
|∇u|2

(

1
√

1 − |∇u|2
− 1

)

dx = 0,

or,
∫

Ω

|∇u|4
(

1 +
√

1 − |∇u|2
)

√

1 − |∇u|2
dx = 0

which, since u ∈ C1(Ω), implies |∇u| = 0 on Ω. It follows that u is constant and then,
as u ∈ K0, we infer that u ≡ 0 – a contradiction. Hence, (2.8) has only the trivial solution
provided that λ ∈ (0, λ∆

1 ] and the proof is now complete.

Remark 2.6. (i) It is worth noticing that in the particular case a = 0, Theorem 2.5 recovers and
improves the main result of paper [19], which states that problem

{

−M(u) = λu in Ω,

u|∂Ω = 0,

has a nontrivial solution iff λ > λ∆
1 and for such a λ, a nontrivial solution can be chosen to be

nonnegative on Ω and to minimize the corresponding Iλ.

(ii) In Theorem 2.5 it is assumed: if m = 1, λ > λ∆
m, and if m > 1, λ > 2λ∆

m, instead of λ > λ∆
m.

This comes from the fact that in Theorem 2.2 we were not able to prove that λ > 2λm can be
replaced by the weaker condition λ > λ∆

m. Actually, at the moment it is not clear that this can
be done under assumption (2.2) – this remains an open problem. Nevertheless, it is worth to
point out that Theorem 2.2 yields the following: problem (1.1) has at least m (∈ N) distinct
pairs of nontrivial solutions if λ > λ∆

m and

lim inf
t→0+

G(t)
t2 ≥ 1. (2.15)

To see this, rewrite the equation in (1.1) as

−M(u) = 2λg̃(u) in Ω,

with g̃(u) = g(u)/2 and apply Theorem 2.2. In this form this seems to allow in Theorem 2.5
the more natural assumption λ > λ∆

m, instead of λ > 2λ∆
m, for m > 1. However, this cannot be

applied to problem (2.8) since G defined in (2.9) does not satisfy (2.15).
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1 Introduction

We consider the semi-linear equation

u′′(t) + p(t)u′(t) + q(t)u(t) = f (t, u(t), u′(t)), a.e. t ∈ (0, 1), (1.1)

subject to the linear functional conditions

F1(u) = 0, F2(u) = 0, (1.2)

where F1 and F2 are continuous linear functionals on C1[0, 1].

One of the early works that stimulated interest to applications of the coincidence degree

theory to non-local boundary value problems was the paper by Feng and Webb [3]. Our work

is motivated by [3] and [2]. In [2], the authors studied the resonant functional problem

u′′(t) = f (t, u(t), u′(t)), a.e. t ∈ (0, 1), (1.3)

B1(u) = 0, B2(u) = 0, (1.4)

where f is Carathéodory, B1 and B2 are continuous linear functionals on C1[0, 1]. Imposing

B1(t)B2(1) = B2(t)B1(1), the problem (1.3), (1.4) is at resonance of dimension one or two. An

existence result was obtained for every possible resonance scenario.

BEmail: nxkosmatov@ualr.edu
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In order to apply the coincidence degree approach of Mawhin and many other methods of

functional analysis in ordinary semi-linear differential equations, one relies on the knowledge

of a fundamental solution set. In all known to us papers based on these methods, the linear

operator L, such as Lu = (pu′)′ in [7], can be “inverted” by the reduction of order method.

The method developed here can be also applied to fractional order problems, that is, when L is

an integro-differential operator such as the Riemann–Liouville, Caputo fractional derivatives

and their numerous generalizations. Since we deal with a linear differential operator that,

in general, does not admit the reduction of order, this work is also a generalization of many

results such as [1, 6–8]. Moreover, if the boundary conditions, or, for that matter multi-point

conditions, or even linear conditions involving Riemann–Stieltjes integrals are chosen, a spe-

cific resonance is “fixed”. Obviously, in this case, one would only hope to study one or very

few resonance conditions per paper. We believe a more productive approach would yield a

formalism for solving a class of problems.

In our setting, the problem is abstract since we deal with a large class of general second-

order linear differential operators whose fundamental solution set is {φ1, φ2}. Not only our

work is an abstract generalization of many results in that respect but also due to the functional

conditions (1.2) studied here, which certainly include (1.6). In fact, as in [2], we study every

“geometric” scenario of resonance. In particular, in [2], the authors considered (1.1) with

p(t) = q(t) = 0 subject to (1.2). Thus, the present work extends the results of [2], as well.

In [7], the author considered several resonance cases in the framework of the generalized

Sturm–Liouville boundary value problem

(p(t)u′(t))′ − q(t)u(t) = f

(

t,
∫ t

0
u(s) ds, u′(t)

)

, t ∈ (0, 1), (1.5)

au(0)− bp(0)u′(0) = µ1u(ξ), cu(1) + dp(1)u′(1) = µ2u(ξ), (1.6)

where a, b, c, d ∈ R, 0 < ξ < 1, and f is continuous and

µ1

(

c
∫ 1

ξ

1

p(s)
ds + d

)

+ µ2

(

a
∫ ξ

0

1

p(s)
ds + b

)

= ad + bc + ac
∫ 1

0

1

p(s)
ds. (1.7)

By means of a “shift” operator, a resonant problem can be converted to a non-resonant prob-

lem [5] and, thus, need not be studied as a coincidence equation Lu = Nu. In [7], the problem

is not at resonance if

L0u(t) = (p(t)u′(t))′ − q(t)u(t).

Considering

Lu(t) = (p(t)u′(t))′ = q(t)u(t) + f

(

t,
∫ t

0
u(s) ds, u′(t)

)

, t ∈ (0, 1),

the equation (1.7) becomes a resonance condition. The advantage here is that the fundamental

solution set of L is easy to obtain while for L0 we only know that it exists but, in general, there

is no hope to obtain it explicitly. It is also worth mentioning that whenever a criterion for the

existence of a solution to the coincidence equation Lu = f (t, u, u′) is obtained, it can always,

with a little effort, be extended to Lu = f (t, u, T1(u), u′, T2(u′)), where T1 and T2 are bounded

operators such as the primitive of u(t) in (1.5), on a suitable functional space. Indeed, the

projection scheme needed to apply the coincidence degree approach to these equations is

exactly the same, and the only difference is in the “growth” condition on the function f .
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In [7], the author introduces a convenience assumption

(cµ1 − aµ2)
∫ ξ

0

s

p(s)
ds + c(a − µ1)

∫ 1

0

s

p(s)
ds + d(a − µ1) 6= 0. (1.8)

In order to guarantee that the projector Q is well-defined, conditions similar to (1.8) have

been imposed in many papers (e.g., see the references in [2] and the remarks therein). In our

work, we construct the projection scheme so that Q is well-defined without relying on such

“convenience” assumptions that are rather restrictive and simply unnecessary.

In this section, we state the preliminaries and the result due to Mawhin [4] used, in the

second section, to obtain a solution of (1.1), (1.2).

In order to develop our method, we need to make several basic assumptions. Of course,

we assume that the fundamental solution set {φ1, φ2} is known. We would like to consider a

solution of (1.1) in classical spaces and make use of the representation

u(t) =
∫ t

0
k(t, s)Lu(s) ds + l1(u)φ1(t) + l2(u)φ2(t), (1.9)

where

k(t, s) =
φ1(s)φ2(t)− φ2(s)φ1(t)

W(φ1, φ2)(s)
, l1(u) =

W(u, φ2)(0)

W(φ1, φ2)(0)
, l2(u) =

W(φ1, u)(0)

W(φ1, φ2)(0)
, (1.10)

where

Φ(φ1, φ2)(t) =

[

φ1(t) φ2(t)

φ′
1(t) φ′

2(t)

]

and W(φ1, φ2)(t) = det Φ(φ1, φ2)(t) = φ1(t)φ
′
2(t)− φ′

1(t)φ2(t) is the Wronskian of the funda-

mental solution set on [0, 1]. Our approach relies on the boundedness of W(φ1, φ2)(t) and

W(φ1, φ2)(0) 6= 0. So, the following would fulfill our wishes:

(L) p, q ∈ C[0, 1], γ1 = maxt,s∈[0,1] |k(t, s)|, γ2 = supt,s∈[0,1]

∣

∣

∣

∂
∂t k(t, s)

∣

∣

∣
, γ = max{γ1, γ2}.

It should be mentioned that the assumption on p can be weakened, which would force one to

use weighted norms.

Introduce X = C1[0, 1], ‖u‖X = max{‖u‖0, ‖u′‖0}, where ‖u‖0 = maxt∈[0,1] |u(t)|. The next

standing assumption concerns the linear functions in (1.2):

(F) Fi : X → R, |Fi(u)| ≤ ρi‖u‖X, where ρi > 0, i = 1, 2, F1(φ1) = αa, F1(φ2) = αb,

F2(φ1) = a, F2(φ2) = b, α, a, b ∈ R, a2 + b2 6= 0.

Under this assumption the differential operator in (1.1) is not invertible and the functional

problem is said to be at resonance. Furthermore, in order to claim that all possible resonance

cases have been considered, we also need to study the case a = b = 0, which is only briefly

discussed in Section 2.

Definition 1.1. Let X and Z be normed spaces. A linear mapping L : dom L ⊂ X → Z is

called a Fredholm mapping if the following two conditions hold:

(i) ker L has a finite dimension, and

(ii) Im L is closed and has a finite co-dimension.

If L is a Fredholm mapping, its (Fredholm) index is the integer Ind L = dim ker L− codim Im L.
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Since we work with a Fredholm mapping of index zero, it follows from Definition 1.1 that

there exist continuous projectors P : X → X and Q : Z → Z such that

Im P = ker L, ker Q = Im L, X = ker L ⊕ ker P, Z = Im L ⊕ Im Q (1.11)

and that the mapping

L|dom L∩ker P : dom L ∩ ker P → Im L

is invertible. The inverse of L|dom L∩ker P we denote by KP : Im L → dom L ∩ ker P. The gener-

alized inverse of L denoted by KP,Q : Z → dom L ∩ ker P is defined by KP,Q = KP(I − Q).

Definition 1.2. Let L : dom L ⊂ X → Z be a Fredholm mapping, E be a metric space, and

N : E → Z be a mapping. We say that N is L-compact on E if QN : E → Z and KP,QN : E → X

are compact on E. In addition, we say, that N is L-completely continuous if it is L-compact on

every bounded E ⊂ X.

Let Z = L1[0, 1] with the Lebesgue norm denoted by ‖ · ‖1. Consider the mapping

L : dom L ⊂ X → Z with

dom L = {u ∈ X : u′ ∈ AC[0, 1], u satisfies (1.2))}

defined by

Lu(t) = u′′(t) + p(t)u′(t) + q(t)u(t).

Define the mapping N : X → Z by

Nu(t) = f (t, u(t), u′(t)).

Thus, (1.1), (1.2) is converted into the coincidence equation Lu = Nu whose solution will

be shown to exist by applying the following theorem due to Mawhin [4, Theorem IV.13].

Theorem 1.3. Let Ω ⊂ X be open and bounded, L be a Fredholm mapping of index zero and N be

L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lu 6= λNu for every (u, λ) ∈ ((dom L\ ker L) ∩ ∂Ω)× (0, 1);

(ii) Nu /∈ Im L for every u ∈ ker L ∩ ∂Ω;

(iii) deg(JQN|ker L∩∂Ω, Ω ∩ ker L, 0) 6= 0, with Q : Z → Z a continuous projector such that

ker Q = Im L and J : Im Q → ker L is any isomorphism.

Then the equation Lu = Nu has at least one solution in dom L ∩ Ω.

Lemma 1.4. The mapping L : dom L ⊂ X → Z is a Fredholm mapping of index zero.

Proof. By (F), it is clear that ker L = {c(−bφ1 + aφ2) : c ∈ R} ∼= R. For convenience, let

Tg(t) =
∫ t

0
k(t, s)g(s) ds. (1.12)

We claim that Im L = {g ∈ Z : (F1 − αF2)Tg = 0}. Now, g ∈ Im L if there exists u ∈ dom L

such that Lu = g. Recalling (1.9), that is, u = Tg + l1(u)φ1 + l2(u)φ2, we have, by (F),

F1(u) = F1(Tg) + α(l1(u)a + l2(u)b) = 0, F2(u) = F2(Tg) + l1(u)a + l2(u)b = 0.
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It follows, Im L ⊂ {g ∈ Z : (F1 − αF2)Tg = 0}.

Let g ∈ {g ∈ Z : (F1 − αF2)Tg = 0}. Define

u = Tg −
F2(Tg)

a2 + b2
(aφ1 + bφ2).

Then

Lu = LTg −
F2(Tg)

a2 + b2
(aLφ1 + bLφ2) = g.

Also,

F1(u) = F1(Tg)−
F2(Tg)

a2 + b2
(aF1(φ1) + bF1(φ2)) = F1(Tg)− αF2(Tg) = 0

and, similarly, F2(u) = 0. That is, u ∈ dom L, so g ∈ Im L. We have

{g ∈ Z : (F1 − αF2)Tg = 0} ⊂ Im L.

Therefore, {g ∈ Z : (F1 − αF2)Tg = 0} = Im L.

We show that there exists h ∈ Z such that (F1 − αF2)Th 6= 0. Let F = F1 − αF2. By (F),

F(φ1) = F(φ2) = 0. Since F1 and F2 are linearly independent on X, there exists u0 ∈ X such

that F(u0) 6= 0. Since F is continuous on X, for ǫ > 0, there exists a polynomial p such that

‖p − u0‖X < ǫ and F(p) 6= 0. Set h = Lp ∈ Z. Again, recall (1.9). Then F(Th) = F(TLp) =

F(p − l1(p)φ1 − l2(p)φ2) = F(p) − l1(p)F(φ1) − l2(p)F(φ2) = F(p) 6= 0. Since T and F are

linear, we may assume, without loss of generality, that (F1 − αF2)Th = 1. Define Q : Z → Z

by

Qg(t) = (F1 − αF2)(Tg)h(t) = (F1 − αF2)

(

∫ t

0
k(t, s)g(s) ds

)

h(t).

Since Qh(t) = (F1 − αF2)(Th)h(t) = h(t), then Q2q = Qg, g ∈ Z. It is obvious that Q : Z → Z

is a continuous map and Z = ker Q ⊕ Im Q, Im Q = {ch : c ∈ R} with dim Im Q = 1, and

ker Q = Im L.

Define P, P̃, P0 : X → X by

Pu(t) =
−bW(u, φ2)(0) + aW(φ1, u)(0)

(a2 + b2)W(φ1, φ2)(0)
(−bφ1(t) + aφ2(t))

=
−bl1(u) + al2(u)

a2 + b2
(−bφ1(t) + aφ2(t)), (1.13)

P̃u(t) =
aW(u, φ2)(0) + bW(φ1, u)(0)

(a2 + b2)W(φ1, φ2)(0)
(aφ1(t) + bφ2(t))

=
al1(u) + bl2(u)

a2 + b2
(aφ1(t) + bφ2(t)), (1.14)

and

P0(t) =
W(u, φ2)(0)

W(φ1, φ2)(0)
φ1(t) +

W(φ1, u)(0)

W(φ1, φ2)(0)
φ2(t) = l1(u)φ1(t) + l2(u)φ2(t), (1.15)

where the second expression of each map is obtained using (1.10). Since

Pφ1 = −
b

a2 + b2
(−bφ1 + aφ2), Pφ2 =

a

a2 + b2
(−bφ1 + aφ2),

then P(−bφ1 + aφ2) = −bφ1 + aφ2. Therefore, P2 = P, X = ker P ⊕ Im P, where Im P =

{c(−bφ1 + aφ2) : c ∈ R} = ker L. Similarly, P̃2 = P̃, X = ker P̃ ⊕ Im P̃, where Im P̃ =
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{c(aφ1 + bφ2) : c ∈ R}. Moreover, P2
0 = P0, X = ker P0 ⊕ Im P0, where Im P0 = {c1φ1 + c2φ2 :

c1, c2 ∈ R}. Finally,

P + P̃ = P0 (1.16)

and PP̃ = P̃P = 0 on X.

Since the relationships (1.11) hold, the projectors P and Q are exact. In summary, L is a

Fredholm mapping of index zero.

The next two results provide the generalized inverse of L and its norm-estimates. Recall

(1.12).

Lemma 1.5. If the map KP : Z → X is defined by

Kpg = −
1

a2 + b2
F2(Tg)(aφ1 + bφ2) + Tg, (1.17)

then LKPg = g, g ∈ Z, and KpLu = u, u ∈ dom L ∩ ker P.

Proof. It is easy to see that LKPg = g, g ∈ Z. Let u ∈ dom L ∩ ker P and g = Lu. Using (1.9)

and (1.15),

Tg = u − l1(u)φ1 − l2(u)φ2 = u − P0u.

Then F2(Tg) = F2(u)− l1(u)F2(φ1)− l2(u)F2(φ2) = −al1(u)− bl2(u) since u ∈ dom L. As a

result,

KPLu =
al1(u) + bl2(u)

a2 + b2
(aφ1 + bφ2) + u − P0u = P̃u + u − P0u = u − Pu = u

by (1.16) and since u ∈ ker P.

Obviously,

‖Tg‖0 ≤ γ1‖g‖1, ‖(Tg)′‖0 ≤ γ2‖g‖1, ‖Tg‖X ≤ γ‖g‖1.

Also, |F2(Tg)| ≤ ρ2‖Tg‖X ≤ γρ2‖g‖1. Hence,

‖KPg‖0 ≤
ρ2‖aφ1 + bφ2‖0

(a2 + b2)
‖Tg‖X + ‖Tg‖0 ≤

(

ρ2γ‖aφ1 + bφ2‖0

a2 + b2
+ γ1

)

‖g‖1,

‖(KPg)′‖0 ≤
ρ2‖aφ′

1 + bφ′
2‖0

(a2 + b2)
‖Tg‖X + ‖(Tg)′‖0 ≤

(

ρ2γ‖aφ′
1 + bφ′

2‖0

a2 + b2
+ γ2

)

‖g‖1.

The estimates on the generalized inverse are summarized in the next result.

Lemma 1.6. The map KP : Z → X satisfies

(a) ‖KPg‖0 ≤ A‖g‖1, where

A =
ρ2γ‖aφ1 + bφ2‖0

a2 + b2
+ γ1,

(b) ‖(KPg)′‖0 ≤ B‖g‖1, where

B =
ρ2γ‖aφ′

1 + bφ′
2‖0

a2 + b2
+ γ2,

(c) ‖KPg‖X ≤ ‖KP‖‖g‖1, where ‖KP‖ = max{A, B}.
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2 Main results

Assume that the following conditions on the function f (t, x1, x2) are satisfied:

(H1) there exists a constant M0 > 0 such that, for each u ∈ dom L \ ker L with |u(t)| +

|u′(t)| > M0, t ∈ [0, 1], we have QNu(t) 6= 0,

(H2) there exist functions δ0, δ1, δ2 ∈ L1[0, 1] such that, for all (x1, x2) ∈ R
2 and a.e. t ∈ [0, 1],

| f (t, x1, x2)| ≤ δ(t) + δ1(t)|x1|+ δ2(t)|x2|.

(H3) there exists a constant M1 > 0 such that if |c| > M1, then c(F1 − αF2)(TNuc) > 0, where

uc = c(−bφ1 + aφ2).

In the next result, ‖Φ
−1(φ1, φ2)(t)‖ is the matrix norm compatible with the norm

max{|a1|, |a2|} of a vector [a1, a2]T ∈ R
2.

Theorem 2.1. If (L), (F), (H1)–(H3) hold, then the functional problem (1.1), (1.2) has at least one

solution provided

D1(‖δ1‖1 + ‖δ2‖1) < 1, (2.1)

where

D1 = max
{

γ1 + γ max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖(‖φ1‖0 + ‖φ2‖0),

γ2 + γ max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖(‖φ′

1‖0 + ‖φ′
2‖0)

}

.

Proof. Let Ω1 = {u ∈ dom L \ ker L : Lu = λNu, λ ∈ (0, 1)}. If u ∈ Ω1, it follows, from (H1),

that there exists t0 ∈ [0, 1] such that |u(t0)|, |u′(t0)| ≤ M0. Now,

u = λTNu + l1(u)φ1 + l2(u)φ2, u′ = λ(TNu)′ + l1(u)φ
′
1 + l2(u)φ

′
2. (2.2)

Thus,
[

l1(u)

l2(u)

]

= Φ
−1(φ1, φ2)(t0)

[

u(t0)− λTNu(t0)

u′(t0)− λ(TNu)′(t0)

]

.

In what follows, Ci, i = 1, . . . , 5, are positive constants whose exact values are ignored. Hence,

|l1(u)|, |l2(u)| = max{|l1(u)|, |l2(u)|}

= ‖Φ
−1(φ1, φ2)(t0)‖max

{

|u(t0)− λTNu(t0)|, |u
′(t0)− λ(TNu)′(t0)|

}

≤ max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖max

{

|u(t0)|+ λ|TNu(t0)|, |u
′(t0)|+ λ|(TNu)′(t0)|

}

≤ max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖max

{

M0 + λ|TNu(t0)|, M0 + λ|(TNu)′(t0)|
}

< max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖max {M0 + γ1‖Nu‖1, M0 + γ2‖Nu‖1}

= C1 + γ max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖‖Nu‖1.

We have

‖u‖0 ≤ γ1‖Nu‖1 + |l1(u)|‖φ1‖0 + |l2(u)|‖φ2‖0

< C2 +

(

γ1 + γ max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖(‖φ1‖0 + ‖φ2‖0)

)

‖Nu‖1



8 N. Kosmatov

and, similarly,

‖u′‖0 < C3 +

(

γ2 + γ max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖(‖φ′

1‖0 + ‖φ′
2‖0)

)

‖Nu‖1.

Hence,

‖u‖X < C4 + max
{

γ1 + γ max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖(‖φ1‖0 + ‖φ2‖0),

γ2 + γ max
t∈[0,1]

‖Φ
−1(φ1, φ2)(t)‖(‖φ′

1‖0 + ‖φ′
2‖0)

}

‖Nu‖1.

By (H2), ‖Nu‖1 ≤ ‖δ0‖1 + ‖δ1‖1‖u‖0 + ‖δ2‖1‖u′‖0 ≤ ‖δ0‖1 + (‖δ1‖1 + ‖δ2‖1)‖u‖X, so

‖u‖X < C5 + D1(‖δ1‖1 + ‖δ2‖1)‖u‖X

for all u ∈ Ω1. In view of the inequality (2.1), Ω1 is bounded.

Define Ω2 = {u ∈ ker L : Nu ∈ Im L}. Then u = c(−bφ1 + aφ2) for some c ∈ R. Since

Nu ∈ Im L = ker Q, (F1 − αF2)TNu = 0. By (H3), |c| ≤ M1, that is, Ω2 is bounded.

Define J : Z → X by

Jg(t) = (F1 − αF2)(Tg)(−bφ1(t) + aφ2(t)).

Recall the characterization of Im Q in the proof of Lemma 1.4. Since J(ch)(t) = c(F1 −

αF2)(Th)(−bφ1 + aφ2) = c(−bφ1 + aφ2), J : Im Q → ker L is an isomorphism.

Let Ω3 = {u ∈ ker L : λu + (1 − λ)JQNu = 0, λ ∈ [0, 1]}. Let u ∈ Ω3 be denoted by

uc = c(−bφ1 + aφ2). Then λu + (1 − λ)JQNu = 0 implies λc + (1 − λ)(F1 − αF2)TNuc = 0. If

λ = 0, then JQNuc = 0, that is, u ∈ Ω2, which is bounded. If λ = 1, then c = 0. If λ ∈ (0, 1),

then, by (H2),

0 < λc2 = −(1 − λ)c(F1 − αF2)TNuc < 0,

which is a contradiction. Thus, Ω3 is bounded.

Let Ω be open and bounded such that ∪3
i=1Ωi ⊂ Ω. Then the assumptions (i) and (ii) of

Theorem 1.3 are fulfilled. It is a routine exercise to show that the mapping N is L-compact

on Ω. Lemma 1.4 states that L if Fredholm of index zero. We now demonstrate that the third

assumption of Theorem 1.3 is verified.

We apply the degree property of invariance under a homotopy to

H(u, λ) = λIu + (1 − λ)JQNu, (u, λ) ∈ X × [0, 1].

If u ∈ ker L ∩ ∂Ω, then

ker(JQN|ker L∩∂Ω, Ω ∩ ker L, 0) = ker(H(·, 0), Ω ∩ ker L, 0)

= ker(H(·, 1), Ω ∩ ker L, 0)

= ker(I, Ω ∩ ker L, 0)

6= 0,

that is, the assumption (iii) of Theorem 1.3 is checked and the proof is completed.

It is worth mentioning that the inequality in (H3) may be reversed since the proof will

carry over with a slight modification.

We will replace (H1) of Theorem 2.1 with
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(H4) there exists a constant M0 > 0 such that, for each u ∈ dom L \ ker L with |u(t)| > M0,

t ∈ [0, 1], we have QNu(t) 6= 0.

Theorem 2.2. If (L), (F), (H2)–(H4) hold, then the boundary value problem (1.1), (1.2) has at least

one solution provided −bφ1(t) + aφ2(t) 6= 0 on [0, 1], and

D2(‖δ1‖1 + ‖δ2‖1) < 1, (2.3)

where

D2 =
A‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ1(t) + aφ2(t)|
+ ‖KP‖.

Proof. As in the proof of Theorem 2.1, let Ω1 = {u ∈ dom L \ ker L : Lu = λNu, λ ∈ (0, 1)}.

For u ∈ Ω1, it follows from (H4) that there exists t0 ∈ [0, 1] such that |u(t0)| ≤ M0.

Remark: Note that it does not follow from (H4) that |u′(t0)| ≤ M0, so we cannot apply the

approach taken in the proof of Theorem 2.1 to the present case. Likewise, the inequality

|u(t0)| ≤ M0 can not be obtained from (H5) of Theorem 2.3, which will not allows us to apply

the argument of Theorem 2.1. For this reason, here and in the proof of Theorem 2.3 we rely

on u = Pu + (I − P)u.

Consider u ∈ Ω1 and u = u1 + u2, u1 = Pu ∈ Im P = ker L, u2 = (I − P)u = KPLu =

λKPNu. We have, by Lemma 1.6,

‖u2‖0 < A‖Nu‖1, ‖u2‖X < ‖KP‖‖Nu‖1. (2.4)

Now, u1 = u − u2, so that |Pu(t0)| = |u1(t0)| ≤ |u(t0)|+ |u2(t0)| < M0 + A‖Nu‖1. We have

|u1(t0)| =
| − bl1(u) + al2(u)|

a2 + b2
| − bφ1(t0) + aφ2(t0)| < M0 + A‖Nu‖1.

In particular,
| − bl1(u) + al2(u)|

a2 + b2
≤

M0 + A‖Nu‖1

mint∈[0,1] | − bφ1(t) + aφ2(t)|
.

Hence,

‖u1‖X = ‖Pu‖X ≤
| − bl1(u) + al2(u)|

a2 + b2
‖ − bφ1 + aφ2‖X

≤
‖− bφ1 + aφ2‖X

mint∈[0,1] | − bφ1(t) + aφ2(t)|
(M0 + A‖Nu‖1). (2.5)

Combining (2.5) and (2.4), we conclude

‖u‖X ≤ ‖u1‖X + ‖u2‖X

< C1 +

(

A‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ1(t) + aφ2(t)|
+ ‖KP‖

)

‖Nu‖1

< C2 +

(

A‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ1(t) + aφ2(t)|
+ ‖KP‖

)

(‖δ1‖1 + ‖δ2‖1)‖u‖X

< C2 + D2(‖δ1‖1 + ‖δ2‖1)‖u‖X.

Therefore, by (2.3), Ω1 is bounded. The rest of the proof is identical to that of Theorem 2.1.
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The next result relies on the assumption

(H5) there exists a constant M0 > 0 such that, for each u ∈ dom L \ ker L with |u′(t)| > M0,

t ∈ [0, 1], we have QNu(t) 6= 0.

Theorem 2.3. If (L), (F), (H2), (H3), and (H5) hold, then the boundary value problem (1.1), (1.2)

has at least one solution provided −bφ′
1(t) + aφ′

2(t) 6= 0 on [0, 1], and

D3(‖δ1‖1 + ‖δ2‖1) < 1, (2.6)

where

D3 =
B‖ − bφ1(t) + aφ2‖X

mint∈[0,1] | − bφ′
1(t) + aφ′

2(t)|
+ ‖KP‖.

Proof. Again, let Ω1 = {u ∈ dom L \ ker L : Lu = λNu, λ ∈ (0, 1)} and u ∈ Ω1. By (H5), there

exists t0 ∈ [0, 1] such that |u′(t0)| ≤ M0.

As in the proof of Theorem 2.2, choose u ∈ Ω1, where u = u1 + u2, u1 = Pu ∈ Im P = ker L,

u2 = (I − P)u = KPLu = λKPNu. We have, by Lemma 1.6,

‖u′
2‖0 < B‖Nu‖1, ‖u2‖X < ‖KP‖‖Nu‖1. (2.7)

Since u1 = u − u2, then |(Pu)′(t0)| = |u′
1(t0)| ≤ |u′(t0)|+ |u′

2(t0)| < M0 + B‖Nu‖1. We have

|u′
1(t0)| =

| − bl1(u) + al2(u)|

a2 + b2
| − bφ′

1(t0) + aφ′
2(t0)| < M0 + A‖Nu‖1.

For u ∈ Ω1, we have

| − bl1(u) + al2(u)|

a2 + b2
≤

M0 + B‖Nu‖1

mint∈[0,1] | − bφ′
1(t) + aφ′

2(t)|
.

We infer

‖u1‖X = ‖Pu‖X ≤
| − bl1(u) + al2(u)|

a2 + b2
‖ − bφ1 + aφ2‖X

≤
‖− bφ1 + aφ2‖X

mint∈[0,1] | − bφ′
1(t) + aφ′

2(t)|
(M0 + B‖Nu‖1). (2.8)

Applying (2.7) and (2.8), we deduce

‖u‖X ≤ ‖u1‖X + ‖u2‖X

< C1 +

(

B‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ′
1(t) + aφ′

2(t)|
+ ‖KP‖

)

‖Nu‖1

< C2 +

(

B‖ − bφ1 + aφ2‖X

mint∈[0,1] | − bφ′
1(t) + aφ′

2(t)|
+ ‖KP‖

)

(‖δ1‖1 + ‖δ2‖1)‖u‖X

< C2 + D3(‖δ1‖1 + ‖δ2‖1)‖u‖X.

Therefore, Ω1 is bounded in view of (2.6). The rest of the proof replicates those of the previous

theorems.
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Note that the preceding results depend on a2 + b2 6= 0 and deal with such resonance

conditions that dim ker L = 1. If a = b = 0, then dim ker L = 2 and the projector P is simply

P0. We can find linearly independent h1, h2 ∈ Z such that Im Q = {c1h1 + c2h2 : c1, c2 ∈ R}.

Moreover, the generalized inverse has a simple form, namely, KPg = Tg. Finally, we observe

that the method of proof of Theorem 2.1 applies directly to this case.

Note that (1.3), (1.4) is a special case of (1.1), (1.2), that is, the former serves as an example

of the latter. In conclusion, we present an example that cannot be so cheaply obtained.

Consider

Lu(t) = u′′(t)− u(t) = κ(1 + 2 sin u′(t) + u(t)), a.e. t ∈ (0, 1), (2.9)

where κ 6= 0, and

F1(u) = u(0)− u(1) = 0, F2(u) = u′(0) + u′(1) = 0. (2.10)

In this case, φ1(t) = et and φ2(t) = e−t with W(φ1, φ2)(t) = −2, k(t, s) = sinh (t − s). The

equation (1.9) becomes

u(t) =
∫ t

0
sinh (t − s)Lu(s) ds + u′(0) sinh t + u(0) cosh t.

Then F1(φ1) = 1 − e, F1(φ2) = 1 − e−1, F2(φ1) = 1 + e, F2(φ2) = −1 − e−1, that is, we have (F)

with a = 1 + e, b = −1 − e−1, and α = 1−e
1+e . Hence,

ker L = {c(−bφ1(t) + aφ2(t)) : c ∈ R} = {c(et + e1−t) : c ∈ R}.

Note that −bφ1(t) + aφ2(t) 6= 0 on [0, 1].

We also derive

(F1 − αF2)Tg = −
∫ 1

0
sinh (1 − s)g(s) ds +

1 − e

1 + e

∫ 1

0
cosh (1 − s)g(s) ds

= −
∫ 1

0

(

sinh (1 − s) +
e − 1

e + 1
cosh (1 − s)

)

g(s) ds.

In particular,

Im L = {g ∈ Z : (F1 − αF2)Tg = 0}

=

{

g ∈ Z :
∫ 1

0

(

sinh (1 − s) +
e − 1

e + 1
cosh (1 − s)

)

g(s) ds = 0

}

.

Introduce, for convenience,

K(s) = − sinh (1 − s)−
e − 1

e + 1
cosh (1 − s) < 0

on [0, 1]. As a result, if |u(t)| > M0 = 4, we have

(F1 − αF2)TNu = κ
∫ 1

0
K(s)(1 + 2 sin u′(s) + u(s)) ds 6= 0.

Hence (H4) holds. It is also easy to find M1 > 0 such that |c| > M1 implies c(F1 − αF2)TNuc 6=

0. Indeed,

c(F1 − αF2)TNuc = cκ
∫ 1

0
K(s)(1 + 2 sin u′

c(s)) ds + c2κ
∫ 1

0
K(s)(−bφ1(s) + aφ2(s)) ds,
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where the first integral is bounded in c and the second integral is a constant. Thus, if |c| is

large enough, the assumption (H3) is fulfilled.

Obviously, if |κ| is small enough, then also (2.1) holds. Indeed,

|κ(1 + 2 sin u′(t) + u(t))| ≤ |κ|+ 2|κ||u′(t)|+ |κ||u(t)|,

that is, ‖δ1‖1 = 2|κ| and ‖δ2‖1 = |κ| can be made small enough to fulfill (H3) by choosing

a sufficiently small |κ|. By Theorem 2.2, the problem (2.9), (2.10) has a solution. Finally,

since −bφ′
1(1/2) + aφ′

2(1/2) = 0, Theorem 2.3 cannot be applied to this particular problem at

resonance.
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Abstract. The limiting version of the Mackey–Glass delay differential equation x′(t) =
−ax(t) + b f (x(t − 1)) is considered where a, b are positive reals, and f (ξ) = ξ for
ξ ∈ [0, 1), f (1) = 1/2, and f (ξ) = 0 for ξ > 1. For every a > 0 we prove the
existence of an ε0 = ε0(a) > 0 so that for all b ∈ (a, a + ε0) there exists a periodic
solution p = p(a, b) : R → (0, ∞) with minimal period ω(a, b) such that ω(a, b) → ∞

as b → a+. A consequence is that, for each a > 0, b ∈ (a, a + ε0(a)) and sufficiently
large n, the classical Mackey–Glass equation y′(t) = −ay(t) + by(t − 1)/[1 + yn(t − 1)]
has an orbitally asymptotically stable periodic orbit, as well, close to the periodic orbit
of the limiting equation.
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1 Introduction

The Mackey–Glass equation

y′(t) = −ay(t) + b
y(t − τ)

1 + yn(t − τ)

with positive parameters a, b, τ, n was proposed to model blood production and destruction
in the study of oscillation and chaos in physiological control systems by Mackey and Glass
[13]. This simple-looking differential equation with a single delay attracted the attention of
many mathematicians since its hump-shaped nonlinearity causes entirely different dynamics
compared to the case where the nonlinearity is monotone. See [16] for a similar equation.
There exist several rigorous mathematical results, numerical and experimental studies on
the Mackey–Glass equation showing convergence of the solutions, oscillations with different
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characteristics, and the complexity of the dynamics, see e.g. [1,3,6,7,9,15,17–19,22,23]. Despite
the intense research, the dynamics is not fully understood yet.

The recent paper [2] studies the classical Mackey–Glass delay differential equation

y′(t) = −ay(t) + b fn(y(t − 1)) (En)

where a, b, n are positive reals, fn(ξ) = ξ/[1+ ξn] for ξ ≥ 0, τ = 1 can be assumed by rescaling
the time. [2] constructs stable periodic solutions of (En) for some b > a > 0 and large n. The
periodic solutions can have complicated shapes, see [2]. A limiting version of (En) plays a key
role in the construction. The function f (ξ) = limn→∞ fn(ξ) is given by f (ξ) = ξ for ξ ∈ [0, 1),
f (1) = 1/2, and f (ξ) = 0 for ξ > 1. The equation

x′(t) = −ax(t) + b f (x(t − 1)) (E∞)

is called the limiting Mackey–Glass equation.
Let R, C and N denote the set of real numbers, complex numbers and positive inte-

gers, respectively. Let C be the Banach space C([−1, 0], R) equipped with the norm ‖ϕ‖ =

maxs∈[−1,0] |ϕ(s)|. For a continuous function u : I → R defined on an interval I, and for
t, t − 1 ∈ I, ut ∈ C is given by ut(s) = u(t + s), s ∈ [−1, 0]. Introduce the subsets

C+ = {ψ ∈ C : ψ(s) > 0 for all s ∈ [−1, 0]} ,

C+
r =

{

ψ ∈ C+ : ψ−1(c) is finite for all c ∈ (0, 1]
}

of C where ψ−1(c) = {s ∈ [−1, 0] : ψ(s) = c}. C+ and C+
r are metric spaces with the metric

d(ϕ, ψ) = ‖ϕ − ψ‖.
A solution of equation (En) on [−1, ∞) with initial function ψ ∈ C+ is a continuous function

y : [−1, ∞) → R so that y0 = ψ, the restriction y|(0,∞) is differentiable, and equation (En) holds
for all t > 0. The solutions are easily obtained from the variation-of-constants formula for
ordinary differential equations on successive intervals of length one,

y(t) = e−a(t−k)y(k) + b
∫ t

k
e−a(t−s) fn(y(s − 1)) ds (1.1)

where k ∈ N ∪ {0}, k ≤ t ≤ k + 1. Hence it is well known that each ψ ∈ C+ uniquely
determines a solution y = yn,ψ : [−1, ∞) → R with y

n,ψ
0 = ψ, and yn,ψ(t) > 0 for all t ≥ 0.

For equation (E∞) with the discontinuous f , we use formula (1.1) with f instead of fn to
define solutions. A solution of equation (E∞) with initial function ϕ ∈ C+ is a continuous
function x = xϕ : [−1, tϕ) → R with some 0 < tϕ ≤ ∞ such that x0 = ϕ, the map [0, tϕ) ∋ s 7→

f (x(s − 1)) ∈ R is locally integrable, and

x(t) = e−a(t−k)x(k) + b
∫ t

k
e−a(t−s) f (x(s − 1)) ds (1.2)

holds for all k ∈ N ∪ {0} and t ∈ [0, tϕ) with k ≤ t ≤ k + 1.
It is easy to show that, for any ϕ ∈ C+, there is a unique solution xϕ of equation (E∞)

on [−1, ∞). However, comparing solutions with initial functions ϕ > 1, ϕ ≡ 1, one sees that
there is no continuous dependence on initial data in C+. Therefore we restrict our attention
to the subset C+

r of C+. The choice of C+
r as a phase space guarantees not only continuous

dependence on initial data, but also allows to compare certain solutions of equations (E∞) and
(En) for large n. This is not used here, but it is important in [2]. [2] proves that for each ϕ ∈ C+

r
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there is a unique maximal solution xϕ : [−1, ∞) → R of equation (E∞). The maximal solution
xϕ satisfies x

ϕ
t ∈ C+

r for all t ≥ 0; and if t > 0 and xϕ(t − 1) 6= 1, then xϕ is differentiable at t,
and equation (E∞) holds at t.

One of the main results of [2] is as follows.

Theorem 1.1. If the parameters b > a > 0 are given so that

(H) equation (E∞) has an ω-periodic solution p : R → R with the following properties:

(i) p(0) = 1, p(t) > 1 for all t ∈ [−1, 0),

(ii) (p(t), p(t − 1)) 6= (1, a/b) for all t ∈ [0, ω]

holds then there exists an n∗ ≥ 4 such that, for all n ≥ n∗, equation (En) has a periodic solution

pn : R → R with period ωn
> 0 so that the periodic orbits

On = {pn
t : t ∈ [0, ωn]}

are hyperbolic, orbitally stable, exponentially attractive with asymptotic phase, moreover, ωn → ω,

dist {On,O} → 0 as n → ∞, where O = {pt : t ∈ [0, ω]}.

[2] shows that in case b is large comparing to a, namely b > max{aea, ea − e−a}, then (H)
is satisfied. In addition, by using a rigorous computer-assisted technique, [2] gives parameter
values a, b such that (H) is valid, and the obtained stable periodic orbits for the Mackey–Glass
equation may have complicated structures.

[2] remarks that (H) holds if b > a > 0 and b is sufficiently close to a, and refers to this
work for the proof. The aim of this paper is to prove this fact, namely the following result.

Theorem 1.2. For every a > 0 there exists an ε0 = ε0(a) > 0 such that for the parameters a, b with

b ∈ (a, a + ε0) condition (H) holds.

In particular, for the periodic solution p = p(a, b) of equation (E∞) the minimal period ω = ω(a, b)

satisfies ω > 5, and there exists a σ = σ(a, b) ∈ (4, ω − 1) so that

0 < p(t) < 1 for all t ∈ (0, σ); p(t) > 1 for all t ∈ (σ, ω).

Moreover, if a > 0 is fixed and (bk)
∞

k=1 is a sequence in (a, a + ε0(a)), limk→∞
bk = a then σ(a, bk) →

∞, ω(a, bk) → ∞ as k → ∞.

Theorems 1.1 and 1.2 immediately imply the following result for equation (En).

Theorem 1.3. For each a > 0 there exists an ε0 = ε0(a) > 0 such that for every b ∈ (a, a + ε0) there

exists an n∗ = n∗(a, b) ≥ 4 so that, for all n ≥ n∗, equation (En) has a periodic solution pn : R → R

with minimal period ωn(a, b) so that the periodic orbits

On = {pn
t : t ∈ [0, ωn]}

are hyperbolic, orbitally stable, exponentially attractive with asymptotic phase. Moreover, if (bk)
∞

k=1 is

a sequence in (a, a + ε0(a)) with limk→∞
bk = a, nk > n∗(a, bk) then ωn(a, bk) → ∞ as k → ∞.

Note that the papers [8] by Karakostas et al. and [5] by Gopalsamy et al. give conditions
for the global attractivity of the unique positive equilibrium of (En) for b > a > 0, and n is
below a certain constant given in terms of a, b. Theorem 1.3 requires n to be large.

Section 2 contains the proof of Theorem 1.2. The proof requires the study of a special
solution of a linear autonomous delay differential equation. If ϕ ∈ C+

r is any function such
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that ϕ(s) > 1 for s ∈ [−1, 0) and ϕ(0) = 1 then the unique solution x = xϕ of equation (E∞)
satisfies x(t) = e−at for t ∈ [0, 1]. In order to find a periodic solution of (E∞) as stated in
Theorem 1.2 we consider the linear autonomous equation

u′(t) = −au(t) + bu(t − 1)

for t > 1 with u(t) = e−at, t ∈ [0, 1]. If we find a T > 0 such that u(t) < 1 for t ∈ (0, T),
u(T) = 1, u(t) > 1 for t ∈ (T, T + 1], then it is straightforward to see that x(t) = u(t) for
all t ∈ [0, T + 1]. Then, equation (E∞) gives x′(t) = −ax(t) for all t > T + 1 as long as
x(t − 1) > 1. Hence there exists an ω > T + 1 with x(ω) = 1 and x(t) > 1 for all t ∈ (T, ω).
By the fact f (ξ) = 0 for ξ > 1, the solution x does not change on [0, ∞) if ϕ is replaced by
xω, and consequently x(t) = x(t + ω) follows for all t ≥ −1. Therefore the proof of Theorem
1.2 is reduced to the existence of a T > 0 with u(t) < 1 for t ∈ (0, T), u(T) = 1, u(t) > 1 for
t ∈ (T, T + 1]. Property (H)(ii) is guaranteed by u′(T) > 0.

We remark that the use of a limiting equation in order to study nonlinear delay differential
equations when the nonlinearity is close to its limiting function is not new. We refer to
the papers [10–12, 21, 24–26] where the limiting step function reduces the search of periodic
solutions to a finite dimensional problem. The limiting Mackey–Glass nonlinearity f is not
a step function. The introduction of the limiting Mackey–Glass equation does not reduce
the search for periodic solutions to a finite dimensional problem, nevertheless it can simplify
it. The paper [14] considered the limiting Mackey–Glass nonlinearity to construct periodic
solutions for an equation different from (En). The result of [14] is analogous to the case when
b is large comparing to a, mentioned above for the Mackey–Glass equation.

2 The proof of Theorem 1.2

The proof is divided into eight steps. The desired periodic solution of equation (E∞) will be
an ω-periodic extension of a function w : [0, ω] → R. We construct w in the remaining part of
this section.

Step 1. Let a > 0 be fixed, and consider the characteristic function

h : C × R ∋ (z, ε) 7→ z + a − (a + ε)e−z ∈ C

of the linear delay differential equation v′(t) = −av(t) + (a + ε)v(t − 1). By h(0, 0) = 0,
D1h(0, 0) = 1 + a, and D2h(0, 0) = −1, the Implicit Function Theorem can be applied to get
that there are ε1 ∈ (0, min{a, 1/4}), r1 ∈ (0, 1) and a C1-smooth map λ0 : (−ε1, ε1) → C such
that λ0(0) = 0, h(λ0(ε), ε) = 0, and (λ0(ε), ε) is the unique solution of h(z, ε) = 0 in the set
{z ∈ C : |z| < r1} × (−ε1, ε1). Since a and ε are real in the equation h(z, ε) = 0, (z, ε) is a
solution together with (z, ε). Then, by uniqueness, it follows that λ0(ε) ∈ R, ε ∈ (−ε1, ε1).

Chapter XI of [4] applies to get that the zeros of the characteristic function h(z, ε) for
ε ∈ (−ε1, ε1) are λ0(ε) ∈ R and a sequence of pairs

(

λj(ε), λj(ε)
)

∞

j=1 with

λ0(ε) > Re λ1(ε) > Re λ2(ε) > · · · > Re λj(ε) → −∞ as j → ∞

and
Im λj ∈

(

(2j − 1)π, 2jπ
)

(j ∈ N).

If ε = 0 then λ0(0) = 0, and consequently Re λ1(0) < 0. Fix c ∈ (0, a) so that

Re λ1(0) < −2c.
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Notice that the choice of c depends only on a.
Differentiating the equation h(λ0(ε), ε) = 0 with respect to ε we obtain λ′

0(0) = 1/(1 + a),
and thus

λ0(ε) =
ε

1 + a
+ η(ε)

with a function η : (−ε1, ε1) → R satisfying limε→0 η(ε)/ε = 0. Applying the above repre-
sentation for λ0(ε), we assume (in addition to the above properties of ε1) that ε1 is so small
that

λ0(ε) <
2ε

1 + 2a
for all ε ∈ (0, ε1), (2.1)

where the equality 2ε/(1 + 2a) = ε/(1 + a) + ε/[(1 + a)(1 + 2a)] shows that this is possible.
By Rouché’s theorem [20] there exists an ε2 ∈ (0, ε1) such that

Re λ1(ε) < −2c for all ε ∈ [0, ε2].

In particular, h(z, ε) 6= 0 on the line {−c + is : s ∈ R} for all ε ∈ [0, ε2].

Step 2. For ε ∈ (0, ε2) consider the unique solution v : [−1, ∞) → R of the linear equation

v′(t) = −av(t) + (a + ε)v(t − 1) (t > 0) (2.2)

with initial function v0(s) = e−a(s+1), −1 ≤ s ≤ 0. Remark that v and λ0 depend on ε as
well. Taking the Laplace transform of both sides of (2.2) and expressing the Laplace transform
L(v)(z) of v,

L(v)(z) =
1

h(z, ε)

[

e−a + (a + ε)
1 − e−(z+a)

z + a

]

is obtained where the right hand side can be written as F(z, ε) = F1(z) + F2(z, ε) with

F1(z) =
e−a

z + a
, F2(z, ε) =

a + ε

(z + a)h(z, ε)
.

According to Chapter I of [4], by taking the inverse Laplace transform, function v can be
written as

v(t) = eλ0tResλ0 F(z, ε) +
1

2π
e−ct lim

T→∞

∫ T

−T
eistF(−c + is, ε) ds (t > 0).

As F1(z) is holomorphic in a neighborhood of λ0, one finds Resλ0 F(z, ε) = Resλ0 F2(z, ε). By
using that h(z, ε) has a simple zero at λ0, and λ0 + a = (a + ε)e−λ0 , we get

Resλ0 F(z, ε) =
a + ε

(λ0 + a) D1h(λ0, ε)
=

a + ε

(λ0 + a)(1 + (a + ε)e−λ0)
=

eλ0

1 + a + λ0
.

For t ≥ 1, integration by parts leads to

∫ T

−T
eistF1(−c + is) ds =

[

eist

it

e−a

a − c + is

]s=T

s=−T

+
∫ T

−T

eist

it

ie−a

(a − c + is)2 ds.

Thus
∣

∣

∣

∣

lim
T→∞

∫ T

−T
eistF1(−c + is) ds

∣

∣

∣

∣

≤
∫

∞

−∞

∣

∣

∣

∣

eist

it

ie−a

(a − c + is)2

∣

∣

∣

∣

ds ≤ K1
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with

K1 = 2
∫

∞

0

e−a

(a − c)2 + s2 ds.

Let s0 = 2(a + 1)ec. The continuous function (s, ε) 7→ h(−c + is, ε) ∈ C is nonzero on the
set [−s0, s0] × [0, ε2]. So there exists k > 0 such that |F2(−c + is, ε)| ≤ k on the compact set
[−s0, s0]× [0, ε2]. If |s| ≥ s0, ε ∈ [0, ε2] then, by the choice of s0,

|h(−c + is, ε)| ≥ |a − c + is| − |(a + ε)ec−is| ≥
[

(a − c)2 + s2]1/2
− (a + 1)ec

≥
1
2

[

(a − c)2 + s2]1/2
.

Consequently
∣

∣

∣

∣

lim
T→∞

∫ T

−T
eistF2(−c + is, ε) ds

∣

∣

∣

∣

≤
∫

∞

−∞

|F2(−c + is, ε)| ds

≤ 2
∫ s0

0
k ds + 2

∫

∞

s0

a + 1
(1/2)[(a − c)2 + s2]

ds

= K2

with

K2 = 2ks0 + 4
∫

∞

s0

(a + 1)
(a − c)2 + s2 ds.

Notice that both K1 and K2 are independent of ε ∈ (0, ε2).
Summarizing the above estimations we obtain that

v(t) =
eλ0(t+1)

1 + a + λ0
+ r̂(t) (t ≥ 1)

for some continuous function r̂ : [1, ∞) → R satisfying

|r̂(t)| ≤ K̂e−ct (t ≥ 1)

with K̂ = (K1 + K2)/(2π). Note that r̂ depends on ε, however K̂ and c are independent of ε.

Step 3. For ε ∈ (0, ε2) define the function u : [0, ∞) → R by u(t) = v(t − 1), t ≥ 0. Then
u(t) = e−at for t ∈ [0, 1], u is differentiable on (1, ∞) and satisfies

u′(t) = −au(t) + (a + ε)u(t − 1) (t > 1). (2.3)

Moreover, defining r(t) = r̂(t − 1) for t ≥ 2, K = K̂ec, u has the representation

u(t) =
eλ0t

1 + a + λ0
+ r(t) (t ≥ 2) (2.4)

with the continuous function r : [2, ∞) → R satisfying

|r(t)| ≤ Ke−ct (t ≥ 2). (2.5)

From equation (2.3)

u(t) = e−a(t−1)u(1) +
∫ t

1
(a + ε)e−a(t−s)e−a(s−1) ds

= e−at [1 + (a + ε)ea(t − 1)] (t ∈ [1, 2])



Periodic solutions for the Mackey–Glass equation 7

and
u′(t) = e−at [−a − a(a + ε)ea(t − 1) + (a + ε)ea] (t ∈ (1, 2]).

Define
t0 = t0(ε) = 1 +

1
a
−

1
(a + ε)ea

.

Choose ε3 ∈ (0, ε2] so that

ε3 <
a

1 − a

(

e−a − 1 + a
)

provided a ∈ (0, 1), and let ε3 = ε2 if a ≥ 1.
Suppose ε ∈ (0, ε3). Then t0 = t0(ε) ∈ (1, 2) is the unique zero of u′ in (1, 2), and it is easy

to see that

max
t∈[1,2]

u(t) = u(t0) = e−at0 [1 + (a + ε)ea(t0 − 1)] =
a + ε

a
exp

[

ae−a

a + ε
− 1

]

. (2.6)

Step 4. In this step we show the following
CLAIM:

(i) For each k ∈ N

max
t∈[k+1,k+2]

u(t) ≤
(

1 +
ε

a

)

max
t∈[k,k+1]

u(t),

and

(ii) for each N ∈ N

max
t∈[N+1,N+2]

u(t) ≤
(

1 +
ε

a

)N
max
t∈[1,2]

u(t).

Let k ∈ N be given. If maxt∈[k+1,k+2] ≤ maxt∈[k,k+1] u(t) then the stated inequality obvi-
ously holds for k. If maxt∈[k+1,k+2] u(t) > maxt∈[k,k+1] u(t), then there exists a t1 ∈ (k + 1, k + 2]
such that u′(t1) ≥ 0 and u(t1) = maxt∈[k+1,k+2] u(t). Equation (2.3) at t = t1 and u′(t1) ≥ 0
imply the inequality −au(t1) + (a + ε)u(t1 − 1) ≥ 0. Hence

max
t∈[k+1,k+2]

u(t) = u(t1) ≤
a + ε

a
u(t1 − 1) ≤

(

1 +
ε

a

)

max
t∈[k,k+1]

u(t),

that is, the stated inequality is satisfied. This proves (i).
A repeated application of (i) gives (ii):

max
t∈[N+1,N+2]

u(t) ≤
(

1 +
ε

a

)

max
t∈[N,N+1]

u(t) ≤
(

1 +
ε

a

)2
max

t∈[N−1,N]
u(t)

≤ · · · ≤
(

1 +
ε

a

)N
max
t∈[1,2]

u(t).

Step 5. Choose ξ0 ∈ (exp(e−a − 1), 1). The function

(0, ∞) ∋ ε 7→
a + ε

a
exp

[

ae−a

a + ε
− 1

]

∈ R

strictly increases and its limit is exp(e−a − 1) as ε → 0+. Therefore there exists an ε4 ∈ (0, ε3)

such that
a + ε

a
exp

[

ae−a

a + ε
− 1

]

< ξ0
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for all ε ∈ (0, ε4).
By the equality (2.6) in Step 3 and the choice of ε4, for all ε ∈ (0, ε4), the inequality

maxt∈[1,2] u(t) < ξ0 holds. Then by the CLAIM in Step 4

max
t∈[1,N+2]

u(t) <
(

1 +
ε

a

)N
ξ0 (2.7)

follows for all N ∈ N.
For a given N ∈ N, from (2.7) one gets

max
t∈[1,N+2]

u(t) < 1

provided ε ∈ (0, ε4) is so small that

ε < a
[

(1/ξ0)
1/N − 1

]

. (2.8)

Step 6. Let N ∈ N \ {1, 2} be given. We look for a condition on ε ∈ (0, ε4) to guarantee

u′(t) > 0 for all t > N. (2.9)

Equation (2.3) gives that

au(t) < (a + ε)u(t − 1) for all t > N (2.10)

is sufficient to yield (2.9). By the representation (2.4) condition (2.10) is equivalent to

a

1 + a + λ0
eλ0t

[(

1 +
ε

a

)

e−λ0 − 1
]

> ar(t)− (a + ε)r(t − 1) (t > N),

that is
(

1 +
ε

a

)

e−λ0 − 1 >
1 + a + λ0

a
e−λ0t [ar(t)− (a + ε)r(t − 1)] (t > N).

From ε < 1, 0 < λ0(ε) < 1 and (2.5) one obtains

1 + a + λ0

a
e−λ0t [ar(t)− (a + ε)r(t − 1)]

<
(a + 2)(2a + 1)

a
Ke−c(t−1)

<
(a + 2)(2a + 1)

a
Kece−cN (t > N).

Recall that, by the choice of ε1 in Step 1,

λ0(ε) <
2ε

2a + 1
.

Hence
e−λ0(ε) > 1 − λ0(ε) > 1 −

2ε

2a + 1
.

Thus, by using ε1 < 1/4 as well,

(

1 +
ε

a

)

e−λ0(ε) − 1 >

(

1 +
ε

a

)

(

1 −
2ε

2a + 1

)

− 1

=
ε − 2ε2

a(2a + 1)
>

ε

2a(2a + 1)
.
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Consequently, (2.9) holds if, in addition to ε ∈ (0, ε4),

ε > ξ1e−cN (2.11)

with ξ1 = 2(a + 2)(2a + 1)2Kec.

Step 7. In order to satisfy conditions (2.8) and (2.11) simultaneously consider a
[

(1/ξ0)1/N − 1
]

and ξ1e−cN . By L’Hospital’s rule

lim
N→∞

ξ1e−cN

a [(1/ξ0)1/N − 1]
= 0.

Therefore there exists an integer N0 > 2 such that

ξ1e−cN

a
[

(1/ξ0)1/(N+1) − 1
] < 1 for all integers N ≥ N0. (2.12)

Define ε∗ ∈ (0, ε4) so that

ε∗ < a
[

(1/ξ0)
1/N0 − 1

]

.

Let ε ∈ (0, ε∗) be fixed. By ε < ε∗ and limN→∞ a
[

(1/ξ0)1/N − 1
]

= 0 there exists a maximal
integer N(ε) ≥ N0 so that

ε < a
[

(1/ξ0)
1/N(ε) − 1

]

. (2.13)

The maximality of N(ε) ≥ N0 and inequality (2.12) imply

ξ1e−cN(ε)
< a

[

(1/ξ0)
1/(N(ε)+1) − 1

]

≤ ε.

Therefore, we arrive at the inequality

ξ1e−cN(ε)
< ε < a

[

(1/ξ0)
1/N(ε) − 1

]

, (2.14)

that is, for every ε ∈ (0, ε∗) inequalities (2.11) and (2.8) hold with N = N(ε).

Step 8. By Steps 5–7, for each ε ∈ (0, ε∗) there exists an integer N = N(ε) > 2 such that the
unique continuous function u = u(ε) : [0, ∞) → R satisfying u(t) = e−at for t ∈ [0, 1], and
equation (2.3) on (1, ∞) has the properties

1 = u(0) > u(t) > 0 for all t ∈ (0, N + 2),

u′(t) > 0 for all t > N,

u(t) → ∞ as t → ∞.

(2.15)

The last property is clear from λ0(ε) > 0, (2.4) and (2.5).
From (2.15) it follows that there exits a unique σ(ε) > N(ε) + 2 > 4 so that u(σ(ε)) = 1

and u′(σ(ε)) > 0. From u′(σ(ε)) > 0 it is clear that u(σ(ε)− 1) 6= a/(a + ε). The maximality
of N(ε) in inequality (2.13) implies that N(ε) → ∞, σ(ε) → ∞ as ε → 0+.

Let ω(ε) = σ(ε) + 1 + (1/a) log u(σ(ε) + 1) > 5. Define the function w : [0, ω(ε)] → R by

w(t) =

{

u(t) if t ∈ [0, σ(ε) + 1],

u(σ(ε) + 1)e−a(t−σ(ε)−1) if t ∈ [σ(ε) + 1, ω(ε)].
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Then w(t) > 1 for all t ∈ (σ, ω), and w(ω) = 1. Let p : R → R be the ω(ε)-periodic extension
of w to R.

For the fixed a > 0 set ε0 = ε∗. Observe that c, K, and consequently ξ0, ξ1, depend only on
a. Then relation (2.12) shows that N0 is also a function of a . Therefore, ε0 depends only on a.

If b ∈ (a, a + ε0) then the above constructed p(ε) with ε = b − a ∈ (0, ε∗) is clearly an ω(ε)-
periodic solution of equation (E∞) satisfying (H). Setting ω(a, b) = ω(ε) and σ(a, b) = σ(ε),
we see that all statements of Theorem 1.2 are satisfied, and the proof is complete.

The typical shape of the periodic solutions obtained in this paper for (E∞) is shown in
Figure 2.1 with a = 9, b = 9.7.

Figure 2.1: The periodic solution of (E∞) for a = 9, b = 9.7
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1 Introduction

Riemann–Liouville left-sided and right-sided fractional integral operators of order α ∈ (0, 1),

denoted by I1−α
0+ and I1−α

1− , respectively, are two special linear Volterra integral operators with

the kernel

k(x, y) =
1

|x − y|α
. (1.1)

The kernel k is singular at each (x, x) and the singularities often make it difficult to study

problems such as continuity and compactness of these operators defined in subspaces of

L1(0, 1).

It is well known that I1−α
0+ is bounded from Lp(0, 1) to Lp(0, 1) for each p ∈ [1, ∞], and

from Lp(0, 1) to C[0, 1] for each p ∈ ( 1
1−α , ∞], see [6, Theorem 2.6], [11, Theorem 12], [20,

Theorem 3.6] and [23, Proposition 3.2 (1) and (3)]. It is implicitly proved in [6, Theorem 6.1]

that I1−α
0+ is compact from C[0, 1] to C[0, 1] and in [22, Theorem 4.8] that I1−α

0+ is compact from

D ⊂ C[0, 1] → P, where D is a subset of C[0, 1] and P is the standard positive cone in C[0, 1].

In this paper, we prove that both I1−α
0+ and I1−α

1− are compact from Lp(0, 1) to C[0, 1] for

each p ∈
(

1
1−α , ∞

]

. This allows one to study the existence of solutions of the initial or

BEmail: klan@ryerson.ca
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boundary value problems for nonlinear fractional differential equations with discontinuous

nonlinearities by applying the fixed point theorems or fixed point index theories. We refer to

[2–6, 8–10, 13, 15, 18, 19, 21–27] for the study of these nonlinear problems.

To study the compactness of I1−α
0+ , we first study compactness of the following two linear

Hammerstein integral operators L and L :

Lv(x) =
∫ 1

0
k(x, y)v(y) dy for each x ∈ [0, 1], (1.2)

and

L v(x) =
∫ 1

0
σ(x, y)k(x, y)v(y) dy for each x ∈ [0, 1], (1.3)

where k : [0, 1]× [0, 1] \D → R has singularities in a subset

D = {(x, y) : x ∈ [0, 1], y ∈ D(x)}

to be defined in Section 2, and σ(x, y) = sgn(x − y). It is not trivial to prove compactness of

these operators due to the singularities of k on D .

Under suitable assumptions on k, we prove that both L and L map Lp(0, 1) to C[0, 1]

and are compact for p ∈ [1, ∞]. In particular, when D = {(x, x) : x ∈ [0, 1]}, we show that

I1−α
0+ and I1−α

1− are proportional to the sum and substraction of the two operators Lα and Lα,

respectively, where Lα and Lα are the two operators L and L with the kernel k defined in

(1.1). When p ∈
(

1
1−α , ∞

]

, these relations are used to derive compactness of I1−α
0+ and I1−α

1−

from the compactness of Lα and Lα. As applications of compactness of I1−α
0+ , we show that the

spectral radius of I1−α
0+ is 0, and I1−α

0+ has no eigenfunctions.

2 Compactness of linear integral operators

In this section, we study the following two linear Hammerstein integral operators

Lv(x) =
∫ 1

0
k(x, y)v(y) dy for each x ∈ [0, 1], (2.1)

where the kernel k is allowed to have singularities on [0, 1]× [0, 1] and

L v(x) =
∫ 1

0
σ(x, y)k(x, y)v(y) dy for each x ∈ [0, 1], (2.2)

where σ : [0, 1]× [0, 1] → R is defined by

σ(x, y) = sgn(x − y) =















1 if y < x,

0 if y = x,

−1 if x < y.

(2.3)

Unless stated otherwise, p, q ∈ [1, ∞] are the conjugate indices, that is, they satisfy the follow-

ing condition:

1/p + 1/q = 1, (2.4)

where if p = ∞, then q = 1 and if p = 1, then q = ∞.

We denote by Lp[0, 1] and L
p
+[0, 1] the Banach space of functions for which the pth power

of the absolute values are Lebesgue integrable with the norm ‖ · ‖Lp(0,1), and its positive cone,
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respectively, and by C[0, 1] the Banach space of all continuous functions from [0, 1] to R with

the maximum norm denoted by ‖ · ‖C[0,1] or ‖ · ‖.

Let X, Y be Banach spaces. Recall that a linear map L : X → Y is said to be compact if L is

continuous and L(S) is compact for each bounded subset S ⊂ X.

Assume that for each x ∈ [0, 1], there exists a subset D(x) of [0, 1] satisfying meas(D(x)) =

0. Let

D = {(x, y) : x ∈ [0, 1], y ∈ D(x)}.

It is easy to verify that (x, y) ∈ [0, 1]× [0, 1] \D if and only if x ∈ [0, 1] and y ∈ [0, 1] \ D(x).

Theorem 2.1. Let p, q ∈ [1, ∞] satisfy (2.4). Assume that k : [0, 1] × [0, 1] \ D → R satisfies the

following conditions.

(i) For each x ∈ [0, 1], k(x, ·) : [0, 1] \ D(x) → R satisfies k(x, ·) ∈ Lq(0, 1).

(ii) For each τ ∈ [0, 1], limx→τ ‖k(x, ·)− k(τ, ·)‖Lq(0,1) = 0.

Then the map L defined in (2.1) maps Lp(0, 1) to C[0, 1] and is compact.

Proof. Let v ∈ Lp(0, 1). By the condition (i) we have

|Lv(x)| =
∣

∣

∣

∫ 1

0
k(x, y)v(y) dy

∣

∣

∣
≤ ‖k(x, ·)‖Lq(0,1)‖v‖Lp(0,1) < ∞ for each x ∈ [0, 1]

and Lv is well defined on [0, 1]. For τ, x ∈ [0, 1], we have

|Lv(x)− Lv(τ)| ≤
∫ 1

0
|k(x, y)− k(τ, y)||v(y)| dy

≤ ‖k(x, ·)− k(τ, ·)‖Lq(0,1)‖v‖Lp(0,1). (2.5)

It follows from the condition (ii) that Lv ∈ C[0, 1] for v ∈ Lp(0, 1) and the first part of the

result holds.

We define a map K : [0, 1] → Lq(0, 1) by

K (x) = k(x, ·).

Then the conditions (i) and (ii) are equivalent to the fact that K : [0, 1] → Lq(0, 1) is continu-

ous. Hence, ‖K (·)‖Lq(0,1) : [0, 1] → R+ is continuous, and thus

M1 := max{‖k(x, ·)‖Lq(0,1) : x ∈ [0, 1]} < ∞.

Let S ⊂ Lp(0, 1) be a bounded set in Lp(0, 1). Then

M2 := max{‖v‖Lp(0,1) : v ∈ S} < ∞.

Hence, for v ∈ S and x ∈ [0, 1],

|Lv(x)| ≤
∫ 1

0
|k(x, y)||v(y)| dy ≤ ‖k(x, ·)‖Lq(0,1)‖v‖Lp(0,1) ≤ M1M2 < ∞.

Hence, ‖Lv‖C[0,1] ≤ M1M2 and L(S) is bounded in C[0, 1]. By (2.5), we have for v ∈ S and

τ, x ∈ [0, 1],

|Lv(x)− Lv(τ)| ≤ M2‖k(x, ·)− k(τ, ·)‖Lq(0,1).
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It follows from the condition (ii) that L(S) is equicontinuous. By the Ascoli–Arzelà Theorem,

L(S) is compact.

Let {vn} ⊂ Lp(0, 1) and v ∈ Lp(0, 1) such that ‖vn − v‖Lp(0,1) → 0. Then we have for

x ∈ [0, 1],

|Lvn(x)− Lv(x)| ≤

∣

∣

∣

∣

∫ 1

0
|k(x, y)||vn(y)− v(y)| dy

∣

∣

∣

∣

≤ ‖k(x, ·)‖Lq(0,1)‖vn − v‖Lp(0,1)

and

‖Lvn − Lv‖C[0,1] ≤ M1‖vn − v‖Lp(0,1) → 0.

Hence, L : Lp(0, 1) → C[0, 1] is continuous and thus, is compact.

The compactness result of Theorem 2.1 with q = 1 is closely related to [17, Lemma 2.1].

Lemma 2.2. Assume that k : [0, 1] × [0, 1] \ {(x, x) : x ∈ [0, 1]} → R satisfies the following

condition.

(H) There exists q ∈ [1, ∞] such that for each x ∈ [0, 1], k(x, ·) ∈ Lq(0, 1).

Then the following assertions hold.

(1) If q ∈ [1, ∞) and

lim
x→τ

‖k(x, ·)− k(τ, ·)‖Lq(0,1) = 0 for some τ ∈ [0, 1], (2.6)

then

lim
x→τ

‖σ(x, ·)k(x, ·)− σ(τ, ·)k(τ, ·)‖Lq(0,1) = 0. (2.7)

(2) If q ∈ [1, ∞] and k(x, y) ≥ 0 for x, y ∈ [0, 1] with x 6= y and then (2.7) implies (2.6).

Proof. (1) Let q ∈ [1, ∞). Let x, τ, y ∈ [0, 1] with x 6= y and τ 6= y. If τ < x, then

σ(x, y)− σ(τ, y) =















0 if y < τ,

2 if τ < y < x,

0 if x < y.

(2.8)

If x < τ, then

σ(x, y)− σ(τ, y) =















0 if y < x,

−2 if x < y < τ,

0 if x < τ < y.

(2.9)

For x, τ, y ∈ [0, 1] with x 6= y and τ 6= y, let

Φ(x, τ, y) = σ(x, y)k(x, y)− σ(τ, y)k(τ, y).

Then

|Φ(x, τ, y)|q ≤
[

|σ(x, y)||k(x, y)− k(τ, y)|+ |k(τ, y)||σ(x, y)− σ(τ, y)|
]q

≤
[

|k(x, y)− k(τ, y)|+ |k(τ, y)||σ(x, y)− σ(τ, y)|
]q

≤ |k(x, y)− k(τ, y)|q + |k(τ, y)|q|σ(x, y)− σ(τ, y)|q. (2.10)
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Assume that (1) holds. If x, τ, y ∈ [0, 1] with x 6= y, τ 6= y and τ < x, then by (2.8) and (2.10),

we have

∫ 1

0
|Φ(x, τ, y)|q ≤

∫ 1

0
|k(x, y)− k(τ, y)|q + |k(τ, y)|q|σ(x, y)− σ(τ, y)|q dy

=
∫ 1

0
|k(x, y)− k(τ, y)|q dy +

∫ 1

0
|k(τ, y)|q|σ(x, y)− σ(τ, y)|q dy

=
∫ 1

0
|k(x, y)− k(τ, y)|q dy +

∫ x

τ
|k(τ, y)|q|σ(x, y)− σ(τ, y)|q dy

=
∫ 1

0
|k(x, y)− k(τ, y)|q dy + 2q

∫ x

τ
|k(τ, y)|q dy.

This, together with the condition (H) implies

lim
x→τ+

∫ 1

0
|Φ(x, τ, y)|q ≤ lim

x→τ+

∫ 1

0
|k(x, y)− k(τ, y)|q dy + 2q lim

x→τ+

∫ x

τ
|k(τ, y)|q dy = 0

and limx→τ+

∫ 1
0 |Φ(x, τ, y)|q = 0. Similarly, if x < τ, by using (2.9) and (2.10), we have

limx→τ−

∫ 1
0 |Φ(x, τ, y)|q = 0. It follows that (2.7) holds.

(2) Let q ∈ [1, ∞]. Since k(x, y) ≥ 0 for x, y ∈ [0, 1] with x 6= y,

∣

∣

∣
σ(x, y)k(x, y)

∣

∣

∣
= k(x, y) for x, y ∈ [0, 1] with x 6= y.

Hence, we have for x, τ, y ∈ [0, 1] with x 6= y and τ 6= y,

∣

∣

∣
k(x, y)− k(τ, y)

∣

∣

∣
=
∣

∣

∣
|σ(x, y)k(x, y)| − |σ(τ, y)k(τ, y)|

∣

∣

∣

≤
∣

∣

∣
σ(x, y)k(x, y)− σ(τ, y)k(τ, y)

∣

∣

∣
. (2.11)

If q = ∞, then by (2.11), we have

lim
x→τ

‖k(x, ·)− k(τ, ·)‖L∞(0,1) ≤ lim
x→τ

‖σ(x, ·)k(x, ·)− σ(τ, ·)k(τ, ·)‖L∞(0,1). (2.12)

If q ∈ [1, ∞), then by (2.11), we have

∣

∣

∣
k(x, y)− k(τ, y)

∣

∣

∣

q
=
∣

∣

∣
|σ(x, y)k(x, y)| − |σ(τ, y)k(τ, y)|

∣

∣

∣

q

≤
∣

∣

∣
σ(x, y)k(x, y)− σ(τ, y)k(τ, y)

∣

∣

∣

q

and

lim
x→τ

‖k(x, ·)− k(τ, ·)‖Lq(0,1) ≤ lim
x→τ

‖σ(x, ·)k(x, ·)− σ(τ, ·)k(τ, ·)‖Lq(0,1). (2.13)

By (2.7), (2.12) and (2.13), we see that (2.6) holds.

By Theorem 2.1 and Lemma 2.2, we obtain the following results.

Theorem 2.3. Let q ∈ [1, ∞) and p ∈ (1, ∞] satisfy (2.4). Assume that k : [0, 1]× [0, 1] \ {(x, x) :

x ∈ [0, 1]} → R+ satisfies the conditions (i) and (ii) of Theorem 2.1. Then the maps L defined in (2.1)

and L defined in (2.2) map Lp(0, 1) to C[0, 1] and are compact.
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Proof. By Theorem 2.1 with D = {(x, x) : x ∈ [0, 1]}, L maps Lp(0, 1) to C[0, 1] and is compact.

By (H), σ(x, ·)k(x, ·) ∈ Lq(0, 1). By Lemma 2.2 (1), Theorem 2.1 (ii) implies (2.7) holds for

each τ ∈ [0, 1]. Hence, σk satisfies the conditions (i) and (ii) of Theorem 2.1. It follows from

Theorem 2.1 that L maps Lp(0, 1) to C[0, 1] and is compact.

Theorem 2.4. Assume that k : [0, 1] × [0, 1] \ {(x, x) : x ∈ [0, 1]} → R+ satisfies the following

conditions.

(i) For each x ∈ [0, 1], k(x, ·) ∈ L∞(0, 1).

(ii) For each τ ∈ [0, 1], limx→τ ‖σ(x, ·)k(x, ·)− σ(τ, ·)k(τ, ·)‖L∞(0,1) = 0.

Then the maps L defined in (2.1) and L defined in (2.2) map L1(0, 1) to C[0, 1] and are compact.

Proof. By the condition (i), σ(x, ·)k(x, ·) ∈ L∞(0, 1). This, together with the condition (ii),

shows that σk satisfies the conditions (i) and (ii) of Theorem 2.1 with D = {(x, x) : x ∈ [0, 1]}.

It follows from Theorem 2.1 that L maps L1(0, 1) to C[0, 1] and is compact. By Lemma 2.2

(2), the condition (ii) implies that k satisfies Theorem 2.1 (ii). Hence, k satisfies Theorem 2.1

(i) and (ii) with q = ∞. It follows from Theorem 2.1 that L maps L1(0, 1) to C[0, 1] and is

compact.

As applications of the above results, we study the following two specific linear Hammer-

stein integral operators:

Lαv(x) =
∫ 1

0

1

|x − y|α
v(y) dy for each x ∈ [0, 1] (2.14)

and

Lαv(x) =
∫ 1

0

σ(x, y)

|x − y|α
v(y) dy for each x ∈ [0, 1], (2.15)

where α ∈ (0, 1).

We first prove the following result.

Lemma 2.5.

(1) If α ∈ (0, 1), then

∫ 1

0

1

|x − y|α
dy =

1

1 − α

[

x1−α + (1 − x)1−α
]

for each x ∈ [0, 1]

and
∫ 1

0

σ(x, y)

|x − y|α
dy =

1

1 − α

[

x1−α − (1 − x)1−α
]

for each x ∈ [0, 1].

(2) If α ∈ [1, ∞), then
∫ 1

0
1

|x−y|α
dy = ∞ for each x ∈ [0, 1].

Proof. (1) Let α ∈ (0, 1) and x ∈ [0, 1]. Then

∫ 1

0

1

|x − y|α
dy =

∫ x

0

1

(x − y)α
dy +

∫ 1

x

1

(y − x)α
dy =

x1−α

1 − α
+

(1 − x)1−α

1 − α
.

Similarly, the second equality holds.



Compactness of Riemann–Liouville fractional integral operators 7

(2) Let α ∈ [1, ∞), x ∈
[

0, 1
2

]

and z = y − x for y ∈ [0, 1]. Then x ≤ 1 − x and

∫ 1

0

1

|x − y|α
dy =

∫ 1−x

−x

1

|z|α
dz ≥

∫ x

−x

1

|z|α
dz = 2

∫ x

0

1

zα
dz = ∞.

Let x ∈
(

1
2 , 1
]

and let z = y − x for y ∈ [0, 1]. Then −x < −(1 − x) and

∫ 1

0

1

|x − y|α
dy =

∫ 1−x

−x

1

|z|α
dz ≥

∫ 1−x

−(1−x)

1

|z|α
dz = 2

∫ 1−x

0

1

zα
dz = ∞.

The following result gives an application of Theorem 2.3.

Theorem 2.6. Let α ∈ (0, 1) and p ∈
(

1
1−α , ∞

]

. Then the maps Lα defined in (2.14) and Lα defined

in (2.15) map Lp(0, 1) to C[0, 1] and are compact.

Proof. Let p ∈
(

1
1−α , ∞

]

and q ∈
[

1, 1
α

)

satisfy (2.4). We define k : [0, 1]× [0, 1] \ {(x, x) : x ∈

[0, 1]} → R by

k(x, y) =
1

|x − y|α
. (2.16)

Since αq ∈ (0, 1), by Lemma 2.5 (1), we have for each x ∈ [0, 1],

∫ 1

0
|k(x, y)|q dy =

∫ 1

0

1

|x − y|αq
dy < ∞.

Hence, k(x, ·) ∈ Lq(0, 1) for each x ∈ [0, 1] and Theorem 2.2 (i) holds. Let τ ∈ (0, 1) and

δ1 ∈
(

0, min{τ, 1 − τ}
)

. Let

ε ∈

(

0,
24−αqδ

1−αq
1

1 − αq

)

, δε =

[

ε(1 − αq)

24−αq

]
1

1−αq

and δ ∈ (0, δε).

Then δ < δε < δ1 <
1
2 . For x, y ∈ [0, 1] with x 6= y and y 6= τ, let

k(x, y)− k(τ, y) =
1

|x − y|α
−

1

|τ − y|α
.

Let D1 = {x ∈ [0, 1] : |x − τ| ≤ δ} × [0, τ − δε] ∪ [τ + δε, 1]. Then D1 is closed and

|x − y| ≥ |y − τ| − |x − τ| ≥ δε − δ > 0 for (x, y) ∈ D1.

Hence, k : D1 → R is uniformly continuous on D1. Let σ ∈
(

0, 1
2(1−2δε)

)

. It follows that there

exists δ∗ ∈ (0, δ) such that when |x − τ| < δ∗,

|k(x, y)− k(τ, y)|q < σε for y ∈ [0, τ − δε] ∪ [τ + δε, 1].

Hence, when |x − τ| < δ∗, we have

∫ τ−δε

0
|k(x, y)− k(τ, y)|q dy +

∫ 1

τ+δε

|k(x, y)− k(τ, y)|q dy

≤ σε(τ − δε) + σε(1 − τ − δε) = σε(1 − 2δε) <
ε

2
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and
∫ τ+δε

τ−δε

|k(x, y)|q dy =
∫ τ+δε

τ−δε

1

|x − y|αq
dy =

∫ τ−x+δε

τ−x−δε

1

|u|αq
du

≤
∫ δ∗+δε

−(δ∗+δε)

1

|u|αq
du = 2

∫ δ∗+δε

0

1

uαq
du =

2(δ∗ + δε)1−αq

1 − αq
<

2(2δε)1−αq

1 − αq

=
22−αq

1 − αq

ε(1 − αq)

24−αq
=

ε

4
.

This implies that when |x − τ| < δ∗,

∫ 1

0
|k(x, y)− k(τ, y)|q dy

=
∫ τ−δε

0
|k(x, y)− k(τ, y)|q dy +

∫ 1

τ+δε

|k(x, y)− k(τ, y)|q dy +
∫ τ+δε

τ−δε

|k(x, y)− k(τ, y)|q dy

<
ε

2
+
∫ τ+δε

τ−δε

(

|k(x, y)|+ |k(τ, y)|
)q

dy

<
ε

2
+
∫ τ+δε

τ−δε

|k(x, y)|q dy +
∫ τ+δε

τ−δε

|k(τ, y)|q dy

=
ε

2
+
∫ τ+δε

τ−δε

1

|x − y|αq
dy +

∫ τ+δε

τ−δε

1

|τ − y|αq
dy <

ε

2
+

ε

4
+

ε

4
= ε.

Hence,

lim
x→τ

∫ 1

0
|k(x, y)− k(τ, y)|q dy = 0

and Theorem 2.2 (ii) holds. The proofs are similar if τ = 0 or τ = 1. The result follows from

Theorem 2.3.

3 Compactness of Riemann–Liouville fractional integral operators

Let a, b ∈ R with a < b and ϕ : [a, b] → R be a measurable function. The Riemann–Liouville

left-sided fractional integral operator of order α ∈ (0, ∞) is defined by

Iα
a+ ϕ(x) :=

1

Γ(α)

∫ x

a

ϕ(y)

(x − y)1−α
dy for each x ∈ [a, b], (3.1)

provided the Lebesgue integral on the right side of (3.1) exists for almost every (a.e.) x ∈ [a, b],

and Γ is the standard Gamma function defined by

Γ(α) =
∫

∞

0
xα−1e−x dx,

see [6, p. 13], [14, p. 69] and [20, p. 33]. Similarly, the Riemann–Liouville right-sided fractional

integral operator of order α ∈ (0, ∞) is defined by

Iα
b− ϕ(x) :=

1

Γ(α)

∫ b

x

ϕ(y)

(y − x)1−α
dy for each x ∈ [a, b], (3.2)

provided the Lebesgue integral on the right side of (3.2) exists for a.e. x ∈ [a, b]. Hardy and

Littlewood [11] called these integrals ‘right- handed’ integral ‘with origin a’, and ‘left-handed’

integral ‘with origin b’, respectively.
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Note that in (3.1), we still use the symbol Iα
a+ ϕ(x) to denote the Lebesgue integral on the

right side of (3.2) at x even when the integral does not exist at x. Hence, we treat (3.1) to hold

for each x ∈ [a, b]. Similarly, we treat (3.2) to hold for each x ∈ [a, b].

It is well known that both Iα
a+ and Iα

b− map L1(0, 1) to L1(0, 1), see [6, Theorem 2.1], [14,

Lemma 2.1], [20, Theorem 2.6], [14, Lemma 2.1] and [20, Theorem 2.6].

We only use Iα
0+ and Iα

1− to denote the following operators:

Iα
0+ ϕ(x) :=

1

Γ(α)

∫ x

0

ϕ(y)

(x − y)1−α
dy for each x ∈ [0, 1], (3.3)

and

Iα
1− ϕ(x) :=

1

Γ(α)

∫ 1

x

ϕ(y)

(y − x)1−α
dy for each x ∈ [0, 1]. (3.4)

We give the following relationships among the above operators given in (3.1), (3.2), (3.3)

and (3.4). They are well known to experts, but we give the proofs for completeness because

we have not found them anywhere else.

Proposition 3.1. Let ϕ ∈ L1(a, b) and let

t(x) = (1 − x)a + xb for each x ∈ [0, 1]. (3.5)

and

(ϕ(t))(x) = ϕ(t(x)) for a.e. x ∈ [0, 1]. (3.6)

Then the following assertions hold.

(1) If (Iα
a+ ϕ)(t(x)) exists for some x ∈ [0, 1], then

(Iα
a+ ϕ)(t(x)) = (b − a)α(Iα

0+(ϕ(t))(x). (3.7)

(2) If (Iα
b− ϕ)(t(x)) exists for some x ∈ [0, 1], then

(Iα
b− ϕ)(t(x)) = (b − a)α(Iα

1−(ϕ(t))(x). (3.8)

Proof. Let ϕ ∈ L1(a, b) and let y = t(x) for x ∈ [0, 1]. Then

∫ b

a
|ϕ(y)| dy = (b − a)

∫ 1

0
|ϕ(t(x))| dx = (b − a)

∫ 1

0
|(ϕ(t))(x)| dx

This implies ϕ(t) ∈ L1(0, 1).

(1) Assume that (Iα
a+ ϕ)(t(x)) exists for some x ∈ [0, 1]. Then by (3.1), we have

(Iα
a+ ϕ)(t(x)) =

1

Γ(α)

∫ t(x)

a

ϕ(s)

(t(x)− s)1−α
ds. (3.9)

Let s = t(y) = (1 − y)a + yb for y ∈ [0, x]. Then

∫ t(x)

a

ϕ(s)

(t(x)− s)1−α
ds =

∫ x

0

ϕ(t(y))

[(b − a)(x − y)]1−α
(b − a)dy

= (b − a)α
∫ x

0

(ϕ(t))(y)

(x − y)1−α
dy.
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This, together with (3.9), implies (3.7).

(2) Assume that (Iα
b− ϕ)(t(x)) exists for some x ∈ [0, 1]. Then by (3.2), we have

(Iα
b− ϕ)(t(x)) =

1

Γ(α)

∫ b

t(x)

ϕ(s)

(s − t(x))1−α
ds. (3.10)

Let s = t(y) = (1 − y)a + yb for y ∈ [x, b]. Then
∫ b

t(x)

ϕ(s)

(s − t(x))1−α
ds =

∫ b

x

ϕ(t(y))

[(b − a)(y − x)]1−α
(b − a)dy

= (b − a)α
∫ b

x

(ϕ(t))(y)

(y − x)1−α
dy.

This, together with (3.10), implies (3.8).

Proposition 3.2. Let ϕ ∈ L1(a, b) and let

t(x) = a + b − x for each x ∈ [a, b] (3.11)

and

(ϕ(t))(x) = ϕ(t(x)) for a.e. x ∈ [a, b]. (3.12)

If (Iα
b− ϕ)(t(x)) exists for some x ∈ [a, b], then

(Iα
b− ϕ)(t(x)) = (Iα

a+ ϕ(t))(x). (3.13)

Proof. Assume that (Iα
b− ϕ)(t(x)) exists for some x ∈ [a, b]. Then by (3.2), we have

(Iα
b− ϕ)(t(x)) =

1

Γ(α)

∫ b

t(x)

ϕ(s)

(s − t(x))1−α
ds. (3.14)

Let s = t(y) = a + b − y for y ∈ [a, x]. Then
∫ b

t(x)

ϕ(s)

(s − t(x))1−α
ds =

∫ x

a

ϕ(t(y))

(x − y)1−α
dy =

∫ x

a

(ϕ(t))(y)

(x − y)1−α
dy.

This, together with (3.14), implies (3.13).

Proposition 3.3. Let ϕ ∈ L1(a, b) and let

t∗(x) = xa + (1 − x)b for each x ∈ [0, 1] (3.15)

and

(ϕ(t∗))(x) = ϕ(t∗(x)) for a.e. x ∈ [0, 1]. (3.16)

If (Iα
b− ϕ)(t∗(x)) exists for some x ∈ [0, 1], then

(Iα
b− ϕ)(t∗(x)) = (b − a)α(Iα

0+ ϕ(t∗))(x) for each x ∈ [a, b].

Proof. Note that t∗(x) = t(1 − x) for each x ∈ [0, 1], where t is the same as in (3.5). By (3.8),

we have for each x ∈ [0, 1],

(Iα
b− ϕ)(t∗(x)) = (Iα

b− ϕ)(t(1 − x)) = (b − a)α(Iα
1−(ϕ(t)))(1 − x)

=
(b − a)α

Γ(α)

∫ 1

1−x

ϕ(t(y))

(y − (1 − x))1−α
dy =

(b − a)α

Γ(α)

∫ x

0

ϕ(t(1 − z))

((1 − z)− (1 − x))1−α
dz

=
(b − a)α

Γ(α)

∫ x

0

ϕ(t∗(z))

(x − z)1−α
dz = (b − a)α(Iα

0+ ϕ(t∗))(x)

and the result holds.
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By Proposition 3.3, we obtain the following result.

Corollary 3.4. Assume that v ∈ L1(0, 1) satisfies that (I1−α
1− v)(x) exists for some x ∈ [0, 1]. Then

(I1−α
1− v)(x) = (I1−α

0+ v∗)(1 − x),

where v∗(s) = v(1 − s) for a.e. a ∈ [0, 1].

To apply the results in Section 2, in the following we always assume α ∈ (0, 1) and consider

the following Riemann–Liouville fractional integral operators:

I1−α
0+ v(x) :=

1

Γ(1 − α)

∫ x

0

v(y)

(x − y)α
dy for each x ∈ [0, 1] (3.17)

and

I1−α
1− v(x) :=

1

Γ(1 − α)

∫ 1

x

v(y)

(y − x)α
dy for each x ∈ [0, 1], (3.18)

where v ∈ L1(0, 1).

Now, we prove that if p ∈
(

1
1−α , ∞

)

, then both I1−α
0+ and I1−α

1− map Lp(0, 1) to C[0, 1] and

are compact.

Theorem 3.5. Let p ∈
(

1
1−α , ∞

]

. Then the following assertions hold.

(1) The maps I1−α
0+ and I1−α

1− map Lp(0, 1) to C[0, 1] and are compact.

(2) For each v ∈ Lp(0, 1), I1−α
0+ v(0) = I1−α

1− v(1) = 0.

(3) For each x ∈ [0, 1],

I1−α
0+ 1̂(x) =

x1−α

Γ(2 − α)
and I1−α

1− 1̂(x) =
(1 − x)1−α

Γ(2 − α)
, (3.19)

where 1̂(x) ≡ 1 for each x ∈ [0, 1].

Proof. (1) Let v ∈ Lp(0, 1) and x ∈ [0, 1]. Then

Lαv(x) =
∫ x

0

1

(x − y)α
v(y) dy −

∫ 1

x

1

(y − x)α
v(y) dy

= Γ(1 − α)
[

(I1−α
0+ v)(x)− (I1−α

1− v)(x)
]

(3.20)

and

Lαv(x) =
∫ x

0

1

(x − y)α
v(y) dy +

∫ 1

x

1

(y − x)α
v(y) dy

= Γ(1 − α)
[

(I1−α
0+ v)(x) + (I1−α

1− v)(x)
]

. (3.21)

By (3.20) and (3.21), we have for x ∈ [0, 1],

I1−α
0+ v(x) =

1

2Γ(1 − α)

[

Lαv(x) +Lαv(x)
]

(3.22)

and

I1−α
1− v(x) =

1

2Γ(1 − α)

[

Lαv(x)−Lαv(x)
]

. (3.23)
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The results follow from Theorem 2.6.

(2) For v ∈ Lp(0, 1), by (2.14) and (2.15), it is easy to see that

Lαv(0) = −Lαv(0) and Lαv(1) = Lαv(1).

This, together with (3.22) and (3.23), implies

(I1−α
0+ )v(0) = I1−α

1− v(1) = 0.

(3) By Lemma 2.5 (1) and (3.20) and (3.21) with v = 1̂, we see that (3.19) holds.

Remark 3.6. In a personal communication, Professor J. R. L. Webb informed me that there is

another known proof of compactness of I1−α
0+ which I reproduce below. By [11, Theorem 12]

(or [6, Theorem 2.6], [20, Theorem 3.6] and [23, Proposition 3.2 (3)]), I1−α
0+ maps Lp(0, 1) to the

Hölder space C0,β, and the Hölder space C0,β with the norm

‖u‖0,β := max
x∈[0,1]

|u(x)|+ sup
x 6=y

|u(x)− u(y)|

|x − y|β

is compactly imbedded in C[0, 1], where β = 1− α − 1
p . Indeed, if {un} is a bounded sequence

in C0,β[0, 1], say ‖un‖0,β ≤ M < ∞, then we have for x 6= y,

|un(x)− un(y)| =
|un(x)− un(y)|

|x − y|β
|x − y|β ≤ M|x − y|β,

so {un} is bounded and equicontinuous, and hence relatively compact in C[0, 1] by the Ascoli–

Arzelà theorem.

Remark 3.7. By Proposition 3.4, I1−α
1− : Lp(0, 1) → C[0, 1] is compact for each p ∈

(

1
1−α , ∞

]

.

By (3.22), (3.23) and compactness of I1−α
0+ and I1−α

1− obtained in Remark 3.6, we see that Theo-

rem 3.5 (1) is equivalent to Theorem 2.6.

By Propositions 3.1, 3.2 and 3.3, we see that all the theorems which are proved for one

operator of the operators: Iα
a+ , Iα

b− , Iα
0+ and Iα

1− , will apply, with the obvious changes, to the

others. Therefore, in the following, we only consider the operator I1−α
0+ .

As an application of continuity and compactness of I1−α
0+ , we prove the following result on

the eigenfunctions and spectral radius of I1−α
0+ .

Theorem 3.8. Let p ∈
(

1
1−α , ∞

]

. Then the following assertions hold.

(1) If there exist ϕ ∈ L
p
+(0, 1) and µ ∈ (0, ∞) such that

ϕ(x) = µI1−α
0+ ϕ(x) for a.e. x ∈ [0, 1]. (3.24)

Then ϕ(x) = 0 for each x ∈ [0, 1].

(2) r(I1−α
0+ ) = 0, where r(I1−α

0+ ) is the spectral radius of I1−α
0+ .

Proof. Let P be the standard positive cone in C[0, 1], that is,

P = {u ∈ C[0, 1] : u(x) ≥ 0 for x ∈ [0, 1]}. (3.25)
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Then P is a total and normal cone in C[0, 1].

(1) By Theorem 3.5 (1), I1−α
0+ ϕ ∈ P. By (3.24), ϕ ∈ P. By (3.24) and weakly singular Gronwall

inequality [12, Lemma 7.1.1] or ([6, Lemma 6.19], [7, Lemma 4.3] and [22, Theorem 3.2]), we

have ϕ(x) = 0 for a.e. x ∈ [0, 1]. Since ϕ ∈ C[0, 1], ϕ(x) = 0 for each x ∈ [0, 1].

(2) By Theorem 3.5 (1), for p ∈
(

1
1−α , ∞

]

, the operator I1−α
0+ maps P to P and is compact. If

r(I1−α
0+ ) > 0, it would follow from Krein–Rutman theorem (see [1, Theorem 3.1] or [16]) that

there exists an eigenvector ϕ ∈ P \ {0} such that

I1−α
0+ ϕ(x) = r(I1−α

0+ )ϕ(x) for each x ∈ [0, 1].

By the result (i), we obtain ϕ(x) = 0 for each x ∈ [0, 1], which contradicts the fact ϕ ∈

P \ {0}.
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Abstract. In this paper, we study the global structure of nodal solutions of

{

u′′′′(x) = λh(x) f (u(x)), 0 < x < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,

where λ > 0 is a parameter, h ∈ C([0, 1], (0, ∞)), f ∈ C(R) and s f (s) > 0 for |s| > 0. We
show the existence of S-shaped component of nodal solutions for the above problem.
The proof is based on the bifurcation technique.
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1 Introduction

The deformations of an elastic beam whose both ends clamped are described by the fourth

order problem

u′′′′(x) = λh(x) f (u(x)), x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.1)

where λ > 0 is a parameter, f ∈ C(R), f (0) = 0, s f (s) > 0 for all s 6= 0 and h ∈

C([0, 1], (0, ∞)).

Existence and multiplicity of solutions of (1.1) have been extensively studied by several

authors [1,3,6,10,11,14,18,21,22]. For examples, Agarwal and Chow [1] studied the existence

of solutions of (1.1) by contraction mapping and iterative methods. Cabada and Enguiça [3]

developed the method of lower and upper solutions to show the existence and multiplicity of

solutions. Pei and Chang [14] proved the existence of symmetric positive solutions by using

BCorresponding author. Email: mary@nwnu.edu.cn
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a monotone iterative technique. Yao [21], Zhai, Song and Han [22] established the existence

and multiplicity of solutions via the fixed point theorem in cone.

Recently, Sim and Tanaka [19] were concerned with the existence of three positive solutions

for the p-Laplacian problem

{

−(|y′|p−2y′)′ = λa(x) f (y), x ∈ (0, 1),

y(0) = y(1) = 0,

by employing a bifurcation technique, where the nonlinearity f is asymptotic linear near 0

and sublinear near ∞. They obtained an S-shaped unbounded continuum (which grows to

the right from the initial point, to the left at some point and to the right near λ = ∞). The

proof of their main result heavily depends on the Sturm comparison theorem [20]. For other

related results on the existence and multiplicity of solutions of fourth order problems, see Li

and Gao [12] and Li [13].

Motivated by the above work, we shall study the existence of S-shaped unbounded con-

tinua of nodal solutions of fourth order problems (1.1). However, it seems hard to follow this

argument in [19, Lemma 3.2] directly for fourth order problem since the Sturm comparison

theorem is not available for the fourth order problems, and the nodal solution of (1.1) is not

concave down in [0, 1].

Let Y = C[0, 1] with the norm

‖u‖∞ = max
t∈[0,1]

|u(t)|.

Let E = {u ∈ C3[0, 1] : u(0) = u(1) = u′(0) = u′(1) = 0} with the norm

‖u‖ = max{‖u‖∞, ‖u′‖∞, ‖u′′‖∞, ‖u′′′‖∞}.

Let S+
k denote the set of functions in E which have exactly k − 1 simple zeros in (0, 1) and are

positive near t = 0, and set S−
k = −S+

k , and Sk = S+
k ∪ S−

k . They are disjoint and open in E.

Finally, let Φ
±
k = R × S±

k and Φk = R × Sk.

We shall make use of the following assumptions

(A1) h ∈ C[0, 1] with 0 < h∗ ≤ h(x) ≤ h∗ on [0, 1] for some h∗, h∗ ∈ (0, ∞);

(A2) f : R → R is non-decreasing, and there exists s0 > 0 such that

f∗ := inf
0<s≤s0

f (s)

s
< sup

0<s≤s0

f (s)

s
=: f ∗

with

0 < f∗ < f ∗ < ∞;

(A3) there exist α > 0, f0 := lim
|s|→0

f (s)
s ∈ (0, ∞) and f1 > 0 such that

lim
|s|→0

f (s)− f0s

s|s|α
= − f1;

(A4) f (0) = 0, s f (s) > 0 for s 6= 0, f∞ := lim
|s|→∞

f (s)
s = 0.



Fourth order equation with clamped beam boundary conditions 3

Remark 1.1. Typical modal of f which satisfies (A3) is the following

f̂ (s) =

{

2s − s2, s ≥ 0,

2s + s2, s < 0,

where f0 = 2, f1 = 1 and α = 1.

The rest of the paper is organized as follows. In Section 2, we state and prove several

preliminary results on the nodal solutions (λ, u) of (1.1) with ‖u‖∞ = s0 and state a method of

lower and upper solutions due to Cabada [3]. In Section 3, we state our main result and show

the existence of bifurcation from some eigenvalue for the corresponding problem according

to the standard argument and the rightward direction of bifurcation. Section 4 is devoted to

show the change of direction of bifurcation. Finally in Section 5 we show an a-priori bound of

solutions for (1.1) and complete the proof of Theorem 3.2.

2 Preliminaries

The following result is a special case of Leighton and Nehari [11, Theorem 5.2]

Lemma 2.1. Let p, p1 : [a, b] → (0, ∞) be two continuous functions with

p(x) ≤ p1(x), x ∈ [a, b]. (2.1)

Let

y′′′′ − p(x)y = 0, x ∈ [a, b], (2.2)

y′′′′1 − p1(x)y1 = 0, x ∈ [a, b]. (2.3)

If

y(a) = y1(a) = y(b) = y1(b) = 0

and the number of zeros of y(x) and y1(x) in [a, b] is denoted by n and n′ (n ≥ 4), respectively, then

n′ ≥ n − 1.

Lemma 2.2. Let k ≥ 4 and ν ∈ {+,−}. Let (A2) hold. If

h∗ f∗ > 0, (2.4)

then there exists Λ > 0, such that for any solution (λ, u) ∈ R
+ × Sν

k of (1.1) with ‖u‖∞ = s0, one

has

λ ≤ Λ :=
γk+2

h∗ f∗
, (2.5)

where γk+2 is the (k + 2)-th eigenvalue of the linear problem

v′′′′ = γv(x), x ∈ (0, 1),

v(0) = v(1) = v′(0) = v′(1) = 0,
(2.6)

which is simple, and its corresponding eigenfunction φk+2 has k + 1 zeros in (0, 1).
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Proof. Assume on the contrary that λ > Λ. Combining this with Λ := γk+2

h∗ f∗
and using

u′′′′(x) = λh(x)
f (u(x))

u(x)
u(x), x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0

and the fact

λh(x)
f (u(x))

u(x)
> γk+2, x ∈ [0, 1],

it deduces that u ∈ Sν
j+1 for some j ≥ k + 1. However, this contradicts the fact u ∈ Sν

k .

Lemma 2.3. Let

M := max{λh(x) f (s) : x ∈ [0, 1], s ∈ [0, s0], 0 ≤ λ ≤ Λ}. (2.7)

Then for any solution (η, u) ∈ R
+ × S+

k of (1.1) with ‖u‖∞ = s0, one has

‖u′‖∞ ≤ M. (2.8)

Proof. It follows from the equation in (1.1) and (2.7) that

‖u′′′′‖∞ ≤ M,

which together with the boundary value conditions in (1.1) imply the desired result.

Let

0 = t0 < t1 < · · · < tk−1 < tk = 1

be the zeros on u in [0, 1]. Let xj be such that

|u(xj)| = max{|u(t)| : t ∈ [tj, tj+1]}, j ∈ {0, 1, · · · , k − 1}.

Lemma 2.4. Let

|u(xj0)| = ‖u‖∞ = s0.

Then

tj0+1 − tj0 ≥
2s0

M
.

Proof. We only deal with the case that u(xj0) = ‖u‖∞ = s0. The other can be treated by the

similar method.

Consider the lines

y − u(xj0) = M(t − xj0), y − u(xj0) = −M(t − xj0).

They intersect on the horizontal axis at

(

xj0 −
u(xj0)

M
, 0

)

,

(

xj0 +
u(xj0)

M
, 0

)

,

respectively. Thus, it follows from this and (2.8) that

(

xj0 −
u(xj0)

M
, xj0 +

u(xj0)

M

)

⊂ (tj0 , tj0+1).



Fourth order equation with clamped beam boundary conditions 5

Lemma 2.5. Let (λ, u) be a Sν
k -solution with ‖u‖∞ = s0. Let

|u(x0)| = max
tj0

≤x≤tj0+1

|u(x)|.

Then
[

x0 −
s0

M
, x0 +

s0

M

]

⊂ (tj0 , tj0+1),

min
{

|u(t)| : t ∈
[

x0 −
s0

2M
, x0 +

s0

2M

]}

≥
1

2
‖u‖∞. (2.9)

Proof. We only deal with the case u(x0) > 0. The other case can be treated by the similar way.

Using the fact

u(t) ≥ u(x0) + M(t − x0), t ∈
[

x0 −
s0

2M
, x0

]

,

u(t) ≥ u(x0)− M(t − x0), t ∈
[

x0, x0 +
s0

2M

]

,

and the similar argument in the proof of Lemma 2.4, we may get the desired result.

Definition 2.6. We say that α ∈ C4[a, b] is a lower solution of

y′′′′ = g(x, y), x ∈ (a, b),

y(a) = y(b) = y′(a) = y′(b) = 0,
(2.10)

if
α′′′′(x) ≤ g(x, α(x)),

α(a) ≤ 0, α(b) ≤ 0, α′(a) ≤ 0, α′(b) ≥ 0.
(2.11)

We say that β ∈ C4[a, b] is an upper solution of (2.10) if β satisfies the reversed inequalities of

the definition of lower solution.

Let us consider the following inequality that will appear later:

g(x, α(x)) ≤ g(x, u) ≤ g(x, β(x)), α(x) ≤ u ≤ β(x). (2.12)

Lemma 2.7 (Cabada [3, Theorem 4.2]). Suppose that g : [a, b]× R → R is a continuous function

and α, β are respectively a lower and an upper solution of (2.10). If α ≤ β and (2.12) holds, then there

exists a solution u(x) of (2.10) such that

α(x) ≤ u(x) ≤ β(x), x ∈ [a, b].

3 Rightward bifurcation

Let µk be the k-th eigenvalue of

y′′′′ = µh(x)y, x ∈ (0, 1),

y(0) = y(1) = y′(0) = y′(1) = 0.

Then its corresponding eigenfunction ϕk has exactly k − 1 simple zeros in (0, 1), see Elias

[8, Corollary 2 and Theorems 1 and 3].

To state our main result, we need to make the following assumption which will guarantee

that any Sν
k -solution u with ‖u‖∞ = s0 implies λ <

µk

f0
, see the proof of Lemma 4.2 below.
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(A5) Let k ≥ 4 and

µk

f0
h∗ min

|s|∈[ 1
2 s0,s0]

f (s)

s
> χ3,

where χk is the k-th eigenvalue of

y′′′′ = χy, x ∈
(

0,
s0

M

)

,

y(0) = y
( s0

M

)

= y′(0) = y′
( s0

M

)

= 0.
(3.1)

Remark 3.1. As we mentioned above, to show the existence of three nodal solutions, we

shall employ a bifurcation technique. Indeed, under (A3) we have an unbounded connected

component which is bifurcating from µk/ f0. Conditions (A1), (A3) and (A4) push the direction

of bifurcation to the right near u = 0. Since Conditions (A5) and (A4) mean that f (s)/s is

large enough in [s0/2, s0] and sublinear near ∞, respectively, it is natural to expect that the

bifurcation curve (λ, u) grows to the right from the initial point (µk/ f0, 0), to the left at some

point and to the right near λ = ∞.

Arguing the shape of bifurcation we have the following

Theorem 3.2. Assume that (A1)–(A5) hold. Let ν ∈ {+,−}. Then there exist λ∗ ∈ (0, µk/ f0) and

λ∗
> µk/ f0, such that

(i) (1.1) has at least one Sν
k -solution if λ = λ∗;

(ii) (1.1) has at least two Sν
k -solutions if λ∗ < λ ≤ µk/ f0;

(iii) (1.1) has at least three Sν
k -solutions if µk/ f0 < λ < λ∗;

(iv) (1.1) has at least two Sν
k -solutions if λ = λ∗;

(v) (1.1) has at least one Sν
k -solution if λ > λ∗.

In the rest of this section, we show a global bifurcation phenomena from the trivial branch

with the rightward direction of bifurcation. Rewriting (1.1) by

u′′′′(x) = λh(x) f0u(x) + λh(x)[ f (u(x))− f0u(x)], x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(3.2)

and using Dancer [7, Theorem 2] and following the similar arguments in the proof of [5,

Theorem 3.2], we have

Lemma 3.3. Assume that (A1)–(A4) hold. Then for each ν ∈ {+,−}, there exists an unbounded

continuum Cν
k which is bifurcating from (µk/ f0, 0) for (1.1). Moreover, if (λ, u) ∈ Cν

k , then u is a

Sν
k -solution for (1.1).

Lemma 3.4. Assume that (A1)–(A4) hold. Let u be a Sν
k -solution of (1.1). Then there exists a constant

C > 0 independent of u such that

‖u′‖∞ ≤ λC‖u‖∞.
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Proof.

u(x) = λ

∫ 1

0
G(x, s)h(s) f (u(s))ds, x ∈ [0, 1].

The Green function G can be explicitly given by

G(x, s) =
1

6

{

x2(1 − s)2[(s − x) + 2(1 − x)s], 0 ≤ x ≤ s ≤ 1,

s2(1 − x)2[(x − s) + 2(1 − s)x], 0 ≤ s ≤ x ≤ 1,
(3.3)

see Cabada and Enguiça [3]. Thus

u′(x) = λ

∫ 1

0
Gx(x, s)h(s) f (u(s))ds, x ∈ [0, 1], (3.4)

Noticing that (A3) and (A4) imply that

| f (s)| ≤ f ⋄|s|, s ∈ R (3.5)

for some f ⋄ > 0, it follows from (3.3), (3.4) and the fact

G(x, s) ≤ 1/4, (x, s) ∈ [0, 1]× [0, 1]; |Gx(x, t)| ≤ 1, (x, t) ∈ [0, 1]× [0, 1]

that

|u′(x)| ≤ λ f ⋄
∫ 1

0
h(t)dt‖u‖∞, x ∈ [0, 1].

By the same method used in the proof of [19, Lemma 3.3], with obvious changes, we may

get the following

Lemma 3.5. Assume that (A1)–(A4) hold. Let (λn, un) be a sequence of Sν
k -solutions to (1.1) which

satisfies ‖un‖∞ → 0 and λn → µk/ f0. Let ϕk ∈ Sν
k be the eigenfunction corresponding to µk which

satisfies ‖ϕk‖∞ = 1. Then there exists a subsequence of {un}, again denoted by {un}, such that

un/‖un‖∞ converges uniformly to ϕk on [0, 1].

Lemma 3.6. Assume that (A1)–(A4) hold. Then there exists δ > 0 such that (λ, u) ∈ Cν
k and

|λ − µk/ f0|+ ‖u‖∞ ≤ δ imply λ > µk/ f0.

Proof. We only deal with the case that ν = +. The other case can be treated by the similar

method.

Assume to the contrary that there exists a sequence {(βn, un)} such that (βn, un) ∈ C+
k ,

βn → µk/ f0, ‖un‖∞ → 0 and βn ≤ µk/ f0. By Lemma 3.5, there exists a subsequence of {un},

again denoted by {un}, such that un/‖un‖∞ converges uniformly to ϕk on [0, 1]. Multiplying

the equation of (1.1) with (λ, u) = (βn, un) by un and integrating it over [0, 1], we obtain

βn

∫ 1

0
h(x) f (un(x))un(x)dx =

∫ 1

0
|u′′

n(x)|2dx,

and accordingly,

βn

∫ 1

0
h(x)

f (un(x))

‖un‖∞

un(x)

‖un‖∞

dx =
∫ 1

0

|u′′
n(x)|2

‖un‖2
∞

dx. (3.6)

From Lemma 3.5, after taking a subsequence and relabeling if necessary, un/‖un‖∞ con-

verges to ϕk in C[0, 1].
∫ 1

0
|ϕ′′

k (x)|2dx = µk

∫ 1

0
h(x)|ϕk(x)|2dx,
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it follows that

βn

∫ 1

0
h(x)

f (un(x))

‖un‖∞

un(x)

‖un‖∞

dx = µk

∫ 1

0
h(x)

|un(x)|2

‖un‖2
∞

dx − ζ(n),

βn

∫ 1

0
h(x) f (un(x))un(x)dx = µk

∫ 1

0
h(x)|un(x)|2dx − ζ(n)‖un‖

2
∞

with a function ζ : N → R satisfying

lim
n→∞

ζ(n) = 0. (3.7)

That is
∫ 1

0
h(x)

f (un(x))− f0un(x)

|un(x)|αun(x)

∣

∣

∣

∣

un(x)

‖un‖∞

∣

∣

∣

∣

2+α

dx

=
βn

‖un‖α
∞

[

µk − f0

βn

∫ 1

0
h(x)

∣

∣

∣

∣

un(x)

‖un‖∞

∣

∣

∣

∣

2

dx − ζ(n)

]

.

(3.8)

Lebesgue’s dominated convergence theorem and condition (A3) imply that

∫ 1

0
h(x)

f (un(x))− f0un

|un(x)|αun(x)

∣

∣

∣

∣

un(x)

‖un‖∞

∣

∣

∣

∣

2+α

dx → − f1

∫ 1

0
h(x)|ϕk|

2+αdx < 0

and
∫ 1

0
h(x)

∣

∣

∣

∣

un(x)

‖un‖∞

∣

∣

∣

∣

2

dx →
∫ 1

0
h(x)|ϕk|

2dx > 0.

This contradicts with βn ≤ µk/ f0.

4 Direction turn of bifurcation

In this section, we will show that

Cν
k ∩ {(λ, w) : (λ, w) ∈ (µk/ f0, ∞)× E with ‖w‖∞ = s0} = ∅.

In other word, there exists a “barrier strip” for Cν
k . From Lemmas 2.4–2.5, we obtain

Lemma 4.1. Assume that (A1)–(A4) hold. Let u be a Sν
k -solution of (1.1) with ‖u‖∞ = s0. Then there

exists Iu := (αu, βu), such that

u(αu) = u(βu) = 0,

βu − αu ≥
2s0

M
,

|u| > 0 in Iu, ‖u‖∞ = u(t0) for some t0 ∈ (αu, βu).

(4.1)

1

2
‖u‖∞ ≤ |u(x)| ≤ ‖u‖∞, x ∈

[

x0 −
s0

2M
, x0 +

s0

2M

]

=: [a, b]. (4.2)

Lemma 4.2. Assume that (A1)–(A5) hold. Let (λ, u) ∈ Cν
k be such that ‖u‖∞ = s0. Then λ < µk/ f0.

Proof. Let u be a Sν
k -solution of (1.1) with ‖u‖∞ = s0. By Lemma 4.1,

1

2
‖u‖∞ ≤ |u(x)| ≤ ‖u‖∞, x ∈ [a, b] = Ju. (4.3)
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Note that u is a solution of

u′′′′(x) = λh(x)
f (u(x))

u(x)
u(x), x ∈ Ju.

Assume on the contrary that

λ ≥ µk/ f0. (4.4)

Then for x ∈ Ju, we have from (A5) that

λh(x)
f (u(x))

u(x)
≥

µk

f0
h∗ min

s∈[s0/2,s0]

f (s)

s
> χ3, x ∈ Ju. (4.5)

Take
β(t) := u(t), t ∈ Ju;

α(t) := ǫψ1(t), t ∈ Ju,

where ψk is the eigenfunction corresponding to the k-th eigenvalue rk of the problem

ψ′′′′ = rψ(t), t ∈ (a, b),

ψ(a) = ψ(b) = ψ′(a) = ψ′(b) = 0,
(4.6)

and ψ1(t) > 0 in (a, b). Since the equations in (3.1) and (4.6) are autonomous,

r1 = χ1. (4.7)

We claim that

β′(a) > 0, β′(b) < 0.

In fact, let us denote

γ̃(x) := λh(x)
f (u(x))

u(x)
> 0 for x ∈ (0, 1),

and

γ̃(0) := λh(0) f0, γ̃(1) := λh(1) f0.

Then γ̃ ∈ C0[0, 1] since f0 = lims→0 f (s)/s exists by (A3). Now, the claim can be easily

deduced from Bari and Rynne [2, Lemma 2.1] and Elias [8] and the facts

u′′′′ = λh(x)
f (u(x))

u(x)
u(x), x ∈ (0, 1).

Obviously, β is an upper solution of

z′′′′(x) = λh(x)
f (u(x))

u(x)
z(x), a < x < b,

z(a) = z(b) = z′(a) = z′(b) = 0.

(4.8)

From (4.5) and (4.7), it is follows that

(ǫψ1(x))′′′′ = r1(ǫψ1(x)) = χ1(ǫψ1(x)) < χ3(ǫψ1(x)) < λh(x)
f (u(x))

u(x)
(ǫψ1(x)), x ∈ (a, b).

So, α is a lower solution of (4.8).
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We may take ǫ > 0 is so small that

α(x) ≤ β(x), x ∈ (a, b).

Therefore, it follows from Cabada [3, Theorem 4.2] that there exists a solution y(x) of (4.8)

such that

α(x) ≤ y(x) ≤ β(x). (4.9)

On the other hand, ‖y‖∞ ≤ ‖u‖∞ = s0 implies that the weight function in (4.8) satisfies

λh(x)
f (u(x))

u(x)
> χ3, x ∈ (a, b).

Combining this with the facts ψ3(x − a) has exactly two simple zeros in (a, b) and

y′′′′ = λh(x)
f (u(x))

u(x)
y(x), x ∈ (a, b),

and using Lemma 2.1, it deduces that y has a zero in (a, b). However, this contradicts (4.9).

5 Second turn and proof of Theorem 3.2

In this section, we shall give a-priori estimate and finalize the proof of Theorem 3.2.

Lemma 5.1. Assume that (A1)–(A4) hold. Let (λ, u) be a Sν
k -solution of (1.1). Then there exists

λ∗ > 0 such that λ ≥ λ∗.

Proof. Lemma 3.4 implies that (3.2) holds for some constant C > 0, which is independent of

u. Let ‖u‖∞ = u(x0). From (3.2) it follows that

‖u‖∞ = |u(x0)| ≤
∫ x0

0
|u′(x)|dx ≤ λC‖u‖∞,

that is, λ ≥ C−1.

Lemma 5.2. Assume that (A1)–(A4) hold. Let J = [a1, b1] be a compact interval in (0, ∞). Then for

given ν ∈ {+,−}, there exists MJ > 0 such that for all λ ∈ J, all possible Sν
k -solutions u of (1.1)

satisfy

‖u‖∞ ≤ MJ . (5.1)

Proof. By (A4), we have that for any σ > 0, there exists Cσ > 0, such that

| f (s)| ≤ Cσ + σ|s|. (5.2)

This together with (3.3) imply

|u(x)| = λ

∣

∣

∣

∣

∫ 1

0
G(x, s)h(s) f (u(s))ds

∣

∣

∣

∣

≤ λ

∣

∣

∣

∣

∫ 1

0
G(x, s)h(s)(Cσ + σ|u(s)|)ds

∣

∣

∣

∣

≤ b1

∣

∣

∣

∣

∫ 1

0
G(x, s)h∗(Cσ + σ|u(s)|)ds

∣

∣

∣

∣

≤ C1 + σC2‖u‖∞,

(5.3)
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where
C1 := b1h∗Cσ max{G(x, s) : (x, s) ∈ [0, 1]× [0, 1]},

C2 := b1h∗ max{G(x, s) : (x, s) ∈ [0, 1]× [0, 1]}.

Take σ so small that σC2 < 1. Then it follows from (5.3) that

‖u‖∞ ≤
C1

1 − σC2
=: MJ .

Lemma 5.3. Assume that (A1)–(A4) hold. Let Cν
k be as in Lemma 3.3. Then there exists {(λn, un)}

such that (λn, un) ∈ Cν
k , λn → ∞ as n → ∞ and ‖un‖∞ → ∞.

Proof. We only deal with the case ν = +. The case ν = − can be treated by the similar method.

Since C+
k is unbounded, there exists {(λn, un)} solutions of (1.1) such that {(λn, un)} ⊂ C+

k

and |λn|+ ‖un‖∞ → ∞. Lemma 5.1 implies that λn > 0.

Assume on the contrary that there exists sequence {(λn, un)} with

‖un‖∞ ≤ M1, ∀n ∈ N.

Then λn → ∞, and

u′′′′
n = λnh(x)

f (un)

un
un. (5.4)

Since

h∗ min
0<s≤M1

f (s)

s
≥ δ0 > 0, (5.5)

Since u′′′′ = 0 is disconjugate in [0, 1] and

λnh(x)
f (un)

un
→ ∞ uniformly for x ∈ [0, 1],

it follows from the proof of [8, Lemma 4] (see also the remarks in the final paragraph on

[8, p. 43], or the proof of Rynne [17, Lemma 3.7]) that un has more than k zeros in any given

subinterval I∗ ⊆ [0, 1] if n is large enough. However, this contradicts the fact u ∈ S+
k .

Proof of Theorem 3.2. Let Cν
k be as in Lemma 3.3. We only deal with C+

k since the case C−
k can

be treated similarly.

By Lemma 3.6, C+
k is bifurcating from (µk/ f0, 0) and goes rightward. Let (λn, un) be as in

Lemma 5.3. Then there exists (λ0, u0) ∈ C+
k such that ‖u0‖∞ = s0. Lemma 4.2 implies that

λ0 < µk/ f0.

By Lemmas 3.6, 4.2 and 5.2, it follows that for ǫ > 0 small enough, C+
k passes through

some points (µk/ f0 − ǫ, v1) and (µk/ f0 + ǫ, v2) with

‖v1‖∞ < s0 < ‖v2‖∞.

By Lemmas 3.6, 4.2 and 5.2 again, there exist λ and λ̄ which satisfy 0 < λ < µk/ f0 < λ̄ and

both (i) and (ii):

(i) if λ ∈ (µk/ f0, λ̄], then there exist u and v such that (λ, u), (λ, v) ∈ C+
k and

‖u‖∞ < ‖v‖∞ < s0;

(ii) if λ < µk/ f0 and λ ∈ [λ, µk/ f0], then there exist u and v such that (λ, u), (λ, v) ∈ C+
k

and ‖u‖∞ < s0 < ‖v‖∞.
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Define

λ∗ = sup{λ̄ : λ̄ satisfies (i)}, λ∗ = inf{λ : λ satisfies (ii)}.

Then by the standard argument, (1.1) has a S+
k -solution at λ = λ∗ and λ = λ∗, respectively.

Since C+
k passes through (µk/ f0 + ǫ, v2) and (λn, un), Lemmas 4.2 and 5.2 show that, for each

λ > µk/ f0, there exists w such that (λ, w) ∈ C+
k and ‖w‖∞ > s0. This completes the proof.

Remark 5.4. Let ρ>1 be a positive parameter. Let g1∈C([4, ∞), (0, ∞)) and g2∈C([1, 2], (0, ∞))

such that

g1(4) = 4ρ + 2, lim
|s|→∞

g1(s)

s
= 0, g2(1) = 1, g2(2) = 2 + 2ρ.

Let

f̂ (s) =























g1(s), s ∈ [4, ∞),

ρs + 2, s ∈ [2, 4),

g2(s), s ∈ (1, 2),

2s − s2, s ∈ [0, 1],

and

f̃ (s) =

{

f̂ (s), s ∈ [0, ∞),

− f̂ (−s), s ∈ [−∞, 0).

Then f̃ satisfies (A4) and (A3) with f̃0 = 2, f̃1 = 1, α = 1. If we take s0 = 4 and h(x) ≡ 1 in

[0, 1], then (A5) can be rewritten as

µk

2

(

ρ +
1

2

)

> χ3.

In order to compute χ3, we may use (2.5) and (2.7) to find Λ and M, and then use (3.1) to find

χ3. In fact,

χ3 = µ3

(

M

s0

)4

, µ3
.
= (10.9956)4 .

= 14617.6.

Therefore, Theorem 3.2 can be used to deal with the case f = f̃ and h ≡ 1 if ρ large enough.

Remark 5.5. We may study the oscillating global continua of positive solutions of (1.1) under

the conditions

(A6) there exist two positive constant γ+, γ− and a sequence {ξk} ⊂ (0, ∞) with

ξ2j−1 < ξ2j < ξ2j < ξ2j+1, ξ2j−1 <
1

24
ξ2j, j = 1, 2, . . . ; (5.6)

such that

f (s)

s
<

f0

(λ1 + γ+ f0)
∫ 1

0 max{G(t, s) : t ∈ [0, 1]}h(s)ds
, s ∈ (0, ξ2j−1], (5.7)

f (s)

s
>

f0

(λ1 − γ− f0)η2
0

∫ 3/4
1/4 min{G(t, s) : t ∈ [1/4, 3/4]}h(s)ds

, s ∈

[

1

24
ξ2j, ξ2j

]

. (5.8)

Together f0 ∈ (0, ∞) with the facts that

G(t, s) ≥
1

24
G(j(s), s), (t, s) ∈

[

1

4
,

3

4

]

,



Fourth order equation with clamped beam boundary conditions 13

where

j(s) =

{

1
3−2s , 0 ≤ s ≤ 1

2 ,
2s

1+2s , 1
2 ≤ s ≤ 1.

By the similar argument in Rynne [16], we may get that for all λ ∈
(

λ1
f0
− γ−, λ1

f0
+ γ+

)

, (1.1)

has infinitely many positive solutions. Obviously, (5.8) is similar to (A5).
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Abstract. This paper considers two-point higher order impulsive boundary value prob-
lems, with a strongly nonlinear fully differential equation with an increasing homeo-
morphism. It is stressed that the impulsive effects are defined by very general functions,
that can depend on the unknown function and its derivatives, till order n − 1.

The arguments are based on the lower and upper solutions method, together with
Leray–Schauder fixed point theorem. An application, to estimate the bending of a one-
sided clamped beam under some impulsive forces, is given in the last section.
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1 Introduction

In this article we study the two point boundary value problem composed by the one-dimensional
φ-Laplacian equation

(φ(u(n−1)(t)))′ + q(t) f (t, u(t), . . . , u(n−1)(t)) = 0, t ∈ [a, b]\{t1, . . . , tm}, (1.1)

where φ is an increasing homeomorphism such that φ(0) = 0 and φ(R) = R, q ∈ L∞[a, b] is
a positive function and f : [a, b]× R

n → R is a L1-Carathéodory function, together with the
boundary conditions

u(j)(a) = Aj, u(n−1)(b) = B, j = 0, 1, . . . , n − 2, Aj, B ∈ R, (1.2)

BCorresponding author. Email:fminhos@uevora.pt



2 F. Minhós and R. Carapinha

and the impulsive conditions

∆u(i)(tk) = Ii,k(u(tk), u′(tk), . . . , u(n−1)(tk)), i = 0, 1, . . . , n − 2,

∆φ(u(n−1)(tk)) = In−1,k(u(tk), u′(tk), , . . . , u(n−1)(tk)),
(1.3)

being ∆u(i)(tk) = u(i)(t+k )− u(i)(t−k ), i = 0, 1, . . . , n − 1, k = 1, 2, . . . , m, Ii,k ∈ C(Rn, R), and tk

fixed points such that a = t0 < t1 < t2 < · · · < tm < tm+1 = b.
Impulsive boundary value problems have been studied by many authors where it is high-

lighted the huge possibilities of applications to phenomena where a sudden variation hap-
pens. Indeed, these types of jumps occur in different areas such as population dynamics,
engineering, control, and optimization theory, medicine, ecology, biology and biotechnology,
economics, pharmacokinetics, and many other fields.

From a large number of items existent in the literature on classical impulsive differential
problems, we mention, for instance, [1, 2, 17, 19–21] and the references therein. The most
applied arguments are based on critical point theory and variational methods [18, 22, 26],
fixed point theory on cones [6, 29], bifurcation results [13, 15], and upper and lower solutions
techniques suggested in [4, 5, 12, 14].

In the last years, p-Laplacian and φ-Laplacian operators have been applied to semi-linear,
quasi-linear, and strongly nonlinear differential equations, in singular and regular cases, in-
creasing the range of theoretical and practical applications, as it can be seen, for example, in
[3, 11, 25, 27, 28, 30] and in their references. However, impulsive problems with this type of
nonlinear differential equations are scarce.

In [16], the third order differential equation

(φ(u′′(t)))′ + q(t) f (t, u(t), u′(t), u′′(t)) = 0, t ∈ [a, b]\{t1, . . . , tn},

is studied, where φ is an increasing homeomorphism, q ∈ C([a, b]) with q > 0 , f ∈ C([a, b]×
R

3, R), the two-point boundary conditions

u(a) = A, u′(a) = B, u′′(b) = C, A, B, C ∈ R,

and the impulsive effects are given by

∆u(tk) = I1k(tk, u(tk), u′(tk)),

∆u′(tk) = I2k(tk, u(tk), u′(tk), u′′(tk)),

∆φ(u′′(tk)) = I3k(tk, u(tk), u′(tk), u′′(tk)),

where k = 1, 2, . . . , n, I1k ∈ C([a, b]× R
2, R), and Iik ∈ C([a, b]× R

3, R), i = 2, 3.
In this work, we found a method that allows generalizing the above results to higher-order

boundary value problems with impulsive functions, depending not only on the unknown
function but also on its derivatives till order n− 1. To best of our knowledge, it is the first time,
where such nonlinear higher-order problems are considered with this type of generalized
impulsive functions.

This paper is organized in the following way: Section 2 contains the functional framework,
some definitions and an explicit form for the solution of the associated homogeneous problem.
Section 3 presents the main existence and localization theorem obtained via lower and upper
solutions technique and a fixed point theorem. The last section gives a technique to estimate
the bending of a one-sided clamped beam under some impulsive forces and how it can be
obtained some qualitative data about its variation.
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2 Definitions and preliminary results

Let

PCn−1[a, b] =

{

u : u ∈ Cn−1([a, b]; R) for t 6= tk, u(i)(tk) = u(i)(t−k ), u(i)(t+k )

exists for k = 1, 2, . . . , m, and i = 0, 1, . . . , n − 1

}

.

Denote X := PCn−1[a, b]. Then X is a Banach space with norm

‖u‖X = max{‖u(i)‖∞, i = 0, 1, . . . , n − 1},

where
‖w‖∞ = sup

a≤t≤b

|w(t)|.

Defining J := [a, b] and J′ = J\{t1, . . . , tm}, for a solution u of problem (1.1)–(1.3) one should
consider u(t) ∈ E, where

E := PCn−1(J) ∩ Cn(J′).

Next lemma provides a uniqueness result for a linear problem related to (1.1)–(1.3).

Lemma 2.1. For v ∈ PC[a, b], the problem composed by the differential equation

(φ(u(n−1)(t)))′ + v(t) = 0 (2.1)

together with conditions (1.2), (1.3), has a unique solution given by

u(t) =
n−2

∑
i=0

([

Ai + ∑
k : tk<t

Ii,k

(

tk, u(tk), . . . , u(n−1)(tk)
)

]

(t − a)n−2−i

(n − 2 − i)!

)

+
∫ t

a

(t − s)n−2

(n − 2)!
φ−1

(

φ(B) +
∫ b

s
v(r)dr − ∑

k : tk>s

In−1,k

(

tk, u(tk), . . . , u(n−1)(tk)
)

)

ds.

Proof. Integrating the differential equation (2.1) for t ∈ (tm, b] we get, by (1.2),

φ
(

u(n−1)(t)
)

= φ(B) +
∫ b

tm

v(s)ds. (2.2)

By integration of (2.1) for t ∈ (tm−1, tm] one has by (2.2)

φ
(

u(n−1)(t)
)

=
∫ tm

t
v(s)ds − In−1,m

(

tm, u(tm), . . . , u(n−1)(tm)
)

+ φ
(

u(n−1) (t+m
)

)

= φ (B)− In−1,m

(

tm, u(tm), . . . , u(n−1)(tm)
)

+
∫ b

t
v(s)ds

and so,

u(n−1)(t) = φ−1
(

φ (B)− In−1,m

(

tm, u(tm), . . . , u(n−1)(tm)
)

+
∫ b

t
v(s)ds

)

.

Therefore, for t ∈ [a, b], we have

u(n−1)(t) = φ−1

(

φ(B) +
∫ b

t
v(s)ds − ∑

k : tk>t

In−1,k

(

tk, u(tk), . . . , u(n−1)(tk)
)

)

. (2.3)
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Integrating (2.3), for t ∈ [a, t1],

u(n−2)(t) = An−2 +
∫ t

a

(

φ−1

(

φ(B) +
∫ b

s
v(r)dr − ∑

k : tk>s

In−1,k

(

tk, u(tk), . . . , u(n−1)(tk)
)

))

ds.

By integration of (2.3) on (t1, t2] and (1.3)

u(n−2)(t) = In−2,1

(

t1, u(t1), . . . , u(n−1)(t1)
)

+
∫ t

t1

(

φ−1

(

φ(B) +
∫ b

s
v(r)dr − ∑

k : tk>s

In−1,k

(

tk, u(tk), . . . , u(n−1)(tk)
)

))

ds.

Therefore, for t ∈ [a, b],

u(n−2)(t) = ∑
k : tk<t

(

In−2,k

(

tk, u(tk), . . . , u(n−1)(tk)
))

+ An−2

+
∫ t

a

(

φ−1

(

φ(B) +
∫ b

s
v(r)dr − ∑

k : tk>s

In−1,k

(

tk, u(tk), . . . , u(n−1)(tk)
)

))

ds.

Following the same method, by iterate integrations and (1.3), we obtain for t ∈ [a, b]

u(t) =
n−2

∑
i=0

([

Ai + ∑
k : tk<t

Ii,k

(

tk, u(tk), . . . , u(n−1)(tk)
)

]

(t − a)n−2−i

(n − 2 − i)!

)

+
∫ t

a

(t − s)n−2

(n − 2)!
φ−1

(

φ(B) +
∫ b

s
v(s)ds − ∑

k : tk>s

In−1,k

(

tk, u(tk), . . . , u(n−1)(tk)
)

)

ds.

Lower and upper solutions will play a key role in our method, and they are defined as it
follows:

Definition 2.2. A function α(t) ∈ E with φ(α(n−1)(t)) ∈ PC1[a, b] is a lower solution of problem
(1.1), (1.2), (1.3) if















































(φ
(

α(n−1)(t))
)′

+ q(t) f
(

t, α(t), α′(t), . . . , α(n−1)(t)
)

≥ 0

α(j) (a) ≤ Aj, j = 0, 1, . . . , n − 2,

α(n−1) (b) ≤ B

∆α(i)(tk) ≤ Ii,k(α(tk), . . . , α(n−1)(tk)), i = 0, 1, . . . , n − 3,

∆α(n−2)(tk) > In−2,k(α(tk), . . . , α(n−1)(tk))

∆φ(α(n−1)(tk)) > In−1,k(α(tk), . . . , α(n−1)(tk)),

(2.4)

for k = 1, 2, . . . , m.
A function β(t) ∈ E such that φ(β(n−1)(t)) ∈ PC1[a, b] is an upper solution of (1.1)–(1.3) if

it satisfies the opposite inequalities.

To control the derivative u(n−1)(t) we will apply the Nagumo condition:
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Definition 2.3. An L1-Carathéodory function f : [a, b]×R
n → R satisfies a Nagumo condition

related to a pair of functions γ, Γ ∈ E, with γ(i)(t) ≤ Γ(i)(t), for i = 0, 1, . . . , n− 2, and t ∈ [a, b],
if there exists a function ψ : C([0,+∞), ]0,+∞)) such that

| f (t, x0, x1, . . . , xn−1)| ≤ ψ(|xn−1|), for all (t, x0, x1, . . . , xn−1) ∈ S (2.5)

with

S := {(t, x0, x1, . . . , xn−1) ∈ [a, b]× R
n : γ(i)(t) ≤ xi ≤ Γ(i)(t), i = 0, 1, . . . , n − 2},

and
∫ +∞

φ(µ)

ds

ψ(φ−1(s))
>

∫ b

a
q(s)ds, (2.6)

where

µ := max
k=0,1,2,...,m

{∣

∣

∣

∣

∣

Γ(n−2)(tk+1)− γ(n−2)(tk)

tk+1 − tk

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

γ(n−2)(tk+1)− Γ(n−2)(tk)

tk+1 − tk

∣

∣

∣

∣

∣

}

.

From the Nagumo condition we deduce an a priori estimation for u(n−1)(t):

Lemma 2.4. If the L1-Carathéodory function f : [a, b] × R
n → R satisfies a Nagumo condition in

the set S, referred to the functions γ and Γ, then there is N ≥ µ > 0 such that every solution u of the

differential equation (1.1) verifies ‖u(n−1)‖∞ ≤ N.

Proof. Let u(t) be a solution of (1.1) such that

γ(i)(t) ≤ u(i)(t) ≤ Γ(i)(t), for i = 0, 1, . . . , n − 2 and t ∈ [a, b].

By the Mean Value Theorem, there exists η0 ∈ (tk, tk+1) with

u(n−1)(η0) =
u(n−2)(tk+1)− u(n−2)(tk)

tk+1 − tk
, with k = 0, 1, 2, . . . , m.

Moreover,

−N ≤ −µ ≤ γ(n−2)(tk+1)− Γ(n−2)(tk)

tk+1 − tk
≤ u(n−1)(η0) (2.7)

≤ Γ(n−2)(tk+1)− γ(n−2)(tk)

tk+1 − tk
≤ µ ≤ N.

If
∣

∣u(n−1)(t)
∣

∣ ≤ N for every t ∈ [a, b], the proof is complete.
On the contrary, assume that there is τ ∈ [a, b] such that

∣

∣u(n−1)(τ)
∣

∣ > N. Consider the
case where u(n−1)(τ) > N. Therefore there is η1 such that u(n−1)(η1) = N. Suppose, without
loss of generality, that η0 < η1. So,

u(n−1)(t) > 0 and u(n−1)(η0) ≤ u(n−1)(t) ≤ N, for t ∈ [η0, η1] .

So

|φ(u(n−1)(t))| = |q(t) f (t, u(t), . . . , u(n−1)(t))| ≤ q(t)|ψ(u(n−1)(t))|, for t ∈ [η0, η1] ,
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and
∫ φ(N)

φ(u(n−1)(η0))

ds

ψ(φ−1(s))
≤
∫ η1

η0

|(φ(u(n−1)(t))′|
ψ(u(n−1)(t))

dt

=
∫ η1

η0

|q(t) f (t, u(t), . . . , u(n−1)(t))|
ψ(u(n−1)(t))

dt ≤
∫ η1

η0

q(t)dt <
∫ b

a
q(t)dt.

As u(n−1)(η0) ≤ µ < N, by the monotony of φ,

φ(u(n−1)(η0)) ≤ φ(µ)

and, by (2.6),
∫ φ(N)

φ(u(n−1)(η0))

ds

ψ(φ−1(s))
≥
∫ φ(N)

φ(µ)

ds

ψ(φ−1(s))
>

∫ b

a
q(t)dt

which leads to a contradiction.
The other cases, that is, u(n−1)(τ) > N with η1 < η0, and u(n−1)(τ) < −N with η0 <

η1 or η1 < η0, follow the same arguments to obtain a contradiction.
Therefore

∣

∣u(n−1)(t)
∣

∣ ≤ N, for t ∈ [a, b].

Forward, in our method, we will use the following lemma, given in [23]:

Lemma 2.5. For v, w ∈ C(I) such that v(x) ≤ w(x), for every x ∈ I, define

q(x, u) = max{v, min{u, w}}.

Then, for each u ∈ C1(I) the next two properties hold:

(a) d
dx q(x, u(x)) exists for a.e. x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I) then

d

dx
q(x, um(x)) → d

dx
q(x, u(x)) for a.e. x ∈ I.

We recall the classical Schauder’s fixed point theorem:

Theorem 2.6. Let M be a nonempty, closed, bounded and convex subset of a Banach space X, and

suppose that T : M → M is a compact operator. Then T as at least one fixed point in M.

3 Existence and localization result

The main result is an existence and localization theorem, as it provides not only the existence
of solutions but also some of its qualitative properties.

Theorem 3.1. Suppose that there are α and β lower and upper solutions, respectively, of problem

(1.1)–(1.3) such that

α(n−2)(t) ≤ β(n−2)(t), for t ∈ [a, b].

Assume that the L1-Carathéodory function f : [a, b]× R
n → R satisfies a Nagumo condition, related

to α and β, and verifies

f (t, α(t), . . . , α(n−3)(t)), y, z) ≤ f (t, x0, . . . , xn−1) ≤ f (t, β(t), . . . , β(n−3)(t), y, z), (3.1)
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for α(i)(t) ≤ xi ≤ β(i)(t), for i = 0, . . . , n − 3, and fixed (y, z) ∈ R
2.

Moreover, if the impulsive functions satisfy

Ij,k(α(tk), . . . , α(n−1)(tk)) ≤ Ij,k(x0, . . . , xn−1) ≤ Ij,k(β(tk), . . . , β(n−1)(tk)), (3.2)

for j = 0, . . . , n − 3, α(i)(tk) ≤ xi ≤ β(i)(tk), for i = 0, 1, . . . , n − 2, k = 1, 2, . . . , m,
and

In−2,k(α(tk), . . . , α(n−3)(tk), y, z) ≥ In−2,k(x0, . . . , xn−1) (3.3)

≥ In−2,k(β(tk), . . . , β(n−3)(tk), y, z)

for α(i)(t) ≤ xi ≤ β(i)(t), for i = 0, . . . , n − 3, and fixed (y, z) ∈ R
2, then problem (1.1)–(1.3) has at

least one solution u ∈ E, such that

α(i)(t) ≤ u(i)(t) ≤ β(i)(t) for i = 0, 1, . . . , n − 2 and − N ≤ u(n−1)(t) ≤ N,

for t ∈ [a, b] and N given by (2.7).

Proof. Define the continuous functions δi, for i = 0, 1, . . . , n − 2,

δi(t, u(i)(t)) =















β(i)(t), u(i)(t) ≥ β(i)(t)

u(i)(t), α(i)(t) ≤ u(i)(t) ≤ β(i)(t)

α(i)(t), u(i)(t) ≤ α(i)(t)

and consider the following modified and perturbed equation

(φ(u(n−1)(t)))′ + q(t) f

(

t, δ0(t, u(t)), . . . , δn−2(t, u(n−2)(t)),
d

dt

(

δn−2(t, u(n−2)(t))
)

)

+
δn−2(t, u(n−2)(t))− u(n−2)(t)

1 + |u(n−2)(t)− δn−2(t, u(n−2)(t))| = 0, (3.4)

coupled with boundary conditions (1.2) and the truncated impulsive conditions, for i =

0, 1, . . . , n − 2,

∆u(i)(tk) = Ii,k

(

δ0(tk, u(tk)), . . . , δn−2(tk, u(n−2)(tk),
d
dt (δn−2(tk, u(n−2)(tk)))

)

:= I∗i,k(tk),

∆φ(u(n−1)(t)) = In−1,k

(

δ0(tk, u(tk)), . . . , δn−2(tk, u(n−2)(tk)),
d
dt (δn−2(tk, u(n−2)(tk)))

)

:= I∗n−1,k(tk).

(3.5)

Define the operator T : E → E by

T(u)(t) :=
n−2

∑
i=0

([

Ai + ∑
k : tk<t

I∗i,k

]

(t − a)n−2−i

(n − 2 − i)!

)

+
∫ t

a

(t − s)n−2

(n − 2)!
φ−1

(

φ(B) +
∫ b

s
v(s)ds − ∑

k : tk>s

I∗n−1,k

)

ds.

By Lemma 2.1, it is clear that the fixed points of T, u∗, are solutions of the initial problem
(1.1)-(3.5), if they verify

α(i)(t) ≤ u
(i)
∗ (t) ≤ β(i)(t), for t ∈ [a, b] and i = 0, 1, . . . , n − 2.
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As T is compact, by Schauder’s fixed point theorem, T has a fixed point u ∈ E, which is a
solution of (3.4), (1.2), (3.5). To prove that this solution verifies

α(i)(t) ≤ u(i)(t) ≤ β(i)(t), for t ∈ [a, b], and i = 0, 1, . . . , n − 2,

suppose, by contradiction, that, for i = n − 2, there is t ∈ [a, b] such that

u(n−2)(t) > β(n−2)(t).

Define ζ ∈ [a, b] as

sup
t∈[a,b]

(u(n−2)(t)− β(n−2)(t)) := u(n−2)(ζ)− β(n−2)(ζ)) > 0. (3.6)

By (1.2) and Definition 2.2, u(n−2)(a) − β(n−2)(a) ≤ 0, then ζ 6= a. On the other hand
u(n−1)(b)− β(n−1)(b) < 0 and then ζ 6= b, by (3.6).

Therefore ζ ∈ ]a, b[.

Case 1: Assume that there is p ∈ {1, 2, . . . , m} such that ζ ∈ (tp, tp+1).

Consider ǫ > 0 small enough such that

u(n−2)(t)− β(n−2)(t) > 0 and u(n−1)(t)− β(n−1)(t) ≤ 0, for t ∈ (ζ, ζ + ǫ) . (3.7)

Therefore, by (3.1) and (3.7), for all t ∈ (ζ, ζ + ǫ), we have the following contradiction

0 ≥ φ
(

u(n−1)(t)
)′

− φ
(

β(n−1)(t)
)′

≥ − q(t) f

(

t, δ0(t, u(t)), . . . , δn−2(t, u(n−2)(t)),
d

dt

(

δn−2(t, u(n−2)(t))
)

)

−
δn−2

(

t, u(n−2)(t)
)

− u(n−2)(t)

1 +
∣

∣u(n−2)(t)− δn−2
(

t, u(n−2)(t)
)∣

∣

+ q(t) f
(

t, β(t), . . . , β(n−1)(t)
)

= − q(t) f
(

t, δ0(t, u(t)), . . . , δn−3 (t, u(t)) , β(n−2)(t), β(n−1)(t)
)

− β(n−2)(t)− u(n−2)(t)

1 +
∣

∣u(n−2)(t)− β(n−2)(t)
∣

∣

+ q(t) f
(

t, β(t), . . . , β(n−1)(t)
)

≥ − q(t) f
(

t, β(t), . . . , β(n−1)(t)
)

− β(n−2)(t)− u(n−2)(t)

1 +
∣

∣u(n−2)(t)− β(n−2)(t)
∣

∣

+ q(t) f
(

t, β(t), . . . , β(n−1)(t)
)

=
u(n−2)(t)− β(n−2)(t)

1 +
∣

∣u(n−2)(t)− β(n−2)(t)
∣

∣

> 0.

Case 2: Consider that there exists k ∈ {1, 2, . . . , m} such that, or

max
t∈[a,b]

(

u(n−2)(t)− β(n−2)(t)
)

:= u(n−2)(t−k )− β(n−2)(t−k ) > 0 (3.8)

or
sup

t∈[a,b]

(

u(n−2)(t)− β(n−2)(t)
)

:= u(n−2)(t+k )− β(n−2)(t+k ) > 0. (3.9)

If (3.8) holds, then
∆
(

u(n−2)(t)− β(n−2)(t)
)

≤ 0
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and, by (3.3) and Definition 2.2, we have the contradiction

0 ≥ ∆u(n−2)(tk)− ∆β(n−2)(tk) = I∗n−2,k − ∆β(n−2)(tk)

= In−2,k

(

δ0(t, u(t)), . . . , δn−3 (t, u(t)) , β(n−2)(t), β(n−1)(t)
)

− ∆β(n−2)(tk)

≥ In−2,k

(

tk, β(tk), . . . , β(n−1)(tk)
)

− ∆β(n−2)(tk) > 0.

Consider now (3.9). So, there is ǫ > 0 such that, for t ∈ (tk, tk + ǫ),

u(n−1)(t)− β(n−1)(t) ≤ 0,

and the arguments follow by the same technique as in Case 1, to have

u(n−2)(t) ≤ β(n−2)(t), ∀t ∈ [a, b].

To prove that u(n−2)(t) ≥ α(n−2)(t), ∀t ∈ [a, b], the method is similar. Therefore

α(n−2)(t) ≤ u(n−2)(t) ≤ β(n−2), for t ∈ [a, b].

Integrating the first inequality in [a, t1], we have

α(n−3)(t) ≤ u(n−3)(t)− u(n−3)(a) + α(n−3)(a) (3.10)

= u(n−3)(t)− An−3 + α(n−3)(a) ≤ u(n−3)(t).

For t ∈ (t1, t2], by (3.2) and (3.10),

α(n−3)(t) ≤ u(n−3)(t)− u(n−3)(t+1 ) + α(n−3)(t+1 )

≤ u(n−3)(t)− I∗n−3,1(t1)− u(n−3)(t1)

+ In−3,1

(

t1, α(t1), . . . , αn−1(t1)
)

+ α(n−3)(t1)

≤ u(n−3)(t)− I∗n−3,1(t1) + In−3,1

(

t1, α(t1), . . . , α(n−1)(t1)
)

≤ u(n−3)(t).

Applying this method for each interval (tk, tk+1], k = 2, . . . , m, we obtain

α(n−3)(t) ≤ u(n−3)(t), ∀t ∈ [a, b],

and, by the same technique,

β(n−3)(t) ≥ u(n−3)(t), ∀t ∈ [a, b].

By iteration of these arguments, we conclude

α(i)(t) ≤ u(i)(t) ≤ β(i)(t), for i = 0, 1, . . . , n − 2, and t ∈ [a, b].

The estimation
∣

∣u(n−1)(t)
∣

∣ ≤ N is a trivial consequence of Lemma 2.4.
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4 Estimation for the bending of one-sided clamped beam under im-

pulsive effects

Problems related to beam structures and especially beams that support some forces as im-
pulses, are part of a vast field of investigation in boundary value problems theory, see, for
example, [7–10, 24].

In this application we consider a model to describe the bending of a beam with length
L > 1, given by the fourth-order equation

EI

A
u(4) (x) +

3
2

3
√

u′(x)|u′′(x)| − ku(x)− γu′′′(x) = 0, for x ∈ ]0, L[ , (4.1)

where E > 0 is the Young modulus, I > 0 the mass moment of inertia, A > 0 the cross section
area, k > 0 the tension of a spring force vertically applied on the beam, and γ > 0 the shear
force coefficient.

At the end points the behavior of the beam is given by the following boundary conditions

u(0) = 0, u′(0) = 1, u′′(0) = 0, u′′′(L) = 0, (4.2)

meaning that the beam is clamped on the left end side.
For clearance, we consider only one moment of impulse which occurs at t1 = 1. The im-

pulsive effects are given by generalized functions with dependence on the unknown function
itself, and on several derivatives till order three,

∆u(1) = u(1) + u′(1)− 2u′′(1)− u′′′(1)

∆u′(1) = u(1) + u′(1)− 2u′′(1)− u′′′(1) (4.3)

∆u′′(1) = −u(1)− u′(1) + u′′(1) + 5u′′′(1)− 1

∆u′′′(1) = u(1)− u′(1) + u′′(1) + u′′′(1)− 1.

This problem (4.1)-(4.3) is a particular case of (1.1)-(1.3) with [a, b] = [0, L] , n = 4,

f (x, y0, y1, y2, y3) =
A

EI

(

3
2

3
√

y1|y2| − ky0 − γy3

)

, (4.4)

φ(w) = w, q(t) ≡ 1, m = 1, t1 = 1, and the impulsive functions given by

I0,1(w0, w1, w2, w3) = w0 + w1 − 2w2 − w3

I1,1(w0, w1, w2, w3) = w0 + w1 − 2w2 − w3

I2,1(w0, w1, w2, w3) = −w0 − w1 + w2 + 5w3 − 1

I3,1(w0, w1, w2, w3) = w0 − w1 + w2 + w3 − 1.

As a numeric example we can consider A = 1, EI = 1, k = 1, γ = 6, L = 2. In this case,
the continuous functions

α(x) = 0, β(x) =
x3

6
+ x2 + x, for x ∈ [0, 2] ,

are, respectively, lower and upper solutions of problem (4.1)–(4.3), according to Definition 3.6.
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In fact, for α(x) ≡ 0 the inequalities are trivially satisfied and for β, we have,

β(0) = 0, β′(0) = 1, β′′(0) = 2 > 0, β′′′(2) = 1 > 0,

∆β(1) = 0 ≥ β(0) + β′(0)− 2β′′(0)− β′′′(0) = −4
3

,

∆β′(1) = 0 ≥ β(0) + β′(0)− 2β′′(0)− β′′′(0) = −4
3

,

∆β′′(1) = 0 < −β(0)− β′(0) + β′′(0) + 5β′′′(0)− 1 =
4
3

∆β′′′(1) = 0 < β(0)− β′(0) + β′′(0) + β′′′(0)− 1 =
5
3

.

The nonlinear part f (x, y0, y1, y2, y3), given by (4.4), verifies a Nagumo condition on the set

S∗ =

{

(t, y0, y1, y2, y3) ∈ [0, 2]× R
n : 0 ≤ y0 ≤ x3

6 + x2 + x,

0 ≤ y1 ≤ x2

2 + 2x + 1, 0 ≤ y2 ≤ x + 2

}

with
µ = max

{∣

∣β′′(2)
∣

∣ ,
∣

∣β′′(0)
∣

∣ ,
∣

∣β′′(1)
∣

∣

}

= 4,

ψ (|y3|) := |y3|+
22
3

,

and
∫ +∞

µ

ds

s + 22
3

= +∞ >

∫ L

0
1 ds = L.

Moreover, f is nondecreasing on y0 and, by Theorem 3.1, there exists a solution u(x) of
problem (4.1)–(4.3) such that

α(i)(x) 6 u(i)(x) 6 β(i)(x), i = 0, 1, 2, for x ∈ [0, 2] ,

that is

0 ≤ u(x) ≤ x3

6
+ x2 + x,

0 ≤ u′(x) ≤ x2

2
+ 2x + 1,

0 ≤ u′′(x) ≤ x + 2, for x ∈ [0, 2].

Figure 4.1: Strip of u localization.
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Abstract. Existence of solutions to the Dirichlet problem for implicit elliptic equations
is established by using Krasnoselskii–Schaefer type theorems owed to Burton–Kirk and
Gao–Li–Zhang. The nonlinearity of the equations splits into two terms: one term de-
pending on the state, its gradient and the elliptic principal part is Lipschitz continuous,
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1 Introduction

Krasnoselskii’s fixed point theorem for the sum of two operators [12] – a typical hybrid fixed
point result – has been used to prove the existence of solutions for many classes of problems
when the associated operators do not comply to a pure fixed point principle. Its hybrid
character is given by a combination of the Banach and Schauder fixed point theorems.

Theorem 1.1 (Krasnoselskii). Let D be a bounded closed convex nonempty subset of a Banach space

(X, |·|) and let A, B be two operators such that

(i) A : D → X is a contraction;

(ii) B : D → X is continuous with B(D) relatively compact;

(iii) A(x) + B(y) ∈ D for every x, y ∈ D.

BEmail: r.precup@math.ubbcluj.ro



2 R. Precup

Then the operator A+ B has at least one fixed point, i.e., there exists x ∈ D such that x = A(x)+ B(x).

There are many extensions of Krasnoselskii’s theorem in several directions, for single and
multi-valued mappings, self and non-self mappings, for generalized contractions and gener-
alized compact-type operators, see for example [2, 5, 6, 10, 14, 18].

The strong invariance condition (iii) is required by the similar condition from Schauder’s
fixed point theorem. The last one is removed and replaced with the Leray–Schauder boundary
condition by Schaefer’s fixed point theorem [17].

Theorem 1.2 (Schaefer). Let DR be the closed ball centered at the origin and of radius R of a Banach

space X, and let N : DR → X be continuous with N(DR) relatively compact. If

λN(x) 6= x for all x ∈ ∂DR, λ ∈ (0, 1), (1.1)

then N has at least one fixed point.

There are known hybrid theorems of Krasnoselskii type that combine Banach’s contraction
principle with Schaefer’s fixed point theorem. Such a result is owed to Burton and Kirk [6].

Theorem 1.3 (Burton–Kirk). Let DR be the closed ball centered at the origin and of radius R of a

Banach space X, and let A, B be operators such that

(j) A : X → X is a contraction;

(jj) B : DR → X is continuous with B(DR) relatively compact;

(jjj) x 6= λA
( 1

λ x
)

+ λB(x) for all x ∈ ∂DR and λ ∈ (0, 1).

Then the operator A + B has at least one fixed point, i.e., there exists x ∈ DR such that x = A(x) +

B(x).

A similar result is owed to Gao, Li and Zhang [11].

Theorem 1.4 (Gao–Li–Zhang). Let DR be the closed ball centered at the origin and of radius R of a

Banach space X, and let A, B be operators such that

(h) A : X → X is a contraction;

(hh) B : DR → X is continuous with B(DR) relatively compact;

(hhh) x 6= A(x) + λB(x) for all x ∈ ∂DR and λ ∈ (0, 1).

Then the operator A + B has at least one fixed point, i.e., there exists x ∈ DR such that x = A(x) +

B(x).

In proof, the difference between Theorem 1.3 and Theorem 1.4 consists in the homotopy
that is considered. In the first case, the homotopy is λ(I − A)−1B, while in the second case, it
is (I − A)−1λB.

Obviously, if A is identically zero, then both results by Burton–Kirk and Gao–Li–Zhang
reduce to Schaefer’s theorem.
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Remark 1.5 (Method of a priori bounds). In applications, usually both operators A, B are
defined on the whole space X and a ball DR as required by condition (jjj) of Theorem 1.3 and
(hhh) of Theorem 1.4 exists if the set of all solutions for λ ∈ (0, 1) of the equations

x = λA

(

1
λ

x

)

+ λB(x)

and
x = A(x) + λB(x),

respectively, is bounded in X.

The aim of this paper is to give an application of the previous Krasnoselskii–Schaefer
type theorems to the Dirichlet problem for implicit elliptic equations. Such equations have
been intensively studied in the literature, see for example [7, 9]. Our result extends and
complements previous contributions in this direction such as those in [4, 13, 15, 16].

We conclude the Introduction by some basic notions and results from the linear theory of
partial differential equations [3, 16].

We shall work in the Sobolev space H1
0(Ω), where Ω ⊂ R

n (n ≥ 3) is open bounded,
endowed with the energetic norm

|u|H1
0
= |∇u|L2 =

(

∫

Ω

|∇u|2
)

1
2

.

Its dual space is H−1(Ω) and the pairing of a functional v ∈ H−1(Ω) and a function u ∈ H1
0(Ω)

is denoted by (v, u). We identify L2(Ω) to its dual and thus we have H1
0(Ω) ⊂ L2(Ω) ⊂

H−1(Ω). Then, in particular, for v ∈ L2(Ω), one has

(v, u) = (v, u)L2 =
∫

Ω

uv, u ∈ H1
0(Ω).

Recall that the operator (−∆)−1 is an isometry between H−1(Ω) and H1
0(Ω), so

|v|H−1 =
∣

∣

∣(−∆)−1v
∣

∣

∣

H1
0

, v ∈ H−1(Ω).

Also, the embedding H1
0(Ω) ⊂ Lp(Ω) holds and is continuous for 1 ≤ p ≤ 2∗ = 2n/(n − 2),

and the same happens for the embedding Lq(Ω) ⊂ H−1(Ω) if q ≥ (2∗)′ = 2n/(n + 2). These
embeddings are compact for p < 2∗ and q > (2∗)′, respectively.

2 Application

We discuss here the Dirichlet problem for implicit nonlinear elliptic equations,
{

−∆u = f (x, u,∇u, ∆u) + g(x, u,∇u) in Ω

u = 0 on ∂Ω
(2.1)

where Ω ⊂ R
n is open bounded (n ≥ 3); f : Ω × R × R

n × R → R and g : Ω × R × R
n → R

satisfy the Carathéodory conditions.
To give sense to the composition f (x, u,∇u, ∆u), we need to look for solutions u ∈ H1

0(Ω)
such that ∆u is a function. More exactly we shall require that ∆u ∈ Lq(Ω) for a given number
q ≥ (2∗)′.
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If we let v := −∆u, then the equation becomes

v = f
(

x, (−∆)−1v,∇(−∆)−1v,−v
)

+ g
(

x, (−∆)−1v,∇(−∆)−1v
)

.

As noted above, this equation will be solved in a Lebesgue space Lq(Ω) with q ≥ (2∗)′. We
assume in addition that q ≤ 2, which implies L2(Ω) ⊂ Lq(Ω).

Let A, B : Lq(Ω) → Lq(Ω) be given by

A(v) = f
(

·, (−∆)−1v,∇(−∆)−1v,−v
)

B(v) = g
(

·, (−∆)−1v,∇(−∆)−1v
)

.

Clearly we need some additional conditions on f and g to guarantee that the two operators
are well-defined from Lq(Ω) to itself, and then, wishing to apply Theorem 1.3 or Theorem 1.4
we have to guarantee that A is a contraction, and B is completely continuous.

We begin by a technical lemma concerning the embedding constants. By an embedding

constant for a continuous embedding X ⊂ Y of two Banach spaces (X, |·|X) and (Y, |·|Y), we
mean a number c > 0 such that

|x|Y ≤ c|x|X for every x ∈ X.

Note that if c is an embedding constant for the inclusion X ⊂ Y, then c is also an embedding
constant for the dual inclusion Y′ ⊂ X′. Indeed, for any u ∈ Y′, one has

|u|X′ = sup
x∈X
x 6=0

|(u, x)|
|x|X

≤ sup
x∈X
x 6=0

|(u, x)|
c−1|x|Y

≤ c sup
x∈Y
x 6=0

|(u, x)|
|x|Y

= c|u|Y′ .

Recall that, according to the Poincaré inequality, the best (smallest) embedding constant for the
inclusions H1

0(Ω) ⊂ L2(Ω) and L2(Ω) ⊂ H−1(Ω) is 1/
√

λ1, where λ1 is the first eigenvalue
of the Dirichlet problem for the operator −∆.

Lemma 2.1. Let (2∗)′ ≤ q ≤ 2 and let c1, c2, c3 be embedding constants for the inclusions

H1
0(Ω) ⊂ Lq(Ω), L2(Ω) ⊂ Lq(Ω), Lq(Ω) ⊂ H−1(Ω). (2.2)

Then one may consider

c2 = c1

√

λ1, c3 =
1

c1λ1
.

Proof. From H1
0(Ω) ⊂ L2(Ω) ⊂ Lq(Ω), if u ∈ H1

0(Ω), one has

|u|Lq ≤ c2|u|L2 ≤ c2√
λ1

|u|H1
0
,

hence c1 = c2/
√

λ1, or c2 = c1
√

λ1. To prove the second equality, let u ∈ H1
0(Ω). On the one

hand, using twice Poincaré’s inequality, we have

|u|H−1 ≤ 1√
λ1

|u|L2 ≤ 1
λ1

|u|H1
0
,

and on the other hand,
|u|H−1 ≤ c3|u|Lq ≤ c1c3|u|H1

0
.

Hence c1c3 = 1/λ1.
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The next lemma guarantees that the operator A is a contraction.

Lemma 2.2. Assume that there exist constants a, b, c ≥ 0 such that

| f (x, y, z, w)− f (x, y, z, w)| ≤ a|y − y|+ b|z − z|+ c|w − w|

for all y, y, w, w ∈ R; z, z ∈ R
n and a.a. x ∈ Ω. Also assume that f (·, 0, 0, 0) ∈ L2(Ω). If

l :=
a

λ1
+

b√
λ1

+ c < 1,

then A is a contraction on the space Lq(Ω) for any q ∈ [1, 2].

Proof. From the basic result about Nemytskii’s operator (see, a.e., [16]), we have that A maps
Lq(Ω) to itself. Let v, w ∈ Lq(Ω). Then using the embedding constants for the inclusions (2.2)
and the relationships between them given by Lemma 2.1, we have

|A(v)− A(w)|Lq ≤ a
∣

∣

∣(−∆)−1(v − w)
∣

∣

∣

Lq
+ b

∣

∣

∣
∇(−∆)−1(v − w)

∣

∣

∣

Lq
+ c|v − w|Lq

≤ ac1

∣

∣

∣(−∆)−1(v − w)
∣

∣

∣

H1
0

+ bc2

∣

∣

∣
∇(−∆)−1(v − w)

∣

∣

∣

L2
+ c|v − w|Lq

= ac1|v − w|H−1 + bc2

∣

∣

∣(−∆)−1(v − w)
∣

∣

∣

H1
0

+ c|v − w|Lq

= (ac1 + bc2)|v − w|H−1 + c|v − w|Lq

≤ ((ac1 + bc2)c3 + c)|v − w|Lq

=

(

a

λ1
+

b√
λ1

+ c

)

|v − w|Lq .

Furthermore, we have the following result about the complete continuity of the operator
B on the space Lq(Ω).

Lemma 2.3. Assume that there exist constants a0, b0 ≥ 0; α ∈ [1, 2∗/(2∗)′), β ∈ [1, 2/(2∗)′); and

function h ∈ L2(Ω) such that

|g(x, y, z)| ≤ a0|y|α + b0|z|β + h(x) (2.3)

for all y ∈ R, z ∈ R
n and a.a. x ∈ Ω. Then the operator B : Lq(Ω) → Lq(Ω) is well-defined and

completely continuous for

q = min
{

2∗

α
,

2
β

}

. (2.4)

Proof. First note that the restrictions on α and β imply that q given by (2.4) satisfies (2∗)′ <
q ≤ 2.

Now the operator B is the composition NPJ of three operators

J : Lq(Ω) → H−1(Ω), J(v) = v

P : H−1(Ω) → L2∗(Ω)× L2(Ω; R
n), P(v) =

(

(−∆)−1v, ∇(−∆)−1v
)

N : L2∗(Ω)× L2(Ω; R
n) → Lq(Ω), N(u, v) = g(·, u, v).

Here J is completely continuous since the embedding Lq(Ω) ⊂ H−1(Ω) is compact
(

q > (2∗)′
)

, and obviously, the linear operator P is bounded. Next we show that N is well-
defined, continuous and bounded (maps bounded sets into bounded sets). According to the
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basic result about Nemytskii’s operator, this happens if we have a growth condition on g of
the form

|g(x, w1, w2)| ≤ a0|w1|
2∗
q + b0|w2|

2
q + h0(x) (w1 ∈ R, w2 ∈ R

n, a.a. x ∈ Ω) (2.5)

with a0, b0 ∈ R+ and h0 ∈ Lq(Ω). From (2.4), we have

1 ≤ α ≤ 2∗

q
, 1 ≤ β ≤ 2

q
.

Then the exponents α, β in (2.3) can be replaced by the larger ones 2∗/q and 2/β and thus the
growth condition (2.3) implies (2.5), with a suitable function h0 that incorporates h. Hence N

has the desired properties.

The above properties of the operators J, P and N imply that B is well-defined and com-
pletely continuous from Lq(Ω) to itself.

It remains to find a priori bounds of the solutions as required by Remark 1.5.

Lemma 2.4. Under the assumptions of Lemmas 2.2 and 2.3, if in addition g satisfies the sign condition

yg(x, y, z) ≤ 0 (2.6)

for all y ∈ R, z ∈ R
n and a.a. x ∈ Ω, then the sets of solutions of the equations

v = λA

(

1
λ

v

)

+ λB(v) (λ ∈ (0, 1)) (2.7)

and of the equations

v = A(v) + λB(v) (λ ∈ (0, 1)) (2.8)

are bounded in Lq(Ω).

Proof. We shall prove the statement for the family of equations (2.7). The proof is similar for
(2.8).

Step 1: We first prove the boundedness of the solutions in H−1(Ω). Let v ∈ Lq(Ω) be any
solution of (2.7). Since v ∈ H−1(Ω), we may write

(

v, (−∆)−1v
)

= λ

(

A

(

1
λ

v

)

, (−∆)−1v

)

+ λ
(

B(v), (−∆)−1v
)

. (2.9)

On the left side we have
∣

∣

∣(−∆)−1v
∣

∣

∣

2

H1
0

which is equal to |v|2H−1 . Also, from (2.6) we have

(

B(v), (−∆)−1v
)

=
∫

Ω

g
(

x, (−∆)−1v,∇(−∆)−1v
)

(−∆)−1v ≤ 0.
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Next, using the Lipschitz property of f , and denoting γ0 := | f (·, 0, 0, 0)|L2 we obtain

λ

(

A

(

1
λ

v

)

, (−∆)−1v

)

= λ
∫

Ω

f

(

x,
1
λ
(−∆)−1v,

1
λ
∇(−∆)−1v,− 1

λ
v

)

(−∆)−1v

≤
∫

Ω

(

a
∣

∣

∣(−∆)−1v
∣

∣

∣
+ b

∣

∣

∣
∇(−∆)−1v

∣

∣

∣
+ c|v|+ | f (x, 0, 0, 0)|

)∣

∣

∣(−∆)−1v
∣

∣

∣

≤ a
∣

∣

∣(−∆)−1v
∣

∣

∣

2

L2
+ b

∣

∣

∣
∇(−∆)−1v

∣

∣

∣

L2

∣

∣

∣(−∆)−1v
∣

∣

∣

L2

+ c
∫

Ω

|v|
∣

∣

∣(−∆)−1v
∣

∣

∣
+ γ0

∣

∣

∣(−∆)−1v
∣

∣

∣

L2

≤ a

λ1

∣

∣

∣(−∆)−1v
∣

∣

∣

2

H1
0

+
b√
λ1

∣

∣

∣(−∆)−1v
∣

∣

∣

2

H1
0

+ c
∫

Ω

|v|
∣

∣

∣(−∆)−1v
∣

∣

∣
+

1√
λ1

γ0

∣

∣

∣(−∆)−1v
∣

∣

∣

H1
0

=
a

λ1
|v|2H−1 +

b√
λ1

|v|2H−1 + c
∫

Ω

|v|
∣

∣

∣(−∆)−1v
∣

∣

∣
+

1√
λ1

γ0|v|H−1 .

Since
∫

Ω

|v|
∣

∣

∣(−∆)−1v
∣

∣

∣
=

(

v, s(−∆)−1v
)

,

where function s has only two values ±1 giving the sign of v(−∆)−1v, we then have

∫

Ω

|v|
∣

∣

∣(−∆)−1v
∣

∣

∣
≤ |v|H−1

∣

∣

∣
s(−∆)−1v

∣

∣

∣

H1
0

= |v|H−1

∣

∣

∣(−∆)−1v
∣

∣

∣

H1
0

= |v|2H−1 .

It follows that

λ

(

A

(

1
λ

v

)

, (−∆)−1v

)

≤
(

a

λ1
+

b√
λ1

+ c

)

|v|2H−1 + d|v|H−1 ,

where d = γ0/
√

λ1. Thus (2.9) gives

|v|2H−1 ≤ l|v|2H−1 + d|v|H−1

which based on l < 1 implies that

|v|H−1 ≤ C1, (2.10)

where C1 = d/(1 − l) does not depend on λ.
Step 2. |B(v)|Lq ≤ C2 for some constant C2. Indeed, one has

|B(v)|Lq ≤ a0

∣

∣

∣

∣

∣

∣(−∆)−1v
∣

∣

∣

α∣
∣

∣

Lq
+ b0

∣

∣

∣

∣

∣

∣

∣
∇(−∆)−1v

∣

∣

∣

β
∣

∣

∣

∣

Lq

+ |h|Lq (2.11)

Furthermore, since αq ≤ 2∗, we have the continuous embedding H1
0(Ω) ⊂ Lαq(Ω), and so for

some constant c, we have

∣

∣

∣

∣

∣

∣(−∆)−1v
∣

∣

∣

α∣
∣

∣

Lq
=

∣

∣

∣(−∆)−1v
∣

∣

∣

α

Lαq
≤ c

∣

∣

∣(−∆)−1v
∣

∣

∣

α

H1
0

= c|v|αH−1 . (2.12)
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Similarly, since βq ≤ 2, we have
∣

∣

∣

∣

∣

∣

∣
∇(−∆)−1v

∣

∣

∣

β
∣

∣

∣

∣

Lq

=
∣

∣

∣
∇(−∆)−1v

∣

∣

∣

β

Lβq
≤ c

∣

∣

∣
∇(−∆)−1v

∣

∣

∣

β

L2
(2.13)

= c
∣

∣

∣(−∆)−1v
∣

∣

∣

β

H1
0

= c|v|β
H−1 .

Now (2.10)–(2.13) lead to the conclusion at Step 2.
Step 3. |v|Lq ≤ C for some constant C. Indeed, if γ = | f (·, 0, 0, 0)|Lq , then one has

|v|Lq ≤ λ

∣

∣

∣

∣

A

(

1
λ

v

)∣

∣

∣

∣

Lq

+ λ|B(v)|Lq ≤ l|v|Lq + γ + |B(v)|Lq .

Hence

|v|Lq ≤ 1
1 − l

(|B(v)|Lq + γ),

which together with the result at Step 2 gives the conclusion with C = (C2 + γ) /(1 − l).

The above lemmas together with Theorem 1.3 (or alternatively, Theorem 1.4) and Re-
mark 1.5 allow us to state the following existence result.

Theorem 2.5. If f and g satisfy the conditions in Lemmas 2.2–2.4, then problem (2.1) has at least one

solution u ∈ H1
0(Ω) with ∆u ∈ Lq(Ω), where q = min{2∗/α, 2/β}.

Remark 2.6. The sign condition (2.6) can be replaced by

yg(x, y, z) ≤ σy2

for all y ∈ R, z ∈ R
n and a.a. x ∈ Ω, for some σ < (1 − l)λ1.

Remark 2.7. If g(x, y, z) has a linear growth in y, z with constants a0 and b0, and

a + a0

λ1
+

b + b0√
λ1

+ c < 1,

then the conclusion of Theorem 2.5 can be obtain using Krasnoselskii’s theorem, without a
sign condition on g. This happens, since in this case, it is possible to find a ball of Lq(Ω) of a
sufficiently large radius such that the strong invariance condition of Krasnoselskii’s theorem
is fulfilled.

Finally we would like to mention that the result can be adapted to a general elliptic opera-
tor replacing the Laplacian, and the technique is possible to be used for treating other classes
of implicit differential equations.
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Abstract. Let Ω be a bounded domain in R
N ; N > 1 with a smooth boundary or

Ω = (0, 1). We study positive solutions to the boundary value problem of the form:

−∆pu − ∆qu = λ f (u) in Ω,

u = 0 on ∂Ω,

where q ∈ [2, p), λ is a positive parameter, and f : [0, ∞) 7→ R is a class of C1, non-

decreasing and p-sublinear functions at infinity (i.e. limt→∞
f (t)

tp−1 = 0) that are negative
at the origin (semipositone). We discuss the existence of positive solutions for λ ≫
1. Further, when p = 4, q = 2, Ω = (0, 1) and f (s) = (s + 1)γ − 2; γ ∈ (0, 3), we
provide the exact bifurcation diagram for positive solutions. In particular, we observe
two positive solutions for a finite range of λ and a unique positive solution for λ ≫ 1.
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1 Introduction

In [3], authors discussed results which imply the existence of positive solutions for λ ≫ 1 for

the boundary value problem:

−∆pu = λ f (u) in Ω,

u = 0 on ∂Ω,
(1.1)

where p > 1, Ω is a bounded domain in R
N ; N > 1 with a smooth boundary, λ is a positive

parameter, and ∆su = div |∇u|s−2∇u); s > 1, and f : [0, ∞) → R satisfies:

(H1) f is C1, non-decreasing, p-sublinear at infinity
(

i.e. limt→∞

f (t)
tp−1 = 0

)

,
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(H2) f (0) < 0,

(H3) limt→∞ f (t) = ∞.

In the literature, such problems where f (0) < 0, are referred as semipositone problems. It is

well known that establishing the existence of a positive solution for semipositone problems

are challenging, see [1, 4, 9, 10] and references therein.

In recent years, there has been considerable interest to study boundary value problems

involving the p–q Laplacian operator (−∆p − ∆q, q ∈ (1, p)), for examples, see [2, 5, 8, 11] and

the references therein. Such operators often occur in the mathematical modelling of chemical

reactions and plasma physics. In this article, we extend this study of p–q Laplacian boundary

value problem for a class of semipositone reaction terms. Namely, we study the boundary

value problem

−∆pu − ∆qu = λ f (u) in Ω,

u = 0 on ∂Ω,
(1.2)

for q ∈ [2, p). We establish the following result.

Theorem 1.1. Assume (H1), (H2) hold and there exists A > 0, σ > 0 such that

f (s) ≥ Asσ, for s ≫ 1.

Then (1.2) has a positive solution for λ ≫ 1.

Remark 1.2. It is easy to see that (1.2) does not admit any positive solution for λ ≈ 0. This

follows due to the p-sublinear condition at infinity which implies there exists a M > 0 such

that f (s) ≤ Msp−1, ∀s > 0. Hence, if u is a positive solution, multiplying (1.2) by u and

integrating we obtain
∫

Ω

|∇u|pdx +
∫

Ω

|∇u|qdx ≤ λM
∫

Ω

|u|pdx

which implies

λ ≥
(

1

M

)

(

∫

Ω
|∇u|p dx

∫

Ω
|u|p dx

)

≥ λ1,p

M
,

where λ1,p > 0 is the principal eigenvalue of −∆p on Ω with Dirichlet boundary condition.

We will use the method of sub-super solutions to establish Theorem 1.1. We will adapt

and extend the ideas used in [3] to construct a crucial positive sub-solution.

Finally, for the case when Ω = (0, 1), p = 4 and q = 2, namely to the two-point boundary

value problem:

−[(u′)3]′ − [(u′)]′ = λ f (u) in (0, 1),

u(0) = 0 = u(1)
(1.3)

with f (s) = (s + 1)r − 2; r ∈ (0, 3), we will provide exact bifurcation diagrams for positive

solutions in Section 4. Bifurcation diagrams we obtained are of the form given in Figure 1.1.

Note that this bifurcation diagram implies the existence of two positive solutions for certain

finite range of λ and a unique positive solution for λ ≫ 1.

The rest of the paper is organized as follows. In Section 2, we will recall some important

results that are required for the development of this article. Section 3 is dedicated to the proof

of Theorem 1.1, and Section 4 is devoted to obtaining the bifurcation diagram of positive

solutions to (1.3).
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Figure 1.1: Bifurcation diagram for positive solutions to (1.3)

2 Preliminaries

In this section, we recall some results concerning a sub-super solution method for p–q Lapla-

cian boundary value problem. First, by a weak solution of (1.2) we mean a function u ∈
W

1,p
0 (Ω) which satisfies:

∫

Ω

|∇u|p−2∇u.∇φ +
∫

Ω

|∇u|q−2∇u.∇φ = λ
∫

Ω

f (u)φ, ∀φ ∈ C∞

0 (Ω).

However, in this paper, we in fact study C1(Ω) solution. Next, by a sub-solution (super

solution) of (1.2) we mean a function v ∈ W1,p(Ω) ∩ C1(Ω) such that v ≤ (≥) 0 on ∂Ω and

satisfies:
∫

Ω

|∇v|p−2∇v.∇φ +
∫

Ω

|∇v|q−2∇v.∇φ ≤ (≥) λ
∫

Ω

f (v)φ, ∀φ ∈ C∞

0 (Ω), φ ≥ 0 in Ω.

Then the following sub-super solution result holds.

Lemma 2.1. Let ψ, z be sub and super solutions of (1.2) respectively such that ψ ≤ z in Ω. Then (1.2)

has a solution u ∈ C1(Ω) such that ψ ≤ u ≤ z.

Proof. We refer to Corollary 1 of [6] for the proof.

3 Proof of Theorem 1.1

In this section, we use sub-super solution method to prove Theorem 1.1. We adapt and extend

the ideas used in [3] to construct a crucial positive sub-solution.

Construction of a sub-solution : Let λ1 be the principal eigenvalue and φ1 ∈ C∞(Ω) be the

corresponding eigenfunction of

−∆φ1 = λ1φ1 in Ω,

φ1 = 0 on ∂Ω

such that φ1 > 0 in Ω and ‖φ1‖∞ = 1. Then ∆pφ1, ∆qφ1 are in L∞(Ω), since 2 ≤ q < p. Further,

by Hopf’s lemma |∇φ1| > 0 on ∂Ω. Now we consider

ψ = λrφ
β
1 , where β =

p

p − 1
and r ∈

(

1

p − 1
,

1

p − 1 − σ

)

.
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Note that without loss of generality we can assume σ < q − 1. Then, for s = p, q,

−∆sψ = λr(s−1)βs−1φ
(β−1)(s−1)
1 [−∆sφ1]− λr(s−1)βs−1(β − 1)(s − 1)

|∇φ1|s

φ
s−β(s−1)
1

.

Note that s − β(s − 1) = 0 when s = p and s − β(s − 1) > 0 when s = q. Also, |∇φ1| > 0 on

∂Ω, φ1 = 0 on ∂Ω and φ1 ∈ C∞(Ω). Therefore, by continuity, there exists a δ neighborhood of

∂Ω, say Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ} such that

− ∆sψ < 0 in Ωδ (3.1)

for s = p, q. Further, since ∆pφ1 ∈ L∞(Ω) we see that ∃ ǫp > 0 (independent of λ) such that

−∆pψ ≤ −λr(p−1)ǫp in Ωδ.

As r(p − 1) > 1, for λ ≫ 1 it follows that

−∆pψ ≤ −λr(p−1)ǫp ≤ λ f (0) ≤ λ f (ψ) in Ωδ.

Hence, by (3.1) for λ ≫ 1 we have

− ∆pψ − ∆qψ ≤ λ f (ψ) in Ωδ. (3.2)

Next let µ > 0 be such that φ
β
1 ≥ µ in Ω \ Ωδ and Ms > 0 (s = p, q) be such that −∆sψ ≤

Msλ
r(s−1) in Ω. Since r < 1

s−1−σ (s = p, q), it follows that for λ ≫ 1 we have

−∆sψ ≤ Msλ
r(s−1) ≤

(

λA

2

)

(λrµ)σ

≤
(

λ

2

)

f (ψ) in Ω \ Ωδ.

Thus, for λ ≫ 1, we obtain

− ∆pψ − ∆qψ ≤ λ f (ψ) in Ω \ Ωδ. (3.3)

Combining (3.2) and (3.3), for λ ≫ 1 we see that

− ∆pψ − ∆qψ ≤ λ f (ψ) in Ω. (3.4)

Therefore, ψ is a sub-solution of (1.2) when λ ≫ 1.

Construction of a super solution: Let R > 0 be such that Ω ⊆ BR(0), where BR(0) is the open

ball of radius R centered at origin. Now consider

η(r) =
1 − ( r

R )
p′

p′
on BR,

where 1
p +

1
p′ = 1. Notice that 0 ≤ η ≤ 1. Also for 0 ≤ r ≤ R,

η′(r) = − rp′−1

Rp′ ,

− ∆sη = −
(

|η′(r)|s−2η′(r)
)′
=

(

r(p′−1)(s−1)

Rp′(s−1)

)′

≥ 0 in BR, (3.5)
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for s = p, q. In particular,

− ∆pη =
1

Rp
. (3.6)

Now let Z = M(λ)η, where M(λ) ≫ 1 so that [M(λ)]p−1

f (M(λ))
≥ λRp. Note that this is possible by

(H1). Then, using that f is non-decreasing, (3.5) and (3.6) we have

− ∆pZ − ∆qZ ≥ −∆pZ =
M(λ)p−1

Rp
≥ λ f (M(λ)) ≥ λ f (Z) in BR. (3.7)

Clearly Z ≥ 0 on ∂Ω and hence it is a super solution of (1.2).

Proof of Theorem 1.1. Let ψ be a sub-solution of (1.2) for λ ≫ 1 (as constructed in (3.4)).

Then, we can construct a super solution Z of (1.2) (as constructed in (3.7)). Further, since

Z > 0 in Ω, we can choose M(λ) ≫ 1 such that Z ≥ ψ in Ω. Hence by Lemma 2.1, (1.2) has a

positive solution uλ ∈ [ψ, Z] for λ ≫ 1 and Theorem 1.1 is proven.

4 Bifurcation diagram for positive solutions to (1.3)

Here we adapt and extend the method used by Laetsch in [7] where he studied the boundary

value problem: −u′′ = λ f (u); (0, 1), u(0) = 0 = u(1). First we note that since (1.3) is au-

tonomous, any positive solution u must be symmetric about x = 1
2 , increasing on (0, 1

2 ), and

decreasing on ( 1
2 , 1). Let u( 1

2 ) = ρ (say).

Figure 4.1: Shape of a positive solution to (1.3)

Now multiplying (1.3) by u′ and integrating we obtain

−3

4
[(u′)4]′ − 1

2
[(u′)2]′ = λ(F(u))′ in (0, 1)

where F(s) =
∫ s

0 f (z)dz. Further integrating we obtain

3[u′(x)]4 + 2[u′(x)]2 = 4λ[F(ρ)− F(u(x))] in [0, 1
2 ]

and hence

u′(x) =

√

[

1 + 12λ(F(ρ)− F(u(x)))
]

1
2 − 1

√
3

in [0, 1
2 ]. (4.1)
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Figure 4.2: Shape of a function F

Noting that u′(0) =

√

[1+12λF(ρ)]
1
2 −1√

3
, it is easy to see that ρ must be greater or equal to θ where

θ is the position zero of F. Integrating (4.1) we get
∫ u(x)

0

ds
√

[

1 + 12λ(F(ρ)− F(s))
]

1
2 − 1

=
x√
3

in [0, 1
2 ), (4.2)

and setting x → ( 1
2 )

− we obtain

G(λ, ρ) =
∫ ρ

0

ds
√

[

1 + 12λ(F(ρ)− F(s))
]

1
2 − 1

=
1

2
√

3
. (4.3)

Figure 4.3: Bifurcation diagrams for (1.3) when f (s) = (s + 1)γ − 2; γ =

0.85, 1.25, 1.5, 2.0, 2.5.

It can be shown that that for λ > 0 and ρ ≥ θ, G(λ, ρ) is well defined. Further, if λ > 0,

ρ ≥ θ satisfies (4.3), then (4.2) yields a C2 function u : [0, 1
2 ) → [0, ρ) such that u(x) → ρ as

x → ( 1
2 )

−. Extending this function on [0, 1] so that u( 1
2 ) = ρ, and it is symmetric about x = 1

2 ,

it can be shown that it will be a positive solution of (1.3). Hence the bifurcation diagram for

positive solutions to (1.3) is given by:

S =
{

(λ, ρ) | λ > 0, ρ ≥ θ & G(λ, ρ) = 1
2
√

3

}

. (4.4)

Now, when f (s) = (s + 1)γ − 2; γ ∈ (0, 3), we compute S using Mathematica. In partic-

ular, here are the bifurcation diagrams we obtained for γ = 0.85, 1.25, 1.5, 2.0 and 2.5 (see

Figure 4.3).
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Abstract. The systems of difference equations

xn+1 =
unvn−2 + a

un + vn−2
, yn+1 =

wnsn−2 + a

wn + sn−2
, n ∈ N0,

where a, u0, w0, vj, sj j = −2,−1, 0, are complex numbers, and the sequences un, vn, wn,
sn are xn or yn, are studied. It is shown that each of these sixteen systems is practi-
cally solvable, complementing some recent results on solvability of related systems of
difference equations.

Keywords: system of difference equations, general solution, solvability of difference
equations, hyperbolic-cotangent-type system of difference equations.
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1 Introduction

Let N, Z, R, C, be the sets of natural, whole, real and complex numbers respectively, and
N0 = N ∪ {0}. If p, q ∈ Z and p ≤ q, then j = p, q is a notation for j = p, p + 1, . . . , q.

First important results on solvability of difference equations and systems belong to de
Moivre [5–7], D. Bernoulli [3], Euler [9], Lagrange [15] and Laplace [16]. They found a few
methods for solving linear difference equations with constant coefficients, as well as methods
for solving some linear difference equations with nonconstant coefficients and some nonlinear
difference equations. Many books containing basic methods for solving difference equations
and systems have appeared since (see, e.g., [4, 11–13, 18, 19, 21, 22]). It is interesting to note

BEmail: sstevic@ptt.rs
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that many difference equations and systems have naturally appeared as some mathematical
models for problems in combinatorics, population dynamics and other branches of sciences
(see, e.g., [5–7, 11–13, 15–17, 20, 21, 31, 49]). The fact that it is difficult to find new methods for
solving difference equations and systems has influenced on a lack of considerable interest in
the topic for a long time. Use of computers seems renewed some interest in the topic in the
last two decades.

During the ’90s has started some interest in concrete difference equations and systems.
Papaschinopoulos and Schinas have influenced on the study of such systems (see, e.g., [23–
28, 32, 33]). Work [29] is on solvability, whereas [24–26, 28, 32, 33] can be regarded as ones
on solvability in a wider sense, since they are devoted to finding invariants of the systems
studied therein. Beside their study, have appeared several papers by some other authors
which essentially rediscovered some known results. These facts motivated us to study the
solvability of difference equations and systems (see, e.g., [1, 34–48] and many other related
references therein).

Let k, l ∈ N0, a ∈ R (or C), and

zn+1 =
zn−kzn−l + a

zn−k + zn−l
, n ∈ N0. (1.1)

Equation (1.1) have been studied by several authors. Convergence of positive solutions to the
equation follows from a result in [14] (see [2]). For some generalizations of the result in [14],
see [8] and [27]. The fact that equation (1.1) resembles the hyperbolic-cotangent sum formula
has been a good hint for solvability of the equation. Some special cases of the equation were
studied in [30]. In [43] was presented a natural way for showing solvability of the equation.

The following systems

xn+1 =
un−kvn−l + a

un−k + vn−l
, yn+1 =

wn−ksn−l + a

wn−k + sn−l
, n ∈ N0, (1.2)

where k, l ∈ N0, a, u−j, w−j, v−j′ , s−j′ ∈ C, j = 0, k, j′ = 0, l, and un, vn, wn, sn are xn or yn, are
natural extensions of equation (1.1) (for studying the systems in the form, we have been also
motivated by [34]).

The case k = 0, l = 1, was studied in [47] and [48], and also in [41] where we presented
another method. We have also shown therein the theoretical solvability of the systems in (1.2).
The case k = 1, l = 2, has been recently studied in [40]. Here we study practical solvability of
the systems in (1.2) in the case k = 0 and l = 2, continuing our research in [40, 41, 43, 47, 48].
We use and combine some methods from these, as well as the following works: [35–39,42,46].
The investigation of the case has been announced in [41].

2 Main results

First we mention two lemmas. The first one belongs to Lagrange (see, e.g., [10, 13, 46]), while
the second one should be folklore (for a proof see [40]), and have been applied for several
times recently (see, e.g., [38, 39, 46]).

Lemma 2.1. Let tl , l = 1, m, be the roots of pm(t) = αmtm + · · ·+ α1t + α0, αm 6= 0, and assume

that tl 6= tj, when l 6= j. Then

m

∑
l=1

t
j
l

p′m(tl)
= 0, j = 0, m − 2, and

m

∑
l=1

tm−1
l

p′m(tl)
=

1
αm

.
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Lemma 2.2. Consider the equation

xn = a1xn−1 + a2xn−2 + · · ·+ amxn−m, n ≥ l, (2.1)

where l ∈ Z, aj ∈ C, j = 1, m, am 6= 0. Let tk, k = 1, m, be the roots of qm(t) = tm − a1tm−1 −
a2tm−2 − · · · − am, and assume that tk 6= ts, when k 6= s.

Then, the solution to equation (2.1) satisfying the initial conditions

xj−m = 0, j = l, l + m − 2, and xl−1 = 1, (2.2)

is

xn =
m

∑
k=1

tn+m−l
k

q′m(tk)
, (2.3)

for n ≥ l − m.

We transform the systems in (1.2) with k = 0 and l = 2 to some more suitable ones. We
have

xn+1 ±
√

a =
(un ±

√
a)(vn−2 ±

√
a)

un + vn−2
and yn+1 ±

√
a =

(wn ±
√

a)(sn−2 ±
√

a)

wn + sn−2
,

for n ∈ N0, and consequently

xn+1 +
√

a

xn+1 −
√

a
=

un +
√

a

un −
√

a
· vn−2 +

√
a

vn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

wn +
√

a

wn −
√

a
· sn−2 +

√
a

sn−2 −
√

a
, (2.4)

for n ∈ N0.
Hence, the following systems are studied

xn+1 +
√

a

xn+1 −
√

a
=

xn +
√

a

xn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn +
√

a

xn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
, (2.5)

xn+1 +
√

a

xn+1 −
√

a
=

xn +
√

a

xn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn +
√

a

yn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
, (2.6)

xn+1 +
√

a

xn+1 −
√

a
=

xn +
√

a

xn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn +
√

a

xn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
, (2.7)

xn+1 +
√

a

xn+1 −
√

a
=

xn +
√

a

xn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn +
√

a

yn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
, (2.8)

xn+1 +
√

a

xn+1 −
√

a
=

yn +
√

a

yn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn +
√

a

xn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
, (2.9)

xn+1 +
√

a

xn+1 −
√

a
=

yn +
√

a

yn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn +
√

a

yn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
, (2.10)

xn+1 +
√

a

xn+1 −
√

a
=

yn +
√

a

yn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn +
√

a

xn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
, (2.11)

xn+1 +
√

a

xn+1 −
√

a
=

yn +
√

a

yn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn +
√

a

yn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
, (2.12)

xn+1 +
√

a

xn+1 −
√

a
=

xn +
√

a

xn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn +
√

a

xn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
, (2.13)
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xn+1 +
√

a

xn+1 −
√

a
=

xn +
√

a

xn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn +
√

a

yn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
, (2.14)

xn+1 +
√

a

xn+1 −
√

a
=

xn +
√

a

xn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn +
√

a

xn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
, (2.15)

xn+1 +
√

a

xn+1 −
√

a
=

xn +
√

a

xn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn +
√

a

yn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
, (2.16)

xn+1 +
√

a

xn+1 −
√

a
=

yn +
√

a

yn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn +
√

a

xn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
, (2.17)

xn+1 +
√

a

xn+1 −
√

a
=

yn +
√

a

yn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn +
√

a

yn −
√

a
· xn−2 +

√
a

xn−2 −
√

a
, (2.18)

xn+1 +
√

a

xn+1 −
√

a
=

yn +
√

a

yn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn +
√

a

xn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
, (2.19)

xn+1 +
√

a

xn+1 −
√

a
=

yn +
√

a

yn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn +
√

a

yn −
√

a
· yn−2 +

√
a

yn−2 −
√

a
, (2.20)

for n ∈ N0.
Let

ζn =
xn +

√
a

xn −
√

a
and ηn =

yn +
√

a

yn −
√

a
,

then

xn =
√

a
ζn + 1
ζn − 1

and yn =
√

a
ηn + 1
ηn − 1

, (2.21)

and the systems (2.5)–(2.20) respectively become

ζn+1 = ζnζn−2, ηn+1 = ζnζn−2, (2.22)

ζn+1 = ζnζn−2, ηn+1 = ηnζn−2, (2.23)

ζn+1 = ζnζn−2, ηn+1 = ζnηn−2, (2.24)

ζn+1 = ζnζn−2, ηn+1 = ηnηn−2, (2.25)

ζn+1 = ηnζn−2, ηn+1 = ζnζn−2, (2.26)

ζn+1 = ηnζn−2, ηn+1 = ηnζn−2, (2.27)

ζn+1 = ηnζn−2, ηn+1 = ζnηn−2, (2.28)

ζn+1 = ηnζn−2, ηn+1 = ηnηn−2, (2.29)

ζn+1 = ζnηn−2, ηn+1 = ζnζn−2, (2.30)

ζn+1 = ζnηn−2, ηn+1 = ηnζn−2, (2.31)

ζn+1 = ζnηn−2, ηn+1 = ζnηn−2, (2.32)

ζn+1 = ζnηn−2, ηn+1 = ηnηn−2, (2.33)

ζn+1 = ηnηn−2, ηn+1 = ζnζn−2, (2.34)

ζn+1 = ηnηn−2, ηn+1 = ηnζn−2, (2.35)

ζn+1 = ηnηn−2, ηn+1 = ζnηn−2, (2.36)

ζn+1 = ηnηn−2, ηn+1 = ηnηn−2, (2.37)
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for n ∈ N0.
To study the systems we use some ideas in [35–40, 42, 46]. The case a = 0 is simple (see

[41]). Hence, it is omitted.

2.1 System (2.22)

First, note that
ζn = ηn, n ∈ N. (2.38)

Let
a1 = 1, b1 = 0, c1 = 1, (2.39)

then
ζn = ζa1

n−1ζb1
n−2ζc1

n−3, n ∈ N. (2.40)

Use of (2.40) implies

ζn = (ζn−2ζn−4)
a1 ζb1

n−2ζc1
n−3 = ζa1+b1

n−2 ζc1
n−3ζa1

n−4 = ζa2
n−2ζb2

n−3ζc2
n−4,

for n ≥ 2, where
a2 := a1 + b1, b2 := c1, c2 := a1.

Assume
ζn = ζ

ak

n−kζ
bk

n−k−1ζ
ck

n−k−2, (2.41)

ak = ak−1 + bk−1, bk = ck−1, ck = ak−1, (2.42)

for a k ≥ 2 and n ≥ k.
If we use (2.40) in (2.41), we obtain

ζn = (ζn−k−1ζn−k−3)
ak ζ

bk

n−k−1ζ
ck

n−k−2,

= ζ
ak+bk

n−k−1ζ
ck

n−k−2ζ
ak

n−k−3

= ζ
ak+1
n−k−1ζ

bk+1
n−k−2ζ

ck+1
n−k−3,

where
ak+1 := ak + bk, bk+1 := ck, ck+1 := ak.

In this way, by using induction, we proved that (2.41) and (2.42) hold for every 2 ≤ k ≤ n.
From (2.39) and (2.42) we have

an = an−1 + an−3, (2.43)

not only for n ≥ 4, but even for all n ∈ Z, and

a0 = 1, a−1 = a−2 = 0, a−3 = 1, a−4 = 0. (2.44)

By taking k = n in (2.41), and employing (2.42) and (2.43), it follows that

ζn = ζan
0 ζbn

−1ζcn
−2 = ζan

0 ζ
an−2
−1 ζ

an−1
−2 , (2.45)

not only for n ∈ N, but even for n ≥ −2.
Combining (2.38) and (2.45), we have

ηn = ζan
0 ζ

an−2
−1 ζ

an−1
−2 , (2.46)
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for n ∈ N.
Now note that the characteristic polynomial

P3(λ) = λ3 − λ2 − 1 = 0 (2.47)

is associated with (2.43), and it has three different roots, say λj, j = 1, 3. They are routinely
found [10].

By using Lemma 2.2, we see that

an =
3

∑
j=1

λn+2
j

P′
3(λj)

, n ∈ Z, (2.48)

is the solution to (2.43) satisfying the initial conditions a−2 = a−1 = 0 and a0 = 1.
From (2.21), (2.45) and (2.46), the following corollary follows.

Corollary 2.3. If a 6= 0, then the general solution to (2.5) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1 − 1
, n ≥ −2,

yn =
√

a

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1 − 1
, n ∈ N,

where an is given by (2.48).

2.2 System (2.23)

First note that (2.45) holds, and that

ηn = ηn−1ζn−3, n ∈ N. (2.49)

By using (2.45) in (2.49), we obtain

ηn = η0

n

∏
j=1

ζ j−3

= η0

n

∏
j=1

ζ
aj−3
0 ζ

aj−5

−1 ζ
aj−4
−2

= η0ζ
∑

n
j=1 aj−3

0 ζ
∑

n
j=1 aj−5

−1 ζ
∑

n
j=1 aj−4

−2 , (2.50)

for n ∈ N0.
Employing (2.43) and (2.44), it follows that

n

∑
j=1

aj−3 =
n

∑
j=1

(aj − aj−1) = an − 1, (2.51)

n

∑
j=1

aj−5 =
n

∑
j=1

(aj−2 − aj−3) = an−2, (2.52)

n

∑
j=1

aj−4 =
n

∑
j=1

(aj−1 − aj−2) = an−1, (2.53)
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for n ∈ N0.
From (2.50)–(2.53), it follows that

ηn = η0ζan−1
0 ζ

an−2
−1 ζ

an−1
−2 , n ∈ N0. (2.54)

From (2.21), (2.45) and (2.54), the following corollary follows.

Corollary 2.4. If a 6= 0, then the general solution to (2.6) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1 − 1
, n ≥ −2,

yn =
√

a

(
y0+

√
a

y0−
√

a

) (
x0+

√
a

x0−
√

a

)an−1 (
x−1+

√
a

x−1−
√

a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1
+ 1

(
y0+

√
a

y0−
√

a

) (
x0+

√
a

x0−
√

a

)an−1 (
x−1+

√
a

x−1−
√

a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1 − 1
, n ∈ N0,

where an is given by (2.48).

2.3 System (2.24)

First note that (2.45) holds, and that

ηn = ζn−1ηn−3,

for n ∈ N, that is,
η3n+i = ζ3n−1+iη3(n−1)+i, (2.55)

for n ∈ N, i = −2,−1, 0.
From (2.45) and (2.55), we have

η3n = η0

n

∏
j=1

ζ3j−1

= η0

n

∏
j=1

ζ
a3j−1
0 ζ

a3j−3

−1 ζ
a3j−2
−2

= η0ζ
∑

n
j=1 a3j−1

0 ζ
∑

n
j=1 a3j−3

−1 ζ
∑

n
j=1 a3j−2

−2 , (2.56)

for n ∈ N0,

η3n+1 = η−2

n

∏
j=0

ζ3j

= η−2

n

∏
j=0

ζ
a3j

0 ζ
a3j−2

−1 ζ
a3j−1
−2

= η−2ζ
∑

n
j=0 a3j

0 ζ
∑

n
j=0 a3j−2

−1 ζ
∑

n
j=0 a3j−1

−2 , (2.57)

for n ≥ −1, and

η3n+2 = η−1

n

∏
j=0

ζ3j+1

= η−1

n

∏
j=0

ζ
a3j+1
0 ζ

a3j−1

−1 ζ
a3j

−2

= η−1ζ
∑

n
j=0 a3j+1

0 ζ
∑

n
j=0 a3j−1

−1 ζ
∑

n
j=0 a3j

−2 , (2.58)
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for n ≥ −1.
Employing (2.43) and (2.44), it follows that

n

∑
j=1

a3j−3 =
n

∑
j=1

(a3j−2 − a3j−5) = a3n−2, (2.59)

n

∑
j=1

a3j−2 =
n

∑
j=1

(a3j−1 − a3j−4) = a3n−1, (2.60)

n

∑
j=1

a3j−1 =
n

∑
j=1

(a3j − a3j−3) = a3n − 1, (2.61)

n

∑
j=0

a3j−2 =
n

∑
j=0

(a3j−1 − a3j−4) = a3n−1, (2.62)

n

∑
j=0

a3j−1 =
n

∑
j=0

(a3j − a3j−3) = a3n − 1, (2.63)

n

∑
j=0

a3j =
n

∑
j=0

(a3j+1 − a3j−2) = a3n+1, (2.64)

n

∑
j=0

a3j+1 =
n

∑
j=0

(a3j+2 − a3j−1) = a3n+2, (2.65)

Use of (2.59)–(2.65) in (2.56)–(2.58), yield

η3n = η0ζa3n−1
0 ζ

a3n−2
−1 ζ

a3n−1
−2 , (2.66)

for n ∈ N0,

η3n+1 = η−2ζ
a3n+1
0 ζ

a3n−1
−1 ζa3n−1

−2 , (2.67)

for n ≥ −1, and

η3n+2 = η−1ζ
a3n+2
0 ζa3n−1

−1 ζ
a3n+1
−2 , (2.68)

for n ≥ −1.
From (2.21), (2.45), (2.66)–(2.68), the following corollary follows.

Corollary 2.5. If a 6= 0, then the general solution to (2.7) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1 − 1
, n ≥ −2,

y3n =
√

a

(
y0+

√
a

y0−
√

a

) (
x0+

√
a

x0−
√

a

)a3n−1 (
x−1+

√
a

x−1−
√

a

)a3n−2
(

x−2+
√

a
x−2−

√
a

)a3n−1
+ 1

(
y0+

√
a

y0−
√

a

) (
x0+

√
a

x0−
√

a

)a3n−1 (
x−1+

√
a

x−1−
√

a

)a3n−2
(

x−2+
√

a
x−2−

√
a

)a3n−1 − 1
, n ∈ N0,

y3n+1 =
√

a

(
y−2+

√
a

y−2−
√

a

) (
x0+

√
a

x0−
√

a

)a3n+1
(

x−1+
√

a
x−1−

√
a

)a3n−1
(

x−2+
√

a
x−2−

√
a

)a3n−1
+ 1

(
y−2+

√
a

y−2−
√

a

) (
x0+

√
a

x0−
√

a

)a3n+1
(

x−1+
√

a
x−1−

√
a

)a3n−1
(

x−2+
√

a
x−2−

√
a

)a3n−1
− 1

, n ≥ −1,

y3n+2 =
√

a

(
y−1+

√
a

y−1−
√

a

) (
x0+

√
a

x0−
√

a

)a3n+2
(

x−1+
√

a
x−1−

√
a

)a3n−1 (
x−2+

√
a

x−2−
√

a

)a3n+1
+ 1

(
y−1+

√
a

y−1−
√

a

) (
x0+

√
a

x0−
√

a

)a3n+2
(

x−1+
√

a
x−1−

√
a

)a3n−1 (
x−2+

√
a

x−2−
√

a

)a3n+1 − 1
, n ≥ −1,

where sequence an is given by (2.48).
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2.4 System (2.25)

Note that (2.45) holds, and that

ηn = ηan
0 η

an−2
−1 η

an−1
−2 ,

for n ≥ −2.
From this and (2.21) the following corollary follows.

Corollary 2.6. If a 6= 0, then the general solution to (2.8) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1 − 1
,

yn =
√

a

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
,

for n ≥ −2, where an is given by (2.48).

2.5 System (2.26)

The relations in (2.26) yield

ζn = ζn−2ζn−3ζn−4, n ≥ 2. (2.69)

Let

b1 = c1 = d1 = 1, e1 = 0, (2.70)

then (2.69) can be written as

ζn = ζb1
n−2ζc1

n−3ζd1
n−4ζe1

n−5, n ≥ 2. (2.71)

Use of (2.69) in (2.71) yield

ζn = ζb1
n−2ζc1

n−3ζd1
n−4ζe1

n−5

= (ζn−4ζn−5ζn−6)
b1 ζc1

n−3ζd1
n−4ζe1

n−5

= ζc1
n−3ζb1+d1

n−4 ζb1+e1
n−5 ζb1

n−6

= ζb2
n−3ζc2

n−4ζd2
n−5ζe2

n−6

for n ≥ 4, where

b2 := c1, c2 := b1 + d1, d2 := b1 + e1, e2 := b1.

Suppose that

ζn = ζ
bk

n−k−1ζ
ck

n−k−2ζ
dk

n−k−3ζ
ek

n−k−4 (2.72)

and

bk = ck−1, ck = bk−1 + dk−1, dk = bk−1 + ek−1, ek = bk−1, (2.73)

for a k ≥ 2 and n ≥ k + 2.
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Employing (2.69) in (2.72), it follows that

ζn = ζ
bk

n−k−1ζ
ck

n−k−2ζ
dk

n−k−3ζ
ek

n−k−4

= (ζn−k−3ζn−k−4ζn−k−5)
bk ζ

ck

n−k−2ζ
dk

n−k−3ζ
ek

n−k−4

= ζ
ck

n−k−2ζ
bk+dk

n−k−3ζ
bk+ek

n−k−4ζ
bk

n−k−5

= ζ
bk+1
n−k−2ζ

ck+1
n−k−3ζ

dk+1
n−k−4ζ

ek+1
n−k−5,

where
bk+1 := ck, ck+1 := bk + dk, dk+1 := bk + ek, ek+1 := bk,

for a k ≥ 2 and every n ≥ k + 3. Hence, (2.72) and (2.73) really hold for 2 ≤ k ≤ n − 2.
From (2.70) and (2.73) we have

bn = bn−2 + bn−3 + bn−4, (2.74)

not only for n ≥ 5, but also for every n ∈ Z, and that

b0 = 0, b−1 = 1, b−2 = b−3 = b−4 = 0, b−5 = 1.

Letting k = n − 2 in (2.72), it follows that

ζn = ζ
bn−2
1 ζ

cn−2
0 ζ

dn−2
−1 ζ

en−2
−2

= (η0ζ−2)
bn−2 ζ

cn−2
0 ζ

dn−2
−1 ζ

en−2
−2

= η
bn−2
0 ζ

cn−2
0 ζ

dn−2
−1 ζ

bn−2+en−2
−2

= η
bn−2
0 ζ

bn−1
0 ζ

bn−3+bn−4
−1 ζ

bn−2+bn−3
−2 , (2.75)

for n ≥ −2.
By using (2.75) in the second equation in (2.26), it follows that

ηn = ζn−1ζn−3

= η
bn−3+bn−5
0 ζ

bn−2+bn−4
0 ζ

bn−3+bn−4
−1 ζ

bn−2+bn−3
−2 , (2.76)

for n ∈ N0.
The characteristic polynomial associated with equation (2.74) is

P4(λ) = λ4 − λ2 − λ − 1.

Since
P4(λ) = (λ + 1)(λ3 − λ2 − 1),

we have that three roots of P4, coincide with the roots, λj, j = 1, 3, of polynomial (2.47),
whereas λ4 = −1.

Lemma 2.2 shows that the solution to (2.74) satisfying the initial conditions b−4 = b−3 =

b−2 = 0 and b−1 = 1, is

bn =
4

∑
j=1

λn+4
j

P′
4(λj)

, n ∈ Z. (2.77)

From (2.21), (2.75) and (2.76), the following corollary follows.
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Corollary 2.7. If a 6= 0, then the general solution to (2.9) is

xn =
√

a

(
y0+

√
a

y0−
√

a

)bn−2
(

x0+
√

a
x0−

√
a

)bn−1
(

x−1+
√

a
x−1−

√
a

)bn−3+bn−4
(

x−2+
√

a
x−2−

√
a

)bn−2+bn−3
+ 1

(
y0+

√
a

y0−
√

a

)bn−2
(

x0+
√

a
x0−

√
a

)bn−1
(

x−1+
√

a
x−1−

√
a

)bn−3+bn−4
(

x−2+
√

a
x−2−

√
a

)bn−2+bn−3 − 1
,

for n ≥ −2, and

yn =
√

a

(
y0+

√
a

y0−
√

a

)bn−3+bn−5
(

x0+
√

a
x0−

√
a

)bn−2+bn−4
(

x−1+
√

a
x−1−

√
a

)bn−3+bn−4
(

x−2+
√

a
x−2−

√
a

)bn−2+bn−3
+ 1

(
y0+

√
a

y0−
√

a

)bn−3+bn−5
(

x0+
√

a
x0−

√
a

)bn−2+bn−4
(

x−1+
√

a
x−1−

√
a

)bn−3+bn−4
(

x−2+
√

a
x−2−

√
a

)bn−2+bn−3 − 1
,

for n ∈ N0, where bn is given by (2.77).

2.6 System (2.27)

Clearly, we have
ζn = ηn, n ∈ N,

from which along with (2.27), it follows that

ζn+1 = ζnζn−2, n ∈ N.

Hence, by using (2.45) it follows that

ζn = ζ
an−1
1 ζ

an−3
0 ζ

an−2
−1

= (η0ζ−2)
an−1 ζ

an−3
0 ζ

an−2
−1

= η
an−1
0 ζ

an−3
0 ζ

an−2
−1 ζ

an−1
−2 , (2.78)

for n ≥ −1, where an is the solution to (2.43) satisfying the initial conditions a−2 = a−1 = 0
and a0 = 1. Hence

ηn = η
an−1
0 ζ

an−3
0 ζ

an−2
−1 ζ

an−1
−2 , (2.79)

for n ∈ N.
From (2.21), (2.78) and (2.79), the following corollary follows.

Corollary 2.8. If a 6= 0, then the general solution to (2.10) is

xn =
√

a

(
y0+

√
a

y0−
√

a

)an−1
(

x0+
√

a
x0−

√
a

)an−3
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1
+ 1

(
y0+

√
a

y0−
√

a

)an−1
(

x0+
√

a
x0−

√
a

)an−3
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1 − 1
,

for n ≥ −1, and

yn =
√

a

(
y0+

√
a

y0−
√

a

)an−1
(

x0+
√

a
x0−

√
a

)an−3
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1
+ 1

(
y0+

√
a

y0−
√

a

)an−1
(

x0+
√

a
x0−

√
a

)an−3
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1 − 1
,

for n ∈ N, where an is given by (2.48).
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2.7 System (2.28)

From (2.28) we easily get
ζn = ζn−2ζ2

n−3ζ−1
n−6, n ≥ 4. (2.80)

Let
b1 = 1, c1 = 2, d1 = e1 = 0, f1 = −1, g1 = 0. (2.81)

From this and (2.80), we have

ζn = ζb1
n−2ζc1

n−3ζd1
n−4ζe1

n−5ζ
f1
n−6ζ

g1
n−7

= (ζn−4ζ2
n−5ζ−1

n−8)
b1 ζc1

n−3ζd1
n−4ζe1

n−5ζ
f1
n−6ζ

g1
n−7

= ζc1
n−3ζb1+d1

n−4 ζ2b1+e1
n−5 ζ

f1
n−6ζ

g1
n−7ζ−b1

n−8

= ζb2
n−3ζc2

n−4ζd2
n−5ζe2

n−6ζ
f2
n−7ζ

g2
n−8,

for n ≥ 6, where

b2 := c1, c2 := b1 + d1, d2 := 2b1 + e1, e2 := f1, f2 := g1, g2 := −b1.

Assume
ζn = ζ

bk

n−k−1ζ
ck

n−k−2ζ
dk

n−k−3ζ
ek

n−k−4ζ
fk

n−k−5ζ
gk

n−k−6, (2.82)

for a k ≥ 2 and all n ≥ k + 4, and

bk = ck−1, ck = bk−1 + dk−1, dk = 2bk−1 + ek−1,

ek = fk−1, fk = gk−1, gk = −bk−1.
(2.83)

We have

ζn = ζ
bk

n−k−1ζ
ck

n−k−2ζ
dk

n−k−3ζ
ek

n−k−4ζ
fk

n−k−5ζ
gk

n−k−6

= (ζn−k−3ζ2
n−k−4ζ−1

n−k−7)
bk ζ

ck

n−k−2ζ
dk

n−k−3ζ
ek

n−k−4ζ
fk

n−k−5ζ
gk

n−k−6

= ζ
ck

n−k−2ζ
bk+dk

n−k−3ζ
2bk+ek

n−k−4ζ
fk

n−k−5ζ
gk

n−k−6ζ
−bk

n−k−7

= ζ
bk+1
n−k−2ζ

ck+1
n−k−3ζ

dk+1
n−k−4ζ

ek+1
n−k−5ζ

fk+1
n−k−6ζ

gk+1
n−k−7,

for n ≥ k + 5, where

bk+1 = ck, ck+1 = bk + dk, dk+1 = 2bk + ek,

ek+1 = fk, fk+1 = gk, gk+1 = −bk.

Hence (2.82) and (2.83) really hold when 2 ≤ k ≤ n − 4.
From (2.81) and (2.83) we have

bn = bn−2 + 2bn−3 − bn−6, (2.84)

not only for n ≥ 7, but for all n ∈ Z, and

b0 = 0, b−1 = 1, b−j = 0, j = 2, 6, b−7 = −1, b−8 = 0.
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By taking k = n − 4 in (2.82), it follows that

ζn = ζ
bn−4
3 ζ

cn−4
2 ζ

dn−4
1 ζ

en−4
0 ζ

fn−4
−1 ζ

gn−4
−2

= (η0η−1ζ0ζ−2)
bn−4(η−2ζ0ζ−1)

cn−4(η0ζ−2)
dn−4 ζ

en−4
0 ζ

fn−4
−1 ζ

gn−4
−2

= ζ
bn−4+cn−4+en−4
0 ζ

cn−4+ fn−4
−1 ζ

bn−4+dn−4+gn−4
−2 η

bn−4+dn−4
0 η

bn−4
−1 η

cn−4
−2

= ζ
bn−1−bn−4
0 ζ

bn−3−bn−6
−1 ζ

bn−2−bn−5
−2 η

bn−2
0 η

bn−4
−1 η

bn−3
−2 , (2.85)

for n ≥ −2.
Using (2.85) in the first equation in (2.28), we obtain

ηn = ζn+1/ζn−2

= ζ
bn−2bn−3+bn−6
0 ζ

bn−2−2bn−5+bn−8
−1 ζ

bn−1−2bn−4+bn−7
−2 η

bn−1−bn−4
0 η

bn−3−bn−6
−1 η

bn−2−bn−5
−2

= ζ
bn−2
0 ζ

bn−4
−1 ζ

bn−3
−2 η

bn−1−bn−4
0 η

bn−3−bn−6
−1 η

bn−2−bn−5
−2 , (2.86)

for n ≥ −2.
The characteristic polynomial associated with equation (2.84) is

P6(t) = t6 − t4 − 2t3 + 1 = (t3 − t2 − 1)(t3 + t2 − 1).

Let tj, j = 1, 6, be its roots. Clearly tj = λj, j = 1, 3, (the roots of polynomial (2.47)), whereas
the other three roots of P6 are the roots of the polynomial t3 + t2 − 1.

Thus, the solution to (2.84) satisfying the initial conditions b−j = 0, k = 2, 6, and b−1 = 1,
is

bn =
6

∑
j=1

tn+6
j

P′
6(tj)

, n ∈ Z. (2.87)

From (2.21), (2.85) and (2.86), the following corollary follows.

Corollary 2.9. If a 6= 0, then the general solution to (2.11) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)βn−1
(

x−1+
√

a
x−1−

√
a

)βn−3
(

x−2+
√

a
x−2−

√
a

)βn−2
(

y0+
√

a

y0−
√

a

)bn−2
(

y−1+
√

a

y−1−
√

a

)bn−4
(

y−2+
√

a

y−2−
√

a

)bn−3
+ 1

(
x0+

√
a

x0−
√

a

)βn−1
(

x−1+
√

a
x−1−

√
a

)βn−3
(

x−2+
√

a
x−2−

√
a

)βn−2
(

y0+
√

a

y0−
√

a

)bn−2
(

y−1+
√

a

y−1−
√

a

)bn−4
(

y−2+
√

a

y−2−
√

a

)bn−3 − 1
,

yn =
√

a

(
x0+

√
a

x0−
√

a

)bn−2
(

x−1+
√

a
x−1−

√
a

)bn−4
(

x−2+
√

a
x−2−

√
a

)bn−3
(

y0+
√

a

y0−
√

a

)βn−1
(

y−1+
√

a

y−1−
√

a

)βn−3
(

y−2+
√

a

y−2−
√

a

)βn−2
+ 1

(
x0+

√
a

x0−
√

a

)bn−2
(

x−1+
√

a
x−1−

√
a

)bn−4
(

x−2+
√

a
x−2−

√
a

)bn−3
(

y0+
√

a

y0−
√

a

)βn−1
(

y−1+
√

a

y−1−
√

a

)βn−3
(

y−2+
√

a

y−2−
√

a

)βn−2 − 1
,

for n ≥ −2, where the sequence bn is given by (2.87) and βn := bn − bn−3.

2.8 System (2.29)

This system is obtained from (2.24) by interchanging letters ζ and η.
Hence, we have

ζ3n = ζ0ηa3n−1
0 η

a3n−2
−1 η

a3n−1
−2 , n ∈ N0, (2.88)

ζ3n+1 = ζ−2η
a3n+1
0 η

a3n−1
−1 ηa3n−1

−2 , n ≥ −1, (2.89)

ζ3n+2 = ζ−1η
a3n+2
0 ηa3n−1

−1 η
a3n+1
−2 , n ≥ −1, (2.90)

ηn = ηan
0 η

an−2
−1 η

an−1
−2 , n ≥ −2. (2.91)

From (2.21), (2.88)–(2.91), the following corollary follows.
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Corollary 2.10. If a 6= 0, then the general solution to (2.12) is

yn =
√

a

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
, n ≥ −2,

x3n =
√

a

(
x0+

√
a

x0−
√

a

) (
y0+

√
a

y0−
√

a

)a3n−1 ( y−1+
√

a

y−1−
√

a

)a3n−2
(

y−2+
√

a

y−2−
√

a

)a3n−1
+ 1

(
x0+

√
a

x0−
√

a

) (
y0+

√
a

y0−
√

a

)a3n−1 ( y−1+
√

a

y−1−
√

a

)a3n−2
(

y−2+
√

a

y−2−
√

a

)a3n−1 − 1
, n ∈ N0,

x3n+1 =
√

a

(
x−2+

√
a

x−2−
√

a

) (
y0+

√
a

y0−
√

a

)a3n+1
(

y−1+
√

a

y−1−
√

a

)a3n−1
(

y−2+
√

a

y−2−
√

a

)a3n−1
+ 1

(
x−2+

√
a

x−2−
√

a

) (
y0+

√
a

y0−
√

a

)a3n+1
(

y−1+
√

a

y−1−
√

a

)a3n−1
(

y−2+
√

a

y−2−
√

a

)a3n−1
− 1

, n ≥ −1,

x3n+2 =
√

a

(
x−1+

√
a

x−1−
√

a

) (
y0+

√
a

y0−
√

a

)a3n+2
(

y−1+
√

a

y−1−
√

a

)a3n−1 ( y−2+
√

a

y−2−
√

a

)a3n+1
+ 1

(
x−1+

√
a

x−1−
√

a

) (
y0+

√
a

y0−
√

a

)a3n+2
(

y−1+
√

a

y−1−
√

a

)a3n−1 ( y−2+
√

a

y−2−
√

a

)a3n+1 − 1
, n ≥ −1,

where sequence an is given by (2.48).

2.9 System (2.30)

From (2.30), we have
ζn = ζn−1ζn−4ζn−6, (2.92)

for n ≥ 4.
Let

a1 = 1, b1 = c1 = 0, d1 = 1, e1 = 0, f1 = 1, (2.93)

then
ζn = ζa1

n−1ζb1
n−2ζc1

n−3ζd1
n−4ζe1

n−5ζ
f1
n−6, n ≥ 4. (2.94)

From (2.92) and (2.94), it follows that

ζn = ζa1
n−1ζb1

n−2ζc1
n−3ζd1

n−4ζe1
n−5ζ

f1
n−6

= (ζn−2ζn−5ζn−7)
a1 ζb1

n−2ζc1
n−3ζd1

n−4ζe1
n−5ζ

f1
n−6

= ζa1+b1
n−2 ζc1

n−3ζd1
n−4ζa1+e1

n−5 ζ
f1
n−6ζa1

n−7

= ζa2
n−2ζb2

n−3ζc2
n−4ζd2

n−5ζe2
n−6ζ

f2
n−7,

for n ≥ 5, where

a2 := a1 + b1, b2 := c1, c2 := d1, d2 := a1 + e1, e2 := f1, f2 := a1.

Similar to the case of equation (2.80) it is shown

ζn = ζ
ak

n−kζ
bk

n−k−1ζ
ck

n−k−2ζ
dk

n−k−3ζ
ek

n−k−4ζ
fk

n−k−5, (2.95)

for a k ≥ 2 and n ≥ k + 3, and that

ak = ak−1 + bk−1, bk = ck−1, ck = dk−1,

dk = ak−1 + ek−1, ek = fk−1, fk = ak−1.
(2.96)
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From (2.93) and (2.96), we have

an = an−1 + an−4 + an−6, (2.97)

not only for n ≥ 7, but for all n ∈ Z, and that

a0 = 1, a−j = 0, j = 1, 5, a−6 = 1, a−7 = 0, a−8 = −1.

Letting k = n − 3 in (2.95), it follows that

ζn = ζ
an−3
3 ζ

bn−3
2 ζ

cn−3
1 ζ

dn−3
0 ζ

en−3
−1 ζ

fn−3
−2

= (ζ0η0η−1η−2)
an−3(ζ0η−1η−2)

bn−3(ζ0η−2)
cn−3 ζ

dn−3
0 ζ

en−3
−1 ζ

fn−3
−2

= ζ
an−3+bn−3+cn−3+dn−3
0 ζ

en−3
−1 ζ

fn−3
−2 η

an−3
0 η

an−3+bn−3
−1 η

an−3+bn−3+cn−3
−2

= ζan
0 ζ

an−5
−1 ζ

an−4
−2 η

an−3
0 η

an−2
−1 η

an−1
−2 , (2.98)

for n ≥ −2.
If in the second equation in (2.30) is used (2.98), we get

ηn = ζn−1ζn−3

= ζ
an−1+an−3
0 ζ

an−6+an−8
−1 ζ

an−5+an−7
−2 η

an−4+an−6
0 η

an−3+an−5
−1 η

an−2+an−4
−2 , (2.99)

for n ≥ −2.
The characteristic polynomial

P̃6(t) = t6 − t5 − t2 − 1 = (t3 − t2 − 1)(t3 + 1)

associated with equation (2.97) has the roots

t1 = λ1, t2 = λ2, t3 = λ3, t4 = −1, t5,6 = e±i π
3 ,

where λj, j = 1, 3, are the roots of polynomial (2.47).
Hence, the solution to equation (2.97) satisfying the initial conditions a−j = 0, j = 1, 5, and

a0 = 1 is

an =
6

∑
j=1

tn+5
j

P̃′
6(tj)

, n ∈ Z. (2.100)

From (2.21), (2.98) and (2.99), the following corollary follows.

Corollary 2.11. If a 6= 0, then the general solution to (2.13) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−5
(

x−2+
√

a
x−2−

√
a

)an−4
(

y0+
√

a

y0−
√

a

)an−3
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

)an
(

x−1+
√

a
x−1−

√
a

)an−5
(

x−2+
√

a
x−2−

√
a

)an−4
(

y0+
√

a

y0−
√

a

)an−3
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
,

yn =
√

a

(
x0+

√
a

x0−
√

a

)bn−1
(

x−1+
√

a
x−1−

√
a

)bn−6
(

x−2+
√

a
x−2−

√
a

)bn−5
(

y0+
√

a

y0−
√

a

)bn−4
(

y−1+
√

a

y−1−
√

a

)bn−3
(

y−2+
√

a

y−2−
√

a

)bn−2
+ 1

(
x0+

√
a

x0−
√

a

)bn−1
(

x−1+
√

a
x−1−

√
a

)bn−6
(

x−2+
√

a
x−2−

√
a

)bn−5
(

y0+
√

a

y0−
√

a

)bn−4
(

y−1+
√

a

y−1−
√

a

)bn−3
(

y−2+
√

a

y−2−
√

a

)bn−2 − 1
,

for n ≥ −2, where the sequence an is given by (2.100) and bn = an + an−2.
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2.10 System (2.31)

From (2.31), we have
ζn = ζ2

n−1ζ−1
n−2ζn−6, (2.101)

for n ≥ 4.
Let

a1 = 2, b1 = −1, c1 = d1 = e1 = 0, f1 = 1, (2.102)

then
ζn = ζa1

n−1ζb1
n−2ζc1

n−3ζd1
n−4ζe1

n−5ζ
f1
n−6, (2.103)

for n ≥ 4.
Employing (2.101) in (2.103), it follows that

ζn = ζa1
n−1ζb1

n−2ζc1
n−3ζd1

n−4ζe1
n−5ζ

f1
n−6

= (ζ2
n−2ζ−1

n−3ζn−7)
a1 ζb1

n−2ζc1
n−3ζd1

n−4ζe1
n−5ζ

f1
n−6

= ζ2a1+b1
n−2 ζ−a1+c1

n−3 ζd1
n−4ζe1

n−5ζ
f1
n−6ζa1

n−7

= ζa2
n−2ζb2

n−3ζc2
n−4ζd2

n−5ζe2
n−6ζ

f2
n−7,

for n ≥ 5, where

a2 := 2a1 + b1, b2 := −a1 + c1, c2 := d1, d2 := e1, e2 := f1, f2 := a1.

Similar to equation (2.80), it is shown that

ζn = ζ
ak

n−kζ
bk

n−k−1ζ
ck

n−k−2ζ
dk

n−k−3ζ
ek

n−k−4ζ
fk

n−k−5, (2.104)

and

ak = 2ak−1 + bk−1, bk = −ak−1 + ck−1, ck = dk−1,

dk = ek−1, ek = fk−1, fk = ak−1, (2.105)

for a 2 ≤ k ≤ n − 3.
From (2.102) and (2.105) we have

an = 2an−1 − an−2 + an−6, (2.106)

not only for n ≥ 7, but for all n ∈ Z, and that

a0 = 1, a−j = 0, j = 1, 5, a−6 = 1, a−7 = 0.

For k = n − 3, from (2.104), we have

ζn = ζ
an−3
3 ζ

bn−3
2 ζ

cn−3
1 ζ

dn−3
0 ζ

en−3
−1 ζ

fn−3
−2

= (ζ0η0η−1η−2)
an−3(ζ0η−1η−2)

bn−3(ζ0η−2)
cn−3 ζ

dn−3
0 ζ

en−3
−1 ζ

fn−3
−2

= ζ
an−3+bn−3+cn−3+dn−3
0 ζ

en−3
−1 ζ

fn−3
−2 η

an−3
0 η

an−3+bn−3
−1 η

an−3+bn−3+cn−3
−2

= ζ
an−an−1
0 ζ

an−5
−1 ζ

an−4
−2 η

an−3
0 η

an−2−an−3
−1 η

an−1−an−2
−2 , (2.107)

for n ≥ −2.
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From (2.31) and (2.107), it follows that

ηn = ζn+3/ζn+2

= ζ
an+3−2an+2+an+1
0 ζ

an−2−an−3
−1 ζ

an−1−an−2
−2 η

an−an−1
0 η

an+1−2an+an−1
−1 η

an+2−2an+1+an

−2

= ζ
an−3
0 ζ

an−2−an−3
−1 ζ

an−1−an−2
−2 η

an−an−1
0 η

an−5
−1 η

an−4
−2 , (2.108)

for n ≥ −2 ((2.108) is also obtained from (2.107) due to the symmetry of system (2.31)).
The characteristic polynomial associated with (2.106) is

P̂6(t) = t6 − 2t5 + t4 − 1 = (t3 − t2 − 1)(t3 − t2 + 1).

Let t̃j, j = 1, 6, be the roots of polynomial P̂6. Then, the solution to (2.106) such that a−j = 0,
j = 1, 5, and a0 = 1, is

an =
6

∑
j=1

t̃n+5
j

P̂′
6(t̃j)

, n ∈ Z. (2.109)

From this and (2.21) the following corollary follows.

Corollary 2.12. If a 6= 0, then the general solution to (2.14) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)∆an−1
(

x−1+
√

a
x−1−

√
a

)an−5
(

x−2+
√

a
x−2−

√
a

)an−4
(

y0+
√

a

y0−
√

a

)an−3
(

y−1+
√

a

y−1−
√

a

)∆an−3
(

y−2+
√

a

y−2−
√

a

)∆an−2
+ 1

(
x0+

√
a

x0−
√

a

)∆an−1
(

x−1+
√

a
x−1−

√
a

)an−5
(

x−2+
√

a
x−2−

√
a

)an−4
(

y0+
√

a

y0−
√

a

)an−3
(

y−1+
√

a

y−1−
√

a

)∆an−3
(

y−2+
√

a

y−2−
√

a

)∆an−2
− 1

,

yn =
√

a

(
x0+

√
a

x0−
√

a

)an−3
(

x−1+
√

a
x−1−

√
a

)∆an−3
(

x−2+
√

a
x−2−

√
a

)∆an−2
(

y0+
√

a

y0−
√

a

)∆an−1
(

y−1+
√

a

y−1−
√

a

)an−5
(

y−2+
√

a

y−2−
√

a

)an−4
+ 1

(
x0+

√
a

x0−
√

a

)an−3
(

x−1+
√

a
x−1−

√
a

)∆an−3
(

x−2+
√

a
x−2−

√
a

)∆an−2
(

y0+
√

a

y0−
√

a

)∆an−1
(

y−1+
√

a

y−1−
√

a

)an−5
(

y−2+
√

a

y−2−
√

a

)an−4 − 1
,

for n ≥ −2, where the sequence an is given by (2.109) and ∆an = an+1 − an.

2.11 System (2.32)

From (2.32) we see that
ζn = ηn, n ∈ N,

implying that
ζn = ζn−1ζn−3,

for n ≥ 4.
Employing (2.45) it follows that

ζn = ζ
an−3
3 ζ

an−5
2 ζ

an−4
1

= (ζ0η0η−1η−2)
an−3(ζ0η−1η−2)

an−5(ζ0η−2)
an−4

= ζ
an−1
0 η

an−3
0 η

an−2
−1 η

an−1
−2 , (2.110)

for n ∈ N, where an is the solution to equation (2.43) such that a−1 = a−2 = 0 and a0 = 1, and
consequently

ηn = ζ
an−1
0 η

an−3
0 η

an−2
−1 η

an−1
−2 , (2.111)

for n ∈ N0.
From (2.21), (2.110) and (2.111), the following corollary follows.
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Corollary 2.13. If a 6= 0, then the general solution to (2.15) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)an−1
(

y0+
√

a

y0−
√

a

)an−3
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

)an−1
(

y0+
√

a

y0−
√

a

)an−3
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
,

for n ∈ N, and

yn =
√

a

(
x0+

√
a

x0−
√

a

)an−1
(

y0+
√

a

y0−
√

a

)an−3
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

)an−1
(

y0+
√

a

y0−
√

a

)an−3
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
,

for n ∈ N0, where an is given by (2.48).

2.12 System (2.33)

This system is get from (2.23) by interchanging letters ζ and η. Hence, we have

ηn = ηan
0 η

an−2
−1 η

an−1
−2

for n ≥ −2, and
ζn = ζ0ηan−1

0 η
an−2
−1 η

an−1
−2 ,

for n ∈ N0.
From this and (2.21) the following corollary follows.

Corollary 2.14. If a 6= 0, then the general solution to (2.16) is

xn =
√

a

(
x0+

√
a

x0−
√

a

) (
y0+

√
a

y0−
√

a

)an−1 ( y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

) (
y0+

√
a

y0−
√

a

)an−1 ( y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
, n ∈ N0,

yn =
√

a

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
, n ≥ −2,

where an is given by (2.48).

2.13 System (2.34)

From (2.34) we have
ζn = ζn−2ζ2

n−4ζn−6, (2.112)

for n ≥ 4.
Let

a1 := 1, b1 := 2, c1 := 1. (2.113)

Then, from (2.112) and (2.113), it follows that

ζ2n = ζa1
2n−2ζb1

2n−4ζc1
2n−6, (2.114)

for n ≥ 2.
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Employing (2.112) in (2.114), it follows that

ζ2n = ζa1
2n−2ζb1

2n−4ζc1
2n−6

= (ζ2n−4ζ2
2n−6ζ2n−8)

a1 ζb1
2n−4ζc1

2n−6

= ζa1+b1
2n−4 ζ2a1+c1

2n−6 ζa1
2n−8

= ζa2
2n−4ζb2

2n−6ζc2
2n−8,

for n ≥ 3, where
a2 := a1 + b1, b2 := 2a1 + c1, c2 := a1.

Similar to equation (2.40), it follows that

ζ2n = ζ
ak

2(n−k)
ζ

bk

2(n−k−1)ζ
ck

2(n−k−2), (2.115)

and

ak = ak−1 + bk−1, bk = 2ak−1 + ck−1, ck = ak−1, (2.116)

for a k ≥ 2 and all n ≥ k + 1.
From (2.113) and (2.116) we have

an = an−1 + 2an−2 + an−3, (2.117)

and
a0 = 1, a−1 = 0, a−2 = 0, a−3 = 1.

Letting k = n − 1 in (2.115), it follows that

ζ2n = ζ
an−1
2 ζ

bn−1
0 ζ

cn−1
−2

= (ζ0ζ−2η−1)
an−1 ζ

an−an−1
0 ζ

an−2
−2

= ζan
0 ζ

an−1+an−2
−2 η

an−1
−1 , (2.118)

for n ≥ −1.
Similarly is get

ζ2n−1 = ζ
an−2
3 ζ

bn−2
1 ζ

cn−2
−1

= (ζ−1η2
0η−2)

an−2(η0η−2)
an−1−an−2 ζ

an−3
−1

= ζ
an−2+an−3
−1 η

an−1+an−2
0 η

an−1
−2 , (2.119)

for n ∈ N0.
Combining (2.34) and (2.118), it follows that

η2n−1 = ζ2n−2ζ2n−4

= ζ
an−1+an−2
0 ζ

an−2+2an−3+an−4
−2 η

an−2+an−3
−1

= ζ
an−1+an−2
0 ζ

an−1
−2 η

an−2+an−3
−1 ,

for n ∈ N0, whereas by combining (2.34) and (2.119), it follows that

η2n = ζ2n−1ζ2n−3

= ζ
an−2+2an−3+an−4
−1 η

an−1+2an−2+an−3
0 η

an−1+an−2
−1

= ζ
an−1
−1 ηan

0 η
an−1+an−2
−2 ,
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for n ≥ −1.
The characteristic polynomial associated with (2.117) is

P̂3(t) = t3 − t2 − 2t − 1.

Let tj, j = 1, 3, be the roots of the polynomial. Then, the solution to (2.117) such that a−2 =

a−1 = 0 and a0 = 1, is

an =
3

∑
j=1

tn+2
j

P̂′
3(tj)

, n ∈ Z. (2.120)

From this and (2.21) the following corollary follows.

Corollary 2.15. If a 6= 0, then the general solution to (2.17) is

x2n =
√

a

(
x0+

√
a

x0−
√

a

)an
(

x−2+
√

a
x−2−

√
a

)an−1+an−2
(

y−1+
√

a

y−1−
√

a

)an−1
+ 1

(
x0+

√
a

x0−
√

a

)an
(

x−2+
√

a
x−2−

√
a

)an−1+an−2
(

y−1+
√

a

y−1−
√

a

)an−1 − 1
, n ≥ −1

x2n−1 =
√

a

(
x−1+

√
a

x−1−
√

a

)an−2+an−3
(

y0+
√

a

y0−
√

a

)an−1+an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
x−1+

√
a

x−1−
√

a

)an−2+an−3
(

y0+
√

a

y0−
√

a

)an−1+an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
, n ∈ N0

y2n =
√

a

(
x−1+

√
a

x−1−
√

a

)an−1
(

y0+
√

a

y0−
√

a

)an
(

y−2+
√

a

y−2−
√

a

)an−1+an−2
+ 1

(
x−1+

√
a

x−1−
√

a

)an−1
(

y0+
√

a

y0−
√

a

)an
(

y−2+
√

a

y−2−
√

a

)an−1+an−2 − 1
, n ≥ −1

y2n−1 =
√

a

(
x0+

√
a

x0−
√

a

)an−1+an−2
(

x−2+
√

a
x−2−

√
a

)an−1
(

y−1+
√

a

y−1−
√

a

)an−2+an−3
+ 1

(
x0+

√
a

x0−
√

a

)an−1+an−2
(

x−2+
√

a
x−2−

√
a

)an−1
(

y−1+
√

a

y−1−
√

a

)an−2+an−3 − 1
, n ∈ N0,

where the sequence an is given by (2.120).

2.14 System (2.35)

This system is get from (2.30) by interchanging letters ζ and η. Hence, we have

ζn = η
an−1+an−3
0 η

an−6+an−8
−1 η

an−5+an−7
−2 ζ

an−4+an−6
0 ζ

an−3+an−5
−1 ζ

an−2+an−4
−2 ,

for n ≥ −2, and
ηn = ηan

0 η
an−5
−1 η

an−4
−2 ζ

an−3
0 ζ

an−2
−1 ζ

an−1
−2 ,

for n ≥ −2.
From this and (2.21) the following corollary follows.

Corollary 2.16. If a 6= 0, then the general solution to (2.18) is

xn =
√

a

(
y0+

√
a

y0−
√

a

)bn−1
(

y−1+
√

a

y−1−
√

a

)bn−6
(

y−2+
√

a

y−2−
√

a

)bn−5
(

x0+
√

a
x0−

√
a

)bn−4
(

x−1+
√

a
x−1−

√
a

)bn−3
(

x−2+
√

a
x−2−

√
a

)bn−2
+ 1

(
y0+

√
a

y0−
√

a

)bn−1
(

y−1+
√

a

y−1−
√

a

)bn−6
(

y−2+
√

a

y−2−
√

a

)bn−5
(

x0+
√

a
x0−

√
a

)bn−4
(

x−1+
√

a
x−1−

√
a

)bn−3
(

x−2+
√

a
x−2−

√
a

)bn−2 − 1
,

yn =
√

a

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−5
(

y−2+
√

a

y−2−
√

a

)an−4
(

x0+
√

a
x0−

√
a

)an−3
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1
+ 1

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−5
(

y−2+
√

a

y−2−
√

a

)an−4
(

x0+
√

a
x0−

√
a

)an−3
(

x−1+
√

a
x−1−

√
a

)an−2
(

x−2+
√

a
x−2−

√
a

)an−1 − 1
,

for n ≥ −2, where the sequence an is given by (2.100) and bn = an + an−2.
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2.15 System (2.36)

This system is obtained from (2.26) by interchanging letters ζ and η. Hence, we have

ζn = ζ
bn−3+bn−5
0 η

bn−2+bn−4
0 η

bn−3+bn−4
−1 η

bn−2+bn−3
−2 , n ∈ N0,

ηn = ζ
bn−2
0 η

bn−1
0 η

bn−3+bn−4
−1 η

bn−2+bn−3
−2 , n ≥ −2.

From this and (2.21) the following corollary follows.

Corollary 2.17. If a 6= 0, then the general solution to (2.19) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)bn−3+bn−5
(

y0+
√

a

y0−
√

a

)bn−2+bn−4
(

y−1+
√

a

y−1−
√

a

)bn−3+bn−4
(

y−2+
√

a

y−2−
√

a

)bn−2+bn−3
+ 1

(
x0+

√
a

x0−
√

a

)bn−3+bn−5
(

y0+
√

a

y0−
√

a

)bn−2+bn−4
(

y−1+
√

a

y−1−
√

a

)bn−3+bn−4
(

y−2+
√

a

y−2−
√

a

)bn−2+bn−3 − 1
,

for n ∈ N0, and

yn =
√

a

(
x0+

√
a

x0−
√

a

)bn−2
(

y0+
√

a

y0−
√

a

)bn−1
(

y−1+
√

a

y−1−
√

a

)bn−3+bn−4
(

y−2+
√

a

y−2−
√

a

)bn−2+bn−3
+ 1

(
x0+

√
a

x0−
√

a

)bn−2
(

y0+
√

a

y0−
√

a

)bn−1
(

y−1+
√

a

y−1−
√

a

)bn−3+bn−4
(

y−2+
√

a

y−2−
√

a

)bn−2+bn−3 − 1
,

for n ≥ −2, where bn is given by (2.77).

2.16 System (2.37)

System (2.37) is get from system (2.22) by interchanging letters ζ and η only. Hence, we have

ζn = ηan
0 η

an−2
−1 η

an−1
−2 , n ∈ N,

ηn = ηan
0 η

an−2
−1 η

an−1
−2 , n ≥ −2.

From this and (2.21) the following corollary follows.

Corollary 2.18. If a 6= 0, then the general solution to (2.20) is

xn =
√

a

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
, n ∈ N,

yn =
√

a

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1
+ 1

(
y0+

√
a

y0−
√

a

)an
(

y−1+
√

a

y−1−
√

a

)an−2
(

y−2+
√

a

y−2−
√

a

)an−1 − 1
, n ≥ −2,

where an is given by (2.48).
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1 Introduction

The aim of this paper is to investigate the set of solutions of the boundary value problem,

−{A(x)u′(x)}′ + V(x)u(x) + n(x, u′(x)) + g(x, u(x)) = λu(x) for 0 < x < 1, (1.1)

u(1) = 0 and
∫ 1

0
A(x)u′(x)2dx < ∞, (1.2)

for an unknown function u such that u ∈ C1((0, 1]) and Au′ is absolutely continuous on

the compact subintervals of (0, 1]. The differential equation is singular at x = 0 because we

suppose that the coefficient A satisfies the following condition.

(A) A ∈ C([0, 1]) with A(x) > 0 for x > 0 and limx→0
A(x)

x2 = a > 0.

Hence there exist constants C2 ≥ C1 > 0 such that C1x2 ≤ A(x) ≤ C2x2 for all x ∈ [0, 1].

As we have shown in previous work on the problem in [31], this level of degeneracy leads

to behaviour that does not occur for regular problems nor problems with weaker degeneracy.

BEmail: charles.stuart@epfl.ch
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For example, solutions can become unbounded as x tends to zero and there may be no bi-

furcation at a simple eigenvalue of the linearisation lying below the essential spectrum. For

a more detailed presentation of the critical character of quadratic degeneracy we refer to [33]

concerning the analogous elliptic problem in higher dimensions. Other aspects of criticality

have been emphasised in some work on the asymptotic behaviour of solutions for a porous

medium equation with degeneracy [17, 18]. In the stability analysis for the parabolic problem

associated with the higher dimensional analogue of (1.1)(1.2) it is shown in [32] that the prin-

ciple of linearised stability can fail at the stationary solution u ≡ 0 when the degeneracy is

critical. For subcritical degeneracy, i.e. when lim infx→0 x−d A(x) > 0 for some d < 2, global

bifurcation of positive stationary solutions and their stability are proved in [20] for a parabolic

problem corresponding to the higher dimensional analogue of (1.1)(1.2).

Before proceeding to describe other aspects of the problem some information about the

lower order terms in (1.1) is necessary. The potential V in (1.1) is bounded and has a well-

defined limit as x → 0.

(V) V ∈ L∞(0, 1) and there exists V0 ∈ R such that limz→0 ‖V − V0‖L∞(0,z) = 0.

The nonlinear terms n and g are of higher order in the sense that

lim
s→0

n(x, s)

s
= lim

s→0

g(x, s)

s
= 0 for all x ∈ (0, 1) (1.3)

and they satisfy some additional conditions introduced in Subection 2.2. Under these hy-

potheses u ≡ 0 is a solution of (1.1)(1.2) and the parameter λ ∈ R is treated as an eigenvalue.

The sense in which the equation (1.1) is satisfied is made precise in Section 2.3. In this form

the problem has been studied in some detail in [31,33] and Section 2 contains the conclusions

from those papers that are needed here.

In view of (1.3) the linearisation of (1.1) is the singular Sturm–Liouville problem

− {A(x)u′(x)}′ + V(x)u(x) = λu(x), where u ∈ L2(0, 1) and u(1) = 0, (1.4)

and its spectrum is discussed in Section 2.4. It is in the limit point case at x = 0 when (A) and

(V) are satisfied but

lim
x→0

A(x)u′(x) = 0, (1.5)

appears as a natural boundary condition. In fact, it is noted in Section 2 that the expression

−(Au′)′ + Vu defines a self-adjoint operator, SA + V, acting in L2(0, 1) with domain

DA = {u ∈ L2(0, 1) : (Au′)′ ∈ L2(0, 1) and u(1) = 0}

and all elements of DA satisfy (1.2) and (1.5). The eigenvalues of SA + V are all simple and its

essential spectrum is the interval [ a
4 + V0, ∞). In Section 2.4 some special cases treated in [33]

are recalled showing that SA + V may or may not have eigenvalues.

The main results of this paper give information about the global behaviour of components

of solutions (λ, u) ∈ R × DA of the singular problem (1.1)(1.2) in the spirit of the regular case

treated in [7, 24]. This involves confronting two principal difficulties arising from the degen-

eracy. First of all, the presence of a non-trivial essential spectrum of the linearisation indicates

that the problem cannot be reduced to an equation for a compact perturbation of the iden-

tity. Secondly, previous work on the existence of bifurcation points for problem (1.1)(1.2) has

shown that, under reasonable assumptions about the nonlinear terms, Fréchet differentiability
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at the trivial solution u ≡ 0 cannot be obtained. Indeed, there are cases in [31,33] where there

is no bifurcation at an eigenvalue of SA + V lying below its essential spectrum, a situation

which could not occur if the nonlinearity were Fréchet differentiable at u ≡ 0.

The conclusions obtained here concerning problem (1.1)(1.2) are established by following

what has become a standard path since the classic paper by Rabinowitz [23]. First of all an

abstract result is formulated under hypotheses that accommodate the two main difficulties

just mentioned. This result is then applied to the boundary value problem and the nodal

properties of solutions are used to sharpen the information about components of solutions

given by the abstract theory.

Let X and Y be real Banach spaces and consider a mapping F : R × X → Y having the

properties that F(λ, 0) = 0 for all λ ∈ R and F(λ, ·) : X → Y is at least Hadamard differ-

entiable at 0. For the equation F(λ, u) = 0, local results concerning bifurcation at isolated

singular points of the derivative DuF(λ, 0) were established in [29] using the Brouwer degree

after reduction to a finite dimensional space. In a similar setting global conclusions about

connected components of solutions have been obtained recently in [34] using a topological

degree for continuous perturbations of C1-Fredholm maps constructed by Benevieri, Calamai

and Furi [3, 4], combined with techniques from in [29]. In these contributions a considerable

amount of rather specialised terminology is required in order the formulate the hypotheses.

The class of admissible perturbations for the existence of the degree defined in [3, 4] is speci-

fied using notions related to the Kuratowski measure of non-compactness and the conditions

for bifurcation involve the parity of the path λ 7→ DuF(λ, 0) as defined by Fitzpatrick and

Pejsachowicz, [15]. Instead of recalling these results in their fully generality with all the req-

uisite terminology, we formulate two special cases concerning equations of a simpler form

in Hilbert space. With the exception of Hadamard and w-Hadamard differentiability which

are defined in Section 4.1, these results can be stated using only well-known concepts and

problem (1.1)(1.2) can be dealt with in this context.

The Hilbert space theory, as set out in Section 4, is applied to problem (1.1)(1.2) in Section 5.

As for regular Sturm–Liouville problems, the nodal properties of solutions and comparison

principles for self-adjoint operators can be used to refine the conclusions coming directly

from the abstract theory. However the strong degeneracy of equation (1.1) at x = 0 means

that the behaviour of solutions as x → 0 requires some care and various aspects of this are

investigated in Section 3, generalizing results of a similar nature in [31]. As special cases of

the main results in Section 5, hypotheses are provided under which the following somewhat

unusual phenomena occur. Consider problem (1.1)(1.2) with n ≡ 0. Given any n ∈ N, there

are coefficients A and V such that the linearisation (1.4) has exactly n simple eigenvalues

λ1 < λ2, . . . . < λn below its essential spectrum which is [me, ∞) where me =
a
4 + V0.

(1) For any k ∈ {1, . . . , n} there is a class of nonlinearities with g(x, s)s ≤ 0 for all (x, s) ∈
(0, 1)× R for which an unbounded component of non-trivial solutions bifurcates from (λi, 0)

for each i ≤ k, but there is no bifurcation from (λi, 0) for i > k. (See Remark 5.4.)

(2) There is another class of nonlinearities with g(x, s)s ≥ 0 for all (x, s) ∈ (0, 1)× R for

which a component Ci of non-trivial solutions bifurcates from (λi, 0) for every i ∈ {1, ..., n}
and {λ : (λ, u) ∈ Ci} = [λi, me). If (λ, u) ∈ Ci with λ near λi, u ∈ C1((0, 1])∩ L∞(0, 1), whereas

for λ near me, u ∈ C1((0, 1]) but u(x) → ∞ as n → ∞. (See Remark 5.6.)

Many references to problems of the type studied here can be found in the papers [17, 18,

20,31,33] and, as shown in an appendix in [31], several other types of equation can be reduced

to the form (1.1) by a change of variable. The radially symmetric version of the analogous

problem in higher dimensions can also be transformed to (1.1)(1.2). Following what was done
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in [13] for a closely related case, this is mentioned in [31] and more details are given in Section

6.6 of [33] where local results on bifurcation are formulated.

The line of research pursued here on bifurcation for problems like (1.1)(1.2) was stimu-

lated by the unusual behaviour revealed in [28] concerning the buckling of a critically tapered

rod which is modelled by an equation having the same kind of degeneracy. Using variational

methods it is shown in [28] that an unbounded curve of positive solutions bifurcates from the

lowest point Λ of the spectrum of the linearisation, even if it is not an eigenvalue. In fact, bi-

furcation occurs at every point in the interval [Λ, ∞). For the same problem, global bifurcation

at all eigenvalues lying below the essential spectrum was established in collaboration with G.

Vuillaume [35, 36] using a topological approach. In this buckling problem the full nonlinear

equation involves a compact perturbation of the identity but it is not Fréchet differentiable at

the trivial solution and its linearisation is not a compact perturbation of the identity. In work

with G. Evéquoz [13,14] on a more general class of degenerate problems a variational method

was used show that bifurcation can occur at points which are not necessarily eigenvalues of

the linearisation and singular behaviour of the bifurcating solutions was demonstrated in the

radially symmetric case. Some of the abstract results on bifurcation for non-Fréchet differen-

tiable problems are summarised in [30] together with references to applications to uniformly

elliptic equations on R
N .

2 A class of singular boundary value problems

Throughout this section it is assumed that the function A satisfies condition (A). The first

step is to define the domain of a positive self-adjoint operator, SA, in L2(0, 1) associated with

the singular differential operator −(Au′)′ and the boundary condition u(1) = 0. In addition

to noting some crucial properties of functions in this domain, DA, it is also necessary to

investigate the domain, HA, of the positive, self-adjoint square-root, S
1
2
A. Although the set DA

depends upon A, it turns out that HA is the same set for all coefficients satisfying condition

(A). Most of the results mentioned in this section are proved in [31].

2.1 The spaces DA and HA

From the results in Section 2 of [31] the set DA can be defined as

DA = {u ∈ C1((0, 1]) ∩ L2(0, 1) : (Au′)′ ∈ L2(0, 1) and u(1) = 0},

where (Au′)′ is the generalized derivative on (0, 1) of the continuous function Au′. It is also

shown in [31] that

SA : DA ⊂ L2(0, 1) → L2(0, 1) with SAu = −(Au′)′ for u ∈ DA

is a self-adjoint operator having the following properties. See Lemmas 2.1 and 2.2 and Corol-

lary 2.3 in [31].

(D1) (SAu, v)L2 =
∫ 1

0 Au′v′ dx for all u, v ∈ DA.

(D2) (SAu, u)L2 ≥ C1
4 ‖u‖2

L2 and ‖u‖L2 ≤ 2√
C1
‖A

1
2 u′‖L2 ≤ 4

C1
‖SAu‖L2 for all u ∈ DA.

(D3) SA : DA → L2 is an isomorphism and S−1
A w =

∫ 1
x

1
A(y)

[
∫ y

0 w(z) dz] dy for all w ∈ L2(0, 1).
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Henceforth, L2 = L2(0, 1) and a ≥ C1 ≡ inf
{ A(x)

x2 : 0 < x ≤ 1
}
> 0 by (A). By (D2), ‖SAu‖L2

defines a norm on DA that is equivalent to the graph norm of SA. Elements of DA enjoy the

following properties which are proved in Lemmas 2.4 and 2.5 in [31].

(P1) x
3
2 u′(x) → 0 as x → 0 and ‖x

3
2 u′‖L∞ ≤ 1

C1
‖SAu‖L2 for all u ∈ DA.

(P2) x
1
2 u(x) → 0 as x → 0 and ‖x

1
2 u‖L∞ ≤ 1√

C1
‖A

1
2 u′‖L2 ≤ 2

C1
‖SAu‖L2 for all u ∈ DA.

By condition (A) and (P1), A(x)u′(x) → 0 as x → 0 for all u ∈ DA showing that (1.5) is a

natural boundary condition for the operator SA. If u ∈ DA and u(z) = 0 for some z ∈ (0, 1], it

follows from (P1) and (P2) that
∫ z

0
[SAu(x)]u(x) dx =

∫ z

0
A(x)u′(x)2dx. (2.1)

Let

H =

{
u ∈ L2(0, 1) :

∫ 1

0
x2u′(x)2dx < ∞

}

where u′ is the generalized derivative of u on (0, 1). If u ∈ H, its restriction to (η, 1) be-

longs to the usual Sobolev space H1((η, 1)) for all η ∈ (0, 1) and so, with the usual abuse to

terminology, we can consider that u ∈ C((0, 1]). The space HA is defined by

HA = {u ∈ H : u(1) = 0} =

{
u ∈ L2(0, 1) :

∫ 1

0
A(x)u′(x)2dx < ∞ and u(1) = 0

}
.

It is a Hilbert space for the norm defined by ‖u‖A = ‖A
1
2 u′‖L2 and the corresponding scalar

product is denoted by

〈u, v〉A =
∫ 1

0
A(x)u′(x)v′(x) dx for u, v ∈ HA.

Denoting the unique positive, self-adjoint square root of SA by S
1
2
A : D(S

1
2
A) ⊂ L2(0, 1) →

L2(0, 1), it is also shown in [31] that HA = D(S
1
2
A). In particular, DA is a dense subspace of

(HA, ‖ · ‖A) and so (D1), (D2) and (P2) imply the following properties.

(H1) ‖u‖L2 ≤ 2√
C1
‖u‖A and ‖u‖A = ‖S

1
2
Au‖L2 for all u ∈ HA.

(H2) x
1
2 u(x) → 0 as x → 0 and ‖x

1
2 u‖L∞ ≤ 1√

C1
‖u‖A for all u ∈ HA.

Using (H1) with A(x) = x2 and a simple rescaling, we have that

∫ z

0
u(x)2dx ≤ 4

∫ z

0
x2u′(x)2dx if u ∈ HA and u(z) = 0 for some z ∈ (0, 1]. (2.2)

By (P1) and (H2),

∫ 1

0
[SAu(x)]v(x) dx =

∫ 1

0
A(x)u′(x)v′(x) dx for all u ∈ DA and v ∈ HA. (2.3)

The following compactness property is justified in Remark 2.2 in [31].

(H3) If {un} ⊂ HA is a sequence converging weakly to u in HA, {un} ⊂ C([η, 1]) and it

converges uniformly to u on [η, 1] for all η ∈ (0, 1).
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2.2 Properties of the nonlinearities

The Nemytskii operator associated with a Caratheodory function f : (0, 1) × R → R will

be denoted by f̃ . Thus f̃ (u)(x) = f (x, u(x)) for a measurable function u : (0, 1) → R and

x ∈ (0, 1).

We now formulate the assumptions which will be used to deal with the nonlinear terms

in equation (1.1). They ensure that the corresponding operators are well-defined and map the

spaces DA and HA into L2(0, 1). For the continuity and differentiability properties of these

operators it is understood that DA and HA are considered with the norms ‖SA‖L2 and ‖u‖A,

respectively.

(F) f : (0, 1)× R → R is a Carathéodory function such that

(i) lims→0
f (x,s)

s = 0 for all x ∈ (0, 1),

(ii) for some ℓ ∈ [0, ∞), | f (x, s)− f (x, t)| ≤ ℓ|s − t| for all x ∈ (0, 1) and s, t ∈ R.

For a function satisfying condition (F), let

ℓ f = sup

{ | f (x, s)− f (x, t)|
|s − t| : 0 < x < 1 and s 6= t

}
. (2.4)

The next result refers to Hadamard and w-Hadamard differentiability of a mapping. The

definitions of these notions are recalled in Section 4.1.

Proposition 2.1. Let condition (F) be satisfied by a function f .

(i) Then the associated Nemytskii operator maps L2 = L2(0, 1) into itself and f̃ : L2 → L2 is

uniformly Lipschitz continuous with

‖ f̃ (u)− f̃ (v)‖L2 ≤ ℓ f ‖u − v‖L2 for all u, v ∈ L2 (2.5)

Furthermore, f̃ : L2 → L2 is Gâteaux differentiable at 0 with derivative 0.

(ii) f̃ : L2 → L2 is Hadamard differentiable at 0 and f̃ : HA → L2 is w-Hadamard differentiable at 0

with derivative 0.

(iii) In addition to condition (F) suppose that there is a constant α with the property that, for all

δ > 0, there exist x(δ) ∈ (0, 1) and M(δ) such that | f (x, s) − αs| ≤ M(δ) + δ|s| for all

(x, s) ∈ (0, x(δ))× R. Then the mapping f̃ − αI : HA → L2 is compact.

Proof. For parts (i) and (ii) see Lemma 3.1 in [31]. Part (iii) appears as Lemma 4.3 (b) in

[34].

Remark 2.2. Since DA is continuously embedded in L2, f̃ : DA → L2 is also Hadamard

differentiable at 0. However, it is important to emphasise that an assumption like (F) does

not imply Fréchet differentiability of f̃ at 0, even when f ∈ C∞([0, 1]× R). For example, it is

shown in Example 3.1 in [31] that when f (x, s) = h(s), where h ∈ C∞(R) with h(0) = h′(0) =
0 and sups∈R

|h′(s)| < ∞, condition (F) is satisfied but f̃ : DA → L2 is Fréchet differentiable at

0 if and only if h ≡ 0.

Fréchet differentiability of f̃ does hold provided that the function f (x, s) decays in an

appropriate way as x → 0, as stipulated in the following condition.



Qualitative properties and global bifurcation 7

(E) f = ∑
k
i=1 fi where for each i, fi : (0, 1)× R → R is a Carathéodory function such that

(i) fi(x, ·) ∈ C1(R) and fi(x, 0) = 0 for all x ∈ (0, 1),

(ii) there exist Ki and αi > σi
2 such that |∂s fi(x, s)| ≤ Kix

αi |s|σi for all x ∈ (0, 1) and

s ∈ R where 0 < σ1 < · · · < σk.

For a function f satisfying condition (E), let C f (s) = ∑
k
i=1 sσi for s ≥ 0 and note that for s, t ≥ 0,

min{1, tσk}C f (s)≤min{tσ1 , tσk}C f (s)≤C f (ts)≤max{tσ1 , tσk}C f (s)≤max{1, tσk}C f (s). (2.6)

It follows from (E) and property (H2) that for all u ∈ HA and x ∈ (0, 1),

∣∣∣∣
fi(x, u(x))

u(x)

∣∣∣∣ ≤ Kix
αi−

σi
2 [x

1
2 |u(x)|]σi ≤ KiC

−σi/2
1 ‖u‖σi

Axαi−
σi
2 if u(x) 6= 0. (2.7)

and

| fi(x, u(x))u(x)| ≤ KiC
−σi/2
1 ‖u‖σi

Axαi−
σi
2 u(x)2. (2.8)

Hence, setting ν = min{αi − σi
2 : 1 ≤ i ≤ k}, there exists a constant C such that

| f (x, u(x))| ≤ Cxν
C f (‖u‖A)|u(x)| for all u ∈ HA and x ∈ (0, 1). (2.9)

Thus f̃ (u) ∈ L2 for all u ∈ HA and the next result shows that condition (E) ensures that

f̃ : HA → L2 is both continuously Fréchet differentiable on HA and compact.

Proposition 2.3. Let f satisfy the condition (E). Then f̃ ∈ C1(HA, L2) and there is a constant C > 0

such that ‖ f̃ ′(u)‖B(HA,L2) ≤ CC f (‖u‖A). Furthermore, the mapping f̃ : HA → L2 is compact.

Proof. Continuous differentiability is established in Lemma 3.2 in [31]. Compactness is easily

proved using the estimate (2.9) on the interval (0, η) and property (H3) on [η, 1] for η ∈
(0, 1) in the same way as in Lemma 4.5 of [32] which deals with a similar situation in higher

dimensions.

Remark 2.4. For u, v ∈ HA, ‖ f̃ (u) − f̃ (v)‖L2 ≤ CC f (‖u‖A + ‖v‖A)‖u − v‖A and, in partic-

ular, ‖ f̃ (u)‖L2 ≤ CC f (‖u‖A)‖u‖A for all u ∈ HA. It also follows from this lemma that

f̃ ∈ C1(DA, L2) and there is a constant C such that ‖ f̃ ′(u)‖B(DA,L2) ≤ CC f (‖SAu‖L2) for all

u ∈ DA.

We now turn to the nonlinear term in equation (1.1) containing u′. Recalling that DA ⊂
C1((0, 1]) a mapping N is defined on DA by setting N(u)(x) = n(x, u′(x)) = ñ(u′)(x) where

n : (0, 1)× R → R. The following condition ensures that N maps DA into L2.

(M) n = ∑
j
i=1 ni where for each i, ni : (0, 1)× R → R is a Carathéodory function such that

(i) ni(x, ·) ∈ C1(R) and ni(x, 0) = 0 for all x ∈ (0, 1),

(ii) there exist Ki > 0 and βi >
3γi
2 + 1 such that |∂sni(x, s)| ≤ Kix

βi |s|γi for all x ∈ (0, 1)

and s ∈ R where 0 < γ1 < · · · < γj.

For a function n satisfying condition (M), let Dn(s) = ∑
j
i=1 sγi for s ≥ 0.

It follows from (M) and property (P1) that for all u ∈ DA and x ∈ (0, 1),
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|ni(x, u′(x))| ≤ Kix
βi−

3γi
2 −1|xu′(x)||x 3

2 u′(x)|γi ≤ KiC
−γi/2
1 ‖SAu‖γi

L2 xβ− γi
2 −1|xu′(x)| (2.10)

and hence there is a constant K such that

|ni(x, u′(x))u(x)| ≤ K‖SAu‖γi

L2 xβi−
3γi

2 −1{u(x)2 + x2u′(x)2}. (2.11)

Setting ν = min{βi − 3γi
2 − 1 : 1 ≤ i ≤ j} it follows from (2.10) that there exists a constanct C

such that

|n(x, u′(x))| ≤ Cxν
Dn(‖SAu‖L2)|xu′(x)| for all u ∈ DA and x ∈ (0, 1).

Hence N(u) ∈ L2 for all u ∈ DA and the main properties of the mapping N : DA → L2 are

given in the next result.

Proposition 2.5. When n satisfies the condition (M), N ∈ C1(DA, L2) with N′(u)v = ∂sn(·, u′)v′

for all u, v ∈ DA and there is a constant C > 0 such that ‖N′(u)‖B(DA,L2) ≤ CDn(‖SAu‖L2).

Furthermore, the mapping N : DA → L2 is compact.

Proof. See Lemma 3.4 in [31] and Lemma 4.3 (a) in [34].

2.3 Solutions of problem (1.1)(1.2) and bifurcation points

In dealing with problem (1.1)(1.2) from now on it will be assumed that the following condition

is satisfied.

(S) The coefficients A and V satisfy conditions (A) and (V). The function n satisfies condition

(M) and g can be written as g1 + g2 where g1 satisfies condition (F) and g2 satisfies

condition (E).

Under the assumption (S) it follows from Propositions 2.1 to 2.5 that a continuous mapping

F : R × DA → L2 is defined by

F(λ, u) = SAu + Vu + N(u) + g̃(u)− λu, (2.12)

provided that DA is considered with a norm equivalent to the graph norm of SA. By property

(D2), all elements of DA satisfy (1.2).

Definition 2.6. Henceforth, a solution of problem (1.1)(1.2) is defined to be an element (λ, u) ∈
R × DA such that F(λ, u) = 0, where F is given by (2.12).

Clearly (λ, 0) is a solution for all λ ∈ R and

E = {(λ, u) ∈ R × DA : F(λ, u) = 0 and u 6≡ 0} (2.13)

denotes the set of all non-trivial solutions of problem (1.1)(1.2). We recall that for u ∈ DA,

u ∈ C1((0, 1]) and, setting v = Au′, we also have that v is absolutely continuous on [0, 1],

as noted at the beginning of Section 2 in [31]. If (λ, u) is a solution of (1.1)(1.2), v′(x) =

f (λ, x, u(x), v(x)) for almost all x ∈ (0, 1) where f (λ, x, p, q) = [V(x)− λ]p + n(x, q/A(x)) +

g(x, p) for x ∈ (0, 1] and p, q ∈ R. Thus, when A is not differentiable on (0, 1), equation (1.1)

is satisfied in the sense of a quasi-differential equation, that is

(u(x), v(x))′ = (v(x)/A(x), f (λ, x, u(x), v(x))) for almost all x ∈ (0, 1). (2.14)
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(See III.10.1 in [10] and Chapter 2 of [25], for example.) For any given η ∈ (0, 1] and (p0, q0) ∈
R, assumption (S) ensures that there exist L > 0 and δ ∈ (0, η) such that

|q1 − q2|
A(x)

≤ L|q1 − q2| and | f (λ, x, p1, q1)− f (λ, x, p2, q2)| ≤ L‖(p1, q1)− (p2, q2)‖

for x ∈ [η − δ, 1] and ‖(pi, qi) − (p0, q0)‖ < δ for i = 1 and 2. Hence for any x0 > 0, local

existence and uniqueness of the solution of the initial value problem u(x0) = p0, v(x0) = q0 for

(2.14) hold by standard arguments applied to the equivalent integral equation. (See Chapter 2

of [6], for example.) In particular, if (λ, u) is a solution of (1.1)(1.2) and u(x0) = u′(x0) = 0 for

some x0 ∈ (0, 1], then u(x) = 0 for all x ∈ (0, 1] and it follows that, if (λ, u) ∈ E , then u has a

finite number of zeros in any compact subinterval of (0, 1] and that they are all simple zeros.

Having clarified what is meant by a solution of problem (1.1)(1.2), we now turn to the

notion of bifurcation point.

Definition 2.7. A real number µ is called a bifurcation point for problem (1.1)(1.2) if and only

if (µ, 0) ∈ E where E denotes the closure of E in the space R × DA and DA is considered with

the norm u 7→ ‖SAu‖L2 .

To explore the content of this definition, consider a sequence {(λn, un)} in E such that

λn → µ and ‖SAun‖L2 → 0 as n → ∞. By properties (P1) and (P2) in Section 2.1 this implies

that ‖x1/2un‖L∞ → 0 and ‖x3/2u′
n‖L∞ → 0 as n → ∞. Hence, {un} and {u′

n} converge uni-

formly to zero on all compact subintervals of (0, 1], but not necessarily on (0, 1]. However, by

(D2) we do have that ‖un‖L2 + ‖un‖A → 0 as n → ∞. The results in Section 5 provide sufficient

conditions for a number µ to be a bifurcation point and under their hypotheses the functions

un have only a finite number of zeros in (0, 1]. It follows from this and Proposition 3.5(ii) that

there exists n0 ∈ N such that limx→0 un(x) = ±∞ for all n ≥ n0 if µ ∈ (V0 + Js(g1),
a
4 + V0).

Further details of situations where this phenomenon occurs are given in Section 5.

The assumption (S) and Propositions 2.1 to 2.5 also imply that for all λ ∈ R the mapping

F(λ, ·) : DA → L2 defined by (2.12) is Hadamard differentiable at 0 with DuF(λ, 0) = SA +V ∈
B(DA, L2). Hence we expect that bifurcation theory for problem (1.1)(1.2) will require some

information about the spectrum of the operator SA + V.

2.4 Spectral theory of the linearization

Conditions (A) and (V) are supposed to be satisfied throughout this subsection. Here we

summarize the main features of the self-adjoint operator S = SA + V : D(S) = D(SA) ⊂
L2(0, 1) → L2(0, 1) that are established in [31] and [33]. More precisely, properties (S1) and

(S3) are part of Theorem 4.1 in [33] and (S5) is justified by the discussion preceding Theorem

6.11 in [33]. Property (S2) follows from the comments after Definition 2.6 about solutions of

(2.14) with n and g equal to zero. In the same way, properties (S4) and (S6) are special cases

of Lemma 3.1 and Proposition 3.5, although similar conclusions also appear in [31, 33]. Recall

that

σ(S) = {λ ∈ R : S − λI : D(S) → L2(0, 1) is not an isomorphism}
and

σe(S) = {λ ∈ R : S − λI : D(S) → L2(0, 1) is not a Fredholm operator}.

Let

m = inf σ(S) and me = inf σe(s).
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(S1) σe(S) = [ a
4 + V0, ∞) and C1

4 + ess inf V ≤ m ≤ me =
a
4 + V0.

(S2) All eigenvalues of S are simple and eigenfunctions have only simple zeros in (0, 1].

(S3) If m < me, it is an eigenvalue having an eigenfunction φ with φ(x) > 0 for 0 < x < 1.

(S4) If u is an eigenfunction for an eigenvalue in the interval (−∞, me), then u has only a finite

number of zeros in (0, 1].

(S5) If the eigenvalues are numbered in increasing order with m = µ1 < µ2 etc. and if µk < me,

then an eigenfunction for µk has exactly k zeros in (0, 1].

(S6) If µ is an eigenvalue in (−∞, V0) its eigenfunction is bounded on (0, 1) whereas, if V0 <

µ < me it has an eigenfunction φ with φ(x) → ∞ as x → 0.

There are cases where S has no eigenvalues, for example, when A(x) = x2 and V(x) ≡ 0.

More generally, if A and V have the additional properties that A and V ∈ C1((0, 1]) with

lim
x→0

A′(x)/x = 2a, lim
x→0

xV ′(x) = 0 and A(x)/x2 and V non-decreasing on (0, 1),

then S has no eigenvalues. See Corollary 3.9.

The following special cases, which are treated in Section 4.2 of [33], together with the usual

comparison principle for self-adjoint operators, provide examples of situations where S does

have eigenvalues in (−∞, me).

Example 2.8. Let A(x) = x2 and for some τ ∈ (0, 1) and L > 0, let

V(x) = 0 for 0 < x < τ and V(x) = −L for τ < x < 1.

Then σe(S) = [ 1
4 , ∞) and S has no eigenvalues in this interval.

If
√

L ln 1
τ ≤ π

2 , S has no eigenvalues.

If (n − 1
2 )π <

√
L ln 1

τ ≤ (n + 1
2 )π for some positive integer n, then S has exactly n

eigenvalues in (−∞, 1
4 ).

The explicit form of the eigenfunctions and estimates for the eigenvalues are also given

in [33].

Example 2.9. For 0 < x < 1, let A(x) = x2 and V(x) = −( nπs
2 )2xs where s ∈ (0, ∞) and n is a

positive integer.

Then σe(S) = [ 1
4 , ∞) and S has at least n eigenvalues in (−∞, 1

4 ). In fact, µn = 1
4 (1 − s2

4 ) is

the n-th eigenvalue and φ(x) = x−
1
2 (1+

s
2 ) sin(nπx

s
2 ) is an eigenfunction for µn.

Example 2.10. For τ ∈ (0, 1), let

A(x) = x2 for 0 ≤ x ≤ τ and A(x) = τ2 for τ < x ≤ 1.

Then σe(SA) = [ 1
4 , ∞). If τ ≥ 2

2+π , SA has no eigenvalues whereas if 2
2+(4n+1)π

≤ τ < 2
2+(4n−3)π

for a positive integer n, then SA has exactly n eigenvalues in (−∞, 1
4 ).

The explicit form of the eigenfunctions and estimates for the eigenvalues are also given in

[33].
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The operator S = SA +V is always bounded below and for some proofs it is useful to make

a shift so that it becomes positive. For any c > −m, the operator Sc ≡ S + cI with domain

D(Sc) = D(S) = D(SA) has many properties similar to those of SA. It is positive definite and

self-adjoint. The graph norms of S and Sc are equivalent to the norm defined by ‖SAu‖L2 on

D(SA). Furthermore, the domain of its positive, self-adjoint square root, S
1
2
c , is HA and ‖ · ‖A

is equivalent to the graph norm of S
1
2
c on HA. See Section 4.3 of [33] for more details.

The proof of Theorem 5.5 uses some facts about the spectrum of the self-adjoint operator

W ∈ B(L2, L2) defined by W = I − (λ + c − α)S−1
c where α ≥ 0, c > max{0, α − ess inf V} and

α − c < λ < me. Note that c > α − m by property (S1) so α − c < m ≤ me and c > −m. Hence

Sc : DA → L2 is an isomorphism and S−1
c ∈ B(L2, L2) is injective but not surjective. Hence

1 ∈ σe(W) and it is easy to check that

σ(W)={1}∪
{

1 − λ + c − α

µ + c
: µ ∈ σ(S)

}
and σe(W)={1}∪

{
1 − λ + c − α

µ + c
: µ ∈ σe(S)

}
.

Since λ + c − α > 0, it follows that 1 − λ+c−α
µ+c is an increasing function of µ and hence

inf σ(W) =
m + α − λ

m + c
and 0 < inf σe(W) =

me + α − λ

me + c
< 1. (2.15)

3 Qualitative properties of solutions

As noted in Section 2.3, solutions of (1.1)(1.2) have only a finite number of zeros in any

compact subinterval in (0, 1] and all zeros are simple. Most of the results in this section

concern the behaviour of solutions as x approaches the singular point x = 0. Some integral

identities also lead to conclusions about the non-existence of non-trivial solutions of (1.1)(1.2)

and the absence of eigenvalues of the operator SA + V. Earlier work on the properties of

solutions for a related problem can be found in the paper [5] by Caldiroli and Musina which

deals with equations of the form −{ω(x)u′(x)}′ = f (u(x)) under a variety of assumptions

about the decay of ω(x) as x → 0.

3.1 Nodal properties of solutions

The first results in this part provide conditions under which solutions of (1.1)(1.2) have a

finite number of zeros in (0, 1]. For a function u ∈ C((0, 1]) having only a finite number of

zeros in (0, 1] the number of zeros in (0, 1] will be denoted by ♯(u). Under the hypotheses of

Corollary 3.3 this number is locally constant on E .

Lemma 3.1. Let condition (S) be satisfied.

(i) Given δ > 0 and C > 0 there exists η ∈ (0, 1) such that u(x) 6= 0 for x ∈ (0, η] whenever

(λ, u) ∈ E with λ ≤ me − ℓg1
− δ and ‖SAu‖L2 ≤ C.

(ii) If there exists z ∈ (0, 1) such that either g(x, s)s ≥ 0 for all (x, s) ∈ (0, z)× R, or g1(x, s)s ≥ 0

for all (x, s) ∈ (0, z)× R, then the conclusion holds for λ ≤ me − δ and ‖SAu‖L2 ≤ C.

Proof. (i) Fix δ and C as in the statement of the lemma. By (F), (2.9 ) and (2.11), there exist

a constant D > 0 and an exponent ν > 0 for which the following inequalities hold for all
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x ∈ (0, 1) and all u ∈ DA with ‖SAu‖L2 ≤ C.

g̃1(u)(x)u(x) ≥ −ℓg1
u(x)2, (3.1)

g̃2(u)(x)u(x) ≥ −Dxνu(x)2, (3.2)

N(u)(x)u(x) ≥ −Dxν{u(x)2 + x2u′(x)2}. (3.3)

Set ε = min
{

a
2 , δ

4

}
and then choose η ∈ (0, 1) such that, for 0 < x ≤ η,

A(x) ≥ (a − ε)x2, V(x) ≥ V0 − ε and Dxν ≤ ε.

Consider (λ, u) ∈ E with λ ≤ me − ℓg1
− δ and ‖SAu‖L2 ≤ C. If u(z) = 0 for some z ∈ (0, η],

then using (2.1) and (2.2) we have

0 =
∫ z

0
A(x)u′(x)2 + V(x)u(x)2 + N(u)(x)u(x) + g̃(u)(x)u(x)− λu(x)2dx (3.4)

≥
∫ z

0
(a − ε)x2u′(x)2 + [V0 − ε]u(x)2

− ε{u(x)2 + x2u′(x)2} − ℓg1
u(x)2 − εu(x)2 − λu(x)2dx

(3.5)

≥
∫ z

0

a − 2ε

4
u(x)2 + u(x)2

{
V0 − 3ε − ℓg1

− λ
}

dx =
∫ z

0
u(x)2

{
me − ℓg1

− λ − 7

2
ε

}
dx (3.6)

≥
∫ z

0
u(x)2

{
δ − 7

2
ε

}
dx ≥ ε

2

∫ z

0
u(x)2dx > 0. (3.7)

From this contradiction we may conclude that u has no zeros in the interval (0, z].

(ii) In this case the term ℓg1
u(x)2 in (3.5) and (3.6) and be dropped and (3.7) holds for

λ ≤ me − δ.

Lemma 3.2. For η ∈ (0, 1), C1
η ≡ {u ∈ C1([η, 1]) : u(1) = 0} with norm ‖u‖η = max{|u′(x)| :

η ≤ x ≤ 1} is a Banach space.

(i) Setting Pηu(x) = u(x) for u ∈ DA and x ∈ [η, 1], Pη ∈ B(DA, C1
η) is compact.

(ii) If u ∈ C1
η has exactly n zeros in (η, 1] all of which are simple and u(η) 6= 0, there exists δ > 0

such that for all v ∈ C1
η with ‖u − v‖η < δ, v has exactly n zeros in (η, 1] all of which are simple

and v(η) 6= 0.

Proof. (i) By the definition of DA, Pη(DA) ⊂ C1
η . Let {un} be a bounded sequence in DA and

let vn = (Pηun)′. By the Ascoli–Arzelà Theorem, it suffices to show that the sequence {vn} is

uniformly bounded and equi-continuous on [η, 1]. By property (D3) of SA,

vn(x) = − 1

A(x)

∫ x

0
wn(y) dy for η ≤ x ≤ 1

where wn = SAun and {wn} is a bounded sequence in L2(0, 1). Let M = sup ‖wn‖L2 . Then,

since A(x) ≥ C1x2 on [0, 1],

|vn(x)| ≤ 1

C1x2
x

1
2

{∫ x

0
wn(y)

2dy

} 1
2

≤ M

C1η
3
2

for η ≤ x ≤ 1
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and for η ≤ x ≤ z ≤ 1,

|vn(x)− vn(z)| ≤
1

A(x)

∫ z

x
|wn(y)| dy +

∣∣∣∣
1

A(x)
− 1

A(z)

∣∣∣∣
∫ x

0
|wn(y)| dy

≤ M(z − x)
1
2

C1η2
+

M|A(z)− A(x)|
C2

1η
7
2

.

It follows that {vn} has a subsequence converging in C([η, 1]) and consequently that Pη :

DA → C1
η is a compact operator.

(ii) This is an easy exercise. The details are given in Lemma 3.1 of [36], for example.

Corollary 3.3. Suppose that condition (S) is satisfied and that (λ, u) ∈ E has the property that there

exist δ > 0 and η ∈ (0, 1) such that, for all (ξ, v) ∈ E with |ξ − λ| + ‖SA(u − v)‖L2 < δ, v has

no zeros in the interval (0, η]. Then there exists ε > 0 such that ♯(v) = ♯(u) for all (ξ, v) ∈ E with

|ξ − λ|+ ‖SA(v − u)‖L2 < ε.

Proof. By Lemma 3.2 (i), Pη ∈ B(DA, C1
η) and so the conclusion follows from Lemma 3.2 (ii).

For z ∈ (0, 1) let

E(z) =

{
(x, s) ∈ (0, 1)× R : 0 < x < z and |s| < x−

1
2 ln

1

x

}

and

D(z) =

{
(x, s) ∈ (0, 1)× R : 0 < x < z and z−

1
2 ln

1

z
< |s| < x−

1
2 ln

1

x

}
.

Then, for a Carathéodory function g : (0, 1)× R → R, let

Ji(g) = lim
z→0

ess inf
0<x<z

inf

{
g(x, s)

s
: 0 < |s| < x−

1
2 ln

1

x

}
(3.8)

Js(g) = lim
z→0

ess sup
0<x<z

sup

{
g(x, s)

s
: 0 < |s| < x−

1
2 ln

1

x

}
(3.9)

Ii(g) = lim
z→0

ess inf
0<x<z

inf

{
g(x, s)

s
: z−

1
2 ln

1

z
< |s| < x−

1
2 ln

1

x

}
(3.10)

Is(g) = lim
z→0

ess sup
0<x<z

sup

{
g(x, s)

s
: z−

1
2 ln

1

z
< |s| < x−

1
2 ln

1

x

}
. (3.11)

When dealing with solutions of (1.1)(1.2) these quantities lead to the following properties

which will be exploited in Proposition 3.5.

Lemma 3.4. Let condition (S) be satisfied.

(i) Then −ℓg1
≤ Ji(g1) = Ji(g) ≤ 0 ≤ Js(g) = Js(g1) ≤ ℓg1

and

Ji(g) ≤ Ii(g1) = Ii(g) ≤ Is(g1) = Is(g) ≤ Js(g). If g1 also satisfies the compactness condition

in Proposition 2.1 then Ii(g) = Is(g) = α.

(ii) If (λ, u) ∈ E , there exists z ∈ (0, 1) such that (x, u(x)) ∈ E(z) for all x ∈ (0, z). Setting

Bu(x) =
g(x, u(x))

u(x)
if u(x) 6= 0 and Bu(x) = 0 if u(x) = 0, (3.12)

Ji(g1) ≤ lim infx→0 Bu(x) ≤ lim supx→0 Bu(x) ≤ Js(g1). If either u(x) → ∞ or u(x) → −∞

as x → 0, then Ii(g1) ≤ lim infx→0 Bu(x) ≤ lim supx→0 Bu(x) ≤ Is(g1).
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Here lim supx→0 Bu(x) = limx→0 ess sup0<y<x Bu(y) and similarly for the lim inf.

Proof. (i) Since g(x, s)/s → 0 as s → 0 for all x ∈ (0, 1), Js(g) ≥ 0 ≥ Ji(g). Furthermore,

−ℓg1
≤ g1(x, s)/s ≤ ℓg1

for x ∈ (0, 1) and s 6= 0 so −ℓg1
≤ Ii(g1) ≤ Is(g1) ≤ ℓg1

.

Let f be a function satisfying condition (E)(ii) for α > σ/2 > 0. Then, for 0 < x < 1 and

0 < |s| < x−
1
2 ln 1

x , ∣∣∣∣
f (x, s)

s

∣∣∣∣ ≤ Kxα|s|σ ≤ Kxα− σ
2

(
ln

1

x

)σ

and hence

lim
z→0

ess sup
0<x<z

sup

{∣∣∣∣
f (x, s)

s

∣∣∣∣ : 0 < |s| < x−
1
2 ln

1

x

}
= 0.

Since g − g1 is a finite sum of functions of this type and D(z) ⊂ E(z) the conclusions follow.

(ii) By property (P2) there exists a constant K such that x
1
2 |u(x)| ≤ K for 0 < x < 1.

Hence there exists z0 ∈ (0, 1) such that (x, u(x)) ∈ E(z) for 0 < x < z < z0. Furthermore,

if |u(x)| → ∞ as x → 0, for all z ∈ (0, z0), there exists δz < z such that (x, u(x)) ∈ D(z) for

0 < x < δz. The conclusions in part (ii) are easily deduced from these observations.

We can now establish a number of results concerning the behaviour of a solution of

(1.1)(1.2) as x → 0. They generalise and improve similar conclusions in Theorem 5.1 of [31].

Proposition 3.5. Let condition (S) be satisfied and n ≡ 0.

(i) If λ < me + Ji(g1) and (λ, u) ∈ E , there exists η ∈ (0, 1) such that u has no zeros in the interval

(0, η].

(ii) If λ > V0 + Js(g1) and (λ, u) ∈ E , then either u has a sequence of zeros converging to 0 or

limx→0 u(x) = ±∞.

(iii) If λ > max{V0 + Js(g1), me + Is(g1)} and (λ, u) ∈ E , then u has a sequence of zeros converging

to 0.

(iv) If λ < V0 + Ii(g1) and (λ, u) ∈ E , then u ∈ L∞(0, 1).

Remark 3.6. Since me + Js(g1) ≥ max{V0 + Js(g1), me + Is(g1)} it follows from part (iii) that u

has a sequence of zeros converging to 0 if λ > me + Js(g1) and (λ, u) ∈ E .

Taking g ≡ 0, Proposition 3.5 gives the following information about an eigenfunction, φ,

of SA +V associated with an eigenvalue λ. For λ < me it has a finite number of zeros whereas

for λ > me it has infinitely many zeros. If λ < V0, φ is bounded on (0, 1) and if V0 < λ < me,

φ(x) → ±∞ as x → 0.

Proof. Recall that me =
a
4 + V0 and, for (λ, u) ∈ E , set B(λ, u)(x) = λ − V(x)− Bu(x).

Part (i) This can be proved in the same way as Lemma 3.1 since, given any ε > 0, there exists

η ∈ (0, 1) such that, for 0 < x < η, A(x) ≥ (a − ε)x2, V(x) ≥ V0 − ε and g(x, u(x))u(x) =

Bu(x)u(x)2 ≥ {Ji(g1) − ε}u(x)2. It suffices to repeat the estimates (3.4) to (3.7) with minor

adjustments.

Part (ii) Consider (λ, u) ∈ E and suppose that u has only a finite number of zeros in (0, 1).

Since u ∈ C((0, 1]) there exists η > 0 such that either u > 0 on (0, η] or u < 0 on (0, η].

Suppose that u > 0 on (0, η]. By property (D3) of DA,

A(x)u′(x) = −
∫ x

0
B(λ, u)(y)u(y) dy for 0 < x ≤ η.
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Define ε > 0 by 3ε = λ − V0 − Js(g1). By condition (V) and Lemma 3.4, η can be chosen so

that V(x) ≤ V0 + ε and Bu(x) ≤ Js(g1) + ε for 0 < x < η. Then for 0 < y < η, B(λ, u)(y) ≥
λ − V0 − J(g1)− 2ε = ε and so

A(x)u′(x) ≤ −
∫ x

0
εu(y) dy < 0 for 0 < x < η,

from which it follows that u is decreasing on (0, η) and consequently, A(x)u′(x) ≤ −εu(η)x

for 0 < x ≤ η. By condition (A),

u(η)− lim
x→0

u(x) ≤ −εu(η)
∫ η

0

y

A(y)
dy = −∞,

proving that u(x) → ∞ as x → 0.

The case where u < 0 on (0, η] can be dealt with in the same way.

Part (iii) Choose γ > 1
4 such that λ > γa + V0 + Is(g1) and then define ε > 0 by (3 + γ)ε =

λ − γa − V0 − Is(g1).

There exists η ∈ (0, 1) such that, for 0 < x < η, A(x) ≤ (a + ε)x2 and V(x) ≤ V0 + ε.

Suppose that u has only a finite number of zeros. By part (ii), u(x) → ±∞ as x → 0

and so, referring to Lemma 3.4 and reducing η, we may suppose that Bu(x) ≤ Is(g1) + ε for

0 < x < η. Then, for 0 < x < η,

B(λ, u)(x) ≥ λ − V0 − Is(g1)− 2ε = γa + (3 + γ)ε − 2ε = γ(a + ε) + ε.

The function w defined by w(x) = x−1/2 sin
(√

γ − 1
4 ln x

)
for x > 0 satisfies the equation

−(x2w′(x))′ = γw(x), which can be written as

−(C(x)w′(x))′ = Dw(x) where C(x) = (a + ε)x2 and D = γ(a + ε).

On the interval (0, η), −(Au′)′ = B(λ, u)u, A ≤ C, B(λ, u) > D and w has an infinite sequence

of zeros converging to 0. Hence, by the Sturm comparison theorem, u also has a sequence of

zeros in (0, η) converging to 0. (For the type of coefficients appearing here, the comparison

can be established using Picone’s identity by the arguments in 10.31 of [19].) This proves

part (iii).

Part (iv) Let ε > 0 be defined by 3ε = V0 + Ii(g1)− λ. There exist η ∈ (0, 1) and S > 0 such

that, for 0 < x < η, V(x) ≥ V0 − ε and, if |u(x)| > S, Bu(x) ≥ Ii(g1)− ε by Lemma 3.4. Then

B(λ, u)(x) ≤ λ − V0 − Ii(g1) + 2ε = −ε on ω ≡ {x ∈ (0, η) : |u(x)| ≥ S}.

Let T = max{S, maxη≤x≤1 |u(x)|} and ω+ = {x ∈ (0, 1) : u(x) > T}. Then ω+ ⊂ ω and

(u − T)+ ∈ HA. Hence supp(u − T)+ ⊂ ω+ and by (2.3),

0 ≤
∫

ω+
A(u′)2dx =

∫ 1

0
Au′[(u − T)+]′dx =

∫ 1

0
SAu(u − T)+dx =

∫ 1

0
B(λ, u)u(u − T)+dx

=
∫

ω+
B(λ, u)u(u − T) dx.

But B(λ, u) ≤ −ε and u(u− T)+ > 0 on the open set ω+ which must be empty, since otherwise

the final integral would be negative. This proves that u(x) ≤ T on (0, 1].

A similar argument using ω− = {x ∈ (0, 1) : u(x) < −T} and (u + T)− shows that

u(x) ≥ −T on (0, 1], completing the proof of part (iv).
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3.2 Integral identities and their consequences

The following identities involving solutions of (1.1)(1.2) lead to new information about their

behaviour as x → 0 and also to some conditions under which non-trivial solutions do not

exist.

Proposition 3.7. In addition to the assumption (S) with n ≡ 0, suppose that the following condition

is satisfied.

(T1) There exists δ ∈ (0, 1] such that A and V ∈ C1((0, δ]) with limx→0
A′(x)

2x = a and

limx→0 xV ′(x) = 0. Also g1 and fi ∈ C1((0, δ)× R) where g2 = ∑
k
i=1 fi with

|x∂xg1(x, s)| ≤ K|s| and |x∂x fi(x, s)| ≤ Kix
σi/2|s|1+σi for (x, s) ∈ (0, δ)× R,

where σi is given by assumption (E).

Set

Φ(x, s) =
∫ s

0
g(x, t) dt for (x, s) ∈ (0, 1)× R.

Suppose that u(z) = 0 for some z ∈ (0, δ]. Then

∫ z

0
[A − xA′](u′)2 + (λ − V − xV ′)u2 − 2{Φ(x, u) + x∂xΦ(x, u)} dx = zA(z)u′(z)2, (3.13)

∫ z

0
A(u′)2 + (V − λ)u2 + g(x, u)u dx = 0, (3.14)

∫ z

0
[2A − xA′](u′)2 − xV ′u2 + g(x, u)u − 2{Φ(x, u) + x∂xΦ(x, u)} dx = zA(z)u′(z)2. (3.15)

Proof. This result is a slight generalization of Lemma 5.2 in [31] and Theorem 7.7 in [33]. The

proof requires only minor modifications to the arguments used in these references.

From the identity (3.13) we can derive an variant of part (i) of Proposition 3.5.

Corollary 3.8. Under the assumptions (S) with n ≡ 0 and (T1), if (λ, u) ∈ E and λ < me +

2 lim infx→0 infs 6=0
Φ(x,s)+x∂xΦ(x,s)

s2 , there exists η ∈ (0, 1) such that u(x) 6= 0 for x ∈ (0, η].

Proof. By the assumptions about the coefficients A and V, [A(x) − xA′(x)]/x2 → −a and

V(x) + xV ′(x) → V0 as x → 0. For (λ, u) as in the statement, first choose ε > 0 such that

ε < a and λ + 4ε < me + 2 lim inf
x→0

inf
s 6=0

Φ(x, s) + x∂xΦ(x, s)

s2
,

and then, for δ as in (T1), choose η ∈ (0, δ) such that for 0 < x ≤ η,

A(x)− xA′(x)

x2
< −a + ε, V(x) + xV ′(x) > V0 − ε

and

inf
s 6=0

Φ(x, s) + x∂xΦ(x, s)

s2
> lim inf

x→0
inf
s 6=0

Φ(x, s) + x∂xΦ(x, s)

s2
− ε.

Suppose now that u(z) = 0 for some z ∈ (0, η]. By (2.2),

∫ z

0
[A(x)− xA′(x)]u′(x)2dx < −(a − ε)

∫ z

0
x2u′(x)2dx ≤ − a − ε

4

∫ z

0
u(x)2dx
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and hence (3.13) yields

zA(z)u′(z)2 <

∫ z

0

{
λ − a − ε

4
− V0 + ε − 2 lim inf

x→0
inf
s 6=0

Φ(x, s) + x∂xΦ(x, s)

s2
+ 2ε

}
u(x)2dx

≤ −3

4
ε
∫ z

0
u(x)2dx < 0.

Since A(z) > 0 and u′(z) 6= 0, this is false and so u(z) 6= 0 for all z ∈ (0, η].

Unlike the other results concerning the behaviour of solutions as x → 0 the identity (3.15)

yields information without placing any restriction on λ.

Corollary 3.9. In addition to the assumptions (S) with n ≡ 0 and (T1), suppose that

(T2) there exists η ∈ (0, δ] such that A(x)
x2 and V(x) are non-decreasing functions of x on (0, η) and

g(x, s)s ≤ 2{Φ(x, s) + x∂xΦ(x, s)} for (x, s) ∈ (0, η)× R. (3.16)

Then for any (λ, u) ∈ E , u(x) 6= 0 for 0 < x ≤ η and consequently, λ ≤ max{V0 + Js(g1), me +

Is(g1)} by part (iii) of Proposition 3.5.

Since u(1) = 0 for all u ∈ DA, if (T1) and (T2) are satisfied with δ = η = 1, E = ∅ and, taking

g ≡ 0, the operator S = SA + V has no eigenvalues.

Proof. If (λ, u) ∈ E and u(z) = 0 for some z ∈ (0, η], then u′(z) 6= 0 and zA(z)u′(z)2 > 0. But

the hypotheses imply that 2A(x)− xA′(x) ≤ 0 and V ′(x) ≥ 0 on (0, η) so (3.15) implies that

zA(z)u′(z)2 ≤ 0, a contradiction. Hence u(x) 6= 0 for x ∈ (0, η].

Remark 3.10. Consider a function g having the properties required in conditions (S) and (T1).

For (x, s) ∈ (0, δ)× R,

Φ(x, s) =
∫ s

0

g(x, t)

t
t dt =

1

2

{
g(x, s)s −

∫ s

0
t2∂t

[
g(x, t)

t

]
dt

}

and so

g(x, s)s − 2{Φ(x, s) + x∂xΦ(x, s)} =
∫ s

0
t

{
t∂t

[
g(x, t)

t

]
− 2x∂x

[
g(x, t)

t

]}
dt.

Hence, condition (3.16) is satisfied provided that there exists η ∈ (0, δ] such that

s∂s

[
g(x, s)

s

]
≤ 2x∂x

[
g(x, s)

s

]
for all x ∈ (0, η) and s 6= 0.

A stronger, but more transparent, sufficient condition for (3.16) to hold is

s∂s

[
g(x, s)

s

]
≤ 0 ≤ ∂x

[
g(x, s)

s

]
for all x ∈ (0, η) and s 6= 0. (3.17)

Note that since condition (S) implies that g(x, s)/s → 0 as s → 0 for all x ∈ (0, 1), (3.17) can

only be satisfied in cases where g(x, s)/s ≤ 0 for all x ∈ (0, η] and s 6= 0.
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4 Global bifurcation in Hilbert space

In this section two results about global bifurcation of solutions for equations in Hilbert space

are formulated as Theorems 4.7 and 4.10. They are deduced from recent work in [34] on

equations of a more general type in Banach space. It seems worthwhile deriving the special

cases given here because their statement avoids a series of not so standard notions which are

required for the form treated in [34], but which are not needed here. Of course, the notions in

question inevitably appear in the proofs of Theorems 4.7 and 4.10 which amount to verifying

that the hypotheses of Theorems 3.4 and 3.5 in [34] are satisfied.

4.1 Preliminaries

In preparation for the subsequent discussion some notation is fixed and a few definitions are

recalled.

Let X and Y be two real Banach spaces. As usual, the space of all bounded linear operators

from X into Y will be denoted by B(X, Y) and, for T ∈ B(X, Y), ‖T‖ = sup{‖Tu‖ : u ∈
X and ‖u‖ = 1}.

Iso(X, Y) = {T ∈ B(X, Y) : T : X → Y is an isomorphism }
Φ0(X, Y) = {T ∈ B(X, Y) : T : X → Y is a Fredholm operator of index 0}

For (λ, u) ∈ R × X, ‖(λ, u)‖ = |λ|+ ‖u‖ and, for Ω ⊂ R × X, Ωλ = {u ∈ X : (λ, u) ∈ Ω} and

p(Ω) = {λ ∈ R : Ωλ 6= ∅}.

When U and V are subsets of the same Banach space d(U, V) = inf{‖u − v‖ : u ∈
U and v ∈ V} and if U = {u} is a singleton, d(u, V) = d({u}, V). The boundary of U is

denoted by ∂U.

Consider now a Hilbert space (H, (·, ·), ‖ · ‖) and a self-adjoint operator L : D(L) ⊂ H → H

acting in H. The space D(L) equipped with its graph norm, (‖u‖2 + ‖Lu‖2)1/2, is a Hilbert

space and L ∈ B(D(L), H). The spectrum and essential spectrum of L are defined by

σ(L) = {λ ∈ R : L − λI 6∈ Iso(D(L), H)} and σe(L) = {λ ∈ R : L − λI 6∈ Φ0(D(L), H)}.

When L ∈ B(H, H) is self-adjoint, σ(L) is bounded and re(L) = max{|λ| : λ ∈ σe(L)} denotes

the radius of its essential spectrum.

Proposition 4.1. For two bounded self-adjoint operators A and B on a real Hilbert space H,

inf σe(A + B) ≥ inf σe(A) + inf σe(B).

Proof. Without further mention it is understood that all the operators introduced in this proof

are bounded and self-adjoint. Let a = inf σe(A) and b = inf σe(B). Choose any ξ < a + b and

set ε = (a + b − ξ)/2. Let T = A − (a − ε)I and S = B − (b − ε)I.

Then inf σe(T) = ε > 0 and, from the spectral theory of A, there exists η > 0 such that

T can be written as D + C where (Du, u) ≥ η‖u‖2 for all u ∈ H and C has finite rank. (In

the notation of Proposition 3.1 in [11], it suffices to take η = min{inf σ(T+),− sup σ(T−)},

C = 2TP− − ηP0 and D = T − C.) Similarly, S = E + C1 where (Eu, u) ≥ η‖u‖2 for all u ∈ H

and C1 has finite rank. For u ∈ H this yields

([A + B − ξ I − C − C1]u, u) = ([D + E + (a + b − 2ε − ξ)I]u, u) ≥ 2η‖u‖2.

Hence ‖[A + B − ξ I − C − C1]u‖ ≥ 2η‖u‖ from which it follows that the self-adjoint operator

A + B − ξ I − C − C1 ∈ Iso(H, H) and consequently that A + B − ξ I ∈ Φ0(H, H) since C + C1

is compact. This proves that inf σe(A + B) ≥ a + b.
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As pointed out in Remark 2.2, for the simplest types of functions satisfying condition (F),

the associated Nemytskii operator is not Fréchet differentiable. The results in Sections 4.2 and

4.3 deal with bifurcation in Hilbert space where differentiability at the trivial solution holds

in some weaker sense. To avoid confusion with variants appearing elsewhere the relevant

definitions are now recalled in the form used in this paper.

Consider a mapping G : U ⊂ X → Y where X and Y are real Banach spaces and U is an

open subset of X.

Definition 4.2. The mapping G is said to be Gâteaux differentiable at u ∈ U if there exists an

operator T ∈ B(X, Y) such that, for all v ∈ X,

∥∥∥∥
G(u + tv)− G(u)

t
− Tv

∥∥∥∥ → 0 as t → 0 in R.

This notion is quite standard as are variants in which T is not required to be linear. (See

[16].) The next definition is less well-known.

Definition 4.3. The mapping G is said to be w-Hadamard differentiable at u ∈ U if there

exists an operator T ∈ B(X, Y) having the following property. For every v ∈ X,

G(u + tnvn)− G(u)

tn
⇀ Tv weakly in Y as n → ∞ for all sequences {tn} ⊂ R\{0} and

{vn} ⊂ X such that tn → 0 and vn ⇀ v weakly in X as n → ∞.

It was named in this way in [11, 12] where it seems to have been used for the first time in

discussing bifurcation, but variants can be found in [2, 21]. The terminology was chosen to

reflect the analogy with the better known notion of Hadamard differentiability. (See [16].)

Definition 4.4. The mapping G is said to be Hadamard differentiable at u ∈ U if there exists

an operator T ∈ B(X, Y) such that, for all v ∈ X,

∥∥∥∥
G(u + tnvn)− G(u)

tn
− Tv

∥∥∥∥ → 0 as n → ∞ for all sequences {tn} ⊂ R\{0} and

{vn} ⊂ X such that tn → 0 and ‖vn − v‖ → 0 as n → ∞.

In all these definitions, the linear operator T is unique, if it exists. Furthermore, if G is

differentiable at u in more than one sense, the operator T is the same in all cases and it will be

denoted by G′(u). If F : R × X → Y and G = F(λ, ·), G′(u) will be denoted by DuF(λ, u). It

is easy to see that Hadamard differentiability at u implies Gâteaux differentiability at u. Also

Fréchet differentiability at u implies differentiability in the sense of all three definitions but

none of these notions implies Fréchet differentiability.

Example 4.5. Consider a function f ∈ C1(R, R) such that f (0) = 0 and K ≡ sup{| f ′(s)| : s ∈
R} < ∞. Since | f (s)| ≤ K|s| for all s ∈ R, f (u(·)) ∈ L2(0, 1) whenever u ∈ L2(0, 1) and the

associated Nemytskii operator f̃ : L2 → L2 is uniformly Lipschitz continuous. In Example 2.3

of [11] and the subsequent remark it is shown that, for all u ∈ L2, f̃ : L2 → L2 is Gâteaux

differentiable, w-Hadamard differentiable and Hadamard differentiable at u. On the other

hand, if there exists even one element u ∈ L2 at which f̃ : L2 → L2 is Fréchet differentiable,

then f : R → R must be linear.
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Section 4.3 deals with bifurcation for a problem that is w-Hadamard at the trivial solu-

tion, whereas Gâteaux differentiability is assumed in Section 4.2. However in Section 4.2 the

problem is also required to be Lipschitz continuous in an open neighbourhood of the trivial

solution and this together with Gâteaux differentiability implies Hadamard differentiability

at the trivial solution. In fact, the situation treated in Section 4.2 is based on previous work

[29] relying heavily on Hadamard differentiability.

Both cases treated here concern bifurcation for an equation F(λ, u) = 0 at a point µ where

F : R × X → Y and L(µ) ≡ DuF(µ, 0) ∈ Φ0(X, Y). In fact, X and Y are Hilbert spaces with

X ⊂ Y and L(µ) : X ⊂ Y → Y is a self-adjoint operator acting in Y. In case 2, σe(L(µ)) ⊂ (0, ∞)

but F(µ, ·) : X → Y need not be Lipschitz continuous, whereas case 1 covers situations where

µ may be in a gap in σe(L(µ)), provided that d(0, σe(L(µ))) is sufficiently large relative to the

Lipschitz modulus of F(µ, ·)− L(µ).

4.2 Global bifurcation, case 1

Let (Y, (·, ·), ‖ · ‖) be a real Hilbert space and X a subspace of Y that is the domain of some

self-adjoint operator acting in Y . Recall from Proposition 5.4 of [29] that the graph norms

of all such operators on X are equivalent and let ‖ · ‖X denote one of these norms. Then

(X, ‖ · ‖X) is a Hilbert space, ‖u‖Y ≤ ‖u‖X for all u ∈ X and X is dense in Y. In this part we

consider equations of the form

M(u) = λu for (λ, u) ∈ R × X, (4.1)

where M = M1 + M2 : X → Y has the following properties.

(m1) M1 ∈ C1(X, Y), M1(0) = 0, M′
1(0) : X ⊂ Y → Y is a self-adjoint operator acting in Y and

the remainder R1 ≡ M1 − M′
1(0) : X → Y is compact.

(m2) M2 : X → Y is Gâteaux differentiable at 0 with M′
2(0) = 0 and M2(0) = 0. Furthermore,

ℓ ≡ sup

{‖M2(u)− M2(v)‖Y

‖u − v‖Y
: u, v ∈ X and u 6= v

}
< ∞.

Remark 4.6. By (m2), M2 could be extended to a uniformly Lipschitz continuous mapping of

Y into itself. Since X is continuously embedded in Y, M2 : X → Y is also uniformly Lipschitz

continuous. It follows from these assumptions that M = M1 + M2 : X → Y is locally Lipschitz

continuous on X and Gâteaux differentiable at 0 with M′(0) = M′
1(0). In connection with the

hypotheses for case 2, it should be noted that (m2) implies that M2 : X → Y is Hadamard

differentiable at 0 and that (m1) and (m2) imply that M : X → Y also has this property.

However, condition (m2) does not imply that M2 : X → Y is w-Hadamard differentiable at 0.

Let dℓ = {λ ∈ R : d(λ, σe(M′(0))) > ℓ} and, for µ ∈ dℓ, let Jµ(ℓ) denote the maximal

interval in dℓ containing µ.

Let E = {(λ, u) ∈ R × X : M(u) = λu and u 6= 0} denote the set of non-trivial solutions of

(4.1) and let E denote its closure in R × X. The assumptions (m1) and (m2) imply that (λ, 0)

is a solution of (4.1) for all λ ∈ R and E\E ⊂ R × {0}. A real number µ is a bifurcation point

for equation (4.1) if and only if (µ, 0) ∈ E .

Theorem 4.7. Consider equation (4.1) under the assumptions (m1) and (m2). Suppose that µ ∈ dℓ
and let U = Jµ(ℓ)× X.
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(1) If ker{M′(0)− µI} = {0}, µ is not a bifurcation point for equation (4.1).

(2) If µ is an eigenvalue of odd multiplicity of M′(0) it is a bifurcation point for equation (4.1). The

connected component Dµ of E ∩ U containing (µ, 0) has at least one of the following properties.

(a) {|λ|+ ‖u‖X : (λ, u) ∈ Dµ} = [0, ∞).

(b) d(p(Dµ), σe(M′(0)) = ℓ.

(c) Dµ ∩ [Jµ(ℓ)\{µ}]× {0} 6= ∅.

(3) If ker{M′(0)− µI} = span{φ} where ‖φ‖Y = 1 and {(λn, un)} ⊂ E is such that λn → µ and

‖un‖X → 0, then there exists n0 ∈ N such that for all n ≥ n0, un = (un, φ){φ + wn} where

(wn, φ) = 0 and ‖wn‖X → 0 as n → ∞.

Remark 4.8. The hypotheses of Theorem 4.7 are similar to those of Corollary 6.11 in [29].

Apart from the fact that they hold on all of X instead of a ball centred at the origin, the

compactness of R1 is added. Parts (1) and (3) are already established in Corollary 6.11 of

[29] but part (2) provides new global information. If conditions (m1) and (m2) are satisfied

and M2 : X → Y is Fréchet differentiable at 0, part (2) of Theorem 4.7 could be deduced

from Theorem 1.1 in [27] which was itself based on Theorem 1.6 in [26]. Those results used

Nussbaum’s degree [22] for k-set contractions and they were applied to a a class of Sturm–

Liouville problems on the interval (0, ∞) in [26,27]. If, in addition, M2 : X → Y is continuously

differentiable on an open neighbourhood of 0, the conclusion in part (3) can be strengthened

using the standard result about bifurcation at a simple eigenvalue [8].

Proof. (1) This follows from part (i) of Corollary 6.11 in [29].

(2) It follows from part (ii) of Corollary 6.11 in [29] that µ is a bifurcation point. We sup-

pose now that Dµ does not have properties (a) and (b) and use Theorem 3.4 in [34] to

show that it must satisfy (c). From the assumption that Dµ is bounded it follows that

Iµ ≡ [inf p(Dµ), sup p(Dµ)] is a compact interval and then d(p(Dµ), σe(M′(0)) 6= ℓ means

that there exists k > ℓ such that Iµ ⊂ Jµ(k). Hence d(Dµ, ∂(Jµ(k)× X)) > 0.

The hypotheses of Theorem 3.4 in [34] involve the essential conditioning number,

γ(M′(0)− λI). By Corollary 5.6 in [29], for all λ 6∈ σe(M′(0)) and all ε > 0,

γ(M′(0)− λI) ≤ 1

d(λ, σe(M′(0)))
+ εKλ,

provided that the graph norm of εM′(0) is used on X and

Kλ = max

{
1,

|p|
λ − p

,
|q|

q − λ

}
,

where (p, q) is the maximal interval in R\σe(M′(0)) containing λ. If either p = −∞ or q = ∞,

the corresponding ratio is replaced by 1. We require this estimate for λ ∈ Jµ(k) and for λ

in this interval it is easy to check that Kλ ≤ K ≡ max
{

1,
|p|
k ,

|q|
k

}
, with the same convention

concerning the cases p = −∞ and q = ∞. Thus, for λ ∈ Jµ(k),

γ(M′(0)− λI) ≤ 1

k
+ εK.

For the rest of this proof, choose and fix ε > 0 such that εK < 1
ℓ − 1

k and let ‖ · ‖X denote the

graph norm of εM′(0). (If ℓ = 0, M2 ≡ 0 and any ε > 0 is acceptable.) We now have

d(λ, σe(M′(0))) > k and γ(M′
1(0)− λI) = γ(M′(0)− λI) <

1

ℓ
for all λ ∈ Jµ(k). (4.2)
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Setting F(λ, u) = M(u)− λu, we aim to show that the hypotheses of Theorem 3.4 in [34]

are satisfied with

U = Jµ(ℓ)× X, Ω = Jµ(k)× X, G(λ, u) = M1(u)− λu and K(λ, u) = M2(u).

Using the notation of [34], let S = {(λ, u) ∈ U : F(λ, u) = 0 and u 6= 0}. Then S = E ∩ U and

it is easy to check that E ∩ U coincides with the closure of S in U. Hence Dµ = Cµ(U, F) in

the notation of the Introduction in [34].

Clearly condition (D0) in [34] is satisfied with J(Ω) = Jµ(k). Furthermore, G ∈ C1(Ω, Y)

and DuG(λ, u) = M′
1(u)− λI = R′

1(u) + M′
1(0)− λI. Since R1 ∈ C1(X, Y) and R1 : X → Y is

compact, it follows from Proposition 8.2 in [9] that R′
1(u) : X → Y is compact for all u ∈ X.

Hence DuG(λ, u) ∈ Φ0(X, Y) if and only if M′
1(0)− λI ∈ Φ0(X, Y). But Jµ(k)∩ σe(M′

1(0)) = ∅

so M′
1(0) − λI ∈ Φ0(X, Y) for all λ ∈ Jµ(k) and hence condition (D1) in [34] is satisfied. It

is an immediate consequence of (m2) that K satisfies condition (D2) with DuK(λ, 0) = 0 and

furthermore

‖K(λ, u)− K(λ, v)‖ ≤ ℓ‖u − v‖X for all u, v ∈ X.

In the notation of [34] for the measure of non-compactness, α(K(λ, ·), V) ≤ ℓ for every

bounded subset V of X for which α(V) is positive. On the other hand, by the compactness of

R1 : X → Y, (4.2) and Proposition 2.1(iv) in [34], for all λ ∈ Jµ(k),

ω(M1 − λI, V) = ω(R1 + M′
1(0)− λI, V) ≥ ω(M′

1(0)− λI, V)− α(R1, V) (4.3)

= ω(M′
1(0)− λI, V) ≥ 1/γ(M′

1(0)− λI) > ℓ ≥ α(K(λ, ·), V), (4.4)

which shows that condition (D3) in [34] is also satisfied.

Setting L(λ) = DuF(λ, 0) and ρ(λ, u) = K(λ, u) − DuK(λ, 0) as in [34], we have L(λ) =

M′(0)− λI ∈ Φ0(X, Y), LX(ρ, λ) ≤ ℓ and ∆r(ρ, λ) = 0 for all λ ∈ Jµ(k) and r > 0. It follows

from (4.2) and (4.4) that the conditions (3.15) and (3.16) in [34] are satisfied. Finally, using

Criterion I in Section 5.2 of [29], the local parity, σ(L, µ) of the path L at the isolated singular

point µ is −1 since M′(0) is self-adjoint and µ has odd multiplicity. At this point, it follows

from Theorem 3.4 in [34] that Dµ has at least one of the following properties.

(i) {|λ|+ ‖u‖X : (λ, u) ∈ Dµ} = [0, ∞).

(ii) d(Dµ, ∂Ω) = 0.

(iii) Dµ ∩ [R\{µ}]× {0} 6= ∅.

Recall that we are assuming that Dµ does not have the properties (a) and (b) and that Ω

has been chosen so that d(Dµ, ∂Ω) > 0. Hence Dµ must have property (iii) and this implies

property (c) since Dµ ⊂ Jµ(ℓ)× X by definition.

(3) This follows from part (iii) of Corollary 6.11 in [29].

4.3 Global bifurcation, case 2

In this part we deal with an equation of the form

M(u) = λT(u) for (λ, u) ∈ R × H, (4.5)

where (H, (·, ·), ‖ · ‖) is a real Hilbert space. The mappings M = M1 + M2 and T have the

following properties.
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(W0) T ∈ B(H, H) is a self-adjoint operator and (Tu, u) > 0 for u ∈ H\{0}.

(W1) M1 ∈ C1(H, H) with M1(0) = 0 and M′
1(0) is self-adjoint. Furthermore, the remainder

R1 = M1 − M′
1(0) : H → H is a compact operator.

(W2) M2 ∈ C(H, H) with M2(0) = 0. The mapping M2 : H → H is compact and w-Hadamard

differentiable at 0 with M′
2(0) self-adjoint. Furthermore,

lim inf
‖u‖→0

(R2(u), u)

‖u‖2
≥ 0, where R2 = M2 − M′

2(0).

Remark 4.9. The properties in (W2) do not imply that M′
2(0) : H → H is a compact linear

operator. Since M2(0) = 0 it follows from the w-Hadamard differentiability of M2 at 0 that

lim
t→0

(R2(tu), tu)

‖tu‖2
= 0 for all u ∈ H\{0}

and so (W2) implies that

lim inf
‖u‖→0

(R2(u), u)

‖u‖2
= 0.

By (W1),

lim
‖u‖→0

(R1(u), u)

‖u‖2
= 0

since ‖R1(u)‖/‖u‖ → 0 as ‖u‖ → 0 and so, when (W1) is satisfied, the assumption about the

lim inf in (W2) is equivalent to

lim inf
‖u‖→0

(M(u)− M′(0)u, u)

‖u‖2
≥ 0. (4.6)

Let E = {(λ, u) ∈ R × H : M(u) = λT(u) and u 6= 0} denote the set of non-trivial

solutions of (4.5) and let E denote its closure in R × H. As in case 1, µ is a bifurcation point

for (4.5) if and only if (µ, 0) ∈ E .

Theorem 4.10. Under the hypotheses (W0) to (W2), let J be an open interval such that inf σe(M′
1(0)−

λT) > re(M′
2(0)) for all λ ∈ J. Then inf σe(M′(0)− λT) > 0 for λ ∈ J.

Consider a point µ ∈ J and let U = J × H.

(1) If ker{M′(0)− µT} = {0}, µ is not a bifurcation point for equation (4.5).

(2) If dim ker{M′(0) − µT} is odd, µ is a bifurcation point for the equation (4.5). In fact, the

connected component Dµ of E ∩ U containing (µ, 0) has at least one of the following properties.

(a) {|λ|+ ‖u‖X : (λ, u) ∈ Dµ} = [0, ∞).

(b) d(p(Dµ), ∂J) = 0.

(c) Dµ ∩ [J\{µ}]× {0} 6= ∅.

(3) Suppose that ker{M′(0)− µT} = span{φ} where ‖φ‖ = 1 and that {(λn, un)} ⊂ E is such

that λn → µ and ‖un‖ → 0 as n → ∞. Let vn = un/‖un‖. Then there exist a subsequence and

c ∈ R\{0} for which vnk
⇀ cφ weakly in H as nk → ∞.
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Remark 4.11. By Proposition 4.1, for all λ ∈ J

inf σe(M′(0)− λT) ≥ inf σe(M′
1(0)− λT) + inf σe(M′

2(0))

≥ inf σe(M′
1(0 − λT))− re(M′

2(0)) > 0.

In particular, M′(0)− λT and M′
1(0)− λT ∈ Φ0(H, H) for all λ ∈ J.

Proof. Parts (1) and (2) will be deduced from Lemma 3.3 and Theorem 3.5 in [34]. With this in

mind, let F(λ, u) = M(u)− λTu for (λ, u) ∈ U. Then S ≡ {(λ, u) ∈ U : F(λ, u) = 0 and u 6=
0} = E ∩ U and it is easy to check that E ∩ U coincides with the closure of S in U. Hence in

the notation of the Introduction in [34], Dµ = Cµ(U, F). Setting

Ω = U = J × H, G(λ, u) = M1(u)− λTu and K(λ, u) = M2(u),

we consider first the hypotheses of Lemma 3.3 in [34].

By (W0) to (W2), F ∈ C(U, H) and F(λ, ·) : H → H is w-Hadamard differentiable at 0

with L(λ) ≡ DuF(λ, 0) = M′(0) − λT for all λ ∈ J. The remainder R(λ, u) = F(λ, u) −
DuF(λ, 0)u = R1(u) + R2(u) is independent of λ so the quantity ∆r(F, λ) → 0 as r → 0 for all

λ ∈ J. By (W1), (W2) and (4.6),

lim inf
‖u‖→0

(R(λ, u), u)

‖u‖2
= lim inf

‖u‖→0

(R2(u), u)

‖u‖2
≥ 0.

As noted in Remark 4.11 , inf σe(L(λ)) > 0 and since by Remark 3.2 in [34], wl(L(λ)) =

inf σe(L(λ)), it follows that condition (3.14)(a) in [34] is satisfied at λ ∈ J whenever

ker{M′(0) − λT} = {0}. The conclusion in part (1) is now justified by Lemma 3.3(ii) in

[34].

For part (2) we use Theorem 3.5 in [34], noting first of all that (D0) is satisfied and that by

(W1), G ∈ C1(Ω, H) with DuG(λ, u) = M′
1(u)− λT = R′

1(u) + M′
1(0)− λT. By Proposition 8.2

in [9], (W1) also implies that, for all u ∈ H, R′
1(u) ∈ B(H, H) is compact and so DuG(λ, u) ∈

Φ0(H, H) for all λ ∈ J by Remark 4.11. This proves that condition (d1) in [34] is satisfied and

condition (d2) is an immediate consequence of hypothesis (W2). For (d3), consider a bounded

subset V of H for which the set-measure of non-compactness, α(V), is positive. Then in the

notation of [34], for all λ ∈ J,

ω(G(λ, ·), V) = ω(R1 + M′
1(0)− λT, V) ≥ ω(M′

1(0)− λT, V)− α(R1, V)

= ω(M′
1(0)− λT) ≥ inf σe(M′

1(0)− λT) > 0,

by the compactness of R1 and Remark 2.1 in [34]. Since α(M2, V) = 0 by the compactness

of M2, this shows that condition (d3) in [34] is satisfied. Furthermore, referring again to

Remark 2.1 in [34], for λ ∈ J,

α(DuK(λ, 0)) = α(M′
2(0)) ≤ re(M′

2(0)) < inf σe(M′
1(0 − λT)) ≤ ω(DuG(λ, 0)).

Also α0(K(λ, ·)) = 0 by the compactness of M2. Hence condition (3.16) in [34] is satisfied

because ρ(λ, u) ≡ K(λ, u)− DuK(λ, 0)u does not depend upon λ.

We have already noted in Remark 4.11 that L(λ) = M′(0)− λT ∈ Φ0(H, H) for all λ ∈ J.

If u ∈ ker L(λ) and L′(λ)u = −Tu ∈ range L(λ) = [ker L(λ)]⊥, it follows that (Tu, u) = 0 and

hence u = 0 by (W0). Using Criterion I in [29] for the calculation of the local parity, σ(L, λ), of

the path L across λ we find that σ(L, λ) = (−1)n where n = dim ker L(λ). By Remark 3.2 in
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[34] and Remark 4.11, wl(L(λ)) = inf σe(M′(0)− λT) > 0 for all λ ∈ J and so, as in the proof

of part (1), (W1), (W2) and (4.6) imply that condition (3.18)(a) in [34] is satisfied.

The conclusion in part (2) now follows from Theorem 3.5 in [34].

(3) For the sequence {(λn, un)} in the statement let tn = ‖un‖. Then tn → 0 and un = tnvn.

Passing to a subsequence, we suppose henceforth that vn ⇀ v weakly in H. Since M(0) = 0

and M is w-Hadamard differentiable at zero it follows that M(un)/‖un‖ = M(tnvn)/tn ⇀

M′(0)v weakly in H as n → ∞. Hence

L(µ)vn = {M′(0)− µT}vn = M′(0)vn −
M(un)

‖un‖
+ (λn − µ)Tvn ⇀ 0 weakly in H (4.7)

since M(un) = λnTun, λn → µ and M′(0)vn ⇀ M′(0)v weakly in H as n → ∞. This implies

that L(µ)v = 0 and so v = cφ for some c ∈ R.

If c = 0, vn ⇀ 0 weakly in H and so, in the notation of Section 3 of [34], {vn} ⊂ Σ from

which it follows that

lim inf
n→∞

(L(µ)vn, vn) ≥ wl(L(µ)) = inf σe(L(µ))

by Remark 3.2 in [34], where inf σe(L(µ)) > 0 by Remark 4.11. On the other hand from (4.7)

and (4.6) we obtain

lim inf
n→∞

(L(µ)vn, vn) = lim inf
n→∞

{ (M′(0)un − M(un), un)

‖un‖2
+ (λn − µ)(Tvn, vn)}

= lim inf
n→∞

(M′(0)un − M(un), un)

‖un‖2
≤ 0,

contradicting the earlier conclusion. Hence c 6= 0.

5 Global bifurcation for the boundary value problem

Under the assumption (S) formulated in Section 2.3, Theorems 4.7 and 4.10 will be used to

obtain conclusions about the bifurcation of solutions for problem (1.1)(1.2) in the sense of

Definition 2.7. The first result is based upon Theorem 4.7 and it deals with that happens for λ

in the interval (−∞, me − ℓg1
) where me = inf σe(SA +V) = a

4 +V0 and ℓg1
is the best Lipschitz

for the part g1 of g which satisfies condition (F). It follows from Theorem 4.7 that there is

global bifurcation at every eigenvalue of SA + V in the interval (−∞, me − ℓg1
). Corollary 5.3

deals with a special case, where n ≡ 0 and g(x, s)s ≤ 0 for (x, s) ∈ (0, 1) × R, in which it

can be shown that there may be no bifurcation at eigenvalues of SA + V lying in the interval

(me − ℓg1
, ∞). The situation where g(x, s)s ≥ 0 for (x, s) ∈ (0, 1) × R is quite different and

bifurcation at all eigenvalues of SA +V in the interval (−∞, me) can be proved using Theorem

4.10. This case is treated in Section 5.1.

Throughout this section E denotes the set of all non-trivial solutions of (1.1)(1.2) in R × DA

as defined in Section 2.3 and DA is considered with a norm that is equivalent to the graph

norm, ‖ · ‖S, of S = SA + V. Of course, the conclusions do not depend upon the choice of

norm. It is often convenient to use the norm defined by ‖SAu‖L2 but the proof of Theorem 5.5

is based on a different choice. The nodal properties of solutions established in Section 3 are

used to show that possibility (c) in Theorems 4.7 and 4.10 does not occur.

Theorem 5.1. Let the assumption (S) be satisfied and consider µ ∈ (−∞, me − ℓg1
).
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(A) If µ is a bifurcation point for problem (1.1)(1.2), then µ is an eigenvalue of the self-adjoint operator

S = SA + V.

(B) If µ is an eigenvalue of S then µ is a bifurcation point for (1.1)(1.2) and the component Cµ of

E ∩ (−∞, me − ℓg1
)× DA containing (µ, 0) has at least one of the following properties.

(i) {|λ|+ ‖u‖S : (λ, u) ∈ Cµ} = [0, ∞).

(ii) sup{λ : (λ, u) ∈ Cµ} = me − ℓg1
.

(C) If µ is the k − th eigenvalue of S, then ♯(u) = k for all (λ, u) ∈ Cµ ∩ E , where ♯(u) denotes the

number of zeros of u in (0, 1] and Cµ ∩ R × {0} = {(µ, 0)}.

Remark 5.2. If assumption (S) is satisfied and n ≡ 0, then for (λ, u) ∈ E ,

‖SAu‖L2 ≤ (|λ|+ ‖V‖L∞ + ℓg1
)‖u‖L2 + CCg2(‖u‖A)‖u‖A

by Remark 2.4. In this case property (i) in the conclusion can be replaced by {|λ| + ‖u‖A :

(λ, u) ∈ Cµ} = [0, ∞) and if in addition, g2 ≡ 0, it can be replaced by {|λ|+ ‖u‖L2 : (λ, u) ∈
Cµ} = [0, ∞).

Proof. The first step in this proof is to observe that the hypotheses of Theorem 4.7 are satisfied

for the equation F(λ, u) = 0 where F is defined by (2.12). For this we take Y = L2 and X = DA

equipped with the norms ‖ · ‖L2 and ‖ · ‖S, respectively, and set

M1(u) = Su + N(u) + g̃2(u) and M2(u) = g̃1(u) for u ∈ X.

From assumption (S) and Propositions 2.1, 2.3 and 2.5 it follows that the conditions (m1)and

(m2) are satisfied with M′(0) = M′
1(0) = S and R1 = N + g̃2. In the notation of Theorem 4.7,

Jµ(ℓ) = (−∞, me − ℓg1
). From Theorem 4.7, we obtain immediately part (A) and that, if Cµ has

neither property (i) nor (ii), then there exists an eigenvalue ξ of S in (−∞, me − ℓg1
)\{µ} such

that (ξ, 0) ∈ Cµ and hence Cξ = Cµ. To show that this third situation does not occur it suffices

to prove part (C).

(C) Since Cµ ⊂ (−∞, me − ℓg1
) × DA, it follows from Lemma 3.1(i) that u has only a finite

number of zeros in (0, 1] if (λ, u) ∈ Cµ ∩ E . Setting Z(λ, u) = ♯(u) for (λ, u) ∈ Cµ ∩ E ,

Corollary 3.3 shows that Z : Cµ ∩ E → N is continuous. Consider now a point (ξ, 0) ∈ Cµ.

It follows from Lemma 3.1(i) that there exist an open ball B in R × DA, centred at (ξ, 0),

and η ∈ (0, 1) such that u(x) 6= 0 for 0 < x ≤ η if (λ, u) ∈ B ∩ E . By part (A), ξ is an

eigenvalue of S and an associated eigenfunction φξ with ‖φξ‖L2 = 1 has a finite number of

zeros ♯(φξ) in (0, 1] by property (S4) in Section 2.4. Hence η can be chosen so that φξ(x) 6= 0

for 0 < x ≤ η. Suppose that there is a sequence {(λn, un)} ⊂ B ∩ E such that λn → ξ and

‖un‖S → 0 as n → ∞ and, for all n ∈ N, ♯(un) 6= ♯(φξ). By part (3) of Theorem 4.7 we can

suppose that un = (un, φξ){φξ + wn} where ‖wn‖S → 0 as n → ∞ and, for all n, (un, φξ) 6= 0

since (λn, un) ∈ E . In the notation of Lemma 3.2, ‖Pηwn‖η → 0 as n → ∞ and it follows from

Lemma 3.2 that there exists n0 such that ♯(φξ + wn) = ♯(φξ) for all n ≥ n0, since φξ + wn like

un has no zeros in the interval (0, η] because (λn, un) ∈ B∩E and (un, φξ) 6= 0. But this implies

that ♯(un) = ♯(φξ) for all n ≥ n0, contradicting the choice of the sequence {(λn, un)}. Hence

there exists an open neighbourhood Uξ of (ξ, 0) in R × DA such that Z(λ, u) = ♯(φξ) for all

(λ, u) ∈ Uξ ∩E . Setting Z(ξ, 0) = ♯(φξ) for all (ξ, 0) ∈ Cµ we have now proved that Z : Cµ → N

is continuous and hence constant by the connectedness of Cµ. Since µ is a bifurcation point, it

follows that Z(λ, u) = ♯(φµ) for all (λ, u) ∈ Cµ. This establishes part (C).
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The following special case sheds some light on the restriction to the interval (−∞, me − ℓg1
)

in Theorem 5.1. It uses the conditions (T1) and (T2) introduced in Section 3.2 and the quantities

defined in (3.8) to (3.11).

Corollary 5.3. Suppose that conditions (S), (T1) and (T2) are satisfied with n ≡ 0 and g(x, s)s ≤ 0

for all (x, s) ∈ (0, 1)× R. Let Θ ≡ max{V0, me + Is(g1)}. Then −ℓg1
≤ Is(g1) ≤ Js(g1) = 0 and

me − ℓg1
≤ Θ ≤ me.

(A) A point µ ∈ (−∞, me − ℓg1
) is a bifurcation point for problem (1.1)(1.2) if and only if it is

an eigenvalues of S. When it is an eigenvalue, the component Cµ of (−∞, me − ℓg1
) × DA

containing (µ, 0) is a subset of (−∞, µ]× DA and {|λ|+ ‖u‖A : (λ, u) ∈ Cµ} = [0, ∞). If µ

is the k-th eigenvalue of S, ♯(u) = k for all (λ, u) ∈ Cµ ∩ E .

(B) There are no bifurcation points for (1.1)(1.2) in the interval (Θ, ∞) since E ∩ (Θ, ∞)× DA = ∅.

Remark 5.4. If Is(g1) = Ii(g1) = −ℓg1
and ℓg1

≤ a
4 , then Θ = me − ℓg1

.

As an example, suppose that g1(x, s) = −r(x)k(s) for (x, s) ∈ (0, 1)× R where the func-

tions r and k satisfy the following conditions.

(R) r ∈ C1([0, 1]) with r′(x) ≤ 0 for 0 ≤ x ≤ 1, r(0) > 0 and r(1) ≥ 0.

(K) k ∈ C1(R) is odd, convex on [0, ∞) and k′(0) = 0 < k′(∞) ≡ lims→∞ k′(s) < ∞.

Then Is(g1) = Ii(g1) = −ℓg1
= −r(0)k′(∞) and Θ = me − r(0)k′(∞) if r(0)k′(∞) ≤ a

4 .

The assumptions (R) and (K) also imply that the function g1(x, s) = −r(x)k(s) satisfies

condition (3.17). Hence, taking g = g1 and S to be as in Example 2.8 or 2.10 we obtain

situations where all the hypotheses of Corollary 5.3 are satisfied and σ(S) = {λi : 1 ≤ i ≤
n} ∪ [ 1

4 , ∞) where λ1 > 0 and λi < λi+1 < 1
4 = me for 1 ≤ i ≤ n − 1. The quantity Θ is

now 1
4 − r(0)k′(∞) and it can be placed anywhere in the interval (0, 1

4 ) by adjusting r(0)k′(∞).

When Θ 6∈ {λi : 1 ≤ i ≤ n}, λi is a bifurcation point if and only if λi < Θ.

Proof. (A) By Theorem 5.1 it suffices to show that λ ≤ µ for all (λ, u) ∈ Cµ. This will be

done using the standard comparison principle for the eigenvalues of self-adjoint operators.

(See Theorems 1.2 and 1.3 in Chapter XI of [10], for example.) Let (λ, u) ∈ Cµ ∩ E and set

W = W1 + W2 where

Wi(x) =
gi(x, u(x))

u(x)
if u(x) 6= 0 and Wi(x) = 0 if u(x) = 0 for i = 1, 2.

By assumption (F) for g1 and (2.9) for g2, Wi ∈ L∞(0, 1) for i = 1 and 2 and hence S + W1,

S + W2 and S + W : DA ⊂ L2 → L2 are all self-adjoint operators. By (2.9) and Lemma 2.7 in

[31], multiplication by W2 defines a compact mapping from DA into L2 and so σe(S + W) =

σe(S +W1). But W1(x) ≥ −ℓg1
on (0, 1) so inf σe(S +W1) ≥ inf σe(S)− ℓg1

= me − ℓg1
showing

that inf σe(S+W) ≥ me − ℓg1
. Also µ < me − ℓg1

is the k-th eigenvalue of S and so it follows that

λk ≤ µ where λk is the k-th eigenvalue of S + W since W(x) ≤ 0 on (0, 1). But Su + Wu = λu

and u 6≡ 0 since (λ, u) ∈ E and so λ < me is an eigenvalue of S+W with u as an eigenfunction.

We claim that λ = λk since u has exactly k zeros in (0, 1]. This is a standard property of regular

Strum–Liouville problems and it continues to hold in the present singular situation. A proof

is given in Appendix A of [36] for the case V = W = 0 but it can be extended to the general

case V + W ∈ L∞(0, 1) with only notational changes. This being so the proof of part (A) is

now complete since λ = λk ≤ µ.

(B) From Corollary 3.9 and part (iv) of Proposition 3.5, E ∩ (Θ, ∞)× DA = ∅.
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5.1 The case where n ≡ 0 and g(x, s)s ≥ 0

When n ≡ 0 and g(x, s)s ≥ 0, Theorem 4.10 can be used to deal with problem (1.1)(1.2) instead

of Theorem 4.7. This has the advantage that the size of the Lipschitz constant for g1 no longer

plays a role and so the restriction to the interval (−∞, me − ℓg1
) in Theorem 5.1 can be avoided.

Theorem 5.5. Suppose that assumption (S) is satisfied with n ≡ 0 and that the function g = g1 + g2

has the following additional properties.

(a) g(x, s)s ≥ 0 for all (x, s) ∈ (0, 1)× R.

(b) For some αg1
≥ 0 and all δ > 0 there exist x(δ) ∈ (0, 1) and M(δ) such that |g1(x, s)− αg1

s| ≤
M(δ) + δ|s| for (x, s) ∈ (0, x(δ))× R.

Consider µ ∈ (−∞, me).

(A) If µ is a bifurcation point for problem (1.1)(1.2) then µ is an eigenvalue of S = SA + V.

(B) If µ is the k-th eigenvalue of S then µ is a bifurcation point for (1.1)(1.2) and the component

Cµ of E ∩ (−∞, me)× DA containing (µ, 0) is a subset of [µ, me)× DA and ♯(u) = k for all

(λ, u) ∈ Cµ ∩ E . It has at least one of the following properties.

(i) {‖u‖A : (λ, u) ∈ Cµ} = [0, ∞).

(ii) sup{λ : (λ, u) ∈ Cµ} = me.

Proof. For (λ, u) ∈ E ,

λ
∫ 1

0
u2dx =

∫ 1

0
(Su)u + g̃(u)u dx ≥ m

∫ 1

0
u2dx, (5.1)

showing that E ⊂ [m, ∞)× DA.

Choose c > max{0, αg1
− ess inf V}. Then, by property (S1) in Section 2.4, m + c > C1

4 +

αg1
> 0 and Sc ≡ S + c is a positive self-adjoint operator with D(Sc) = DA as discussed at the

end of Section 2.4. In particular, ‖Scu‖L2 ≥ (m + c)‖u‖L2 for all u ∈ DA and ‖u‖c ≡ ‖Scu‖L2

defines a norm, ‖ · ‖c which is equivalent to the graph norm of S on DA. Furthermore,

D(S
1
2
c ) = HA and ‖S

1
2
c u‖L2 ≥ (m + c)1/2‖u‖L2 . For u ∈ DA,

‖u‖2
A =

∫ 1

0
A|∇u|2dx ≤

∫ 1

0
A|∇u|2 + Vu2 + cu2dx =

∫ 1

0
(Scu)u dx = ‖S

1
2
c u‖2

L2 (5.2)

≤ ‖u‖2
A + ‖V + c‖L∞‖u‖2

L2 ≤ K2
c‖u‖2

A, , where Kc =

(
1 +

4‖V + c‖L∞

C1

)1/2

(5.3)

by property (H1) in Section 2.1. Hence ‖u‖A ≤ ‖S
1
2
c u‖L2 ≤ Kc‖u‖A for all u ∈ DA and, since

DA is a dense subspace of HA, these inequalities hold for all u ∈ HA.

Since S
− 1

2
c ∈ B(L2, HA) and g̃ ∈ C(HA, L2) by Propositions 2.1 and 2.3, a continuous

mapping f : R × L2 → L2 is defined by

f (λ, v) = v + S
− 1

2
c g̃(S

− 1
2

c v)− (λ + c)S−1
c v for (λ, v) ∈ R × L2. (5.4)

If f (λ, v) = 0, v ∈ HA and consequently u = S
− 1

2
c v ∈ D(Sc) = DA with F(λ, u) = 0, where F

is defined in (2.12). Setting

S = {(λ, v) ∈ R × L2 : f (λ, v) = 0 and v 6= 0},
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it follows easily that

E =
{(

λ, S
− 1

2
c v

)
: (λ, v) ∈ S

}
and so S ⊂ [m, ∞)× HA by (5.1). (5.5)

The rest of this proof involves discussing first bifurcation for the equation f (λ, v) = 0 and

then deducing the desired conclusion about F(λ, u) = 0 from this.

Step 1. With H = L2, equation (5.4) has the form (4.5) if we set

M1(v) = v− (c− αg1
)S−1

c v+ S
− 1

2
c g̃2(S

− 1
2

c v), M2(v) = S
− 1

2
c [g̃1 − αg1

](S
− 1

2
c v) and Tv = S−1

c v

for v ∈ L2. We aim to show that the hypotheses of Theorem 4.10 are satisfied on the interval

J = (αg1
− c, me). We have already shown that αg1

− c < m so J 6= ∅.

From the choice of c we have that T ∈ B(L2, L2) is a positive self-adjoint operator with

0 = inf σ(T) < sup σe(T) = (me + c)−1 ≤ sup σ(T) = (m + c)−1 = ‖T‖. If (Tv, v)L2 = 0 and

u = S−1
c v, 0 = (u, Scu)L2 ≥ (m + c)‖u‖2

L2 so u = 0 and hence v = 0. Thus condition (W0) is

satisfied and 0 ∈ σe(T).

By Proposition 2.3, g̃2 ∈ C1(HA, L2) and so M1 ∈ C1(L2, L2) since S
− 1

2
c ∈ B(L2, HA). Also

M′
1(v) = I − (c − αg1

)S−1
c + S

− 1
2

c g̃2
′(S

− 1
2

c v)S
− 1

2
c for all v ∈ L2 and, in particular M′

1(0) = I −
(c − αg1

)T is self-adjoint. Furthermore, M1 − M′
1(0) = S

− 1
2

c g̃2(S
− 1

2
c ·) : L2 → L2 is compact,

since g̃2 : HA → L2 is compact by Proposition 2.3 and S
− 1

2
c ∈ B(L2, HA). Thus condition

(W1) is satisfied. In the same way it follows easily for Proposition 2.1 that M2 ∈ C(L2, L2) is

compact and w-Hadamard differentiable at 0 with M′
2(0) = −αg1

T. For v ∈ L2, we now have

that M(v)− M′(0)v = S
− 1

2
c g̃(S

− 1
2

c v) and so

(M(v)− M′(0)v, v) =
∫ 1

0
[S

− 1
2

c g̃(S
− 1

2
c v)]v dx =

∫ 1

0
g̃(S

− 1
2

c v)S
− 1

2
c v dx ≥ 0,

since S
− 1

2
c : L2 → L2 is self-adjoint. In view of (4.6), this shows that condition (W2) is satisfied.

Since λ + c − αg1
> 0 for all λ ∈ J, it follows from (2.15) that

inf σe(M′
1(0)− λT) = inf σe(I − (λ + c − αg1

)T) =
me − λ + αg1

me + c

whereas re(M′
2(0)) = re(αg1

T) =
αg1

me+c . Thus we see that inf σe(M′
1(0)− λT) > re(M′

2(0)) for

λ ∈ J = (αg1
− c, me). Let U = J × L2.

We have now verified that the hypotheses of Theorem 4.10 are satisfied in the present

context and so M′(0) − λT ∈ Φ0(L2, L2) for all λ ∈ J and J ∩ σe(S) = ∅. Since M′(0) −
λT = S

− 1
2

c [S − λI]S
− 1

2
c , it follows that dim ker[M′(0)− λT] = dim ker[S − λI]. Recalling that

S ⊂ [m, ∞)× HA by (5.5) and that inf J < m, it now follows from Theorem 4.10 that µ < me

is a bifurcation point for the equation f (λ, v) = 0 if and only if µ ∈ σ(S). Furthermore, when

µ ∈ σ(S) ∩ (−∞, me) the component Dµ of S ∩ (J × L2) containing (µ, 0) has at least one of

the properties (a), (b) and (c) in part (2) of Theorem 4.10. Since inf J < m ≤ inf p(Dµ) these

properties can be replaced by

(i’) {‖v‖L2 : (λ, v) ∈ Dµ} = [0, ∞).

(ii’) sup p(Dµ) = me.

(iii’) Dµ = Dν for some ν ∈ σ(S) ∩ J where ν 6= µ.

Step 2. It has already been observed that E = H(S) where H(λ, v) = (λ, S
− 1

2
c v) for (λ, v) ∈
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R × L2 and that S ⊂ [m, ∞)× HA. We now show that H : S ∪ [R × {0}] → E ∪ [R × {0}] is

a homeomorphism for the metrics induced by ‖ · ‖L2 on L2 and ‖ · ‖c on DA. Clearly, H is a

bijection with H−1(λ, u) = (λ, S
1
2
c u). For (λ, v), (µ, w) ∈ S ∪ [R × {0}],

‖H(λ, v)− H(µ, w)‖E = |λ − µ|+ ‖S
− 1

2
c (v − w)‖c = |λ − µ|+ ‖S

1
2
c (v − w)‖L2

= |λ − µ|+ ‖(λ + c)S
− 1

2
c v − g̃(S

− 1
2

c v)− (µ + c)S
− 1

2
c w + g̃(S

− 1
2

c w)‖L2

≤ |λ − µ|(1 + ‖S
− 1

2
c v‖L2) + (|µ|+ c + ℓg1

)‖S
− 1

2
c (v − w)‖L2

+ CCg2(‖S
− 1

2
c v‖A + ‖S

− 1
2

c w‖A)‖S
− 1

2
c (v − w)‖A (by Remark 2.4)

≤ |λ − µ|(1 + (m + c)−
1
2 ‖v‖L2) + {(m + c)−

1
2 (|µ|+ c + ℓg1

)

+ CCg2(‖v‖L2 + ‖w‖L2)}‖v − w‖L2 (by (5.2)),

showing that H is continuous. For the continuity of H−1, consider (λ, u), (µ, z) ∈ E ∪
[R × {0}]. Then

‖H−1(λ, u)− H−1(µ, z)‖S = |λ − µ|+ ‖S
1
2
c (u − z)‖L2 ≤ |λ − µ|+ (m + c)−

1
2 ‖Sc(u − z)‖L2

= |λ − µ|+ (m + c)−
1
2 ‖u − z‖c,

as required. At this point we can now assert that Cµ = H(Dµ) and hence that Cµ has at least

one of the following properties.

(i’) {‖S
1
2
c u‖L2 : (λ, u) ∈ Cµ} = [0, ∞).

(ii’) sup p(Cµ) = me.

(iii’) Cµ = Cν for some ν ∈ σ(S) ∩ J where ν 6= µ.

Recalling that ‖S
1
2
c u‖L2 and ‖u‖A define equivalent norms on HA, it now suffices to show that

property (iii’) cannot occur.

Step 3. The proof that ♯(u) = k for all (λ, u) ∈ Cµ ∩ E is essentially the same as for part (C)

of Theorem 5.1, using part (ii) of Lemma 3.1 instead of part (i). The only difference occurs in

showing that if (ξ, 0) ∈ Cµ, there is an open neighbourhood Uξ of (ξ, 0) in R × DA such that

Z(λ, u) = ♯(φξ) for all (λ, u) ∈ Uξ ∩ E , where φξ is a normalised eigenfunction of S associated

with ξ. To prove this we again argue by contradiction, supposing that there is a sequence

(λn, un) ∈ E such that λn → ξ and ‖un‖c → 0 as n → ∞ and, for all n ∈ N, ♯(un) 6= ♯(φξ).

Setting vn = S
1
2
c un and ψξ = S

1
2
c φξ , we have that (λn, vn) ∈ S , ‖vn‖L2 → 0 as n → ∞ and

M′(0)ψξ = ξTψξ .

Setting wn = vn/‖vn‖L2 , it follows from part (C) of Theorem 4.10 that by passing to a

further subsequence we can suppose that wn ⇀ dψξ weakly in L2 as n → ∞ where the

constant d is not equal to zero. Since S
− 1

2
c ∈ B(L2, HA), this implies that S

− 1
2

c wn ⇀ dS
− 1

2
c ψξ

weakly in HA. By Propositions 2.1 and 2.3, g̃ : HA → L2 is w-Hadamard differentiable at 0

with g̃′(0) = 0. Hence

g̃(S
− 1

2
c vn)

‖vn‖L2

=
g̃(‖vn‖L2 S

− 1
2

c wn)

‖vn‖L2

⇀ 0 weakly in L2 as n → ∞.
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But (λn, vn) ∈ S for all n and so

S
1
2
c wn = (λn + c)S

− 1
2

c wn −
g̃(S

− 1
2

c vn)

‖vn‖L2

⇀ (ξ + c)dS
− 1

2
c ψξ = (ξ + c)dφξ weakly in L2.

Let (·, ·)c denote the scalar product associated with the norm ‖ · ‖c on DA. We now have that

S
− 1

2
c wn ∈ DA for all n and, for all u ∈ DA,

(S
− 1

2
c wn, u)c = (S

1
2
c wn, Scu)L2 → (ξ + c)d(φξ , Scu)L2 = d(Scφξ , Scu)L2 = d(φξ , u)c as n → ∞.

Thus qnun = S
− 1

2
c wn ⇀ dφξ weakly in DA as n → ∞, where qn = ‖vn‖L2 > 0 for all n.

Recalling that {(λn, un)} ⊂ E with λn → ξ and ‖un‖c → 0 as n → ∞, it follows from Lemma

3.1(ii) that there exists η ∈ (0, 1) such that un(x) 6= 0 for 0 < x ≤ η and all n. By property

(S3) in Section 2.4 we can choose η so that φξ(x) 6= 0 for 0 < x ≤ η. By part (i) of Lemma 3.2,

‖Pη(qnun)− Pη(dφξ)‖η → 0 as n → ∞. It now follows from part (ii) of Lemma 3.2 that there

exists n0 such that ♯(qnun) = ♯(dφξ) for all n ≥ n0. Since ♯(qnun) = ♯(un) and ♯(dφξ) = ♯(φξ),

this contradicts the initial choice of the sequence {(λn, un)} and establishes the continuity of

the mapping Z at (ξ, 0).

As in the proof of Theorem 5.1 we can now conclude that ♯(u) = ♯(φµ) = k for all (λ, u) ∈
Cµ ∩ E and consequently that property (iii’) does not occur.

To complete the proof it only remains to show that λ ≥ µ for all (λ, u) ∈ Cµ. This can be

done using the comparison principle self-adjoint operators just as in the proof of Corollary

5.3. Note that in this case, W ≥ 0 on (0, 1) so inf σe(S + W) ≥ inf σe(S) = me.

Under some additional assumptions an “a priori” bound for solutions in a component Cµ

can be established and hence p(Cµ) = [µ, me).

Remark 5.6. Recall from Lemma 3.4 that assumption (b) of Theorem 5.5 implies that Ii(g1) =

Is(g1) = αg1
. Hence if (λ, u) ∈ Cµ with λ < V0 + αg1

, then u ∈ L∞(0, 1) by Proposition 3.5(iv).

But u has only a finite number of zeros in (0, 1] if (λ, u) ∈ Cµ and so it follows from Proposition

3.5(ii) that limx→0 u(x) = ±∞ if λ > V0 + Js(g1). Note that V0 + Js(g1) < me provided

that Js(g1) < a
4 . The next result exhibits a situation where p(Cµ) = [µ, me) and hence, if

µ < V0 + αg1
and Js(g1) < a

4 , the behaviour of solutions in Cµ changes as λ increases. If

(λ, u) ∈ Cµ with λ near µ, u ∈ L∞(0, 1) whereas for λ ∈ (V0 + Js(g1), me), limx→0 u(x) = ±∞. If

g1(x, s) = r(x)k(s) where the functions r and k satisfy the conditions (R) and (K) introduced in

Remark 5.4, Js(g1) = Ii(g1) = ℓg1
= αg1

= r(0)k′(∞) and the transition occurs when λ crosses

V0 + r(0)k′(∞) if µ < V0 + r(0)k′(∞) and r(0)k′(∞) < a
4 . Both cases u(x) → ∞ and u(x) → −∞

as x → 0 occur since k is odd and hence Cµ = {(λ,−u) : (λ, u) ∈ Cµ}. Noting that k(s)/s

is non-decreasing on (0, ∞) with lims→∞ k(s)/s = k′(∞), condition (3) in Theorem 5.7 and

condition (3’) in Proposition 5.8 will be satisfied in this case if k′(∞) > ess sup0<x<1
V0−V(x)

r(x)
.

Let t+ = max{0, t} for t ∈ R. Observe that, since V ∈ L∞(0, 1), condition (2) in the

following result only involves the behaviour of V(x) as x → 0. Assumptions (1) and (2) are

satisfied in Examples 2.8 and 2.9.

Theorem 5.7. In addition to the hypotheses of Theorem 5.5 suppose that the following conditions are

satisfied.

(1) A ∈ C1((0, 1)) and {x
1
2 c(x)}′ ≥ 0 for 0 < x < 1 where c(x) = A(x)

x2 − a.
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(2)
∫ 1

0 x−1[V0 − V(x)]+dx < ∞.

(3) There exist K2 > K1 > 0 such that V0 ≤ V(x) + g(x,s)
s for all x ∈ (0, 1) and K1 ≤ x

1
2 |s| ≤ K2.

For every eigenvalue µ of S in (−∞, me), sup p(Cµ) = me where Cµ is defined in Theorem 5.5.

Proof. Let us suppose that me − sup p(Cµ) = η > 0. In view of Theorem 5.5 it suffices to

deduce from this that sup{‖u‖A : (λ, u) ∈ Cµ} < ∞.

Step 1. We claim that if (λ, u) ∈ Cµ, then |u(x)| < K1x−
1
x for all x ∈ (0, 1) where K1 > 0 is

given by assumption (3). To justify this assertion, choose K ∈ (K1, K2) and let U = {(λ, u) ∈
Cµ : x

1
2 |u(x)| < K for all x ∈ (0, 1]}. We now show that U is both open and closed in Cµ.

If (λ, u) ∈ U, it follows that u(1) = 0 and, from property (P2) in Section 2.1, x
1
2 u(x) → 0

as x → 0. Hence there exists ε > 0 such that x
1
2 |u(x)| ≤ K − ε for all x ∈ (0, 1]. Referring

again to property (P2), there exists δ > 0 such that ‖x
1
2 (v − u)‖L∞ < ε/2 for v ∈ DA with

‖SA(v − u)‖L2 < δ and hence

x
1
2 |v(x)| ≤ x

1
2 |u(x)|+ x

1
2 |v(x)− u(x)| < K − ε/2.

This proves that U is an open subset of Cµ.

To prove that it is also a closed subset of Cµ consider (λ, u) ∈ Cµ and a sequence {(λn, un)}
in U such that λn → λ and ‖SA(un − u)‖L2 → 0 as n → ∞. By (P2), un(x) → u(x) for all

x ∈ (0, 1] as n → ∞ and so x
1
2 |u(x)| ≤ K for 0 < x ≤ 1. Suppose that sup0<x≤1 x

1
2 u(x) = K

and let (p, q) be a maximal interval such that x
1
2 u(x) > K1. Since limx→0 x

1
2 u(x) = u(1) = 0

we have 0 < p < q < 1 and, setting v(x) = K1x−
1
2 , u(p) = v(p), u′(p) ≥ v′(p), u(q) = v(q)

and u′(q) ≤ v′(q) since u, v ∈ C1([p, q]). Hence

∫ q

p
(Au′)′v − (Av′)′u dx = A[u′v − v′u]|qp

= A(q)v(q)[u′(q)− v′(q)]− A(p)v(p)[u′(p)− v′(p)] ≤ 0.

But it is easy to check that assumption (1) implies that −(Av′)′ ≥ a
4 v on (0, 1). Since u(x) > 0

on (p, q) this yields

∫ q

p
(Au′)′v − (Av′)′u dx ≥

∫ q

p
u(x)v(x)

{
V(x) +

g(x, u(x))

u(x)
− λ +

a

4

}
dx,

where

V(x) +
g(x, u(x))

u(x)
− λ +

a

4
= me − λ + V(x)− V0 +

g(x, u(x))

u(x)
≥ me − λ,

by assumption (3) because K1 < x
1
2 u(x) ≤ K < K2 on (p, q). This implies that

∫ q

p
(Au′)′v − (Av′)′u dx ≥ (me − λ)

∫ q

p
u(x)v(x) dx > 0

since λ ≤ sup p(Cµ) ≤ me − η, contradicting the previous conclusion.

Hence sup0<x≤1 x
1
2 u(x) < K.

A similar argument shows that x
1
2 u(x) > −K for 0 < x ≤ 1 and so (λ, u) ∈ U, proving

that U is a closed subset of Cµ.
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Clearly (µ, 0) ∈ U and we have now shown that U is both open and closed in Cµ. Since Cµ

is connected this means that U = Cµ and hence |u(x)| < Kx−
1
2 for all x ∈ (0, 1] and (λ, u) ∈ Cµ.

This completes Step 1.

Step 2. Here we prove that ‖u‖2
A ≤ K2

1
ε

∫ 1
0 x−1[V0 − V(x)]+ dx for all (λ, u) ∈ Cµ where ε =

1
2 min

{
1,

4η
a

}
and η = me − sup p(Cµ).

For any (λ, u) ∈ Cµ,

ε‖u‖2
A =

∫ 1

0
A(u′)2dx − (1 − ε)‖u‖2

A ≤
∫ 1

0
A(u′)2dx − (1 − ε)

∫ 1

0
ax2(u′)2dx

≤
∫ 1

0
A(u′)2dx − (1 − ε)

a

4

∫ 1

0
u2dx

by property (H1) in Section 2.1 since assumption (1) implies that A(x) ≥ ax2 for 0 ≤ x ≤ 1.

But g(x, s)s ≥ 0 for all (x, s) ∈ (0, 1)× R so

∫ 1

0
A(u′)2dx =

∫ 1

0
[λ − V(x)]u(x)2 − g(x, u(x))u(x) dx ≤

∫ 1

0
(λ − V)u2dx.

Hence

ε‖u‖2
A ≤

∫ 1

0

{
λ − V(x)− (1 − ε)

a

4

}
u(x)2dx =

∫ 1

0

{
λ − me + V0 − V(x) +

aε

4

}
u(x)2dx

≤
∫ 1

0
[V0 − V(x)]+u(x)2dx ≤ K2

1

∫ 1

0
x−1[V0 − V(x)]+ dx

by Step 1 since λ − me +
aε
4 ≤ −η + aε

4 ≤ 0.

From assumption (2) it now follows that sup{‖u‖A : (λ, u) ∈ Cµ} < ∞ if sup p(Cµ) < me.

The conclusion follows from Theorem 5.5.

After strengthening assumption (3) the arguments used to prove Theorem 5.7 yield an

“a priori” bound for all solutions of (1.1)(1.2) with λ ≤ me − η for some η > 0, not just those

in the components Cµ.

Proposition 5.8. Suppose that condition (S) is satisfied with n ≡ 0 and that g(x, s)s ≥ 0 for all

(x, s) ∈ (0, 1)× R. Assume also that the following conditions are satisfied.

(1) A ∈ C1((0, 1)) and {x
1
2 c(x)}′ ≥ 0 for 0 < x < 1 where c(x) = A(x)

x2 − a.

(2)
∫ 1

0 x−1[V0 − V(x)]+dx < ∞.

(3’) There exists K > 0 such that V0 ≤ V(x) + g(x,s)
s for all x ∈ (0, 1) and x

1
2 |s| ≥ K.

Then, for every η > 0,

‖u‖2
A ≤ K2

δ(η)

∫ 1

0
x−1[V0 − V(x)]+dx for all (λ, u) ∈ Eη ≡ E ∩ (−∞, me − η)× DA,

where δ(η) = min{1,
4η
a }. By Remark 5.2, this implies an “a priori” bound for ‖SAu‖L2 also.

Proof. Fix η > 0 and then take any ε ∈ (0, δ(η)). Let v(x) = Kx−
1
2 where K is given by

condition (3’).

The argument used to prove that U is a closed subset of Cµ in the proof of Theorem 5.7

shows that |u(x)| ≤ v(x) for all (λ, u) ∈ Eη and all x ∈ (0, 1) when condition (3) is replaced

by (3’). The desired conclusion is then obtained by repeating Step 2 of that proof.
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Remark 5.9. The results in this section improve previous conclusions in Theorem 4.5(ii) of [31]

about bifurcation at eigenvalues of S in the interval (−∞, me), even at the local level, when

n ≡ 0 and g(x, s)s ≥ 0. However, they do not give a complete description of all bifurcation

points in this case since, as shown in Theorem 4.5(iii), bifurcation can occur at points in

[me, ∞) which are not eigenvalues of S. See also Section 6.3 of [33] for generalisations to

higher dimensions.
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Abstract. This paper deals with impulsive problems consisting of second order differ-
ential equation with impulsive effects depending implicitly on the solution and with
rather general nonlocal boundary conditions. The arguments are based on the lower
and upper solutions method and a fixed point theorem.
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1 Introduction

Impulsive problems have been object of growing and constant interest, mainly because they
provide adequate mathematical tools to describe evolution processes with sudden changes,
and to model real phenomena in science, as, for instance, population and biological dynamics,
biotechnology and ecology, engineering and industrial robotic, etc. As a result, differential
equations with impulses have been recently studied by many authors. They employed various
methods and techniques, such as, bifurcation theory [16, 17], method of lower and upper
solutions [9, 14, 23, 24], fixed point theorems and fixed point index in cones [11, 12, 32], critical
point theory and variational methods [22, 30, 33]. For contributions to general and classical
theory we refer to e.g. [1, 13, 25].

Problems with implicit impulse conditions depending both on values of the solution and
its derivative at the points of the impulse action have been considered by several authors (see
[3, 4, 15, 19, 20] and the references therein). In particular, we refer to [18] dealing with the

BCorresponding author. Email: mzima@ur.edu.pl
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problem

u′′(t) = f (t, u(t), u ′(t)) a.e. on [0, ∞),

∆u(tk) = I0k(tk, u(tk), u′(tk)), ∆u ′(tk) = I1k(tk, u(tk), u ′(tk)) for k ∈ N,

u(0) = A, u ′(∞) = B,

where {tk} is a sequence of points in (0, ∞) such that tk < tk+1 for k ∈N and limk→+∞ tk =∞;
f : [0,+∞)×R

2 → R is an L1-Carathéodory function;

u ′(∞) := lim
t→∞

u ′(t), ∆u(i)(t) := u(i)(t+)− u(i)(t−) for t ∈ (0, ∞)

and i ∈ {0, 1}; A, B ∈ R and Iik : (0,+∞)× R
2 → R are continuous for i ∈ {0, 1} and k ∈ N.

The arguments included Green’s functions, Schauder’s fixed point theorem and, to have the
compactness of the representing operator, also the equiconvergence both at ∞, and at each
impulse moment tk.

Similarly, functional boundary conditions generalize local boundary data and encompass
a broad spectrum of conditions where global information on the unknown function is given,
including integral and nonlocal conditions, advanced or delay data, maximum or minimum
arguments, among others. Existence, nonexistence and multiplicity results for general bound-
ary conditions were studied, for example, in [2, 5, 8, 26–29], for scalar differential equations
and, in [6], for coupled systems of differential equations.

Our idea in this paper is to combine both techniques, applied in the papers mentioned
above, in the study of impulsive problems with impulse effects depending both on the un-
known function and on its first derivative and with nonlocal boundary conditions. In partic-
ular, our aim is to get results on the existence of solutions to the boundary value problem

−u′′(t) = f (t, u(t), u ′(t)) a.e. on [0, 1], (1.1)

∆u(t) = I0k(t, u(t), u ′(t)), ∆u ′(t) = I1k(t, u(t), u ′(t)) if t = tk ∈ D, (1.2)

L0(u(0), u(1), u ′(0), u) = 0, L1(u(0), u(1), u ′(1), u) = 0, (1.3)

where m ∈ N, D = {t1, . . . , tm} ⊂ (0, 1), t1 < · · · < tm, f : [0, 1]× R
2 → R is a Carathédory

function, I0k, I1k : [0, 1] × R
2 → R with k ∈ {1, . . . , m} and L0, L1 : R

3 × PCD → R satisfy
conditions given below, PCD is the space of piecewise continuous functions defined below
and the symbol ∆ has a usual meaning, i.e. ∆v(t) = v(t+)− v(t−) for any t ∈ [0, 1] and any
function v : [0, 1] → R such that both limits in the above formula are defined and have finite
values.

As far as we know, nonlocal boundary conditions together with impulsive effects of the
types (1.3) and (1.2) are treated in this paper for the first time. This was enabled due to the
implemented technique: lower and upper solutions method together with a proper truncation
argument. Let us emphasize that, on the contrary to e.g. periodic problem, for (1.1)–(1.3) no
a priori estimate of the derivative of the sought solution is available.

The paper is organized as follows: in Section 2 the general framework is established and
the basic definitions are introduced. In Section 3 we present our main result: existence and
localization theorem and its proof. Last section provides a nontrivial example illustrating the
power of our main result.
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2 Preliminaries

For a given function v : [0, 1] → R and points t ∈ (0, 1] and s ∈ [0, 1), the symbols v(t−) and
v(s+) stand respectively for the corresponding one-sided limits

v(t−) := lim
τ→t−

v(τ) and v(s+) := lim
τ→s+

v(τ)

whenever these limits exist and have finite values. In such a case, for t ∈ (0, 1), we write
∆v(t) = v(t+) − v(t−). Note that the functions such that v(t−) ∈ R for all t ∈ (0, 1] and
v(s+) ∈ R for all s ∈ [0, 1) are usually called regulated functions. The space G of such
functions is known to be a Banach space with respect to the supremum norm

‖v‖ = ‖v‖∞ := sup
t∈[0,1]

|v(t)| for v ∈ G.

For basic properties of regulated functions, see e.g. [7], [10] or [21]. For our purposes, the
following compactness criterion for subspaces of G will be essential (cf. [7] or [21, Lemma 4.3.4
and Corollary 4.3.7]).

Theorem 2.1 (Fraňková). A given subset B of the space G of regulated functions is relatively compact

if and only if

• B is the set of equi-regulated functions, i.e. for every ε > 0 there is a division {α0 < . . .< αn}

of the interval [0, 1] such that for every v ∈ B, j ∈ {1, . . . , n} and t, s ∈ (αj−1, αj) we have

|v(t)− v(s)| < ε

and

• the set
{

v(t) : v ∈ B
}
⊂ R is bounded for each t ∈ [0, 1].

In what follows, the symbol D stands for the fixed set D = {t1, . . . , tm} of points of im-
pulses in the open interval (0, 1) ordered in such a way that 0 < t1 < · · · < tm < 1. It will be
helpful to denote also t0 = 0 and tm+1 = 1. The symbols PCD and PC1

D then denote respec-
tively the corresponding sets of functions piecewise continuous on [0, 1] or with a derivative
piecewise continuous on [0, 1]. More precisely, PCD is the set of all functions u : [0, 1] → R

continuous at every t ∈ [0, 1] \ D, continuous from the left at every t ∈ D and having, in ad-
dition, finite right limits u(s+) for all s ∈ D. Obviously, when equipped with usual algebraic
operations, the space PCD is a closed subspace of the Banach space G of regulated functions.
Therefore, it is also a Banach space (with respect to the supremum norm). Analogously, PC1

D

is the set of all functions u ∈ PCD having a finite derivative u ′(t) at each t ∈ [0, 1] \ D, while
u ′ is continuous at each t ∈ [0, 1] \ D and, in addition, it has finite limits u ′(t−) and u ′(s+)

for all t, s ∈ D. For a given u ∈ PC1
D, by u ′ we always mean a function which coincides with

the derivative of u on (0, 1) \ D and is extended to the whole interval [0, 1] by the prescriptions

u ′(0) = u ′(0+), u ′(1) = u ′(1−) and u ′(t) = u ′(t−) if t ∈ D.

Of course, for such an extension of the derivative we have u ′ ∈ PCD whenever u ∈ PC1
D. It is

easy to verify that both the mappings

u ∈ PC1
D → (u ′, u(0), ∆u(t1), . . . , ∆u(tm)) ∈ PCD × R

m+1,

and
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(v, d0, d1, . . . , dm) ∈ PCD × R
m+1

→ u(t) = d0 +
∫ t

0
v(s)ds +

m

∑
k=1

dk χ(tk ,t](t) ∈ PC1
D,

where χM(t) = 1 if t ∈ M and χM(t) = 0 if t /∈ M, are continuous with respect to the norms

‖u‖PC1 := ‖u‖∞ + ‖u′‖∞ on PC1
D

and

‖(v, d0, d1, . . . , dm)‖ = ‖v‖∞ +
m

∑
k=0

|dk| on PCD × R
m+1

and provide a one-to-one correspondence between the spaces PC1
D and PCD × R

m+1. As
a consequence, PC1

D is a Banach space when equipped with the norm ‖ · ‖PC1 . This together
with Theorem 2.1 leads directly to the following compactness criterion for subsets of PC1

D.

Corollary 2.2. A subset B of the space PC1
D is relatively compact if and only if

• the set {u ′ : u ∈ B} is equi-regulated

and

• for a given t ∈ [0, 1], the set
{

u(t) : u ∈ B
}
⊂ R is bounded.

Solutions to our problem (1.1)–(1.3) will be understood in the Carathéodory sense as func-
tions with piecewise absolutely continuous derivatives. More precisely, the symbol AC1

D

stands for the set of functions u ∈ PC1
D having first derivatives absolutely continuous on

each subinterval (tk−1, tk) with k ∈ {1, . . . , m + 1} and solutions to (1.1)–(1.3) are defined as
follows.

Definition 2.3. By a solution u of problem (1.1)–(1.3) we understand a function u ∈ AC1
D

satisfying equation (1.1) a.e. on [0, 1] together with conditions (1.2) and (1.3).

Throughout the paper we consider the following assumptions:

(A) f : [0, 1]× R
2 → R of (1.1) satisfies the Carathéodory conditions, i.e.

• f (·, x, y) is Lebesgue integrable for all (x, y) ∈ R
2,

• f (t, ·, ·) is continuous on R
2 for a.e. t ∈ [0, 1],

• for each ρ > 0 there is a function µρ Lebesgue integrable on [0, 1] and such that
| f (t, x, y)| ≤ µρ(t) for a.e. t ∈ [0, 1] and all x, y ∈ R such that |x| ≤ ρ and |y| ≤ ρ.

(B) L0, L1 : R
3 ×PCD → R and I0k, I1k : [0, 1]× R

2 → R are continuous for all k ∈ {1, . . . , m}.

Important tools for our proofs will be associated lower and upper solutions given by the
following definition.
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Definition 2.4. A function α ∈ AC1
D is a lower solution of (1.1)–(1.3) if





−α′′(t) ≤ f (t, α(t), α ′(t)) a.e. on [0, 1],

∆α(tk) ≤ I0k(tk, α(tk), α ′(tk)) for k ∈ {1, . . . , m},

∆α ′(tk) > I1k(tk, α(tk), α ′(tk)) for k ∈ {1, . . . , m},

L0(α(0), α(1), α ′(0), α) ≥ 0,

L1(α(0), α(1), α ′(1), α) ≥ 0,

(2.1)

while a function β ∈ AC1
D is an upper solution of (1.1)–(1.3) if





−β′′(t) ≥ f (t, β(t), β ′(t)) a.e. on t ∈ [0, 1],

∆β(tk) ≥ I0k(tk, β(tk), β ′(tk)) for k ∈ {1, . . . , m},

∆β ′(tk) < I1k(tk, β(tk), β ′(tk)) for k ∈ {1, . . . , m},

L0(β(0), β(1), β ′(0), β) ≤ 0,

L1(β(0), β(1), β ′(1), β) ≤ 0.

(2.2)

The following lemma enables us to construct the operator representation of our problem.
Its proof is obvious and can be left to readers.

Lemma 2.5. Linear problem

−u′′(t) = h(t) for a.e. t ∈ [0, 1],

∆u(tk) = Ck, ∆u ′(tk) = Dk for k ∈ {1, . . . , m},

u(0) = A, u ′(1) = B

has a unique solution for any h Lebesgue integrable on [0, 1], A, B∈R, Ck, Dk ∈R (k ∈ {1, . . . , m}).
This solution is given by

u(t) = A + B t+
∫ 1

0
G(t, s) h(s) ds +

m

∑
k=1

Ck χ(tk ,1](t) +
m

∑
k=1

Dk (t − tk) χ(tk ,1](t)− t
m

∑
k=1

Dk ,

where

G(t, s) =





s if 0 ≤ s ≤ t ≤ 1,

t if 0 ≤ t ≤ s ≤ 1,

is the Green function associated to the homogeneous problem

−u′′(t) = 0, u(0) = 0, u ′(1) = 0.

Remark 2.6. In what follows, the following evident estimate

max

{
sup

t,s∈[0,1]

∣∣G(t, s)
∣∣, sup

t,s∈[0,1]

∣∣∣
∂G

∂t
(t, s)

∣∣∣
}

= 1 (2.3)

will be useful.
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Our main existence tool will be the Schauder fixed point theorem (see e.g. [31, Theo-
rem 2.A]).

Theorem 2.7 (Schauder). Let B be a nonempty, closed, bounded and convex subset of a Banach space

X and let T : B → X be a compact operator mapping B into B. Then T has at least one fixed point

in B.

3 Main result

First, we will construct a proper auxiliary problem and its operator representation. To this
aim, the existence of associated lower and upper solutions will be needed. Thus, we will
make use of the following assumption.

(C) Problem (1.1)–(1.3) possesses a pair α, β of a lower and an upper solutions such that

α(t) ≤ β(t) and α ′(t) ≤ β ′(t) for t ∈ [0, 1]. (3.1)

Then, for t ∈ [0, 1] and x, y, w ∈ R, define

δ0(t, w) =





α(t) if w < α(t),

w if w ∈ [α(t), β(t)],

β(t) if w > β(t),

(3.2)

δ1(t, w) =





α′(t) if w < α′(t),

w if w ∈ [α′(t), β′(t)],

β′(t) if w > β′(t),

(3.3)

and

f̃ (t, x, y) = f (t, δ0(t, x), δ1(t, y)) +
δ1(t, y)− y

1 + |y − δ1(t, y)|
, (3.4)

and consider the following auxiliary problem





−u′′(t) = f̃ (t, u(t), u ′(t)) for t ∈ [0, 1] \ D,

∆u(tk) = I0k

(
tk, δ0(tk, u(tk)), δ1(tk, u ′(tk))

)
,

∆u ′(tk) = I1k

(
tk, δ0(tk, u(tk)), δ1(tk, u ′(tk))

)
,

u(0) = δ0
(
0, u(0) + L0(u(0), u(1), u ′(0), u)

)
,

u ′(1) = δ1
(
1, u ′(1) + L1(u(0), u(1), u ′(1), u)

)
.

(3.5)
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Finally, we define





(Tu)(t) = δ0
(
0, u(0) + L0(u(0), u(1), u ′(0), u)

)

+δ1
(
1, u ′(1) + L1(u(0), u(1), u ′(1), u)

)
t

+
m

∑
k=1

[
I0k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](t)

+
m

∑
k=1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk))) (t − tk)

]
χ(tk ,1](t)

−t
m

∑
k=1

I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

+
∫ 1

0
G(t, s) f̃ (s, u(s), u′(s))ds for u ∈ PC1

D and t ∈ [0, 1].

(3.6)

The relationship between the operator T and the auxiliary problem (3.5) is described by
the following assertion.

Proposition 3.1. A function u ∈ PC1
D is a solution to (3.5) if and only if it is a fixed point of the

operator T given by (3.6).

Proof. From the construction of the operator T it is clear that any fixed point of T has piecewise
absolutely continuous derivative, more precisely it belongs to the set AC1

D. Moreover, having
in mind Lemma 2.5 we easily verify that u solves problem (3.5) if and only if it is a fixed point
of T.

Remark 3.2. If for a given ρ > 0 the function µρ has a meaning from (A), then having in mind
definitions (3.2)–(3.4), we can see that the following estimate of f̃ is true:

| f̃ (t, x, y)| ≤ µr0(t) + 1 for a.e. t ∈ [0, 1] and all x, y ∈ R,

where
r0 = max

{
‖α‖∞, ‖β‖∞, ‖α ′‖∞, ‖β ′‖∞

}
. (3.7)

As a result, we may put

µρ(t) = µr0(t) for all ρ ≥ r0 and a.e. t ∈ [0, 1]. (3.8)

Next, we will find conditions ensuring the solvability of problem (3.5).

Proposition 3.3. Let assumptions (A)–(C) hold. Then problem (3.5) has at least one solution

ū ∈ PC1
D.

Proof. We will prove that the operator T satisfies the assumptions of the Schauder fixed point
theorem (Theorem 2.7).

For better transparency, this proof is divided into several steps.

Step 1. We will show that the operator T maps PC1
D into PC1

D.
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Clearly, Tu ∈ PCD for every u ∈ PC1
D. Furthermore, differentiating the relation (3.6), we

get





(Tu) ′(t) = δ1
(
1, u ′(1) + L1(u(0), u(1), u ′(1), u)

)

+
m

∑
k=1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](t)

−
m

∑
k=1

I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk))) +
∫ 1

0

∂G

∂t
(t, s) f̃ (s, u(s), u′(s))ds

(3.9)

for u ∈ PC1
D and t ∈ [0, 1] \ D, wherefrom, taking into account the properties of the Green

function G, we deduce immediately that Tu ∈ PC1
D for each u ∈ PC1

D.

Step 2. Let t ∈ [0, 1] and a bounded subset B of PC1
D be given. We will show that the set (TB)(t) ={

(Tu)(t) : u ∈ B
}

is then bounded subset of R.

Choose an arbitrary t ∈ [0, 1] and let ‖u‖PC1 = ‖u‖∞ + ‖u ′‖∞ ≤ ρ < ∞ for every u ∈ B.
Our aim is to find a uniform estimate for elements of (TB)(t).

First, by (3.2) and (3.3) we have
∣∣δ0

(
0, u(0) + L0(u(0), u(1), u ′(0), u)

)∣∣ ≤ max
{
|α(0)|, |β(0)|

}

and
∣∣δ1

(
0, u ′(1) + L1(u(0), u(1), u ′(1), u)

)
t
∣∣ ≤ max

{
|α ′(1)|, |β ′(1)|

}
.

Further, due to continuity of I0k and I1k, for an arbitrary k ∈ {1. . . . , m} we get
∣∣I0k(tk, δ0(tk, u(tk), u ′(tk))) χ(tk ,1](t)

∣∣ ≤ M0k := max
(x,y)∈Qk

|I0k(tk, x, y)| < ∞

and
∣∣I1k(tk, δ0(tk, u(tk), u ′(tk))) (t − tk) χ(tk ,1](t)

∣∣ ≤ M1k := max
(x,y)∈Qk

|I1k(tk, x, y)| < ∞,

where Qk = [α(tk), β(tk)]× [α ′(tk), β ′(tk)].

Finally, by (2.3) we have |G(t, s)| ≤ 1 for t, s ∈ [0, 1] and consequently by the third point of
(A) and by the definition (3.4) of f̃ we have

∣∣∣∣
∫ 1

0
G(t, s) f̃ (s, u(s), u ′(s))ds

∣∣∣∣ ≤
∫ 1

0
(µρ(s) + 1)ds.

To summarize, the relation




|(Tu)(t)| ≤ max
{
|α(0)|, |β(0)|

}
+ max

{
|α ′(1)|, |β ′(1)|

}

+ M0 + 2 M1 +
∫ 1

0
(µρ(s) + 1)ds < ∞,

where

M0 =
m

∑
k=1

M0k and M1 =
m

∑
k=1

M1k,

holds for any u ∈ B. This proves our claim.

Step 3. Let B be a bounded subset of PC1
D. We will show that the set

{
(Tu) ′ : u ∈ B

}
is equi-regulated.
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Let B ⊂ PC1
D be bounded and let ρ > 0 be such that B⊂ Bρ = {u ∈ PC1

D : ‖u‖PC1 ≤ ρ}.
Further, let ε > 0 be given and let [s, t] ⊂ (tℓ−1, tℓ) for some ℓ ∈ {1, . . . , m + 1}. Then

m

∑
k=1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](t)

=
m

∑
k=ℓ−1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](t)

=
m

∑
k=ℓ−1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](s)

=
m

∑
k=1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](s)

and

(Tu) ′(t)− (Tu) ′(s) =
∫ 1

0

(
∂G

∂t
(t, τ)−

∂G

∂t
(s, τ)

)
f (τ, u(τ), u ′(τ))dτ

for all u ∈ B. Further, since

∂G

∂t
(t, τ)−

∂G

∂t
(s, τ) =





0, if 0 ≤ τ < s < 1 or 0 < t < τ ≤ 1,

1, if 0 < s < τ < t < 1,

it follows that

∣∣(Tu) ′(t)− (Tu) ′(s)
∣∣ ≤

∫ t

s

∣∣∣∣
∂G

∂t
(t, τ)−

∂G

∂t
(s, τ)

∣∣∣∣ (µρ(τ) + 1)dτ

≤
∫ t

s
(µρ(τ) + 1)dτ for all u ∈ B

and hence

∣∣(Tu) ′(t)− (Tu) ′(s)
∣∣ < ε for all u ∈ B whenever

∫ t

s
(µρ(τ) + 1)dτ < ε.

Therefore, any refinement {α0, . . . , αn} of {t0, . . . , tm+1} which is such that
∫ αj

αj−1

(µρ(τ) + 1)dτ < ε for all j ∈ {1, . . . , n}

satisfies the requirements from the definition of equi-regulatedness contained in Theorem 2.1.
Consequently, the set

{
(Tu) ′ : u ∈ B

}
is equi-regulated and this completes the proof of our

claim.

Step 4. We will construct a nonempty, closed, bounded and convex subset B of PC1
D such that

T B ⊂ B.

Let B ⊂ PC1
D be bounded and let ρ > 0 be such that B ⊂ Bρ = {u ∈ PC1

D : ‖u‖PC1 ≤ ρ}.
Recall that by Step 2 we have

∥∥Tu
∥∥

∞
≤ max

{
|α(0)|, |β(0)|

}
+ max

{
|α ′(1)|, |β ′(1)|

}

+M0 + 2 M1 +
∫ 1

0
(µρ(s) + 1)ds for all u ∈ Bρ.
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Similarly, from (3.9) we deduce that the inequality

|(Tu) ′(t)| ≤ max
{
|α ′(1)|, |β ′(1)|

}
+ 2 M1 +

∫ 1

0
(µρ(s) + 1)ds

holds for any u ∈ B and any t ∈ [0, 1], i.e.

∥∥(Tu) ′
∥∥

∞
≤ max

{
|α ′(1)|, |β ′(1)|

}
+ 2 M1 +

∫ 1

0
(µρ(s) + 1)ds

for all u ∈ Bρ. Hence, with respect to (3.8), we conclude that

‖Tu‖PC1 = ‖Tu‖∞ + ‖(Tu) ′‖∞ ≤ κ(r0) for all u ∈ Bρ and ρ ≥ r0

where 



κ(ρ) := max
{
|α(0)|, |β(0)|

}
+ 2 max

{
|α ′(1)|, |β ′(1)|

}

+M0 + 4 M1 + 2
∫ 1

0
(µρ(s) + 1)ds for ρ > 0.

(3.10)

Now, if we put R = max{r0,κ(r0)} and B = BR, then the inequality ‖Tu‖PC1 ≤ R will be true
for all u ∈ B. This proves our claim.

To summarize, by Steps 1–3 and Corollary 2.2, the operator T is compact in PC1
D and,

by Step 4, it maps the nonempty, closed, bounded and convex set B = BR into itself. By
Theorem 2.7 it follows that T has a fixed point ū ∈ B which is a solution of (3.5) according to
Proposition 3.1.

Now we can formulate our main result. It provides sufficient conditions for the existence
of at least one solution of problem (1.1)–(1.3), as well as its localization.

Theorem 3.4. Let the assumptions of Proposition 3.3 be satisfied. Furthermore, suppose:




f (t, α(t), α ′(t))) ≤ f (t, x, α ′(t))

for a.e. t ∈ [0, 1] and x ∈ [α(t), β(t)],

f (t, x, β ′(t)) ≤ f (t, β(t), β ′(t)))

for a.e. t ∈ [0, 1] and x ∈ [α(t), β(t)],

(3.11)

{
I0k(tk, α(tk), α ′(tk)) ≤ I0k(tk, x, y) ≤ I0k(tk, β(tk), β ′(tk))

for (x, y) ∈ [α(tk), β(tk)]×[α ′(tk), β ′(tk)] and k ∈ {1, . . . , m},
(3.12)





I1k(tk, x, α ′(tk)) ≤ I1k(tk, α(tk), α ′(tk))

for x ≥ α(tk) and k ∈ {1, . . . , m},

I1k(tk, x, β ′(tk)) ≥ I1k(tk, β(tk), β ′(tk))

for x ≤ β(tk) and k ∈ {1, . . . , m},

(3.13)





L0(β(0), y, z, u) ≤ L0(β(0), β(1), β ′(1), β)

for y ≤ β(1), z ≤ β ′(1) and u ∈ PCD such that u ≤ β on [0, 1],

L0(α(0), y, z, u) ≥ L0(α(0), α(1), α ′(1), α)

for y ≥ α(1), z ≥ α ′(1) and u ∈ PCD such that u ≥ α on [0, 1]

(3.14)
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and




L1(x, y, β ′(1), u) ≤ L1(β(0), β(1), β ′(1), β)

for x ≤ β(0), y ≤ β(1) and u ∈ PCD such that u ≤ β on [0, 1],

L1(x, y, α ′(1), u) ≥ L0(α(0), α(1), α ′(1), α)

for x ≥ α(0), y ≥ α(1) and u ∈ PCD such that u ≥ α on [0, 1].

(3.15)

Then problem (1.1)–(1.3) has at least one solution u such that

α(t) ≤ u(t) ≤ β(t) and α ′(t) ≤ u ′(t) ≤ β ′(t) for t ∈ [0, 1].

Proof. By Proposition 3.3 the auxiliary problem (3.5) has a solution ū such that ‖ū‖PC1 ≤ R,
where R = max{r0,κ(r0)} > 0 is given by (3.7) and (3.10). Thus, it remains to show that ū

satisfies the following set of inequalities

α(t) ≤ ū(t) ≤ β(t) for t ∈ [0, 1], (3.16)

α ′(t) ≤ ū ′(t) ≤ β ′(t) for t ∈ [0, 1] (3.17)

and

α(0) ≤ ū(0) + L0(ū(0), ū(1), ū ′(0), ū) ≤ β(0), (3.18)

α ′(1) ≤ ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū) ≤ β ′(1). (3.19)

Indeed, in such a case, in view of (3.2) and (3.3), the relations

f̃ (t, ū(t), ū ′(t)) = f (t, ū(t), ū ′(t)),

δ0
(
0, ū(0) + L0(ū(0), ū(1), ū ′(0), ū)

)
= ū(0) + L0(ū(0), ū(1), ū ′(0), ū),

δ1
(
1, ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū)

)
= ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū),

I0k

(
tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk))

)
= I0k

(
tk, ū(tk)), ū ′(tk))

)

and

I1k

(
tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk))

)
= I1k

(
tk, ū(tk)), ū ′(tk))

)

are true for all t ∈ [0, 1] and k ∈ {1, . . . , m}. Therefore, it follows immediately that then ū is
the desired solution of the given problem (1.1)–(1.3).

• ad (3.17): Suppose that there is a t̄ ∈ [0, 1] such that

ū ′(t̄)− β ′(t̄) = max
t∈[0,1]

(
ū ′(t)− β ′(t)

)
> 0. (3.20)

As, by the definition (3.3) of δ1 and by the last relation in (3.5) we have

ū ′(1) = δ1(1, ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū)) ≤ β ′(1),

it follows that t̄ < 1.

Assume that t̄ ∈ [0, 1)\D. Then either t̄ ∈ [0, t1) or t̄ ∈ (tk−1, tk) for some k ∈ {2, . . . , m+ 1}.
In both cases there is a ∆ > 0 such that t̄ + ∆ < tk and ū ′(s)− β ′(s) > 0 for all s ∈ [t̄, t̄ + ∆].



12 F. Minhós, S. Tvrdý and M. Zima

In particular, δ1(s, ū(s)) = β ′(s) for s ∈ [t̄, t̄ + ∆]. Now, using (3.11) and the first inequality in
(2.2), we will deduce for t ∈ [t̄, t̄ + ∆]

0 ≥
(
ū ′(t)− β ′(t)

)
−

(
ū ′(t̄)− β ′(t̄)

)
=

∫ t

t̄

(
ū ′′(s)− β ′′(s)

)
ds

=
∫ t

t̄

(
− f (s, δ0(s, ū(s)), δ1(s, ū ′(s)))−

δ1(s, ū ′(s))− ū ′(s)

|ū ′(s)− δ1(s, ū ′(s))|+ 1
− β ′′(s)

)
ds

=
∫ t

t̄

(
− f (s, δ0(s, ū(s)), β ′(s))) +

ū ′(s)− β ′(s)

ū ′(s)− β ′(s) + 1
− β ′′(s)

)
ds

>

∫ t

t̄

(
− f (s, δ0(s, ū(s)), β ′(s)))− β ′′(s)

)
ds

≥
∫ t

t̄

(
− f (s, β(s), β ′(s))− β ′′(s)

)
ds ≥ 0,

a contradiction, of course.

It remains to consider the possibility that there exists k ∈ {1, 2, ..., m} such that either (3.20)
with t̄ = tk or

ū ′(tk+)− β ′(tk+) = sup
t∈[0,1]

(
ū ′(t)− β ′(t)

)
> 0

holds. The latter case leads to a contradiction by arguments analogous to those used above.
So, let (3.20) with t̄ = tk for some k ∈ {1, 2, ..., m} be the case. In particular, we have

ū ′(tk+)− β ′(tk+) ≤ ū ′(tk)− β ′(tk), δ1(tk, ū ′(tk)) = β ′(tk)

and ∆ū ′(tk) ≤ ∆β ′(tk), i.e.

0 ≥ ∆ū ′(tk)− ∆β ′(tk) = I1k(tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk)))− ∆β ′(tk)

= I1k(tk, δ0(tk, ū(tk)), β ′(tk))− ∆β ′(tk).

Thanks to (3.13), Definition 2.4 (cf. the third line in (2.2)) and the third line in (3.5) this leads
to a contradiction

0 ≥ I1k(tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk)))− ∆β ′(tk)

≥ I1k(tk, δ0(tk, ū(tk)), β ′(tk))− ∆β ′(tk). ≥ I1k(tk, β(tk), β ′(tk))− ∆β ′(tk) > 0.

This means that ū ′(t) ≤ β ′(t) holds for t ∈ [0, 1].

Similarly, we can prove that also α ′(t) ≤ ū ′(t) holds for t ∈ [0, 1]. This completes the proof
of (3.17).

• ad (3.16): Integrating the inequality α ′(t) ≤ ū ′(t) over [0, t] for t ∈ (0, t1], we get

α(t)− α(0) ≤ ū(t)− ū(0) for t ∈ [0, t1]. (3.21)

Further, as ū(0) = δ0(0, ū(0) + L0(ū(0), ū(1), ū ′(0), ū)) ≥ α(0), it follows that

α(t) ≤ ū(t) + α(0)− ū(0) ≤ ū(t) for t ∈ [0, t1].

Now, let k ∈ {1, . . . , m} be such that

α(t) ≤ ū(t) for t ∈ [0, tk]. (3.22)
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Analogously to (3.21) we derive

α(t)− α(tk+) ≤ ū(t)− ū(tk+) for t ∈ (tk, tk+1]

and, with respect to the second line in (3.5), we get

α(t) ≤ ū(t) + α(tk+)− ū(tk+)

= ū(t) + α(tk+)− I0k(tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk)))− ū(tk)

for t ∈ (tk, tk+1]. Furthermore, having in mind that

α(tk) ≤ δ0(tk, ū(tk)) ≤ β(tk) and α ′(tk) ≤ δ1(tk, ū ′(tk)) ≤ β ′(tk)

due to (3.2) and (3.3), we can use (3.12), the second line in (2.1) and hypothesis (3.22) to deduce
that

α(t) = ū(t) + α(tk+)− I0k(tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk)))− ū(tk)

≤ ū(t) + α(tk+)− I0k(tk, α(tk), α ′(tk))− ū(tk)

≤ ū(t) + α(tk)− ū(tk) ≤ ū(t) for t ∈ (tk, tk+1].

By induction principle, we can conclude that α(t) ≤ ū(t) holds on the whole interval [0, 1].
Similarly we can prove that ū(t) ≤ β(t) on [0, 1]. This completes the proof of (3.16).

• ad (3.18): Suppose that

ū(0) + L0(ū(0), ū(1), ū ′(0), ū) > β(0).

Then by (3.5) and (3.2)

ū(0) = δ0(0, ū(0) + L0(ū(0), ū(1), ū ′(0), ū) = β(0)

and using the monotonicity type condition (3.14) we obtain

0 < ū(0) + L0(ū(0), ū(1), ū ′(0), ū)− β(0)

= L0(β(0), ū(1), ū ′(0), ū) ≤ L0(β(0), β(1), β ′(0), β) ≤ 0,

a contradiction. Hence, it must be

ū(0) + L0(ū(0), ū(1), ū ′(0), ū) ≤ β(0).

Similarly, we would show that

α(0) ≤ ū(0) + L0(ū(0), ū(1), ū ′(0), ū),

is true, as well. Thus, the relations (3.18) are true.

• ad (3.19): Suppose that

ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū) > β ′(1).

Then by (3.5) and (3.3)

ū ′(1) = δ1(1, ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū) = β ′(1).
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Furthermore, the monotonicity type condition (3.15) together with (2.2) yield the following
contradiction:

0 < ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū)− β ′(1)

= L1(ū(0), ū(1), β ′(1), ū) ≤ L1(β(0), β(1), β ′(1), β) ≤ 0.

Consequently, it has to be

ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū) ≤ β ′(1).

Similarly it can be shown that

α ′(1) ≤ ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū).

This completes the proof of (3.19).

To summarize, all the relations (3.16)–(3.19) are true and hence the fixed point ū of T is
a solution of the given problem (1.1)–(1.3).

4 Example

To illustrate the range of applications of our main result, let us consider problem (1.1)–(1.3),
with m = 1, D = {t1} = { 1

2},

f (t, x, y) =

{
0.001 [(t − 2) y3 + x] if 0 ≤ t ≤ 1

2 ,

0.001 [(t − 6) y3 + x] if 1
2 < t ≤ 1,

I01(
1
2 , x, y) = 0.1

[
3
2 +

1
3 x + y3

]
, I11(

1
2 , x, y) = 0.1

[
1
2 −

1
4 x + y3

]
,

L0(x, y, z, u) =− x+ 1
6

(
z+ sup

t∈[0,1]
u(t)

)
, L0(x, y, z, u) =− 2y−z+

∫ 1

0
u(t)dt.

It is easy to verify that (A), (B) are satisfied. Furthermore, the functions

α(t) = −(t + 1) for t ∈ [0, 1] and β(t) =

{
t + 1 if 0 ≤ t ≤ 1

2 ,

t + 4 if 1
2 < t ≤ 1

are lower and upper solutions of the given problem and conditions (3.1), (3.11), (3.12), (3.13),
(3.14) and (3.15) hold. Therefore, our Theorem 3.4 ensures the existence of its solution
u∗ ∈ PC1

D such that
α(t) ≤ u∗(t) ≤ β(t) and − 1 ≤ u ′

∗(t) ≤ 1.
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[7] D. Fraňková, Regulated functions, Math. Bohem. 116(1991), No. 1, 20–59. https://doi.
org/10.21136/MB.1991.126195; MR1100424; Zbl 0724.26009

[8] J. Graef, L. Kong, F. Minhós, J. Fialho, On the lower and upper solutions method
for higher order functional boundary value problems, Appl. Anal. Discrete Math. 5(2011),
No. 1, 133–146. https://doi.org/10.2298/AADM110221010G; MR2809041; Zbl 1289.34054

[9] D. Guo, Extremal solutions for nth-order impulsive integro-differential equations on the
half-line in Banach spaces, Nonlinear Anal. 65(2006), No. 3, 677–696. https://doi.org/
10.1016/j.na.2005.09.032; MR2231082; Zbl 1098.45013

[10] Ch. S. Hönig, Volterra Stieltjes-integral equations, North-Holland Mathematics Studies,
Vol. 16, Notas de Mathematica, Vol. 56, Amsterdam-Oxford: North-Holland Publish-
ing Company; New York: American Elsevier Publishing Company, 1975. MR0499969;
Zbl 0307.45002

[11] G. Infante, P. Pietramala, M. Zima, Positive solutions for a class of nonlocal impul-
sive BVPs via fixed point index, Topol. Methods Nonlinear Anal. 36(2010), No. 2, 263–284.
MR2788973; Zbl 1237.34032

[12] L. Jiao, X. Zhang, A class of second-order nonlocal indefinite impulsive differential
systems, Bound. Value Probl. 2018, Paper No. 163, 34 pp. https://doi.org/10.1186/

s13661-018-1082-z; MR3869573



16 F. Minhós, S. Tvrdý and M. Zima

[13] V. Lakshmikantham, D. Bainov, P. Simeonov, Theory of impulsive differential equa-

tions, World Scientific, Singapore, 1989. https://doi.org/10.1142/0906; MR1082551;
Zbl 0719.34002

[14] X. Liu, D. Guo, Method of upper and lower solutions for second-order impulsive integro-
differential equations in a Banach space, Comput. Math. Appl. 38(1999), No. 3–4, 213–223.
https://doi.org/10.1016/S0898-1221(99)00196-0; MR1703418; Zbl 0939.45004

[15] Y. Liu, Existence of solutions of boundary value problems for coupled singular differen-
tial equations on whole lines with impulses, Mediterr. J. Math. 12(2015), No. 3, 697–716.
https://doi.org/10.1007/s00009-014-0422-1; Zbl 1328.34025

[16] Y. Liu, D. O’Regan, Multiplicity results using bifurcation techniques for a class of
boundary value problems of impulsive differential equations, Commun. Nonlinear Sci. Nu-

mer. Simul. 16(2011), No. 4, 1769–1775. https://doi.org/10.1016/j.cnsns.2010.09.001;
MR2736044; Zbl 1221.34072

[17] R. Ma, B. Yang, Z. Wang, Positive periodic solutions of first-order delay differential
equations with impulses, Appl. Math. Comput. 219(2013), No. 11, 6074–6083. https://
doi.org/10.1016/j.amc.2012.12.020; MR3018451; Zbl 1282.34073

[18] F. Minhós, Impulsive problems on the half-line with infinite impulse moments,
Lith. Math. J. 57(2017), No. 1, 69–79. https://doi.org/10.1007/s10986-017-9344-5;
MR3621873; Zbl 1368.34041

[19] F. Minhós, R. Carapinha, Half-linear impulsive problems for classical and singular
ϕ-Laplacian with generalized impulsive conditions, J. Fixed Point Theory Appl.

20(2018), No. 3, Paper No. 117, 13 pp. https://doi.org/10.1007/s11784-018-0598-2;
MR3818378; Zbl 1404.34031

[20] F. Minhós, R. de Sousa, Localization results for impulsive second order coupled sys-
tems on the half-line and application to logging timber by helicopter, Acta Appl. Math.

159(2019), No. 1, 119–137. https://doi.org/10.1007/s10440-018-0187-9; MR3904486;
Zbl 1418.34064

[21] G. A. Monteiro, A. Slavík, M. Tvrdý, Kurzweil–Stieltjes integral theory and applications,
World Scientific, Series in Real Analysis, Vol. 15, 2019. https://doi.org/10.1142/9432;
MR3839599; Zbl 1437.28001

[22] J. Nieto, D. O’Regan, Variational approach to impulsive differential equations, Nonlinear

Anal. Real World Appl. 10(2009), No. 2, 680–690. https://doi.org/10.1016/j.nonrwa.
2007.10.022; MR2474254; Zbl 1167.34318
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