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Csaba HŐS, Department of Hydraulic Machines, Bu-
dapest University of Technology and Economics,
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Abstract. In this paper, the effect of temperature on relaxation of creep strain in bio-
materials is modeled and analyzed with homotopy perturbation and differential transform
methods. Polymeric biomaterials used as implants undergo both geometric and material
nonlinear deformation when subjected to different loading conditions. The present study
is concerned with the effects of temperature on the geometric nonlinear deformation of the
relaxation of creep strain in these materials. Polymeric biomaterials exhibit time dependent
response as observed in viscoelastic materials and this is represented by a one-dimensional
rheological material model with constant material parameters. This model is then extended
to capture the effects of temperature and the resulting final governing model is a nonlin-
ear differential equation which cannot be easily solved by the standard analytic techniques.
Here, two efficient special nonlinear analytic techniques, the homotopy perturbation and
differential transform methods, are applied to obtain the solution of the developed nonlinear
differential equation. The obtained analytical solutions are validated with the fourth-order
Runge-Kutta numerical method. An error analysis shows that good agreement exists be-
tween the solutions obtained with these methods. The effects of some parameters on the
model were investigated. As observed from the study, it can be shown that an increase in
thermal conductivity and viscosity resulted in an increase in resistance to deformation of
the material, while an increase in the material stiffness resulted in an increase in the rate of
deformation and relaxation.

Mathematical Subject Classification: 80A20, 80M25
Keywords: Creep, relaxation, temperature, alginate hydrogel biomaterials, homotopy per-
turbation method, differential transform method

1. Introduction

Polymers have a wide range of applications such as: automobile, aviation, electronics,
and packaging industries. But in the past few decades, polymers have been extended
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to biomedical applications. The polymers used for biomedical applications as a re-
sult of their biocompatibility, controllable biodegradation rate and their biofunctional
properties, include natural polymers, which are polysaccharides (i.e. starch, glyco-
gen) and synthetic polymers, which are: poly(glycolic acid) (PGA) and poly(hydroxyl
butyrate) (PHB) [1]. Several devices and implants have been studied and observed
throughout the medical field, and they have been developed for various applications
in the human body (Figure 1). These ranges from artificial support, such as synthetic
blood vessel, hip replacement and knee/joint implants, to applications that alleviate
the human organ functions, e.g. pacemaker. These applications also tend to vary
according to their positions and placement within the body. The areas of application
of these devices include regions with high chemical, electrical and mechanical activity,
such as when they are used in regions of high mechanical stress for the replacement of
bone. Biomaterials tend to undergo deformation over time especially when tempera-
ture around the material increases beyond the normal temperature, hence there is a
need to investigate the effects of this increase in temperature on relaxation of creep
strain in order to avoid failure of these materials before replacement.

  

 

Figure 1. Biomaterial applications: Lumbar artificial disc replace-
ment, Hip liner replacement

Nonlinear behaviors have been observed in the deformation of the biomaterials as
shown in the stress-strain curve of an alginate hydrogels [2] which are extremely de-
pendent on the strain rate. This is also noticed in tensile tests of ligaments and
tendons [3, 4]. Notable successes have been obtained in the use of nonlinear models
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for the behavior of biomaterials [5, 6]. It has also been observed that most polymeric
biomaterials exhibit viscous tendencies and these behaviors are nonlinear in nature
[5]. There are different requirements for the device and implant which are important
for the continued existence of the implants and the comfort of the user, which are
chemical, electrical, thermal and mechanical characteristics of the substrate for im-
plants and packaging for devices [7]. Stress relaxation tests have often been used as a
convenient technique for determining the rheological behaviors of several viscoelastic
materials. As a result of differences in material characteristics, several linear and
nonlinear viscoelastic models exist which represent the relationship between the time
and the stress modulus [8–10].

In the present study, a nonlinear viscoelastic model has been developed by using the
stress decomposition theory to analyze the effects of temperature in the relaxation
of creep strain in biomaterials. The model is represented by a nonlinear differen-
tial equation whose solutions cannot be easily obtained with the standard analytical
techniques. There are special analytical techniques for solving nonlinear differential
equations. Two among them have been used to obtain the solution of the devel-
oped nonlinear differential equation; the homotopy perturbation and the differential
transform methods. The homotopy perturbation method (HPM) was first proposed
by Ji-Huan He [11] for solving integral and differential equations for both linear and
nonlinear models. It is a powerful analytical method which does not require any ap-
proximation. A number of studies have been carried out to establish the strength
of HPM by comparing the results obtained to other methods such as Adomian De-
composition Method (ADM)[12]. Remarkably, these studies have concluded that the
method is more accurate and effective than ADM. Other studies carried out with the
homotopy perturbation method (HPM) include its use for the analysis of heat transfer
in longitudinal fins [13], the use of HPM and collocation method (CM) for analysis
of thermal performances of porous fin with temperature-dependent heat generation
[14] and heat transfer analysis of non-Newtonian natural convective fluid flow using
homotopy perturbation and Daftardar-Gejiji and Jafari methods [15].

Another efficient method for determining exact solution in nonlinear phenomena
is the differential transform method (DTM). The differential transform method is an
approximate analytical method for solving linear and nonlinear differential equations.
The differential transformation method (DTM) was developed by Zhou in 1986 [16,
17]. It is also used in providing solutions to both linear and nonlinear partial differ-
ential equations [18]. It has a lower computational intensity than other approximate
methods and the accuracy is higher than those methods [19, 20]. The distinguishing
features of DTM have been emphasized in quite a number of studies [21]. Comparisons
have been made between the results of DTM and results obtained with other meth-
ods such as adomian decomposition method (ADM) [22] and finite element method
(FEM) [19]. In order to achieve better results, the efficiency of DTM has been com-
bined with other methods [20]. These methods include the Laplace transform, which
was used to overcome the deficiency that emanated from unsatisfied conditions [23].
DTM was used to solve the problems of phagocyte transmigration for foreign body



8 O. Adeleye, O. Abdulkareem, A. Yinusa and G. Sobamowo

responses to subcutaneous biomaterial implantations [24] and creep strain relaxations
in biomaterials [25].

Hence, the aim of this study is to investigate the problem of temperature effects on
relaxation of creep strain in polymeric biomaterials. This problem, which is governed
by a developed nonlinear differential equation, is solved using two efficient methods;
the homotopy perturbation method and differential transform method. The fourth-
order Runge-Kutta numerical method is then applied to validate the obtained solution
from the two methods. The effects of thermal conductivity, viscosity and material
stiffness on the deformation of these biomaterials are then considered.

2. Problem description

A nonlinear material model has been adopted due to the viscous nature of the poly-
meric biomaterials. This non-linear material has elastic, inertial nonlinearities and
viscous parameters as presented by Monsia [5]. A logarithm spring force law is used in
this model which describes the unloading response of a viscoelastic material perfectly
when subjected to constant loading.

ϕ(ε) = ln

(
ε0 −

ε(t)

ε0

)
(1)

ε0 6= 0 is a material constant. As expressed by Monsia [5] the function exists if and

only if ε0 >
√
ε(t). The function ϕ(ε) has a vertical asymptote at ε(t) = ε20, which

implies ϕ(ε) is not defined for ε > ε20. Therefore the nonlinear ordinary differential
equation from Bauer’s theory [26], by superposing inertial stresses, pure elastic, and
viscosity, for a nonlinear spring force function ϕ(ε) can be rewritten in the form

aϕ(ε)

c
+
bε̇ϕ′(ε)

c
+ ε̇2ϕ′′(ε) + ε̈ϕ′(ε) =

σt
c

ε(0) = εi ε̇(0) = 0
(2)

where a and b are the viscosity and stiffness time independent coefficients respectively,
c is the time independent inertia module, ε(t) denotes the time dependent strain, εi
is the initial strain, and σt denotes the total exciting stress acting on the material.
The relationship between the deformation temperature parameter, the flow stress (i.e.
exciting stress) and strain rate can be represented by hyperbolic sine Arrhenius type
equation [27].

|ε̇| = AF (|σ|) exp[−Q/RT ] (3)

where F (σ) is a parameter function of stress, A is a material constant, ε̇ is the strain
rate, Q is the activation energy, R is the universal gas constant, and T is the absolute
temperature. The effects of the temperature and strain rate on the deformation can
be denoted by the Zener-Hollomon parameter Z [28]:

Z = |ε̇| exp[−Q/RT ] (4)

Using equation (4), and substituting the exponential law into equation (3), the strain
rate is obtained as

|ε̇| = A|σ|nexp[−Q/RT ] (5)

where n is a material constant.
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3. Solution for temperature effects on strain-rate

Utilizing equation (1) and (5) equation (2) can be rewritten as

a ln (ε0 − ε/ε0)

b
− bε̇

cε0 (ε0 − ε/ε0)
− ε̈

ε0 (ε0 − ε/ε0)
− ε̇2

ε20 (ε0 − ε/ε0)
=

=
ε̇

Ac
exp[Q/RT ] . (6)

The exponential function expQ/RT in equation (5) can be expanded as

eQ/RT ' 1 +
Q

RT
+

(Q/RT )2

2!
. . . (7)

Substituting equation (7) into (6) the evolution equation of deformation becomes

c(ε20 − ε)ε̈+ b(ε20 − ε)ε̇+ cε̇2

c(ε20 − ε)2
− ε̇

Ac
− ε̇Q

AcRT
− a ln (ε0 − ε/ε0)

c
= 0

ε(0) = εi ε̇(0) = 0

(8)

Equation (8) is the nonlinear evolution equation of deformation for material under
the effects of temperature.

4. Determining the time-deformation equation

In order to resolve (8), a change of variables is considered. By utilizing the transfor-
mation

ε0e
x = ε20 − ε, x = ln

(
ε20 − ε
ε0

)
(9)

for ε̇ and ε̈ we have ε̇ = −ẋε0ex and ε̈ = −ẍε0ex − ẋ2ε0ex. After substituting them
into (8) the nonlinear evolution equation of deformation has the form

e−2x(bε0e
x(−ẋε0ex) + c(−ẋε0ex)

2
+ cε0e

x(−ẍε0ex − ẋ2ε0ex))

c(ε20 − ε)2
−

− ax

c
+
ẋε0e

x

Ac
+
ẋε0e

xQ

AcRT
= 0 (10)

which can be simplified further to

−bẋ
c

+ ẋ2 − ẍ− ẋ2 − ax

c
+
ẋε0e

x

Ac
(1 +

Q

RT
) = 0 . (11)

Introducing the notations b/c = α, a/c = β and 1/(Ac) = γ equation (11) becomes

ẍ+ αẋ+ βx− γẋε0ex(1 +
Q

RT
) = 0 . (12)

Here α is the viscosity coefficient, β is the stiffness coefficient and γ is the thermal
coefficients, respectively.

Substituting the first four terms of the series ex ' 1 + x+ x2

2! + x3

3! + . . . into (12)
yields

ẍ+ αẋ+ βx− γẋε0(1 + x+
x2

3
+
x3

6
)(1 +

Q

RT
) = 0 . (13)
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Equation (13) can also be expanded and expressed as

ẍ+ αẋ+ βx− γẋε0 −
Qγẋε0
RT

− xγẋε0 −
Qxγẋε0
RT

− 1

3
x2γẋε0−

− Qx2γẋε0
3RT

− 1

6
x3γẋε0 −

Qx3γẋε0
6RT

= 0 . (14)

5. Method of solution 1

5.1. Homotopy perturbation method. Equation (13) is a nonlinear differential
equation which is can be solved using HPM. To apply HPM consider the equation

L(u) +N(u) = f(r) r ∈ Ω (15)

associated with the boundary conditions

B

(
u,
∂u

∂n

)
= 0, r ∈ Γ . (16)

Here u(r) is the unknown, L(u) and N(u) are linear and nonlinear operators respec-
tively, f(r) is a known analytical function. Γ is the boundary of the domain Ω with
outward normal n.

The homotopy perturbation method proposed by Ji-Huan-He [11] can be expressed
as

H(u, p) = (1− p)[L(u)− L(u0)] + p[L(u) +N(u)− f(r)] = 0 (17)

where p is an embedding parameter and uo is an initial approximation of u. The
solution is sought in the form

u = u0 + pu1 + p2u2 + p3u3 + p4u4 + p5u5 . . . (18)

In our case t corresponds to r, x to u and the left side of (13) corresponds to L(u) +
N(u) while f(t) = 0. Hence

H(x, p) = (1− p)
(
d2x

dt2
− d2x0

dt2

)
+

+ p

(
d2x

dt2
+ α

dx

dt
+ βx− γε0

dx

dt
(1 + x+

x2

3
+
x3

6
)(1 +

Q

RT
)

)
= 0 (19)

where

x ' x0 + px1 + p2x2 + p3x3 + p4x4 + p5x5 =

6∑
`=0

p`x` . (20)

Consequently

H(x, p) = (1− p) d
2

dt2

6∑
`=0

p`x` + p

{
d2

dt2

6∑
`=0

p`x` + α
d

dt

6∑
`=0

p`x` + β

6∑
`=0

p`x`−

−γε0

(
d

dt

6∑
`=0

p`x`

)1 +

6∑
`=0

p`x` +
1

3

(
6∑

`=0

p`x`

)2

+
1

6

(
6∑

`=0

p`x`

)3
 (1 +

Q

RT
)

 =

= 0 . (21)
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By making the coefficients of p` (` = 0, 1, . . . , 5) equal to zero we can obtain the
solutions for x`. Expanding and resolving equation (21) the coefficients of p` are as
follows:

p0;
d2x0
dt2

= 0, (22)

p1; βx0 + α
dx0
dt
− (1 +

Q

RT
)γε0

[
dx0
dt

+ x0
dx0
dt

+
1

2
x20x1

dx0
dt

+
1

6
x30
dx0
dt

]
+

+
d2x0
dt2

+
d2x1
dt2

= 0, (23)

p2; βx1 + α
dx1
dt

+
d2x2
dt2

− (1 +
Q

RT
)γε0

(
x1
dx0
dt

+ x0x1
dx0
dt

+
1

2
x20x1

dx0
dt

+

dx1
dt

+ x0
dx1
dt

+
1

2
x20
dx1
dt

+
1

6
x30
dx1
dt

)
= 0, (24)

p3; βx2+α
dx2
dt

+
d2x3
dt2

+α
dx3
dt
−(1+

Q

RT
)γε0

(
1

2
x21
dx0
dt

+
1

2
x0x

2
1

dx0
dt

+ x2
dx0
dt

+

+ x0x2
dx0
dt

+
1

2
x20x2

dx0
dt

+ x1
dx1
dt

+ x0x1
dx1
dt

+
1

2
x20x1

dx1
dt

+

+
dx2
dt

+ x0
dx2
dt

+
1

2
x20
dx2
dt

+
1

6
x30
dx2
dt

)
= 0, (25)

p4; βx3 +
d2x4
dt2

− (1 +
Q

RT
)γε0

(
1

6
x31
dx0
dt

+ x1x2
dx0
dt

+ x0x1x2
dx0
dt

+

+ x3
dx0
dt

+ x0x3
dx0
dt

+
1

2
x20x3

dx0
dt

+
1

2
x21
dx1
dt

+
1

2
x0x

2
1

dx1
dt

+

+ x2
dx1
dt

+ x0x2
dx1
dt

+
1

2
x20x2

dx1
dt

+ x1
dx2
dt

+ x0x1
dx2
dt

+

+
1

2
x20x1

dx2
dt

+
dx3
dt

+ x0
dx3
dt

+
1

2
x20
d2x3
dt2

+
1

6
x30
dx3
dt

)
= 0. (26)

The boundary conditions associated with the solution are as follows:

x0(0) = x1(0) = . . . = x4(0) = 0. (27)

Making use of equations (22)-(26) and the initial conditions (27) the following solu-
tions are obtained for x` (` = 1, . . . , 4):

x0 = lg

(
ε0 −

εi
ε0

)
, (28)

x1 = −t2βx0/2, (29)

x2 =
1

72RT
t3βx0

[
3RT (4α+ tβ)− 2γε0(Q+RT )

(
6 + 6x0 + 3x20 + x30

)]
, (30)

x3 =
1

4320R2T 2
t4βx0×
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6R2t2T 2β2 + 5

[
−6RTα+ (Q+RT )γ

(
6 + 6x0 + 3x0

2 + x0
3
)
ε0
]2

+

+ 6RtTβ
[
12RTα− (Q+RT )γ

(
12 + 30x0 + 24x0

2 + 11x0
3
)
ε0
]}
, (31)

x4 =
t5βx0
362880

{
9R3t3T 3β3 + 14

(
6RTα− (Q+RT )γε0

(
6 + 6x0 + 3x20 + x30

))3
+

+ 36R2t2T 2β2
[
6RTα− (Q+RT )γε0

(
6 + 42x0 + 69x20 + 49x30

)]
+

+ 42RtTβ
[
36R2T 2α2 − 6RT (Q+RT )αγε0

(
12 + 38x0 + 32x20 + 15x30

)
+

+ (Q+RT )2γ2ε20
(
36 + 228x0 + 384x20 + 360x30 + 203x40 + 71x50 + 14x60

)]}
(32)

With x0, x1, x3, x4 and x5 – x5 is not presented here – the solution for x is

x(t) '
5∑

`=0

x`(t) (33)

It follows on the basis of the strain equation (8) that

ε(t) ' ε20 − ε0ex . (34)

If ε0 = 1 we have

ε(t) ' 1− ex (35)

or

ε(t) ' 1− e
∑5

`=0 x`(t) . (36)

6. Method of solution 2

6.1. Differential transforms method. The second method applied to solving the
nonlinear differential equation (13) is called DTM. The fundamental definitions and
the operational characteristics of the method developed by Zhou in 1986 [16, 17] are
given below.

Let u(t) be an analytic function differentiable continuously in the domain T . Then
u(t) is differentiable continuously with respect to time t:

dpu(t)

dtp
= ϕ(t, p) ∀ t ∈ T (37)

For t = ti it holds that ϕ(t, k) = ϕ(ti, k), where k is a non-negative integer. Equation
(37) can, therefore, be rewritten as

U(k) = ϕ(ti, k) =
dku(t)

dtk

∣∣∣∣
t=ti

(38)

where U(k) is called the spectrum of u(t) at t = ti. Using Taylor series u(t) can be
expressed as

u(t) =

∞∑
k=0

(t− ti)k

k!
U(k) (39)
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Equation (39) is called the inverse of U(k). The differential transform of u(t) is defined
by the equation

U(k) =
Hk

k!

dku(t)

dtk

∣∣∣∣
t=0

k = 0, 1, 2, . . . (40a)

in which U(k) represents the transformed function and u(t) is the original function.
The function U(k) is confined in the interval t ∈ [0, H] where H is a given constant
number. The differential inverse transformation of U(k) is defined as

u(t) =

∞∑
k=0

(
t

H

)k

U(k). (40b)

6.2. The operational properties of the differential transformation method.
Let u(t) and v(t) be the functions of t. The transformed functions are denoted by
U(k) and V (k). It can be shown by using the fundamental mathematical operations
of DTM that for instance

i. If z(t) =
du(t)

dt
then Z(k) = (k − 1) U(k + 1);

ii. If z(t) = u(t)v(t) then Z(t) =
k∑

r=0
U(r)V (k − r) r = 0, 1, 2, . . . ;

iii. If z(t) = um(t) then Z(t) =
k∑

r=0
Um−1(r)U(k− r) m = 1, 2, 3, . . . .

6.3. DTM Solution Procedures. Hence, the differential transformation of equa-
tions (8) and (13) yields the following recursive equation:

xk+2 = − 1

(k + 1) (k + 2)

{
α (k + 1)xk+1 + βxk −

. . .

− yεo
(

1 +
Q

RT

)[
(k + 1)xk+1 +

k∑
l=0

(l + 1)xl+1xk−l+

+
1

3

k∑
p=0

(
p∑

l=0

(l + 1)xl+1xp−lxk−p

)
+

+
1

6

k∑
m=0

(
m∑

p=0

(
p∑

l=0

(l + 1)xl+1xp−lxm−pxk−m

))]}
(41)

The initial conditions are of the form:

x0 = ln

(
ε2o − ε
εo

)
x1 = 0.

Assuming that k = 2, 3, 4, 5 we have solved equation (41) for x2, x3, x4 and x5 – here
the results are presented for x2, x3 and x4 only:

x2 = −βx0/2, (42)

x3 =
1

6
αβx0 +

1

6
yεoβ

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

d6
x40

)
, (43)
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x4 = −1

4
α

[
1

6
αβx0 +

1

6
yεoβ

(
1− Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

)]
+

+
1

24
β2x0 +

1

12
yεo

(
1 +

Q

RT

)
− 1

2
yεoβ

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

)
+

+ 3

(
1

6
αβx0 −

1

6
yεoβx0

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

))
+

+

(
1

6
αβx0 −

1

6
yεoβx

2
0

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

))
+

+
1

2

(
1

6
αβx0 −

1

6
yεoβx

3
0

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

))
(44)

With x` the solution is of the form

x (t) '
5∑

`=0

x`t
` (45)

while the strain function is given by

ε (t) = ε2o − εoex(t) (46)

from where by substituting (45) we have

ε (t) ' ε2o − εoe
5∑̀
=0

x`t
`

. (47)

7. Results and discussion

The results obtained by applying the homotopy perturbation and differential trans-
form methods to the analysis of the problem of temperature effects on relaxation of
creep strain in polymeric biomaterials are presented in Table 1. In order to validate
these results, the fourth order Runge-Kutta numerical method is applied to solve the
same problem. The results are compared and shown in Table 1. This comparison
is also shown in Figures 2a and b. For Figure 2a, the HPM solution is obtained by
using four iterative terms (n = 4) while for Figure 2b the number of iterative terms
is increased to twelve (n = 12). This shows that the higher the number of terms in
the HPM model solution, the more accurate the solution will be. An error analysis
shows that minimal error exists in the solutions obtained with the methods DTM and
HPM.

The general description of how the material responds with an initial strain of 0.9
is also shown in Figure 2. The biomaterial does not exhibit an instant response
to loading, but rather undergoes relaxation before it begins to respond to loading.
In addition, as the temperature increases, the relaxation time increases, and the
deformation increases proportionally at different temperatures.
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Table 1. Comparison of HPM, DTM and numerical method results

Results obtained by the use of homotopy perturbation method if
εi =0.9, ε0 =1, α=2, β=0.5, γ=0.9, Q=5000J/mol, R=8.314J/molK, T =300K

HPM1 HPM2 DTM Numerical Error Error
Time (n = 4) (n = 12) Solution Solution Difference Difference
t Solution Solution (RK4) DTM-RK4 HPM2-RK4

Strain ε(t)

0.00 0.9000000 0.9000000 0.9000000 0.9000000 0.00000000 0.00000000

0.10 0.8995268 0.8995267 0.8995267 0.8995267 0.00000000 0.00000000

0.20 0.8984212 0.8984150 0.8984150 0.8984150 0.00000000 0.00000000

0.30 0.8970945 0.8970225 0.8970225 0.8970225 0.00000000 0.00000000

0.40 0.8961919 0.8957820 0.8957820 0.8957820 0.00000000 0.00000000

0.50 0.8970340 0.8954685 0.8954685 0.8954685 0.00000000 0.00000000

0.60 0.9019594 0.8974244 0.8974244 0.8974244 0.00000000 0.00000000

0.70 0.9139977 0.9035709 0.9035709 0.9035709 0.00000000 0.00000000

0.80 0.9348554 0.9158586 0.9158586 0.9158586 0.00000000 0.00000000

0.90 0.9612801 0.9348325 0.9348325 0.9348325 0.00000000 0.00000000

1.00 0.9842194 0.9578233 0.9578233 0.9578233 0.00000000 0.00000000

1.10 0.9963269 0.9789104 0.9789104 0.9789104 0.00000000 0.00000000

1.20 0.9996162 0.9926209 0.9926209 0.9926209 0.00000000 0.00000000

1.30 0.9999868 0.9984012 0.9984012 0.9984012 0.00000000 0.00000000

1.40 0.9999999 0.9998149 0.9998149 0.9998149 0.00000000 0.00000000

1.50 1.0000000 0.9999904 0.9999904 0.9999904 0.00000000 0.00000000

1.60 1.0000000 0.9999998 0.9999998 0.9999998 0.00000000 0.00000000

1.70 1.0000000 1.0000000 1.0000000 1.0000000 0.00000000 0.00000000

1.80 1.0000000 1.0000000 1.0000000 1.0000000 0.00000000 0.00000000

1.90 1.0000000 1.0000000 1.0000000 1.0000000 0.00000000 0.00000000

2.00 1.0000000 1.0000000 1.0000000 1.0000000 0.00000000 0.00000000

Thermal coefficient at varying temperatures. The response of the biomaterial to vary-
ing thermal coefficients is shown in Figure 2. It is observed that an increase in the
thermal coefficient resulted in a decrease in the deformation and an increase in the
rate of relaxation in the material. It is also observed that the material shows a high
resistance to deformation at high thermal coefficient.

The effect of four thermal conductivity coefficients γ at different temperatures of
the material model is shown in Figure 4. The differences among the responses at
these different temperatures are minimal. Material exhibits longer relaxation before
it begins to deform at lower thermal conductivity coefficients than at higher thermal
conductivity coefficients. There is sharp increase in deformation at higher thermal
conductivity coefficients.
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(a)

 

(b)

Figure 2. Comparison of the numerical results obtained by using
the three methods; DTM, HPM and the fourth order Runge-Kutta
method (εi = 0.9, ε0 = 1, α = 2, β = 0.5, γ = 0.9, Q = 5000J/mol,
R=8.314J/mol K, T =300K); (a) n = 4, (b) n = 12
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(a)

 

(b)

 

(c)

 

(d)

Figure 3. Variation of thermal coefficients at different temperatures
(εi =0.9, ε0 =1, Q=50000J/mol, R=8.314J/mol K, α=0.5, β=0.5,
(a) T =300K, (b) T =305K, (c) T =310K, (d) T =315K)
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(a)

 

(b)

 

(c)

 

(d)

Figure 4. Temperature variation with thermal conductivity (εi =0.9,
ε0 =1, Q=50000J/mol, R=8.314J/mol K, α=2, β=0.5, (a) γ=0.5,
(b) γ=2, (c) γ=4, (d) γ=6)
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(a)

 

(b)

 

(c)

 

(d)

Figure 5. The effects of the viscosity coefficient on the developed
model (εi = 0.9, ε0 = 1, Q= 50000J/mol, R= 8.314J/mol K, α= 2,
β = 0.5, γ = 0.5, (a) T = 300K, (b) T = 305K, (c) T = 310K, (d)
T =315K)
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(a)

 

(b)

 

(c)

 

(d)

Figure 6. The effects of the stiffness coefficient on the developed
model (εi = 0.9, ε0 = 1, Q= 50000J/mol, R= 8.314J/molK, α= 2,
β = 0.5, γ = 0.5, (a) T = 300K, (b) T = 305K, (c) T = 310K, (d)
T =315K)



Analytical investigations of temperature effects on creep strain relaxation 21

Viscosity coefficient at varying temperatures. Figure 5 show the response of a
material at a varying viscosity coefficient α of 0.5, 2, 4 and 6. As the viscosity
coefficient increases, the difference in the deformation path between the high and low
temperature decreases. It is also observed that at a relatively low viscosity, material
tends to deform more compared to when it is high, i.e. there is an increase in resistance
to deformation as the viscosity coefficient increases. Similarly, at low viscosity, the
relaxation period takes a longer time before the material begins to deform.

Stiffness coefficient at varying temperatures. The response of the material to dif-
ferent stiffness coefficients β is shown in Figure 6. It is observed that the higher the
stiffness coefficient, the shorter time the material takes to deform. The relaxation
time was shorter for a material with higher stiffness and lower temperature, while
materials with lower stiffness as shown in Figure 6a tend to show higher resistance to
deformation than those with a lower stiffness coefficient.

8. Conclusion

In this study, the analytical solution of the effects of temperature on relaxation of
creep strain in polymeric biomaterials governed by a developed nonlinear differential
equation has been presented. The developed model was solved using two efficient
methods; the homotopy perturbation method and differential transform method. The
obtained results were validated with the fourth-order Runge-Kutta numerical method
and the error analysis showed good agreement among the results. The effects of
thermal conductivity, viscosity and material stiffness on the deformation of these
biomaterials were investigated. As the thermal conductivity and viscosity of the
material increase, its resistance to deformation increases, while an increase in the
material stiffness resulted in an increase in the rate of deformation and relaxation.
The analytical solution developed in this work provides a better understanding of the
relationship between the physical quantities of the problem investigated. The results
obtained in this theoretical investigation will assist in the analysis of the temperature
effects on relaxation of creep strain in biomaterials and in the handling of various
parameters in the developed model.
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Abstract. A Rayleigh-Bishop type theory of the longitudinal vibrations is developed for
anisotropic bars. The equation of motion and the associated boundary conditions are derived
by the use of Hamilton’s principle. For an orthotropic bar the dependence of the eigenfre-
quencies from the position of the material coordinate system is analyzed. The numerical
results obtained by the application of approximate analytical solution for the eigenfrequen-
cies are compared with a FEM solution.
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1. Introduction

Modeling of vibration problems of elastic structural components is of great impor-
tance in engineering. The longitudinal vibration of thin isotropic elastic bar has been
studied by many researchers over a long time owing to its wide applications in engi-
neering [1–6]. The classical approximate theory of longitudinal vibration of isotropic
bar was developed during the 18th century by J. D’Alambert, D. Bernoulli, L. Euler
and J. Lagrange. This theory, which is called the simple theory of longitudinal vibra-
tion, is based on the analysis of the one-dimensional wave equation and is applicable
for long and relatively thin bars vibrating at low frequency. The lateral effects and
the corresponding lateral and axial shear modes are fully neglected in the frame of
this simple theory of longitudinal vibration [1, 6]. J. Rayleigh [2] was the first who
introduced the inertia of the lateral motions by which the cross sections are extended
or contracted in their own planes. The lateral inertia effects are, however, important if
the bar is thick. R. Bishop [7] further modified the Rayleigh theory in 1952 by taking
into account the lateral shear effects. This theory is referred to as the Rayleigh-Bishop
theory. From the point of view of the engineering applications this theory is slightly
more complicated than the Rayleigh theory. The simple theory, the Rayleigh theory
and Rayleigh-Bishop theory of longitudinal vibrations of isotropic bars are based on
a fundamental assumption which says that the dynamics of the bar is described by
a single unknown function and hence, a single partial differential equation contain-
ing the axial and time coordinates describes the longitudinal vibrations of isotropic

c©2019 Miskolc University Press
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elastic bars. Another important assumption of the above mentioned three theories is
that the axial displacements do not depend on the cross-sectional coordinates, they
depend only on the axial and time coordinates. The stress boundary conditions on
the cylindrical boundary surface of the bar are fully ignored in these theories.

In a paper by Shatalov et al. [8] the simple theory, the Rayleigh, Rayleigh-Bishop,
Herrmann and multimode models of the longitudinal vibrations of isotropic bars are
compared with the exact Pochhammer-Chree solutions of the axisymmetric vibration
of an isotropic cylinder. Application of two kinds of eigenfunction orthogonality in
the Rayleigh and Rayleigh-Bishop theories of longitudinal vibrations of thick isotropic
elastic bars is presented by Fedotov et al. [9], which deals with the analytical solution
of vibration problem based on Green’s function. A paper by Shatalov et al. [10]
presents the multimode theories of the longitudinal vibration of isotropic elastic bars.
The multimode models formulated in [10] can be considered as generalizations of the
classical Rayleigh and Rayleigh-Bishop theories.

In this paper an approximate theory of the longitudinal vibration of anisotropic
bars is presented. Equations of motion and boundary conditions are derived from
Hamilton’s principle [6, 11]. In the derived model the inertia of the lateral motions by
which the cross-sections are extended or contracted in their own planes is considered.
The contribution of more than one stiffness coefficients (elastic moduli) of the general
anistropic material to the strain energy is introduced. From the assumed form of
the displacement field a purely longitudinal (axial) vibration can be derived, so that
the couplings between the longitudinal, torsional and flexural vibrations cannot be
described in this approximate theory.

The connection between the position of material coordinate system, which is given
by an angle coordinate, and the eigenfrequencies are analyzed for orthotropic bars.
The numerical results obtained for the eigenfrequencies are checked by finite element
computations.

2. Mechanical model

The considered anisotropic elastic bar with uniform cross section is shown in Figure
1. The governing equations are formulated in the Cartesian coordinate system Oxyz.
The position of the left end cross section is given by z = 0, and the position of the
right-end cross section is determined by z = L, where L is the length of the bar. The
z axis is the centerline of the bar while the x and y axes are the principal axes of the
left-end cross section. Hence we have∫

A

xdA =

∫
A

y dA = 0,

∫
A

xy dA = 0. (2.1)

The material of the bar is a general anisotropic material referred to as triclinic
material. In this case the generalized Hooke’s law can be formulated as [12, 13]

σ = C ε, (2.2)

where

σT =
[
σx σy σz τyz τxz τxy

]
, εT =

[
εx εy εz γyz γxz γxy

]
,
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Figure 1. Anisotropic elastic bar with uniform cross section

C =


c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

= CT

while σx, σy and σz are the normal stresses, τyz, τxz and τxy are the shear stresses,
εx, εy and εz are the longitudinal strains, γyz, γxz and γxy are the shear strains, cij
(i, j = 1, . . . , 6) are the elastic moduli of the considered anistropic elastic material.
The compliance matrix S is the inverse of stiffness matrix C:

ε = S σ, S = C−1, (2.3)

where S = {sij} and sij = sji (i, j = 1, . . . , 6).

Let the anisotropic bar be loaded at its end cross sections by uniform normal
stresses, whose stress resultant is the axial force P . The displacement components
associated with this axial force can be given in the following forms [12, 13]:

u =
P

A

(
s13x+

1

2
s36y

)
, (2.4)

v =
P

A

(
1

2
s36x+ s23y

)
, (2.5)

w =
P

A
(s35x+ s34y + s33z) (2.6)

where u, v and w are the displacement components parallel to the axes x, y and z;
A is the area of the bar cross section; s13, s23, s33, s34, s35 and s36 are the flexibility
coefficients. It can be seen by substituting P/A from the derivative of equation (2.6)
with respect to z into equations (2.4) and (2.5) that

u =

(
s13

s33
x+

1

2

s36

s33
y

)
∂w

∂z
, (2.7)
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v =

(
1

2

s36

s33
x+

s23

s33
y

)
∂w

∂z
. (2.8)

Equations (2.7) and (2.8) give the lateral displacements in the anisotropic bar in
terms of axial displacement w. In the sequel we shall assume that for longitudinal
vibrations the displacements in the directions x and y directions are given by equations
(2.7) and (2.8) and the axial displacement w depends only on the axial coordinate z
and the time coordinate t. All results of this paper are based on the above-mentioned
assumptions. The equation of motion and the boundary conditions are derived from
Hamilton’s principle, which can be stated as

δ

t2∫
t1

(T −Π +W ) dt = 0, (2.9)

where T is the kinetic energy of the bar, Π is the strain energy and the work done
by the external force f = f(z, t) is denoted by W (Figure 1). Of all of the possible
varied paths only those are considered that coincide with the true path at the two
instants t1 and t2 [4, 6, 11].

First we determine the kinetic energy starting from the following equation

T =
1

2

∫
B

ρ

[(
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
]

dB

=
1

2

∫
B

ρ

{[(
s13

s23
x+

1

2

s36

s33
y

)2

+

(
1

2

s36

s33
x+

s23

s33
y

)2
](

∂2w

∂z∂t

)2

+

(
∂w

∂t

)2
}

dB.

(2.10)

Here, B is the space domain occupied by the cylindrical bar, ρ is the mass density. A
detailed computation, in which equation (2.1) has been used, yields

T =
1

2

L∫
0

[
Aρ

(
∂w

∂t

)2

+ ρI

(
∂2w

∂z∂t

)2
]

dz, (2.11)

where

I =

[(
s13

s33

)2

+
1

4

(
s36

s33

)2
]
Iy +

[
1

4

(
s36

s33

)2

+

(
s23

s33

)2
]
Ix

=

{[(
s13

s33

)2

+
1

4

(
s36

s33

)2
]
i2y +

[
1

4

(
s36

s33

)2

+

(
s23

s33

)2
]
i2x

}
A = i2A (2.12)

Ix =

∫
A

y2 dA = i2xA, Iy =

∫
A

x2 dA = i2y A. (2.13)

For an anisotropic linearly elastic material the strain energy density as a function
of strain field is obtained as [12, 13]
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a (εx, εy, εz, γyz, γxz, γxy) =
1

2

(
c11ε

2
x + 2c12εxεy + 2c13εxεz + 2c14εxγyz+

2c15εxγxz + 2c16εxγxy + c22ε
2
y + 2c23εyεz + 2c24εyγyz + 2c25εyγxz + 2c26εyγxy

+ c33ε
2
z + 2c34εzγyz + 2c35εzγxz + 2c36εzγxy

+c44γ
2
yz + 2c45γyzγxz + 2c46γyzγxy + 2c55γ

2
xz + 2c56γxzγxy + c66γ

2
xy

)
, (2.14)

in which

εx =
s13

s33

∂w

∂z
, εy =

s23

s33

∂w

∂z
, εz =

∂w

∂z
, (2.15)

γyz =

(
1

2

s36

s33
x+

s23

s33
y

)
∂2w

∂z2
, γxz =

(
s13

s33
x+

1

2

s36

s33
y

)
∂2w

∂z2
, γxy =

s36

s33

∂w

∂z
.

(2.16)

The whole strain energy of the anistropic cylindrical bar is calculated from the
following equation

Π =

∫
B

a (εx, εy, εz, γyz, γxz, γxy) dB. (2.17)

A detailed calculation in which equation (2.1) is also used leads to the result

Π =
1

2

L∫
0

[
C1

(
∂w

∂z

)2

+ C2

(
∂2w

∂z2

)2
]

dz, (2.18)

where

C1 =

[
c11

(
s13

s33

)2

+ c22

(
s23

s33

)2

+ c33 + c66

(
s36

s33

)2

+ 2c12
s13s23

s2
33

+ 2c13
s13

s33
+ 2c23

s23

s33
+ 2c16

s13s36

s2
33

+ 2c26
s23s36

s2
33

+ 2c36
s36

s33

]
A

=

[
c11

c33

(
s13

s33

)2

+
c22

c33

(
s23

s33

)2

+ 1 +
c66

c33

(
s36

s33

)2

+ 2
c12

c33

s13s23

s2
33

+

2
c13

c33

s13

s33
+ 2

c23

c33

s23

s33
+ 2

c16

c33

s13s36

s2
33

+ 2
c26

c33

s23s36

s2
33

+ 2
c36

c33

s36

s33

]
c33A = c1c33A, (2.19)

C2 =

[
1

4
c44

(
s36

s33

)2

+ c45
s13s36

s2
33

+ c55

(
s13

s33

)2
]
Iy

+

[
c44

(
s23

s33

)2

+ c45
s23s36

s2
33

+ c55
1

4

(
s36

s33

)2
]
Ix

=

{
1

4

c44

c33

(
s36

s33

)2

+
c45

c33

s13s36

s2
33

+
c55

c33

(
s13

s33

)2
]
i2y

+

[
c44

c33

(
s23

s33

)2

+
c45

c33

s23s36

s2
33

+
1

4

c55

c33

(
s36

s33

)2
]
i2x

}
c33A = c2c33A. (2.20)
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The work W done by the external force f = f(z, t) on the axial displacement
w = w(z, t) is as follows

W =

L∫
0

f(z, t)w(z, t) dz. (2.21)

The substitution of equations (2.11), (2.18) and (2.21) into equation (2.9) yields the
equation of motion and the associated boundary conditions:

C2
∂4w

∂z4
− ρI ∂4w

∂z2∂t2
− C1

∂2w

∂z2
+ ρA

∂2w

∂t2
= f, (2.22)[

C1
∂w

∂z
+ ρI

∂3w

∂z∂t2
− C2

∂3w

∂z3

]
δw
∣∣∣L
0

+

(
C2
∂2w

∂z2

)
δ

(
∂w

∂z

) ∣∣∣L
0

= 0. (2.23)

It can be seen from equations (2.7) and (2.8) that

w = 0,
∂w

∂z
= 0 (2.24)

on an end cross section if it is rigidly fixed. Hence it holds there that

δw = 0, δ

(
∂w

∂z

)
= 0. (2.25)

Since δw, and δ
(
∂w
∂z

)
are arbitrary on free end cross sections it follows that the

stress boundary conditions in terms of w = w(z, t) on these cross sections assume the
form

C1
∂w

∂z
+ ρI

∂3w

∂z∂t2
− C2

∂3w

∂z3
= 0, (2.26)

C2
∂2w

∂z2
= 0. (2.27)

3. Free vibrations

For free vibrations
w(z, t) = W (z) cosωt, f = 0 (3.1)

is the solution of (2.22) in which W (z) is the amplitude of motion and ω is the circular
frequency of the vibrations. Substitution of solution (3.1) into equation (2.22) yields

C2
d4W

dz4
+
(
ω2ρI − C1

) d2W

dz2
− ω2ρAW = 0. (3.2)

The homogeneous boundary conditions equation (3.2) is associated with are

W = 0,
dW

dz
= 0 (3.3)

for fixed-end cross sections,

C1
dW

dz
− ω2ρI

dW

dz
− C2

d3W

dz3
= 0,

d2W

dz2
= 0 (3.4)

for free-end cross section and

W = 0,
d2W

dz2
= 0 (3.5)
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for loosely fixed end cross sections [6]

The general solution of equation (3.2), which contains four integration constants,
can be written in the form [14, 15]

W (z) = K1 cosh qz +K2 sinh qz +K3 cos rz +K4 sin rz, (3.6)

where the constants K1, K2, K3 and K4 to be determined from the boundary condi-
tions of the anistropic bar are such that one of them may have arbitrary value. As
regards the parameters q and r we have

q =

√√√√C1 − ω2ρI +

√
(C1 − ω2ρI)

2
+ 4ω2C2ρA

2C2
, (3.7)

r =

√√√√√(C1 − ω2ρI)
2

+ 4ω2C2ρA− C1 + ω2ρI

2C2
. (3.8)

As regards the free bending vibrations of an isotropic Euler-Bernoulli-Rayleigh
beam subjected to an axial force, the differential equation and the boundary con-
ditions associated with it are similar to those which describe the longitudinal free
vibrations of the anisotropic bar considered in this paper. The differential equation
and associated boundary condition for the bending vibrations of an isotropic Euler-
Bernoulli beam with constant axial force are as follows [16]:

• differential equation:

EIx
d4V

dz4
+
(
ω2ρJ − P

) d2V

dz2
− ω2ρAV = 0, (3.9)

• boundary conditions for fixed-end cross sections:

V = 0,
dV

dz
= 0, (3.10)

• boundary conditions for free-end cross sections:

P
dV

dz
− EIx

d3V

dz3
− ρω2J

dV

dz
= 0,

d2V

dz2
= 0, (3.11)

• boundary conditions for simply supported end cross sections:

V = 0,
d2V

dz2
= 0. (3.12)

In equations (3.9)-(3.12) V = V (z) is the amplitude of the displacement of center-
line in the direction of axes y, E is the Young modulus, J = Ix + Iy, P > 0 is the
applied axial force. The form of equations (3.9)-(3.12) makes it possible to establish
an analogy between the longitudinal vibration of anisotropic bar and the bending vi-
bration of the isotropic Euler-Bernoulli-Rayleigh beam subjected to constant positive
axial force. The analogy is shown in Table 1.
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Table 1. Analogous quantities and boundary conditions.

Longitudinal vibrations Bending vibrations
of anisotropic bars of isotropic beams

W = W (z) V = V (z)
C2 EIx
C1 P > 0
I J

Boundary conditions Boundary conditions

fixed end: fixed end:
W = 0, dW

dz = 0 V = 0, dV
dz = 0

free end: free end:

(C1 − ω2ρI)dW
dz − C2

d3W
dz3 = 0, d2W

dz2 = 0 (P − ω2ρJ)dV
dz − EIx

d3V
dz3 = 0, d2V

dz2 = 0

loosely fixed end: simply supported end:

W = 0, d2W
dz2 = 0 V = 0, d2V

dz2 = 0

4. Example

Assume that the anisotropic bar is fixed loosely at both ends. Then the axial
displacement and shear strains will be zero at each end of the bar. Hence

W = 0,
d2W

dz2
= 0, at z = 0 and z = L. (4.1)

It is obvious from taking the analogy formulated in Table 1 into account that the
boundary conditions related to the loosely fixed end condition of the anisotropic bar
are similar to those valid for the simply supported end conditions of the vibrating
Euler-Bernoulli-Rayleigh beam. On the basis of this similarity we shall assume

Wj(z) = Wj sin j
π

L
z, j = 1, 2, . . . . (4.2)

The function given by equation (4.2) satisfies the boundary conditions for any value
of Wj (j = 1, 2, . . . )

W (0) = W (L) = 0,
d2W

dz2

∣∣∣
z=0

=
d2W

dz2

∣∣∣
z=L

= 0. (4.3)

From equation (3.2) it follows that the natural frequencies of the longitudinal vibration
of anisotropic bar fixed loosely at both ends are expressed as

ω2
j =

C2

(
jπ
L

)4
+ C1

(
jπ
L

)2
ρ
(
jπ
L

)2
I +Aρ

=
c2
(
jπ
L

)2
+ c1

i2
(
jπ
L

)2
+ 1

Ω2
j , Ωj =

√
c33

ρ

jπ

L
j = 1, 2, . . . . .

(4.4)
In equation (4.4) Ωj (j = 1, 2, 3, . . . ) is the natural frequency of the longitudinal vi-
bration of the considered bar with fixed ends, which can be derived by the application
of the following assumptions (simple theory):
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• The lateral displacement u and v are neglected and w = w(z, t).
• The dominant element of the stiffness matrix C is c33, so the expression of

axial force N can be written in the form

N = Ac33
∂w

∂z
. (4.5)

This formulation does not introduce the effect of lateral motions of cross sections
and the material anisotropy. The eigenfunction (mode shape) corresponding to the
frequency ωj is given by equation (4.2).

5. Dependence of the natural frequencies on the position of the
principal material coordinate system

We consider an orthotropic material whose principal directions are x1, x2 and
x3 = z [12, 13, 17, 18]. The position of the material coordinate system Ox1x2x3 is
given by angle α as shown in Figure 2 [17, 18].

x2

α

O x3 = z
x

x1

y

α

Figure 2. Definition of α

For orthotropic elastic material in terms of engineerging constants E1, E2, E3, G23,
G13, G12, ν12, ν21, ν13, ν31, ν23, ν32 the stiffness matrix C(x1, x2, x3) can be written
in the form [17, 18]

C(x1, x2, x3) =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 =



1−ν23ν32
E2E3∆

ν21+ν23ν31
E2E3∆

ν31+ν21ν32
E2E3∆ 0 0 0

ν21+ν23ν31
E2E3∆

1−ν13ν31
E1E3∆

ν32+ν12ν31
E1E3∆ 0 0 0

ν31+ν21ν32
E2E3∆

ν32+ν12ν31
E1E3∆

1−ν12ν21
E1E2∆ 0 0 0

0 0 0 G23 0 0
0 0 0 0 G13 0
0 0 0 0 0 G12

 , (5.1)

where

E1ν21 = E2ν12, E2ν32 = E3ν23, E1ν31 = E3ν13, (5.2)
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and

∆ =
1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13

E1E2E3
. (5.3)

The inverse of C(x1, x2, x3) gives the flexibility matrix S(x1, x2, x3) defined in
the principal material coordinate system Ox1x2x3 [17, 18]:

S(x1, x2, x3) =


S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

 =



1
E1

−ν21E2
−ν31E3

0 0 0

−ν12E1

1
E2

−ν32E3
0 0 0

−ν13E1
−ν23E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12


. (5.4)

By the use of transformation stiffness and compliance matrices [17, 18] we can
derive the formulas of cij in terms of Cij and the formulas of sij in terms of Sij :

c11 = m4C11 + 2m2n2 (C12 + 2C66) + n4C22, (5.5)

c12 = m2n2 (C11 + C22 − 4C66) +
(
m4 + n4

)
C12, (5.6)

c13 = m2C13 + n2C23, (5.7)

c16 = mn
[
m2 (C11 − C12 − 2C66) + n2 (C12 − C22 + 2C66)

]
, (5.8)

c22 = n4C11 + 2m2n2 (C12 + 2C66) +m4C22, (5.9)

c23 = n2C13 +m2C23, (5.10)

c26 = mn
[
n2 (C11 − C12 − 2C66) +m2 (C12 − C22 + 2C66)

]
, (5.11)

c33 = C33, (5.12)

c36 = mn (C13 − C23) , (5.13)

c44 = m2C44 + n2C55, (5.14)

c45 = mn (C55 − C44) , (5.15)

c55 = n2C44 +m2C55, (5.16)

c66 = m2n2 (C11 − 2C12 + C22) +
(
n2 −m2

)2
C66 (5.17)

c14 = c15 = c24 = c25 = c34 = c35 = c46 = c56 = 0, (5.18)

s11 = m4S11 +m2n2 (2S12 + S66) + n2S22, (5.19)

s12 = m2n2 (S11 + S22 − S66) +
(
m4 + n4

)
S12, (5.20)

s13 = m2S13 + n2S23, (5.21)

s16 = mn
[
m2 (2S11 − 2S12 − S66) + n2 (2S12 − 2S22 + S66)

]
, (5.22)
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s22 = n4S11 +m2n2 (2S12 + S66) +m4S22, (5.23)

s23 = n2S13 +m2S23, (5.24)

s26 = mn
[
n2 (2S11 − 2S12 − S66) +m2 (2S12 − 2S22 + S66)

]
, (5.25)

s33 = S33, (5.26)

s36 = 2mn (S13 − S23) , (5.27)

s44 = m2S44 + n2S55, (5.28)

s45 = mn (S55 − S44) , (5.29)

s55 = n2S44 +m2S55, (5.30)

s66 = 4m2n2 (S11 − 2S12 + S22) +
(
n2 −m2

)
S66, (5.31)

s14 = s15 = s24 = s25 = s34 = s35 = s46 = s56 = 0, (5.32)

m = cosα, n = sinα. (5.33)

The dependence of the natural frequencies on α given by equation (4.4) for an or-
thotropic bar of rectangular cross section is analyzed by using the following data
(Figure 3):

b1 = 0.03 m, b2 = 0.05 m, L = 1 m, ρ = 550
kg

m3
,

E1 = 11 · 108 Pa, E2 = 5.7 · 108 Pa, E3 = 163 · 108 Pa,

G23 = 11.06 · 108 Pa, G13 = 6.8 · 108 Pa, G12 = 0.66 Pa,

ν12 = 0.68, ν13 = 0.038, ν23 = 0.015.

x

α

x1

x2

yα

Ob2

2

b2

2

b1

2

b1

2

Figure 3. Solid rectangular cross section

In the present problem Ω1 = 17 102.6 1/s, Ω2 = 34 205.2 1/s, Ω3 = 51 307.8 1/s,
Ω4 = 68 410.4 1/s, which do not depend on the size or the shape of the cross section.
The graphs of ωj(α) and ωj(α)/Ωj for j = 1, 2, 3, 4 and 0 ≤ α ≤ π are shown in
Figure 4.
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Figure 4. α dependence of the natural frequencies for j = 1, 2, 3, 4
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In Table 2 the α dependence of the fundamental frequency obtained from equation
(4.4) is compared to the results of FEM computations for α = 0, π8 ,

π
6 ,

π
4 ,

π
3 ,

π
2 .

Table 2. Comparison of analytical and FEM (Abaqus) solutions

ω1(α) [ rad
s ]

α Analytical Solution FEM Computation

0 17 007.13 17 094
π/8 17 026.93 17 094
π/6 17 044.19 17 094
π/4 17 096.92 17 093
π/3 17 165.18 17 093
π/2 17 248.79 17 092

The results of analytical solution and FEM computations for the first four natural
frequencies for α = 0 are listed in Table 3.

Table 3. Comparison of analytical and FEM (Abaqus) solutions for
α = 0

ωj(0) [ rad
s ]

j Analytical Solution FEM Computation

1 17 007.13 17 094
2 33 988.48 34 130
3 50 904.12 50 912
4 67 736.28 68 191

The results obtained from FEM computations support the validity of the presented
approximate analytical method.

6. Conclusions

In this paper an approximate theory of the longitudinal vibration of anistropic elastic
bars is presented. The equation of motion and the associated boundary conditions
are derived by the application of Hamilton’s principle. The developed theory is a
Rayleigh-Bishop type model of the longitudinal vibration. An analogy is formulated
between the longitudinal vibration of an anistropic bar and the bending vibration of
an isotropic Euler-Bernoulli-Rayleigh beam subjected to constant axial force.

For an orthotropic elastic bar the connection between the position of material co-
ordinate system, which is given by an angle coordinate, and the eigenfrequencies is
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analyzed. Obtained numerical results for some values of eigenfrequencies by the appli-
cation of the approximate analytical method are checked by FEM (Abaqus) computa-
tions. Presented numerical results show that the eigenfrequencies of the longitudinal
free vibrations slightly depend on the position of principal axes of orthotropy.
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Abstract. This paper deals with the determination of stresses and displacements in a curved
bimetallic beam which has uniform curvature. The two curved beam components of different
materials have common displacements at their interface. The thermal load is derived from
uniform temperature change. Two models are considered. The first one is based on the
theory of the generalized plane stress state of elasticity and the second one uses a strength
of materials approach. The results obtained by these models are verified by a comparison
with finite element analysis.
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1. Introduction

When two metal strips, strip 1 and strip 2, are bounded along the length of a beam,
strip 1 is partly prevented from expanding by strip 2 when they are subjected to
uniform temperature change. A considerable force is thereby developed which causes
the bonded strip to bend. If there are no applied external forces, the bimetallic strip
will take the shape of a circular arc. Timoshenko [1] was the first who studied stresses
in bimetallic beams. He used the expressions of curvature and stresses assuming that
the temperature change is uniform [1–3]. Several works have dealt with the analysis
of bimetallic strips which consist of two different beam components [4–10]. In the
above-mentioned papers curved bimetallic beams were not considered. In papers [11,
12] curved beams are investigated but the loading is pure mechanical loading. In this
paper the curved bimetallic beam under the action of uniform temperature change is
studied. The considered bimetallic beam has uniform curvature. To determine the
deformations and stresses in curved bimetallic beams two methods will be considered.
The first one is an elasticity solution based on the theory of generalized plane stress
state. The second approach uses a strength of materials formulation. The results
obtained by these models are verified by comparison with a finite element solution
(Abaqus CAE).

c©2019 Miskolc University Press
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2. Solution as a generalized plane stress problem

Figure 1 shows the curved bimetallic beam of uniform curvature, which consists of
two different elastic materials.

 

Figure 1. Bimetallic curved beam with rectangular cross section

The governing equations and boundary conditions are formulated in the cylindrical
coordinate system Orϕz, and the plane z = 0 is the symmetry plane of the two-
layered curved beam for its geometrical properties. The connection between beam
component 1 and beam component 2 at the common cylindrical boundary surface
r = R2 is perfect, hence neither the displacements nor the tractions have a jump at
r = R2. For example, technically the rigid connection between the beams 1 and 2 is
created by welded bonds. There are no present body forces and the whole boundary
of the bimetallic curved beam is stress free. This means that

σr(R1, ϕ) = σr(R3, ϕ) = τrϕ(R1, ϕ) = τrϕ(R3, ϕ) = 0, 0 ≤ ϕ ≤ ϑ, (1)

σϕ(r, ϑ) = σϕ(r, 0) = τrϕ(r, ϑ) = τrϕ(r, 0) = 0, R1 ≤ r ≤ R3. (2)

In the framework of generalized plane stress model the boundary condition

σϕ(r, ϑ) = σϕ(r, 0) = 0, R1 ≤ r ≤ R3, (3)

will be satisfied only in weak form such as

N =

R3∫
R1

σϕ(r, ϑ)dr =

R3∫
R1

σϕ(r, 0)dr = 0, (4)

M =

R3∫
R1

rσϕ(r, ϑ)dr =

R3∫
R1

rσϕ(r, 0)dr = 0. (5)

That is, the stress resultants and the moment resultant of the stresses vanish only at
the end cross sections ϕ = 0 and ϕ = ϑ. The temperature of the two-layer composite
beam initially is the reference temperature. Its temperature is slowly raised to a
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constant uniform temperature, where the temperature change is T . The deformations
and stresses are caused by only the uniform change of temperature. The solution of
this problem is derived from the following displacement field

ui(r, ϕ) = Ui(r) + f1 cosϕ+ f2 sinϕ, (i = 1, 2), (6)

vi(r, ϕ) = Crϕ+ f1 sinϕ− f2 cosϕ+ f3r, (i = 1, 2), (7)

where the displacement components are denoted by ui in the radial direction and
by vi in the circumferential direction and the lower index i refers to curved beam
component (i = 1, 2). In equations (6), (7) f1, f2 and f3 are integration constants
whose values can be obtained from the displacement boundary conditions (Figure 1):

u1(R1, 0) = 0, v1(R1, 0) = 0, v2(R3, 0) = 0. (8)

The constant C can be determined from the stress boundary conditions (1), (4), (5)
and the continuity conditions the displacements and the normal stress field should
satisfy on the common cylindrical boundary of the beam components 1 and 2. It
follows from equations (6) and (7) that the strains can be given in terms of Ui and C
as

εϕi =
Ui

r
+ C, εri =

dUi

dr
, (i = 1, 2). (9)

Combining equations (9)1 and (9)1 yields the compatibility condition the strains
should meet:

r
dεϕi

dr
+ εϕi − εri − C = 0, (i = 1, 2). (10)

For the present problem the constitutive law of linear thermoelasticity has the follow-
ing form [9, 10]:

Eiεri = σri − νiσϕi + EiαiT, (i = 1, 2), (11)

Eiεϕi = σϕi − νiσri + EiαiT, (i = 1, 2), (12)

where Ei is the modulus of elasticity, νi is the Poisson ratio and αi is the coefficient
of linear thermal expansion while the radial and circumferential normal stresses are
denoted by σri and σϕi (i = 1, 2). Substituting equations (11) and (12) into (10)
yields

r
d

dr
(−νiσri + σϕi + EiαiT )−(1+νi)σri+(1+νi)σϕi−EiC = 0, (i = 1, 2). (13)

In our case the equation of mechanical equilibrium is as follows:

dσri
dr

+
σri − σϕi

r
= 0, (i = 1, 2). (14)

The general solution of equation (14) can be given in terms of the stress functions
Fi = Fi(r) as

σri =
Fi(r)

r
, σϕi =

dFi

dr
, (i = 1, 2). (15)

Combination of equation (13) with the formulas derived for the normal stresses leads
to the following differential equations

r2
dF 2

i

d2r
+ r

dFi

dr
− Fi − EiCr = 0, (i = 1, 2), (16)
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the solution of which are given by

F1(r) = c1r +
c2
r

+
E1C

2
r ln r, R1 ≤ r < R2, (17)

and

F2(r) = c3r +
c4
r

+
E2C

2
r ln r, R2 < r ≤ R3, (18)

where c1, c2, c3 and c4 are undetermined integration constants. Note that the stress
and strain fields are independent of the polar angle ϕ. A simple calculation shows
that

N =

R3∫
R1

σϕ(r)dr =

R3∫
R1

d

dr
(rσr)dr =

= R2σr1(R2) −R1σr1(R1) +R3σr2(R3) −R2σr2(R2) = 0 (19)

if the stress boundary conditions

σr1(R1) = σr2(R3) = 0 (20)

and the continuity conditions

σr1(R2) = σr2(R2) (21)

are satisfied. To obtain the stress field we should determine the five undetermined
integration constants c1, c2, c3 c4 and C. The following equations will be used for
determining the values of the unknown integration constants:

σr1(R1) = 0, σr2(R3) = 0, σr1(R2) = σr2(R2), (22)

U1(R2) = U2(R2),

R2∫
R1

rσϕ1dr +

R3∫
R2

rσϕ2dr = 0. (23)

By the use of (9)1 equation (23)1 can be manipulated into the following form:

εϕ1(R2) = εϕ2(R2). (24)

This equation can be expressed in terms of stresses as

1

E1
[σϕ1(R2) − ν1σr1(R2)] + α1T =

1

E2
[σϕ2(R2) − ν2σr2(R2)] + α2T. (25)

By utilizing equations (22), (23) and (25) the following system of linear equations
can be set up for xT =

[
c1 c2 c3 c4 C

]
:

Mx = h (26)

where

M
(5×5)

= [mij ] ; hT =
[

0 0 0 h 0
]

(27)

and
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m11 = R1, m12 =
1

R1
, m13 = m14 = m21 = m22 = 0, m15 =

E1

2
R1 lnR1

m23 = R3, m24 =
1

R3
, m25 =

E2

2
R3 lnR3,

m31 =R2, m32 =
1

R2
, m33 =−R2, m34 =− 1

R2
, m35 =

E1 − E2

2
R2 lnR2,

m41 =
1 − ν1
E1

, m42 = −1 + ν1
E1R2

2

, m43 = −1 − ν2
E2

,

m44 =
1 + ν2
E2R2

2

, m45 =
ν2 − ν1

2
lnR2,

m51 =
1

2

(
R2

2 −R2
1

)
, m52 = − ln

R2

R1
, m53 =

1

2

(
R2

3 −R2
2

)
,

m54 = − ln
R3

R2
, h = (α2 − α1)T,

m55 =
E1

4

[
R2

2 lnR2 −R2
1 lnR1 +

1

2

(
R2

2 −R2
1

)]
+

+
E2

4

[
R2

3 lnR3 −R2
2 lnR2 +

1

2

(
R2

3−R2
2

)]
.



(28)

After solving the linear equation system (26) the following formulas can be used for
computing the stresses and displacements:

σr1(r) = c1 +
c2
r2

+
E1C

2
ln r, σϕ1(r) = c1 −

c2
r2

+
E1C

2
(ln r + 1), (29)

σr2(r) = c2 +
c3
r2

+
E2C

2
ln r, σϕ2(r) = c3 −

c4
r2

+
E2C

2
(ln r + 1), (30)

U1(r) =
1 − ν1
E1

c1r −
1 + ν1
rE1

c2 +
Cr

2
[(1 − ν1) ln r − 1] + α1Tr, (31)

U2(r) =
1 − ν2
E2

c3r −
1 + ν2
rE2

c4 +
Cr

2
[(1 − ν2) ln r − 1] + α2Tr, (32)

f1 = −U1(R1) = −1 − ν1
E1

c1R1 +
1 + ν1
R1E1

c2−

− CR1

2
[(1 − ν1) lnR1 − 1] + α1TR1 (33a)

f2 = f3 = 0, (33b)

ui(r) = Ui(r) − U1(R1) cosϕ, (i = 1, 2), (34)

vi(r) = Crϕ+ U1(R1) sinϕ, (i = 1, 2). (35)



46 D. Gönczi

3. Solution in the framework of strength of materials

On the basis of paper [13] by Ecsedi and Dluli it will be assumed that

u = U(ϕ) and v = rφ(ϕ) +
dU

dϕ
(36)

are the two displacement components for the whole two-layer composite curved beam.
The strain-displacement relationships of the linearized theory of elasticity yield

εr = εz = γrϕ = γϕz = γrz = 0, (37)

εϕ =
1

r

(
U +

d2U

dϕ2

)
+

dφ

dϕ
(38)

which means that only one strain component is different from zero. Equations . (37)
and (38) show that the displacements given by (36) satisfy the requirements of Euler-
Bernoulli beam theory. The constitutive relation is the simple Hook’s law applied
here by taking into account the thermal effect:

σϕi = Eiεϕ − EiαiT =
Ei

r

(
U +

d2U

dϕ2

)
+ Ei

dφ

dϕ
− EiαiT, (i = 1, 2). (39)

The stress resultant and the moment resultant of the stresses (the axial force and the
bending moment) vanish since there is no mechanical load on the structure (Figure
2). Hence

N =

R3∫
R1

σϕdr = k1

(
U +

d2U

dϕ2

)
+ k2

dφ

dϕ
− βT = 0, (40)

M =

R3∫
R1

rσϕddr = k2

(
U +

d2U

dϕ2

)
+ k3

dφ

dϕ
− γT = 0. (41)

where

k1 = E1 ln
R2

R1
+ E2 ln

R3

R2
, k2 = E1 (R2 −R1) + E2 (R3 −R2) ,

k3 =
E1

2

(
R2

2 −R2
1

)
+
E2

2

(
R2

3 −R2
2

)
,

 (42)

β = α1E1 (R2 −R1) + α2E2 (R3 −R2) ,

γ =
α1E1

2

(
R2

2 −R2
1

)
+
α2E2

2

(
R2

3 −R2
1

)
 (43)

It follows from equations (40) and (42) that

U +
d2U

dϕ2
=
βk3 − γk2
k1k3 − k22

T,
dφ

dϕ
=
γk1 − βk2
k1k3 − k22

T. (44)

Combining equation (39) and (44) leads to the following expression for the circum-
ferential normal stresses

σϕi = Ei

{
1

k1k3 − k22

(
βk3 − γk2

r
+ γk1 − βk2

)
− αi

}
T, (i = 1, 2). (45)
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With σϕi the normal stress σri can be determined by utilizing the equilibrium equation

d

dr
(rσri) = σϕi (i = 1, 2). (46)

Substituting σϕi and solving the resulting equation for σri yields

σr1(r) = E1

{
1

(k1k3 − k22) r
(βk3 − γk2) ln

r

R1
+

+ (γk1 − βk2) (r −R1) − α1
r −R1

r

}
T, R1 ≤ r ≤ R2, (47)

σr2(r) =
R2

r
σr1(R2) + E2

{
1

(k1k3 − k22) r
(βk3 − γk2) ln

r

R2
+

+ (γk1 − βk2) (r −R2) − α2
r −R2

r

}
T, R2 ≤ r ≤ R3. (48)

Integration of equation (44) by taking boundary condition (8) into account leads to
the following expressions for the radial and circumferential displacements:

U(ϕ) =
βk3 − γk2
k1k3 − k22

(1 − cosϕ)T, (49)

v(ϕ, r) =
(γk1 − βk2) rϕ− (βk3 − γk2) sinϕ

k1k3 − k22
T. (50)

4. Numerical example

The following data are used in the numerical example:

R1 = 0.35 m, R2 = 0.4 m, R3 = 0.45 m,

E1 = 200 GPa, E2 = 70 GPa,

ν1 = 0.27, ν2 = 0.33,

α1 = 11 · 10−6 1

K
, α2 = 23 · 10−6 1

K
,

T = 200 K, ϑ =
3

2
π.

Beam component 1 is made of steel. The material of beam component 2 is aluminum.
The graphs in Figures 2 and 3 show the normal stresses σr and σϕ in a comparison
with finite element solutions. The latter was carried out by using the commercial
Abaqus CAE software (coupled temperature-displacement solver).
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Strength of

Figure 2. Plots of the radial normal stresses

 

Strength of

Figure 3. Plots of the circumferential stresses

In Figure 4 the finite element model of the bimetallic curved beam and von Mises
equivalent stress field are presented, in which we can see that the stresses do not
depend on the polar angle ϕ aside from the narrow neighborhood of the end cross
sections.
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Figure 4. The finite element model with the equivalent stress field

Figures 5 and 6 show the 3D graphs of displacements U(r, ϕ) and v(r, ϕ) obtained
by the previously presented elasticity solution when R1 ≤ r ≤ R3 and 0 ≤ ϕ ≤ π.

 

Figure 5. The circumferential displacement field
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Figure 6. The radial displacement field

5. Conclusions

This paper presents two models to analyze the curved bimetallic beams. Presented
elasticity and strength of materials approaches are checked by finite element simula-
tions (using Abaqus FE software). The stresses obtained by the analytical method
and FEM solution are in good agreement except for the end cross sections of the
curved bimetallic beam. The presented analytical methods can be used to design a
two-layered curved composite members which are in a high temperature environment.
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Abstract. Dynamic responses of four rigidly-connected square cylinders in a square con-
figuration subjected to two-dimensional steady flow of a constant property Newtonian fluid
were investigated numerically. The focus of the present study is to investigate the effects
of the angle of attack α on the dynamic responses by varying α from 0◦ to 15◦ in intervals
of 2.5◦ at a fixed L = 4 (L is the non-dimensional center-to-center distance between two
adjacent square cylinders, normalized by the side length of the square cylinder B). For each
α, the reduced velocity (Vr) ranges from 1 to 40. The Reynolds number Re, mass ratio m∗

and structural damping ratio ζ maintain constants of 180, 10 and 0, respectively. Numerical
results show that the angle of attack α has a significant influence on the dynamic response.
When α ≤ 5◦, galloping occurs in addition to vortex-induced vibration (VIV), while it weak-
ens for α = 7.5◦ and 10◦, and finally disappears as α = 12.5◦ and 15◦, leaving only VIV
response. The effects of L on the responses of the four-square-cylinder oscillating system
were also examined for Re = 180, Vr = 40, and α = 2.5◦. Numerical results show that L
affects not only the response displacement but also the vortex shedding mode. Galloping
with large response amplitude can happen at either large L = 4 or small L = 1.5 and 2. The
response amplitude is relatively small as 2.5 ≤ L ≤ 3.5 due to the influence of the flow in
the gap between the square cylinders. For the particular case of L = 3.5, a combined vortex
shedding mode is identified, where the vortex shedding from the top row square cylinders
behaves as that from an elongated single body while the vortex shedding from the bottom
row cylinders presents a co-shedding mode.

Mathematical Subject Classification: 34F05, 35R99
Keywords: Vortex-induced vibration, galloping, arbitrary Lagrangian-Eulerian method,
Petrov-Galerkin Finite Element Method, square cylinder

1. Introduction

The interaction between multi-body structures and fluid flows has received increasing
attention due to its significance in both academic research and practical engineering.
It has motivated many investigations to understand flow-induced vibrations. Fluid
flow past an elastically-mounted circular cylinder has served as the primary VIV
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problem and has been investigated extensively both numerically and experimentally.
Comprehensive reviews on VIV of circular cylinders can be found in [1–5].

Compared with the VIV of circular cylinders, however, fluid flows past square
cylinders have attracted less attention. Previous studies generally focused on fluid
flows over fixed square cylinders. The effects of angle of attack on the fluid force,
and vortex shedding mode were examined [6–8]. As for an elastically-mounted square
cylinder placed in a fluid flow, in addition to VIV, galloping is another physical
mechanism which occurs when a structure has a non-axisymmetric cross-section [9–
11].

A number of experimental investigations have been carried out to understand the
physics involved in the dynamic response of a square cylinder. Bokaian and Geoola
[12] studied the galloping instability of square cylinders and the corresponding syn-
chronized vortex shedding patterns. The dynamic response of square cylinders was
investigated experimentally in a wind tunnel [11]. They reported a galloping response
of 1:3 synchronization, where the vortex shedding frequency is three times that of the
vibration frequency of the square cylinder. A similar 1:3 synchronization phenomenon
was also reported by Wang and Zhou [13], who investigated the effect of attack angle
on the dynamic response of a square cylinder. Nemes et al. [14] investigated the
effect of angle of attack on the dynamic response experimentally, and found a higher
branch of response amplitude at angles of attack of α ∈ [10◦, 22.5◦]. The attack angle
of α = 0◦ corresponds to the situation in which the flow direction is perpendicular
to two side faces of the cylinder. In the higher branch, the maximum amplitude
was found to be significantly larger than that in the upper branch of VIV of a cir-
cular cylinder, and the vibration frequency synchronized with half of the Strouhal
frequency. Zhao et al. [15] conducted a refined experimental study on the dynamic
responses of a square cylinder at three different angles of attack, namely α = 0◦, 20◦

and 45◦. For α = 0◦, a typical galloping response is observed which is characterized
by a gradual buildup of the amplitude with the reduced velocity. For α = 45◦, the
dynamic response is dominated by VIV. Similar to the findings of Nemes et al. [14],
Zhao et al. [15] also observed a higher branch at α = 20◦, which is confirmed to be a
sub-harmonic mode. In the higher branch, the spatial-temporal symmetry of the vor-
tex shedding is broken, leading to a non-zero mean lift force and the high-amplitude
branch.

A number of numerical studies have also been conducted to investigate the dynamic
response of a square cylinder. Sen and Mittal [16] conducted numerical simulations of
fluid flow past a square cylinder at α = 0◦. They found that the response amplitude
with the reduced velocity can be divided into the primary lock-in, desynchronization
and galloping regimes. It was observed that the vortex shedding mode is the 2S mode
in the primary lock-in regime, and 2S or 2P modes in the galloping regime. The 2S
mode means that two single vortices are shed from the square cylinder during one
vibration period, while the 2P mode means that two pairs of vortices are formed and
shed every vibration cycle, according to the definition of Williamson and Roshko [17].
Later on, Sen and Mittal [18] examined the effects of the mass ratio on the dynamic
response of a square cylinder at low Reynolds numbers. The mass ratios of m∗ = 1,
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5, 10 and 20 were considered in the numerical simulations. The results indicate that
only VIV response appears as m∗ = 1. For m∗ ≥ 5, galloping branch is observed in
addition to VIV. Joly et al. [19] numerically studied the influence of α and m∗ on
the dynamic response of a square cylinder, and developed a sinusoidal quasi-steady
model to predict the galloping response. Zhao et al. [20] examined the effects of α
on the VIV response of a square cylinder with α = 0◦, 22.5◦ and 45◦. The numerical
results suggested that the angle of attack affects not only the response amplitudes but
also the vortex shedding modes. The dynamic responses of square and rectangular
cylinders were numerically studied by Zhao [21] and Cui et al. [22]. Different response
regimes and vortex shedding modes were reported according to the aspect ratio, which
is defined as the cylinder dimension in the cross-flow direction to that in the inline
direction.

Compared with the studies of the dynamic responses of an elastically-mounted
square cylinder, investigations on fluid multiple square cylinders are fewer and less
documented in the literature. The very common configuration of multiple square
cylinders is the square arrangement of four square cylinders such as the legs of the
tension leg platform in offshore oil and gas engineering. Liu et al. [23] carried out
laboratory tests to study the fluid dynamic characteristics around four stationary
square-cross-section cylinders in a square arrangement at high Reynolds numbers.
The effects of the angle of attack α and the center-to-center distance L between the
cylinders on the fluid forces as well as the vortex shedding frequency were investi-
gated. So far, inadequate attention has been paid to the dynamic response of four
rigidly-connected square cylinders. In the present study, the dynamic responses of the
four rigidly-connected square cylinders in two-dimensional steady flow of a constant
property Newtonian fluid were investigated numerically. The aim of this study is to
investigate the effects of α on the dynamic responses. The two-dimensional incom-
pressible Navier-Stokes (N-S) equations are solved by a Petrov–Galerkin Finite Ele-
ment Method (PG-FEM) to predict the fluid flow. An arbitrary Lagrangian-Eulerian
(ALE) method is employed to deal with the moving boundaries of the square cylinders.
The non-dimensional center-to-center distance between two adjacent square cylinders
is fixed as L = 4 initially. Numerical simulations were performed with a constant
Reynolds number Re = 180. The Reynolds number is defined as Re = UB/v, where
v is the kinematic viscosity of the fluid, B is the side length of the square cylinder
and U is the free-stream velocity. The angle of attack α ranges from 0◦ to 15◦ with
an interval of 2.5◦, and the reduced velocity Vr varies from 1 to 40 with an increment
of 1.

The remainder of this article is organized as follows. The numerical method em-
ployed in this study is introduced in Section 2. The necessary mesh dependent tests
are presented in Section 3. The numerical results are shown and discussed in Section
4, and conclusions are drawn in Section 5.

2. Numerical method

Figure 1 shows a sketch of the computational domain for simulating the dynamic
responses of the four rigidly-connected square cylinders in a square configuration in
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steady flow. A coordinate system is defined with its origin fixed at the center of the
four-cylinder system with the x-coordinate pointing to the flow direction. The set of
four rigidly-connected square cylinders is allowed to oscillate in both the cross-flow
and in-line directions. The natural frequencies in the x- and y-directions are the same.
The Reynolds number is set as Re = 180 throughout the numerical simulations, hence
the flow is within the laminar regime so that two-dimensional numerical simulation
is appropriate to reveal the potential physical mechanism.

y

x

1

2
3

4

Flow αo

Figure 1. Numerical setup for fluid flow past four elastically sup-
ported rigidly connected square cylinders

In this study, the non-dimensional variables of velocity (u, v), the time t, the coor-
dinate (x, y) and the pressure p are normalized as (u, v) = (u′, v′)/U , t = t′U/B,
(x, y) = (x′, y′)/B, and p = p′/(ρU2), respectively, where the prime symbol repre-
sents the dimensional variables, B is the side length of the square cylinder, ρ is the
fluid density and U is the free-stream velocity. The ALE method is introduced to
deal with the moving boundaries induced by the oscillations of the rigidly-connected
square cylinders. The non-dimensional governing equations in the ALE scheme are
expressed as

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ (uj − uj,mesh)
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xi∂xj

. (2)

where xi is the Cartesian coordinate with x1 = x and x2 = y, ui is the velocity
component in the xi direction and uj,mesh is the velocity of the moving computational
mesh. The N-S equations are solved by the PG-FEM, which was same as in Zhao
et al. [24]. The details of the PG-FEM and the computational procedure are well
documented in [24] and will not be repeated in this article.

The motion of the four rigidly connected square cylinders is predicted by solving
the following linear oscillator equation

∂2Xi

∂t2
+ 4πζFn

∂Xi

∂t
+ (2πFn)

2
Xi =

Ci

2m∗
, (3)

where Xi is the non-dimensional displacement of the square cylinders, normalized by
the side length of the square cylinder, in the xi-direction. m∗ = m/ms is the mass
ratio with m being the total mass of the square cylinders and ms representing the
displaced mass of the fluid. In the present study, the mass ratio is set as m∗ = 10,
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and ζ = c/(4km)1/2 is the damping ratio, where c and k are the structural damping
coefficient and the spring stiffness, respectively. To investigate possible large am-
plitude response, ζ = 0 is adopted in the numerical simulations. In equation (3),
Fn = fnB/U is the dimensionless structural natural frequency with fn being the
structural natural frequency, Ci is the total hydrodynamic coefficient on the square
cylinders in the xi-direction, which is defined as Ci = 2Fi/(ρBU

2) with Fi being the
total hydrodynamic force in the xi-direction. In the following discussions, the hydro-
dynamic coefficients in the in-line and cross-flow directions C1 and C2 are replaced
by the drag and lift coefficients CD and CL, respectively. In equation (3), X1 and X2

indicate the displacements in x and y directions, namely X and Y , respectively, and
they are given as

∂2X

∂t2
+ 4πζFn

∂X

∂t
+ (2πFn)

2
X =

CD

2m∗
, (4)

∂2Y

∂t2
+ 4πζFn

∂Y

∂t
+ (2πFn)

2
Y =

CL

2m∗
. (5)

Under the ALE description, the nodal coordinates inside the computational domain
should be moved according to the motion of the square cylinders. After each compu-
tational time step, the mesh is updated by solving the following governing equation
[25–27]:

∆ · (γSi) = 0, (6)

where Si denotes the displacement of the mesh modal point in the xi-direction. To
avoid severe mesh deformation around the square cylinders, a parameter γ = 1/A is
introduced to control mesh deformation, where A is the area of the computational
mesh [25–27]. The displacements of the computational nodes on the cylinder surface
are the same as that of the oscillating square cylinders, while the displacements of the
mesh maintain zero for the rest of the boundaries. By assigning the displacements for
all the boundaries, equation (6) is solved by a Galerkin FEM.

A rectangular computational domain with a height of 40B in cross-flow direction
and a length of 60B in flow direction is adopted, as shown in Figure 1. The values
of upstream and downstream lengths are 20B and 40B, respectively. The computa-
tional domain is discretized into four-node quadrilateral bi-linear elements. The total
number of FEM nodes and elements are 55057 and 54400, respectively. The boundary
of each square cylinder is divided into 160 uniformly distributed nodes, resulting in
a minimum mesh size along the square cylinder of 0.025. The radial length of the
elements next to the square cylinder surface is 0.01.

The boundary conditions are specified as follows. On the inlet boundary, the
horizontal velocity is set to be u = 1 and the vertical velocity component is zero.
No-slip boundary condition is specified on the surfaces of the square cylinders, i.e.
the flow velocity is the same as the vibration velocity of the square cylinders. At
the outlet, the pressure is set to be zero, and the gradient of the velocity in the flow
direction is zero. On the two lateral boundaries, the gradient of the pressure and the
velocity in the transverse direction of the flow are zero. The numerical simulations
start from an initial condition that the pressure and the velocity are zero in the whole
fluid domain.
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3. Mesh dependence study

The PG-FEM numerical model and computational code developed by Zhao et
al.[24] has been used to simulate the dynamic responses of four square cylinders. It
has been demonstrated that this numerical model is capable of simulating the VIV
of a square cylinder [20], the galloping response of rectangular cylinders [21, 22], the
wake-induced vibrations of two tandem cylinders [28], and the VIV of four rigidly
connected circular cylinders [29, 30]. The capability of the numerical model has been
validated in [16, 31–33] and will not be repeated here.

A mesh dependent study was performed to demonstrate that the mesh used in
this study is fine enough to obtain accurate results. Numerical simulations were per-
formed for a fluid flow over four rigidly connected square cylinders at Re = 180,
Vr = 40 and angles of attack α = 0◦, 5◦ and 10◦, covering both the VIV and the gal-
loping responses. The corresponding numerical results were compared based on the
two different mesh densities, defined as normal mesh and dense mesh, respectively.
The total numbers of the nodes and elements are 55057 and 54400 for the normal
mesh, while they are 66777 and 66000 for the dense mesh. Each side of the square
cylinders is divided into 40 nodes in the normal mesh and 50 nodes for the dense
mesh. Table 1 shows the comparisons of the root mean square displacements Xrms

and Yrms, the mean total drag coefficients CD,mean, and the root mean square total
drag and lift coefficients of CD,rms and CL,rms. The total drag and lift coefficients
are the sum of the drag and lift coefficients of the four square cylinders, respectively.
The results in Table 1 demonstrate that the differences between the numerical results
in terms of the two meshes are very small. The maximum difference is less than 4.4%.
Hence, the normal mesh was used for the numerical simulations in this study. In addi-
tion, numerical simulations of VIV of four separately mounted circular cylinders in an
in-line square configuration were conducted in our previous study [30], adopting the
same numerical model as used in this study. The sizes of the computational domain,
upstream, downstream distances and the time step in the present study are similar
to those used in [30] for the case of the center-to-center distance L/D = 4, where D
is the diameter of the circular cylinder. At the same time, the total numbers of the
nodes and elements in the present study are larger than those used in [30]. Hence, it
is believed that the numerical results in the present study will not be sensitive to the
computational mesh.

Table 1. Root mean square displacements and hydrodynamic forces
based on normal mesh and dense mesh

Case Mesh Xrms Yrms CD,mean CD,rms CL,rms

α = 0◦, Vr = 40 Normal mesh 0.1371 0.8581 6.4580 0.6057 1.0084
α = 5◦, Vr = 40 Normal mesh 0.2341 0.6679 5.8013 0.5882 0.8545
α = 10◦, Vr = 40 Normal mesh 0.0367 0.0989 5.1219 0.3543 2.0183
α = 0◦, Vr = 40 Dense mesh 0.1392 0.8501 6.4591 0.6250 1.0261
α = 5◦, Vr = 40 Dense mesh 0.2272 0.6661 5.8355 0.5896 0.8200
α = 10◦, Vr = 40 Dense mesh 0.0383 0.0972 5.1300 0.3555 2.0214
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4. Numerical results and discussion

4.1. Vibration amplitude and frequency for L = 4. Figure 2 shows the varia-
tions of the vibration amplitudes in the x- and y-directions with the reduced velocity
for α ranging from 0◦ to 15◦. The vibration amplitudes in the x- and y-direction are
defined as Ax = (Xmax − Xmin)/2 and Ay = (Ymax − Ymin)/2, respectively, where
the subscripts ‘max’ and ‘min’ stand for the maximum and minimum displacements,
respectively. Figure 3 shows the variations of the non-dimensional response frequency
with the reduced velocity under these angles of attack. In the present study, the
non-dimensional response frequency is defined as the ratio of dimensional response
frequency of the cross-flow displacement to the structural natural frequency, where
the dimensional response frequency is obtained by performing Fast Fourier Trans-
form (FFT) analysis on the time history of the cross-flow displacement. The results
shown in Figure 2 demonstrate that for some cases, for example when α = 5◦ and
22 ≤ Vr ≤ 25, the response amplitude has dual values in Figure 2 and so does the
frequency in Figure 3.

For these cases, the vibration amplitudes (empty circles in Figure 2) are found to
be very small if the simulation is initiated with the zero initial condition with the
pressure and fluid velocity being zero. The response amplitude increases with the
increasing reduced velocity as Vr ≥ 13 and α = 5◦, except 22 ≤ Vr ≤ 25, where the
amplitudes are nearly zero. The increase of the response amplitude with increasing
Vr is a typical characteristic of galloping. However, it is clear that the response
amplitudes and frequencies are out of this trend when α = 5◦ and 22 ≤ Vr ≤ 25. It
is likely that the response in the reduced velocity range of 22 ≤ Vr ≤ 25 depends on
the initial condition. To justify this, simulations were carried out for 22 ≤ Vr ≤ 25 by
using the fully developed flows of neighboring reduced velocities as initial conditions
where galloping occurs. Specifically, the last step results of Vr = 21 were used as
the initial condition for Vr = 22 and 23, and the last step results of Vr = 26 were
employed as the initial condition for Vr = 24 and 25. The results using the solution
of galloping as the initial conditions are plotted as the solid circles in Figure 2. It
is found that the response amplitude and frequency are indeed different from their
corresponding values when the zero initial condition is used.

Nemes et al. [14] reported a galloping response of a square cylinder when α = 0◦,
and VIV response when α = 45◦. Sen and Mittal [16] simulated the dynamic response
of a square cylinder with m∗ = 10 at low Reynolds numbers, and found a primary
lock-in regime and a secondary lock-in regime. The response in the primary lock-in
regime is very similar to that of a circular cylinder. In the secondary lock-in regime,
the response amplitude increases continuously with the increase of the reduced veloc-
ity. The vibration in the secondary lock-in regime is essentially galloping. Zhao [21]
also reported one VIV regime and one galloping regime for the dynamic responses of
square and rectangular cylinders. The VIV regime includes an initial branch and a
lower branch. In this study, VIV regime is observed to occur at about 6 ≤ Vr ≤ 9
for all the simulated angles of attack. However, it is interesting to find that two VIV
lock-in regimes are identified when the angle of attack is large enough. For example
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Figure 2. Variations of the vibration amplitudes in the in-line and
cross-flow directions with the reduced velocity for different angle of
attack values. Empty symbols, still fluid is the initial condition; filled
symbols, galloping solution is used as the initial condition
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Figure 3. Variation of the vibration amplitudes in the in-line and
cross-flow directions with the reduced velocity for different angle of
attack values. Empty circles, still fluid is the initial condition; filled
circles, galloping solution is used as the initial condition

at α = 12.5◦, it is observed that the non-dimensional response frequency is close to
but slightly smaller than 1 for Vr = 4 as shown in Figure 3(f). It increases gradually
to a value slightly greater than 1 as the reduced velocity increases to Vr = 9. This
trend is broken at 10 ≤ Vr ≤ 12. However, as the reduced velocity increases to
Vr = 13, lock-in occurs again in the reduced velocity range of 13 ≤ Vr ≤ 19. As
reduced velocity exceeds Vr = 20, the response frequency increases linearly with the
increasing reduced velocity. The galloping regimes are clearly observed at α = 0◦,
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Figure 4. Time histories of cross-flow displacement and lift coeffi-
cients (left column) for α = 2.5◦ and FFT spectra (right column) for
different reduced velocity values

α = 2.5◦ and α = 5◦ which are characterized by the response frequencies that are
slightly lower than 1 at high reduced velocities as shown in Figures 3(a)-(c); such a
trend is not clear at α = 7.5◦ and disappears at α = 10◦. If galloping occurs, the
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vibration amplitudes at high reduced velocities are much larger than the maximum
vibration amplitudes in the VIV regime. As α = 0◦, α = 2.5◦ and α = 5◦, the
response amplitude increases with the increase of reduced velocity at Vr ≥ 15, which
are in the galloping regime. However, it can be seen that the occurrence of galloping
depends on the initial condition for some reduced velocities for α = 2.5◦ and α = 5◦.
As α ≥ 10◦, the response amplitude remains consistently small as the reduced velocity
exceeds the upper boundary of the VIV lock-in regime.

The results shown in Figure 3 demonstrate that the response frequency of the
cylinder in the cross-flow direction is close to the natural frequency in both the VIV
and the galloping regimes. However, the correlation between the displacement of the
cylinder and the lift coefficient in the VIV regime is different from that in the galloping
regime. The time histories and Fast Fourier Transform (FFT) spectra of the vibration
displacement and the lift coefficient for α = 2.5◦ are shown in Figure 4 as an example
to identify the difference between VIV and galloping, where results for Ay are shown in
red solid lines and those for CL are shown in blue dashed lines. The non-dimensional
frequency f is defined as f = f∗B/U with f∗ being the dimensional frequency. The
frequencies of the vibration and the lift coefficient of the cylinder are the same in the
VIV regime (Figures 4(a), (b) and (c)). In the galloping regime (Figures 4(e) and
(f)), a strong high frequency component is observed in the lift fluctuations. However,
it does not contribute to the vibration because the vibration amplitude corresponding
to this peak frequency is extremely small. By observing the vortex shedding, it was
found that the high frequency component in the lift coefficient is actually the vortex
shedding frequency. It does not excite VIV because the reduced velocity is outside
the lock-in regime for VIV. At Vr = 10 (Figure 4(d)), the vibration changes from the
non-galloping regime to the galloping regime. The VIV and galloping regimes cannot
be separated from each other at high Reynolds numbers, because the galloping starts
from a very small reduced velocity, resulting in an overlap between VIV and galloping
regimes [14]. The VIV and galloping regimes can be distinctly identified in this study
because the Reynolds number is small (Re = 180). The VIV and galloping regimes
can be separated from each other at low Reynolds numbers because the starting
reduced velocity of the galloping regime is higher than the upper boundary of the
VIV lock-in regime [16, 21].

It is interesting to see in Figure 3(e) that the response frequency is extremely
small and does not vary with the reduced velocity when α = 10◦ and Vr ≥ 22. To
understand why the frequency is very low, the time histories of the displacements
in the x- and y-directions for α = 10◦ and reduced velocities of Vr = 9, 17, 20
and 35 are shown in Figure 5. The red lines represent the displacements in the
in-line direction while the cross-flow displacements are indicated by the black lines.
Regular long-period beating can be seen in Figure 5(a), while the vibration is still
dominated by the frequency of the vortex shedding. It can be seen in Figure 5 that
the vibration becomes asymmetric and the asymmetry becomes stronger with the
increasing reduced velocity. When the reduced velocity increases to 35 (Figure 5(d)),
the beating still exists, while the cylinders vibrate at a high frequency in the cross-
flow direction. Its mean position also changes periodically in time with an amplitude
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Figure 5. Time histories of the displacements of the cylinder in x- and
y-directions for α = 10◦ for different reduced velocity values. Upper
line, displacement in the in-line direction; Lower line, displacement
in the cross-flow direction

greater than the high-frequency vibration amplitude. Both the vibration amplitude
and frequency for α = 10◦ and Vr = 35 are smaller than their counterparts for α = 0◦

at the same reduced velocity. The vibration for Vr = 9 in Figure 5(a) is essentially a
modulation between a high frequency component and a low frequency component. In
Figure 5(d), the vibration is a combination of the modulation of two frequencies and
a galloping. Because the galloping amplitude is much smaller than that at α = 0◦

and not significantly greater than the VIV amplitude, the vortex-induced vibration
can be clearly identified in the time histories.

Figure 6 shows the FFT spectra of the Y -displacement and lift coefficient for α =
10◦ and two reduced velocities of Vr = 9 and 35. In Figure 6, Y -displacement, lift
coefficients CL and structural natural frequency fn are shown by the black dashed line,
red solid line and blue dot-and-dash line, respectively. The modulation between the
two signals with distinct frequencies can be identified in Figure 6. The modulation
frequencies (fm) of the Y -displacement and the lift coefficient are found to be the
same. When Vr = 9, the modulation frequency (fm) is much smaller than the vortex
shedding frequency (fs). At Vr = 35, in addition to the modulation, a very small
frequency exists, which is the frequency of the galloping response (fg). The vibration
is hence a combination of a modulation and a galloping. When galloping occurs, the
modulation frequency is the same as the galloping frequency.
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Figure 6. FFT spectra of the Y -displacement and lift coefficient for
α = 10◦ and two typical reduced velocities of Vr = 9 and 35

Based on the above analysis of the vibration amplitude and frequency, we can
divide the response into three types according to the angle of attack, namely, galloping
(α = 0◦ to α = 5◦), non-galloping or VIV (α ≥ 12.5◦), and a combined state between
them (α = 7.5◦ and α = 10◦). The Y -amplitude in the galloping regime increases
with the increase of α as shown in Figure 2(a) while the non-galloping vibration,
which is outside the VIV lock-in regime, has very small amplitudes. In the combined
state, the dynamic responses of the square cylinders are a combination of the weak
galloping and the vortex-induced vibration.

  

  

 
Figure 7. Vorticity contours over one period of oscillation for α =
2.5◦ and Vr = 6. (a), Y = Ymax ; (b), Y = 0, moving down; (c),
Y = Ymin ; (d), Y = 0, moving up; (e), Y = Ymax
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Figure 7 shows the vorticity contours over one period of oscillation for α = 2.5◦ and
Vr = 6, which is in the lower branch of the VIV lock-in regime. The instantaneous
position of the four-cylinder system on the Y-displacement is shown in each diagram
in Figure 7. The first time instant is obtained at Y = Ymax and is followed by 1/4
period of the oscillation of the square cylinders. A pair of vortices is shed from each
of the upstream cylinders in one cycle of vibration. The vortices that are shed from
the upstream cylinders attack the downstream cylinder and combine with the vortices
generated from the downstream cylinders. The combination of the vortices makes the
vortex shedding from the two downstream cylinders easy to identify; they are also
stronger than the vortices from the upstream cylinders. The number of vortices that
are shed from each of the downstream cylinders is a pair. The interaction between
the vortices from the top row cylinders and those from the bottom row cylinders
appears to be weak. The two rows of vortex street can be clearly seen downstream
the cylinders regime.

The instantaneous Y -displacement of the four-cylinder system is marked in Figure
8 which shows the vorticity contours over one period of oscillation for α = 2.5◦ and
Vr = 35 in the galloping regime. The first time instant is obtained at Y = Ymax

  

  

 
Figure 8. Vorticity contours over one period of oscillation for α =
2.5◦ and Vr = 35. (a), Y = Ymax ; (b), Y = 0, moving down; (c),
Y = Ymin ; (d), Y = 0, moving up; (e), Y = Ymax
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(Figure 8(a) and is followed by each 1/4 period of the oscillation of the square cylin-
ders. The number of the vortices that are shed from each of the cylinders in one period
of the galloping presents also as a pair. However, there are some differences between
the vortices in the VIV lock-in regime (Figure 7) and those in the galloping regime
(Figure 8). In the VIV lock-in regime, the shear layers from the two sides of each
upstream cylinder form vortices at a further downstream location of the cylinder than
those in the galloping regime. Each of the vortices from the upstream cylinders in the
VIV lock-in regime is elongated and split into two by the downstream cylinder. The
elongation of the vortices delays the vortex shedding and detunes the vortex shedding
frequency to the natural frequency. In the galloping regime, the vortices generated
from different vortex shedding periods behave differently, because the position of the
cylinders at different vortex shedding periods is different. In the galloping regime
and while the cylinders moving downwards or upwards, a number of different vortex
shedding periods are involved, resulting in a slightly tilted vortex street, as shown in
Figures 8(c) and (e).

4.2. Effect of center-to-center distance on galloping for α = 2.5◦. It has been
found that the center-to-center distance (L) has a significant effect on the VIV re-
sponse of four circular cylinders in an inline square arrangement [30]. This section
mainly focuses on the effect of L on the dynamic response. Simulations were per-
formed by varying L from 1.5 to 4 with an increment of 0.5 for a angle of attack with
α = 2.5◦ and a reduced velocity of Vr = 40. The center-to-center distance L is found
to have significant effects on the vibration of the square cylinders. Figure 9 shows
the time histories and FFT spectra of the Y -displacement and the lift fluctuation for
different values of L, where the results for the Y -displacement are shown in red solid
lines and those for lift fluctuation are shown in blue dashed lines.

Figures 10 and 11 show the vorticity contours for L = 1.5 and 2, respectively. The
position of the cylinder is marked on the XY -trajectory in each diagram of Figures
10 and 11. Based on the time histories and the vortex shedding patterns, it can be
seen that the vibrations are typical of the galloping responses for L = 1.5 and 2. At
L = 1.5, six vortices (labeled by A–E in Figure 10) are shed from the cylinders in
one cycle of vibration. The jet flowing from the gap between the top and bottom
rows of the cylinders is very weak and merges into the shear layers from two sides
of the cylinder system. The vortex street in the wake of the four square cylinders is
very similar to that behind a single structure. As L = 2, the vibration is a typical
galloping response, characterized by a number of vortex shedding periods in one cycle
of vibration as shown in Figure 9(b). Because the shear layers generated from the
horizontal gap form vortices that are shed from the cylinders, the number of the
vortices that are shed from the cylinders in one cycle of vibration for L = 2 is greater
than that for L = 1.5. The combination of the vortices from the bottom row cylinders
with those from the top row cylinders occurs continuously. Each of the vortices A–I
in Figure 11 is the combined vortex. For example, the vortices A1 and A2 in Figure
11(a) combine to form a single vortex A, as shown in Figure 11(b). The galloping
at L = 1.5 and 2 results in high amplitude vibrations, as shown in Figure 9. Due to
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the effects of the jet flow from the horizontal gap between the cylinders, the vibration
amplitude at L = 2 is lower than that at L = 1.5.
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Figure 9. Time histories (left column) and FFT spectra (right col-
umn) of the cross-flow displacement and the lift force coefficient for
different center-to-center distances L at fixed α = 2.5◦ and Vr = 40.
Solid line, Y -displacement; Dashed line, lift coefficient
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Figure 10. Vorticity contours for α = 2.5◦, Vr = 40 and L = 1.5.
The position of the cylinder is marked on the XY -trajectory in each
diagram

Figure 11. Vorticity contours for α = 2.5◦, Vr = 40 and L = 2.
The position of the cylinder is marked on the XY -trajectory in each
diagram.
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Figure 12 shows the vorticity contours for L = 2.5. The difference between the
flows for L = 2 and 2.5 is that at L = 2.5. A complete vortex shedding process occurs
from each of the downstream cylinders. The combination of the vortices also occurs,
which is similar to that for L = 2. The combination only occurs after the vortices
are totally separated from the cylinders. The vibration amplitude is very small and
no galloping is observed for L = 2.5, because the vortex shedding occur from the two
upstream cylinders. Each horizontal row of cylinders behaves as a single body that
conforms better than a single cylinder. The vortex shedding processes from the two
downstream cylinders synchronize perfectly at L = 2.5, resulting in the very periodic
vibration shown in Figure 9(c).

Figure 12. Vorticity contours for α = 2.5◦, Vr = 40 and L = 2.5.
The position of the cylinder is marked on the XY -trajectory in each
diagram.

Figures 13 and 14 show the vorticity contours for L = 3 and 3.5, respectively. When
L increases to 3, the vortices generated from the horizontal gap of the cylinders are
strong. This stops the combinations of the vortices. In Figure 13, the vortices A1 and
A2 are shed from the gap almost at the same time and coexist as they are convected
downstream. There are a number of vortex shedding periods in one cycle of vibration.
When two cylinders are placed in a flow in a tandem arrangement, vortex shedding
only occurs from the downstream cylinder, as the two cylinders are very close to each
other, leading to a single body vortex shedding flow mode. When the gap between
the two cylinders is large enough, vortex shedding occurs from both cylinders and the
flow is in a co-shedding mode (Zdravkovich [34]; Zhou and Yiu [35]). It is interesting
to see that at L = 3.5, the vortex shedding from the top row cylinders is in an
elongated single body mode, while that from the bottom row cylinders is in a co-
shedding mode. When four circular cylinders are in an inline square arrangement
(α = 0◦), the combination of single body and co-shedding modes does not occur
(Zhao et al. [30]). This is a distinct feature for flow past four cylinders at a small
angle of attack. Although the vortices shed from the cylinders are in different modes,
the vortex shedding period of the four cylinders synchronizes. This is evidenced by
the FFT spectrum shown in Figure 9(e), where the total lift coefficient only has
one predominant frequency component. The lift coefficient would have had multiple
frequencies if the vortices shedding from the top row cylinders were different from
those from the bottom row cylinders. As L is increased to 4, vortex shedding occurs
from all four square cylinders, and the vibration is in a high amplitude galloping
mode. The flow patterns for L = 4 and Vr = 40 are not presented since they are
similar to that for Vr = 35 shown in Figure 8.
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Figure 13. Vorticity contours for α = 2.5◦, Vr = 40 and L = 3.
The position of the cylinder is marked on the XY -trajectory in each
diagram.

Figure 14. Vorticity contours for α = 2.5◦, Vr = 40 and L = 3.5.
The position of the cylinder is marked on the XY -trajectory in each
diagram.

The above numerical results suggest that the distance L has a significant effect on
the vibration amplitude and the response frequency through changing the flow mode.
If L is either sufficiently large enough (L = 4) or sufficiently small (L = 1.5 and 2),
galloping occurs and the vibration amplitude is large. The vibration for very large
L comprises galloping responses of four cylinders while the vibration for very small
L resembles the response of a single cylinder. The vibration amplitude is reduced
significantly for 2.5 ≤ L ≤ 3.5 because of the influence from the horizontal gaps of
the cylinders.
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5. Conclusions

Numerical simulations were conducted to study the flow-induced vibrations of four
rigidly-connected cylinders in a square arrangement in two-dimensional steady flow
of a constant property Newtonian fluid with low Reynolds number. The conclusions
are summarized as follows:

(1) The effect of angle of attack (α)
VIV response is observed for all the simulated angles of attack with L = 4.

The galloping occurs when the angle of attack is smaller than α = 5◦. VIV
and galloping responses can be separated from each other because the gallop-
ing happens at critical reduced velocities, which are greater than the upper
boundary of the VIV lock-in regime. When the angle of attack is large enough
(for example, α = 12.5◦ and 15◦), only VIV responses are observed. As for
α = 7.5◦ and 10◦, the modulation between the vortex shedding frequency and
a very low frequency was observed. With the increase of reduced velocity, the
low frequency component become more significant, and the dynamic response
amplitude increases and finally evolves into galloping.

(2) The effect of center-to-center distance (L)
The effects of the center-to-center distance on the dynamic response were

examined by simulating the dynamic response at typical Vr = 40 and α = 2.5◦.
Galloping occurs when L is either large or small. When L is an intermediate
value (from 2.5 to 3.5), galloping is not observed because the vortex shedding
flow is strongly affected by the jet flow from the gap of the cylinders. At
L = 3.5 a combination of the single body vortex shedding mode from the
top row cylinders and the co-shedding mode from the bottom row cylinders
is observed. This combined vortex shedding mode is believed to be a distinct
feature for small angles of attack.

6. Nomenclature

α angle of attack,
L non-dimensional center-to-center distance between two adjacent

square cylinders,
B side length of the square cylinder,
fn structural natural frequency,
U free-stream velocity,
Vr reduced velocity, U/fnB,
ν kinematic viscosity coefficient,
Re Reynolds number, UB/v,
m total mass of the square cylinders,
ms displaced mass of the fluid,
m∗ mass ratio, m/ms,
c structural damping coefficient,
k structural spring stiffness,

ζ structural damping ratio, c/(4km)1/2,
u, v non-dimensional variables of velocity,
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t time,
p pressure,
ρ fluid density,
xi Cartesian coordinate with x1 = x and x2 = y,
ui velocity component in the xi direction,
uj mesh velocity of the moving computational mesh,
Xi non-dimensional displacement,
Fn dimensionless structural natural frequency, fnB/U ,
Fi total hydrodynamic force in the xi-direction,
Ci total hydrodynamic coefficient on the square cylinders in the xi-

direction, 2Fi/(ρBU
2),

CD drag coefficient,
CL lift coefficient,
Si displacement of the mesh modal point in the xi-direction,
A area of the computational mesh,
γ introduced to control mesh deformation, 1/A,
Xrms, Yrms root mean square displacement,
CD,mean mean total drag coefficient,
CD,rms, CL,rms root mean square total drag and lift coefficients,
Ax vibration amplitudes in the x-direction, (Xmax −Xmin)/2,
Ay vibration amplitudes in the y-direction, (Ymax − Ymin)/2,
Xmax, Xmin, Ymax, Ymin maximum and minimum displacements,
X displacements of the cylinder in x-direction,
Y displacements of the cylinder in y-direction,
fm modulation frequency,
fs vortex shedding frequency,
fg frequency of the galloping response,
f∗ dimensional frequency,
f non-dimensional frequency, f = f∗B/U .
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