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PRACTICAL DEFINITION OF ROBUSTNESS

Ferenc STEINER and Béla HAJAGOS

The paper defines the index of robustness (r) as a weighted average efficiency belonging to a
statistical estimating procedure. The weights are the occurrence probability densities of the various
model types which can be accepted as adequate for a given discipline. The value r can simultaneously
take very different probability distribution types into consideration. Instead ofdeciding categorically
‘robust” — ‘not robust’ the examples show robustnesses in the interval from r=36 % to r=96 %. In
geophysics practice quantitative comparisons are unavoidable.

Some of the figures demonstrate the original efficiency curves (e(t)-s), figuring in Eq. 12 given
for r, too, thereby enabling so that the changes in the efficiencies can be analysed in detail.

Keywords: robustness, index of robustness, statistical efficiency, probability density,
error distribution

1. Introduction and preliminaries

The definition of robustness by theoretical experts of mathematical statis-
tics [see e.g. HAMPEL et al. 1986] does not result in numerical values (thereby
facilitating the near-optimum choice of the statistical algorithm,) and/or it
belongs to very narrow (or even infinitesimal) neighbourhood of a distribution
type. Let one comment be cited from the Summary of the article of DONOHO
and LIU [1988], i.e., from a paper written by mathematicians: ‘Of course, this
robustness is formal because p-contamination neighbourhoods may not be
large enough to contain realistic departuresfrom the model' (enhancement was
not made in the original text). Here we propose the acceptance of a measure of
robustness which is also suitable for practical applications. The discipline of
geophysics particularly needs quantitative comparisons made on the grounds
of large type-intervals.

University of Miskolc, Department of Geophysics, H-3515 Miskolc-Egyetemvaros
Manuscript received: 20 July, 1993



194 F. Steiner—B. Hajagos

1.1. Various estimations ofthe location parameter (a briefenumeration)

A chronological enumeration of different statistical procedures is given
below with some comments. In every case below the task is to determine
(estimate) on the grounds of a given sample the most characteristic value of the
actual probability distribution (this is naturally the symmetry point if the
distribution is symmetrical). — In the first and second case it is impossible to
determine how old these estimations are (at least two hundred years old):

arithmetic mean

sample median

a-trimmed mean 1821 see e.g. FEGYVERNEKI [1992] — but may be as old
as the arithmetic mean itself

Hodges-Lehmann es- 1963

timate

Huber estimate 1964

M -estimate 1965 thisisthe minimum place ofthe P -norm, see Eq. 36
in Hajagos and Steiner [1991]

M-estimate 1973  this is the minimum place of the P-norm, see Eq. 30
in Hajagos and Steiner [1991]

1.,,-estimate 1990 this is the minimum place of the generalized Ip-

Q?>0, p*\, p*2) norm, see e.g. TARANTOLA [1987] (it is well known

that for p =1 we would get the sample median and
forp=2 the arithmetic mean). The date of Lp is given
here in accordance with SOMOGYI and ZAVOTI
[1990], as the authors do not know any earlier article
in applied statistics that deals in detail with ap value
which is not an integer.

Where no explanation is given or no reference is cited, see e.g. the
monograph HUBER [1981] or the original papers HODGES, LEHMANN [1963]
and HUBER [1964] (in the present paper ‘Proposal 2’ of HUBER is treated). It
should be mentioned that both M*- and M-estimates are called ‘/Hostfrequent
value’ therefore in the case of more unknown parameters the corresponding
statistical algorithm is called ‘M FF procedure’ (and the simple estimate can
also be called iIMFV-value’instead of M- or M*-estimate). Some characteristics
of the M-estimate are given in a comprehensive manner in the Table at the end
of the book STEINER (ed.) [1991];Jn the bibliography of this book are cited the
paper and thesis where M- and M*-estimates were first defined.

1. 2. How to calculate the efficiencies

If certain conditions for the density function are fulfilled and the sample
range (r) tends to infinity, the distribution type of the estimates becomes
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Gaussian (see e.g. HUBER [1981]; the overwhelming majority of the following
can also be found in the same monograph). This means that the dispersion can
adequately be characterized by the variance (VAR =02) of the estimates. To be
independent ofn, itis convenient to introduce the notion ‘asymptotic variance’
{A2) with the equation

A2=Hmn.o2 (D)
n-.00

Itis often easy to find statistical algorithm that leads to the minimum asymptotic
variance (A2") for the probability distribution in question.

The efficiency (e) ofan arbitrary statistical algorithm having an asymptotic
variance A2for a well defined probability distribution, is defined as

€= (2)

(where A2" obviously belongs to the same probability distribution). Often e
is expressed in per cent.

Eq.2 says that e per cent of the data would be sufficient for the same
estimation accuracy if we were to use an optimum algorithm instead of the one
actually used. In practice therefore, from the viewpoint of the cost of measure-
ments it is of crucial importance that the statistical efficiency e is as great as
possible.

How does one calculate the asymptotic variance A2? If the so-called
influence function IC(x) is known for the statistical algorithm and for the actual
probability distribution defined by the density functionf(x), A2 can be deter-
mined as

A2=j1C 2(x).f(x) dx. 3)

If primarily the \|/(x)-function is given (the \|[/-function plays a key-role in the
best elaborated part of the robust statistics), the influence function can be

calculated as
-1
IC(x) =fW . JV (y)-/OZDy 4)

In some cases A2 can be calculated directly by means of a simple formula.
Table / gives either/12-formulas, or 1C-, or y -functions (always choosing the
simplest alternative) for the statistical procedures yet enumerated in 1.1. (for
probability distributions symmetrical to the origin). The asymptotic variance
A2 can be calculated in every case without difficulty.
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1. 3. The supermodelfa(x)

The supermodelfa(x) was introduced by the density functions

Ko N
a o a- ]
faw =T 1 n  (M3-a2 4op ®)

[see e.g. CSERNYAK, STEINER 1991]; this standard form can be generalized
by replacing X by (x-TyS and dividing by S (T and S are the parameter of
location and parameter of scale, respectively). Here, we mention some types
of this supermodel: the distribution type a=5 is called geostatistical or simply
statistical having clearly the density function

fst (jc) = 0.75(1 +x2r 25 . (6)

(according to DUTTER [1987] this is a very commonly occurring distribution
type in geostatistics, but in the opinion of the authors its acceptance as a model
is justified more generally in the practice of statistics). If short flanks are
guaranteed, the so-called Jeffreys-type (a=9) can serve as an adequate model
for the distribution:

statistical procedure characterization of the procedure from the view-
(estimate) point of the asymptotic variance of the estimates
arithmetic mean IC(X) =X, i.e, A2=VAR -a2

(VAR means the variance, o the scatter of
the mother distribution)

sample median 2 1
4.f\ 0)
I-20.F 1(a)’
a-trimmed mean IC(X) = */(I-20t), if [id <F_1(I-a)

-p4n~F_1(l-a) if x>f 'tl-a)

Hodges-Lehmann estimate »
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CS 00
J R7(x)dr+(c5)D (.r)dr
2 0 cS
' L .
2 p(.t)d.r
0 /
. the value S fulfils the condition
Huber-estimate S P
—20F R dt+c3fi(y)dx =
650 S

Cc oo
=Jlc(i) dr+cd/c (x) dx ;
0 c
(/g(x) represents the Gaussian density function)

*

M -estimate *
- 2 22
[3m 2+x2]2
The dihesion e fulfils in both

most frequent cases the condition
values ® 2 2
r /(x)dx-0
lie 2+x2]2
AJ-estimate WM - (ktf%- )%2
/M-estimate Up(X) =sign x . Hp~x

Table I. Charaterization of some statistical procedures
I. tablazat. Statisztikai eljarasok jellemzése

AW -fa~”n 245 » )
It can easily be shown that for the supermodelf a(x) the minimum asymptotic
variance is given by the simple formula

2 a+2
mtn  a(a-j) (8)

For integer values of a we get Student distribution types characterized by (a-1)
degrees of freedom; the so-called Jeffreys interval of distribution types defined
by 6 <a <10 was primarily given also by limits expressed as 5 and 9 degrees

of freedom. Obviously fa[x.(a-3)~1¥] tends to the standard
Gaussian density functionf G (x) = (2n ) Xl exp(-Jc2/2) if For a=2 we
trivially get the Cauchy distribution.
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The probability density functions of the Cauchy-, (geo)statistical-, Jeff-
reys- and Gaussian type are shown in Fig. i; in all four cases the probable error
(i.e., the semi-interquartile range q) equals unity (choosing the parameter of
scale S always appropriately). We find these curves visually very similar —
although statistical procedures can behave very differently if the actually
occurring error distribution type is, say, geostatistical instead of Gaussian.
Some statistical procedures (first of all the classical ones) are extremely
sensitive to the behaviour of the flanks but Fig. 1 (and other such commonly
used visualizations, too) does not characterize these parts of the distributions
vety well (the small values offix) at both ends of the/(x)-curve can result in
misjudging the weight of the flanks measured in the occurrence probability of
x of the neglected sides). The authors therefore prefer the plotting of the density
function versus F(x)-curve since this does not depend upon the parameter of
scale and, moreover, it enhances the behaviour of the tails (as usually,

Fig. 1 Four-probability density functions of x from the supermodelfa(x) (see Egs. 5-7). With
appropriately chosen parameter of scale the probable error (semi-interquartile range) q equals
unity in every case
1 abra. Azfa(x) szupermodell négy valészinlségs(riiség-fliggvénye (Id. az 5-7 egyenleteket). A
skalaparaméter megfelel6 valasztasaval a q valdszin( hiba (azaz az interkvartilis félterjedelem)
egységnyi nagysagu mind a négy esetben
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X
F(x) =J/(x) dx represents the distribution function). It is advantageous to

—00

‘norm’ the densities to their maximum value; this was done in Fig. 2. where
the great difference between the flanks and the general features of the Cauchy-,
(geo)statistical and the Gaussian type are visualized. (For Laplace- and uniform
distributions thef(x)/fmax versus F(x)-‘curves’ consist of straight lines, see the
dashed lines in Fig. 2.) It should be mentioned, too, that Fig. 2 clearly shows:
that there are distribution types that are characterized by much heavier flanks,
than those of the Cauchy-type.

Fig. 2. Probability densities (normed to their maximum value) versus distribution function F(x)
as a visualization which is independent both of the parameter of scale and the parameter of
location. The different behaviour of the flanks is satisfactorily accentuated here

2. dbra. Maximalis értékiikre normalt valdszin(iségsirlségek az F(x) eloszlasfiiggvény
értékeinek a fliggvényében. Ily médon mind a hely-, mind a skalaparamétert6l fiiggetlen gorbéket
nyeriink, amelyek jél lathatoan fejezik ki az eloszlasok szarnyainak kiilénb6z6 viselkedését

2. Quantitative characterization of robustness

2. 1 Inherent supposition ofthe maximum likelihood-principlefrom the
practical viewpoint. Occurrence probability densities (fj(t), fi(t)) of
type t distribution.

Statistical procedures can be derived on the basis of the maximum Zikeli-
hood-principle (but these procedures are usually applied not only for the
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distribution type which was supposed in the first step). The ML-principle
originally postulates that the type ofthe actual distribution is a priori known
(with probability = 1). Good Heavens! Indeed, the statistician working in a
practical environment never a priori knows the type of the actual probability
distribution exactly.

Letussuppose, however,just foramoment, that this supposition is fulfilled
and this a priori known type is the Jeffreys distribution (see Eq. 7). Itis easy
to verify that the maximum likelihood method results in the calculation of the
M-estimate with k=3. This latter value is a slightly rounded one consequently
the efficiency is not exactly 100 % but ‘only’ 99.9999 %. Obviously the
practical statistician would tolerate perhaps a ‘loss’ of say, 2-3 %, too (and a
loss of 1% would certainly be accepted as insignificant even by the most
rigorous mathematician).

The question arises if other estimation procedures can approximate the
maximum efficiency or not. Fig. 3 shows the efficiencies of the /.~-estimates
versusp for the Jeffreys distribution; ifp= 1.6 is chosen the efficiency is greater
than 98 %. It can be demonstrated in a similar way that the Huber estimate has
maximum efficiency for the Jeffreys distribution if c=1.4 is chosen. Briefly,
the efficiencies of six estimating procedures (to an accuracy of two decimals)
are summarized in Table II.

statistical procedure efficiency for the Jeffreys distribution
M-estimate; k=3 100.00%
M*-estimate; k=3 99.87%
Hodges-Lehmann estimate (H.L.) 99.86%
Huber; c=1.4 99.60%
a-trimmed mean (xa); a=0.1 99.54%
Ip-estimate; /3=1.6 98.19%

Table 1. Efficiencies of various statistical procedures if the errors are Jeffreys-distributed
Il. tablazat. Statisztikai eljarasok Jeffreys-eloszlasra vonatkoz6 hatasfokai

From the practical viewpoint, all six procedures turned out to be equally
good if the samples come from the Jeffreys distribution. It should be empha-
sized that the first five estimates show efficiencies even greater than 99.5 %

Introducing t = (u-1) 1 as the type parameter, the assumption of the
maximum likelihood-principle says nothing less than that the density function
of the occurrence probabilities of variousfa(x) types is

f ML(t) =b(t~0A25) 9)

(5 means Dirac-O). For practical purposes, this is unacceptable. We can require
at least that the occurrence probability density must be maximum for the type
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Fig. 3. Efficiency curve for different Ip-estimates for the Jeffreys distribution (see Eq. 7)
3. dbra. Kulénbdz6 ty-becslések hatasfokai a Jeffreys-eloszlasra vonatkozéan (Id. a 7 formulat)

t=0.125 (and not significantly less for the neighbouring types). If outliers
seldom occur then one per cent probability density of file maximum value
should be enough for the Cauchy-type to model somehow such situations, too;
and finally we requirent))=0 (see SZUCS 1993 and references therein). Conse-
guently, instead of Eq. 9 itis not only convenient but also justifiable to accept

fj(t) =64.7.e~8f, (10)

the letter J in the index refers to the fact thatfj(t) has its maximum position at
t=0.125, i.e., at the Jeffreys distribution.

(A comment seems to be appropriate here: although 10)=0 holds — in
agreement with the modem statistical literature — the following zero hypo-
thesis: ‘the error distribution is Gaussian’is generally accepted at the commonly
used significance levels even if Eq. 10 characterizes the occurrence probabili-
ties of each type-interval, see szUCS [1993].)

The so-called Jeffreys interval of probability distribution types around
t=0.125 shows the shortest flanks which can realistically be hoped for in nature.
For example, in geostatistics, it can be stated [after DUTTER 1987] that we can
accept as the most common type anfa(x) with a=5, i.e., with 7=0.25. On the
other hand, STEINER (ed.) [1991] shows examples proving that in the geosci-
ences the Cauchy-type really occurs, i.e., the probability density of the types
can not be a negligible value around 7=1 compared with the maximum one.
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These conditions are fulfilled (and/[,0) =0 also) if we accept as a probability
density function for the distribution type t:

fD(t) = 16.t.e~4t (11)

(compare Eqg. 12 in STEINER 1991). Generally speaking, it is of crucial
importance that we must at least be approximately imformed about the proba-
bility densities of the types of supermodel which can be accepted for adequate
modelling of the error distributions occurring in agiven discipline. Itis the duty
ofthe expert of the discipline in question to give an acceptable density function
formula for the types which are able to model the actual error distributions in
his territory of science or application. Bothf D(t) andf/t) curves are visualized
in Fig. 4.

Fig. 4. Occurrence probability density
functions for different model distribution
types (r=(a-I) 1)

4. dbra. Kilonbdz6 eloszlastipusmodellek
el6fordulasi valoszin(iségsdriiségei
(f=(G-1)-1). Azfj(t) elfogadasa csak
garantaltan révidszarny( eloszlasokat
eredményez6 szituaciokban javasolhatd

2.2. Efficiency curves to visually demonstrate the different robustnesses
ofvarious statistical procedures

One can find, in the literature of robust statistics, statements of the form:
‘procedure A is robust, procedure B is not robust’. By the authors opinion such
categorical distinctions are hard to justify — to say nothing about the contra-
diction that BOX [1953] introduced the notion ‘robustness’ for a method of
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conventional statistics (based on the Lj-norm) which letter is quite uniformly
classified as ‘not robust’ by robust statistics (in the last three decades).

The efficiency curves versus t are shown in Figs. 5-8 for all six statistical
procedures figuring in Table N (in Figs. 7 and 8 the e(f)-curve for the median
is also given). The speed of the decrease of e is different for increasing t from
the nearly equal maximum value: it is most rapid for Lpp=1.6; at t >0.8333
even e=0 holds. (It is easy to demonstrate also for the general case thate >0
can hold only if t <(2p-2)'1) Itis curious that two pairs of estimates behave

similarly (M and M* both for Z=3; Huber c=1.4 andxa a = 0.1 ;see Figs. 6 and 7)

though the definitions of the corresponding statistical procedures are different.
Qualitatively the order concerning the robustness of the six procedures

seems to be the following: L p=1.6; xaa =0.1 and Huber c=1.4; Hodges-

Lehmann estimate; M and M both for k=3. The interesting behaviour of the
latter e(i)-curves is that for t—""(a-*I) the efficiency seems to tend to an
asymptotic value of 33-34% (see Fig. 8); Fig. 2 shows that these distributions
have extremely heavy flanks. In Figs. 9 and 10also for k=2 the efficiency curves
are shown both for M and M*; the corresponding asymptotic values here are
48 and 50%, respectively. It should be mentioned that k=2 is accepted as the
‘standard version’ of the most frequent value (MFV-) calculations, in full
agreement with the fact that maximum efficiencies are to be obtained very near
to t=0.25 (i.e., to a=5) wheref D(t) reaches its maximum (see Eq. 11).

The asymptotic behaviour of the e(t) curves is a hint that MFK-procedures
are not only robust to a high degree but are also extremely outlier-resistant. The
two notions robustness and resistance, must be distinguished although there
exists some interconnection between them. The oft occurring opinion, how-
ever, that robustness = outlier-resistance, is misleading and unacceptable.

2. 3. Average efficiencies as adequate indices ofrobustness in practice

Definition. Let us take the probability density function o X) for [values
in the inverval 7) <t <T2 and let it be supposai that the probability density

function of the type parameter t (i.e., fit)) is also given. The index of the
robustness of an estimation procedure according tofit) is defined as
h
r=je(t).f(t)dt (12)
T

where e(t) is the efficiency of the estimation procedure in question if the data
are distributed according to qu(t; J).

Comment 1. The existence of e(t) anticipates the existence of the Fisher-
information of cp(i; X) to the fixed value t, on the one hand and, on the other, it
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Fig. 5. Efficiency curves for six estimating procedures in the type interval 0 <t <0.25
5. dbra. Hatasfokgorbék hat becslési eljarasra a 0 <t <25 tipustartomanyban
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Fig. 6. Efficiency curves for six estimating procedures in the type interval 0 <t < 15
6. dbra. Hatasfokgorbék hat becslési eljarasraa 0 <t < 1,5 tipustartomanyban
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Fig. 7. Efficiency curves for six estimating procedures in the type interval 0 <t <10
7. dbra. Hatasfokgorbék hat becslési eljarasra a0 <t < 10 tipustartomanyban
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Fig. 8. Efficiency curves for four estimating procedures in the type interval 0 <t <100
8. abra. Hatasfokgorbék négy becslési eljarasra a 0 <t < 100 tipustartomanyban

also anticipates the existence of the asymptotic variance of the estimates if the
data are distributed according to gp(t;x) (T[ <t < T2).

Comment 2. It is the task of the expert of a discipline (and not the task of
the mathematician) to define a function f(t) which can be accepted as an
adequate one for the discipline in question. The choicef(t)=fR(t) (see Eq. 11)
seems to be an adequate one in the geosciences (but the authors of the present
paper suppose that this choice may be all right in other territories of statistics,
too). The choice f(t)=fjt) (see Eq. 10) seems to be a ‘quasi-classical’ one as
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the tails of the distributions in the overwhelming majority of the cases are very
short.

Comment 3. The definition of r given in Eq. 12 based on a supermodel
op(t;X), i.e., for a case of only one type parameter, can be trivially generalized
if more than one type parameter exist in the supermodel used.

In Table Ill. for ten statistical estimating procedures the indices of robust-
ness are given (in per cent), calculated for both f(t)=fjt) and f(t)=fD(t); the
ordering was made according to the latter one.

index of robustness (r)

statistical estimate %%%i%%&%ﬂi
by the density function
name symbol fj(t) (Eq. 100  /0(1) (Eq. 11)
arithmetic mean X (Lp,p =2) 67% 36%
Lp;p=1.6 85% 60%
a-trimmed mean xa\a = 0.1 93% 79%
sample median med (Lp; p=1) 7% 80%
Huber-estimate (Proposal 2) Huber; c=14 94% 81%
Hudges-Lehmann estimate  H. L. 96% 85%
M*; k=3 96% 89%
most frequent value (MFV) ~ M\k=3 97% 90%
M*\k=2 98% 96%
M;k=2 98% 96%
Table 1I. Indices of robustness for various statistical estimates

I1l. tablazat. A robusztussag mérészamai kiilonboz6 statisztikai becsléseknél
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A ROBUSZTUSSAG MEROSZAMANAK DEFINICIOJA

STEINER Ferenc és HAJAGOS Béla

A dolgozat megadja arobusztussag r-reljeldlt mér6szamanak a definiciéjat. A definicié szerint
r a széban forgo statisztikai eljaras hatasfokainak a sulyozott atlagaként szamitandd; a sulyok
valamely tudomanyag szemszdgébdl adekvatnak mindsiilé hibaeloszlastipusoknak az el6fordulasi
val6szinliségstiriiségei. A ,robusztus” — ,,nem robusztus” kategorikus megitélés helyett, amely ma
mar talhaladottnak tekintendd, a bemutatott példak az r=36 %-t6l r=96 %-ig terjed6 intervallumba
es6 robusztussag-értékeket mutatnak. A geofizika gyakorlatanak kiiléndsen sziiksége van ezen a
téren is arra, hogy kvantitativ 6sszehasonlitasokat tehessen.

A dolgozat hat abraja azokat az e(t) hatasfokgorbéket is bemutatja, amelyek alapjan az r
szamitasa torténik. Az olvasénak igy modja van arra, hogy esetleges specialis szempontok szerint
is vizsgalat targyava tegye a kilonbdz6 statisztikai eljarasok hatasfokainak a hibaeloszlastipus
szerinti valtozésait.
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INVESTIGATIONS CONCERNING RESISTANCE —
IMPORTANCE OF THE CHOICE OF THE FORMULA
DETERMINING THE SCALE PARAMETER

Béla HAJAGOS* and Ferenc STEINER*

If statements are made only in a summary manner, ’« distributionally robust » and « outlier
resistant », although conceptually distinct, are practically synonymous notions’ [HUBER 1982]. If,
however, quantitative comparisons are necessary (especially in the practice of geophysics) on the
grounds of an outlier model, an estimation procedure can turn out to be more resistant (compared
with any other one) even though its index of robustness is significantly less. The estimation-pair of
‘sample median’ and ‘a-trimmed mean’ (a =0.1) can serve as example.

The paper shows, too, that the chosen scale parameter generally plays a key role in the
estimation of the location parameter regarding both the resistance and the robustness. For example,
in the case of far lying outliers the estimate MFV (a variant of the mostyfequent value calculations)
is to a significant degree more resistant than CML (frequently used abbreviation for Cauchy
maximum likelihood, inasmuch as also the scale parameter is determined on the basis of the
maximum likelihood principle), although the formula for determining the location parameters MFV
and CML isjust the same in both cases. It should be noticed, too, that the permissible rate of outliers
(the classical breakdown bound) is also greater if MFV sare calculated and not CML values.

Keywords: resistance, scale parameter, statistical efficiency, outlier models, break-
down bound

1. The effect of one single Cauchy flank

Seldom can it be guaranteed that our data are outlier-free moreover there are
countless types of outlier. Every investigation can consider only some of it.

One possibility is to accept the opinion of TARANTOLA [1987 p. 303]: ‘the
Cauchy function 1/(1+j2"’...'seems to be adequate for modeling suspected
outliers by an unknown amount’. Bias, however, is generated by outliers only

University of Miskolc, Department of Geophysics, H-3515 Miskolc-Egyetemvaros
Manuscript received: 20 July, 1993
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if the far lying values behave asymmetrically. Consequently, the simplest way
is to investigate the estimating procedures on the outlier model given by the

density funtion

r .
0, if *<rclip)

fouNe = 1 . (1)
if x>Ic
0(1-p) @+2) ° 1®

where Fc (X) is the distribution function of the standard Cauchy distribution.
The interpretation of Eq. 1 is the following:

in the interval [/~ '(/?), /~'(1-/?)] defined ‘clear’ distribution is distorted

by a positive Cauchy tail of the weightp/( 1-p).

As the real value is assumed to be zero, the resulting "-values for given
p-s have the meaning of bias caused by outliers greater than F~I(I~p). The
-curves for six estimating procedures are given in Fig. i; besides the generally

known (X-trimmed mean ( xa for a = 0.1) and the sample median (med) four

versions of the most frequent values are characterized by -curves (M- and
M=*-values for k-2 and k-3, see the corresponding \j/-functions and the
condition for s in Table I. in STEINER, HAJAGOS [1993]). The greater the
increase of the bias (i.e., of the '-values) the less the resistance of the statistical
procedure in question against such an occurrence of outliers. Fig. 1. shows that
the sample median is more resistant than the a-trimmed mean in the conven-
tional case of a = 0.1, and the resistance of M* for k=2 is even greater than the
resistance of the sample median.

It is shown in STEINER, Hajagos [1993] that the a-trimmed mean for
a = 0.1 is more robust than the sample median — and we have just seen that
the opposite relation is valid for the resistances if the outliers occur according
to the ‘Cauchy tail model’. The questions ‘which is more robust?’ ‘which is
more resistant?’ must be answered in some concrete situations also giving the
numerical values of the indices of the robustness and characterizing somehow
guantitatively also the difference of the resistances (in different ways, e.g. by
the quotient of two biases, i.e., of two I" values for the same p which is actually
of interest to us). Even ifagiven estimation A is more robust and more resistant
than estimation B, quantitative comparisons can naturally differ significantly
(e.g. A is twice as resistant as B but A is only a little bit more robust than B).

The foregoing shows that in respect of quantitative comparisons the
notions ‘robustness’ and ‘resistance’ differ essentially from each other. If,
however, only summarizing statements are made qualitatively (having only the
possibility to say ‘yes’ or ‘no’), we can agree that ‘« distributionally robust »
and « outlier resistant », although conceptually distinct, are practically synony-
mous notions’ [HUBER 1982]). Unfortunately, practical problems can seldom
be solved satisfactorily with only ‘yes’or ‘no’answers; we are obliged to know
which method is “more robust’ and/or ‘more resistant’ in concrete situations
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Fig. 1. Bias (7) versus ‘weight’p of a single Cauchy-flank for a-trimmed mean, sample median,
and some most frequent values (M and M* for k=2 and 3)
1 abra. Torzulasok (,,bias", I-vel jel6lve) egyetlen Cauchy-szamy p ,,stlyanak” a fliggvényében
a -levagott atlag, mintamedian és néhany leggyakoribb érték esetén (M és M*\ k=2 ill. 3)
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and — in addition — if these differences are significant or not. For instance
engineering practice always needs measurable characteristics.

2. Comparison of MFV- and CML-estimates

Let MFV (most/requent value) in this paper be the notation for the M-value
for k=1. The simplest form of its vj/-function is:

VmfAx) =~ ; (2a)

the so-called CML-estimate (Cauchy maximum /ikelihood), however, has just
the same ~/-function:

YemIM = j+Q2 (2b)

(see the iteration formula for p in ANDREWS et al. 1972, p. 17). The curves
characterizing the resistance (measured on a Cauchy tail) do not fully coincide
(see Fig. 2.) because CML- and MFV-estimates differ from each other in the
accepted scale parameter. (The med-curve in Fig. 2. is shown for comparison,
and the -curve for M* k=1 is also given, showing a significantly greater
resistance for this type of most frequent value calculations.)

The conditions for the just mentioned scale parameters denoted by t MFV
and eCML— in integral form and reduced to zero — are the following:

3x2~£2

for eypym fix)dx =0, (3)
@ [z2+x2]2
sz—azl (x)dx = 0 A
° X)ax =
for zomed o (4)

(see HAJAGOS [1991], and ANDREWS et al. [1972] p. 17, respectively; in the
latter case a convenient iteration formula is given on the second line of p. 17
resulting in £cml if For the standard Cauchy type both formulae give
unity (i.e., the semi-interquartile range of the standard Cauchy distribution) —
but what about other distribution types?

To investigate this and similar questions we introduce the 7/x)-supermod-
éi’ by the probability densities

ri 1]
2t +2 _h i
fix) (1+x2) 2r 2 5)
fn . N

21



Investigations concerning resistance 215

Fig. 2. Bias (7) versus ‘weight' p of a single Cauchy-flank for MFV-, CML- and M* k=1
estimations. For comparison, the curve for the sample median is demonstrated, too
2. abra. Torzulasok (,,bias”, I-vei jel6lve) egyetlen Cauchy-szamy p ,,stlyanak" a fliggvényében
MFV-, CML- és M' k= 1 becslésekre. Osszehasonlitas kedvéért itt is feltiintettiik a mintamedian
gorbéjét
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With a = 1+1/t this is the same expression as Eq. 5 in STEINER, HAJAGOS
[1993] but in the present paper//jg means the actual density; in contrast,fa(x)
will be the model density function being in some cases very far from the actual
one. In such a way the treatment will be easy and will not lead to any
misunderstanding.

For t=1we obviously get the Cauchy density functionf c(x), for t=1/4 the
fsl(x) and for f=1/8 thefjx) densities (see Eqgs. 6 and 7 in STEINER, HAJAGOS
f19931). If t-*0 and the scale parameter simultaneously varies as
71/f-2, the limit density is the standard Gaussian one (given by

fa(x) = (2j9-1/2 . exp(-x2/2)). All four specially mentioned types are vis-

ualized by their density functions in Fig. 1 of the just cited paper.

Fig. 3. shows the zMRr and zCML- curves versus t, Eq. 3 and Eq. 4,
respectively. The different scale parameters coincide only at t=1; for great
values of t zMFVtends to a constant value (to 2.592), whereas, zCML increases
exponentially, see Fig. 4. (It should be noted that iffix) is not symmetrical to the
origin, naturally (x-MFV)2and (x-CML)2 figure instead 0fx2 in Egs. 3 and 4.)

From the viewpoint of determining of the location parameter the definition
of the scale parameter is usually treated as a second order question, or even one
that can be neglected. The question arises if this method of treatment is justified
or not with respect to both the resistance and the robustness as the e-curves are
quite different. The simplest way is to show the efficiency curves (e(t)) for both
estimations (see Figs. 5 and 6). The significance of the differences is obvious

Fig. 3. Scale parameters emfv and zcml
versus type parameter t (see Eq. 5). The
values equal each other only att=1, i.e., at
the Cauchy distribution where
EMFV = ECML = 1 holds

3. abra. A kétféle skalaparaméter: emfv és
eCML értékei a t tipusparaméter fliggvényében
(Id. az (5) formulat). Az értékek kizarolag
f=1-nél, azaz a Cauchy-eloszlasnal egyeznek
meg, ahol is zmfv =£CML= 1
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Fig. 4. Scale parameters zmFVand
EcML versus type parameter t (see
Eqg. 5). At large value of t, i.e., in
cases of heavy flanks, egml increases
exponentially as a function of t,
whereas, emfv tends to a finite value

4. &bra. A kétféle skalaparaméter:
emfv és ecml értékei a t
tipusparaméter fliggvényében (Id. az
(5) formulat). A ttipusparaméter
nagy értékeinél, azaz stlyos szarnyak
esetén, ecml exponencialisan
novekszik f-vel, mig emFV véges
értékhez tart

(e.g. for t=0, i.e., for the Gaussian distribution type, CML has 60 %efficiency
and MFV has an efficiency of 74 %). The indices of robustness are 94 % for
MFV and 87 % for CML (calculating according tof D(t), see STEINER, HAJA-
GOS [1993], based on the type-distributions characterized by f/t), the results
are 89 % for MFV and 79 % for the CML-estimation). The latter value differs
from 100 % about twice as much as the index of robustness for MFV. These
values and Figs. 5 and 6 clearly show that MFV- and CML-estimates differ
from each other significantly — at least in respect of robustness. Paragraph 3.4.
of the present article shows, however, that the same is valid concerning the
resistance if there are very many far lying outliers. (Even Fig. 6. itself shows
that the MFV-method has a much greater resistance compared to the CML
calculations if we interpret the heavy flanks belonging to great t values as a
symmetrical appearance of the outliers causing no bias but a considerable
decrease in accuracy; see also STEINER [1991]. In the present article, however,
the effects of outliers are treated in the overwhelming majority of cases in
respect of the bias.)
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1m0t

Fig. 5. Efficiency curves of MFV- and
CAl/.-estimates versus type parameter t.
The disadvantages of the
CML-estimate are obvious. (The
calculation method is given, e.g., in
Steiner, Hajagos [1993].)

5. d&bra. Az MFV- és CAIi/.-becslések
hatasfokgorbéi a t tipusparaméter
fliggvényében. A CJl/.-becslés
hatranyai nyilvanval6ak. (A szamitas
madjara nézve Id. pl. STEINER,
Hajagos [1993])

Fig. 6. Efficiency curves of MFV- and
CN//.-estimates versus type
parameter t. For very heavy flanks the
efficiency of CML decreases to zero,
that of the MFV, however, remains at
a high efficiency level

6. abra. Az MFV- és C/VL-becslések
hatasfokgorbéi a t tipusparaméter
fliggvényében. Extrém mértékben

stlyos szarnyak esetén a CML
hatasfoka zérusra csokken, mig az
MFV-é tekintélyes érték(i marad
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3. Three other types of outliers

3.1. Sortie heuristic remarks

The behaviour of the eMPV-curve in Fig. 4. is a consequence of the basic
‘philosophy’ of the most frequent value (MFV-) calculations which are also
heuristically presented in some partsof STEINER [1991] and can be summarized
shortly as follows: to a significant per cent of data there must be as small
residuals as possible, even if some other residuals turn out to be very large. A
‘built-in’ resistance against outliers is therefore already ensured in the ‘philo-
sophy’ of the most frequent value calculations. We can perhaps justifiably
speak about a different conception of statistics as Lr norm minimization
techniques (in the simplest case: calculation of the medians) always take all
data into account — and statistical procedures based on the Z*-norm are even
more sensitive to great values of the residuals (resulting in extreme outlier-sen-
sitivity) and therefore itis not guaranteed that, for example, the arithmetic mean
characterizes the densest lying group of the data. Another question is in which
sense we canjustifiably speak abouta ‘new’or ‘modem’conception of statistics
as the basic idea can be found in SHORT [1763] — to say nothing about a lot
of only heuristically based reweighting procedures figuring in applied disci-
plines in the last decades. Now, MFK-procedures are theoretically based on the
minimization of the I-divergence (see the previously cited HAJAGOS [1991])
and their characteristic features have been investigated in detail (see the
bibliography of STEINER (ed.) [1991] and the Table which is the supplement
of this book).

3.2. Versions ofthe mostfrequent value calculations

The above cited Table in STEINER (ed.) [1991] shows that in the standard
version of the most frequent value calculations the scale parameter S = 2eMFV
is used; ifshort flanks are guaranteed then S - 3em fv\srecommended (see also
STEINER, HAJAGOS [1993]).

HAJAGOS [1985] has shown that if generalized Student distributions are
used as substituting distributions (the formula for the probability densities is
given as Eq. 5 in STEINER, HAJAGOS [1993] applying a as the type parameter)
then

(6)
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must hold to be sure that the minimum of the I-divergence is actually reached;
earepresents the scale parameter if a is chosen in Eqg. 6 as the value of the type
parameter. For anf(x) which is not symmetrical to the origin then obviously
(x-M)2 must figure in Eq. 6 instead of X2 (or even (X-M j2 can be written
enhancing that we use Eq. 6; in the usual way we get Mk as the location
parameter). From the point of view of the theory it seems more consistent to
use eafulfilling Eq. 6 with a=5 or a=9 instead of calculating with a=2 in the
first step, i.e., to determine SMFV according to Eq. 3, and in the second step to
multiply by k=2 or 3.

Before investigating the outlier-resistance of Eq. 6, we show the similarity
(and also the differences) between the two possibilities of the most frequent
value calculations. For purposes of comparison we need to calculate the
guotients

as a function of t, i.e., as a function of the distribution type, see Eq. 5.

£5 £9
t 2emfv 3ZMFV
Gaussian 0 0.9698 0.9429
0.0156 0.9737 0.9490
0.0312 0.9777 0.9553
0.0625 0.9858 0.9683
0.0125 1.0026 0.9960
Statistical 0.25 1.0378 1.0568
0.5 1.1102 1.1936
Cauchy-type 1 1.2500 1.5000
2 1.4883 2.1649

Table I. Comparison of two calculation methods for determining the scale parameter
/. tablazat. Kétféle skalaparaméter meghatarozasi médszer dsszehasonlitasa

The results are demonstrated in Table I.: in broad type intervals are the values
of these quotients near to unity. To check that in fact for the most frequent
values similar behaviour is valid, Fig. 7 gives the curves of the relative
efficiencies ea/ek of the most frequent value variants Ma and MK for the
parameter pairsa=5,k=2, and a=9,k=3. Inthe first case, throughout the whole
type interval from the Gaussian to the Cauchy-type we find greater values than
90%; in the second case the statement is only valid for 2/3 of this type interval
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Fig. 7. Curves of relative efficiencies versus type parameter t of two pairs of location estimates:
Maa=5 is compared to Aft k=2 and Maa=9 is compared to Mk k=3. (In calculation of Ma ea
figures as scale parameter according to Eq. 6 instead of using k. emfv as for the Mk-s.) In general,
the usually proposed version of the most frequent value calculations (i.e. Mk) is more
advantageous in the most important type interval 0 <t < 0.5, however, both versions behave very
similarly (ea/ek > 95 %)

7. dbra. Két helyparaméter becslés-par relativ hatasfok-gorbéi a t tipusparaméter fliggvényében:
Ma a=5-6t Mk k= 2-h6z, mig Maa=9-et Mk k=3-hoz hasonlitjuk. (Az Ma-k szamitasakor a (6)
egyenlet szerinti ca a skalaparaméter, mig az Afakat k.emrv-ve 1szamitjuk.) Megallapithatjuk,
hogy a szokasosan javasolt verzié (azaz az Mk szamitasa) az elénydsebb, a legfontosabbnak
itélhetd 0 <t <0,5 tipusintervallumban azonban nagyon hasonléan viselkedik a két verzié (a fenti
tartomanyban a két eljaras relativ hatdsfoka nagyobb 95%-nal)
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but this latter is also a very broad one. This means that both variants of the most
frequent value calculations do not differ significantly from each other in type
intervals of considerable lengths and therefore investigation results obtained
for the second variant are also informative for the commonly used one.

3.3. Concentrated and dispersed outliers

Let us suppose that we calculate ea as the scale parameter according to
Eq. 6 but there are also outliers. Two cases were investigated earlier in detail

so only the results are reproduced here.
In the first case not only the outlier-free data but also the outliers occur

around a fixed value. The distance between the mentioned point-groups,
however, is relatively large compared with the dispersion of the values inside
agroup, thus modelling with two Dirac-6-s is adequate (see Fig. 8.); the relative
number of outliers is denoted by C for this outlier model. HAJAGOS [1988] got

outlier-free data

outliers

c X

Fig. 8. Outlier-model if outliers occur very far but are relatively concentrated

8. abra. Durvahiba-modell arra az esetre, ha a durvahibak nagyon tavol, de viszonylag
koncentraltan jelentkeznek
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the following closed formula for the maximum tolerable relative amount (Cmex)
of such outliers as a function of a (in per cent)

Cmex = 50 [1- {[(a3+16a2+63a+54)2+4a3(a+10)]12-
-(0 3+16a2+63a+54)}wW[2(a+10)]1] % )

Fig. 9 shows that this value decreases to zero if a->°° and tends to the value of
45.68 %ifa—l.

In the second case an outlier can occur anywhere but without a concen-
tration point, therefore the ‘distribution’ of the outlier-free data can also be
modelled here by a Dirac-O. The permissible rate of such outliers (denoted by
Of/T~x) can be calculated in accordance with

OoOUTmax = 1--—----- “ (8)

[STEINER 1988a]. This curve is also shown in Fig. 9. The value of OUTnmex
obviously approximates 3/4 if a-*T, it is more interesting, however, that
OUTmax =64 %holds even ifa=2 is chosen in Eq. 6, i.e., if we calculate "MFV

Fig. 9. Cmex values versus a according to Eq. 7 (see also Fig. 8.); OUTmexcurve (see Eq. 8) if
outliers can occur anywhere but without any concentration point
9. dbra. A (7) egyenlet szerinti Cmex-értékek az a figgvényében (Id. a 8. 4bréat), valamint a (8)
egyenlet szerinti 0(/7'mex-gorbe arra az esetre, ha a durvahibak barhol el6fordulhatnak, de nem
mutatnak koncentral6dasi tendenciat
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according to Eq. 3 [see also CSERNYAK, STEINER 1991, the first rows on
page 92].

3.4. Classical breakdown-bound investigations

With regard to the beginnings of the systematic investigations made for
robustness, resistance and breakdown bounds since 1964 one should mention
the ‘classical’ investigations performed in Princeton and reported in ANDREWS
et al. [1972].To obtain practical breakdown bounds the following samples of
n elements were used: (nN-nout) data were randomly chosen from a standard
Gaussian distribution, the others were 100; 200; 300; ..; 100n0,v The corre-
sponding probability density functionfc QuAx) can be written as follows

1~t /n 1 nu
fc-owM = yg- exp(-*2/2) +- £ 0(x-100/) 9)

(here, O also represents the Dirac-5). Standard Gaussian data occur practically
only (with a probability 0f0.997) in the interval (-3, +3) therefore the estimate
is not accepted if it is outside this. In ANDREWS et al. [1972] the maximum
nOut/n value was accepted as a breakdown bound for which the estimate
(obtained by the investigated statistical procedure) was still less than 3.

It is useful to visualize the ‘density function’fc Qut(x) but we are forced,
because of the limited graphic possibilities, to indicate also the Gaussian part
ofthe expression in Eq. 9 with asingle Dirac-5 in the origin, i.e., with the whole
occurrence probability (1~nout/ri) of the outlier-free values (see Fig. 10 for
//=100 and for nout = 30). According to the heuristics given in 3.1 it is to be
expected that the ‘philosophy’ of the most frequent value calculations results
in the tolerance of a considerable rate of this sort of outlier. In fact, calculating
with f{x) =fc 0iJx) (i-e >substituting the expression of Eq. 9 asf(x) into the
integrand of Eq. 3 and writing simultaneously (x-M)2or (x-MFV)2instead of
X2), the curves of the standard most frequent values (M; k=2) and the MFV-s
(i.e., M values for fc=I) as location parameters (T-values) show equally
negligible bias to a given maximum nou[/n value (see Fig. 11; the unbiased
value is clearly zero in the case of Eqg. 9 therefore the T-values simultanously
have the meaning of bias, too). In the standard case 41 % is the maximum naou/n
ratio, for M FV calculation it may even be 57 %. (The breakdown bounds are the
following for other most frequent values which are not shown in Fig. 11: 32 %
for M, k=3; 31 %for M* k=3; 40 % for M* k=2 and 59 %for AT, k=1)

W e have seen in point 2 that CML is the maximum likelihood counterpart
of MFV having just the same \j/-function (see Egs. 2a and 2b) but the scale
parameter iS-cl) is defined by Eq. 4. The resulting CML-curve is quite
different from the MFV-curve: itseems to be ‘continuous’ and the breakdown
bound turns out to be 50 %



Investigations concerning resistance 225

0.7-
outlier-free data; n-nout=70
0.6-
0.5-
0.4 —
Y  neut
n
0.3-
0.2-
0.1 -
outliers; nout=30
V_fllllllIIIIIIII!IlIl[IIlllll—l—I_*
C 1000 2000 3000 x

Fig. 10. Probabilités according to the breakdown bound investigations made in ANDREwSs et al.
[1972] (see also Eq. 9)
10. dbra. Az Andrews etal. [1972] szerinti ,,breakdown bound™' vizsgalatok valészin(iségi
modellje, mint Dirac-6-k az x szamegyenesen; Id. még a (9) kifejezést
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Fig. 11. Bias (7) versus nout/n (see Fig. 10.) for different estimates of location. Most frequent
value curves (MFV and M, k-2) show, before the jump, less bias than one per cent of the scatter
characterizing the outlier-free distribution. The curve of the expected values is denoted by E. (For
the SML-curve see caption of Fig. 12.)

11. dbra. Torzulasok (,,bias”, T-vel jelolve) a 10. abra szerinti nou,/n fliggvényében, kiillénb6z6
helyparaméter-becslésekre. A leggyakoribb érték-gorbék (MFVés M, k=2) az ugras el6tt 1%-nal
kisebb torzulast mutatnak (a durvahiba-mentes eloszlas szérasahoz viszonyitva). A varhato érték

gorbéjét £-vel jeldltik. (Az SML-gorbével kapcsolatban Id. a 12. abra feliratat.)

It is appropriate to show another pair of estimations, too, beyond the
already known pair CML and MFV, both having for just the same distribution
type optimum behaviour. However, some remarks should first be made on the
importance of scale parameter determination.

The assumption of the ‘a priori known type’ can result in outlier-sensitive
values of the scale parameter, (see the CML-curve in Fig. 12 orthe example
given in STEINER [1988b]). The parameter of scale belonging to the distribution
defined by Eq. 9 with a given (non-zero) value of nout and with n=100 is
denoted by e in this figure for all investigated methods; ethis the ‘theoretical
value”in the sense that no outliers exist, i.e., if nau[ =0 holds. These latter values
(characterizing the standard Gaussian distribution itself) are the following: etfl =
0.6120 for CML and zth = 0.9254 for MFV. The £CjW-values are seriously
distorted even before the breakdown (i.e., if nout/n < 50 %); on the otherhand
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log(E/Eth)
U

0 mu/n(%

Fig. 12. Actual values compared to the theoretical ones for different definitions of the scale
parameter, depending on nou,/n (see Fig. 10). SML: see Eq. 11 for esML\ CML: see Eq. 4 for
ecmt1; MFV: see Eq. 3 for zm v (and for M k=2 the well known 2em rv is used)

12. abra. Aktualis értékek (e) az elméletihez (er/)) viszonyitva a skalaparaméter kiilonb6z6
definicioi esetén, az nou,/n fliggvényében (Id. a 10. dbrat). SML: esml a (11) egyenlet szerint;
CML: ZQOWLa (4) egyenlet szerint; MFV: eaifv a (3) egyenlet szerint (M k=2 esetén jél ismerten a
2emfv skalaparamétert hasznaljuk)

eMFrva'ues are practically not influenced by the outliers if nou[ <57 %
Comparing these log (e/e/f) curves with the CML- and MFK-curves in Fig. 11
(where the logarithms of the bias are demonstrated), we can conclude that the
breakdown behaviour of the location parameter estimates strongly depends on
the estimation used for the scale parameter.

We now show the other pair of estimations which work optimally at the
same distribution type. Both Figs. 11 and 12 show curves (marked with M, k=2)
for the standard variant of the most frequent value calculations; we have only
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to define the ‘maximum likelihood’ counterpart of this; the only difference
being in the definition of the scale parameter.

The question can be posed even more generally: Which is the counterpart
of Eq. 6 if not only the I-divergence is minimized but also the scale parameter
is determined according to the maximum likelihood principle? In the usual way
(on the basis of Eq. 5 of STEINER, HAJAGOS [1993]) we get

j*hE?20i0u /(jNe =0 (10)

(If 770 holds we have to substitute (x-T)2 instead 0fx2.) The formula for
eCML given in Eq. 4 is obviously aspecial case of Eq. 10 fora =2, i.e., for the
Cauchy type.

Standard most frequent value calculations (M, k=2) work optimally in the
case of the geostatistical (or simply statistical) distribution type which can be
characterized by the type parameter a=5 (see e.g. the Table at the end of
STEINER [1991]; the corresponding density curve is given in STEINER,
HAJAGOS [1993] Fig. 1). If this estimation method is called the statistical
maximum likelihood method and is denoted by SML (analogously to CML
which abbreviates the expression ‘Cauchy maximum likelihood’), the scale
parameter can be denoted by eSML. As a special case of Eqg. 10,

0

‘Cn—£1/4
for gsmML J 1 f 2 /(*)<** =0 (11)
oo E£Z+XZ

must hold. Calculating with just the same \t(x) =x/(1+x2) known from Egs. 2a
and 2b, the corresponding parameter of location is also denoted by SML (as
the estimation method itself)- Of course (x-SML)2is to be written instead of
x2in Eq. 11 if/(x) is not symmetrical to the origin. (If the type parameter t
used in Eqg. 5 is equal to 1/4 we get the density function of the statistical
distribution, see Table 1.)

As Fig. 12 shows, eSMLbehaves similarly to £gml but the inflection of the
curve is at nout/n = 20 % Consequently the same breakdown bound value is
shown in Fig. 11., see the SML curve — which (interesting enough) is nearer
to the curve of the expected values (E) than to its own counterpart (M, k=2):
the latter has a breakdown bound value of nout/n = 41%. This pair of
estimations stresses even more that the statistically and information theo-
retically based choice of the scale parameter determination has significant
advantages also in respect of the resistance over the ‘automatic’ application
of the maximum likelihood principle. In general, questions of scale
parameter definitions and/or determinations must not be treated as second
order problems even if the goal is a possible unbiased determination of the
location parameter characterized by possible minimum statistical uncer-
tainty.
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REZISZTENCIA-VIZSGALATOK. A SKALAPARAMETER-FORMULA
MEGVALASZTASANAK FONTOSSAGA

HAJAGOS Béla és STEINER Ferenc

Ha csak sommas megallapitasokra korlatozédunk, egyetérthetiink azzal a nézettel, hogy az
»eloszlastipusra nézve robusztus” és ,,durva hibaju adatokkal szemben rezisztens” tulajdonsagok
gyakorlatilag szinonim fogalmaknak tekinthet6k, noha fogalmilag persze kiilonb6znek egymastol.
Ha azonban egy durvahiba-modellre vonatkozo6an két statisztikai eljaras kvantitativ 6sszehasonlitasa
valik sziikségessé, kideriilhet, hogy a kevésbé robusztus eljaras mutatjelentésen nagyobb reziszten-
ciat. A ,mintamedian” és az ,,a-levagott atlag" (a=0,l) becslés-par szolgalhat a fentiekre példaként.

A dolgozat bemutatja ezenfeliil, hogy a helyparaméter meghatarozasakor a skalaparaméter-de-
finicid helyes megvalasztasa kulcsfontossagu lehet. Tavoli durvahibak esetén példaul a szokasosan
CA/L-lel jeldlt helyparaméter-becslés 1ényegesen kisebb rezisztenciaji, mint az MF K-vei jel6lt, noha
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a N-fuggvényeik azonosak. (CML a ,,Cauchy maximum likelihood"-bdl képzett bet(isz6, mivel a
CMI-meghatarozasnal a skalaparaméter-meghatarozas is ezen elv alapjan torténik; MFKitt a ,,most
frequent value” bet(iszava a k=1 varians esetére.) Megjegyzendé még, hogy a durvahibak maximéa-
lisan elfogadhaté mértéke (a klasszikus ,,breakdown bound”-értelemben) szintén nagyobb az MFV-

szamitasra, mint a C/VL-szamitasok esetén.
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COMMENT ON AN OLD DOGMA: ‘THE DATA ARE
NORMALLY DISTRIBUTED’

Péter SZUCS™

Attention is called to the dangers applying the %-test in normality investigations. As is well
known, the y2-test is one of the most frequently used methods for normality investigations when
the hypothetical distribution is Gaussian. The Monte-Carlo simulations carried out show that the
%2-test at the usual significance levels find different distributions (significantly differing from the
Gaussian one) from the Gaussian distribution. This situation is termed the ‘trap of the % -test' and
it may further strengthen the lack of credibility of the predominant presence of Gaussian mother
distributions.

Keywords: 0f;—tast, normality investigation, significance level, probability

1. Introduction

Depending on the type of probability distribution some authors directly reject
the appearance of Gaussian distributions as being mother ones [MOSTELLER,
TUKEY 1977, TUKEY1977]. Forexample we can readon p. 661 of TUKEY [1977]:
‘When the underlying distribution, as always, is nongaussian...’.

We can use several so called normality tests to check whether a sample
originates from Gaussian distribution or not. One of the most frequently used
methods for normality investigations is the %92-test. In this we almost always
utilize the sample mean and the standard deviation as parameters, i.e. we carry
out the test of goodness of fit [VINCZE 1968]. The question arises whether the
level of probability of the y2-test finds some distributions different from the
normal one — as is Gaussian distribution. We performed Monte-Carlo inves-
tigations to answer the question. Taking our results into consideration we

* University of Miskolc, Department of Geophysics, H-3515 Miskolc-Egyetemvaros
Manuscript received: 22 November, 1993
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suggest, as a first step, another test [CSERNYAK 1989] instead of the %2-test for
a given distribution family.

2. Dangers of the %-test

HAJAGOS [1988] carried out Monte-Carlo investigations that indicated the
dangers of the 9@2-test. At that time however the investigations could not have
been expanded to sufficiently great sample and repetition numbers because of
the limitations of the domestic computer field. We therefore felt justified in
carrying out similar investigations as the present level of computer sciences can
now offer us far more scope.

W hat type of distributions do we submit to the %@2-test? We investigated
three different representatives of the fjx) supermodel. We can define the
supermodel in the following manner [STEINER 1990]:

fjx) =si(@)+ ,1._g (a>1). (1)
(~T)

where a is the type parameter, since the tails of the distribution functions are
wider when the values of a are small. When the values of a are great, the tails
will be much shorter and the maximum will be flatter. It can be proved that for

the standard form approaches the Gaussian distribution function. The
n(a) figuring in (1) is a normalization factor and can be calculated as follows:

faN

n(a) = (2)

fn or (7]

The fjx) model-family is able to model the cases that may occur in
practice. If we have no preliminary information about the type of data distri-
bution, the application of a=5 can be offered for geostatistical tasks [STEINER
1991, page 298, fig. 1]. Let us take this a=5 type as one of our investigated
distributions. The a=9 distribution was named after JEFFREYS [1961]. This is
a representative of the distributions with the shortest tails, which are likely to
occur in the geosciences. Thus, our second investigated distribution will be the
Jeffreys one. Our third distribution will be thefjx). This represents a distribu-
tion with wide tails, but it is still not Cauchy type.

During the Monte-Carlo investigations we created samples with 100 and
400 elements from the above mentioned distributions with the aid of a random
generator. We repeated the sampling a thousand times. After finishing the
9@-tests we were able to calculate probability values to an accuracy of two
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decimal places for different significance levels. These values show with how
much probability the y2-test would accept the given type and size samples as
normally distributed ones at the given significance level. The thousandfold
sampling proved to be reliable. When we repeated the investigations, there was
only anegligible fluctuation in the third decimal figure of the probability values.
We can see the detailed results of the investigation in Figs. 1and 2. The curves
have great probability values. For the samples with 100 elements (see Fig. 1)
we acceptour dataoriginating from geostatistical (a=5) distribution as normally

Fig. 1 Probabilities of acceptance of the Gaussian hypothesis at the given significance levels
(X2-test, n=100)
1 abra. A Gauss-hipotézis elfogadasanak valoszin(iségei az adott szignifikancia szinteken
(X2-préba, n=100)

distributed ones in half of the instances at the 90 percentile significance level.
In the case of a=9 the situation is even worse: the concrete probability value is
0.842 atthe 90 percentile significance level. For the samples with 400 elements
the situation is slightly better although the probabilities remain high enough
henceforward (Fig. 2). In the case of a=3 there was no ‘acceptance’. Based on
the 92-test we would even say, with high probability, that our samples with 400
elements originated from the Jeffreys distribution as normally distributed ones.

These findings can be termed the ‘trap of the 9@-test’ that may further
strengthen the lack of credibility of the predominance of Gaussian mother
distributions. From the practical aspect this situation has a harmful effect on
those users who apply the least squares method without deeper consideration
and investigation. From the theoretical aspect this can lead to the general
acceptance of the standard deviation as a universal uncertainty property, and
we may wrongly take into account the message and the validity domain of the
Heisenberg relation [CSERNYAK, STEINER 1991].
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Fig. 2. Probabilities of acceptance of the Gaussian hypothesis at the given significance levels
(X2-test, n=400)
2. dbra. A Gauss-hipotézis elfogadasanak valészinliségei az adott szignifikancia szinteken
(X2-préba, n=400)

The question may arise, with how much probability we would accept the
Gaussian hypothesis for the 9@-test if our samples originated from any member
of the fa(x) supermodel. To answer the question we should know with what
degree of probability the differenta values in Uiefa(x) supermodel would occur.
During our investigation we applied two different distribution functions that
are able to model the occurrence probabilities [see Fig. 4, and Eqgs. 10 and 11
of STEINER, HAJAGOS 1993]. These are as follows:

©)

O

We summarize our results in Table I. Naturally the results of the table were
not calculated from infinite different distributions. We obtained the numerical
valuesin asimilar way to the way in which we completed the 92-tests foreleven
different distributions of thefa(x) supermodel, and we integrated numerically
the results weighted with (3) and (4) probability distributions.
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Significance levels

20% 60% 80% 90% 9% 975% 99% 99.5% 99.9% 99.95%
/1=100  0.027 0.168 0.297 0.378 0.456 0.525 0.563 0.594 0.651 0.668

n“400 0.018 0072 0130 0.183 0.228 0.267 0.315 0.349 0419 0441
n=100 0.045 0263 0499 0562 0656 0.718 0.769 0.797 0.844 0.858
n-400 0.042 0.154 0.262 0.346 0.410 0.460 0516 0.556 0.637 0.662

Table I. Probability values for the acceptance of the Gaussian hypothesis when using the x2-test
at the given significance levels if our distribution originated from the fa(x) supermodel withfo or
fj probability distributions
I. tablazat. Valdszinliségek a Gauss-hipotézis elfogadasara y2-préba alkalmazasa esetén az adott
szignifikanciaszinteken, ha eloszlasuk azfa(x) szupermodellbél szarmazikfo vagyfj
valo6szin(ségs(riiséggel

The rows belonging to | were calculated with the help of (3), the values
belonging to ' were calculated with the aid of (4). For (3) the geostatistic
distribution (a=5) occurs with the greatest probability whereas in the case of
(4) the most probable distribution is the Jeffreys one (a=9). The large probabil-
ities we find in the table tend to underline the dangers of applying the %2-test.
For example, even for samples with 400 elements the probabilities of accep-
tance of the Gaussian hypothesis are 0.315 and 0.516. These are very great
probability values, especially if we take it into consideration that in the case of
(3) and (4) the occurrence probability of Cauchy distribution is still not
negligible.

3. The Csernyak test

It is a well known result of mathematical statistics that the distribution
function of the ‘extent’ of the sample with n elements

N = A~rpax ~ “min (5)

is associated with the type of mother distribution [CRAMER 1946]. The sample
size cannot be regarded as statistics that characterize the distribution because
R is obviously proportional to the scale parameter (S) as well as to the sample
size. We neglect S if we compare R to the empirical interquartile range
determined from the same sample in the following manner:

R
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W e can accept this as the statistical function of the test for type determi-
nation [CSERNYAK 1989]. This expression is suitable for normality investiga-
tions so we refer to the procedure as the Csernyéak test.

On the basis of our calculations it can be stated that the Csernydk test is
more reliable in the applied type range. Our results are shown in Figs. 3 and 4.
If these figures are compared with Figs. 1 and 2 it can be realized that in case
of the Csernyak test we accept the samples as Gaussian type with much less
probability than in the case of the 92-test.

Fig. 3. Probabilities of acceptance of the Gaussian hypothesis at the given significance levels
(Csernyak test, «=100)
3. abra. A Gauss-hipotézis elfogadasanak valészinliségei az adott szignifikancia szinteken
(Csernyék teszt, «=100)

Fig. 4. Probabilities of acceptance of Gaussian hypothesis at the given significance levels
(Csernyak test, «=400)

4. abra. A Gauss-hipotézis elfogadasanak valészinliségei az adott szignifikancia szinteken
(Csernyak teszt, «=400)
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It might well be said that the Csernyak test supposes freedom from
outliers. Although this may be true, it does not alter the situation: it makes no
difference whether the great value of R is caused by outlier free types with
heavier tails than the tails of normal distribution, or by the appearance of
outliers. The rejection of the hypothesis calls attention in both cases to the
need to handle the methods of traditional statistics cautiously.

4. Conclusions

Based on the results of Monte-Carlo investigations we can establish the

following facte:

— the % -test cannot be recommended for the normality tests of
different distributions occurring in the practice of geosciences.
Even if ow samples are quite different from the Gaussian distribu-
tion, the % -test accepts them as normally distributed ones with large
probabilities at the mpst frequently used significance levels;

— when applying the x -test the lack of credibility of the predominant
presence of Gauss mother distribution may contribute to the sur-
vival of the traditional (not robust and not resistant) statistical
algorithms;

— for measured data sets we would suggest the use of the Csernyak
test as a first step if our distribution originates from the” supermodel.
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MEGJEGYZES EGY REGI DOGMAHOZ: ,,AZ ADATOK
GAUSS-ELOSZLASUAK”

SzUCS Péter

Ez a cikk a x2-préba normalitasvizsgalatbeli alkalmazasanak a veszélyeire szeretné felhivni a
figyelmet. Mint jol ismert, az egyik leggyakrabban alkalmazott modszer a normalitasvizsgalatra a
X -proba, amikor a hipotetikus eloszlas a Gauss-féle. Az elvégzett Monte-Carlo vizsgalatok azt
mutatjak, hogy a y2-préba a szokasos szignifikanciaszinteken nagy valdszinliséggel Gauss-eloszla-
stinak talal attol szignifikansan kilonb6z6 eloszlasokat. Ezt akar a ,y2-proba csapdajanak” is
nevezhetnénk, ami tovabb er@sitheti a Gauss-eloszlas anyaeloszlasként val6 tainyomé el6for-
duldsanak a tévhitét.
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COMPARISON OF THE KARHUNEN-LOEVE STACK WITH
THE CONVENTIONAL STACK

Leif BRULAND*

Several applications of the Karhunen-Loéve (KL) transform to seismic data are known, among
which is the use ofthe first principal component as an alternative stack — the KL stack. On analysing
and comparing the KL stack with the conventional stack, it was found that the KL stack is more
influenced by noise, especially coherent noise, than the conventional one. With approximately the
same signal amplitudes from trace to trace, the conventional stack is therefore the better choice. On
the other hand, if the signal amplitudes vary and the noise is uncorrelated with approximately
constant energy on all traces, the KL stack should be preferred.

It has been claimed that the KL stack isrelatively insensitive to small time shifts of the signals,
and that correction for residual statics may be unnecessary when the KL stack is used. It is confirmed
here that the KL stack generally gives the better signal-to-noise ratio in such cases. However, the
time shifts may seriously distort the output signal, and the distortion is found to be very sensitive to
changes in the time shifts, in view of which it is important to correct for residual statics even if the
KL stack is used.

Keywords: seisimic, stacking, Karhunen-Loéve Transformation

1. Introduction

The Karhunen-Loéve Transform (KLT) is used to represent a set of, say,
M input vectors or traces by a particular set of M orthogonal vectors called
principal components. The principal components are linear combinations of
the input vectors constructed in such a way that most of the coherent energy is
contained in the first component, or in the first few components. The KLT can
therefore be used to express information in a compact way. The principal
components have long been used in multivariate statistical analysis both for
data reduction and in interpretation.

Institute of Solid Earth Physics, University of Bergen, Allegaten 41, N-5007 Bergen, Norway
Manuscript received: 18 June, 1993.
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Since the first principal component, which can be looked upon as a
weighted stack, usually contains most of the coherent energy from the input
data, it may be used as an alternative stack. This was demonstrated by HEMON
and MACE [1978], who initially suggested the application of the KL T toseismic
data. Several other applications of the KLT to seismic data were later presented
by ULRYCH etal. [1983], LEVY etal. [1983], JONES, LEVY [1987], YEDLIN et
al. [1987] and FRERE, ULRYCH [1988].

In this paper we are mainly concerned with the use of the first principal
component as an alternative stack, hereafter called a KL stack. After a short
introduction to the theory of the KLT, the properties of the KL stack are
explored and compared with those of the conventional stack.

2. The Karhunen-Loéve Transform

Let the data be given as

* = CRi, %2> s> xin)T. 1= 1.2, ..., M (1)

where M is the number of traces, and N the number of samples per trace, M<N.
All traces are assumed to have zero mean values.

We now search for a vector y as a linear combination of the x's
M
Y=£ = Xa (2)
i=l
where X = [xI5x2, ..., xM}, and & =(ab a2, .., aM)T.

The energy (or variance) ofY is then

V() =y Ty=4&aT XTXa =4 TCa. 3)
where C=XJ X is the covariance matrix of the data.
The first principal component is defined as the vector y that maximizes
V(y) under the restriction
M
aTa=£ a}=1 (4)
i=i

Maximizing (3) subject to (4) is equivalent to maximizing

/(a, X) =ATCA4 + X (L-4T4), (5)
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where Ais a Lagrange multiplier. Differentiation of/(a, A) and equating the
result to O leads to:

=2C4- 2A5=0
ha
or

(C- Xl)a=o. (6)

From (6) it follows that A must he an eigenvalue and a the associated
eigenvector of C. Therefore we must have
aTCa-= (A = A

and the solution to the maximization problem is the eigenvector corresponding
to the largest eigenvalue of C (all eigenvalues of C are > 0).

The next principal component is found from (6) when 4 is the eigenvector
associated with the next largest eigenvalue, and so on. We can thus write

Y=XA (7)
where
A {aj, (2> )
Since C is symmetric, the eigenvectors are orthogonal, and A T=A~X Multipli-
cation of (7) by AOgives
X = YAT, (8)

which is then the inverse transformation.
The variance of the ithtrace is

F(x,) =xj Xt.
The variance ofy, is

Y =y! Yi=al xT Xai=Xi»

and the eigenvalues are therefore just the energy or variance of the principal
components.
The total energy of the input data is

1> (*,) =Trace [XTX] =J>f=£ Vfy). 9)
/ i 1

From this it follows that the total energy is invariant under the transfor-
mation.
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Since A!>AN>..> AMmostoftheenergyiscontainedinthefirstprincipal
components. We can therefore approximate X by a linear combination of the
principal components with largest energy, say the first P<M components:

X» Ymp AMM. (10)

The amount of reconstructed energy can be calculated from

3. KLT and Singular Value Decomposition (SVD)

An SVD of the data matrix X also leads to the matrix of coefficients, A,
and the matrix of principal components, Y. To see this we start with the matrix

0 X
= ,BT=B 12
XTO (19
The eigenvalue problem for this matrix can be written
0 X
13
XTO (13)

where 1 is an (N x 1) vector,v is an (M x 1) vector, and / is an eigenvalue. Since
B is symmetric, | will be real. From (13) we get

Xv=1lu, XTu=1lv (14)
Premultiplication of the two equations by XTand X, respectively, gives
XTXv =Py, XXTU=Pu (15)

We thus see that v is an eigenvector of C=XTX and A=/2 the associated

eigenvalue, while i is an eigenvector of XXTwith the eigenvalue X

For convenience we assume the rank of C and XX' to be M. C is then a
positive definite matrix, and therefore all eigenvalues are greater than zero. We
order the eigenvalues so that Aj> A*> ... - \M > 0, and let the corresponding

eigenvectors be normalized so that vf vf= 1, ujui =1, i=1,2, ...,M. Wethen
define the matrices Vand U as

V= (vj, v2,...,vM}
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U- {wj, n2,..-,um]

and define A as the matrix with the eigenvalues as its diagonal elements with

zeroes elsewhere.
From (14) we get

XV = UA (16)
Comparing (16) with (7) we find that
A=V
Y= UA (17)

Postmultiplication of (16) with VTgives the decomposition of X
X=UAVT=YAT

which according to (8) is equivalent to the inverse transformation.

4. Comparison of the KL stack with the conventional stack

Some properties of the KL stack are more easily revealed by observing
that the principal components can be derived in a different way.

From (17) it follows that the principal components are scaled versions of
the first M eigenvectors of XXT. These eigenvectors can also be found from a
maximization problem, viz.

max (ATXXT) (18)
under the restriction
WTin =1
Since this leads to exactly the same sort of problem as was defined by (5),

only with XTX replaced by XXT, ii will be the eigenvector of XX1 that is
associated with the largest eigenvalue X The first principal component is just

y = Xii. But expression (18) can be written

M
max (RTXXTu) = max~T (xf i1)2 (19)
bl

Thus, the normalized first principal component maximizes the sum of the
square of the inner products between this component and the traces. It can be
easily shown that the normalized conventional stack maximizes the sum of the
inner products. In summary,
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The normalized first principal component, i1, maximizes ~ (xfu)2
The normalized conventional stack, S, maximizes ~ (xfs)

From these properties of i1 and S we can draw some conclusions:

If one or more traces are reversed in polarity, this will have no influence
on the KL stack. This is shown by Fig. 1. where exactly halfof the traces have
been reversed in polarity so that the conventional stack becomes a zero trace.

Fig. 1. Traces may be reversed in polarity without affecting the KL stack. In this example 6 out
of 12 identical traces have been reversed in polarity. The comventional stack (CS) gives a zero
trace, the KL stack (KL) reproduces the input trace
1 abra. A csatornak polraitasa megfordulhat anélkil, hogy a KL stacking eredményét
megvaltoztatna. A példan 12 azonos csatornabdl 6 ellentétes poiraitasi. A hagyomanyos stacking
(CS) zéro6 csatornat eredményez, a KL stacking (KL) a bemeneti csatornat adja vissza

If the noise is uncorrelated from trace to trace, and all traces have identical
signals and the same signal-to-noise ratio, the conventional stack is the opti-
mum (weighted) stack. In this case the weights in (2) will also be equal, and
therefore the KL stack is also optimum. Now, if the noise energy varies from
trace to trace, the KL stack will be most influenced by the traces with highest
noise energy. This is true whether the noise is correlated or not, but the effect
will be more pronounced if the noise is coherent over two or more traces. This
result is illustrated in Fig. 2.
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0.00
0.100
0.200
0.300
0.400
0.500
0.600
0.700

KL CS

Fig. 2. lllustration of the effect of a ‘noise signal’ present on 2 traces (in this case). When the
noise energy is small compared with the signal energy, there are no discernible differences
between the KL stack (KL) and the conventional stack (CS) (a and b). With an increasing relative
amount of noise energy, the differences become quite pronounced (c and d). The stacks have
been scaled to equal signal amplitudes
2. abra. Két csatornan jelen 1évé ,,zavarjel” hatasa. Ha a zaj energiaja a jel energidjahoz képest
kicsi, a KL stacking (KL) és a hagyomanyos stacking (CS) kozott nincsenek észrevehet6
kulénbségek (a és b). A zaj energiaja relativ hanyadanak novekedésével a kiilonbségek
meglehet6sen hangsulyozénak lesznek ( ¢ és d). A stackingeket az egyenl6 jel amplitatdokhoz
igazitottuk
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The synthetic input data to the left of Fig. 2a, contain one coherent signal
(identical on all traces) and a ‘noise’ signal present on only two out of twelve
traces. The KL stack and the conventional stack are shown to the right. The
stacks have been normalized to the signal amplitude. There is no visually
discernable difference between these stacks but the traces with noise were given
slightly higher weights than the other traces in the KL stack. If we increase the
noise energy on the two input traces, these traces will be given successively
higher weights in the KL stack (Fig. 2b-2d).

It may be illustrative to calculate the weights for traces with and without
noise in a case like the last one.

Let the traces be given as

xt =s, /=1,2,...,m
Xj =s +n, i=m+l, m+2,..., M

We assume sTn =0 (i.e., no overlap between coherent noise and signal), and
denotesTs =a, nTn =band (s+n)T(s+h) = a+b =c. We then have

xTx=" B (20)
BT C °

where A is an m*m matrix, B is m *(M-m) and C is (M-m)*(M-m). The
elements in A and B are all equal to a, and those of C are all equal to c. The
eigenvalue-eigenvector problem is then

a B~ n "
=X (21)

BTc v %
where wisanm x 1and van (M-m) x 1 vector. The eigenvector associated with
the largest X has only two different elements, since all elements in /i must be

equal, and so must all elements in v. These values, which we denote 1 and v,
respectively, are the weights given to traces without noise and with noise in the
calculation of the KL stack.

The system is now reduced to

Ta (M-m)a n "
=X
ma (M-m)c v v 22)

Solving for Xgives
X =2 [(M~m) c+ma\ +* V[(M-m) c+ma]2 - 4Ta (M~m) (c~a), (23)

and the ratio v/u becomes
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Since the total energy of the traces is E = (M-m) ¢ +ma and the total noise
energy iSN =b (M-m), we get the following inequality for the ratio v/u

E E

>N > (24)

E-2N wu E-N
W e thus see that the noise traces will always get larger weights in the calculation
of the KL stack, even if the noise is present on only one trace. It may be
concluded that as long as the signal is completely coherent with constant
amplitudes from trace to trace, the conventional stack should be preferred to

the KL stack irrespective of the noise structure.

It has been claimed that the KL stack is relatively insensitive to small
trace-to-trace time shifts of the signal, and therefore residual static correction
can often be avoided when the KL stack is used [HEMON, MACE 1978, ULRICH
etal. 1983]. However, this isonly partly true, as can be seen from the following
argument.

One choice of the weights, ah in equation (2) which satisfies (4) is ak = 1,
a, = 0 when a * k. Thus the energy of the first principal component is always
greater than or equal to the energy of the trace with the highest energy. This
means that even if the signal is somewhat out of phase from trace to trace, the
signal will not be cancelled by a KL stack as it might be by a conventional
stack. With uncorrelated noise, the S/N ratio will therefore be higher in the KL
stack than in the conventional stack. However, there is no guarantee that the
KL stack will reproduce the signal; in fact it may be highly distorted, and the
form of the signal in the KL stack is very sensitive to small changes in the
statics. This is illustrated in-Fig. 3, where quite different signals appear in the
KL stack although only one trace has been changed from step to step. Ifsignal
distortion is to be avoided, it is therefore necessary to perform residual static
correction even if the KL stack is to be applied.

Next we consider the case with varying signal amplitudes across the traces.
If the noise is approximately uncorrelated with nearly the same energy on all
traces, we can use the arguments of the last example to see that in this case the
KL stack is preferable to the conventional stack. This follows from the fact that
the energy in the KL stack cannot be less than the energy in the trace of
maximum energy, and since the difference in trace energy is due to the
difference in signal energy, the S/N ratio will always be higher in the KL stack
than in the single traces. This will not always be the case for the conventional
stack. Ifthe noise varies from trace to trace, the situation becomes more obscure
since the relative amount ofsignal energy to noise energy will affect the weights
in the KL stack. With an increasing amount of coherent noise, the KL stack
should again be avoided.
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0.00 e 0.00
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N I?jfi-
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1 11 1 !
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Fig. 3. KL stacks (KL) and conventional stacks (CS) of sets of traces with time shifted signals.
Only one of the traces (second from the left) in Fig. 3b is different from those in Fig. 3a. In
Fig. 3b and in 3c, only the third trace is different

3. abra. KL stackingek (KL) és hagyomanyos stackingek (CS) csatomasorozata idében eltolt
jelekkel. A 3b. abran csak egyetlen csatorna (balrél a masodik) tér el a 3a. abran 1évé
csatornaktol. A 3b és a 3c abrak kozott csak a harmadik csatornaban van kiilonbség

5. Conclusions

The properties of the KL stack have been analysed and compared with
those of the conventional stack, and the results can be summarized as follows:

Both stacks are optimal in the case of identical signals contaminated by
completely uncorrelated noise. With identical signals on all traces the conven-
tional stack is superior to the KL stack in all other cases.

Correlated noise will always have a greater influence on the KL stack than
on the conventional stack. The differences between stacking methods are small
as long as the amount of noise energy is small compared with the total signal
energy, but they increase rapidly with an increasing relative amount of corre-
lated noise energy. This is true whether the noise is coherent over all traces
(except for the case of identical noise ‘signals’ on all traces) or only a few.

If traces with residual statics are KL stacked, the S/N ratio will normally
increase (and never decrease), but the signal may be highly distorted. It is
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therefore important to perform residual static correction even if KL stacking is
to be applied.

If the signal amplitudes vary across the traces while the noise is uncorre-
lated and has approximately the same energy on each trace, the KL stack is a
better choice than the conventional stack. This may be so even when the noise
varies and/or is correlated to some extent, but it would be very difficult to
prescribe which method to use in such cases.

REFERENCES

Freire S. L. M., Ulrych T. J 1988: Application of singular value decomposition to
vertical seismic profiling. Geophysics 53, 6, pp. 778-785

Hemon CH, Mace D. 1978: Essai d’une application de la transformation de Karhunen-
Loéve au traitement sismique. Geophysical Prospecting 26, 3, pp. 600-626

Jones |. F., Levy S. 1987: Signal-to-noise ratio enhancement in multichannel seismic data
via the Karhunen-Loéve transform. Geophysical Prospecting 35, 1, pp. 12-32

Levy S., Ulrych T. J,, Jones I. F.,, O1denburg D. W. 1983: Applications of complex
common signal analysis in exploration seismology. Proceedings of the 53rd Annual
SEG meeting, Las Vegas, S6.6

Ulrych T. J, Levy S., Oldenburg D. W., Jones I. F. 1983: Applications of the
Karhunen-Loéve transformation in reflection seismology. Proceedings of the 53rd
Annual SEG meeting, Las Vegas, S6.5

Yedlin M. J, Jones I. F., Narod B. B. 1987: Application of the Karhunen-Loéve
transform to diffraction separation. IEEE Transactions on acoustics, speech, and
signal processing. ASSP-35, 1

A KARHUNEN-LOEVE ES A HAGYOMANYOS STACKING ELJARAS
OSSZEHASONLITASA

Leif BRULAND

A szeizmikaban a Karhunen-Loéve (KL) transzformacio szamos alkalmazasa ismert, ezek
kozil az els6 fékomponensnek alternativ ésszegzésként vald alkalmazasa a KL stacking. A KL
stackinget és a hagyomanyos stackinget elemezve és 6sszehasonlitva, megallapitottuk, hogy a KL
stackinget a zaj, killéndsen pedig a koherens zaj jobban befolyasolja, mint a hagyomanyos stackin-
get.

Csatornarél csatornara haladva kozel azonos jelamplitidok mellett ezért a hagyomanyos
stacking ajobb valasztas. Masrészt azonban, ha ajel amplitiddja valtozik, és a zaj minden csatornan

Azt allitottak, hogy a KL stacking viszonylag érzéketlen ajelek kismérték( idébeli eltoléda-
saira, és a maradék statikus korrekcié KL stacking esetében felesleges. Megerdsitjik, hogy ilyen
esetekben val6ban a KL stacking adja a jobb jel/zaj viszonyt. Azonban, az id6beli eltolédasok a
kimené jelet lényegesen torzithatjdk, a torzulas nagyon érzékeny az id6ébeli eltolédasokra, és
mindezekre vald tekintettel, fontos, hogy a KL stacking esetében is végrehajtsuk a maradék statikus
korrekciot.






GEOPHYSICAL TRANSACTIONS 1993
Vol. 38. No. 4 pp. 251-259

INTERCONNECTING GRAVITY MEASUREMENTS BETWEEN
THE AUSTRIAN AND THE HUNGARIAN NETWORK

k

Géza CSAPO . Bruno MEURERS , Diethard RUESS |
Gabor SZATMARI**

An account is given of the comparative measurements carried out on the Hungarian and
Austrian gravity base networks in the period of 1991-1993. This work includes absolute and relative
gravity measurements. The absolute measurements were performed with the JILAG-6 absolute
gravimeter, the relative measurements with 5 LCR gravimeters on 24 ties between selected points
of the base networks along the border of the two countries.

It has been established that 40 pGal difference exists between the gravity datum of Austria and
that of Hungary. To determine the source of this deviation further investigations and readjustment
of the Hungarian gravity network are needed.

Keywords: gravity sunveys, Austria, Hungary, network

1. Introduction

In the wake of the rapid progress in instrument design and measuring
techniques the Earth sciences require the development of geodetical base
networks covering as large areas as possible in order to solve the increasing
numbers of theoretical and practical tasks.

For some years the gravimetric network of Austria has been connected to
those of Germany, Switzerland and Italy (1985-1987), while the network of
Hungary to that of former Czechoslovakia (1985-1988). Further cooperation
was rendered possible by the countries of Central Eastern Europe lifting the
secrecy on their base networks and striving to participate more and more
intensively in joint projects initiated by international organizations. This re-
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suited in the conducting of connecting measurements between the Austrian and
Czech, and the Slovakian gravity base networks in 1991. Similar work was
performed in 1991-93 between Austria and Hungary. The framework for these
projects was set up partly by bilateral agreements on scientific cooperation,
partly by the ‘DANREG’ program started in 1989. The connecting measure-
ments include absolute and relative gravity surveys.

2. Absolute gravity measurements

The Austrian Gravity Base Network (AGBN) contains 23 absolute sta-
tions, and atseveral selected points repeated determinations have been perform-
ed as well [RUESS et al. 1989]. On the basis of these measurements the AGBN
point catalogue was up-dated for 1993 prior to the interconnecting measure-
ments.

In 1989 at the time of the adjustment of Hungarian Gravity Network
(HGN-80) the Ig' values determined at five points with a GABL absolute
gravimeter between 1978-80 were accepted as constraints, thusthedatum level
and scale of the network were determined by these values [CSAPO, SARHIDAI
1990]. In the period of 1991-93, using the JILAG-6 equipment, RUESS et al.
repeated the earlier absolute measurements at four points. From data compiled
in Table /, it is evident that the discrepancy of values determined by the two
different type of instruments is substantially higher than the accuracy of
absolute gravimeters [BOULANGER et al. 1991]. The examination of such
conspicuous discrepancies goes beyond the scope of this paper. For the

GABL VG difference variation
. year JILACI-0
station mGal uGal/m uGal uGall/year
81 SIKLOS
1978 678.291 339.4 +30 123
1991 678.321 339.4
82 BUDAPEST 1980 824.328 250.2 2 19
1991 824.307 250.0 '
85 KOSZEG 1980 784.748 267.2 3 25
1993 784.715 271.0 '
86 SZERENCS
1980 872.816 290.6 _q 22

. 1993 N 872.785 298.0
calculated with the corrected vertical gradient (VG)

Table I. Results of absolute measurements in Hungary
/. tdblazat. A magyarorszagi abszolut mérések eredményei

*
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comparison the Hungarian gravity data were reduced by the average of
differences (15 pGal) obtained on the four reobserved absolute stations. The
repeated absolute measurements require the re-adjustment of HGN-80 as a
necessity. In this respect, in 1993-94 several new absolute points have been
measured in Hungary; re-adjustment of the network is due to be performed
after these measurements have been completed.

The absolute measurements were processed by RUESS in the usual way,
i. e. corrections with regard to systematic instrumental effects, air pressure,
polar motion and height (reduction to ground level) were applied. The ‘vertical
gradient’ measurements were performed by means of 2 LCR gravimeters with
an accuracy of £2pGal.

Using three independent sets of measurements at K&szeg, Hungary
{Fig. 1.) the most probable value of gravity and its error can be calculated in
two different ways:

a) each drop taken as an individual measurement

b) one set (containing 1200-1800 drops) taken as one measurement.

W e regarded version b as a more realistic approximation, and these values
are given in Table I.

784760
é_ 764700 GRAVIMETER:JILAG-6 (OSTEG. 1003,
R 784650 -
>
< 784600 . ___0@ ;rf‘.- -
(@] , "
784550
-© ar
784500 -
784450 —_— R
............... fC' TuftViir
784400 - Jx L
784350 3rd SERIES
2nd SERIES (night)
784300 - (day)
TIME IN HOURS
784250 L O T T T I R | 1 - r~ L L L

|
'1nN'NnA'oMbB0 ' ®-[\1[
TV T VVYV V ~TIDLDIDLI

Cw —
e~ —

| |
KW AN QA G e T e 1) By S
o CAIOICNIAICNIWAMCAICMN( (M n n i C© 1(MFA"

Fig. 1 Chart showing the results of absolute gravity measurements (4800 drops)
1 abra. Abszol(t médszerrel végzett nehézségi mérés eredményének diagramja (4800 ejtés)

* 1pGal=l X 10 8ms 2
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3. Relative gravity measurements

The relative gravity measurements were performed with LCR gravimeters
by researchers of the institutes listed on the front page together with those of
the Geophysical Department ofthe Mining University of Leoben on the 24 ties
shown in Fig. 2. In Tables//and Il the observed Ag values for each gravimeter
and their simple arithmetic mean are compiled. The average of the latter is

___ Paradox‘f

Fig. 2. Sketch of comparative measurements on the Austrian and the Hungarian gravity base
networks and the ‘error circles’ of the measurements. 1—absolute station; 2—base point of the
1st order network; 3—base point of the 2nd order network
2. dbra. Az osztrak és a magyar gravimetriai alaphalozat 6sszehasonlitdé méréseinek vazlata és a
mérések ,,hibakorei”. 1—abszolt alloméas; 2—I. rend(i bazispont; 3—II. rend( bazispont
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HE GRAVIMETER mean and error
D-9 G-625 G-963 G-1919 mGal  + uGal
KAISEREICHE - 42.530 42,543 42,611 42578 42566 36
ZEMENDORF- 37.173 37.196 37.196 37179 37.186 2
HOF- 13.718 13.738 13716 13.728 13.725 10
PARNDORF
HEGYESHALOM - 7923 7251 7.240 7264 7245 17
DL ERN 18.463 18.482 18.440 18440  18.456 20
\FNEARJL%BN 8.993 9.003 9.034 9.032 9.016 21
SOPRON - 15.864 15.892 15.877 15.871 15.876 2
ZEMENDORF- 7.563 7.549 7.551 7.544 7.552 8
iAol 24,519 24,512 24,545 24527 24526 14
VWEPRERSDORF - 25.919 25.911 25.960 25913  25.926 23
e RF 3.915 3.906 3.895 3.920 3.909 1
HAMMER - 12341 12333 12313 12326 12328 12

) high seismic noise during the observations

Table Il. Results of gravimetric measurements (northern part)
Il. tablazat. A graviméteres mérések eredményei (északi rész)

+15 pGal. The ties were measured once in the order A-B-A-B-A or A-B-
C-B-A-B-C-B-A (with the exception of the Sopron-Vdlcsej-K@szeg part,
which was observed twice with the instruments G-963 and G-1919). The
readings of gravimeters G-625, G-779, G-963 and G-1919 were taken by CPI
techniques, gravimeter D-9 was equipped with a feedback system. The results
were reduced to the benchmark ofeach pointand corrected for drift, Earth tides,
barometric effect and scale factor. The scale factors were determined by
comparison on national calibration lines. After the comparative measurements
a calibration campaign was performed using the gravimeters of Wien and
Budapest on the earlier established Gdéstling-Hochkar vertical calibration line
[MEURERS, RUESS 1985]. Results of the measurements are compiled in
Table IV, the calculated correction factors for scale constant in Table V.
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TIE GRAVIMETER mean and error
G-779 G969  G-1919  mGal + nGal

\EVBEEP%EHS_DORF 11.001 - o oot
BT s - = e
SZOMBATHELY - 8.565 8.545 8.561 8.557 1
\IjgféSEE% _ 17517 17.482 17.500 25
\S/gFI)-Fg?g'I\EIJ - _ 6.147 6.175 6.161 20
gggmg%%w 10.860 10831  10.844  10.845 15
EiEMRQgR- _ 7.076 7.067 7.072 6
EQER%EUND - 19532 19578 19548  19.553 23
ls(zOoRI\yBiNr%_ELY _ 30415 30419  30.417 2
légg X"F%'\é'gé 17.236 17257 17259  17.251 13
HELIGENKREUZ- 1035 10371 1035 10351 23
HEILIGENKREUZ - 8.030 8.056 8.055 8.047* 15

high seismic noise during the observations

Table I1l. Results of gravimetric measurements (southern part)
I1l. tablazat. A graviméteres mérések eredményei (déli rész)

4. Adjustment of measurements

The adjustment of the network shown in Fig. 2. was carried out as a
constrained network in three versions (A, B, C). In version ‘A’ the absolute
gravity value of Kaisereiche and K&szeg measured with the JDLAG-6 gravi-
meter was taken as a constraint. In version IB” in addition to the two absolute
values, the points of HGN-80, while in version ‘C’ apart from the absolute
values, the points of AGBN were taken as constraints as well. All measure-
ments were assumed to be of the same reliability, and the Ag values observed
by each gravimeter were taken as independent measurements. The results of
adjustment are contained in Table VI. The errors of the adjusted Ag values are
6-12 pGal, which — on account of the limited number of measurements —
can be regarded as satisfactory. To give a better illustration of the quality of
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measurements, ‘error circles’ were plotted in Fig. 2. The radius (r) of each
circle was calculated by the following relationship:

M=£ M2nw

where v¢ — residuals belonging to pointi obtained from adjustment ‘A’ in pGal,

nvi — number of residuals belonging to point i.

t

Tw gravimeter mean error scale factor
(mGal) 1st day 2nd day 3rd day (mGal) (mGal)

:PB?_%%ADFEI\-I 71.447 G-963 447 .465 443 71.451 + 11 0.999 944

G-1919 381* 410 413 71.401 23 1.000 644

HOCHKAR - .107 124 129 157.120 13 1.000407

LASSING Loraee .136 .142 .147 157.141 12 1.000 274

ggBSLTBUONDgN - 126.892 .804 783 .803 126.797 14 1.000 749

.863 .857 .855 126.859 5 1.000 260

(Isgssillljﬁc; 41155 .145 129 121 41.132 13 1.000 559

112 126 119 41.119 8 1.000 876

ggé:_ll—-!UKNAGR- 198339 i 352 353 350 198351 1.000444

* 348 368 366 198361 1.000 393

*

gross error due to carelessness of the observer

total gravity difference (calculated from the above four observed Sg)

Table IV. Results of measurements on the Gostling-Hochkar vertical calibration line
IV. tablazat. Hitelesitd mérések eredményei a Gostling-Hochkar vertikalis bazison

gravimeter correction factors for the scale constant

1 2* 3
G-963 1.001434 1.000415 1.002993
G-1919 1.000532 1.000513 1.001434

* calculated from mean value of four ties

Table V. Calibration factors of gravimeters G-963 and G-1919
1—Hungarian Gravimetric Calibration Line; 2—Gostling-Hochkar vertical calibration line;
3—adjustment, version ‘A’

V. tablazat. A G-963 és G-1919 graviméter méretaranytényezGi

1— Magyar Gravimetriai Hitelesité Alapvonal; 2—Gostling-Hochkar vertikalis hitelesité vonal;

3—,,A " kiegyenlitési valtozat
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AGBN and HGN-80 grna(\)/\ﬁ; adJUSte(CIG)g e %=+ GBGK GCCGK
base points (mGal)

(-980 000) A B C (pGal)
HOF 837.967  838.000 838.025 +33 +58
PARNDORF 851.690 851.724 851.745 +34 +55
ZEMENDORF 800.799 800.819 800.841 +20 +42
WEPPERSDORF 776.279  776.296 776.298 + 17 +19
WALLERN 833.230 833.267 833.279 +37 +49
HAMMER 772.366  772.385 772.385 +19 +19
EBERAU 765.268 765.307 765.312 +39 +44
HEILIGENKREUZ 754.927  754.955  754.949 +28 - - 22
HEGYESHALOM 844.486  844.451 844.446 -35 -40
FERTOD 824258  824.250 824222 - 8 -36
SOPRON 808.421  808.374 808.351 -47 -70
VOLCSEJ 802.226  802.217 802.206 -9 -20
SZOMBATHELY 776.173 776.158 776.136 - 15 -37
KORMEND 745.750  745.750 745.718 0 -32
RABAFUZES 762.995  763.001 762971  + 6 -24
No ofties 24 24 24
No of independent measurements 78 78 78
No of unknowns 15 8 7
Mo (pGal) +17 +30 +21

Mo = standard error of unit weight

Table VI. Main parameters of adjustments
VI. tablazat. A kiegyenlitések fébb paraméterei

5. Evaluation of the results

Based on the evidence of the error circles the Ig' values of different points
have different reliability. This is explained by the fact that the number of residuals
changes from point to point and that from the statistical point of view the radius
of the error circles is uncertain owing to the limited number of measurements.
For several ties (e.g. Kaisereiche-Hof) differences exceeding the reliability of
measurement were observed between the readings of different gravimeters. It
can be seen from Table VI that both networks deviate to a small extent from
the scale determined by the absolute measurements. This deviationis -3.5 x 105
+1.7 x 10-~5 for the Austrian Base Network, and 2.5 x 10~5+ 2.6 x KO-5 for the
Hungarian one. According to versions B and C the datum of HGN-80 is higher
by about 40 jiGal than the datum of AGBN. The difference can be explained by
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changing gravity or by a more trivial reason, an inaccurate g value of Sopron,
which even at the 90 % probability level cannot be regarded as having the same
reliability as those of the rest, i.e. the standard error of unit weight (Mq) of version
B adjustment is significantly higher than those of the other two versions.

Our supposition, that the changes obtained at the reobserved absolute
points are due to some other reason than instrument error, is based on the
monotonously decreasing value ofg obtained during reobservations carried out
six times in nearly regular time intervals between 1980 and 1993 with different
types of absolute gravimeters (GABL, JILAG, AXIS). The rate of decrease is
1.9 pGall/year during the investigated time interval (Table I).

To clarify the reason for the 40 pGal discrepancy, further investigations
are needed.

In conclusion the following can be established:

1) From the viewpoint of plotting common gravity maps for the territories
of the two countries the difference revealed has no practical importance;

2) Due to causes discussed in this paper, HGN-80 requires readjusment;

3) For joint gravity projects requiring high accuracy it is essential that the
gravimeters be calibrated on the same calibration line.
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OSSZEKAPCSOLO GRAVITACIOS MERESEK AUSZTRIA ES
MAGYARORSZAG GRAVIMETRIAI ALAPHALOZATAI KOZOTT

CSAPO Géza, Bruno MEURERS, Diethard RUESS, SZATMARI Gabor

A dolgozatban a magyar és osztrak gravimetriai alaphalézatok 1991-93 k6zott végzett 6sszekap-
csolé méréseir6l szamolnak be a szerz6k Ez a munka abszollt és relativ graviméteres méréseket
tartalmazott. Az abszolut méréseket JTLAG-6, a relativ méréseket 5 db LCR graviméterrel végezték 24
mérési kapcsolaton, a két orszag teljes kdzds hatarszakaszan kivalasztott bazishal6zati pontok kozott.

Megallapitottak, hogy a két orszag alaphal6zatanak referenciaszintje 40 pGal-lal kiilonbdzik.
Ezen eltérés okainak felderitése tovabbi vizsgalatokat, illetve a magyarorszagi alaphalézat Gjrakie-
gyenlitését igényli.
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